EPA-450/3-78-019
April 1978
                        PRIORITIES
                 FOR NEW SOURCE
     PERFORMANCE STANDARDS
     UNDER THE CLEAN AIR ACT
AMENDMENTS OF  197
                                     7

    U.S. ENVIRONMENTAL PROTECTION AGENCY
        Office of Air and Waste Management
     Office of Air Quality Planning and Standards
     Research Triangle Park, North Carolina 27711

-------
                                            EPA-450/ 3-78-019
       PRIORITIES FOR NEW SOURCE
PERFORMANCE STANDARDS UNDER THE
 CLEAN AIR ACT AMENDMENTS OF  1977
                              by

                    M.R. Monarch, R.R. Cirillo, B.H. Cho,
              C.A. Concaildi, A.E. Smith, E.P. Levine, and K.L. Brubaker

                       Argonne National Laboratory
                   Energy and Environmental Systems Division
                        9700 South Cass Avenue
                        Argonne, Illinois 60439
                   Interagency Agreement No. IAG-D7-0 1075
                   EPA Project Officer: Gary D. McCutchen
                  Emission Standards and Engineering Division
                           Prepared for

                 U.S. ENVIRONMENTAL PROTECTION AGENCY
                    Office of Air and Waste Management
                  Office of Air Quality Planning and Standards
                  Research Triangle Park, North Carolina 27711

                            April 1978

-------
This report is issued by the Environmental Protection Agency to report
technical data of interest to a limited number of readers.  Copies are
available free of charge to Federal employees, current contractors and
grantees, and nonprofit organizations - in limited quantities - from  the
Library Services Office (MD-35) , U.S. Environmental Protection Agency,
Research Triangle Park, North Carolina 27711 .
This document has been reviewed by the Office of Air Quality Planning
and Standards, U.S. Environmental Protection Agency, and approved
for publication.  Approval does not signify that the contents necessarily
reflect the views and policies of the Environmental Protection Agency,
nor does mention of trade names or commercial products constitute
endorsement or recommendation for use.
                       Publication No. EPA-450/3-78-019
                                11

-------
                               TABLE OF CONTENTS

                                                                       Page
 1   INTRODUCTION  ...........................    1

    1.1   BACKGROUND   .........................    2
    1.2   PURPOSE  ...........................    2
    1.3   PREVIOUS WORK  ........................    3
    1.4   SOURCES AND  POLLUTANTS CONSIDERED  ..............    3

 2   METHODOLOGY ............................    4

    2.1   OVERVIEW.  .  ,  ........................    4
    2.2   INDUSTRY DATA  BASE ......................    7
    2.3   MAJOR SOURCE SCREENING ....................    8
    2.4   EMISSION PRIORITIZATION  ...................    9
    2.5   HEALTH AND WELFARE  IMPACT PRIORITIZATION USING AIR QUALITY.  .    13

         2.5.1  Development  of Ambient Threshold Values ........    14
         2.5.2  Postulation  of Representative  Industrial Facilities.  .    16
         2.5.3  Calculation  of Ground Level  Concentrations  .....  ,    17
         2.5.4  Comparison with Ambient Threshold Values  .......    22
         2.5.5  Evaluation of Population Exposure Potential ......    29
         2.5.6  Air Quality  Impact Evaluation .............    31
    2.6   MOBILITY AND COMPETITIVENESS EVALUATION  ...........    31

    2.7   IMPACT EVALUATION  ......................    32
         2.7.1  Emission  Impact Evaluation  ..............    32
         2.7.2  Public  Health and Welfare Impact Evaluation ......    35
         2.7.3  Mobility  and Competitiveness Impact  Evaluation  ....    40
    2.8   CAVEATS AND  CAUTIONS .....................    40
 3  PRIORITIZATION  SCENARIOS
   3.1  POLLUTANT  SPECIFIC
         3.1.1  Particulate Matter  ..................    45
         3.1.2  Sulfur Dioxide  ....................    54
         3.1.3  Nitrogen Dioxide  ...................    ^^
         3.1,4  Hydrocarbon ......................    gg
         3.1.5  Carbon Monoxide Emissions ...............    7^
         3.1.6  Lead  .........................    32
         3.1.7  Fluoride  .......................    89
         3.1.8  Hydrogen Sulfide  ...........  ........    95
         3.1.9  Sulfuric Acid Mist  ..................   -[01
         3.1.10  Major Source Category Growth .............
   3.2  POLLUTANT  SPECIFIC  -  MINOR SOURCE, ..............   108

   3.3  COMBINED POLLUTANT  ANALYSIS .................    110

4  SUMMARY AND CONCLUSIONS   .....................    130

-------
               Priorities for New Source Performance Standards
                 Under the Clean Air Act Amendments of 1977
                              1 .  INTRODUCTION

1 . 1  BACKGROUND
       The Clean Air Act (CAA) as amended1 provides the fundamental enabling
legislation for controlling air pollution in the U.S.  It provides a number
of different mechanisms by which the federal government can regulate the
emissions of air pollutants.  One of the more important mechanisms is des-
cribed in Section 111 of the CAA and is commonly referred to as New Source
Performance Standards (NSPS) .
       Under this section of the Act, the Administrator of the Environmental
Protection Agency is empowered to issue regulations restricting the discharge
of air pollutants by new and modified stationary sources.  It is the intent
of the Act that eventually all significant emission-producing sources will
have NSPS promulgated for them so that new facilities will be built to the
best level of emission control that is economically feasible.
       In reviewing air pollutant emission-producing activities it is immed-
iately obvious that the number of source categories and pollutants requiring
control is very large and that the process of establishing NSPS must follow a
priority schedule designed to allocate resources to the most important sources
first.  The CAA amendments of 1977 attempted to provide guidance on the criteria
to be used in establishing priorities and on the desired schedule for
developing standards.
       The 1970 version of the Clean Air Act requires that [Section lll(b) (1) (A) ]
              "The Administrator shall, within 90 days after the date of
       enactment of the Clean Air Amendments of 1970, publish ^ana Jiroiu
       time to time thereafter shall revise) a list of categories of sta-
       tionary sources.  He shall include a category of sources in such
       list if he determines it may contribute significantly to air pollu-
       tion which causes or contributes to the endangerment of public health
       or welfare."
       The Clean Air Act Amendments of 1977 further require that [Section 111
              "Not later than one year after the date of enactment of this
       subsection [Section 109(aj], the Administrator shall promulgate re-

-------
       gulations listing under subsection (b)(1)(A) the categories of major
       stationary sources which are not on the date of the enactment [August
       7, 1977] of this subsection included on the list required under sub-
       section (b)(l)(A)...",

further that [Section lll(f)(2)]:

              "In determining priorities for promulgating standards for
       categories of major stationary sources for the purpose of paragraph
       (1), the Administrator shall consider -

              (A) the quantity of air pollutant emissions which each such
       category will emit, or will be designed to emit;

              (B) the extent to which each such pollutant may reasonably
       be anticipated to endanger public health or welfare; and

              (C) the mobility and competitive nature of each such cate-
       gory of sources and the consequent need for nationally applicable
       new source standards of performance"

and again [Section lll(f)(3)]:

              "Before promulgating any regulations under this subsec-
       tion or listing any category of major stationary sources as
       required under this subsection, the Administrator shall consult
       with appropriate representatives of the Governors and the State
       air pollution control agencies."

       It is in the context of these legislative requirements that this study
has been undertaken.
1.2  PURPOSE

       With the stringent time schedule and the limited resources available to

develop NSPS for the large number of source categories, it becomes important

to establish priorities.  It is the purpose of this work to develop and apply

a systematic methodology for choosing the source categories that should be

considered first for in-depth analysis prior to NSPS promulgation.  As will be

reiterated several times throughout this report, the objective of this exercise

is to conduct a preliminary, but comprehensive, screening of source categories

to select those of most concern in developing NSPS.  The criteria used in

establishing these priorities are the three specified in the CAA.  It is not the
intent of this study to present the final decision on NSPS priorities nor to

present extremely accurate industry growth and emission projections.  The intent

is only to present decision-makers with sufficient technical information upon

which to make informed  policy choices as to where limited resources are best

spent.

-------
       The emphasis in this study has been to be systematic in reviewing the
available information.  As with any analytical procedure, this methodology is
presented for review and criticism in terms of both the procedures and data
used and new information is always welcome.

1.3  PREVIOUS WORK
       This study represents the extension of earlier Argonne efforts to develop
NSPS priorities  using an extensive industrial data base developed by TRC, Inc.2
The previous work focused on industry emission rates as the principal source
ranking procedure and as such, addressed only one of the three criteria spec-
ified in the CAA.  New methodologies have been developed here to account for
the other criteria.

1.4  SOURCES AND POLLUTANTS CONSIDERED
       Since the requirements of the CAA Amendments focus on developing a list
of sources not yet listed or regulated under NSPS provisions,  those source
categories for which an NSPS has already been proposed or promulgated have been
excluded from consideration here.  This reduces the number of sources- to be
considered somewhat but still leaves the number in excess of 200 categories.
       The pollutants considered here include the criteria pollutants (parti-
culates, sulfur dioxide, nitrogen oxides, hydrocarbons, carbon monoxides), lead,
sulfuric acid mist, hydrogen sulfide, and fluorides.  The first five have had
a National Ambient Air Quality Standard (NAAQS) promulgated for them.  Lead
has a NAAQS proposed.  The others are designated pollutants and have had NSPS
set for some sources.

-------
                              2  METHODOLOGY

2.1  OVERVIEW
       Figure 2-1 outlines the procedure by which the prioritization require-
ments of the Clean Air Act Amendments of 1977 (CAA) were addressed.  The first
step is to establish a base of information about each industrial source cate-
gory.  This information included industry capacity, growth rates, emission
factors (for the criteria pollutants, lead, fluorides, acid mist, and hydrogen
sulfide). representative plant sizes and stack parameters, and others. The data used
in this study was drawn primarily from reports published by the EPA's Office
of Air Quality Planning and Standards and Industrial Environmental Research
Laboratories.  Internal EPA memoranda, open literature publications, and pri-
vate communications were also used to supplement this information.  A detailed
set of references and calculations made from this data base are presented in
the appended volumes to this document.
       From this data base, those industrial categories for which an insufficient
amount of data existed to include them into the analysis were identified.  These
sources will have to be reviewed at some later time when more information is
available.
       Since the CAA requires development of NSPS priorities for major sources
of air pollution, the next step in the methodology is to screen out the minor
source categories.  This is done on the basis of an individual facility having
the potential to emit 100 tons/year of one or more of the pollutants under
study.  It must be pointed out that this is measured on the basis of uncontrolled
emissions with no consideration of control device efficiency, although recogni-
tion is given to control benefits resulting from industrial practices involving
product recovery.  This criteria is consistent with the definition of a major
source in the CAA.
       The minor source categories were evaluated independently of the major source
group.
       The next step involves three parallel paths to address each of the three
prioritization criteria identified in the CAA.
       1.   To determine priorities on the basis of emissions, industry capacity,
           growth rates,  and emission rates are combined to produce a national
           pollutant emission total for that industry as a function of time;
           the impact of  setting an NSPS on this national total is then com-
           puted; and the sources are then ranked on the basis of achieving
           the greatest reduction in national emissions through an NSPS
           program.

-------
                            Develop Industry
                          Information Data Base
                             Screen Sources
                             for 100 ton/yr
                               Emissions
                                    List  of
                                 Minor  Sources
 Develop
Emission
Ranking,
Model IV
  Develop Health
 & Welfare Impact
(i.e.  Air Quality)
     Grouping
    Develop
 Mobility and
Competitiveness
   Grouping
                             Prioritization
                                Scenarios
                                 Impact
                                Analysis
                             Ranked List(s)
                               and Impacts
                Fig. 2-1.  NSPS Prioritization Procedure

-------
       2.  To determine priorities on the basis of potential health and
           welfare impacts it is first assumed that these impacts are
           measured by ambient air quality concentrations.   A representative
           facility in a given industrial source category is postulated
           and the pollutant concentrations generated by that facility are
           computed for typical meteorological patterns.  These concen-
           trations are compared against an ambient threshold value (a
           National Ambient Air Quality Standard, where one exists) and
           the source is determined to have a potential for high, moderate
           or low air quality impacts after a subjective consideration of
           expected receptor impact and expected background pollutant
           levels.  This procedure is carried out assuming emission con-
           trol levels with and without an NSPS in effect.   Sources with
           potentially high air quality impacts are assumed to be of higher
           priority in an NSPS program than those with lower potential
           impacts.

       3.  To determine priorities on the basis of the mobility and com-
           petitiveness issue, each industrial source category is reviewed
           to determine if individual facilities had the flexibility to
           make siting decisions on the basis of comparing state and local
           air pollution control regulations.  Those that could not because
           they were tied to either raw material supplies or to a fixed
           local market were deemed to be immobile and were considered to
           be of a lower priority in the NSPS program.

       With these three independent ranking schemes completed, the next step was

to combine them into a single prioritization procedure.  There are a wide variety

of permutations that can be carried out by giving different weights to the cri-

teria.  The first one that appears reasonable is to consider sources with high
mass emissions, high potential air quality impact, and high mobility first;

sources with high mass emissions, high air quality impact,  lower mobility

second; and so on.  It is easy to postulate alternatives such as placing the

emission consideration to a lower priority than the air quality consideration,

disregarding mass emissions and mobility to focus on air quality only, and

others.  A number of these prioritization scenarios were developed for evaluation.

       Once the scenario is defined, it is possible to determine the impact of

that scenario.  The impact parameters used here were national emission totals,

number of new facilities with potentially high air quality impacts, and number
of new facilities with potential for relocating on the basis of air pollution

regulations.  Each scenario is assessed in terms of these variables.

        Finally,  a set  of  lists  ranking the industrial source categories  by the

 prioritization scenario  and  showing the impacts  of  each scenario is drawn up.

 This is the output  that  is presented  to the decision-makers for  review.

-------
       This prioritization methodology is carried out first for each pollutant
separately.  The prioritization scenarios are then redeveloped by considering
the combination of pollutant-specific scenarios.
       In the following sections of this chapter each of the steps of the
methodology are explained in more detail.  Results of the analysis are pre-
sented in the following chapter.

2.2  INDUSTRY DATA BASE
       The information upon which the methodology was based was drawn from a
substantial amount of work conducted by EPA or under EPA sponsorship.  The
types of information used included:
       USEPA Industrial Screening Studies
       USEPA Source Assessment Studies
       USEPA Standards Support and Environmental Impact Snatements (SSEIS)
       USEPA Industrial Process Profiles
       USEPA Internal memoranda
       Published literature (e.g. journal articles, trade journal information)
       PREDICASTS, Inc. computer data bases
       Census of Manufacturing data
       The intent of this activity was to update and add to the information
contained in the earlier TRC work.   As such, the TRC data provided the starting
point and efforts were directed at identifying more recent information.  In
addition, over 40 new source categories were added to the TRC list for evaluation.
Reports published prior to 1974 were not reviewed as it was assumed that the TRC
work had already covered that material.  TRC-computed state emission levels,
current as of 1975, were not updated.  There was no systematic attempt made to
verify or cross-check the TRC data.  Only new information was considered and
where this was lacking, the TRC data was taken without change except that the
nationwide industry capacity was updated to 1980.
       The most significant new data collection efforts were focused on those
source categories that were not included in the TRC work and on the assembling
of dispersion parameters (e.g. stack heights, stack gas exit volumes, exit tem-
perature, etc.) and typical source size characteristics, neither of which were
included previously.

-------
       An initial screening of the source categories was carried out to eliminate
those for which an NSPS has already been proposed or promulgated.  Since this
study was designed to prioritize only those sources that have not yet been
closely evaluated by EPA for NSPS, there was no need to consider these sources.
       It is immediately evident that the large number of source categories
fever 200 Major and Minor),  the large volume of reference material (over 300
citations), and the short time frame (3 months)  did not permit an in-depth
analysis of each industry.   Since the purpose of this study is to provide a
rapid overview of all industries to identify where more detailed analyses need
be initiated, the methodology was designed to provide easy accommodation of new
data as it becomes available.  It is expected that the results of this work will
be modified as more extensive and more carefully evaluated information is
generated.
       Table A-l in Appendix A gives those source categories for which an in-
adequate amount of information existed.  In most cases some data were available
but the gaps were significant enough to prevent  inclusion in this study.  They
will need to be reconsidered at some later point.

 2.3  MAJOR SOURCE  SCREENING
        Under the provision  of  the  CAA,  NSPS  are to  be  considered  for major
 sources.   Section  302(j) of the  CAA  was used  to define major  sources  as "...
 any  source which directly emits, or  has the  potential  to  emit,  one hundred
 tons per  year  or more  of any air pollutant  (including  any major emitting
 facility  or source  of  fugitive emissions of  any such pollutant,  as determined
 by rule of  the Administrator)."
        The emission potential  for  each source category was  determined  by multi-
 plying  the emission rate in tons of  pollutant per unit of production by the
 source  production  in product units per year.  There are several assumptions
 made in this calculation.   First,  it was assumed that  the source  was  operating
 at full capacity  throughout the  year.   This  is  rarely  the case  in practice;
 nevertheless,  the  interpretation of  the CAA  definition of the source  having  the
 potential to emit  100  tons  per year  seems to  indicate  that  this is a  reasonable
 approach.  Second,  it  was initially  desired  to  choose  a source  size  that
 represented the median of the  size distribution occuring  in practice.   However,
 the  data  available did not  permit  an accurate determination of  size  distributions;
 in most cases  only a limited number  of data  points on  source  size were available.

-------
The source size data must therefore be considered as only representative of
order of magnitude sizes and subject to further review and revision.
       In most instances trade journals, screening studies, etc.  provided
data as to the number of establishments for a given year.  In some cases the
census of manufacturers was used to determine the number of establishments.
The total capacity for a given year was then divided by the total number of
establishments for the same or near terra year to determine a hypothetical
source of average size.
       A determination was made as to the source size necessary to have the
source emit 100 tons/year.  The source was then reevaluated to determine if
there existed an individual source size which qualified as a major source.
There were 13 marginal source categories in the irinor source list which
qualified as major source categories as a result of the screening_ These source
categories were reclassified as major.
       Table A-2 in Appendix A lists the sources with uncontrolled emission
potential of less than 100 tons/year and hence classified as minor sources.
The table indicates for each source category, by pollutant, the emissions based
on the average size (top row)  and the size required to result in  a 1QO  ton/year
emission (bottom row).
       Out of a total of 203 source categories evaluated. 47 sources  were classi-
fied as minor source categories.  The 156 major source categories were  evaluated
independently of the minor source categories.

2.4  EMISSION PRIORITIZATION
       The concept of setting priorities for NSPS based on emissions  uses the
methodology referred to as "Model IV."  This procedure has been described ex-
tensively elsewhere  and is only summarized here.  This summary is drawn from
Reference 2.
       Model IV was developed by George Walsh of the EPA's Emission Standards
and Engineering Division and is the latest methodology in an evolving mass
emission source priority rating system that is based on determining the relative
impact of NSPS on industrial emissions.  The fundamental prioritization parameter
generated by the model is the "additional control potential" of new or  revised
NSPS relative to baseline year control regulations.  This parameter is  denoted
as (Ts-Tn) where:

-------
                                      10
       Ts = total emissions under control regulations existing in the
            baseline year,  and
       Tn = total emissions under new or revised NSPS.
By computing this parameter for a given year for each individual  source  cate-
gory, it is possible to determine what emission reductions could  be achieved
by NSPS above and beyond current state regulations.   Promulgation of standards
for sources with the largest Ts-Tn values would result  in the greatest emis-
sion reductions while control of sources with small  Ts-Tn values  would have
little impact on national emission rates.  This rating  can be used as one means
of establishing a hierarchy for the setting of standards within the confines
of limited resource availability.
       Table 2-1 lists the parameters considered in  the Model IV  calculations.
The industrial capacity parameters are a measure of  the level of  emission-
producing activity of the source category.  New Source  Performance Standards,
when promulgated, are applicable to the capacities B and C that represent the
replacement of obsolete facilities and the construction of additional capacity,
respectively.  The baseline year capacity A is subject  to state regulations
only.  The fractional utilization K accounts for unused capacity.  Since K was
generally derived by TRC from dividing nationwide production by capacity for  a
specified year,  it appears reasonable to assume that K  reflects the preferred
capacity utilization of the industry and takes into  account the amount of
physical capacity utilized adjusted for the normal operating schedules,  mainte-
nance shutdowns, etc.
       The industrial growth parameters are used to  measure the rate of  ex-
pansion of an industry both in the replacement of obsolete facilities and in
the construction of new facilities.  The growth rates ?„ and P_ may be simple
                                                       o      (_,
or compound.  It is intuitively obvious that industries with large growth rates
should have standards promulgated as soon as possible to bring the large number
of new plants and facilities under best available control.  The production
capacities B and C are related to the growth rates by Eq. (2-1) and (2-2):
                             B = A [(1 + P.)1 - 1]                  (2-1)
                                          D
                             c = A Ld + ?c)1 - i]
                             for compound growth;

-------
                                     11
          Table 2-1.  Parameters for Determining Ts-Tn by Model IV
Parameter
Symbol
          Factor
Units
Industrial
Capacity
K
              B
Fractional utilization of
existing industry capacity

Baseline year production
capacity

Production capacity from
construction and modifi-
cation to replace obsolete
facilities

Production capacity from
construction and modifi-
cation to increase output
above baseline year
capacity
                                         Production units/year


                                         Production units/year




                                         Production units/year
Industrial
Growth
           Construction and modifica-
           tion rate to replace obso-
           lete capacity

           Construction and modifica-
           tion rate to increase
           industry capacity
                              Decimal fraction of
                              baseline capacity/year
                                                       Decimal fraction of
                                                       baseline capacity/year
Emissions
               u
               n
           Emissions with no air
           pollution controls

           Allowable emissions under
           existing regulations

           Allowable emissions under
           new or revised NSPS

           Allowable emissions for
           existing sources as re-
           quired by Section lll(d)
           of the Clean Air Act
                              Mass/unit capacity
                                                       Mass/unit capacity
                                                       Mass/unit capacity
                                                       Mass/unit capacity

-------
                                      12
                             B = A i PR                                 (2-2)
                             C = A i PC
                             for =• imnl t> growth ,
                             vhere i is the elapsed time in years.
       The emission rates are used to determine the magnitude of the emission
impact of each source category.  All of the Model TV parameters are incorporated
into the Ts-Tn value of additional control potential hy Kqns. (2-3) through
(2-5):
                         Ts = E  K(A-B) + E  K(B+C)                     (2-3)

                         Tn = E  K(A-B) + E  K(B+C)                     (2-4)

                          (Ts-Tn) = K(B+C) (E -En)                       (2-5)
       The Ts and Tr vil'ies mav he computed for any year of interest.   In both
cases, the year in which the- "'.'SI'S  Ls promulgated determines whether the indus-
trial growth is controlled under state regulations (i.e., E ) or NSPS (i.e., E ).
For the Ts-Tn calculations made by TRC,3 is was assumed that the standard was
set in 1975 and the impact on 1985 emission rates was determined.  In this study
1980 is the base year and emissions are projected through 1990.   The Model IV
Analysis for Major Source Categories is found in Table A-3 and for Minor Source
Categories in Table A-4 of Appendix A.
       When dealing with a single pollutant. Model IV provides a straightforward
method of establishing priorities for NSPS development.  In its simplest form,
the priority is based on selecting those sources for which an NSPS will have its
greatest impact (i.e., the largest value of Ts-Tn) in the target year (1990 in
this study).  The structure of the model can, however, be adapted to address the
issue of setting priorities among various pollutants.  The procedure begins by
establishing goals lor each pollutant.  These goals can be developed by evaluating
air quality data, by looking at national emission totals, by reviewing  the poten-
tial impacts of the various pollutants, or by any one of a number of other
criteria.  The simplest method is to set the same goal for all pollutants.  In
this study mass emission levels computed as (Ts-Tn) in 1990 were used as the
pollutant goals.  For the criteria pollutants (except CO) the goals were the 1990
level of emissions (i.e., Ts-Tn) if all NSPS were set in 1980.  For the desig-
nated pollutants and CO the goals were the 1980 level of emissions under state
standards.

-------
                                      13
       At eacli point in time the emissions from sources regulated only  hy state
standards will increase over the baseline due to growth and development.
Emissions irom NSl'S-controLled sources will generally decrease as older equip-
ment is replaced with NSPS-regulated controls and new, more stringently controlled
sources come on-line.  At each point, then, a measure of which pollutant should
be considered highest priority can be gained by comparing the emission total to
its goal.  The pollutant that is furthest from its goal is designated as
highest priority at that point.
       This process of picking the priority pollutant at any point in time pro-
vides an objective and systematic way of setting the order in which NSPS can be
developed.  Some more detail on its use can be found in Reference 2.  It is the
mechanism used to address the first criteria specified in the CAA.

2.5  HEALTH AND WELFARE IMPACT PRIORITIZATION USING AIR QUALITY
       The second criteria  required for consideration by the CAA is the "...
extent to which each such pollutant may reasonably be anticipated to endanger
public health or welfare..."  It is a fundamental assumption of this analysis
that the potential for public health and welfare impacts of an industrial
facility can be measured by its contribution to ground level air pollutant
concentrations.  This contribution can be compared to an "ambient threshold
value" (ATV), which specifies the concentration level above which public
health and welfare is adversely impacted.
       This approach is entirely consistent with the philosophy of air quality
management under the CAA.   The establishment of National Ambient Air Quality
Standards (NAAQS) uses the  same assumption that public health and welfare pro-
tection can be achieved by  controlling the ambient pollutant concentrations.
It therefore  seems reasonable to use this as a means of addressing the CAA
requirements  for NSPS priorities.  The procedure followed here involves: (1) the
postulation of a hypothetical facility of average size for each industrial  source
category, (2) the computation of expected maximum ground level concentrations
from that facility, (3) the comparison of those concentrations to an ATV,  (4)  a
subjective and crude review of the facility's siting trends to consider potential
population exposure to the concentrations as well as expected background levels
of the pollutant under study, and (5) a ranking of the facility into one of three
groups:  potentially high air quality impacts,  potentially moderate air quality
impacts,  or potentially low air quality impacts.

-------
                                      14
2.5.1  Development of Ambient Threshold Values
       To evaluate the relative health and welfare impact of a large number of
industrial air emitting sources, a maximum ground level concentration (X)  was
computed for each source category-pollutant combination and compared with  an
appropriate ambient threshold value (ATV)  for the specified pollutant.   This ATV
represented the concentration above which  adverse health and welfare effects
could be expected.  As described elsewhere in this report, source emissions were
initially ordered in relation to the ratio of the ambient ground level  concen-
tration and its respective ambient threshold value (X/ATV).  In effect,  this
ratio permitted a normalization of concentrations amoni; different pollutants on
the basis of health and welfare for subsequent numerical ranking and statistical
grouping.
       An ATV was developed for each of the nine pollutants under study, and is
presented in Table 2-2.  For the pollutants which have previously been  designated
as criteria pollutants, the National Ambient Air Quality Standards (NAAQS) were
utilized as the ATV value."'   The pollutants within this category were partic-
ulate matter, sulfur dioxide, carbon monoxide, hydrocarbons and oxides  of  nitrogen,
The suggested standard for lead which has  been recommended for inclusion in the
NAAQS was also used.   In the case of sulfur dioxide, where both a health and
welfare standard exists for different exposure intervals, all threshold values
were examined to determine the critical value.  Whereas, for particulates, where
a health and welfare standard exists for the same averaging intervals,  the more
stringent standard (the welfare-related value) was used.  It should be  recognized
that the hydrocarbon standard does not reflect the direct health effects of the
hydrocarbons themselves, but instead reflects their role as precursors  of  photo-
chemical oxidants.
       An ambient air standard for hydrogen sulfide and sulfuric acid mist has
not been established under the I'SEPA designated pollutant regulatory program.
The value listed  in Table 2-2 reflects the Threshold Limit Value (TLV)  designated
as an acceptable exposure for work environments,  after adjustment by a commonlv
used safety factor of 100 which relates the health of the average worker to that
of the general population.  These values were utilized for comparison with
ambient concentrations projected over 8-hour intervals.
       Fluoride emissions have been recognized as causing or contributing to
the ondangerment of the public welfare and has been listed bv the I'SFPA as a

-------
                                        15
          Table 2-2.   Summary of Health and Welfare Related
                      Air Quality Values Used for Evaluation
                      of Stationary Sources
Pollutant
Particulate
Sulfur Dioxide
Carbon Monoxide
Nitrogen Oxides
Hydrocarbons
Lead
Hydrogen Sulfide
Sulfuric Acid
Mist
Averaging
Interval
ANNUAL
24 Hour
ANNUAL
24 Hour
3 Hour
8 Hour
1 Hour
ANNUAL
3 Hour
30-Day
8 Hour
8 Hour
Health
Related
Value
75 yg/m3
260 yg/m3
80 yg/m3
365 yg/m3
10 mg/m3
40 mg/m3
100 yg/m3
160 yg/m3
1.5 yg/m3
150 yg/m3
10 yg/m3
Welfare
Related
Value
60 yg/m3
150 yg/m3
1300 yg/m3
Same as Health
Related Value
Same as Health
Related Value
Same as Health
Related Value
Same as Health
Related Value


Reference
6
6, 7
6
6
6
8, 9
Text
Text
Fluoride
30-Day
0.5 yg/m3
                                                                    11

-------
                                      16
designated pollutant.  The ambient threshold value for fluoride presented in
..Table 2-2 reflects the suggested threshold for "...the prevention of significant
foliar necrosis on sensitive species  (of plants), or an accumulation of fluoride
in  forage of more than 40ppm."lc  Livestock ingestion of vegetation containing
an  accumulation of fluoride in excess of AOppm has been shown to cause
damaging effects.  As such, this value is a welfare related value and is appro-
priate for averaging intervals of 30-days duration.
       In the development of these ATV values several additional sources of
information were consulted.  ' 2

2.5.2  Postulation of Representative  Industrial  Facilities
       The relative public health and welfare impact of air emissions from an
industrial facility is measured by its contribution to ambient air quality (X).
For  an interpollutant evaluation, the pollutant  contributions are normalized by
dividing by the appropriate ambient threshold value (i.e., X/ATV).  In this
analysis, the air quality contribution was determined by computing the projected
concentration resulting  from the dispersal of air emissions from a postulated
representative source.
       Source-specific stack gas dispersion parameters, namely, exit gas temper-
ature, exit gas volumetric flow and stack height were developed for each source.
Where detailed information was available, disaggregated process-specific
dispersion information was utilized in computing an aggregated ground level
concentration from a facility.  In general, the  data was disaggregated to the
lowest level permitted by data availability.  For some sources, stack gas data
was  not readily available from the literature.   In these instances, the stack
gas  data was developed on the basis of engineering judgment such as the exhaust
parameters relating to the control devices suggested for the source in question.
A general source of stack exhaust data was from  the EPA document entitled
Exhaust Gases from Combustion and Industrial Processes.
       Ground level concentrations are also directly dependent upon the quantity
of  emission.  For this analysis, the  source strength was computed as the product
of  the capacity utilization (K), the  state allowable emission rate (E^) and a
representative source capacity (Z), and recomputed using an emission limitation
which reflected the best anticipated  level of emission reduction (E ).  The
capacity utilization factors (expressed as percent-decimal equivalent) were
assembled from the literature.  The choice of a  representative source capacity

-------
                                      17
(expressed as quantity of product per year)  was typically computed  by  dividing
the yearly national capacity total for a given product,  by the total number of
establishments manufacturing that product.   This is discussed in greater detail
in Section 2.3.
       Some industrial source categories are composed of  a number of identifiable
sub-processes.  In such cases, a maximum ground level concentration was computed
for the facility by accounting for emissions from all of the sub-processes.  An
example of this is the phosphate rock preparation industry.  For this  industry
a typical plant is composed of unit operations or sub-processes such as drying,
grinding, conveying, storage and calcinating operations, on the same premises.
Therefore, the typical phosphate rock preparation plant  was represented by source
and emission parameters for the identified  unit operations.
       Where several process variations exist for a source category manufacturing
a specific product, more than one typical facility was postulated as being repre-
sentative of the source category.  An example of this is the coffee roasting
industry where one representative facility  would consist of a direct roaster,
and additional operations of stoner cleaning, cooling and spray drying and another
representative facility would consist of an indirect roaster plus cleaning,
cooling, and spray drying.  In this situation two representative composite plants
were postulated to represent the coffee roasting industry (See Table A-2 in
Appendix A).

2.5.3  Calculation of Ground Level Concentrations
       In order to obtain a measure of the relative potential air quality impact
from each source, a maximum time-averaged ground level concentration was estimated
for each pollutant emitted from a representative facility for a later  comparison
with the appropriate ambient threshold value.  The ratio of these values (X/ATV)
were grouped into categories of potentially high, moderate and low health and
welfare impact.  Using this method, the air quality impact of a source is meas-
ured relative to the air quality impacts of all other source categories rather
than measured on an absolute numerical scale.  Since all simplifying assumption
inherent in the model were equally applied to all sources, the relative air
quality impact measurement appears reasonable and appropriate.
       The methodology used to estimate the maximum concentration is presented
below, and a more technical discussion of the approach  is available in Appendix C.

-------
                                      18
Calculations of the maximum expected  ambient  pollutant  concentration were per-
formed using a Gaussian plume dispersion model.  For  time averaging intervals of
less than 24-hour duration (short-term) the basic  equation  for the concentration
from a single source is:
                      Q x
                    •
                            6
               v,  ,
               x(x)  •         exp
Ht)
(2-6)
 in  which:
        x(x) = ground level centerline pollutant concentration at a distance x
              from  the  source,  (micrograms/cubic meter);
        Q   = emission  rate  (grams/second);
        i:   = wind  speed  (meters/second) ;
        a   = horizontal  dispersion coefficient, a function of x (meters);
        a   = vertical  dispersion coefficient, a function of x (meters);
        H   = effective stack height(meters), given by the sum of the
              physical  stack height h  and the estimated plume rise Ah.
 This concentration  represents the ground level concentration below the plume
 centerline.  Since  the  values of a  , a  and Ah are dependent upon the stability
 classification of the atmosphere, short-term calculations were performed for
 an  unstable, neutral and  stable atmospheric conditions in order to determine
 the set of conditions which produce the highest ambient concentration.
       The worst case value for the wind speed (u) was selected to be that
 which maximized the concentration.  This value was calculated internally by
 the model, and may be expressed as:                                    (j-i\
                                            where c = the plume use coefficient
            y         =  C                            for the neutral and
             critical   —                            unstable category
                          s
                                             and h  = the physical stack height
 This  wind  speed  value was  bounded  by  0.8 -  15m/sec.  The critical wind speed
 for the  stable category  was  set  at  2.0 m/sec.

       The plume rise (Ah) for each source was calculated using the Briggs
 formulas which are presented in Appendix C.
       For evaluating facilities containing more than one process, the algorithm
 incorporated two additional  assumptions.  The first assumed that all stacks were

-------
                                     19
to be physically located at the same origin.   This is a conservative assumption
and produced concentrations higher than those which would  be produced by  the
true stack configuration.
       The second assumption was in the estimation of the distance at which the
maximum concentration would occur.  This distance was estimated by a weighted
average of the distance  to the maximum concentration from the individual stacks.
The weighting function was assumed proportional to the ratio

             wt « __i                    where, as before                (2-8)
                   s.                   Q. = Source Strength for the i-th source
                                       h   = physical stack height of the i-th
                                        Si
                                             source.

This factor was selected because the source strength and stack height are the
two most sensitive parameters in the dispersion equation.  The equation for the
"worst case" concentration estimate for a multiple source is given by equation
22 of Appendix C.
       The Gaussian equation results in a concentration estimate that is com-
monly recognized as appropriate for an exposure of less than 1-hour duration.
To determine the concentration for the averaging times corresponding to the
ambient threshold values, the 1-hour estimate was adjusted by a time-averaged
conversion factor which accounts for the increase in wind meander over longer
time periods.  This adjustment factor has the practical effect of reducing the
concentration values over longer averaging times.  The maximum concentration
for time intervals between 1-hour and 24-hours was obtained from the relationship:
                                                                       (2-9)
                                  / 1
                            Q-hrO  t    '       where Xmax
                                                            tion for the desired
                                                            averaging time (t)
                                                        t = desired time interval
                                                            (hours)
The conversion factors for averaging intervals that are associated with the short
term ambient threshold values are given in Table 2-3.

-------
                                      20
                Table 2-3.   Averaging Time Conversion Factors'
              Averaging Time (hours)
                       Conversion Factor
                        1
                        3
                        8
                       24
                             1.00
                             0.83
                             0.71
                             0.58
              Adapted from Ref.  14,
        Since equation 2-6  is  invalid for averaging intervals of more than
 24-hours  duration,  a  sector-averaged Gaussion equation was utilized to determine
 the  maximum concentration  for the pollutants  associated with longer term
 averaging  intervals.  This equation has the following  form:
xOO = (I
        TT
                                 fQ x 106  exp
                                     ZTTX
                                uo
                                      N
                                                     (2-10)
 in which:
            N = the number of sectors into which the entire 360°
                range of  wind direction is divided into;  and
            f = the fraction of  the time during which the wind
                direction is observed to lie within the sector of  interest;
 the other  symbols  having been defined previously.
        The maximum expected annual wind direction frequency in a  22.5°  sector
 was established to be 0.25 from an examination of  the annual surface wind
 roses  given for a  number of meteorological stations in the United States.  The
wind frequency  estimated  for a  "50-day average  (for  the pollutants lead and
 r':i«>ride) was developed by  examining historical National Emission Data System
 ( .iu)S)  sampling data, and developing a 30-day average using statistical tech-
niques developed by Larsen.16  This adjustment yielded an equivalent 30-day
wind frequency factor of 0.4.

-------
                                      21
       The national mean annual, wind speed of 4.4 m/sec w.is used in the above
equation.  The maximum expected long-term conct-ntrat ion was estimated for
neutral atmospheric stability using 
-------
                                     22
       Although the concentration values were considered to be a maximum value,
they are only appropriate for "routine" meteorological conditions,  flat  terrain
and average source operating conditions.  These values are inappropriate for
a plume impacting on elevated terrain (receptor heights greater than zero).
Meteorologically unique or complex atmospheric situations such as downwash or
low lying inversions were not considered in this analysis.  In addition, since
the source strength (Q) was calculated as the yearly capacity divided by the
total number of establishments, the concentrations represent a maximum for
average emissions and operating conditions.
       Due to the weighting scheme that was applied to sources containing
several processes, the model is most accurate for stacks having similar  charac-
teristics.  Conversely, it is least accurate for computing ground-level  con-
centrations from highly dissimilar processes.  The model is also most accurate
for process configurations containing stacks that are located in close proximity
to each other.
       It is important to note that the computed concentration values are sub-
sequently grouped into categories of high, medium and low x/ATV values,  which
represent potentially high, moderate and low air quality impact.  Since  the
individual values are then treated as an element of the group, the relative
positioning of the x/ATV values with respect to the values from other sources
is of greater importance than the actual concentrations.  The assumptions used
in this model treated each source similarly and therefore the relative position-
ing of sources into the three categories should be much less sensitive to the
approximations inherent in the model.

2.5.4  Comparison With Ambient Threshold Values
       The maximum ground level concentrations computed for the three stability
classes (unstable, neutral, stable) were then normalized by dividing by the
relevant ambient threshold values (ATV).  The maximum x/ATV was chosen from
among the various stability classes and the various applicable averaging times.
Table 2-4 shows the distribution of dominant averaging times and stability
classes by pollutant.  For those pollutants having both short and long term
standards, the short term standard generated the largest air quality impact
most of the time.  Those sources with short stacks tended to show highest
ground level concentrations under neutral meteorology while those with tall
stacks, under unstable conditions.  These trends are consistent with field
observations.

-------
                                    23
                Table 2-4.  Distribution of Stability Class
                            and Averaging Time for Maximum
                            Normalized Concentrations
                    Number of Occurences of Maximum
                                   a
                        Meteorology
Averaging Time
Pollutant
Particulates
Sulfur Dioxide
Nitrogen Oxide
Hydrocarbons
Carbon Monoxide
Lead
Acid Mist
Hydrogen Sulfide
Fluoride
Unstable
75
14
-
112
39
-
4
4
—
Neutral
33
18
38
1
0
17
0
0
20
Stable
0
0
-
0
0
-
0
0
—
Annual 30-day 24-hr 8-hr 3-hr 1-hr
33 - 75
18 - 14 - 0
38 - -
113
39 - 0
17 -
_ 4
_ _ 4
20 -
Neutral meteorology was used for 30-day and annual standards.
X/ATV not calculated for other than averaging times specified by standards.

-------
                                     24
       The normalized concentrations (x/ATV) provide a method of comparing the
relative potential for health and welfare impacts of the various pollutants.
By using this method it is implicitly assumed that the potential for impacts
caused by a given x/ATV ratio is the same for all pollutants.  Thus, a source
producing a ground level concentration of particulates of 15 pg/m3  (10% of the
particulate ambient air quality standard) is assumed to have the same health and
welfare impact potential as a source producing a ground level concentration of
36.5 yg/m3 of S02  (10% of the S02 ambient air quality standard).  There are, of
course, many factors not considered in this approach such as reactivity of
pollutants, scavenging and settling, to cite a few.   Nevertheless,  if it is
assumed that the establishment of National Ambient Air Quality Standards (NAAQS)
and Threshold Limit Values (TLV) for Workplace Environments is based on defining
a concentration level above which impacts may be expected, then this appears
to be a reasonable approach to obtaining a first order approximation to relative
health and welfare impacts.
       The problem of dealing with hydrocarbons and nitrogen oxides in this
fashion is of special interest.  Both are photochemically reactive  and although
the NAAQS for N02 is based on health impacts, the NAAQS for hydrocarbons is
recognized only as a guideline for meeting oxidant standards.  Hydrocarbons as
a class are not considered as a health hazard at ambient concentrations.19
For these pollutants it must be remembered that the X/ATV values offer only
the roughest of impact indicators.
       Fig. 2-2 shows the distribution of normalized concentration values for
all the sources considered.  These values were computed using the emission
rates for state standards only  (i.e. Es) .  Several things are evident from the
plot.  First, the ranges of normalized concentrations overlaps for all pollutants.
No one pollutant is consistently larger or smaller than all the others.  This
tends to lend support to the normalizing procedure as a means of putting all
pollutants on the same basis.
       Second, the spread of the data is quite large  (5 orders of magnitude).
The distribution is heavily skewed toward the low end as evidenced by the
separation of the mean and the median values.  This means that the majority of
facilities are small with relatively small air quality impacts from individual
plants.  This is to be expected since most of the large air pollution sources

-------
N=II3
N = 39
N=I7
N=4
N=20
               .0001
                                         MEDIAN:.12      MEAN'-3 16
                                                                          176
N=373
.00
N=I07
.oc
N=3I
00
N=38
* ' 1
1
Q| MEDIAN:. 12 MEAN:I.95 652
* * 1
1
fl| MEDIAN:. 013 MEAN = 1.06' 94|
0, MEDIAN = .0057 MEAN:. 057 623
               .0001
           MEDIAN--.42   MEAN:6.I3
          __i	L_
     176
               .0001
                        MEDIAN :.OOI8     MEAN--.057
               .49
                                    .016
                                             MEDIAN:. 28
                                                 MEAN:.87
                         6.06
                                .0076
          MEDIAN:.34

              t
                                                             MEAN--I2.9
51
                 .0002
            MEDIAN--.54
                 MEAN =1.97 6g
                         .0011
                                                 MEDIAN: 1.71  MEAN--8.46
                                     100
      J	I
I
ALL  POLLUTANTS


PARTICIPATES



SULFUR  DIOXIDE



NITROGEN  OXIDES



HYDROCARBONS



CARBON  MONOXIDE



LEAD



ACID  MIST



HYDROGEN  SULFIDE



FLOURIDES
   I	I
    .00001    .0001     .001       .0!        .1        1.0       100      100.0   1000.0


                                           x/ATV

                  Fig.  2-2.  Range of Normalized Ground  Level Concentrations

-------
                                     26
already have NSPS proposed or promulgated and hence have been excluded from
this list.
       Third, the skewness of the distribution indicates that the usual
statistical procedure of dividing data into groups based on the standard
deviation from the mean will not be relevant here.  Instead, a different
approach must be used to determine which of these normalized concentrations
should be classified as high, moderate, or low potential impacts.
       Fig. 2-3 shows a cumulative frequency distribution of the number of
sources with normalized concentrations less than the scale value.  (Note that
the figure is plotted on a logrithmic scale.)  Half of the sources investigated
have normalized concentrations less than 0.1.  Given the weaknesses in the
modeling approach and the intent of this exercise to provide only a relative
measure of impact, it therefore appears reasonable to divide the range of
normalized concentration (on a logrithmic scale) into thirds and to define
those sources producing a x/ATV in the upper third as having high potential
air quality impacts, those producing a value in the middle third as having
moderate impact potential, and those in the lower third as having low impact
potential.
       Using this definition of impact potential the high impact group is
defined as having x/ATV values greater than 0.5, the low impact group having
values less than 0.01, and the moderate impact group in the middle.  This
process puts approximately 1/3 of the sources into each category.  It is im-
portant to emphasize that no attempt was made to establish these groupings
on the basis of defining a given percentage of the ambient standard as being
a significant health and welfare hazard.  The modeling procedure used here was
judged to be too crude to warrant this type of analysis.  The division into
thirds appears to be much more reasonable and more closely satisfies the
need for relative rankings only.
       Table 2-5  shows the distribution of sources into the air quality impact
groups by pollutant.  These results will be discussed in more detail in the
individual pollutant analysis of Section 3.  The distribution is not exactly into
thirds because of the shifting of some borderline sources as described in the next
section.
       The concentration calculations were repeated for emission rates under
NSPS (i.e.  using En).   In many cases the result was to move a source category

-------
>-
o
ID

O
cc
U_

UJ
O
     1.0
    .75
    .50
    .25
                  .0001
.00!
.01
1.0
10.0
100.
1000.
                                             X/ATV
                                    Fig. 2.3.  Distribution of Normalized Ground

                                             Level Concentrations.

-------
                                    28
                 Table 2-5.   Distribution of Sources Into
                              Air Quality Impact Group
Pollutant

Particulates
Sulfur Dioxide
Nitrogen Oxides
Hydrocarbons
Carbon Monoxide
Lead
Acid Mist
Hydrogen Sulfide
Flourides
Total
Number
Low Impact
Potential
(X/ATV £ .01)
24
6
3
58
0
5
2
2
17
117
of sources in Category
Moderate Impact
Potential
(.01.5)
21
14
22
17
23
0
0
1
1
99
Based on state-controlled emission levels (i.e. E )
Includes sources shifted according to population exposure and air quality
background potential (Sec. 2.5.5)

-------
                                      29
into a lower impact group.  There were, however, some instance? where the NSPS
control level was not adequate to move a source out of a high or moderate air
quality impact group.  In a few cases a source was in a high impact group both
before and after NSPS promulgation.  This type of analysis can be used to
identify research and development program priorities for emission control tech-
nologies.  These results are discussed in more detail in Section 3.

2.5.5  Evaluation of Siting Trends on Air Quality Impact
        Another  issue can be raised as far as the potential for public health
 and welfare impacts of a given source.  It would be desirable to  give more
 weight to those sources that tend to locate in high population areas and less
 weight to those locating in remote areas.  Data on siting trends  for all the
 industries considered was not available but it was possible to pick out the
 obvious sources that are remotely located (e.g. mining activities) and those
 that are generally located in high population areas (e.g. urban service in-
 dustries) .
        In this  same context, source categories that are generally associated
 with other air  pollutant sources  (e.g.  industrial boilers comprising only one
 of many emission-producing activities at a site) should be given more weight
 as their contribution to ground level concentrations must be put  in the context
 of the contributions from surrounding sources.  Again, detailed data was not
 available for all source categories so  only the obvious "high background" sources
 could be identified.
        In attempting to give more weight to the high population location and
 high background sources, and less weight to the remote location sources it was
 decided to follow the same relative ranking procedure used for the overall air
 quality impact  analysis.  Each of the three impact groups based on normalized
 concentration ratios was subdivided into 3 zones of equal size.  Any high
 population or high background source lying in the upper zone of a group was
 moved to the next highest impact group  while the remote sources in the bottom
 zone of a group was moved to the next lowest group.  If a high population or
 high background source was in the middle or lower third of its group, its air
 quality impact  rating was not changed.  Likewise, if a remote source was in
 the upper or middle third of its group  it was not moved.

-------
                                30
       Table  2-6.   Sources Considered  for Adjustment
                     of Air  Quality Impact  Rating
Source Category

Fo«*ll Fuel Botl«r« (-.1 » I'1*1 !»tu'hr>
Fos*ll Fu«l Bollor* (0.5-10 x '.0* Ptu'hr)
Fossil Fuel Boilers (10-:50 x 10^ Btu/hr)
Mii*d Fuel Boilers
Coal and Refuse


Oil and Refuse
Va*te Oil Combustion Boilers

Industrial - C^nmerc Ul

Industrial Organic Liquid Waste

Municipal Incineration (< 3(1 tor/Jay)

Borax and Boric Acid Plants
Sodium Chloride Productior. Industry
Fuel Conversion (Coal Gasification/Liquefaction)
High Btu Gas
Alfalfa Dehydrating Plants
Animal Feed Def luorination Plants
Direct Meat Fir Ins Processes
By-Product Coke Ovens
Uranium Refining Plants

Iron
Ferroalloy
Copper
Lead
Zinc
Aluminum
Uranium
Son-Metallic Mineral Mining and Benefication
Clay
Gypsum
Liae
Boron Compounds
Mica
Fluorspar
Sand and Gravel Processing Plants
Stone Quarrying and Processing Plants
Dry Cleaning
Solvent Metal Cleaning (Decreasing)
Cold Cleaners
Conveyor Ized Dcbreas ln^
Petroleum, Transportat Ion and Market Ing Industry
Oil and Gas Production Fluids (Leaks)
Hatural Can/Natural C.isollne Prorpis in* Plants(Leaks)
Service Station Load ln£ and L' n load i n?
Pttroleua Refinery Miscellaneous Sourrt-s
Crude Oil and Natural C.i* Production Pl.ints
*FUg.:
HP - Hlflh population nf rerept'TM cxp*-^r*r] to
be Impacted by source bantd on expci ted
•ource location.
LP - Low population of receptori rxt-rctrd to
Ri-i«,-n for
Ad | limn.- nt '
HP. HS
HP. HB
HP, HI
HP. HB




HP, HB

HB



HP

HB, LP
LP
LP

LP
LP
LP
HP
HB
LP
HB , LP
LP







LP






LP
LP
HB, HP
HB



LP
11 B

HB
LP

HB - HIsh hirk
expectrd
amiocl.-iti.
the name
A.-lll.ll A.
i'ollutVnt
—
SO
NO

SO
HC
A.M
HC
PM
HC
SO
so
NO
PM
NO
SO
NO
	
	

—
—
—
HC
—
—

„
PM
—
PN
PM
PM
—

	
—
—
	
—
"
—
PM
HC

HC
HC

	
—
—
—
~

RTO'inil po] 1 'jtnnr
hecaunc Kourrc I
te,,tn..,,t
~VT.«n
Sone
Lov
Low

Low
Low
Low
Low
Moderate
Low
Moderate
Moderate
Moderate
Low
Low
Low
Low
None
None
None

None
None
None
Low
None
None
Sone
None
High
None
Hl;h
High
High
None

None
None
None
None
None
None
None
None
High
Moderate

None
Moderate

Rone
None
None
Ron*
Sone

rrnrf-n t r
.1 f.-« r t n f
J with, n l.irpi r ! ,• II Irv
polluf.int or \n

>'.,!«•
r"
None
Moderate
Moderate

Moderate
Moderate
Moderate
Moderate
Hlr.h
Modern te
High
Htch
HicS
Mo Jo rate
Moderate
Moderate
Moderate
None
None
None

None
None
None
Moderate
None
None
None
None
Moderate
None
Moderate
Moderate
Moderate
None

None
None
None
None
None
None
None
None
Moderate
High

None
HI eh
n ign
Hl?h

None
None
None
None
None

.it; in.
. •!'
*-T! 1 1 Ina
ro he
•ourc* locntlon.
                                      • inllar pnllutnnt em I on Ion*,
                                                 <>[> 1/1 of nnrntl t7rd

-------
                                     31
       This  is a simplistic way of addressing these issues but it is systematic
and objective.  Table 2-6 lists the sources that were considered for adjust-
ment of their air quality impact rating.

2.5.6  Air Quality Impact Evaluation
       The normalized concentration ratios and the impact ratings of each
source category are given in Appendix B.

2.6  MOBILITYa AND COMPETITIVENESS EVALUATION
       The CAA criterion of the mobility and competitive nature of industries
and the need for nationally applicable emissions standards is the most difficult
to address.  The Congressional mandate resulting from this criterion can be
interpreted to mean that consideration should be given to setting NSPS for those
industries that,  because of their highly mobile nature, could seek to locate in
states or regions with less stringent air pollution control regulations.  This
would result in economic penalties to those states that have vigorous air quality
management programs.
       The difficulty with addressing this issue is that air pollution control
regulations are only one of a large number of factors influencing industrial
siting decisions.  Considerations such as availability of land and water, labor
pool,  tax structures, workmen's compensation rules, capital requirements, re-
source requirements,  market availability, and many others play significant roles
in determining acceptable locations.   It is also probably reasonable to assume
that air pollution control,  in general, plays only a secondary role in siting
since it is more amenable to "technical fixes" than are the other problems.
That this is the case has been reported elsewhere."*'5
       Nevertheless,  it is possible to say that, all other things being equal,
differences among state air pollution control regulations can provide an in-
centive for an industry to move into or out of a state.  In an attempt to
address this issue for NSPS prioritization it was decided to group the source
categories under study into two major divisions:  (1) those that were not mobile
and would have a difficult time moving out of a given state or location, and

-------
                                     32
(2) those that were mobile and could make a relocation decision on the basis
of air pollution control regulations.
       A subjective review of the source categories under study was made to
determine their mobility.  A category was classified as non-mobile if  it were
either strongly tied to its raw material resource (e.g. mining  operations)  or
if it were strongly tied to its market (e.g.  service industries in urban areas).
Sources that were not constrained by either of these considerations were clas-
sified as mobile by default.
       It is fully recognized that this procedure does not address all of the
issues affecting mobility nor does it consider conditions under which raw
materials and finished products could be transported long distances as a result
of the general availability of good transportation services throughout the
country at acceptable costs.  It does, however, identify the most significant
constraints to mobility and provides a first order estimate as  to which indus-
tries would not be likely to move solely because of air pollution regulations.
It is expected that refinements to the information base would result in more
sources being classified as non-mobile for reasons other than the two  given
above.
       Table  2-7 gives the  list of those sources classified as non-mobile, and
the  reason  for this  classification (raw-resource-linked or market-linked).  It
should be noted that,  in contrast to  the prior rankings by emissions and air
quality  impacts that are specific to  pollutants, this  ranking applies to source
categories  irrespective  of  the  size  and nature of pollutant emissions.

2.7   IMPACT EVALUATION
       The  previous  discussions prescribe  three  different ways  of establishing
priorities  for NSPS:  on the basis of emissions,  on the basis  of  potential  air
quality  impacts,  and on  the basis of mobility and  competitiveness.  It  is
evident  that there are numerous ways these three rankings  can  be  combined  and
there are many  perturbations that can be tested.   It is therefore necessary to
determine some measure of  the impact of each prioritization  scenario  to serve
as a point  of comparison.

2.7.1 Emission  Impact Evaluation
        It is a  straightforward process to  identify the impact  of  any  prioriti-
 zation strategy on national emissions.   Emissions are computed as a function

-------
            Table 2-7.  Source Categories Classified as Non-Mobile
Source                                                   Non-Mobility
                                                           Flag3
Fossil Fuel Boilers (< 0.3 x 106 Btu/hr)                     K
Fossil Fuel Boilers (0.3 - 10 x 106 Btu/hr)b                 K
Fossil Fuel Boilers (10—250 x 106 Btu/hr)                   K
Mixed Fuel Boilers                                           B
   Coal and Refuse                                           B
   Oil and Refuse                                            B
Waste Oil Combustion Boilers                                 K
Stationary Pipeline Compressor Engines                       K
Stationary Internal Combustion Engines                       K
   Spark Ignition (Natural Gas)                              K
   Diesel and Dual Fuel                                      K
Industrial and Commercial Incineration                       B
Municipal Incineration £ 50 Ton/Day                          B
Sodium Carbonate (Soda Ash) Industry                         L
Sodium Chloride Production Industry                          L
Fuel Conversion (Coal Gasification/Liquefaction)              L
Alfalfa Dehydrating Plants                                   L
Animal Feed Defluorination Plants                            B
Cotton Ginning Plants                                        L
Direct Meat Firing Processes                                 K
Fish Processing Plants                                       L
By-Product Coke Ovens                                        L
Uranium Refining Plants                                      L
Asphalt Roofing Plants                                       K
Brick and Related Clay Products Plants                       K
Clay and Fly-Ash Sintering Plants                            L
Concrete Batching Plants                                     K
Phosphate Rock Preparation Plants                            L
Q
 Flags:  K - Source is market-locked
         L - Source is land-locked (i.e., tied to resources)
         B - Both K and L
 Minor Source Category

-------
                                     34
                           Table 2-7.   (Contd)
Source                                                   Non-Mobility
                                                            Flag3
Metallic Mineral Mining and Benefication                     L
Non-Metallic Mineral Mining and Benefication                 L
Sand and Gravel Processing Plants                            L
Stone Quarrying and Processing Plants                        L
Dry Cleaning                                                 K
Graphic Arts Industry                                        K
Industrial Surface Coating Industry                          K
Solvent Metal Cleaning (Degreasing)                          K
Ship and Barge Transfer of Gasoline & Crude Oil              B
Bulk Gasoline Terminals (Loading Tank Trucks/Rail Cars)      K
Gasoline Bulk Plants (Storage and Transfer)                  K
Service Station Loading and Unloading                        K
Petroleum Refinery Miscellaneous Sources                     L
Crude Oil and Natural Gas Production Plants                  L
Q
 Flags:  K - Source is market-locked
         L - Source is land-locked (i.e., tied to resources)
         B - Both K and L
 Minor Source Category

-------
                                     35
of time using emission rates corresponding to state regulations (i.e.,  Es)  for
those sources that have not yet had an NSPS promulgated and emission rates  cor-
responding to NSPS levels (i.e., En).   It is then possible to  evaluate  the  im-
pact of a prioritization scenario by comparing the emission-vs-time projections
with some desired level.  This process is identical to that carried out in
previous work2 and the details will not be repeated again here.
       For some pollutant prioritization schemes, it is desirable to distin-
guish large (Ts-Tn) values from moderate (Ts-Tn)  values,  etc.   In order to  make
this distinction, a cumulative frequency distribution plot was developed for
all major source-pollutant combinations and their associated potential  emission
reduction by application of NSPS in 1980; i.e.. (Ts-Tn) in 1990.   The frequency
distribution, which appears in Fig. 2-4, indicates that there  are a small number
of source categories (i.e., 44) which account for the majority of the (Ts-Tn)
potential emission reduction (i.e., >66,000 tons/year)and a large number of
source categories (i.e., 200)  which would yield very little emission reduction
(i.e., <8,000 ton/yr) after application of NSPS.
       Because of the skewness of the data, the class limits of High, Moderate
and Low (Ts-Tn) were determined by inspection.  One can see, from examining
Fig. 2-4, that the High Class lower limit is selected, where the (Ts-Tn) level
is experiencing a relatively large positive rate of change.  The lower  limit of
the Moderate (Ts-Tn) was selected where the rate of change of  (Ts-Tn) does  not
decrease significantly as the (Ts-Tn)  level decreases.  Table  2-8 gives the
distribution data by (Ts-Tn) for each pollutant for High, Moderate and  Low
Ts-Tn classes.

2.7.2  Public Health and Welfare Impact Evaluation
       It is not quite as simple to identify a measure of impact on public
health and welfare (as measured by ambient air quality concentrations)  of a
prioritization strategy.  Ideally, it would be desirable to have a measure  of
public exposure to high air pollutant concentrations.  To do this would require
the estimation of siting patterns of all the industrial source categories
considered.   The aggregate and non-site-specific nature of the Model TV data
clearly does not allow this kind of estimate to be made.   As a surrogate for
this type of analysis, it appears reasonable to estimate the number of  indi-
vidual facilities that would be built over a given time span,  that have the
potential for high air quality impacts.  Although this will not necessarily

-------
300
             H
                       HIGH (TS-TN) > 66,000 TON/YR.
                       MODERATE (TS-TN) < 66,000 TON/YR., BUT > 8,000  TON/YR.
                       LOW (TS-TN) < 8,000  TON/YR.
                                                                                                     LO
                                                                                                     O\
             100       200       300      400       500       600
                       Fig. 2-4 (TS-TN) xlO3 TON/YR POLLUTANT
700
800
900

-------
                                  Table 2-8.  Distribution of Source Categories by Pollutant
                                              and High, Moderate and Low (Ts-Tn).
( T c Tr» "\
Levelb
High
Moderate
Low


^ J s in)
Levelb
High
Moderate
Low

(Ts-Tn)
Levelb
High
Moderate
Low
Particulate
Mean
(Tons/yr)
233,800
18,500
1,700

No. Source
Category
11
23
65

Total (Ts-Tn)
(Tons/yr)
2,571,200
425,350
110,100

Mean
(Tons/yr)
111,500
32,700
1,800

Hvdrocarbons
Mean
(Tons/yr)
277,700
28,200
2,500


Mean
(Tons/yr)
16,400
2,200
No. Source
Category
15
36
38

Fluorides
No. Source
Category
1
17
Total (Ts-Tn)
(Tons/yr)
4,166,000
1,014,500
93,000


Total (Ts-Tn)
(Tons/yr)
16,400
37,500
Mean
(Tons/yr)
385,800
25,200
2,100


Mean
(Tons/yr)
42,300
800
S02
No. Source
Category
4
7
16

CO
No. Source
Category
9
7
8

H2S
No. Source
Category
1
1

Total (Ts-Tn)
(Tons/yr)
446,100
229,100
28,000


Total (Ts-Tn)
(Tons/yr)
3,472,500
176,600
16,470


Total (Ts-Tn)
(Tons/yr)
42,300
800

Mean
(Tons/yr)
391,800
24,567
1,800


Mean
(Tons/yr)
1,000


Mean
(Tons/yr)
41,900
NOZ
No. Source
Category
5
6
6

Pb
No. Source
Category
11

H2SO^
No. Source
Category
1

Total (Ts-Tn)
(Tons/yr)
1,959,000
147,400
11,000



(Tons/yr)
10,500

Mist
lotal (is— in)
(Tons/yr)
41,900
Data rounded to nearest 100 ton/year

High (Ts-Tn) > 66,000 ton/year of pollutant emission
Moderate (Ts-Tn) s 66,000 ton/year but > 8,000 ton/year
Low (Ts-Tn) < 8,000 ton/year

-------
                                      38
measure population exposure (since it cannot distinguish siting patterns rela-
tive to population distribution) it does provide a first-order estimate of the
potential for population exposure.  Also, an estimate of the number of plants
of average size can easily be made with the Model IV information by Equation 2-11:
       Number of new plants = New and Replacement Industry Capacity/Average
                              Plant Size                               (2-11)
                          N = B + C]/Z
                                     average
B and C, and therefore N, are. functions of time, but Z, a hypothetical source
of average size, is assumed to be constant.  Considering the short time period
of this analysis (10 years), this appears to be a reasonable simplification.
It should be noted that this number of plants can be calculated for those
facilities with high, moderate, or low potential for air quality impacts as
described in Section 2.5.
       Figure 2-5 graphically illustrates how this impact measure can be
evaluated.  In the first time period before any standards are set, plants
are being built without NSPS control levels and there is an increase in the
number of facilities with high air quality impacts.  As NSPS are set, the rate
of increase of these high impact plants slows down as the new facilities are
built to NSPS levels.  Likewise, the number of new facilities with low air
quality impacts increases.  When all NSPS are set the rate of increase of high
impact plants is zero and the number of plants with high air quality impacts
remains fixed, representing facilities built prior to NSPS promulgation.  The
rate of increase of low impact plants now follows the total growth rate.
      This graphic description is simplified in that it assumes all facilities
not controlled by NSPS will have high air quality impacts, while those that
have NSPS in effect will have low impacts.  This is not the case in reality
and was used here only to simplify the description.  In practice, some facili-
ties will have high air quality impacts (as defined by the algorithm used here)
both before and after NSPS promulgation, since the NSPS may not reduce the ground
level concentration enough.
       This impact analysis lends itself well to readjusting priorities to
account for undesirable impacts.  The priority pollutant for readjustment can be
determined by computing the number of facilities with high air quality impacts
at some point in the future (1990 in this analysis) for each pollutant.  This
can be compared to some goal (e.g., a limit on the number of high impact

-------
                                    39







NUMBER
OF NEW
FACILITIES
                    TOTAL NUMBER OF NEW PLANTS  /
                                       NUMBER WITH  HIGH
                                       AIR QUALITY IMPACTS
                                                        NUMBER WITH LOW
                                                        AIR QUALITY IMPACTS
                          FIRST SET
                        OF STANDARDS
  SECOND SET
OF STANDARDS
                                   FINAL SET
                                 OF STANDARDS
                Fig. 2-5.
                 TIME

Schematic of Impact of Priority Schedule on
Facilities with High Air Quality Impacts.

-------
                                     40
facilities) and the priority determined by that pollutant which is furthest
from its goal.  The priority industry source category is then the one with the
largest number of new facilities.   This process is entirely analogous to the
one carried out for emission prioritization (Sec.  2.4)  only it uses the number
of facilities with high air quality impacts as the prime variable.

               o
2.7.3  Mobility  and Competitiveness Impact Evaluation
       The effect of NSPS on removing air pollution control regulations as a
siting factor must be measured by surrogate parameters in a fashion similar to
the public health and welfare impacts.  It is not  possible to definitively
determine where new and replacement facilities will locate because of state
regulation differences because of the large number of factors involved in
siting.  What can be determined, however, are the facilities for which air pol-
lution regulations have been removed as a siting consideration because of NSPS
(assuming states do not promulgate regulations more stringent than NSPS).  The
number of new plants can be used as the measurement variable.
       The number of new and replacement facilities is calculated as for the
air quality impact analysis (Equation 2-11).  The  number is then classified as
to whether they could move to avoid stringent state regulations (i.e., mobile)
or whether they are tied to certain locations (i.e., non-mobile).  As NSPS are
promulgated for mobile source categories, they are switched into the non-mobile
class since the air regulations have been removed  as a siting variable.  (The
term "mobile" as used here relates to the ability  of a source to locate new and
replacement facilities in response to state air standards.)
       Figure 2-6 schematically describes how the  information could be presented.
In the absence of NSPS, the number of new facilities built that could have made
a siting decision on the basis of the difference among state air pollution regu-
lations would increase.  As NSPS are promulgated this decreases until all
standards have been set and no new plants have state air pollution regulations
as a siting parameter.

2.8  CAVEATS AND CAUTIONS
        The implications  of  the NSPS  program are significant,  both to the
regulated  industries  and to  the EPA  groups charged with carrying out the program.
 aThe term "mobility,"  as  used  in  this  report, refers only to an interpretation
  of  the CAA regarding  stationary  source  siting practices.

-------
                        41
NUMBER OF
NEW  SOURCES
WITH THE
POTENTIAL
FOR  SITING
ON THE BASIS
OF AIR
POLLUTION
REGULATIONS
                       WITHOUT  NSPS
WITH NSPS PROGRAM/
                                  TIME
       Fig. 2-6.  Schematic of Impact of Priority Schedule
               on Mobility of Sources.

-------
                                     42
 It  therefore appears warranted to reemphasize the caveats and cautions ex-
 pressed  in  the various portions of the methodology section.
       First and foremost, this study was designed as a screening exercise to
determine what areas should be looked at in more detail first.  As such, it
intentionally took a fairly cursory view of the details of each industrial
process and made numerous simplifying assumptions in order to arrive at a
manageable  set of information upon which to develop program strategies.  There
are many other methods that could have been used and review and critique of this
procedure is welcomed.  The most significant contribution it was designed to
achieve was to provide a systematic means of establishing priorities that ad-
dressed the criteria prescribed in the Clean Air Act Amendments of 1977.
       Second, it is entirely possible that this base of information will be
used for other work in other, unrelated areas.  This should be done only with
the utmost  care and awareness of the time and resource limitations under which
this data has been assembled.
       Third, the screening of sources into major (>100 tons/year) and minor
groups is extremely sensitive to the assumed source size.  While it can be
said with some confidence that those with order of magnitude less emissions
 (i.e. <10 tons/year) can clearly be classified as minor, it is not so clear in
all cases as to where the intermediate sources (10-100 tons/year) can be classi-
fied.  Although the minor sources were screened for a largest source sizej  it
is to be expected that some sources have been grouped into the wrong category
because of  the unavailability of accurate size distribution data.  This can
only be corrected by more detailed analysis or by the identification of such
data from the industry representatives themselves.
       Fourth, the Model IV approach to emission computation addresses all the
issues of interest (e.g., growth, replacement, varying emission rates, etc.)
but it is only as good as the input data.  Again, it is expected that there are
holes or weak spots in the information.  Updated data can easily be incorporated
into the procedure for review and revision.  The purpose of the more detailed
studies are to provide this update.
       Fifth, the air quality modeling procedure used here is extremely crude
and ignores site-specific features such as terrain,  meteorology, background,
etc.  It was for this reason that the analysis generated only a grouping (high,
moderate, low)  rather than a concentration number.  The use of the procedure
in a relative rather than an absolute screening was  also the result of recognized

-------
                                      43
weaknesses in the ability to predict expected concentrations with the limited
data available.  It does, however, provide a first approximation of air quality
impacts.
       Sixth, there are a large number of possible perturbations to the priori-
tization scheme that can be tested by applying different weights to the various
criteria (emissions, air quality, mobility), by adding other criteria (e.g.
economics, equipment availability, enforceability), by adding subjective evalu-
ation of certain source categories, and many others.  Time and resources did
not permit a comprehensive evaluation of all the possibilities; only the most
obvious prioritizations were tried.  Also, there was a distinct decision not
to reduce the priority schemes under each of the three criteria to a single
numerical rank.  It is the opinion of the authors that this obscures valuable
information required by the decision-makers.  It is intentional that the result
of several schemes and their impacts are presented for review rather than a
single ranking.
       Finally, there are many criticisms that can be leveled at this method-
ology and at its information base.  Most of the obvious ones have already been
acknowledged and attempts have been made to deal with them within the time and
resource constraints available.  Continuing criticism with corresponding
suggestions for improvements are always welcome.
       In summary, data evaluation for individual sources should not be viewed
or referenced out of context of this work.  The value of this work for the
decision maker lies in the context of the total analysis.  The worth of the
impact analysis is in relative rather than absolute measures.  Simplifying
assumptions and the algorithms constructed for the analysis were equally applied
to all categories and therefore it is believed that the relative measure of
the parameter yields a meaningful picture of the measure of impact by the three
CAA  criteria.

-------
                                      44
                         3.  PRIORITIZATION SCENARIOS

       There are many ways to apply the prioritization methodology to develop
an ordered list of sources for NSPS control.  The approach taken here is first
to review each pollutant separately to determine the unique characteristics of
the sources.  Next, the pollutants will be reviewed collectively and priorities
among pollutants determined.

       Several prioritization scenarios will appear frequently.  The two bound-
ing cases consist of setting no NSPS at all in the study period (1980-1990) and
setting all NSPS in 1980.  Although neither case is realistic, they do provide
the limits on the best and the least that can be achieved under an NSPS program.

       In addressing the criteria of the CAA it is possible to define many
scenarios.  For the purpose of this analysis the baseline strategy (referred to
as the Baseline Strategy) consists of the following considerations:  (1) Onlv
major sources (> 100 ton/yr pollutant of one or more uncontrolled  pollutants)  are
considered for NSPS; (2) All sources with high mass emissions  (Ts-Tn)  are considered
before those with moderate mass emissions, which in turn are all considered
before those with low mass emissions; (3) Sources with high air quality impact
are considered before those with moderate impacts, which in turn are all considered
before those with low air quality impact,; and (4) Sources that are mobile are
considered before nonmobile sources.  This leads to the following  groups in the
order in which they are considered:
       (a)  High (Ts-Tn), High Air Quality Impact, Mobile, (Ts-Tn)  Rank
       (b)  High (Ts-Tn), High Air Quality Impact, Nonmobile,  (Ts-Tn)  Rank
       (c)  High (Ts-Tn), Moderate Air Quality Impact, Mobile, (Ts-Tn)  Rank
       (d)  High (Ts-Tn), Moderate Air Quality Impact, Nonmobile,  (Ts-Tn) Rank
       (e)  High (Ts-Tn), Low Air Quality Impact, Mobile, (Ts-Tn)  Rank
       (f)  High (Ts-Tn), Low Air Quality Impact, Nonmobile, (Ts-Tn)  Rank
       (g)  - (1) Repeat for Moderate (Ts-Tn)
       (m)  - (r) Repeat for Low (Ts-Tn)
Each of the subgroups (a) through (r) are finally ranked by (Ts-Tn),  allowing  the
computer program to select sources off the prioritized list in the multipollutant
analysis.  This is, of course, only one of many possitilibies  that  can easily  be
tested with the methodology.  Some of these perturbations will be  presented here.

-------
                                       45

3.1  POLLUTANT SPECIFIC - MAJOR SOURCE CATEGORIES

3.1.1  Particulate Matter
       There were 88 major particulate emission source categories evaluated.
This amounted to 56 percent of all major source categories evaluated.  A
major pollutant emission source is a source which has the potential of
emitting a minimum of 100 tons per year of one or more specified pollutants
without application of emission control techniques or processes.
       The nationwide growth in production capacity and corollary growth in
nationwide emissions were calculated for both major and minor particulate emis-
sion sources for a base year 1980.  The nationwide source capacity was typic-
ally computed by growing 1975 capacity to 1980 using appropriate new growth
(Pc) rates.  Where available a "weighed" 1975 state particulate emission limi-
tation factor (Es) was applied to the 1980 capacity to compute nationwide
particulate emissions.  The state emission factor limitation (Es) used was, in
most cases, the value computed by TRC-* in their 1975 analysis of the impact
of new source performance standards.
       Hypothetical average source sizes for each major particulate
emission source category ranged from approximately 1800 tons product per year
to over 5 million tons product per year.  Uncontrolled particulate emissions
from an average hypothetical source size in each particulate emission
source category ranged from 0.4 tons particulate per year to 85,000 tons
particulate per year.

       During the 1980-1990 time period the new growth capacity was repre-
sented by the number of hypothetical new sources of average size.  For the
ten year period the number of new hypothetical sources for the major
particulate emission source categories ranged from as few as one source
per category to over 8,000 sources per category.
       The nationwide particulate emissions computed for 1980 as allowed
by 1975 state emission factor limitations was 9 million tons particulate
matter per year for the 88 major particulate emission source categories
evaluated.  Approximately 16 source categories accounted for 90 percent of
these particulate emissions with 3 source categories accounting for nearly
53 percent of the emissions.

-------
                                     46
       The nationwide particulate source category production capacities were
also computed for 1990.  Nationwide particulate emissions for 1990 were
computed assuming state emission limitation factors were in force during the
1980-1990 time period.  Nationwide particulate emissions were also computed
assuming application of an emission limitation reflecting a condition of best
anticipated control (E ), which would be applied to new or modified source
construction during the same ten year period.   The difference in the national
emissions based on the state limitation and the more restrictive new and mod-
ified source limitation (Ts-Tn) in 1990 was then computed.  The anticipated
1990 particulate emission reductions (Ts-Tn) by the application of (En) begin-
ning in 1980 ranged from 4 tons per year to 778,000 tons per year.  The
(Ts-Tn) values for major particulate matter source categories is listed in
Table A-3, Appendix A.
       The air quality impact of each of the 88 major particulate emission
source categories was evaluated.  Actually 118 individual particulate
emission source categories were evaluated for air quality impact.  However,
30 source categories were actually unit operations of a larger representative
source category and were aggregated for growth and mass emission purposes.
The computer dispersion model program calculated the air quality impact
for the aggregated source category.  A typical or average source size was
selected for each source category for the dispersion analysis.  The maximum
ground level concentration (X) was computed based both on the state emission
factor limitation (Es) and the best level of anticipated control (En).
The maximum ground level concentrations for both (Es) and (En) were compared
after normalizing (dividing) by the appropriate ambient threshold value for
particulate matter.  These values were then ranked by order of magnitude
and statistically divided into three groups of High, Moderate and Low air
quality impact.
       Among the 88 major particulate emission source categories evaluated,
24 source categories or 27 percent had a High air quality impact resulting
from the state emission limitation (Es).  For this High impact group,
17 or 71 percent of the particulate emission source categories were reduced
to a Moderate or Low air quality impact by the application of the best
anticipated emission limitation (En).  A total of 10 or 12 percent of the
particulate emission source categories had a Low air quality impact based
on state emission limitation factors.

