vvEPA
United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park NC 27711
EPA-450/3-82-021
August 1982
Air
Costs of Sulfur
Dioxide, Particulate
Matter, and Nitrogen
Oxide Controls on
Fossil Fuel Fired
Industrial Boilers
-------
EPA-450/3-82-021
Costs of Sulfur Dioxide,
Paniculate Matter, and Nitrogen
Oxide Controls on Fossil Fuel Fired
Industrial Boilers
Prepared by:
Michael L Bowen
Mark S. Jennings
Radian Corporation
3024 Pickett Road
Durham, North Carolina 27705
EPA Project Officer: Larry G. Jones
Emission Standards and Engineering Division
Contract No.: 68-02-3058
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air, Noise, and Radiation
Office of Air Quality Planning and Standards
Research Triangle Park, North Carolina 27711
August 1982
-------
The report has been reviewed by the Emission Standards and Engineering Division of the Office of Air Quality Planning
and Standards, EPA, and approved for publication. Mention of trade names or commercial products is not intended to
constitute endorsement or recommendation for use. Copies of this report are available through the Library Services
Office (MD-35), U.S. Environmental Protection Agency, Research Triangle Park, N.C. 27711, or from National Technical
Information Services, 5285 Port Royal Road, Springfield, Virginia 22161.
-------
TABLE OF CONTENTS
Chapter Page
1.0 INTRODUCTION 1-1
2.0 METHODOLOGY FOR CALCULATING SQ9 AND PM MODEL BOILER
COSTS ^ 2-1
2.1 METHODOLOGY FOR ANALYZING THE PM AND S0« COST
IMPACTS ON INDUSTRIAL BOILERS . . . / 2-1
2.2 COST CALCULATION APPROACH 2-4
2.2.1 CAPITAL COSTS 2-9
2.2.2 OPERATION AND MAINTENANCE (O&M) COSTS 2-13
2.2.3 ANNUALIZED COSTS 2-13
2.3 BOILER AND FUEL COSTS 2-17
2.4 PARTICULATE MATTER (PM) CONTROL COSTS 2-19
2.5 SO, CONTROL COSTS 2-26
2.6 COMPLIANCE, REPORTING, AND MALFUNCTION COSTS 2-26
2.7 REFERENCES 2-31
3.0 COSTS OF PM AND S02 CONTROL FOR COAL-FIRED BOILERS .... 3-1
3.1 CAPITAL COSTS OF PM AND S09 CONTROL APPLIED TO
COAL FIRED BOILERS. . . f 3-2
3.2 O&M AND TOTAL ANNUALIZED COSTS OF PM AND S09 CONTROL
APPLIED TO COAL-FIRED BOILERS 3-10
4.0 COSTS OF PM AND SO, CONTROL FOR RESIDUAL OIL-FIRED
BOILERS L 4-1
4.1 CAPITAL COSTS OF PM AND S09 CONTROLS APPLIED TO
RESIDUAL OIL-FIRED BOILERS 4-1
4.2 O&M AND TOTAL ANNUALIZED COSTS OF PM AND S09
CONTROL FOR OIL-FIRED BOILERS L 4-4
5.0 NOV CONTROL COSTS 5-1
/\
5.1 SELECTION OF NO CONTROL CASES 5-1
5.2 COST CALCULATION APPROACH 5-1
5.3 ANALYSIS OF COST IMPACTS 5-6
5.4 REFERENCES 5-12
6.0 COSTS OF LOW SULFUR COAL AND LOW SULFUR OIL 6-1
6.1 LOW SULFUR COAL 6-1
6.2 LOW SULFUR FUEL OIL 6-4
6.3 REFERENCES 6-9
-------
TABLE OF CONTENTS (Continued)
APPENDIX A - COST ALGORITHMS A-l
APPENDIX B - LISTING OF FORTRAN COST ANALYSIS PROGRAM B-l
APPENDIX C - MODEL BOILER COST TABLES C-l
APPENDIX D - COST ESCALATION METHODS D-l
IV
-------
LIST OF TABLES
Table
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
STANDARD BOILERS SELECTED FOR EVALUATION OF S09 AND
PM CONTROLS L
HIGH SULFUR COAL-FIRED MODEL BOILERS FOR S09 AND
PM CONTROLS
LOW SULFUR COAL-FIRED MODEL BOILERS FOR S09 AND
PM CONTROLS *
RESIDUAL OIL-FIRED MODEL BOILERS FOR SO, AND
PM CONTROLS
ABBREVIATIONS USED FOR MODEL BOILERS
SUMMARY OF COSTING ALGORITHMS
CAPITAL COST COMPONENTS
WORKING CAPITAL CALCULATIONS FOR BOILERS AND CONTROL
DEVICES
OPERATING AND MAINTENANCE COST COMPONENTS
CAPACITY UTILIZATION AND LABOR FACTORS USED FOR MODEL
BOILER COST CALCULATIONS
UNIT COSTS USED IN CALCULATIONS
ANNUALIZED COST COMPONENTS
DIRECT O&M COST MULTIPLIERS. TO ACCOUNT FOR ECONOMIES
ASSOCIATED WITH MULTIPLE BOILER INSTALLATIONS
SPECIFICATIONS FOR COAL-FIRED STANDARD BOILERS
SPECIFICATIONS FOR RESIDUAL OIL-FIRED STANDARD BOILERS . .
FUEL ANALYSIS AND PRICES
GENERAL DESIGN SPECIFICATIONS FOR PM CONTROL SYSTEMS . . .
GENERAL DESIGN SPECIFICATIONS FOR S09 CONTROL SYSTEMS. . .
Page
2-3
2-5
2-6
2-7
2-8
2-10
2-11
2-12
2-14
2-15
2-16
2-18
2-20
2-21
2-22
2-23
2-24
2-27
-------
LIST OF TABLES (Continued)
Table Page
2-19 ANNUAL REPORTING, COMPLIANCE, AND MALFUNCTION COSTS. . . . 2-29
3-1 CAPITAL COSTS FOR HSC-FIRED MODEL BOILERS 3-3
3-2 CAPITAL COSTS FOR LSC-FIRED MODEL BOILERS 3-4
3-3 ANNUAL O&M COSTS FOR HSC-FIRED MODEL BOILERS 3-11
3-4 ANNUAL O&M COSTS FOR LSC-FIRED MODEL BOILERS 3-12
3-5 TOTAL ANNUALIZED COSTS FOR HSC-FIRED MODEL BOILERS .... 3-13
3-6 TOTAL ANNUALIZED COSTS FOR LSC-FIRED MODEL BOILERS .... 3-14
4-1 CAPITAL COSTS FOR RESIDUAL OIL-FIRED MODEL BOILERS .... 4-2
4-2 ANNUAL O&M COSTS FOR RESIDUAL OIL-FIRED MODEL BOILERS. . . 4-5
4-3 TOTAL ANNUALIZED COSTS FOR RESIDUAL OIL-FIRED MODEL
BOILERS 4-6
5-1 NOV CONTROL CASES AND EMISSION LEVELS 5-2
/\
5-2 NO COMBUSTION MODIFICATION EQUIPMENT REQUIREMENTS OR
MODIFICATIONS 5-5
5-3 FUEL COSTS USED FOR NO CONTROL ANALYSIS 5-7
/\
5-4 FUEL F-FACTORS AND BOILER EXCESS AIR LEVELS USED IN NOY
CONTROL COST CALCULATIONS x. . 5-8
5-5 NO CONTROL COSTS 5-9
^
6-1 INCREMENTAL INCREASES IN RESIDUAL OIL PRICES FOR
VARIOUS SULFUR CONTENTS 6-7
VI
-------
LIST OF FIGURES
Figure
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
4-1
4-2
6-1
6-2
6-3
6-4
NORMALIZED CAPITAL COSTS FOR HSC-FIRED MODEL BOILERS . . .
NORMALIZED CAPITAL COSTS FOR LSC-FIRED MODEL BOILERS . . .
PERCENT INCREASES IN CAPITAL COST OVER UNCONTROLLED FOR
HSC-FIRED MODEL BOILERS
PERCENT INCREASES IN CAPITAL COST OVER UNCONTROLLED FOR
LSC-FIRED MODEL BOILERS
NORMALIZED ANNUALIZED COSTS FOR HSC-FIRED MODEL BOILERS. .
NORMALIZED ANNUALIZED COSTS FOR LSC-FIRED MODEL BOILERS. .
PERCENT INCREASES IN ANNUALIZED COST OVER UNCONTROLLED
FOR HSC-FIRED MODEL BOILERS
PERCENT INCREASES IN ANNUALIZED COST OVER UNCONTROLLED
FOR LSC-FIRED MODEL BOILERS
NORMALIZED CAPITAL COSTS FOR RESIDUAL OIL-FIRED MODEL
BOILERS
NORMALIZED ANNUALIZED COSTS FOR RESIDUAL OIL-FIRED MODEL
BOILERS
DELIVERED PRICE OF COAL TO MIDWEST LOCATION (CHICAGO). . .
NORMALIZED ANNUALIZED COST OF FGD SYSTEM APPLIED TO
HSC COAL-FIRED BOILERS
DELIVERED PRICE OF COAL TO A SOUTHWEST LOCATION
(HOUSTON)
DELIVERED PRICE OF COAL TO A NORTHEAST LOCATION
(BOSTON)
Page
3-5
3-6
3-7
3-8
3-15
3-16
3-18
3-19
4-3
4-7
6-2
6-3
6-5
6-6
VII
-------
1.0 INTRODUCTION
This report presents a cost analysis of participate matter (PM), sulfur
dioxide (S09), and nitrogen oxide (NO ) controls on coal-, oil-, and gas-
£. /\
fired industrial boilers. For each boiler and control device the capital
costs, operating and maintenance costs, and annualized costs are estimated.
S0« and PM control costs are analyzed in Chapters 2-4 while NO control
costs are analyzed in Chapter 5.
Chapter 2 discusses the methodologies and cost bases for estimating the
boiler, PM control and S0« control costs. Chapters 3 and 4 then present the
costs for coal- and residual oil-fired boilers, respectively. In Chapter 5,
the costs of various NO controls (combustion modifications) are discussed.
^
This chapter also outlines the cost methodologies used in addition to
presenting the costs. The last chapter, Chapter 6, discusses the costs of
firing low sulfur coal and low sulfur oil.
Four appendices are also included for reference. Appendix A is a
listing of the cost algorithms used to estimate the boiler, PM control, S02
control, and NO control costs. Appendix B presents the FORTRAN computer
/\
program that utilizes these algorithms to develop the boiler and control
device costs. Appendix C provides a detailed cost breakdown for all the
cost cases studied. Finally, Appendix D presents two methods available to
convert the costs calculated using the cost algorithms presented in this
report (mid-1978 dollars) to a cost basis of a later year.
1-1
-------
2.0 METHODOLOGY FOR CALCULATING S02 AND PM MODEL BOILER COSTS
This chapter presents the methodologies and cost bases used for
calculating the costs of various S0« and PM controls that are applied to
different types and sizes of industrial boilers. The emphasis of this
analysis is to quantify the individual boiler cost impacts associated with
the application of these emission controls. Both uncontrolled and
controlled boiler costs are examined. By comparing the two, the incremental
cost impact associated with the controls is assessed.
Section 2.1 describes the methodology used in this report to analyze
the PM and S02 cost impacts on industrial boilers. Section 2.2 discusses
the basic approach used in calculating the boiler and control device costs.
The specific equipment specifications used to calculate the boiler and
control device costs are presented in Section 2.3. Lastly, Section 2.4
presents annual costs due to reporting, compliance, and control device
malfunction. These costs are treated separately from the boiler and control
device costs presented in Chapters 3 and 4. All costs presented in this
report are in mid-1978 dollars.
2.1 METHODOLOGY FOR ANALYZING THE PM AND SO COST IMPACTS ON INDUSTRIAL
BOILERS
In this report, the cost impacts on various types and sizes of
industrial boilers from applying various PM and S0? controls are assessed
through an analysis of "model boilers." Model boilers form the basis of the
PM and SO,, control costs analysis. They are developed by applying different
combinations of PM and S02 controls to a group of standard boilers that
represent the population of new industrial boilers expected to be built.
Standard boilers are defined as boilers without emission controls. In
general, the model boilers are selected to cover a range of boiler sizes,
fossil fuel types, and control methods. A brief description of the bases
used for selection of the standard boilers, the PM controls, and the S0?
controls follows.
2-r
-------
A summary of the standard boilers selected for evaluation in this
report is presented in Table 2-1. Factors considered in the selection were
fossil fuel types, boiler distribution by capacity, heat transfer
configurations and fuel firing methods. The principal industrial boiler
fossil fuels are coal, residual oil, distillate oil, and natural gas.
Because distillate oil- and natural gas-fired boilers have low uncontrolled
PM and SC^ emissions they were not considered in this analysis. Since coal
properties such as sulfur and ash content can vary considerably, separate
standard boilers were selected for both low sulfur coal (LSC) and high
sulfur coal (HSC) applications.
The industrial boiler population is segmented into four size categories
ranging in capacity from 30 to 400 x 10 Btu/hr. All four size categories
are represented in the coal-fired boiler analysis (30, 75, 150, and
400 x 10 Btu/hr). All of the coal-fired boilers in this analysis are
field-erected units except for the 30 x 10 Btu/hr unit which is a package
boiler. In addition, they all have the same heat transfer configuration in
that they are watertube units. The residual oil-fired population is smaller
and is represented by two package boilers, 30 and 150 x 10 Btu/hr. The
30 x 106 Btu/hr boiler is a firetube boiler while the 150 x 106 Btu/hr
boiler is a watertube unit. Construction of oil-fired boilers larger than
150 x 10 Btu/hr capacity is expected to be very limited.
Both residual oil-fired standard boilers utilize similar multi-fuel
capable oil/gas burner designs. However, the coal-fired boilers vary in
firing mechanism. Underfeed stokers typically occupy the lower end of the
capacity range, and pulverized coal the upper end, with other stoker types
occupying the intermediate range between the two. For the standard boilers,
an underfeed stoker has been selected for the 30 and 75 x 10 Btu/hr
c
boilers, a spreader stoker has been selected for the 150 x 10 Btu/hr
boiler, and a pulverized coal unit has been selected for the
400 x 10 Btu/hr boiler. The specifications for these boilers and the fuels
will be presented in Section 2.3.
The controls selected for the PM and S02 cost analysis include single
mechanical collectors, side stream separators, venturi scrubbers,
2-2
-------
TABLE 2-1. STANDARD BOILERS SELECTED FOR EVALUATION OF S02 AND PM CONTROLS
i
CO
Boiler
Code Fuel
RES-30 Residual Oil
RES-150
HSC-30 High-Sulfur Coal
HSC-75
HSC-150
HSC-400
LSC-30 Low-Sulfur Coal
LSC-75
LSC-150
LSC-400
Heat Input Thermal
10 Btu/hr
30
150
30
75
150
400
30
75
150
400
Boiler Configuration
Package, Firetube
Package, Watertube
Package, Watertube, Underfeed Stoker
Field-Erected, Watertube, Underfeed Stoker
Field-Erected, Watertube, Spreader Stoker
Field-Erected, Watertube, Pulverized Feed
Package, Watertube, Underfeed Stoker
Field-Erected, Watertube, Underfeed Stoker
Field-Erected, Watertube, Spreader Stoker
Field-Erected, Watertube, Pulverized Feed
-------
electrostatic precipitators, fabric filters, dual alkali scrubbers, dry
scrubbers (spray dryers) and sodium throwaway scrubbers. These controls
were selected because they are the most likely candidates to control S02 and
PM emissions on new industrial boilers.
S02 control devices can be equipped to remove both S02 and PM. Dual
alkali scrubbing systems can be designed to remove both PM and SCL or SCL
only depending on whether additional PM control equipment is included prior
to the scrubber. In addition, sodium throwaway scrubbers can remove both
S02 and PM or S02 alone. However, since a fabric filter is a integral part
of dry scrubbing systems, all of these systems are designed for combined S02
and PM control. Details of the control device specifications will be
presented in Section 2.3.
Dual alkali scrubbers and sodium throwaway scrubbers are analyzed at
both 50 and 90 percent S0? removal. Dry scrubbers are analyzed only at
50 percent S02 removal on low sulfur coal-fired boilers.
As stated earlier, a controlled standard boiler is termed a model
boiler. The standard boilers used in this cost analysis were presented in
Table 2-1. The model boilers formed from the combination of the standard
boilers and the PM and S02 controls are presented in Tables 2-2, 2-3, and
2-4. Abbreviations used in these tables are defined in Table 2-5.
Tables 2-2 through 2-4 also present the PM and S02 emission levels that
these controls can achieve for each model boiler case. These emission
levels or percent reductions are based on available emission test data.
2.2 COST CALCULATION APPROACH
The costs of each model boiler can be broken down into three major cost
categories:
- Capital Costs (total capital investment required to construct
and make operational a boiler and control system),
- Operation and Maintenance (O&M) costs (total annual cost
necessary to operate and maintain a boiler and control
system), and
- Annualized Costs (total O&M costs plus capital related
charges).
2-4
-------
TABLE 2-2. HIGH SULFUR COAL-FIRED MODEL BOILERS FOR S00 and PM CONTROLS
Model
Boiler
HSC-30-Unc, Unc
HSC-30-Unc, SM
HSC-30-Unc, SSS
HSC-30-Unc, VS
HSC-30-Unc, ESP
HSC-30-DA(50), DA/PM
HSC-30-DA(50), ESP
HSC-30-DA(90), DA/PM
HSC-30-DA(90), ESP
HSC-75-Unc, Unc
HSC-75-Unc, SM
HSC-75-Unc, SSS
HSC-75-Unc, VS
HSC-75-Unc, ESP
HSC-75-DA(50), DA/PM
HSC-75-DA(50), ESP
HSC-75-DA(90), DA/PM
HSC-75-DA(90), ESP
HSC-150-Unc, Unc
HSC-150-Unc, SM
HSC-150-Unc, SSS
HSC-150-Unc, VS
HSC-150-Unc, ESP
HSC-150-DA(50), DA/PM
HSC-150-DA(50), ESP
HSC-150-DA(90), DA/PM
HSC-150-DA(90), ESP
HSC-400-Unc, Unc
HSC-400-Unc, SM
HSC-400-Unc, SSS
HSC-400-Unc, VS
HSC-400-Unc, ESP
HSC-400-DA(50), DA/PM
HSC-400-DA(50), ESP
HSC-400-DA(90), DA/PM
HSC-400-DA(90) , ESP
Controlled
Emissions
(lb/105 Btu)
so2
5.70
5.70
5.70
5.70
5.70
2.85
2.85
0.57
0.57
5.70
5.70
5.70
5.70
5.70
2.85
2.85
0.57
0.57
5.70
5.70
5.70
5.70
5.70
2.85
2.85
0.57
0.57
5.70
5.70
5.70
5.70
5.70
2.85
2.85
0.57
0.57
Removal
Efficiencies
(Percent)
PM
0.657
0.40
0.20
0.10
0.05
0.10
0.05
0.10
0.05
0.657
0.40
0.20
0.10
0.05
0.10
0.05
0.10
0.05
2.54
0.60
0.20
0.10
0.05
0.10
0.05
0.10
0.05
3.81
1.00
0.20
0.10
0.05
0.10
0.05
0.10
0.05
so2
0
0
0
0
0
50
50
90
90
0
0
0
0
0
50
50
90
90
0
0
0
0
0
50
50
90
90
0
0
0
0
0
50
50
90
90
PM
0
39.1
69.6
84.8
92.4
84.8
92.4
84.8
92.4
0
39.1
69.6
84.8
92.4
84.8
92.4
84.8
92.4
0
76.4
92.1
96.1
98.0
96.1
98.0
96.1
98.0
0
73.8
94.8
97.4
98.7
97.4
98.7
97.4
98.7
2-5-
-------
TABLE 2-3. LOW SULFUR COAL-FIRED MODEL BOILERS FOR S02 and PM CONTROLS
Model
Boiler
LSC-30-Unc, Unc
LSC-30-Unc, SM
LSC-30-Unc, SSS
LSC-30-Unc, VS
LSC-30-Unc, FF
LSC-30-DS(50), DS/PM
LSC-30-DA(50), DA/PM
LSC-30-DA(50), FF
LSC-30-DA(90), DA/PM
LSC-30-DA(90), FF
LSC-75-Unc, Unc
LSC-75-Unc, SM
LSC-75-Unc, SSS
LSC-75-Unc, VS
LSC-75-Unc, FF
LSC-75-DS(50), DS/PM
LSC-75-DA(50), DA/PM
LSC-75-DA(50), FF
LSC-75-DA(90), DA/PM
LSC-75-DA(90), FF
LSC-150-Unc, Unc
LSC-150-Unc, SM
LSC-150-Unc, SSS
LSC-150-Unc, VS
LSC-150-Unc, FF
LSC-150-DS(50), DS/PM
LSC-150-DA(50), DA/PM
LSC-150-DA(50), FF
LSC-150-DA(90), DA/PM
LSC-150-DA(90), FF
LSC-400-Unc, Unc
LSC-400-Unc, SM
LSC-400-Unc, SSS
LSC-400-Unc, VS
LSC-400-Unc, FF
LSC-400-DS(50), DS/PM
LSC-400-DA(50), DA/PM
LSC-400-DA(50), FF
LSC-400-DA(90), DA/PM
LSC-400-DA(90), FF
Controlled
Emissions
(lb/105 Btu)
so2
1.19
1.19
1.19
1.19
1.19
0.595
0.595
0.595
0.119
0.119
1.19
1.19
1.19
1.19
1.19
0.595
0.595
0.595
0.119
0.119
1.19
1.19
1.19
1.19
1.19
0.595
0.595
0.595
0.119
0.119
1.19
1.19
1.19
1.19
1.19
0.595
0.595
0.595
0.119
0.119
PM
0.807
0.40
0.20
0.10
0.05
0.10
0.10
0.05
0.10
0.05
0.807
0.40
0.20
0.10
0.05
0.10
0.10
0.05
0.10
0.05
3.13
0.6
0.20
0.10
0.05
0.10
0.10
0.05
0.10
0.05
2.39
1.0
0.20
0.10
0.05
0.10
0.10
0.05
0.10
0.05
Removal
Efficiencies
(Percent)
so2
0
0
0
0
0
50
50
50
90
90
0
0
0
0
0
50
50
50
90
90
0
0
0
0
0
50
50
50
90
90
0
0
0
0
0
50
50
50
90
90
PM
0
50.0
75.2
87.6
93.8
87.6
87.6
93.8
87.6
93.8
0
50.0
75.2
87.6
93.8
87.6
87.6
93.8
87.6
93.8
0
80.8
93.6
96.8
98.4
96.8
96.8
98.4
96.8
98.4
0
58.2
91.6
95.8
97.9
95.8
95.8
97.9
95.8
97.9
2-6
-------
TABLE 2-4. RESIDUAL OIL-FIRED MODEL BOILERS FOR S02 AND PM CONTROLS
Model
Boiler
Controlled
Emissions
(lb/100 Btu)
SO,
PM
Removal
Efficiencies
(Percent)
SO,
PM
RES-30-Unc, Unc
RES-30-Unc, ESP
RES-30-NATH(50), NATH/PM
RES-30-NATHJ50), ESP
RES-30-NATH(90), NATH/PM
RES-30-NATH(90), ESP
RES-30-DA(90), DA/PM
RES-30-DA(90), ESP
RES-150-Unc, Unc
RES-150-Unc, ESP
RES-150-DA(50), DA/PM
RES-150-DA(50), ESP
RES-150-DA(90), DA/PM
RES-150-DA(90), ESP
3.21
3.21
1.61
1.61
0.321
0.321
0.321
0.321
3,
3.
1,
1,
.21
.21
.61
.61
0.321
0.321
0.23
0.05
0.10
0.05
0.10
0.05
0.10
0.05
0.23
0.05
0.10
0.05
0.10
0.05
0
0
50
50
90
90
90
90
0
0
50
50
90
90
0
78,
56,
78,
56,
78,
0
78.
56.
78.
56.
56.5
78.3
78.3
2-7
-------
TABLE 2-5. ABBREVIATIONS USED FOR MODEL BOILERS
Boilers
HSC - High sulfur coal-fired
LSC - Low sulfur coal-fired
RES - Residual oil-fired
PM Control Systems
Unc - Uncontrolled
SM - Single mechanical collector (multitube cyclone)
SSS - Sidestream separator
ESP - Electrostatic precipitator
FF - Fabric filter
DA/PM - Particulate removal via dual alkali scrubber
DS/PM - Particulate removal via dry scrubber
NATH/PM - Particulate removal via sodium throwaway scrubber
SOo Control Systems
Unc - Uncontrolled
DA (50) - Dual alkali scrubber (50 percent removal)
DA (90) - Dual alkali scrubber (90 percent removal)
DS (50) - Dry scrubber (spray dryer) (50 percent removal)
NATH (50) - Sodium throwaway scrubber (50 percent removal)
NATH (90) - Sodium throwaway scrubber (90 percent removal)
2-8
-------
Each of these cost categories can be further subdivided into individual cost
components. Sections 2.2.1, 2.2.2, and 2.2.3 present the individual cost
components and the methods used to develop the capital, O&M, and annualized
costs, respectively for each of the model boilers.
The majority of the capital and O&M cost components for the boilers,
S02 controls and PM controls are estimated by the use of cost algorithms.
Each algorithm presents a particular boiler or control device cost component
as an algebraic function of key system specifications. Table 2-6 summarizes
the costing algorithms available. The routine codes shown in the first
column of Table 2-6 identify the algorithms in the FORTRAN computer program
that is used to develop the costs presented in this report. A complete
listing of the algorithms is presented in Appendix A while a complete
listing of the FORTRAN computer program is presented in Appendix B.
2.2.1 Capital Costs
Table 2-7 presents the individual capital cost components and the
general methodology used for calculating total capital costs. Direct
capital costs consist of the basic and auxiliary equipment costs in addition
to the labor and material required to install the equipment. Indirect costs
are those costs not attributable to specific equipment items. Other capital
cost components are contingencies, the cost of land and working capital.
Contingencies are included in capital costs to compensate for
unpredicted events and other unforeseen expenses. Costs for land are
included in boiler capital costs but not in control system costs. All
boilers except pulverized coal boilers are assumed to have land costs of
$2,000. Pulverized coal boilers are assumed to have land costs of $4,000.
The computation of working capital in this analysis also differs
slightly for boilers and control equipment. In calculating the cost for
working capital the equations shown in Table 2-8 are used. These equations
are based on three months of direct annual non-fuel operating costs and one
month of fuel costs.
Most cost algorithms compute the key individual capital cost components
(equipment costs, installation costs and indirect costs). However, some of
the algorithms used in this analysis deviate from this methodology. For
2-9
-------
TABLE 2-6. SUMMARY OF PM AND S02 COSTING ALGORITHMS
^outioe
Code0
UNDP
SPRD
PL'/P
»ES:
'NG:
PSG2
DNG1
DNG2
VS
rs?c
Boiler Size
Applicability
Algorithm Type (10 Btu/hr)
Boiler, underfeed stoker, watertube, package
Boiler, spreader stoker, watertube, field-erected
Boiler, pulverized coal, watertube, field-erected
Boiler, residual oil, firetube, package
Boiler, residual/natural gas, watertube, package
Boiler, residual/natural gas, watertube,
fi eld-erected
Boiler, distillate/natural gas, firetube, package
Boiler, distillate/natural gas, watertube, package
Venturi scrubber applied to coal -fired boiler
Electrostatic precipitator applied to coal -fired
boiler
<75
60 - 200
>200
<30
30 - 200
200 - 700
<30
30 - 200
30 - 700
<700
ESPO Electrostatic precipitator applied to residual
oil-fired boiler
<700
FF
SM
DM
ccc
•J -* -s
DA
DAC
NATH
DS
Routine
program
Fabric filter applied to coal -fired boiler
Single mechanical collector (multi -cyclone)
applied to coal-fired boiler
Dual mechanical collector (multi -cyclones)
applied to coal-fired boiler
Side stream separator applied to coal-fired boiler
Dual alkali FGD system without PM removal
Dual alkali FGD system with PM removal
Sodium throwaway FGD system
Lime spray drying (dry scrubbing) FGD system
30 - 700
30 - 700
30-700
30 - 700
All sizes
All sizes
All sizes
All sizes
code refers to code used to identify algorithm in FORTRAN computer
(see Appendix B).
2-10
-------
TABLE 2-7. CAPITAL COST COMPONENTS3
(1) Direct Costs
Equipment
+ Installation
= Total Direct Costs
(2) Indirect Costs
Engineering - IQ% of direct costs for boilers and PM controls
For FGD systems on boilers <200 x 10 Btu/hr, FGD engineering
costs are 10% of FGD direct costs for an FGD system that is
applied to a 200 x 10° Btu/hr boiler.
For FGD systems on boilers >200 x 10 Btu/hr, FGD engineering
costs are 10% of specific FG~D system's direct costs.
2
+ Construction and Field Expenses (10% of direct costs)£
+ Construction Fees (10% of direct costs)£
+ Start Up Costs (2% of direct costs)f,
+ Performance Costs (1% of direct costs)
= Total Indirect Costs
2
(3) Contingencies = 20% of (Total Indirect + Total Direct Costs)
(4) Total Turnkey Cost = Total Indirect Cost + Total Direct Cost +
Contingencies
(5) Working Capital2 = 25% of Total Direct Operating Costsb
(6) Landc
(7) Total Capital Cost - Total Turnkey + Working Capital + Land
Boiler and each control system costed separately; factors apply to cost of
boiler or control system considered; i.e., the engineering cost for the PM
control system is 10% of the direct cost of the PM control system.
This equation is used for control device working capital calculations.
For boilers, fuel supplies are included so a different equation is used
(see Table 2-8).
Land costs are assumed to apply to boilers only (see Section 2.2.1).
2-11
-------
TABLE 2-8. WORKING CAPITAL CALCULATIONS FOR BOILERS AND CONTROL DEVICES
Working Capital (WC)
Boilers - Assume three months of direct annual non-fuel operating costs
and one month of fuel costs
WC = 0.25 (Direct annual non-fuel operating costs) +
0.083 (Fuel costs)
Control Equipment - Assume three months of direct annual operating costs
2
WC = 0.25 (Direct annual operating costs)
2-12
-------
example, FGD algorithms compute total direct costs without prior computation
of equipment and installation costs. Also, in certain cases, indirect
capital costs, as shown in Table 2-7, are computed as a percentage of the
direct costs.
2.2.2 Operation and Maintenance (O&M) Costs
Table 2-9 lists the individual O&M cost components and the general
methodologies used in calculating total O&M costs. Direct O&M costs include
operating and maintenance labor, fuel, utilities, spare parts, supplies,
waste disposal and chemicals. Indirect operating costs include payroll and
plant overhead and are calculated based on a percentage of some key O&M cost
components (direct labor, supervisory labor, maintenance labor and spare
parts).
Direct O&M costs for the boilers and control devices are calculated by
using the algorithms presented in Appendix A. The key factors in these
algorithms are the capacity utilization, utility unit costs (steam
electricity, water), and unit costs for raw materials, waste disposal, and
labor.
Capacity utilization is defined as the actual annual fuel consumption
as a percentage of the potential annual fuel consumption at maximum firing
rate. To account for reduced labor costs for boilers operating at reduced
capacity utilization, labor factors that are based on capacity utilization
are used. Table 2-10 presents the capacity utilizations and labor factor
functions used for the boiler and control device O&M cost calculations.
Table 2-11 presents the unit costs used in calculating several of the
other key annual O&M cost components for the boilers and control equipment.
Some additional factors affecting O&M costs are boiler type, boiler size,
fuel type, fuel composition, flue gas flowrate, and control efficiency (see
Appendix A).
2.2.3 Annualized Costs
Total annualized costs are the sum of the annual O&M costs and the
annualized capital charges. The annualized capital charges include the
payoff of the capital investment (capital recovery), interest on working
capital, general and administrative costs, taxes, and insurance.
2-13
-------
TABLE 2-9. OPERATING AND MAINTENANCE COST COMPONENTS3
(1) Direct Operating Costs
Direct Labor
+ Supervision
+ Maintenance Labor, Replacement Parts and Supplies
+ Electricity
+ Water
+ Steam
+ Waste Disposal
Solids (Fly ash and bottom ash)
Sludge
Liquid
+ Chemicals
Total Non-Fuel O&M
+ Fuel
= Total Direct Operating Costs
(2) Indirect Operating Costs (Overhead)
Payroll (30% Direct Labor)
+ Plant (26% of Direct Labor + Supervision + Maintenance Costs +
Spare Parts)
(3) Total Annual Operating and Maintenance Costs = Total Direct +
Total Indirect Costs
aBoilers and each control systems are costed separately; factors apply to
boiler or control system being considered, (i.e., payroll overhead for
FGD system is 30% direct labor requirement of FGD system).
Factors recommended in Reference 3.
2-14
-------
TABLE 2-10. CAPACITY UTILIZATION AND LABOR FACTORS USED
FOR MODEL BOILER COST CALCULATIONS
Boiler Type Capacity Utilization (CF) Labor Factor (LF)
Coal-fired 0.60 0.75
(Underfeed, spreader stoker,
pulverized feed)
Residual oil-fired 0.55 0.62
4
Labor Factor Equations
CF LF
>0.7 1
0.5 - 0.7 0.5 + 2.5 (CF - 0.5)
<0.5 0.5
2-15
-------
TABLE 2-11. UNIT COSTS USED IN CALCULATIONS
a,b
Utilities
Electricity
Water
Steam
Raw Material
Na2C03
Lime
Limestone
Labor
Direct Labor
Supervision
$0.0258/kwh
$0.04/m3 ($0.15/103 gal)
$3.01/GJ ($3.5/103 Ib)
$0.099/kg ($90/ton)
$0.039/kg ($35/ton)
$0.009/kg ($8/ton)
$12.02/man-hour
$15.63/man-hour
Maintenance Labor $14.63/man-hour
Waste Disposal
Solids (Ash, Spray Dried Solids)
Sludge
Liquid
$0.166/kg ($15/ton)
$0.0166/kg ($15/ton)
$0.47/m3 ($1.80/103 gal)
aAll costs in 1978 $.
Reference 2.
2-16
-------
Table 2-12 presents the methods used in this report to calculate the
individual annualized capital charges components. The capital recovery cost
is determined by multiplying the capital recovery factor, which is based on
the real interest rate and the equipment life, by the total turnkey costs
(see Table 2-7). For this analysis a 10 percent real interest rate and a
15 year equipment are assumed for the boilers and control equipment. This
translates into a capital recovery factor of 13.15 percent. The real
interest rate of 10 percent was selected as a typical constant dollar rate
of return on investment to provide a basis for calculation of capital
recovery charges. Since all costs presented in this report are constant
mid-1978 dollars, this- interest rate is the "real" interest rate above and
beyond inflation (see Appendix D for cost conversions due to inflation).
Table 2-12 also presents the methods to calculate the other annualized
capital charges components. Interest on working capital is based on a
10 percent interest rate. The remaining components (general and administra-
tive costs, taxes, and insurance) are estimated as 4 percent of total
turnkey costs.
2.3 BOILER AND FUEL COSTS
This section presents the specific cost assumptions and methodologies
that were used to calculate the industrial boiler costs presented in
Chapters 3 and 4. The general costing assumptions and methodologies were
presented in Section 2.2. The capital and annual O&M cost algorithms for
coal-, oil-, and gas-fired industrial boilers are presented in Appendix A
(Tables A-4 through A-ll). Specific equipment lists and assumptions used to
generate the algorithms are detailed in References 5 and 6.
All boiler costs are based on a new boiler constructed at a new plant
in the Midwest and do not include any retrofit costs. It is assumed that
new plants will operate multiple boilers rather than one boiler. Annual O&M
costs such as labor, utilities, chemicals, spare parts and ash disposal will
be reduced per boiler because of the economies of scale. To account for the
O&M cost reductions associated with multiple boiler installations,
2-17-
-------
TABLE 2-12. ANNUALIZED COST COMPONENTS
(1) Total Annual ized Cost = Annual Operating Costs + Capital Charges
(2) Capital Charges = Capital recovery + interest on working capital +
miscellaneous (G&A, taxes and insurance)
(3) Calculation of Capital Charges Components
A. Capital Recovery = Capital Recovery Factor (CRF) x Total Turnkey
Cost
CRF -
i = interest rate
n = number of years of useful life of boiler or control system
Item n i CRF
Boiler, control systems 15 10 0.1315
B. Interest on Working Capital = 10% of working capital
C. G&A, taxes and insurance = 4% of total turnkey cost
2-18
-------
multipliers for the annual O&M costs are included in the algorithms. These
multipliers are presented in Table 2-13.
The boiler specifications presented in Tables 2-14 and 2-15 provide the
specifications required to calculate the boiler capital costs presented in
this report. Coal-fired units with less than 60 x 10 Btu/hr thermal input
capacity and oil- and gas-fired units with less than 200 x 10 Btu/hr
capacity are specified to be package boilers while all other boilers are
assumed to be field-erected units. It is also assumed that all boilers are
operating under low excess air firing conditions. The flue gas flow rates
presented were calculated from the algorithms presented in Appendix A
(Table A-23).
The largest O&M cost for boilers is fuel. Table 2-16 presents the
specifications and costs for the fuels used in this analysis. The fuel
costs presented are consistent with the 1990 delivered fuel price projec-
tions (in 1978 dollars) used in the Industrial Fuel Choice Analysis Model
(IFCAM). The IFCAM documentation is the source of the coal transportation
7 8
costs, while the Round 8 Impact Analysis is the basis for fuel prices. '
2.4 PARTICULATE MATTER (PM) CONTROL COSTS
The algorithms used to calculate capital and operating costs for PM
control devices are presented in Appendix A (Tables A-12 through A-18). The
cost algorithms for electrostatic precipitators (ESPs), reverse air fabric
filters, and venturi wet scrubbers were developed by PEDCo, Inc. Detailed
documentation of the cost bases for these controls can be found in PEDCo's
final report. The costs for single mechanical collectors and side stream
separators were developed by Radian based primarily on vendor information.
Documentation of these costs can be found in a technical note and
12
attachments.
Table 2-17 lists the general specifications for the PM control devices
investigated. These specifications are typical for industrial boiler
control devices currently in use.
2-19
-------
TABLE 2-13. DIRECT O&M COST MULTIPLIERS TO ACCOUNT FOR ECONOMIES
ASSOCIATED WITH MULTIPLE BOILER INSTALLATIONS^
Coal-fired boilers:
Multiplier
Utilities, chemicals, and ash disposal 0.848
All labor, replacement parts, and overhead 0.767
Residual oil-fired boilers:
Utilities and chemicals 0.845
All labor, replacement parts, and overhead 0.799
2-20
-------
TABLE 2-14. SPECIFICATIONS FOR COAL-FIRED STANDARD BOILERS
ro
i
Thermal input
10° Btu/hr
Fuel firing method
Excess air, %
Flue gas flow rate,
acfm
Capacity
utilization, %
Efficiency, %
Steam production,
Ib/hr
HSC-30
30
Under
feed
35
11000
60
78.0
22700
HSC-75
75
Under
feed
35
27600
60
79.9
58200
HSC-150
150
Spreader
stoker
35
55100
60
80.9
107000
HSC-400
400
Pulverized
feed
35
142000
60
83.1
280000
LSC-30
30
Under
feed
35
11300
60
78.3
22800
LSC-75
75
Under
feed
35
28300
60
80.5
58800
LSC-150
150
Spreader
stoker
35
56700
60
81.
108044
LSC-400
400
Pulverized
feed
35
146000
60
5 83.5
279200
-------
TABLE 2-15. SPECIFICATIONS FOR RESIDUAL OIL-FIRED STANDARD BOILERS
RES-30
RES-150
Thermal Input, 106 Btu/hr
Excess air, %
Flue gas flow rate, acfm
Capacity Utilization, %
Efficiency, %
Steam production, Ib/hr
30
15
9010
55
85
25000
150
15
45000
55
85
108000
2-22
-------
TABLE 2-16. FUEL ANALYSIS AND PRICES
a,b
ro
ro
CO
Fuel Type
High sulfur coal
Low sulfur coal
Residual oil
Heating
Value
Btu/lb
11,800
9,600
18,500
Sulfur
Content
3.54
0.60
3.00
Moisture
Content
% by weight
8.79
20.80
0.08
Ash
Content
10.54
5.40
0.10
1990 Delivered
Fuel,-Cost
$/lbb Btu
(1978 $)
1.81
2.41
4.85
All analyses are based on engineering judgements by PEDCo about information provided by Babcock and
Hi 1 cox, References 9 and 10.
'All costs are projected 1990 costs in 1978 dollars. Fuel costs are based on the Industrial Fuel
Choice Analysis Model (IFCAM) costs/'0
-------
TABLE 2-17. GENERAL DESIGN SPECIFICATIONS FOR PM CONTROL SYSTEMS
Control Device
Item
Specification
Single Mechanical
Collectors
(SM)
Material of construction
Pressure drop
Carbon steel
4 in. HO gauge
ro
i
ro
Side Stream Separators
(SSS)
Material of construction
Pressure drop
Amount of gas flow treated
in fabric filter
Fabric filter
Bag life
Mechanical collector and fabric filter:
carbon steel
6 in. H?0 gauge
20%
Multi-compartment pulse-jet with Teflon
coated glass felt bags
2 years
Venturi Scrubbers
(VS)
Components
Pressure drop
Sludge treatment
Hold tank, recirculation system,
and purge stream piping
20 in. hLO gauge
Scrubber sludge added to coal pile
runoff treatment system
-------
TABLE 2-17. (CONTINUED)
Control Device
Item
Specification
ro
i
ro
Electrostatic Precipitators
(ESP)
Material of construction
Specific collection areas
(plate area per gas volume
for 0.05 lb/10° Btu control
levels)
Pressure drop'
Power demand
Carbon steel (insulated)
Underfeed stokers:
117.3 ft /10-3 acfm
Spreader^stokers:
189.3 fr/10J acfm
Pulverized^Coal:
220 ftV10J acfm
Oil-fired:o
400 fr/10-3 acfm
1 in. ^0 gauge
3 W/ft2
Fabric Filter
(FF)
Material of construction
Cleaning method
Air to cloth ratio
Bag material
Bag life
Pressure drop
Carbon steel (insulated)
Reverse-air (multi-compartment)
2 ft/min
Teflon-coated fiberglass
2 years
6 in. ^0 gauge
Pressure drop refers to gas side pressure drop across entire control system.
'pressure drop for variable throat venturi scrubber will vary with required removal efficiency.
Maximum pressure drop of 20 in. HgO was assumed for estimating fan costs.
•^
'Values shown are for sulfur content of 3.5% in coal feed to boiler. Boilers firing coals with
lower sulfur content have somewhat higher SCA values.
-------
2.5 S02 CONTROL COSTS
The cost algorithms used to calculate capital and annual operating
costs for flue gas desulfurization units are also presented in Appendix A
(Tables A-19 through A-22). The cost basis for the double alkali without PM
removal, lime spray drying, and once through sodium systems is presented in
13
the Individual Technology Assessment Report (ITAR). Cost algorithms based
14
on the ITAR were developed by Acurex Corporation. The algorithms
presented in Appendix A however, do not represent the costs in the final
ITAR or the Acurex report for either the double alkali or spray drying
systems. The Acurex algorithms were revised to reflect revised clarifier
costs for the double alkali systems and revised fabric filter costs for the
spray drying systems. These revisions are documented in a technical memo.
The sodium throwaway cost algorithms are unchanged from the Acurex report.
Costs for the double alkali system designed to remove PM as well as S02 were
developed by Radian and include a venturi-type scrubber and a single
15
mechanical collector upstream of the scrubber. The costs for the double
alkali system design without PM removal is based on the use of a tray-type
scrubber.
Table 2-18 presents the general specifications for the FGD systems
analyzed in this report. These specifications are typical for FGD systems
currently in use.
2.6 COMPLIANCE, REPORTING, AND MALFUNCTION COSTS
Table 2-19 presents estimates for compliance, reporting, and control
device malfunction costs based on issue papers prepared by Radian. 5 '
These costs vary with boiler size and type of control system.
Annual reporting costs for units without FGD reflect "baseline"
requirements specified for all new sources; start-up, shutdown, and
malfunction reports. It was assumed that units with FGD would also be
required to make a quarterly excess emissions report, estimated to add about
$2000 to the baseline cost of $4800 to $5000.
