-------
32
(2) those that were mobile and could make a relocation decision on the basis
of air pollution control regulations.
A subjective review of the source categories under study was made to
determine their mobility. A category was classified as non-mobile if it were
either strongly tied to its raw material resource (e.g. mining operations) or
if it were strongly tied to its market (e.g. service industries in urban areas).
Sources that were not constrained by either of these considerations were clas-
sified as mobile by default.
It is fully recognized that this procedure does not address all of the
issues affecting mobility nor does it consider conditions under which raw
materials and finished products could be transported long distances as a result
of the general availability of good transportation services throughout the
country at acceptable costs. It does, however, identify the most significant
constraints to mobility and provides a first order estimate as to which indus-
tries would not be likely to move solely because of air pollution regulations.
It is expected that refinements to the information base would result in more
sources being classified as non-mobile for reasons other than the two given
above.
Table 2-7 gives the list of those sources classified as non-mobile, and
the reason for this classification (raw-resource-linked or market-linked). It
should be noted that, in contrast to the prior rankings by emissions and air
quality impacts that are specific to pollutants, this ranking applies to source
categories irrespective of the size and nature of pollutant emissions.
2.7 IMPACT EVALUATION
The previous discussions prescribe three different ways of establishing
priorities for NSPS: on the basis of emissions, on the basis of potential air
quality impacts, and on the basis of mobility and competitiveness. It is
evident that there are numerous ways these three rankings can be combined and
there are many perturbations that can be tested. It is therefore necessary to
determine some measure of the impact of each prioritization scenario to serve
as a point of comparison.
2.7.1 Emission Impact Evaluation
It is a straightforward process to identify the impact of any prioriti-
zation strategy on national emissions. Emissions are computed as a function
-------
Table 2-7. Source Categories Classified as Non-Mobile
Source Non-Mobility
Flag3
Fossil Fuel Boilers (< 0.3 x 106 Btu/hr) K
Fossil Fuel Boilers (0.3 - 10 x 106 Btu/hr)b K
Fossil Fuel Boilers (10250 x 106 Btu/hr) K
Mixed Fuel Boilers B
Coal and Refuse B
Oil and Refuse B
Waste Oil Combustion Boilers K
Stationary Pipeline Compressor Engines K
Stationary Internal Combustion Engines K
Spark Ignition (Natural Gas) K
Diesel and Dual Fuel K
Industrial and Commercial Incineration B
Municipal Incineration £ 50 Ton/Day B
Sodium Carbonate (Soda Ash) Industry L
Sodium Chloride Production Industry L
Fuel Conversion (Coal Gasification/Liquefaction) L
Alfalfa Dehydrating Plants L
Animal Feed Defluorination Plants B
Cotton Ginning Plants L
Direct Meat Firing Processes K
Fish Processing Plants L
By-Product Coke Ovens L
Uranium Refining Plants L
Asphalt Roofing Plants K
Brick and Related Clay Products Plants K
Clay and Fly-Ash Sintering Plants L
Concrete Batching Plants K
Phosphate Rock Preparation Plants L
Q
Flags: K - Source is market-locked
L - Source is land-locked (i.e., tied to resources)
B - Both K and L
Minor Source Category
-------
34
Table 2-7. (Contd)
Source Non-Mobility
Flag3
Metallic Mineral Mining and Benefication L
Non-Metallic Mineral Mining and Benefication L
Sand and Gravel Processing Plants L
Stone Quarrying and Processing Plants L
Dry Cleaning K
Graphic Arts Industry K
Industrial Surface Coating Industry K
Solvent Metal Cleaning (Degreasing) K
Ship and Barge Transfer of Gasoline & Crude Oil B
Bulk Gasoline Terminals (Loading Tank Trucks/Rail Cars) K
Gasoline Bulk Plants (Storage and Transfer) K
Service Station Loading and Unloading K
Petroleum Refinery Miscellaneous Sources L
Crude Oil and Natural Gas Production Plants L
Q
Flags: K - Source is market-locked
L - Source is land-locked (i.e., tied to resources)
B - Both K and L
Minor Source Category
-------
35
of time using emission rates corresponding to state regulations (i.e., Es) for
those sources that have not yet had an NSPS promulgated and emission rates cor-
responding to NSPS levels (i.e., En). It is then possible to evaluate the im-
pact of a prioritization scenario by comparing the emission-vs-time projections
with some desired level. This process is identical to that carried out in
previous work2 and the details will not be repeated again here.
For some pollutant prioritization schemes, it is desirable to distin-
guish large (Ts-Tn) values from moderate (Ts-Tn) values, etc. In order to make
this distinction, a cumulative frequency distribution plot was developed for
all major source-pollutant combinations and their associated potential emission
reduction by application of NSPS in 1980; i.e.. (Ts-Tn) in 1990. The frequency
distribution, which appears in Fig. 2-4, indicates that there are a small number
of source categories (i.e., 44) which account for the majority of the (Ts-Tn)
potential emission reduction (i.e., >66,000 tons/year)and a large number of
source categories (i.e., 200) which would yield very little emission reduction
(i.e., <8,000 ton/yr) after application of NSPS.
Because of the skewness of the data, the class limits of High, Moderate
and Low (Ts-Tn) were determined by inspection. One can see, from examining
Fig. 2-4, that the High Class lower limit is selected, where the (Ts-Tn) level
is experiencing a relatively large positive rate of change. The lower limit of
the Moderate (Ts-Tn) was selected where the rate of change of (Ts-Tn) does not
decrease significantly as the (Ts-Tn) level decreases. Table 2-8 gives the
distribution data by (Ts-Tn) for each pollutant for High, Moderate and Low
Ts-Tn classes.
2.7.2 Public Health and Welfare Impact Evaluation
It is not quite as simple to identify a measure of impact on public
health and welfare (as measured by ambient air quality concentrations) of a
prioritization strategy. Ideally, it would be desirable to have a measure of
public exposure to high air pollutant concentrations. To do this would require
the estimation of siting patterns of all the industrial source categories
considered. The aggregate and non-site-specific nature of the Model TV data
clearly does not allow this kind of estimate to be made. As a surrogate for
this type of analysis, it appears reasonable to estimate the number of indi-
vidual facilities that would be built over a given time span, that have the
potential for high air quality impacts. Although this will not necessarily
-------
300
H
HIGH (TS-TN) > 66,000 TON/YR.
MODERATE (TS-TN) < 66,000 TON/YR., BUT > 8,000 TON/YR.
LOW (TS-TN) < 8,000 TON/YR.
LO
O\
100 200 300 400 500 600
Fig. 2-4 (TS-TN) xlO3 TON/YR POLLUTANT
700
800
900
-------
Table 2-8. Distribution of Source Categories by Pollutant
and High, Moderate and Low (Ts-Tn).
( T c Tr» "\
Levelb
High
Moderate
Low
^ J s in)
Levelb
High
Moderate
Low
(Ts-Tn)
Levelb
High
Moderate
Low
Particulate
Mean
(Tons/yr)
233,800
18,500
1,700
No. Source
Category
11
23
65
Total (Ts-Tn)
(Tons/yr)
2,571,200
425,350
110,100
Mean
(Tons/yr)
111,500
32,700
1,800
Hvdrocarbons
Mean
(Tons/yr)
277,700
28,200
2,500
Mean
(Tons/yr)
16,400
2,200
No. Source
Category
15
36
38
Fluorides
No. Source
Category
1
17
Total (Ts-Tn)
(Tons/yr)
4,166,000
1,014,500
93,000
Total (Ts-Tn)
(Tons/yr)
16,400
37,500
Mean
(Tons/yr)
385,800
25,200
2,100
Mean
(Tons/yr)
42,300
800
S02
No. Source
Category
4
7
16
CO
No. Source
Category
9
7
8
H2S
No. Source
Category
1
1
Total (Ts-Tn)
(Tons/yr)
446,100
229,100
28,000
Total (Ts-Tn)
(Tons/yr)
3,472,500
176,600
16,470
Total (Ts-Tn)
(Tons/yr)
42,300
800
Mean
(Tons/yr)
391,800
24,567
1,800
Mean
(Tons/yr)
1,000
Mean
(Tons/yr)
41,900
NOZ
No. Source
Category
5
6
6
Pb
No. Source
Category
11
H2SO^
No. Source
Category
1
Total (Ts-Tn)
(Tons/yr)
1,959,000
147,400
11,000
(Tons/yr)
10,500
Mist
lotal (is in)
(Tons/yr)
41,900
Data rounded to nearest 100 ton/year
High (Ts-Tn) > 66,000 ton/year of pollutant emission
Moderate (Ts-Tn) s 66,000 ton/year but > 8,000 ton/year
Low (Ts-Tn) < 8,000 ton/year
-------
38
measure population exposure (since it cannot distinguish siting patterns rela-
tive to population distribution) it does provide a first-order estimate of the
potential for population exposure. Also, an estimate of the number of plants
of average size can easily be made with the Model IV information by Equation 2-11:
Number of new plants = New and Replacement Industry Capacity/Average
Plant Size (2-11)
N = B + C]/Z
average
B and C, and therefore N, are. functions of time, but Z, a hypothetical source
of average size, is assumed to be constant. Considering the short time period
of this analysis (10 years), this appears to be a reasonable simplification.
It should be noted that this number of plants can be calculated for those
facilities with high, moderate, or low potential for air quality impacts as
described in Section 2.5.
Figure 2-5 graphically illustrates how this impact measure can be
evaluated. In the first time period before any standards are set, plants
are being built without NSPS control levels and there is an increase in the
number of facilities with high air quality impacts. As NSPS are set, the rate
of increase of these high impact plants slows down as the new facilities are
built to NSPS levels. Likewise, the number of new facilities with low air
quality impacts increases. When all NSPS are set the rate of increase of high
impact plants is zero and the number of plants with high air quality impacts
remains fixed, representing facilities built prior to NSPS promulgation. The
rate of increase of low impact plants now follows the total growth rate.
This graphic description is simplified in that it assumes all facilities
not controlled by NSPS will have high air quality impacts, while those that
have NSPS in effect will have low impacts. This is not the case in reality
and was used here only to simplify the description. In practice, some facili-
ties will have high air quality impacts (as defined by the algorithm used here)
both before and after NSPS promulgation, since the NSPS may not reduce the ground
level concentration enough.
This impact analysis lends itself well to readjusting priorities to
account for undesirable impacts. The priority pollutant for readjustment can be
determined by computing the number of facilities with high air quality impacts
at some point in the future (1990 in this analysis) for each pollutant. This
can be compared to some goal (e.g., a limit on the number of high impact
-------
39
NUMBER
OF NEW
FACILITIES
TOTAL NUMBER OF NEW PLANTS /
NUMBER WITH HIGH
AIR QUALITY IMPACTS
NUMBER WITH LOW
AIR QUALITY IMPACTS
FIRST SET
OF STANDARDS
SECOND SET
OF STANDARDS
FINAL SET
OF STANDARDS
Fig. 2-5.
TIME
Schematic of Impact of Priority Schedule on
Facilities with High Air Quality Impacts.
-------
40
facilities) and the priority determined by that pollutant which is furthest
from its goal. The priority industry source category is then the one with the
largest number of new facilities. This process is entirely analogous to the
one carried out for emission prioritization (Sec. 2.4) only it uses the number
of facilities with high air quality impacts as the prime variable.
o
2.7.3 Mobility and Competitiveness Impact Evaluation
The effect of NSPS on removing air pollution control regulations as a
siting factor must be measured by surrogate parameters in a fashion similar to
the public health and welfare impacts. It is not possible to definitively
determine where new and replacement facilities will locate because of state
regulation differences because of the large number of factors involved in
siting. What can be determined, however, are the facilities for which air pol-
lution regulations have been removed as a siting consideration because of NSPS
(assuming states do not promulgate regulations more stringent than NSPS). The
number of new plants can be used as the measurement variable.
The number of new and replacement facilities is calculated as for the
air quality impact analysis (Equation 2-11). The number is then classified as
to whether they could move to avoid stringent state regulations (i.e., mobile)
or whether they are tied to certain locations (i.e., non-mobile). As NSPS are
promulgated for mobile source categories, they are switched into the non-mobile
class since the air regulations have been removed as a siting variable. (The
term "mobile" as used here relates to the ability of a source to locate new and
replacement facilities in response to state air standards.)
Figure 2-6 schematically describes how the information could be presented.
In the absence of NSPS, the number of new facilities built that could have made
a siting decision on the basis of the difference among state air pollution regu-
lations would increase. As NSPS are promulgated this decreases until all
standards have been set and no new plants have state air pollution regulations
as a siting parameter.
2.8 CAVEATS AND CAUTIONS
The implications of the NSPS program are significant, both to the
regulated industries and to the EPA groups charged with carrying out the program.
aThe term "mobility," as used in this report, refers only to an interpretation
of the CAA regarding stationary source siting practices.
-------
41
NUMBER OF
NEW SOURCES
WITH THE
POTENTIAL
FOR SITING
ON THE BASIS
OF AIR
POLLUTION
REGULATIONS
WITHOUT NSPS
WITH NSPS PROGRAM/
TIME
Fig. 2-6. Schematic of Impact of Priority Schedule
on Mobility of Sources.
-------
42
It therefore appears warranted to reemphasize the caveats and cautions ex-
pressed in the various portions of the methodology section.
First and foremost, this study was designed as a screening exercise to
determine what areas should be looked at in more detail first. As such, it
intentionally took a fairly cursory view of the details of each industrial
process and made numerous simplifying assumptions in order to arrive at a
manageable set of information upon which to develop program strategies. There
are many other methods that could have been used and review and critique of this
procedure is welcomed. The most significant contribution it was designed to
achieve was to provide a systematic means of establishing priorities that ad-
dressed the criteria prescribed in the Clean Air Act Amendments of 1977.
Second, it is entirely possible that this base of information will be
used for other work in other, unrelated areas. This should be done only with
the utmost care and awareness of the time and resource limitations under which
this data has been assembled.
Third, the screening of sources into major (>100 tons/year) and minor
groups is extremely sensitive to the assumed source size. While it can be
said with some confidence that those with order of magnitude less emissions
(i.e. <10 tons/year) can clearly be classified as minor, it is not so clear in
all cases as to where the intermediate sources (10-100 tons/year) can be classi-
fied. Although the minor sources were screened for a largest source sizej it
is to be expected that some sources have been grouped into the wrong category
because of the unavailability of accurate size distribution data. This can
only be corrected by more detailed analysis or by the identification of such
data from the industry representatives themselves.
Fourth, the Model IV approach to emission computation addresses all the
issues of interest (e.g., growth, replacement, varying emission rates, etc.)
but it is only as good as the input data. Again, it is expected that there are
holes or weak spots in the information. Updated data can easily be incorporated
into the procedure for review and revision. The purpose of the more detailed
studies are to provide this update.
Fifth, the air quality modeling procedure used here is extremely crude
and ignores site-specific features such as terrain, meteorology, background,
etc. It was for this reason that the analysis generated only a grouping (high,
moderate, low) rather than a concentration number. The use of the procedure
in a relative rather than an absolute screening was also the result of recognized
-------
43
weaknesses in the ability to predict expected concentrations with the limited
data available. It does, however, provide a first approximation of air quality
impacts.
Sixth, there are a large number of possible perturbations to the priori-
tization scheme that can be tested by applying different weights to the various
criteria (emissions, air quality, mobility), by adding other criteria (e.g.
economics, equipment availability, enforceability), by adding subjective evalu-
ation of certain source categories, and many others. Time and resources did
not permit a comprehensive evaluation of all the possibilities; only the most
obvious prioritizations were tried. Also, there was a distinct decision not
to reduce the priority schemes under each of the three criteria to a single
numerical rank. It is the opinion of the authors that this obscures valuable
information required by the decision-makers. It is intentional that the result
of several schemes and their impacts are presented for review rather than a
single ranking.
Finally, there are many criticisms that can be leveled at this method-
ology and at its information base. Most of the obvious ones have already been
acknowledged and attempts have been made to deal with them within the time and
resource constraints available. Continuing criticism with corresponding
suggestions for improvements are always welcome.
In summary, data evaluation for individual sources should not be viewed
or referenced out of context of this work. The value of this work for the
decision maker lies in the context of the total analysis. The worth of the
impact analysis is in relative rather than absolute measures. Simplifying
assumptions and the algorithms constructed for the analysis were equally applied
to all categories and therefore it is believed that the relative measure of
the parameter yields a meaningful picture of the measure of impact by the three
CAA criteria.
-------
44
3. PRIORITIZATION SCENARIOS
There are many ways to apply the prioritization methodology to develop
an ordered list of sources for NSPS control. The approach taken here is first
to review each pollutant separately to determine the unique characteristics of
the sources. Next, the pollutants will be reviewed collectively and priorities
among pollutants determined.
Several prioritization scenarios will appear frequently. The two bound-
ing cases consist of setting no NSPS at all in the study period (1980-1990) and
setting all NSPS in 1980. Although neither case is realistic, they do provide
the limits on the best and the least that can be achieved under an NSPS program.
In addressing the criteria of the CAA it is possible to define many
scenarios. For the purpose of this analysis the baseline strategy (referred to
as the Baseline Strategy) consists of the following considerations: (1) Onlv
major sources (> 100 ton/yr pollutant of one or more uncontrolled pollutants) are
considered for NSPS; (2) All sources with high mass emissions (Ts-Tn) are considered
before those with moderate mass emissions, which in turn are all considered
before those with low mass emissions; (3) Sources with high air quality impact
are considered before those with moderate impacts, which in turn are all considered
before those with low air quality impact,; and (4) Sources that are mobile are
considered before nonmobile sources. This leads to the following groups in the
order in which they are considered:
(a) High (Ts-Tn), High Air Quality Impact, Mobile, (Ts-Tn) Rank
(b) High (Ts-Tn), High Air Quality Impact, Nonmobile, (Ts-Tn) Rank
(c) High (Ts-Tn), Moderate Air Quality Impact, Mobile, (Ts-Tn) Rank
(d) High (Ts-Tn), Moderate Air Quality Impact, Nonmobile, (Ts-Tn) Rank
(e) High (Ts-Tn), Low Air Quality Impact, Mobile, (Ts-Tn) Rank
(f) High (Ts-Tn), Low Air Quality Impact, Nonmobile, (Ts-Tn) Rank
(g) - (1) Repeat for Moderate (Ts-Tn)
(m) - (r) Repeat for Low (Ts-Tn)
Each of the subgroups (a) through (r) are finally ranked by (Ts-Tn), allowing the
computer program to select sources off the prioritized list in the multipollutant
analysis. This is, of course, only one of many possitilibies that can easily be
tested with the methodology. Some of these perturbations will be presented here.
-------
45
3.1 POLLUTANT SPECIFIC - MAJOR SOURCE CATEGORIES
3.1.1 Particulate Matter
There were 88 major particulate emission source categories evaluated.
This amounted to 56 percent of all major source categories evaluated. A
major pollutant emission source is a source which has the potential of
emitting a minimum of 100 tons per year of one or more specified pollutants
without application of emission control techniques or processes.
The nationwide growth in production capacity and corollary growth in
nationwide emissions were calculated for both major and minor particulate emis-
sion sources for a base year 1980. The nationwide source capacity was typic-
ally computed by growing 1975 capacity to 1980 using appropriate new growth
(Pc) rates. Where available a "weighed" 1975 state particulate emission limi-
tation factor (Es) was applied to the 1980 capacity to compute nationwide
particulate emissions. The state emission factor limitation (Es) used was, in
most cases, the value computed by TRC-* in their 1975 analysis of the impact
of new source performance standards.
Hypothetical average source sizes for each major particulate
emission source category ranged from approximately 1800 tons product per year
to over 5 million tons product per year. Uncontrolled particulate emissions
from an average hypothetical source size in each particulate emission
source category ranged from 0.4 tons particulate per year to 85,000 tons
particulate per year.
During the 1980-1990 time period the new growth capacity was repre-
sented by the number of hypothetical new sources of average size. For the
ten year period the number of new hypothetical sources for the major
particulate emission source categories ranged from as few as one source
per category to over 8,000 sources per category.
The nationwide particulate emissions computed for 1980 as allowed
by 1975 state emission factor limitations was 9 million tons particulate
matter per year for the 88 major particulate emission source categories
evaluated. Approximately 16 source categories accounted for 90 percent of
these particulate emissions with 3 source categories accounting for nearly
53 percent of the emissions.
-------
46
The nationwide particulate source category production capacities were
also computed for 1990. Nationwide particulate emissions for 1990 were
computed assuming state emission limitation factors were in force during the
1980-1990 time period. Nationwide particulate emissions were also computed
assuming application of an emission limitation reflecting a condition of best
anticipated control (E ), which would be applied to new or modified source
construction during the same ten year period. The difference in the national
emissions based on the state limitation and the more restrictive new and mod-
ified source limitation (Ts-Tn) in 1990 was then computed. The anticipated
1990 particulate emission reductions (Ts-Tn) by the application of (En) begin-
ning in 1980 ranged from 4 tons per year to 778,000 tons per year. The
(Ts-Tn) values for major particulate matter source categories is listed in
Table A-3, Appendix A.
The air quality impact of each of the 88 major particulate emission
source categories was evaluated. Actually 118 individual particulate
emission source categories were evaluated for air quality impact. However,
30 source categories were actually unit operations of a larger representative
source category and were aggregated for growth and mass emission purposes.
The computer dispersion model program calculated the air quality impact
for the aggregated source category. A typical or average source size was
selected for each source category for the dispersion analysis. The maximum
ground level concentration (X) was computed based both on the state emission
factor limitation (Es) and the best level of anticipated control (En).
The maximum ground level concentrations for both (Es) and (En) were compared
after normalizing (dividing) by the appropriate ambient threshold value for
particulate matter. These values were then ranked by order of magnitude
and statistically divided into three groups of High, Moderate and Low air
quality impact.
Among the 88 major particulate emission source categories evaluated,
24 source categories or 27 percent had a High air quality impact resulting
from the state emission limitation (Es). For this High impact group,
17 or 71 percent of the particulate emission source categories were reduced
to a Moderate or Low air quality impact by the application of the best
anticipated emission limitation (En). A total of 10 or 12 percent of the
particulate emission source categories had a Low air quality impact based
on state emission limitation factors.
-------
47
Of the 88 major particulate emission source categories, 37 or 43 per-
cent were considered to be non-mobile and non-competitive based on either
market or raw material ties. Therefore 50 particulate emission source
categories or 58 percent of all the major particulate emission source
categories would be considered mobile and competitive and would tend to
locate in states with less restrictive emission limitations, assuming all
other mobility and competition considerations allowed the source the
necessary flexibility in source siting.
Table 3.1.A gives the prioritized schedule for all particulate emis-
sion source categories under the Baseline Strategy described above. Assuming
implementation of this schedule nationwide emissions over time are shown in
Fig. 3.1. For purposes of comparison, emissions are also displayed for the
following cases:
- All NSPS are set in 1980, that is, En becomes the applicable
emission limitation for all sources in 1980. This case repre-
sents a lower bound to achievable emissions.
- No NSPS are set, that is, Es continues to be the applicable
emission limitation for all sources. This case represents
an upper bound for nationwide particulate emissions.
Examination of this figure shows that nationwide particulate emissions
will continue to increase over time if no NSPS are set and will continue to
decrease with time by the application of NSPS (En) regardless of the
standard setting rate or prioritized scheme. This insensitivity to the prior-
itization scheme is to be expected given the short time period in which the
CAA requires standards to be set. Beyond mid-1982, both the Base Strategy
and the lower bound are almost parallel because in both cases all new and
replacement sources must meet the same limits. By 1990, the difference in
emissions between the Base Strategy and the lower bound is small compared
to the difference between the upper and lower bounds. That is, by 1990
the Base Strategy produces almost the same results in terms of emission
reductions as setting all standards in 1980.
The figure also shows that after 1980, emissions drop off sign-
ificently by the Base Strategy and all-NSPS case. This is the result of
having mass emissions rather than mobility and air quality impact determine
the prioritized schedule. Source categories with relatively large national
-------
48
emission totals are regulated earlier than source categories with small
totals because the High (Ts-Tn) source categories have first priority.
Several points should be made about the order of several source cate-
gories. Mining, Incineration, and Metallurgical sources occur early in
the schedule because of their high mass emission reduction potential. It
should be noted that the mining operations include emissions from
fugitive sources as well as process sources. In some mining source
categories, fugitive emissions are very large. Mining operations also
head the list because they have high air quality impacts.
Table 3.1.C compares the 1990 air quality impacts of the three NSPS
schedules in terms of the number of new and modified sources having high,
moderate, and low air quality impacts. Table 3.1.D compares the mobility
and competitiveness impacts of the three schedules in terms of the number
of new and modified sources that could have moved under each schedule,
that is, the number that were mobile prior to being regulated by an NSPS.
The number of new and modified sources that are either non-mobile initially
or that become non-mobile when an NSPS is set is also given.
-------
TABLE 3-1-A PRIORITIZED NSPS SCHEDULE FOR PARTICIPATES*
CUMULATIVE
IEAE EFFORT
isec.c
1980.5
1581.0
1.00
2.00
3.00
4.00
5.00
00
00
e.oo
9.00
1C.00
11.00
12.00
13.00
u.oo
15.00
1.00
2.00
3.00
4.00
£.00
6.00
7.00
e.oo
9.00
10.00
11.00
12.00
13.00
14.00
15.00
1.00
2.00
3.00
4.00
.00
.00
.00
.00
.00
10.00
11.00
12.00
13.00
14.00
15.00
SOURCE
(AGG) NON-METALLIC SIRING - CLAY
PHOSPHATE ROCK (MINING)
SAND 6 GEAVEL PROCESS
(AGG) NON-METALLIC DINING - GYPSUM
INDUSTRIAL INCINERATION (INDUSTRIAL-COMMERCIAL)
METALIC MINERALS MINING (COPPER)
(AGG) SON-METALLIC MINING - LIME
BY-PRODUCT COKE OVEN
(ASS) IEED AND GRAIN HILL INDUSTRY
(AGG) PHOSPHATE ROCK PREPARATION PLANTS
PI.YHOOD MANUFACTURING PLANT
GREY IRON FOUNDRIES (ELECTRIC ARC)
(AGG) SECONDARY ALUMINUM PLANTS
WHISKEY
POTASH
METALIC HIHERALS MIMING (UEANIMUN)
FLY-ASH SINTERING (SISTEBING)
METALIC MINERALS MINING (FERROALLOY)
(AGG) NON-METALLIC MINING - BORON COMPOUNDS
AMMONIUM SULFATE
STEEL FOUNDRIES (ELECTRIC ARC)
VEGETABLE OIL MFG.
BEER PROCESSING PLANTS
PHTHALIC ANHYDRIDE PLANTS (OXYLENE PROCESS)
METALIC MINERALS MINING (IRON ORE)
METALIC MINERALS MINING (ALUMINUM)
MUNICIPAL INCINERATION < 50T/D
METALIC MINERALS MINING (LEAD MINING)
METALIC MINERALS MINING (ZINC MINE G CRUSHING)
GLASS MANUFACTURING INDUSTRY (SODA-LIME GLASS)
GYPSUM MANUFACTURING PLANTS (CALCINES)
SODIUM CARBONATE PLANT (NATURAL PROCESS)
PESTICIDES MANUFACTURING
(AGG) CASTABLE REFRACTORY PLANTS
GREY IRON FOUNDRIES (REVERBERATOR!)
BORAX BORIC ACID
PHTHALIC ANHYDRIDE PLANTS (NAPTHALENE PROCESS)
(AGG) NON-METALLIC MINING - FLUORSPAR
STONE QUARRYING AND PROCESSING
PCLYPROPLYENE
STEEL FOUNDRIES (OPEN HEARTH)
POLYESTER RESIN
HITRATE FERTILIZER (AMMONIUM NITRATE) PLANTS
EXPLOSIVE IND (HIGH EXPLOSIVES)
STABCH MPGR
STANDARD
USED
(En)
35.519989
6.000000
0.420000
5.099999
0.065000
0.070000
6.299999
0.215000
0. 193000
1.389999
0.001300
0.070000
4.309999
0.002200
0.663030
0. 110000
1.099999
0.600000
1.059999
1.000000
0.260000
0.630000
0.270000
2.400000
0.500000
0. 110000
0.303000
0.700000
0. 700000
0.022000
0. 100000
0.450000
0. 100000
8.400030
0. 100000
1.620000
0.990000
6.000030
2.599999
0.030000
0.220000
0.350000
0.180000
0.260000
0.020000
CODE
11 F01
4« F01
10 A 02
42 F31
1 1 B04
43 E01
m KOI
50 A10
39 E31
41 D01
80 B01
50 C32
51 B12
30 D39
20 A18
47 E01
40 D17
l»2 E91
45 F01
30 D20
50 D01
30 D11
30 D09
20 C26
41 E01
46 E01
10 B33
44 E01
45 E01
40 037
40 D11
20 C24
55 A01
40 DOS
50 C03
20 A15
20 C25
47 F01
40 A01
20 B37
50 D02
20 B19
30 A05
20 C17
30 D18
FLAI
N1
N1
N2
N2
N2
N2
ill
N1
!14
Ntt
N2
H3
M2
M2
H2
N3
N2
N2
N1
S»
M5
S4
H«
N4
NK
N5
N5
N4
NK
,16
S6
N6
82
.11
M3
S2
S3
N2
N1
H5
MS
M5
84
B5
MS
"See Table 3-1-B for Definition of Terms
-------
TABLE 3-1-A* (Cont'd)
CUMULATIVE
IEAH EFFORT
1981.5
1582.0
1982.5
.00
.00
.00
.00
,00
.00
.00
8.00
9.00
10.00
11.00
12.00
13.00
14.00
15.00
1.00
2.00
3.00
14.00
5.00
£.00
7.00
e.oo
9.00
10.00
11.00
12.00
13.00
T4.00
15.00
1.00
2.00
3.00
tt.OO
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
SOURCE
SYNTHETIC FIBERS INDUSTRY (DACRON POLYESTER)
HYDROGEN FLUORIDE
CARBON BLACK (FURNACE PROCESS)
MINERAL WOOL MFC
(AGG) SECONDARY COPPER PLANTS (CONVERTER SMELTING)
POLYETHYLENE (LOW DENSITY)
SYNTHETIC FIBER INDUSTRY (NYLON)
(AGG) SECONDARY COPPER PLANTS (BLAST FURNACE)
PERLITE (VERTICAL FURNACE)
PHOSPHORIC ACID PLANTS (THERMAL PROCESS)
EXPLOSIVE IND (LOW EXPLOSIVES)
CHARCOAL PLANTS
CHEMICAL HOOD PULPING IND. (ACID SULFITE)
(AGG) SECONDARY ZINC SHELTERS (RETORT REDUCTION £ KETTLE FURNACES
(AGG) SECONDARY ZINC SHELTERS (HORIZ 6 REVERB FURNACES)
(WOOL PROCESSING)
(TEXTILE PROCESSING)
FIBERGLASS MFG. PLANTS
FIBERGLASS MFG. PLANTS
CERAMIC CLAY MFC
SYNTHETIC RUBBER IND. (ST YR ENE-BUTADIENE) (SBH)
GREY IRON FOUNDRIES (CUPOLA)
MIXED FUEL BOILERS (COAL 6 REFUSE)
MIXED FUEL BOILERS (OIL 6 REFUSE)
COITON GINNING
URANINUM REFINING
(AGG) ASPHALT EOOFING PLANTS
ALFALFA DEHYDRATING PLANTS
(AGG) TUNNEI KILNS (CO AL) , DBY ERS AND STORAGE
(AGG) TUNNEL KILNS (OIL) , DR YERS AND STORAGE
INDUSTRIAL INCINERATION (IND ORGANIC LIQUID WASTE IIC)
(AGG) CLAY SINTERING PLANTS
(AGG) PERIODIC KILNS(OIL), DRYERS AND STORAGE
(AGG) PERIODIC KILNS (CO AL) , DRYERS AND STORAGE
(AGG) TUNNEL KILNS (GAS) , DR YERS AND STORAGE
(AGG) PERIODIC KILNS(GAS) ,DRYERS AND STORAGE
ANIMAL FEED DEFLHORINATION
INDUSTRIAL BOILERS (10-250X10E6 BTU/HH)
UREA
DETERGENT MANUFACTURING PLANTS
GLASS MANUFACTURING INDUSTRY (LEAD GLASS)
STY RENE
ACETIC ANHYDRIDE
STATIONARY INTERNAL COMBUSTION ENGINES(DIESEL G DUAL FUEL)
STATIONERY PIPELINE COMPRESSOR ENGINES
STANDARD
USED
(En)
0.350000
1.009999
1.099999
3.629999
0.330000
0.045000
0.750000
0.198000
0.210000
0. 134000
0.380000
4.000000
2.000000
2. 580000
0.799000
9.299999
4.40JOOO
18.000000
0. 120000
0.200000
0.300000
0.200000
0.480000
0.010000
0.960000
0.236000
1.299999
1.299999
5. 400000
1.099999
1.360000
1.299999
1.299999
1.299999
0.062500
0.403900
1.360000
0.450000
0.240000
0.004000
0.001000
5.139999
0.630000
CODE
20 BOS
29 117
20 C03
40 D13
58 B01
20 B04
20 B09
57 B01
40 D12
20 A10
20 CIS
20 C16
80 A 014
51 E01
51 B02
40 D14
40 D06
40 D10
20 D01
50 C04
10 A06
10 A07
30 B01
50 F01
41 B01
30 D01
45 D12
45 D11
12 B04
40 D16
46 D11
46 D12
45 D10
46 D10
30 D10
10 A03
20 B21
20 C10
40 D19
20 C45
20 C48
10 C02
11 C01
FLAG
84
B«
85
84
84
85
84
95
85
85
85
84
84
84
84
84
H4
14
S5
1)5
N5
N5
R4
N5
N4
N5
N4
N4
N4
K5
N4
N4
N4
N4
N5
N4
86
S6
86
H6
,16
It 6
16
See Table 3-1-B for Definition of Terms
-------
51
Table 3.1.B Definitions Applicable to Priorized NSPS Schedules.
Cumulative Effort
One effort level is defined as the effort expended for the first
pollutant standard set for a source category. For each additional pollutant
standard set for the same source category, it is assumed that 1/4 of an
effort level will be expended.
Therefore the number of effort levels expended in any 6 month
time period will usually be less than the total number of source category-
pollutant standards set. The greater the number of multi-pollutant source
categories for standard setting in a time period the greater the difference
between the cumulative effort level and the actual count of source
category-pollutant standards.
Standard Used
This value reflects the best anticipated level of emission reduction
(i.e., the NSPS allowable emission (En) in Ib pollutant/unit of production).
Code
The five-character identifier specifying a unique source category.
This identifier can be used to cross reference source category data from
different data listings.
M/N Flag
M-Mobile Source Category
N-Non-mobile Source Category
Numerical Flag
a
Category Air Quality Impact Change
ag
1
2
3
4
5
6
Es
High
High
High
Moderate
Moderate
Low
En
High
Moderate
Low
Moderate
Low
Low
3The numerical air quality impact flag denotes the change in air quality
impact from the state emission limitation (TSs) to the NSPS limitation (En)
See Table A-3 for emission units for each source category.
-------
52
or
-------
53
Table 3.1 .C Particulate Air Quality Impacts
of NSPS Strategies
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
New and Modified Sources in 1990
Number with Number with Number with
High Air Moderate Air Low Air Total
Quality Impact Quality Impact Quality Impact Number
5474 20,019 5,336 30,829
2291 21,120 7,418 30,829
2281 20,968 7,580 30,829
Table 3.1.D Mobility/Competiveness Impacts of NSPS
Strategies for Particulates
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
New and Modified Sources in 1990
Number of Sources that Number of Sources Total
Could Have Moved Precluded from Moving Number
14,339 16,490 30,829
751 30,078 30,829
0 30,829 30,829
-------
54
3.1.2 Sulfur Dioxide
There were 28 major sulfur dioxide emission source categories evaluated.
This amounted to 18 percent of all major source categories evaluated. A major
pollutant emission source is a source which has the potential of emitting a
minimum of 100 tons per year of one or more specified pollutants without
application of emission control techniques or processes.
The nationwide growth in production capacity and corollary growth in
nationwide emissions were calculated for both major and minor sulfur dioxide
emission sources for a base year 1980. The nationwide source capacity was typ-
ically computed by growing 1975 capacity to 1980 using appropriate new growth
(Pc) rates. Where available a "weighed" 1975 state sulfur dioxide emission lim-
itation factor (Es) was applied to the 1980 capacity to compute nationwide
sulfur dioxide emissions. The state emission factor limitation (Es) used was, in
3
most cases, the value computed by TRC in their 1975 analysis of the impact
of new source performance standards.
Hypothetical average source sizes for each major sulfur dioxide emission
source cateogry ranged from approximately 6,000 tons product per year to over
700,000 tons product per year. Uncontrolled sulfur dioxide emissions from an
average hypothetical source size in each major source dioxide emission source
category ranged from 400 pounds sulfur dioxide per year to over 6,000 tons
sulfur dioxide per year.
During the 1980-1990 time period the new growth capacity was repre-
sented by the number of hypothetical new sources of average size. For the ten
year period the number of new hypothetical sources for the major sulfur di-
oxide emission source categories ranged from as few as two sources per cate-
gory to over 4,000 sources per category.
The nationwide sulfur dioxide emissions computed for 1980 as allowed
by 1975 state emission factor limitations was over 8,000,000 tons sulfur di-
oxide per year for the 28 major sulfur dioxide emission source categories
evaluated. Only 2 source categories accounted for approximately 90 percent
of these sulfur dioxide emissions with 1 source category accounting for
nearly 89 percent of the emissions.
-------
55
The nationwide sulfur dioxide source category production capacities
were also computed for 1990. Nationwide sulfur dioxide emissions for 1990
were computed assuming state emission limitation factors were in force dur-
ing the 1980-1990 time period. Nationwide sulfur dioxide emissions were also
computed assuming application of an emission limitation reflecting a condition
of best anticipated control (E ), which would be applied to new or modified
source contruction during the same ten year period. The difference in the
national emissions based on the state limitation and the more restrictive
new and modified source limitation (Ts-Tn) in 1990 was then computed. The
anticipated 1990 sulfur dioxide emission reductions (Ts-Tn) by the applica-
tion of (En) beginning in 1980 ranged from 20 tons per year to over 1,000,000
tons per year. The (Ts-Tn) values for major sulfur dioxide source categories
is listed in Table A-3, Appendix A.
The air quality impact of each of the 28 major sulfur dioxide emis-
sion source categories was evaluated. Actually a higher number of individual
sulfur dioxide emission source categories were evaluated for air quality im-
pact. Seven source categories were made up of two or more unit operations and
were aggregated for growth and mass emission purposes. The computer disper-
sion model program calculated the air quality impact for each of the unit
operations and computed a maximum air quality impact for the aggregated
source category for the dispersion analysis. The maximum ground level con-
centration (x) was computed based both on the state emission factor limi-
tation (Es) and the best level of anticipated control (En). The maximum
ground level concentration (x) for both (Es) and(En) were compared after
normalizing (dividing) by the appropriate ambient threshold value for sulfur
dioxide. The values were then ranked by order of magnitude and statistically
divided into three groups of High, Moderate and Low air quality impact.
Among the 28 major sulfur dioxide emission source categories evaluated,
7 source categories or 25 percent had a High air quality impact resulting from
the state emission limitation, (Es). For this High impact group 4 or 57 per-
cent of the sulfur dioxide emission source categories were reduced to a
Moderate or Low air quality impact by the application of the best antici-
pated emission limitation, En. A total of 36 percent or 10 sulfur dioxide
emission source categories had a Low air quality impact based on state emis-
sion limitation factors.
-------
Of the 28 major sulfur dioxide emission source categories, 15 or 54
percent were considered to be non-mobile and non-competitive based on either
market or raw material ties. Therefore, 13 sulfur dioxide emission source
categories or 46 percent of the major sulfur dioxide emission source cate-
gories would be considered mobile and competitive and would tend to locate
in states with less restrictive emission limitations, assuming all other
mobility and competition considerations allowed the source the necessary
flexibility in sourc siting.
Table 3.2.A gives the prioritization schedule for all sulfur dioxide
emission source categories under the Baseline Strategy described above.
Nationwide sulfur dioxide emissions as a function of time assuming implemen-
tation of this schedule are shown in Fig. 3.2. For purposes of comparison,
the emissions are also displayed for the following limiting cases:
- All NSPS are set in 1980, that is, En becomes the applicable
emission limitation for all sulfur dioxide sources in 1980.
This case represents a lower bound to achievable sulfur
dioxide.
- No NSPS are set, that is, Es continues to be the applicable
emission limitation for all sources. This case represents
an upper limit for nationwide sulfur dioxide emissions.
Examination of Fig. 3.2 shows that nationwide sulfur dioxide emissions will
continue to increase with time by the application of En regardless of the
standard setting rate and prioritization scheme. This insensitivity to the
prioritization scheme is to be expected given the short time frame in which
the Clean Air Act requires standards to be set. Beyond mid-1982, both the
Base Strategy and the lower bound case are almost parallel, because in both
cases all new and replacement sources must meet the same emission limitations.
Figure 3.2 shows that as a result of the prioritization schedule the
sulfur dioxide emissions have a steady increase which parallels the lower case
boundary. The base strategy is very close to the case of all NSPS set in
1980 because overall reduction in mass emissions dominates the prioritization
schedule.
Further examination of Fig. 3.2 shows that in 1982 the prioritization
schedule only provides a reduction of less than 125,000 tons per year sulfur
dioxide from the level allowed by state emission limitations. By 1985 this
reduction in annual emissions has increased to over 250,000 tons sulfur
dioxide per year and by 1990 to over 500,000 tons of sulfur dioxide per year.
-------
57
Examination of Table 3.2.A indicates that standards are first set for
High Explosive Industry, Chemical Wood Pulping and High Btu Fuel Conversion.
These sulfur dioxide major emission source categories have high to moderate
air quality impact. On the other hand, standards are set for Tunnel Kilns,
Stationary I.C. Engines and Periodic Kilns last because these sources have
low (Ts-Tn), low air quality impact and are non-mobile.
Table 3.2.B compares the 1990 air quality impacts of the three NSPS
schedules in terms of the number of new and modified sources having high,
moderate, and low air quality impacts. Table 3.2.C compares the mobility
and competitiveness impacts of the three schedules in terms of the number of
new and modified sources that could have moved under each schedule, that is,
the number that were mobile prior to being regulated by an NSPS. The number
of new and modified sources that are either non-mobile initially or that
become non-mobile when an NSPS is set is also given.
-------
TABLE 3-2-A PRIORITIZED NSPS SCHEDULE FOR SULFUR DIOXIDE"
YEAR
CUMULATIVE
EFFCST
1S80.C
1980.5
1981.0
1981.5
1982.0
1982.5
1.00
2.00
3.00
u.oo
5.00
1.00
2.00
3.00
u.oo
b.GO
1.00
2.CO
3.CO
4.00
5.00
1.00
2.00
3.00
1.00
5.00
1.00
2.00
3.00
'4.00
5.CO
1.00
2.00
3.00
SOURCF
EXPLOSIVE IND (HIGH EXPLOSIVES)
CHEMICAL WCCD IND. (HSSC)
FUEL CONVERSION HIGH BTU COAL GASIFICATION
INDUSTRIAL DOILEKS (10-250X10E6 BTU/HR)
(AGG) SECONDARY COPPER PLANTS (CONVERTER SMELTING)
CHESICAL WOCD PULPING IKD. (ACID SOLFITE)
BY-PRODUCT COKE OVEN
ETIIYLENE
EXPLOSIVE IKD (LOW EXPLOSIVES)
MIXED FUEL BOILERS (COAL £ PEFUSE)
GLASS MANUFACTURING INDUSTRY (SODA-LIME GLASS)
(A3G) SECONDARY COPPEF PLANTS (BLAST FURNACE)
(AGG) CRUDE OIL AND NATURAL GAS PRODUCTION PLANTS
INDUSTRIAL INCINERATION ( I NDUSTEI AL-COM 3 ERCI AL)
FIBERGLASS MFG. PLANTS (WOOL PROCESSING)
PHTHALIC ANHYDRIDE PLANTS (OXYLENE PROCESS)
MUNICIPAL INCINERATION < 50T/D
(AGG) TUNNEL KIL NS (COAL) , DRY ERS AND STORAGE
STATIONARY INTERNAL COMBUSTION ENGINES(DIESEL 6 DUAL FUEL)
(AGG) PERIODIC KILNS (CO AL) , DRYERS AND STORAGE
GLASS MANUFACTURING INDUSTRY (LEAD GLASS)
MINERAL WOOL MFC
ETHYLENE GLYCOL DERIVED FROM ETHILENE OXIDE
MIXED FUEL BOILERS (OIL 6 REFUSE)
STATIONERY PIPELINE COMPRESSOR ENGINES
(AGG) TUNNEL KILNS (OIL) , DR YERS AND STORAGE
STATIONARY INTERNAL COMBUSTION ENGINES (SPARK IGNITION)
(AGG) PEBIODIC KILNS (OIL), DRIERS AND STORAGE
STANDARD
USED
(En)
6.000003
3.099999
1.559999
1.500030
87.000000
3.099999
4.020000
0.014900
5.549999
0. 140000
0. 120000
7. 679999
0.011000
2.379999
0.005000
9.400000
0.030000
0.720000
16. 000000
1.200300
0.080000
0.0
0.004000
0.010300
5.000000
0.040000
0.0
0.060000
CODE
20 C17
80 A03
21 C20
10 »D3
58 B01
80 A04
50 A10
20 C31
20 C18
10 A36
40 D07
57 B01
71 E91
1 1 B04
40 D14
20 C26
10 B03
45 D12
10 C02
46 D12
40 D19
40 D13
20 C35
10 A07
11 C01
45 D11
10 C01
46 011
FLA I
H2
82
M4
H4
16
H2
N1
35
34
N5
86
82
N1
N1
85
84
N5
N5
N4
MS
N6
86
16
N6
N6
N6
N6
116
JSee Table 3-1-B for Definition of Terms
-------
59
12
II
cc
-------
Table 3.2,B.
60
Sulfur Dioxides Air Quality Impacts
of NSPS Strategies
New and Modified Sources in 1990
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
Number with
High Air
Quality Inpact
639
437
436
Number with
Moderate Air
Quality Impact
8,220
7,754
7,656
Number with
Low Air
Quality Impact
2,962
3,630
3,729
Total
Number
11,821
11,821
11,821
Table 3.2.C. Mobility/Corapetlveness Impacts of NSPS
Strategies for Sulfur Dioxides
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
New and
Number of Sources that
Could Have Moved
836
62
0
Modified Sources in 1990
Number of Sources
Precluded from Moving
10,985
11,759
11,821
Total
Number
11,821
11,821
11,821
-------
61
3.1.3 Nitrogen Dioxide
There were 32 major nitrogen dioxide emission source categories evalu-
ated. This amounted to 20 percent of all categories evaluated. A major
pollutant emission source is a source which has the potential of emitting a
minimum of 100 tons per year of one or more specified pollutants without
application of emission control techniques or processes.
The nationwide growth in production capacity and corollary growth in
nationwide emissions were calculated for both major and minor nitrogen di-
oxide emission sources for a base year 1980. The nationwide source capacity
was typically computed by growing 1975 capacity to 1980 using appropriate new
growth (Pc) rates. Where available a "weighed" 1975 state nitrogen dioxide
emission limitation factor (Es) was applied to the 1980 capacity to compute
nationwide nitrogen dioxide emissions. The state emission factor limitation
3
(Es) used was, in most cases, the value computed by TRC in their 1975
analysis of the impact of new source performance standards.
Hypothetical average source sizes for each major nitrogen dioxide
emission source category ranged from approximately 3600 tons product per
year to over 700,000 tons product per year. Uncontrolled nitrogen dioxide
emissions from an average hypothetical source size in each major nitrogen
dioxide emission source category ranged from 800 pounds nitrogen dioxide per
year to over 2,500 tons nitrogen dioxide per year.
During the 1980-1990 time period the new growth capacity was represented
by the number of hypothetical new sources of average size. For the ten year
period the number of new hypothetical sources for the nitrogen dioxide emis-
sion source categories ranged from as few as five sources per category to over
4000 sources per category.
The nationwide nitrogen dioxide emissions computed for 1980 as allowed
by 1975 state emission factor limitations was over 6,000,000 tons nitrogen
dioxide per year for the 32 major nitrogen dioxide emission source categories
evaluated. Approximately 3 source categories accounted for 92 percent of
these nitrogen dioxide emissions with 1 source category accounting for nearly
44 percent of the emissions.
The nationwide nitrogen dioxide source category production capacities
were also computed for 1990. Nationwide nitrogen dioxide emissions for 1990
-------
62
were computed assuming state emission limitation factors were in force during
the 1980-1990 time period. Nationwide nitrogen dioxide emissions were also
computed assuming application of an emission limitation reflecting a condi-
tion of best anticipated control (En), which would be applied to new or
modified source construction during the same ten year period. The difference
in the national emissions based on the state limitation and the more restric-
tive new and modified source limitation (Ts-Tn) in 1990 was then computed.
The anticipated 1990 nitrogen dioxide emission reductions (Ts-Tn) by the
application of (En) beginning in 1980 ranged from 50 tons per year to 1,270,000
tons per year. The (TS-Tn) values for major N0« source categories is listed
in Table A-3, Appendix A.
The air quality impact of each of the 32 major nitrogen dioxide emis-
sion source categories was evaluated. A typical or average source size was
selected for each source category for the dispersion analysis. The maximum
ground level concentration (x) was computed based both on the state emission
factor limitation (Es) and the best level of anticipated control (En). The
maximum ground level concentrations for both (Es) and (En) were compared after
normalizing (dividing) by the appropriate ambient threshold value for nitro-
gen dioxide. These values were then ranked by order of magnitude and statis-
tically divided into three groups, of High, Moderate and Low air quality impact.
Among the 32 major nitrogen dioxide emission source categories evalu-
ated, 3 source categories or 9 percent had a High air quality impact resulting
from the state emission limitation, (Es). For this High impact group, 2 or
67 percent of the nitrogen dioxide emission source categories were reduced to
a Moderate or Low air quality impact by the application of the best anticipated
emission limitation, (En). A total of 53 percent or 17 nitrogen dioxide emission
source categories had a Low air quality impact based on state emission limi-
tation factors.
Of the 32 major nitrogen dioxide emission source categories, 16 or 50
percent were considered to be non-mobile and non-competitive based on either
market or raw material ties. Therefore, 16 nitrogen dioxide emission source
categories or 50 percent of all the nitrogen dioxide emission source cate-
gories would be considered mobile and competitive and would tend to locate
in states with less restrictive emission limitations, assuming all other
mobility and competition considerations allowed the source the necessary
flexibility in source siting.
-------
63
Table 3.3.A gives the prioritized schedule for all nitrogen dioxide
emission source categories under the Baseline Strategy. Assuming implemen-
tation of this schedule, nationwide emissions over time are shown in Fig. 3.3.
For purposes of comparison emissions are also displayed for the following cases:
- All NSPS are set in 1980, that is, En becomes the applica-
ble emission limitation for all sources in 1980. This
case represents a lower bound to achievable emissions.
- No NSPS are set, that is, Es continues to be the applicable
emission limitation for all sources. This case represents
an upper bound for nationwide nitrogen dioxide emissions.
This figure shows that nationwide nitrogen dioxide emissions will
continue to increase over time regardless of the standard setting rate and
prioritization scheme. This insensitivity to the prioritization scheme is to
be expected given the short time period in which the CAA requires NSPS to be
set. Beyond mid-1982, both the Base Strategy and the lower bound are prac-
tically parallel because in both cases all new and replacement sources must
meet the same limits. By 1990, the difference in emissions between the Base
Strategy and the lower bound is small compared to the difference between the
upper and lower bounds. That is, by 1990 the Base Strategy produces almost
the same results in terms of emission reductions as setting all standards in
1980.
Very little difference in total emissions between the Base Strategy
and the upper bound occur before 1981. This situation is probably due to a
healthy growth in NCL emission sources. After 1981 N0« emissions under the
Base Strategy closely parallel the all-NSPS case with little difference in
emission levels. This is because the prioritized schedule places the empha-
sis on mass emission reduction.
Most of the high priority sources in this schedule are I.C. sources
rather than process sources. The I.C. sources have the greatest potential
for mass emission reductions.
Table 3.3.B compares the 1990 air quality impacts of the three NSPS
schedules in terms of the number of new and modified sources having high,
moderate, and low air quality impacts. Table 3.3.C compares the mobility and
-------
64
competitiveness impacts of the three schedules in terms of the number of new
and modified sources that could have moved under each schedule, that is, the
number that were mobile prior to being regulated by an NSPS. The number of
new and modified sources that are either non-mobile initially or that become
non-mobile when an NSPS is set is also given.
-------
TABLE 3-3-A PRIORITIZED NSPS SCHEDULE FOR NO,
COBULAIIVB
IEAB EffOBT
1960.0
1980.5
1981.0
1981.5
1982.0
1982.5
,00
.00
.00
.00
.00
6.00
1.00
2.00
3.00
a.oo
5.00
6.00
1.00
2.00
3.00
4.00
5.00
6.00
1.00
2.00
3.00
4.00
5.00
6.00
.00
.00
,00
.00
.00
6.00
1.00
2.00
SOURCE
EXPLOSIVE IND (HIGH EXPLOSIVES)
STATIONARY INTERNAL COMBUSTION ENGINES (SPABIC IGNITION)
STATIONARY INTERNAL COMBUSTION ENGINES(DIESEL 6 DUAL FUEL)
STATIONERY PIPELINE CCMPRESSCR ENGINES
INDUSTRIAL EOILERS (10-250X10E6 BTU/HR)
POLYETHYLENE (HIGH DENSITY)
INDUSTRIAL INCINERATION (INDUSTRIAL-COMMERCIAL)
MIXED FUEL BOILERS (COAL £ DEFUSE)
INDUSTRIAL INCINERATION (IND ORGANIC LIQUID BASTE IHC)
EXPLOSIVE IND (LOW EXPLOSIVES)
GLASS MANUFACTURING INDUSTRY (SODA-LINE GLASS)
FIBERGLASS MFG. PLANTS (TEXTILE PROCESSING)
ADIPIC ACID PLANTS
FIBEFGLASS MFG. PLANTS (HOOL PROCESSING)
POTASH
MIXED FUEL BOILERS (OIL 6 REFUSE)
BY-PRODUCT COKE OVEN
GLASS MANUFACTURING INDUSTRY (LEAD GLASS)
CERAMIC CLAY MFG
NITRATE FERTILIZES (AMMONIUM NITRATE) PLANTS
MINERAL WOOL MFG
STYRENE
ETHYLENE GLYCOL DERIVED FROM ETHYLENE OXIDE
STEEL FOUNDRIES (ELECTRIC AFC)
STEEL FOUNDRIES (OPEN HFARTH)
MUNICIPAL INCINERATION < 50T/D
(AGG) PERIODIC KILNS (OIL) , DRYERS AND STORAGE
(AGG) TUNNEL KILNS (0IL) ,DRYEPS AND STORAGE
(AGG) TUNNEL KILNS (COAL) ,DRYERS AND STORAGE
(AGO) PERIODIC KILNS (COAL) ,DRYERS AND STORAGE
(AGG) PERIODIC KILNS (GAS) , DRYERS AND STORAGE
(AGG) TUNNEL KILNS (GAS) , DR YERS AND STORAGE
STANDARD
DSED
(En)
6.400000
131.000030
123.000000
15.129999
0.365000
11.250000
0.650000
5.250000
0. 150000
2.099999
0.360000
22. 599991
1.610000
1.570000
0.025000
13.799999
0.050000
0.380000
0.200000
0.003000
0.080000
0.304000
0.010000
0.200000
0.010000
1.049999
1.700000
0.150000
0.900003
1.400000
0.420000
0.150000
CODE :
20 C17
10 CT1
10 C02
11 C01
10 A03
20 B03
1 1 BD4
10 A06
12 B04
20 C18
40 D07
40 D06
20 A04
40 D14
20 A18
10 A07
50 MO
40 D19
40 D10
30 A05
40 D13
20 C45
20 C35
50 D01
50 D02
10 B03
46 D11
45 D11
45 D12
46 D12
46 010
45 DID
FLAC
!15
N4
N4
M5
US
H2
N2
N4
H5
.16
N6
Ml
M5
H»
15
N4
N4
N6
16
36
S6
M6
(16
16
H6
N6
N6
N6
N6
N6
N6
N6
See Table 3-1-B for Definition of Terms
-------
66
12
II
10
QC
LU 9
CC
UJ
Q_
CO
z
o
CO
o
CO
8
" c
2: 6
CO
CO
LU 5
1980
CAA STANDARD
SETTING DEADLINE
I
1985
NO NSPS
BASE STRATEGY
ALL NSPS IN 1980
1990
YEAR
FIG. 3.3 NATIONWIDE NITROGEN DIOXIDE EMISSIONS
1995
-------
67
Table 3.3.B.
Nitrogen Dioxide Air Quality Impacts
of NSPS Strategies
New and Modified Sources in 1990
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
Number with
High Air
Quality Impact
121
13
12
Number with
Moderate Air
Quality Impact
10,175
4,700
4,694
Number with
Low Air
Quality Impact
5,019
10,602
10,609
Total
Number
15,315
15,315
15,315
Table 3.3.C. Mobility/Competiveness Impacts of NSPS
Strategies for Nitrogen Dioxide
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
New and
Number of Sources that
Could Have Moved
3,843
476
0
Modified Sources in 1990
Number of Sources
Precluded from Moving
11,472
14,839
15,315
Total
Number
15,315
15,315
15,315
-------
3.1.4 Hydrocarbon
There were 93 major hydrocarbon emission source categories evaluated.
This amounted to 59 percent of all categories evaluated. A major pollutant
emission source is a source which has the potential of emitting a minimum of
100 tons per year of one or more specified pollutants without application
of emission control techniques or processes.
The nationwide growth in production capacity and corollary growth in
nationwide emissions were calculated for both major and minor hydrocarbon emis-
sion sources for a base year 1980. The nationwide source capacity was typic-
ally computed by growing 1975 capacity to 1980 using appropriate new growth
(Pc) rates. Where available a "weighed" 1975 state hydrocarbon emission limi-
tation factor (Es) was applied to the. 1980 capacity to compute nationwide
hydrocarbon emissions. The state emission factor limitation (Es) used was, in
most cases, the value computed by TRC in their 1975 analysis of the impact
of new source performance standards.
Hypothetical average source sizes for each major hydrocarbon emission
source category ranged from approximately 400 tons product per year to over
21 million barrels of oil per year for a refinery. Uncontrolled hydrocarbon
emissions from an average hypothetical source size in each major hydrocarbon
emission source category ranged from over 100 tons hydrocarbon per year to over
15,000 tons hydrocarbon per year.
During the 1980-1990 time period the new growth capacity was represented
by the number of hypothetical new sources of average size. For the ten year
period the number of new hypothetical sources for the major hydrocarbon emission
source categories ranged from as few as one source per category to over 7,000
sources per category.
The nationwide hydrocarbon emissions computed for 1980 as allowed by
1975 state emission factor limitations was over 5.5 million tons hydrocarbon
per year for the 93 major hydrocarbon emission source categories evaluated.
Approximately 6 source categories accounted for 52 percent of these hydro-
carbon emissions with 29 source categories accounting for nearly 90 percent
of the emissions.
-------
69
The nationwide hydrocarbon source category production capacitiss were
also computed for 1990. Nationwide hydrocarbon emissions for 1990 were
computed assuming state emission limitation factors were in force during the
1980-1990 time period. Nationwide hydrocarbon emissions were also computed
assuming application of an emission limitation reflecting a condition of best
anticipated control (En), which would be applied to new or modified source
constuction during the same ten year period. The difference in the national
emissions based on the state limitation and the more restrictive new and mod-
ified source limitation (Ts-Tn) in 1990 was then computed. The anticipated
1990 hydrocarbon emission reductions (Ts-Tn) by the application of (En) begin-
ning in 1980 ranged from 50 tons per year to 817,000 tons per year. The
(Ts-Tn) values for major hydrocarbon source categories is listed in
Table A-3, Appendix A.
The air quality impact of each of the 93 major hydrocarbon emission
source categories was evaluated. Actually 97 individual hydrocarbon emission
source categories were evaluated for air quality impact. However, 4 source
categories were actually unit operations of a larger representative source
category and were aggregated for growth and mass emission purposes. The
computer dispersion model program calculated the air quality impact for each
of the unit operations and then computed a maximum air quality impact for
the aggregated source category. A typical or average source size was selected
for each source category for the dispersion analysis. The maximum ground
level concentration (x) was computed based both on the state emission factor
limitation (Es) and the best level of anticipated control (En). The maximum
ground level concentrations for both (Es) and (En) were compared after
normalizing (dividing) by the appropriate ambient threshold value for hydro-
carbons. These values were then ranked by order of magnitude and
statistically divided into three groups of High, Moderate and Low air
quality impact.
Among the 93 major hydrocarbon emission source categories evaluated,
54 source categories or 58 percent had a High air quality impact resulting
from the state emission limitation, (Es). For this High impact group, 50 or
93 percent of the hydrocarbon emission source categories were reduced to a
Moderate or Low air quality impact by the application of the best anticipated
emission limitation, (En). A total of 11 percent or 10 hydrocarbon emission
-------
70
source categories had a Low air quality impact based on state emission
limitation factors.
Of the 93 major hydrocarbon emission source categories, 32 or 34
percent were considered to be non-mobile and non-competitive based on
either market or raw material ties. Therefore, 61 hydrocarbon emission
source categories or 66 percent of the major hydrocarbon emission source
categories would be considered mobile and competitive and would tend to
locate in states with less restrictive emission limitations, assuming all
other mobility and competition considerations allowed the source the
necessary flexibility in source siting.
Table 3.4.A gives the prioritized schedule for all hydrocarbon
emission source categories under the Baseline Strategy described above.
Nationwide hydrocarbon emissions as a function of time assuming implementation
of this schedule are shown in Figure 3.4. For purposes of comparison, the
emissions are also displayed for the following limiting cases:
- All NSPS are set in 1980, that is, En becomes the applicable
emission limitation for all hydrocarbon sources in 1980. This
case represents a lower bound to achievable hydrocarbon emissions.
- No NSPS are set, that is, Es continues to be the applicable
emission limitation for all sources. This case represents
an upper limit for nationwide hydrocarbon emissions.
Examination of Fig. 3.4 shows that nationwide hydrocarbon emissions will con-
tinue to decrease with time by the application of En, regardless of the standard
setting rate and prioritization scheme. This insensitivity to the prioritiza-
tion scheme is to be expected given the short time frame in which the Clean
Air Act requires standards to be set. Beyond mid-1982, both the Base Strategy
and the lower bound case are almost parallel, because in both cases all new
and replacement sources must meet the same emission limitations.
Figure 3.4 shows that as a result of the prioritization schedule the
hydrocarbon emissions rise between 1980 and 1981 and then start to decline
after 1981, paralleling the lower bound (En) emission case beginning in 1981.
This initial rise in hydrocarbon emissions is due to a healthy growth in
source categories and the initial lag of the impact of NSPS.
-------
71
Table 3.4.B compares the ]Q°0 air qualitv impacts of the three NSPS
schedules in terms of the number of new and modified sources having high,
moderate, and low air quality impacts. Table 3.4.C compares the mobility and
competitiveness impacts of the three schedules in terms of the number of new
and modified sources that could have moved under each schedule, that is, the
number that were mobile prior to being regulated by an NSPS. The number of
new and modified sources that are either non-mobile initially or that become
non-mobile when an NSPS is set is also given.
-------
TABLE 1-4-A PRIORITIZED NSPS SCHEDULE FOR HYDROCARBONS*
YEAR
CUMULATIVE
EFFCFT
1S80.C
1980.5
1981.0
1981.5
.00
.00
.00
.00
.00
.00
.00
.00
.00
1C.00
1 1.00
12.00
13.00
lu.oo
1 5.CO
16.00
.00
.CO
.00
.00
.00
.00
.00
8.00
9.00
10.00
11.00
12.00
13.00
11.00
15.00
16.00
1.00
2.00
3.00
U.GO
E.CO
6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
1U.OO
15.00
16.00
1.00
2.00
3.00
SCUFCE
ETHYLENE OXIDE PLANTS (Alii OXIDATION PROCESS)
ACRYLONITPILE PLANTS
DIME1IIYI. TEBEPHTHALATE PLANTS
CARBON BLACK (FOP.NACE PEOCESS)
INDUSTRIAL SURFACE COATING (CAN COATING)
(AGG) PETROLEUM REFINERY MISC. SOURCES
INDUSTRIAL SURFACE COATING (PAPER COATING)
DRY CLEANING
FUEL CONVERSION HIGH BTU COAL GASIFICATION
INDUSTRIAL SURFACE COATING (FABRIC COATING)
GRAPHIC ARTS INDUSTRY (GRAVURE)
BY-PRODUCT COKE OVEN
PLASTICS AND RESINS (ACRYLIC)
STATIONARY INTERNAL COMBUSTION ENGINES (SPARK IGNITION)
STATIONARY INTERNAL COMBUSTION ENGINES(DIESEL 6 DUAL FUEL)
INDUSTRIAL SURFACE COATING (AUTOMOBILES)
BEER PROCESSING PLANTS
ETHYLENE DICHLOPTDE PLANTS (OXYCHLORINATION PHOCESS)
FORMATDEHYDE PLANTS
ACRYLIC ACID
VEGETABLE OIL MFG.
