United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park NC 27711
EPA-450/4-80-032
November 1980
Air
User's Manual for the
Plume Visibility
Model (PLUVUE)

-------
                                   EPA-450/4-80-032
User's  Manual for the Plume
  Visibility Model  (PLUVUE)
                     by
          Clark D. Johnson, Douglas A. Latimer,
          Robert W. Bergstrom and Henry Hogo

              Systems Applications, Inc.
                950 Northgate Drive
               San Rafael, California
              Contract No. 68-02-0337
                  Prepared for

        U.S. ENVIRONMENTAL PROTECTION AGENCY
            Office of Air, Noise, and Radiation
        Office of Air Quality Planning and Standards
        Research Triangle Park, North Carolina 27711

                 November 1980

-------
This report is issued by the Environmental Protection Agency to report technical data of
interest to a limited number of readers. Copies are available - in limited quantities - from
the Library Services Office  (MD-35), U.S. Environmental Protection Agency. Research
Triangle Park, North Carolina 27711; or,  for a fee, from the National Technical Infor-
mation Service, 5285 Port Royal Road, Springfield, Virginia 22161.
                        Publication No. EPA-450/4-80-032
                                        11

-------
                              Preface
     This publication contains information on and the computer programs
for the Plume Visibility Model (PLUVUE) which is based on Gaussian
dispersion assumptions, state-of-the-art chemical and physical reactions
and transformations of precursors in the atmosphere, light scattering
and absorption characteristics of the resultant aerosol and radiative
transfer through the aerosol along different lines of sight.  The model
is applicable to assessing visibility impairment due to pollutants
emitted from well-defined point sources.  The Plume Visibility Model
(PLUVUEI is one of the atmospheric dispersion models on the User's
Network for Applied Modeling of Air Pollution (UNAMAP)  system.  The
UNAMAP system may be purchased on magnetic tape from NTIS for use on a
user's computer system.  For information on UNAMAP contact:  Chief,
Environmental Operations Branch,  Meteorology and Assessment Division,
(HD-8QL U.S. Environmental  Protection Agency,  Research Triangle Park,
NC  27711.


     Although attempts are made to thoroughly check out computer programs
with a wide variety of input data, errors are found occasionally.  In
case there ts a need to correct,  revise or update this  model, revisions
will be distributed in the same manner as this  report.   Revisions may be
obtained as they are issued by completing the mailing form on page V.  A
user can be assured that the latest version of the Plume Visibility
Model C.PLUVUE] is on the UNAMAP system.

     Comments and suggestions regarding this publication should be
directed to:  Chief, Source Receptor Analysis Branch, Monitoring and
Data Analysis Division (MD-14), EPA, Research Triangle Park, NC  27711.
However, technical questions regarding execution of the model may be
handled by telephone call to the  Chief, Modeling Support Section, Source
Receptor Analysis Branch in Durham, NC  at 919-541-5335 or, using FTS,
629-5335.

-------
                         Acknowledgements


     Although many individuals assisted with time and energy in the
preparation  and review of this manual, credit for bringing it to fruition
belongs to the original and final  project officers, Steven L.  Eigsti  and
James L. Dicke, respectively.

     The efforts of the authors of the manual, Clark D.  Johnson, Douglas
A. Latimer, Robert W. Bergstrom and Henry Hogo, under Contract No. 68-02-3337
with Systems Applications, Inc., San Rafael, California, are gratefully
acknowledged.
                                  IV

-------
Chief, Environmental Operations Branch
Meteorology and Assessment Division (MD-80)
U.S. Environmental Protection Agency
Research Triangle Park, NC  27711

     I would like to receive future revisions to the UACA'A Mowuo£
tfo V&l^Wbty ftodaJt
Name

Address
                                     ZIP
Telephone CDpttonal}_

-------
                                 CONTENTS
List of Illustrations	     ix
Li st of Tables	     *i
List of Exhibits	     xi

1        INTRODUCTION	     1
1.1      Overview of the Model	     2
1.2      Limitations of the Model	     5

2        TECHNICAL OVERVIEW	     9
2.1      Pollutant Transport, Diffusion, and Removal	     9
2.1.1    Initial Dilution in a Buoyant Plume	    11
2.1.2    Plume Rise	    13
2.1.3    Gaussian Plume Diffusion	    14
2.1.4    Observer-Plume Orientation	    16
2.1.5    Limited Mixing	    16
2.1.6    Surface Deposition	    18
2.1.7    Power Law Wind Profile Extrapolation
         of Surface Winds	    19
2.2      Atmospheric Chemistry	    19
2.2.1    Conversion of NO to N02	    21
2.2.2    Conversion of S02 to S04=	    24
2.3      Aerosol Size Distribution	    33
2.4      Atmospheric Optics	    34
2.4.1    Calculation of the Scattering and
         Absorption Properties	    34
2.4.2    Calculation of Light Intensity	    35
2.5      Geometry of Plume, Observer,  and Sun	    40
2.6      Quantifying Visibility Impairment	    48

3        PLUVUE INPUT DATA	    51

4        PLUVUE OUTPUT	    69

5        PLUVUE PROCEDURE FLOW CHART	    99
                                   Vtt

-------
APPENDIXES
A        SAMPLE PLUVUE RUNS	    125
B        PLUVUE SOURCE CODE	    257
C        USER'S GUIDE TO VISPLOT:   GRAPHICS OUTPUT FOR PLUVUE	    359
D        VISPLOT SOURCE CODE	   371
GLOSSARY	   411
 REFERENCES	   415
                                   vm

-------
                                  TABLES
 1    Data Requirements for PLUVUE	     53

C-l   Input Card Formats	    360
                                 EXHIBITS
 1    Emissions Source Data Table	./.     70

 2    Meteorological  and Ambient Air  Quality Data	     71

 3    Observer-Plume-Sun Geometry for Observer-Based
      Calculations	     73

 4    Background Scattering and  Extinction  Coefficients	     74

 5    Table of Initial  Plume Rise and Dilution  and  Nitrogen
      Dioxide Formation	     75

 6    Plume Concentrations of Aerosol and Gases	     76

 7    Visual Effects  Table for Horizontal Sight Paths  with  a
      Cl ear Sky Background	     79

 8    Observer-Based  Calculation of Visual  Effects  for
      Horizontal  Views  through the Plume with a Clear
      Sky Background	     80

 9    Plume-Based Calculation of visual Effects for
      Nonhorizontal Views through the Plume with a
      Clear'Sky Background	.'/.	     81
                                   XI

-------
10    Observer-Based Calculation of Visual  Effects for
      Nonhorizontal  Sight Paths through the Plume	     82

11    Plume-Based Calculations for Visual  Effects for
      Horizontal  Views Perpendicular to the Plume, with
      White,  Gray, and Black Backgrounds	     84

12    Observer-Based Calculations of Horizontal  Views
      through the Plume, with White, Gray,  and Black
      Background  Objects	     86

13    Plume-Based Calculations of Visual Effects for Lines of
      Sight Along the Axis of the Plume	     87

14    Observer-Based Calculations of Visual Effects for Views
      Close to the PIume Trajectory	     89

15    Conversion  Rates for Secondary Aerosol Formation
      Calculated  by the OH  Model for a Plume Parcel 240 km
      from the Source at the Line of Observation	     91

16    Verification of Data for Plotting Results  of Observer-
      Based and Plume-Based Calculations	     92

17    Binary FORTRAN White Statements that Generate Data Files
      to Be Used  for Plotting Results	     97

A-l   Input Data  File for Observer-Based Calculations	    126

A-2   Beginning of Printed Results of PLUVUE Observer-
      Based Calcul ations	    128

A-3   Printed Results of Observer-Based PLUVUE Calculations
      for Observed Points at 100 and 120 km from the
      Emissions Source	    135

A-4   The Results of the Observer-Based PLUVUE Runs at Points
      220 and 240 km from the Emissions Source	    139

A-5   Input Data File Used for Second Example of a PLUVUE Run	    151

A-6   Beginning of Output for Plume-Based PLUVUE Run	    152

A-7   Printout from Plume-Based PLUVUE Calculations for
      Observed Points at 100 nd 120 km from the Source	    178

-------
                               ILLUSTRATIONS
 1    Schematic Logic Flow Diagram of the Plume
      Visibility Model	    10

 2    Gaussian Plume Visual Impact Model:
      Observer-Plume Geometry	    17

 3    Sensitivity of NO-to-N02 Conversion in Power Plant
      Plumes to the Rate of Plume Dilution,  Background Ozone
      Concentration, and Solar Radiation	    25

 4    Comparison of Measured N02/NOX Mole Ratios in the Plume
      Centerline Downwind of a Coal-Fired Power Plant with
      Computer-Calculated Values Using Standard Pasquill
      and Fitted 0yo2	    26

 5    Calculated Time-Dependence of Sulfate  Formation in the
      Center of Plumes from a 1600 MWE Coal-Fired  Power Plant,
      2 m/s Winds, Neutral and Stable Conditions	    31

 6    Light Scattering and Absorption in the Atmosphere	    37

 7    Geometries for Plume-Based Calculations for  Horizontal
      Views with a Sky Background	    41

 8    Geometries for Plume-Based Calculations for  Nonhorizontal
      Views with a Sky Background	    43

 9    Geometries for Plume-Based Calculations for  Viewing of
      White, Gray, and Black Objects for Horizontal  Views
      Perpendicular to the Plume	    45

10 ^   Geometries for Plume-Based Calculations for  Horizontal
      Views Along the Axis of the Plume	    46

11    Geometry Used for Observer-Based Calculations for
      Nonhorizontal Views Through the Plume  for Clear-Sky
      Backgrounds	    47
                                  tx

-------
12    Plan View of Geometry for Observer-Based  Calculations  for
      Views along the Plume	    49

13    Schematic Diagram of Altitudes  Used  to Determine  Plume
      Contribution of Gases and Aerosols	    77

14    Schematic Diagram of Plume-Based  "Along Plume"
      Optics Calculation	    88

15    PLUVUE Logic Flow Chart	    100

-------
A-8   Printout from Plume-Based PLUVUE Calculations for
      Observed Points at 220 and 240 km from the Source	   211

B-l   PLUVUE Source Code	   257

C-l   Example of an Input Card Deck	   364

C-2   This Is a Test Plot	   365

C-3   Example of Line Printer Output	   366
                                 xiii

-------
                              1    INTRODUCTION
     With the Clean Air Act Amendments of 1977, Congress declared  as  a
national goal the protection and restoration of visibility  in national
parks and wilderness areas that have been designated as class I areas.
The implementation of a regulatory program designed to achieve this goal
requires both a modeling capability, with which the visual  impact  of  emis-
sions from new or existing sources can be predicted, and a measurement
capability to measure existing impacts and to monitor progress toward the
national goal.

     The purpose of this document is to provide documentation of a plume
visibility model, PLUVUE, which was designed to predict the impacts of a
single emissions source on visibility in class I areas.  This model is a
refinement of the plume model developed by Systems Applications, Incor-
porated (SAI) for the U.S. Environmental Protection Agency  (EPA) in
1978.  Refinements of the 1978 model are described in this volume; how-
ever, the reader should refer to an earlier report (Latimer et al., 1978)
for additional details on the model and to the EPA's report to Congress on
visibility (EPA, 1979).

     In addition, this user's manual and the visibility model should  be
used in conjunction with the other technical guidance documents in this
series.  In particular, the document entitled, "Workbook for Estimating
Visibility Impairment," EPA-450/4-80-031, should be consulted before  the
plume visibility model is applied.

-------
1.1   OVERVIEW OF THE MODEL

     The design objective of the model is to calculate visual range reduc-
tion and atmospheric discoloration caused by plumes consisting of primary
particulates, nitrogen oxides, and sulfur oxides emitted by  a single emis-
sions source.  Primary emissions of sulfur dioxide ($02) and nitric oxide
(NO) do not scatter or absorb light and therefore do not cause visibility
impairment.  However, these emissions are converted in the atmosphere to
secondary species that do scatter or absorb light and have the potential
to cause visibility impairment.  S02 emissions are converted to  sulfate
(SO^3) aerosol, such as sulfuric acid, ammonium sulfate, and acid ammonium
sulfates.  These aerosols are generally formed or grow to a  size (0.1 to
1.0  un) that is effective in scattering light.  Nitric oxide (NO) emis-
sions are converted to nitrogen dioxide (N02) gas, which is  effective in
absorbing light.  In turn, N02 is converted to nitric acid vapor (HN03),
which neither absorbs nor scatters light.  In some situations, nitric acid
may  form ammonium nitrate or organic nitrate aerosol, which  scatters
light.  However, in many nonurban plumes nitrate probably remains as HNOg
vapor without visual effects.  Eventually, all primary particulates,
secondary aerosol,  and gases in a plume are removed from the atmosphere  as
a  result of  surface deposition and precipitation scavenging.  PLUVUE  is
designed to  predict the transport, atmospheric diffusion, chemical  conver-
sion, optical effects, and surface deposition of point-source emissions.

     The model  uses a Gaussian formulation for transport  and dispersion.
The  spectral radiance I(X) (i.e., the  intensity of  light)  at 39  visible
wavelengths  (0.36 < X < 0.75  un)  is calculated for views with and without
the  plume; the  changes in the spectrum  are used to calculate various
parameters that predict the perceptibility of the plume  and  contrast
 reduction  caused  by the  plume (see Latimer et al.,  1978).  The  four
 key perception  parameters for predicting visual  impact are:

-------
     >  Reduction in visual range.
     >  Contrast of the plume against a viewing background  at the
        0.55 un wavelength.
     >  The blue-red ratio (color shift) of the plume.
     >  The color change perception parameter AE(L*a*b*).

     PLUVUE is designed to perform plume optics calculations in two
modes.  In the plume-based mode, the visual effects are calculated for  a
variety of lines of sight and observer locations relative to the plume
parcel; in the observer-based mode, the observer position is fixed and
visual effects are calculated for the specific geometry defined by the
positions of the observer, plume, and sun.  For either mode, the model
requires the user to select up to 16 different distances downwind of the
emissions source.  These distances determine the locations of the optics
calculations along the plume trajectory.

     For the plume-based calculations, the distance downwind of the emis-
sions source is the main reference.  At each distance, calculations are
done for a range of:

     >  Scattering angles (0).
     >  Azimuthal angles (a) between the line of sight and the
        plume center!ine.
     >  Elevation angles (0) of the line of sight.
     >  Distances from the observer to the plume centerline (rp)
        and from the observer to the background viewing object
        (terrain) behind the plume (rQ).

     For the observer-based calculations, both the observer posi-
tion and the direction of the plume trajectory are fixed by user-
supplied specifications appropriate to the given application:

     >  Wind direction
          *
     >  Location of the source

-------
     >  Location of the observer
     >.  Date and time.

These specifications allow the specific plume-observer geometry  (e,  a,  e,
rp) to be calculated for each downwind distance on the plume trajectory.
Calculations are performed for lines of sight emanating from the
observer's location and through the plume center at various downwind
distances.  Each line of sight is matched with its particular set of these
specifications.

     For either plume-based or observer-based calculations, there are four
types of calculations that can be performed at each downwind distance.
The first calculates the effects for horizontal lines of  sight with  a
clear sky background.  Plume-based calculations include a range  of scat-
tering angles  (0),  azimuthal  angles between the line of sight and the
plume centerline (a), and observer-to-plume distances (rp).  The observer-
based computation uses the specific values of these variables for each
downwind point  appropriate for the given plume-observer geometry.

     The second type of calculation is for nonhorizontal  views of the
plume with a clear  sky background.  The plume-based calculations include  a
range of different  elevation  angles (B) for the line of sight in addition
to the three parameters varied in the horizontal view calculations.  The
observer-based  calculations  are done only once for the specific  angles  and
distances of each point of analysis along the plume trajectory.

     The third  type of calculation evaluates the effect of the plume on
horizontal views with white,  gray, and black viewing object  (terrain)
backgrounds with uniform  spectral reflectances of  1.0, 0.3,  and  0.0,
respectively.   The  plume-based calculations are done for  the range of
scattering angles  (0), observer-to-plume distances  (rp) and  observer-to-
background object distances  (rQ)  assuming the  line of sight  is perpen-
dicular  to the plume  centerline  (a= 90°).  However,  in the  observer-based
calculations,  the values  of  the  angles  and distances for  the specific
geometry are used.

-------
     The fourth type of calculation is for views  looking  down  the  center-
line of the plume toward the source.  The plume-based calculations  con-
sider the range of plume segment lengths (Ax) along the plume.  These  seg-
ments are determined by the analysis points (up to 16) used to  specify the
plume trajectory.  The calculations are also done for a range  of distances
from the observer to the plume (rp) for each different plume segment.   The
observer-based calculations are much simpler for this case because  all  the
distances and angles are specified.  The observer-based calculations
assume that the azimuthal angle between the observer's line of  sight and
the plume centerline is small but not zero.  The observer based calcula-
tions are done for white, gray, and black object (terrain) viewing  back-
grounds, as well as for the sky viewing background.

1.2   LIMITATIONS OF THE MODEL

     An effort is currently underway to compare PLUVUE model calculations
with field measurements near one emissions source in the Southwest.  The
results of this study are not yet available, so it is difficult to  assess
the accuracy and limitations of the model,  even for this one applica-
tion.  However, it is clear that there are significant uncertainties in
the model, primarily because it is based on the approximate Gaussian
formulation.  A shibboleth is that plume dispersion models are  accurate
only within a factor of two for near-source applications (within 50 km of
a source).  Since PLUVUE is a Gaussian model,  such limitations may  also
apply to visibility model calculations.   However, we should point out that
visual impacts are instantaneous phenomena, not 3-hour,  24-hour, or annual
averages.  Also, visual impacts are proportional to line-of-sight inte-
grals of plume centerline N02 and aerosol  concentrations,  not to ground-
level concentrations at a point.

     For applications to distant class I areas (more than  50 km from the
emissions source), the model is undoubtedly less accurate  because of meso-
scale wind speed, wind direction, and stability variations.  Thus,  the  use
of a Gaussian-based model for downwind distances greater than 50 km to
predict visual effects is probably a conservative approach (i.e., it over-

-------
estimates impacts); however, this has not yet been demonstrated conclus-
ively.  Visual impacts for horizontal lines of sight are inversely propor-
tional to the vertical extent of plume mixing.  This vertical extent of
plume mixing is defined by the vertical plume dispersion parameter (o^
and, at farther downwind distances, by the mixing depth.  Thus, errors in
predicting vertical plume dimensions will carry throughout the calcula-
tions of plume visibility impacts.  However, until field measurements of
mesoscale plume transport and diffusion are carried out, and until better
models based on these data are developed and verified, we do not  know of a
better approach to modeling plume dispersion for the purposes of  visi-
bility modeling than that provided  in PLUVUE.

     PLUVUE dispersion calculations are based on the standard  Pasquill-
Gifford a  and a  values.  However, the PLUVUE user has  the  option  to
supply a , a  values based on measurements or other a  ,  a   parameter-
        y   z                                        y   z
izations, if these are demonstrated to be more anpropriate  for  a  qiven
application.

     Other  limitations are basic to the chemical mechanism used in PLUVUE
to  predict conversion of sulfur and nitrogen oxides.   Although this mecha-
nism  is  a reasonable approximation  for most  applications  in  nonurban
areas, it is not valid for applications in photochemical  (urban)  atmos-
pheres or for sources of significant  quantities of reactive  hydro-
carbons.  For such applications, photochemical plume models  or regional
models should be used.

      Other  approximations  are  used  in  the atmospheric  optics calcula-
tions.   These approximations are discussed in Latimer  et  al.  (1978).
These  approximations probably  do not  introduce significant errors in most
situations; however, this  has  not  been demonstrated yet.  Terrain viewing
backgrounds are  idealized  as white,  gray, and black objects.  The back-
ground atmosphere  is treated as two layers:  a homogeneous, surface mixed
 layer  and a relatively clean upper  atmosphere  layer.   Diffuse  radiation  is
approximated  using an analytical expression; errors in predicting diffuse
radiation intensities may  adversely affect the accuracy of  spectral  radi-

-------
ance calculations but not necessarily the accuracy of calculations of
plume contrast, color differences, and reduction in visual range.

     In PLUVUE, the calculated visual impact of a plume is quantified
using coloration, color difference, and contrast parameters that are
related to human visual perception.  However,  the relationships between
these optical parameters and the perceived scenic beauty of national  parks
and wilderness areas (which is the basic quality that the national visi-
bility goal  is designed to protect) are currently under study.

-------
                              TECHNICAL OVERVIEW
     This chapter briefly outlines the technical details of the plume
visibility model (PLUVUE).  Those interested in more detail should consult
Latimer et al. (1978).

     As shown schematically in figure 1, the modeling of visibility
impairment requires mathematical descriptions for the following physical
and chemical atmospheric processes in succession:

     >  Emissions.
     >  Atmospheric transport, diffusion, and removal.
     >  Chemical and physical  reactions and transformations of precursors
        in the atmosphere.
     >  Light scattering and absorption characteristics of the resultant
        aerosol.
     >  Radiative transfer through the aerosol  along different lines of
        sight.

     Because the visibility model is based on atmospheric dispersion and
chemistry models, the accuracy of the former depends on that of the lat-
ter.  We recognize that future improvements in  modeling dispersion—
particularly on the regional scale and in complex terrain, as well as
improvements in modeling secondary aerosol formation—will increase the
accuracy of visibility models.

2.1   POLLUTANT TRANSPORT, DIFFUSION, AND REMOVAL
                                 V
     There'are two scales that are of interest  in visibility impairment
calculations.  They require two different types of models:

-------
EMISSIONS QU.y.i.tJ,
                      PRECURSORS
                            POLLUTANT CONCENTRATIONS
                                    	X
POLLUTION
CONTROL
EQUIPMENT
AND SITING
EMISSIONS

•  PRIMARY
   PARTICIPATES

     (SOK. NO*.
PRIMARY PARTICULATE)
                                                 SECONDARY POLLUTANTS
                                                   (N02, SOJ, NOj)
                                                                  SCATTERING AMD ABSORPTION

                                                                    b
                                                                                                                         LIGHT INTENSITY
                                                                     sc.t'
                                                 hv
                                  r     T
                              ATMOSPHERIC CHEMISTRY

                               2ND + 02 * 2NO;

                                NO * 03 * N02 * 02
                                    N02 + hv
                        NO * 0
             GAS-TO-PARTiaE
             CONVERSION
                                        soz

                                        NO
.so;

• NOj
                        I
                                              LIQUID WATER j
                                              (aouos. WET I
                                              PLUMES. TOG) I
                                                                         TIME-DEPENDENT
                                                                   PARTICLE SIZE DISTRIBUTION
                                                                         n(r ,x,y,*,t)
                                                             PARTiaE GROWTH
                                                             •  COAGULATION

                                                             •  HYGROSCOPIC
                                                                GROWTH
                                                        I
                                                                                  LIGHT ABSORPTION
                                                                                  LIGHT SCATTERING
                                                              SCATTERING
                                                              DISTRIBUTION
                                                                                                        SOLAR FLUX
                                                                                                  SCATTERING
                                                                                                  ANGLE
                                                                                                            ATMOSPHERIC OPTICS
                                                                                        (LIGHT SCATTERED INTO
                                                                                        LINE OF SIGHT)
                                                                                                         (LIGHT REMOVED FROM
                                                                                                         LINE  OF SIGHT)
                                                                                 BACKGROUND
                                                                                 INTENSITY
                                                                                 (E.G.. BLUE
                                                                                 SKY. WHITE
                                                                                 CLOUD.
                                                                                 MOUNTAIN)
                                                                                                                           1
                                                                                                                  GEOMETRY OF
                                                                                                                  OBSERVER
                                                                                                                  AND PLUME
                                                                                                                   VISUAL
                                                                                                                   RANGE
                                                                                                                                   CONTRAST

                                                                                                                                   •  PLUNE

                                                                                                                                   •  HAZE
                                                                                                                                   •  OBJECT
                                                                                                                                          COLOR

                                                                                                                                          •  OMOW-
                                                                                                                                             TICITY

                                                                                                                                          •  HUNSELL
                                                                                                                                             NOTATION
                          Figure  1.     Schematic  logic  flow diagram  of the plume  visibility model.

-------
     >  A near-source plume model designed to predict  the  incre-
        mental impact of one emissions source (such as  a power
        plant or smelter).
     >  A regional model designed to predict, over time periods of
        several days, the impacts of several emissions  sources
        within a region whose spatial scale is in the  range of
        1000 km.

     Calculation of near-source visual impacts, which  is the design  objec-
tive of PLUVUE, requires a basic model that accurately predicts the  spa-
tial distribution of pollutants and the chemical conversion of NO to N02
and SOX and NOX to sulfates and nitrates.  The plume model must be capable
of handling the spatial scale from emissions at the source to at least  100
km downwind.  Because the regional-scale problem may be caused by the
long-range transport of pollutants over a spatial scale of 1000 km,  an  air
quality model is needed that can account for multiple sources and for
temporal variations in mixing heights, dispersion parameters, emission
rates, reaction rates, and wind speed and direction.  This second type  of
model, a regional visibility model, is beyond the scope of this user's
manual.  PLUVUE is a near-source plume visibility model.

     In the following subsections, we discuss atmospheric dispersion
modeling as it relates to the plume visibility model for the following
spatial scales:

     >  Initial dilution in a buoyant plume
     >  Gaussian plume diffusion
     >  Limitations on mixing.

2.1.1   Initial Dilution in a Buoyant Plume

     Modeling of the initial dilution of a plume from the top of the stack
          .*
to the point of final plume rise is important when modeling the conversion
of nitric oxide to nitrogen dioxide in a power plant plume because of the

                                11

-------
quick quenching of the thermal oxidation of NO.  The rate of this reaction
is second order with respect to NO concentrations; therefore, the rate  is
fastest in the initial stages of plume dilution.  It is also important  to
account for the initial dilution of buoyant releases because the rate of
dilution caused by the turbulent entrainment of ambient air by  a rising
plume parcel can be considerably greater than that indicated by diffusion
coefficients based on measurements for nonbuoyant releases (e.g.,
Pasquill-Gifford o ,  o).  Thus, initial plume dilution during  plume rise
should be taken into  account to calculate accurately both plume dilution
and atmospheric chemistry.

     Briggs (1969) suggested that the characteristic plume radius
increases linearly with the height of the plume above the stack and can be
represented as follows:

                           R  = 0.5 (Ah)    .                          (1)

Briggs described plume rise,  as a function of downwind distance (the "2/3
power  law"), as follows:

                         Ah -  1 A F1/3v2/3,,-1                           I9\
                         An =  l.o r   x   u       .                      (c)

For initial dilution, we can  assume that the plume is circular  in cross
section  and has a Gaussian profile.  We can also  assume that the radius of
the plume is the distance from the plume centerline to the point at which
the plume concentration  is 10 percent of the centerline concentration.
Thus,  we have

                  VyP = ZP = 2'15  V2'15  °z     •                (3)

The concentration of  a given  species at the centerline of the  plume can be
calculated  by  a modified Gaussian model that can  be represented as


                                                                       (4)
                                 12

-------
where V is the velocity of the parcel, which  has  a  horizontal  component
(the wind speed u) and a vertical component w, which  can  be  calculated by
differentiating equation (2).  Thus

                  w.£.fl.6F1/3u-1/3t-1/3     .                   (5)

With this formulation, time-dependent plume temperature and  NO concentra-
tions can be calculated for accurately predicting the thermal oxidation  of
NO during plume rise.

     Combining equations (1), (3), and (4), we can calculate the initial
dilution of plume material, after the plume has reached its final height,
as follows:
                                                                       (6)
                                   (Ah) u
     Thus, plume material is assumed to be at least as dilute as that
shown by equation (6).  For emissions sources having more than one stack,
it is assumed that there is an overlap of plumes from individual stacks.
For cases in which the initial dilution during plume rise is greater than
the standard Gaussian formula would predict at the downwind distance of
final plume rise, a virtual point-source offset is introduced so that
dilution at this distance is at least as much as that shown in equation
(6).

2.1.2   Plume Rise

     The final plume rise in PLUVUE is calculated using the modified plume
rise formulas of Briggs (1969, 1971, 1972):

For unstable or neutral atmospheric conditions, the downwind distance of
final plume rise is x^ =  3.5 x*,  where
                                 13

-------
                         14 F5/8, if F < 55 "mV3
                  x  =
                        1^34 F2/5, if F > 55 m4S"3

The final plume rise under these conditions is
                                                                      (7)
                       = 1.6 F1/3(3.5 x
                                                                       (8)
For stable atmospheric conditions, the downwind distance of final plume
                  -1/2
rise is Xf = TT u s    , where the stability parameter s is defined as
follows:-
                           s = g 39/3z T
                                        -1
                                                                       (9)
The plume rise for stable atmospheric conditions is
                       - minimum of <
                                     2.6(F/(u s)]
                                     c .1/4 -3/8
                                     5 F   s
                                                 1/3
                                                                      (10)
     The buoyancy flux (F) in the above equations is calculated on the
basis of the flue gas volumetric flow rate per stack (tf), flue gas and
ambient temperature in degrees Kelvin (T^^, T^^igpi.), and gravita-
tional acceleration (g), as follows:
                        = qV  M_ ^ambient    |
                            *  \     Tstack    /
                                                                      (11)
2.1.3   Gaussian Plume Diffusion

     After the plume has  achieved  its final height  (about  1  km  downwind),
plume concentrations for  uniform wind fields can be  adequately  predicted
using a Gaussian model if the wind  speed  u  at  plume  height H (hs  +  Ah)  and
                                 14

-------
the rate of diffusion are known for the particular situation so that dif-
fusion coefficients (a , a ) can be selected:
             X =
                   CJ a u
                    y z
              exp
                        + exp
                                                          (12)
Equation (12) is appropriate for a conservative species and can be modi-
fied to be appropriate for a nonconservative species by changing the
source term Q.

     It is necessary for calculating plume visual  impact to integrate,
along the line of sight, the plume extinction coefficient,  the magnitude
of which depends on primary and secondary particulate and nitrogen dioxide
concentrations.   Equation (12)  can be integrated [Ensor, Sparks, and Pilat
(1973)] in the cross-wind direction y, from y = -°° to y = +»,  to obtain
the optical  thickness of the plume:
                 + 00
py
                     Jext
               dy =
                                  Q'(x)
exp
                                         + exp
                                                       ,   (13)
where bext is the incremental  increase in  extinction  coefficient  in  the
plume and Q1  is the flux of the plume extinction  coefficient  over the
entire plume  cross section at  downwind distance x.   In  the  vertical  direc-
tion z, .from  z = 0 to z = +»,  the plume optical thickness  is
                 CO
              •/
        b    dz =
pz  J    ext
                     Q'(x)
                              exp
                                15
t
      ft)
21
              (14)

-------
2.1.4   Observer-Plume Orientation

     The magnitude of the visual  impact of a plume depends on the orienta-
tion of the observer with respect to the plume because the plume optical
thickness will  vary depending on  this orientation.  Figure 2 shows plan
and elevation views of an observer and a plume and indicates that the
               >v
sight path distance through the constituents of the plume is a function of
angles a and 3.  The optical  thickness for most combinations of angles  a
and 3 can be approximated as  follows:
         V
                                                       1 /?
Figure 2 suggests that plume optical thickness is greater for horizontal
sight paths than vertical ones, particularly during stable conditions when
the plume cross section is flattened.

2.1.5   Limited Mixing

     When vertical diffusion is limited by a stable capping layer,
equation (12) is no longer valid,  and a Gaussian formulation, with terms
for reflection from the top of the mixed layer (at altitude HL), is
used.  Let H1 be the height of the virtual source positioned above the top
of the mixed layer:
                            H' -2

The Gaussian formulation for limited mixing is
                                16

-------
                            'OBSERVER
                        (a)  Plan View
                                                   FUJMC
                                                  CMOss-sccntm
                                        WOUND
     '
-------
     X =
            a o
             Y
         + exp
u
  exp
BXP
                                                     (16)
In this instance of limited mixing, the plume material eventually becomes
uniformly mixed in the vertical direction for 0 < z < H^  In the limit,
the concentration is expressed as follows:
                 X =
                  exp
                                   (17)
The calculation of plume optical thickness in the y-direction becomes
simply
                             py
                 Q'(x)
                  uH.
                                                                      (18)
                                     m
2.1.6   Surface Deposition
     Surface deposition is calculated by  integrating the plume concentra-
tions at the ground and multiplying by a  deposition velocity, V^, that
characterizes gas and particulate surface depletion:
                                                                      (19)
     Since nocturnal ground-based  stable  layers shield  a plume from  the
ground at night, surface deposition  is effectively zero at night.  This  is
handled in the model using  a flag  keyed to the time of  day at which  the
plume parcel is at a given  downwind  distance.
                                 18

-------
2.1.7   Power Law Wind Profile Extrapolation of  Surface  Winds

     PLUVUE is designed to use either wind speed aloft or  surface  wind
speed (commonly measured at 7 m above the surface).  The power  law
extrapolation presented in "User's Manual for a  Single-Source  (CRSTER)
Model" (EPA, 1977) is used.  The surface wind speed is extrapolated  to
stack height for the plume rise calculation, and the surface wind  speed  is
extrapolated to the final  plume height for Gaussian concentration  calcula-
tions.  The power law extrapolation is as follows:

                              u = u0 (z/7)p                           (20)

where

           u = wind speed  at altitude z (ms~^)
          UQ = surface wind speed (ms~^)

The profile exponent p is  a function of stability and has the following
values:

                                     Wind Speed Profile Exponent
         Pasquill  Stability Class   	(pj	
         A   Extremely unstable                  0.10
         B   Moderately unstable                 0.15
         C   Slightly unstable                   0.20
         D   Neutral                             0.25
         E   Slightly stable                     0.30
         F   Moderately stable                   0.30

2.2   ATMOSPHERIC  CHEMISTRY

     As  shown in figure 1,  the conversion of emissions of nitric oxide
(NO) and sulfur dioxide (S02)  to nitrogen dioxide (N02) gas and
sulfate  (S04~) aerosol--species responsible for visual effects—must be
calculated in the  visibility model.

                                19

-------
   .  The rate of chemical conversion of these primary emissions to  second-
ary species responsible for visual impact is dependent on the concentra-
tion of the reacting species and ultraviolet (UV) solar flux.  Thus, con-
version rates are dependent on both plume dilution and time of day.  A
plume parcel at a given downwind distance has a specific age, time  of
emission, and history of UV irradiation, which can affect the amount of
N02 and S04= in the plume at a given time.  Thus, the chemical conversion
in each plume parcel must be treated separately, taking into account these
factors.

     PLUVUE is structured to take a "snapshot" of a plume at a given
time. .  In PLUVUE, the chemical conversion is calculated for each plume
parcel, observed at a given distance,  in a Lagrangian manner; i.e., the
reaction rates are calculated at each  of several discrete downwind  dis-
tances  and times from the point of emission to the downwind distance at
which the plume parcel is observed.  Thus, the age of a plume parcel
observed at downwind distance xobs is  XQ^/U, where u is the wind speed.
The time at which a plume parcel is at a given downwind distance relates
to the  time of observation as follows:
                                       x-k_ - x
                           t = t    -  obs                           (21)
                           1   tobs      u                           U1;

     The UV flux is calculated as a function of time that a plume parcel
is at  a given downwind distance x from the solar zenith angle (i.e., the
angle  between direct solar rays and the normal to the earth's surface).
The zenith  angle is calculated on the  basis of the latitude, longitude,
date,  and time using a subroutine developed by Schere and Demerjian
(1977).

     The rate of chemical conversion  is  also dependent on the location of
the plume parcel within  the plume.  PLUVUE makes calculations at the fol-
lowing  altitudes within  the plume  (y  = 0): at the plume centerline  (z = H)
and at  z =  H ± n oz, where n = 1  and  2.
                                 20

-------
2.2.1   Conversion of NO to
     Nitrogen dioxide gas can cause a yellow-brown discoloration  of the
atmosphere.  Although some discoloration is a result of wavelength-
dependent light scattering caused by submicron aerosol, as discussed in
the workbook of this regulatory guidance series, the dominant colorant  of
power plant plumes is NC^, which causes a yellow-brown discoloration that
may be apparent at significant distances downwind of large coal-fired
power plants, particularly in areas where the background visual range is
excellent.

     Very little N02 is emitted directly from combustion sources.   How-
ever, colorless nitric oxide is formed by the thermal oxidation of  atmos-
pheric nitrogen at the high temperatures experienced in the combustion
zone (the boiler in a power plant) and the oxidation of nitrogen that may
be present in the fuel.  Chemical reactions in the atmosphere can form
sufficient N02 from NO to cause atmospheric discoloration.  Available
measurements of NO and N02 concentrations in power plant plumes in  non-
urban areas suggest that the conversion of NO to N02 can be calculated
from a simple set of three reactions.

     The first of these is the thermal oxidation of NO to N02:
                                                        *
                          2NO + 0  -> 2N0     .                        (22)
The reaction is termolecular, but bimolecular with respect to NO; it is
therefore very fast at high concentrations of NO but slow at the lower
concentrations that exist in the atmosphere or in a plume.  The reaction
rate for equation (22), based on Baulch, Drysdale, and Home (1973) is
*
  In urb'an areas, a complete photochemical mechanism should be
  applied to calculate N02 concentrations.  Also, it should be
  noted that N02 is destroyed by reaction with the hydroxyl
  radical (OH«), as discussed in the next subsection.
                                 21

-------
         d[N02]
           (ft   =
4.015 x 10 xt exp
-12 „. (1046)
[NO]2[OJ ppm/s    .     (23)
where R is the universal gas constant and T is the absolute temperature.
     The reaction with ozone also affects the conversion of NO to  N02:

                         NO + 03 -> N02 -«• 02    .                      (24)

The reaction is fast, with a rate (Leighton, 1961; Davis, Smith, and
Klauber, 1974; Niki, 1974) at 25°C of
                    d[N02]
                        /  = 0.44 [N0][0] Ppm/s     .                 (25)
This reaction accounts for the ozone depletion measured within  power  plant
plumes and is important because ozone concentrations can be high  even  in
nonurban regions.  Measured ozone concentrations  in nonurban  areas  of  the
western United States range from 0.02 to 0.08 ppm.

     Whereas the thermal  oxidation  rate  in  reaction (23) decreases  as  the
plume mixes (because the  NO concentration decreases), the formation of
nitrogen dioxide via equation  (24)  is enhanced as the plume mixes because
additional ozone from the atmosphere is mixed into the plume,  allowing
equation (24) to proceed.  When there are no reactions converting N02  to
NO  (e.g.,  at night), equation  (24)  proceeds until  all of the  NO in  the
plume is converted to N02 or until  the ozone concentration  in the plume
drops to zero.  Therefore, the rate of conversion of NO to  N02  via
equation (24) is limited  by the rate of  plume mixing that provides  the
necessary  atmospheric ozone.

     To complete the set  of chemical reaction mechanisms, we  must consider
the photolysis of N02«  When sunlight illuminates a plume containing
nitrogen dioxide, short wavelength  light  and ultraviolet radiation  are
absorbed by the N02.  As  noted above, absorption  of the shorter wavelength

                                 22

-------
light produces the characteristic yellow-brown color  associated  with
N02-  Absorption of the more energetic ultraviolet  light  (UV)  results  in
dissociation of the N02 molecule:

                         N02 + hv + NO + 0    .                       (26)

                           0 + 02 -> 03    .                           (27)
Leighton (1961) gave the rate of reaction (26) as
                      d[N02]
                                                                      (28)
where K^ depends on the amount of light incident on the nitrogen diox-
ide.  Davis, Smith, and Klauber (1974) gave the following expression for
Kd as a function of the solar zenith angle Zs:
     With this set of chemical reactions, the chemical conversion of NO to
N02 in the atmosphere can be calculated from background pollutant concen-
trations and from plume NOX increments using the technique suggested by
Latimer and Samuelsen (1975) and White (1977).  Making the steady-state
approximation, we have

                                K^
                        [N02] = -^ [N0][03]    ,                     (30)

where

                          [NO] = [NOX] - [N02]                       (31)

and
              [03] = [03]b -  [N02] - [N02]t - [N02]b                (32)
                                 23

-------
where [N02]t signifies the concentration of N02 formed  via  the  termolecu-
lar reaction (22) 'and [N02]b signifies background concentrations.   Substi-
tuting equations (28) and (29) into equation  (27) we can  solve  for  the
concentration of N02:
     [N02] =0.5
[NOX] + [03]b + [N02]t + [N02]b
                                                    K
                                                     r
                                                              KH\
                            Wx] +  [03]b+[N02]t+[N02]b+^J
                        - 4[NOX]   [03]b +  [N02]t
                                                                      (33)
     Using this formulation to  compute  NO-to-N02  conversion  in  a  hypothe-
tical power plant plume,  Latimer  and  Samuelsen  (1978)  studied the sensi-
tivity of N02 formation to the  rate of  plume  dilution,  background ozone
concentration,  and  solar  radiation.   The  results  of  this  analysis are  pre-
sented in figure 3.  This figure  shows  that thermal  oxidation (e.g., [03]
=  0) converts up to 10 percent  of the plume NO  to N02,  and  additional  con-
version results when ambient  ozone is mixed into  the plume.  A  recent  com-
parison of observations with  calculations using equation  (33) indicates
good agreement, particularly  if the diffusion of  the plume  is correctly
calculated by using fitted diffusion  coefficients based on  plume  diffusion
measurements  (see figure  4).

2.2.2   Conversion  of  S02 to  S04=

     It is critical to calculate  the  conversion of S02 emissions  to sul-
fate (S04=)  aerosol, because  the  latter can effectively scatter light  and
cause  reductions  in visual range.  The  importance of S02  toSO^=  conver-
sion can  be  seen  from  the schematic  logic flow  shown in figure  1.  The
usual  approach  is to assume that  sulfur dioxide (S02) gas is converted to
sulfate ^S04=)  aerosol at some  constant rate; this approach  employs a
user-input value  of a  pseudo-first-order rate constant whose value is
empirically  determined.
                                 24

-------
                                           1.1
                                           t.l
                                            0   It    »
                                                                  )0    M    TO    SO
                                                      (a)  Solar radiation
             t.r
ro
en
   •.i



• \

a  o.4
             t.j
             1.2
             1.1
                         1.
               •   11    10    »
                                         M    n   to    N   too
                                       I Mttwet (!•)


               (b)   Stability (TVA stability  categories)



          Source:   Latimer and Samuel sen  (1978).
                                                                                                               w   100
                                                                                        (IM)
                                                                         (c)  Background ozone
             Figure  3.   Sensitivity of NO-to-N02 conversion in power  plant plumes to the  rate of plume dilution,

                         background ozone concentration, and solar  radiation.

-------
ro
cr>
                                          •TAJItMRD 9 ASQOtU • •
   0    10   20   JO    40   JO    10   70   80    90   100
                0    10    20   30   40   SO   60    70   80    90   100
** to
a
3 ..
            *
            «'
            fi"
                                   (c) CMC 3
                                                rinto «_•_
                                          STANDARD PASqtMU. 0 0
    0    10    20   JO    40   JO   W    70   80   90  100
                Dovnvlitd 0t*tme« (ktloMttm)

                     (•} C«»e 5
                                                                                 10   W    JO   40    JO   60   >0   80   90   100
                                                                          8 o
                                                                          8"
                                                                          u
                                                                            ..
                                                                          i!  o
                                                                                                (b)  CMC 2
                                                                                                      STANDARD rASQVItL O_0.
                                                                                                              FITTtD o «fi
                                                                     10   20    30   40    W   60   TO    SO   90    100
                                                                             Downvliid 01*t*nc«

                                                                                    (d) Case 4
                                                                                                         TANDARb PASQUtLL O 9
                                                                                  10   20   10   «0    50   60   10   «0   90   100
                                                                                          DnvnviM DUtcne* (kil)

                                                                                                (f)  CMC 6
             Figure 4.   Comparison of measured N02/NOX  mole  ratios (circled points)  in the plume  centerline
                          downwind of  a coal-fired power  plant with  computer-calculated values  (solid lines)
                          using standard Pasquill  and fitted a a  .

-------
     There is considerable variation, however, in such measured  SC^-to-
S04= conversion rates, which range from a few tenths of a percent to
several percent per hour.  Much of this variance in SC^-to-SC^  conversion
observed in field measurement programs in recent years can be explained
using a model that accounts for the reactions of plume S02 and N02 with
the hydroxyl  (OH«) radical.  This chemical mechanism is incorporated in
PLUVUE.  In clean background areas, the gas-phase oxidation of SC^ and N0£
to sulfate aerosol and nitrate (nitric acid vapor) is due primarily to the
reaction of these species with OH».  Previous assessments of homogeneous
(gas-phase-) oxidation of S0£ to sulfate estimated the proportion
assignable to the reaction with hydroxyl between about 75 percent in clean
atmospheres (Calvert et al., 1978; Altshuller, 1979) and as low as 40 per-
cent in polluted urban air (Isaksen, Hesstredt, and Hov, 1978), but more
recent estimates place these values much higher.   Kinetic models forming
the basis of the early estimates used the value of 1.3 x 10"^^cm^mol"^s~^
for the rate constant of reaction for H02 and CI^C^ with NO.   More
recently, however, this rate has been measured at 8.1 x lO'^cm^mol'^s"-'-
(Hampson and Garvin, 1978).  This larger rate constant lowers the expected
concentration of these peroxy radicals by a factor of 6 and,  in turn,
greatly reduces the S0£ conversion resulting from reactions with these
radicals.  When recalculated using the new rate constant, the fraction of
S02-to-sulfate conversion that results from reaction with the hydroxyl
radical is approximately 95 percent for clean atmospheres and 70 percent
for the extremely polluted case.

     These estimates are supported by the work of Miller (1978), who found
that the S02 oxidation rate was not dependent on  the absolute concentra-
tions of hydrocarbons and nitrogen oxides but on  the ratio of nonmethane
hydrocarbon to nitrogen oxides.

     The rate of sulfate (and nitric acid) formation can be estimated by
calculating the steady-state concentration of OH« within a plume.  This
steady-state plume OH» concentration is calculated by balancing the rate
of OH« production with the rate of OH- destruction.  The following reac-
tions are used:
                                27

-------
     >  OH«  production
               H  hv + 0( 'D) + 02

               =  1.3  x  10~3 (cos
           0('D) +  M + 0(P) + M  (K35 = 4.45 x
            0('D)  +  H20 + 2  OH-  (K36  =  3.4  x  105ppm"1min"1)
                                                      (34)


                                                      (35)


                                                      (36)
     >   OH* destruction  (major  sinks  in  plumes)
OH
- +  S02  +HS03  ...  (K3?  =  2.0 x
                                                                     (37)
OH- + N0
               (K3g  =  1.4  x
                                                                     (38)
     With the assumption of steady-state concentrations  of  0('D)  and  OH-
in the plume, we can write the following equations:
                       d[OH«] . d[0'(D)]  .
                       ~
                                                       (39)
                 dt
                                     - K36[0'(D)][H20]
                                                                     (40)
         [o('D)] -T^VK
                   l\-»r- •  IN
                                  35
                                                                     (41)
  See Latimer et al. (1980) for a discussion of other sources  of  OH
  Rate constants are based on Whitten and Killus (1980),  private
  communication.
                                28

-------
                    = 2 K36[0('D)][H20] - K37[OH-][S02J               (42)
                      2 K.,[0('D)][H90]
                         36L v   /JL 2
                     K37l$02J + K3

     With this steady-state concentration, plume pseudo-first-order S02-
     4 and NC^-to-HNC^ conversion rates can be calculated as follows:

                             d[S07]
                                             l    •                   (44)
                                                                     ,  ,
                                                                     (45)
     Note from equations (41)  and (42)  that plume OH« concentrations are
reduced below background tropospheric values for two reasons:
     >  Plume ozone (Og)  concentrations are reduced below back-
        ground values because of the reaction NO + 03 + N02 + Q£
        (eq. 24).
     >  Plume concentrations of N02 and S02 are high, thus reduc-
        ing steady-state  OH» concentrations.

It should be pointed out  that at night there is no production of OH» from
ozone photolysis; also, in early morning and late afternoon and in winter
OH» production is diminished because ultraviolet flux decreases as solar
zenith angles approach 90°.  Thus,  sulfate and nitrate are not formed at
  The user is given the option in PLUVUE of supplementing the SC^-to-SC^
  conversipn rate calculated on the basis of steady-state plume OH«
  concentrations with a user-input pseudo-first-order rate constant, which
  can be varied as a function of downwind distance.

                                 29

-------
night and are formed only very slowly in concentrated plumes.  Nitrate  is
expected to remain as HN03 vapor and without visual effects  until  it  is
eventually deposited.  Ammonium nitrate could exist in  aerosol form;  how-
ever, sulfate competes for available atmospheric  ammonia.

     PLUVUE was run, with this OH» chemical mechanism included,  for  a
plume from a 1600 Mwe coal-fired power plant.  On the basis  of this  case
study, the effect of the following on sulfate formation rate was studied:

     >  Plume dilution, corresponding to neutral  and stable  light-
        wind conditions at various downwind distances.
     >  Time of day.
     >  Season.

     The history of  sulfate  formation in a plume  parcel based on this case
study is shown in figure 5.   Note that time of day, season,  and  plume con-
centration all affect the rate of sulfate formation.  This  effect is
explained by the formulations shown  in equations  (41),  (43), and (44).
The  S02-to-S04= conversion rate  is directly proportional to  the  plume
ozone and water vapor concentrations and to ultraviolet (UV) flux, and it
is inversely proportional to plume S02 and N02 concentrations.

     The effect of  UV flux  is noted  in both the  seasonal and time-of-day
dependence of the  sulfate formation  rate.  Note  from figure  5 that no con-
version  of S02 to  sulfate occurs at  night.  Sulfate formation starts after
sunrise, reaches  its maximum rate  at noon  (when  ultraviolet  flux reaches a
maximum),  and then  begins to decrease.  Thus,  a  plume  parcel observed at a
given distance downwind from a power plant may have undergone sulfate for-
mation  during only  a fraction of its journey.  For  example,  a plume parcel
 * It  sho'uld  be noted that sulfate can form not only by reactions with OH»
   but also on existing,  catalytic fly ash particles.   However,  this
   sulfate coating on existing particles is not expected to significantly
   add to aerosol  surface area, which is important for light scattering.

                                  30

-------
          0
       .02
o;
  O J-
 l/l -I—


 > c
' c o
 o •<-
o +->
   o
  .• ro
O 
O =!
OO Q
    cu
    •*->
    c
    OJ
    o
    CL
.01
      0.0
                          Plume  Parcel  Age  (hrs)

                    4        6        8        10
                                                              12
                        14
               	1	r

               21 JUNE

               21 SEPTEMBER
               21 DECEMBER
         SUNRISE
         0
               20
                                               NOON

   ^     \
/   /SPRING^

•      '  OR FALL
                                  40          60

                              Downwind Distance (km)
16
 Notes:


   (1)  Time-dependent S02-to-SO| conversion rates for the history of a
        parcel  in the center of a well-mixed plume (neutral  stability)
        which is observed 100 km downwind at 1500 (in the afternoon) are
        plotted for indicated seasons in Figure 5(a).


   (2)  Comparable conversion rates for a well-mixed plume observed
        160 km downwind at 1500 are plotted in Figure 5(b).


   (3)  Conversion rates for stable plumes (isothermal stability) are
        considerably less than 0.01 percent/hr.  See shaded areas at
        the bottom of graphs.
  (a)   Life history of a plume parcel  observed 100 km downwind at 1500 hours.



       Figure  5.   Calculated time dependence of sulfate formation in the center
                  of plumes  from a 1600 Mwe coal-fired power plant,
                  2 m/s winds, neutral and stable conditions
                                       31

-------
            10
  Plume Parcel  Age (hrs)

12      14        16       18
                                                             20
  .06 -
  .05
  c
  QJ
O O

  O)
QJ C.

0*""'

CD CU
_| ^ ^^^

(O C
c
O O)
••- E
10 3
f  nll

QJ O-
>
C C
O -i-
o
o o
t/i


Sf

CM
O C
C/) O
O
fD
O)
o:
   04
  .03
   02
  .01
               I         1         I
               	21 JUNE

               	21 SEPTEMBER

               	21 DECEMBER
                                             NOON
          SUNRISE
     0
     60
                     80          100          120

                      Downwind Distance  (km)
        (b)  Life  history of a plume parcel  observec
             160 km downwind at 1500 hours.
                     Figure 5 (concluded)

                             32

-------
160 km downwind of its source, when winds  are  2 m/s,  would  require a
transit time of more than 22 hours.  During this period  sulfate  would be
formed only during the sunlight hours [see figure  5(b)].

     The effect of plume S02 and N02 concentrations on the  steady-state
OH* concentration and hence on sulfate formation is also shown in
figure 5.  Note, by comparing figure 5(a) with 5(b),  that sulfate  forma-
tion is much more rapid when plume parcels are more dilute  (at farther
downwind distances).  In the dilute, neutral-stability plumes at downwind
distances greater than 100 km, sulfate formation rates reach noon  peaks of
about 0.06, 0.02, and 0.004 percent per hour, respectively, for the
summer, fall, and winter simulations for this  latitude.  In the less
dilute, neutral-stability plumes at downwind distances of less than
100 km, the sulfate formation rates peak at 0.016, 0.008, and less than
0.002 percent per hour for summer, fall, and winter, respectively.  How-
ever, formation rates in stable plumes are considerably less than  0.01
percent per hour even at noon on a summer day.

     These model calculations support the argument made by Latimer (1980)
that the atmospheric discoloration of stable power plant plumes (where
particulate emissions are controlled) is caused primarily by nitrogen
dioxide (N02) gas, not by secondary sulfate aerosol.  Sulfate aerosol is
not formed in plumes during nighttime transport,  and formation is minimal
during daytime transport when plumes are concentrated (as they would be
during stable conditions).  After plumes have become well mixed,  signifi-
cant rates of sulfate formation can occur in the  daytime, though  these
rates approach zero with low sun angles.  Thus, sulfate formation  is a
long range (greater than 100 km),  multiday phenomenon, not a near-source
problem.

2.3   AEROSOL SIZE DISTRIBUTION

     The aerosol size distribution, is characterized by a series of aerosol
modes, each having a log-normal distribution of mass  (or volume).  Each of
the following modes is treated separately in PLUVUE:
                                 33

-------
     >   Background  accumulation mode (submicron)  aerosol (typi-
        cally having a mass median diameter of about 0.3 wn and a
        geometric standard deviation of 2).
     >   Background  coarse mode (> 1 un) aerosol  (typically having
        a mass median diameter of about 6 in and a geometric
        standard deviation of 2).
     >   Plume primary particulate aerosol (e.g., fly ash
        emissions).
     >   Plume secondary sulfate (SO^) aerosol (typically having a
        mass median diameter of 0.1 to 0.3 un and a geometric
        standard deviation of 2).

     The expression developed by Winkler (1973)  is used to calculate the
amount  of liquid water associated with submicron background and plume sul-
fate aerosol as a function of relative humidity.

     Secondary aerosol is assumed to form in the submicron plume secondary
aerosol mode.  A time delay equal to the time between successive downwind
distances is introduced to account for coagulation and condensation time
delays.

2.4   ATMOSPHERIC OPTICS

     In the  atmospheric optics component of the plume visibility model,
the  light scattering and absorption properties of the aerosol and the
resultant light  intensity  (spectral radiance) for various illumination and
viewing situations  are computed.  The details of these calculations are
given in  appendix  B of Latimer et al.  (1978); the major points are sum-
marized in this  section.

2.4.1   -Calculation of the Scattering  and Absorption Properties

     After the concentrations of the pollutants are specified by the
transport and chemistry subroutines, their radiative properties must be

                                 34

-------
determined.  For NC^, the absorption at a particular wavelength  is  a tabu-
 lated function  (Dixon,  1940)  multiplied by  the concentration.  For  aero-
sols, however, the procedure  is more complicated.

     In general, a particle's ability to scatter and absorb radiation  at  a
particular frequency is a function of size,  composition, shape, and  rela-
tive humidity.  The flexibility to specify the size distribution of  both
primary and secondary particles was desired.  Therefore, the effect  of
particle size on the wavelength dependence of the extinction coefficient
and the phase function, the solution of Maxwell's equations for scattering
by a sphere, and the so-called Mie equations were used in PLUVLJE.  These
calculations are appropriate for atmospheric aerosol; comparisons of Mie
calculations, with empirical correlations of scattering-to-mass indicate
substantial agreement.

     The Mie calculations in PLUVUE are performed using an IBM subroutine
written by J. V. Dave (Dave, 1970).  The required inputs are the particle
size parameter (ratio of the circumference to the wavelength of radia-
tion), the index of refraction (real and imaginary part), and the number
and location of absorption cross sections and the Stokes transformation
matrix (Van De Hulst, 1957), which can be simply converted to the scatter-
ing distribution assuming randomly polarized light.   The scattering  and
absorption properties per particle are then  summed over the particular
log-normal size distribution for the given aerosol mode.

2.4.2   Calculation of Light Intensity

     The light intensity, or radiance (watts/m^/steradian) at a particular
                    f
location in the atmosphere is a function of  the direction of observation  n
and the wavelength X.  Calculation of the light intensity in a medium
follows from the radiative transfer equation.  This  equation is a conser-
vation of energy statement that accounts for the light added to the  line
of sight by scattering and the light Tost because of absorption and  scat-
tering.   Approximations and solution techniques applicable to planetary
atmospheres have been discussed by Hansen and Travis (1974) and Irvine
(1975).

                                 35

-------
     The physical situation that we are concerned with  is  shown  sche-
matically in figure 6.  To compute the spectral  light intensity  at  the
observer, we sum (integrate) the scattered  and  absorbed  light  over  the
path, r, associated with the line of sight  fl.   The resultant general
expression for the background sky intensity at  a particular wavelength  is
   /  "(T)   f
-]  -b1  J

                                                  da' e"l   df     ,    (46)
where
                                              r
                   T = the optical depth  (T = /   b0¥t dr, where
                                              0   e
                      bext  is  the extinction  coefficient),
                   u) = the albedo for  single  scattering
                      
-------
CO
-J
                          OBSERVER
                                                             UNSCATTERE
                                                             LIGHT
                                                                                     DIRECT AND DIFFUSE
                                                                                     SOLAR RADIATION
                                                                                      INCOMING LIGHT)
                                                       ABSORBED LIGHT
                                         LIGHT REFLECTED FROM
                                      a   OBJECT TOWARD OBSERVER
LIGHT SCATTERED
TOWARD OBSERVER
                                      LIGHT SCATTER
                                      AWAY FROM OBSERVER
                         -Ul-
                                   Figure  6.   Light  scattering and absorption  in  the atmosphere.

-------
     Equations (46) and (47) then completely describe the spectral
intensity of the sky and a background object.  Once these two quantities
are known, the visual effects of the intervening atmosphere can be quanti-
fied.  In evaluating equations (46) and (47), we encounter two main dif-
ficulties:  First, the quantity in the integral is a fairly complicated
function, and accurate specification is tedious.  Second, the atmosphere
is inherently inhomogeneous; thus, the radiative properties u>, p  are  some-
what complicated functions of r and fl. The following approximations are
therefore made in PLUVUE:

    >   Plane parallel atmosphere
    >   Two homogeneous layers
    >   Average solar flux approximation
    >   Average diffuse intensity  approximation.

The equation for the background intensity at the surface becomes, for a
given viewing direction,
                                                                       (48)
 and  for  the  intensity in  the  direction  of  an  object  in  the  planetary
 boundary layer,
                                                                       <49>
                                 38

-------
where
          ~uLn, ^QP,(O) = the average albedo and phase function,
                        respectively;
                  TQQ = the optical depth of the path in the
                        boundary layer;
                  d i f
          FC aw» I    = the average solar direct intensity and
           s>»av   av
                        diffuse intensity, respectively;
             *sky» *o = the ^tensities from the upper atmosphere
                        and object, respectively.

     Thus, the background intensity and the intensity in the direction of
an object at distance R from the observer can be computed given the fol-
lowing inputs:

    >   Background radiative properties (e.g., size distribution, visual
        range).
    >   Solar zenith angle.
    >   Scattering angle.
    >   Viewed object intensity.
    >   Direction of observation.
    >   Planetary boundary layer height.

     The plume is treated as a homogeneous layer with a given optical
thickness and mean properties ~ui ,     and "p ,   „(©).  We also assume that
                               plume      plume
the plume does not affect the solar radiation illumination (an optically
thin plume).

                         dif
     Diffuse radiation (I   ) is computed using an approximation discussed
                         av
in appendix B of Latimer et al.  (1978).

     Spectral radiance, or light intensity I(X), is calculated for 39
wavelengths spanning the visible spectrum (0.36 un < \ < 0.74 wn, in 0.01
um increments}.
                                 39

-------
2.5   GEOMETRY OF PLUME,  OBSERVER, AND SUN

     For performing as  many as four different types of optics calculations
at selected points along  the plume trajectory, PLUVUE has two modes:
plume-based and observer-based calculations.  The calculations for plume
transport, diffusion,  and chemistry are identical for calculations in  both
modes.  The major difference between the two types of calculations is  the
orientation of the position of the viewer to the source and the plume.

     Plume-based calculations are repeated for several combinations of
plume-observer-sun geometries.  Because of the repetitions, these plume-
based calculations are more expensive and produce more printed output  than
the observer-based calculations, which are performed for only the specific
line-of-sight orientations corresponding to the given observer position,
the portions of the plume being observed, and the specific position of the
sun relative to these lines of sight.

     There are four types of optics calculations:  (1)  horizontal views
through the plume with a sky viewing background; (2)  nonhorizontal views
through the plume with a sky viewing background; (3)  horizontal views
through the plume with white, gray, and black viewing backgrounds; and
(4)  horizontal views along the axis of the plume with a sky viewing
background.

     Figure 7  illustrates the geometry of the plume-based optics calcula-
tions for  horizontal views through the plume.  This figure depicts sche-
matically  the  variety of distances from the observer to the plume and  the
variety of horizontal azimuthal angles between the line of sight and the
plume trajectory.   Calculations for all these geometries are repeated for
up to six  different scattering angles.
   These  azimuthal angles are measured from the  plume  centerline to the
   line of sight such that the angles range from 0°  to 90°.
                                 40

-------
OUTLINE
OF PLUME
POSITIO
                                                   POINTS FOR
                                              OPTICS ANALYSIS
                                                PLUME  CENTERLI
                                                         OBSERVER  POSITIONS  ON  EACH  LINE OF
                                                         SIGHT CORRESPONDING TO VARIOUS
                                                         PLUME-OBSERVER DISTANCES (r )
                                                         HORIZONTAL LINES OF SIGHT AT FOUR
                                                         AZIMUTHAL ANGLES (a)  RELATIVE TO
                                                         PLUME CENTERLINE
           Figure 7.  Geometries for plume-based calculations for horizontal views
                     with a sky background.

-------
     Plume-based  calculations for nonhorizontal views through the plume
are shown  in  figure  8.   For  one azimuthal  angle (a), figure 8(a) shows the
range of vertical  elevation  angles (B) of the line of sight.  The observer
position is determined  by the intersection of the line of sight with flat
terrain.  For one  elevation  angle (B)  of the line of sight, figure 8(b)
shows the  range of four azimuthal angles (a) between the plume centerline
and the line of sight.   Again, these  calculations are repeated for as many
as six different  scattering  angles at  each point of analysis along the
plume trajectory.

     Figure 9 shows the geometry for  the optics calculation for horizontal
views perpendicular to  the plume with  white, gray, and black viewing back-
grounds.  For each point on  the plume  trajectory and each scattering
angle, the calculations are  executed  for a range of distances from the
observer to the background object, starting at the plume centerline and
ending at 80 percent of the  background visual range.  The distances, from
the observer to the plume, range from 2 percent to 80 percent of the back-
ground visual range.

     Figure 10 illustrates the configuration used for the plume-based cal-
culation for views along the axis of the plume.  The calculations are made
from the second through the final downwind distances.  At each point, the
observer is looking toward the emissions source with a sky background.
The calculations are made for views through plume segments defined by the
particular point of analysis, as well  as successive analysis points
upwind.  The calculations are repeated for observer positions at a range
of distances from the downwind point at which the plume segment is assumed
to end.

     The observer-based geometry used for views through the plume center
with a clear sky background is shown in figure 11.  At each point of
analysis along the plume trajectory, the optics calculation is made for
                                 42

-------
CO
                                              POINT ON PLUME TRAJECTORY
                                              FOR OPTICS ANALYSIS
                                                                             HORIZONTAL LINE PER
                                                                             PENDICULAR TO PLUME
                                                     •VARIOUS OBSERVER POSITIONS FOR
                                                     a = 90° FOR NONHORIZONTAL VIEWS
                      (a)  Variation in elevation angle  (B)  for  a  fixed  azimuthal  angle  (a  =  90°)
                           between the plume trajectory  and  the  line  of  sight.
                      Figure 8.   Geometries for plume-based calculations  for nonhorizontal  views
                                 with a sky background.

-------
                                                    INES OF SIGHT
                                                   FOR EACH a VALUE
                                            VARIOUS OBSERVER POSITIONS
                                            FOR NONHORIZONTAL VIEWS
                                            FOR 0  = 30°
(b)  Variation in azimuthal  angle (a)  for a  fixed  elevation  angle (0  =  30°).
                            Fipure  8  (concluded).

-------
                             VARIOUS BACKGROUND OBJECT
                             POSITIONS (NOT TO SCALE)
.£»
01
                                                                VARIOUS OBSERVER POSITIONS
                                                                (NOT TO SCALE)
                      Figure 9.  Geometries for plume-based calculations for viewing of white, gray, and
                                 black objects for horizontal views perpendicular to the plume.

-------
                                                                  FIRST TWO OBSERVER
                                                                  POSITIONS
                                    FOURTH POINT FOR'
                                    OPTICS ANALYSIS
                                    (THE REFERENCE
                                    FOR THIS FIGUREJ
        POINTS ON PLUME TRAJECTORY
        FOR OPTICS ANALYSIS
    PLUME CENTERLINE
Figure 10.   Geometries for plume-based calculations for horizontal views
            along the axis of the plume.

-------
                             SOLAR POSITION SPECIFIED
                         )— BY SOURCE LOCATION,
                             TIME AND DATE
WIND
   -SPECIFIED SOURCE
   LOCATION
                                                      SPECIFIED
                                                      OBSERVER LOCATION

    Figure ll.  Geometry used for observer-based calculations for nonhorizontal views
                through the plume for clear-sky backgrounds.

-------
only one  scattering  angle,  one  plume-observer distance, and one azimuthal
angle specific  for the  source position,  observer position, wind direction,
date, and time  of day used  as input.

     For  calculations with  white,  gray,  and black viewing backgrounds,  the
geometries are  the same as  those for  horizontal views with a sky back-
ground (figure  11),  with the addition of the specific background object
distance, along each line of sight, from the observer through the points
on the plume trajectory.

     Figure. 12  is  a  plan view of the  geometry for an observer-based cal-
culation  for views along the plume.   At each analysis point along the
plume trajectory,  the centerline concentration is integrated along  a seg-
ment on the line of  sight that  would  correspond to a Gaussian distribu-
tion.  The line of sight is always horizontal.  The calculation is  per-
formed for a clear sky  background  and for white, gray, and black viewing
objects at the  specific distance for  each line of sight.

     It should  be  noted that if the distance (rp) and azimuthal angle  (a)
are  such that the  observer  is within  the plume, the total plume optical
thickness along the  line of sight  is  reduced accordingly.  The calculated
distance rp is  the distance between the observer and the centroid of plume
material  viewed by him.

2.6   QUANTIFYING  VISIBILITY IMPAIRMENT

     We can quantify visibility impairment once the spectral light  inten-
sity or radiance I(X) has been  calculated for the specific lines of sight
of  an observer  at  a  given location in an atmosphere with known aerosol  and
pollutant concentrations.  Visibility impairment—including reduction  in
visual range, the  perceptibility of plumes and haze layers, and atmos-
pheric discoloration—is caused by changes in  light intensity as a  result
of  light scattering  and absorption in the atmosphere.
                                 48

-------
UD
           -SPECIFIED SOURCE LOCATION
        SPECIFIED
        WIND DIRECTION
                                                              LINE OF SIGHT
^SPECIFIED
  OBSERVER POSITION
               Figure 12.  Plan view of geometry for observer-based calculations for views along the plume.

-------
50

-------
                               PLUVUE INPUT DATA
     The input data needed to run PLUVUE are contained in one file of 80
byte, card-image records.  These data include the following parameters:

     >  Wind speed aloft or at the 7-m level.
     >  Stability category.
     >  Lapse rate.
     >  Height of the planetary boundary layer (mixing depth).
     >  Relative humidity.
     >  S02, NOX, and particulate emissions rates.
     >  Flue gas flow rate, exit velocity,  and exit temperature.
     >  Flue gas oxygen content.
     >  Ambient air temperature at stack height.
     >  Ambient background NOX, NC^, 03, and S02 concentrations.
     >  Properties (including density, mass median radius, and
        geometric standard deviation) of background and emitted
        aerosols in accumulation (0.1-1.0 un) and coarse (1.0-
        10.0 pro) size modes.
     >  Coarse mode background aerosol concentration.
     >  Background visual range or background sulfate and nitrate
        concentration.  **
     >  Deposition velocities for S02, NOX, coarse mode aerosol,
        and accumulation mode aerosol.
     >  UTM coordinates of the source location.
     >  Elevation of the source location.
     >  UTM coordinates and elevation of the observer location for
        "an observer-based analysis.
     >  UTM zone for the site and observer locations.
                                   51

-------
    >  Time, day, month, year, and time  zone  for the time and
       date of the simulation.
    >  For an observer-based run, terrain  elevation at the points
       along the plume trajectory at which the  analysis will be
       performed.
    >  For an observer-based run with  white,  gray,  and black
       viewing backgrounds, the distances  from  the  observer to
       the terrain that will be observed behind the plume.
    >  For an observer-based run, the  wind direction.

    The  input data file also has numerous  switches  or flags to allow the
user to select the particular subset  of the complete model that meets his
needs.  Table  1 lists  the  input parameters  with  formats, summary descrip-
tions,  and  suggested values  for some  of the input parameters.  The param-
eter IUSFC  is  simply a flag  to  allow  the wind  speed  to be input at the
effective stack height (IUSFC = 0) or at the common  7-m instrument height
(IUSFC  =  1).

     IDIS is  a flag that selects the  desired Gaussian diffusion param-
eters,  which may  be Pasquill-Gifford  (IDIS  = 0), TVA (IDIS - 1), or user-
input  values  (IDIS = 9).

     IFLG1  is  a flag that  allows the  user to select or skip the calcula-
tion of visibility impairment of the  plume  for horizontal views with a
clear sky background.   IFLG2 allows  the user to select or skip the calcu-
lation  of visibility  impairment for  nonhorizontal views and clear sky
background.  IFLG3 allows  the  user  to select or skip the calculation of
visibility impairment  calculations  of the plume as seen in front of white,
gray,  and black  backgrounds.  IFLG4  allows the user to select or skip the
visibility impairment  calculation  for an observer looking straight down
the centerline of various  segments of the plume or for an observer looking
across  the plume  at  a  small  acute  angle to the plume centerline.  For all
of these, a value of  1 executes the  calculations and  a value of 0 branches
around them.
                                 52

-------
                                        TABLE 1.  DATA REQUIREMENTS FOR PLUVUE
             Card  No
Format
Variables
Description
en
CO
1 ." 6A4
2 F5.1
15
F5.2
3 12
12
12
4 F10.0
F10.0
5 F10.1
6 F10.3
7 15
8 12
12
12
PLANT
U
I
ALAPSE
IUSFC
I NEW
NXSTAB
YINITL
ZINITL
HPBLM
RH
IDIS
IFLG1
IFLG2
IFLG3
Name of source
Wind speed (mph)
Stability index
Ambient temperature lapse rate ('F/IOOO')
Index for height for U (=1 for 7m,
0 for effective stack height)
Secondary stability index
Index for downwind distance where
stability changes from I to INEW
Initial plume y-dimension for area source
Initial plume z-dimension for area source
Mixing depth (m)
Relative humidity (percent)
Flag indicating diffusion parameters to be used
for stability index I ("1" for TVA, "0" for
Pasquill-Gif ford-Turner values, "9" for user
input values
Flag for optics calculation of horizontal views
with sky background
Flag for optics calculation with nonhorizontal
views and sky background
Flag for optics calculation for white, gray,
                                                                      and black background

-------
                                                   TABLE  1  (Continued)
              Carti No.
01
                9


                10



                11
                12
Format

   12

   12

   12


   12


   12
Variable
                  Description
   12

8F10.0


8F10.0
 F10.2

 F10.2
  IFLG4

  NX2

  NT1



  NT2



  NZF
  IDILU
Flag for optics calculation along the plume
centerline
Index indicating the number of downwind
distances desired (2 < NX2 < 16)
Starting index for the scattering angles used
in the generic calculation (set to 1 when
executing only observer-based calculations)
Ending index for the scattering angles used in
the plume-based calculation (set to 7 when
executing only observer-based calculations)
Index for the number of altitudes for visual
impact calculations: "1" for plume centerline
only, "2" for plume centerline and ground-level
downwind
Switch for printout of table for initial plume
rise data
  OIST(I)          Downwind distances for visibility impact
  1=1,  NX2        calculations (2 < NX2 < 16)  (2 cards for
                  NX2  >  8)
  DIST(I)(cont.)
  QS02             Total  S02 emissions rate from all stacks in
                  tons per day
  QNOX             Total  NOX emissions rate from all stacks in
                  tons per day

-------
                                                  TABLE 1 (Continued)
                Card No.
en
tn
Format
                                    F10.2
Variables
Description
                 QPART
13



14

15
16



17



F10.1
F10.1
F10.1
F10.2
F5.1
F5.1
F10.1
F10.3
F10.3
F10.3
F10.3
F10.3
F10.3
F10.3
F10.3
FLOW
FGTEMP
F602
WMAX
UNITS
HSTACK
TAMB
AMBNOX
AMBN02
03AMB
AMBS02
ROVA
ROVC
ROVS
ROVP
                 Total primary participate emissions rates from
                 all stacks in tons per day
                 Flue gas flow rate (cfm) per stack
                 Flue gas exit temperature (°F)
                 Flue gas oxygen concentration (mole percent)
                                 Flue gas stack exit velocity (m/s)
                                 Number of stacks
                                 Stack height (feet)
                                 Ambient temperature (°F)
                                 Ambient [NOX] in ppm [0]
                                 Ambient [N02] in ppm [0]
                                 Ambient [Og] in ppm [0.04]
                                 Ambient [S02] in ppm [0]
                                 Mass median radius (un) for background
                                 accumulation mode aerosol [0.16]
                                 Mass median radius (un) for background coarse
                                 mode aerosol [3.0]
                                 Mass median radius (un) for plume secondary
                                 aerosol [0.10]
                                 Mass median radius (vm) of emitted primary
                                 particulate [1.0]

-------
                                                   TABLE 1 (Continued)
en
o>
Card No.
18



19



20
21
22a (INTYP=1)

Format
F10.3
F10.3
F10.3
F10.3
F10.3
F10.3
F10.3
F10.3
F10.3
15
F10.3
F10.3
Variables

  SIGA

  SIGC

  SIGS

  SIGP

  OENA


  DENC

  DENS


  DENP


  CORAMB


  INTYP


  AMBS04


  AMBN03
	Description	

Geometric standard deviation of background
accumulation mode aerosol radius [2.0]
Geometric standard deviation of background
coarse mode aerosol radius [2.2]
Geometric standard deviation of plume secondary
aerosol radius [2.0]
Geometric standard deviation of plume primary
aerosol radius [2.0]
Particle density (g/cm3) of background
accumulation mode aerosol [1.5]
Particle density (g/cnr) of background coarse
mode aerosol [2.5]
Particle density (g/cm3) of plume secondary
aerosol [1.5]
Particle density (g/cm3) of emitted primary
particulate [2.5]
Ambient coarse mode aerosol concentration
(vg/m3)
Switch for next card (=1 for AMBS04 and AMBNOo,
* 1 for RVAMB)
Ambient background sulfate mass concentration
(wg/m3)
Ambient background nitrate mass concentration
(ng/m3)

-------
                                                  TABLE 1 (Continued)
              Card No.
            22b (INTYP * 1)
            23*
en
            24
            25
Format

 F10.3
  F5.2
  F5.2
  F5.2

  F5.2

   15
Variables
                   Description
 F10.7
            A-lf (If ICON = 1)     8F10.7


            A-2* (continuation     8F10.7
            of A-l)
            26                        15
   RVAMB
   VDS02
   VDNOX
   VDCOR

   VDSUB


   ICON
   RS02C
                   RS02(NX),
                   NX=1,8

                   RS02(NX),
                   NX=9,NX2
                   NCI
Ambient background visual range (km)
    deposition velocity (cm/sec) [1]
NOX deposition velocity (cm/sec) [1]
Coarse mode aerosol deposition velocity
(cm/sec) [0.1]
Accumulation mode aerosol deposition velocity
(cm/sec) [0.1]
Index for S02-to-S04= conversion rate added to
rate predicted from OH« chemistry.  ICON = 0
for conversion rate, set constant with distance
from source.  ICON = 1 for separate values for
each point of analysis downwind of the source
[0]
Rate constant for S02-to-S04= conversion to be
added to prediction from OH- chemistry (%/hr)
[0.0]
S02-to-S04= conversion rates to be added to
predictions from OH- chemistry at each point of
analysis on plume (%/hr)
(Continuation as needed)

Index to control type of calculations.  NC1=1
for plume-based calculations, 2 for observer
based calculations only

-------
                Card No.
              A-3f (If  NC1=1)
Format
                                        15
  612
TABLE 1 (Continued)

 Variable
                   NC2
   NPP
en
00
                                                       NAP
                                                       NTP


                                                       NZP



                                                       I01P



                                                       IPP
                 Description
Index to control calculations NC2=1 for plume-
based calculations only, 2 for observer-based
calculations
Indexes for controlling the subset of results
(from plume-based calculations of horizontal
views with sky, white, gray, and black
backgrounds) to be written to a file for later
use by the VISPLOT program for generating
plots.  NPP controls the distance from the
observer to the plume for sky background [3]
Index for selecting the horizontal azimuthal
angle a between the line of sight and the plume
trajectory for plots of results for sky
backgrounds [4]
Index for selecting the scattering angle of
plume-based data to be plotted
Index for selecting the level of the line of
sight through the plume for plume-based data to
be plotted [3]
Index for selecting the distance from the
observer to the background object for the
plume-based data to be plotted
Index for selecting the distance from the
observer to the plume for plume-based plot data
with background object views

-------
                                                   TABLE 1 (Continued)
              Card,. No.
in
us
            A-3f  (If NC2=2)
            27
            28
      A-4f  (If  NC2=2)
      A-5f  (If  NC2=2)
      A-6f  (If  NC2=2)
Format
 F10.1
     Variables
               Description
   15
   15
  F5.0
  F5.0
   15
8F10.1
8F10.1
8F10.1
XOBS
F10.1
F10.1
F10.1
F10.1
F10.1
15
YOBS
ZOBS
XSTACK
YSTACK
ZSTACK
I ZONE
I MO
I DAY
TIME
TZONE
I YEAR
TER(NX), NX=1,8
TER (NX), NX=9, NX2
ROBJCT(NAZ), NAZ=1,8
UTM x-coordinate of observer position (in km)
for observer-based calculations
UTM y-coordinate of observer position (km)
Elevation (feet msl) of observer position
UTM x-coordinate of source (km)
UTM y-coordinate of source (km)
Elevation of source location (ft. MSL)
UTM grid zone number within which source is
located
Number of month for date of simulation
Day of month for date of simulation
Time of day (24-hr clock)
Time zone number
Year for date of simulation
Elevation of terrain at the selected points
downwind of the source along the plume
trajectory (ft. MSL) (for observer-based
calculation)
(Continuation as needed)
Distances in kilometers from observer to
background terrain for observer  azimuths of
15°, 30°, 45°, 60°, 75°, 90°,  105°, 120°

-------
                                               TABLE 1 (Concluded)
         Card No.
A-7* (continuation of A-4)

A-8^ (continuation of A-5)

A-9f (If NC2=2)
A-101" (If IDIS*9)
(to A-10f + NX2)
Format
8F10.1

8F10.1

 F10.1
  F5.1
  F5.1
      Variable
                 Description
ROBJCT(NAZ),
NAZ=9,16
ROBJCT(NAZ),
NAZ=17,24
WIND
SY
SZ
Distances for azimuths of 135°, 150°,  165°,
180°, 195°, 210°, 225°, 240°
Distances for azimuths of 255°, 270°,  285°,
300°, 315°, 330°, 345°, 360°
Wind direction azimuth (degrees from North)
Dispersion parameters in meters,
one card for each distance
  ii AH
   0" if table is not desired, "1" if desired.
t "/\_n» refers to cards that are optional.  They are inserted only when values of prior  flags  or  indexes  are set
  to require additional input data, e.g., when ICON=1, cards A-l and A-2 are required.
  Suggested values for some of the input parameters are shown in brackets.

-------
     NZF is a switch that indicates whether the visibility  impairment  cal-
culations will be made for the plume centerline altitude only  (NZF  =  1)  or
for both the plume centerline and ground  level (NZF = 2).

     IDILU is a switch that controls the printing of the table of initial
plume rise data.  If IDILU = 0, the table is not printed, and  if IDILU =1,
it is printed.

     INTYP is a switch that allows the user to calculate the background
visual  range (INTYP = 1) from user-input background coarse mode aerosol
concentrations and background sulfate and nitrate concentrations.   If
INTYP * 1,  the user inputs the background visual  range and the background
coarse mode aerosol concentration, and the model  computes the background
accumulation mode aerosol concentration that would be needed to cause the
given visual range.