Units with FGD were assumed to require continuous monitors for inlet
and outlet S02 and a diluent (C02 or 02) monitor. Continuous N0x monitoring
2-26
-------
TABLE 2-18. GENERAL DESIGN SPECIFICATIONS FOR S02 CONTROL SYSTEMS
Control Device
Item
Specification
Double Alkali FGD
(S00 removal only)
(DA?
Scrubber type
Pressure drop9
L/G
Scrubber sludge
Sludge disposal
Tray tower
8 in. HpO gauge
10 gal/103 acf
60% solids
Trucked to off-site landfill
ro
i
IV3
Sodium Throwaway FGD
(either $©2 removal
only or combined S02
& PM removal)
(NATH)
Material of construction
Scrubber type
Pressure drop9
L/G
Wastewater treatment
316 stainless steel
Variable throat venturi
8 in. H^O gauge
10 gal/103 acf
Treated in existing facility
Double Alkali FGD
(S00 and PM removal)
(DA?
Material of construction
Scrubber type
System design
316 stainless steel
Variable throat venturi
Includes 80% efficient single mechanical
collector upstream of scrubber
-------
TABLE 2-18. (CONTINUED)
(continued)
Double Alkali FGD
(S02 and PM removal)
Pressure drop
(over SM and scrubber)
L/G
Sludge disposal
20 in. H^O gauge
10 gal/100 acf
Dry particulate collected in single
mechanical combined with 60% solids
scrubber sludge and trucked to off-site
landfill
ro
i
ro
00
Dry Scrubbing (spray
drying, S02 and PM
removal)
(DS)
Material of construction
Reagent
Fabric filter
Pressure drop3
L/G
Solids disposal
Carbon steel spray
filter (insulated)
dryer and fabric
Lime; no solids recycle
Reverse-air (same design as previous
fabric filter)
6 in. HpO gauge
0.3 gal/acf
Trucked to off-site landfill
All pressure drops refer to gas side pressure drop across entire control system.
-------
TABLE 2-19. ANNUAL REPORTING, COMPLIANCE,
AND MALFUNCTION COSTS
REPORTING3
For units with FGD;
Baseline Annual: $4800
Quarterly Excess Emissions: + $1920
TSTfo
For units without FGD;
Baseline Annual: $4800
COMPLIANCE
For units with FGD;
(Continuous) Inlet SO. »
(Continuous) Outlet S02 ( $63,000
Diluent (02/C02) *
Opacity6 + $10,800
Continuous NOX ( 2250 x 106 Btu/hr only) + $30,800
NOY Method 7/09 ( <250 x 106 Btu/hr only) + $12,000
A b
Total for *250 x 106 Btu/hr w/FGD - $105,000
Total for <250 x 106 Btu/hr w/FGD = $86,000
For units without FGD; (<250 x 106 Btu/hr)
Method 5 (PM $10,000
Opac1tyb + $10,800
Method 7 (NOX) + $ 5,000
Continuous 0- + $17,700
$45,500
MALFUNCTION (for units with FGD only)
Assuming 5Z downtime (of FGD system) during which oil is fired.
Oil/Coal fuel cost differential - $3/10° Btu. (FGD operating costs do
not reflect downtime. They are calculated on the basis of 100 percent
TGD system availability).
Baseline costs are for general provisions requirements for reporting
start-up, shutdown, and malfunction.
Pressure drop meter instead of opacity neter for boilers with combined
scrubbing or PM wet scrubbing.
2-29
-------
was assumed for units with thermal input capacities greater than 250 x
10 Btu/hr. Units less than 250 x 10 Btu/hr were assumed to combine an
annual Method 5 and Method 7 tests and continuous 0« monitoring. All
boilers were assumed to require an opacity monitor (or a pressure drop meter
for boilers equipped with wet scrubbers for PM or combined PM/S02 removal).
Malfunction costs are based on the use of low sulfur oil for a downtime
period of 5 percent of the total boiler operating hours.
Compliance, reporting, and malfunction costs are not included in the
total costs presented in subsequent chapters. The costs presented in
Table 2-19 are considered typical of those that might be associated with
various regulatory alternatives. However, the requirements of specific
regulations will determine the actual costs incurred.
2-30
-------
2.7 REFERENCES
1. U. S. Environmental Protection Agency. Fossil Fuel Fired Industrial
Boilers - Background Information. Volume I. Research Triangle Park,
N. C. Publication No. 450/3-82-006a. March 1982. pp. 4-1 - 4-213.
2. Devitt, T., P. Spaite, and L. Gibbs. (PEDCo Environmental) Population
and Characteristics of Industrial/Commercial Boilers in the U.S.
(Prepared for U. S. Environmental Protection Agency.) Research
Triangle Park, N. C. EPA-600/7-79-78a. Cincinnati, Ohio.
August 1979. 462 p.
3. Reference 2, p. 117.
4. Letter from Medine, E. S., Energy and Environmental Analysis, Inc. to
Short, R., EPA:EAB. September 14, 1981. 6 p. Comparison of IFCAM and
Radian Cost Algorithms for S02 and PM Control on Coal- and Oil-Fired
Industrial Boilers.
5. Reference 2, p. 118.
6. PEDCo Environmental, Inc. Cost Equations for Industrial Boilers.
Final report. Prepared for U.S. Environmental Protection Agency.
Research Triangle Park, N.C. EPA Contract No. 68-02-3074.
January 1980. 22 p.
7. Energy and Environmental Analysis, Inc. Industrial Fuel Choice
Analysis Model: Primary Model Documentation. (Prepared for
U.S. Environmental Protection Agency.) Research Triangle Park, N.C.
EPA Contract No. 68-02-3330. June 1980. 148 p.
8. Energy and Environmental Analysis, Inc. Impact Analysis of Alternative
New Source Performance Standards II: Energy, Environmental, and Cost
Impacts. (Prepared for U.S. Environmental Protection Agency.)
Research Triangle Park, N.C. EPA Contract No. 68-02-3330.
December 19, 1980.
9. Useful Tables for Engineers and Steam Users, Thirteenth Edition.
New York, Babcock and Wilcox, 1978. p. 39.
10. Steam, Its Generation and Use, 38th Edition. New York, Babcock and
Wilcox, 1975. pp. 5-1 to 5-22.
11. PEDCo Environmental, Inc. Capital and Operation Costs of Particulate
Controls on Coal- and Oil-Fired Industrial Boilers. (Prepared for
U.S. Environmental Protection Agency.) Research Triangle Park, N.C.
EPA-450/5-80-009. August 1980. 129 p.
2-31
-------
12. Bowen, M.L., (Radian Corporation.) Costs of Mechanical Collectors
Applied to Fossil Fuel Fired Industrial Boilers. June 2, 1982. 12 p.
13. Dickerman, J.C. and K.L. Johnson, (Radian Corporation.) Technology
Assessment Report for Industrial Boiler Application: Flue Gas
Desulfurization. (Prepared for U. S. Environmental Protection Agency.)
Research Triangle Park, N. C. EPA-600/7-79-78c. November 1979.
664 p.
14. Gardner, R., R. Chang, and L. Broz. (Acurex Corporation.) Cost,
Energy and Environmental Algorithms for NO , S0?, and PM Controls for
Industrial Boilers. Final Report. (Prepared for U. S. Environmental
Protection Agency.) Cincinnati, Ohio. EPA Contract No. 68-03-2567.
December 1979. p. 20-52.
15. Memo from Kelly, M. E., Radian Corporation, to Industrial Boiler File.
January 21, 1981. 33 p. Summary of Radian cost algorithm development
for Industrial Boiler NSPS.
16. Smith, S.A., F.H. Sheffield, and W.R. Menzies. "Issue Paper:
Reporting Requirements." Radian Corporation. Durham, N.C.
September 1980. 40 p.
17. Dickerman, J.C. and M.E. Kelly. "Issue Paper: Compliance Monitoring
Costs." Radian Corporation. Durham, N.C. September 25, 1980. 20 p.
18. Kelly, M.E. and K.L. Johnson. "Issue Paper: Control Equipment
Malfunction Provisions." Radian Corporation. Durham, N.C.
September 25, 1980. 43 p.
2-32
-------
3.0 COSTS OF PM AND S00 CONTROL FOR COAL-FIRED BOILERS
This section presents the results of the model boiler cost analysis for
various PM and S0« control technologies applied to coal-fired boilers. This
analysis focuses on the capital cost, annual O&M costs, and total annualized
cost of control for both HSC and LSC-fired units between 30 x 10 Btu/hr and
400 x 10 Btu/hr capacity.
Five technologies which control only PM are examined:
- single mechanical collector (SM),
- side stream separator (SSS),
- venturi scrubber (VS),
- electrostatic precipitator (ESP), and
- fabric filter (FF).
The ESP systems are applied to the HSC-fired units while the FF systems are
used on the LSC-fired units. This analysis indicates little or no cost
advantage for ESP systems compared to FF systems for HSC-fired boilers.
Since the costs of FF's are relatively insensitive to fuel properties, the
costs for FF's applied to LSC-fired units presented here are believed to be
representative of costs for FF's applied to HSC-fired boilers.
Four S0« control technologies are also examined:
- dual alkali F6D scrubbing without provisions for PM removal
(tray type scrubber),
- dual alkali FGD scrubbing with provisions for PM removal
(venturi scrubber),
- lime spray drying FGD (includes a fabric filter), and
- sodium throwaway FGD scrubbing.
The first two technologies are analyzed for both HSC- and LSC-fired units at
50 percent and 90 percent S02 removal levels. The lime spray drying system
is analyzed at a 50 percent removal level for LSC-fired units only. Sodium
throwaway scrubbing is examined for small residual oil-fired units.
3-1
-------
All costs in this chapter are presented as 1978 dollars. Coal-fired
and residual oil-fired boilers are assumed to have a capacity utilization of
0.6 and 0.55, respectively. All boilers and control equipment are assumed
to have a capital recovery factor of 13.15 percent which is based on an
equipment life of 15 years and a real interest rate of 10 percent.
This chapter is divided into two sections. The first discusses capital
costs while the second discusses annual O&M and total annualized costs.
3.1 CAPITAL COSTS OF PM AND S02 CONTROLS APPLIED TO COAL-FIRED BOILERS
Tables 3-1 and 3-2 present capital costs for the HSC- and LSC-fired
model boilers defined in Chapter 2. The normalized capital costs provide a
size independent measure of the capital required to build a boiler and
associated pollution control system. This value estimates the capital
($1000) required per unit of installed heat input capacity (10 Btu/hr).
These normalized costs are graphically depicted in Figures 3-1 and 3-2.
The larger boilers in the size range presented, 150-400 x 10 Btu/hr, do not
show the steady decrease in capital costs as expected. This is due to the
fact that these boilers are spreader stoker and pulverized feed units and
are more complex and capital intensive than the underfeed boilers used in
the smaller boiler sizes (30 and 75 x 10 Btu/hr).
Also included in Tables 3-1 and 3-2 is the percent increase in capital
costs over the uncontrolled model boiler. This data is graphically
illustrated in Figures 3-3 and 3-4 for HSC- and LSC-fired model boilers,
respectively. Of immediate note is the higher percent increases for
HSC-fired units compared to LSC-fired units for the same pollution control
systems. The result is due to the lower uncontrolled S0£ and PM emissions
inherent in the burning of LSC. The net result is a reduction in the costs
of F6D and PM control systems and lower percent increases over the
uncontrolled case for LSC-fired units. Also, the uncontrolled LSC-fired
model boilers tend to have higher capital costs than HSC-fired units due to
higher working capital requirements associated with the use of more
expensive LSC fuel. (See Tables 2-7 and 2-8 for calculation of capital
costs and working capital.)
3-2
-------
TABLE 3-1. CAPITAL COSTS FOR HSC-FIRED MODEL BOILERS
GO
CO
Model
Boiler
HSC-30-Unc, Unc
HSC-30-Unc, SM
HSC-30-Unc, SSS
HSC-30-Unc, VS
HSC-30-Unc, ESP
HSC-30-DA(50), DA/PM
HSC-30-OA 50), ESP
HSC-30-DA 90) , DA/PM
HSC-30-DA 90) , ESP
HSC-75-Unc, Unc
HSC-75-Unc, SM
HSC-75-Unc, SSS
HSC-75-Unc, VS
HSC-75-Unc, ESP
HSC-75-DA 50), OA/PM
HSC-75-DA 50), ESP
HSC-75-DA 90), DA/PM
HSC-75-DA(90), ESP
HSC-150-Unc, Unc
HSC-150-Unc, SM
HSC-150-Unc, SSS
HSC-150-Unc, VS
HSC-150-Unc, ESP
HSC-150-DA 50), DA/PM
HSC-150-DA 50), ESP
HSC-150-DA 90), DA/PM
HSC-150-DA(90), ESP
HSC-400-Unc, Unc
HSC-400-Unc, SM
HSC-400-Unc, SSS
HSC-400-Unc, VS
HSC-400-Unc, ESP
HSC-400-DA(50), DA/PM
HSC-400-DA(50), ESP
HSC-400-DA 90), DA/PM
HSC-400-DA(90), ESP
Uncontrolled
Boiler
1857
1857
1857
1857
1857
1857
1857
1857
1857
3380
3380
3380
3380
3380
3380
3380
3380
3380
7737
7737
7737
7737
7737
7737
7737
7737
7737
18334
18334
18334
18334
18334
18334
18334
18334
18334
Capital
Control
0
0
0
0
0
862
721
959.
829
0
0
0
0
0
1183
1042
1316
1202
0
0
0
0
0
1599
1407
1764
1625
0
0
0
0
0
2516
2230
2764
2576
Costs ($1000)
PM
Control
0
60
105
143
225
w/S02
225
w/S02
225
0
118
214
252
407
w/S02
407
w/SO,
407
0
201
370
436
1222
w/SO,
1222
w/S02
1222
0
414
784
1012
1704
w/S02
170$
w/SO,
1709
Normalized
Total Total3
1857
1917
1962
2000
2082
2719
2803
2816
2911
3380
3498
3594
3632
3787
4563
4829
4696
4989
7737
7938
8107
8173
8959
9336
10366
9502
10584
18334
18748
19118
19346
20038
20850
22268
21098
22614
61.9
63.9
65.4
66.7
69.4
90.6
93.4
93.9
97.0
45.1
46.6
47.9
48.4
50.5
60.8
64.4
62.6
66.5
51.6
52.9
54.0
54.5
59.7
62.2
69.1
63.3
70.6
45.8
46.9
47.8
48.4
50.1
52.1
55.7
52.7
56.5
% Increase Over
Uncontrolled
0
3.2
5.7
7.7
12.1
46.4
50.9
51.6
56.8
0
3.5
6.3
7.5
12.0
35.0
42.9
38.9
47.6
0
2.6
4.8
5.6
15.8
20.7
34.0
22.8
36.8
0
2.3
4.3
5.5
9.3
13.7
21.5
15.1
23.3
"Normalized total Is total capital cost divided by boiler capacity ($1000/10 Btu/hr).
-------
TABLE 3-2. CAPITAL COSTS FOR LSC-FIRED MODEL BOILERS
CO
I
Model
Boiler
LSC-30-Unc, Unc
LSC-30-Unc, SM
LSC-30-Unc, SSS
LSC-30-Unc, VS
LSC-30-Unc, FF
LSC-30-DS 50 , OS/PM
LSC-30-OA 50 , DA/PM
LSC-30-DA 50 , FF
LSC-30-DA 90), DA/PM
LSC-30-DA 90), FF
LSC-75-Unc, Unc
LSC-75-Unc, SM
LSC-75-Unc, SSS
LSC-75-Unc, VS
LSC-75-Unc, FF
LSC-75-DS 50) DS/PM
LSC-75-DA 50 DA/PM
LSC-75-DA 50 FF
LSC-75-DA(90 DA/PM
LSC-75-DA(90 FF
LSC-150-Unc, Unc
LSC-150-Unc, SM
LSC-150-Unc, SSS
LSC-150-Unc, VS
LSC-150-Unc, FF
LSC-150-DS 50), DS/PM
LSC-150-DA 50), DA/PM
LSC-150-DA 50), FF
LSC-150-DA(90), DA/PM
LSC-150-DA(90), FF
LSC-400-Unc, Unc
LSC-400-Unc, SM
LSC-400-Unc, SSS
LSC-400-Unc, VS
LSC-400-Unc, FF
LSC-400-DS(50) DS/PM
LSC-400-DA(50) DA/PM
LSC-400-DA(50 FF
LSC-400-DA(90 DA/PM
LSC-400-DA(90) FF
Uncontrolled
Boiler
2244
2244
2244
2244
2244
2244
2244
2244
2244
2244
4079
4079
4079
4079
4079
4079
4079
4079
4079
4079
8334
8334
8334
8334
8334
8334
8334
8334
8334
8334
18990
18990
18990
18990
18990
18990
18990
18990
18990
18990
Capital
Control
0
0
0
0
0
622
691
535
745
592
0
0
0
0
0
1045
955
773
1027
856
0
0
0
0
0
1637
1358
1048
1432
1158
0
0
0
0
0
3333
2110
1683
2222
1850
Costs ($1000)
PM
Control
0
62
108
145
234
w/SO,
w/SO^
23?
w/S02
23?
0
121
218
257
613
w/SO,
w/SO^
61?
w/SO,
613
0
206
379
446
1059
w/SO,
w/SO'
1059
w/SO,
1059
0
417
797
1033
2139
w/SO,
w/SO,
2139
w/S02
2139
Total
2244
2306
2352
2389
2478
2866
2935
3013
2989
3070
4079
4200
4297
4336
4692
5124
5034
5465
5106
5548
8334
8540
8713
8780
9393
9971
9692
10441
9766
10551
18990
19407
19787
20023
21129
22323
21100
22812
21212
22979
Normalized
Total3
74.8
76.9
78.4
79.6
82.6
95.5
97.8
100.4
99.6
102.3
54.4
56.0
57.3
57.8
62.6
68.3
67.1
72.9
68.1
74.0
55.6
56.9
58.1
58.5
62.6
66.5
64.6
69.6
65.1
70.3
47.5
48.5
49.5
50.1
52.8
55.8
52.8
57.0
53.0
57.4
% Increase Over
Uncontrolled
0
2.8
4.8
6.5
10.4
27.7
30.8
34.3
33.2
36.8
0
3.0
5.3
6.3
15.0
25.6
23.4
34.0
25.2
36.0
0
2.5
4.5
5.4
12.7
19.6
16.3
25.3
17.2
26.6
0
2.2
4.2
5.4
11.3
17.6
11.1
20.1
11.7
21.0
formalized total is total capital cost divided by boiler capacity ($1000/106 Btu/hr).
-------
~ 10°
3
" 90
vo
0
1— 1
o 80
5 70
S 60
CJ
5 50
CL
o 40
•o
01
CO N --
i "- 30
en "5
o 20
in
J.U
0
—
u
c
c
c
c
*?
o
1/1
-
5;
u
c
o
ro
CO
a:
-
CO
CO
0
o
ro
i
CJ
CO
a:
-
CO
u
c
CO
1
CJ
a:
i —
0.
to
UJ
u
c
13
1
1
CJ
to
re
o.
i
o"
to
I
1
CJ
x
o.
CO
Ul
0
tn
I
o
CO
CJ
t/>
3:
§
i
I
w1
i
•
CJ
a:
Q.
Ul
O
I
1
CJ
=
u
c
o
c
1
in
t^
i
to
a:
to
u
c
1
in
f^
i
a:
to
to
to
u
c
1
in
i
CO
3C
. .
£
U
C
I
T
x
—
a.
to
Ul
u
c
i
in
i
x
o.
i
"o
if)
I
in
i
to
a:
Q.
to
Ul
"o
10
g
in
i
1
—
E
i
o
g
1
in
i
to
a:
Q.
Ul
O
g
in
i
to
t
c
—
c
~
1
V
• -
y
"1
O
c
1
o
in
i
t ^
a:
to
to
to
U
c
3
1
O
in
i
CJ
t/)
in
—
C/1
^
CJ
c
ID
1
O
in
i
a:
—
Q.
to
Ul
C
Z3
g
1
CO
1
—
E
g
•«
o
in
g
in
i
to
a:
— i
-^
a.
to
Ul
•
c
g
o
in
i
in
a:
—
|
g
*
8
I
o
in
i
CJ
CO
a:
- -
Q.
CO
Ul
»
I
I
O
in
i
**
to
a:
o
c
=3
C
1
• j
to
z
^
"I
o
c
1
f\
CO
a:
V
v
_£
C
1
L.
3
CO
s»
u
c
1
o
2
^r
CO
a:
—
Q.
CO
Ul
C
=>
I
^*
1
CO
a:
^™"
I
g
•
S
I
i
^*
Lo
a:
—
o.
UJ
•k
i^— S
O
U)
g
o
2
^*
i
to
a:
£
g
•
8
g
1
t «
Lo
a:
—
Q.
CO
Ul
"
8
g
t %
to
a:
30
75 150
Boiler Capacity (106 Btu/hr)
400
Figure 3-1. Normalized capital costs for HSC-fired model boilers.
-------
3
CO
to
o
I— 1
I
£>
z
o
o
2
o
CO
1
0
to
-
u.
u.
0
o^
2
1
o
co
1
o
to
_J
-
u
c
o
c
1
in
1
(_)
_J
—
z:
to
0
c
1
in
i
<_j
P
—
to
to
to
o
c
1
in
i
t_j
to
—i
—
to
o
c
1
in
i
o
to
—i
-
Lu
U.
O
C
1
in
i
0
to
CL
to
o
o
in
to
o
|
in
i
o
to
Q.
cj-
£3
O
in
•a:
o
i
in
i
i_j
t/n
—
U-
u.
0
in
|
in
i
o
to
—
^X.
o
o
CTl
2
1
in
i
o
to
—
u.
LL.
O
O
|
in
i
CJ
"
o
o
c
n
o
in
i
0
to
—
to
— )
o
in
i
o
to
-
to
to
c
1
o
in
r- 1
1
0
to
—
c
s
•-H
1
o
-
U-
c
1
o
in
•-i
i
u
to
-
Q.
to
a
o
to
a
i
in
,-H
i
0
1/1
-
£
2
o
<
1
o
in
.— i
i
0
to
-•
U-
u.
o
2
o
in
r-l
1
0
1/1
_J
- —
g
<
o
o
o
in
r-H
1
U
U-
u.
o
2
c
in
r-<
1
U
to
t
_c
1
*d
1
c.
*~
(/)
c
o
0
1
to
—
to
(/I
c
o
o
•sf
1
0
to
_J
>•
c
o
o
1
o
to
u_
c
o
0
1
to
_J
O-IQ-
s
s.
OJC3
in
o
o
^*-
1
o
vt
—1
^^
2
o
o
*»•
1
o
to
u.
u.
o
o
o
^
1
LO
g
-------
CO
60
55
50
45
o 40
O
10
O
35
£ 30
-------
OJ
i
CO
I/I
o
o
£ 40
Q.
c 35
•r—
OJ
g 30
2!
o
5 25
§ 20
-------
Costs for single mechanical collectors range from about $60,000 to
$417,000 for the boiler sizes examined, and in all cases are less than
30 percent of the cost of an ESP or FF- Although more expensive than
mechanical collectors, side stream separators are less than 55 percent of
the cost of an ESP or FF. Venturi scrubber costs are higher than SSS costs
and are typically 65 percent of an ESP or FF cost.
Based on the range of boiler sizes examined, the ESP capital costs
appear to show a diseconomy of scale. However, the relatively low costs for
the 30 and 75 x 10 Btu/hr units are more the result of two factors:
(1) the inherently lower emission rate of the underfeed stoker units
(0.657 lb/10 Btu for HSC) relative to the spreader stoker and pulverized
units (2.54 - 3.81 lb/106 Btu for HSC) and (2) the sensitivity of ESP costs
to collection efficiency. For example, the specific collection area (SCA)
required to control PM emissions to 0.05 lb/10 Btu is about
2 3
117 ft /10 acfm for an underfeed stoker. But for the same control level,
2 3
the SCA requirement for a spreader stoker is 189 ft /10 acfm. This
increased plate area requirement results in a more expensive ESP for the
larger boilers on a normalized cost basis.
Unlike ESPs, fabric filter costs are not sensitive to collection
efficiency (i.e., for a given controlled emission rate, fabric filter costs
are not a function of boiler uncontrolled PM emission rate) and thus do not
exhibit capital cost diseconomies of scale. Also, fabric filter costs are
not sensitive to fuel sulfur content. As noted in Appendix A (Table A-13),
ESP costs are expressed as a function of coal sulfur content as well as
collection efficiency. Fly ash from low sulfur coals generally is more
difficult to collect than the lower resistivity ash associated with many
higher sulfur coals. Thus, a larger ESP collection area may be required,
with the results that an ESP is typically more expensive than a fabric
filter for LSC-fired boilers.
Figures 3-1 and 3-3 show the least expensive S02/PM control system for
HSC-fired boilers to be a double alkali FGD system used to remove PM and
designed for 50 percent S02 removal. These systems result in cost increases
from 14 to 46 percent of the uncontrolled boiler costs, with the percent
3-9
-------
increasing as boiler size decreases from 400 to 30 x 10 Btu/hr. The cost
for the double alkali system designed for PM control and 90 percent S02
removal are about 10 percent higher than those for a 50 percent removal
system. The higher design S02 removal efficiency requires larger reagent
and sludge waste handling equipment, resulting in a higher capital cost.
The most expensive system for HSC-fired units is a 90 percent F6D
system combined with an ESP for PM control. The cost increases over
uncontrolled for this control strategy range from 23 to 57 percent of the
uncontrolled boiler cost.
As seen in Figures 3-2 and 3-4 (LSC-fired model boilers), capital costs
for the 50 percent SO^ removal spray drying system are higher than those for
a 90 percent SQ^ removal double alkali system at all but the smallest boiler
size. This is attributable to the capital cost of the fabric filter that
must be included with the spray drying system to collect fly ash and the
product solids generated during SOp removal in the spray dryer. The most
expensive system for LSC-fired units is the double alkali FGD system used in
combination with a fabric filter. The capital cost of this system ranges
from 21 to 37 percent of the uncontrolled boiler costs with the percentage
decreasing as boiler size increases from 30 to 400 x 10 Btu/hr.
3.2 O&M AND TOTAL ANNUALIZED COSTS OF PM AND S02 CONTROL APPLIED
TO COAL-FIRED BOILERS
Annual O&M costs for HSC- and LSC-fired model boilers are presented in
Tables 3-3 and 3-4, respectively. The normalized annual costs provide a
size independent measure of the annual O&M cost of the boiler and pollution
control system. Normalized annual costs are computed by dividing the annual
cost ($1000/yr) by the annual heat input to the boiler based on the capacity
utilization (10 Btu/yr). Since a time unit is included in both numerator
and denominator, the final unit for normalized annual cost is $/10 Btu.
Total annualized costs, which include annual capital charges, are
presented in a similar manner in Tables 3-5 and 3-6. Figures 3-5 and 3-6
provide a bar-chart representation of the normalized total annualized costs.
On an annualized basis, the uncontrolled boilers show a smooth step down in
3-10
-------
TABLE 3-3. ANNUAL O&M COSTS FOR HSC-FIRED MODEL BOILERS
Model
Boiler
HSC-30-Unc, Unc
HSC-30-Unc, SM
HSC-30-Unc, SSS
HSC-30-Unc, VS
HSC-30-Unc, ESP
HSC-30-DA 50 , DA/PH
HSC-30-OA 50 , ESP
HSC-30-DA 90 , DA/PM
HSC-30-DA 90), ESP
HSC-75-Unc, Unc
HSC-75-Unc, SM
HSC-75-Unc, SSS
HSC-75-Unc, VS
HSC-75-Unc, ESP
HSC-75-DA(50 , DA/PM
HSC-75-DA(50 , ESP
HSC-75-DA190 , DA/PM
HSC-75-DA(90), ESP
HSC-150-Unc, Unc
HSC-150-Unc, SM
HSC-150-Unc, SSS
HSC-150-Unc, VS
HSC-150-Unc, ESP
HSC-150-DA(50 , DA/PM
HSC-150-DA150 , ESP
HSC-150-DA 90 , DA/PM
HSC-150-DA(90 , ESP
HSC-400-Unc, Unc
HSC-400-Unc, SM
HSC-400-Unc, SSS
HSC-400-Unc, VS
HSC-400-Unc, ESP
HSC-400-DA(50 , DA/PM
HSC-400-DA 50 , ESP
HSC-400-DA 90 , DA/PM
HSC-400-DA 90 , ESP
Annual
Uncontrolled
Boiler
649
649
649
649
649
649
649
649
649
1382
1382
1382
1382
1382
1382
1382
1382
1382
2204
2204
2204
2204
2204
2204
2204
2204
2204
5603
5603
5603
5603
5603
5603
5603
5603
5603
O&M Costs
Control
0
0
0
0
0
265
253
289
277
0
0
0
0
0
327
310
379
365
0
0
0
0
0
434
394
533
496
0
0
0
0
0
757
644
1008
899
($1000/yr)
PM
Control
0
18.3
27.0
33.3
32.3
w/SO-
32.3
w/SO,
32.3
0
25.2
38.6
55.9
41.3
w/S02
41.3
w/S02
41.3
0
47.2
69.5
104
73.7
w/SO,
73.?
w/SO,
73.7
0
120
177
262
177
w/S07
177 7
w/SO.
177 Z
Total
649
667
676
682
681
914
934
938
958
1382
1407
1421
1438
1423
1709
1733
1761
1788
2204
2251
2274
2308
2278
2638
2672
2737
2774
5603
5723
5780
5865
5780
6360
6424
6611
6679
Normalized
Total3
4.12
4.23
4.29
4.32
4.32
5.80
5.92
5.95
6.08
3.51
3.57
3.60
3.65
3.61
4.34
4.40
4.47
4.54
2.80
2.86
2.88
2.93
2.89
3.35
3.39
3.47
3.52
2.67
2.72
2.75
2.79
2.75
3.03
3.06
3.14
3.18
% Increase Over
Uncontrolled
0
2.8
4.2
5.1
4.9
40.8
43.9
44.5
47.6
0
1.8
2.8
4.1
3.0
23.7
25.4 -•
27.4
29.4
0
2.1
3.2
4.7
3.4
19.7
21.2
24.2
25.9
0
2.1
3.2
4.7
3.2
13.5
14.7
18.0
19.2
'Normalized total is total O&M cost divided by annual heat input ($/10° Btu).
-------
TABLE 3-4. ANNUAL O&M COSTS FOR LSC-FIRED MODEL BOILERS
u>
i—>
ro
Model
Boiler
LSC-30-Unc, Unc
LSC-30-Unc, SM
LSC-30-Unc, SSS
LSC-30-Unc, VS
LSC-30-Unc, FF
LSC-30-DS(50) OS/PM
LSC-30-DA(50 DA/PM
LSC-30-DA 50 FF
LSC-30-DA 90 DA/PM
LSC-30-DA 90 FF
LSC-75-Unc, Unc
LSC-75-Unc, SM
LSC-75-Unc, SSS
LSC-75-Unc, VS
LSC-75-Unc, FF
LSC-75-DS(50 DS/PM
LSC-75-DA(50 DA/PM
LSC-75-DAI50 FF
LSC-75-DA 90 DA/PM
LSC-75-DA 90 FF
LSC-150-Unc, Unc
LSC-150-Unc, SM
LSC-150-Unc, SSS
LSC-150-Unc, VS
LSC-150-Unc, FF
LSC-150-DS(50 , DS/PM
LSC-150-DAC50 , DA/PM
LSC-150-DA(50), FF
LSC-150-DA(90), DA/PM
LSC-150-DA(90), FF
LSC-400-Unc, Unc
LSC-400-Unc, SM
LSC-400-Unc, SSS
LSC-400-Unc, VS
LSC-400-Unc, FF
LSC-400-DS 50 DS/PM
LSC-400-DAI 50 DA/PM
LSC-400-DA 50 FF
LSC-400-DA 90 DA/PM
LSC-400-DA(90) FF
Annual
Uncontrolled
Boiler
758
758
758
758
758
758
758
758
758
758
1642
1642
1642
1642
1642
1642
1642
1642
1642
1642
2671
2671
2671
2671
2671
2671
2671
2671
2671
2671
6856
6856
6856
6856
6856
6856
6856
6856
6856
6856
O&M Costs
Control
0
0
0
0
0
238
238
224
245
232
0
0
0
0
0
264
271
251
284
266
0
0
0
0
0
317
340
288
362
313
0
0
0
0
0
451
484
389
538
446
($1000/yr)
PM
Control
0
18.5
27.3
33.5
39.9
W/SO,
w/SO,
39.9
w/S09
39.9
0
25.8
39.3
56.3
60.6
w/SO?
w/SO,
60.6
w/S02
60.6
0
50.9
73.5
107
109
w/S09
w/SO,
109 i
w/SO,
109 i
0
98.5
156
240
239
w/SO?
w/so;
239 i
w/SO,
239 i
Total
758
777
785
792
798
996
996
1022
1003
1030
1642
1668
1681
1698
1703
1906
1913
1954
1926
1969
2671
2722
2745
2778
2780
2988
3011
3068
3033
3093
6856
6955
7012
7096
7095
7307
7340
7484
7394
7541
Normalized
Total3
4.81
4.93
4.98
5.02
5.06
6.32
6.32
6.48
6.36
6.53
4.17
4.23
4.26
4.31
4.32
4.84
4.85
4.96
4.89
4.99
3.39
3.45
3.48
3.52
3.53
3.79
3.82
3.89
3.85
3.92
3.26
3.31
3.34
3.38
3.37
3.47
3.49
3.56
3.52
3.59
% Increase Over
Uncontrolled
0
2.5
3.6
4.5
5.3
31.4
31.4
34.8
32.3
35.9
0
1.6
2.4
3.4
3.7
16.1-
16.5
19.0
17.3
19.9
0
1.9
2.8
4.0
4.1
11.9
12.7
14.9
13.6
15.8
0
1.4
2.3
3.5
3.5
6.6
7.1
9.2
7.8
10.0
aNormalized total 1s total O&M cost divided by annual heat Input ($/10° Btu).
-------
TABLE 3-5. TOTAL ANNUALIZED COSTS FOR HSC-FIRED MODEL BOILERS
CO
I
Annual 1 zed Costs
Model
Boiler
HSC-30-Unc, Unc
HSC-30-Unc, SM
HSC-30-Unc, SSS
HSC-30-Unc, VS
HSC-30-Unc, ESP
HSC-30-DA
HSC-30-DA
HSC-30-DA
HSC-30-DA
50), DA/PM
50), ESP
90), DA/PM
90), ESP
HSC-75-Unc, Unc
HSC-75-Unc, SM
HSC-75-Unc, SSS
HSC-75-Unc, VS
HSC-75-Unc, ESP
HSC-75-DA
HSC-75-DA
HSC-75-DA
HSC-75-DA
50), DA/PM
50), ESP
90), DA/PM
90), ESP
HSC-150-Unc, Unc
HSC-150-Unc, SM '
HSC-150-Unc, SSS
HSC-150-Unc, VS
HSC-150-Unc, ESP
HSC-150-DA
HSC-150-DA
HSC-150-DA
HSC-150-DA
50 , DA/PM
50 , ESP
190 , DA/PM
90), ESP
HSC-400-Unc, Unc
HSC-400-Unc, SM
HSC-400-Unc, SSS
HSC-400-Unc, VS
HSC-400-Unc, ESP
HSC-400-DA
HSC-400-DA
HSC-400-DA
HSC-400-DA
50), DA/PM
50), ESP
90), DA/PM
90), ESP
Uncontrolled
Boiler
961
961
961
961
961
961
961
961
961
1948
1948
1948
1948
1 1948
1948
1948
1948
1948
3511
3511
3511
3511
3511
3511
3511
3511
3511
8699
8699
8699
8699
8699
8699
8699
8699
8699
Control
0
0
0
0
0
410
373
450
416
0
0
0
0
0
525
485
600
566
0
0
0
0
0
702
630
828
768
0
0
0
0
0
1177
1016
1466
1327
($1000/yr)
PM
Control
0
28.4
44.7
57.4
70.5
w/S02
70.5
w/SO,
70.5
0
45.2
74.7
98.3
111
w/SO,
111 i
w/SO,
111 2
0
80.9
132
177
282
w/SO,
282 i
w/SO,
282 c
0
189
309
432
466
w/SO,
466 i
w/SO,
466 e~
Total
961
989
1006
1018
1032
1371
1405
1411
1448
1948
1993
2023
2046
2059
2473
2544
2548
2625
3511
3592
3643
3688
3793
4213
4423
4339
4561
8699
8888
9008
9131
9165
9876
10181
10165
10492
Normalized
Total a
6.09
6.27
6.38
6.46
6.54
8.69
8.91
8.95
9.18
4.94
5.05
5.13
5.19
5.22
6.27
6.45
6.46
6.66
4.45
4.56
4.62
4.68
4.81
5.34
5.61
5.50
5.79
4.14
4.23
4.28
4.34
4.36
4.70
4.84
4.83
4.99
% Increase Over
Uncontrolled
0
2.9
4.7
5.9
7.4
42.7
46.2
46.8
50.7
0
2.3
3.8
5.0
5.7
27.0
30.6
30.8
34.8
0
2.3
3.8
5.0
8.0
20.0
26.0
23.6
29.9
0
2.2
3.6
5.0
5.4
13.5
17.0
16.9
20.6
formalized total 1s total annual cost divided by annual heat Input ($/10 Btu).
-------
TABLE 3-6. TOTAL ANNUALIZEO COSTS FOR LSC-FIRED MODEL BOILERS
to
Model
Boiler
LSC-30-Unc, Unc
LSC-30-Unc, SM
LSC-30-Unc, SSS
LSC-30-Unc, VS
LSC-30-Unc, FF
LSC-30-DS 50), DS/PM
LSC-30-DA 50), DA/PM
LSC-30-OA 50 , FF
LSC-30-DA 90), DA/PM
LSC-30-DA 90), FF
LSC-75-Unc, Unc
LSC-75-Unc, SM
LSC-75-Unc, SSS
LSC-75-Unc, VS
LSC-75-Unc, FF
LSC-75-OS 50) DS/PM
LSC-75-DAI 50) DA/PM
LSC-75-DAi 50) FF
LSC-75-DA 90) DA/PM
LSC-75-DA 90) FF
LSC-150-Unc, Unc
LSC-150-Unc, SM
LSC-150-Unc, SSS
LSC-150-Unc, VS
LSC-150-Unc, FF
LSC-150-DS(50 , DS/PM
LSC-150-DA150 , DA/PM
LSC-150-DA(50 , FF
LSC-150-DA(90 , DA/PM
LSC-150-DA(90) , FF
LSC-400-Unc, Unc
LSC-400-Unc, SM
LSC-400-Unc, SSS
LSC-400-Unc, VS
LSC-400-Unc, FF
LSC-400-DS(50) DS/PM
LSC-400-DA(50) DA/PM
LSC-400-DA 50) FF
LSC-400-DA 90) DA/PM
LSC-400-DA 90 FF
Annual
Uncontrolled
Boiler
1136
1136
1136
1136
1136
1136
1136
1136
1136
1136
2326
2326
2326
2326
2326
2326
2326
2326
2326
2326
4078
4078
4078
4078
4078
4078
4078
4078
4078
4078
10056
10056
10056
10056
10056
10056
10056
10056
10056
10056
Ized Costs
Control
0
0
0
0
0
342
353
313
370
330
0
0
0
0
0
440
431
381
457
409
0
0
0
0
0
594
568
464
603
507
0
0
0
0
0
1016
839
672
911
756
($1000/yr)
PM
Control
0
28.9
45.3
57.9
79.5
w/S09
w/SO<
79.5
w/SO,
79.5
0
46.2
76.2
99.5
165
w/SO?
w/SOp
165 t
w/SO,
165 i
0
85.4
137
182
289
w/SO,
w/SO;
289 *•
w/S09
289 *
0
169
290
413
602
W/SO?
w/SO,
602 t
w/SO?
602 c
Total
1136
1165
1181
1194
1216
1478
1489
1529
1506
1546
2326
2372
2402
2426
2491
2766
2757
2872
2783
2900
4078
4163
4215
4260
4367
4672
4646
4831
4681
4875
10056
10225
10346
10469
10658
11072
10895
11330
10967
11414
Normalized
Total3
7.20
7.39
7.49
7.57
7.71
9.37
9.44
9.70
9.55
9.80
5.90
6.02
6.09
6.15
6.32
7.02
6.99
7.29
7.06
7.36
5.17
5.28
5.35
5.40
5.54
5.93
5.89
6.13
5.94
6.78
4.78
4.86
4.92
4.98
5.07
5.27
5.18
5.39
5.22
5.43
% Increase Over
Uncontrolled
0
2.6
4.0
5.1
7.0
30.1
31.1
34.6
32.6
36.1
0
2.0
3.3
4.3
7.1
18.9
18.5
23.5
19.6
24.7
0
2.1
3.4
4.5
7.1
14.6
13.9
18.5
14.8
19.5
0
1.7
2.9
4.1
6.0
10.1
8.3
12.7
9.1
13.5
Normalized total is total annual cost divided by annual heat input ($/10 Btu).
-------
CO
I-*
ai
— 10
3
OQ
o 9
o
r-*
J2 8
•»•>
U) 7
0 /
U
TJ
at c
N 0
•r*
r~
A]
g 5
c
«t
a 4
•r™
* 3
o
z 2
1
n
-
-
-
-
-
_
o
=3
C
Z>
O
n
i
£
$
c
i
n
i
to
10
B
c
0
ro
i
to
to
c
=3
1
O
PI
1
ISI
a:
a.
in
Ul
c
o
<«>
1
(/)
X
i.
a.
i
•
0
in
I
£
1
l/l
1
I/)
«
±
i
o
1
to
a.
i/>
Ul
*
o
(n
I
0
1
to
3:
•
U
r>
o
c
l«
1
to
:r
mi *
5
u
c
3
l/>
to
~^—
to
VI
to
u
c
n
i
u>
to
3C
—
LO
>
U
c
13
in
LO
3:
—
a.
i/)
Ul
u
3
1
U)
«/>
I
—
a.
i
*
s
*^rf»
g
in
i
to
—
a.
to
Ul
o
I
m
i
(O
—
£
i
o
I
m
i
to
i
—
a.
to
Ul
«
O
I
in
1
to
u
c
=>
c
=3
1
O
in
to
:c
^
JC
i
a
if.
i
to
a:
to
to
to
c
i
in
£
i —
«/>
c
1
1
£
a.
to
Ul
c
s
1
(/>
F
g
S
ci
in
i
S
a.
to
Ul
ft
S
in
g
i
in
i
to
—
g
«£
a
•>
S
at
g
S
1
l/>
1 — 1
a.
to
Ul
«t
o
en
g
o
in
to
n:
u
c
=3
JC
|
1
to
a:
^
c
?
9
i
(O
3C
to
(O
to
c
i
§
1
to
DC
to
c
o
1
-------
•*•>
no
10
O
s 10
CO
!-•
cn
U)
O
o
s
1
c/>
CO
>
u
c
=)
s
1
u.
u.
u
I
£
1
to
i
^,
CO
o
in
a
s
•
b.
s
^
g
in
g
s
i
CO
._
u_
U-
m
g
&
i
CO
—
i?
--^
§
£
§
8
1
I/I
._.
U-
u.
cn
<
a
£
1
i
in
i
1/1
z:
CO
u
c
z>
1
uO
1
I/I
CO
CO
to
u
c
=)
1
cn
i
CO
CO
>
u
c
=>
.0
1
CO
U-
(JL
U
c
3
1
1/1
I
CO
3E
a.
*^
CO
a
cn
S
i
m
i
co
ff
g
in
g
i
cn
i
>/>
r-
U-
ii.
o
m
g
i
cn
i
i
o
m
i
co
—
CO
CO
CO
c
3
1
o
cn
i
CO
CO
>•
L50-Unc,
i
co
r—
U.
U.
C
=>
g
1
CO
—
£
•v.
3
0
2
g
1
CO
f
g
o
g
i
in
i
CO
U.
U.
O
«t
O
1
o
in
i
CO
—
£
o
00-Unc,
i
CO
£
CO
c
^
8
1
co
CO
CO
CO
c
=>
o
o
1
CO
CO
>
c
r>
i
o
o
1
CO
u.
u.
WO-Unc,
i
CO
£
~~-
CO
a
CO
o
d,
o
1
CO
—
g
-^-
g
o
g
o
o
1
CO
1—
M-
u.
o
ft.
o
g
1
CO
—
£
•>-.
g
0
g
1
o
o
1
CO
— 1
U-
U-
0
g
1
o
o
1
J
30
75
Boiler Capacity (106 Btu/hr)
150
400
Figure 3-6. Normalized annualized costs for LSC-fired model boilers.