CYCLOHEXANOL/CYCLOHEXANONE
PROPYLENE (OXIDE)
METHYL M£THACRYLATE PLANTS
VINYL ACETATE (ETHYLENE)
TEREPHTHALIC ACID PLANTS
ETHYLENE-PROPYLEHE
ETHYLENE OXIDE PLANTS (OXYGEN OXIDATION PROCESS)
VARNISH
POLYETHYLENE (HIGH DENSITY)
HETHANOL PLANTS
CHARCOAL PLANTS
CYCLOHEXANE
ETHYLENE GLYCOL DERIVED FROM ETHYLENE OXIDE
SYTHETIC RUBBER (NEOPRENE)
ADIPIC ACID PLANTS
CARBON 1ETRACHLORIDE (METHANE)
POLYETHYLENE (LOW DENSITY)
ACETIC ANHYDRIDE
ETHYL BENZENE
INDUSTRIAL SURFACE COATING (METAL COILS COATING)
P.T.M. ID. (SHIP 6 BARGE TRANSFER, GAS. 6 CRUDE OIL)
GRAPHIC ARTS INDUSTRY (FLEXOGRAPHY)
ETHYLENE
PRINTING INK PLANTS
SYNTHETIC FIBER INDUSTRY (NYLON)
INDUSTRIAL SURFACE COATING (LARGE APPLIANCE COATING)
GRAPHIC ARTS INDUSTRY (LETTERPRESS)
INDUSTRIAL SURFACE COATING (MAGNET HIRE COATING)
P.T.M. ID. (BULK GAS. TERMINALS) LOADING TASK TRUCKS/RR CIS
(AGG) CRUDE OIL AND NATURAL GAS PRODUCTION PLANTS
STANDARD
USED
(En)
1.679999
7.919999
0.370000
0. 100000
0.053000
0.015000
0.263000
21.399991
0.680000
0.260000
65.000030
O.OU2000
2.100030
0.0
0.0
0.310000
0. 109000
0.5U0003
0. 064000
1. 7U0003
15. 203000
1.307000
0.592003
1. 127999
0.130003
0.210003
0.720003
0.130000
0. 679030
0.591030
0. 100000
«. 799999
0.200000
0. 3H9000
1.200003
0.013030
0.360000
0.210030
0. 178000
0.050000
0.323000
0.001300
26.000000
0.333000
a. 799999
0.350000
0.065000
35.000000
0.065000
0.003600
0.131000
CODE
21 C11
20 C06
20 C28
20 C03
62 B03
71 D01
63 B33
63 B31
21 C20
61 B02
60 B31
50 A10
21 B17
10 C11
10 C02
62 B02
30 009
20 C37
23 COS
20 C17
30 D11
20 C49
20 C36
23 C31
20 C37
20 C27
23 D36
22 C11
20 C15
20 833
20 C32
20 C16
20 All
20 C35
20 D07
20 A01
20 C?8
20 BOM
23 C1B
23 C30
63 B02
60 F03
60 805
20 C31
20 C19
20 809
61 802
60 B07
61 B33
60 POU
71 B01
FLA
M2
M2
12
.13
S2
N1
N1
N2
N2
N2
N2
N2
.15
N5
N5
N5
12
12
13
12
12
12
12
12
12
13
12
12
12
12
12
12
M2
12
12
M3
M2
M2
12
M2
N2
N1
N2
M4
M5
N4
N5
N1
85
111
N6
aSee Table 3-1-B for Definition of Terms
-------
TABLE 3-4-A3 (Cont'd)
YEAB
CUHULATIVE
EFFCET
1S81.5
1S82.C
1982.5
4.00
5.00
6.00
7.00
8.00
9.00
10.00
11 .00
12.00
13.00
1<-.00
15.00
16.00
1.00
2.00
3.00
U.OO
5.00
6.CO
7.00
8.00
9.00
10.00
11.00
12.00
13.00
11.00
15.00
16.00
1.00
2.00
3.00
4.00
5.00
e.oo
7.00
e.oo
9.00
10.00
11.00
12.00
13.00
SOUECE
MAI.EIC ANHYDRIDE
CARBON TETRACHLORIDE (PROPANE)
CARBON TETEACHORIDE (CABBON DISULFIDE)
PHENOL PLANTS
ACETONE (1SOPSOPANOL)
METHYL CHLOROFOEM
ACETONE (CUMENE)
EOLY-BUTADIENE
PHENOLIC RESINS
ACETATE RAYON
UEEA-MELAMINE
ALLYL CHLOEIDE
ACETONE (CYANOHYDRIN)
ACETIC ACID (BOTAHE)
INDUSTRIAL INCINERATION (INDUSTBIAL-COHHERCIAL)
AMMONIA PLANTS
ACETIC ACID (ACETALDEHYDE)
PLYWOOD MANUFACTURING PLANT
POLYSTYRENE
ABS-SAN RESIN PLANT
ACETIC ACID (HETHANOL)
STYEENE
HINEFAL WOOL MFC
MHISKEY
PHTHALIC ANHYDRIDE PLANTS (OXYLENE PROCESS)
FIBERGLASS MFG. PLANTS (WOOL PROCESSING)
POLYPROPLYENE
PHTHALIC ANHYDRIDE PLANTS (NAPTHALENE PROCESS)
TEXTILE SFG (HEAT SETTING/FINISHING)
SYNTHETIC RUBBER IND. (STYRENE-BUTADIENE) (SBH)
(AGG) ASPHALT ROOFING PLANTS
HIXED FUEL BOILERS (COAL 6 REFUSE)
MIXED FUEL BOILEES (OIL 6 REFUSE)
INDUSTRIAL EOILEHS (10-250X10E6 BTU/HR)
INDUSTRIAL INCINERATION (IND ORGANIC LIQUID HASTE INC)
MUNICIPAL INCINERATION < 50T/D
(AGG) TUNNEL KILNS (COAL) , DRYEBS AND STORAGE
(AGG) TUNNEL KILNS (OIL) .DRYERS AND STORAGE
(AGG) TUNNEL KILNS (GAS) .DRYEBS AND STORAGE
(AGG) PERIODIC KILNS (COAL) , DBYERS AND STOBAGE
(AGG) PERIODIC KILNS (GAS) , DRIERS AND STORAGE
(AGG) PERIODIC KILNS (OIL), DRYEBS AMD STOBAGE
STANDARD
USED
(En)
2.620000
0.320000
0.320000
0.044800
0. 130000
0. 360000
0.072000
0.090000
0.075000
0.353000
0.075000
0.200000
0.020003
0. 147000
2.879999
0.0
0. 196000
0.0
0.120000
0. 075000
0. 150000
0.016400
0.869000
0.000055
0.020000
2.099999
0.236000
0.100000
4.740030
3.099999
0.430000
0.0
0.285000
0.0
0.0
0.010000
0.0
0.0
0.0
0.0
0.0
0.0
CODE
20 C23
20 C39
23 C4t>
20 C33
20 C42
20 C4«
20 C41
20 D02
20 BIO
20 B13
20 B11
23 C46
20 CU3
20 A13
1 1 B04
21 C13
20 A11
80 B01
20 BOS
20 B12
20 A12
20 CU5
40 D13
30 D38
23 C26
1 0 D 1 '4
20 B07
20 C25
90 F02
20 D31
4 1 B01
1 0 A06
1 0 A07
10 A03
12 B04
1 0 333
45 D12
45 D11
45 D10
46 012
46 D10
46 011
PLAi
.12
12
(12
M2
12
H3
12
32
N2
M2
N2
M3
92
13
N1
MS
.15
M4
15
15
MS
M5
14
MS
MS
M4
14
as
S4
M4
N4
N5
N5
N6
N6
N6
N6
N6
N6
N6
N6
»6
'See Table 3-1-B for Definition of Terms
-------
12
0
QC
UJ
>-
GC.
UJ
Q-
o
8
»- 7
CO
CO
CO
ALL NSPS
IN 1980
NO NSPS
CAA STANDARD
SETTING DEADLINE
1980
1985
1990
1995
YEAR
FIG. 3.4. NATIONWIDE HYDROCARBON EMISSIONS
-------
75
Table 3.4.B.
Hydrocarbon Air Quality Impacts
of NSPS Strategies
New and Modified Sources in 1990
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
Number with
High Air
Quality Inpact
9,733
424
355
Number with
Moderate Air
Quality Impact
5,315
11,041
10,905
Number with
Low Air
Quality Impact
6,016
9,599
9,804
Total
Number
21,064
21,064
21,064
Table 3.4.C. Mobility/Competiveness Impacts of NSPS
Strategies for Hydrocarbon
Standard
Setting
Strategy
New and Modified Sources in 1990
Number of Sources that
Could Have Moved
Number of Sources Total
Precluded from Moving Number
No NSPS
Baseline
All set
in 1980
3,453
266
0
17,611
20,798
21,064
21,064
21,064
21,064
-------
76
3.1.5 Carbon Monoxide Emissions
There were 36 major carbon monoxide emission source categories evaluated.
This amounted to 23 percent of all major source categories evaluated. A major
pollutant emission source is a source which has the potential of emitting a
minimum of 100 tons per year of one or more specified pollutants without
application of emission control techniques or processes.
The nationwide growth in production capacity and corollary growth in
nationwide emissions were calculated for both major and minor carbon monoxide
emission sources for a base year 1980. The nationwide source capacity was typi-
cally computed by growing 1975 capacity to 1980 using appropriate new growth
(Pc) rates. Where available a "weighed" 1975 state carbon monoxide emission
limitation factor (Es) was applied to the 1980 capacity to compute nationwide
carbon monoxide emissions. The state emission factor limitation (Es) used was,
3
in most cases, the value computed by TRC in their 1975 analysis of the impact
of new source performance standards;
Hypothetical average source sizes for each major carbon monoxide emission
source category ranged from approximately 1800 tons product per year to over
700,000 tons product per year. Uncontrolled carbon monoxide emissions from an
average hypothetical source size in each carbon monoxide emission source cate-
gory ranged from over 100 tons carbon monoxide per year to over 72,000 tons
carbon monoxide per year.
During the 1980-1990 time period the new growth capacity was represented
by the number of hypothetical new sources of average size. For the ten year
period the number of new hypothetical sources for the carbon monoxide emission
source categories ranged from as few as one source per category to over 4,000
sources per category.
The nationwide carbon monoxide emissions computed for 1980 as allowed by
a 1975 state emission factor limitation was over 6.5 million tons carbon monoxide
per year for the 36 major carbon monoxide emission source categories evaluated.
Approximately 8 source categories accounted for 89 percent of these carbon
monoxide emissions with 2 source categories accounting for nearly 66 percent
of the emissions.
-------
77
The nationwide carbon monoxide source category production capacities were
also computed for 1990. Nationwide carbon monoxide emissions for 1990 were
computed assuming state emission limitation factors were in force during the
1980-1990 time period. Nationwide carbon monoxide emissions were also com-
puted assuming application of an emission limitation reflecting a condition
of best anticipated control (E ), which would be applied to new or modified
n
source construction during the same ten year period. The difference in the
national emissions based on the state limitation and the more restrictive new
and modified source limitation (Ts-Tn) in 1990 was then computed. The anti-
cipated 1990 carbon monoxide emission reductions (Ts-Tn) by the application of
(En) beginning in 1980 ranged from 20 tons per year to nearly 2 million tons
per year.
The air quality impact of each of the 36 major carbon monoxide emission
source categories was evaluated. A typical or average source size was selected for
each source category for the dispersion analysis. The maximum ground level
concentration (x) was computed based both on the state emission factor limi-
tation (Es) and the best level of anticipated control, (En). The maximum
ground level concentrations for both (Es) and (En) were compared after normaliz-
ing (dividing) by the appropriate ambient threshold value for carbon monoxide.
These values were then ranked by order of magnitude and statistically divided
into three groups, of High, Moderate and Low air quality impact.
Among the 36 major carbon monoxide emission source categories evaluated,
none of the categories had a High air quality impact resulting from the state
emission limitation, (Es). A total of 53% or 19 carbon monoxide emission
source categories had a Low air quality impact based on state emission limitation
factors.
Of the 36 major carbon monoxide emission source categories, 15 or 42
percent were considered to be nonmobile and noncompetitive based on either market
or raw material ties. Therefore, 21 carbon monoxide emission source categories
or 58 percent of all the major carbon monoxide emission source categories
would be considered mobile and competitive and would tend to locate in states
with less restrictive emission limitations, assuming all other mobility and
competition considerations allowed the source the necessary flexibility in
source siting.
-------
78
Table 3.5.A gives the prioritized schedule for all carbon monoxide
emission source categories under the Baseline Strategy. Assuming implementa-
tion of this strategy, Fig. 3.5 shows nationwide emissions over time. The
following two cases are also displayed for comparison purposes:
- All NSPS are set in 1980, that is, En becomes the applicable
emission limit for all sources in 1980. This represents a lower
limit to achievable emissions.
- No NSPS are set, that is, Es continues to be the applicable
emission limit. This case represents an upper limit for
nationwide carbon monoxide emissions.
The upward trend in stationary source emissions can be reversed under NSPS.
Tinder the Rase Strategy, emission reductions are substantial and occur earlv
in the standard setting period. Beyond 1982, both the Base Strategy and the
lower limit are almost parallel, as would be expected given the short time
in which the CAA requires all NSPS to be set. Beyond mid-1982, all new and
replacement sources must meet NSPS in both the base and lower limit cases.
The difference in emissions between the Base Strategy and the lower limit is
small compared to the difference between the upper and lower limits by 1990.
By this time, the emission reductions under both the base and lower limit
strategies are practically identical.
Process sources constitute most of the high priority sources; combustion
sources occur nearer the bottom of the list. This occurs because the process
sources generally have high mass emission reduction potential (Ts-Tn), tend
to be mobile, and have higher air quality impacts than the combustion sources.
Table 3.5.B compares the 1990 air quality impacts of the three NSPS
schedules in terms of the number of new and modified sources having high,
moderate, and low air quality impacts. Table 3.5.C compares the mobility and
competitiveness impacts of the three schedules in terms of the number of new
and modified sources that could have moved under each schedule, that is, the
number that were mobile prior to being regulated by an NSPS. The number of
new and modified sources that are either non-mobile initially or that become
non-mobile when an NSPS is set is also given.
-------
TABLE 3-5-A PRIORITIZED NSPS SCHEDULE FOR CARBON MONOXIDE*
YEAR
CUMULATIVE
EFFORT
1S8C.C
1960.5
1961.0
1981.E
1982.0
1982.5
00
00
00
00
00
6.00
1.00
2.00
3.00
4.00
5.00
6.00
1.00
2.00
3.00
4.00
5.00
6.00
1.00
2.00
3.00
4.00
5.00
6.00
1.00
00
00
a.oo
5.00
6.00
.00
,00
,00
.00
.00
6.00
SOUPCE
CABBON BLACK (FURNACE PROCESS)
ACRYLONITRILE PLANTS
MINERAL WOOL MFG
PH1HALIC ANHYDRIDE PLANTS (OXYLENE PROCESS)
FORMALDEHYDE PLANTS
MALEIC ANHYDRIDE
STATIONARY INTEFNAL COMBUSTION ENGINES (SPARK IGNITION)
STATIONARY INTERNAL COMBUSTION ENGINES(DIESEL G DUAL FUEL)
INDUSTRIAL BOILERS (10-250X10E6 BTO/HB)
CYCLOHEXANOL/CYCLOHEXANONE
ADIP1C ACID PLANTS
CYCLCHEXANE
METHANOL PLANTS
ACETIC ANHYDRIDE
CHARCOAL PLANTS
STATIONERY PIPELINE COMPRESSOR ENGINES
ACRYLIC ACID
PHTHALIC ANHYDRIDE PLANTS (NAPTHALENE PROCESS)
GREY IRON FOUNDRIES (CUPOLA)
INDUSTRIAL INCINERATION (INDUSTRIAL-COMMERCIAL)
BY-PRODUCT COKE OVEN
ETHYLENE DICHLORIDE PLANTS (OXYCHLORINATION PROCESS)
ACETIC ACID (ACETALDEHYDE)
PHENOL PLANTS
FIBERGLASS MFG. PLANTS (WOOL PROCESSING)
ACETIC ACID (BUTANE)
FIBERGLASS MFG. PLANTS (TEXTILE PROCESSING)
(AGO) ASPHALT ROOFING PLANTS
INDUSTRIAL INCINERATION (IND ORGANIC LIQUID BASTE IHC)
MIXED FUEL BOILERS (COAL 6 REFUSE)
MIXED FUEL BOILERS (OIL 6 REFUSE)
(AGG) TUNNEL KILNS (CO AL) , DRYERS AND STORAGE
JAGG) TUNNEL KILNS (GAS) .DRYERS AND STORAGE
MUNICIPAL INCINERATION < 50T/D
(AGG) PERIODIC KILNS(COAL),DRYERS AND STORAGE
(AGG) PERIODIC KILNS (GAS) . DRYERS AND STORAGE
STANDARD
USED
(En)
2.799999
8.000000
M.719999
3.009999
0. 157000
15.599999
0.0
0.0
0.0
1. 115000
0.115000
0.250000
0. 100000
0.219000
3.203000
9.639999
0.240030
1.000030
8.000000
8.469999
2.669999
0.013030
0.040000
0.005010
2.240330
0.044000
2.030000
0.015000
0.3
18.000000
17.000000
1.900000
0.303000
35.000000
3.200000
0.110000
CODE
20 C03
20 C06
140 D13
20 C26
20 COB
20 C23
10 C01
10 C32
10 A03
20 C49
20 A04
23 A14
20 C32
20 C48
20 C16
11 C01
23 C47
20 C25
51 C04
11 B014
50 A10
20 C07
21 A11
20 C33
40 D14
23 A13
40 D06
41 B01
12 B3«
10 A06
10 A37
45 012
45 D10
10 B03
46 D12
46 D10
FLAG
15
15
MS
M5
S5
M5
N6
N6
N6
15
15
H5
M5
t)5
15
N6
.15
15
85
NU
N4
16
116
M6
16
46
16
S6
N6
N6
H6
N6
N6
H6
N6
N6
3See Table 3-1-B for Definition of Terms
-------
80
en
LU
or
LU
a.
CO
o
CO
O
CO
CO
CO
LU
10
8
NO NSPS
BASE STRATEGY
ALL NSPS
IN I960
CAA STANDARD
SETTING DEADLINE
I
I
1
1980 1985 1990
YEAR
FIG. 3.5. NATIONWIDE CARBON MONOXIDE EMISSIONS
1995
-------
81
Table 3.5.B. Carbon Monoxide Air Quality Impacts
of NSPS Strategies
New and Modified Sources in 1990
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
Number with
High Air
Quality Impact
0
0
0
Number with
Moderate Air
Quality Impact
636
94
87
Number with
Low Air
Quality Impact
10,260
10,802
10,809
Total
Number
10,896
10,896
10,896
Table 3.5.C. Mobility/Competitiveness Impacts of NSPS
Strategies for Carbon Monoxide
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
New and Modified Sources in 1990
Number of Sources that Number of Sources
Could Have Moved Precluded from Moving
649 10,247
21 10,875
0 10.896
Total
Number
10,896
10,896
10,896
-------
82
3.1.6 Lead
There were 13 majot 1°="* emission source categories evaluated. This
amounted to 8 percent of all major source categories evaluated. A major
pollutant emission source is a source which has the potential of emitting
a minimum of 100 tons per year of one or more specified pollutants without
application of emission control techniques or processes.
The nationwide growth in production capacity and corollary growth in
nationwide emissions were calculated for both major and minor lead emission
sources for a base year 1980. The nationwide source capacity was typically
computed by growing 1975 capacity to 1980 using appropriate new growth (Pc)
rates. Where available a "weighed" 1975 state lead emission limitation factor
(Es) was applied to the 1980 capacity to compute nationwide lead emissions.
The state emission factor limitation (Es) used was, in most cases, the value
3
computed by TRC in their 1975 analysis of the impact of new source perfor-
mance standards.
Hypothetical average source sizes for each major lead emission source
category ranged from approximately 6,000 tons product per year to over
90,000 tons product per year. Uncontrolled lead emissions from an average
hypothetical source size in each lead emission source category ranged from
nearly 1 ton lead per year to over 1,900 tons lead per year.
During the 1980-1990 time period the new growth capacity was represent-
ed by the number of hypothetical new sources of average size. For the ten
year period the number of new hypothetical sources for the lead emission
source categories ranged from 14 sources per category to over 1,000
sources per category.
The nationwide lead emissions computed for 1980 as allowed by a 1975
state emission factor limitation was 12,800 tons lead per year for the
13 major lead emission source categories evaluated. Approximately 6 source
categories accounted for 91 percent of these lead emissions with 2 source
categories accounting for 59 percent of the emissions.
The nationwide lead source category production capacities were also
computed for 1990. Nationwide lead emissions for 1990 were computed assuming
state emission limitation factors were in force during the 1980-1990 time per-
iod. Nationwide lead emissions were also computed assuming application of an
-------
83
emission limitation reflecting a condition of best anticipated control (E ),
which would be applied to new or modified source construction during the same
ten year period. The difference in the national emissions based on the state
limitation and the more restrictive new and modified source limitation (Ts-Tn)
in 1990 was then computed. The anticipated 1990 lead emission reductions (Ts-
Tn) by the application of (En) beginning in 1980 ranged from 30 tons per year
to 7,700 tons per year.
The air quality impact of each of the 13 major lead emission source
categories was evaluated. A typical or average source size was selected for
each source category for the dispersion analysis. The maximum ground level
concentration (\) was computed based both on the state emission factor
limitation (Es) and the best level of anticipated control (En). The maximum
ground level concentrations for both (Es) and (En) were compared after
normalizing (dividing) by the appropriate ambient threshold value for lead.
These values were then ranked by order of magnitude and statistically divided
into three groups, of High, Moderate and Low air quality impact.
Among the 13 major lead emission source categories evaluated, 7 source
categories or 24 percent had a High air quality impact resulting from the state
emission limitation (Es). For this High impact group, 3 or 23 percent of the lead
emission source categories were reduced to a. Moderate or Low air quality impact
by the application of the best anticipated emission limitation, (En). No lead
emission source categories had a Low air quality impact based on state emission
limitation factors.
Of the 13 major lead emission source categories, 5 or 39 percent were
considered to be non-mobile and non-competitive based on either market or raw
material ties. Therefore, 8 lead emission source categories or 61 percent
of all the lead emission source categories would be considered mobile and
competitive and would tend to locate in states with less restrictive emission
limitations assuming all other mobility and competition considerations allowed
the source the necessary flexibility in source siting.
Table 3-6.A gives the prioritization schedule for all lead emission
source categories under the Baseline Strategy described above. Nationwide
lead emissions as a function of time assuming implementation of this schedule
are shown in Fig. 3.6. For purposes of comparison, the emissions are also
-------
displayed for the following limiting cases:
- All NSPS are set in 1980, that is, En becomes the applicable
emission limitation for all lead sources in 1980. This case
represents a lower bound to achievable lead emissions.
- No NSPS are set, that is, Es continues to be the applicable
emission limitation for all sources. This case represents
an upper limit for nationwide lead emissions.
Examination of Fig. 3.6 shows that nationwide lead emissions will continue
to decline with time by the application of En regardless of the standard
setting rate and prioritization scheme. This insensitivity to the priori-
tization scheme is to be expected given the short time frame in which the
Clean Air Act requires standards to be set. Beyond mid-1982, both the Base-
line Strategy and the lower bound case are almost parallel, because in both
cases all new and replacement sources must meet the same emission limitations.
Figure 3.6 shows that as a result of the prioritization schedule the
lead emissions rise between 1980 and 1981 and then decline gradually after
1981, paralleling the lower bound emission case. This initial rise in lead
emissions is due to source growth and the lag of the impact of NSPS.
Further examination of Figure 3.6 shows that in 1984 the prioritization
schedule provides a reduction of 2,000 tons per year lead from that allowed
by state emission limitations. By 1987 this reduction in annual emissions
has increased to 5,000 tons lead per year and by 1990 to 9,000 tons lead per
year. After 1990 the prioritization scheme allows a constant differential
increase in emission of 800 tons per year above that which would have been
obtained if all lead En (NSPS) limitations were set in 1980.
Examination of Table 3.6.A indicates that standards are first set for
Grey Iron Foundries (electric arc and reverbatory furnaces) and gasoline
additive plants all of which have high potential mass emission reduction potential
and also have high air quality impacts. Standards are set last for Metallic
Mineral Mining because these plants have lower potential mass emission
reduction, low air quality impact and are non-mobile.
Table 3-6-B gives the 1990 air quality impact of each of the three
prioritization cases in terms of the number of sources which continue to have
high air quality impacts despite the setting of an NSPS. 'Table 3-6-C compares
-------
35
the mobility/competitiveness impacts of the three cases in terms of the number
of sources that could have moved, that is, the number that were mobile prior
to having had an NSPS set for them.
Table 3.6.B compares the 1990 air quality impacts of the three NSPS
schedules in terms of the number of new and modified sources having high,
moderate, and low air quality impacts. Table 3.6.C compares the mobility and
competitiveness impacts of the three schedules in terms of the number of new
and modified sources that could have moved under each schedule, that is, the
number that were mobile prior to being regulated by an NSPS. The number of
new and modified sources that are either non-mobile initially or that become
non-mobile when an NSPS is set is also given.
-------
TABLE 3-6-A PRIORITIZED NSPS SCHEDULE FOR LEAD*
TEAR
CUMULATIVE
EFFOBT
1980.0
1980.5
1S81.0
1S81.5
1982.0
1.00
00
00
1.00
,00
,00
,00
,00
3.00
1 .00
2.00
3.00
1.00
SOURCE
GREY IRON FOUNDRIES
GREY IRON FOUNDRIES
GASOLINE ADDITIVES
(EtECTEIC ABC)
(REVERBERATOR!)
(ELECTROLYTIC)
GASOLINE ADDITIVES (SODIU H- LEAD)
OBEY IRON FOUNDRIES (CUPOLA)
INDUSTRIAL INCINERATION (INDUSTRIAL-COMMERCIAL)
HETALIC MINERALS MINING (FERROALLOY)
GLASS MANUFACTURING INDUSTRY (LEAD GLASS)
(AGG) SECONDARY ZINC SMELTERS (RETORT REDUCTION 6 KETTLE FUBIACES
(AGO) SECONDARY ZINC SHELTERS (HOPIZ 6 REVERB FURNACES)
MUNICIPAL INCINEBATION < 50T/D
METALIC MINERALS MINING (LEAD MINING)
METALIC MINERALS MINING (ZINC MINE E CRUSHING)
STANDARD
USED
(En)
0.0
0.0
1.000000
0.890000
0.033000
0.040030
0.003000
0.060000
0.050000
0.050000
0.0
0.010000
CODE
FLAG
50 C02 B3
50 C03 H3
70 F02 81
70 F01 HI
50 COU 92
11 BOH B2
«2 E01 N2
HO D19 H5
51 E01 MB
51 E02 Hit
10 B03 III
-------
87
.028
.026
.024
cr .022
.016
.014
.012
.010
NO NSPS
BASE STRATEGY
CAA STANDARD
SETTING DEADLINE
t
ALL NSPS SET IN 1980
1980
1985
1990
1995
YEAR
FIG. 3.6. NATIONWIDE LEAD EMISSIONS
-------
88
Table 3.6.B.
Lead Air Quality Impacts
of NSPS Strategies
New and Modified Sources in 1990
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
Number with
High Air
Quality Impact
229
6
0
Number with
Moderate Air
Quality Impact
838
863
861
Number with
Low Air
Quality Impact
0
198
206
Total
Number
1,067
1,067
1,067
Table 3.6.C. Mobility/Competiveness Impacts of NSPS
Strategies for Lead
Standard
Setting
Strategy
New and Modified Sources in 1990
Number of Sources that
Could Have Moved
Number of Sources Total
Precluded from Moving Number
No NSPS
Baseline
All set
in 1980
242
12
825
1,055
1,067
1,067
1,067
1,067
-------
89
3.1.7 Fluoride
There were 18 major fluoride emission source categories evaluated. This
amounted to 12 percent of all categories evaluated. A major pollutant emission
source is a source which has the potential of emitting a minimum of 100 tons
per year of one or more specified pollutants without application of emission
control techniques or processes.
The nationwide growth in production capacity and corollary growth in
nationwide emissions were calculated for both major and minor fluoride emis-
sion sources for a base year 1980. The nationwide source capacity was typi-
cally computed by growing 1975 capacity to 1980 using appropriate new growth
(Pc) rates. Where available a "weighed" 1975 state fluoride emission limi-
tation factor (Es) was applied to the 1980 capacity to compute nationwide
fluoride emissions. The state emission factor limitation (Es) used was, in
most cases, the value computed by TRC in their 1975 analysis of the impact
of new source performance standards.
Hypothetical average source sizes for each major fluoride emission
source category ranged from approximately 3,000 tons product per year to almost
600,000 tons product per year. Uncontrolled fluoride emissions from an average
hypothetical source size in each fluoride emission source category ranged from
one ton fluoride per year to nearly 5,000 tons fluoride per year.
During the 1980-1990 time period the new growth capacity was repre-
sented by the number of hypothetical new sources of average size. For the ten
year period the number of new hypothetical sources for the major fluoride
emission source categories ranged from as few as two sources per category to
over 4,000 sources per category.
The nationwide fluoride emissions computed for 1980 as allowed by a
1975 state emission factor limitation was 60,270 tons fluoride per year for
the 18 major fluoride emission source categories evaluated. Approximately
7 source categories accounted for 91 percent of these fluoride emissions with
2 source categories accounting for 49 percent of the emissions.
The nationwide fluoride source category production capacities were
also computed for 1990. Nationwide fluoride emissions for 1990 were computed
assuming the state emission limitation factors were in force during the 1980-
1990 time period. Nationwide fluoride emissions were also computed assuming
application of an emission limitation reflecting a condition of best anticipated
-------
90
control (E ), which would be applied to new or modified source construction
during the same ten-year period. The difference in the national emissions
based on the state limitation and the more restrictive new and modified source
limitation (Ts-Tn) in 1990 was then computed. The anticipated 1990 fluoride
emission reductions (Ts-Tn) by the application of (En) beginning in 1980
ranged from 4 tons per year to 16,400 tons per year.
The air quality impact of each of the 18 major fluoride emission source
categories was evaluated. A typical or average source size was selected for
each source category for the dispersion analysis. The maximum ground level
concentration (x) was computed based both on the state emission factor limitation
(Es) and the best level of anticipated control (En). The maximum ground level
concentrations for both (Es) and (En) were compared after normalizing (dividing)
by the appropriate ambient threshold value for fluorides. These values were
then ranked by order of magnitude and statistically divided into three groups,
of High, Moderate and Low air quality impact.
Among the 18 major fluoride emission source categories evaluated, 17
source categories or 94 percent had a High air quality impact resulting from
the state emission limitation, (Es). For this High impact group, 8 or 47 per-
cent of the fluoride emission source categories were reduced to a Moderate
or Low air quality impact by the application of the best anticipated emission
limitation, (En). No major fluoride emission source category had a Low air
quality Impact based on state emission limitation factors.
Of the 18 major fluoride emission source categories, 9 or 50 percent
were considered to be nonmobile and noncompetitive based on either market or
raw material ties. Therefore, 9 fluoride emission source categories or 50
percent of all the fluoride emission source categories would be considered
mobile and competitive and would tend to locate in states with less restrictive
emission limitations, assuming all other mobility and competition considera-
tions allowed the source the necessary flexibility in source siting.
Table 3.7.A gives the prioritization schedule for all fluoride emission
source categories under the Baseline Strategy described above. Nationwide
fluoride emissions as a function of time assuming implementation of this
schedule are shown in Fig. 3.7. For purposes of comparison, the emissions
are also displayed for the following limiting cases:
-------
91
- All NSPS are set in 1980, that is, En becomes the applicable
emission limitations for all fluoride sources in 1980. This
case represents a lower bound to achievable fluoride
emissions.
- No NSPS are set, that is, Es continues to be the applicable
emission limitation for all sources. This case represents an
upper limit for nationwide fluoride emissions.
Examination of Fig. 3.7 shows that nationwide fluoride emissions will continue
to decrease with time by the application of En regardless of the standard
setting rate and prioritization scheme. This insensitivity to the prioriti-
zation scheme is to be expected given the short time frame in which the Clean
Air Act requires standards to be set. Beyond mid-1982, both the Base Strategy
and the lower bound case are almost parallel, because in both cases all new
and replacement sources must meet the same emission limitations.
Table 3. 7.B compares the 1990 air quality impacts of the three NSPS
schedules in terms of the number of new and modified sources having high,
moderate, and low air quality impacts. Table 3.7.C compares the mobility and
competitiveness impacts of the three schedules in terms of the number of new
and modified sources that could have moved under each schedule, that is, the
number that were mobile prior to being regulated by an NSPS. The number of
new and modified sources that are either ndh-mobile initially or that become
non-mobile when an NSPS is set is also given.
-------
TABLE 3-7-A PRIORITIZED NSPS SCHEDULE FOR FLUORIDES
CUMULATIVE
YEAfc EFFOFT
I960. C
1980.5
1981.C
1981.5
1962.C
1982.E
1.00
2.00
3.00
00
00
00
1.00
2.00
3.00
00
00
00
1.00
00
00
1.00
2.00
3.00
STANDARD
SOURCE USED CODE FLAG
(En)
HYDROFLUORIC ACID PLANTS 0.200000 20 A08 S2
CFRAMIC CLAY HFG 0.300000 40 010 H2
PHOSPHORIC ACID PLANTS (MET PROCESS) 0.005000 20 A07 S2
(AGG) CASTABIE REFRACTORY PLANTS 0.130000 1*0 DOB N1
(AGG) SECONDARY COPPER PLANTS (BLAST FURNACE) 0.078000 5 f B01 N2
FIBERGLASS MFG. PIMJTS (WOOL PROCESSING) 0.002000 UO 011 N2
(AGG) SECONDARY ZINC SHELTERS (HORIZ (, REVERB FURNACES) 0.023100 51 E02 f!2
(AGG) SECONDARY ZINC SMELTERS (RETORT REDUCTION £ KETTLE FURNACES 0.077000 51 Ell !12
FIBERGLASS MFG. PLANTS (TEXTILE PROCESSING) 2.000000 10 D06 Ml
(AGG) TUNNEL K ILN S ( GAS) , DR YEBS AND STORAGE 0.300000 4 5 D10 N1
ANIMAL FEED DEFLUORINATION O.U33000 30 D10 HI
(AGG) NON-METALLIC MINING - FLUORSPAR 0.100000 47 F01 N2
(AGG) PERIODIC KILNS(GAS) , DEYERS AND STORAGE 0.300000 16 D10 N1
(AGG) TUNNEL KILNS (OIL) , DR YEBS AND STORAGE 0.300000 45 D11 N1
(AGG) TUNNEL KILNS(COAL),DRYERS AND STORAGE 0.300000 U5 D12 N1
(AGG) PERIODIC KILNS (OIL), DRYERS AND STORAGE 0.300000 46 D11 N1
(AGG) PERIODIC KILNS (COAL) ,DEYERS AND STORAGE 0.300000 46 D12 81
INDUSTRIAL BOILERS (10-250X10E6 BTO/HP) 0.000500 10 A03 N5
See Table 3-1-B for Definition of Terms
-------
93
or
LU
LU
Q_
CO
Z
o
CO
CO
CO
.100
.090
.080
.070
.060
.050
040
.030
.020
.010
NO NSPS
BASE STRATEGY
ALL NSPS
IN 1980
CAA STANDARD SETTING DEADLINE
1980
1985 1990
YEAR
FIG. 3.7. NATIONWIDE FLUORIDE EMISSIONS
1995
-------
94
Table 3.7.B. Fluorides Air Quality Impacts
of NSPS Strategies
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
Number v.'it'.i
High Air
Quality Inpact
3652
968
958
New and Modified
Number with
Moderate Air
Quality Impact
4016
3624
2694
Sources in 1990
Number with
Low Air
Quality Impact
0
3076
4016
Total
Number
7668
7668
7668
Table 3.7.C. Mobility/Competiveness Impacts of NSPS
Strategies for Fluorides
Standard
Setting
Strategy
New and Modified Sources in 1990
Number of Sources that
Could Have Moved
Number of Sources Total
Precluded from Moving Number
No NSPS
Baseline
All set
in 1980
7668
7b6S
7668
-------
95
3.1.8 Hydrogen Sulfide
There were 2 major hydrogen sulfide emission source categories eval-
uated. This amounted to 1 percent of all categories evaluated. A major
pollutant emission source is a source which has the potential of emitting
a minimum of 100 tons per year of one or more specified pollutants without
application of emission control techniques or processes.
The nationwide growth in production capacity and corollary growth in
nationwide emissions were calculated for both major and minor hydrogen sulfide
emission sources for a base year 1980. The nationwide source capacity was typ-
ically computed by growing 1975 capacity to 1980 using appropriate new growth
(Pc) rates. Where available a "weighed" 1975 state hydrogen sulfide emission
limitation factor (Es) was applied to the 1980 capacity to compute nationwide
hydrogen sulfide emissions. The state emission factor limitation (Es) used was
in most cases, the value computed by TRC^ in their 1975 analysis of the im-
pact of new source performance standards.
Hypothetical average source size for each major hydrogen sulfide
emission source category was approximately 62,000 tons product per year.
Uncontrolled hydrogen sulfide emissions from an average hypothetical
source size in each hydrogen sulfide emission source category ranged from
260 tons hydrogen sulfide per year to over 1,500 tons hydrogen sulfide
per year.
During the 1980-1990 time period the new growth capacity was
represented by the number of hypothetical new sources of average size. For
the ten year period the number of new hypothetical sources for the
hydrogen sulfide emission source categories ranged from as few as three
sources per category to over 20 sources per category.
The nationwide hydrogen sulfide emissions computed for 1980 as allowed
by a 1975 state emission factor limitation was 60,000 tons hydrogen sulfide
per year for the 2 hydrogen sulfide emission source categories evaluated.
One source category accounted for 96 percent of these hydrogen sulfide
emissions.
-------
96
The nationwide hydrogen sulfide source category production capacities
were also computed for 1990. Nationwide hydrogen sulfide emissions for 1990
were computed assuming state emission limitation factors were in force during
the 1980-1990 time period. Nationwide particulate emissions were also computed
assuming application of an emission limitation reflecting a condition of best
anticipated control (En), which would be applied to new or modified source
constuction during the same ten year period. The difference in the national
emissions based on the state limitation and the more restrictive new and mod-
ified source limitation (Ts-Tn) in 1990 was then computed. The anticipated
1990 hydrogen sulfide emission reductions (Ts-Tn) by the application of (En)
beginning in 1980 ranged from 1 ton per year to 42,300 tons per year.
The air quality impact of each of the 2 major hydrogen sulfide
emission source categories was evaluated. A typical or average source size
was selected for each source category for the dispersion analysis. The
maximum ground level concentration (x) was computed based both on the state
emission factor limitation (Es) and the best level of anticipated control
(En). The maximum ground level concentrations for both (Es) and (En) were
compared after normalizing (dividing) by the appropriate ambient threshold
value for hydrogen sulfide. These values were then ranked by order of
magnitude and statistically divided into three groups, of High, Moderate
and Low air quality impact.
Among the 2 major hydrogen sulfide emission source categories eval-
uated, one source category had a High air quality impact resulting from
the state emission limitation, (Es). For this High impact group, one
hydrogen sulfide emission source category was reduced to a Moderate air
quality impact by the application of the best anticipated emission limitation,
(En).
Of the 2 hydrogen sulfide emission source categories, both were
considered to be mobile and competitive based on either market or raw
material ties. Therefore, the two source categories would be considered
mobile and competitive and would tend to locate in states with less
restrictive emission limitations, assuming all other mobility and
competition considerations allowed the source the necessary flexibility
in source siting.
-------
97
Table 3.8.A gives the schedule for all emission categories that are
sources of hydrogen sulfide prioritized under the Base Strategy. Nationwide
emissions over time are shown in Fig. 3.8 assuming implementation of this
schedule. For purposes of comparison, emissions are also displayed for these
cases:
- All NSPS are set in 1980, that is, En becomes the applicable
emission limit for all sources in 1980. This case represents
a lower bound on achievable emissions.
- No NSPS are set, that is, Es continues to be the applicable
emission limitation for all sources. This case represents an
upper bound on nationwide emissions of hydrogen sulfide.
Since there are only two hydrogen sulfide source categories and one
standard is set each time period through mid-1981, differences between the
emission projections must be viewed with some caution. The figure shows, how-
ever, that nationwide hydrogen sulfide emissions will decrease over time.
After mid-1981, both the Base Strategy and the lower bound are parallel. All
NSPS have been set and in both cases new and replacement sources must meet
the same limits. By 1990, the difference in emissions between the Base Strategy
and the lower bound is small compared to the difference between the upper and
lower bounds. By this time, both the base and lower bound strategies produce
almost the same results in terms of emission reductions. Until 1981 there is
little difference between the Base Strategy and the upper bound.
Table 3.8.B compares the 1990 air quality impacts of the three NSPS
schedules in terms of the number of new and modified sources having high,
moderate, and low air quality impacts. Table 3.8.C compares the mobility
and competitiveness impacts of the three schedules in terms of the number of
new and modified sources that could have moved under each schedule, that is,
the number that were mobile prior to being regulated by an NSPS. The
number of new and modified sources that are either non-mobile initially
or that become non-mobile when an NSPS is set is also given.
-------
TABLE 3-8-A PRIORITIZED NSPS SCHEDULE FOR HYDROGEN SULFIDE
CUMULATIVE
IEAB EfFORT
1580.0
1980.5
1.00
1.00
SOUBCE
CARBON BLACK (FORNACE PBOCESS)
SYNTHETIC FIBERS INDUSTRY (VISCOSE BATON)
STANDARD
OSEO
CODE PL 16
(En)
0.060000 20 C03 85
1.599999 20 806 82
See Table 3-1-B for Definition of Terms
-------
99
.100
.090
.080
.070
or
2 .060
.050
040
030
.020
.010
a:
CO
CO
CO
NO NSPS
BASE STRATEGY
ALL NSPS
IN 1980
CAA STANDARD SETTING DEADLINE
1980 1985 1990
YEAR
FIG. 3.8. NATIONWIDE HYDROGEN SULFIOE EMISSIONS
1995
-------
100
Table 3.8.B.
Hydrogen Sulfide Air Quality
Impacts of NSPS Strategies
New and Modified Sources in 1990
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
Number with
High Air
Quality Impact
3
0
0
Number with
Moderate Air
Quality Impact
24
3
3
Number with
Low Air Total
Quality Impact Number
0 27
24 27
24 27
Table 3.8.C. Mobility/Competitiveness Impacts of NSPS
Strategies for Hydrogen Sulfide
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
New and
Number of Sources that
Could Have Moved
27
0
0
Modified Sources in 1990
Number of Sources
Precluded from Moving
0
27
27
Total
Number
27
27
27
-------
101
3.1.9 Sulfuric Acid Mist
There were 3 major Sulfuric acid mist emission source categories evaluated.
This amounted to 2 percent of all categories evaluated. A major pollutant
emission source is a source which has the potential of emitting a minimum of
100 tons per year of one or more specified pollutants without application
of emission control techniques or processes.
The nationwide growth in production capacity and corollary growth in
nationwide emissions were calculated for both major and minor sulfuric acid
mist emission sources for a base year 1980. The nationwide source capacity
was typically computed by growing 1975 capacity to 1980 using appropriate new
growth (Pc) rates. Where available a "weighed" 1975 state sulfuric acid mist
emission limitation factor (Es) was applied to the 1980 capacity to compute
nationwide sulfuric acid mist emissions. The state emission factor limitation
2
(Es) used was, in most cases, the value computed by TRC in their 1975 analy-
sis of the impact of new source performance standards.
Hypothetical average source sizes for each major sulfuric acid mist
emission source category ranged from approximately 10,000 tons product per
year to 120,000 tons product per year. Uncontrolled sulfuric acid mist emissions
from an average hypothetical source size in each sulfuric acid mist emission
source category ranged from 1.3 tons sulfuric acid mist per year to over
1,200 tons sulfuric acid mist per year.
During the 1980-1990 time period the new growth capacity was represented
by the number of hypothetical new sources of average size. For the ten year
period the number of new hypothetical sources for the sulfuric acid mist emis-
sion source categories ranged from approximately 30 sources per category to as
many as 290 sources per category.
The nationwide sulfuric acid mist emissions computed for 1980 as allowed
by a 1975 state emission factor limitation was 24,000 tons sulfuric acid mist
per year for the 3 major sulfuric acid mist emission source categories evaluated.
One source category accounted for 98 percent of the sulfuric acid mist emissions.
The nationwide sulfuric acid mist source category production capacities
were also computed for 1990. Nationwide sulfuric acid mist emissions for 1990
were computed assuming state emission limitation factors were in force during
the 1980-1990 time period. Nationwide sulfuric acid mist emissions were also
computed assuming application of an emission limitation reflecting a condition
-------
102
of best anticipated control (E ), which would be applied to new or modified
source construction during the same ten year period. The difference in the
national emissions based on the state limitation and the more restrictive new
and modified source limitation (Ts-Tn) in 1990 was then computed. The anti-
cipated 1990 sulfuric acid mist emission reductions (Ts-Tn) by the application
of (En) beginning in 1980 ranged from 190 tons per year to 42,000 tons per year.
The air quality impact of each of the 3 sulfuric acid mist emission
source categories was evaluated. A typical or average source size was selected
for each source category for the dispersion analysis. The maximum ground level
concentration (x) was computed based both on the state emission factor limita-
tion (Es) and the best level of anticipated control (En). The maximum ground
level concentrations for both (Es) and (En) were compared after normalizing
(dividing) by the appropriate ambient threshold value for sulfuric acid mist.
These values were then ranked by order of magnitude and statistically divided
into three groups, of High, Moderate and Low air quality impact.
Among the 3 major sulfuric acid mist emission source categories evaluted,
one source category or 33 percent had a High air quality impact resulting from
the state emission limitation, (Es). This High impact source category was
not reduced to a Moderate or Low air quality impact by the application of the
best anticipated emission limitation, (En). No sulfuric acid mist emission
source categories had a Low air quality impact based on state emission limita-
tion factors.
Of the 3 major sulfuric acid mist emission source categories, one was
considered to be nonmobile and noncompetitive based on either market or raw
material ties. Therefore, the two remaining sulfuric acid mist emission source
categories would be considered mobile and competitive and would tend to locate
in states with less restrictive emission limitations, assuming all other mobility
and competition considerations allowed the source the necessary flexibility in
source siting.
Table 3.9.A gives the prioritized schedule for all sulfuric acid mist
emission source categories under the Baseline Strategy described above.
Nationwide sulfuric acid mist emissions as a function of time assuming imple-
mentation of this schedule are shown in Figure 3.9. For purposes of com-
parison, the emissions are also displayed for the following limiting cases:
-------
103
- All NSPS are set in 1980, that is, En becomes the applicable
emission limitation for all sulfuric acid mist sources in
1980. This case represents a lower bound to achievable
acid mist emissions.
- No NSPS are set, that is, Es continues to be the applicable
emission limitation for all sources. This case represents
an upper limit for nationwide sulfuric acid mist emissions.
Examination of Fig. 3.9 shows that nationwide sulfuric acid mi'-t emissions
will continue to decrease with time by the application of En regardless of
the standard setting rate and prioritization scheme. This insensitivity to
the prioritization scheme is to be expected given the short time frame in
which the Clean Air Act requires standards to be set. Beyond mid-1982, both
the Base Strategy and the lower bound case are almost parallel, because in
both cases all new and replacement sources must meet the same emission
limitations.
Figure 3.9 shows that as a result of the prioritization schedule the
sulfuric acid mist emissions rise between 1980 and 1982 and then start to
decline after 1982, paralleling the lower bound case. This graph should be
viewed with caution since there are only three sulfuric acid mist source
categories and one standard is set each time period through 1981.
Examination of Table 3.9.A indicates that standards are set for the
Explosive Manufacturing Industry before Mixed Fuel Boilers because the former
have higher mass emission reduction potential (Ts-Tn).
Table 3.9.B compares the 1990 air quality impacts of the three NSPS
schedules in terms of the number of new and modified sources having high,
moderate, and low air quality impacts. Table 3.9.C compares the mobility
and competitiveness impacts of the three schedules in terms of the number
of new and modified sources that could have moved under each schedule, that is,
the number that were mobile prior to being regulated by an NSPS. The
number of new and modified sources that are either nonmobile initially or
that become nonmobile when an NSPS is set is also given.
-------
TABLE 3-9-A PRIORITIZED NSPS SCHEDULE FOR SULFURIC ACID HIST"
CUBULA1IVE
YEAB EFfOFT
1S80.0
1S60.5
1S81.C
1.00
1.00
1.00
SOURCE
EXPLOSIVE IND (HIGH EXPLOSIVES)
EXPLOSIVE IND (LOU EXPLOSIVES)
NIXED FUEL BOILERS (COAL 6 EEFUSE)
STANDARD
USED
(En)
CODE
FLAG
1.599999 20 C17 H1
0.006000 20 CIS S5
0.010000 10 A06 IS
*See Table 3-1-B for Definition of Terms
-------
105
o:
cc
LU
Q_
CO
O
CO
CO
CO
.100
.090
.080
.070
.060
.050
.040
030
.020
.010
NO NSPS
BASE STRATEGY
ALL NSPS IN I960
CAA STANDARD SETTING DEADLINE
I.
1980
1985 1990
YEAR
FIG. 3.9. NATIONWIDE ACID MIST EMISSIONS
1995
-------
106
Table 3.9.B. Sulfuric Acid Mist Air Quality Impacts
of NSPS Strategies
New and Modified Sources in 1990
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
Number with
High Air
Quality Impact
128
128
128
Number with
Moderate Air
Quality Impact
162
7
0
Number with
Low Air
Quality Impact
0
155
162
Total
Number
290
290
290
Table 3.9.C. Mobility/Competiveness Impacts
of NSPS Strategies for Sulfuric
Acid Mist
Standard
Setting
Strategy
New and Modified Sources in 1990
Number of Sources that
Could Have Moved
Number of Sources Total
Precluded from Moving Number
No NSPS
Baseline
All set
in 1980
262
4
28
286
290
290
290
290
-------
107
3.1.10 Major Source Category Growth
The number of new and replacement major source category facilities
expected to be constructed through 1990 as calculated by equation (2-11) on page
38 is found in Table B-4, Appendix B. One is cautioned not to cite this date
out of context of this report as the number of new and replacement facilities
represented are hypothetical facilities of average size computed by the
algorithm discussed on page 38 of this report.
-------
108
3.2 POLLUTANT SPECIFIC - MINOR SOURCE
A minor pollutant emission source is a source which has. the potential
of emitting less than 100 tons per year of all pollutants under examination
without application of emission control techniques or processes. Of the 203
source categories evaluated 46 source categories were determined to be minor
source categories after screening. Actually there are 51 minor source
categories listed in Table A-2, Appendix A. However 5 categories are actually
sub-processes or unit operations of a larger facility. Table A-2 indicates
which source categories belong to the same representative facilities.
As the 1977 amendments to the CAA specify an evaluation of major source
categories and because of time and effort constraints the minor source cate-
gories were evaluated only by the mass emission criteria. The mass emission
analysis indicated that there were some minor source categories which had a
significant potential for mass emission pollutant reduction. There are a
number of hydrocarbon and particulate minor source categories which have
significant potential emission reduction (i.e., Ts-Tn).
For the mass emission evaluation the nationwide growth in production
capacity and corollary growth in nationwide emissions were calculated for minor
emission sources for a base year 1980. The nationwide, source capacity was typi-
cally computed by growing 1975 capacity to 1980 using appropriate new growth
(Pc) rates. Where available a "weighed" 1975 state pollutant emission limi-
tation factor (Es) was applied to the 1980 capacity to compute nationwide
pollutant emissions. The state emission factor limitation (Es) used was, in
most cases, the value computed by TRC in their 1975 analysis of the impact
of new source performance standards.
Source category growth and mass emission data by pollutant (i.e.,
particulate matter, SO , NO , Hydrocarbons, CO, Lead, Hydrogen Sulfide, Sul-
furic Acid Mist and Fluorides) is found in Table A-4, Appendix A. A synopsis
of the mass emission potential reductions is found in Table 3-11.
The number of new and replacement minor source category facilities expected
to be constructed through 1990 as calculated by equation (2-11) on page 38
is found in Table B-3, Appendix B. One is cautioned not to cite t^is ^.ata ont
of context of this report as the number of new and replacement facilities
represented are hypothetical facilities of average size computed by the
algorithm discussed on page 38 of this report.
-------
109
Table 3-10 Minor Source Category Mass Emission Data
Pollutant
Particulate
Matter
Sulfur
Dioxide
Nitrogen
Dioxide
Hydrocarbon
Carbon
Monoxide
Lead
Fluorides
Sulfuric
Acid Mist
Hydrogen
Sulfide
Number of
Source
Categories
25
4
6
24
4
10
3
1
1
Range of (Ts-Tn) among
Source Categories
High (Ts-Tn)
(ton/yr)
23,800
1,000,000
159,000
218,000
270,000
740
3,100
1,300
1
Low (Ts-Tn)
(ton/yr)
4
430
270
7
80
150
1,500
-------
110
3.3 COMBINED POLLUTANT ANALYSIS
In doing the analysis among the pollutants considered, a scheme must
be developed to determine the priority pollutant at any point in time. As
was described in Section 2, the procedure used here depends on picking the
pollutant that is furthest from a pre-defined emission goal. This is the
same method that was used in prior work.2 There are, of course, other
pollutant goals which could have been chosen but time did not permit an
evaluation of alternatives.
The choice of emission goals is a significant activity since it is
possible to emphasize or deemphasize a particular pollutant by choosing a
higher or lower emission goal for that pollutant. In prior work,2 all
emission goals were set at zero increase over baseline year emissions. This
proved to put an excessively heavy emphasis on NO- control since NO was the
only pollutant that increased in emissions even under optimum NSPS control.
To adjust for this, the emission goal for NO was set at the best level of
control achievable while all others were retained at zero growth. In this
study a somewhat different approach was used. It appears reasonable to
assume that the desired condition is one of all pollutants being as close
to the maximum achievable emission reduction as possible. (As was shown
previously for sulfur dioxide and nitrogen oxides, this maximum achievable
still represents an emission increase over base year (19SO) levels.) This
implies that the emission goals are set based on the lower limit case of
setting all NSPS in 1980, Table 3-11 gives the emission goals computed
this way. One modification was made of this information. The designated
pollutants (fluorides, acid mist, hydrogen sulfide) and CO are assumed to be
of less concern than the remaining criteria pollutants. CO is considered
to be a short term pollutant problem resulting from transportation sources
as well as stationary sources. Also, fluorides are welfare-related (as
opposed to health-related), and there are only three acid mist source
categories and two hydrogen sulfide source categories evaluated in this
report. For these reasons, it appeared reasonable to deemphasize these
pollutants relative to the remaining criteria pollutants. To do this, the
emission goals of the aforementioned pollutants were adjusted to zero
growth in emissions over 1980 levels.
In selecting the rate at which standards are set, the CAA schedule was
-------
Ill
used. Under these requirements 25% of the NSPS for the listed sources are to
be set within 2 years after the promulgation of the list, 507, in 3 years, and
100% in 4 years. This implies that all NSPS will be promulgated by mid-1982.
The standard-setting rate was chosen such that all major sources had NSPS set
by mid-1982. This amounted to approximately 60 source effort level standards
per year.
Table 3-11. Emission Reduction Goals
Pollutant Coal3
Particulates -6.4
Sulfur Dioxide +10.8
Nitrogen Dioxide +22.0
Hydrocarbons , -29.6
Carbon Monoxide -22.8
Lead -19.3
Fluorides^ -27.3
Acid Mist -30.6
Hydrogen Sulfide -44.7
Based on maximum achievable reduction
relative to base year (1980).
Goal modified in baseline strategy to
no increase over 1980 level (see text).
One other consideration was used in the analysis. It was assumed that
whenever a standard was set for a pollutant from a source category, the stand-
ards for all other pollutants from that source were also set. To account for
the additional work required to develop standards for other pollutants, it
was assumed that a 25% increase in effort would be required for each additional
pollutant. Thus, a source emitting 5 pollutants would require as much effort
as 2 sources emitting only one pollutant each. This assumption is the same
as was used previously.'" This cumulative effort is specified in the prior-
itized standard setting lists (Table 3-12, 3-13).
Table 3-12 gives the priority listing for setting NSPS for the Baseline
Strategy (i.e., 3 year standard setting period)and is the product of the
multipollutant analysis. Standards are set with time once the number of
standards or effort levels per period are established. The computer program
recomputes the priority pollutant (pollutant furthest from its pre established
-------
112
emission goal) after each standard is established for a source category.
Once the priority pollutant has been computed and identified, the computer
program goes to the priority pollutant list (there are nine such lists, one
for each pollutant) and picks the priority source category for that; pollutant
from the list for standard setting. It will be recalled that all the
pollutant lists have source categories prioritized by the three CAA criteria,
mass emissions, health and welfare impact, mobility and competitiveness.
For the Base Strategy each pollutant list gives first priority to mass
emissions (Ts-Tn), second priority to air quality impact (x/ATV) and final
priority to the mobility/non-mobility distinction.
Examination of Table 3-12 indicates that hydrocarbon standards are set
first. This means that the level of hydrocarbon emissions is, during this
first time period (1980), furthest from its goal. In the second period (start-
ing in mid-1980) particulate standards are set. This means that since the
prioritized list gives priority to source categories with high mass emission
reduction (Ts-Tn), there were significant gains in reducing hydrocarbon
emissions so that relative to particulate matter, the hydrocarbon emission
level was closer to its goal. After the particulate standards are set the
computer switches to a different priority pollutant because the high (Ts-Tn)
particulate source categories decrease the level of particulate emissions
such that particulate matter relative to other pollutants for that period
in time is no longer furthest from its goal.
The general trend indicated in Table 3-12 during the first 1% years
is a switching between hydrocarbon and particulate standard setting with
hydrocarbon standard setting generally being dominant. This means that
other criteria pollutants are generally closer to their goals than are
particulate and hydrocarbon emission levels. The switching occurs because
the prioritized pollutant lists emphasize setting standards for source cate-
gories with high potential mass emission reductions.
The baseline strategy shows little emphasis on NO and CO emission
sources. This is due to the fact that many of the larger sources are
controlled when the hydrocarbon emissions from that source come up as the .
priority. Standards for the designated pollutants are typically set in the
last year primarily because of less restrictive emission goals and because
they are generally unique pollutant emissions (i.e., not picked up for
standard setting along with a priority pollutant from a source category).
-------
Table 3-12 Priority List for Combined Pollutant Analysis. Baseline Strategy (Three Year Standard Setting Period)'
CUB011IIVE
IF.AI irrOBT POLLUTANT
1S8C.O
1.00
2.00
2.25
3.25
4.25
K.50
«.75
5.00
e.oo
6.25
7.25
7.50
8.50
9.50
10.50
11.50
12.50
12.75
13.75
10.75
15.75
K.OO
16.25
16.50
16.75
17.75
16. CO
16.25
16.50
U.75
19.00
20.00
21.00
21.25
21.50
21.75
22.00
23.00
23.25
23.50
23.75
2D.75
25.00
25.25
55.50
26.50
26.75
27.00
27.25
27.50
28.50
29.50
25.75
3C.OO
30.25
3C.50
30.75
HC
HC
CO
HC
HC
tn
CO
HS
HC
CO
HC
CO
HC
HC
HC
HC
HC
SO
HC
HC
HC
PR
50
NO
CO
HC
PI
SO
NO
CO
PB
HC
HC
PI
SO
0
CO
HC
PI
SO
CO
HC
SO
»0
CO
HC
FH
SO
10
CO
HC
HC
PB
SO
10
CO
IL
ETIIILENE OXIDE PLANTS (tin OXIDITIOD PROCESS)
ACRILOKITRILE PLANTS
DIHETHIL TEREPHTHtLATE PLANTS L
CARBON BLACK (FURNACE PROCESS) '
rORflAlDEIITDE PLANTS
HALEIC ANHIORIDE
INDUSTRIAL SURFACE COATING (CAN COATING)
(AGG) PETROLEUM REFINERY NISC. SOURCES
INDUSTRIAL SURFACE COATING (PAPER COATING)
DRI CLEANING
FUEL CONVERSION HIGH BTO COAL GASIFICATIOI
INDUSTRIAL SURFACE COATING (FABRIC COATING)'
GRAPHIC ARTS INDUSTRY. (GRAVURE)l
BI-PRODUCT COKZ O?E»
INDUSTRIAL INCINERATION (INDUSTRIAL-CONHEBCIAL)
PLASTICS 1ND RESINS (ACRYLIC)
MINERAL BOOL MFC
PHTHALIC ANHYDRIDE PLANTS (OITLEIE PROCESS)
STATIONARY INTERNAL COBBUSTION ENGINES (SPARK IGNITION)
STATIONARY INTERNAL C01BOSTION ENGINES(DIESEL 6 DOAL FUEL)
INDUSTRIAL SURFACE COATING (1UTOBOBILES)
INDUSTRIAL BOILERS (10-250X10E6 BTU/HR)
STANDARD
OSED
r.s
1.6799»9
7.919999
8.000000
0.370000
0. 100000
1.099999
2.799999
0.060070
0.061)000
0.157000
2.620003
15.599999
0.050000
0.015000
0.260000
21. 39999U
0.680000
1.559999
0. 260000
65.000000
0.0142000
0.215000
«. 020000
0.050000
2. 669999
2.879999
0.065030
2. 379999
0.650000
8.169999
0.000030
2.DOOOOO
0.869000
3.629999
0.0
0.080300
1). 719999
0.020000
2.000003
9.100030
3.009999
0.0
0.0
131.000000
0.0
0.0
5. 139999
16.000000
123.000000
0.0
0.310000
0.0
0.403900
1.500000
0.36SOOO
0.0
0.000500
CODE
21 C11
20 C06
20 C16
20 C23
20 C33
23 C03
20 C03
20 C03
20 COS
20 C09
20 C23
20 C21
62 B33
71 D01
63 B03
60 B01
21 C20
21 C20
6» B02
60 BOH
50 »10
50 110
53 »10
50 110
50 110
1 1 B3«
11 P19
11 BOD
1 1 B3<4
11 Sit
1 1 BOH
20 B17
40 013
It D13
«0 013
in D13
40 013
20 C26
20 C26
20 C26
20 C26
10 O1
10 C31
10 C01
13 C01
10 C02
10 C03
10 C32
10 C32
10 C02
62 B02
10 103
10 103
10 103
10 103
10 103
10 103
rue
12
12
85
12
13
15
15
S5
!13
15
92
15
12
11
HI
112
12
lit
112
12
N2
111
111
M
»»
m
N2
N1
N2
NO
N2
15
10
1«
16
(16
15
15
H
H«
S5
95
6
N4
6
NS
56
no
19
16
IS
16
««
«»
IS
16
IS.
*See Table 3.1.1 on page 52 for definition of ter»»
k»t the time of publication, AHL waa Informed that there »ay be new data which will alter the Impact analyele of thla
aourea category.
-------
Table 3-12 Priority List for Combined Pollutant Analysis Baseline Strategy (Three Year Standard Setting Period)
31.75
32.00
32.25
32.50
33.50
33.75
3d. 00
31.25
1980.5
2.25
3.25
4.25
5.25
6.25
7.25
6.25
9.25
S.50
10.50
11.50
12.50
12.75
13.75
14.00
13.02
15. ?5
16,29
16.50
17.50
17,7}
U.75
19. PO
20. OC
20.25
21.25
21 .50
22.50
22.75
23.00
23.29
23.90
23.75
2*. 75
25,00
26.00
26.25
27.25
21.25
21.50
28.75
29.00
30.00
31.00
32.00
33.00
Table 3*1. B on page
HO E
pa
so
IH
no s
pn
so
CO
PN (
pa P
pa s
PH (
pa n
PH (
PH (
PH (
so
pa (
so c
pa G
IB
so c
pit
HC B
Prt
PS H
PH
HC E
CO
HC ' A
CO
SO (
HC
SO E
HC
PB a
tn
so
no
HC
CO
HC V
PH
HC C
CO
HC P
SO B
PH
HO
AH
HC H
HC V
HC I
HC E
52 for definition of terns
EXPLOSIVE IHD (HIGH EXPLOSIVES)
STATIONERY PIPELINE COMPRESSOR ENSUES
(»GG) NON-HETALLIC MINING - CLAI
PHOSPHATE ROCK (NIK ING).
SAND e GRAVEL PROCESS '
(ACG) NON-HETALLIC MINING - GTPS08
HETALIC MINERALS HIRING (COPPER)
(AGG) NON-HETALLIC MINING - LIKE
(AGG) FEED AND GRAIN KILL INDUSTRY
(ASI) SECONDARY COPPER PLANTS (CONVERTER SSELTING)
(AGG) PHOSPHATE ROCK PREPARATION PLAITS
CHEHICAL HOOD IND. (NSSC)
GREY IRON fOUNDHIES (ELECTRIC ARC)
CHEMICAL ROOD PULPING IND. (ACID SOLFITE)
BEER PROCESSING PLANTS
HETALIC MINERALS MINING (FERROALLOY)
ETHYLENE DICHLORIDE PLANTS (OtrCHLOlINATION PROCESS)
ACRYLIC ACID
(IGG) CRUDE OIL AND NATURAL GAS PRODUCTION PLANTS
ETHYLENE
MUNICIPAL INCINERATION < 50T/D
VEGETABLE OIL MFG."