-------
                                      47
       Of the 88 major particulate emission source categories,  37 or 43 per-
cent were considered to be non-mobile and non-competitive based on either
market or raw material ties.  Therefore 50 particulate emission source
categories or 58 percent of all the major particulate emission  source
categories would be considered mobile and competitive and would tend to
locate in states with less restrictive emission limitations,  assuming all
other mobility and competition considerations allowed the source the
necessary flexibility in source siting.
       Table 3.1.A gives the prioritized schedule for all particulate emis-
sion source categories under the Baseline Strategy described  above.  Assuming
implementation of this schedule nationwide emissions over time  are shown in
Fig.  3.1.  For purposes of comparison, emissions are also displayed for the
following cases:
       - All NSPS are set in 1980, that is, En becomes the applicable
         emission limitation for all sources in 1980.  This case repre-
         sents a lower bound to achievable emissions.
       - No NSPS are set, that is, Es continues to be the applicable
         emission limitation for all sources.  This case represents
         an upper bound for nationwide particulate emissions.
       Examination of this figure shows that nationwide particulate emissions
will continue to increase over time if no NSPS are set and will continue to
decrease with time by the application of NSPS (En) regardless of the
standard setting rate or prioritized scheme.  This insensitivity to the prior-
itization scheme is to be expected given the short time period  in which the
CAA requires standards to be set.  Beyond mid-1982, both the Base Strategy
and the lower bound are almost parallel because in both cases all new and
replacement sources must meet the same limits.  By 1990, the difference in
emissions between the Base Strategy and the lower bound is small compared
to the difference between the upper and lower bounds.  That is, by 1990
the Base Strategy produces almost the same results in terms of  emission
reductions as setting all standards in 1980.
       The figure also shows that after 1980, emissions drop off sign-
ificently by the Base Strategy and all-NSPS case.  This is the result of
having mass emissions rather than mobility and air quality impact determine
the prioritized schedule.  Source categories with relatively  large national

-------
                                      48
emission totals are regulated earlier than source categories  with small
totals because the High (Ts-Tn)  source categories have first  priority.
       Several points should be made about the order of several  source cate-
gories.  Mining, Incineration, and Metallurgical sources occur early in
the schedule because of their high mass emission reduction potential.  It
should be noted that the mining operations include emissions  from
fugitive sources as well as process sources.   In some mining  source
categories, fugitive emissions are very large.  Mining operations also
head the list because they have high air quality impacts.
       Table 3.1.C compares the 1990 air quality impacts of the three NSPS
schedules in terms of the number of new and modified sources  having high,
moderate, and low air quality impacts.  Table 3.1.D compares  the mobility
and competitiveness impacts of the three schedules in terms of the number
of new and modified sources that could have moved under each  schedule,
that is, the number that were mobile prior to being regulated by an NSPS.
The number of new and modified sources that are either non-mobile initially
or that become non-mobile when an NSPS is set is also given.

-------
                                     TABLE 3-1-A   PRIORITIZED  NSPS  SCHEDULE  FOR PARTICIPATES*
       CUMULATIVE
 IEAE    EFFORT
isec.c
1980.5
1581.0
           1.00
           2.00
           3.00
           4.00
           5.00
             00
             00
           e.oo
           9.00
          1C.00
          11.00
          12.00
          13.00
          u.oo
          15.00
 1.00
 2.00
 3.00
 4.00
 £.00
 6.00
 7.00
 e.oo
 9.00
10.00
11.00
12.00
13.00
14.00
15.00

 1.00
 2.00
 3.00
 4.00
             .00
             .00
             .00
             .00
             .00
          10.00
          11.00
          12.00
          13.00
          14.00
          15.00
                                       SOURCE
(AGG) NON-METALLIC  SIRING  -  CLAY
PHOSPHATE ROCK  (MINING)
SAND 6 GEAVEL PROCESS
(AGG) NON-METALLIC  DINING  -  GYPSUM
INDUSTRIAL INCINERATION   (INDUSTRIAL-COMMERCIAL)
METALIC MINERALS MINING  (COPPER)
(AGG) SON-METALLIC  MINING  -  LIME
BY-PRODUCT COKE OVEN
(ASS) IEED AND GRAIN HILL  INDUSTRY
(AGG) PHOSPHATE ROCK PREPARATION  PLANTS
PI.YHOOD MANUFACTURING  PLANT
GREY IRON FOUNDRIES  (ELECTRIC  ARC)
(AGG) SECONDARY ALUMINUM PLANTS
WHISKEY
POTASH

METALIC HIHERALS MIMING  (UEANIMUN)
FLY-ASH SINTERING   (SISTEBING)
METALIC MINERALS MINING  (FERROALLOY)
(AGG) NON-METALLIC  MINING  -  BORON COMPOUNDS
AMMONIUM SULFATE
STEEL FOUNDRIES   (ELECTRIC ARC)
VEGETABLE OIL MFG.
BEER PROCESSING PLANTS
PHTHALIC ANHYDRIDE  PLANTS   (OXYLENE  PROCESS)
METALIC MINERALS MINING  (IRON ORE)
METALIC MINERALS MINING  (ALUMINUM)
MUNICIPAL INCINERATION < 50T/D
METALIC MINERALS MINING  (LEAD MINING)
METALIC MINERALS MINING  (ZINC MINE G  CRUSHING)
GLASS MANUFACTURING INDUSTRY (SODA-LIME GLASS)

GYPSUM MANUFACTURING PLANTS   (CALCINES)
SODIUM CARBONATE PLANT  (NATURAL  PROCESS)
PESTICIDES MANUFACTURING
(AGG) CASTABLE REFRACTORY  PLANTS
GREY IRON FOUNDRIES (REVERBERATOR!)
BORAX BORIC ACID
PHTHALIC ANHYDRIDE  PLANTS  (NAPTHALENE  PROCESS)
(AGG) NON-METALLIC  MINING  -  FLUORSPAR
STONE QUARRYING AND PROCESSING
PCLYPROPLYENE
STEEL FOUNDRIES   (OPEN HEARTH)
POLYESTER RESIN
HITRATE FERTILIZER   (AMMONIUM NITRATE)  PLANTS
EXPLOSIVE IND (HIGH EXPLOSIVES)
STABCH MPGR
STANDARD
USED
(En)
35.519989
6.000000
0.420000
5.099999
0.065000
0.070000
6.299999
0.215000
0. 193000
1.389999
0.001300
0.070000
4.309999
0.002200
0.663030
0. 110000
1.099999
0.600000
1.059999
1.000000
0.260000
0.630000
0.270000
2.400000
0.500000
0. 110000
0.303000
0.700000
0. 700000
0.022000
0. 100000
0.450000
0. 100000
8.400030
0. 100000
1.620000
0.990000
6.000030
2.599999
0.030000
0.220000
0.350000
0.180000
0.260000
0.020000

CODE

11 F01
4« F01
10 A 02
42 F31
1 1 B04
43 E01
m KOI
50 A10
39 E31
41 D01
80 B01
50 C32
51 B12
30 D39
20 A18
47 E01
40 D17
l»2 E91
45 F01
30 D20
50 D01
30 D11
30 D09
20 C26
41 E01
46 E01
10 B33
44 E01
45 E01
40 037
40 D11
20 C24
55 A01
40 DOS
50 C03
20 A15
20 C25
47 F01
40 A01
20 B37
50 D02
20 B19
30 A05
20 C17
30 D18

FLAI

N1
N1
N2
N2
N2
N2
ill
N1
!14
Ntt
N2
H3
M2
M2
H2
N3
N2
N2
N1
S»
M5
S4
H«
N4
NK
N5
N5
N4
NK
,16
S6
N6
82
.11
M3
S2
S3
N2
N1
H5
MS
M5
84
B5
MS
                     "See Table 3-1-B for Definition of  Terms

-------
                                                             TABLE  3-1-A*  (Cont'd)
       CUMULATIVE
 IEAH    EFFORT
1981.5
1582.0
1982.5
            .00
            .00
            .00
            .00
            ,00
            .00
            .00
 8.00
 9.00
10.00
11.00
12.00
13.00
14.00
15.00

 1.00
 2.00
 3.00
 14.00
 5.00
 £.00
 7.00
 e.oo
 9.00
10.00
11.00
12.00
13.00
T4.00
15.00

 1.00
 2.00
 3.00
 tt.OO
 5.00
 6.00
 7.00
 8.00
 9.00
10.00
11.00
12.00
13.00
SOURCE

 SYNTHETIC  FIBERS  INDUSTRY (DACRON POLYESTER)
HYDROGEN  FLUORIDE
CARBON BLACK   (FURNACE PROCESS)
MINERAL WOOL  MFC
(AGG) SECONDARY COPPER PLANTS  (CONVERTER  SMELTING)
POLYETHYLENE  (LOW  DENSITY)
SYNTHETIC FIBER INDUSTRY  (NYLON)
(AGG) SECONDARY COPPER PLANTS  (BLAST FURNACE)
PERLITE   (VERTICAL FURNACE)
PHOSPHORIC  ACID PLANTS  (THERMAL PROCESS)
EXPLOSIVE IND (LOW EXPLOSIVES)
CHARCOAL  PLANTS
CHEMICAL  HOOD PULPING IND.    (ACID SULFITE)
(AGG) SECONDARY ZINC SHELTERS  (RETORT REDUCTION £ KETTLE FURNACES
(AGG) SECONDARY ZINC SHELTERS  (HORIZ 6  REVERB  FURNACES)
                                                                (WOOL PROCESSING)
                                                                (TEXTILE PROCESSING)
FIBERGLASS  MFG.  PLANTS
FIBERGLASS  MFG.  PLANTS
CERAMIC CLAY  MFC
SYNTHETIC RUBBER IND.   (ST YR ENE-BUTADIENE) (SBH)
GREY IRON FOUNDRIES  (CUPOLA)
MIXED FUEL  BOILERS   (COAL 6 REFUSE)
MIXED FUEL  BOILERS   (OIL 6 REFUSE)
COITON GINNING
URANINUM REFINING
(AGG) ASPHALT EOOFING  PLANTS
ALFALFA DEHYDRATING PLANTS
(AGG) TUNNEI  KILNS (CO AL) , DBY ERS AND STORAGE
(AGG) TUNNEL  KILNS (OIL) , DR YERS AND STORAGE
INDUSTRIAL  INCINERATION   (IND ORGANIC LIQUID  WASTE IIC)
(AGG) CLAY  SINTERING PLANTS

(AGG) PERIODIC  KILNS(OIL), DRYERS AND STORAGE
(AGG) PERIODIC  KILNS (CO AL) , DRYERS AND STORAGE
(AGG) TUNNEL  KILNS (GAS) , DR YERS AND STORAGE
(AGG) PERIODIC  KILNS(GAS) ,DRYERS AND STORAGE
ANIMAL FEED DEFLHORINATION
INDUSTRIAL  BOILERS   (10-250X10E6 BTU/HH)
UREA
DETERGENT MANUFACTURING  PLANTS
GLASS MANUFACTURING INDUSTRY  (LEAD GLASS)
STY RENE
ACETIC ANHYDRIDE
STATIONARY  INTERNAL COMBUSTION ENGINES(DIESEL G  DUAL FUEL)
STATIONERY  PIPELINE COMPRESSOR ENGINES
STANDARD
USED
(En)
0.350000
1.009999
1.099999
3.629999
0.330000
0.045000
0.750000
0.198000
0.210000
0. 134000
0.380000
4.000000
2.000000
2. 580000
0.799000
9.299999
4.40JOOO
18.000000
0. 120000
0.200000
0.300000
0.200000
0.480000
0.010000
0.960000
0.236000
1.299999
1.299999
5. 400000
1.099999
1.360000
1.299999
1.299999
1.299999
0.062500
0.403900
1.360000
0.450000
0.240000
0.004000
0.001000
5.139999
0.630000

CODE

20 BOS
29 117
20 C03
40 D13
58 B01
20 B04
20 B09
57 B01
40 D12
20 A10
20 CIS
20 C16
80 A 014
51 E01
51 B02
40 D14
40 D06
40 D10
20 D01
50 C04
10 A06
10 A07
30 B01
50 F01
41 B01
30 D01
45 D12
45 D11
12 B04
40 D16
46 D11
46 D12
45 D10
46 D10
30 D10
10 A03
20 B21
20 C10
40 D19
20 C45
20 C48
10 C02
11 C01

FLAG

84
B«
85
84
84
85
84
95
85
85
85
84
84
84
84
84
H4
14
S5
1)5
N5
N5
R4
N5
N4
N5
N4
N4
N4
K5
N4
N4
N4
N4
N5
N4
86
S6
86
H6
,16
It 6
16
                       See  Table 3-1-B for Definition of  Terms

-------
                                       51
Table 3.1.B  Definitions Applicable to Priorized NSPS Schedules.

Cumulative Effort
       One effort level is defined as the effort expended for the first
pollutant standard set for a source category.  For each additional pollutant
standard set for the same source category, it is assumed that 1/4 of an
effort level will be expended.
       Therefore the number of effort levels expended in any 6 month
time period will usually be less than the total number of source category-
pollutant standards set.  The greater the number of multi-pollutant source
categories for standard setting in a time period the greater the difference
between the cumulative effort level and the actual count of source
category-pollutant standards.
Standard Used
       This value reflects the best anticipated level of emission reduction
(i.e., the NSPS allowable emission (En) in Ib pollutant/unit of production).
Code
       The five-character identifier specifying a unique source category.
This identifier can be used to cross reference source category data from
different data listings.
M/N Flag
       M-Mobile Source Category
       N-Non-mobile Source Category
Numerical Flag
                                                                a
                              Category Air Quality Impact Change
ag
1
2
3
4
5
6
Es
High
High
High
Moderate
Moderate
Low
En
High
Moderate
Low
Moderate
Low
Low
 3The numerical air quality impact flag denotes the change in air quality
   impact from the state emission limitation (TSs) to the NSPS limitation (En)
   See Table A-3 for emission units for each source category.

-------
                              52
 or
 
-------
                      53

Table 3.1 .C    Particulate Air Quality Impacts
              of NSPS Strategies
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
New and Modified Sources in 1990
Number with Number with Number with
High Air Moderate Air Low Air Total
Quality Impact Quality Impact Quality Impact Number
5474 20,019 5,336 30,829
2291 21,120 7,418 30,829
2281 20,968 7,580 30,829
Table 3.1.D Mobility/Competiveness Impacts of NSPS
Strategies for Particulates
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
New and Modified Sources in 1990

Number of Sources that Number of Sources Total
Could Have Moved Precluded from Moving Number
14,339 16,490 30,829
751 30,078 30,829

0 30,829 30,829

-------
                                     54

3.1.2  Sulfur Dioxide
       There were 28 major sulfur dioxide emission source categories evaluated.
This amounted to 18 percent of all major source categories evaluated.  A major
pollutant emission source is a source which has the potential of emitting a
minimum of 100 tons per year of one or more specified pollutants without
application of emission control techniques or processes.
       The nationwide growth in production capacity and corollary growth in
nationwide emissions were calculated for both major and minor sulfur dioxide
emission sources for a base year 1980.  The nationwide source capacity was typ-
ically computed by growing 1975 capacity to 1980 using appropriate new growth
(Pc) rates.  Where available a "weighed" 1975 state sulfur dioxide emission lim-
itation factor (Es) was applied to the 1980 capacity to compute nationwide
sulfur dioxide emissions.  The state emission factor limitation (Es) used was, in
                                     3
most cases, the value computed by TRC  in their 1975 analysis of the impact
of new source performance standards.
       Hypothetical average source sizes for each major sulfur dioxide emission
source cateogry ranged from approximately 6,000 tons product per year to over
700,000 tons product per year.  Uncontrolled sulfur dioxide emissions from an
average hypothetical source size in each major source dioxide emission source
category ranged from 400 pounds sulfur dioxide per year to over 6,000 tons
sulfur dioxide per year.
       During the 1980-1990 time period the new growth capacity was repre-
sented by the number of hypothetical new sources of average size.   For the ten
year period the number of new hypothetical sources for the major sulfur di-
oxide emission source categories ranged from as few as two sources per cate-
gory to over 4,000 sources per category.
       The nationwide sulfur dioxide emissions computed for 1980 as allowed
by 1975 state emission factor limitations was over 8,000,000 tons sulfur di-
oxide per year for the 28 major sulfur dioxide emission source categories
evaluated.   Only 2 source categories accounted for approximately 90 percent
of these sulfur dioxide emissions with 1 source category accounting for
nearly 89 percent of the emissions.

-------
                                    55
       The nationwide sulfur dioxide source category production capacities
were also computed for 1990.  Nationwide sulfur dioxide emissions for 1990
were computed assuming state emission limitation factors were in force dur-
ing the 1980-1990 time period.  Nationwide sulfur dioxide emissions were also
computed assuming application of an emission limitation reflecting a condition
of best anticipated control (E ), which would be applied to new or modified
source contruction during the same ten year period.  The difference in the
national emissions based on the state limitation and the more restrictive
new and modified source limitation (Ts-Tn) in 1990 was then computed.  The
anticipated 1990 sulfur dioxide emission reductions (Ts-Tn) by the applica-
tion of (En) beginning in 1980 ranged from 20 tons per year to over 1,000,000
tons per year.  The (Ts-Tn) values for major sulfur dioxide source categories
is listed in Table A-3, Appendix A.
       The air quality impact of each of the 28 major sulfur dioxide emis-
sion source categories was evaluated.  Actually a higher number of individual
sulfur dioxide emission source categories were evaluated for air quality im-
pact.  Seven source categories were made up of two or more unit operations and
were aggregated for growth and mass emission purposes.  The computer disper-
sion model program calculated the air quality impact for each of the unit
operations and computed a maximum air quality impact for the aggregated
source category for the dispersion analysis.  The maximum ground level con-
centration (x) was computed based both on the state emission factor limi-
tation (Es) and the best level of anticipated control (En).  The maximum
ground level concentration (x) for both (Es) and(En) were compared after
normalizing (dividing) by the appropriate ambient threshold value for sulfur
dioxide.   The values were then ranked by order of magnitude and statistically
divided into three groups of High, Moderate and Low air quality impact.
       Among the 28 major sulfur dioxide emission source categories evaluated,
7 source categories or 25 percent had a High air quality impact resulting from
the state emission limitation, (Es).   For this High impact group 4 or 57 per-
cent of the sulfur dioxide emission source categories were reduced to a
Moderate or Low air quality impact by the application of the best antici-
pated emission limitation, En.  A total of 36 percent or 10 sulfur dioxide
emission source categories had a Low air quality impact based on state emis-
sion limitation factors.

-------
       Of the 28 major  sulfur dioxide emission source categories, 15 or 54
percent were considered to be non-mobile and non-competitive based on either
market or raw material  ties.  Therefore, 13 sulfur dioxide emission source
categories or 46 percent of the major sulfur dioxide emission source cate-
gories would be considered mobile and competitive and would tend to locate
in  states with less restrictive emission limitations, assuming all other
mobility and competition considerations allowed the source the necessary
flexibility in sourc siting.
       Table 3.2.A  gives the prioritization schedule for all sulfur dioxide
emission source categories under the Baseline Strategy described above.
Nationwide sulfur dioxide emissions as a function of time assuming implemen-
tation of this schedule are shown in Fig. 3.2.  For purposes of comparison,
the emissions are also displayed for the following limiting cases:
       -  All NSPS are set in 1980, that is, En becomes the applicable
          emission limitation for all sulfur dioxide sources in 1980.
          This case represents a lower bound to achievable sulfur
          dioxide.
       -  No NSPS are set, that is, Es continues to be the applicable
          emission limitation for all sources.  This case represents
          an upper limit for nationwide sulfur dioxide emissions.
Examination of Fig. 3.2 shows that nationwide sulfur dioxide emissions will
continue to increase with time by the application of En regardless of  the
standard setting rate and prioritization scheme.   This insensitivity to the
prioritization scheme is to be expected given the short time frame in which
the Clean Air Act requires standards to be set.  Beyond mid-1982, both the
Base Strategy and the lower bound case are almost parallel, because in both
cases all new and replacement sources must meet the same emission limitations.
       Figure 3.2 shows that as a result of the prioritization schedule the
sulfur dioxide emissions have a steady increase which parallels the lower case
boundary.   The base strategy is very close to the case of all NSPS set in
1980 because overall reduction in mass emissions dominates the prioritization
schedule.
       Further examination of Fig.  3.2 shows that in 1982 the prioritization
schedule only provides a reduction of less than 125,000 tons per year  sulfur
dioxide from the level allowed by state emission limitations.   By 1985 this
reduction in annual emissions has increased to over 250,000 tons sulfur
dioxide per year and by 1990 to over 500,000 tons of sulfur dioxide per year.

-------
                                     57
       Examination of Table 3.2.A indicates that standards are first set for
High Explosive Industry, Chemical Wood Pulping and High Btu Fuel Conversion.
These sulfur dioxide major emission source categories have high to moderate
air quality impact.  On the other hand, standards are set for Tunnel Kilns,
Stationary I.C. Engines and Periodic Kilns last because these sources have
low (Ts-Tn), low air quality impact and are non-mobile.
       Table 3.2.B compares the 1990 air quality impacts of the three NSPS
schedules in terms of the number of new and modified sources having high,
moderate, and low air quality impacts.  Table 3.2.C compares the mobility
and competitiveness impacts of the three schedules in terms of the number of
new and modified sources that could have moved under each schedule, that is,
the number that were mobile prior to being regulated by an NSPS.  The number
of new and modified sources that are either non-mobile initially or that
become non-mobile when an NSPS is set is also given.

-------
                                     TABLE 3-2-A    PRIORITIZED NSPS  SCHEDULE FOR SULFUR  DIOXIDE"
 YEAR
       CUMULATIVE
         EFFCST
1S80.C
1980.5
1981.0
1981.5
1982.0
1982.5
1.00
2.00
3.00
u.oo
5.00

1.00
2.00
3.00
u.oo
b.GO

1.00
2.CO
3.CO
4.00
5.00

1.00
2.00
3.00
1.00
5.00

1.00
2.00
3.00
'4.00
5.CO

1.00
2.00
3.00
                                        SOURCF
EXPLOSIVE  IND  (HIGH EXPLOSIVES)
CHEMICAL WCCD  IND.   (HSSC)
FUEL CONVERSION  HIGH BTU COAL  GASIFICATION
INDUSTRIAL  DOILEKS   (10-250X10E6  BTU/HR)
(AGG) SECONDARY  COPPER PLANTS  (CONVERTER SMELTING)

CHESICAL WOCD  PULPING IKD.   (ACID SOLFITE)
BY-PRODUCT COKE OVEN
ETIIYLENE
EXPLOSIVE  IKD  (LOW EXPLOSIVES)
MIXED FUEL BOILERS  (COAL £  PEFUSE)

GLASS MANUFACTURING INDUSTRY   (SODA-LIME GLASS)

(A3G) SECONDARY  COPPEF PLANTS  (BLAST FURNACE)
(AGG) CRUDE OIL  AND NATURAL  GAS  PRODUCTION PLANTS
INDUSTRIAL  INCINERATION   ( I NDUSTEI AL-COM 3 ERCI AL)
FIBERGLASS  MFG.  PLANTS   (WOOL  PROCESSING)

PHTHALIC ANHYDRIDE PLANTS   (OXYLENE  PROCESS)
MUNICIPAL  INCINERATION < 50T/D
(AGG) TUNNEL KIL NS (COAL)  , DRY ERS  AND  STORAGE
STATIONARY  INTERNAL COMBUSTION ENGINES(DIESEL 6  DUAL FUEL)
(AGG) PERIODIC KILNS (CO AL) , DRYERS AND STORAGE

GLASS MANUFACTURING INDUSTRY   (LEAD  GLASS)
MINERAL WOOL MFC
ETHYLENE GLYCOL  DERIVED  FROM ETHILENE OXIDE
MIXED FUEL  BOILERS  (OIL 6 REFUSE)
STATIONERY  PIPELINE COMPRESSOR ENGINES

(AGG) TUNNEL KILNS (OIL) , DR YERS AND STORAGE
STATIONARY  INTERNAL COMBUSTION ENGINES (SPARK IGNITION)
(AGG) PEBIODIC KILNS (OIL), DRIERS AND STORAGE
STANDARD
USED
(En)
6.000003
3.099999
1.559999
1.500030
87.000000
3.099999
4.020000
0.014900
5.549999
0. 140000
0. 120000
7. 679999
0.011000
2.379999
0.005000
9.400000
0.030000
0.720000
16. 000000
1.200300
0.080000
0.0
0.004000
0.010300
5.000000
0.040000
0.0
0.060000

CODE

20 C17
80 A03
21 C20
10 »D3
58 B01
80 A04
50 A10
20 C31
20 C18
10 A36
40 D07
57 B01
71 E91
1 1 B04
40 D14
20 C26
10 B03
45 D12
10 C02
46 D12
40 D19
40 D13
20 C35
10 A07
11 C01
45 D11
10 C01
46 011

FLA I

H2
82
M4
H4
16
H2
N1
35
34
N5
86
82
N1
N1
85
84
N5
N5
N4
MS
N6
86
16
N6
N6
N6
N6
116
                    JSee Table  3-1-B for Definition  of  Terms

-------
                                  59
      12
      II
 cc
 
-------
 Table 3.2,B.
          60

Sulfur Dioxides Air Quality Impacts
of NSPS Strategies
New and Modified Sources in 1990
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
Number with
High Air
Quality Inpact
639
437
436
Number with
Moderate Air
Quality Impact
8,220
7,754
7,656
Number with
Low Air
Quality Impact
2,962
3,630
3,729

Total
Number
11,821
11,821
11,821
Table 3.2.C.  Mobility/Corapetlveness Impacts of  NSPS
              Strategies for Sulfur Dioxides
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
New and

Number of Sources that
Could Have Moved
836
62
0
Modified Sources in 1990

Number of Sources
Precluded from Moving
10,985
11,759
11,821


Total
Number
11,821
11,821
11,821

-------
                                      61
3.1.3  Nitrogen Dioxide
       There were 32 major nitrogen dioxide emission source categories evalu-
ated.  This amounted to 20 percent of all categories evaluated.  A major
pollutant emission source is a source which has the potential of emitting a
minimum of 100 tons per year of one or more specified pollutants without
application of emission control techniques or processes.
       The nationwide growth in production capacity and corollary growth in
nationwide emissions were calculated for both major and minor nitrogen di-
oxide emission sources for a base year 1980.  The nationwide source capacity
was typically computed by growing 1975 capacity to 1980 using appropriate new
growth (Pc) rates.  Where available a "weighed" 1975 state nitrogen dioxide
emission limitation factor (Es) was applied to the 1980 capacity to compute
nationwide nitrogen dioxide emissions.  The state emission factor limitation
                                                       3
(Es) used was, in most cases, the value computed by TRC  in their 1975
analysis of the impact of new source performance standards.
       Hypothetical average source sizes for each major nitrogen dioxide
emission source category ranged from approximately 3600 tons product per
year to over 700,000 tons product per year.  Uncontrolled nitrogen dioxide
emissions from an average hypothetical source size in each major nitrogen
dioxide emission source category ranged from 800 pounds nitrogen dioxide per
year to over 2,500 tons nitrogen dioxide per year.
       During the 1980-1990 time period the new growth capacity was represented
by the number of hypothetical new sources of average size.  For the ten year
period the number of new hypothetical sources for the nitrogen dioxide emis-
sion source categories ranged from as few as five sources per category to over
4000 sources per category.
       The nationwide nitrogen dioxide emissions computed for 1980 as allowed
by 1975 state emission factor limitations was over 6,000,000 tons nitrogen
dioxide per year for the 32 major nitrogen dioxide emission source categories
evaluated.  Approximately 3 source categories accounted for 92 percent of
these nitrogen dioxide emissions with 1 source category accounting for nearly
44 percent of the emissions.
       The nationwide nitrogen dioxide source category production capacities
were also computed for 1990.   Nationwide nitrogen dioxide emissions for 1990

-------
                                      62
were computed assuming state emission limitation factors were  in  force  during
the 1980-1990 time period.  Nationwide nitrogen dioxide emissions were  also
computed assuming application of an emission limitation reflecting a condi-
tion of best anticipated control (En), which would be applied  to  new or
modified source construction during the same ten year period.  The difference
in the national emissions based on the state limitation and the more restric-
tive new and modified source limitation (Ts-Tn) in 1990 was then  computed.
The anticipated 1990 nitrogen dioxide emission reductions  (Ts-Tn) by the
application of (En) beginning in 1980 ranged from 50 tons per  year to 1,270,000
tons per year.  The (TS-Tn) values for major N0« source categories is listed
in Table A-3, Appendix A.
       The air quality impact of each of the 32 major nitrogen dioxide  emis-
sion source categories was evaluated.  A typical or average source size was
selected for each source category for the dispersion analysis.  The maximum
ground level concentration (x) was computed based both on the  state emission
factor limitation (Es) and the best level of anticipated control  (En).  The
maximum ground level concentrations for both (Es) and (En) were compared after
normalizing (dividing) by the appropriate ambient threshold value for nitro-
gen dioxide.  These values were then ranked by order of magnitude and statis-
tically divided into three groups, of High, Moderate and Low air  quality impact.
       Among the 32 major nitrogen dioxide emission source categories evalu-
ated, 3 source categories or 9 percent had a High air quality  impact resulting
from the state emission limitation, (Es).   For this High impact group,  2 or
67 percent of the nitrogen dioxide emission source categories were reduced to
a Moderate or Low air quality impact by the application of the best anticipated
emission limitation, (En).   A total of 53 percent or 17  nitrogen dioxide emission
source categories had a Low air quality impact based on state  emission  limi-
tation factors.
       Of the 32 major nitrogen dioxide emission source categories, 16  or 50
percent were considered to be non-mobile and non-competitive based on either
market or raw material ties.   Therefore, 16 nitrogen dioxide emission source
categories or 50 percent of all the nitrogen dioxide emission  source cate-
gories would be considered mobile and competitive and would tend  to locate
in states with less restrictive emission limitations, assuming all other
mobility and competition considerations allowed the source the necessary
flexibility in source siting.

-------
                                     63
       Table 3.3.A gives the prioritized schedule for all nitrogen dioxide
emission source categories under the Baseline Strategy.  Assuming implemen-
tation of this schedule, nationwide emissions over time are shown in Fig. 3.3.
For purposes of comparison emissions are also displayed for the following cases:
        - All NSPS are set in 1980, that is, En becomes the applica-
          ble emission limitation for all sources in 1980.  This
          case represents a lower bound to achievable emissions.
        - No NSPS are set, that is, Es continues to be the applicable
          emission limitation for all sources.  This case represents
          an upper bound for nationwide nitrogen dioxide emissions.
        This figure shows that nationwide nitrogen dioxide emissions will
continue to increase over time regardless of the standard setting rate and
prioritization scheme.  This insensitivity to the prioritization scheme is to
be expected given the short time period in which the CAA requires NSPS to be
set.  Beyond mid-1982, both the Base Strategy and the lower bound are prac-
tically parallel because in both cases all new and replacement sources must
meet the same limits.  By 1990, the difference in emissions between the Base
Strategy and the lower bound is small compared to the difference between the
upper and lower bounds.  That is, by 1990 the Base Strategy produces almost
the same results in terms of emission reductions as setting all standards in
1980.
        Very little difference in total emissions between the Base Strategy
 and the upper bound occur before 1981.  This situation is probably due to a
 healthy growth in NCL emission sources.  After 1981 N0« emissions under the
 Base Strategy closely parallel the all-NSPS case with little difference in
 emission levels.  This is because the prioritized schedule places the empha-
 sis on mass emission reduction.
        Most of the high priority sources in this schedule are I.C. sources
 rather than process sources.  The I.C. sources have the greatest potential
 for mass emission reductions.
        Table 3.3.B compares the 1990 air quality impacts of the three NSPS
 schedules in terms of the number of new and modified sources having high,
 moderate, and low air quality impacts.  Table 3.3.C compares the mobility and

-------
                                     64
competitiveness impacts of the three schedules in terms of the number of new
and modified sources that could have moved under each schedule, that is, the
number that were mobile prior to being regulated by an NSPS.  The number of
new and modified sources that are either non-mobile initially or that become
non-mobile when an NSPS is set is also given.

-------
                                         TABLE 3-3-A    PRIORITIZED NSPS SCHEDULE FOR NO,
       COBULAIIVB
 IEAB    EffOBT
1960.0
1980.5
1981.0
1981.5
1982.0
1982.5
             ,00
             .00
             .00
             .00
             .00
6.00

1.00
2.00
3.00
a.oo
5.00
6.00

1.00
2.00
3.00
4.00
5.00
6.00

1.00
2.00
3.00
4.00
5.00
6.00
             .00
             .00
             ,00
             .00
             .00
6.00

1.00
2.00
                            SOURCE
EXPLOSIVE IND  (HIGH  EXPLOSIVES)
STATIONARY INTERNAL  COMBUSTION  ENGINES (SPABIC IGNITION)
STATIONARY INTERNAL  COMBUSTION  ENGINES(DIESEL 6 DUAL FUEL)
STATIONERY PIPELINE  CCMPRESSCR  ENGINES
INDUSTRIAL EOILERS   (10-250X10E6 BTU/HR)
POLYETHYLENE  (HIGH  DENSITY)

INDUSTRIAL INCINERATION  (INDUSTRIAL-COMMERCIAL)
MIXED FUEL BOILERS   (COAL £  DEFUSE)
INDUSTRIAL INCINERATION  (IND ORGANIC LIQUID BASTE  IHC)
EXPLOSIVE IND  (LOW  EXPLOSIVES)
GLASS MANUFACTURING  INDUSTRY  (SODA-LINE GLASS)
FIBERGLASS MFG.  PLANTS  (TEXTILE PROCESSING)

ADIPIC  ACID PLANTS
FIBEFGLASS MFG.  PLANTS  (HOOL PROCESSING)
POTASH
MIXED FUEL BOILERS   (OIL 6 REFUSE)
BY-PRODUCT COKE  OVEN
GLASS MANUFACTURING  INDUSTRY  (LEAD GLASS)

CERAMIC CLAY  MFG
NITRATE FERTILIZES   (AMMONIUM NITRATE) PLANTS
MINERAL WOOL  MFG
STYRENE
ETHYLENE GLYCOL  DERIVED FROM ETHYLENE OXIDE
STEEL FOUNDRIES   (ELECTRIC AFC)

STEEL FOUNDRIES   (OPEN HFARTH)
MUNICIPAL INCINERATION < 50T/D
(AGG) PERIODIC KILNS (OIL) , DRYERS AND STORAGE
(AGG) TUNNEL KILNS (0IL) ,DRYEPS  AND STORAGE
(AGG) TUNNEL KILNS (COAL) ,DRYERS AND STORAGE
(AGO) PERIODIC KILNS (COAL) ,DRYERS AND STORAGE

(AGG) PERIODIC KILNS (GAS) , DRYERS AND STORAGE
(AGG) TUNNEL KILNS (GAS) , DR YERS  AND STORAGE
STANDARD
DSED
(En)
6.400000
131.000030
123.000000
15.129999
0.365000
11.250000
0.650000
5.250000
0. 150000
2.099999
0.360000
22. 599991
1.610000
1.570000
0.025000
13.799999
0.050000
0.380000
0.200000
0.003000
0.080000
0.304000
0.010000
0.200000
0.010000
1.049999
1.700000
0.150000
0.900003
1.400000
0.420000
0.150000

CODE :

20 C17
10 CT1
10 C02
11 C01
10 A03
20 B03
1 1 BD4
10 A06
12 B04
20 C18
40 D07
40 D06
20 A04
40 D14
20 A18
10 A07
50 MO
40 D19
40 D10
30 A05
40 D13
20 C45
20 C35
50 D01
50 D02
10 B03
46 D11
45 D11
45 D12
46 D12
46 010
45 DID

FLAC

!15
N4
N4
M5
US
H2
N2
N4
H5
.16
N6
Ml
M5
H»
15
N4
N4
N6
16
36
S6
M6
(16
16
H6
N6
N6
N6
N6
N6
N6
N6
            See Table 3-1-B  for  Definition of Terms

-------
                                66
     12
     II
     10
 QC

 LU   9
 CC
 UJ
 Q_

 CO
 z
 o
CO
 o
 CO
8
 •"   c
 2:   6
 CO
 CO
 LU    5
      1980
              CAA STANDARD
              SETTING DEADLINE
                 I
                     1985
                                              NO NSPS
                                      BASE STRATEGY
                                           ALL  NSPS IN  1980
1990
                                    YEAR

                    FIG.  3.3  NATIONWIDE NITROGEN DIOXIDE EMISSIONS
1995

-------
                        67
Table 3.3.B.
Nitrogen Dioxide Air Quality Impacts
of NSPS Strategies
New and Modified Sources in 1990
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
Number with
High Air
Quality Impact
121
13
12
Number with
Moderate Air
Quality Impact
10,175
4,700
4,694
Number with
Low Air
Quality Impact
5,019
10,602
10,609
Total
Number
15,315
15,315
15,315
Table 3.3.C.  Mobility/Competiveness Impacts of NSPS
              Strategies for Nitrogen Dioxide
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
New and
Number of Sources that
Could Have Moved
3,843
476
0
Modified Sources in 1990
Number of Sources
Precluded from Moving
11,472
14,839
15,315

Total
Number
15,315
15,315
15,315

-------
3.1.4  Hydrocarbon
       There were 93 major hydrocarbon emission source categories evaluated.
This amounted to 59 percent of all categories evaluated.   A major pollutant
emission source is a source which has the potential of emitting a minimum of
100 tons per year of one or more specified pollutants without application
of emission control techniques or processes.
       The nationwide growth in production capacity and corollary growth in
nationwide emissions were calculated for both major and minor hydrocarbon emis-
sion sources for a base year 1980.  The nationwide source capacity was typic-
ally computed by growing 1975 capacity to 1980 using appropriate new growth
(Pc) rates.  Where available a "weighed" 1975 state hydrocarbon emission limi-
tation factor (Es) was applied to the. 1980 capacity to compute nationwide
hydrocarbon emissions.  The state emission factor limitation (Es) used was, in
most cases, the value computed by TRC  in their 1975 analysis of the impact
of new source performance standards.
       Hypothetical average source sizes for each major hydrocarbon emission
source category ranged from approximately 400 tons product per year to over
21 million barrels of oil per year for a refinery.  Uncontrolled hydrocarbon
emissions from an average hypothetical source size in each major hydrocarbon
emission source category ranged from over 100 tons hydrocarbon per year to over
15,000 tons hydrocarbon per year.
       During the 1980-1990 time period the new growth capacity was represented
by the number of hypothetical new sources of average size.  For the ten year
period the number of new hypothetical sources for the major hydrocarbon emission
source categories ranged from as few as one source per category to over 7,000
sources per category.
       The nationwide hydrocarbon emissions computed for 1980 as allowed by
1975 state emission factor limitations was over 5.5 million tons hydrocarbon
per year for the 93 major hydrocarbon emission source categories evaluated.
Approximately 6 source categories accounted for 52 percent of these hydro-
carbon emissions with 29 source categories accounting for nearly 90 percent
of the emissions.

-------
                                      69
       The nationwide hydrocarbon source category production capacitiss were
also computed for 1990.  Nationwide hydrocarbon emissions for 1990 were
computed assuming state emission limitation factors were in force during the
1980-1990 time period.  Nationwide hydrocarbon emissions were also computed
assuming application of an emission limitation reflecting a condition of best
anticipated control (En), which would be applied to new or modified source
constuction during the same ten year period.  The difference in the national
emissions based on the state limitation and the more restrictive new and mod-
ified source limitation (Ts-Tn) in 1990 was then computed.  The anticipated
1990 hydrocarbon emission reductions (Ts-Tn) by the application of (En) begin-
ning in 1980 ranged from 50 tons per year to 817,000 tons per year.  The
(Ts-Tn) values for major hydrocarbon source categories is listed in
Table A-3, Appendix A.

       The air quality impact of each of the 93 major hydrocarbon emission
source categories was evaluated.  Actually 97 individual hydrocarbon emission
source categories were evaluated for air quality impact.  However, 4 source
categories were actually unit operations of a larger representative source
category and were aggregated for growth and mass emission purposes.  The
computer dispersion model program calculated the air quality impact for each
of the unit operations and then computed a maximum air quality impact for
the aggregated source category.  A typical or average source size was selected
for each source category for the dispersion analysis.  The maximum ground
level concentration (x) was computed based both on the state emission factor
limitation (Es)  and the best level of anticipated control (En).   The maximum
ground level concentrations for both (Es) and (En) were compared after
normalizing (dividing) by the appropriate ambient threshold value for hydro-
carbons.  These values were then ranked by order of magnitude and
statistically divided into three groups of High, Moderate and Low air
quality impact.
       Among the 93 major hydrocarbon emission source categories evaluated,
54 source categories or 58 percent had a High air quality impact resulting
from the state emission limitation, (Es).  For this High impact group, 50 or
93 percent of the hydrocarbon emission source categories were reduced to a
Moderate or Low air quality impact by the application of the best anticipated
emission limitation, (En).  A total of 11 percent or 10 hydrocarbon emission

-------
                                      70
source categories had a Low air quality impact based on state emission
limitation factors.
       Of the 93 major hydrocarbon emission source categories, 32 or 34
percent were considered to be non-mobile and non-competitive based on
either market or raw material ties.  Therefore, 61 hydrocarbon emission
source categories or 66 percent of the major hydrocarbon emission source
categories would be considered mobile and competitive and would tend to
locate in states with less restrictive emission limitations, assuming all
other mobility and competition considerations allowed the source the
necessary flexibility in source siting.
       Table 3.4.A  gives the prioritized schedule for all hydrocarbon
emission source categories under the Baseline Strategy described above.
Nationwide hydrocarbon emissions as a function of time assuming implementation
of this schedule are shown in Figure 3.4.  For purposes of comparison, the
emissions are also displayed for the following limiting cases:
       -  All NSPS are set in 1980, that is,  En becomes the applicable
          emission limitation for all hydrocarbon sources in  1980.  This
          case represents a lower bound  to achievable hydrocarbon emissions.
       -  No NSPS are set, that is, Es continues to be the applicable
          emission limitation for all sources.  This case represents
          an upper limit for nationwide  hydrocarbon emissions.
Examination of Fig.  3.4 shows that nationwide hydrocarbon emissions will con-
tinue to decrease with time by the application of En, regardless of the standard
setting rate and prioritization scheme.  This insensitivity to the prioritiza-
tion  scheme is to be expected given the short time frame in  which the Clean
Air Act requires standards to be set.  Beyond mid-1982, both  the Base Strategy
and the lower bound  case are almost parallel, because in  both cases all new
and replacement sources must meet  the same emission limitations.
       Figure 3.4 shows that as a result of the prioritization schedule the
hydrocarbon emissions rise between 1980  and 1981 and then start to decline
after 1981, paralleling the lower bound  (En) emission case beginning in 1981.
This initial rise in hydrocarbon emissions is due to a healthy growth in
source categories and the initial lag of the impact of NSPS.

-------
                                      71
       Table 3.4.B compares the ]Q°0 air qualitv impacts of the three NSPS
schedules in terms of the number of new and modified sources having high,
moderate, and low air quality impacts.   Table 3.4.C compares the mobility  and
competitiveness impacts of the three schedules in terms of the number of new
and modified sources that could have moved under each schedule, that is, the
number that were mobile prior to being  regulated by an NSPS.  The number of
new and modified sources that are either non-mobile initially or that become
non-mobile when an NSPS is set is also  given.

-------
                                      TABLE 1-4-A    PRIORITIZED NSPS SCHEDULE  FOR  HYDROCARBONS*
 YEAR
       CUMULATIVE
         EFFCFT
1S80.C
1980.5
1981.0
1981.5
             .00
             .00
             .00
             .00
             .00
             .00
             .00
             .00
             .00
           1C.00
           1 1.00
           12.00
           13.00
           lu.oo
           1 5.CO
           16.00
             .00
             .CO
             .00
             .00
             .00
             .00
             .00
           8.00
           9.00
          10.00
          11.00
          12.00
          13.00
          11.00
          15.00
          16.00
 1.00
 2.00
 3.00
 U.GO
 E.CO
 6.00
 7.00
 8.00
 9.00
10.00
11.00
12.00
13.00
1U.OO
15.00
16.00

 1.00
 2.00
 3.00
                                        SCUFCE
ETHYLENE  OXIDE PLANTS  (Alii OXIDATION  PROCESS)
ACRYLONITPILE PLANTS
DIME1IIYI.  TEBEPHTHALATE PLANTS
CARBON  BLACK   (FOP.NACE PEOCESS)
INDUSTRIAL  SURFACE COATING   (CAN  COATING)
(AGG) PETROLEUM REFINERY MISC.  SOURCES
INDUSTRIAL  SURFACE COATING   (PAPER  COATING)
DRY CLEANING
FUEL CONVERSION HIGH BTU COAL  GASIFICATION
INDUSTRIAL  SURFACE COATING   (FABRIC COATING)
GRAPHIC  ARTS  INDUSTRY  (GRAVURE)
BY-PRODUCT  COKE OVEN
PLASTICS  AND  RESINS  (ACRYLIC)
STATIONARY  INTERNAL COMBUSTION  ENGINES (SPARK IGNITION)
STATIONARY  INTERNAL COMBUSTION  ENGINES(DIESEL 6 DUAL FUEL)
INDUSTRIAL  SURFACE COATING   (AUTOMOBILES)

BEER PROCESSING  PLANTS
ETHYLENE  DICHLOPTDE PLANTS  (OXYCHLORINATION  PHOCESS)
FORMATDEHYDE  PLANTS
ACRYLIC ACID
VEGETABLE OIL  MFG.
CYCLOHEXANOL/CYCLOHEXANONE
PROPYLENE   (OXIDE)
METHYL M£THACRYLATE PLANTS
VINYL ACETATE  (ETHYLENE)
TEREPHTHALIC  ACID  PLANTS
ETHYLENE-PROPYLEHE
ETHYLENE  OXIDE PLANTS  (OXYGEN  OXIDATION  PROCESS)
VARNISH
POLYETHYLENE  (HIGH DENSITY)
HETHANOL  PLANTS
CHARCOAL  PLANTS

CYCLOHEXANE
ETHYLENE  GLYCOL  DERIVED FROM ETHYLENE  OXIDE
SYTHETIC  RUBBER   (NEOPRENE)
ADIPIC ACID PLANTS
CARBON 1ETRACHLORIDE (METHANE)
POLYETHYLENE  (LOW  DENSITY)
ACETIC ANHYDRIDE
ETHYL BENZENE
INDUSTRIAL  SURFACE COATING  (METAL  COILS  COATING)
P.T.M.  ID.   (SHIP  6 BARGE TRANSFER,  GAS.  6 CRUDE OIL)
GRAPHIC ARTS  INDUSTRY  (FLEXOGRAPHY)
ETHYLENE
PRINTING  INK  PLANTS
SYNTHETIC FIBER  INDUSTRY   (NYLON)
INDUSTRIAL  SURFACE COATING  (LARGE  APPLIANCE  COATING)
GRAPHIC   ARTS  INDUSTRY   (LETTERPRESS)

INDUSTRIAL  SURFACE COATING  (MAGNET HIRE  COATING)
P.T.M. ID.   (BULK  GAS.  TERMINALS) LOADING  TASK TRUCKS/RR CIS
(AGG) CRUDE OIL  AND NATURAL GAS PRODUCTION PLANTS
STANDARD
USED
(En)
1.679999
7.919999
0.370000
0. 100000
0.053000
0.015000
0.263000
21.399991
0.680000
0.260000
65.000030
O.OU2000
2.100030
0.0
0.0
0.310000
0. 109000
0.5U0003
0. 064000
1. 7U0003
15. 203000
1.307000
0.592003
1. 127999
0.130003
0.210003
0.720003
0.130000
0. 679030
0.591030
0. 100000
«. 799999
0.200000
0. 3H9000
1.200003
0.013030
0.360000
0.210030
0. 178000
0.050000
0.323000
0.001300
26.000000
0.333000
a. 799999
0.350000
0.065000
35.000000
0.065000
0.003600
0.131000

CODE

21 C11
20 C06
20 C28
20 C03
62 B03
71 D01
63 B33
63 B31
21 C20
61 B02
60 B31
50 A10
21 B17
10 C11
10 C02
62 B02
30 009
20 C37
23 COS
20 C17
30 D11
20 C49
20 C36
23 C31
20 C37
20 C27
23 D36
22 C11
20 C15
20 833
20 C32
20 C16
20 All
20 C35
20 D07
20 A01
20 C?8
20 BOM
23 C1B
23 C30
63 B02
60 F03
60 805
20 C31
20 C19
20 809
61 802
60 B07
61 B33
60 POU
71 B01

FLA

M2
M2
12
.13
S2
N1
N1
N2
N2
N2
N2
N2
.15
N5
N5
N5
12
12
13
12
12
12
12
12
12
13
12
12
12
12
12
12
M2
12
12
M3
M2
M2
12
M2
N2
N1
N2
M4
M5
N4
N5
N1
85
111
N6
                     aSee Table  3-1-B  for Definition of  Terms

-------
                                                          TABLE  3-4-A3 (Cont'd)
 YEAB
       CUHULATIVE
         EFFCET
1S81.5
1S82.C
1982.5
 4.00
 5.00
 6.00
 7.00
 8.00
 9.00
10.00
11 .00
12.00
13.00
1<-.00
15.00
16.00

 1.00
 2.00
 3.00
 U.OO
 5.00
 6.CO
 7.00
 8.00
 9.00
10.00
11.00
12.00
13.00
11.00
15.00
16.00

 1.00
 2.00
 3.00
 4.00
 5.00
 e.oo
 7.00
 e.oo
 9.00
10.00
11.00
12.00
13.00
                                       SOUECE
MAI.EIC ANHYDRIDE
CARBON TETRACHLORIDE   (PROPANE)
CARBON TETEACHORIDE   (CABBON  DISULFIDE)
PHENOL PLANTS
ACETONE   (1SOPSOPANOL)
METHYL CHLOROFOEM
ACETONE  (CUMENE)
EOLY-BUTADIENE
PHENOLIC RESINS
ACETATE RAYON
UEEA-MELAMINE
ALLYL CHLOEIDE
ACETONE   (CYANOHYDRIN)

ACETIC ACID   (BOTAHE)
INDUSTRIAL INCINERATION   (INDUSTBIAL-COHHERCIAL)
AMMONIA PLANTS
ACETIC ACID   (ACETALDEHYDE)
PLYWOOD MANUFACTURING  PLANT
POLYSTYRENE
ABS-SAN RESIN PLANT
ACETIC ACID   (HETHANOL)
STYEENE
HINEFAL WOOL MFC
MHISKEY
PHTHALIC ANHYDRIDE PLANTS   (OXYLENE PROCESS)
FIBERGLASS MFG. PLANTS  (WOOL PROCESSING)
POLYPROPLYENE
PHTHALIC ANHYDRIDE PLANTS  (NAPTHALENE PROCESS)
TEXTILE SFG (HEAT SETTING/FINISHING)

SYNTHETIC RUBBER IND.   (STYRENE-BUTADIENE) (SBH)
(AGG) ASPHALT ROOFING  PLANTS
HIXED FUEL BOILERS   (COAL  6 REFUSE)
MIXED FUEL BOILEES   (OIL  6  REFUSE)
INDUSTRIAL EOILEHS   (10-250X10E6  BTU/HR)
INDUSTRIAL INCINERATION   (IND ORGANIC LIQUID HASTE INC)
MUNICIPAL INCINERATION <  50T/D
(AGG) TUNNEL KILNS (COAL) , DRYEBS AND STORAGE
(AGG) TUNNEL KILNS (OIL) .DRYERS AND  STORAGE
(AGG) TUNNEL KILNS (GAS) .DRYEBS AND  STORAGE
(AGG) PERIODIC KILNS (COAL) , DBYERS AND STOBAGE
(AGG) PERIODIC KILNS (GAS) , DRIERS  AND STORAGE
(AGG) PERIODIC KILNS (OIL),  DRYEBS AMD STOBAGE
STANDARD
USED
(En)
2.620000
0.320000
0.320000
0.044800
0. 130000
0. 360000
0.072000
0.090000
0.075000
0.353000
0.075000
0.200000
0.020003
0. 147000
2.879999
0.0
0. 196000
0.0
0.120000
0. 075000
0. 150000
0.016400
0.869000
0.000055
0.020000
2.099999
0.236000
0.100000
4.740030
3.099999
0.430000
0.0
0.285000
0.0
0.0
0.010000
0.0
0.0
0.0
0.0
0.0
0.0

CODE

20 C23
20 C39
23 C4t>
20 C33
20 C42
20 C4«
20 C41
20 D02
20 BIO
20 B13
20 B11
23 C46
20 CU3
20 A13
1 1 B04
21 C13
20 A11
80 B01
20 BOS
20 B12
20 A12
20 CU5
40 D13
30 D38
23 C26
1 0 D 1 '4
20 B07
20 C25
90 F02
20 D31
4 1 B01
1 0 A06
1 0 A07
10 A03
12 B04
1 0 333
45 D12
45 D11
45 D10
46 012
46 D10
46 011

PLAi

.12
12
(12
M2
12
H3
12
32
N2
M2
N2
M3
92
13
N1
MS
.15
M4
15
15
MS
M5
14
MS
MS
M4
14
as
S4
M4
N4
N5
N5
N6
N6
N6
N6
N6
N6
N6
N6
»6
                    'See Table 3-1-B  for  Definition of Terms

-------
     12
      0
QC

UJ
>-
GC.
UJ
Q-
o
8
»-    7
CO
CO
CO
                         ALL NSPS
                         IN   1980
                                                NO NSPS
             CAA  STANDARD
             SETTING  DEADLINE
      1980
                     1985
1990
1995
                                  YEAR

                FIG. 3.4.  NATIONWIDE HYDROCARBON EMISSIONS

-------
                                      75
                 Table 3.4.B.
                Hydrocarbon Air Quality Impacts
                of NSPS Strategies
New and Modified Sources in 1990
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
Number with
High Air
Quality Inpact
9,733
424
355
Number with
Moderate Air
Quality Impact
5,315
11,041
10,905
Number with
Low Air
Quality Impact
6,016
9,599
9,804
Total
Number
21,064
21,064
21,064
             Table 3.4.C.   Mobility/Competiveness  Impacts  of NSPS
                           Strategies for Hydrocarbon
Standard
Setting
Strategy
                                New and Modified Sources in 1990
Number of Sources that
   Could Have Moved
  Number of Sources       Total
Precluded from Moving     Number
No NSPS

Baseline

All set
in 1980
       3,453

         266


           0
      17,611

      20,798


      21,064
21,064

21,064


21,064

-------
                                     76
3.1.5  Carbon Monoxide Emissions
       There were 36 major carbon monoxide emission source categories evaluated.
This amounted to 23 percent of all major source categories evaluated.  A major
pollutant emission source is a source which has the potential of emitting a
minimum of 100 tons per year of one or more specified pollutants without
application of emission control techniques or processes.
       The nationwide growth in production capacity and corollary growth in
nationwide emissions were calculated for both major and minor carbon monoxide
emission sources for a base year 1980.  The nationwide source capacity was typi-
cally computed by growing 1975 capacity to 1980 using appropriate new growth
(Pc) rates.  Where available a "weighed" 1975 state carbon monoxide emission
limitation factor (Es) was applied to the 1980 capacity to compute nationwide
carbon monoxide emissions.  The state emission factor limitation (Es) used was,
                                        3
in most cases, the value computed by TRC  in their 1975 analysis of the impact
of new source performance standards;
       Hypothetical average source sizes for each major carbon monoxide emission
source category ranged from approximately 1800 tons product per year to over
700,000 tons product per year.  Uncontrolled carbon monoxide emissions from an
average hypothetical source size in each carbon monoxide emission source cate-
gory ranged from over 100 tons carbon monoxide per year to over 72,000 tons
carbon monoxide per year.
       During the 1980-1990 time period the new growth capacity was represented
by the number of hypothetical new sources of average size.  For the ten year
period the number of new hypothetical sources for the carbon monoxide emission
source categories ranged from as few as one source per category to over 4,000
sources per category.
       The nationwide carbon monoxide emissions computed for 1980 as allowed by
a 1975 state emission factor limitation was over 6.5 million tons carbon monoxide
per year for the 36 major carbon monoxide emission source categories evaluated.
Approximately 8 source categories accounted for 89 percent of these carbon
monoxide emissions with 2 source categories accounting for nearly 66 percent
of the emissions.

-------
                                       77
       The nationwide carbon monoxide source category production capacities were
also computed for 1990.  Nationwide carbon monoxide emissions for 1990 were
computed assuming state emission limitation factors were in force during the
1980-1990 time period.  Nationwide carbon monoxide emissions were also com-
puted assuming application of an emission limitation reflecting a condition
of best anticipated control (E ), which would be applied to new or modified
                              n
source construction during the same ten year period.  The difference in the
national emissions based on the state limitation and the more restrictive new
and modified source limitation (Ts-Tn) in 1990 was then computed.  The anti-
cipated 1990 carbon monoxide emission reductions (Ts-Tn) by the application of
(En) beginning in 1980 ranged from 20 tons per year to nearly 2 million tons
per year.
       The air quality impact of each of the 36 major carbon monoxide emission
source categories was evaluated.  A typical or average source size was selected for
each source category for the dispersion analysis.  The maximum ground level
concentration (x) was computed based both on the state emission factor limi-
tation (Es) and the best level of anticipated control, (En).  The maximum
ground level concentrations for both (Es) and (En) were compared after normaliz-
ing (dividing) by the appropriate ambient threshold value for carbon monoxide.
These values were then ranked by order of magnitude and statistically divided
into three groups, of High, Moderate and Low air quality impact.
       Among the 36 major carbon monoxide emission source categories evaluated,
none of the categories had a High air quality impact resulting from the state
emission limitation, (Es).  A total of 53% or 19 carbon monoxide emission
source categories had a Low air quality impact based on state emission limitation
factors.
       Of the 36 major carbon monoxide emission source categories, 15 or 42
percent were considered to be nonmobile and noncompetitive based on either market
or raw material ties.  Therefore, 21 carbon monoxide emission source categories
or 58 percent of all the major carbon monoxide emission source categories
would be considered mobile and competitive and would tend to locate in states
with less restrictive emission limitations, assuming all other mobility and
competition considerations allowed the source the necessary flexibility in
source siting.

-------
                                     78
       Table 3.5.A gives the prioritized schedule for all carbon monoxide
emission source categories under the Baseline Strategy.  Assuming implementa-
tion of this strategy, Fig. 3.5 shows nationwide emissions over time.  The
following two cases are also displayed for comparison purposes:
       -  All NSPS are set in 1980, that is, En becomes the applicable
          emission limit for all sources in 1980.  This represents a lower
          limit to achievable emissions.
       -  No NSPS are set, that is, Es continues to be the applicable
          emission limit.  This case represents an upper limit for
          nationwide carbon monoxide emissions.
The upward trend in stationary source emissions can be reversed under NSPS.
Tinder the Rase Strategy, emission reductions are substantial and occur earlv
in the standard setting period.  Beyond 1982, both the Base Strategy and the
lower limit are almost parallel, as would be expected given the short time
in which the CAA requires all NSPS to be set.  Beyond mid-1982, all new and
replacement sources must meet NSPS in both the base and lower limit cases.
The difference in emissions between the Base Strategy and the lower limit is
small compared to the difference between the upper and lower limits by 1990.
By this time, the emission reductions under both the base and lower limit
strategies are practically identical.
       Process sources constitute most of the high priority sources; combustion
sources occur nearer the bottom of the list.  This occurs because the process
sources generally have high mass emission reduction potential (Ts-Tn),  tend
to be mobile, and have higher air quality impacts than the combustion sources.

       Table 3.5.B compares the 1990 air quality impacts of the three NSPS
schedules  in terms of the number of new and modified sources having high,
moderate,  and low air quality impacts.   Table 3.5.C compares the mobility and
competitiveness  impacts of the three schedules in terms of the number of new
and  modified sources that could have moved under each schedule, that is, the
number that  were mobile prior to being regulated by an NSPS.  The number of
new  and modified sources that are either non-mobile initially or that become
non-mobile when  an NSPS is set is also given.

-------
                                   TABLE  3-5-A   PRIORITIZED NSPS SCHEDULE FOR CARBON  MONOXIDE*
 YEAR
       CUMULATIVE
         EFFORT
1S8C.C
1960.5
1961.0
1981.E
1982.0
1982.5
             00
             00
             00
             00
             00
6.00

1.00
2.00
3.00
4.00
5.00
6.00

1.00
2.00
3.00
4.00
5.00
6.00

1.00
2.00
3.00
4.00
5.00
6.00

1.00
              00
              00
           a.oo
           5.00
           6.00
             .00
             ,00
             ,00
             .00
             .00
           6.00
                                       SOUPCE
CABBON BLACK   (FURNACE  PROCESS)
ACRYLONITRILE  PLANTS
MINERAL WOOL MFG
PH1HALIC ANHYDRIDE  PLANTS   (OXYLENE PROCESS)
FORMALDEHYDE PLANTS
MALEIC ANHYDRIDE

STATIONARY INTEFNAL COMBUSTION  ENGINES (SPARK IGNITION)
STATIONARY INTERNAL COMBUSTION  ENGINES(DIESEL G DUAL FUEL)
INDUSTRIAL BOILERS   (10-250X10E6 BTO/HB)
CYCLOHEXANOL/CYCLOHEXANONE
ADIP1C ACID PLANTS
CYCLCHEXANE

METHANOL PLANTS
ACETIC ANHYDRIDE
CHARCOAL PLANTS
STATIONERY PIPELINE COMPRESSOR  ENGINES
ACRYLIC ACID
PHTHALIC ANHYDRIDE  PLANTS  (NAPTHALENE PROCESS)

GREY IRON FOUNDRIES  (CUPOLA)
INDUSTRIAL INCINERATION  (INDUSTRIAL-COMMERCIAL)
BY-PRODUCT COKE OVEN
ETHYLENE DICHLORIDE PLANTS  (OXYCHLORINATION PROCESS)
ACETIC ACID   (ACETALDEHYDE)
PHENOL PLANTS

FIBERGLASS MFG. PLANTS   (WOOL PROCESSING)
ACETIC ACID   (BUTANE)
FIBERGLASS MFG. PLANTS   (TEXTILE PROCESSING)
(AGO) ASPHALT  ROOFING PLANTS
INDUSTRIAL INCINERATION  (IND ORGANIC LIQUID BASTE IHC)
MIXED FUEL BOILERS   (COAL  6 REFUSE)

MIXED FUEL BOILERS   (OIL 6 REFUSE)
(AGG) TUNNEL KILNS (CO AL) , DRYERS AND STORAGE
JAGG) TUNNEL KILNS (GAS) .DRYERS  AND STORAGE
MUNICIPAL INCINERATION  < 50T/D
(AGG) PERIODIC KILNS(COAL),DRYERS AND STORAGE
(AGG) PERIODIC KILNS (GAS) . DRYERS AND STORAGE
STANDARD
USED
(En)
2.799999
8.000000
M.719999
3.009999
0. 157000
15.599999
0.0
0.0
0.0
1. 115000
0.115000
0.250000
0. 100000
0.219000
3.203000
9.639999
0.240030
1.000030
8.000000
8.469999
2.669999
0.013030
0.040000
0.005010
2.240330
0.044000
2.030000
0.015000
0.3
18.000000
17.000000
1.900000
0.303000
35.000000
3.200000
0.110000

CODE

20 C03
20 C06
140 D13
20 C26
20 COB
20 C23
10 C01
10 C32
10 A03
20 C49
20 A04
23 A14
20 C32
20 C48
20 C16
11 C01
23 C47
20 C25
51 C04
11 B014
50 A10
20 C07
21 A11
20 C33
40 D14
23 A13
40 D06
41 B01
12 B3«
10 A06
10 A37
45 012
45 D10
10 B03
46 D12
46 D10

FLAG

15
15
MS
M5
S5
M5
N6
N6
N6
15
15
H5
M5
t)5
15
N6
.15
15
85
NU
N4
16
116
M6
16
46
16
S6
N6
N6
H6
N6
N6
H6
N6
N6
            3See  Table  3-1-B for Definition of Terms

-------
                                 80
en

LU


or
LU
a.

CO

o
CO
 O
 CO
 CO
 CO
 LU
     10
      8
                                                NO NSPS
                                            BASE  STRATEGY
                                             ALL NSPS
                                             IN  I960
              CAA STANDARD
              SETTING DEADLINE
                 I
                           I
1
      1980                1985                1990

                                   YEAR

               FIG. 3.5.  NATIONWIDE CARBON MONOXIDE EMISSIONS
                                                                   1995

-------
                          81
   Table 3.5.B.  Carbon Monoxide Air Quality Impacts
                 of NSPS Strategies
New and Modified Sources in 1990
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
Number with
High Air
Quality Impact
0
0
0
Number with
Moderate Air
Quality Impact
636
94
87
Number with
Low Air
Quality Impact
10,260
10,802
10,809
Total
Number
10,896
10,896
10,896
Table 3.5.C.  Mobility/Competitiveness Impacts of NSPS
              Strategies for Carbon Monoxide
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
New and Modified Sources in 1990
Number of Sources that Number of Sources
Could Have Moved Precluded from Moving
649 10,247
21 10,875
0 10.896

Total
Number
10,896
10,896
10,896

-------
                                      82
3.1.6  Lead
       There were 13 majot 1°="* emission source categories evaluated.  This
amounted to 8 percent of all major source categories evaluated.  A major
pollutant emission source is a source which has the potential of emitting
a minimum of 100 tons per year of one or more specified pollutants without
application of emission control techniques or processes.
       The nationwide growth in production capacity and corollary growth in
nationwide emissions were calculated for both major and minor lead emission
sources for a base year 1980.  The nationwide source capacity was typically
computed by growing 1975 capacity to 1980 using appropriate new growth (Pc)
rates.  Where available a "weighed" 1975 state lead emission limitation factor
(Es) was applied to the 1980 capacity to compute nationwide lead emissions.
The state emission factor limitation (Es) used was, in most cases, the value
               3
computed by TRC  in their 1975 analysis of the impact of new source perfor-
mance standards.
       Hypothetical average source sizes for each major lead emission source
category ranged from approximately 6,000 tons product per year to over
90,000 tons product per year.  Uncontrolled lead emissions from an average
hypothetical source size in each lead emission source category ranged from
nearly 1 ton lead per year to over 1,900 tons lead per year.
       During the 1980-1990 time period the new growth capacity was represent-
ed by the number of hypothetical new sources of average size.  For the ten
year period the number of new hypothetical sources for the lead emission
source categories ranged from 14 sources per category to over 1,000
sources per category.
       The nationwide lead emissions computed for 1980 as allowed by a 1975
state emission factor limitation was 12,800 tons lead per year for the
13 major lead emission source categories evaluated.  Approximately 6 source
categories accounted for 91 percent of these lead emissions with 2 source
categories accounting for 59 percent of the emissions.
       The nationwide lead source category production capacities were also
computed for 1990.  Nationwide lead emissions for 1990 were computed assuming
state emission limitation factors were in force during the 1980-1990 time per-
iod.  Nationwide lead emissions were also computed assuming application of an

-------
                                      83
emission limitation reflecting a condition of best anticipated control (E ),
which would be applied to new or modified source construction during the same
ten year period.  The difference in the national emissions based on the state
limitation and the more restrictive new and modified source limitation (Ts-Tn)
in 1990 was then computed.  The anticipated 1990 lead emission reductions (Ts-
Tn) by the application of (En) beginning in 1980 ranged from 30 tons per year
to 7,700 tons per year.
       The air quality impact of each of the 13 major lead emission source
categories was evaluated.  A typical or average source size was selected for
each source category for the dispersion analysis.  The maximum ground level
concentration (\) was computed based both on the state emission factor
limitation (Es) and the best level of anticipated control (En).  The maximum
ground level concentrations for both (Es) and (En) were compared after
normalizing (dividing) by the appropriate ambient threshold value for lead.
These values were then ranked by order of magnitude and statistically divided
into three groups, of High, Moderate and Low air quality impact.
        Among the 13 major lead emission source categories evaluated,  7 source
categories or 24 percent had a High air quality impact resulting from the state
emission limitation (Es).  For this High impact group, 3 or 23 percent of  the lead
emission source categories were reduced to a. Moderate or Low air quality impact
by the application of the best anticipated emission limitation,  (En).   No  lead
emission source categories had a Low air quality impact based on state emission
limitation factors.
       Of the 13 major lead emission source categories, 5 or 39 percent were
considered to be non-mobile and non-competitive based on either market or raw
material ties.  Therefore, 8 lead emission source categories or 61 percent
of all the lead emission source categories would be considered mobile and
competitive and would tend to locate in states with less restrictive emission
limitations assuming all other mobility and competition considerations allowed
the source the necessary flexibility in source siting.

        Table 3-6.A gives the prioritization schedule for all lead emission
 source categories under the Baseline Strategy described above.   Nationwide
 lead emissions as a function of time assuming implementation of this schedule
 are shown in Fig. 3.6.  For purposes of comparison, the emissions are also

-------
displayed for the following limiting cases:
       - All NSPS are set in 1980, that is, En becomes the applicable
         emission limitation for all lead sources in 1980.  This case
         represents a lower bound to achievable lead emissions.
       - No NSPS are set, that is, Es continues to be the applicable
         emission limitation for all sources.  This case represents
         an upper limit for nationwide lead emissions.
Examination of Fig. 3.6 shows that nationwide lead emissions will continue
to decline with time by the application of En regardless of the standard
setting rate and prioritization scheme.  This insensitivity to the priori-
tization scheme is to be expected given the short time frame in which the
Clean Air Act requires standards to be set.  Beyond mid-1982, both the Base-
line Strategy and the lower bound case are almost parallel, because in both
cases all new and replacement sources must meet the same emission limitations.
       Figure 3.6 shows that as a result of the prioritization schedule the
lead emissions rise between 1980 and 1981 and then decline gradually after
1981, paralleling the lower bound emission case.  This initial rise in lead
emissions is due to source growth and the lag of the impact of NSPS.
       Further examination of Figure 3.6 shows that in 1984 the prioritization
schedule provides a reduction of 2,000 tons per year lead from that allowed
by state emission limitations.  By 1987 this reduction in annual emissions
has increased to 5,000 tons lead per year and by 1990 to 9,000 tons lead per
year.  After 1990 the prioritization scheme allows a constant differential
increase in emission of 800 tons per year above that which would have been
obtained if all lead En (NSPS) limitations were set in 1980.
       Examination of Table 3.6.A indicates that standards are first set for
Grey Iron Foundries (electric arc and reverbatory furnaces) and gasoline
additive plants all of which have high potential mass emission reduction potential
and also have high air quality impacts.  Standards are set last for Metallic
Mineral Mining because these plants have lower potential mass emission
reduction, low air quality impact and are non-mobile.

        Table  3-6-B gives the  1990 air quality impact  of  each of the three
 prioritization  cases  in  terms of  the number  of sources which continue  to have
 high air  quality  impacts  despite  the setting of  an NSPS.   'Table 3-6-C  compares

-------
                                     35
the mobility/competitiveness impacts of  the  three  cases  in  terms  of  the number
of sources that could have moved,  that  is, the  number  that  were mobile prior
to having had an NSPS set for them.
       Table 3.6.B compares  the 1990 air quality impacts of the three NSPS
schedules in terms of the number of new and modified sources having high,
moderate, and  low air quality impacts.  Table 3.6.C compares the mobility and
competitiveness impacts  of  the three schedules in terms of the number of new
and modified sources that could have moved under each schedule, that is, the
number that were mobile  prior to being regulated by an NSPS.  The number of
new and modified sources  that are either non-mobile initially or that become
non-mobile when an NSPS  is  set is also given.

-------
                                         TABLE  3-6-A    PRIORITIZED NSPS SCHEDULE FOR  LEAD*
 TEAR
       CUMULATIVE
         EFFOBT
1980.0
1980.5
1S81.0
1S81.5
1982.0
           1.00
             00
             00
           1.00
 ,00
 ,00

 ,00
 ,00
3.00

1 .00
2.00
3.00

1.00
                                       SOURCE
                           GREY  IRON  FOUNDRIES
                           GREY  IRON  FOUNDRIES
                           GASOLINE  ADDITIVES
                      (EtECTEIC  ABC)
                      (REVERBERATOR!)
                     (ELECTROLYTIC)
GASOLINE ADDITIVES   (SODIU H- LEAD)
OBEY IRON FOUNDRIES   (CUPOLA)
INDUSTRIAL INCINERATION   (INDUSTRIAL-COMMERCIAL)

HETALIC MINERALS MINING  (FERROALLOY)
GLASS MANUFACTURING  INDUSTRY   (LEAD  GLASS)
(AGG) SECONDARY ZINC  SMELTERS  (RETORT REDUCTION 6 KETTLE FUBIACES

(AGO) SECONDARY ZINC  SHELTERS  (HOPIZ  6 REVERB FURNACES)
MUNICIPAL INCINEBATION <  50T/D
METALIC MINERALS MINING  (LEAD MINING)

METALIC MINERALS MINING  (ZINC MINE E  CRUSHING)
                                                                                                    STANDARD
                                                                                                      USED

                                                                                                      (En)
0.0
0.0
1.000000

0.890000
0.033000
0.040030

0.003000
0.060000
0.050000

0.050000
0.0
0.010000
                                                                                                                            CODE
                                                                                                                                   FLAG
50 C02  B3
50 C03  H3
70 F02  81

70 F01  HI
50 COU  92
11 BOH  B2

«2 E01  N2
HO D19  H5
51 E01  MB

51 E02  Hit
10 B03  III

-------
                                  87
     .028
     .026
     .024
 cr  .022
   .016
     .014
     .012
     .010
                                              NO NSPS
                                              BASE  STRATEGY
            CAA STANDARD
            SETTING DEADLINE
                   t
                                     ALL NSPS SET IN  1980
        1980
                           1985
1990
1995
                                    YEAR
                        FIG. 3.6.  NATIONWIDE LEAD EMISSIONS

-------
                                      88
                     Table  3.6.B.
                   Lead Air Quality Impacts
                   of NSPS Strategies
New and Modified Sources in 1990
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
Number with
High Air
Quality Impact
229
6

0
Number with
Moderate Air
Quality Impact
838
863

861
Number with
Low Air
Quality Impact
0
198

206

Total
Number
1,067
1,067

1,067
             Table 3.6.C.  Mobility/Competiveness Impacts of NSPS
                           Strategies for Lead
Standard
Setting
Strategy
                                New and Modified Sources in 1990
Number of Sources that
   Could Have Moved
  Number of Sources       Total
Precluded from Moving     Number
No NSPS

Baseline

All set
in 1980
         242
          12
        825
      1,055


      1,067
1,067
1,067


1,067

-------
                                      89
3.1.7  Fluoride
       There were 18 major fluoride emission source categories evaluated.   This
amounted to 12 percent of all categories evaluated.  A major pollutant emission
source is a source which has the potential of emitting a minimum of 100 tons
per year of one or more specified pollutants without application of emission
control techniques or processes.
       The nationwide growth in production capacity and corollary growth in
nationwide emissions were calculated for both major and minor fluoride emis-
sion sources for a base year 1980.  The nationwide source capacity was typi-
cally computed by growing 1975 capacity to 1980 using appropriate new growth
(Pc) rates.  Where available a "weighed" 1975 state fluoride emission limi-
tation factor (Es) was applied to the 1980 capacity to compute nationwide
fluoride emissions.  The state emission factor limitation (Es) used was, in
most cases, the value computed by TRC  in their 1975 analysis of the impact
of new source performance standards.
       Hypothetical average source sizes for each major fluoride emission
source category ranged from approximately 3,000 tons product per year to almost
600,000 tons product per year.  Uncontrolled fluoride emissions from an average
hypothetical source size in each fluoride emission source category ranged from
one ton fluoride per year to nearly 5,000 tons fluoride per year.
       During the 1980-1990 time period the new growth capacity was repre-
sented by the number of hypothetical new sources of average size.  For the ten
year period the number of new hypothetical sources for the major fluoride
emission source categories ranged from as few as two sources per category to
over 4,000 sources per category.
       The nationwide fluoride emissions computed for 1980 as allowed by a
1975 state emission factor limitation was 60,270 tons fluoride per year for
the 18 major fluoride emission source categories evaluated.  Approximately
7 source categories accounted for 91 percent of these fluoride emissions with
2 source categories accounting for 49 percent of the emissions.
       The nationwide fluoride source category production capacities were
also computed for 1990.  Nationwide fluoride emissions for 1990 were computed
assuming the state emission limitation factors were in force during the 1980-
1990 time period.  Nationwide fluoride emissions were also computed assuming
application of an emission limitation reflecting a condition of best anticipated

-------
                                      90
control  (E ), which would be applied to new or modified source construction
during the same ten-year period.  The difference in the national emissions
based on the state limitation and the more restrictive new and modified source
limitation (Ts-Tn) in 1990 was then computed.  The anticipated 1990 fluoride
emission reductions (Ts-Tn) by the application of (En) beginning in 1980
ranged from 4 tons per year to 16,400 tons per year.
       The air quality impact of each of the 18 major fluoride emission source
categories was evaluated.  A typical or average source size was selected for
each source category for the dispersion analysis.  The maximum ground level
concentration (x) was computed based both on the state emission factor limitation
(Es) and the best level of anticipated control (En).  The maximum ground level
concentrations for both (Es) and (En) were compared after normalizing (dividing)
by the appropriate ambient threshold value for fluorides.  These values were
then ranked by order of magnitude and statistically divided into three groups,
of High, Moderate and Low air quality impact.
       Among the 18 major fluoride emission source categories evaluated, 17
source categories or 94 percent had a High air quality impact resulting from
the state emission limitation, (Es).  For this High impact group, 8 or 47 per-
cent of the fluoride emission source categories were reduced to a Moderate
or Low air quality impact by the application of the best anticipated emission
limitation, (En).  No major fluoride emission source category had a Low air
quality Impact based on state emission limitation factors.
       Of the 18 major fluoride emission source categories, 9 or 50 percent
were considered to be nonmobile and noncompetitive based on either market or
raw material ties.  Therefore, 9 fluoride emission source categories or 50
percent of all the fluoride emission source categories would be considered
mobile and competitive and would tend to locate in states with less restrictive
emission limitations,  assuming all other mobility and competition considera-
tions allowed the source the necessary flexibility in source siting.
       Table 3.7.A gives the prioritization schedule for all fluoride emission
source categories under the Baseline Strategy described above.  Nationwide
fluoride emissions as a function of time assuming implementation of this
schedule are shown in Fig. 3.7.  For purposes of comparison, the emissions
are also displayed for the following limiting cases:

-------
                                    91
       -  All NSPS are set in 1980,  that is,  En becomes  the  applicable
          emission limitations for all fluoride sources  in 1980.   This
          case represents a lower bound to achievable fluoride
          emissions.
       -  No NSPS are set, that is,  Es continues to  be the applicable
          emission limitation for all sources.   This case represents an
          upper limit for nationwide fluoride emissions.
Examination of Fig. 3.7 shows that nationwide fluoride emissions  will continue
to decrease with time by the application of En regardless of the  standard
setting rate and prioritization scheme.  This insensitivity  to the prioriti-
zation scheme is to be expected given the short time frame in which the Clean
Air Act requires standards to be set.  Beyond mid-1982,  both the  Base Strategy
and the lower bound case are almost parallel, because in both cases all new
and replacement sources must meet the same emission  limitations.