     ICON is a switch that allows the user to select the conversion rate
of $62 to S04=,  in addition to the rate calculated by the OH- model, as a
constant with distance from the source (ICON = 0)  or as a separate value
for each point of analysis downwind from the source (ICON = 1).  These
conversion rates are in units of percent per hour.   RS02C gives the con-
stant conversion rate for all points on the plume trajectory, while RS02
gives the downwind-distance-dependent conversion  rates for each point of
analysis.

     The parameters NCI and NC2 are used to control whether the visibility
impairment calculations are done for a plume-based scheme, an observer-
based scheme,  or both.   NCI set to 1 executes the plume-based calculations
and NC2 set to 2 calculates the observer-based calculations.  If NCI is
set to 1 and NC2 is set to 2, both types of calculations will be made.  If
NCI is  set  to 1  and NC2 is set to 1, only the plume-based calculations
will be made.   Finally, if NCI is set to 2 and NC2 is set to 2, only the
observer-based calculations will  be made.
                                61

-------
     The stability index  I  specifies the stability category for the  plume
dispersion  parameters:   I = 1  for stability A, I = 2 for stability B,
I = 3 for stability C,  etc.  I NEW and NXSTAB allow for a stability change
at some point  downwind  along the plume trajectory.  INEW is the new  sta-
bility and  NXSTAB is the  index of the element of downwind distance array
where the stability changes.  If no stability change is desired,  simply
set INEW to I  and NXSTAB  to the value of NX2 plus one.

     NT1 and NT2 assign the starting and ending indexes for the scattering
angle array used for the  plume-based visibility impairment calculations.
With NT1 =  1 and NT2 =  7, the default scattering angles (22°, 45°, 90°,
135°, 158°, and 180°) are used.  These angles are taken from the  array TT,
which has 0°,  22°, 45°, 90°, 135°, 158°, and 180° as its first seven ele-
ments.  NT1 is one less than the actual starting index of TT, while  NT2
corresponds to the actual ending index of TT.  For a run with calculations
for 90° only,  NT1 is set  to 3 and NT2 is set to 4.  For a run with calcu-
lations for 90°, 135°,  158°, and 180*, NT1 is set to 3 and NT2 is set
to 7.

     The index NX2 defines  the number of points downwind along the plume
trajectory where visibility impairment calculations will be made. The
value of NX2 should be at  least  2 and  not  greater  than 16.

     The array DIST specifies the distance downwind from the source  along
the plume trajectory of each point where visibility impairment calcula-
tions will  be made.  The units for this array are kilometers.  It is
 important, for accurate prediction of the  oxidation of NOX to N02, to  use
downwind distances that are close together and near the source.   The first
downwind distance must be  1 km;  2.5  km, 5  km, and  10 km are recommended
for the succeeding three distances.  The user is free to select the
remaining points according  to the needs of the situation.

     YINITL and ZINITL are  used  for  area sources and define the initial
 lateral and vertical dimensions  of the plume.  For emissions from stacks,
both YINITL and ZINITL should be set to zero.  The units for these two
variables are meters.
                                   62

-------
     When plume-based calculations are complete, a subset of  the  results
must be selected for plotting with the program VISPLOT  (appendix  C).
VISPLOT is designed to plot the visibility impairment parameters  from  the
calculations for horizontal views with a sky background and for horizontal
views with white, gray, and black object backgrounds.  The 6  indexes
listed on card A-3 determine the subset of results that will  be written  to
logical file unit eight.  NPP selects the distance from the observer to
the plume in the following manner:

                         Distance from Observer to Plume
              NPP     (fraction of background visual range)
                1                      0.02
                2                      0.05
                3                      0.10
                4                      0.20
                5                      0.50
                6                      0.80

NAP determines the horizontal azimuthal angle alpha between the plume
centerline and the line of sight for a sky background:

                                        Alpha
                         NAP          (degrees)
                           1              30°
                           2              45°
                           3              60°
                           4              90°

NTP selects the scattering angle between the direct solar beam and the
line of sight from the point of analysis to the observer.  The value of
NTP must be greater than or equal to NT1 and less than or equal to (NT2-
1).  The values of NTP for each of the six scattering angles  are  shown
below:
                                 63

-------
                                  Scattering  Angle
                     NTP              (degrees)
                       1                 22°
                       2                 45°
                       3                 90°
                       4                135°
                       5                158°
                       6                ISO8

NZP selects  the  results  for  calculations of views through the center of
the plume  or views  at ground level across the  plume trajectory.  The
values of  NZP are  limited  by the  value of NZF  (card no. 8).  If NZF = 1,
the calculations are done  only  for views through the plume centerline, and
NZP must be  set  to  3.   If  NZF = 2, NZP may be  set to 3 for values from
calculations for views  through  the plume centerline, or NZP may be set to
6 for values from  calculations  for views at the surface through the plume
trajectory.   The index  IPP selects the distance from the observer to the
plume for  plotting  results of the calculations for views with white, gray,
and black  objects  behind the plume.   The values of IPP correspond to the
distances  shown  below:

                          Distance  from Observer to Plume
           IPP          (fraction of background visual range)
             1                           0.02
             2                           0.05
             3                           0.10
             4                           0.20
             5                           0.50
             6                           0.80

I01P is used to  select  the distance  from the observer through the plume to
the white, gray, and  black background objects behind the plume.  The value
of I01P is limited by the  value of  IPP because the object  background can
be no farther than a  distance equivalent to 80 percent of  the background
visual range from  the observer.  If  IPP = 1, the range of  values of  I01P
is shown below:
                                   64

-------
                         Distance from Observer to Object
          I01P         (fraction of background visual range)
            1                          0.02
            2                          0.05
            3                          0.10
            4                          0.20
            5                          0.50
            6                          0.80

When IPP = 2, the values I01P available are as follows:

          IQ1P            Distance from Observer to Object
            1                          0.05
            2                          0.10
            3                          0.20
            4                          0.50
            5                          0.80

When IPP = 3, I01P is limited to one of the following values:

                         I01P          Distance
                           1             0.10
                           2             0.20
                           3             0.50
                           4             0.80

When IPP = 4, I01P is limited to these three values:

                         IQ1P          Distance
                           1             0.20
                           2             0.50
                           3           '  0.80
                                    65

-------
When IPP  =  5,  I01P  is  limited  to only two values:

                         I01P           Distance
                           1              0.50
                           2              0.80

When IPP  =  6,  I01P  must be set to 1, which corresponds to  a distance from
the observer to the background object of 0.80 of the background  visual
range.  These six indexes do  not place any restrictions on the calcula-
tions made  by PLUVUE,  but they provide a means of selecting the  desired
subset of results to be saved  for plotting.

     The  UTM coordinates and  elevations for observer and source  locations
and the UTM grid zone numbers  are taken from standard USGS maps.   TZONE is
the number  of the time zone,  with the Greenwich Meridian defined  as  0.
Values of TZONE are shown below:

                                 Standard      Daylight
                 Time Zone         Time          Time
                 Eastern             5             4
                 Central             6             5
                 Mountain            7             6
                 Pacific             8             7

     The array TER gives the elevation of  terrain at each  point  downwind
for the visibility analysis.   For the purpose of calculating  plume-
observer-sun geometry only, the plume centerline is assumed to rise  above
any terrain higher than the source elevation in order to maintain the same
effective height above the terrain for all points downwind.   If  the
terrain is flat or if it is desirable to maintain the same plume elevation
at  all points, use zero for all TER  values.  The model will then set all
terrainielevations to the elevation  of the source location.
                                 66

-------
     The ROBJT array allows the user to define the distances from the
observer to the background terrain.  These distances are read in for
observer azimuths of from 15° to 360" in 15° increments.  The distances
are measured in kilometers by creating a terrain profile for each azimuth
and determining the point at which the line of sight intersects the
terrain.  The observer-based calculations can be performed without measur-
ing these values by setting all elements of the ROBJT array to zero.  The
background object distance will then be set to the observer-to-plume
distance for each line of sight.  WIND is the direction from which the
wind is b'.lowing, expressed in degrees.

     For user-defined values of plume dispersion parameters (IDIS =9), SY
and SZ are read for each downwind distance.  SY is the plume concentration
horizontal standard deviation and SZ is the plume concentration vertical
standard deviation in meters.
                                 67

-------
                                 PLUVUE OUTPUT
     A PLUVUE run will write results on three files:  the print file  on
logical file unit six, the observer-based perceptibility data for plotting
on logical file unit seven, and the plume-based plot data on logical  file
unit eight.  If a PLUVUE run is for either observer-based or plume-based
calculations, either an observer-based or a plume-based plot file will be
created.

     The principal PLUVUE run output is the print file written on logical
unit six.  The file size depends on the number and type of calculations
invoked by the input file.  All runs have the data tables for the emis-
sions source, meteorological and ambient air quality, and background radi-
ative transfer.  The following discussion describes the output of each
table.

     The emissions source data table verifies to the user that the Input
data were read correctly by the model.  The descriptions 1n the printed
output adequately describe the parameters.  See the example 1n exhibit 1.

     Exhibit 2 is an example of the table of meteorological and ambient
air quality data.  Almost all the data provides the user with more Input
verification, except for the background sulfate and nitrate concentra-
tions, which are calculated by the model to match the Input values of
background visual range and the ambient coarse mode aerosol concentra-
tion.  If the background sulfate and nitrate concentrations are the Input,
the model will calculate the background visual range and print Its value
1n this "table.  Following the table for meteorological and air quality
data, the table on aerosol statistics simply prints the user-defined
values for aerosol size distribution and density.
                                 69

-------
                                          METERS MSL
VISUAL IMPACT ASSESSMENT FOR 1600 MW POWER PLANT
    EMISSIONS SOURCE DATA
         ELEVATION  OF SITE  =      5650.   FEET MSL
                                 1722.
         NO.  OF  UNITS =      4.
         STACK HEIGHT =  600.   FEET
                        183.   METERS
         FLUE GAS FLOW RATE =    1555980.
                                 734.23
         FLUE GAS TEMPERATURE =        138
                                      332
         FLUE GAS OXYGEN CONTENT =
         S02  EMISSION RATE  (TOTAL)  =
                                           CU FT/MIN
                                           CU M/SEC
                                             F
                                             K
                                           3.0  MOL PERCENT
                                           37.50  TONS/DAY
                                         3.937E 02  G/SEC
          NOX EMISSION RATE (TOTAL,AS N02)  =

          FARTICULATE EMISSION RATE (TOTAL) =
                                                131.80   TONS/DAY
                                               1.384E 03  G/SEC
                                                   4.90  TONS/DAY
                                               5.145E 01  G/SEC
Exhibit 1.  Emissions  source data table.
                                    70

-------
METEOROLOGICAL AND AMBIENT AIR OAJALITY DATA
     WINDSPEED =   4.5  MILES/HR
                   2.0  M/SEC
     PASQU1LL-G1FFORD-TURNER STABILITY CATEGORY E
     LAPSE RATE =   0.00  F/1000 FT
                     0.0G9E-01  K/M
     POTENTIAL TEMPERATURE LAPSE RATE =
     AMBIENT TEMPERATURE =  45.0  F
                                            9.B00E-03  K/M
                           280.4
                          45.0  %
                           M
                         0.82  ATM
                                   K
      RELATIVE HUMIDITY =
      MIXING DEPTH =  1000
      AMBIENT PRESSURE =
      BACKGROUND NOX CONCENTRATION =
      BACKGROUND NO2 CONCENTRATION =
      BACKGROUND OZONE CONCENTRATION
      BACKGROUND S02 CONCENTRATION =
      BACKGROUND COARSE MODE CONCENTRATION =        10.0  UG/M3
      BACKGROUND SULFATE CONCENTRATION =         2.9  UC/M3
      BACKGROUND NITRATE CONCENTRATION =         0.0  UG/M3
      BACKGROUND VISUAL RANGE =       185.0  KILOMETERS
      SO2 DEPOSITION VELOCITY =        1.00  CM/SEC
      NOX DEPOSITION VELOCITY =        1.00  CM/SEC
      COARSE PARTICULATE DEPOSITION VELOCITY =       0.10
                                         0.090  PPM
                                         0.000  PPM
                                           0.038  PPM
                                         0.000  PPM
      SUBMICRON PARTICULATE DEPOSITION VELOCITY =
                                   AEROSOL STATISTICS
                                                          CM/SEC
                                                       0.10  CM/SEC
                                BACKGROUND
                                                                          PLUME
      MASS MEDIAN
      RADIUS
      MICROMETERS

      GEOMETRIC
      STANDARD
      DEVIATION

      PARTICLE
      DENSITY
      G/
-------
     Exhibit  3  presents  the table for observer-based calculations,  showing
the observer-plume  geometry for each downwind distance along the  plume.
The titles  are  defined  in the glossary.

     Exhibit  4  is the table of background conditions.  The mass median
radius,  geometric standard deviation, and the calculated value of bscat/M
at 0.55  mm  are  given for the background accumulation mode aerosol,  back-
ground coarse mode  aerosol, and the plume primary aerosol.  Refer to  the
glossary for  a  detailed  explanation.

     Although the detailed table of information on the initial plume  dilu-
tion and nitrogen dioxide formation is not printed by default, the user
may obtain  this table by changing the input flag from the default value.
Exhibit 5 is  an example.  The results are printed for ten-second  time
intervals from  the  time of emission.  Definitions of the titles may be
found in the  glossary.   The plume rise above the source elevation at  1  km
downwind is maintained  for any terrain elevation farther downwind at
points along  the plume  trajectory.

     Exhibit  6  shows plume concentrations calculated for each downwind
distance selected  by the user.  The S02-to-S04= and NOx-to-N03~ conversion
rates are those predicted by the OH» chemical model. The concentrations of
the various species and the mass concentration ratios are indicated at  the
top of the table;  the increment above background and total are listed for
the six altitudes,  reading from top to bottom.  The altitudes are at  the
plume centerline,  ground level, ±1  o^, and ±2  o^ concentration vertical
standard deviations, as shown  in figure 13.  NTOT is the total nitrogen
mass concentration, STOT is the total sulfur mass concentration,  PRIMARY
is the plume primary particulate,  and BSP-TOTAL is the sum of the scatter-
ing coefficients for the plume primary particulate and sulfate aerosol.
BSPS/BSP is the ratio of the total  sulfate to  the total  (sulfate  plus
primary particulate) aerosol scattering coefficient for the plume.  At  the
bottom of this table, the  cumulative surface deposition of S02,  NOX,
$04'  , and N03~ are given  in terms  of the mole fraction of initial flux.
NOX is used for initial flux of N03" and S02 is used for  initial  flux of
SO    .
                                 72

-------
 GEOMETRY OF USER-SPECIFIED PLUME-OBSERVER-SUN  ORIENTATION
      WIND DIRECTION (DEGREES)  =  11.3
      SIMULATION IS FOR  900.  HOURS ON  9/21
      SOLAR ZENITH ANGLE (DEGREES)  = 51.0
      SOLAR AZIMUTH ANGLE (DEGREES) =    51.0
      GEOMETRIES FOR L1NES-OF-SIGHT THROUGH PLUME PARCELS AT GIVEN DOWNWIND DISTANCES  (X)
X (KM)
1.0
2.0
5.0
10.0
20.0
4O.O
60.0
80. 0
100.0
120.0
140.0
160.0
180.0
200. 0
220.0
240.0
AZIMUTH
19.6
19.7
20.0
20.5
21.8
26. 1
35.7
69.3
145. 1
169.8
177.7
181.4
183.5
184.9
185.8
186.6
RP
87.0
86.8
83.8
78.9
69.0
49.5
30.6
14.9
17.5
34.5
53.6
73.2
93.0
112.8
132.7
152.6
ALPHA
8.3
8.4
8.7
9.2
10.5
14.8
24.4
58.0
46.2
21.5
13.6
9.9
7.8
6.4
5.5
4.7
BETA
-0.0
-0.0
0.0
0.0
0. 1
0. 1
0. 1
0.2
0. 1
0.4
0.3
-0.0
0. 1
0.2
0. 1
-0.0
T1IETA
48.4
48.4
48.2
47.9
47.2
45. I
41.3
42.3
93.2
111.8
117.5
120.3
121 .6
122.5
123.2
123.7
Exhibit 3.  Observer-plume-sun geometry -for observer-based  calculations.

-------
                            BACKGROUND CONDITIONS

  ACCUMULATION MODE                        COARSE PARTICLE  MODE                       PRIMARY PARTICLE HODE
  MASS RADIUS    SIGMA   BSCAT. 55/MASS        MASS RADIUS    SIGMA   ESCAT.55/MASS        MASS RADIUS    SIGMA   BSCAT. 55/MAFS
 0.1250E 00   0.2200E 01    0.2044E-02          0.2700E01    0.2200E01   0.4469E-03        0.8500EOO   0.I500E 01   0.1242E-02

                            COEFFICIENTS  AT 0.15  MICROMETERS  ,  1./KM
    BTARAY =0.9747E-02   BTAAER =0. 1202E-OI    ADSII02  =0.0000E 00   BTABAC =0.2115E-01
Exhibit 4.  Background  scattering and extinction  coefficients,

-------
                                INITIAL PLUME RISE AND DILUTION AND NITROGEN DIOXIDE FORMATION
                                         1600 MW POWER PLANT
TIME X
(SEO (M)
0. 0.0
10. 20. 1
20. 40.2
30. 60.3
40. 80. 3
50. 100.6
60. 120.7
70. 140.8*
80. 160.9
90. 181.0
100. 201.1
110. 221.3
120. 241.4
130. 261.5
140. 281.6
150. 301.7
160. 321.8
170. 342.0
180. 362.1
190. 3O2.2
200 . 402 . 3
210. 422.4
220 . 442 . 5
230. 462.6
240. 482.8
250. 502.9
260. 523.0
270. 543.1
280 . 563 . 2
290. 583.3
300. 603.4
310. 623.6
320. 643.7
330. 663.8
34O . 683 . 9
350. 704.0
360. 724. 1
370. 744.3
380. 764.4
390 . 784 . 5
400. 804.6
410. 824.7
.420. 844.8
430. 864.9
440. 885. 1
450. 905.2
460. 925.3
470. 945.4
480. 965.5
490. 985.6
DELTA H U
(M) (M/S)
O.0 2.01
31.6 2.01
50.2 2.01
65.7 2.01
79.6 2.01
9'2.4 2.01
104.3 2.01
115.6 2.01
126.4 2.01
136.7 2.01
146.7 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.0!
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
W
(M/S)
17.50
0.70
0.57
0.50
0.45
0.42
0.40
0.38
0.36
0.35
0.34
0.33
0.32
0.31
0.30
0.29
0.29
0.28
0.28
0.27
0.27
0.26
0.26
0.25
0.25
0.25
0.24
0.24
0.24
0.24
0.23
0.23
0.23
0.23
0.22
0.22
0.22
0.22
0.22
0.21
0.21
0.21
0.21
0.21
0.21
0.20
0.20
0.20
0.20
0.20
V
(M/S)
17.50
2. 13
2.09
2.07
2.06
2.06
2.05
2.05
2.04
2.04
2.04
2.04
2.04
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
SIGMA
(M)
0.0
15.8
25. 1
32.9
39.8
46.2
52.2
57.8
63.2
68.4
73.3
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.3
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
TEMP O2 NO2-NO RATIO NOX NO NO2T SO2 P ARTICULATE
(K) MOL P EftUIL ACTUAL (PPM) (PPM) (PPM) (PPM) UG/M3
332.0 3.0 5.9E 04 4.2E-03 340.166 338.750 1.416 69.579 2.38E 04
290.3 17.5 9.4E 05 6 . 2E-O3 65.375 64.974 O.4O1 13.372 4.57E 03
284.3 19.6 .3E 06 9 . OE-03 25.906 25.676 0.230 5.299 1.81E 03
282.7 20.1 .4E 06 .OE-O2 15.128 14.975 O. 154 3.094 1.O6E03
281.9 20.4 .5E 06 . 1E-01 10.333 10.22O 0.113 2.114 7.23E02
281.5 20.5 . 5E 06 . 2E-02 7.688 7.600 0.088 1.573 5 . 38E 02
281.3 20.6 . 5E 06 . 2E-02 6.038 5.966 0.071 1.235 4.22E 02
2H1.1 20.7 .5E 06 . 2E-02 4.922 4.862 0.060 1.007 3.44E02
281.0 20.7 .6E 06 .3E-02 4.123 4.O72 0.051 0.043 2.88E02
280.9 20.8 .6E 06 .3E-02 3.527 3.483 0.045 0.721 2.47E 02
280.8 20.8 .6E 06 . 3E-02 3.067 3.028 0.039 0.627 2.15EO2
280.8 20.8 .6E 06 .3E-02 3.053 3.0!3 0.040 0.624 2. 14E O2
280.8 20.8 .6E 06 .3E-02 3.055 3.015 0.040 0.625 2.14E02
280.8 20.8 .6E 06 .3E-02 3.057 3.017 0.041 0.625 2.14E02
280.8 20.8 .6E 06 . 4E-02 3.059 3.O18 0.041 0.626 2.14E02
280.8 20.8 .6E 06 .4E-02 3.060 3.019 0.042 0.626 2. 14F, O2
280.8 20.8 .6E 06 . 4E-02 3.062 3.020 0.042 0.626 2. 14E O2
280.8 20.8 .6E 06 . 4E-02 3.063 3.020 0.043 0.626 2. 14K 02
280.8 20.8 .6E 06 . 4E-O2 3.064 3.O21 O.043 0.627 2.14EO2
280.8 20.8 .6E 06 . 4E-O2 3.065 3.021 O.O44 0.627 2. 14E 02
280.8 20.8 .6E 06 . 5E-02 3.066 3.022 0.044 0.627 2.14E02
280.8 20.8 .6E 06 .5E-02 3.067 3.022 0.045 0.627 2. 5E O2
280.8 20.8 .6E 06 -5E-02 3.068 3.022 O.045 0.627 2. 5E O2
280.8 2O. 8 ,6E 06 .5E-O2 3.068 3.O23 O . O46 0.628 2. 5E O2
280.8 20.8 .6E 06 . 5E-02 3.069 3.023 O.046 0.628 2. r,E P2
280.8 20.8 .6E O6 .5E-O2 3.070 3.023 0.047 0.628 2. 5E 02
280.8 20. a .6E 06 .6E-02 3.070 3.023 O.047 O.62U 2. 5E O2
280.8 20.8 .6E 06 .6E-02 3.071 3.023 0 . O48 0.628 2. 5E O2
2C0.8 20.8 . 6E 06 . 6E-O2 3.071 3.023 O.048 O.628 2. 5E 02
280.8 20.8 .6E 06 .6E-02 3.072 3.023 0.049 0.62O 2. T«E O2
2H0.8 20. a .6E 06 . 6E-02 3.O72 3.O23 O.049 0.628 2. 5E O2
200. 8 2O. 8 .6E 06 . 6E-02 3.O73 3.023 O.050 0.628 2. 5E O2
280.8 20. O .6E 06 .7E-O2 3.O73 3.O23 O.O50 0.629 2. 5E 02
2ft0.8 2O. a . 6E O6 .7E-O2 3 . 073 3.O23 O.O51 O.629 2. r>K O2
280.8 2O. 8 . 6E O6 . 7E-O2 3.O74 3.O23 O.O51 O.629 2. 5E O2
28O.8 20.8 . 6E 06 . 7E-O2 3.O74 3.023 O.052 O . 629 2. 5E O2
280.8 20.8 .6E 06 .7E-02 3.075 3.022 0.052 0.629 2. 5E 02
280.8 20. 0 .6E 06 . 7E-02 3.075 3.022 0.053 O.C>29 2. 5E O2
280.8 20.8 .6E 06 . 8E-02 3.075 3.O22 0.053 0.629 2. 5E 02
280.8 20.8 . 6E 06 . 8E-02 3.075 3.O22 O.054 0.629 2. 5E 02
283. 8 20. O ,6E 06 . 8E-02 3.076 3.022 0.054 0.629 2. 5E 02
280.8 20.8 . 6E 06 . 8E-02 3.076 3.021 O.035 0.629 2. 5E 02
2G0.3 20.8 .6E 06 . 8E-02 3.076 3.021 0.055 0.629 2. 5E O2
280.8 20.8 ,6E 06 . 8E-02 3.077 3.021 0.056 0.629 2.15E 02
280.8 20.8 .6E 06 .9E-02 3.077 3.021 0.056 0.629 2.I5E 02
280.8 20.8 .6E 06 .9E-02 3.077 3.020 0.057 0.629 2. 5E 02
280.8 20.8 .6E 00 .9E-02 3.077 3.020 0.057 0.629 2. 5E 02
280.8 20.8 .6E 06 .9E-02 3.077 3.020 0.058 0.629 2. 5E O2
2C0.8 20.8 .6E 06 .9E-02 3.078 3.020 0.058 9.630 2. 5E 0?
280.8 20.8 ,6E 06 1.9E-02 3.078 3.019 0.039 0.630 2. 5F. ©*>
Exhibit 5. Table of  initial  plume rise and dilution and nitrogen dioxide formation.

-------
 DOWNWIND DISTANCE (KM)
 PLUME ALTITUDE (M)
 SIGMA Y (M)
 SIGMA Z (M)
 S02-S04 CONVERSION RATE
 NOX-N03 CONVERSION RATE=
 CONCENTRATIONS OF AEROSOL AND GASES CONTRIBUTED
           1600 MW POWER PLANT
     1.0
    330.
    150.
     33.
      0.0000 PERCENT/HR
      0.0000 PERCENT/HR
                                                                        BY
ALTITUDE

H+2S
INCREMENT?
TOTAL AMD?
H+1S
INCREMENT?
TOTAL AMB?
H
INCREMENT?
•TOTAL AMB?
n-is
INCREMENT?
TOTAL AMB?
H-2S
INCREMENT?
TOTAL AMB?
0
INCREMENT?
TOTAL AMB?
NOX
(PPM)

1.738
1.738

7.790
7.790

12.844
12.844

7.790
7.790

1.738
1.738

0.000
0.000
N02
(PPM)

0.071
0.071

0. 187
0. 187

0.2R4
0.2«4

0. 187
0. 187

0.071
0.071

0.009
0.000
N03-
( PPM)

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000
N02/NTOT
(MOLE JO

4.073
4.073

2.401
2.401

2.211
2.211

2.401
2.401

4.073
4.073

0.000
100.000
N03-/NTOT
(MOLE JO

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000
S02
( PPM)

0.356
0.356

1.593
1.593

2.627
2.627

1.593
1.593

0.356
0.356

0.000
O.OOO
S04=
(UG/M3)

0.000
2.936

0.000
2.936

0.000
2.936

0 . 000
2.936

0.000
2.936

0.000
2.936
S04=/STOT
(MOLE %)

0.000
0.210

0.000
0.047

0.000
0.028

0.000
0.047

0.000
0.210

0.000
100.000
03
( PPM)

-0.037
0.001

-0.038
O.OOO

-0.03.3
0.000

-0.038
0.000

-0.037
0.001

O.OOO
0.038
PRIMARY
( UG/M3) (

121.587
134.523

544.916
557.851

898.414
911. 349

544.915
557.851

121.587
134.523

0.000
12.936
BSP-TOTAL
10-4 M-l)

1.511
1.639

6.770
6.898

11. 162
11.290

6.770
6.898

1.511
1.639

0.000
0. 128
BSPSN/BJ
(%)

0.000
5.096

0.000
1.211

0.000
0.740

0.000
1.21 1

0.000
5.096

O.000
65. 142
CUMULATIVE SURFACE DEPOSITION (MOLE FRACTION OF
                S02?    0.0000
                NOX?    0.0000
PRIMARY PARTICULATE?    0.0000
                S04?    0.0000
                        INITIAL FLUX)
                N03?
0.0000
Exhibit 6.  Plume concentrations of aerosol and gases.

-------
      u
 H+a

-H'JPLUME  CENTERLINE)

                                                  POINT OF ANALYSIS
                                               (at downwind distance x)
Figure 13 .   Schematic  diagram of altitudes used to determine plume contribution of gases  and  aerosols

-------
     Exhibit 7 is an example of the table, generated at each downwind  dis-
tance, of visual  effects for horizontal lines of sight for the plume-based
mode of calculation.

     Exhibit 8 is an example of the observer-based calculation of  visual
effects for horizontal sight paths, with a clear sky background.   Most of
the optical parameters are the same as those in the plume-based table  of
visual effects for horizontal sight paths.  The difference between the two
is that the plume-based table gives data for a range of all significant
variables, whereas the observer-based calculations are for the line of
sight of the specific geometry of the observer position, plume parcel
location, and position of the sun.

     Exhibit 9 is an example of a plume-based calculation of the visual
effects for nonhorizontal views through the plume, with a clear sky back-
ground.  These calculations are performed for all combinations of  scatter-
ing angles  (THETA), azimuthal angles between the line of sight and the
plume centerline  (ALPHA), and line-of-sight elevation angles (BETA).  RP
is the distance  along the line of sight from the observer to the point on
the plume centerline  and is calculated for each combination of ALPHA and
BETA.  Note that  some of these angle combinations are physically
impossible.

      Exhibit 10  is  an observer-based calculation of the visual effects for
nonhorizontal views through the plume, with a clear sky background.  The
calculation is performed in the same manner as the plume-based method, but
it  is made  only  once  for the specific THETA, ALPHA, and BETA for the
observer  position,  location of the point  on the plume,  and  scattering
angle.  The model will  skip this calculation if the line-of-sight  eleva-
tion  angle  is less  than five degrees.
   These calculations are for views through the plume  with  a clear sky
   background.  This table gives data for the scattering  angles specified
   by  NT1  and NT2  in the input file.
                                 78

-------
                   VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
                   1600 MW POKER PLANT
 POWNWIND DISTANCE (KM) «   40.0
 PLUME ALTITUDE (M)     =   330.
 SIGHT PATH IS THROUGH PLUME CENTER
THETA ALPHA
  90.
RP/RV0
RV  JJREDUCED
YCAP
X
Y DELYCAP
DELL  C(550)   BRATIO
DELX
DELY  E(LUV)  E(LAB)
vo
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
60.
60.
60.
60.
60.
60.
90.
90.
90.
90.
90.
90.
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
'0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
167.9
167. 1
167. 1
167. 1
167. 1
167. 1
172.4
172.4
172.4
172.4
172.4
172.4
174.7
174.7
174.7
174.7
174.7
174.7
176.
176.
176.
176.
176.
176.
9.22
9.67
9.67
9.67
9.67
9.67
6.84
6.84
6.84
6.84
6.84
6.84
5.58
5.58
5.58
5.58
5.58
5.58
4.83
4.83
4.83
4.83
4.03
4.63
42.34
43.82
46.80
51. 13
57.03
58.74
45.35
47.05
49.42
52.87
57 . 55
58.90
47.30
48.77
50.82
53.80
57.83
58.98
48.58
49.89
51.73
54.40
58.00
59.04
71. 13
72. 13
74.08
76.78
80.21
81. 16
73. 15
74.24
75.74
77.82
80.51
81.25
74.40
75.33
76.59
78.36
80.66
81.30
75.21
76.03
77. 14
78.71
80.76
81.33
0.36B5
0.3527
0.3332
0.3148
0.3025
O.3017
0.3376
0.3435
0.3284
0.3133
0.3026
0.3010
0.3496
0.3381
0.3254
0.3122
0.3026
0.30(8
0.3444
0.3344
0.3232
0.31 14
0.3026
0.3010
0 . 3749
0 . 3567
0.3364
0.3189
0.3111
0.3121
0.3686
0.3522
0.3353
0.3198
0.3119
0.3124
0.3624
0 . 3485
0.3338
0.3198
0.3122
O.3126
0.3580
0.3457
0.3324
0.3196
0.3124
0.3126
-17. 14
-15.66
-12.69
-8.36
-2.46
-0.75
-14. 14
-12.44
-10.06
-6.61
-1.93
-0 . 59
-12. 18
-10.72
-8.66
-5.69
-1 .66
-0 . 5O
-10.91
-9.59
-7.75
-5.08
-1 .48
-0.45
-10.44
-9.44
-7.49
-4.80
-1.36
-0.41
-8.43
-7.33
-5.84
-3.73
-1.07
-O.32
-7. 17
-6.25
-4.98
-3.21
-0.91
-0.28
-6.36
-5.55
-4.43
-2.86
-O.O2
-0.25
-0.2874
-0.2650
-0.2187
-0. 1482
-0.0465
-0.0150
-0.2332
-0.2O74
-0. 1707
-0. 1157
-O.0363
-0.0117
-0. 1992
-0. 1772
-0. 1458
-O.09BB
-0.0310
-O.0100
-0. 1772
-0. 1577
-0. 1297
-0.0879
-0.0276
-O.OO89
0.3736
0.5245
0.7170
0.9068
1.0030
0.9968
0.4198
0.5695
O.7406
0.9109
1 . OO09
0.9975
0.4673
0.6037
O.7599
O.9161
1 . 0002
0.9979
0.5036
0.6301
0.7752
0.9207
0.9998
O.9981
0.0667
0.0509
O.O3I5
0.0131
0.0007
-O.O001
O.0558
0.0418
0.0267
0.01 16
O.0OO8
O.OOOO
O . 0479
0.0363
O.O236
O.O105
0.0008
O.OOOO
O.O426
0 . 0326
O.0214
0.0096
0 . OOO8
O.OOOO
0.0617
0 . 0435
O.0232
0.0057
-0.0021
-O.001 1
0.0553
0.0390
0.0221
0.0066
-0.0014
-O.OOO8
0.0492
0.0353
0 . 0206
0.0066
-0.0010
-0.0007
0.0447
0 . 0325
0.0192
0.0064
-0.0008
-O.OOO6
47. 1943
37. 1934
24 . 2334
1 1 . 0906
2.2125
0.8166
41 .6851
32. 1265
21.2013
9 . 7382
I . 7370
0.6292
37. 1 140
28.7089
19. 1364
8.8297
1 .4950
0.5340
33.8710
26 . 3O29
17.6215
8. 1607
1.3395
O.4732
32.445
24.756
1 5 . 73 1
7 . 435
1.900
O.694
20.432
2 1 . 2O4
13.696
6.3.r)H
I .470
0.536
25. 1 15
19.004
12.337
5.709
1.249
0.455
22.795
17.367
1 1 . 345
5 . 250
1 . 109
0 . 403
 Exhibit  7.  Visual effects table for  horizontal  sight paths with a clear sky  background.   Plume-based calculations  for a  90°
            scattering angle.

-------
                   VISTTAL EFFECTS FOR HORIZONTAL SIGHT PATHS
                   1600 MW POWER PLANT
DOWNWIND DISTANCE (KM) =   40.0
PLUME ALTITUDE (M)     =   300.
PLUME-OBSERVER DISTANCE ( KM)  =   49.5
AZIMUTH OF LINE-OF-SIGHT =   26.1
ELEVATION ANGLE OF LINE-OF-SIGUT =   -0.0
SOLAR ZENITH ANGLE =    31.0   AT  900.  ON  9/21
SIGHT PATH IS THROUGH PLUME CENTER
THETA ALPHA  RP/RV0    RV  75REDUCED    YCAP       L       X      Y DELYCAP
  45.
         15.     0.27    149.9    10.95   56.02  79.65   0.3060   0.3087  -11.14
                                                                                DELL  0(550)   BRATIO    DELX    DELY  E(LUV)   E(LAB

                                                                                -5.95  -0.1802   1.0003   0.0049  -0.0046   8.6885   7.36
 00
 o
Exhibit 8.  Observer-based calculation of visual effects  for horizontal views through  the plume with a clear sky background

-------
                 VISUAL EFFECTS FOR WOW-HORIZONTAL CLEAR SKY VIEWS THROUGH PLUME CENTER
                 1600 MW POWER PLANT
DOWNWIND DISTANCE (KM)
PLUME ALTITUDE ( M)
THETA ALPHA
90.
30.
30.
30.
39.
30.
30.
45.
45.
45.
oo 45.
-1 45.
45.
60.
60.
60.
60.
60.
60.
90.
90.
90.
90.
90.
90.
• BETA

15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
40.
330
RP

2.48
I. 19
0.74
0.50
0.37
0.33
1.77
0.87
0.57
0.43
0.35
0.33
1.46
0.74
0.50
0.40
0.35
0.33
1.27
0.66
0.47
0.38
0.34
0.33
0
•
YCAP

25.37
19.93
17.94
16.99
16.54
16.40
25. 16
18.71
16.34
15.23
14.70
14.55
25. 16
18. 14
15.55
14.34
13.77
13.60
25. 19
17.79
15.06
13.78
13. 18
13.00


L

57.46
51.79
49.46
48.29
47.71
47.54
57.26
50.38
47.46
45.99
45.26
45.04
57.26
49.70
46.42
44.76
43.94
43.69
57.29
49.27
45.75
43.93
43.07
42.80


X

0.3386
0.3425
0.3456
0.3479
0.3492
0.3497
0.3225
0 . 3244
0 . 327 1
0.3291
0.3302
0.3306
0.3127
0.3136
0.3161
0 . 3 1 80
0.3192
0.3195
0.3060
0.3062
0.3086
0.3105
0.31 16
0.3120


Y

0.3550
0.3565
0.3583
0.3597
0.3607
0.3611
0.3431
0.3418
0.3428
0.3437
0.3443
0.3446
0.3339
0.3315
0.3322
0 . 333 1
0.3337
0.3339
0 . 327 1
0.3240
0.3246
0.3254
0.3260
0.3262


DEL YCAP

-0.97
4.54
6.62
7.59
8.04
8. 17
-1. 17
3.32
5.02
5.83
6.20
6.32
-1. 10
2.75
4.24
4.94
5.27
5.37
-1. 14
2.40
3.74
4.37
4.68
4.77


DELL C( 550)

-0.92 -0.0226
5.60 0.3116
9.31 0.6013
11.50 0.8230
12.67 0.9615
J 3 . 04 1 . 0085
-1. 12 -0.0258
4.19 0.2369
7.31 0.4648
9.19 0.6399
10.22 0.7499
10.54 0.7874
-1 . 12 -0.0252
3 . 50 0 . 2000
6.27 0.3955
7.97 0.5458
8.90 0.6403
9.19 0.6726
- 1 . 09 -0 . 0240
3.08 0. 1768
5.60 0.3512
7. 16 0.4O54
8. O2 0.5698
8.30 0.5986


BRAT I O

0. 1827
0. 1302
0. 1113
0. 1017
0.0967
0.0951
0.2322
0. 1762
0. 1534
0. 1417
0. 1359
0. 1341
0 . 2748
0.2146
0. 1880
0. 1742
0. 1672
0. 1651
0.3102
O.2467
0.2172
0.2014
0. 1935
0. 1910


DELX

0 . 0888
0. 1003
0. 1059
0. 1093
0. 1 1 12
0. 1118
0.0727
0 . O822
0.0874
0.O9O5
0.0921
0.0927
0.0629
0 . O7 1 4
0 . 0764
0.O795
0.081 1
O.O816
0.0,162
0.0640
O.O689
0 . O7 1 9
0.0730
0 . O74 1




DELY E( LUV)

0.0983
O. 1120
0. 1178
0. 1212
0. 1230
0. 1237
0.0864
0.0973
0. 1023
0. 1052
0. 1067
0. 1072
0.0773
0 . 0870
0.0918
0.0946
0.0961
0.0965
0 . 0704
0.0794
0 . 084 1
0.0869
0 . OOO4
0 . 0888

57.7633
53 . 8330
50.7981
49 . 0779
48.2481
48. Ol 16
50.3859
46 . 0057
42.9264
41. 1367
40.2159
39.9331
45 . 2707
41 .0308
38. 1345
36.4384
35.5340
35 . 2796
41.5168
37 . 4838
34.7722
33. 10O5
32.3471
32.0878


E( LAB)

37.966r,
37 . 4204
36.9105
36 . 7584
36 . 7720
36.7995
33.0586
31.8559
31.0935
3O.7584
30 . 6333
30.6033
29.61O3
28.3301
27.5731
27 . 2289
27.0890
27.0521
27 . O898
2.1 . 8337
25 . 1 1 88
24.7941
24.6612
24.6258
Exhibit 9. Plume-based calculation of visual  effects  for  nonhorizontal  views  through the plume with a clear sky  background

-------
                   VISUAL EFFECTS FOB. NGN-HORIZONTAL CLEAR SKY VIEWS THROUGH PLUME CENTER
                   1000 NW POWER PLANT
DOWNWIND DISTANCE (KM) =   2>.0
PLUNK ALTITUDE < M)     =   GOO.
PLUME-OJ5SEHVER DISTANCE (KM) =    1.1
AZIMUTH OF LINE-OF-SICirr =   14.2
ELEVATION ANGLE OF LlNE-OF-SICiTT =   17.7
SOLAR ZENITH ANCLE =    51.0   AT  900.  ON  9/21
THKTA   ALl'IIA    BETA      RP    YCAP       L       X       Y DELYCAP    DELL  CC550)   BRATIO    DELX    DELY  E(LUV)  E(LAB)
  3U.
         15.      9O.     1.03   41.14   70.3O  O.3807  0.3890   30.33   30.99  2.7O88  0.0646  0.1400  0.1467 77.417O 59.8263


  oo
  ro
 Exhibit 10.  Observer-based calculation  of visual effects  for nonhorizontal sight paths through  the plume.

-------
     Exhibit 11  shows  sample  results  of  the  plume-based  calculations of
the visual effects for  horizontal  views  perpendicular  to the  plume,  with
white, gray, and black  backgrounds.   The visual  effects  are calculated for
various observer-plume  and  observer-object distances for each  of  the
selected scattering  angles  and  three  reflectances.

     Exhibit 12  shows  sample  results  of  the  observer-based optics calcula-
tions for white, gray,  and  black  background  objects.   These calculations
are performed for the  line  of sight and  for  observer-to-plume  and obser-
ver-to-object distances specified  by  the input data.   Unlike the  plume-
based calculations,  the angle ALPHA between  the  lines  of  sight and the
plume centerline is  not limited to 90 degrees.

     Exhibit 13  is a sample output from  the  plume-based  calculations of
visual effects along the axis of  the  plume.  This calculation  is made  for
the same set of scattering  angles  used in the other plume-based calcula-
tions, and it is made for views along the plume  centerline, the variable
of which is the length of the line of sight within the plume.   The model
calculates the optical effects for views through plume segments that begin
at the given downwind distance and end at analysis points successively
farther upwind.  The shortest segment ends at the analysis point immedi-
ately upwind of the point under consideration, and the longest segment
ends at the point nearest the source.   (Figure 14 is a schematic diagram
of the layout for one point of analysis).  The length of the plume segment
in kilometers is defined in the column titled LENGTH.  The concentrations
of coarse mode and accumulation mode aerosols and N02 for each segment are
obtained from the mean of the endpoint values.  The calculations are made
for a range of distances from the end of each of these plume segments.
All of these plume-based calculations assume a clear background sky.

     Exhibit 14 is an example of the output for observer-based calcula-
tions of visual effects along the axis of the plume.  Unlike the plume-
based calculations, these are made for white, gray, and black background
objects as well as for the clear sky background.  The first data  line  is
for the view with a clear sky background.  The second, third,  and fourth
                                 83

-------
oo
               PLUME VISUAL EFFECTS  FOR HORIZONTAL VIEWS
               PERPENDICULAR TO TOE  PLUME OF WHITE, CRAY, AND
               FOR VARIOUS  OBSERVER-PLUME AND OBSERVER-OBJECT
               1600 MW POWER PLANT
BLACK OBJECTS
DISTANCES
DOWNWIND
THETA =
REFLECT
1.0
1.0
1.0
1.0
1.0
1.0
1.0
l.O
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
DISTANCE (KM) =
90.
RP/RVO
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
O.80
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
O.O5
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50

RO/RVO
0.02
0.05
0. 10
0.20
0.50
0.80
0.05
0. 10
0.20
0.50
0.80
O. 10
0.2O
0.50
0.80
0.20
0.50
0.60
0.50
0.80
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
0.05
0. 10
0.20
0.50
0.80
0. 10
0.20
0.50
0.80
0.20
0.5O
O.CO
0.50
O.80
60.0

YCAP
72.63
70.05
66.37
60.79
52.46
49.67
71.43
67.74
62. 16
53.83
51.04
69.66
64.08
55.75
52.96
66.86
58.53
55.74
62.28
59.49
60.57
29.40
3 1 . 40
34.40
38.78
45. 14
47. 17
32.84
35.77
40. 16
46.51
48.54
37.69
42.08
48.43
50.46
44.86
51.21
53.24
54.96
56.99


L
88.28
87.04
85.20
82.28
77.57
75.89
87.70
85.89
83.01
78.38
76.73
86.84
84.02
79.49
77.87
85.45
81.05
79.49
83.08
81.58
82. 16
61. 16
62.93
65.31
68.62
73.00
74.32
64.06
66.37
69.61
73.90
75. 19
67.82
70.95
75. 12
76.37
72.82
76.83
78.03
79.04
80. 19


X
0 . 3777
0.3769
0.3753
0.3715
0.3602
0.3537
0.3676
0.3656
0.3612
0 . 3494
0 . 3427
0 . 3544
0.3495
0 . 3372
0.3305
0.3369
0.3243
0.3178
0.3144
0.3081
0.3072
0.3535
0 . 3486
0 . 3438
0 . 3405
0 . 3427
0 . 3457
0 . 3327
0.3297
0.3281
0.3316
0.3348
O.3147
0.3147
0.3194
0.3228
0.3012
0.3069
0.3103
0.2976
O.3O09


Y
0.3827
0.3813
0 . 3790
0 . 3746
0.3657
0 . 3622
0 . 3707
0 . 3680
O.3630
0.3531
0.3493
0.3556
0.3501
0.3395
0.3354
0 . 3372
O . 3262
0 . 3220
0.3185
0.3144
0.3146
0 . 3584
0.3551
0.3525
0.3519
0.3566
0.3592
0.3365
0.3357
0.3369
0.3430
0.3460
0.3185
0.3213
0.3286
0.3318
0.3069
0.3150
0.3182
0 . 3076
0.31O7


DELYCAP
-21.96
-20.77
-19.09
-16.60
- 1 3 . 03
-1 1.91
- 1 9 . 40
-17.72
-15.22
-11.65
-10.54
-15.80
-13.30
-9.74
-8.62
-10.52
-6.96
-5.84
-3.20
-2.09
-1.O1
-2. 13
-3.23
-4.76
-6.99
-10.05
-10.95
-1.85
-3.38
-5.62
-8.68
-9.58
-1.47
-3.70
-6.76
-7.66
-0.92
-3.98
-4.88
-0.23
-1. 13


DELL
-9.59
-9.31
-8.89
-8.23
-7. 17
-6.82
-6.64
-8.20
-7.49
-6.37
-5.98
-7.24
-6.48
-5.26
-4.83
-5.06
-3.70
-3.22
-1.67
-1. 13
-0.54
-1.82
-2.61
-3.58
-4.80
-6. 16
-6.50
-1.48
-2.52
-3.82
-5.27
-5.64
-1.O7
-2.47
-4.05
-4.45
-0.60
-2.34
-2.79
-0. 13
-0.63


CC550)
-0.2316
-0.2282
-0.2227
-0.2131
-0. 1949
-0. 1879
-0.2147
-0.2084
-0. 1972
-0. 1762
-0. 1680
-0. 1879
-0. 1746
-0. 1494
-0. 1397
-0. 1407
-0. 1093
-0.0972
-0.0514
-0.0358
-0.0169
-0.0695
-0.0915
-0. 1 167
-0. 1454
-O. 1745
-0. 1815
-0.0562
-0.0855
-0. 1187
-0. 1525
-0. 1606
-0.041O
-0.0807
-0. 1210
-0. 1308
-0.0236
-0.0740
-0.0862
-0.0060
-0.0217


BRAT 10
0.5295
0.5261
0.5216
0.5147
0.5017
0.4938
0.6734
0.6666
0.6568
0.6393
0.6290
O . 834O
0 . 8208
0.7978
0 . 7846
0 . 9874
0.9583
0.9417
1.0495
1.0299
1 . 0299
0.7019
0.5949
0.5264
0.4863
0.4765
0 . 4803
0.8185
0 . 700 1
0 . 6289
O.6072
0.6115
O.8989
0.7921
0.7572
0.7623
0.9553
0.9076
0.9137
0.9897
0.9970


DELX
0.0442
0 . 0440
0 . 0438
0.0438
0.0446
0.0452
0.0346
0.0341
0.0335
0.0338
0 . 0343
0.0229
0.0218
0.0216
0.0221
0.0092
0 . 0087
0.0093
-0.0012
-0.0004
-0.0013
0.0307
0.0364
0.0412
0 . 0446
0.0460
0.0458
0 . O2O5
0.0270
0 . 0322
0.0350
0.035O
0 . 0 1 20
0.0188
0 . 0228
0 . 0229
0.0054
0.0102
0.0104
0.0009
O . OO 1 0


DELY E( LUV) E( LAB)
0.0391 34.1093 24.6740
0.0393 33.7108 24.3392
O.0396 33.2942 23.9377
0.0408 33.0983 23.5509
0.0443 34.1845 23.6581
O.0462 35.0715 23.9325
0.O286 26.9379 19.O907
0.0236 26.3145 18.5597
0.0291 25.7904 17.9841
0.0317 26.4043 17.8743
0.033327.1649 18.1163
0.O162 18.1701 12.7461
0.0162 17.2587 11.9472
0.0181 17.3044 11.5279
0.0194 17.9254 11.7121
0.0034 8.4426 6.3962
0.0048 7.5876 5.3202
0.0060 7.9745 5.3071
-0.0029 2.370O 2.1031
-0.0017 1.4628 1.3505
-0.0014 1.1373 0.8409
0.0264 16.7854 11.6157
0.0350 22.0708 15.1620
0.O424 27.7181 18.7852
0.0478 33.1177 22.1574
0.0490 36.1701 24.1844
0.0481 36.0360 24.2300
0.0163 12.2380 7.8780
0.0255 18.3487 11.9340
0.0327 24.3757 15.8333
O.O354 28.O451 18.2964
0.O349 28.O405 18.4O59
0.0O84 7.8159 4.7402
O.0171 14.3175 8.9548
0.0210 18.5915 11.8069
0.0207 18.7206 11.9858
0.0027 3.7478 2.1999
0.0074 8.3988 5.2161
0.0071 8.6719 5.4961
-0.0000 0.7462 0.4842
-O.OO04 1.2094 0.9237
     Exhibit  T\.   plume-based calculations of  visual  effects for horieontal  views perpendicular  to  the plume, with  white,

-------
0.3
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
.0.80
0.02
0.02
0.02
0.02
0.02
0.02'
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.80
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
0.05
0. 10
0.20
0.50
0.00
0. 10
0.20
0.50
0.00
0.20
0.50
0.80
0.50
0.89
0.80
58.06
10.87
14.92
20.70
29.36
42 . 00
46.09
16.30
22.07
30.73
43.37
47.47
23 . 99
32.65
45.29
49.38
35.43
48.07
52. 16
51.82
55.92
56.99
80.79
39.41
45.57
52.65
61. 13
70.89
73.63
47.40
54. 14
62.31
71.83
74.51
56. 11
63.90
73. 11
75.71
66. 11
74.89
77.40
77. 19
79.58
80. 19
0.3001
0.29CO
0.3020
0.3070
0.3159
0.3336
0.3421
0.2821
0.2910
0 . 3029
0 . 3226
0.3312
0.2755
0.2095
0.3105
0.3193
« . 2767
0 . 2983
0.3069
0.2094
0 . 2977
0.2970
0.311O
0.3032
0.3120
0.3216
0 . 334O
0.3518
0.3578
0 . 2068
0 . 3009
0.3172
0.3379
O.3445
0.2818
0.3005
0 . 3232
0 . 3302
0.2860
0.3094
0.3166
0.3022
0 . 309 1
0.3094
-0.06
6.36
4.29
1.39
-2.88
-8.78
-10.54
5.67
2.76
-1.50
-7.41
-9. 17
4.68
0.42
-5.49
-7.25
3.20
-2.71
-4.47
1.05
-0.72
0.35
-0.03 -0.0018
14.07 1.3903
6 . 58 0 . 4087
1.57 0.0832
-2.44 -0.0765
-5.67 -0. 1634
-6.36 -0. 1706
8.41 0.5237
3.05 0.1463
-1.25 -0.0388
-4.73 -0. 1396
-5.48 -0. 1573
5. O2 0.2363
0.34 0.0149
-3.46 -0. 1056
-4.28 -0. 1268
2.55 0.0953
-1.67 -0.0548
-2.59 -0.001 1
0.63 0.0186
-0.41 -0.0152
0.20 0.0052
0.9958
O.3631
0 . 3804
0.3987
0.4216
0 . 4578
0 . 4728
0 . 5447
0 . 5397
0 . 5476
0.5832
0.6019
0.6980
0.6904
0 . 7266
0.7499
0 . 8300
0.8695
0.8983
0.9451
0.9789
0.9771
0.0002
0.0472
0 . 0473
0.0474
0 . 0475
0.0467
0 . 046 1
0 . 0274
0.0314
0 . 0345
0 . 0357
0.0333
0.0159
0 . 02 1 1
0.0236
0.0233
0.0082
0.01 14
0.0109
0.0025
0.0017
0.0010
-0.0001
0 . 0486
0.0527
0.0551
0.0553
0.0514
0.0490
0.0275
0.0344
0.0385
0 . 0374
0.0356
0.0153
O.0218
0 . 0227
0.0213
0.0073
0.0090
0 . 0077
0.0018
0 . 0002
0.0005
0.2165
16.6763
21. 1070
28.4951
34.8358
37.2250
36 . 4725
1 1 . 6438
18.0712
25 . 4729
28.9642
28.441 1
8.0676
14.9901
19.3940
19.0920
4.9194
9. 1 183
9.0191
1.6919
1 . 4369
0.6604
0. 1521
16.3187
15.6010
19.0693
22.6389
24.5138
24.3679
10.3541
12.0440
16.0946
18.5956
18.5424
6.5536
9. 1949
12.0788
12. 1203
3.6275
5 . 4478
5.6125
1. 1 1 14
0.9239
0.4156
00
Ol
       Exhibit 11  (concluded)

-------
                 PLUME VISUAL  EFFECTS FOR HORIZONTAL VIEWS
                 OF THE PLUME  OF WHITE, CRAY, AND BLACK OBJECTS
                 FOR SPECIFIC  OBSERVER-PLUME AND OBSERVER-OBJECT DISTANCES
                 1600 NW POWER PLANT
        DOWNWIND DISTANCE (101)=   60.0
        P LIME-OBSERVER DISTANCE (KM) =   30.6
        AZIMUTH OF  LIHE-OF-SIOHT =   35.7
        ELEVATION ANGLE OF LINE-OF-SICHT =   -0.0
        SOLAR ZENITH ANCLE =   51.0   AT  900. ON  9/21
00
THETA =
REFLECT
1.0
0.3
e.e
41.
RP/RV0
0. 17
0. 17
0. 17
RO/RV0
0.56
0.56
0.56
YCAP
94.87
91.11
89. GO
L
97.98
96.46
95 . 79
X
0.3452
0.0391
0.3363
Y
0.3423
0.3394
O.3381
DEL YCAP
-18.28
-13.69
- 1 1 . 73
DELL
-6.89
-5.37
-4.68
C(550)
-0. 1721
-0. 1408
-0. 1259
BRAT I O
0 . 8437
0 . 7885
0.7603
DELX
0.0209
0.0235
0 . 0248
                                                                                                         DELY  E(LUV)  E(LAB)
                                                                                                       0.0092  18.8304  12.1529
                                                                                                       0.0120  20.5322  12.5367
                                                                                                       0.0133  21.4622  12.8576
       Exhibit 12.  Observer-based calculations  of horizontal views through  the plume, with white  (REFLECT = 1.0), gray
                    (REFLECT = 0.3), and  black  (REFLECT = 0.0) background objects.

-------
         VISUAL EFFECTS FOR LINES OF
         1600 MW POWER PLANT
SIGHT ALONG PLUME
DOWNWIND DISTANCE (KM)
THETA LENGTH RP/RVO
90.
20.
20.
20.
20.
20.
20.
20.
40.
40.
40.
40.
40.
40.
40.
50.
50.
50.
50.
50.
50.
S3 50.
55.
55.
55.
55.
55.
55.
55.
58.
58.
58.
58.
58.
58.
58.
59.
59.
f.9.
59.
59.
59.
59.

0.00
0.02 '
0.05
0. 10
.0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
O.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
O.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
= 60.0
RV PREDUCED

59.9
59.9
59.9
59.9
59.9
105.2
153. 1
23.5
26.9
32.0
40.4
57.3
105.2
153. 1
23.5
26.9
32.0
40.4
57.3
105.2
153. i
23.5
26.9
32.0
40.4
57.3
105.2
153. 1
23.5
26.9
32.0
40.4
57.3
105.2
153. 1
23.5
26.9
32.0
40.4
57.3
105.2
153. 1

67.65
67.65
67.65
67.65
67.65
43. 11
17.24
87.28
85.46
82.72
78. 17
69.05
43. 11
17.24
87.28
85.46
82.72
78. 17
69.05
43. 11
17.24
87.28
85.46
C2.72
78. 17
69.05
43. 11
17.24
87.28
85.46
82.72
78. 17
69. 05
43. 11
17.24
87.28
85.46
82.72
78. 17
69.05
43. 11
17.24
YCAP

30. 17
32.50
35.65
40. 09
46.60
55 . 62
58.32
28.74
31. 18
34.46
39. 10
45.90
55.38
58.23
28.72
31. 15
34.44
39.08
45.89
55.38
58.23
28.71
31. 15
34.44
39.08
45.89
55 . 38
58.23
28.71
31. 15
34.44
39.08
45.89
55.38
58.23
28.71
31. 15
34.44
39.08
45.89
55.38
58.23
L

61.83
63.79
66.28
69.56
73.95
79.42
80.93
60.58
62.69
65 . 36
68.85
73.51
79.28
80.88
60.56
62.67
65.34
68.83
73.50
79.28
80.88
60.56
62.67
65.34
68.83
73.50
79.28
80.88
60.56
62.67
65 . 34
68.83
73.50
79.28
80.88
60.56
62.67
65.34
68.83
73.50
79.28
80.88
X

0.4052
0.3791
0.3541
0.3309
0.3113
0.3009
O.3014
0.4013
0.3750
0.3503
0.3277
0.3092
0.3002
O.301 1
0.40(1
0.3749
0.3501
0.3276
O.3091
0.3002
0.3011
0.401 1
0.3748
0.3501
0.3276
0 . 309 I
0.3002
O.301 1
0.401 1
0.3748
0.3501
0.3276
O.3091
0.3002
0.301 1
0.4011
0.3748
0.3501
0.3276
0.3091
0.3002
0.301 1
Y DELYCAP

0.3840
0.3613
0 . 3402
0 . 3220
0.3092
0.3082
0.3112
0.3805
0.3578
0 . 3370
0.3195
0.3077
0 . 3078
0.3111
0 . 3803
0 . 3577
O . 3370
0.3195
0 . 3077
0 . 3078
O.31 11
0 . 3805
0 . 3577
0 . 3370
O.3195
0 . 3077
0 . 3078
0.3111
0 . 3805
0.3577
0.3370
0.3195
0 . 3077
0 . 3078
0.3111
0 . 3805
0.3577
0 . 3370
0.3195
0 . 3077
0 . 3078
0.3111

-29 . 33
-26.99
-23 . 85
-19.41
-12.92
-3.91
-1.23
-30 . 76
-28.33
-25.05
-20.42
-13.62
-4. 15
-1.31
-30.80
-28.36
-25.07
-20.44
-13.64
-4. 16
-1.32
-30.80
-28.36
-25.08
-20.44
-13.64
-4. 16
-1.32
-30.80
-28.36
-25.08
-20.44
-13.64
-4. 16
-1.32
-30.80
-28.36
-25.08
-2O . 44
-13.64
-4. 16
-1.32
DELL

-19.75
-17.79
-15.30
-12.02
-7.64
-2. 18
-0.67
-2 1 . 00
-18.90
-16.23
-12.74
-8.09
-2.32
-0.72
-2 1 . 03
-18.92
-16.25
-12.76
-8. 10
-2.33
-0.72
-21.03
-18.92
-16.25
-12.76
-8. 10
-2.33
-0.72
-21.03
-18.93
-16.25
-12.76
-8. 10
-2.33
-0.72
-21.03
-18.93
-16.25
-12.76
-8. 10
-2.33
-0.72
C(550) BRATIO DELX DELY E(LUV) E(LAB)

-0.5193
-0.4803
-0 . 427 1
-0.3513
-0.2376
-0.0735
-0.0227
-0.5441
-0.5032
-0.4475
-0.3681
-0.2489
-0.0770
-0.0238
-0.5443
-0.5033
-0 . 4476
-0.3681
-O.2490
-0.0770
-0.0238
-0.5442
-0.5033
-0.4476
-0.3681
-0.2490
-0.0770
-0.0238
-0.5442
-0.5033
-0.4476
-0.3681
-0.2489
-0.0770
-0.0238
-0.5442
-0.5033
-0.4476
-0.3681
-0.2489
-0.0770
-0.0238

0.2323 0.1031 0.0708 61.5959 43.549
O.3872 0.0770 0.0480 49.5869 33.977
0.5678 0.0519 0.0270 36.7866 25.047
0.7694 0.0286 0.0088 23.5992 16.757
0.9601 0.0089 -0.0040 11.5355 9.462
1.0381 -0.0017 -O.OO50 3.5696 3.092
1.0216 -0.0014 -0.0020 1.4220 1.088
0.2429 0.0990 0.0673 59.4993 42.365
0.4039 0.0727 0.0445 47.5866 33.069
0.5904 0.0479 0.0238 35.0478 24.468
0.7959 0.0253 0.0063 22.352) 16.551
0.9852 O.0067 -O.OO55 11.1173 9.596
1.0505 -0.0025 -0.0054 3.8180 3.253
1.0273-0.0017-0.0021 1.5649 1.165
0.2442 O.0987 0.0673 59.3818 42.314
0.4059 O.O724 O.0445 47.4759 33.024
0.5931 0.0477 0.0238 34.9487 24.429
0.7992 0.0251 0.0062 21i.2723 16.521
O.9833 0.OO66 -O.O055 1 1 . O73B 9.580
1.0520 -0.0025 -O.O054 3.822O 3.253
1.0280 -O.O017 -0.0021 1.5703 1.167
0.2446 0.0987 0.0673 59.3595 42.305
O.4065 O.O724 O.O445 47.4548 33.O15
0.5939 0.0476 O.O238 34.9293 24.421
0.8001 O.0251 O.O062 22.256O 16.514
0.9892 0.0065 -O.OO55 11.0634 9.576
1.O525 -0.0026 -0.0054 3.8221 3.2f>3
1.0282 -O.OO17 -0.0021 1.5714 1.167
0.2448 0.0987 0.0673 59.3489 42.3O1
0.4069 0.0724 0.0445 47.4446 33.011
O.5944 O.O476 0.0238 34.9199 24.417
0.8007 O.0251 0.0062 22.2477 16.511
O.9897 O.0065 -O.O055 11.0582 9.573
1.O527 -O.OO26 -O.O054 3.O222 3.252
1.0284 -0.0017 -0.0021 1.5718 1.168
0.2449 0.0987 0.0673 59.3456 42.299
0.4070 0.0724 0.0445 47.4415 33.010
0.5943 0.0476 0.0238 34.9170 24.416
O.O008 0.0251 0.0062 22.2452 16.510
0.9099 0.0065 -0.0055 11.0566 9.573
1.0528 -0.0026 -0.0054 3.8222 3.252
1.0284 -0.0017 -0.0021 1.5720 1.168
Exhibit 13.  Plume-based  calculations  of visual  effects for lines of sight along the axis of the plume.

-------
00
00
         ANALYSIS
            POINTS
SOURCE
                                                                POINT OF
                                                                ANALYSIS
                              THE DIFFERENT PLUME SEGMENTS
                              USED AT THE SIXTH ANALYSIS POINT
                              DOWNWIND FROM THE SOURCE
                                                                                              t       I
                                                                           VARIOUS OBSERVER  POSITIONS  USED  FOR
                                                                              EACH PLUME  SEGMENT  CONSIDERED
                          Figure  14.   Schematic  diagram  of  plume-based  "along  plume"  optics  calculation.

-------
         VISUAL EFFECTS FOR LIKES  OF  SIGHT ALONG PLUTIE
                     I •
         1600 MW POWER  PLAWT

DOWNWIND DISTANCE (KM)  =  100.0
PLUME-OBSERVER DISTANCE (KM)  =    17.5
AZIMUTH OF LINE-OF-SIGHT =   145.1
ELEVATION ANGLE OF LINE-OF-SIGHT =    0.1
SOLAR ZENITH ANGLE =   51.0   AT  900.  ON   9/21
THETA LENGTH RP/RV0    RV  rJREDUCED    YCAP       L
                          X
  42.
    FOR SKY BACKGROUND:
         10.    0.09   165.8
    FOR WHITE BACKGROUND:
         10.    0.09   165.8
    FOR CRAY BACKGROUND:
         10.    0.09   165.5
    FOR BLACK BACKGROUND:
         10.    0.09   165.3
10.38  105.25

10.39  105.36

10.57  103.55
Y DELYCAP
101.99   0.3459   0.3523

102.03   0.3466   0.3522

101.36   0.3437   0.3512
10.64  102.78  101.06   0.3425   0.3507
-9.09

-9. 11

-8. 17

-7.77
                                DELL  C(550)  BRATIO
                                DELX
DELY  E(LUV)  E(LAR)
 CO
             -3.30 -0.0772  0.7572  0.0216  0.0184 19.9524 12.717

             -3.30 -0.O769  0.7631  0.0214  0.0183 19.7874 12.64O

             -3.00 -0.0705  0.7487  0.0222  0.0191 20.5127 12.973

             -2.87 -0.0677  0.7420  0.0225  0.0194 20.0360 13.12O
 Exhibit  14.  Observer-based calculations  of visual  effects for views close  to  the  plume trajectory   The  first line is data  for
             clear sky background.  The second,  third, and fourth lines are for white, gray, and black  backgrounds, respectivelj

-------
lines show the results for white, gray, and black backgrounds,  respec-
tively.  The calculations are made for the defined observer  position,  with
the line of sight intersecting the plume at the user-specified  distance
downwind of the source.  The model uses the plume center line concentration
for this point.  This concentration is integrated along  the  line of sight,
and the length of this integration is calculated to correspond  to a
Gaussian plume distribution.  The azimuthal angle between the line of
sight  and the plume centerline is included.  As in the results  for the
plume-based calculations, LENGTH  indicates the distance  over which the
plume  centerline concentrations  are applied.  The percentage of reduction
in visual range  is defined only  for the clear sky background.  The remain-
ing optical parameters compare the visual effects of  looking through the
plume  to  looking at the  background without it.

     Exhibit  15  is an example of  the printed results  of  the  OH» model  cal-
culations of  the conversion  rates of S02 to S04= and  NOX to  HNO§.  For
each downwind distance,  the  conversion rates are shown for each point
upwind.   These rates  are based on the  solar radiation for the time of day
at which  a  plume parcel  is  at the given distance downwind of the source.
The  output  shows the  conversion  rates  for plume parcels  as they advect to
each analysis point  along the plume trajectory.  The  conversion rates are
calculated  for the six  altitudes shown in figure 13.

     The  last two tables (see exhibit  16) verify the  values  of visual
range  reduction, blue-red ratio, plume contrast, and  AE(L*a*b*) written to
logical files 7  and  8.   These files  are the input data for the plotting
program (VISPLOT).   Exhibit 16  shows the format of  the tables set for
sixteen analysis points  and four backgrounds.  The  visual range reduction
data are  set  to  zero for white,  gray,  and  black backgrounds, since visual
range  is  defined for a horizon  sky  background.  The values  saved for
plotting  are  taken from the calculations for horizontal  views of the  plume
with  a sky  background and from  the  calculations for horizontal views  of
white, gray,  and black backgrounds  behind  the  plume.   The model prints
both  tables for  plume-based and  observer-based data only if  both calcula-
tions  are done.   If  PLUVUE  is  run for  observer-based  calculations or
                                 90

-------
HISTORY OF PLUME PARCEL AT DOWWIND DISTANCE =, 240.0 KM
PARCEL LOCAL S02-T0-S04= CONVERSION RATE ( 7./HR)
ACE TIME
( Sir*.1
0.
0.
0.
1.
2.
5.
0.
11.
13.
16.
19.
22.
24.
27.
30.
33.
1
3
7
4
O
5
3
0
8
6
3
1
9
6
4
1
2359
8
32
114
237
522
808
1004
1340
1625
1911
2157
42
328
614
900
H+2S
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
00
00
00
00
01
01
00
00
00
00
00
00
04
n+is
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0,00
0.01
H
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
H-1S
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.01
H-2S
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.00
.00
.00
.00
.00
.00 '
.00
.01
.01
.00
.00
.00
.00
.00
.00
.04
0
0.00
0.00
0.00
0 . 00
o.oo
0.01
0.94
2.95
1 .89
0. 13
0.00
0.00
0.00
0.00
o.or>
i . <.f»
                                                                  NOX-TO-HN03 CONVERSION RATE (3/HR)
H+2S
0.
0.
O.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
00
00
00
01
09
08
00
00
00
00
00
01
28
H+
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
O.
0.
IS
00
00
00
00
00
00
00
02
01
00
00
00
00
00
00
04
H
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

00
00
00
00
00
00
00
01
01
00
00
00
00
00
00
02
II-
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
IS
00
00
00
00
00
00
00
02
01
00
00
00
00
00
00
04
H-2S
0
0
0
0
0
0
0
0
0
0
0
0
0
0
O
0
.00
.00
.00
.00
.00
.00
.01
.09
.08
.00
.00
.00
.00
.00
.01
.28
0
0.
0.
0.
0.
0.
0.
6.
20.
13.
0.
0.
0.
0.
0.
0.
1 1.
00
00
00
00
00
04
61
65
26
93
00
00
00
00
38
64
Exhibit 15,
Conversion rates for secondary aerosol formation calculated by the OH<
parcel 240 km fnom the source at the time of observation (0900).
model for a plume

-------
                                                         PLOT FILE VERIFICATION

      SKY BACKGROUND                                     OBSERVER-BASED DATA

          NX             I      2      3      4      3      6      7      B      9     10     1!      12     13     14     15     16

    DISTANCE (KM)        1      2      5     10     20     40     60     80    100    120    140     160    180    200    220 •   240

  REDUCTION OF VISUAL
      RANGE <5J)       52.530 52.937 53.826 51.327 40.167 27.501  16.039  7.419 1O.637 23.591  40.679 47.959 45.8O6 43.730 42.247 41,06

   BLUE-RED RATIO      "
                       1.022  1.021  1.019  1.014  1.003  0.956   0.861  0.742 0.758  0.858   O.923  0.951  0.957  0.958  0.957  O.95

   PLUME CONTRAST AT
      0.55 MICRONS    -0.057 -0.070 -0.082 -0.090 -0.105 -0.135  -0.153 -0.111 -0.084 -0.112  -0.094 -0.068 -0.046 -0.030 -0.019 -0.01

 PLUME PERCEPTIBILITY
    DELTA E(L*A*B*>     2.312  2.814  3.333  3.621  4.148  5.491   8.602 12.527 12.982  8.313   5.066  3.462  2.386  1.677  1.206  «.91

    WHITE BACKGROUND

          NX             1       2345      6      7      8      9     10     11      12     13     14     15     16

    DISTANCE (KM)         1       2      5      10     20     40     60     80   100    120    140     160    180    200    220    24O

 REDUCTION  OF  VISUAL
      RANGE  (%)         0.000  0.000  0.000  0.000  0.000  0.000   0.000  0.000 0.0OO  0.000   0.000  O.OOO  0.000  O.OOO  0.000  O.OO

  BLUE-RED  RATIO
10                      1.259   1.248  1.219  1.187  1.146  1.065   0.934  0.757 0.766  0.903   1.089  0.000  O.OOO  0.000  0.000  0.00
ro
  PLUME CONTRAST AT
     0.55 MICRONS    -0.088 -0.100 -0.111 -0.118 -0.132 -0.162  -0.180 -0.114 -O.085 -O.122  -O.O45  0.000  O.OOO  0.000  0.000  O-OO

PLUME PERCEPTIBILITY
   DELTA E(L*A*B*)     5.061   5.232  5.344  5.290  5.397  5.971   8.184 12.323 12.845  7.558   3.153  O.OOO  O.OOO  O.OOO  0.000  O.OO

    GRAY BACKGROUND

         NX             1      2       3      4      5      6      7      8      9     10     II      12     13      14      15      16

   DISTANCE (KM)        1      2       5      10     20     40     60     80    10O    120    140    160    180    200    22O    240

 REDUCTION OF VISUAL
     RANGE (7.)         0.000  0.000  0.000  0.000  0.000  0.000   0.000  0.000 0.000  0.000   0.000  0.000  0.000  0.000  O.OOO  0.00

  BLUE-RED RATIO
                      0.996  0.996   0.996  0.994  0.985  0.939   0.846  0.740 0.752  0.799   0.872  0.000  0.000  0.000  O.OOO  0.00

  PLUME CONTRAST AT
     0.35 MICRONS    -0.026 -0.040 -0.054 -O.O63 -O.O79 -0.110  -0.129 -0.1O7 -0.078 -0.045   0.173  O.OOO  O.OOO  0.000  O.OOO  O.OO

PLUME PERCEPTIBILITY
    DELT/V .ECL.*A*B*>     1.0O6   1.575  2.155  2.531  3.1O8  4.874   8.398 12.601 13. I6O  8.819   6.239  O.0OO  O.00O  O.OOO  O.OOO  O.OO

                        (.a")   Obsemver--based calculations.

-------
  BLACK BACKGROUND

        NX             1       2       3       4       5       6       7      8      9     10     11     12     13     14      IP      16

  DISTANCE (KM)         1       2       5      10      20      40      60     80    100    120    14O    160    180    200    220    240

 REDUCTION OF VISUAL
     RANGE (J?)         0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  O.OOO  0.000  0.000  0.0(

  BLUE-RED RATIO
                      0.882  0.886  0.894  0.902  0.904  0.871  0.791  0.732  0.745  0.740  0.729  0.000  0.000  0.000  O.OOO  0.0<

  PLUME CONTRAST AT
     0.55  MICRONS     0.003 -0.011 -0.026 -0.037 -0.054 -0.084 -0.102 -0.104 -0.075 -0.004  0.314  0.000  0.000  O.OOO  O.OOO  O.O

PLUME PERCEPTIBILITY
   DELTA E(L*A*B*)    2.137  2.279  2.446  2.650  3.234  5.126  8.925 12.729 13.303 1O.133 11.O3O  0.000  0.000  O.OOO  0.000  0.0<
    Exhibit 16(a)  (concluded)

-------
                                                          PLOT FILE VERIFICATION

                                                            PLUME- BASED DATA

      SKY BACKGROUND

          NX             1       2      3      4      3       6       7       8      9      10      11      12      13      14      15      16

    DISTANCE (KM)         1       2      5     10     20      40      60     80     100     120     140     160     180    2»0    220    240

  REDUCTION OF VISUAL
      RAFGE (75)        11.973  9.556   6.737  5.153  4.127   3.519   3.288   3.166   3.086   3.027   2.979  2.940   2.90R  2.570  2.213   1.96

   BLUE- RED RATIO
                       0.921  0.857   0.827  0.825  0.819   0.808   0.801   0.796   0.793   0.791   0.79O  0.789   0.789  0.801  0.818  0.83

   PLUME CONTRAST  AT
      0.55  MICRONS    -0.094 -0.108  -0. 1O6 -0.090 -0.094 -0.O95 -0.097  -0.099 -0.100 -0.101 -0.101 -0.101 -0.101  -0.092  -0.001  -0.07

 PLUME PERCEPTIBILITY
    DELTA E(L*A*B*>     4.864  7.459   8.674  8.601   8.758   9.270   9.619   9.862 10.024 10.125 10.184 10.214 10.223  9.523  8.617  7.91

    WHITE BACKGROUND

         NX              1      2      3      4      5       6       7       8      9      10      11      12      13      14      15      16

    DISTANCE (KM)         1      2      5     10     2O     40      60     80     100     120     140     160     180    200    220     240

 REDUCTION OF VISUAL
     RANGE (75)        O.OOO O.000   0.000  0.000   0.00O   0.000   0.000   0.000   O.OOO   0.000   O.OOO  O.OOO   O.OOO  O.O00  O.O00  O.OO

  BLUE-RED RATIO
                       1.101  0.985   0.909   0.886   0.866   0.844   O.833   0.826   0.821   0.818   O.816   0.815   O.814  O.824  0.837  0.84

  PLUME CONTRAST AT
     0.55 MICRONS    -0.169 -0.169 -0.152 -0.135 -0.124 -0.121 -O. 121  -0.122 -0.123 -0.123 -0.123 -0.123 -0.122  -0.111  -0.098 -0.03

PLUME PERCEPTIBILITY
   DELTA E(L*A*B*)    6.447  7.392  8.359   8.361   8.637   9.291   9.721  10.015 10.212 10.338 10.414  10.452  10.465   9.753   8.827  8.10

    GRAY BACKGROUND

         NX             1      2      3      4       5       6       7       8      9      10      11      12      13      14     15      16

   DISTANCE (KM)        1      2      5      10     20     40      60     80     100     120     140     160     180     200    220    240

 REDUCTION OF VISUAL
     RANGE <.%)        0.000  0.000  0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000  0.000  0.00

  BLUE-RED RATIO
                      0.890  0.849  0.836   0.840   0.840   0.834   0.830   0.827   0.825   0.824   0.823   0.823   0.823   0.834  0.848  0.85

  PLUME CONTRAST AT
     0.55 MICRONS     0.010 -0.022 -O.O43 -0.O47 -O.052 -0.059 -0.064  -O.067 -0.O68 -O.070 -O.070 -0.071 -0.071  -0.065  -0.058 -0.05
PL.WOE PET>.CE\?T1BH.ITY
          F.tU*/v*TMO    3.9T5  5.863  6.657  6.541  6.612  6.954  7.194  7.361  7.472  7.541  7.38O  7. 396  7.598   7.036   6 . 42f>   .1.
                                                                                                                                  90

-------
       BLACK BACKGROUND

             NX             1       2      3      4       5       6      7      8      9      10      11      12      13      14      13      16

       DISTANCE (KM)         1       2      8     16      20      40     60     80     100     120     140     160     180     200     220     240

     REDUCTION OF VISUAL
         RANGE (X)        0*000  0.000  0.000  0.000  0.000  0.000  0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000  0.00

*     BLUE-RED RATIO
                          0.037  0.648  0.689  0.726  0.752  0.767  0.773   0.775   0.777   0.778   0.780   0.781   0.782   0.798   0.817  0.83

      PLUME CONTRAST AT
         0400 MICRONS     0.192  0.128  0.069  0.042  0.021 -.0.003 -0.005  -0.010  -0.013 -0.016 -0.017 -0.018-0.018 -0.018 -0.017 -0.01

    PLUME PERCEPTIBILITY
       DELTA E(L*A*B«)    9.360  9.262  8.329  7.441  6.937  6.827  6.857   6.901   6.932   6.946   6.947   6.941   6.931   6.427   5.801   5.32
     Exhibit  16(b)  (concluded)

-------
plume-based calculations, the model writes only the proper plot file  and
print's the corresponding table.

     The plot files are written in the same order that the data are
printed in the tables of exhibit 16.  Exhibit 17 shows the binary FORTRAN
write statements that generate these files.  These four statements write
the values of the four arrays:  visual range reduction, blue-red ratio,
plume contrast, and AE(L*a*b*).  For each of the four arrays, the data  are
organized such that the first sixteen elements are for a sky background,
the second sixteen elements are for a white background, the third sixteen
elements are for a gray background, and the last sixteen elements are for
a black background.  Each group of sixteen elements corresponds to the
sixteen 'downwind distances.
                                96

-------
       WRITE(6,50001)
 50001  FORMATC 1H1,55X,22HPLOT FILE VERIFICATION)
       IF(NC2.NE.2)GO TO 30025
 C
 C  WRITE OUT THE  VISUAL IMPACT PARAMETERS FOR PLOTTING OF  THE
 C  RESULTS  OF OBSERVER-BASED CALCULATIONS.  PLT1  IS  PERCENT REDUCTION
 C  IN  VISUAL RANGE,  FOR THE 16 DOWNWIND POINTS. NN= 1  FOR CLEAR
 C  SKY BACKGROUND.  NN=2 FOR WHITE BACKGROUND.  NN=3  FOR GRAY
 C  BACKGROUND.  NN=4  FOR BLACK BACKGROUND.   PLT1  IS  SET TO
 C  ZERO FOR NN-2,3,4.  PLT2 -  BLUE-RED RATIO.   PLT3   PLUME
 C  CONTRAST AT 0.55  MICROMETER.   PLT4 -  DELTA E(LAB)
 C
       WRITE(7)((FLT1(NX,NN),NX=1,16),NN=1,4)
       WRITE( 7) ( (FLT2( NX, NN) , NX= 1, 16) , NN= 1,4)
       WRITE(7H(PLT3(NX,NN),NX=1,16),NN=1,4)
       WRIT£(7)((PLT4(NX,NN), NX= 1,16) ,NN=1,4)
       WRITE(6,50002)
 50002  FORMATC 1HO,56X, 19HOBSERVER-BASED DATA)


       IF(NC1.NE.1)GO TO 30030
C                                           	
•*  VISUAL IMPACT PARAMETERS FOR PLOTTING OF THE RESULTS OF
C  THE PLUME-BASED CALCULATIONS WITH THE DESIRED SCATTERING ANGLE
C  DISTANCES, -\KD PLUME-OBSERVER GEOMETRY AS SPECIFIED IN  THE
C  PLUME-BASED CALCULATIONS FOR CLEAR SKY AND WHITE, GRAY,  AND
C  BLACK BACKGROUNDS.
C
30025 CONTINUE
      WRITE(8)((PLOT1(NX,NN) ,NX= 1, 16) ,HH= 1,4)
      WRITE( 8) (( PLOT2( NX, NN) , NX= 1, 16) , NN= 1,4)
      WRITE(8)«PLOT3(NX,NN) ,NX=1,16) ,NN=1,4)
      VRITE( 3) (( PLOT4( NX, NN) , NX= 1, 16) , NN= 1,4)
       IFCNC2.NE.1)VRITE<6,50001)
      VRITE<6,50017)
50017 FORMAT(1H0.57X, 16HPLUME-BASED DATA)
Exhibit 17.  Binary FORTRAN write statements  that generate data  files  to
             be  used for plotting results.
                                97

-------
                      5   PLUVUE PROCEDURE FLOW CHART


     The procedure flow of PLUVUE is represented in the following
figures.  Figure 15(a) depicts the relationship of input and output to  a
PLUVUE  model  execution.  Figure 15(b) illustrates the general procedure
flow of PLUVUE.   This diagram provides the user with a guide to the
general organization of the model.  Figure 15(c) is a more detailed flow
diagram of MAIN.  This still represents the general procedure flow without
considering the  details of each individual step.  Figures 15(d), 15(e),
and 15(f) provide flow diagrams of the subroutines PERDIF, INRAD, and
BSIZE,  respectively.  These diagrams represent the flow of the program
execution in these routines without attempting to represent individual
lines.   The other subroutines of PLUVUE are so short that procedure flow
diagrams are not useful at the level of detail being presented.  Line-by-
line examination of the source-code listing is necessary for understanding
the details of the remaining routines.
                                 99

-------
                f Program
                   control and
                   input data
                Single  source
                plume visibility
                model PLUVUE
   Hard copy
   print file
Plotting
program
!
1
                                 Plotted
                                 results
(a)   Relation  of I/O  to  PLUVUE.