CYCLOHEXANOL/CYCLOHEXANONE
PROPYLENE (OXIDE)
EXPLOSIVE IND (LOB EXPLOSIVES)
HEIHYL HETHACRYLATE PLANTS
VINYL ACETATE (ETHILENE)
TEREPHTHALIC ACID PLANTS
ETHYtENE-PfOPYLENE
6.100000
0.260090
6.000000
1.599999
15.129999
0.630000
5.00300)
9.639999
35.519989
6.000000
0.120030
5.099999
0.073000
6.299999
0. 193000
0.330030
87.000030
1.389999
3.099999
0.0
0.070000
3.099999
2.000000
0.109300
0.270030
0.033000
0.600303
O.SOOlO
0.013030
1.7110000
0.210000
0.011303
0. 131330
0.010900
0.330000
0.0
0.300030
0.030000
1.019999
0.010000
35.003000
15.2000i)0
0.633030
1.007000
1.115030
0.592030
5.5»99?9
0.383330
2.099999
0.006039
1. 127999
0.130300
0.210000
0.720000
20 C17
20 C17
20 C1J
20 C17
11 coi
11 C91
11 COI
11 C01
11 F01
a roi
0 »02
12 roi
43 E01
13 F31
30 E01
58 B01
58 B01
11 001
80 103
50 C02
50 C02
80 A31
83 131
30 039
30 009
12 E01
«2 131
21 C17
20 C37
20 C«7
20 CK7
71 E31
71 E01
23 C31
20 C31
10 B33
10 B03
10 B03
10 803
10 B03
10 B03
13 D11
30 Oil
20 C19
20 C«9
20 C36
20 C18
20 C18
20 C18
20 C18
23 C3«
20 C37
20 C27
20 006
us
ss
82
81
IS
16
1C
16
11
11
12
112
12
»1
91
a*
36
»«
R2
H3
93
92
91
82
81,
PI 2
S2
12
as
92
95
111
16
15
1»
11
IS
IS
16
16
16
12
no
92
95
02
ill
95
H<
95
82
82
S3
82
AC the tL»e of publication, ANL waa Informed that there n«y be new date vhlch will elter tlie impact enelyele of thle eource category.
-------
1981.0
Table 3-U Priority List for Combined Pollutant Analysts, Baseline Strategy (Three Year Standard Setting Period)'
.OP
.00
.00
.25
.29
.93
.50
.75
.00
.00
.25
.25
.50
.75
.75
10.75
11.00
11.25
12.25
13.25
13.!-)
14. 50
1*.75
15.00
16. PO
17.00
11.00
19.00
20.00
21.00
21.25
22.25
22.50
22.75
23.00
23.25
23.50
2*. 50
2«.75
25.75
26.00
27.00
28,00
28.25
29.25
30.25
31.25
31.50
31.75
32.75
33.75
34.00
See Table 3.1.B on page
HC
HC
DC
NO
BC
CO
HC
PH
CO
HC
CO
HC
SO
HO
HC
HC
NO
CO
HC
HC
P.I
BC
Pfl
CO
HC
BC
HC
HC
BC
HC
PI)
SO
PH
NO
HC
CO
AH
HC
PS
HC
Pfl
HC
PB
P.I
HC
HC
SO
Ffl
NO
HC
PB
Pfl
52 for definition of
ETHYLENE OXIDE PLANTS (OXYGEN OXIDATION PROCESS)
TARNISH 1
POLYETHYLENE (HIGH DENSITY)
NETHANOL PLANTS
CHARCOAL PLANTS
CYCLOHEXANE
ETHYLENE GLYCOL DERIVED FROM ETHYLENE OXIDE
SYTHETIC RUBBER (NEOPBENE)
ADIPIC ACID PLANTS
CARBON TETPACHLOBIDE (METHANE)
POLYETHYLENE (LOW DENSITY)
ACETIC ANHYDBIDE
ETHYL BENZENE
INDUSIBIAL SURFACE COATING (METAL COILS COATING)
P.T.n. ID. (SHIP E BABGE TRANSFER, GAS. t CRDDE OIL)
GRAPHIC ARTS INDUSTRY (FLEXCGRAPHY) '
PRINTING INK PLANTS
SYNTHETIC FIBER INDUSTRY (NYLON)
MIXED FUEL BOILERS (COAL C REFUSE)
PLYHOOD MANUFACTURING PLANT
UHISKEY
* .,-., -..*.,., .,..,,.., ...».. ,.,., .,.,.. ,
METALIC flINERALS MINING (LEAD MINING)
L
GRAPHIC AR1S INDUSTRY (LETTERPRESS) "
INDUSTRIAL SURFACE COATING (MAGNET HIRE COATING)
GLASS MANUFACTURING INDUSTRY (SODA-LIME GLASS)
P.T.M, ID. (BULK GAS. TERMINALS) LOADING TANK TRUCKS/RR CAR
KETALIC MINERALS MINING (ZINC MINE C CRUSHING)
terns.
O.H 30000
0.679000
0.591030
11. 25)050
0.100003
0.100000
«. 799999
«. 003030
3.200000
0.200000
0.250000
0.319000
0.004030
0.010000
1.200000
0.0*3000
1.613003
0.115000
0.360000
0.2»0000
O.OU500D
0.178030
0.001000
0.219000
0.050000
0. 320000
0.001300
26.003030
». 799999
0.350000
0.753003
0. 1 »00 30
0.300030
5.250000
0.0
18.003000
0.010000
0.0
0.001300
0.003055
0.002200
0.065000
0.010000
0.700300
35.000000
0.065030
0. 120030
0.022033
0.360030
0.003600
0.010000
0.700000
22 C11
23 CIS
20 B03
20 B03
20 C32
20 C32
20 C16
21 C1S
20 C16
20 Alt
23 Alt
20 C35
20 C35
20 C35
20 D07
20 A0>
20 A3*
23 »3»
20 C38
23 B3»
23 BOH
20 CU8
23 cue
20 CU9
20 C30
63 B02
60 P03
60 BD5
20 C19
20 B39
23 B09
10 A36
10 A36
10 A06
10 A06
13 A06
13 A06
80 B01
80 B31
30 D3B
33 D38
61 B02
»» C3i
OH E01
60 B37
61 833
»9 D37
»3 D37
»0 007
60 F0«
5 E01
«5 (01
82.
82.
S2
82
S2
S5
82
B»
85
82
SS
82
36
86
82
S3
85
85
H2
82
15
82
86
85
82
112
HI
12
85
n«
BD
N5
85
HI
15
16
115
84
12
85
82
H5
m
i«
in
N5
86
86
86
»
It
It
Ac the ti»e of publication, ANL wai Informed that there Bay be new data which will alter the Lapact analyile of thti aeurca category.
-------
isei.s
2,00
2.25
2.59
2.75
1.75
».oo
3.00
3.25
6.25
7.25
8.25
9.23
10.25
11.25
12.25
13.23
1*.25
13.25
16.25
16. 5C
16.75
17.75
11.00
It. 23
18.50
U.75
19.00
20. CO
20.25
20.50
20.75
21. CO
21.25
22.25
22.50
22.75
23.00
23.25
23.50
24.30
24.75
25.00
25.25
26.25
26.50
26.75
27.00
27.25
28.23
21.30
26.75
2*. 00
29.23
10.23
10.30
10.73
1 1 . O'O
11.23
12.23
13.23
HC
PH
NO
CO
NO
PH
NO
PH
PH
FH
PH
PH
EH
PR
PH
PB
pn
FL
SO
pn
FL
so
pa
NO
nc
CO
FL
so
PH
NO
HC
CO
FL
SO
PH
NO
HC
CO
PL
SO
PH
NO
PB
SO
PB
NO
NC
CO
SO
PN
NO
HC
FL
SO
PH
NO
DC
PL
HC
HC
Table 3-12 Priority List for Combined Pollutant Analysis, Baseline Strategy (Three Year Standard Setting Period)*
INDUSTRIAL INCINERATION (IND ORGANIC LIQUID BASTE INC)
STEEL FOUNDRIES (ELECTRIC Use)
(ACS) SECONDARI ALUHINUH PLANTS
HETALIC IIINERALS MINING (URANIHUN)
FLY-ASH SINTERING (SINTERING)
(AGG) NON-METALLIC MINING - EORON COMPOUNDS
AMMONIUM SULfATE I
HETALIC MINERALS HINIMG (IRON ORE)
HETALIC HINERALS MINING (ALUMINUM) L
GIPSOH MANUFACTURING PLANTS (CALCINEH) "
SODIUM CARBONATE PLANT (NATURAL PBOCESS)
HYDROFLUORIC ACID PLANTS
(AGG) SECONDARY COPPER PLANTS (BLAST FURNACE)
FIBERGLASS MFG. PLANTS (WOOL PROCESSING)
(AGG) TUNNEL KILNS(COAL),DRIERS AND STORAGE
(AGG) PERIODIC KILNS(COAL).DRYERS AND STORAGE
GLASS MANUFACTURING INDUSTRY (LEAD GLASS)
MIXED FUEL BOILERS (OIL « REFUSE)
(AGG) TUNNEL KILNS (OIL) .DSYERS AND STORAGE
(AGG) PERIODIC KILNS (Oil), DRIERS AID STORAGE
CARBON TETSACBLORIDE (PtOPANE)
CAIRO* TETRACMOIIDE (CARBON DISULFIDE)
0.0
5.100000
0. 150003
0.0
0.025000
0.66003d
0.200000
0.260000
(.309999
0.1'ODOO
1.099999
1.059999
1.000300
0.500000
0.110000
0. 100000
0. 1150000
0.203000
7.679999
0. 199003
0.078000
0.005090
9.299999
1.573000
2.099999
2.210000
0.002030
0.729000
1.299999
0.900000
0.0
1.900000
0.303000
1.200000
1.299999
1.100000
0.0
3.200000
0.300000
O.OS0090
0.243000
0.383030
0.060000
0.010090
0.200030
13.799999
0.285000
17.090330
0.010000
1.299999
0. 159000
0.0
0.300000
0.060000
1.363000
1.700000
0.0
0.300000
0.320000
0.320000
12 B3I
12 BOI
12 B31
12 BDI
20 A1B
20 A18
50 031
50 D31
51 B12
«7 E01
«3 017
15 F01
30 020
1 E31
16 E01
10 DH
20 C21
20 A39
57 B01
57 BOI
57 B91
«9 D11
13 Oil
10 DD
10 D11
19 D11
10 D11
15 D12
15 D12
15 D12
15 D12
15 D12
15 012
16 D12
16 D12
16 D12
16 D12
16 D12
16 D12
10 D19
10 019
10 D19
10 019
10 A07
10 A07
13 A97
19 A07
10 »97
IS Oil
15 Oil
IS Oil
IS D11
IS D11
16 D11
16 011
16 D11
16 Oil
16 011
20 C39
20 CIO
16
*l
N5
N6
85
82
M6
us
12
N3
N2
N1
Ml
N1
»5
86
N6
112
82
as
12
B5
ni
SI
HI
86
82
NS
NI
N6
N6
16
NI
N5
II
N6
*6
(6
NI
H6
36
16
IS
«6
NS
Rl
NS
N6
N6
NI
NC
N6
Rl
N6
NI
16
R6
11
2
11.
52 for definition of tcna.
"fee Table 3.1.1 o«
bAt the.tiM of publication, AHL wee intoned that there nay be new dete which will elter the lapect ana Ire 1» of tale eenree cetefenr.
-------
1982.0
Table 3-12 Priority List for Combined Pollutant Analysis Baseline Strategy (Three Year Standard Setting Period)*
1.25
1.50
2.30
I. SO
4.5G
3.50
6.50
7.50
1.90
».50
10,90
11.90
11.75
12.75
1J.75
u.oo
15.00
16.00
17.00
It. 00
11.25
11.50
19.90
19.75
20.75
21.00
21.25
22.25
21.25
23.90
24.50
24.75
29.00
26.00
24.25
26.30
26.73
27.00
21.00
28.25
21.50
21.75
29.00
39.00
30.25
30.30
30.75
31.75
32.00
32.25
33.25
33.30
.» on pa
DC
CO
HC
HC
HC
HC
HC
HC
HC
HC
HC
HC
CO
HC
HC
CO
HC
RC
DC
HC
pa
NO
HC
pa
HC
PB
CO
HC
HC
PR
HC
PH
CO
HC
pa
HO
CO
fL
HC
PH
NO
CO
Tl
to
PH
CO
fL
0
PR
FL
10
PR
ge 52 for definition of tei
PHENOL PUNTS
ACETONE (ISOPROPANOL)
HETHYL CHLOPOFORH
ACETONE (CUtlENE)
POLY-BUTADIENE
HIENOLIt RESINS
ACETATE RAION
UREA-flElAHlNE
ALLYL CHLORIDE
ACETONE (CYANOHYDRIN)
ACETIC ACID (BOTANB)
ARHONIA PLANTS
ACETIC ACID (ACETALDEHYDE)
POLYSTYRENE
ABS-SAN RESIN PLANT
ACETIC ACID (HETHANOL)
STTRENE
POLYPROPLYENE
PHTHALIC ANHYDRIDE PLANTS (NAPTHALENE PROCESS)
TEITILE arc (HEAT SETTING/FINISHING)
SYNTHETIC RUBBER IND. (SITfiCHE-BUTADIENE)(SBR)
(AGG) ASPHALT ROOFING PLAITS
(AGG) TUNNEL KILNS (GAS) .DRYERS AID STORAGE
(AGG) PERIODIC KILRS (GAS) , DR YEHS AND STORAGE
FIBERGLASS HFC. PLAITS (TEXTILE PROCESSING)
CEBAHIC CLAY BFG
NITRATE FERTILIZER (ARHONIOa NITRATE) PLANTS
0.044800
0.005000
0.130000
0.360000
0.072000
0.090030
0. 075000
0.350000
0.075000
0.200000
0.020000
0. in 7000
0.041000
0.0
0. 196000
0.040000
0. 120000
0.075000
0.150000
0.016400
0.000000
0.004030
0.236000
0.030000
0. 100000
0.990000
1.000000
1. 7HOOOO
3.099999
0.120000
0.130000
0.960000
0.015000
0.0
1.299909
0. 150000
0.300000
0.300000
0.0
1.299999
0.42J030
0. 110000
0.300000
22.599991
4.403000
2.033000
2.000000
0.200000
16.000000
0.300000
0.003000
0. 180000
20 C33
20 C33
20 C42
23 cm
20 C«1
20 002
23 BIO
20 B13
20 811
20 COS
20 CO
20 A13
20 A13
21 C13
2] 111
20 til
20 835
20 B12
20 A12
20 C«5
20 C45
20 CIS
20 E37
20 807
23 C25
20 C25
23 C25
90 F02
20 001
23 D01
1 B01
<41 B01
41 831
45 010
45 010
45 D10
45 010
5 010
46 D10
46 DID
46 010
46 010
46 D10
40 036
40 006
40 036
0 036
40 010
40 010
40 D10
30 105
30 105
82
86
112
03
82
82
82
32
82
K3
82
in
36
S5
85
86
85
85
85
85
86
96
84
»5
85
S3
85
84
84
as
4
114
»6
tie
N4
16
16
11
16
M
116
6
11
81
84
86
11
86
84
82
S6
84
kAt the time et publication. ANL mi iafoncd th»t th*r* ur b* am data which "111 altar tha Impact aoalrsla of thia aovrca catajory.
-------
1982.!
Table 3-12 Priority list For Combined Pollutant Analysis Baseline Strategy (Three Tear Standard Settlnf Period)*
SIEtL FCDNDFIES (OPEN HEARTH)
PESTICIDES HANUFACTURING
(AGG) CASTABLE REFRACTORY PLANTS
GRET IRON FOUNDRIES (REVERBERATORY)
I.JO
1.75
2.75
1.75
«.OC
5.00
S.J5
6.25
7.25
T.50
8.90
9.50
10.50
11.50
12.50
u.50
U.5C
n.50
15.75
14.00
17.00
17.25
17.50
1».50
U.75
19.30
20.00
21.00
22.00
23.00
2*. 00
2*. 25
25.25
26.25
27.25
28.25
29.25
30.25
DO
PH
pn
PH
FL
Ptl
PB
pn
PR
FL
PH
pn
Pfl
P.I
pn
pn
pn
pn
PB
FL
pn
PB
FL
PH
CO
PB
FH
PH
pn
pn
PN
FL
PR
PN
PB
PB
FL
HS
BORAX BORIC ACID
(AGG) NGN-RETALLIC HIKING -
FLUORSPAR
I
STONE QUARRYING AND PROCESSING
POLYESTER RESIN
STARCH RFGR
SYNTHETIC FIBERS INDUSTRT (DACROI POLTESTER)
HYDPOGEN FLUORIDE
PERLITE (VERTICAL FDRNACE)
PHOSPHORIC ACID PLANTS (THERHAL PROCESS)
(AGG) SECONDARY ZINC SHELTERS (RETORT REDUCTION t KETTLI FURNACES
(AGG) SECONDARY ZINC SHELTERS (HOIIZ I RBTERB FURNACES)
CRET IRON FOUNDRIES (CUPOLA)
COTTON GINNING
URANINUH REFINING
ALFALFA DEHYDRATING PLANTS
(AGG) CLAY SINTERING PLANTS
ANINAL FEED DEFLUORINATION
OREA
DETERGENT MANUFACTURING PLANTS
GASOLINE ADDITIVES (ELECTROLYTIC)
GASOLINE ADDITIVES (SODIUN-LEAD)
PHOSPHORIC ACID PLANTS (IET PROCESS)
SYNTHETIC FIBERS INDUSTRY (VISCOSE R1TON)
0.010000
0.220000
o.tooooo
a. tooooo
0. 130000
0.100000
0.0
1.620000
6.000000
0. 100000
2.599999
0.350000
0.020000
0.350030
1.009999
0.210000
0. 1314000
2.580000
0.050000
0.077000
0.799000
0.050000
0.023100
0.200000
8.000000
0.030000
0.160000
0.010000
0.236000
1.099999
0.062500
0.438000
1.360000
0.450000
1.000000
0.890000
0.005000
1.599999
50 D52
SO D02
55 A01
40 DOS
40 DOS
50 C3J
50 COS
20 A15
47 F01
47 F01
40 101
20 819
30 DIB
20 808
20 117
40 D12
20 A10
51 E01
51 801
51 E01
51 E02
51 E02
51 E02
50 C04
50 C04
50 C04
30 801
50 F01
30 DD1
40 016
30 D10
10 D10
20 B21
29 CIO
70 F02
70 F01
20 A07
20 B06
96,
H5
S2
11
31
83
S3
82
12
12
11
H5
as
8«
84
as
as
H4
84
82
14
34
12
as
as
82
14
IS
IS
IS
IS
11
86
36
SI
81
82
32
See Table 3.1.1 on page 52 for definition of Cera*.
At the tia* of publication, ANL waa Informed that there may be new data which will alter the letwct enaljela of thla «« category.
-------
119
Table 3-13 is a prioritized standard setting list based on a relaxed
standard setting timeframe. The relaxed case assumes the same priority
grouping as in the baseline but with a schedule that is relaxed to 1/2 the
rate indicated in the CAA (ie., 6 years for Standard Setting). There is a
distinct possibility that the actual implementation of NSPS may not meet
the CAA schedule due to litigation, the need for review and revision of pro-
posed standards due to public hearing comments, and other factors.
Examination of Table 3-13 shows that after the second period (1980-85)
there is some slight change in the order of source category standard setting.
Some source categories were up or down one or two slots. This is because
relative to the Base Strategy the emission level with time for all pollutants
has changed. One can best understand how this change differs among
individual pollutants by referring back to Section 3.1 relating to the single
pollutant analysis and comparing the growth of single pollutant emission
levels with time.
Table 3-14 shows the effectiveness of four strategies on emiss-
ions. The first two cases are the upper and lower limit cases described
previously and the third is the baseline strategy. The fourth case is the
relaxed strategy described above. In the relaxed strategy there is some
slippage in overall emission reduction, although all emission levels are
still well below the no-NSPS Case (Strategy 1). The greatest percent slippage
(ie. , increase in emission level) due to the relaxed schedule is for the
criteria pollutants; particulate emissions, hydrocarbons, and lead. There
is also a significant slippage for sulfuric acid mist and fluorides which
is primarily due to the fact that there are a limited number of source
categories and standard setting is further delayed allowing an emission
level increase by state standards.
Tables 3.15 and 3.16 show the impact of the various strategies on the
number of sources with high, moderate, and low air quality impacts and on
the number of sources that could have been affected by state air regulations
in their siting decisions (i.e. were mobile). As was evidenced in the
individual pollutant analyses, the baseline strategy results in a reduction
in the number of high air quality impact sources that almost parallels
that achieved by the lower limit strategy (i.e. all NSPS immediately). This
is due to the high rate of standard-setting. The relaxed schedule (Strat-
-------
120
egy 4, 30 per year) results in a slight penalty by allowing an increase in
the number of high air quality impact sources that are built prior to NSPS
promulgation. The Baseline Strategy causes a significant reduction in the
number of sources that might move because of air pollution regulation diff-
erences. However, there is a noticable penalty as a result of the relaxed
schedule where nearly three times as many sources might seek states with
minimum air pollution emission limitations.
-------
Table 3.13. (con't)
CUMULATIVE
YEAR EFFCH POLLUTANT
SOURCE
1S82.0
1S6i.£
1.00
1.25
1.50
1.75
2.00
2.25
2!
50
4.50
5.CO
5.25
6.25
6.50
6.75
7.73
S.75
9.00
lo!2S
11.25
11.50
12.50
12.7!
13.00
14.00
13.OS
16.CO
17.00
l.CO
1.25
1.50
1.75
2.00
2.25
3.25
4^50
50
75
6.75
7.00
8.00
9.CO
9.23
9.50
10.50
10.75
11.75
12.75
13.75
14.00
13.50
16.00
16.2!
16.50
16.73
1T.T3
U.OO
PB
P.I
SO
NO
IIC
CO
HC
CO
SO
Pil
NO
A.I
HC
SO
NO
HC
KC
NO
CO
IIC
pn
HC
pn
CO
HC
HC
HC
KC
SO
PH
NO
HC
CO
HC
HC
pn
HC
P.I
HC
pn
HC
sc
P.I
NO
PB
P.I
HC
HC
PB
pn
HC
IIC
PM
NO
CC
NO
PN
INCINEfcATION < 50T/D
CYCLOHEXANE
EXPLOSIVE IND (LOW EXPLOSIVES)
ETHYLENE GLICOL DEBITED FROM ETHYLENE OIIDE
STTHETIC RUBBER (NEOPRENE)
ADIPIC ACID PLANTS
CiFDOtl TETRACHLOSIDE (HETHANE)
POI.JE1HYLEKE (LOU DENSITY)
ACETIC ANHYDRIDE
ETHYL BENZENE
INDUSTRIAL SURFACE COATIliG (HETAL COILS COATING)
P.T..1. ID. (SHIP C GAUGE TRANSFER, GAS. G CRUDE OIL)
GRAPHIC APIS INDUSTRY (FLEXCGRAPHY) b
MIXED FUEL BOILERS (COAL G REFUSE)
PRINTING INK PLANTS
SYNTHETIC FIBER INDUSTRY (NYLON)
PLYBOOD MANUFACTURING PLANT
RHJSKEY
INDUSTRIAL SURFACE COATING (LARGE APPLIANCE COATING)'
GLASS RANUFACTURING INDUSTRY (SODA-LINE GLASS)
HETALIC HINERALS MINING (LEAD BIKING)
GRAPHIC 1RTS INDUSTRY (LETTERPRESS)'
INDUSTRIAL SURFACE COATING (NAGNET WIRE COATING)
HETALIC MINERALS MINING (ZINC HIKE t CRUSHING)
P.T.n. ID. (DIILK GAS. TFf.HINALS) LOADING TANK TRUCKS/RR CAR
INDUSTRIAL INCINERATION (IND ORGANIC LIQUID WASTE INC)
POTASH
"At the tine of publication, AHL was Informed tluit there may be now data which will alter the impact .innlysls of thU source category
STANDARD
BSED
(In I
O.D
0.300000
0.033330
1.0'49999
0.010000
35.000030
0.200000
0.253300
5.5U9999
0.300003
2.099959
0.006000
0.319000
O.OOJ010
0.010003
1.203030
0.04jOOO
1. 61 J030
0. 115030
0.3630C3
0.24JOOO
O.OU5000
0. 178030
0.001000
0.219000
0.053000
0.320000
0.001300
26.000030
0.1KOJOO
0.303003
5.250000
0.0
18.000000
0.010000
0. 799999
0. 35J330
0.750030
0.0
0.001300
0.000055
0.002200
0.065000
0.120000
0.022000
0.360030
0.0 10000
0.700000
35.000000
0.065300
0.010000
0. 700000
0.003600
0.0
5.DOOOOO
0. 153000
0.0
0.025000
0.660000
CODE
10 B03
13 833
10 P03
10 B03
10 B03
10 B03
20 »11
20 A HI
20 C19
20 CIS
23 CIS
20 C18
20 C35
20 C35
20 C35
20 DOT
20 A09
20 AM
20 A3J
20 C38
2D 314
20 BD4
23 CIS
20 CU3
23 O9
20 C30
63 B12
60 F03
60 335
10 A06
10 S06
10 A06
1 0 A06
10 »36
1? A36
23 C'9
20 D?9
20 BD1
BO BC1
60 B01
30 039
33 D03
61 B02
13 037
«0 D07
HI D07
UK E01
«» E01
60 B07
61 B33
»5 E01
15 E01
60 F0«
12 B0»
12 B04
12 B04
12 BOH
20 Aia
20 A13
FLAG
N)
15
N5
16
S6
N6
12
»5
19
15
16
35
12
96
^5
32
S3
15
S5
.12
12
15
B2
16
M5
12
N2
N1
N2
N5
N5
N4
N5
N5
S5
H5
1'4
.14
94
H2
95
M2
B5
.16
16
S6
N«
N4
Nil
N5
HI
Nil
Mt
N6
NU
N5
N6
H5
92
-------
Table 3.13. (con't)
CUtlULATIVl
YEAB EFFCSI POLLUTANT
1S63.0
1983.5
1S64.C
2.00
2.29
3.25
*.2S
3.29
6.23
7.23
1.23
9.25
10.23
11.25
12.25
13.25
13.50
13.75
14.73
13.00
13.25
13.30
15.75
16. o:
17.07
17.25
17.50
17.73
11.00
IS. 25
2.25
3.25
*.25
4.50
5.59
6.30
7.50
1.50
9.50
10.30
11.50
17.50
19.30
1*.50
1*.75
15.75
16.75
17.00
1.00
Z.OO
3.00
4.00
».ZS
*.30
5.50
J.75
6.75
7.00
7.25
8.23
».25
».50
10.50
10.73
NO
PN
PI
fa
PI
P.I
EH
PN
tn
PN
pn
FL
so
pn
FL
SO
PS
DO
HC
CO
FL
SO
PI
NO
HC
CO
FL
HC
HC
HC
CO
HC
HC
HC
HC
HC
HC
HC
HC
HC
HC
CO
HC
HC
CO
HC
HC
HC
HC
PN
no
HC
PN
HC
PI)
CO
HC
BC
PR
HC
PN
S1EEI. FOUNDRIES (ELECTRIC ARC)"
(AGG| StCCIIDAfl ALU.1INUN PLANTS
KE1ALIC MINEF.US HIKING (UPAKINUN)
FLY-ASH SINTERING (SINTERING)
(AGG) NON-METALLIC MINING - BORON CONFOUNDS
AHHONIUN SULFATE
NETALIC HINERALS NINING (IRON OF.E)
1ETALIC NINEEALS NINING (ALU8INON) L
GYPSUN HINUFACTVBING PLANTS (CAtCINER)*
SODIUM CARBONATE PLANT (NATURAL PROCESS)
HYDROFLUORIC ACID PLANTS
(AGG) SECONDARY COPPER PLANTS (BLAST FURNACE)
FIBERGLASS NFG. PLANTS (WOOL PROCESSING)
(AGG) TUNNEL KILNS(COAL),DRYERS AND STORAGE
CARBON TETPACHIOBIDE (PROPANE)
CARBON IETFACIIORIDE (CARBON DISULFIDE)
PHENOL ETANIS
ACETONE (ISOPROPANOL)
NETIIYL CHLCROFOBH
ACETONE (CUHERE)
POLY-BUTADIENE
PHENOLIC RESINS
ACETATE RAYON
OREA-HELAHINE
AI.LYL CHLORIDE
ACETONE (CYANORIDHIN)
ACETIC ACID (BUTANE)
AHHONI1 PLANTS
ACETIC ACID (ACETALDEHtDE)
POLYSTYRENE
ABS-SAN RESIN PLANT
ACETIC ACID (SETHANOL)
5TYRENE
POLIPROPLYENE
PHTHALIC ANHYDRIDE PLANTS (NAPTHALENE PROCESS)
TEXTILE IIFG (NEAT SETTING/FINISHING)
SYNTHETIC ROBBER IND. (STtRENE-BOTADIB«E) (SBR)
(AGG) ASPHALT ROOFING PLANTS
STANDARD
USED
(In)
0.233000
0.260000
1.309999
0.110000
1.099999
1.059999
1.000000
0.500000
0. 110000
0.100000
O.HSOOOO
0.200000
7.679099
0. 1 930JO
0.078000
0.005000
9.299999
1. 570000
2.099999
2.240000
0.032000
0.723000
1.293999
0.900000
0.0
1.900030
0.300000
0.320000
0.320000
o.oiueoo
0.005000
0.130000
0.360000
0.072000
0.090000
0.075000
0.3SOOOO
0.075000
0.200000
0.020000
0. 117000
0.011000
0.0
0. 196000
0.010000
0.120000
0.075000
0.150000
0. 016100
0.001000
0.001000
0.236000
0.030010
0.1000JO
0.990000
1.000000
1.710000
3.099999
0. 120000
0.130000
0.960000
CODE
50 001
50 001
51 B12
17 ED1
10 917
15 F01
10 D20
11 E01
IS E01
10 Dll
20 C21
20 Aoe
5T B31
57 BO'
57 B01
10 014
10 014
10 D11
10 Oil
40 Oil
HO 314
45 D12
45 012
45 D12
45 012
15 012
15 012
20 CJ9
20 C»0
20 C13
20 C33
20 C12
29 C44
20 C11
20 D02
20 BIO
20 313
20 S11
20 C46
20 C43
20 A13
20 A13
21 C13
23 til
29 «11
20 BOS
20 B12
23 A12
20 C45
20 C45
20 CIS
20 !>07
20 B37
20 C25
20 C25
20 CiS
90 F32
23 001
20 D01
41 801
11 831
PLA3
16
B5
12
N3
112
111
SI
111
N5
N6
116
12
12
15
92
15
94
H4
14
16
12
05
H4
N6
16
16
1
12
12
M2
16
12
13
N2
a 2
92
12
32
93
12
S3
16
as
15
8*
15
15
HS
15
96
86
8)
85
»5
HI
as
14
81
85
14
II
At 'the tint of publication, AIIL waa informed that there may be new data which will alter the Impact analyaia of thla lource category.
-------
Table 3.13. (con't)
EFrCfT POLLUTANT
198ft.5
11.00
12. 00
12.25
12.50
12.75
13.00
14.00
1*.25
1».53
1*.7J
IS. on
16. 00
16.2!
16.50
16.75
17.00
1. 00
1.25
1.53
1.75
J.OO
2.25
3.25
3.50
3.7!
6 , 00
*.2!
5.25
3.50
5.75
6.00
6.J5
7.2!
7.53
7.75
6.00
«.00
«.25
».50
9.75
10.75
11.00
11.25
12.25
12.50
13.50
13.75
I*. 75
15.75
16.00
17.03
17.2!
.25
.2!
.90
.10
.50
.50
.50
7.50
CO
HC
?H
SO
HC
CO
HC
PR
SO
NO
Ft
HC
P.I
SO
CO
rt
HC
pn
so
so
CO
FL
HC
pn
no
CO
Fl
HC
p«
so
no
FL
SO
pn
no
pa
so
P.I
CO
Ft
MO
PS
FL
HO
pn
NO
pa
pn
PN
FL
PH
PB
pn
PN
Ft
pn
PN
PN
PN
pn
OIK ED FUEL BOILERS (OIL t REFUSE)
(IGG) TUNNEL KILHS(OIL).DRIERS AND STORAGE
(AGG) 1UNNEL KILNS(GAS).DBIERS AND STORAGE
(AGG) PERIODIC KILNS(COAL),DRIERS AND STORAGE
(AGG) PERIODIC KILNS (GAS) .DRIERS AND STORAGE
(AGG) PERIODIC KILNS (OIL), DRIERS AND STORAGE
GLASS BANUFACTURING INDUSTRT (LEAD GLASS)
FIBERGLASS NFG. PLANTS (TEXTILE PROCESSING)
CERAniC CLAI nFG
NITRATE FERTILIZER (ANHONIUn NITRATE) PLANTS
STEEL FOUNDRIES (OPEN HEARTH)
PESTICIDES MANUFACTURING
(AGG) CASTABLE KEFRACTORI PLANTS
GREI IRON FOUNDRIES (RETERBERA TORT)
BOM I BORIC ACID |
(»CG) NON-KETALLIC MINING - FLUORSPAR
SlflNF. QUAtlHING AND PROCESSING*
PGLIESTEH RESII
STARCH HFGR
SYNTHETIC FIBERS INDUSTFT (DACPON POLTESTER)
IIIDROCEN FLUORIDE
STANDARD
USED
(In)
0.0 15030
0.295000
0.200030
0.010000
13.799999
17.000000
0.0
1.299999
0.043300
0. 150000
0. 300000
0.0
1.299999
0. 150000
0.300000
0.300000
0.0
1.299999
1.200900
1. 103000
3.200000
0.300000
0.0
1.299999
0.120000
0. 110000
0.300000
o.o
1.360000
0.060000
1. 7000DO
0. 300000
0.080000
0.240000
0.360000
0.060000
22.599991
0. KOODOO
2.030000
2.000000
0.200000
18.000000
0.300000
0.003000
0. 180000
0.010000
0.220000
0. 100000
8.400000
0. 130000
0. 100000
0.0
1.620000
6.00JOOO
0. 100000
2.599999
0.350000
0.020000
0.350000
1.009999
croE
1 1 B:I
10 A07
10 A 07
10 A07
10 A07
10 A07
«5 Oil
45 Dl 1
45 Oil
45 D11
45 311
45 CIO
45 010
»5 D10
US [MO
15 010
46 D12
46 D12
«6 D12
46 D12
46 012
16 D12
46 D10
46 D10
46 010
46 D10
46 D10
6 D11
46 D11
»6 D11
46 D11
06 011
<0 D19
40 D19
40 D19
40 D19
40 D06
40 DC6
«0 D36
10 006
10 310
40 D10
40 D10
30 »05
30 A05
50 002
50 032
55 101
40 008
40 D03
50 C03
50 C03
20 A15
47 F31
47 F01
40 A01
20 B19
10 018
20 B33
20 117
FLA:
86
N5
N5
S6
N4
H6
N5
114
»6
16
HI
K6
N4
16
H6
HI
116
114
S5
S6
us
m
96
114
K6
B6
HI
J6
14
S6
116
m
16
«6
If,
15
.11
.14
16
11
H6
.14
12
36
14
16
15
.12
ni
11
11
53
12
N2
112
N1
as
15
S4
94
At Ch« tiM of publication. ANL v«. Informed that th.re
which will alter th« Impact annlyala of thla aourca category.
-------
Table 3.13. (con't)
CUHULATIVI
TEAR IffCFI POLLUTANT
SOUUCE
STANDARD
CCOE riAs
1565.5
1.9:
9.50
13.30
10. 75
11.00
12.00
12.25
12.50
is. j:
13.75
1*.00
15.00
16.00
17.3C
1.00
, 2.30
2.25
3.25
4.25
9.25
6.29
- 7.29
1.25
PI
PH
Pn
FB
FL
pn
FB
FL
PN
CO
PB
PH
rn
P.I
pn
FL
PI
pn
FL
PB
PB
US
PF.FLITE (VERTICAL FURNACE)
PHOSPHORIC ACID PLANTS (THERNAL PROCESS)
(AGO) SECONDAPI ZINC SHELTERS (1ETOBT REDUCTION ( KETTLE FURNACES
(AGO) 5ECOMOAFI ZINC SHELTERS (HOSII t REVERB fDIP ACESI
GEEI IRON FOUNDRIES (CUPOLA)
CUITOH GINNING
UCANINUn REFINING
ALFALFA DEHtDRATING PLANTS
(»';0) CLAI SII.'TEUNG PLANTS
AKIKAL FEED DtFLUOBI NATION
UREA
ULTtt'GENT MANUFACTURING PLANTS
PHOSPHORIC ACID PLAITS (UET PROCESS)
GASOLINE ADDITITES (ELEC1ROIITIC)
GASOLINE ADDITIfES (SODIUH-LEAO)
SINTHETIC FIBEBS INDUSTBI (TISCOSE RATOH)
0.210000
0. 131000
2.5BOOOO
0.050030
0.077030
0.799000
0.050000
0.023103
0.200000
8.000J30
0.033000
o.ieoooo
0.010000
0.236030
1.099999
0.062500
0.138000
1.360000
0.450000
0.005030
1.003000
0.890030
1.599999
0 912
20 110
SI E01
51 E31
51 E01
51 E02
51 E32
51 E32
53 C31
50 C0»
50 C09
30 B01
50 roi
30 301
10 D16
30 010
30 310
20 B21
23 C13
20 A07
70 f02
70 f31
20 806
US
R5
HI
9*
B2
HI
9»
H2
15
15
12
N«
»5
N5
NS
N5
N1
96
95
92
81
81
92
K9
O.
Ac th< cl^c of publication, ANL w.i« Informed chac there may be new d.it.-i which wtll alter the Imp.ict 3n*\y*lf of tht« source
-------
Table 3-14. Impacts of Prioritization Strategies on Emissions
Change in 1990 Emissions Over Base Year, (1980), %
Standards
per year PM SO NO HC CO PB AM2 KnS FL
1' No NSPS 0 29.2 19.1 55.6 70.1 29.1 56.1 135.0 27 34.7
2. All NSPS
Immediately 0 -6.4 10.8 22 -29.6 -22.8 -19.3 -30.6 -44.7 -27.3
3. Baseline Strategy 60 -.83 11.4 23.8 -23.9 -21.3 -16.5 -24.3 -40.9 -15
4. Baseline Strategy/
Relaxed Schedule 30 3.5 11.9 25.5 -21.2 -21.3 -13.8 -17.9 -40.5 -4.4
2Sulfuric acid mist
-------
128
Table 3.15 Air Quality Impacts of NSPS Strategies
Standard
Setting
Strategy
1. No NSPS
2. All NSPS Immediately
3. Baseline Strategy
New and
Number With
High Air Quality
Impact
19,067
3,957
Modified Sources in 19903
Number With
Moderate Air
Quality Impact
25,370
35,623
Number With
Low Air Quality
Impact
726
5,583
Total
Number
45,163
45,163
(60 per year)
4. Baseline Strategy/
Relaxed Schedule
(30 per year)
4,709
5,626
35,209
34,774
5,245
4,763
45,163
45,163
Hypothetical average-sized sources
-------
129
Table 3.16 Mobility/Competitiveness Impacts
of NSPS Strategies
New and Modified Sources in 1990
Standard
Setting
Strategy
1. No NSPS
2. All NSPS Immediately
3. Baseline Strategy
Number of Sources Number .of Sources
That Could Have Precluded From
Moved Moving
16,970 23,193
0 45,163
Total
Number
45,163
45,163
(60 per year)
4. Baseline Strategy/
Relaxed Schedule
(30 per year)
1,466
3,186
43,697
41,977
45,163
45,163
Hypothetical average-sized sources.
-------
130
4.0 SUMMARY AND CONCLUSIONS
4;l GENERAL
The analysis procedure requires that decisions be made in two
critical areas: an explicit statement must be made regarding the
priority of the CAA criteria; individual pollutant emission goals
must be established.
The Base Strategy gives first priority to mass emission reduction,
second priority to air quality impact reduction and final priority
to reducing the mobility of stationary source siting because of
differences in state air regulations.
The Base Strategy provides a more restrictive pollutant emission
goal for particulate matter, Sulfur Dioxide, Nitrogen Dioxide,
Hydrocarbons and Lead than it does for Carbon Monoxide, Fluorides,
Hydrogen Sulfide and Sulfuric Acid Mist.
4.2 SINGLE POLLUTANT ANALYSIS
The single pollutant analysis indicates the best case for single
pollutant mass emission reduction under the Baseline Strategy and
also indicates the level of emissions (in 1990) used as goals
in the multipollutant analysis.
Irrespective of the strategy used, mass emissions will increase
over 1980 levels for Sulfur dioxide and "Titrogen Moxide. The
Baseline Strategy does significantly reduce the level of emissions
for all pollutants and parallels the best case (all NSPS in 1980).
Irrespective of the strategy used, for all pollutants there will
be a slight increase in emission levels after 1980 during the
initial Standard Setting period. The level of emissions decreases
and parallels the best case (all-NSPS in 1980) for all pollutants
except NO and S0?. The initial rise in emissions is minimized
because potential mass emission reduction has priority in standard
setting.
Hydrocarbon, sulfuric acid mist, hydrogen Sulfide and fluoride
source categories offer the highest potential for mass emission
reduction.
-------
131
If controlled only by state regulations, the pollutants which have
the greatest emissions increase during the 1980-1990 period are
(in order of magnitude) sulfuic acid mist, hydrocarbon, Pb, N00,
fluorides,particulate matter, CO, H_S, and SO .
In order to reverse the trend of increasing emission levels for
SO and NO (which occurs in the best case of all NSPS Set in 1980)
more restrictive NSPS emission limitations must be developed.
4.3 MULTIPOLLUTANT ANALYSIS
The choice of emission goals plays a significant role in the
multi-pollutant strategies. The Baseline Strategy tested here
uses the best possible emission reduction goals (all NSPS set
in 1980) for the criteria pollutants except CO. This results
in a standard-setting priority ranking that is heavily dominated
by hydrocarbon and particulate emission source categories.
As with the single pollutant analyses, the prioritization of
source categories does not play a major role in determining the
impacts of the NSPS program when the CAA schedule is met. The
rate of standard-setting is high enough to discount any relative
rankings. (see Table 3-14, 15, 16). This is evident by comparing
the Base Strategy results with the best case (all NSPS set in 1980).
At a relaxed standard setting schedule (6 years instead of 3 years)
there are some minor penalties in mass emissions (notably fluorides
particulate, sulfuric acid mist). However fluorides and sulfuric
acid mist are also influenced by a less restrictive mass emission
goal. There are also some pentalties resulting in an increase in
the number of mobile sources. The air quality impact does not
appear to suffer noticably.
At a relaxed standard setting schedule there is some slight change
in the order of source categories on the standard setting list
(relative to the unrelaxed schedule). This is due to a change in
the pollutant emission levels resulting from a delay in standard
setting.
The standard setting schedule required by the CAA results in
-------
132
emissions, air quality impacts, and mobility impacts that are close
to the maximum (all NSPS in 1980) level. This is due to the high
standard setting pace.
4.4 MINOR SOURCE CATEGORIES
There are some minor source categories (<100 ton/yr. of all
pollutant emissions with no controls) which account for a sign-
ificant level of mass pollutant emissions and potential mass
pollutant emission reduction. This is especially true regarding
hydrocarbon and particulate emission source categories. These are
typically small source categories (as measured by production units/
year) but in the aggregate they account for significant emissions.
-------
Table 3.13. Priority List for Combined Pollutant Analysis. Relaxed Strategy (Six Year Standard
Pu-itod)1
COIICLATIVl
rE»B EffCH FCLIUTANT
158C.O
I960.5
1.00
2.00
i.25
3.25
1-iE
1.50
1.75
5. CO
6.00
6.25
7.i5
7.50
8.50
9.50
10.50
11.50
12.50
12.75
13.75
11.75
15.75
16.00
16.25
16.50
16.75
17.75
16. CO
16.25
16.50
18.75
19. CO
3.00
1.00
1.25
1.50
1.75
5. CO
6. CO
6.25
f.:o
6.75
7.75
e.oo
6. 25
e.5o
5.50
S.75
10.00
10.15
10.50
11.50
12.50
12.75
13.00
13.25
13.50
HC
HC
CO
HC
HC
Pfl
CO
HS
MC
CO
HC
CO
II C
HC
HC
HC
HC
SO
HC
HC
HC
P.I
SO
no
CO
HC
PH
SO
no
CO
PB
HC
HC
PH
SO
NO
CO
HC
PI
SO
CO
HC
SO
NO
CO
HC
ft!
SO
KO
CO
HC
HC
P.I
SO
SO
CO
ETHYLEHE OXIDE PLANTS (Alii OXIDATION PROCESS)
ACBILONITFILE PLANTS
DlttElllYL TEREPHTHULATE flANlS ,
CAftbON BLACK (FUBNACE PPOCESS)'
FOFnALDEHTDE PLANTS "
BALEIC ANHYDRIDE
INDU5TMAL SURFACE COATING (CAN COATING)
(AGG) riTEOLEIJ.1 REFINtRI MISC. SOUHCES
INDUSTPIAL SURFACE COATING (PAPER COATING)
DRY CLEANING
FUEL CONVERSION HIGH BTU COAt GASIFICATIOB
INDUSTRIAL SUfFACE COATING (FABRIC COHTIHG)'
G6APHIC ARTS INDUSTRI. (GfcAVURE) B
BY-PFOCUCT COKE OTEN «
INDUSTRIAL IBCINERATION (INDUSTRIAt-COIHERCIAL)
PLASTICS AND BESINS (ACRYLIC)
HINEBAL HOOL ItFG
PHTH»IIC ANHIDHIDB PLANTS (OXILENE PPOCESS)
STATIONARY INTERVAL COBBOSTION ENGINES (SPARK IGNITION)
STATICNARI INTERNAL COKBUSTION ENGINES(DIESEL £ DUAL FUEL)
INDUSTRIAL SURFACE COATING (AUTOHOBILES)"
INDUSTRIAL BOILERS (10-250X10E6 BTD/HR)
STANDARD
USED
(Enf
1.679999
7.9 19959
8.000000
0. 370000
0. 103000
1.099999
2. 759999
0.060000
0.061030
0. 157000
2.620000
15.599999
0.053000
0.015000
0.260030
21.399991
0.660000
1. 559599
0.2600J3
65.000000
0.042000
0.215030
1.023000
0.050000
2.669999
2.B79999
0.065000
2. 379999
0.653000
8.169999
0.010003
2.100000
0.869000
3.629999
0.0
0.080000
1. 719999
0. 020000
2.133000
9.100000
3.009999
0.0
0.0
131.000000
0.0
0.0
5. 139999
16.000000
123.000000
0.0
0.310000
0.0
O.«03900
1.503000
0.365000
0.0
CCD5
21 C11
20 COS
23 COS
20 C23
20 C13
20 C13
20 C03
20 C93
20 CD8
20 COS
20 C23
23 C23
62 Bit
71 00'
f3 833
60 roi
21 C20
21 C23
61 B32
60 B01
50 MO
50 >10
50 A 10
50 A13
50 A13
1 1 801
1 1 BOH
1 1 B31
1 1 Eli
1 1 B3U
1 1 B34
20 B17
10 D13
10 D13
13 D13
10 D13
10 D13
20 c:6
23 C26
20 C26
20 C26
13 C01
10 C01
10 C01
10 C01
10 c?:
10 C32
10 C32
10 C32
10 C02
62 B32
10 133
10 A93
13 103
10 103
10 133
rue
12
12
15
fl2
13
15
(15
15
13
f5
12
15
S2
HI
HI
«2
<2
Hi
N2
N2
N2
SI
HI
HI
HI
HI
«2
VI
«2
H4
₯2
15
S4
1»
16
16
15
35
19
.14
15
IS
»6
Nil
M6
S5
116
Nt
14
16
US
lit
1*
ft
15
16
*S«e Table 3.1.8 on page 52 for definition of terms.
-------
Table 3.13. (con't)
CUHOLATIVI
TEAR IlfCtl POLLUTANT
1981.!
13.75
14.75
I'.CO
U.25
15.50
U.50
16.75
17. CO
17.25
1.25
2.25
3.25
4.25
5.25
«.25
7.25
6.25
e.;o
5. S3
U.50
11.50
11.75
12.75
13.00
1«.C9
H.25
15.25
15.50
16.50
16.75
17.75
11.03
2.00
2.25
1.25
*.25
5.25
6.25
7.25
a. 23
9.25
».50
10.50
10.75
11.75
12.00
13.00
U.OO
1*.25
15.25
15.50
16.50
16. 7J
17.00
ri
19
P9
SO
HO
NO
P.I
SO
CO
P.I
PR
?n
pn
pn
P.I
P8
PI
SO
P.I
SO
HC
P8
HC
CO
HC
CO
HC
pn
so
pn
PC
P8
HC
CO
HC
HC
HC
HC
HC
HC
SO
HC
SO
HC
PB
P8
HC
HC
10
RC
CO
HC
PH
CO
SOUIiCE
EXFLOS1VE IND (HIGH EXPLOSIVES)'
STATIONERY PIPELINE COMPRESSOR ENGINES
(AGG) K'OS-HETALLIC MIHINC! - CLAT
PHOSPHATE ROCK (HIM ING)
SAND 6 GRAVEL PROCESS >
(AGO) NON-METALLIC DINING - GTPSUN
HETALTC MINERALS MINING (COPPER)
(All) NCK-HETALLIC HIHIHG - LINE
(AUG) IEED AMD GRAIN HILL IIDOSTRT
(AGG) SECONDARI COPPER PLANTS (CONVERTER SHELTING)
(IGG) FHOSIHATE ROCK PREPARATION PLANTS
CHEMICAL WOOD IND. (NSSC)
BEER PROCESSING PLANTS '
ZTHILENE DICHLORIDE PLANTS (OJTCHLOBINATION PROCESS)
ACRILIC ACID
VEGETABLE OIL flFG.'
CHEMICAL WOOD PULPING IND. (ACID SOLflTE)
GRET IRCN FOUNDRIES (ELECTRIC ARC)
CTCLOHEXANOL/CJCLOHEXANODE
PROPILENE (OXIDE)
HETHTL HETHACRTLATE PLANTS
VINYL ACETA1E (ETHILEKE)
TEKEPHTHALIC ACID PLANTS
ETHUENE-PROPILENE
ETHILtHE OXIDE PLANTS (OXIGEN OXIDATION PROCESS)
(AGG) CRUDE OIL AND NATURAL GAS PRODUCTION PLAITS
ETHILENE
NETALIC KINERALS MINING (FERROALLOT)
VARNISH *
POLTETHXLENE (HIGH DENSITY)
HETHANCL PLANTS
CHARCOAL PLANTS
STANDARD
lln'f
0.000500
1.599399
0.263000
6.000000
6.400000
1S. 129999
0.830000
5.000003
9. 639999
35.S199S9
6.000090
0.423000
5.099999
0.070000
6.299999
0.193000
0.330000
87.000003
1.389999
3.099999
0. 109000
0.270000
0.543000
0.013000
1.740000
0.240000
15.203000
0. 630030
3.099999
2.000000
0.0
0.070000
1.007000
1. 115030
0.592000
1. 127999
0.430030
0.210030
0.720000
0.430030
0.011300
0.131009
0.014900
0.333030
0.003000
0.600000
0.679030
0.591000
11.253000
0. 100090
0.100003
4.793999
4.000000
3.200000
CODE
10 »33
20 C17
20 C17
20 C17
20 C17
11 C91
11 C01
11 C01
11 C01
41 F01
44 F01
49 >32
42 roi
43 E01
43 F31
30 101
59 B31
58 901
41 D31
SO 133
39 D09
30 099
20 C07
20 C97
20 C47
2D C47
30 D11
39 Oil
83 194
80 A0»
59 C02
50 C02
20 C49
23 C«9
29 C36
23 C3*
23 C37
20 C27
29 006
22 C11
71 101
71 roi
23 C31
23 C31
4? B01
42 E01
20 CIS
20 803
20 803
20 C32
20 C32
29 C16
20 C16
20 C16
rno
»5
ill
15
112
95
115
16
116
16
11
N1
J2
112
12
*1
8»
33
96
14
82
82
M4
12
86
H2
.15
92
94
92
14
S3
S3
N2
95
92
92
92
93
32
92
R1
N6
«5
94
K2
12
82
92
82
12
95
92
94
IS
N>
K)
At th« tla* of publication, ANL v« Informtd that thnrc My hs new d.ita which will niter tho Inpiict nnalysis of this lourc« c«t««ory.
-------
APPENDIX A
Table of Contents
Page
Table A-l Source Categories Not Evaluated A-2
Table A-2 Minor Sources A-3
Explanation of Terms Used in Tables A-3 and A-4 A-7
Table A-3 Model IV Major Source: 1980-1990 A-8
Table A-4 Model IV Minor Source: 1980-1990 A-36
A-l
-------
A-2
Table A-l. Source Categories Not Evaluated
Polyurethane Foam
Leather Product Plant
Wood Preserving Industry
Agricultural Incineration
Silicones Plants
Polyvinyl Acetate Plants
Styrene Copolymer Plants
Cellulosic Plants
Acetate Plants
Polyvinyl Mtyral
Fuel Conversion, Low Btu Gas
Fine Chemicals
Flavors
Fragrances
Functional Chemicals
Adhesives
Cleaning Compounds
Surfactants
Catalysts
Metallic Soaps
Rubber Chemicals
Chelating Agents
Enzymes
Inhibitors
Flame Retardants
UV Absorbers
Food Additives
Photographic
Laboratory Chemical
Textile Chemical
Paint Chemical
Paper Chemical
Flotation Reagents
Automobile Chemical
Water Treatment Chemical
Metal Treatment Chemical
Plating Chemical
Printing Chemical
Wood Chemicals
Non-Industrial Surface Coating
Wood Furniture and Fixture Plants
Chloroprene
Synthetic Rubber - Butyl (IIR)
Synthetic Rubber - Nitrile (NBR)
Intermediates and Dyes
Synthetic Fibers - Acrylic/Modacrylic
Synthetic Fibers - Polyolefins
-------
TABLE «-2. nnrii. s~iu«tts
p ''
5J
-'l:sli. ' Sf I)
T''J
= 'iTiSIC'i!> 1
.S;;L-^CR sir>
[ TO:-3/ YK )
(pRijf-S? ur,:
c ,.
[ T !, / Y rt )
Pf«
AM
HS
Representative
Facility Size
(Process Units/yr)
1 *> i 0 -
LO ; J 7
I 0 " "*
1 ~ ' ,
2~> u 1 -)
21 :2
20 M
20 -in
23 a.'
20 -,r;
20 *2r.
20 CO"
20 )0''
21 '.0.
= .J-;:::L F
X -0
y 7
C )"";.RCI
24
C
. r " ft
,,».'' LI 1
~" . , " {_ ' '
£
i!7
^3!'jf C
4fc
J
L : '.D l'> I
6
r>
''X V'.'I'JY
(
Q
i- : L Y C -1 > S
1
L
-:>'?XY ( c
Q
0
ALKYn
r
0
Pl.'.STJCi
34
r,
i-iitiT r-F
^
0
fti v-isn
0
0
hYfPr.'O l
4;.
r
,.EL -CUFFS «C.'
. '.) i 4 2 0 . C ? * 2
. 4C7'. l.Pl'SZ
AL BTILFft!
. 5 2 t '.
. 25^ '"
, i" I L r t: S
. 3 " C V
;'-"?".x: i 5
. c c '. '-
.647"
n,.L» ! jr
.4^50
. 5 - ft '
1 r S
. r L -
.4^43
1 -tCC'^L
.0
.0
n-;/- T'.S PL.
. O
s : \ ? L ?. t T
f i
.0
r
.0
i:.c Hhsir
. 5 c r o
. i :. ?
r, .
. 3 ? 2 C,
.?OCO
r K F- N i I I F )
.0
.0
trie -c:r
.741'!
.0571
i i : . 3 - !
2G.7i:F4
0.2134
3S.25CC
I .27^9
O.C
c.o
c.c
c.c
' . r
r . :.
K;.- 15
c . r
' .0
.r.Ts
0 . '
C.:
U' MCH
r . r
C.f
O.C
c.c
'.i iPLLYi
0 . 0
O.C
0 , C
O.C
b
c .:
C' * C
If Ol'STf:'
r ^
(;.C
1X1C6S L ^0^1*^5
c- . o 6 : *
1. /3v.
.HX10E6 dTu/r'p.
v . o i <, c
r . ft ; r i
\ ": . >- 0 ^ 0
s . "< 3 -i ^
^ A
o!c
c.c
^- » ^
( .0
O.C
r- .c
- . c
'-.o
'<- .0
ILL-)
0.0
0.0
0.0
C.O
iMCES1
0 . f
0.0
C .0
0.0
O.C
C .0
r1
'.. . v
c.o
c.ccii
71.42.b6
)
C.S233
7.6336
c.<;50o
200.COOO
c.o
0.0
c.c
C .0
c.o
0 ,C
u2.7CCC
o.r6Ct
1.54CO
1 .P1R2
2C.HCOO
C. 10CC
2.6505
C. 1 170
1 6 . i 0 C 0
C.0?6fc
45.96CO
O.C067
60.7500
O.C444
C.O
0.0
o.;/.o=>
5. o.-r/p
i . e 4 s 7
3.3223
1.2 JOO
4i.'.COOC
C: . 0
O.C
O.C
c.c
'"p f
c.o
!J.O
c.o
c.o
<" . 0
0.0
V 0
O Q
0.0
0.0
0.0
0.0
c.c
0.0
0.0
:>.0
0,0
0.0
0.0
O.C
0.0
4.2500
11 .7647
0.0
C.O
C.C
c.o
i, 3000
0.9091
O.C
').0
O.C
C.O
0.0
c.o
c.o
c.o
0.0
0.0
0.0
0.0
c.o
0.0
0.0
O.C
o.o
0.0
o.o
o.o
0.0
c.o
0.0
0.0
o.o
0.0
c.o
0.0
o.o
o.o
0.0
o.o
0.0
0.0
o.o
o.o
0.0
0.0
c.o
o.o
o.o
o.o
O.C
o.o
0.0
0.0
o.o
c.o
0.0
o.o
o.o
o.o
0.0
0.0
c.o
c.o
o.o
o.o
o.o
o.o
c.o
o.o
0.0
c.o
o.o
c.o
c.o
o.o
o.o
0.0
o.o
o.o
0.0
0.0
0.0245
250,0000
0.0
0.0
0.0
0.0
o.o
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
o.o
o.o
0.0
o.o
o.o
o.o
0.0
0.0
0.0
O.C
0,0011
0.0613
0,5000
0,7770
0.2650
0,0300
0.03BO
>
0,0280 i,
0,0204
0,0031
0,00*6
0.0031
0,0270
0.0239
X Uncontrolled Specified Pollutant Emission by Representative Facility Size (Ton/Yr).
Y Facility Size Required for Source Category to Qualify as Major Source (ilOO Ton Pollutant/Yr) for Specified Pollutant (Process Units/Yr).
-------
TABLE A-2. KINOR SGJPCES (CONTO)
21 .12.
22 ij>
23 121
3C -;C"
30 DO:
30 riJ
if Dl"
30 Dlr
31 Oni*
32 no-
33 :04
3- ;e<-
40 Clf
4C 01''
PM
..
(ECUlFtt
f.U
til SSI QMS (
SDJRCE SJZF
HC
(PkOCESi UMtTS/YK)
tu ?b
AM
HS
PL Representative '
Facility Size
(Process Units/Yr)
Lf.'.O PIGI'ENTS IF l- P. (HEr LEiC. )
X *-0 . 0
y c.c
Lti-t, H&."f,TS IF
c.o
O.C
Lt*0 F IGI- Ef. T$ (F
O.o
0.0
r f AT SfTKEt-C'-Sl-J
c .:-'><. r'
C . c 6- 1 7
r-JSH PFLCr.SS!NC
3 . 5 ? 7 C
0 . S f ' C '-'
r.:*ECl F- :F ).' G CF
1; . 3 f t: _
(i . rf CC
r: 1 1 P F A T < F< Y I N (
t 2 .4? ; 5
0 . 0 ! t '
FH/.P- rCL'. I IC.'.L
0 . 1 1 S )
0. s26l
CUFrSE Pl'/-ST^r
2 7 . "' 4 C '"
'.' . C 2 s ~-
Cl'FFrfc at iSI IKC
0.047'
CCFEf E F! i5T IT G
5 . 1 1 C C
0 . 1 4 2 a
C'-'FEEE kl'ASTINC
5 . 1 1 rr
C . 1 4 2 >
F k I T ^ F & ( V ~ ~ M
' ; . K ? 2
c . r 1 1 -:
(!..'<<, 1 i I I F i. C ( L F
5 . -I M
c . c ;. s '*
"' "
c .t
C P U I- 1 T fc L t 1 11
r.o
0.0
OF- (LEAD OB&f.-
c.c
C t r
c . c
c.c
c.c
0 . t
f- 1 i1 "1 S
c ,c
c.c
c ,c
c,c
c . r
c .c
(PI-FCT)
c.c
C t ^
( I' jltfCT)
c.o
C .'..
t.STLKEP/CCCLE«
C , C
c.c
(SFFiY CKYEF. )
C ."
:.(
V F LFN^Cf '
V «
c.r
ire ;'iri.<;Tii\ (
». , t 34C. 1
C . C 7 i, t
- . -^
C.O
)
c.o
c.o
ATE)
0 ,r
O.o
\, , v.
o.o
n . o
O.C
" '.''
0 . 0
0.0
" . >
c-.o
0.36iu
i.CCCC
0.36iO
2.CCCC
)
0.0
c.c
L'.C
O.C
r '^
n!o
C'Pii. r-LAS
? . 5 " V 5
" . -v 6 1
0.0
0.0
0.0
0.0
O.C
0.0
C.45St
0.5714
O.C
C.C
3.5695
0.0000
14 , 6349
O.C254
0.0
0.0
0.0
0.0
0.0
O.C
C.O
O.C
0.0
0.0
O.C
0.0
S)
0.0
c.c
0.0
0.0
0.0
0.0
0.0
0.0
0. 7&00
0.3333
0.0
0.0
o.o
0.0
0.0
O.C
0.0
c.o
O.C
c-.c
0.0
c.o
O.C
0.0
0.0
f .0
c.o
0.0
0.0
o.c
1.3500
0.2222
0.1000
0.4000
0.4200
1 .6667
0.0
0.0
0.0
0.0
0.0
0.0
O.C
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
c.c
c.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
o.o
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
3.0
0.0
O.C
0.0
o.o
0.0
r.o
o.o
0.0
0,0
0.0
o.o
o.o
o.u
o.o
o.o
G.OB51
3.4483
o.o
c.o
o.o
0.0
0.0
o.o
0.0
o.o
o.o
o.o
o.o
o.o
O.C
o.o
0.0
o.o
o.o
o.o
0.0
0/0
o.o
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
O.C
o.o
0.0
o.o
o.o
o.o
o.o
0.0
0.0
o.o
0.0
0.0
0.0
10.0275
0.0360
31.0000
0,0100
0,0030
0.0004
0.0070
0.0026
0.0029
0.0000
0.0036
>
1
0.0005 *
0.0073
A*
0,0073
B*
0.0073
A B*
0.0073
A B*
0.0036
0.0031
*Sourcc categories footnoted by capital letter belong to the same facility and have
been determined to be a minor source after aggregation.
X Mncontrolled Specified Pollutant Emission by Representative Facility Size (Ton/Yf),
Y Facility Size Required for Source Category to Quality as Major Source HOO Ton Pollutant/Yr) for Specified Pollutant (Process Un1ts/Yr).
-------
TABLE A-2.
SPURCfci (CCi\TO)
.
iD
' t wUl?cC
t"liSIC\i (T
SOLACE SlZt (
O^S/YR )
P^CESS L'MITS/YR)
CD Pi>
AM
HS
Representative
^L Facility Size
(Process Unlts/yr)
4c cr:
4t FC?
C '- C E " E 8 .'. f r P- ( i. i » T
I »ic. '.TO:
y * --.C'.'C' c.r
l lit It C (t'tMf G f .'.-.
<. 7 . 5 ? r C.C
o . c i o 7 r . c
<.* FC:
3 C P. f ."
5C CCi
sc r:c:
t c r : f
6 r r c :
6' Tri
*>c cc:-
^ r F c .'
tO FC'
6f FC"
fie* Mi: 'c
c . c . t
StCC,:. [>'>< K-
C . " " C
C . '. '. \.
r, K F Y J F L ' F C
45.CCC
C . ! 3 3
c.src
r * i. P K j c i ( T 5
C . C
(.C
ICLVK1 ."?Ti
C . C
SC'LVcl T CETi
0.0
n.o
SOLVENT I'lT*
C.C
u.O
1- .T.r'. II" .