-------
normalized costs with boiler size indicating economies of scale with larger
boilers.
Finally, Figures 3-7 and 3-8 provide plots of percent increases in
annualized costs over uncontrolled as a function of boiler size. As was
noted in capital costs, the LSC-fired model boilers show lower percent
increases for all control strategies. In annual costs, the higher cost of
LSC compared to HSC is strongly evident, resulting in much higher costs for
the uncontrolled cases. This results in lower percent increases in costs
for controlled LSC-fired model boilers for each control scheme.
Mechanical collectors and side stream separators are the least
expensive control devices on an annualized cost basis as well as a capital
cost basis. The ESP costs again exhibit a slight apparent diseconomy of
scale due to the difference in boiler uncontrolled PM emission rates. This
is primarily due to the capital cost difference being carried over in the
capital.charges component of annualized costs.
The application of an FGD system to an HSC-fired boiler results in at
least a 13 percent increase in annualized costs over the uncontrolled
boiler. Unlike the costs for PM control technologies, however, FGD costs
are a fairly strong function of size below about 250 x 10 Btu/hr. For
example, an FGD system used to remove PM and designed for 50 percent S02
removal for HSC-firing results in about a 20 percent increase in steam costs
for a 150 x 10 Btu/hr unit. But the same system applied to a
30 x 10 Btu/hr unit results in a 43 percent increase over uncontrolled.
The largest percent increases due to FGD costs are observed for small
boilers.
The difference in the percent increase in annualized costs over
uncontrolled between 50 and 90 percent SO^ removal FGD systems is about 3 to
4 percent for all HSC-fired boiler sizes. This translates into annual
savings of from $40,000/yr for a 30 x 106 Btu/hr unit to about $289,000/yr
for a 400 x 10 Btu/hr unit. The savings result from (1) reduced capital
charges associated with the smaller reagent and sludge handling facilities
for the 50 percent system, (2) reduced sludge volumes to be disposed of, and
(3) reduced reagent consumption.
3-17
-------
CO
I
l-«
00
in
o
O
fO
3
in
a
-------
CO
I
»-»
UD
ut
O
o
0)
N
c
01
in
?
o
40
35
30
§
£ 25
20
15
10
5
fl
DA(90), FF
DA(90), DA/PM
DA(50), FF
DA(50), DA/PM
DS(50), OS/PM
Unc, FF
Unc, VS
Unc, SSS
Unc, SH
Q.
50
100
150
200
250
300
350
400
Boiler Capacity (10 Btu/hr)
Figure 3-8. Percent increases in annualized cost over uncontrolled for LSC-fired model boilers,
-------
Figure 3-7 indicates that a 90 percent removal F6D system used in
combination with an ESP on a HSC-fired model boiler results in annualized
costs increases over uncontrolled of 21 percent for a 400 x 10 Btu/hr unit
to 51 percent for a 30 x 10 Btu/hr unit. Percent cost increases for
400 x 10 Btu/hr boilers controlled by F6D/ESP are approximately equivalent
to increases attributed to combined S09/PM FGD systems at the
g C-
150 x 10 Btu/hr capacity.
For the range of LSC-fired model boilers examined, the annualized costs
of applying a double alkali FGD system to remove both PM and S0« (90 percent
S0£ removal) are roughly equal to the costs of a lime spray drying/fabric
filter system designed for 50 percent S0« removal. As discussed earlier,
the spray drying system includes a fabric filter and is therefore more
expensive than the double alkali scrubber on a capital costs basis.
However, this difference in capital charges is somewhat balanced by the
reduced waste disposal and reagent costs associated with the spray drying
system.
A double alkali system (90 percent S0? removal) used in combination
with a fabric filter results in the largest percentage increase over
uncontrolled for the S02/PM systems applied to LSC-fired boilers. Use of
this control strategy results in increases over uncontrolled of from
13 percent for a 400 x 10 Btu/hr pulverized coal boiler to 36 percent for a
30 x 10 Btu/hr underfeed stoker.
3-20
-------
4.0 COSTS OF PM AND S02 CONTROL FOR RESIDUAL OIL-FIRED BOILERS
This chapter presents the results of the model boiler cost analysis of
various PM and S02 control technologies applied to residual oil-fired
boilers. Capital costs are presented in the first portion of the chapter,
while annual O&M and annualized costs are discussed in the second portion.
Two sizes of residual oil-fired model boilers are evaluated: 30 and
150 x 10 Btu/hr. In addition to the uncontrolled case, costs are presented
for (1) the use of an ESP, (2) the use of a double alkali FGD system for PM
and S02 removal (50 and 90 percent), and (3) the use of a double alkali
system (50 and 90 percent S0« removal) and an ESP. For the small
c £
30 x 10 Btu/hr size the costs for a sodium throwaway system (50 and
90 percent S02 removal) used alone or with an ESP are also presented. Use
of sodium throwaway systems is especially suited to oil-field steam
generators used for thermal enhanced oil recovery. In these applications,
the waste liquor can generally be reused, thus eliminating expensive
treatment processes that would otherwise make the sodium throwaway system
uneconomical in comparison to a double alkali system.
4.1 CAPITAL COSTS OF PM AND S02 CONTROLS APPLIED TO RESIDUAL
OIL-FIRED BOILERS
Table 4-1 presents capital costs for the residual oil-fired model
boilers defined in Chapter 2. Normalized costs, shown in the sixth column
of the table, are a measure of the total capital investment ($1,000) per
unit of installed heat input capacity (10 Btu/hr). The normalized capital
costs are graphically depicted in Figure 4-1.
The most expensive control system is the double alkali FGD system used
with an ESP, followed by the use of a double alkali system used to remove
both S02 and PM. The capital costs of the sodium throwaway system applied
to the 30 x 10 Btu/hr unit are substantially less than for the double
alkali systems since no solids handling equipment is required for the sodium
throwaway system.
4-1 '
-------
TABLE 4-1. CAPITAL COSTS FOR RESIDUAL OIL-FIRED MODEL BOILERS
4=»
I
Capital Costs
RES-30-Unc, Unc
RES-30-Unc, ESP
RES-30-NATH(50), NATH/PM
RES-30-NATHJ50), ESP
RES-30-NATH(90), NATH/PM
RES-30-NATH(90), ESP
RES-30-DA(90), DA/PM
RES-30-DA(90), ESP
RES-150-Unc, Unc
RES-150-Unc, ESP
RES-150-DA(50), DA/PM
RES-150-DA(50), ESP
RES-150-DA(90), DA/PM
RES-150-DA(90), ESP
Uncontrolled
Boiler
577
577
577
577
577
577
577
577
2126
2126
2126
2126
2126
2126
S0?
Control
0
0
361
361
391
391
832
694
0
0
1338
1174
1475
1338
($1000)
PM
Control
0
396
w/S09
396^
w/S09
396^
w/S09
396^
0
1055
w/SO,
1055^
w/SO?
1055^
Total
577
973
938
1334
968
1364
1409
1667
2126
3181
3464
4355
3601
4519
Normalized
Total9
19.23
32.43
31.27
44.47
32.27
45.47
46.97
55.57
141.17
21.21
23.09
29.03
24.01
30.13
% Increase
Over Uncontrolled
0
68.6
62.6
131.2
67.8
136.4
144.2
188.9
0
49.6
62.9
104.8
69.4
112.6
a$1000/!0r Btu/hr.
-------
CO
f
Co
D 55
o
t-i
8 50
S 45
8 40
o
£ 35
'o.
in
0 30
x>
s
t- 25
c— *• »•*
1 20
z
15
10
0
•
-
•
.
.
.
-
0
c
0
c
o
i*j
i
Ul
^__^
D.
to
Ul
o
o
CO
12
Oe
. 1
1
3C
z
1
^—
IT
50-NATH
»• i
i
t/i
Ul
a
o.
to
Ul
M
^-^
O
in
I
s
*"J
i
to
Oi
•
a.
1
Z
" '
»
^— V
o
a\
|
o
CO
1
to
Ul
a:
o.
to
Ul
M
^^
O
en
1
i
ul
ae
^r
a.
C3
M
s
I
ci
in
i
to
Ul
O£
a.
I/!
Ul
•
a
c
ir
i
to
Ul
ae
30
150
Boiler Capacity (106 Btu/hr)
Figure 4-1. Normalized capital costs for residual oil-fired model boilers,
-------
Capital cost increases over uncontrolled for the double alkali/ESP
system range from 105 percent for 50 percent S00 control on a
g £.
150 x 10 Btu/hr unit to 189 percent for 90 percent S00 control on a
g C.
30 x 10 Btu/hr model. These large percent increases over uncontrolled are
primarily due to the low capital cost of the boilers. Capital costs for an
ESP are 50 percent over uncontrolled for the 150 x 10 Btu/hr unit and
69 percent for the 30 x 106 Btu/hr boiler.
4.2 O&M AND TOTAL ANNUALIZED COSTS OF PM AND S02 CONTROL FOR
OIL-FIRED BOILERS
Annual O&M costs for the residual oil-fired model boilers are presented
in Table 4-2 while total annualized costs (including capital charge
components) are shown in Table 4-3. The normalized annualized costs are
presented graphically in Figure 4-2. This figure gives an indication of the
economies of scale associated with the annualized costs of boilers and
control systems.
The annualized cost impact of control over uncontrolled is less for the
150 x 106 Btu/hr boilers than the 30 x 106 Btu/hr boiler. This occurs
because of the apparent economies of scale with the larger 150 x 10 Btu/hr
boiler and the associated control equipment. The double alkali/ESP system
(the most expensive system on an annualized as well as a capital cost basis)
results in a 20 and 47 percent increase over uncontrolled. The use of an
ESP without S02 control results in a 5 and 10 percent increase in costs for
the two boiler sizes evaluated.
4-4
-------
TABLE 4-2. ANNUAL O&M COSTS FOR RESIDUAL OIL-FIRED MODEL BOILERS
Annual
Uncontrolled
Boiler
RES-30-Unc, Unc
RES-30-Unc, ESP
RES-30-NATH(50), NATH/PM
RES-30-NATH(50), ESP
RES-30-NATH(90), NATH/PM
RES-30-NATH(90), ESP
RES-30-DA(90), DA/PM
RES-30-DA(90), ESP
RES-150-Unc, Unc
RES-150-Unc, ESP
RES-150-DAJ50), DA/PM
RES-150-DA(50), ESP
RES-150-DA(90), DA/PM
RES-150-DA(90), ESP
894
894
894
894
894
894
894
894
3863
3863
3863
3863
3863
3863
O&M Costs
S0?
Contfol
0
0
237
237
259
259
259
248
0
0
341
322
392
374
($1000/yr)
PM
Control
0
28.4
w/SO?
28?4
w/S09
28?4
w/S09
2874
0
51.8
w/S09
5lf8
w/SO,
51t8
Total
894
922
1131
1159
1153
1181
1153
1170
3863
3915
4204
4237
4255
4289
Normalized % Increase
Total Over Uncontrolled
6.19
6.38
7.82
8.02
7.98
8.17
7.98
8.09
5.35
5.42
5.82
5.86
5.89
5.93
0
3.1
26.5
29.6
29.0
32.1
29.0
30.9
0
1.3
8.8
9.7
10.1
11.0
a$/106 Btu.
-------
TABLE 4-3. TOTAL ANNUALIZED COSTS FOR RESIDUAL OIL-FIRED MODEL BOILERS
Annual ized Costs ($1000/yr)
RES-30-Unc, Unc
RES-30-Unc, ESP
RES-30-NATH(50), NATH/PM
RES-30-NATH(50), ESP
RES-30-NATH(90), NATH/PM
RES-30-NATH(90), ESP
RES-30-DA(90), DA/PM
RES-30-DA(90), ESP
RES-150-Unc, Unc
RES-150-Unc, ESP
RES-150-DA(50), DA/PM
RES-150-DA(50), ESP
RES-150-DA(90), DA/PM
RES-150-DA(90), ESP
Uncontrolled
Boiler
986
986
986
986
986
986
986
986
4202
4202
4202
4202
4202
4202
S0?
Control
0
0
296
296
322
322
399
364
0
0
566
519
639
598
PM
Control
0
95.9
w/S09
95?9
w/S09
95?9
w/S09
95?9
0
232
w/S09
232^
w/S09
232^
Total
986
1082
1282
1378
1308
1404
1385
1446
4202
4434
4768
4953
4841
5032
Normalized % Increase
Total Over Uncontrolled
6.82
7.49
8.87
9.53
9.05
9.71
9.58
10.00
5.81
6.14
6.60
6.85
6.70
6.96
0
9.7
30.0
39.8
32.7
42.4
40.5
46.7
0
5.5
13.5
17.9
15.2
19.8
a$/106 Btu.
-------
10
»-» Q
^
•P
CO
°o 8
rH
^"^ 7
•*•»
M
5 6
•a
OJ
N
£ 5
Q
3
1 4
X»
» 3
•i™
r~
i 2
o
1
/\
-
-
-
•
-
-
_
r—
U
c
a
U
3
1
O
CO
t/)
Ul
OC
IBM
a.
to
Ul
•
u
c
1
o
CO
1
to
Ul
ce.
*5T
O-
o:
i
»
*~^
o
in
*fc^.
2C
1
O
ro
i
Ul
or
~~
*
D-
10
Ul
t
^*
Q
in
s^^
T"
1-
|
O
CO
i
to
Ul
ac.
^r
Q.
J5
§
«t
^-V
0
a\
re
jj
•
^
•
Ul
Of
o.
to
Ul
•
^-^
o
cn
^
^
i
o
ro
i
to
Ul
.g.
•*v
-------
5.0 NOY CONTROL COSTS
A
Chapter five presents the methodology and bases for calculating the
cost of NO control on industrial bo'ilers firing coal, residual oil,
/\
distillate oil, and natural gas. Four types of NO control (combustion
A
modifications) are analyzed; low excess air (LEA), staged combustion air
(SCA), flue gas recirculation (FGR), and reduced air preheat (RAP).
Cost algorithms are used in this chapter to calculate the cost of NO
^
control. Section 5.1 presents the boiler cases that will be analyzed. In
addition, the emission reduction achievable with these controls will be
presented. Section 5.2 discusses the sources and bases of the NO control
A
cost algorithms. Finally, Section 5.3 presents the calculated capital,
annual operating and maintenance (O&M), and annualized costs for the four
types of NO controls applied to the boiler cases presented in Section 5.1.
rt
5.1 SELECTION OF NOV CONTROL CASES
)\
Table 5-1 presents the control cases selected for the NO control cost
A
analysis. The boilers selected represent the range of boiler sizes expected
to be built for each fuel type. Table 5-1 also presents the NO controls
A
that are applicable to each boiler type and the achievable NO emission
A
reduction.
5.2 COST CALCULATION APPROACH
The costs presented in this chapter are the incremental costs for NO
A
control and are presented in mid-1978 dollars. The costs for each NO
A
combustion modification are calculated and presented in terms of:
- Capital costs of the control
- Annual operating and maintenance (O&M) costs due to the
application of the control
- Annualized costs (annual O&M costs plus capital related charges)
5-1-
-------
TABLE 5-1. N0v CONTROL CASES AND EMISSION LEVELS
A
1,2,3
in
I
Control Case
Coal3
UNDR-30-LEA
UNDR-75-LEA
SPRD-150-LEA
SPRD-250-LEA
PLVR-150-LEA
PLVR-150-SCA
PLVR-250-LEA
PLVR-250-SCA
PLVR-400-LEA
PLVR-400-SCA
0.2 Weight % Nitrogen Residual Oil
RES-30-LEA
RES-150-LEA
RES-250-LEA
0.4 Weight % Nitrogen Residual Oil
RES-30-LEA
RES-30-SCA
RES-150-LEA
RES-150-SCA
RES-250-LEA
RES-250-SCA
Emissions
Uncontrolled
0.40
0.40
0.64
0.64
0.90
0.90
0.90
0.90
0.90
0.90
0.29
0.29
0.29
0.43
0.43
0.43
0.43
0.43
0.43
lb/106 Btu
Controlled
0.32
0.32
0.50
0.50
0.76
0.58
0.76
0.58
0.76
0.58
0.26
0.26
0.26
0.40
0.24
0.40
0.24
0.40
0.24
Removal Efficiency
(Percent)
20
20
22
22
16
36
16
36
16
.36
10
10
10
7
42
7
42
7
42
-------
TABLE 5-1. (Continued)
Ul
CO
Control Case
Distillate Oil
DIS-30-LEA
DIS-30-FGR
DIS-30-RAPC
DIS-150-LEA
DIS-150-FGR
DIS-150-RAPC
DIS-250-LEA
DIS-250-F6R
DIS-250-RAPC
Natural Gas
NG-30-LEA
NG-30-FGRr
NG-30-RAPC
NG-150-LEA
NG-150-FGR_
NG-150-RAPC
NG-400-LEA
NG-400-FGRr
NG-400-RAPC
Emissions
Uncontrolled
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
lb/106 Btu
Controlled
0.16
0.19
0.19
0.16
0.19
0.19
0.16
0.19
0.19
0.22
0.18
0.18
0.22
0.18
0.18
0.22
0.18
0.18
Removal Efficiency
(Percent)
36
24
24
36
24
24
36
24
24
* •
15
31
31
15
31
31
15
31
31
All coal-fired boilers fire high sulfur coal.
Uncontrolled boilers employ combustion air preheaters which preheat combustion air to 300°F.
j«»
RAP boilers do not employ air preheaters and use ambient combustion air (77°F).
-------
As with the boiler, PM control, and S0? control costs, the costs of NO
^ A
control are estimated by the use of cost algorithms. These algorithms
present particular NO control cost components as a function of key system
A
specifications. Tables A-24 through A-28 of Appendix A present a listing of
the algorithms for each NO control analyzed in this chapter. The
A .
development and cost bases for these" algorithms are presented in a Radian
4
technical memorandum. The cost calculation methodology for the NO control
A
costs presented in this chapter is the same as that presented in Chapter 2
for the boilers, PM controls, and S0? controls.
Table 5-2 presents the specifications and the recommended equipment
needed when implementing the NO controls. These items are the basis for
A
the capital cost algorithms. All of the NO controls except for RAP require
A
additional equipment and/or boiler modifications. For residual oil-fired
boilers, a slightly larger firebox is required when SCA is applied because
the staging causes an extension of the boiler flame. To accommodate the
longer flame a larger boiler firebox is required. The degree of staging
required to meet a given emission level depends on the residual oil nitrogen
content.
For RAP, the cost algorithm presented predicts only the incremental
fuel cost associated with not recovering heat from the boiler flue gas. In
many cases, other means of heat recovery may be available (such as
economizers) to reduce or eliminate this heat loss without affecting NO
X
emissions.
The major annual O&M cost components are maintenance labor, maintenance
materials, spare parts, fuel, and electricity. The maintenance labor,
maintenance materials and spare parts cost components are combined and
calculated using the spare parts cost algorithms. The fuel costs are based
on a change in boiler efficiency due to the implementation of the NO
A
control. When LEA is used, boiler efficiency increases, therefore a fuel
savings results. The other three NO controls decrease boiler efficiency
A
which result in higher fuel costs. The fuel cost algorithms for LEA and RAP
are based on changes in excess air levels and flue gas temperatures. For
5-4
-------
TABLE 5-2. NOV COMBUSTION MODIFICATION EQUIPMENT REQUIREMENTS OR MODIFICATIONS9
J\
Control Device
Low Excess Air (LEA)
Oxygen trim system - 02 analyzer, air flow
regulators
Wind box modifications (may be required
for multi-burner boilers)
01
01
Staged Combustion Air (SCA) Pulverized coal-fired
boilers
Residual oil-fired
boilers
Oxygen trim system - 0? analyzer, air flow
regulators
Ai rports
Wind box modifications
Larger forced draft fan power
* -
Up to 30 percent larger boiler to
accommodate longer flame
Flue gas recirculation (FGR)
Larger forced draft fan and associated
ductwork
Modification of wind box and burners to
handle additional gas flow
Control system to regulate combustion
oxygen and the volume of flue gas
recirculated
Reduced Air Preheat (RAP)
No additional equipment or modifications
required
Continuous NO monitors are not included in these cost algorithms.
rt
-------
SCA and FGR a 0.25 percent and 0.5 percent decrease in boiler efficiency,
respectively, is assumed (See Appendix A).
The use of SCA and FGR also results in higher fan power requirements
which increases the amount of electricity required. The cost of electricity
if assumed to be $0.026/kwh. Several key variables in the cost algorithms
were assumed in this cost analysis. " Table 5-3 presents the costs of the
fuels used along with the capacity utilization for the boilers to which the
NO controls are applied. The fuel prices are 1990 prices in 1978 dollars
A
and are consistent with the fuel prices presented in Chapter 2.
For the calculation of LEA and RAP fuel costs, fuel F-factor calcula-
tions and boiler excess air levels are used in the cost algorithms to
determine flue gas flow rates. Table 5-4 presents the selected values for
these variables. For RAP, it was assumed that the boiler was operating
under controlled excess air conditions and the change in flue gas tempera-
ture was 100°F.
In the calculation of annualized costs a capital recovery factor of
13.15 percent was used. This factor is based on a real interest rate of
10 percent and a 15 year equipment life. This is the same capital recovery
component that was used in the SOp and PM control cost analyses. The other
capital related charges are also the same as in the previous analyses.
Taxes, G&A, and insurance are 4 percent of total turnkey costs which
interest on working capital is 10 percent.
5.3 ANALYSIS OF COST IMPACTS
Table 5-5 presents the costs of NO control for the control cases
A
presented in Table 5-1. The costs are divided into capital costs, annual
O&M costs, total annualized costs and normalized annualized costs. The.
normalized annualized costs provide a size independent measure of the
annualized costs. They are calculated by dividing the total annualized
costs of the control by the total annual heat input to the boiler. The
final unit is $/106 Btu.
Low excess air (LEA) is the least expensive combustion modification
because it improves boiler efficiency thus reducing boiler fuel costs. The
5-6-
-------
TABLE 5-3. FUEL COSTS AND CAPACITY FACTORS USED FOR
NOV CONTROL COST ESTIMATION^'J
A
Fuel Type
High sulfur coal
Residual oil
Distillate oil
Natural gas
Nitrogen Content
(wt. %)
1.2
0.4
Trace
8.05a
FueUCost
$/10° Btu
2.41
4.85
6.06
4.85
Capacity Utilization
0.60
0.55
0.55
0.55
aUnbound nitrogen, not fuel N« that can be converted to "fuel" NO
emissions.
5-7 .
-------
TABLE 5-4. FUEL F-FACTORS AND BOILER EXCESS AIR LEVELS
USED IN NOV CONTROL COST ESTIMATION
A
F-Factor Uncontrolled Boiler Controlled Boiler
Fuel Type (dscf/100 Btu) [% Excess Air (% 02)] [% Excess Air (% 02)]
High sulfur coal 9,820 50 (6.7) 35 (5.2)
Residual and 9,220 38.4 (6) 9.1 (2)
Distillate oil
Natural gas 8,740 37.4 (6) 8.5 (2)
5-8'
-------
TABLE 5-5. N0y CONTROL COSTS (MID-1978 $)
Ul
I
<£>
Control Case
Coal
UNDR-30-LEA
UNDR-75-LEA
SPRD-150-LEA
SPRD-250-LEA
PLVR-150-LEA
PLVR-150-SCA
PLVR-250-LEA
PLVR-250-SCA
PLVR-400-LEA
PLVR-400-SCA
0.2% Nitrogen Residual Oil •
RES-30-LEA
RES-150-LEA
RES-250-LEA
0.4% Nitrogen Residual Oil
RES-30-SCA
RES-150-SCA
RES-250-SCA
Capital
Costs, $
11,600
15,200
21,300
29,500
21,300
43,700
29,500
60,300
41 ,600
86,100
9,150
15,300
20,400
58,600
150,000
227,000
Annual O&M
Costs, $/yr
-1,910
-5,640
-11,900
-20,100
-11,900
15,600
-20,100
23,400
-32,600
39,600
-11,300
-58,500
-97,800
7,040
26,400
42,400
Total
Annual i zed
Costs, $/yr
76
-3,020
-8,190
-15,100
-8,190
22,800
-15,100
33,400
-25,400
53,800
-9,740
-55,900
-94,300
17 ,000
51,800
80 ,800
Normalized Annual i zed
Costs, $/10° Btua
neg
-0.008
-0.01
-0.01
-0.01
0.03
-0.01
0.03
-0.01
0.03
-0.07
-0.08
-0.08
0.12
0.07
0.07
-------
TABLE 5-5. (Continued)
Ol
I
l-»
Q
Control Case
Distillate Oil
DIS-30-LEA
DIS-30-FGR
DIS-30-RAP
DIS-150-LEA
DIS-150-FGR
DIS-150-RAP
DIS-250-LEA
DIS-250-FGR
DIS-250-RAP
Natural Gas
NG-30-LEA
NG-30-FGR
NG-30-RAP
NG-150-LEA
NG-150-FGR
NG-150-RAP
NG-250-LEA
NG-250-FGR
NG-250-RAP
Capital
Costs, $
9,150
19,600
1,450
15,300
36,800
7,230
20,400
51,100
12,000
9,200
19,500
1,090
15,300
36,400
5,460
20,800
50,500
9,090
Annual O&M
Costs, $/yr
-14,300
9,600
17,400
-73,300
43,900
86,800
-123,000
72,500
145,000
-10,500
8,700
13,100
-54,600
39,500
65,500
-91,400
65,200
109,000
Total
Annual! zed
Costs, $/yr
-12,700
12,900
17,500
-70,700
49,700
87,500
-119,000
80,400
146,000
-8,970
12,000
13,200
-54,000
45,300
66,000
-87,900
73,000
110,000
Normalized Annual ized
Costs, $/10 Btua
-0.09
0.09
0.12
-0.10
0.07
0.12
-0.10
0.07
0.12
*
-0.06
0.08
0.09
-0.07
0.06
0.09
-0.07
0.06
0.09
Negative number indicates net savings due to application of the control
-------
cost of applying LEA ranges from a savings of $119,000/year on a
250 x 10 Btu/hr distillate oil-fired boiler to a cost of $76/year on a
30 x 10 Btu/hr underfired coal-fired unit.
The application of either staged combustion air (SCA), flue gas
recirculation (F6R), or reduced air preheat (RAP) increases annualized
costs. The application of SCA on residual oil-fired boilers is more
expensive than SCA on pulverized coal-fired boilers. This higher cost
occurs because staging on residual oil-fired boilers requires, larger boiler
fireboxes. The increase in annualized costs due to SCA on pulverized
coal-fired boilers ranges from $22,800/year on a 150 x 10 Btu/hr boiler to
$53,800/year on a 400 x 10 Btu/hr boiler. For residual oil-fired units the
cost of applying SCA ranges from $17,000/year on a 30 x 10 Btu/hr unit
firing 2 weight percent nitrogen oil to $81,000/year on a 250 x 10 Btu/hr
'unit firing 4 weight percent nitrogen oil.
The increase in costs due to the application of FGR on distillate oil-
and natural gas-fired boilers ranges from $12,000/year on a 30 x 10 But/hr
natural gas-fired boiler to $80,400/year on a 250 x 10 Btu/hr distillate
oil-fired boiler. For RAP the increased cost for distillate oil-and natural
gas-fired boilers ranges from $13,200/year on a 30 x 10 Btu/hr natural
gas-fired boiler to $146,000/year on a 250 x 106 Btu/hr distillate oil-fired
unit. For both of these controls, the fuel penalty and therefore control
costs are higher on distillate oil-fired units because of the higher price
of distillate oil (See Table 5-3).
5-11
-------
5.4 References
1. U.S. Environmental Protection Agency. Fossil Fuel Fired Industrial
Boilers-Background Information. Volume 1. Research Triangle
Park, N.C. Publication No. EPA-450/3-82-006a. March 1982. 869 p.
2. Memo from Lahre, T., EPArSAS to Sedmon, C., EPAtEMB. October 1, 1981.
35 p. Review of Coal Combustion1 Section, Revisions to Section 1.1 of
AP.42.
3. Burklin, C.E., and W.D. Kwapil. (Radian Corporation.) Regressions for
NO Emissions from Oil- and Gas-Fired Boilers. (Prepared for U.S.
Environmental Protection Agency.) Research Triangle Park, N.C.
May 27, 1982. 49 p.
4. Memo from Bowen, M.L., Radian Corporation, to Jones, L., EPArSDB.
July 28, 1982. 12 p. NO Combustion Modification Cost Algorithm
Development.
5-12
-------
6.0 COSTS OF LOW SULFUR COAL AND LOW SULFUR OIL
This section discusses the costs of using low sulfur coal or low
sulfur oil (hydrodesulfurized oil) to reduce S02 emissions from industrial
boilers. The costs are presented in constant 1978 dollars and are
projected for the year 1990.
Estimation of the cost of using low sulfur fuels is complicated by
site specific factors. In the case of low sulfur coal, the delivered
price of the fuel is a strong function of boiler location and the avail-
ability of coal with a desired sulfur content. The delivered price of
low sulfur fuel oil also depends on boiler location, as well as the
available refinery hydrodesulfurization capacity to produce oil with the
desired sulfur content. A complete analysis of the availability of low
sulfur fuels to industrial users is beyond the scope of this report.
The costs presented in this chapter are based primarily on projected
fuel and transportation costs used in the Industrial Fuel Choice Analysis
Model (IFCAM). Documentation of the methods of projection and assumptions
used to develop these prices are contained in Chapter 10 of the Background
Information Document for Industrial Boilers.
6.1 LOW SULFUR COAL
Figure 6-1 shows the delivered cost of coal supplied to a boiler in
the midwestern United States: as a function of coal sulfur content and
c
coal supply region. Low sulfur coal (less than 2.5 Ib S02/10 Btu) is
typically supplied from regions other than the Midwest and transportation
costs are a major component of the delivered price for these fuels.
Higher sulfur coals would likely be obtained from local (Midwest) supplies.
The broad region formed by the two curves in Figure 6-1 is intended
to represent an approximate range of coal prices as a function of sulfur
content for the Midwest location. Using these values, one can compare
the cost of using coal with a specific sulfur content to the annualized
cost of FGD systems as a function of boiler size (Figure 6-2). Figure 6-2
is based on a double alkali FGD system operating at 90 percent S0«
6-1
-------
3.0
2.5
-M
CQ
vo
2.0
oo
en
-------
(*)
3 3
CO
in
8
ta
-o
0>
N
m
0
50
FGD(90), CF = 0.4
FGD(90), CF = 0.6
100
150 200 250
Boiler Size (106 Btu/hr)
300
350
400
Figure 6-2, Normalized annualized cost of FGD system applied to HSC coal-fired
boilers.
-------
removal on a boiler firing 3.5 percent sulfur coal (0.6 lb-S02/106 Btu
controlled emissions). Unlike the use of low sulfur coal, normalized
annualized costs for FGD systems ($/10 Btu) are a function of boiler
size and capacity factor. Figure 6-2 shows costs for both 0.4 and
0.6 capacity factor cases.
For example, the 1990 cost of Coal with emissions of about
1.2 Ib SO^/IO Btu delivered to a Midwest boiler range from about $2.00
f- c.
to $2.50/10 Btu according to Figure 6-1. This can be compared to the
annualized cost of a 90 percent S02 removal FGD system on a 0.6 capacity
factor unit burning 3.5 percent sulfur coal shown in Figure 6-2. The
FGD system costs ranges from about $0.60/106 Btu for a 400 x 106 Btu/hr
unit to $2.70/1O6 Btu for a 30 x 106 Btu/hr boiler.
As discussed earlier, the delivered price of coal is a function of
boiler location. Figure 6-3 shows the delivered cost of coal to a
boiler located in the Southwest (Houston). Because of the greater
distances over which coal from the supply regions indicated in the
figure must be transported, delivered coal prices are slightly higher
than for the Midwest location.
Figure 6-4 shows the delivered price of coal to a Northeast location
(Boston). Comparison of Figures 6-3 and 6-4 with Figure 6-1 shows that
the variation in the delivered price of coal as a function of sulfur
content is strongest in the Midwest. There are no clear trends in coal
price variation with sulfur content when the coal is delivered to a
Southwest or Northeast location.
It should be noted that these conclusions are based on a limited
number of coals included in the IFCAM model.
6.2 LOW SULFUR FUEL OIL
The cost of residual oil can be expressed as a function of sulfur
content as shown in Table 6-1. The range of costs shown in this table
are based on premiums associated with the desulfurization of crudes with
different metal contents, a factor which impacts the desulfurization
2
costs. Calculation of these premiums is documented in a separate paper.
6-4
-------
en
i
en
CO
vo
o
oo
to
O
u
•I—
&-
0.
2!
0)
(U
o
3.0
2.5
2.0
1.5
1.0
.5
A
Key
Coal delivered from:
y Western Northern Great Plains
0 Midwest
A Rockies
A Southwest
.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
Coal Sulfur Content (lb/10 Btu)
Figure 6-3. Delivered price of coal to a Southwest location (Houston).
-------
3.0
2.5
B
li
CD
CO
o
o
O)
o
•a
QJ
a>
01
Q
2.0
1.5
1.0
Key
Coal delivered from:
I Central Appalachia
> Northern AppaTachia
^ Southern Appalachia
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
Coal Sulfur Content (Ib S02Btu)
Figure 6-4- Delivered price of coal to a Northeast location (Boston).
-------
TABLE 6-1. INCREMENTAL INCREASES IN RESIDUAL OIL PRICES
FOR VARIOUS SULFUR CONTENTS
Sulfur content of oil Incremental Cost of Desulfurization9
(weight «) . ($/105 Btu)
0.8 0.68 - 0.74
0.3 0.93 - 1.03
0.1 1.03 - 1.39
aAdded cost of hydrodesulfurization of 3% sulfur feedstock crude.
6-7
-------
This paper also discusses trends in petroleum product supply and demand
and compares the costs, energy, and environmental impacts of FGD and the
use of low sulfur hydrodesulfurized fuel oil (HDS).
6-8
-------
6.3 REFERENCES
1. Energy and Environmental Analysis. Background Information Document
for Industrial Boilers, Chapter 10 (Draft). March 1981.
2. Menzies, W.R. (Radian Corporation). Issue Paper No. 5: S0«
Standard for Oil. Prepared for U.S. Environmental Protection
Agency, Research Triangle Park,. N.C. EPA Contract No. 68-02-3074.
November 3, 1980. 34 p.
6-9
-------
APPENDIX A
COST ALGORITHMS
Appendix A presents the cost algorithms used to calculate the boiler,
PM control, S0« control, and NO control costs presented in Chapters 3,
w rt
4 and 5. Table A-l summarizes the costing algorithms available. The
algorithms are presented as routines (UNDR, VS, DAC, etc.) to identify them
in the FORTRAN computer program (COST) used to calculate costs. This
program is presented in Appendix B. All the algorithms are used in this
analysis with the exception of the distillate/natural gas boiler routines
(DN61, DNG2) and the dual mechanical collector PM control routine (DM).
These algorithms are presented for reference since they were developed in
conjunction with the other routines.
Table A-2 presents the nomenclature used in the costing algorithms.
Categories 1-3 are costs, while the remaining categories are boiler and
pollution control system specifications and cost rates used to calculate
costs. The costing algorithms presented use this nomenclature. In general,
the FORTRAN program also uses this nomenclature. However, slight variations
are made to facilitate computations. The major variation is the use of
arrays to store cost components rather than using the individual variables
in Table A-2.
Many cost calculations are common to nearly all algorithms. Rather
than repeat these equations for each algorithm, Table A-3 presents these
common equations. Slight variations from these calculations are found in
some algorithms. In these cases, the equations presented in the individual
algorithm are used rather than the equations in Table A-3.
A-l
-------
TABLE A-l. SUMMARY OF COSTING ALGORITHMS
Routine
Code3
UNDR
SPRD
PLVR
RES1
RNG1
RNG2
DNG1
DNG2
VS
ESPC
ESPO
FF
SM
DM
SSS
DA
DAC
NATH
DS
Boiler Size
Applicability
Algorithm Type (10 Btu/hr)
Boiler, underfeed stoker, watertube,
package
Boiler, spreader stoker, watertube,
field-erected
Boiler, pulverized coal, watertube,
field-erected
Boiler, residual oil, firetube, package
Boiler, residual/natural gas, watertube,
package
Boiler, residual/natural gas, watertube,
field-erected
Boiler, distillate/natural gas, firetube,
package
Boiler, distillate/natural gas, watertube,
package
Venturi scrubber applied to coal -fired
boiler
Electrostatic precipitator applied to
coal -fired boiler
Electrostatic precipitator applied to
residual oil-fired boiler
Fabric filter applied to coal -fired boiler
Single mechanical collector (multi -cyclone)
applied to coal -fired boiler
Dual mechanical collector (multi -cyclones)
applied to coal -fired boiler
Sidestream separator applied to coal -fired
boiler
Dual alkali FGD system without PM removal
Dual alkali FGD system with PM removal
Sodium throwaway FGD system
Lime spray drying (dry scrubbing) FGD system
<75
60 - 200
>200
<30
30 - 200
200 - 700
<30
30 - 200
30 - 700
<700
<700
30 - 700
30 - 700
30 - 700
30 - 700
All sizes
All sizes
All sizes
All sizes
Table
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A-ll
A-12
A-13
A-14
A-15
A- 16
A-17
A-18
A-19
A-20
A-21
A-22
A-2
-------
TABLE A-l. (Continued)
Boiler Size
Routine Applicability
Code3 Algorithm Type (10° Btu/hr)
LEA
SCA
SCA
FGR
RAP
Low excess air applied to all fuel types
Staged combustion air applied to pulverized
coal -fired boiler
Staged combustion air applied to residual
oil-fired boiler
Flue gas recirculation applied to distillate
oil- and natural gas-fired boiler
Reduced air preheat applied to all fuel
types
All sizes
>150
30 - 250
30 - 250
All sizes
Table
A-24
A-25
A-26
A-27
A-28
aRoutine code refers to code used to identify algorithm in FORTRAN computer
program (see Appendix B).
A-3"
-------
TABLE A-2. NOMENCLATURE USED IN COST ALGORITHMS
1. Capital Costs (1978 dollars)
EQUP = Equipment
INST = Installation
TD = Total Direct
IND = Indirect (Engineering, Field, Construction, Start-up,
and other miscellaneous costs)
TDI = Total Direct and Indirect
CONT = Contingencies
TK = Turnkey
LAND = Land
WC = Working Capital
TOTL = Total Capital
2. Operation and Maintenance Costs9 (1978 dollars/year)
DL = Direct Labor
SPRV = Supervision Labor
MANT = Maintenance Labor
SP = Spare Parts
ELEC = Electricity
UC = Utilities and Chemicals
WTR = Water
SW = Solid Waste Disposal
SLG = Sludge Waste Disposal
LW = Liquid Waste Disposal
SC = Sodium Carbonate
LMS = Limestone
LIME = Lime
FUEL = Fuel
TDOM = Total Direct Operation and Maintenance
OH = Overhead
TOTL = Total Operation and Maintenance
3. Annualized Costs (1978 dollars/year)
CR = Capital Recovery
WCC = Working Capital Charges
MISC = Miscelleneous (G & A, Taxes, Insurance)
TCC = Total Capital Charges
TOTL = Total Annualized Charges
A-4
-------
TABLE A-2. (Continued)
4. Boiler Specifications
Q = Thermal Input (106 Btu/hr) (W)c
FLW = Flue Gas Flowrate (acfm) (nr/s)c
CF = Capacity Factor (-)
BCRF = Capital Recovery Factor for Boiler System
5. Fuel Specifications
FC = Fuel Cost ($/106 Btu) ($/MJ)c r
H = Heating Value (Btu/lb) (KJ/kg)c
S = Sulfur Content (percent by weight)
A = Ash Content (percent by weight)
N = Fuel Nitrogen Content (percent by weight)
6. S00 Control Specifications
UNCS02 = Uncontrolled S09 Emissions (lb/106 Btu) (ng/J)
CTRS02 = Controlled S02 Emissions (lb/10D Btu) (ng/J)
EFFS02 = S0? Removal Efficiency (percent)
CRFS02 = Capital Recovery Factor for S(L Control System
7. PM Control Specifications
UNCPM = Uncontrolled PM Emissions (lb/106 Btu) (ng/J)c
CTRPM = Controlled PM Emissions (Ib/lCT Btu) (ng/J)c
EFFPM = PM Removal Efficiency (percent)
CRFPM = Capital Recovery Factor for PM Control System
8. Cost Rates (used in FGD algorithms)b'c
ELECR = Electricity Rate-($/kw-hr)
WTRR = Water Rate ($/nr)
ALIMER = Lime Rate ($/kg).
ALSR = Limestone Rate ($/kg)
SASHR = Sodium Carbonate Rate ($/kg)
SLDGR = Sludge Disposal Rate ($/kg)
SWDR = Solid Waste Disposal Rate ($/kg}
LWDR = Liquid Waste Disposal Rate ($/irT)
9. Miscellaneous
SI = Heat Specific Sulfur Removal (kg S09/100 MJ)
S2 = Time Specific Sulfur Removal (kg S0,/0.1 hr)
LF = Labor Factor (-)a i
A-5'
-------
TABLE A-2. (Continued)
10. NO Control Specifications
/\
FFAC = F-Factor (dscf/106 Btu)
UNCEA = Uncontrolled Excess Air (%)
CTREA = Controlled Excess Air (%)
PRCT = Percent Flame Extension Due to Staging
DELT = Change in the flue gas exit temperature due to the
elimination of the air preheater or a reduction
in its effectiveness
CRFNO = Capital Recovery Factor for NO Control System
A A
aCost categories are not mutually exclusive. For example, some costing
routines include electricity and waste cost in the utilities category
while other calculate these cost separately.
All other algorithms assume these rates to be constants; FGD algorithms
allow the rates to be varied.
CFGD algorithms use metric units.
(-) factor presented as fraction not as percent.
A-6
-------
TABLE A-3. CALCULATIONS COMMON TO COST ALGORITHMS
1. Capital Costs
EQUP + INST = TDa.
IND = 0.333 * TDD
TDI = TD + IND
CONT = 0.20 * TDI
TK = TDI + CONT
LANDC= $4000 pulverized coal boilers
= $2000 all other boilers d
WC = 0.25 * (TDOM - Fuel) + 0.0833 (Fuel)0
TOTL = TK + LAND + WC
2. Operation and Maintenance Costs
FUEL = CF * Q * FC * 8760
TDOM = Sum of all 0 & M Costs other than OH
OH = 0.30 * DL + 0.26 * (DL + SPRV + MANT + SP)
TOTL = TDOM + OH
3. Annualized Costs
CR = CRF * TK
WCC = 0.10 * WC
MISC = 0.04 * TK
TCC = CR + WCC + MISC
TOTL = TCC + TOTL 0 & M Costs
4. Labor Factors
LF = 1 if CF >0.7
LF = 0.5 + 2.5 * (CF - 0.5) if 0.5
-------
Table A-4 through A-ll present the boiler cost algorithms. Table A-12
through A-18 and Tables A-19 through A-22 list the PM control and S02
control cost algorithms, respectively. Table A-23 presents the algorithms
used to calculate flue gas flowrates for the standard boilers and
Tables A-24 through A-28 present the NO control cost algorithms.
A-8-
-------
TABLE A-4. COST EQUATIONS FOR PACKAGE, WATERTUBE
UNDERFEED STOKER BOILERS
x TO6 Btu/hr)1
Routine Code: UNDR
Capital Costs:
EQUP = 66,392 Q°'622 (H) + 2,257 Q0'819
INST = 53,219 Q0-65 (^M) + 2,882 Q0-796
IND = 40,188 Q0-646 (1L800)0.926
H
Annual Costs:a
DL = LF (38,020 In Q + 28,640) (0.767)
SPRV . LF(AM°°) (0.767)
MANT - LF () (0.767)
SP = (1.705 x 108 Q - 2.959 x 108)0'5 (^—O)1 *0028 (0.767)
,,r CF , 0 » ,ll,800v0.9 / A xO.3.