Figure 15.  PLUVUE logic flow chart.
                  100

-------

                       Start

 Input  data
                /
Read
Input File)
Compute aerosol  proper-
ties  from Mie equations

  •  Integrate over par-
    ticle size

  •  Interpolate  to
    39 wavelengths

  •  7 scattering  angles
    (+NX2)
Compute background  atmo-
spheric visual effects
  • Compute radi-   I
   ance I(A) for   I
   diffuse reflec-l
   tor

   Compute I(A)
   for Rayleigh
   atmosphere
Compute I(A)
for background
atmosphere
Compute colora-|
tion parametersl
                                           INRAD
                                                             BSIZE
                                                                             DAMIE
                                                              I	
                                                                SPLNA
                                            PERDIF
                                            RAYREF
                                                BACCLN
    Overview of the  PLUVUE structure.

Fl'9ure 15 (continued)
                                          101

-------
   Compute background
   object visual  effects
     • Compute I(A)  for
       horizon sky
     • Compute I (A)  for
       viewed object
                         6
                    Xlumin

                        Ro
     • Compute coloration
       parameters
                      l
   Calculate N02, SOH,|
   and primary partic-
   ulate concentra-
   tions at distance  X
                   NX IX
                   NZ|Z
   Calculate plume    |
   visual effects for
   horizontal views   i
   with sky background!
     • Compute I(A)   I
       for plume
       Compute colora-
       tion parameters
NT 19
NA, a
NPlr
                                                CHROMA
                     BACCLN
                     BACOBJ
                                                CHROMA
                                               ' '  SZPAS
                     SYPAS
                     PLMCLN
                     CHROMA
                                 ©
Figure 15(b)  (continued)
                                     102

-------
Calculate plume vis-
ual effects for non-
horizontal  views with
sky background

  . Compute I(x) for
    plume

  . Compute colora-
    tion  parameters

Calculate plume vis-
ual effects-for hor-
izontal views  with
object behind  plume
                   NX
Calculate I(x)
for viewed
object with
and without a
plume
Compute colora-
tion parameters
Calculate plume  vis-
ual  effects for  views
along plume center!ine

  •  Calculate back-
    ground sky inten-
    sity
  •  Calculate plume
    intensity

  •  Calculate inten-
    sity for plume
    with air in  front
    of plume

  •  Compute chroma-
    ticities, con-
    trast, etc.
(X)
                             101
                                    r
                              NT 8
                              NAia
                              NB!B
  NT  16
   K  Xlumin
  IP  rn
                                  L
                                   0
                                  r
  NZl (Z)
   NT I
 NXIN
NROBJ !rp

    K (Xlumin;
                                                    PLMCLN
                                                    CHROMA
                                                    PLMOBJ
                                 CHROMA
                                                       BACCLN
                                                   PLMAX
                                              -*•
                                 PLMAX
                                                   CHROMA
         (continued)
                                   103

-------
                  Print out
                  results, includ-
                  ing OH model
                  results
                      Write out
                      data for
                      plots
V
Binary
plot
file(s)
                   C  Stop  J
Figure 15(b)  (concluded)
                      104

-------
                          Dimension
                          arrays & data
                          statements
  Input data
                   \
Read
input
data
                          Conversion
                          of data to
                          proper units
                               Wri te
                               out
                               input
                           Calculate
                           N02-N0
                           equilibrium
                           constant
(c)  Flow chart of MAIN.

Figure 15 (continued)
                    105

-------
    Convert source
    UTM coordinates
    to lat., long.
    Calculate solar
    elevation angle
     Convert sur-
     face wind to
     stack height
     Plume rise
     calculations
Subroutine
  MAPUTG
      Subroutine
         CLOCK


      Subroutine
         SOLARZ
Figure 15(c)  (continued)
                          106

-------
    Convert sur-
    face wind to
    plume height
  Convert WIND to
  plume trajectory
  in radians
         1
    Calculate
      OBSPLU(I)
      AZIMUTH(I)
      AALPHA(I)
      TT(I+7)
      ABETA(I)
Observer-based
plume geometry
        Call
        INRAD
  Subroutine INRAD
  Solve for back-
  ground sky P
  functions, £>ext>
  P functions for
  aerosol,  bscat
  for aerosol, etc.
Sub
BSIZE
                                                    i

Sub
DAM IE

                                          Sub
                                          SPLNA
Figure 15(c)  (continued)
                        107

-------
       Print back-
       ground aero-
       sol
   Print plume geometry
   data for plume-based
   calculation
     Write out scatter-
     ing coefficients
     for background
     Visual effects for
     background sky
     without plume
       1,
Calculate
diffuse
reflector
nrnnprti PC




PERDIF

                                RAYREF
BACCLN
                                CHROMA
    Visual effects for
    background sky with
    views of white, gray,
    and black objects
           ©
Figure 15(c)  (continued)
                    108

-------
    r
           6(1)
    L,
       K(Xlumin)

       rfl(J)
       I
       I	I
BACCLN
                              BACOBJ
CHROMA
        Initial plume
        rise Lagrangian
        loop for parcel
        velocity, posi-
        tion, dilution
         Calculate
         photolysis
         rate  constants

                                                          X(NX)
/ Do loop \
'on downwindX
i distance. /
\NX=1,NX2 /
\ j
i

*
/n j. V
/Does sta-\
bility change\ Yes
at this dis-/ ~~*"
\ tancp? /


No •*
f NX.GT. \Yes
NXSTAB? f^^
^ ' /
!NO


/NX I

\_



Calculate
distance
offset for
nou/ c i*ah"i 1



Calculate
new stabil
distance o
,

~1
T NXSTAB \ YeS»

/
|NO


r SY =
r sz =
itv



ay» az f°r
ity and
ffsets
L
(from f

SY = SYPAS
C7 - C7pAC
Oi. Oi-ittj



SYPAS
SZPAS




<
               * I1U
            ©
Figure  I5(c)  (continued)
                                     ®
                                  109

-------


SV = SVPAS
SZ = SZPAS
                   Calculate
                   surface
                   deposition
                Adjust mass fluxes
                for deposition
                and conversion to
                SO  and NO
             Gaussian calculation of
             x/Q for plume above
             inversion height
                       Is
                      plume
                 center!ine below
                      inver-
                      sion?
                Gaussian cal-
                culation for
                plume below
                inversion
               Calculate time of day
               at  present position
               for plume parcel
   I=NX,NX2
I
                 Photolysis  rates
                 and  N02-N0
                 equilibrium
Figure 15{c) (continued)
                         110

-------
                            ©
                   Total NO  background
                           /\
                   Ozone concentration

                   OH radical concentration
                       Calculate N02,
                       sulfate, and
                       nitrate conver-
                       sion in plume
                     Print concentrations
                     of aerosols and
                     gases contributed
                     by source
  Visual  effects for
  zontal  views  with
  horizon sky background
No
                         Do loop
                         NONC1.NC2
               NZ (altitude)
               NC
              I     r
              !   Nll(e)
                 NA|(o)
                                      No
Plume based
calculation
\


i


PLMCLN

;F19ure  I5(c) (continued)
                                     111

-------
       14
                                 CHROMA
                               (Calculate
                               coloration
                               parameters)
              Calculate
              visual range
              reduction
               Print out
               results
             Yes
Visual effects
nonhorizontal
views through
plume with clear
sky background
                                  Observer-
                                  based
                                  calculation
                                                  PLMCLN
                                                 CHROMA
                                 Calculate
                                 visual range
                                 reduction
                                    Print  out
                                    results
No
Figure 15(c) (continued)
                             112

-------
            Plume-based
            calculation
                              PLMCLN
                              CHROMA
              Write out
              results
                IFLG3
isual effects^  =1?
pr horizontal
pews through  plume Tv
  white, gray,  and lYes
lack objects.     /
                 IS
Fi9urel5(c)  (Continued)
                           No
Observer-
based
calculation
 Write out
 results
                  PLMCLN
                  CHROMA
                                       113

-------
|NC
   r
                Yes
         Plume-based
         calculation
         for
         object views
     e
     REFL(K)
     rP
     rn
          Write out
          results
PLMIN
                           PLMOBJ
                           CHROMA
Observer-based
calculation
for
object views
                REFL(K)
                                               Write  out
                                               results
                                                               PLMIN
                                                               PLMOBJ
                                                               CHROMA
 Figure  15(c)  (continued)
                                  114

-------
         Visual effects
         for lines of sight
         along plume
NC
     NZ
     6
                                        No
                                        No
                         Plume-based
                         calculation
           NXIN=1,(NX-1)  loop
           on number  of seg-
           ments that ean  be
           in line of sight
          loop on
          plume
          seg-
          ments
          in
          of
          sight
line
       NXX=
       (NX-NXIN),
       (NX-1)
     rp - Distance
     from obser-
     ver to plume
                              BACCLN
PLMAX
                                           PLMAX
           I(x) for back-
           ground atmosphere
           without plume
Change in I(A)  for
each plume segment
          Change in I(x) for
          atmosphere between
          observer and plume
                                           CHROMA
                        Calculate
                        reduction in
                        visual range
    15(c)  (continued)
                                     115

-------
 NC
NZ .
8
NXIN
                         Print out
                         results.
      I(A) for background sky
      or background object
      Change in I(A) due to
      plume material
      Change in I(A) caused
      by background atmo-
      sphere


      Calculate coloration
      parameters
-Eigure 15(c) (continued)
1
i
Observer-
based
calculation
                            KA
                                       BACCLN
                               NZ
                           1-sky
                           2-white
                              object
                           3 - gray
                              object
                           4-black
                              object
                                                     BACOBJ
                                                        PLMAX
                                                        PLMAX
                                                        CHROMA
                                          Calculate
                                          visual  range
                                          and visual
                                          range reduction
                                                                X(NX)
                                                                       (see page
                                        116

-------
  Write SOi;
  and N0§
  formation
  rate'
   Write
   binary
   files for)
   plotting
                                             Write out binary file
                                             of data for plotting
                                   V      / (may be saved  to tape)
Print copy of
optics data
for plotting
C
     STOP
 (END  J
Figure 15(c) (concluded)
                          117

-------
                     Subroutine
                     PERDIF
Calculates
light intensities I(X)
from perfect
diffuse reflector
                    Calculates
                    parameters
                    for other
                    optics routines
                         D
         Perfect diffuse reflector
         calculation
           BACOBJ
Return to MAIN
 (d) Flow chart of subroutine PERDIF.

  Figure 15 (continued)
                          118

-------
                           Subroutine
                              INRAD
                   Define mass median radius  and
                   geometric standard deviation
                   from user input (MAIN)  for
                   accumulation mode aerosol
Calculate  bscat  and  P  (phase
functions)  for 9 wavelengths
and 7 scattering angles
Calculate  cubic  spline  inter-
polation coefficients for
scattering coefficients
                    Subroutine
                       BSIZE
                    Subroutine
                       SPLNA
                        Interpolate bscat/M
                        for  39  As for
                        accumulation mode
Calculate cubic
spline inter-
polation coef-
ficients for
accumulation    I
mode aerosol    i
phase functions

               el
                    Subroutine
                       SPLNA
Interpolate phase
functions for 39
X.s  and 7 scatter-
ing angles (e)	
                   i
Define mass median radius and
geometric standard deviation
for coarse mode aerosol
      ©
(e) Flow chart of subroutine INRAD.
          •                       •->

Figure 15 (continued)
                           119

-------
                           ©
Calculate bscat and P for
9 xs, 7 es with coarse
size distribution
Cubic spline interpolation
coefficients for bscat/M
                    Subroutine
                       BSIZE
                    Subroutine
                       SPLNA
                        Calculate
                        t>scat/M for
                        39 Xs
               r
Cubic spline   I
interpolation  I
coefficients   I
for accumula-  I
tion mode phase!
functions      I
              el
                    Subroutine
                       SPLNA
Interpolate
phase function
for coarse mode
                   L.
Define mass
median radius and geometric
standard deviation for plume
primary aerosol

Calculate bscat and P for
9  xs  and 7  6s
                    Subroutine
                       BSIZE
 Figure  15(e)  (continued)
                       120

-------
Calculate cubic  spline  interpolation
coefficients for
bscat/M
                           r         *
Subroutine
   SPLNA
                                Interpolate
                                bscat/M for 39
                                AS, primary
                                particulate
                           I	
Calculate cubic spline}
interpolation coef-
ficients for primary
mode phase functions
                       •
                       L
                             Subroutine
                                SPLNA
                               Interpolate
                               phase function
                               for plume
                               primary mode
                             Adjust accumulation
                             mode bscat/M for
                             relative humidity
                             at 7 xs
Calculate cubic spline interpolation
coefficients for accumulation mode
bscat/M adjustment for relative
humidity
                            Subroutine
                               SPLNA
                              Interpolation
                              of RH adjust-
                              ment for bScat/M
                              at 39 Xs
Figure ls(e) (continued)
                              121

-------
 Calculate Rayleigh
 scattering optical
 depth in the vertical
                     Yes
                                  Return
                                  to MAIN
 Calculate visual range
 from input background
 [SO?] and
Calculate background
[50^] from input
visual range
    Compute vertical
    optical depths
  Calculate horizontal
  optical depths
  Adjust optical depth
  for N02 absorption
Figure 15(e) (continued)
                                  122

-------
                          ©
                       Adjust
                       bscat/V to
                       bscat/M
                                                 Return to MAIN
Figure 15(e) ('concluded)
Calculation of
Mie scattering jx
Phase functions
              •
                  Subroutine
                     BSIZE
                  Log-normal
                  aerosol
                  size
                  distribution
                                     Subroutine
                                        DAMIE
                                   D
                                          Return to
                                          subroutine INRAD
                           A

(f) Flow chart of subroutine BSIZF.

Fl'9ure 15 (concluded)
                                     123

-------
                                APPENDIX A

                            SAMPLE PLUVUE RUNS
     Two  sample runs were done to show how PLUVUE may be used in a par-
ticular case  to execute the user's desired calculations.  By selecting the
proper values for control parameters in the input data file, the user can
choose the  needed subset from all the different optics calculations
available.

     The  first sample is an observer-based run.  Exhibit A-l shows the
input data  file.   The details of the formats and variables are given in
chapter 3 on  input data.  This input data file specifies that the run will
do observer-based optics calculations of all four types:

     >  Horizontal lines of sight through the plume (with a hori-
       zon sky background).
     >  Nonhorizontal lines of sight through the plume (with a sky
       background) if the elevation angle of the line of sight
       exceeds 5".
     >  Horizontal lines of sight through the plume (with white,
       gray, and black backgrounds).
     >  Horizontal lines of sight at small angles to the plume
       centerline (with sky, white, gray, and black backgrounds).

The input data file also specifies flat terrain along the plume trajec-
tory. The  distance to background terrain is specified for every viewing
azimuth at  15° intervals.  The position of the plume trajectory is set by
the 11.3~~degree wind direction, and the position of the sun is set for
9;00 a.m. on  21 September 1979 at the source location.  The observed
Points on the plume trajectory were chosen at 20 km intervals from 20 km
                                 125

-------
                  1600 iiw POWER PLART
ro
CTl
  4.5
100517

1000.0
15.
    0
 1 1 1
 1
                          5+0.00

                           0.
                        116 1 7 1
roe.
     37.50
 1 555900. O
 4.060O.O
      45.0
     O.OOO
     0. 125
     2.200
     1.000
    10.OOO
   2
    185.
 1.00 1
     0
0.5
   2
   469
   498. 9
  12   9
      0.0
      0.0
     145
     185
     160
                           2.
                           120.
                               131.80
                                138.0
  0.000
  2.750
  2.200
  2.000
                         00 0.10 0.10
        5.
        140.
                         3
,0
.0
,0
 4254.8
 4338.5
210900.
    0.0
    0.0
   111.
   150.
   185.
             4.90
              3.0
  0.038
  0. 125
  1.500
  1.800
        10.
        160.
      20.
     180.
 40.
200.
     60.
    220.
     80.
    240.
 6800.0
 5650.0
7. 1979
    0.0
    O.O
    90.
   100.
   185.
             17.5
0.000
0.850
1.500
2.000
                                                      0.0
                                                      0.0
                                                     185.
                                                      50.
                                                     185.
            0.0
            0.0
           152.
            75.
           183.
 0.0
 0.0
149.
100.
185.
 0.0
 0.0
 54.
120.
185.
                           0.0
                           0.0
                           185.
                           140.
                           185.
                       11.3
                     Exhibit A-1.   Input data file for observer-based calculations.

-------
to 240 km.  Near the source,  the  observed points were chosen  at  1,  2,  5,
and 10 km.  PLUVUE requires that  the first point be at 1 km,  to  match  the
result of the initial plume rise  calculation.  The observed points  at  2,
5, and 10 km were used to maintain the accuracy of the plume  chemistry
calculations, since the reaction  rates are calculated at these observed
points and are constant over  the  intervals from one point to  the next.

    Exhibit A-2 presents the  beginning of the printed output, through  the
visual effects tables of the  second observed point on the plume.  The
table for the initial plume rise  calculations was printed because the
value of the input variable IDILU was set for this condition.  The table
for nonhorizontal sight paths was not printed for the first two  observed
points because the elevation  angle did not exceed 5* for either  line of
sight.

    Exhibit A-3 is the printed output from this same observer-based PLUVUE
run, for points at 100 and 120 km from the emissions source.

    Exhibit A-4 shows the printed results for the final two observed
points at 220 and 240 km.  Figure A-4 also includes the tables of the
history of the secondary aerosol formation.  At the end of the printed
output, the final table verifies the values of the data written on Fortran
unit 7-  This data is used by VISPLOT to generate plots of the key plume
perceptibility and visual range reduction parameters.
    Exhibit A-5 presents the  input data file for the second sample PLUVUE
execution.  The principal difference between the first sample and the
second sample is that the first is an observer-based run and the second is
a plume-based run.  The second sample starts with the same stability as
the first sample; however, at the fourteenth downwind distance (200 km
from the source) the stability changes from a Pasquill-Gifford E to a
Pasquill-Gifford D.  Both samples have a mixed layer height of 1000 m  and
a relative humidity of 45 percent.  The background visual range  (185 km)
and ambient temperature (45'F) at the stack height (600 ft) are  the same
for both samples.  The emissions data and aerosol size distribution data
are also the same for both cases.  For the 16 observed points on the plume
trajectory, the second case uses the same distances from the  source as the

                                 127

-------
                  VISUAL  T FTP ACT ASSESSMENT ron  1600 HW POWER FLAirr
                      EMISSIONS SOURCE DATA
                           ELEVAT10II OF SITE =      5650.  FEET MSL
                                                    1722.  METERS  MSL
                           NO. OF UNITS =     4.
                           STACK HEIGHT =  <>OO.  FEET
                                           l 83 .  riETERS
                           FLUE GAS FLOW RATE =    1555*30.   CU  FT/WIN
                                                    734.23   CU  M/SEC
                           FLUE CAS TEMPERATURE =        130.  F
                                                         og/i   If
                           FLUE CAS OXYGEN CONTENT =      "*3.0 KOL  PERCENT
                           O02 EH I SSI ON RATI5 (TOTAL) =       37. 5O  TORSVDAY
                                                          3.937E 02   GXSEC
                           NOX EMISSION RATE (TOTAL. AS N02)  =      131.30  TONS/DAY
                                                                 1 . 331 -E 03   GXSEC
                           PARTICULATE EMISSION RATE (TOTAL) =        *-.'>o   TONSx»AY
                                                                 5. I4?E Ol   GXSEC
                                     AND AMDIENT AIR OUALITY DATA
                           W-1HD3PEED =   4.5  HlLESxIIR
                                         2.0  TIXSEC
                           PASOUILL-GIFFOnD-TURNEFl STABILITY CATEGORY E
                           LAPSE RATE =  0.00  FXIOOO Ft
                                           0.000E-OI  KXM
                           POTENTIAL Tnr?PFRAT!JRE LAPSE RATE =    '9.800E-03  KXM
_,                         AHDIENT TEMPERATUPJ5 =  45.0  F
ro                                               SCO. 4  K
C»                         RELATIVE HWflDITY =  45.0  J?
                           NIXING DEPTH = 1OOO.   fl
                           Arf^IENT PRESSURE =  O.C2  ATTI
                           RACKGHOUND NOX CONCENTRATION =      O.OC0  PPM
                           BACKGROUND NO2 CONCENTRATION =      O.OOO  PPM
                           BACKGROUND OZONE CONCENTRATION =      0.030  PPM
                           BACKGROUND SO2 CONCENTRATION =      O.OOO  PPM
                           BACKGROUND COAPPE IIODE CONCENTRATION =       1O.O   UC/M3
                           DACKGnOimD SULF/VTE CONCENTRATION =        2.9  UGxM3
                           BACKGROUND NITRATE CONCENTRATION =        0.0  UGxfKJ
                           n^cKcnouNo VISUAL R/INGK =      iB5.e  rciLoriETEns
                           S02 DEPOSITION VELOCITY =       1. 00  CfZXSEC
                           MOX DEPOSITION VELOCITY =       1.00  CflXSEC
                           COARSE PARTFCULATE DEPOSITION VELOCITY =       0.10  CttXSEC
                           SUDFHCRON P ARTICULATE DEPOSITION VELOCITY =       0. 10   CMXSEC
                                                        AKROSOL STATISTICS
                                                     BACKGROUND                                 PLUME
                                          ACCWnjL.VriON           COARSE            ACCUTHILATION           COARSE
                           riASS  MEDIAN        KODE                TZODE                 MODE                MODE
                           RADIUS
                           NICROrrETERS          0.125               2.7GO                0. 123               0.8!50
                           GEOMETRIC
                           STANDARD
                           DEVIATION            2.200               2.200                1.500*              1.300
                           PARTICLE
                           DENSITY
                           CX( CIt:--*3>            1 . BO0               2 . OO0                1 . OOO               2 . 0OO

-------
GEOMETRY OF USER-SPECIFIED PLUWE-OBSERVER-SUN ORIENTATION
     WIND DIRECTION (DEGREES) =  11.3
     SirnJLATFON  IS FOR  900. HOURS ON  9/21
     SOLAR ZENITH ANGLE (DEGREES) =31.0
     SOLAR AZIMUTH ANGLE (DECREES) =    129.0
     GEOMETRIES  FOR LINES-OF-SIGHT THROUGH PLUME  PARCELS  AT GIVEN DOWNWIND DISTANCES (X)












r\a
10


X (KM)
1.0
2.0
5.0
10.0
20.0
40.0
60.0
80.0
100.0
120.0
140. 0
160.0
180.0
200.0
220.0
240.0
AZIMUTH
19.6
19.7
20.0
20.5
21.8
26. 1
35.7
69.3
,145. 1
169.8
177.7
181.4
183.5
184.9
185.8
186.6
RP
87.8
CO. 8
83.8
78.9
09.0
49.5
30.6
14.9
17.5
34.5
53.6
73.2
93.0
112.8
132.7
152.6
ALPHA
8.3
8.4
8.7
9.2
10.5
14.8
24.4
58.0
46.2
21.5
13.6
9.9
7.8
6.4
5.5
4.7
DETA
0.0
0.0
0.0
0.0
0.0
0.0
0. 1
0.2
0. 1
0. 1
0.0
0.O
0.0
0.0
0.0
0.0
THETA
105.0
104.9
104.7
104.3
103.3
100.0
92.6
66.8
41.5
53.9
59. 1
61.6
63. 1
64. 1
64.8
65.3
                           BACKGROUND CONDITIONS
 ACCUMULATION MODE                        COARSE PARTICLE MODE                       PRIMARY PARTICLE MODE
 MASS RADIUS    SIGMA   BSCAT.55/MASS        MASS RADIUS    SIGMA   BSCAT.55/MASS        MASS RADIUS    SIGMA   BSCAT S3/MAR<5
0.1250EOO   0.2200E 01   0.2844E-02         0.2750E01   0.2200C01   0.4469E-03        0.8500EOO   0. 1500E 91   0 1'>42F-O'>
                           COEFFICIENTS AT 0.55 MICROMETERS ,  1./KM                                                  ••-•*«=•-, ^
   BTARAY =0.9747E-02   BTAAER =0.1282E-01   ABSNO2 =0.0000E 00   BTABAC =0.2115E-01
  Exhibit A-2 (continued)

-------


TIHE
( SEC)
0.
10.
20.
no.
40.
5O.
00.
7O.
no.
9O.
100.
110.
110.
no.
i •: o .
MO.
160.
17O.
MO.
190.
200.
2IO.
210.
2-1O.
24-0.
2'-»O.
2no.
270.
2.10.
290.
3OO.
310.
31O.
30O.
340.
3!»0.
360.
370.
380.
390.
400.
410.
41O.
43O.
440 .
4r»o.
440.
470.
4HO.
400.


X DELTA II
( M) ( M)
0.0 0.0
20 . i 31.6
4O . 2 5O . 2
6O.3 65.7
80.5 79.6
100.6 ''92.4
120.7 104.3
140.8 115.6
160.9 126.4
1O1.O 136.7
20 J.I 146.7
22 ? . 3 156.3
24.!. 4 165.6
265.5 174.7
23>.6 183.6
.101.7 192.2
321.8 200.6
342.0 20O.7
362.1 200.7
302.2 200.7
402.3 200.7
422.4 203.7
442.5 200.7
462.6 200.7
402. O 2OO.7
502.9 208.7
523. O 2O8.7
543.1 200.7
563.2 203.7
5,13.3 203.7
6O3.4 208.7
623.6 203.7
643.7 208.7
6G3.8 203.7
633.9 208.7
7O4.O 203.7
724.1 203.7
744.3 203.7
764.4 208.7
734.5 208.7
804.6 208.7
024.7 208.7
344.8 203.7
064.9 203.7
383. 1 308.7
905.2 208.7
925.3 208.7
945.4 203.7
965.5 203.7
9G3.6 208.7


U
( ri/s)
2.01
2.01
2.O1
2.01
2.O1
2.01
2.01
2.O1
2.01
2.01
2.01
2.01
.1.01
1.O1
.1.01
2.O1
2.01
2.O1
2.O1
1.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.O1
2.01
2.01
2.01
1.01
2.01
1.01
2.01
.1.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
INITIAL

W
( ri/S)
17.50
i.oo
o.co
0.71
O.64
0.6O
0.56
O.54
0.51
0.49
0.48
0 . 46
0.45
O.44
0.43
0.42
0.41
0.40
0.39
0.39
0.38
O.37
0.37
0.36
0.36
0.35
0.05
O.34
0.34
0.33
0.03
0.33
0.02
0.32
0.32
0.31
0.31
0.31
O.31
0.30
0.30
0.30
0.30
0.29
0.29
0.29
0.29
0.29
0.20
0.28
PLUME
1600
V
( MXS)
!7.5O
2. .15
o 17
M . 1C
2. 13
2. 11
2. 1O
2.09
2.O8
2.03
2.O7
2.07
2.06
2.06
2.O6
2.OO
2. 05
2.05
2.05
2.05
2.05
2.05
2.05
2.04
2.04
2.04
2.0!-
2.04
2.O4
2.01
2.04
2.O4
2.04
2.O4
2.04
2.04
2.04
2.04
2.04
2.O3
2.03
2.03
2.03
2.03
2.O3
2.03
2.03
2.03
2.03
2.03
2.03
niSE AND
DILUTION
AND NITROGEN DIOXIDE FORMATION
IIW POWEH PLANT
SICMA
(M)
0.0
7.3
11.7
15.3
18.5
21.5
24.3
26.9
29.4
31.8
34. 1
36.3
33.5
40.6
42.7
' 44.7
46.7
48.5
40.5
40.5
43.5
48.0
43.5
48.5
40.5
40.5
40.5
48.5
48.5
40.5
48.5
48.5
48.5 .
48.5
48.0
48.5
48.5
43.5
48.5
48.5
48.5
4d.5
48.5
43.5
48.5
48.5
43.5
40.3
43.5
40.5
TKMP
O2 NO2-NO IIATIO NOX NO NO2T SO2 PART1CULATE
 MOL P EOUIL ACTUAL (PPM) (PPM) (PPM) (PPM) U<;/UO
332. 0
029 . 9
298.8
291.O
2.17.6
205.7
104.6
203.8
203.2
202.8
2C2.5
2.Ti'2.3
2J'2. 1
281.9
20 1 . 7
281.6
231.5
201.4
201.4
ID 1.4
201.4
201.4
2-) 1.4
20 1.4
20 1 . 4
101.4
201.4
281.4
281.4
281.4
201.4
201.4
281.4
281.4
201.4
201.4
201.4
281.4
281.4
21)1.4
281.4
231. 4
281.4
281.4
281.4
201.4
201.4
201.4
28 1 . 4
201.4
3.0 5.9E 04 4.2E-03 34O. 166 338.750 1.416 69.579 2. OFF, 04
3.8 7.2E O4 6.2E-03 O23.O92 323.O93 1.999 66 . C-f>O 2.2CE O4
14.5 5.OE O5 O.6E-O3 131.423 I2O.39O 1.033 24., 136 8.4VE OO
17.3 9.OE O5 I.3E-02 69.976 69.100 O.O76 14. 1)13 4.O9E OO
13.4
19. 1
19.5
19.3
19.9
2O. 1
2O. 2
20. 3
20.4
20. 4
20. 5
20.5
20. 5
10.6
20. 6
20.6
20.6
20.6
20. 6
20.6
20.6
2O. 6
20.6
20. 6
20.6
20.6
20. 6
10.6
20. 6
10.6
20. 6
20. 6
20.6
20.6
DO. 6
20.6
20.6
20. 6
20.6
20. 6
20.6
20.6
20.6
20. 6
20.6
20. 6
. I E 06 1 . 6E-O2 47 . 57 1 46 . P,4 1 0 . 73O 9 . 70O 0 . (JOE O3
.2E Qfy 1.8E-02 33.313 34.7O6 O.6I6 7.213 2.47F, 03
.3E 06 I.9E-02 27.713 27. 136 O.528 5.0C.9 I.94EO3
.3EO62.IE-O2 22.5J;3 22.123 O.4-5O 4.0(9 1 . 5GE 03
.4E Ofi 2.2E-O2 13.916 1(3. 5 1O O.4O6 3 . "'i > 1 . 32E O3
.4E 06 2.3E-02 !6. ICO 15.818 0.362 0.-~O'> 1 . ICE O1
.4E O6 1.4E-O2 I4.O7O 13.745 O.OItJ :»..-:7.5 9.C4E 01
.5E 06 2.4E-02 I2.40O 12.105 O.295 2.33. 8.67E02
.5E 06 2.5E-02 11.049 10.779 O.270 2. SO') 7.70E02
.5E OS 2.6E-02 9.937 9.639 O.243 2.03O 6.95E 02
.5E 06 2.6E-02 9.0O7 3.773 O.229 .CM 6 . 3OE O2
.5E 00 2.7E-O2 3.2.10 3.007 O.213 .GCJJ 5.75E 01
.5E 00 2.7E-02 7.340 7. 347 O. 193 .G-M 3.2.*:-EO2
.5E 06 2.7E-02 6.977 6.791 O. MO .41V 4.r^EC1
.5E 06 2.8E-02 6.9C72 6.794 0.109 . 4r. J 4.,'SF. 02
.5E 00 2.QE-02 6.9C7 6.796 O.I91 .419 4.TOEO2
.5E 06 2.3E-02 6.991 6.797 0.194 .430 4.O9EO2
.5E 00 2.9E-02 6.9f3 6.798 0.196 .401 4."?E O.1
.5E OO 2.9E-02 6.99O 6.799 0.199 .431 4.00EO1
.5E O6 3.0E-02 7.OOI 6 . OOO 0.2O1 .402 4.90E 02
.5E O6 3.0E-02 7.0O5 6.R01 0.2O4 .'.OH 4.9OE 02
.5E O6 3.0E-02 7.0O7 O.C01 O.200 .403 4.9OE O2
.5E 00 3.1E-02 7.010 6.P/M 0.209 .404 4.9GE 02
.5E063.1E-02 7.O13 6.O01 O.2H .404 4.91EO2
.5E 00 3.IE-O2 7.015 6.801 0.214 .403 4.91E02
.5E 06 3.2E-02 7.017 6. GO! 0.216 .405 4.91E 02
.5E O6 3.2E-O2 7.O19 6.4J01 O.2I9 .406 4. 9 IE O2
.5E 06 3.3E-02 7.021 6.fiOO O.211 .400 4. 9 IE 02
.3E O6 3.3E-O2 7.0C3 6. BOO O.214 .407 4. 9 1C 02
.5E 06 3.3E-G2 7.025 6.799 O.226 .407 4.91E O2
.5E 06 3.4E-02 7.0?7 6.793 0.213 .407 4.92E O2
.5E 06 3.4E-02 7.01>3 0.797 O.201 . 4O3 4.92E O2
.5E O6 3.4E-02 7.030 6.797 0.203 . 40O 4.91E O2
.5E 06 3.5E-02 7.0'Jl 0.796 0.206 .403 4.9CE 02
.5E 06 3.5E-O2 7.O03 6.793 0.2U8 .409 4.92C O2
.5E 06 3.5E-02 7.004 6.794 0.241 .4^9 4.9r.F. O2
.5E 06 3.6E-02 7.030 0.792 0.243 .409 4.92C C-2
.5E O6 3.6E-02 7.007 0.791 0.246 .409 4.9^M 02
.3E 06 3.7E-02 7.003 6.790 0.248 .440 4.92E 02
.5E O6 3.7E-02 7.039 6.7O9 O.230 .440 4.9I!E O2
.5E 06 3.7E-02 7.040 6.787 0.253 .440 4.92C 02
.5E 06 3.0E-02 7.041 6.780 0.253 .440 4.90E 02
.5E 06 3.CE-02 7.042 6.705 0.258 .440 4.90^ 02
.5E OS 3.0E-O2 7.043 6.783 O.260 .441 4.0HF, O2
.5E 06 3.9E-02 7.044 6.702 0.262 .441 4.9:'F. O1
.5E O6 3.9E-O2 7.O45 6.73O O.265 .441 4.9CE <>2
Exhibit A-2 (continued)

-------
 DOI-ftlWIfTD  DISTANCE 
SIW/A z ?:r>L AI7D CASES COUTH I BITTED
           i GOO rn/ POWE.T. PLAJNT
    I .o
   392.
    "0.
    29.
      O.5000 PERCENT/ITR
      O.OOOO PERCErnVHR
                                                                               DY
ALTITUDE NOX RO2 N03-
(PPH) (PIT!) (PPM)
H+2S
INCREMENT! 3.904 0.105 0.000
TOT/VL AMD! 3.904 0.105 0.000
11+ IS
INCREMENT! 17.497 0.701 0.000
TOTAL AMD! • 17.497 0.701 O.OOO
11
INCREMENT! 20.848 1.J32 0.000
TOTAL AMD! 28.848 1.132 0.000
H-1S
INCREMENT! 17.497 0.701 O.OCO
TOTAL AMD! 17.497 0.701 0.000
II-2S
INCREMENT! 3.904 0.105 0.000
TOTAL AMD! 3.904 0.105 0.000
0
INCREMENT! 0.000 0.000 0.000
TOTAL AITD! 0.000 0.000 0.000
N02/NTOT
(MOLE '/.} (

4.751
4.751

4.0C3
4.008

3.923
3.923

4.008
4. OC8

4.751
4.751

0.000
100.030
NO3-/NTOT
MOLE 7.)

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000
SO2
( PPII)

O.790
0.790

3.576
3.576

5.007
5.O97

3 . 576
3.576

0 . 793
0.79O

0 . 000
0.000

S04=
(UG/H3)

2.
s!

9.
12.

15.
10.

9.
12.

2.
5.

0.
2.

165
101

701
637

994
930

701
637

165
101

000
936
S94=/STOT
(MOLE T.)

o . or.9
0. 163

0.069
0.090

0.069
0.002

0.069
0.090

0.069
0. 163

0.069
100.000
O3
( PPM)

-0.037
0.001

-0 . 037
0.001

-0.037
0.001

-0.037
0.001

-0.037
O.O01

O.OOO
0 . 033
PRIMARY BSP-TOTAL '.
(UG/M3)

273.000
200 . 022

1223.004
1236.020

20 1 7 . B<'2
2030.778

1223. P01
1236. O17

273 . 005
2o6 . 02 I

O.OOO
I2.9yC>
( 10-4 PI-1)

3 . 454
3 . 5U3

1 5 . 43 1
15.610

25.524
21 . 6'K1

1 ?> . 40 1
1 !> . 6 1 0

3.404
3 . 503

O.OOO
0. 123
BPPS
( %)

1.
4.

1.
2.

1.
o

1.
2 .

1.
4.

1.
65.
N/ns


782
0130

702
;-Q3

702
099

702
oO:)

702
0^0

702
!<22
CUMULATIVE SURFACE DEPOSITION (MOLE FRACTION OF INITIAL FLUX)
S02! 0.0000
no/ft o.oooo
PRIMARY PARTICIPATE! O.OOOO
004! O.OOOO
R03! O.OCOO






































''
















VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
1600 MW POWER PLAUT
DOWNWIND DISTANCE (KM) = 1.0
PLUME ALTITUDE ( M) = 392.
PLUME-onSERVER DISTANCE (KH) = 87.8
AZINUTII OF LINE-OF-SIGHT = 19.6
ELEVATION ANGLE OF LINE-OF-SICHT = 0.0
SOLAR ZENITH ANCLE = 51.0 AT 900. ON
SIGHT PATH IS THROUGH PLUME CENTER






9/21

THETA ALPHA RP/RVO RV ^REDUCED YCAP L
105.
8. 0.47 87.8 52.53 55

.02 79 . 07








X

0.2972
















Y DELYCAP

0.3075

-3. 12
















DELL C(550)

-1

.76 -0.0569








DRAT I O

1 . 0220








DELX

-0.0020 -C








DELY E( LUV)

KOOD7 2.600'








E(

4- 2








LAB)

.31 1
  Exhibit  A-2 (continued)

-------
u>
             PLWfE VISUAL EFFECTS FOR HORIZONTAL VIEWS
             OF THE PLVTJE OF WHITE, GRAY, AHO f'-LACK OUJECTS
             FOR SPECIFIC ODPEKVER-PLUNE AND Ol'.SEUVEU-OBJECT DISTANCES
             1600 NW POWER PLANT
    DOWNWIND DISTANCE (131) =    1.0
    PLW-re-OBSERVER DISTANCE (KFI) =   87.0
    AZIMUTH OF LINE-OF-SIGHT =   19.6
    ELEVATION ANGLE OF LINE-OF-SICHT =    0.0
    SOLAR ZENITH ANGLE =   51.0   AT  900. ON  9/21
Til ETA = 105.
REFLECT RP/RV0 RO/RVO YCAP
1.0 0.47 0.73 55.07
0.3 0.47 0.73 54.90
0.0 O.47 0.73 54.95
VISUAL EFFECTS FOR LINES
1600 WW POWER PLANT
DOWNWIND DISTANCE (KJ1> = 1.0


79.
79.
79.
OF



L

;f
10 0.2974 0
05 0
03 0
.2971 0
. 2970 0



Y
.3076
.3075
.3074


DEL YCAP
-5.
-1.
0.
76
36
53

DELL C(5r
-3.20 -O.OJ
-o.70 -o.o:
0.30 O.OC
SIGHT ALOnG PLUTfE














PLUWF.-ODSERVER DISTANCE 
-------
DOWNWIND DISTANCE (KM)
PLUME ALTITUDE (M)
SIGMA Y (M)
SIGMA Z (M)
S02-S04 CONVERSION RATE
NOX-N03 CONVERSION RATE=
CONCENTRATIONS OF AEROSOL AND CASES CONTRIBUTED
          1600 MW POWER PLANT
    2.0
   392.
   123.
    39.
      0.5000 PERCENT/HR
      0.0000 PERCENT/HR
                                                                        BY









_•
CO
CO









ALTITUDE

H>2S
INCREMENT!
TOTAL AMD!
H+1S
INCREMENT!
TOTAL AMD!
H
INCREMENT!
TOTAL AIIB!
H-1S
INCREMENT!
TOTAL AMD!
II-2S
INCREMENT!
TOTAL AMD!
O
INCREMENT!
TOTAL Arroi
NOX
( PPM)

1.868
1.868

8.373
8.373

13.B05
13.803

8.373
8.373

1.868
1.868

0.000
O.OOO
N02
( PPM)

0. 123
0. 125

0.693
0.693

1.462
1.462

0.693
0.695

0. 123
O. 123

0.000
0.000
N03-
(PPM)

0.000
0.000

0.000
0.000

0.000
O.000

e.ooo
0.000

O.OOO
O.OOO

0.000
0.000
N02/NTOT
(MOLE JJ)

6.711
6.711

8.3C3
8.303

10.593
10.593

8.303
8.303

6.711
6.711

O.OOO
98.393
N03-/NTOT
(MOLE %)

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

1.607
1.607
S02
( PPM)

0.382
0.302

1.710
1.710

2.020
2.C20

1.710
1.710

0.382
O.332

0.000
0.000
S04=
(UG/T-ra)

2.071
5.007

9.232
12.218

15.303
18.239

9.282
12.218

2.O71
5.007

0.000
2.936
S04=/RTOT
(MOLE '/.)

0. 138
0.333

0. 138
0. 102

0. 138
0. 104

0. 138
0. 102

0. 138
0.333

0 . 367
100. OOO
03
( PPM)

-0.037
0.001

-O.037
0.001

-0.037
0.001

-0.037
0.001

-0.037
O.001

0.000
o.ooa
PRIMARY
(UG/M3) (

130.686
143.622

583.694
598.630

965.643
978.581

585 . 693
598.029

130.086
143.022

0.000
12.936
BSP-TOTAL
10-4 M-l)

1.603
1.811

7.541
7.009

12.432
12.501

7.541
7.609

1 . 083
i.ni i

0.000
O. 123
BSPSN/BS
(F.)

3.501
7.G65

3.501
4.532

3.501
4. 130

3.501
4.532

3.501
7.065

8.007
65. 142
 CUMULATIVE SURFACE DEPOSITION  (MOLE FRACTION OF  INITIAL FLUX)
                 S02!     O.OOOO
                 NOX!     0.0000
 PRIMARY PARTICULATE!     0.0000
                 SO4!     0.0000
                 N03!     0.0000
  Exhiblit A-2 (continued)

-------
                    VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
                    1600  MW POWER PLANT
 DOWNWIND DISTANCE CIO1!) =    2.0
 PLUME ALTITUDE 
-------
                                       or /^rw^oi. Arm CASES COUTHIJVJTF.D nv
                                   1000 riw POWKN PLANT
DOWNWIND DT.^TANCR C-KPW = 100.0
PM/IW ALTITUDE fNt" = 0'>2.
SIC;PIA y ( Pi) = 3015.
SICP'A 7. (Pf) = IIJ7.
JS02-S04 CONVERSION RATE= O.5O35 PERCF.NTXim
NOX-NO3 CONVERSION II ATE = O.O24O PERCKNTXlIU
ALTITUDE NOX NO2 NO3- NO2/HTOT
(PPM) U'Pfl) (PPM) (MOLE 75) (
JI+2S








~i
U>
tn







iNcitErnr.NT»
TOTAL AMD!
11+ IS
INCREMENT!
TOTAL AMU!
II
INCREMENT!
TOTAL AMFJ!
H-1S
1NCRF.METIT!
TOTAL AMI1!
I1-2S
INCREMENT!
TOTAL AMU!
O
INCREMENT!
TOTAL AMR!
0.016
O.O16
.
0.072
0.072

0. 119
0. 119

O.O73
0 . 073

O.O27
O.027

O . O26
0 . 026
0.011
O.OI I

0.030
o.o::a

o . or»n
o.ooii

o . onn
o . r,;;a

O.OI7
0.017

O.OI7
O.017
O.OOO
O . O03

O.OOO
0 . 000

0.000
0 . 000

0.000
0.000

o.ooo
o . ooo

o.ooo
0.000
6n.«M"'2
6JI. 963

52.046
5 2. i 5-10

4H. 73*1
4
0.601
O. (.<>!

O.OGll
0 . 05»

o.o;n
0 . 03 1

0.05O
0.0511

o . 3a i
o.uai

O. 4^ 1
o . •:•': i
P02
(PIT!)
O . OO3
O . O03

O.O14
0,014

O.O23
0 . 023

O.OI4
0 . 0 1 4

0 . 005
O.OO5

O.005
0 . 005
(UO/M3)
o.ir:o
3. 11 16

3 . n0

1 . 457
4.302

1 . 405
4 . 3V 1
RO4-/PTOT
6 .O.'IO
24 .114

6 . 727
I I.2:J9

6 . 720
9.51 0

6 . 727
1 1 . 106

6 . TOO
ia.oir>

6.709
ia. 170
O3
( PIMI)
-O.OIO
O - O2H

-O.O24
0 . O 1 4

-O.O26
O . O 1 2

-O.024
0.014

-0.015
O.O23

-0.017
O.O21
PRIMARY n<*P-TOTAL P.^r^n/P,1
( UC/W3) f IO-4 M- I ) ( r:t
1 .
14.

5 .
17.

(1.
2 1

5.
fa.

i ,
14.

1 .
14.
12'1 0.1*50 /"-.22*
or/9 '>. «•."'' (•'• ' l'';

nn 1 r) . 17'l f,',\ . f',7ri
Of»7 '•.'!'>! ( '• •' \.\

2'»6 o.ri'j'") f.n.H/'fj
2::^ O.-.. CJ <•<.:">">

oni o. (7'i r,r».n^2
oi7 o.noj fi*".-.']')

(169 '', . <)?t~ f,< f.'"'i
.','.'>4 ') . *')•'. f><- . '. ". ;

«39 ').')">'• <><".. ' 1*7
7?:; '/. i"LN «".<•.[•'/:
CliriDLATlVE SURFACE DEPOSITION (KOLE FRACTION OF INITIAL FLUX)
                SO21    0.OOOO
                noxi    o.oooo
PRIMARY PARTICULAR!    O.OOOO
                PO4!    O.OOOO
                HO3!    O.OOOO
 Exhibit A-3.   Printed results  of  observer-based PLUVUE calculations for observed points  at  100 and 120 km from  the
               emissions source.

-------
                       VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
                       1000 MW rovER PLANT
    DOWNWIND DISTANCE (KM) =  1OO.O
    PLUME ALTITUDE < M)     =   092.
    FLUME-OBSERVER DISTANCE (KM) =   17.5
    AZIMUTH OF LINE-OF-SIGHT =  145.1
    ELEVATION ANCLE OF LINE-OF-SIGHT =
    SOLAR ZEN ITFI ANGLE,*   51.0   AT  900.
    SIGHT PATH IS THROUGH PLUME CENTER
    THETA ALPHA  RP/RVO    RV  RHEDUCED
      42.
             46.     0.09   165.0   10.64
0. 1
ON 9/2 1
YC4P
104.22
L
101.61
X
0.3461
    Y DELYCAP    DELL  C(550)  BRATIO    DELX

0.3520   -9.77   -3.06 -0.0044  O.rr376  0.0224
                                                                                                                DELY  E(LUV)  F.(LAH)

                                                                                                                   jn fV>.49f*'» 'r'.'V.i
(A)
en
         PLUTIE VISUAL EFFECTS  FOR HORIZONTAL VIEWS
         OF THE PLurra OF WHITE,  GRAY.  AND CLACK OBJECTS
         FOR SPECIFIC OBSERVER-PLUME AND  OBSERVER-OBJECT DISTANCES
         1600 MW POWER PLANT
DOWNWIND DISTANCE (KM) =   100.0
PLWTE-OHSERVER DISTANCE (KM) =    17.5
AZIMUTH OF LINE-OF-SIGHT =  145.1
ELEVATION ANGLE OF LINE-OF-SIGIIT =     0.1
SOLAR ZENITH ANGLE =   51.O    AT 900. OH 9/21
THETA =   42.
                                                      Y DELYCAP
                                                 0.3520  -9.86
                                                 0.3310  -O.93
.ECT
1.0
0.3
0.0
RP/RVO
O.09
0.09
0.09
RO/RV0
O.O7
O.O7
0.07
YCAP
1O4.50
1O2.76
102.02
L
101.71
101. OS
100.77
X
0.3472
0.3444
0 . 04G2
     DELL  C(550)
    -3.59 -0.0Q45
                                                              -0.53   -3.16 -O.O754
BRATIO
0.7662
0.7520
0.7453

0
0
0
DELX
.0221
. 0223
.0232

0.
O.
0.
DELY
0132
O139
0193
E(
20.
20.
21.
LUV)  E(LAB>
1B32 I2.r>y«3
O979 13.1602
2141 13.G026
            VISUAL EFFECTS  FOR LIITES OF SIGHT ALONG PLUME
            1600 MW POWER PLANT
   DOWNWIND DISTANCE  (KTI) =  100.0
   PLUPTE-OBSERVER DISTANCE  (KM)  =    17.5
   AZIMUTH OF LINE-OF-SICHT =   145.1
   ELEVATION ANGLE OF LINE-OF-SIGHT =    O.I
   SOLAR ZENITH ANGLE =   51.0  AT  900.  ON   9/21
   THETA LENGTH RP/RV0   RV  JJREDUCED    YCAP       L       X       Y DELYCAP
     42.
       FOR SKY BACKGROUND:
            10.    0.09    165.O   10.3O  105.25  101.99  0.3459  0.3523   -9.09
       FOR WHITE BACKGROUND:
            !0.    0.09    165.0   10.39  105.36  102.03  0.3466  0.3522   -9.11
       FOR GRAY BACKGROUND:
            10.    O.09    165.5   10.57  103.55  101.36  0.3437  0.3512   -0.17
       FOR BLACK BACKGROUND:
             10.    O.09    165.3   10.64  102.78  1O1.O6  0.3425  0.3507   -7.77
                                                                                DELL  C(550)  BRATIO
                                          DELX
    DELY  E(LUV)   E(LAB)
                                                                                -3.30 -0.0772  0.7572  O.0216  0.0104  19.9524 12.717

                                                                                -3.30 -0.0769  0.7631  0.0214  0.01G3  19.7074 12.649

                                                                                -3.00 -0.0705  0.7407  0.0222  O.0191  20.5127 12.973

                                                                                -2.87 -0.0677  0.7420  0.0225  O.0194  2O.O36O 10.12O
             A-3  I.continued")

-------
                       CONCENTRATIONS OF AEROSOL AND GASES CONTRIBUTED BY
                                 1600 MW POWER PLANT
DOWNWIND DISTANCE (KTD =/ 120.0
PLUTIF. ALTITUDE (M) = 392.
SIGMA Y  = 3490.
SIGMA Z (M) „ =195.
SO2-S04 CONVERSION RATE= 0.5048 PETlCENT/Tm
NOX-N03 CONVERSION RATE= 0.0339 PERCENT/IIR
ALTITUDE

H+2S
INCREMENT!
TOTAL AJflJ!
H-H S
INCREMENT!
TOTAL AttB!
II
INCREMENT!
TOTAL Alffi!
II- IS
INCREMENT!
TOTAL AMD!
11-2S
INCREMENT!
TOTAL AHD!
0
INCREMENT!
TOTAL AITD!
NOX
( PPM)

0.013
0.013

0.059
0.059

O.O98
0.090

0.060
0.060

0.026
0.026

0.026
O.O26
TI02
( PPII)

0.009
0.009

0.033
0.033

0.031
O.O31

O.O34
0.034

0.017
0.017

O.O17
O.O17
N03-
(PPM)

0.000
O.OOO

0.000
O.OOO

O.OOO
0.000

O.OOO
0.000

O.OOO
0.000

0.000
O.OOO
IT02/RTOT
(T20LE «)

69.931
69.931

56.353
56.354

51.034
5 1 . 054

56 . 043
56.043

64.655
64.656

63 . 037
00.037
N03-/NTOT
(KOLE 7.)

0.041
0.041

0.090
O.09O

0.046
0.046

0 . 0"-0
o.oua

0.409
O.409

O.G93
0.003
S02
( PPM)

0.002
O.O02

0.011
0.011

O.O1B
O.O1O

0.011
O.OJ1

0.005
O.O05

O.O05
0.005
S04=
(ucxrtn)

0.009
3.305

3 . 024
6.760

6.299
9.235

fj f *O*"*
6 . 023

1.705
4 . 6<-2

1 . 7O3
4.641
S04=/STOT
(HOLE ;:)

O. J60
23.010

O.O22
10.31.3

O.O12
1 1 . G?.3

O.02I
13.269

G.O33
19.003

O . Oil
19. ;'-O7
03
( ppro

-0 . OO3
o.oao

-0.022
0.016

-0.025
0.013

-0.022
O.OI6

-0.015
O.OC3

-O.O17
O . O'J I
PRIrtARV
(UG/TI3) (

0.92O
10.053

4. 153
17.039

6 . 349
19 . 7'33

4.227
• 17. 160

i . mn
14. 7T4

1 . 0?, 1
14.774
BSP-TOTAL
10-4 ri-D

0,030
O . ' 04

O . | f i f)
O.l'.G '

O.264
O. ;j">2

n . t fi n
O . CO 1

n . 07 i
O. ~?">

o . 07 t
o. ."••;•)
CUMULATIVE SURFACE DEPOSITION (KOLE FRACTION OF  INITIAL FLUX)
                SO2f     O.OOOO
                NOXf     O.COGO
PRIMARY PARTICULATE1     O.OOOO
                S04J     O.OCOO
                N03T     0.0000
 Exhibit A-3 (continued)

-------
                   VISUAL EFFECTS FOR HORIZONTAL  SIGHT PATHS
                   1600 HW POWER PLANT
DOWNWIND DISTANCE (KM) =  120.O
PLUNF, ALTITUDE (PI)     =   392.
PLUMT5-ODSEHVER DISTANCE (KTI) =   34.5
AZIMUTH OF LINE-OF-SICHT =  169.8
ELEVATION ANGLE OF LINE-OF-SIGHT = 0.1
SOLAR ZENITH ANGLE = 51.0 AT 900. ON 9/21
SIGHT PATH IS THROUGH PLUME CENTER
THETA ALPHA RP/RVO RV JJREDUCED YCAP L X
54.
21. 0.19 141.4 23.59 78.97 91.23 0.3307 0.
PLUME VISUAL EFFECTS FOR HORIZONTAL VIEWS
OF THE PLUME OF WHITE. GRAY, ADD CLACK OBJECTS



Y DCLYCAP DELL C(5oO) BTATIO DELX DELY E(L

3340 -8.03 -3.91 -0.1122 O.r/573 0.0159 0.0073 10.


FOR SPECIFIC OCSERVER-PLUME AND OHSERVER-OflJECT DISTANCES
1600 NW POWER PLANT
DOWNWIND DISTANCE ( KM) = 120.0
PLUME-OBSERVER DISTANCE (KM) = 34.5
AZIMUTH OF LINE-OF-SIGHT = 169.0
ELEVATION ANCLE OF LINE-OF-S1GUT = 0.1
SOLAR ZENITH ANCLE = 51.0 AT 900. ON 9/21
THETA = 54.
-* REFLECT RP/RVO RO/RVO YCAP L X Y DELYCAP
GO 1.0 0.19 0.45 79. 9O 91.69 0.3336 0.3347 -10.26
O.3 0.19 0.45 75.16 09.48 O.H242 O.3299 -2.O5
0.0 0.19 0.45 73.10 83.50 0.3190 0.3277 0.33
VISUAL EFFECTS FOR LINES OF SIGHT ALONG PLUME
1600 MW POWER PLANT
DOWNWIND DISTANCE (KTI) = 120.0
PLUME-ODSERVER DISTANCE (KM) = 34.5
AZIMUTH OF LINE-OF-SIGHT = 169.0
ELEVATION ANCLE OF LINE-OF-SIGHT = 0. 1
SOLAR ZENITH ANGLE = 51.0 AT 900. ON 9/21
THETA LENGTH RP/RVO RV 8KEUUCED YCAP L X
54.
FOR SKY BACKGROUND:
24. O.19 142.9 22.78 79.15 91.31 0.3337 0.
FOR WHITE BACKGROUND:
24. 0.19 143.5 22.45 80.21 91.79 0.3364 0.
FOR GRAY BACKGROUND:
24. 0.19 139.5 24.61 75.13 C9.47 0.3263 0.
FOR BLACK BACKGROUND:
24. 0.19 137.5 25.68 72.93 GO. 45 0.3224 0.







DELL C(550) BRATIO DELX DELY E(LUV) E(LAB)
-4.42-0.1220 0.9031 0.0133 0.0061 11.0061 7.5578
-1.02 -0.044O 0.7002 O.OI3.T O.O122 1H.IS71 3. .".104
0.10 -0.0044 0.739O O.0220 O.O154 17.4343 10. in'12







Y DELYCAP DELL C(550) BRATIO DELX DELY EH


3373 -9.09 -3.96 -0.1105 0.8307 0.0179 0.0113 13

3386 -10.49 -4.50-0.1213 0.3663 0.0153 0.0097 13

3337 -3.00 -1.33 -0.0445 0.7662 0.0213 0.015O 17

3314 0.21 0.10-0.0033 0.7037 0.0245 0.0192 19,
Exhibit A-3 {.concluded)

-------
                        COnCENTRATIOns OF AEr/>?9L ATO CASES CONTRIBUTED BY
                  i.               1600 nw POWER PLANT
DOVNWI1TO DISTANCE'(KM) =  220.0
PLUrTE ALTITUDE (M)     =   392.
SIGMA Y (M)            =  561O.
SI GHA Z (Tl)            =   222.
S02-SO4 CONVERSION IIATE=   "  6.5127 PERCENT/IIR
NOX-N03 CONVERSION RATE=      0.0090 PERCENT/HR










,,_.
CO
UD







ALTITUDE

II+2S
INCREMENT!
TOTAL AIID!
11+ IS
INCREMENT!
TOTAL AMD!
H
INCREMENT!
TOTAL AMD!
II- IS
INCREMENT!
TOTAL AMD!
H-2S
INCREMENT!
TOTAL AMD!
0
INCREMENT!
TOTAL ATTO!
NOJC
( PPM)

*0.007
0.007

0.032
0.032

0.033
0.053

0.035
0.035

0.022
0.022

0.020
• O . 020
r;o2
( PPM)

0.035
O.003

0.021
0.021

0.033
O.033

0.022
0.022

0.015
0.015

0.013
0.013
N03-
( PPM)

0.000
0.000

0.000
0.000

0.000
0.000

0.000
o.ooo

0.000
0.000

0.002
0.002
N02/NTOT
(MOLE JO

70 . 020
70.021

64.940
64.940

61. 167
61. 167

64.209
64.209

65.324
65.324

59.262
59 . 262
N03-/ITTOT
(HOLE 55)

2.706
2.700

0.366
0.366

0. 190
0. 190

0.341
0.341

1. 178
1. 170

10.799
1O.799
S02
( PPM)

0.001
0.001

0.006
0.006

0.009
0.009

0.006
0.006

0.004
0.004

0.004
0.004
P04=
(UG/M3)

O.GC'9
3. COS

3.714
6.650

6. 120
9.056

3.960
6.904

2.631
5 . 567

2.923
5.RG9
SO4=X^'rOT
(KOLE ::>

14.6C4
42.902

14.23.T
22.0'4-i

1 4 . 223
19.70.»

14.254
22.435

14.417
26 . 279

16.021
27.660
03
( PPM)

-0.005
0 . 033

-0.015
0.023

-O.018
O.02O

-O.016
O.O22

-O.OI3
0 . 025

-0.013
0.025
PRIMARY
( UC/M3 ) (

0.515
13.451

2.269
15.205

3 . 7<"-3
16.6G4

2.425
15.361

1 .590
14.526

1 .590
14.520
BSP-TOTAL
10-4 M-l)

0.031
0. 159

0. 1T4
O. 2'>2

0.221
0 . IX-9

O. 143
0.271

0.095
0 . 221

O. 103
0 . 23 !
BSPF
( ;»>

70.
f>7.

7."..
72 .

7p,
7;?.

7C,.
72.

70.
7J .

no.
72.
:n/p?


421
TO

^r/'.
(XO

001
4 )H

120
ov«

r^i
1 1 ",
CUMULATIVE SURFACE DEPOSITION (MOLE FRACTION OF INITIAL FLUX)
                S02!    0.0000
                BOX!    0.0000
PRIMARY PARTICULATE!    0.0OOO
                S04!    0.0000
                1103!    0.0000
 Exhibit A-4.  The results  of the observer-based PLUVUE  run  at points 220 and 240 km  from the emissions source.   The
               tables of  secondary aerosol conversion are  printed after the optics data  for the last observed point.
               The last table verifies the output for plotting.

-------
                    VISUAL EFFECTS  FOR HORIZONTAL SIGHT PATHS
                    1600 MW POWER PLANT
 DOWNWIND DISTANCE (KM)  =   220.O
 PLUPTE ALTITUDE (M)      =    392.
 PLUME-OBSERVER DISTANCE (KM)  =   132.7
 AZIMUTH OF  LINE-OF.rSIGHT =   185.8
 ELEVATION ANGLE OF  LINE-OF-SIGHT =
 SOLAR ZENITH ANGLE  =    51.0  AT  900
 SIGHT PATH  IS THROUGH PLUME CENTER
 THETA ALPHA  RP/RVO    RV  ^REDUCED
  65.
          5.     0.72    106.8   42.23


         OF THE  PLUME OF  WHITE, CRAY, AND BLACK OBJECTS
         FOR  SPECIFIC ODSERVER-PLUME  AND ODSERVER-OHJECT DISTANCES
          1600 MW POWER  PLANT
DOWNWIND DISTANCE (101)  =  220.0
PLUME-ODSERVER DISTANCE (KM) =   132.7
AZIMUTH OF LINE-OF-SIGHT  =  185.8
ELEVATION ANGLE OF LINE-OF-SICHT =0.0                                   f
SOLAR ZENITH  ANGLE =    51.0   AT  900. ON  9/21
THETA s   65.
REFLECT  RP/RV0  RO/RVO    YCAP       L       X       Y DELYCAP    DELL  C(550)  BRATIO    DELX
         BACKGROUND OBJECT  IS BETWEEN OBSERVER AND CENTER OF PLUME AND CALCULATION  IS STOPPED.
0.0

ON 9X21
YCAP
73.06
L X Y DELYCAP DELL C(550) BRATIO DELX DELY E(LUV> E(LAB)
88.49 0.3115 0.3202 -0.99 -0.47 -0.0193 0.9566 0.0010 -0.0013 1.5864 1.206
                    DELY  E(LW)  E(LAB)
         VISUAL EFFECTS FOR LINES OF SIGHT ALONG PLUME
         1600 MW POWER PLANT
DOWNWIND DISTANCE (KM) =  220.0
PLUME-OBSERVER DISTANCE (KPI) =  132.7
AZINUTII OF LINE-OF-SICHT =  185.8
ELEVATION ANGLE OF LINE-OF-SIGHT
SOLAR ZENITH ANGLE =   51.0
THETA LENGTH RP/RV0    RV  %l
  65.
    FOR SKY BACKGROUND:
        148.    0.72    59.3
    FOR WHITE BACKGROUND:
          1.    0.72    183.8
    FOR GRAY BACKGROUND:
          1.    0.72    183.5
     FOR BLACK BACKGROUND:
           \.    e.72    183.2
rr ••
T
>UC!
67
0
0
e
3
900.
ED
.95
.63
.83
.96
0.0
ON 9/21
YCAP
70.
81.
61.
53.
60
65
82
32
87.
92.
82.
TB.
L
30
43
83
09

0.
0.
0.
0.
X
3148
3234
3O03
2865
Y DELYCAP
0.
0.
0.
0.
3209
3300
3109
2996
-3
-0
0
e
.74
.40
. 17
.42
DELL  C(550)  BRATIO
DELX
DELY  E(LUV)  E(LAB)
-1.79 -0.0565  0.9799  0.0027 -0.0008  3.2402  2.475

-0.18-0.0O51  1.0007  0.0002  0.0000  0.2536  0.206

 0.09  0.0O27  0.9934  0.0003  0.00O3  O.2337  0.156

 0.25  0.0078  0.9888  O.0005  0.O005  0.4062  0.917

-------
                       C0WCEWTRATIOSS OF AEROSOL AWD GASES CONTRIBUTED BY
                                 1600 MW POWER PLANT
DOWNWIND DISTANCE (KM) = 240.0
PLUME ALTITUDE (M) = 392.
SIGMA Y (M) = 5997.
SIGMA Z 
-------
             PLUME VISUAL EFFECTS FOR HORIZONTAL VIEWS
             OF  THE PLUME OF WHITE, CRAY, AND BLACK OBJECTS
             FOR SPECIFIC OBSERVER-PLUME AND OBSERVER-OBJECT DISTANCES
             1600  NW POWER PLANT
    DOWNWIND DISTANCE  (KM) =  240.0
    PLUME-OBSERVER DISTANCE (KM) =  152.6
    AZIMUTH  OF LINE-OF-SICHT =  186.6
    ELEVATION ANCLE OF tlNE-OF-SIGRT =
   SOLAR ZENITH ANGLE =
   THETA =   65.
   REFLECT  RP/RVO  ROXRVO
               0.0
51.0   AT  900. ON  9/21
    YCAP
                                              J{
Y DELYCAP
DELL  C(550)  BRATIO
                                                                    DELX
DELY  E(LUV)  E(LAB)
            BACKGROUND OBJECT IS BETWEEN OBSERVER AND CENTER OF PLUME AND CALCULATION IS STOPPED.
r\>
                   VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
                   16O0 MW POWER PLANT
DOWNWIND DISTANCE (KM) =  240.0
PLUME ALTITUDE (M)     =   392.
PLUME-OBSERVER DISTANCE (KM) =  152.6
AZIMUTH OF LINE-OF-SICHT =  186.6
ELEVATION ANGLE OF LINE-OF-SIGUT =0.0
SOLAR ZENITH ANGLE =   51.0   AT  900. ON  9X21
SIGHT PATH IS THROUGH PLUME CENTER
THETA ALPHA  RPXRV0    RV  ^REDUCED    YCAP       L       X
  65.
          5.     0.83   109.0   41.06
                                                                     Y DELYCAP
                                          73.03   38.48  0.3115  0.3203   -0.52
                                                        DELL  C(550)   BRATIO    DELX    DELY  E(LUV)  E(LAB)

                                                        -0.25 -0.0120  0.9549  6.0010 -O.t)008  1.2722  0.918
            VISUAL EFFECTS FOR LINES OF SIGHT ALONG PLUME
            1600 MW POWER PLANT
   DOWNWIND DISTANCE (KM) =  240.0
   PLUME-OBSERVER DISTANCE (KM) =  152.6
   AZIMUTH OF LINE-OF-SIGHT =  186.6
   ELEVATION ANCLE OF LINE-OF-SIGHT =    0.0
   SOLAR ZENITH ANGLE =   51.0   AT  900. ON  9X21
   THETA LENGTH RPXRV0    RV  ^REDUCED    YCAP       L       X       Y DELYCAP
     65.
       FOR SKY BACKGROUND:
           182.    0.33    62.2   66.39   70.49   87.25  0.3143  0.3207   -3.35
       FOR WHITE BACKGROUND:
             0.    O.83   185.0    0.00   81.51   92.36  0.3232  0.3298   -O.00
       FOR GRAY BACKGROUND:
             O.    0.83   185.0    0.00   61.59   82.71  0.3001  0.3108   -0.00
       FOR BLACK BACKGROUND:
             O.    O.83    185.0    O.OO   53.O6   77.93  0.2864  0.2994    0.00
                                                        DELL  C(550)  BRATIO
                                                                                                       DELX
                                                         DELY  E(LUV)  E(LAB)
                                                        -1.61 -0.0511  0.9042  0.0023 -0.0009  2.8692  2.221

                                                         0.00 -0.0000  1.0000  0.0000 -0.0000  0.0000  0.000

                                                         0.00 -0.0000  1.0000  0.0000  0.0000  0.0000  0.000

                                                         O.OO -0.0000  1.OO00  O.0000  O.OOOO  O.OOOO  O.OOrt
     Exhibit A-4 (continued)

-------
            HISTORY OF PLUTTE PARCEL AT DOWNWIND DISTANCE =   1.0 KM
               PARCEL     LOCAL       S02-TO-SO4= CON VERSION RATE (JS/ITR)
              •'•'  ACE       TIME
                 (IIR)                  II+2S  II+1S  H     H-1S  II-2S   0
                 O.I        900       0.50  0.50  0.50  0.50  0.50  0.50
                                                    NOX-TO-HNO3 CONVERSION RATE
                                                    n>28
                                                    0.00
                                          H+1S
                                          0.00
                                                      H
                                                      0.00
                  IT-IS
                  0.00
H-2S
0.00
 0
0.00
           HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE =>   2.0 KM
              PARCEL      LOCAL       SO2-TO-SO4= CONVERSION RATE (TJ/HR)
                AGE        TIME
                 (IIR)
                 0. 1
                 0.3
051
900
H+2S
0.50
0.50
n>lJ9  H     H-1S  H-2S   0
0.50  0.50  0.50  0.50  0.50
0.50  O.50  0.50  0.50  2.16
                                                    NOX-TO-HN03 CONVERSION RATE  (J?/HR)
H+2S  H+1S  H     H-1S
0.00  0.00  0.00  0.00
0.00  0.00  0.00  O.OO
H-2S   0
0.00  0.00
0.00  11.64
            HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE =   3.0 KM
                                      SO2-TO-SO4= CONVERSION RATE
CO
PARCEL .
AGE
(HID
0. 1
0.3
0.7
LOCAL
TIME

026
G35
900
n+2s
0.50
0.50
0.50
m-is
0.50
0.50
0.50
H
0.50
0.50
0.50
H-1S
0.50
0.50
0.50
H-2S
0.50
0.50
0.50
0
0.50
2.05
2. 16
                                                    NOX-TO-RN03 CONVERSION RATE  (JS/HR)
n+2s
o
0
o
.00
.00
.00
n+is
0
0
0
.00
.00
.00
H
0.
0.
0.
n-js
00
00
00
0.
0.
0.
00
00
00
H-2S
0.
0.
0.
oo
00
00
0
0.
10.
1 1 .
00
O3
64
            HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE =   10.0 KM
                                      S02-TO-SO4= CONVERSION RATE  (3/HR)
PARCEL
AGE
(HR)
0. 1
0.3
0.7
1.4
LOCAL
TIME

745
753
010
900
H+2S
0.50
0.50
0.50
0.50
n+is
0.50
0.50
0.50
0.50
H
0.50
0.50
0.50
0.50
H-1S
0.50
0.50
0.50
0.50
H-2S
0.50
0.50
0.50
0.50
0
0.50
1.70
1.02
2. 16
                                                    NOX-TO-HNO3 CONVERSION RATE
H+2S
0.00
0.00
0.00
n+is
0.00
0.00
0.00
H
0.00
0.00
0.00
H-1S
0.00
0.00
0.00
H-2S
0.00
0.00
O.OO
0
0.00
O.40
9.21
                                                                                O.00   0.00  0.00  0.00  0.00 11.64
             Exhibit A-4  (continued)

-------
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE =  20.0 KM
   PARCEL
   .."AGE
     um>
      o. i
      0.3
      0.7
      1.4
      2.8
LOCAL
 TINE

  622
  630
  655
  737
  900
                       S«2-TO-SO4= CONVERSION RATE
n+2S
O.50
0.50
0.50
0.50
0.50
n+is
0.50
0.5O
0.50
0.50
0.5O
H
0.50
0.50
O.5O
O.50
0.50
n-is
0.50
0.50
O.5O
0.50
0.50
H-2S
0.50
0.50
0.50
0.50
0.50
O
0.50
1. t.'J
1.26
1.5.1
2. 16
                                                     N0X-TO-HNO3 CONVERSION RATE 
IH-2S
0.
0.
O.
0.
0.
00
00
00
oo
01
U> IS
o.
0.
0.
0.
0.
oo
00
oo
00
oo
H
0.
0.
o.
0.
o.
H-1S
oo
oo
00
00
01
o.
o.
o.
0.
o.
00
00
00
00
00
H-2S
o
0
o
0
o
.00
.00
.00
.00
.01
0
0.
4.
5.
7.
11.
00
73
34
50
G*
HISTORY OF PLUME PARCEL AT ttOWNWIND DISTANCE =  40.0 KM
                          SC2-TO-SO4= CONVERSION RATE (rS
PARCEL
ACE

0.52
n+is
0.50
O.GO
0.50
0.50
0.5O
0.50
0.50
H
0.50
0.50
0.50
0.50
0.50
0.50
0.50
n-is
0.50
0.50
0.50
0.50
0.50
0.50
0.50
H-2S
0.50
0.50
0.50
0.50
0.50
0.50
0.51
0
0,50
O.50
0.50
0.50
o.no
0.52
0.50
                                                     NOX-TO-HN03 CONVERSION RATE (3/HR)
n+2s
0.00
0.00
0.00
o.oo
0.00
0.00
0. H
n>is
O.OO
O.OO
0.00
0.00
O.OO
0.00
0.02
n
0.00
0.00
0.00
0.00
0.00
0.00
0.01
H-1S
0.00
O.OO
0.00
0.00
O.OO
0.00
0.02
H-2S
O.OO
0.00
O.OO
O.OO
O.OO
0.00
0. 10
0
0.00
O.OO
0.00
O.OO
o.oo
0. 1 1
0.54
Exhibit  A-4 (continued)

-------
PAir-CEL
ACE
(IIR)
0. 1
. 0.3
0.7
1.4
2.8
5.5
8.3
11.0
LOCAL
TIME

2205
2210
2230
2020
42
320
614
900
r DOWNWIND DISTANCE = ee.o KM
S02-'J
H+2S
0.00
0.00
0.00
0.50
0.50
0.50
0.50
0.03
0-SO4=
THIS
0.50
0.50
0.5O
0.50
0.50
0.50
0.50
0.50
CONVE
n
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
,nsiow
n-is
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
IXATE (
n-2S
o.oo
0.50
0.50
0.50
0.50
0.50
0.50
0.52
%/rm)
o
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.54
                                                                               FOX-TO- imoo conVERSION BATE
n-»-2s
o.oo
0.00
0.00
0.00
0.00
0.00
o.oo
0.21
n+is
o.oo
0.00
0.00
0.00
o.oo
0.00
o.oo
0 . 00
n
0.00
0.00
0.00
0.00
0.00
o.oo
0.00
0.02
H-1S
o.oo
0.00
o.oo
0.00
0.00
0.00
o.o^
0.00
H-2S
o.oo
0.00
0.00
0.00
0.00
0.00
0.00
0. 17
o
o.oo
o.oo
o.oo
0.00
o.oo
o.oo
O.O1
0 . 23
           HISTORY OF PLUTTE PARCEL AT DOW WIND  DISTANCE =  100.0 101
in
PARCEL
AGE
LOCAL
TIME
(IIR)
0.
0.
O.
1.
2.
5.
8.
1 1.
13.
HISTORY
1
3
7
4
8
5
3
0
8
OF
PARCEL
AGE
1919
1928
1952
2034
2157
42
323
614
900
PLUME PARCEL
LOCAL
TIME
(IIR)
0
0
0
1
2
5
8
11
13
16
. 1
.3
.7
.4
.8
.5
.3
.0
.8
.6
1604
1642
1707
1743
191 1
2157
42
328
614
900
S02-T0-S04=
fi>2S
0.
0.
0.
0.
0.
0.
O.
0.
0.
50
50
50
50
50
50
00
50
55
n+is
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.51
CONVERSION
n
o.
0.
0.
0.
0.
0.
0.
0.
0.