C.O
f, .C
P.T.". T.
O.C
0 .0
l .T.r,. If:.
C.C
0 .'.
c Y It C P t '- T
v c.c
c.c
'i'.r£JU' it
C.C
c ,c
'.ICFJES (
c.r
1 c.c
n$ ( : ; ;H
r . c
C.r
i ' 1 1 5 1 f v
C .C
r t f
Cl f-^f.J'.C.
C ._
'- . C
L f I F*t.;,.G
f . ',
r , r
L CLk>'l I1 &
C .0
' 1 r-
( C-i . "-l-L".
C 'J
r . o
( S 6 - V ! C t. S
C.L
c,r
( s t F. >; i c : s
; .r
^ f
) b
r. c
>b
c.c
( ,c
t L T? R
- . c
". . L
Ir,C'UCT 1C--' FOPl.ttt
r .0
L ,r
CT!"'1)
r
' "° k
»
c.c
r, . (.
(CCi: :L--i.f:f-.s :
; _ L
'. i :-
(npff. T!-f, '.fcpj;
u . o
r ^
( Ct'M'fc VLi- 1 {t C [
c .<-
( C
PI -M S ) ( STUPf.Gtr
O.C
c.c
( .0
C .0
'. . ^
U . ' '
O.C
o.c
c.c
c.c
o.c
o.c
o.c
r .c
j
c .r,
c.c
c.c
o.c
53.899V
0 . ( . ',: 0 3
0. 375r.
0.133:-
< DiT.f -.-.se;. 5)
11.0250
0. 13J3
Jr&RFib TPr<)
33. coon
0.1333
i TRANSFER'
71.2073
0 ?43C
.fh<,5(J
0,506^
1 . 7 U 7 '
(.1.4:93
O.o
0.0
c.c
C1. 0
r. . i
r . c
i . '':
0.0
o.c
o.c
0.0
0.0
0 . 0
1.0
V-'.C
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
w' J
:i.O
C.O
0.0
0.0
0.0
C.O
o.c
o.c
o.c
1.50CO
4.000C
C.O
C.O
,
0.0
0.0
0.0
0.0
o.o
o.c
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.3
o.o
0.0
o.c
0.0
c.c
c.c
o.o
n.o
o.o
0.0
0.0
0.0
o.o
o.o
T.O
1.0
0.0
n.o
0.0
1.0
0.0
0.0
0.3
0.0
0.3
1.0
o.o
o.o
o.o
o.o
C.O
0.0
o.o
o.o
o.o
o.o
o.o
0,0
0.0
0.0
0.0
0.0
o.o
o.o
o.o
0.0
o.o
o.o
o.o
o.o
o.o
0.0
0.0
o.o
0,0
o.o
0.0
0,0
o.o
0,0
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,2000
0,0079
0,0079
0.0003
0.0600
0,0100
0,0002
0.000$
0.01S5
0,0440
0,1737
0,0083
0,0083
C'
cr
cr
Di
*Source categories footnoted by capital letter belong to the same facility and have
been determined to be a minor source after aggregation.
X - Uncontrolled Specified Pollutant Emission by Representative Facility Size (Ton/Yr).
Y Facility Size Required for Source Category to Qualify as Major Source (>_100 Ton Pollutant/Yr) for Specified Pollutant (Process Units/Yr).
At the time of publication, ANL was informed that there may be new data which will alter the impact analysis of this source category.
-------
SOL'KCfcS (CQt:Tli)
,.
St.
' 1 f'L'IH:
1 u
:! SC.'UKCt SliF (p^CCc'jS UMTS/Y!)
HC C!i (n
AM
MS
Fl. Representative
Facility Size
(Process Units/yd
64 {.r:
65 fC?
65 cc:->
bO fC's
90 %0)
90 co;
"< o r o i
90 FCl
90 FC3
90 FC<
1 1 : C L' s i F ; A l S C R F ; C £
I C.C
J-^C.C
II. [ USTF I-L Sl.RFiCt
O.C
O.C
If-inUSTF liL SUFFICE
0.0
O.C
PL'LPL'U^RT I'FGP .
I.! 52*
l,?jt;(\~!
LEAD ACIT f .'.T7FFV
5.472C
j 1.36?*
CM-LE COVfcF F'RU . r
o.c
0."
TYFC CETAL PCI.;ICT;
o.c
o.o
CAI I'FC PL£M
O.C
C.C
* E X T I L 1 I r C < C ' F P 11
0.0
o.c
TEXTILE MFC m/IDF"
o.o
0.0
Cf:tl ;t.o
C.C
c ,c
CL -T;i 0
C- . '
&.'.'
f [;/ TIMO
0.'-
r .0
C . "-'
C'.O
o.c
C .0
'L*.M
r ^
r . c
; r;»i p|_^f,T
r.c
C f ?
C ,0
' f "
,'Fu)
o ^
C" . '.
1 1 ' G )
C.C
0.0
I'-.F-.-L K'?
( .C
0.0
illiTLJRE
49.
0.
(..LTn FURNITURE C
C .0
0.0
( FLATf.OUD
O.C
0 . 0
o.o
[ .0
0.0
(-.0
C.C
C.O
C ,(.'
C.O
(.' .C
C.O
U.O
C.O
o.o
0.0
i9.
C.
CUa-JilG)
bOB-
H313
r.'-Tjur. )
716fc
0313
b
0.0
o.o
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
o.o
0.0
0.0
0.0
0.0
0.0
PKCOUCTS) 1
93.
0,
0.
C.
0.
0.
0.
0.
0 .
0.
0.
'*>
3.
0 .
20.
0.
U6j.
0313
r
0
0
0
0
0
0
3
0
0
6400
i i>"C
9300
0435
0.0
0.0
0 .0
0.0
0.0
0.0
0.0
0.0
0. j
0.0
0.0
). T
0.0
t' . J
0.0
1.0
0.0
0.0
0.0
0.0
5.47?0
11.3636
0.6250
0.4000
0.8291
0.0034
0.6646
0.0643
0.0
0.0
0.0
0.0
0.0
1.0
0.0
o.o
9.9491
6.2SOO
0.0
0.0
0.0
o.o
o.o
o.o
0.0
0.0
o.o
0.0
o.o
o.o
o.o
0.0
o.o
0.0
o.o
o.o
o.o
o.o
o.o
o.o
o.o
0.0
o.o
o.o
0.0
0.0
0.0
0.0
o.o
0.0
o.o
0.0
0.0
o.o
0.0
0.0
o.o
0.0
0.0
0.0
0,0195
0,0187
0,0292
0,1209
0,6216
0,0025
0,0000
y>
0,0006 1
CT
0,0091
0,0091
X Uncontrolled Specified Pollutant Emission by Representative Facility Size (Ton/Yr).
Y Facility Size Required for Source Category to Qualify as Major Source (>JIOO Ton Pollutant/Yr) for Specified Pollutant (Process Unlts/Yr).
At the time of publication, ANL was Informed that there may be new data which will alter the Impact analysis of this source category.
-------
A-7
Explanation of Terms used in Tables A-3 and A-4
Notation
K
Es
En
Eu
Pb
PC
A
B
C
Ta
Ts
Tn
Ts-Tn
SIZE
ZAVE
Explanation
Fractional capacity utilization rate
Allowable emissions under existing state regulation (Ib/pro-
duction unit)
Allowable emissions under NSPS (Ib/production unit)
Emission with no controls (Ib/production unit)
Construction and modification rate to replace obsolete
capacity (fraction of 1980 capacity/yr)
Construction and modification rate to increase industry
capacity (fraction of 1980 capacity/yr)
Baseline year (1980) production capacity (106 production
unit/yr)
Production capacity from construction and modification to
replace obsolete facilities (106 production unit/yr)
Production capacity from construction and modification to
increase output above baseline year capacity (106 production
unit/yr)
Emissions in 1980 under existing emission limits (Es)
(103 tons/yr)
Emissions in 1990 under existing emission limits (Es)
(103 tons/yr)
Emissions in 1990 under NSPS (En) (103 tons/yr)
Maximum potential emissions reduction from NSPS program
(ton/yr)
Uncontrolled emissions from an average gypothetical source
(ZAVE) operating at full capacity (ton/yr)
Hypothetical source of average size (106 production
unit/yr)
-------
Table A.3. Model IV Major Source: 1980-1990
[FOR EXPLANATION OF TERMS SEE PAGE
A-7, APPENDIX A]
Pi-
50
20
10
42
40
40
40
40
20
50
50
50
51
50
: 1 ) <2 ! ! J) 14) (5) <6>
E'MSil-'' RATES GROWTH RATES
E'liSSIC': SLLC/ilLfc jNCJNT DEC iMAL'YEi*
'f.O « UMTS E i t P P
s N u a c
MClt-iTES
c-<.o:cv :?c'< FC^.OXUS IC.P-
:.-.3; L -./"- 1.77!
-,::$ <-,T-£T:C :i.::e = R I;-o. IST
0.5?; LB/TCr, 0.700
;T3I'i;'JST3IAL BCILE:S (10-2}
,.450 L3/E6 ?T. 0.404
-iST;iLE -f (-'tCTNv P i.;-.:
:.EO: L?/r:-, o. = .<
:-<-- .E -.ui=3'f Il>,'. C tJ_-;:55,
'.. = 00 LE/7:s 2.i--
.. .c.si,,!.. , iv ,,fc
'.3-.0 li/T". IS. COO
.-o ---, ;.:;o
V.i: : -::0.iSS "FC. Fti.'iTS (T
-.5*0 I = .'T;>. 4.4o;
OFJiESGLASS I'FG. PLiNT? (>.,
C.'SO U>">. 9.300
C4s;'ET:c i'.-'j?i-E
o.'-oo " L=>/*:'. o.oio
EOtSE'l'.Oi'' Zi'-C S'-;:TE9S (
-.=20 LS/"N 2.71C
EOSStC^'OiR* ZI'-C S-iL't-S [
:.?20 LB/TCf. 2.710
a;sSr'.C'.Oi5Y tLLCJI.t" PLi'.T
O.iiO L3/T:'< 1.900
6015 = C3'.048Y CCPPI-R 0LA4T (5
cleZC L5/TCN 3.470
ECZSECO'.OlRY ZINC S"ElTE'.S (
0.320 1.3/TCN 2.7,0
i )
3.200
Y*E..r-S
.1.120
0 < 1 0 ; 3
0.4 04
1 CLrCT
o.a 00
, -
2.603
7 . 0 C 0
t X T 1 L £
4.4L0
03L ?^3
9.300
0.001
C-LC I .!
O.iiO
OiLvIM
0, 160
<;; JCH
n '
^E-TI-.G
J.2^0
H.^IZj'.
1.6^0
17.000 0.0
UT*DI=:.E) IS3R)
r. .700 o.o
B T J / h n )
2.770 0.033S
tic -=o
50.000 0.03JS
17.300 0.0505
180.000 U.033S
120. UOU 0.033S
psoccssno
4.300 0.030S
CFSSIHG)
%9.2CO 0.130S
0.010 0.030S
:-G KILNS)
5.000 0.035S
ZP.G)
5.000 0.033S
LE FJS'IACE)
1 .930 0,0365
j
70,000 0,0355
TiL '-MFFLE)
45.000 0.033S
-0.016S
0.0 C
0.014C
0.043C
0.033S
0.042S
0.043C
0.067C
0.075C
0.060C
o.oiec
0.018C
0.025S
0.014C
o.oiac
UNITS
t6
E6
E12
E6
E6
E6
»
E6
E6
E6
£6
E6
E6
E6
to
SIZE
T3N5
SIZE
TONS
si:t
BTU
SIZE
SI:E
TOris
SIZE
TON?
S I Z t
T3'!S
SIZF
TU.'.S
SIZE
TONS
SIZE
T3NS
SIZE
TOMS
SIZE
TONS
SIZE
TONS
sut
TONS
SIZE
TOMS
(7)
£
711
13.44
30
2.37
737
20940
60
0.4H
3459
1-27
259
13.40
3 1 4 <,
C.4H
az
J.4ft
1728
1.47
* 0
1,26
15
0,03
15
0.03
10
516
0,10
* I 4 2
0.27
e
,,4s-2T7'.
0.0
.5620TT,
0 . J
.3035T-J'.
6910
.05-COT-;-.
0. Id
.^95STc;'.
713
.l"47Ti.N
4.43
« 0 'J C 0 ^ j ' i
0. 1^
. 6 .1 ; 9 T - ' ,
3.1-
.5593T'V.
0.<, H
.41SOTO'<
C.3S
.7S50T:'.
0.01
.7850Tnr,
O.n:
.3360T- ,
0.05
,5»94T1N
0.03
.OS-9T--.
C
S/YA Z.'.vt
-2.42
S/yJ ZJW£
0.3
S/YR Z4VE
3U3
S/Y. zav-:
0.25
5/Y>* ZJVE
471
S/Y* ZAVE
5.63
S ^ Y »" Z«l*/c
0..'3
S/Y". Zi'.'E
0.42
S/YK ZAVE
1.56
S/YS ZivE
1.00
S/Y» 7AVE
0.01
S/YI< zave
0.01
S/YS ^ivE
0.03
S/YS ZAVE
0.01
S/Y* Z4;E
0-05
EMISSIONS
1000 TC'.S/\EiR TCNi/<
-.23 * R*
1974, *
137.00 *
2.04 * R* >
1
00
1.63 *
11.97 *
O.JO 5,
0.02 20. E F*
0.02 20. E T
C.CS 60. 0*
0.09 63. t r
f*
*Source categories footnoted by capital letter belong to the same facility and have been
aggregated for analysis purposes.
* Source catecorios indicate small potential c»ls«ton reduction or dccrcasinfi capacity.
-------
Table A.3. (Contd.)
TABLE 1
N-TE: i !. SATING ctLftN ''EA»S .; RSTJNG HAS SPECIFIES
ID
12) (3) 14) (5) ! 6 )
E^ISsll-i RATES GUHHTri RATES
(71
E"MSSIC'< "ILC.-.AbLf JNCONT OECIHAL/YEAR INDUSTRY C AP AC I T Y / PS J~/UC T I'.'N
RiTpo < UMTS c E : P p UNITS 4 B C
S N USC
50
23
30
50
30
*1
44
43
54
42
5Z
43
56
44
53
E5:SEC3'J3i»Y ZINC SHELTERS (RrTZ^T F.^RMACt)
C.EZC LS/TCN 2.7;;, 1,7-0 47.0000,0335
:.53: LS/TCN 0.0*0 0.004 0.040 o,04os
0.018C
0.055C
E^4sec;'JDi»v ZINC S-ELTERS (REVERBERATORY SWEAT FURNACES)
'..'2? Lo/TCN 2.71C 3.S10 22,000 0.0335 0.01BC
;c3SEC-N3A»Y ZINC S^L'ERS «ETTL? FJRNACC)
:.*2C IS/TIN J.'iO 0.670 18,020 0.0325
?'.503 Lb/TEr, 4.57; 3.0P3 625,000 0.040S
3-«?RK< i RELATE: CLAY SKSCU'CTS ISRYEX/GRINOER )
".'3". L3/TCN 2.77: 0.960 96.000 0.0335
:10»5=::DIC KILN (GiS CN-"1
'.?:; L3/TCN 3.110 3.0 C.1100.033S
O.SDO LU/T:N 0.3*0 o.o o,c*o 0,0335
B"lS?C3'iDARY CSPPcR PLANT ([NO. FURNACE)
c.920 UB/TCN 2.000 o.cna 2.000 0.0355
:o9»»ic< c RELATE: CLAY SSOOL.CTS (SToRAiEi
0,«;; L3/fCN 2.773 O.J*0 34.000 0.033S
B'USS: JN34RY CCPPER PLANT (%L4ST)
O.!20 L3/TCN 3.470 0.072 U.OOO 0.035S
C195LASS ."ANuFiCTjRINC INOjSTRV (LEuO CLASS)
5.90- L3/TCN 1.890 0,2*3 24,000 0.0335
9o;sE:o-,3iRY CCPPER PLANT IBE»IE'":CRATI;R)
:.5ZS LB'TCN 3. 470 J.J40 10.000 0.0355
cizPE=::oic KILN (cc«L F:=FC)
C.«00 UB/TCN 2.77: 3.333 3.230 0.0335
BOISECC'.DARY CCPPER PLANT IcO'iVExTER )
0.620 LB/TCN 3.473 3.2*3 60.000 0.0355
0.016C
0.0 S
0.027S
0.027S
0,0275
0.014C
0.0275
0.014C
0.0355
0.014C
0.027s
0.014C
E6
66
66
E6
66
66
E6
66
E6
66
E6
66
66
E6
E6
SIZE
TONS
SIZE
TONS
SI:E
TONS
SIZE
SIZE
TONS
SIZE
TONS
SUE '
TC:IS
SIZE
TONS
SIZE
TONS
TOilS
SIZE
TONS
SIZE »
TON5
SIZE '
TONS
SIZE
TONS
TOMS
143
0.27
3.67
69
0.30
56
J.30
1*362
0.20
959
0.41
7.56
22.94
14
0.56
0.41
0.65
73
0.4s
32
0.51
442
J.56
.3790TT.S/YR
009
1.47
.4539T2MS/YK
0.10
.32tOT-\S/Y"
0 . 1 ;
,43 = 3Tjp.S/Y-;
0.0«
.9993T3NS/YR
0.13
2.4=r
7.57
7600TTI.S/YK
0.2'-1
'o.!3
O.I*
0.21
.BCOOTy.S/Yi;
0.17
.OOOOT J\S/YR
0.17
.7998Tj--.S/YR
0.20
1000 TONS/Y
T T
A S
ZiVc"
0-05
ZiVfc"
2.60
Z1VE«
0.06
0.0^
Z--.VE.
0.0
Z4UE«
0.11
20*
6. \1
Z A V E »
o.oa
o. :i
O-Oo
0.23
Z.We«
0.07
Z.V6«
3. 14
0..1J
0.0077
0.30 0
0.3330
3.07 0
0.0077
0.33 0
0.0377
0.33 0
0.0500
0.41 0
0.45 0
) . 0 2 5 3
0.33 0
0,0230
3.37 .1
0,01. 10
0.*6 0
3. -5 "(>
1.0 HO
3.^7 0
0,0051
0.35 0
:.:! .53
0_. 6 3 0
0.0250
0.37 0
O.Ol'O
3.60 C
il*
,36
.11
.40
.»o
.*!
.57
.-i
.47
.53
.57
.63
.75
.7b
.72
.92
T
N
0.
0.
0.
0.
0.
C.
0.
0.
0.
0.
0.
0.
0.
0.
S N
30 60, E*
C3 70,
28 20, E*
27 :-,?. [*
13 -.OJ.
HIJ*
*o :,.-.! 10
22 :cj. J*
Z> .-20. H*
30 r?r. B C*
IIJ*
34 .',0.1 1 0*
33 ' ?30. r
*2 :3C.
*3 :-*.-. B D*
38 34C. «*
5» 37C. C*
*SOUtc« c.t.gorle. footnoted by capital letter belong to the same facility and h.v, been
aggregated for analyait purpoaei.
-^Source catcBories Indicntc snail potcntin) emission reduction or dccrcaslnc co?ocity.
i
VO
-------
Table A.3. (Contd.)
1
'.:TEI ; !. RITINO CC:IMN *E<-N5 : RATING KiS SPECIFIED
l'.,T«%
'?.850
L?/T^. i
Y e FLV-AS* SIM
EBGJNT .^.LSiC'L
;'.3iRY ALLPIM."
LB/TC\
L3/TC','
LB/TC'.
CUEXPLCSIVE INC !LC«
0.930 LB/TCN
i;OP-«c
;.sio
SOH:R;C ACID 't
L3/TCf.
EMISSIC. RATES GROWTH FiTES
3LLC"18l.E UNCONT DECIMAL/YEAR INDUSTRY C APAC I TY/?ROOOC T JGN I
E E : P P UNITS ABC
S r, u B C A
'/VEAR
T T T T -T
S N S N
0.0834
3.74 3
C.OU2
0.40 0
C.01.12
O.-O 0
0.2610
0.79 1
C.02'0
0.73. 0
C.18J7
1.01 1
0.0018
1.41 1
C.1837
1.01 1
0.0039
2. CO 2
C.OloC
1.75 2
C'.OloC
1.44 1
C.C32J
3.05 4
C.201C
1.67 3
C.C104
0.52 1
C..0355
1.37 1
.7*
.62
.62
.25
.93
.29
.76
.29
.£3
.19
.79
.43
.00
.28
.58
3.36 ?9C.
0.20 'It. N
C.2C 410. M*
0.62 430. X*
0.49 41.0. I
C.74 54C.S*
1.22 !4C,
,. J
0.71 57C. S 5
2.29 SBC.
1.60 :9C. 0*
i.;e tu. 0*
3.71 72C. 8"
2.25 750. T*
0.53 75C.
C.8C 780,
*Sourcc categories footnoted by capital letter belong to the same facility and have been
aggregated for analysis purpose?.
£Source categories indtcntc small potential emission reduction or dccrcaalng capacity.
-------
Table A.3. (Contd.)
T4.BIE 1
.-TE: 1 Ir. RATING CC
T;N5 L
11
41
43
43
43
43
:0
23
2C
12
40
20
47
30
40
j-.s <
>T:C.-L.:.T!
c : : s T £ T ;
0.9;:
c:ecisTi
-.100
:-.-:e;jTi
- I 2 ' E * i. I
-..'.2:
:::c:.3i'.
a " -
7:2: j; :.
. e : ;
C-ZSTiTi
: .590
»-.9SV'.T.
-.83;
s:.3:.*=
T.347
».-4!'.-,.S
-.53:
C:3"I'.Ea
:.?2:
c:3:;--3:
- . 2 :
F'2-L.3B
'..«30
n:.«LFAL
:.s:o
SiliSP-'i
:.853
EMISSIC'
UMIS
:s
O'.ERV PiP = L;r.s c
I.B/PPD f.I 1.
iS.E ».EF*A:T:;IV P
Le/Tcr, 5.
3i.E BFF*I:T:SY P
LS/':-. s.
TE (vEBTicu FU
LS/T:-. 4,
S I FIRING (TJ'l
LS/TC-. 3.
0 C FIRI«.S (T-j'i
L3/TC-. 2.
:-,iBY i'.TtS'-i'. C
LB/"I. 5.
ETIC PISE' :-o;s
L3/TD'. 1.
T-YLEVc C.C- :£:
L9/C1L 0.
"^HL I'-C .">'JTI
L3/T'. 6.
i _ * Q'L. t 'V r U (
L3/T;i, 4.
i SLiC* (FLB.'.iC
LB/T:S 3.
SSiB (ff.I-.C)
LB/TC>. 12.
Fi DEUV:»-T|\; P
L8/'CN 2.
LT a;3FK.-, (Sir
1.3/T:1, 0.
E^ISSI:'. RITES GROWTH RiT6S
H-LC'i'^LE UI^CuflT DEC IM4L/YE" INDUSTRY I 4P4C I T Y/PRO?uC T ;t N
E ' c P P UNITS i B C
S 'i U 3 C i
rj''3FS5'J5 c:.t-INE
13: O.i33 1
'.-.' I*;.-; ".TRL
32: 3.3i3 31
..-^.T ( ;.. ;;-JI;-SH
32: -.303 25
= '.-C? ]
35; 0.210 21
'j 3.236 23
3^'; " 3.1-.0 c
;>
. 150 0.020S
SR'ER]
.030 0.033S
iLE)
.000 0.033S
.000 0.029$
^ED!
.600 0.033S
i^soi
.000 C.033S
SlOIESEL t
.410 0.0335
.300 0.045S
.450 0.0065
LlO'JID «4S
.000 0.035S
.400 0.029S
.300 0.0455
.000 0.050D
.600 0.0295
.bOO 0.042S
0.0735
0.043C
0.043C
0.036S
0.027s
0.027s
DusL FUED
0.0285
0.089C
0.082C
TE u:C)
0.128S
0.020S
0.025C
0.044^
0.035C
0.045S
SIZE
E6 PU
SIZE
E6 TONS
31 :F
E6 TO'.S
SiZE
E6 TLM5.
SIZE '
E6 TONS
SIZE *
it> TCNS
SIZE «
t6 TONS
SIZE «
E6 TONS
SIZE «
E6 GAL
SIZt «
E6 TCiJS
SIZE "
E6 TONS
SIZE =
E6 Tj:;s
SI.'.E
E6 TONS
SIZE
66 Tj-,0
SIZt =
c6 TONS
2.
5.55
35.
0.4B
30.
54.
0.76
6.
6.1?
20.
2.04
3.
20.52
239.
1.64
28.
4.61
S2C.
1,54
103?.
9.24
5165.
2.3f,
77.
0.50
366.
4.54
10.
6.47
, 1240Tn\S/YS
1.11
,9999TC^5/YJ
O.K
O^COT^r S/YS
C .;(
5S7JTT S/YB
C.?Z
OCOOTnl S/YR
2.r;
OCOOT-if 5/V"
O.J.7
6-55To^ S/Yr
6.77
9999IO\S/Y<
0.53
2:5fT:'.S/Y<
C.2t
)°15Tor,S/Y^
C.54
1653T-- S/Y-
2.6t-
99:2^!- S/YK
I. If
5679T:r-S/Y»
0.32
39bSTriKS/Y>i
1.40
»^03TT.S/y<
2.72
1 Z4VE.
4.35
i Z£VE«
3.25
: 7iVE«
O.Z5
Z4VE"
0.27
ZiVE«
1.65
Z1VE'
0.55
ZiVEs
5.75
ZiJE*
2.4E
Z4VE«
5.53
Zi'vE.
1.97
ZiVE"
1.85
ZivE-
3.66
ZivE-
3.27
7ii/E"
1.9)
! J\/c«
2.91
EUSSIDNS
1000 TONS'YESH T-
T T T
S N
0.0040
2.95 5.
0.0030
1.02 1.
O.C03C
1 .02 1 .
C.0363
1.26 1.
0.025C
1.47 1,
0.0250
1.63 2.
0.3C23
32.19 41.
0,0430
1.13 2.
0.1453
0.90 i.
3.0107
4.47 10.
3.0777
16.19 19.
0.3630
3.33 3.
0.0162
2.40 3,
0.362*
2.49 3.
0.0325
i. 07 3,
10 4.2?
55 0.73
55 0.73
4S 1.C3
?7 0.93
37 1.&9
21 40.23
64 1.61
)3 0.96
JO 8.99
-1 18.22
34 2.43
71 2.30
52 1.9f
33 1.43
\b/Y=A*
T -T
S -1
310.
?20.R*
520. R*
550,
3?3. 1*
9,3. J*
330.
1133.
i-;o.
i.?::.
1 J ; 0 .
44 )3.
1413. M*
.5,10.
46DO, 6
*Source categories footnoted by capital letter belong to the same facility and have been
aggregated for analysis purposes. .
{(Source categories indicate onall polentlnl emission rcilucLlon or dccn-noiiiE capacity.
-------
Table A.3. (Contd.)
PC'.
Pi"
ii =
23
20
23
20
33
23
45
43
33
50
20
50
*5
45
50
.-£: 1 !-i BiTi'-G CCH.--TI ££.> '.; *.iT;-.c -.-S
.' -JT4NT/S3 ;»CE
(1) (2> i 3) (4)
E-'! SSI-'. RATES
EM.SSIC1. AL-C ,-i.t j'lC'JNT
' -, < UMTS E 5 c
S
:.945 Lb/T:r. 99.0-1 3.993 95.
p ~ ~ I <= / T ~ ', ' 4 , 4 ^ ^ I. 010
-.53; .i/TCS 23.2'.: 1.S23
s-«::c*c'i '-L*.
7.750 li/f-'- 1.51" 3.350
c:«ST45.CH CFG"
:.?3: I:/"'. 2.o:" 0.320
CI^EXP.^S : /E :>: IMO- »x,- .:si /' s )
-.83: 13/TCr, 1.5i> :.260
-36C4ST49..E BFF^A'.rCav P'.i'.T (C.H.-.5)
".303 LB/T:N 23.2^'J 0.3
t:3-!"E !:: (c"'-s-;'G>
7.330 L6/i:r- 3.52-1 0.310
14.
23.
7.
8.
26.
0.
'"
..-.5'.:T»i*£ FE;UI!::!' u"-'>iui MTR»TEI
',.910 IS/TC!. i.bi- 3.1D3
C'SG^EV I»C*i FCON"3Ic2 (rf-vE°^E3-AT7JRY
'..'33 L3/T:\ ; 0 , 0 3 - 0.103
i;9':LVESTEP. RES!'.
-,i»: L8/T':r. 7.033 0.353
t'.U'i'MMjM (FFIMNC
C .850 LB'T:>. 1 .;-, ) 0.310
e^a^a-i cG"pcLi.cs (c'js-i'ici
C.833 L3/TC1. S.030 0.060
C',4»3aO'. CG"Tu'icS (MX t F j LTKAT JCN )
',.633 Li/TCr. 7.0. 0.503
BT'ZSTEEl FQur.LRlES (C»EN HEJRT-C)
3.933 LB/TCN 2.2". 3.223
*Source categories fo
aggregated for analvs
12.
1
10.
7,
1 ,
6.
7.
11.
!5) 16) ( 7
G3n*TH RiTES
CECI'-'^L /YE'" INOjSTRi CAPA
> 3 UNI TS
J 9
PROCESS )
000 0.020S
400
200
000
000
300
200
620
o
0
0
0
0
0
0
, 030S
.0305
.0455
.0455
.0455
.0335
.030C
C
0.0 S
0 . 035C
0.040C
0.100C
o.oisc
0.090C
0.043C
0.350S
VLANTS
720
030
OJO
000
000
000
030
0
0
0
0
0
0
0
.0455
.0285
.0455
.0285
.0505
.0505
.0285
0.0205
0.136S
0. 190C
0.012S
0.047C
0.047C
0.073S
SIZE
E6 TONS
SIZE
E6 TG'-iS
S I ' E
E6 TD.'-lS
SIZE
E6 TUNS
SIZE
E6 TONS
SIZE =
E6 TONS
SIZE
E6 TDJIS
SIZE
E6 TONS
SIZE *
E6 TONS
SIZF
Eft T7JNS
SIZE '
Eft TOMS
SIZE
Eft TONS
SIZE «
Eft TONS
SUE
E6 TINS
SIZE
Eft TONS
)
C ITY/P
&
3052
0.19
0.50
1939
0.25
107
2.55
179
4.65
396
2.88
0
0.48
66
35.49
703
8.IJ3
!78
0.54
37
1.00
49
27.90
526
1.97
no
1.97
445
6.29
:
1
0.2700 .... £
8.1)3 13.23 9.49 37CO.W
0.1224
0.59 7.91 4.C9 ?fc/P.
0.0600
2.51 5.93 1.85 : CC.
0.0240
2.3J =,;7 1.53 *trc.
0.1160
11.36 13. 2b 6. 58 4-co.
0.2610 .
4.74 7,50 2.42 5100. »
0.2610 .
5.5j a. 75 3.19 ^(c^, A
3.0930
6.23 10.77 5.il 5-»OC.
{(Source catcgorlea intlicntc smnll potcniial emission reduction or dccrcaolnc capacity.
-------
Table A. 3. (Contd.)
TiSLE 1
(1)
EUISS:C'-
*4T;'G K UNITS
*N -< = 4\S 'O *iTlN<-, HAS SPECIFIE;
(2) I3> 14) < 5> (M
f'SSIIJi KITES GROWTH RiTES
su..: .«'>i.5 u«cDNT DECI^AL/YEIK I.OUSTRY c
? c E P P 'JMTS
S'-UBC
(7)
EKISslONS
TCNS/VE..R
T T
A S N
T:\
30 9D1CCTTCN GINNING
;.COO IB/EALE
20 aC7PCLVPR;;Pi.'ENE
0.78:
20
10 457"txEO FUEL B:I!
0.500 IB/TCN
55 A:IP?ST:C!:ES "->>'>
C.83D L8/T-*.
10 iio";x£3 fU£L B;I.
c.Ji: L3/tf-
40 EllGYPSjM XiNjFiC'
0.800 19/TCN
20 C24S3DIUM
3.87;
20 C26'~T-IAL!C 41.
:.945 L8/KM
'5 E'M1/ET41LIC
0.900 L6/ICN
30 E:99:E» P»CC = SSIH
O.*l0 L3/>"10 L'.
** E"l''ETiLIC Hil.E'iL
0.900 LB/TCS
10 103K"JMCI«'iL INCI'-
0.560 L8/TCN
*0 501'":$P*iTE tCCK
0.850 L6/TCS
SIZE » a 1 . 00 JO r,Tl$ / 1* Z»VE« 0.0136
2.0VO 3.4o3 12.030 0.0*25 0.013$ E6 BALf 13. 53 5.!,3 1.76 14.13 15.97
SIZE " 11 0 . 1 690 r-)''5 / Y!> Z.WE" 0.1010
2.670 0.03-} 3.300 0.033S 0.120C £6 TU.'-S 2.75 OO9 5.79 2.b6 P.S9
191 .2139 r-HS/Yn Z
5.i7 1.7S 2. .1
C.C7O('
I*. 77 .'i.)-5
.>99,'*l)90T:]'34.77.66 r yiS/YR ZAVC. 3.5756
1.160 3.450 9:,COO 0.045S 0.123C E6 TCMS 9,78 4.43 22.'.- 4.93 16,46
E »Ll'.TS (J-XYLENE PROCESS) SIZE 7 )99.9453 TTI3/ Y^ Zi.'E" 0.065;'
24.1::.' 2.400 240,003 0.020S 0.090C E6 TONS 0.61 0.12 0.84 S.9a .k,-.i
3.45
4)33. 1953TTJ3/YK li'.'fe" 0.1297
18.72 5.50 9.17 11.31 16.65
9.96 IOCO.
2.85
12.24
6.04
3.04
6.32
6.57
6.C5
6.66
"IM'.C UP'C MjNE C C»ljSH!N5) SIZE 94 . 50 OOTl'.S/ ₯< 24VE- 0.030B
7.0:0 0.700 7.000 0.023S O.OUS E6 TONS 8.92 2.50 1.07 23.10 ?:,-.7 21. 3J
iNTS SIZE 95 . l5*5Tri\S / v"< Z4VE" O.C431
2.0»: 0.270 5. 450 0.0<.OS 0.070C E6 PU 10.10 <..!<. 9.77 3.53 It>.b2 6.6*
IN1M (Lfc'3 "INlNGl SIZE 74 . iOOOT^MS/VR 74V6- 0.0300
7.000 0.700 7.000 0.0295 0.0135 £6 TONS 9.26 2.59 1.20 2'».17 :<;.'I6 22.20
-Ea4TI3N < JOT/0 SIZE
6,<.7S 3.300 3T.OOO 0.039S 0.0«6S E6 TO'IS
(021'OINOl SIZc
0.9".C O.iOO 20.000 0.050S 0.050S t6 TO'iS
40 007SL4SS MANUF4CT jRING
0.900
52 . 4999 T T.3 / -M Z.VVE- O.OOst
7,50 2.12 3.45 13.59 ;9.b* 8.82
li99.9-'7*r-]r.S/Yi< ZiVE" 0.2000
70.40 35. VJ -.2.2^ 21.12 45. CO 33.61
(Sa04-i.IMc GLASS) 5 1 1 c 5 2 . U 55 ' 1 :iS / rM ZA.'E« O.OJ24
O.D22 2.210 0.033S 0.034$ E6 TJNS 20.23 O.55 6 . A -, 17.21 23.06 11.66
*Source categories footnoted by capital letter belong to the same facility and have been
aggregated for analysis purposes.
CSource categories indicate snail potential emission reduction or decreasing capacity.
1300.
t'CC.
*f:o.
UKO.
icjc:.
ic «cc.
i:crc.
IUC0.1
ii4c:.
-------
Table A. 3. (Contd.)
TABLE 1
:.:TE: 1 !.; RiTU.G CCU.:11; £;. S .- »tT;N!; »iS SPECIFIED
PCU.,Tf,T/SQ,,BCE
III <2< Ol !4) ( J) <6) (7)
E-ISSni StTfcS GROWTH RlTFS EMISSIONS
EMJSSICN iLLr«ASLS UNCUNT DECIMAL / YEAR INDUSTRY CAPAC I T tVPRJOUC ' IoN lOOO rONS/YEAR
iTp.G K UNITS E E E P P UNITS A B C T T T T -T
5 N U 8 C ASNSN
42 F'..M:'*L:c "!!.E»AuS "TJI-iO (Fc'.»'JiLl3Y) SUE HO. 2199 HNS/ YR ZAVEa 0.0280
C.9CS L8/T:f. 13. K'. O.iOO 15.100 0.028C 0.015S E6 TQNS 3.73 1.19 0.5b 25.35 i*>,lt 17. 7t 1UCO.
46 E'.'1"STAILIC "INERiLS PlNlr.G (iLUMI'lUM) SHE U9 . 8499TTNS / Y* ZAVE« 0.030C
C.900 L8/TCN 11. ICO 0.110 11.100 0.021S 0.0*5$ E6 TONS 3. HO 0.95 1.54 16. 9» :4,e>3 12. 3S 1Z2CO.
20 i:3»3T15H SUE 2J07.*558TlNS/Vi« ZiVE- 0.6000
".777 LB/TC*. 9.47' D.bi) 9.470 0.020S 0.030C £6 TQNS 6.12 1.36 2.35 25.09 33,72 21.02 II7CO.
33 :::«EocTiiLE 3R "ft. SUE i >36.<>i43r VIS/YR ZAV?« o.ossc
:.'22 L3/TC\ 8.43' J.i3D 63,000 C.028S 0.027s E6 TONS 7.40 2. 17 2.00 29.38 iT.Tl 22.33 lifCO,
40 r;l7fLV-JS- Sr.TESII.C ( S r.^EH PJ6) SUE 34 >66 .9J75T3NS / YR ZAVE- 1.7900
:.86: LS/T:N 4.::-.) l.ioo ilc.ooo o.o33S o.ossc E6 TONS 11.47 3.ss 3.26 20. 07 34.29 19. is iSuo,
41 ECl'ETiLLlC -jl.ERALS Kl'-lil, C»:'. 3R£I SI7.E 633 . 5493TONS / YR ZAVE" 2.1700
C.53D L5/TCN 0.700 O.J.TO 0.700 0.023S 0.029$ E4 TONS 2*3.90 b3.69 86.68 94.15 121,46 106.12 1S3CO.
(tLJCTBl: ia.C) SIIE '.75,*999Tl-,S/yH ZAVc« 0.0300
2.2;; 0,2bO 13.000 0.026S 0.073S E6 TONS 18.86 5.23 13.77 13.67 32.30 15.67 U6CC,
30 B20iv"3>'I'J'< SLLF4TE SUE 1 134 . 798 1 TONS/ V* ZiVE" 0.1470
C.64: L8/1C'. 2.140 1.000 20.000 0.045S 0.116C 66 TCMS 16.00 7.20 31.95 13.71 *1,C» 23.98 171CO.
33 D:!«-|:S«EV SUE !u.9»97TiNS/vRi ZJVE- io.38oo
).955 LB/GAL D.02& O.D02 0.044 0.032S 0.060S E6 GAL 16-13 5^3 9bO 22. 35. 16. lt4TC.
ia' tttHK.'.". PiiM (Chl.:'iI>iAT:3N STtllCNl SIZE .J55.999ST.1NS/YR ZiVE" 0.016T
L5/TCN 1C.3.0CD 1.000 100. 000 0.036S 0.025s E6 TCN1 0.31 0.2" 0..?& 33.37 4:. 72 21.56 ZCPCC, 0
32 EO'.f:E3 t GRilN fill (D9rlNC) SUE 7 . 7285TrjNS/ YK ZAVE« 0,002V
C.820 13/T-'. 2.06D 0.065 6.500 0.037S 0.015C E6 TONS 51.60 19.09 8.28 43.58 ^,J8 28.19 2«4CO. A
P-0 flM'C) SUE 752.7158r3NS/YR ZAVe« 0.1944
9.6^C 4.340 9.660 0.050S 0.031C E6 TONS 17. U 8.57 6.12 66.37 9T.C6 61.62 2f4;0, V
50 c:205tY UON FCLNOaUS (cLECTSIC i»C) SUE .'92.9497TTIS/ Y« 7,WE« 0.090C
0.93; L3/TCN 7.00C 0.070 7,000 0.028S 0.136S E6 TOMS 6.13 1.73 8.40 20.12 47.47 14.81 3J70C.
42 F03GYPSUH I'O ICR^SHM) SUE « '>66. S596 fUNS/YR ZAV6- 0.1944 ,
0.800 1.8/TCN 4.000 0.040 (..030 0.0505 0.031C E6 TINS 17.H 8.17 6.12 41.14 55.82 20.60 35CCO. I
80 e'-lPi-YiC:: HiMiFACTLRI NO PL&-.T SUE 9083.4>,09T'lNS/Yli ZiVE" 151.2400
0.910 1.3/TCN 0,004 0.1J1 0.132 0.050S 0.046C Eo TONS 3.^21.2 lel*l l''3J3 59, 92. 50. 42106.
Source c.tegorie. footnoted by capital letter belong to the stne facility and hay. been
aggregated for analysis purpose..
-$X Source categories indicate srall potential cmloision reduction or decreasing capacity.
-------
Table A. 3. (Contd.)
T15I.E 1
.-TEl 1 IN RiTU.C CClUV -EiNS 'iJ iUTjuc -MS SPECIFIED
POLL .T«'-T/ )
tiMSSr.;'' BiTEs cwrfTH SATES
E"ISSIC'- iLLC«-i-5 j:«C3'.T EEC I'UL / /EiR
PATI'.S K UMTS c : c P u
S li J B C
( 7 )
CAP4C I r '
UMTS i
EMSSIUNS
li.'DO TO':S/vEt>l t:.S»/Vf»S
C T T TT-I
4 5 ,S 5 S
::2'-:5»-5rnNS/Vl» JAVE- 1.0030
4.13 15. 4., 4O.77 V3
34.27
.C.100" j'is
C.203C
.64 f-s.74 j9.9i ei?:c,T*
E6
SUE
22. ?a
7.93 iJ-«.3o
us. 71
ZiVE« 0.2700
12. ?i 17.74 r'o.35 2^^.;3 :f3.fc5
:.55:
::F:t3 i
i.r.o ic'JS---';
v.u: 3,:?: T.ISO o.ozac o.o7os
SO.LO 9.57 21.07 93. 63 ii«.,4.i 62. tt
'l:'^ "ILL ("ILIUS)
1.6/":'. 2.5*; 0..1SD 18.000 0.038S 0.015C
SUE
E4 TQllS
;16.
258.12
719T.-',5/yi Z;,;i=. O.CH.4
98..T' 41.',* Zli.Ol 213. Cl 145.46 lOETCC.A*
',3:1^* I'.O !CS,S-/SC;;C'.i
'..i'j~ Li/T1":. SJ. ':"'- 13.S23 53.000 0.050S 0.038C
** s-;5--
41
!'.0
6.4"1; D.Ja5 6,470 0.039S 0.110C
l
Z3.7SO 0.200 2J.7CO &.050S 0.031C
0.420 1.90-3 o.osos o.o
M.O)
12.3',: s.i.io 12.000 o.osos 0.0445
L9/TCf. 34.0--, 17.3-10 34.000 0.0505 0.03SC
C23i- 3 i. CKt'.EL JSCCESS
:.a:o
SIZE "
E6 Tons
Co 7IJNS
SUE
E6 TOMS
SUE »
E& TD-.S
10.00
25Tor.S/V^ l.'.Vkm 0.55ct
5 . vj 4.52 212.04 ],-!
176.56 1 i
l'>4Z.
17.14
1 5 1
.i>'Mit-;-.,s/YK z..vt« o.ci7c
19.','( V2.aw t2.0» 1.6.Z7 39. £6 :jT::C.
.91,127-):iS/Yi- ;.MV£. 0.19<.<. ,
3.57 6.12 ;fr2.49 2?r-.!0 62.42 IJf'CS.V
. 9999T;y.s/ vk iMVE» O.JOOC
ST\ o t<>3. ete. 530. 3;r::c.
blic
t6 TOMS
SIZE
ES TCJi.b
229.40 114.20 100.50 io''6.3z
ict3.*3 ;i;:;c,
7.'--96.
100. OJ
9531Tn;iS/Yk ZavF. 0.5566
50.11 45.21 13<-0.27 1975,13 1327.63
I
M
vji
*Source. categories footnoted by capital letter belong to tlic some facility and have been
aggregated for analysis purposes.
-^Source categories indicate smnll potential omission reduction or decreasing capacity.
-------
Table A. 3. (Contd.)
'II
SPECIFY;
I Z ! ' 3 < I ' > t 5 ) ( i; )
t»!SSlj'< aATSS GROWTH R/.T6S
EMISSIONS
HI
s,.
23
''
70
S 1
2 ^
44
43
^ -
«* 0
43
li
44
13
70
10
4}
EMISSIC'*
': o K UNITS
. = ..* 5I2XI-E
C-iL c
0.583 . LB/'CN 16.
;:2C'jai.NS t FIRING ti\>->
3.83D . Li/TCK 7.
''-t.C-.liLc UNC3NT OECIMAL/VEAR
E E 5 P p
S ': U 8 C
T S (^"K/L^'^F F^CCESS)
4'^'j J.4'J3 C.430 0.0205
" ( I'iCJSTRlAL-CQ'MEPCIAk)
3=; 2.1=0 2.380 0.0395
Ois ?<::. PLA.MTS(oiL L GAS
3 = 4 3.-, C.OS4 C.O
;; ?s : t'HYLENF UXIOE
7il 3.0:» 0.050 C,030S
»::i
SV, O.D60 0.590 0.0335
~>i~ 1.3 C.323 0.0255
0.390C
O.HOc
PkOO.
0.0
3.03SC
0.027s
0.0205
^'S^STH'. SMiNES (3?i^K IGNITION)
~'5 J.3 C.J25 0.02CS 0.067s
'.:cSTSY (LEiO GLiSS)
4^: 3.C83 2.6SJ 0.0335
:SL KH.-I3-3IL FIJE3)
4-C, 3.04-3 C.430 0.0335
>*s$\" I-NCINES
2T0 3.3-0 5.270 0.02GS
I»E:I
3i3 I.i50 12.000 0.0335
:;L t REFUSE)
3'.-, ).010 1,300 0.0395
0.0355
3.027s
0.073s
0.0275
0.046S
iS »9^3. i".l>.TS SSJLFUR REC3VERY)
I*", i.753 174.540 0.0355 0.032C
;-'3.'STI3l ENilNE^OIESEL t
iO 14.53J 16.300 0.033S
"I-L «!L:S-C3AL FIRcO)
2'.'.' 3.723 7.200 C.033S
INDUSTRY CAPAC ITY/ORC^JCT K;N
'JNITS 14 B C
SIZE » 2?9. 7 !i77 ;NS/Y^
C6 TC:iS O.j,; ii.12 0-
E6
FIELD
66
c6
E6
66
66
66
E6
66
E6
E6
65
DUAL FUED
0.028S E6
0.327$
t6
SUE
TUNS
SIZE
Tnns
Slic
TOMS
St?c
TONS
SIZE
TOMS
Si£E
T3NS
SIZE
TUNS
SIZE
TO.'JS
SIZE
PU
SIZ6
TONS
sue
TUI.S
SIZE
TONS
SIZE
TONS
SIZE
TUNS
7
30.50
« 26
*9'».T8
" 3
1.4s
5
0.20
0
9.24
' 0
41.19
6
0.65
" 4
6.12
9
5.55
120
0.51
38
7.50
" U67
3.32
" 11
20.52
72
2.04
.V174TTNS/YR
19.65 ?2.
,ll>60T£NS/YI>
0." 0.
.OOOOT-I-JS/YR
c..* - c.
VOOOV^NS/YK
0.07 0 .
.6371Tn'i<,/Y.<
2.6b 1.
.l6e27-TiS/YK
6.24 35.
.1306Tar.S/YK
0.21 0.
,Cf>C3T-lNS/Yk
2.0Z 1.
.4aHOTn'.S/Y>>
1.11 4.
.OGOCTOt S/YK
0.17 0.
.9999Ti-rS/VI-
2.5J 3.
.9304TnNS/Yt
Lib 1 .
.2056T1NS/YF
6.77 S.
.OOOOTjIiS/YS
0.67 0.
It/00 TONS/Y£kH T;
T T T
A S N
.'.'WE. C.065C
34 2.73 6.46 6.*C
7.AVF"
«9
Z/IVi>
Z/.V£.
61
Z;.VE«
3f
liVte
55
2i\/E«
f>4
Z;VE-
23
Z1VE»
65
ZAVE.
f i
ZtvE"
14
ZiVE-
45
IAVE-
23
?AVE>
TJ
2AVE.
j;
22
2G
0
0
0
C
0
0
13
2
2
4
*»
5
0.017C
.64 (4.C* 64.64
C.623C
.V? 2C.59 2C.»»
G.15CC
.03 C.C* C.02
C.025C
.05 ?,C6 C.C4
C.0777
.06 C.£9 C.05
O.C23I
.3C C.56 C.24
C.G351
.78 1.C6 0.5*
P.325C
.98 1.2* 0.71
G.C34C
.16 22.77 22.14
G.025G
.*5 3.11 1.79
G.120C
.** 2.5.6 1.50
C.0362
.64 6.36 4.1*
0.0023
.97 127, «7 125. C6
C.325C
.88 7.46 4.29
N»/>(iS
T -T
S <
*
*
*
«. *-
50.
<: .
3»C.
52C.
53:.
i3C.
13CC.
zi?:.
z?::.
z»c:.
32CO.
'Source cacc£orle> footnoted by capital latter belong to the >aae facility and have been
aggregated for analyaie purpoaee.
{tSource categories indicate null potential neilseion reduction or docrcaplng capacity.
-------
Table A. 3. (Coptd.)
TiBtE 2
';-TE: 1 I\ RiTlr.G CCLM'> "Ei\S ;: *.-.TINC, ,ias SPECIFIED
PSlL-'iM/iajSCe
(1) (21 (3) (4) (5) (6> (7!
E-MSSH'J RiTES GaOiJTH SUFES EMISSIONS
EMJSSIC'; «LL-«iIi'.fc UNCCUT DECIMAL/YEAH IND'jSTPv C AP»C M » /P«C U'C I 11T, 1COO TONS/VE4* T:>.4/»t»*
K4TJ-.6 < UMIS E ; E P P UNITS £ BC T T TT-T
3 '; U B C i 5 S 5 V
SUIF-R 5!Cx;;E
tLiSS "G, 'it. ITS C.-:^1. PROCESSING) SIZE 73 . 23o2 TPI'IS / Y» ZAvE" C.C41C
IB/TCN *.4<>j :,:3j 4.4^0 o.osos O.OTSC ES TONS 1.47 0.44 i.st j.ei 5.7^ 1.97 33;;.
19 8:3"J-ltCI»tL IXCP E'iTIC'; < JDT/D SIZE 4 . 37501 nKS / Yd 24VE» O.OOfci
0.56: 1.8/TC', 2.5C", 3.033 2.500 0.0395 0.0465 £6 TOMS 7,50 2-92 3-45 5.25 7,C& 3. JO *iC3.
51 9: '.SE'.:' Di»v CCPP'8 Sui'i* (S-.:-T:':0) SIZE 2 3i 1 . 3?C9 T?t,S / ys lAVlm C.C15C ,
^.82: L3/TC\ 32.}.';:: 32.ID3 320.003 0.035S 0.014C E6 TONS 0.10 C.C? 0-C'l li.60 14,47 S.t2 JT.'C.C
IS i:^"I»E3 FL£L 8CI'.£"S (CCii. f. -(tfUSt) SIZE » 4 19 . 9')95 nr:S / Yh ZivE« 0.1200
0.52G UB/TCN 14.::^ 0.140 14.003 0,0395 0.046$ E6 TCNS 7. 50 2.92 3.45 26.25 3P.32 lfc.24
83 j:4Of<.'CAi «^c; 9UPns ro. IACIO SL.'LFITEI SUE i779.49o2io^s/YR ZAVE- 3.0634
r..»6C L9/TCN tl.OCC 3.153 61.000 0.031S 0.0 C ES TO::S 3.78 1.17 O.C 74.C5 76. C9 53.75
(SGui-.Irlt GLiSS) SIZE 9^, . 3i65lr.S/ YR ZivE« C.C524
20 4.J20 u.0335 0.034S E6 TUI.S 20.23 6.65 6.51 26. 6C 49, C4 25. IS
53 i!:5/-p»j.-!UCT cc<- :ve'i SIZE iS25.n99iTo;^s/YR z;i/t« 0.7200
?.?3: L3/TCN 5.7j: ...J23 5.750 0.0285 0.010S £6 TDiiS 79.27 22. 2C 7.93 Zll.95 233,14 2C6.91 24?;;,
13 C18E»PL!;SIVE 1*3 U£» EXPLOSIV;5I SIZE 29$ . 953913'iS / Yrt Z4VE" 0,0104
:.»3; LB/'CN 69.403 5.550 69.430 0.0455 0.094C E6 TONS C . B 1 0.34 1-16 23.33 57,29 16.39 4;5:0,
21 C23fJ5. C-NVEPSIC'. tTj CC^l iiS I F \ CiT [ ]-j SIZE » 1 £930 . 71 f>»T-'iS / Y* 14vE» 7.664C
:.755 LB/TC'. 6,42; 1.563 6.423 0,3 0.200S E6 T3NS 11.83 C.3 23.65 21.47 E:,tl 42,31 '3!;;.
20 :31ET-YL£',E SIZE lC66.6J43T-i-.5/Yi. Z£V£. 0.55 = 0
?.S23 L2/TC', 4.730 3.J1J 4.733 0.0305 0.07ic E6 T'J«S 2C.10 6.0C 21.22 3E.79 79,^4 27.32 5i^;3,
10 4S3I'IOUST«UL 8CKEBS < 1 3-253X 1 OS6 8TU/HR) SIZS 505 . 731 7Tr^.S / Y(- ZtvE" 1.1E3C
3.4J3 LB/E6 BT'V 1.530 1.503 1.930 0.033S 0.014C E12 BTU 20940 t91C 3U3 72C9. ilfi. B216. »77:c.
S3 5:S5CC'OiSY CC»P-i< Pi.i-T 38"l^.S/Yf ?.'AE« C.OleC
3.820 L8/'CN «73.0;; 57.503 870.030 C.035S 0.014C E6 TJNS 0.56 0.2C 0-OC 1»*.7J 229.55 139.61 t?"-::. C*
«0 AOaCKE'^ICiL hCCC INC. I iSSC) SIZE 2^33.7366TTSS/'Y'> Z£VE« C.C614
O.»40 L8/TCN tl.:;3 3.1..3 61. 000 0.0315 0.048S c6 TONS 5.67 1.32 2. £2 ltt.24 24E.V9 122. i4 litTCC,
20 Cl^EXPLOSiVE I»«C (rlCi- EXPLCSIVES) SIZE 1 1 43 . 53 157"NS / Yt ?JVE» 0.0367
3.*33 LS/TCK 75,3,-' .').rr.3 75.303 3,0455 0.094C E6 T'j'iS 2.j» l.JC 4.1"; t«.t4 22C.13 ti.57 l>7:cC,
'Source categories footnoted by capital letter belong to the same facility and have been
aggregated for analysis purposes.
£ Source categories indicate sr.all potential emission reduction or decreasing capacity.
-------
Table A.3. (Contd.)
;~'i: 1 !-i RiTif.G CC1.1KN "EiNS 'C
SPECIFIED
12) (9! <4> (5> (6)
E-IS5IC'. RiTtS GROWTH RiTES
(7)
EMISSIONS
6-issic'; ;,..:: ..iiis
aiTf.o < I^;TS E E
s
.;T;:SES :X::ES
43
55
44
44
40
43
43
50
23
25
50
43
30
44
2C
-::;£!: <
::2STi£(. FC
:.=:;
-;2=E=:::,c
^:;l!E'°L'
:.2:.= :^ i
:::c,-si'.5 i
::ISTE£L cc
:35 = *-n5-.c
C*»T^E-.e
:.%37
':^2:-Jit
i'-S'.JTRlTE
5!:J:3!="C
0.777
La/TCS 0.13'J 'o.lsO
J'. DRIES C?E'. »Ei5TH)
Lc/K'. 3.31: 3.310
L5/T:-, 1.431 1.VJD
55 *FO. PL; .T5 (TEXT].?
,.5/T:-. I.T.j 'j.-).,3
cjRl'.o ITU-. .,-._
-------
Table A. 3. (Contd.)
111
TAStE J
1 I.'i HATING CCLLMN ."£11,5 ;; SJTJ.-.G /<-S SPECIFIED
(2) (3) (4) (5) (6)
El'ISS!;, RiTES GRCdTM SAFES
ALLC'-i1'.? uNCJNT Di-Cl^AL/YcA'.
t E ? P f
S'-UBC
*0 5
«.o
*o
10
2C
10
*;
12
23
11
23
10
is
11
10
O.»50
X L-MTS
N OxtOES
= «Gi.tSS I^C
1980^1990
(7)
INDUSTRY OAPAC I TY/?*a:oCT J CN
UNITS A BC
EMISSI
iCOC TOKS/Vei*
T T
A S
NS
iNTS (liOOs. PROCESSING!
2.420 1.570 2.420 0.030S 0.075C
SUE 4J . 16a*TQ>lS/ Y« 'AVt« 0.0*10
ci TONS l.«7 0. TONS
13. 40
i7.5567Tj\s/vn
0.45 0.21 0.23
c.cojt
2.U i,C*
0.0051
2.2* 3.C2
fill 3
L5'T
L3/TCN
Ii. Jf.CIMSiTIC'. (I.: '.-RliNlC LlaulO KiSTc INC)
L?/TCN 15, OCO 0.150 15.000 0.035S 0.128$
SUE » 10U .9950TTNS/ YR ZivE. 0.12CC
£4 TONS 7.50 2.72 3.45 26.12 <-\.-~t
SUE « 2604.4219T-,«:S.'YK 24VE« 0.113C
E6 TONS 0.74 O.lS 0.46 4.9* 7. -2
SU£
E6 TONS
5.2500TT-1S/YH 24VE« C.OC62
7.JQ 2.92 3.45 6.3C 9.20
:Bf "L3S1VE IN: t
-,.83- L3/TCN
H/GiL
30.~'.0 2.110 30.000 0.0*5S 0.09*C
S;T!'_-. ( !'OjSTS!iL-CO''MERCUL )
l.JTy 3.6^5 1.370 0.039S 0.110C
r 3£'.SPy)
ii,i~~ 11.250 22.530 0.0 O.ll'C
SUE l'll5.(.oOT^^JS/'YR Z4VE« 0.0524
E4 TOMS 20.23 6.46 6.52 IS. 57 24,c»
SUE « 72.3600TTN'S/Y^ Zii/E. 0.01C7
E6 TONS 1.5* 0.5* 1.97 10.37 23.6*
SIZE 129. 2309T1I.S/ YR ZiV6» 0.010*
E4 TONS 0.51 0.36 l.lc 10.06 2', 76
SUE ' s .0*nl T3,->
£4 TUHS 50.50 19.1-;
17.9*
C170
UEL i'r.c'5 c.:*^ t H^USEI
LB/fTN 35.000 5.250 15,000 0.039S 0.046S
SIZE 10 J 3 ,74-,OT3\S / Y" ZivE- 0.091C
E6 GAL 2.49 0.0 5.17 2S..01 ifr.iJ
SUE **
t6 TUNS 7.50 2.92 3.45 65.62 '.i.ll
'J.450 L&/E6
0.540 0.033S 0.014C E12 BTU
170. 351913;, S/Y*
20940 491j 2123 1936. 2K5.
C'.:'TiTI3-iEP / P1PELII.E CC'IP'ESSUi* ENGINES
C.133 .B/P?C U'.T 63.55-! 15,133 60,5)0 0,0205 O.g73s
CC2STiTI3fit>Y If.TtKNAL CG-BUSTTP! ENG I NE S ( 0 I ESEL C OU4L
0.530 LB/TCS 179.000 123.000 179.000 0.033S 0.0285
SUE 1 38 . 3999Tr)NS/ YK ZAVC" C.004C
t6 Pj 5.55 I. 11 *.C5 151.10 261.40
SUE « 1 19. 3929TONS / YS ZAVE- 0.0023
£6 TUNS 2J.52 6.77 5.75 lfl'5.19 1363.**
1C'.»'V£i«
TI-T
N S N
2.3* 7;C.
2.2* ?;C.
1.57 l«CCi
39.15 i
-------
Table A.3. (Contd.)
* ; 3 L c 3
ill ( 2 i ! l ) C.) 15) .3) 171
E;'issi3'i RATES r.RnnTH c^rss EMISSIONS
UN.'IS <-. : ! o :> JNITi :. > '. T T T
i . J 3 : A S N
£5
t-ICi- ?X = LCS!^E3) SHE « 19i 1 .52 T'^T-.NiS / v« ?.'.Ve« 0,0367
:.ii: L'/TC.-I 12').;/:- j.i^i i2e.jJO o.o<.is J.o
o
-------
TABLE *
Table A. 3 {Contd.)
."£i\S NO Ri.T;NG >liS SPECIFIED
»»*!> G K
O 3
20 S
20 t
:: ?
70 ;
90 f
** s
** C
liSsHtLT
:SV.T-ETI
.593
i
0''.!TS
I^Tcl;5 "":
L3/TC-. ' *'.
2 j :3i
E-ISS:.'. «A
E " E
5 'I
25C " 3.253
(ST/i*i:'.E-i>J
2JC 3.133
,»I3 L3/TCN 1..7:; 3.1-.7
.35C
ij,!-'"-'";':
!l3C " L3'TC». ').
2TE«TILE
.363
I»3C
2P6»:c:ic
*3 ;iOC!JS!\G t
c.«:o
*» snc'j«:*ic t
G.«00
20 C2JP»'»«HC
o.9*e
*J D12CVM-.G C
o.aoe
MF& (-EJT 5E
L3/TCN *.
K!L>. IGiS FI
KILN (CCn F
FIRI'.O (Til',
IS/TCN 0.
FIRING (TUN
L%/TCN 3.
i'.i-YC=.ICE PL
L3/TCN 13.
FIRING (TJ'.
LS/TCN 3.
20 C*3ACfTCN£ (CVAN-t-vcsn
0,100 LB/TCN 2.
10 80J"U'iIC!PAL I*CP>E«»TiC
3.563 LB/TCN 3.
li. (12^:
iS PB""J. rLAI-
5C3 3.033
TTJNG/FINIS^I
Ti.y 1.7*0
i:c 3.3
<>",- 3.3
'.EL KILNS-GAS
320 3.0
:EL KiL'iS-oiL
ice o.;
3:3 3.1:3
l») (5 )
jNCStrr OECIHAi.
C P
J B
O^.^O 0.0*25
TZDJEN6) (SBR)
*.233 0.0 S
1*.7'30 0,0
2.3iO 0.039S
TS (OIL [ GAS P
0.6J* 0.0
15.800 0.0*25
0.100 0.0335
0.0*0 0.0335
1,-JOO 0.0335
0.323 0.0335
FMEDI
3.103 0.0335
LfcNC ^RQCESS)
13.333 0.020S
.EL Ki.'ii-cu-L FiKco)
430 0.3 0.3 0.0335
033 3. 323
'. < 50T/3
22C 3.313
2.030 3.0305
0.220 0.0395
/YEAR I
P
C
0.0*5s
0.0 C
0.0
0.110C
o.o'
3.081C
0.3275
0.027S
0.3275
3.0275
3.327s
0.3 3
0.027$
O.J60C
3.3*65
(7)
iOuSTK/ C-PACI fY.VRUS'jCTiQN
UNITS i ~i C
E6
c'6
E6
CO
E6
E6
E6
Eo
£6
E6
E6
16
£6
c6
ts
Source categories footnoted by capital letter
aggregated for analysis purpose*.
SIZE
TON?
SIZE
TONS
SIZE
THNS
SIZE
TONS
SIZE
TB.JS
SIZE
SIZE
TUNS
SIZE
TUNS
SIZE
TUNS
SUE
SiZE
TUNS
SIZE
T1J.JS
SIZE
SIZE
TU'JS
3IZE
Tf.-,
belong
nir.s toi
3.
6.«.7
2.37'
o,-.»
50.50
*99.76
' 41.
i.ia
2. :>*
7.<6
O.S1*
0.
22.''*
« 1.
6.12
3 )«.
0.19
0.
2.0*
119.
'1.3 8
0.
'.50
25'JJT v.S/YR
2.72 2
*3.T 0
O.T 0
"^'^S/12
3. 3 0
32i3TT,-,s/Yk
3. SO 1
/ ^7 3
* 303T ]'4S / Y>i
2. '.9 2
3.17 0
2333T JNS/Y-:
7.57 6
0030T TiS/YS
2. 32 1
23V3T r.S/v^
j.".. 3
U Ty.s/v,
3.S7 3
T^j'jr^.'iS/Y^
t . \ 1 0
2.12 3
to the same facility and
reduction or decrcnnlnf,
EKIJSKKS
T JT~ T"I!T
« S N S '
ZivE"
.91 fi
ZAVE»
.0 J
0 2
Zi/C»
11 27
ZiVE"
0 199
.39 2
5i 3
.3- 0
. K 3
ZiVE«
.19 0
Ziv£.