UC = -§• ( =5 * =r) ( H ) (TJT?) 0.848)
-------
TABLE A-5. COST EQUATIONS FOR FIELD-ERECTED, WATERTUBE
SPREADER-STOKER BOILERS
(60-200 x 106 Btu/hr)1
Routine Code: SPRD
Capital Costs:
,-.35
EOUP = ( v »-) ( n V
^ v Q _K / vii annJ
7.5963 x 10 8 Q * 4.7611 x 10 5 "'auu
a
8.9174 x IQ""5 Q + 5.5891 x 10
^-.35
'
IND
1.2739 x 10"7 Q + 7.9845 x 10"3 "
Annual Costs:a
DL = LF (202,825 + 5.366 Q2) (0.767)
SPRY = LF (136,900) (0.767)
MANT = LF (107,003 + 1.873 Q2) (0.767)
SP = 50,000 + 1,000 Q (0.767)
-------
TABLE A-6. COST EQUATION FOR FIELD-ERECTED, WATERTUBE
PULVERIZED COAL-FIRED BOILERS
(>200 x 106 Btu/hr)1
Routine Code: PLVR
Capital Costs:
EQUP = (4,926,066 - 0.00337 H2) (
C.WW
INST = 1,547,622.7 + 6,740.026 Q - 0.0024133 H2
IND = 1.257,434.72 + 6,271.316 Q - 0.00185721 H2
a
Annual Costs:
DL = LF (244,455 + 1,157 Q) (0.767)
SPRY = LF (243,985 - 20'63fr709) (0.767)
HANT = LF (-1,162,910 + 256,604 In Q) (0.767)
SP = (180,429 + 405.4 Q) (0.767)
UC = CF (189,430 + 1476.7 Q) (0.848)
SH = 0.38 CF (-641.08 * 70»679y828 A) (JL)1-°01 (0.848)
H ZUU
multipliers used, 0.767 and 0.848, are included in determining
annual OWI costs. These factors reflect the economies of multiple
boilers at a facility (see Chapter 2).
A-ll
-------
TABLE A-7. COST EQUATIONS FOR PACKAGE,RFIRETUBEMRESIDUAL
OIL-FIRED BOILERS (<30 x 10° Btu/hr)
I1
Routine Code: RES1
Capital Costs:
EQUP = 17,360 q°-557
INST = 4,324 Q + 56,177
IND = 2,317 Q + 29,749
Annual Costs: a
DL = LF (105,300)(0.799)
SPRV = LF (^) (68500) (0.799) if Q <15
LF (68,500)(0.799) if Q >15
MANT = LF (1,600 Q +8,000) (0.799) if Q <15
LF (32,000)(0.799) if Q >15
UC = ^ (580 Q + 3,900) (0.845)
aThe multipliers used, 0.799 and 0.845, are included in determining
annual O&M costs. These factors reflect the economies of multiple
boilers at a facility (see Chapter 2).
A-12
-------
TABLE A-8.. COST EQUATIONS FOR PACKAGE,WATERTUBE DUAL-FIRED
BOILERS FIRING RESIDUAL OIL/NATURAL GAS
(30-200 x 106 Btu/hr)1
Routine Code: RNG1
Capital Costs
EQUP = 15,925 Q'775
INST = 54,833 Q°'364
IND = 16,561 Q'613
Annual Costs a
n2
DL = LF ( r 2 *) (0.799)
8.135 x 10"* Q - 1.585 x 10"^
SPRV = LF (68,500)(0.799)
MANT = LF (-1>267?000 + 77jgo) (0.799)
SP = 7,185 Q0-4241 (0.799)
UC = (202 Q + 24,262)(0.845)
The multipliers used, 0.799 and 0.845, are included in determining
annual O&M costs. These factors reflect the economies of multiple
boilers at a facility (see Chapter 2).
A-13.
-------
TABLE A-9. COST EQUATIONS FOR FIELD-ERECTED, WATERTUBE
RESIDUAL OIL/GAS-FIRED BOILERS
(200 - 700 x 10 Btu/hr)1
Routine Code: RNG2
Capital Costs:
EQUP = 1,024,258 + 8,458 Q
INST = 579,895 + 5,636 Q
IND = 515,189 + 4,524 Q
Annual Costs:
DL = LF (173,197 + 734 Q) (0.799)
SPRV = LF (263,250 - 30'9^0'000) (0.799)
MANT = LF (32,029 + 320.4 Q) (0.799)
SP = (50,000 + 250 Q) (0.799)
UC = CF (43,671.7 + 479.6 Q) (0.845)
The multipliers used, 0.799 and 0.845, are included in determining
annual O&M costs. These factors reflect the economies of multiple
boilers at a facility (see Chapter 2).
A-14
-------
TABLE A-10. COST EQUATIONS FOR PACKAGE, FIRETUBE, NATURAL i
GAS/DISTILLATE OIL-FIRED BOILERS (<30 x 10° Btu/hr)
Routine Code: DNG1
Capital Costs
EQUP = 15,981 Q°*561
INST = 4,261 Q + 56,041
IND = n 256 Q + 28,649
a
Annual Costs
DL = LF (105,300)(0.799)
SPRV = LF (^p) (68,500) (0.799) if Q < 15
= LF (68,500) (0.799) if Q > 15
MANT = LF (1600 Q + 8000) (0.799) if Q < 15
= LF (32,000)(0.799) if Q > 15
SP = (708.7 Q + 4,424) (0.799)
uc = T* (58° Q + 3,900) (0.845)
The multipliers used, 0.799 and 0.845, are included in determining
annual O&M costs. These factors reflect the economies of multiple
boilers at a facility (see Chapter 2).
A-15
-------
TABLE A-ll. COST EQUATIONS FOR PACKAGE, WATERTUBE, DUAL-FIRED BOILERS i
FIRING DISTILLATE OIL/NATURAL GAS (30 - 200 x 10B Btu/hr)
Routine Code: DNG2
Capital Costs:
EQUP = 14,850 Q0-786
INST = 54,620 Q0*361
IND = 15,952 Q0'618
Annual Costs;3
n2
DL = LF ( - j-9- - -) (0.799)
8.135 x 10"* Q - 1.585 x 10"^
SPRV = LF (68,500) (0.799)
MANT = LF C*? + 77,19Q] (0.799)
SP = 7,185 Q°-4241 (0.799)
UC =|| (202 Q + 24,262) (0.845)
aThe multipliers used, 0.799 and 0.845, are included in determining
annual O&M costs. These factors reflect the economies of multiple
boilers at a facility (see Chapter 2).
A-16
-------
TABLE A-12. COST EQUATIONS FOR VENTURI SCRUBBERS APPLIED TO
COAL-FIRED BOILERS
(30 - 700 x 106 Btu/hr}2
Routine Code: VS
Capital Costs:
EQUP = 26,916 + 2.294 (FLW)
INST = 13,904 + 1.653 (FLW)
IND = 15,463 + 1.285 (FLW)
Annual Costs:
DL = LF (10,150 + 106 Q) if 30
-------
TABLE A-13. COST EQUATIONS FOR ELECTROSTATIC PRECIPITATORSh(ESP's)
APPLIED TO COAL-FIRED BOILERS^ (<700 x 10° Btu/hr)a'D
Routine Code: ESPC
Capital Costs:
EQUP = 0.02457 (SCA) (FLW) - 5.62 x 10"10 x [(SCA) (FLW)]2 +
0.544 (FLW) + 26353 if 30<_ Q <100
= 0.02457 (SCA) (FLW) - 5.62 x 10"10 x [(SCA) (FLW)]2 +
(130,000 + 226 Q) if 100j< Q j<700
and TPA < 28,000
= 0.00965 (SCA) (FLW) - 2.54 x 10"11 x [(SCA) (FLW)]2 +
(130,000 + 226 Q) if 100j< Q j<700
and 28,000 TPA <
INST = 1.17 EQUP if 30
-------
TABLE A-14. COST EQUATIONS FOR ELECTROSTATIC PRECIPLTATORS (ESP's)
APPLIED TO RESIDUAL OIL-FIRED BOILERS *
(£700 x TO6 Btu/hr)a'b
Routine Code: ESPO
Capital Costs:
EQUP = 0.02457 (SCA) (FLW) - 5.62 x 10'10 if 30
-------
TABLE A-15.. COST EQUATIONS FOR FABRIC FILTERS APPLIED TO
COAL-FIRED BOILERS
(30-700 x 106 Btu/hr)2
Routine Code: FF
Capital Costs:
EQUP = 8.340 (FLW)0*966
INST = -1,506,523 + 168,531 In (FLW)
IND = 24.990 (FLW)0*821
Annual Costs:
DL = LF (10,150 + 106 Q) if 30 * Q <400
LF (52,600) if 400 < Q <700
SPRV = 0 if 30 < Q <400
= LF (17,000) if 400 < Q <700
MANT = LF (14,840 + 0.106 Q2) if 30 $ Q <400
= LF (32,000) if 400 < Q < 700
SP = 0.278 (FLW)0'997
UC = (^) 0.740 (FLW)0'953
SW = (") 39.42 Q (UNCPM - CTRPM)
A-20
-------
TABLE A-16. COST EQUATIONS FOR SINGLE MECHANICAL (MULTI-CYCLONE)
COLLECTORS APPLIED TO COAL-FIRED BOILERS
(30-700 x 106 Btu/hr)3
Routine Code: SM
Capital Costs:
TD = 32.53 (FLW)0'7518
IND = TD/3
Annual Costs:
DL = LF(5075 + 53 Q)
SPRV = DL(0.15-)
MANT = LF(7420 + 0.053(Q2))
SP = 0.005(EQUIP + IND)
ELEC = 0.286 (FLW) * CF
SW = (E) 39.42 Q (UNCPM - CTRPM)
A-21
-------
TABLE A-17. COST EQUATIONS FOR DUAL MECHANICAL (MULTI-CYCLONE)
COLLECTORS APPLIED TO COAL-FIRED BOILERS
(30-700 x 106 Btu/hr)3
Routine Code: DM
Capital Costs:
TD = 24.54 (FLW)0*813
IND = TD/3.0
Annual Costs:
DL = LF (5075 + 53 Q)
SPRV = (DL) 0.15
MANT = LF (7420 + 0.053 Q2)
SP = 0.005 (EQUIP + IND)
ELEC = 0.3818 (FLW) *CF
sw = 39-42 Q (UNCPM -CTRPM)
A-22-
-------
TABLE A-18. COST EQUATIONS FOR SIDE-STREAM
SEPARATORS APPLIED TO COAL-FIRED BOILERS
(30-700 x TO6 Btu/hr)3
Routine Code: SSS
Capital Costs:
TD =41.3 (FLW)0'7869
IND = TD/3.0
Annual Costs:
DL = LF(7105 + 74.2 Q)
SPRV = (DL) 0.15
MANT = LF (10390 + 0.074(Q2))+ 0.0554 (FLW)0'997
SP = 0.005 (EQUIP + IND)
ELEC = 0.286 (FLW) * CF + [{£5-] 0.160 (FLW)0'953
SW = ( ) 39.42 Q (UNCPM - CTRPM)
A-23-
-------
TABLE A-19. COST EQUATIONS5FOR DUAL ALKALI
FGD SYSTEMS WITHOUT PM REMOVAL9
Routine Code: DA
Capital Costs:b>c
TDI = 45,200 (FLW)0*61 + 83,118 (S2)0'39
TK = 1.48 TDI + 93,600 if Q <58.6
= 1.48 TDI + 130,000 if Q >58.6
Annual Costs: 'c
DL = 105,000
SPRV = 21,000
MANT = 0.08 TDI
ELEC = 8,760 CF * ELECR [2.94 FLW (0.121 SI + 0.861)]
WTR = 8,760 CF * WTRR [0.197 FLW + 0.30]*
[0.977 + 0.119 In SI]
SW = 8,760 CF * SWDR [7.73 S2 - 3.34]
SC = 8,760 CF * SASHR [1.13 FLW - 2.06]*
[0.41 - 0.70 (0.24 - SI)]1'74 if SI <0.24
8,760 CF * SASHR [1.13 FLW - 2.06]*
[0.70 (SI - 0.24)1'74 + 0.41] if SI >0.24
LIME = 8,760 CF * ALIMER [1.61 S2 - 0.85]
aFGD algorithms use metric units as noted in table A-2.
bSl = S * EFFS02 * 100/H
CS2 = SI * Q/3.6
A-24
-------
TABLE A-20. COST EQUATIONS FOR DUAL ALKALI FGD SYSTEMS WITH PM REMOVAL3
Routine Code: DAC
Capital Costs:b*d
TDI = 74370 + 9.02 x TO3 (FLW) - 39.5 (FLW)2 +
13,340 (FLW)0'528 + 32.32 x 103 (S2)0'362 +
54.06 x 103 [7.73 S2 - 3.34 + p]°'278 +
4,094 FLW0'834
TK = 1.48 TDI + 93,600 if Q <58.6
= 1.48 TDI + 130,000 if Q >58.6
Annual Costs:b'c'd
DL = 105,000
SPRV = 21,000
MANT = 0.08 TDI
ELEC = 8,760 CF * ELECR (6.11 FLW)*
[0.121 SI + 0.861]
WTR = 8,760 CF * WTRR [0.197 (FLW) + 0.30]*
[0.977 + 0.119 In SI]
SW = 8,760 CF * SWDR [7.73 S2 - 3.34 + P]
SC = 8,760 CF * SASHR [1.13 FLW - 2.06]*
[0.41-0.70 (0.24 - SI)]1'74 if SI <0.24
= 8,760 CF * SASHR [1.13 (FLW) - 2.06]*
[0.70 (SI - 0.24)1'74 + 0.41] if SI >0.24
LIME = 8,760 CF * ALIMER [1.61 S2 - 0.85]
aF6D algorithms use metric units as noted in Table A-2.
bP = 3.6 x 10"3 Q (1.2 UNCPM - 2 CTRPM)
CS1 = S*EFFS02 * 100/H
dS2 = SI * Q/3.6
A-25"
-------
4 .
TABLE A-21. COST EQUATIONS FOR SODIUM THROWAWAY FGD SYSTEMS3
Routine Code: MATH
Capital Costs:
TDI = 44,000 (FLW)0'62 + 20,600 (SI)0'427
TK = 1.48 TDI + 74,400 if Q <58.6
= 1.48 TDI + 112,800 if Q >58.6
Annual Costs:b>c
DL = 105,000
SPRV = 21,000
MANT = 0.08 TDI
ELEC = 8,760 CF ELECR [4.26 (FLW) - 2.56] [0.65 + 0.31 SI]
WTR = 8,760 CF WTRR [0.776 (FLW) - 0.720] [0.213 + 0.684 SI]
SW = 8,760 CF SWDR [0.16 + 4.53 S2]
SC = 8,760 CF SASHR [8.03 +3.5 S2]
LW = 8,760 CF LWDR (0.0860 S2)
aFGD algorithms use metric units as noted in Table A-2.
bSl = S * EFFS02 * 100/H
CS2 = SI * Q/3.6
A-26
-------
TABLE A-22. COST EQUATIONS5FOR LIME SPRAY DRYING
FGD SYSTEMS WITH PM REMOVAL3
Routine Code: DS
Capital Costs:0
TDI = 55,600 (FLW)0'51 + 21,600 (S2)°'4° + 33,327 (FLW)0*89
TK = 1.48 TDI + 110,400 if Q S58.6
1.60 TDI if Q >58.6
Annual Costs:b>c
DL = 105,000
SPRV = 21,000
MANT = 0.08 [55,600 (FLW)0'51 + 21,600 (S2)0'40] +
14,840 + 1.23 Q2 + 578 (FLW)0'997
ELEC = 8,760 CF * ELECR [6.14 (FLW)0'82]
WTR = 8,760 CF * WTRR [0.144 (FLW)]
SW = 8,760 CF * SWDR [(0.035 * EFFS02 + 3.02) (S2) +
UNCPM * EFFPM/100]
LIME = 8,760 CF * ALIMER (1.88 ln(EFFS02) - 5.3) S2
aFGD costs use metric units as noted in Table A-2.
bSl = SI * EFFS02 * 100/H
CS2 = SI * Q/3.6
A-27.
-------
TABLE A-23. FLUE GAS FLOWRATE ALGORITHMS
a,b
Natural Gas
,6
FLW = 8.14 x 10° Q/H (non-LEA)
FLW = 6.81 x 106 Q/H (LEA)
Distillate and/or Residual
FLW = 0.189 Q H°*77 (non-LEA)
FLW = 0.156 Q H°'77 (LEA)
Coal (Stoker)
FLW = EXP [8.14 x 10'5H] * 1.84 x 106 Q/H (non-LEA)
FLW = EXP [8.14 x 10"5H]* 1.66 x 106 Q/H (LEA)
Coal (Pulverized)
FLW = 1.62 x 106 * EXP [8.03 x 10"5 H] * Q/H (LEA)
aLEA and Non-LEA conditions are defined as follows:
NG and oil: LEA - 15% excess air
Non-LEA - 40% excess air
Coal: LEA - 35% excess air
Non-LEA - 50% excess air
Reference 6.
A-28
-------
TABLE A-24. COST EQUATIONS FOR LOW EXCESS AIR
APPLIED TO INDUSTRIAL BOILERS7
Routine Code: LEA
Capital.Costs:
Coal: EQUIP = 46.22(Q) + 6496
INST and IND = 21.50(Q) + 1123
Oil and Gas: EQUIP = 31.38(Q) + 5185
INST and IND = 11.37(Q) + 1161
Annual Costs:
SPb = 0.05(TK)
FUEL = -.00055(FC)(Q)(CF)(FFAC)(UNCEA - CTREA)
Algorithm assumes a flue gas temperature of 400°F and the ambient air
temperature to be 77°F.
Spare parts costs consist of the costs for spare parts, maintenance labor,
and maintenance materials.
A-29-
-------
TABLE A-25. COST EQUATIONS FOR STAGED COMBUSTION AIR
APPLIED TO PULVERIZED COAL-FIRED BOILERS7
(>150 x 106 Btu/hr)
Routine Code: SCA
Capital Costs:
EQUIP = 65 (Q) + 13000
INST and IND = 60 (Q) + 2000
Annual Costs:
SPa = 0.05 (TK)
ELEC = 105 (Q)(CF)
FUEL = 21.9 (FC)(Q)(CF)
aSpare parts costs consist of the costs for spare parts, maintenance labor,
and maintenance materials.
A-30.
-------
TABLE A-26. COST EQUATIONS FOR7STAGED COMBUSTION AIR APPLIED TO
RESIDUAL OIL-FIRED BOILERS7 (Fuel N >0.23 wt. percent)
(30 - 250 x 106 Btu/hr)
Routine Code: SCA
Capital Costs:
TK = 1000 [(Q)(PRCT) 0.0536 + 2.56 (PRCT)J
where:
PRCT = 30; when N >0.6
PRCT = 81.1(N) - Iff.7 when 0.23
-------
TABLE A-27. COST EQUATIONS FOR FLUE GAS RECIRCULATION
APPLIED TO OIL- AND GAS-FIRED BOILERS7
(<250 x 106 Btu/hr)
Routine Code: FGR
Capital Costs:
EQUIP = 44.72(Q) + 8383
INST and IND = 35.6 (Q) + 4189
Annual Costs:
SPa = 0.05 (TK)
ELEC = (243(Q) + 175)CF
FUEL = 43.8 (FC)(Q)(CF)
aSpare parts costs consist of the costs for spare parts, maintenance labor,
and maintenance materials.
A-32
-------
TABLE A-28. COST EQUATIONS FOR REDUCED AIR7PREHEAT
APPLIED TO OIL- AND GAS-FIRED BOILERS/
Routine Code: RAP
Annual Costs:3
FUEL = 1.726 x 10"4 (Q) (FC) (CF) (FFAC) (1 + UNCEA/100) DELT
aThis algorithm predicts the incremental fuel cost associated with not
recovering heat from the boiler flue gas.
A-33
-------
APPENDIX A
REFERENCES
1. PEDCo Environmental, Inc. Cost Equations for Industrial Boilers.
Final Report. (Prepared for U. S. Environmental Protection Agency.)
Research Triangle Park, N. C. EPA Contract No. 68-02-3074.
January 1980. 23 p..
2. PEDCo Environmental, Inc. Capital and Operating Costs of Particulate
Controls on Coal- and Oil-Fired Industrial Boilers. (Prepared for
U. S. Environmental Protection Agency.) Research Triangle Park, N. C.
EPA-450/5-80-009. August 1980. 129 p.
3. Tighe, S. C., and M. S. Jennings. (Radian Corporation.) Mechanical
Collectors for Particulate Control on Stoker Coal-Fired Boilers.
January 13, 1981. 35 p.
4. Gardner, R., R. Chang, and L. Broz. (Acurex Corporation.) Cost,
Energy and Environmental Algorithms for NO , S02, and PM Controls for
Industrial Boilers. Final Report. (Prepared for U. S. Environmental
Protection Agency.) Cincinnati, Ohio. EPA Contract No. 68-03-2567.
December 1979. p. 20-52.
5. Memo from Kelly, M. E. (Radian Corporation.) to Industrial Boiler
File. Summary of Radian Cost Algorithm Development for Industrial
Boiler NSPS. January 21, 1981. 33 p.
6. Reference 4, p. 15-19.
7. Memo from Bowen, M.L., Radian Corporation, to Jones, L., EPAtSDB.
July 28, 1982. 12 p. NO Combustion Modification Cost Algorithm
Development.
A-34
-------
APPENDIX B
LISTING OF FORTRAN COST ANALYSIS PROGRAM
A FORTRAN computer program was used to develop the costs presented in
this report. This appendix provides a listing of the program. A comment
block at the beginning of the program provides general information
concerning its use.
A basic structure consists of a main subroutine (COST) which accesses
various support subroutines. Each costing algorithm presented in Appendix A
(Table A-l) is implemented in a separate subroutine. COST accesses these
subroutines and provides input/output functions.
Because COST is written as a subroutine rather than a main program, a
small main program must be written to use COST. The listing which follows
includes such a main program.
B-l
-------
'MLB' FhSGCLASS^OfNOTIFY=XEXHUR
03
i
ro
DSNAHE='XEXDUR.D0016.MSTR3.DATA'
00001000 //XEXDUR1 JOB (XEXDUR.VVPOD0016)»
00002000 //STEF1 EXEC FORTGCLOfCLASS=Q
//FORT.SYSIN DD *
REAL CAPCdOfS) »OMC( 19»5) r ANNC( 5»5) »ABATE(2)
DATA BLANK*ADSfADAC/' ' t 'OS 'r'BAC '/
READ <5»1000) NN»,ANNCC1r1))
IF (AS02 .EQ, BLANK) GO TO 60
CALL S02CRD
IF <(AS02 .EQ. ADS) .OR. (AS02 .EQ. ADAO) CALL PMCRD
CALL COST
CONTINUE
IF (APM .EQ. BLANK) GO TO 70
CALL PMCRD
CALL COST(IF APM r1F 0»IFFLAG»CAPC(1F 4)F OMC(1F 4)F ANNC(1F 4))
CONTINUE
CALL BPRNT
FPRNT
PMPRNT
S2PRNT
CFRNT
CSTTBL(CAPCFOMCrANNCF!)
00003000
00004000
00005000
OOOOAOOO
00004500
00006750
00007000
00007500
00008000
00008500
OOOOVOOO
00009500
00010000
00010500
00011000
00011500
00012000
00012500
00013000
00013500
00014000
00014500
00015000
00013500
00016000
00016500
00017000
00017500
00018000
0001B500
00019000
00019500
00020000
00020500
00021000
00021500
00022000
00022250
00022500
00022750
00023000
00024000
30
40
50
20
1001
60
70
10
CALL
CALL
CALL
CALL
CALL
CONTINUE
RETURN
END
SUBROUTINE
COST (NNFANAMEFIPFLAGFlRFLAGFIFFLAGFCAPCFOMCFANNC)
-------
00025000 C
00026000 C
00027000 C
00028000 C
00029000 C
00030000 C
00031000 C
00032000 C
00033000 C
00034000 C
00035000 C
00036000 C
00037000 C
00038000 C
00037000 C
00040000 C
00041000 C
00042000 C
00043000 C
00044000 C
00045000 C
00046000 C
03 00047000 C
co 00048000 C
00049000 C
00050000 C
00051000 C
00052000 C
00053000 C
00054000 C
00055000 C
00056000 C
00057000 C
0005BOOO C
00059000 C
00060000 C
00061000 C
00062000 C
00063000 C
00064000 C
00065000 C
00066000 C
00067000 C
00068000 C
00069000 C
COST - COMPUTES CAPITAL* 0 AND M» AND ANNUAL COSTS OF BOILER
AND CONTROL SYSTEH(S)
WRITTEN BY: M.S. JENNINGS (7/81). SUPPLEMENTARY DOCUMENTAION AVAILA
TO USEr EXECUTE A STATEMENT OF THE FORM
CALL COST (NN»ANAMEflPFLAG,IRFLAG*IFFLAG,CAPC,OMC,ANNO
WHERE:
NN = ID NUMBER (USER SUPPLIED) PRINTED TO OUTPUT (IF DESI
FOR IDENTIFICATION OF ROUTINE
ANAME = ROUTINE TO BE USED (USER SUPPLIED). AK'AME SHOULD BE
•A' FORMAT (MAXIMUM OF FOUR CHARACTERS). SEE USER M
FOR DESCRIPTION OF VARIOUS ROUTINES AVAILABLE AND IN
REQUIREMENTS FOR EACH.
IPFLA6 = PRINT FLAG (USER SUPPLIED).
0 INDICATES NO PRINTING
1 INDICATES ONLY INTERMEDIATE CALCULATIONS PRINTED
2 INDICATES INTERMEDIATE CALCULATIONS AND INPUT DATA
3 INDICATES INTERMEDIATE CALCULATIONS* INPUT DATA,
AND FINAL COST RESULTS PRINTED
IRFLAG = READ FLAG (USER SUPPLIED) SET NON-ZERO IF INPUT DATA
BE READ FROM INPUT DECK (SEE USERS MANUAL FOR CARD F
REQUIRED FOR ROUTINE SPECIFIED IN ANAME).
IFFLAG = FLUE GAS FLOWRATE FLAG (USER SUPPLIED) SET NONZERO I
ROUTINE IS TO CALCULATE FLUE GAS FLOWRATE. VALUES
SHOULD BE SET AS FOLLOWS:
0 = FLOWRATE USER SUPPLIED
1 = COAL, MASS FEED, LEA CONDITIONS
2 = COAL* MASS FEEDr NON-LEA
3 = PULVERIZED COAL, LEA CONDITIONS
4 « NATURAL GASr LEA CONDITIONS
5 = NATURAL GAS NON-LEA
6 = OIL, LEA CONDITIONS
7 = OIL* NON-LEA
CAPC = ARRAY OF CAPITAL COSTS (RETURNED)
ARRAY OF CAPITAL COSTS
AS LISTED BELOW:
CAPC(l)
CAPC(2)
CAPC(3)
CAPC(4)
CAPC(5)
CAPC(6)
CAPC(7)
CAPC(8)
CAPC(9)
COMPONENTS OF AR
EQUIPMENT
INSTALLATION
TOTAL DIRECT
INDIRECT
TOTAL DIRECT AND
CONTINGENCIES
TURNKEY
LAND
WORKING CAPITAL
INDIRECT
-------
DO
00070000
00071000
00072000
00073000
00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000
00087000
00088000
00089000
00090000
00091000
00092000
00093000
00094000
00095000
00096000
00097000
00098000
00099000
00100000
00101000
00102000
00103000
00104000
00105000
00106000
00107000
00108000
00109000
00110000
00111000
00112000
00113000
00114000
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
OMC =
CAPC(IO) = TOTAL CAPITAL
ARRAY OF OPERATIONAL AND MAINTENANCE COSTS (RETURNED
COMPONENTS OF ARRAY ARE AS LISTED BELOW?
ANNC =
OMC(l)
OMC(2)
OMC(3)
OMC(4)
OMC(5>
OMC<6>
OMC(7)
OMC<8)
OMC<9> =
OMC(IO) =
OMC(ll) =
OMC(12) «
OMCU3) =
OMCU4) »
OMC(15) =
OMCU6) =
OMC(17) =
OMC(IB) =
CMC(19) =
ARRAY OF ANNUALIZED
ARE AS LISTED BELOW!
DIRECT LABOR
SUPERVISION LABOR
MAINTENANCE LABOR
SPARE PARTS
ELECTRICITY
UTILITIES AND CHEMICALS
UATER
SOLID WASTE DISPOSAL
SLUDGE WASTE DISPOSAL
LIQUID WASTE DISPOSAL
SODIUM CARBONATE
LIMESTONE
LIME
AMMONIA
SODIUM HYDROXIDE
FUEL
TOTAL DIRECT 0 AND M
OVERHEAD
TOTAL 0 AND M
COSTS (RETURNED). COMPONENTS
ANNC(l) - CAPITAL RECOVERY
ANNC(2) *=: WORKING CAPITAL CHARGES
ANNC(3) = MISCELLANEOUS (G AND Ar TAXES*
AND INSURANCE)
ANNC(4) = TOTAL CAPITAL CHARGES
ANNCC5) = TOTAL ANNUALIZED CHARGES
FIVE COMMON BLOCKS ARE USED BY COST TO COMMUNICATE BETWEEN VARIOUS
SUBROUTINES, THESE ARES
COMMON /BSPEC/ 0»FLW»CF,BCRF
/FUEL/ FCfllfStA
/PM/ UNCPM»CTRPM»EFFPM»CRFPM
/S02/ UNCS02rCTRS02fEFFS02rCRFSQ2
/COSTS/ DLR»SLR,AMLR»ELEC,WTR»ALIME»ALS»ALYE»SASH»SLDG>
DEFINITIONS ARE AS FOLLOWS:
= BOILER THERNAL INPUT (MMBTU/HR)
COMMON
COMMON
COMMON
COMMON
VARIABLE
Q
FLW = BOILER FLUE GAS FLOWRATE (ACFM)
CF = BOILER CAPACITY FACTOR (-)
BCRF = BOILER CAPITAL RECOVERY FACTOR
FC = FUEL COST (DOLLARS/MMBTU)
H a FUEL HEATING VALUE (BTU/LB)
S = SULFUR CONTENT (PERCENT BY WEIGHT)
-------
00115000 C
00116000 C
00117000 C
00118000 C
00119000 C
00120000 C
00121000 C
00122000 C
00123000 C
00124000 C
00125000 C
00126000 C
00127000 C
00128000 C
00129000 C
00130000 C
00131000 C
00132000 C
00133000 C
00134000 C
00135000 C
TO 00136000 C
01 00137000 C
00138000 C
00139000 C
00140000 C
00141000 C
00142000 C
ftfM A ~t(\(\t\ P
VUA'IOWU U
00144000 C
00145000
00146000
00147000
00148000
00149000
00150000 C
00151000 C
00152000 C
00153000
00154000 10
00155000
00156000 20
00157000
00158000 30
00159000 C
A = ASH CONTENT (PERCENT BY WEIGHT)
UNCPM = UNCONTROLLED PM EMISSIONS (LB/MHBTU)
CTRPM = CONTROLLED PM EMISSIONS (LB/MMBTU)
EFFPM = PM REMOVAL EFFICIENCY (PERCENT)
CRFPM = CAPITAL RECOVERY FACTOR FOR PM CONTROL SYSTEM
UNCS02 = UNCONTROLLED S02 EMISSIONS
-------
00160000
00161000 C
00162000
00163000 C
00164000
00165000 C
00166000
00167000
00168000
00169000
00170000
00171000
00172000
00173000
00174000
00175000
00176000
00177000
00178000
00179000
00180000
00181000
00182000
00183000
00184000
00185000 C
00186000 C
00187000
00188000 C
00189000 C
00190000
00191000
00192000
00193000 C
00194000 C
00195000 C
00196000 C
00197000 C
00198000
00199000
00200000
00201000
00202000 C
00203000
00204000
IF (IRFLAG.NE.O) CALL READER (ANAME)
CHECK FOR FLUE GAS FLOMRATE CALCULATIONS
IF (IFFLAG.NE.O) CALL FLUE(IFFLAG)
CHECK FOR PRINTING DESIRED
IF (IPFLAG. GE. 2) CALL IPRNT(ANAME)
CALL APPROPRIATE ROUTINE TO COMPUTE COSTS
IF (ANAME. EG. AA(1» CALL UNDR(CAPC »OMCf ANNO
IF (ANAME. EG. AA(2)) CALL SPRD(CAPCrOMC» ANNO
IF (ANAME. EG. AA(3) ) CALL PLVR(CAPC rOMC , ANNO
IF (ANAME. EG. AA(4» CALL DNG1 (CAPCt OMC» ANNO
IF (ANAME, EG. AA(5» CALL DNG2(CAPC»OMC » ANNO
IF (ANAME, EG. AA(6)) CALL RES1 (CAPC.OMC. ANNO
IF (ANAME. EG. AA(7)) CALL RMG1 (CAPCrOMC. ANNO
IF (ANAME. EG. AA(8» CALL RNG2(CAPCrOMC, ANNO
IF (ANAME. EG. AA(9)) CALL ESPC(CAPCrOMC» ANNCr IPFLAG)
IF (ANAME. EG. AA(10)) CALL ESPO(CAPCr OMCf ANNCr IPFLAG)
IF (ANAME.EG.AA(ll)) CALL FF(CAPC» OMC» ANNO
IF (ANAME. EG. AA(12)> CALL VS(CAPCr OMCr ANNO
IF (ANAME, EG. AA(13>) CALL SM(CAPC»OMCt ANNO
IF (ANAME, EG. AA(14» CALL DM(CAPCrOMCf ANNO
IF (ANAME, EG. AA(15)> CALL SSS IPFLAG)
IF (ANAME. EG. AA<17>) CALL NATH(CAPCf OMCr ANNC» IPFLAG)
IF (ANAME, EG. AA(18) ) CALL DAC(CAPC»OMC»ANNCf IPFLAG)
IF (ANAME, EG. AAU9)) CALL DS(CAPC» OMCf ANNCr IPFLAG)
IF ASKED* PRINT RESULTS
IF (IPFLAG. EG. !J> CALL SPILL GO TO 10
-------
co
I
00205000
00206000
00207000
00208000
00209000
00210000
00211000
00212000
00213000
00214000
00215000
00216000
00217000
00218000
00219000
00220000
00221000
00222000
00223000
00224000
00225000
00226000
00227000
00228000
00229000
00230000
00231000
00232000
00233000
00234000
00235000
00236000
00237000
00238000
00239000
00240000
00241000
00242000
00243000
00244000
00245000
00246000
00247000
00248000
00249000
IF ) GO TO 10
IF
-------
00
I
00
00250000 L BCRD - READS IN A BOILER CARD
00251000 C
00252000 COMMON /BSPEC/ G,FLU»CF»BCRF
00253000 READ (5,1000) Q,FLWrCFrBCRF
00254000 1000 FORMAT (8F10.0)
00255000 RETURN
00256000 END
00257000 SUBROUTINE FCRD
00258000 C FCRD - READS IN A FUEL CARD
00259000 C
00260000 COMMON /FUEL/ FCiHrS»A
00261000 READ (SflOOO) FCrHrSrA
00262000 1000 FORMAT (8F10.0)
00263000 RETURN
00264000 END
00265000 SUBROUTINE PMCRD
00266000 C PMCRD - READS IN A PM CARD
00267000 C
002A8000 COMMON /PM/ UNCPHtCTRPM»EFFPM»CRFPM
00269000 READ (SrlOOO) UNCPM»CTRPMrEFFPMtCRFPM
00270000 1000 FORMAT (8F10.0)
00271000 RETURN
00272000 END
00273000 SUBROUTINE S02CRD
00274000 C S02CRD - READS IN A S02 CARD
00275000 C
00276000 COMMON /S02/ UNCS02,CTRS02»EFFS02»CRFS02
00277000 READ (5»1000) UNCS02fCTRS02FEFFS02rCRFS02
00278000 1000 FORMAT (8F10.0)
00279000 RETURN
00280000 END
00281000 SUBROUTINE CSTCRD
00282000 C CSTCRD - READS IN A COST RATE CARD
00283000 C
00284000 COMMON /COSTS/ DLRtSLRtAMLR»ELECrWTR»ALIME»ALSfALYEtSASHtSLDGr
00285000 * SWDrALWD
00286000 READ (5,1000) ELEC,WTR,ALIME,ALSfSASH»SLDG,SWD,ALWD
00287000 1000 FORMAT (8F9.0)
00288000 RETURN
00289000 END
00290000 SUBROUTINE FLUE (IFFLAG)
00291000 C FLUE - CALCULATES FLUE GAS FLOWRATES
00292000 C
00293000 COMMON /BSPEC/ Q»FLW»CF»BCRF
00294000 COMMON /FUEL/ FC,H,S,A
-------
00295000
00296000
00297000
00298000
00299000
00300000
00301000
00302000
00303000
00304000
00305000
00306000
00307000
00308000
00309000
00310000
00311000
00312000
00313000
00314000
00315000
00316000
00317000
00318000
00319000
00320000
00321000
00322000
00323000
00324000
00325000
00326000
00327000
00328000
00329000
00330000
00331000
00332000
00333000
00334000
00335000
00336000
00337000
00338000
00339000
IF (IFFLAG.EQ.l) FLW=1 ,66E6*Q*EXP(8, 141E-5*H) /H
IF (IFFLAG.E0.2) FLW=1 .836E6*G*EXP( 8. 141E-5*H)/H
IF (IFFLAG.EG.3) FLM=1 ,617E6*G*EXP(8.025E-5*H)/H
IF (IFFLAG.EQ.4) FLW=6.805E6*G/H
IF (IFFLAG.EQ.5) FLW=B , 1398E6*Q/H
IF (IFFLAG.EQ.6) FLW=0. 1555*Q*H**0.77
IF (IFFLAG.EG.7) FLW=0, 1887*G*H**0.77
RETURN
END *
SUBROUTINE IPRNT(ANAME)
C IPRNT - PRINTS OUT INPUT DATA
C INPUT -
C ANAME • NAME OF ROUTINE TO BE USED IN COST ESTIMATION
C
REAL AA(19)
DATA AA /'UNDR'F'SPRD'F'PLVR/F'DNG1'F'DNG2'F'RES1'F'RNG1'F'RNG
* ' ESPC ' F 'ESPO ' F ' FF ' F ' VS ' F ' SM ' F ' DM ' F ' SSS ' F ' D A ' t ' NATH ' F
* 'DAC'F'DS'/
C SEARCH FOR ROUTINE
IF (ANAME. EG. AA(D) GO TO 10
IF (ANAME. EG. AA(2) GO TO 10
IF (ANAME. EG. AA(3) GO TO 10
IF (ANAME. EQ.AA(4) GO TO 10
IF (ANAME. EG. AA(5) GO TO 10
IF (ANAME. EG. AA(6) GO TO 10
IF (ANAME. EG. AA(7) GO TO 10
IF (ANAME. EG. AA(8) GO TO 10
IF (ANAME. EG. AA(9)) GO TO 20
IF (ANAME. EG. AA(10)) GO TO 20
IF (ANAME. EQ.AA(ID) GO TO 20
IF (AMAME.EG.AA(12)) GO TO 20
IF (ANAME. EG. AA(13)> GO TO 20
IF (ANAME. EG. AA(14)) GO TO 20
IF (ANAME. EG. AA(15>) GO TO 20
IF (ANAME. EG. AA(16)) GO TO 30
IF (ANAME. EG. AA(17)> GO TO 30
IF (ANAME. EG. AA(18)) GO TO 40
IF (ANAME, EG. AA(19)> GO TO 40
C IF ROUTINE CANT BE LOCATED* OUTPUT MESSAGE AND STOP
WRITE (6flOOO) ANAME
1000 FORMAT (/T2F 'ROUTINE 'FA4F' NOT RECOGNIZED - PROGRAM ABORTED')
STOP
C BOILER ROUTINE TO BE RUN
10 CALL BPRNT
CALL FPRNT
-------
CD
I
00340000
00341000
00342000
00343000
00344000
00315000
00346000
00347000
00348000
00349000
00350000
00351000
00352000
00353000
00354000
00355000
00356000
00357000
00358000
00359000
00360000
00361000
00362000
00363000
00364000
00365000
00366000
00367000
00368000
00369000
00370000
00371000
00372000
00373000
00374000
00375000
00376000
00377000
00378000
00379000
00380000
00381000
00382000
00383000
00384000
RETURN
C PM ROUTINE TO BE RUN
20 CALL BPRNT
CALL FPRNT
CALL PMPRNT
RETURN
C S02 ROUTINE TO BE RUN
30 CALL BPRNT
CALL FPRNT
CALL S2PRNT
CALL CPRNT
RETURN
C COMBINED S02 AND PM
40 CALL BPRNT
CALL FPRNT
CALL S2PRNT
CALL PMPRNT
CALL CPRNT
RETURN
END
SUBROUTINE BPRNT
ROUTINE TO BE RUN
C BPRNT - PRINTS OUT BOILER SPECIFICATIONS
C
COMMON /BSPEC/ Q»
WRITE (6rlOOO) Or
FLW»CF»BCRF
FLW»CF»BCRF
1000 FORMAT (T2» 'BOILER SPECIFICATIONS'/
* T5r'Q='»Tl
* 'FLM='»T23
* 'CF='rT35»
* 'CRF='tT47
RETURN
END
SUBROUTINE FPRNT
1»F6.1»T18»
»F6.0»T30»
F6.3»T42»
»F6,4)
C FPRNT - PRINTS OUT FUEL SPECIFICATIONS
C
COMMON /FUEL/ FC»
H»S»A
WRITE (6flOOO) FCrHfSrA
1000 FORMAT (T2t'FUEL
* T5r'FC='»
* 'H='»T23F
SPECIFICATIONS'/
Tll»F6.2fTl8»
F6.0»T30r
* 'S='»T35»F6.2»T42r
* 'A='iT47»
RETURN
END
SUBROUTINE PMPRNT
F6.2)
-------
00385000
00386000
00387000
00388000
00389000
00390000
00391000
00392000
00393000
00394000
00395000
00396000
00397000
00398000
00399000
00400000
00401000
00402000
00403000
00404000
00405000
00406000
00407000
00408000
00409000
00410000
00411000
00412000
00413000
00414000
00415000
00416000
00417000
00418000
00419000
00420000
00421000
00422000
00424000
00425000
00426000
00427000
00428000
00429000
00430000
C
C
C
C
C
C
C
C
C
C
PMP
I
1
1000 1
*
*
*
*
1
1
]
S2P
1
1
1000 1
*
*
*
*
1
1
1
CPRI
1
*
1000 1
*
*
*
*
*
*
*
*
1
1
!
CST
INPI
• - PRINTS OUT PM EMISSIONS DATA
COMMON /PM/ UNCPMiCTRPMiEFFPM.CRFPM
WRITE (6,1000) UNCPMtCTRPHiEFFPMfCRFPM
FORMAT =OMC(K,5)+OMC(K,J>
DO 220 K=l,5
220 ANNC ( K , 5 ) =ANNC ( K , 5 ) +ANNC ( K , J )
100 CONTINUE
WRITE (6,1000) N
1000 FORMAT (/T2,'COST SUMMARY TABLE - RUN NO, ' , I5/T2,80( '- '
* T2»'ITEM' ,115,
* 'BOILER', T30» 'NOX CONTROL' ,T45, 'S02 CONTROL'fT60
* 'PM CONTROL', T75»'TOTAL'/T2,80('-')/)
DO 10 1=1,10
10 WRITE (6,1001) ACAPC(I), (CAPC( I, J) , J-l » 5 )
1001 FORMAT (T2,A4rT10,5(F12.0,3X»
WRITE (6,1002)
1002 FORMAT (' ')
DO 20 1=1,19
20 WRITE (6,1001) AOMC( I ) , (OMC( I , J) , J=l ,5)
WRITE (6,1002)
DO 3
-------
DO
I
H-»
CO
00*176000
00477000
00478000
00479000
00480000
00481000
00482000
00483000
00484000
00485000
00486000
00487000
00488000
00489000
00490000
00491000
00492000
00493000
00494000
00495000
00496000
00497000
00498000
00499000
00500000
00501000
00502000
00503000
00504000
00505000
00506000
00507000
00508000
00509000
00510000
00511000
00512000
00513000
00514000
00515000
00516000
00517000
00518000
00519000
00520000
END
SUBROUTINE SPILL (MrANAMErCAPC,OMC,ANNC)
SPILL - OUTPUTS A DETAILED COST BREAKDOWN
INPUT - CAPC = ARRAY OF CAPITAL COSTS
OMC = ARRAY OF OPERATION AND MAINTENANCE COSTS
ANNC = ARRAY OF ANNUALIZED COSTS
OUTPUT - COSTS ARE PRINTED
REAL CAPC(10)»OMC(19),ANNC(5)
REAL ACAPC(10),AOMC(19),AANNC(5)
DATA ACAPC /'EGUP','INST'»'TD'»'IND'»
TDI'»'CONT'f'TK'.'LAND',
*
*
*
'WC'
AOMC /'DL
'TOTL'/»
'MANT
» 'SP'.'ELEC'.'UC'. 'WTR'.'SW',
'SLDG'f'LU'
'•TDOM'.'OH'
AANNC /'CR'.'WCC','
.'SC'.'LMS','LIME'.'NH3','LYE'r'FUEL'.