50
50
50
50
50
50
50
50
00
II- IS
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.51
RATE (T.
IT-2S
0.50
0.50
0.50
0.50
0.00
0.50
0.50
0.00
O.OO
;/n
0
0.
0.
0.
0.
0.
o.
o.
0.
0.
R)

50
50
50
CO
CO
50
00
00
00
AT DOWNW7ND DISTANCE = 120.0 KM
SC2-TO-S04=


R+2S
0
0
0
0
0
0
0
0
0
0
.50
.00
.00
.00
.00
.00
.CO
.50
.00
.06

R+13
0.50
0.50
0.00
O.5O
0.50
0.50
0.50
0.50
0.50
0.51
CONVL'

n
o
0
0
0
0
0
0
0
0
0


.50
.50
.50
.50
.50
.50
.50
.50
.50
.50
•JISTON

n-is
o.oo
0.50
0.50
0.50
0.50
0.50
O.50
0.50
0.50
0.51
RATE 

0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
r.o
00
50
00
00
00
TO
03
                                                                               TTOX-TO-HN03 CONVERSION RATE (S/RTl)
H+2S
0.00
0.00
o.oo
0.00
0.00
0.00
o.oo
0.00
0.02
n+is
0.00
0.00
0.00
o.oo
0.00
0.00
0.00
0.00
O.O4
R
0.00
0.00
0.00
0.00
0.00
0.00
o.oo
O.O')
O.f>?
n-is
0.00
0.00
o.oo
o.oo
0.00
0.00
o.oo
o.oo
0.04
H-2S
0.00
0.00
o.oo
0.00
0.00
0.00
0.00
0.00
0.21
0
0.00
0.00
o.oo
o.oo
o.oo
0.00
o.oo
O.01
0 . 20
                                                                                NOX-TO-ITNO3 CONVERSION RATE (5S/RR)
II+2S
0.00
0.00
0.00
0.00
0.00
0.00
o.oo
o.oo
0.01
0.40
11+ IS
o.oo
0.00
o.oo
0.00
0.00
0.00
o.oo
0.00
0.00
0.06
II
0.00
0.00
o.oo
0.00
0.00
0.00
o.oo
0.00
o.oo
0.00
n-is
o.oo
0.00
0.00
0.00
0.00
o.oo
0.00
0.00
0.00
0.06
n-2s
o.oo
0.00
o.oo
o.oo
o.oo
0.00
o.oo
0.00
0.00
0.22
0
o.oo
0.00
o.oo
o.oo
o.oo
o.oo
o.oo
0.00
0.01
0.22
            Exhibit A-4 (continued)

-------
en
HISTORY OF
PARCEL
ACE
(ITR)
0V I
0.3
0.7
1.4
2.8
3.5
3.3
11.0
13.8
16.6
19.3
HISTORY OF
PARCEL
AGE
(HR)
0. 1
O.3
0.7
1.4
2.8
5.5
8.3
11.0
13.3
16.6
10.3
22. 1
HISTORY OF
PARCEL
ACE
(HR)
0. 1
0.3
0.7
1.4
2.8
5.5
8.3
11.0
13.8
16.6
19.3
22. 1
24.9
PLUTTF. PARCEL
LOCAL
TiriE

1348
1356
K-21
15G2
1625
191 1
2137
42
328
614
900
PLUT7E PARCEL
LOCAL
TIME

1102
1110
1135
1217
1340
1625
1011
2157
42
320
614
900
PLDTTE PARCEL
LOCAL
TIME

016
Q25
C50
931
1054
1340
1625
1911
2157
42
32O
614
000
                                AT DOWNWIND DISTANCE =  140.0 KM
                                  S02-TO-S04* CONVERSION RATE
                                         NOX-TO-HNO3 CONVERSION RATE
                                  D>2S
                                  0.50
                                  O.50
                                  0.50
                                  0.50
                                  0.50
                                  0.50
                                  0.50
                                  O.5O
                                  0.50
                                  0.50
                                  0.58
      H+1S
      0.50
      0.50
      0.50
      0.5O
      0.50
      0.5O
      0.50
      0.50
      0.50
      0.5O
      0.51
      H
      0.50
      0.50
      0.50
      0.50
      O.50
      0.50
      0.50
      0.50
      0.50
      0.50
      0.51
      n-is
      O.50
      O.50
      0.50
      0.50
      0.50
      0.50
      O.50
      O.50
      0.50
      O.GO
      0.51
      H-2S
      0.50
      0.50
      0.50
      O.50
      0.50
      0.50
      0.50
      0.50
      0.5O
      0.50
      0.53
       O
      0.50
      O.60
      0.57
      0.51
      0.50
      0.50
      0.50
      0.5O
      0.50
      0.50
      0.53
                                AT DOWNWIND DISTANCE *  160.0 KM
                                  SO2-TO-S04= COIlVERSION HATE (3/IIR)
H+2S
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
O.50
0.50
0.50
0.59
n>is
0.50
0.50
0.5O
0.5O
0.50
0.50
0.50
0.50
0.50
0.50
0.5O
0.51
II
0.50
0.50
0.50
0.50
0.5O
0.50
0.50
0.50
0.50
0.50
0.50
0.51
n-is
0.50
O.50
0.50
9.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.51
H-2S
0.50
0.5O
0.50
0.50
0.50
0.50
O.50
0.50
0.50
0.50
0.50
 0
0.5O
  28
  16
  82
  26
0.53
0.50
0.50
0.50
0.50
0.50
2
2
1
1
                                                          0.53  0.53
                                AT DOWNWIND DISTANCE = 180.0 KM
                                  S02-T0-S04= CONVERSION RATE
                                  H+2S
                                  0.50
                                  0.50
                                  0.50
                                  0.50
                                  0.50
                                  0.51
                                  0.50
                                  0.50
                                  O.5O
                                  O.GO
                                  0.50
                                  O.GO
                                  O.G i
      H+1S
      0.50
      0.50
      0.50
      0.50
      0.50
      0.50
      0.50
      O.5O
      0.50
      0.50
      O.GO
      0.50
      o. 52
      It
      0.50
      0.50
      0.50
      0.50
      0.50
      0.50
      0.50
      O.50
      O.5O
      O.5O
      O.GO
      0.5O
      0.51
      H-1S
      0.50
      0.50
      0.50
      0.50
      0.50
      0.50
      0.50
      0.50
      O.5O
      O.GO
      O.GO
      0.GO
      O.52
      H-2S
      0.50
      0.50
      0.50
      0.50
      0.50
      0.51
      0.50
      0.50
      0.50
      O.GO
      O.GO
      O.5O
      o. 53
       0
      0.50
      3.50
      3.50
      3.49
      3.33
      1.08
      0.50
      0.50
      O.5O
      0.50
      O.GO
      O.GO
      O. 54
II+2S
0.00
O.00
0.00
o.oo
o.oo
o.oo
0.00
o.oo
0.00
0.01
0.54
D>1S
0.00
0.00
0.00
0.00
0.00
o.oo
0.00
0.00
0.00
o.oo
0.03
H
0.00
o.oo
0.00
o.oo
0.00
0.00
o.oo
0.00
0.00
0.00
O.04
H-1S
0.00
0.00
0.00
0.00
0.00
0.00
o.oo
o.oo
0.00
0.09
0.03
H-2S
0.00
o.oo
0.00
o.oo
o.oo
0.00
0.00
o.oo
0.00
0.01
0.23
0
0.00
0.73
0.52
0.03
0.02
O.OO
0.00
0.00
o.oo
0.00
0.22
                                         NOX-TO-HN03 CONVERSION RATE (7S/HR)
II+2S
O.
O.
0.
0.
0.
0.
0.
O.
0.
0.
0.
0.
00
00
00
00
00
00
00
00
00
00
02
65
n+is
0
0
0
0
0
0
0
0
0
0
0
0
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
. 10
H
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
H-1S
00
00
00
00
00
00
00
00
00
00
«o
01
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
00
00
00
00
00
00
00
00
00
00
oo
10
n-2S
0
o
0
0
0
o
0
rt
0
0
0
0
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.01
.23
0
0.
12.
11.
9.
5.
0.
00
45
65
23
31
19
0.00
0.
0.
0.
o.
0.
oo
00
00
oo
22
                                         NOX-TO-HN03 CONVERSION RATE (3/HR)
II+2S
0
0
0
0
0
0
0
0
o
o
o
o
o
.00
.00
.00
.01
.02
.04
.00
.00
.OO
.OO
.OO
.02
.76
n+is
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
o.
00
00
00
00
00
01
00
00
oo
oo
oo
oo
12
H
0
0
0
0
0
0
0
0
o
o
o
o
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
O.O7
H-1S
0.
0.
0.
0.
0.
0.
0.
0.
0.
O.
0.
O.
0.
0O
00
00
00
00
01
00
00
oo
oo
oo
oo
12
n-2S
0
0
0
0
o
0
0
0
0
o
o,
o.
o.
.00
.00
.00
.01
.02
.04
.00
.00
.00
.00
.00
01
24
0
20
20
20
19
4
0
0
0
0
o.
0.
o.
0
.00
.93
.97
.92
.82
.on
.03
.00
.00
.OO
.OO
01
30

-------
•^^^^^n^
O, 1
o. a
O.7
1.4
3. 0
5.0
0.3
11. 0
- 10. 0
16.0
19.3
22. 1
24.9
27.6
HISTORY OF
PARCEL
AGE

O. 1
0.3
0.7
1.4
2.8
5.5
0.3
11.0
13. 0
16.6
19.3
22. 1
24.9
27.6
30.4
HISTORY OF
PARCEL
ACE
urn)
0. 1
0.3
0.7
1.4
2.0
0.0
0.3
11. 0
13.0
16. fj
19.3
22. 1
24.9
27.6
30.4
33. 1
931
srto
OO4
6<-5
C9O
1O34
134O
1625
1011
2157
42
oca
614
900
PLUTCE PARCEL
LOCAL
TINE

245
253
318
400
522
COO
1034
1340
1625
1911
2157
42
328
6!4
9CO
PLUME PARCEL
LOCAL
Tirffi

2359
0
32
1 J4
237
522
aoo
1054
1340
1625
1911
2157
42
328
614
900
	 gr-*-"*g? TT^^TT^^ IT ZI — IS II — •£?=* *r
a. so o.oo o.oo o.so o.co o no
o.oo o.oo o.ao o.ao o.ao i so
O.GO O.GO O.5O O.GO O.SO 1 OO
O.SO O.SO O.SO O.GO O.SO 2 O2
o.so o.so o.ao o.so 0.50 2 oo
O.51 O.SO 0.50 O.SO 0.51 1.74
0.32 O.GO O.SO O.SO O.52 O.64
0.50 0.50 0.00 0.50 O.50 0.50
0.50 0.50 0.50 0.50 O.5O 0.50
0.50 0.50 0.50 O.SO 0.50 0.50
0.50 0.50 O.GO 0.50 0.50 0.50
0.50 0.50 O.GO O.GO 0.50 O.GO
O.GO O.GO O.GO 0.50 O.GO O..~0
0.62 0.52 0.51 0.52 0.54 O.57
AT DOWNWIND DISTANCE = 220.0 KM
S02-T0-S04= CONVERSION RATE < r?/TTR>
\
n+2S n+is H n-is n-2s o
0.50 O.50 0.50 0.50 0.50 0.50
O.50 O.SO O.GO 0.50 O.GO 0.51
O.SO 0.50 O.GO 0.50 0.50 0.51
0.50 0.50 O.SO 0.50 O.GO 0.53
0.50 0.50 0.50 0.50 O.GO O.69
0.50 0.50 O.SO 0.50 0.50 0.01
0.53 0.50 O.SO 0.50 0.53 0.71
0.53 0.50 0.50 0.50 O.53 0.50
O.GO 0.50 0.50 0.50 O.GO O.GO
0.50 0.50 0.50 O.GO 0.50 O.GO
O.GO O.GO 0.50 0.50 O.F0 0.50
0.50 0.50 O.,50 0.50 O.GO O.GO
0.50 O.GO O.GO 0.50 O.GO O.GO
0.5O 0.50 O.GO 0.50 O.GO O.f.O
O.04 0.52 O.G1 0.52 0.54 O.G7
AT DOWTOINn DISTANCE = 24O.O 101
S02-T0-S04= CONVERSION RATE ( rt/TTR)

H+2S n>is n H-IS n-2S o
O.5O 0.50 O.SO O.SO O.SO 0.50
0.50 0.50 0.50 O.SO O.GO O.GO
O.SO 0.50 O.GO O.GO O.GO O.SO
0.50 O.SO O.GO O.GO O.GO O.GO
O.GO O.GO 0.50 O.GO O.GO O.GO
O.GO O.GO O.GO 0.50 O.GO O.GO
0.51 O.GO 0.50 O.GO 0.51 0.54
0.56 O.Gl O.GO 0.51 0,55 0.50
0.55 0.51 O.SO O.51 0.53 O.54
0.50 O.GO 0.50 0.50 0.50 O.GO
O.GO O.GO 0.50 O.GO O.GO O.GO
0.50 0.50 0.50 0.50 O.GO O.GO
O.GO 0.50 0.50 0.50 O.GO O.GO
0.50 O.GO O.GO 0.50 0.50 0.50
0.50 0.50 0.50 0.50 0.50 0.50
0.65 0.53 O.Gl 0.52 0.54 O.G4
o.
o.
o.
0.
O.
O.
O.
0.
o.
0.
0.
0.
0.
0.
as
00
oo
oo
OO
Ol
06
12
01
00
00
00
00
02
f>7
l¥-^
O .
O.
0.
O.
O.
O.
o.
0.
0.
0.
0.
o.
0.
0.
IS!
oo
Oi>
oo
00
00
Ol
02
00
00
00
00
Ol
oo
* 4
o .
o.
0
o
o
o
o
0
o
0
0
0
0
0
.00
.00
.00
.00
.00
.01
.01
.00
.00
.00
.00
.00
.00
.or.
rt— is
o. oo
o .00
O.OO
o
o
o
o
0
0
0
0
o
0
o
.00
.00
.01
.02
.00
.00
.00
.00
.03
.00
. 13
Tl—
o .
o.
0.
o.
oo
t>f>
00
oo
O.OI
o
o
0
o
0
o
o
0
0
.06
. 12
.01
.00
.00
.00
.00
.01
. 25
o"
7'.
O.
10.
14.
O
1
0
0
0
0
0
o
o
oo
3.-'i
^—-\
. (t(t
. OT
. oi>
.00
.03
.00
.00
. or>
,n9
. n '
. •">
                                                                 NOX-TO-HN03 CONVERSION RATE
                                                                 NOX-TO-RNO3 CONVERSION RATE
IR2S
0.00
0.00
O.OO
0.00
o.oo
O.02
0.20
0.24
O.02
O.OO
0.00
0.00
O.OO
O.OO
0.?7
n+is
0.00
0.00
0.00
0.00
O.OO
0.00
0.03
0.03
0.00
0,00
O.OO
0.00
0.00
O.OO
0.16
H
0.00
0.00
0.00
O.OO
O.OO
0.00
0.02
O.O2
O.OO
0.00
0.00
O.OO
O.OO
O.OO
0.0<>
H-IS
O.OO
0.00
O.OO
O.OO
O.OO
0.00
0.03
0.03
0.00
O.OO
O.OO
O.OO
O.OO
O.OO
0. 1G
n-2s
0.00
0.00
O.OO
O.OO
O.OO
O.02
O.2O
0.20
O.OI
O.OO
O.OO
O.OO
O.OO
O.OI
0.27
0
o.oo
0.06
0 . of)
0.23
1 . r-3
2. J4
1 . 45
o . r-3
o . 02
O.OO
o.oo
0.00
o. oo
O. O J
o.2S
O.OO
0.00
O.OO
0.00
O.OO
O.OO
0.05
0.39
0.37
0.03
0.00
0.00
O.OO
0.00
0.03
1.08
R+1S
0.00
0.00
O.OO
O.OO
O.OO
0.00
O.OI
0.03
O.03
0.00
0.00
0.00
0.00
O.OO
0.00
0. 10
H
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.03
0.00
O.OO
0.00
0.00
0.00
0.00
0. 10
H-IS
0.00
0.00
0.00
O.OO
0.00
0.00
0.01
0.03
0.03
0.00
0.00
O.OO
0.00
0.00
0.00
0. 17
n-2s
O.OO
0.00
O.OO
o.oo
O.OO
O.OO
0.03
0.33
0.24
0.01
0.00
O.OO
o.oo
O.OO
0.01
0.20
0
0.00
0.00
O.OO
O.OO
o.oo
O.OI
0.27
o.r>7
o.ao
0.01
O.OO
O.OO
O.oo
O.OO
O.OI
0 . ',J 1
Exhibit A-4 (continued)

-------
                                                        PLOT FILE VERIFICATION

                                                         OBSERVER-BASED DATA

      SKY BACKGROUND

          NX             I      2      3      4      5      6      7      8      9     10     11      12     13     14     IP      If,

    DISTANCE (KM)         1      2      5     !0     20     40     60     CO    100    120    140     160    180    2OO    22O     2*O

  REDUCTION OF VISUAL
      RANGE (JO        52.530 52.937 53.826 51.327 40.107 27.G01  16.039  7.419 10.037 23.591  4O.G79 47.959 45.006 43.730 42.247 4t.<>6

   BLUE-RED RATIO
                       1.022  1.021  1.019  1.0!4  1.003  0.956   0.861  0.742  O.753  0.330   0.923  O.951  O.957  0.953  0.957  O.«5

   PLUME CONTRAST  AT
      0.55  MICRONS    -0.057 -O.O70 -0.032 -0.090 -0.105-0.135  -0.153 -0.111 -O.OO4 -0.112  -O.O94 -0.068 -0.046 -0.000 -O.OJ9 -O.O1

 PLUTJE PERCEPTIBILITY
,    DELTA E(L*A#B*>     2.312  2.814  3.333  3.621  4.140  5.491   8.602 12.527 12.9CT  0.315   5.006  3.402  2.386  1.677  l.r».or,  O.O1

    WHITE BACKGROUND

         NX             1       2      3      4      5      6      7      8      9     10     11      12     13     14     15     16

    DISTANCE (KM)         1       2      5     10     20     40     60     CO    100    120    14O     100    100    200    220    2<«-0

 REDUCTION OF VISUAL
      RANGE (3)         0.000  0.000  0.000  0.000  0.000  0.000   0.000  0.000  0.000  0.000   0.000  0.000  0.000  0.000  0.000  0.00

   BLUE-RED RATIO                                                               (
                       1.259  1.248  1.219  1.137  1.146  1.065   0.934  0.757  0.706  O.903   1.009  0.000  0.000  0.000  0.000  O.Ofl

   PLUME CONTRAST  AT
      0.55  IHCRONS    -O.OG8 -0.100 -0.111 -0.110 -0.132 -0.162  -0.180 -0.114 -0.005 -0.122  -O.O43  0.000  0.000  O.OOO  O.OOO  O.OC1

PLUT1E PERCEPTIBILITY
    DELTA E(L*A«B*>     5.061  5.232  5.344  5.290  0.397  5.971   8.1G4 12.323 12.840  7.G58   3.153  0.000  0.000  0.000  0.000  O.O1
Exhibit A-4 (continued)

-------
     CRAY BACKGROUND

          NX       ''•'     1       2      3      4      5      6      7      8      9     !O     II     12     13      14      15      16

   DISTANCE (ICM)         1       2      5     10     20     40     60     80    100    120    140    100    1OO    209    220     2*o

 REDUCTION  OF VISUAL
     RANGE  (%)   *      0.000   0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000   O.oo

  BLUE-RED  RATIO
                       0.996   0.996  0.996  0.994  0.905  0.939  0.846  0.740  0.752  0.799  0.372  0.000  0.000  0.000  O.O^O   O.CO

  PLUME CONTRAST AT
     0.55 MICRONS    -0.026  -0.040 -0.054 -0.063 -0.079 -0.110 -0.129 -0.107 -0.070 -0.045  0.173  0.000  0.000  0.000  O.OOO   o.OO

 PLUME  PERCEPTIBILITY
   DELTA ECL*A»B«)     1.006   1.575  2.155  2.531  3.100  4.074  8.398 12.601 13.160  O.319  6.239  0.000  0.000  O.OOO  O.OOO   O.oo



-•  BLACK BACKGROUND
4i
10         NX             1       2      3      4      5      6      7      8      9     10     11     12     13      14      15      K,

    DISTANCE (KM)        1       2      5     1O     20     40     60     80    IOO    12O    14O    16O    180    2OO    22O     24O

  REDUCTION OF VISUAL
      RANGE (JJ)         0.000  0.000  0.000  O.OOO  0.000  0.000  0.000  O.OOO  O.OOO  0.000  O.OOO  O.OOO  0.000  O.OOO  O.OOO   o.on

   BLUE-RED RATIO
                       0.302  O.CC6  0.894  0.902  O.904  0.O71  0.791  O.732  O.745  0.74O  O.729  O.OOO  0.000  O.COO  O.OOO   O.OO

   PLUME CONTRAST AT
       0.55  MICRONS     0.003  -0.011 -0.026 -0.007 -0.054 -0.004 -0.102 -0.104 -0.075 -0.004  0.314  0.000  0.000  O.OOO  O.O^O  O.OO

 PLUME PERCEPTIBILITY
     DELTA E(L#A*B#)    2.137  2.279  2.446  2.050  3.234  5.126  0.925 12.729 13.303 10.133 11.033  0.000  0.000  O.OOO  O.OOO  O.oo
  Exhibit A-4 (concluded)

-------
first case.   The plume-based  calculations  were limited to scattering
angles of 45°,  90°,  and  135*  by setting  NT1  to 2 and NT2 to 5.

     Exhibit A-6 presents the beginning of the printout for the plume-based
run of PLUVUE.   All  tables are included  for  the input data verification,
background optical  properties, initial  plume~rise, plume gas and aerosol
concentrations, and  all  visual effects,  for  the first two observed points
on the plume (1 and  2 km from the source).  Note that the size of the
print file is quite  large, even for three  different scattering angles.
When the number of  scattering angles is  increased to six, the number of
optics tables is doubled, and the print  file becomes almost twice as large
as it is in this sample.
     Exhibit A-7 presents the results of the same PLUVUE run for the
observed points at  100 and 120 km from  the source.  For both points, the
tables are printed  for:  plume contributions  of pollutants; results from
optics calculations  for  horizontal lines of  sight with sky backgrounds;
results from optics calculations for nonhorizontal lines of sight with sky
backgrounds; results from optics calculations for horizontal lines of
sight with white, gray,  and black backgrounds; and results from optics
calculations for views along  axes of plumes  with sky backgrounds.
     Exhibit A-8 presents the tables for the last two observed  points  on
the plume trajectory, plus the usual tables  for secondary aerosol forma-
tion rates and the  table verifying the  data written to Fortran  logical
unit 8.  This data  is used as input by  the program VISPLOT to generate
plots of the four key visibility impairment parameters: percentage reduc-
tion in visual  range, plume contrast, blue-red ratio, and 4E.
                                    150

-------
1600 NW POWER PLANT
4.5 5+0.
000414
0. 0.
1000.0
45.
0
1 1 1 116 2
1
1. 2.
100. 120
37.50
1555980.0
4.0600.0
45. 0
0.000
O. 125
2.20O
1.000
10.000
2
185.
l.OO 1.00 0.
0
0.0
1 1
343323
49O.9
12 9
00





5 1

5. 10. 20. 4O. 60. 80
140. 160. ICO. 200. 220. 240
131.80 4.90
138.0 J 3.0 17.5


0.000 0.038 0.000
2.750 0.125 0.850
2.200 1.500 1.500
2.000 1.000 2.000



10 0. 10




433O.5 5650. O
21OOOO. 7. 1979
Exhibit A-5.  Input data file used for second example of a PLUVUE run.

-------
VISUAL IMPACT ASSESSMENT FOR 1600 IW POWER PLANT
    EMISSIONS SOURCE DATA
         ELEVATION OF SITE  =      3650.  FEET JfSL
                                 1722.  METERS MSL
         NO.  OF UNITS =      4.
         STACK HEIGHT =   600.  FEET
                         103.  METERS
         FLUE CAS FLOW HATE =    1555980.  CU FT/MIN
                                 734.23  CU M/8EC
         FLUE GAS TEMPERATURE "        138.  F
                                     332.  K
         FLUE CAS OXYGEN CONTENT •        3.0  MOL PERCENT
         S02  EMISSION RATE  (TOTAL) =      37.30  TONS/DAY
                         K (TOTAL, AS
                                              1.3S4E 03  G/SEC
         PARTICULATE EWISSIOR RATE (TOTAL) =       4.90  TONS/DA\
                                              3. 145E 01  G/SEC


Exhibit  A-6.   Beginning of output for plume-based  PLUVUE run,
               including the tables of visual effects  for the
               second  observed point.

-------
                  AWD Awnrnrrr Am QUALITY DATA
        WJWOSPEED =    4.O   MILES/im
                      2.0   M/PEC
       P/lSQUILL-CrFFOIW-TUnWEIl STABILITY CATEGORY E
       LAPSE RATE =   O.OO  F/1000  FT
                       0.OOOE-0 J   K/M
       POTENTIAH'TEMPERATURE LAPSE RATE  =    9.300E-03  K/M
       AMBIENT TEMPERATURE =  45.0  F
                             280.4  K
       RELATIVE HUMIDITY =  45.0   %
       MIXING DEPTH = 1000.  N
       AMBIENT PRESSURE =  0.82  ATM
       BACKGROUND NOX CONCENTRATION =      0.000  PPM
       BACKGROUND N02 CONCENTRATION =      O.000  PPM
       BACKGROUND OZONE CONCENTRATION =      0.038  PPM
       BACKGROUND S02 CONCENTRATION =      0.000  PPM
       BACKGROUND COARSE NODE CONCENTRATION =       10.0  UG/M3
       BACKGROUND SULFATE CONCENTRATION  =        2.9  UG/M3
       BACKGROUND NITRATE CONCENTRATION  =        0.0  UG/M3
       BACKGROUND VISUAL RANGE =      1B5.0  KILOMETERS
       S02 DEPOSITION VELOCITY =       1.00  CM/SEC
       NOX DEPOSITION VELOCITY =       1.00  CM/SEC
       COARSE PARTICULATE  DEPOSITION VELOCITY =       0.10  CM/SEC
       SUBMICRON PARTICULATE DEPOSITION  VELOCITY =       0.10  CM/SEC
:±                                  AEROSOL STATISTICS
u>                               BACKGROUND                                PLUME
                      ACCUMULATION          CO/YRSE           ACCUMULATION           COARSE
       MASS MEDIAN         MODE                MODE                MODE                 MODE
       RADIUS
       MICROMETERS          0.123               2.730               0.125               0.8T0
       GEOMETRIC
       STANDARD
        DEVIATION           2.200               2.200                1.500               1.500
        PARTICLE
        DENSITY
        G/(CM#*3)             1.000               2.000                1.800               2.000
        SIMULATION IS FOR  900.  HOURS ON   9/21
        SOLAR ZENITH ANCLE (DEGREES)  = 51.0
        SOLAR AZIMUTH ANCLE (DEGREES) =    129.0


                            BACKGROUND CONDITIONS
   ACCUMULATION MODE                       COARSE PARTICLE MODE                        PRIMARY PARTICLE MODE
   MASS RADIUS    SIGMA    BSCAT.55/MASS        MASS RADIUS    SIGMA   BSCAT.55/MAS9        MASS RADIUS    SIGMA   BSCAT S3/MA5?S
  0.1250E 00    0.2200E 01    0.2844E-02         0.2750E 01   0.2200E 01   0.4469E-03        0.8500E 00   0. 1500K 01   O 1242F-O'»
                             COEFFICIENTS AT 0.55 MICROMETERS ,  1./KM                                                 '     '  "
     BTARAY =0.9747E-02    BTAAER =0.1202E-01   ABSN02 =O.OOOOE 00   BTABAC =0.21I5E-0I
 Exhibit A-6 (continued)

-------
INITIAL PLUME RISE AND DILUTION AND NITROGEN DIOXIDE FORWATTON
          16CO MW POTHER PLANT
TIME
(SEC)
0.
10.
20.
30.
40.
|-|-|
oo.
70.
8O.
90.
100.
110.
120.
100.
140.
15O.
100.
170.
(80.
190.
200.
210.
220.
230.
240.
250.
200.
270.
230.
290.
300.
310.
320.
330.
340.
350.
300.
370.
380.
390.
400.
410.
420.
400.
440.
450.
4C>0 .
470.
t-^o .
*''° •
X
(M)
0.0
20. 1
40.2
00.3
80.5
1OO 6
A W • V
120.7
140.8
100.9
131.0
201. 1
221.3
241.4
201.5
281.0
301.7
321.8
342.0
302. 1
332.2
402.3
422.4
442 . 5
402.0
402.8
502.9
523.0
543. 1
503.2
533.3
003.4
023.6
043.7
003.8
033.9
704.0
724. 1
744.3
704.4
7C4 . 5
304.0
324.7
844.8
804.9
OC5. 1
9O5.2
925.3
<>45 . 4
<><>5 . 3
OSS . ^
DELTA H
(M)
O.0
31.0
50.2
05.7
,79.6
no 4
f tat • ^V
104.3
115.6
120.4
130.7
146.7
150.3
105.0
174.7
183.6
192.2
200.6
203.7
208.7
203.7
208.7
203.7
203.7
208.7
203.7
208.7
203.7
203.7
208.7
203.7
208.7
208.7
203.7
208.7
203.7
203.7
203.7
203.7
203.7
208.7
203.7
203.7
208.7
208.7
2OO.7
203.7
2OO.7
2OO.7
20O.7
aoa.-z-
U
2.O1
2.O1
2.01
2.O1
2.01
2. Ol
2^01
2.01
2.O1
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.O1
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.O1
2.O1
2. Ol
a.ot
Ct . O I
W
(MxS)
17.50
1.00
0.CO
0.71
0.04
OAO
• W
0.56
O.54
0.51
0.49
0.48
0.46
0.45
0.44
0.<'3
O.42
0.41
O.40
0.39
0.39
0.38
O.37
0.37
0.36
0.30
0.35
O.G5
0.34
0.34
0.33
0.33
0.33
0.32
0.32
0.32
0.31
0.31
0.31
0.31
0.30
0.30
0.30
0.3O
0.29
0.29
O.29
O.29
O.29
O.2O
O.2O
V
(M/S)
17.50
2.25
2. 17
2. 13
2. 11
2 1O
• I *-/
2.09
2.08
2.08
2.07
2.07
2.06
2.00
2.00
2.00
2.O5
2.05
2.O3
2.05
2.05
2.05
2.05
2.04
2.04
2.04
2.04
2.04
2.04
2.04
2.04
2.O4
2.04
2.04
2.04
2.04
2.04
2.04
2.04
2.03
2.03
2.03
2.03
2.O3
2.03
2.O3
2.O3
2.O3
2.O3
2.03
2.oa
SIGMA
(M)
0.0
7.3
11.7
15.3
18.5
*>\ n
M M • V
24.3
20.9
29.4
31.8
34. 1
30.3
33.5
40.0
42.7
44.7
40.7
43.5
48.5
43.5
48.5
48.5
43.5
43.5
48.5
48.5
48.5
43.5
43.5
48.5
48.5
48.5
43.5
48.5
43.5
48.5
48.5
48.5
43.5
48.5
43.5
43.5
48.5
48.5
43.5
48.5
4O.5
40.3
<1-O. 5
40. S
TMHP
(TO
3:; 2.0
"V.9.9
29l!0
2.37.6
O£jrj ^ *p
234.6
233.8
2.30 . 2
2C'2 . 8
2C2 . 5
2,"2.3
2"2. 1
231.9
2,3 1 . 7
231.6
2-1 1 . 5
201.4
23 1 . 4
231.4
2,31.4
231.4
2,3 1 . 4
23 1 . 4
201.4
231.4
231.4
231.4
231.4
2*31.4
20 1 . 4
2.31.4
231.4
201.4
201.4
231.4
•J31.4
23 1.4
231.4
231.4
231.4
231.4
20 1 . 4
2<3 1 . 4
2IH . 4
20 1.4
201.4
2O1 .4
231 .4
201 .4
O2 NO2-NO
MOL P EOUIL
3.0 5.9E 04
3.G 7.2E 04
14.5 5.(?E 05
17.3 9.0E
13.4
19 1
m J • M
19.5
19.3
19.9
20. 1
20.2
20.0
2O. 4
2O . <•
20. 5
20.5
20.0
20.0
20.0
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20 . 6
20.6
20.6
20.6
20.6
20 . 6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20 . 6
2O. 6
20. 0
2O. C.
2O. 6
20.6
23. O
ao. c.
. IE
.2E
.OE
.3E
. 4E
.4E
.4E
.GE
.5E
.5E
.5E
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.5F.
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.5E
.GE
.5E
5E
5E
arc
GE
GE
05
O6
OG
06
00
00
06
06
06
00
00
06
OG
05
06
06
06
06
06
06
06
06
00
06
06
06
06
06
06
06
06
06
06
00
00
00
00
06
06
06
06
OO
06
06
00
O6
OS
RATIO N07< NO
ACTUAL ( PPri) ( PPM>
4.2E-O3 340.166 333. 75O
6.2E-03 325.. 392 323.390
3.6E-03 121. 42O 120.300
1 . OE-02
1.6E-02
1 . OC-O2
1 . OE-02
2. IE-03
2.2E-02
2.3E-02
2.4E-02
2 . 4E-02
2.GE-02
2.6E-02
2.6E-02
2.7E-02
2 . 7E-02
2 . 7E-02
2.3E-02
2. BE- 02
2 . fiE-02
2. OE-02
2. OE-02
0 . OE-02
3 . OE-02
3. OE-02
3 . 1 E-02
3. IE-OS
3 . 1 E-02
3.2E-02
3 . 2E-02
3.3E-02
3.3E-02
3 . 3E-02
3 . 4E-02
3.4E-02
3 . 4E-02
3.5F.-02
3.5E-02
3.5E-02
3 . 6E-02
3 . 6E-02
3.7E-02
3 . 7E-02
3 . 7F.-02
3 . aE-02
3 . 315-02
3 . OE— O2
3.9E-O3
3. OE-O2
69 . 076
47 . 57 1
"1 . 020
27.715
22.530
1O.916
16. 130
1 4 . 070
12.400
1 1 . 040
9 . 007
9 . 007
G.220
7.:.? 46
6 . 077
6 . OG2
6.037
6.001
OfNOrr
• * e • 7
6 . oon
7.001
7 . oor»
7.007
7.010
7.010
7.01-1
7.017
7.010
7.021
7.02:.'.
7.021
7 . 0.?7
7 . OrjlO
7.000
7 . 03 1
7 . 000
7 OO''1
7 . 000
7.037
7 . 03G
7 . 000
7.040
7.O41
7 . O42
7.O40
7.04-J
7 . O-j"1"*
69. 100
40 . 34 1

27. 136
22. 123
13.510
1G.G13
13.745
!2. 101
10.779
9.0G9
3.773
3.007
7 . 347
0.791
0.794
6 . 796
6.707
0.703
0.709
0 . COO
0 . GO 1
O.G01
6.301
6.C01
6 . CO 1
O.C01
6 . GO 1
6 . r.OO
6 . COO
6 . 709
6 . 700
6.707
6.707
6.706
6.705
6.704
6.702
6.701
6.700
6 . 7«0
0 . 7O7
6.7.3')
0 . 7«{3
6 . 7f>3
6. 7O2
O. 73O
NO2T
< PPM)
1.416
1.999
1.003
O.376
0.730
O.O 10
O.523
0 . 400
0 . 4OO
O.062
0.025
0.205
0.270
0 . 243
O.T29
0.213
0. 103
0. 106
0. 1O9
0. 101
0. 104
0. 190
0. 109
O.201
0.204
0.200
0.209
0.211
0.214
0.216
0.219
0.221
0.224
0.220
0.2C3
0.201
O.203
0. 2J?0
o . 2r'O
0 . 24 1
0.243
0 . 240
0 . 248
0.2,10
0.253
O.255
O.258
O.2GO
O. 2O2
O.26O
SO2 PARTTCTTLA1
(rrri) irr,/nr»
69.179 2.0.?F. O4
14. 3 HO A.fiP, r:\
9.7^O 3 . rv* r ' on
7.2f!l 2.^.7.' P. r>C',
5.'"-1>9 1 . 9'P. 'v>
4.'. 19 I.T.T. o".
o . ."v^o i . r.".p c^"*.
o.roo i . r~r. r-
2 . -37-3 ^ . "•''* ^ ', ^'^
2.^") Pi. (•"''. '\";
2.260 7.7Pr: ^:".
2.Or3 f > . 9 ""« ' . 'Y'.
1 . .'X'2 0 . "C P, -
1.42? 4.T"''. 0'"
1.4-.3 4.r-f, <• ."
1 . 4.7:0 4. r.or. 0"
1 .400 4. POP, Or1
1 .401 4.r~P. 0"
1 . 4?. 1 4. OOP r>-
\ . 4 "2 4 . nw. r>;'
1 . 4'!3 4. OOP. (T
1 '"'HO ^' ^or r>*
i . 4 "4 4. 0'' r". o:
1.404. 4.0M-. n
i . 4ri 4 . o • r". r:
l.4ri 4. OIF. r:
1.4P6 4.91T. 0-
!.<•;;<> <-. 01 P o:
1.407 4. 9 IP, o
1.407 4.0 "P. O:
1.4';? 4. or '.P. o:
i. •"•"'} 4.0: P. o:
i . 40.3 * . or.r. 0-
1.4::3 4.CT.P. ( '
1.4'") 4.0f'.rl 0'
1 /".f.O /". O'"[' (**'
l . <,r") 4.o."p o-
1.4^0 4.or:r'i r:
1 .440 4.0rP, 0
1.440 4.0::'"; o:
1 .440 4.~: r, o
!.<•• :o 4.ort: o
I /*. /* o <^i o * * r ,"* /^ '
l . 441 4. o^f'". r1'
i . '*•'"• l <•. err1; r>.


-------
                                      OF ATinossi, Ann GASES CONTRICUTTD
                                  i6oo MW POWER PLANT
                           i.o
                          392.
                           79.
                           29.
                             0.0000 PERCENT/HR
                             0.0000 PERCEinviJU.
                   •I-

 DOWNWIND DISTANCE (KM) =
 PLUME ALTITUDE (M)      =
 SIGMA Y (II)             =
 SIGMA Z (M)       .      =
 S02-S04 CONVERSION RATE=
 NOX-N03 CONVERSION RATE*
 ALTITUDE

  R+2S
 INCREMENT!
 TOTAL AMD!
  H+1S
 INCREMENT!
 TOTAL MID!
  II
 INCREMENT!
 TOTAL AMD!
I H-1S
i INCREMENT!
 TOTAL AMD!
  II-2S
 INCPEMENT!
 TOTAL AMD!
   0
 INCREMENT!
 TOTAL AITO!
 CUMULATIVE SURFACE  DEPOSITION  (MOLE FRACTION  OF  INITIAL FLUX)
                  S02!     0.0000
                  NOX!     0.0000
 PRIMARY PARTICIPATE!     0.0000
                  S04!     0.0000
                  N03!     O.OCOO
                                                                          BY
NOX
( PPM)
3.904
3.904
17.497
17.497
20.G40
28.848
17.497
17.497
3.904
3.904
0.000
0.000
N02
( PPFZ)
0. 1G5
0. 103
0.701
0.701
1. 132
1. 132
0.701
0.701
0.103
0. 103
0.000
0.000
NO3-
( PPII)
0.000
O.COO
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
II02/NTOT
(HOLE X)
4.751 J
4.731
4.008
4.003
3.923
3.923
4.003
4.008
4.751
4.751
0.000
100.000
N03-/FITOT
(HOLE '.'.)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
o.ooo
0.000
o.ooo
( ppnV
0.700
0 . 799
3.579
3.579
5 . 90 1
5.901
3.579
3.579
0.799
0.799
0.000
O.OOO
(UG/H3)
0.000
2.933
0.000
2.936
0.000
0 . 000
2. 906
0.000
2.936
0 . 000
2.936
S04=/STOT
(HOLE %)
0.000
0.09 4
0.000
0.021
0.000
0.013
O.OOO
0.021
0 . 000
O.094
O.OOO
10O.O')0
01
( PPTI)
-0.037
0 . 00 1
-0.037
0.001
-0.037
0.001
-0.037
0.001
-0.037
0.001
O.OOO
O.O3O
M * \ 1 I I/Li 1 1
(UG/H3)
273 . GCO
236 . 022
1223.034
1236.C20
2017.042
2030. 77G
1 223 . 03 1
1236. UI7
273.035
2fJ6 . 02 1
0.000
12.9.'fr,
r BPP-TOTAL rnrrn/r-1
( fo-<- n-i) c:>
n.
IP.
25.
2;'..
in.
0.
0.
o.
P93 0.000
521 r?..r.v2
nos o.^oo
O60 O.OOO
r.rx. o.H'.'-n
r>2i Liir-vr:
ooo o.r^o
Exhibit A-6  (continued)

-------
                      VISUAL  EFFECTS FOR HORIZONTAL SIGHT PATHS
                      160O MW POWER  PLANT
DOWNWIND DISTANCE  (KM) »     1.0
PLUME ALTITUDE (M)      =    392.
SIGHT PATH  IS THROUGH PLUME CENTER
THETA ALPHA
45.
30.
30.
30.
3O.
30.
30.
45.
45.
45.
45.
45.
45.
60.
60.
60.
60.
60.
60.
90.
90.
90.
90.
90.
90.
X OBSERVER
90.
90.
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
60.
60.
60.
60.
60.
60.
90.
90.
90.
9O.
90.
9O.
RP/RVO

0.02
0.05
O. 10
0.20
0.50
0.00
O.O2
0.05
0. 10
0.20
O.5O
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
O.02
0.05
O. 10
0.20
0.50
0.00
POSITION
0.03

0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
O.80
0.02
0.O5
0. 10
O.2O
O.5O
o.&o
RV JSREDUCED

138.0
137.2
136. 1
134.5
132.2
148. 1
152.4
151.8
150.9
149.6
147.7
148.2
158.7
153. 1
157.3
156.2
154.6
154. 1
162.3
161.8
161.2
160. 1
158.7
158.3
AT 1/2
162.2

142.0
140.7
138.9
136.3
132.9
148. 1
155.5
154.5
153. 1
151. 1
148.3
148.2
161.3
160.4
159.2
157.5
155. 1
154.4
164.7
163.9
162.0
161.3
159. 1
158.5

25.38
25.82
26.43
27.32
28.55
19.95
17.60
17.95
18.44
19. 15
20. 14
19.08
14.23
14.53
14.95
.15.56
16.42
16.68
12.25
12.52
12.89
13.44
14.21
14.45
OF A 22.
12.32

23.25
23.95
24.92
26.31
28. 18
19.95
15.94
16.48
17.24
18.34
19.84
19.88
12.81
13.27
13.92
14.86
16. 17
16.55
10-98
11. 4O
11.97
12.81
13.98
14.33
YCAP

90.86
92.58
94.99
98.51
103.37
104.80
93.42
94.03
96.00
99.63
103.65
104.02
94.87
96. 10
97.83
100.35
103.81
104.83
95. 05
96.96
98.52
100.79
103.92
104.84
5 DEGREE
96. 12

47.66
49 . 04
50.90
53.O2
57.78
58.97
49.82
50.95
52.54
54.06
50. 10
59.07
51.05
52.03
53.42
55.45
58.27
59. 12
51.87
52.76
54.01
55. OS
58.39
59. 15
L

96.36
97.06
98.03
99.42
101.29
101.83
97.40
97.97
93.75
99.88
101.39
101.83
97.98
98.47
99. 15
100. 13
101.45
101.84
98.37
98.81
99.42
100.30
101.49
101.84
X

0.3429
0.3377
0.3316
0.0? ">
0.3L »0
0.3198
0.3386
0.3344
0.3295
0.3240
0.3198
0.3196
0.3360
0.3325
0.3202
0.3234
0.3197
0.3195
0.3343
0.3312
0 . 3273
0.3230
0.3196
0.3195
WIND DIRECTION
98.48

74.63
75.50
76.63
78.38
89.63
01.29
75.90
76.67
77.62
78.98
80.81
81.34
76.73
77.32
78. 14
79.32
80.91
81.37
77.22
77.75
7O.49
79.54
80.97
Ol .39
0.3335

0.3252
0.3192
0.3124
0.3055
0.3014
0.3017
0.3209
0.3162
0.3108
0.3051
0.3015
0.3017
0.3184
0.3144
0.3097
0.3048
0.3915
0.3017
0.3167
0.3131
0.3O90
0.3045
0.3O16
O.3O17
Y DELYCAP

0.3537
0.3478
0.3411
0.3343
0.3305
0.3309
0.3501
0.3453
0.3397
0.3340
0.3307
0.3310
0.3479
0.3437
0.3333
0.3337
0 . 3303
0.3310
0.3463
0.3426
0.3382
0.3333
0.3308
0.3310

-14.04
-12.33
-9.92
-6.40
-1.54
-O. 1 1
- 1 1 . 49
-10.08
-8. 11
-5.23
-1.26
-0.09
-10.04
-8.81
-7.03
-4.56
-1. 10
-0.08
-9.06
-7.95
-6.39
-4. 12
-0.99
-0.07
SECTOR FROM TIHC
0.3454

0.3366
0.3294
0.3215
0.3143
0.3115
0.3124
0.3329
0.3271
0.3207
0.3145
0.3119
0.3126
0.3306
0.3256
0.3200
0.3145
0.3121
0.3127
0.3290
O.3245
0.3193
0.3145
0.3122
0.3127
-8.78

- 1 1 . 03
-10.45
-0.51
-5.66
-1.70
-0.52
-9.66
-0.54
-6.95
-4.62
-1.39
-0.42
-0.44
-7.45
-6.07
-4.03
-1.21
-0.37
-7.61
-6.73
-0.47
-3.64
-1 .09
-0.33
DELL

-5.51
-4.81
-3.83
-2.44
-0.58
-0.04
-4.46
-3.90
-3. 12
-1.99
-0.47
-O.O3
-3.03
-3.39
-2.71
-1.73
-0.41
-0.03
-3.49
-3 . 03
-2.44
-1.56
-O.37
-0.03
CC550) BRATIO DELX DELY E(LTTV) E( LAB^

-O. 1322
-0. 1 173
-O.O959
-0.0009
-0.0173
-0 . 0003
-0. 1073
-0.0^54
-0 . 073')
-0.0520
-0.01 44
-0 . 0023
-0.0907
-o . OG:J i
-O.OGCO
-0.0450
-0.012(3
-O.0023
-0.0844
-0.0743
-0.0612
-0.0403
-0.0113
-0.0022
PLUME CENTERLINE
-3.38

-6.94
-6.03
-4.89
-3.20
-0.94
-0.28
r3.59
-4.91
-3.95
-2.59
-0.77
-0.23
-4.03
-4.25
-3.43
-2.26
-O.67
-0.20
-4.33
-3 . 82
-3.O9
-2.03
-0.60
-o. ia
-0.0321

-0.2013
-0. 1793
-0. 1477
-0. 1002
-0.0318
-0.0106
-0. 1609
-0. 1458
-0. 1201
-0.031-1
-0.0259
-0.0030
-0. 1423
-0. 1270
-0. 1046
-0.0710
-0.0223
-O.0073
-0. 1286
-O. 1 144
-O.O942
-O.O64O
-0.O2O3
-O.OOGO

O.6672 0.0240 0.O227 22.5098 14.97O
O.7495 O.O189 O.O10O 17.7977 ll.onr.
0 . 8429 O . O 1 27 0 . O 1 00 12.1 OOfi 7 . rjo 1 ,
O.OO4O 0.OOOO 0.0032 5. (19 14 O.9IO
0.9757 0.0011 -0.0005 1 . 4O-77 1 . COM
0.9095 0.0009 -O.OOOI O.9277 O.572
0.7152 0.0197 0.0191 18.9100 12.<">:>
0.7334 O.O13<3 0.0142 14.9701 9.7'V1«
O.O052 0.0106 O.OOR7 1O.2247 O.OA.I
0.9434 0.0051 0.0029 4.977O O.L"^
O.9C70O O.O009 -O.OOO3 1.1549 O.^li
0.9731 0.0003 -O.OOOI 0.7554 O.-KV5
0.7455 O.OI72 O.O109 10.7O59 1 1 . r'v»
O.G'J>31 0.0136 0.012" 10.2470 O.054
0.3794 0.0093 0.0073 9.0091 R.rrv.
O.9494 0.0043 0.0027 4.4lf!0 2.'vo:;
0.9323 O.OOOO -O.OOOO l.OlOrt O.715
0.9733 0.0007 -O.OOOI 0.05,15 O.™r.
0.707O 0.0134 0.0153 15.1723 9.^7U
0.8:i43 0.0123 O.O115 12.04K2 7.1'fSO
O.G'J95 O.O033 O.OO71 O.2O11 n.:»r-5
0.9536 0.0041 0.0023 4.OLNH 2. '"TO
0.9.342 0.0008 -0.0002 0.9Ktr> O.O44
0.9304 O.OOOO -O.OOOI 0.5905 O.;'f.r>
AT THE GIVEN DISTANCE FROM TTTE POUHCF
0.7319 0.0146 0.0143 14.0711 9.<:27

0.6938 0.0234 0.0234 20.5244 10.9O7
0.7G05 0.0174 0.0161 15.7502 10.7O1
0.3926 0.0107 0.0000 10.2532 7.19T
0.9368 0.0038 0.0011 4.0054 0.71'J
1.0102 -O. 0004 -0.0017 1.0000 1 . 22H
0.9918 -0.0001 -0.0003 0.5COO 0.49'
0.7383 0.0191 0.0197 17.2147 11.641
0.3176 0.0144 0.0139 13.2920 9.O17
0.9034 0.0090 0.0074 0.7002 0 . O4H
0.9359 0.0033 0.0013 3.9400 3.O7H
1.0030-0.0003-0.0013 1.09OO 0.9JT1
0.9933 -0.0001 -0.0006 0.40(13 O.P90
0.7663 0.0166 0.0174 15.2011 IO.?4n
0.0066 O.O126 0.0124 11.7750 7.901
0.9144 0.0030 0.0063 7.74O5 5 . ,04H
0.9061 0.0030 0.0013 3.500O 2.7O:i
1.0O68 -O.O002 -0.0011 0.9410 O.f'51
0.9942 -O.OOOO -0.0003 0.4O09 <).:*44
0.7O66 O.O149 O.O157 13.rt!?2n 9.. "79
O.O5O2 0.0114 O.O113 1O.7I5O 7.CL"H
O.9210 O.OO72 O.OO62 7.O'.O7 4./T.4
0.9366 0.0O27 O.OO13 3./9:?6 C.^!7/>
i . 0O6 l -O.O0O2 -0.OOIO o.rti'.to n.rf-ri
O.9O47 -O.OOOO -O.OOO5 O..'K..ri7' O . :i f O
                  SJT'!>0J< AT,.i.^;l "^ .^  S5'° RSCSSE 'w.Jw-t>,.g1REC:TI05 sSCTOR«F'lllo!?^'r!JS PL!J!In':«£n:r'Tr:Rl-J ?E  AT_T]7I?  G1VT-^' PISTAJICF: r-norr  -rur:

-------
                    VISUAL EFFECTS
                    K>00 HW POWER PLANT
DOWNWIND DISTANCE (Ktt)  =    1.0
PLUME ALTITUDE  (PI)      =   392.
SIGHT PATH IS THROUGH PLUPffi CENTER
                                                L  sronr
TIFETA ALPHA RP/RVO
135.
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
60.
— ' fjo.
«vi 6O.
60.
60.
6O.
90.
90.
90.
90.
90.
90.

0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
O.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.30
0.02
0.05
0. 10
0.20
O.50
O.CO
RV ^REDUCED

144.8
143.2
140. <*
137.7
133.4
143. 1
157.7
156.4
154.7
152. 1
143.7
14O.2
163.2
162. 1
160.6
15O.4
155.4
154.6
166.3
165.4
164.0
162. I
159.4
153.7

21.71
22.61
23.05
25 . 59
27.92
19.95
14.75
15.44
16.40
17.77
19.63
19.03
11.00
12.39
13.20
14.38
15.98
16.46
10.09
10.61
11.33
12.38
13. Ol
14.24
YCAP

47.59
49 . 46
52. 10
55.97
61.39
63.03
50.60
52. 13
54 . 23
57.45
61.07
63.21
52.30
53.64
55.52
5O.23
62. 14
63.3!
53.44
54.65
56.35
5O.05
62.33
63.30
L

74.59
75 . 76
77.36
79.62
K2.60
G3.47
76.46
77.38
7O.65
30.45
02.86
03.57
77.40
73.27
79.36
O0.91
O3.01
O3.62
70. 16
7O.06
79. 03
01.22
03. 10
33.66
X

0.3219
0.3«45
0.3072
0.2999
0.2063
0.2971
0.3174
0.3120
0.3059
0.2999
0.2067
O.2973
0.3140
0.3102
0.3051
0.2008
0.2069
O.2074
0.3131
0.3090
0.3044
0.2007
0.2070
0.2075
Y DELYCAP

0.3360
0.3273
0.31C4
0.3103
0.3002
0.3096
0.3319
0.3251
0.317O
0.3111
0.3003
0.3099
0.3294
0.3236
0.3172
0.3113
0.3091
0.310O
0.3276
0.3225
0.3168
0.3114
0.3093
0.3101

-16.40
-14.53
-1 1.00
-8.02
-2.61
-0.97
-13.40
- 11 . 07
-9.71
-6.54
-2. 12
-0.79
- 1 1 . 70
-10.36
-O.43
-5.71
- 1 . C5
-0.60
-1O.55
-9.35
-7.65
-5. 15
-1.67
-0.62
DELL C(350)

-9.39 -o.rwco
— 0.02 — O.fDTSK)
-0.62 -0. 1C27
-4.30 -0. iriGO
-1.37 -0.0417
-0.50 -O.0150
-7.52 -0..'5010
-6.00 -0. !7«?
-[J.33 -0. J40ri
-3.33 -0. 1010
-1 . 12 -O.O^GO
-o.4i -o.oi no
-0.5O -O. 1759
-5.71 -O. 1567
-4.62 -0. 1204
-3.06 -o.oass
-o.o7 -o.or:o5
-0.36 -O.01 13
-5.02 -0. 1.134
-5. 12 -0. 141::
-4. 15 -0. 1 160
-a. 75 -0.0703
-O.C7T -0.0'V.;'.
-O.G2 -0.0102
P.RATTO

0.00^2
O. CfY2 1
0.0106
1 . 02 11
i . or,4 1
1 . 0075
0. ":"-~3
o . O2ao
o . o::o2
1.0 K27
1 . O272
i . or.oo
O.7'>60
0 . 3 :r>6
o.or.::i
i . oooo
1 . 0234
1 . OO52
0.7359
o. 3:~vi3
o.or-.T
1 . 0070
i.onio
1 . 0047
DF.LX

0.0203
O.OKG
0.0092
0.0010
-o.ooin
-0.0009
O.0103
0.0139
O.OO79
0.0013
-0.0014
-0.0007
0.0107
0 . 0 1 22
O.OO70
O.O017
-O.OO1 1
-o.oooo
O.013O
O.O1 10
0 . OO64
0 . 00 1 0
-0.0010
-o.ocoo
DELY

0 . 025 1
0.01 04
0 . 0074
-o.ooor>
— 0. OO.*27
-o . oo i ;i
0 . 02 \ 0
0.0 I42
0.0050
0 . OOO 1
-0.0021
-0.001 1
o.oi r,r>
0.0127
0.0003
O . 0003
-O.0013
-o.oooo
0.0107
0.0110
o.oooo
O . 0004
-0.0010
-0.0003
F,f LTJV) F,' L/

P3 . ? 4OO 1 0 . '
1 7 . <""7?. *?..<
ii.osrr', •'..:
5.O4!i.r; <• .r
2.^COr, \ .'
0.^0 if! r>.7
I9.ro:;i i :'..''
IA.707'i 1n.J
o . ::on:?. <-• . c
4.21 - /4 r'. . ',.
i . or» n . '.'•
3 . "'? i '* n . °
i . roo.T • . cv
0.017O o.'1
     OBSERVER POSITION AT  1/2  O?  A 22.5 DECIDE Will!) DIRECTION SECTOR FROM TMK PLUP7K CENTEnLHIE AT TTTR GIVEN DIPTATICr.
          90.    0.03    166.1    10.22   53.74   70.33  0.3120  0.3263  -10.26   -5.05 -0.154:.:  O.C037  O.O140   O.O15T
                                                                                                                                    7''>•:•
                                                                                                                        K..
Exhibit A-6  (continued)

-------
                    VISUAL EFFECTS FOR NON-HORIZONTAL CLEAR SKY VIEWS THROUGH PLUME CENTER
                    K.CO riW POWER PLANT
 DOWNWIND DISTANCE (KM) =     1.0
 PLUME ALTITUDE      «   392.
 THETA   ALPHA    BETA      RP    YCAP       L        X       Y DELYCAP
   45.
DELL  C< 550)  BRATIO
DELK
DELY  EC LUV)  E< LAB)
01
00
  90.
30.
30.
r*f».
r;o.
3O.
30.
45.
45.
45.
45.
45.
60.
60.
6O.
60.
6O.
60.
90.
90.
90.
90.
9O.
90.

30.
GO.
GO.
30.
30.
3O.
45.
45.
45.
45.
45.
45.
60.
60.
60.
60.
6O.
f»O.
90.
90.
fJO
*5O *
oo.
90.
15.
•'30.
A5 .
00.
73.
90.
15.
30.
45.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
43.
60.
75.
90.

15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
3O.
45.
GO.
73.
90.
2.95
1.41
A . PR
O.f.O
O.44
O.G9
2. 10
1.04
0.63
0.42
0.39
1.73
0.08
0.6O
0.47
0.41
0.39
1.51
0.73
0.55
0.45
0.41
0.39

2.95
1.41
0.83
0.60
0.44
0.39
2. 10
1.O4
0.68
0.51
O.42
0.39
1.73
0.83
0.60
0.47
0.41
0.39
1.51
O.7O
0.55
0.45
0.41
O .39
70.49
64.55
**J. 37
(> 1 . G3
60. 04
60.69
64.85
36.92
T>4 . 02
52. Ol
51. Ol
61.75
52.68
49.34
47.78
47. 04
46.02
59.70
49.84
46.21
44.51
43 . 7 1
43.47

36.94
33. 12
31.71
31.04
30.72
30.62
34.75
29.73
27.87
27.00
26.59
26 . 46
33.59
27.85
25.73
24.74
24.27
24. 12
32.82
26. 6O
24.30
23.22
22.71
22. se
87.25
84.26
f*l . **J
C2.'G7
82.31
02.23
G/K4.2
CO. 16
73.49
77.30
77. 19
02.00
77.70
75 . 63
74.71
74.24
74. 1O
81.69
75.99
73.71
72.59
72.06
71 .90

67.26
64.29
63. 13
62.57
62.30
62.22
65.53
61.45
59.81
59.01
58.62
53.51
64.66
59.79
57.81
56.85
56.39
56.25
64. 05
5O.64
50.42
55.33
04.01
G4.O5
0.3297
0.3339
*». ?*?**> 1
0 . :.J074
0.3001
0.0333
0 . 0204
O.0251
0.0230
0.3005
0.3308
0.3145
0.3194
0.3228
0.3247
O.3257
0.3261
0.3103
O.3102
0.3139
0.3210
0.3222
0.3225

0.3110
0.3153
0.3178
0.3192
0.3200
0.3202
0.3018
0.3062
0.3092
0.3110
0.3120
0.3122
0.2961
0.3004
0.3038
O.305B
O.3069
O.0072
O . 2920
O.2962
O.299O
O . 3O2O
0.3031
0.3033
0.3406
0.3434
n . ft**?'*
0. 0 462
0.04-68
0 . 0470
0.0721
O.3048
0.0? 70
0.3390
0.3393
0.3264
0.329O
0.0316
0.3032
0.3040
O.G043
0.0223
O.3248
0.3276
0.3293
0.3003
0.3306
S
0.3217
O.0245
0.3264
0.3276
0.3233
0.3285
0.3129
0.3152
0.3174
0.3139
0.3197
0.3199
O.G072
0.3091
0.3116
O.3132
0.3141
0.3144
O.003O
0.3O46
O.3O72
O.3O9O
O.31O0
O. 3 1O4
28.89
40.35
A.A, . J*O
46.;; 7
47. 30
47 . 77
20 . 2 *
02.72
36.2!
38.67
38.90
20. 13
28.48
31.57
33.02
33.70
33.91
18. 10
23.64
28.44
29.75
30.37
30.50

10.60
17.73
20.39
21.64
22.22
22.39
8.42
14.34
16.56
17.60
18.09
18.23
7.23
12.46
14.41
15.33
15.77
15. 09
6.49
1 1.21
12.93
13. Ol
14.21
14.33
16.63
27.94
nn . ?!6
07.23
39.00
39.55
13. 39
20. C3
29 . 23
33 99
34.31
12. 18
21.38
26.42
29.36
30.93
31.42
11.07
19.67
24.45
27.25
23.75
29.22

8.87
18.09
22.98
25.73
27.25
27.72
7.20
15.25
19.66
22.21
23.58
24.01
6.28
13.59
17.67
20.06
21.34
2i .75
5.66
12.44
16.27
1O.34
19.76
20. i a
0.6097
i , oonn
2 . n f 90
0. I5O2
0.5054
3.7041
0.5558
1 .05O6
2 . 0332
2.89O3
3.0121
O.4O22
1. 1751
1.7743
2.2353
2.5231
2.6239
0.4333
1 . O373
1.5901
2.0134
2 . 2747
2.G03C5

0.3931
1. 1400
1 . 7373
2.2344
2.5901
2.7022
0.3129
0 . 9222
I . 4499
1.8353
2. 1104
2. 1974
O . 270O
0.0014
1.2617
1.6156
1 . 8302
1 .9142
0.2413
O . 72O9
1 . 13OO
1 .4551
I . r>!>r.<>
1 . 7244
1% , f*f^f*^
'.). .»<<•.»
O. 1472
0. 1379
O. 1004
0. 1021
0.2747
O. 199H
0. 1704
O. t!7SO
0. 1309
0 . GO30
O . .1239
O. 1930
0. 17C"
0. 1720
0. 1700
0.0330
O . 2409
0.2093
O. 1902
0. 1O34
O. 103 1

O.2031
0. 1954
0. 1710
0. 1002
0. 1343
0. 1532
0.31CO
0.2301
0.2020
0. 1C34
0. 1010
0. 1795
0.3334
0.2016
0.2263
0.2O94
0.2014
O. 199O
O.OG31
0 . 2G43
O.245G
0 . 22<»6
O . 2 1 74
O. 2147
O . f^ .**•*>
O.O.H12
o. 030 i
o.o::.3o
O . O393
O.0902
0.0390
O . O724
0.070'J
0.0320
0.0327
0 . 0307
0.0007
0 . 0727
O.O739
O.O774
O.0779
0. 0405
O.O023
0 . OOC3
O.O722
0.0739
O . O744

0.0012
0.0731
0.07C1
O.0300
O.O319
0.0323
O.O320
O . O040
0.0093
0.0724
0.0739
0.0743
O.O403
0.0582
O.O041
0 . 0672
0.0033
O.O693
O . O422
O.OS4O
O.O6OI
O.O334
O. O">5 1
O.OGGG
0.O090 5*"! . ^ 10 ^.3 . r^rlj>
O.O340 57.0464 OCI.'^O'.O
O.O903 53.602'; 46 . P479
O.O904 5'>.r.743 4G.6411
O.O9^9 59.6157 49 . 77O 1
O.O9r»4 59.7'?21 30. '-','44
O . OO 1 1 46 . 27 1 4 00 . 3447
0 . 0759 4° . O 5 ! 4 00 - 07r.f»
o . or/.io 50 . 9?oo 4° . 06^0
" 0. 0372' 5 I . 9i"^n.r> 40.4321
O.OC-70 52.1037 40.790O
0.0354 41. 4302 27 . 26 1 7
O.O7O2 43.O40.D GG.O'^O
0.07^9 40.0193 00.62T'7
0.030} 47.0'X-'.; C0.r,776
O.O321 47.4U9 GO. 002.0
0.0327 47.3'170 09.9604
0.0313 33.G.T99 24.934O
O.OOC9 4<.0'>G3 00.7734
0.0729 40.0124 00. 90 CO
0.0760 40.7033 On^OO^
0.0734 44. 1O07 00.9293
0.0790 44.3JC~> 07.27)9^

0.0650 40.2775 2C.4I36
0.0709 41.2020 00.9lfiO
0.0300 41.2142 3G.039O
0.0391 41.2702 34.Cf.43
O.O906 41.3753 35 . 7O24
0 . 09 1 1 41. 420 :> 35 . 9 VP-0
0.0502 34.4105 22.4531
0.0700 35.3470 20.4071
0.0770 35.4254 20.7207
0.0303 33.5494 30.1464
0.032O 35.0003 30.9077
0 . 0323 35.7103 31.1 924
0.0503 30.7205 19.'?924
0.0045 31.7202 20.7133
O.0711 31.9236 25.9219
0.0747 32. 1 f37 27.3O27
0.0703 32.2020 23.0712
O.O77O 02. O 171 2:;.0 I
O.OOOO 20. I64O ,'>l.rOJ3
0.OG63 29 . 46O3 23.9<"5
O.07O5 29.Z-72I 2I».2°.jr'*-
O.O724 20.P734 2rt .'•>"'•'•
O - 0731 2O . 'J.'lfiO CO . I?'/1.'. '"

-------
                   VISUAL EFFECTS FOH !?OW-IIORIZ0NTAL CLEAR SKY VIEWS THROUGH PLUME CENTER
                   1600 MV POWER PLAWT
DOWNWIND DISTANCE (KM)
PLUNE ALTITUDE (M)
TIIETA
 133.
 tn
 vo
ALPHA

 30.
 39.
 30.
 30.
 30.
 30.
 45.
 45.
 45.
 45.
 45.
 45.
 eo.
 60.
 60.
 6O.
 60.
 60.
 90.
 90.
 9O.
 9O.
 90.
 9O.
BETA

15.
30.
45.
60.
75.
90.
15.
30.
1-5.
60.
75.
90.
!5.
30.
45.
60.
75.
90.
 15.
30.
45.
6O.
75.
 9O.
1.
392
RP
2.95
1.41
0.03
0.60
0.44
0.39
2. 10
1.04
0.68
0.51
0.42
0.39
1.73
0.03
0.60
0.47
0.41
0.39
1.51
0.7O
0.55
0.45
0.41
0.39
0
•
YCAP
36. 68
32. 19
30.53
29.74
29.36
29.24
35.24
29.40
27.23
26. 2 1
25.73
25.59
34.52
27.07
25.40
24.24
23.69
23.53
34.06
26.05
24. 1Q
22.92
22.33
22. 15


L
67.07
63.53
62. 14
61.46
61. 13
61.03
65.96
61. 16
59.22
58.27
57.O1
57.60
65.40
59.00
57.50
56.36
55.01
55.65
65.04
5O.07
56.30
55.03
54.41
54.22


X
0.3064
0.3112
0.3141
0.3159
0.3168
0.3171
0.2968
0.3014
0.3048
0.3068
0.3079
0.3003
0.2909
0.2952
0.29O9
0.3011
0.3023
0.3027
0 . 20f>9
O.2909
0.2946
O.2969
O.2932
0 . 2937


Y
0.3199
0.3232
0.3256
0.3271
0.3200
0.3203
0.3105
0.3129
0.3156
0.3173
0.3103
0.3106
0.3045
0.3062
0.3090
0.31 1O
0.3120
0.3124
O . 300 1
0.3014
0.3043
0.3063
0.3074
0.0078


DELYCAP
6. 19
14.34
17.39
18.02
19.48
19.68
4.73
11.54
14.09
15.29
15.85
16.02
4.03
10.01
12.25
13.31
13. Ol
13.96
3.57
0.99
11.03
11.99
12.43
12.50


DELL
4.96
14.17
19. 12
21.96
23.46
23.93
3.06
1 l.OO
16.20
10.77
20. 15
20. 5O
3.29
1O.44
14.48
16.06
18. 15
18.55
2.93
9.51
13.28
15.53
16.74
17. 13


CC550)
0.2202
0.0360
1.3096
1 . 7790
2.0350
2. 1229
0. 1714
0 . 673U
1. 1094
1 . 4442
1.6546
1 .7263
O. 1463
0.5O47
O.9649
1 . 2,172
1 . 44 1 1
1 . 5033
O. 13O2
0.5206
0.3605
1. 1322
1.2981
1.3343


DRAT I O
0.2777
0.2000
O. 1739
0. 1617
0. 1550
O. !f.40
0 . 032 1
0.2420
0.2090
0. 1933
0. ior,a
0 . 1 330
0.3727
0.2739
0.2356
0.2171
O . 2O32
0.2035
O . 4040
O.2097
0 . 2f>73
0.1*363
0.2204
O.2233


DELX
0.0586
0.0711
O.O765
0.0793
O.0007
0.0O12
0.0491
O.O613
0.0671
0.0703
O.0719
0 . 0724
0 . O432
O.O33I
O.0612
0.0645
0.0663
O.0068
0 . 039 I
O . 0507
O.O569
O.OOO4
0.0622
O.0627


DELY E( LUV)
0.0647 42. 1500
0.0R03 42.4001
0.0369 41.7653
0.0?03 41.4^62
0.0920 41.3573
0.0926 41.341 I
O.0553 35.9700
0.07CO 36.20.14
0.0760 35.7002
O.OOO5 35.5462
O.0i323 35.477O
0.0329 35.4639
0.0493 32.O230
0.0033 32.3733
0.07O3 32. 1O05
O.0741 31.9C':a
0.0761 31.9r.02
0.0767 31.9573
0.0449 29.2005
O.0585 29.6000
0.0055 29.1.210
O.0095 29.4777
0.0715 29.4G97
0.0721 29.5002


E( LAB)
26 . 6694
GO. 177)
32. 14O4
3 3. 4023
34. '252
34. "027
22.65 '39
2.1 . OC73
0*7 r:'*/'sri
2?.. 7 124
20 .3^12
29 . o i :; i
2O. 12 "3
22. 94 10
24. 721O
~.i . H34 1
26.5403
20 . 70 1 0
lO.3:):il
21.0121
22.7023
23 . B9.10
24.546O
24 . 7570
  Exhibit A-6 (continued)

-------
         PLUME VISUAL EFFECTS FOR HORIZONTAL VIEWS
         PERPENDICULAR TO THE PLUTIE OF WHITE, GRAY,  AND
         Ftm VARIOUS OBSERVER-PLUME AND OBSERVER-OBJECT
         16O0 MW POWER PLANT
BLACK OBJECTS
DISTANCES
DOWNWIND
TIIETA =
REFLECT





















.0
.0
.O
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.O
.0
.0
.0
.0
.O
0.3
O.3
0.3
0.3
0.3
0.3
O.3
0.3
0.3
0.3
DISTANCE (KM) =
45.
PJVRV0
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
O. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
RO/RVO
O.02
0.05
0. 10
0.20
0.50
o.co
0.05
0. 10
0.20
0.50
0.00
0. 10
O.2O
0.50
0.00
0.20
0.50
0.00
0.50
0.00
O.CO
0.02
0.05
0. 10
0.20
0.50
0.00
0.05
0. 10
0.20
O.50
1.0
YCAP
94.59
92.56
93.26
94.29
95.71
96. 13
93.90
94.37
95.40
96.82
97.24
97.74
96.95
98.38
98.80
100.43
100.65
101.07
104. 14
104.20
105.24
47.34
61.00
67. 19
76.45
89.86
94. 16
53.82
68.30
77.56
90.97

L
97.87
97.05
97.34
97.75
93.32
98.49
98.40
97.78
98. 19
98.76
98.93
99. 12
98.81
99.37
99.53
100. 17
100.25
100.41
101.50
191.60
101.99
74.43
82.39
85.61
90.08
95.94
97.70
78.37
86. 17
90.59
96.40

X
0.3376
O.3405
0 . 33O9
0.3370
0.3355
0.3355
0.3339
0.3355
0.3537
0.3324
0 . 3323
0.3295
0.3290
0 . 3285
0.3285
0.3245
0.3241^"
0.3241
0.3208
0.3207
0.3206
0.3280
0.3293
0.3259
0 . 3243
0.3288
0.3325
0.3186
0.3218
0.3208
0.3256


Y DELYCAP
0.3479
0.3504
O.3488
0.3472
0.3463
0.3464
0.3436
0.3449
0.3433
0 . 3425
O.3427
0.3387
0 , 3388
0.3381
0.3383
0.3337
0.3335
0.3337
0.3309
0.3309
O.3312
0.3368
0.3386
0.3363
0 . 3364
0 . 3420
0.3450
0 . 3275
0.3314
0.3321
0.3381
-3.42
-6.06
-6.94
-7.77
-8.92
-9.26
-3.02
-5.83
-6.67
-7.81
-8. 15-
-2.45
-5.11
-6.25
-6.59
-1.63
-3.98
-4.32
-0.49
-1. 19
-O. 15
12.38
18.21
13.30
6.00
-4.47
-7.77
11.03
14.41
7. 10
-3.36

DELL
-1.36
-2.53
-2.74
-3.04
-3.44
-3.56
-1. 19
-2.29
-2.60
-3.00
-3. 12
-0.95
-1.98
-2.39
-2.51
-0.62
-1.51
-1.63
-0. 18
-0.45
-O.06
8.68
10.96
7. (20
2.85
-1.82
-3.04
6.94
7.75
3.36
-1.37

CC550)
-0 . O329
-0.0609
-0.0656
-0.0724
-0.0818
-0.0846
-0.029O
-0.0556
-0.0026
-0.0722
-0.0751
-O.O235
-0.0485
-0.0535
-0.0615
-O.O156
-0.0379
-0 . 04 1 1
-0.0047
-0.0116
-0.0014
0.3527
0.4257
0.2475
0.0861
-0.0463
-0 . O745
0.2561
0.2661
0. 1003
-0.0357

BRAT 10
0.9325
0.85O1
0 . 0266
0.7992
0.7853
0.7852
0.9506
O.O92?
0.8606
0 . 0440
O . O439
O.9799
0.9306
0.9111
0.9108
O.99O9
0.9771
0.9767
1 . OO50
1 . 0035
1 . 0027
0.O640
O.6765
0.6309
0.6387
0.7124
0.7517
0.0327
0 . 6»77
0.6396
0.7650

DELX
0.0057
0.0109
0.0122
0.0137
0.0147
0.0148
0 . OO44
0.0009
0.0104
0.0115
0.0116
0.002O
0.0064
O . 0077
0.0070
0.0012
0.0033
0 . 0034
-0.0001
-O.OOOO
-O.O001
0 . 0035
0.0206
0.0240
0.0238
0.0192
0.0166
0.0098
0.0199
0.0202
0.0100

DELY
0.0057
0.0109
0.0125
O.O142
O.O152
0.0151
O.OO42
0.0006
O.O104
0.0114
O.O1 14
0.0025
0.0059
O.O070
0.0070
O.OOOO
O . 0024
0.0024
-0.0002
-O.OOO3
-0 . 000 I
0.0074
0.019O
0.0237
O.0236
0.0186
0.0103
0 . 0038
0.0108
0.0193
0.0147

EC LUV)
5 . 3636
1O.2366
1 1 . 7232
13.4232
14.091'»
14.7432
4. 1092
C.4374
10.2216
1 1 . 5U97
1 1.0O94
2.7330
6 . HU2.J
7.7096
7.7936
1.2171
3 . 4023
3.5251
0.2213
0. 5224
0. 1 105
9 . C935
17.0403
19.5151
20.5171
18.O244
16.0398
9.01 14
16.4100
17.2344
14.O472

E(LAB)
3 . 04r$2
6.9344
7 . 9 1 40
0.9 am
9 . 77,'K,
9 . Q220
2.0093
5 . 7OOO
6 . 3'K»2
7.4'TJ
7.0999
l.n:535
4. 2LiO<>
5. '077
5 . 1 fi')6
o . rvroo
2.0413
2 . 447H
0 . 2004
O.4')2C
0 . OJi27
Exhibit A-6  (continued)

-------
0.3
0.3
0.3
0.3
0.3 '
O.3
0.3
0.3
0.3
O.3
0.3
0.0
0.0
O.0
0.0
0.0
O.O
0.0
O.O
O.O
0.0 '
0.0
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.30
0.80
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.80
0.00
0. 10
0 - 20
0.50
0.00
0.20
0.50
0.30
O.50
0.80
0.80
0.02
0.05
0. 10
0.2v>
0.50
0.80
0.05
0. 10
0.20
0.50
o.ao
0. 10
0.20
0.50
0.80
0.20
0.50
O.80
0.50
0.00
O.80
95.27
03.01
79. 12
92.53
96.03
76.69
94.80
99. 10
96.30
102.22
102.62
27.09
47.47
56.02
08.81
87.36
93.31
33.78
57. 13
69.92
80.47
94.42
48. 12
71.47
90.03
95.98
66.52
92.30
98.25
93.06
101.08
101.50
90. 14
03.46
91.30
97.04
90.76
90. 19
97.96
99.65
90.59
100.85
101.00
59.09
74.51
79.64
86.42
94.90
97.36
66.38
00.27
86 . 97
95 = 36
97.80
74.92
87.73
96.01
93.43
C5.28
96.95
99.32
97.23
100.53
100.50
O.C293
0.31 10
0.3165
0.3217
0.3235
0.3071
0.3174
0.3212
0.3122
0.3178
0.3169
O.3147
0.3206
0.3172
0.3172
0.3256
0.3312
0.3027
O.3128
0.3136
O.3224
O.3200
0.2964
0 . 3092
0 . 3 1 06
0.3242
0.2967
0.3143
O.3199
0.3001
0.3166
0.3153
0.3412
0.0203
0.3271
0.0336
0.3368
0.3102
0.3290
0.3322
0.3250
0.3294
0.3292
O.3216
0.3293
O.3279
0.3303
0 . 3-100
0 . 3444
0.3107
0 . 0223
0 . 3258
0.3361
0.3406
0 . 3062
0.0207
0.0316
0.0361
O . 3089
0.0269
0.';3I3
0.0223
0 . 0208
0.0284
-6.66
9. 11
8.66
-1.80
-5. 10
6.24
0.47
-2.03
2.05
0.30
0.69
19. 13
20.74
21.97
1 1.90
-2.56
-7. 13
17.05
23.00
13. Ol
-1.45
-6. 02
14.07
14.56
0. 10
-4.47
9.61
2. 38
-2. 19
3. 14
0.93
1.06
-2.60 -0.0647
5.04 0. 1609
4.06 0.1206
-0.73 -0.0205
-1.90 -0.0507
2.96 O.OG61
0.19 0.0021
-1.09 -0.0207
O.02 0.0193
0.1 I 0.0006
0.26 0.0007
23. JO 2.3r.31
24. 11 1.5208
14.61 0.6391
6 . 27 0 . 2066
-1.07 -0.0287
-2.O1 -0.O700
13.90 O.O977
13.24 O.6603
6 . O2 0 . 224 1
-O.61 -O.O 176
-2.37 -O.O601
9.O9 O.4051
7.5O 0.2491
O.04 -O.O01D
-1 .73 -O.O459
5. 13 0. 1634
0.90 0.0219
-O.O5 -O.O246
1.29 O.0319
0.36 0.0O61
O . 4 1 0 . 0009
0 . 007O
o . oooo
0 . 7'!-72
0.0230
0 . K7 1 6
0 . 0773
O.CO32
0.9043
0.9 433
0.9639
0.9769
O.341T,
0.334o
O.41 1O
O.3I76
0.6742
O . 736 1
0.4706
0.4500
O.5594
O . 7244
0.7909
O.6I9O
0.6065
0.7O14
0.0532
0 . 74
9.2720
o.r>.",73
5 . r.'>70
3. MTO;)
'2 . 4.'2 1 0
1 . 0:?r>2
o.2"»r>
6. irm
o.rr, ;n
6 . 59,1-1
5 . 7 1 .; i
4.0090
3.9125
2.9019
1 . 400 1
0.9.1555
0.552O
27.0;>21
20.9U'?fl
22. 07 1 6
10.0152
12. 1242
10.6424
IO. 1540
2O.6H22
14.976O
1 0 . O 1 0 1
8 . 5 1 72
1 1 .OH 17
13.0994
7 . 5405
5.')') 15
6 . 0034
5.0LT5 !
3.2"-°-*i
2. l^~>'\
1 .T074
o.n:n<>
Exhibit A-6 (continued)

-------
ro
                    PLUTO VISUAL EFFECTS FOR HORIZONTAL VIEWS
                    PERPENDTULAR TO THE PLUHE OF  WHITE,  GRAY,  AND
                    FOR VARIOUS OBSERVER-PLUriE AND OBSERVER-OBJECT
                    1600 NW POWER PLANT
BLACK OBJECTS
DISTANCES
DOWNWIND
TIIETA =
REFLECT
.0
.0
.0
.O
.0
.0
.0
.0
.0
.0
.O
.0
.0
.0
.0
.0
.0
.0
.0
.0
.O
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
DISTANCE (KTI) =
90.
RP>RVO
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50

RO/RVO
0.02
0.05
0. 10
0.20
0.50
0.8O
0.05
0. 10
0.20
0.50
0.80
0. 10
0.20
0.50
0.80
0.20
0.50
0.80
0.50
0.80
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
0.05
0. 10
0.20
0.50
0.00
0. 10
0.20
0.50
0.80
0.20
0.50
0.80
O.SO
1.0

YCAP
81.48
69.59
66.57
62.02
55.29
53.07
79. 18
67.46
62.91
56. 18
53.96
75.88
64. 16
57.43
55.21
70.07
59.27
57.05
63.39
59.59
60.08
34.24
30.02
40.50
44. 18
49.45
51. 10
37.09
41.39
45.07
50.34
51.99
41. 14
46.32
51.59
53.24
47. 13
53.42
55.07
55.63
•

L X Y DELYCAP DELL C(55O) BRATIO DELX DELY E(LUV) E(LAB)
92.35 0.3374 0.3478 -13.10 -5.51 -0.1371 0.9O43 0.0039 0.0042 6.4764 5.9714
86.81 0.3393 0.3409 -21.24 -9.54 -0.232O 0.9O03 O.0063 0.0068 10.0764 10. 1O14
35.30 0.3379 O.3467 -1O.O9 -O.79 -O.2191 0.9632 0.0064 O.O073 10.306O 9.5733
82.94 0.3348 0.3423 -15.36 -7.57 -0.1962 0.9349 O.0071 O.OOO6 10.O466 B.O164
79.23 0.3260 0.3340 -10.19 -5.52 -0.1530 0.0752 0.0104 0.0126 11.3230 0. 5.1 -1-0
77.94 0.3211 O.3306 -8.51 -4.77 -0.1363 0,8395 0.0127 O.O146 12.6KI1 O.9102
91.32 0.3351 0.3443 -11.64 -5.02-0.1271 .0230 0.0021 0.0022 5.3320 5.1505
05.75 0.3345 0.3426 -10.00 -O.34 -0.2091 .0444 O.0030 0.0032 O.7302 0.5103
03.41 0.3312 0.3302 -14.40 -7. 10 -0. 1O52 .0129 0.0035 0.0044 7.9445 7.5013
79.73 0.3224 0.3296 -9.30 -5.01 -0.1400 0.9471 0.0067 O.0002 O.4224 6.GO73
70.46 0.3175 0.3262 -7.62 -4.25 -0.1225 O.90O1 O.OO91 0.O1O2 9.5,149 6.O047
89.81 0.3314 O.3391 -9.58 -4.27-0.1112 .0633-0.0001 -0.0003 4.2755 4.2748
04.06 0.3269 0.3333 -13.22 -6.44-0.1695 . 1010 -0.0007 -O.OO05 6.4547 6.4473
00.44 0.3101 0.3246 -8.05 -4.31 -0.1214 .0279 O.0024 0.0032 5.2745 4.7361
79.18 0.3133 0.3212 -6.37 -3.52-0.1028 0.9O43 O.0048 0.O051 5.9703 4.62O3
87.43 O.3250 0.3312 -6.51 -3.07 -0.0833 .0932 -O.O027 -0.0027 3.7022 3.3460
81.45 0.3134 0.3196 -6.22 -3.29-0.0935 .1045-0.0023-0.0018 3.49OO 3.3601
GO. 22 0.3087 0.3162 -4.53 -2.48 -O.0732 .0568 0.0002 0.0002 2.5959 2.51<79
83.66 0.3126 O.3191 -2.10 -1.09 -0.0304 .0709 -0.003O -0.0023 2.3093 1.67,10
O1.63 0.3056 0.3138 -1.99 -1.07-0.0307 .0011 -0.0029-0.0022 2.2020 1.5642
O2.33 0.3069^0.3151 -0.70 -0.37 -0.0100 .0389 -0.0015 -0.0009 1.1194 0.716O
65.18 0.3242 0.3326 2.70 2.19 0.0828 1.0371 0.0013 0.0006 2.2660 2.2227
68.06 0.3211 0.3293 3.33 2.53 0.0931 0.0967 0.0089 0.0092 6.O022 4.4790
69.05 0.3166 0.3254 1.34 0.96 0.0331 0.0006 0.0140 0.0153 10.0340 6.6111
72.37 0.3129 0.3230 -1.60 -1.05 -0.0350 0.7532 0.0171 0.0188 13.7197 O.703O
75.75 0.3134 O.3254 -5.74 -3.42-0.1043 0.7641 0.0167 0.0179 14.O775 9.030O
76.76 0.3155 0.3276 -7.02 -4.06-0.1211 0.7820 0.0156 0.0165 14.2437 9.45)10
67.38 0.3144 0.3218 2.41 1.84 0.0669 1.0002 0.0022 0.0017 2.0309 1.9477
70.47 0.3122 0.3199 2.23 1.50 0.0547 0.3781 0.0095 0.0098 6.6355 4.4402
72.96 0.3090 0.3181 -0.71 -0.46 -0.0163 0.8181 0.0132 0.0139 10.3703 6.5137
76.30 0.3099 0.3209 -4.85 -2.07 -0.0090 0.0259 0.0132 0.0134 11.7125 7.3313
77.29 0.3119 0.3232 -6.13 -3.53-0.1066 0.0452 0.0120 0.0121 11.1334 7.3722
70.30 0.3051 0.3122 1.99 1.41 0.0408 0.9803 0.0025 0.0021 1.9030 1.6226
73.78 0.3044 0.3126 0.55 0.35 0.0099 0.0099 0.0086 O.OOC4 6.4469 3.9733
77.05 0.3057 0.3159 -3.60 -2.11 -0.0672 0.0945 0.0090 0.0003 7.93G3 5.0330
78.04 0.3078 0.3181 -4.88 -2.79 -0.0059 0.9155 0.0079 0.0070 7.4294 4.9317
74.30 0.2980 0.3060 1.36 0.87 0.0282 0.9746 0.0022 O.OOI8 1.5230 1.1367
78.14 0.3012 0.3109 -1.77 -1.03 -0.0345 0.9577 0.0045 0.0033 3.0110 2.3448
79.10 O.3033 0.3132 -3.O5 -1.72 -0.0549 O.9006 0.0034 O.0021 3.4202 2.3947
79.42 O.2976 O.30O2 O.44 0.25 O.OO72 O.9039 O.OO10 O.O006 0.6071 O.44O1
          Exhibit A-6  (continued)