       Table 3. 7.B compares  the  1990  air  quality impacts of  the  three NSPS
schedules in terms of  the number  of new and modified  sources having high,
moderate, and low air  quality  impacts.  Table  3.7.C  compares  the mobility and
competitiveness impacts  of the three  schedules  in terms of  the number of new
and modified sources that could have  moved under each schedule,  that is, the
number that were mobile  prior  to  being regulated by  an NSPS.  The number of
new and modified sources  that  are either  ndh-mobile  initially or that become
non-mobile when an NSPS  is set is also given.

-------
                                        TABLE 3-7-A   PRIORITIZED  NSPS SCHEDULE FOR FLUORIDES
       CUMULATIVE
 YEAfc    EFFOFT
I960. C
1980.5
1981.C
1981.5
1962.C
1982.E
            1.00
            2.00
            3.00
             00
             00
             00
           1.00
           2.00
           3.00
             00
             00
             00
            1.00
             00
             00
           1.00
           2.00
           3.00
                                                                         STANDARD
SOURCE                                                                      USED       CODE   FLAG
                                                                            (En)


HYDROFLUORIC ACID  PLANTS                                                    0.200000  20 A08   S2
CFRAMIC CLAY HFG                                                            0.300000  40 010   H2
PHOSPHORIC ACID PLANTS   (MET PROCESS)                                      0.005000  20 A07   S2

(AGG)  CASTABIE REFRACTORY PLANTS                                           0.130000  1*0 DOB   N1
(AGG)  SECONDARY COPPER  PLANTS (BLAST FURNACE)                              0.078000  5 f B01   N2
FIBERGLASS MFG. PIMJTS   (WOOL PROCESSING)                                  0.002000  UO 011   N2

(AGG)  SECONDARY ZINC  SHELTERS (HORIZ (, REVERB  FURNACES)                    0.023100  51 E02   f!2
(AGG)  SECONDARY ZINC  SMELTERS (RETORT REDUCTION  £  KETTLE FURNACES         0.077000  51 Ell   !12
FIBERGLASS MFG. PLANTS   (TEXTILE PROCESSING)                               2.000000  10 D06   Ml

(AGG)  TUNNEL K ILN S ( GAS) , DR YEBS AND STORAGE                                 0.300000  4 5 D10   N1
ANIMAL FEED DEFLUORINATION                                                  O.U33000  30 D10   HI
(AGG)  NON-METALLIC MINING - FLUORSPAR                                      0.100000  47 F01   N2

(AGG)  PERIODIC KILNS(GAS) , DEYERS AND STORAGE                               0.300000  16 D10   N1
(AGG)  TUNNEL KILNS (OIL) , DR YEBS AND STORAGE                                 0.300000  45 D11   N1
(AGG)  TUNNEL KILNS(COAL),DRYERS AND STORAGE                                0.300000  U5 D12   N1

(AGG)  PERIODIC KILNS (OIL),  DRYERS AND STORAGE                              0.300000  46 D11   N1
(AGG)  PERIODIC KILNS (COAL) ,DEYERS AND STORAGE                              0.300000  46 D12   81
INDUSTRIAL BOILERS  (10-250X10E6 BTO/HP)                                   0.000500  10 A03   N5
             See  Table 3-1-B for Definition  of  Terms

-------
                                  93
or

LU


LU
Q_

CO
Z
o
CO
CO
CO
     .100
     .090
     .080
     .070
    .060
     .050
     040
     .030
     .020
     .010
                                              NO  NSPS
                                             BASE  STRATEGY
                    ALL NSPS
                      IN 1980
CAA  STANDARD SETTING DEADLINE
        1980
             1985               1990
                    YEAR
        FIG. 3.7.  NATIONWIDE FLUORIDE  EMISSIONS
                                                                1995

-------
                                       94
                  Table 3.7.B.   Fluorides Air Quality Impacts
                                of NSPS Strategies
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980

Number v.'it'.i
High Air
Quality Inpact
3652
968
958
New and Modified
Number with
Moderate Air
Quality Impact
4016
3624
2694
Sources in 1990
Number with
Low Air
Quality Impact
0
3076
4016


Total
Number
7668
7668
7668
              Table 3.7.C.  Mobility/Competiveness Impacts of NSPS
                            Strategies for Fluorides
Standard
Setting
Strategy
                                New and Modified Sources in 1990
Number of Sources that
   Could Have Moved
  Number of Sources       Total
Precluded from Moving     Number
No NSPS

Baseline

All set
in 1980
                                                      7668

                                                      7b6S


                                                      7668

-------
                                      95
 3.1.8  Hydrogen Sulfide
       There were  2 major hydrogen  sulfide emission source categories eval-
 uated.  This amounted  to 1 percent  of all categories evaluated.  A major
 pollutant emission source is a  source which has the potential of emitting
 a minimum of 100 tons  per year  of one or more  specified pollutants without
 application of emission control techniques or  processes.
       The nationwide growth in production capacity and corollary growth in
nationwide emissions  were calculated for both major and minor hydrogen sulfide
emission sources for  a base year 1980.   The nationwide source capacity was typ-
ically computed by growing 1975 capacity to 1980 using appropriate new growth
(Pc) rates.   Where available a "weighed" 1975 state hydrogen sulfide emission
limitation factor  (Es) was applied to the 1980 capacity to compute nationwide
hydrogen sulfide emissions.   The state emission factor limitation (Es) used was
in most cases,  the value computed by TRC^ in their 1975 analysis of the im-
pact of new source performance  standards.
       Hypothetical average source size for each major hydrogen sulfide
 emission source category was approximately 62,000  tons product per year.
Uncontrolled hydrogen  sulfide emissions from an average hypothetical
 source size in each hydrogen sulfide emission  source category ranged from
260 tons hydrogen  sulfide per year  to over 1,500 tons hydrogen sulfide
per year.
       During the  1980-1990 time period the new growth capacity was
represented by the number of hypothetical new  sources of average size.  For
 the ten year period the number  of new hypothetical sources for the
hydrogen sulfide emission source categories ranged from as few as three
 sources per category to over 20 sources per category.
       The nationwide  hydrogen  sulfide emissions computed for 1980 as allowed
by a 1975 state emission factor limitation was 60,000 tons hydrogen sulfide
per year for the 2 hydrogen sulfide emission source categories evaluated.
One source category accounted for 96 percent of these hydrogen sulfide
 emissions.

-------
                                      96
       The nationwide hydrogen sulfide source category production capacities
were also computed for 1990.  Nationwide hydrogen sulfide emissions for 1990
were computed assuming state emission limitation factors were in force during
the 1980-1990 time period.  Nationwide particulate emissions were also computed
assuming application of an emission limitation reflecting a condition of best
anticipated control (En), which would be applied to new or modified source
constuction during the same ten year period.  The difference in the national
emissions based on the state limitation and the more restrictive new and mod-
ified source limitation (Ts-Tn) in 1990 was then computed.  The anticipated
1990 hydrogen sulfide emission reductions (Ts-Tn) by the application of (En)
beginning in 1980 ranged from 1 ton per year to 42,300 tons per year.
       The air quality impact of each of the 2 major hydrogen sulfide
emission source categories was evaluated.  A typical or average source size
was selected for each source category for the dispersion analysis.  The
maximum ground level concentration (x) was computed based both on the state
emission factor limitation  (Es) and the best level of anticipated control
(En).  The maximum ground level concentrations for both (Es) and (En) were
compared after normalizing  (dividing) by the appropriate ambient threshold
value for hydrogen sulfide.  These values were then ranked by order of
magnitude and statistically divided into three groups, of High, Moderate
and Low air quality impact.
       Among the 2 major hydrogen sulfide emission source categories eval-
uated, one source category had a High air quality impact resulting from
the state emission limitation, (Es).  For this High impact group, one
hydrogen sulfide emission source category was reduced to a Moderate air
quality impact by the application of the best anticipated emission limitation,
(En).
       Of the 2 hydrogen sulfide emission source categories, both were
considered to be mobile and competitive based on either market or raw
material ties.  Therefore, the two source categories would be considered
mobile and competitive and would tend to locate  in states with less
restrictive emission limitations, assuming all other mobility and
competition considerations allowed the source the necessary flexibility
in source siting.

-------
                                     97
       Table 3.8.A gives the schedule for all emission categories that are
sources of hydrogen sulfide prioritized under the Base Strategy.  Nationwide
emissions over time are shown in Fig. 3.8 assuming implementation of this
schedule.  For purposes of comparison, emissions are also displayed for these
cases:
       -  All NSPS are set in 1980, that is, En becomes the applicable
          emission limit for all sources in 1980.  This case represents
          a lower bound on achievable emissions.
       -  No NSPS are set, that is, Es continues to be the applicable
          emission limitation for all sources.  This case represents an
          upper bound on nationwide emissions of hydrogen sulfide.
       Since there are only two hydrogen sulfide source categories and one
standard is set each time period through mid-1981, differences between the
emission projections must be viewed with some caution.  The figure shows, how-
ever, that nationwide hydrogen sulfide emissions will decrease over time.
After mid-1981, both the Base Strategy and the lower bound are parallel.   All
NSPS have been set and in both cases new and replacement sources must meet
the same limits.   By 1990, the difference in emissions between the Base Strategy
and the lower bound is small compared to the difference between the upper and
lower bounds.  By this time, both the base and lower bound strategies produce
almost the same results in terms of emission reductions.  Until  1981  there is
 little difference between the Base Strategy and the upper bound.
        Table 3.8.B compares the 1990 air quality impacts  of  the three NSPS
 schedules in terms of the number of new and modified sources having  high,
 moderate,  and low air quality impacts.   Table 3.8.C compares the mobility
 and competitiveness impacts of the three schedules in terms  of  the number of
 new and modified sources that could have moved under each schedule,  that is,
 the number that  were mobile prior to being regulated by an NSPS.   The
 number of new and modified sources that are either non-mobile initially
 or that become non-mobile when an NSPS is set is also given.

-------
                                   TABLE  3-8-A    PRIORITIZED  NSPS  SCHEDULE FOR HYDROGEN SULFIDE
       CUMULATIVE
 IEAB    EfFORT
1580.0

1980.5
1.00

1.00
SOUBCE



CARBON BLACK  (FORNACE PBOCESS)

SYNTHETIC FIBERS INDUSTRY (VISCOSE BATON)
                                                                                                   STANDARD
                                                                                                     OSEO
                                                                                                                           CODE   PL 16
(En)

0.060000  20 C03  85

1.599999  20 806  82
              See  Table  3-1-B  for  Definition  of Terms

-------
                              99
     .100
    .090
    .080
     .070
or
2  .060
    .050
    040
    030
    .020
     .010
a:
CO
CO
CO
                             NO NSPS
                                               BASE STRATEGY
                                          ALL NSPS
                                            IN 1980
CAA  STANDARD SETTING DEADLINE
        1980                1985                1990

                                   YEAR
                FIG. 3.8.  NATIONWIDE HYDROGEN SULFIOE EMISSIONS
                                                     1995

-------
                         100
      Table 3.8.B.
Hydrogen Sulfide Air Quality
Impacts of NSPS Strategies
New and Modified Sources in 1990
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
Number with
High Air
Quality Impact
3
0

0
Number with
Moderate Air
Quality Impact
24
3

3
Number with
Low Air Total
Quality Impact Number
0 27
24 27

24 27
Table 3.8.C.   Mobility/Competitiveness Impacts of  NSPS
              Strategies for Hydrogen Sulfide
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
New and
Number of Sources that
Could Have Moved
27
0
0
Modified Sources in 1990
Number of Sources
Precluded from Moving
0
27
27

Total
Number
27
27
27

-------
                                      101

3.1.9  Sulfuric Acid Mist
       There were 3 major Sulfuric acid mist emission source categories evaluated.
This amounted to 2 percent of all categories evaluated.  A major pollutant
emission source is a source which has the potential of emitting a minimum of
100 tons per year of one or more specified pollutants without application
of emission control techniques or processes.
        The nationwide growth in production capacity and corollary growth in
nationwide emissions were calculated for both major and minor sulfuric acid
mist emission sources for a base year 1980.  The nationwide source capacity
was typically computed by growing 1975 capacity to 1980 using appropriate new
growth (Pc) rates.  Where available a "weighed" 1975 state sulfuric acid mist
emission limitation factor (Es) was applied to the 1980 capacity to compute
nationwide sulfuric acid mist emissions.  The state emission factor limitation
                                                       2
(Es) used was, in most cases, the value computed by TRC  in their 1975 analy-
sis of the impact of new source performance standards.
        Hypothetical average source sizes for each major sulfuric acid mist
emission source category ranged from approximately 10,000 tons product per
year to 120,000 tons product per year.  Uncontrolled sulfuric acid mist emissions
from an average hypothetical source size in each sulfuric acid mist emission
source category ranged from 1.3 tons sulfuric acid mist per year to over
1,200 tons sulfuric acid mist per year.
        During the 1980-1990 time period the new growth capacity was represented
by the number of hypothetical new sources of average size.  For the ten year
period the number of new hypothetical sources for the sulfuric acid mist emis-
sion source categories ranged from approximately 30 sources per category to as
many as 290 sources per category.
        The nationwide sulfuric acid mist emissions computed for 1980 as allowed
by a 1975 state emission factor limitation was 24,000 tons sulfuric acid mist
per year for the 3 major sulfuric acid mist emission source categories evaluated.
One source category accounted for 98 percent of the sulfuric acid mist emissions.
        The nationwide sulfuric acid mist source category production capacities
were also computed for 1990.   Nationwide sulfuric acid mist emissions for 1990
were computed assuming state emission limitation factors were in force during
the 1980-1990 time period.  Nationwide sulfuric acid mist emissions were also
computed assuming application of an emission limitation reflecting a condition

-------
                                      102
of best anticipated control  (E ), which would be applied to new or modified
source construction during the same ten year period.  The difference in the
national emissions based on  the  state limitation and the more restrictive new
and modified source limitation (Ts-Tn) in 1990 was then computed.  The anti-
cipated 1990 sulfuric acid mist  emission reductions (Ts-Tn) by the application
of (En) beginning in 1980 ranged from 190 tons per year to 42,000 tons per year.
        The air quality impact of each of the 3 sulfuric acid mist emission
source categories was evaluated.  A typical or average source size was selected
for each source category for the dispersion analysis.  The maximum ground level
concentration  (x) was computed based both on the state emission factor limita-
tion (Es) and  the best level of anticipated control (En).  The maximum ground
level concentrations for both (Es) and (En) were compared after normalizing
(dividing) by  the appropriate ambient threshold value for sulfuric acid mist.
These values were then ranked by order of magnitude and statistically divided
into three groups, of High, Moderate and Low air quality impact.
        Among  the 3 major sulfuric acid mist emission source categories evaluted,
one source category or 33 percent had a High air quality impact resulting from
the state emission limitation, (Es).  This High impact source category was
not reduced to a Moderate or Low air quality impact by the application of the
best anticipated emission limitation, (En).  No sulfuric acid mist emission
source categories had a Low air quality impact based on state emission limita-
tion factors.
        Of the 3 major sulfuric acid mist emission source categories, one was
considered to be nonmobile and noncompetitive based on either market or raw
material ties.  Therefore, the two remaining sulfuric acid mist emission source
categories would be considered mobile and competitive and would tend to locate
in states with less restrictive emission limitations, assuming all other mobility
and competition considerations allowed the source the necessary flexibility in
source siting.
        Table 3.9.A gives the prioritized schedule for all sulfuric acid mist
emission source categories under the Baseline Strategy described above.
Nationwide sulfuric acid mist emissions as a function of time assuming imple-
mentation of this schedule are shown in Figure 3.9.  For purposes of com-
parison, the emissions are also displayed for the following limiting cases:

-------
                                    103
       -  All NSPS  are  set  in  1980,  that  is, En becomes  the applicable
          emission  limitation  for all  sulfuric acid mist sources in
          1980.  This case  represents  a lower bound to achievable
          acid  mist emissions.
       -  No NSPS are set,  that  is,  Es continues to be the applicable
          emission  limitation  for all  sources.  This case represents
          an upper  limit for nationwide sulfuric acid mist emissions.
 Examination of  Fig. 3.9 shows  that nationwide sulfuric acid mi'-t emissions
will continue to decrease with time  by the application of En regardless of
the standard setting rate and prioritization scheme.  This insensitivity to
the prioritization  scheme is to  be expected given the short time frame in
which the Clean Air Act requires standards to be set.  Beyond mid-1982, both
the Base Strategy and the lower  bound  case are almost parallel, because in
both cases  all new  and  replacement sources must meet the same emission
limitations.
      Figure 3.9 shows that as a result of the prioritization schedule the
sulfuric acid mist  emissions rise between 1980 and 1982 and then start to
decline after 1982,  paralleling the lower bound case.   This graph should be
viewed with caution since there are only three sulfuric acid mist source
categories and one  standard is set each time period through 1981.
      Examination of Table 3.9.A indicates that standards are set for the
Explosive Manufacturing Industry before Mixed Fuel Boilers  because the former
have higher mass emission reduction  potential (Ts-Tn).
      Table 3.9.B compares the 1990 air quality impacts of  the three NSPS
schedules in terms  of the number of new and modified sources having high,
moderate, and low air quality impacts.  Table 3.9.C compares the mobility
and competitiveness impacts of the three schedules in terms of the number
of new and modified sources that could have moved under each schedule, that is,
the number  that were mobile prior to being regulated by an NSPS.  The
number of new and modified  sources that are either nonmobile initially or
that become nonmobile when an NSPS is set is also given.

-------
                                   TABLE 3-9-A   PRIORITIZED NSPS  SCHEDULE  FOR  SULFURIC ACID HIST"
       CUBULA1IVE
 YEAB    EFfOFT
1S80.0

1S60.5

1S81.C
1.00

1.00

1.00
SOURCE



EXPLOSIVE IND (HIGH EXPLOSIVES)

EXPLOSIVE IND (LOU EXPLOSIVES)

NIXED FUEL BOILERS  (COAL 6 EEFUSE)
                                                                                                    STANDARD
                                                                                                      USED
                                                                                                      (En)
                                                                                     CODE
                                                                                                                                  FLAG
1.599999  20 C17  H1

0.006000  20 CIS  S5

0.010000  10 A06  IS
                  *See Table  3-1-B  for  Definition of Terms

-------
                               105
o:
cc
LU
Q_

CO

O
CO
CO
CO
     .100
     .090
    .080
    .070
     .060
.050
     .040
    030
    .020
     .010
                                      NO NSPS
                                        BASE  STRATEGY
                                   ALL NSPS IN  I960
             CAA  STANDARD SETTING  DEADLINE
                  I.
        1980
                      1985               1990
                               YEAR
                  FIG. 3.9.  NATIONWIDE ACID MIST EMISSIONS
1995

-------
                                     106
             Table 3.9.B.  Sulfuric Acid Mist  Air  Quality  Impacts
                           of NSPS Strategies
New and Modified Sources in 1990
Standard
Setting
Strategy
No NSPS
Baseline
All set
in 1980
Number with
High Air
Quality Impact
128
128
128
Number with
Moderate Air
Quality Impact
162
7
0
Number with
Low Air
Quality Impact
0
155
162

Total
Number
290
290
290
                 Table 3.9.C.   Mobility/Competiveness  Impacts
                               of  NSPS  Strategies  for  Sulfuric
                               Acid Mist
Standard
Setting
Strategy
                                New and Modified Sources in 1990
Number of Sources that
   Could Have Moved
  Number of Sources       Total
Precluded from Moving     Number
No NSPS

Baseline

All set
in 1980
        262

          4
           28

          286


          290
290

290


290

-------
                                      107
3.1.10  Major Source Category Growth
        The number of new  and replacement major source category facilities
expected to be constructed through 1990 as calculated by equation (2-11)  on page
38 is found in Table B-4, Appendix B.   One is cautioned not to cite this  date
out of context of this report as the number of new and  replacement  facilities
represented are hypothetical facilities of average size computed by the
algorithm discussed on page 38 of this report.

-------
                                      108

3.2  POLLUTANT SPECIFIC - MINOR SOURCE
        A minor pollutant emission source is a source which has. the potential
of emitting less than 100 tons per year of all pollutants under examination
without application of emission control techniques or processes.  Of the 203
source categories evaluated 46 source categories were determined to be minor
source categories after screening.  Actually there are 51 minor source
categories listed in Table A-2, Appendix A.  However 5 categories are actually
sub-processes or unit operations  of a larger facility.   Table A-2  indicates
which source categories belong to the same representative  facilities.
       As the 1977 amendments to  the CAA  specify an evaluation of major source
categories and because of time and effort constraints the minor source cate-
gories were evaluated only by the mass emission criteria.  The mass emission
analysis indicated that there were some minor source categories which had a
significant potential for mass emission pollutant reduction.  There are a
number of hydrocarbon and particulate minor source categories which have
significant potential emission reduction  (i.e., Ts-Tn).
        For the mass emission evaluation the nationwide growth in production
capacity and corollary growth in  nationwide emissions were calculated for  minor
emission sources for a base year  1980.  The nationwide, source capacity was typi-
cally computed by growing 1975 capacity to 1980 using appropriate new growth
(Pc) rates.  Where available a "weighed" 1975 state pollutant emission limi-
tation factor (Es) was applied to the 1980 capacity to compute nationwide
pollutant emissions.  The state emission factor limitation (Es)  used was,  in
most cases, the value computed by TRC  in their 1975 analysis of the impact
of new source performance standards.
       Source category growth and mass emission data by pollutant (i.e.,
particulate matter, SO , NO  , Hydrocarbons, CO, Lead, Hydrogen Sulfide, Sul-
furic Acid Mist and Fluorides) is found in Table A-4, Appendix A.  A synopsis
of the mass emission potential reductions is found in Table  3-11.
        The number of new and replacement minor source category facilities expected
to be constructed through 1990 as calculated by equation (2-11)  on page 38
is found in Table B-3, Appendix B.  One is cautioned not to cite t^is ^.ata ont
of context of this report as the  number of new and replacement facilities
represented are hypothetical facilities of average size computed by the
algorithm discussed on page 38 of this report.

-------
                        109
Table 3-10 Minor Source Category Mass Emission Data
Pollutant
Particulate
Matter
Sulfur
Dioxide
Nitrogen
Dioxide
Hydrocarbon
Carbon
Monoxide
Lead
Fluorides
Sulfuric
Acid Mist
Hydrogen
Sulfide
Number of
Source
Categories
25
4
6
24
4
10
3
1
1
Range of (Ts-Tn) among
Source Categories
High (Ts-Tn)
(ton/yr)
23,800
1,000,000
159,000
218,000
270,000
740
3,100
1,300
1
Low (Ts-Tn)
(ton/yr)
4
430
270
7
80
150
1,500
—
—

-------
                                    110
3.3  COMBINED POLLUTANT ANALYSIS
       In doing the analysis among the pollutants considered,  a scheme must
be developed to determine the priority pollutant at  any point  in time.  As
was described in Section 2, the procedure used here  depends on picking the
pollutant that is furthest from a pre-defined emission goal.   This is the
same method that was used in prior work.2  There are,  of course, other
pollutant goals which could have been chosen but time  did not  permit  an
evaluation of alternatives.
       The choice of emission goals is a significant activity  since it is
possible to emphasize or deemphasize a particular pollutant by choosing a
higher or lower emission goal for that pollutant.  In  prior work,2 all
emission goals were set at zero increase over baseline year emissions.  This
proved to put an excessively heavy emphasis on NO- control since NO  was the
only pollutant that increased in emissions even under  optimum  NSPS control.
To adjust for this, the emission goal for NO  was set  at the best level of
control achievable while all others were retained at zero growth.  In this
study a somewhat different approach was used.  It appears reasonable  to
assume that the desired condition is one of all pollutants being as close
to the maximum achievable emission reduction as possible.  (As was shown
previously for sulfur dioxide and nitrogen oxides, this maximum achievable
still represents an emission increase over base year (19SO) levels.)   This
implies that the emission goals are set based on the lower limit case of
setting all NSPS in 1980,  Table 3-11 gives the emission goals computed
this way.  One modification was made of this information.  The designated
pollutants (fluorides, acid mist, hydrogen sulfide)  and CO are assumed to be
of less concern than the remaining criteria pollutants.  CO is considered
to be a short term pollutant problem resulting from  transportation sources
as well as stationary sources.  Also, fluorides are  welfare-related (as
opposed to health-related), and there are only three acid mist source
categories and two hydrogen sulfide source categories  evaluated in this
report.  For these reasons, it appeared reasonable to  deemphasize these
pollutants relative to the remaining criteria pollutants.  To  do this, the
emission goals of the aforementioned pollutants were adjusted  to zero
growth in emissions over 1980 levels.
       In selecting the rate at which standards are  set, the CAA schedule was

-------
                                    Ill
used.  Under these requirements 25% of the NSPS for the listed sources are to
be set within 2 years after the promulgation of the list,  507, in 3 years, and
100% in 4 years.  This implies that all NSPS will be promulgated by mid-1982.
The standard-setting rate was chosen such that all major sources had NSPS set
by mid-1982.  This amounted to approximately 60 source effort level standards
per year.
                    Table 3-11.  Emission Reduction Goals
                 Pollutant                            Coal3
                 Particulates                          -6.4
                 Sulfur Dioxide                       +10.8
                 Nitrogen Dioxide                     +22.0
                 Hydrocarbons   ,                      -29.6
                 Carbon Monoxide                      -22.8
                 Lead                                 -19.3
                 Fluorides^                           -27.3
                 Acid Mist                            -30.6
                 Hydrogen Sulfide                     -44.7

                 Based on maximum achievable reduction
                 relative to base year (1980).
                 Goal modified in baseline strategy to
                 no increase over 1980 level (see text).
       One other consideration was used in the analysis.   It was assumed that
whenever a standard was set for a pollutant from a source category, the stand-
ards for all other pollutants from that source were also set.  To account for
the additional work required to develop standards for other pollutants, it
was assumed that a 25% increase in effort would be required for each additional
pollutant.  Thus, a source emitting 5 pollutants would require as much effort
as 2 sources emitting only one pollutant each.   This assumption is the same
as was used previously.'"  This cumulative effort is specified in the prior-
itized standard setting lists (Table 3-12, 3-13).
       Table 3-12 gives the priority listing for setting NSPS for the Baseline
Strategy (i.e., 3 year  standard setting period)and is the product of the
multipollutant analysis.  Standards are set with time once the number of
standards or effort levels per period are established.  The computer program
recomputes the priority pollutant (pollutant furthest from its pre established

-------
                                     112
emission goal) after each standard is established for a source category.
Once the priority pollutant has been computed and identified, the computer
program goes to the priority pollutant list (there are nine such lists, one
for each pollutant) and picks the priority source category for that; pollutant
from the list for standard setting.  It will be recalled that all the
pollutant lists have source categories prioritized by the three CAA criteria,
mass emissions, health and welfare impact, mobility and competitiveness.
For the Base Strategy each pollutant list gives first priority to mass
emissions (Ts-Tn),  second priority to air quality impact (x/ATV) and final
priority to the mobility/non-mobility distinction.
       Examination of Table 3-12 indicates that hydrocarbon standards are set
first.  This means that the level of hydrocarbon emissions is, during this
first time period (1980), furthest from its goal.  In the second period (start-
ing in mid-1980) particulate standards are set.  This means that since the
prioritized list gives priority to source categories with high mass emission
reduction (Ts-Tn),  there were significant gains in reducing hydrocarbon
emissions so that relative to particulate matter, the hydrocarbon emission
level was closer to its goal.  After the particulate standards are set the
computer switches to a different priority pollutant because the high (Ts-Tn)
particulate source categories decrease the level of particulate emissions
such that particulate matter relative to other pollutants for that period
in time is no longer furthest from its goal.
       The general trend indicated in Table 3-12 during the first 1% years
is a switching between hydrocarbon and particulate standard setting with
hydrocarbon standard setting generally being dominant.  This means that
other criteria pollutants are generally closer to their goals than are
particulate and hydrocarbon emission levels.  The switching occurs because
the prioritized pollutant lists emphasize setting standards for source cate-
gories with high potential mass emission reductions.
       The baseline strategy shows little emphasis on NO  and CO emission
sources.  This is due to the fact that many of the larger sources are
controlled when the hydrocarbon emissions from that source come up as the .
priority.  Standards for the designated pollutants are typically set in the
last year primarily because of less restrictive emission goals and because
they are generally unique pollutant emissions (i.e., not picked up for
standard setting along with a priority pollutant from a source category).

-------
                   Table 3-12 Priority List for Combined Pollutant Analysis. Baseline Strategy  (Three Year Standard Setting Period)'
       CUB011IIVE
 IF.AI     irrOBT   POLLUTANT
1S8C.O
1.00
2.00
2.25
3.25
4.25
K.50
«.75
5.00
e.oo
6.25
7.25
7.50
8.50
9.50
10.50
11.50
12.50
12.75
13.75
10.75
15.75
K.OO
16.25
16.50
16.75
17.75
16. CO
16.25
16.50
U.75
19.00
20.00
21.00
21.25
21.50
21.75
22.00
23.00
23.25
23.50
23.75
2D.75
25.00
25.25
55.50
26.50
26.75
27.00
27.25
27.50
28.50
29.50
25.75
3C.OO
30.25
3C.50
30.75
HC
HC
CO
HC
HC
tn
CO
HS
HC
CO
HC
CO
HC
HC
HC
HC
HC
SO
HC
HC
HC
PR
50
NO
CO
HC
PI
SO
NO
CO
PB
HC
HC
PI
SO
•0
CO
HC
PI
SO
CO
HC
SO
»0
CO
HC
FH
SO
10
CO
HC
HC
PB
SO
10
CO
IL
                                         ETIIILENE  OXIDE PLANTS   (tin OXIDITIOD  PROCESS)
                                         ACRILOKITRILE PLANTS

                                         DIHETHIL  TEREPHTHtLATE  PLANTS   L
                                         CARBON  BLACK   (FURNACE  PROCESS) '
                                         rORflAlDEIITDE PLANTS

                                         HALEIC  ANHIORIDE

                                         INDUSTRIAL  SURFACE COATING  (CAN COATING)
                                         (AGG) PETROLEUM REFINERY  NISC. SOURCES
                                         INDUSTRIAL  SURFACE COATING  (PAPER COATING)
                                         DRI CLEANING
                                         FUEL CONVERSION HIGH  BTO  COAL GASIFICATIOI

                                         INDUSTRIAL  SURFACE COATING  (FABRIC  COATING)'
                                         GRAPHIC ARTS INDUSTRY.  (GRAVURE)l
                                         BI-PRODUCT  COKZ O?E»  •
                                         INDUSTRIAL  INCINERATION   (INDUSTRIAL-CONHEBCIAL)
                                         PLASTICS  1ND RESINS   (ACRYLIC)
                                         MINERAL BOOL MFC
                                         PHTHALIC  ANHYDRIDE  PLANTS  (OITLEIE  PROCESS)
                                         STATIONARY INTERNAL  COBBUSTION ENGINES (SPARK  IGNITION)
                                         STATIONARY INTERNAL  C01BOSTION ENGINES(DIESEL 6  DOAL FUEL)
                                         INDUSTRIAL SURFACE  COATING   (1UTOBOBILES)
                                         INDUSTRIAL BOILERS   (10-250X10E6 BTU/HR)
STANDARD
OSED
r.s
1.6799»9
7.919999
8.000000
0.370000
0. 100000
1.099999
2.799999
0.060070
0.061)000
0.157000
2.620003
15.599999
0.050000
0.015000
0.260000
21. 39999U
0.680000
1.559999
0. 260000
65.000000
0.0142000
0.215000
«. 020000
0.050000
2. 669999
2.879999
0.065030
2. 379999
0.650000
8.169999
0.000030
2.DOOOOO
0.869000
3.629999
0.0
0.080300
1). 719999
0.020000
2.000003
9.100030
3.009999
0.0
0.0
131.000000
0.0
0.0
5. 139999
16.000000
123.000000
0.0
0.310000
0.0
0.403900
1.500000
0.36SOOO
0.0
0.000500

CODE

21 C11
20 C06
20 C16
20 C23
20 C33
23 C03
20 C03
20 C03
20 COS
20 C09
20 C23
20 C21
62 B33
71 D01
63 B03
60 B01
21 C20
21 C20
6» B02
60 BOH
50 »10
50 110
53 »10
50 110
50 110
1 1 B3«
11 P19
11 BOD
1 1 B3<4
11 Sit
1 1 BOH
20 B17
40 013
It D13
«0 013
in D13
40 013
20 C26
20 C26
20 C26
20 C26
10 O1
10 C31
10 C01
13 C01
10 C02
10 C03
10 C32
10 C32
10 C02
62 B02
10 103
10 103
10 103
10 103
10 103
10 103

rue

12
12
85
12
13
15
15
S5
!13
15
92
15
12
11
HI
112
12
lit
112
12
N2
111
111
M
»»
m
N2
N1
N2
NO
N2
15
10
1«
16
(16
15
15
H
H«
S5
95
• 6
N4
• 6
NS
56
no
19
16
IS
16
««
«»
IS
16
IS.
*See Table 3.1.1 on page 52 for definition of  ter»»

k»t the time of publication,  AHL waa Informed that there »ay be new data which will alter the Impact analyele of thla
                                                                                                         aourea category.

-------
                      Table 3-12 Priority List for Combined Pollutant Analysis Baseline Strategy (Three Year Standard Setting Period)
31.75
32.00
32.25
32.50
33.50
33.75
3d. 00
31.25
1980.5
2.25
3.25
4.25
5.25
6.25
7.25
6.25
9.25
S.50
10.50
11.50
12.50
12.75
13.75
14.00
13.02
15. ?5
16,29
16.50
17.50
17,7}
U.75
19. PO
20. OC
20.25
21.25
21 .50
22.50
22.75
23.00
23.29
23.90
23.75
2*. 75
25,00
26.00
26.25
27.25
21.25
21.50
28.75
29.00
30.00
31.00
32.00
33.00
Table 3*1. B on page
HO E
pa
so
IH
no s
pn
so
CO

PN (
pa P
pa s
PH (
pa n
PH (
PH (
PH (
so
pa (
so c
pa G
IB
so c
pit
HC B
Prt
PS H
PH
HC E
CO
HC ' A
CO
SO (
HC
SO E
HC
PB a
tn
so
no
HC
CO
HC V
PH
HC C
CO
HC P
SO B
PH
HO
AH
HC H
HC V
HC I
HC E
52 for definition of terns
                                            EXPLOSIVE  IHD (HIGH EXPLOSIVES)
                                            STATIONERY  PIPELINE COMPRESSOR ENSUES
                                            (»GG) NON-HETALLIC MINING  - CLAI
                                            PHOSPHATE  ROCK (NIK ING).
                                            SAND e GRAVEL PROCESS  '
                                            (ACG) NON-HETALLIC MINING  - GTPS08
                                            HETALIC MINERALS HIRING  (COPPER)
                                            (AGG) NON-HETALLIC MINING  - LIKE
                                            (AGG) FEED AND GRAIN KILL  INDUSTRY
                                            (ASI) SECONDARY COPPER  PLANTS (CONVERTER SSELTING)

                                            (AGG) PHOSPHATE ROCK PREPARATION PLAITS
                                            CHEHICAL HOOD IND.   (NSSC)
                                            GREY IRON  fOUNDHIES  (ELECTRIC ARC)

                                            CHEMICAL ROOD PULPING IND.   (ACID SOLFITE)

                                            BEER PROCESSING PLANTS

                                            HETALIC MINERALS MINING  (FERROALLOY)

                                            ETHYLENE DICHLORIDE PLANTS   (OtrCHLOlINATION PROCESS)

                                            ACRYLIC ACID

                                            (IGG) CRUDE  OIL AND NATURAL GAS PRODUCTION  PLANTS

                                            ETHYLENE

                                            MUNICIPAL  INCINERATION < 50T/D
                                            VEGETABLE  OIL MFG."

                                            CYCLOHEXANOL/CYCLOHEXANONE

                                            PROPYLENE   (OXIDE)
                                            EXPLOSIVE  IND (LOB EXPLOSIVES)
                                            HEIHYL HETHACRYLATE PLANTS
                                            VINYL ACETATE (ETHILENE)
                                            TEREPHTHALIC ACID PLANTS
                                            ETHYtENE-PfOPYLENE
6.100000
0.260090
6.000000
1.599999
15.129999
0.630000
5.00300)
9.639999
35.519989
6.000000
0.120030
5.099999
0.073000
6.299999
0. 193000
0.330030
87.000030
1.389999
3.099999
0.0
0.070000
3.099999
2.000000
0.109300
0.270030
0.033000
0.600303
O.SOOlO
0.013030
1.7110000
0.210000
0.011303
0. 131330
0.010900
0.330000
0.0
0.300030
0.030000
1.019999
0.010000
35.003000
15.2000i)0
0.633030
1.007000
1.115030
0.592030
5.5»99?9
0.383330
2.099999
0.006039
1. 127999
0.130300
0.210000
0.720000
20 C17
20 C17
20 C1J
20 C17
11 coi
11 C91
11 COI
11 C01
11 F01
• a roi
• 0 »02
12 roi
43 E01
13 F31
30 E01
58 B01
58 B01
11 001
80 103
50 C02
50 C02
80 A31
83 131
30 039
30 009
12 E01
«2 131
21 C17
20 C37
20 C«7
20 CK7
71 E31
71 E01
23 C31
20 C31
10 B33
10 B03
10 B03
10 803
10 B03
10 B03
13 D11
30 Oil
20 C19
20 C«9
20 C36
20 C18
20 C18
20 C18
20 C18
23 C3«
20 C37
20 C27
20 006
us
ss
82
81
IS
16
1C
16
11
11
12
112
12
»1
91
a*
36
»«
R2
H3
93
92
91
82
81,
PI 2
S2
•12
as
92
95
111
16
15
1»
11
IS
IS
16
16
16
12
no
92
95
02
ill
95
H<
95
82
82
S3
82
AC the tL»e of publication,  ANL waa Informed that  there n«y be new date vhlch will elter tlie impact enelyele of thle eource category.

-------
  1981.0
                           Table  3-U  Priority List for Combined Pollutant Analysts, Baseline Strategy (Three Year Standard  Setting Period)'
.OP
.00
.00
.25
.29
.93
.50
.75
.00
.00
.25
.25
.50
.75
.75
10.75
11.00
11.25
12.25
13.25
13.!-)
14. 50
1*.75
15.00
16. PO
17.00
11.00
19.00
20.00
21.00
21.25
22.25
22.50
22.75
23.00
23.25
23.50
2*. 50
2«.75
25.75
26.00
27.00
28,00
28.25
29.25
30.25
31.25
31.50
31.75
32.75
33.75
34.00
See Table 3.1.B on page
HC
HC
DC
NO
BC
CO
HC
PH
CO
HC
CO
HC
SO
HO
HC
HC
NO
CO
HC
HC
P.I
BC
Pfl
CO
HC
BC
HC
HC
BC
HC
PI)
SO
PH
NO
HC
CO
AH
HC
PS
HC
Pfl
HC
PB
P.I
HC
HC
SO
Ffl
NO
HC
PB
Pfl
52 for definition of
ETHYLENE OXIDE PLANTS (OXYGEN OXIDATION PROCESS)
TARNISH 1
POLYETHYLENE (HIGH DENSITY)

NETHANOL PLANTS

CHARCOAL PLANTS


CYCLOHEXANE

ETHYLENE GLYCOL DERIVED FROM ETHYLENE OXIDE


SYTHETIC RUBBER (NEOPBENE)
ADIPIC ACID PLANTS


CARBON TETPACHLOBIDE (METHANE)
POLYETHYLENE (LOW DENSITY)

ACETIC ANHYDBIDE


ETHYL BENZENE
INDUSIBIAL SURFACE COATING (METAL COILS COATING)
P.T.n. ID. (SHIP E BABGE TRANSFER, GAS. t CRDDE OIL)
GRAPHIC ARTS INDUSTRY (FLEXCGRAPHY) '
PRINTING INK PLANTS
SYNTHETIC FIBER INDUSTRY (NYLON)

MIXED FUEL BOILERS (COAL C REFUSE)





PLYHOOD MANUFACTURING PLANT

UHISKEY

* •.„,-., -..*.,., „„.,..,,.., ..„„.»..„ ,„„.,„., „.„,.,..„ „„„„„,
METALIC flINERALS MINING (LEAD MINING)
L
GRAPHIC AR1S INDUSTRY (LETTERPRESS) "
INDUSTRIAL SURFACE COATING (MAGNET HIRE COATING)
GLASS MANUFACTURING INDUSTRY (SODA-LIME GLASS)


P.T.M, ID. (BULK GAS. TERMINALS) LOADING TANK TRUCKS/RR CAR
KETALIC MINERALS MINING (ZINC MINE C CRUSHING)

terns.
O.H 30000
0.679000
0.591030
11. 25)050
0.100003
0.100000
«. 799999
«. 003030
3.200000
0.200000
0.250000
0.319000
0.004030
0.010000
1.200000
0.0*3000
1.613003
0.115000
0.360000
0.2»0000
O.OU500D
0.178030
0.001000
0.219000
0.050000
0. 320000
0.001300
26.003030
». 799999
0.350000
0.753003
0. 1 »00 30
0.300030
5.250000
0.0
18.003000
0.010000
0.0
0.001300
0.003055
0.002200
0.065000
0.010000
0.700300
35.000000
0.065030
0. 120030
0.022033
0.360030
0.003600
0.010000
0.700000
22 C11
23 CIS
20 B03
20 B03
20 C32
20 C32
20 C16
21 C1S
20 C16
20 Alt
23 Alt
20 C35
20 C35
20 C35
20 D07
20 A0>
20 A3*
23 »3»
20 C38
23 B3»
23 BOH
20 CU8
23 cue
20 CU9
20 C30
63 B02
60 P03
60 BD5
20 C19
20 B39
23 B09
10 A36
10 A36
10 A06
10 A06
13 A06
13 A06
80 B01
80 B31
30 D3B
33 D38
61 B02
»» C3i
OH E01
60 B37
61 833
»9 D37
»3 D37
»0 007
60 F0«
• 5 E01
«5 (01
82.
82.
S2
82
S2
S5
82
B»
85
82
SS
82
36
86
82
S3
85
85
H2
82
15
82
86
85
82
112
HI
12
85
n«
BD
N5
85
HI
15
16
115
84
12
85
82
H5
m
i«
in
N5
86
86
86
• »
It
It
Ac the ti»e of publication, ANL wai Informed that there Bay be new data which will alter the Lapact analyile of thti aeurca category.

-------
isei.s
2,00
2.25
2.59
2.75
1.75
».oo
3.00
3.25
6.25
7.25
8.25
9.23
10.25
11.25
12.25
13.23
1*.25
13.25
16.25
16. 5C
16.75
17.75
11.00
It. 23
18.50
U.75
19.00
20. CO
20.25
20.50
20.75
21. CO
21.25
22.25
22.50
22.75
23.00
23.25
23.50
24.30
24.75
25.00
25.25
26.25
26.50
26.75
27.00
27.25
28.23
21.30
26.75
2*. 00
29.23
10.23
10.30
10.73
1 1 . O'O
11.23
12.23
13.23
HC
PH
NO
CO
NO
PH
NO
PH
PH
FH
PH
PH
EH
PR
PH
PB
pn
FL
SO
pn
FL
so
pa
NO
nc
CO
FL
so
PH
NO
HC
CO
FL
SO
PH
NO
HC
CO
PL
SO
PH
NO
PB
SO
PB
NO
NC
CO
SO
PN
NO
HC
FL
SO
PH
NO
DC
PL
HC
HC
                       Table 3-12 Priority List for Combined Pollutant Analysis, Baseline Strategy (Three Year  Standard Setting Period)*

                                             INDUSTRIAL  INCINERATION   (IND ORGANIC LIQUID BASTE INC)
                                         STEEL FOUNDRIES  (ELECTRIC  Use)

                                         (ACS) SECONDARI ALUHINUH PLANTS
                                         HETALIC IIINERALS MINING  (URANIHUN)
                                         FLY-ASH SINTERING  (SINTERING)
                                         (AGG) NON-METALLIC MINING - EORON COMPOUNDS
                                         AMMONIUM SULfATE I
                                         HETALIC MINERALS HINIMG  (IRON ORE)
                                         HETALIC HINERALS MINING  (ALUMINUM)      L
                                         GIPSOH MANUFACTURING PLANTS  (CALCINEH) "
                                         SODIUM CARBONATE PLANT   (NATURAL PBOCESS)
                                         HYDROFLUORIC  ACID PLANTS
                                         (AGG) SECONDARY COPPER PLANTS (BLAST FURNACE)
                                         FIBERGLASS MFG.  PLANTS  (WOOL  PROCESSING)
                                         (AGG)  TUNNEL KILNS(COAL),DRIERS  AND STORAGE
                                         (AGG)  PERIODIC KILNS(COAL).DRYERS  AND STORAGE
                                        GLASS  MANUFACTURING INDUSTRY   (LEAD GLASS)
                                        MIXED FUEL BOILERS   (OIL « REFUSE)
                                         (AGG)  TUNNEL KILNS (OIL) .DSYERS  AND STORAGE
                                         (AGG)  PERIODIC KILNS (Oil), DRIERS  AID STORAGE
                                        CARBON TETSACBLORIDE  (PtOPANE)
                                        CAIRO* TETRACMOIIDE  (CARBON DISULFIDE)
0.0
5.100000
0. 150003
0.0
0.025000
0.66003d
0.200000
0.260000
(.309999
0.1'ODOO
1.099999
1.059999
1.000300
0.500000
0.110000
0. 100000
0. 1150000
0.203000
7.679999
0. 199003
0.078000
0.005090
9.299999
1.573000
2.099999
2.210000
0.002030
0.729000
1.299999
0.900000
0.0
1.900000
0.303000
1.200000
1.299999
1.100000
0.0
3.200000
0.300000
O.OS0090
0.243000
0.383030
0.060000
0.010090
0.200030
13.799999
0.285000
17.090330
0.010000
1.299999
0. 159000
0.0
0.300000
0.060000
1.363000
1.700000
0.0
0.300000
0.320000
0.320000
12 B3I
12 BOI
12 B31
12 BDI
20 A1B
20 A18
50 031
50 D31
51 B12
«7 E01
«3 017
15 F01
30 020
• 1 E31
16 E01
10 DH
20 C21
20 A39
57 B01
57 BOI
57 B91
«9 D11
13 Oil
10 DD
10 D11
19 D11
10 D11
15 D12
15 D12
15 D12
15 D12
15 D12
15 012
16 D12
16 D12
16 D12
16 D12
16 D12
16 D12
10 D19
10 019
10 D19
10 019
10 A07
10 A07
13 A97
19 A07
10 »97
IS Oil
15 Oil
IS Oil
IS D11
IS D11
16 D11
16 011
16 D11
16 Oil
16 011
20 C39
20 CIO
16
*l
N5
N6
85
82
M6
us
12
N3
N2
N1
Ml
N1
»5
86
N6
112
82
as
12
B5
ni
SI
HI
86
82
NS
NI
N6
N6
16
NI
N5
II
N6
*6
(6
NI
H6
36
16
IS
«6
NS
Rl
NS
N6
N6
NI
NC
N6
Rl
N6
NI
16
R6
11
•2
11.
                  52 for definition of tcna.
"fee Table 3.1.1 o«

bAt the.tiM of publication, AHL wee intoned that there nay be new dete which will elter the lapect ana Ire 1» of tale eenree cetefenr.

-------
   1982.0
                      Table 3-12 Priority List for Combined Pollutant Analysis Baseline Strategy (Three  Year Standard Setting Period)*
1.25
1.50
2.30
I. SO
4.5G
3.50
6.50
7.50
1.90
».50
10,90
11.90
11.75
12.75
1J.75
u.oo
15.00
16.00
17.00
It. 00
11.25
11.50
19.90
19.75
20.75
21.00
21.25
22.25
21.25
23.90
24.50
24.75
29.00
26.00
24.25
26.30
26.73
27.00
21.00
28.25
21.50
21.75
29.00
39.00
30.25
30.30
30.75
31.75
32.00
32.25
33.25
33.30
.» on pa
DC
CO
HC
HC
HC
HC
HC
HC
HC
HC
HC
HC
CO
HC
HC
CO
HC
RC
DC
HC
pa
NO
HC
pa
HC
PB
CO
HC
HC
PR
HC
PH
CO
HC
pa
HO
CO
fL
HC
PH
NO
CO
Tl
to
PH
CO
fL
•0
PR
FL
10
PR
ge 52 for definition of tei
                                            PHENOL PUNTS

                                            ACETONE   (ISOPROPANOL)
                                            HETHYL CHLOPOFORH
                                            ACETONE  (CUtlENE)
                                            POLY-BUTADIENE
                                            HIENOLIt  RESINS
                                            ACETATE  RAION
                                            UREA-flElAHlNE
                                            ALLYL CHLORIDE
                                            ACETONE   (CYANOHYDRIN)
                                            ACETIC ACID   (BOTANB)

                                            ARHONIA  PLANTS
                                            ACETIC ACID   (ACETALDEHYDE)

                                            POLYSTYRENE
                                            ABS-SAN  RESIN  PLANT
                                            ACETIC ACID   (HETHANOL)
                                            STTRENE
                                            POLYPROPLYENE  •

                                            PHTHALIC ANHYDRIDE PLANTS  (NAPTHALENE  PROCESS)
                                            TEITILE arc  (HEAT SETTING/FINISHING)
                                            SYNTHETIC RUBBER IND.   (SITfiCHE-BUTADIENE)(SBR)

                                            (AGG)  ASPHALT  ROOFING PLAITS
                                            (AGG)  TUNNEL  KILNS (GAS) .DRYERS AID STORAGE
                                            (AGG)  PERIODIC KILRS (GAS) , DR YEHS AND  STORAGE
                                            FIBERGLASS  HFC.  PLAITS   (TEXTILE PROCESSING)
                                            CEBAHIC CLAY  BFG
                                            NITRATE FERTILIZER   (ARHONIOa NITRATE)  PLANTS
0.044800
0.005000
0.130000
0.360000
0.072000
0.090030
0. 075000
0.350000
0.075000
0.200000
0.020000
0. in 7000
0.041000
0.0
0. 196000
0.040000
0. 120000
0.075000
0.150000
0.016400
0.000000
0.004030
0.236000
0.030000
0. 100000
0.990000
1.000000
1. 7HOOOO
3.099999
0.120000
0.130000
0.960000
0.015000
0.0
1.299909
0. 150000
0.300000
0.300000
0.0
1.299999
0.42J030
0. 110000
0.300000
22.599991
4.403000
2.033000
2.000000
0.200000
16.000000
0.300000
0.003000
0. 180000
20 C33
20 C33
20 C42
23 cm
20 C«1
20 002
23 BIO
20 B13
20 811
20 COS
20 CO
20 A13
20 A13
21 C13
2] 111
20 til
20 835
20 B12
20 A12
20 C«5
20 C45
20 CIS
20 E37
20 807
23 C25
20 C25
23 C25
90 F02
20 001
23 D01
• 1 B01
<41 B01
41 831
45 010
45 010
45 D10
45 010
• 5 010
46 D10
46 DID
46 010
46 010
46 D10
40 036
40 006
40 036
• 0 036
40 010
40 010
40 D10
30 105
30 105
82
86
112
03
82
82
82
32
82
K3
82
in
36
S5
85
86
85
85
85
85
86
96
84
»5
85
S3
85
84
84
as
• 4
114
»6
tie
N4
16
16
11
16
M
116
• 6
11
81
84
86
11
86
84
82
S6
84
kAt the time et publication.  ANL mi iafoncd th»t th*r* ur b* am data which "111 altar tha Impact  aoalrsla of  thia aovrca catajory.

-------
1982.!
Table 3-12 Priority list  For Combined Pollutant Analysis Baseline Strategy (Three Tear Standard Settlnf Period)*

                       SIEtL FCDNDFIES   (OPEN HEARTH)

                       PESTICIDES HANUFACTURING
                       (AGG)  CASTABLE REFRACTORY  PLANTS

                       GRET  IRON FOUNDRIES   (REVERBERATORY)
I.JO
1.75
2.75
1.75
«.OC
5.00
S.J5
6.25
7.25
T.50
8.90
9.50
10.50
11.50
12.50
u.50
U.5C
n.50
15.75
14.00
17.00
17.25
17.50
1».50
U.75
19.30
20.00
21.00
22.00
23.00
2*. 00
2*. 25
25.25
26.25
27.25
28.25
29.25
30.25
DO
PH
pn
PH
FL
Ptl
PB
pn
PR
FL
PH
pn
Pfl
P.I
pn
pn
pn
pn
PB
FL
pn
PB
FL
PH
CO
PB
FH
PH
pn
pn
PN
FL
PR
PN
PB
PB
FL
HS
                                         BORAX BORIC  ACID
                                         (AGG)  NGN-RETALLIC HIKING  -
                                                                       FLUORSPAR

                                                                          I
                                         STONE QUARRYING AND PROCESSING
                                         POLYESTER RESIN
                                         STARCH RFGR
                                          SYNTHETIC FIBERS INDUSTRT  (DACROI POLTESTER)
                                         HYDPOGEN FLUORIDE
                                         PERLITE  (VERTICAL FDRNACE)
                                         PHOSPHORIC   ACID PLANTS   (THERHAL PROCESS)
                                         (AGG) SECONDARY ZINC SHELTERS (RETORT  REDUCTION t KETTLI FURNACES
                                         (AGG)  SECONDARY ZINC SHELTERS (HOIIZ I  RBTERB FURNACES)


                                         CRET IRON  FOUNDRIES   (CUPOLA)
                                         COTTON GINNING
                                         URANINUH REFINING
                                         ALFALFA DEHYDRATING PLANTS
                                         (AGG)  CLAY  SINTERING PLANTS
                                         ANINAL FEED DEFLUORINATION

                                         OREA
                                         DETERGENT MANUFACTURING  PLANTS
                                         GASOLINE ADDITIVES   (ELECTROLYTIC)
                                         GASOLINE ADDITIVES   (SODIUN-LEAD)
                                         PHOSPHORIC  ACID PLANTS   (IET PROCESS)
                                         SYNTHETIC FIBERS INDUSTRY  (VISCOSE R1TON)
0.010000
0.220000
o.tooooo
a. tooooo
0. 130000
0.100000
0.0
1.620000
6.000000
0. 100000
2.599999
0.350000
0.020000
0.350030
1.009999
0.210000
0. 1314000
2.580000
0.050000
0.077000
0.799000
0.050000
0.023100
0.200000
8.000000
0.030000
0.160000
0.010000
0.236000
1.099999
0.062500
0.438000
1.360000
0.450000
1.000000
0.890000
0.005000
1.599999
50 D52
SO D02
55 A01
40 DOS
40 DOS
50 C3J
50 COS
20 A15
47 F01
47 F01
40 101
20 819
30 DIB
20 808
20 117
40 D12
20 A10
51 E01
51 801
51 E01
51 E02
51 E02
51 E02
50 C04
50 C04
50 C04
30 801
50 F01
30 DD1
40 016
30 D10
10 D10
20 B21
29 CIO
70 F02
70 F01
20 A07
20 B06
96,
H5
S2
11
31
83
S3
82
12
12
11
H5
as
8«
84
as
as
H4
84
82
14
34
12
as
as
82
14
IS
IS
IS
IS
11
86
36
SI
81
82
32
 See Table 3.1.1 on page 52 for definition of Cera*.

 At the tia* of publication, ANL waa Informed  that there may be new data which will alter the letwct enaljela of thla ••««• category.

-------
                                    119
       Table 3-13 is a prioritized standard setting list based on a relaxed
standard setting timeframe.  The relaxed case assumes the same priority
grouping as in the baseline but with a schedule that is relaxed to 1/2  the
rate indicated in the CAA (ie., 6 years for Standard Setting).  There is a
distinct possibility that the actual implementation of NSPS may not meet
the CAA schedule due to litigation, the need for review and revision of pro-
posed standards due to public hearing comments, and other factors.
       Examination of Table 3-13 shows that after the second period (1980-85)
there is some slight change in the order of source category standard setting.
Some source categories were up or down one or two slots.  This is because
relative to the Base Strategy the emission level with time for all pollutants
has changed.  One can best understand how this change differs among
individual pollutants by referring back to Section 3.1 relating to the single
pollutant analysis and comparing the growth of single pollutant emission
levels with time.
       Table 3-14 shows the effectiveness of four strategies on emiss-
ions.  The first two cases are the upper and lower limit cases described
previously and the third is the baseline strategy.  The fourth case is  the
relaxed strategy described above.  In the relaxed strategy there is some
slippage in overall emission reduction, although all emission levels are
still well below the no-NSPS Case (Strategy 1).  The greatest percent slippage
(ie. , increase in emission level) due to the relaxed schedule is for the
criteria pollutants; particulate emissions, hydrocarbons, and lead.  There
is also a significant slippage for sulfuric acid mist and fluorides which
is primarily due to the fact that there are a limited number of source
categories and standard setting is further delayed allowing an emission
level increase by state standards.
       Tables 3.15 and 3.16 show the impact of the various strategies on the
number of sources with high, moderate, and low air quality impacts and  on
the number of sources that could have been affected by state air regulations
in their siting decisions (i.e. were mobile).  As was evidenced in the
individual pollutant analyses, the baseline strategy results in a reduction
in the number of high air quality impact sources that almost parallels
that achieved by the lower limit strategy (i.e. all NSPS immediately).   This
is due to the high rate of standard-setting.  The relaxed schedule (Strat-

-------
                                     120
egy 4, 30 per year) results in a slight penalty by allowing an increase in
the number of high air quality impact sources that are built prior to NSPS
promulgation.  The Baseline Strategy causes a significant reduction in the
number of sources that might move because of air pollution regulation diff-
erences.  However, there is a noticable penalty as a result of the relaxed
schedule where nearly three times as many sources might seek states with
minimum air pollution emission limitations.

-------
                                                            Table 3.13.   (con't)
      CUMULATIVE
YEAR     EFFCH   POLLUTANT
                                       SOURCE
 1S82.0
1S6i.£
            1.00
            1.25
            1.50
            1.75
            2.00
            2.25
              2!
              50
            4.50
  5.CO
  5.25
  6.25
  6.50
  6.75
  7.73
  S.75
  9.00

lo!2S
11.25
11.50
12.50
12.7!
13.00
14.00
13.OS
16.CO
17.00

l.CO
1.25
1.50
1.75
2.00
2.25
3.25

4^50
             50
             75
           6.75
           7.00
           8.00
           9.CO
           9.23
           9.50
          10.50
          10.75
          11.75
          12.75
          13.75
          14.00
          13.50
          16.00
          16.2!
          16.50
          16.73
          1T.T3
          U.OO
PB
P.I
SO
NO
IIC
CO
HC
CO
SO
Pil
NO
A.I
HC
SO
NO
HC
KC
NO
CO

IIC
pn
HC
pn
CO
HC
HC
HC
KC

SO
PH
NO
HC
CO

HC
HC
pn
HC
P.I
HC
pn
HC
sc
P.I
NO
PB
P.I
HC
HC
PB
pn
HC
IIC
PM
NO
CC
NO
PN
                                                   INCINEfcATION  <  50T/D





                                         CYCLOHEXANE

                                         EXPLOSIVE IND  (LOW  EXPLOSIVES)



                                         ETHYLENE GLICOL  DEBITED FROM ETHYLENE  OIIDE
                                         STTHETIC RUBBER   (NEOPRENE)
                                         ADIPIC ACID PLANTS
                                         CiFDOtl TETRACHLOSIDE (HETHANE)
                                         POI.JE1HYLEKE  (LOU  DENSITY)

                                         ACETIC ANHYDRIDE
                                         ETHYL BENZENE
                                         INDUSTRIAL SURFACE COATIliG   (HETAL COILS  COATING)
                                         P.T..1. ID.   (SHIP  C GAUGE TRANSFER,  GAS.  G CRUDE OIL)
                                         GRAPHIC APIS INDUSTRY  (FLEXCGRAPHY) b

                                         MIXED FUEL BOILERS  (COAL G  REFUSE)
                                         PRINTING INK  PLANTS
                                         SYNTHETIC FIBER  INDUSTRY  (NYLON)

                                         PLYBOOD MANUFACTURING PLANT

                                         RHJSKEY

                                         INDUSTRIAL SURFACE  COATING   (LARGE  APPLIANCE COATING)'
                                         GLASS RANUFACTURING INDUSTRY   (SODA-LINE GLASS)


                                         HETALIC HINERALS  MINING (LEAD BIKING)

                                         GRAPHIC  1RTS  INDUSTRY  (LETTERPRESS)'
                                         INDUSTRIAL SURFACE  COATING   (NAGNET WIRE COATING)
                                         HETALIC MINERALS  MINING (ZINC HIKE  t  CRUSHING)

                                         P.T.n. ID.   (DIILK GAS. TFf.HINALS) LOADING TANK TRUCKS/RR CAR
                                         INDUSTRIAL INCINERATION  (IND ORGANIC LIQUID WASTE INC)
                                         POTASH


    "At  the tine of publication,  AHL was Informed  tluit there may be now data which will alter the  impact  .innlysls of thU source category
STANDARD
BSED
(In I
O.D
0.300000
0.033330
1.0'49999
0.010000
35.000030
0.200000
0.253300
5.5U9999
0.300003
2.099959
0.006000
0.319000
O.OOJ010
0.010003
1.203030
0.04jOOO
1. 61 J030
0. 115030
0.3630C3
0.24JOOO
O.OU5000
0. 178030
0.001000
0.219000
0.053000
0.320000
0.001300
26.000030
0.1KOJOO
0.303003
5.250000
0.0
18.000000
0.010000
0. 799999
0. 35J330
0.750030
0.0
0.001300
0.000055
0.002200
0.065000
0.120000
0.022000
0.360030
0.0 10000
0.700000
35.000000
0.065300
0.010000
0. 700000
0.003600
0.0
5.DOOOOO
0. 153000
0.0
0.025000
0.660000

CODE

10 B03
13 833
10 P03
10 B03
10 B03
10 B03
20 »11
20 A HI
20 C19
20 CIS
23 CIS
20 C18
20 C35
20 C35
20 C35
20 DOT
20 A09
20 AM
20 A3J
20 C38
2D 314
20 BD4
23 CIS
20 CU3
23 O9
20 C30
63 B12
60 F03
60 335
10 A06
10 S06
10 A06
1 0 A06
10 »36
1? A36
23 C'9
20 D?9
20 BD1
BO BC1
60 B01
30 039
33 D03
61 B02
13 037
«0 D07
HI D07
UK E01
«» E01
60 B07
61 B33
»5 E01
15 E01
60 F0«
12 B0»
12 B04
12 B04
12 BOH
20 Aia
20 A13

FLAG

N)
15
N5
16
S6
N6
12
»5
19
15
16
35
12
96
^5
32
S3
15
S5
.12
12
15
B2
16
M5
12
N2
N1
N2
N5
N5
N4
N5
N5
S5
H5
1'4
.14
94
H2
95
M2
B5
.16
16
S6
N«
N4
Nil
N5
HI
Nil
Mt
N6
NU
N5
N6
H5
92

-------
                                                              Table 3.13.   (con't)
        CUtlULATIVl
  YEAB    EFFCSI    POLLUTANT
1S63.0
1983.5
1S64.C
2.00
2.29
3.25
*.2S
3.29
6.23
7.23
1.23
9.25
10.23
11.25
12.25
13.25
13.50
13.75
14.73
13.00
13.25
13.30
15.75
16. o:
17.07
17.25
17.50
17.73
11.00
IS. 25
2.25
3.25
*.25
4.50
5.59
6.30
7.50
1.50
9.50
10.30
11.50
17.50
19.30
1*.50
1*.75
15.75
16.75
17.00
1.00
Z.OO
3.00
4.00
».ZS
*.30
5.50
•J.75
6.75
7.00
7.25
8.23
».25
».50
10.50
10.73
NO
PN
PI
fa
PI
P.I
EH
PN
tn
PN
pn
FL
so
pn
FL
SO
PS
DO
HC
CO
FL
SO
PI
NO
HC
CO
FL
HC
HC
HC
CO
HC
HC
HC
HC
HC
HC
HC
HC
HC
HC
CO
HC
HC
CO
HC
HC
HC
HC
PN
no
HC
PN
HC
PI)
CO
HC
BC
PR
HC
PN
                                        S1EEI.  FOUNDRIES  (ELECTRIC  ARC)"

                                        (AGG|  StCCIIDAfl ALU.1INUN  PLANTS
                                        KE1ALIC  MINEF.US HIKING  (UPAKINUN)
                                        FLY-ASH  SINTERING   (SINTERING)
                                        (AGG)  NON-METALLIC  MINING - BORON CONFOUNDS
                                        AHHONIUN SULFATE
                                        NETALIC  HINERALS NINING  (IRON OF.E)
                                        1ETALIC  NINEEALS NINING  (ALU8INON)      L
                                        GYPSUN HINUFACTVBING PLANTS  (CAtCINER)*
                                        SODIUM CARBONATE PLANT   (NATURAL  PROCESS)
                                        HYDROFLUORIC ACID PLANTS
                                         (AGG)  SECONDARY COPPER  PLANTS  (BLAST  FURNACE)
                                         FIBERGLASS NFG. PLANTS  (WOOL PROCESSING)
                                         (AGG)  TUNNEL KILNS(COAL),DRYERS AND  STORAGE
CARBON  TETPACHIOBIDE   (PROPANE)
CARBON  IETFACIIORIDE   (CARBON DISULFIDE)
PHENOL  ETANIS

ACETONE  (ISOPROPANOL)
NETIIYL  CHLCROFOBH
ACETONE (CUHERE)
POLY-BUTADIENE
PHENOLIC  RESINS
ACETATE RAYON
OREA-HELAHINE
AI.LYL CHLORIDE
ACETONE  (CYANORIDHIN)
ACETIC  ACID  (BUTANE)

AHHONI1 PLANTS
ACETIC  ACID  (ACETALDEHtDE)


POLYSTYRENE
ABS-SAN RESIN PLANT
ACETIC  ACID  (SETHANOL)
5TYRENE


POLIPROPLYENE

PHTHALIC  ANHYDRIDE PLANTS  (NAPTHALENE  PROCESS)
                                         TEXTILE IIFG  (NEAT  SETTING/FINISHING)
                                         SYNTHETIC ROBBER  IND.   (STtRENE-BOTADIB«E) (SBR)

                                         (AGG)  ASPHALT  ROOFING PLANTS
STANDARD
USED
(In)
0.233000
0.260000
1.309999
0.110000
1.099999
1.059999
1.000000
0.500000
0. 110000
0.100000
O.HSOOOO
0.200000
7.679099
0. 1 930JO
0.078000
0.005000
9.299999
1. 570000
2.099999
2.240000
0.032000
0.723000
1.293999
0.900000
0.0
1.900030
0.300000
0.320000
0.320000
o.oiueoo
0.005000
0.130000
0.360000
0.072000
0.090000
0.075000
0.3SOOOO
0.075000
0.200000
0.020000
0. 117000
0.011000
0.0
0. 196000
0.010000
0.120000
0.075000
0.150000
0. 016100
0.001000
0.001000
0.236000
0.030010
0.1000JO
0.990000
1.000000
1.710000
3.099999
0. 120000
0.130000
0.960000

CODE
50 001
50 001
51 B12
17 ED1
10 917
15 F01
10 D20
11 E01
IS E01
10 Dll
20 C21
20 Aoe
5T B31
57 BO'
57 B01
10 014
10 014
10 D11
10 Oil
40 Oil
HO 314
45 D12
45 012
45 D12
45 012
15 012
15 012
20 CJ9
20 C»0
20 C13
20 C33
20 C12
29 C44
20 C11
20 D02
20 BIO
20 313
20 S11
20 C46
20 C43
20 A13
20 A13
21 C13
23 til
29 «11
20 BOS
20 B12
23 A12
20 C45
20 C45
20 CIS
20 !>07
20 B37
20 C25
20 C25
20 CiS
90 F32
23 001
20 D01
41 801
11 831

PLA3
16
B5
12
N3
112
111
SI
111
N5
N6
116
12
12
15
92
15
94
H4
14
16
12
05
H4
N6
16
16
• 1
12
12
M2
16
12
13
N2
a 2
92
12
32
93
12
S3
16
as
15
8*
15
15
HS
15
96
86
8)
85
»5
HI
as
14
81
85
14
II
  At 'the tint of publication, AIIL waa informed that there may be new data which will alter the Impact  analyaia of thla lource category.

-------
                                                               Table 3.13.  (con't)
             EFrCfT    POLLUTANT
   198ft.5
11.00
12. 00
12.25
12.50
12.75
13.00
14.00
1*.25
1».53
1*.7J
IS. on
16. 00
16.2!
16.50
16.75
17.00
1. 00
1.25
1.53
1.75
J.OO
2.25
3.25
3.50
3.7!
6 , 00
*.2!
5.25
3.50
5.75
6.00
6.J5
7.2!
7.53
7.75
6.00
«.00
«.25
».50
9.75
10.75
11.00
11.25
12.25
12.50
13.50
13.75
I*. 75
15.75
16.00
17.03
17.2!
.25
.2!
.90
.10
.50
.50
.50
7.50
CO
HC
?H
SO
HC
CO
HC
PR
SO
NO
Ft
HC
P.I
SO
CO
rt
HC
pn
so
so
CO
FL
HC
pn
no
CO
Fl
HC
p«
so
no
FL
SO
pn
no
pa
so
P.I
CO
Ft
MO
PS
FL
HO
pn
NO
pa
pn
PN
FL
PH
PB
pn
PN
Ft
pn
PN
PN
PN
pn
OIK ED FUEL  BOILERS  (OIL t REFUSE)




(IGG) TUNNEL  KILHS(OIL).DRIERS  AND  STORAGE




(AGG) 1UNNEL  KILNS(GAS).DBIERS  AND  STORAGE





(AGG) PERIODIC  KILNS(COAL),DRIERS AND STORAGE





(AGG) PERIODIC  KILNS (GAS) .DRIERS AND STORAGE




(AGG) PERIODIC  KILNS (OIL),  DRIERS AND STORAGE




GLASS BANUFACTURING INDUSTRT   (LEAD GLASS)



FIBERGLASS  NFG.  PLANTS   (TEXTILE PROCESSING)



CERAniC CLAI  nFG


NITRATE FERTILIZER  (ANHONIUn  NITRATE)  PLANTS

STEEL FOUNDRIES   (OPEN HEARTH)

PESTICIDES  MANUFACTURING
(AGG) CASTABLE  KEFRACTORI PLANTS

GREI IRON FOUNDRIES  (RETERBERA TORT)
                                           BOM I BORIC  ACID                      |
                                           (»CG) NON-KETALLIC MINING -  FLUORSPAR

                                           SlflNF. QUAtlHING AND PROCESSING*
                                           PGLIESTEH  RESII
                                           STARCH HFGR
                                            SYNTHETIC FIBERS INDUSTFT (DACPON  POLTESTER)
                                           IIIDROCEN FLUORIDE
STANDARD
USED
(In)
0.0 15030
0.295000
0.200030
0.010000
13.799999
17.000000
0.0
1.299999
0.043300
0. 150000
0. 300000
0.0
1.299999
0. 150000
0.300000
0.300000
0.0
1.299999
1.200900
1. 103000
3.200000
0.300000
0.0
1.299999
0.120000
0. 110000
0.300000
o.o
1.360000
0.060000
1. 7000DO
0. 300000
0.080000
0.240000
0.360000
0.060000
22.599991
0. KOODOO
2.030000
2.000000
0.200000
18.000000
0.300000
0.003000
0. 180000
0.010000
0.220000
0. 100000
8.400000
0. 130000
0. 100000
0.0
1.620000
6.00JOOO
0. 100000
2.599999
0.350000
0.020000
0.350000
1.009999

croE
1 1 B:I
10 A07
10 A 07
10 A07
10 A07
10 A07
«5 Oil
45 Dl 1
45 Oil
45 D11
45 311
45 CIO
45 010
»5 D10
US [MO
15 010
46 D12
46 D12
«6 D12
46 D12
46 012
16 D12
46 D10
46 D10
46 010
46 D10
46 D10
• 6 D11
46 D11
»6 D11
46 D11
06 011
<0 D19
40 D19
40 D19
40 D19
40 D06
40 DC6
«0 D36
10 006
10 310
40 D10
40 D10
30 »05
30 A05
50 002
50 032
55 101
40 008
40 D03
50 C03
50 C03
20 A15
47 F31
47 F01
40 A01
20 B19
10 018
20 B33
20 117

FLA:
86
N5
N5
S6
N4
H6
N5
114
»6
•16
HI
K6
N4
16
H6
HI
116
114
S5
S6
us
m
96
114
K6
B6
HI
J6
14
S6
116
m
16
«6
If,
15
.11
.14
16
11
H6
.14
12
36
14
16
15
.12
ni
11
11
53
12
N2
112
N1
as
15
S4
94
At Ch« tiM of publication. ANL v«.  Informed that th.re
                                                                which will alter th« Impact annlyala of thla aourca category.

-------
                                                           Table 3.13.  (con't)
       CUHULATIVI
 TEAR    IffCFI    POLLUTANT
                                        SOUUCE
                                                                                                                STANDARD
                                                                                                                              CCOE   riAs
1565.5
  1.9:
  9.50
 13.30
 10. 75
 11.00
 12.00
 12.25
 12.50
 is. j:
 13.75
 1*.00
 15.00
 16.00
 17.3C

  1.00
,  2.30
  2.25
  3.25
  4.25
  9.25
  6.29
 - 7.29
  1.25
                      PI
                      PH
                      Pn
                      FB
                      FL
                      pn
                      FB
                      FL
                      PN
                      CO
                      PB
                      PH
                      rn
                      P.I
                      pn
                      FL
                      PI
                      pn
                      FL
                      PB
                      PB
                      US
PF.FLITE   (VERTICAL FURNACE)
PHOSPHORIC   ACID  PLANTS  (THERNAL PROCESS)
(AGO) SECONDAPI ZINC SHELTERS  (1ETOBT  REDUCTION ( KETTLE  FURNACES


(AGO) 5ECOMOAFI ZINC SHELTERS  (HOSII t  REVERB fDIP ACESI


GEEI IRON FOUNDRIES  (CUPOLA)
CUITOH GINNING
UCANINUn  REFINING
ALFALFA DEHtDRATING PLANTS

(»';0) CLAI  SII.'TEUNG PLANTS
AKIKAL FEED DtFLUOBI NATION

UREA
ULTtt'GENT MANUFACTURING PLANTS
PHOSPHORIC  ACID PLAITS  (UET PROCESS)
GASOLINE  ADDITITES  (ELEC1ROIITIC)
GASOLINE  ADDITIfES  (SODIUH-LEAO)
SINTHETIC FIBEBS INDUSTBI (TISCOSE  RATOH)
0.210000
0. 131000
2.5BOOOO
0.050030
0.077030
0.799000
0.050000
0.023103
0.200000
8.000J30
0.033000
o.ieoooo
0.010000
0.236030
1.099999
0.062500
0.138000
1.360000
0.450000
0.005030
1.003000
0.890030
1.599999
• 0 912
20 110
SI E01
51 E31
51 E01
51 E02
51 E32
51 E32
53 C31
50 C0»
50 C09
30 B01
50 roi
30 301
10 D16
30 010
30 310
20 B21
23 C13
20 A07
70 f02
70 f31
20 806
US
R5
HI
9*
B2
HI
9»
H2
15
15
12
N«
»5
N5
NS
N5
N1
96
95
92
81
81
92
                                                                                                                                                    K9
                                                                                                                                                    O.
  Ac th< cl^c of publication, ANL w.i« Informed chac there may be new d.it.-i which wtll alter the Imp.ict 3n*\y*lf of tht« source

-------
            Table 3-14.  Impacts of Prioritization Strategies on Emissions

                                 Change  in  1990 Emissions Over Base Year,  (1980), %

                    Standards
                    per year    PM     SO      NO      HC     CO     PB     AM2     KnS     FL
1'  No NSPS              0     29.2   19.1    55.6    70.1   29.1   56.1  135.0      27    34.7
2.  All NSPS
    Immediately          0     -6.4   10.8      22   -29.6  -22.8  -19.3  -30.6   -44.7   -27.3
3.  Baseline Strategy   60     -.83   11.4    23.8   -23.9  -21.3  -16.5  -24.3   -40.9     -15
4.  Baseline Strategy/
    Relaxed Schedule    30      3.5   11.9    25.5   -21.2  -21.3  -13.8  -17.9   -40.5    -4.4
2Sulfuric acid mist

-------
                                     128
             Table 3.15   Air Quality Impacts of NSPS Strategies
Standard
Setting
Strategy
1. No NSPS
2. All NSPS Immediately
3. Baseline Strategy
New and
Number With
High Air Quality
Impact
19,067
3,957
Modified Sources in 19903
Number With
Moderate Air
Quality Impact
25,370
35,623
Number With
Low Air Quality
Impact
726
5,583
Total
Number
45,163
45,163
      (60 per year)

4.  Baseline Strategy/
    Relaxed Schedule
    (30 per year)
4,709
5,626
35,209
34,774
5,245
4,763
45,163
45,163
 Hypothetical  average-sized  sources

-------
                                      129
                Table 3.16   Mobility/Competitiveness Impacts
                             of NSPS Strategies
New and Modified Sources in 1990
Standard
Setting
Strategy
1. No NSPS
2. All NSPS Immediately
3. Baseline Strategy
Number of Sources Number .of Sources
That Could Have Precluded From
Moved Moving
16,970 23,193
0 45,163

Total
Number
45,163
45,163

    (60 per year)

4.  Baseline Strategy/
    Relaxed Schedule
    (30 per year)
1,466
3,186
43,697
41,977
45,163
45,163
 Hypothetical  average-sized  sources.