,'TOTL'/,
TOTL'/
C WRITE OUT HEADER
WRITE (6,1000) ANAHE.N
1000 FORMAT 0.56.0.26.0.25.0.10,0,0033,0.04.0,2/
IF (IFLAff .EG, 0) GO TO 20
CAPC(3)=CAPC(1)+CAPC(2)
-------
00521000
00522000
00523000
00524000
00525000
00526000
00527000
00528000
00529000
00530000
00531000
00532000
00533000
00534000
00535000
00536000
00537000
00538000
00539000
00540000
00541000
00542000
• 00543000
£ 00544000
00545000
00546000
00547000
00548000
00549000
00550000
00551000
00552000
00553000
00554000
00555000
00556000
00557000
00558000
00559000
00560000
00561000
00562000
00563000
00564000
00565000
10
20
C
C
C
C
C
C
C
C
C
CAPC(5)=CAPC<3HCAFC<4>
CAPC<6)=CTG*CAPC<5)
CAPC ( 7 ) =CAPC ( 6 ) HCAPC ( 5 )
DO 10 I^l»16
OMC(17)=OMC(17)+OMC(I)
OMC(18)=OH1*OHC(1)+OH2*
IF (CF .LT. 0.5) ALF=0,5
RETURN
END
SUBROUTINE LIMIT ANAME
1000 FORMAT
-------
UUD66UUU
00567000
00568000
00569000
00570000
00571000
00572000
00573000
00574000
00574500
00575000
00576000
00577000
00578000
00579000
00579500
00580000
00581000
00582000
00583000
00584000
00585000
f 00586000
£ 00587000
00588000
00589000
00590000
00591000
00592000
00593000
00594000
00595000
00596000
00597000
00598000
00599000
00600000
00601000
00601500
00602000
00603000
00604000
00605000
00606000
00607000
u
<
ft
c
c
c
c
c
c
c
c
— — = = = — = = = sss: = = = s: = ss — = = — — — = = =:=; — ^r5ff=r: = = Krr — — r-. — = = =
REAL CAPC(10)fOMC(19) rANHC(5)
COMMON /BSPEC/ GfFLW.CF »BCRF
COMMON /FUEL/ FCrHrSrA
CALL LIMIT(Qi 15.0»75.0» 'UNDR' )
H1=11800/H
CAPC(1)=66392.*Q**0.622*HH-2257.*G»*O.B19
CAPC(2)!=53219.*Q*1!0,65*H1+2282,*G**0.796
CAPC(4)=40188.*G**0.646*H1**0.926
CAPC(8>=2000
OMC<1)=ALF(CF)*<38020*ALOG*«G+4955000>/<99,23-G)>*0,767
OMC(4)=<1.705E8*Q-2.959E8)**.5tHl**l. 0028*0. 767
OMC<6) = (CF/0.6).*(Q/(1.105E-5»Q-f3.69E-4))*Hl**0.9*(A/10.6))l:!!:0,3
$*0.848
OHC < 8 ) = ( CF/0 . 6 ) #4 43 . 3*Q#H1 #*0 . 9* ( A/ 10 . 6 ) #*0 . 3*0 . 848
OMC(16)=CF*Q*8760*FC
CALL FNLCST ( CAPC » OMC » ANNC » BCRF » 1 )
RETURN
END
SUBROUTINE SPRD(CAPC»OMC» ANNC)
SPRD - ROUTINE FOR ESTIMATION OF SPREADER STOKER BOILER COSTS
APPLICABLE TO t
SPREADER STOKERS
WATERTUBE
FIELD-ERECTED
60-200 MMBTU/HR
= = = = = = = = = ss = s: = = = = s:s = = = = = = :5 = = = = = = :r = = = = = = = = =•:: =
REAL CAPC(10)rOMC(19)rANNC(5>
COMMON /BSPEC/ QF FLW» CF» BCRF
COMMON /FUEL/ FCrHrSrA
CALL LIMIT(G»60.0»200,0»'SPRD' )
H1=H/11800.
CAPC(l)=(G/(7.5963E-8*G+4,7611E-5) )*H1**<-0.35)
CAPC(2)=
CAPC(4) = (Q/(1.2739E-7*Q-I-7.9845E-5))*H1**(-0.35)
CAPC(8)=2000
OMC(1)=ALF(CF)*(202825+5.366*G**2)*0.767
OMC(2)=ALF
-------
00608000
00609000
00610000
00611000
00612000
00613000 C
00614000 C
00615000 C
00616000 C
00617000 C
00618000 C
00619000 C
00621000
00622000
00623000
00624000
00625000
00626000
00627000
00627500
0062BOOO
00629000
00630000
00631000
00632000
00633000
00634000
00635000
00636000
00637000
00638000
00639000 C
00640000 C
00641000 C
00642000 C
00643000 C
00644000 C
00645000 C
00647000
00648000
00649000
00650000
00651000
OMC(l6)=CF*G*8760.1cFC
CALL FNLCST ( CAPC >OMC .ANNCi BCRF » 1 )
RETURN
END
SUBROUTINE PLVR< CAPC » OMC t ANMC)
PLVR - ROUTINE FOR ESTIMATION OF PULVERIZED COAL-FIRED BOILER COSTS
APPLICABLE TO J
PULVERIZED COAL-FIRED
WATERTUBE
FIELD-ERECTED
GREATER THAU 200 MMBTU/HR
REAL CAPCUO)»OMC(19),ANNC(5>
COMMON /BSPEC/ G,FLU»CF» BCRF
COMMON /FUEL/ FCrH.S.A
CALL LIMIT <0.200.0»700.0»'PLVF:' )
CAPC(1)=(4926066.-0,00337*H**2,0)*(Q/200. )**0.712
CAPC(2)=1547622. 7+6740. 026*0-0, 00241 33*H**2.0
CAPC ( 4 ) =1257434. 72+6271. 316*0-0, 0018572 1 *H**2 .0
CAPC(B)=4000
OMC( 1 )=ALF (CF)*( 244455+ 11 57*0) *0. 767
OMC (2 )=ALF(CF)*( 243985, -20636709. /Q)*0. 767
OMC< 3 )=ALF(CF)*( -11 62910. +256604. *ALOG(Q) )*0.767
OMC( 4 )=( 180129. +105, 1#G>*0. 767
OMC <6>=CF*( 189430, +1476, 7*0 >*O.B4S
OMC(8)=CF* <-61l.08+70679828*A/H>***l.OOl*0.38*0,848
OMC(16)=CF*Q*8760,*FC
CALL FNLCST ( CAPC » OMC r ANNC F BCRF» 1 )
RETURN
END
SUBROUTINE RES1 (CAPC. OMC» ANNO
RES1 - ROUTINE FOR ESTIMATION OF FIRETUBE RESIDUAL-FIRED BOILER COSTS
APPLICABLE TO 5
RESIDUAL OIL-FIRED
FIRETUBE
PACKAGE
LESS THAN 30 MMBTU/HR
REAL CAPC(10)rOMC(19)fANNC(5)
COMMOU /BSPEC/ Q»FLUfCFfBCRF
COMMON /FUEL/ FCrH»SfA
CALL LIMIt(QiO,0.30.0f 'RES1')
CAPC(1)~17360*Q**0.557
-------
00
I
00652000
00653000
00653500
00654000
00655000
00656000
00657000
00658000
00659000
00660000
00661000
00662000
00663000
00664000
00665000
00666000
00667000
00668000
00669000
00670000
00671000
00672000
00673000
00674000
00675000
00676000
00677000
00678000
00679000
00680000
00680500
00681000
00682000
00683000
00684000
00685000
00686000
00687000
00688000
00689000
00690000
00691000
00692000
00693000
00694000
CAPC(2)=4324*CH56177
CAPC(4)=2317*Q+29/49
CAPC(8)=2000
OMC(1)=ALF(CF)*105300*0.799
IF (Q.LT.15) OMC(2)=ALF(CF)*<(a-5)/10)*68500*0.799
IF (Q.GE.15) OMC<2)^ALF(CF>*68500*0.799
IF (Q.LT.15) nMC<3>=ALF*<1600*(H8000>*0.799
IF (Q.GE.15) OMC(3)=ALF(CF)*32000*0,799
OMC(4)=(708.7*0+4424)$0.799
OMC(6) = (CF/0.45)*(580*Q-f3900>*0.845
OMC(16)=CF*Q#8760*FC
CALL FNLCST(CAPC,OMC»ANNC * BCRF»1)
RETURN
END
SUBROUTINE DNG1(CAPC»OMC»ANNC)
DNG1 - ROUTINE FOR ESTIMATION OF DISTILLATE/NG FIRED BOILER COSTS
APPLICABLE TO J
DUAL-FIRED (DISTILLATE AND/OR NATURAL GAS)
FIRETUBE
PACKAGE
LESS THAN 30 MMBTU/HR
REAL CAPC(10)fOHC(19)»ANNC(5)
COMMON /BSPEC/ QiFLW»CFiBCRF
COMMON /FUEL/ FCrHrSiA
CALL LIMIT(Q»0.0»30.0»'DNG1')
CAPC(1)=15918*Q**0.561
CAPC(2)=4261*Qt56041
CAPC(4)=2256*Q+28649
CAPC(8)^2000
OMC(1)=ALF(CF)*105300*0.799
IF (Q.LT.15) OMC(2)=ALF(CF)*«Q-5)/10)*68500*0,799
IF (Q.GE.15) OMC(2)=ALF(CF)*68500*0.799
IF (Q.LT.15) OMC(3)=ALF(CF)*(1600*G+8000)*0.799
IF (Q.GE.15) OHC(3)-ALF(CF)*32000*0.799
OHC(4)=(708.7*0+4424)*0,799
OMC(6)=(CF/0.45)*(580*Qt3900)*0.845
OHC(16)-CF*Q*8760*FC
CALL FNLCST(CAPC>OMCFANNC»BCRF,1)
RETURN
END
SUBROUTINE DNG2(CAPCtOMCtANNC)
DNG2 - ROUTINE FOR ESTIMATION OF DISTILLATE/NG FIRED BOILER COSTS
APPLICABLE TO J
-------
CD
I
»—»
oo
00695000
00696000
00697000
00698000
00699000
00700000
00701000
00702000
00703000
00704000
00705000
00706000
00707000
00707500
00708000
00709000
00710000
00711000
00712000
00713000
00714000
00715000
00716000
00717000
00718000
00719000
00720000
00721000
00722000
00723000
00724000
00725000
00726000
00727000
00728000
00729000
00730000
00731000
00732000
00732500
00733000
00734000
00735000
00736000
00737000
DUAL-FIRED (DISTILLATE AMD/OR NATURAL GAS)
WATERTUBE
PACKAGE
30-200 MMBTU/HR
REAL CAPC(10>fOMC(19)rANNC<5>
COMMON /BSPEC/ G.FLW,CF>BCRF
COMMON /FUEL/ FCrH»SrA
CALL LIMIT(G»30.0,200.0»'DNG2')
CAPC(1)=14850*G**0.786
CAPC(2)=54620*Q**0.361
CAPC(4)=15952*Q**0.618
CAPC(8)=2000
OMC(1)=ALF)*0.799
OMC(2)=ALF(CF>#68500*0.799
QMC(3)=ALF(CF>*(-1267000/0+77190)*0.799
OMC(4) = (7183*Q:**0.4241)*0.799
OMC(6)=(CF/0.55)*(202*0+24262)*0.845
OMC(16)=CF*G*8760*FC
CALL FNLCST(CAPCrOMCrANNC.BCRFrl)
'RETURN
END
SUBROUTINE RNG1(CAPCrOMC»ANNO
RNG1 - ROUTINE FOR ESTIMATION OF RESIDUAL/NO FIRED BOILER
APPLICABLE TO t
DUAL-FIRED (RESIDUAL AND/OR NATURAL GAS)
WATERTUBE
PACKAGE
30-200 MMBTU/HR
REAL CAPC(10)»OMC(19)fANNC(5>
COMMON /BSPEC/ Q.FLU.CFrBCRF
COMMON /FUEL/ FC»H»S»A
CALL LIMIT(G»30.0.200.Of'RNGl')
CAPC(1)=15925.*G**0.775
CAPC(2)=54833.*G**0.364
CAPC(4)=16561.*G**0.613
CAPC(8)=2000
OMC(1)=ALF(CF)*(Q**2/(8.135E-4*G-1.585E-2»*0.799
OMC(2)=ALF(CF)*68500.#0.799
OMC(3)=ALF(CF)*(-1267000./Q+77190.)*0,779
OMC(4)=<7185.*G**0.4241)*0.799
OMC(6)=(CF/0.55)*(202*G+24262)*0.845
COSTS
-------
CXI
H-»
10
00738000
00739000
00740000
00741000
00742000
00743000
00744000
00745000
00746000
00747000
00748000
00749000
00750000
00751000
00752000
00753000
007S4000
00755000
00756000
00757000
00757500
00758000
00759000
00760000
00761000
00762000
00763000
00764000
00765000
00766000
00767000
00768000
00769000
00770000
00771000
00772000
00773000
00774000
00775000
00776000
00777000
00778000
00779000
00780000
00781000
OMC(16)= CF*Q*8760.*FC
CALL FNLCST(CAPCrOMCrANNCfBCRFr1)
RETURN
END
SUBROUTINE RNG2(CAPC,OMC»AHNC)
RN02 - ROUTINE FOR ESTIMATION OF RESIDUAL/MO FIRED BOILER COSTS
APPLICABLE TO t
DUAL-FIRED *0.799
OMC(3)=ALF(CF>*(32029.+320.4*0)*0.799
OMC(4)=(50000,+250.*Q)#0.799
OHC(6>=CF*<43671.7+479.6*Q>*0,845
OMCU6)=CF*Q*8760.*FC
CALL FNLCST(CAPC,OMC r ANNC f BCRF r1)
RETURN
END
SUBROUTINE ESPC(CAPC»OMCfANNCfIPFLAG)
ESPC - ROUTINE FOR ESTIMATION OF ESP COSTS (COAL-FIRED BOILER APPLICA
APPLICABLE TO {
COAL-FIRED BOILER APPLICATIONS
BOILERS WITH THERMAL INPUTS LESS THAN 700 HMBTU/HR
REAL CAPC(10)fOMC(19)fANNC(5)
COMMON /BSPEC/ OfFLUfCFfBCRF
COMMON /FUEL/ FCfHfSfA
COMMON /PM/ UNCPMfCTRPMfEFFPMfCRFPM
CALL LIMIT (Qf30.0f700.0i'ESPC')
SCA <•=' 324.32*(S**(-11,256*(EFFPM**(-0.745))))
* *( (100,-EFFPM)**(-0. 366* (S**( -0.051 »»*!. 18178
TPA = SCA*FLW/1000.
-------
CO
I
00782000
00783000
00784000
00785000
00786000
00787000
00788000
00789000
00790000
00791000
00792000
00793000
00794000
00795000
00796000
00797000
00798000
00799000
00800000
00801000
00802000
00803000
00804000
00805000
00806000
00807000
00808000
00809000
00810000
00811000
00812000
00813000
00814000
00815000
00816000
00817000
00818000
00819000
00820000
00821000
00822000
00823000
00824000
00825000
00826000
IF (IPFLAG.NE.O)WRITE (6rt001) SCA>TPA
1001 FORMAT
GO TO 20
10 OHC(D- ALF(CF)*52600.
OMC(2)= ALF(CF)*17000.
OMC(3>= ALF(CF)'*32000.
20 OMC(4)=5.52E-3»(CAPC(l)-»-CAPC(2)+CAPC(4) )
OMC(6)=*(0.1068*TPA+2.523*Q*fOMC(19)fANNC(5)
COMMON /BSPEC/ U»FLW>CF» BCRF
COMMON /PM/ UNCPMfCTRPM»EFFPM>CRFPM
CALL LIMIT(Of30.0f700.0» 'FF')
CAPC(1)=8.34*FLW<;*0.966
CAPC(2)=168531.*ALOG(FLW) -1506523,
CAPC( 4 > =24 . 99*FLW**0 . 821
IF (Q.GT.400) GO TO 10
OMC(1)=ALF(CF)*( 10150. i!06.*Q)
OMC(3>=ALF(CF)*(14840.+0,106*Q**2.0)
GO TO 20
10 OMC(1)=ALF(CF)*52600.
OMC(2)=ALF(CF)*17000,
OMC(3)=ALF(CF)*32000. '
20 OMC(4)=0.278*FLW**0.997
OMC(6)=(CF/0.6)*<0,740*FLW**0.953>
OMC(8)=(CF/0.6)*<39.42*Q)*(UNCPM-CTRPM)
-------
00
I
ro
r\s
00872000
00873000
00874000
00875000
00876000
00877000
00878000
00879000
00880000
00881000
00882000
00883000
00884000
00885000
00886000
00887000
00888000
00889000
00890000
00891000
00892000
00893000
00894000
00895000
00896000
00897000
00898000
00899000
00900000
00901000
00902000
00903000
00904000
00905000
00906000
00907000
00908000
00909000
00910000
00911000
00912000
00913000
00914000
00914500
00915000
C VS
C
C
C
C
C
C = = =
CALL FNLCST < CAPC» OMC.ANNC»CRFPM»1)
RETURN
END
SUBROUTINE VS(CAPCrOMC?ANNC)
- ROUTINE FOR ESTIMATION OF VENTURI SCRUBBER COSTS
APPLICABLE TO !
COAL-FIRED BOILER APPLICATIONS
PM REMOVAL ONLY (NO S02 REMOVAL)
BOILERS WITH THERMAL INPUTS FROM 30 TO 700 MMBTU/HR
10
20
C SM
C
C
C
C
C
C = = =
REAL CAPC(10)rOMC(19)tANNC(5)
COMMON /BSPEC/ Q»FLUiCF»BCRF
COMMON /PM/ UNCPM»CTRPM»EFFPMfCRFPM
CALL LIMIT(Q»30,0»700.0»'VS')
CAPC(1)=26916.+2.294*FLU
CAPC(2)=13904.+1.653*FLW
CAPC(4)=15463.+1.285*FLW
IF (Q.GT.400) GO TO 10
OMC(1)=ALF(CF)*(10150.+106,*0)
GO TO 20
OMC(1)=ALF(CF)#52000
OMC(2)=ALF(CF)*17000
OMC(3)=4525,+104.4*0
OMC(6)=(CF/0.6)*304.3*Q**0.938
OMC(8)=(CF/0.6)*39.42*Q*(UNCPM-CTRPH)
CALL FNLCST(CAPC»OMC»ANNC»CRFPM»1)
RETURN
END
SUBROUTINE SM(CAPC»OMC»ANNC)
- ROUTINE FOR ESTIMATION OF SINGLE MECHANICAL (MULTI-CLONE)
COLLECTOR COSTS
APPLICALBE TO J
COAL-FIRED BOILER APPLICATIONS
BOILERS WITH THERMAL INPUTS FROM 30 TO 700 MMBTU/HR
= = = =: = = = = = = =: = = =: = =:=:r: = =: = = =: = r:==:=r = r:=:=' = = = = r:=-^r: = rrr:^r:r:r: =
REAL CAPC(10)rOMC(19)rANNC(5)
COMMON /BSPEC/ Q»FLWiCF.BCRF
COMMON /PM/ UNCPMrCTRPMiEFFPMrCRFPM
CAPC(1)=32.53*FLW**0.7518
CAPC(4)=CAPC(1)/3.0
OMC(1)=ALF(CF)*(5075+53.0*0)
OMC(3)=ALF(CF)*(7420+0.053*0*0)
-------
DO
INS
CO
00915500
00916000
00917000
00918000
00919000
00920000
00921000
00922000
00923000
00924000
00925000
00926000
00927000
00928000
00929000
00930000
00931000
00932000
00933000
00934000
00934500
00935000
00935500
00936000
00937000
00938000
00939000
00940000
00941000
00942000
00943000
00944000
00945000
00946000
00947000
00948000
00949000
00950000
00951000
00952000
00953000
00953500
00954000
00954500
00955000
DM
OMC(4)=0.005*(CAPC(1)+CAPC<4»
OMC(5)=0.286*FLW*CF
OMC(8>=(CF/0.6)*39.42*a*(UNCPM-CTRFM)
CALL FNLCST ( CAPC f OHC » AHNC > CRFPM r 1 )
RETURN
END
SUBROUTINE DM(CAPCrOMC» ANNO
- ROUTINE FOR ESTIMATION OF DUAL MECHANICAL (TWO MULTICLOHES IN SE
COLLECTOR COSTS
APPLICABLE TO J ,
COAL-FIRED BOILERS APPLICATIONS
BOILERS WITH THERMAL INPUTS FROM 30 TO 700 MMBTU/HR
REAL CAPC(10)tOMC(19)»ANNC(5>
COMMON /BSPEC/ G»FLW»CF»BCRF
COMMON /PM/ UNCFM»CTRPM»EFFPM»CRFPM
CAPC<1)=24.54*FLW**0.8130
CAPC(4)=CAPC(1)/3.0
OMC(1)=ALF(CF)* (5075+53. 0*0)
OMC(2)-OMC(1)*0.15
OMC(3)=ALF/3,0
OMC(1)=ALF(CF)*(7105+74,2*0)
OMC(2)-QMC(1)*0.1S
OMC(3") =ALF(CF)*( 10390+0.074*Q*Q)f 0. OS54*FLW**0 . 997
OMC(4)=0.005*(CAPC(1)iCAPC(4 ) )
OMC(5)=0,286*FLW*CF+(CF/0.6)*0.160*FLW)!:>l:0,953
-------
CD
00956000
00957000
00958000
00959000
00960000
00961000
00962000
00963000
00964000
00965000
00966000
00967000
00968000
00969000
00970000
00971000
00972000
00973000
00974000
00975000
00976000
00977000
00973000
00979000
00980000
00981000
00982000
00983000
00984000
00985000
00986000
00987000
00988000
009B9000
00990000
00991000
00992000
00993000
00994000
00995000
00996000
00997000
00998000
00999000
01000000
) = (CF/0.6>*39,42*Q*ANNCrIPFLAG)
DA - ROUTINE FOR ESTIMATION OF DUAL ALKALI FGD COSTS
APPLICABLE TO 5
COAL- AND OIL-FIRED BOILER APPLICATIONS
WITH PRIGR PM REMOVAL FOR COAL-FIRED APPLICATIONS
NO SIZE LIMITATIONS
REAL CAPC(10)»OMC(19)rANNC(5>
COMMON /BSPEC/ Q»FLWrCFrBCRF
COMMON /FUEL/ FCrH»S»A
COMMON /S02/ UNCS02»CTRS02»EFFS02»CRFS02
COMMON /COSTS/ DLRrSLR»AMLRrELEC.WTR,ALIME»ALS,ALYE»SASHrSLDGr
* SWDrALWD
H2=H*2,3257
Q2=Q*0,2930
FLW2=FLW*4.720E-4
SLDG2=SLDG*0,0011013
UTR2=WTR*0.2641
ALIME2=ALIME*0.0011013
SASH2=SASH*0.0011013
S1=S*EFFS02*100./H2
82=31*02*3.6
IF (IPFLAG.ME,0) WRITE (6»1000)51»S2
1000 FORMAT
-------
APPENDIX C
MODEL BOILER COST TABLES
This appendix presents a detailed cost breakdown of the boiler, S02
control and PM control costs for all the model boilers presented in
Chapters 3 and 4. The terms for which many of the abbreviations stand for
are presented in the algorithm abbreviations in Table A-2. However, some
variations are present. These terms and their abbreviations can be found
within the FORTRAN computer program COST (Appendix B).
Each cost summary table presents three totals. The first total is the
total capital costs. The second total is the total annual O&M costs and the
third total is the total annualized costs.
C-l
-------
HSC-30-Unc, Unc
MODEL BOILER 1
BOILER ROUTINE UNDR
302 ROUTINE=
4-01-82
PM ROUTINE'
FLOW FLAS=
BOILER SPECIFICATIONS
Q= 30.0 FLW=
FUEL SPECIFICATIONS
' FC= 1.81 H=
PM EMISSIONS
UNC= 0.0 CTR=
S02 EMISSIONS
UNC= 0.0 CTR=
COST RATES
ELEC= 0.0258 UTR=
COST SUMMARY TABLE -
ITEM BOILER
EQUP 587246.
INST 519713.
TD 1106959.
IND 361673.
TBI 1468632.
CONT 293726.
TK 1762358.
LAND 2000.
UC 92986.
TOTL 1357344.
DL 90863.
SPRV 44001.
MANT 41173.
SP 53245.
ELEC 0.
UC 36296.
UTR 0.
SU 11271.
SLDG 0.
LU 0.
SC 0.
LMS 0.
LIME 0.
NH3 0.
LYE 0.
FUEL 285401.
TDOM 562250.
OH 86872.
TOTL 649122.
CR 231750.
MCC 9299.
MISC 70494.
TCC 311543.
TOTL 960665.
i
11029. CF= 0.600
11800. S= 3.54
0.0 EFF= 0.0
0.0 EFF= 0.0
0.15 LIME" 35.00
RUN NO. 1
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
CRF= 0.1315
A« 10.58
CRF= 0.0
CRF= 0.0
ALS= 8.00 SASH=
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
90.00 SLDQ=
PM CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
15.00 SUD= 15.00 ALUD
TOTAL
587246.
519713.
1106959.
361673.
1468632.
293726.
1762358.
2000.
92986.
1857344.
90863.
44001.
41173.
53245.
0.
36296.
0.
11271.
0.
0.
0.
0.
0.
0.
0.
285401.
562250.
86872.
649122.
231750.
9299.
70494.
311543.
960665.
= 1.80
C-2
-------
HSC-30-Unc, SM
MODEL BOILER 2
BOILER ROUTINE UNOR
302 ROUTINE-
4-01-82
PM ROUTINED SM
FLOW FLA6=
BOILER SPECIFICATIONS
Q" 30.0 FLU" 11029. CF=
FUEL SPECIFICATIONS
FC» 1.81 H= 11800. S=
PM EMISSIONS
UNC= 0.657 CTR» 0.400 EFF=
S02 EMISSIONS
UNC= 0.0 CTR" 0.0 EFF=
COST RATES
ELEC= 0.0258 UTR" 0.15 LIME= 35.00 ALS
0.600 CRF= 0.1315
3.54 A* 10.58
37.10 CRF- 0.1315
0.0 CRF" 0.0
8.00 SASH" 90.00 SLOG" 15.00 SWD= IS.00 ALUD=> 1.80
COST SUMMARY TABLE - RUN NO. 2
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRY
MANT
SP
ELEC
UC
UTR
SU
SLDQ
LU
SC
LMS
LIME
NH3
LYE
FUEL
TJDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOILER
587246.
519713.
1106959.
361673.
1468632.
293726.
1762358.
2000.
92986.
1857344.
90863.
44001.
41173.
53245.
0.
36296.
0.
11271.
0.
0.
0.
0.
0.
0.
0.
285401.
562250.
86872.
649122.
2317SO.
9299.
70494.
311543.
960665.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0. .
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
35602.
0.
35602.
11867.
47469.
9494.
56963.
0.
3446.
60409.
4999.
750.
5601.
237.
1893.
0.
0.
304.
0.
0.
0.
0.
0.
0.
0.
0.
13783.
4512.
18295.
7491.
345.
2279.
10114.
28409.
TOTAL
622848.
519713.
1142560.
373541.
1516100.
303220.
1819320.
2000.
96432.
1917752.
95862.
44751.
46773.
53482.
1893.
36296.
0.
11575.
0.
0.
0.
0.
0.
0.
0.
285401.
576033.
91384.
667417.
239241.
9643.
72773.
321657.
989074.
C-3
-------
HSC-30-Unc, SSS
MODEL BOILER 3
BOILER ROUTINE UNDR
S02 ROUTINE=
4-01-82
PM ROUTINE" SSS
FLOW FLAG*
BOILER SPECIFICATIONS
. Q= 30.0 FLU= 1102?. CF= 0.600 CRF= 0.1315
FUEL SPECIFICATIONS
FC= 1.81 H= 11800. S= 3.54 A= 10.58
PM EMISSIONS
UNC= 0.657 CTR= 0.200 EFF= 69.60 CRF= 0.1315
S02 EMISSIONS
UNC= 0.0 CTR= 0.0 EFF= 0.0 CRF= 0.0
COST RATES
ELEO 0.0258 UTR= 0.15 LIME= 35.00 ALS= 8.00 SASH= 90.00 SLDG= 15.00 SUO« 15.00 ALUD=
1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
sw
SLD6
LU
SC
LMS
LIME
NH3
LYE
FUEL
T00M
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOILER
587246.
519713.
1106959.
361673.
1468632.
293726.
1762358.
2000.
92986.
1857344.
90863.
44001.
41173.
53245.
0.
36296.
0.
11271.
0.
0.
0.
0.
0.
0.
0.
285401.
562250.
86872.
649122.
231750.
9299.
70494.
311543.
960665.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
62666.
0.
62666 »
20889,
83554,
16711.
100265.
0.
5119.
105384.
6998.
1050.
8437.
418.
3032.
0,
0.
540.
0.
0.
0.
0.
0.
0.
0.
0.
20475.
6494.
26969.
13185.
512.
4011.
17707.
44676.
TOTAL
649912.
519713.
1169624.
382562.
1552186.
310437.
1862623.
2000.
98105.
1962727.
97861.
45051.
49609.
53663.
3032.
36296.
0.
11812.
0.
0.
0.
0.
0.
0.
0.
285401.
582724.
93366.
67609C.
244935.
9810.
74505.
329250.
1005341.
C-4
-------
HSC-30-Unc, VS
MODEL BOILER 4
BOILER ROUTINE UNDR
S02 ROUTINE?
4-01-82
PM ROUTINE* VS
FLOU FLAG-
BOILER SPECIFICATIONS
Q= 30.0 FLU** 11029. CF= 0.600 CRF= 0.1315
FUEL SPECIFICATIONS
FC= 1.81 H« 11800. S= 3.54 A" 10.58
PM EMISSIONS
UNC- 0.657 CTR= 0.100 EFF= 84.80 CRF- 0.1315
S02 EMISSIONS
UNC= 0.0 CTR* 0.0 EFF= 0.0 CRF= 0.0
COST RAJES
ELEC* 0.0258 WTR= 0.15 LIME- 35.00 ALS= 8.00 SASH- 90.00 SLDO= 15.00 SUD= 15.00 ALUD=
1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLDG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
HISC
TCC
TOTL
BOILER
587246.
519713.
1106959.
361673.
1468632.
293726.
1762358.
2000.
92986.
1857344.
90863.
44001.
41173.
53245.
0.
36296.
0.
11271.
0.
0.
0.
0.
0.
0.
0.
285401.
S62250.
86872.
649122.
231750.
9299.
70494.
311543.
960665.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0. '
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
52217.
32135.
84353.
29636.
113988.
22798.
136786.
0.
6427.
143212.
9998.
0.
7657.
0.
0.
7393.
0.
659.
0.
0.
0.
0.
0.
0.
0.
0.
25707.
7589.
33296.
17987.
643.
5471.
24101.
57397.
TOTAL
639463.
551848.
1191311.
391309.
1582620.
316524.
1899143.
2000.
99413.
2000556.
100860.
44001.
48830.
53245.
0.
43690.
0.
11930.
0.
0.
0.
0.
0.
0.
0.
285401.
587956.
94461 .
682418.
249737.
9941.
75966.
335644.
1018062.
C-5
-------
HSC-30-Unc, ESP
HODEL BOILER 5
BOILER ROUTINE UNDR
S02 ROUTINE'
4-01-82
PM ROUTINE"
ESPC
FLOW
SPECIFIC COLLECTION AREA CSQ FT/1000 ACFM) = 117,3
TOTAL PLATE AREA (SO FT) = 1293.3
BOILER SPECIFICATIONS
Q= 30.0 FLU= 11029. CF* 0.600 CRF= 0.1313
FUEL SPECIFICATIONS
FC= 1.81 H= 11800. 5= 3.54 A= 10.58
PM EMISSIONS
UNC=, 0.657 CTR» 0.050 EFF= 92.40 CRF» 0.1315
S02 EMISSIONS
UNC= 0.0 CTR= 0.0 EFF= 0.0 CRF=* 0.0
COST RATES
ELEC= 0.0258 UTR= 0.15 LIME= 35.00 ALS= 8.00 SASH= 90>00 SLDG= 15.00 SUD=
15.00 ALWD= 1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
we
TOTL
OL
SPRV
HANT
SP
ELEC
UC
UTR
SU
SLDO
LU
SC
LMS
LIME
NH3
LYE
-FUEL
TDOM
OH
TOTL
CR
UCC
HISC
TCC
TOTL
BOILER
587246.
519713.
1106959.
361673.
1468632.
293726.
1762358.
2000.
92986.
1857344.
90863.
44001.
41173.
53245.
0.
36296.
0.
11271.
0.
0.
0.
0.
0.
0.
0.
285401.
562250.
86872.
649122.
231750.
9299.
70494.
311543.
960665.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0,
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
63190.
73932.
137122.
45799.
182921.
36584.
219506.
0.
5875.
225380.
9998.
0.
11202.
1010.
0.
572.
0.
718.
0.
0.
0.
0.
0.
0.
0.
0.
23499.
8774.
32272.
28865.
587.
8780.
38233.
70505.
TOTAL
650436.
593645.
1244081.
407472.
1651553.
330311.
1981863.
2000.
98861.
2082724.
100860.
44001.
52374.
54255.
0.
36868.
0.
11989.
0.
0.
0.
0.
0.
0.
0.
285401.
585748.
95645.
681394.
260615.
9886.
79275.
349776.
1031169.
C-6
-------
HSC-30-DA(50), DA/PM
MODEL BOILER 6
BOILER ROUTINE UNDR
S02 ROUTINE* DAC
4-01-82
PM ROUTINE"
FLOW FLAG=
S STAR = 0.445
S DSTAR (METRIC)= 20.409
P DSTAR (METRIC)= 8.014
BOILER SPECIFICATIONS
Q= 30.0 FLU- 11029. CF=
FUEL SPECIFICATIONS
FC= 1.81 H= 11800. S=
PM EMISSIONS
UNC= 0.637 CTR= 0.100 EFF=
0.600 CRF= 0.1315
3.54 A« 10.58
84.80 CRF« 0.1315
S02 EMISSIONS
UNC» 5.700 CTR= 2.850 EFF= 50.00 CRF= 0.1315
COST RATES
ELEC* 0.0258 WTR= 0.15 LIME=> 35.00 ALS= 8.00 SASH= 90.00 SLDQ= 15.00 SUD= 15.00 ALUD=
1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLOG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
BOILER
587246.
519713.
1106959.
361673.
1468632.
293726.
1762358.
2000.
92986.
1857344.
90863.
44001.
41173.
53245.
0.
36296.
0.
11271.
0.
0.
0.
0.
0.
0.
0.
285401.
562250.
86872.
649122.
231750.
9299.
70494.
311543.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0. '
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
487199.
0.
0.
0.
814654.
0.
47745.
862399.
105000.
21000.
38976.
0.
4050.
0.
261.
0.
14104.
0.
1106.
0.
6485.
0.
0.
0.
190981.
74394.
26537S.
107127.
4775.
32586.
144488.
PM CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TOTAL
587246.
519713.
1594157.
361673.
1468632.
293726.
2377012.
2000.
140731.
2719743.
195863.
65001.
80149.
53245.
4050.
36296.
261.
11271.
14104.
0.
1106.
0.
6485.
0.
0.
285401.
. 753231.
161266.
914497.
338877.
14073.
103080.
456031.
TOTL
960665.
409863.
0.
1370527.
C-7
-------
HSC-30-DA(50), ESP
MODEL BOILER 7
BOILER ROUTINE UNDR
S02 ROUTINE= DA
4-01-82
PM ROUTINE'
ESPC
FLOW FLAG"
S STAR =
S DSTAR =
0.645
20.409
SPECIFIC COLLECTION AREA (SO FT/1000 ACFM) = 117,3
TOTAL PLATE AREA (SO FT) = 1293.3
BOILER SPECIFICATIONS
Q= 30.0 FLW= 11029. CF=« 0.400 CRF= 0.1315
FUEL SPECIFICATIONS
FC= 1.81 H= 11800. S= 3.54 A= 10.58
PM EMISSIONS
UNC=/ 0.657 CTR=» 0.050 EFF* 92.40 CRF= 0.1315
502 EMISSIONS
UNC= 5.700 CTR= 2.850 EFF= 50.00 CRF= 0.1315
COST RATES
ELEC* 0.0258 UTR= 0.15 LIME = 35.00 ALS= 8.00 SASH= 90.00 SLDG= 15.00 SWD=
15.00 ALUD= 1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MAKT
SP
BOILER
587246,
519713.
1106959.
361673.
1468632.
293726.
1762358.
2000.
92986.
1857344.
90863.
44001.
41173.
53245.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
SQ2 CONTROL
0.
0.
393131.
0.
0.
0.
675434.
0.
45165.
720599.
105000.
21000.
31451.
0.
PM CONTROL
63190.
73932.
137122.
45799.
182921.
36584.
219506.
0.
5875.
225380.
9998.
0.
11202.
1010.
TOTAL
650436.
59364S.
1637212.
407472.
1651553.
330311.
2657297.
2000.
144025.
2803322.
205860.
65001.
83825.
54255.
ELEC
UC
UTR
SU
SLDG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
0.
36296.
0.
11271.
0.
0.
0.
0.
0.
0.
0.
285401.
562250.
86872.
649122.
231750.
9299.
70494.
311543.
960665.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1949.
0.
261.
0.
13408.
0.
1106.
0.
6485.
0.
0.
0.
180659.
72437.
253096.
88820.
4516.
27017.
120353.
373449.
0.
572.
0.
718.
0.
0.
0.
0.
0.
0.
0,
0.
23499.
8774.
32272.
28865.
587.
8780.
38233.
70505.
1949.
36868.
261.
11989.
13408.
0.
1106.
0.
6485.
0.
0.
285401.
766407,
168083.
934490.
349435.
14403.
106292.
470129.
1404617,
C-8
-------
HSC-30-DA(90), DA/PM
MODEL BOILER 8
BOILER ROUTINE UNDR
502 ROUTINE'S DAC
4-01-82
PM ROUTINED
FLOW FLAG=
S STAR (METRIC)= 1.161
S DSTAR (METRIC)= 36.737
P DSTAR (METRIC)* 8.014
BOILER SPECIFICATIONS
0= 30.0 FLU= 11029, CF=
FUEL SPECIFICATIONS
FC= 1.81 H= 11800. S=
PM EMISSIONS
UNC= 0.657 CTR= 0.100 EFF
S02 EMISSIONS
UNC= 5.700 CTR= 0.570 EFF=
COST RATES
ELEC= 0.0258 UTR= 0.15 LINE= 35.00 ALS= 8.00 SASH= 90.00 SLDG* 15.00 SWD-
0.600 CRF= 0.1315
3.S4 A= 10.58
84.80 CRF- 0.1315
90.00 CRF= 0.1315
COST SUMMARY TABLE - RUN NO.
8
15.00 ALUI> = 1.80
ITEM
BOILER
NOX CONTROL
S02 CONTROL
PH CONTROL
TOTAL
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLDG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
587246.
519713.
1106959.
361673.
1468632.
293726.
1762358.
2000.
92986.
1857344.
90863.
44001.
41173.
53245.
0.
36296.
0.
11271.
0.
0.
0.
0.
0.
0.
0.
285401.
562250.
86872.
649122.
231750.
9299.
70494.
311543.
960665.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0. .
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
548604.
0.
0.
0.
905534.
0.
53346.
958880.
105000.
21000.
43888.
0.
4320.
0.
280.
0.
23062.
0.
2024.
0.
11811.
0.
0.
0.
213385.
75671.
289056.
119078.
5335.
36221.
160634.
449690.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
587246.
519713.
1655563.
361673.
1468632.
293726.
2667892.
2000.
146332.
2816224.
195863.
65001.
85061.
53245.
4320.
36296.
280.
11271.
25062.
0.
2024.
0.
11811.
0.
0.
285401.
775635.
162543.
938178.
350828.
14633.
106716.
472177.
1410354.
C-9
-------
HSC-30-DA(90), ESP
MODEL BOILER 9
BOILER ROUTINE UNDR
S02 ROUTINE* DA
4-01-82
PM ROUTINE* ESPC
FLOW FLA6=
S STAR (METRIC)= 1.161
S DSTAR (METRIC)= 36.737
SPECIFIC COLLECTION AREA (SQ FT/1000 ACFM) = 117.3
TOTAL PLATE AREA (SQ FT) 1293.3
BOILER SPECIFICATIONS
Q= 30.0 FLW= 11029. CF= 0.600 CRF= 0.1315
FUEL SPECIFICATIONS
FC= 1.81 H= 11800. S= 3.54 A= 10.58
PM EMISSIONS
UNC= 0.657 CTR= 0.050 EFF= 92.40 CRF= 0.1315
502 EMISSIONS
UNC= 5.700 CTR= 0.570 EFF= 90.00 CRF= 0.1315
COST RATES
ELEC= 0.0258 MTR= 0.15 LIME--' 35.00 ALS = 8.00 SASH= 90.00 SLDG= 15.00 SWD- 15.00 ALU0=
1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
we
TOTL
DL
SPRV
MANT
SP
ELEC
UC
WTR
SU
SLD6
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOILER
587246.
519713.
1106959.
161673.
1468632.
293726.
1762358.
2000.
92986.
1857344.
90863.
44001.
41173.
53245.
0.
36296.
0.
11271.
0.
0.
0.
0.
0.
0.
0.
285401.
562250.
86872.
649122.
231750,
9299.
70494.
311543.
960665.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
462560.
0.
0.
0.
778189.
0.
50891.
829080.
105000.
21000.
37005.
0.
2079.
0.
280.
0.
24367.
0.
2024.
0.
11811.
0.
0.
0.
203565.
73881.
277446.
102332.
5089.
31128.
138548.
415994.
PM CONTROL
63190.
73932.
137122.
45799.
182921.
36584.
219506.
0.
5875.
225380.
9998.
0.
11202.
1010.
0.
572.
0.
718.
0.
0.
0.
0.
0.
0.
0.
0.
23499.
8774.
32272.
28865.
587.
8780.
38233.
70505.
TOTAL
o50436.
5936-»S.
1706641.
407472.
1651553.
330311.
2760052.
2000.
149752.
2911804.
205860.
65001.
89379,
54255.
2079,
36868.
280.
11989.
24367.
0.
2024.
0.
11811.
0.
0.
285401.
789313.
169527.
958840.
362947.
14975.
110402.
488324.
1447162.
C-10
-------
HSC-75-Unc, Unc
MODEL BOILER 10
BOILER ROUTINE UNOR
S02 ROUTINED
4-01-82
PM ROUTINE=
FLOW FLAG =
BOILER SPECIFICATIONS
Q= 75.0 FLH= 27S73. CF=
FUEL SPECIFICATIONS
FC= 1.81 H= 11800. S=
PM EMISSIONS
UNC= CTR= EFF=
502 EMISSIONS
UNC» CTR= EFF=
COST RATES
ELEC*> 0.0258 WTR= 0.15 LIME" 35.00 ALS= 8.00 SASH= 90.00 SLDG= 15.00 SWD= 15.00 ALUD=
0.600 CRF= 0.1315
3.54 A= 10.58
CRF=
CRF=
1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLDQ
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOILER
1051134.
951692.
2002826.
653711.
2656537.
531307.
3187844.
2000.
189693.
3379536.
110903.
125519.
117640.
85724.
0.
53069.
0.
28178.
0.
0.
0.
0.
0.
o;
0.
713502.
1234535.
147615.
1382150.
419202.
18969.
127514.
S6568S.
1947834.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0. •
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TOTAL
105113-1.
951692.
2002826.
653711.
2656537.
531307.
3187844.
2000.
139693.
3379536.
110903.
125519.
117640.
85724.
0.
53069.
0.
28178.
0.
0.
0.
0.
0.
0.
0.
713502.
1234535.
147615.
1382150.
419202.
18969.
127514.
565685.
1947834.