-------
CO
0.3
O.3
0.0
0.0
0.0
0.0
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
o.o
o.o
0.50
O.80
"0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 1O
0.20
0.20
0.2O
0.00
0.50
0.89
o.ao
0.30
0.02
0.05
0. 10
0.20
0.50
0.00
0.05
0. 10
0.20
0.50
0.30
0. 10
0.20
0.50
0.00
0.20
o.r>o
0.30
0.50
0.00
0.80
57.62
53.27
13.99
24.49
29.33
36.54
46 . 94
50.25
19.06
30.22
37.43
47.03
51. 14
26.25
3O.68
49.0O
52.39
36.96
50.92
54.23
52.31
56.77
57. 15
01.54
CO . 9 1
4-1.23
56.61
61. 10
66.96
74. 1O
76.24
50.79
6 1 . 87
67 . 62
74.74
76.79
53.31
63.54
75.52
77.54
67.27
70.65
73.61
77.49
CO. 07
CO. 2O
0.3004
0.3003
0.2955
0.3015
0.2902
0.2905
0.3073
0.3129
0.2035
0.2934
0 . 2946
0,3030
0.3094
O.2778
0.2901
0.2997
0.3053
0.2736
0.2954
O.3009
0.29O3
0.29OI
0.2973
O.3109
0.3113
O.2999
0.3003
0.3071
0.3101
0.32!3
0.3263
0.2334
0.3009
0.3050
0.3160
0,3218
0 . 2043
0.2994
0.31 17
0.3I6O
0 . 2379
O.C067
0.3! 10
0.3029
O.G097
0.3096
-O.IiO
0. 15
9.47
13.06
10.01
4.31
-3.04
-6.3O
0.43
10.90
5.20
-2.95
-5.49
6.94
6.45
-1 .69
-4,24
4.73
0. 14
-2.41
1.53
0. 14
0.51
-O.28
0 . 03
13.91
1 ! . 62
10.01
3.39
-2.39
-3.75
1 1.00
10. 7O
4.06
-1.02
-3.21
7.22
4.98
-1 .04
-2.46
3.71
O.09
-1 .30
O.92
0.08
O.29
-0.
0.
2 .
7!
0.
0.
-0.
-0.
0.
O.
0.
-0.
-0.
0.
0.
-0.
-0.
0.
-0.
-0.
0.
-0.
0.
0101
0021
0'-27
2331
0007
1200
0779
1 142
7770
5525
1550
0614
0993
350f.
IO22
037O
0702
1415
0020
0464
0270
0007
O077
O.9997
0. ^93:1
o. r'.'i'i i
>O.'?04 !•
0.434-J
0.04O,')
0.0932
0.7022
o.oo2
0.0*39
0.0405
0 . 0-T 1 4
o . 0200
0.0174
0 . 029 1
0 . O344
0.0203
0.0103
0.0130
0.017O
0 . 0207
0.01 12
0.0079
O.O092
O.0003
o.o^io
O . O024
0.0003
O.OOO3
0.57^0
0 . 27'/3
D . 7^23
23. 00 m
21. "037
2O.O'.27
I7.or,3i
5 . OvO'i
3.7719
3. f/003
7.U309
3.0003
1 . 90O9
9.772)
13. '"no
10. 1712
3. 22^9
6 . C^°3
o. rw>9
4. 3O,"i">
2. .'^oo:)
1 . 4972
O.91.JO
O.43J3
0. 1727
19.9^00
21.0013
1 0 . 2222
13. 1 I 19
1O.61.V)
9. 7014
13.0794
14 . orroni
1 1 . 20" I
O.3007
7. 0rj
5. 2^? 7
4. 0'V20
3.37.14
2 . <->:''"2
1 . orX'5
O.C705
O.5791
              Exhibit A-6 (continued)

-------
           PLUTCE VISUAL EFFECTS FOR HORIZONTAL VIEVS
           PERPENDICULAR TO TIR PLUTIE OF WHITE,  GRAY,  AND
           FOR VARIOUS O3SV.JIVER-PLUME AND OHSERVER-OBJECT
           16OO MW POWER PLANT
BLACK OBJECTS
DISTANCES
DOWNWIND
TlfETA =
REFLECT
.0
.0
.O
.0
.O
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.O
.0
.0
.0
.0
0.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
DISTANCE
135.
RPXRVO i
0.02
O.O2
0.02
0.02
O.O2
0.02
0.03
O.05
0.05
O.05
0.05
O. 10
0. 10
O. 10
0. 10
O.20
0.20
0.20
0.50
0.50
O.80
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
(KPI) =

io/nvo
0.O2
O.O3
0. 10
0.20
O.50
O.OO
0.O5
0. 10
0.20
0.50
O.GO
0. 1O
0.20
0.5O
0.00
0.20
0.50
0.00
O.50
0.00
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
0.05
0. 10
0.20
0.50
0.00
O. 10
0.20
0.50
0.00
0.20
1.0

YCAP
Ol. 19
69.08
66.40
62.36
56.35
54.35
79.40
67.61
63.57
57.56
55.56
76.02
65.27
59.26
57.25
72. 07
61.75
59.75
66. 09
63.23
64. O4
33.94
37.51
40 . 33
44.52
50.51
52.38
37.31
41.54
45.73
51.71
53.58
42.08
47.43
53.4!
55.28
49, 13


L X Y DELYCAP DELL C(55O) BRATIO DELX DELY E(LUV) E( LAB)
92.22 0.3366 0.3473 -13.72 -5. 78 -0.1401 0.9067 0.0O37 0.O044 6.7125 6.2337
06.55 O.3376 0.G400 -22.52 - 10. 10 -0. 23O5 O.9787 O.OO62 O.OO75 11.5595 1O.C259
05.21 O.3354 0.3452 -20.45 -9.47 -0.2277 0.9344 O.0007 O.OO84 11.4515 10.4574
03.12 0.3312 0.3403 -17.34 -8.44-0.2090 0.92->6 0.0079 0.0103 11.6740 10.0645
79. O3 O.3217 0.3319 -12.73 -6.73-0.1753 O.G626 0.0113 O.0142 13.4221 1O. 1356
70.68 0.3169 0.3288 -11.22 -6.11 -0.1627 O.O3O7 O.0134 O.O139 14.0O36 10.4296
91.42 O.3331 O.3426 -12.20 -5.24-0.1292 .0239 0.0O17 0.0021 5.5011 5.36IO
05.02 0.3313 0.3402 -19.25 . -O.06 -0.2148 .0473 O.0026 0.0035 9.3039 9.0725
83.75 0.3270 0.3353 -16.13 -7. OO -0.1950 .0030 0.0037 O.OO52 8.9701 Q.36O4
80.51 0.3175 0.3268 -11.53 -6.05 -0.1591 O.9424 0.0072 0.0091 9.9533 7.9154
79.38 0.3128 0.3236 -10.01 -5.41 -0.1457 O.907O O.OO93 O.OIOO 10.9G99 O.O770
90.25 0.3280 0.3362 -10.04 -4.44-0.1121 .0706 -O. 0007 -0.0006 4.4553 4.4426
84.63 0.3221 O.3296 -14.43 -6.92-0.1749 . 1057 -0. 0012 -O. 0004 6.9502 6.9370
81.45 0.3127 0.3211 -9.O3 -5.11 -0. 136O .0310 0.0024 O.0034 6.2241 5.5902
O0.34 0.3000 0.3100 -8.31 -4.45 -0.1215 O.9912 0.0046 0.0051 6.8533 5 . 46G7
00.40 0.3202 0.3271 -6.O2 -3. 16 -O.OO27 .099O -O.0032 -O.O029 3.9444 3.4361
O2. C9 0.3076 0.3156 -7.33 -3.76 -0.1015 .1127 -0.0027 -0.0020 3.9730 3.8*31
81.72 0.3031 0.3125 -5.82 -3.07 -0.0852 .0679 -0.0004 -O.0003 3.1271 3.O355
85.46 0.3072 0.3153 -2.20 -1.10-0.0294 .O727 -0.0032 -O.OO24 2.5O72 1.72O1
83.58 0.3003 0.3104 -2.34 -1.21 -0.0329 .0870 -0.0032 -0.0024 2.4369 1.7533
84.41 0.3019 0.3119 -O.73 -O. 38 -0.0095 .0393 -O.OO16 -O.O009 1.1563 O.7323
64.95 0.3221^0.3313 2.08 1.69 0.0715 .0389 0.0011 0.0012 1.7652 1.7239
67.68 0.31OO 0.3276 2.05 1.53 0.06C9 O.O91O 0.0039 0.0105 6.3379 4.4932
69.73 0.3128 0.3231 -0.22 -0.15 0.0054 0.7943 0.0143 0.0168 11.1302 7.2950
72.60 0.3086 0.3203 -3.57 -2.30 -0.0646 0.7484 0.0174 0.0202 15.2030 9.8355
76.40 0.3090 0.3234 -8.28 -4.79 -0.1335 O.7604 0.0170 0.019O 16.6OO7 10.9304
77.52 0.3112 O.3259 -9.73 -5.46 -0.1499 0.7782 0.0159 0.0177 16.0590 10.0433
67.54 0.3107 0.3109 1.85 1.41 0.0571 1.0052 O.0017 O.O018 1.6548 1.5296
70.58 0.3076 0.3167 0.99 0.69 0.0329 0.0019 0.0091 0.0104 6.O920 4.4992
73.39 0.3041 0*3148 -2.36 -1.51 -0.0414 O.O2O8 O.0129 0.0145 11.2330 7.1203
77.13 0.3050 0.3102 -7.08 -4.06 -0.1147 0.8292 0.0130 O.O138 12.9O37 8.4802
78.24 0.3072 0.32O7 -8.53 -4.73-0.1321 O.O487 0.0119 0.O125 12.3774 8.4142
7O.95 O.3004 O.3002 1.53 1.O7 0.0410 O.9878 0.0019 O.O020 1.5O14 1.27O4
74.49 0.2990 O.3086 -0.66 -0.42 -0.0085 0.8996 0.0079 0.0003 6.5477 4.0350
78.14 0.3004 0.3123 -3.38 -3.06 -0.0879 0.9046 0.0084 0.0081 8.4964 5.5956
79.22 0.3027 0.3150 -6.03 -3.76 -0.1067 0.9261 0.0073 0.0068 O.0714 5.6354
75.36 0.2928 0.3018 1.04 0.65 0.0233 O.9823 O.0016 0.0015 1.1715 0.6374
Exhibit A-6 (continued)

-------
tn
0.3
0.3
0.3
0.3
0.3
0.0
0.0*
0.0
0.0
0.0
0.0
0.0
O.O
O.O
O.O
O.O
0.0
0.0
0.0
O.O
O.O
O.O
O.O
0.0
0.0
O.O
0.20
0.120
o.r>o
0.50
0.80
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 1O
0. 10
0.20
0.20
0.20
0.5O
0.50
0.00
0.50
0.00
0.50
O.CO
o.r,o
0.02
0.05
0. 10
0.20
0.50
O.GO
0.05
0. 10
O.20
O.50
O.CO
0. 10
0.2O
O.5O
0.00
0.20
O.50
0.00
o.r>o
0.00
0.00
55.91
57.78
59. 13
61.26
62.22
13.69
23.98
29. 16
36.88
48.00
51.53
19.27
30.37
33.09
49.21
52.74
27. 19
39.79
50.91
54.44
30.96
53.40
56 . 93
55.O1
60.41
61. 10
79.58
00.63
01.30
02.53
33.05
43 . 03
56. 10
60.95
67 . 2 1
74.05
77.02
51.04
62.00
68. 11
75.60
77.74
59. 19
69.34
76 . 64
70.73
60.75
70. 13
OO. 16
79 . 52
02.0O
02.45
0.2957
0.2930
0 . 2°27
0.2954
0.2956
0.2906
0.2967
O.2933
0.2938
0.3029
0 . 3007
0.27OO
0 . 2079
0.2394
0.2990
0 . 3048
0.2725
0. 20-15
O.2946
O.3003
0.2737
0.29O1
O.2957
0 . 2057
O.2932
O.292O
O.G071
0.3096
0.3049
0.3077
0.3003
0.2967
0.3055
0.3042
0.3074
0.3193
0 . 3246
0.2C41
0.2971
0.3015
0.3140
0.3194
0 . 2RO 1
0.2053
0 . 3003
O.3137
0 . 234 1
0.3031
O.30O3
0.299O
0.3064
O.3067
-2.00
-4.33
0.34
-0.05
0. 11
0.05
12.50
O.45
2.34
-6.38
-9. 10
7.87
9.66
3.54
-5. 17
-7.09
6.49
5.24
-3.47
-6. 19
4.42
-0.97
-3.69
1.43
-0.21
0.4O
-1.61
-2.35
0. 19
-0.45
0.06
17.51
15.02
0.29
1.79
-3.05
-5. 17
10.76
9.34
2.69
-3. 10
-4 . 45
6.52
3.92
-2.06
-3.46
3.33
-0.57
-2.O3
O.O2
-0. 11
0.26
-0 . 0477
-0 . 0603
0.0059
-0.0139
O.OO17
1 . 046 1
1. 1225
0.4206
0.0762
-0. 1111
-0. 1440
0.6954
0 . 4742
0 . 1 002
-0.0909
-0. 1259
0.3138
0. 1530
-0.0621
-O. 1000
0. 1266
-O.O 109
-0 . Ofi 1 2
0.0247
-0.0052
O.0069
0.0713
0.9951
O.9900
1.0031
0.9953
0 . 3702
0.3001
0 . 44 1 3
0.5473
0.6951
0 . 75 1 1
0.5245
0.4915
0.5999
0.7571
0 . O 1 37
0.6676
O.6551
O.0243
O.«925
O.K026
0.0024
O.9577
O.9H23
O.9679
0.9716
0.0037
0 . 0026
0 . OOO7
0.0300
0.0003
0 . 0425
0.0456
0.0373
0.0291
0.0202
0.0170
0.0269
0.0319
0.0247
O.0162
0.0131
0.0165
O.O109
o.oi in
o . oonr,
0. 00*90
O.O073
O . 004O
0.0029
O.O015
0.0012
0 . 0028
0.0015
O.OO05
-O.OOO5
0.0002
0 . 045 1
0.0492
0 . 0407
0.0310
0.0217
0.0105
0.0279
0.0336
0.0259
0.0165
0.0133
0.0166
O.O 197
O.O 100
O.OO76
o.oons
0 . 005.1
O.O023
O.O022
0.0004
0.0007
3.76H3
3.5f»'?7
o. -""'>:»
o.r><.93
o. 105.3
13.4014
22.6-173
2 1 . 7.363
21.4559
18.6144
16. 76 -IS
I2.77O2
13. 1753
17.5503
14.8532
13.O74.'l
8.0927
13.3033
lO.4r;:i3
8.7502
5.6727
5 . O44 [
4. 1703
2.O5.T3
1. 161 1
O.OI 26
2. 5? on
2.7754
o."-:^rj
0 . 52C10
0. 1201
10.6307
19.C007
15.63H2
13.3337
11.7270
1 1 .0719
12.071 1
13.3939
10. 90; JO
9. 2112
8.rt20
0.09157
0 . 5 ! 3 1
             Exhibit A-6 (continued)

-------
             VISUAL EFFECTS FOR LINES OF SIGHT ALONG PLUME
             1000 MW POWER PLAT1T
    DOWNWINU DTSTANCE (KM) =    1.0
    THETA LENGTH RPXRVO    RV  "nv-nnr-vr)    YCAP       L
      45.
                  Y DELYCAP
DELL  C(350)  BRATIO
DEL*
DELY  EC LUV)  E< LAB)
o>
CONCENTRATIONS • - ' '• nosOL AND CASES CONTRIBUTED
1600 ii., . J,mR PLANT
DOWNWIND DISTANCE (KM) = 2.0
PLUHE ALTITUDE (M) = 392.
SIGMA Y (PI) = 123.
SIGMA Z (M) = 39.
S02-S04 CONVERSION RATE= 0.0000 PERCENT/HR
BY





NOX-N03 CONVERSION RATE= 0.0000 PERCENT/MR
ALTITUDE

H+2S
INCREMENT!
TOTAL AMD!
11+ IS
INCREMENT!
TOTAL AMD!
H
INCREMENT!
TOTAL AMD!
II- IS
INCREMENT!
TOTAL AMD!
H-2S
INCREMENT!
TOTAL AMD!
0
INCREMENT!
TOTAL AMD!
NOX
(PPM)

1.860
1.868

8.373
8.373

13.805
13.005

8.373
8.373

1.868
1.868

0.000
0.000
N02
( PPM)

0. 125
0. 125

0.695
0.095

1.462
1.462

0.695
0.695

0. 125
0. 125

0.000
0.000
N03-
(PPM)

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000
N02/NTOT
(HOLE %)

6.711
6.711

8.303
8.303

10.593
10.593

8.303
8.303

6.711
6.711

0.000
98.303
N03-/NTOT
(MOLE J?)

0.000
0.000

0.000
0.000

•^0.000
0.000

0.000
0.000

0.000
0.000

1.607
1.607
S02
( PPM)

0.382
0.382

1.713
1.713

2.824
2.824

1.713
1.713

0.382
0.382

0.000
0.000
SO4=
(UC/M3)

0.000
2.936

0.000
2.936

0.000
2.936

0.000
2.936

0.000
2.936

0.000
2.936
SO4=/STOT
(MOLE r.1

0.000
0. 195

0.000
0.044

0.000
O.O26

0.000
0.044

0.000
0. 195

0.230
100.000
03
( PPM)

-0.037
0.001

-0.037
0.001

-0.037
O.001

-0.037
0.001

-0.037
O.001

0.000
0.038
PRIMARY
(UG/M3) (

130.086
143.622

585.694
59O.630

905.645
970. 5O1

585.693
593.029

130.686
143.622

0.000
12.930
BSP-TOTAL
10-4 M-l)

1.624
1.752

7.277
7.405

11.997
12. 125

7.277
7.405

1.624
1.752

0.000
0. 128
BSPSN/BS
( 7Z)

0.000
4.767

0.000
1. 120

0.000
0.009

0.000
1. 128

0.000
4.767

5 . 690
65. 142
    CUMULATIVE SURFACE DEPOSITION (MOLE FRACTION OF
                    S02!    0.0000
                    NOX!    0.0000
    PRIMARY PARTICULATE!    0.0000
                    S04!    0.0000
                    N03!    0.0000
INITIAL FLUX)
   Exhibit A-6 (continued)

-------
                    VISOAL EFFECTS  FOR
                    I60O MW POTVER
DOWNWIND DISTANCE (KM) =    ':.»
PLUME ALTITUDE (W)     =   .....
SIGHT PATH IS THROUGH PLU
                     HORIZONTAL SIGHT PATHS
THETA ALPHA RP/RVO
45.
30.
30.
30. .
3O.
30.
30.
45.
45.
45.
45.
45.
45.
6O.
60.
6O.
6O.
6O.
60.
90.
9O.'
9O.
90.
90.
90.

0.02
0..05
0. 10
0.20
0.50
0.GO
0.02
0.05
0. 10
0.20
0.5O
0.80
0.02
0.05
0. IO
0.20
O.5O
O.CO
0.02
0.05
0. 10
0.2O
0.50
0.80
RV '

148.4
147.2
145.6
143.3
140. 1
148.2
159.0
150.9
157.7
155.9
153.4
152.6
164.7
164.0
162.9
161.4
159.2
153.6
167.6
166.9
166.O
164.6
162.7
162. 1
jCED

i? .00
20.43
21.30
22.56
24.27
19.03
13.61
14.09
14.77
15.75
17. 10
17.51
10.96
11.37
11.94
12. 7fl
13.94
14.29
9.41
9.77
10.2O
1 1.O2
12. 06
12.37
YCAP

G5.65
80.00
9 1 . 29
96. CO
102.63
1O4.54
09.34
91.24
93.91
97.78
1O3.O7
104.61
91.30
93.04
95.36
9O.73
1O3.31
104.65
92.74
94.23
96.32
99.35
103.43
104.67
L

94. 17
95. 17
96.53
90.47
101.01
1O1.73
95.73
96.51
97.60
99. 14
101 . 17
101.75
96.57
97.25
93. IO
99.51
1O1.27
101.77
97. 13
97.73
90.06
99.73
1O1.33
101. 7O
X

0.3597
0 . 3504
0.3398
0.3206
0.3203
0.3197
0.3521
0.3440
0.3364
0.3272
O.32OI
O.3I95
O.3477
0.3416
0.3343
0.3263
O.320O
0.3194
0.344O
0.3393
O.3329
0.3237
0.3199
0.3194
Y DELYCAP

0.3606
0.3503
0 . 347 1
0.3362
0.3303
0.3307
0.3630
0.3547
O.3454
0.3360
0.3306
0.3300
0.3594
0.3522
0.3440
O.3357
O.33O7
O.33O9
0.356O
0.3504
0.343O
O.3334
0.330O
0.3309

-19.23
-16.91
-13.62
-0.03
-2.20
-0.37
-15. 57
-13.67
- 1 1 . OO
-7. 12
-1.04
-0.3O
-13.53
- 1 1 . 07
-9 . 55
-6. IO
- 1 . 39
-0.26
-12. 17
-1O.6O
-O.59
-3.56
-1 .43
-0.24
DELL

-7.70
-6.70
-5,33
-3.40
-O.O6
-0. 14
-6. 14
-5 . 35
-4.27
-2.73
-O.69
-0. 11
-5.30
-4.62
-3.69
-2.36
-O.6O
-O. IO
-4.74
-4. 14
-0.31
-2. 12
-0.54
-0.09
C(550)

-0. 1019
-0. 1615
-0. 1323
-o.pfl"5
-o.02r>d
-0.0001
-0. 1455
-0. 12r>2
-0. 1O5O
-O.O709
-O . O204
-O.G043
-0. 1257
-O. 1 I 16
-O.09I4
-O.0612
-O.0177
-O . O042
-O. 11 27
-O. 1000
-O.082O
-O.O 5 49
-0.0153
-O.0033
BRAT 10

0.5186
0.6375
O.7733
O. 90.12
0 . 97C3
0.0746
0.5790
0.6323
O.301O
O.O 194
O.0323
O.9709
0.6103
0. 7 1*27
O.O 198
0.0270
O.0345
0. OG27
O.O 439
0.7349
O.«336
O.0326
O.03GO
0.0345
DELX DELY

0.0408 0.0375
0.0315 0.0273
O.0210 O.OI61
0.0093 O.OO52
O.OO14 -O.OOO7
0.0003 -0.0000
0.0332 0.0310
0 . O20O 0 . O23O
O.O 173 O.O 14:)
O.OOO3 0.0030
O.OO12 -O.OOO4
O.OOO7 -0.0002
0.02G3 0.0233
O.O227 O.O2 1 I
O.O 155 O.O 130
O.OO74 O.0047
O.001 1 -O.0003
O.0006 -O.OOO2
0.0259 0.0257
0.O2O3 O.O 103
O . 0 1 4O O . 0 1 2O
O . OO63 O . O044
0.001O -O.O003
O.OOO3 -0.0002
E( LUV)

35.0798
20. 1 104
19.0071
9. 1506
I . 079O
O.OO51
30 . 209O
23.O707
16.2400
7.C"50
1 . 54O4
0 . 720O
26 . O5 1 O
2 1 . 22"5
1 4 . 4 .*t9 2
7 . OO4O
1 . 3525
0.0204
24.4367
10.3OO2
13.2<0*>
6 . 4 1 33
1 . 22 1 1
0.5652
E( LAB)

24. 119
13.500
1 2 . 267
5 . 03O
1 .307
o.r>*>3
20 . 230
15.604
1O.45O
5 . 00 1
I . 1 "1
O.473
1 7 . fl47
1 3 . COO
9.3*9
4 . < n \
O.07O
O.<00
16. 10O
1 2 . 643
0.5J 1
4 . OO4
0 . O7 1
o.ooo
     OBSERVER POSITION
          90.
0.03
AT 1/2 OF A 22.5
 167.4    9.50
DEGREE WIND DIRECTION SECTOR FROM THE PLUNK CENTERLINE AT TOE GIVEN DISTANCE FROM TITE SOURCE
93.11   97.27  0.3434  0.3551  -11.00   -4.59 -0.1006  O.67I2  0.0243  0.0241 23.1300 15.200
   90.
30.
30.
30.
30.
3O.
3O.
45.
45.
45.
45.
45.
45.
60.
60.
60.
0.02
0.05
0. 10
0.2O
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.03
0. 10
151.7
150. 1
147.9
144. 0
140.7
140.2
162.3
161. 1
159.5
157. 1
153.0
152.3
166.0
165.O
164.4
18.01
18.08
20.06
21.73
23.96
19. OO
12.25
12.91
13.01
15. 10
16.06
17.38
9.02
10.37
11. 13
45.37
47.04
49.30
52. OO
57.50
5O.OO
40.09
49 . 44
51.33
54. 10
57.09
59.00
49.59
50.76
52.41
73. 16
74.24
75.71
77.77
SO. 48
O1.24
74.90
75.75
76.90
70.54
00.69
O1.31
75. O4
76.56
77.55
0.3423
0 . 3320
0.3207
0.3O94
0.3019
O.3O17
0.G346
0.3267
0.3178
0.3003
0.3020
0.3017
0.3302
0.3236
0.3159
0.3533
0.3412
0.3204
0.3167
0.31 15
0 . 3 1 23
0.3473
0.3376
0.3271
0.3170
0.3119
0.3125
0.3434
0.3351
0.3259
-14. 11
-12.45
-10. 1 1
-6.69
-1.99
-O.60
- 1 1 . 40
-10.05
-O. 15
-5.39
-1.60
-0.48
-9.90
-0.72
-7.07
-0.41 -0.2371
-7.34 -0.2 MO
-5.O7 -0. 1737
-3.0O -O. 1 17O
-1. 10 -0.0371
-O.33 -O.O 122
-6.67 -0. 1006
-5.03 -0. IOO7
-4.67 -O. 13JI9
-3.04 -0.0942
-0.03 -0.0297
-O.26 -0.0000
-5.74 -0. 1639
-5.02 -0. 1450
-4.03 -0. 12OO
0.5347
O.665O
O.O126
0.0319
1.0373
O.0034
0.5929
0.7052
O.H3IO
0.9534
1 . O05 1
0.004O
0.6322
0.7327
O . 0463
0 . 04O6
0.0302
O.01OO
0 . 0076
O.OOO1
-O.O001
0.0329
0 . 0249
O.OIOO
0.0067
0 . OOO2
-o.oooo
O.02O4
0.021O
O.0141
0 . 040 1
O.O379
O.O 152
o.ooc;:;
-0 . 00 1 0
-0.0000
0.0341
0 . 0244
0 . 0 1 3O
0 . 0033
-O.OOI3
-0.0007
0.0302
0.021O
O.O 127
32.0061
24.0177
16.O70O
7.251 3
1.61 44
o.oo::4
27. 1035
21.01 r.O
13.G574
6.2059
1.2732
O.5253
24.0*173
IO."241
1 2 . -!• 1 1 6
2 1 . 7 1 5
1 6 . 420
1O.OO3
5. 154
1 . '"•'"• ?•
o . no3
lo..?"!*
10.030
9. 14*2
4.31:
1. 137
0 . 4< 0
1 0 . 00 1
12.372

  Exhibit A-6  (continued)

-------
60.
60.
60.
90.
90.
90.
90.
90.
90.
0.20
O.50
0.80
O.02
0.05
0. 10
0.20
0.50
0.80
162.4
159.6
158.8
109.5
163.6
167.3
165.5
163.0
162.3
12.22
13.73
14. 18
8.41
8.89
9.56
10.53
11.87
12.27
54.81
53. 10
59.07
50.59
51.64
53. 13
55.29
58.24
59. 11
78.93
30 . 8 1
31.35
76.45
77.09
77.97
79.22
00.09
01.37
0.3070
O.3020
O.3010
0.3272
0.3214
0.3146
0.3073
0.3020
0.301O
0.3169
0.3122
0.3126
0.3406
0.3332
0 . 325O
0.3163
0.3123
0.3127
-4.67
-1.38
-0.42
-8.90
-7.84
-6.36
-4.20
-1.24
-0.3O
-2.62 -0.0014
-0.76 -0.0257
-0.23 -0.0034
-5. 12 -0. 14f>9
-4.49 -0. 1307
-3.60 -0. 1076
-2.35 -O.O730
-0.63 -0.0230
-O.21 -0.0076
0.9360
1 .0341
0.«M>33
O.OOIO
O.7G31
O.C573
0.9534
1.0035
0.9900
0 . 0060
O.0002
-O.0009
O.O255
O.0196
0.0123
0.0055
0.0002
-0.0000
0.0037
-0.00)0
-O.OOO5
0 . 0274
0 . 020O
0.01 17
O.0033
-0.0009
-0.0003
3.0301
1 . OO4 1
0 . 45 1 5
2 1 . 0202
17.O754
1 1 . 373 1
5. 1725
0 . 9779
0 . 4032
3 . 300
O.075
0 . OH4
14.579
1 1 . 27O
7 . 453
3 . 524
0 . ,109
0 . 043
       OBSERVER POSITION AT 1/2 OF A 22.5 DECREE WIND DIRECTION SECTOR FROM TITE PLUNK CENTEHLINF. /VT THE GIVEN DISTANCE FITOH TITF, POUT1CE
            9O.    0.03   169.2    8.52   50.03   76.61  0.3237  0.33O6   -8.64   -4.97 -0.1429  O.6351  O.0239  0.0234 2O.0770 If.. 739
                      VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
                      160O MW POWER PLANT
   DOWNWIND DISTANCE (KTD =    2.0
   PLUME ALTITUDE (M)     =   392.
   SIGHT PATH IS THROUGH PLUME CENTER
   THETA ALPHA
    135.
RP/RVO
RV  r!REDUCED
YCAP
X
Y DELYCAP
DELL  C<550>  BRATIO
DELX
DELY  E(LUV)  E(LAH)
oo
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
60.
60.
6O.
60.
60.
60.
90.
90.
90.
90.
90.
90.
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.30
0.02
0.05
0. 10
0.20
0.50
O.GO
0.02
0.05
0. 10
0.20
0.50
0.80
154.0
152. 1
149.5
145.9
141. 1
143.2
164. 1
162.7
160.7
157.9
154. 1
153.0
160.3
167. 1
165.5
163. 1
159.9
150.9
170.7
169.7
168.2
166.2
163.3
162.4
16.74
17.77
19. 17
21. 14
23.74
19.00
11.30
12.07
13. 13
14.65
16.68
17.23
9.02
9.66
10.56
11.04
13.58
14. 10
7.70
8.27
9.03
10.19
11.74
12.20
45.86
47.96
50.91
55.24
61.22
63.00
49.36
51.06
53.45
56.95
61.76
63. 19
51.30
52.77
54.03
57.09
62.06
63.30
52.58
53.91
55.78
50.51
62.26
63.37
73.48
74.02
76.63
79.20
32.51
83.46
75.70
76.74
78.16
CO. 17
32.00
83.56
76.00
77.76
78.97
80.69
32.96
33.62
77.65
70.43
79.51
81.04
03.07
03.65
0.3391
0.3276
0.3155
0.3039
0.2970
0.2973
0.3312
0.3225
0.3130
0.3034
fr:2974
0.2975
0.3267
0.3194
0.3113
0.3030
0.2975
0.2976
0.3236
0.3173
0.3101
0.3026
0.2976
0.2976
0.3531
0.3393
0.3253
0.3131
0.3003
0.3096
0.3466
0.3353
0.3243
0.3137
0.3090
0.3099
0.3424
0.3332
0.3233
0.3133
0.3093
0.3100
0.3394
0.3313
0.3224
0.3138
0.3093
0.3101
-18. 14
-16.04
-13.08
-8.76
-2.78
-1.00
-14.63
-12.93
-10.54
-7.05
-2.23
-0.80
-12.70
-11.22
-9. 14
-6. 11
-1.93
-0.69
- 1 1 . 42
-10.09
-8.22
-5.49
-1.73
-0.62
-10.50 -0.2743
-9. 16 -0.2444
-7.33 -0.2017
-4.78 -0. 1377
-1.47 -0.0454
-0.52 -O.O163
-0.28 -0.2194
-7.24 -0. 1955
-5.02 -0. 1613
, -3.01 -0. 1101
1 -1. 17 -0.0303
-0.42 -0.0135
-7. 10 -0. 1896
-6.22 -0. 1689
-S.OO -0. 1394
-3.29 -0.0932
-l.OI -0.0314
-0.36 -0.0116
-6.33 -0. 1699
-3.55 -0. 1514
-4.47 -0. 1250
-2.94 -0.0333
-0.91 -0.0201
-0.32 -0.0104
0.5329
O . 0762
O.G345
0.9302
1 . 0273
1.0066
0.5913
0.7127
O.G4CO
0.9748
1 . 0207
1 . 005 1
0.6311
0.7390
0.0398
0.9740
1.0174
1 . 0044
0.6602
0 . 7387
O.O692
0.9743
1.0153
1.0039
0.0411
0 . O296
0.0174
O.O053
-0.0011
-O.OOOO
0.0332
0.0245
O.0149
0.0054
-0.0007
-0.0006
0.0206
0.0214
O.O133
0.0049
-0.0003
-O.0003
0.0256
0.0193
0.0121
0.0046
-0.0004
-0.0004
0.0421
0 . 0284
0.0144
0.0022
-0 . O026
-0.0014
0.0357
0.0243
0.0134
0.0023
-0.0019
-0.0011
0.0315
0 . 0223
0.0123
0.0029
-0.0010
-O.0009
0 . 0235
0 . 02O4
0.0113
0 . 0029
-0.0014
-O.OOOG
34.6430
26. 1530
10.6015
7 . 2400
2 . 0375
0.9794
29.3157
22 . 3340
14.4377
6 . 270O
1 . 5r»40
0 . 7043
25 . 97C2
19.953.1
12.9005
5 . 0-109
1 . 3434
0.0521
23 . 0340
1O.2220
1 1 . 09 1 2
5. 1903
1. 1901
0.5796
23 . otw
17.7JK.
1 1 . 473
5. or,-?.
1 . P.40
0 . 7P/>
19.H23
1 5 . o:n
9 . 7C9
4.711
1 . 43«
o . oc:>
17.401
13. Wl
O.?!"/)
4. 109
1 . 220
o.r>r>,4
1 5 . f?22
12. KtO
7.977
3 . 700
1.093
0.470
       OBSERVER POSITION AT 1/2 OF A 22.3 DEGREE WIND DIRECTION SECTOR FROM THE PLUME CENTEFcLINE AT THE GIVEN  DISTANCE FROM Tim
            90.     0.03   170.5    7.04   52.91   77.84  0.3220  0.3373  -11.09   -6.14-0.1654  0.6360   0.0239   0.020322.2307
   Exhibit A-6 (continued)

-------
                         VISUAL EFFECTS FOR NOW-HORIZONTAL CLEAR SKY VIEWS THROUGH PLUME CENTER
                         1600
     DOWNWIND DISTANCE (Ifll) '
     PLUME ALTITUDE       =
     TfTETA
       43.
UD
        9O.
ALPHA
BETA
MW POWER. PLANT
    2.0
   392.
   HP    YCAP
Y DELYCAP
DELL  C( 550)  BTIATIO
DELX
DELY  E(LUV)   E(LAB)
30.
30.
30.
30.
30.
30".
45.
45.
45.
45.
45.
45.
6O.
60.
CO.
CO.
CO.
CO.
9O.
90.
90.
90.
90.
90.
30.
30.
3O.
30.
GO.
30.
45.
45.
45.
45.
45.
45.
CO.
60.
00.
CO.
CO.
CO.
90.
90.
90.
90.
90.
90.
15.
30.
f!5.
'GO.
75.
90.
15.
30.
45.
CO.
75.
90.
15.
30.
45.
CO.
75.
90.
15.
30.
45.
CO.
75.
9O.
15.
30.
45.
CO.
75.
90.
15.
30.
45.
CO.
75.
90.
15.
30.
45.
CO.
75.
90.
15.
30.
45.
CO.
75.
90.
2.95
1.41
O.C3
O.CO
0.44
0.39
2. 10
1.04
O.C3
0.51
0.42
0.39
1.73
0.03
O.CO
0.47
0.41
0.39
1.51
0.7,1
O.55
0.45
0.41
0.39
2.95
1.41
O.OO
O.CO
O.44
0.39
2. 10
1.04
O.C3
0.51
0.42
0.39
1.73
O.OO
O.CO
0.47
0.41
0.39
1.51
0.73
0.51
0.45
0.41
0.39
C1.4C
54.44
51.07
50. C5
50. 07
49.09
57 . OC
4O. 19
44.94
43 . 4 1
42. C9
42. 4O
54.79
44.05
41.21
39. 5O
3O.7O
38. 4C
53.33
42. C7
30. 7C
3C.93
3C.07
35.81
32. GO
2O.22
2C.59
25.81
25.43
25.32
31.11
25.52
23. 4C
22.49
22.03
21.O9
30.34
24.09
21.78
20.70
20. 19
20.04
29. OC
23. 1C
20. 69
19.53
10.90
18.01
82.64
78.74
77.22
7C.49
76. 13
7C.02
80.23
74.97
72.07
7 LOG
71 .37
71.22
7O.94
72. 02
70.35
69. 14
CO.5C
C8.3O
78. 09
71.36
CO. CO
67.25
6G.60
66.40
63.93
60. 12
5O.62
57.09
57.53
57.42
62.63
57.61
55.58
54.58
54. 1O
53.95
G1.9B
56.21
53.83
52. CC
52.09
51.92
C1.57
55.27
02.64
51.33
50.70
50.51
0.3397
0.3445
0.3472
0 . 3408
0.3497
0.3500
0.3278
0.3324
0.3355
0.3374
0.3384
0 . 3307
O.3204
0.3240
0.3283
0 . 03O4
O.3315
O.3310
O.3151
O.3I94
O.3230
0.3253
O.32C5
O . 3269
0.3214
O.3261
O.329O
0.3300
0.3318
O.3321
O.3097
0.3137
O.3168
O.3188
0.3198
0.3201
0.3025
O.3061
0 . 3094
O.3I 15
0.312C
O.3130
0.2974
0.3007
0.3040
0.30C3
0.3075
0.3079
0.3518
0.3547
0.3566
0.3578
O.3536
0.3530
0.341O
0.3439
0.3459
0.3472
0 . 3430
0 . 3402
O.3350
0.33CC
0.3309
O . 3404
0.3412
0.3415
0.3300
0.3313
0.3337
O.3G53
0.3GC2
0.3365
0.3345
0 . 3373
0.3393
0 . 340C
0.3414
0.3417
0.3243
0.3236
0.3275
0.3209
0.0297
0.3299
0.3173
0.317O
0.3199
0.3214
0.3222
0.3225
0.3121
0.3122
0.3143
0.3159
0.3I6O
0.3171
19.06
30.24
34.09
35.89
36.73
36.97
15.46
23.99
27. 16
28.65
29 . 33
29.56
13. 19
2O. 65
23.43
24.74
25.36
25 . 54
11.73
18.47
20.99
22. 17
22.73
22.09
6.34
12. O4
13.27
16.40
16.93
17.09
4.70
1O. 13
12. 14
13.09
13.53
13.66
4.01
O.70
10.47
11.30
11.69
11.01
3.53
7.77
9.37
10. 12
10.48
10.58
12.02
22.41
27.96
31. 14
32.82
33.35
9.61
18.64
23.61
2f» . 5 1
28. 06
28.55
8.32
16.50
21.09
23.79
25.25
25.71
7.47
15.O3
19.34
21.91
23.29
23.73
5.54
13.93
18.47
21. 1O
22.48
22. 92
4.23
1 1.41
15.43
17.79
19.05
19.45
3.60
10.01
13.68
15.86
17.04
17.42
3. 18
9.07
12.49
14.54
13.65
16.01
0.4791
1 . 2544
1.9251
2.4397
2.7026
2 . 8725
O.37C4
0.9900
1.5360
1.9093
2 . 209 1
2.2977
O.0227
O.0603
1.3259
1 . 6337
1.9033
1.9356
O . 2373
0.7703
1. 1379
1 . 5039
1.7109
1.7793
0.2415
0.0348
1 . 3437
1 . 7427
1 . 9C97
2.0737
0. 1853
O.6616
1 . 0743
1.3915
1.3903
1.6537
0. 1072
O.5693
0.92C8
1.2016
t . 3744
1.4334
0. 1393
0.5093
0.8300
1.0767
1.2319
1 . 2849
0. 1932
O. 1413
O. 1226
0. 1 139
O. 1097
0. 1033
O.2446
0. 1773
0. 1533
0. 1420
O. 1366
0. 1350
O . 2O 1 2
O.2056
O. 17V 1
0. 1634
0. 1568
0. 1349
O.31 1 1
0 . 2239
O. 1967
O. 131O
O . 1 734
O. 1712
0.2238
O. 1041
0. 1423
0. 132O
O. 1270
0. 1254
0.2799
0.2033
0. 1734
O. 1653
O. 159O
0. 1571
0.32OO
O . 2384
0.2063
0. 1907
O. 1S31
0. 1008
0.3524
0.2651
O.2292
O.2I 14
0.2027
0.2001
0.0709
O.O91O
O.O972
0. 1000
O. 1014
0. 1019
O.0671
0 . 0797
0.0355
0.0335
O . O90 1
O . 0906
O . O590
O.O721
0 . O732
O.O815
0 . O332
0.0337
O.O544
0.0607
O.0730
O . O764
O . 0732
O . O733
0.0716
O.0839
O.O393
0.0922
O.O937
O.O942
0.0599
0.0715
0 . 077 1
0 . 0302
O.0317
0.0322
0.0327
O . O639
0.0097
0.0729
O.O743
0.0750
O.047C
0.0505
0.0643
0.0677
0.0694
0.0699
0.0808 60.6703 39.2753
O.O959 C2.4OI9 44.1922
0.1020 G2.2953 46.0707
0. 1051 62.2103 43. 1003
O.IO67 C2.2119 49.0201
0.1072 G2.2202 49.:;O50
o . 0709 5 1 . 9:10 1 30 . 3or,3
0.033O 53.233'? 37.47r;2
0.0912 53. 1341 39.701 1
O.O943 53.0403 4 1 . 0.'L'JlO
O.O961 53.0276 4 I . R343
0.0966 33.0261 42. 1O34
O.O64O 40. SOI 2 29.71*:; I
0.0773 47.7030 33.4OC3
0.0342 47.7123 35.5007
O.0376 47.6072 30. <>;;<: 5
O.O393 47.70-', 1 37.r<;;;>o
0,0303 47.7120 37.0231
O.O59O 42.50^«5 27.13J52
O.O724 43.3137 30.003?)
O.O70O 43.0207 32.7441
O.OG20 43.0312 G4.O3OO
0.0343 44.O24I 34.7017
O.O349 44.O4IO 35.O2J'.rJ
0.0779 47.5295 30.7314
0.0927 46.7550 33.3303
0.0939 43.5527 34.07O5
0.1021 44.0O33 35.53O4
0. 1033 44.6346 30. 1 107
0.1043 44.5057 30 . f7O2 1
0.0670 40.C313 20.3571
0.0310 39.73O2 2O.2517
O.O371 38.50:VJ 29. 3358
0.0004 37.0300 3O.1721
0.092O 37.6370 3O.0304
O.O925 37.5543 3O.7045
0.0006 36.4303 23.49?', 1
O.O733 33.4301 23.1003
O.O795 34.4O50 26.24O?
0.0320 33.8404 27.O027
O.O346 33.5913 27.4317
0.0351 33.5173 27.0004
0.0354 33.3702 21.4503
0.0676 32.4106 23.013O
0.0739 31.5101 24.00I?0
0.0773 31.0239 24.0OO7
0.0791 30.0O30 25.2401
0.0797 30.7404 25.304:5
       Exhibit  A-6 (continued)

-------
DOWWtWD DISTANCE (KM)
PLUME ALTITUDE (M)
                   VISUAL EFFECTS FOR NON-HORIZONTAL CLEAR SKY VIEWS THROUGH PLUME CENTER
                   K.OO MW POWER PLAtfT
THETA
 135.
ALPHA

 30.
 3O.
 30.
 30.
 30.
 30.
 45.
 45.
 45.
 45.
 45.
 45.
 00.
 60.
 60.
 60.
 60.
 6O.
 90.
 90.
 90.
 90.
 90.
 90.
BETA

ts.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
2.
0





•




- 392.
RP
2.95
1.41
0.00
0.60
0.44
0.39
2. 10
1.04
0.60
0.51
0.42
0.39
1.73
0.88
0.60
0.47
0.41
0.39
1.51
0.78
0.55
0.45
0.41
0.39
YCAP
32.95
27.77
25.85
24.94
24.50
24.37
32.09
25.61
23.21
22.09
21.55
21.39
31.72
24.49
21.81
20.55
19.96
19.78
31.51
23.76
20.89
19.55
18.91
18.72
L
64. 15
59.71
57.93
57.05
56.62
56.49
63.44
57.70
55 . 33
54. 15
53.58
53.41
63. 14
56.61
53.06
52.49
51.83
5 ! . 63
62.96
55.88
52.87
51.36
50.62
50.40
X
0.3169
0.3219
O.S252
0.3272
0.3284
0.3238
0 . 3049
0 . 3089
0.3122
0.3144
0.3156
0.3159
0 . 2976
0.3009
0.3043
0.3066
0.3078
O.C082
0.29^6
0.2953
0.2987
O.3011
0.3024
0 . 3028
Y
0 . 3333
0.3364
O.3388
0.3404
0.3414
0.3418
0.3226
0.3238
0.3260
0.3275
O.3285
0.3288
0.3151
0.3154
0.3176
0.3193
0.3202
0.3205
O.3098
0.3094
0.3115
0.3133
0.3143
0.3146
DELYCAP
2.46
9.91
12.71
14.01
14.62
14.80
1.60
7.75
10.07
11. 16
11.67
11.83
1.23
6.63
8.66
9.62
10.08
10.22
1.02
5.90
7.75
8. 62
9.03
9. 15
DELL
2.05
10.35
14.91
17.55
18.96
19.39
1.34
8.33
12.30
14.65
15.92
16.32
1.03
7.24
10.84
12.99
14. 16
14.53
0.86
6.52
9.85
11.86
12.95
13.30
C(550)
0. 1029
O.5915
1.0151
1.3397
1 . 5429
1.6120
O.O740
0 . 4666
0.0072
1.0G89
1.2333
1 . 2O94
0.0607
0.4003
O.6959
0.9223
1.0656
1. 1142
0.0527
0.3580
0.6229
O.8263
0.9550
0.99C8
DRAT I O
0.2363
0. 1630
O. 1446
0. 1334
0. 1279
0. 1.161
0 . 29O3
O.2136
0. 1043
O. 1700
O. 1631
0. 1610
0.3336
0.2493
0.2151
0. 1901
0. 1803
0. 1373
0 . 36C10
0 . 2735
0.2404
0.2211
0.2117
0 . 2033
DELX
0.0692
O.O318
0.0375
0.0907
0.0923
0.0929
0.0572
0 . 0637
0.0745
0.0773
0.0795
0 . O300
0.0499
0 . 0607
O.0066
0.0700
0.0718
O . 0723
0.0448
0.0552
0.0610
0.0645
0.0063
O.0669
DELY E( LUV) E( LAR)
0.0781
0.0935
0. 1001
0. 1036
0. 1055
0. 1061
0.0074
0.0303
0.0372
0.0907
0.0925
0.0931
0.0599
0.0725
0 . 0739
0.032-1
0.0343
0.0349
0.0546
0.0665
0.0723
0.0764
0 . 0703
0.0739
50. 1413 31. ,1702
43.7492 33.r,702
47.0323 34.4302
46.0577 f5.CC.5r>
45 . 6069 3f» . 4?r>9
45.4333 35.620R
43. 1547 27.3623
41.4566 23. 4493
39.3197 29. 1 142
33.K737 29.6367
33.4050 29.9694
33.2649 3O.0302
33.5333 24.3313
36.9222 25.2924
35.4619 25.9256
34.6169 26.4301
34. 1937 26.7495
34.0660 26.C531
35.2133 22.2457
33.7205 23.0769
32.4133 23.7042
31.6597 24.2065
31 .2327 24.5235
31. 1690 24.0311
Exhibit A-6 (continued)

-------
         PLOTO3 VISUAL. EFFECTS FOR HORIZONTAL VIEWS
         PERPEND i CVLATI TO TTIE PLUTIE OF  win TIC,  CRAY.  AND
         FOA VARIOUS ODSERVER-PLUME AND OBSERVER-OBJECT
              MW POWER PLANT
BLACK OBJECTS
DISTANCES
DOWNWIND DISTANCE
THETA = 45.
(KID =
REFLECT WVRVft RO/RVO
1.0
1.0
1.0
1.0
1.0
l.O *
1.0
1.0
1.0
1.0
l.O
l.O
l.O
1.0
l.O
l.O
1.0
l.O
l.O
1.0
1.0
O.3 '
O.3
O.3
0.3
0.3
0.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
O.3
0.0
0.0
0.0
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
O.O5
0. 10
O. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.02
O.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.02
0.02
0.02
0.02
0.05
0. 10
0.20
0.50
0.00
O.05
0. IO
0.20
0.50
0.00
0. 10
0.2O
0.50
0.00
O.2O
0.50
O.OO
0.50
O.OO
O.OO
O.02
O.05
0. 10
0.20
O.5O
0.00
0.05
0. 10
O.20
0.50
0.00
0. 10
0.20
0.50
0.00
0.20
0.50
0.00
0.50
0.00
0.00
0.02
0.05
0. 10
2.0
YCAP
92.73
39.26
90.00
91.09
92.61
93.07
94.27
91.49
92.50
94. 10
94.56
96.43
94.66
96. 13
96.64
99. 5O
99.22
99.67
103.90
103.00
105. 17
43.56
55.01
61.60
7 1 . 67
06.21
90.90
50.46
63. 17
73. 16
37 . 70
92.39
60.25
75.25
09.79
94.47
74.03
92.02
97.50
95.79
101.63
1O2.43
22.40
40.33
49.54

L
97. 12
95,69
96.00
96 . 45
97.07
97.26
97.74
96.61
97.06
97.67
97.80
9O.61
97. 9O
9O.51
9O.69
99. G4
99.70
99. 07
101.49
101.45
101.96
71 .96
79 . 06
02.76
O7.82
94.41
96.37
76.37
03.55
00.54
95.04
96. 9O
O1.99
09.52
95.91
97.02
O9.32
97. 16
99.03
90.35
100.62
100.93
54.57
69.73
75.O1

X
0.3430
O.G513
0.3497
0.3477
0 . 346 1
O.3461
0 . 33C7
0.3439
0.0421
0.3407
O.Q4C6
O.G32O
0.3354
0.3341
0.3341
0.3261
0.3263
0.3269
0.3210
O.3211
O.32O6
O.3316
0.3361
0.3330
O.3023
O.3303
0 , 3426
0.3199
O.323O
0.3261
0.3327
0.3372
0.3109
0.3100
O.3262
0.3307
O.3064
0.3190
0.3235
0.3116
0.3170
0.3167
0.3121
0.3227
0.321O


Y DELYCAP
0.3540
0 . 3606
0.3590
0.3574
0.3567
0 . 356O
0.3402
O.3523
0.3509
0.3502
0.3504
O.3415
0.3434
0.3429
0 . 343 1
0.334O
0.3353
0.3355
0.3309
0.3309
0 . 33 1 1
0 . 3406
0.3454
.0.3440
O.3453
0.3521
0.3554
0.3200
0.3355
0.3370
0.3455
0 . 3409
0.3204
0.3294
0.3379
0.3415
0.3175
0.3302
0.3339
0 . 3246
0.3293
O.3291
0.3192
0.3322
0.3332
-5.28
-9.67
-10.20
-10.97
-12.02
-12.32
-4.65
-0.71
-9.40
-10.53
-10. O3
-3.76
-7.40
-O.45
-O.75
-2.40
-5.41
-5.72
-0.73
-1.59
-0.22
0.59
12.22
7.79
1 .22
-0. 12
-1 1.03
7.67
9. 2O
2.71
-6.64
-9.54
6.35
4.79
-4.55
-7.46
4.37
-1.52
-4.43
1.45
-0.30
0.50
14.54
21.60
15.49

DELL
-2. 11
-3.09
-4.08
-4.34
-4 . 69
-4.79
-1.04
-3.46
-3.73
-4.09
-4. 19
-1.47
-2.O9
-3.25
-3.06
-O.95
-2.07
-2. 17
-O.27
-0.60
-O.OO
6.21
7.63
4.04
0.59
-3.36
-4.37
4.94
5. 13
1.30
-2.73
-3.76
3.57
2 . 29
-1.86
-2.92
2.O9
-0.61
-1.71
0.5O
-0. (2
0. 19
20 . 66
(9.33
10.70

CC550)
-0.0515
-0.0943
-0.0979
-0. 1033
-0. 1106
-0. 1129
-0.0454
-0.0046
-0.0902
-0.0979
-O. 1002
-0.0369
-0.0715
-0.0797
-0.0022
-0 . 0245
-0.0324
-0.0551
-0 . 0074
-0.0161
-0.O023
0 . 2456
O . 2C74
0. 1476
0 . O2 I 1
-O.OJ527
-0. 1049
0. 1703
0. 1724
0.0399
-0.06O7
-0.O919
0. 1162
0.0668
-0.04O7
-0.0733
0.0599
-0.0106
-0.0455
0.0138
-0.0033
0.OO4O
1.0099
1. 1462
0.4540

BRAT 10
O.G412
0.721 1
0.6954
0 . 6729
0.6613
0.661 1
O.P.916
0 . 7944
0.7647
0 . 749 1
0 . 7433
0.9412
O . O7OO
0 . 0500
O.G494
0.0836
0.9513
0.9506
1.O033
1 . OO55
1 . O023
0 . G23:;
0.6154
0.5677
0.5646
0 . f. 1 2 1
0 . 6337
O.n2:il
O.0591
0 . 6443
O.6933
0.7232
0.3537
0.7365
0.7065
0 . 0203
0.0970
0.0796
0.9176
O.9595
0.9693
0 . 9O22
0.3<>00
0.3301
0.3032

DELX
O.0119
0.0210
0 . (?330
0 . 0243
0.0253
0 . 0'J54
0.0092
0.0172
0.0107
0.0199
O.0199
O.0061
O.0120
0.0133
0.0134
O . 0028
O.OCK.O
0.0062
O.0002
0 . OOO4
-O.OOO1
0.0121
O.O273
O.031 1
0.0310
0 . 0287
O . O268
0.01 12
0 . 0239
0.0255
0 . 023 1
O.0213
0.009O
0.0103
O.0166
0.0149
0.0059
0.0094
0.0077
0 . 0020
0.0019
0 . OOOO
0.0455
0.0327
0.0457

DELY E( LUV) EC LAB)
0.0118 1O.7966 7.2CM4
0.0211 19.3312 13. 1213
0.0228 20.8745 14.0928
0.0245 22.6410 Ifi.UVM)
O.O256 23.9901 16.0O2T
O.0255 24.0031- 16.O553
O . OOO7 0 . 4549 5 . 006:>
O.O160 15.6013 1O.GG75
0 . 0 1 79 17. 4530 1 I . -I'.1 23
o.oi92 io.(;c:-o is.-x'io
O.O192 I8.93O4 !2.v',vC1
0.0053 5.6753 3.6070
O.O1O4 11.2174 7.3050
0.0118 12.7216 (). 265-1.
o.o iia 12.0:51 0.350:5
O.0'>18 2.0205 1.7127
O.OO42 5.3190 3.7955
O.OO42 0.9712 3.903,'.
-O.0002 O.0«25 O.3305
-O.O004 O.G250 0.7132
-O.OOO2 O. J41O O.I 170
O.O111 9.5920 7.3716
0.0267 20. 41 a;; 14.5575
0.0315 24.4511 10.O365
O.O325 27.3391 1 7.0339
O.0237 26.6031 I7.KO3
O.O267 25.1066 10.5130
0.01O1 O.57fT> 6.6569
O.O229 13. 6707 12.
-------
ro
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0 .
0.0
0.0
0.0
0.0
o.o
0.0
0.02
0.02
0.02
0.05
0.05
0.05
0.05
O.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
O.20
0.50
0.50
O.QO
0.20
0.00
O.GO
0.05
O. 1O
0.20
0.50
O.QO
0. 10
0.2O
0.50
0.00
0.20
0.50
0.89
0.50
O.GO
O.GO
63.33
G3.47
09.97
31.68
51 .03
64.04
84.96
91.45
44.74
66.93
87.04
93.54
64.22
90.07
96.57
92.31
100.70
1O1.25
83.64
93.23
95.99
63. 11
76.72
C4.42
93.37
96.00
72.74
85.48
94.76
97.45
84.09
96.03
98.66
96.95
100.27
100,48
0.3233
0.3346
0.3411
0.2988
0.3131
0.3168
0.3291
O.3357
0.2930
0.3094
0.3225
0.3292
0.2943
0.3153
O . 3220
0.3')73
0.3164/"
0.3149
0.3301
0.3500
0.3547
0.3071
0 . 3236
O.3302
O.3433
0.3482
0.3031
0.3215
0,3356
0.3408
0.3069
0.3279
0.3332
0.3217
0 . 3203
0.3202
6.44
-6.46
-10.48
12.95
16.98
7.93
-4.97
-0.99
10.69
10.01
-2.88
-6.91
7.31
0. 15
-3.O7
2.39
0.25
0.81
3.49 0.1156
-2.74 -0.0690
-4. !9 -0. 1014
12.70 0.6318
11.69 0.4937
4.27 0.1300
-2. 10 -0.0543
-3.57 -O.OQ02
7.71 0.3077
5.33 0.1719
-1.21 -0.0334
-2.72 -0.0694
3.95 0.1241
0.06 -O.O020
-1.51 -0.0412
0.98 0.0243
0. 10 -0.0003
O.31 0.0067
0 . 4737
0.5.",r«4
0.62GO
0.5247
0 . 46OQ
0.5421
0.6631
O.711 1
0.6702
0.6200
0.7520
0.6064
o.noso
0 . 0407
0.9O19
0.9344
0.9523
0.9724
0 . 0303
0.0304
0 . 0274
0 . 0280
O.0378
0.0321
0 . 0249
0 . 022O
0.0177
0.0247
0.0183
0.0155
0.0096
0.01 11
0.0083
0.0031
0 . 0026
0.0012
O.O393
O.O303
0.0271
0 . 027 1
0 . 0366
0.0313
O.0236
O.0207
0.0160
0.0226
0.0160
O.0132
O.O030
O . 0032
O.O056
0.0020
0.0010
O.OO06
31.5347
23. O40O
23 . 7O43
1 6.934-5
26. 19 J 7
25.0913
22.3100
20.5921
ll.OGCO
19.4196
16.5564
14.4373
7.3492
9.6173
7.5439
2.59,17
2 . 2452
I . 02C4
19.0163
17. 7477
16.724C.
14.7990
13.C033
16.206O
14. 1495
13. 1642
9.5572
12.4222
9 . 9721
9.0091
5.3050
5.5721
4.5354
1.6946
1 . 2300
O . 6339
            Exhibit A-6 (continued)

-------
          PLVTtE VISUAL KFFECTS FOR noniZOTTTAL VIEWS
          PEnPJSJTOICl/LATl TO  THE PLUWE OF  MI TIE, GRAY, AJTD
          Foil VARIOUS ODSERVER-PLUWE AND OUSERVER-OBJECT
          1600 MW POWER PLANT
BLACK OBJECTS
DISTANCES
POWrrWIJCD J
THETA =
REFLECT I
.0
.0
.0
.0
.0*
.0
.0
.0
.0
.0
.0
.0
l.O
1.0
1.0
.0
.0
.0
.0
.0
1.0
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
O.3
0.3
0.3
DISTANCE
90.
uvnvo i
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.03
0.03
0.05
0.03
0.10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.80
nai> =
10/RVO
0.02
0.05
0. JO
0.20
0.50
o.oo
0.03
0. 10
0.20
0.50
O.OO
0. 10
0.20
0.50
O.GO
0.20
0.50
0.30
0.50
O.OO
0.CO
O.02
0.05
0. 10
O.20
O.50
o.ao
O.05
0. 10
0.20
0.50
o.ao
0. 10
0.20
0.30
0.00
0.20
O.50
0.00
0.50
O.OO
0.00
2.O
YCAP
01.93
69.90
66.63
61.68
54.33
51.92
79.62
67.68
62.74
55.41
52.97
76.20
64.22
56. 09
54.46
71. 19
59.05
56.62
63.53
59.57
6O.94
32.77
35.65
38.31
42.27
47.95
49 . 75
35.80
39.37
43.32
49 . 0 1
50.80
40.09
44.00
50.49
52.28
46.43
52.65
54.44
55.42
57.40
53.20

L
92.56
86.96
85.33
02.76
70.68
77.25
91.52
85.86
83.32
79.29
77.88
90.00
84. 10
80. 13
73.75
87.59
81.33
79.98
83.74
81.62
112. 36
64. Ol
66.28
68.27
71.08
74.82
75.93
66.40
69.04
71. 80
75.43
76.58
69.56
72.79
76.39
77.47
73.85
77.69
78.74
79.30
00.42
00.87

X
0 . 3447
0.3526
O.351 1
0 . 3476
O.G379
0.3323
0.34J4
0.3456
O.3419
0.3319
O.3264
0.3364
0.3351
O . 3249
0.3195
O.32O2
0.3174
0.3120
0.3136
O.3063
O.3O72
O.3299
0.3305
0.3259
O.3223
0.3234
0.3208
0.3100
0.3185
0.3158
O.3175
0.3200
O.3069
0.3003
0.3107
0.3132
0.2984
O.3034
0.3059
0.2975
0.3006
0.3002

Y
0.3549
0.3612
0.3589
0.3545
0.3457
0 . 3422
0.3501
0.3523
O.3477
0.3385
0.3349
0.3434
0.3399
0 . 3304
0.3267
0.3335
O.3223
0.3106
0.3195
0.3141
O.3152
0 . 3304
0.3C08
O.3353
O.3335
0.3068
0.3392
0.3203
0.3261
0.3253
0.0293
0.3318
0.3137
0.3162
0.3209
0 . 3233
0.3061
0.3127
0.3153
0.3000
0.3109
0.3112

DELYCAP
-12.64
-20 . 93
-10. O3
-15.70
-11. 13
-9.66
-11.21
-17.70
-14.64
-10.O8
-8.61
-9. 18
-13. 16
-8.60
-7. 12
-6. 19
-6.44
-4.96
-1.95
-2.01
-O.64
1.24
0.96
-0.85
-3.51
-7.24
-8.37
1. 12
0.21
-2.45
-6. 18
-7.32
0.93
-0.97
-4.70
-5.83
0.66
-2.54
-3.67
0.23
-0.72
0.08

DELL C(550)
-3.31 -0. 1316
-9.33 -0.2201
-8.76 -0.2180
-7.73 -O.2000
-6.06 -0. 1661
-5.45 -0. 1529
-4.82 -O. 1220
-8.23 -0.2066
-7. 19 -0. 1074
-3.45 -0. 1512
-4.O3 -O. 1371
-4.09 -0. 1068
-6.41 -0. 1694
-4.61 -0. 1299
-3.96 -0. 1 146
-2.92 -O.O800
-3.41 -0.0901
-2.72 -O.OC08
-1.01 -0.0292
-1.08 -0.0321
-0.34 -0.O096
1.O2 O.OHOO
0.75 O.O273
-0.62 -O.0199
-2.34 -O.0734
-4.35 -0. 1278
-4.09 -0. 1410
0.06 0.0308
0.15 O.O049
-1.63 -0.0522
-3.69 -0. 1 103
-4.24 -0. 1244
0.67 0.0224
-0.64 -O.022O
-2.78 -0.0854
-3.35 -0. IOO7
0.43 0.0129
-1.48 -0.04OO
-2.08 -0.0653
0.13 0.0033
-0.40 -0.0141
0.05 0.0010

DRAT 10
0 . 0065
0 . 7843
0.7733
0.7555
O.7131
O.6954
0.9261
0.0340
0.8527
0.0190
O . 7928
0.9911
0.9852
O.9339
0.9034
.0486
. 04Tj9
.O116
.0531
.0024
.O3OO
0.9447
0.7734
0.6391
0 . 6449
0.6465
O.6531
0.9529
0.0045
0 . 74O3
O . 7367
0 . 7497
0.9619
0.8490
0.0337
0.8,134
0.9733
0.9372
0.9539
0.9089
0.9903
0.0950

DELX
0.0112
0.0196
0.0196
0.O199
0 . O222
0.O239
0.0034
0.0141
O.0142
0.0163
O . O 1 80
0.0040
0.0074
0.0093
0.01 11
0 . 0003
O.OO 18
0.0036
-O.002O
-O.OO 19
-O.OO 12
0.0071
0.0183
0.0233
O.0265
0.0268
0.O26O
0.0008
0.0153
0.0199
O . O20O
O.O2O1
O.0043
O.0125
0.0140
0.0133
0.0026
0 . OO67
0.0060
0.0000
0 . OOO8
0.0003

DELY
0.9113
0.0191
0.0193
O.O2O7
0 . 0243
O.0262
0.0030
0.0129
0.O139
O.0171
0.OIO9
0.0040
0.0061
0.O09O
0.0107
-O.OOO4
O.O009
0.0026
-0.0019
-O.OO 19
-0.00O9
0.O065
O . 0 1 07
0.0232
O.O293
0.O292
0.0201
0.0031
O.OI60
0.O21 I
O.0217
0.0207
O.OO35
0.0120
0.0133
0.0124
O.OO) 9
O.O051
0.0042
0.0004
-O.OOO2
0 . 000 1

E(LUV)
10.3608
17.9773
17.7223
17.31 17
19.5390
20.0603
8.4020
13.6777
13.4777
14.3327
16.041 1
3.6302
8.0. 'jr. 3
9.2995
10.3312
2.9733
3 . 3423
4.2023
I.3C61
1 . 72-13
O.3919
4 . 23Gt>
1 1 . 7943
16.6227
2O.967O
22.7312
22 . 3 1 36
3.5191
1 1 . 0460
15.70,10
17.3100
17.4134
2 . 7239
9.5 149
12.0094
1 1 . 60O2
1.7133
5 . 6O23
5 . 40 1 5
0.5496
o , 30 36
0 . 2O'.i7

E(LAB>
8.2304
14.0153
13.6416
13.3C39
13.7459
14.22O9
6.V»r>3n
10.9376
10.4028
1O.4307
1O.39 72
4.76T.O
7.3924
6 . 353 1
7. 1002
2.9393
3.1143
3.3011
1,3740
1 . 3727
O.3938
2.9366
7.0171
10.9633
13.6,169
14.9210
14.7634
2.3725
7 . 0337
10.O132
1 1 . ,1234
11.4141
1 . 7.135
5.3651
7 . 6037
7 . 5663
1 . 06.12
3.4192
3 . 5360
0.3312
O . 602O
O. 1217
Exhibit A-6  (continued)

-------
0.0
0.0
o.o
o.o
o.o
o.o
o.o
0.0
o.o
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
O.O
O.02
0.02
0.02
0.02
0.02
0.02
0.05
0.O5
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.5O
0.50
0.80
0.02
0.05
0. !0
0.20
O.5O
O.CO
0.05
0. IO
0.20
0.50
0.80
0. 10
O.20
0.50
0.80
0.20
0.50
O.CO
0.50
O.GO
0.09
11.70
20.97
26. 17
33.94
45.21
48.82
17.03
27.23
35.O0
46.26
49.87
24.58
36.48
47.75
51.35
35.82
49.91
53.51
51.94
56 . 47
57.03
40.70
52.96
5O.23
64.95
73.05
75.36
4O.33
59.22
65. 7O
73.74
76.01
56.70
66.92
74 . 69
76.91
66.41
76.03
7O.20
77.27
79.90
80.21
0.2928
0.3034
0.3019
0.3046
0.3163
0.3229
0.2798
0.2937
0.2979
0.3104
O.3I71
0.2748
0.2904
0.3O37
0.3104
0.2766
0.2966
0.3032
0.2C95
0 . 2900
0.2970
0.2971
0.3U3
0.3129
0.3 1OO
O.3323
0.3370
0.2C47
0.3021
0 . 3099
0 . 3247
0.33O3
0.2O13
0.3004
0.3162
0 . 3220
0 . 2G6 1
0 . 3000
0.3130
0.3023
0.3095
0.3095
7. 19
10.34
6.06
1.71
-5. 57
-7.02
6.40
7.92
2.77
-4.51
-6.76
5.27
4.25
-3.03
-6. 28
3.59
-0.87
-3. 12
1.17
-0. 17
0.39
15.43 1.5660
13.97 0.9624
7.15 0.3539
1.38 O.0554
-3.51 -0. 1070
-4.63 -O. 1355
9.34 O.5099
8.13 0.4040
2.21 O.0053
-2.03 -0.0301
-3.98 -0. 1186
5.61 O.2662
3.33 0.1279
-1.00 -0.0612
-3.08 -0.0944
2.85 0.1074
-0.53 -0.0208
-l.CO -O.O581
0.70 0.0210
-0.09 -0.0058
0.22 0.0058
0.3C93
O.3500
0.4135
0.4922
O.0934
0.6333
0.555O
0.4367
O.H660
0.6014
O.7269
0.6986
0.6481
0.774O
0.R269
0.0261
O.3639
0.9235
0.9422
0.9650
0.9753
O.O412
0.04H7
0.0424
0 . 0362
0.0294
O.O269
0.0252
0.0341
0.0294
0.0235
O.0211
0.0152
0 . O220
O.016O
0.0144
O.0002
0.0097
0 . 0072
0 . OO26
0 . 0020
O.OO10
0.0423
O.0520
0.0463
0.0401
0.0319
0.0289
0.0254
0.0356
0.0312
0.0242
0.0215
0.0148
0.0217
0.0158
0.0132
0 . 0074
0.0073
0.0050
0.0019
0.0006
0.0006
16.5031
22.3137
24. 1C5'>
23.O503
24.5f«31
22.9333
1 1 . 3094
18. 3076
2O.479 :>
19. 5949
18. 1196
7 . 33C»2
14.4307
13.7277
12.331 1
4.0301
7.3703
6.0309
1 . 7733
1 . 4729
0 . 7029
16.62O3
19. 1051
16.9135
16.41OO
15.6730
15.0263
1O.6061
13.O300
12.0032
12.2673
1 1 . 6740
6.767!
9 . 2^24
8.0373
7 . D205
3w% r* «-» r¥-
• * l>l>*>
4.2C17S
3 . 7*573
1. 1034
O.C3G7
O.4451
Exhibit A-6 (continued)

-------
                   PLWWTC VISUAL. EFFECTS FOR HOtUZOirTAL VIEWS
                   pEJii'ErroicuLAn TO Tire PLUTOS OF WHITE, GRAY, AND
                   FOR  VARIOUS OBSERVER-PLUME AND OBSERVER-OBJECT
                   I60O NW POWER PLANT
BLACK OBJECTS
DISTANCES
ui
DOWNWIND I
THETA a j
REFLECT }
.0
.0
.0
•9
.0
.0
.0
.0
.0
.0
.O
.0
.0
.0
.0
.0
.O
.0
.0
.O
.0
O.3
0.3
0.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
6.3
0.3
0.3
0.3
0.3
0.3
0.0
0.0
) I STANCE
35.
uvRve i
0.02
OJ '02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 1O
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
O. IO
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.80
0.02
0.02
(KTI) =
io/nvo
0.02
0.05
0. 10
0.20
0.50
O.CO
0.05
0. 10
0.20
0.50
O.CO
O. IO
0.20
0.50
0.00
0.20
0.50
O.OO
0.50
0.39
O.OO
0.02
O.05
O. 10
O.2O
0.50
0.00
O.05
O. 10
0.20
0.50
O.CO
0. 10
0.20
0.50
0.09
0.20
O.50
0.00
0.50
0.00
0.00
O.O2
0.05
2.0
YCAP
81.00
69.05
66.75
62.35
55.78
53.58
79.97
68.08
63.68
57. 11
54.91
77.32
65.54
5S.98
56.78
73.27
61.71
59.51
67.05
63.27
64. 9O
32.63
35.40
38.43
42.93
49.38
51.41
36. 15
39.76
44.26
50.71
52.74
41. 14
46. 13
52.58
54.61
48.51
55.31
57.34
58.94
61. 10
62. 16
11.55
20.72

L
92.49
86.84
85.39
03. 11
79.51
78.24
91.68
86.06
83.81
80.26
79.01
90.48
84.73
81 .30
00.08
03.59
02.77
81.59
05.54
83.60
O4.45
63. C9
66.09
68.36
7 1 . 53
75.71
76.95
66.66
69.32
72.43
76.52
77.74
70. GO
73.65
77 . 65
78.84
75. 17
79.24
80.39
81.28
82.45
83.02
40.54
52.68

X
0.3438
0.3508
O.C485
0 . 3439
O.G334
0.3230
O.C393
0 . C422
0.3375
0.3269
0.0215
O.3329
0.3301
0.3195
O . 3 1 42
O.3233
0.31 16
O.O065
0.3081
0.3013
O.C023
0.3278
0.3272
0.3219
0.3179
0.3190
0.0216
O.3142
0.3137
0.3107
0.3126
0.3152
0.3021
0.3028
0.3054
0.3081
0.2932
O.290O
0.3006
0.2926
0.2957
0.2956
0.2875
0.2982

Y
0.3543
O.0602
0.3573
0.3524
0.3437
0.3405
O.C403
0.3498
0.3447
0.3357
0.3325
0.0403
0.3361
0.0269
0.0206
0.0294
0.3104
0.3151
0.0157
0.3(08
0 . 3 1 2O
0.3G69
0.0069
0.0029
O.0010
0.0348
0.0075
0.0220
0.0226
.0.3219
0.0266
0.0294
0.3095
0.0121
0.3176
0.3205
0.0019
O.009O
0.0119
0.3047
0.0077
0.3003
0.2934
0.3081

DEL YCAP
-13. 11
-21.95
-20. 11
-17.35
-13.30
-11.98
-11.63
-10.78
-16.02
-11.97
-10.65
-9.53
-14. 15
-10. IO
-fl.79
-6.40
-7.37
-6.06
-2.03
-2.30
-0.67
0.77
-0.06
-2. 12
-5. 16
-9.41
-10.70
0.69
-0.79
-3,03
-O.OO
-9.36
0.59
-1.96
-6.21
-7.50
0.42
-3.48
-4.77
0. 15
-1.01
0.06
6.71
9.32

DELL
-5.51
-9.82
-9.29
-8.44
-7.05
-6.55
-4.98
-0.62
-7.74
-6.30
-5.78
-4.20
-6.78
-5.26
-4.71
-2.97
-3.78
-0.20
-1.01
-1. 19
-O.04
0.63
-0.04
-1 .52
-3.07
-5.48
-6.04
0.53
-0.56
-2.48
-4.67
-5.24
O.41
-1.25
-3.55
-4. 15
0.26
-1.95
-2.60
0.08
-0.54
0.03
14.22
12.39

C(5SO)
-0. 1338
-0.2330
-0.2245
-0.2098
-0. 1832
-0. 1733
-0. !204
-0.2106
-0. 1947
-0. 1658
-0. 1551
-O. 1O71
-0. 1731
-0. 1410
-0. 1290
-0.0790
-0. IO38
-0.0900
-O.O231
-O.O307
-O.OO91
O.0297
O.OOO9
-0.041 I
-O.0961
-0. 15OO
-O. 1602
O.0207
-0.0115
-0.0712
-O. 1301
-0. 1441
0 . 0 1 70
-0.0357
-0. 1013
-0. 1168
0.0097
-0.0500
-0.0759
O . 0024
-0.0170
0.0007
1.4012
0.8381

BRATIO DELX DELY E(LTTV)
O.G699 0.0110 0.0114 10.9272
O.7853 O.0195 O.O197 18.4473
0.7603 0.0198 0.0206 18.6935
0.7457 0.0206 O.O223 19.4252
0.7036 0.0200 0.026021.6421
0.6035 0.0245 O.O277 22. 3256
0.9334 O.OOOO O.OO78 O.4/45
0.8393 0.0135 O.0131 14.O1I3
O.Gf.04 0.0142 0.0146 14.4406
0.8156 0.0166 O.0101 16.3052
O.7919 O.O18O O.O196 17.4154
0.9996 0.0042 O.O036 5.5OI4
O.99O7 O.0063 O.0O6O 8.9973
0.9365 O.O091 O.0093 10. 11 Of.
0.9O34 0.0107 0.01OO I 1 . 0~S7
.0545 -0.0001 -O.OOO7 2.9910
.0533 0.0013 O.OOO7 4.1001
.02O2 0.0000 O.O022 4.5O28
.0546 -O.OO22 -O.OO2O 1 . OOOIi
.0669 -0.0022 -O.O021 1.9415
.OOO5 -O.OO 12 -O.OO08 O.9203
0.9473 0.0063 O.0063 4.1479
0.7714 O.O1O2 O.O198 12.3221
0.635O O.0235 0.0266 17.7747
O.6411 O.O267 O.OOO7 22.5743
0.6402 0.0269 O.OOO5 24.6161
O.6540 O.0262 0.0294 24.15(5
0.9594 O.0032 O.O05O 3.300O
O.0094 O.O152 O.0163 11.0722
O.7405 0.0196 O.O216 16.011)0
0.7392 0.0206 0.O222 19.O796
0.7522 O.0199 O.0212 1O.0997
O.9695 O.0036 0.O033 2.42O6
0.8573 0.0116 0.0119 9.6799
O.C467 0.0134 0.0132 12.5075
0.8616 0.0127 0.0123 12.3IO9
O.9000 0.0020 O.OO 16 1.4111
O.94O2 O.O059 O.0046 5.5968
0.9650 0.0050 0.0037 5.4306
0.9922 0.0006 0.00OO 0.4O20
1.0052 0.0003-0.0005 0.7575
0.9965 0.0002 0.0001 0. 1433
0.3997 0.0394 0.0418 15.3339
0.3574 0.0471 0.0519 22.0517

E( LAB)
8.4020
14.4627
14.3943
14.4723
5. 1459
5 .5627
6 . 6C1?
I . 2770
I. I 294
I. 5 l 90
I . S7C7.0
4.7502
7.r2::2
7 . 5 1 4 1
7 . 7377
2.9302
0.9O17
3.67OO
1 . 4O29
1.5191
0.6003
2.C572
8.2372
1 1 .7:i?0
14.7K!0
16.1 434
16.O197
2. 1037
7 . 00 1 4
10.6)96
12.0719
12.0045
1.5210
5.9955
0 . 07 1 2
0.0913
0.3540
3.5704
3.7045
0 . 24O 1
0.6 5 36
0 . 0306
15.5O51
10.28r-7
         Exhibit A-6 (continued)

-------
o.o
0.0
o.o
o.o
o.e
o.o
o.o
o.o
o.o
o.o
o.o
o.o
0.0
0.0
o.o
0.0
9.0
>t o
.0
O.O2
0.02
O.02
O.02
O.05
,'0.05
0.05
0.05
0.05
0. IO
0. 10
O. IO
0. 10
0.20
0.2O
0.20
0.50
0.50
0.80
0. IO
0.20
O.50
0.00
O.05
0. 10
O.20
0.50
0.00
O. IO
0.20
O.50
0.00
O.20
0.50
0.00
0.50
0.00
0.00
26.29
34.61
46 . 64
50.48
17.37
27.62
33.94
47.97
31.81
23.63
37.81
49.84
53.68
37. 9O
52.57
56.41
55.46
60. 17
60.99
58.33
65.47
73.98
76.39
40.77
59 . 53
66.50
74.33
77. 19
57.72
67.90
73.99
70. 3O
67.97
77.64
79.37
79.03
81.95
C2.39
0.2969
0.2990
0.3119
0.3187
0.2743
0.2C01
O.2927
O.3056
0.3124
O.2696
0 . 2049
0 . 2906
0.3054
0.2719
0.2914
0 . 2900
0.2330
0.2932
0.2926
0.3099
0.3162
O.3305
O.3362
O . 2003
O.29O2
O . 0063
0.3221
0.3200
O.2771
O.2964
0.3130
O.3190
0.2824
0.3045
0.3105
O . 2993
0.3064
O.3066
5 . 58
0.06
-7.74
-10. 14
5.97
6.91
1.39
-6.41
-O.OI
4.92
3.26
-4.54
-6 . 94
3.35
-1.01
-4.21-
1.O9
-0.46
O.36
3.68 0.2857
0.03 O.OJ47
-4,72 -O. 1327
-5.81 -0. 1586
8.48 0.5273
0.91 0.3434
1.08 O.0491
-3.87 -0.11 10
-3.00 -O. 1391
5 . O5 0 . 2382
2.48 0.0902
-2.71 -O.OOOO
-3.9O -0. 11 12
2.53 0.0961
-1.06 -0.0333
-2.33 -0.0695
O.63 O.O1O8
-O.25 -0.0093
O.20 O.O052
O.42J 1
O . 4909
O.5992
0.6367
0 . 572 1
O.3007
0 . T.776
0 . 6O09
0.731.2
O.715U
0 . 6645
0 . 7006
0.0369
0 . 0309
0.37C3
0 . 9305
0 . 9473
0.9730
O . 970O
0 . O4O9
0.0052
O . 0292
0.0270
0 . 0232
O.O321
0 . O200
O.O229
O.O2O7
O.O 136
0.0203
0.015O
0.0137
O.0072
0.0036
O.0063
0 . OO23
0.0015
O.OOO9
O . O464
O.O403
0 . O329
0.03O1
0.0241
O.O347
0.0308
0 . O243
0 . O2 1 9
0 . 0 1 37
0.0208
0.0153
O.OI30
0 . 0007
0 . 0009
O.O044
O.O017
0 . 0003
0.0005
24 . orm
27. O X»O
26 . 11363
24.7041
1O.4605
13.4302
2O. 9502
20.0T,72
19.,°.OI3
7 . 2358
14. 1045
14. 1333
12.9040
4 . 4"^3
7. 1COG
6 . CM 03
1 . ;}C1V7
1.2318
0.02S2
16.3137
17.^263
16.7732
10.2094
9.7.140
13. 17O6
13.0150
12.9326
12.3173
6. 1623
O.?'003
0.663'i
O.29I4
3. 419,1
4. ICOt
3.9173
l.or>49
0.73(12
O.3942
         VJSVM, EFFECTS FOR LINES OF SIGHT ALONG PLUME
         1600 MW POWER PLANT
DOWNVIND DISTANCE (KM)  =    2.0
THETA LENGTH RP/RV0
  43.
                       RV  ^REDUCED
YCAP
X
Y DELYCAP    DELL  CC5S0)  BRATIO
1.
1.
»
•
•
.
•
0.00
0.02
0.05
0. 10
0.20
O.50
0.80
90.6
89.6
08.2
06.3
O3.6
93.4
148.3
51.00
51.57
52.32
53.36
54.03
49.53
19.01
80.90
02.90
83.58
89.35
94.06
102.46
104,71
92. 10
92.98
94. 14
95.73
97.98
103.94
101.79
0.3674
0.3592
0.3498
0.3392
0.3202
0.3206
0.3203
0.3744
0.3635
O.3553
0.3449
0.3348
O . 330 1
0.3308
-24.02
-22.08
-19.47
-15. O0
-10.46
-3. 12
-0.97
                                                                               -9.77  -0.2291
                                                                               -8.92  -0.2113
                                                                               -7.78  -0.1803
                                                                               -6.23  -0.1547
                                                                               -4.04  -0.1045
                                                                               -1.17  -0.0323
                                                                               -0.36  -0.0100
                                                       0.4326
                                                       0.5332
                                                       0.6527
                                                       0.7900
                                                       0.9204
                                                       1.G056
                                                       1.0032
  DELX

 0.0485
 0.0401
 0.0306
 0.0193
 0.0034
 0.OOO1
-0.0003
DELY  E(LW>  E(LAB)
                                                    0.0433
                                                    0.0344
                                                    0.0244
                                                    O.O1C16
                                                    0.0035
                                                   -O.OO14
                                                   -0.0007
                                                                                                                     41.2763
                                                                                                                     34.7454
                                                                                                                     27.0034
                                                                                                                     17.9345
                                                                                                                      8.3634
                                                                                                                      1 .6739
                                                           28.131
                                                           23.293
                                                           17.830
                                                           11.OO9
                                                            3,
                                                            1,
                 707
                 402
                                                                                                                      0.676O  O.HCK.
Exhibit A-6 (continued)

-------
         VISUAL EFFECTS FOR LINES OF SIGHT ALONG PLUME
         1000 MW POWER PLANT
DOWNWIND DISTANCE (KM)  =    2.0
TIIETA LENGTH RP/RVO
90.
1. 0.00
1. 0.02
1. 0.05
1. 0.10
1. 0.20
1. 0.50
1. 0.00
RV r.REDUCED

96.7
95.0
92. 0
09.9
03.9
93.4
143.3

47
40
49
51
53
49
19

.76
.65
.82
.39
.59
.53
.31
YCAP

40.70
42.20
44.21
47.05
51.22
57.01
58.74


69
71
72
74
76
CO
31
L

.99
.03
.39
.25
.33
.20
. 17


0.
0.
0.
0.
0.
0.
0.
X

3512
3412
3003
3137
3076
CO 13
3017
Y DELYCAP

0.
0.
0.
0.
0.
0.
0.