-------
                                     130
4.0  SUMMARY AND CONCLUSIONS
4;l  GENERAL
       •  The analysis procedure requires that decisions be made in two
          critical areas: an explicit statement must be made regarding the
          priority of the CAA criteria;  individual pollutant emission goals
          must be established.
       •  The Base Strategy gives first  priority to mass emission reduction,
          second priority to air quality impact reduction and final priority
          to reducing the mobility of stationary source siting because of
          differences in state air regulations.
       •  The Base Strategy provides a more restrictive pollutant emission
          goal for particulate matter, Sulfur Dioxide,  Nitrogen Dioxide,
          Hydrocarbons and Lead than it  does for Carbon Monoxide, Fluorides,
          Hydrogen Sulfide and Sulfuric  Acid Mist.
4.2  SINGLE POLLUTANT ANALYSIS
       •  The single pollutant analysis  indicates the best case for single
          pollutant mass emission reduction under the Baseline Strategy and
          also indicates the level of emissions (in 1990) used as goals
          in the multipollutant analysis.
       •  Irrespective of the strategy used, mass emissions will increase
          over 1980 levels for Sulfur dioxide and "Titrogen Moxide.  The
          Baseline Strategy does significantly reduce the level of emissions
          for all pollutants and parallels the best case (all NSPS in 1980).
          Irrespective of the strategy used, for all pollutants there will
          be a slight increase in emission levels after 1980 during the
          initial Standard Setting period.  The level of emissions decreases
          and parallels the best case (all-NSPS in 1980) for all pollutants
          except NO  and S0?.  The initial rise in emissions is minimized
          because potential mass emission reduction has priority in standard
          setting.
       •  Hydrocarbon, sulfuric acid mist, hydrogen Sulfide and fluoride
          source categories offer the highest potential for mass emission
          reduction.

-------
                                    131

       •   If controlled only by state regulations,  the pollutants which have
          the greatest emissions increase during the 1980-1990 period  are
          (in order of magnitude)  sulfuic acid mist, hydrocarbon, Pb,  N00,
          fluorides,particulate matter, CO,  H_S, and SO .
       •   In order to reverse the trend of increasing emission levels  for
          SO  and NO  (which occurs in the best case of all NSPS Set  in 1980)
          more restrictive NSPS emission limitations must  be developed.
4.3  MULTIPOLLUTANT ANALYSIS
          The choice of emission goals plays a significant role in the
          multi-pollutant strategies.  The Baseline Strategy tested here
          uses the best possible emission reduction goals  (all NSPS set
          in 1980) for the criteria pollutants except CO.   This results
          in a standard-setting priority ranking that is heavily dominated
          by hydrocarbon and particulate emission source categories.
       •   As with the single pollutant analyses, the prioritization of
          source categories does not play a major role in  determining  the
          impacts of the NSPS program when the CAA schedule is met.  The
          rate of standard-setting is high enough to discount any relative
          rankings.  (see Table 3-14, 15, 16).  This is evident by comparing
          the Base Strategy results with the best case (all NSPS set  in 1980).
       •   At a relaxed standard setting schedule (6 years  instead of  3 years)
          there are some minor penalties in mass emissions (notably fluorides
          particulate, sulfuric acid mist).   However fluorides and sulfuric
          acid mist are also influenced by a less restrictive mass emission
          goal.  There are also some pentalties resulting  in an increase in
          the number of mobile sources.  The air quality impact does not
          appear to suffer noticably.
       •   At a relaxed standard setting schedule there is  some slight  change
          in the order of source categories on the standard setting list
          (relative to the unrelaxed schedule).  This is due to a change in
          the pollutant emission levels resulting from a delay in standard
          setting.
          The standard setting schedule required by the CAA results in

-------
                                     132
          emissions,  air quality impacts,  and mobility impacts that are close
          to the maximum (all NSPS in 1980)  level.   This is due to the high
          standard setting pace.
4.4  MINOR SOURCE CATEGORIES
       •  There are some minor source categories (<100 ton/yr. of all
          pollutant emissions with no controls)  which account for a sign-
          ificant level of mass pollutant  emissions and potential mass
          pollutant emission reduction.  This is especially true regarding
          hydrocarbon and particulate emission source categories.  These are
          typically small source categories  (as measured by production units/
          year) but in the aggregate they account for significant emissions.

-------
                         Table 3.13.  Priority List  for Combined Pollutant Analysis.  Relaxed Strategy (Six Year Standard
Pu-itod)1
       COIICLATIVl
 rE»B    EffCH   FCLIUTANT
158C.O
I960.5
1.00
2.00
i.25
3.25
1-iE
1.50
1.75
5. CO
6.00
6.25
7.i5
7.50
8.50
9.50
10.50
11.50
12.50
12.75
13.75
11.75
15.75
16.00
16.25
16.50
16.75
17.75
16. CO
16.25
16.50
18.75
19. CO
3.00
1.00
1.25
1.50
1.75
5. CO
6. CO
6.25
f.:o
6.75
7.75
e.oo
6. 25
e.5o
5.50
S.75
10.00
10.15
10.50
11.50
12.50
12.75
13.00
13.25
13.50
HC
HC
CO
HC
HC
Pfl
CO
HS
MC
CO
HC
CO
II C
HC
HC
HC
HC
SO
HC
HC
HC
P.I
SO
no
CO
HC
PH
SO
no
CO
PB
HC
HC
PH
SO
NO
CO
HC
PI
SO
CO
HC
SO
NO
CO
HC
ft!
SO
KO
CO
HC
HC
P.I
SO
SO
CO
                                         ETHYLEHE OXIDE PLANTS  (Alii OXIDATION PROCESS)
                                         ACBILONITFILE PLANTS
                                         DlttElllYL TEREPHTHULATE flANlS  ,
                                         CAftbON BLACK   (FUBNACE PPOCESS)'
                                        FOFnALDEHTDE PLANTS "

                                        BALEIC  ANHYDRIDE

                                        INDU5TMAL SURFACE  COATING   (CAN COATING)
                                         (AGG)  riTEOLEIJ.1 REFINtRI MISC.  SOUHCES
                                        INDUSTPIAL SURFACE  COATING   (PAPER  COATING)
                                        DRY  CLEANING
                                        FUEL CONVERSION HIGH  BTU COAt GASIFICATIOB

                                        INDUSTRIAL SUfFACE  COATING   (FABRIC COHTIHG)'
                                        G6APHIC ARTS INDUSTRI.  (GfcAVURE) B
                                        BY-PFOCUCT COKE OTEN  «
                                         INDUSTRIAL IBCINERATION  (INDUSTRIAt-COIHERCIAL)
                                         PLASTICS AND BESINS   (ACRYLIC)
                                         HINEBAL HOOL ItFG
                                         PHTH»IIC ANHIDHIDB  PLANTS   (OXILENE  PPOCESS)
                                         STATIONARY INTERVAL COBBOSTION  ENGINES (SPARK  IGNITION)
                                         STATICNARI INTERNAL COKBUSTION  ENGINES(DIESEL  £  DUAL FUEL)
                                         INDUSTRIAL SURFACE  COATING   (AUTOHOBILES)"
                                         INDUSTRIAL BOILERS   (10-250X10E6  BTD/HR)
STANDARD
USED
(Enf
1.679999
7.9 19959
8.000000
0. 370000
0. 103000
1.099999
2. 759999
0.060000
0.061030
0. 157000
2.620000
15.599999
0.053000
0.015000
0.260030
21.399991
0.660000
1. 559599
0.2600J3
65.000000
0.042000
0.215030
1.023000
0.050000
2.669999
2.B79999
0.065000
2. 379999
0.653000
8.169999
0.010003
2.100000
0.869000
3.629999
0.0
0.080000
1. 719999
0. 020000
2.133000
9.100000
3.009999
0.0
0.0
131.000000
0.0
0.0
5. 139999
16.000000
123.000000
0.0
0.310000
0.0
O.«03900
1.503000
0.365000
0.0

CCD5

21 C11
20 COS
23 COS
20 C23
20 C13
20 C13
20 C03
20 C93
20 CD8
20 COS
20 C23
23 C23
62 Bit
71 00'
f3 833
60 roi
21 C20
21 C23
61 B32
60 B01
50 MO
50 >10
50 A 10
50 A13
50 A13
1 1 801
1 1 BOH
1 1 B31
1 1 Eli
1 1 B3U
1 1 B34
20 B17
10 D13
10 D13
13 D13
10 D13
10 D13
20 c:6
23 C26
20 C26
20 C26
13 C01
10 C01
10 C01
10 C01
10 c?:
10 C32
10 C32
10 C32
10 C02
62 B32
10 133
10 A93
13 103
10 103
10 133

rue

12
12
15
fl2
13
15
(15
15
13
f5
12
15
S2
HI
HI
«2
<2
Hi
N2
N2
N2
SI
HI
HI
HI
HI
«2
VI
«2
H4
₯2
15
S4
1»
16
16
15
35
19
.14
15
IS
»6
Nil
M6
S5
116
Nt
14
16
US
lit
1*
ft
15
•16
 *S«e Table 3.1.8 on page 52 for definition of terms.

-------
                                                             Table 3.13.  (con't)
      CUHOLATIVI
TEAR     IlfCtl    POLLUTANT
1981.!
13.75
14.75
I'.CO
U.25
15.50
U.50
16.75
17. CO
17.25
1.25
2.25
3.25
4.25
5.25
«.25
7.25
6.25
e.;o
5. S3
U.50
11.50
11.75
12.75
13.00
1«.C9
H.25
15.25
15.50
16.50
16.75
17.75
11.03
2.00
2.25
1.25
*.25
5.25
6.25
7.25
a. 23
9.25
».50
10.50
10.75
11.75
12.00
13.00
U.OO
1*.25
15.25
15.50
16.50
16. 7J
17.00
ri
19
P9
SO
HO
NO
P.I
SO
CO
P.I
PR
?n
pn
pn
P.I
P8
PI
SO
P.I
SO
HC
P8
HC
CO
HC
CO
HC
pn
so
pn
PC
P8
HC
CO
HC
HC
HC
HC
HC
HC
SO
HC
SO
HC
PB
P8
HC
HC
10
RC
CO
HC
PH
CO
SOUIiCE
                                        EXFLOS1VE  IND (HIGH EXPLOSIVES)'
                                        STATIONERY  PIPELINE COMPRESSOR  ENGINES
(AGG)  K'OS-HETALLIC MIHINC!  -  CLAT
PHOSPHATE  ROCK (HIM ING)
SAND 6 GRAVEL PROCESS  >
(AGO)  NON-METALLIC DINING  -  GTPSUN
HETALTC  MINERALS MINING  (COPPER)
(All)  NCK-HETALLIC HIHIHG  -  LINE
(AUG)  IEED AMD GRAIN HILL  IIDOSTRT
(AGG)  SECONDARI COPPER  PLANTS  (CONVERTER  SHELTING)

(IGG)  FHOSIHATE ROCK PREPARATION PLANTS
CHEMICAL WOOD IND.   (NSSC)

BEER PROCESSING PLANTS '

ZTHILENE DICHLORIDE  PLANTS  (OJTCHLOBINATION PROCESS)

ACRILIC  ACID

VEGETABLE  OIL flFG.'

CHEMICAL WOOD PULPING  IND.  (ACID  SOLflTE)

GRET IRCN  FOUNDRIES   (ELECTRIC  ARC)


CTCLOHEXANOL/CJCLOHEXANODE

PROPILENE    (OXIDE)
HETHTL HETHACRTLATE  PLANTS
VINYL  ACETA1E  (ETHILEKE)
TEKEPHTHALIC ACID  PLANTS
ETHUENE-PROPILENE
ETHILtHE OXIDE PLANTS   (OXIGEN  OXIDATION PROCESS)
 (AGG)  CRUDE OIL AND  NATURAL GAS PRODUCTION PLAITS

ETHILENE

NETALIC  KINERALS  MINING (FERROALLOT)

VARNISH  *
POLTETHXLENE  (HIGH DENSITY)

HETHANCL PLANTS

CHARCOAL PLANTS
STANDARD
lln'f
0.000500
1.599399
0.263000
6.000000
6.400000
1S. 129999
0.830000
5.000003
9. 639999
35.S199S9
6.000090
0.423000
5.099999
0.070000
6.299999
0.193000
0.330000
87.000003
1.389999
3.099999
0. 109000
0.270000
0.543000
0.013000
1.740000
0.240000
15.203000
0. 630030
3.099999
2.000000
0.0
0.070000
1.007000
1. 115030
0.592000
1. 127999
0.430030
0.210030
0.720000
0.430030
0.011300
0.131009
0.014900
0.333030
0.003000
0.600000
0.679030
0.591000
11.253000
0. 100090
0.100003
4.793999
4.000000
3.200000

CODE
10 »33
20 C17
20 C17
20 C17
20 C17
11 C91
11 C01
11 C01
11 C01
41 F01
44 F01
49 >32
42 roi
43 E01
43 F31
30 101
59 B31
58 901
41 D31
SO 133
39 D09
30 099
20 C07
20 C97
20 C47
2D C47
30 D11
39 Oil
83 194
80 A0»
59 C02
50 C02
20 C49
23 C«9
29 C36
23 C3*
23 C37
20 C27
29 006
22 C11
71 101
71 roi
23 C31
23 C31
4? B01
42 E01
20 CIS
20 803
20 803
20 C32
20 C32
29 C16
20 C16
20 C16

rno
»5
ill
15
112
95
115
16
116
16
11
N1
J2
112
12
*1
8»
33
96
14
82
82
M4
12
86
H2
.15
92
94
92
14
S3
S3
N2
95
92
92
92
93
32
92
R1
N6
«5
94
K2
12
82
92
82
12
95
92
94
IS
                                                                                                                                                       N>
                                                                                                                                                       K)
 At th« tla* of publication, ANL v« Informtd that thnrc My hs new d.ita which will  niter tho Inpiict nnalysis of  this lourc« c«t««ory.

-------
                                 APPENDIX A

                             Table of Contents
                                                                      Page
Table A-l  Source Categories Not Evaluated	A-2
Table A-2  Minor Sources	A-3
Explanation of Terms Used in Tables A-3 and A-4	A-7
Table A-3  Model IV Major Source:  1980-1990 	   A-8
Table A-4  Model IV Minor Source:  1980-1990 	  A-36
                                     A-l

-------
                          A-2
      Table A-l.   Source Categories Not Evaluated
Polyurethane Foam
Leather Product Plant

Wood Preserving Industry

Agricultural Incineration

Silicones Plants

Polyvinyl Acetate Plants

Styrene Copolymer Plants

Cellulosic Plants

Acetate Plants

Polyvinyl Mtyral

Fuel Conversion, Low Btu Gas

Fine Chemicals
  Flavors
  Fragrances

Functional Chemicals
  Adhesives
  Cleaning Compounds
  Surfactants
  Catalysts
  Metallic Soaps
  Rubber Chemicals
  Chelating Agents
  Enzymes
  Inhibitors
  Flame Retardants
  UV Absorbers
  Food Additives
Photographic
Laboratory Chemical
Textile Chemical
Paint Chemical
Paper Chemical
Flotation Reagents
Automobile Chemical
Water Treatment Chemical
Metal Treatment Chemical
Plating Chemical
Printing Chemical
Wood Chemicals
Non-Industrial Surface Coating

Wood Furniture and Fixture Plants

Chloroprene

Synthetic Rubber - Butyl (IIR)

Synthetic Rubber - Nitrile (NBR)

Intermediates and Dyes

Synthetic Fibers - Acrylic/Modacrylic

Synthetic Fibers - Polyolefins

-------
                                                      TABLE «-2.   nnrii.  s~iu«tts


p '•'
5J
-'l:sli. ' Sf I)
T''J
= 'iTiSIC'i!> 1
.S;;L-^CR sir>
[ TO:-3/ YK )
(pRijf-S? ur,:
c ,.
[ T !, / Y rt )
Pf«
AM
HS
Representative
Facility Size
(Process Units/yr)

1 *> i 0 -
LO ; J 7

I 0 " "*


1 ~ • ' • ,


2~> u 1 -)


21 :2


20 M •


20 • -in


23 a.'


20 -,r;


20 *2r.


20 CO"


20 )0''


21 '.0.


= .J-;:::L F
X— -0
y— 7
C )"";.RCI
24
C
. r •" ft
,,•».'' LI 1

~" . , " {_ •' '
£
i!7
^3!'jf C
4fc
•J
L : '.D l'> I
6
r>
'•'X V'.'I'JY
(
Q
i- • : L Y C -1 >• S
1
L
-:>'?XY (• c
Q
0
ALKYn
r
0
Pl.'.STJCi
34
r,
i-iitiT r-F
^
0
fti v-isn
0
0
hYfPr.'O l
4;.
r
,.EL -CUFFS «C.'
. '.) i 4 2 0 . C ? * 2
. 4C7'. l.Pl'SZ
AL BTILFft!
. 5 2 t '.
. 25^ '"
, •• i" I L r t: S
. 3 " C V

•;'-"?".x: i 5
. c c '. •'-
.647"
n,.L» ! jr
.4^50
. 5 - ft '•
1 r S
. r L -
.4^43
1 -tCC'^L
.0
.0
n-;/- T'.S PL.

. O
s : \ ? L ?. t T
f i
.0

r
.0
i:.c Hhsir
. 5 c r o
. • i :. ?
r, .
. 3 ? 2 C,
.?OCO
r K F- N i I I F )
.0
.0
trie -c:r
.741'!
.0571
i i : . 3 - !
2G.7i:F4
0.2134
3S.25CC
I .27^9

O.C
c.o

c.c
c.c

' . r
r . :.
K;.- 15
c . r
' .0
.r.Ts
0 . '
C.:
U' MCH
r . r
C.f

O.C
c.c
'.i iPLLYi
0 . 0
O.C

0 , C
O.C
b
c .:
C' * C
If Ol'STf:'
r ^
(;.C
1X1C6S L ^0^1*^5
c- . o 6 : *
1. /3v.
.HX10E6 dTu/r'p.
v . o i <, c
r . ft ;• r i
\ ": . >- 0 ^ 0
s . "< 3 -i ^

^ A
o!c

c.c
^- » ^

( .0
O.C

r- .c
-• . c

'-.o
'<- .0
•ILL-)
0.0
0.0

0.0
C.O
iMCES1
0 . f
0.0

C .0
0.0

O.C
C .0
r1
'.. . v
c.o
c.ccii
71.42.b6
)
C.S233
7.6336
c.<;50o
200.COOO

c.o
0.0

c.c
C .0

c.o
0 ,C

u2.7CCC
o.r6Ct

1.54CO
1 .P1R2

2C.HCOO
C. 10CC

2.6505
C. 1 170

1 6 . i 0 C 0
C.0?6fc

45.96CO
O.C067

60.7500
O.C444

C.O
0.0
o.;/.o=>
5. o.-r/p

i . e 4 s 7
3.3223
1.2 JOO
4i.'.COOC

C: . 0
O.C

O.C
c.c

'"p f
c.o

!J.O
c.o

c.o
<" . 0

0.0
V • 0

O Q
0.0

0.0
0.0

0.0
c.c

0.0
0.0

:>.0
0,0
0.0
0.0

O.C
0.0
4.2500
11 .7647

0.0
C.O

C.C
c.o

i, 3000
0.9091

O.C
').0

O.C
C.O

0.0
c.o

c.o
c.o

0.0
0.0

0.0
0.0

c.o
0.0

0.0
O.C
o.o
0.0

o.o
o.o
0.0
c.o

0.0
0.0

o.o
0.0

c.o
0.0

o.o
o.o

0.0
o.o

0.0
0.0

o.o
o.o

0.0
0.0

c.o
o.o

o.o
o.o

O.C
o.o
0.0
0.0

o.o
c.o
0.0
o.o

o.o
o.o

0.0
0.0

c.o
c.o

o.o
o.o

o.o
o.o

c.o
o.o

0.0
c.o

o.o
c.o

c.o
o.o

o.o
0.0

o.o
o.o
0.0
0.0

0.0245
250,0000
0.0
0.0

0.0
0.0

o.o
0.0

0.0
o.o

o.o
0.0

0.0
0.0

0.0
0.0

o.o
o.o

0.0
o.o

o.o
o.o

0.0
0.0

0.0
O.C
0,0011
0.0613


0,5000

0,7770


0.2650


0,0300


0.03BO

>
0,0280 i,


0,0204


0,0031


0,00*6


0.0031


0,0270


0.0239


X   Uncontrolled Specified Pollutant Emission  by Representative  Facility  Size  (Ton/Yr).




Y   Facility Size Required for Source Category  to Qualify as Major Source (ilOO Ton Pollutant/Yr) for Specified Pollutant (Process Units/Yr).

-------
                                                              TABLE A-2. KINOR SGJPCES  (CONTO)

21 .12.


22 ij>


23 121


3C -;C"


30 DO:


30 riJ


if Dl"


30 Dlr


31 Oni*


32 no-


33 :04


3- ;e<-


40 Clf


4C 01''


PM
..
(•ECUlFtt
f.U
til SSI QMS (
SDJRCE SJZF
HC
(PkOCESi UMtTS/YK)
tu ?b
AM
HS
PL Representative '
Facility Size
(Process Units/Yr)
Lf.'.O PIGI'ENTS IF l- P. (HEr LEiC. )
X— *-0 . 0
y— c.c
Lti-t, H&."f,TS IF
c.o
O.C
Lt*0 F IGI- Ef. T$ (F
O.o
0.0
r f AT SfTKEt-C'-Sl-J
c .:-'><. r'
C . c 6- 1 7
r-JSH PFLCr.SS!NC
•3 . 5 ? 7 C
0 . S f ' C '-'
r.:*ECl F- :F ).' G CF
1; . 3 f t: •_
(i . rf CC
r: 1 1 P F A T <• F< Y I N (
t 2 .4? ; 5
0 . 0 ! t '
FH/.P- rCL'. I IC.'.L
0 . 1 1 S •)
0. s26l
CUFrSE Pl'/-ST^r
2 7 . "' 4 C '"
'.' . C 2 s ~-
Cl'FFrfc at iSI IKC

0.047'
CCFEf E F! i5T IT G
5 . 1 1 C C
0 . 1 4 2 a
C'-'FEEE kl'ASTINC
5 . 1 1 rr
C . 1 4 2 •>
F k I T ^ F & ( V ~ ~ M
' • ; . K ? 2
c . r 1 1 -:
(••!..•'<<, 1 i I I F i. C ( L F
5 . -I M •••
c . c ;. s '•*
"' "
c .t
C P U I- 1 T fc L t 1 11
r.o
0.0
OF- (LEAD OB&f.-
c.c
C t r

c . c
c.c

c.c
0 . t
f- 1 i1 "1 S
c ,c
c.c

c ,c
c,c

c . r
c .c
(PI-FCT)
c.c
C t ^
( I' jltfCT)
c.o
C .'..
t.STLKEP/CCCLE«
C , C
c.c
(SFFiY CKYEF. )
C ."
:•.(•
V F LFN^Cf '
V «
c.r
ire ;'iri.<;Tii\ (
». , t 34C. 1
C . C 7 i, t
- . -^
C.O
)
c.o
c.o
ATE)
0 ,r
O.o


\, , v.

o.o
n . o

O.C
" '.''

0 . 0
0.0

" . •>
c-.o

0.36iu
i.CCCC

0.36iO
2.CCCC
)
0.0
c.c

L'.C
O.C

r '^
n!o
C'Pii. r-LAS
? . 5 " V 5
" . -v 6 1
0.0
0.0

0.0
0.0

O.C
0.0

C.45St
0.5714

O.C
C.C

3.5695
0.0000

14 , 6349
O.C254

0.0
0.0

0.0
0.0

0.0
O.C

C.O
O.C

0.0
0.0

O.C
0.0
S)
0.0
c.c
0.0
0.0

0.0
0.0

0.0
0.0

0. 7&00
0.3333

0.0
0.0

o.o
0.0

0.0
O.C

0.0
c.o

O.C
c-.c

0.0
c.o

O.C
0.0

0.0
f .0

c.o
0.0

0.0
o.c
1.3500
0.2222

0.1000
0.4000

0.4200
1 .6667

0.0
0.0

0.0
0.0

0.0
0.0

O.C
0.0

0.0
0,0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
c.c
c.o
0.0

0.0
0.0

0.0
0.0

0.0
0.0

o.o
0.0

0.0
o.o

0.0
0.0

o.o
o.o

0.0
0.0

0.0
0.0

•3.0
0.0

O.C
0.0

o.o
0.0

r.o
o.o
0.0
0,0

0.0
o.o

o.o
o.u

o.o
o.o

G.OB51
3.4483

o.o
c.o

o.o
0.0

0.0
o.o

0.0
o.o

o.o
o.o

o.o
o.o

O.C
o.o

0.0
o.o

o.o
o.o
0.0
0/0

o.o
0.0

0.0
0.0

0.0
0.0

o.o
0.0

0.0
O.C

o.o
0.0

o.o
o.o

o.o
o.o

0.0
0.0

o.o
0.0

0.0
0.0

10.0275
0.0360

31.0000
0,0100
0,0030


0.0004


0.0070


0.0026


0.0029


0.0000


0.0036
>
1
0.0005 *•


0.0073
A*

0,0073
B*

0.0073
A B*

0.0073
A B*

0.0036


0.0031


*Sourcc categories footnoted by capital letter belong  to  the  same facility and have
 been determined to be a minor source after aggregation.
X  Mncontrolled  Specified  Pollutant Emission by Representative  Facility Size (Ton/Yf),
Y  Facility Size Required  for  Source Category to Quality as Major Source HOO Ton Pollutant/Yr)  for Specified  Pollutant (Process Un1ts/Yr).

-------
                                                              TABLE A-2.
                                                                                 SPURCfci (CCi\TO)

.
iD
' t wUl?cC
t"liSIC\i (T
SOLACE SlZt (
O^S/YR )
P^CESS L'MITS/YR)
CD Pi>
AM
HS
Representative
^L Facility Size
(Process Unlts/yr)

4c cr:
4t FC?
C '- •• C •• E " E 8 .'. f r P- (• i. i » T
I — »ic. '.TO:
y — *• --.C'.'C' c.r
l lit It C (t'tMf G f .'.-.•
<. 7 . 5 ? r • C.C
o . c i o 7 r . c
<.* FC:

3 C P. f ."


5C CCi


sc r:c:


t c r : •• f


6 r r c :


6' Tri


*>c cc:-


^ r F c .'


tO FC'

6f FC"


fie* Mi: 'c
c . c . t
StCC,:. [>'><••• K-
C . " •" C
C . •'. '. \.
r, K F Y J F L ' F C
45.CCC
C . ! 3 3

c.src

r *• i. P K j c i (• T 5
C . C
(•.C
ICLVK1 ."?Ti

C . C
SC'LVcl T CETi
0.0
n.o
SOLVENT I'lT*
C.C
u.O
1- .T.r'. II" .
C.O
f, .C
P.T.". T.
O.C
0 .0
l .T.r,. If:.
C.C
0 .'.
c Y It C P t '- T
v c.c
c.c
'i'.r£JU' it
C.C
c ,c
'.ICFJES (
c.r
1 c.c
n$ ( : ;• ;H
r . c
C.r
i ' 1 1 5 1 f v
C .C
r t f
Cl f-^f.J'.C.
C ._
'- . C
L f I F*t.;,.G
f • . ',
r , r
L CLk>'l I1 &
C .0
' 1 r-
( C-i . "-l-L".
C • 'J
r . o
( S 6 - V ! C t. S
C.L
c,r
( s t F. >; i c : s
; .r
^ f
) b
r. c
>b
c.c
(• ,c
t L T? R
- . c
•". . L
Ir,C'UCT 1C--' FOPl.ttt
r .0
L ,r
CT!"'1)
r
' "° k
»
• c.c
r, . (.
(CCi: :L--i.f:f-.s :
; _ L
'. i :-
(npff. T!-f, '.fcpj;
u . o
r ^
( Ct'M'fc VLi- 1 {t C [
c .<-•
( • C
PI -M S ) ( STUPf.Gtr
O.C
c.c
( .0
C .0

'. . ^
U . ' '
O.C
o.c
c.c
c.c
o.c
o.c

o.c
r .c
j
c .r,
c.c

c.c
o.c

53.899V
0 . ( . ',: 0 3

0. 375r.
0.133:-
< DiT.f -.-.se;. 5)
11.0250
0. 13J3
Jr&RFib TPr<)
33. coon
0.1333
i TRANSFER'
71.2073
0 ?43C
.fh<,5(J
0,506^

1 . 7 U 7 '•
(.1.4:93
O.o
0.0
c.c
C1. 0
r. . i

r . c
i . '':

0.0
o.c

o.c
0.0

0.0
0 . 0

1.0
V-'.C

0.0
o.o

0.0
0.0

0.0
0.0
0.0
0.0

w' • J
:i.O
C.O
0.0
0.0
0.0
C.O
o.c

o.c
o.c

1.50CO
4.000C

C.O
C.O
,
0.0
0.0

0.0
0.0

o.o
o.c

0.0
0.0

0.0
0.0
0.0
0.0

0.0
0.3
o.o
0.0
o.c
0.0
c.c
c.c

o.o
n.o

o.o
0.0

0.0
0.0

o.o
o.o

T.O
•1.0

0.0
n.o

0.0
1.0

0.0
0.0
0.3
0.0

0.3
1.0
o.o
o.o
o.o
o.o
C.O
0.0

o.o
o.o

o.o
o.o

o.o
0,0

0.0
0.0

0.0
0.0

o.o
o.o

o.o
0.0

o.o
o.o
o.o
o.o

o.o
0.0
0.0
o.o
0,0
o.o
0.0
0,0

o.o
0,0

0.0
0.0

0.0
0.0

0,0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0
0.0
0.0

0.0
0.0
0,2000
0,0079

0,0079

0.0003


0.0600


0,0100


0,0002


0.000$


0.01S5


0,0440


0,1737


0,0083

0,0083


C'

cr

























cr

Di


*Source categories footnoted by capital letter belong to the same facility and have
 been determined to be a minor source after aggregation.

X -  Uncontrolled Specified  Pollutant Emission by Representative Facility Size (Ton/Yr).
Y    Facility Size Required  for Source Category to Qualify as Major Source (>_100 Ton Pollutant/Yr) for Specified Pollutant (Process  Units/Yr).

  At the time of publication, ANL was informed that there may be new data which will  alter  the  impact analysis of this source category.

-------
                                                                                SOL'KCfcS  (CQt:Tli)

,.
St.
' 1 f'L'IH:
1 u
:!• SC.'UKCt SliF (p^CCc'jS UMTS/Y!)
HC C!i (•n
AM
MS
Fl. Representative
Facility Size
(Process Units/yd

64 {.r:


65 fC?


65 cc:->


bO fC's


90 %0)


90 co;


"< o r o i


90 FCl


90 FC3


90 FC<


1 1 : C L' s i F ; A l S C R F ; C £
I— C.C
J-^C.C
II. [ USTF I-L Sl.RFiCt
O.C
O.C
If-inUSTF liL SUFFICE
0.0
O.C
PL'LPL'U^RT I'FGP .
I.! 52*
l,?jt;(\~!
LEAD ACIT f .'.T7FFV
5.472C
j 1.36?*
CM-LE COVfcF F'RU . r
o.c
0."
TYFC CETAL PCI.;ICT;
o.c
o.o
CAI I'FC PL£M
O.C
C.C
* E X T I L 1 I r C < C ' F P 11
0.0
o.c
TEXTILE MFC m/IDF"
o.o
0.0
Cf:tl ;t.o
C.C
c ,c
CL -T;i 0
C- . '
&.'.'
f [;/ TIMO
0.'-
r .0

C . "-'
C'.O

o.c
C .0
'L*.M
r ^
r . c
; r;»i p|_^f,T
r.c
C f ?

C ,0
' f "
• ,'Fu)
o ^
C" . '.
1 1 ' • G )
C.C
0.0
I'-.F-.-L K'?
( .C
0.0
illiTLJRE
49.
0.
(.•.LTn FURNITURE C
C .0
0.0
( FLATf.OUD
O.C
0 . 0

o.o
[ .0

0.0
(-.0

C.C
C.O

C ,(.'
C.O

(.' .C
C.O

U.O
C.O

o.o
0.0
i9.
C.
CUa-JilG)
bOB-
H313
r.'-Tjur. )
716fc
0313
b
0.0
o.o

0.0
o.o

0.0
0.0

0.0
0.0

0.0
0.0

0.0
0.0

o.o
0.0

o.o
0.0

0.0
0.0

0.0
0.0
PKCOUCTS) 1
93.
0,

0.
C.

0.
0.

0.
0.

0 .
0.

0.
'*> •

3.
0 .

20.
0.
U6j.
0313

r
0

0
0

0
0

0
3

0
0

6400
i i>"C

9300
0435
0.0
0.0

0 .0
0.0

0.0
0.0

0.0
0.0

0. j
0.0

0.0
). T

0.0
t' . J

0.0
1.0
0.0
0.0

0.0
0.0

5.47?0
11.3636

0.6250
0.4000

0.8291
0.0034

0.6646
0.0643

0.0
0.0

0.0
0.0
0.0
1.0

0.0
o.o

9.9491
6.2SOO

0.0
0.0

0.0
o.o

o.o
o.o

0.0
0.0

o.o
0.0
o.o
o.o

o.o
0.0

o.o
0.0

o.o
o.o

o.o
o.o

o.o
o.o

o.o
0.0

o.o
o.o
0.0
0.0

0.0
0.0

o.o
0.0

o.o
0.0

0.0
o.o

0.0
0.0

o.o
0.0

0.0
0.0
0,0195


0,0187


0,0292


0,1209


0,6216


0,0025


0,0000

y>
0,0006 1
CT

0,0091


0,0091


X  Uncontrolled Specified Pollutant Emission  by  Representative  Facility Size  (Ton/Yr).
Y  Facility Size Required for Source Category to Qualify as Major Source  (>JIOO Ton Pollutant/Yr) for Specified Pollutant  (Process Unlts/Yr).
  At the time of publication, ANL was Informed that  there may be new data which will alter the Impact analysis of this source category.

-------
                                     A-7
               Explanation of Terms used in Tables A-3 and A-4
Notation
K
Es

En
Eu
Pb

PC

A

B

C

Ta

Ts

Tn
Ts-Tn

SIZE

ZAVE
           Explanation
Fractional capacity utilization rate
Allowable emissions under existing state regulation (Ib/pro-
duction unit)
Allowable emissions under NSPS (Ib/production unit)
Emission with no controls (Ib/production unit)
Construction and modification rate to replace obsolete
capacity (fraction of 1980 capacity/yr)
Construction and modification rate to increase industry
capacity (fraction of 1980 capacity/yr)
Baseline year (1980) production capacity (106 production
unit/yr)
Production capacity from construction and modification to
replace obsolete facilities (106 production unit/yr)
Production capacity from construction and modification to
increase output above baseline year capacity  (106 production
unit/yr)
Emissions in 1980 under existing emission limits (Es)
(103 tons/yr)
Emissions in 1990 under existing emission limits (Es)
(103 tons/yr)
Emissions in 1990 under NSPS (En) (103 tons/yr)
Maximum potential emissions reduction from NSPS program
(ton/yr)
Uncontrolled emissions from an average gypothetical source
(ZAVE) operating at full capacity (ton/yr)
Hypothetical source of average size (106 production
unit/yr)

-------
                            Table A.3.  Model IV Major  Source:  1980-1990
                                                                              [FOR EXPLANATION OF TERMS SEE PAGE
                                                                               A-7,  APPENDIX A]
Pi-
50

20

10

42

40

40


40

40

20

50

50

50

51

50

: 1 ) <2 ! ! J) 14) (5) <6>
E'MSil-'' RATES GROWTH RATES
E'liSSIC': SLLC/ilLfc jNCJNT DEC iMAL'YEi*
'f.O « UMTS E i t P P
s N u a c
•MClt-iTES
c-<.o:cv :?c'< FC^.OXUS IC.P-
:.-.3; L -./"•- 1.77!
-,::$ <-,T-£T:C :i.::e = R I;-o. IST
0.5?; LB/TCr, 0.700
;T3I'i;'JST3IAL BCILE:S (10-2}
,.450 L3/E6 ?T. 0.404
•-••iST;iLE -f (-'tCTNv P i.;-.:
:.EO: L?/r:-, o. = .<
:-<-- .E -.ui=3'f Il>,'. C tJ_-;:55,
'.. = 00 LE/7:s 2.i--
.. .c.si,,!.. , iv ,,fc
'.3-.0 li/T". IS. COO
.-o „---, ;.:;o
V.i: : -::0.iSS "FC. Fti.'iTS (T
-.5*0 I = .'T;>. 4.4o;
OFJiESGLASS I'FG. PLiNT? (>.,
C.'SO U>">. 9.300
C4s;'ET:c i'.-'j?i-E
o.'-oo " L=>/*:'. o.oio
EOtSE'l'.Oi'' Zi'-C S'-;:TE9S (
-.=20 LS/"N 2.71C
EOSStC^'OiR* ZI'-C S-iL't-S [
:.?20 LB/TCf. 2.710
a;sSr'.C'.Oi5Y tLLCJI.t" PLi'.T
O.iiO L3/T:'< 1.900
6015 = C3'.048Y CCPPI-R 0LA4T (5
cleZC L5/TCN 3.470
ECZSECO'.OlRY ZINC S"ElTE'.S (
0.320 1.3/TCN 2.7,0
i )
3.200
Y*E..r-S
.1.120
0 < 1 0 ; 3
0.4 04
1 CLrCT
o.a 00
•, -
2.603


7 . 0 C 0
t X T 1 L £
4.4L0
03L ?^3
9.300

0.001
C-LC I •.!
O.iiO
OiLvIM
0, 160
<;;• JCH
n '
^E-TI-.G
J.2^0
H.^IZj'.
1.6^0

17.000 0.0
UT*DI=:.E) IS3R)
r. .700 o.o
B T J / h n )
2.770 0.033S
tic -=o
50.000 0.03JS

17.300 0.0505

180.000 U.033S
120. UOU 0.033S
psoccssno
4.300 0.030S
CFSSIHG)
%9.2CO 0.130S

0.010 0.030S
:-G KILNS)
5.000 0.035S
ZP.G)
5.000 0.033S
LE FJS'IACE)
1 .930 0,0365
j
70,000 0,0355
TiL '-MFFLE)
45.000 0.033S

-0.016S

0.0 C

0.014C

0.043C

0.033S

0.042S
0.043C

0.067C

0.075C

0.060C

o.oiec

0.018C

0.025S

0.014C

o.oiac
UNITS

t6

E6

E12

E6

E6

E6
»

E6

E6

E6

£6

E6

E6

E6

to
SIZE
T3N5
SIZE
TONS
si:t
BTU
SIZE

SI:E
TOris
SIZE
TON?
S I Z t
T3'!S
SIZF
TU.'.S
SIZE
TONS
SIZE
T3NS
SIZE
TOMS
SIZE
TONS
SIZE
TONS
sut
TONS
SIZE
TOMS
(7)
£
711
13.44
30
2.37
• 737
20940
• 60
0.4H
• 3459
1-27
259
13.40
3 1 4 <,
C.4H
az
J.4ft
1728
1.47
* 0
1,26
15
0,03
• 15
0.03
• 10

516
0,10
* I 4 2
0.27
e
,,4s-2T7'.
0.0
.5620TT,
0 . J
.3035T-J'.
6910
.05-COT-;-.
0. Id
.^95STc;'.
713
.l"47Ti.N
4.43
« 0 'J C 0 ^ j ' i
0. 1^
. 6 .1 ; 9 T - ' ,
3.1-
.5593T'V.
0.<, H
.41SOTO'<
C.3S
.7S50T:'.
0.01
.7850Tnr,
O.n:
.3360T- ,
0.05
,5»94T1N
0.03
.OS-9T--.

C
S/YA Z.'.vt
-2.42
S/yJ ZJW£
0.3
S/YR Z4VE
3U3
S/Y. zav-:
0.25
5/Y>* ZJVE
471
S/Y* ZAVE
5.63
S ^ Y »" Z«l*/c
0..'3
S/Y". Zi'.'E
0.42
S/YK ZAVE
1.56
S/YS ZivE
1.00
S/Y» 7AVE
0.01
S/YI< zave
0.01
S/YS ^ivE
0.03
S/YS ZAVE
0.01
S/Y* Z4;E
0-05
EMISSIONS
1000 TC'.S/\EiR TCNi/<

-.23 * R*

1974, *

137.00 *
2.04 * R* >
1
00
1.63 *

11.97 *

O.JO 5,

0.02 20. E F*

0.02 20. E T

C.CS 60. 0*

0.09 63. t r
f*
	 	
*Source  categories footnoted by  capital letter belong to the same facility and have  been
 aggregated for analysis purposes.


* Source catecorios indicate small potential c»ls«ton  reduction or dccrcasinfi capacity.

-------
                                                               Table A.3.   (Contd.)
            TABLE   1

N-TE:  i  !•. SATING ctLftN  ''EA»S •.;  RSTJNG  HAS  SPECIFIES
    ID
                          12)       (3)       14)    (5)     ! 6 )
                             E^ISsll-i  RATES      GUHHTri  RATES
                                                                              (71
E"MSSIC'< "ILC.-.AbLf JNCONT OECIHAL/YEAR INDUSTRY C AP AC I T Y / PS J~/UC T I'.'N
RiTpo < UMTS c E : P p UNITS 4 B C
S N USC
50
23
30
50
30
*1
44
43
54
42
5Z
43
56
44
53
E5:SEC3'J3i»Y ZINC SHELTERS (RrTZ^T F.^RMACt)
C.EZC LS/TCN 2.7;;, 1,7-0 47.0000,0335
:.53: LS/TCN 0.0*0 0.004 0.040 o,04os
0.018C
0.055C
E^4sec;'JDi»v ZINC S-ELTERS (REVERBERATORY SWEAT FURNACES)
'..'2? Lo/TCN 2.71C 3.S10 22,000 0.0335 0.01BC
;c3SEC-N3A»Y ZINC S^L'ERS «ETTL? FJRNACC)
:.*2C IS/TIN J.'iO 0.670 18,020 0.0325
•?'.503 Lb/TEr, 4.57; 3.0P3 625,000 0.040S
3-«?RK< i RELATE: CLAY SKSCU'CTS ISRYEX/GRINOER )
".'•3". L3/TCN 2.77: 0.960 96.000 0.0335
:10»5=::DIC KILN (GiS CN-"1
'.?:; L3/TCN 3.110 3.0 C.1100.033S

O.SDO LU/T:N 0.3*0 o.o o,c*o 0,0335
B"lS?C3'iDARY CSPPcR PLANT ([NO. FURNACE)
c.920 UB/TCN 2.000 o.cna 2.000 0.0355
:o9»»ic< c RELATE: CLAY SSOOL.CTS (SToRAiEi
0,«;; L3/fCN 2.773 O.J*0 34.000 0.033S
B'USS: JN34RY CCPPER PLANT (%L4ST)
O.!20 L3/TCN 3.470 0.072 U.OOO 0.035S
C195LASS ."ANuFiCTjRINC INOjSTRV (LEuO CLASS)
•5.90- L3/TCN 1.890 0,2*3 24,000 0.0335
9o;sE:o-,3iRY CCPPER PLANT IBE»IE'":CRATI;R)
:.5ZS LB'TCN 3. 470 J.J40 10.000 0.0355
cizPE=::oic KILN (cc«L F:=FC)
C.«00 UB/TCN 2.77: 3.333 3.230 0.0335
BOISECC'.DARY CCPPER PLANT IcO'iVExTER )
0.620 LB/TCN 3.473 3.2*3 60.000 0.0355
0.016C
0.0 S
0.027S
0.027S
0,0275
0.014C
0.0275
0.014C
0.0355
0.014C
0.027s
0.014C
E6
66
66
E6
66
66
E6
66
E6
66
E6
66
66
E6
E6
SIZE •
TONS
SIZE •
TONS
SI:E •
TONS
SIZE •
SIZE •
TONS
SIZE •
TONS
SUE '
TC:IS
SIZE •
TONS
SIZE •
TONS
TOilS
SIZE •
TONS
SIZE »
TON5
SIZE '
TONS
SIZE •
TONS
TOMS
143
0.27
3.67
69
0.30
56
J.30
1*362
0.20
959
0.41
7.56
22.94
14
0.56
0.41
0.65
73
0.4s
32
0.51
442
•J.56
.3790TT.S/YR
009
1.47
.4539T2MS/YK
0.10
.32tOT-\S/Y"
0 . 1 ;
,43 = 3Tjp.S/Y-;
0.0«
.9993T3NS/YR
0.13
2.4=r
7.57
• 7600TTI.S/YK
0.2'-1
'o.!3
O.I*
0.21
.BCOOTy.S/Yi;
0.17
.OOOOT J\S/YR
0.17
.7998Tj--.S/YR
0.20
1000 TONS/Y
T T
A S
ZiVc"
0-05
ZiVfc"
2.60
Z1VE«
0.06
0.0^
Z--.VE.
0.0
Z4UE«
0.11
20*
6. \1
Z A V E »
o.oa
o. :i
O-Oo
0.23
Z.We«
0.07
Z.V6«
3. 14
0..1J
0.0077
0.30 0
0.3330
3.07 0
0.0077
0.33 0
0.0377
0.33 0
0.0500
0.41 0
0.45 0
) . 0 2 5 3
0.33 0
0,0230
3.37 .1
0,01. 10
0.*6 0
3. -5 "(>
1.0 HO
3.^7 0
0,0051
0.35 0
:•.:! .53
0_. 6 3 0
0.0250
0.37 0
O.Ol'O
3.60 C
il*
,36
.11
.40
.»o
.*!
.57
.-i
.47
.53
.57
.63
.75
.7b
.72
.92
T
N
0.
0.
0.
0.
0.
C.
0.
0.
0.
0.
0.
0.
0.
0.
S N
30 60, E*
C3 70,
28 20, E*
27 :-,?. [*
13 -.OJ.
HIJ*
*o :,.-.! 10
22 :cj. J*
Z> .-20. H*
30 r?r. B C*
IIJ*
34 .',0.1 1 0*
33 ' ?30. r
*2 :3C.
*3 :-*.-. B D*
38 34C. «*
5» 37C. C*
                           *SOUtc«  c.t.gorle. footnoted by capital letter belong to the  same facility and h.v, been

                            aggregated  for analyait purpoaei.


                          -^Source catcBories Indicntc snail potcntin)  emission reduction or dccrcaslnc co?ocity.
                                                                                                                                                              i
                                                                                                                                                             VO

-------
                                                                Table A.3.   (Contd.)
                     1

'.:TEI  ; !•.  RITINO  CC:IMN *E<-N5 ••:  RATING  KiS SPECIFIED
l'.,T«%
'?.850
L?/T^. i
Y e FLV-AS* SIM
EBGJNT .^.LSiC'L
;'.3iRY ALLPIM."
LB/TC\
L3/TC','
LB/TC'.
CUEXPLCSIVE INC !LC«
0.930 LB/TCN
i;OP-«c
;.sio
SOH:R;C ACID 't
L3/TCf.
EMISSIC. RATES GROWTH FiTES
3LLC"18l.E UNCONT DECIMAL/YEAR INDUSTRY C APAC I TY/?ROOOC T JGN I
E E : P P UNITS ABC
S r, u B C A
'/VEAR
T T T T -T
S N S N
0.0834
3.74 3
C.OU2
0.40 0
C.01.12
O.-O 0
0.2610
0.79 1
C.02'0
0.73. 0
C.18J7
1.01 1
0.0018
1.41 1
C.1837
1.01 1
0.0039
2. CO 2
C.OloC
1.75 2
C'.OloC
1.44 1
C.C32J
3.05 4
C.201C
1.67 3
C.C104
0.52 1
C..0355
1.37 1
.7*
.62
.62
.25
.93
.29
.76
.29
.£3
.19
.79
.43
.00
.28
.58
3.36 ?9C.
0.20 'It. N
C.2C 410. M*
0.62 430. X*
0.49 41.0. I
C.74 54C.S*
1.22 !4C,
,. J
0.71 57C. S 5
2.29 SBC.
1.60 :9C. 0*
i.;e tu. 0*
3.71 72C. 8"
2.25 750. T*
0.53 75C.
C.8C 780,
                            *Sourcc  categories  footnoted by capital letter belong to the same facility and have been
                             aggregated for analysis purpose?.


                            •£Source categories indtcntc small potential emission reduction or dccrcaalng capacity.

-------
                                                                 Table  A.3.   (Contd.)
             T4.BIE   1

•.-TE:  1 Ir.  RATING  CC
                                         T;N5 L
11
41
43
43
43
43
:0
23
2C
12
40
20
47
30
40
•j-.s <
>T:C.-L.:.T!
c : : s T £ T ;
0.9;:
c:ecisTi
-.100
:-.-:e;jTi
- I 2 ' E * i. I
-..'.2:
:::c:.3i'.
a " -
7:2: j; :•.
•• . e : ;
C-ZSTiTi
: .590
»-.9SV'.T.
-.83;
s:.3:.*=
T.347
».-4!'.-,.S
-.53:
C:3"I'.Ea
:.?2:
c:3:;--3:
- . • 2 :
F'2-L.3B
'..«30
n:.«LFAL
:.s:o
SiliSP-'i
:.853
EMISSIC'
UMIS
:s
O'.ERV PiP = L;r.s c
I.B/PPD f.I 1.
iS.E ».EF*A:T:;IV P
Le/Tcr, 5.
3i.E BFF*I:T:SY P
LS/':-. s.
TE (vEBTicu FU
LS/T:-. 4,
S I FIRING (TJ'l
LS/TC-. 3.
0 C FIRI«.S (T-j'i
L3/TC-. 2.
:-,iBY i'.TtS'-i'. C
LB/"I. 5.
ETIC PISE' :-o;s
L3/TD'. 1.
T-YLEVc C.C- :£•:
L9/C1L 0.
"^HL I'-C .">'JTI
L3/T'. 6.
i _ * Q'L. t 'V r U (
L3/T;i, 4.
•i SLiC* (FLB.'.iC
LB/T:S 3.
SSiB (ff.I-.C)
LB/TC>. 12.
Fi DEUV:»-T|\; P
L8/'CN 2.
LT a;3FK.-, (Sir
1.3/T:1, 0.
E^ISSI:'. RITES GROWTH RiT6S
H-LC'i'^LE UI^CuflT DEC IM4L/YE" INDUSTRY I 4P4C I T Y/PRO?uC T ;t N
E ' c P P UNITS i B C
S 'i U 3 C i
rj''3FS5'J5 c:.t-INE
13: O.i33 1
'.-•.' I*;.-; ".TRL
32: 3.3i3 31
..-^.T ( •••;.. ;;-JI;-SH
32: -.303 25
= '.-C? ]
35; 0.210 21
•'j 3.236 23
3^'; " 3.1-.0 c
;>
. 150 0.020S
SR'ER]
.030 0.033S
•iLE)
.000 0.033S
.000 0.029$
^ED!
.600 0.033S
i^soi
.000 C.033S
SlOIESEL t
.410 0.0335
.300 0.045S
.450 0.0065
LlO'JID «4S
.000 0.035S
.400 0.029S
.300 0.0455
.000 0.050D
.600 0.0295
.bOO 0.042S
0.0735
0.043C
0.043C
0.036S
0.027s
0.027s
DusL FUED
0.0285
0.089C
0.082C
TE u:C)
0.128S
0.020S
0.025C
0.044^
0.035C
0.045S
SIZE •
E6 PU
SIZE •
E6 TONS
31 :F •
E6 TO'.S
SiZE •
E6 TLM5.
SIZE '
E6 TONS
SIZE *
it> TCNS
SIZE «
t6 TONS
SIZE «
E6 TONS
SIZE «
E6 GAL
SIZt «
E6 TCiJS
SIZE "
E6 TONS
SIZE =
E6 Tj:;s
SI.'.E •
E6 TONS
SIZE •
66 Tj-,0
SIZt =
c6 TONS
2.
5.55
35.
0.4B
30.
54.
0.76
6.
6.1?
20.
2.04
3.
20.52
239.
1.64
28.
4.61
S2C.
1,54
103?.
9.24
5165.
2.3f,
77.
0.50
366.
4.54
10.
6.47
, 1240Tn\S/YS
1.11
,9999TC^5/YJ
O.K
O^COT^r S/YS
C .;(
5S7JTT S/YB
C.?Z
OCOOTnl S/YR
2.r;
OCOOT-if 5/V"
O.J.7
6-55To^ S/Yr
6.77
9999IO\S/Y<
0.53
2:5fT:'.S/Y<
C.2t
•)°15Tor,S/Y^
C.54
1653T-- S/Y-
2.6t-
99:2^!- S/YK
I. If
5679T:r-S/Y»
0.32
39bSTriKS/Y>i
1.40
»^03TT.S/y<
2.72
1 Z4VE.
4.35
i Z£VE«
3.25
: 7iVE«
O.Z5
Z4VE"
0.27
ZiVE«
1.65
Z1VE'
0.55
ZiVEs
5.75
ZiJE*
2.4E
Z4VE«
5.53
Zi'vE.
1.97
ZiVE"
1.85
ZivE-
3.66
ZivE-
3.27
7ii/E"
1.9)
! J\/c«
2.91
EUSSIDNS
1000 TONS'YESH T-
T T T
S N
0.0040
2.95 5.
0.0030
1.02 1.
O.C03C
1 .02 1 .
C.0363
1.26 1.
0.025C
1.47 1,
0.0250
1.63 2.
0.3C23
32.19 41.
0,0430
1.13 2.
0.1453
0.90 i.
3.0107
4.47 10.
3.0777
16.19 19.
0.3630
3.33 3.
0.0162
2.40 3,
0.362*
2.49 3.
0.0325
i. 07 3,
10 4.2?
55 0.73
55 0.73
4S 1.C3
?7 0.93
37 1.&9
21 40.23
64 1.61
)3 0.96
JO 8.99
-1 18.22
34 2.43
71 2.30
52 1.9f
33 1.43
\b/Y=A*
T -T
S -1
310.
?20.R*
520. R*
550,
3?3. 1*
9,3. J*
•330.
1133.
i-;o.
i.?::.
1 J ; 0 .
44 )3.
1413. M*
.5,10.
46DO, 6
                            *Source  categories  footnoted by capital letter  belong  to the same facility and have  been
                             aggregated  for analysis purposes.          .


                           •{(Source categories  indicate  onall  polentlnl emission rcilucLlon or dccn-noiiiE capacity.

-------
                                            Table  A.3.   (Contd.)
PC'.
Pi"
ii =
23
20

23

20

33

23

45


43

33

50

20

50

*5

45

50

•.-•£: 1 !-i BiTi'-G CCH.--TI ••££•.> '.; *.iT;-.c -.-S
.' -JT4NT/S3 ;»CE
(1) (2> i 3) (4)
E-'! SSI-'. RATES
EM.SSIC1. AL-C ,-i.t j'lC'JNT
'• •-, < UMTS E 5 c
S
:.945 Lb/T:r. 99.0-1 3.993 95.
• p ~ ~ I <= / T ~ ', ' 4 , 4 ^ ^ I. 010

-.53; .i/TCS 23.2'.: 1.S23
s-«::c*c'i '-L*.
7.750 li/f-'- 1.51" 3.350
c:«ST45.CH CFG"
:.?3: I:/"'. 2.o:" 0.320
CI^EXP.^S : /E :>••: IMO- »x,- .:si •/' s )
-.83: 13/TCr, 1.5i> :.260
-36C4ST49..E BFF^A'.rCav P'.i'.T (C.H.-.5)
".303 LB/T:N 23.2^'J 0.3

t:3-!"E !•:: (c"'-s-;'G>
7.330 L6/i:r- 3.52-1 0.310
14.

23.

7.

8.

26.

0.


'"•
.•.-.5'.:T»i*£ FE;UI!::!' u"-'>iui MTR»TEI
',.910 IS/TC!. i.bi- 3.1D3
C'SG^EV I»C*i FCON"3Ic2 (rf-vE°^E3-AT7JRY
'..'33 L3/T:\ ; 0 , 0 3 - 0.103
i;9':LVESTEP. RES!'.
-,i»: L8/T':r. 7.033 0.353
t'.U'i'MMjM (FFIMNC
C .850 LB'T:>. 1 .;-, ) 0.310
e^a^a-i cG"pcLi.cs (c'js-i'ici
C.833 L3/TC1. S.030 0.060
C',4»3aO'. CG"Tu'icS (MX t F j LTKAT JCN )
',.633 Li/TCr. 7.0. 0.503
BT'ZSTEEl FQur.LRlES (C»EN HEJRT-C)
3.933 LB/TCN 2.2". 3.223
*Source categories fo
aggregated for analvs
12.
1
10.

7,

1 ,

6.

7.

11.
!5) 16) ( 7
G3n*TH RiTES
CECI'-'^L /YE'" INOjSTRi CAPA
•> 3 UNI TS
J 9
PROCESS )
000 0.020S
400

200

000

000

300

200


620
o

0

0

0

0

0


0
, 030S

.0305

.0455

.0455

.0455

.0335


.030C
C
0.0 S
0 . 035C

0.040C

0.100C

o.oisc

0.090C

0.043C


0.350S
VLANTS
720

030

OJO

000

000

000

030
0

0

0

0

0

0

0
.0455

.0285

.0455

.0285

.0505

.0505

.0285
0.0205

0.136S

0. 190C

0.012S

0.047C

0.047C

0.073S

SIZE •
E6 TONS
SIZE •
E6 TG'-iS
S I ' E •
E6 TD.'-lS
SIZE •
E6 TUNS
SIZE •
E6 TONS
SIZE =
E6 TONS
SIZE •
E6 TDJIS

SIZE •
E6 TONS
SIZE *
E6 TONS
SIZF •
Eft T7JNS
SIZE '
Eft TOMS
SIZE •
Eft TONS
SIZE «
Eft TONS
SUE •
E6 TINS
SIZE •
Eft TONS
)
C ITY/P
&

3052
0.19
0.50
1939
0.25
107
2.55
179
4.65
396
2.88
0
0.48

66
35.49
703
8.IJ3
!78
0.54
37
1.00
49
27.90
526
1.97
no
1.97
445
6.29
:
1
0.2700 .... £
8.1)3 13.23 9.49 37CO.W
0.1224
0.59 7.91 4.C9 ?fc/P.
0.0600
2.51 5.93 1.85 •: CC.
0.0240
2.3J =,;7 1.53 *trc.
0.1160
11.36 13. 2b 6. 58 4-co.
0.2610 .
4.74 7,50 2.42 5100. »
0.2610 .
5.5j a. 75 3.19 ^(•c^, A
3.0930
6.23 10.77 5.il 5-»OC.
•{(Source catcgorlea  intlicntc smnll potcniial emission reduction or dccrcaolnc  capacity.

-------
                                                              Table A. 3.  (Contd.)
               TiSLE  1
      (1)

              EUISS:C'-
*4T;'G K       UNITS
                          *N -< = 4\S  'O  *iTlN<-, HAS SPECIFIE;

                           (2)      I3>      14)   < 5>     (M
                              f'SSIIJi  KITES     GROWTH  RiTES
                             su..: •.«'>i.5    u«cDNT  DECI^AL/YEIK   I.OUSTRY c
                            ?        c        E     P       P        'JMTS
                             S'-UBC
                                                                             (7)
                                                                                                                 EKISslONS
                                                                                                              TCNS/VE..R
                                                                                                          T         T
                                                                                                      A         S         N
     T:\
30 9D1CCTTCN  GINNING
    ;.COO     IB/EALE

20 aC7PCLVPR;;Pi.'ENE
    0.78:
20
10 457"txEO  FUEL  B:I!
    0.500      IB/TCN

55 A:IP?ST:C!:ES  "->>'•>
    C.83D      L8/T-*.

10 iio";x£3  fU£L  B;I.
    c.Ji:      L3/tf-

40 EllGYPSjM XiNjFiC'
    0.800      19/TCN
20 C24S3DIUM
    3.87;
20 C26'~T-IAL!C  41.
    :.945      L8/KM
'5 E'M1/ET41LIC
    0.900      L6/ICN

30 E:99:E»  P»CC = SSIH
    O.*l0    L3/>"10 L'.

** E"l''ETiLIC  Hil.E'iL
    0.900      LB/TCS

10 103K"JMCI«'iL  INCI'-
    0.560      L8/TCN

*0 501'":$P*iTE  tCCK
    0.850      L6/TCS
                                                                       SIZE »      a 1 . 00 JO r,Tl$ / 1*  Z»VE«     0.0136
                          2.0VO    3.4o3    12.030 0.0*25  0.013$    E6 BALf      13. 53     5.!,3    1.76     14.13    15.97

                                                                       SIZE "     11 0 . 1 690 r-)''5 / Y!>  Z.WE"     0.1010
                          2.670    0.03-}     3.300 0.033S  0.120C    £6 TU.'-S       2.75     OO9    5.79      2.b6     P.S9
                                                                                  191 .2139 r-HS/Yn  Z
                                                                                 5.i7     1.7S    2. .1
                                                                                                             C.C7O('
                                                                                                          I*. 77   .'i.)-5
                                                                                  .>99,'*l)90T:]'34.77.66 r yiS/YR   ZAVC.     3.5756
                          1.160    3.450   9:,COO 0.045S  0.123C   E6 TCMS       9,78     4.43   22.'.-      4.93   16,46

                        E »Ll'.TS (J-XYLENE PROCESS)                   SIZE •    7 )99.9453 TTI3/ Y^   Zi.'E"     0.065;'
                         24.1::.'    2.400  240,003 0.020S  0.090C   E6 TONS       0.61     0.12    0.84      S.9a   .k,-.i
                                                                                                 3.45
                                                                                 4)33. 1953TTJ3/YK  li'.'fe"     0.1297
                                                                                18.72     5.50    9.17     11.31   16.65
 9.96    IOCO.


 2.85


12.24


 6.04


 3.04


 6.32


 6.57


 6.C5


 6.66
                         "IM'.C   UP'C  MjNE C C»ljSH!N5)               SIZE  •      94 . 50 OOTl'.S/ ₯•<   24VE-     0.030B
                          7.0:0    0.700    7.000 0.023S  O.OUS   E6 TONS       8.92    2.50     1.07     23.10   ?:,-.7    21. 3J

                         iNTS                                          SIZE  •      95 . l5*5Tri\S / v"<   Z4VE"     O.C431
                          2.0»:    0.270    5. 450 0.0<.OS  0.070C   E6 PU        10.10    <..!<.     9.77      3.53   It>.b2     6.6*
                          IN1M  (Lfc'3 "INlNGl                          SIZE  •      74 . iOOOT^MS/VR   74V6-     0.0300
                          7.000    0.700    7.000 0.0295  0.0135   £6 TONS       9.26    2.59     1.20     2'».17   :<;.'I6    22.20
                      -Ea4TI3N <  JOT/0                                 SIZE
                          6,<.7S    3.300   3T.OOO 0.039S  0.0«6S   E6 TO'IS
                       (021'OINOl                                      SIZc
                          0.9".C    O.iOO   20.000 0.050S  0.050S   t6 TO'iS
40 007SL4SS  MANUF4CT jRING
    0.900
                                                                                   52 . 4999 T T.3 / -M   Z.VVE-     O.OOst
                                                                                 7,50     2.12     3.45     13.59   ;9.b*     8.82

                                                                                 li99.9-'7*r-]r.S/Yi<   ZiVE"     0.2000
                                                                                70.40    35. VJ   -.2.2^     21.12   45. CO    33.61

                                      (Sa04-i.IMc GLASS)                5 1 1 c  •      5 2 . U 55 ' 1 :iS / rM   ZA.'E«     O.OJ24
                                   O.D22    2.210 0.033S  0.034$   E6 TJNS      20.23     O.55     6 . A -,     17.21   23.06    11.66

                                  *Source  categories  footnoted by capital letter  belong to the same facility and have been
                                   aggregated  for analysis purposes.

                                 CSource categories indicate snail  potential emission reduction or decreasing capacity.
 1300.

 t'CC.

 *f:o.

UKO.

icjc:.

ic «cc.

i:crc.

IUC0.1

ii4c:.

-------
                                                            Table A. 3.  (Contd.)



               TABLE   1

   :.:TE:  1  !.•;  RiTU.G  CCU.:11; ••£;•. S •.- »tT;N!;  »iS  SPECIFIED
PCU.,Tf,T/SQ,,BCE
      III                  <2<     Ol      !4)    ( J)     <6)                (7)
                              E-ISSni StTfcS      GROWTH RlTFS                                                  EMISSIONS
             EMJSSICN       iLLr«ASLS    UNCUNT   DECIMAL / YEAR  INDUSTRY  CAPAC I T tVPRJOUC ' IoN           lOOO rONS/YEAR
• iTp.G K       UNITS         E       E        E      P      P       UNITS         A        B      C         T         T        T       T  -T
                             5       N        U      8       C                                          ASNSN
42 F'..M:'*L:c  "!!.E»AuS "TJI-iO (Fc'.»'JiLl3Y)                            SUE  •     HO. 2199 HNS/ YR   ZAVEa     0.0280
    C.9CS      L8/T:f.     13. K'.   O.iOO    15.100  0.028C 0.015S   E6 TQNS       3.73    1.19    0.5b     25.35   i*>,lt    17. 7t    1UCO.

46 E'.'1"STAILIC  "INERiLS PlNlr.G   (iLUMI'lUM)                            SHE  •     U9 . 8499TTNS / Y*   ZAVE«     0.030C
    C.900      L8/TCN     11. ICO   0.110    11.100  0.021S 0.0*5$   E6 TONS       3. HO    0.95    1.54     16. 9»   :4,e>3    12. 3S    1Z2CO.

20 i:3»3T15H                                                           SUE  •    2J07.*558TlNS/Vi«   ZiVE-     0.6000
    ".777      LB/TC*.      9.47'   D.bi)     9.470  0.020S 0.030C   £6 TQNS       6.12    1.36    2.35     25.09   33,72    21.02    II7CO.

33 :::«EocTiiLE  3R  "ft.                                              SUE  •    i >36.<>i43r VIS/YR   ZAV?«     o.ossc
    :.'22      L3/TC\      8.43'   J.i3D    63,000  C.028S 0.027s   E6 TONS       7.40    2. 17    2.00     29.38   iT.Tl    22.33    lifCO,

40 r;l7fLV-JS-  Sr.TESII.C  ( S r.^EH PJ6)                                  SUE  •   34 >66 .9J75T3NS / YR   ZAVE-     1.7900
    :.86:      LS/T:N      4.::-.)   l.ioo   ilc.ooo  o.o33S o.ossc   E6 TONS      11.47    3.ss    3.26     20. 07   34.29    19. is    iSuo,
41 ECl'ETiLLlC  -jl.ERALS Kl'-lil,   C»:'. 3R£I                            SI7.E  •     633 . 5493TONS / YR   ZAVE"     2.1700
    C.53D      L5/TCN     0.700   O.J.TO     0.700 0.023S 0.029$   E4 TONS     2*3.90   b3.69   86.68     94.15  121,46   106.12    1S3CO.

                        (tLJCTBl: ia.C)                                 SIIE  •     '.75,*999Tl-,S/yH   ZAVc«     0.0300
                          2.2;;   0,2bO    13.000 0.026S 0.073S   E6 TONS      18.86    5.23   13.77     13.67   32.30    15.67    U6CC,

30 B20iv"3>'I'J'<  SLLF4TE                                                SUE  •    1 134 . 798 1 TONS/ V*   ZiVE"     0.1470
    C.64:      L8/1C'.     2.140   1.000    20.000 0.045S 0.116C   66 TCMS      16.00    7.20   31.95     13.71   *1,C»    23.98    171CO.
33 D:!«-|:S«EV                                                         SUE  •     !u.9»97TiNS/vRi   ZJVE-    io.38oo
    •).955      LB/GAL     D.02&   O.D02    0.044 0.032S 0.060S    E6 GAL       16-13     5^3     9bO       22.      35.      16.    lt4TC.

             ia'  tttHK.'.". PiiM   (Chl.:'iI>iAT:3N STtllCNl              SIZE  •     .J55.999ST.1NS/YR   ZiVE"     0.016T
               L5/TCN   1C.3.0CD   1.000   100. 000 0.036S 0.025s   E6 TCN1       0.31    0.2"    0..?&     33.37   4:. 72   21.56    ZCPCC,  0
32 EO'.f:E3  t  GRilN fill  (D9rlNC)                                     SUE  •       7 . 7285TrjNS/ YK   ZAVE«     0,002V
    C.820      13/T-'.     2.06D    0.065     6.500 0.037S 0.015C   E6 TONS      51.60   19.09     8.28     43.58   ^,J8   28.19    2«4CO.  A

              P-0 flM'C)                                             SUE  •     752.7158r3NS/YR   ZAVe«     0.1944                         „
                          9.6^C    4.340     9.660 0.050S 0.031C   E6 TONS      17. U    8.57     6.12     66.37   9T.C6   61.62    2f4;0,  V
50 c:205tY  UON FCLNOaUS   (cLECTSIC  i»C)                             SUE  •     .'92.9497TTIS/ Y«   7,WE«     0.090C
    0.93;      L3/TCN     7.00C    0.070     7,000 0.028S 0.136S   E6  TOMS       6.13    1.73    8.40     20.12   47.47    14.81    3J70C.

42 F03GYPSUH  I'O ICR^SHM)                                           SUE  «     '>66. S596 fUNS/YR   ZAV6-     0.1944                         ,
    0.800      1.8/TCN     4.000    0.040     (..030 0.0505 0.031C   E6  TINS      17.H    8.17    6.12     41.14   55.82    20.60    35CCO.  I

80 e'-lPi-YiC::  HiMiFACTLRI NO PL&-.T                                     SUE  •    9083.4>,09T'lNS/Yli   ZiVE"   151.2400
    0.910      1.3/TCN     0,004    0.1J1    0.132 0.050S 0.046C   Eo TONS      3.^21.2   lel*l   l''3J3       59,     92.     50.    42106.

                                   •Source  c.tegorie. footnoted by capital letter belong to the stne  facility and hay. been
                                    aggregated for analysis purpose..

                                -$X Source categories indicate srall potential  cmloision reduction or  decreasing capacity.

-------
                                                               Table A. 3.  (Contd.)
               T15I.E  1

   •.-TEl  1  IN  RiTU.C CClUV  -EiNS 'iJ iUTjuc  -MS  SPECIFIED
POLL .T«'-T/ )
                               tiMSSr.;'' BiTEs      cwrfTH SATES
              E"ISSIC'-        iLLC«-i-5   j:«C3'.T   EEC I'UL / /EiR
PATI'.S K       UMTS         c        :       c      P      u
                              S        li        J      B        C
                                                                              ( 7 )
                                                                       CAP4C I r '
                                                                UMTS        i
                                                                                                                  EMSSIUNS
                                                                                                          li.'DO TO':S/vEt>l         t:.S»/Vf»S
                                                                                                 C         T        T         TT-I
                                                                                                        4        5          ,S          5   S
   ::2'-:5»-5rnNS/Vl»   JAVE-    1.0030
                                                                                          4.13    15. 4.,     4O.77   V3
                                                                                                                            34.27
                                                                                      .C.100" j'is
                                                                                                              C.203C
                                                                                                             .64   f-s.74    j9.9i   ei?:c,T*
                                                                    E6
                                                                        SUE
                                                                                         22. ?a
                                                                                                   7.93    iJ-«.3o
                                                                                                                           us. 71
                                                                                                     ZiVE«    0.2700
                                                                                         12. ?i    17.74    r'o.35  2^^.;3   :f3.fc5
:.55:

::F:t3 i
                          i.r.o ic'JS---';
                           v.u:    3,:?:     T.ISO o.ozac o.o7os
                                                                                 SO.LO     9.57   21.07     93. 63  ii«.,4.i    62. tt
           'l:'^  "ILL  ("ILIUS)
           1.6/":'.     2.5*;    0..1SD   18.000  0.038S 0.015C
                                                                        SUE
                                                                    E4 TQllS
                                                                               ;16.
                                                                           258.12
                                                                                        719T.-',5/yi   Z;,;i=.    O.CH.4
                                                                                         98..T'   41.',*    Zli.Ol  213. Cl   145.46  lOETCC.A*
',3:1^*  I'.O  !CS,S-/SC;;C'.i
'..i'j~      Li/T1":.    SJ. ':"'-•   13.S23   53.000  0.050S 0.038C
**• s-;5--
41
            !'.0
                      6.4"1;    D.Ja5    6,470  0.039S 0.110C

                     l
                     Z3.7SO    0.200   2J.7CO  &.050S 0.031C


                               0.420   1.90-3 o.osos  o.o

                     M.O)
                     12.3',:    s.i.io   12.000  o.osos 0.0445


           L9/TCf.    34.0--,   17.3-10   34.000  0.0505 0.03SC
    C23i- 3  i.  CKt'.EL JSCCESS
    :.a:o
                                                                        SIZE "
                                                                    E6 Tons
                                                                Co  7IJNS
                                                                        SUE •
                                                                    E6 TOMS
                                                                    SUE »
                                                               E&  TD-.S
                                                                            10.00
                                                                                     25Tor.S/V^  l.'.Vkm     0.55ct
                                                                                      5 . vj    4.52   212.04   ],-•!
                                                                                                                       176.56  1 i
                                                                             l'>4Z.
                                                                            17.14
                                                                               1 5 1
                                                                                      .i>'Mit-;-.,s/YK   z..vt«    o.ci7c
                                                                                         19.','(   V2.aw     t2.0»  1.6.Z7    39. £6   :jT::C.

                                                                                      .91,127-):iS/Yi-   ;.MV£.    0.19<.<.                        ,
                                                                                          3.57    6.12    ;fr2.49  2?r-.!0    62.42   IJf'CS.V

                                                                                      . 9999T;y.s/ vk   iMVE»    O.JOOC
                                                                                          ST\        o      t<>3.    ete.     530.  3;r::c.
                                                                        blic
                                                                    t6 TOMS
                                                                        SIZE
                                                                    ES TCJi.b
                                                                               229.40  114.20  100.50   io''6.3z
                                                                                                                          ict3.*3  ;i;:;c,
                                                                             7.'--96.
                                                                           100. OJ
                                                                                       9531Tn;iS/Yk   ZavF.     0.5566
                                                                                         50.11   45.21   13<-0.27 1975,13  1327.63
                                                                                                                                                         I
                                                                                                                                                        M
                                                                                                                                                        vji
                             *Source.  categories  footnoted by capital letter belong to  tlic some facility and have been
                             aggregated for analysis purposes.

                            -^Source categories indicate smnll potential omission reduction or decreasing  capacity.