C-ll
-------
HSC-75-Unc, SM
MODEL BOILER 11
BOILER ROUTINE UNDR
502 ROUTINED
4-01-82
PM ROUTINE= SM
FLOW FLAS=
0,600 CRF= 0.131S
3.54 A= 10.58
BOILER SPECIFICATIONS
Q= 7S.O FLU= 27573. CF=
FUEL SPECIFICATIONS
FC= 1.81 H= 11800. S=
PM EMISSIONS
UNC= 0.657 CTR= 0.400 EFF= 39.10 CRF = 0.1315
S02 EMISSIONS
UNC= CTR= EFF= CRF^
COST RATES
ELEO 0.0258 UTR= 0.15 LIME= 35.00 ALS= 8.00 SASH= 90.00 SLDO= 15.00 SHD= 15.00 ALUD= 1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
we
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLD6
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOILER
1051134.
951692.
2002826.
653711.
2656537.
531307.
3187844.
2000.
189693.
3379536.
110903.
125519.
117640.
85724.
0.
53069.
0.
28178.
0.
0.
0.
0.
0.
0.
0.
713502.
1234535.
147615.
1382150.
419202.
18969.
127514.
565685.
1947834.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
70899.
0.
70899.
23633.
94532.
1S906.
113439.
0.
4890.
118328.
6788.
1018.
5789.
473.
4732.
0.
0.
760.
0.
0.
0.
0.
0.
0.
0.
0.
19558.
5694.
25252.
14917.
489.
4538.
19944.
45196.
TOTAL
1122033.
951692.
2073725.
677344.
2751069.
550214.
3301282.
2000.
194582.
3497864.
117690.
126538.
123428.
86197.
4732.
53069.
0.
28938.
0.
0.
0.
0.
0.
0.
0.
713502.
1254093.
153309.
1407401.
434119.
19458.
132051.
585628.
1993029.
C-12
-------
HSC-75-Unc, SSS
MODEL BOILER 12
BOILER ROUTINE UNDR
S02 ROUTINE=
4-01-82
PH ROUTINE* SSS
FLOW FLAG-
BOILER SPECIFICATIONS
Q= 75.0 FLW- 27S73. CF= 0,600 CRF= 0.1315
FUEL SPECIFICATIONS
FC* 1.81 H= 11600. S= 3.54 A= 10.58
PH EMISSIONS
UNC" 0.657 CTR" 0.200 EFF= 67.60 CRF= 0.1315
S02 EMISSIONS
UNC= CTR= EFF» CRF=
COST RATES
ELEC= 0.0258 UTR» 0.15 LIME* 35.00 ALS= 8.00 SASH= 70.00 SLDG = 15.00 SWD= 15.00 ALWD=
1.30
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLOG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
HISC
TCC
TOTL
BOILER
1051134.
951672.
2002826.
653711.
2656537.
531307.
3187844.
2000.
189673.
3379536.
110903.
125519.
117640.
85724.
0.
53067.
0.
28178.
0.
0.
0.
0.
0.
0.
0.
713502.
1234S3S.
147615.
1382150.
419202.
18769.
127514.
565685.
1947834.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
123875.
0.
128875.
42958.
171834.
34367.
206200.
0.
7546.
213746.
9502.
1425.
7586.
857.
7460.
0.
0.
1351.
0.
0.
0.
0.
0.
0.
0.
0.
30184.
8408.
38592.
27115.
755.
8248.
36118.
74710.
TOTAL
1130007.
751672.
2131701.
676670.
2828370.
565674.
3374044.
2000.
197239.
3593282.
120405.
126945.
127226.
86584.
7460.
53069.
0.
29529.
0.
0.
0.
0.
0.
0.
0.
713502.
1264719.
156023.
1420741.
446317.
19724.
135762.
601802.
2022543.
C-13
-------
HSC-75-Unc, VS
MODEL BOILER 13
BOILER ROUTINE UNDR
S02 ROUTINE'
4-01-32
PM ROUTINE=
VS
FLOW FLAG=
BOILER SPECIFICATIONS
Q= 75.0 FLV)= 27573, CF =
FUEL SPECIFICATIONS
FC= 1.81 H= 11800. S=
PM EMISSIONS
UNC= 0.657 CTR= 0.100 EFF =
S02 EMISSIONS
UNC* CTR= EFF=
COST RATES
ELEC= 0.0258 UTR= 0.15 LIHE= 35.00 ALS= 3.00 SASH= 90.00 SLDQ=
0.600 CRF- 0.1315
3.54 A= 10.58
84.80 CRF = 0.1315
CRF =
15.00 SWH= 15.00 ALUD= 1.80
COST SUMMARY TABLE - RUN NO. 13
ITEM BOILER NOX CONTROL
S02 CONTROL
PM CONTROL
TOTAL
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
1051134.
951692,
2002826.
653711.
2656537.
531307.
3187844.
2000.
189693.
3379536.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
90169.
59482.
149651.
50895.
200546.
40109.
240655.
0.
11260.
251915.
1141302.
1011175.
2152477.
704606.
2857082.
571416.
3428498.
2000.
200953.
3631450.
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLDG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
110903.
125519.
117640.
85724.
0.
53069.
0.
28178.
0.
0.
0.
0.
0.
0.
0.
713502.
1234535.
147615.
1382150.
419202.
18969.
127514.
565685.
1947834.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0,
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
13375.
0.
12355.
0.
0.
17463.
0.
1647.
0.
0.
0.
0.
0.
0.
0.
0.
45039.
10814.
55854.
31646.
1126.
9626.
42398.
98252.
124478.
125519.
129994.
85724.
0.
70532.
0.
29825.
0.
0.
0.
0.
0.
0.
0.
713502.
1279574.
158429.
1438003.
450848.
20095.
137140.
608083.
2046085.
C-14
-------
HSC-75-Unc, ESP
MODEL BOILER 14
BOILER ROUTINE UNOR
S02 ROUTINE*
4-01-82
PM ROUTINE*
ESPC
FLOW Fl.AB=
SPECIFIC COLLECTION AREA (SQ FT/1000 ACFM) - 117.3
TOTAL PLATE AREA CRF=
COST RATES
ELEC= 0.0258 UTR- 0.15 LIME= 35.00 ALS= 8.00 SASH= 90.00 SLDG= 15.00 SHD=
15.00 ALUD=
1.80
ITEM
EQUP
INST
TO
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLDQ
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
HISC
TCC
TOTL
BOILER
1051134.
951692.
2002826.
653711.
2656537.
531307.
3187844.
2000.
189693.
3379536.
110903.
125519.
117640.
85724.
0.
53069.
0.
28178.
0.
0.
0.
0.
0.
0.
0.
713502.
1234535.
147615.
1382150.
419202.
18969.
127514.
565685.
1947834.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0. '
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o..
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
114921.
134457.
249377.
83292.
332669.
66534..
399203.
0.
7553.
406757.
13575.
0.
11577.
1836.
0.
1430.
0.
1795.
0.
0.
0.
0.
0.
0.
0.
0.
30213.
11090.
41303.
52495.
755.
15968.
69219.
110521.
TOTAL
1166054.
1086149.
2252203.
737003.
2989206.
597841.
3587047.
2000.
197246.
3786292.
124478.
125519.
129217.
87561.
0.
54500.
0.
29973.
0.
0.
0.
0.
0.
0.
0.
713502.
1264748.
158705.
1423452.
471697.
19725.
143482.
634903.
2058355.
C-15
-------
HSC-75-DA(50), DA/PM
MODEL BOILER 15
BOILER ROUTINE UNDR
S02 ROUTINE" DAC
4-01-82
PM ROUTINE'
FLOW FLA6=
S STAR (METRIC)"
S DSTAR (METRIC)*
P DSTAR (METRIC>=
BOILER SPECIFICATIONS
Q= 75.0 FLU*
FUEL SPECIFICATIONS
FC= 1.81 H=
PM EMISSIONS
UNC=» 0.657 CTR=
S02 EMISSIONS
UNC= 5.700 CTR=
COST RATES
ELEC= 0.0258 UTR=
COST SUMMARY TABLE -
ITEM BOILER
EQUP 1051134.
INST 951692.
TD 2002826.
IND 653711.
TDI 2656537.
CONT 531307.
TK 3187844.
LAND 2000.
UC 139693.
TOTL 3379536.
DL 110903.
SPRV 125519.
MANT 117640.
SP 85724.
ELEC 0.
UC 53069.
UTR 0.
SU 28178.
SLOG 0.
LU 0.
SC 0.
LMS 0.
LIME 0.
NH3 0.
LYE 0.
FUEL 713502.
TDOM 1234535.
OH 147615.
TOTL 1382150.
CR 419202.
UCC 18969.
MISC 127514.
TCC 565685.
TOTL 1947834.
0.645
51.023
20.034
27573. CF= 0.600
11800. S= 3.54
0.100 EFF= 84.80
2.850 EFF=> 50.00
0.15 HME= 35.00
RUN NO. 15
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0,
0.
0.
0.
0.
CRF= 0.1315
A= 10.58
CRF=» 0.1315
CRF= 0.1315
ALS= 8.00 SASH=
S02 CONTROL
0.
0.
693867.
0.
0.
0.
1120522.
0.
62005.
1182527.
105000.
21000.
55509.
0.
10126.
0.
563.
0.
35695.
0.
3658.
0.
16470.
0.
0.
0.
248021.
78692.
326714.
147349.
6201.
44821.
198370.
525084.
90.00 SLHG=
PM CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
15.00 SUD= 15.00 ALUD= 1.80
TOTAL
1051134.
951692.
2696692.
653711.
2656537.
531307.
4308366.
2000.
251698.
4562063.
215903.
146519.
173149.
85724.
10126.
53069.
563.
28178.
35695.
0.
3658.
0.
16470.
0. :
0.
713502.
1482556.
226308.
1708863.
566550.
25170.
172335.
764055,
2472917.
C-16
-------
HSC-75-DA(50), ESP
MODEL BOILER 16
BOILER ROUTINE UNDR
S02 ROUTINE" DA
4-01-82
PM ROUTINE'
ESPC
FLOW FLAG*
S STAR (METRIC)- 0.645
S DSTAR (METRIC)= 51.023
SPECIFIC COLLECTION AREA (SO FT/1000 ACFH) * 117.3
TOTAL PLATE AREA (SO FT) = 3233.3
BOILER SPECIFICATIONS
Q= 75.0 FLU= 27573. CF= 0.600 CRF= 0.1315
FUEL SPECIFICATIONS
FC- , 1.81 H= 11800. S= 3.54 A" 10.58
PM EMISSIONS
UNC- 0.657 CTR» 0.050 EFF= 92.40 CRF= 0.1315
S02 EMISSIONS
UNC= 5.700 CTR* 2.850 EFF= 50.00 CRF<= 0.1315
COST RATES
ELEC= 0.0259 UTR= 0.15 LIME= 35.00 ALS= 8.00 SASH= 90.00 SLDG= 15.00 SHD- 15.00 ALUD=
COST SUMMARY TABLE - RUN NO. 16
ITEM BOILER NOX CONTROL S02 CONTROL PM CONTROL TOTAL
1.30
EQUP
1051134.
114921.
1166054.
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLD6
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
951692.
2002826.
653711.
2656537.
531307.
3187844.
2000.
189693.
3379536.
110903.
125519.
117640.
85724.
0.
53069.
0.
28178.
0.
0.
0.
0.
0.
0.
0.
713502.
1234S35.
147615.
1382150.
419202.
1B969.
127314.
565685.
1947834.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0,
0.
0.
0.
0.
0.
o. .
0.
0.
0.
0.
0.
0.
0.
0.
0.
0. .
0.
0.
0.
0.
0.
0.
0.
601476.
0.
0.
0.
983784.
0.
58409.
1042193.
105000.
21000.
48118.
0.
4872.
0.
563.
0.
33955.
0.
3658.
0.
16470.
0.
0.
0.
233637.
76771.
310408.
129368.
5841.
39351.
174560.
484968.
134457.
249377.
83292.
332669.
66534.
399203.
0.
7553.
406757.
13575.
0.
11577.
1836.
0.
1430.
0.
1795.
0.
0.
0.
0.
0.
0.
0.
0.
30213.
11090.
41303.
52495.
755.
15968.
69219.
110521.
1086149.
2853673.
737003.
2989206.
597841.
4570830.
2000.
255655.
4828185.
229478.
146519.
177335.
87561.
4872.
54500.
563.
29973.
33955.
0.
3658.
0.
16470.
0.
0.
713502.
1498385.
235475.
1733859.
601064.
25566.
182833.
809463.
2543322.
C-17
-------
HSC-75-DA(90), DA/PM
MODEL BOILER 17
BOILER ROUTINE UNDR
302 RQUTINE= DAC
4-01-92
PM ROUTINE'
FLOU FLAG=
S STAR CMETRIC>=
S DSTAR (METRIC):
91.842
0.600 CRF = 0.1315
3.54 A= 10.58
P DSTAR
-------
HSC-150-Unc, VS
MODEL BOILER 22
BOILER ROUTINE SPRO 502 ROUTINE*
4-01-82
PM ROUTINE" VS
FLOU FLAG-
0.600 CRF= 0.1315
3.54 A= 10.58
BOILER SPECIFICATIONS
0= 150.0 FLU= 55146. CF«
FUEL SPECIFICATIONS
FC= 1.81 H= 11800. S=
PM EMISSIONS
UNC» 2.540 CTR= 0.100 EFF= 96.10 CRF= 0.1315
502 EMISSIONS
UNC= CTR- EFF= CRF=
COST RA'TES
ELEC* 0.0258 UTR" 0.15 LIME" 35.00 ALS= 8.00 SASH= 70.00 SLOG- 15.00 SHD= 15.00 ALUD*
1.80
COST SUMMARY TABLE - RUN NO.
22
ITEM
BOILER
NOX CONTROL
S02 CONTROL
PM CONTROL
TOTAL
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
we
TOTL
DL
SPRV
MANT
SP
ELEC
JJC
UTR
SU
SLD6
LW
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
2542138.
2165530.
4707668.
1515863.
6223531.
1244706.
7468237.
2000.
266406.
7736643.
186128.
78752.
85796.
153400.
0.
69844.
0.
16229.
0.
0.
0.
0.
0.
0.
0.
1427004.
2017152.
186898.
2204049.
982073.
26641.
298729.
1307443.
3511492.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
6.
0.
0.
0.
0.
0.
153422.
105061.
258483.
86326.
344809.
68962.
413770.
0.
21902.
435672.
19538.
0.
20185.
0.
0.
33456.
0.
14428.
0.
0.
0.
0.
0.
0.
0.
0.
87606.
16189.
103795.
54411.
2190.
16551.
73152.
176947.
2695559.
2270590.
4966150.
1602189.
6568339.
1313667.
7882007.
2000.
288308.
8172315.
205665.
78752.
105981.
153400.
0.
103301.
0.
30657.
0.
0.
0.
0.
0.
0.
0.
1427004.
21047SB.
203087.
2307844.
1036484.
28831.
315290.
1380594.
3688439.
C-23
-------
HSC-150-Unc, ESP
MODEL BOILER 23
BOILER ROUTINE SPRD
S02 ROUTINE*
4-01-82
PH ROUTINE*
ESPC
FLOW FUAQ=
SPECIFIC COLLECTION AREA (SQ FT/1000 ACFM) = 189.3
TOTAL PLATE AREA (SQ FT) - 10440.7
BOILER SPECIFICATIONS
Q= 150.0 FLU= 55146. CF= 0.400 CRF= 0.1315
FUEL SPECIFICATIONS
FC= . 1.81 H= 11800. S= 3.54 A= 10.58
Ph EMISSIONS
UNC= 2.540 CTR= 0.050 EFF= 98.00 CRF= 0.1315
S02 EMISSIONS
UNC= CTR= EFF= CRF=
COST RATES
ELEC= 0.0258 MTR= 0.15 LIME= 35.00 ALS= 8.00 SASH= 90.00 SLDG= 15.00 SMD=
15.00 ALUfl- 1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLDG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOILER
2542138.
2165530.
4707668.
1515863.
6223531.
1244706.
7468237.
2000.
266406.
7736643.
186128.
78752.
85796.
153400.
0.
69844.
0.
16229.
0.
0.
0.
0.
0.
0.
0.
1427004.
2017152.
186898.
2204049.
982073.
26641.
298729.
1307443.
3511492.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
302 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
359167.
395084.
754250.
251920.
1006170.
201234.
1207404.
0.
14481.
1221884.
19538.
0.
12919.
5554.
0.
5190.
0.
14723.
0.
0.
0.
0.
0.
0.
0.
0.
57923.
15744.
73667.
158774.
1448.
48296.
208518.
282185.
TOTAL
2901304.
2560613.
5461918.
1767782.
7229701.
1445940.
8675641.
2000.
2S0887.
8958527.
205665.
78752.
98715.
158954.
0.
75034.
0.
30952.
0.
0.
0.
0.
0.
0.
0.
1427004.
2075075.
202642.
2277716.
1140846.
28089.
347026.
1515960.
3793677,
C-24
-------
HSC-150-DA(50), DA/PM
MODEL BOILER 24
BOILER ROUTINE SPRD
S02 ROUTINE" OAC
4-01-B2
PH ROUTINED
FLOW FLAG=
S STAR (METRICS 0.645
S DSTAR (METRIC)- 102.047
P DSTAR = 193.938
BOILER SPECIFICATIONS
0= 150.0 FLU= 55146. CF= 0.600 CRF= 0.1315
FUEL SPECIFICATIONS
FC- 1.81 H= 11800. S= 3.54 A= 10.58
PH EMISSIONS
UNC» 2.540 CTR= 0.100 EFF= 96.10 CRF- 0.1315
S02 EMISSIONS
UNC= 5.700 CTR- 2.850 EFF= 50.00 CRF= 0.1315
COST RATES
ELEC= 0.0258 UTR= 0.15 LIME= 35.00 ALS= 8.00 SASH= 90.00 SLDG= 15.00 SUD=
15.00 ALUD= 1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
su
SLD6
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOILER
2542138.
2165530.
4707668.
1515863.
6223531.
1244706.
7468237.
2000.
266406.
7736643.
186128.
78752.
85796.
153400.
0.
69844.
0.
16229.
0.
0.
0.
0.
0.
0.
0.
1427004.
2017152.
186898.
2204049.
982073.
26641.
298729.
1307443.
3511492.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
958181.
0.
0.
0.
1511707.
0.
87509.
1599216.
105000.
21000.
76654.
0.
20252.
0.
1068.
0.
85039.
0.
7912.
0.
33113.
0.
0.
0.
350038.
84190.
434228.
198789.
8751.
60468.
268009.
702237.
PM CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TOTAL
2542138.
2165530.
3665318.
1515863.
6223531.
1244706.
8979944.
2000.
353916.
9335859.
291128.
99752.
162450.
153400.
20252.
69844.
1068.
16229.
85039.
0.
7912.
0.
33113.
0.
0.
1427004.
2367189.
271088.
2638277.
1180862.
35392.
359198.
1575451.
4213728.
C-25
-------
HSC-150-DA(50), ESP
MODEL BOILER 25
BOILER ROUTINE SPRD
S02 ROUTINED DA
4-01-82
PM ROUTINE* ESPC
FLOU FLAG=
S STAR (METRIC)* 0.645
S DSTAR (METRIC)* 102.047
SPECIFIC COLLECTION AREA 1.81 H= 11800. S= 3.54 A- 10.58
PM EMISSIONS
UNC= 2.540 CTR= 0.050 EFF= 98.00 CRF= 0.1315
S02 EMISSIONS
UNC= 5.700 CTR« 2.850 EFF= 50.00 CRF= 0.1315
COST RATES
ELEC= 0.0258 UTR= 0.15 LIME= 35.00 ALS= 8.00 SASH= 90.00 SLDR= IS.00 SND= 15.00 ALUD=
1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SW
SLDG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOILER
2542138.
2165530.
4707668.
1515863.
6223531.
1244706.
7468237.
2000.
266406.
7736643.
186128.
78752.
85796.
153400.
0.
69844.
0.
16229.
0.
0.
0.
0.
0.
0.
0.
1427004.
2017152.
186898.
2204049.
982073.
26641.
298729.
1307443.
3511492.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
834849.
0.
0.
0.
1329176.
0.
78206.
1407382.
105000.
21000.
66788.
0.
9745.
0.
1068.
0.
68201.
0.
7912.
0.
33113.
0.
0.
0.
312826.
81625.
394450.
174787.
7821.
53167.
235774.
630225.
PM CONTROL
359167.
395084.
754250.
251920.
1006170.
201234.
1207404.
0.
14481.
1221884.
19538.
0.
12919.
5S54.
0.
5190.
0.
14723.
0.
0.
0.
0.
0.
0.
0.
0.
57923.
15744.
73667.
158774.
1448.
48296.
208518.
282185.
TOTAL
2901304.
2S60613.
6296767.
1767782.
7229701.
1445940.
10004817.
2000.
359094.
10365909.
310665.
99752.
165503.
158954.
9745.
75034.
1068.
30952.
68201.
0.
7912.
0.
33113.
0.
0.
1427004.
2387900.
284267.
2672166.
1315632.
35909.
400193.
1751734.
4423901.
C-26
-------
HSC-150-DA(90), DA/PM
MODEL BOILER 26
BOILER ROUTINE SPRD
S02 ROUTINE* DAC
4-01-82
PM ROUTINE'
FLOW FLAG=
S STAR = 1.161
S DSTAR (METRIC)^ 183.684
P DSTAR
-------
HSC-150-DA(90), ESP
MODEL BOILER 27
BOILER ROUTINE SPRD
502 ROUTINE* DA
4-01-82
PM ROUTINE=
ESPC
FLOW FLAG=
S STAR = 1.161
S DSTAR (HETRIC)o 183.684
SPECIFIC COLLECTION AREA
-------
HSC-400-Unc, Unc
MODEL BOILER 28
BOILER ROUTINE PLVR S02 ROUTINE=
4-01-82
PM ROUTINE*
FLOW FLAB=
BOILER SPECIFICATIONS
Q= 400.0 FLU- 141646 CF= 0.600 CRF= 0.1315
FUEL SPECIFICATIONS
FC= 1.81 H= 11800. S= 3.54 A= 10.58
PM EMISSIONS
UNC" CTR= EFF= CRF=
S02 EMISSIONS
UNC= CTR» EFF- CRF=
COST RATES
ELEC* 0.0258 UTR» 0.15 LIME= 35.00 ALS= 8.00 SASH- 90.00 SLDG= 15.00 SHD= 15.00 ALUD= 1.80
ITEM
EQUP
INST
TD
INO
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLOG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTU
CR
UCC
MISC
TCC
TOTL
BOILER
7300607.
3907605.
11208212.
3507363.
14715575.
2943114.
17658688.
4000.
671217.
18333904.
406848.
110674.
215444.
262766.
0.
396920.
0.
24274.
0.
0.
0.
0.
0.
0.
0.
3805344.
5222270.
380945.
5603214.
2322117.
67122.
706348.
3095585.
8698799.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
t
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TOTAL
7300607.
3907605.
11208212.
3507363.
14715575.
2943114.
17658688.
4000.
671217.
18333904.
406348.
110674.
215444.
262766.
0.
396920.
0.
24274.
0.
0.
0.
0.
0.
0.
0.
3805344.
5222270.
380945.
5603214.
2322117.
67122.
706348.
3095585.
8698799.
C-29
-------
HSC-400-Unc, SM
MODEL BOILER 29
BOILER ROUTINE PLVR
502 ROUTINE'
4-01-82
PM ROUTINE= SM
FLOW FLAG*
BOILER SPECIFICATIONS
Q= 400.0 FLM= 141646 CF= 0.600 CRF= 0.1315
FUEL SPECIFICATIONS
FC= 1.81 H= 11800. S= 3.54 A= 10.58
PM EMISSIONS
UNC=* 3.810 CTRa 1,000 EFF=> 73.80 CRF= 0.1315
S02 EMISSIONS
UNC= CTR» EFF* CRF=
COST RATES
ELEC= 0.0258 UTR- 0.15 LIME= 35.00 ALS= 8.00 SASH= 90.00 SLDG= 15.00 SHD* 15.00 ALUD* 1.80
COST SUMMARY TABLE - RUN NO. 29
ITEM BOILER NOX CONTROL S02 CONTROL PM CONTROL TOTAL
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
7300607.
3907605.
11208212.
3507363.
14715575.
2943114.
17658688.
4000.
671217.
18333904.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
242193.
0.
242193.
80731 .
322924.
64585.
387509.
0.
26189.
413698.
7542799.
390760S.
11450404.
3588093.
15038498.
3007698.
18046192.
4000.
697406.
18747600.
DL
SPRV
MANT
SP
ELEC
UC
WTR
SU
SLOG.
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
J1ISC
TCC
TOTL
406848.
110674.
215444.
262766.
0.
396920.
0.
24274.
0.
0.
0.
0.
0.
0,
0.
3805344.
5222270.
380945.
5603214.
2322117.
67122.
706348.
3095585.
8698799.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
19706.
2956.
11925.
1615.
24247.
0.
0.
44308.
0.
0.
0.
0.
0.
0.
0.
0.
104757.
15324.
120081.
50957.
2619.
15500.
69077.
189158.
426555.
113630.
227369.
264380.
24247.
396920.
0.
68582.
0.
0.
0.
0.
0.
0.
C.
3805344.
5327026.
396269.
S723295.
2373074.
69741.
721848.
3164661.
8887956.
C-30
-------
HSC-400-Unc, SSS
MODEL BOILER 30
BOILER ROUTINE PLVR
502 ROUTINE;
4-01-82
PM ROUTINE* SSS
FLOW FLAG=
BOILER SPECIFICATIONS
Q= 400.0 FLW= 141646 CF= 0.600 CRF= 0.131S
FUEL SPECIFICATIONS
FC= 1.81 H» 11800. S= 3.54 A= 10.58
PM EMISSIONS
UNC* 3.810 CTR= 0.200 EFF= 94.80 CRF= 0.1315
S02 EMISSIONS
UNC=» CTR» EFF= CRF=
COST RATES
ELEC= 0.0258 WTR= 0.15 LIME* 35.00 ALS= 8.00 SASH= 90.00 SLDG= 15.00 SMD- 15.00 ALHDa
1.80
COST SUMMARY TABLE - RUN NO.
30
ITEM
BOILER
NOX CONTROL
302 CONTROL
PM CONTROL
TOTAL
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLOG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
7300607.
3907605.
11208212.
3507363.
14715575.
2943114.
17658688.
4000.
671217.
18333904.
406848.
110674.
215444.
262766.
0.
396920.
0.
24274.
0.
0.
0.
0.
0.
0.
0.
3805344.
5222270.
380945.
5603214.
2322117.
67122.
706348.
3095585.
8698799.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
466227.
0.
466227.
155409.
621636.
124327.
745963.
0.
38295.
784258.
27589.
4138.
24227.
3108.
37195.
0.
0.
56922.
0.
0.
0.
0.
0.
0.
0.
0.
153180.
23633.
176813.
98094.
3829.
29839.
131762.
308575.
7766833.
3907605.
11674438.
3662771.
15337210.
3067441.
13404640.
4000.
709512.
19118160.
434437.
114812.
239671.
265874.
37195.
396920.
0.
81197.
0.
0.
0.
0.
0.
0.
0.
3805344 .
5375449.
404578.
5780026.
2420211.
70951.
736186.
3227347.
9007373.
C-31
-------
HSC-400-Unc, VS
MODEL BOILER 31
BOILER ROUTINE PLVR
S02 ROUTINE-
4-01-82
PM ROUTINE=
FLOW FLAG"
BOILER SPECIFICATIONS
Q= 400.0 FLU= 141645 CF= 0.600 CRF= 0.1315
FUEL SPECIFICATIONS
FC= 1.81 H= 11800. S= 3.54 A= 10.58
PM EMISSIONS
UNC» 3.810 CTR= 0.100 EFF= 97.40 CRF= 0.1315
S02 EMISSIONS
UNC= CTR= EFF=» CRF=
COST RATES
ELEC= 0.0258 UTR= 0.15 LIME= 35.00 ALS= 8.00 SASH= 90.00 SLDG= 15.00 SWD=
15.00 ALUD= 1.80
ITEM
EQUP
INST
TO
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
su
SLOG
LW
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
HISC
TCC
TOTL
BOILER
7300607.
3907605.
11208212.
3507363.
14715575.
2943114.
17658688.
4000.
671217.
18333904.
406848.
110674.
215444.
262766.
0.
396920.
0.
24274.
0.
0.
0.
0.
0.
0.
0.
3805344.
5222270.
380945.
5603214.
2322117.
67122.
706348.
3095585.
8698799.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
351059.
247473.
598532.
197034.
795566.
159113.
954679.
0.
57037.
1011716.
39413.
0.
46285.
0.
0.
83953.
0.
58499.
0.
0.
0.
0.
0.
0.
0.
0.
228149.
34105.
262254.
125540.
5704.
38187.
169431.
431685.
TOTAL
7651665.
4155078.
11806743.
3704396.
15511140.
3102227.
18613360.
4000.
728254.
19345616.
446261.
110674.
261729.
262766.
0.
480872.
0.
82773.
0.
0.
0.
0.
0.
0.
0.
3805344.
5450419.
415050.
5865468.
2447657.
72825.
744535.
3265016.
9130484.
C-32
-------
HSC-400-Unc, ESP
MODEL BOILER 32
BOILER ROUTINE PLVR
S02 ROUTINE"
4-01-82
PM ROUTINE=
ESPC
FLOU FLAG=
SPECIFIC COLLECTION AREA (SQ FT/1000 ACFM) = 220.0
TOTAL PLATE AREA
-------
HSC-400-DA(50), DA/PM
MODEL BOILER 33
BOILER ROUTINE PLVR
S02 ROUTINED DAC
4-01-82
PM ROUTINE*
FLOU FLA6=
S STAR CNETRIC>= 0.645
S DSTAR CMETRIC>= 272.124
P DSTflR (METRIC)= 793.911
BOILER SPECIFICATIONS
Q= 400.0 FLM= '.41646 CF=
FUEL SPECIFICATIONS
FC= 1.81 H= 11800. S=
PM EMISSIONS
UNC« 3.810 CTR= 0.100 EFF»
S02 EMISSIONS
UNC= 5.700 CTR= 2.850 EFF*
COST RATES
0.600 CRF= 0.1315
3.54 A= 10.58
97.40 CRF= 0.1315
50.00 CRF= 0.1315
ELEC= 0.0258 WTR= 0.15 LIME= 35.00 ALS= 8.00 SASH= 90.00 SLDG= 15.00 SWO= 15.00 ALUD= 1.80
COST SUMMARY TABLE - RUN NO. 33
ITEM BOILER NOX CONTROL S02 CONTROL PM CONTROL TOTAL
EQUP
INST
TD
INO
TDI
CONT
TK
LAND
UC
TOTL
7300607.
3907605.
11208212.
3507363.
14715575.
2943114.
17658688.
4000.
671217.
18333904.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1500361.
0.
0.
0.
2350533.
0.
165409.
2515942.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
7300607 .
3907605.
12708573.
3507363.
14715575.
2943114.
20009216.
40OO.
836626.
20849840.
DL
SPRW
MANT
SP
ELEC
UC
UTR
SU
SLD6
LU
SC
LHS
LIME
J*H3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
«ISC
TCC
TOTL
406848.
110674.
215444.
262766.
0.
396920.
0.
24274.
0.
0.
0.
0.
0.
0.
0.
3805344.
5222270.
380945.
5603214.
2322117.
67122.
706348.
3095585.
8698799.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
105000.
21000.
120029.
0.
51390.
0.
2644.
0.
251284.
0.
21203.
0.
88589.
0.
0.
0.
661638.
95467.
757105.
309095.
16541.
94021.
419657.
1176762.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
511848.
131674.
335473.
262766.
51890.
396920.
2644.
24274.
251284.
0.
21203.
0.
88589.
0.
0.
3805344.
S883907.
476412.
6360319.
2631212.
83663.
800369.
3515242.
9875561.
C-34
-------
HSC-400-DA(50), ESP
MODEL BOILER 34
BOILER ROUTINE PLVR
S02 ROUTINE* BA
4-01-82
PH ROUTIME= ESPC
FLOU FLA6=
S STAR (NETRIC>= 0.64S
S DSTAR (METRIC)* 272.124
SPECIFIC COLLECTION AREA (SO FT/10OO ACFN) = 220.0
TOTAL PLATE AREA (SO FT) * 31090.4
90ILER SPECIFICATIONS
Q= 40O.O FLU= 14X646 CF= 0.600 CRF= 0.1315
FUEL SPECIFICATIONS
FC« 1.81 H= 11800. S= 3.54 A= 10.58
PN EMISSIONS
UNC- 3.810 CTR« 0.050 EFF= 98.70 CRF= 0.1315
S02 EMISSIONS
UNC* 5.700 CTR* 2.85O EFF= 50.00 CRF= 0.1315
COST RATES
ELEC= 0.0258 MTR= 0.15 LIME* 35.OO ALS- 8.00 SASH= 90.OO SLDG= 15.00 SMD= 15.00 ALUD= 1.8O
COST SUMMARY TABLE - RUN NO. 34
ITEM BOILER NOX CONTROL S02 CONTROL PM CONTROL TOTAL
EQUP
INST
TB
INB
TBI
CONT
TK
LAUD
UC
TOTL
BL
SPRV
KANT
SP
ELEC
UC
UTR
730O607.
3907605.
11208212.
3507363.
14715575.
2943114.
17658688.
4000.
671217.
18333904.
406848.
110674.
215444.
262766.
0.
396920.
0.
0.
0.
0.
0.
0.
0.
0.
O.
0.
0.
0.
0.
0.
0.
0.
0.
O.
0.
0.
1325946.
0.
0.
0.
2092399.
0.
137958.
2230356.
10SOOO.
21000.
106076.
0.
24968.
0.
2644.
495871.
545458.
1041329.
347804.
1389132.
277826.
1666958.
0.
36665.
1703623.
39413.
0.
2385O.
7668.
0.
16442.
0.
7796477.
4453063.
13575486.
3855166.
16104707.
3220940.
21418016.
4OOO.
845839.
22267872.
551261.
131674.
345370.
270434.
24968.
413362.
2644.
SU
SLBG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TBOM
OH
TOTL
CR
UCC
HISC
TCC
TOTL
24274.
O.
O.
0.
0.
0.
0.
0.
3805344.
5222270.
380945.
5603214.
2322117.
67122.
7O6348.
3O9S585.
8698799.
O.
O.
0.
0.
O.
0.
0.
O.
0.
0.
O.
0.
O.
O.
0.
0.
O.
0.
182351.
0.
21203.
O.
88589.
O.
0.
O.
551830.
9184O.
643670.
27S1SO.
13796.
83696.
372642.
1016312.
59288.
0.
0.
O.
O.
O.
0.
O.
0.
146660.
30266.
176926.
219205.
3667.
66678.
28955O.
466476.
83562.
182351.
0.
21203.
0.
88589.
0.
O.
3805344.
S92076O.
S0305O.
6423808.
2816471.
84584.
856722.
3757776.
10181585.
C-35
-------
HSC-400-DA(90), DA/PM
MODEL BOILER 35
BOILER ROUTINE PLVR
S02 ROUTINE' DAC
4-01-82
PM ROUTINE=
FLOW FLAG=
S STAR = 1.161
S DSTAR = 489.824
P DSTAR
-------
HSC-400-DA(90), ESP
MODEL BOILER 36
BOILER ROUTINE PLVR S02 ROUTINE= DA
4-01-82
PM ROUTINE* ESPC
FLOU FLAG=
S STAR (METRIC)'
1.161
S DSTAR (METRIC)'
489.824
SPECIFIC COLLECTION AREA (SO FT/1000 ACFM) = 220.0
TOTAL PLATE AREA (SQ FT) =» 31090.4
BOILER SPECIFICATIONS
Q- 400.0 FLU» 141646 CF = 0.600 CRF= 0.1315
FUEL SPECIFICATIONS
FC= 1.81 H= 11800 S= 3.S4 A= 10.58
PM EMISSIONS
UNC= 3.810 CTR= 0.050 EFF= 98.70 CRF= 0.1315
502 EMISSIONS
UNC» 5.700 CTR= 0.570 EFF = 90.00 CRF= 0.1315
COST RATES
ELEC= 0.0258 UTR= 0.15 LIME= 35.00 ALS= 8.00 SASH= 90.00 SLDG= 15.00 SUD= 15.00 ALUO= 1.80
ITEM
EC3UP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLOG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOILER
7300607.
3907605.
11208212.
3507363.
14715575.
2943114.
17658688.
4000.
671217.
18333904.
406848.
110674.
215444.
262766.
0.
396920.
0.
24274.
0.
0.
0.
0.
0.
0.
0.
3805344.
5222270.
380945.
5603214.
2322117.
67122.
706348.
3095585.
8698799.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0. ,
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
1516610.
0.
0.
0.
2374582.
0.
200920.
2575501.
105000.
21000.
121329.
0.
26628.
0.
2839.
0.
328464.
0.
38820.
0.
159597.
0.
0.
0.
803678.
95805.
899484.
312258.
20092.
94983.
427333.
1326816.
PM CONTROL
495871.
545458.
1041329.
347804.
1389132.
277826.
1666958.
0.
36665.
1703623.
39413.
0.
23850.
7668.
0.
16442.
0.
59288.
0.
0.
0.
0.
0.
0.
0.
0.
146660.
30266.
176926.
219205.
3667.
66678.
289550.
466476.
TOTAL
7796477.
4453063.
13766150.
3855166.
16104707.
3220940.
21700208.
4000.
908801.
22613008.
551261.
131674.
360623.
270434.
26628.
41336?.
2839.
83562.
328464.
0.
38820.
0.
159597.
0.
0.
3805344.
6172608.
507016.
6679622.
2853578.
90880.
868009.
3812466.
10492090.
C-37
-------
MODEL BOILER 1
BOILER ROUTINE UNDR
S02 ROUTINE*
LSC-30-Unc, Unc
4-06-82
PM ROUTINE'
FLOW FLAG=
BOILER SPECIFICATIONS
CI= 30.0 FLU= 11334. CF =
FUEL SPECIFICATIONS
FC= 2.41 H= 9600. S=
PM EMISSIONS
UNC- 0.0 CTR= 0.0 EFF=
S02 EMISSIONS
UNC= 0.0 CTR= 0.0 EFF=
COST RATES
ELEC= 0.0258 MTR- 0.15 LIME= 35.00 ALS=
0.600 CRF= 0.1315
0.60 A= 5.40
0.0 CRF= 0.0
0.0 CRF= 0.0
8.00 SASH= 90.00 SLDG= 15.00 SWD= 15.00 ALUD=
COST SUMMARY TABLE RUN NO. 1
1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLOG
BOILER
713439.
630975.
1344413.
437820.
1782233.
356447.
2138679.
2000.
103737.
2244416.
90863.
44001.
41173.
65485.
0.
35718.
0.
11092.
0.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TOTAL
713439.
630975.
1344413.
437820.
1782233.
356447.
2138679.
2000.
103737.
2244416.
90863.
44001.
41173.
65485.
0.
35718.
0.
11092.
0.
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
ucc
MISC
TCC
TOTL
0.
0.
0.
0.
0.
0.
380009.
668339.
90054.
758393.
281236.
10374.
85547.
377157.
1135550.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
380009.
668339.
90054.
758393.
281236.
10374.
85547.
377157.
1135550.
C-38
-------
LSC-30-Unc, SM
MODEL BOILER 2
BOILER ROUTINE UNDR
BOILER SPECIFICATIONS
S02 ROUTINE:
4-06-82
PM ROUTINE=
SM
FLOW FLAG'
Q= 30.0 FLU=
FUEL SPECIFICATIONS
FC= 2.41 H=
PM EMISSIONS
UNC= 0.807 CTR=
S02 EMISSIONS
UNC= 0.0 CTR=»
COST RATES
ELEC" 0.0258 UTR=
COST SUMMARY TABLE -
ITEM BOILER
EQUP 713439.
LNST 630975.
TD 1344413.
IND 437820.
TDI 1782233.
CONT 356447.
TK 2133679.
LAND 2000.
UC 103737.
TOTL 2244416.
DL 90863.
SPRV 44001.
MANT 41173.
SP 65485.
ELEC 0.
UC 35718.
UTR 0.
SU 11092.
SLOG 0.
LU 0.
SC 0.
LMS 0.
LIME 0.
NH3 0.
LYE 0.
FUEL 380009.
TOOM 668339.
OH 90054.
TOTL 758393.
CR 281236.
UCC 10374.
MISC 85547.
TCC 377157.
TOTL 1135550.
11334. CF= 0.600
9600. S= 0.60
0.400 EFF= 50.00
0.0 EFF= 0.0
0.15 LIME* 35.00
RUN NO. 2
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0,
0.
0.
0.
0.
0.
0.
0.
0.
0.
0. .
0.
0.
0.
0.
0.
0.
0.
0.
0.
CRF= 0.1315
A= 5.40
CRF= 0.1315
CRF* 0.0
ALS= 8.00 SASH=
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
90.00 SLDG=
PM CONTROL
36338.
0.
36338.
12113.
48451.
9690.
58141.
0.
3504.
61646.
4999.
750.
5601.
242.
1945.
0.
0.
481.
0.
0.
0.
0.
0.
0.
0.
0.
14018.
4513.
18531.
7646.
350.
2326.
10322.
28853.
15.00 SWD=
TOTAL
749777.
630975.
1380751.
449933.
1830683.
366137.
2196820.
2000.
107242.
2306061.
95862.
44751.
46773.
65727.
1945.
35718.
0.
11573.
0.
0.
0.
0.
0.
0.
0.
380009.
682357.
94568.
776925.
288882.
10724.
87873.
387479.
1164402.
15.00 ALUD= 1.80
C-39
-------
LSC-30-Unc, SSS
MODEL BOILER 3
30ILER ROUTINE UNDR
S02 ROUTINE=
4-06-82
PM ROUTINE= SSS
FLOW FLAG=
BOILER SPECIFICATIONS
Q= 30.0 FLU= 11334. CF=
FUEL SPECIFICATIONS
FC= 2.41 H= 9600. S«
PM EMISSIONS
UNC= 0.807 CTR= 0.200 EFF=
S02 EMISSIONS
UNC= 0.0 CTR= 0.0 EFF=
0.600 CRF= 0.1315
0.60 A = 5.40
75.20 CRF= 0.1315
0.0 CRF= 0.0
COST RATES
ELEC= 0.0258 UTR= 0.15 LIME= 35.00 ALS=
COST SUMMARY TABLE RUN NO. 3
8.00 SASH= 90.00 SLDG = 15.00 SHD=
15.00 ALUD=
1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
HANT
SP
ELEC
UC
UTR
SU
SLDG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOILER
713439.
630973.
1344413.
437820.
1732233.
356447.
2138679.
2000.
103737.
2244416.
90863.
44001.
41173.
63485.
0.
33713.
0.
11092.
0.
0.
0.
0.
0.
0.
0.
380009.
668339.
90054.
738393.
281236.
10374.
83547.
377157.
1135330.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
64023.
0.
64023.
21341.
83364.
17073.
102437.
0.
5190.
107627.
6998.
1030.
8453.
427.
3114.
0.
0.
718.
0.
0.
0.
0.
0.
0.
0.
0.
20760.
6501.
27261.
13470.
519.
4097.
18087.
45347.
TOTAL
777462.
630975.
1408436.
459161.
1867597.
373519.
2241116.
2000.
108927.
2332043.
97861.
45051.
49626.
65912.
3114.
35718.
0.
11809.
0.
0.
0.
0.
0.
0.
0.
380009.
689099.
96555.
785654.
294707.
10893.
89645.
395244.
1180897.
C-40
-------
LSC-30-Unc, VS
MODEL BOILER 4
BOILER ROUTINE UNDR
S02 ROUTINE*
4-06-82
PM ROUTINE= VS
FLOW FLAG*
BOILER SPECIFICATIONS
Q= 30.0 FLW= 11334. CF= 0.600 CRF = 0.1315
FUEL SPECIFICATIONS
FC= 2.41 H= 9600. S= 0.60 A= 5.40
PH EMISSIONS
UNC* 0.807 CTR=» 0.100 EFF=» 87.60 CRF= 0.1315
S02 EMISSIONS
UNC* 0.0 CTR= 0.0 EFFo 0.0 CRF- 0.0
COST RATES
ELEC = 0.0258 UTR= 0.15 LIME- 35.00 ALS= 8.00 SASH= 90.00 SLD6= 15.00 SMD= 15.00 ALWD=
1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
OL
SPRY
MANT
SP
ELEC
UC
UTR
SU
SLDG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOILER
713439.
630975,
1344413.
437820.
1782233.
356447.
2138679.