3399
3485
3364
3242
3138
3103
3120

-18.79
-17.29
-15.28
-12.44
-8.28
-2.52
-0.80
                                                                               DELL  C(550)

                                                                              -11.53 -0.3211
                                                                              -10.54 -0.2909
                                                                               -9.18 -0.2641
                                                                               -7.33 -0.2172
                                                                               -4.75 -0.1470
                                                                               -1.4O -0.0453
                                                                               -O.44 -0.0141
BHATIO
0
O
0
O
0
1
1
. 4460
. 5044
.7O19
.3340
.9944
. O4 1 1
. O22 1
DELX
0
0
O
0
0
-0
-0
.0494
.0393
.0233
.0166
.0054
.OO13
.0010
DELY
0
0
0
0
0
-0
-0
. 0466
.0353
. 0232
.0110
. 0000
. 0027
. oo i ::
E(LUV)
G7.
no.
23.
>5 .
0.
t5 •
0.
4636
92 13
09 75
0017
7500
O-tOO
91 00
E( LAH>
25.
21.
,10 .
to.
5.
I .
0.
919
17;i
ooo
KX7
<*-.T»
— * »-i ••
677
         VISUAL EFFECTS FOR LINES OF
          1600  MW  POWER PLANT
SIGHT ALONG PLUME
 TIIETA LENGTH'RP/RVO
  133.
           1.
E (KTI)
= 2.
0
RVO RV r.HEDUCED
0.00
0.02
0.O3
0. 10
0.2O
0.50
0.00
101.2
99.0
96.3
92.5
87.5
93.4
143.3
45.31
46.47
47.97
49.97
52.71
49.52
19.31

YCAP
38.92
40. G3
43.51
47.23
52.69
60.33
62.63

L
60.72
70. 1 1
71.93
74.36
77.71
C2 . 03
33.26

X
0 . 3499
0.3377
0.3250
0.3122
0.3009
0.2957
0.2968


Y DELYCAP
0.3620
0 . 3479
0.3336
O.3199
0.3090
0.3068
0.3009
-25 . 07
-23.09
-20.43
-16.67
-11. 14
-3.43
-1.09

DELL C(550)
-15.25 -0.3330
-13.O5 -0.35-1.4
-12.02 -0.3133
-9.57 -O.2596
-6. ID -0. 1753
- 1 .82 -O.0543
-0.57 -0.0169

BRATIO
0.4309
0.5630
0 . 7246
O.G<>32
1.O394
1 . 0656
1 . 0336

DELX
0.0518
O.O396
0.0268
0 . 0 1 40
0.0026
-O.O027
-0.0016

DELY
0.0511
0.0370
O . 0227
O.0091
-0.0017
-O.OO37
-O.G015

E(LUV)
4 1 . 6979
33 . 3366
25 . 0572
15. 0^50
7. 1735
2. r,^oo
1 . 3069

EC LAB)
29 . 505
23. Om
17.379
1 1 . rivj
6 . 547
2.. TOO
O.9I7
 Exhibit A-6 (concluded)

-------
00
     DOWNWIND DISTANCE (KM)
     FLUKE ALTITUDE CM)
     SIGMA Y CM)
     SIGMA Z (M)
     S02-SO4 CONVERSION  RATE=
     NOX-N03 CONVERSION  RATE=
 CONCENTRATIONS OF AEROSOL AND GASES CONTRIBUTED BY
           1600 flW POWER PLANT
••  100.0
:   392.
=  3013.
    137.
      0.0035 PERCENT/HR
      0.0245 PERCENT/HR
ALTITUDE NOX
CPPM)
H+2S
INCREMENT! 0.016
TOTAL AMB! O.O16
II+ IS
INCREMENT! 0.072
TOTAL AMB! 0.072
II
INCREMENT? 0.119
TOTAL AIIB! 0. 119
11- IS
INCREMENT! 0.073
TOTAL AMB! 0.073
II-2S
INCREMENT? 0.027
TOTAL AMB! 0.027
0
INCREMENT! 0.026
TOTAL AMD! 0.026
NO2
C PPH)

0.011
0.011

0.033
0.038

0.058
0.058

0.038
0.033

0.017
0.017

0.017
0.017
K03- H02/NTOT N03-/NTOT
CPPM) (MOLE tt) CMOLE X)

0.000
0.000

O.OOO
0.000

0.000
0.000

0.000
0.000

0.000
O.OGO

0.000
O.OOO
CUHULATIVE SURFACE DEPOSITION (HOLE FRACTION
SO2!
NOX!
PRIMARY P ARTICULATE!
S04!
NO3!
0.0000
0.0000
0.0000
O.COOO
0.0000






68.943
68.944

52.698
52.698

40.407
40.437

52.510
52.510

64.440
64.448

63.043
63.043

0.599
0.599

0.057
0.057

0.030
O.030

0.057
0.057

0.379
0.379

0.420
0.420
SO2
C PPM)

0.003
0.003

O.015
0.015

0.024
0.024

0..115
0.015

0.005
O.C05

0.005
0.005
SO4='
CUCXNO)

0.016
2.9G2

O.O10
2.946

0.009
2.945

0.010
2.9
-------
                      VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
                      1600 1W POWER PLAKT
  DOWNWIND DISTANCE (KM)  =  1OO.O
  PLUME ALTITUDE  (H)      =   392.
  SIGHT PATH  IS THROUGH PLUME CENTER
vo
THETA ALPHA 1UVR.VO
45.
30.*
3O.
30.
SO.
30.
30.
43.
45.
45.
45.
45.
45.
60.
60.
60.
60.
60.
6O.
90.
90.
90.
90.
90.
90.
I <
0.02
0.05
0. 10
0.20
0.50
0.80
O.02
0.05
0. 10
0.20
O.5O
0.80
0.02
0.O5
O. 10
0.20
0.50
O.GO
0.02
0.05
0.1O
0.20
0.50
0.80
RV 5?REDUCED

178.2
175.3
172.3
169.3
165.3
164. 1
180.0
177.3
176.3
174. 1
171. 1
170.2
180.8
179.2
178.0
176.2
173.7
172.9
131.3
180.0
179. 0
177.4
175.2
174.6

3.67
5.25
6.85
8.48
10.67
11.31
2.70
3.89
4.71
5.90
7.51
7.99
2.28
3. 13
3.80
4.78
6. 12
6.52
2.00
2.69
3.27
4. 12
5.29
5.64
YCAP

87.42
85.54
87.73
93.70
101.79
104. 11
90. 12
83.60
91.77
96.36
1O2.54
104.31
91.64
91.11
93.79
97.60
102.91
1O4 . 40
92.84
92.69
95.07
98.52
103. 15
104.46
L'

94.92
94.12
95.05
97.51
100.69
101.57
96.05
95.42
96.73
90.58
100.97
101.64
96.67
96 .j46
97.55
99. 10
101. tl
1O1.68
97. 16
97. 10
98.06
99.42
101.20
1O1.70
X

0.3618
0.3622
0.3505
0.3333
0.3205
0.3192
0.3561
0.3566
0.3441
0.3CO7
0.3203
O.3191
0.3326
0.3309
0.3405
0.3292
0.3201
O.3191
0.3493
0.0473
0.3302
0.3202
0.3200
0.3191
Y DELYCAP

0.3706
0.3677
0.3545
O . 3333
O.3301
0 . 3305
0.3671
O.3651
0.3515
0.3380
0.330-5
O.3307
0.3644
0.3603
0.0493
0 . 3373
0.33O7
0.3307
O.3619
0.0580
0.0470
0.3373
0 . 3303
0.3303

-17.49
-19.37
-17. 18
-11.21
-3. 11
-0.80
-14.79
-16.31
-13. 13
-8.55
-2.37
-0.60
- 1 3 . 27
-13.80
-11.11
-7.23
-2.00
-O.51
-12.07
-12.22
-9.04
-6.39
-1.76
-0.45
DELL C( 5J»O)

-6.94 -0. 1644
-7.74 -O. 1G5S
-6. 02 -0. 1630
-4.35 -0. 1 131
-1. 13 -0.0339
-0.3O -0.0094
-5.81 -0. 1371
-6.45 -0. 1540
-5. 13 -0. 1264
-3.29 -0.0851
-0.09 -O.0255
-0.23 -O.OO71
-5. 19 -0. 1223
-5.41 -O. 1293
-4.31 -O. 1061
-2.77 -O.O715
-0.75 -0.0214
-0. 19 -O.0059
-4.70 -0. 1 107
-4.76 -0. 1 139
-3.80 -O.0935
-2.44 -O.O029
-0.66 -0.0139
-0. 17 -0.0032
BRATIO

O.5275
0.5626
0.7014
0.8337
0.99O3
0.9932
O.5504
0.5376
0.7421
0.89°0
0.9920
O.995O
0.5318
O . 63O9
O.7635
O.909I
0.9929
O.9958
O . 6073
O.6613
O.7374
O.9164
0.993G
0.9963
DELX DELY E(LUV) E(LAB)

0 . 0429 0 . 0396 37 . 556 3 2JJ . 1 4<
0.0433 0.0,'JOO 37.0310 L^.^r.
0.0316 0.0234 27.3070 J7.P7
0.0144 0.0075 13.0077 8.2 1.7P/
o.oooa -o.oooo o.7in.o O.RCK
O.0373 0.0361 33.0641 22.SOr
0.0373 O.OG<'9 H3.3385 22. O*V
O.O252 0.02O4 22.5592 14.47r
0.0119 0.0072 I0.82P5O 6. HIT
0.0014-0.0005 i.m-o j.r.rv
O.OOO3 -O.OOO4 O.54O4 O.4»<
O.O337 0.0034 30.9905 2O.Of>r
0.0320 0.029O 29.0143 I9.IO'
0.0217 0.0133 19.7739 12.07
O.0104 O.OO07 9.52,14 R.on
0.0013 -O.OCOa 1.5032 l.Kf
0.0002 -o.oooa o.43r>r> o.^3 19.02-
0.02B4 0.0209 20. 1420 17, 15'
0.0193 0.0107 17.8770 11.44*
O.O093 O.OO03 8.6333 5.4K
0.0012 -0.0002 1.3944 1 .00",
0.0002 -0.0003 0.4022 O.P-O;
     90.
OBSERVER POSITION AT 1X2 OF A 22.5 DEGREE WIND  DIRECTION SECTOR FROM THE PLUME CENTEIIUNF. AT TOF. GIVER DISTANCE FRtWI THE
            0.11   178.3    3.35   95.39   98.19   0-.3372  0.3466   -9.52   -3.6O-O.O907  O.8O1O  0.0183  0.0155 16.9OOO 1O.79'
            90.
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
178.8
176.0
173.0
169.8
165.5
164.2
130.5
178.4
176.8
174.4
171.3
170.3
3.33
4.86
6.49
8.24
10.56
11.24
2.44
3.57
4.46
5.72
7.43
7.93
48.73
47.57
48.90
52.54
57.46
58.07
50.39
49.45
51.39
54. 19
57.95
59 . 02
75.31
74.58
75.41
77.62
80.46
81.24
76.33
73.75
76.94
78.59
00.73
31.32
0.3443
0.3444
0 . 3323
0.3151
0 . 3029
0.3013
0.3307
0.3390
0.3261
0.3128
0.3028
0.3018
0.8562
0.3323
0 . 3380
O . 32O7
0.31 19
0.312*
0.3323
0.3499
0 . 3349
0.3200
0.3124
0.3126
-10.73
-11.91
-10.53
-6.94
-2.02
-0.62
-9.09
-10.03
-0.09
-5.30
-1.53
-0.47
-0.27 -0. 1752
-7.0O -O. 1979
-ft. 16 -O. 1796
-3.95 -0. 1217
-1. 12 -0.0381
-0.34 -0.0122
-5.24 -O. 1462
-5.02 -0. 16-1'J
-4.64 -0. 1351
-2.93 -0.0915
-0.85 -0.0286
-0.26 -0.0092
0.5313
O.5039
0.7114
0.3957
0.999O
0 . 9939
0.5592
0.3924
0 . 7495
0.9076
0.9931
0.9991
0.0423
0.0420
0.0305
0.0134
0 . 00 11
0 . 0000
0.0369
0.0372
0 . 0244
0.0111
O.OO10
0.0001
0.0429
0.0095
0.0243
O.OO75
-0.0014
-0.0003
0.0391
0 . 03^7
0.0217
0.0073
-o.oooa
-o.oooo
                                                                                                                          33. 0323 22.2.1'
                                                                                                                          32.5«r»0 2l.r
                                                                                                                          23.0090 IP.24:
                                                                                                                          1O.94K6  7.0.T
                                                                                                                           1. 9 130  1. t?r.r
                                                                                                                           0.0509  O.nO'
                                                                                                                          29.9757 I9.9flu
                                                                                                                          29.4707 I9.<^
                                                                                                                          19.6723 12.62..
                                                                                                                           9. 10fi7  5.02-'
                                                                                                                           1.4744  1.1 fv;
                                                                                                                           0.4092  0. <*• 1
     Exhibit A-7  (continued)

-------
60.
60.
6O.
6O.
60.
60.
90.
90.
90.
90.
90.
9O.
0.02
0.05
0. 10
0.2O
0.50
0.80
O.O2
0.0?,
0. 10
0.20
0.50
0.8O
181.2
179.7
170.4
176.4
173. O
173.0
101.7
100.4
179.3
177.6
175.3
174.6
2.03
2.00
3.59
4.63
6.05
6.47
1.79
2.47
3.09
3.99
5.23
5.60
51.02
50.99
52.64
55.01
50. 19
59.09
52.06
51.97
53.42
55.52
50.34
59. 14
76.09
76. 7O
77.60
79.06
OO.O6
O1.36
77.34
77.20
70. !4
79 . "6
O0.95
O1.3O
0.3352
0.3333
0.3227
0.3115
O.3027
0.3018
0.3321
0.3297
0.3203
0.3105
0.3027
0.3010
0.3493
0.3453
0 . 3325
0.3201
0.3127
0.3127
0.3465
0 . 342 1
0.3309
0.3197
0.3123
0.3123
-O. 16
-O.49
-6.83
-4.40
-1.29
-0.39
-7.42
-7.52
-6.06
-3 . 96
-1. 14
-0.35
4 . 63
4.03
3.09
I!. 51
0.71
0.21
4.24
4.29
3.43
2.21
O.63
0.19
-O.
-0.
-O.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
inoi
1379
1 133
070')
0240
0077
1 109
1214
C999
0677
O2 12
0003
O.
O.
0.
O.
O.
0.
O.
O.
0.
0.
O.
0.
5O42
o::32
77 46
9103
99GO
9092
6097
6002
7923
9227
9979
9993
0
0
O
0
O
0
0
O
O
0
0
0
.0334
.03 15
.0210
.0097
.OO1O
.0001
.0304
.O279
.0107
. 0033
. 00^9
.OOOl
0
0
O
0
-0
-0
0
t
0
0
-0
-0
. 036 1
. 0'52 1
.019*
.O069
. oooo
. 0005
. O333
. 02rt9
.O177
.GOT.'*
.00114
. OOO4
27.
25.
17.
rt.
i .
0.
2'5.
211.
»r».
7.
1 .
0.
02 »• ';.'.'•
(099
dftOO
30 ro
\?.r>:\
059 1
1 r\ . r «/•>
i ^ . r '* '>
! 1 . 070
5 . l m
O.C07*
o.r.'iT
I'T-.'Vi-)
ir,. ir.r,
JO.O.'M
'"•.O'V^
O.PT')
o.:%o:;
     OBSERVER POSITION AT 1/2 OF A 22.5 DEGREE WIND DIRECTION SECTOR FROM THE PLUW'1 C^NTF.nUNK AT THE GIVEN DISTANCE PTIOT1 TJTF.
          90.     0.11    179.1    3.17   53.62   70.26  0.3194  O.3297   -5.07   -3.32 -0.097O  O.8074  O.OI77  O.OI63  14.7775  9.
                   VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
                   1600 MW POWER PLANT
DOWNWIND DISTANCE (KM) =  100.0
PLUME ALTITUDE (PI)     =   392.
SIGHT PATH IS THROUGH PLUME CENTER
THBTA ALPHA RP/RVO
135.
30.
30.
30.
30.
30.
3O.
45.
45.
45.
45.
45.
45.
60.
60.
60.
60.
60.
60.
90.
90.
90.
90.
90.
90.

0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.03
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
RV ^REDUCED

179.3
176.5
173.4
170. 1
165.6
164.3
180.3
170.0
177. 1
174.7
171.4
170.4
131.5
1CO.O
178.6
176.6
173.9
173. 1
182.0
180.7
179.5
177.8
175.4
174.7

3. 11
4.59
6.25
8.06
10.48
11. 18
2.25
3.36
4.28
5.59
7.37
7.89
1.89
2.71
3.45
4.52
6.00
6.44
1.63
2.32
2.96
3.90
5. 19
5.57
VCAP

51.79
50.46
51.94
56.05
61.59
63. 19
53.68
52.60
54.79
57.93
62. 17
63.30
54.74
54.36
56.20
50.07
62.46
63.40
55.58
55.46
57. 10
59.46
62.64
63.54
L

77. 18
76.37
77.27
79.66
02.71
83.56
78.30
77.66
78.94
80.72
83.02
33.66
78.91
78.69
79.75
81.24
83. 17
83.71
79.39
79.33
CO. 25
81.56
83.27
83.74
X

0.5404
0.3403
0.3200
0.3108
0.2908
0.2979
0.3348
0.3330
eT.3220
0.3087
0.2988
0.2930
0.3312
0.3293
0.3186
0.3074
0.2988
0.2900
0 . 3232
0.3237
0.3164
0.3063
0.2988
0 . 2980
Y DELYCAP

0.3547
0.3510
0.3353
0.3101
0.3093
0.3099
0.3508
0 . 3482
0.3327
0.3181
0.3099
0.3102
0.3477
0.3433
0.3304
0.3177
0.3102
0.3103
0.3443
0.3403
0.3287
0.3173
0.3103
0.3104

-12.20
-13.53
-12.05
-7.95
-2 . 40
-0.81
-10.31
- 1 1 . 39
-9.21
-6.06
-1.82
-0.61
-9.26
-9.64
-7.79
-5. 12
-1.53
-0.51
-8.42
-0.53
-6.9O
-4.53
-1.35
-0.45
DELL

-6 . 30
-7.60
-6.71
-4.32
-1.26
-0.42
-5.63
r -6 . 32
-5.04
-3.26
-0.96
-0.32
-5.07
-3.29
-4 . 23
-2.74
-0.00
-0.27
-4.59
-4.65
-3.72
-2.42
-0.71
-0.24
C(350)

-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-o
-0
-0
-0

. 1325
.2003
. 1875
. 1276
.0411
.0343
. 1522
. 1712
. 1410
. 0960
.0309
. 0 1 03
. 1357
. 1437
. 1134
. OoOO
.0259
.0091
. 1229
. 1265
. 1043
.0710
.0223
.0030
BRAT 10 DELX DELY E(LTJV) E( LAH>

0.5317 O.O423 0.0437 34.93^0 23.132
O.5711 0.0422 0.0401 04.040') 22.317
0.7166 O.O299 O. 0*243 24.5769 15.7!^
0.9030 0.0127 O.OO72 H . If1.** 7.2-T.3
1.O046 0.0003 -0.0017 2.0008 1.717
1.0028 -0.0002 -0.0010 0.7734 O.6O1
O.3592 0.0367 0.0393 3 1 . *4*O 2O.770
0.5933 0.0369 0.0373 3O.S394 2O. l'V>
0.7332 0.0239 0.0213 20. <. 521 IO.O05
0.9129 O.O106 0.0071 9.4025 5.999
1.0022 0.0008 -0.0010 1.5249 1.279
1.0019 -0.0001 -O.O007 0.(K.';<> O.*«y>
0.5041 0.0302 0.0367 23.905* 19. !')5
O.OJJ64 O.OT12 O.OC25 20.0371 17.! ^
0 . 7777 0 . 0206 0.0193 17. 99*5 1 1 . <" ,-''.
0.9205 O.O093 O.0007 8.3207 ,5. mi
1.0013 0.0003-0.0007 1.29*3 1 . O7 1
1.O015 -0.0001 -0.0005 0.4736 O.<09
0.6095 0.0302 0.0339 26.7094 17. '597
0.6062 0.0276 0.0293 24.2*95 15.762
0.7955 O.O1O4 0.0178 16.3O*4 lO.:>rc2
0.9264 0.0035 0.0063 7.r>7tt!> 4.791
1.0003 0.0007-0.0006 1.1 5O* ;.">*2
1.0013 -O.OOOO -O.0003 O.*lTi 0.353
    OBSERVER POSITION AT 1/2 OF A 22.5 DEGREE WIND DIRECTION SECTOR FROM THE PLUME CENTERLINE  AT THE GIVEN DISTANCE FROTT THE
         90.    O.ll   179.4    3.05   57.32   80.37  0.3154  0.3273   -6.6O   -3.60-0.1O13   0.0102  0.0173  0.0165 15.373^
   Exhibit A-7  (continued)

-------
    DOWNWIND  DISTANCE 
    PI.UWE ALTJTUDE (W)
    THETA
      43.
00
        90.
ALPHA

 30.
 30.
 3O.
 3O.
 3O.
 30.
 45.
 45.
 45.
 45.
 45.
 45.
 60.
 CO.
 GO.
 6O.
 60.
 6O.
 90.
 90.
 90.
  90.
  90.
  90.

  30.
  3O.
  30.
  30.
  30.
  3O.
  45.
  45.
  43.
  45.
  45.
  45.
                        VISUAL EFFECTS FOR F9N-HORIZONTAL CLEAR SKY VIEWS TimOUCn PLUME CENTER
                             HW POWER PLANT
                                                                               DELL  CC550)  BPJVTIO
BETA

15.
30.
45.
6O.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
 15.
30.
45.
60.
75.
 90.

 15.
 3O.
 45.
 60.
 75.
 90.
 15.
 30.
 45.
 60.
 75.
 90.
100.
392
RP
2.93
1.41
0.08
O.60
O.44
O.39
2. 10
1.O4
0.63
O.51
O.42
0.39
1.73
O.Q8
0.6O
0.47
O.41
0.39
1. 51
0.7O
O.55
0.45
O.41
0.39
2.95
1.41
0.00
0.60
O.44
0.39
2. 10
1.04
0.68
0.51
0.42
0.39
0
.
YCAP
39.24
27.66
23.42
21.42
20.47
20. 18
39.25
26.50
21.83
19.64
18.61
18. 3O
39 . 40
26. Ol
21. 11
18.81
17.73
17.41
39.54
25.73
20.67
18.30
17. 19
16.86
22.96
15.74
13.08
11.83
11.23
11.05
23.43
15.46
12.53
11. 13
10.50
10.30


L
GO. 95
59 . 6 1
53.54
53.45
52.40
52.07
63.96
53.54
53.88
51.47
5O.26
49.90
69.07
58.08
53. 10
50.50
49.21
48.81
60. 17
57.82
52.62
49.90
48.33
48. 12
53.06
46 . 67
42.93
40.98
40.01
39.70
55.55
46.30
42.08
39.07
33.76
30.42


X
0.3342
0.3374
0.3415
O . 3447
O . 3468
0.3475
0.3190
O.3192
O.3220
O.3243
0.3258
0.3263
0.3104
0.3093
O.3114
0.3133
0.3145
O.315O
0.3047
0.3028
0 . 3O44
0.3061
0.3072
0 . 3O76
0.3188
O . 3207
O.3242
O.3271
0.3291
0 . 3299
0.3040
0.3029
0.3049
0.3068
0.3030
0 . 3085


Y
0.3341
0.3352
0.3377
0.3600
O.3616
0.3622
O.3410
0.3088
0.3399
0.3413
0.3423
0 . 3426
0.3324
0.3286
O.3291
0 . 300 1
0.3309
O.3312
0.3263
O.3213
O.3217
0.3223
0.3231
O.3234
0.3407
O . 3406
0.3427
0.3449
0.3463
0.3472
O.3269
0.3233
0.3238
0.3248
0.3236
0.3259


DELYCAP
-2.36
3.43
5.63
6.66
7. 13
7.20
-2.33
2.30
4.03
4.83
5.27
5.39
-2. 2O
1 .81
3.33
4.05
4.39
4.49
-2.00
1.53
2.9O
3.54
3.03
3.94
-3.33
0.33
1.77
2.43
2.73
2.82
-2.90
0.03
1.21
1.73
2.00
2.07
-1.67
 3.29
 6.2O
 8. 10
 9.09
 9.40
-1.66
 2.22
 4.62
 6. 12
 6.93
 7.22
-1.56
 1.76
 3.84
 5. 16
 3.89
 6. 13
-1.46
 1.49
 3.37  O
  56
 .22
5.44
                                                                              4.
-0.O379
 O.1654
 0.3417
 0.4760
 O.5596
 0.5078
-0.0365
 0.1101
 O.2324
 0.3555
 O.4202
 O.4422
-0.0337
 0.0969
 O.2104
 0.2977
 O.3525
 O.3713
-O.O312
 O.OO42
   1045
 O.2610
 0.3104
 O.3269
                                                                             -3.32
                                                                              0.47
                                                                              2.78
                                                                              4. 19
                                                                              4.96
                                                                              5.20
                                                                             -2.84
                                                                              0. 1O
                                                                              1.93
                                                                              3.O8
                                                                              3.72
                                                                              3.92
0.1051
O.0493
0.1338
0.2060
O.3494
0.3707
O.0067
0.0312
0.1339
O.2127
0.2621
0.2709
0.2441
O.1783
0.I50:>
0. 13^3
O.1203
0.1231
0.3 134
0.2475
0.2157
O.1079
O. IfHKi
0.1350
O.3653
0.2994
O.203O
O.2453
O.2349
0.2316
O.4O63
0.3401
O.3OU9
O.2323
O.2716
O.2601

O.2634
O. I9II3
O. 1693
O.152O
0.1435
0.1404
0.3337
0.27 10
0.2403
O.2220
0.2132
0.2101
0
0
0
0
0
0
0,
0,
0,
O,
0.
0.
0.
0.
O.
0.
0.
0.
O.
O.
O.
O.
O.
O.

0.
0.
0.
0.
0.
0.
O.
0.
0.
O,
0.
0,
 DELX

0734
0347
O914
0958
0935
0994
0302
0666
0719
0755
O775
O781
O496
O366
Oft 13
O645
0663
0668
O439
P501
0544
0573
0509
0595

069O
07C5
0043
OQ85
091 1
O920
O342
0607
0652
OOO2
O7OO
0706
                                  DELY  EC LUV)  E< LAm
0.
O.
O.
0.
0.
O.
O.
0.
0.
0.
O.
O.
O.
0.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
0831
O963
1030
1072
1097
1 IO6
O700
0799
oa:,2
O333
0904
O91O
0614
0697
O744
O774
O790
070 r,
O553
0627
0670
O697
O7I2
0717
                                57,
                                54,
                                51,
                                30.
                                49.
                                49.
                                4O.
                                44.
                                42.
                                40.
                                40.
                                U9.
                                42.
                                30.
                                36.
                                35.
                                34.
                                34.
                                an.
                                33.
                                33.
                                3! .
                                31.
                                39.
                                                                                                                       1431
                                                                                                                       1H59
                                                                                                                       7607
G565
7076
1614
72O7
r'»92
H27O
0954
G7.12
5018
1423
O2 1 3
•:-r.9 1
7406
5249
1304
:»2 17
I 4O t
C691
1057
9333
                                              OS
                                              36
                                              35
                                              35
                                              35
                                              36
                                              3O
                                              29,
                                              29,
                                              23,
                                              23.
                                              no.
                                              27.
                                              25.
                                              25.
                                              24.
    6035
   .2507
    O7O1
    O302
    9375
    OO4O
    7720
    704O
    OH79
    76O4
    60O4
    049O
    05OO
    mio
    1951
    C.'l'lf*
    75^ 1
24.40 IO
2D.2927
22.6265
22.3J?H
22. U:r,5
                              0.
                              0.
                              0.
0.0840 49.
O.096O 44.
0.1023 41,
  1063 40,
  10O9 39,
  1098 39,
O.O7O2 41,
0.07O7 37,
0.0033 34,
0.0063 32
0.OOOO 31
0.0006 31
0051
9001
9043
2I9O 29
4233 29
21 16
4O14
1410
2204
3137 23
                                              32
                                              31,
                                              30,
                                              29
                                              27
                                              23
                                              24
                                                                                                                            2:)
                25I2
                OOO6
                 1304
                7722
                6012
                0034
                 K'.rtl
                <»()14
                5422
                9370
                7320
                6005
        Exhibit A-7!(continued)

-------
60.
60.
f*Q.
60.
60.
60.
90.
90.
9O.
9O.
90.
90.
15.
30.
45.
60.
,,75.
1 90.
15.
30.
45.
60.
75.
90.
1.73
0.03
0.60
0.47
0.41
O.39
1.51
0.70
0.55
0.45
0.41
0.39
23.73
13.38
12.29
10.84
10. 16
9.95
23.98
13.34
12. 15
10.65
9.93
9.74
55 . 07
46. 18
41.71
39.35
38. 16
37.00
56. 1O
46. 13
4 t . 49
39.03
37.79
37.41
O.2957
0.2933
0.2946
0.2961
0.2971
0.2975
O.2903
0.2072
0.2831
0.2803
0.2901
0.2904
0 . 3 1 30
0.3127
0.3123
0.3131
O.3I37
O.3139
0.31 17
0.3035
0.3049
0.3033
O.3057
0.3059
-2.53
-O.01
0.97
1 . 44
1.60
1.72
-2 . 31
-0.05
0.83
1.23
1.43
1.51
-2.51
-O.01
1.56
2.56
3. 12
3.30
-2.28
-0.07
1.34
2.24
2.74
2.90
-O.0757
O . O240
O. 1 11O
O. 1773
O.2I9B
0 ..2042
-O.OOO1
0.02O1
O.0970
0. 1562
O. 1933
0 . 2062
O . 3307
O. 3'»0.'J
O. ;*93'5
O . 2744
O . 204 1
0.2003
O.4276
O.3033
0 . 3343
0.^147
O.3033
O . "OO'l
0.0439
O.031 1
O . O349
0.0575
O.O591
0.0396
O . O405
0.0450
0 . Q4(J«i
0.0307
0.0321
O.0323
O . 06 1 3
O. 06.12
0.0721
O.O746
0 . 07f.O
O.O703
0.0550
0 . 00 1 O
O.OG43
0.0003
O.0031

3*.
32.
29.
23.
27.

33!
29.
20.
25.
24.
24.
                                                                                                                      54O1 23.90011
                                                                                                                      4039 22.nr>.°,r,
                                                                                                                      7014 21.r,29tt
                                                                                                                      1343 2O.7744
                                                                                                                      3320 2O.!;nr?3

                                                                                                                      i r:r»7 21. or>~o
                                                                                                                      007? 20.1003
                                                                                                                      702O  10.I7O4
                                                                                                                      200.?  lO.^rr,?
                                                                                                                      4302  I3.r,7fj1
                                                                                                                      2371  lO.20.r?r>
                        VISUAL EFFECTS FOR NON-HORIZONTAL CLEAR SKY VIEWS THROUGH PLUME CENTER
                        1600 riw POWER PLANT
00
ro
     DOWNWIND DISTANCE (KM)
     PLUHE ALTITUDE (M>
THETA
 135.
ALPHA

 30.
 30.
 30.
 30.
 30.
 30.
 45.
 45.
 45.
 45.
 45.
 45.
 60.
 60.
 60.
 60.
 60.
 60.
 90.
 90.
 90.
 90.
 90.
 90.
BETA

15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
100.
392
RP
2.95
1.41
0.38
0.60
0.44
0.39
2. 1O
1.04
0.68
0.51
0.42
0.39
1.73
0.88
0.60
0.47
0.41
0.39
1.51
0.7O
0.53
0.45
0.41
0.39
0
f
YCAP
25. 17
16.87
13.81
12.36
11.67
11.46
26.07
16.90
13.51
11.91
11. 16
10.93
26.62
16.97
13.40
11.72
10.93
10.69
26.99
17.03
13.34
11.61
10.79
10.53


L
57.28
40. 14
44.00
41.83
40.73
40.38
58. 14
48. 17
43.56
41. 12
39.89
39.51
58.65
48.26
43.39
40.81
39.50
39. 10
59.00
48.33
43.31
40.62
39.26
33.84


X
0.3153
O.3165
0.3197
0.3225
0.3246
0.3233
0.300/6
0 . 2986
0.3002
0.3019
0.3030
0.3035
0.2923
0.2892
0.2900
0.2912
0.2921
0.2924
0 . 2870
0 . 283 1
0.2836
0.2845
0.2852
0.2853


Y
0.3403
0.3397
0.3417
0.3440
0.3457
0.3464
0.3259
0.3216
0.3218
0.3227
0.3233
0.3238
0.3166
0.3107
0.3101
0.3106
0.3111
0.3113
0.3102
0.3033
0.3023
0.3023
0.3028
0.3030


DEL YCAP
-5.32
-O.99
0.66
1.43
1.79
1.89
-4.42
-0.96
0.36
0.99
1.23
1.37
-3.87
-0.89
0.25
0.79
1.05
1. 13
-3.50
-0.83
0. 19
0.63
0.91
0.93
DELL  C<530>  BRATIO
                                                                             -4.83 -
                                                                             -1.22 -
                                                                              0.98
                                                                              2.33
                                                                              3.06
                                                                              3.29
                                                                             -3.97
                                                                                19
                                                                        -1
                                                                              0.34
                                                                              1.62
                                                                              2.22
                                                                              2.42
                                                                             -3.46
                                                                                11
                                                                        -1
                                                                              0.37
                                                                              1.
                                                                              1.
                                                                              2,
                                                                             -3.
                                                                             -I.
                                                                           31
                                                                           83
                                                                           00
                                                                           11
                                                                           03
                                                                              0.29
                                                                                13
                                                                                60
                                                                              1.75
     0.1443
     0.0176
     0.0927
     O.1765
     0.2283
     0.2453
     O.1159
     0.0190
     0.0650
     O.1304
     0.1711
     0.1849
     0.1001
     0.0180
     0.0536
     0.1007
     0.1434
     0. 1552
     0.0C96
     0.0169
     0.0463
     0.0954
     0.1262
     0. 1367
                                                                                       0.
                                                                                       0.
                                                                                       0.
                                                                                       0.
0.2666
0.2034
  1745
  1577
  1481
  1448
0.3389
0.2303
0.2501
0.2322
0.2225
0.2194
0.3931
0.3366
0.3054
O.2366
O.2763
0.2731
0.4346
0.3798
0.3481
O.3287
0.3130
0.3146
   DELX

0.0678
O.O764
0.0820
0.0360
0.0383
0.0394
0.0528
0.0333
0.0625
0.0053
0.0070
O.0075
0.0446
0.0490
O.0523
O.O347
0.0361
0.0503
0.0393
0.0430
0.0459
O.0479
0.0492
0.0496
0.
0.
0.
0.
0,
0.
0,
0.
O.
0,
0,
O,
0.
0.
0,
0,
0,
0,
0,
0,
0,
0,
0,
                                                                                                               DELY  E(LUV)  E(LAB)
0851
09f-3
1030
1071
1093
1103
0707
0787
0831
0339
0376
0881
0014
0673
0714
0733
0751
0756
0550
0604
0636
0657
0669
52.
48.
44.
42.
42.
41,
44.
39.
36.
34.
33.
33.
39.
34.
31.
30.
29.
23.
35.
31,
23,
26.
20.
6364
13C3
0394
9043
07C-1
3345
4363
0003
6244
7434
7598
4550
1702
7944
8374
1011
1051
8703
4790
3010
6334
9961
1 134
31
31
                                                                                                       0.0673 23.8413
34.3734
32.0479
   0034
   1581
30.9023
30.9736
28.9076
27.0445
25.7722
23.07GO
24.7448
24.0475
23.
-------
                    PLUME VISUAL EFFECTS FOR HOUIZOrTTAL  VIEWS
                    PKRPEWDICULAII TO THE PJLUHE OF WHITE,  GRAY,  AND
                    FOR VARIOUS  0DSERVF.R-PLUNE AND OBSERVER-OBJECT
                    160O MW POWER PLANT
BLACK OBJECTS
DISTANCES
00
CO
DOWNWIND 1
TlfKTA =
REFLECT I
.0
.0
.0
.0
.0.
1.0
1.0
1.0
.0
.O
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
O.3
0.3
0.3
O.3
0.3
0.3
0.3
0.3
0.3
O.3
0.3
0.3
0.3
0,3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
DISTANCE
45.

0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
O. 10
0. 1O
0. 10
0.20
0.20
0.20
0.50
0.5O
0.80
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.80
(KTI> =

io/nvo
0.02
0.05
0. 10
0.20
0.50
0.00
0.05
0. 10
0.20
0.50
O.CO
0. 10
0.20
0.50
O.CO
0.20
0.50
O.OO
O.50
O.OO
O.CO
0.02
0.05
0. 10
O.20
0.50
O.CO
0.05
0. 10
0.20
0.50
0.00
0. 10
0.20
0.50
0.00
0.20
0.50
0.00
0.50
o.ce
o.no
100.0

YCAP
92.91
88.64
09. 18
90.63
92.66
93.20
92.77
39. 16
90.57
92.53
93. 13
95.24
92.95
94.91
95.51
93.02
93.35
9O.95
1O3.7O
103.50
1O3. 1 1
35.00
42.04
51.04
64.46
04.02
90.34
42.72
52. 14
65. 14
04. 11
90.26
50. 09
67.52
O6.49
92.64
70.50
O9.94
96. OO
94.40
100.71
101.96


L
97.20
95.43
95.66
96.26
97.09
97.34
97. 14
95.65
96.24
97.04
97.20
98. 13
97.21
98.00
98.24
99.54
99.36
99.59
101.41
101.37
101.94
65.78
70.03
76.72
04.22
93.46
96. 14
71 .09
77.0O
04.57
90.51
96. 11
7O.41
05.70
94.53
97.00
87.26
95.97
98.47
97.79
100.27
100.75


X
0.3462
0.3575
0.3562
0.3536
0.3514
0.3514
O.G452
0.3532
0.3509
O. 349 1
O.3490
0.3371
0.0414
O.G399
0.3399
O.0203
0.029O
0.3299
0.0210
O.0216
O.0207
O.G022
O.OOOO
0.0003
0.3300
O.0405
0.0466
0.0209
0.0245
0.0271
O.G001
0.0443
0.30O9
0.3165
0.3239
O.3053
0.3037
0.3108
0.3253
0.3102
0.3171
0.3161


Y
0.3567
0.3662
0.0649
0.3627
0.0617
0.0619
0.0546
0.3602
0.05O5
0.3577
0.3500
0.0455
0 . 0400
0.0475
0.3470
0.0064
0.0371
0.0074
0.0309
0.0009
0.0311
0 . 0426
0 . 0406
0.0420
0.0457
0.0557
0.0600
0.0007
0.0049
0.0402
0.0516
0.3561
0.3190
0.0279
0.0410
0.0458
0.0153
0.3303
0.0053
0.0207
0 . 0208
0 . 3207


DELYCAP
-5. 10
-10.29
- I 1 . 02
- 1 1 . 43
-11.96
-12. 11
-6. 15
-11.03
- 1 1 . 49
-12. 10
-12.26
-4.96
-9.11
-9.72
-9. CO
-3.24
-6.27
-6.44
-0.93
-1.81-
-0.28
0.03
-O.74
-2.85
-6.0O
-10. 02
-1 1.59
-0.06
-1.75
-5.02
-10.22
-1 1.67
-0.01
-2.94
-7.04
-9.29
0.05
-4.40
-5.05
0.06
-1.22
0.03


DELL
-2.03
-4. 15
-4.42
-4.53
-4.67
-4.70
-2.44
-4.42
-4.56
-4.72
-4.76
-1.95
-3.58
-0.76
-3.O1
-1.25
-2.40
-2.45
-0.33
-0.68
-0. 10
0.03
-0.51
-1.69
-0.01
-4.00
-4.60
-0.04
-1.03
-2.66
-4 . 26
-4.63
-0.00
-1 .45
-3.24
-3.66
0.02
-1.79
-2.27
0.02
-0.47
0.01


C(550)
-0 . 0493
-0. 1015
-0. 1071
-0. 1084
-0. 1102
-0. 1103
-0.0605
-0. 1091
-O. 110O
-0. 1 132
-0. 1 139
-0.0491
-0.0097
-0.0927
-0,0903
-0.0026
-O.0619
-0.0630
-O.OG9O
-0.0190
-0.0000
0.0001
-0.0107
-0.0471
-0.0780
-O. 1004
-0. 1000
0 . O002
-O.0297
-0.0706
-0. 1042
-0.1110
0.0001
-0.0403
-O.OO16
-0.0904
0 . 000 1
-0.0477
-0.0590
0.0000
-0.0107
0.0000


BRAT 10
0.7379
0 . 6434
0.6273
0.6163
O.61O1
0.609O
0.7957
0.6965
0.6761
0.6650
0.6643
0.3326
O.OQ90
0.7921
0 . 79 1 2
0.9533
0.9222
0.9210
0.9903
0.0908
1 . O009
0.0139
0.6772
0.6227
O.5993
O.6O03
0.6053
0.0052
O.7IOO
O.6603
O.«,530
O.6533
0 . 9063
O.797O
O.7779
O. 70 1-4
0.9574
0.9053
0.9129
0.9090
0.9393
0 . 9960


DELX
0.0143
0 . 0279
0.0296
0.0302
0.0306
0 . 03O7
0.0137
0 . 0265
O . 0275
0 . 0282
0 . 0233
0.0105
0 . O 1 80
0.0191
O.0192
0 . 0049
0.0090
0.0002
O.OOO5
0 . 0000
-O.OOOO
O.O128
O.O245
O . 0234
O.OOOO
O.O009
O.0008
O.O121
0 . 0225
0.0266
0 . 0233
0 . 0235
0 . 0070
0.0160
0.0193
0.0194
O.OO32
0.0092
0.0094
0 . 0006
0.0013
0.0002


DELY E( LUV) E( LAB)
0.0145 12.9348 8.77O7
0.0267 24.2007 16.4433
0.0286 26.10O3 17.6270
O.O293 27.3776 13.3524
O.O3O6 23.3055 13.921/}
0.0306 23.4344 10.9849
0.0151 14.1015 9.3364
0.0239 23.1033 15.35f:r,
0.0255 24.6233 16.2762
0.0267 25.3764 17.0212
0.0267 25.0007 17. (O'U
0.0O92 9.53O3 6.1622
O.OI5O 16. COOn 10.4263
O.OI65 17.5716 11.2319
0.0166 17.7243 11.3330
O.OO04 4.5016 2.C369
0.006O 8.2763 5.2163
0.0062 3. ''.509 5.031:)
-O.OOO1 0.6505 0.4303
-O.OOOO 1.2r;j:7 0.0417
-O.OOO2 O. K5~9 0. 1563
O.O101 8. 1 fO5 5.5236
0.0249 17.0370 11.2730
O.OOOO 22.5021 14.69,10
0.0120 27.0003 17.460!
O.O023 20. 12Q3 19.O417
O.OO 13 28.3399 19.QOO2
O.O120 8.52(7 5.49O6
O.O223 17.5734 11.1193
O.O274 23.4272 I4.G005
O.O283 26.5102 17.1107
O.0274 26.0561 17.2OO9
0.0064 5.3752 3.2701
0.0151 10.0749 O. 5534
0.0176 17.9927 11.0O93
0.0171 18.0253 11.4727
0.0025 2.3056 1.5016
0.0069 8.4605 5.1470
0.0066 0.7047 5.4049
0.0003 0.5359 0.3049
0.0001 1.2020 0.0407
0.0000 0.1647 0.0067
            Exhibit A-7 (continued)

-------
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.2O
O.20
0.50
0.50
0.00
0.02
0.05
0. 10
0.20
O.50
O.CO
0.05
0. 10
0.20
0.50
O.CO
0. 1O
0.20
0.50
o.no
0.20
0.5O
O.CO
0.50
0.00
O.CO
10. in
22.00
34.70
53.24
00.31
09.00
21.27
36 . 27
54.24
CO. 50
89.03
36. 16
56.62
82. 03
91,41
50.37
06.33
94 . 05
90.41
99 . 40
100.61
30.20
54. 14
65.54
7O.04
91.03
95 . 62
53.2O
66.76
7O.62
91.92
95.60
66.67
79.98
92.97
96. 5O
80.96
94.46
97. 9O
96. 17
99.80
100.24
0.2860
0.2979
0.3052
0.3156
0.3353
0.3445
0.2832
0.2903
0.3116
0.3328
0 . 3423
0.231O
0.3007
O.G236
0.3332
0.2077
0.3136
0.3232
O.305O
0.3152
0.3140
0.2967
0.3107
0.3215
0.3343
0.3529
0.3592
0.2939
0.3118
0.3202
0.3407
0.3553
0.2935
0.3151
0.3379
0.3449
0.3015
0.3271
0.3343
0.3202
0.3270
0.3277
2.23
3.35
O.65
-3.67
-9.61
- 11 . 37
2.55
2.22
-2.67
-9.42
-11.42
2. 11
-0.29
-7.04
-9.04
1.46
-3 . 59
-5.59
0.49
-0.96
0. 17
4.29
3.74
0.51
-2. 11
-4. 14
-4.55
2.O8
1.72
-1.53
-4.05
-4.5O
1.64
-0. 16
-3.00
-3.59
0.01
-1.51
-2.20
0.20
-0.37
0.06
0.2017
0. 1041
0.0200
-0.0549
-O. 1001
-0. 108O
0. 1367
0.0697
-0.0400
-0.0997
-0. 1102
0.0617
-0.0027
-0 . 076 1
-O.OC90
0.0249
-0.0407
-0.0572
0 . 0049
-0.0113
0.0014
0.6363
0.5647
0.565O
0.5747
O.5943
O.6031
0 . 7494
O . 0459
0.6325
0 . 6457
0.6560
0.3579
0.7653
0.7692
O.781O
0.9392
O.0952
0 . 9O3?.
O.9333
0.9349
0.9935
O . 020 1
0 . 0279
0.0299
0.0308
0.0311
0.0303
O.0132
O.0229
0 . 0263
0 . 0236
O . O235
0.0065
0.0159
O.OI94
0.0195
0 . 0030
0.0094
0 . 0095
o . oooa
0.0014
0.0003
O.O213 7.3231 6.33f>0
0.0307 13.3364 lO.67f.D
0.034422.0025 14. I6O2
O.O354 27.3559 17. 3445
0.033229.4781 19.1109
0.0316 28.9976 19.105C
0.0138 6.8444 5.0736
0.0247 16.2243 10.293T5
0.0293 23.4105 14.57C5
O.O290 26.0501 17. 17C5
O.0277 26.5152 17.2402
0.0063 4.1948 2.9KJ2
0.0162 13.5613 O. M36
0.0182 18.2348 11.3536
O.O173 1O. 1614 11 .5146
0.0026 2.2323 1.4744
O.O074 0.6356 5.1703
O.O06O 0.0200 5.4*20
O.OOO5 0.6462 0.40S2
0 . OOO2 1 . 3655 0 . 0460
0.0001 0.2393 O. 1455
CO
            Exhibit A-7 (continued)

-------
                         VISUAL. EFFECTS FOR HORIZONTAL
                                TO TUK FLUKE or WIIITK,  CRAV,  Am>
                  FOR VARIOUS  OBSERVER-PLUME AND OBSERVER-OBJECT
                  1600 MW POWER PLANT
BLACK OBJECTS
DISTANCES
00
Down
TOET/
REFLF















VTWD DISTANCE CKH) =
k = 90.
:CT luvnva no/nvo
. 0 01'. 02 0 . 02
.O 0.02 0.05
.0 0.02 0.10
.0 0.02 0.20
.0 0.02 0.50
.0, 0.02 O.GO
.O
.0
.0
.0
.0
.O
.0
.0
.0
.O
.O
.0
.O
.0
.O
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
O.3
0.3
0.3
0.3
0.05
0.05
0.05
0.05
0.03
0. JO
0. 10
O. 10
0. 10
0.20
0.2O
0.2O
O.50
0.50
0.80
0.02
0.02
0.02
0.02
O.02
0.02
0.05
O.05
0.05
0.05
0.05
0. 10
0. 1O
0.10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.05
0. 10
0.20
0.5O
0.80
O. 10
0.20
O.5O
0.00
0.20
O.50
O.CO
O.5O
0.80
O.CO
0.02
0.05
O. 10
0.20
0.50
O.OO
O.05
O. 1O
0.20
0.50
0.00
0. 10
0.20
0.50
O.OO
0.20
0.50
0.80
0 . 50
0.00
0.80
1OO.O
YCAP
88.32
78.69
73.70
67.04
57. 15
53.07
33.34
73.01
66.55
56.93
53.73
79.39
68.00
5O.39
55. 19
73.37
6O.49
57 . 29
64.29
6O. 11
61.21
30.41
32.09
35.57
40.07
48.51
50.93
33.29
35.99
41. 12
40.51
50.86
30.04
42.57
49.97
52.32
45.06
52.07
54.42
54.99
57.24
50.06
L
95.30
91. 10
00.79
05.54
00.20
7O.40
93. 17
OC.46
85.29
OO. 16
7O.32
91.42
86.02
80.97
79. 17
88.64
02. 12
O0.36
O4. 13
81.91
82.51
62. 04
63.45
66.22
70. 11
75. 17
76.66
64.42
66.54
7O.28
75.17
76.62
60.00
71.29
76.07
77.49
72.95
77.34
70.73
79.06
00.33
00.79
X
0.3481
0.3621
0.3618
0.3579
0.3460
0.3309
0.3497
0.3600
O.3557
0.3434
0.3363
0.3435
0.3468
O.3341
0.3270
0.3335
0.3238
0.3168
0.3158
0.3087
0.0001
0.3354
0.3362
0.3300
0.3252
O.327O
O.3303
0.3243
0.3245
0.3214
0,3244
0 . 3278
0.3096
0.3109
0.3151
0.3186
0.2987
0.3051
0.3086
0.2971
0.3000
0.2999
Y DELYCAP
0.3503 -6.26
0.3696 -12.14
0.3601 -11.76
O.3032 -10.34
0.3520 -O.33
0.3405 -7.71
0.3501
0.3644
O.3592
0.34O5
0.3441
0 . 349O
0.3491
O.3377
0.3331
0 . 3377
O.3267
0.3220
0.3207
0.3151
0.3155
0.3449
0.3444
O.3396
0.3372
O.U416
O . 3447
0.3321
0.3317
0.0314
0.3371
0 . 3403
0.3163
O.3186
0.3256
0 . 329 1
0.3062
0.3142
0.3170
0.3076
0.3109
0.3110
-7.49
-12.45
-1O.03
-0.55
-7.05
-6.07
-9.30
-7.O9
-6.39
-4.01
-4.99
-4.29
-1. 19
-1.47
-0.37
-1. 12
-2.59
-3.59
-4.90
-6.68
-7. 19
-1.40
-3. 17
-4.66
-6.67
-7.26
-1. 12
-3.20
-5.22
-5.00
-0.72
-3. 12
-3.70
-0. 19
-O.OO
-0.03
DELL
-2.57
-5.24
-5.29
-4.97
-4.46
-4.30
-3. 17
-5.62
-5 . 22
-4.59
-4.38
-2.67
-4.40
-3.77
-3.54
-1.O7
-2.63
-2.35
-O.61
-0.79
-0.20
-0.95
-2.0O
-2.67
-3.31
-4.OO
-4. 17
-1.11
-2.35
-3. 14
-4.00
-4.21
-0.02
-2. 13
-3. 10
-3.33
-0.47
-1.82
-2. 10
-0. 11
-0.49
-0.03
CC550)
-O.O641
-0. 1317
-0. 1357
-0. 1312
-0. 1223
-0. 1195
-0.0009
-0. 1455
-O. 1394
-0. 1279
-0. 1235
-0.0708
-0. 1226
-0. 1O31
-0. 1025
-0.0530
-0.0705
-0.071 I
-O.O194
-O.0257
-0.0064
-0.0308
-0.0719
-O.O863
-0.0997
-O. 1 132
-0. 1165
-0.039O
-0.0705
-0.0966
-0. 1150
-0. 1195
-0.02O4
-O.O6O5
-O.091O
-0.0974
-0.0164
-0.0569
-0.0644
-0.0042
-0,0167
-0.0012
BRAT 10
0 . 7053
0.6415
0.6303
0.6266
O.6I99
0.6160
0.7063
0.6930
0 . 6875
0 . 67O4
0.6733
O.8751
0 . O209
O.C092
0.0029
0 . 9632
O.942O
O.935O
I.OIOi
1.0126
1 . 0074
O.O265
O.7O44
O.649O
0.6173
O . 6O75
0.6091
O.O530
O.7426
O.6333
O.6629
O.60<6
O.926O
O . fi249
0.7906
O.7921
0.9737
0.9203
0.9218
0.9970
0.9969
0.9991
DELX DELY E(LUV) E(LAB)
0.0146 0.0147 12.9536 8.9000
0.0291 0.0275 23.0680 16.6770
0.0303 0.02O7 24.4147 17.0261
0.0302 O.O293 24.2035 16.7301
0.0303 O.O314 24.6990 16.6932
0.0304 0.0325 25.1053 16.G069
0.0168 O.O160 14.3617 9.331O
0.02O4 0.0250 22.5O37 15.5920
O.02OO 0.025422.1233 15.1352
0.027O 0.0271 22.3538 14.9416
0.0279 0.0201 22.73!?0 15.0514
0.0120 O.O104 10.O636 6.7752
0.0191 O.O152 15.2002 10.2121
O.0105 O.OI63 14.9313 9.3193
O.O1O5 0.0171 15.3038 9.3936
O.0059 O.OO3O 4.3773 3.2733
O. OO32 O.O053 6.3144 4.5374
0.0034 0.0060 7.0233 4.525O
O.OOO2 -O.OOO7 0.3135 O.7<*-O3
0.0003 -O.OOO9 1.O73G 0.9073
-O.O003 -O.O005 0.0533 0.2303
0.0125 O.O129 7.0149 5.3307
O.O240 O.O242 15.3214 1O.4144
O.0274 O.O295 19.5732 13.1173
O.O204 O.O331 23.3022 15.41T>
O.O303 O.0341 25.6374 16.8176
O.OOO4 O.O336 25.0314 10.9235
O.O121 O.O119 7.94'M 5.2333
O.021O O.O216 13.3123 1O.03I4
O.O256 0.0272 20. 1373 13.O776
0.0277 O.O293 23. HMO 15.0119
O.O279 0.0292 23.2720 15.!O-V>
O.0069 O.O002 4.9233 3.1O1O
O.O151 O.O144 11.3711 7.4722
0.0134 0.0131 15.1001 9.3390
O.01O7 O.O179 15.7112 10.O212
0.0029 0.0020 2. K5~0 1.3114
O.OOO4 0.0006 7.0310 4.3530
0.0007 0.0067 7.3029 4.6103
0.0004 -O.OOOO 0.3311 0.2243
0.0009 -0.0002 0.9640 O.7176
0.0001 -0.0001 0.0013 0.0070
           Exhibit A-7 (continued)

-------
0.0
0.0
O.0
0.0
O.0
O.0
0.0
0.0
O.0
O.0
O.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.02
0.02
0.02
0.02
O.02
O.02
0.05
0.05
0.09
0.05
0.05
0. 1O
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.02
0.05
0. (0
0.20
0.50
O.GO
0.05
O. 10
0.20
0.50
O.OO
0. 10
0.20
0.50
0.00
0.20
0.50
O.OO
0.50
0.00
0.00
5.59
12. 13
19.23
29.66
44.OO
49.67
11.04
20. 12
30.22
44.91
49.64
20.32
31.60
46.36
51.09
32.92
43.46
.73. 19
51.01
56.01
50.72
20.39
41.46
50.99
61.39
72.79
75. 09
41.00
52.01
61.07
72. C5
75.07
52.23
63. 1O
73. CO
76.75
64. 13
75. 14
78.01
76.70
79.64
00.04
0.2692
0.279O
O.2073
0.2977
0.3172
O.3263
0.2661
O.2G04
0.2936
O.3146
0.3239
0.2652
0.2330
0.3054
0.314O
0.271O
0.2956
O.3O49
0.2076
0.2972
0.2962
0.2749
O.2093
O.3014
0.3154
0.3350
0.3430
0.2725
0.2910
0 . 3000
O.3312
O.3306
0 . 2726
0.2949
0.3195
0.3272
0.2011
O.30CO
0.3159
0.3009
0.3091
0.0090
i.oa
1.50
-0.09
-2.57
-5.97
-6.97
1.21
O.O1
-2.01
-5.07
-7.00
1.00
-0.56
-4.42
-5.55
0.69
-2.31
-3.44
0.23
-0.63
o.oa
3.05
2.47
-0. 10
-2. 17
-3.7O
-4. 11
2.01
0.92
-1.69
-3.71
-4. 13
1. 14
-O.46
-2.76
-3.24
0.56
-1.43
-1.99
O. 14
-0.36
O.04
0.2309
0. 1471
0 . 006O
-O.O676
-0. 10O1
-0. 1152
0. 1145
0 . 047O
-0.0331
-0. 10OO
-0. 1176
0.0517
-O.O134
-O . 0029
-O.O951
O.O208
-0.0453
-O.O613
0.0041
-0.0126
O.O011
0.6599
O.5O45
O.5775
0.501O
0.5975
0.6052
0.7634
O.6626
0.6421
O.6504
0.6596
0 . G303
0.777O
0.7754
0.7360
0.94-33
0.901O
0.9 143
0.9350
0.9331
O.9944
0.0177
O . O252
0.0277
0 . 0293
0.0.1O3
O.O3O4
0.0113
0 . 0203
0.0252
0 . 0277
0 . 0279
O.O056
O.O146
0.0135
O . 0 1 33
O . QO26
0 . OOO7
O.CO39
O . O307
0.0012
O.0002
0.O203 4.B33! 4.T1 12.2170
O.0067 23.6701 15.3139
0.0354 26.1207 16.9777
0.0341 25.O505 16.9334
O.0131 4.O1G1 3.O096
0.0245 12.9675 O.5013
0.0301 20. O 150 12.7274
O.030O 23.6409 15.1002
O.O297 23.4910 13. 2075
0.0061 2.9712 2.1502
O.O 162 11.2291 6. 9:*. 17
0.0190 15.0334 9.9~23
0.0103 15.9005 10.0CJ70
O.O025 1.5752 1.O041
O.O075 7.2T>3 4.4O55
O.OO70 7.53J5 4.0702
0 . 0005 0 . 4462 0 . 2:jn 1
0.0002 1.0502 0.6G53
O.O001 O. 1030 O. 1O14
00
o>
           Exhibit A-7  (continued)

-------
                PLUWE VISUAL EFFECTS FOR HORIZONTAL VIEWS
                PERPENDICULAR TO TI!E PLUWE OF  WHITE,  CllAY,  AND
                FOR VARIOUS  OCSERVER-PLUME AND OBSERVER-OBJECT
                1600 MW POWER PLANT
BLACK OBJECTS
DISTANCES
00
DOWNWIND DISTANCE
THETA = 135.
(HI) =
REFLECT RPXRVO . •' ' RO/RVO
1.0
1.0-
1.0
1.0
1.0
1.0
l.O
1.0
1.0
1.0
1.0
l.O
1.0
1.0
1.0
1.0
1.0
l.O
1.0
1.0
1.0
O.3
O.3
0.3
0.3
O.3
O.3
0.3
O.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.02
0.02
O.02
0.02
0.02
0.02
0.03
O.05
0.03
O.O5
0.03
0. 1O
O. 10
0. 1O
0. 1O
O.20
0.20
0.20
0.30
0.50
0.00
0,02
0.02
O.O2
O.O2
O.O2
O.02
0.03
0.03
0.03
O.O5
0.03
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.02
0.05
0. 10
0.20
O.50
O.C3
0.03
0. 10
0.20
o.r>o
0.39
O. 10
O.20
O.50
0.30
O.20
O.50
o.no
0.50
o.oo
0.00
0.02
0.05
0. 10
0.20
0.50
O.OO
0.03
O. 10
0.20
0.50
O.CO
0. 10
0.20
0.50
o.ao
0.20
0.50
0.00
0.50
O..C9
0.00
100.0
YCAP
C3.56
79.21
74.71
63.78
59.92
56.95
03. 9S
74.03
63.31
59.70
56. OO
O0.68
69.95
61.33
53.44
75.62
63.70
60. OO
67.87
63.93
65. 19
30.64
32.61
36.57
42.61
51.27
54.01
33.93
37.05
42. 03
51.28
53.93
39.33
44.52
52.91
55.57
47. 3O
55.28
57 . 94
53.57
61.11
62.05

L
95.40
91.34
09.27
36.41
31.31
00. 17
93 . 45
80.97
06. 13
31.69
30.09
92.00
06.99
02.57
Ol.OO
39.69
rtn no
OO . O'-iS
32.29
35. V 6
03.97
34.60
62.23
63.00
66.98
71.31
76.06
78.49
64.94
67.34
71.50
76.37
78.44
69.02
72.60
77.84
79.39
74.41
79.22
80.72
81.07
02.46
32.95

X
O.C473
0.06O2
0.3533
0.3335
0 . 3406
O.GGOO
0 . G470
O.3565
0.3510
0.3G30
0.0312
0 . 3402
O.G417
O.0235
0.3213
0.3237
O.3102
0.31 16
0.3104
0.3036
O.G032
O.G334
O.G325
0.3236
0 . 3203
O.0222
0.3235
0.3207
0.3196
0.3163
0.3195
O.G230
0.3049
0.3037
0.3101
0.3137
0.2937
0.3001
0.3038
0.2924
0.2961
0.2954


Y DELYCAP
0.8576
0.3600
0.3057
0.3601
0 . 3499
0 . 3*6 1
0.3563
0.3615
0.3558
0.3454
0.3416
0 . 3467
0.0451
0 . 0042
O.OGO2
O.0005
0.0229
o.3iao
0.0169
0.01 19
0.3124
0 . 0430
0.3

.no -:).35 -M.60 -0.50 -1.97 -2.27 -0. 12 -0.53 -0.03 CC550) -O.O644 -0. 1323 -0. 1367 -0. 1330 -0. 1262 -0. 1237 -0 . 03 1 0 -O. 1v56 -O. 1405 -0. 1312 -O. 1277 -O.O7O3 -0. 1224 -0. 1 103 -o. lor.o -0.0519 -O.O790 -0.07GO -o.oi as -0.0256 -O.OO60 -O.OG52 -0.074T -O.OOO2 -0. 1O42 -0. 1179 -0. !212 -0 . 0402 -0.0314 -O. 1007 -O. 1 197 -O. 1242 -O.02G9 -0.0703 -0.0954 -0. 1O12 -0.0164 -0.0590 -0.0669 -0.0041 -0.0173 -0.0012 BRATIO 0 . 7373 0.6403 0.6325 0.6200 0.61G2 O^M-7 0.7919 0 . 700 1 o.o r:o 2 0.6777 0 . 67P.O o.c^rii O.C257 O.C009 0 . f!939 0.9673 O . 9444 0.9309 1.0107 1.0136 1 . OO75 O.C2O? O.7OC3 0.6500 0.0171 0.0069 o . oor? 3 O.U5C3 0 . 747 1 0.6,1514 0 . 6635 0.6650 0.9305 O.C23S 0.7926 0 . 7940 0.9764 0.9230 0 . 9246 0.9973 0.99^6 0.9993 OELX DELY E(LUV) E(LAB) 0.0145 0.O147 12.9710 O.9<°>2T 0.0233 0.0275 23.9629 16.6^44 O.oriOl 0.0239 24.3759 17.2252 0.0302 0.0300 23. 1327 I7.2rcv- O.Or,03 O.0"23 26.O3r,9 17.4020 0.0:)03 0.0')32 26.4394 17.5J.rO O.OK>4 O.O153 14. 2361 9 . 7'.','^, O.0';7.1 O.O243 2'.>.6f'O3 15.3:;2-:- 0.0277 O.O257 22.7700 15.42^.", 0.'">r>77on o.oif4 0.0100 9.cr,<.'i 6..T07:; O.OJR4 0.01 GO 15.2300 IO.lf?'>;; 0. 030*2 O.O100 15.0^7O ! O . K- •" -^ o.oian 0.0174 1 6.0000 10.275') o.oona o.oons 4,0500 a.i:;irj 0.0079 O.0'>53 7.02^3 4.6:;7rj O.OOCSI O.OOOO 7.. 2720 4.675:» O.OOOO -O.O(^O7 O.78'>5 0 . 7222 0.0002 -o.O'"fio 1.0314 0.9 '>:••:• -O.O003 -O.OOO5 0.0320 0 . 2.1O4 0.0124 0.0129 7.0057 5.35:t7 0.02C3 0.0243 15.5533 JO. 5305 O.0271 O.0209 20.20;)2 1D.4C^2 O.O29I 0.0037 24.'X"t-O 15.9'.\2.') O.OJ101 O.C-"47 20.93': 2 17.T371 0.0002 0.0343 26.93C9 17. 6: .'30 0.0117 O.0117 7.9105 5.2"7A 0.0211 O.O214 15.0049 1O.KIO'.', O.P251 O.O275 2O.°r>^l 13.49O-:. O.O274 O.OOOO 24.2001 15.6470 O.O276 O.O297 24.0955 15.79O4 0.0004 0.0059 4.3047 3.0033 0.0143 O.O143 12.1243 7. 59 ID O.Oir.O 0.0182 16.1523 10.1230 0.0134 0.01O1 16.3917 10.3903 O.O026 0.0018 2.O697 1.2477 O.GOfiO 0.0066 7.2213 4.4092 0.0034 0.0066 7.5955 4.7553 O.OOO3 -0.0000 0.2944 0.2O'J1 0.0003 -0.0002 0.9557 O.7;?:iO O.OOOO -O.0001 0.0763 O.0027 Exhibit A-7 (continued)


-------
O.0
o.o
o.o
o.o
o.o
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
o.o
0.0
o.o
o.o
0.0
0.0
O.O2
O.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05 •'•'
O.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
O.GO
O.02
0.05
0. 10
0.20
0.50
0.00
O.O5
0. 10
0.20
o.no
0.80
0. 10
0.20
0.50
O.80
0.20
0.50
0.09
0.50
O.CO
0.80
5.G2
12.65
20.23
31.09
47.57
52.75
12.48
21. 19
31.99
47.67
52.70
21.61
30.62
49.31
54.34
35. 17
51.67
56.71
54.59
59.08
60.70
29.00
42.27
52. 13
62. 07
74.57
77.75
42.02
53. 19
63.36
74.64
77.72
53.64
64.69
75.66
78.68
65.91
77. 10
00.03
78.82
81.79
82.23
0.2645
0.2750
0.2827
0.2932
0.3126
0.3218
0.2617
0.2757
0 . 2300
0.3100
0.3193
0.2611
0.2705
0.3O08
0.3101
0.2609
0.2911
0.3003
0 . 2333
0.2920
0.2919
0 . 27 1 1
0.2858
0.2982
0.3126
0.3335
0.3408
0.2608
O . 2075
0.3057
0.32O7
0.3362
0.2692
0.2916
0.3167
0.3245
0.2779
0.3049
0.3130
0.2900
0.3062
0.3062
0.98
1.25
-0.48
-3. 16
-6.81
-7.O8
1.08
0.48
-2.56
-6.71
-7.92
0.90
-0.92
-5.07
-6.28
O.62
-2.71
-3.92
0.21
-0.74
0.07
2.68
1.98
-0 . 53
-2.56
-4. 13
-4.45
1.73
0.52
-2.06
-4.06
-4.47
0.98
-0.73
-3.04
-3.51
0.49
-1.60
' -2. 16
0. 12
-0.40
0.04
0.2101
0. 1223
-0.0074
-O.0761
-0. 1134
-0. 1200
0.0996
O.0331
-0.06.18
-O. 1 135
-0. 1226
0.0450
-0.0206
-O.0374
-0.0991
0.0181
-0.0483
-0.0641
0.0035
-O.O 134
0.0010
0.6727
0.5953
0.5338
0.5349
0.598O
0.605O
0 . 7793
0.6721
0.6470
0 . 6522
0.66O5
0.0376
0.7338
0 . 7787
0.7034
0.9499
0.9053
0.9176
0.9372
0.9901
0.9949
O.0164
0 . 0203
0 . O267
0 . O2C6
O.O299
O.O3O1
O.O106
O.O197
0 . O244
0.0273
O.O276
0.0051
0.0139
0.01.10
0.01C4
0.0023
0.00153
0.0930
0.0006
0.001 1
0 . 0002
O.OI96 4.73O1 4.4766
O.0296 11.9079 0.59:57
0.0347 19.0714 12.59O3
0.0369 24.7358 15.8033
0.0359 27.3915 17.6063
O.O347 27. 1389 17.0371
O.O 126 4.7462 Q.6633
0.024O 13.26O9 8.6351
O.O3O1 20.8002 13.15O3
0.0311 24.7150 15.7406
0.0302 24.5909 15.8471
O . O057 2 . 875 1 2 .0340
0.0159 11. 5031 7 . 0645
O.O191 16.4790 10.2575
O.0183 16.5693 10.4460
0.0023 1.4372 0.9C10
0.0074 7.4084 4.5051
0.0069 7.7541 4.8031
0 . 0004 0 . 4O32 0 . 25 26
O.OO01 1.0253 0.0911
0 . 000 1 0.1 443 0 . 0302
00
CO
       Exhibit A-7 (continued)

-------
03
VISUAL EFFECTS FOR LI WES OF SIGHT ALORG FLUIDS
1600 JW POWER PLANT
DOWTWIJTD DISTANCE (KM) = 100.0
TWETA LENGTH RP/RVO RV ^REDUCED YCAP - L X
45.
20.
20.
20.
20.
20.
20.
20.
4O.
40.
40.
4O.
4O.
40.
40.
60.
6O.
60.
60.
60.
60.
60.,
O0.
80.
80.
80.
80.
OO.
80.
90.
90.
90.
9O.
90.
90.
90.
93.
95,
95.
95.
95.
95.
95.

0.00
0,02
0.05
0. 10
0.20
0.50
0.30
0.00
0.02
0.05
0. 10
O.2O
0.50
o.no
0.00
0.02
0.05
0. 10
0.20
0.50
0.09
0.00
0.02
0.O5
O. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 1O
0.2O
0.50
0.00
0.00
0.02
0.05
0. 10
0.20
0.50
0.G0

169.5
160.3
166.7
164.5
161.4
157.3
163. 1
160.4
156.5
151.5
144.8
135.6
129.2
163.2
133.2
131.5
122. O
111.3
90.5
129.4
163.2
78. 1
79.0
01. 0
05.4
96. 0
129.5
163.2
7O.2
79. 1
01.0
05.5
96. O
129.5
163.2
7O.2
79. 1
Ol.O
05.5
96. 0
129.5
163.2

0.40
9.05
9.90
11.08
12.74
14.96
11.02
13.31
15.40
1O. 10
21.73
26.73
SO. 14
11. 7O
25.30
2O.94
33.62
39.05
47.01
30. 04
11.77
57.77
57.29
56.22
53.O1
47.67
30.02
1 1.76
57.73
57.26
56.20
53.OO
47.66
30.01
11.76
57.72
57.25
56.20
53.79
47.66
30.01
11.76

78.79
80.97
03.92
88.05
94.07
102.20
104.0O
69.79
72.67
76.55
82. Ol
89.99
101.01
104.27
66.05
69.76
73.95
79.86
80.51
100.52
104. 10
65.05
68.03
73. 11
79. 16
30.02
100.35
104.04
65.51
60.70
73.00
79.06
87.95
100.33
104.03
65.49
60.60
72.90
79.04
87.94
100. C2
104.03

91. 15
92. 13
93.42
95. 19
97.66
100.80
101.7O
36.90
00.30
90. 12
92.59
96.00
100.39
101.63
05.34
O6.O9
O0.91
91.03
95.30
100.20
101.56
O4.O3
86.43
80.51
91.31
95. 1O
100. 14
101.54
04.76
06 . 37
80.46
91.27
95. 15
100. 13
1O1.54
04.75
C6.36
80.45
91.26
93. 14
100. 12
101.54

0.3839
0.372O
0.3602
0.3463
0.3320
0.3214
0.3205
O.3936
0.3795
0.3641
O . 3477
0.3316
0.320O
0.3202
0.3026
O.37OO
O.3024
O.3460
0.3G03
0.3202
0.3200
0.3911
0.3766
O.361O
0 . 3449
0.3295
0.3199
O.3199
0.3007
0.3762
0.3600
0 . 3446
0.3203
0.3199
0.3199
0.3006
0.3762
0,3607
0.3446
0.3293
0.3198
0.3199
Y DELYCAP

0.3651
0.3737
0.3612
0.3401
0.3358
0.3300
0 . 3307
0.3816
0.3092
0.3561
O.3430
0.3320
O . 32O7
0.33O3
0.3776
0.3654
0.3527
O.3402
0.33O2
O.32O1
0.33O1
0.3765
0 . 3043
0.3517
0.3304
0.3207
O.32OO
O.33O1
0.3704
O.3042
0.3510
0 . 3304
0.3206
0 . 3200
0.3301
0.3764
0.3642
0.3516
0.3394
0.3296
0.3200
0.3301

-26 . 37
-24.22
-21.33
-17.27
- 1 1 . 37
-3.34
-1.02
-35.54
-32.69
-2O.O4
-23.44
-15.53
-4.65
-1.44
-3O.OO
-35.71
-31.54
-25.67
-17.07
-5. 16
-1.61
-39.09
-36.72
-32.45
-26 . 44
-17.01
-3.34
-l.OO
-40.06
-36.00
-32.39
-26.56
-17,69
-5.30
-1.69
-40.09
-36.01
-32.62
-26.50
-17.71
-5.30
-1.69
DELL

-10.01
-9.04
-0.57
-6.83
-4.40
-1.26
-0.30
-15. 12
-13.73
-11.92
-9.4O
-6. 1O
-1.76
-0.54
-16.73
-15. 10
-13. 17
-10.47
-6.74
-1.95
-0.60
-17.27
-15.07
-13.00
-10. Ol
-0.96
-2. 02
-0.03
-17.35
- 1 5 . 75
-13.06
-10.06
-7.0O
-2.04
-0.63
-17.37
-13.76
-13.63
-10.07
-7.00
-2.04
-rO.63
CC550)

-0.2541
-0 . 2349
-0 . 2009
-0. 1717
-0. 1 160
-0.0359
-0.01 11
-0.3559
-0.3291
-O.2920
-0 . 24O3
-0 . 1 026
-0.05O3
-O.O153
-O.3021
-O.3020
-0.3224
-O.2051
-O. 1702
-O.0534
-0.0171
-O.4O22
-O.3719
-0.33O7
-O.2719
-O. 133O
-0.0503
-0.0170
-0.4O02
-0.372O
-O.3313
-0.2726
-0. 1343
-0.0370
-0.O170
-0.4033
-O.3729
-0.3316
-0.2727
-O. 1344
-0.0570
-0.01 76
BRATIO DELX DELY E(LTJV) E(LAB)

0.3074 0.0644 9.0539 31.8051 3-T.497
0.4933 0.0532 0.0425 43.6619 29.161
0.6195 0.04O5 0.0300 34.0741 22. 1OO
0.7652 0.0265 O.O107 22.9667 14.674
0.9136 0.0110 0.0044 11.0772 7.250
1.O007 O.OOOO -O.O015 2.1010 1 . 7O5
1.0031 -0.0002 -O.OOQ3 0.729O 0.6O2
0.3708 O.0737 0.05OO 55.73O5 37.700
0.4325 0.0395 0.037O 46.5420 3O.(VM
O.6152 0.0440 O.O247 33 . 9B20 23.4Tt5
O.7675 0.0275 O.O110 24. 125O 15.rr.4
0.92IO 0.0113 O.O005 11.0504 ft. 350
1.OO03 O.OOO1 -O.O02'} 2.0501 2.522
1.0O39 -O.OOOO -O.OO 12 1 . orJGO O.r^.4
0.3702 O.O724 0.0462 54.395O 36 . 9OO
0.4304 O.O373 O.OC30 45. 2 161 GO. 152
O.6235 O.0421 O.O.'?I2 3<-.7.';20 2P.O-57
O.7709 0.0257 O.OOCn 23.2354 I5.70H
0.0290 0.0003 -o.oo 13 i i . O7on o.rnn
1.0110 -O.0003 -0.0034 3.2^5 2. 772
1.0031 -O.OOOO -O.OO 14 1.2421 O.°^.7
0.3308 O.O707 0 . O43 I 53.2545 30 . :v>9
0.4052 O.O502 O.0323 44. KOI 29 . OV7
0.03O3 0.0406 O.O2O2 33.P359 22.714
O.7343 O.O244 O.OOC3 22.5OOO I5.6O1
O.0367 0.0009 -o.oo ia 1 1 . 3O72 o.rnnt
1.O146 -O.OOO9 -O.0033 3.3I4O 2.fT?5
l.OOOO -0.0010 -O.OO 14 1.3002 1 . O">r?
O.3325 0.07O2 O.O45O 52.0f7.2l 30 . 2OO
O.4972 O.0557 O.OG27 43.I10O3 2<> . 57 1
0.0327 0.0402 O.O2O1 33.0O64 22.027
O.7309 O.0241 O.OO70 22. 31 'TO 15.53H
O.0302 O.0036 -O.OO1O 1 1 . 2OOH R.8O6
1.O15O -O.OO 10 -0.0035 3.3205 2.T^O
1.O104 -0.0010 -O.OO14 1.3210 1 . OOO
0.3331 O.0701 0.0450 52.0155 36.1K1
0.4979 0.0556 O.O327 43.0275 20.540
0.0336 O.0401 0.0201 33.5405 22.6O3
0.7379 0.0240 0.0079 22.2073 15.521
0.0401 O.O006 -0.001') 11.1713 O.7O7
1.O163 -O.O010 -O.OO35 3.3210 2.IKO
1.0107 -0.0010 -0.0014 1.324O 1.OIO
     Exhibit A-7 (continued)

-------
98.
90.
98.
93.
98.
98.
98.
99.
99.
99.
99.
99.
99.
99.
0.00
0.02
O.03
O. 10
0.20
0.50
0.80
0.00/'
0.02
0.03
0. 10
0.20
0.50
0.0O
78.2
79. 1
81.0
85.3
96.8
129.5
163.2
78. 2
79. 1
81.0
85.5
96.0
129.5
163.2
67.72
57.23
56.20
53.79
47.66
30.01
11.76
57.72
57.25
56. 19
53.79
47.66
30.01
11.76
65.49
68.68
72.98
79.04
87.94
100.32
104.03
65.49
68.68
72.98
79.04
87.94
100.32
104.03
84.75
86.36
88.45
91.26
95. 14
100. 12
1O1.54
04.75
86.36
30.45
91-26
95. 14
109. 12
101.54
0.3906
0.3762
0.36O7
0.3446
0.3293
O.3198
0.3199
0.3906
0.3762
0.3007
0.3446
0.3293
0.3198
0.3199
0.3764
0.3642
O.3516
0.3394
0.3296
O . 3289
0.3301
0.3764
0.3642
0.3516
0.3394
O.3296
0.3280
0.3301
-40. 10
-36.92
-32.63
-26 . 59
-17.72
-5.39
-1.70
-40. 10
-36.92
-32.64
-26.59
-17.72
-5.39
-1.70
-17.37
-15.77
-13.68
-10.07
-7.01
-2.04
-0.63
-17.37
-15.77
-13.63
-10.87
-7.01
-2.04
-0.63
-0.4033
-O.3730
-O.3316
-0.2727
-0. 1344
-O.O57O
-0.0176
-0.4033
-0 . 3730
-O.3317
-0.2727
-O. 1O44
-0.0570
-0.0176
0.3G34 O.07O1 O.0449 52.O95O 36.173
O.4933 O.0356 O.O327 
-------
         VISUAL EFFECTS FOR LINES OF SIGHT ALONG PLUME
         1600 PW POWER PLANT
DOWNWIND DISTANCE (101) =  100.0
THETA LENGTH IUVH.VO
90.
20.
20.
20.
20.
20.
•20.
20.
40.
40.
40.
40.
40.
40.
40.
6O.
60.
60.
— . 60.
^ 60.
60.
60.
80.
OO.
80.
no.
80.
80.
8O.
90.
90.
90.
9O.
9O.
90.
90.
95.
95.
95.
95.
95.
95.
95.