.*i 3
;jy£«
:a /£
. i5 3
.1? C
-------
Table A.3. (Contd.)
I. -"El 1 I'. BATING CClt..'-
:.'}: i.;/'Cs 7.c'.: 0.110
*: ::^: = E»:,iss .-FG. ;L.^S ..r:. >;cc
;.T.t L3/TC*. 2.4.CO 3.323
'5.i:o L3/T;-. S.76C 3,075
10 ;-6"ixE: F,,E'_ »:;L£'S .iccii. t »£FJSE
:.5:: IJ/T:>. o.?;i o.o
;.^30 L9/TCN 9.CC-; O.S'JO
30 :,-e.-iiS0 0.0205
7.500 0.005S
)
0,900 0.039S
9.000 0.033S
O.COJ 0.032S
2.020 0.029S
7.210 0.030S
36,300 0.0305
P
c
0.12BS
".120C
0.0*SC
0.0*OC
0,0*65
0.0281
0.090C
0.040C
0.0*6S
0.050C
0.0605
0.320S
0.060C
0.060C
INOuSTRY CiPA
UNITS
E6
c6
66
E6
E6
CO
it,
E6
E6
66
66
t6
Eo
E6
S!iE «
T'J'lS
T^s' "
iIZE
SIZc
T : ' t S
SIZE
TONS
SI.:E
TU :S
SUE
S ! .' E
TU'.i
TOMS
SIZE
Tons
SIZE
TUNS
SIZE
GAL
TONS
iU'E
TOUS
SIZE
TUNS
A
2
1.1*
2^5
*S9
0.1*
0. 11
7 7
7. SO
1'ifl
1.-.7
73
O.al
0 . '>9
27
7.50
153
0.45
13
1633
>.:%
0.79
O.lfl
3 I
0.5* !
.0'_3T'V.S'v :;
3 OS S.
.'J99?T-:',S /Y*
003 0.
,99?5TT!S/Y^
00^ 3.
2.72 3.
O.J2 0.
.39-J2TG';S/Y'>
0.'.* 1.
.'>)V*rT,S//\
0.12 0 .
.9-393ry:S/Y3
OOb 0.
,0030TT,S/Y.<
2.72 3.
.11:>OT j-iS'Y*
J . 1 5 0 .
.6012T lNj/y<
,ib lOT TVl«
0.1590
1.S3 2.71 1.75
0.1200
1.71 2.*« l.St
0.3410
1.5? 2.CJ C.«J
3.3*10
2.12 *,37 3.27
0.3655
3.70 1.63 O.S7
0.1970
2.27 3.37 2. It
0.1205
1.09 2.*» 1.03
0.0*10
1.59 2.76 1.19
10.3330
>.. 3. 1.
0.0777
7.65 9.1» 7.LS
0.0699
2.23 *.3« 1.62
0.317*
2.53 *.)3 l.SC
T -T
S f.
MC.
MC.
f?C,
::cc.
iKC.
i
Hoc. ^
1JCC.
itcc.
i.cr.
i'.CC.
25CC.
27CC.
esource cotccorlcg Indicate r,:-.all poticntinl cmlcsion reduction or decreasing capacity.
-------
Table A.3. (Contd.)
TA31E *
TJl I l'I P.AT1NG CC'.wMIl -Ei\S "u RiTjt.o WAS SPECIFIED
T4NT/$3o«CE
(1) (2) 1)1 <<)()) (6)
(7)
4'
23
23
23
20
23
23
S3
23
23
23
13
21
*S
23
23
EMISSITI SITES
EHISSICN ALLC'A3LE UNC'JNT
rp;G K UMTS E E E
S 'I ij
12-CETi: iCID C'ETi-iNUL)
:.930 IB/TO 15.000
5.930 L8/TC'. 1.640
^!J?rS4N '"T:^T5.70o
C424CETCNE ( ISCP»CF»\Dl, I
"..?:: L9/TC'. 13.050
C33°-E'iCL 'LA'.TS
:.«7; I.B/TCN 4.4iC
S;!.^y|T'PL^m ,.2 = C
o.'l'j la/To o.oc:
C»3C1»5-'' Tf TPiC-TaiCE [CiSfl
r.530 LB'TC'. 32.00':
AlliCETjc 4CIC (iCfi^'i^r:;?
O.»03 " LB/TCf. 32.000
i-.3:-icJST»i4L ecuE's (10-25
0 . * 5 ', '. S / E 6 * T ' 0.3,3
C'.3i JMi 'W'^TS
".si: LJ/T;.'. J.9JJ
?!.?r*LT L"TC::° (e3r;lo01
C?3**4V£IC 4NH/C8IOE
0.1-3 L3/TCS l4'.5"0
S39SY';Tl.ETIC FIS£5 IKCJSTSy
3.833 L3/TCN 7.--;
0.15C 15,000
a.:is 1.6*0
0.075 7.5UO
0.130 13.000
3.343 4.*ltO
0.120 11 .700
0.000 0.000
Tl OlSULFIDt)
0.320 32.000
3.196 19.620
PA'ic)
3.320 32.000
;*1::C6 3TU/fR)
3.0 O.OOJ
0.0 0.900
0.163 3.6VO
2.*23 2S2.00n
3.3iO 7, []00
OECIKAL/YEAR
P P
B C
0.020S
0.0*05
0,005s
0,0305
0.0305
0.058C
0.050S
0.030S
0.0*05
0.0305
0.033S
0.0365
0.0*25
0.0305
0.0*55
O.IOOC
0.055C
0.104C
0.060C
0.075C
0.0205
0.0*6C
0.06'JC
0.080C
0.060C
O.OlnC
0.03*C
0.0*55
0.0**C
o.oavc
EMISSIONS
INDUSTRY cApAciTY/pRa!)uCT;uN 1000 TONS/YEAR irsi/Yca*
UNITS 4 1C T T TT-T
A S N S N
SIZE
E6 TONS
SIZE
E6 TQM',
SIZE
£6 TatIS
SIZE
E6 TUNS
SIZE
E6 Tims
SIZE
E6 TUNS
SIZE
E6 TONS
SIZE
E6 TONS
SIZE
Ee Till, 5
SKt
E6 TUNS
Slit
E12 3 Til
S i 7. E
E6 TIJMS
51 Zt
t6 TuliS
SIZE
Hi Ti:iiS
S!it
to TUHS
« 509.9995T3NS/Y-* Z4VC«
0.?9 0.10 0.**
« 2'i9.44J6T.]'IS'Yi' Z1VE.
3,-)7 1.47 2.60
0.77 ""30* 1-30
353.5"96TTNS/Y^ Z.'.VE"
O.fiO 0.18 0-*-j
2?.7.U351TT!S/'Y« ZAVE"
1.40 0.42 l'*9
2. "'7 2.1'j 0.5.--
3223J 161'«1 1H3J3
1250. 551* 1 rrj'iS/vl- ZAVE"
0.37 0.11 0-29
525.ol5l
20^5 . 99'J^T 1'iS ' YK 'uVE.
0.17 .:..i;i o.ov
'.. <4~ O.S3 2.*.'
0.0950
1.66 4.31 1.36 3rCI.
0.3390
2.71 4.43 1.6* 3::0.
3.C574
1.7S 4,31 1.74 :::0.
0..0690
3.13 5,60 2.22 34:3.
0.1165
2.73 5.62 1.95 37.-.S.
'.»5 5.53 1.26 *;::,
151.2*33
i, 7. 3. »6CC.
0,0977
*.72 a,*S 3.36 51C3.
J.3S70
i.i7 7,71 2.2C 55:3.
3. 1010
5.2* 9,38 3.72 5?::.
1.1833
13. is. », ;2::.
J.iSt,8
*.»3 ia.29 s.«i t9::.
0.1325 ..
V.55 13. SJ 5.9
-------
Table A. 3. (Cnntd.)
Tt?t E *
',;"£: 1 I'l = 4TP.6 CCLLHN "E.WS '' *iT|NG J.-E
. = :: LVT~N ;7.5oo 0.173 17.000
2: :-:Z--~~i. ^e1.;^^
-.. = :: Li""- '>.?: 0.053 5.000
".367 L e ' G A L 1».2"-'J 0,240 24.200
23 !. JSCiS}''. UTi AO,.i:a ICE fETrA'il.)
-.«;; LS/'CN 5'>.c;r .0.300 3&.-TJO
.. . ,-,;.,T:..; ;..,. :.i- r j
"-.-13: .;/:% -).-,:: 4.1-, 3 120.300
2: :---.: '.-. ;c;.. PL-MS
.Co: Li';:'. 42.7-.0 ...J»3 42,700
63 ~:4P,T,M, ID. ( 8 L ^ i* * 5 , -Ea'^I i « L S ) LUADING
C ,-iZ 15, 'GAL ') . " 7 ; j.:c4 0.357
-.f3: .o'5".'. \l-i.-.\-. ..?.-- i20.300
23 :3:fHYLE-.E
'..»2S 1.S/ICN ;.49". 0.330 1.490
23 rj5ET-,YLE'.E GLYCCL CESIv^O rp;j-< ETHYLENE axil
-.a:: LS/TCN 34.9;: c.3',9 34.900
23 i-.-CY-.U---'/;'.!
.;;'. i.b/i:». 20. ^io 0.200 20.000
".65: L3/";s 4c4.i::o 4.300 484.000
20 C32"E**-A'OL PLA'.TS
3.S33 L3/1CS 10.01- 0..^3 10.000
25 =:3P:.*ETMYL£'.£ <-iCf .'):. SITyj
..C33 IB/GiL 7. 400 0.5V1 59.20T
2S C15«A»>-!Sn
0,855 L8/TCN 34.9SO 0.679 67,900
GROWTH
P
8
0.030S
O.C30S
0,0065
0.030S
D.045S
KATES
P
c
0.060C
0.370C
0.082C
0.060C
1.050C
0.01SC U.040C
Ti'jK TPUC^$/RR
O.OSOS 0.335C
0.033S
0.030S
)E
0.0305
0.0305
0.0235
0,0305
0,0
0.0675
0.050C
0.075C
0.035C
0.070C
0.0255
0.050C
O.U»C
0.026C
UMTS
SIZE
E6 TONS
SIZE =
fo TL3:iS
S* T F
i t t "
SIZE
E6 TOMS
S I .: E =
Eo TU':S
SIZE
E6 TONS
E 6 GAL
SIZE a
E6 T:r:S
SIZE
it> TONS
SIZE
E6 TONS
size
Ee T[j:;S
C f J C. t
j t - C "
£6 TONS
S IZE
66 TUNS
siz:
fc6 GAL
SIZE
Eft TtJNS
1
A
779
1.26
1539
3.1)5
4!o{
930
0.-.6
,,2
0.54
2U7<,
0.96
337.10
1^7
135
20.:'0
20"3
1.4H
lli'O
1 . ' 7
J75
0. 17
1255
4.*«
2f)3
2.49
1"!
1.-7
H C
,h3I)2Tn:1S/Y-
0.3P 1
,99'/3" V.S/-.-
1.15 3
0.2C 5
,23;IST5':S/YK
O.JO C
.52T2T,,.,s..yR
0.^5 0
,7',13T-;.'.S/yk
0.15 0
26%.->>> 1*6
D.-1V 0
.yf).«ur;';;j/Yt
0..-10 tl
,9e?oTTiS/Yli
0. .4 0
,49rtST-;:.S.' /i.
u . 4 ; i
O.T. 0
.9995T-;r,3/YK
1 .37 2
.SJiU TririS/YK
0.0 5
.^2ilT^^:S/Yr
O.oj, 0
]
A
Z A V c
.00
i.'.Vf .
.7,:
.5'"L"
Z A '/ c
.52
;A /n»
. 34
' A V c »
.46
5n
;7
7. -.VI:-
, <*2
.' A V fi «
. 01
U', E«
.>:
7 i V t
.04
ZAVE«
1.1
z:.vt«
17
ZAVE»
.41.
m n T
T
0 t
*.?7
j (
7.70
1.39
3.
'' . 4 3
0
1 o . d a
0.
1'.59
11.17
n.3o
0,
12.23
C.
2 J.oo
0.
U.32
Q
34.97
0,
1'. .33
0,
9.21
0.
21.80
!"I!?S'3NS
T ' T " T IT
S N S '.
1055
15.07 e.36 4?:0.
7710
15, 1 5 5.>.9 '7;:,
""3. .6 6.49 ic:::.
0545
io.92 6.72 1:2::.
0309
.7, =8 7.14 US':.
1130
26,54 14.76 113::.
2200
14. 21 2.66 ;ii:o. >
1
~j 7 3 j W
2:«id 9.C** l*-^Ct»
55:0
25. Id 1^.24 129CC.
1500
29,1-. 14.61 1-5::,
1245
2'.. 24 8.76 li'TD.
- 0 1 9
43.71 27. C» lti:3.
>140
29.32 12.98 163:0.
0910
21.36 13.7* 17i;3.
:)066
28.27 7,61 *C7;0.
Source cntcCorics Indicate Enuill potcntlnl emission reduction or decreases capacity.
-------
Table A. 3. (Contd.)
TiBuE 4
;"£: l it. RiTRG CCLLMI: -ti-.s a:' ;sT;f:G »iS SPECIFiEe
.iLfi'lT/iCL.SCE
111 t? < !3) (4 ) IS) (6) (7)
Ef.lSSI-^': siTES CC,Oirti< RATES EMISSIONS
E»ISSIC'. iUC«-iLE UKCCNT DEC IMAL / YEAR IMDUSTR* r aPAC I TY/PRCJPUCT ;UM 1030 TONS'YEiR T~N>/rri5
K UMTS E f. 19? UNITS t BC T T T t -T
S !i ij B C 4 S N i \
70 E-.ZCS^E OH t IJtTL^ii Ofi Pa CD. i>Li''TS !!;.iTjpa|. GAS PROCESS.) SUE 2:> : 0 . 7<>K6T'.'.'.S / YO Ii\.r« 1S.656C
;.!*C '-3/"N 0.561 D.:CS C.501 0,035S 0.0 Ei TONS S^li.cl ZOO. .,6 O.U 1*0.3* i*r.i» 91.66
61 «-Zl'i:-J$TBU!. SLSr4Cc CCiTtuc (MfT»L COILS C04T!NO> SIZE 73f,3 .05CbTnNS/ V* ZiVE" 2.771*
",»20 L8/C4L 5.3*C 3.32D 6,*dO 0.0*25 D.079C E6 OAL 15.36 6.5* 17.W2 3<..0/ 72. ZO 22. id
29 C-7E T-VLE'.E DlC-LTRICt PL.i-.Ts I -XYCWLOR I tiiT ICN PBOCES5) SIZc 5<)V 1 .'.^<.'^T-1^S/ vl :ivf« 0.3222
1.i»S L3/Ttr, !«.<>-; ;.:«.3 53.900 0.0*5S 0.090C E6 TONS *.'.9 2.-;2 6.1- 3S.30 71.33 '.3.22
JS 3:!iSsl» Pa;'E5S!M fttMS SIZE « l-JG.JC'/OTlliS/YK ZiV£» O.C431
:.si; LB/^fi; »-.T n.%:o o.:o9 ic.^'io o.o*os O.OTOC E6 PJ io.;o '<.i* «- *>.59 o?.7i 27.36
»i e:zr.;us*»Ui. suafict cciTjno (L^RCE APPLIANCE COATING) SUE « i7'..o2oaT-!f.s/v^ U'.L« o,r,655
;.<2D LB/GAL S.3»0 3.0C5 6,*>)0 0.n*2S 0.078C E6 GAL 19. M 9.]9 21.84 *2.72 90.52 25.54 6*T.10i
23 c:3Ct»83N BLiCK (F^.P^;CE P'TCESj) SIZE JS;-2.9i76T7:,s/vr :.-.vF« 0.. 630
",«2: LB/TC-, ici;.::o s.is; IOG.OJO c.o*ss o.ozsc t& TG?IS z.i6 :."* o.t^ 9r>,73 123.34 53. 2? 7^^:D,
62 :2:p.".w5T»ii1. ScSfAC: CZilJI.O (-'-TJMOSlLES) SUE 1845.71o.iTnns/y, ZiVE»
O.'IC LB/CAL 5.3".; 3.313 6.100 0.0*2$ 0.029C £6 GAL *2.<>0 17., -.9 it.lc lC3.il 137.76 6*. 55 73^:0.
50 4:s»v.»»3:uCT c:<; cvfi SIZE zat^.iojorn-.s/vp ;.VVE. 0.7200
:.*3I L3/TCN 5.98^ O.D<.2 5.9HO 0.02BS O.D10S £6 TONS 79. ,-7 22. ?0 7. 03 22^.^3 J*'.*/ 159.29 S3?::,
20 C2!3!>/ETWyt TCREP'-I'-iLATE PLillTS SUE « 53< ft . *9: iT-y.s / Yh 7ivC- 1. 3*30
?.»5C i.8/T;r, 37.;JC O.j70 37.000 0.0*5S 0.090C E6 TQtlS 2 . ; 5 i-33 *.35 *fc.3-) 15r/.62 20.36 035:3.
tO J3*i!>i»>'IC A9TS I'.3(.STRY (CRtVJ'E) SUE 3; 4 . 32 3 7 r r,:"
" 1 1 5 -
O.C77
o.:
0.',
';"::
3i,310 0.033S 0.028S £6 Tli:.S
JM PROP. SYS. i si:;.
C.C60 U.021S G.Ot4C Ro RHt
." 0,?C'.' 0.021S 0.u44C i',» f-HL
20. V
54H,
6o4r,
6"-3*
0.7'
,U7,:3T-t.S.
1*3-,
.-3-,
5.7S
Yi- Z.WF
--7JJ
:--r>2
166.26 231.41
21. *933
174. 2-3.
2.'-. 3-.o.
124.79
139.
199.
H4;;o.
«».
!47::-.
'Source categories footnoted by capital letter belong to the same facility and have bean
aggregated for analysis purposes.
{(Source categories indicate small potential emission reduction or uccrc.iaing capacity.
-------
Table- A. 3. (Contd.)
T431E *
».;Tlr.C CCli.)'-. -Ei>.5 - '-TING *iS SPEC IF Iff.
SCE
12'. (>; ( * )
E-ISS1C'
-MIS
Of.C"'TM *.STE5
C',1:'' CECl'14L/Y6iR
t P P
JBC
(7)
IUOuST«, C4PiC : T Y
UNITS -
TCMS'Yc.1*
T T
5
N
T -T
S »
22
23
i-i. s_a£tcf c'ji'i's ?;;,', t- ,.:se CCATINOI
-j.Ciii. 2.32: a.;65 2.32:) C.O»2S 0.078C
cxvc,:1. :xi3iT!-j'< PROCESS)
C 0.'-3'; *3.000 O.OSOS 0.040C
72.313 0.721 72,000 0.0335 0.120C
r>"E"-'Y.
''l.'.j'
'-;, = a -PYi.
7,75;
L^.IC^.
-J.21- 20.770 0.045S 0.090C
j.*3o «3.o3o o.osos O.TJOC
;.125 HZ.^UU O.OSOS 0.060C
lt.i-r J.»2 19.200 0.030S O.OiOC
-s^4'.c.i E '
'.';.i?^ :.0.17 100.660 0.030S 0.360C
E7o ::iL C.'SIFICITI ..;.
S.17. J.CoB 5.l70 0,0 O.JOOS
SI:E
66 Git
S::E
E6 TONS
SI'E
E6 TQ-IS
SIZE
66 TCNS
ft TONS
(7
1*.?9
.9:311'';'. S/Y* :/.VE»
6> . ? 1 i(j.5i
0,071*
1-.C7 2'^
0.95
o.:>*'
12-.9.
0.' 7
?1"7.
0.--6 0.-lY 1
L5/Tc^. I3c.c..o;: 23. ',-.3 noc.ono o.o*5S o.osoc
.
J7.9CO 15.2J3 38.000 0.028S ».027s
173.77: 1.740 173,770 0.030S 0.060C
li'k' !LE"TEr.»c
8»~r,E Tiii'.^rEK, r,iS. t C5JDE U I L. )
O.If>7 'J.301 0.067 0.028S 0.0*1C
SIZE
to TONS
E6 G4L
2'.7
0.07
S25
7,io
55(-o.
0.(.0
53
0.15
l.,<,
* . 5 1
0.; 23.65
.1C36T-v.S/YR 7.iv't"
y.o3 o.o1-
.25'/OTciri5/YK 2AVE-
^?.07 2.00
632.iT--,s/vi-
o.'«7
, OSoCT-v.S / Yr ZiV
o.r>7 0.39
»i99r^l.S/Y^
10'3
C.0520
.63 31.35
1-.25 33.73
0.1570
15.95 37,75
0.07i2
25.31 »5,33
0.1929
3-. 53 61.33
0.0355
3*. 71 6^.17
7,63*0
22.93 ftj.73
3s.ni 63.22
0.0356
USi.Ol 183.8*
O.DSOO
0.0032
*4.9* 73,20
0, ;500
2«.73 60, S6
"2.
6.77
3.78
6.72
8.lC
11.'. 3
17.«»
24. 5*
2*.68
23.46
22.18
121.35
29.65
27.1*
21:;3.
2Ji;3.
2f):3.
273;3,
J7>;3,
17»:3.
J5333.
*l::3,
".25:0.
*5:C5.
*iio3«
->< Source catf^oricn indtcatt c^i.nll iiotcnti.-il emission n-JucLion or decreasing capacity.
-------
Table A.3. (Contd.)
TiPlE 4 'oa;,-l990
,-TEi 1 If. RiTIf.C CCLU"" ''Ei'.S ''u SiTit.r. »;4S SPECIFIED
(II (2) (3> (HIS) (6' (7)
E'MSSIC!. RiTtS GROftTH RATES EMISSIONS
EHISSICN iLwr,,ir.i.£ yucni1 DEC M4|./Y5i» IMUJSTRY C4P4C I T * /pSUDuC T [ :JN jOOO TONS/YEiH
»4Tl ,0 K U'lIIS ? £ E > P UMTS 4 a C T T" T
S"'JBC 4SN
t* 302i'.:.s'sUL s.afiCE cciTi-.c iF^eRic caaTno) SIZE > 5^^.a2s:TT.S' v^ zivt« 0.3237
.c21 L5/5'L S.jc.: 0.2*3 6.<.lJn 0.0*25 0.07SC E6 Gil 51.^0 21. SC ->8.0" Ii3.t>3 2".-).Sl 7*. 42
21 C'.lET.VtENE 3. 20 2J3.0* 2i*r;o,
7C :;3'?->:L£o:' PEF:\£!-V n;s; [p^:;f.cSS UNIT TURK) SIZE » 27'.o.3.ss?T r.S/Y» ::.VE- Jl.'.rjo
:.s;: La/aisae. :.«-; :.c;s O.JDC 0.0215 O.O'IAC at &BU oB'-i 143-, ^73? 5.ik, 9T3. 473, <.3;i;;?. N
63 BCJI'OJSTsUL SLRFiCE CCiTlNC (PuPER CC-TINQ) SIZE 1 57 j , . ot'.JTn'.S / YK 7.uVE. 5.5130
0.823 LB/04L 5.3H 3.260 6.A80 0.0<>2S 0.378C E6 GAU 202. ?3 5*. 96 226-4P 4*2. B7 93-..5S 290. C6 64'rCC.
iRY ISTERfiL CC''5i.'STI^'; ENGINES (SP4R< IGNITION) SIIc » 376 ,7i>? sT^MS/Yf. Z.WF« 0,?232
18/TCf. i6.::.: O.:; 56.000 0.020S O.OSTS E6 TONS *1.19 d.Js ->5-8<. 663.93 125:}. 39 535. 1» 7:i-;3,
62 B33i1.:'.S*aiiL SvRfiCE CCiT;i,G (CiL. CC'TINj) SIZE 152 79 . 1 3i 3T,-]NS/ Vh liVE" 7.7500
0.625 LB/01L <-.790 0.530 A. 790 0.0*25 0.078C E6 G4L 273.25 li'-.''* 3C,5.8<. 53ft. 64 1137.27 319.87 clV};3,
*Sources categories footnoted by capital letter belong to the same facility and have been
aggregated for analysis purposes.
-------
Table A. 3. (Contd.)
'.CTEl 1 I': RiTING C^L
Llt^iNiT/
! 1 )
"Eif.S NG SATING >;AS SPECIFIED
12) t 3 I ( ' ) IS) ( 6 )
E-'ISS!':'; R4TES CRa^Trt RiTES
E'':SSIC'. 4L;.Ccr.E°iTic-, < SOT/:
:.54c LB/I:^. 35.;:; 35.;:o 35,000 0,0395 o.04&s
43 DIOCUSI'.G t FIRING (TU','EL KIL'S-OAS FIP.E3)
C.SOC LB/'CS 0,040 0.043 0.040 0.033S 0.0275
43 CiZCUPlSG C FIRI'.G (TUNNEL KILNS-COtL FJRfcO)
:,SD3 L3/TCN 1.9CP 1.900 1.900 0.0335 0.0275
13 4C7"!»EC FUEL »CILE»S (GIL e ^rCSE)
1.S5S LB/TCN 17.003 17.COO 17.0GO 0,0395 0,0465
10 ACS'IXED FUEL BCILEPS (C04L L R^FJSt)
C.530 L8/TCN 13,000 le.'JOO 18.000 0.0395 0.046S
*o DI*FJBERGLASS *fz. PLANTS uoai PROCESSING)
:.8JO LB/TCN 2.260 2.240 2.2*0 0.0305 3.075C
l?"« (INL) ORGANIC LIQUID WASTE INC)
,350 0.0 0.050 0.3355 0.123S
20 C33PM£NOL PLANTS
0.370 LB/TCN 0.480 O.C05 0.4iJO 0.030S 0.075C
12 e"4lMS'jSTRI4l
0.900 LB/TCN
\iDuSTR» CA"4
UNITS
Eft
Eft
Eft
£6
Eft
Eft
Eft
tft
Eft
Eft
Eft
Eft
Eft
Eft
Eft
SIZE
TUNS
SIZE
TONS
SUE '
TONS
SIZE
TUNb
SIZE «
TUNS
SIZE '
TONS
SUE *
TONS
SUE
TONS
SIZE
TONS
SIZE
TONS
SIZE
T3NS
SIZE
TONS
SUE
TONS
SIZt
TONS
SIZt
TOMS
CITY/D
i
10452
13.44
3 '3 3
79.27
34
0.46
4)3
O.'.ft
1
7.56
32
0.51
27
50.50
61
7.50
0
22.94
19
2.04
509
7.50
539
7.50
39
1.47
0
1.54
24
1.40
RL,CUCTIL:\
3 C
.4922T
0.
22.
,95;>6T
0.
0.
.1,001
.OOOOT
0.
19.
.249ST
'i.
7.
3.
2.
.9993T
2.
a.
.2412T
3.
.32521
0.
T'S/YR
0 -2
2.-- 7
14 0
"> 0
l?"\
r'S/Yl-
17 0
^s/v;z
12 3
57 (x
*7 0
92 3
92 3
44 1
JNS/YK
54 1
r-S/Y*
42 1
1030 T
T
A
ZAVE"
.4? 15ft2
Z4Vt«
.53 93
Z a v c
.42 0
z v/t.
" 0
ZAv'E«
.04 3
ZiVE"
.14 0
ZiVE"
.H9 61
Z1VE«
.45 73
»19 0
Z4VE-
.55 1
.45 31
ZAVE"
.45 33
ZAVE"
.56 1
ZAVE"
.97 0
ZAvE»
.49 C
0,
.43
3.
.42
0.
.39
C.
.61
G.
.65
0,
.27
0.
.5C
.37
0.
.55
.67
C.
.75
0.
.41
0.
.03
0.
.2'
FMSSIGNS
^S/vca* T"^i/YFi«
T T T -T
S N S "-
0900
I2ei
7200
ICft
3*10
2295
0
0250
C
0250
0
3170
230
0062
107
025C
0
0250
1
12CC
46
120C
49
04K
2
0107
t
1165
C
,17 1553.40 -27£J?3,
.26 10S.2t *
,75 0.7J *
,S1 0.81 *
.42 0.42 *
,:3 0.63 *
,7» 230.76 *
1
.31 1C7.31 * 00
,47 0.47 *
,97 1.97 *
.54 46.54 *
,27 49.27 *
,Sl 2.bS> :C,
,CB C.C2 6C.
,tO 0.21 390.
-Jj Source categories Indicate snail potential emission reduction or decreasing capacity.
-------
Table A. 3. (Corrtd.)
T4BIE 5
!.--(: 1 .". BITING CCll.««. ' Ei-.S :c siT|HG BiS 5PEC1PIE,;
tLvTi-.T/sa^RCE
( 1 ) (21 ! 3 ) ( . I ( 5 ) ( 6 )
EVISSI2'. R4T6S G5CWTH RaTE
tuiss;:'. i.'.oi^E jf.c.::iT csci'iAi'/Ei
Tp.G < UMTS E c : P P
5 ' U S C
UNITS
fMSMCNS
icoo TOS/>E;&
1 T T
S M
iiltCtTIC 4CID (iC£TiL.C6-VDf)
-.30C IB/TCN 4.C4C 0.040 4.0'«0 0.0*05 0.080C
.
:."/i- LS/TC\ ;c'..c;: i.c.j 100.00: 0.0205 o.o s
3"2i^»"il.T PG"?INO (6LC,.P,0)
j.a:: LB/TCN 1.5:0 o.ou i.soo 0.0*25 0.0455
C07ETr.yLc.':E OIOLrSICt PLi'-TS (C» rCt-LdR 1N4TION PROCESS)
:.i«" UB/T:S 1.3:0 o.cii 1.300 0.0*55 o.o9oc
-..5;: L
C.6C-i'CQil.
24.COC D.2-5 24.000 0.030S 0.060C
320. OCO 3.2'JO 320.000 0.023S 0.025S
25
25
20
20
25
11
10
25
20
C'SiCiTJC Lt.~iC«l-t
C..«:: L3/TCN 21.903 0.2-19 21.900 0.0305 0.060C
PLi,'.TS
IO.OOD o.ito 10.000 o.osos o.osoc
ii4CYCi:*£X4>;E
"-.93; L3/TCN 25.000 5.250 25.000 0.030S 0.070C
«CIC PLiNTS
C.86: L3/TCN 115, 003 J.113 115.000 0.015C 0.040C
".65! L5/TC'. i:i,47s 1,115 111.470 0.0305 0.060C
C:lSTiT;-'.ES/ BIPSLlKt C:'-.P»ESSL;. ENGINES
C.900 L6/PPC L'-T 29.350 9.540 29.350 0.0205 0.073s
i-3I'.;uST5 UU BCItE'S HC-2jOXKc6 3TU/HP)
0.45: LB/E6 6T^ C.C32 O.C 0.032 0.033S 0.014C
0.600 L6/TCN 1340, OiO IS.ftiJO 1560.000 0.030S 0.044C
co8f;;><4i.;EHYC£ Pi.4fT5
0.9CO L8/TCN 15.670 0.157 15.670 0.0*55 0.09*C
S I ; e
TONS
SIZE
E6 Tons
SIZF.
£6 TCINS
SIZE
id TC1-.S
SIZE
E6 TOr.S
SIZE
Eft TONS
SIZE
TGNS
SIZE
E6 TONS
Eh TG!;S
SIZE
E6 TC.'.S
SIZr
S I < £
E12 »Tu
SUE
66 TONS
2 7 1 9 T ].$ / yS
0.18 0.
1 Of .
0.45
19
6.47
144 .
4.49
O.in 0.15
. SOOOTnr.S/ YS
2.72 j
Z£VE« 0.067C
53 0.74 i.;9 O.O
C.03J5
3,tt 5,63 2.2*
si
5Ct>6 TT:,S/ ₯S
2.12 6
1996Tr).':S / Vk
0.04 0
248 .
0.17
^ 59 .
1.26
1255.
4.55
1 400 .
1.37
'i.96 0.15
ZtvE" C.3222
.1* 2.01 4,77 :.i4
ZCVE. c.oecc
-<-7 5.76 :c,32 4.C9
Z4VE« O.OOlf
-04 23.12 2E.VO 17.91
0.3S
9':'3STT,5/YR
1.37 2
6230TTNS / YR
0.41 1
3 i 1 2 .
0.86
52.
5.55
12479.
0,17
352.
6.55
2t98T-l
-------
T i ?. I E 5
.-TE! 1 I'. P.4TIKG CC.il"': "£;.> 5 " tiTILr, «4S SPECIFIED
Table A.3. (Contd.)
ill '21 (31 '*' 15) 16) 17)
E^lSSI'-r P.4TES GROWTH RiTES EMISSIONS
E"1SS1C'. iLLC.iai-£ u'iCIIlT DEC 1*41 /YE4« INOUSTR C4PiC P * / = RCC uC T I uN 1000 TCNS/VEi» T?N>/Yf4i.
»JLTt. 0 « UMTS E t E P P UNITS 4 PC T T TT-T
> u a c 4 s ti s "
ct«5". UL'.:X::E
20 C2t;i-T*'iL;C f.^vC'i:? PLi'.TS (J-»vLEl,e P'.GCESS) SUE 9279.5! TBTll.J/Y" Z4VE« C.0650
-.'54= L6/TC'. 3c:,CC^i 3.015 301.000 0.020S 0.090C E6 TONS 0.61 0.12 0.64 67.3? ZCfr.71 71. Z2 Ji30oO.
'0 D.J'TE'iL «OTL ^AMfiC"v- I'.c Sl/fc 3CP7.2'.f 1TG .S/Y^ Z-Vf« 0.077T
0.12: L3/":-, «».4iC 4.7JO 9'..<,00 0.029S 0.020$ E6 TONS 9.24 2.6E 1.P5 357.62 kjo.15 262.68 166000.
2: r* tiC'YL:1 :T' '<£ 'L;I-TJ SIZE 53i5.**53Tat.s/ys ?ivE« c.o?".?
-.5;' L8/TCf. :ir<,:;: ,i..ci ii^.joo o.o'ss o.iooc £6 TONS 1.33 O.M> 2.iz vi.it 2<.6.c2 62. ii i33r-o.
10 C'IS*iT:~'.t»/ I'.T = a'4(. CC'B-STIC1' EN6 1 N£ 5 ( J I E SE L t OU4U FUEU SIZE 36 .55 1 JTOI.S/ YS ZivE. O.OC23
;.5«0 L6/TCN 5'.»:5 C.C b4.600 0.0335 0.023S E6 TONS 20.52 6.77 5.7» 326.10 417. <.! 218. *9 1V9005.
13 CClSTtTIC'.iR* I^TcR^:L CC'B.STIC'. E'J&li'ES (SPiRK IONITICN) SIZE ? 87 . 9-jo2TT'!S/ VF. Z4VE« 0.0232
0.550 LB/TCS <.2.e:c 3.0 42.300 0.020S 0.067s fc6 TONS 41.19 8.54 35.84 511.25 956, C4 4C9.00 5*7(>00.
20 C^SCifB:^, 6liC<< IrLBNiCr PSCCcSj) SIZE 72523. P750T-J-IS/VP Z»WE» 0.0630
:.S2C L3/TC'. 26CC.OOO 2.fJO 2800. 3CO 0.0'SS 0.025C E6 TONS 2,36 1.06 0.6(- 2709.2$ 34fr8.C» 1492.06 1530SGO.
urce categories Indicate small potential omission reduction or decreasing capacity.
U>
-------
Table A.3. (Contd.)
TABLE e
NOTE: 1 IM "AUNG CCLLHM >"E4f,S N'J R»T|NG WAS SPECIFIED
P3UJTA''T/SCjRCE
111 (3) 13) (41(5) ((-)
(2) 13 ) (4) (5) «,)
EKISSICN RATES GROWTH RjTES
UNCONT DECIMAL/YEA*
(7)
INDUSTRY CAPACITY/PRODUCTION
CESSIONS
HATp.G K
LEA;
50
70
70
50
55
53
45
44
42
53
f 0
49
11
Cot9K
5! 720
F32S1S
C331RE
3,933
3.823
UNITS
Y lac*- FCI,(.:RIES
LB/TCN
E E E P
S I: US
0,63: 0.330 C.630 0,0 5-0
CLI.-.E ACCITIVES (s:'DiLu-Lt43)
LB/TCN 10.78C 3.B30 89.400 0,0455-0
ILI-.E ACCITIVES
Lfl/TCM
Y laON FCUMRIES
rj-.-APY z isc S:-EL
LB/TCN
(ELECTROLYTIC)
4.UO 1.003 32.200 0.045S-0
(«EVE55^'T3RY)
0.07S 3.3 0.070 0.028S 0
P
C
.0185
.099C
.099C
.1365
*E3S («EVcii8E'.ATn»Y S^EAT FURNiCES)
0.460 0.350 0.460 0.0335 0.018C
E:3SEC3'.OiRV ZINC S^ELTESS «ETTiE F'jRNACc)
3.823 LB/TCN 0,460 3.333 0.460 0.033S 0
ECl-STALJC MI'iERA'.S M
:.9:o LB/KN
E3iM=7
E31-ET
0.933
C'2-.'E
' . 3 i "
s:9SLi
0,933
= : 4 i , :
0.353
ALIC Hj'.ERALS M
iLLlC "JSER1L5 I-
Y :,zx FURIES
55 Mt'.uFACTvPINC
LB/ICN
J5T5IAL i'-CUESi
LB/TCN
M'.G (ZI'.C KINE i. CRUSHING)
C.1CC 0.310 0.130 0.026S 0
C.1CD 3.C13 0.100 0.0235 0
INJf.G (FE^KIALLOY)
0.333 O.CC3 0.300 0.028C 0
(ELECTS!1; ARC)
t.4.3 3.1 0.400 0.039S 0
I!.;ijSTRY UEAo GLASS)
6,033 O.C60 6.000 0.0335 0
TI;-. 1 IMUSTRIAL-CI.'^ERCIAL)
C.400 0.340 0.400 0,0395 0
.01BC
.0125
.0135
.0155
.1305
.0465
.0355
.HOC
UNITS
Eft
Eft
Eft
Eft
Eft
Eft
Eft
E6
Eft
Eft
Eft
Eft
ES
SIZE
T.1MS
SIZE
TONS
SIZE
TONS
SIZE
TONS
SIZE
TONS
SIZE
TONS
SIZE '
TUNS
SIZb «
TONS
SIZE;
TONS
SIZE «
TUNS
SI.'c '
TuNS
SIZE
TONS
SIZE
TONS
A
25
13.44
1^30
0,25
0.02
1
0.54
1
0,30
1
0,30
U-49
6.92
9.26
3
3.73
2
0.18
13
0.65
1
50.50
B C
. llCO"!}llS/Yft
O.fi -2.
O.U -0.
0.01 -0.
0 . 1 S 0 .
0.10 0.
0.10 0.
.9933T-]l,S/YS
2.50 1.
2.59 1.
.7BCOTQJJS/YR
1.19 0.
,0925TT;5/Vr:
1.73 a,
2.'>2 3.
,7700Tn:.S/YK
0 . ;. 1 o .
.29ZOT-:,S//S
19.09 92.
1
A
?.-.'.'£
ZAVE-
1ft
.'. i V t
11
Z.'.VE.
73
06
06
ZiVE«
07
ZiVE«
Z.VJE.
5;,
I ~ '.' r.
40
zavt.
I A V £
T T T
S N
0.0900
3.7J 3,c7 3.72
0.0600
J.96 ^.34 0.51
0.0215
J.03 ,-i.Cl 0.02
0.0630
3.02 ^.T4 0.01
0.0077
O.Cu 3,17 0.0*
0.0077
0.06 0.07 O.C4
30.0001)
O.-O n.i.5 0.3.
O.C30C
0.42 0.47 0.32
0.02r.O
0.50 3.58 0.3J
0.0«00
C.OO->2
0.0031
1.75 2..i7 l.H
0.0170
3.04 13. )0 3.23
T -T
S 4
*
^
*
33.
30.
30.
1,3.
150.
733.
710.
1233.
77;:.
ft Source categories indicate small potential emission reduction or decreasing capacity.
-------
Table A.3. (Contd.)
~iilE 7
r.;TEl I I'. RiTIt.G C:Ll"N 'E-l'-S "'- ^iTpNC ,jiS SPECIFIED
( 1 i (2! (3) «,) (5) (6) (7)
E"lS5rj'< BATES r.RDHTH R/.T6S EMISSIONS
ETS5IC'- iLLC»-B'fc 0'>CCNT DECIK^L'YE^R INOuSTRi t iPAC 1 Ty /PRCC'^C T ir.'l 1E30 rS'JS/YE-lR T
TJ'.S < Lt.lTS E E t P P UNITS A 9 C T T T
i ' U B C 4 S N
0.83C L8/TCN C.300 0.006 0.300 0.0«5S 0.09<>C E6 TDf4S 0.81 0.36 1.1* 0.10 0.25 0.04
'.C 4:iv!«ED fLE. 6CILEP5 (CCiL t 'cF'JSE) SIZE 6.60COTa^S / YS Z/lvE« C.12SO
1.500 L3/TCN 0.2t~ O.Oi) C.220 0.039S 0.046s E6 TUNS 7.5S 2.-)2 3.>.5 0.41 0,50 C.27 '3:,
20 c:7=x5::s;vE .": if'ci- EXP^USI'/ESI SIZE i2i9.7(,73TT.s/Yrv :AVE- c.03i7
0.53; LB/T:r, 20.:~C i.ilC 80.000 0.0*55 0.09*C E6 TONS 2.Us 1.30 *.l? 23.90 53.70 16.79
Source categories indicate snail potential emission reduction or decreasing capacity.
UJ
ro
-------
TlBlE 8
Table A.3. (Contd.)
N H T 6 I 1 I', BiTIKG C C LI ^ N M E i > 5 'G R A T ; M G ri A S SPECIFIED
PCU.UT4NT/SOU"CE
I 1) (2) IJl (») 151 «) 17)
EMISSIC'. RITES CSQWTH RiTES EMISSIONS
E^ISSICS iLLCi-'BLE uNCUNT DECIMiL/vEiR INDUSTRY C4P»C IT r/PRUBoC T ICN 1300 TaNS/VEi* T^si/Vci'
a4T;>.G < UMTS E c: i: P f UUlTS 4 8C T T TT-T
5 t. U 8 C 4 S N S >
20 8'36VISCESE Bi'ON SIZE ^65. 9>97T-]":S / Y^ 2ivE« 0.0610
0.800 1.8/TCK 10.900 1.600 10.900 0.045S 0.0 66 TONS 0.49 0.22 0.1 2.14 E.'.4 1.32 (20.
20 C03C1RBCN BL4CK (fLSMCE PKCCESS) SHE 15<,9.7966TONS/Y>i ZAVE« 0.0630
C.I20 LB/TCS 60.000 0.060 60.000 0.045S 0.025C E6 TONS 2.36 1.06 0.66 5U.G6 74,J2 31.?7 423::.
-^Source categories indicate email potential emission reduction or decreasing capacity.
-------
Table A.3. (Contd.)
Ti?lE S
:TE! 1 IN RiTlhC CCllMN "Ei'.S 'in «iTlNG ,45 SPECIFIED
(1)
(2)
(i.) (5)
(u )
R,.:ES
(7)
EMSSICNS
EXISSIC1- itLC-iS'-E uNC^.T
R»T:-.O < UNITS Etc
S ! U
FL.:» IOES
OECI^lL/YEtP. INOUSTR\ C"P4
P P UMTS
3 C
"o.34o " IB/TEN 2.0:0 2.or3 2^033 o.
53
53
40
52
44
44
43
42
23
43
44
47
30
*:
E05S = CC'."tPY ZI'.C b"-L'E3S (OALVI'.UING!
O.S20 L5/TE'. 0.700 O.')70 0.7.,3
E02SEo:'-:;.'Y :r.c S^ELTESJ (H3
0.350 19/TC'. 0.07; 3.002 O.Q70
?:;S?c;'-Oi.'» CCOP-R SI.;'.T (V. iS~;
O.?20 L5/TC'. 0.7'.: 0.078 0.780
::2'?a::::c <:-'. ic:iu F;;CO)
- '- ~ - L 5 / T ~ '. i.Ol" 0.300 1.0 U 0
"o.'oo LB/TCN l.oo: 0.300 i.ooo
:i2Cj3I'.0 L FILING (TU'i'iSL KIL''5-C3AL FIS.fcO
0 80' L3/T"\ i.OCO 0.3CO 1.000
'.-.'.' t3/^C^ 2.600 3.130 2.630
io^'-'-S'-os ic -ci: PLisTs CAET ?k:cEsS)
O.S'.O L3/r:\ 0.034 3,';05 1.300
IllC^Sl'JC C Frai'.G (TO'.'Jt1. KI'.^S-3!L FMED)
^600 L3/Tr», J.OO" 0.3"0 1.0 00
0.^00 tab/T^\ 1.000 0.3C3 1,000
:03;L-:9S=i» (CaY£i)
0.800 L3/TCN 10.03C 0.103 10.000
0;Oi''I"4L FEED CE t Ll-CF I"»T 1 C\
0.900 L3/TCN 5V.40C 0.43ij 219.000
0.830 LB/TCN 1.00". 0.300 1,303
0.
LE)
Q t
0.
0.
0
0.
)
o.
0.
0,
0.
0.
0.
0.
0.
0305
0335
0335
0305
035S
0335
0335
0335
0335
0*55
0335
0335
0505
0*05
0335
0.067C
0.013C
O.OlbC
0.075C
0.314C
0.027s
0.027S
3.027s
0.0*3C
0.123C
0.027s
0.027S
0.04*C
0.0 S
0.0*25
SIZE
E6 TONS
SIZE
E4 TO':S
SUE
E6 TO'IS
SIZE
E6 TONS
SIZc «
E6 TUNS
SUE
c6 T3'JS
SUE
E6 TONS
SUE
E6 T3NS
£6 TSM.S
SUt
E6 TuNS
SIZE «
E6 TD.'JS
5U£ '
E6 TO'JS
SUE
E6 Tj'lb
SIZE
E6 TONS
SUE
E6 TJMS
A
o.*:
2
0.03
2
J.27
1
l.*7
0.40
1C
0.51
10
2.04
10
2.04
0.4?
71
14.9(1
6.12
7.5b
64
O.«0
0.20
i
8 C
0. 14 o-
3.31 C.
.209VTT> S/Y-
O.O1^ 0.
.2197TC-.S/Y'
0.44 1.
o. i; o.
.OCOCTT S/Y-
C.17 0.
. OOOOT If.S / Yr
0.67 0.
.OOCOT.y S/Y^
0.67 0.
0.16 0.
.36101^ S/'/f~
6.7C 32.
. 0000 T jf S ' YT\
2.02 1.
2.49 2.
.6399'n.-.s/yk
0.2^ 0.
O.OB 0.
.44GCTTNS/Yr
4.42 5.
1000 TcNi/YEi» T3N>/>E*"
T T T T -T
4 S N S N
Zl'/E"
01
7iVta
Z i v £ «
30
3t>
Z - V £
i 4
55
Z«Vta
55
25
ZivE«
63
Z4VE-
6b
04
Z^VE«
27
^
ZiVfc-
^5
0,0410
0.3* 0,7* C.7* *
J'.C077
o.ci c.ci c.ci *. F
r.oo77
O.C.6 0.09 &.C6 4C, '
O.C* 0.19 O.C3 cC.
C'.CliO
3.13 0, IS C.C9 eC,
: .0210
O.ZO 0,26 0.17 SC,
C.025C
3.E2 1,C* O.fr9 34C. >
C.0250 OJ
O.f2 1.3* 0.69 34P, *
C ,001'C
O.!0 0,76 C.35 4iC,
C.1762
0.£3 O.ftS 0..9 .^C,
2.45 ' 3,11 2.C9 UCC,
3.02 3.S* 2. 57 13EC.
2.C5 3.T9 1.C2 2'OC,
C.050C
5.35 5.35 3.22 2!CC.
5.?6 7.S1 4.cO 2FCC,
Source categories footnoted by capital letter belong to the same
aggregated for analyal* purpoaea.
facility and have been
-------
Table A. 3. (Contd.)
(1) (2) (3) (4) (3) (6) !')
EMISSION RATES GROWTH R4TES EMISSIONS
EMISSION AILC»'PL.E U'ICONT DECIMAL/YEAR INOuSTKY C 4PAC I TY/p»Q[)uC T IUN 1000 TQNS/YEiR
K UNITS E t 6 P P UNITS A 8C T T TT-T
SlUBC 4 S N S N
TiBtE 9
I i'l "ITIf-G CCLf'N I'EAVS '<0 SATING »'4S SPECIFIED
*3 s::CjSJNG I flRlNS (TONNiL KI1.N5-S4S flUED) SIZE lO.OOCOr-'o/VR ZiVE. C.OZSO
0.3CO LS/TCf. l.OJC 0.300 1.000 0.033S 0.027S Efc TONS 22.91, 7.57 &].<) 9.18 11. iS T.fO 3<"3C.
10 433INBUSTBUL SCIIEBS (10-250X10t6 3TU/HR) SIZE 0. *S7l FrjNS/VR ZJVE. 1.U30
0.4JO L6/E6 BTU 0.003 0.000 0.003 0.033S 0.01«C E12 BTU 209*0 0910 312J 15, 17, H. blrc.
20 40e>-VC»3FLUCRIC 4CIC PLANTS SIZE 5<,3 . B1)92T[)f;S/VI> Z4VE« C.0222
0.960 LB/TCN SO.OCC O.ZOO SO.OOO 0.0*5S 0.067$ tb TONS 0.60 O.J7 O.*0 1».72 24.59 f.i» i*<.CC,
-(CSource categ0rle8 lndlca£e snaU ^'^^^ ^^ ^^^ ^ ^^ ^
Ing capacity.
>
u>
-------
TABLE i
l~~£: 1 Irj RATING CCLLMN
CE
(2)
TABLE A-4 - MODEL IV MINOR SOURCE: 1980-1990
NG /.'IS SPECIFIED
[FOR EXPLANATION OF TERMS SEE PAGE
A-7, APPENDIX A]
(i] (it) (5) (i)
EMISSION RATES GROWTH RATES
(7)
RATi-G K
PAPTIC'-LiTf
20 AJtlfi:
0.83:
10 A02CC""E
0.4QO
34 C"4CCCFE
". . c 5 :
EMISSIC'.
UNITS
S
GXIDES
L8/TCN
A L L C ». A ii
E
S
0.440 0.
Lfc UNCUNT
E E
n u
443
0.440
R C I A L BCILEFS (0.3-10X10E6 3T'J/Hr<)
LB/E6 BTU 0.560 0.580 O.SOO
E ROASTING
LR/TCN
20 AliLITHjuv COf-'fCU'^CS
0 . S t 'J L B / T C N
30 DT5FISH
0 . 3 1 C
50 B:SSEC^.
3.320
33 DC4COFFE
0.850
PROCESSING
LB/TCN
OARY MAGNESI
LB/TCN
E ROASTING
LO/TCN
32 n~4CG^FEE ROASTING
0.950 LB/TCN
30 D193HrtRf<
0.330
30 G03"EAT
o.eio
ACEUTICAL
LB/TCN
SMOKEHOUSES
LB/TCN
31 C^CQcFEE ROASTING
0.350 LB/TCN
50 D03STEEL
0.900
46 F02MICA
0.300
40 DIBGLAS:
0.900
10 E01WASTE
0.580
FOUNDRIES
LB/TCN
INO (MINING
LB/TCN
(SPRAY CRYER
1.4CO 1.
0.002 0.
0 . 4 c 0 0 .
IV S"ELT£R
4 . C C 0 0 .
(STON;«/COOL
0.722 0.
( INDIRECT)
2. 160 1.
0 . 5 V 5 0 .
0.300 0.
ICIREC")
3.970 2.
( INDUCTION)
0.100 0,
PART )
12. COO 6.
MANUFACTURING INDUSTRY
LB/TON 2.2*0 0.
OIL BOILERS
L6/CAL
0.010 0.
)
400
000
040
400
ER)
400
200
119
100
200
0
000
(OPAL
022
000
1 .400
0.002
0.400
4.000
1 .400
4.200
0.595
0.300
7.600
0. 100
12.000
GLASS
2.240
0.010
DEC IMAL/YEAR
P P
B C
0.045S
0.029S
0.040S
0.030S
C.008S
0.035S
o.o*os
0.04CS
0.045S
o.o*cs
0.040S
0.028S
0.050S
)
0.033S
0.0
0.050C
0.043C
0.0
0.045C
0.0 5
0.016S
0.0
0.0
0.090C
0.018s
0.0
0.073S
0.017C
0.035S
0.020C
INOUSTk t CAPAC I 'Y/p^
J'JITS /,
S iic
E6 TOMS
SUE
E12 6TU
SIZE
E6 iJfiS
SUE
E6 TJNS
s ; '. f.
E6 TONS
SIZE
E6 TDNS
SUE
E6 TONS
SIZt
E6 TONS
SUE
E6 TONS
SUE
E6 TGI1S
5 I if
E6 TU.^S
SUE
E6 TO'JS
SIZE
E6 TONS
SIZE
E6 TONS
s::^
E6 GAL
= 5'..
0.77
* 9.
32673
r 4 .
:' ^ i
0.
6.30
" 0.
0.36
e 0.
0.02
4 .
1.55
13.
0.78
* C.
0.37
* 0.
J.fU
23.
0.78
* n.
ft. 29
38.
0. U
- 5.
0.54
1.
694.81
UDUCT u
ti
71COT j--;
0.3.S
0.0073 . 1
0.4S 0.48 0.39 60. A B £.
« 0.0073
0.72 C.72 0.39 :?0, B
0.0005
0.09 C.22 O.C8 130.
0.0026
0.47 r.55 0.37 ICO.
a 0.0073
1.32 1.32 l.f.8 230. A
0.0100
0.28 f.<-9 0.20 2"0.
« 0.0079 ,,
0.6S 1 .06 0.7> 310. C
C.0051
0.54 C.73 C.37 370.
« 0.5COO
2.01 2.46 2.02 440.
*Source categories footnoted by capital letter belong to the same facility and have been
determined to be a minor source after aggregation.
^(Source categories indicate small potential emission reduction or decreasing capacity.
-------
TABLE 1
TABLE A-4. (Cont'd)
N^E! 1 Ifi RATING CCLLMN MEANS NQ RATING 'U5 SPECIFIED
POLLtTAMT/SDuRCE
(1) (2) (3) 14) (5)
-------
TABtE 2 TABLE A-4. (Cont'd)
r.C'E: 1 I'. P-ATISG CCLLMN .vgil-S '.C RATING *AS SPECIFIED
Lt'Ar.T/SO^RCE
( I ) (2) (3) (4) (5) '6> (7 )
EMlSSIlV. RATES GROWTH RiTES EMISSIONS
EMISSIC'^ tLLC"A4tE uNC^NiT DcCIMAL/YEAX INDUS^R, C APAC 1 ' f I PR J'JuC ' I f"4 1000 TCNS/YciR
K UNITS E c s > P UNITS A 6 C T T T T -T
S c, J B C A S N S
DIOXIDE
tO 0'5GLtSS "ifluFACTLRISC I'.DUSTRV (3PAL GLASS) S ; IE = 6. 1506T1NS / YK ZAVE" 0.0051
",.903 LB/TC^ 2.6SG O.OdO 2.680 0.033S 0.035S E6 TO IS O.Si, 0.1? 0-19 0.65 0.98 0.*3 430,
10 E"«£STE Oil- BOILERS SIZE = 22. 7n50T j.iS/Yf, !AVt> U.5000
-.580 LB/GAL 0.157 O.OiS 0.157 0.0 0.020C E6 GAL 69',.m 0.0 152.lo 31.63 38,36 32.33 6200,
10 'Frr,SIL FUEL BCILERS «0.3XlO£6 BTj/M*) SIZE » 0.01Z9TTNS / Y« ZAVt* 0.0311
~',.2ll LB/E6 BTi. 0.107 0.0 0.107 0.067S 0.020C E12 BTU 21700 U53? *752 Zol, 325. S3, 237030.
1C Ar.ZCnvMERCiAL 3CILEPS (G. 3-1 OXICr 6 UTU/hR) SUE = 11 .4914TQNS / YR ZAVE« 0.0513
T.IOO LB/E6 6TL 0,770 0.560 0.937 0.029S 0.043C E12 BTU 32673 93
-------
TABLE 3
TABLE A-4. (cont'd)
RiT;
~E: l I"; RATI'NG CCH.MN '-EA;-S f..' U'INT, .,-s S°EC:F:E:
."i>.'T/s3jacfc
(1) (2) (J) I*) ( 5 ) ( ft ) ( 7 '
E'MSSi:-: PATES G?C*Th SiTES
EMISSIO ALLC'-i-'-r LJi-'Cv'lT DEC I Mil. / YEA* l.NTj JS T;3 r L ,',P AC : " Y / ? KOr,Ll; T i ..vi
G K UfJJTS f i r l» 9 !J\I7i ,'. fi
5 .' ? C
iOOO TOMS/YE-R
T T"
S
T:\i/Y-AR
T T IT
5 s;
10 AT
C
31 :
."
32 --
40 r:
L&/E6 "TU 0.235
KDtSTINfi CIRECT)
0.100
( 0 . 3- 1 OX 1 i.r 6 =TJ/nS)
.^3J 0.294 0.029S C.043C E12
3 . 6r>5o' ^.JS / Y~ ZAVt-s 0.0513
32o?3 >>3^* 17104 1536. 2340. 23-.0.
O.iOO 0.040S 0.0
RC-STU.C ( J \3 :«ct T )
LB/TC\ 0.10P 3.10J :>.100 C.040S C.O
E5 TJ.\5
c.3102T-;'.S/Y^ 'AVE* 0.0073
0.75 0.31 0.0 0.03 0.03
0.3102T-;,-,S/Y« 7.avt= 0,0073
0.7j 0.11 0.0 - 0.03 0.03
?CL.'-S5 ANuFiCTUft I'.C i'JJUSTRY ("JPAL Gi.."5S)
.90: L3/1C.N 2.j<.;, 0.3^0 7.S30 0.0335 0.035$
S:2E = 1 7 . 5S(,7T;j:;S / YK ZAVt= O.0051
Tcr.S 0.54 0 . 1 ,S 0.19 O..SQ 0.67
.",.060 0.0 0.020C ca Ci. i/-,.5l
.''.5000
12.0? 14.74
10 ^'IFCi
FUEL HllLti
/Efc STL
! 1
273.
270.
Source categories indicate small potential emission reduction or decreasing capacity.
-------
TABLE 4
TABLE A-4. (Cont'd)
N"TEl 1 IN RATING CCLL'IN MEANS JO KiTMG '.-MS SPECIFIED
POLLL.TANT/SGURCE
(1) (2) (3) (4) (5) (6) (O
EMISSION RATES GROWTH RATES
EMISSION ALLCWAbLE UNCQNT DECIMAL/YEAR INDUSTRY CAPACITY/PRODUCTION
EMISSIONS
XOOO TONS/YEAR
RATjr.G K UNITS E E E P
S N U B
HYCR'C ARJGN5
20
10
20
30
20
20
20
90
90
20
10
30
60
60
64
sliPuLYCARSONATES PLAITS
r, .300 L8/GAL 0.110 O.J05 0.110 0.020S
F C 1 '» A S T E OIL POILERS
0.580 LB/GAL o.ooi o.ooi 0,001 o.o
0.300 LB/TCN 4. SCO 0.045 4.500 0.0335
CCJ^EAT S"CKEHCuSES
0.3l'J LB/TCN O.?50 0.150 0.350 0.0405
B 1 6 A L * Y 5
0.490 L3/TCN 1.710 0.017 1.710 0.045S
p.it??oxv RESIN PLANT (UN^DIFIEO)
C.90: LB/TCN 2.000 0.020 2.000 0.0205
B14POLYVINYL ALCQi-OL PLANTS
0.300 LB/GAL 3,300 0.170 3.300 0.0205
F04TEXTJLE MFC (TEMLRING)
C.36C L6/TCN 0.920 0.230 4.600 0.0425
F03TExT[LE MFC (CAKi-tr MKG)
0.360 LB/TCN 0.720 0.040 0,800 0.042S
B20PLASTICS AND R5SINS ( PQLYAM I DES )
0.700 Lfl/TCN 7.000 0.350 7.000 0.045S
A01FOSSIL FUEL BCILERS «C!.3XlO£6 STy/HK)
0.230 LB/E6 3TL 0.003 0.002 0.003 0.0675
D17CEE0 FAT FRYING
0.810 LB/TON 6.240 0.079 7.870 0.0285
0
0
0
0
0
0
0
0
0
0
0.
0
FOS'.T.M. ID. (GAS. BULK PLANTS )( STORAGE & TRANSFER)
0.350 LB/GAL 0.230 0.016 0.820 0.045S 0
B06CRAPHIC ARTS INDLSTRY (LITHOGRAPHY)
C.380 LB/TCN 7CO.OOC 35.000 700.000 0.045S
0
P
c
.105C
.020C
.030C
.0185
.015C
.106C
.1000
.0920
.071C
.150c
020C
,043c
.0
.050C
B03INOUSTRIAL SURFACE COATING (METAL FURNITURE COATING)
0.820 LB/GAL 5.340 o.o&4 4.330 0.0425 o.o7ec
UNITS
E6
E6
Ei
E6
E6
E&
E6
E6
It,
E6
E12
E6
E6
E6
E6
SIZE
GAL
SIZE
GAL
SIZE
TONS
SIZF
TUNS
SUE
TONS
SUc
TONS
SIZE
GAL
SUE
TUNS
SIZE
TONS
sue
TONS
SUE
BTU
SIZE
TOMS
SUE
GAL
SUt
TONS
SIZE
GAL
/.
= 1 .
i-'.Op
0.
694.81
0 . 0 F,
* 0.
3. 84
= 1 .
C-.57
16.
0.19
50.
O.lb
- 17.
1.03
= 3.
11.
0.19
0.
27100
12.
60.
4if .61
= 47.
C.06
* 40.
9.3Q
e c
2"20T-j: S/Y.--:
0 . 1 ?. 0
1430TTMS/YR
0.0 152
tOOOTQNS/Y^
0 . 0 3 0
1 5 4 0
0.26 0
320GTQI.S/Y*
0.04 0
1599T]'.S/YP.
0.0? 0
0.4J 1
1304TQNS/YR
C.90 2
2700TQt'S/YR
0.09 0
A
ZAVE-
15
ZAVE-
16
ZAVf-
.03
Z A V E «
.69
ZAVE =
.09
ZAVE-
.32
ZAVE-
.?4
ZAVE-
.45
7AVE-
.30
ZAVt-
5E
GOoSTn^S/YK ZAVE«
11,157 5935
0163VJNS/YR
1.02 1
5274T1I.S/YR
2Ct.?7 0
4320Tnr S/YK
C . 0 4 0
5972TTNS/YK
3.94 10
ZAVE-
.93
ZAVE-
.0
ZAVE«
.05
ZAVE-
.51
T T
S
0.0230
0.00 0.01
0.5000
0.20 0.25
0.0270
0.15 0.21
0.0026
0.54 0.64
0.0031
0.33 0,38
0.0204
0.15 0.41
0.0360
0.20 0.51
0.0091
0.41 0.98
O.OOQl
0.72 1.43
0.0046
0.47 1.P8
0,0011
9. 11.
0.0036
9.25 14.13
0.17?7
44.63 44. S3
0.0002
25.61 41.72
0.0155
20.56 43.57
T
N
0.00
0.23
O.JO
0.'.6
0..3
0.12
C. 16
0.42
0.47
0.34
7.
6.77
26.06
15.47
12.30
T -T
S N
7.
10.
', 00,
180.
70C.
791',
340,
560,
"60,
1500,
3500.
7400,
16800.
Z6300,
31300.
-------
TABLE * TABLE A-4. (cont'd)
r-CTE: 1 IN RATING CCLLMN i
POLL.-TANT/SDURCE
(1) (2) (3) (<.) (5) (A ) (7)
EMISSION P.iTES GROWTH RATES EMISSIONS
EMISSION ALLC^KLC UNCO'jT DF.C I MAL / YEAR INOuSTRv C APAC I TY/PR.C.CUC T JC!N 1000 TONS/YEiR TONS/YEAR
RATlf,G K UNITS E E C P P UNITS t. B C T T T T -T
S N U 8 C A S N S N
HYORTCARBONS
65 f?-2If:DUSTR!AL SURFACE COATING !w320 FURNIT'JRE COATING) SIZE « 4f>. 9fr777n\S / YR ZAVE = 0.01F.7
Q.B20 LB/GAL 5.3*0 0.320 0.380 0.0*25 0.07SC E6 GAL 10-30 *-*3 11-53 22.55 47.79 15.16 JitOC.
60 C03S3LVENT METAL CLEANING (CO^VEYQR I ZED DECREASING) SIZE » 27. C600T.-]J
-------
TABLE 5
TABLE A-4. (Cont'd)
r,7TE: 1 l.j RiTING CCLIWN ",£
POUjTANT/SOuRCE
< 1 ) (2)
E M I S S I C *i
i K UNITS I
(3)
10 ETl.%iST£ OIL BOILESS
L3/CiL
30 5"3"EiT SMQKEnCLSFS
1.210 LB/TCN 0.6CC j.O
10 AiiFosSiL PUEL BCILERS «o.3xioE&
0.230 LB/E6 BTU C.04C O.OZft
t; «uS SPECIFIED
«.) (5) (6;
(7)
::NT OsCIMAL/YEAK INCuSTRY CAP^CITY/PKOCUCTJCN
= P P UNITS i B C
U 3 C
1000
T
EMISSIONS
0.035 0.003 0.005 0.0 0.020C E6
SIZE
0.7250Tnxs/YR
69<..BL
0.0 152.16
0.5000
1.01 1.Z3
1.15
S I Z E = C .