2000.
103737.
2244416.
90863.
44001.
41173.
65485.
0.
35718.
0.
11092.
0.
0.
0.
0.
0.
0.
0.
380009.
668339.
90054.
758393.
281236.
10374.
85547.
377157.
1135550.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
52916.
32639.
85554.
30027.
115581.
23116.
138697.
0.
6471.
145168.
9998.
0.
7657.
0.
0.
7393.
0.
836.
0.
0.
0.
0.
0.
0.
0.
0.
25884.
7589.
33473.
18239.
647.
5548.
24434.
57907.
TOTAL
766355.
663613.
1429967.
467847.
1897814.
379563.
2277376.
2000.
110208.
2389584.
100860.
44001.
48830.
65485.
0.
43111.
0.
11928.
0.
0.
0.
0.
0.
0.
0.
380009.
694223.
97644.
791867.
299475.
11021.
91095.
401591.
1193457.
C-41
-------
LSC-30-Unc, FF
MODEL BOILER 5
BOILER ROUTINE UNDR
S02 ROUTINE'
4-06-82
PM ROUTINE= FF
FLOU FLAG;
BOILER SPECIFICATIONS
Q= 30.0 FLU= 11334. CF= 0.600 CRF= 0.1313
FUEL SPECIFICATIONS
FC= 2.41 H= 9600. S= 0.60 A= 5.40
PM EMISSIONS
UNC* O.S07 CTR= 0.050 EFF= 93.80 CRF= 0.1315
502 EMISSIONS
UNC- 0.0 CTR= 0.0 EFF= 0.0 CRF = 0.0
COST RATES
EL£C= 0.0258 UTR= 0.15 LIME- 35.00 ALS= 8.00 SASH= 90.00 SLDO= 15.00 SUD= 15.00 ALUD=
1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
BOILER
713439.
630975.
1344413.
437820.
1782233.
356447.
2138679.
2000.
103737.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
68816.
66805.
135621.
53261.
188882.
37776.
226659.
0.
7642.
TOTAL
782255.
697780.
1480034.
491081.
1971115.
394223.
2365337.
2000.
111379.
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLDG
LU
SC
LJ1S
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
WCC
MISC
TCC
TOTL
2244416.
90863.
44001.
41173.
65485.
0.
35718.
0.
11092.
0.
0.
0.
0.
0.
0.
0.
380009.
668339.
90054.
758393.
281236.
10374.
85547.
377157.
1135550.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
234300.
9998.
0.
11202.
3064.
0.
5408.
0.
895.
0.
0.
0.
0.
0.
0.
0.
0.
30S66.
9308.
39874.
29806.
764.
9066.
39636.
79510.
2478716.
100860.
44001.
52374.
68548.
0.
41126.
0.
11987.
0.
0.
0.
0.
0.
0.
0.
380009.
698905.
99362.
798267.
311042.
11138.
94613.
416793.
1215059.
C-42.
-------
LSC-30-DS(50), DS/PM
MODEL BOILER 6
BOILER ROUTINE UNDR
S02 ROUTINE- OS
4-06-82
PH ROUTINE'
FLOW FLAG*
S STAR (METRIC) * 0.134
S DSTAR (METRIC) = 4.252
BOILER SPECIFICATIONS
Q= 30.0 FLU= 11334. CF=
FUEL SPECIFICATIONS
FC= 2.41 H= 9600. S=
PH EMISSIONS
UNC= 0.807 CTR= 0.100 EFF=
S02 EMISSIONS
UNC= 1.190 CTR- 0.395 EFF'
0.600 CRF= 0.1315
0.60 A" 5.40
87.60 CRF= 0.1315
50.00 CRF= 0.1315
COST RATES
ELEC= 0.0258 UTR= 0.15 LIME= 35.00 ALS=
COST SUMMARY TABLE - RUN NO. 6
8.00 SASH* 90.00 SLDG= 15.00 SUD= 15.00 ALUD-
1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
HANT
SP
ELEC
UC
UTR
SU
SLD6
LU
SC
LMS
LIME
NK3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOILER
713439.
630975.
134*413.
437820.
1782233.
356447.
2138679.
2000.
103737.
2244416.
90863.
44001.
41173.
65485.
0.
35718.
0.
11092.
0.
0.
0.
0.
0.
0.
0.
380009.
668339.
90054.
758393.
281236.
10374.
85547.
377157.
1135550.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
317561.
0.
0.
0.
580391.
0.
41344.
621735.
105000.
21000.
31556.
0.
3294.
0.
160.
2597.
0.
0.
0.
0.
1770.
0.
0.
0.
165377.
72465.
237842.
76321.
4134.
23216.
103671.
341513.
PM CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0. S
.0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TOTAL
713439.
630975.
1661974.
437820.
1782233.
356447.
2719069.
2000.
145082.
2866151.
195863.
65001.
72729.
65485.
3294.
35718.
160.
13688.
0.
0.
0.
0.
1770.
0.
0.
380009.
833716.
162519.
996235.
357558.
14508.
108763.
480828.
1477063.
C-43
-------
LSC-30-DA(50), DA/PM
MODEL BOILER 7
BOILER ROUTINE UNDR
S02 ROUTINE" DAC
4-06-82
PH ROUTINE=
FLOW FLA6=
S STAR (METRIC>= 0.134
S DSTAR = 4.252
F DSTAR = 10.465
30ILER SPECIFICATIONS
Q= 30.0 FLU= 11334. CF=
FUEL SPECIFICATIONS
FC= 2.41 H= 9600. S=
PM EMISSIONS
UNC= 0.807 CTR= 0.100 EFF=
S02 EMISSIONS
UNC= 1.190 CTR- 0.595 EFF* 50.00 CRF= 0.1315
COST RATES
ELEC= 0.0258 UTR= 0.15 LIME" 33.00 ALS= 8.00 SASH= 90.00 SLDO= 15.00 SMD=
0.600 CRF= 0.1315
0.60 A» 5.40
87.60 CRF= 0.1315
15.00 ALWD'
1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
BOILER
713439.
630975.
1344413.
437820.
1782233.
356447.
2138679.
2000.
103737.
2244416.
90863.
44001.
41173.
65485.
0.
35718.
0.
11092.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
375726.
0.
0.
0.
649675.
0.
41417.
691092.
105000.
21000.
30058.
0.
3888.
0.
214.
0.
PM CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TOTAL
713439.
630975.
1720139.
437820.
1782233.
356447.
2788353.
2000.
145155.
2935508.
195863.
65001.
71231.
65485.
3838.
35718.
214.
11092.
SLOG
LW
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
0.
0.
0.
0.
0.
0.
0.
380009.
668339.
90054.
758393.
281236.
10374.
85547.
377157.
1135550.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3472.
0.
822.
0.
1215.
0.
0.
0.
165669.
72075.
237744.
8S432.
4142.
25987.
115561.
353305.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3472.
0.
822.
0.
1215.
0.
0.
380009.
834008.
162129.
996138.
366668.
14515.
111534.
492718.
1488854.
C-44
-------
LSC-30-DA(50), FF
MODEL BOILER 8
BOILER ROUTINE UNDR
S02 ROUTINE" DA
4-06-82
PH ROUTINE"
FF
FLOW
S STAR (METRIC)' 0.134
S DSTAR (METRIC)- 4.252
BOILER SPECIFICATIONS
0= 30.0 FLW= 11334. CF= 0.600 CRF= 0.1315
FUEL SPECIFICATIONS
FC = 2.41 H» 9600. S= 0.60 A- 5.40
PM EMISSIONS
UNC= 0.807 CTR= 0.050 £FF= 93.80 CRF- 0.1315
S02 EMISSIONS
UNC=» 1.190 CTR* 0.595 EFF- 50.00 CRF- 0.1315
COST RATES
ELEC= 0.0258 WTR= 0.15 LIME= 35.00 ALS=» 8.00 SASH= 90.00 SLOG- 15.00 SWD=
IS.00 ALWD=
1.80
ITEM
EQUP
INST
BOILER
713439.
630975.
NOX CONTROL
0.
0.
S02 CONTROL
0.
0.
PM CONTROL
68816.
66805.
TOTAL
782255.
697780.
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLOG
LUI
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
1344413.
437820.
1782233.
356447.
2138679.
2000.
103737.
2244416.
90863.
44001.
41173.
65485.
0.
35718.
0.
11092.
0.
0.
0.
0.
0.
0.
0.
380009.
668339.
90054.
758393.
281236.
10374.
85547.
377157.
1135550.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
271887.
0.
0.
0.
495993.
0.
38609.
534602.
105000.
21000.
21751.
0.
1871.
0.
214.
0.
2564.
0.
822.
0.
1215.
0.
0.
0.
154436.
69915.
224351.
65223.
3861.
19840.
88924.
, 313275.
135621.
53261.
188882.
37776.
226659.
0.
7642.
234300.
9998.
0.
11202.
3064.
0.
5408.
0.
895.
0.
0.
0.
0.
0.
0.
0.
0.
30S66.
9308.
39874.
29806.
764.
9066.
39636.
79510.
1751921.
491081.
1971115.
394223.
2861330.
2000.
149988.
3013318.
205860.
65001.
74125,
68548.
1871.
41126.
214.
11987.
2564.
0.
822.
0.
1215.
0.
0.
380009.
853341 .
169277.
1022618.
376265.
14999,
114453.
505717.
1528333.
C-45
-------
MODEL BOILER 9
BOILER ROUTINE UNDR
S02 ROUTINE= DAC
LSC-30-DAC90), DA/PM
4-06-82
PM ROUTINE=
FLOW FLAG=
S STAR 9600. S= 0.60 A= 5.40
PM EMISSIONS
UNC= 0.807 CTR* 0.100 EFF= 87.60 CRF= 0.1315
S02 EMISSIONS
UNC= CTR* EFF- CRF=
COST RATES
EUED= 0.0258 WTR- 0.15 LIME= 35.00 ALS= 8.00 SASH= 90.00 SLDO= 15.00 SWD" 15.00 ALWD=
COST SUMMARY TABLE - RUN NO. 14
ITEM BOILER NOX CONTROL
1.80
302 CONTROL
PM CONTROL
TOTAL
EQUP
1274262.
0.
0.
91915.
1366177.
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
OL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLDG
LU
SC
LMS
LIME
NH3
LVE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
1153531.
2427793.
791344.
3219136.
643827.
3862963.
2000.
213998.
4078960.
110903.
125519.
117640.
105430.
0.
52224.
0.
27729.
0.
0.
0.
0.
0.
0.
0.
950022.
1489466.
152739.
1642204.
.. 507980.
21400.
154519.
683898.
2326101.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
60741.
152656.
51873.
204529.
40906.
245434.
0.
11371.
256805.
13575.
0.
12355.
0.
0.
17463.
0.
2090.
0.
0.
0.
0.
0.
0.
0.
0.
45483.
10814.
56297.
32275.
1137.
9817.
43229.
99526.
1214271.
2580449.
843217.
3423664.
684733.
4108397.
2000.
225369.
4335765.
124478.
125519.
129994.
105430.
0.
69686.
0.
29819.
0.
0.
0.
0.
0.
0.
0.
950022.
1534948.
163553.
1698501.
540254.
22537.
164336.
727127.
2425627.
C-51
-------
LSC-75-Unc, FF
MODEL BOILER 15
BOILER ROUTINE UNDR
S02 ROUTINE'
4-06-82
PM ROUTINE' FF
FLOW FLAG*
BOILER SPECIFICATIONS
0= 75.0 FLU= 23334. CF =
FUEL SPECIFICATIONS
0.600 CRF= 0.1315
9600. S=
FC= 2.41 H=
PM EMISSIONS
UNC= 0.807 CTR» 0.050 EFF
S02 EMISSIONS
UNC= CTR= EFF
COST RATES
ELEC= 0.0258 UTR= 0.15 LIME= 35.00 ALS=
0.60 A- 5.40
93.80 CRF= 0.1315
CRF=
8.00 SASH" 90.00 SLOG" 15.00 SUD~ 13.00 ALUD= 1.80
COST SUMMARY TABLE - RUN NO. 15
ITEM
EQUP
INST
TD
INO
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
3U
SLDG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
BOILER
1274262.
1153531.
2427793.
791344.
3219136.
643827.
3862963.
2000.
213998.
4078960.
110903.
125519.
117640.
105430.
0.
52224.
0.
27729.
0.
0.
0.
0.
0.
0.
0.
950022.
1489466.
152739.
1642204.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
166764.
221228.
387992.
113010.
501002.
100200.
601202.
0.
11995.
613197.
13575.
0.
11577.
7638.
0.
12951.
0.
2238.
0.
0.
0.
0.
0.
0.
0.
0.
47979.
17598.
60577.
TOTAL
1441026.
1374759.
2815785.
904354.
3720137.
744027.
4464165.
2000.
225993.
4692156.
124478.
125519.
129217.
113069.
0.
65174.
0.
29967.
0.
0.
0.
0.
0.
0.
0.
950022.
1537445.
165337.
1702781.
CR
507980.
0.
79058.
587038.
UCC
MISC
TCC
TOTL
21400.
154519.
683898.
2326101.
0.
0.
0.
0.
0.
0.
0.
0.
1199.
24048.
104306.
164883.
22599.
178567.
788203.
2490983.
C-52
-------
LSC-75-DS(50), DS/PM
MODEL BOILER 16
BOILER ROUTINE UNDR
S02 ROUTINE" OS
4-06-82
PM ROUTINE'
FLOW FLAG-
S STAR (METRIC) - 0.134
S DSTAR (METRIC) = 10.630
BOILER SPECIFICATIONS
Q= 75.0 FUU= 28334. CF= 0.600 CRF= 0.1315
FUEL SPECIFICATIONS \
FC= 2.41 H» 9600. S- 0.60 A- 5.40
PM EMISSIONS
UNC= 0.807 CTR- 0.100 EFF- 87.60 CRF=- 0.1315
302 EMISSIONS
UNC* 1.190 CTR- 0.595 EFF- 50.00 CRF= 0.1315
COST RATES
ELEC= 0.0258 UTR= 0.15 LIME" 35.00 ALS- 8.00 SASH- 90.00 SLD6" 15.00 SUD=» 15.00 ALHD«
1.80
ITEM
EQUP
INST
TO
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
BOILER
1274262.
1153531.
2427793.
791344.
3219136.
643827.
3862963.
2000.
213998.
4078960.
110903.
125519.
117640.
105430.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
599363.
0.
0.
0.
997458.
0.
47136.
1044594.
105000.
21000.
44246.
0.
PM CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TOTAL
1274262.
1153531.
3027156.
791344.
3219136.
643827.
4860420.
2000.
261134.
5123553.
215903.
146519.
161885.
105430.
ELEC
UC
UTR
SU
SLOG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
0.
52224.
0.
27729.
0.
0.
0.
0.
0.
0.
0.
950022.
1489466.
152739.
1642204.
507980.
21400.
154519.
683898.
2326101.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
6982.
0.
401.
6492.
0.
0.
0.
o.
4425.
0.
0.
0.
186546.
75764.
264310.
131166.
4714.
39898.
173778.
440087.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
6982.
52224.
401.
34221.
0.
0.
0.
0.
4425.
0.
0.
950022.
1678011.
228503.
1906513.
639145.
26113.
194417.
859675.
2766188.
C-53
-------
LSC-75-DA(50), DA/PM
MODEL BOILER 17
BOILER ROUTINE UNDR
S02 ROUTINE* DAC
4-06-82
PH ROUTINE*
FLOW FLAG"
S STAR (METRIC)= 0.134
S DSTAR (METRIC)" 10.630
P DSTAR 0.600 CRF- 0.131S
FUEL SPECIFICATIONS
FC= 2.41 H= 9600. S= 0.60 A= 5.40
PH EMISSIONS
UNC= 0.807 CTR= 0.100 EFF- 87.60 CRF* 0.1315
S02 EMISSIONS
UNC = 1.190 CTR= 0.595 EFF= 50.00 CRF- 0.1315
COST RATES
ELEC= 0.0258 UTR= 0.15 LIME= 35.00 ALS- 8.00 SASH- 90.00 SLOG- 15.00 SUD*
15.00 ALWO- 1.80
COST SUMMARY TABLE - RUN NO.
17
ITEM
BOILER
NOX CONTROL
S02 CONTROL
PM CONTROL
TOTAL
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLDG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
1274262.
1153531.
2427793.
791344.
3219136.
643327.
3862963.
2000.
213998.
4078960.
110903.
125519.
117640.
105430.
0.
52224.
0.
27729.
0.
0.
0.
0.
0.
0.
0.
950022.
1489466.
152739.
1642204.
507980.
21400.
154519.
583898.
2326101.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
549173.
0.
0.
0.
906376.
0.
48805.
955181.
105000.
21000.
43934.
0.
9721.
0.
463.
0.
9116.
0.
2693.
0.
3295.
0.
0.
0.
195221.
75683.
270904.
119188.
4881.
36255.
160324.
431228.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1274262.
1153531.
2976965.
791344.
3219136.
643827.
4769338.
2000.
262803.
5034141.
215903.
146519.
161573.
105430.
9721.
52224.
463.
27729.
9116.
0.
2693.
0.
3295.
0.
0.
950022.
1684687.
228422.
1913108.
627168.
26280.
190774.
844222.
2757329.
C-54
-------
LSC-75-DA(50), FF
MODEL BOILER 18
BOILER ROUTINE UNOR
802 ROUTINE" DA
4-06-82
PM ROUTINE" FF
FLOW FLAG'
S STAR » 0.134
S DSTAR (METRIC)" 10.630
BOILER SPECIFICATIONS
Q= 75.0 FLU- 28334. CF- 0.600 CRF- 0.1313
FUEL SPECIFICATIONS
FC- 2.41 H- 9600. S= 0.60 A- 5.40
PM EMISSIONS
UNC=» 0.807 CTRo 0.050 EFF- 93.80 CRF- 0.1315
S02 EMISSIONS
UNC= 1.190 CTR- 0.595 EFF- 50.00 CRF- 0.1315
COST RATES
ELEC= 0.0258 UTR- 0.15 LIME= 35.00 ALS- 8.00 SASH- 90.00 SLOG- 15.00 SUD=
15.00 ALUD= 1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLOG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOILER
1274262.
1153531.
2427793.
791344.
3219136.
643827.
3862963.
2000.
213998.
4078960.
110903.
125519.
117640.
105430.
0.
52224.
0.
27729.
0.
0.
0.
0.
0.
0.
0.
950022.
1489466.
152739.
1642204.
507980 »
21400.
154519.
683898.
2326101.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
428814.
0.
0.
0.
728244,
0.
44569.
772813.
105000.
21000.
34305.
0.
4677.
0.
463.
0.
6844.
0.
2693.
0.
3295.
0.
0.
0.
178278.
73179.
251457.
95764.
4457.
29130.
129351.
380808.
PM CONTROL
166764.
221228.
387992.
113010.
501002.
100200.
601202.
0.
11995.
613197.
13575.
0.
11577.
7638.
0.
12951.
0.
2238.
0.
0.
0.
0.
0.
0.
0.
0.
47979.
12598.
60577.
79058.
1199.
24048.
104306.
164883.
TOTAL
1441026.
1374759.
3244598.
904354.
3720137.
744027.
5192408.
2000.
270562.
5464969.
229478.
146519.
163522.
113069.
4677.
65174.
463.
29967.
6844.
0.
2693.
0.
3295.
0.
0.
950022.
1715722.
238516.
1954238.
682802.
27056.
207696.
917554.
2871790.
C-55
-------
LSC-75-DA(90), DA/PM
MODEL BOILER 19
BOILER ROUTINE UNDR
S02 ROUTINE" DAC
4-06-82
PH ROUTINE'
FLOW FLAG*
S STAR (METRIC)= 0.242
S DSTAR CMETRIC>= 19.134
P DSTAR (METRIC>= 26.163
BOILER SPECIFICATIONS
Q= 73.0 FLW= 28334. CF=
FUEL SPECIFICATIONS
FC= 2.41 H=
PM EMISSIONS
UNC» 0.807 CTR-
S02 EMISSIONS
UNC= 1.190 CTR=
COST RATES
ELEC= 0.0258 UTR=
0.600 CRF= 0.1315
9600. S= 0.60 A= 5.40
0.100 EFF* 87.60 CRF» 0.1315
0.119 EFF = 90.00 CRF- 0.1315
0.15 LIME= 35.00 ALS= 8.00 SASH= 90.00 SLDQ= 15.00 SHD=
COST SUMMARY TABLE - RUN NO. 19
15.00 ALUD=
1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
BOILER
1274262.
1153531.
2427793.
791344.
3219136.
643827.
3862963.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
595733.
0.
0.
0.
975284.
PM CONTROL
0.
0.
0.
0.
0.
0.
0.
TOTAL
1274262.
1153531.
3023525.
791344.
3219136.
643827.
4838247.
LAND
UC
TOTL
DL
SPRV
HANT
SP
ELEC
UC
UTR
SU
SLDG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
2000.
213998.
4078960.
110903.
125519.
117640.
105430.
0.
52224.
0.
27729.
0.
0.
0.
0.
0.
0.
0.
950022.
1489466.
152739.
1642204.
507980.
21400.
154519.
683898.
2326101.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
51927.
1027212.
105000.
21000.
47659.
0.
9865.
0.
506.
0.
14824.
0.
2788.
0.
6069.
0.
0.
0.
207710.
76651.
284361.
128250.
5193.
39011.
172454.
456815.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
2000.
265925.
5106171.
215903.
146519.
165298.
105430.
9865.
52224.
506.
27729.
14824.
0.
2788.
0.
6069.
0.
0.
950022.
1697175.
229390.
1926564.
636230.
26593.
193530.
856352.
2782915.
C-56
-------
LSC-75-DA(90), FF
MODEL BOILER 20
BOILER ROUTINE UNDR
S02 ROUTINE* DA
4-06-82
PM ROUTINE'
FF
FLOW FLAG'
S STAR
-------
LSC-150-Unc, Unc
MODEL BOILER 21
BOILER ROUTINE SPRD
S02 ROUTINE=
4-06-82
PM ROUTINE'
FLOW FLAG*
BOILER SPECIFICATIONS
Q= 150.0 FLU= 36649. CF= 0.600 CRF= 0.1315
FUEL SPECIFICATIONS
FC= 2.41 H= 9600. S= 0.60 A* 5.40
PM EMISSIONS
UNC= CTR= EFF= CRF=
S02 EMISSIONS
UNC* CTR= EFF= CRF=
COST RATES
ELEC= 0.0258 UTR= 0.15 LIME=" 35.00 ALS= 8.00 SASH= 90.00 SLDG= 15.00 SWD» 15.00 ALUD=
1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LrtND
we
TOTL
DL
SPRM
MANT
SP
ELEC
UC
UTR
SU
SLOG
LU
BOILER
2732516.
2327704.
5060220.
1629384.
6689604.
1337920.
8027524.
2000.
304323.
8333846.
186128.
78732.
85796.
153400.
0.
69844.
0.
10276.
0.
0.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TOTAL
2732516.
2327704.
5060220.
1629384.
6689604.
1337920.
8027524.
2000.
304323.
3333846.
186128.
78732.
85796.
153400.
0.
69944.
0.
10276.
0.
0.
sc
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
ucc
MISC
TCC
TOTL
0.
0.
0.
0.
0.
1900043.
2484239.
186898.
2671136.
1055619.
30432.
321101.
1407151.
4078287.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0,
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1900043.
2484239.
186898.
2671136.
1055619.
30432.
321101.
1407151.
4078287.
C-58
-------
LSC-150-Unc, SM
MODEL BOILER 22
BOILER ROUTINE SPRD
S02 ROUTINE'
4-06-82
PM ROUTINE- SM
FLOU FLAG*
BOILER SPECIFICATIONS
Q= 150.0 FLU- 56669. CF= 0.600 CRF« 0.1315
FUEL SPECIFICATIONS
FC= 2.41 He 9600. S= 0.60 A= 5.40
PM EMISSIONS
UNC= 3.130 CTR= 0.600 EFF= 80.80 CRF= 0.1315
S02 EMISSIONS
UNC- CTR= EFF- CRF-
COST RATES
ELEC= 0.0258 UTR- 0.15 LIME= 35.00 ALS= 8.00 SASH= 90.00 SLDG= 15.00 SHD= 15.00 ALUD=
1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLOG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC.
TCC
TOTL
BOILER
2732516.
2327704,
5060220.
1629384.
6689604.
1337920.
8027524.
2000.
304323.
8333846.
186128.
78752.
85796.
153400.
0.
69844.
0,
10276.
0.
0.
0.
0.
0.
0.
0.
1900043.
2484239.
186898.
2671136.
1055619.
30432.
321101.
1407151.
4078287.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o. ,
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o,
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
121856.
0.
121856.
40619.
162475.
32495.
194970.
0.
10798.
205768.
9769.
1465.
6459.
812.
9724.
0.
0.
14960.
0.
0.
0.
0.
0.
0.
0.
0.
43190.
7742.
50932.
25639.
1080.
7799.
34517.
85449.
TOTAL
2854372.
2327704.
5182076.
1670002.
6852079.
1370415.
8222494.
2000.
315120.
8539613.
195897.
80217.
92255.
154212.
9724.
69844.
0.
25236.
0.
0.
0.
0.
0.
0.
0.
1900043.
2527429.
194640.
2722068.
1081257.
31512.
328900.
1441668.
4163736.
C-59
-------
LSC-150-Unc, SSS
MODEL BOILER 23
BOILER ROUTINE SPRD
S02 ROUTINE=
4-06-82
PM ROUTINE" SSS
FLOW FLAO=
0.600 CRF* 0.1315
0.60 A» 5.40
BOILER SPECIFICATIONS
Q= 150.0 FLU = 56669. CF=
FUEL SPECIFICATIONS
FC= 2.41 H= 9600. S=
PM EMISSIONS
UNC= 3.130 CTR= 0.200 EFF» 93.60 CRF= 0.1315
S02 EMISSIONS
UNC= CTR= EFF=> CRF =
COST RATES
ELEC= 0.0258 WTR= 0.15 LIME* 35.00 ALS- 8.00 SASH= 70.00 SLDG* 15.00 SWD= 15.00 ALUD= 1.80
COST SUMMARY TABLE - RUN NO, 23
ITEM
ECJUP
INST
TD
INO
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
MTR
SU
SLDG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOILER
2732516.
2327704.
5060220.
1629384.
6689604.
1337920.
8027524.
2000.
304323.
8333846.
186128.
73752.
85796.
153400.
0.
69844.
0.
10276.
0.
0.
0.
0.
0.
0.
0.
1900043.
2484239,
186898.
2671136.
1055619.
30432.
321101.
1407151.
4078287.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0,
0.
0.
0.
0.
0.
0.
0.
0.
502 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
227173.
0.
227173.
75724.
302897.
60579.
363477.
0.
15448.
378925.
13676.
2051.
12079.
1514.
15145.
0.
0.
17325.
0.
0.
0.
0.
0.
0.
0.
0.
61792.
11726.
73518.
47797.
1545.
14539.
63881.
137399.
TOTAL
2959689.
2327704.
5287393.
1705108.
6992501.
1398499.
8391000.
2000.
319770.
8712770.
199804.
80803.
97875.
154914.
15145.
69844.
0.
27601.
0.
0.
0.
0.
0.
0.
0.
1900043.
2546030.
198624.
2744654.
1103416.
31977.
335640.
1471032.
4215686.
C-60
-------
LSC-150-Unc, VS
MODEL BOILER 24
BOILER ROUTINE SPRD
S02 ROUTINE"
4-06-82
PH ROUTINE" VS
FLOU FLAG*
BOILER SPECIFICATION;
Qa 150.0 FLU-
FUEL SPECIFICATIONS
FC» 2.41 H=
PM EMISSIONS
UNC* 3.130 CTR=
S02 EMISSIONS
UNC= CTR»
COST RATES
ELEC* 0.0258 WTR-
COST SUMMARY TABLE -
ITEM BOILER
EdUP 2732516.
INST 2327704.
TD 5060220.
IND 1629384.
TDI 6689604.
CONT 1337920.
TK 8027524.
LAND 2000.
UC 304323.
TOTL 8333846.
DL 186128.
SPRW 78752.
MANT 85796.
SP 153400.
ELEC 0.
UC 69844.
UTR 0.
SU 10276.
SLDG 0.
LU 0.
SC 0.
LMS 0.
LIME 0.
NH3 0.
LYE 0.
FUEL 1900043.
TDOM 2484239.
OH 186898.
TOTL 2671136.
CR 1055619.
UCC 30432.
MISC 321101.
TCC 1407151.
TOTL 4078287.
5
56669. CF = 0.600
9600. S= 0.60
0.100 EFF* 96.80
EFF«
0.15 LIME' 35.00
RUN NO. 24
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
CRF- 0.1315
A= 5.40
CRF= 0.1315
CRF»
ALS- 8.00 SASH=
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
90.00 SLOG"
PM CONTROL
156914.
107578.
264492.
88283.
352775.
70555.
423330.
0.
22774.
446103.
19538.
0.
20185.
0.
0.
33456.
0.
17916.
0.
0.
0.
0.
0.
0.
0.
0.
91095.
16189.
107284.
55668.
2277.
16933.
74878.
182162.
15.00 SUD= 15.00 ALUD
TOTAL
2889430.
2435281.
5324712.
1717666.
7042378.
1408474.
8450853.
2000.
327096.
8779949.
205665.
78752.
105981.
153400.
0.
103301.
0.
28193.
0.
0.
0.
0.
0.
0.
0.
1900043.
2575333.
203087.
2778420.
1111286.
32710.
338034.
1482029.
4260449.
1.80
C-61
-------
LSC-150-Unc, FF
MODEL BOILER 25
BOILER ROUTINE SPRD
BOILER SPECIFICATIONS
Q= 150.0 FLU=
FUEL SPECIFICATIONS
FC= 2.41 H»
PM EMISSIONS
UNC= 3.130 CTR=
S02 EMISSIONS
UNC= CTR=
COST RA'TES
ELEC= 0.0258 UTR=
S02 ROUTINED
4-06-82
PM ROUTINE= FF
FLOU FLAG=
CF=
9600. S=
0.050 EFF
EFF
0.600 CRF* 0.1315
0.60 A= 5.40
98.40 CRF» 0.1315
CRF-
0.15 LIHE= 35.00 ALS«
COST SUMMARY TABLE - RUN NO. 25
ITEM BOILER NOX CONTROL S02 CONTROL
8.00 SASH- 90.00 SLOG" 15.00 SUD« 15.00 ALWD- 1.80
PM CONTROL
TOTAL
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
2732516.
2327704.
5060220.
1629384.
6689604.
1337920.
8027524.
2000.
304323.
8333846.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
325760.
338045.
663805.
199647.
863452.
172690.
1036142.
0.
22746.
1058887.
3058275.
2665749.
5724024.
1829030.
7553055.
1510610.
9063665.
2000.
327069.
9392733.
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLOG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
186128.
78752.
85796.
153400.
0.
69844.
0.
10276.
0.
0.
0.
0.
0.
0.
0.
1900043.
2484239.
186898.
2671136.
1055619.
30432.
321101.
1407151.
4078287.
0.
0.
0.
0.
0.
0.
0.
6.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
19538.
0.
12919.
15245.
0.
25071.
0.
18212.
0.
0.
0.
0.
0.
0.
0.
0.
90984.
18264.
109248.
136253.
2275.
41446.
179973.
289221.
205665.
78752.
98715.
168645.
0.
94915.
0.
28488.
0.
0.
0.
0.
0.
1.
0.
1900043.
2575223.
205162.
2780383.
1191871.
32707.
362547.
1587123.
4367507.
C-62
-------
LSC-150-DS(50), DS/PM
MODEL BOILER 26
BOILER ROUTINE SPRD
S02 ROUTINE" OS
4-06-82
PM ROUTINE-
FLOW FLAG=
S STAR (METRIC) = 0.134
S DSTAR (METRIC) =" 21.260
BOILER SPECIFICATIONS
Q= 150.0 FLU- 56669. CF=
FUEL SPECIFICATIONS
FC= 2.41 H- 9600. S=
PM EMISSIONS
UNC= 3.130 CTR= 0.100 EFF= 96.80 CRF- 0.1315
S02 EMISSIONS
UNC= 1.190 CTR» 0.595 EFF
COST RATES
0.600 CRF- 0.1315
0.60 A= 5.40
50.00 CRF- 0.1315
ELEC= 0.0258 UTR= 0.15 LIME- 35.00 ALS=
COST SUMMARY TABLE - RUN NO. 26
8.00 SASH- 90.00 SLOG- 15.00 SWD= 15.00 ALUD= 1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
HANT
SP
ELEC
UC
UTR
SU
SLOG
LU
sc
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOILER
2732516.
2327704.
5060220.
1629384.
6689604.
1337920.
8027524.
2000.
304323.
8333846.
186128.
78752.
85796.
153400.
0.
69844.
0.
10276.
0.
0.
0.
0.
0.
0.
0.
1900043.
2484239.
186898.
2671136.
1055619.
30432.
321101.
1407151.
4078287.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
991508.
0.
0.
0.
1577831.
0.
59216.
1637046.
105000.
21000.
62166.
0.
12326.
0.
802.
26720.
0.
0.
0.
0.
8849.
0.
0.
0.
236863.
80423.
317287.
207485.
5922.
63113.
276520.
593806.
PM CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TOTAL
2732516.
2327704.
6051727.
1629384.
6689604.
1337920.
9605355.
2000.
363538.
9970892.
291128.
99752.
147962.
153400.
12326.
69844.
802.
36996.
0.
0.
0.
0.
8849.
0.
0.
1900043.
2721102.
267321.
2988422.
1263103.
36354.
384214.
1683670.
4672093.
C-63
-------
LSC-150-DA(50), DA/PM
MODEL BOILER 27
BOILER ROUTINE SPRD
S02 ROUTINE' DAC
4-04-82
PH ROUTINE'
FLOU FLAG'
S STAR = 0.134
S DSTAR (METRIC)- 21.260
P DSTAR (METRIC)* 242.ISO
BOILER SPECIFICATIONS
Q= 150.0 FLM= 56669. CF=
FUEL SPECIFICATIONS
FC= 2.41 H=
PM EMISSIONS
UNC= 3.130 CTR=
S02 EMISSIONS
UNC= 1.190 CTR=
COST RATES
ELEC= 0.0258 UTR=
0.600 CRF= 0.1315
9600. S= 0.40 A- 5.40
0.100 EFF= 96.80 CRF=" 0.1315
0.595 EFF= 50.00 CRF- 0.1315
0.15 LIME= 35.00 ALS- 8.00 SASH= 90.00 SLDG" 15.00 SHD-* 15.00 ALUD'
COST SUMMARY TABLE - RUN NO. 27
1.80
ITEM
EQUP
INST
TD
IND
TPI
CONT
TK
LAND
UC
TOTL
DL
SPRV
HANT
SP
ELEC
UC
UTR
SU
SLOG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOILER
2732516.
2327704.
5060220.
1629384.
6689604.
1337920.
8027524.
2000.
304323.
8333846.
186128.
78752.
85796.
153400.
0.
69844.
0.
10276.
0.
0.
0.
0.
0.
0.
0.
1900043.
2484239.
186898.
2671136.
1055619.
30432.
321101.
1407151.
4078287.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
810758.
0.
0.
0.
1293521.
0.
64689.
1358210.
105000.
21000.
64861.
0.
19442.
0.
879.
0.
35004.
0.
5810.
0.
6762.
0.
0.
0.
2S87S7.
81124.
339881.
170098.
6469.
51741.
228308.
568189.
PM CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TOTAL
2732516.
2327704.
5870977.
1629384.
6689604.
1337920.
9321045.
2000.
369012.
9692056.
291128.
99752.
150657.
153400.
19442.
69844.
879.
10276.
35004.
0.
5810.
0.
6762.
0.
0.
1900043.
2742996.
268022.
3011017.
1225717.
36901.
372842.
1635458.
4646475.
C-64
-------
LSC-150-DA(50), FF
MODEL BOILER 28
BOILER ROUTINE SPRD
S02 ROUTINE" DA
4-06-82
PM ROUTINE"
FF
FLOW FLAG=
0.600 CRF= 0.1313
0.60 A- 3.40
S STAR (METRIC)- 0.134
S DSTAR (METRIC)3 21.260
BOILER SPECIFICATIONS
Q- 150.0 FLU« 56669. CF=
FUEL SPECIFICATIONS
FC- 2.41 H» 9600. S«
PM EMISSIONS
UNO 3.130 CTR- O.OSO EFF- 98.40 CRF= 0.1313
S02 EMISSIONS
UNC»' 1.190 CTR= 0.593 EFF* 50.00 CRF- 0.1315
COST RATES
ELEC» 0.0258 WTR- 0.15 LIME= 35.00 ALS- 8.00 SASH=» 90.00 SLDO=- 15.00 SHD=*
COST SUMMARY TABLE - RUN NO. 28
ITEM BOILER NOX CONTROL S02 CONTROL PM CONTROL TOTAL
15.00 ALHD=
1.80
EQUP
INST
TD
2732516.
2327704.
5060220.
0.
0.
0.
0.
0.
609376.
325760.
338045.
663805.
3058275.
2665749.
6333399.
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLD8
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
1629384.
6689604.
1337920.
8027524.
2000.
304323.
8333846.
186128.
78752.
85796.
153400.
0.
69844.
0.
10276.
0.
0.
0.
0.
0.
0.
0.
1900043.
2484239.
186898.
2671136.
1055619.
30432.
321101.
1407151.
4078287.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
995476.
0.
52884.
1048359.
105000.
21000.
48750.
0.
9355.
0.
879.
0.
13979.
0.
5810.
0.
6762.
0.
0.
0.
211535.
76935.
288470.
130905.
5288.
39819.
176012.
464482.
199647.
863452.
172690.
1036142.
0.
22746.
1058887.
19538.
0.
12919.
15245.
0.
25071.
0.
18212.
0.
0*
0.
0.
0.
0.
0.
"0.
90984.
18264.
109248.
136253.
2275.
41446.
179973.
289221.
1829C30.
7553055.
1510610.
10059140.
2000.
379952.
10441092.
310665.
99752.
147465.
168645.
9355.
94915.
879.
28488.
13979.
0.
5810.
0.
6762.
0.
0.
1900043.
2786758.
282096.
3068853.
1322776.
37995 .
402366.
1763135.
4831987.
C-65
-------
LSC-150-DA(90), DA/PM
MODEL BOILER 29
BOILER ROUTINE SPRD
502 ROUTINE* DAC
4-06-82
PM ROUTINE'
FLOW FLAG-
S STAR (METRIC)" 0.242
S DSTAR = 38,268
P DSTAR (METRIC>= 242.150
BOILER SPECIFICATIONS
Q= 150.0 FLU- 56669. CF= 0,600 CRF= 0.1315
FUEL SPECIFICATIONS
FC= ' 2.41 H= 9600. S= 0.60 A- 5.40
PM EMISSIONS
UNC= 3.130 CTR= 0.100 EFF= 96.BO CRF= 0.1315
S02 EMISSIONS
UNC= 1.190 CTR= 0.119 EFF= 90.00 CRF= 0.1315
COST RATES
ELEC = 0.0258 UTR= 0.15 LIME= 35.00 ALS= 8.00 SASH= 90.00 SLDG- 15.00 SUD= 15.00 ALWD=
1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLOG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
BOILER
2732516.
2327704.
5060220.
1629384.
6689604.
1337920.
3027524.
2000.
304323.
8333846.
186128.
78752.
85796.
153400.
0.
69844.
0.
10276.
0.
0.
0.
0.
0.
0.
0.
1900043.
2484239.
186898.
2671136.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
302 CONTROL
0.
0.
857321.
0.
0.
0.
1362434.
0.
70005.
1432439.
105000.
21000.
68586.
0.
19730.
0.
960.
0.
46419.
0.
6016.
0.
12310.
0.
0.
0.
280020.
82092.
362113.
PM CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TOTAL
2732516.
2327704.
5917541.
1629384.
6689604.
1337920.
9389958.
2000.
374328.
9766285.
291128.
99752.
154382.
153400.
19730.
69844.
960,
10276.
46419.
0.
6016.
0,
12310.
0.
0.
1900043.
2764259.
268990.
3033248.
CR
UCC
MISC
TCC
TOTL
1055619.
30432.
321101.
1407151.
4078287.
0.
0.
0.
0.
0.
179160.
7001.
54497.
240658.
602770.
0.
0.
0.
0.
0.
1234779.
37433.
375598.
1647808.
4681057.
C-66
-------
LSC-150-DA(90), FF
MODEL BOILER 30
BOILER ROUTINE SPRD
S02 ROUTINE' DA
4-06-82
PH ROUTINE*
FF
FLOW
S STAR (METRIC)- 0.242
5 DSTAR
-------
LSC-400-Unc, Unc
MODEL BOILER 31
BOILER ROUTINE PLVR
502 ROUTINE'
4-04-82
PM ROUTINE'
FLOW FLAG*
BOILER SPECIFICATIONS
Q= 400.0 FLU" 145912 CF=
FUEL SPECIFICATIONS
FC = 2.41 H= 9600. S=
PM EMISSIONS
UNC= CTR= EFF=
502 EMISSIONS
UNC= CTR= EFF"
COST RA'TES
ELEC = 0.0238 MTR=
0.600 CRF= 0.1315
0.60 A* 5.40
CRF=
CRF=
0.15 LIME= 35.00 ALS=
COST SUMMARY TABLE - RUN NO. 31
ITEM BOILER NOX CONTROL S02 CONTROL
8.00 SASH" 90.00 SLOG- 15.00 SUD" 15.00 ALUD- 1.80
PM CONTROL
TOTAL
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLDG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
7560504.
4021223.
11381727.
3594800.
15176527.
3033305.
18211824.
4000.
774010.
18989824.
406848.
110674.
215444.
262766.
0.
396920.
0.
15136.
0.
0.
0.
0.
0.
0.
0.
3066783.
6474571.
380945.
6835515.
2394854.
77401.
728473.
3200727.
10056242.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
7560504.
4021223.
11581727.
3594800.
15176527.
3035305.
18211824.
4000.
774010.
18989824.
406848.
110674.
215444.
262766.
0.
396920.
0.
15136.
0.
0.
0.
0.
0.
0.
0.
5066783.
6474S71.
38094S.
6855315.
2394854.
77401.
728473.
3200727.
10056242.
C-68
-------
LSC-400-Unc, SM
MODEL BOILER 32
BOILER ROUTINE PLVR
BOILER SPECIFICATIONS
S02 ROUTINE'
4-06-82
PM ROUTINED SH
FLOW FLAG=
Q- 400.0 FLUa 145912 CF= 0.600 CRF= 0.1315
FUEL SPECIFICATIONS
FC» 2.41 H« 9600. S= 0.60 A- 5.40
PM EMISSIONS
UNC" 2.390 CTRa 1.000 EFF= 58.20 CRF- 0.1315
S02 EMISSIONS
UNC= CTR« EFF» CRF-
COST RATES
ELEC= 0.0258 HTR= 0.15 LIME" 35.00 ALS= 8.00 SASH" 90.00 SLDG» 15.00 SUD<= 15.00 ALUD*
1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLOG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOILER
7560504.
4021223.
11581727.
3594800.
15176527.
303S305.
18211824.
4000.
774010.
18989824.
406848.
110674.
215444.
262766.
0.
396920.
0.
15136.
0."
0.
0.
0.
0.
0.
0.
5066783.
6474571.
380945.
6855515.
2394854.
77401.
728473.
3200727.
10056242.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
247678.
0.
247678.
82559.
330237.
66047.
396284.
0.
20784.
417068.
19706.
2956.
11925.
1651.
24980.
0.
0.
21918.
0.
0.
0.
0.
0.
0.
0.
0.
83136.
15334.
98470.
52111.
2078.
15851.
70041.
168511.
TOTAL
7808181.
4021223.
11829404.
3677359.
15506764.
3101352.
18608096.
4000.
794794.
19406880.
426555.
113630.
227369.
264417.
24980.
396920.
0.
37054.
0.
0.
0.
0.
0.
0.
0.
5066783.
6557707.
396279.
6953984.
2446965.
79479.
744324.
3270768.
10224753.
C-69
-------
LSC-400-Unc, SSS
MODEL BOILER 33
BOILER ROUTINE PLVR
S02 ROUTINE'
4-06-82
PM ROUTINED SSS
FLOU FLA6=
BOILER SPECIFICATIONS
Q= 400.0 FLM=
FUEL SPECIFICATIONS
FC= 2.41 H=
PM EMISSIONS
UNC= 2.390 CTR=
S02 EMISSIONS
UNC= CTR=
COST RATES
ELEC= 0.0258 UTR=
COST SUMMARY TABLE -
ITEM BOILER
EQUP 7560504.