0.00
0.02
0.05
0. 10
Or. 20
0.50
0.80
0.00
0.02
0.05
0. 1O
O.20
0.00
o.ao
o.oo
0.02
O.05
0. 1O
0.2O
0.5O
0.80
0.00
0.02
O.05
0. IO
0.20
0.50
0.80
O.OO
0.02
0.03
0. IO
0.20
0.50
0.30
0.00
0.02
0.05
0. 10
0.20
0.90
0.80
nv ^REDUCED

170.6
.'169.3
167.6
165.2
161.9
157.5
163.2
164.3
160.0
154.5
147. 1
137.0
129.4
163.2
145.2
137.7
128.0
115.2
98.0
129.6
163.3
81.5
80. O
82.4
86.4
97.4
129.6
163.3
80.2
80.9
82.4
86.4
97.4
129.6
163.3
80.2
80.9
G2.4
86.4
97.4
129.6
163.3

7.76
8.47
9.41
10.60
12.49
14.89
11.81
11, 17
13.00
16.50
20.50
25.97
30.07
11.77
21.00
25 . 09
30.83
37.74
47.05
29.97
11.76
55.95
56.31
55.47
53.31
47.37
29.94
11.75
56.64
56.27
55.45
53.29
47.37
29.93
11.75
56.64
56.27
55.44
53.29
47.36
29.93
11.75
YCAP

43.24
44.57
46 . 36
48.86
52.51
57.48
58.91
37.60
39.36
41.74
45.08
49.96
56.68
58.66
35.61
37.51
40.09
43.71
49.01
56.36
58.55
34.95
36.90
39.03
43.24
48.69
56.25
58.51
34.85
36.81
39.46
43. 18
40.64
56.23
58.50
34.84
36.80
39.44
43. 17
48.63
56.23
50.50
L

71.74
72.63
73.80
75.39
77.61
80.46
01.26
67.75
69. 04
70.72
72.97
76.06
QO.O1
01. 12
06.25
67 . 69
69.56
72.06
75.48
79.84
31.06
65.74
67.23
69. 16
71.75
75.23
79.77
81.04
65.66
67. 16
69. 11
71.70
75.25
79.76
81.04
65.63
67. 13
69. 10
71.69
73.24
79.76
01.03
X

0 . 3666
0.3547
0.3415
0.3273
0.3131
0.3031
O.3024
0.3751
0.3600
0.3440
0.3275
0.3119
0.3021
0.3019
O.3729
0.3575
0.3414
0.3251
0.3102
O.G015
O.3017
0.3707
0.3554
0.3395
0.3236
O.3O91
0 . 30 1 1
0.3013
0.3703
O.3350
O.3302
0.3233
0 . 3089
0.3010
0.3015
0.3702
0.3549
0.3391
O.3232
0.3089
O.3010
0.3015
Y DELYCAP

0.3723
0.3593
0.3452
0 . 3306
0.3174
0.3114
0.3123
0.3682
0.3537
0.3389
0 . 3243
0.3129
0.3099
O.31 18
0.3632
0.3490
0.3347
0.3212
0.3108
O.3093
O.3116
0.3617
O.3476
O.3334
0.3202
0.3101
0.3091
0.3116
0.3616
0.3474
0.3333
0 . 32OO
0.3100
0.3091
O.3113
0.3616
0.3474
0.3333
0.3200
0.3100
0.3091
0.3113

-16.26
-14.93
-13. 14
-10.64
-7.00
-2.06
-0.63
-21.90
-20. 14
-17.77
-14.44
-9.57
-2.86
-0.89
-23.91
-22.00
-19.43
-15.82
-10.52
-3. IO
-1.00
-24.58
-22.62
-19.99
- 1 6 . 20
-10.85
-3.29
-1.04
-24.67
-22.7!
-20,07
-16.35
- 1 0 . 89
-3.31
-1.04
-24.69
-22.73
-20.09
-16.36
-10.90
-3.32
-1.04
DELL

-9.84
-8.93
-7.73
-6.20
-3 . 93
-1. 14
-0.34
-13.03
-12.05
-10.R7
-8.62
-5.03
-1.59
-O.49
-15.35
-13. 9O
-12.04
-9.54
-6. 12
-1.77
-0.55
-IS. 05
-14.37
-12.43
-9.05
-6.32
-1.83
-0.57
-15.93
-14.43
-12.49
-9.9O
-6.35
-1.04
-0.57
-15.93
- 1 4 . 44
-12.00
-9.91
-6.36
-1.04
-0.57
C(550)

-0.2726
-0.2321
-0 . 2242
-0. 1344
-0. 1.147
-0 . 0336
-0.01 19
-0.3823
-0.3535
-0.3144
-0.25O6
-O. 1749
-0.0541
-0.0167
-0.4210
-0.3398
-0.3466
-O . 205 1
-O. 1928
-O.0506
-0.0lf54
-O.4323
-O.3093
-0.3550
-O. 2924
-0. 1977
-O.0612
-0.0100
-0.4333
-0.40O7
-0.3304
-O.2031
-0. 1932
-0.0613
-O.0190
-0.4334
-0 . 4000
-O.3364
-O.2931
-0. 1902
-0.0613
-0.0190
BT1ATIO DELX DELY E(LUV) E( LAH)

0.3920 0.0645 0.0592 45. G<33 31 . 296
O.5013 O.O525 0.0461 33.3^08 20. 005
0.6303 0.0303 0.0320 29.0933 lo.:*/y>
O.7792 O.O200 0.0174 19.6O33 I2.6OO
0.92^0 0.0107 0.0042 9.1441 0.1 4O
1.O036 O. 0004 -0.001 0 1.7394 1 . 000
1.0059 -0.0004 -O.OOO9 0.0526 O.M-1
0.3C25 0.0723 O.O049 43.4I4O 02.^0:2
O.4097 0.0576 0.04O5 4O.O037 2* . 66O
O.6377 0.0416 0.0207 3O.4003 CO. 131
0.7941 O.0200 0.0113 20. O 196 13.432
O.9470 O.0094 -O.OOO3 9.6097 7.WI
1.O202 -O.OOOO -0.0003 2.0500 2."^
1.0123 -0.0003 -0.0014 O.9376 O.7-T1
O.3942 0.0704 O.OOOO 40.3307 O 1 . 070
0.0144 0.0000 O.O303 33.437O 23. "41
O.6002 0.0339 0.0215 29.1079 I0.7OO
0.8 134 O.O220 0.0079 19.0001 13.413
O.9643 0.0070 -O.OO23 9.3730 7.r?"JA
1.0201 -O.OO 10 -O.OOOO 2.000? 2.4"0
1.O103 -O.OO1 1 -O.O0 16 1.1420 O.r.73
0 . 4003 O . O6O2 O . O4rt3 40 . 7420 0 1 . 44 '.!
O.O.'iSO O.O02O O.O044 O7 . 472O 20 . O'V)
0.6037 O.OOOO O.02O2 23.2747 10..'!?!
O.GL'31 O.O2IO O.OOOO 13.4O31 IP. .201
O.9731 O.OOOO -0.0001 0 . 0.nm 7.000
1 . O353 -O . OO 1 7 -O . OO4 1 2 . 002O 2 . 04 rj
1.O199 -O.OO 13 -O.OO 17 1.2034 O.'.MO
0.4O03 O.O077 0.0434 40.HO30 Ol.P-IO
O.5206 0.0024 0.0042 07.2000 20.421
O.6701 O.OCOO 0.02O1 23-OrWO 19.319
0.n.'?-'iO O.O2O6 O.OO03 13.20OO 10..1IO
0.9L'24 O.OOv',2 -O.OO32 9 . OO39 7.071
1.O379 -O.OO 17 -0.0041 2.0042 2.054
1.02O9 -O.OO 13 -0.0017 1.2200 O.013
0.4075 O.O075 0.0434 43.40"4 3 (.020
0.0007 O.0020 0.0042 37.2O64 20. ^/>2
O.6744 0.0004 0.0201 28.00110 lO.JW
O.0042 O.O2OO 0.0008 18.2100 10.2O1
0.9:507 0.0002 -0.0032 H.OHft? 7.009
i.oar.s -o.oo 13 -0.0041 2.0003 2.004
1.0212 -0.0013 -0.0017 I . 220O 0.0 IO
     Exhibit  A-7 (continued)

-------
ro
90.
90.
90.
90.
90.
9O.
9O.
99.
99.
99.
99.
99.
99.
99.
0.00
O.02
O.O5
0. 10
O.20
0.50 ,.
O.80 '
0.00
0.02
0.05
0. 10
0.20
0.50
O.80
00.2
00.9
02.4
06.4
97.4
129.6
163.3
00.2
00.9
02.4
06.4
97.4
129.6
163.3
56.64
56.27
55.44
53.29
47.36
29.93
11.75
56.64
56.27
55.44
53.29
47.37
29.93
11.75
34.04
36.00
39.44
43. 17
4O.63
56.23
50.50
34. 04
36. OO
39.44
43. 17
4O.63
56.23
53. GO
65.63
67. 13
09. 10
71.69
75.24
79.76
C1.03
65.65
67. 15
69. 10
7 1 . 69
75.24
79.76
31.03
0.3701
0.37.49
O.3391
0.3232
O.3039
0.3010
0.3015
0.3701
0.3549
0.3391
0.3232
0.30O9
0.3010
O.3015
0.3616
0 . 3474
0.3333
0.3200
0.3100
0.3091
0.3115
0.3616
0.3474
O.3333
0.3200
O.31OO
0.3091
0.3115
-24.69
-22.73
-20.09
-16.37
-10.91
-3.32
-1.03
-24.69
-22.73
-20.09
-16.37
-10. '9 I
-3.32
-1.05
-15.93
-14.45
-12.50
-9.91
-6.36
- 1 . 04
-O.57
-13.93
-14.45
-12.50
-9.91
-6 . 30
- | . f}/i.
-O.G7
-0 . 4334
-O . 4003
-0..3504
-0.2931
-0. 19(12
-O.O&l!)
-0.0190
-0.4334
-0.4003
-O.3504
-0.2931
-0. 19G2
-0 . OO 1 3
-O.O190
O . 4073
o. :>.') 12
0. <>7Af)
O . 3347
O. °.'X2
1 . ()',Ki1
1 . 02 1 3
O.4079
O.53I2
O.0750
0 . 3349
O.° •'.!'*• 3
1 . o:'.f!'i
1 . OU I '1
0.0075
o.oiri2
0.0304
0 . 0203
0 . 0002
-0.0013
-O.OO13
0 . 0075
O.O322
0.0304
0.0205
O.OOC»2
-0 . CO 1 ,'l
-O.OOI.')
0 . 0434
0 . 0342
0.0201
0 . 0003
-0.0032
-0.0041
-O.0017
O.0434
O.O342
0.0201
0 . 0003
-0 . O032
-0.0041
-O.OOI7
                                                                                                                          45.4403 31.315
                                                                                                                          "7.1054 nr».r*on

                                                                                                                          13. 2OOO  1J*. 107

                                                                                                                           2.000O  2.5P.4
                                                                                                                            I.2235  O.O IO
                                                                                                                          45.444O 01.314
                                                                                                                          37.1935 25.007
                                                                                                                          23.020P.  10.200
                                                                                                                           ir,.2or>o  r,;. 107

                                                                                                                           0.9600  2.r-n.i.
                                                                                                                            1 . 22CO  0. 0 I :>
         Exhibit A-7  (continued)

-------
  VISUAL EFFECTS FOR LINES OF
  1600 J1W POWER PLAWT
SIGHT ALONG PLUME
DOWNWIND DISTANCE (KM)
THETA LENGTH BP/RV0
133.
20.
20.
20.
20.
20.
20.
20.
40.
40.
40.
40.
40.
40.
40.
6O.
60.
60.
60.
60.
60.
-• 60.
*° 00.
80.
80.
80.
80.
80.
80.
90.
90.
90.
90.
90.
90.
90.
95.
95.
95.
95.
95.
93.
95.

0.00
0.02 i.
0.05 "
0. 10
*0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
O.50
0.80
O.OO
0.02
0.05
O. 10
0.20
0.50
O.OO
0.00
O.O2
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
= 100. O
RV ^REDUCED

171.3
170.1
160.2
165.7
162.2
157.5
163.2
167. 1
162.5
156.5
148.6
137.9
129.5
163.2
150.2
1 42 . 0
131.6
117.9
99.6
129.7
163.3
88.4
82.2
83.4
87.0
97.7
129.7
163.3
81. 1
02.2
83.4
07. 1
97.7
129.7
163.3
01. 1
02.2
03.4
87. 1
97.7
129.7
163.3

7.32
O.07
9.06
10.41
12.31
14.04
11.00
9.67
12. 17
15.39
19.63
25 . 45
30.02
11.76
10.02
23.24
2O.88
36.27
46. 16
29.91
11.75
52.21
55.59
54.93
52.95
47.20
29.08
11.75
56. 18
55.55
04.90
52.93
47. 19
29. GO
1 1.74
56. 10
55.55
54.90
52.93
47. 19
29.80
11.74
YCAP

45.37
46.06
40. 07
5 1 . 69
53.79
61.30
63.00
30.02
40.01
43.50
47.2O
52.01
60.44
62.70
36.45
3O.61
41.54
45.65
51.69
60.06
62.57
35.64
37.87
40.86
45.09
51.29
59.92
62.52
35.53
37.76
40.76
45.00
51.23
59.90
62.51
35.51
37.74
40.75
44.99
31.22
59.90
62.31
L

73. 16
74. 12
75.39
77. 12
79.51
02 . 60
03 . 46
60.64
70.07
71.92
74.39
77.70
C2.09
33.30
66. O9
68.50
70 . 08
73.34
77. 11
O1.39
C3.23
06.20
67.93
70. 11
72.97
76.07
O1.O1
03.20
66. 18
67.07
70.04
72.92
76. O4
01.80
33.20
66. 17
67.03
70.02
72.91
76.03
01.80
03.20
X

0.3626
0.3003
0.3360
0.3224
0 . 3002
0.2934
0 . 2979
0.3701
0.3544
0.3331
0.3216
0.3063
0.2973
0.2973
0.300O
O.35O9
0.3046
0.3185
0.3041
0.2964
0.297O
0.3639
0.3402
0.3322
O.3106
0.3C2O
0.2900
0.2909
0.3033
0.3476
0.3317
0.3161
0.3026
0.2959
0.2900
0.3631
0.3475
0.3316
0.3161
0.3023
0.2959
0.2960
Y DELYCAP

0.3713
0.3577
0.3429
0.3270
0.3144
0 . 3003
0.3093
O.3665
0.3312
0.3357
0.3210
0.3094
O.0063
0.3009
0.3609
0.3459
O.3310
0.3172
O.3O7O
0.3002
O.3007
0.3592
O.3442
0.3293
O.3I61
O.3063
O.3OOO
O . 3OO7
0 . 309 1
O.3441
O.3294
0.3159
O.3062
0.3059
0.3007
O.3591
0.3441
0.3294
0.3159
0.3062
0.3059
0.3007

-10.53
-17.02
-14.99
-12. 14
-0.00
-2.36
-O.72
-25.01
-23.01
-20.31
-16.51
-1O.96
-3.29
-1.03
-27.34
-25. 17
-22.24
-1O. 11
-I2.O6
-3.06
-1. 15
-2O. 12
-20. O9
-22 . 89
- 18.06
-12.45
-3.80
-1.20
-28.23
-26.00
—22 . 99
-18. 74
-12.51
-3.02
-1 .21
-20.24
-26.01
-23.00
-10.73
-12.01
-3.02
-1.21
DELL

-10.77
-9.79
-0.51
-6.73
-4.30
-1.25
-0.33
-15.25
-13.02
-11.90
-9.43
-6.03
-1.75
-0.54
-16.93
-15.37
-10.29
-10.52
-6.74
-1.95
-O.61
-17.03
-15.91
- 1 3 . 75
-10.03
-6.97
-2.02
-0.03
-17.07
-15.98
-13.31
-1O.93
-7.0O
-2.03
-0.04
-17.00
-10.00
- 1 3 . 02
-10.94
-7.O1
-2.04
-0.64
C(550) BRATIO DELX DELY E(LUV) F/ LAP,)

-0.2G50
-0.2037
-0.2340
-0. 1900
-0. 1300
-0.0403
-o.or.:3
-0.4001
-0.07O1
-O.3292
-0.2703
-0. 1303
-0.0.107
-0.0173
-O.4413
-0.4032
-O.060O
-0.2930
-O.2O.-0
-O.O025
-O.O193
-0.4527
-0.4107
-O.0724
-O.OO03
-O.2072
-O.0641
-O.OI93
-0.4337
-0.4196
-O.3732
-O.3009
-O.2076
-0.0042
-0.0199
-0.4003
-0.4196
-0.3702
-0.3009
-0.2076
-0.0042
-0.0199

0.3920 0.0(544 0.0607 43. 0063 ^2.031
0.5O40 0.0021 0.0469 4O.O441 20 . GOO
0.0364 0.0336 0.0322 SO. 7,709 19.969
0.7375 0.0242 0.0171 21.1719 l?f. OO3
0.9371 0.0099 0.0033 0.2036 6.,°n.4
1.0109 0.0001 -0.0021 1.G77O 1 . 07O
1.0094 -O.OO05 -0.001O 0.7240 O.,S"3
0 . 3373 0 . 07 1 9 0 . 0303 .TO . 30"0 04 . » 0 *
0.0033 0.0002 0.040.J 4 1 . OOO4 27.0^.
0.0313 O.O303 0.0231 31.2101 2O.743
o.nnr* 0.0200 0.0104 20.23.°,7 i:?.>.:^i
0.9043 O.OO30 -0.0012 9.064O 7..rfy>
1.0294 -O.OOH -0.0037 2.7674 r.Til
1.OI09 -0.0010 -0.0010 1.1105 O.rr>7
0.4^06 O.O035 0.05O3 43.LV7H2 30.O.r'O
O.0294 O.OT20 O.O35T 30.0741 CX-.Vr-r)
0.6736 O.O060 O.O2O4 29 . 0426 2O.261
O..'n?3 O.O2O1 0.0007 1 O.OO 13 ir.f''1
O.'V'.no O.OO07 -0.0003 9.0920 7.96?.
1.O4I4 -O.OO20 -0.0043 0.1009 2.6 "I
1.O220 -O.OO 14 -0.0017 1.0049 O.97O
O.4106 O.O600 0.0437 40.9496 02. 4? r>
0.0404 O.O493 O.O007 03.1442 2O . "47
0.0944 O.O309 O.019O 23.4"-"i9 19. 904
O.:;~31 0.0132 O.OOOO 13.0210 IH.O'V,
l.07f,7 0.0040 -O.OO42 9.1 HO 7.990
I.O3O1 -O.0024 -O.O040 0.2971 2.77"
1.O200 -O.OO 15 -0.0013 1.0H90 I.O14
0.42O7 0.0049 O.0430 40.0700 "2.000
0.0005 0.0492 0.0330 07.OR77 20.101
O.7O03 0.0003 0.01O3 2O.261O l^.f?^
O.O044 O.OI73 O.OO54 1O.I4O3 10.0-1.7
1.0123 0.O042 -0.0040 9.0014 7.9fJI
1.O02O -O.OO25 -O.0043 3.017O 2.707
1.0273 -0.0016 -O.OO 13 1 . 4OOO 1 . O2 1
O.4219 0.0643 0.0480 40.0179 32.012
0.5019 0.0491 0.0330 07.0301 20.101
O.7020 0.0032 0.0103 20.2149 19.341
0.0002 0.0177 0.0004 13.1110 13.635
1.0140 0.0041 -0.0043 9. OHO 7.974
I.O036 -0.0023 -0.0040 3.0200 2.733
1.0.'J02 -0.0010 -0.0010 1.4031 1.022
Exhibit A-7 (continued)

-------
90.
93.
98.
on .
90.
98.
98.
99.
99.
99.
99.
99.
99.
99.
0.00
0.02
0.03
0. 10
0.20
0.30
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.30
ni. i

C3. 4
87. 1
97.7
129.7
103.3
81. 1
O2. 2
f!3. 4
37. 1
97.7
129.7
103.3
36. 18
55.33
54. 9O
52.93
47. 19
29. G3
11.74
50. 18
55.55
54.90
52.93
47. 19
29.00
11.74
35.50
37.73
40.74
44.99
51.22
59. 9O
02.51
33.50
37.73
40.74
44.99
51 .22
59. 9O
62.51
00. 17
07.03
7O.02
72.91
70 . 03
r» | *~\f\
0 1 . O J
G3 . 20
00. 17
07.05
70.02
72.91
70. G3
G 1 . GO
33.20
0.3631
0.35-74
0.0316
0.3161

0!2959
0.2900
0.3031
0.3474
0.3316
0.3101
0.3023
0.2939
0.2963
0.3391
0 . 344 1
0.3204
0.3159
O.3062
0.303>
0 . 30G7
0.3391
0.3441
0.3294
0.3159
O.3002
0 . 3059
0.30C7
-2O. 23
-20 . 0 1
-23.00
-1.1.75
-12.32
-3.O3
-1.21
-20.24
-26, Ol
-23.00
-13.75
-12.52
-3.O3
-1.21
-17.03
-10.OO
-13.O3
-10.94
-7.01
-2.04
-0.64
-17.63
-16.00
-13.02
-10.94
-7.O1
-2.04
-0.64
-O.45:'D
-O.'l l°0
-0.3732
-o.yor.9
-o.2oro
-0.0002
-6.0109
-0.4507
-0.4100
-0 . C702
-0.0009
-0.2070
-0 . 0042
-0.0199
O ^1,*^*^*>
O r*sj>'^4'
o'.7023
O.G563
1.0143
1 . 0333
1 . C203
0.o i
!007
007 1
o.?.ori
40O4
(")r>7r>,
"2r>0
non4
?or?o
O^'O^i
f?.1'"iT
<:'Or,5
                                                                                                                                             *^/".  I «^t*^
                                                                                                                                             •. l\>. p. . f
vo
                                               OF AEROSOL AND CASES CONTRIBTJTED
                                          1000 HW PO^VEIl PLANT
BY
Do^^rn'nRD DISTANCE dot) = 120.0
PLUfTE ALTITUDE (PI) = 392.
SICWA Y (TI) = 3490.
SIGMA Z (M) = 195.
SO2-S04 COWVERSION RATE= 0.0048 PERCENTXITR
NOX-N03 CONVERSION RATE= O.0336 PERCENT/HR
ALTITUDE

H+2S
INCREPIENT!
TOTAL AIID!
II* IS
INCREMENT!
TOTAL AMD!
H
INCPET1ENT!
TOTAL AHD!
H-1S
INCREMENT!
TOTAL AMD!
H-2S
INCREMENT!
TOTAL AMD!
0
INCREMENT!
TOTAL AMD!
CUMULATIVE
NOX
( PPM)

0.013
0.013

0.059
0.059

0.093
0.09O

0.000
0.060

0.026
0.020

0.026
0.026
N02
( PIT!)

0.009
0.009

0.033
O.C33

0.051
0.051

0.034
0.034

0.017
0.017

O.017
0.017
SURFACE DEPOSITION (
N03-
( PPM)

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

o.ooo
0.000
MOLE FRACT1
H02/NTOT
(flOLE «)

69.922
69.922

36.230
56.250

51.6C2
5 1 . 6G3

35.930
55.930

64.626
64.626

63.061
63 . OO 1
N03-/NTOT
(MOLE «)

0.030
0.030

0.039
O.OG9

0.045
0.045

0.007
0.007

0.407
0.407

O.391
0.391
S02
( PPII)

0.003
0.003

0.012
0.012

0.020
O.020

0.012
0.012

0.005
0.005

0.003
0.005
[ON OF INITIAL FLUX)
S04=
(UC/H3)

0.018
2.954

0.011
2.947

0.010
2.946

0.012
2.947

0.019
2.955

O.O1O
2.954

£5O4=/T>TO7
(KOLK «)'

0. !72
2 1 . 749

0.024
5 . G24

0.013
3.6!3

0.024
5.723

0.039
12.291

0 . 037
12.290

03
( FPII)

-0.003
O.OGO

-0.022
0.010

-0.025
0.013

-0.022
0.010

-0.015
0.023

-O.O17
O.O21

PRIMARY
CUG/1 13) (

0.923
13.333

4. 153
17.03?

0 . O (r.)

0.012 v.nr?.
0 . 1 <-0 5° . (> > 0

0.052 O.029
o.nco 4<-i.r.<:r<

0.035 O.r.^O
0.214 IK>.l^rj

0.053 0.021
o. IGI ^'1*
o. 152 f»r;.<-/:.9

O.O23 2.247
O. 152 5H . 'X'O

                      SO2 t     O.OOOO
                      NOX!     O.OOOO
             PARTICULATE!     O . OOOO
                      SO41     O.OOOO
                      HO31     O.OOOO

-------
                   VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
                   1600 MV POWER PLANT
DOWNWIND DISTANCE (KM) =  120.0
PLUME ALTITUDE (M)     =   392.
SIGHT PATH IS TOROUCrf'PLUME CENTER
TIIETA ALPHA RP/RVO
45.
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
60.
_^ 60.
JO 60.
01 60.
60.
6O.
90.
90.
90.
90.
90.
90.

0.02
0.05
•0. 10
0.20
O.50
0.OO
0.02
0.05
O. 10
0.20
0.50
O.CO
0.02
O.05
O. 10
0.20
0.5O
0.00
'0.O2
0.05
0. 10
0.20
O.50
0.80
RV ^REDUCED

170.5
175.7
172.6
169.5
165.4
164.2
100.3
178.2
176.3
174.2
171.2
170.3
1O1.0
179.4
173. 1
176.3
173. 0
173. O
181.5
100.2
179. 1
177.3
175.3
174.6

3.50
5.00
6.72
O.37
10.58
11.23
2.54
3.65
4.62
5.81
7.44
7.93
2. 14
3.05
3.73
4.71
6.06
6.47
1.90
2.62
3.20
4.06
5.24
5.60
YCAP

08.07
06.09
87.57
93.60
101.76
104. 10
90.74
89. 17
91.66
96.28
102.52
104.30
92. 10
90.98
93.69
97.62
102.89
104.39
93.10
92.58
94.98
98.46
103. 13
104.45
L

95.19
94.36
94.98
97.47
ICO. 68
101.56
96.31
95.66
96.68
98.55
100.97
10I.64J
96.86
96.41
97.51
99.07
101. 11
101.67
97.27
97.06
98.03
99.40
1O1.20
101.70
X

0.3596
0.3606
0.3500
0.3334
0.3203
0.3192
0.3343
0.3551
0.3443
O.33O9
0.3203
O.319I
O.3512
0.3313
0.3408
O.3293
O.3201
0.3191
0 . 34C8
0 . 3476
0.33G4
0.3203
0.3200
0.3191
Y DELYCAP

0.3605
0.3663
0.3546
0.3306
0.3300
0.3303
O.3653
0 . 3637
0.3517
O . 3303
0.3303
O.3307
0.3631
0.361 1
0.3493
O.3373
O.3307
O.3307
0 . 36 1 1
0.3582
O.3479
0.3374
0.3308
0.3303

-16.84
-10.82
-17.34
-11.31
-3. 15
-0.01
-14. 17
-15.74
-13.25
-0.63
-2.39
-0.61
-12.81
-13.92
-11.21
-7.29
-2.02
-0.52
-11.81
-12.33
-9.92
-6.45
-1 .78
-0.46
DELL

-6.67
-7.51
-6.00
-4.39
-1. 19
-0.30
-5 . 56
-6.21
-5. 13
-3.32
-0.90
-0.23
-3.00
-5.46
-4.35
-2.79
-0.76
-0. 19
-4.60
-4.O1
-3.O4
-2.40
-O.67
-O. 17
CC550)

-0. 1503
-0. 1303
-0. 1697
-0. 1 143
-0.0343
-0.0003
-O. 1314
-0. 14F.5
-O. 1276
-0.0359
-0.02.~3
-0.0072
-o. i ino
-0. 1303
-0. 1071
-O.O721
-O.0216
-O.OOOO
-O. 1084
-0. 1 149
-O . 0943
-0.0633
-O.OI9O
-0.0053
BRATIO

0 . 5496
0.5772
0.0993
0 . 33ffO
0.9907
0.9935
0.5702
0.0020
O . 74O2
0.3033
0.0021
O.99S2
O..ri903
O . 02OO
0.7006
O . 9OP4
0.0930
O.OOOO
O.6102
0.0 3 B-l
O . 7356
0.0133
0.093O
O.0005
DELX DELY E( LUV)

0.0403 0.0375 C5.8714
0.0417 0.03.12 05.0420
0.0320 0.0230 27.6142
0.0146 O.O073 13. K1CTO
0.0016 -O.0010 2.3717
O.O003 -O.OOOO 0.7103
O.0354 O.O343 32.1413
0.0r,02 O.O327 :?2. 1410
O.O255 O.O2O6 22.7740
O.O12O O.0073 10.0204
O.OOI4 -0.0003 1.0431
O.OO03 -O.OO04 O.5424
O.OH23 O.O32O 29.O".ri7
0.0324 O.O3O1 20.3O51
0.0219 0.0131 10.0007
O.OIO5 O.OO03 0.01,12
O.0013 -O.OOOH 1.3709
O.O002 -O.0003 0.4100
0.0209 0.0301 27.0744
O.0237 O.0272 2O.4O.nf)
O.0196 O.OIOO 1O.O539
O.0094 0.0003 8.71(10
O.O012 -O.OO03 1.4007
O.0002 -0.0003 O.4O33
E< LAB)

23.917
20. 63-')
17.731
T..CTOO
1 . 004
0 . 50O
2 1 . 4 1 1
21 .210
14.0 1 1
0 . P73
i . r^>rj
0 . 4 1 ')
lo.r-,',
10.2')«>
12.7^0
6. Of* 7
1 . MO
o.cni
10.574
17. nr*7
1 1 . 50 (
5. 403
1 . O 1 0
0 . GOO
     OBSERVER POSITION AT 1/2 OF A 22.5  DEGREE WIND DIRECTION SECTOR FROM THE PLUME CENTERLINE AT THE GIVEN DISTANCE FROM THE SOURCE
          90.     0.13   173.5    3.49    96.15    90.49  0.3346  0.3430   -8.75   -3.37 -0.0341  0.3303  0.0153  0.0123 14.5533  O.C2'J
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.5O
0.60
179. 1
176.4
173.2
170.0
165.6
164.4
180.8
178.8
176.9
174.6
171.4
170.4
3. 19
4.64
6.37
8. 13
10.47
11. 15
2.29
3.37
4.37
5.64
7.36
7.87
49. 15
47.94
48.83
52.50
57.45
58.87
50.79
49.83
51.34
54. 16
57.94
59.02
75.57
74.81
73.37
77.60
00.45
01.23
76.57
73.90
76.90
78.57
00.72
01.32
0.3421
O.3428
O.3326
0.3153
0.3029
0.3018
0.3368
0.3375
0.3264
0.3130
0.3028
0.3018
0.3538
0.3513
0 . 3382
0.3208
0.3118
0.3124
0.3503
0.3403
0.3351
0.3206
0.3124
0.3126
-10.33
-11.55
-10.65
-6.99
-2.03
-0.62
-0.69
-9.66
-8. 13
-5.33
-1.54
-0.47
-6.01 -0. 1604
-6.77 -O. !9I3
-6.21 -0. 1009
-3.93 -0. 1223
-1. 12 -0.0333
-0.34 -0.0123
-5.00 -O. 1396
-5.59 -0. 1500
-4.67 -0. 1360
-3.00 -0.0021
-0.05 -0.0203
-0.26 -0.0002
0.5333
O.5332
0.7090
O.O943
0.9083
0.099O
O.5790
0.0000
0.7472
0 . 9060
0.0000
0.00'>2
0.0403
0 . O4 1 1
0.0009
0.0133
0.0011
0 . 0000
0.0350
0 . 0357
0.0246
0.01 12
0.0011
0.0001
0.0406
0.0330
0.023O
0 . OO73
-0.0014
-0.0003
0.0371
0.0353
0.0219
0.0074
-0.0003
-0.0006
31 .01 16 21. IflO
f) 1.5201 2O. 741
23.0174 M.nri
11.052O 7.1 in
1.0320 l.SOO
0.0013 o.r>on
20.60.10 10.904
23.4102 1O.6O3
I9.G63O 12.744
0 . 2577 5 . 079
1 .4002 1 . 107
0.4023 0.410
   Exhibit A-7 (continued)

-------
00.
60.
6O.
60.
60.
60.
90.
90.
90.
90.
90.
90.
0.02
0.03
0. IO
0.20
O.50
0.30
0.02
0.05
0. 10
0.20
0S50
0.30
101.4
179.0
173.5
176.0
173.9
173. 1
101.9
130.6
,.«• 179.4
177.7
173.4
174.7
1.93
2.00
3.52
4.56
6.OO
6 . 42
1.70
2.40
3.03
3.93
5. 19
5.56
51.62
50.94
52.59
54. 9O
53. 10
59.09
52.24
51.92
53.30
55.50
53.34
59. 14
77.0O
70.66
77.05
79.05
or\ **•<.
o J . uO
01.30
77.44
77 . 23
7C. 12
79.03
09.94
31.33
O.3338
0.3337
0.3230
0.31 16
0.3027
0.3018
0.3314
O.3300
O.3207
0.3106
0.3027
O.3018
O.3479
0.3456
0.3323
0.3202
0.3127
O.3127
0.3437
O . 3423
0.3311
0.3197
0.3123
0.312O
-7.06
-0.53
-6.O9
-4.51
-1.30
-0.39
-7.23
-7.57
-6. IO
-3.99
-1.13
-0.33
-4.50
-4.91
-3. 02
-2.53
-O.72
-- 0.2.2
-4. 13
-4.32
-3.43
-2. "3
-0 . 03
-O. 19
-0. 1254
-0. lOST
-O. 1 K2
-0.0773
-0 . 0242
-0.0077
-0. 115:5
-o. 1:222
-0. 1005
-0.0031
-0.0213
-O.C060
o!
0.
0.
0.
0.
o.
o.
o.
0.
0.
0.
r'™~
7 V""!
9 I li-1
9^79
9093
6 1 G4
G0~2
700.'?,
°'«17
9073
9093
O.O329
0 . 01- 1 9
O.02I2
0.0093
O.001O
0.0001
0.0290
0.0232
O . O 1 39
O.OOG9
0 . OOO9
0 . 000 1
0 . O340
O.OH24
0.0190
0 . 0009
-0.0000
-0.0003
O.O323
0.0292
0.0179
o.ooor>
-0 . OC94
-0 . 0004
20. r, 127
17 . '" '02
". '"14
1 . 2704
0.^-113
24 . 0440
23 . 4O70
15.P.200
7 . 44CO
i. nir,
O.T014
17.0-s
1 1 . i ry>
r>. i7r,
i .for;
o. rs1"!
K..TOI
irs . f*.;sr7.
IO. i."!4
4 . 0°'.^
o. r"'<
n.rvv,-
    OBSERVER POSITION AT 1/2 OF A 22.5 TM3GREE WITID  DIRECTION SECTOR FROM TOR PLUME CENTEKt,If-IK  AT rTE GIVEN DISTANCE FTOM IT*,
         90.     0.13   17O.3    3.33   54.10   73.54   0.3109  0.3267   -5.39   -3.04 -O.OTOCi   O.C:21  O.O131  0.0134  ^.OOZr.
                    VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
                    1600 MW POWER PLANT
DOWNWIND DISTANCE  (KJI)  =  120.0
PLUi-IE ALTITUDE (M)      =   392.
SIGHT PATH  IS THROUGH PLUME CENTER
TIIETA ALPHA RP/RVO
135.
30.
_, 30.
0 30.
* 30.
30.
30.
45.
45.
45.
45.
45.
43.
60.
60.
60.
60.
60.
60.
90.
90.
90.
90.
90.
9O.

0.02
0.05
0. 10
0.20
0.50
0.30
0.02
0.05
0. 10
0.20
0.50
0.00
0.02
0.03
0. 10
0.20
0.50
0.80
0.02
0.03
0. 10
0.20
0.50
O.OO
RV ^REDUCED

179.3
176.9
173.7
170.3
165.3
164.5
131. 1
179. 1
177.2
174.3
171.5
170.3
101.7
130. 1
178.7
176.7
174.0
173.2
182. 1
130.8
179.6
177.9
175.5
174.3

2.99
4.39
6. 13
7.96
10.39
11. 10
2. 13
3. 17
4.20
5.52
7.31
7.83
1.78
2.64
3.33
4.47
5.95
6.39
1.57
2.26
2.91
3.83
5. 14
5.53
YCAP

52.29
50.90
51.89
56.01
61.59
63. 13
54. 16
53.05
54.75
57.91
62. 17
63.38
53. 10
54.31
56. 17
53.05
62.46
63.43
55 . 79
55.42
57.07
59.45
62.64
63.54
L

77.47
76 . 64
77 . 24
7^.64
02 . 7 1
33.55
73.57
77.92
78.91
30.71
03.02
33.66
79. 12
73.66
79.73
31.23
33. 17
33.71
79.51
79.30
80.24
31.55
33.27
O3.74
X

0.3301
0.3307
0.3203
0.3109
0 . 2933
0.2*79
0.3329
0.3334
0.3223
0.3CC3
0.29D9
0.29C0
0.3299
0.3297
0.31C9
0.3075
0.2908
0.29GO
0.3275
0.3260
0.3167
0.3066
0.2908
0.2900
Y DELYCAP

0.3322
0.3495
0.3360
0.3102
0.3093
0.3099
0.3407
0.3467
0 . 3329
0.3182
0.3099
0.3102
0.3462
0.3438
0.3306
0.3177
0 . 3 1 02
0.3103
0.3439
0.3406
0 . 3289
0.3173
0.3104
0.3104

- 1 1 . 70
-13.09
-12. 11
-7.93
-2.41
-0.81
-9.04
-10.94
-9.25
-6.09
-1.83
-0.61
-8.90
-9.68
-7.83
-3. 14
-1.54
-0.52
-8.20
-8.57
-6.93
-4.53
-1.36
-0.46
DELL

-6.50
-7.34
-6.74
-4 . 34
-1.27
-0.42
7O.41
-6.05
-5 . 06
-3.27
-0.96
-0 . 32
-4. CO
-5.31
-4.23
-2.75
-0.81
-0.27
-4.46
-4.67
-3.74
-2.42
-0.71
-0.24
CC5SO)

-0. 1751
-0. 19°0
-0. 1G33
-0. 12C2
-0.0413
-0.0144
-0. 1452
-0. 1644
-0. 1417
-0.0964
-O.0310
-0.0103
-0. 1304
-0. 1444
-0. 1190
-0.0309
-0.0261
-0.0091
-O. 1197
-0. 1271
-0. 104O
-0.0713
-0.0229
-O.0030
ERATIO

0.5540
0.5G55
0.7141
0.9010
1 . 0">42
1 . 0">27
0.5', 91
o . ooao
0 . 7.r>07
0.9110
1.0D19
1.0019
0.3091
o.or.31
0.7754
0.9194
1.0010
1.0J15
0.6IG3
0.6632
O.7033
0. 9£53
l.OCOO
1.0013
DELX

0.0401
0 . 0407
0.0303
0.0129
0.0003
-0.0002
0.0343
0.0334
0.0242
0.0103
0.0003
-O.O001
0.0313
0.0316
O . 0203
O.OO95
0.0003
-0.0000
0.0294
0 . 0230
0.0130
0.0030
0.0007
-0.0000
DELY

0.0413
0 . QC36
0 . 025 1
0 . 007.2
-0.0017
-0.0010
0.0377
0 . 0350
0 . 022O
0 . 0072
-0.0010
-0.0007
0.0352
O.OC29
0.0197
0.0003
-0.0007
-0.0006
0 . 0330
0.0296
0.0180
0.0064
-0.0006
-0.0005
E(LttV)

33.3191
G2.9249
24.C007
1 1 . 2W5
2 . 0207
O . 7709
29 . 9909
20.7210
20 . r,r,n4
9 . CV.X23
1 . 5403
0 . H722
27 . 0090
27 . i 150
IO. 1703
3.4171
1 . JTOtlfJ
0.4750
26 . \ 027
24 . 
o . roo
    OBSEUVEU POSITION AT 1/2 OF A 22.5 DEGREE WIND DIRECTION SECTOR FROM THE PLUME CENTF.HMNE AT THE GIVEN DISTANCE FHOff Tl/E
         OO.     0.13   179.0    3.22   57. B7   GO-GO  O.3I29  0.3244   -6.13   -3.29 -O.O937  O.3':-52  O.OI43  O.O135 13.1^,'to
            A.-V (.continued")

-------
                       VISUAL EFFECTS FOR NON-HORIZONTAL CLEAR SKY VIEWS  THROUGH PLUME CENTER
                       1600 MW POWER PLANT
10
DOWNWIND DISTANCE (KM)
PLUPIE ALTITUDE
THETA ALPHA
45.
30.
30.
30. *
30.
30.
30.
45.
45.
45.
45.
45.
45.
CO.
60.
00.
60.
60.
6O.
90.
90.
90.
90.
90.
90.
90.
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
(M'>"
BETA

15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.

15.
3O.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
= 120.
= 392
RP

2.95
1.41
O.G3
0.60
0.44
0.39
2. 10
1.04
0.63
0.51
O.42
0.39
1.73
0.00
O.60
0,47
O.41
0.39
1.51
0.78
0.55
O.45
0.41
0.39

2.95
1.41
0.00
0.60
0.44
0.39
2. 10
1.04
0.68
0.51
0.42
0.39
O
t
YCAP

38.06
27.23
22.98
20.97
20.02
19.73
38.96
26. 17
21.49
19.30
10.27
17.96
39. 15
25.74
2O.02
18.53
17.44
17. 12
39,32
25.49
20.42
13.05
16.93
16.60

22.77
15.53
12. 07
11.61
11.01
10.02
23.29
15.30
12.36
10.90
10.33
10. 13


L

68.68
59.22
55.09
52.96
51.09
51.56
68.75
53.23
53.52
51.08
49.06
49.48
6O.39
57.O2
52.79
5O. 16
40.05
40.45
69.01
57. GO
52 . 35
49.59
4O.21
47.79

54.07
46.39
42.60
40.63
39.63
39.32
55.40
46.00
41.02
39.59
30.46
38. 12


X

0,3344
0.3375
0.3415
0.3447
0.3468
0.3476
0.3191
0.3192
0.3210
0.3241
0.3256
0.3261
0.31O5
0.3092
0.31 12
0.3131
0.3143
0.3147
0.3O48
O . 3027
O.3O42
0.3058
O.3069
O.3073

0.3191
O.3208
0 . 3243
0.3272
0.3292
0.3300
0 . 3O42
0.3030
0.3048
0.3067
0.3080
0.3004


Y

0.3544
0.3554
0.3579
0.3602
0.3619
0.3625
O.3414
0.3390
0.3401
0.3414
0 . 3424
0.3427
0.3327
0.0207
0.3292
0.3302
0.3009
0.3D12
0.3266
0.3217
0.3217
0.3225
0.3231
O.3233

0.3411
0.3410
0.3431
0.3453
0 . 3470
0.3476
0.3274
0.3236
0.3240
0.3251
0.3259
0.3262


DELYCAP

-2.74
3.03
5.20
6.21
6.68
6.01
-2.65
1.97
3.72
4.54
4.93
5.04
-2.45
1 . 54
3.05
3.76
4. IO
4. 2O
-2.23
1.2')
2.65
3.29
3.59
3.60

-3.56
0. 14
1 . 55
2.20
2.51
2.59
-3 . 04
-0.00
1.04
1.5O
1.03
1.90


DELL C( 550)

-1.95 -0.0467
2.90 0.1403
5.03 0.3173
7.61 O.4462
8.58 0.5262
8.09 0.5532
-1.08 -0.0433
1.91 0.1051
4 . 26 O . 2340
5.73 O.3329
6.54 O.3949
6.O1 0.416O
-1.74 -O.0393
1.50 O.OO59
3.53 O.I 943
4.02 0.2705
5.54 0.3313
5.77 O.3492
-1.61 -O.0362
1 . 26 0 . O743
3.09 0. 17O3
4.25 O.2449
4.90 0.2916
5.11 0.3075

-3.51 -0. 1117
O. 19 O.0365
2.45 O. 1652
3.04 0.2631
4.59 0.3238
4.02 0.3442
-2.98 -0.0917
-0.11 O.0214
1.60 0.1198
2.00 0.1954
3.42 0.2427
3.62 0.2088


BRATIO

0.2442
0. 1789
O. 1503
0. 1352
0. 1267
0. 1238
0.3133
0 . 2434
O.2I09
O. 1991
0. 1390
0. IG03
0 . 3f»57
O.3OO6
0.2066
O.2471
O.2367
O.2305
O.4065
O.0415
0.0059
0 . 2-350
0.2739
O.2704

0.203O
O. 1905
0. 1696
O. 1530
0. 1437
0. 1403
O.3329
0.2722
0.2415
O . 2207
0.2141
O.2I 10


DELX

0.0736
0.0848
0.0914
0.0958
0 . O935
0.0994
0.0334
0.0565
O.O718
0.0753
0 . 0773
O.O7OO
O.O497
O.O565
O.O51 1
O.0642
O.066O
O.O666
O . 044O
O.O500
O . O542
0.057O
O.O336
O.Or.02

0.0693
O . 0737
0 . 0346
0.0336
0.O912
0.0921
0.O344
0.0603
0.0651
o . oo3 i
O.O699
O . O7O3


DELY EC LUV) E( LAU)

0.0034 57.29P.3 36.8107
O.0966 54.21C3 36.2337
0.1032 51.7251 35.T29O
0.1074 50.3015 35.7509
0.1100 49.7575 35.P.4O3
0 . 1 1 09 49 . 6040 35 . 002T
O.O704 48.3503 3O.9224
0.0301 44.7929 29.7547
O.O354 42.2501 29. 03 13
O.O306 40.7747 20.7013
O.O905 40.0203 20.5302
O.0911 39.7309 2G.GOO3
0.0617 42.0C30 27.1909
O.O099 39.2110 25.0004
O.O743 06.3195 25.1 GOO
O.O774 33.4143 24.O304
O.0790 04.6731 24.0010
O.O793 34.4494 24.0410
O.0556 03.7109 24.5900
0.0023 35.0391 20.0427
O.O67O 30. 1434 22.6102
O.0697 01.O276 22.2077
O.O712 31.1314 22.1157
O.O717 3O.9I07 22.O705

O.OO44 49.2303 32.4034
O.O905 45.0400 31.1701
O. 1O27 41.9903 30. 220.1
0.1007 40.20'VJ 29.GI94
O. 1O93 39.4riO9 29.7105
0.1103 39.2003 29.7156
O.O707 41.0094 27.0000
0.0791 37.2945 23.7212
0.0036 34.3294 24.6173
O.0065 32.5863 24.0344
O.O032 31.070O 20.7002
O.O330 01.30(17 23.<»-"/»7
       Exhibit A-7 (continued)

-------
6O.
OO.
OO.
60.
60.
60.
90.
90.
90.
90.
90.
90.
15.
30.
45.
60.
75.
90';
15.
30.
45.
60.
75.
90.
1.73
O.O3
0.60
0.47
0.41
0.39
1.51
0.73
0.55
0.45
0.41
0.39
23.03
15.24
12. 15
10.70
10.01
9.01
23. C7
15.22
12.02
10.53
9.C2
9.61
53.75
40.00
41.49
39. 1 1
37.91
37.54
56 . 00
45.97
41.29
30.01
37.56
37. 17
0.2959
0.2034
0.2946
O.2900
0.2970
0.2973
O.2905
0.2O72
0.2COO
O.2391
O.2399
0.2902
0.3104
0.3 no
0.3!27
0.3K13
0.313O
0.3140
0.3121
0.3058
0.3051
0.3054
0 . 3O38
0.3059
-2.7O
-0. 15
0.03
1.29
1.51
1.53
-2.40
-0. 17
0.71
1. 12
1.32
1.30
-2 . 63
-0.20
1.34
2.31
2.00
3.04
-2.39
-0.23
1. 15
2.02
2.51
2.67
-0.0703
0.0150
0.0001
O. 1632
0 . 2O35
0.2173
-0.071O
0.0123
O.OO05
0. 1433
0. 1791
O. 1913
O.3359
o.n?07
0 . 2047
O.?~37
O.2055
0.2023
0.4203
0. 5>000
0 . 330 1
0.3104
O.3030
0.3022
O . O40 1
O . O3 I 2
O.0349
O . 0374
0.0309
0.0394
0 . O407
O.O450
O . O403
0 . 0305
O.O319
0.0323
0 . OO 1 7
0.00-13
O.0723
0 . O740
0.0702
0.0760
O.O534
0.0012
0.0040
O.0009
0.0031
0.0033
30.7054
32.0.')07
2.") . flCJO 1
20.2327
27 . 3343
27. 1120
33.3370
29 . 4447
20 . G333
25 . 3334
24.5300
24 . 2700
24. 10:72
22. '""V-
C 1 . .'lOO*"1
20 . 3 1 T»4
20.3231
20.4419
2 1 . O243
20 . 242 1
19.2^,33
13.0752
13.3000
13.3112
    DOWNWIND DISTANCE (KM)
    PLUME ALTITUDE 
                       VISUAL EFFECTS FOR WON-HORIZONTAL CLEAR SKY VIEWS THROUGH PLUME CENTER
                       1000 MW POWER PLANT
_,  THETA
10   135.
00
ALPHA

 30.
 30.
 30.
 30.
 3O.
 30.
 45.
 45.
 45.
 45.
 45.
 45.
 60.
 60.
 CO.
 60.
 60.
 60.
 90.
 90.
 90.
 90.
 90.
 90.
BETA

15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
'• 120.
0




• 392.
RP
2.95
1.41
0.00
O.OO
0.44
0.39
2. 10
1.04
0.68
0.51
0.42
0.39
1.73
0.03
0.60
0.47
0.41
0.39
1.51
0.78
0.55
0.45
0.41
0.39
YCAP
23.01
16.68
13.61
12. 16
11.46
11.25
25.95
16.75
13.35
11.76
11.00
10.78
26 . 5 I
16.04
13.27
11.59
10.00
10.56
26.89
16.92
13.22
11.49
10.67
1O.43
L
57. 12
47.90
43.71
41.51
40.39
40.04
50.02
47.99
43.33
40.87
39.63
39.24
58.55
48. 10
43.20
40.60
39.28
38.07
58.91
40.20
43. 14
40.44
39. 06
38.04
X
0.3159
0.3167
0.3198
0.3227
0.3247
0.3255
0.3009
0.2900
0.3002
0.3019
0.3030
0.3934
0.2920
0.2093
0.2900
0.2912
0.2920
0.2923
0.2072
0.2032
0.2835
0 . 2044
0 . 205 1
0.2O53
Y
0.3408
0.3402
0.3421
0.3444
0X)462
0.3469
0.3264
0.3220
0.3221
0.3230
0.3238
0.3241
0.3171
0.3110
0.3104
0.3108
0.3112
0.3114
0.3106
0.3036
0.3025
0.3027
0.3029
0.3031
DELYCAP
-3.48
-1. 18
0.47
1.23
1.58
1.69
-4.54
-1.11
0.21
0.03
1. 12
1.21
-3.98
-1.01
0. 12
0.66
0.92
0.99
-3.60
-0.94
0.08
0.56
0.79
0.86
 DELL  C(550)  BRATIO
                                                                           -1
4.99
1.47
0.69
2.01
2.72
2.95
4.08
  38
                                                                            0.31
                                                                            1,
                                                                            1,
                                                                            2.
  37
  96
  15
                                                                           -3.53 -
                                                                           -1.26 -
                                                                            0.
                                                                            1.
  18
  10
1.61
1.77
3.20
  17
0. 12
0.94
1.40
                                                                           -1
 0.1493
 0.0281
 0.0775
 0.1573
 0.2073
 0.2240
 0. 1198
 0.0269
 0.0541
   1163
   1552
   1604
 0.1033
 0.0247
 0.0440
 0.0968
 0.1301
 0.1414
-0.0924
-0.0228
 0.0330
 0.0349
 0.1144
0.
0.
0.
                                                                                          0.
                                                                                          O.
                                                                                          0.
                                                                                          0.
                                                                            1.53  O.1245
0.2658
0.2034
  1746
  1578
  1401
  1449
0.3373
0.2303
0.2500
0.2329
O.2233
0.2202
0.3910
0.3303
0.30*^2
0.2077
0.2776
0.2744
0.4334
O.3O01
0.3492
O.3301
0.3196
0.3103
   DELX

0.0681
0.0766
0.0321
O.0061
0.0306
0.0395
O.O531
0.0.106
O.O025
0.0053
0.0669
O.O075
O.O443
0.0491
0.0523
0.0546
0.0359
0.0564
0.039,1
0.0430
0.0453
0.0478
0.0490
0.0494
                   DELY  EC LUV)  E(LAB)
0.0050
0.0973
0.1024
O.1076
0.1103
0. 1112
0.0712
0.0790
0.0034
0.0302
0.0373
0.O334
0.0019
0.0081
0.0716
0.0740
0.0753
0.0757
0.0554
O.0007
0.0038
0.0058
0.0070
0.0074
52.
48.
44,
43,
42,
41,
44
39
30,
34,
33
33,
39,
34,
31
30,
29,
23.
35,
31,
28.
27.
26.
9551
3415
9739
0733
1750
92G7
7071
9934
7022
8521
0529
5432
4237
9697
9059
2012
2497
9501
7169
5247
7529
OCPO
190O
34.5807
32.9973
   8040
   2459
   0099
   0487
   1000
   1397
   0779
   1579
24.8103
24.70O3
   0013
   7212
22.4714
21.7039
   4055
   2901
   1539
21.35OO
20.1321
19.5094
19.104O
31.
31.
31.
31.
29.
27.
25.
25.
                                             25,
                                             23
                                                                                                                         o i
                                                                                                                         w 1
                                                                                                                         21
                                                                                                                         23
                                                                                                     25.9141 19.0575
     Exhibit A-7  (.continued)

-------
                        VISUAL. EFFECTS FOU HORIZONTAL VIEWS
                                TO THE PLUME OF WHITE.  CRAY.  ATTD
                 FOR VARIOUS OBSERVER-PLUME AND OBSERVER-OBJECT
                 1600 MW POWER PLANT
BLACK OBJECTS
DISTANCES
vo
vo
DOTVNWIND DISTANCE
TIIETA = 45.
(KM) =
REFLECT RPXRV0 RO/RVO
1.9
1.0
1.0
1.0
l.O
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 ,
1.0 '
1.0
1.0
l.O
1.0
1.0
1.0
0.3
0.3
0.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0,3
0.3
0.3
0.3
0.3
0.3
O.3
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0.10
0. 10
0. 10
0. 10
0.20
0.20
O.20
0.50
0.50
O.BO
0:02
0.02
0.02
0.02
O.O2
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0.10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.02
0.05
0. 10
0.20
O.5O
o.oo
0.05
0. 10
0.20
0.50
0.00
0. 10
0.20
0.50
0.00
0.20
0.50
0.00
0.50
0.00
0.00
0.02
0.05
O. 1O
0.20
O.5O
0.00
O.O5
0. 10
0.20
0.50
0.00
0. 10
O.20
0.50
0.00
0.20
0.50
O.OO
0.50
0.09
0.00
120.0
YCAP
93. 16
09. 19
09.40
90.07
92.92
93.54
92.64
09.05
90.46
92.42
93.02
95. 13
92.06
94.02
95.42
90.75
9O.30
93.09
103.6O
103.56
105. 11
34.90
41.92
51.01
64.53
04.22
9O.50
42.55
51.96
64.93
03.99
90. 14
53.75
67.38
06.39
92.55
70.41
09.06
96.02
94.37
100.69
101.95

L
97.30
95.67
95.75
96.36
97.20
97.45
97.09
95.61
96. 19
97.00
97.24
9O.09
97. 17
97.97
9O.20
99.52
99.34
99.57
101.40
101.36
101.94
65.70
70.04
76.71
O4.25
93.55
96.24
71.28
77.23
84.49
93.45
96.00
70.33
85.71
94.48
97.05
87.21
95.94
93.44
97.78
100.27
100.75

X
0.3455
0.3560
0.3555
0.3528
0.3507
0.3506
0.3457
0.3535
0.3512
0.3494
0.3494
0.3375
0.3416
OJ3401
0.3401
0.3204
0.3299
0 . 3300
0.3213
0.3216
0.3207
0.3317
0.3319
0.3293
0.3300
0.3G97
0 . 3459
0.3214
0.3246
0 . 3273
0.0334
0 . 3447
0.3092
0.3166
0.3290
0.3355
0.3038
0.3188
0.3254
0 . 3 1 02
0.3171
0.3160


Y DELYCAP
0.3561
0.3649
0.3642
0.3620
0.3609
0 . 06 1 1
0.3551
0.3604
0.3507
0.3500
0.3503
0.3459
0.34O1
0 . 3477
0 . 3400
0.3365
O.G372
O.3375
0.3309
0.3309
0.331 1
0 . 3422
0 . 3424
0.3410
0.344O
0.3549
' 0.3593
0.3315
0.3350
0 . 3404
0.3519
0.?564
0.3193
0 . 3279
0.3412
0.3460
0.3153
0.3303
0.3353
0.3236
0.3288
0.3207
-4.05
-9.73
-10.79
-1 . 19
-1 .71
-1 .05
-6.28
-I . 14
-1 .60
-12.21
-12.37
-5.06
-9.20
-9.O1
-9 . 97
-3.31
-6.33
-6.50
-0.95
-1.03
-0.2O
-0.07
-0.07
-2.08
-5.93
-10. 12
-11.35
-0.23
-1.93
-5.48
-10.35
-11.79
-0. 15
-3.07
-7.95
-9.38
-0.04
-4.47
-5.91
0.03
-1.24
0.02

DELL C( 550)
-1.93 -0.0473
-3.92 -0.0959
-4.32 -0. 1049
-4.43 -0. 1062
-4.56 -0. 1079
-4.60 -0. 1084
-2.50 -O.0617
-4.47 -0. 1102
-4.60 -0. 1 J 19
-4.77 -O. 1143
-4.81 -0. 1149
-1.99 -O.O501
-3.62 -0.0907
-3.80 -0.0935
-3.O4 -O.O944
-1 .27 -0.0332
-2.42 -0.0625
-2.47 -0.0636
-O.36 -0.0100
-0.60 -0.0192
-0.11 -0.0031
-0.05 0.0003
-O.59 -0.0166
-1.71 -0.0477
-2.90 -0.0772
-4.22 -0. 1014
-4.50 -0. 1066
-0. 16 -0.0035
-1. 14 -0.0329
-2.74 -0.0720
-4.32 -0. 1055
-4.68 -0. 1124
-0.09 -0.0023
-1.52 -0.0422
-3.29 -0.0327
-3.69 -O.0913
-0.02 -0.0012
-1.83 -0.0485
-2.30 -0.0596
0.01 -0.0003
-0.47 -0.0139
0.01 -O.OOOt

BRATTO
0.7958
O.6620
0 . 6360
0 . 625 1
0.61G8
0.6183
0 . 7O76
0.6936
0 . 6732
0.6621
0.6615
O.O770
0 . 3072
0.7902
0.7O93
0.9570
0.9214
O.92O2
©.9992
O.99O7
1 . 0000
O.OI96
O.691O
0.6346
0.6097
0.6O95
0 . 6 1 <-3
O . O262
0.7097
0.6594
0.6506
0.6561
0.9033
O.7971
O.7766
0.7020
0.9563
0.9054
O.9124
0.9901
0.9097
0.9961

DRLX
0.0137
O.O265
0.0289
0.0295
0.0299
0.0299
O.O162
0.0269
0.0273
0.0206
0 . O2O7
0.0108
O.0133
O.0193
O.O194
0 . 005 1
O.0091
O.O093
0 . 0005
0 . 0009
-O.OOOO
O.O123
0.0232
0 . 0274
0.0294
O.03O1
0.0300
0.0127
O.0226
0.0203
o . 0233
O . 0238
0 . 0072
O.OI61
0.0194
0.0196
O . OO33
0 . 0092
O.OO95
O.0006
O.OO 13
0 . 0002

DELY E( LtTV)
O.O139 12.4250
O.O254 23.O379
0.0279 23.5069
0.0290 26.7045
O.O298 27.7691
0.0299 27. 3379
0.0156 14.5474
0.O242 23.3042
0.0258 24.G399
0.0269 20. 1434
0.0270 20.2030
O.0096 9.G2O4
0.0152 16.3729
O.O166 17.751O
O.0I67 17.90OO
O.O036 4.0402
0.0061 O.3624
O.0052 O. 5473
-0.000 1 0.6077
-0.0^03 1.2432
-0.00O2 0. 1300
0.0127 7.0152
0.O237 16.2373
0.0292 21 .0073
0.0320 20.3139
0.0315 2O.4474
O.0306 28. 1953
O.O127 8.97O3
0.0224 17.0709
0.O276 23.59PO
O.O2O5 26.7000
0.0277 26.0151
0.0067 5.6106
O.O151 14.0309
0.0178 18. 1424
0.0172 18. 1959
O.0025 2.6745
0.0009 8.5225
0.0066 B.7O12
0.0003 0.5320
0.0001 1.2953
0.0000 0. 1006

EC LAB)
8.3304
15.6595
17. 1992
17.91
O. ir,99
5.3310
1 0.7302
1 4 . 2O<-5
16.9307
IO.5795
13.0171
5 . 3O33
11. KJ5o
14.9307
17.2744
17.3750
3 . <-23O
3.001 1
1 1.4079
11.5030
i.naoo
5. 1332
5 . 4533
O.3027
O.0555
O.OO 44
        Exhibit A-7 (continued)

-------
o.o
0.0
0.0
0.0
0.0
o.o
o.o
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
o.o
o.o
0.0
o.o
0.0
0.0
0.02
0.02
0.02
0.02 •'••
0.02
0.02
0.05
0.05
0.03
0.0?
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.80
0.02
0.05
0. JO
0.20
0.50
O.GO
0.05
0. 10
0.20
0.50
0.00
0. 1O
0.20
0.50
0.80
O.20
O.50
0.00
0.50
O.80
0.80
9.93
2 1 . 66
04.56
53.24
00.49
89.31
21.09
36.07
54.06
80.37
00.91
36.01
56.46
82.77
91.31
50.27
86.23
94.79
90.38
99.46
100.60
37.76
53.69
65.43
78.03
91.91
95.72
53.08
66.60
70.52
91.86
95.55
66.56
79.89
92.92
96.54
80.90
94.42
97.95
96. 16
99.79
100.23
0 . 2056
0 . 296O
0.3038
0.3146
O.3344
0 . 0430
0.2336
0.2981
0.3116
0.3331
O.3426
0.2819
0.3006
0.3238
0.3334
0.2877
0.3136
0.3233
0.3050
0.3151
0.3140
0.2957
0.3088
0.320O
0 . 3332
0.3520
0.3584
0.2945
0.3117
O . 3203
0.3490
0.3555
0 . 2938
0.3150
0.3380
0.3450
0.3015
0.3271
0.3344
0.3202
O.327O
0 . 3277
1.98
2.93
0.51
-3.68
-9.43
-11. 13
2.36
2.02
-2.85
-9.55
-11.53
1.96
-0.45
-7. 15
-9. 13
1.36
-3.60
-5.66
0.46
-0.99
0. 16
0.85 0.2509
3.29 0.1610
O.40 O.0233
-2.11 -0.0552
-4.06 -O.0932
-4.46 -0. 1057
2.68 0.1273
1.57 O.0633
-1.63 -0.0430
-4. 1 1 -0. 1011
-4.62 -0. 1113
1.53 0.0374
-O.25 -0.0053
-3.05 -0.0773
-3.63 -0.0899
0.76 0.0232
-1.35 -0.0415
-2.22 -0.0578
,O.19 0.0045
-0.30 -0.0115
0.06 0.0013
0.6533
0.5350
O.G303
0 . 5806
0 . 6O39
0.6122
0.7449
0.6492
0 . 6327
0 . 6436
0.6534
0.0673
0 . 7672
0.7683
0.7795
0.9399
0.3956
0.9035
0.9844
0.9053
0.993O
O.O1P.9
0 . 0260
o.orjni.
0 . 0.?93
0.0302
O.O3O1
0 . 0 1 C6
0 . 0223
0.0269
0 . 0289
0 . 02O9
0.0066
O.O 159
O.O 196
ft. 0197
0.0030
0.0094
O.0096
0.000O
0.0014
O.O003
O.0203
O.0238
0.0330
0.0343
O.O323
0.0309
0.0145
0 . 0246
0.0294
O.O293
O.O280
0 . 0007
0.0162
0.0183
0.0175
0 . O«27
0.0074
0.006O
0 . 0005
0.0002
0.0001
6 . 0636
14.3731
21. 1724
26.5553
20.7825
23.3447
7. 1470
16. 1543
23.5140
27.0700
26 . 7700
4.3191
13.5516
18.3693
10.3273
2. 2529
8.6724
B.G911
O.6301
1 . 3623
0.2310
3 . O906
9 . 957 1
13.5733
16.3249
13.6400
10.6517
5. 1959
10.2406
14.6547
17.3236
17.4137
2 . 94ff2
o. ir/)i
1 1 . 4442
1 1 . 6225
1 . 4654
5 . 2OO6
5 . 4G79
0.3922
0.8433
0. 14(K.
8
o
        Exhibit A-7 (continued)

-------
                       VISUAL. KFFECTS FOR HoniZOWTAL VIEWS
                 PERPKlVDJCr/LAR TO THE PLUME OF WIIITF.,  GRAY, AND
                 FOR VARIOUS  ODSERVER-PLUME AND OBSERVER-OBJECT
                 I6O0 MW POWER PLANT
BLACK OBJECTS
DISTANCES
t\i
O
DOWNWIND DISTANCE 
-------
o
ro
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.02,
0.02'
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.80
0.02
0.03
0. 10
0.20
0.50
0.80
0.05
0. 10
0.20
0.50
0.00
0. 10
O.20
0.50
0.80
0.20
0.50
0.00
0.50
o.oe
0.00
5.47
11.93
19. lO
29.68
44.93
49 . 03
11.74
20.02
30. 13
44.84
49.53
20.23
31.60
46.31
51.05
32.87
43.42
53. 16
50.99
56.00
56.71
28.07
41. 14
50.93
61.41
72.87
75. 9O
40.81
51.90
61.80
72.81
75.33
52. 14
63.04
73.77
76.73
64.08
75. 11
77.99
76.69
79.63
80.03
0.2602
O.2731
0.2360
O.2967
O.3164
0.3256
O.2665
0 . 2303
0.2937
0.3149
O.3242
0.2653
O.2300
0.3056
0.3150
0.2710
0.2956
0.3050
0.2076
0.2972
0.2962
0.2740
0.2377
0.2999
O.3142
0.3349
0.3421
0 . 2732
0.2909
0.3039
0.3315
0.33O9
0 . 2728
O . 2949
0.3197
0 . 3274
0.2012
0.3000
0.3159
0 . 3009
0.309O
0.3090
0.95
1.30
-0. 14
-2.53
-5.85
-6.01
1.11
0.71
-2. 10
-5.93
-7.06
0.92
-O.63
-4.47
-5.59
0.64
-2.35
-3.47
0.21
-0.64
0.07
2.72 0.2121
2. 15 0. 12O5
-O. 16 0.0040
-2. 15 -0.067O
-3.70 -0. 1057
-4.01 -0. 1 125
1.03 0.1057
O.01 O.0427
-1.76 -0.0556
-3,75 -0. 1091
-4. 16 -O. 11O5
1.05 0.0477
-O.52 -0.0156
-2.80 -0.0038
-3.27 -0.0958
O.52 0.0192
-1.43 -O.O460
-2.00 -0.0613
0.13 0.0033
-0.36 -0.0123
0.04 0.0010
0.6759
O.6033
O.5925
O.5933
0.6070
0.6142
0.7632
0.6055
0.6419
0.6432
O.656O
0.3792
0 . 7734
0.7743
0.7343
O.9463
O.9019
0.9133
0.9364
0.9334
0.9946
O . 0 1 66
0.02:}4
O.O2S5
O.0233
0.0295
0 . 0296
O.O1 19
O.O207
O.O253
0 . 0230
O.O232
0.0053
0.0145
0.0137
0.0190
O.0026
0.0037
0.0090
0.0006
0.0012
0.0002
0.0193
0 . 0284
O.O334
O.O356
0 . 0'143
O.O333
0.0 1G9
0 . O244
O.OH02
0.0311
o.oaoo
O.0063
O.OI62
0.0192
0.01O3
O.OO25
O.O073
0.0071
0.0003
0 . 0002
0.0001
4.3739
I0.9333
17.6253
22.99H3
23.5001
25 . 2034
5 . 1 260
12.953O
20. 1303
23.3493
23.7197
3. 1035
1 1 . 2474
15.9327
16.0564
1 . 6077
7 . 3303
7.5979
0.4364
1.0512
0. 1571
4.^307
3.0477
1 1 . 724 1
14.BOH5
10 . 5590
10.5793
3 . 907 1
3.5135
12.3092
15.3072
15.4004
2.2043
6.9450
IO.OO65
10. 1CG3
1 . 0674
4.4^38
4.7115
0 . 2743
O . 6390
0.0972
           Exhibit A-7 (continued)

-------
                 PLUTTC VISUAL EFFECTS FOR HORIZONTAL VIEWS
                 PERPEND ICT7LAR TO 'HIE PLUKE OF WIITE, GRAY, AND
                 FOn VARIOUS ODSERVER-PLUHS AHD ODOERVER-OBJECT
                 1600 MW POWER PLANT
BLACK OBJECTS
DISTANCES
ro
o
CO
DOWNWIND DISTANCE
TIIRTA = I35..C
(KM) =
REFLECT" RP/RVO RO/RVO
Iff
• V
1.0
1.0
1.0
l.O
1.0
1.0
1.0
1.0
1.0
l.O
1.0
l.O
l.O
1.0
l.O
1.9
1.0
l.O
1.0
1.0
O.3
0.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0,3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.02
0.02
0.02
0.02
0.02
0.02
0.05
O.05
O.05
0.05
0.05
O. 1O
O. 1O
0. 10
0. 10
0.2O
0.2O
0.20
O.5O
0.50
0.80
0.02
0.02
0.02
0.02
O.02
0.02
0.05
0.03
0.05
0.05
0.05
0. 10
e.io
O. 10
0.10
0.29
0.20
0.20
0.50
0.50
0.00
0.02
0.03
0. 10
0.20
0.50
O.QO
0.05
0. 10
0.20
O.50
O.OO
0. 10
O.2O
0.50
o.ao
O.20
O.50
0.00
0.50
O.GO
0.80
0.02
0.03
0. 1O
0.20
O.50
0.00
0.03
0. 10
0.20
0.50
O.QO
O. 10
0.20
0.50
0.00
0.20
0.50
O.CO
0.50
0.00
O.CO
120.0
YCAP
CO. 94
00.01
75.03
00.08
00. 16
57. 17
33.94
74.08
f>0.30
59.07
50.77
30.05
09.93
01.31
53.41
73.0O
03.09
00.79
07.87
03.98
03. 19
30.08
32.73
30.06
42.73
51.46
54.21
33 . C5
30.99
42. C3
51.23
53.89
39.26
44.47
72.88
53. G4
47.26
53 . 25
57.91
58.56
61. 10
02.04

L
95.36
91.70
89 . 42
86.55
81.94
3O.J9
93.43
88.97
Ofi. 17
81.07
80.07
91.98
8* . 98
82.56
no. 93
89.08
83.32
02.28
85.93
83.97
84.00
62.26
63.97
67.03
7 1 . <0
76.98
78.00
64.07
67.29
71.46
70.04
73.42
68.97
72.57
77.02
79.37
74.38
79.21
00.71
81.07
0-2.45
82.93

X
0.3467
0.0386
0.3581
0 . 3528
0.3099
0.3031
0 . 3433
0.0509
O.3514
0.3GQ3
O.C315
O.G405
0 . 3420
0.3£03
O.0220
0 . 0289
0.31O4
O.31 17
O.3104
O . 3037
O.OO02
0.3329
0.0314
0 . 0247
0.3193
0.3214
0.0248
O.0210
O.0199
0.0106
0.0198
0.0233
0.0052
0.3053
0.3103
0.3139
0.2>-i
0.0230 0.02131 23.7500 15.7O"::,
O.O23O O.O29O 24.1951 lO.oS.IO
O.01IO O.O103 10.1593 6.7G07
0.0107 O.O152 13.4-J03 10.3O79
0.0135 o.oioa i5.r;M4 io.rj7f» 4.09O.')
O.OOO2 O.OOf>0 7.0603 4.72TJ
O.O001 -O.OO07 0.7977 O.7C6rj
0.0OO2 -0.0009 1.O926 O.9902
-O.QOOO -O.OOO5 O.35O4 O.2CO4
0.0119 0.0125 7.4080 5,17,10
O.O224 O.O232 14.3004 10,0002
O.O202 O>OC39 I9.007O 1O.OOCO
0.0203 O.OD27 23.3149 15.507O
0.O290 0. 03-18 20.0057 17.11150
O.0294 O.O034 20.0223 17.20:51
0.0123 0.0125 0.0042 5.55.14
O.O214 O.O210 15.702.': 10.2-10
O.0254 O.O277 21,1230 1G.OKI')
0.0277 0.0003 24.1KVJ: 15.79.':.?
0.0279 O.O300 24.0362 15.9472
O.0007 O.O002 5.0090 0. 10-22
0.0146 0.0144 12.201C%. 7.1>5':0
O.O1O2 0.0104 lO.OOnu 10.2~'0
o.oi36 o.oino io.jr»m io.4?on
0.0027 O.O019 2.1700 1.0101
0.0081 0.0066 7.2377 4.UO9O
0.0036 0.0007 7.0702 4.3010
0.O003 -0.0000 O.OO40 O.2»T7
O.OOO3 -O.00O2 O,'K«5.t 0.74O<)
0.0000 -O.f-001 O.OTO;:: O.OT»!i!
        Figure A-7 (continued)

-------
ro
o
o.o
0.0
0.0
0.0
0.0
0.0
o.o
o.o
o.o
0.0
0.0
0.0
0.0
o.o
o.o
0.0
o.o
0.0
o.o
o.o
0.0
0.02,1.
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 1O
0. 10
0.10
0. 10
O.20
0.20
0.20
0.50
0.50
O.BO
0.02
O.05
0.10
0.20
0.50
0.80
0.05
0. 10
0.20
0.50
O.30
O. 10
0.29
0.50
0.30
0.20
0.09
o.eo
0.50
o.ao
0.00
5.71
12.47
20.20
31.44
47.73
52.94
12.38
21.09
31.91
47.62
52.66
21.52
33.55
49 . 26
54.31
33.11
5 1 . 93
-2.51 -0.0750
-4.03 -0. 1107
-4.33 -0. 1170
1.57 0.0913
0.42 0.0206
-2. 13 -0.0640
-4. 10 -0. 1144
-4.5O -O. 1232
0.09 ~0. 0412
-0:79 -0.022i>
-3.07 -O.OOB2
-3.53 -0.0997
0.44 0.0166
-1.62 -0.0439
-2. 17 -0.0645
O.lt 0.0032
-0.41 -0.0136
0.04 0.0009
0.6G32
0.6163
O.59O7
0.59'>4
0.6075
0.6141
0.7736
0.6747
0.6467
0.6493
0.6577
O.GH33
o.7cr»o
0.7774
0.7,".G6
0.9503
0.905i)
0.9109
0.9376
0.9904
0.9951
0.^154
0 . ' \TVJS
0.''VJ-55
0.0376
0.0291
O . 0203
0.0110
O.O 196
0 . O245
0.0275
0.0279
o.oor»3
O.Ol.'J')
0.0102
0.01CVS
0.0023
o.oo;;4
O . '*9G7
0.0306
0.0011
0 . 0002
n.OlfJ? 4.43m
o.on:73 11.22^1
0.0332 10.3J.V. '•
O.OTJ57 24.0173
o.oa.io 26.7sr»i
0.0133 26.5123
0.0133 S.JO'O
0 . 02'59 13.25 C4
0.0302 20-:>247
0.0314 24.9317
0.0305 24.Cl>4?
0.0060 3.0359
0.0159 11.5360
O.0193 16.6135
0.0137 16.726-f
0 . OO23 1 . £296
0.0074 7.5153
0 . OO70 7 . 32r.fJ
0.0004 0.39r»U
O.0001 1.02^4
O.O001 0. KJ^V
4.2.1 ir.
r. . or »."•
t T5 . Oi'T-^O
ir>,-:.~-"*.
!?.£:?•:••••
.17.C5'>r>
O.G- -?r,
O.6.'J;G"?
•3.2374
I5.nro7
16.001TJ
f\ 1 Cffr °
?!ocx-9
10.34:>''>
10.5437
O.9954
4.5r-,7<
4 . O^r»3
O . 245 1
0.6053
o.r.'T.i
         Exhibit A-7  (continued)

-------
           VISUAL EFFECTS FOIl LINES OF
           I GOO flW POWER PLANT
SIGHT ALONG PLUME
£
DOWNWIND DISTANCE (KM)
THETA LENGTH RP/RVO
45.
20.
20.
20.
20. .
20.
20.
20.
40.
40.
40.
4O.
40.
4O.
40.
60.
60.
60.
60.
6O.
6O.
60. 1
00. '
80.
80.
80.
CO.
GO.
CO.
100.
100.
100.
100.
1OO.
100.
100.
110.
110.
110.
110.
110.
110.
110.
115.
115.