0.600 0.040S 0.013S E6 TLiNS 3,84
ZAVE« O.C026
1'5<- 0.69 0.93 1.10 C.56
T -T
S N
PC1.
540,
SIZE « o.004BT3^S/YR ZAVE» 0.0011
0.067S 0.020C E12 BTu 27100 18157 5935 124, 151. 107, 441CO.
10 i':2C;.'''MERCIiL BCIucPS (0.3-10X10E6 BTU/iR) SI7E = C
T.^-CO LB/E6 STL 0.051 0.0 0.060 0.029S 0.043C E12 B Tl/ 32t73'
17104
0.0613
333, 508. 238, 270000.
>
i
ho
-------
TABLE 6
>.-GTE: i pj RATING CCLUHN MEANS '*£ HATING WAS SPF.CIFIEC
POLLUTANT/SOURCE
fi) (2) (3) U! (5) (6,
E."ISSICr. RATES GROWTH RATES
TABLE A-4. (Cont'd)
EMISSIONS
RATING K
LEAC
50 fOlTYpE
l.COO
90 fOKABLE
a*i]&£
90
20
23
21
22
50
90
10
EMISSION ALL:.:
UNITS e
S
METAL PRCSLCTION PLANT
LB/TCN 38. BUO
COVER PRCO. PLANT
LB/TCN 0.500
FClCiVi M?G PLANT
.1.910 LB/TCN 3.110
42CLFi3
O.B30
i21LEAO
i. --31
421LEAO
0.^30
A21LEAO
3 . ? 3 a
C C 1 C = t Y
0.93C
rOUEAO
0.760
E31'*ASTE
0.530
OXIDES
LB/TCN1
PIGMENTS ''FCR
L"/T,jl>.
PIGMENTS VF-CR.
LR/TOK.
PIGMENTS -FCR
LB/TCN
IRON FOUNDRIES
L3/TCN
ACID BATTERY
LB/TCN
OIL BOILERS
LB/GAL
3.220
(LFiC C
0.120
(RtC LE
0.900
(hklTE
0.500
( inotc
0.050
o.cid
0.017
A8Lti
f.
0.250
O.C05
o. j:o
0.22D
riRQ.Ve
-'.12 0
iOi
3. 903
LEAO)
0.500
T13'j
0.0
0.000
0.300
IJNCONT
E
U
59.220
0.500
3.110
0,220
*)
C. 120
0.900
0.500
FURNACE )
0.050
0.018
0.017
DECIMAL/YEAR INDUSTRY CAP*
P P UNITS
B C
SIZE =
C.045S-0.060S Eft TONS
SIZH '
0.0055-0.01'tC Eft TO'!S
6. 0405-0. 083C
C.045S 0.050C
0.0*55 0.021C
0.045S 0.02&C
0.0455 0.026C
0.028S 0.130S
0.045S 0.050C
0.0 S 0.020C
SIZE *
Eft TONS
sue =
Eft T._I,-;S
SiZt «
Eft TH.\S
SUE =
Eft TONS
Slit «
E6 T.J.iS
S ! i C =
Eft TONS
SIZE =
Eft TUNS
SIZE =
fcft &AL
C ITY/pRDtuCTiLN
t- E C
C.F.^dST .)f.S/Y*
O.T1 0.11 -0
c.2?OCTQt..S/YS
0.05 O.OC -0
Q
C.04
2
C.77
C
0.117
1
o.o -.
0
c.oc
1
*.03
4
'y 7 . 7 3
2
frS<4.Sl
,7C33Tnf S/YR
0.01 -0
.73VCTQ,' 5/YR
O.T5 0
,34h6Tr' S/Y?
0.~3 0
.12j5T-_ir. S/YA
0 . C 1 0
.0 -j30Tf.it. S/YS
0 .10 0
.3/50Tr.;,5/Yk
1.13 5
. 15H7Tr;i!S/YP
*3.9n 61
.,650Tp[,S/Yfi
0.0 152
1000 TONS/YEAR TENS/YEAR
T T T T -T
A S N S N
ZAVt« O.OCCO
'1 0.22 0.09 0.12 *
ZAV?« 0.0025
01 0.12 0.11 0.12 *.
ZiVE«
.02
ZiVE»
.*8
ZAVE»
.02
ZAVE =
.01
ZAVE«
.00
1 A V E «
. 4f,
ZAVE«
.*6
ZiVE-
.16
C.C006
0.04 0.02 O.C3 *.
0.0300
0.07 0,11 0.11 ^.
0.0070
c.&o o.oo c.eo -K
0.0030
0.01 0 . J 1 0.01 -|t
c.ooo*
O.CO O.CO 0.00 -ft
0.0600
0.09 0.22 0.07 isc.
C.6218
0.67 1.09 0.38 71C.
0.5COO
3.*3 4.18 3.43 74C.
Source categories indicate small potential emission reduction or decreasing capacity.
-------
TAr,LE 7 TABLE A-4. (Cont'd)
N-r-E: 1 IN RAIl^G CtLL'iN rE-iNS US KATJNG WAS SPECIFIED
( 1 ! (2) (3) (<) (5) (6) t 7 >
E H I S S IG K
RATI.'-.S K UMTS
ACID "1ST
9C BOlLriO ACID BATTERY
0,76o LB/TCN
(3) (<) (5) (6)
,SI-I' RATES GROWTH RiThS
ALLrxiRLt Uf'CQNT DECIMAL/YEAR INDUSTRY C APACI TY/?KCDUCT ICU
E i E P P UNIrs A B C
S N U B C
EMISSIONS
1000 TCNi/YciR T3NS/Y=4*
T T T T -T
A S M S N
SIZE ' 7.5613T1MS/Y* ZAVE« 0.6213
0.032 0.000 0.032 0.0:l c.1.46 1.19 1.94 0.65 1303.
TABLE 8
NfjTE: 1 IN RATING
POLLUTANT/SOURCE
tn
EMISSION
RATING K UNITS
HYCROCEN SULFIDES
30 D05FISH PRDCESSINC
0.810 LB/TON
MEANS
PRIORITY RATING SYSTEM:
HATING WAS SPECIFIED
1980-1990
<2) (3) (4) (5) (6) (7)
EMISSION RATES GROWTH RATES
ALLCrtABUE UNCONT DECIMAL/YEAR INDUSTRY CAPACITY/pRODuCTION
E E £ P P UNITS A 8 C
S N U 8 C
EMISSIONS
1030 TONS/YEAR
T T T
A S N
0.038 0.001
0.058 0.008S 0.0
SIZE
E6 TONS
O.Oi39TQNS/YR ZAVE"
0.36 0.03 0.0
C.0029
9.01 0.01
0.01
T -T
S N
1.
-------
TABLE 9
TABLE A-I. (cont1 d)
NTT£: 1 IfJ RATING CCLLMN MEANS ''<- 17)
i RATE-; GROWTH RATES
ijNCC'JT DECIMAL/YEAR INDuSTK, C iPAC I : V /pRfJ JuC 1 t :;:j
H ? P UNITS A 4 C
J S C
1000 TG\3/VE..R
T T
A S
s i : c
5.560 0.033S 0.037s E6 TONS
e . ui 56 rn^is / Y < ZAVE« 0.0036
O.lb 0.32 0.36 2.14 2.-)3
10 AC2COMMERCIAL BOILERS (0.3-lOXlCrb 5TU/I-R) S I Z E *
0.400 LB/E6 8TU O.OC1 0.000 0.001 0.029S 0.043C E12 BTu
0 .00"<9TONS/ Y* JAVE»
9344 17104
0.0613
5, 8.
1.45
40 D'.SC-LASS MANUFACTURINC IMJilSTkY IIJ^AL r.liSS) Slit - 45 . 6-«V9":jMS /YK tAVE« 0.0051
0.900 LB/TCN 20.000 2.0u'0 20. COO 0.033S 0.035s E6 TONS 0.54 0.15 0.19 4.86 b.30 3.59
5,
15JC.
30JO.
-------
APPENDIX B
Table of Contents
Page
Explanation of Terms used in Tables B.I and B.2 B-2
Table B.I. Summary of Source Data B-4
Table B.2. Summary of Source-Pollutant Data B-14
Table B.3. Minor Source Category Growth B-24
Table B.4. Major Source Category Growth B-32
B-]
-------
Explanation of Terns Used in Tables B-l and B-2.
Notation
Code
K
A
Pb
PC
ZAVE
PLANTS
«
T
V
H
FLG
Explanation
A five-character identifier specifying an unique source
category.
Maximum capacity utilization rate (K = 1).
Industry wide capacity in 1980 (10s production units/yr)
Replacement rate (fraction of 1980 capacity/yr)
Growth rate (fraction of 1980 capacity/yr)
Hypothetical source of average size (10 production units/yr)
Number of new and modified hypothetical average sources.
Stack gas exit temperature (°K)
Stack gas flow rate (m3/sec)
Stack height (m)
Three characters XYZ giving the source flags.
X: Mobility flag
M - Mobile source category
N - Non-mobile source category
Y:
Flag
1
2
3
4
5
6
Category Air
1980
High
High
High
Moderate
Moderate
Low
Quality Impact
1990
High
Moderate
Low
Moderate
Low
Low
PLT Type of pollutant emitted
PM - Particulates
SO - Sulfur dioxide
NO - Nitrogen dioxide
HC - Hydrocarbons
CO - Carbon monoxide
PB - Lead
FL - Fluorides
HS - Hydrogen Sulfide
AM - Acid Mist
B-2
-------
(Continued)
Notation Explanation
Eu Uncontrolled emission factor (Ib/unit of production)
Es Emission factor under existing state regulations
(Ib/unit of production)
En Emission factor under NSPS (Ib/unit of production).
SIZE Uncontrolled emissions from hypothetical average source
operating at full capacity (T/yr)
CAT Classification of average source based on potential
emissions (SIZE)
MAJOR - SIZE 2 100 T/yr
MINOR - SIZE < 100 T/yr
Ta Emissions in 1980 under existing emission limits
(Es)(103 T/yr)
Ts Emissions in 1990 under existing emission limits
(Es)(103 T/yr)
Tn Emissions in 1990 under NSPS (En)(103 T/yr)
Ts-Tn Maximum potential emissions reduction from NSPS
program (T/yr>
(X/AV)s Normalized air quality impact under existing emission
limits (Es)
X Normalized air quality impact range under existing
regulations
0, 1 - High Impact
2 - Moderate Impact
3 - Los Impact
(X/AV)n Normalized air quality impact under NSPS emission
limits (En)
X Normalized air quality impact range under NSPS
0, 1 - High Impact
B-3
-------
:. C.OUJE o?
PE
/^=j
5.03
''".- f\.n. B::i.E'S icti. c
.a i:6 i. o.;?iiic
o.o<>
TABLE B-l. SUMMARY OF SOURCE DATA*
PC :AVE SLANTS T
0.01 1.183 0.0 -.77.000
o.os
o.uo
o.o! 0.006
>' iL CC'r'.ST:-,.1. c-'.GI'icS (S?A*i< ICMTIUli)
1. C.::$<.5t C5 J.32 0,09 0.023
;.Y :.-£::. 4L COPTIC;. E:.iIl.cSOlESEL t OUAL FUEL)
'.. c.5"i;caE c« 0.03 c.o3 0.002
o.o
o.o
soo.ooo
0,0 soo.ooo
o.o 533. OQO
533.000
*S«e page B-2, Appendix B for Definition of t«ru.
V r« FLG
15.600 J6.1CT S*
N5
N6
N*
N6
N5
3.7«0 20.000 N5
N*
N5
N5
S6
N5
N5
1*
N*
N5
Nb
3.760 20.000 r.5
N5
r.ft
Nb
Nb
\*
S7.003 15.0CO \*
,5
Nb
,46
*,320 12.000 :»*
N5
Nb
PIT
so
KG
CO
»M
hC
FL
so
NO
PM
HC
co
AM
PK
sc
NT
hC
CO
PM
SO
^.B
HC
CO
PB
NT
HC
CO
sc
NC
HC
CO
-------
:>.TEsriL CO8i,STim. EN&INSSIDlESEl I r.Uil
13 :?2 1. C.5SSC8E C* 3,03 0.03 0.002
:: 3> ' 1. C.«.1!53E C4 0.0* 0.11 1.017
'-NP^ESS-a --IN
:: ci; :. o.2*975E c* 0.02 0.07 0.004
'.: .--,'' \i.'. i.-.Ci'iEatTicN ;i\a CBGJ'UC LlouiD WASTE INO
12 P-* 1. C.f.li'OE 03 3.03 0.13 O.OU
23 i'.* '.. i.'US-E ;-3 3.31 0.04 0.113
...c ,r!- ... .. ,s ((|FT pfr CJS
?'. -," :. :.t'3.Sc ,< 0.0* 0.12 0.176
i'. c .. :..":'>4«9E "3 3.0* 0.07 0,022
2: :'. 1. -,.iC3<.5£ C3 " 0.0* 0.01 0.035
:: ; < i PB PC Z4VE
2: i.; 1. C,.£2;.0r C3 O.O* 0.08 0.067
2 4.* 1. O.fcltCSE 03 0.03 0.07 0,12*
2 ".5 ' 1. C.12250E :.3 0.03 0.0* 0.175
2 s.T ' !. 0.ifCH2E C3 0.03 0.03 0.04*
s ~iSl
2 413 1. C.at*t6E 0* 0.02 0.03 0.630
»
0.0 53J.OOO 4.320 12.000 <*
0.0 700.000 4.720 20.003 HZ
N2
Nl
'44
:<.
N2
0,0 750.000 30.000 6.000 N5
S6
r.6
N6
0.0 550.000 9.4*0 20.00C 1,5
N*
1.6
0.0 *36.000 13,620 *6.00P "3
,,5
,-5
o.o 311.000 *.oiO 15,:-r, -z
0.0 322.000 2.302 *6.oc.- :'2
0.0 350.030 6.1*0 15,i*C .v5
PLANTS T v M FI.C
0.0 2255.000 3,453 30,*8D .5.
ft.
!>.
H3,
16,
0.0 302.000 2.420 23.000 *2.
«>.
0.0 4*0.000 2.000 30.000 M2.
0.0 *40.000 2.000 30.0CO .1*.
0.0 409.000 4.520 22. COO 12.
K».
SO
PM
NO
sn
rtC
CO
P3
NO
CO
P..
su
NO
P«
CL'
HC
s
NC
Ft
FL
p-
LT
HC
CO
HC
Hf
CO
HC
cci
PK
PH
PM
NO
-------
5;_v;Ti-vl S'.E (HIGH CS\
23 ? " >
iC 874
2:Vs
27 --: ,
2 : 1.7
2' ':a
2 5 5 ~ 9
'-?.-'. 1C
?.V:i."L"
21 - . I
i- .!
'i-r-:cs
2: »:»
2:"i;9
25 ?£;
20 C;3
25 CC6
£T>-vLE«.E
20 C = 7
20 COS
CfE»CriT
20 c;o
20 c:s
20 C16
1. C.12453E 04
1. C.19tt*E 04
1. C.ilCiOE S4
i, i-.mc-E 03
'EN;
I. 0.1C725E C4
'. S:BE»S I'.^STPY (Ci
!. C.73i',CE C3
=c5!NS
1. O.S1EC3E S3
: . o . > i '. 1 3 B i, 3
-/D1.
; . 0.22S92E 03
A'.l *E3INS (iC«YLIC 1
I. 0.m35E 03
1. 0.3«CCOE J3
1. :, 21719: C4
'r:""o>^to1e:3
!. 0.55850E 03
0.0
0.01
0.06
0*.04
0.00
CRON POLYESTER)
0.04
3.04
0.00
0.00
0.00
0.04
Pi)
0.04
0.04
0.03
)
0.04
0.04
OIC-LCBJOE 'LiMS (OXYCHLORINATION
1. C.1S490E 04 0.04
;. 0.3847SE 04
HiNUf iCTu«l'-c PLANTS
.1. 0.1336SE 04
I. 0.6247SE 03
1. 0.722506 02
0.04
0.0
0.07
0.02
SM PM* 1-1
0.12
0.08
0.02
0.0
0.12
0,10
0.09
0.04
0.04
0.10
0.03
PC
0.11
0.10
0.03
0.02
0.10
PROCESS)
0.0*
0,09
0.03
0.03
0.02
. AM--41*
0,091
0.145
0.045
0.061
0.101
0.041
0.040
0.197
0.159
0,057
0.061
ZAVE
0.002
0.024
0.076
0.063
0.074
0.322
0.050
0.004
0.007
0.002
1 for D«flnttf
0.0
0.0 .
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
PLANTS
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
lM ( ten*.
744.000
7*4.000
744.000
810.000
744.000
810.000
810.000
744.000
744.000
744.000
81'J.OOO
T
811,000
811.000
373.000
373.000
1143.000
477.000
*22.000
322.000
894.000
513.0QO
2.360
2.360
2.360
1.130
2.360
1.13C
1.130
1.930
1.930
1.930
1.130
V
2.360
2.360
667.000
30.400
21.410
.160
1.410
11. 110
0.570
0.56»
18,000 K2
K2
16,000 K2
HS
18.000 f'5
22.000 K2
16,000 f5
M4
22.000 C4
22.0CO M4
15, OCO h2
15.0CC M2
15.0CC r-5
22.0CC 12
It FUG
18,000 MS
18,000 MS
30.50C 16
41,000 M3
MS
MS
MS
34,000 M2
MS
23.000 M2
M6
15.000 HS.
15.240 M6.
12.200 H2.
I.OCO M2.
M3.
NO
HC
HC
PM
nC
HS
PM
HC
PM
HC
PM
HC
HC
HC
HC
IT
HC
PM
PM
MC
CO
HS
PM
HC
CO
HC
CO
CO
NC
t*
NC
NC
CO
-------
fI*irSIVE l»a (MICH Ex?LCSlVtS>
23 ClT 1. C.llt»2E 04 0.0* 0.0* O.OlT
E*»!.:SIVE I NO (LOU fxnCSI/fS)
20 Cll 1. 0.3>tl5E :» 0.04 0.0*
0.010
K» PH
0.0 110.000 l.OCO . 23.01C C2 SO
X» NO
Ml AM
M »r
0.0 110.000 1.000 23.01.0 M* SC
li» NO
n) p«
MlN'I'.G I'.K PLANTS
23 C »
M j £ * (
^*»*t t »*
2; c<)
«:!."
2? C<»
^T_< '
r^ i »-v .
20 C2S
»MT*itl
20 C2»
TI»E'-i
25 C>7
e*VK (
C * '
2: c»»
§*fe « 1
' w "
29 C59
«T v Kt
C *"*.* FI
20 :i:
M| Vaj fc-*1
^t t M-Fi,
29 C32
>W|*-**"L
20 C3>
fCTu /i
" l W *^
23 CJ*
|T-v..|r(
10 CIS
ft* (fyQg * ^£
CAMONAIE
1.
'C A"HvCR * 0
I.
1C AN^'/ERID
1.
wii. tc *CID
'* TtltP*.Tp4
k ' *t ^" 1 ^
1.
Igl.ffMi;
' **C »t
1.
m
»K
1*
!L *C-NT5
t.
9l AMTc
'*.«" 5
1.
0.224176
O.ttJiDE
S3
02
0.0*
0.0)
"L1M (NATURAL PROCESS)
C.4J543E i4 o.O*
£ 9- iNTS (MAOTu/.i cue ttan^****
"-T*CC60E
E PLif-TS
e.i'cc'E
P14MS
S.t»SS52
1 | * T £ C #1
t* C r L "»
C.12S57E
0.1S4C.OE
C.eiC'.OE
C.lt3C*E
O.tCfOOC
re a i » ^ T e
MfTw4C?VtA» s r ^ri- , +
\. C.22440E
:f CL^CCL CE«IVEC nz
1. C.X2COE
VMF > »Mt>«.
C2
(OXYLENE
C3
03
TC
1 A
;»
0*
04
04
0)
CJ
f ET».vi.Et
03
«C yt»C*9«
0.02
OkOCESS)
0.02
o.e*
0.0*
9.03
0.01
0.03
0.0)
0.0)
it OX ICE
0.01
*SM >( t-3.
o.os
0.04
O.ll
0.0
0.0*
0.0*
6.0*
0.07
0.07
0.01
0.07
0.0*
6.01
0
0
0
0
0
0
0
0
0
0
0
0
0
.001
.020
.17*
.0»>
.0»»
.1*7
.1*0
.770
.330
.114
.11*
.07*
.1)0
+tm*lM tot taftettlw
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
t MtM.
V77.000
11*. 000
3*4.000
11*. OQO
11*. 000
11*. 000
11*. 000
4*0.000
1*7.000
»40.000
*
2*4.000
440.000
44 J. 000
2.1*0
«.170
7.0*0
21. 110
44.430
21.110
21.1*0
2.000
2.3*0
2.000
2.7)0
2.000
2.000
*.14« fS HC
1*.003 '<) CO
f2 -C
40.000 t 4 »(
»;.ovc. M p»
P4 nf
rj HC
.'» CO
I. COS "» CO f
^J
f>4 Jh
>4 SC
f J KC
4i.cro >-3 xc
41.CC? r2 «C
lo.src f.i MC
)».OCf f.» SC
>* «c
is.or? v2 »3 CC
2S.4CC 1*2 MC
:* CO
30.103 ^2 nC
10.006 h2 MC
H» SC
Hk KO
-------
25 C36
VI'. '. i
25 Ci7
c:;?
C£ = 9~ '*"
2: C3*
c i * 3 r*>
25 CJ9
: . o
CETATE I£ThYL
1. C
K
TC'RACH'^^P ICE
TE^^«CULC^ i w£
1. 0
.iUZOE 03
:'.E|
.3'CtOE 03
A
(^ETHANE)
.ZU'.OE C3
(pj^pj^e
..63CCE 03
0.03
C.03
P3
0.03
)
0.03
0.06
0,09
PC
0.06
0.06
0.193
0.157
ZAVE
0.065
0.108
0.0
0.0
'LANTS
0.0
0.0
4*0.000
811.000
T
440.000
**0.000
2.000
0.533
V
2.000
2.000
30.000
30.500
H
30,000
30.000
K2.
12
fid
1 Z
C2
HC
HC
LT
HC
HC
Ci=a;\ Tgr»4;^c»:BE (CiSSGN DISULMDE)
20 C45 1. C.lMtCE 03 n HI n nlk A *» H . ... -
*:;-:.£
20 -41
iCcT->.5
20 c'2
iCr'.'iE
i- CO
"£""'*.
20 C'4
S ' /? £ '.c
2C C'5
2^ C'»
4 C - / .. I C
25 C47
iCET I ff
25 C*«
C v C L 7 *- £
20 C4*
S".--ET
< -. ; ; :
i '* ' ' £
*---. f<
1'. ;'.4
s-'---:
2 - - -, ?
2 : :'.'.
21 r. 1 3
* .:. CC
21 C?0
f '-».:.
22 C.I
.!'=iT =
30 i05
1. C
(Cj-5'.E)
1. C
( tscpajpi-.c
i . 0
(cvti.cMvcs:
!. C
C-'-CT^OPC
1. C
1. C
H i. - * I 0 E
^ ^
;CID
1. 0
Af(*YQ3 IDE
1. 0
^i'i3i /c YCLCHE
1. C
:c »;*tEs JN:
.. c
Ti3 I r '.£
1 . 0
F-'OPlLf E
i. 0
0 = ;ii!-» INf
;»;:£ PLi'.T
P ^ i'.T ^
'. . C
i/JSSIC'l >-IO"-
1. C
f '.'f.-l P..4NT
;. c
r£PT|ilzE«
1. C
.l*1tCE 03
.3iseot 03
L)
.24C40E 03
.)
.li!20E 03
.7C240E 02
.1S515E 0*
.5'6COE -2
,2*C'.3E 03
.5C4COE 03
X AN C f« E
.344BOE 03
. (S TYPES
.64S15E C3
.1!1?76 'Jl
. L2<.O>- 33
~.'*l< 'i;
. . ICtOS 03
S UP CX
.S3J23E 02
,97734£ ,4
BTC CCii.
.44347E C4
S (CXY5£f.
.413i5c C3
(^''f'CNI'tr':
.4C176E 04
0.03
0.03
0.93
0.03
0.03
0.3*
3.02
0.03
3.03
0.03
E-B'jrtDIENE) (SBR)
0.0
5.0}
0.03
0.03
IC1TIC'. PROCESS)
3.08
0.3*
GASIFICATION
3.0
0.06
0.06
0.06
0.06
0.06
0.05
0.0*
0.06
0,06
C.06
0.0
0.05
0.12
0.05
0.0*
0.03
0.20
0,0*8
O.OTO
0.068
0.150
0,017
0.338
0.057
0.080
0.109
0.085
0.1*8
0.041
0.052
0.073
0.097
0.167
7.88*
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
**0.000
309.000
309.000
309.000
**0.000
639.000
440.000
440.000
311.000
299.300
69.400
810.0QO
810.000
8 10.000
422.000
78'3.000
6**. 000
2.000
0.950
0.550
0.550
2.000
28.300
2.000
2.000
0.1*2
3.0*0
1.416
0.850
0.850
0 . 850
16.280
6.950
79.500
30. OCO
26.8CO
26.800
26.3CO
33. OCO
42.000
30.000
30,000
27.430
27, SCO
24.400
10.000
10. OCO
10.000
15.000
32.0CC
*5.700
f2
K2
f.Z
M2
*3
P6
M6
KS
h3
M2
M5
H2
US
H6
fl2
M5
; B-2. Appendix 1 for Definition of c*
-------
3 : = : :
33 ;v.
:: ,C;6"'^::OE c*
1! 0.121COE 04
0.04
0.03
c.oi
0.03
0
0
.014
,062
0.0
0.0
311.000
380.000
4.720
14.160
10.00C
9.140
(.4
N5
PM
PM
W-IS-EY
33 ::e
1 . 0, '75t7E 06
0.03
0.06
10
.380
0.0
894.000
0.47Z
15.240
r.2
H5
PM
MC
8E'» PRCCESSHiG PLANTS
30 3",*
J'i ! v 1 L
31 c.C
V £ C E " A
33 -: i
STiaCH
33 CIS
3: ;;o
(A3G.
3C E ~ 1
STC-;t
43 i'., I
Si-.: t
43 i ~ "'.
FI?E'G
43 ;',6
CUSS
40 3 -.7
(ACS)
40 "38
C £* i'' *
40 c:o
1. 0.4C5C5E 04
FEED OEFLUORINATICN
1. 0.9CCCOE 02
3LF SlL MFG.
3. C.34C40E S4
'fit
U 0.15J«7a C4
1. 3.672CO,: 01.
0.04
0.04
0.03
0.04
0.04
0.07
0.0
0.03
0.02
0.12
0
0
0
0
0
.043
.050
.036
.054
.147
0.0
0.0
0.0
0.0
0.0
894.000
400.000
744.000
333,000
303.000
0.472
9,440
2.360
11.750
18.880
1S.240
10.000
18.0CO
23.000
25.000
f'4
H2
N5
Nl
M4
HZ
MS
K4
PM
HC
PM
FL
PH
HC
PM
PM
FE-3 A iC GRAI'^ *ILL I»ii)UST«Y
! . O.UJ78E 06
CjiiW'If.S i'JO 'SCCESSIfiG
1. w,57C63t 06
',-AvEL PROCESS
1. C,45t83E 06
LiSS MFG. PLA^TS (TEXTILE
1. 0,1«123E 03
0.04
0.05
0.05
PROCESSING)
0.03
0.01
0.03
0.0
0.07
0
0
0
0
.014
.500
.200
.Ml
o.o
0.0
0.0
0.0
0.0
293.000
294.000
366.000
0.0
33.000
29.260
4.720
0.0
10.000
10.000
12.200
ylt
M
N2
K4
Kl
M6
hi
PM
PM
PM
PH
S3
CO
FL
"i'.UFiCTUSiNG ISCLSTRY (SOOA-LlME GLASS)
1. 0.91C35E 04
Ci$TA8LE REFRACTCSV PLANTS
1. 0.1S1C8E i3
C CL»Y MFC,
1. C.526COE 04
0.03
0.03
0.03
0.03
0.04
0.04
0
0
0
.052
.003
.004
0.0
0.0
0,0
592.000
0.0
5QO.OQO
10.890
0.0
1.890
33.100
0.0
10.300
M6
K6
MS
M
Kl
K4
M6
Kl
ft-
so
NC
PM
FL
PM
NO
FL
GV>S;K Hi'l'jSiCToRING PLtt.TS (CiuCINER)
40 ;::
PE'; :r
40 312
M 1 ^ E * i
40 313
1 . C.74«83E 04
E (VERTICAL FORKtCE)
1. C.31242E 03
L »oni. IFG
'.. 0.37884E 04
0.03
0.03
0.03
i
0.05
0.04
3.02
'$ pago I
0
0
0
.129
.006
.078
Appendix *
0.0
0.0
0.0
for Definition
408.0QO
422.000
422.000
of teru.
18.970
2.830
3.300
23.000
15.200
15.240
M6
f'3
MS
H*
M6
PM
PM
CO
PM
$0
-------
"I'.fa
4C ;i
FI3E-
40 3.
(AIG)
4C 31
FLY-;
40 Cl
GLASS
4C 31
(i-cc;
41 3C
UJS
41 ~
VET!
41 E
til1;)
41 e :
u E " i
42 E;
ur-G)
42 e?
"ETi.
43 F-,
!AOG'
43 = ',
44 EO
PHCSP
44 FC
(ASG)
45 Cl
AL .(SOL *e&
3 1. 0.376E4E 04 0.13
iLiSS VFG. Pi.A-.TS <«C:L PR:JCESSI:;G)
4 1. 0.624756 23 0.03
CLA' Sir.TERI'.G PLANTS
t 1. 0.42CC3S 03 0.03
5- Sl'iT£R!i.C (SlMfcRING)
7 1. C.5C161E 04 0.03
"4VUFAC7JBING INCLSTRV dEAO GLASS)
9 1. 0.2S210E 03 0,03
ASPHALT ROCFING PLANTS
1 1. 0.25660E 04 0.04
P'-rSPHATE RCCK PBEPARAT1CK' PLAt.TS
1 1. r;.iSS20E C5 0.05
lr. "P.ERiLS "IM'.C (IPCN CRc)
! i. 0.134JOE 06 0.03
.^'.-"ETiuLic C:MI.C, - CL^Y
1. C.e'CCOE 01 0.05
1C tlSF.^ALS fIM\0 Irf^CiLLOV)
1. O.UIcSE C4 0.03
SC'.-^TALLK PIMSG - GYPSUH
1 1. O.tfStOE 04 0.05
ic '<;K?^ALS KiM'c (COPPER)
1 1. C.121S2E 05 0.03
.::.-!'ETiLLlC FINING - Ll."E
1 1. C.-'lSbc '.5 0.03
*r ^**-3iLc "^ f N * 's C ( L ^ i '* M> I *' I NC )
l" 1. 0,41t70i C4 0.03
hAT£ H3CK (MINING)
1 1. C.51340E 65 0.05
TUI.'JEL
-------
(AGO TUNNEL KHNS(CU)*CR*ERS AND STORAGE
45 Oil
(450)
45 C12
1. 0^*»COE 04 0.03 0,03 0.025
TU'iNEL KlLNS(COAL)/ORYEP.S AND STORAGE
1. C.8CCCOE 03 0.03 0.03 0.035
0.0 . 0.0 0.0 0.0 N4
A6
f.6
N6
Nl
0.0 0.0 0.0 0,0 N*
t.i
N6
N6
N6
M
PM
SO
NO
HC
FL
PM
so
NO
HC
CO
FL
MET4LIC MINERALS MIMfC (ZINC MINE C CRUSHING)
45 f'i
(AGG)
45 fil
(AIC!
46 310
(ASG!
(AGG)
46 Oil
(AGG!
46 Ci2
METALl
46 Eli
^ET^i. !
47 EDI
( Ai'. !
1. C.4CUOE 04 0.03 0.01 30,000
MSN-METALLIC MIMSG - BORCN COMPOUNDS
!. 0.7eS60E 63 0.05 0.05 0,261
PERIODIC XILNS(GA$),ORrERS AND STORAGE
i. c.acecoE 04 0.03 o,o3 o.ozs
?ERlC9iC KILNSIGASl/ORYERS AND STORAGE
PERIODIC KUNS(CU)' ORYERS AND STORAGE
1. C.8CCCOE 03 0.03 0.03 0,025
PERIODIC KiLNSicciD/DRvEes AND STORAGE
1. 0.2CCCOE 03 0,03 0.03 0.025
C MINERALS MINING (ALUMINUM)
1. C.liSCOE 04 0.03 0.04 0.030
C "I'-ESALS NK.Jf.C (U*.«MH(.N)
1. 0,42315c C4 0.03 O.lO I. 000
N"'j'l'F*it 1 1C 'MMNG ~ Fiij"».^'Af
0.0 297.0QO 14.160 10.000 N4
N4
0.0 0.0 0.0 0,0 M
0.0 0.0 0.0 0.0 N4
N6
N6
N6
M
0.0 0.0 0.0 0.0 *>4
N6
N6
N6
Kll
0.0 0.0 0.0 0.0 N4
N5
K6
1. 6
N6
Nl
0.0 297.0QO 9.440 10.000 M5
0.0 297.000 9.44Q 10.0CC N3.
PM
PB
PM
PM
NO
HC
cc
FL
PM
SO
NC
MC
FL
PM
SO
NO
HC
CO
FL
PM
PK
03
I
*SM f»t* >-2. Appudix » for Definition of t«ru.
-------
47 F
&/-S
50 i
CRtY
52 C
0? c '
53 C
CR*<
50 C
S-EE
50 ;
S-EE
so ;
^ *
' f r
5 l
i c;
5 E
[ACS
tiCC
s: E
PEST
55 ;
j^'a
f iC *
57 3
cc:
57'g
I4C5
;a t
58Je
rav
:l 1. O.^CC40E 03
;J:^CT CSKE OVEN
:: 1. 0.3t661E 0!
;'2\ FOUNDRIES (ELECTRIC
:2 1. C,2(737E C4
I'J3'4 Fn^*iCRTES I"EvER9cR
;3 " :. C.25UCE 03
I'D.1. FOUNDRIES (d-PCLA)
;4 1. C.624S6E 04
. f:j'J3B.!ES (ELECTRjc ARC
;i i. C,34a70c 04
L FCj-l2R:ES (CPEN l-EARTh)
:2 1. 0.383:5E 04
;'«.-" R E F I ft i '.C
1. O.lle57£ ^5
; iFCu'Oif.V ALUfl'.'.v Pui'.T
;2 1. :.33374E 03
: SE'.^f.-iRr Zi'-C S"ELT = R5
;'. l.C. 1220JE 03
i s?ca-,OARY ZINC SKELTERS
! SECS'.DARr ZINC 3."ELTcRS
:2 1. 0.123COE C3
ICIOF.S MAfiL'r AC TuR I k C
: i. c.53?5oe :s
5 ? C «"**«' ^ '' C'-^f'c* 'L*-'J"^S
; i. c it *»c JE C'5
SecC'.DiPY CCPP^? PLANTS
1 1. C.iC^COEv3
K i
^cr*^^'"^»av r~PPFi Ci AUT ^
JtCu"i»i«T L>*""~" L ' * i
1 1. 0.it4COE C3
SC^'NCi'Y CCPPEB PLiNTS
1. C.2??tOE 03
$EC^j^*jAPY c .. P P t ^ PLANTS
1 :. C.22*tOE -3
i t At. I NT,
C.05
0.03
ARC)
0.03
i T f l2 V 1
** T LJ* ' ^
0,03
0,3
)
0,33
3.03
0.03
5
0.04
(RETORT REDUCTION
0.03
(RETOKT REDUCTION
0.04
0.01
0.14
0.14
-0.02
0.07
0.07
0.01
0.02
C KETTLE
0.02
t KETTLE
0.016
0,720
0.090
0.060
0.090
0.030
0.090
0.116
0.016
FURNACES)
0.008
FURNACES)
0.0 0.0 0.0 0.0 N2.
K.2
0.0 550.000 4.720 37,700 M
N2
M
N4
N4
0.0 500.000 4.720 10.000 M3
M3
0.0 500.000 4.720 10.0CC ^3
K,3
0.0 675.000 9.430 20.000 M5
M5
M2
0.0 482.000 11.320 2C.OCC M5
M6
0.0 500. 000 7.080 20.000 M5
K6.
0.0 500.0QO 9.440 10.000 r5.
0.0 0.0 0.0 0.0 M2.
0.0 0.0 0.0 0,0 *4,
M4
K2
PM
FL
PM
HC
SO
NO
CO
PM
PB
PM
PB
PM
CO
PB
PM
NO
PM
NO
PM
PM
PM
PB
FL
(t-Sli: i. REVE^fa FjRNACES)
0.03
0.04
fo> *^T EiiU'jArE)
\ H ^ »* J 1 ^'JK|-J(H,t )
0.03
(BLAST FijRUACE)
0.03
H3
(Di A^T tf 3n£rFl
lflL**J' ^ O ^ 1 1 » C 6 *
0.03
0.02
0.07
0.01
0,01
PC
0.01
O.COB
0.050
0.018
0.018
ZAVE
0.018
0.0 0.0 0.0 0.0 M4
K*
M2
0.0 293.000 9.44Q 10.00C M2
0.0 0.0 0.0 0.0 MS
0.0 O.C 0.0 00 M2
PLANTS T V H FLO
0.0 0.0 0.0 0.0 M2
PM
PB
FL
PM
PM
en
3 u
LT
FL
CQU/Ei
-------
60 !
G»iP-IC
43 gi*
t
*»TS I"D
1
. C.litCOE 04
jSTRr (CRAVURE)
. 0,eet93t 32
0.0$
0.04
0.01
0.05
0,000
o.ooi
0.0
0.0
452.000
644.000
3.060
l.lflO
Clis-IC ARTS INOUSTRy [ H.EXCGRAPHY )
33 ---.5
G*i;-!C
40 »:T
5.T.".
60 ---.3
'.".'.
o F : 4
'. " _ S T «
l ?:2
» s T =
1 * " 3
2 * " ?
2 = :3
>. : < a
3 b-2
. : ;'
3 ?'. 3
=' 2
" '.
:sc ;
75 ---.I
{ i ' 'l ^
7 ; ;
t;-:s: ;
71 c ", i
CM - u T r i
T.l,**
SO i',3
ei'iU
sl',:c:
s: » . ;
cc:e
TE " T i L£
93 =02
1
ARTS 1'.
:
!0. (SWI
13. (BUL
:AI 5.RF;
i
U1. S-jP.Pi
If. 5--ce>
UL S.PFi
IAI S.?F!
Ill S.RF-
I £L 5 J** F -
~ i * ' 7 T
1
; I::ITI.
zTR"i>£wM
'.:? G:L
1 1 (> M '
t * -> -) *
1
, ---rv 3
. " - ' J r '
. 0,25Et4E 02
0.04
0.05
0.000
0.0
644.000
1.380
10.0CC
lo.oeo
10.COC
1,2
HZ
f,2
HC
HC
HC
OL.STSY (LETTERPRESS)
. C.61.2COE 12
F- t 5-SCt "-.'4SFE*
. O.S22C3E i6
< CAS. U«M'.»LS)
. 0.1*327.= 06
'.i C';iT 1^ G ( LiRGc
. C.7f C " 2 E - J
ES ;cLc:Tar;tYT!C)
. 0. 77<-;6E ,1
. : . c -, -. : ; = ^ 7
;. .: '.-"-- ;. Gis s^
S'>i-i« =»
J ( f S 5 C )
. C.27isOE 0^
P 1 1> C ^^» (&CTD
! C. 124745 04
0.0<,
/ GAS.
0.03
LOAOING
0.08
0.05
C CRLOE OIL)
0.04
TANK TRUCKS/
0.03
0.000
34.640
>R CAR
1.220
0.0
0.0
0.0
644.000
294,000
727.000
i.eco
0.444
0.472
10.0CO
15.0CO
22.00C
r.4
f.l
N4
HC
HC
HC
APPLIANCE CQATIrjG)
O.J4
T HI = E
0*0^
T9UES)
0 . 04
3ATI-IG)
0.04
C2ILS
0.04
COtTlN
0.04
C CQATl
0.04
0.04
0.04
*C t S
3.02
JOUCTIO
0.03
0.03
e i|i p T T c
J Ul_ r I 1 t
0.03
0.08
COATING)
0 . 06
0 03
0.08
COATING)
0.08
G)
0.06
^G )
0.03
-0.10
-0.10
0.04
N PLANTS
C.03
0.05
]
o.n
0.065
0*071
0.655
7.780
0.277
5.913
0.224
0,060
0.022
21.490
0,639
O.OBl
0.088
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
366.000
644.000
3839 030
393.010
644.000
644. 000
344.000
300.000
300.000
0.0
0.0
373.000
373.000
IE. 880
0.472
337 000
15.570
0.944
0.544
20.850
3.000
0.432
0.0
0.0
2.890
2.890
17. SCO
25 . DC C
25 C C r
17.000
25. ore
25.0CG
17. cor.
30.GCC'
30.0CC
0.0
c.c
9,140
9.140
K5
V5
f.5
12
;.2
\1
(.2
Kl
Hi
Hi
,':6
M
>:2
M2
."4
HC
HC
HC
HC
HC
hC
H'
PP
PB
n'
HC
SO
SO
So
? '
"i>. jftCTu'it.o PL-'.T
i
K
u F ^ * ^ P '
rr ^ {it*
1
. C..4it*c 06
A
T ^FTTTKr/F*f^T^i-T\.
1 Itl'l^u/rjNIJPI^
. 0.5C7iOE 03
0.05
PB
r i
h* )
0.04
0.05
PC
0.08
151,240
ZAVE
0,009
0.0
PLANTS
0.0
373.000
T
644.000
2.690
V
9.440
10. COO
H
15.0CO
.".2
*-4
PLG
."4
fK
hC
LT
HC
I
M
OJ
-------
Table B.2. Sunm
;:?£ iJ cS EN SIZE
GEZY IPCK ICUNCBIES (CUPOLA)
50 C0<4 17.00 1.77 0.20 711.4400
SYNTHETIC FOEBZR IND. (ST YF.ENE-BUTZDIENE) (SBR)
2C E01 0.70 0.70 0.12 30.5f.20
INT'JSTFIAI fCILERJ (10-250X10E6 BTU/HF)
10 A03 2.77 0.40 0.40 737.3035
bTCSc COJFFYINi; 6 PROCESSING
40 »01 17. 3C 2.60 2.60 3459.9966
CFFAtlC CIAY flFG
4C E13 IbO.OC 18.30 18.00 259.19°5
KEESCIASS riG. FLANTS (TEXTILE PROCESSING)
4C CCc u. (?0 4.140 4.40 82.6559
F:I:FFJIASS ri1;. SLANTS (WOOL PROCESSING)
4C C1-4 99. 2C 9.30 9.30 1728.5591
ALiTIC AKHYCr-IDE
:C CUt 0.01 0.01 0.0 0.4380
STJFEKE
iC C45 0.04 0.04 0.0 6.0840
AN1.VU FIFE [EFIUCFINJTION
3C tlC IIJ.CO 4.57 C.06 14062.4883
GLASS KAKUf ACTUBIKG INDUSTRY (LEAD GLASS)
-------
Table B.2. (Contd.)
NITtATE EEFTILIllR (AHSONIPH IITFATI) PLAITS
30105 12.72 1.64 0.18 708.4014
GREY IRON FCONDRIES (BETERBEFATOBT)
5C C03 10.00 10.00 0.10 278.9998
FCIYESTEB F2SIN
20 E19 7.00 7.00 0.35 57.1199
1.00 0.01
(OPEN HEARTH)
2.20
2.09
2.67
6.80
0.22
0.18
0.03
1.36
50 FC1 1.00
STEEl FCCNCFIES
50 CC2 11.00
CCTTCB GIKKISG
30 E01 12.CO
ICITERCPLIIKE
2C EC7 3.00
CBEA
TO E21 6.80
SIICC fDIl ECILERS
10 A07 20.00 5.00
EESIICIDEE BANOFACTUBING
55 101 10.10 10.00
BIIEt FUEI ECILERS (COAL C RFFOSE)
1C ACt 3C.OO 5.00 0.30 917.9988
GKFSUe BANUFACTOEIKG PLANTS (CHLCINER)
«0 C11 90.00 1.51 0.10 4633.1SM4
SCCICH CAFECNATE PLANT (NATURAL PROCESS)
20 C24 90.00 1.16 0.45 22534.7266
ERT8ILIC ASHYDSIDE PLANTS (0-XYLENE PBCCESS)
(OIL 6 REFDSE)
0. 20
0. 10
19.3000
445.4998
81.6000
118.1698
191.2159
599.9988
209.5749
2. HO 7398.9111
(ZINC niNE 6 CRUSHING)
0.70 91.5000
95.1515
91.5000
20 C26 210.00 21.00
BEIALLIC KIKEBALS HIDING
15 F01 7.00 7.00
EE!S FF.OCES51NG PLANTS
30 DOS 5.45 2.09
EETA1IC B1NEEALS DINING (LEAD tllHIXG)
11 EC1 7.00 7.00 0.70
BONICIEA1 INCINERATION < 50I/D
10 E03 30.00 6.17 0.30 52.1999
GLASS BANUfACIORING INDUSTRY (SODA-LIME GLASS)
10 T07 2.21 1.89 0.02 52.1185
EETAUC SIKEEALS MINING (FERROALLOY)
12 101 15.1C 15.10 0.60 190.2599
BE7ALIIC flDiEfALS HINING (ALUMINUM)
16 £01 11.10 11.10 0.11 119.8199
FOTASH
2C A16 9.17 9.17 0.66 2207.1556
fEGEIAELE CIL DFG.
30 D11 63.00 S.63 0.63 1036.6113
HI-ASU SIFIERIHS (SIHTEFING)
10 C17 110.00 1.00 1.10 84666.9375
fEIAHIC tlNEFALS BINING (IBCN ODE)
11 101 0.70
Still FOUNCBIES
50 001 13.00
Asscmoa SULFATB
3C D2C 20.00
1UISKE1
30 DOf 0.04
0.70 0.50
(ELECTRIC ABC)
0.26
1.00
2.20
2.0*
0.03
0.0
683.5491
175.4999
1234.7981
214.9697
GBEI IBCK FCUNDBIES (ELECTRIC ARC)
50 CC2 7.00 7.00 0.07 292.9495
FLTVCCC eiliOEACHlRING PLAIT
60 E01 0.13 0.0 0.0 9083.1570
BETAIIC BltERALS BIHINS (OEANIBUN)
«7 101
11.00 11.00
0.11
3021.9993
6.59
2.51
2.38
11.86
6.23
14.13
2.86
14.77
9.37
5.39
9.56
11.31
4.93
6.96
28.10
8.55
29.17
13.59
17.21
25.35
16.98
25.09
29.38
20.07
94. 15
18.67
13.71
21.64
20.12
58.75
46.77
7
5
6
13
10
15
8
19
13
10
13
16
16
16
31
16
32
19
23
29
24
33
37
34
121
32
41
34
47
92
93
.91
.93
.17
.28
.77
.97
.89
.85
.69
.61
.96
.85
.46
.48
.47
.62
.96
.84
.06
.15
.63
.72
.31
.29
.16
.30
.08
.63
.17
.12
.53
1
1
1
8
5
9
2
12
6
'
6
8
8
6
21
6
22
8
11
17
12
21
22
19
106
15
23
16
14
50
34
.09
.85
.55
.58
.11
.96
.85
.24
.04
.04
.32
.57
.05
.66
.35
.64
.20
.82
.66
.76
.35
.02
.33
. 18
.12
.67
.98
.27
.81
.08
.27
3800.
4100.
1600.
1700.
5700.
6000.
6000.
7600.
7600.
7600.
7600.
8300.
8400.
9800.
10100.
10200.
10300.
11000.
1 1400.
11400.
12300.
12700.
15000.
15100.
15300.
16600.
17100.
18400.
32700.
42000.
59300.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1560E
8520E
00 2
OC 1
7990E-01 2
6750!-
01 2
69BOE-01 3
1060E
1530E
50602-
2620E,
3160F
1890E
33502-
2040E
1240E
63BO!
1910E
8650E
00 2
00 2
02 3
TO 2
01 1
00 2
0' 2
00 2
00 2
03 1
00 2
00 1
1390E-01 7
1350E-01 2
1290E
13708
2850E
2060E
1010E
6260E
18301-
1980E
7220E
895CE
1250E
2770E
01 1
01 1
01 1
00 2
01 1
01 1
01 3
00 2
00 1
00 1
01 1
02 1
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
17101-01
8520E-02
1003E-02
6750E-03
6980E-02
24UOE-01
172GE-02
1010E-12
1050E-01
3HDE-01
1120£-01
2220E-32
79005-11
1240E-31
6380E 02
24705-01
36502-0'
6430E-03
1570E-33
5113E-31
miE-01
1930E 00
1513E-01
2790E 33
U170E 01
2160E-32
9690E-01
5690E-01
9953E-02
4050E 30
2770B 00
2
3
3
3
3
2
3
1
2
2
2
1
2
2
1
2
2
3
3
2
2
2
2
2
1
3
2
2
3
2
2
-------
Table B.2. (Contd.)
ET-FFCtOCi Cf.r.l
EC A1C 5.03
C7EN
5. DO
0.21
167J.999J
HISCfALS fll.'.'IN-; (CCPPF.?)
EC1 7.1C 7.13
IHfJiTBIAl IhCJIERATICN
1 1 6C4 6.U7 6.U7
SASC t GFAVEI PPOCESS
«0 »02 1.90 1.90
FtiCEFIUTE ECCK (RIKIUS)
uu TCI 12.00 12.00
0.07 3017.UV93
(INDU3TEIAL-CCHMSPCIAI)
0.06 20.8981
0. U2
151.9999
6.00 24863.SSUtt
leit.jO 202.73 135.71
90.83 15«.m 62.85
62.Ot) 176.27 39.26
867.92 867.92 529.89
1396.32 1578.70 1063.43
67300. 0.9050S 00 1
91600. 0.2760E 02 1
137000. 0.1010S 01 1
338COO. 0.6410E 00 1
515000. 0.1550E 0
-------
Table B.2. (Contd.)
1< SQ
"
: CD - t o t s EN .5 1 1 f
fHTHALIC ANHYDRIDE PLANTS (G-XYIENE PROCESS)
iO C26 9.40 9.40 9.41 21)9.7915
ISTUSTSIAL IKCISEBATICS (I NO UST SI A L-C0.11EPCIAL)
11 E04 2.38 2.36 2.18 7.6H74
ETKTIF.GE (HYCGL DEfilVED PROH 8THYLFNE OXIDE
20 C35 0.05 0.05 0.0 3.0000
KKErAl fcCCL BrC.
ItO D13 0.02 0.02 0.0 0.6371
1 .'.
2.73
22.64
0.01
O.OB
TS
6.
64.
0.
0.
46
84
04
09
TN
6.46
64.84
0.07
0.05
TS-TN
0.
0.
20.
40.
X/AV S
0.1990E-01
0.2700E 00
0. 1960E-02
0.7300E-03
X
2
2
3
3
0.
0.
0.
0.
X/AV N
10932-01
2700E 00
1573E-33
7300E-33
X
2
2
3
3
STATIOKAEY IKTEPNAL CCnBUSIIOU ENGINES (SPARK IGNITION)
10 CC1 0.02 0.02 0. 3 0.1682
GLASS BAStJEACTURinG INDUSTRY (LEAD CLASS)
40 11C. 2.68 2.68 0.09 6.150£
STA1ICSEBY PIPEt.IKL CG1PP F.r.SOP F.SGINE2
11 C01 5.i7 5.i7 5.00 9.4660
B1XEC FUEl EClLEfS (OIL C I.EFUEE)
1C A07 1.30 1.30 0.01 38.9999
STATICfcAfY IhlERNAL CCIB'JSTION ENGINES (DIESEL 6 DUAL
10 C02 16.80 16.60 16.00 11.2056
flEFfGLAES HfJ. PLANTS (KOCl PROCESSING)
4C L14 4.49 4.49 0.0 76.2382
fUKICIEAL 1SCIKE6A7ICM < 50T/E
1C E')3 2.50 2.r,D 0.33 4.3750
?;X£: FUEL SCILEBS (COAL £ tISrUGE)
1C AC£ 14. OC 14.00 0.14 419.9993
CKI.-lCtL «CCi fOlFIKG IND. (ACID SULFITS)
80 A04 61.00 61.00 3.10 1779.4900
GLAS^ tAiruFAClKaiNG INDUSTRY (SOD A-LIBE GLASS)
UO 107 4.02 4.02 0.12 94.8585
tY-rr-cnuci CCKE OVEN
5C A1C 5.75 5.75 4.02 1925.0989
Z.IELCSIYF. INC (LCW EXFLGSIVES)
2C C1c 69.40 63.40 5.r;5 298.9539
fj£i CCNVE:-E:OK H ETU COAL GASI?ICATION
21 C20 6.42 6.42 1.56 16980.7188
EltTIESE
2C C31 4.73 4.73 0.01 1066.6143
IH£U£TFIAL ECILERS (10-250X10E6 BTU/HP)
1C A05 1.90 1.53 1.50 505.7317
CHtHICAL «CCD ISO. (NSSC)
EC A03 61.00 61.00 3.10 2333.7366
EZF-LCSIVE IKO (HISH EXPLOSIVE.")
20 C17 75.00 75.00 6.00 1143.5315
0.30
0.76
13. 16
2. 44
FUEL)
99.97
2.81
5.25
26.25
76.09
36.60
211.95
23.33
28.47
38.79
7208.59
168.214
89.64
0.
1 .
22.
3.
127.
5.
7.
38.
76.
49.
233.
57.
85.
79.
8283.
248.
220.
56
06
77
56
97
78
66
32
09
04
14
29
41
94
80
99
13
0.24
0.54
22.14
1.50
125.06
1.97
3.26
16.24
53.70
25.25
208.91
16.39
42.31
27.12
8216.07
122.84
62.97
320.
520.
630.
2100.
2900.
3600.
4400.
22100.
22400.
23800.
24200.
"0900.
143100.
52600.
67700.
126000.
157000.
0.1.»40E-04
0.5240E-03
0.1700E-02
0.2800E-01
0.2120E-01
0.1550E 03
0.2570E-02
0.252CE 00
0.7170E 01
0.1610B-01
0.4280E 00
1.5750E 00
0.4990E 00
0.4040E 00
O.I4900E-01
0.9410S 01
1.2200E 01
3
3
3
2
2
2
3
2
1
2
2
1
2
2
2
1
1
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1443E-04
1570E-04
1623?-32
2160E-03
2020F-01
1730E-03
3080E-14
2520E-32
3650E 30
4820E-33
2993E 30
4603E-01
1213E 00
1270E-02
4833E-31
47SOS 33
1760E 00
3
3
1
3
2
3
3
3
2
3
2
2
2
3
2
2
2
Cd
1
h-1
^J
-------
Table K.2. (Contd.)
cc:s cu ;s
SYNTHETIC S3EBEB IND.
2C D01 4.20 ».20
ACETIC ACID (BOTAHE)
20 A13 14.70 14.70
INCUST6IAL INCISERATIC!!
11 E04 2.88 2.86
TEITILE SFG
9C FC2 15.80 4.74
FnTH.UIC ASHYCBIOK PLANTS
2C C25 10.00 10.00
ACETCHE (CYANCHYDFIN)
2C C4J 2.00 2.00
EN SIZE
(STYBEME-BOTZDIEN2) (SBB)
3.13
183.3719
0.15 1349.4595
(INDOSTBIAL-COS.IEBCIAL)
2.88 9.302U
(HEAT SETTING/FINISHING)
4.74 61.8253
(NAPTHAIENE PROCESS)
0.10 308.2891
0.02
119.9999
B'JSICIEAl IKCINE6ATICN. < 50T/C
10
INCUSTFIAl
0.22
INCINERATION
1» EC4 C.60 0.60
Ei-'lYFBCPlYESE
2C £37 23.60 0.59
AIIYI CHICFIDE
20 C46 20.00 20.00
0.01 0.3850
(IND OBGANIC LIQUID HASTE INC)
0. 0 2. 8944
0. 24
0.20
OBEA-35LAB1NE
2G Ell 7.50 5.76 0.07
«:XSC fUEL ECILEBS (OIL 6 BEf'JSE)
1C A07 C.91 0.91 0.28
ACET11E EAYCN
20 B13 7.00 7.00 0.15
929.6023
459.9998
476.9993
27.3000
198.5549
FIEE6GIASS SIS. PLAHTS (VOCL FBOCESSING)
40 cm
13.05
3.39
2. 10
227.3962
FHIHAtIC AI.HYD5IDE PLAHTS (0-IYLEHE PROCESS)
2C C.6 2. JO 2.40 0.02
FHENC'.IC EESISS
20 E1C 7.50 5.76 0.07
SUE: fUEl ECILEBS
10 AC6 C.90 0.90
ECIY-BSIAtlENE
73.9694
590.9993
(COAL 6 REPOSE)
0.0
20 C02
SHIS5ET
30 CCS
9.00
0.0
ACIICSI (CL'SESE)
2C C4 1
9.00
0.0
7.21
7.21
HTKYI CHICFCFOEH
20 C41 36.00 36.00
ACETIC ACID (SETHANOL)
20 A12 15.00 15.00
STTBESE
20 Cu5 1.64 1.64
AES-SAS RESIN PLAHT
2C E12 7.50 5.76
ACITCSE (I£CFFCPA»OL)
20 C42 13.00 13.00
FKfKCL FLAMS
20 C33 4.48 4.48
FClYSTYBEUt
2C BC5 11.70
0.09
0.0
0.07
0.36
0. 15
0.02
0.07
0. 13
0.04
0. 12
27.0000
153. 13c.O
13.6082
201.5914
250.5598
569.9993
249.4436
174.3524
353.5994
227.0351
209.1959
4.29
FLYHCCC HANOIACTOBING PLANT
8C BC1 C.O 0.0 0.0 21.3324
CAFEClt TEIBACHCBIDE (CA8EON EISULFIDE)
2C C4C 32.00 32.00 0.32 1250.5591
T4
2.94
2.70
27.63
2.41
0.90
0.30
0.46
0.41
0.63
1.10
1.83
1.71
1.59
2.12
0.70
2.27
1.69
1.69
2.14
2.28
2.53
1.66
2.71
1.79
3.13
2.73
4.65
4.55
4.72
TS
2.
2.
78.
5.
0.
0.
0.
0.
1 .
1.
2.
2.
2.
4.
1.
3.
2.
2.
3.
4.
4.
4.
4.
4.
5.
5.
5.
7.
a.
94
70
46
24
90
54
67
95
97
70
71
49
03
37
65
37
46
76
43
09
53
31
63
81
60
62
56
14
46
TN
2
2
73
5
0
0
0
0
1
0
1
1
0
3
0
2
1
1
1
1
1
1
1
1
2
1
1
2
3
.94
.70
.46
.24
.72
.21
.30
.27
.15
.89
.75
.50
.93
.27
.57
.18
.03
. 15
.50
.62
.80
.16
.66
.74
.22
.95
.26
.52
.36
TS-TN
0.
0.
0.
0.
leo.
330.
370.
680.
810.
820.
960.
1000.
1100.
1 100.
1100.
1200.
1400.
1600.
1900.
2500.
2700.
3000.
3000.
3100.
3403.
3700.
4300.
4600.
5100.
X/AV 5
3. 1503E
0.9370E
0.6040E
0. 1550E
0.1210E
0. 1960E
00
01
00
-01
00
01
0.6330E-03
X
2
1
1
2
2
1
3
0.21902-02 1
0.4531"
0.9810E
3.98202
0.6410E
0.5390E
0.2190E
9.16f 02
0.1221E
0.45208
0. 1 060E
3.95P02
0.32912
0.53502
0.3910E
-01
00
00
-01
00
00
-11
01
-31
01
-01
01
00
00
0.4520E-01
0.3590E
0.5770E
0. 35?OE
0. 1460E
0.12',OE
0.2670E
00
01
01
00
03
01
2
1
1
2
1
2
2
1
2
1
2
1
1
2
2
2
1
1
2
2
1
0
0
0
0
0
0
0
0
1
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X/AV N
. 1110E 00
.9370E-12
.6040E 01
.15SOE-1'
. 1^102-12
. 1960E-11
.28902-14
. 219DE-12
. 1910E-11
.9B10B-12
. 12SOE-01
.201 3E-11
.2701E-01
. 135DE 01
. 13812-0?
. 15902-1'
.'452 IE- 11
.10632-01
. 1913E-12
. 3/93E-11
. 5350E-02
. 316DE-12
. 4520E-13
.46702-32
.5770E-11
. 3523E-01
.4180E-02
. 1250E 00
.26712-01
X
2
3
1
2
3
2
3
3
2
3
2
2 w
I
2 GO
2
3
2
2
2
3
2
3
3
3
3
2
2
1
2
2
-------
Table B.2. (Contd.)
ACETIC ACID (ACETALDEHTDE)
20 111 19.62 19.62 0.20 525.8152
CAFEO TIIBACHLCRIDE (PROPANE)
2C C39 32.00 32.00 0.32 1382.3987
INDUSTRIAL ECILESS (10-25CX10E6 BTa/HR)
10 A33 0.0 0.0 0.0 0.7320
AHKOSIA FLINTS
21 C13 C.90 0.90 0.0 68.3086
fAIEIC ANtYCRICE
20 Ci3 262.00 147.00 2.62 2095.9988
SYNTHETIC 5IEEE INDUSTRY (NYION)
2C EOS 7. CO 7.00 0.35 111.9999
ACETIC ASHYCEIDE
2C C49 17. 60 17.80 0.18 779.6392
ETHYL EEKZEXE
20 C33 5.00 5.00 0.05 1539.9993
EOlYETbYLESE (LC! DENSITY)
2C E04 24. 2C 4.20 0.24 1521.1497
CAFBCN TEIFJCHLCBICE (METHANE)
20 C33 36.00 36.00 0.36 930.2388
EPISIISG IKK PLANTS
2C Cl? 120. CC 48.00 4.80 42.5292
ADIF1C ACIC PLANTS
20 A04 42.70 42.70 0.04 2074.7913
P.T.H. ID. (BULK GAS. TBBHINALS) LOADING TANK TRUCKS/BR
60 F04 3.36 0.07 0.0 185.1043
SYTHETIC SCEEEF. (NECPRENE)
20 D07 120.00 120.00 1.20 3635.3965
ETHYLEKE
20 C31 1.49 1.49 0.33 335.9944
ETfiYIESE GLYCOL DERIVED PROD ETHYLENE OXIDE
20 C35 34.90 34.90 0.35 2093.9976
CYCLCSEXASE
2C A14 20.00 20.00 0.20 1120.4983
CHASCCAL ELASTS
20 CU 464.00 484.00 4.80 375.4021
BETHJNCL E1ANTS
20 C32 10.00 10.00 0.10 1255.9993
fCLYETBYlEliE (HIGH DENSITY)
20 EC3 59.20 7.40 0.59 2693.5979
VAFNISH
20 C15 67.90 34.90 0.68 191.3251
INrS£TfcIAI SURFACE COATING (RAGNET WISE COATING)
61 EOj 2.32 2.32 0.06 67.9156
ITKYLENE C1IDE PLANTS (OXYGEN OXIDATION PFOCESS)
22 C11 43.00 43.03 0.43' 1807.8362
E1HYIESE-FFCPYLENE
2C C06 72.00 72.00 0.72 1497.5994
TEEEfHTBAlIC ACIC PLANTS
20 C27 20.77 20.77 0.21 1299.3689
VINYL ACETATE (ETHYLENE)
2C C37 43.03 43.03 0.43 2871.1741
(ETHYL BETHAC?TLATE PLANTS
20 C34 112.80 112.80 1.13 3347.^014
ISCFYIENE (CXICE)
2C C36 59. 2C 59.20 0.59 4567.6672
CICICHEXASCL/CYCLCHEJANONE
2C C4S ICO. 68 100.68 1.01 3443.2522
IOIL CCSVEFSICN H ETO COAL GASIFICATION
21 C20 5.17 5.17 0.68 15285.0859
3.57
5.24
12.96
8.80
9.73
5.15
8.97
7.70
8.39
9.45
10.86
17.59
CAR
10.17
13.30
12.22
20.66
12.32
34.97
18.30
9.21
21.80
14.07
17.77
9.68
14.25
15.95
25.31
34.53
34.71
22.93
7
9
14
12
15
12
16
15
18
16
17
26
14
21
25
29
24
43
29
28
28
29
26
30
33
37
U5
61
62
68
.71
.38
.89
.29
.04
.09
.07
. 15
.46
.92
.68
.04
.29
.66
.18
. 14
.24
.71
.82
.36
.27
.81
.30
.05
.73
.75
. 33
.63
. 17
.78
2.20
3.72
8.68
5.41
6.99
3.30
6.38
5.49
8.49
6.72
7.14
14 .78
2.66
9.04
12.24
14.61
8.78
27.09
12.98
10. 7U
7.61
8.77
3.78
6.72
8. 10
11.43
17.oo
24.54
24.68
78.96
5500.