-------
                                               Table A. 3.   (Contd.)
'II
                                   SPECIFY;

          I Z !       ' 3 <       I ' >    t 5 )      ( i; )
             t»!SSlj'<  aATSS       GROWTH  R/.T6S
                                                                                                       EMISSIONS
HI
s,.
23
'•'
70
S 1
2 ^
44
43
^ -
«* 0
43
li
44
13
70
10
4}
EMISSIC'*
':• o K UNITS
. = ..* 5I2XI-E
C-iL c
0.583 . LB/'CN 16.
;:2C'jai.NS t FIRING ti\>->
3.83D . Li/TCK 7.
''-t.C-.liLc UNC3NT OECIMAL/VEAR
E E 5 P p
S ': U 8 C
— • T S (^"K/L^'^F F^CCESS)
4'^'j J.4'J3 C.430 0.0205
"•• ( I'iCJSTRlAL-CQ'MEPCIAk)
3=; 2.1=0 2.380 0.0395
Ois ?<::. PLA.MTS(oiL L GAS
3 = 4 3.-, C.OS4 C.O
;; ?s : • t'HYLENF UXIOE
7il 3.0:» 0.050 C,030S
»::i
SV, O.D60 0.590 0.0335
~>i~ 1.3 C.323 0.0255
0.390C
O.HOc
PkOO.
0.0
3.03SC
0.027s
0.0205
^'S^STH'. SMiNES (3?i^K IGNITION)
~'5 J.3 C.J25 0.02CS 0.067s
'.•:cSTSY (LEiO GLiSS)
4^: 3.C83 2.6SJ 0.0335
•:SL KH.-I3-3IL FIJE3)
4-C, 3.04-3 C.430 0.0335
••••>*s$\" I-NCINES
2T0 3.3-0 5.270 0.02GS
I»E:I
3i3 I.i50 12.000 0.0335
:;L t REFUSE)
3'.-, ).010 1,300 0.0395
0.0355
3.027s
0.073s
0.0275
0.046S
iS »9^3. i".l>.TS SSJLFUR REC3VERY)
I*", i.753 174.540 0.0355 0.032C
;-'3.'STI3l ENilNE^OIESEL t
•iO 14.53J 16.300 0.033S
"I-L «!L:S-C3AL FIRcO)
2'.'.' 3.723 7.200 C.033S
INDUSTRY CAPAC ITY/ORC^JCT K;N
'JNITS 14 B C
SIZE » 2?9. 7 !i77 ;NS/Y^
C6 TC:iS O.j,; ii.12 0-
E6
FIELD
66
c6
E6
66
66
66
E6
66
E6
E6
65
DUAL FUED
0.028S E6
0.327$
t6
SUE
TUNS
SIZE
Tnns
Slic
TOMS
St?c
TONS
SIZE
TOMS
Si£E
T3NS
SIZE
TUNS
SIZE
TO.'JS
SIZE
PU
SIZ6
TONS
sue
TUI.S
SIZE
TONS
SIZE
TONS
SIZE
TUNS
• 7
30.50
« 26
*9'».T8
" 3
1.4s
• 5
0.20
• 0
9.24
' 0
41.19
6
0.65
" 4
6.12
• 9
5.55
• 120
0.51
• 38
7.50
" U67
3.32
" 11
20.52
72
2.04
.•V174TTNS/YR
19.65 ?2.
,ll>60T£NS/YI>
0." 0.
.OOOOT-I-JS/YR
c..* - c.
•VOOOV^NS/YK
0.07 0 .
.6371Tn'i<,/Y.<
2.6b 1.
.l6e27-TiS/YK
6.24 35.
.1306Tar.S/YK
0.21 0.
,Cf>C3T-lNS/Yk
2.0Z 1.
.4aHOTn'.S/Y>>
1.11 4.
.OGOCTOt S/YK
0.17 0.
.9999Ti-rS/VI-
2.5J 3.
.9304TnNS/Yt
Lib 1 .
.2056T1NS/YF
6.77 S.
.OOOOTjIiS/YS
0.67 0.
It/00 TONS/Y£kH T;
T T T
A S N
.'.'WE. C.065C
34 2.73 6.46 6.*C
7.AVF"
«9
Z/IVi>
Z/.V£.
61
Z;.VE«
3f
liVte
55
2i\/E«
f>4
Z;VE-
23
Z1VE»
65
ZAVE.
f i
ZtvE"
14
ZiVE-
45
IAVE-
23
?AVE>
TJ
2AVE.
j;
22
2G
0
0
0
C
0
0
13
2
2
4
*»
5
0.017C
.64 (4.C* 64.64
C.623C
.V? 2C.59 2C.»»
G.15CC
.03 C.C* C.02
C.025C
.05 ?,C6 C.C4
C.0777
.06 C.£9 C.05
O.C23I
.3C C.56 C.24
C.G351
.78 1.C6 0.5*
P.325C
.98 1.2* 0.71
G.C34C
.16 22.77 22.14
G.025G
.*5 3.11 1.79
G.120C
.** 2.5.6 1.50
C.0362
.64 6.36 4.1*
0.0023
.97 127, «7 125. C6
C.325C
.88 7.46 4.29
N»/>(iS
T -T
S <••
*
*
*
«. *- •
50.
<•: .
3»C.
52C.
53:.
i3C.
13CC.
zi?:.
z?::.
z»c:.
32CO.
 'Source  cacc£orle> footnoted by capital latter belong to the  >aae facility and have been
  aggregated  for analyaie purpoaee.


•{tSource categories indicate null potential neilseion reduction or docrcaplng capacity.

-------
                                                              Table A. 3.  (Coptd.)



               TiBtE  2

   ';-TE:  1  I\  RiTlr.G CCLM'> "Ei\S  •;:  *.-.TINC, ,ias SPECIFIED
PSlL-'iM/iajSCe
       (1)                  (21      (3)      (4)    (5)     (6>                (7!
                              E-MSSH'J  RiTES     GaOiJTH  SUFES                                                  EMISSIONS
             EMJSSIC';       «LL-«iIi'.fc    UNCCUT  DECIMAL/YEAH   IND'jSTPv  C AP»C M » /P«C U'C I 11T,           1COO TONS/VE4*         T:>.4/»t»*
K4TJ-.6 <       UMIS        E        ;        E     P      P        UNITS        £       BC         T        T         TT-T
                             3        ';        U      B      C                                          i        5          S         5  V
SUIF-R 5!Cx;;E

            tLiSS  "G, 'it. ITS   C.-:^1.  PROCESSING)                      SIZE •     73 . 23o2 TPI'IS / Y»   ZAvE"    C.C41C
               IB/TCN     *.4<>j   :,:3j     4.4^0 o.osos  O.OTSC    ES  TONS      1.47    0.44     i.st     j.ei    5.7^     1.97    33;;.

19 8:3"J-ltCI»tL  IXCP E'iTIC'; < JDT/D                                  SIZE •      4 . 37501 nKS / Yd   24VE»    O.OOfci
    0.56:      1.8/TC',     2.5C",   3.033     2.500 0.0395  0.0465    £6  TOMS      7,50    2-92     3-45     5.25    7,C&     3. JO    *iC3.

51 9: '.SE'.:' Di»v  CCPP'8 Sui'i*   (S-.:-T:':0)                              SIZE •   2 3i 1 . 3?C9 T?t,S / ys   lAVlm    C.C15C                        ,
    •^.82:      L3/TC\   32.}.';::  32.ID3   320.003 0.035S  0.014C    E6  TONS      0.10    C.C?     0-C'l    li.60    14,47     S.t2    JT.'C.C
IS i:^"I»E3  FL£L  8CI'.£"S  (CCii. f.  -(tfUSt)                             SIZE »    4 19 . 9')95 nr:S / Yh   ZivE«    0.1200
    0.52G      UB/TCN    14.::^   0.140    14.003 0,0395 0.046$    E6  TCNS      7. 50    2.92     3.45    26.25   3P.32    lfc.24
83 j:4Of<.'CAi  «^c; 9UPns ro.   IACIO  SL.'LFITEI                     SUE •   i779.49o2io^s/YR   ZAVE-    3.0634
    r..»6C      L9/TCN    tl.OCC    3.153    61.000 0.031S 0.0  C    ES  TO::S      3.78     1.17    O.C      74.C5   76. C9    53.75

                                      (SGui-.Irlt GLiSS)                SIZE •     9^, . 3i65lr.S/ YR   ZivE«    C.C524
                                      20     4.J20 u.0335 0.034S    E6  TUI.S     20.23     6.65    6.51    26. 6C   49, C4    25. IS
53 i!:5/-p»j.-!UCT  cc<-  :ve'i                                            SIZE •   iS25.n99iTo;^s/YR   z;i/t«    0.7200
    ?.?3:      L3/TCN     5.7j:   •...J23     5.750 0.0285 0.010S    £6  TDiiS     79.27   22. 2C     7.93   Zll.95  233,14   2C6.91   24?;;,

13 C18E»PL!;SIVE  1*3 U£» EXPLOSIV;5I                                  SIZE •    29$ . 953913'iS / Yrt   Z4VE"    0,0104
    :.»3;      LB/'CN    69.403   5.550    69.430 0.0455 0.094C    E6  TONS      C . B 1    0.34     1-16    23.33   57,29    16.39   4;5:0,

21 C23fJ5.  C-NVEPSIC'.  •• tTj CC^l iiS I F \ CiT [ ]-j                        SIZE »  1 £930 . 71 f>»T-'iS / Y*   14vE»    7.664C
    :.755      LB/TC'.     6,42;   1.563     6.423 0,3    0.200S    E6  T3NS     11.83    C.3     23.65    21.47   E:,tl    42,31   '•3!;;.

20 :31ET-YL£',E                                                         SIZE •   lC66.6J43T-i-.5/Yi.   Z£V£.    0.55 = 0
    ?.S23      L2/TC',     4.730   3.J1J     4.733 0.0305 0.07ic    E6  T'J«S     2C.10    6.0C    21.22    3E.79   79,^4    27.32   5i^;3,

10 4S3I'IOUST«UL  8CKEBS  < 1 3-253X 1 OS6  8TU/HR)                       SIZS •    505 . 731 7Tr^.S / Y(-   ZtvE"    1.1E3C
    3.4J3    LB/E6 BT'V     1.530   1.503    1.930 0.033S 0.014C    E12  BTU     20940    t91C     3U3    72C9.   ilfi.    B216.    »77:c.

S3 ••5:S5CC'OiSY  CC»P-i< Pi.i-T   38"l^.S/Yf   ?.'AE«    C.OleC
    3.820      L8/'CN   «73.0;;  57.503   870.030 C.035S 0.014C    E6  TJNS      0.56    0.2C     0-OC   1»*.7J  229.55   139.61   t?"-::. C*
«0 AOaCKE'^ICiL  hCCC  INC.  I  iSSC)                                      SIZE  •   2^33.7366TTSS/'Y'>   Z£VE«    C.C614
    O.»40      L8/TCN    tl.:;3    3.1..3    61. 000 0.0315 0.048S    c6  TONS      5.67     1.32     2. £2   ltt.24  24E.V9   122. i4  litTCC,

20 Cl^EXPLOSiVE  I»«C  (rlCi- EXPLCSIVES)                                 SIZE  •   1 1 43 . 53 157"NS / Yt   ?JVE»    0.0367
    3.*33      LS/TCK    75,3,-'    .').rr.3    75.303 3,0455 0.094C    E6  T'j'iS      2.j»     l.JC     4.1";    t«.t4  22C.13    ti.57  l>7:cC,


              'Source  categories footnoted by capital letter belong to the same facility and have  been
              aggregated for analysis purposes.



           •£ Source categories indicate sr.all potential emission reduction or decreasing capacity.

-------
                                                             Table A.3.   (Contd.)
;~'i:  1  !-i RiTif.G  CC1.1KN "EiNS  'C
                                                 SPECIFIED
                         12)      (9!       <4>    (5>     (6)
                            E-IS5IC'.  RiTtS      GROWTH  RiTES
                                                                            (7)
                                                                                                                  EMISSIONS
6-issic'; ;,..:: ..iiis
aiTf.o < I^;TS E E
s
•.;T;:SES :X::ES
43
55
44
44
40
43
43
50
23
25
50
43
30
44
2C
-::;•£!••: <•
::2STi£(. FC
:.=:;
-;2=E=:::,c
^:;l!E'°L'
:.2:.= :^ i
:::c,-si'.5 i
::ISTE£L cc
:35 = *-n5-.c
C*»T^E-.e
:.%37
':^2:-Jit
i'-S'.JTRlTE
5!:J:3!="C
0.777
La/TCS 0.13'J 'o.lsO
J'. DRIES C?E'. »Ei5TH)
Lc/K'. 3.31: 3.310

L5/T:-, 1.431 1.VJD
55 *FO. PL; .T5 (TEXT].?
,.5/T:-. I.T.j 'j.-).,3
cjRl'.o ITU-. •.,-._ 
-------
                                                      Table A. 3.   (Contd.)
111
        TAStE  J

   1 I.'i HATING CCLLMN ."£11,5  ;;  SJTJ.-.G /<-S SPECIFIED
   (2)      (3)      (4)    (5)     (6)
      El'ISS!;, RiTES      GRCdTM SAFES
     ALLC'-i1'.?   uNCJNT   Di-Cl^AL/YcA'.
    t       E        ?      P       f
     S'-UBC
*0 5


«.o


*o


10


2C


10


*;


12


23


11


23


10


is


11


10
O.»50
    X       L-MTS

    N OxtOES

      = «Gi.tSS  I^C
                                                               1980^1990
                                                                         (7)

                                                             INDUSTRY OAPAC I TY/?*a:oCT J CN
                                                               UNITS        A        BC
                                                                                                           EMISSI
                                                                                                   iCOC TOKS/Vei*
                                                                                                    T        T
                                                                                                 A        S
                                                                                                                NS
                     iNTS   (liOOs. PROCESSING!
                      2.420   1.570    2.420 0.030S 0.075C
                                                                SUE  •      4J . 16a*TQ>lS/ Y«  'AVt«    0.0*10
                                                           ci TONS       l.«7    0.  TONS
                                                                           13. 40
                                                                              i7.5567Tj\s/vn
                                                                            0.45     0.21     0.23
                                                                                                       c.cojt
                                                                                                     2.U    i,C*

                                                                                                       0.0051
                                                                                                     2.2*    3.C2
          fill  3
            L5'T
            L3/TCN
           Ii.  Jf.CIMSiTIC'.  (I.: '.-RliNlC LlaulO  KiSTc  INC)
           L?/TCN     15, OCO   0.150   15.000 0.035S  0.128$
                                                                  SUE »   10U .9950TTNS/ YR   ZivE.     0.12CC
                                                              £4  TONS      7.50    2.72     3.45     26.12    <-\.-~t

                                                                  SUE «   2604.4219T-,«:S.'YK   24VE«     0.113C
                                                              E6  TONS      0.74    O.lS     0.46      4.9*     7. -2
                                                                   SU£
                                                               E6 TONS
                                                                              5.2500TT-1S/YH   24VE«     C.OC62
                                                                           7.JQ    2.92     3.45      6.3C    9.20
 :Bf "L3S1VE  IN:  t
 -,.83-     L3/TCN
           H/GiL
                      30.~'.0   2.110   30.000 0.0*5S  0.09*C

                     S;T!'_-.   ( !'OjSTS!iL-CO''MERCUL )
                       l.JTy   3.6^5    1.370 0.039S  0.110C

                     r  3£'.SPy)
                      ii,i~~  11.250   22.530 0.0     O.ll'C
                                                                  SUE •    l'll5.••(.oOT^^JS/'YR   Z4VE«     0.0524
                                                              E4  TOMS     20.23    6.46    6.52     IS. 57   24,c»

                                                                  SUE «     72.3600TTN'S/Y^   Zii/E.     0.01C7
                                                              E6  TONS      1.5*    0.5*    1.97     10.37   23.6*

                                                                  SIZE •    129. 2309T1I.S/ YR   ZiV6»     0.010*
                                                              E4  TONS      0.51    0.36    l.lc     10.06   2', 76
                                                                  SUE '      s .0*nl T3,->
                                                              £4  TUHS     50.50   19.1-;
                                                                                                    17.9*
                                                                                                         C170
          UEL  i'r.c'5   c.:*^ t H^USEI
           LB/fTN     35.000   5.250   15,000 0.039S  0.046S
                                                                  SIZE •   10 J 3 ,74-,OT3\S / Y"   ZivE-     0.091C
                                                              E6  GAL        2.49    0.0     5.17     2S..01    ifr.iJ
                                                                  SUE •    **
                                                              t6  TUNS      7.50    2.92     3.45     65.62    '.i.ll
 'J.450   L&/E6
                                       0.540 0.033S  0.014C    E12 BTU
                                                                            170. 351913;, S/Y*
                                                                         20940    491j     2123     1936.    2K5.
C'.:'TiTI3-iEP /  P1PELII.E  CC'IP'ESSUi* ENGINES
 C.133   .B/P?C  U'.T   63.55-!  15,133   60,5)0 0,0205  O.g73s

CC2STiTI3fit>Y  If.TtKNAL  CG-BUSTTP! ENG I NE S ( 0 I ESEL  C OU4L
 0.530     LB/TCS    179.000 123.000  179.000 0.033S  0.0285
                                                                  SUE •    1 38 . 3999Tr)NS/ YK   ZAVC"     C.004C
                                                              t6  Pj        5.55    I. 11    *.C5    151.10  261.40

                                                                  SUE «    1 19. 3929TONS / YS   ZAVE-     0.0023
                                                              £6  TUNS     2J.52    6.77    5.75   lfl'5.19 1363.**
                                                                                                                       1C'.»'V£i«
                                                                                                                    TI-T
                                                                                                                  N         S  N
                                                                                                                   2.3*     7;C.


                                                                                                                   2.2*     ?;C.


                                                                                                                   1.57    l«CCi


                                                                                                                  39.15    i
-------
                                                               Table A.3.  (Contd.)




               * ; 3 L c   3




       ill                   ( 2 i       ! l )      C.)    15)     .3)                 171
                               E;'issi3'i  RATES      r.RnnTH c^rss                                                     EMISSIONS
               UN.'IS         <-.        •:         !      o       :>        JNITi         :.        •>       '•.         T         T          T
                              i        .        J      3       :                                            A         S          N
              £5

                       t-ICi-  ?X = LCS!^E3)                                  SHE  «    19i 1 .52 T'^T-.NiS / v«   ?.'.Ve«     0,0367
    :.ii:      L'/TC.-I    12').;/:-    j.i^i   i2e.jJO  o.o<.is J.o
                                                                                                                                                           o

-------
TABLE   *
                                                      Table A. 3  {Contd.)
               ."£i\S NO Ri.T;NG >liS SPECIFIED
»»*!> G K
O 3
20 S
20 t
:: ?
70 ;
90 f
** s
** C
liSsHtLT
:SV.T-ETI
.593
i
0''.!TS
I^Tcl;5 "":
L3/TC-. ' *'.
2 j :3i
E-ISS:.'. «A
E " E
5 'I
25C " 3.253
(ST/i*i:'.E-i>J
2JC 3.133
,»I3 L3/TCN 1..7:; 3.1-.7
.35C
ij,!-'"-'";':
!l3C " L3'TC». ').
2TE«TILE
.363
I»3C
2P6»:c:ic
*3 ;iOC!JS!\G t
c.«:o
*» snc'j«:*ic t
G.«00
20 C2JP»'»«HC
o.9*e
*J D12CVM-.G C
o.aoe
MF& (-EJT 5E
L3/TCN *.
K!L>. IGiS FI
KILN (CCn F
FIRI'.O (Til',
IS/TCN 0.
FIRING (TUN
L%/TCN 3.
i'.i-YC=.ICE PL
L3/TCN 13.
FIRING (TJ'.
LS/TCN 3.
20 C*3ACfTCN£ (CVAN-t-vcsn
0,100 LB/TCN 2.
10 80J"U'iIC!PAL I*CP>E«»TiC
3.563 LB/TCN 3.
li. (12^:
iS PB""J. rLAI-
5C3 3.033
TTJNG/FINIS^I
Ti.y 1.7*0
i:c 3.3
<>",- 3.3
'.EL KILNS-GAS
320 3.0
:EL KiL'iS-oiL
ice o.;
3:3 3.1:3
l») (5 )
jNCStrr OECIHAi.
C P
J B
O^.^O 0.0*25
TZDJEN6) (SBR)
*.233 0.0 S
1*.7'30 0,0
2.3iO 0.039S
TS (OIL [ GAS P
0.6J* 0.0
15.800 0.0*25
0.100 0.0335
0.0*0 0.0335
1,-JOO 0.0335
0.323 0.0335
FMEDI
3.103 0.0335
LfcNC ^RQCESS)
13.333 0.020S
.EL Ki.'ii-cu-L FiKco)
430 0.3 0.3 0.0335
033 3. 323
'. < 50T/3
22C 3.313
2.030 3.0305
0.220 0.0395
/YEAR I
P
C
0.0*5s
0.0 C
0.0
0.110C
o.o'
3.081C
0.3275
0.027S
0.3275
3.0275
3.327s
0.3 3
0.027$
O.J60C
3.3*65
(7)
iOuSTK/ C-PACI fY.VRUS'jCTiQN
UNITS i ~i C
E6
c'6
E6
CO
E6
E6
E6
Eo
£6
E6
E6
16
£6
c6
ts
•Source categories footnoted by capital letter
aggregated for analysis purpose*.
SIZE
TON?
SIZE
TONS
SIZE
THNS
SIZE
TONS
SIZE
TB.JS
SIZE
SIZE
TUNS
SIZE
TUNS
SIZE
TUNS
SUE
SiZE
TUNS
SIZE
T1J.JS
SIZE
SIZE
TU'JS
3IZE
Tf.-,
belong
nir.s toi
• 3.
6.«.7
2.37'
o,-.»
50.50
*99.76
' 41.
i.ia
2. :>*
7.<6
O.S1*
• 0.
22.''*
« 1.
6.12
3 )«.
0.19
• 0.
2.0*
• 119.
'1.3 8
• 0.
'.50
25'JJT v.S/YR
2.72 2
*3.T 0
O.T 0
"^'^S/12
3. 3 0
32i3TT,-,s/Yk
3. SO 1
/ • ^7 3
* 303T ]'4S / Y>i
2. '.9 2
3.17 0
2333T JNS/Y-:
7.57 6
0030T TiS/YS
2. 32 1
23V3T r.S/v^
j.".. 3
U Ty.s/v,
3.S7 3
T^j'jr^.'iS/Y^
t . \ 1 0
2.12 3
to the same facility and
reduction or decrcnnlnf,
EKIJSKKS
T JT~ T"I!T
« S N S '
ZivE"
.91 fi
ZAVE»
.0 J
0 2
Zi/C»
• 11 27
ZiVE"
• 0 199
.39 2
• 5i 3
.3- 0
. K 3
ZiVE«
.19 0
Ziv£.
.*i 3
;jy£«
:a /£•
. i5 3
.1? C
• 
-------
                                                                  Table A.3.   (Contd.)
I. -"El  1  I'.  BATING CClt..'-
:.'•}: i.;/'Cs 7.c'.: 0.110
*: ::^: = E»:,iss .-FG. ;L.^S ..r:. >;cc
;.T.t L3/TC*. 2.4.CO 3.323
'5.i:o L3/T;-. S.76C 3,075
10 ;-6"ixE: F,,E'_ »:;L£'S .iccii. t »£FJSE
:.5:: IJ/T:>. o.?;i o.o
•;.^30 L9/TCN 9.CC-; O.S'JO
30 :,-e.-iiS0 0.0205
7.500 0.005S
)
0,900 0.039S
9.000 0.033S
O.COJ 0.032S
2.020 0.029S
7.210 0.030S
36,300 0.0305
P
c
0.12BS
".120C
0.0*SC
0.0*OC
0,0*65
0.0281
0.090C
0.040C
0.0*6S
0.050C
0.0605
0.320S
0.060C
0.060C
INOuSTRY CiPA
UNITS
E6
c6
66
E6
E6
CO
it,
E6
E6
66
66
t6
Eo
E6
S!iE «
T'J'lS
T^s' "
iIZE •
SIZc •
T : •' t S
SIZE •
TONS
SI.:E •
TU :S
SUE •
S ! .' E •
TU'.i
TOMS
SIZE •
Tons
SIZE •
TUNS
SIZE •
GAL
TONS
iU'E •
TOUS
SIZE •
TUNS
A
2
1.1*
2^5
*S9
0.1*
0. 11
7 7
7. SO
1'ifl
1.-.7
73
O.al
0 . '>9
27
7.50
153
0.45
13
1633
•>.:%
0.79
O.lfl
3 I
0.5* !•
.0'_3T'V.S'v :;
3 OS S.
.'J99?T-:',S /Y*
003 0.
,99?5TT!S/Y^
00^ 3.
2.72 3.
O.J2 0.
.39-J2TG';S/Y'>
0.'.* 1.
.'>)V*rT,S//\
0.12 0 .
.9-393ry:S/Y3
OOb 0.
,0030TT,S/Y.<
2.72 3.
.11:>OT j-iS'Y*
J . 1 5 0 .
.6012T lNj/y<
,ib lOT TVl«
0.1590
1.S3 2.71 1.75
0.1200
1.71 2.*« l.St
0.3410
1.5? 2.CJ C.«J
3.3*10
2.12 *,37 3.27
0.3655
3.70 1.63 O.S7
0.1970
2.27 3.37 2. It
0.1205
1.09 2.*» 1.03
0.0*10
1.59 2.76 1.19
10.3330
•>.. 3. 1.
0.0777
7.65 9.1» 7.LS
0.0699
2.23 *.3« 1.62
0.317*
2.53 *.)3 l.SC
T -T
S f.
MC.
MC.
f?C,
::cc.
iKC.
i
Hoc. ^
1JCC.
itcc.
i.cr.
i'.CC.
25CC.
27CC.
                                    esource  cotccorlcg Indicate r,:-.all poticntinl  cmlcsion reduction or decreasing  capacity.

-------
                                                             Table A.3.   (Contd.)
          TA31E   *

TJl  I  l'I P.AT1NG CC'.wMIl -Ei\S  "u RiTjt.o WAS  SPECIFIED
T4NT/$3o«CE
 (1)                    (2)      1)1      <<)())      (6)
                                                                             (7)
• 4'
23
23
23
20
23
23
S3
23
23
23
13
21
*S
23
23
EMISSITI SITES
EHISSICN ALLC'A3LE UNC'JNT
rp;G K UMTS E E E
S 'I ij
• 12-CETi: iCID C'ETi-iNUL)
:.930 IB/TO 15.000
5.930 L8/TC'. 1.640
^!J?rS4N '"T:^T5.70o
C424CETCNE ( ISCP»CF»\Dl, I
"..?:: L9/TC'. 13.050
C33°-E'iCL 'LA'.TS
:.«7; I.B/TCN 4.4iC
S;!.^y|T'PL^m ,.2 = C
o.'l'j la/To o.oc:
C»3C1»5-'' Tf TPiC-TaiCE [CiSfl
r.530 LB'TC'. 32.00':
AlliCETjc 4CIC (iCfi^'i^r:;?
O.»03 " LB/TCf. 32.000
i-.3:-icJST»i4L ecuE's (10-25
0 . * 5 ', '. S / E 6 * T '„ 0.3,3
C'.3i— JMi 'W'^TS
".si: LJ/T;.'. J.9JJ
•?!.?r*LT L"TC::° (e3r;lo01
C?3**4V£IC 4NH/C8IOE
0.1-3 L3/TCS l4'.5"0
S39SY';Tl.ETIC FIS£5 IKCJSTSy
3.833 L3/TCN 7.--;
0.15C 15,000
a.:is 1.6*0
0.075 7.5UO
0.130 13.000
3.343 4.*ltO
0.120 11 .700
0.000 0.000
Tl OlSULFIDt)
0.320 32.000
3.196 19.620
PA'ic)
3.320 32.000
;*1::C6 3TU/fR)
3.0 O.OOJ
0.0 0.900
0.163 3.6VO
2.*23 2S2.00n
3.3iO 7, []00
OECIKAL/YEAR
P P
B C
0.020S
0.0*05
0,005s
0,0305
0.0305
0.058C
0.050S
0.030S
0.0*05
0.0305
0.033S
0.0365
0.0*25
0.0305
0.0*55
O.IOOC
0.055C
0.104C
0.060C
0.075C
0.0205
0.0*6C
0.06'JC
0.080C
0.060C
O.OlnC
0.03*C
0.0*55
0.0**C
o.oavc
EMISSIONS
INDUSTRY cApAciTY/pRa!)uCT;uN 1000 TONS/YEAR irsi/Yca*
UNITS 4 1C T T TT-T
A S N S N
SIZE
E6 TONS
SIZE
E6 TQM',
SIZE
£6 TatIS
SIZE
E6 TUNS
SIZE
E6 Tims
SIZE
E6 TUNS
SIZE
E6 TONS
SIZE
E6 TONS
SIZE
Ee Till, 5
SKt
E6 TUNS
Slit
E12 3 Til
S i 7. E
E6 TIJMS
51 Zt
t6 TuliS
SIZE
Hi Ti:iiS
S!it
to TUHS
« 509.9995T3NS/Y-* Z4VC«
0.?9 0.10 0.**
« 2'i9.44J6T.]'IS'Yi' Z1VE.
3,-)7 1.47 2.60
0.77 ""30* 1-30
• 353.5"96TTNS/Y^ Z.'.VE"
O.fiO 0.18 0-*-j
• 2?.7.U351TT!S/'Y« ZAVE"
1.40 0.42 l'*9
2. "'7 2.1'j 0.5.--
3223J 161'«1 1H3J3
• 1250. 551* 1 rrj'iS/vl- ZAVE"
0.37 0.11 0-29
• 525.ol5l
• 20^5 . 99'J^T 1'iS ' YK 'uVE.
0.17 .:..i;i o.ov
'.. <4~ O.S3 2.*.'
0.0950
1.66 4.31 1.36 3rCI.
0.3390
2.71 4.43 1.6* 3::0.
3.C574
1.7S 4,31 1.74 :::0.
0..0690
3.13 5,60 2.22 34:3.
0.1165
2.73 5.62 1.95 37.-.S.
'•.»5 5.53 1.26 *;::,
151.2*33
i, 7. 3. »6CC.
0,0977
*.72 a,*S 3.36 51C3.
J.3S70
i.i7 7,71 2.2C 55:3.
3. 1010
5.2* 9,38 3.72 5?::.
1.1833
13. is. », ;2::.
J.iSt,8
*.»3 ia.29 s.«i t9::.
0.1325 ..
V.55 13. SJ 5.9
-------
                                                                Table A. 3.   (Cnntd.)
            Tt?t E  *




',;"£:  1  I'l = 4TP.6 CCLLHN "E.WS  '•' *iT|NG  J.-E
•. = ::• LVT~N ;7.5oo 0.173 17.000
2: :-:Z--~~i. ^e1.;^^
-.. = :: Li""- '>.?•: 0.053 5.000
".367 L e •' G A L 1».2"-'J 0,240 24.200
23 !. JSCiS}''. UTi AO,.i:a ICE fETrA'il.)
-.«;•; LS/'CN 5'>.c;r .0.300 3&.-TJO
.. . ,-,;.,T:..; ;..,. :.i- r j
"-.-13: .;/••:% -•).-,:•: 4.1-, 3 120.300
2: :-••--.: •'.-. ;c;.. PL-MS
•.Co: Li';:'. 42.7-.0 ...J»3 42,700
63 ~:4P,T,M, ID. ( 8 „ L ^ i* * 5 , -Ea'^I i « L S ) LUADING
C ,-iZ 15, 'GAL ') . " 7 ; j.:c4 0.357

-.f3: .o'5".'. \l-i.-.\-. ..?.-- i20.300
23 :3:fHYLE-.E
'..»2S 1.S/ICN ;.49". 0.330 1.490
23 rj5ET-,YLE'.E GLYCCL CESIv^O rp;j-< ETHYLENE axil
-.a:: LS/TCN 34.9;: c.3',9 34.900
23 i-.-CY-.U---'/;'.!
•.;•;'. i.b/i:». 20. ^io 0.200 20.000
".65: L3/";s 4c4.i::o 4.300 484.000
20 C32"E**-A'OL PLA'.TS
3.S33 L3/1CS 10.01- 0..^3 10.000
25 =:3P:.*ETMYL£'.£ <-iCf .')•:. SITyj
..C33 IB/GiL 7. 400 0.5V1 59.20T
2S C15«A»>-!Sn
0,855 L8/TCN 34.9SO 0.679 67,900
GROWTH
P
8

0.030S

O.C30S
0,0065

0.030S

D.045S

KATES
P
c

0.060C

0.370C
0.082C

0.060C

1.050C

0.01SC U.040C
Ti'jK TPUC^$/RR
O.OSOS 0.335C

0.033S

0.030S
)E
0.0305

0.0305
0.0235
0,0305

0,0

0.0675

0.050C

0.075C

0.035C

0.070C
0.0255
0.050C

O.U»C

0.026C

UMTS

SIZE •
E6 TONS
SIZE =
fo TL3:iS
S* T F •
i t t "
SIZE •
E6 TOMS
S I .: E =
Eo TU':S
SIZE •
E6 TONS
E 6 GAL

SIZE a
E6 T:r:S
SIZE •
it> TONS
SIZE •
E6 TONS
size •
Ee T[j:;S
C f J C. t
j t - C "
£6 TONS
S IZE •
66 TUNS
siz: •
fc6 GAL
SIZE •
Eft TtJNS
1
A

779
1.26
1539
3.1)5
4!o{
930
0.-.6
,,2
0.54
2U7<,
0.96
337.10

1^7
135
20.:'0
20"3
1.4H
lli'O
1 . '• 7
J75
0. 17
1255
4.*«
2f)3
2.49
1"!
1.-7
	
H C

,h3I)2Tn:1S/Y-
0.3P 1
,99'/3" V.S/-.-
1.15 3
0.2C 5
,23;IST5':S/YK
O.JO C
.52T2T,,.,s..yR
0.^5 0
,7',13T-;.'.S/yk
0.15 0
26%.->>> 1*6

D.-1V 0
.yf).«ur;';;j/Yt
0..-10 tl
,9e?oTTiS/Yli
0. .4 0
,49rtST-;:.S.' /i.
u . 4 ; i
O.T. 0
.9995T-;r,3/YK
1 .37 2
.SJiU TririS/YK
0.0 5
.^2ilT^^:S/Yr•
O.oj, 0

]
A
Z A V c •
.00
i.'.Vf .
.7,:
.5'"L"
Z A '/ c •
.52
;A /n»
. 34
' A V c »
.46
• 5n

• ;7
7. -.VI:-
, <*2
.' A V fi «
. 01
U', E«
.•>:
7 i V t •
.04
ZAVE«
• 1.1
z:.vt«
• 17
ZAVE»
.41.
m n T
T

0 t
*.?7
j (
7.70
1.39
3.
'' . 4 3
0
1 o . d a
0.
1'.59
11.17

n.3o
0,
12.23
C.
2 J.oo
0.
U.32
Q
34.97
0,
1'. .33
0,
9.21
0.
21.80
!"I!?S'3NS
T ' T " T IT
S N S '.
1055
15.07 e.36 4?:0.
7710
15, 1 5 5.>.9 '7;:,
""3. .6 6.49 ic:::.
0545
io.92 6.72 1:2::.
0309
.7, =8 7.14 US':.
1130
26,54 14.76 113::.
2200
14. 21 2.66 ;ii:o. >
1
~j 7 3 j W
2:«id 9.C** l*-^Ct»
55:0
25. Id 1^.24 129CC.
1500
29,1-. 14.61 1-5::,
1245
2'.. 24 8.76 li'TD.
-• 0 1 9
43.71 27. C» lti:3.
>140
29.32 12.98 163:0.
0910
21.36 13.7* 17i;3.
:)066
28.27 7,61 *C7;0.
                                 Source cntcCorics Indicate Enuill potcntlnl emission reduction or decreases capacity.

-------
                                                              Table A. 3.  (Contd.)



               TiBuE  4

   •;"£:  l  it.  RiTRG CCLLMI:  -ti-.s  a:' ;sT;f:G »iS  SPECIFiEe
  .iLfi'lT/iCL.SCE
       111                   t? <      !3)      (4 )    IS)     (6)                 (7)
                               Ef.lSSI-^':  siTES      CC,Oirti<  RATES                                                  EMISSIONS
              E»ISSIC'.        iUC«-iLE    UKCCNT   DEC IMAL / YEAR  IMDUSTR*  r aPAC I TY/PRCJPUCT ;UM           1030 TONS'YEiR         T~N>/rri5
       K       UMTS        E        f.       19?       UNITS         t       BC         T        T         T      t -T
                              S        !i        ij      B       C                                           4        S          N          i  \
70 E-.ZCS^E  OH t IJtTL^ii Ofi  Pa CD.  i>Li''TS !!;.iTjpa|.  GAS  PROCESS.)   SUE  •    2:> : 0 . 7<>K6T'.'.'.S / YO   Ii\.r«   1S.656C
    ;.!*C      '-3/"N     0.561    D.:CS    C.501  0,035S  0.0      Ei TONS     S^li.cl  ZOO. .,6     O.U     1*0.3*   i*r.i»    91.66

61 «-Zl'i:-J$TBU!. SLSr4Cc CCiTtuc   (MfT»L COILS C04T!NO>              SIZE  •    73f,3 .05CbTnNS/ V*   ZiVE"    2.771*
    ",»20      L8/C4L     5.3*C    3.32D    6,*dO  0.0*25  D.079C   E6 OAL       15.36    6.5*    17.W2     3<..0/   72. ZO    22. id

29 C-7E T-VLE'.E  DlC-LTRICt PL.i-.Ts   I -XYCWLOR I tiiT ICN  PBOCES5)         SIZc  •    5<)V 1 .'.^<.'^T-1•^S/ vl   :ivf«    0.3222
    1.i»S      L3/Ttr,     !«.<>•-;    ;.:«.3   53.900  0.0*5S  0.090C   E6 TONS       *.'.9    2.-;2     6.1-     3S.30   71.33    '.3.22

JS 3:!iSsl»  Pa;'E5S!M fttMS                                          SIZE  «     l-JG.JC'/OTlliS/YK   ZiV£»    O.C431
    :.si;    LB/^fi; »-.T   n.%:o    o.:o9   ic.^'io  o.o*os  O.OTOC   E6 PJ        io.;o    '<.i*     «•-     *>.59   o?.7i    27.36
»i e:zr.;us*»Ui. suafict cciTjno   (L^RCE APPLIANCE  COATING)         SUE  «     i7'..o2oaT-!f.s/v^   U'.L«    o,r,655
    ;.<2D      LB/GAL     S.3»0    3.0C5    6,*>)0 0.n*2S  0.078C   E6 GAL       19. M    9.]9    21.84     *2.72   90.52    25.54   6*T.10i

23 c:3Ct»83N  BLiCK  (F^.P^;CE  P'TCESj)                                 SIZE  •    JS;-2.9i76T7:,s/vr   :.-.vF«    0.. 630
    ",«2:      LB/TC-,   ici;.::o    s.is;  IOG.OJO c.o*ss  o.ozsc   t& TG?IS       z.i6    :."*    o.t^     9r>,73  123.34    53. 2?   7^^:D,
62 •:2:p.".w5T»ii1.  ScSfAC: CZilJI.O   (-'-TJMOSlLES)                      SUE  •    1845.71o.iTnns/y,   ZiVE»
    O.'IC      LB/CAL     5.3".;    3.313    6.100 0.0*2$  0.029C   £6 GAL       *2.<>0   17., -.9    it.lc    lC3.il   137.76    6*. 55   73^:0.

50 4:s»v.»»3:uCT  c:<; cvfi                                            SIZE  •    zat^.iojorn-.s/vp   ;.VVE.    0.7200
    :.*3I      L3/TCN     5.98^    O.D<.2    5.9HO 0.02BS  O.D10S   £6 TONS      79. ,-7   22. ?0     7. 03    22^.^3   J*'.*/   159.29   S3?::,

20 C2!3!>/ETWyt TCREP'-I'-iLATE  PLillTS                                   SUE  «    53< ft . *9: iT-y.s / Yh   7ivC-    1. 3*30
    ?.»5C      i.8/T;r,    37.;JC    O.j70   37.000 0.0*5S  0.090C   E6 TQtlS       2 . •; 5    i-33     *.35     *fc.3-)   15r/.62    20.36   035:3.

tO J3*i!>i»>'IC  A9TS I'.3(.STRY   (CRtVJ'E)                               SUE  •     3; 4 . 32 3 7 r r,:"
" • 1 1 5 - •
O.C77
o.:
0.',
';"::
3i,310 0.033S 0.028S £6 Tli:.S
JM PROP. SYS. i si:;. •
C.C60 U.021S G.Ot4C Ro RHt
." 0,?C'.' 0.021S 0.u44C i',» f-HL
20. V
54H,
6o4r,
6"-3*
0.7'
,U7,:3T-t.S.
1*3-,
.-3-,
5.7S
•Yi- Z.WF
--7JJ
:--r>2
166.26 231.41
• 21. *933
174. 2-3.
2.'-. 3-.o.
124.79
139.
199.
H4;;o.
„«».
!47::-.
                                'Source  categories footnoted by capital letter belong to the same facility and have bean
                                 aggregated for analysis purposes.


                               •{(Source categories indicate small potential  emission reduction or uccrc.iaing capacity.

-------
                                                 Table- A. 3.  (Contd.)
 T431E  *

 ».;Tlr.C CCli.)'-.  -Ei>.5  - '-TING  *iS SPEC IF Iff.
SCE
              12'.      (>;      ( * )
 E-ISS1C'
  -MIS
      Of.C"'TM  *.STE5
C',1:''  CECl'14L/Y6iR
 t      P       P
  JBC
                                                                (7)
                                                    IUOuST«, C4PiC : T Y
                                                      UNITS         -
                                                                                                               TCMS'Yc.1*
                                                                                                           T         T
                                                                                                                 5
                                                                                                              N
                                                                                                                        T -T
                                                                                                                         S  •»
22


23
              i-i.  s_a£tcf c'ji'i's   ?••;;,', t- ,.:se CCATINOI
               -j.Ciii.      2.32:    a.;65    2.32:)  C.O»2S  0.078C

                               cxvc,:1.  :xi3iT!-j'< PROCESS)
                               C    0.'-3';   *3.000  O.OSOS  0.040C
            72.313   0.721    72,000 0.0335 0.120C
   r>"E"-'Y.
   ''l.'.j'

   '-;, = a -PYi.
    7,75;
               L•^.IC^.
                      -J.21-   20.770  0.045S 0.090C


                      j.*3o   «3.o3o  o.osos O.TJOC


                      ;.125   HZ.^UU  O.OSOS 0.060C


             lt.i-r    J.»2   19.200  0.030S O.OiOC

             -s^4'.c.i E                        '
             '.';.i?^    :.0.17   100.660  0.030S 0.360C

             E7o  ::iL C.'SIFICITI ..;.
              S.17.    J.CoB     5.l70  0,0    O.JOOS
                                                           SI:E
                                                       66  Git
                                                          S::E  •
                                                      E6 TONS
                                                                        SI'E •
                                                                    E6  TQ-IS
                                                          SIZE
                                                      66 TCNS
                       ft  TONS
                                       (•7
                                    1*.?9
                                                                                      .9:311'';'. S/Y*   :/.VE»
                                                                                          6> . ? 1    i(j.5i
                                                                                                 0,071*
                                                                                             1-.C7    2'^
                                                                                 0.95


                                                                                 o.:>*'

                                                                                 12-.9.




                                                                                 0.' 7

                                                                                 ?1"7.
                                                                            0.--6     0.-lY 1
               L5/Tc^.  I3c.c..o;:   23. ',-.3 noc.ono  o.o*5S o.osoc
.
 J7.9CO   15.2J3    38.000 0.028S  ».027s



173.77:    1.740   173,770 0.030S  0.060C


li'k'   !LE"TEr.»c


               8»~r,E Tiii'.^rEK,  r,iS.  t C5JDE U I L. )
              O.If>7   'J.301    0.067  0.028S 0.0*1C
                            SIZE •
                       to  TONS
                                                     E6 G4L
                                                                                   2'.7
                                                                                 0.07
                                                                      S25
                                                                     7,io
                                                                                  55(-o.
                                                                                  0.(.0
                                                                       53
                                                                     0.15
                                                                     l.,<,
                                                                    * . 5 1
                                              0.;    23.65

                                          .1C36T-v.S/YR  7.iv't"
                                              y.o3    o.o1-

                                          .25'/OTciri5/YK  2AVE-
                                              ^?.07    2.00
                                                                                       632.iT--,s/vi-
                                                                                                   o.'«7
                                          , OSoCT-v.S / Yr  ZiV
                                              o.r>7    0.39
                                                                         »i99r^l.S/Y^
                                                                                    10'3
                                                                                                 C.0520
                                                                                                .63    31.35
                                                                                                           1-.25    33.73

                                                                                                              0.1570
                                                                                                           15.95    37,75

                                                                                                              0.07i2
                                                                                                           25.31    »5,33

                                                                                                              0.1929
                                                                                                           3-. 53    61.33

                                                                                                              0.0355
                                                                                                           3*. 71    6^.17

                                                                                                              7,63*0
                                                                                                           22.93    ftj.73
                                                                                                           3s.ni    63.22

                                                                                                              0.0356
                                                                                                          USi.Ol   183.8*

                                                                                                              O.DSOO
                                                                                                              0.0032
                                                                                                           *4.9*    73,20

                                                                                                              0, ;500
                                                                                                           2«.73    60, S6
                                                                                               "2.
  6.77



  3.78



  6.72



  8.lC



 11.'. 3



 17.«»



 24. 5*



 2*.68



 23.46



 22.18



121.35



 29.65



 27.1*
                                                                                                                       21:;3.
                                                                                                                       2Ji;3.



                                                                                                                       2f):3.



                                                                                                                       273;3,



                                                                                                                       J7>;3,



                                                                                                                       17»:3.



                                                                                                                       J5333.



                                                                                                                       *l::3,



                                                                                                                       ".25:0.



                                                                                                                       *5:C5.



                                                                                                                       *iio3«
                     ->< Source  catf^oricn indtcatt c^i.nll iiotcnti.-il emission n-JucLion or  decreasing capacity.

-------
                                                               Table A.3.  (Contd.)



               TiPlE  4                                                'oa;,-l990

   •,-TEi  1  If.  RiTIf.C CCLU""  '•'Ei'.S ''u SiTit.r.  »;4S  SPECIFIED
       (II                   (2)      (3>      (HIS)     (6'                (7)
                               E'MSSIC!. RiTtS      GROftTH RATES                                                   EMISSIONS
              EHISSICN        iLwr,,ir.i.£   yucni1   DEC M4|./Y5i»   IMUJSTRY  C4P4C I T * /pSUDuC T [ :JN          jOOO  TONS/YEiH
»4Tl ,0 K       U'lIIS         ?        £       E      •>       P        UMTS         4        a       C         T         T"       T
                              S"'JBC                                          4SN
t* 302i'.:.s'sUL  s.afiCE cciTi-.c   iF^eRic caaTno)                    SIZE  >    5^^.a2s:TT.S' v^  zivt«    0.3237
    •.c21      L5/5'L     S.jc.:    0.2*3    6.<.lJn  0.0*25 0.07SC    E6  Gil       51.^0    21. SC    ->8.0"   Ii3.t>3   2".-).Sl   7*. 42

21 C'.lET.VtENE  3. 20  2J3.0*   2i*r;o,

7C :;3'?->:L£o:' PEF:\£!-V n;s;   [p^:;f.cSS UNIT TURK)                    SIZE »   27'.o.3.ss?T r.S/Y»  ::.VE-   Jl.'.rjo
    :.s;:    La/aisae.    :•.«-;    :.c;s   O.JDC 0.0215 O.O'IAC   at &BU        oB'-i     143-,     ^73?     5.ik,     9T3.    473,   <.3;i;;?. N

63 BCJI'OJSTsUL SLRFiCE CCiTlNC  (PuPER CC-TINQ)                     SIZE •  1 57 j , . ot'.JTn'.S / YK  7.uVE.    5.5130
    0.823      LB/04L     5.3H    3.260    6.A80  0.0<>2S 0.378C    E6  GAU      202. ?3    5*. 96   226-4P   4*2. B7   93-..5S  290. C6   64'rCC.

              iRY ISTERfiL CC''5i.'STI^'; ENGINES (SP4R<  IGNITION)        SIIc »    376 ,7i>? sT^MS/Yf.  Z.WF«    0,?232
               18/TCf.    i6.::.:    O.:;     56.000  0.020S O.OSTS    E6  TONS      *1.19     d.Js    ->5-8<.   663.93  125:}. 39  535. 1»   7:i-;3,

62 B33i1.:'.S*aiiL SvRfiCE CCiT;i,G  (CiL. CC'TINj)                       SIZE •  152 79 . 1 3i 3T,-]NS/ Vh  liVE"    7.7500
    0.625      LB/01L     <-.790    0.530    A. 790  0.0*25 0.078C    E6  G4L      273.25  li'-.''*   3C,5.8<.   53ft. 64  1137.27  319.87   clV};3,
                               *Sources categories footnoted by capital letter belong to  the same facility and have been
                                aggregated for analysis purposes.

-------
                                                              Table A. 3.  (Contd.)
   '.CTEl 1  I':  RiTING  C^L
  Llt^iNiT/
      ! 1 )
                             "Eif.S NG SATING  >;AS  SPECIFIED
                           12)      t 3 I      ( '• )    IS)     ( 6 )
                              E-'ISS!':'; R4TES      CRa^Trt RiTES
             E'':SSIC'.        4L;.Ccr.E°iTic-, < SOT/:
    :.54c      LB/I:^.     35.;:;  35.;:o    35,000  0,0395 o.04&s

43 DIOCUSI'.G t  FIRING  (TU','EL KIL'S-OAS  FIP.E3)
    C.SOC      LB/'CS      0,040   0.043     0.040  0.033S 0.0275

43 CiZCUPlSG C  FIRI'.G  (TUNNEL KILNS-COtL  FJRfcO)
    :,SD3      L3/TCN      1.9CP   1.900     1.900  0.0335 0.0275

13 4C7"!»EC FUEL  »CILE»S  (GIL e ^rCSE)
    1.S5S      LB/TCN     17.003  17.COO    17.0GO  0,0395 0,0465

10 ACS'IXED FUEL  BCILEPS  (C04L L R^FJSt)
    C.530      L8/TCN     13,000  le.'JOO    18.000  0.0395 0.046S

*o DI*FJBERGLASS  *fz. PLANTS  uoai PROCESSING)
    :.8JO      LB/TCN      2.260   2.240     2.2*0  0.0305 3.075C

                           l?"«  (INL) ORGANIC  LIQUID WASTE INC)
                           ,350   0.0       0.050  0.3355 0.123S

20 C33PM£NOL PLANTS
    0.370      LB/TCN      0.480   O.C05     0.4iJO  0.030S 0.075C
12 e"4lMS'jSTRI4l
    0.900      LB/TCN
\iDuSTR» CA"4
UNITS
Eft
Eft
Eft
£6
Eft
Eft
Eft
tft
Eft
Eft
Eft
Eft
Eft
Eft
Eft
SIZE •
TUNS
SIZE •
TONS
SUE '
TONS
SIZE •
TUNb
SIZE «
TUNS
SIZE '
TONS
SUE *
TONS
SUE •
TONS
SIZE •
TONS
SIZE •
TONS
SIZE •
T3NS
SIZE •
TONS
SUE •
TONS
SIZt •
TONS
SIZt •
TOMS
CITY/D
i
10452
13.44
3 '3 3
79.27
34
0.46
4)3
O.'.ft
1
7.56
32
0.51
27
50.50
61
7.50
0
22.94
19
2.04
509
7.50
539
7.50
39
1.47
0
1.54
24
1.40
RL,CUCTIL:\
•3 C
.4922T
0.
22.
,95;>6T
0.
0.
.1,001
.OOOOT
0.
19.
.249ST
'i.
7.
3.
2.
.9993T
2.
a.
.2412T
3.
.32521
0.
T'S/YR
0 -2
2.-- 7
14 0
"> 0
l?"\
r'S/Yl-
17 0
^s/v;z
12 3
57 (x
*7 0
92 3
92 3
44 1
•JNS/YK
54 1
r-S/Y*
42 1
1030 T
T
A
ZAVE"
.4? 15ft2
Z4Vt«
.53 93
Z a v c •
.42 0
z v/t.
• " 0
ZAv'E«
.04 3
ZiVE"
.14 0
ZiVE"
.H9 61
Z1VE«
.45 73
»19 0
Z4VE-
.55 1
.45 31
ZAVE"
.45 33
ZAVE"
.56 1
ZAVE"
.97 0
ZAvE»
.49 C
0,
.43
3.
.42
0.
.39
C.
.61
G.
.65
0,
.27
0.
.5C
.37
0.
.55
.67
C.
.75
0.
.41
0.
.03
0.
.2'
FMSSIGNS
^S/vca* T"^i/YFi«
T T T -T
S N S "-
0900
I2ei
7200
ICft
3*10
2295
0
0250
C
0250
0
3170
230
0062
107
025C
0
0250
1
12CC
46
120C
49
04K
2
0107
t
1165
C
,17 1553.40 -27£J?3,
.26 10S.2t *
,75 0.7J *
,S1 0.81 *
.42 0.42 *
,:3 0.63 *
,7» 230.76 *
1
.31 1C7.31 * 00
,47 0.47 *
,97 1.97 *
.54 46.54 *
,27 49.27 *
,Sl 2.bS> :C,
,CB C.C2 6C.
,tO 0.21 390.
                                  -Jj Source categories  Indicate snail potential emission reduction or decreasing capacity.

-------
                                                          Table A. 3.  (Corrtd.)
            T4BIE   5

 !.--(: 1 .". BITING  CCll.««. ' Ei-.S :c siT|HG BiS  5PEC1PIE,;
tLvTi-.T/sa^RCE
    ( 1 )                  (21      ! 3 )     ( . I    ( 5 )     ( 6 )
                            EVISSI2'. R4T6S      G5CWTH  RaTE
           tuiss;:'.        i.'.oi^E   jf.c.::iT   csci'iAi'/Ei
Tp.G <      UMTS         E       c        •:     P       P
                           5        '•       U      S      C
                                                               UNITS
                                                                                                           fMSMCNS
                                                                                                   icoo TOS/>E;&
                                                                                                    1         T         T
                                                                                                          S         M
iiltCtTIC 4CID   (iC£TiL.C6-VDf)
 -.30C      IB/TCN      4.C4C   0.040    4.0'«0  0.0*05 0.080C
                                       .
 :."/i-      LS/TC\    ;c'..c;:   i.c.j   100.00:  0.0205  o.o  s

3"2i^»"il.T  PG"?INO  (6LC,.P,0)
 •j.a::      LB/TCN      1.5:0   o.ou     i.soo  0.0*25  0.0455
C07ETr.yLc.':E  OIOLrSICt  PLi'-TS  (C» rCt-LdR 1N4TION  PROCESS)
 :.i«"     UB/T:S      1.3:0   o.cii     1.300  0.0*55  o.o9oc
 -..5;:     L

C.6C-i'CQil.
                      24.COC   D.2-5   24.000  0.030S  0.060C


                     320. OCO   3.2'JO  320.000  0.023S  0.025S
25


25


20


20


25


11


10


25


20
C'SiCiTJC Lt.~iC«l-t
 C..«::      L3/TCN     21.903   0.2-19   21.900  0.0305  0.060C
           PLi,'.TS
                     IO.OOD   o.ito   10.000 o.osos  o.osoc
ii4CYCi:*£X4>;E
 "-.93;     L3/TCN     25.000   5.250   25.000 0.030S  0.070C
         «CIC PLiNTS
C.86:     L3/TCN    115, 003    J.113  115.000 0.015C  0.040C
 ".65!      L5/TC'.    i:i,47s   1,115  111.470  0.0305  0.060C

C:lSTiT;-'.ES/  BIPSLlKt  C:'-.P»ESSL;. ENGINES
 C.900   L6/PPC  L'-T   29.350   9.540   29.350  0.0205  0.073s

i-3I'.;uST5 UU  BCItE'S   HC-2jOXKc6 3TU/HP)
 0.45:   LB/E6 6T^     C.C32   O.C     0.032 0.033S 0.014C
  0.600     L6/TCN   1340, OiO   IS.ftiJO 1560.000 0.030S  0.044C

 co8f;;><4i.;EHYC£ Pi.4fT5
  0.9CO     L8/TCN     15.670    0.157   15.670 0.0*55  0.09*C
                                                                   S I ; e
                                                                  TONS
                                                                   SIZE
                                                               E6 Tons
                                                                   SIZF.
                                                               £6 TCINS
                                                                   SIZE
                                                               id TC1-.S
                                                                   SIZE
                                                               E6 TOr.S
                                                                    SIZE
                                                                Eft TONS
                                                                   SIZE
                                                                  TGNS
                                                                   SIZE
                                                               E6 TONS
                                                              Eh TG!;S
                                                                   SIZE
                                                               E6 TC.'.S
                                                                  SIZr
                                                                  S I < £
                                                             E12 »Tu
                                                                   SUE
                                                               66 TONS
                                                                                  2 7 1 9 T ]•.$ / yS
                                                                                      0.18     0.
                                                                             1 Of .
                                                                            0.45
                                                                                19
                                                                             6.47
                                                                              144 .
                                                                             4.49
                                                                            O.in    0.15
                                                                                 . SOOOTnr.S/ YS
                                                                                     2.72     j
                                                                                              Z£VE«    0.067C
                                                                                              53     0.74    i.;9     O.O
                                                                                                       C.03J5
                                                                                                     3,tt    5,63     2.2*
                                                                                              si
                                                                                 5Ct>6 TT:,S/ ₯S
                                                                                     2.12     6
                                                                                   1996Tr).':S / Vk
                                                                                     0.04     0
                                                                             248 .
                                                                            0.17
                                                                            ^ 59 .
                                                                           1.26
                                                                             1255.
                                                                             4.55
                                                                             1 400 .
                                                                             1.37
                                                                           'i.96     0.15
                                                                                              ZtvE"    C.3222
                                                                                             .1*     2.01    4,77     :.i4

                                                                                              ZCVE.    c.oecc
                                                                                             -<-7     5.76   :c,32     4.C9

                                                                                              Z4VE«    O.OOlf
                                                                                             -04    23.12   2E.VO    17.91
                                                                                    0.3S
                                                                                9':'3STT,5/YR
                                                                                    1.37     2
                                                                                6230TTNS / YR
                                                                                    0.41     1
                                                                             3 i 1 2 .
                                                                             0.86
                                                                               52.
                                                                             5.55
                                                                            12479.
                                                                             0,17
                                                                             352.
                                                                            6.55
                                                                                2t98T-l 
-------
               T i ?. I E  5

   •.-TE!  1  I'.  P.4TIKG CC.il"': "£;.> 5  ••"  tiTILr, «4S SPECIFIED
                                                               Table A.3.  (Contd.)
       ill                  '21      (31      '*'   15)     16)                 17)
                              E^lSSI'-r  P.4TES     GROWTH  RiTES                                                   EMISSIONS
              E"1SS1C'.        iLLC.iai-£    u'iCIIlT  DEC 1*41 /YE4«   INOUSTR  C4PiC P * / = RCC uC T I uN           1000 TCNS/VEi»         T?N>/Yf4i.
»JLTt. 0 «       UMTS        E        t        E     P       P        UNITS         4        PC         T         T         TT-T
                              >        ••        u     a       c                                           4         s          ti          s  "
ct«5". UL'.:X::E

20 C2t;i-T*'iL;C  f.^vC'i:? PLi'.TS  (J-»vLEl,e P'.GCESS)                   SUE  •    9279.5! TBTll.J/Y"   Z4VE«     C.0650
    -.'54=      L6/TC'.   3c:,CC^i    3.015  301.000 0.020S  0.090C    E6 TONS       0.61     0.12    0.64     67.3?  ZCfr.71    71. Z2  Ji30oO.
'0 D.J'TE'iL  «OTL  ^AMfiC"v- I'.c                                      Sl/fc •    3CP7.2'.f 1TG .S/Y^   Z-Vf«     0.077T
    0.12:      L3/":-,    «».4iC    4.7JO    9'..<,00 0.029S  0.020$   E6 TONS       9.24     2.6E     1.P5    357.62  kjo.15   262.68  166000.

2: r* tiC'YL:1 :T' '•<•£ 'L;I-TJ                                            SIZE •    53i5.**53Tat.s/ys   ?ivE«     c.o?".?
    -.5;'      L8/TCf.   :ir<,:;:    ,i..ci   ii^.joo o.o'ss  o.iooc   £6 TONS       1.33     O.M>     2.iz     vi.it  2<.6.c2    62. ii  i33r-o.

10 C'IS*iT:~'.t»/  I'.T = a'4(. CC'B-STIC1' EN6 1 N£ 5 ( J I E SE L  t OU4U  FUEU    SIZE •      36 .55 1 JTOI.S/ YS   ZivE.     O.OC23
    ;.5«0      L6/TCN    5'.»:5    C.C     b4.600 0.0335  0.023S   E6 TONS      20.52     6.77     5.7»    326.10  417. <.!   218. *9  1V9005.

13 CClSTtTIC'.iR*  I^TcR^:L CC'B.STIC'. E'J&li'ES (SPiRK  IONITICN)       SIZE •     ? 87 . 9-jo2TT'!S/ VF.   Z4VE«     0.0232
    0.550      LB/TCS    <.2.e:c    3.0     42.300 0.020S  0.067s   fc6 TONS      41.19     8.54    35.84    511.25  956, C4   4C9.00  5*7(>00.
20 C^SCifB:^,  6liC<<  IrLBNiCr  PSCCcSj)                                 SIZE  •   72523. P750T-J-IS/VP   Z»WE»     0.0630
    :.S2C      L3/TC'.  26CC.OOO    2.fJO 2800. 3CO 0.0'SS  0.025C   E6 TONS       2,36    1.06    0.6(-   2709.2$ 34fr8.C»  1492.06 1530SGO.
                                 urce categories  Indicate small potential  omission reduction or decreasing capacity.
                                                                                                                                                       U>

-------
                                                                Table A.3.  (Contd.)
               TABLE  e
   NOTE:  1  IM "AUNG CCLLHM  >"E4f,S N'J R»T|NG WAS SPECIFIED
P3UJTA''T/SCjRCE
       111                   (3)      13)      (41(5)     ((-)
(2)       13 )      (4)   (5)     «,)
   EKISSICN  RATES     GROWTH  RjTES
               UNCONT  DECIMAL/YEA*
            (7)

INDUSTRY CAPACITY/PRODUCTION
                                                                                                                   CESSIONS
HATp.G K
LEA;
50
70
70
50
55
53
45
44
42
53
f 0
49
11
Cot9K
•5! 720
F32S1S
C331RE
3,933
3.823
UNITS
Y lac*- FCI,(.:RIES
LB/TCN
E E E P
S I: US
0,63: 0.330 C.630 0,0 5-0
CLI.-.E ACCITIVES (s:'DiLu-Lt43)
LB/TCN 10.78C 3.B30 89.400 0,0455-0
ILI-.E ACCITIVES
Lfl/TCM
Y laON FCUMRIES
rj-.-APY z isc S:-EL
LB/TCN
(ELECTROLYTIC)
4.UO 1.003 32.200 0.045S-0
(«EVE55^'T3RY)
0.07S 3.3 0.070 0.028S 0
P
C
.0185
.099C
.099C
.1365
*E3S («EVcii8E'.ATn»Y S^EAT FURNiCES)
0.460 0.350 0.460 0.0335 0.018C
E:3SEC3'.OiRV ZINC S^ELTESS «ETTiE F'jRNACc)
3.823 LB/TCN 0,460 3.333 0.460 0.033S 0
ECl-STALJC MI'iERA'.S M
:.9:o LB/KN
E3iM=7
E31-ET
0.933
C'2-.'E
' . 3 i "
s:9SLi
0,933
= : 4 i •, :
0.353
ALIC Hj'.ERALS M
iLLlC "JSER1L5 I-
Y :,zx FURIES
55 Mt'.uFACTvPINC
LB/ICN
J5T5IAL i'-CUESi
LB/TCN
M'.G (ZI'.C KINE i. CRUSHING)
C.1CC 0.310 0.130 0.026S 0
C.1CD 3.C13 0.100 0.0235 0
INJf.G (FE^KIALLOY)
0.333 O.CC3 0.300 0.028C 0
(ELECTS!1; ARC)
t.4.3 3.1 0.400 0.039S 0
I!.;ijSTRY UEAo GLASS)
6,033 O.C60 6.000 0.0335 0
TI;-. 1 IMUSTRIAL-CI.'^ERCIAL)
C.400 0.340 0.400 0,0395 0
.01BC
.0125
.0135
.0155
.1305
.0465
.0355
.HOC
UNITS
Eft
Eft
Eft
Eft
Eft
Eft
Eft
E6
Eft
Eft
Eft
Eft
ES
SIZE •
T.1MS
SIZE •
TONS
SIZE •
TONS
SIZE •
TONS
SIZE •
TONS
SIZE •
TONS
SIZE '
TUNS
SIZb «
TONS
SIZE; •
TONS
SIZE «
TUNS
SI.'c '
TuNS
SIZE •
TONS
SIZE •
TONS
A
25
13.44
1^30
0,25
0.02
1
0.54
1
0,30
1
0,30
U-49
6.92
9.26
3
3.73
2
0.18
13
0.65
1
50.50
B C
. llCO"!}llS/Yft
O.fi -2.
O.U -0.
0.01 -0.
0 . 1 S 0 .
0.10 0.
0.10 0.
.9933T-]l,S/YS
2.50 1.
2.59 1.
.7BCOTQJJS/YR
1.19 0.
,0925TT;5/Vr:
1.73 a,
2.'>2 3.
,7700Tn:.S/YK
0 . ;. 1 o .
.29ZOT-:,S//S
19.09 92.
1
A
?.-.'.'£•
ZAVE-
1ft
.'. i V t •
11
Z.'.VE.
73
06
06
ZiVE«
07
ZiVE«
Z.VJE.
5;,
I ~ '.' r. •
40
zavt.
I A V £ •
T T T
S N
0.0900
3.7J 3,c7 3.72
0.0600
J.96 ^.34 0.51
0.0215
J.03 ,-i.Cl 0.02
0.0630
3.02 ^.T4 0.01
0.0077
O.Cu 3,17 0.0*
0.0077
0.06 0.07 O.C4
30.0001)
O.-O n.i.5 0.3.
O.C30C
0.42 0.47 0.32
0.02r.O
0.50 3.58 0.3J
0.0«00
C.OO->2
0.0031
1.75 2..i7 l.H
0.0170
3.04 13. )0 3.23
T -T
S 4
*
^
*
33.
30.
30.
1,3.
150.
733.

710.
1233.
77;:.
                                •ft Source categories indicate small  potential emission reduction or decreasing capacity.

-------
                                                               Table A.3.   (Contd.)




               ~iilE  7


   r.;TEl  I  I'.  RiTIt.G C:Ll"N  '•E-l'-S  "'- ^iTpNC ,jiS  SPECIFIED


      ( 1 i                   (2!      (3)      «,)    (5)     (6)                (7)
                               E"lS5rj'<  BATES      r.RDHTH R/.T6S                                                   EMISSIONS
              ETS5IC'-        iLLC»-B'fc    0'>CCNT   DECIK^L'YE^R   INOuSTRi  t iPAC 1 Ty /PRCC'^C T ir.'l           1E30 rS'JS/YE-lR         T
  TJ'.S  <       Lt.lTS        E        E       t      P       P       UNITS         A        9       C         T         T         T
                              i        •'        U      B       C                                           4         S          N




    0.83C      L8/TCN     C.300    0.006    0.300  0.0«5S 0.09<>C   E6  TDf4S      0.81     0.36    1.1*      0.10    0.25     0.04
'.C 4:iv!«ED  fLE.  6CILEP5   (CCiL  t  'cF'JSE)                             SIZE •      6.60COTa^S / YS  Z/lvE«     C.12SO
    1.500      L3/TCN     0.2t~    O.Oi)    C.220  0.039S 0.046s   E6  TUNS      7.5S     2.-)2    3.>.5      0.41    0,50     C.27      '3:,
20 c:7=x5::s;vE  ."•: if'ci-  EXP^USI'/ESI                                 SIZE •   i2i9.7(,73TT.s/Yrv   :AVE-     c.03i7
    0.53;      LB/T:r,    20.:~C    i.ilC   80.000  0.0*55 0.09*C    E6  TONS      2.Us     1.30    *.l?     23.90   53.70    16.79
                            Source categories  indicate snail potential emission reduction or decreasing  capacity.
                                                                                                                                                         UJ
                                                                                                                                                         ro

-------
               TlBlE   8
                                                              Table A.3.   (Contd.)
   N H T 6 I  1  I',  BiTIKG C C LI ^ N M E i > 5 'G  R A T ; M G ri A S SPECIFIED
PCU.UT4NT/SOU"CE
      I 1)                  (2)     IJl      (»)   151     «•)                17)
                              EMISSIC'.  RITES     CSQWTH  RiTES                                                  EMISSIONS
              E^ISSICS       iLLCi-'BLE    uNCUNT  DECIMiL/vEiR   INDUSTRY C4P»C IT r/PRUBoC T ICN          1300 TaNS/VEi*         T^si/Vci'
a4T;>.G  <       UMTS        E        c:        i:     P       f        UUlTS        4        8C        T         T         TT-T
                             5       t.        U     8      C                                          4         S          N          S   •>
20 8'36VISCESE  Bi'ON                                                   SIZE •    ^65. 9>97T-]":S / Y^  2ivE«    0.0610
    0.800      1.8/TCK    10.900    1.600    10.900 0.045S 0.0       66 TONS      0.49     0.22     0.1      2.14     E.'.4    1.32      (20.
20 C03C1RBCN  BL4CK   (fLSMCE PKCCESS)                                 SHE •   15<,9.7966TONS/Y>i  ZAVE«    0.0630
    C.I20      LB/TCS    60.000   0.060    60.000 0.045S 0.025C    E6 TONS      2.36     1.06     0.66    5U.G6    74,J2    31.?7   423::.
                         -^Source categories indicate email potential emission  reduction or decreasing capacity.

-------
                                                               Table A.3.   (Contd.)
           Ti?lE  S


:TE!  1  IN RiTlhC CCllMN "Ei'.S 'in  «iTlNG  ,45 SPECIFIED
  (1)
                         (2)
                                            (i.)    (5)
                                                          (u )
                                                          R,.:ES
                                                                               (7)
                                                                                                                       EMSSICNS
EXISSIC1- itLC-iS'-E uNC^.T
R»T:-.O < UNITS Etc
S ! U
FL.:» IOES
OECI^lL/YEtP. INOUSTR\ C"P4
P P UMTS
3 C
"o.34o " IB/TEN 2.0:0 2.or3 2^033 o.
53
53
40
52
44
44
43
42
23
43
44
47
30
*:
E05S = CC'."tPY ZI'.C b"-L'E3S (OALVI'.UING!
O.S20 L5/TE'. 0.700 O.')70 0.7.,3
E02SEo:'-:;.'Y :r.c S^ELTESJ (H3
0.350 19/TC'. 0.07; 3.002 O.Q70
?:;S?c;'-Oi.'» CCOP-R SI.;'.T (V. iS~;
O.?20 L5/TC'. 0.7'.: 0.078 0.780
::2'?a::::c <:•-'. ic:iu F;;CO)
- '- ~ - L 5 / T ~ '. i.Ol" 0.300 1.0 U 0
"o.'oo LB/TCN l.oo: 0.300 i.ooo
:i2Cj3I'.0 L FILING (TU'i'iSL KIL''5-C3AL FIS.fcO
0 80' L3/T"\ i.OCO 0.3CO 1.000
'.-.'.' t3/^C^ 2.600 3.130 2.630
io^'-'-S'-os ic -ci: PLisTs CAET ?k:cEsS)
O.S'.O L3/r:\ 0.034 3,';05 1.300
IllC^Sl'JC C Frai'.G (TO'.'Jt1. KI'.^S-3!L FMED)
^600 L3/Tr», J.OO" 0.3"0 1.0 00

0.^00 tab/T^\ 1.000 0.3C3 1,000
:03;L-:9S=i» (CaY£i)
0.800 L3/TCN 10.03C 0.103 10.000
0;Oi''I"4L FEED CE t Ll-CF I"»T 1 C\
0.900 L3/TCN 5V.40C 0.43ij 219.000
0.830 LB/TCN 1.00". 0.300 1,303
0.
LE)
Q t
0.
0.
0 •
0.
)
o.
0.
0,
0.
0.
0.
0.
0.
0305
0335
0335
0305
035S
0335
0335
0335
0335
0*55
0335
0335
0505
0*05
0335
0.067C
0.013C
O.OlbC
0.075C
0.314C
0.027s
0.027S
3.027s
0.0*3C
0.123C
0.027s
0.027S
0.04*C
0.0 S
0.0*25
SIZE •
E6 TONS
SIZE •
E4 TO':S
SUE •
E6 TO'IS
SIZE •
E6 TONS
SIZc «
E6 TUNS
SUE •
c6 T3'JS
SUE •
E6 TONS
SUE •
E6 T3NS
£6 TSM.S
SUt •
E6 TuNS
SIZE «
E6 TD.'JS
5U£ '
E6 TO'JS
SUE •
E6 Tj'lb
SIZE •
E6 TONS
SUE •
E6 TJMS
A
o.*:
2
0.03
2
J.27
1
l.*7
0.40
1C
0.51
10
2.04
10
2.04
0.4?
71
14.9(1
6.12
7.5b
64
O.«0
0.20
i
8 C
0. 14 o-
3.31 C.
.209VTT> S/Y-
O.O1^ 0.
.2197TC-.S/Y'
0.44 1.
o. i; o.
.OCOCTT S/Y-
C.17 0.
. OOOOT If.S / Yr
0.67 0.
.OOCOT.y S/Y^
0.67 0.
0.16 0.
.36101^ S/'/f~
6.7C 32.
. 0000 T jf S ' YT\
2.02 1.
2.49 2.
.6399'n.-.s/yk
0.2^ 0.
O.OB 0.
.44GCTTNS/Yr
4.42 5.
1000 TcNi/YEi» T3N>/>E*"
T T T T -T
4 S N S N
Zl'/E"
01
7iVta
Z i v £ «
30
3t>
Z - V £ •
i 4
55
Z«Vta
55
25
ZivE«
63
Z4VE-
6b
04
Z^VE«
27
^
ZiVfc-
^5
0,0410
0.3* 0,7* C.7* *
J'.C077
o.ci c.ci c.ci *. F
r.oo77
O.C.6 0.09 &.C6 4C, '
O.C* 0.19 O.C3 cC.
C'.CliO
3.13 0, IS C.C9 eC,
: .0210
O.ZO 0,26 0.17 SC,
C.025C
3.E2 1,C* O.fr9 34C. >
C.0250 OJ
O.f2 1.3* 0.69 34P, *•
C ,001'C
O.!0 0,76 C.35 4iC,
C.1762
0.£3 O.ftS 0..9 •.^C,
2.45 ' 3,11 2.C9 UCC,
3.02 3.S* 2. 57 13EC.
2.C5 3.T9 1.C2 2'OC,
C.050C
5.35 5.35 3.22 2!CC.
5.?6 7.S1 4.cO 2FCC,
•Source  categories footnoted by capital letter belong to the same
 aggregated  for analyal* purpoaea.
                                                                                         facility and have been

-------
                                                              Table A. 3.  (Contd.)
      (1)                  (2)      (3)      (4)    (3)    (6)                !')
                              EMISSION  RATES      GROWTH R4TES                                                  EMISSIONS
             EMISSION       AILC»'PL.E    U'ICONT  DECIMAL/YEAR   INOuSTKY  C 4PAC I TY/p»Q[)uC T IUN           1000 TQNS/YEiR
       K      UNITS         E        t        6      P      P       UNITS         A       8C         T         T         TT-T
                             SlUBC                                          4         S         N          S  N
               TiBtE   9

         I  i'l  "ITIf-G CCLf'N I'EAVS '<0  SATING  »'4S SPECIFIED
*3 s::CjSJNG  I  flRlNS  (TONNiL KI1.N5-S4S  flUED)                       SIZE •      lO.OOCOr-'o/VR   ZiVE.     C.OZSO
    0.3CO      LS/TCf.      l.OJC   0.300     1.000  0.033S 0.027S    Efc  TONS      22.91,    7.57    &•].<)      9.18   11. iS     T.fO     3<"3C.

10 433INBUSTBUL  SCIIEBS  (10-250X10t6  3TU/HR)                        SIZE •       0. *S7l FrjNS/VR   ZJVE.     1.U30
    0.4JO   L6/E6  BTU    0.003   0.000    0.003  0.033S 0.01«C   E12  BTU      209*0    0910     312J       15,      17,      H.     blrc.