INST 4021223.
TD 11581727.
IND 3594800.
TDI 15176527.
CONT 3035305.
TK 18211824.
LAND 4000.
UC 774010.
TOTL 18989824.
DL 406848.
SPRV 110674.
MANT 215444.
SP 262766.
ELEC 0.
UC 396920.
UTR 0.
SU 15136.
SLDG 0.
LU 0.
SC 0.
LMS 0.
LIME 0.
NH3 0.
LYE 0.
FUEL 7066783.
TDOM 6474571.
OH 380945.
TOTL 6855515.
CR 2394854.
WCC 77401.
MISC 728473.
TCC 3200727.
TOTL 10056242.
145912 CF= 0.600
9600. S= 0.60
0.200 EFF= 91.60
EFF=
0.15 LIME= 35.00
RUN NO. 33
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
CRF= 0.1315
A= 5.40
CRF= 0.1315
CRF =
ALS= 8.00 SASH=
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
90.00 SLDG=
PM CONTROL
477284.
0.
477284.
159095.
636379.
127276.
763654.
0.
33049.
796703.
27589.
4138.
24455.
3182.
38301.
0.
0.
34532.
0.
0.
0.
0.
0.
0.
0.
0.
132197.
23711.
155908.
100421.
3305.
30546.
134272.
290179.
15.00 SUD= 15.00 ALUD
TOTAL
8037787.
4021223.
12059010.
3753894.
15812905.
3162580.
18975472.
4000.
807059.
19786512.
434437.
114812.
239899.
265948.
38301.
396920.
0.
49668.
0.
0.
0.
0.
0.
0.
0.
5066783.
6606767.
404656.
7011422.
2495274.
80706.
759019.
3334998.
10346421.
1.80
C-70
-------
LSC-400-Unc, VS
MODEL BOILER 34
BOILER ROUTINE PLVR
802 ROUTINED
4-06-82
PM ROUTINE* VS
FLOU FLAG*
BOILER SPECIFICATIONS
Q* 400.0 FLU= 145912
FUEL SPECIFICATIONS
FC= 2.41 H» 9600.
PM EMISSIONS
UNC= 2.390 CTR= 0.100
S02 EMISSIONS
UNO CTR=
COST RATES
ELEC- 0.02S8 UTR= 0.1S
COST SUMMARY TABLE - RUN NO.
ITEM BOILER
EQUP 7560504.
INST 4021223.
TD 11581727.
IND 3594800.
TDI 15176527.
CONT 3035305.
TK 18211824.
LAND 4000.
UC 774010.
TOTL 18989824.
DL 406848.
SPRV 110674.
HANT 215444.
SP 262766.
ELEC 0.
UC 396920.
UTR 0.
SU 15136.
SLOG 0.
LU 0.
SC 0.
LMS 0.
LIME 0.
NH3 0.
LYE 0.
FUEL 5066783.
TDOM 6474571.
OH 380945.
TOTL 6855515.
CR 2394854.
HCC 77401.
MISC 728473.
TCC 3200727.
TOTL 10056242.
CF= 0.600
S= 0.60
EFF=» 95.80
EFF=
LIME- 35.00
34
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
CRF= 0.1315
A" 5.40
CRF- 0.1315
CRF-
ALS- 8.00 SASH
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
« 90.00 SLOG*
PM CONTROL
360859.
254535.
615394.
202523.
817917.
163583.
981501.
0.
51440.
1032941.
39413.
0.
46285.
0.
0.
83953.
0.
36109.
0.
0.
0.
0.
0.
0.
0.
0.
205759,
34105.
239864.
129067.
5144.
39260.
173471.
413335.
15.00 SUD= 15.00 ALUD
TOTAL
7921362.
4275758.
12197121.
3797323.
15994444.
3198888.
19193312.
4000.
825450.
20022752.
446261.
110674.
261729.
262766.
0.
480872.
0.
51245.
0.
0.
0.
0.
0.
0.
0.
5066783.
6680329.
415050.
7095378.
2523921.
82545.
767733.
3374198.
10469577.
1.80
C-71
-------
LSC-400-Unc, FF
MODEL BOILER 35
BOILER ROUTINE PLVR
S02 ROUTINE
CF =
4-06-82
PM ROUTINE= FF
FLOU FLAG =
BOILER SPECIFICATIONS
Q= 400.0 FLU= 145912 CF= 0.600 CRF = 0.1315
FUEL SPECIFICATIONS
FC= 2.41 H= 9600. S= 0.60 A= 5.40
PM EMISSIONS
UNC= 2.390 CTR= 0.050 EFF= 97.90 CRF= 0.1315
S02 EMISSIONS
UNC=- CTR» EFF= CRF*
COST RATES
EL£C = 0.0258 UTR= 0.15 LIME= 35.00 ALS= 8.00 SASH= 90.00 SLOG" 15.00 SUD«= 15.00 ALUD* 1.80
COST SUMMARY TABLE - RUN NO. 35
ITEM
EOUP
INST
TD
IND
TDI
CCNT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
su
SLDG
LU
sc
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
BOILER
7560504.
4021223.
11581727.
3594800.
15176527.
3035305.
18211824.
4000.
774010.
18989824.
406848.
110674.
215444.
262766.
0.
396920.
0.
15136.
0.
0.
0.
0.
0.
0.
0.
5066783.
6474571.
380945.
6855515.
2394854.
77401 .
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
810402.
49704S.
1307446.
433166.
1740611.
348122.
2088733.
0.
50205.
2138938.
39413.
0.
23850.
39051.
0.
61609.
0.
36897.
0.
0.
0.
0.
0.
0.
0.
0.
200820.
38425.
239245.
274668.
5021.
TOTAL
8370905.
4518268.
12889173.
4027965.
16917136.
3383427.
20300544.
4000.
824215.
21128752.
446261.
110674.
239294.
301817.
0.
458529.
0.
52033.
0.
0.
0.
0.
0.
0.
0.
5066783.
6675391.
419370.
7094760.
2669522.
82422.
MISC
TCC
TOTL
728473.
3200727.
10056242.
0.
0.
0.
0.
0.
0.
83549.
363238.
602483.
812022.
3563965.
10658725.
C-72
-------
LSC-400-OS(50), DS/PM
MODEL BOILER 36
BOILER ROUTINE PLVR
S02 ROUTINE= OS
4-06-82
P« ROUTINED
FLOU FLAG"
5 STAR (METRIC) =• 0.134
5 DSTAR (METRIC) = 56.693
BOILER SPECIFICATIONS
Q= 400.0 FLU-145912 CF= 0.600 CRF= 0.1315
FUEL SPECIFICATIONS
FC= 2.41 H= 9600. S= 0.60 A* 5.40
PH EMISSIONS
UNC« 2.390 CTRa 0.100 EFF« 95.80 CRF= 0.1315
S02 EMISSIONS
UNC- 1.190 CTR« 0.595 EFF> 50.00 CRF= 0.1315
COST RATES
ELEC> 0.0258 WTR- 0.15 LIME" 35.00 ALS= 8.00 SASH= 90.00 SLOG- 15.00 SWD= 15.00 ALUU= 1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRU
MANT
SP
ELEC
BOILER
7560504 .
4021223.
11581727.
3594800.
15176527.
3035305.
18211824.
4000.
774010.
18989824.
406848.
110674.
215444.
262766.
0.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
2027351.
0.
0.
0.
3243762.
0.
8901S.
3332776.
105000.
21000.
118101.
0.
26718.
PH CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TOTAL
7560504.
4021223.
13609078.
3594800.
15176527.
3035305.
21455584.
4000.
863025.
22322592.
511848.
131674.
333545.
262766.
26718.
UC
WTR
SU
SLOG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
ycc
MISC
TCC
TOTL
396920.
0.
15136.
0.
0.
0.
0.
0.
0.
0.
5066783.
6474571.
380945.
685SS15.
2394854.
77401 .
728473.
3200727.
100S6242.
0.
0.
0.
0.
0.
0.
0.
0. '
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
2060.
59582.
0.
0.
0.
0.
23598.
0.
0.
0.
356059.
94966.
451025.
4265SS.
8901.
129750.
565207 .
1016231.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
396920.
2060.
74718.
0.
0.
0.
0.
23598.
0.
0.
5066783.
6830629.
475911.
7306539.
2821408.
86302.
858223.
3765933.
11072473.
C-73
-------
LSC-400-DA(50), OA/PM
MODEL BOILER 37
BOILER ROUTINE PLVR
S02 ROUTINE= DAC
4-06-82
PM ROUTINE'
FLOW FLAG=
S STAR = 0.134
S DSTAR (METRIC)= 56.693
P DSTAR (METRIC)" 484.482
BOILER SPECIFICATIONS
Q= 400.0 FLU= 145912 CF =
FUEL SPECIFICATIONS
FC= 2.41 H= 9600. S=
PM EMISSIONS
UNC = 2.390 CTR= 0.100 EFF=
502 EMISSIONS
UNC=- 1.190 CTR= 0.595 EFF= 50.00 CRF= 0.1315
COST RATES
ELEC= 0.0258 UTR* 0.15 LIME= 35.00 ACS- 8.00 SASH= 90.00 SLDG= 15.00 SWD= 15.00 ALUD« 1.80
COST SUMMARY TABLE - RUN NO. 37
ITEM BOILER NOX CONTROL S02 CONTROL PM CONTROL TOTAL
0.600 CRF= 0.1315
0.60 A* 5.40
95.80 CRF» 0.1315
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRW
MANT
SP
ELEC
UC
UTR
SU
SLOG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
7560504.
4021223.
11581727,
3594800.
15176527.
3035305.
18211824.
4000.
774010.
18989824.
406848.
110674.
215444.
262766.
0.
396920.
0.
15136.
0.
0.
0.
0.
0.
0.
0.
5066783.
6474571.
380945.
6855515.
2394854.
77401.
728473.
3200727.
10056242.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1271267.
0.
0.
0.
2011474.
0.
98391.
2109865.
105000.
21000.
101701.
0.
49942.
0.
2184.
0.
79826.
0.
15592.
0.
18320.
0.
0.
0.
393565.
90702.
484267.
264509.
9839.
80459.
354807.
839074.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
7560504.
4021223.
12852994.
3594800.
15176527.
3035305.
20223296.
4000.
872401.
21099680.
511848.
131674.
317146.
262766.
49942.
396920.
2184.
15136.
79826.
0.
15592.
0.
18320.
0.
0.
5066783.
6868136.
471647.
7339782.
2659362.
87240.
808932.
3555533.
10895316.
C-74
-------
LSC-400-DA(50), FF
MODEL BOILER 38
BOILER ROUTINE PLVR
S02 ROUTINED DA
4-06-82
PM ROUTINE- FF
FLOW FLAG*
S STAR = 0.134
S DSTAR (METRICS 56.693
BOILER SPECIFICATIONS
Q= 400.0 FLU- 145912 CF- 0.600 CRF= 0.1315
FUEL SPECIFICATIONS
FC- , 2.41 H- 9600. S« 0.60 A= 5.40
PM EMISSIONS
UNC- 2.390 CTR» 0.050 EFF- 97.90 CRF- 0.1315
S02 EMISSIONS
UNC= 1.190 CTR- 0.595 EFF" 50.00 CRF= 0.1315
COST RATES
ELEC= 0.0258 WTR= 0.15 LIME= 35.00 ALS= 8.00 SASH- 90.00 SLD6= 15.00 SWD=
15.00 ALUD= 1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
OL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLDO
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOILER
7560504.
4021223.
11581727.
3594800.
15176527.
3035305.
18211824.
4000.
774010.
18989824.
406848.
110674.
215444.
262766.
'0.
396920.
0.
15136.
0.
0.
0.
0.
0.
0.
0.
5066783.
6474571.
380945.
6855515.
2394854.
77401.
728473.
3200727.
10056242.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0,
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
998046.
0.
0.
0.
1607106.
0.
75933.
1683038.
105000.
21000.
79844.
0.
24031.
0.
2184.
0.
37760.
0.
15592.
0.
18320.
0.
0.
0.
303731 .
85019.
388750.
211334.
7593.
64284.
283212.
671962.
PM CONTROL
810402.
497045.
1307446.
433166.
1740611.
348122.
2088733.
0.
50205.
2138938.
39413.
0.
23850.
39051.
0.
61609.
0.
36897.
0.
0.
0.
0.
0.
0.
0.
0.
200820.
38425.
239245.
274668.
5021.
83549.
363238.
602483.
TOTAL
8370905.
4518268.
13887218.
4027965.
16917136.
3383427.
21907648.
4000.
900148.
22811776.
551261.
131674.
319138.
301817.
24031.
458529.
2184.
52033.
37760.
0.
15592.
0.
18320.
0.
0.
5066783.
6979121.
504390.
7483509.
2880856.
90015.
876306.
3847176.
11330686.
C-75
-------
LSC-400-DA(90), DA/PM
MODEL BOILER 39
BOILER ROUTINE PLVR
S02 ROUTINE= DAC
04-07-82
PM ROUTINE=
FLOW FLAG:
S STAR (METRIC)= 0.242
S DSTAR = 102.047
P DSTAR (METRIC)= 484.482
BOILER SPECIFICATIONS
Q= 400.0 FLU= 145912 CF=
FUEL SPECIFICATIONS
FC= ' 2.41 H= 9400. S=
PH EMISSIONS
UNC= 2.390 CTR= 0.100 EFF= 95.80 CRF= 0.1315
S02 EMISSIONS
UNC= 1.190 CTR= 0.119 EFF= 90.00 CRF= 0.1315
COST RATES
ELEC= 0.0258 UTR= 0.15 LIME= 35.00 ALS= 8.00 SASH= 90.00 SLDG= 15.00 SWD= 15.00 ALUD= 1.80
0.400 CRF= 0.1315
0.60 AS S.40
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
OL
SPRV
MANT
SP
ELEC
BOILER
7560504.
4021223.
11581727.
3594800.
15176527.
3035305.
18211824.
4000.
774010.
18989824.
406848.
110674.
215444.
262766.
0.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
1338179.
0,
0.
0.
2110504.
0.
111411.
2221915.
105000.
21000.
107054.
0.
50682.
PM CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TOTAL
7560504.
4021223.
12919906.
3594800.
15176527.
3035305.
20322320.
4000.
885421.
21211728.
511848.
131674.
322499.
262766.
50682.
UC
UTR
SU
SLOG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
396920.
0.
15136.
0.
0.
0.
0.
0.
0.
0.
5066783.
6474571.
380945.
6855515.
2394854.
77401.
728473.
3200727.
10056242.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
2386.
0.
110266.
0.
16144.
0.
33113.
0.
0.
0.
445646.
92094.
537740.
277531.
11141.
84420.
373093.
910833.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
o.
0.
396920.
2386.
15136.
110266.
0.
16144.
0.
33113.
0.
0.
5066783.
6920216.
473039.
739325S.
2672385.
88542.
812393.
3573819.
10967074.
C-76
-------
LSC-400-DA(90), FF
MODEL BOILER 40
BOILER ROUTINE PLVR
S02 ROUTINE* DA
04-07-82
PH ROUTINE*
FF
FLOW FLAG=
S STAR (METRIC)" 0,242
S DSTAR (METRIC)* 102.047
BOILER SPECIFICATIONS
D= 400.0 FLU=» 145912 CF= 0.600 CRF= 0.1315
FUEL SPECIFICATIONS
FC= 2.41 H= 9600. S= 0.60 A= S.40
PM EMISSIONS
UNC* 2.390 CTRa 0.050 EFF= 97.90 CRF» 0.1315
S02 EMISSIONS
UNC» 1.190 CTR» 0.119 EFF- 90.00 CRF= 0.1315
COST RATES
ELEC= 0.0258 UTR= 0.15 LIME= 35.00 ALS= 8.00 SASH= 90.00 SLD6= 15.00 SWD=
COST SUMMARY TABLE - RUN NO. 40
ITEM BOILER NOX CONTROL
S02 CONTROL
PM CONTROL
TOTAL
IS.00 ALUD* 1.80
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLOG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
7560504.
4021223.
11581727.
3594800.
15176527.
3035305.
18211824.
4000.
774010.
18989824.
406848.
110674.
215444.
262766.
0.
396920.
0.
15136.
0.
0.
0.
0.
0.
0.
0.
5066783.
6474571.
380945.
6855515.
2394854.
77401.
728473.
3200727.
10056242.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1101460.
0.
0.
0.
1760160.
0.
89587.
1849746.
105000.
21000.
88117.
0.
24387.
0.
2386.
0.
68201.
0.
16144.
0.
33113.
0.
0.
0.
358348.
87170.
445518.
231461.
8959.
70406.
310826.
756344.
810402.
497045.
1307446.
433166.
1740611.
348122.
2088733.
0.
50205.
2138938.
39413.
0.
23850.
39051.
0.
61609.
0.
36897.
0.
0.
0.
0.
0.
0.
0.
0.
200820.
38425.
239245.
274668.
5021.
83549.
363238.
602483.
3370905.
4518268.
13990633.
4027965.
16917136.
3383427.
22060704.
4000.
913802.
22978496.
551261.
131674.
327411.
301817.
24387.
458529.
2386.
52033.
68201.
0.
16144.
0.
33113.
0.
0.
5066783.
7033738.
506541.
7540277.
2900983.
91380.
882429.
3874791.
11415068.
C-77
-------
RES-30-Unc, Unc
MODEL BOILER 1
BOILER ROUTINE RES1
S02 ROUTINE=
4-07-82
PM ROUTINE=
FLOU
BOILER SPECIFICATIONS
Q= 30.0 FLU= 9007. CF= 0.550 CRF= 0.1313
FUEL SPECIFICATIONS
FC= 4.85 H= 18500. S= 3.00 A= 0.10
PM EMISSIONS
UNC= 0.0 CTR= 0.0 EFF= 0.0 CRF= 0.0
S02 EMISSIONS
UNC= 0.0 CTR= 0.0 EFF= 0.0 CRF= 0.0
COST RATES
ELEC = 0.0258 WTR= 0.15 LIME= 35.00 ALS« 8.00 SASH* 90.00 SLOG" 15.00 SUD=
15.00 ALUD=
1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLDG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOILER
115427.
185897.
301324.
99259.
400583.
80117.
480699.
2000.
94718.
577417.
52584.
34207.
15980.
20522.
0.
21998.
0.
0.
0.
0.
0.
0.
0.
0.
0.
701019.
846311.
47832.
894142.
63212.
9472.
19228.
91912.
986054.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TOTAL
115427.
185897.
301324.
99259.
400583,
80117.
480699.
2000.
94718.
577417.
52584.
34207.
15980.
20522.
0.
21998.
0.
0.
0.
0.
0.
0.
0.
0.
0.
701019.
846311.
47832.
894142.
63212.
9472.
19228.
91912.
986054.
C-78
-------
RES-30-Unc, ESP
MODEL BOILER 2
BOILER ROUTINE RESI
S02 ROUTINE=
4-07-82
PM ROUTINE'
ESPO
FLOW FLA6=
SPECIFIC COLLECTOR AREA
-------
RES-30-NATH(50), NATH/PM
MODEL BOILER 3
BOILER ROUTINE RES1
S02 ROUTINE= NATH
4-07-82
PM ROUTINE=
FLOW FLAG*
S STAR (METRIC)* 0.349
S DSTAR (METRIC)* 11.032
BOILER SPECIFICATIONS
Q= 30.0 FLU= 9007. CF=
FUEL SPECIFICATIONS
0.550 CRF= 0.1315
FC= 4.85 H= 18500. S= 3.00 A= 0.10
PM EMISSIONS
UNC= 0.230 CTR= 0.050 EFF= 78.30 CRF= 0.1315
302 EMISSIONS ,
UNC = 3.210 CTR= 1.610 EFF= 50.00 CRF= 0.1315
COST RATES
ELEC= 0.0258 UTR= 0.15 LIME- 35.00 ALS= 8.00 SASH- 90.00 SLDG= 15.00 SUD= 15.00 ALUD= 1.80
ITEM
EQUP
INST
TD
INO
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLOG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOILER
115427.
185897.
301324.
99259.
400583.
80117.
480699.
2000.
94718.
577417.
52584.
34207.
15980.
20522.
0.
21998.
0.
0.
0.
0.
0.
0.
0.
0.
0.
701019.
846311.
47832.
894142.
63212.
9472.
19228.
91912.
986054.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
165350.
0.
0.
0.
319118.
0.
42338.
361456.
105000.
21000.
13228.
0.
1465.
0.
222.
0.
3990.
2173.
22274.
0.
0.
0.
0.
0.
169352.
67699,
237052.
41964.
4234.
12765.
58962.
296014.
PM CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TOTAL
115427.
185897.
466674.
99259.
400583.
80117.
799817.
2000.
137056.
938873.
157584.
55207.
29208.
20522.
1465.
21998.
222.
0.
3990.
2173.
22274.
0.
0.
0.
0.
701019.
1015663.
115531.
1131194.
105176.
13706.
31993.
150874.
1282068.
C-80
-------
RES-30-NATH(50), ESP
MODEL BOILER 4
BOILER ROUTINE RES1
S02 ROUTINED NATH
4-07-82
PM ROUTINE= ESPO
FLOW FLAG--
S STAR (METRIC)" 0.349
S DSTAR (METRIC)= 11.032
SPECIFIC COLLECTOR AREA(SQ FT/1000 ACFM)
TOTAL PLATE AREA
-------
RES-30-NATH(90), NATH/PM
MODEL BOILER 5
BOILER ROUTINE RES1
S02 ROUTINE= NATH
4-07-82
PM ROUTINE'
FLOW FLAG*
S STAR = 0.628
S DSTAR = 19.858
BOILER SPECIFICATIONS
Q= 30.0 FLU= 9007. CF= 0.550 CRF= 0.1315
FUEL SPECIFICATIONS
FC= 4.85 H= 18500. S= 3.00 A= 0.10
PM EMISSIONS
UNC= 0.230 CTR= 0.050 EFF= 78.30 CRF= 0.1315
S02 EMISSIONS
UNC= 3.210 CTR= 0.321 EFF= 90.00 CRF= 0.1315
COST RATES
ELEC= 0.0258 WTR= 0.15 LIME- 35.00 ALS= 8,00 SASH= 90.00 SLDG
i.OO SWD= 15.00 ALUD= 1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLDG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOILER
115427.
185897.
301324.
99259.
400583.
80117.
480699.
2000.
94718.
577417.
52584.
34207.
15980.
20522.
0.
21998.
0.
0.
0.
0.
0.
0.
0.
0.
0.
701019.
846311.
47832.
894142.
63212.
9472.
19228.
91912.
986054.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0*
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
181732.
0.
0.
0.
343363.
0.
47649.
391012.
105000.
21000.
14539.
0.
1632.
0.
316.
0.
7172.
3911.
37025.
0.
0.
0.
0.
0.
190596.
68040.
258636.
45152.
4765.
13735.
63652.
322288.
PM CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TOTAL
115427.
185897.
183056.
99259.
400583.
80117.
824062.
2000.
142367.
968429.
157584.
55207.
30519.
20522.
1632.
21998.
316.
0.
7172.
3911.
37025.
0.
0.
0.
0.
701019.
1036907.
115872.
1152778.
108364.
14237.
32962.
155563.
1308341.
C-82
-------
RES-30-NATH(90), ESP
MODEL BOILER 6
BOILER ROUTINE RES1
S02 ROUTINE= NATH
4-07-82
PM ROUTINE= ESPO
FLOW FLAG=
S STAR = 0.628
S DSTAR (METRIC)* 19.858
SPECIFIC COLLECTOR AREACSQ FT/1000 ACFM>= 400.0
TOTAL PLATE AREA (SO FT)= 3602.7
BOILER SPECIFICATIONS
0= 30.0 FLU=
FUEL SPECIFICATIONS
FC=« 4.85 H=
PM EMISSIONS
UNC» 0.230 CTR-
S02 EMISSIONS
UNC- 3.210 CTR=
COST RATES
ELEC=» 0.0258 UTR»
COST SUMMARY TABLE -
ITEM BOILER
EQUP 115427.
INST 185897.
TD 301324.
IND 99259.
TDI 400583.
CONT 80117.
TK 480699.
LAND 2000.
UC 94718.
TOTL 577417.
DL 52584.
SPRV 34207.
MANT 15980.
SP 20522.
ELEC 0.
UC 21998.
MTR 0.
SU 0.
SLD8 0.
LU 0.
SC 0.
LMS 0.
LIME 0.
NH3 0.
LYE 0.
FUEL 701019.
TDOM 846311.
OH 47832.
TOTL 894142.
CR 63212.
UCC 9472.
MISC 19228.
TCC 91912.
TOTL 986054.
9007. CF= 0.550
18500. S= 3.00
0.050 EFF= 78.30
0.321 EFF= 90.00
0.15 LIME= 35.00
RUN NO. 6
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
CRF= 0.1315
A= 0.10
CRF= 0.1315
CRF=» 0.1315
ALS= 8.00 SASH=
S02 CONTROL
0.
0.
181732.
0.
0.
0.
343363.
0.
47649.
391012.
105000.
21000.
14539.
0.
1632.
0.
316.
0.
7172.
3911.
37025.
0.
0.
0.
0.
0.
190596.
68040.
258636.
45152.
4765.
13735.
63652.
322288.
90.00 SLDG=
PM CONTROL
112477.
131599.
244076.
81521.
325597.
65119.
390717.
0.
5205.
395922.
8331.
0.
9335.
1777.
0.
1356.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
20819.
7560.
28379.
51379.
520.
15629.
67528.
95907.
15.00 SWD=
TOTAL
227904.
317496.
727132.
180780.
726180.
145236.
1214779.
2000.
147572.
1364350.
165915.
55207.
39853.
22320.
1632.
23354.
316.
0.
7172.
3911.
37025.
0.
0.
0.
0.
701019.
1057725.
123431.
1181156.
159743.
14757.
48591.
223092.
1404248.
15.00 ALUlt= 1.80
C-83
-------
RES-30-DA(90), DA/PM
MODEL BOILER 7
BOILER ROUTINE RES1
S02 ROUTINE= DAC
4-07-82
PM ROUTINE'
FLOW FLAG"
S STAR = 0.628
S DSTAR = 19.858
P DSTAR = 1.035
BOILER SPECIFICATIONS
Q= 30.0 FLU= 9007. CF =
FUEL SPECIFICATIONS
FC= 4.85 H= 18500. S=
PM EMISSIONS
UNC= 0.230 CTR= 0.100 EFF= 56.50 CRF= 0.1315
S02 EMISSIONS
UNC= 3.210 CTR= 0.321 EFF= 90.00 CRF= 0.1315
COST RATES
ELEC= 0.0258 UTR= 0.15 LIME- 35.00 ALS= 8.00 SASH= 90.00 SLDG-- 15.00 SWD=
0.550 CRF= 0.1313
3.00 A= 0.10
15.00 ALUD" 1.80
ITEM
EQUP
INST
BOILER
115427.
185897.
NOX CONTROL
0.
0.
S02 CONTROL
0.
0.
PM CONTROL
0.
0.
TOTAL
115427.
185897.
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SW
SLD6
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
301324.
99259.
400583.
80117.
480699.
2000.
94718.
577417.
52584.
34207.
15980.
20522.
0.
21998.
0.
0.
0.
0.
0.
0.
0.
0.
0.
701019.
846311.
47832.
894142.
63212.
9472.
19228.
91912.
986054.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
467849.
0.
0.
0.
786016.
0.
46296.
832312.
105000.
21000.
37428.
0.
3025.
0.
204.
0.
12034.
0.
713.
0.
5780.
0.
0.
0.
185184.
73991.
259175.
103361.
4630.
31441.
139431.
398607.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
769172.
99259.
400583.
80117.
1266714.
2000.
141014.
1409728.
157584.
55207.
53408.
20522.
3025.
21998.
204.
0.
12034.
0.
713.
0.
5780.
0.
0.
701019.
1031495.
121823.
1153317.
166573.
14101.
50669.
231343.
1384660.
C-84
-------
RES-30-DA(90), ESP
MODEL BOILER 8
BOILER ROUTINE RES1
502 ROUTINE= DA
4-07-82
PM ROUTINE= ESPO
FLOW FLAG:
S STAR (METRIC)=
S DSTAR (METRIC)'
0.628
19.858
SPECIFIC COLLECTOR AREA(SQ FT/1000 ACFM>= 400.0
TOTAL PLATE AREA (SO FT)= 3602.7
BOILER SPECIFICATIONS
Q= ' 30.0 FLW= 9007. CF= 0.550 CRF* 0.1315
FUEL SPECIFICATIONS
FC= 4.85 H= 18500. S= 3.00 A= 0.10
PM EMISSIONS
UNC= 0.230 CTR= 0.050 EFF= 78.30 CRF= 0.1315
S02 EMISSIONS
UNC= 3.210 CTR= 0.321 EFF= 90.00 CRF= 0.1315
COST RATES
ELEC= 0.0258 UTR= 0.15 LIME= 35.00 ALS= 8.00 SASH= 90.00 SLDG= 15.00 SUD=
15.00 ALUD= 1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLDG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOILER
115427.
185897.
301324.
99259.
400583.
80117.
480699.
2000.
94718.
577417.
52584.
34207.
15980.
20522.
0.
21998.
0.
0.
0.
0.
0.
0.
0.
0.
0.
701019.
846311.
47832.
894142.
63212.
9472.
19228.
91912.
986054.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
375895.
0.
0.
0.
649924.
0.
44044.
693968.
105000.
21000.
30072.
0.
1456.
0.
204.
0.
11951.
0.
713.
0.
5780.
0.
0.
0.
176176.
72079.
248254.
85465.
4404.
25997,
115866.
364121.
PM CONTROL
112477.
131599.
244076.
81521.
325597.
65119.
390717.
0.
5205.
395922.
8331.
0.
9335.
1777.
0.
1356.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
20819.
7560.
28379.
51379.
520.
15629.
67528.
95907.
TOTAL
227904.
317496.
921294.
180780.
726180.
145236.
1521339.
2000.
143967.
1667305.
165915.
55207.
55386.
22320.
14S6.
23354.
204.
0.
11951.
0.
713.
0.
5780.
0.
0.
701019.
1043306.
127470.
1170774.
200056.
14397.
60854.
275306.
1446081.
C-85
-------
RES-150-Unc, Unc
MODEL BOILER 9
BOILER ROUTINE RN61
502 ROUTINE?
4-07-82
PM ROUTINE=
FLOU FLAG=
BOILER SPECIFICATIONS
Q= 150.0 FLU- 45034. CF= 0.550 CRF= 0.1315
FUEL SPECIFICATIONS
FC= 4.85 H= 18500. S= 3.00 A= 0.10
PM EMISSIONS
UNC= 0.230 CTR = 0.050 EFF= 78.30 CRF= 0.1315
S02 EMISSIONS
UNC» CTR= EFF* CRF =
COST RATES
ELEC= 0.0258 UTR= 0.15 LIHE= 35.00 ALS= 8.00 SASH= 90.00 SLDO- 15.00 SUD= IS.00 ALUD=
1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
BOILER
773660.
339734.
1113393.
357298.
1470690.
294138.
1764827.
2000.
359108.
2125934.
105825.
34207.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TOTAL
773660.
339734.
1113393.
357298.
1470690.
294138.
1764827.
2000.
359108.
2125934.
105825.
34207.
MANT
SP
ELEC
UC
UTR
SU
SLDG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
34329.
48068.
0.
46105.
0.
0.
0.
0.
0..
0.
0.
0.
0.
3505095.
3773628.
89579.
3863206.
232075.
35911.
70593.
338579.
4201784.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
34329.
48068.
0.
46105.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3505095.
3773628.
89579.
3863206.
232075.
35911.
70593.
338579.
4201784.
C-86
-------
RES-150-Unc, ESP
MODEL BOILER 10
BOILER ROUTINE RNG1
502 ROUTINE?
4-07-82
PM ROUTINE*
ESPO
FLOW FLAG=
SPECIFIC COLLECTOR AREA(SQ FT/1000 ACFM>= 400.0
TOTAL PLATE AREA CSQ FT> = 18013.7
BOILER SPECIFICATIONS
Q= 150.0 FLU= 45034. CF=
FUEL SPECIFICATIONS
FC= 4.85 H= 18500. S=
PM EMISSIONS
UNC= 0.230 CTR= 0.050 EFF=
S02 EMtSSIONS
UNC« CTR= EFF=
COST RATES
0.0258 UTR= 0.15 LIME* 35.00 ALS= 8.00 SASH= 90.00 SLDG=
10
0.550 CRF- 0.1315
3.00 A= 0.10
78.30 CRF= 0.1315
CRF=
15.00 SWD= 15.00 ALUD= 1.80
COST SUMMARY TABLE - RUN NO.
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLOG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
BOZLER
773660.
339734.
1113393.
357298.
1470690.
294138.
1764827.
2000.
359108.
2125934.
105825.
34207.
34329.
48068.
0.
46105.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3505095.
3773628.
89579.
3863206.
232075.
35911.
70593.
338579.
4201784.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
PM CONTROL
311087.
342196.
653282.
218196.
871479.
174296.
1045774.
0.
9659.
1055433.
16281,
0.
10766.
4811.
0.
6780.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
38637.
13167.
51805.
137519.
966.
41831.
180316.
232121.
TOTAL
1084746.
681930.
1766675.
575494.
2342168.
468434.
2810601.
2000.
368767.
3181367.
122106.
34207.
45094.
52878.
0.
52885.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3505095.
3812265.
102746.
3915010.
369594.
36877.
112424.
518895.
4433904.
C-87
-------
MODEL BOILER 11
RES-150-DA(50), DA/PM
4-07-82
BOILER ROUTINE RN61
S02 ROUTINE" DAC
PM ROUTINE"
FLOU FLAO=
S STAR (METRIC)"
S DSTAR (METRIC)"
P DSTAR
-------
RES-150-DA(50), ESP
MODEL BOILER 12
BOILER ROUTINE RNG1
S02 ROUTINE" DA
4-07-82
PK ROUTINE=
ESPO
FLOW FLAG=
S STAR = 0.349
S DSTAR (METRIC)* S5.160
SPECIFIC COLLECTOR AREA(SQ FT/tOOO ACFM>= 400.0
TOTAL PLATE AREA (SO FT)= 18013.7
BOILER SPECIFICATIONS
Q» 150.0 FLW= 45034. CF= 0.550 CRF- 0.1315
FUEL SPECIFICATIONS
FC- 4.85 H* 13500. S«= 3.00 A= 0.10
PM EMISSIONS
UNC= 0.230 CTR» 0.050 EFF- 78.30 CRF= 0.1315
S02 EMISSIONS
UNC= 3.210 CTR- 1.610 EFF= 50.00 CRF= 0.1315
COST RATES
ELEC« 0.0258 UTR= 0.15 LIME=> 35.00 ALS= 8.00 SASH= 90.00 SLDG= 15.00 SMD-
COST SUMMARY TABLE - RUN NO. 12
ITEM BOILER NOX CONTROL S02 CONTROL PM CONTROL TOTAL
15.00 ALUD=
1.80
EQUP
INST
TD
773660.
339734.
1113393.
0.
0.
0.
0.
0.
688805.
311087.
342196.
653282.
1084746.
681930.
2455480.
I NO
TDI
CONT
TK
LAND
UC
TOTL
DL
SPRV
MANT
SP
ELEC
UC
WTR
SU
SLOG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
CR
UCC
MISC
TCC
TOTL
357298.
1470690.
294138.
1764827.
2000.
359108.
2125934.
105825.
34207.
34329.
48068.
0.
46105.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3505095.
3773628.
89579.
3863206.
232075.
35911.
70593.
338579.
4201784.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1113031.
0.
60832.
1173862.
105000.
21000.
55104.
0.
7016.
0.
747.
0.
33671.
0.
4454.
0.
16335.
0.
0.
0.
243326.
78587.
321914.
146364.
6083.
44521.
196968.
518881.
218196.
871479.
174296.
1045774.
0.
9659.
1055433.
16281.
0.
10766.
4811.
0.
6780.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
38637.
13167.
51805.
137519.
966.
41831.
180316.
232121.
575494.
2342168.
468434.
3923632.
2000.
429598.
4355229.
227106.
55207.
100199.
52878.
7016.
52885.
747.
0.
33671.
0.
4454.
0.
16335.
0.
0.
3505095.
4055591.
181333.
4236923.
515958.
42960.
156945.
715863.
4952785.
C-89
-------
RES-150-DA(90), DA/PM
MODEL BOILER 13
BOILER ROUTINE RNG1
S02 ROUTINE* DAC
4-07-82
PM ROUTINE'
FLOW FLAG=
S STAR = 0.628
S DSTAR (METRIC)* 99.289
P DSTAR (METRIC)= S.175
BOILER SPECIFICATIONS
Q=- 150.0 FLU= 45034. CF = 0.550 CRF= 0.1315
FUEL SPECIFICATIONS
FC= < 4.85 H= 18500. S= 3.00 A= 0.10
PM EMISSIONS
UNC= 0.230 CTR= 0.100 EFF= 56.50 CRF= 0.1315
S02 EMISSIONS
UNC= 3.210 CTR= 0.321 EFF= 90.00 CRF= 0.1315
COST RATES
ELEC= 0.0253 UTR= 0.15 LIME= 35.00 ALS= 8.00 SASH=
90.00 SLDO= 15.00 SWD= 15.00 ALMD=
1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
we
TOTL
DL
3PRV
MANT
SP
ELEC
UC
UTR
SU
SLDG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOM
OH
TOTL
BOILER
773660.
339734.
1113393.
357298.
1470690.
294138.
1764827.
2000.
359108.
2125934.
105825.
34207.
34329.
48063.
0.
46105.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3505095.
3773628.
89579.
3863206.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
502 CONTROL
0.
0.
881329.
0.
0.
0.
1397966.
0.
77227.
1475193.
105000.
21000.
70506.
0.
15126.
0.
806.
0.
61232.
0.
5710.
0.
29529.
0.
0.
0.
308910.
82592.
391502.
PM CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
TOTAL
773660.
339734.
1994722.
357298.
1470690.
294138.
3162793.
2000.
436335.
3601127.
210825.
55207.
104835.
48068.
15126.
46105.
806.
0.
61232.
0.
5710.
0.
29529.
0.
0.
3505095.
4082537.
172170.
4254707.
CR
UCC
MISC
TCC
TOTL
232075.
35911.
70593.
338579.
4201784.
0.
0.
0.
0.
0.
183833.
7723.
55919.
247474.
638975.
0.
0.
0.
0.
0.
415907.
43634.
126512.
586052.
4840759.
C-90
-------
RES-150-DA(90), ESP
MODEL BOILER 14
BOILER ROUTINE RN61
S02 ROUTINE* DA
4-07-82
PM ROUTINE* ESPO
FLOW FLAG*
3 STAR (METRIC)* 0.628
S DSTAR (HETRIC)= 99.289
SPECIFIC COLLECTOR AREA(SO FT/1000 ACFM)- 400.0
TOTAL PLATE AREA (SO FT)= 18013.7
BOILER SPECIFICATIONS
Q= 150.0 FLH= 45034. CF- 0.550 CRF= 0.1315
FUEL SPECIFICATIONS
FC» 4.85 H- 18500. S= 3.00 A= 0.10
PM EMISSIONS
UNC- 0.230 CTR= 0.050 EFF= 78.30 CRF- 0.1315
802 EMISSIONS
UNC= 3.210 CTR= 0.321 EFF= 90.00 CRF= 0.1315
COST RATES
ELEC* 0.0258 WTR- 0.15 LIME= 35.00 ALS= 8.00 SASH- 90.00 SLDQ= 15.00 SHD=
IS.00 ALUD=
1.80
ITEM
EQUP
INST
TD
IND
TDI
CONT
TK
LAND
UC
TOTL
BOILER
773660.
339734.
1113393.
357298.
1470690.
294138.
1764827.
2000.
359108.
2125934.
NOX CONTROL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
S02 CONTROL
0.
0.
771121.
0.
0.
0.
1264459.
0.
73358.
1337817.
PM CONTROL
311087.
342196.
653282.
218196.
871479.
174296.
1045774.
0.
9659.
1055433.
TOTAL
1084746.
681930.
2557796.
575494.
2342168.
468434.
4075060.
2000.
442125.
4519184.
DL
SPRV
MANT
SP
ELEC
UC
UTR
SU
SLDG
LU
SC
LMS
LIME
NH3
LYE
FUEL
TDOH
OH
TOTL
CR
UCC
MISC
TCC
TOTL
105825.
34207.
34329.
48068.
0.
46105.
0.
0.
0.
0.
0.
0.
0.
0.
0.
350509S.
3773628.
89579.
3863206.
23207S.
35911.
70593.
338679,
4201784.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
105000.
21000.
63290.
0.
7278.
0.
806.
0.
60820.
0.
5710.
0.
29529.
0.
0.
0.
293434.
80715.
374149.
166276.
7336.
50578.
224190.
598339.
16281.
0.
10766.
4811.
0.
6780.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
38637.
13167.
51805.
137519.
966.
41831.
180316.
232121.
227106.
55207.
108384.
52878.
7278.
52885.
806.
0.
60820.
0.
5710.
0.
29529.
0.
0.
3505095.
4105698.
183461.
4289159.
535870.
44213.
163002.
743085.
5032243.
C-91
-------
APPENDIX D
COST ESCALATION METHODS
Two cost escalation methods are presented for converting the costs
presented in this report (mid-1978 $) to a later year basis. Both methods
account for the general inflation trend in equipment and labor.
It is important to differentiate between nominal and real interest
rates when using these methods. The nominal interest rate is the actual
cost of capital without adjustment for inflation. This is the contract rate
paid to acquire capital to construct a control device. The real interest
rate is the nominal rate adjusted for inflation. This interest rate is the
rate paid for capital in constant dollars. For example, if the nominal
interest rate was 16 percent and the general inflation rate was 10 percent
then the real interest rate would be 6 percent.
The two escalation methods differ in where the cost escalation to
current dollars occurs in the calculations. In the real interest method,
all costing is done in constant 1978 dollars using the real interest rate.
Then, the resulting annualized cost-is brought up to current dollars using
a factor to account for inflation. In the nominal interest method, the
individual costs of equipment and labor are each brought up to current
dollars using inflation factors first. Then, a nominal interest rate is
t
used to calculate the annualized costs. The result is the current dollar
cost in the first year. Each subsequent year uses the same capital cost
charge but must have the operation and maintenance costs adjusted to that
year. Thus, the second method has the disadvantage of not giving a constant
dollar level cost for the life of the project. Instead, it tends to "front
end load" the cost since the capital charge component of the annualized
costs in constant dollars goes down each year.
D-l
-------
To convert costs to a later year basis, the following escalation
factors may be used:
Basis Escalation Factor
mid-1979 1.09
mid-1980 1.19
mid-1981 1.37
mid-1982 1.44
Economic Indicators. Chemical Engineering. 8J5(21):7, September 25, 1978;
86(20):7, September 24, 1979; 87(21):7, October 20, 1980; 88(21):7,
October 19, 1981; 89(9):7, August , 1982; 90( ):7.
D-2
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing}
1. REPORT NO.
EPA-450/3/82-021
3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
Costs of Sulfur Dioxide, Particulate Matter, and
Nitrogen Oxide Controls on Fossil Fuel Fired Industrial
Boilers
5. REPORT DATE
August 1982
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Office of Air Quality Planning and Standards
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68-02-3058
12. SPONSORING AGENCY NAME AND ADDRESS
DAA for Air Quality Planning and Standards
Office of Air, Noise, and Radiation
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT
This report is a resource document for the development of Federal standards
of performance for control of sulfur dioxide, particulate matter and nitrogen
oxides emissions from new industrial boilers. It gives capital and annualized
costs for a variety of control technologies that can be applied to gas, oil, and
coal fired industrial boilers. In addition to control costs for 30, 75, 150, and
400 million Btu per hour size model boilers, cost algorithms and a computer
program are given in detail to allow for automated cost data development.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lOENTIFIERS/OPEN ENDED TERMS C. COS AT I Field/Group
Boilers, Industrial
Costs, Capital and Annualized
Air Pollution Control Costs
18. DISTRIBUTION STATEMENT
Unlimited
19. SECURITY CLASS (This Report)
Unclassified
21. NO. OF PAGES
245
20. SECURITY CLASS (Tliis page)
Unclassified
22. PRICE
SPA Form 2220—1 (R«v. 4-77) PREVIOUS EDITION is OBSOLETE
-------
|