5700.
6200.
6930.
8003.
8800.
9700.
9700.
10000.
10200.
10500.
11300.
11600.
12600.
12900.
14503.
15530.
16600.
16800.
17630.
20700.
21030.
22503,
23303.
25633.
26333.
27333.
37300.
37530.
39800.
0.3650E
0.2950E
0.24132-
00
01
33
8.3420E-01
0.3640E
0. 3040?
3. 171 OS
0.3290E
0.5150E
0.1980E
0.5540E-
0.7520E
0.202.UE
3.25202
3.4 1532
3.4470E
3. 12502
0.559CP
0.2680E
0.6570E
3.7373E
3.35402
0.77632
0. 10U02
3.5050E
3.1010'
0.714?E
0.9750E
3.3243E
0. 1 310E
01
30
02
31
30
31
01
03
03
02
03
01
32
01
01
00
03
oc
0 1
02
00
32
01
01
02
31
2
1
3
2
1
2
1
1
1
1
2
1
2
1
2
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
3.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
3650E-02
29505-01
24132-03
34203-01
64902-01
15202-01
171 3E 30
3293E-01
2940E-0 1
19902-01
55432-02
7573E-33
13232-01
25232 00
92032-31
4473E-01
12^0E 00
55332-01
26302-01
52402-0'
1u 302-0 1
99302-02
77832-01
1343E 30
5130E-32
13102 03
7143E-31
9753E-01
32432 00
1733E 00
3
2
3
2
2
7
2
2
2
2
3
3
2
2
2
2
2
2
2
2
2
3
?
2
3
2
2
2
2
2
-------
Table B.2. (Contd.)
G84F8IC ASTS IHDOSTBI (FLMOGBAPHT)
6C BOS 13CO.OO 1300.00 26.00 217.1036
VEGETAELI CIL HfG.
30 D11 36.00 37.90 15.20 625.2568
1CRIIIC »CID
2C CU7 173.77 173.77 1.74 5560.6289
GRAfHIC AFIS INDUSTRY (LETTERPRESS)
6C EC7 lOC.OC 700.00 35.00 53.0560
FCF.rjLCEHYCE PLANTS
20 C08 6.42 6.142 0.06 144.4499
tC F03 0.07 0.07 0.0 986.3728
INDUSIFIAL SURFACE COATING (BETAL COILS COATING)
63 E02 6.48 5.34 0.32 7363.0508
ETHYIENE CICI'LCSIDE FUNTS (CXYCHLCR I NATION PROCESS)
ZC CC7 53.90 19.60 C.5U 5991.46.09
EESr. FECCESSIS^ PLAS1S
3C COS 10.00 10.90 0.11 190.3090
I!CUSTFIA1 SUFFICE COATING (LARGE APPLIANCE COATING)
61 E02 6.^8 5.34 0.06 171.0^02
CARECH ELiCK (PUSNACE PROCESS)
iC CC3 1CO.OO 100. OJ 0.10 2582.9976
ISL'.STFIAI SL'RFACS CCATING (AUTOMOBILES)
6: =02 6.10 5.JU 0.31 18U5.7063
EY-fECCUCl CCKE CVEN
5C A1C 5.98 5.98 0.04 2002.1028
EIIF-IHIL TEBEPHTHALATE PLANTS
2C CTB 37.00 37.00 0.37 53U6.4922
GFAfBIC AFTS INCOSTSI (GSAVUFE)
60 5C4 IjCO.OO 1300.00 65.00 321.3235
PLASTICS A!.C EESINS (AC3TLIC)
20 E17 2UO.OO 210.00 2.UO 219.2399
ACBYICMTBIIE PLANTS
2C C06 1U2.00 91.00 7.92 17U7.1250
STJTICNAfY I.MESHAL CCMBUSTION ENGI NES (DIESEL 6 DUAL
1C CO; 31.30 31.30 0.0 20.8771
INCUSTflSl SUSFACE COATING (FABRIC COATING)
6U EO: 6.U8 5.34 0.26 594.3252
ETHTLiM C1UE PLANTS (AIR OXIDATION PROCESS)
21 C11 ltc.00 1b8.00 1.68 7063.1758
CF I CLEANING
6C E01 SCc.70 258.00 24.40 70.1250
ISCU5THAI SURFACE COJTIHG (TAPER COATING)
63 3J2 6.48 5.34 0.26 1570c-.fr4C6
38.81
129.01
41. 70
44.91
24.70
61.78
34.07
30.36
44.59
42.72
96.76
103.51
220.13
46.39
89.30
42.80
54.16
FUEL)
186.26
113.63
140.31
402.48
442.87
63.22
163.84
74.69
73.20
60.66
92.33
72.20
71 .88
87.71
90.52
123.86
137.76
242.47
109.82
145.16
121.51
111.26
238.41
210.81
207.70
440.20
938.56
22.18
121.35
29.65
27.14
11.05
45.56
22.90
18.22
27.36
25.58
53.29
61.55
159.29
26.36
53.93
21.52
39.61
121.79
71.42
29.86
223.84
290.06
11000.
12500.
45000.
16100.
16600.
46800.
49300.
53700.
60300.
64900.
70600.
73200.
83200.
83500.
91500.
97000.
102000.
111000.
166000.
178000.
216000.
649000.
0.1060E
0.1220!
T. 1 190E
0.2270E
0.8050B
0.6190E
0.1880E
0. 1720B
0. 1310E
0.1 160E
0.7680E
01
01
02
00
00
02
01
01
01
00
00
0.2900E-01
0. 1450E
0.2080E
0.1970E
0.1110E
0.6310E
0.4710E
0.5380E
0.5970E
0. 1450!
0.4020E
01
01
01
00
00
-01
00
01
00
02
1
1
1
2
1
1
1
1
0
2
1
2
1
1
1
2
1
2
1
1
2
1
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
21205-01
4830E 00
1 190E 00
1 140E-0 1
8030E-02
1200E 01
1130! DO
4750Z-11
1340E-01
1HOE-02
7680E-03
1681EO2
1020E-01
20905-01
9850E-01
4110EO2
5500E-01
4710E-01
2620E-01
5970E-01
1370E-01
1960E 01
2
2
2
2
1
1
2
2
2
3
3
3
2
2
2
3
2
2
2
2
2
1
w
1
ho
o
STATIONARY I!,TESNAL CC.1BUSTIO 1- ENGINES (KPAFK IGNITION)
10 CC1 Sb.CO 56.00 0.0 3T6.70/4
ISCUSIFIAL SURFACE COATING (CAN COATING)
62 E03 4.75 4. '9 O.O1!- 15279. '289
668.93
5?6.6U
1250.89
1137.27
535.11
319.87
716000.
817000.
0.7910E
D. 1420°
-01
02
2
1
0.
0.
791 3E-01
1433E 00
2
2
-------
Table B.2. (Contd.)
STEEL rCONESIES
50 DC2 C.01
FIEESGIASS PFG.
1C ECS 22.60
STEEL FCDNCSIES
50 C01 0.20
CS EN SIZE
(OPEN HEABTH)
0.01 0.01 0.1050
PLANTS (TEXTILE PROCESSING)
22.60 22.60 389.1709
(ELECTBIC ASC)
0.20 0.20 2.7000
ElfcllENE G1YCOL DERIVED FROM ETHYLEHE OXIDE
2C C3:
STYFJNE
20 cie
0.13
0.05 0.05
Fl-FFCCt'Cl CCKE CVEN
5C A1C 0.06 0.06
fISEFAl KCCL BFG.
1C T13
NITFA7E
3C 405
FCJASH
2 C 513
f:t: = jLj
1C C 1 4
CEFASIC
1C DIG
0. 16
0. 16
0. 01
0.0
0.05
0. 08
7.8000
7. 6050
5.0971
FERTILIZES (AM.10NIU.1 NITRATE) PLANTS
C. 13
0.36
2.42
CLAY .ire
0.40
0.13
0.0
6.9615
0.36 0.02 83.9159
PLANTS (BOOL PBOCESSIHG)
2.42 1.57 42.1681
0.10
0.20
0.5760
GLASS .1ASUEACTURING INDUSTRY (LEAD GLASS)
1C CIS 7.65 7.65 0.38 17.S567
CIXED FUEL £CILERS (OIL 5 BEFUSE)
1C AD7 31.5C 15.00 13.80 1031.9983
A:IF:C ACIC FI.ASTS
2C A?-* 53.60 12.00 1.61 2601.1219
CUMCItAL INCINERATION < 50I/D
10 E02 3.00 3.DO 1.05 5.2500
CIAS; SANUFAC1USING INDUSTRY (SODA-LIflF, GLASS)
10 DOT 7.1.1 2.01 0.3C- 16B.4flOO
ISCU5TrIAl IKCISERATIOS (ItiD ORGANIC LIQUID HASTE INC)
II EC4 lc,.00 15.00 0.15 72.3600
£IELCSI»E IH (LCS EXPLOSIVES)
20 CIS 30.00 30.00 2.10 129.230°
ISCL£TF.IA1 I^INSPATICN (I S30STRI AL-COMK ESCI AL)
1 1 EC J 1.3"" 1 .?7 0.65 6.0101
FClYEIKJLf NE (!!IGH DENSITY)
20 EOJ 22.50 12.50 11.25 - 102j.7lt!8
flXEt fUEL tCILtBS (COAL 6 REFUSE)
10 ACc 15.00 J5.00 5.25 119.9993
ISfJSISIIl ECIiEES (10-250X10E6 BTO/HB)
10 A03 0.64 O.J1 0.36 17Q.3519
SIATICNERY flFELISE CC-1PBESSOP ENGINES
11 C01 tO.50 60.50 15.H 100.8999
£:A:IC^AFY IMESSAL ccHBristios ENGINESJDIESEL s DUAL FUEL)
10 C02 179.00 179.00 12J.OO 119.3929
EltlCSIVl :»C (KIOH EXPLOSIVES)
2C C17 128.00 128.00 6.10 1951.6277
STAIIOSASI INTEBNAL CO»UUSTI'JN ENGINES (5PAF-K IGNITION)
10 C01
230.00 230.00 131.00
1547.1724
T4
0.03
1.37
1.70
0.08
0.08
2. 10
0.61
0.50
0.95
1.51
2. 11
2.21
23.12
1.91
6.30
18.57
)
10. 37
10.08
17.91
28.01
65.62
1936.13
151.10
UEL)
1065. 19
152.99
)
2717.17
TS
0.
3.
2.
0.
a.
4.
0.
0.
1 .
3.
3.
3.
10F
.53002
.1 Oi.OS
-02
-02
-02
-01
-01
-02
-02
00
-01
-02
-02
-01
-01
00
00
00
-01
-01
00
00
00
X
3
1
3
3
3
3
3
3
2
2
3
3
2
2
3
3
2
2
2
1
1
2
2
2
1
2
X/tV N
0. 19002-03
0.6170S 00
0. 99-30S-03
0. 1040E-03
0. 34 10E-04
0. 1CC,;»-02
0. 231 OS- 02
0. 7B50E-04
0. 2170E-02
0. 434DE-0 1
0. 7UL-)E-01
0. 5370E-01
0 . 1 9 1 0 S 00
0.4740E-02
0. 863TE-03
0. llf.OE-02
0. 27105-03
0. 2450E-02
0.5900E-01
0. 3120E 01
0. 75502-01
0. 935-JE-02
t. 19102-02
0. 12aOB 00
0.2650E-01
0.6060E-01
V
3
i
3
3
3
3
3
3
3
2
3
1
2
3
3
3
3
3
2
2
1.
3
3
2
2
2
I
ho
-------
Table B.2. (Contd.)
PCL'-UTA^T IS CO
rcn= £u ' E5 EN SUE TA
GRET IRON FCl'NCHIES (CUPOLA)
50 COH 250.00 250.00 8.00 10462.4922 1562.10
ET-PFOLCC1 CCKI CVEN
5C A10 2.67 2.67 2.67 893.91H8
fJEERClASS HFG. PLANTS (TEXTILE PROCESSING)
1C CC6 2.03 2.03 2.03 31.9566
ACfTIC »CID (BUTANE)
20 J1: u.uo u.10 0.04 103.9197
INIUSTFIAL IKCINESATICN (INDUSTRIAL-COMMERCIAL)
11 ECU 6.17 8.17 8.17 27.3581
PUUCIfAL INCINERATION < 50T/D
10 E03 3?. 00 (5.00 35.00 61.2199
SIXEC fUEI ECILEBS (OIL 6 Fh.F'JSE)
1C ACT 17.00 17.00 17.00 509.9993
KIXEE F"EL ELILEP5 (COAL G REFUSE)
1C >.:« 16.00 111.00 11). 00 539.9993
F*bE:3lA5S rtG. PLANTS (WOCL PROCESSING)
-1C tin j.2b 2.26 2.24 39.3804
INCLSTF.IAL INCINERATION (IND ORGANIC LIQUID HASTE INC)
1i ECJ 0.05 0.05 0.0 0.2112
SHESCL PLANTS
20 C33 C.18 0.148 0.0 21. 3252
ALI7IC ACir (ACtTALDEHYDE)
2C A11 H.Oa 1.01 0.04 108.2719
Ihin'MC AKWYE'RICE PLANTS (H APTHALENE PROCESS)
20 C.f ICC. 00 1JD.GO 1.00 3082.8913
ElKYLEhE ClCliLCSIDE PLANTS (OX ICHLORI NATION PROCESS)
iC CC7 1.30 1.30 0.01 111.5066
ACBYLIC ACID
2C C17 21.00 21.00 0.21 767.9993
chAFccAL E:AN:S
2C CH 3^0.00 320.00 3.20 21B.199(,
ACETIC ANhYCnlDE
2C C15 21.90 21.93 0.22 959.2188
tETBAHCL EIAN1S
20 C32 10. JO 10.00 0.10 1255.9993
CYCLCKEXASE
2C All 25.00 25.00 0.25 1100.6228
ADIPIC ACIC fLANIS
20 A01 US. 30 115.00 0.11 5587.8138
CIClC'.ilXANCL/CYCLCHIXASOSE
20 C4? 111.47 111.47 1.11 3312.2698
STAIICNEFT riPELISE CCBPHESSOR ENGINES
11 C01 2S.35 29.35 9.61 52.8299
INDUSTRIAL fCILERS (10-250X10E6 BTH/HR)
10 AO 2 0.03 0.03 0.0 8.57C8
CALEIC ANfilTFIDE
20 C23 1560.00 1310.00 15.60 '12179.9922
20 COS 1:.b7 15.67 0.16 352.5745
fi:TH»L!C AN!-YDEIi>2 PLANTS (0-XYIEHE PROCESS)
2C C26 3C1.00 301.00 3.01 9279. 50i9
BINEEAl kCCL MAS OFACTURI NO
40 D13 94.40 94.40 1.72 3007. 29B1
4CFIICSIT5IIE PLANTS
20 C06 159.00 159.00 8.00 5315.4114
98.42
0.39
0.81
81.27
73.50
31.87
33.75
1.11
0.03
0.29
0.74
9.01
2.01
5.76
23. 12
11.04
18.30
15. 40
47.37
38.43
73.30
151.71
89. 14
60.29
87. J2
357.62
95.16
TS
1281. 17
108.26
0.75
0.81
230.76
107.31
16.54
49.27
2.91
0.08
0.60
1.59
9.01
4.77
10.32
28.90
19.77
29.82
30.30
70. 12
68.83
125.81
174.34
137.1 1
14R.05
206.71
429.15
24f .82
TN
1553.
108.
0.
0.
230.
107.
46.
49.
2.
0.
0.
0.
7.
1.
4.
17.
7.
12.
10.
39.
27.
81.
101.
61.
34.
71.
262.
62.
40
26
75
81
76
11
54
27
89
02
21
45
22
14
09
91
85
91
98
80
32
0'
65
27
31
22
68
12
TS-TN
0.
0.
0.
0.
0.
0.
0.
20.
60.
390.
1100.
1800.
3600.
6230.
1 1000.
1 1900.
16800.
19300.
30300.
41500.
45800.
72700.
73800.
11UOOO.
135000.
16f.OOO.
185000.
X/AV S
0.93402-01
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
9770E-02
1760E-02
3840E-T2
2430E-01
1380E-02
1610E-01
1210E-01
199QE-12
2500E-05
5160E-02
1030E-02
1610E-01
1570E-02
2210E-01
5050E-01
2890E 00
3670E-01
2'10E 00
2771E-01
U93?E 00
26005-03
3940E-04
4540E CO
2')90E-01
2850E-01
1^0'JE 00
1 510E-01
X
2
3
3
3
2
3
2
2
3
3
3
3
2
3
2
2
2
2
2
2
2
3
3
2
2
2
2
2
X/AV N
0.2990Z-02
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
8870E-02
17605-02
39405-04
2430E-01
1180B-')2
1640EO1
12405-01
'9755-12
250TE-T5
5J30E-04
1020E-T4
1640E-03
1573E-54
2243S-03
5050E-Q3
2130E-T2
3S70E-03
2140E-02
27TJEO1
43005-12
853 JE-04
3910E- D4
52902-02
2700S-03
2950S-03
59905-02
76005-03
X
3
3
3
3
2
1
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
3
STATIOiiAFI TMEF.MAL COMBUSTION ENGINES (DIESEL 6 DUAL FUEL)
10 CC2 54.80 51.30 0.0 36.5515
S7AIICSiFI I5IE9NU CCHBUSTIOK ENGINES (SPAFU IGNITION)
10 C01 42.80 42.80 0.0 267.9080
CAFEON blACK (FURNACE PROCESS)
326. 10
511.25
2C COj 26CO.OO 2800.00 2.30 72323.8750 2709.28
417.41
956.04
3468.09
21B.
409.
1492.
49
00
08
199000.
547000.
1980000.
0.
0.
0.
1 110E-02
3^805-Ci
2940E 00
3
3
2
0.
0.
0.
1133E-')2
8290E-C-3
2940E-13
3
3
3
-------
Table B.2. (Contd.)
CCOE
*
"S_
E'J
E5
SIZE
GBEl 1SCN fCUHCFIES (COPOLA)
5C C04 0.60 0.60 0.03 25.1100
GASCLISE AEtlUVES (SODIU H-LEAD)
1C F01 69.10 10.78 0.89 1930.3953
GASCIINE ACCITUSS (ELECT PC tYTIC)
70 F02 32.20 4.10 1.00 219.3437
GEET IRCS FCUNCBIFS (B EVES EEIUTOP Y)
5C CC3 0.3? 0.07 0.0 1.9530
BE7AIIC KISEHLS SINING (ZINC HINE 6 CRUSHING)
15 F01 0.10 0.10 0.01 1319.9963
KETAIIC fllNEEALS DINING (LEAD HIKING)
44 E01 C.1C 0.13 0.01 1.3500
BEIALLIC H2NEKALS MINIS'. (PE!i POALLOY)
42 E01 0.30 0.30 0.0 3.7000
GF£I IBCX FCUNESIFS (ELECT3IC ABC)
5C CC2 0.05 0.05 0.0 2.0925
SOSICIFAI INCINE6ATION < 50T/D
1C 203 0.40 0.'4J 0.0 0. 1000
CLASS eAMJFACVJiilHG INDUSTRY (LEAD GLASS)
HO E1S 6.00 6.00 0.06 13.7700
:S::D;TFIAI I.SCIKESATION (INDUSTBIAL-CC.IHERCIAL)
11 fC4 0.40 0.40 0.04 1.20:0
ElfLCSIVI ISt (LCI EXPLOSIVES)
2C CIS 0.30 0.3D 0.01
BIIEt IDEL ECILESS (COAL 6 DEPOSE)
10 AC6 0.22 0.22 0.01
EXELCSJVl IHD (HIGH EXPLGSIVBS)
2C C17 60.00 20.33 1.60
SUE
1.2923
6.6000
1219.7671
EN
_ȣ-_!:: iit..: s "S.
CC:E EO
VISCCSE I-AYCii
20 B06 10.90 10.90 1.60
CARECH BI»C* (P08NACE PROCESS)
2C CC3 6(1 "0 60.00 0.06
_^iJ!_lNT IS Ft .
COO: EU ci E^
FIEEfGlASS SFG. PLANTS
«C EC6 2.0C 2.30 2.00 3Q.4I40C
FIEEEGIASS f.fG. PLANTS (WCCI. PPOCESSING)
«C E1* C.07 0.07 0.0 1.2197
FKCStaCBIC ACID PLANTS
20 A07 1.00 0.03 0. 0
FFF.E DEFLUOFINATION
21S.OO 59.40 O.un
SIZE
265.9595
15U9.7986
SIZE
(TEXTILE PROCESSING)
(VET EEOCESS)
71.3610
3C E10
H927.U961
CEE1EIC ClAY 1FG
"C D1C 1.00 1.00 0.30 1.«KOO
IHrOSIEIAl ECILEBS (10-250X1CE6 BTU/HR)
1C A03 0.0 0.0 0.0 O.B571
BTEfCF1DCSIC ACIE PLAHTS
20 A08 50.00 50.00 0.20 513.8992
TA
3.75
0.96
0.03
0.02
O.UO
0.12
0.50
0. 11
0.8U
1.75
3.B1
T4
0.10
0.11
23.90
Ta
2.11
58.06
T4
0.39
O.OU
0.20
5.35
5.36
15. 17
11.72
TJ
3.07
0.31
0.01
0.01
0.15
0.17
0.5fl
0. 31
1.23
2.37
10.90
TS
0.21
0.60
58.70
TS
2.14
7U.32
TS
0.71
0.09
0.65
5.35
7.61
17.13
21.59
TN
3.72
0.51
0.02
0.01
0.31
0.32
0.35
0. 10
0.51
1.19
3.20
TN
0.06
0.27
16. 79
Til
I .32
31.97
TN
0.71
0.03
0. 19
3.22
1.80
1 1.29
6. '6
TS-TN
-
30.
110.
150.
233.
2UO.
710.
1200.
7700.
TS-TN
190.
330.
11900.
TS-TN
310.
12300.
TS-TN
0.
( 9.
160.
2100.
2600.
6100.
16100.
X/AV S X
0.8270E 00 1
0.6060E 01 1
0.21BOE 01 1
0 . 3 8 ? OF 00 2
0.3720E 03 1
0.37202 00 2
0. 1 OMOE 01 1
0.10905 00 2
T. 35 ME -01 2
0.9040S-01 2
0. 3370E 01 1
X / i 'I S X
0.1 ICO! 00 2
0. 1 5ME 00 2
0.26zjE 02 1
X/AV 5 X
0.6593E 00 1
0.4200E 00 2
X / /. V S X
0.1750E 02 1
0.619C>E 00 1
0.7100E 00 1
D.5820E 03 1
0. 1 1902 01 1
0.2620C-01 2
0.1210? 02 1
X/AV M X
0.1119S-01 ?
0.50DQE 30 1
0.5320! 00 1
0. 11 1 02 00 1
0. 37iTS T2 1
0.3720E-01 2
0. '04 )E-0 i 2
0.65e1E 11 '
0.5'. ME- 31 2
0.9040E-33 3
0. 38~nE 10 2
f / - . s x
0.2220E-02 3 -,
1
0. 68932-02 3 |_j
0 . 2 M ~> E 01 1
X / i . N X
O.lfO'-H 2
0.42335-03 3
X/iV N »
O.^'jOE 02 1
0.1770E-T 2
0. 1050E TO 2
0. 4290E 01 1
0. 3573s 00 2
O.HU02-02 3
0.4960E-01 2
*Secondary zinc smelter data can be found in Table A-3, Pg, A-31, and Table Bvl, pg, B^
-------
TABLE B-3
MINOR SOURCE CATCGORY GROWTH
EXPLANATION OF CATA DISPLAY: THE HJ!'3ER OF NEW AMD REPLACEMENT HYPOTHETICAL SOURCES OF AVERAGE SI7E IS INDICATED FOR EACH SOURCE CATEGORY FOR EACH 6 MONTH
PE".ICD BEGIViiriG IN 1980, THROUGH
SOI-'.E CASES, AS A RESULT OF THE GP.O
"UXULATIVE GRC/JTH SECTION.
1C A01 FC£3IL FUEL ECILERS
{1930J 2Cr 299.«-{mo.-»2072'i4.
.t 112 16 . 21^259.
{1990} -2!tc45. 217797.
222659.
CUMULATIVE
J1980J - 2 0 f. 2 9 9 .-- ( «!.-»« 13 5 M 3.
^St^CI. 2510^0.
|l990| «-.4M'427C1 . 466C497.
C 4 ". fj 3 3 .
1C AC^ COMMERCIAL BOILERS
7ih2. 7777.
£644. 6365.
9955. 10252.
11574.
CUELLAITV5
75c2. 15359.
89:9';. 93460.
113663. 193935.
29267U.
1C E01 WASTE OIL BOILERS
g. 8.
S. 9.
10. 10.
1 1 .
CUMULATIVE
6. 16.
93. 102.
167. 197.
291.
20 A16 LIIHIUH CC.IfOUNDS
CUMULATIVE
0. 1.
3. 3.
6. 7.
10.
20 A19 SCEIUM CHLORIDE
7. 7.
6. 8.
9. 9.
10.
CUMULATIVE
7. 13.
Iti. 86.
160. 169.
256.
1995 IN THE FIRST 1 ROWS
OF DATA. THE
WTH FORMULA USED A "FRACTIONAL" SOURCE
(<0.3X 10E6
207241;.
2 12259.
217797.
620767.
2722919.
u673;:>3.
(0. 3-10X13E6
7777.
6885.
10252.
23135.
107365.
2041R3.
6.
9.
10.
24.
111.
207.
1.
4.
7.
7.
8.
9.
20.
94.
178.
BTli/HF)
2082C8.
21 3323.
21&972.
828995.
2936212.
5097264.
BTU/tiH)
7960.
9136.
10562.
31116.
116500.
214750.
8.
9.
10.
33.
120.
217.
1.
4.
7.
7.
8.
9.
27.
102.
188.
208208.
213323.
218972.
1037203.
3V495S5.
5316235.
7980.
9136.
10562.
39096.
125636.
225312.
3.
9.
10.
41 .
130.
227.
FRACTIONAL GROWTH
1.
4.
8.
7.
8.
9.
34.
110.
197.
CUMULATIVE NUi
GROWTH RESULT:
209191 .
2 14nC9.
220170.
1246393.
3 J63973.
5536404 .
8192.
9396.
10885.
47288.
135034.
236197.
9.
9.
10.
50.
139.
238.
SOURCE CATEGORY
2.
5.
8.
7.
8.
10.
41.
1 18.
206.
219191.
214409.
22J170.
1455583.
3578381.
5756573.
8192.
9398.
10885.
55480.
144431.
247082 .
9.
9.
10.
58.
148.
248.
7.
8.
10.
48.
126.
216.
210193.
215516.
221392.
1665776.
3793896.
5977965.
8413.
9671,
11222.
63694.
154102.
258305.
9.
10.
11.
67.
158.
259.
2.
5.
9.
7.
8.
10.
56.
135.
226.
210193.
215516.
221392.
1873969.
4009411.
6199357.
8413.
9671.
11222.
72307.
163772.
269527.
9.
10.
11.
75.
168.
269.
7.
e.
10.
63.
143.
235.
211216.
216645.
222639.
2387185.
4226056.
6421995.
8644.
9955.
11574.
80951.
173728.
281101.
9.
10.
1 1.
84.
177.
280.
3.
6.
10.
8.
9.
10.
71.
152.
246.
a)
i
to
-------
TABLE B-3 MINOR SOURCE CATF.GORY GROWTH
20 A20 LEAC OXIDES
1. 1. 1.
1. 1. 1.
1. 1. 1.
2.
CUHULATIVE
1. 2. 3.
12. 13. 14.
24. 26. 27.
39.
20 B14 PCLIV1NYL ALCOHOL PLANTS
C. 0. 0.
C. 0. 0.
0. 0. 0.
1 .
CUHULATIVE
0. 0. 1.
3. 3. 3.
6. 7. 7.
12.
20 B1E POLYCARBONATES PLANTS
0. 0. 0.
0. 0. 0.
0. 0. 0.
1.
CUMULATIVE
C. 0. 0.
2. 2. 3.
£. 6. 6.
10.
20 B16 EFCXY RESIN PLANT (UNMODIFIED)
CUHULATIVE
0.
1.
1.
2.
E
0.
6.
20 E18
30.
ALKYD
CUHULATIVE
4
42
80
120
2C B20
1.
7.
17.
8.
45.
84.
0.
1.
1.
1.
8.
18.
4.
4.
4.
11.
49.
88.
PLASTICS AMD PESINS (POLTAMIDES)
3. 3. 3.
5. 5. 5.
9. 10. 10.
18.
CUHULATIVE
3.
42.
113.
251.
6.
47.
124.
9.
53.
134.
4.
15.
29.
2.
9.
19.
15.
53.
92.
3.
6.
12.
12.
59.
146.
17.
30.
2.
10.
21.
19.
57.
96.
3.
6.
12.
16.
65.
158.
6.
18.
32.
3.
10.
22.
23.
61.
100.
4.
7.
14.
20.
72.
171.
7.
19.
33.
4.
11 .
26.
65.
104.
4.
7.
14.
23.
79.
185.
e.
20.
35.
2.
5.
10.
4.
12.
25.
30.
69.
108.
4.
8.
15.
28.
87.
200.
10.
22.
36.
2.
5.
11.
5.
13.
27.
34.
73.
112.
4.
8.
15.
32.
95.
216.
11.
23.
38.
2.
6.
11.
6.
14.
29.
38.
76.
116.
5.
9.
18.
37.
104.
234.
-------
TABLE 0-3 MINOR SOURCE CATEGORY GROWTH
20 C09
PAINT MFG.
63.
£5.
68.
71.
64.
66.
69.
64.
66.
69.
CUMULATIVE
20 DOS
6J.
708.
1379.
2080.
127.
7714.
1413.
190.
640.
1517.
ECLY-ISOPBENE(IR)
CUMULATIVE
21 A01
0.
1 .
2.
3.
0.
1.
2.
HYDSOCHLOHIC ACID
8.
10.
13.
17.
9.
11.
14.
0.
1 .
2.
INDUSTRY
9.
11.
14.
CUMULATIVE
8.
102.
221.
375.
17.
113.
235.
26.
124.
249.
64.
67.
69.
254.
907.
1586.
9.
11.
15.
35.
135.
264.
64.
67.
69.
318.
973.
1656.
65.
67.
70.
383.
1040.
1726.
FRACTIONAL GROWTH SOURCE CATEGORY
9.
11.
15.
43.
147.
278.
9.
12.
15.
53.
158.
293.
65,
67.
70.
447.
1106.
1796.
9.
12.
15.
62.
170.
309.
65.
68.
71.
512.
1175.
1667.
10.
12.
16.
72.
183.
325.
65.
68.
71.
577.
1243.
1937.
10.
12.
16.
82.
195.
341.
65.
68.
71.
643.
1311.
2009.
10.
13.
17.
92.
208.
358.
03
I
21 A21 LEAD PIGMENTS PIFGR. (RED LEAD)
FRACTIONAL GROWTH SOURCE CATEGORY
CUMULATIVE
0.
3.
6.
9.
1.
3.
6.
1.
3.
6.
22 A21 LEAC PIGMENTS MFGR (WHITE LEAD)
1.
4.
7.
2.
4.
7.
FRACTIONAL GROWTH SOURCE CATEGORY
CUMULATIVE
23 S21
0.
4.
1.
4.
8.
11.
LEA£ frli.lENTS BFGB
1. 1.
5. 5.
8. 9.
(LEAD CBBOMiTE)
2.
5.
9.
2.
6.
10.
2.
6.
10.
3.
6.
10.
3.
7.
11.
7.
11.
FRACTIONAL GROWTH SOURCE CATEGORY
CUMULATIVE
0.
3.
e.
10.
i.
4.
7.
1.
4.
7.
1.
4.
8.
2.
5.
2.
5.
9.
3.
6.
9.
-------
TARLT B-3 MIN"P SOURCE CATf.ORY 6ROWTH
30 D03 HEA1
35.
35.
35.
35.
CUHULATIVE
35.
382.
729.
1075.
30 DOS FISH
CUHOLA'ilVt
V
a.
e.
12.
SMOKEHOUSES
35.
35.
35.
69.
416.
763.
PROCESSING
1.
5.
9.
35.
35.
35.
104.
451.
798.
1.
5.
9.
35.
35.
35.
139.
486.
' 633,
2.
6
10,
30 D12 ClfcECT FIBING OF HEATS
950.
1149.
1426.
1822.
CUMULATIVE
950.
11590.
21677.
41214.
30 C17 DEEP
28.
32.
37.
43.
CUMULATIVE
28.
325.
675.
1077.
985.
1197.
1497.
1935.
12787.
26174.
EAT PRYING
29.
33.
38.
56.
361.
713.
985.
1197.
1497.
2920.
13984.
27670.
29.
33.
38.
85.
394.
750.
1022,
1249
1570
3942,
15233
29240,
29
34,
39
114,
423
789
30 D15 PHASHACEUIICAL
42.
57.
79.
115.
CUHOLATIVE
42.
543.
1238.
2231.
35 D04 (AGG)
2.
2.
3.
3.
CDHULATIVE
2.
22.
47.
77.
44.
60.
85.
86.
603.
1323.
DIBECT COFFEE
2.
2.
3.
4.
24.
50.
44.
60.
85.
130.
663.
1408.
BOASTING
2.
2.
3.
6.
27.
52.
47,
65,
92
177
728
1500,
PL A MIS
2
2
3
8
29
55
35.
35.
35.
173.
520.
867.
35.
35.
35.
208.
555.
902.
35.
35.
35.
243.
590.
937.
FRACTIONAL GROWTH SOURCE CATEGORY
2.
6.
10.
1022.
1249.
1570.
4963.
16482.
30810.
34.
39.
143.
461.
828.
47.
65.
92.
224.
793.
1592.
9.
31.
58.
2.
6.
10.
1061.
1305.
1648.
6024.
17787.
32458.
30.
35.
40.
173.
496.
868.
50.
69.
99.
274.
862.
1690.
11.
34.
61.
3.
7.
11.
1061.
130S.
1648.
7085.
19092.
34106.
30.
35.
40.
203.
530.
909.
50.
69.
99.
324.
931.
1789.
14.
36.
64.
35.
35.
35.
278.
624.
971.
3.
7.
11.
1103.
1364.
1732.
8189.
20456.
35838.
31.
36.
41.
234.
566.
950.
53.
74.
106.
377.
1005.
1695.
16.
39.
67.
35.
35.
35.
312.
659.
1006.
4.
8.
12.
1103.
1364.
1732.
9292.
21821.
37570.
31.
36.
41.
265.
602.
991.
53.
74.
106.
430.
1079.
2002.
18.
42.
70.
35.
35.
35.
347.
694.
1041.
4.
8.
12.
1149.
1428.
1822.
13441.
23249.
3 93 92 .
32.
37.
43.
297.
638.
1034.
57.
79.
115.
486.
1158.
2116.
20.
44.
74.
Cd
to
-------
TABLE B-3 MINOR SOURCt CATEGORY GROWTH
36 DC4 (AGG)
2.
2 .
2.
2.
CUMULATIVE
2.
20.
38.
56.
INDIRECT COFFEE ROASTING
2.
2.
2.
'4.
22.
40.
2.
2.
2.
5.
24.
42.
PLANTS
2.
2.
2.
7.
25.
44.
2.
2.
2.
9.
27.
46.
4C C03 CONCRETE BATCH PLANT
57.
2.
68.
75.
CUSULATIVE
57.
654.
1306.
2023.
<4C D1S Ffll
7.
7.
7.
7.
CUMULATIVE
7.
62.
156.
231.
>tO D18 GLASS
3.
3.
3.
3.
CUMULATIVE
3.
36.
66.
100.
46 fOI (AGG)
1.
1.
1.
1.
CUMULATIVE
1.
7.
11.
20.
58.
63.
69.
1 15.
7 17.
1375.
58.
63.
69.
172.
780.
1444.
59.
64.
70.
231.
644.
1514.
59.
64.
70.
290.
908.
1585.
MFC (ROTARY FURNACE)
7.
7.
7.
15.
89.
1614.
MANUFACTURING
3.
3.
3.
6.
39.
71.
7.
7 .
1.
22.
97.
171.
INDUSTRY
3.
3.
3.
10.
42.
75.
7.
7.
7.
30.
104.
179.
(OPAL GLASS)
3.
3.
3.
13.
45.
78.
7.
7.
7.
37.
112.
186.
3.
3.
3.
16.
49.
81.
NON-METALLIC MINING - MICA
1.
1.
1.
1.
a.
14.
SO £06 SECONDARY HAGNESIOH
1.
1.
1.
1.
CUHULATIVE
1.
12.
24.
35.
1.
1.
1.
2.
14.
25.
1.
1.
1.
2.
8.
15.
SHELTER
1.
1.
1 .
3.
15.
26.
1.
1.
1.
3.
9.
16.
1.
1.
1.
5.
16.
27.
1.
1.
1.
3.
10.
16.
1.
1.
1.
6.
17.
28.
11.
29.
47.
60.
65.
72.
349.
973.
1656.
45.
119.
194.
19.
52.
84.
4.
10.
17.
7.
18.
30.
13.
31.
49.
£0.
65.
72.
409.
1038.
1728.
52.
127.
201.
23.
55.
87.
4.
11 .
18.
8.
19.
31.
15.
33.
51.
61.
66.
73.
«70.
1104.
1801.
60.
134.
209.
26.
58.
91.
5.
12.
18.
9.
20.
32.
16.
35.
S3.
61.
66.
73.
530.
1171.
187».
67.
142.
216.
29.
62.
94.
6.
12.
19.
10.
22.
33.
18.
36.
55.
62.
68.
75.
592.
1239.
19«9.
75.
149.
22«.
32.
65.
97.
6.
13.
20.
11.
23.
3*.
08
N>
00
-------
TABLE 3-3 MINOR SOURCE CATEGORY GROWTH
5ii CC1 Gill IBON FOUNDRIES (INDUCTION FURNACE)
5.
5.
5.
5.
CUMULATIVE
5.
56.
108.
15S.
5.
5.
5.
10.
61.
113.
50 003 STEEL FOUNDRIES
2S.
29.
29.
CUMULATIVE
29.
314.
600.
866.
60 E06 GEAFHIC
22.
26.
30.
35.
CUMULATIVE
22.
266.
546.
875.
60 C01 SOLVENT
45655.
49159.
53276.
5£115.
CUMULATIVE
45655.
522774.
1038535.
1JSS699.
60 D02 SOLVENT
649.
679.
712.
749.
CUMULATIVE
649.
7317.
11301.
21643.
60 003 SOLVENT
157.
174.
195.
220.
CUMULATIVE
157.
1826.
3685.
5778.
29.
29.
29.
57.
?43.
629.
5.
5.
5.
15.
67.
118.
(INDUCTION)
29.
29.
29.
86.
372.
658.
5.
5.
5.
20.
72.
123.
29.
29.
29.
114.
4CO.
686.
5.
5.
5.
26.
77.
128.
29.
29.
29.
143.
429.
715.
5.
5.
5.
31.
82.
133.
29.
29.
29.
172.
457.
743.
5.
5.
5.
36.
87.
138.
29.
29.
29.
200.
486.
772.
5.
5.
5.
41.
92.
143.
29.
29.
29.
229.
515.
600.
5.
5.
5.
46.
97.
149.
29.
29.
29.
257.
543.
829.
5.
5.
5.
51.
102.
154.
29.
29.
29.
286.
572.
658.
ABTS INDUSTRY (LITHOGRAPH!)
23.
26.
31.
45.
292.
577.
23.
26.
31.
66.
318.
608.
METAL CLEANING (COLD
46311.
49930.
54183.
91966.
572704.
1092717.
46311.
49930.
54183.
138277.
622634.
1146699.
METAL CLEANING (OPEN
655.
685.
719.
1304.
8002.
15021.
655.
685.
719.
1959.
8667.
15740.
24.
27.
32.
92.
346.
640.
CLEANERS)
46989.
50726.
55119.
185266.
673361.
1202017.
TOP VAPOR
661.
692.
727.
2620.
9379.
16466.
24.
27.
32.
116.
373.
671.
46989.
50726.
55119.
232255.
724087.
1257135.
DEGBEASERS)
661.
692.
727.
3281.
10070.
17193.
24.
28.
33.
140.
401.
704.
47689.
51549.
56085.
279944.
775636.
1313220.
667.
698.
734.
3947.
10769.
17927.
24.
28.
33.
164.
429.
737.
47689.
51549.
56085.
321633.
827185.
1 369305.
667.
698.
734.
4614.
1 1467.
18661.
25.
29.
34.
189.
458.
771.
48412.
52399.
57034.
376045.
379584.
1426388.
673.
705.
742.
5286.
12172.
19402.
25.
29.
34.
214.
487.
805.
48412.
52399.
57084.
424457.
931983.
1483471.
673.
705.
742.
5959.
12877.
20144.
26.
30.
35.
240.
516.
840.
49159.
53276.
56115.
473616.
985259.
1541585.
679.
712.
7»9.
6638.
13589.
20894.
METAL CLEANING (CO NVEIORIZED DECREASING)
160.
178.
199.
317.
2004.
3885.
160.
178.
199.
477.
2181.
4084.
163.
182.
204.
641.
2363.
4288.
163.
182.
204.
804.
2545.
4492.
167.
136.
209.
971.
2730.
4701.
167.
186.
209.
1138.
2916.
4910.
170.
190.
214.
1308.
3106.
5124.
170.
190.
214.
1478.
3296.
5338.
174.
195.
220.
1652.
3491.
5558.
w
i
-------
17,81. L
MINOS SOURCE CATIOJRY bROWi
60
F03 P.I.M. ID.
51.
51.
51.
51.
(GAS. BULK PLANTS) (STORAGE 6 TRANSFER)
51.
51.
51.
51.
51.
51 .
51.
51.
51.
b '.
1 i
51.
51.
3 i .
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51 .
51.
51.
CUMULATIVE
61
51.
556.
1061.
1566.
101.
606.
1111.
152.
657.
1162.
202.
707.
1212.
253
758
1263
F06 (AGG) PETROLEUM, TRANSP AND MARKETING - SERVICE 5TAT
11918.
13096.
14494.
1615C.
12138.
13357.
14803.
12138.
13357.
14803.
12365.
13627.
15122.
^
f
f
10 US
12365.
13627
15122
f
m
303.
308.
1313.
12601.
13906.
15453.
354.
859.
1364.
12601.
13906.
15453.
404.
909.
1414.
12844.
14195.
15796.
455.
960.
1465.
12344.
14195.
15796.
505.
1010.
1515.
13096.
14494.
16150.
CUMULATIVE
11918.
24055.
136006. 151364.
277163. 291966.
64
431810.
B03 INDUSTRIAL
25.
36.
51.
69.
SURFACE
31.
40.
54.
36193.
164721 .
306763.
COATING
31.
40.
54.
48558.
178348.
321891.
(METAL FURNITURE
32.
43.
57.
60924
191974
337013
.
m
f
73524.
205880.
352466.
86125.
219786.
367920.
98969.
233981.
383715.
111814.
248176.
399511.
124910.
262669.
415669.
COATING)
32
43
57
.
m
9
34.
45.
61.
34.
45.
61.
36.
48.
65.
36.
48.
65.
38.
51.
69.
CUMULATIVh
65
29.
373.
825.
1436.
B02 INDUSTRIAL
27.
35.
46.
63.
60.
413.
879.
SURFACE
28.
37.
49.
91.
453.
933.
COATING
28.
37.
49.
124.
496.
990.
(HOOD FURNITURE
30.
39.
52.
156
538
1047
m
m
190.
563.
1108.
225.
628.
1169.
261.
676.
1233.
297.
724.
1298.
335.
774.
1367.
COATING)
30
39
52
m
f
.
31.
41 .
55.
31.
41.
55.
33.
43.
59.
33.
43.
59.
35.
46.
63.
CUMULATIVE
65
27.
33S.
75C.
1306.
E03 INDUSTRIAL
74.
95.
127.
173.
55.
376.
799.
SURFACE
77.
101.
135.
83.
412.
848.
COATING
77.
101.
135.
112.
451.
900.
142
489
952
B
m
B
173.
530.
1008.
204.
571.
1063.
237.
615.
1122.
270.
658.
1181.
304.
704.
1243.
(FLATHOOD PRODUCTS)
81.
107.
143.
81
107
143
9
.
.
86.
113.
152.
86.
113.
152.
90.
120.
162.
90.
120.
162.
95.
127.
173.
CUMULATIVE
8C
74.
934.
2066.
3599.
B02 PULFEOARE
8.
9.
9.
10.
151.
1035.
220J.
MFGR.
8.
9.
10.
228.
1136.
2337.
8.
9.
10.
310.
1242.
2481.
9.
9.
10.
391
1349
2624
9
9
10
.
f
.
f
m
«77.
1462.
2776.
9.
9.
10.
563.
1575.
2929.
9.
9.
10.
653.
1694.
3091.
9.
9.
10.
743.
1814.
3253.
9.
9.
10.
839.
1941.
3*26.
9.
9.
10.
CUMULATIVE
8.
95.
187.
17.
104.
196.
25.
113.
206.
34.
122.
216.
42
131
225
m
f
.
51.
140.
235.
60.
149.
245.
68.
159.
255.
77.
168.
265.
66.
177.
275.
&
U)
o
-------
TABLE 3-3 MINOR SOURCE CATEGORY GROWTH
90 801 LEAD ACID EATTIRI
6. 6. 6.
t. 7. 7.
7. 8. 8.
9.
COSOLATIVE
6. 11. 17.
67. 73. 80.
137. 145. 153.
220.
90 C01 CABLE COVER PBOD. PLANT
23.
87.
161.
29.
94.
169.
35.
101.
177.
41.
108.
185.
48.
115.
194.
54.
122.
202.
60.
130.
211.
90 001 TYPE HETAL PRODUCTION PLANT
DECLINING GROWTH SOURCE CATEGORY
DECLINING GROWTH SOURCE CATEGORY
90 £01 CAN MFG PLANT
CO
I
DECLINING GROWTH SOURCE CATEGORY
9C 103 TEXTILE BIG (CARPET HFG)
12.
IE.
20.
26.
13.
16.
21.
13
16
21
CUHULATIVE
90 f04
1*.
153.
333.
566.
TEXTILE
6.
9.
13.
18.
25.
170.
354.
HFG (TEXTURING)
7.
9.
14.
3e
186
375
7
9
14
cuauLAiiYE
6.
£4.
194.
353.
13.
94.
208.
20
103
221,
13.
17.
22.
51.
203.
397.
7.
10.
15.
27.
113.
236.
13.
17.
22.
65.
220.
419.
7.
10.
15.
35.
121.
250.
14.
18.
23.
79.
238.
443.
8.
11.
16.
42.
134.
266.
14.
18.
23.
93.
256.
466.
8.
11.
16.
50.
145.
282.
15.
19.
25.
108.
275.
491.
8.
12.
17.
58.
157.
299.
15.
19.
25.
122.
293.
516.
8.
12.
17.
67.
169.
316.
15.
20.
26.
138.
313.
542.
9.
13.
18.
75.
181.
335.
-------
EX"LA';.-".TION' CF DATA DISPLAY: THE M!"2ER CF NE'.-.' AMD REPLACEMENT HYPOTHETICAL SOURCES OF AVERAGE SIZE IS INDICATED FOR EACH SCU3CE CATEGORY FOR EACH 6 K
, RC'.-.'S CF DATA. THE CUMULATIVE NUMBER OF SOURCES IS INDICATED IN THE FOLLOWING 4 ROVS CF WA. NO
"FRACTIONAL" SOURCE GROWTH RESULTS I"! A 6 KONTh PERIOD AN'D IS ONLY DISPLAYED AS INTEGER GRCVTH IN T
PERIOD BEGIN:;;. NS
SC::E CASES, AS A
CUMULATIVE GROWTH
1C AC 3 IHH"
If,' 1330, Ti'iROu'GI! 1
995 IN THE FIRST 4
RESULT Or THE GRCv.'TH FORMULA USED A
SECTION.
STKIAT, L'Oir.SRS
(1980 1 - 1 £7^6ii:o,*- 1 ~)J.
1 ' 1ST. \ "-::>.
{1990} -1S5.
2CC.
CUMULATIVE
19i.
J1980I - 1S7.-»-6l]0. '375.
2081. 2272.
JJ990! 1016.
5SS6.
1C A 06 .1IX£
1.
1.
1.
1.
CUMULATIVE
1.
15.
ic .
42.
1C A07 MIX*
1 .
1.
1.
1.
CUMULATIVE
1.
15.
26.
41.
4212.
D FDEi EOILEHS
1.
1.
1.
3.
16.
30.
0 FUEL BOILK2S
1.
1.
1.
3.
16.
29.
RC'.-.'S CF DATA. THE CJ«UI
"FRACTIONAL"
SOURCE G,"
-------
I O U I C U ..
CUMULAT
10 C02
55.
55.
IVE
55.
6C6.
1157.
1706.
STATIONARY
156.
1f6.
156.
156.
55.
110.
661.
1212.
c.5.
16C.
7U.
1267.
INTERNAL COMBUSTION
156.
156.
156.
15o.
1r.6.
156.
55.
220.
771.
1322.
EKGINES (DIESEL
156.
156.
156.
55.
27o.
n27.
1 3 7 1, .
o DUAL FUEL)
15t.
15e.
156.
55.
->31.
S Ji.
1«33.
156.
156.
156.
55
386
937
1488
156
156
156
CUMULATIVE
1 1 E04
156.
1721.
3286.
4851.
INDUSTRIAL
1.
2 »
3.
5.
313.
1878.
3443.
INCINERATION
1.
2.
4.
4f 9.
2034.
3599.
626.
2191.
3756.
732.
2347.
3912.
939.
2504.
'1069.
1095
2660
4225
(INDUSTRIAL-COMMERCIAL)
1.
2.
4.
2.
2.
4.
2 .
2.
>..
2.
3.
4.
2
3
4
CUMULATIVE
11 C01
1.
19.
46.
90.
S1ATIONEBX
56.
56.
58.
56.
3.
21.
50.
4.
24.
53.
PIPELINE COMPRESSOR
58.
58.
53.
58.
5fa.
58.
6.
26.
57.
ENGINES
58.
53.
58.
8.
23.
61.
59.
5c!.
56.
9.
31.
65.
50.
58.
58.
11
34
70
53
58
58
CUMULATIVE
12 E04
58.
63S.
1219.
1800.
INDUSTRIAL
11 .
11.
11.
11.
1 16.
697.
1277.
INCINERATION
11.
11.
11.
174.
755.
1336.
(IND
11.
11.
11.
232.
813.
1394.
ORGANIC LIQUID
11.
11.
11.
290.
371.
14f,2.
WASTE INC)
11.
1 1.
1 1.
3-.B.
929.
1510.
1 1.
11 .
1 1.
406,
967
1568
1 1
11
11.
CUMULATIVE
20 104
11.
116.
221.
326.
ACIFIC ACID
21.
126.
231.
PLANTS
3? .
137.
242.
42.
147.
252.
5 j.
153.
263.
FRACTIONAL GROWTH
6i.
163.
273.
SOURCE CATEGORY
74,
179
284
CUMULATIVE
20 A07
0.
2.
C
8."
PHCSFHOBIC
6.
9.
15.
25.
0.
3.
5.
ACID PLANTS
6.
10.
16.
1.
3.
6.
1.
3.
6.
1.
3.
6.
1.
4.
6.
1
4
7
(WET PROCESS)
6.
10.
16.
7.
11.
18.
7.
11.
18.
7.
12.
20.
7,
12
20,
55.
441.
992.
1543.
156.
156.
156.
1252.
2817.
4382.
13.
37.
7i*.
58.
58.
56.
l»65.
1045.
1626.
11.
11.
1 1.
84.
189.
294.
8.
13.
22.
55.
496.
1047.
1598.
156.
156.
156.
1408.
2973.
4533.
15.
40.
79.
58.
58.
58.
523.
1103.
1664.
1 1.
11.
11.
95.
200.
305.
8.
13.
22.
55.
551.
1102.
1653.
156.
156.
156.
1565.
3130.
46S5.
17.
43.
84.
52.
58.
58.
531.
1161.
1742.
11.
11.
1 1.
105.
210.
315.
9.
15.
25.
a
I
-------
CUMULATIVE
20 AOe
6.
60.
200.
UC3.
KYDBOFLUOBIC
1.
1.
^
1 .
12.
89.
216.
ACID PLANTS
1.
1.
1.
ie.
95.
232.
1 .
1.
1.
25 .
110.
250.
1.
1.
1 .
CUMULATIVE
20 A1C
1.
16.
31.
146.
PHOSPHORIC
1 .
1.
1.
1 .
3.
18.
33.
ACID PLANTS
1.
1.
1.
(4.
19.
34.
(THEE.1AL
1.
1 .
1 .
6.
21.
36.
PEOCESS)
1.
1.
1 .
CUMULATIVE
20 A1 1
1 .
11 .
22.
32.
ACETIC ACID
C.
0.
1.
1 .
2.
12.
23.
3.
13.
2*.
it.
14.
25.
(ACETiLBEKYDE)
0.
0.
1.
0.
C.
1 .
0.
0.
1.
CUMULATIVE
20 A12
0.
li.
9.
16.
ACETIC ACID
1.
5.
1C.
(KETHANOL)
1 .
5.
10.
1.
5 .
11 .
CUMULATIVE
0.
2 .
c
0.
2.
5.
0.
2.
5.
1.
3.
6.
Table 3.4. (Contd.)
31.
263.
7.
22.
37.
5.
15.
26.
2.
6.
12.
39.
133.
286.
9.
2U.
39.
6.
16.
27.
6.
12.
FRACTIONAL GROWTH SOURCE CATEGORY
1.
3.
6.
46.
145.
306.
10.
25.
40.
7.
17.
28.
2.
7.
13.
5U.
158.
331.
12.
27.
U2.
e.
19.
29.
3.
7.
1U.
62.
171.
353.
13.
28.
43.
9.
20.
30.
3.
8.
15.
71.
185.
378.
15.
30.
U5.
10.
21.
31.
4.
9.
15.
do
I
20 A13
9.
ACETIC ACID
(BUTANE)
DECLINING GROWTH SOURCE CATEGORY
20 AT* CYCLCHEXANE
0. 1.
1. 1.
1. 1.
1.
CUMULATIVE
0. 1.
1.
1.
1 .
1.
1.
1.
3.
1.
1.
1.
6.
-------
6.
14.
23.
7.
14.
20 ili EOBAX 20EIC ACID
CUMULATIVE
0.
1.
1.
2.
0.
1.
20 417 HYtBOGEN FLUOEIDE
CUMULATIVE
20 A16
3-
7.
11.
PC7ASH
7.
15.
8.
16.
Table B.4. (Contd.)
9. 10.
17. 13.
FRACTIONAL GROWTH SOURCE CATEGORY
0.
1.
1.
C.
1.
1.
0.
1.
1.
FRACTIONAL GROWTH SOURCE CATEGORY
1.
4.
2.
5.
FRACTIONAL GRO'/.TH SOURCE CATEGORY
10.
11.
20.
0.
1.
2.
2.
6.
10.
12.
21.
3.
6.
10.
13.
22.
.3 .
7.
1 0.
CUMULATIVE
V, VJ ii U i- « J. .
20 fc03
0.
3.
5.
6.
PCLYilHYLENE
2.
3 ^
c
9!
0.
3.
5.
(HIGH
2.
3.
5.
1 .
3.
6.
DENSITY)
2.
3.
5.
CUMULATIVE
20 BG4
2.
2«.
63.
133.
EOLYEIHYLENE
1.
2.
3.
t.
3.
27.
69.
(LOW
1.
2.
3.
5.
30.
74.
DENSITY)
1.
2.
3.
CUMULATIVE
20 EOS
1.
16.
38.
70.
ECLYSIYEENE
2.
2.
3.
14.
2.
18.
3.
CUMULATIVE
2.
21.
51.
4.
26.
5».
6.
29.
57.
1.
3.
6.
7.
34.
eo.
5.
22.
46.
8.
31.
61.
1.
4.
6.
2.
3.
6.
9.
37.
87.
7.
24.
49.
10.
34.
64.
1 .
4.
6.
11.
41.
93.
25.
52.
12.
37.
67.
2.
4.
7.
2.
U.
7.
14.
45.
100.
S.
28.
56.
14.
39.
71.
2.
4.
7.
2.
4.
8.
16.
49.
108.
2.
2.
3.
11.
31.
59.
17.
42.
74.
2.
5.
7.
2.
4.
e.
18.
54.
115.
13.
33.
62.
19.
45.
78.
21.
59.
124.
14.
35.
66.
21.
48.
82.
I
UJ
ui
-------
2C E06
66.
SYNTHETIC FIBERS
KAYON)
Table B.4, (Contd.)
FRACTIONAL GROWTH SOURCE CATEGORY
CUMULATIVE
20 EOT
COBOL ATI
20 E06
0.
2.
5 .
it.
0.
2.
3.
0.
O
3.
1.
2.
3.
PCLYP60PLYENE
1.
2 .
4.
7.
VE
1.
19.
£1.
1C6.
SJNTH2TIC
3.
c ^
7.
1 1 .
1.
2.
a.
3.
22.
55.
1.
2.
4.
a.
24.
59.
FIBZSS INDiJSTE"/ (DACRON
4.
5.
8.
a.
5.
6.
2.
3.
5.
6.
27.
6U.
POLYESTEh)
a.
5.
8.
CUMULATIVE
20 E09
3.
44.
1C4.
194.
SYNTHETIC
2.
3.
5.
7.
7.
49.
1 12.
FIBER INDOSTBY
3.
4.
5.
10.
55.
119.
(NYLON)
3.
t.
5.
1U.
60.
127.
3.
a.
5.
CUMULATIVE
2.
32.
72.
5.
35.
77.
8.
39.
82.
10.
1*2.
87.
7.
30.
69.
18.
66.
136.
13.
92.
9.
33.
71.
115.
16.
50.
98.
11.
36.
80.
26.
77.
153.
19.
5
-------
1.
1.
2.
2 .
COHULATIVE
1.
8.
21.
41.
2C E13 ACEIATS E
CUHULATIV:
C.
3.
»
20 E17 PLASTICS
13.
19.
30.
47.
CUf.'JLATIVE
13.
177.
427.
823.
2C E19 ECLYESTEH
2.
3.
n .
e.
CUMULATIVE
2.
27.
63.
118.
20 E21 UBEA
2.
2 .
2.
2.
CUMULATIVE
2.
20.
3 ^ .
60.
1.
1.
2.
1.
9.
22.
AJOS
1.
3
6.
AND SEdlNS
14.
21.
32.
27.
196.
460.
KESItl
2.
3.
5.
4.
30.
68.
2.
2.
2.
3.
21.
41.
2C C03 CArEOK BLACK (FUFNAC
1 .
1.
1.
1.
CUSULATIVE
1.
12.
24.
36.
1.
1.
1.
2.
13.
25.
i ,
i
2.
2.
1C.
24.
1.
4 .
6.
(ACRYLIC)
14.
21 .
32.
41 .
"* 1 C~
Vj 2 .
2.
3 .
5.
6 .
33.
72.
2.
2 .
2
5.
23.
43.
S PECCESS)
1.
1.
1 .
3.
14.
2o.
20 C06 ACEYLCNI1BILE PLANTS
1 .
2 .
1.
2.
1.
2.
11.
26.
15.
23.
36.
56.
241.
528.
9.
36.
77.
7.
25.
45.
4.
16.
27.
1.
1.
2.
3.
13.
t aut c u . t. vv/um-u . ;
1. 1.
1.
2.
4.
30.
FRACTIONAL GROWTH SOURCE CATEGORY
23.
36.
71.
563.
2.
1 1.
40.
32.
9.
27.
47.
17.
2*.
16.
25.
39.
67.
6&3.
13.
43.
88.
10.
29.
49.
7.
18.
30.
5.
15.
32.
16.
25.
39.
103.
314.
16.
47.
93.
12.
31.
51.
8.
19.
31.
6.
16.
16.
27.
43.
121.
341.
685.
19.
51.
99.
14.
33.
54.
9.
20.
32.
6.
18.
36.
13.
27.
43.
139.
3bb.
723.
21.
55.
105.
16.
35.
56.
10.
21.
33.
7.
19.
39.
19.
30.
47.
156.
3S7.
775.
24.
59.
111.
18.
3i.
58.
11.
21.
35.
w
I
-------
4 .
CUMULATIVE
1.
15.
36.
67.
20 C07 E7HYLENE
1 .
1.
1.
2.
CUMULATIVE
1.
e.
19.
34.
2
17.
39.
BICHLORIDE
"J .
1 .
1.
1.
9.
20.
a .
19.
41 .
j.
21 .
14.
PLANTS (OZYCHLC&INATICN
1.
1.
1 .
2.
10.
22.
1.
1.
1 .
3.
11 .
23.
20 CC6 FC6SALUEHYEE PLiHTS
11.
15.
21.
CUMULATIVE
1 1.
136.
319.
5t3.
2C CIO DETEEGENI
12.
14.
17.
2C.
CUMULATIVE
12.
144.
3C1.
488.
20 C15 VAFNISH
9.
9.
10.
10.
CUMULATIVE
9.
99.
192.
290.
20 C16 CHARCCAL
2.
2.
2.
2.
CUMULATIVE
2.
21.
to.
59.
20 C17 EXPLOSIVE
4.
£ .
e.
12.
11.
16.
22.
22.
154.
342.
11.
16.
22.
33.
170.
2C4.
12.
17.
24.
45.
186.
3E9.
MANUFACTURING PLANTS
12.
15.
17.
24.
159.
319.
9.
9.
10.
18.
108.
202.
PLANTS
2.
2.
2.
4.
23.
42.
IND (HIGH
5.
6.
9.
12.
15.
17.
37.
174.
336.
9.
9.
10.
26.
117.
211.
2.
2.
2.
6.
25.
44.
EXPLOSIVES)
5.
6.
9.
13.
15.
18.
49.
189.
354.
9.
9.
10.
35.
126.
221 .
2.
2.
2.
8.
27.
46.
5.
7.
10.
Table B.4. (Contd.)
:. J. 3. 3. 3. 4.
b. 9. 11. 12. 14.
25. 27. 29. 31. 34.
50. 53. 56. 60. 63.
P hO C f
1. 1. 1. 1. 1 .
1 . 1. 1. 1. 1.
2. 2. 2. 2. 2.
3. 4. 5. 6. 7. 7.
12. 13. 14. 15. 17. 18.
24. 26. 27. 29. 31. 32.
12. 13. 13. 14. 14. 15.
17. 18. 18. 19. 19. 21.
24. 26. 26. 28. 28. 31.
57. 70. 82. 96. 109. 124.
20j. 221. 239. 258. 273. 299.
413. 439. 465. 494. 522. 553.
13. 13. 13. 14. 14. 14.
15. 16. 16. 16. 16. 17.
18. 19. 19. 19. 19. 20.
62. 75. 89. 102. 116. 130.
204. 220. 235. 252. 268. 285.
372. 391. 410. 429. 448. 468.
9. 9. 9. 9. 9. 9.
9. 9. 9. 9. 9. 10.
10. 10. 10. 10. 10. 10.
44. 53. 62. 71. 80. 89.
135. 145. 154. 164. 173. 182.
231. 240. 250. 260. 270. 280.
2. 2. 2. 2. 2. 2.
2. 2. 2. 2. 2. 2.
2. 2. 2. 2. 2. 2.
10. 11. 13. 15. 17. 19.
29. 30. 32. 34. 36. 38.
48. 49. 51. 53. 55. 57.
5. 5. 5. 6. 6. 6.
7. 7. 7. 8. 8. 8.
10. 10. 10. 11. 11. 12.
-------
CUMULATIVE
14.
56.
lit.
232.
9.
63.
137.
20 C16 EXPLOSIVE IND (LOW
1 .
6.
9.
13.
CUMULATIVE
1.
56.
131.
215.
20 C19 pflKTI
25.
29.
33.
39.
CUMULATIVE
25.
256.
£C9.
S75.
20 C23 MALEIC
CUMULATIVE
0.
3.
6.
9.
20 C21 SODIUM
1.
2 .
3.
6.
CUMULATIVE
1.
16.
16.
5.
7.
9.
9.
65.
141.
KG IKK PLANTS
26.
29.
31.
51.
325.
Ci.3.
ANHYDRIDE
0.
3.
6 .
1- .
69.
1-46.
EXPLOSIVES)
5.
7.
Q _
14.
71 .
153.
26.
29.
31.
76.
355.
677.
1.
3 .
7.
CARBONATE PLAUT (KSTUH
1.
2.
4.
3.
20.
19.
", .
2.
1.
u.
22.
53.
16.
76.
155.
5.
7.
10.
13.
78.
164.
30.
35.
103.
365.
713.
Table 6.4. (Contd.)
23. 28.
S2. 69.
175.
5.
11.
29.
93.
1*5.
27.
31.
37.
156.
-147.
785.
5.
7.
10.
17U.
2 ".
30.
35.
129.
415.
FRACTIONAL GROWTH SOURCE CATEGORY
1. 1.
4. 4.
7. 7.
2. 2.
2. 2.
1. 4.
5. 7.