20 40e>-VC»3FLUCRIC  4CIC  PLANTS                                        SIZE •     5<,3 . B1)92T[)f;S/VI>   Z4VE«     C.0222
    0.960      LB/TCN     SO.OCC   O.ZOO    SO.OOO  0.0*5S 0.067$    tb  TONS       0.60    O.J7    O.*0     1».72   24.59     f.i»    i*<.CC,
                            -(CSource categ0rle8 lndlca£e snaU ^'^^^  ^^ ^^^ ^ ^^     ^
                                                                                                Ing capacity.
                                                                                                                                                      >
                                                                                                                                                      u>

-------
            TABLE   i

l~~£:  1  Irj RATING CCLLMN
            CE
                          (2)
          TABLE A-4 - MODEL IV  MINOR SOURCE:  1980-1990

NG  /.'IS  SPECIFIED
                                                                             [FOR EXPLANATION  OF TERMS SEE PAGE
                                                                              A-7, APPENDIX A]
            (i]       (it)     (5)      (i)
      EMISSION  RATES       GROWTH  RATES
                                                        (7)
RATi-G K
PAPTIC'-LiTf
20 AJtlfi:
0.83:
10 A02CC""E
0.4QO
34 C"4CCCFE
". . c 5 :
EMISSIC'.
UNITS
S
GXIDES
L8/TCN
A L L C ». A ii
E
S
0.440 0.
Lfc UNCUNT
E E
n u
443
0.440
R C I A L BCILEFS (0.3-10X10E6 3T'J/Hr<)
LB/E6 BTU 0.560 0.580 O.SOO
E ROASTING
LR/TCN
20 AliLITHjuv COf-'fCU'^CS
0 . S t 'J L B / T C N
30 DT5FISH
0 . 3 1 C
50 B:SSEC^.
3.320
33 DC4COFFE
0.850
PROCESSING
LB/TCN
OARY MAGNESI
LB/TCN
E ROASTING
LO/TCN
32 n~4CG^FEE ROASTING
0.950 LB/TCN
30 D193HrtRf<
0.330
30 G03"EAT
o.eio
ACEUTICAL
LB/TCN
SMOKEHOUSES
LB/TCN
31 C^CQcFEE ROASTING
0.350 LB/TCN
50 D03STEEL
0.900
46 F02MICA
0.300
40 DIBGLAS:
0.900
10 E01WASTE
0.580
FOUNDRIES
LB/TCN
INO (MINING
LB/TCN
(SPRAY CRYER
1.4CO 1.
0.002 0.
0 . 4 c 0 0 .
IV S"ELT£R
4 . C C 0 0 .
(STON;«/COOL
0.722 0.
( INDIRECT)
2. 160 1.
0 . 5 V 5 0 .
0.300 0.
ICIREC")
3.970 2.
( INDUCTION)
0.100 0,
PART )
12. COO 6.
MANUFACTURING INDUSTRY
LB/TON 2.2*0 0.
OIL BOILERS
L6/CAL
0.010 0.
)
400
000
040
400
ER)
400
200
119
100
200
0
000
(OPAL
022
000
1 .400
0.002
0.400
4.000
1 .400
4.200
0.595
0.300
7.600
0. 100
12.000
GLASS
2.240
0.010
DEC IMAL/YEAR
P P
B C
0.045S
0.029S
0.040S
0.030S
C.008S
0.035S
o.o*os
0.04CS
0.045S
o.o*cs
0.040S
0.028S
0.050S
)
0.033S
0.0
0.050C
0.043C
0.0
0.045C
0.0 5
0.016S
0.0
0.0
0.090C
0.018s
0.0
0.073S
0.017C
0.035S
0.020C
INOUSTk t CAPAC I 'Y/p^
J'JITS /,
S iic
E6 TOMS
SUE
E12 6TU
SIZE
E6 iJfiS
SUE
E6 TJNS
s ; '. f.
E6 TONS
SIZE
E6 TDNS
SUE
E6 TONS
SIZt
E6 TONS
SUE
E6 TONS
SUE
E6 TGI1S
5 I if
E6 TU.^S
SUE
E6 TO'JS
SIZE
E6 TONS
SIZE
E6 TONS
s::^
E6 GAL
= 5'..
0.77
* 9.
32673
r 4 .
:'• • ^ i
• 0.
6.30
" 0.
0.36
e 0.
0.02
• 4 .
1.55
13.
0.78
* C.
0.37
* 0.
J.fU
23.
0.78
* n.
ft. 29
38.
0. U
- 5.
0.54
1.
694.81
UDUCT u
ti
71COT j--;
0.3.S

• 0.0073 . 1
0.4S 0.48 0.39 60. A B £.
« 0.0073
0.72 C.72 0.39 :?0, B
• 0.0005
0.09 C.22 O.C8 130.
• 0.0026
0.47 r.55 0.37 ICO.
a 0.0073
1.32 1.32 l.f.8 230. A
• 0.0100
0.28 f.<-9 0.20 2"0.
« 0.0079 ,,
0.6S 1 .06 0.7> 310. C
• C.0051
0.54 C.73 C.37 370.
« 0.5COO
2.01 2.46 2.02 440.
 *Source categories footnoted by capital letter belong  to  the same facility and  have been
  determined  to be a minor source after aggregation.

^(Source categories indicate small potential emission reduction or decreasing  capacity.

-------
               TABLE   1
                                                            TABLE A-4.  (Cont'd)
   N^E!  1  Ifi  RATING  CCLLMN MEANS NQ RATING 'U5 SPECIFIED
POLLtTAMT/SDuRCE
       (1)                  (2)      (3)     14)   (5)     
-------
              TABtE   2                                      TABLE A-4.   (Cont'd)

   r.C'E: 1 I'. P-ATISG  CCLLMN  .vgil-S  '.C RATING *AS SPECIFIED
   Lt'Ar.T/SO^RCE
      ( I )                   (2)      (3)     (4)   (5)     '6>                (7 )
                              EMlSSIlV. RATES     GROWTH  RiTES                                                  EMISSIONS
             EMISSIC'^        tLLC"A4tE   uNC^NiT  DcCIMAL/YEAX   INDUS^R,  C APAC 1 ' f I PR J'JuC ' I f"4           1000 TCNS/YciR
       K      UNITS         E        c       s     •>       P        UNITS        A       6       C         T        T         T       T -T
                             S        c,       J     B      C                                          A        S         N          S
       DIOXIDE

tO 0'5GLtSS "ifluFACTLRISC  I'.DUSTRV  (3PAL GLASS)                     S ; IE  =      6. 1506T1NS / YK   ZAVE"    0.0051
    ",.903     LB/TC^      2.6SG   O.OdO    2.680 0.033S  0.035S    E6 TO IS      O.Si,    0.1?     0-19     0.65    0.98    0.*3      430,

10 E"«£STE Oil-  BOILERS                                               SIZE  =     22. 7n50T j.iS/Yf,   !AVt>    U.5000
    •-.580     LB/GAL      0.157   O.OiS    0.157 0.0     0.020C    E6 GAL      69',.m    0.0    152.lo    31.63   38,36   32.33     6200,

10 •'••Frr,SIL FUEL  BCILERS   «0.3XlO£6 BTj/M*)                        SIZE  »      0.01Z9TTNS / Y«   ZAVt*    0.0311
   ~',.2ll   LB/E6  BTi.     0.107   0.0     0.107  0.067S  0.020C    E12 BTU      21700   U53?     *752     Zol,    325.     S3,   237030.

1C Ar.ZCnvMERCiAL  3CILEPS   (G. 3-1 OXICr 6 UTU/hR)                       SUE  =     11 .4914TQNS / YR   ZAVE«    0.0513
    T.IOO   LB/E6  6TL     0,770   0.560   0.937  0.029S  0.043C    E12 BTU      32673    93
-------
               TABLE   3
                                                               TABLE A-4.  (cont'd)
RiT;
 ~E:  l I"; RATI'NG  CCH.MN '-EA;-S  f..' •U'INT,  .,-s  S°EC:F:E:
."i>.'T/s3jacfc
  (1)                   (2)      (J)      I*)    ( 5 )      ( ft )                 ( 7 '
                          E'MSSi:-: PATES      G?C*Th  SiTES
         EMISSIO       ALLC'-i-'-r   LJi-'Cv'lT   DEC I Mil. / YEA*   l.NTj JS T;3 r  L ,',P AC : " Y / ? KOr,Ll; T i ..vi
 G  K       UfJJTS         f        i       r      l»      9        !J\I7i         ,'.        fi
                         5         .'              ?       C
                                                                               iOOO  TOMS/YE-R
                                                                                T         T"
                                                                                       S
                                                                                                                                   T:\i/Y-AR
                                                                                                                                T       T  IT
                                                                                                                                         5  s;
10 AT
    C

31 :
    ."

32 --
    •

40 r:
        L&/E6  "TU     0.235

         KDtSTINfi   CIRECT)
                      0.100
( 0 . 3- 1 OX 1 i.r 6  =TJ/nS)
         .^3J    0.294 0.029S  C.043C   E12
                                                                                      3 . 6r>5o' ^.JS / Y~   ZAVt-s     0.0513
                                                                                 32o?3    >>3^*    17104     1536.    2340.    23-.0.
                 O.iOO 0.040S  0.0
         RC-STU.C   ( J \3 :«ct T )
          LB/TC\      0.10P    3.10J    :>.100  C.040S C.O
                                                                E5 TJ.\5
                                                                                      c.3102T-;'.S/Y^  'AVE*     0.0073
                                                                                   0.75    0.31     0.0       0.03    0.03

                                                                                      0.3102T-;,-,S/Y«  7.avt=     0,0073
                                                                                   0.7j    0.11     0.0   -    0.03    0.03
 ?CL.'-S5 ••ANuFiCTUft I'.C i'JJUSTRY   ("JPAL Gi.."5S)
 .90:      L3/1C.N      2.j<.;,    0.3^0    7.S30  0.0335 0.035$
                                                                         S:2E =      1 7 . 5S(,7T;j:;S / YK  ZAVt=     O.0051
                                                                        Tcr.S       0.54    0 . 1 ,S     0.19      O..SQ    0.67
                                        .",.060  0.0    0.020C    ca Ci.      i/-,.5l
                                                                                                                .''.5000
                                                                                                             12.0?   14.74
10 ^'IFCi
         FUEL  HllLti
          /Efc  STL
                             ! 1


                                                                                                  273.
                                                                                                                                         270.
                               Source categories  indicate small potential emission reduction or decreasing capacity.

-------
              TABLE   4
TABLE A-4.  (Cont'd)
   N"TEl 1  IN RATING  CCLL'IN  MEANS JO KiTMG '.-MS SPECIFIED
POLLL.TANT/SGURCE
      (1)                  (2)      (3)     (4)   (5)     (6)                (O
                              EMISSION RATES     GROWTH  RATES
             EMISSION        ALLCWAbLE   UNCQNT  DECIMAL/YEAR   INDUSTRY  CAPACITY/PRODUCTION
                                                   EMISSIONS
                                          XOOO TONS/YEAR
RATjr.G K UNITS E E E P
S N U B
HYCR'C ARJGN5
20
10
20
30
20
20
20
90
90
20
10
30
60
60
64
sliPuLYCARSONATES PLAITS
r, .300 L8/GAL 0.110 O.J05 0.110 0.020S
F C 1 '•» A S T E OIL POILERS
0.580 LB/GAL o.ooi o.ooi 0,001 o.o
0.300 LB/TCN 4. SCO 0.045 4.500 0.0335
CCJ^EAT S"CKEHCuSES
0.3l'J LB/TCN O.?50 0.150 0.350 0.0405
B 1 6 A L * Y 5
0.490 L3/TCN 1.710 0.017 1.710 0.045S
p.it??oxv RESIN PLANT (UN^DIFIEO)
C.90: LB/TCN 2.000 0.020 2.000 0.0205
B14POLYVINYL ALCQi-OL PLANTS
0.300 LB/GAL 3,300 0.170 3.300 0.0205
F04TEXTJLE MFC (TEMLRING)
C.36C L6/TCN 0.920 0.230 4.600 0.0425
F03TExT[LE MFC (CAKi-tr MKG)
0.360 LB/TCN 0.720 0.040 0,800 0.042S
B20PLASTICS AND R5SINS ( PQLYAM I DES )
0.700 Lfl/TCN 7.000 0.350 7.000 0.045S
A01FOSSIL FUEL BCILERS «C!.3XlO£6 STy/HK)
0.230 LB/E6 3TL 0.003 0.002 0.003 0.0675
D17CEE0 FAT FRYING
0.810 LB/TON 6.240 0.079 7.870 0.0285
0
0
0
0
0
0
0
0
0
0
0.
0
FOS'.T.M. ID. (GAS. BULK PLANTS )( STORAGE & TRANSFER)
0.350 LB/GAL 0.230 0.016 0.820 0.045S 0
B06CRAPHIC ARTS INDLSTRY (LITHOGRAPHY)
C.380 LB/TCN 7CO.OOC 35.000 700.000 0.045S
0
P
c
.105C
.020C
.030C
.0185
.015C
.106C
.1000
.0920
.071C
.150c
020C
,043c
.0
.050C
B03INOUSTRIAL SURFACE COATING (METAL FURNITURE COATING)
0.820 LB/GAL 5.340 o.o&4 4.330 0.0425 o.o7ec
UNITS
E6
E6
Ei
E6
E6
E&
E6
E6
It,
E6
E12
E6
E6
E6
E6
SIZE
GAL
SIZE
GAL
SIZE
TONS
SIZF
TUNS
SUE
TONS
SUc
TONS
SIZE
GAL
SUE
TUNS
SIZE
TONS
sue
TONS
SUE
BTU
SIZE
TOMS
SUE
GAL
SUt
TONS
SIZE
GAL
/.
= 1 .
i-'.Op
0.
694.81
0 . 0 F,
* 0.
3. 84
= 1 .
C-.57
16.
0.19
• 50.
O.lb
- 17.
1.03
= 3.
11.
0.19
0.
27100
12.
• 60.
4if .61
= 47.
C.06
* 40.
9.3Q
e c
2"20T-j: S/Y.--:
0 . 1 ?. 0
1430TTMS/YR
0.0 152
tOOOTQNS/Y^
0 . 0 3 0
1 • 5 4 0
0.26 0
320GTQI.S/Y*
0.04 0
1599T]'.S/YP.
0.0? 0
0.4J 1
1304TQNS/YR
C.90 2
2700TQt'S/YR
0.09 0
A
ZAVE-
• 15
ZAVE-
• 16
ZAVf-
.03
Z A V E «
.69
ZAVE =
.09
ZAVE-
.32
ZAVE-
.?4
ZAVE-
.45
7AVE-
.30
ZAVt-
• 5E
GOoSTn^S/YK ZAVE«
11,157 5935
0163VJNS/YR
1.02 1
5274T1I.S/YR
2Ct.?7 0
4320Tnr S/YK
C . 0 4 0
5972TTNS/YK
3.94 10
ZAVE-
.93
ZAVE-
.0
ZAVE«
.05
ZAVE-
.51
T T
S
0.0230
0.00 0.01
0.5000
0.20 0.25
0.0270
0.15 0.21
0.0026
0.54 0.64
0.0031
0.33 0,38
0.0204
0.15 0.41
0.0360
0.20 0.51
0.0091
0.41 0.98
O.OOQl
0.72 1.43
0.0046
0.47 1.P8
0,0011
9. 11.
0.0036
9.25 14.13
0.17?7
44.63 44. S3
0.0002
25.61 41.72
0.0155
20.56 43.57
T
N
0.00
0.23
O.JO
0.'.6
0..3
0.12
C. 16
0.42
0.47
0.34
7.
6.77
26.06
15.47
12.30
T -T
S N
7.
10.
', 00,
180.
70C.
791',
340,
560,
"60,
1500,
3500.
7400,
16800.
Z6300,
31300.

-------
               TABLE   *                                       TABLE A-4.  (cont'd)
   r-CTE:  1  IN  RATING  CCLLMN i
POLL.-TANT/SDURCE
       (1)                  (2)      (3)     (<.)    (5)     (A )                (7)
                              EMISSION P.iTES      GROWTH  RATES                                                  EMISSIONS
             EMISSION       ALLC^KLC   UNCO'jT   DF.C I MAL / YEAR   INOuSTRv  C APAC I TY/PR.C.CUC T JC!N           1000  TONS/YEiR        TONS/YEAR
RATlf,G K       UNITS         E       E       C     P      P        UNITS         t.       B      C         T         T        T      T -T
                             S        N       U     8       C                                         A         S          N         S  N
HYORTCARBONS
65 f?-2If:DUSTR!AL  SURFACE  COATING  !w320 FURNIT'JRE COATING)           SIZE  «     4f>. 9fr777n\S / YR  ZAVE =     0.01F.7
    Q.B20      LB/GAL      5.3*0   0.320    0.380 0.0*25  0.07SC    E6  GAL       10-30    *-*3   11-53     22.55    47.79   15.16   JitOC.
60 C03S3LVENT  METAL  CLEANING  (CO^VEYQR I ZED DECREASING)              SIZE  »     27. C600T.-]J
-------
              TABLE  5
                                                            TABLE A-4.  (Cont'd)
   r,7TE: 1 l.j RiTING CCLIWN  ",£
POUjTANT/SOuRCE
      < 1 )                   (2)

             E M I S S I C *i
     i K      UNITS        I
                                   (3)
10 ETl.%iST£ OIL BOILESS
              L3/CiL
30 5"3"EiT SMQKEnCLSFS
    1.210     LB/TCN     0.6CC    j.O
10 AiiFosSiL PUEL BCILERS   «o.3xioE&
    0.230   LB/E6 BTU    C.04C    O.OZft
                                           t;  «uS  SPECIFIED

                                           «.)    (5)     (6;
                                                                          (7)
                                           ::NT   OsCIMAL/YEAK  INCuSTRY CAP^CITY/PKOCUCTJCN
                                            =      P      P       UNITS        i        B       C
                                             U     3      C
                                                                                                      1000
                                                                                                       T
                                                                                                              EMISSIONS
                         0.035    0.003     0.005  0.0    0.020C   E6
                                                                     SIZE
                                                                                 0.7250Tnxs/YR
                                                                            69<..BL
                                                                                       0.0    152.16
                                                                                                          0.5000
                                                                                                        1.01    1.Z3
                                                                                                                         1.15
                                                                     S I Z E =      C .
                                           0.600  0.040S 0.013S   E6 TLiNS      3,84
                                                                                                 ZAVE«    O.C026
                                                                                       1'5<-     0.69     0.93    1.10    C.56
                                                                                                                                 T  -T
                                                                                                                                  S  N
 PC1.


540,
                                                                     SIZE «      o.004BT3^S/YR   ZAVE»    0.0011
                                                0.067S 0.020C   E12 BTu     27100    18157     5935      124,    151.     107,    441CO.
10 i':2C;.'''MERCIiL BCIucPS   (0.3-10X10E6  BTU/iR)                       SI7E =      C
    T.^-CO   LB/E6 STL    0.051    0.0      0.060  0.029S 0.043C   E12 B Tl/    32t73'
                                                                                             17104
                                                                                                          0.0613
                                                                                                       333,    508.    238,   270000.
                                                                                                                                         >
                                                                                                                                         i
                                                                                                                                         ho

-------
               TABLE   6

   >.-GTE:  i  pj RATING  CCLUHN MEANS '•*£ HATING  WAS SPF.CIFIEC
POLLUTANT/SOURCE
       fi)                    (2)      (3)      U!    (5)     (6,
                                E."ISSICr. RATES      GROWTH  RATES
                                                                TABLE A-4.  (Cont'd)
                                                                                                                     EMISSIONS
RATING K
LEAC
50 fOlTYpE
l.COO
90 fOKABLE
a*i]&£
90
20
23
21
22
50
90
10
EMISSION ALL:.:
UNITS e
S
METAL PRCSLCTION PLANT
LB/TCN 38. BUO
COVER PRCO. PLANT
LB/TCN 0.500
FClCiVi M?G PLANT
.1.910 LB/TCN 3.110
42CLFi3
O.B30
i21LEAO
i. --31
421LEAO
0.^30
A21LEAO
3 . ? 3 a
C C 1 C = t Y
0.93C
rOUEAO
0.760
E31'*ASTE
0.530
OXIDES
LB/TCN1
PIGMENTS ''FCR
L"/T,jl>.
PIGMENTS VF-CR.
LR/TOK.
PIGMENTS -FCR
LB/TCN
IRON FOUNDRIES
L3/TCN
ACID BATTERY
LB/TCN
OIL BOILERS
LB/GAL
3.220
(LFiC C
0.120
(RtC LE
0.900
(hklTE
0.500
( inotc
0.050
o.cid
0.017
A8Lti
f.
0.250
O.C05
o. j:o
0.22D
riRQ.Ve
•-'.12 0
iOi
3. 903
LEAO)
0.500
T13'j
0.0
0.000
0.300
IJNCONT
E
U
59.220
0.500
3.110
0,220
*)
C. 120
0.900
0.500
FURNACE )
0.050
0.018
0.017
DECIMAL/YEAR INDUSTRY CAP*
P P UNITS
B C
SIZE =
C.045S-0.060S Eft TONS
SIZH '
0.0055-0.01'tC Eft TO'!S
6. 0405-0. 083C
C.045S 0.050C
0.0*55 0.021C
0.045S 0.02&C
0.0455 0.026C
0.028S 0.130S
0.045S 0.050C
0.0 S 0.020C
SIZE *
Eft TONS
sue =
Eft T._I,-;S
SiZt «
Eft TH.\S
SUE =
Eft TONS
Slit «
E6 T.J.iS
S ! i C =
Eft TONS
SIZE =
Eft TUNS
SIZE =
fcft &AL
C ITY/pRDtuCTiLN
t- E C
C.F.^dST .)f.S/Y*
O.T1 0.11 -0
c.2?OCTQt..S/YS
0.05 O.OC -0
Q
C.04
2
C.77
C
0.117
1
o.o -.
0
c.oc
1
*.03
4
'y 7 . 7 3
2
frS<4.Sl
,7C33Tnf S/YR
0.01 -0
.73VCTQ,' 5/YR
O.T5 0
,34h6Tr' S/Y?
0.~3 0
.12j5T-_ir. S/YA
0 . C 1 0
.0 -j30Tf.it. S/YS
0 .10 0
.3/50Tr.;,5/Yk
1.13 5
. 15H7Tr;i!S/YP
*3.9n 61
.•,650Tp[,S/Yfi
0.0 152
1000 TONS/YEAR TENS/YEAR
T T T T -T
A S N S N
ZAVt« O.OCCO
•'1 0.22 0.09 0.12 *
ZAV?« 0.0025
•01 0.12 0.11 0.12 *.
ZiVE«
.02
ZiVE»
.*8
ZAVE»
.02
ZAVE =
.01
ZAVE«
.00
1 A V E «
. 4f,
ZAVE«
.*6
ZiVE-
.16
C.C006
0.04 0.02 O.C3 *.
0.0300
0.07 0,11 0.11 ^.
0.0070
c.&o o.oo c.eo -K
0.0030
0.01 0 . J 1 0.01 -|t
c.ooo*
O.CO O.CO 0.00 -ft
0.0600
0.09 0.22 0.07 isc.
C.6218
0.67 1.09 0.38 71C.
0.5COO
3.*3 4.18 3.43 74C.
                                 Source categories indicate small potential emission reduction or decreasing capacity.

-------
           TAr,LE  7                                     TABLE A-4.   (Cont'd)

N-r-E: 1 IN RAIl^G CtLL'iN rE-iNS US KATJNG  WAS  SPECIFIED

   ( 1 !                   (2)     (3)      (<•)    (5)     (6)                t 7 >
             E H I S S IG K
RATI.'-.S K      UMTS

ACID "1ST

9C BOlLriO ACID BATTERY
    0,76o     LB/TCN
        (3)      (<•)    (5)     (6)
      ,SI-I'  RATES      GROWTH RiThS
  ALLrxiRLt    Uf'CQNT   DECIMAL/YEAR  INDUSTRY C APACI TY/?KCDUCT ICU
 E        i        E      P      P       UNIrs        A       B       C
  S        N        U      B       C
                                                                                                           EMISSIONS
                                                                                                   1000  TCNi/YciR        T3NS/Y=4*
                                                                                                    T         T         T      T -T
                                                                                                A         S         M         S  N
                                                                  SIZE '      7.5613T1MS/Y*   ZAVE«     0.6213
                      0.032    0.000     0.032  0.0:l   c.1.46      1.19     1.94    0.65    1303.
              TABLE  8

   NfjTE: 1 IN RATING
POLLUTANT/SOURCE
      tn

             EMISSION
RATING K      UNITS

HYCROCEN SULFIDES

30 D05FISH PRDCESSINC
    0.810     LB/TON
                          MEANS
                                           PRIORITY RATING SYSTEM:
                                      HATING WAS SPECIFIED
                                                                 1980-1990
<2)      (3)      (4)   (5)    (6)                (7)
   EMISSION  RATES     GROWTH RATES
  ALLCrtABUE    UNCONT  DECIMAL/YEAR  INDUSTRY CAPACITY/pRODuCTION
 E       E       £     P      P       UNITS        A        8       C
  S        N        U     8      C
                                                                                                              EMISSIONS
                                                                                                      1030 TONS/YEAR
                                                                                                       T         T        T
                                                                                                    A         S         N
                       0.038    0.001
                                        0.058  0.008S 0.0
                                                                     SIZE
                                                                 E6 TONS
   O.Oi39TQNS/YR  ZAVE"
0.36    0.03    0.0
                                                                               C.0029
                                                                             9.01    0.01
                                                                                                                     0.01
                                                                                                                             T -T
                                                                                                                              S  N
                                                                                                                                1.

-------
               TABLE  9
                                                          TABLE A-I.  (cont1 d)
NTT£: 1  IfJ  RATING  CCLLMN MEANS ''•<-                  17)
                                      i  RATE-;     GROWTH  RATES
                                          ijNCC'JT  DECIMAL/YEAR   INDuSTK,  C iPAC I : V /pRfJ JuC 1 t :;:j
                                             H     ?      P        UNITS        A        4       C
                                              J     S      C
                                                                                                     1000 TG\3/VE..R
                                                                                                      T         T
                                                                                                   A        S
                                                                       s i : c
                                            5.560 0.033S 0.037s    E6  TONS
                                                                                e . ui 56 rn^is / Y <   ZAVE«    0.0036
                                                                             O.lb    0.32     0.36     2.14    2.-)3
10 AC2COMMERCIAL  BOILERS  (0.3-lOXlCrb  5TU/I-R)                       S I Z E *
    0.400    LB/E6 8TU    O.OC1   0.000    0.001 0.029S 0.043C    E12  BTu
                                                                                   0 .00"<9TONS/ Y*  JAVE»
                                                                                        9344    17104
                                                                                                         0.0613
                                                                                                        5,       8.
                                                                                                                        1.45
40 D'.SC-LASS  MANUFACTURINC IMJilSTkY   IIJ^AL  r.liSS)                     Slit -     45 . 6-«V9":jMS /YK  tAVE«    0.0051
    0.900      LB/TCN     20.000   2.0u'0    20. COO 0.033S 0.035s    E6  TONS      0.54     0.15     0.19     4.86     b.30    3.59
                                                                                                                         5,
                                                                                                                                15JC.


                                                                                                                                30JO.

-------
                                 APPENDIX B






                             Table of Contents






                                                                      Page




Explanation of Terms used in Tables B.I and B.2	B-2




Table B.I.  Summary of Source Data	B-4




Table B.2.  Summary of Source-Pollutant Data	B-14




Table B.3.  Minor Source Category Growth	B-24




Table B.4.  Major Source Category Growth	B-32
                                    B-]

-------
     Explanation of  Terns Used in Tables  B-l and B-2.
 Notation

   Code


    K

    A

    Pb

    PC

   ZAVE

   PLANTS
«
    T

    V

    H

   FLG
Explanation
A five-character identifier specifying an unique source
category.

Maximum capacity utilization rate (K = 1).

Industry wide capacity in 1980 (10s production units/yr)

Replacement rate (fraction of 1980 capacity/yr)

Growth rate (fraction of 1980 capacity/yr)

Hypothetical source of average size (10  production units/yr)

Number of new and modified hypothetical average sources.

Stack gas exit temperature (°K)

Stack gas flow rate (m3/sec)

Stack height (m)

Three characters XYZ giving the source flags.
X:  Mobility flag
    M - Mobile source category
    N - Non-mobile source category
Y:
Flag
1
2
3
4
5
6
Category Air
1980
High
High
High
Moderate
Moderate
Low
Quality Impact
1990
High
Moderate
Low
Moderate
Low
Low
  PLT      Type  of  pollutant  emitted

           PM -  Particulates
           SO -  Sulfur dioxide
           NO -  Nitrogen  dioxide
           HC -  Hydrocarbons
           CO -  Carbon monoxide
           PB -  Lead
           FL -  Fluorides
           HS -  Hydrogen  Sulfide
           AM -  Acid Mist
                            B-2

-------
(Continued)
             Notation      Explanation

               Eu          Uncontrolled emission factor (Ib/unit of production)

               Es          Emission factor under existing state regulations
                           (Ib/unit of  production)

               En          Emission factor under NSPS (Ib/unit  of production).
               SIZE        Uncontrolled emissions from hypothetical average source
                           operating at full capacity (T/yr)

               CAT         Classification of average source based on potential
                           emissions (SIZE)
                           MAJOR - SIZE 2 100 T/yr
                           MINOR - SIZE < 100 T/yr

               Ta          Emissions in 1980 under  existing emission limits
                           (Es)(103 T/yr)

               Ts          Emissions in 1990 under  existing emission limits
                           (Es)(103 T/yr)

               Tn          Emissions in 1990 under  NSPS (En)(103 T/yr)
               Ts-Tn       Maximum potential emissions reduction from NSPS
                           program (T/yr>

              (X/AV)s      Normalized air quality impact  under  existing emission
                           limits (Es)
               X           Normalized air quality impact  range  under existing
                           regulations

                           0,  1 - High  Impact
                           2 - Moderate Impact
                           3 - Los Impact
              (X/AV)n      Normalized air quality impact  under  NSPS emission
                           limits (En)
               X           Normalized air quality impact  range  under NSPS
                           0,  1 - High  Impact
                                        B-3

-------
                :.   C.OUJE  o?
                                        PE
                                      /^=j
                                       5.03
''".- f\.n.  B::i.E'S  icti. c
.a i:6          i.   o.;?iiic
                                       o.o<>
TABLE B-l.  SUMMARY OF SOURCE DATA*

 PC        :AVE          SLANTS           T

0.01       1.183          0.0       -.77.000
                                                   o.os
                                                             o.uo
                                                   o.o!      0.006
               •>' iL CC'r'.ST:-,.1.  c-'.GI'icS (S?A*i<  ICMTIUli)

                1.   C.::$<.5t  C5        J.32        0,09      0.023
         ;.Y  :•.-£::. 4L COPTIC;.  E:.iIl.cSOlESEL  t  OUAL FUEL)
                '..  c.5"i;caE  c«        0.03        c.o3      0.002
                                                                             o.o
                                                                             o.o
                                                                                       soo.ooo
                                                                             0,0       soo.ooo
                                                                             o.o       533. OQO
                                                                                       533.000
                                     *S«e page B-2, Appendix B for Definition of t«ru.
V r« FLG
15.600 J6.1CT S*
N5
N6
N*
N6
N5
3.7«0 20.000 N5
N*
N5
N5
S6
N5
N5
1*
N*
N5
Nb
3.760 20.000 r.5
N5
r.ft
Nb
Nb
\*
S7.003 15.0CO \*
,5
Nb
,46
*,320 12.000 :»*
N5
Nb
PIT
so
KG
CO
»M
hC
FL
so
NO
PM
HC
co
AM
PK
sc
NT
hC
CO
PM
SO
^.B
HC
CO
PB
NT
HC
CO
sc
NC
HC
CO

-------
:>.TEsriL CO8i,STim. EN&INSSIDlESEl  I  r.Uil
13 :?2 1. C.5SSC8E C* 3,03 0.03 0.002
:: 3> ' 1. C.«.1!53E C4 0.0* 0.11 1.017




'-NP^ESS-a --IN
:: ci; :. o.2*975E c* 0.02 0.07 0.004



'.••: .--,•'' \i.'. i.-.Ci'iEatTicN ;i\a CBGJ'UC LlouiD WASTE INO
12 P-* 1. C.f.li'OE 03 3.03 0.13 O.OU


23 i'.* '.. i.'US-E ;-3 3.31 0.04 0.113

...c ,r!- ... .. ,s ((|FT pfr CJS
?'. -," :. :.t'3.Sc ,<• 0.0* 0.12 0.176
i'. c .. :..":'>4«9E "3 3.0* 0.07 0,022
2: :'. 1. -,.iC3<.5£ C3 " 0.0* 0.01 0.035
:: ; < i PB PC Z4VE
2: i.; 1. C,.£2;.0r C3 O.O* 0.08 0.067




2 4.* 1. O.fcltCSE 03 0.03 0.07 0,12*

2 ".5 ' 1. C.12250E :.3 0.03 0.0* 0.175
2 s.T ' !. 0.ifCH2E C3 0.03 0.03 0.04*
s ~iSl
2 413 1. C.at*t6E 0* 0.02 0.03 0.630
»
0.0 53J.OOO 4.320 12.000 •<*
0.0 700.000 4.720 20.003 HZ
N2
Nl
'44
•:<.
N2
0,0 750.000 30.000 6.000 N5
S6
r.6
N6

0.0 550.000 9.4*0 20.00C 1,5
N*
1.6
0.0 *36.000 13,620 *6.00P "3
,,5
,-5
o.o 311.000 *.oiO 15,:-r, -z
0.0 322.000 2.302 *6.oc.- :'2
0.0 350.030 6.1*0 15,i*C .v5
PLANTS T v M FI.C
0.0 2255.000 3,453 30,*8D .5.
ft.
!•>.
H3,
•16,
0.0 302.000 2.420 23.000 *2.
«>.
0.0 4*0.000 2.000 30.000 M2.
0.0 *40.000 2.000 30.0CO .1*.

0.0 409.000 4.520 22. COO 12.
K».
SO
PM
NO
sn
rtC
CO
P3
NO
CO
P..
su

NO
P«
CL'
HC
s
NC
Ft
FL
p-
LT
HC
CO
HC
Hf
CO
HC
cci
PK
PH

PM
NO

-------
5;_v;Ti-vl S'.E   (HIGH  CS\
23 ? " >

iC 874

2:Vs
27 --: •,
2 : 1.7
2' ':a
2 5 5 ~ 9
'-?•.-'. 1C
?.V:i."L"
21 - . I
i- ••.!
'i-r-:cs
2: »:•»
2:"i;9
25 ?£;
20 C;3



25 CC6
£T>-vLE«.E
20 C = 7

20 COS
CfE»CriT
20 c;o
20 c:s
20 C16

1. C.12453E 04

1. C.19tt*E 04

1. C.ilCiOE S4
i, i-.mc-E 03
'EN;
I. 0.1C725E C4
'. S:BE»S I'.^STPY (Ci
!. C.73i',CE C3
=c5!NS
1. O.S1EC3E S3
: . o . > i '. 1 3 B i, 3
-/D1.
; . 0.22S92E 03
A'.l *E3INS (iC«YLIC 1
I. 0.m35E 03
1. 0.3«CCOE J3
1. :, 21719: C4
'r:""o>^to1e:3



!. 0.55850E 03
0.0

0.01

0.06
0*.04
0.00
CRON POLYESTER)
0.04
3.04
0.00
0.00
0.00
0.04
Pi)
0.04
0.04
0.03
)
0.04



0.04
OIC-LCBJOE 'LiMS (OXYCHLORINATION
1. C.1S490E 04 0.04

;. 0.3847SE 04
HiNUf iCTu«l'-c PLANTS
.1. 0.1336SE 04
I. 0.6247SE 03
1. 0.722506 02


0.04
0.0
0.07
0.02
SM PM* 1-1
0.12

0.08

0.02
0.0
0.12
0,10
0.09
0.04
0.04
0.10
0.03
PC
0.11
0.10
0.03
0.02



0.10
PROCESS)
0.0*

0,09
0.03
0.03
0.02
. AM--41*
0,091

0.145

0.045
0.061
0.101
0.041
0.040
0.197
0.159
0,057
0.061
ZAVE
0.002
0.024
0.076
0.063



0.074
0.322

0.050
0.004
0.007
0.002
1 for D«flnttf
0.0

0.0 .

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
PLANTS
0.0
0.0
0.0
0.0



0.0
0.0

0.0
0.0
0.0
0.0
lM •( ten*.
744.000

7*4.000

744.000
810.000
744.000
810.000
810.000
744.000
744.000
744.000
81'J.OOO
T
811,000
811.000
373.000
373.000



1143.000
477.000

*22.000
322.000
894.000
513.0QO

2.360

2.360

2.360
1.130
2.360
1.13C
1.130
1.930
1.930
1.930
1.130
V
2.360
2.360
667.000
30.400



21.410
• .160

1.410
11. 110
0.570
0.56»

18,000 K2
K2
16,000 K2
HS
18.000 f'5
22.000 K2
16,000 f5
M4
22.000 C4
22.0CO M4
15, OCO h2
15.0CC M2
15.0CC r-5
22.0CC 12
It FUG
18,000 MS
18,000 MS
30.50C 16
41,000 M3
MS
MS
MS
34,000 M2
MS
23.000 M2
M6
15.000 HS.
15.240 M6.
12.200 H2.
I.OCO M2.
M3.
NO
HC
HC
PM
nC
HS
PM
HC
PM
HC
PM
HC
HC
HC
HC
•IT
HC
PM
PM
MC
CO
HS
PM
HC
CO
HC
CO
CO
NC
t*
NC
NC
CO

-------
fI*irSIVE l»a (MICH Ex?LCSlVtS>
23 ClT          1.  C.llt»2E  04        0.0*       0.0*      O.OlT
E*»!.:SIVE I NO (LOU fxnCSI/fS)
20 Cll         1.  0.3>tl5E  :»        0.04        0.0*
                                                           0.010
                                        K»   PH

0.0      110.000      l.OCO  .  23.01C  C2   SO

                                        X»   NO

                                        Ml   AM

                                        M   »r

0.0      110.000      1.000     23.01.0  M*   SC

                                        li»   NO

                                        n)   p«
MlN'I'.G I'.K PLANTS
23 C »
M • j £ * (•
^*»*t t »*•
2; c<)
«:!•."•
2? C<»
• ^T_< • '
r^ i »-v .
20 C2S
»MT*itl
20 C2»

TI»E'-i
25 C>7
e*VK • — (
• C •* '
2: c»»
§*fe « • 1
' w "
29 C59
«T— v Kt
C *•"*•.* FI
20 :i:
M| Vaj • fc-*1
^t t M-Fi,
29 C32
>W|*-**"L
20 C3>
fCTu /i
"• l W *^
23 CJ*
|T-v..|r(
10 CIS

ft* (fyQg * ^£

CAMONAIE
1.
'C A"HvCR * 0
I.
1C AN^'/ERID
1.

•wii. tc *CID
'* TtltP*.Tp4
k ' ™*t ^" 1 ^
1.
Igl.ffMi;
'• **C »t
1.
m
»K
1*

!L *C-NT5
t.
9l AMTc
'*.«" • 5
1.

0.224176
O.ttJiDE
S3
02
0.0*
0.0)
"L1M (NATURAL PROCESS)
C.4J543E i4 o.O*
£ 9- iNTS (MAOTu/.i cue ttan^****
"-T*CC60E
E PLif-TS
e.i'cc'E

P14MS
S.t»SS52
1 | * T £ C #1
• t* • C r L "»
C.12S57E
0.1S4C.OE
C.eiC'.OE

C.lt3C*E

O.tCfOOC
re a i » ^ T e
MfTw4C?VtA» s r ^ri- , +
\. C.22440E
:f CL^CCL CE«IVEC nz
1. C.X2COE


•VMF > »Mt>«.
C2
(OXYLENE
C3

03
TC
1 A
;»
0*
04

04

0)

CJ
f ET».vi.Et
03

«C ™yt»C*9«
0.02
OkOCESS)
0.02

o.e*
0.0*
9.03
0.01

0.03

0.0) •

0.0)
it OX ICE
0.01
*SM >•(• t-3.
o.os
0.04
O.ll
0.0
0.0*

0.0*
6.0*
0.07
0.07

0.01

0.07

0.0*
6.01
0
0
0
0
0

0
0
0
0

0

0

0
0
.001
.020
.17*
.0»>
.0»»

.1*7
.1*0
.770
.330

.114

.11*

.07*
.1)0
+tm*lM • tot taftettlw
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

0.0

0.0

0.0
0.0
•t MtM.
V77.000
11*. 000
3*4.000
11*. OQO
11*. 000

11*. 000
11*. 000
4*0.000
1*7.000

»40.000
*
2*4.000

440.000
44 J. 000

2.1*0
«.170
7.0*0
21. 110
44.430

21.110
21.1*0
2.000
2.3*0

2.000

2.7)0

2.000
2.000

*.14« fS HC
1*.003 '<) CO
f2 -C
40.000 t 4 »•(
»;.ovc. M p»
P4 nf
rj HC
.'•» CO
•I. COS "» CO f
^J
f>4 Jh
>4 SC
f J KC
4i.cro >-3 xc
41.CC? r2 «C
lo.src f.i MC
• )».OCf f.» SC
>•* «c
is.or? v2 »3 CC
2S.4CC 1*2 MC
:•* CO
30.103 ^2 nC
10.006 h2 MC
H» SC
Hk KO

-------
25 C36
VI'. '. i
25 Ci7
c:;?
C£ = 9~ '*"
2: C3*
c i * 3 r*>
25 CJ9
: . o
CETATE I£ThYL
1. C
K
TC'RACH'^^P ICE
TE^^«CULC^ i w£
1. 0
.iUZOE 03
:'.E|
.3'CtOE 03
A
(^ETHANE)
.ZU'.OE C3
(pj^pj^e
..63CCE 03
0.03

C.03
P3
0.03
)
0.03
0.06

0,09
PC
0.06
0.06
0.193

0.157
ZAVE
0.065
0.108
0.0

0.0
'LANTS
0.0
0.0
4*0.000

811.000
T
440.000
**0.000
2.000

0.533
V
2.000
2.000
30.000

30.500
H
30,000
30.000
K2.

12
fid
1 Z
C2
HC

HC
LT
HC
HC
Ci=a;\ Tgr»4;^c»:BE (CiSSGN DISULMDE)
20 C45 1. C.lMtCE 03 n HI n nlk A *»• H . ... -
*:;-:•.£
20 -41
iCcT->.5
20 c'2
iCr'.'iE
i- CO
"£""'*.
20 C'4
S ' /? £ '.c
2C C'5


2^ C'»
4 C - / .. I C
25 C47

iCET I ff
25 C*«


C v C L 7 *- £
20 C4*

S".--ET
< -. ; ; :

i '* ' ' £
*---. f<
1'. ;'.4
s-'---:
2 - - -, ?

2 : :'.'.
21 r. 1 3
* .:. CC
21 C?0

f '-».:•.
22 C.I
•.!'=iT =
30 i05

1. C
(Cj-5'.E)
1. C
( tscpajpi-.c
i . 0
(cvti.cMvcs:
!. C
C-'-CT^OPC
1. C
1. C


H i. - * I 0 E
• ^ ^
;CID
1. 0

Af(*YQ3 IDE
1. 0


^i'i3i /c YCLCHE
1. C

:c »;*tEs JN:
.. c

Ti3 I r '.£
1 . 0
F-'OPlLf E
i. 0
0 = ;ii!-» INf

• ;»;•:£ PLi'.T
P ^ i'.T ^
'. . C
•i/JSSIC'l >-IO"-
1. C

f '.'f.-l P..4NT
;. c
r£PT|ilzE«
1. C

.l*1tCE 03

.3iseot 03
L)
.24C40E 03
•.)
.li!20E 03

.7C240E 02
.1S515E 0*


.5'6COE -2
,2*C'.3E 03

.5C4COE 03


X AN C f« E
.344BOE 03

. (S TYPES
.64S15E C3

.1!1?76 'Jl

. L2<.O>- 33
~.'*l< 'i;
. . ICtOS 03
S UP CX
.S3J23E 02
,97734£ ,4
BTC CCii.
.44347E C4

S (CXY5£f.
.413i5c C3
(^''f'CNI'tr':
.4C176E 04

0.03

0.03

0.93

0.03

0.03
0.3*


3.02
0.03

3.03


0.03

E-B'jrtDIENE) (SBR)
0.0

5.0}

0.03

0.03
IC1TIC'. PROCESS)
3.08
0.3*
GASIFICATION
3.0

0.06

0.06

0.06

0.06

0.06
0.05


0.0*
0.06

0,06


C.06


0.0

0.05

0.12

0.05

0.0*
0.03

0.20

0,0*8

O.OTO

0.068

0.150

0,017
0.338


0.057
0.080

0.109


0.085


0.1*8

0.041

0.052

0.073

0.097
0.167

7.88*

0.0

0.0

0.0

0.0

0.0
0.0


0.0
0.0

0.0


0.0


0.0

0.0

0.0

0.0

0.0
0.0

0.0

**0.000

309.000

309.000

309.000

**0.000
639.000


440.000
440.000

311.000


299.300


69.400

810.0QO

810.000

8 10.000

422.000
78'3.000

6**. 000

2.000

0.950

0.550

0.550

2.000
28.300


2.000
2.000

0.1*2


3.0*0


1.416

0.850

0.850

0 . 850

16.280
6.950

79.500

30. OCO

26.8CO

26.800

26.3CO

33. OCO
42.000


30.000
30,000

27.430


27, SCO


24.400

10.000

10. OCO

10.000

15.000
32.0CC

*5.700

f2

K2

f.Z

M2

*3
P6
M6
KS
h3
M2
M5
H2
US
H6
fl2
M5

; B-2. Appendix 1 for Definition of c*

-------
3 : = : :
33 ;v.
:: ,C;6"'^::OE c*
1! 0.121COE 04
0.04
0.03
c.oi
0.03
0
0
.014
,062
0.0
0.0
311.000
380.000
4.720
14.160
10.00C
9.140
(•.4
N5
PM
PM
W-IS-EY
33 ::e

1 . 0, '75t7E 06

0.03

0.06

10

.380

0.0

894.000

0.47Z

15.240

r.2
H5
PM
MC
8E'» PRCCESSHiG PLANTS
30 3",*

J'i ! v 1 L
31 c.C

V £ C E " A
33 -: i

STiaCH
33 CIS
3: ;;o
(A3G.
3C E ~ 1
STC-;t
43 i'., I
Si-.: t
43 i ~ "'.
FI?E'G
43 ;',6



CUSS
40 3 -.7


(ACS)
40 "38

C £•* i'' *
40 c:o


1. 0.4C5C5E 04

FEED OEFLUORINATICN
1. 0.9CCCOE 02

3LF SlL MFG.
3. C.34C40E S4

•'fit
U 0.15J«7a C4
1. 3.672CO,: 01.
0.04


0.04


0.03


0.04
0.04
0.07


0.0


0.03


0.02
0.12
0


0


0


0
0
.043


.050


.036


.054
.147
0.0


0.0


0.0


0.0
0.0
894.000


400.000


744.000


333,000
303.000
0.472


9,440


2.360


11.750
18.880
1S.240


10.000


18.0CO


23.000
25.000
f'4
H2

N5
Nl

M4
HZ

MS
K4
PM
HC

PM
FL

PH
HC

PM
PM
FE-3 A iC GRAI'^ *ILL I»ii)UST«Y
! . O.UJ78E 06
CjiiW'If.S i'JO 'SCCESSIfiG
1. w,57C63t 06
',-AvEL PROCESS
1. C,45t83E 06
LiSS MFG. PLA^TS (TEXTILE
1. 0,1«123E 03



0.04

0.05

0.05
PROCESSING)
0.03



0.01

0.03

0.0

0.07



0

0

0

0



.014

.500

.200

.Ml



• o.o

0.0

0.0

0.0



0.0

293.000

294.000

366.000



0.0

33.000

29.260

4.720



0.0

10.000

10.000

12.200



ylt

M

N2

K4
Kl
M6
hi
PM

PM

PM

PH
S3
CO
FL
"i'.UFiCTUSiNG ISCLSTRY (SOOA-LlME GLASS)
1. 0.91C35E 04


Ci$TA8LE REFRACTCSV PLANTS
1. 0.1S1C8E i3

C CL»Y MFC,
1. C.526COE 04


0.03



0.03


0.03


0.03



0.04


0.04


0



0


0


.052



.003


.004


0.0



0.0


0,0


592.000



0.0


5QO.OQO


10.890



0.0


1.890


33.100



0.0


10.300


M6
K6
MS

M
Kl

K4
M6
Kl
ft-
so
NC

PM
FL

PM
NO
FL
GV>S;K Hi'l'jSiCToRING PLtt.TS (CiuCINER)
40 ;::
PE'; :r
40 312
M 1 ^ E •* i
40 313


1 . C.74«83E 04
E (VERTICAL FORKtCE)
1. C.31242E 03
L »oni. IFG
'.. 0.37884E 04


0.03

0.03

0.03

i
0.05

0.04

3.02

'$•• pago I
0

0

0


.129

.006

.078

Appendix *
0.0

0.0

0.0

for Definition
408.0QO

422.000

422.000

of teru.
18.970

2.830

3.300


23.000

15.200

15.240


M6

f'3

MS
H*
M6
PM

PM

CO
PM
$0

-------

"I'.fa
4C ;i
FI3E-
40 3.





(AIG)
4C 31
FLY-;
40 Cl
GLASS
4C 31



(i-cc;
41 3C


UJS
41 ~
VET!
41 E
til1;)
41 e :
u E " i
42 E;

ur-G)
42 e?
"ETi.
43 F-,
!AOG'
43 = ',
44 EO

PHCSP
44 FC
(ASG)
45 Cl






AL .(SOL *e&
3 1. 0.376E4E 04 0.13
iLiSS VFG. Pi.A-.TS <«C:L PR:JCESSI:;G)
4 1. 0.624756 23 0.03





CLA' Sir.TERI'.G PLANTS
t 1. 0.42CC3S 03 0.03
5- Sl'iT£R!i.C (SlMfcRING)
7 1. C.5C161E 04 0.03
"4VUFAC7JBING INCLSTRV dEAO GLASS)
9 1. 0.2S210E 03 0,03



ASPHALT ROCFING PLANTS
1 1. 0.25660E 04 0.04


P'-rSPHATE RCCK PBEPARAT1CK' PLAt.TS
1 1. r;.iSS20E C5 0.05
lr. "P.ERiLS "IM'.C (IPCN CRc)
! i. 0.134JOE 06 0.03
•.^'.-"ETiuLic C:MI.C, - CL^Y
1. C.e'CCOE 01 0.05
1C ••tlSF.^ALS fIM\0 Irf^CiLLOV)
1. O.UIcSE C4 0.03

SC'.-^TALLK PIMSG - GYPSUH
1 1. O.tfStOE 04 0.05
ic '<;K?^ALS KiM'c (COPPER)
1 1. C.121S2E 05 0.03
•.::.-!'ETiLLlC FINING - Ll."E
1 1. C.-'lSbc '.5 0.03
*r ^**-3iLc "^ f N * 's C ( L ^ i '* M> I *' I NC )
l" 1. 0,41t70i C4 0.03

hAT£ H3CK (MINING)
1 1. C.51340E 65 0.05
TUI.'JEL 
-------
(AGO TUNNEL  KHNS(CU)*CR*ERS  AND STORAGE
45 Oil




(450)
45 C12





1. 0^*»COE 04 0.03 0,03 0.025




TU'iNEL KlLNS(COAL)/ORYEP.S AND STORAGE
1. C.8CCCOE 03 0.03 0.03 0.035





0.0 . 0.0 0.0 0.0 N4
A6
f.6
N6
Nl

0.0 0.0 0.0 0,0 N*
t.i
N6
N6
N6
M
PM
SO
NO
HC
FL

PM
so
NO
HC
CO
FL
MET4LIC MINERALS MIMfC (ZINC MINE C CRUSHING)
45 f'i

(AGG)
45 fil
(AIC!
46 310
(ASG!




(AGG)
46 Oil




(AGG!
46 Ci2





METALl
46 Eli
^ET^i. !
47 EDI
( Ai'. !
1. C.4CUOE 04 0.03 0.01 30,000

MSN-METALLIC MIMSG - BORCN COMPOUNDS
!. 0.7eS60E 63 0.05 0.05 0,261
PERIODIC XILNS(GA$),ORrERS AND STORAGE
i. c.acecoE 04 0.03 o,o3 o.ozs
?ERlC9iC KILNSIGASl/ORYERS AND STORAGE




PERIODIC KUNS(CU)' ORYERS AND STORAGE
1. C.8CCCOE 03 0.03 0.03 0,025




PERIODIC KiLNSicciD/DRvEes AND STORAGE
1. 0.2CCCOE 03 0,03 0.03 0.025





C MINERALS MINING (ALUMINUM)
1. C.liSCOE 04 0.03 0.04 0.030
C "I'-ESALS NK.Jf.C (U*.«MH(.N)
1. 0,42315c C4 0.03 O.lO I. 000
N"'j'l'F*it 1 1C 'MMNG ~ Fiij"».^'Af
0.0 297.0QO 14.160 10.000 N4
N4

0.0 0.0 0.0 0,0 M

0.0 0.0 0.0 0.0 N4

N6
N6
N6
M

0.0 0.0 0.0 0.0 *>4
N6
N6
N6
Kll

0.0 0.0 0.0 0.0 N4
N5
K6
1. 6
N6
Nl

0.0 297.0QO 9.440 10.000 M5

0.0 297.000 9.44Q 10.0CC N3.

PM
PB

PM

PM

NO
HC
cc
FL

PM
SO
NC
MC
FL

PM
SO
NO
HC
CO
FL

PM

PK

                                                                                                                                                          03
                                                                                                                                                          I
                                                *SM f»t* >-2. Appudix » for Definition of t«ru.

-------
47 F

&/-S
50 i




CRtY
52 C
0? c '
53 C

CR*<
50 C


S-EE
50 ;

S-EE
so ;

• ^ — *•
' f r
5 l
i c;
5 E
[ACS


tiCC
s: E


PEST
55 ;
j^'a
f iC *
57 3
cc:
57'g
I4C5
;a t
58Je
rav
:l 1. O.^CC40E 03

;J:^CT CSKE OVEN
:: 1. 0.3t661E 0!




;'2\ FOUNDRIES (ELECTRIC
:2 1. C,2(737E C4
I'J3'4 Fn^*iCRTES I"EvER9cR
;3 " :. C.25UCE 03

I'D.1. FOUNDRIES (d-PCLA)
;4 1. C.624S6E 04


. f:j'J3B.!ES (ELECTRjc ARC
•;i i. C,34a70c 04

L FCj-l2R:ES (CPEN l-EARTh)
:2 1. 0.383:5E 04

;'«.-" R E F I ft i '.C
1. O.lle57£ ^5
; iFCu'Oif.V ALUfl'.'.v Pui'.T
;2 1. :.33374E 03
: SE'.^f.-iRr Zi'-C S"ELT = R5
•;'. l.C. 1220JE 03
i s?ca-,OARY ZINC SKELTERS


! SECS'.DARr ZINC 3."ELTcRS
:2 1. 0.123COE C3


ICIOF.S MAfiL'r AC TuR I k C
: i. c.53?5oe :s
5 ? C «"*•*«'• ^ '' C'-^f'c* •'L*-'J"^S
; i. c • it *»c JE C'5
SecC'.DiPY CCPP^? PLANTS
1 1. C.iC^COEv3
K i
^cr*^^'"^»av r~PPFi Ci AUT ^
JtCu"i»i«T L>*""~" •• L •'• * i
1 1. 0.it4COE C3
SC^'NCi'Y CCPPEB PLiNTS
1. C.2??tOE 03
$EC^j^*jAPY c .. P P t ^ PLANTS
1 :. C.22*tOE -3
i t At. I NT,
C.05


0.03




ARC)
0.03
i T f l2 V 1
** T LJ* ' ^
0,03


0,3


)
0,33


3.03

0.03
5
0.04
(RETORT REDUCTION
0.03
(RETOKT REDUCTION


0.04


0.01





0.14

0.14


-0.02



0.07


0.07

0.01

0.02
C KETTLE
0.02
t KETTLE


0.016


0,720





0.090

0.060


0.090



0.030


0.090

0.116

0.016
FURNACES)
0.008
FURNACES)


0.0 0.0 0.0 0.0 N2.
K.2

0.0 550.000 4.720 37,700 M
N2
M
N4
N4

0.0 500.000 4.720 10.000 M3
M3
0.0 500.000 4.720 10.0CC ^3
K,3

0.0 675.000 9.430 20.000 M5
M5
M2

0.0 482.000 11.320 2C.OCC M5
M6

0.0 500. 000 7.080 20.000 M5
K6.
0.0 500.0QO 9.440 10.000 r5.

0.0 0.0 0.0 0.0 M2.

0.0 0.0 0.0 0,0 *4,

M4
K2
PM
FL

PM
HC
SO
NO
CO

PM
PB
PM
PB

PM
CO
PB

PM
NO

PM
NO
PM

PM

PM

PB
FL
(t-Sli: i. REVE^fa FjRNACES)
0.03


0.04
fo> *^T EiiU'jArE)
\ H ^ »* J 1 ^'JK|-J(H,t )
0.03
(BLAST FijRUACE)
0.03
H3
(Di A^T tf 3n£rFl
lflL**J' ^ O ^ 1 1 » C 6 *
0.03
0.02


0.07
0.01
0,01
PC
0.01
O.COB


0.050
0.018
0.018
ZAVE
0.018
0.0 0.0 0.0 0.0 M4
K*
M2
0.0 293.000 9.44Q 10.00C M2
0.0 0.0 0.0 0.0 MS
0.0 O.C 0.0 00 M2
PLANTS T V H FLO
0.0 0.0 0.0 0.0 M2
PM
PB
FL
PM
PM
en
3 u
LT
FL
CQU/Ei
-------
60 ••!
G»iP-IC
43 gi*
t
*»TS I"D
1
. C.litCOE 04
jSTRr (CRAVURE)
. 0,eet93t 32
0.0$

0.04
0.01

0.05
0,000

o.ooi
0.0

0.0
452.000

644.000
3.060

l.lflO
Clis-IC ARTS INOUSTRy [ H.EXCGRAPHY )
33 ---.5
G*i;-!C
40 »:T
5.T.".
60 ---.3
'.".•'.
o F : 4
'. " _ S T «•
l ?:2
• » s T =
1 * " 3
2 * " ?
2 = :3
>. : < • a
3 b-2
•. : ;•'
3 ?'. 3
• =•' 2
" •• '.
:sc ;•
75 ---.I
{ i ' 'l ^
7 ; • ;
t;-:s: ;
71 c ", i
CM - u T r i
T.l,**
SO i',3
ei'iU

sl',:c:
s: »• . ;

cc:e
TE " T i L£
93 =02
1
ARTS 1'.
:
!0. (SWI

13. (BUL

:AI 5.RF;
i
U1. S-jP.Pi
If. 5--ce>

UL S.PFi
IAI S.?F!

Ill S.RF-

I £L 5 J** F -
~ i •• * ' 7 T
1
; I::ITI.
zTR"i>£wM

'.:? G:L

•— • 1 1 (•> M '
t *• — -> -) * •
1
, ---rv 3
. " - ' J r '

. 0,25Et4E 02
0.04
0.05
0.000
0.0
644.000
1.380
10.0CC

lo.oeo

10.COC
1,2

HZ

f,2
HC

HC

HC
OL.STSY (LETTERPRESS)
. C.61.2COE 12
F- t 5-SCt "-.'4SFE*
. O.S22C3E i6
< CAS. U«M'.»LS)
. 0.1*327.= 06
'.i C';iT 1^ G ( LiRGc
. C.7f C "• 2 E - J
ES ;cLc:Tar;tYT!C)
. 0. 77<-;6E ,1
. : . c •-, -. : ; = ^ 7
;. .: '.-"-- ;. Gis s^
• S'>i-i« =»
J • ( f • S 5 C )
. C.27isOE 0^
P 1 1> C ^^» (&CTD
! C. 124745 04

0.0<,
/ GAS.
0.03
LOAOING
0.08
0.05
C CRLOE OIL)
0.04
TANK TRUCKS/
0.03
0.000

34.640
>R CAR
1.220
0.0

0.0

0.0
644.000

294,000

727.000
i.eco

0.444

0.472
10.0CO

15.0CO

22.00C
r.4

f.l

N4
HC

HC

HC
APPLIANCE CQATIrjG)
O.J4
T HI = E
0*0^
T9UES)
0 . 04
3ATI-IG)
0.04
C2ILS
0.04
COtTlN
0.04
C CQATl
0.04
0.04

0.04
*C t S
3.02
JOUCTIO
0.03

0.03
e i|i p T T c
J Ul_ r I 1 t
0.03

0.08
COATING)
0 . 06
0 03
0.08
COATING)
0.08
G)
0.06
^G )
0.03
-0.10

-0.10
0.04
N PLANTS
C.03

0.05
]
o.n

0.065

0*071
0.655
7.780

0.277

5.913
0.224
0,060

0.022
21.490

0,639

O.OBl
0.088

0.0

0.0
0.0
0.0

0.0

0.0
0.0
0.0

0.0
0.0

0.0

0.0
0.0

366.000

644.000
3839 030
393.010

644.000

644. 000
344.000
300.000

300.000
0.0

0.0

373.000
373.000

IE. 880

0.472
337 000
15.570

0.944

0.544
20.850
3.000

0.432
0.0

0.0

2.890
2.890

17. SCO

25 . DC C
25 C C r
17.000

25. ore

25.0CG
17. cor.
30.GCC'

30.0CC
0.0

c.c

9,140
9.140

K5

V5
f.5
12

;.2

\1
(.2
Kl

Hi
Hi

,':6
M
>:2
M2
."4
HC

HC
HC
HC

HC

hC
H'
PP

PB
n'

HC
SO
SO
So
? '•
"i>. jftCTu'it.o PL-'.T
i

K
u F ^ * ^ P '
rr ^ {it*
1
. C..4it*c 06

A
T ^FTTTKr/F*f^T^i-T\.
1 Itl'l^u/rjNIJPI^
. 0.5C7iOE 03
0.05

PB
r i
h* )
0.04
0.05

PC
0.08
151,240

ZAVE
0,009
0.0

PLANTS
0.0
373.000

T
644.000
2.690

V
9.440
10. COO

H
15.0CO
.".2
*-4
PLG
."4
fK
hC
LT
HC
 I
M
OJ

-------
Table B.2. Sunm
;:?£ iJ cS EN SIZE
GEZY IPCK ICUNCBIES (CUPOLA)
50 C0<4 17.00 1.77 0.20 711.4400
SYNTHETIC FOEBZR IND. (ST YF.ENE-BUTZDIENE) (SBR)
2C E01 0.70 0.70 0.12 30.5f.20
INT'JSTFIAI fCILERJ (10-250X10E6 BTU/HF)
10 A03 2.77 0.40 0.40 737.3035
bTCSc COJFFYINi; 6 PROCESSING
40 »01 17. 3C 2.60 2.60 3459.9966
CFFAtlC CIAY flFG
4C E13 IbO.OC 18.30 18.00 259.19°5
KEESCIASS riG. FLANTS (TEXTILE PROCESSING)
4C CCc u. (?0 4.140 4.40 82.6559
F:I:FFJIASS ri1;. SLANTS (WOOL PROCESSING)
4C C1-4 99. 2C 9.30 9.30 1728.5591
ALiTIC AKHYCr-IDE
:C CUt 0.01 0.01 0.0 0.4380
STJFEKE
iC C45 0.04 0.04 0.0 6.0840
AN1.VU FIFE [EFIUCFINJTION
3C tlC IIJ.CO 4.57 C.06 14062.4883
GLASS KAKUf ACTUBIKG INDUSTRY (LEAD GLASS)

-------
                                                           Table B.2. (Contd.)
 NITtATE EEFTILIllR   (AHSONIPH  IITFATI)  PLAITS
30105     12.72    1.64     0.18      708.4014
 GREY IRON FCONDRIES   (BETERBEFATOBT)
5C C03     10.00   10.00     0.10      278.9998
 FCIYESTEB F2SIN
20 E19      7.00    7.00     0.35       57.1199
                     1.00     0.01
                   (OPEN HEARTH)
                    2.20

                    2.09
                    2.67

                    6.80
        0.22

        0.18
        0.03

        1.36
50 FC1      1.00
 STEEl FCCNCFIES
50 CC2     11.00
 CCTTCB GIKKISG
30 E01     12.CO
 ICITERCPLIIKE
2C EC7      3.00
 CBEA
TO E21      6.80
 SIICC fDIl ECILERS
10 A07     20.00    5.00
 EESIICIDEE BANOFACTUBING
55 101     10.10   10.00
 BIIEt FUEI ECILERS   (COAL  C  RFFOSE)
1C ACt     3C.OO    5.00    0.30      917.9988
 GKFSUe BANUFACTOEIKG PLANTS   (CHLCINER)
«0 C11     90.00    1.51    0.10     4633.1SM4
 SCCICH CAFECNATE PLANT   (NATURAL  PROCESS)
20 C24     90.00    1.16    0.45    22534.7266
 ERT8ILIC ASHYDSIDE PLANTS  (0-XYLENE PBCCESS)
                      (OIL 6  REFDSE)
                             0. 20
                             0. 10
                                       19.3000
445.4998

 81.6000
118.1698

191.2159
                                      599.9988

                                      209.5749
                             2. HO     7398.9111
                            (ZINC  niNE  6  CRUSHING)
                             0.70       91.5000

                                       95.1515
                                       91.5000
20 C26    210.00   21.00
 BEIALLIC KIKEBALS HIDING
15 F01      7.00    7.00
 EE!S FF.OCES51NG  PLANTS
30 DOS      5.45    2.09
 EETA1IC B1NEEALS DINING  (LEAD  tllHIXG)
11 EC1      7.00    7.00     0.70
 BONICIEA1 INCINERATION <  50I/D
10 E03     30.00    6.17     0.30       52.1999
 GLASS BANUfACIORING INDUSTRY   (SODA-LIME GLASS)
10 T07      2.21    1.89     0.02       52.1185
 EETAUC SIKEEALS MINING  (FERROALLOY)
12 101     15.1C   15.10     0.60      190.2599
 BE7ALIIC flDiEfALS HINING   (ALUMINUM)
16 £01     11.10   11.10     0.11      119.8199
 FOTASH
2C A16      9.17    9.17     0.66     2207.1556
 fEGEIAELE CIL DFG.
30 D11     63.00    S.63     0.63     1036.6113
 HI-ASU SIFIERIHS  (SIHTEFING)
10 C17    110.00    1.00     1.10    84666.9375
 fEIAHIC tlNEFALS BINING   (IBCN  ODE)
11 101      0.70
 Still FOUNCBIES
50 001     13.00
 Asscmoa SULFATB
3C D2C     20.00
 1UISKE1
30 DOf      0.04
                    0.70     0.50
                   (ELECTRIC  ABC)
                             0.26

                             1.00
2.20

2.0*
                    0.03
                             0.0
                 683.5491

                 175.4999
                                     1234.7981

                                      214.9697
 GBEI IBCK FCUNDBIES   (ELECTRIC  ARC)
50 CC2      7.00    7.00     0.07     292.9495
 FLTVCCC eiliOEACHlRING PLAIT
60 E01      0.13    0.0      0.0      9083.1570
 BETAIIC BltERALS BIHINS  (OEANIBUN)
«7 101
           11.00   11.00
                             0.11
                                     3021.9993
6.59
2.51
2.38
11.86
6.23
14.13
2.86
14.77
9.37
5.39
9.56
11.31
4.93
6.96
28.10
8.55
29.17
13.59
17.21
25.35
16.98
25.09
29.38
20.07
94. 15
18.67
13.71
21.64
20.12
58.75
46.77
7
5
6
13
10
15
8
19
13
10
13
16
16
16
31
16
32
19
23
29
24
33
37
34
121
32
41
34
47
92
93
.91
.93
.17
.28
.77
.97
.89
.85
.69
.61
.96
.85
.46
.48
.47
.62
.96
.84
.06
.15
.63
.72
.31
.29
.16
.30
.08
.63
.17
.12
.53
1
1
1
8
5
9
2
12
6
'
6
8
8
6
21
6
22
8
11
17
12
21
22
19
106
15
23
16
14
50
34
.09
.85
.55
.58
.11
.96
.85
.24
.04
.04
.32
.57
.05
.66
.35
.64
.20
.82
.66
.76
.35
.02
.33
. 18
.12
.67
.98
.27
.81
.08
.27
3800.
4100.
1600.
1700.
5700.
6000.
6000.
7600.
7600.
7600.
7600.
8300.
8400.
9800.
10100.
10200.
10300.
11000.
1 1400.
11400.
12300.
12700.
15000.
15100.
15300.
16600.
17100.
18400.
32700.
42000.
59300.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1560E
8520E
00 2
OC 1
7990E-01 2
6750!-
01 2
69BOE-01 3
1060E
1530E
50602-
2620E,
3160F
1890E
33502-
2040E
1240E
63BO!
1910E
8650E
00 2
00 2
02 3
TO 2
01 1
00 2
0' 2
00 2
00 2
03 1
00 2
00 1
1390E-01 7
1350E-01 2
1290E
13708
2850E
2060E
1010E
6260E
18301-
1980E
7220E
895CE
1250E
2770E
01 1
01 1
01 1
00 2
01 1
01 1
01 3
00 2
00 1
00 1
01 1
02 1
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
17101-01
8520E-02
1003E-02
6750E-03
6980E-02
24UOE-01
172GE-02
1010E-12
1050E-01
3HDE-01
1120£-01
2220E-32
79005-11
1240E-31
6380E 02
24705-01
36502-0'
6430E-03
1570E-33
5113E-31
•miE-01
1930E 00
1513E-01
2790E 33
U170E 01
2160E-32
9690E-01
5690E-01
9953E-02
4050E 30
2770B 00
2
3
3
3
3
2
3
1
2
2
2
1
2
2
1
2
2
3
3
2
2
2
2
2
1
3
2
2
3
2
2

-------
                                                           Table B.2.  (Contd.)
 ET-FFCtOCi Cf.r.l
EC A1C      5.03
                  C7EN
                     5. DO
                             0.21
                                     167J.999J
         HISCfALS  fll.'.'IN-; (CCPPF.?)
   EC1       7.1C     7.13
 IHfJiTBIAl  IhCJIERATICN
1 1 6C4       6.U7     6.U7
 SASC t GFAVEI  PPOCESS
«0 »02       1.90     1.90
 FtiCEFIUTE  ECCK  (RIKIUS)
uu TCI      12.00    12.00
                             0.07    3017.UV93
                           (INDU3TEIAL-CCHMSPCIAI)
                             0.06      20.8981
                             0. U2
                                      151.9999
                             6.00   24863.SSUtt
 leit.jO    202.73     135.71

  90.83    15«.m      62.85

  62.Ot)    176.27      39.26

 867.92    867.92     529.89

1396.32   1578.70    1063.43
 67300.   0.9050S 00  1

 91600.   0.2760E 02  1

137000.   0.1010S 01  1

338COO.   0.6410E 00  1

515000.   0.1550E 0
-------
                                                     Table  B.2.  (Contd.)
1< SQ
 "
: CD - t o t s EN .5 1 1 f
fHTHALIC ANHYDRIDE PLANTS (G-XYIENE PROCESS)
iO C26 9.40 9.40 9.41 21)9.7915
ISTUSTSIAL IKCISEBATICS (I NO UST SI A L-C0.11EPCIAL)
11 E04 2.38 2.36 2.18 7.6H74
ETKTIF.GE (HYCGL DEfilVED PROH 8THYLFNE OXIDE
20 C35 0.05 0.05 0.0 3.0000
KKErAl fcCCL BrC.
ItO D13 0.02 0.02 0.0 0.6371
1 .'.

2.73

22.64

0.01

O.OB
TS

6.

64.

0.

0.

46

84

04

09
TN

6.46

64.84

0.07

0.05
TS-TN

0.

0.

20.

40.
X/AV S

0.1990E-01

0.2700E 00

0. 1960E-02

0.7300E-03
X

2

2

3

3


0.

0.

0.

0.
X/AV N

10932-01

2700E 00

1573E-33

7300E-33
X

2

2

3

3









STATIOKAEY IKTEPNAL CCnBUSIIOU ENGINES (SPARK IGNITION)
10 CC1 0.02 0.02 0. 3 0.1682
GLASS BAStJEACTURinG INDUSTRY (LEAD CLASS)
40 11C. 2.68 2.68 0.09 6.150£
STA1ICSEBY PIPEt.IKL CG1PP F.r.SOP F.SGINE2
11 C01 5.i7 5.i7 5.00 9.4660
B1XEC FUEl EClLEfS (OIL C I.EFUEE)
1C A07 1.30 1.30 0.01 38.9999
STATICfcAfY IhlERNAL CCIB'JSTION ENGINES (DIESEL 6 DUAL
10 C02 16.80 16.60 16.00 11.2056
flEFfGLAES HfJ. PLANTS (KOCl PROCESSING)
4C L14 4.49 4.49 0.0 76.2382
fUKICIEAL 1SCIKE6A7ICM < 50T/E
1C E')3 2.50 2.r,D 0.33 4.3750
?;X£: FUEL SCILEBS (COAL £ tISrUGE)
1C AC£ 14. OC 14.00 0.14 419.9993
CKI.-lCtL «CCi fOlFIKG IND. (ACID SULFITS)
80 A04 61.00 61.00 3.10 1779.4900
GLAS^ tAiruFAClKaiNG INDUSTRY (SOD A-LIBE GLASS)
UO 107 4.02 4.02 0.12 94.8585
tY-rr-cnuci CCKE OVEN
5C A1C 5.75 5.75 4.02 1925.0989
Z.IELCSIYF. INC (LCW EXFLGSIVES) •
2C C1c 69.40 63.40 5.r;5 298.9539
fj£i CCNVE:-E:OK H ETU COAL GASI?ICATION
21 C20 6.42 6.42 1.56 16980.7188
EltTIESE
2C C31 4.73 4.73 0.01 1066.6143
IH£U£TFIAL ECILERS (10-250X10E6 BTU/HP)
1C A05 1.90 1.53 1.50 505.7317
CHtHICAL «CCD ISO. (NSSC)
EC A03 61.00 61.00 3.10 2333.7366
EZF-LCSIVE IKO (HISH EXPLOSIVE.")
20 C17 75.00 75.00 6.00 1143.5315
0.30

0.76

13. 16

2. 44
FUEL)
99.97

2.81

5.25

26.25

76.09

36.60

211.95

23.33

28.47

38.79

7208.59

168.214

89.64
0.

1 .

22.

3.

127.

5.

7.

38.

76.

49.

233.

57.

85.

79.

8283.

248.

220.
56

06

77

56

97

78

66

32

09

04

14

29

41

94

80

99

13
0.24

0.54

22.14

1.50

125.06

1.97

3.26

16.24

53.70

25.25

208.91

16.39

42.31

27.12

8216.07

122.84

62.97
320.

520.

630.

2100.

2900.

3600.

4400.

22100.

22400.

23800.

24200.

"0900.

143100.

52600.

67700.

126000.

157000.
0.1.»40E-04

0.5240E-03

0.1700E-02

0.2800E-01

0.2120E-01

0.1550E 03

0.2570E-02

0.252CE 00

0.7170E 01

0.1610B-01

0.4280E 00

1.5750E 00

0.4990E 00

0.4040E 00

O.I4900E-01

0.9410S 01

1.2200E 01
3

3

3

2

2

2

3

2

1

2

2

1

2

2

2

1

1
0.

0.

0.

0.

0.