25. 27.
57. 62.
9.
30.
66.
97.
1H6.
11.
35.
101 .
196.
27.
31.
37.
478.
821.
10.
33.
71.
39.
101.
197.
6.
8.
12.
10.
109.
2oe.
26.
32.
38.
211.
510.
559.
12.
36.
76.
as.
112.
208.
6.
6.
12.
16.
117.
220.
28.
32.
38.
239.
b^2.
897.
11.
39.
82.
50.
120.
220.
6.
9.
13.
52.
126.
233.
29.
33.
39.
267.
576.
936.
16.
12.
38.
Od
I
u>
20 C25 PHTHALIC ANHYDEIDE PLANTS (SAPTHALSSE PROCESS)
FRACTIONAL GROWTH SOURCE CATEGORY
CUMULATIVE
0.
C.
1.
1.
0.
0.
1.
0.
0.
1.
20 C26 PH1HALIC ANHYDRIDE PLANTS
0. 1.
1. 1.
1. 1.
2.
CUMULATIVE
0. 1.
0.
0.
1.
(OXYLENE PROCESS)
1. 1.
1. 1.
1. 1 .
2.
2.
6.
-------
6.
15.
28.
20 C27 TEfEEKTHALIC
1.
1.
1 .
2 .
CUMULATIVE
1.
c .
1 c .
33.
7.
16.
ACID
1.
1.
1.
1.
9.
20.
e.
17.
PLANTS
1.
1 .
1.
2.
1C .
21.
20 C26 DIliETHYL TEREPHTHALATE PLANTS
C.
1.
1.
1 .
CUMULATIVE
C.
e.
15.
26.
2C C3C ETHYL BENZENE
CUMULATIVE
u .
2.
c
2C CJ1 EIKYLEt.'E
2.
2.
3.
1.
CUMULATIVE
2.
2C.
^4
77.
1.
1.
1.
1.
7.
16.
0.
3.
6.
2.
2.
3.
3.
22.
47.
1 .
1.
1.
2 .
fi.
17.
1 .
3.
6.
2.
2 .
3.
5 .
2s .
5C.
20 C32 KETHANOL PLANTS
0.
1.
1 .
1.
CUMULATIVE
C.
6.
12 .
19.
20 C33 FHZSCL PLANTS
1.
1.
1 .
1.
CUMULATIVE
1.
7.
15.
0.
1.
1.
1.
6.
12.
1.
1.
1.
1.
8.
16.
0.
1.
1.
1 .
7.
13.
1.
1 .
1.
2.
c.
17.
9.
19.
3.
11 .
22.
9.
18.
Table B.4. (Contd.
10. 10.
20. 21.
7.
26.
53.
2.
9.
18.
1.
1.
1.
12.
24.
3,
9.
19.
1.
1.
1.
13.
25.
3.
10.
20.
FRACTIONAL GROWTH SOURCE CATEGORY
8.
29.
56.
2.
8.
m.
3.
1C.
20.
10.
31.
59.
3.
6.
15.
M.
11.
21.
11.
22.
14.
27.
U.
11.
21.
12.
33.
62.
3.
9.
16.
12.
22.
12.
2U.
6.
15.
28.
it,
12.
22.
36.
66.
10.
16.
5.
13.
23.
13.
25.
6.
16.
30.
5.
13.
24.
16.
38.
69.
U.
10.
17.
5.
13.
24.
14.
27.
7.
17.
31.
6.
14.
25.
18.
41.
73.
5.
1 1 .
18.
6.
14.
26.
tB
-------
21.
Table B.4. (Contd.)
20 C3'l
EE1HYL KEIKACRYL&TE
0.
C.
0.
1.
0.
0.
0.
i LAHTU
0.
0.
0.
0.
G .
0.
0.
0 .
J
0.
0.
3.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1.
CUMULATIVE
^0 C35
CCiiuLAI
2C C36
C'JK'JiAI
2C C37
CUKULAT
20 C3c
CuXULAI
20 C3S
C.
3.
7.
12.
ETHYLE
IVI
C.
3 .
e.
9.
PFCtYL
0.
0.
0.
I VI
C .
3 .
7.
12.
VINYL
U
C.
"l .
1.
IVE
C.
4.
S-
CAPBCii
C.
C .
1 .
1.
IVE
C .
4.
1C.
16.
CAEEON
1.
4.
8.
HE GLYCCL DERI
1.
3.
6.
ENE (OXIDE)
0.
0.
0.
i _
'4.
S.
ACETATE (ETHYL
0.
0.
1.
1.
4.
9.
1EIBACHLOBIDE
0.
0.
1.
1.
5.
10.
TEIEACHLORIDE
1.
4.
c .
VEE ?: J?. "''
" .
a.
7 .
0.
0 .
0.
j
4.
&.
ENE)
0 .
0 .
1 .
1 .
^
10.
(METHANE)
C.
0.
1.
1 .
C
-1 m
11.
(PSCFANE)
1 .
4.
8.
:-:?: :-:NK OXIDE
i .
u .
7.
0.
0.
0.
1 .
4.
8.
0.
0.
1.
1 .
5.
10.
0.
0.
1.
2 .
6.
11.
1.
5.
ri
FRACTIONAL GROWTH
1.
i;.
7 _
0.
j ,
C.
1.
c
9.
C.
0 .
1.
2.
C
1 1.
0.
0.
1.
2.
6 .
1^.
2 .
5.
9.
SOURCE CATEGORY
2 .
i:.
b .
0.
C.
0.
2 .
!T'
9.
0.
0.
1.
2.
6.
12.
0 .
1 .
1.
2.
7 _
13.
2.
5.
10.
2.
5 .
S .
0.
0.
0.
2.
5.
10.
C.
0.
1 .
2.
6.
13.
0.
1.
1 .
3.
7.
13.
2.
6.
10.
2 .
5.
8.
0.
0.
0.
2.
6.
10.
0.
1.
1.
3.
7.
13.
0.
1.
1.
3.
8.
1 4.
3.
6.
1 1.
2.
5.
9.
C.
0.
0.
3.
6.
1 1.
0.
1.
1.
3.
7.
14.
0.
1.
1.
4.
8.
14.
3.
7.
11.
2.
6.
9.
0.
0.
1.
3.
7.
11.
r. W
" t
1 . '-'
3.
3.
15.
0 .
1 .
1.
4.
9.
15.
FRACTIONAL GROWTH SOURCE CATEGORY
Ct.ILLATIVE
C.
2.
e.
0.
2.
20 C
-------
Table 6 .4. (Coma .)
FRACTIONAL GROWTH SOURCE CATEGORY
CUMLATIVE
C.
2.
4 .
6.
0.
2.
4.
20 GUI ACE1CNS (CUMENE)
0. 0.
0. 1.
1 . 1.
1.
CUMULATIVE
0. 1.
5. 5.
11. 11.
16.
20 C42 ACE1CN2 (ISOPROP ANOL)
C.
C.
C.
1.
CUBULATIVE
0.
y.
8.
14.
20 CU3 ACE1CN2
CtKULAIIVt
C.
1.
2.
4.
0.
0.
1.
1.
"4.
9.
(CYAHOHYDRIH)
0.
1.
3.
20 C44 METHYL CHLCHOFGRt!
0. 0.
C. 0.
1. 1.
1.
CUMULATIVE
C. 1.
4. 5.
9. 10.
16.
20 CIS S1YFENE
0. 0.
1. 1.
1. 1.
1.
CCHULAIIVE
0. 1.
6. 6.
12. 12.
19.
20 CU6 AILYL CHLOBIDE
1 .
6.
12.
1.
5.
11.
1.
7.
13.
2.
7.
13.
1.
5.
10.
1.
6.
11.
2.
7.
14.
2.
7 ^
13.
2.
6.
10.
3.
8.
1*4.
2.
6.
11 .
FRACTIONAL GRO.ITh SOURCE CATEGORY
2.
6.
12.
2.
0.
14.
2.
7.
12.
3.
8.
15.
3.
8.
15.
2.
6.
11.
3.
7.
13.
3.
9.
16.
9.
15.
3.
7.
12.
10.
17.
1.
9.
16.
3.
7.
13.
a.
8.
14.
4.
10.
17.
4.
1 0.
17.
3.
8.
13.
4.
9.
15.
5.
1 1.
18.
.0
ho
FRACTIONAL GROWTH SOURCE CATEGORY
-------
Table B.4. (Contd.)
2C CK7
C,.'ULA1
2C C<*6
C.
1 .
2.
2
AC5YLIC
0.
0.
C.
1.
C.
3 .
7.
12.
ACE1IC
C.
1 .
1 .
1 .
0 .
1.
2.
ACID
0.
0.
0.
1.
I*.
7.
ANHYESIDE
0.
1.
1.
0
* B
. .
0.
0.
0.
1 .
4 .
<3 .
0.
1 .
1
CLMl'LATIV;
20 C4S
0 .
C
1 1.
18.
1.
6.
11.
CYC1CHEXASOL/CYCLOH
0 .
C .
1.
1.
0.
0.
1.
1 .
e.
12.
EXAKCNE
C.
C.
1 .
CUMULATIVE
20 DC1
0.
4 .
s.
16.
SYtilHEI
1.
5.
10.
1C RUEEER IK
1 .
5.
1 1 .
D. (STYS
1 .
1.
4 .
6.
0.
1 .
1.
2.
7.
13.
0.
0.
1.
11.
(STYBEKE-BUTADISKE) (S3E)
7.
13.
5.
2.
6.
12.
2.
7.
12.
2.
10.
0.
i _
1 .
3.
15.
3.
7.
13.
2.
6.
10.
1.
9.
16.
3.
8.
14.
3.
6.
1 1.
4.
10.
16.
3.
7.
11.
5.
10.
17.
4.
9.
15.
03
I
DECLINING GROWTH SOURCE CATEGORY
20 D02 ECLY-BQTAEIENE
0. 0.
C. 0.
1. 1.
1.
CCHUL11IVE
0. 1.
5. 5.
9. 10.
15.
2C D06 ETHYLENE-PROPYLENE
C. 0.
1. 1.
1. 1.
2.
1.
5.
10.
2.
6.
1 1.
2.
6.
12.
2.
7.
12.
13.
3.
6.
13.
a.
8.
It.
a.
9.
15.
-------
CCBCLtHVE
20 007
0.
6.
14.
26.
SYIHEIIC
1
6
15
RUBBER
1.
7.
16.
(HECPREN2)
2.
8.
17.
FRA
CCBCLAIIVE
21 C1 1
0.
1.
3.
5.
ETKYLENE
1.
1.
1.
1.
0
2
3
OXIDE
1
1
1
0.
2.
3.
PLANTS (AIR
1.
1.
1.
1.
2.
4.
OXIDATION PROCESS)
1.
1.
1.
CKBULATIVE
21 C13
1
12.
23.
36.
A B K C N I A
4.
5.
5.
e.
2
13
25
PLANTS
4
5
5
3.
14.
26.
4.
5.
5.
4.
15.
27.
4.
5.
5.
CUMULATIVE
4.
49.
97.
9
53
102
13.
56.
107.
17.
63.
112.
Table
.)
1.
19.
3.
9.
20.
FRACTIONAL GROWTH SOURCE CATEGORY
15C.
21 C20 FUEL CONVERSION HIGH BT'J COAL GASIFICATION
5.
16.
28.
22.
67.
118.
6.
17.
30.
26.
72.
123.
3.
10.
22.
7.
19.
31.
30.
77.
128.
11.
23.
8.
20.
32.
35.
82.
130.
12.
25.
10.
21.
33.
39.
87.
139.
5.
13.
26.
1.
3.
5.
11.
22.
35.
44.
92.
145.
FRACTIONAL GROWTH SOURCE CATEGORY
CUMULATIVE
22 C11
C.
1.
2 .
3.
ETHl'LEKE
1.
1.
1.
1.
0.
1.
2.
OXIDE PLANTS
1.
1.
1.
CUMULATIVE
30 A05
1.
6.
12 .
18.
NITRATE
2.
2.
2.
2.
1.
6.
12.
FERTILIZER (
2.
2.
2.
CUMULATIVE
2.
4.
0.
1.
3.
0.
2.
3.
(OXYGEN OXIDATION PROCESS)
1. 1.
1. 1.
1. 1.
2.
7.
13.
13.
(AMMONIUM NITRATE) PLANTS
2. 2.
2. 2.
2. 2.
1.
2.
3.
1.
1.
1.
6.
9.
3.
8.
14.
2.
2.
2.
11.
3.
9.
15.
13.
4.
9.
15.
15.
4.
10.
16.
17.
5.
10.
17.
19.
5.
11.
17.
21.
-------
30 E01
23.
45.
fct.
CCT1CN G
27.
27.
27.
27.
26.
47.
INNING
27.
27.
27.
28
<»9
27
27
27
CUMULATIVE
30 D01
27.
301.
574.
847.
Alf ALFA
1.
1.
2.
2.
55.
328.
601.
DEHYDRATING
1 .
1.
2.
82
355
629
PLANTS
1
1
2
CUMULATIVE
30 DC6
CUMULAT
3C DOS
1 .
14.
29.
45.
KHISKEY
7.
7.
7.
7.
IVE
7.
76.
144.
213.
2.
16.
30.
7.
7.
7.
14.
32.
151.
BESR PROCESSING PLAN
10.
1 2.
17.
22.
11 .
14.
13.
4
17
32
7
7
7
21
89
158
IS
11
14
18
CliKULATIVE
10.
129.
279.
21.
142.
297.
32
156
314
30.
51.
27.
27.
27.
109.
383.
656.
5.
19.
33.
27.
96.
165.
11.
14.
19.
43.
170.
333.
i do;e O.H .
12.
53.
27.
27.
27.
137.
41'J.
683.
1.
1.
2.
6.
20.
35.
7.
7.
'"'
34.
103.
172.
11.
1U.
19.
54.
184.
351.
Vl.UNI.lJ . 1
34.
55.
27.
27.
27.
164.
437.
711 .
1.
1.
2.
6.
21.
37.
7.
7 _
7.
41.
1 10.
179.
12.
15.
20.
66.
199.
371.
36.
58.
27.
27.
27.
191 .
465.
733.
9.
23.
38.
48.
1 17.
186.
12.
IS.
20.
78.
214.
390.
38.
60.
27.
27.
27.
219.
492.
765.
10.
24.
40.
55.
124.
192.
12.
16.
21.
90.
230.
411.
41.
62.
27.
27.
27.
246.
519.
793.
12.
26.
42.
62.
131.
199.
12.
16.
21.
103.
246.
432.
43.
64.
27.
27.
27.
273.
547.
820.
13.
27.
43.
69.
137.
206.
13.
17.
22.
1 16.
263.
454.
I
-t>
Ui
475.
3C C1C AKI.1AL FEED DEFLUCRISATICN
FRACTIONAL GROWTH SOURCE CATEGORY
CUMULATIVE
1.
2.
0.
1.
2.
30 C11 VEGETABLE OIL MFG.
5. 5.
5. 5.
CUMULATIVE
5.
58.
110.
10.
63.
115.
16.
68.
120.
21.
73.
126.
26.
79.
131.
31.
84.
136.
37.
89.
141.
42.
94.
147.
47.
99.
152.
52.
105.
157.
-------
162.
30 Die STAFCH MFGE
Table 8.4. (Contd.)
2.
2.
2 .
2.
CUMULATIVE
2.
25.
49.
73.
2.
2.
2.
5.
27.
51.
2.
2.
2.
7.
30.
53.
2.
2.
2.
9.
32.
56.
2 .
2.
2.
1 1.
34.
56.
2.
2 .
2.
14.
37.
61.
2.
2.
2.
16.
39.
63.
2.
2.
2.
18.
41.
65.
2.
2.
2.
20.
44.
68.
2,
2
2
23
46
70,
3C B2C A^CNIUM SULFATE
7.
1 1.
1 8.
29.
CUMULATIVE
7.
1CC.
246.
30 £01 (AGG)
382.
390.
399.
UC9.
CUMULATIVE
382.
4246 .
6203.
12253.
40 A01 STCNE
95.
95.
95.
9 c .
CUMULATIVE
95.
1042.
199C.
2937.
40 A02 SASD C
1 1 4 .
1 14.
1 14.
114.
CUMULATIVE
114.
1256.
2396.
354C.
a.
12.
19.
15.
1 12.
266.
e.
12.
19.
23.
124.
285.
8.
13.
21.
31 .
138.
306.
8.
13.
21.
40.
151.
323.
9.
14.
24.
49.
165.
351.
9.
14.
24 .
58.
ieo.
3^5.
1 0.
16.
26.
68.
196.
401.
10.
16.
26.
78.
211.
427.
11
18
29
69
229
456
FEED A:JC GRAIN MILL INDUSTRY
383.
392.
401.
765.
4640.
8604.
383.
392.
401.
1 148.
5031.
9005.
385.
394.
403.
1533.
5425.
9408.
385.
394.
403.
1913.
5819.
9811.
307.
395.
405.
2304.
6214.
10216.
337.
395.
405.
2691 .
6610.
10621.
388.
397.
407.
3079.
7007.
11028.
388.
397.
407.
3468.
7404.
11435.
390
399
409
3353
7803
1 1844,
CCARRYING AND PROCESSING
95.
95.
95.
190.
1137.
2085.
GRAVEL PROCESS
1 14.
114.
1 14.
228.
1370.
2512.
40 D06 FIBERGLASS MFG. PLANTS
0.
1.
1.
1.
CUMULATIVE
0.
6.
12.
21.
0.
1.
1.
1.
6.
13.
95.
95.
95.
284.
1232.
2179.
114.
114.
114.
343.
14&5.
2627.
(TEXTILE
0.
1.
1.
1.
7.
14.
95.
95.
95.
379.
1327.
2274.
114.
114.
114.
457.
1599.
2741.
PROCESSING)
0.
1.
1.
2.
7.
15.
C c
95.
95.
474.
1421.
2369.
1 14.
1 14.
114.
571.
1713.
2855.
0.
1.
1.
2.
3.
15.
95.
95.
95.
569.
1516.
2464.
1 14.
114.
114.
685.
1627.
2969.
1.
1 .
1 .
3.
9.
16.
95.
95.
95.
663.
1611.
2558.
1 14.
1 14.
114.
799.
1941.
3083.
1.
1.
1 .
3.
9.
17.
95.
95.
95.
758.
1 706.
2653.
114.
114.
114.
914.
2056.
3198.
1.
1.
1.
4.
10.
18.
95.
95.
95.
853.
1800.
2748.
114.
114.
1 14.
1028.
2170.
3312.
1.
1.
1.
5.
11.
19.
95
95
95
948
1895
2843,
114
1 14
114
1142
2284
3426
1,
1
1
5
12
20,
ttC DOT GLASS MIHUFACTUBING INDUSTRY (SODA-LIME GLASS)
-------
li.4.
12.
12.
12.
12.
C'JSuLATIVZ
12.
123.
244.
361 .
12.
12.
12.
23.
140.
256.
1-.
12.
11-.
35.
15"..
2Gb.
IiC E06 (AGG) CASHABLE SEFRACTCSY ?LA
c
C _
6.
7 .
CCfltLillVE
5.
56.
114.
1 C 1 .
4C £1C CEFAXIC
112.
112.
1 12.
112.
CUMULATIVE
112.
12;-..
23-.i .
34t2.
40 D11 GYPSUM
c ^
5.
5.
C
CUMULATIVE
C
50.
96.
1C1.
40 C12 PEFLIIE
3.
3.
3.
3.
CUMULATIVE
3.
35.
68.
ICC.
40 B13 HIKEEAL
2 .
2.
2.
2.
CUMULATIVE
2.
2c.
50.
74.
40 B14 FIBEBGL
2.
2.
S.
6.
6.
10.
61.
120.
CLAY .IF 3
112.
1 12.
1 12.
223.
1340.
2457.
~j ,
f. .
6 .
14.
67.
127.
112.
112.
112.
335.
1^52.
25o3.
H4HUFACT3RING PLANTS
5.
5.
5.
9 .
55.
100,
(VERTICAL FURN
3.
3.
3.
6.
39.
71.
fcOOL KFG
2.
2.
2.
5.
29.
53.
ASS MFG. PLANTS
2.
2.
5.
5.
5.
14.
59.
105.
ACE)
3 .
3.
3
10.
42.
74.
2.
2.
2.
7.
31.
55.
(WOOL
2.
2.
12.
12.
1 -
47.
163.
279.
NTS
5.
6.
7.
19.
73.
133.
112.
1 1z.
112.
447.
15fc3.
2(^0.
(CALCINZB)
5.
5.
5.
19.
64.
109.
3.
3.
-> .
13.
45.
77.
2.
2 .
2.
10.
33.
57.
PROCESSING)
2.
2.
12.
12.
12.
174.
29'..
24.
7d.
140.
1 U.
1 1^.
112.
1b7
2 j.
68.
114.
43.
81 .
12.
3G.
6C.
30.
147.
G70.
17^7.
903.
27.
73.
119.
19.
52.
34 .
14.
3o.
U.
12.
12.
1 99.
214.
90.
153.
1 12.
1 12.
1 12.
"'32.
1898.
3315.
32.
76.
123.
55.
67.
2.
17.
41.
65.
12.
12.
12.
93.
239.
326.
40.
96.
160.
112.
112.
112.
893.
2010.
3127.
36.
82.
126.
26.
58.
90.
19.
43.
b7.
12.
12.
12.
1C 5.
22 1.
337.
45.
102.
167.
112.
Hi.
1 12.
1005.
2 ^/.L.
3235.
4 1.
d7.
132.
29.
6 1.
93.
22.
45.
69.
12.
12.
12.
1 16.
233.
349.
51.
10R.
1 1 2.
112.
112.
1117.
45.
91.
137.
32.
64.
97.
24.
48.
72.
sa
I
-------
i dU > e D . H .
3. 3. 3.
U.
CUMULATIVE
2. 3. 5.
2C. 22. 25.
US. 48. 51.
78.
40 D16 (AGG) CLAY SINTERING PLANTS
3.
7.
27.
54.
3.
8.
29.
57.
10.
32.
60.
12.
34.
64.
37.
67.
16.
39.
71.
18.
42.
75.
CUMULATIVE
0.
2.
3.
4.
0.
2.
3.
0.
2.
3.
4C E17 FLY-ASH SINTERING (SINIEF.ING)
1 .
2.
3.
FRACTIONAL GROWTH SOURCE CATEGORY
1.
2.
3.
1 .
2.
4.
FRACTIONAL GROWTH SOURCE CATEGORY
CUMULATIVE
4C D1 9
C.
3.
6.
1C.
GLASS
4.
4.
4.
4.
0.
3.
7.
MANUFACTURING I
4.
4.
4.
1 .
4.
1 .
StUSTRY (LEAD
4.
4.
4.
1 .
4.
7.
GLASS)
4.
4.
4.
CUMULATIVE
41 E01
4.
43.
82.
121.
(AGG)
7.
7.
7.
7.
8.
47.
86.
ASPHALT ROOFING
7.
7.
7.
12.
51.
90 .
PLANTS
7.
7.
7.
16.
55.
94.
7.
7.
7.
CUMULATIVE
41 D01
7.
76.
145.
215.
(AGG)
1 .
16.
16.
16.
14.
83.
152.
PHOSPHATE ROCK
16.
16.
16.
21.
90.
159.
23.
97.
166.
PREPARATION PLANTS
16.
16.
16.
16.
16.
16.
CUMULATIVE
41 101
16.
181.
346.
51 C.
33.
197.
362.
U9.
214.
373.
66.
230.
395.
METALIC MINERALS MINING (IRON ORE)
4.
4.
4.
4.
4.
4.
4.
4.
U.
4.
4.
4.
4.
19.
58.
97.
35.
104.
173.
16.
16.
16.
82.
247.
411.
23.
62.
101.
42.
111.
180.
16.
16.
16.
99.
263.
428.
27.
66.
105.
48.
1 18.
187.
16.
16.
16.
115.
280.
444.
31.
7C.
109.
55.
125.
194.
16.
16.
16.
132.
296.
461.
35.
74.
113.
62.
132.
201.
16.
16.
16.
148.
313.
477.
3.
6.
10.
39.
78.
117.
69.
139.
208.
16.
16.
16.
165.
329.
494.
W
-------
CUMULATIVE
4.
3S.
74.
41 F01
7.
42.
78.
1 1C.
(AGG) IIOS-KETALLIC MINING -
:LAY
19.
85.
Table i.4. (Contd.)
c .
55.
38.
21 .
57.
92.
60.
95.
26.
64.
99.
32.
67.
132.
35.
71.
106.
DECLINING GROWTH SOURCE CATEGORY
£01 ME1ALIC MINERALS MINING (^:< fcOAI.I.OY)
C'CK
4^
CUM
-i3
CUM
43
CUM
4 4
3.
3.
3.
iUIATIVE
3.
30.
c '3 .
92.
F01 (;.GG) !i
3 .
3 .
3 .
3.
'OLATIVE
3.
32.
£4.
92.
£01 ME1ALIC
1.
1.
1 .
1.
ULATIVE
1 .
14.
21 .
42.
3.
3.
3,
5.
33.
63.
CM-MET Ai-ic si::i:
3.
3.
3.
6.
35.
67.
HISE5ALS MINING
1 .
1.
1.
3.
15.
23.
3 .
3 .
;-
6.
35.
66.
iG - GVP3U"
3.
3 .
3.
c, f
35.
70.
(COP?EK)
'i .
1 .
1.
4 .
17.
30.
3 .
3.
3.
10.
38.
69.
3.
3 .
3.
12.
42.
74.
1 .
1 .
1.
C
18.
32.
^D
3 .
3.
13.
41.
72.
3.
.3.
3.
1 4.
45.
77.
1.
1.
1.
6.
19.
33.
3.
? .
3.
16.
44.
76.
3 .
3.
3 .
17.
43.
eo.
1 .
1.
1.
e.
21 .
04 .
3.
3 .
3.
19.
47.
79.
3.
3.
3.
20.
51.
84.
1.
1.
1 .
9.
22.
36.
3.
3.
3.
21.
50.
82.
3.
3.
3.
23.
54.
87.
1.
1.
1.
10.
23.
37.
3.
3 .
3.
24.
53.
86.
i.
3.
3 ^
26.
57.
91.
1.
1 .
1.
11.
25.
39.
3
3
3
27
56
89
3 ,
3
3
29
61
94
1,
1
1,
13
26
40,
?01 (AGG) NON-METALLIC MINING - LI.1E
4.
4 .
5 .
c
uLillVE
4.
43.
94.
143.
EC1 KE1ALIC
6.
6.
6.
6.
4.
4.
5.
8.
52.
99.
MINERALS HIKING
6.
6.
6.
4.
4 .
r
13.
57.
4.
5.
5.
17.
61.
103. 106.
(1I.\D MIKING)
6.
e.
6 .
6.
6.
6.
4.
5.
5.
21.
66.
1 13.
6.
6.
6.
4 .
5.
5.
26.
70.
113.
6.
6.
6.
4.
5.
C.
30.
75.
123.
6.
6.
6.
4.
5.
5.
34.
80.
128.
6.
6.
6.
4.
5.
5.
39.
84.
133.
6.
6.
6.
4,
5
5
43
89
138.
6.
6,
6,
CUMULATIVE
6.
11.
17.
23.
23.
34.
40.
46.
51.
57,
-------
4 4
, S
Cl
,, t
4 5
cu
45
c : .
120.
177.
;i HiCfJiiA
2 .
'.: -
-;-
.'. ' !, .i7I V£
2.
1 '.: .
2 _ .
5 1 .
-1C (AGG) I
72 .
22.
*2 .
22.
.1 1; L A 1 1 v t
i 2 .
*. 4 ^ .
4 t 2 .
Ill (AGG) 1
t .
t .
c .
t .
6.
i 4.
12j .
1 c 2 .
D12 (ACG) I
2 .
2 .
2 .
2.
.VJLA1IVE
2 .
21 .
* C .
ec.
E.01 ME1ALIC
6 S .
1*5.
7E P.CCK (
2.
2.
2 _
20.
3£.
aSSEL KIL
22.
22.
22.
44.
2 t, 4 .
454.
u ;; N E L K : i.
r, .
.
12.
70.
125.
U S N 2 L K 1 1
2.
2.
2.
4.
23.
42.
MINERALS
Tar :e t
"/ !; . c j . >' ' v
lil. 137. 1,2.
K I :' 1 N o )
?. 2. 2.
2. 2. 2.
2. 2. 2.
c . 7 .
...".. 23. ;-:^.
. : . 40. 4 i .
:;s (G/,j ),;;:,; ""3 AND STORAGE
22. 22. 22.
22. 22. 22.
*-2. 22. 22.
'.C. 6.1. 110.
2;:''. 3C2b. St.0.
;is (oil) , E:-Y JBS AND STOH;.GE
o . b. 5.
f . r, . ^ .
n . o . r, .
It. 23. 29.
7t. H2. dc!.
1 > 5 . 141. 146.
N" (C6\I) , :-? YS'r.J AN'D SI'OR.'.GE
2 . 2 . 2 .
2 . 2 . 2 .
2. 2. 2.
6 . 3 . 10.
25. 27. 29.
4-. 46. 43.
«in T:IG (i:i:;c .-USE s CRUSHING)
J . " . ^ Con r.u . ;
i i .
1 40.
2 .
2 .
2 .
10.
2 "7 .
H.i .
22.
22.
22.
132.
352.
572 .
b.
6 .
D .
35.
94.
1 52.
^ .
2.
2.
12.
31.
50.
i;- » .
1 54.
2 .
2.
"i
12.
23.
45.
22.
22.
22.
1 54.
374.
594.
6.
b .
6.
41 .
100.
158.
2.
2.
2 .
13.
33.
C ',
103.
159.
2 .
2.
2-
13.
30.
46.
22.
22.
22.
176.
396.
61 6.
6.
6.
6.
47.
105.
164.
2.
2.
2.
15.
35.
£4.
106.
165.
2.
2.
"
15.
31.
46.
22.
22.
22.
196.
416.
638.
6.
6.
u .
53.
11 1.
170.
2.
2.
2.
17.
36.
56.
114
171,
2,
2
2,
17
33
50
22.
22
22
220
440
660,
6,
6
6
59
1 17
176,
2
2
2
19
33
53
DECLINING GRO'.-iTH SOURCE CATEGORY
F01 (AGG) NOS-aETALLIC .TIMING - BORCli COMPOUNDS
FRACTIONAL GROWTH SOURCE CATEGORY
CUMULATIVE
0.
3.
7.
1.
4.
7.
1.
4.
1.
4.
1 .
5.
9.
2.
6.
10.
3.
6.
10.
3.
7.
11.
-------
Table 8.4. (Contd.)
11.
46 D10 (ASG) PERIODIC KILNS (GAS) ,DLYERS AND STOKAoE
7. 7. 7. 7.
7. 7. 7. 7.
7. 7. 7. 7.
7.
CUMULATIVE
7. 15. 22. 30.
61. 85. vG. 103.
155. 163. 170. '77.
22S.
4o D11 (AGG) PEEICDIC KILUS(OIL), r>.
-------
CJJ.-.U
ec c
Lu^'j
J V. ^
C U .1 U
2.
^ .
2 .
I STIVE
/ .
21.
i.1.
c,C.
G2 Gii 11 ISCN
C.
£, ,
U
LATIVL
r.
5c .
110.
1 1 '.'. .
o : or. i» i EC ii
i .
1 .
; .
1 .
L A 1 1 V I
1 .
e.
1 U .
2.
2 .
2.
1.
23 .
43.
FOUNDRIES
5.
5.
'"'
13.
C3.
1 15.
FCUU'LSliS
1 .
\ m
1 .
1.
0.
15.
?.
2.
2 .
0 c ^
45.
(ELFCTf.IC ARC)
c
c
c
16.
b3.
120.
( 5 EVi SCRATCHY)
1 .
1 .
1 .
2 .
H .
1 !. .
2.
2 ,
-
3 .
"; 7 .
47.
5 .
5.
5 .
21.
73.
126.
1.
1 .
t
3.
10.
16.
2.
2.
.?.
11.
- r^
49 .
5.
~j .
5.
26.
7 j.
1 31.
1.
1.
1.
3.
10.
17.
2.
1 .
2.
I*.
.^l .
51.
5.
n .
-
31.
8U.
1 36.
1 .
1 .
1 .
{4 ^
1 1 .
13.
2.
2 .
2.
14.
.: 5 .
51.
5.
5 .
5.
37.
6S.
1U1.
1 .
1 .
1.
5.
12.
19.
2.
2.
2.
16.
35.
51.
5.
5.
5.
H2.
94.
147.
1.
1.
1 .
5.
12.
19.
2.
2.
2.
18.
37.
56.
5.
5.
5.
i.7.
99.
152.
1.
1.
1.
6.
13.
20.
2
2,
2,
1 9
39.
53
5
5
5
52
105,
157
1
1
1
7
1 4,
21
(CUPOl,1.)
DECLINING GROWTH SOURCE CATEGORY
50 £01 SliEL FOUNDRIES (ELECTRIC ARC)
c i .»:
c '
j ^
29 .
^ '- .
2': .
' Q _
'J L A 1 1 V 2
~<- > .
314.
6CC.
D02 Sli.L FC'J
3.
3 .
3 .
3 .
29.
r:o.
2 9 -
57.
3*3.
629.
NDEIES (OPE:l
j.
3.
3.
29 .
23.
/. '- .
£G.
371.
657.
H2A-TH)
J .
3
3.
29.
29.
29.
1 14.
400.
666.
j ^
3.
3.
29.
23.
'I'j.
143.
429.
714.
J .
3.
3.
29.
29.
29.
171.
457.
743.
3.
3.
3.
29.
29.
29.
2 GO.
486.
771.
3.
3.
3.
29.
29.
29.
229.
514.
800.
3.
3.
3.
29.
29.
29.
257.
5U3.
829.
3.
3.
3.
29
29
29
236
571
857
3
3
3
CUMULATIVE
50
3 .
35 .
L "/ .
S3 .
F01 URANIN'J.".
4 .
4.
6.
3B.
7-J.
REFINING
4.
4.
10.
4 1 .
73.
4 .
4.
13.
t4.
76.
4.
Ii.
IS.
45.
79.
4.
4 .
19.
51 .
63.
4.
4.
22.
54.
86 .
4.
4.
25.
57.
89.
4.
14.
29.
60.
92.
4.
14.
32
614,
95
14
14
-------
c
5
C
5
i.
C
s
^
4.
4 .
U.rULAlIVE
4 .
45.
6c.
127.
1 D12 (AGG) SECCNDA
1 .
1 .
1.
1.
JhULATIVE
1 .
14.
27.
39.
1 E01 (AGG) SECOIIDA
1 .
1 .
1 .
U.10LATIVE
1 .
o
1 6 .
1 Z02 (/!;i) SZCC::DA
i .
i .
1 .
UKULATIVE
'i .
0 .
i ;. .
5 A01 PISIICI&SS KA
1 .
2 .
2 .
U/.UIATIVZ
1 .
1 f.
33.
4. 4.
8. 1: .
49. :3.
90. 9s.
PY ALUMINUM PLANTS
1. 1 .
1. ? .
1. 1 ,
J. 4.
15. IV.
23. 20.
3Y ZI'iC 5*£L"-.:'3 (I
1. 1 .
" . * .
1 . ' .
2. 2 ,
10. i :.
1 ; . i '; .
?,v zi::c 3:::.i.; -s (:
i . "i .
i. 1 .
1 . i .
2. :. .
i j . 11.
10. 1 '< .
::uFACTU2i:^
i. i .
2. 2 .
2 . 2 .
3. 4.
17. If.
(5. 37.
4.
16.
57 .
93.
1.
1 .
1 .
5 .
13.
31 .
>STC?T RZ
1.
1 .
1 .
3.
12.
2 0 .
-:osiz £ r
T .
1 .
1 .
J .
12.
20.
1.
2.
2.
5.
20.
39.
4.
20.
61 .
102.
1.
1.
1.
6 .
1 3.
32.
LUCTIOti 6 KZ1T2E K
1 .
", .
4.
12.
21.
LV2EE. t j.-.:; -'.CZi)
1 .
1 .
1.
4 .
12.
2 1.
1 .
2 .
2.
6 .
22.
41.
U.
25.
65.
1 :£.
1.
1.
i
n.
2J.
3 -^ _
U£vKACr,S)
1 .
1.
i
5.
13.
22.
1 .
1.
1.
f, .
1 1 .
22.
1 .
2 .
2 .
S.
24.
44.
4.
29.
70.
1 10.
1.
1 .
1 .
C' ^
22.
34.
1.
1 .
i .
6.
14.
23.
1 .
1 .
1.
6 .
14.
23.
1 B
2.
2.
9.
25 .
46.
U.
33.
74.
1 14.
1.
1.
1 .
- 1 0.
23.
36.
1.
-, .
1 .
7.
15.
24.
1.
1.
1 .
7.
1 5.
24.
i
2.
2.
1 1.
27.
48.
4.
37.
78.
119.
1.
1.
1.
1 1.
24.
37.
1 .
1.
1.
7.
16.
25.
1 .
1.
1.
7.
1C.
25.
1 .
2.
7.
12.
29.
51.
U.
41 .
82.
123.
1.
1.
1 .
13.
25.
33.
1 .
1.
1 .
8.
17.
26.
1.
1.
1 .
8.
1 7.
26.
2.
2.
3.
14.
31.
53.
56.
57 soi (AGG) SECG::DA?V CCPPER PLANTS (SL/.ST F"-r',c.F;
CU.IULATIV;
c. i. i.
i. 5. i.
' :. 1C. '. .
I -* -
So 5C1 (AGG) SLCOUDASY CCPFES PLA!.'^ (COKVESIih iMELlIS:;
1 . 1. 1 .
1 . 1. 1 .
1. 1- 1.
1.
"; . "'
6. 7.
11. 11.
lih iMELlIN:;)
1. 1.
1. 1.
1 . 1.
3 .
7.
12.
1 .
1 .
1
3 .
b.
12.
1 .
1 .
1 .
4. 4.
e. 9.
13. 13.
1. 1 .
1. 1.
1 . 1.
5.
9.
1 4.
1.
1.
1.
-------
Table B.4. (Contd.)
CUMULATIVE
1.
7.
13.
2C.
1.
3.
14.
j_.
8.
15.
3.
9.
15.
3.
10.
16.
U,
1C.
17.
60 B01 DFY CLEANING
334.
337.
339.
342.
CUMULATIVE
334.
36SO.
7070.
1C475.
60 B04 GRAPHIC
11.
13.
15.
18.
CUMULATIVE
11.
135.
279.
446.
60 B05 GSAEHIC
7.
7.
9.
10.
CUMULATIVE
7.
77.
159.
254.
60 B07 GRAPHIC
35.
40.
47.
55.
CUMULATIVE
35.
416.
857.
1372.
60 F03 P.T.M.
2.
2.
2.
3.
CUMULATIVE
2.
21.
44.
69.
60 F04 P.I.H.
13.
14.
15.
16.
CUHULATIVE
13.
335.
337.
339.
669.
4027.
7409.
ARTS INDUSTRY
12.
13.
16.
23.
149.
294.
ARTS INDUSTRY
7.
8.
9.
13.
85.
163.
ABTS INDUSTRY
36.
41.
43.
71.
458.
905.
335.
337.
339.
1004.
4364.
7749.
(GRAVURE)
12.
13.
16.
35.
162.
310.
335.
337.
340.
1339.
4702.
8089.
12.
14.
16.
47.
176.
326.
335.
337.
340.
1674.
5039.
8429.
12.
14.
16.
59.
190.
342.
336.
338.
340.
2009.
5377.
8769.
12.
14.
17.
71.
204.
359.
(FLEXOGRAPHY)
7.
8.
9.
2C.
93.
177.
7.
8.
9.
27.
101.
186.
7.
8.
9.
34.
103.
195.
7.
8.
10.
41.
117.
205.
(LETTERPRESS)
36.
41.
4fc.
107.
499.
953.
ID. (SHIP 6 B1RGE TBANSFEB
2.
2.
2.
4.
24.
46.
ID. (BULK GAS.
14.
14.
15.
27.
2.
2.
2.
6.
26.
49.
TERMINALS)
14.
14.
15.
41.
37.
43.
50.
144.
542.
1003.
, GAS.
2.
2.
2.
7.
28.
51.
LOADING
14.
15.
15.
54.
37.
43.
50.
182.
585.
1053.
& CRUDE OIL)
2.
2.
2.
9.
30.
54.
TANK TROCKS/RR
14.
15.
15.
68.
38.
44.
51.
220.
629.
1104.
2.
2.
3.
11 .
32.
56.
CAR
14.
15.
16.
82.
4.
11.
17.
336.
338.
340.
2315.
5715.
91 10.
12.
14.
17.
84.
219.
376.
7.
8.
10.
48.
125.
214.
38.
44.
51.
258.
673.
1156.
13.
34.
59.
14.
15.
16.
96.
5.
11.
18.
336.
338.
341.
2681.
6054.
9-451.
13.
15.
17.
96.
233.
393.
7.
8.
10.
55.
133.
224.
39.
45.
53.
297.
718.
1209.
15.
37.
61.
14.
15.
16.
110.
6.
12.
19.
336.
338.
341.
3017.
6392.
9792.
13.
15.
17.
109.
248.
410.
7.
8.
10.
62.
142.
234.
39.
45.
53.
336.
763.
1262.
17.
39.
64.
14.
15.
16.
124.
6.
13.
19.
337.
339.
342.
3354.
6731.
10133.
13.
15.
18.
122.
263.
428.
7.
9.
10.
70.
150.
2U4.
40.
47.
55.
376.
810.
1317.
19.
41.
67.
14.
15.
16.
138.
-------
(Contd.)
6 1
152.
299.
45c.
£02 I ! DUSIRIAL
14.
1 '; .
25.
1-4 .
1 of. .
314.
SUF. FACE
15.
20.
26.
1 ; " . 1 9 '"> .
j 2 9 . j 4 C .
CGr.TI!.:; (LAHli, A I- F I.I.'. SCI'
If:. 1 ' .
1: Ci . 1> 1 .
^ . . / r. .
^ * '. .
5 6 'J .
CCATi KG)
"i t .
^ . .
.'i.
2 ;. 4 .
376.
17.
22.
: o .
239 .
392.
17.
22.
30.
254.
406.
18.
24.
32.
269.
423.
16.
24.
32.
264.
440.
19.
25.
34.
CU.1ULATIVL
6 1
C!j
6 2
C'J
£2
CU
63
14.
164.
4^0.
7C7.
EC3 i: JUSTSIAL
" C .
1i.
17.
24 .
MULATIVI
1C.
1 i 'J .
2f 2.
492 .
E02 INDUSTRIAL
2 .
2.
2 .
3 .
M'JLATIVE
^ .
24.
47.
72.
E03 irCUSTBIAL
2 .
'-
4 .
.rULAIIVE
2.
22 .
4fc .
f 3 .
302 If:USTKIAl
3.
4 .
5.
6.
30.
203.
4 (3.
SUi. r ACE
1 1.
14.
1b.
21.
141.
301.
SURFACE
2.
2 .
2.
/;.
26.
49.
SUFr'ACE
2 .
2 .
3.
3.
24.
51.
SURFACE
3.
4.
5.
45. iV,.
223. 244.
u5'<. 457.
CCAII.v; (SAGNET ::i?j. CCA
11. 11.
14. 15.
1 >. 2 J.
- 1. 42.
1^. 17 j.
31r- . 33:.
CCATIK.; (AUIOM02I L::S)
2 .
^ . 2 .
2. 2.
C . >. .
2f. . 31.
ti 2 . 54.
COATING (CAN COATIKG)
. 2 .
2 . 2 .
.?. 3.
5. 7.
2(i. ^9.
54. 57.
CCAIIUG (HSTAL COILS CCA
3 . j .
4. 4.
5. 5.
77.
265.
515
TING)
1 1.
15.
20 .
5 .3 .
i -j -i .
35o.
2 .
2.
2 .
1 1.
-> 3 .
57.
^ .
^ .
:'-
9.
j 1.
6 1.
Ti:CG)
3 .
u .
5.
94.
287.
545.
12 .
15.
21.
65.
2 G j .
379.
4.
2.
2.
1 j.
35.
59.
2.
j .
--
1 1.
34.
64.
3 .
4.
6.
111.
309.
575.
12.
1 j.
21.
77.
215.
400.
2.
2.
2.
15.
3 ;. .
62.
2 .
3 .
4.
13.
36.
63.
3.
4.
6.
128.
333.
607.
12.
16.
22.
89.
231 .
422.
2.
2.
3.
17.
40.
64.
2.
3.
4.
15.
39.
72.
2.
4.
6.
146.
356.
619.
".6.
22.
102.
24c.
444.
2.
2.
3.
19.
42.
67.
2.
3.
4 .
17.
42.
75.
3 .
4.
6.
1 65.
361.
673.
13.
1 7.
24.
1 1 5.
265.
463.
2.
2.
3.
22.
45.
69.
2.
3.
4.
1 9.
45.
79.
4.
5.
6.
CUMULATIVE
63
3.
3 C
77.
133.
E03 INDUSTRIAL
2 .
2.
3.
4.
6.
38.
62.
SURFACE
2.
2.
3.
c . 11.
42. w u .
67. 92.
COATING (PAPEfi COATIC3)
2. 2.
2. 2.
3. 3.
1 4.
50.
97.
j
2 .
3.
15.
54 .
102.
2 .
3.
3.
21.
58.
108.
2 .
3.
3.
24.
63.
1 1 4.
2.
2.
4.
26.
67.
120.
2.
3.
4.
31.
72.
127.
2.
3.
4.
CUMULATIVE
2 .
21.
17.
3.
23.
50.
c. 7.
26. 28.
53. 56.
9.
30.
59.
1 1.
33 .
63.
13.
36.
66.
15.
36.
7Q.
17.
41.
73.
19.
44.
77.
-------
64 BO 2
81.
INDUSTRIAL
11.
15.
19.
26.
SOEPACB
12.
15.
21.
COATIKG (FABRIC
12.
15.
21.
COATING)
12.
16.
22.
CUMULATIVE
11.
143.
316.
551.
23.
158.
337.
35.
174.
356.
47.
190.
380.
Table B.4. (Contd.)
12. 13. 13.
16. 17. 17.
22. 23. 23.
60. 73. 86.
206. 22U. 241.
402. 425. 448.
18.
25.
100.
259.
473.
14.
18.
25.
114.
278.
498.
15.
19.
26.
128.
297.
524.
70 F01 GASOLINE ADDITIVES (SODIUK-LEAD)
DECLINING GROWTH SOURCE CATEGORY
70 F02 GASCLISE ADDITIVES (ELECTROLYTIC)
DECLINING GROWTH SOURCE CATEGORY
71 D01
(AGG)
9.
10.
12.
14.
PETROLEUM REFINERY' MISC. SOURCES
9.
11.
12.
9.
11.
12.
9.
11.
13.
9.
11.
13.
CUMULATIVE
7 1 E01
9.
105.
218.
352.
(AGG)
15.
17.
18.
20.
18.
1 16.
231.
CRUDE OIL AND
16.
17.
13.
27.
126.
243.
NATURAL GAS
16.
17.
18.
36.
137.
256.
PRODUCTION
16.
17.
19.
46.
148.
269.
PLANTS
16.
17.
19.
CUKULATIVE
8C A03
15.
175.
3<*9.
539.
31.
192.
367.
CHEMICAL HOOD IND.
3.
3.
3.
3.
3.
3.
3.
46.
209.
386.
(NSSC)
3.
3.
3.
62.
226.
404.
3.
3.
3.
78.
243.
423.
3.
3.
3.
CUMULATIVE
3.
29.
56.
83.
5.
32.
59.
8.
35.
62.
11.
37.
64.
13.
40.
67.
10.
11.
13.
55.
159.
282.
16.
17.
19.
94.
260.
442.
16.
43.
70.
10.
11.
13.
65.
171.
295.
16.
17.
19.
110.
278.
461.
19.
46.
72.
10.
12.
14.
75.
182.
309.
16.
18.
19.
126.
295.
480.
21.
48.
75.
10.
12.
14.
85.
194.
323.
16.
18.
19.
142.
313.
499.
24.
51.
78.
10.
12.
14.
95.
206.
337.
17.
18.
20.
159.
331.
519.
27.
54.
80.
w
I
Ul
80 A04 CHEMICAL HOOD PULPING IND. (ACID SULFITS)
-------
Table D.4. (CuMLd
FRACTIONAL GROWTH SOURCE CATEGORY
CUMULATIVE
80 B01
0.
e;
9.
14.
PLYWCCD
9.
10.
12.
14.
1.
5.
10.
1.
6.
10.
2.
6.
10.
MANUFACTURING PLAN?
9.
11.
12.
9.
11 .
12.
10.
11.
12.
CUMULATIVE
90 F02
9.
106.
220.
348.
TEXTILE
7.
9.
12.
17.
19.
T19.
233.
HFG (HEAT
7.
9.
13.
26.
130.
245.
SETTING/FINISHING)
7.
9.
13.
38.
1U1.
257.
8.
10.
14.
CUMULATIVE
7.
be.
193.
339.
14.
96.
206.
21.
105.
219.
29.
115.
232.
7.
1 1.
10.
11.
12.
43.
152.
270.
10.
14.
36.
125.
246.
10.
11.
13.
56.
163.
282.
11.
15.
44.
136.
260.
3.
7.
12.
10.
11.
13.
67.
174.
295.
11 .
15.
52.
146.
275.
3.
8.
12.
10.
11.
13.
78.
185.
308.
8.
11.
16.
60.
158.
290.
4.
8.
13.
10.
11.
13.
83.
197.
321.
8.
11.
16.
69.
169.
306.
4.
9.
13.
10.
12.
98.
209.
335.
9.
12.
17.
78.
181.
322.
w
Ln
-J
-------
C-l
APPENDIX C
ESTIMATES OF MAXIMUM EXPECTED SHORT-TERM (1-24 HOUR) AND LONG-TERM
(ANNUAL) GROUND LEVEL CONCENTRATIONS FROM
SINGLE AND MULTIPLE SOURCES
C.I SHORT-TERM ESTIMATES
Estimates of the maximum expected short-term ground level pollutant
concentration due to a single source are based upon the familiar Gaussian-plume
model. * This model is appropriate for use with primary conservative pollutants
and relatively short source-receptor distances.
According to this model, the ground level concentration below the plume
centerline is given by the following equation:
TTUCJ O
y z
exp
1/H
20-
(1)
in which:
X(x) = ground level centerline pollutant concentration at
a distance x from the source, (micrograms/cubic meter):
Q = emission rate (grams/second);
u = wind speed (meters/second);
C = horizontal dispersion coeffieient, a function of x
(meters);
a = vertical dispersion coefficient, a function of x
(meters);
H = effective stack height (meters), given by the sum of
the physical stack height h and the estimated plume
rise Ah. s
Of specific interest is the maximum ground level concentration. In order to
derive an analytic expression for the estimated maximum concentration, the
following commonly used representations of the horizontal and vertical co-
efficients were used:
a (x) = axb (2)
a (x) = cxd (3)
Z
-------
C-2
The quantities a, b, c, and d depend upon the atmospheric stability class
corresponding to the meteorological conditions of interest. Given these repre-
sentations, the following expressions for the estimated maximum concentration
X and the corresponding downwind distance x may be derived:
m m
_ AQxlO6 JL
*m TTu R2a
and
ll/2d
5T (5)
with a = (6)
2a-l
A = ~ (2a)a exp (-a) (7)
cl
Table 1 gives the values of the parameters a, b, c and d as well as the values
of the quantity A for moderately unstable, neutral, and moderately stable
conditions.
X depends upon the stability class and the wind speed, the wind speed
dependence being due not only to the explicit factor of 1/u in the equation
but also to the fact that the plume rise and therefore the effective stack
height depends upon u. The plume rise is estimated using the formulas of
Briggs (1972, 1975):
Neutral/unstable:
Ah = 1.6F1/su~V/3 (8)
where:
F =
g = acceleration of gravity (9.8 m/sec2);
T - exit gas temperature (Kelvin);
T = ambient atmospheric temperature (Kelvin)
V = exit gas flow rate at temperature T;
(cubic meters/second);
u = wind speed;
C = 3.5 x*
x* = 14F5/8 for F<55 mVsec3
x* = 34F2/5 for F>55 mVsec3
-------
Table 1, Dispersion Coefficient Parameters and Maximum Concentration Coefficient
Atmospheric
Stability
Corresponding
Pasquill-Gifford
Stability Class
b*
c**,t
d**,t
At
Moderately Unstable
B
0.351
0.867
0.139, 0.0494, 0.0494
0.947, 1.114, 1.114
0.335, 0.188, 0.188
Neutral
D
0.150
0.889
0.0856, 0.259, 0.737
0.865, 0.687, 0.564
0.396, 0.955, 3.85
Moderately Stable
E-F (intermediate)
0.0853
0.894
0.0682, 0.227, 1.437
0.814, 0.618, 0.401
0.468, 1.21, 34.7
*Estimated from Fig. 3.2, Ref. 14.
**Taken from Table 5, Ref. 18.
tThe first numbers given for each stability are appropriate at distances between
100 and 500 m, the second numbers at distances between 500 and 5000 m, and the
third numbers at distances greater than 5000 m.
n
i
U)
-------
C-4
Stable:
/F
Ah = 2'6 (
with s = &-
s T 3z
a
80
7T = ambient potential temperature lapse rate; a value
of 0.5°K/100m was assumed as being representative
of moderately stable conditions.
For the neutral/unstable case, the plume rise estimate may be written in the
form:
Ah = - (10)
with C = 1.6F1/3£2/3
i.e. C = 21F3/ltm2/sec for F<55mVsec3
and C = 39F3/V/sec for F>55mVsec3
In the stable case, the plume rise estimate becomes
Ah = ^?rr (ID
with D = 47F assuming an ambient temperature of 20°C = 293°K and
99/9z= 0.5°K/100m.
In order to estimate X an appropriate value of the wind speed must be
m
selected. The value corresponding to the worst case is that which maximizes
X . For neutral and unstable conditions, X (u) has the following form:
m m
x (u) . --
(uh +C)1+b/d
s
The worst-case X value is given by
m
x _ AQxlO6 . 1 . (b/d)b/d
worst TT ch b/d (1+b/d)l+b/d
s
and occurs with a wind speed u given by
w
u = b C_ . (14)
a
s
w d h
-------
C-5
For stable conditions, X (u) has the form:
tn
.n -_6 (b-2d)/3d
v , N AQxlO" u
x»(u) * '
This function has no maximum for positive values of u unless b/d is larger
than 2.
If more than one source is involved, exact analytic expressions analo-
gous to Eqns. 4, 5, 13 and 14 cannot be found and additional approximations
must be introduced if equations of comparable simplicity are desired. The
first approximation is to consider all sources to be located at the same point,
although still with different stack parameters. The total ground level con-
centration directly downwind of the source location is given by the general-
ization of Eqn. 1:
in which
N « the number of sources considered
Q = emission rate for the i-th source (grams/sec)
H = effective stack height for the i-th source (meters) , equal
to the sum of the physical stack height and the estimated
plume rise.
As in the case of a single source, an equation may be derived for the distance
at which the pollutant concentration is a maximum. This equation cannot be
solved analytically, however, and may have more than one physically acceptable
solution, corresponding to the existence of more than one maximum in the pol-
lutant concentration as a function of downwind distance. For most accurate
results, a detailed analysis of each situation is required. For the purposes
of this work, a simpler albeit less accurate approach was desired.
The approach which has been adopted involves the assumption that the
distance to the maximum concentration may be approximated to a sufficient degree
of accuracy by a weighted average of the distances at which each individual
source has its maximum impact. Thus, x is written in the form
m
-------
C-6
x =
m
N
w.x .
i mi
(17)
in which
x
mi
2ct
l/2d
(18)
In order to estimate the plume rise associated with the i-th source, and hence
the quantity H., wind speed values equal to C./h . and 2.0 m/sec were assumed
-^- 1 S1
for neutral or unstable, and stable conditions, respectively. The weighting
factors, W., were chosen to be proportional to the ratio Q./h . in order to
ensure that W is zero if the emission rate for the i-th source is zero and to
approximately account for the effects of different stack heights.
Once the distance to the maximum is estimated, an average effective
stack height H may be defined in a consistent manner from Eqns. 17 and 18.
The distance x is given by
x
m
-Ui.
i/2d N
./d
(19)
and a natural definition of H is
" N
H =
1=1
,/d
(20)
With this definition, the relation between H and x is the same as for a
' m
single source:
x =
m
H
c
2ct
./2d
(21)
Evaluating the total concentration X , given by Eqn. 16, at the distance
X yields the following expression:
N
10fc
X =
m TTU - 2ct
H
(2a)
0. exp
'
1=1
(22)
As in the single source case, the worst-case wind speed is taken to be that
which maximizes X . In order to estimate this value, the dependence of H on
m
-------
C-7
u must be considered, although for simplicity it is assumed that the ratio
H /H is approximately constant and its dependence on wind speed ignored. Also,
for the sake of simplicity and for the purpose of estimating the worst-case
wind speed, the average effective stack height H was assumed to be given by
N
LH. (23)
instead of by Eqn. 20. This allows H to be written as
H = h H -- (neutral, unstable conditions)
s u
(24)
N
with h =
s
W.h .
i si
N
and C =
w.c. .
1 1
(26)
With these approximations, the worst-case wind speed is given by
L O
u = . (neutral and unstable conditions)
w d r-
h
s
With this estimate, the worst-case pollutant concentration is given by
vb/d
(27)
Y = A 1
(b/d)'
w * ch b/d (i+b/d)1+b/d
s
IN
E
1=1
(Q.xlO6) exp
a
(28)
although in practice it is more convenient to use Eqn. 22 and substitute in
the numerical value of u . Also, in practice, if u , as estimated by
w w
Eqn. 27, was lower than 0.8 m/sec or higher than 15 m/sec, a value of 0.8 or
15 m/sec, respectively, was used instead.
As in the single-source case, a worst-case wind speed cannot be similarly
defined for stable conditions unless b/d is greater than 2. A worst-case wind
speed of 2.0 m/sec was used in practice. It is still convenient, however, to
assume H to be given by Eqn. 23, in which case we may write
-------
C-8
H = h H T (stable conditions) (29)
with
N
J.D.. (30)
Equation 22 is the basis for all short-term, multiple-source concentra-
tion estimates; if only one source is present, Eqns. 22 and 21 reduce to the
exact analytic solutions for a single source, Eqns. 4 and 5, respectively.
Separate calculations were made for unstable, neutral and stable conditions
and the maximum value selected. The estimates obtained from Eqn. 22 are as-
sumed appropriate for a 1-hour averaging time. To obtain estimates for other
averaging times up to 24 hours, the 1-hour estimate is multiplied by the appro-
priate conversion factor, given in Table 2.
Table 2. Averaging Time Conversion Factors*
Averaging Time Conversion Factor
(hours)
1 1.00
3 0.83
8 0.71
24 0.58
_
Adapted from Table 5.1, Ref. 14.
These factors reflect a power law dependence of concentration on aver-
aging time with an exponent of -0.17.
C.2 LONG-TERM ESTIMATES
Estimates of the maximum expected annual average ground level concen-
tration from a single source are based upon the "sector-averaged" form of
Eqn. (1) (Ref. 14,15):
fQxlO6
exp
(31)
-------
C-9
in which:
n = the number of sectors into which the entire 360°
range of wind direction is divided into; and
f = the fraction of the time during which the wind
direction is observed to lie within the sector
of interest;
the other symbols having been defined previously. The maximum value of this
function occurs at a distance x given by
m
l/2d
(32)
and has a value given by
x = (33)
111 uH215
with
and
B-|)1/2i-c26-1(2B)B exp (-B). (35)
and with the vertical dispersion coefficient represented by Eqn. (3). In
making the estimate of the maximum expected value of X , values of c and d
corresponding to neutral atmospheric stability and distances between 500 and
5000m are used and the effective stack height H is estimated using Eqn. (10).
The values of B and 6 which result are 0.256 and 2.46, respectively. The
maximum expected wind direction frequency in a single 22.5° sector (corre-
sponding to n=16) was estimated to be 0.25 from an examination of the annual
surface wind roses given for a large number of meteorological stations within
the United States on page 78 of the U.S. Department of Commerce Climatic Atlas
of the United States (1968). The value of the wind speed that is used is the
nationwide annual mean wind speed, estimated at 4.4 m/sec from the annual wind
speeds listed with the wind roses referred to above.
In the long-term, multiple-source case, similar approximations are
introduced as in the short-term cases, and the basic equation is similar to
Eqn. 22 except that Eqn. 31, instead of Eqn. 1, is the starting point in its
derivation. The maximum concentration occurs at a distance x estimated by
m
-------
C-10
x
l/2d
m I \ c / 28
and is given approximately by
rl
N
(36)
'2\1/2 n fQxlO6' 1 2B-1
, R.
(2B)
'Hi\2
ifi /
(37)
The values of n, f, u and 3 are 16, 0.25, 4.4 m/sec and 2.46, as in the
single-source case. H is defined by Eqn. 24.
-------
R-l
REFERENCES
1. Clean Air Act Amendments of 1977, PL-95-95 (Aug. 7, 1977).
2. Habegger, L.J., R.R. Cirillo, N.F. Sather, Priorities and Procedures for
Development of Standards of Performance for New Stationary Sources of At-
mospheric Emissions, EPA Report No.EPA-450/3-76-020, Argonne National Labo-
ratory, Argonne, Illinois.
3. Hopper, T.G., W.A. Marrone, Impact of New Source Performance Standards on 1985
National Emission from Stationary Sources, Report Nos. EPA-450/3-017 and -018a,
b, c, d, e, f, and -019a, b, c., TRC. Inc. (May 1976).
4. Santini, D.J., An Econometric Model of Intraurban Location of Emitters and
Receptors of Industrial Air Pollution, Argonne National Laboratory, Argonne,
Illinois
5. Cirillo, R.R., T.D. Wolsko, R.O. Mueller, An Evaluation of Regional Trends
in Power Plant Siting and Energy Transport, Argonne National Laboratory,
Argonne, Illinois (Dec. 1976).
6. Environmental Protection Agency, National Primary and Secondary Air Quality
Standards, 36FR22384 (Nov. 25, 1971).
7. Environmental Protection Agency, National Primary and Secondary Air Quality
Standards, 38FR25678 (Sept. 14, 1973).
8. Environmental Protection Agency, Ambient Air Quality Standard for Lead,
42FR63083 (Dec. 14, 1977).
9. American Conference of Governmental Industrial Hygenists, Threshold Limit
Values for Chemical Substances in Workroom Air, adopted by ACGIH for 1976.
10. EPA-Emission Standards and Engineering Division, Final Guideline Document:
Control of Fluoride Emissions from Existing Phosphate Fertilizer Plants,
EPA-450/2-77-005, OAQPS No. 1.2-070 (March 1977).
11. Cleland, J., and Kingsbury, G., Multimedia Environmental Goals for
Environmental Assessment, prepared by RTI under contract to EPA, EPA-600/
7-77-136a, b (Nov. 1977).
12. EPA-Emission Standards and Engineering Division, Draft Guideline Document:
Control of Sulfuric Acid Mist Emissions from Existing Sulfuric Acid
Production Units (Oct. 1976).
13. Exhaust Gases from Combustion and Industrial Processes, US EPA Report No-
APTD-0805. Prepared under Contract No. EHSD71-36 by Engineering Science,
Inc. (Oct. 1971).
14. Turner, D.B., Workbook of Atmospheric Dispersion Estimates, Office of
Air Programs Publication No. AP-26, U.S. Environmental Protection Agency,
Research Triangle Park, NC 27711 (1970).
-------
R-2
References (Cont'd)
15. Slade, D.H., Meteorology and Atomic Energy,, U,S, Atomic Energy Commission
Office of Information Services (NTIS TID 24190), Oak Ridge, Tenn, (1968),
16. Larsen, R.I., An Air Quality Data Analysis System for Interrelating Effects,,
Standards3 and. Heeded Source Reductions - Part 2, JAPCA, 2^:511 (June 1974).
17. Ragland, K.W., Atmospheric Environment Q, 371-374 (1976).
18. Busse, A.D., and J.R. Zimmerman, User's Guide for the Climatological
Dispersion Model, Publication No. EPA-RA-73-024 (NTIS PB 227346),
U.S. Environmental Protection Agency, Research Triangle Park, N.C. 27711
(1973).
19. Air Quality Criteria for Hydrocarbons, Report No. AP-64, U.S. Environmental
Protection Agency (March 1970).
-------
R-3
Acknowledgments
The authors gratefully acknowledge the efforts of various individuals
and organizations whose assistance helped make possible the results documented
in this report. In particular, the authors wish to provide recognition to:
The U.S. Environmental Protection Agency for providing
financial support under Interagency Agreement EPA-IAG-D7-01075.
- Gary D. McCutchen and Robert L. Ajax of the USEPA, Emission
Standards and Engineering Division, for providing guidance
and technical assistance, and numerous other individuals with
the USEPA who provided insight into the standard setting
process and control technology development programs.
- Mittelhauser Corporation and Michael Senew for assisting in the
Model IV collection and dispersion parameter data.
- Dorathea Seymour, Margaret Ravasz and Judy Rekar of Argonne
National Laboratory for assisting in the computer program data
handling.
Betty Fitzer of Argonne National Laboratory for typing of the
manuscript.
-------