3.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.
1443E-04

1570E-04

1623?-32

2160E-03

2020F-01

1730E-03

3080E-14

2520E-32

3650E 30

4820E-33

2993E 30

4603E-01

1213E 00

1270E-02

4833E-31

47SOS 33

1760E 00
3

3

1

3

2

3

3

3

2

3

2

2

2

3

2

2

2






















Cd
1
h-1
^J









-------
                                                            Table K.2.  (Contd.)
cc:s         cu       ;s
 SYNTHETIC S3EBEB  IND.
2C D01       4.20     ».20
 ACETIC ACID   (BOTAHE)
20 A13     14.70    14.70
 INCUST6IAL  INCISERATIC!!
11 E04       2.88     2.86
 TEITILE  SFG
9C FC2     15.80     4.74
 FnTH.UIC ASHYCBIOK PLANTS
2C C25     10.00    10.00
 ACETCHE  (CYANCHYDFIN)
2C C4J       2.00     2.00
                             EN          SIZE
                         (STYBEME-BOTZDIEN2) (SBB)
                             3.13
                                       183.3719
                             0.15    1349.4595
                           (INDOSTBIAL-COS.IEBCIAL)
                             2.88       9.302U
               (HEAT  SETTING/FINISHING)
                             4.74       61.8253
                             (NAPTHAIENE  PROCESS)
                             0.10      308.2891
                             0.02
                                       119.9999
 B'JSICIEAl  IKCINE6ATICN. < 50T/C
10
 INCUSTFIAl
                     0.22
             INCINERATION
1» EC4       C.60     0.60
 Ei-'lYFBCPlYESE
2C £37      23.60     0.59
 AIIYI CHICFIDE
20 C46      20.00    20.00
  0.01       0.3850
(IND OBGANIC LIQUID  HASTE  INC)
  0. 0        2. 8944
                             0. 24
                             0.20
 OBEA-35LAB1NE
2G Ell       7.50     5.76    0.07
 «:XSC  fUEL  ECILEBS  (OIL 6 BEf'JSE)
1C A07       C.91     0.91    0.28
 ACET11E  EAYCN
20 B13       7.00     7.00    0.15
                                       929.6023
                                      459.9998
                                       476.9993
                                        27.3000
                                       198.5549
 FIEE6GIASS  SIS.  PLAHTS  (VOCL FBOCESSING)
40 cm
            13.05
                     3.39
                             2. 10
                                      227.3962
 FHIHAtIC  AI.HYD5IDE PLAHTS (0-IYLEHE PROCESS)
2C C.6       2. JO     2.40    0.02
 FHENC'.IC  EESISS
20 E1C       7.50     5.76    0.07
 SUE:  fUEl  ECILEBS
10 AC6       C.90     0.90
 ECIY-BSIAtlENE
                                        73.9694
                                       590.9993
                      (COAL 6 REPOSE)
                             0.0
20 C02
 SHIS5ET
30 CCS
             9.00
             0.0
 ACIICSI  (CL'SESE)
2C C4 1
                     9.00
                     0.0

                     7.21
             7.21
 HTKYI CHICFCFOEH
20 C41      36.00    36.00
 ACETIC ACID   (SETHANOL)
20 A12      15.00    15.00
 STTBESE
20 Cu5       1.64     1.64
 AES-SAS RESIN  PLAHT
2C E12       7.50     5.76
 ACITCSE   (I£CFFCPA»OL)
20 C42      13.00    13.00
 FKfKCL FLAMS
20 C33       4.48     4.48
 FClYSTYBEUt
2C BC5      11.70
                             0.09
                             0.0
                             0.07

                             0.36
                             0. 15
                             0.02
                             0.07
                             0. 13
                             0.04

                             0. 12
                                        27.0000
                                       153. 13c.O

                                        13.6082
           201.5914

           250.5598
                                       569.9993
                                       249.4436
                                       174.3524
                                       353.5994
           227.0351

           209.1959
                     4.29
 FLYHCCC  HANOIACTOBING PLANT
8C BC1       C.O      0.0     0.0        21.3324
 CAFEClt TEIBACHCBIDE  (CA8EON EISULFIDE)
2C C4C      32.00   32.00    0.32     1250.5591
T4
2.94
2.70
27.63
2.41
0.90
0.30
0.46
0.41
0.63
1.10
1.83
1.71
1.59
2.12
0.70
2.27
1.69
1.69
2.14
2.28
2.53
1.66
2.71
1.79
3.13
2.73
4.65
4.55
4.72
TS
2.
2.
78.
5.
0.
0.
0.
0.
1 .
1.
2.
2.
2.
4.
1.
3.
2.
2.
3.
4.
4.
4.
4.
4.
5.
5.
5.
7.
a.
94
70
46
24
90
54
67
95
97
70
71
49
03
37
65
37
46
76
43
09
53
31
63
81
60
62
56
14
46
TN
2
2
73
5
0
0
0
0
1
0
1
1
0
3
0
2
1
1
1
1
1
1
1
1
2
1
1
2
3
.94
.70
.46
.24
.72
.21
.30
.27
.15
.89
.75
.50
.93
.27
.57
.18
.03
. 15
.50
.62
.80
.16
.66
.74
.22
.95
.26
.52
.36
TS-TN
0.
0.
0.
0.
leo.
330.
370.
680.
810.
820.
960.
1000.
1100.
1 100.
1100.
1200.
1400.
1600.
1900.
2500.
2700.
3000.
3000.
3100.
3403.
3700.
4300.
4600.
5100.
X/AV 5
3. 1503E
0.9370E
0.6040E
0. 1550E
0.1210E
0. 1960E
00
01
00
-01
00
01
0.6330E-03
X
2
1
1
2
2
1
3
0.21902-02 1
0.4531"
0.9810E
3.98202
0.6410E
0.5390E
0.2190E
9.16f 02
0.1221E
0.45208
0. 1 060E
3.95P02
0.32912
0.53502
0.3910E
-01
00
00
-01
00
00
-11
01
-31
01
-01
01
00
00
0.4520E-01
0.3590E
0.5770E
0. 35?OE
0. 1460E
0.12',OE
0.2670E
00
01
01
00
03
01
2
1
1
2
1
2
2
1
2
1
2
1
1
2
2
2
1
1
2
2
1

0
0
0
0
0
0
0
0
1
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X/AV N
. 1110E 00
.9370E-12
.6040E 01
.15SOE-1'
. 1^102-12
. 1960E-11
.28902-14
. 219DE-12
. 1910E-11
.9B10B-12
. 12SOE-01
.201 3E-11
.2701E-01
. 135DE 01
. 13812-0?
. 15902-1'
.'452 IE- 11
.10632-01
. 1913E-12
. 3/93E-11
. 5350E-02
. 316DE-12
. 4520E-13
.46702-32
.5770E-11
. 3523E-01
.4180E-02
. 1250E 00
.26712-01
X
2
3
1
2
3
2
3
3
2
3
2
2 w
I
2 GO
2
3
2
2
2
3
2
3
3
3
3
2
2
1
2
2

-------
Table B.2. (Contd.)
ACETIC ACID (ACETALDEHTDE)
20 111 19.62 19.62 0.20 525.8152
CAFEO TIIBACHLCRIDE (PROPANE)
2C C39 32.00 32.00 0.32 1382.3987
INDUSTRIAL ECILESS (10-25CX10E6 BTa/HR)
10 A33 0.0 0.0 0.0 0.7320
AHKOSIA FLINTS
21 C13 C.90 0.90 0.0 68.3086
fAIEIC ANtYCRICE
20 Ci3 262.00 147.00 2.62 2095.9988
SYNTHETIC 5IEEE INDUSTRY (NYION)
2C EOS 7. CO 7.00 0.35 111.9999
ACETIC ASHYCEIDE
2C C49 17. 60 17.80 0.18 779.6392
ETHYL EEKZEXE
20 C33 5.00 5.00 0.05 1539.9993
EOlYETbYLESE (LC! DENSITY)
2C E04 24. 2C 4.20 0.24 1521.1497
CAFBCN TEIFJCHLCBICE (METHANE)
20 C33 36.00 36.00 0.36 930.2388
EPISIISG IKK PLANTS
2C Cl? 120. CC 48.00 4.80 42.5292
ADIF1C ACIC PLANTS
20 A04 42.70 42.70 0.04 2074.7913
P.T.H. ID. (BULK GAS. TBBHINALS) LOADING TANK TRUCKS/BR
60 F04 3.36 0.07 0.0 185.1043
SYTHETIC SCEEEF. (NECPRENE)
20 D07 120.00 120.00 1.20 3635.3965
ETHYLEKE
20 C31 1.49 1.49 0.33 335.9944
ETfiYIESE GLYCOL DERIVED PROD ETHYLENE OXIDE
20 C35 34.90 34.90 0.35 2093.9976
CYCLCSEXASE
2C A14 20.00 20.00 0.20 1120.4983
CHASCCAL ELASTS
20 CU 464.00 484.00 4.80 375.4021
BETHJNCL E1ANTS
20 C32 10.00 10.00 0.10 1255.9993
fCLYETBYlEliE (HIGH DENSITY)
20 EC3 59.20 7.40 0.59 2693.5979
VAFNISH
20 C15 67.90 34.90 0.68 191.3251
INrS£TfcIAI SURFACE COATING (RAGNET WISE COATING)
61 EOj 2.32 2.32 0.06 67.9156
ITKYLENE C1IDE PLANTS (OXYGEN OXIDATION PFOCESS)
22 C11 43.00 43.03 0.43' 1807.8362
E1HYIESE-FFCPYLENE
2C C06 72.00 72.00 0.72 1497.5994
TEEEfHTBAlIC ACIC PLANTS
20 C27 20.77 20.77 0.21 1299.3689
VINYL ACETATE (ETHYLENE)
2C C37 43.03 43.03 0.43 2871.1741
(ETHYL BETHAC?TLATE PLANTS
20 C34 112.80 112.80 1.13 3347.^014
ISCFYIENE (CXICE)
2C C36 59. 2C 59.20 0.59 4567.6672
CICICHEXASCL/CYCLCHEJANONE
2C C4S ICO. 68 100.68 1.01 3443.2522
IOIL CCSVEFSICN H ETO COAL GASIFICATION
21 C20 5.17 5.17 0.68 15285.0859

3.57

5.24

12.96

8.80

9.73

5.15

8.97

7.70

8.39

9.45

10.86

17.59
CAR
10.17

13.30

12.22

20.66

12.32

34.97

18.30

9.21

21.80

14.07

17.77

9.68

14.25

15.95

25.31

34.53

34.71

22.93

7

9

14

12

15

12

16

15

18

16

17

26

14

21

25

29

24

43

29

28

28

29

26

30

33

37

U5

61

62

68

.71

.38

.89

.29

.04

.09

.07

. 15

.46

.92

.68

.04

.29

.66

.18

. 14

.24

.71

.82

.36

.27

.81

.30

.05

.73

.75

. 33

.63

. 17

.78

2.20

3.72

8.68

5.41

6.99

3.30

6.38

5.49

8.49

6.72

7.14

14 .78

2.66

9.04

12.24

14.61

8.78

27.09

12.98

10. 7U

7.61

8.77

3.78

6.72

8. 10

11.43

17.oo

24.54

24.68

78.96

5500.

5700.

6200.

6930.

8003.

8800.

9700.

9700.

10000.

10200.

10500.

11300.

11600.

12600.

12900.

14503.

15530.

16600.

16800.

17630.

20700.

21030.

22503,

23303.

25633.

26333.

27333.

37300.

37530.

39800.

0.3650E

0.2950E

0.24132-


00

01

33

8.3420E-01

0.3640E

0. 3040?

3. 171 OS

0.3290E

0.5150E

0.1980E

0.5540E-

0.7520E

0.202.UE

3.25202

3.4 1532

3.4470E

3. 12502

0.559CP

0.2680E

0.6570E

3.7373E

3.35402

0.77632

0. 10U02

3.5050E

3.1010'

0.714?E

0.9750E

3.3243E

0. 1 310E

01

30

02

31

30

31

01

03

03

02

03

01

32

01

01

00

03

oc

0 1

02

00

32

01

01

02

31

2

1

3

2

1

2

1

1

1

1

2

1

2

1

2

1

1

1

1

1

1

2

1

1

1

1

1

1

1

1

0.

0.

3.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

3.

3.

0.

0.

0.

0.

0.

0.

0.

0.

3.

0.

0.

0.

3650E-02

29505-01

24132-03

34203-01

64902-01

15202-01

171 3E 30

3293E-01

2940E-0 1

19902-01

55432-02

7573E-33

13232-01

25232 00

92032-31

4473E-01

12^0E 00

55332-01

26302-01

52402-0'

1u 302-0 1

99302-02

77832-01

1343E 30

5130E-32

13102 03

7143E-31

9753E-01

32432 00

1733E 00

3

2

3

2

2

7

2

2

2

2

3

3

2

2

2

2

2

2

2

2

2

3

?

2

3

2

2

2

2

2

-------
                                                            Table B.2.  (Contd.)
G84F8IC  ASTS IHDOSTBI   (FLMOGBAPHT)
6C BOS 13CO.OO 1300.00 26.00 217.1036
VEGETAELI CIL HfG.
30 D11 36.00 37.90 15.20 625.2568
1CRIIIC »CID
2C CU7 173.77 173.77 1.74 5560.6289
GRAfHIC AFIS INDUSTRY (LETTERPRESS)
6C EC7 lOC.OC 700.00 35.00 53.0560
FCF.rjLCEHYCE PLANTS
20 C08 6.42 6.142 0.06 144.4499

tC F03 0.07 0.07 0.0 986.3728
INDUSIFIAL SURFACE COATING (BETAL COILS COATING)
63 E02 6.48 5.34 0.32 7363.0508
ETHYIENE CICI'LCSIDE FUNTS (CXYCHLCR I NATION PROCESS)
ZC CC7 53.90 19.60 C.5U 5991.46.09
EESr. FECCESSIS^ PLAS1S
3C COS 10.00 10.90 0.11 190.3090
I!CUSTFIA1 SUFFICE COATING (LARGE APPLIANCE COATING)
61 E02 6.^8 5.34 0.06 171.0^02
CARECH ELiCK (PUSNACE PROCESS)
iC CC3 1CO.OO 100. OJ 0.10 2582.9976
ISL'.STFIAI SL'RFACS CCATING (AUTOMOBILES)
6: =02 6.10 5.JU 0.31 18U5.7063
EY-fECCUCl CCKE CVEN
5C A1C 5.98 5.98 0.04 2002.1028
EIIF-IHIL TEBEPHTHALATE PLANTS
2C CTB 37.00 37.00 0.37 53U6.4922
GFAfBIC AFTS INCOSTSI (GSAVUFE)
60 5C4 IjCO.OO 1300.00 65.00 321.3235
PLASTICS A!.C EESINS (AC3TLIC)
20 E17 2UO.OO 210.00 2.UO 219.2399
ACBYICMTBIIE PLANTS
2C C06 1U2.00 91.00 7.92 17U7.1250
STJTICNAfY I.MESHAL CCMBUSTION ENGI NES (DIESEL 6 DUAL
1C CO; 31.30 31.30 0.0 20.8771
INCUSTflSl SUSFACE COATING (FABRIC COATING)
6U EO: 6.U8 5.34 0.26 594.3252
ETHTLiM C1UE PLANTS (AIR OXIDATION PROCESS)
21 C11 ltc.00 1b8.00 1.68 7063.1758
CF I CLEANING
6C E01 SCc.70 258.00 24.40 70.1250
ISCU5THAI SURFACE COJTIHG (TAPER COATING)
63 3J2 6.48 5.34 0.26 1570c-.fr4C6
38.81

129.01

41. 70

44.91

24.70

61.78

34.07

30.36

44.59

42.72

96.76

103.51

220.13

46.39

89.30

42.80

54.16
FUEL)
186.26

113.63

140.31

402.48

442.87
63.22

163.84

74.69

73.20

60.66

92.33

72.20

71 .88

87.71

90.52

123.86

137.76

242.47

109.82

145.16

121.51

111.26

238.41

210.81

207.70

440.20

938.56
22.18

121.35

29.65

27.14

11.05

45.56

22.90

18.22

27.36

25.58

53.29

61.55

159.29

26.36

53.93

21.52

39.61

121.79

71.42

29.86

223.84

290.06
11000.

12500.

45000.

16100.

16600.

46800.

49300.

53700.

60300.

64900.

70600.

73200.

83200.

83500.

91500.

97000.

102000.

111000.

166000.

178000.

216000.

649000.
0.1060E

0.1220!

T. 1 190E

0.2270E

0.8050B

0.6190E

0.1880E

0. 1720B

0. 1310E

0.1 160E

0.7680E

01

01

02

00

00

02

01

01

01

00

00

0.2900E-01

0. 1450E

0.2080E

0.1970E

0.1110E

0.6310E

0.4710E

0.5380E

0.5970E

0. 1450!

0.4020E

01

01

01

00

00

-01

00

01

00

02
1

1

1

2

1

1

1

1

0

2

1

2

1

1

1

2

1

2

1

1

2

1
0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.
21205-01

4830E 00

1 190E 00

1 140E-0 1

8030E-02

1200E 01

1130! DO

4750Z-11

1340E-01

1HOE-02

7680E-03

1681EO2

1020E-01

20905-01

9850E-01

4110EO2

5500E-01

4710E-01

2620E-01

5970E-01

1370E-01

1960E 01
2

2

2

2

1

1

2

2

2

3

3

3

2

2

2

3

2

2

2

2

2

1


















w
1
ho
o






















STATIONARY I!,TESNAL CC.1BUSTIO 1- ENGINES (KPAFK IGNITION)
10 CC1 Sb.CO 56.00 0.0 3T6.70/4
ISCUSIFIAL SURFACE COATING (CAN COATING)
62 E03 4.75 4. '9 O.O1!- 15279. '289
668.93

5?6.6U
1250.89

1137.27
535.11

319.87
716000.

817000.
0.7910E

D. 1420°
-01

02
2

1
0.

0.
791 3E-01

1433E 00
2

2




-------
                                                           Table B.2. (Contd.)
 STEEL rCONESIES
50 DC2       C.01
 FIEESGIASS  PFG.
1C ECS     22.60
 STEEL FCDNCSIES
50 C01       0.20
                     CS       EN         SIZE

                   (OPEN HEABTH)
                     0.01     0.01        0.1050
                  PLANTS  (TEXTILE PROCESSING)
                    22.60    22.60      389.1709
                   (ELECTBIC ASC)
                     0.20     0.20        2.7000
 ElfcllENE  G1YCOL DERIVED FROM  ETHYLEHE OXIDE
2C C3:
 STYFJNE
20 cie
                     0.13
             0.05     0.05
  Fl-FFCCt'Cl CCKE CVEN
5C  A1C       0.06    0.06
  fISEFAl  KCCL BFG.
1C T13
 NITFA7E
3C 405
 FCJASH
2 C 513
 f:t: = jLj
1C C 1 4
 CEFASIC
1C DIG
             0. 16
                     0. 16
                              0. 01
                              0.0
                              0.05
                              0. 08
                                         7.8000
                                         7. 6050
                                         5.0971
          FERTILIZES   (AM.10NIU.1 NITRATE) PLANTS
   C. 13

   0.36

   2.42
CLAY .ire
   0.40
                     0.13
                              0.0
                                         6.9615
   0.36     0.02       83.9159
PLANTS   (BOOL  PBOCESSIHG)
   2.42     1.57       42.1681
                     0.10
                              0.20
                                         0.5760
 GLASS  .1ASUEACTURING  INDUSTRY  (LEAD GLASS)
1C  CIS       7.65    7.65     0.38      17.S567
 CIXED  FUEL £CILERS   (OIL  5  BEFUSE)
1C  AD7      31.5C   15.00    13.80    1031.9983
 A:IF:C  ACIC FI.ASTS
2C  A?-*      53.60   12.00     1.61    2601.1219
 CUMCItAL INCINERATION <  50I/D
10  E02       3.00    3.DO     1.05       5.2500
 CIAS;  SANUFAC1USING  INDUSTRY  (SODA-LIflF,  GLASS)
10  DOT       7.1.1    2.01     0.3C-     16B.4flOO
 ISCU5TrIAl IKCISERATIOS   (ItiD ORGANIC LIQUID  HASTE INC)
II  EC4      lc,.00   15.00     0.15      72.3600
 £IELCSI»E IH  (LCS EXPLOSIVES)
20  CIS      30.00   30.00     2.10     129.230°
 ISCL£TF.IA1 I^INSPATICN   (I S30STRI AL-COMK ESCI AL)
1 1  EC J       1.3""    1 .?7     0.65       6.0101
 FClYEIKJLf NE (!!IGH DENSITY)
20  EOJ      22.50   12.50    11.25 -   102j.7lt!8
 flXEt  fUEL tCILtBS   (COAL 6 REFUSE)
10  ACc      15.00   J5.00     5.25     119.9993
 ISfJSISIIl ECIiEES   (10-250X10E6 BTO/HB)
10  A03       0.64    O.J1     0.36     17Q.3519
 SIATICNERY flFELISE  CC-1PBESSOP ENGINES
11  C01      tO.50   60.50    15.H     100.8999
 £:A:IC^AFY IMESSAL  ccHBristios ENGINESJDIESEL  s  DUAL FUEL)
10  C02     179.00   179.00   12J.OO     119.3929
 EltlCSIVl :»C  (KIOH  EXPLOSIVES)
2C  C17     128.00   128.00     6.10    1951.6277
 STAIIOSASI INTEBNAL  CO»UUSTI'JN ENGINES  (5PAF-K  IGNITION)
 10  C01
           230.00  230.00   131.00
                                      1547.1724
T4
0.03
1.37
1.70
0.08
0.08
2. 10
0.61
0.50
0.95
1.51
2. 11
2.21
23.12
1.91
6.30
18.57
)
10. 37
10.08
17.91
28.01
65.62
1936.13
151.10
UEL)
1065. 19
152.99
)
2717.17
TS
0.
3.
2.
0.
a.
4. •
0.
0.
1 .
3.
3.
3.
• 10F
.53002
.1 Oi.OS
-02
-02
-02
-01
-01
-02
-02
00
-01
-02
-02
-01
-01
00
00
00
-01
-01
00
00
00
X
3
1
3
3
3
3
3
3
2
2
3
3
2
2
3
3
2
2
2
1
1
2
2
2
1
2
X/tV N
0. 19002-03
0.6170S 00
0. 99-30S-03
0. 1040E-03
0. 34 10E-04
0. 1CC,;»-02
0. 231 OS- 02
0. 7B50E-04
0. 2170E-02
0. 434DE-0 1
0. 7UL-)E-01
0. 5370E-01
0 . 1 9 1 0 S 00
0.4740E-02
0. 863TE-03
0. llf.OE-02
0. 27105-03
0. 2450E-02
0.5900E-01
0. 3120E 01
0. 75502-01
0. 935-JE-02
t. 19102-02
0. 12aOB 00
0.2650E-01
0.6060E-01
V
3
i
3
3
3
3
3
3
3
2
3
1
2
3
3
3
3
3
2
2
1.
3
3
2
2
2
                                                                                                                                                      I
                                                                                                                                                     ho

-------
Table B.2.  (Contd.)
PCL'-UTA^T IS CO
rcn= £u ' E5 EN SUE TA
GRET IRON FCl'NCHIES (CUPOLA)
50 COH 250.00 250.00 8.00 10462.4922 1562.10
ET-PFOLCC1 CCKI CVEN
5C A10 2.67 2.67 2.67 893.91H8
fJEERClASS HFG. PLANTS (TEXTILE PROCESSING)
1C CC6 2.03 2.03 2.03 31.9566
ACfTIC »CID (BUTANE)
20 J1: u.uo u.10 0.04 103.9197
INIUSTFIAL IKCINESATICN (INDUSTRIAL-COMMERCIAL)
11 ECU 6.17 8.17 8.17 27.3581
PUUCIfAL INCINERATION < 50T/D
10 E03 3?. 00 (5.00 35.00 61.2199
SIXEC fUEI ECILEBS (OIL 6 Fh.F'JSE)
1C ACT 17.00 17.00 17.00 509.9993
KIXEE F"EL ELILEP5 (COAL G REFUSE)
1C >.:« 16.00 111.00 11). 00 539.9993
F*bE:3lA5S rtG. PLANTS (WOCL PROCESSING)
-1C tin j.2b 2.26 2.24 39.3804
INCLSTF.IAL INCINERATION (IND ORGANIC LIQUID HASTE INC)
1i ECJ 0.05 0.05 0.0 0.2112
SHESCL PLANTS
20 C33 C.18 0.148 0.0 21. 3252
ALI7IC ACir (ACtTALDEHYDE)
2C A11 H.Oa 1.01 0.04 108.2719
Ihin'MC AKWYE'RICE PLANTS (H APTHALENE PROCESS)
20 C.f ICC. 00 1JD.GO 1.00 3082.8913
ElKYLEhE ClCliLCSIDE PLANTS (OX ICHLORI NATION PROCESS)
iC CC7 1.30 1.30 0.01 111.5066
ACBYLIC ACID
2C C17 21.00 21.00 0.21 767.9993
chAFccAL E:AN:S
2C CH 3^0.00 320.00 3.20 21B.199(,
ACETIC ANhYCnlDE
2C C15 21.90 21.93 0.22 959.2188
tETBAHCL EIAN1S
20 C32 10. JO 10.00 0.10 1255.9993
CYCLCKEXASE
2C All 25.00 25.00 0.25 1100.6228
ADIPIC ACIC fLANIS
20 A01 US. 30 115.00 0.11 5587.8138
CIClC'.ilXANCL/CYCLCHIXASOSE
20 C4? 111.47 111.47 1.11 3312.2698
STAIICNEFT riPELISE CCBPHESSOR ENGINES
11 C01 2S.35 29.35 9.61 52.8299
INDUSTRIAL fCILERS (10-250X10E6 BTH/HR)
10 AO 2 0.03 0.03 0.0 8.57C8
CALEIC ANfilTFIDE
20 C23 1560.00 1310.00 15.60 '12179.9922
20 COS 1:.b7 15.67 0.16 352.5745
fi:TH»L!C AN!-YDEIi>2 PLANTS (0-XYIEHE PROCESS)
2C C26 3C1.00 301.00 3.01 9279. 50i9
BINEEAl kCCL MAS OFACTURI NO
40 D13 94.40 94.40 1.72 3007. 29B1
4CFIICSIT5IIE PLANTS
20 C06 159.00 159.00 8.00 5315.4114

98.42

0.39

0.81

81.27

73.50

31.87

33.75

1.11

0.03

0.29

0.74

9.01

2.01

5.76

23. 12

11.04

18.30

15. 40

47.37

38.43

73.30

151.71

89. 14
60.29

87. J2

357.62

95.16
TS
1281. 17

108.26

0.75

0.81

230.76

107.31

16.54

49.27

2.91

0.08

0.60

1.59

9.01

4.77

10.32

28.90

19.77

29.82

30.30

70. 12

68.83

125.81

174.34

137.1 1
14R.05

206.71

429.15

24f .82
TN
1553.

108.

0.

0.

230.

107.

46.

49.

2.

0.

0.

0.

7.

1.

4.

17.

7.

12.

10.

39.

27.

81.

101.

61.
34.

71.

262.

62.
40

26

75

81

76

11

54

27

89

02

21

45

22

14

09

91

85

91

98

80

32

0'

65

27
31

22

68

12
TS-TN

0.

0.

0.

0.

0.

0.

0.

20.

60.

390.

1100.

1800.

3600.

6230.

1 1000.

1 1900.

16800.

19300.

30300.

41500.

45800.

72700.

73800.
11UOOO.

135000.

16f.OOO.

185000.
X/AV S
0.93402-01

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.
0.

0.

0.

0.

9770E-02

1760E-02

3840E-T2

2430E-01

1380E-02

1610E-01

1210E-01

199QE-12

2500E-05

5160E-02

1030E-02

1610E-01

1570E-02

2210E-01

5050E-01

2890E 00

3670E-01

2'10E 00

2771E-01

U93?E 00

26005-03

3940E-04

4540E CO
2')90E-01

2850E-01

1^0'JE 00

1 510E-01
X
2

3

3

3

2

3

2

2

3

3

3

3

2

3

2

2

2

2

2

2

2

3

3

2
2

2

2

2
X/AV N
0.2990Z-02

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.
0.

0.

0.

0.

8870E-02

17605-02

39405-04

2430E-01

1180B-')2

1640EO1

12405-01

'9755-12

250TE-T5

5J30E-04

1020E-T4

1640E-03

1573E-54

2243S-03

5050E-Q3

2130E-T2

3S70E-03

2140E-02

27TJEO1

43005-12

853 JE-04

3910E- D4

52902-02
2700S-03

2950S-03

59905-02

76005-03
X
3

3

3

3

2

1

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

1

3
STATIOiiAFI TMEF.MAL COMBUSTION ENGINES (DIESEL 6 DUAL FUEL)
10 CC2 54.80 51.30 0.0 36.5515
S7AIICSiFI I5IE9NU CCHBUSTIOK ENGINES (SPAFU IGNITION)
10 C01 42.80 42.80 0.0 267.9080
CAFEON blACK (FURNACE PROCESS)
326. 10

511.25

2C COj 26CO.OO 2800.00 2.30 72323.8750 2709.28
417.41

956.04

3468.09
21B.

409.

1492.
49

00

08
199000.

547000.

1980000.
0.

0.

0.
1 110E-02

3^805-Ci

2940E 00
3

3

2
0.

0.

0.
1133E-')2

8290E-C-3

2940E-13
3

3

3

-------
                                                           Table B.2.  (Contd.)
  CCOE
                 *
              "S_
              E'J
                      E5
                                         SIZE
  GBEl  1SCN  fCUHCFIES (COPOLA)
  5C  C04      0.60     0.60     0.03      25.1100
  GASCLISE  AEtlUVES  (SODIU H-LEAD)
  1C  F01     69.10    10.78     0.89    1930.3953
  GASCIINE  ACCITUSS  (ELECT PC tYTIC)
  70  F02     32.20     4.10     1.00     219.3437
  GEET  IRCS  FCUNCBIFS  (B EVES EEIUTOP Y)
  5C  CC3      0.3?     0.07     0.0        1.9530
  BE7AIIC  KISEHLS SINING  (ZINC HINE  6 CRUSHING)
  15  F01      0.10     0.10     0.01    1319.9963
  KETAIIC  fllNEEALS DINING  (LEAD HIKING)
  44  E01      C.1C     0.13     0.01       1.3500
  BEIALLIC  H2NEKALS MINIS'. (PE!i POALLOY)
  42  E01      0.30     0.30     0.0        3.7000
  GF£I  IBCX  FCUNESIFS (ELECT3IC ABC)
  5C  CC2      0.05     0.05     0.0        2.0925
  SOSICIFAI  INCINE6ATION < 50T/D
  1C  203      0.40     0.'4J     0.0        0. 1000
  CLASS eAMJFACVJiilHG INDUSTRY    (LEAD GLASS)
  HO  E1S      6.00     6.00     0.06      13.7700
  :S::D;TFIAI I.SCIKESATION  (INDUSTBIAL-CC.IHERCIAL)
  11  fC4      0.40     0.40     0.04       1.20:0
   ElfLCSIVI  ISt  (LCI EXPLOSIVES)
  2C CIS      0.30    0.3D     0.01
   BIIEt IDEL ECILESS   (COAL  6  DEPOSE)
  10 AC6      0.22    0.22     0.01
   EXELCSJVl  IHD  (HIGH  EXPLGSIVBS)
  2C C17      60.00   20.33     1.60
                                         SUE
                                         1.2923
                                         6.6000
                                      1219.7671
                              EN
_ȣ-_!:: iit..: s "S.
  CC:E         EO
   VISCCSE I-AYCii
  20 B06      10.90   10.90    1.60
   CARECH BI»C*   (P08NACE PROCESS)
  2C CC3     6(1 "0   60.00    0.06
_^iJ!_lNT IS  Ft .
  COO:        EU      ci      E^
  FIEEfGlASS  SFG. PLANTS
 «C EC6       2.0C    2.30     2.00       3Q.4I40C
  FIEEEGIASS  f.fG. PLANTS   (WCCI.  PPOCESSING)
 «C E1*       C.07    0.07     0.0         1.2197
  FKCStaCBIC  ACID PLANTS
 20 A07       1.00    0.03     0. 0
         FFF.E DEFLUOFINATION
           21S.OO   59.40     O.un
                                         SIZE

                                       265.9595

                                      15U9.7986

                                         SIZE
                          (TEXTILE PROCESSING)
                          (VET EEOCESS)
                                       71.3610
3C E10
                                     H927.U961
 CEE1EIC ClAY  1FG
"C D1C       1.00     1.00     0.30        1.«KOO
 IHrOSIEIAl  ECILEBS   (10-250X1CE6  BTU/HR)
1C A03       0.0      0.0      0.0         O.B571
 BTEfCF1DCSIC  ACIE PLAHTS
20 A08     50.00   50.00     0.20      513.8992
TA
3.75
0.96
0.03
0.02
O.UO
0.12
0.50
0. 11
0.8U
1.75
3.B1
T4
0.10
0.11
23.90
Ta
2.11
58.06
T4
0.39
O.OU
0.20
5.35
5.36
15. 17
11.72
TJ
3.07
0.31
0.01
0.01
0.15
0.17
0.5fl
0. 31
1.23
2.37
10.90
TS
0.21
0.60
58.70
TS
2.14
7U.32
TS
0.71
0.09
0.65
5.35
7.61
17.13
21.59
TN
3.72
0.51
0.02
0.01
0.31
0.32
0.35
0. 10
0.51
1.19
3.20
TN
0.06
0.27
16. 79
Til
I .32
31.97
TN
0.71
0.03
0. 19
3.22
1.80
1 1.29
6. '6
TS-TN
- •


30.
110.
150.
233.
2UO.
710.
1200.
7700.
TS-TN
190.
330.
11900.
TS-TN
310.
12300.
TS-TN
0.
( 9.
160.
2100.
2600.
6100.
16100.
X/AV S X
0.8270E 00 1
0.6060E 01 1
0.21BOE 01 1
0 . 3 8 ? OF 00 2
0.3720E 03 1
0.37202 00 2
0. 1 OMOE 01 1
0.10905 00 2
T. 35 ME -01 2
0.9040S-01 2
0. 3370E 01 1
X / i 'I S X
0.1 ICO! 00 2
0. 1 5ME 00 2
0.26zjE 02 1
X/AV 5 X
0.6593E 00 1
0.4200E 00 2
X / /. V S X
0.1750E 02 1
0.619C>E 00 1
0.7100E 00 1
D.5820E 03 1
0. 1 1902 01 1
0.2620C-01 2
0.1210? 02 1
X/AV M X
0.1119S-01 ?
0.50DQE 30 1
0.5320! 00 1
0. 11 1 02 00 1
0. 37iTS T2 1
0.3720E-01 2
0. '04 )E-0 i 2
0.65e1E 11 '
0.5'. ME- 31 2
0.9040E-33 3
0. 38~nE 10 2
f / - . • s x
0.2220E-02 3 -,
1
0. 68932-02 3 |_j
0 . 2 M ~> E 01 1
X / i . N X
O.lfO'-H 2
0.42335-03 3
X/iV N »
O.^'jOE 02 1
0.1770E-T 2
0. 1050E TO 2
0. 4290E 01 1
0. 3573s 00 2
O.HU02-02 3
0.4960E-01 2
*Secondary zinc  smelter  data can be found  in  Table A-3,  Pg,  A-31,  and  Table Bvl,  pg,  B^

-------
                                        TABLE  B-3
                                                    MINOR SOURCE  CATCGORY GROWTH
EXPLANATION  OF CATA DISPLAY:   THE HJ!'3ER OF NEW AMD REPLACEMENT HYPOTHETICAL SOURCES  OF AVERAGE SI7E IS  INDICATED  FOR EACH SOURCE CATEGORY FOR  EACH 6 MONTH
PE".ICD BEGIViiriG IN 1980, THROUGH
SOI-'.E CASES, AS A RESULT OF THE GP.O
"UXULATIVE GRC/JTH SECTION.
1C A01 FC£3IL FUEL ECILERS
{1930J 	 	 2Cr 299.«-{mo.-»2072'i4.
.t 112 16 . 21^259.
{1990} 	 -2!tc45. 217797.
222659.
CUMULATIVE
J1980J 	 - 2 0 f. 2 9 9 .-•- ( «!•.-»« 13 5 M 3.
^St^CI. 2510^0.
|l990| 	 «-.4M'427C1 . 466C497.
€ C 4 ". fj 3 3 .
1C AC^ COMMERCIAL BOILERS
7ih2. 7777.
£644. 6365.
9955. 10252.
11574.
CUELLAITV5
75c2. 15359.
89:9';. 93460.
113663. 193935.
29267U.
1C E01 WASTE OIL BOILERS
g. 8.
S. 9.
10. 10.
1 1 .
CUMULATIVE
6. 16.
93. 102.
167. 197.
291.
20 A16 LIIHIUH CC.IfOUNDS

CUMULATIVE
0. 1.
3. 3.
6. 7.
10.
20 A19 SCEIUM CHLORIDE
7. 7.
6. 8.
9. 9.
10.
CUMULATIVE
7. 13.
Iti. 86.
160. 169.
256.
1995 IN THE FIRST 1 ROWS
OF DATA. THE
WTH FORMULA USED A "FRACTIONAL" SOURCE

(<0.3X 10E6
207241;.
2 12259.
217797.


620767.
2722919.
u673;:>3.

(0. 3-10X13E6
7777.
6885.
10252.


23135.
107365.
2041R3.


6.
9.
10.


24.
111.
207.




1.
4.
7.


7.
8.
9.


20.
94.
178.


BTli/HF)
2082C8.
21 3323.
21&972.


828995.
2936212.
5097264.

BTU/tiH)
7960.
9136.
10562.


31116.
116500.
214750.


8.
9.
10.


33.
120.
217.




1.
4.
7.


7.
8.
9.


27.
102.
188.



208208.
213323.
218972.


1037203.
3V495S5.
5316235.


7980.
9136.
10562.


39096.
125636.
225312.


3.
9.
10.


41 .
130.
227.


FRACTIONAL GROWTH

1.
4.
8.


7.
8.
9.


34.
110.
197.

CUMULATIVE NUi
GROWTH RESULT:


209191 .
2 14nC9.
220170.


1246393.
3 J63973.
5536404 .


8192.
9396.
10885.


47288.
135034.
236197.


9.
9.
10.


50.
139.
238.


SOURCE CATEGORY

2.
5.
8.


7.
8.
10.


41.
1 18.
206.

                                                                                  219191.
                                                                                  214409.
                                                                                  22J170.
                                                                                 1455583.
                                                                                 3578381.
                                                                                 5756573.
                                                                                    8192.
                                                                                    9398.
                                                                                   10885.
                                                                                   55480.
                                                                                  144431.
                                                                                  247082 .
                                                                                       9.
                                                                                       9.
                                                                                      10.
                                                                                      58.
                                                                                     148.
                                                                                     248.
                                                                                       7.
                                                                                       8.
                                                                                      10.
                                                                                      48.
                                                                                     126.
                                                                                     216.
 210193.
 215516.
 221392.
1665776.
3793896.
5977965.
   8413.
   9671,
  11222.
  63694.
 154102.
 258305.
      9.
     10.
     11.
     67.
    158.
    259.
                                                                                                   2.
                                                                                                   5.
                                                                                                   9.
      7.
      8.
      10.
     56.
    135.
    226.
 210193.
 215516.
 221392.
1873969.
4009411.
6199357.
   8413.
   9671.
  11222.
  72307.
 163772.
 269527.
      9.
     10.
     11.
     75.
    168.
    269.
      7.
      e.
     10.
     63.
    143.
    235.
 211216.
 216645.
 222639.
2387185.
4226056.
6421995.
   8644.
   9955.
  11574.
  80951.
 173728.
 281101.
      9.
     10.
     1 1.
     84.
    177.
    280.
                                3.
                                6.
                               10.
      8.
      9.
     10.
     71.
    152.
    246.
                                                                                                                                     a)
                                                                                                                                     i
                                                                                                                                     to

-------
                                     TABLE B-3    MINOR  SOURCE  CATF.GORY GROWTH
20  A20   LEAC OXIDES
           1.          1.           1.
           1.          1.           1.
           1.          1.           1.
           2.
CUHULATIVE
           1.          2.           3.
          12.         13.          14.
          24.         26.          27.
          39.
20  B14   PCLIV1NYL ALCOHOL PLANTS
           C.          0.           0.
           C.          0.           0.
           0.          0.           0.
           1 .
CUHULATIVE
           0.          0.           1.
           3.          3.           3.
           6.          7.           7.
          12.
20  B1E   POLYCARBONATES PLANTS
           0.          0.           0.
           0.          0.           0.
           0.          0.           0.
           1.
CUMULATIVE
           C.          0.           0.
           2.          2.           3.
           £.          6.           6.
          10.
20  B16   EFCXY RESIN PLANT (UNMODIFIED)
CUHULATIVE
           0.
           1.
           1.
           2.
          E
           0.
           6.
20 E18
          30.
         ALKYD
CUHULATIVE
          4
          42
          80
         120
2C B20
               1.
               7.
             17.
              8.
             45.
             84.
                                   0.
                                   1.
                                   1.
 1.
 8.
18.
                                   4.
                                   4.
                                   4.
11.
49.
88.
PLASTICS AMD PESINS  (POLTAMIDES)
  3.          3.           3.
  5.          5.           5.
  9.         10.          10.
 18.
CUHULATIVE
          3.
         42.
         113.
         251.
  6.
 47.
124.
  9.
 53.
134.
                                       4.
                                      15.
                                      29.
 2.
 9.
19.
15.
53.
92.
                                               3.
                                               6.
                                               12.
 12.
 59.
146.
                                                           17.
                                                           30.
                                                            2.
                                                           10.
                                                           21.
                                                           19.
                                                           57.
                                                           96.
                                       3.
                                       6.
                                      12.
 16.
 65.
158.
                                                   6.
                                                  18.
                                                  32.
                                                   3.
                                                  10.
                                                  22.
                                                  23.
                                                  61.
                                                 100.
                                       4.
                                       7.
                                      14.
 20.
 72.
171.
                                                   7.
                                                  19.
                                                  33.
                                                   4.
                                                  11 .
                                                  26.
                                                  65.
                                                 104.
                                       4.
                                       7.
                                      14.
                                                                                   23.
                                                                                   79.
                                                                                  185.
                                                   e.
                                                  20.
                                                  35.
                                                                                                 2.
                                                                                                 5.
                                                                                                10.
                                                   4.
                                                  12.
                                                  25.
                                                  30.
                                                  69.
                                                 108.
                                       4.
                                       8.
                                      15.
                                                                                       28.
                                                                                       87.
                                                                                      200.
                                                  10.
                                                  22.
                                                  36.
                                                                                        2.
                                                                                        5.
                                                                                       11.
                                                   5.
                                                  13.
                                                  27.
                                                  34.
                                                  73.
                                                 112.
                                       4.
                                       8.
                                      15.
                                                                          32.
                                                                          95.
                                                                         216.
                                                  11.
                                                  23.
                                                  38.
                                                                                        2.
                                                                                        6.
                                                                                       11.
                                                   6.
                                                  14.
                                                  29.
                                                  38.
                                                  76.
                                                 116.
                                                                                                                         5.
                                                                                                                         9.
                                                                                                                        18.
                                                                          37.
                                                                         104.
                                                                         234.

-------
                                          TABLE 0-3    MINOR SOURCE  CATEGORY GROWTH
20 C09




PAINT MFG.
63.
£5.
68.
71.

64.
66.
69.


64.
66.
69.

CUMULATIVE




20 DOS
6J.
708.
1379.
2080.
127.
7714.
1413.

190.
640.
1517.

ECLY-ISOPBENE(IR)
CUMULATIVE




21 A01




0.
1 .
2.
3.
0.
1.
2.

HYDSOCHLOHIC ACID
8.
10.
13.
17.
9.
11.
14.

0.
1 .
2.

INDUSTRY
9.
11.
14.

CUMULATIVE




8.
102.
221.
375.
17.
113.
235.

26.
124.
249.

                                                64.
                                                67.
                                                69.
                                               254.
                                               907.
                                              1586.
                                                 9.
                                                 11.
                                                 15.
                                                35.
                                               135.
                                               264.
                                      64.
                                      67.
                                      69.
                                     318.
                                     973.
                                   1656.
                                            65.
                                            67.
                                            70.
                                           383.
                                          1040.
                                          1726.
                                                      FRACTIONAL GROWTH SOURCE CATEGORY
                                       9.
                                      11.
                                      15.
                                      43.
                                     147.
                                     278.
                                             9.
                                            12.
                                            15.
                                            53.
                                           158.
                                           293.
                         65,
                         67.
                         70.
                        447.
                       1106.
                       1796.
                          9.
                         12.
                         15.
                         62.
                        170.
                        309.
                          65.
                          68.
                          71.
                         512.
                        1175.
                        1667.
                          10.
                          12.
                          16.
                          72.
                         183.
                         325.
                          65.
                          68.
                          71.
                         577.
                        1243.
                        1937.
                          10.
                          12.
                          16.
                          82.
                         195.
                         341.
                          65.
                          68.
                          71.
                         643.
                        1311.
                        2009.
                          10.
                          13.
                          17.
                          92.
                         208.
                         358.
                                                                                                                                        03
                                                                                                                                        I
21  A21   LEAD PIGMENTS  PIFGR.  (RED  LEAD)
                                                        FRACTIONAL GROWTH SOURCE CATEGORY
CUMULATIVE
           0.
           3.
           6.
           9.
1.
3.
6.
      1.
      3.
      6.
22  A21   LEAC PIGMENTS  MFGR   (WHITE  LEAD)
1.
4.
7.
 2.
 4.
 7.
                                                       FRACTIONAL GROWTH SOURCE CATEGORY
CUMULATIVE
23  S21
           0.
           4.
1.
4.
8.
          11.
         LEA£ frli.lENTS  BFGB
      1.           1.
      5.           5.
      8.           9.

(LEAD CBBOMiTE)
2.
5.
9.
 2.
 6.
10.
 2.
 6.
10.
 3.
 6.
10.
 3.
 7.
11.
                                                                                                                               7.
                                                                                                                              11.
                                                        FRACTIONAL GROWTH SOURCE CATEGORY
CUMULATIVE
           0.

           3.
           e.
          10.
i.

4.
7.
      1.

      4.
      7.
1.

4.
8.
 2.

 5.
              2.
              5.
              9.
              3.
              6.
              9.

-------
TARLT B-3   MIN"P SOURCE  CATf.ORY  6ROWTH
30 D03 HEA1
35.
35.
35.
35.
CUHULATIVE
35.
382.
729.
1075.
30 DOS FISH
CUHOLA'ilVt
V •
a.
e.
12.
SMOKEHOUSES
35.
35.
35.


69.
416.
763.

PROCESSING

1.
5.
9.


35.
35.
35.


104.
451.
798.



1.
5.
9.


35.
35.
35.


139.
486.
' 633,



2.
6
10,

30 D12 ClfcECT FIBING OF HEATS
950.
1149.
1426.
1822.
CUMULATIVE
950.
11590.
21677.
41214.
30 C17 DEEP
28.
32.
37.
43.
CUMULATIVE
28.
325.
675.
1077.
985.
1197.
1497.


1935.
12787.
26174.

EAT PRYING
29.
33.
38.


56.
361.
713.

985.
1197.
1497.


2920.
13984.
27670.


29.
33.
38.


85.
394.
750.

1022,
1249
1570


3942,
15233
29240,


29
34,
39


114,
423
789

30 D15 PHASHACEUIICAL
42.
57.
79.
115.
CUHOLATIVE
42.
543.
1238.
2231.
35 D04 (AGG)
2.
2.
3.
3.
CDHULATIVE
2.
22.
47.
77.
44.
60.
85.


86.
603.
1323.

DIBECT COFFEE
2.
2.
3.


4.
24.
50.

44.
60.
85.


130.
663.
1408.

BOASTING
2.
2.
3.


6.
27.
52.

47,
65,
92


177
728
1500,

PL A MIS
2
2
3


8
29
55

                35.
                35.
                35.
               173.
               520.
               867.
   35.
   35.
   35.
  208.
  555.
  902.
   35.
   35.
   35.
  243.
  590.
  937.
          FRACTIONAL GROWTH SOURCE CATEGORY
                 2.
                 6.
                10.
              1022.
              1249.
              1570.
              4963.
             16482.
             30810.
                34.
                39.
               143.
               461.
               828.
                47.
                65.
                92.
               224.
               793.
              1592.
                 9.
                31.
                58.
    2.
    6.
   10.
 1061.
 1305.
 1648.
 6024.
17787.
32458.
   30.
   35.
   40.
  173.
  496.
  868.
   50.
   69.
   99.
  274.
  862.
 1690.
   11.
   34.
   61.
    3.
    7.
   11.
 1061.
 130S.
 1648.
 7085.
19092.
34106.
   30.
   35.
   40.
  203.
  530.
  909.
   50.
   69.
   99.
  324.
  931.
 1789.
   14.
   36.
   64.
   35.
   35.
   35.
  278.
  624.
  971.
    3.
    7.
   11.
 1103.
 1364.
 1732.
 8189.
20456.
35838.
   31.
   36.
   41.
  234.
  566.
  950.
   53.
   74.
  106.
  377.
 1005.
 1695.
   16.
   39.
   67.
   35.
   35.
   35.
  312.
  659.
 1006.
    4.
    8.
   12.
 1103.
 1364.
 1732.
 9292.
21821.
37570.
   31.
   36.
   41.
  265.
  602.
  991.
   53.
   74.
  106.
  430.
 1079.
 2002.
   18.
   42.
   70.
   35.
   35.
   35.
  347.
  694.
 1041.
    4.
    8.
   12.
 1149.
 1428.
 1822.
13441.
23249.
3 93 92 .
   32.
   37.
   43.
  297.
  638.
 1034.
   57.
   79.
  115.
  486.
 1158.
 2116.
   20.
   44.
   74.
Cd

to

-------
TABLE B-3   MINOR SOURCt CATEGORY GROWTH
36 DC4 (AGG)
2.
2 .
2.
2.
CUMULATIVE
2.
20.
38.
56.
INDIRECT COFFEE ROASTING
2.
2.
2.


'4.
22.
40.

2.
2.
2.


5.
24.
42.

PLANTS
2.
2.
2.


7.
25.
44.


2.
2.
2.


9.
27.
46.

4C C03 CONCRETE BATCH PLANT
57.
€2.
68.
75.
CUSULATIVE
57.
654.
1306.
2023.
<4C D1S Ffll
7.
7.
7.
7.
CUMULATIVE
7.
62.
156.
231.
>tO D18 GLASS
3.
3.
3.
3.
CUMULATIVE
3.
36.
66.
100.
46 fOI (AGG)
1.
1.
1.
1.
CUMULATIVE
1.
7.
11.
20.
58.
63.
69.


1 15.
7 17.
1375.

58.
63.
69.


172.
780.
1444.

59.
64.
70.


231.
644.
1514.

59.
64.
70.


290.
908.
1585.

MFC (ROTARY FURNACE)
7.
7.
7.


15.
89.
1614.

MANUFACTURING
3.
3.
3.


6.
39.
71.

7.
7 .
1.


22.
97.
171.

INDUSTRY
3.
3.
3.


10.
42.
75.

7.
7.
7.


30.
104.
179.

(OPAL GLASS)
3.
3.
3.


13.
45.
78.

7.
7.
7.


37.
112.
186.


3.
3.
3.


16.
49.
81.

NON-METALLIC MINING - MICA
1.
1.
1.


1.
a.
14.

SO £06 SECONDARY HAGNESIOH
1.
1.
1.
1.
CUHULATIVE
1.
12.
24.
35.
1.
1.
1.


2.
14.
25.

1.
1.
1.


2.
8.
15.

SHELTER
1.
1.
1 .


3.
15.
26.

1.
1.
1.


3.
9.
16.


1.
1.
1.


5.
16.
27.

1.
1.
1.


3.
10.
16.


1.
1.
1.


6.
17.
28.

                                  11.
                                  29.
                                  47.
                                  60.
                                  65.
                                  72.
                                 349.
                                 973.
                                1656.
                                  45.
                                  119.
                                  194.
                                   19.
                                   52.
                                   84.
                                    4.
                                   10.
                                   17.
                                    7.
                                   18.
                                   30.
  13.
  31.
  49.
  £0.
  65.
  72.
 409.
1038.
1728.
  52.
 127.
 201.
  23.
  55.
  87.
   4.
  11 .
  18.
   8.
  19.
  31.
  15.
  33.
  51.
  61.
  66.
  73.
 «70.
1104.
1801.
  60.
 134.
 209.
  26.
  58.
  91.
   5.
  12.
  18.
   9.
  20.
  32.
  16.
  35.
  S3.
  61.
  66.
  73.
 530.
1171.
187».
  67.
 142.
 216.
  29.
  62.
  94.
   6.
  12.
  19.
  10.
  22.
  33.
  18.
  36.
  55.
  62.
  68.
  75.
 592.
1239.
19«9.
  75.
 149.
 22«.
  32.
  65.
  97.
   6.
  13.
  20.
  11.
  23.
  3*.
                                                                                              08

                                                                                              N>
                                                                                              00

-------
                                     TABLE 3-3   MINOR  SOURCE  CATEGORY  GROWTH
5ii CC1  Gill IBON FOUNDRIES  (INDUCTION FURNACE)
5.
5.
5.
5.
CUMULATIVE
5.
56.
108.
15S.
5.
5.
5.


10.
61.
113.

50 003 STEEL FOUNDRIES
2S.
29.
29.
CUMULATIVE
29.
314.
600.
866.
60 E06 GEAFHIC
22.
26.
30.
35.
CUMULATIVE
22.
266.
546.
875.
60 C01 SOLVENT
45655.
49159.
53276.
5£115.
CUMULATIVE
45655.
522774.
1038535.
1JSS699.
60 D02 SOLVENT
649.
679.
712.
749.
CUMULATIVE
649.
7317.
11301.
21643.
60 003 SOLVENT
157.
174.
195.
220.
CUMULATIVE
157.
1826.
3685.
5778.
29.
29.
29.

57.
?43.
629.

5.
5.
5.


15.
67.
118.

(INDUCTION)
29.
29.
29.

86.
372.
658.

5.
5.
5.


20.
72.
123.


29.
29.
29.

114.
4CO.
686.

5.
5.
5.


26.
77.
128.


29.
29.
29.

143.
429.
715.

5.
5.
5.


31.
82.
133.


29.
29.
29.

172.
457.
743.

5.
5.
5.


36.
87.
138.


29.
29.
29.

200.
486.
772.

5.
5.
5.


41.
92.
143.


29.
29.
29.

229.
515.
600.

5.
5.
5.


46.
97.
149.


29.
29.
29.

257.
543.
829.

5.
5.
5.


51.
102.
154.


29.
29.
29.

286.
572.
658.

ABTS INDUSTRY (LITHOGRAPH!)
23.
26.
31.


45.
292.
577.

23.
26.
31.


66.
318.
608.

METAL CLEANING (COLD
46311.
49930.
54183.


91966.
572704.
1092717.

46311.
49930.
54183.


138277.
622634.
1146699.

METAL CLEANING (OPEN
655.
685.
719.


1304.
8002.
15021.

655.
685.
719.


1959.
8667.
15740.

24.
27.
32.


92.
346.
640.

CLEANERS)
46989.
50726.
55119.


185266.
673361.
1202017.

TOP VAPOR
661.
692.
727.


2620.
9379.
16466.

24.
27.
32.


116.
373.
671.


46989.
50726.
55119.


232255.
724087.
1257135.

DEGBEASERS)
661.
692.
727.


3281.
10070.
17193.

24.
28.
33.


140.
401.
704.


47689.
51549.
56085.


279944.
775636.
1313220.


667.
698.
734.


3947.
10769.
17927.

24.
28.
33.


164.
429.
737.


47689.
51549.
56085.


321633.
827185.
1 369305.


667.
698.
734.


4614.
1 1467.
18661.

25.
29.
34.


189.
458.
771.


48412.
52399.
57034.


376045.
379584.
1426388.


673.
705.
742.


5286.
12172.
19402.

25.
29.
34.


214.
487.
805.


48412.
52399.
57084.


424457.
931983.
1483471.


673.
705.
742.


5959.
12877.
20144.

26.
30.
35.


240.
516.
840.


49159.
53276.
56115.


473616.
985259.
1541585.


679.
712.
7»9.


6638.
13589.
20894.

METAL CLEANING (CO NVEIORIZED DECREASING)
160.
178.
199.


317.
2004.
3885.

160.
178.
199.


477.
2181.
4084.

163.
182.
204.


641.
2363.
4288.

163.
182.
204.


804.
2545.
4492.

167.
136.
209.


971.
2730.
4701.

167.
186.
209.


1138.
2916.
4910.

170.
190.
214.


1308.
3106.
5124.

170.
190.
214.


1478.
3296.
5338.

174.
195.
220.


1652.
3491.
5558.

                                                                                                                                w
                                                                                                                                 i

-------
17,81. L
             MINOS SOURCE  CATIOJRY bROWi
60




F03 P.I.M. ID.
51.
51.
51.
51.
(GAS. BULK PLANTS) (STORAGE 6 TRANSFER)
51.
51.
51.

51.
51.
51 .

51.
51.
51.

b '.
1 i

•
51.


51.
3 i .
51.

51.
51.
51.

51.
51.
51.

51.
51.
51.


51 .
51.
51.

CUMULATIVE




61




51.
556.
1061.
1566.
101.
606.
1111.

152.
657.
1162.

202.
707.
1212.

253
758
1263

F06 (AGG) PETROLEUM, TRANSP AND MARKETING - SERVICE 5TAT
11918.
13096.
14494.
1615C.
12138.
13357.
14803.

12138.
13357.
14803.

12365.
13627.
15122.

^
f
f

10 US
12365.
13627
15122

f
m

303.
308.
1313.


12601.
13906.
15453.

354.
859.
1364.


12601.
13906.
15453.

404.
909.
1414.


12844.
14195.
15796.

455.
960.
1465.


12344.
14195.
15796.

505.
1010.
1515.


13096.
14494.
16150.

CUMULATIVE

11918.
24055.
136006. 151364.
277163. 291966.

64




431810.
B03 INDUSTRIAL
25.
36.
51.
69.

SURFACE
31.
40.
54.

36193.
164721 .
306763.

COATING
31.
40.
54.

48558.
178348.
321891.

(METAL FURNITURE
32.
43.
57.

60924
191974
337013

.
m
f

73524.
205880.
352466.

86125.
219786.
367920.

98969.
233981.
383715.

111814.
248176.
399511.

124910.
262669.
415669.

COATING)
32
43
57

.
m
9

34.
45.
61.

34.
45.
61.

36.
48.
65.

36.
48.
65.

38.
51.
69.

CUMULATIVh




65




29.
373.
825.
1436.
B02 INDUSTRIAL
27.
35.
46.
63.
60.
413.
879.

SURFACE
28.
37.
49.

91.
453.
933.

COATING
28.
37.
49.

124.
496.
990.

(HOOD FURNITURE
30.
39.
52.

156
538
1047

m
m
„

190.
563.
1108.

225.
628.
1169.

261.
676.
1233.

297.
724.
1298.

335.
774.
1367.

COATING)
30
39
52

m
f
.

31.
41 .
55.

31.
41.
55.

33.
43.
59.

33.
43.
59.

35.
46.
63.

CUMULATIVE




65




27.
33S.
75C.
1306.
E03 INDUSTRIAL
74.
95.
127.
173.
55.
376.
799.

SURFACE
77.
101.
135.

83.
412.
848.

COATING
77.
101.
135.

112.
451.
900.

142
489
952

B
m
B

173.
530.
1008.

204.
571.
1063.

237.
615.
1122.

270.
658.
1181.

304.
704.
1243.

(FLATHOOD PRODUCTS)
81.
107.
143.

81
107
143

9
.
.

86.
113.
152.

86.
113.
152.

90.
120.
162.

90.
120.
162.

95.
127.
173.

CUMULATIVE




8C




74.
934.
2066.
3599.
B02 PULFEOARE
8.
9.
9.
10.
151.
1035.
220J.

MFGR.
8.
9.
10.

228.
1136.
2337.


8.
9.
10.

310.
1242.
2481.


9.
9.
10.

391
1349
2624


9
9
10

.
f
.


f
m
•

«77.
1462.
2776.


9.
9.
10.

563.
1575.
2929.


9.
9.
10.

653.
1694.
3091.


9.
9.
10.

743.
1814.
3253.


9.
9.
10.

839.
1941.
3*26.


9.
9.
10.

CUMULATIVE



8.
95.
187.
17.
104.
196.
25.
113.
206.
34.
122.
216.
42
131
225
m
f
.
51.
140.
235.
60.
149.
245.
68.
159.
255.
77.
168.
265.
66.
177.
275.
                                                                                                    &

                                                                                                    U)
                                                                                                    o

-------
                                   TABLE 3-3   MINOR  SOURCE CATEGORY GROWTH
90 801  LEAD  ACID EATTIRI
           6.           6.           6.
           t.           7.           7.
           7.           8.           8.
           9.
COSOLATIVE
           6.          11.          17.
          67.          73.          80.
        137.         145.         153.
        220.
90 C01  CABLE COVER PBOD. PLANT
 23.
 87.
161.
 29.
 94.
169.
 35.
101.
177.
 41.
108.
185.
 48.
115.
194.
 54.
122.
202.
 60.
130.
211.
90 001  TYPE  HETAL PRODUCTION PLANT
                                                   DECLINING GROWTH SOURCE CATEGORY
                                                   DECLINING GROWTH SOURCE CATEGORY
90 £01  CAN  MFG  PLANT
                                                                                                                                    CO
                                                                                                                                     I
                                                   DECLINING GROWTH SOURCE CATEGORY
9C 103  TEXTILE  BIG  (CARPET HFG)




12.
IE.
20.
26.
13.
16.
21.

13
16
21

CUHULATIVE




90 f04




1*.
153.
333.
566.
TEXTILE
6.
9.
13.
18.
25.
170.
354.

HFG (TEXTURING)
7.
9.
14.

3e
186
375


7
9
14

cuauLAiiYE




6.
£4.
194.
353.
13.
94.
208.

20
103
221,

                                               13.
                                               17.
                                               22.
                                               51.
                                             203.
                                             397.
                                                7.
                                               10.
                                               15.
                                               27.
                                              113.
                                              236.
             13.
             17.
             22.
             65.
            220.
            419.
              7.
             10.
             15.
             35.
            121.
            250.
             14.
             18.
             23.
             79.
            238.
            443.
              8.
             11.
             16.
             42.
            134.
            266.
             14.
             18.
             23.
             93.
            256.
            466.
              8.
             11.
             16.
             50.
            145.
            282.
             15.
             19.
             25.
            108.
            275.
            491.
              8.
             12.
             17.
             58.
            157.
            299.
             15.
             19.
             25.
            122.
            293.
            516.
              8.
             12.
             17.
             67.
            169.
            316.
             15.
             20.
             26.
            138.
            313.
            542.
              9.
             13.
             18.
             75.
            181.
            335.

-------
EX"LA';.-".TION' CF DATA DISPLAY:  THE M!"2ER CF NE'.-.' AMD  REPLACEMENT HYPOTHETICAL SOURCES OF AVERAGE SIZE IS INDICATED FOR EACH SCU3CE CATEGORY FOR EACH 6  K
                                                 , RC'.-.'S CF DATA.  THE CUMULATIVE NUMBER OF SOURCES IS INDICATED IN THE FOLLOWING  4 ROVS CF WA. NO
                                                 "FRACTIONAL"  SOURCE GROWTH RESULTS I"! A 6 KONTh PERIOD AN'D IS ONLY DISPLAYED AS INTEGER GRCVTH IN T
PERIOD BEGIN:;;. NS
SC::E CASES, AS A
CUMULATIVE GROWTH
1C AC 3 IHH"
If,' 1330, Ti'iROu'GI! 1
995 IN THE FIRST 4
RESULT Or THE GRCv.'TH FORMULA USED A
SECTION.
STKIAT, L'Oir.SRS
(1980 1 	 •- 1 £7^—6ii:o,—*- 1 ~)J.
1 ' 1ST. \ "-::>.
{1990} 	 -1S5.
2CC.
CUMULATIVE
19i.


J1980I 	 - 1S7.-»-6l]0. — '375.
2081. 2272.
JJ990!— •• 1016.
5SS6.
1C A 06 .1IX£
1.
1.
1.
1.
CUMULATIVE
1.
15.
ic .
42.
1C A07 MIX*
1 .
1.
1.
1.
CUMULATIVE
1.
15.
26.
41.
4212.

D FDEi EOILEHS
1.
1.
1.


3.
16.
30.

0 FUEL BOILK2S
1.
1.
1.


3.
16.
29.


RC'.-.'S CF DATA. THE CJ«UI
"FRACTIONAL"

SOURCE G,"
-------
I O U I C U ..


CUMULAT




10 C02




55.
55.
IVE
55.
6C6.
1157.
1706.
STATIONARY
156.
1f6.
156.
156.
55.


110.
661.
1212.

c.5.


16C.
7U.
1267.

INTERNAL COMBUSTION
156.
156.
156.

15o.
1r.6.
156.

55.


220.
771.
1322.

EKGINES (DIESEL
156.
156.
156.

55.


27o.
n27.
1 3 7 1, .

o DUAL FUEL)
15t.
15e.
156.

55.


->31.
S Ji.
1«33.


156.
156.
156.

55


386
937
1488


156
156
156

CUMULATIVE




1 1 E04




156.
1721.
3286.
4851.
INDUSTRIAL
1.
2 »
3.
5.
313.
1878.
3443.

INCINERATION
1.
2.
4.

4f 9.
2034.
3599.

626.
2191.
3756.

732.
2347.
3912.

939.
2504.
'1069.

1095
2660
4225

(INDUSTRIAL-COMMERCIAL)
1.
2.
4.

2.
2.
4.

2 .
2.
>..

2.
3.
4.

2
3
4

CUMULATIVE




11 C01




1.
19.
46.
90.
S1ATIONEBX
56.
56.
58.
56.
3.
21.
50.

4.
24.
53.

PIPELINE COMPRESSOR
58.
58.
53.

58.
5fa.
58.

6.
26.
57.

ENGINES
58.
53.
58.

8.
23.
61.


59.
5c!.
56.

9.
31.
65.


50.
58.
58.

11
34
70


53
58
58

CUMULATIVE




12 E04




58.
63S.
1219.
1800.
INDUSTRIAL
11 .
11.
11.
11.
1 16.
697.
1277.

INCINERATION
11.
11.
11.

174.
755.
1336.

(IND
11.
11.
11.

232.
813.
1394.

ORGANIC LIQUID
11.
11.
11.

290.
371.
14f,2.

WASTE INC)
11.
1 1.
1 1.

3-.B.
929.
1510.


1 1.
11 .
1 1.

406,
967
1568


1 1
11
11.

CUMULATIVE




20 104

11.
116.
221.
326.
ACIFIC ACID

21.
126.
231.

PLANTS

3? .
137.
242.



42.
147.
252.



5 j.
153.
263.


FRACTIONAL GROWTH
6i.
163.
273.


SOURCE CATEGORY
74,
179
284



CUMULATIVE




20 A07




0.
2.
C
8."
PHCSFHOBIC
6.
9.
15.
25.
0.
3.
5.

ACID PLANTS
6.
10.
16.

1.
3.
6.

1.
3.
6.

1.
3.
6.

1.
4.
6.

1
4
7

(WET PROCESS)
6.
10.
16.

7.
11.
18.

7.
11.
18.

7.
12.
20.

7,
12
20,

                                   55.
                                  441.
                                  992.
                                 1543.
                                  156.
                                  156.
                                  156.
                                 1252.
                                 2817.
                                 4382.
                                    13.
                                    37.
                                    7i*.
                                   58.
                                   58.
                                   56.
                                  l»65.
                                 1045.
                                 1626.
                                   11.
                                   11.
                                   1 1.
                                   84.
                                  189.
                                  294.
                                     8.
                                   13.
                                   22.
                                                55.
 496.
1047.
1598.
 156.
 156.
 156.
1408.
2973.
4533.
  15.
  40.
  79.
  58.
  58.
  58.
 523.
1103.
1664.
  1 1.
  11.
  11.
  95.
 200.
 305.
   8.
  13.
  22.
                                                             55.
 551.
1102.
1653.
 156.
 156.
 156.
1565.
3130.
46S5.
  17.
  43.
  84.
  52.
  58.
  58.
 531.
1161.
1742.
  11.
  11.
  1 1.
 105.
 210.
 315.
   9.
  15.
  25.
                                                                     a
                                                                     I

-------
CUMULATIVE




20 AOe




6.
60.
200.
UC3.
KYDBOFLUOBIC
1.
1.
^
1 .
12.
89.
216.

ACID PLANTS
1.
1.
1.

ie.
95.
232.


1 .
1.
1.

25 .
110.
250.


1.
1.
1 .

CUMULATIVE




20 A1C




1.
16.
31.
146.
PHOSPHORIC
1 .
1.
1.
1 .
3.
18.
33.

ACID PLANTS
1.
1.
1.

(4.
19.
34.

(THEE.1AL
1.
1 .
1 .

6.
21.
36.

PEOCESS)
1.
1.
1 .

CUMULATIVE




20 A1 1




1 .
11 .
22.
32.
ACETIC ACID
C.
0.
1.
1 .
2.
12.
23.

3.
13.
2*.

it.
14.
25.

(ACETiLBEKYDE)
0.
0.
1.

0.
C.
1 .

0.
0.
1.

CUMULATIVE




20 A12
0.
li.
9.
16.
ACETIC ACID
1.
5.
1C.

(KETHANOL)
1 .
5.
10.


1.
5 .
11 .


CUMULATIVE



0.
2 .
c
0.
2.
5.
0.
2.
5.
1.
3.
6.
   Table 3.4. (Contd.)

 31.

263.
                                                               7.
                                                              22.
                                                              37.
                                                               5.
                                                              15.
                                                              26.
                                                               2.
                                                               6.
                                                              12.
                                                                          39.
                                                                         133.
                                                                         286.
                          9.
                         2U.
                         39.
                          6.
                         16.
                         27.
                          6.
                         12.
                                                        FRACTIONAL GROWTH SOURCE CATEGORY
                                                               1.
                                                               3.
                                                               6.
                                      46.
                                     145.
                                     306.
                         10.
                         25.
                         40.
                          7.
                         17.
                         28.
                          2.
                          7.
                         13.
                                      5U.
                                     158.
                                     331.
12.
27.
U2.
 e.
19.
29.
 3.
 7.
1U.
             62.
            171.
            353.
13.
28.
43.
 9.
20.
30.
 3.
 8.
15.
             71.
            185.
            378.
                                                                  15.
                                                                  30.
                                                                  U5.
                                                                  10.
                                                                  21.
                                                                  31.
                                                                    4.
                                                                    9.
                                                                  15.
                                                                                       do
                                                                                       I
20 A13
           9.
         ACETIC ACID
                       (BUTANE)
                                                     DECLINING GROWTH SOURCE CATEGORY
20 AT*   CYCLCHEXANE
           0.           1.
           1.           1.
           1.           1.
           1.
CUMULATIVE
           0.           1.
1.
1.
1 .
1.
1.
1.
                                                               3.
                           1.
                           1.
                           1.
                                                                              6.

-------
           6.
          14.
          23.
 7.
14.
20 ili   EOBAX  20EIC ACID
CUMULATIVE
           0.
           1.
           1.
           2.
 0.
 1.
20  417  HYtBOGEN FLUOEIDE
CUMULATIVE
20  A16
            3-
            7.
           11.
         PC7ASH
 7.
15.
 8.
16.
    Table B.4.  (Contd.)
 9.          10.
17.          13.
                                                      FRACTIONAL GROWTH SOURCE CATEGORY
              0.
              1.
              1.
              C.
              1.
              1.
              0.
              1.
              1.
                                                     FRACTIONAL  GROWTH SOURCE CATEGORY
                                                   1.
                                                   4.
                                         2.
                                         5.
                                                       FRACTIONAL GRO'/.TH SOURCE CATEGORY
                                                                                         10.
11.
20.
 0.
 1.
 2.
                                                                   2.
                                                                   6.
                                                                  10.
12.
21.
                                                                   3.
                                                                   6.
                                                                  10.
13.
22.
                                                                   .3 .
                                                                   7.
                                                                  1 0.
CUMULATIVE
V, VJ ii U i- « J. .



20 fc03




0.
3.
5.
6.
PCLYilHYLENE
2.
3 ^
c
9!
0.
3.
5.

(HIGH
2.
3.
5.

1 .
3.
6.

DENSITY)
2.
3.
5.

CUMULATIVE




20 BG4




2.
2«.
63.
133.
EOLYEIHYLENE
1.
2.
3.
t.
3.
27.
69.

(LOW
1.
2.
3.

5.
30.
74.

DENSITY)
1.
2.
3.

CUMULATIVE




20 EOS




1.
16.
38.
70.
ECLYSIYEENE
2.
2.
3.
14.
2.
18.

3.

CUMULATIVE



2.
21.
51.
4.
26.
5».
6.
29.
57.
                                                   1.
                                                   3.
                                                   6.
                                                    7.
                                                  34.
                                                  eo.
                                                    5.
                                                   22.
                                                   46.
                                                    8.
                                                   31.
                                                   61.
                                         1.
                                         4.
                                         6.
                                                                 2.
                                                                 3.
                                                                 6.
                                         9.
                                        37.
                                        87.
                                          7.
                                         24.
                                         49.
                                         10.
                                         34.
                                         64.
                                         1 .
                                         4.
                                         6.
                                        11.
                                        41.
                                        93.
                                         25.
                                         52.
                                         12.
                                         37.
                                         67.
                                         2.
                                         4.
                                         7.
                                                                    2.
                                                                    U.
                                                                    7.
                                        14.
                                        45.
                                        100.
                                          S.
                                         28.
                                         56.
                                         14.
                                         39.
                                         71.
                                         2.
                                         4.
                                         7.
                                                                    2.
                                                                    4.
                                                                    8.
                                        16.
                                        49.
                                       108.
                                                                                                        2.
                                                                                                        2.
                                                                                                        3.
                                         11.
                                         31.
                                         59.
                                         17.
                                         42.
                                         74.
               2.
               5.
               7.
                                                                    2.
                                                                    4.
                                                                    e.
              18.
              54.
              115.
               13.
               33.
               62.
               19.
               45.
               78.
              21.
              59.
             124.
               14.
               35.
               66.
               21.
               48.
               82.
                          I
                          UJ
                          ui

-------
2C E06
          66.
         SYNTHETIC FIBERS
                                                KAYON)
                                                                  Table  B.4, (Contd.)
                                                          FRACTIONAL GROWTH SOURCE CATEGORY
CUMULATIVE




20 EOT




COBOL ATI




20 E06




0.
2.
5 .
it.
0.
2.
3.

0.
O
3.

1.
2.
3.

PCLYP60PLYENE
1.
2 .
4.
7.
VE
1.
19.
£1.
1C6.
SJNTH2TIC
3.
c ^
•7.
1 1 .
1.
2.
a.


3.
22.
55.

1.
2.
4.


a.
24.
59.

FIBZSS INDiJSTE"/ (DACRON
4.
5.
8.

a.
5.
6.

2.
3.
5.


6.
27.
6U.

POLYESTEh)
a.
5.
8.

CUMULATIVE




20 E09




3.
44.
1C4.
194.
SYNTHETIC
2.
3.
5.
7.
7.
49.
1 12.

FIBER INDOSTBY
3.
4.
5.

10.
55.
119.

(NYLON)
3.
t.
5.

1U.
60.
127.


3.
a.
5.

CUMULATIVE



2.
32.
72.
5.
35.
77.
8.
39.
82.
10.
1*2.
87.
                                                                7.
                                                               30.
                                                               69.
                                                               18.
                                                               66.
                                                              136.
                                                               13.
                                                               92.
                                                     9.
                                                    33.
                                                    71.
                                                   115.
                                                                            16.
                                                                            50.
                                                                            98.
                                       11.
                                       36.
                                       80.
                                       26.
                                       77.
                                      153.
                                                                 19.
                                                                 5
-------
1.
1.
2.
2 .
COHULATIVE
1.
8.
21.
41.
2C E13 ACEIATS E
CUHULATIV:
C.
3.

»
20 E17 PLASTICS
13.
19.
30.
47.
CUf.'JLATIVE
13.
177.
427.
823.
2C E19 ECLYESTEH
2.
3.
n .
e.
CUMULATIVE
2.
27.
63.
118.
20 E21 UBEA
2.
2 .
2.
2.
CUMULATIVE
2.
20.
3 ^ .
60.
1.
1.
2.


1.
9.
22.

AJOS

1.
•3
6.
AND SEdlNS
14.
21.
32.


27.
196.
460.

KESItl
2.
3.
5.


4.
30.
68.


2.
2.
2.


3.
21.
41.

2C C03 CArEOK BLACK (FUFNAC
1 .
1.
1.
1.
CUSULATIVE
1.
12.
24.
36.
1.
1.
1.


2.
13.
25.

i ,
i
2.


2.
1C.
24.



1.
4 .
6.
(ACRYLIC)
14.
21 .
32.


41 .
"* 1 C~
Vj 2 .


2.
3 .
5.


6 .
33.
72.


2.
2 .
2


5.
23.
43.

S PECCESS)
1.
1.
1 .


3.
14.
2o.

20 C06 ACEYLCNI1BILE PLANTS
1 .
2 .
1.
2.
1.
2.
 11.
 26.
 15.
 23.
 36.
 56.
241.
528.
 9.
36.
77.
 7.
25.
45.
 4.
16.
27.
               1.
               1.
               2.
               3.
              13.
                    t aut c u . t. vv/um-u . ;

                           1.            1.
               1.
               2.
                           4.
                          30.
         FRACTIONAL GROWTH SOURCE CATEGORY
 23.
 36.


 71.

563.


  2.
1 1.
40.
32.
 9.
27.
47.
17.
2*.
             16.
             25.
             39.
                          67.
                         6&3.
13.
43.
88.
10.
29.
49.
 7.
18.
30.
                           5.
                          15.
                          32.
             16.
             25.
             39.
                                      103.
                                      314.
16.
47.
93.
12.
31.
51.
 8.
19.
31.
                           6.
                          16.
             16.
             27.
             43.
                                      121.
                                      341.
                                      685.
                                                     19.
                                                     51.
                                                     99.
                                                     14.
                                                    33.
                                                     54.
                                                      9.
                                                    20.
                                                    32.
                           6.
                          18.
                          36.
                                                                  13.
                                                                  27.
                                                                  43.
                                      139.
                                      3bb.
                                      723.
 21.
 55.
105.
 16.
 35.
 56.
 10.
 21.
 33.
                                                                                7.
                                                                               19.
                                                                               39.
              19.
              30.
              47.
                                      156.
                                      3S7.
                                      775.
                                                                 24.
                                                                 59.
                                                                111.
                                                                 18.
                                                                 3i.
                                                                 58.
                                                                 11.
                                                                 21.
                                                                 35.
                                                                                        w
                                                                                        I

-------
4 .
CUMULATIVE
1.
15.
36.
67.
20 C07 E7HYLENE
1 .
1.
1.
2.
CUMULATIVE
1.
e.
19.
34.


2
17.
39.

BICHLORIDE
"J .
1 .
1.


1.
9.
20.



a .
19.
41 .



•j.
21 .
14.

PLANTS (OZYCHLC&INATICN
1.
1.
1 .


2.
10.
22.

1.
1.
1 .


3.
11 .
23.

20 CC6 FC6SALUEHYEE PLiHTS
11.
15.
21.
CUMULATIVE
1 1.
136.
319.
5t3.
2C CIO DETEEGENI
12.
14.
17.
2C.
CUMULATIVE
12.
144.
3C1.
488.
20 C15 VAFNISH
9.
9.
10.
10.
CUMULATIVE
9.
99.
192.
290.
20 C16 CHARCCAL
2.
2.
2.
2.
CUMULATIVE
2.
21.
to.
59.
20 C17 EXPLOSIVE
4.
£ .
e.
12.
11.
16.
22.

22.
154.
342.

11.
16.
22.

33.
170.
2C4.

12.
17.
24.

45.
186.
3E9.

MANUFACTURING PLANTS
12.
15.
17.


24.
159.
319.


9.
9.
10.


18.
108.
202.

PLANTS
2.
2.
2.


4.
23.
42.

IND (HIGH
5.
6.
9.

12.
15.
17.


37.
174.
336.


9.
9.
10.


26.
117.
211.


2.
2.
2.


6.
25.
44.

EXPLOSIVES)
5.
6.
9.

13.
15.
18.


49.
189.
354.


9.
9.
10.


35.
126.
221 .


2.
2.
2.


8.
27.
46.


5.
7.
10.

     Table  B.4. (Contd.)
     :.            J.           3.           3.           3.           4.
                  b.           9.          11.          12.          14.
                 25.          27.          29.          31.          34.
                 50.          53.          56.          60.          63.

P hO C f
                  1.           1.           1.           1.           1 .
                  1 .           1.           1.           1.           1.
                  2.           2.           2.           2.           2.


     3.           4.           5.           6.           7.           7.
    12.          13.          14.          15.          17.          18.
    24.          26.          27.          29.          31.          32.


    12.          13.          13.          14.          14.          15.
    17.          18.          18.          19.          19.          21.
    24.          26.          26.          28.          28.          31.


    57.          70.          82.          96.         109.         124.
   20j.        221.         239.        258.         273.         299.
   413.        439.         465.        494.         522.         553.
    13.          13.          13.          14.          14.          14.
    15.          16.          16.          16.          16.          17.
    18.          19.          19.          19.          19.          20.
    62.          75.          89.         102.         116.         130.
   204.        220.         235.         252.         268.         285.
   372.        391.         410.         429.         448.         468.
     9.           9.           9.           9.           9.           9.
     9.           9.           9.           9.           9.          10.
    10.          10.          10.          10.          10.          10.
    44.          53.          62.          71.          80.          89.
   135.         145.         154.         164.         173.         182.
   231.         240.         250.         260.         270.         280.
     2.           2.           2.           2.           2.           2.
     2.           2.           2.           2.           2.           2.
     2.           2.           2.           2.           2.           2.
    10.          11.          13.          15.          17.          19.
    29.          30.          32.          34.          36.          38.
    48.          49.          51.          53.          55.          57.
     5.           5.           5.           6.           6.           6.
     7.           7.           7.           8.           8.           8.
    10.          10.          10.          11.          11.          12.

-------
CUMULATIVE
14.
56.
lit.
232.

9.
63.
137.

20 C16 EXPLOSIVE IND (LOW
1 .
6.
9.
13.
CUMULATIVE
1.
56.
131.
215.
20 C19 pflKTI
25.
29.
33.
39.
CUMULATIVE
25.
256.
£C9.
S75.
20 C23 MALEIC
CUMULATIVE
0.
3.
6.
9.
20 C21 SODIUM
1.
2 .
3.
6.
CUMULATIVE
1.
16.
16.
5.
7.
9.


9.
65.
141.

KG IKK PLANTS
26.
29.
31.


51.
325.
Ci.3.

ANHYDRIDE

0.
3.
6 .


1- .
69.
1-46.

EXPLOSIVES)
5.
7.
Q _


14.
71 .
153.


26.
29.
31.


76.
355.
677.



1.
3 .
7.

CARBONATE PLAUT (KSTUH
1.
2.
4.


3.
20.
19.
", .
2.
1.


u.
22.
53.
 16.
 76.
155.
 5.
 7.
10.
 13.
 78.
164.
 30.
 35.
103.
365.
713.
Table 6.4. (Contd.)

23.          28.
S2.          69.
            175.
                                                                           5.
                                                                          11.
             29.
             93.
            1*5.
             27.
             31.
             37.
            156.
            -147.
            785.
               5.
               7.
              10.
                                                            17U.
2 •".
30.
35.
                                                            129.
                                                            415.
                                                      FRACTIONAL GROWTH SOURCE CATEGORY
                                                  1.           1.
                                                 4.           4.
                                                 7.           7.
                                                 2.           2.
                                                 2.           2.
                                                 1.           4.
  5.           7.
 25.          27.
 57.          62.
              9.
             30.
             66.
                                                                                       97.
                                                                                      1H6.
                                                                                       11.
                                                                                       35.
                                                                                      101 .
                                                                                      196.
                                                                                       27.
                                                                                       31.
                                                                                       37.
                                                                                      478.
                                                                                      821.
                                                                                       10.
                                                                                       33.
                                                                                       71.
                                                                                                   39.
                                                                                                  101.
                                                                                                  197.
                                                                                                     6.
                                                                                                     8.
                                                                                                    12.
                                                                                                    10.
                                                                                                  109.
                                                                                                  2oe.
                                                                                                   26.
                                                                                                   32.
                                                                                                   38.
                                                                                                   211.
                                                                                                   510.
                                                                                                   559.
                                                                                                    12.
                                                                                                    36.
                                                                                                    76.
                                                                            as.
                                                                           112.
                                                                           208.
                                                                                                                 6.
                                                                                                                 6.
                                                                                                                12.
                                                                            16.
                                                                           117.
                                                                           220.
                                                                            28.
                                                                            32.
                                                                            38.
                                                                           239.
                                                                           b^2.
                                                                           897.
                                                                            11.
                                                                            39.
                                                                            82.
                                                                             50.
                                                                            120.
                                                                            220.
                                                                                          6.
                                                                                          9.
                                                                                         13.
                                                                             52.
                                                                            126.
                                                                            233.
                                                                             29.
                                                                             33.
                                                                             39.
                                                                            267.
                                                                            576.
                                                                            936.
                                                                             16.
                                                                             12.
                                                                             38.
                                                                                                                                        Od
                                                                                                                                        I
                                                                                                                                        u>
20 C25   PHTHALIC  ANHYDEIDE PLANTS  (SAPTHALSSE PROCESS)
                                                      FRACTIONAL GROWTH SOURCE CATEGORY
CUMULATIVE
           0.
           C.
           1.
           1.
                        0.
                        0.
                        1.
0.
0.
1.
20 C26   PH1HALIC  ANHYDRIDE PLANTS
           0.           1.
           1.           1.
           1.           1.
           2.
CUMULATIVE
           0.           1.
 0.
 0.
 1.
                                      (OXYLENE PROCESS)
                                     1.           1.
                                     1.           1.
                                     1.           1 .
                                    2.
                                                 2.
                                                                                                                              6.

-------
6.
15.
28.
20 C27 TEfEEKTHALIC
1.
1.
1 .
2 .
CUMULATIVE
1.
c .
1 c .
33.
7.
16.

ACID
1.
1.
1.


1.
9.
20.

e.
17.

PLANTS
1.
1 .
1.


2.
1C .
21.

20 C26 DIliETHYL TEREPHTHALATE PLANTS
C.
1.
1.
1 .
CUMULATIVE
C.
e.
15.
26.
2C C3C ETHYL BENZENE
CUMULATIVE
u .
2.
c
2C CJ1 EIKYLEt.'E
2.
2.
3.
1.
CUMULATIVE
2.
2C.
^4 „
77.
1.
1.
1.


1.
7.
16.



0.
3.
6.

2.
2.
3.


3.
22.
47.

1 .
1.
1.


2 .
fi.
17.



1 .
3.
6.

2.
2 .
3.


5 .
2s .
5C.

20 C32 KETHANOL PLANTS
0.
1.
1 .
1.
CUMULATIVE
C.
6.
12 .
19.
20 C33 FHZSCL PLANTS
1.
1.
1 .
1.
CUMULATIVE
1.
7.
15.
0.
1.
1.


1.
6.
12.


1.
1.
1.


1.
8.
16.
0.
1.
1.


1 .
7.
13.


1.
1 .
1.


2.
c.
17.
 9.
19.
 3.
11 .
22.
 9.
18.
    Table B.4. (Contd.
10.          10.
20.          21.
 7.
26.
53.
 2.
 9.
18.
              1.
              1.
              1.
12.
24.
 3,
 9.
19.
              1.
              1.
              1.
13.
25.
 3.
10.
20.
     FRACTIONAL GROWTH SOURCE CATEGORY
 8.
29.
56.
              2.
              8.
             m.
 3.
1C.
20.
10.
31.
59.
              3.
              6.
             15.
 M.
11.
21.
             11.
             22.
14.
27.
 U.
11.
21.
12.
33.
62.
              3.
              9.
             16.
12.
22.
             12.
             2U.
 6.
15.
28.
 it,
12.
22.
36.
66.
             10.
             16.
 5.
13.
23.
             13.
             25.
 6.
16.
30.
 5.
13.
24.
16.
38.
69.
              U.
             10.
             17.
 5.
13.
24.
             14.
             27.
 7.
17.
31.
 6.
14.
25.
18.
41.
73.
              5.
             1 1 .
             18.
 6.
14.
26.
                                                                                       tB

-------
            21.
                                                                       Table  B.4.  (Contd.)
20 C3'l




EE1HYL KEIKACRYL&TE
0.
C.
0.
1.
0.
0.
0.

i LAHTU
0.
0.
0.


0.
G .
0.


0.
0 .
•J •


0.
0.
3.


0.
0.
0.


0.
0.
0.


0.
0.
0.


0.
0.
1.

CUMULATIVE




^0 C35

CCiiuLAI




2C C36



C'JK'JiAI




2C C37




CUKULAT



20 C3c




CuXULAI




20 C3S
C.
3.
7.
12.
ETHYLE

IVI
C.
3 .
e.
9.
PFCtYL
0.
0.
0.
I VI
C .
3 .
7.
12.
VINYL
U •
C.
"l .
1.
IVE
C.
4.
S-
CAPBCii
C.
C .
1 .
1.
IVE
C .
4.
1C.
16.
CAEEON
1.
4.
8.

HE GLYCCL DERI


1.
3.
6.

ENE (OXIDE)
0.
0.
0.

i _
'4.
S.

ACETATE (ETHYL
0.
0.
1.


1.
4.
9.
1EIBACHLOBIDE
0.
0.
1.


1.
5.
10.

TEIEACHLORIDE
1.
4.
c .

VEE ?: J?. "'•'


" .
a.
7 .


0.
0 .
0.

•j
4.
&.

ENE)
0 .
0 .
1 .


1 .
^
10.
(METHANE)
C.
0.
1.


1 .
C
-1 m
11.

(PSCFANE)
1 .
4.
8.

:-:?: :-:NK OXIDE


i .
u .
7.


0.
0.
0.

1 .
4.
8.


0.
0.
1.


1 .
5.
10.

0.
0.
1.


2 .
6.
11.


1.
5.
ri


FRACTIONAL GROWTH

1.
i;.
7 _


0.
j ,
C.

1.
c
9.


C.
0 .
1.


2.
C
1 1.

0.
0.
1.


2.
6 .
1^.


2 .
5.
9.


SOURCE CATEGORY

2 .
i:.
b .


0.
C.
0.

2 .
!T' •
9.


0.
0.
1.


2.
6.
12.

0 .
1 .
1.


2.
7 _
13.


2.
5.
10.




2.
5 .
S .


0.
0.
0.

2.
5.
10.


C.
0.
1 .


2.
6.
13.

0.
1.
1 .


3.
7.
13.


2.
6.
10.




2 .
5.
8.


0.
0.
0.

2.
6.
10.


0.
1.
1.


3.
7.
13.

0.
1.
1.


3.
8.
1 4.


3.
6.
1 1.




2.
5.
9.


C.
0.
0.

3.
6.
1 1.


0.
1.
1.


3.
7.
14.

0.
1.
1.


4.
8.
14.


3.
7.
11.




2.
6.
9.


0.
0.
1.

3.
7.
11.


r. W
" t

1 . '-'


3.
3.
15.

0 .
1 .
1.


4.
9.
15.


                                                              FRACTIONAL GROWTH SOURCE CATEGORY
Ct.ILLATIVE
            C.
            2.
            e.
0.
2.
20  C
-------
                                                               Table 6 .4.  (Coma .)

                                                            FRACTIONAL GROWTH SOURCE CATEGORY
CUMLATIVE
           C.
           2.
           4 .
           6.
     0.
     2.
     4.
20 GUI   ACE1CNS (CUMENE)
           0.            0.
           0.            1.
           1 .            1.
           1.
CUMULATIVE
           0.            1.
           5.            5.
          11.           11.
          16.
20 C42   ACE1CN2   (ISOPROP ANOL)
           C.
           C.
           C.
           1.
CUBULATIVE
           0.
           y.
           8.
          14.
20 CU3   ACE1CN2
CtKULAIIVt
           C.
           1.
           2.
           4.
     0.
     0.
     1.
     1.
     "4.
     9.

(CYAHOHYDRIH)
     0.
     1.
     3.
20 C44  METHYL CHLCHOFGRt!
           0.            0.
           C.            0.
           1.            1.
           1.
CUMULATIVE
           C.            1.
           4.            5.
           9.           10.
          16.
20 CIS  S1YFENE
           0.            0.
           1.            1.
           1.            1.
           1.
CCHULAIIVE
           0.            1.
           6.            6.
          12.           12.
          19.
20 CU6  AILYL  CHLOBIDE
                   1 .
                   6.
                 12.
                   1.
                   5.
                 11.
                   1.
                   7.
                  13.
 2.
 7.
13.
 1.
 5.
10.
 1.
 6.
11.
 2.
 7.
14.
 2.
 •7 ^
13.
 2.
 6.
10.
 3.
 8.
1*4.
 2.
 6.
11 .
                                                           FRACTIONAL GRO.ITh SOURCE CATEGORY
 2.
 6.
12.
 2.
 0.
14.
 2.
 7.
12.
 3.
 8.
15.
 3.
 8.
15.
 2.
 6.
11.
 3.
 7.
13.
 3.
 9.
16.
 9.
15.
 3.
 7.
12.
10.
17.
                                                                                                                       1.
 9.
16.
 3.
 7.
13.
               a.
               8.
             14.
 4.
10.
17.
 4.
1 0.
17.
 3.
 8.
13.
               4.
               9.
              15.
 5.
1 1.
18.
                                                                                                                                           .0
                                                                                                                                           ho
                                                          FRACTIONAL GROWTH SOURCE CATEGORY

-------
                                                                     Table B.4. (Contd.)




2C CK7




C,.'ULA1



2C C<*6




C.
1 .
2.
2 •
AC5YLIC
0.
0.
C.
1.
C.
3 .
7.
12.
ACE1IC
C.
1 .
1 .
1 .
0 .
1.
2.

ACID
0.
0.
0.

1.
I*.
7.

ANHYESIDE
0.
1.
1.

0 •
* B
. .


0.
0.
0.

1 .
4 .
<3 .


0.
1 .
1

CLMl'LATIV;




20 C4S




0 .
C
1 1.
18.
1.
6.
11.

CYC1CHEXASOL/CYCLOH
0 .
C .
1.
1.
0.
0.
1.

1 .
e.
12.

EXAKCNE
C.
C.
1 .

CUMULATIVE




20 DC1
0.
4 .
s.
16.
SYtilHEI
1.
5.
10.

1C RUEEER IK
1 .
5.
1 1 .

D. (STYS
                                                  1 .
1.
4 .
6.
                                                  0.
                                                  1 .
                                                  1.
 2.
 7.
13.
                                                  0.
                                                  0.
                                                  1.
                                                 11.
                                  (STYBEKE-BUTADISKE) (S3E)
             7.
            13.
                                                                            5.
              2.
              6.
             12.
                                                                            2.
                                                                            7.
                                                                           12.
                                                     2.

                                                    10.


                                                     0.
                                                     i _
                                                     1 .
                                                                                         3.
                                                                                        15.
                                                     3.
                                                     7.
                                                    13.
                                                     2.
                                                     6.
                                                    10.
                                                                  1.
                                                                  9.
                                                                 16.
                                                     3.
                                                     8.
                                                    14.
                                                     3.
                                                     6.
                                                    1 1.
                                                                  4.
                                                                 10.
                                                                 16.
                                                                               3.
                                                                               7.
                                                                              11.
                                                                  5.
                                                                 10.
                                                                 17.
                                                                  4.
                                                                  9.
                                                                 15.
                                                                                                                                        03
                                                                                                                                        I
                                                      DECLINING GROWTH SOURCE  CATEGORY
20  D02   ECLY-BQTAEIENE
           0.           0.
           C.           0.
           1.           1.
           1.
CCHUL11IVE
           0.           1.
           5.           5.
           9.          10.
          15.
2C  D06   ETHYLENE-PROPYLENE
           C.           0.
           1.           1.
           1.           1.
           2.
 1.
 5.
10.
 2.
 6.
1 1.
 2.
 6.
12.
                           2.
                           7.
                          12.
                                                    13.
                                                    3.
                                                    6.
                                                   13.
 a.
 8.
It.
 a.
 9.
15.

-------
CCBCLtHVE




20 007
0.
6.
14.
26.
SYIHEIIC
1
6
15

RUBBER
1.
7.
16.

(HECPREN2)
2.
8.
17.

FRA
CCBCLAIIVE




21 C1 1




0.
1.
3.
5.
ETKYLENE
1.
1.
1.
1.
0
2
3

OXIDE
1
1
1

0.
2.
3.

PLANTS (AIR
1.
1.
1.

1.
2.
4.

OXIDATION PROCESS)
1.
1.
1.

CKBULATIVE




21 C13




•1
12.
23.
36.
A B K C N I A
4.
5.
5.
e.
2
13
25

PLANTS
4
5
5

3.
14.
26.


4.
5.
5.

4.
15.
27.


4.
5.
5.

CUMULATIVE



4.
49.
97.
9
53
102
13.
56.
107.
17.
63.
112.
                                                                  Table
                                .)
                           1.
                          19.
              3.
              9.
             20.
                                                        FRACTIONAL GROWTH SOURCE CATEGORY
         15C.
21 C20   FUEL CONVERSION HIGH BT'J  COAL GASIFICATION
                           5.
                          16.
                          28.
                          22.
                          67.
                         118.
              6.
             17.
             30.
             26.
             72.
            123.
                                                                                         3.
                                                                                        10.
                                                                                        22.
                                                                                         7.
                                                                                        19.
                                                                                        31.
                                                                                        30.
                                                                                        77.
                                                                                       128.
                                                   11.
                                                   23.
                                                    8.
                                                   20.
                                                   32.
                                                   35.
                                                   82.
                                                  130.
                                                   12.
                                                   25.
                                                   10.
                                                   21.
                                                   33.
                                                   39.
                                                   87.
                                                  139.
  5.
 13.
 26.
                                                                                                                                1.
                                                                                                                                3.
                                                                                                                                5.
 11.
 22.
 35.
 44.
 92.
145.
                                                       FRACTIONAL GROWTH SOURCE CATEGORY
CUMULATIVE




22 C11




C.
1.
2 .
3.
ETHl'LEKE
1.
1.
1.
1.
0.
1.
2.

OXIDE PLANTS
1.
1.
1.

CUMULATIVE




30 A05




1.
6.
12 .
18.
NITRATE
2.
2.
2.
2.
1.
6.
12.

FERTILIZER (
2.
2.
2.

CUMULATIVE

2.
4.
                                     0.
                                     1.
                                     3.
0.
2.
3.
                                  (OXYGEN OXIDATION PROCESS)
                                     1.            1.
                                     1.            1.
                                     1.            1.
 2.
 7.
13.
                                                 13.
                               (AMMONIUM NITRATE)  PLANTS
                                     2.            2.
                                     2.            2.
                                     2.            2.
1.
2.
3.
             1.
             1.
             1.
                                     6.
                                                  9.
 3.
 8.
14.
             2.
             2.
             2.
                                                              11.
 3.
 9.
15.
                                                                           13.
                                                                                         4.
                                                                                         9.
                                                                                        15.
                                                                                        15.
                                                    4.
                                                   10.
                                                   16.
                                                                                                     17.
                                                    5.
                                                   10.
                                                   17.
                                                                                                                  19.
  5.
 11.
 17.
                                                                                                                               21.

-------



30 E01




23.
45.
fct.
CCT1CN G
27.
27.
27.
27.
26.
47.

INNING
27.
27.
27.

28
<»9


27
27
27

CUMULATIVE




30 D01




27.
301.
574.
847.
Alf ALFA
1.
1.
2.
2.
55.
328.
601.

DEHYDRATING
1 .
1.
2.

82
355
629

PLANTS
1
1
2

CUMULATIVE




30 DC6




CUMULAT




3C DOS




1 .
14.
29.
45.
KHISKEY
7.
7.
7.
7.
IVE
7.
76.
144.
213.
2.
16.
30.


7.
7.
7.


14.
32.
151.

BESR PROCESSING PLAN
10.
1 2.
17.
22.
11 .
14.
13.

4
17
32


7
7
7


21
89
158

IS
11
14
18

CliKULATIVE



10.
129.
279.
21.
142.
297.
32
156
314
                                                30.
                                                51.
                                                27.
                                                27.
                                                27.
                                               109.
                                               383.
                                               656.
                                                 5.
                                                19.
                                                33.
                                                27.
                                                96.
                                               165.
                                                11.
                                                14.
                                                19.
                                                43.
                                               170.
                                               333.
i do;e O.H .
12.
53.
27.
27.
27.
137.
41'J.
683.
1.
1.
2.
6.
20.
35.
7.
7.
'"'•
34.
103.
172.
11.
1U.
19.
54.
184.
351.
Vl.UNI.lJ . 1
34.
55.
27.
27.
27.
164.
437.
711 .
1.
1.
2.
6.
21.
37.
7.
•7 _
7.
41.
1 10.
179.
12.
15.
20.
66.
199.
371.
                                                                 36.
                                                                 58.
                                                                 27.
                                                                 27.
                                                                 27.
                                                                191 .
                                                                465.
                                                                733.
                                                                 9.
                                                                 23.
                                                                 38.
                                                                 48.
                                                                1 17.
                                                                186.
                                                                 12.
                                                                 IS.
                                                                 20.
                                                                78.
                                                                214.
                                                                390.
                                                                 38.
                                                                 60.
                                                                27.
                                                                27.
                                                                27.
                                                               219.
                                                               492.
                                                               765.
                                                                 10.
                                                                 24.
                                                                 40.
                                                                55.
                                                                124.
                                                                192.
                                                                 12.
                                                                 16.
                                                                 21.
                                                                 90.
                                                               230.
                                                               411.
                                                                 41.
                                                                 62.
                                                                 27.
                                                                 27.
                                                                 27.
                                                                246.
                                                                519.
                                                                793.
                                                                 12.
                                                                 26.
                                                                 42.
                                                                 62.
                                                                131.
                                                                199.
                                                                 12.
                                                                 16.
                                                                 21.
                                                                103.
                                                                246.
                                                                432.
                                                                 43.
                                                                 64.
                                                                 27.
                                                                 27.
                                                                 27.
                                                               273.
                                                               547.
                                                               820.
                                                                 13.
                                                                 27.
                                                                 43.
                                                                 69.
                                                                137.
                                                                206.
                                                                 13.
                                                                 17.
                                                                 22.
                                                                1 16.
                                                                263.
                                                                454.
                                                                                                                                     I
                                                                                                                                     -t>
                                                                                                                                     Ui
         475.
3C C1C   AKI.1AL FEED DEFLUCRISATICN
                                                     FRACTIONAL GROWTH SOURCE CATEGORY
CUMULATIVE
           1.
           2.
  0.
  1.
  2.
30 C11   VEGETABLE OIL MFG.
           5.           5.
           5.           5.
CUMULATIVE
           5.
          58.
         110.
 10.
 63.
115.
 16.
 68.
120.
 21.
 73.
126.
 26.
 79.
131.
 31.
 84.
136.
 37.
 89.
141.
 42.
 94.
147.
 47.
 99.
152.
 52.
105.
157.

-------
         162.
30 Die   STAFCH MFGE
                                                             Table  8.4. (Contd.)
2.
2.
2 .
2.
CUMULATIVE
2.
25.
49.
73.
2.
2.
2.


5.
27.
51.

2.
2.
2.


7.
30.
53.

2.
2.
2.


9.
32.
56.

2 .
2.
2.


1 1.
34.
56.

2.
2 .
2.


14.
37.
61.

2.
2.
2.


16.
39.
63.

2.
2.
2.


18.
41.
65.

2.
2.
2.


20.
44.
68.

2,
2
2


23
46
70,

3C B2C A^CNIUM SULFATE
7.
1 1.
1 8.
29.
CUMULATIVE
7.
1CC.
246.
30 £01 (AGG)
382.
390.
399.
UC9.
CUMULATIVE
382.
4246 .
6203.
12253.
40 A01 STCNE
95.
95.
95.
9 c .
CUMULATIVE
95.
1042.
199C.
2937.
40 A02 SASD C
1 1 4 .
1 14.
1 14.
114.
CUMULATIVE
114.
1256.
2396.
354C.
a.
12.
19.


15.
1 12.
266.
e.
12.
19.


23.
124.
285.
8.
13.
21.


31 .
138.
306.
8.
13.
21.


40.
151.
323.
9.
14.
24.


49.
165.
351.
9.
14.
24 .


58.
ieo.
3^5.
1 0.
16.
26.


68.
196.
401.
10.
16.
26.


78.
211.
427.
11
18
29


69
229
456
FEED A:JC GRAIN MILL INDUSTRY
383.
392.
401.


765.
4640.
8604.

383.
392.
401.


1 148.
5031.
9005.

385.
394.
403.


1533.
5425.
9408.

385.
394.
403.


1913.
5819.
9811.

307.
395.
405.


2304.
6214.
10216.

337.
395.
405.


2691 .
6610.
10621.

388.
397.
407.


3079.
7007.
11028.

388.
397.
407.


3468.
7404.
11435.

390
399
409


3353
7803
1 1844,

CCARRYING AND PROCESSING
95.
95.
95.


190.
1137.
2085.

GRAVEL PROCESS
1 14.
114.
1 14.


228.
1370.
2512.

40 D06 FIBERGLASS MFG. PLANTS
0.
1.
1.
1.
CUMULATIVE
0.
6.
12.
21.
0.
1.
1.


1.
6.
13.

95.
95.
95.


284.
1232.
2179.


114.
114.
114.


343.
14&5.
2627.

(TEXTILE
0.
1.
1.


1.
7.
14.

95.
95.
95.


379.
1327.
2274.


114.
114.
114.


457.
1599.
2741.

PROCESSING)
0.
1.
1.


2.
7.
15.

C c
95.
95.


474.
1421.
2369.


1 14.
1 14.
114.


571.
1713.
2855.


0.
1.
1.


2.
3.
15.

95.
95.
95.


569.
1516.
2464.


1 14.
114.
114.


685.
1627.
2969.


1.
1 .
1 .


3.
9.
16.

95.
95.
95.


663.
1611.
2558.


1 14.
1 14.
114.


799.
1941.
3083.


1.
1.
1 .


3.
9.
17.

95.
95.
95.


758.
1 706.
2653.


114.
114.
114.


914.
2056.
3198.


1.
1.
1.


4.
10.
18.

95.
95.
95.


853.
1800.
2748.


114.
114.
1 14.


1028.
2170.
3312.


1.
1.
1.


5.
11.
19.

95
95
95


948
1895
2843,


114
1 14
114


1142
2284
3426


1,
1
1


5
12
20,

ttC DOT   GLASS MIHUFACTUBING  INDUSTRY   (SODA-LIME GLASS)

-------
        li.4.
12.
12.
12.
12.
C'JSuLATIVZ
12.
123.
244.
361 .
12.
12.
12.


23.
140.
256.

1-.
12.
11-.


35.
15"..
2Gb.

IiC E06 (AGG) CASHABLE SEFRACTCSY ?LA
c
C _
6.
7 .
CCfltLillVE
5.
56.
114.
1 C 1 .
4C £1C CEFAXIC
112.
112.
1 12.
112.
CUMULATIVE
112.
12;-..
23-.i .
34t2.
40 D11 GYPSUM
c ^
5.
5.
C
CUMULATIVE
C
50.
96.
1C1.
40 C12 PEFLIIE
3.
3.
3.
3.
CUMULATIVE
3.
35.
68.
ICC.
40 B13 HIKEEAL
2 .
2.
2.
2.
CUMULATIVE
2.
2c.
50.
74.
40 B14 FIBEBGL
2.
2.
S.
6.
6.


10.
61.
120.
CLAY .IF 3
112.
1 12.
1 12.


223.
1340.
2457.

~j ,
f. .
6 .


14.
67.
127.

112.
112.
112.


335.
1^52.
25o3.

H4HUFACT3RING PLANTS
5.
5.
5.


9 .
55.
100,

(VERTICAL FURN
3.
3.
3.


6.
39.
71.

fcOOL KFG
2.
2.
2.


5.
29.
53.

ASS MFG. PLANTS
2.
2.
5.
5.
5.


14.
59.
105.

ACE)
3 .
3.
•3


10.
42.
74.


2.
2.
2.


7.
31.
55.

(WOOL
2.
2.
12.
12.
1 - •


47.
163.
279.

NTS
5.
6.
7.


19.
73.
133.

112.
1 1z.
112.


447.
15fc3.
2(^0.

(CALCINZB)
5.
5.
5.


19.
64.
109.


3.
3.
-> .


13.
45.
77.


2.
2 .
2.


10.
33.
57.

PROCESSING)
2.
2.
               12.
               12.
               12.
174.
29'..
  24.
  7d.
 140.
 1 U.
 1 1^.
 112.
1b7
  2 j.
  68.
 114.
  43.
  81 .
  12.
  3G.
  6C.
               30.
              147.
 G70.
17^7.
 903.
  27.
  73.
 119.
  19.
  52.
  34 .
  14.
  3o.
               U.
               12.
               12.
                          1 99.
                          214.
               90.
              153.
              1 12.
              1 12.
              1 12.
 "'32.
1898.
3315.
  32.
  76.
 123.
  55.
  67.
                            2.
  17.
  41.
  65.
               12.
               12.
               12.
                            93.
                          239.
                          326.
               40.
               96.
              160.
              112.
              112.
              112.
 893.
2010.
3127.
  36.
  82.
 126.
  26.
  58.
  90.
  19.
  43.
  b7.
               12.
               12.
               12.
                           1C 5.
                           22 1.
                           337.
               45.
              102.
              167.
              112.
              Hi.
              1 12.
                                                  1005.
                                                  2 ^/.L.
                                                  3235.
                                                    4 1.
                                                    d7.
                                                   132.
                                                    29.
                                                    6 1.
                                                    93.
                                                    22.
                                                    45.
                                                    69.
                                                                 12.
                                                                 12.
                                                                 12.
                           1 16.
                           233.
                           349.
                                                     51.
                                                    10R.
                                                                1 1 2.
                                                                112.
                                                                112.
                                                               1117.
 45.
 91.
137.
 32.
 64.
 97.
 24.
 48.
 72.
                                                                          sa
                                                                          I

-------
                                                               i dU > e D . H .
           3.          3.           3.
           U.
CUMULATIVE
           2.          3.           5.
          2C.         22.          25.
          US.         48.          51.
          78.
40 D16   (AGG)  CLAY SINTERING PLANTS
                         3.
                          7.
                        27.
                        54.
                                      3.
             8.
            29.
            57.
                                     10.
                                     32.
                                     60.
                         12.
                         34.
                         64.
                         37.
                         67.
16.
39.
71.
18.
42.
75.
CUMULATIVE
           0.
           2.
           3.
           4.
0.
2.
3.
0.
2.
3.
4C E17   FLY-ASH SINTERING   (SINIEF.ING)
1 .
2.
3.
                                                      FRACTIONAL GROWTH SOURCE CATEGORY
1.
2.
3.
1 .
2.
4.
                                                       FRACTIONAL GROWTH SOURCE CATEGORY
CUMULATIVE




4C D1 9




C.
3.
6.
1C.
GLASS
4.
4.
4.
4.
0.
3.
7.

MANUFACTURING I
4.
4.
4.

1 .
4.
1 .

StUSTRY (LEAD
4.
4.
4.

1 .
4.
•7.

GLASS)
4.
4.
4.

CUMULATIVE




41 E01




4.
43.
82.
121.
(AGG)
7.
7.
7.
7.
8.
47.
86.

ASPHALT ROOFING
7.
7.
7.

12.
51.
90 .

PLANTS
7.
7.
7.

16.
55.
94.


7.
7.
7.

CUMULATIVE




41 D01




7.
76.
145.
215.
(AGG)
1€ .
16.
16.
16.
14.
83.
152.

PHOSPHATE ROCK
16.
16.
16.

21.
90.
159.

23.
97.
166.

PREPARATION PLANTS
16.
16.
16.

16.
16.
16.

CUMULATIVE




41 101




16.
181.
346.
51 C.
33.
197.
362.

U9.
214.
373.

66.
230.
395.

METALIC MINERALS MINING (IRON ORE)
4.
4.
4.
4.
4.
4.
4.

4.
U.
4.

4.
4.
4.

                                                             19.
                                                             58.
                                                             97.
                                                             35.
                                                            104.
                                                            173.
                                                             16.
                                                             16.
                                                             16.
                                                             82.
                                                            247.
                                                            411.
                                                  23.
                                                  62.
                                                 101.
                                                  42.
                                                 111.
                                                 180.
                                                  16.
                                                  16.
                                                  16.
                                                  99.
                                                 263.
                                                 428.
                                                  27.
                                                  66.
                                                 105.
                                                  48.
                                                 1 18.
                                                 187.
                                                  16.
                                                  16.
                                                  16.
                                                 115.
                                                 280.
                                                 444.
                                                  31.
                                                  7C.
                                                 109.
                                                  55.
                                                 125.
                                                 194.
                                                  16.
                                                  16.
                                                  16.
                                                 132.
                                                 296.
                                                 461.
                                                  35.
                                                  74.
                                                 113.
                                                  62.
                                                 132.
                                                 201.
                                                  16.
                                                  16.
                                                  16.
                                                 148.
                                                 313.
                                                 477.
                                                                                                                              3.
                                                                                                                              6.
                                                                                                                             10.
                                                  39.
                                                  78.
                                                 117.
                                                  69.
                                                 139.
                                                 208.
                                                   16.
                                                   16.
                                                   16.
                                                 165.
                                                 329.
                                                 494.
                                                                                                                                       W

-------
CUMULATIVE
           4.
          3S.
          74.
41 F01
               7.
              42.
              78.
1 1C.
(AGG) IIOS-KETALLIC  MINING -
                                        :LAY
19.
85.
                                                               Table i.4. (Contd.)
• c .
55.
38.
21 .
57.
92.
60.
95.
26.
64.
99.
 32.
 67.
132.
 35.
 71.
106.
                                                    DECLINING GROWTH SOURCE CATEGORY
   £01   ME1ALIC  MINERALS  MINING  (^:< fcOAI.I.OY)



C'CK




4^




CUM




-i3




CUM




43



CUM




4 4




3.
3.
3.
iUIATIVE
3.
30.
c '3 .
92.
F01 (;.GG) !i
3 .
3 .
3 .
3.
'OLATIVE
3.
32.
£4.
92.
£01 ME1ALIC
1.
1.
1 .
1.
ULATIVE
1 .
14.
21 .
42.
3.
3.
3,

5.
33.
63.

CM-MET Ai-ic si::i:
3.
3.
3.


6.
35.
67.

HISE5ALS MINING
1 .
1.
1.


3.
15.
23.

3 .
3 .
;-

6.
35.
66.

iG - GVP3U"
3.
3 .
3.


c, f
35.
70.

(COP?EK)
'i .
1 .
1.


4 .
17.
30.

3 .
3.
3.

10.
38.
69.


3.
3 .
3.


12.
42.
74.


1 .
1 .
1.


C
18.
32.

^D
3 .
3.

13.
41.
72.


3.
.3.
3.


1 4.
45.
77.


1.
1.
1.


6.
19.
33.

3.
? .
3.

16.
44.
76.


3 .
3.
3 .


17.
43.
eo.


1 .
1.
1.


e.
21 .
04 .

3.
3 .
3.

19.
47.
79.


3.
3.
3.


20.
51.
84.


1.
1.
1 .


9.
22.
36.

3.
3.
3.

21.
50.
82.


3.
3.
3.


23.
54.
87.


1.
1.
1.


10.
23.
37.

3.
3 .
3.

24.
53.
86.


i.
3.
•3 ^


26.
57.
91.


1.
1 .
1.


11.
25.
39.

3
3
3

27
56
89


3 ,
3
3


29
61
94


1,
1
1,


13
26
40,

?01 (AGG) NON-METALLIC MINING - LI.1E
4.
4 .
5 .
c
uLillVE
4.
43.
94.
143.
EC1 KE1ALIC
6.
6.
6.
6.
4.
4.
5.

8.
52.
99.

MINERALS HIKING
6.
6.
6.

4.
4 .
r

13.
57.
4.
5.
5.

17.
61.
103. 106.

(1I.\D MIKING)
6.
e.
6 .



6.
6.
6.

4.
5.
5.

21.
66.
1 13.


6.
6.
6.

4 .
5.
5.

26.
70.
113.


6.
6.
6.

4.
5.
C.

30.
75.
123.


6.
6.
6.

4.
5.
5.

34.
80.
128.


6.
6.
6.

4.
5.
5.

39.
84.
133.


6.
6.
6.

4,
5
5

43
89
138.


6.
6,
6,

CUMULATIVE

6.
11.
17.
23.
23.
34.
40.
46.
51.
57,

-------




4 4








, S




Cl



,, t








4 5




cu




45

c : .
120.
177.
•;i HiCfJiiA
2 .
'.: -
-;-
.'. ' !, .i7I V£
2.
1 '.: .
2 _ .
5 1 .
-1C (AGG) I
72 .
22.
*2 .
22.
.1 1; L A 1 1 v t
i 2 .
*. 4 ^ .
4 t 2 .
Ill (AGG) 1
t .
t .
c .
t .
6.
i 4.
12j .
1 c 2 .
D12 (ACG) I
2 .
2 .
2 .
2.
.VJLA1IVE
2 .
21 .
*• C .
ec.
E.01 ME1ALIC

6 S .
1*5.

7E P.CCK (
2.
2.
2 _


20.
3£.

aSSEL KIL
22.
22.
22.


44.
2 t, 4 .
454.
u ;; N E L K : i.
r, .
.


12.
70.
125.

U S N 2 L K 1 1
2.
2.
2.


4.
23.
42.

MINERALS
Tar :e t
"/ !; . c j . >' ' v
lil. 137. 1,2.

K I :' 1 N o )
?. 2. 2.
2. 2. 2.
2. 2. 2.

c . 7 .
...".. 23. ;-:^.
. : . 40. 4 i .

:;s (G/,j ),;;:,•; ""3 AND STORAGE
22. 22. 22.
22. 22. 22.
*-2. 22. 22.


'.C. 6.1. 110.
2;:''. 3C2b. St.0.
;is (oil) , E:-Y JBS AND STOH;.GE
o . b. 5.
f . r, . ^ .
n . o . r, .

It. 23. 29.
7t. H2. dc!.
1 > 5 . 141. 146.

N" (C6\I) , :-? YS'r.J AN'D SI'OR.'.GE
2 . 2 . 2 .
2 . 2 . 2 .
2. 2. 2.


6 . 3 . 10.
25. 27. 29.
4-. 46. 43.

«in T:IG (i:i:;c .-USE s CRUSHING)
J . •" . ^ Con r.u . ;
i i .
1 40.


2 .
2 .
2 .

10.
2 "7 .
H.i .


22.
22.
22.


132.
352.
572 .

b.
6 .
D .

35.
94.
1 52.


^ .
2.
2.


12.
31.
50.



i;- •» .
1 54.


2 .
2.
"i

12.
23.
45.


22.
22.
22.


1 54.
374.
594.

6.
b .
6.

41 .
100.
158.


2.
2.
2 .


13.
33.
C ',



103.
159.


2 .
2.
2-

13.
30.
46.


22.
22.
22.


176.
396.
61 6.

6.
6.
6.

47.
105.
164.


2.
2.
2.


15.
35.
£4.



106.
165.


2.
2.
"

15.
31.
46.


22.
22.
22.


196.
416.
638.

6.
6.
u .

53.
11 1.
170.


2.
2.
2.


17.
36.
56.



114
171,


2,
2
2,

17
33
50


22.
22
22


220
440
660,

6,
6
6

59
1 17
176,


2
2
2


19
33
53


                                                          DECLINING  GRO'.-iTH  SOURCE CATEGORY
    F01   (AGG)  NOS-aETALLIC  .TIMING - BORCli COMPOUNDS
                                                             FRACTIONAL GROWTH SOURCE CATEGORY
CUMULATIVE
            0.
            3.
            7.
1.
4.
7.
1.
4.
1.
4.
1 .
5.
9.
 2.
 6.
10.
 3.
 6.
10.
 3.
 7.
11.

-------
                                                            Table 8.4. (Contd.)
          11.
46 D10   (ASG) PERIODIC KILNS (GAS) ,DLYERS  AND STOKAoE
           7.           7.           7.           7.
           7.           7.           7.           7.
           7.           7.           7.           7.
           7.
CUMULATIVE
           7.          15.          22.          30.
          61.          85.          vG.         103.
         155.         163.         170.         '77.
         22S.
4o D11   (AGG) PEEICDIC KILUS(OIL),  r>.
-------



CJJ.-.U




ec c



Lu^'j




J V. ^




C U .1 U



2.
^ .
2 .
I STIVE
/ .
21.
i.1.
c,C.
G2 Gii 11 ISCN
C.
£, ,
U
LATIVL
r.
5c .
110.
1 1 '.'. .
o : or. i» i EC ii
i .
1 .
•; .
1 .
L A 1 1 V I
1 .
e.
1 U .
2.
2 .
2.

1.
23 .
43.

FOUNDRIES
5.
5.
'"'•

13.
C3.
1 15.

FCUU'LSliS
1 .
\ m
1 .


1.
0.
15.
?.
2.
2 .


0 c ^
45.

(ELFCTf.IC ARC)
c
c
c

16.
b3.
120.

( 5 EVi SCRATCHY)
1 .
1 .
1 .


2 .
H .
1 !. .
2.
2 ,
-••

3 .
"; 7 .
47.


5 .
5.
5 .

21.
73.
126.


1.
1 .
•t


3.
10.
16.
2.
2.
.?.

11.
- r^
49 .


5.
~j .
5.

26.
7 j.
1 31.


1.
1.
1.


3.
10.
17.
2.
1 .
2.

I*.
.^l .
51.


5.
n .
-•

31.
8U.
1 36.


1 .
1 .
1 .


{4 ^
1 1 .
13.
2.
2 .
2.

14.
.: 5 .
51.


5.
5 .
5.

37.
6S.
1U1.


1 .
1 .
1.


5.
12.
19.
2.
2.
2.

16.
35.
51.


5.
5.
5.

H2.
94.
147.


1.
1.
1 .


5.
12.
19.
2.
2.
2.

18.
37.
56.


5.
5.
5.

i.7.
99.
152.


1.
1.
1.


6.
13.
20.
2
2,
2,

1 9
39.
53


5
5
5

52
105,
157


1
1
1


7
1 4,
21
                                  (CUPOl,1.)
                                                         DECLINING GROWTH SOURCE CATEGORY
50  £01   SliEL FOUNDRIES   (ELECTRIC  ARC)




c i .»:



c •'
j ^




29 .
^ '- .
2': .
' Q _
'J L A 1 1 V 2
~<- •> .
314.
6CC.
D02 Sli.L FC'J
3.
3 .
3 .
3 .
29.
r:o.
2 9 -


57.
3*3.
629.
NDEIES (OPE:l
j.
3.
3.

29 .
23.
/. '- .


£G.
371.
657.
H2A-TH)
J .
3 •
3.

29.
29.
29.


1 14.
400.
666.

j ^
3.
3.

29.
23.
'I'j.


143.
429.
714.

J .
3.
3.

29.
29.
29.


171.
457.
743.

3.
3.
3.

29.
29.
29.


2 GO.
486.
771.

3.
3.
3.

29.
29.
29.


229.
514.
800.

3.
3.
3.

29.
29.
29.


257.
5U3.
829.

3.
3.
3.

29
29
29


236
571
857

3
3
3

CUMULATIVE




50


3 .
35 .
L "/ .
S3 .
F01 URANIN'J.".
4 .
4.
6.
3B.
7-J.

REFINING
4.
4.
10.
4 1 .
73.


4 .
4.
13.
t4.
76.


4.
Ii.
IS.
45.
79.


4.
4 .
19.
51 .
63.


4.
4.
22.
54.
86 .


4.
4.
25.
57.
89.


4.
14.
29.
60.
92.


4.
14.
32
614,
95


14
14

-------


c




5




C




5




i.








C



s



^



4.
4 .
U.rULAlIVE
4 .
45.
6c.
127.
1 D12 (AGG) SECCNDA
1 .
1 .
1.
1.
•JhULATIVE
1 .
14.
27.
39.
1 E01 (AGG) SECOIIDA
1 .

1 .
1 .
U.10LATIVE
1 .
o
1 6 .
1 Z02 (/!;i) SZCC::DA

i .
i .
1 .
UKULATIVE
'i .
0 .
i ;. .
5 A01 PISIICI&SS KA
1 .
2 .
2 .
U/.UIATIVZ
1 .
1 f.
33.
4. 4.


8. 1: .
49. :3.
90. 9s.

PY ALUMINUM PLANTS
1. 1 .
1. ? .
1. 1 ,


J. 4.
15. IV.
23. 20.

3Y ZI'iC 5*£L"-.:'3 (I
1. 1 .
" . * .
1 . ' .


2. 2 ,
10. i :.
1 ;• . i ';• .
?,v zi::c 3:::.i.; -s (:
i . "i .
i. 1 .
1 . i .


2. :. .
i j . 11.
10. 1 '< .
::uFACTU2i:^
i. i .
2. 2 .
2 . 2 .

3. 4.
17. If.
(5. 37.
4.


16.
57 .
93.


1.
1 .
1 .


5 .
13.
31 .

>STC?T RZ
1.
1 .
1 .


3.
12.
2 0 .
-:osiz £ r
T .
1 .
1 .


J .
12.
20.

1.
2.
2.

5.
20.
39.
4.


20.
61 .
102.


1.
1.
1.


6 .
1 3.
32.

LUCTIOti 6 KZ1T2E K
1 .

", .


4.
12.
21.
LV2EE. t j.-.:; -'.CZi)
1 .
1 .
1.


4 .
12.
2 1.

1 .
2 .
2.

6 .
22.
41.
U.


25.
65.
1 :•£.


1.
1.
i


n.
2J.
3 -^ _

U£vKACr,S)
1 .
1.
•i


5.
13.
22.

1 .
1.
1.


f, .
1 1 .
22.

1 .
2 .
2 .

S.
24.
44.
4.


29.
70.
1 10.


1.
1 .
1 .


C' ^
22.
34.


1.
1 .
i .


6.
14.
23.

1 .
1 .
1.


6 .
14.
23.

1 B
2.
2.

9.
25 .
46.
U.


33.
74.
1 14.


1.
1.
1 .


- 1 0.
23.
36.


1.
-, .
1 .


7.
15.
24.

1.
1.
1 .


7.
1 5.
24.

i
2.
2.

1 1.
27.
48.
4.


37.
78.
119.


1.
1.
1.


1 1.
24.
37.


1 .
1.
1.


7.
16.
25.

1 .
1.
1.


7.
1C.
25.

1 .
2.
7.

12.
29.
51.
U.


41 .
82.
123.


1.
1.
1 .


13.
25.
33.


1 .
1.
1 .


8.
17.
26.

1.
1.
1 .


8.
1 7.
26.

2.
2.
3.

14.
31.
53.
          56.
57 soi   (AGG)  SECG::DA?V CCPPER PLANTS  (SL/.ST F"-r',c.F;
CU.IULATIV;
           c.           i.            i.
           i.           5.            i.
          ' :.          1C.           • '. .
          I -* -
So 5C1   (AGG) SLCOUDASY CCPFES PLA!.'^  (COKVESIih  iMELlIS:;
           1 .           1.            1 .
           1 .           1.            1 .
           1.           1-            1.
           1.
"; . "'
6. 7.
11. 11.
lih iMELlIN:;)
1. 1.
1. 1.
1 . 1.
3 .
7.
12.

1 .
1 .
1
3 .
b.
12.

1 .
1 .
1 .
4. 4.
e. 9.
13. 13.

1. 1 .
1. 1.
1 . 1.
5.
9.
1 4.

1.
1.
1.

-------
Table B.4.  (Contd.)
CUMULATIVE
1.
7.
13.
2C.

1.
3.
14.


j_.
8.
15.


3.
9.
15.


3.
10.
16.


U,
1C.
17.

60 B01 DFY CLEANING
334.
337.
339.
342.
CUMULATIVE
334.
36SO.
7070.
1C475.
60 B04 GRAPHIC
11.
13.
15.
18.
CUMULATIVE
11.
135.
279.
446.
60 B05 GSAEHIC
7.
7.
9.
10.
CUMULATIVE
7.
77.
159.
254.
60 B07 GRAPHIC
35.
40.
47.
55.
CUMULATIVE
35.
416.
857.
1372.
60 F03 P.T.M.
2.
2.
2.
3.
CUMULATIVE
2.
21.
44.
69.
60 F04 P.I.H.
13.
14.
15.
16.
CUHULATIVE
13.
335.
337.
339.


669.
4027.
7409.

ARTS INDUSTRY
12.
13.
16.


23.
149.
294.

ARTS INDUSTRY
7.
8.
9.


13.
85.
163.

ABTS INDUSTRY
36.
41.
43.


71.
458.
905.

335.
337.
339.


1004.
4364.
7749.

(GRAVURE)
12.
13.
16.


35.
162.
310.

335.
337.
340.


1339.
4702.
8089.


12.
14.
16.


47.
176.
326.

335.
337.
340.


1674.
5039.
8429.


12.
14.
16.


59.
190.
342.

336.
338.
340.


2009.
5377.
8769.


12.
14.
17.


71.
204.
359.

(FLEXOGRAPHY)
7.
8.
9.


2C.
93.
177.

7.
8.
9.


27.
101.
186.

7.
8.
9.


34.
103.
195.

7.
8.
10.


41.
117.
205.

(LETTERPRESS)
36.
41.
4fc.


107.
499.
953.

ID. (SHIP 6 B1RGE TBANSFEB
2.
2.
2.


4.
24.
46.

ID. (BULK GAS.
14.
14.
15.


27.
2.
2.
2.


6.
26.
49.

TERMINALS)
14.
14.
15.


41.
37.
43.
50.


144.
542.
1003.

, GAS.
2.
2.
2.


7.
28.
51.

LOADING
14.
15.
15.


54.
37.
43.
50.


182.
585.
1053.

& CRUDE OIL)
2.
2.
2.


9.
30.
54.

TANK TROCKS/RR
14.
15.
15.


68.
38.
44.
51.


220.
629.
1104.


2.
2.
3.


11 .
32.
56.

CAR
14.
15.
16.


82.
                         4.
                        11.
                        17.
                       336.
                       338.
                       340.
                     2315.
                     5715.
                     91 10.
                        12.
                        14.
                        17.
                        84.
                       219.
                       376.
                         7.
                         8.
                        10.
                        48.
                       125.
                       214.
                        38.
                        44.
                        51.
                       258.
                       673.
                      1156.
                        13.
                        34.
                        59.
                        14.
                        15.
                        16.
                        96.
   5.
  11.
  18.
 336.
 338.
 341.
2681.
6054.
9-451.
  13.
  15.
  17.
  96.
 233.
 393.
   7.
   8.
  10.
  55.
 133.
 224.
  39.
  45.
  53.
 297.
 718.
1209.
  15.
  37.
  61.
  14.
  15.
  16.
                                   110.
   6.
  12.
  19.
 336.
 338.
 341.
3017.
6392.
9792.
  13.
  15.
  17.
 109.
 248.
 410.
   7.
   8.
  10.
  62.
 142.
 234.
  39.
  45.
  53.
 336.
 763.
1262.
  17.
  39.
  64.
  14.
  15.
  16.
                                                124.
    6.
   13.
   19.
  337.
  339.
  342.
 3354.
 6731.
10133.
   13.
   15.
   18.
  122.
  263.
  428.
    7.
    9.
   10.
   70.
  150.
  2U4.
   40.
   47.
   55.
  376.
  810.
 1317.
   19.
   41.
   67.
   14.
   15.
   16.
                                                            138.

-------
(Contd.)



6 1




152.
299.
45c.
£02 I ! DUSIRIAL
14.
1 '; .
25.
1-4 .
1 of. .
314.

SUF. FACE
15.
20.
26.

1 ; " . 1 9 '"> .
j 2 9 . j 4 C .

CGr.TI!.:; (LAHli, A I- F I.I.'. SCI'
If:. 1 •' .
1: Ci . 1> 1 .
^ . . / r. .

^ * '. .
5 6 'J .

CCATi KG)
"i t .
^ . .
.'i.

2 ;. 4 .
376.


17.
22.
:• o .

239 .
392.


17.
22.
30.

254.
406.


18.
24.
32.

269.
423.


16.
24.
32.

264.
440.


19.
25.
34.

CU.1ULATIVL




6 1




C!j




6 2




C'J




£2



CU




63




14.
164.
4^0.
7C7.
EC3 i: JUSTSIAL
" C .
1i.
17.
24 .
MULATIVI
1C.
1 i 'J .
2f 2.
492 .
E02 INDUSTRIAL
2 .
2.
2 .
3 .
M'JLATIVE
^ .
24.
47.
72.
E03 irCUSTBIAL

2 .
'-•
4 .
.rULAIIVE
2.
22 .
4fc .
f 3 .
302 If:USTKIAl
3.
4 .
5.
6.
30.
203.
4 (3.

SUi. r ACE
1 1.
14.
1b.


21.
141.
301.

SURFACE
2.
2 .
2.


/;.
26.
49.

SUFr'ACE
2 .
2 .
3.

3.
24.
51.

SURFACE
3.
4.
5.

45. iV,.
223. 244.
u5'<. 457.

CCAII.v; (SAGNET ::i?j. CCA
11. 11.
14. 15.
1 >. 2 J.


-•• 1. 42.
1^. 17 j.
31r- . 33:.

CCATIK.; (AUIOM02I L::S)
2 .
^ . 2 .
2. 2.


C . >. .
2f. . 31.
ti 2 . 54.

COATING (CAN COATIKG)
„ . 2 .
2 . 2 .
.?. 3.

5. 7.
2(i. ^9.
54. 57.

CCAIIUG (HSTAL COILS CCA
3 . j .
4. 4.
5. 5.

77.
265.
515

TING)
1 1.
15.
20 .


5 .3 .
i -j -i .
35o.


2 .
2.
2 .


1 1.
-> 3 .
57.


^ .
^ .
:'-

9.
j 1.
6 1.

Ti:CG)
3 .
u .
5.

94.
287.
545.


12 .
15.
21.


65.
2 G j .
379.


4. •
2.
2.


1 j.
35.
59.


2.
j .
--

1 1.
34.
64.


3 .
4.
6.

111.
309.
575.


12.
1 j.
21.


77.
215.
400.


2.
2.
2.


15.
3 •;. .
62.


2 .
3 .
4.

13.
36.
63.


3.
4.
6.

128.
333.
607.


12.
16.
22.


89.
231 .
422.


2.
2.
3.


17.
40.
64.


2.
3.
4.

15.
39.
72.


2.
4.
6.

146.
356.
619.



".6.
22.


102.
24c.
444.


2.
2.
3.


19.
42.
67.


2.
3.
4 .

17.
42.
75.


3 .
4.
6.

1 65.
361.
673.


13.
1 7.
24.


1 1 5.
265.
463.


2.
2.
3.


22.
45.
69.


2.
3.
4.

1 9.
45.
79.


4.
5.
6.

CUMULATIVE




63




3.
3 C
77.
133.
E03 INDUSTRIAL
2 .
2.
3.
4.
6.
38.
62.

SURFACE
2.
2.
3.

c . 11.
42. w u .
67. 92.

COATING (PAPEfi COATIC3)
2. 2.
2. 2.
3. 3.

1 4.
50.
97.


j •
2 .
3.

15.
54 .
102.


2 .
3.
3.

21.
58.
108.


2 .
3.
3.

24.
63.
1 1 4.


2.
2.
4.

26.
67.
120.


2.
3.
4.

31.
72.
127.


2.
3.
4.

CUMULATIVE



2 .
21.
17.
3.
23.
50.
c. 7.
26. 28.
53. 56.
9.
30.
59.
1 1.
33 .
63.
13.
36.
66.
15.
36.
7Q.
17.
41.
73.
19.
44.
77.

-------

64 BO 2




81.
INDUSTRIAL
11.
15.
19.
26.

SOEPACB
12.
15.
21.


COATIKG (FABRIC
12.
15.
21.


COATING)
12.
16.
22.

CUMULATIVE




11.
143.
316.
551.
23.
158.
337.

35.
174.
356.

47.
190.
380.

                                                                 Table B.4. (Contd.)
                                                            12.          13.          13.
                                                            16.          17.          17.
                                                            22.          23.          23.
                                                            60.          73.          86.
                                                           206.         22U.         241.
                                                           402.         425.         448.
              18.
              25.
             100.
             259.
             473.
              14.
              18.
              25.
             114.
             278.
             498.
              15.
              19.
              26.
             128.
             297.
             524.
70 F01  GASOLINE ADDITIVES   (SODIUK-LEAD)
                                                        DECLINING GROWTH SOURCE CATEGORY
70 F02  GASCLISE ADDITIVES   (ELECTROLYTIC)
                                           DECLINING GROWTH SOURCE CATEGORY
71 D01




(AGG)
9.
10.
12.
14.
PETROLEUM REFINERY' MISC. SOURCES
9.
11.
12.

9.
11.
12.

9.
11.
13.

9.
11.
13.

CUMULATIVE




7 1 E01




9.
105.
218.
352.
(AGG)
15.
17.
18.
20.
18.
1 16.
231.

CRUDE OIL AND
16.
17.
13.

27.
126.
243.

NATURAL GAS
16.
17.
18.

36.
137.
256.

PRODUCTION
16.
17.
19.

46.
148.
269.

PLANTS
16.
17.
19.

CUKULATIVE




8C A03




15.
175.
3<*9.
539.
31.
192.
367.

CHEMICAL HOOD IND.
3.
3.
3.
3.
3.
3.
3.

46.
209.
386.

(NSSC)
3.
3.
3.

62.
226.
404.


3.
3.
3.

78.
243.
423.


3.
3.
3.

CUMULATIVE




3.
29.
56.
83.
5.
32.
59.

8.
35.
62.

11.
37.
64.

13.
40.
67.

                                                                        10.
                                                                        11.
                                                                        13.
                                                                        55.
                                                                       159.
                                                                       282.
                                                                        16.
                                                                        17.
                                                                        19.
                                                                        94.
                                                                       260.
                                                                       442.
                                                                        16.
                                                                        43.
                                                                        70.
 10.
 11.
 13.
 65.
171.
295.
 16.
 17.
 19.
110.
278.
461.
 19.
 46.
 72.
 10.
 12.
 14.
 75.
182.
309.
 16.
 18.
 19.
126.
295.
480.
 21.
 48.
 75.
 10.
 12.
 14.
 85.
194.
323.
 16.
 18.
 19.
142.
313.
499.
 24.
 51.
 78.
 10.
 12.
 14.
 95.
206.
337.
 17.
 18.
 20.
159.
331.
519.
 27.
 54.
 80.
w
I
Ul
80 A04  CHEMICAL HOOD PULPING  IND.   (ACID SULFITS)

-------
                                                               Table D.4. (CuMLd

                                                     FRACTIONAL GROWTH SOURCE CATEGORY
CUMULATIVE




80 B01




0.
e;
9.
14.
PLYWCCD
9.
10.
12.
14.
1.
5.
10.

1.
6.
10.

2.
6.
10.

MANUFACTURING PLAN?
9.
11.
12.

9.
11 .
12.

10.
11.
12.

CUMULATIVE




90 F02




9.
106.
220.
348.
TEXTILE
7.
9.
12.
17.
19.
T19.
233.

HFG (HEAT
7.
9.
13.

26.
130.
245.

SETTING/FINISHING)
7.
9.
13.

38.
1U1.
257.


8.
10.
14.

CUMULATIVE




7.
be.
193.
339.
14.
96.
206.

21.
105.
219.

29.
115.
232.

                                                              7.
                                                             1 1.
                                                             10.
                                                             11.
                                                             12.
                                                             43.
                                                            152.
                                                            270.
                                                             10.
                                                             14.
                                                             36.
                                                            125.
                                                            246.
 10.
 11.
 13.
 56.
163.
282.
 11.
 15.
 44.
136.
260.
               3.
               7.
              12.
 10.
 11.
 13.
 67.
174.
295.
 11 .
 15.
 52.
146.
275.
               3.
               8.
              12.
 10.
 11.
 13.
 78.
185.
308.
  8.
 11.
 16.
 60.
158.
290.
               4.
               8.
              13.
 10.
 11.
 13.
 83.
197.
321.
  8.
 11.
 16.
 69.
169.
306.
               4.
               9.
              13.
 10.
 12.
 98.
209.
335.
  9.
 12.
 17.
 78.
181.
322.
                                                                                                                                       w
                                                                                                                                       Ln
                                                                                                                                       -J

-------
                                     C-l
                                 APPENDIX C
     ESTIMATES OF MAXIMUM EXPECTED SHORT-TERM (1-24 HOUR) AND LONG-TERM
                 (ANNUAL) GROUND LEVEL CONCENTRATIONS FROM
                         SINGLE AND MULTIPLE SOURCES
C.I  SHORT-TERM ESTIMATES
       Estimates of the maximum expected short-term ground level pollutant
concentration due to a single source are based upon the familiar Gaussian-plume
model. *  This model is appropriate for use with primary conservative pollutants
and relatively short source-receptor distances.
       According to this model, the ground level concentration below the plume
centerline is given by the following equation:
              TTUCJ O
                 y z
                     exp
1/H
20-
(1)
in which:
       X(x) = ground level centerline pollutant concentration at
              a distance x from the source,  (micrograms/cubic meter):
       Q    = emission rate (grams/second);
       u    = wind speed (meters/second);
       C    = horizontal dispersion coeffieient, a function of x
              (meters);
       a    = vertical dispersion coefficient, a function of x
              (meters);
       H    = effective stack height (meters), given by the sum of
              the physical stack height h  and the estimated plume
              rise Ah.                   s
Of specific interest is the maximum ground level concentration.  In order to
derive an analytic expression for the estimated maximum concentration, the
following commonly used representations of the horizontal and vertical co-
efficients were used:

       a (x) = axb                                                       (2)
       a (x) = cxd                                                       (3)
        Z

-------
                                      C-2
 The quantities a, b, c, and d depend upon the atmospheric stability class
corresponding to the meteorological conditions of interest.  Given these repre-
sentations, the following expressions for the estimated maximum concentration
X  and the corresponding downwind distance x  may be derived:
 m                                          m
          _ AQxlO6  JL
       *m     TTu    R2a
and
                       ll/2d
                    •5T                                                   (5)
with   a  =                                                              (6)
            2a-l
       A = ~— (2a)a exp (-a)                                          (7)
             cl
Table 1 gives the values of the parameters a, b, c and d as well as the values
of the quantity A for moderately unstable, neutral, and moderately stable
conditions.
      X   depends upon the stability class and the wind speed, the wind  speed
dependence being due not only to the explicit factor of 1/u in the equation
but also to the fact that the plume rise and therefore the effective stack
height depends upon u.  The plume rise is estimated using the formulas of
Briggs (1972, 1975):
       • Neutral/unstable:
         Ah = 1.6F1/su~V/3                                             (8)
where:
       F  =
       g  = acceleration of gravity (9.8 m/sec2);
       T  - exit gas temperature (Kelvin);
       T  = ambient atmospheric temperature  (Kelvin)
       V  = exit gas flow rate at temperature T;
            (cubic meters/second);
       u  = wind speed;
       C  = 3.5 x*
       x* = 14F5/8 for F<55 mVsec3
       x* = 34F2/5 for F>55 mVsec3

-------
Table 1,  Dispersion Coefficient Parameters and Maximum Concentration Coefficient
Atmospheric
Stability

Corresponding
Pasquill-Gifford
Stability Class
       b*

     c**,t

     d**,t

       At
 Moderately Unstable



          B

         0.351

         0.867

0.139, 0.0494, 0.0494

0.947, 1.114, 1.114

0.335, 0.188, 0.188
      Neutral



         D

       0.150

       0.889

0.0856, 0.259, 0.737

0.865, 0.687, 0.564

0.396, 0.955, 3.85
 Moderately Stable



 E-F (intermediate)

      0.0853

      0.894

0.0682, 0.227, 1.437

0.814,  0.618, 0.401

0.468,  1.21, 34.7
 *Estimated from Fig. 3.2, Ref. 14.
**Taken from Table 5, Ref. 18.
 tThe first numbers given for each stability are appropriate at distances between
  100 and 500 m, the second numbers at distances between 500 and 5000 m, and the
  third numbers at distances greater than 5000 m.
                                                                                                       n
                                                                                                        i
                                                                                                       U)

-------
                                      C-4
       • Stable:

                  /F

         Ah = 2'6 (




with      s = &- —
          s   T  3z
               a


         80
         •7T— = ambient potential temperature lapse rate; a value

              of 0.5°K/100m was assumed as being representative

              of moderately stable conditions.



For the neutral/unstable case, the plume rise estimate may be written in the


form:


       Ah = -                                                          (10)




       with C = 1.6F1/3£2/3


       i.e. C = 21F3/ltm2/sec for F<55mVsec3


       and  C = 39F3/V/sec for F>55mVsec3



In the stable case, the plume rise estimate becomes



       Ah = ^?rr                                                       (ID



with D = 47F    assuming an ambient temperature of 20°C = 293°K and



       99/9z= 0.5°K/100m.



       In order to estimate X  an appropriate value of the wind speed must be
                             m

selected.  The value corresponding to the worst case is that which maximizes


X .  For neutral and unstable conditions, X (u) has the following form:
 m                                         m
       x (u) .         --


                         (uh +C)1+b/d
                           s


The worst-case X  value  is given by
                m



       x      _ AQxlO6 .   1    .    (b/d)b/d

        worst     TT      ch b/d  (1+b/d)l+b/d

                           s


and occurs with a wind speed u  given by
                              w
       u   = b  C_ .                                                      (14)

               a
               s
w   d h

-------
                                      C-5
For stable conditions, X (u) has the form:
                        tn
               .n -_6       (b-2d)/3d
       v , N   AQxlO"      u
       x»(u) •   *    '
This function has no maximum for positive values of u unless b/d is larger
than 2.
       If more than one source is involved, exact analytic expressions analo-
gous to Eqns. 4, 5, 13 and 14 cannot be found and additional approximations
must be introduced if equations of comparable simplicity are desired.  The
first approximation is to consider all sources to be located at the same point,
although still with different stack parameters.  The total ground level con-
centration directly downwind of the source location is given by the general-
ization of Eqn. 1:
in which
       N  « the number of sources considered
       Q  = emission rate for the i-th source (grams/sec)
       H  = effective stack height for the i-th source (meters) , equal
            to the sum of the physical stack height and the estimated
            plume rise.
As in the case of a single source, an equation may be derived for the distance
at which the pollutant concentration is a maximum.  This equation cannot be
solved analytically, however, and may have more than one physically acceptable
solution, corresponding to the existence of more than one maximum in the pol-
lutant concentration as a function of downwind distance.  For most accurate
results, a detailed analysis of each situation is required.  For the purposes
of this work, a simpler albeit less accurate approach was desired.
       The approach which has been adopted involves the assumption that the
distance to the maximum concentration may be approximated to a sufficient degree
of accuracy by a weighted average of the distances at which each individual
source has its maximum impact.  Thus, x  is written in the form
                                       m

-------
                                      C-6
       x  =
        m
              N
                 w.x .
                  i mi
                                                   (17)
in which
       x
        mi
                    2ct
                        l/2d
                                                                        (18)
In order to estimate the plume rise associated with the i-th source, and hence
the quantity H., wind speed values equal to C./h  . and 2.0 m/sec were assumed
              -^-                              1  S1
for neutral or unstable, and stable conditions, respectively.  The weighting
factors, W., were chosen to be proportional to the ratio Q./h  . in order to
ensure that W  is zero if the emission rate for the i-th source is zero and to
approximately account for the effects of different stack heights.
       Once the distance to the maximum is estimated, an average effective
stack height H may be defined in a consistent manner from Eqns. 17 and 18.
The distance x  is given by
       x
        m
          -Ui.
                   i/2d   N
                                  ./d
                                                                       (19)
and a natural definition of H is
           " N
       H =
            1=1
                     ,/d
                                                                        (20)
With this definition, the relation between H and x  is the same as for  a
                     '                             m
single source:
       x  =
        m
               H
               c
2ct
                          ./2d
                                                                        (21)
Evaluating the total concentration X  , given by Eqn. 16, at  the distance
X  yields the following expression:
                                 N
            10fc
X  =
 m   TTU  - 2ct
         H
                          (2a)
                                     0. exp
                                      '
                                1=1

                                                   (22)
As in the single source case, the worst-case wind speed  is  taken  to be  that
which maximizes X  .  In order to estimate this value,  the dependence  of H  on
                 m

-------
                                     C-7
u must be considered, although for simplicity it is assumed that the ratio
H /H is approximately constant and its dependence on wind speed ignored.  Also,
for the sake of simplicity and for the purpose of estimating the worst-case
wind speed, the average effective stack height H was assumed to be given by
             N
                 LH.                                                   (23)
instead of by Eqn. 20.  This allows H to be written as
       H = h  H --  (neutral, unstable conditions)
            s   u
                                                                       (24)
              N
with   h  =
        s
                 W.h .
                  i si
            N
and    C =
                w.c. .
                 1 1
                                                                       (26)
With these approximations, the worst-case wind speed is given by
            •L  O
       u  = — — . (neutral and unstable conditions)
        w   d r-
              h
               s
With this estimate, the worst-case pollutant concentration is given by
                          vb/d
                                                                       (27)
       Y  = A    1
                      (b/d)'
        w   * ch b/d (i+b/d)1+b/d
                s
                    IN
                  •E
                   1=1
                       (Q.xlO6)  exp
                                      a
                                                                       (28)
although in practice it is more convenient to use Eqn. 22 and substitute in
the numerical value of u  .  Also,  in practice,  if u  , as estimated by
                        w                          w
Eqn. 27, was lower than 0.8 m/sec or higher than 15 m/sec,  a value of 0.8 or
15 m/sec, respectively, was used instead.
       As in the single-source case, a worst-case wind speed cannot be similarly
defined for stable conditions unless b/d is greater  than 2.  A worst-case wind
speed of 2.0 m/sec was used in practice.  It is still convenient, however, to
assume H to be given by Eqn. 23, in which case we may write

-------
                                   C-8

       H = h  H	T—  (stable conditions)                             (29)

with
            N
                J.D..                                                  (30)
       Equation 22 is the basis for all short-term, multiple-source concentra-
tion estimates; if only one source is present, Eqns. 22 and 21 reduce to the
exact analytic solutions for a single source, Eqns. 4 and 5, respectively.
Separate calculations were made for unstable, neutral and stable conditions
and the maximum value selected.  The estimates obtained from Eqn. 22 are as-
sumed appropriate for a 1-hour averaging time.  To obtain estimates for other
averaging times up to 24 hours, the 1-hour estimate is multiplied by the appro-
priate conversion factor, given in Table 2.

               Table 2.  Averaging Time Conversion Factors*
               Averaging Time             Conversion Factor
                  (hours)
                     1                          1.00
                     3                          0.83
                     8                          0.71
                    24                          0.58
              _
               Adapted from Table 5.1, Ref. 14.
       These factors reflect a power law dependence of concentration on aver-
aging time with an exponent of -0.17.

C.2  LONG-TERM ESTIMATES
       Estimates of the maximum expected annual average ground level concen-
tration from a single source are based upon the "sector-averaged" form of
Eqn. (1) (Ref. 14,15):
                       fQxlO6
                               exp
(31)

-------
                                       C-9
in which:
       n = the number of sectors into which the entire 360°
           range of wind direction is divided into; and
       f = the fraction of the time during which the wind
           direction is observed to lie within the sector
           of interest;
the other symbols having been defined previously.  The maximum value of this
function occurs at a distance x  given by
                               m
                          l/2d
                                                                      (32)
and has a value given by
       x  =                                                           (33)
        111    uH215
with
and
        B-|)1/2i-c26-1(2B)B exp (-B).                            (35)
and with the vertical dispersion coefficient represented by Eqn. (3).  In
making the estimate of the maximum expected value of X , values of c and d
corresponding to neutral atmospheric stability and distances between 500 and
5000m are used and the effective stack height H is estimated using Eqn. (10).
The values of B and 6 which result are 0.256 and 2.46, respectively.  The
maximum expected wind direction frequency in a single 22.5° sector (corre-
sponding to n=16) was estimated to be 0.25 from an examination of the annual
surface wind roses given for a large number of meteorological stations within
the United States on page 78 of the U.S. Department of Commerce Climatic Atlas
of the United States (1968).  The value of the wind speed that is used is the
nationwide annual mean wind speed, estimated at 4.4 m/sec from the annual wind
speeds listed with the wind roses referred to above.
       In the long-term, multiple-source case, similar approximations are
introduced as in the short-term cases, and the basic equation is similar to
Eqn. 22 except that Eqn. 31, instead of Eqn. 1, is the starting point in its
derivation.  The maximum concentration occurs at a distance x  estimated by
                                                             m

-------
                                     C-10
       x
                      l/2d
        m   I \ c /  28

and is given approximately by

                            rl
                   N
                                      (36)
             '2\1/2  n fQxlO6' 1    2B-1
                                       ,  R.
                                       (2B)
'Hi\2
ifi /
                                                                       (37)
The values of n, f, u and 3 are 16,  0.25,  4.4 m/sec  and  2.46,  as in the

single-source case.  H is defined by Eqn.  24.

-------
                                       R-l
                                    REFERENCES


 1.  Clean Air Act Amendments of 1977, PL-95-95 (Aug. 7, 1977).

 2.  Habegger, L.J., R.R. Cirillo, N.F. Sather, Priorities and Procedures for
     Development of Standards of Performance for New Stationary Sources of At-
     mospheric Emissions, EPA Report No.EPA-450/3-76-020, Argonne National Labo-
     ratory, Argonne, Illinois.

 3.  Hopper, T.G., W.A. Marrone, Impact of New Source Performance Standards on 1985
     National Emission from Stationary Sources, Report Nos. EPA-450/3-017 and -018a,
     b, c, d, e, f, and -019a, b, c., TRC. Inc. (May 1976).

 4.  Santini, D.J., An Econometric Model of Intraurban Location of Emitters and
     Receptors of Industrial Air Pollution, Argonne National Laboratory, Argonne,
     Illinois

 5.  Cirillo, R.R., T.D. Wolsko, R.O. Mueller, An Evaluation of Regional Trends
     in Power Plant Siting and Energy Transport, Argonne National Laboratory,
     Argonne, Illinois (Dec. 1976).

 6.  Environmental Protection Agency, National Primary and Secondary Air Quality
     Standards,  36FR22384 (Nov. 25, 1971).

 7.  Environmental Protection Agency, National Primary and Secondary Air Quality
     Standards,  38FR25678 (Sept. 14, 1973).

 8.  Environmental Protection Agency, Ambient Air Quality Standard for Lead,
     42FR63083 (Dec. 14, 1977).

 9.  American Conference of Governmental Industrial Hygenists, Threshold Limit
     Values for Chemical Substances in Workroom Air,  adopted by ACGIH for 1976.

10.  EPA-Emission Standards and Engineering Division, Final Guideline Document:
     Control of Fluoride Emissions from Existing Phosphate Fertilizer Plants,
     EPA-450/2-77-005, OAQPS No. 1.2-070 (March 1977).

11.  Cleland, J., and Kingsbury, G., Multimedia Environmental Goals for
     Environmental Assessment, prepared by RTI under contract to EPA, EPA-600/
     7-77-136a,  b (Nov. 1977).

12.  EPA-Emission Standards and Engineering Division, Draft Guideline Document:
     Control of Sulfuric Acid Mist Emissions from Existing Sulfuric Acid
     Production Units (Oct.  1976).

13.  Exhaust Gases from Combustion and Industrial Processes,  US EPA Report No-
     APTD-0805.   Prepared under Contract No. EHSD71-36 by Engineering Science,
     Inc. (Oct.  1971).

14.  Turner, D.B., Workbook of Atmospheric Dispersion Estimates,  Office of
     Air Programs Publication No. AP-26,  U.S.  Environmental Protection Agency,
     Research Triangle Park, NC 27711 (1970).

-------
                                        R-2
 References (Cont'd)

15.  Slade, D.H., Meteorology and Atomic Energy,, U,S, Atomic Energy Commission
     Office of Information Services (NTIS TID 24190), Oak Ridge, Tenn, (1968),

16.  Larsen, R.I., An Air Quality Data Analysis System for Interrelating Effects,,
     Standards3  and. Heeded Source Reductions - Part 2, JAPCA, 2^:511 (June 1974).

17.  Ragland,  K.W., Atmospheric Environment Q, 371-374 (1976).

18.  Busse, A.D., and J.R. Zimmerman,  User's Guide for the Climatological
     Dispersion Model, Publication No. EPA-RA-73-024 (NTIS PB 227346),
     U.S. Environmental Protection Agency, Research Triangle Park, N.C. 27711
     (1973).

19.  Air Quality Criteria for Hydrocarbons, Report No. AP-64, U.S. Environmental
     Protection Agency (March 1970).

-------
                                     R-3
                              Acknowledgments
       The authors gratefully acknowledge the efforts of various individuals
and organizations whose assistance helped make possible the results documented
in this report.  In particular, the authors wish to provide recognition to:

          The U.S. Environmental Protection Agency for providing
          financial support under Interagency Agreement EPA-IAG-D7-01075.

       -  Gary D. McCutchen and Robert L. Ajax of the USEPA, Emission
          Standards and Engineering Division, for providing guidance
          and technical assistance, and numerous other individuals with
          the USEPA who provided insight into the standard setting
          process and control technology development programs.

       -  Mittelhauser Corporation and Michael Senew for assisting in the
          Model IV collection and dispersion parameter data.

       -  Dorathea Seymour, Margaret Ravasz and Judy Rekar of Argonne
          National Laboratory for assisting in the computer program data
          handling.

          Betty Fitzer of Argonne National Laboratory for typing of the
          manuscript.

-------