0.00
0.02
0.0&'
0.10
0.20
0.50
0.80
O.OO
0.02
0.05
0. 10
0.20
0.50
0.30
0.00
0.02
0.05
0. 10
0.20
O.50
0.80
O.60
0.02
0.05
O.10
0.20
O.50
O.CO
O.OO
0.02
O.05
0.10
0.20
0.50
O.GO
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
= 120.0
RV ^REDUCED

172.5
171.4
170.1
168.1
165.4
161.8
164.7
163.3
164.9
160.4
154.4
146. 1
135.3
164.3
153.3
152.7
144.9
134.4
12O.O
133.7
164.8
133.5
124.9
113.8
99. 1
104.8
133.8
164.8
92.1
92.8
94.6
93.8
104.9
133.3
164.8
92. 1
92.9
94.6
93.3
104.9
133.0
164.3
92.2
92.9

6.77
7.33
8.08
9.11
10.53
12.56
10.97
9.04
10. C3
13.23
16.52
21.01
26.37
10.93
14. 18
17.45
21.69
27.36
35. 13
27.71
10.91
27. 06
02.49
33.47
46.43
43.37
27.67
10.91
50.21
49.81
48.06
46.62
43.31
27.66
10.90
50. 19
49. CO
48.85
46.61
43.30
27.66
10.90
50.19
49.80
YCAP

31.29
83.28
85.96
89.71
95.17
102.62
104.78
72.47
75.15
78.75
83.81
91.21
1O1.09
104.39
69. 0«
72.00
75.95
81.49
89.62
100.87
104.22
67.79
70. OO
74.87
30.60
39.00
100.66
104. 14
67.34
70.39
74 . 49
80.28
88.73
100.53
104.12
67.20
70.33
74.44
80.24
88.74
100.57
104.11
67.27
70.32
L

92.27
93. 13
94.30
93.03
90.10
101.00
101.32
C3.21
39 . 47
91. 13
93.37
96.50
200.53
101.67
05.56
37.93
G9 . C4
92.30
95. 04
100.34
101.61
35.91
£17.40
39.34
91.96
95.58
100.26
101.53
05.69
tt? . 20
39. 17
91.02
95.49
100.23
101.57
35.66
07. 17
R9. 14
91.00
95.48
ICO. 22
101.57
85.65
07. 16
X

0.3779
0.3682
0.3570
0.3445
0.3313
0.3214
0.3206
0.0390
0.0762
0.3621
0.0460
0.3316
O.3209
0.3203
0.3089
0.3755
0.361O
0.31-56
0.3005
0.3204
0.0201
0.3875
0.3742
0.3597
O.3445
0.3296
0.3201
0.3200
0.3067
0.3734
0.3590
0.0438
0.3292
0.3200
0.3199
0.3005
0.3732
0.3583
0.3437
0.3291
0.3200
0.3199
0.3364
0.3732
Y DELYCAP

0.3816
0.3714
0.3599
0.347?
0.3361
0.3302
0.3303
0.3302
0.3687
0.3563
0.3437
0.3328
0.3290
0 . 3304
O.3762
O.3648
O.3527
0.3403
0 . 3309
0.3284
O.3302
0.3746
0.3602
0.3514
O.3397
0.3302
0.3282
0.3302
0.3742
0.3623
0.3510
0.3394
0.3299
0.3202
0.3301
0.3741
0.3623
0.3510
0.3393
0.3299
0.3282
0.3301
0.3741
0.3628

-23.86
-21.91
-19.29
-15.61
-10.27
-3. 01
-0.91
-32.36
-30.21
-26 . 64
-21.64
-14.32
-4.27
-1.32
-36.37
-33.47
-29 . 53
-24.04
-15.97
-4.01
-1.5O
-37.75
-34. 7G
-3O.70
-24.99
-16.60
-5.03
-1.53
-30.25
-35.22
-01. 12
-25.33
-16.89
-5.13
-1.61
-33.34
-35.30
-31.20
-25.42
-16.93
-5. 14
-1.62
-38.36
-35.32
DELL

-9.69
-3.03
-7.69
-6. 14
-0.96
-1.10
-0.34
-10.02
-12.56
-1O.92
-8.69
-5.00
-1.01
-0.49
-15.01
-14.09
-12.24
-9.74
-6.23
-1.02
-0.56
-16. 19
-14.70
-12.77
-10. 16
-6.05
-1.90
-0.59
-16.43
-14.93
-12.96
-10.32
-6.66
-1.94
-0.60
-16.47
-14.96
-10.00
-10. C4
-6.67
-1.95
-0.61
-16.43
-14.97
C(350>

-0.2283
-0.2111
-0. IO76
-0. 1542
-0. 1042
-0 . 0.'.»22
-o.o«oo
-0.3209
-o.caio
-O.20G3
-O..J'J1O
-O. 14°4
-0 . 0-102
-O.O140
-O.OG6G
-0.3389
-O.COS4
-0.2rv>
0 . ('.'"60 0 . 00 9 1 0 . OKY) SO . ! TOO 0 T . *>^n
0.00.15 O.O.102 0.0070 4-...r.or,^ 2^.4'.-':»
0. 6^.91 0.0420 0.01>v> "4.rj""'i r2.«?T
0.7743 O.0200 O.OlflO 25. 2003 in.ir.r.
0.9219 O.O112 0.0010 Il.v90< r*..W*
1.O049 O.OOO2 -O.OCCC5 2.7217 f:.0-0
l.OO'O -O.OOOO -O.OO (I O.<>r::;:7 O.70)
O.40O3 0.0<>37 O.0443 02.010O O5.27'>
O.OO32 0.053*1 O.OOOO 00.0011 .I'.!.'"'.-"
0.6002 O.0407 O.O2IO O0.7072 SIIi.^O.T
O.7r-23 O.O202 0.0090 22.0040 115.19:3
O.or.96 O.OO09 --O.OOOG 11.3476 O.-?2:<>
1.0009 -0.0003 -o.ooot o.o2.".o n.oo:».
1.0070 -O.OO07 -O.OO 13 1.1400 O.fV\",
0 . 4048 0 . 0072 O . 040 1 51.21 n 04 . OfV
0.3136 O.O133 O.OOIO 2oO 2,3. ^70
O.G-24 O.O300 O.0199 '?.'l . ",'J.70 21.rr,')
0.7r-X» O.02O9 O.OOO? f-Jl.'X-l'., 10.007
0.9059 O.O090 -O.OO JO 11.0042 O.^,.'*,
1.O122 -O.OOO7 -0.0000 0. 10I>T 2.0.1^
l.OOOG -0,0009 -O.OO.K, «. 21100 O.'X:1
0.40O2 0.0001 0.0-.-07 P0.557U 04.170.':
0.0177 0.0323 O.OOIO A2.O090 ST. TOO
o . G':-72 o . 0004 o.oi90 o:> . 27rfn :.•; i . oo '
O.794O O.O2O2 O.OO79 21.^-^21 K-.^OI
0.9'J07 0.0003 -0.0010 1 0.790! -T.^-'r.
1.0147 -0.0003 -0.0000 3.1000 U.70G
1.0098 -0.0009 -0.0014 1.20O1 O.OOO
0.4G94 0.0009 0.0<27 50.0r.Cr> r^-.niO
0.5192 0.0000 0.0313 41. R'»40 2.'*. 147
0.6409 O.0032 0.0195 02. Iv'Vf 21. OH)
0.7967 0.0200 O.007O 21 . OOf?G |rt.rr,'».
0.0/-24 O.O034 -0.0010 10.72!."7 O. -"">7
1.0156 -0.0009 -0.0000 0.1013 2.7O^
1.01O2 -0.00(0 -0.0014 1.2009 o.'V-ni
0.4009 0.0053 0.0427 50 . OO.V} O^.TO'^
O.5198 0.0520 0.0010 41.0:260 L".n,. f.'O
     Exhibit A-7 (continued)

-------
ro
o
1 15.
1 15.
1)5.
115.
115.
110.
118.
1 10.
110.
no.
no.
110.
119.
119.
119.
119.
1)9.
119.
119.
O.05
0. 10
0.20
0.50
0.00
O.OO
0.02
0.05
0. 10
O.20
0.5O
0.80
0.00
-0.02
0.05
0. 10
0.20
0.50
0.80
94.6
98.3
104.9
133.3
164. 0
92.2
92.9
94.6
9O.O
104.9
133.8
164.8
92.2
92.9
94.6
93.8
104.9
133.8
164.8
48.85
46.61
43 . 3O
27.66
10.90
50. 19
49.79
48.85
46.61
43.30
27.66
IO.90
50. 19
49.79
48.85
46.61
43.30
27.66
10.90
74.43
80.23
80.74
109.57
104. 11
67.27
70.32
74.43
80.23
88.74
100.57
104. 11
67.27
70.31
74.43
80.23
80.74
100.57
104. 11
G9. 14
9 1 . 79
93.40
100.22
101.37
05.65
07. 16
O9. 14
91.79
95 . 47
100.22
101.57
05.65
87. 16
O9. 14
91.79
95.47
100.22
101.57
0.3.108
0.3437
0.3291
0.3200
0.3199
0.3364
0 . 3732
0.3508
0.3437
0.3291
0.3199
0.3199
0.3C64
0.3732
0.3508
0.3437
0.3291
0.3199
0.3199
0.351O
0.3393
0.3299
0.0202
0.3301
0.3741
0.3620
0.3510
0.3393
0.3299
0.3202
0.3301
0.3741
0.3628
0.3510
0.3393
0.3299
0.3202
O.3301
-31.21
-25 . 43
-16.94
-5. 15
-1.62
-38.37
-35 . 33
-3 1 . 22
-25 . 44
-16.95
-5. 15
-1.62
-38.37
-35.33
-31.22
-25 . 44
-16.95
-5. 15
-1.62
-13.00
-10.35
-6.60
-1.93
-0.61
-16.49
-14.90
-13. Ol
-10.35
-6.6O
-1.95
-0.61
-16.49
-14.98
-13.01
-10.35
-6 . 68
-1.95
-0.61
-0.3K.7
-0.20O4
-0. 1761
-0 . 0545
-0.0163
-0.3352
-0.3562
-O.OI67
-0.2604
-0. 1761
-0.0545
-0.0163
-0.3352
-0 . 3562
-0.3167
-0.2604
-0. 1761
-0.0543
-0.0103
O.6496 O.O3H1 0.0195 32.1095 21.507
0.7^74 O.O23O O.OO73 21.3649 14.fT>::
0.9 MM 0.0033 -0.00 <'» 1O.7U6 0. )
1.O159 -0.O009 -O.OOOIJ 3.IM2 2.707
1.0104 -O.O010 -0. 0014 1.^617 0.060
0.4101 0.0653 0.0427 50.3494 ?.4.ry>!J
0.G201 O.0523 O.OG13 
-------
VISUAL EFFECTS FOR LINES OF SIGHT ALONG PLUME
1GO0 MW POWER PLANT
DOWNWIND DISTANCE (KTD = 120.0
TIIKTA LENCTJI RP/RVO HV 7JAEDUCED YCAP L X
90.
20.
20.
20.
20. *
20.
20.
20.
40.
40.
4O.
40.
4O.
4O.
40.
GO.
60.
CO.
6O.
GO.
rss 60. ,
0 GO.
*•* 80.
GO.
00.
CO.
O0.
00.
00.
100.
100.
100.
100.
100.
100.
100.
110.
110.
no.
no.
110.
110.
110.

0.00
0.02
0.05
0.10
0.20
0.50
o.co
0.00
O.O2
O.O5
O. 10
O.20
O.50
0.80
0.0O
O.02
0.05
O. 10
0.2O
0.50
0,80
O.OO
0.02
0.05
O. 1O
0.20
0.50
0.80
0.00
0.02
0.05
0. 1O
0.20
0.50
0.80
0.00
0.02
0.05
0. 1O
0.20
0.50
0.00

173.4
172.3
170.0
168.7
165.0
161.9
164.7
171.5
167.7
162.9
1P6.3
147.3
135.6
164.0
164.6
157.9
149.2
137.7
122.O
1G3.9
164. 0
141,7
132.2
119.9
103.7
105.5
134. 0
164. 0
94.3
94.7
96.0
99.7
105.7
134.0
164,9
94.3
94.7
96.0
99.7
105.7
134.0
164.9

6.25
6.06
7.67
0.79
10.37
12.49
10.96
7.30
9.33
11.96
15.50
2O. 38
26.69
10.92
11.03
14.66
19.34
25.56
34.04
27.64
1O.9O
23.40
28.55
35. 17
43.92
42.95
27.59
10.09
49.02
48.83
48. 10
46. 10
42.00
27.58
10.09
49.00
40.01
4O.O9
46.09
42.88
27.58
10.09

44.04
46.04
47.66
49.93
53.22
57.69
50.90
39.35
40. 9O
43. 17
46.25
50.75
56 . 92
58.74
37.21
39.00
41.40
44.79
49.75
56 . 60
53.63
36.38
38.23
40.71
44.21
49.35
56.46
58.58
36.09
37.95
40.47
44,01
49.20
56.41
50.56
36.04
37.91
40.43
43.97
49. 18
56 . 40
58.56

72.81
73.60
74.63
76.04
78.02
CO. 58
81.30
69 . 03
70. 18
71.69
73.73
76.55
no. is
CI. 16
67.46
68.78
70.43
72. 7O
75.93
79.97
81. 10
66.84
68.22
7O.OO
72. 4O
75.69
79.39
81.08
66.62
68.01
69.03
72.26
75.60
79.86
01.07
66.58
67.98
69.80
72.24
75 . 58
79.86
81.06

0.3603
0.3301
0.3305
0.3257
0.3126
0.3032
0.3024
O.3706
0.3570
O.3423
0.3270
0.3121
O.3024
0.3021
O.3695
0.3554
0.3405
0.3251
0.3106
0.3018
0 . 30 1 0
0.3675
O.3535
O.3307
0.3236
0.3096
0.3014
O.3OI7
0.3663
0.8524
O.3377
O.3220
0.3091
0.3O12
0.3016
0.3661
0.3522
0.3375
0.3227
0 . 3089
0.3012
0.3016
Y DELYCAP

0.3603
0.3567
0.3439
0.3304
0.3178
0.3117
0.3124
O.3667
0.3533
O.3393
0.3253
O.3109
0.31O3
O.3I 19
0.3610
0.3406
0.3351
O.3221
O.31 17
0.3096
O.3J 17
O.3597
0.3467
0.3334
O.3207
0.3108
0.3094
0.3117
0.3592
0.3461
0.3329
O.3203
0.3105
0.3093
0.3116
0 . 359 1
0.3461
0.3328
0.3202
0.3105
0.3093
0.31 16

-14.66
-13.46
- 1 1 . 04
-9.50
-6.3O
-1.04
-0 . 56
-2O. 16
-18.53
-16.34
-13.27
-8.78
-2.61
-0.81
-22. 3O
-2O. 52
-18. 11
- 1 4 . 73
-9.78
-2.94
-O.92
-23. 14
-21.30
-18.01
-15.31
-10. 19
-3.O8
-0.97
-23 . 44
-21.58
-19.O7
-15.53
-10.34
-3. 14
-0.99
-23 . 49
-21.62
-19. 11
-15.56
-10.36
-3. 15
-0.99
DELL

-8.77
-7.99
-6 . 95
-5.54
-3.57
-1.02
-0.31
-!2.G6
-1 1.40
-9.89
-7.06
-3.05
-1 .43
-0.44
-14. 13
- 1 2 . 82
-It. tl
-O.O2
-5.66
-1.63
-0.50
-14.75
-13.33
- 11 . 6O
-9.20
-5.91
-1.71
-0.53
-14.93
-13.59
- 1 1 . 77
-9.34
-6.01
-1.74
-0.54
-15.02
-13.62
- 1 1 . 00
-9.37
-6.02
-1.75
-0.54
C<550)

-0.2438
-0.2254
-0.2005
-O. 1649
-O. 1 1 IS
-0 . 0343
-O.OI07
-O.3495
-0 . 3202
-0.2074
-O. 21564
-0. 1S09
-O.O495
-0.O153
-'.>.3920
-0.3625
-O.3H24
-0 . 2(V3 1
-O. 1793
-O.OG55
-O.OI72
-O.4072
-O . 3766
-0.3349
-0.2754
-O. 1S62
-0.0576
-0.017O
-0.41 14
-0.3OO4
-O.33O3
-O.2702
-0. 1031
-O.0582
-0.0100
-O.4113
-o.nooa
-0.3306
-O.2705
-0. 1003
-0.0002
-O.01GO
BRAT 10 DELX DELY E(LUV) E

0.4243 0.0584 0.0552 42.6402 20.934
0.5270 0.0400 0.043J 35.7986 2:). 777
0.64O7 0.0363 0.0306 27.7C.OH K».0!»O
0.7,'*O4 0.02:14 0.0171 13.4804 II. £-37
O.929O O.O1O2 O.0O4G 8.6301 5.711
1.0066 0.0005 -0.001.T l.GOttl l.3">'.
1.0058 -O.OO03 -O.OOOO O.H700 O. 46.3361 3<.r:r
0.5! 69 0.0347 O.O4O1 ,'IO. 4'»5fi 25 . KO"
0.6477 O.O4OO O.O261 20 . .:'. I :i
O.7966 O.O245 O.OJ23 19. •':!:*'?• 12..':'.v{
0.9432 O.0096 O.OOO7 9 . r.or-7 0.,"'?«
1.0102 -O.OOO3 -O.0orj9 2.-H09 2.O4'»
i.oion -0.0007 -o.oo in o..-;r,r,n 0.711
0.4157 0.007O o.o-rno 43. <7;y> no.rf'v>,
O.Or»9O O.O529 O.03S4 37.30,:v? :>.;.. ">m
O.6G22 o.onno 0.0219 23.42:11 ia.'\'";
O.OI3G O.O225 O.OOUT 1O.G.1OO 12. C'^
0.9031 O.OOfSO -O.OO1G 9.1312 7.1?^
1.0239 -O.OOO9 -O.O03'i 2.6319 2.JTO-1.
1.OI41 -O.OO1O -O.0015 1.O401 O.fMO
O.4243 0.065O O.O-IGj 44.O2,",0 SO.CVO
O.5C1<»3 O.O5O9 O.O3G3 "C. . r5OO2 M.^a
O.6741 O.0361 0.02O;> 27.5494 18,6,11
0.3:234 0.0210 O.O075 in.OtXri 12.770
0.9(>97 0.0069 -O.OO24 a.R7f>O 7.f!'1.4
I.O297 -O.OO 13 -O.OO3O 2.75,?4 2.rT°,1l
1.OI69 -O.OO 11 -O.OO 16 I.I 1 34 (>.?T»!
0.4307 O.OG37 O.O46O 43.4954 29.700
0.5471 O.O497 O.0329 0,1.7435 24.2M-
0.6f53O 0. 0351 O.O197 27.O'i4.1 18.505
0.8^49 0.02OI O.OO71 IV.O.ino 12.663
O.9734 O.OO03 -O.OO27 O.69I9 7.:iI9
1.034O -O.OOIT* -O.OO39 2.7932 2.416
1.0189 -0.0012 -O.OO 16 1.14(>0 O.f]f>7
0.4H27 O.OG34 O.O459 43. "702 29.717
O.0495 O.O495 O.0329 :ir».<)ni2 24.210
0.6859 O.O349 O.OI96 2G.950O 1O.'*66
O.OItOO 0.0200 0.0070 17.5729 12.634
0.9U11 O.OOC.2 -0.0027 0.6441 7.2OO
1.0353 -0.0016 -0.0009 2.79.10 2.418
1.0196 -0.0012 -O.OO 16 1.1521 O.,'5">
Exhibit A-7 (continued)

-------
ro
o
oo
115.
113.
115.
1)5.
115.
115.
115.
118.
113.
118.
118.
118.
118.
118.
119.
119.
119.
119.
119.
119.
119.
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.8®
0.00
O.O2
0.05
0.10
0.20
0.50
0.80
94.3
94.7
96. 0
99.7
105.7
134.0
164.9
94.3
94.7
96.0
99.7
105.7
134.0
164.9
94.3
94.7
96.0
99.7
ion. 7
134.0
164.9
49.00
48. 01
40.09
' 46.09
42.80
27.58
10.89
49.00
48.81
43. 09
46.09
42.83
27.58
10.89
49.00
48.81
48.09
46.09
42.88
27. 58
10.89
36.04
37.90
40.42
43.97
49. 17
56.40
58.56
36.04
37.90
40.42
43.97
49. 17
56.40
58.56
36.04
37.90
40.42
43.97
49. 17
56.40
58.56
66 . 50
67.90
69 . 00
72.23
75.58
79.86
C1.06
66.58
67.98
69.79
72.23
75.58
79.86
81.06
66.50
67.90
69.79
72.23
73.50
79.86
81.06
0.3660
0.3321
0.3075
0.3226
0 . 3039
0.3O12
0.3016
O.3660
0.3521
0.3375
0 . 3226
0.3009
0.3012
0.3016
0.3660
0.3321
0.3375
0.3226
0.3C!',9
0.3012
0.2D16
0 . 359 1
0.3461
0 . 3320
0.3202
0.3105
0.3O93
0.3116
0.3591
0.3461
O.3320
0.3202
0.3105
0.3093
0.3116
0.3391
0 . 346 1
0.3328
0.3202
0.3)05
0.3093
0.3116
-23.50
-21.63
-19. 11
-•5.57
-10.37
-3. 13
-0.99
-23. GO
-21.63
-19. 11
-13.57
-10.37
-3. 15
-0.99
-23.50
-2 1 . 63
-19. 11
-13.57
-10.37
-3. 15
-0.99
-15.02
-13.01
-11. Ol
-9.37
-6.02
-1.73
-0.54
-15.03
-13.63
-11.01
-9.37
-6.02
-1.73
-0.34
-15.03
-13.63
-11.01
-9.37
-6.03
- 1 . 73
fO.54
-o.'M«3
-O.rvj'Xl
-o.o^.ci:.
-0.2733
-o. io:j3
-0.0532
-0.0130
-0.4113
-0.3303
-0.3336
-0 . 2735
-0. 1E33
-0.0532
-0.0130
-0.4110
-0 . 3G93
-0.3335
-0.2733
-0. 1333
-0 . 0502
-0.0 ICO
O.4 O.0033 O.O4r,9 -'-0.3426 20.700
o.r>;»'\'j 0.049-1. o.o3?.o r?r». 00512 r4.co7
().<•." r3 O.O^O'J O.OI96 :V>.9333 K'..^!*?
O.OifOO O.OI99 0.0070 l7.Cr>29 12.0°:r.
0.93^0 o.oo62 -o.oorr? 3.0320 7.2 ->i
1.0353 -0.0016 -0.0039 2.7034 2.410
1.0193-0.0012-0.0016 1.1534 O.T.70
0.4336 0.0033 0.0459 43.3C-55 29.7O3
0.53CO 0.0494 O.O329 T,5.59C^ 24.2">:>
0.6372 0.0343 0.0196 20.9291 1O.454
0.3394 0.0199 O.OC7O 17.5470 12.624
0.9324 0.0062 -0.0027 0.0233 7.20O
1.0339 -0.0016 -0.0039 2.7984 2.4ffl
1. 01^9 -0.0012 -0.0016 1.1537 O.070
0.43T7 O.0033 O.O4P9 43.3043 2^.703
0.5507 O.Pl-94 0.0329 H3.J.973 24.20-!
0.0372 0.0343 0.0196 20.92CO 10.
-------
       VISUAL EFFECTS FOR LINES OF SIGHT ALONG PLUME
         1600 1W POWER
DOWNWIND DISTANCE (KIW
THETA LENGTH RP/RV0
 133.
                     PLANT
                     =   120.0
                     RV  JJREDUCED
YCAP
X
Y DELYCAP
DELL  C(550)  DKATIO
DELX
DELY  E(LUV)  E(LAB)
20.
20.
20.
20.
20.
20.
20.
40.
40.
40.
40.
4O.
40.
40.
6O.
60.
00.
6O.
60.
60.
f»O.
no
*rU .
GO.
80.
no.
00.
{JO.
80.
100.
100.
100.
100.
100.
100.
100.
110.
110.
110.
110.
110.
110.
110.
0.08
• 0.02
. 0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. IO
0.20
0.50
0.30
0.00
0.02
0.05
0. 10
O.20
.- 0.50
O.30
Oon
. \f*r
0.02
0.05
0. 10
0.20
0.50
O.OO
0.00
0.02
0.05
0.10
0.20
0.50
0.80
0.00
0.02
0.05
0.10
0.20
0.50
0.89
174.1
172.9
171.3
169.2
166. 1
162.0
164.7
173.7
169.7
164.6
157.6
143. 1
135. 0
164.3
163.7
161.5
152.2
14O.O
123.4
134.0
164.3
1 3
0.3C-*2
O.31G9
0.3049
0.2969
O.2972
0261 i
* OV 1 &
0.3463
0.3319
0.3170
0.3036
0.2964
0.297O
0.3596
0.3454
0.33O7
0.3160
0.0029
0.2962
0.2970
0.3592
0.3430
0.3304
0.3158
0.3028
0.2901
0.2969
0.3673
0.3550
0.341'J
0.3277
0.3149
0.3088
0.3096
0.3650
0 . 3509
O.3364
0 . 3222
0.3105
O.3073
0.3091
O.3596
O.3457
O.33I7
O.31U4
O.3001
0.3006
0 . 3OO9
O.3573
O.3435
0.329O
0.3169
0.G071
0.3063
0.30C8
0.3567
0.3429
0.3292
0.3164
0.3068
0.3002
0 . 3088
0 . 3566
0.3429
0.3291
0.3163
0.3068
0.3062
0.3000
-16.65
-15.29
-13.46
-10.09
-7. 17
-2. 11
-0.64
-22.93
-2 1 . 09
-10.60
-13. 11
-10.01
-2.99
-0.93
-25 . 39
-23 . 37
-20.64
-16.OO
-11. 17
-3.33
- 1 . 06
-Oft 36
kwW * *J \J
-24.27
-21.44
-17.47
-11.64
-3.54
-1. 12
-26 . 70
-24.59
-21.74
-17.72
-11.01
-3.60
-1.14
-26 . 76
-24.64
-21.73
-17.75
- 1 1 . 04
-3.61
-1. 14
-9.53
-8.70
-7.57
-6.03
-3.09
-1. 11
-0 . 34
-13.70
-12.49
-10. CO
-O.OO
-5 . 52
-1.39
-0 . 49
-15.53
-14.O3
-12, 19
-9 . 07
-6.20
-1.79
-0.50
— 16 °5
I \f t t^tj
-14.72
-12. 74
-10. 10
-6.43
-1.00
-0.59
-16.51
-14.96
-12.95
-10.26
-6.59
-1.92
-0.00
-16.55
-14.99
-12.90
-10.29
-6 . 00
-1-92
-0.60
-0.2542
-o . na.~2
-0.2002
-0. 17,22
-0. 5 105
-O.OCtGl
-O.OllfJ
-O.CS43
-0.'J:J74
-O.COO1
-0 . 2'X>9
-0. J071
-O.0317
-0.0100
-0.0000
-0 . 37K5
-0 . 3.107
-O.2709
-O. 1073
-O.OSOO
-O.O«79
— O •'.^T 1
\f * » •— i^f I
-O.3931
-0.,'M-07
-0.2370
-0. 1043
-0.0002
-0.O1G3
-0.4204
-0.3071
-0.3332
-0.2001
-0. 1903
-o.oooa
-0.0 1G3
-0.4200
-0.3974
-0.3135
-0.2907
-0. I960
-0.0003
-0.0 1C. 5
0.4246 0.0532 0.9365 44. 7! 45 30. J. 09
0. 5.193 0.0475 0.0442 37.4073 24.«99
O.OT'33 0.0356 0.0309 r3.0024 10.00')
O.7051 O.O227 O.0170 J9.OO»tfO fS.TOO
O.0",64 O.0093 O.OO<-.'J O.TTO.T tf.fV;?
1.0109 0.0002-0.0017 1.0730 I. <••"/:
1.0779 -0.0004 -O.OOO9 0.6552 O.n~i
O.410O O.C075 C.OtJv-" O-".
O.GJOn O.Q331 O.OflO 19. Tn:;? 13-i.T.l
0.0:>72 O.OOG4 -0.0000 9.fXOf) 7.OO.»
I.O.-J33 -O.OOO7 -O.O'XJS S.'.'OOO 2. 10'H
1.0141 -0.0009 -0.0014 0.0022 '".77-?.
O.CS36 O.O054 O.O400 40.0007 3t.C.m
0.5-M2 0.0310 0.0^51 3O..';O.'»4 25.707
r:4O 13.or,i
1.0O42 O.O046 -0.0007 3.7004 7.i>7'J.
1.0469 -O.O022 -O.0042 3.OO75 2.0m
1.C230 -0.0014 -0.0017 1.T-O73 O.OS?
0.4<-00 0.0009 0.0401 44.5210 SO. 643
O.G089 0.0407 0.0323 8(3.004.1 24.001
0.7106 0.0320 O.OlC'i 27.2007 10.073
0.0063 0.0175 0.0053 17.5fI03 in. 02')
1.0077 0.0044 -0.0037 0.0501 7.H62
l.OT>6 -0.0022 -0.0042 3.1003 S.OriJJ
1.0.->50 -0.0015 -0.0017 1.3151 O.O
Exhibit A-7 (continued)

-------
115.
115.
115.
H5.
1)5.
115.
115.
1 18.
118.
113.
113.
118.
118.
118.
119.
119.
119.
119.
119.
119.
119.
0.00
0.02
O.05
0. 10
0.20
0.50
0.80
Ooo
• w
0.02'1'
0.05
0.10
0.20
0.50
O.30
0.00
0.02
0.05
0. 10
0.20
0.50
0.30
95.9
96.0
97. 0
100.4
106.2
134.1
164.9
95 9
f *9 * J
96.0
97.0
100.4
106.2
134. 1
164.9
95.9
96.0
97.0
100.4
100.2
1«4. 1
164.9
48. 14
48.10
47.55
45 . 72
42.58
27.52
10.83
•AH 14
*U • * W
<8. 10
47.05
45.72
42.58
27.52
10.83
43. 14
48. 10
47.55
45.72
42.58
27.52
10.03
36.98
39.09
41.95
45.97
51.08
60. 11
62.58
rifi 97
W . x •
39.09
41.95
45.97
51.C3
60. 11
62.58
C6.97
39.09
41.95
45.97
51.83
60. 11
62.58
67.29
03.35
70. C6
73.55
77.23
31.91
83.23
G7 °1
\J f * •* X
03.04
•/0.36
73.55
77.23
31.91
3" . 23
67.29
03.34
70.30
73.55
77.23
31.91
C3.23
0.3592
0.3450
O.3304
0.3158
0.3028
0.2961
0.2969
Onno t
. vv ^ K
0.3450
0.3303
0.3158
O.U028
0.2961
0.2909
0.3301
0.3 WO
0.3003
0.3133
0.3023
O.2961
0.2969
0.3566
0.3428
0.3291
0.3163
0.3068
0.3062
0.3033
Onrtr.fi
. \>Wv
0.3423
0.3291
0.3163
0.3068
0.3062
0.3083
0.3366
0.3423
0.3291
0.3163
0.3008
0.3062
0.3088
-26.76
-24.64
-21.79
-17.76
- 1 1 . 04
-3.61
-1. 14
-°6 76
«.«v • • v
-24.64
-21.79
-17.76
- 1 1 . 84
-3.61
-1.14
-26 . 76
-24.64
-21.79
-17.76
-11.84
-3.61
-1. 14
-16.56
-15.00
-12.93
-10.29
-6.61
-1.92
-0.60
- 1 (t 56
1 \f • *J»J
-15.00
-12.93
-10.29
-6.61
-1.92
-0.60
-16.00
-15.00
-12.93
-10.29
-6.0t
-1.92
-0.00
-0.4273
-0.3075
-0.3535
-0.2907
-0. 1900
-0.0003
-0.01G3
— O ^-''Ofl
\f • - i^ .• U
-0.0974
-O.3534
-0.2907
-0. 1960
-0.0003
-0.0 ICT
-Q.v2">3
-0.0974
-0.3504
-0.2007
-0. i960
-O.O303
-0.0 IG3
0 . 4474 0 . O003 0 . 040 1
O..rfG99 O.O4'iO O.OGfiO
0 . 7 1 1 7 0 . O'!20 0 . 0 1 •"'j
0.fJ074 0.0174 0.0053
1.00G3 0.0044 -0.0007
1.0402 -0.0323 -0.0043
1.02viO -0.0013 -0.0017
0*'. *i76 O OOO3 O . QACt 1
• . ff fc \f Vf • \f\f\'f^9 \J • V * "if »
0 . 0702 0 . 0460 0 . 0323
0.71-Y) O.OCS20 0.01CO
O.CJ'iVS 0.0174 0.0053
i . o .'y i o . 004-i —o . 000"
1.0.V3 -0.0023 -0.004^
I.or2.',1 -O.OO15 -O.O017
0 . 4-177 0 . 0*03 (} . 04'i 1
0.15703 0.0<.','V O.OOC'i
O.VI21 0 . 0-IV) O.O1."'«
©."T'T') 0.0174 0.097"
1 . 0002 0 . 0«M4 -0 . OOC7
1.0493 -0. C.''1.- 3 — VCO-!'1.
1.0201 -O.COJ5 -O.C017
<'4 . 40fi 1
r1^ . ;^770
ri;.7, i-Trs
l':'.50«XJ
,1.0466
T. i07f?
1 . " * 00

P.O.C720
1V/. 1774
17. OOF f5
" . 04->9
3. J073
1 . 3f 09
/•..'... ;r,ri!>
r-0 . ii""r;
'V . 1 7"/*»0
1 7 . r>O>V>
O. 'i-"O4
••> . If >'.:•".
' .rf
rj . 
^^•.r"*!
'•".? •'»;"!
If*. 019
7* . nif,
;> . f-'^/ii
'>.0'»1
ro
o
         Exhibit A-7 (concluded)

-------
ro
                           CONCENTRATIONS OF AEROSOL ATTO GASES CONTRIBUTED
                                     1600 MW POWER PLANT
   DOWNWIND DISTANCE (KID =  220.0
                          =   392.
                          =  5C21.
                          =   300.
                                                                       BY
PLUNE ALTITUDE (ID
SICMA Y (N)
SIGMA Z  (

0.687
13.623

1.649
14.535

2.760
15.696

2.353
15.239

2.203
15.219

2.233
13.219
BSP-T0TAL
10-4 M-l)

O.OIO
O. 130

O.O21
O. 149

0.035
O. 163

0.030
0. 153

0.030
0. 158

0 . 044
0. 172
BSPSJf/BS
( ")

13.632
6 1 . 456

2.683
56 . "02

1 . 503
5 1 , 55O

2.034
53.253

6.111
5n . nnr;

35.259
57,r>ni
    CUMULATIVE SURFACE DEPOSITION (MOLE FRACTION OF INITIAL FLUX)
                    SO21    0.0000
                    NOXf    0.0000
    PRIMARY PARTICULATE!    O.OGOO
                    S04!    0.0000
                    NO3!    0.0000
     Exhibit A-8.
                Printout from plume-based PLUVUE calculations  for observed points at 220 and 240 km from the source.
                The end of the printout also Includes  the  tables  of secondary aerosol conversion rates and the table
                verifying the data for plotting.

-------
                        VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
                        1600 MW POWER PLANT
     DOWNWIND DISTANCE (KID  =   220.0
     PLUNE ALTITUDE CM)      =    392.
     SIGHT PATH IS  THROUGH PLUME CENTER
ro
THGTA ALPHA
45.
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
60.
60.
60.
60.
60.
60.
90.
90.
90.
90.
90.
90.
OBSERVER
90.
RPXRVO

0.02
0.05
0.10
0.20
0.50
O.GO
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
9.20
0.50
0.80
POSITION
0.24
RV ^REDUCED

180.5
173.8
176.5
173.5
170.2
169.8
181.9
130.5
178.8
177.0
174.5
173.8
182.4
181.3
180.0
178.5
176.5
175 . 9
102.7
131.7
100.7
179.4
177.6
177. 1
AT 1/2 OF
179. 1

2.46
3.35
4.58
6.21
0.02
O.20
1.70
2.43
3.37
4.33
5.65
6.05
1.39
2.00
2.72
3.51
4.60
4.93
1.22
1.76
2.34
3.03
3.98
4.27
A 22.
3.21
YCAP

93.33
91.76
91.85
95 . 40
102.27
104.22
95. 18
93.64
93.92
97.76
102.93
104.40
96. 19
94.94
95.68
98.91
103.25
104.48
96.07
95.76
96.70
99.63
103.45
104.53
5 DEGREE
100.40
L

97.37
96.73
96.76
90.19
100.87
101.61
98. 11
97.49
97.60
99. 13
101. 12
101.67
98.51
98.01
98.31
99.58
101.24
101.71
98.78
98.34
98.74
99.86
101.32
101.72
X

0.3451
0,3470
0.3433
0.3319
0.3204
0.3191
0.3421
0.3443
0.3406
0.3293
0.3201
0.3191
0.3400
0.3417
0.3373
0.3278
0.3200
0.3191
0.3386
0.3400
0.3352
0.3269
0.3199
jfc.3190
WIND DIRECTION
1GO. 15
0.3251
Y DELYCAP

0.3555
0.3557
0.3502
0.3386
0.3304
0.3306
0.3539
0.3547
0.3494
0.3378
0.3307
0.3307
0.3524
0.3529
0.3471
0.3372
0.3308
0.3303
0.3512
0.3516
0.3456
0.3367
0.3309
0.3308

-11.58
-13. 15
-13.06
-9.51
-2.64
-0.68
-9.73
-11.27
-10.99
-7.14
-1.98
-0.51
-8.72
-9.97
-9.23
-6.00
-1.66
-0.43
-8.04
-9.15
-8.13
-5.28
-1.46
-0.38
SECTOR FROM THE
0.3349
-4.51
DELL 0(550) BRATIO

-4.50 -0. 1032
-5. 14 -O. 1247
-5. 10 -0. 1203
-3.67 -0.0952
-1.00 -0.0230
-0.26 -0.0000
-3.76 -0.01506
-4.33 -0. IOS.3
-4.26 -0. 1043
-2.74 -0.0700
-0.74 -0.0212
-0. 19 -0.0059
-3.30 -0.0797
-3.36 -0.0920
-3.50 -0.0374
-2.29 -0.0539
-0.62 -0.0177
-0. 16 -0.0049
-3.09 -0.0732
-3.53 -0.0040
-3. 12 -0.0707
-2.01 -0.0317
-0.55 -0.0155
( -0. 14 -0.0043
PLUNE CEHTERLINE
-1.71 -0.0447

0.6916
0.6934
0.7574
0.3913
0.9919
0.0054
0.7043
0.7012
0.7083
0.9090
0.9933
0.9906
0.7190
0.7199
0.7953
0.9195
0.9941
0.9972
0.7317
0.7333
0.8139
0.0257
0.9947
0.9975
AT THE
0.9479
DELX DELY E(LUV) E(LAD)
•
0.0263 0.0245 24.2245 15.0O2
0.0281 0.0247 25.3003 16. 401
0.0244 0.0192 21.7031 IP*. 901
0.0130 0.0070 11.8201 7.452
0.0015 -0.0007 2.0250 1.5 IO
0.0003 -0.0005 0.5030 O.403
O.0232 0.0220 21.9777 14. TOO
0.0254 0.0237 23.4050 in. 207
0.0217 0.0134 19.7000 12.002
0.0104 O.OOOO 9.5424 R.9C.1
0.0013-0.0003 1.5r,;?.r> 1.120
0.0002 -0.0000 0.4420 O.?'!.?
0.0212 0.0214 20.ai.53 10. r!<4
0.0223 0.0210 21.4650 10.O77
0.0184 0.0101 17.1200 10. 9513
0.0039 0.0001 G.2R42 5. im
0.0011 -0.0002 1.3197 O.947
0 . 0002 —0 . 0002 0 . ~702 0 . 2'°- 1
0.0197 0.0201 19.1140 12.GOH
0.0212 0.0200 20.0750 ltt.000
0.0103 0.0145 15.3512 O.P.12
0.0030 0.0050 7.4475 4.000
0.0010 -O.OC01 1.1710 O.TfM
0.0002 -0.0002 0.3255 0.240
GIVEN DISTANCE FROII THE SOUnflTr
0.0002 0.0030^5.7717 0.6 13
      90.
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
60.
60.
60.
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0.10
0.20
0.50
0.80
0.02
0.05
0.10
180.8
179.2
176.9
173.0
170.3
169.9
102. 1
130.8
179.1
177.2
174.7
173.9
182.7
181.6
180.2
2.27
3.13
4.35
6.03
7.94
8.15
1.56
2.25
3. 18
4.20
5.59
6.00
1.27
1.05
2.57
52.41
51.44
51.49
53.64
57.79
50.97
53.54
52.59
52.76
55.09
50.22
59.10
54.15
53.39
53.84
77.54
76.97
77.00
70.27
80.64
01.29
78.21
77.65
77.75
79. 11
80.88
81.36
78.57
78. 12
78.39
0.3275
0.3293
0.3253
0.3140
0.3029
0.3018
0.3246
0.3267
0.3228
0.3116
0.3928
0.3018
0.3226
0.3242
0.3197
0.3395
0.3397
0.3335
0.3209
0.3123
0.3126
0.3378
0.3386
0.3327
0.3202
0.3127
0.3128
0.3362
0.3367
0.3303
-7.08
-0.04
-7.99
-5.05
-1.69
-0.52
-5.95
-6.09
-6.72
-4.39
-1.27
-0.30
-5.33
-6.10
-5.65
-4.03 -0. 1140
-4.61 -0. 1321
-4.63 -0. 1341
-3.31 -0. 1015
-0.93 -0.0317
-0.23 -0.0102
-3.30 -0.0943
-3.92 -0. 1116
-3.02 -0. 1112
-2.40 -0.0753
-0.70 -0.0233
-0.21 -0.0075
-3.00 -0.0344
-3.45 -0.09CIO
-3. 19 -0.0923
0.0943
0.0973
0.7033
0.0999
0.9973
0.9993
0.7065
0.7044
0.7732
0.0143
0.9975
0.9994
0.7203
0.7220
0.7994
0.0253 0.0203
0.0275 0.0264
0.0236 0.0200
0.0122 0.0077
0.0011 -0.0000
0.0001 -0.0007
0.0223 0.0240
0 . 0249 0 . 025**.
0.0210 0.0195
0.0093 0.0070
0.0010 -0.0003
0.0001 -0.0005
0.0203 0.0220
0.0224 0.02(15
0.0179 0.0171
21.4442 13.
22.3HS70 14.
10.9402 12.
10.0113  0.
 1.6441  1.
 0.5437
19.5^«0
20.7033 in.Ron
17.3444 11.ion
 8.1459
                                                                                                                                      107
                                                                                                                                     '.-('»
 0.
12,
                                                                                                                           1.2554  O.or/i
                                                                                                                           0.4002  0.754')
                                                                                                                          18.1KO 11. rm
                                                                                                                          19.0200 12. JY. I
                                                                                                                          is.orroo  9.001
     Exhibit A-8 (continued)

-------
60.
60.
60.
90.
90.
90.
90.
90.
90.
•0.20
0.00
O.CO
0.02
0.05
0. 10
0.20
0.50
O.OO
170.7
176.6
175.9
103.0
102.0
100.9
179.6
177.7
177.2
3.40
4.55
4.90
1. 10
1.62
2.21
2.93
3.94
4.24
05.00
5O.42
09. 16
54.07
03. 09
54.51
56.24
50.55
59.2O
79.52
00.99
£U. 40
70. Ol
70.42
7O.7O
79.77
O1.06
01.42
0.3102
0.0^27
0.3^10
0.3212
0.3225
0.3176
O.3093
0.3026
0.301O
0.3196
0.3129
0.312?
0.334O
0.3303
0.32O7
0.3191
O.3130
0.3129
-3.69
-1 .06
-0.32
-4.91
-3.60
-4 . 9O
-3.23
-O.93
-O.20
-2 . 
-•o. m
-0. 13
-2.76
-3. 10
-2. CO
-1. 01
-0.51
-O. 15
-0.0123
-O.OI90
-o.ory»3
-0.0775
-0.0090
-O.O314
-0.0301
-0.0172
-O.0053
0 . 9,'X«3
0 . 9r*T<»
O. 9"'05
0. 7;>33
0.7303
O.3I75
0.9:;09
O.9977
O.9995
                                                                                                         0.0004  0.0063
                                                                                                         0.0009 -o.oecK-
                                                                                                         O.OOOl -O.CO04
                                                                                                         0.0194  O.02K.
                                                                                                         0.0207  0. 0.72O
                                                                                                         0.0159
                                                                                                         0.0076
        o.oir»4
        O.O053
0.0003 -O.0003
0.0001 -O.OO03
 7.


17.0Q19
I7.OI49
13.49"0
 6. nO'l*'!1
 O ^**tf>^*i
 O.2910
 O.

n.
i».
 o.
 4.
 O.
 O.
017
OPT
     OBSERVER POSITION  AT 1/2 OF A 22.5 DEGREE WIND DIRECTION SECTOR FROM THE PUTTIE  CENTEIILINE AT TITE GIVEN DISTANCE FH9H THE  H
          9O.    O.24    179.2    3.13   56.7O   O0.03  O.3076  0.3172   -2.7O   -1.54  -O.O47O  0.9(520  O.OOOO  O.OO40  4.9003  V.
      Exhibit A-8 (continued)
ro
to

-------
                   VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
                   1600 HW POWER PLANT
DOWNWIND DISTANCE (Kfl)  =  220.0
PLUMS ALTITUDE (M)      =   392.
SIGHT PATH IS THROUGH PLUME CENTER
THBTA ALPHA PJVRVO
135.
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
40.
45.
60.
00.
GO.
60.
60.
60.
90.
90.
90.
90.
90.
90.

0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0.10
0.20
0.50
0.80
RV 5JREDUCED

181.0
179.5
177.2
174. 1
170.4
170.0
182.3
131. 1
179.3
177.4
174.7
174.0
HI.?. 3
181.3
180.4
173.8
176.6
176.0
133. 1
182.2
181. 1
179.7
177.8
177.2

2.15
2.93
4.20
5.91
7.83
8.12
1.46
2. 13
3.06
4. 11
5.54
5.97
1. 18
1.75
2.47
3.33
4.52
4.37
1.02
1.53
2. 13
2.87
3.91
4.22
YCAP

56.01
54.92
54.96
57.35
62.00
63.33
57.29
56.22
56.40
59.01
62.51
63.50
57.99
57. 12
57.61
59.81
62.75
63.53
53.46
57.69
58.37
60.31
62.90
63.63
L

79.64
79.01
79.04
30.39
32.93
33.63
CO. 36
79.76
79.86
81.31
33.20
33.72
30.75
30.26
03.54
31.75
33.33
33.76
81.01
30.58
30.96
32.02
33.40
83.79
X

0.3236
0.3252
0.3212
0.3098
0.2939
0.29CO
0.3207
0.3227
0.3188
0.3075
0.2989
0.2930
0.3187
O.G202
0.3157
0-.3C62
0.2988
"0.2930
0.3173
0.3186
0.3137
0.3054
0.2938
0.2981
Y DELYCAP

0.3376
0.3376
0.3313
0.3185
0.3098
0.3101
0.3353
0.3366
0.3306
0.3173
0.3103
0.3104
0.3342
0.3347
0.3282
0.3172
0.3105
0.3105
0.3323
0.3332
0.3265
0.3167
0.3106
0.3105

-7.93
-9.07
-9.04
-6.64
-1.99
-0.67
-6.70
-7.77
-7.60
-4.99
-1.49
-0.50
-6.01
-6.83
-6.33
-4. 19
-1.25
-0.42
-5.54
-6.31
-5.62
-3.69
-1. 10
-0.37
DELL

-4.34
-4.96
-4.94
-3.53
-1.05
-0.35
-3.62
-4.22
-4.12
-2.67
-0.73
-0.20
-3.23
-3.71
-3.44
-2.23
-0.65
-0.22
-2.97
-3.40
-3.01
-1.90
-0.57
-0. 19
CC550)

-0. 1133
-0. 1370
-0. 1302
-0.1033
-0.034Q
-0.0113
-0.0932
-0. 1156
-0. 1154
-0.0785
-0.0252
-O.OOC3
-0.0874
-0. 1016
-0.0963
-0.0655
-0.0211
-0 . 0073
-0.0302
-0.092G
-O.O304
-0.0-174
-0.0135
-0.0004
BUATIO DELX DELY E(LUV) EC LAD)

0.6959 0.0253 0.0260 22.4154 14.430
0.6993 0.0272 0.0207 23.3O03 14. ™X>
0.7072 0.0231 0.02O4 19.6337 12.P.17
0.9043 0.0113 0.0075 10.2CICI1 6. 110
1.0010 0.0009 -0.0011 1.7073 1.427
1.0019 -0.0001 -0.0003 0.6313 0.!^^
0.7070 0.0220 0.0240 20. 45505 lH.r.41
0.7050 0.0240 0.0257 21.7212 14.014
0.7750 O.O207 0.0197 13.0571 11.493
0.9133 0.0095 0.0009 8.C9I4 5. 391
1.0C03 0.0003 -0.0007 1.2949 1.014
1.0013 -0.0000 -0.0000 0.4007 0.397
0.77.11 0.0200 0.0232 18.9090 12.2"'.
0.7235 0.0222 0.0237 19.G979 12. {VM
0.3014 0.0170 0.0172 13.0577 9.9<9
0.9271 0.0032 0.0003 7.3211 4.0O2
0.9993 0.0003 -0.0005 1.0057 0..179
1.0010 -0.0000 -0.0005 0.30)1 O.("V>
0.7335 0.0192 0.0219 17.3090 Il.PPO
0.7370 0.0205 0.0223 13.0001 12. Oil
0.8193 0.0150 0.0150 14.000O P..«24
0.9333 0.0073 0.0013 6.6003 4. 142
0.9990 0.0007 -0.0004 0.9709 0.772
1.0009 0.0000 -0.0004 0.3333 0.2F3
    OBSERVER POSITION AT 1/2 OF A 22.3  DECREE WIND DIRECTION SECTOR FROM THE PLUNK CENTKIILINE  AT THE GIVEN DISTANCE FROM THF.
         90.     0.24   179.3    3.07    60.33    32.30   0.3036   0.3143   -3.17    -1.07-0.0499   0.9545  0.0056   0.0039  5.0454  3.IO7
 Exhibit A-8  (continued)

-------
                        VISUAL EFFECTS POH NON-HORIZONTAL CLEAR SKY VIEWS THROUGH PLUME CENTER
                    1000
DOWNWIND DISTANCE  (KI>1)
PLUPEE ALTITUDE (M>
THETA   ALPHA
                             HW POWER, PLANT
                             '  22O.O
                                392.
       45.
•O
_J
ft
        90.
         30.
         30.
         30.
         30.
         30.*
         30.
         45.
         45.
         45.
         45.
         45.
         45.
         CO.
         00.
         00.
         00.
         00.
         GO.
         90.
         90.
         90.
         90.
          90.
          90.

          30.
          30.
          30.
          3O.
          3O.
          30.
          45.
          45.
          45.
          45.
          45.
          45.
          00.
          00.
          00.
          00.
          00.
          00.
          90.
          90.
          90.
          90.
          90.
          90.
BETA
15.
30.
45.
00.
75.
90.
15.
30.
45.
00.
75.
90.
15.
30.
45.
00.
75.
90.
15.
30.
45.
00.
75.
90.
15.
30.
45.
00.
75.
90.
15.
3O.
45.
00.
75.
90.
15.
30.
45.
OO.
75.
90.
15.
30.
45.
00.
75.
90.
UP
2.95
1.41
O.C3
0.00
0.44
0.39
2. 10
1.04
0.03
0.51
O.42
0.39
1.73
o.oa
0.00
0.47
0.41
0.39
1.51
0.7O
0.55
0.45
O.41
0.39
2.95
1.41
0.03
0.00
0.44
0.39
2. 10
1.04
0.03
0.51
0.42
0.39
1.73
0.03
0.60
0.47
0.41
0.39
1.51
0.78
0.55
0.45
0.41
0.39
YCAP
30.47
25.75
21.O9
10.90
17.05
17.53
30. 02
25. 11
20.09
17.73
10.02
10.29
39. 10
24. 07
19.05
17. 2O
10.05
15.71
39.31
24.74
19.39
10. 09
15.71
15.35
22.95
15.01
12.09
10.71
10.05
9.05
23.53
14.90
11.80
10.31
9.01
9.40
23.08
14.97
11.00
10. 14
9.41
9. 19
24. 12
14.99
11.02
10.04
9.29
9.07
L
08.39
57.03
53.00
50.00
49.35
40.90
03.05
57.22
51.97
49.21
47.O2
47,39
OO.C5
50.90
51.47
43.55
47.0O
40.03
09. OO
56.06
5i. 1O
48. 16
46 . 03
40. 15
55.00
45.69
41.40
39. 13
37. 9O
37.02
55.05
45.02
40.93
30.44
37. 17
30.70
50.01
45.04
40.75
38. 13
30.80
30.39
50.25
45.00
40.65
37.95
36.58
36. 16
X
0.3210
0.3220
0.3252
0.3281
0.3301
0.3309
O.3074
0.3057
O.G075
0.3093
0.3106
O.31 10
0.0002
0.2972
O.2983
0.2997
0.3007
0.3010
O.2955
0.2918
0.2925
O.2936
O . 2944
0.2947
0.3063
0.3060
0.3080
0.3111
0.3129
0.3130
0.2932
0.2903
0.2914
0.2928
0.2938
0.2941
0 . 2863
0 . 2824
0.2027
0.2837
0.2844
0.2847
0.2819
0 . 2773
0.2773
0.2700
0 . 2786
0 . 2788
Y
0.3429
0.3419
O . 3439
0.0461
0.3477
0.3403
O.3297
0.3255
0.3259
0.3270
0 . 3279
O.3202
O.3217
0.3161
0.3159
0.3165
0.3171
O.3173
O.3103
O.3099
0.3092
0.3O96
0.3100
0.3102
0.3292
0.3271
0.3204
0.3304
0.3319
0.3326
0.3155
0,3100
0.3097
0.3104
0.3111
0.31 13
0.3073
0.3004
0.2994
0.2997
0.3000
0.3001
0.3018
0.2941
0.2927
0.2927
0.2929
0.2930
DELYCAP
-3. 13
1.55
3.31
4. 13
4.51
4.62
-2.79
O.91
2.31
2.97
3. 2O
3.37
-2.50
0.07
1.87
2.44
2.71
2.79
-2.29
O.54
1.02
2. 12
2.37
2.44
-3.38
-0.37
0.77
1.31
1.55
1.02
-2.80
-0.43
0.40
0.91
1. 11
1. 17
-2.45
-0.41
0.37
0.74
0.91
0.96
-2.21
-0.39
0.30
0.03
0.79
0.84
DELL
-2.23
1.51
3.02
5.20
0.04
0.29
-1.9O
O.O9
2.71
3.06
4.0O
4.71
-1.7?
0.00
2.21
3.21
3.77
3.95
-1.02
0.03
1.92
2.O1
3.31
3.43
-3.33
-0.51
1.25
2.34
2.93
3. 12
-2.73
-0.5O
0.7O
1 .05
2. 13
2. 2O
-2.30
-0.66
0.00
1.34
1.70
1.09
-2. 14
-0.03
0.50
1. 16
1.53
1.00
C(550)
-0.0547
0 . OOC3 .
0.2J27
0.3072
0.3053
0.3350
-O.0473
O.0004
O. 1539
O.2257
O . 27O7
0 . 236O
-O.0419
O.04G3
0. 1271
O. 1376
0.2250
0 . 2305
-O.O3OO
O.0410
0. 1 109
O. 1643
0. 1973
0.2093
-0. 1041
0.0033
0.0975
0. 1033
O.2123
0.2270
-0.0335
-0.0021
0.0600
O. 1232
O. 1572
0. 1603
-0.0720
-0.0036
0.0562
0. 1021
0. 131O
0. 1408
-0.0644
-0.0040
0.0407
O.OG93
0. 1143
0. 1233
BEAT TO
0.3O90
0.23°0
O.COGO
0. 1G02
0. 171*:;;
0. 1716
O.G9OG
O.3244
0 . 2G3'>
0.2073
0 . 2504
o.2r>:?7
O.-J'V.rj
0 . P>329
0.3401
0.3244
0 . 3 1 "4
O.30C1
o.4a::4
O.4200
O . 3G93
0.3671
O.3347
O.3307
0.3273
0 . 2003
0.2279
0.20GO
O. 1905
0. 1920
0.4091
0.3493
0.3162
0.2900
0.2043
0.2012
0.4651
0.4091
O.3762
0.3557
0.3443
0.3407
0.5064
0.4532
0 . 4207
0.4001
0.30H6
0 . 3349
DELX
0.0602
0.0093
0.0752
0.0793
0.0319
0 . OQ23
0.0*07
0.033O
O.O574
0.000.1
0.0623
O.O029
O.O394
0 . 0045
O . O433
O . O3O9
O.O524
O.O329
0.0343
O.O391
0.0425
O . O443
0 . 046 I
0 . O466
0.0566
O.063O
0.0089
0.0725
0 . 0743
0.0750
0 . 0434
0.0402
0.0517
O.O542
0.0557
0.0562
0.0365
O.0402
O.0430
0 . 045 I
0.0463
0.0467
0.0321
0.0352
O . O376
0.0394
0.0405
0.0409
DELY E( LUV) E( LAr.]
0.0719 49.4029 31. C>?fr><>
0.0331 40.3072 30.r"79
0.0302 44.O224 ro.272?,
0.0933 42.74^0 00.1171
0.07,13 42. «'?':,'> f!O. lirr,.".
O.O907 4'».0401 30. I '.'07
O.0537 40.7197 rM.O.'r.D
0.0007 37.4220 24.7C?06
0.0713 ar, .1070 24.00 in
0.O743 G,'l.,'i!!7G 23.004-t
0.070O an. 1434 23..1G43
O.O706 0:1.9373 23.3024
O . O.107 31 . 327O 22 . .1 1 1 <>
0.0573 02.0700 21.3^63
0.0612 30.2^23 20.O1O3
O.O6(?7 29.O223 2O.213O
O.O052 23.373O 2O.O997
O.O657 23. I7O7 2O.O303
O . O433 3 I . 99O2 20 . 20.10
O.O51O 29.O127 19.0'r^l
0.0543 27.0449 13.:ir/>0
O.O5r,3 2.1.3306 lO.O-l-fJO
0.0531 23. 2716 17. ("570
0.0533 23.0G43 17.CK21
0.0726 42.7343 23.1111
O.0023 33.G439 20 . fT>9O
0.0039 06.Q327 23.C7IO
O.0910 34.4903 21.431O
O.0940 33.7504 25 . 3CTOO
O.0932 33.53.10 23.3203
0.05OO 35.2396 23.1039
0.0654 31.3076 21.5953
0.0693 23.700O 20.1925
0.0719 27.2307 2O.O55O
0.0734 26.4394 19.CO17
0.0739 20. 1927 10.7205
O.O5O6 30.7330 2O.1130
0.0559 27.1200 13.6343
0.0390 24.7307 I7.7O59
O.0611 23.3301 17.1790
0.0624 22.3339 10.9177
0.0623 22.3477 10.0305
0.0451 27.0631 1O.080O
0.049(3 24.2940 10.0975
0.0523 22. 1007 13.00^3
0.0541 20.7^37 11., 7009
0.0552 20.0.'V>7 ir».0r»63
0,0550 19.Cr>;»3 14.979J
       Exhibit A-8 (continued)

-------
                   VISUAL EFFECTS FOR NON-lIOniZOWTAL CLEAR SKY VIEWS TimOUCn PLUWE CENTE*
                   1600 HW POWER PLANT
DOWNWIND DISTANCE (KM)
PLUME ALTITUDE 
THKTA
 135.
ALPHA

 30.
 30.
 30.
 30.
 30.
 30.
 45.
 45.
 45.
 45.
 45.
 45.
 60.
 60.
 60.
 60.
 60.
 60.
 90.
 90.
 90.
 90.
 90.
 90.
BETA

15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
• 220.
0




' 392.
np
2.95
1.41
0.08
0.60
O.44
O.39
2. 10
1.04
O.63
0.51
0.42
0.39
1.73
O.C3
0.60
0.47
0.41
0.39
1.51
0.78
0.55
0.45
0.41
0.39
YCAP
25.56
16.43
13.05
1 1 . 46
10.70
10.47
26.50
16.63
12.97
11.23
10.44
10.20
27.03
16.76
12.96
11. 17
10.33
10. OS
27.39
16.06
12.96
11. 13
10.26
10.00
L
57.63
47.57
42.83
40.39
39. 11
38.71
50. 54
47.82
42.76
40.04
38.66
38.23
59.04
48.00
42.74
39.91
38.46
38.03
59.36
48. 13
42.74
39.84
33.35
37.89
X
0.3033
0.3021
0.3041
0.3064
O.3082
0.3088
0.2901
0.2803
0.2870
0 . 2832
0.2090
0.2393
0.2832
0.2706
0.2786
0.2703
0.2798
O.2SOO
0.2789
0.2737
0 . 2733
0.2738
0.2742
O.2743
Y
0.3285
O.3257
0.3268
0.3207
0.3C02
O.GC09
0.3142
0.3C30
0.3074
0.3079
0.3005
0.3087
0.3058
0.2983
0.2969
0.2970
0.2972
0.2973
0.3002
0.2919
0.2902
0.2399
0 . 2000
0.2900
DEL YCAP
-4.93
-1.43
-0.09
0.53
O.S2
0.90
-3.99
-1.23
-0. 18
0.32
0.55
0.63
-3.4f>
-1.09
-0. J9
0.24
0.45
0.31
-3. 10
-0.99
-0. 10
0.20
0.38
0.44
 DELL  C(550)  BRATIO
                                                                       -4.46 -0.1324
                                                                       -1
  79
0.14
0.09
1.44
1.62
                                                                       -3.56 -
                                                                       -1
  54
0.26
0.54
O.99
  14
  07
  36
0.28
0.41
0.80
0.92
  74
  24
0.28
O.34
0,60
Oi.OO
                                                                         1.
                                                                        •3.
                                                                        -1.
                                                                       -2
                                                                       -1
0903
1263
1333
1042
0376
0206
0052
0931
10.16
0092
0331
0160
0533
0773
0056
0794
O299
0103
0409
0079
                                                                              0.0751
  3304
  2073
  2-153
  2IC53
  29
  1999
  4140
  3500
  U274
  3079
  2969
  2933
  4700
  4196
  039!
  3097
  3380
  3532
  3124
  4643
  4344
  4132
0.4043
0.4OOG
0.
o.
0.
0.
o.
0.
o,
0.
o.
0.
0,
0,
0,
0,
0
0,
0,
0
0,
0
o
0,
0
 DELX

0353
O019
0003
0009
O721
0729
0424
0403
0494
or. 16
O530
0334
0353
0383
O409
0427
0438
O441
031 1
O336
0357
0372
0331
0.
O.
0,
0.
0.
0,
0,
0,
0,
0,
o,
0,
0
o,
0
0
0
0
0
o
0
0
0
                         DELY  E(LUV)  E(LAO)
0733
0323
0331
0913
0943
0952
0590
005 1
0007
0711
0726
0731
0306
0554
OI302
0001
0613
0016
0450
0490
0514
0331
0340
40
41
33
30
30
35
29.
2O.
23.
32.
29.
26,
   0750
   7057
   7093
   9003
   17G1
   9347
37.G120
33.0721
so.onaa
   19O2
   3193
   0493
   9060
   0301
   0152
24.9930
24.1754
   9130
   6402
   004O
   0713
   2141
              0.03,34  0.0344
23,
29.
20,
20,
22,
21.
21,
29.
28.
27.
20.
26.
20,
24.
22,
21,
21.
20
20
21
19
18
17
17
17
19
17
10
16
15
                                        9C97
                                        423*5
55 1C
5229
57,?2
, OSO 1
0,1 1 1
0335
,7»77
, 0240
,noio
,7ir,r,
. 0224
. 9032
. 0793
.5310
. irr-37
. 6345
. 0 1 49
. 0203
.7210
                  2523 15.0274
Exhibit A-8 (continued)

-------
         PL.VTTE VISUAL EFFECTS FOR HOItlZOrrTAL VIEWS
         PERPENDICULAR TO 71TE PLUNE OF VfllTK, GHAY,  AND
         FOR VARIOUS OBSERVER-PLUME AND OBSERVER-OBJECT
         1600 HW POWER PLAHT
BLACK OBJECTS
DISTANCES
DOWPfWJND DISTANCE
TI7IDTA = 45.
(KID =
REFLECT RP/RVO RO/RVO
l.O
l.O
l.O
1.0
l.O *
1.0
1.0
l.O
l.O
1.0
1.0
1.0
1.0
1.0
1.0
1.0
l.O
1.0
1.0
1.0
1.0 '
0.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
O.3
0.3
0.3
0.3
O.3
0.3
O.3
0.3
O.O
0.02
O".02
0.02
0.02
0.02
O.O2
0.00
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.2O
0.20
O.20
0.50
0.50
0.80
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.80
0.02
0.02
0.05
0. 10
0.20
0.50
O.CO
0.05
0. 10
0.20
0.50
O.O0
0. 10
0.20
O.50
O.G0
0.20
O.50
0.00
O.50
0.00
0.00
0.02
0.05
O. 10
O.20
0.50
0.00
0.05
0. 10
O.20
0.50
0.00
0. 10
0.20
0.50
0.80
0.20
0.50
0.00
0.50
0.80
0.09
0.02
220.0
YCAP
95.44
93. 10
92.76
94.05
96.56
97.23
94.55
92.43
93.45
95.57
96.21
95.89
94.51
96.60
97.23
99.25
99.45
10O.O8
103.83
103.90
105. 15
34.82
42. 10
51.84
66.31
87.34
94. 10
42.06
52.27
66.29
86.62
93. 17
50.40
67.72
87.76
94.23
70. 17
90.60
97.07
94.29
100.90
101.93
0.85

L
93.21
97.30
97. 13
97.70
98.66
93.92
97.85
97.00
97.41
98.26
98.52
9O.39
97.34
98.67
9C.92
99.71
99.79
100.03
101.46
101.49
101.96
65.64
7O.96
77.21
05. 17
94 . 89
97.68
71. 14
77 . 46
85. 16
94.53
97.30
70.13
85.88
95. C6
97.73
87.09
96.25
98.36
97.75
100.34
100.74
35.73



X Y DELYCAP
0.0391
0.0400
0.0461
0 . 3432
0.0409
O.0409
0.3410
0.0456
0.0439
0.3419
O.3418
0.0063
0.0037
0.0070
0.0070
0.0279
O.O 285
0.0206
0.3213
0.3215
0 . 3207
0.0260
O.0220
0.0196
O.0199
O.G290
0.0060
O.OI81
0.0177
0.0199
0.0007
0.0070
o.ooao
0.0137
0.0257
0.0322
0.0005
0.0173
0.3239
0.3101
0.3169
0.3160
0.2763
0.0497
0.0540
0.0554
0.0529
0.0516
0.0518
0.0009
O.0541
0.0524
0.0314
0.0517
O.0452
0.0461
0.0454
0.0457
0.0064
0.3005
0.0008
0.0010
0.00 11
0.301 1
0.0064
0 . 0027
0.0019
0.0344
0.0450
0.0497
0 . 0206
0.0209
0 . 3303
0.3449
0.0496
0.0194
0.0256
0.0006
0.0435
0.0150
0.0294
O.0046
0.0206
0 . 0200
0.0207
0.2061
-2.57
-5 . 74
-7.43
-7.71
-0.07
-O. 16
-4.0O
-7.77
-O.61
-9.06
-9. 1O
-4.31
-7.55
-0.03
-0. 16
-2.O1
-5. 1O
-5.31
-O.O0
-1.49
-0.24
-0. 14
-0.69
-2.05
-4. 14
-7.00
-7.03
-0.43
-1.63
-4.17
-7.72
-0.76
-0.49
-2.74
-6.50
-7.70
-0.20
-3.73
-4.05
-0.05
-1.03
-0.00
0.90

PELL
-1.02
-2.28
-2.94
-0.01
-0. 10
-0. 13
-1.73
-0.08
-O.OO
-0.5O
-0.50
- 1 . 69
-2.95
-0.09
-0. 12
-l.OO
-1 .97
-2.01
-0 . 3O
-0.56
-0.09
-0. 11
-0 . 47
-1.21
-2.06
-2.08
-0.07
-0.29
-0.96
-2.07
-0. 19
-0.44
-0.29
-1.05
-2.71
-0.02
-0. 14
-1.52
-1.00
-0.02
-0.40
-0.00
1.02

C(550)
-0 . 0249
-0.0359
-0.07 ID
-0.0726
-0.07G3
-O.O741
-0.0430
-0.0700
-0.0-325
-0.0341
-O.0340
-0 . 0422
-0.0709
-O.O761
-O.0707
-0.0209
-O.05O9
-0.0517
-O.OOO4
-0.0150
-O . 0020
-O . OO27
-0.0103
-0.0337
-O.0503
-O.0094
-0.0729
-O . OO30
-O.0272
-O.0347
-0.0779
-0.0023
-0.0031
-0.0071
-0.067G
-O.0744
-0.0042
-0.0400
-0.0436
-0.0010
-0.0! 15
-0 . 0003
0. 1 144

BRAT 10
0 . 3353
0 . 7-347
0.7415
0.7314
0.7200
0 . 7f>?7
O.0030
0.7059
0.7459
0.7005
O.730O
0.3330
O.3U2O
0.3174
o.nioo
0.95GG
O.931O
O.9299
O.9933
0.9900
1 . OOOO
O . 3933
O.GO90
0,7471
0.7225
0.7193
0.7227
O.300S
0.7.344
O.7091
O . 7204
0.7G21
0.9O30
0.0292
0 . 0073
0.3 1 19
O.9014
0.9200
0.9244
0.9927
O.9920
0.9973
0.0003

PELX
0.0072
0.0134
O.OI94
0.0193
O . 020 1
O . O2O2
0.01 15
O.0I90
0.0203
0.021 1
O . O2 1 1
O.OO97
O.O133
O.0102
O.O 103
O.OO40
O . OO77
0.0079
0 . OOO5
0.0000
O.OOOO
0.O063
0.0102
0.0177
0.0194
O . 02O2
O . O2O2
O . OO94
O.OI57
O.O193
O.021 1
0.0212
O.OOOO
0.0102
O.0161
O.0163
0.0000
O.OO77
0 . 00.30
0 . OOO5
0.0011
0.0001
0.0097

DELY E( LUV) E( LA*})
O.OO75 6.7536 4.5203
0.0154 14.07."3 9.4034
0.0191 17.7471 11.C023
0.0199 13.0»i'!.3 12.02'1'J
0.02O5 19.4073 12. 7'!.rM
O.O200 19.4749 12.73V)
0.0115 10.0141 7.0437
O.O17O 17.0994 1I.2Q20
0.0195 13.0^44 12.0310
0.0204 19.0737 12.9070
O.O2O4 19.9749 13.03'X)
0 . 0039 O . '» | 77 5 . 7349
O.O 131 13.95O2 3.902.')
O.O 140 15. 10;14 9.03r>
O.O 144 15. 2:756 9 . 7O04
O.O034 4.2174 2.03.10
O.O054 7. IG90 4.493:1
0.OO55 7.3JO3 4.5973
-O.OOOI O.5G72 O.42',V»
-O.OO02 1.O472 0.7fj:)7
-0.0002 O. IP91 0. 1041
O.OO09 4.2479 2.333:2
O.O14O 9.0092 0.297-r)
O.O193 14.0272 9.4035
0.0210 10.0037 11.5339
0.0216 19.3140 12.7000
O.O21O 19.0G37 12.8013
O.OO9O O.O<27 4.449O
0.0103 12.7C32 O.OO'jT
O.O2O5 17.006 1 11.1223
O.O215 2O.2001 12.9344
0.0209 20.2/07 13.O349
O.OOOO 5.5103 3.4123
O.O 123 11.7019 7.2293
O.O 132 15.0370 9.05^2
0.0143 15.4477 9 . 02O2
0.0025 2.5150 1.4742
O.OOOO 7. 2 lOO 4.394')
0 . OO5 9 7.4300 4.04*0
0.0002 O.4096 0.2490
0.0001 1.0090 0.7005
0.0000 0. 1214 0.0721
0 . 0 1 07 0 . 4323 2 . 940 \
Exhibit A-8 (continued)

-------
ro
00
0.0
o.o
o.o
0.0
o.o
0.0
o.o
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.02
0.02
O.O2
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.05
0. 10
0.20
0.50
O.GO
0.05
0. 1O
0.20
0.50
O.SO
0. 10
0.20
0.50
0.00
0.20
0.50
0.30
0.50
0.03
0.00
20.21
34.00
54.30
03.39
92.76
19.99
35.06
54.65
02.78
91.07
35. 19
56.23
C3.97
92.94
57.71
06.01
95.79
90.20
99 . 6 1
100.54
52. 11
65.23
7O.63
93. 19
97. 13
51.35
65.02
73. 06
92.92
96.77
65.93
79.77
93.44
97.21
00.60
94.66
90.35
96.00
99.05
100.21
0.2010
O.C931
0.3041
0.3244
0.3339
0.2797
0.2905
0.3039
0.3253
0.3349
0.2014
0.2975
0.3204
0.3301
0.2373
0.3120
0.321O
0.3043
0.3149
0.3139^
0.2962
0.3002
O.32IO
0.3418
0.3403
0.2910
O.3043
0.3205
0.3417
0.3407
0.2937
0.3123
0.3353
0.3426
0.0013
O.G261
0.3336
0.3201
0 . 3270
0.3277
1.40
0.25
-2.61
-6.54
-7.60
1.27
1.01
-2.26
-7. 14
-0.50
1. 14
-0.60
-5.96
-7.51
0.00
-3. 11
-4.66
0.20
-0.04
0. 10
1 . 70 0 . OG23
0.20 0.0 ISO
-1.49 -O.OCG7
-2.70 -0.0673
-3.04 -0.0723
1.46 0.0697
0.79 0.0339
-1.29 -0.0336
-3.04 -0.0740
-3.40 -0.0020
0.90 0.0345
-0.33 -0.0090
-2.53 -0.0f.37
-2.97 -0.0733
0.45 0.0139
-1.30 -0.0347
-t.C2 -0.0473
0.12 0.0027
-0.32 -0.009-5
0 . 04 0 . 0003
0.74.10
0.7007
0.70-". 4
0.7153
0.7212
0.3115
0.7459
0.7233
0. 72,14
0 . 7302
0 . 0320
O.G030
O.OOlrt
O.C096
0.9509
0.9131
0.0216
O.Omi
0.9S7.9
0.9957
0.0140
0.0175
0.0194
0 . 0202
0 . 0202
0 . 00<>7
0.0152
0.0191
0.0211
0.0212
0 . 006 1
0.0127
0.0 162
0.0164
0.002*.
0 . 0073
0.0031
0.0006
0.0012
O.O002
0.0162
0 . O2 1 2
O.O230
0.0221
0 . 02 1 2
O.O110
0.0173
O.0216
0.0220
0.0211
0.0066
0.0134
0.0157
0.0150
0 . 0024
0.0064
0 . OO60
0 . 0004
0 . 0002
0.0001
7.9151
13.6.141
i3.o:;r/>
20.016,5
19.7334
5. 3131
1 1 . 23G7
17.3447
20.469(3
20.3160
4 . 239 1
11. 1501
15.5090
15.5439
2.C253
7 . 20 Of>
7.5571
0.4323
1. 1103
0. 76.13
5 . 4704
0.7254
11.3517
12. GM7
12.C319
3.7400
7. 1193
10.77.1?
13.0006
13. 1100
2 . 747O
6 . 7595
9 . f^fi'-i
9 . 0469
1.2566
4. (MOO
4.6041
0 . 29 » 55
0.6920
O.C993
             Exhibit A-8 (continued)

-------
ro
                   PLUME  VTSUAL EFFECTS FOR HORIZOITTAL VIEWS
                   pERPKJ7»n;c/L/m TO  THE PLUME OF WHITK,  CRAY,  AND
                   FOR VARIOUS  OBSKRVER-PLUME AND OBSERVER-OBJECT
                   1600 HW POWER PLANT
BLACK OBJECTS
DISTANCES
DOWm/IWD DISTANCE
THETA = 90.
(KTI) =
REFLECT RP/RVO ROXRVO
1.0
1.0
1.0
1.0
1.0
1.0
1.0
l.O
l.O
1.0
1.0
l.O
1.0
1.0
1.0
l.O
l.O
l.O
1.0
1.0
1.0
O.3
0.3
O.3
0.3
O.3
0.3
O.3
0.3
0.3
0.3
0.3
0.3
O.3
0.3
0.3
0.3
0.3
O.3
0.3
0.3
0.3
0.0
0.0
0.02
0.02
0.02
0.02
0.02
0.02
0.03
0.05
O.O5
0.05
0.05
0. 10
0. 10
0. 10
O. 10
0.20
0.20
O.20
0.50
O.50
O.OO
O.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.80
0.02
0.02
0.02
0.05
0. 10
0.20
0.50
0.00
0.05
0. 10
O.20
0.50
o.ao
0. 10
0.20
0.00
o.ao
0.20
O.50
o.co
0.50
0.00
o.ao
O.O2
0.05
0. 10
O.20
0.50
o.ao
0.05
0. 10
0.20
0.00
o.ao
0. 10
0.20
0.50
o.ao
0.20
0.50
o.co
0.50
o.ao
o.co
0.02
0.05
220.0
YCAP
91.53
84.25
77.65
70.50
59.92
56.42
C5 . 73
76.97
69.41
59. 16
55.75
00.51
69. 04
59.71
56.35
74. 12
61.44
53.00
64.52
CO . 40
61.29
3O.92
30. 17
00.72
42.46
50.70
50.29
33.57
36.01
42.25
50.20
52.71
SO. 02
43.04
50.07
53.05
45.04
52.60
53.08
54.99
57.09
58.06
4.94
11.27

L
96.63
93.57
90.63
07.25
01.81
79. 07
94.21
90.02
Cfi . 72
O1.09
79 . 49
91.92
06 . 90
01.70
79.00
CD. 99
02.60
00. CO
04 . 23
R1.O7
C2.53
62 . 47
64 . 32
67. 10
71.21
76.52
7O.07
64 . 65
67. 16
71.07
76.21
77.72
6O.06
71.61
76.62
70. 10
72.94
77.66
79. 10
79.05
O0.42
00.79
26.60
40.00

X
0.3409
0 . 049 1
0.0517
0.0477 •
0.3056
O.G2O4
0.0451
0.0519
0 . 0480
O.0064
0.0292
O . 0424
0.3441
0.0314
0.0242
0.0301
O . 0229
0.3150
0.0159
O.OOOO
0.0002
0.029O
0 . 0254
0.0200
0.0147
0.0164
0.0197
0.0217
0.0103
0.3146
O.3172
O.S206
0.0096
O.0005
0.3122
0.0157
0.29O7
0.0030
0 . 0074
0.2970
0.0007
0.2999
0.2599
0.2672


Y DELYCAP
0.3512
O.OOOO
0.0500
0.0036
0 . 0424
0.0077
0.0541
O.OOO1
0.0004
0.0422
0.0075
O.0492
0.0474
0.0057
O.OO 10
0.0077
0.026O
O.0215
0.0209
O.OI04
O.3156
O.OOGO
O.3040
0.3291
0.0259
O.0002
0.0305
0.0000
0.0262
0.0246
0.0000
0.3034
0.0169
0.0167
0.0203
0.3267
0.3064
0.3135
0.3171
0.3076
0.3110
0.3110
0.2647
0.2701
-3.03
-6.53
-7.01
-6.0O
-5.56
-5. 16
-5.07
-0.49
-7.97
-6.33
-5.03
-4.95
-7.54
-5.77
-0.23
-3.26
-4.04
-3.00
-0.96
-I. JO
-O.29
-0.62
-1.52
-2.43
-3.01
-4.49
-4.03
-1. 12
-2.34
-3.52
-4.99
-5.41
-1. 14
-2.73
-4.32
-4.77
-0.73
-2.59
-3.04
-0.20
-0.73
-0.06
0.43
0.64

DELL CC550)
-1 .24 -0.0310
-2.78 -0.0706
-0.46 -0.0097
-0.25 -O.0308
-2.94 -0.0314
-2.O4 -O.0790
-2. 13 -0.0044
-0.77 -0.0903
-0.78 -0. 1020
-0.05 -O.O940
-0.21 -0.0910
-2. 17 -O.0374
-0.00 -O.09O3
-0.05 -O.OO75
-2.O7 -O.OOOO
-1 .52 -0.0400
-2. 1 1 -O.O603
-1.90 -0.0577
-0.49 -0.0107
-O.64 -0.0203
-O. 16 -0.003?
-0.52 -0.0 IC3
-1.21 -0 . O4 1 5
-1.79 -O.OOO2
-2.21 -O.0667
-2.65 -0,0703
-2.76- -0.0774
-0.O9 -O.OOO7
-1.73 -0.0372
-2.35 -0.0720
-2.96 -0.0051
-0. IO -0.0002
-0.03 -0.0282
-1.O2 -0.0579
-2.55 -0.0753
-2.72 -0.0795
-0.4O -O.0163
-1.51 -0.0469
-1.72 -O.0026
-0. 12 -0.0042
-0.41 -0.0133
-0.03 -0.0012
1.26 0.0900
1.09 0.0643

BRAT 10
O . 3039
0.7786
0.7390
O.7069
0.7024
0.72^0
0 . '50 1 7
0.7393
O.7010
O.7432
O . 74 1 3
O . 3706
O.3371
0.3233
o.n:»4~>
O. 9,190
O. 9 445
0.939O
1 . 0009
1 . 0076
1 . OOOO
o . oo;io
O.3216
0.7630
O.7344
O . 7240
O.7230
0.3729
0 . 3O23
0.7040
0.7050
0.7039
0.9166
O . 3477
0.3163
0.3171
O.97I7
0.90OO
0 . 9304
0.9975
0.9971
0.9995
0.0109
0.7577

DELX
0.O073
0.0161
0 . 0202
0.02OO
0.0200
0.02OO
O.OI21
O.0204
0 . 02 1 1
O . 02O3
O.O2O3
O.OIO9
O. 0 163
0.0103
O . O 1 33
0.0034
O.OO73
0.0073
O.OOOO
O.OOO4
-O . OOO2
0.0060
O.OIO2
0.0174
0 . 0 1 09
0.0197
0.0190
O.OO93
O.OI36
O.O1O3
O.02O6
0 . O2O7
0.0070
0.0127
0.0105
0.0108
O.0029
0.0072
0.0075
0.0003
0.0000
0 . OOOO
0.0004
0.0126

DELY
0.0076
0.0159
0.0194
0.0193
0.0210
O.O217
O . O 1 2O
0.0137
0.0196
O . O2O7
O . O2 1 3
O.0003
O. 0 135
O.OI4O
O.OI5O
O.O009
O.O049
O.O055
-O.OO').!
-O.0007
-O.OOO4
O.O063
O.O139
0.019O
O.O217
O.O227
0.0224
O.O099
0.0161
0 . 0205
O.O224
O.O222
0 . 0063
O.O120
0.0107
0.0106
O . OO22
0.0009
0 . 006O
0.0000
-0.0001
-O.0001
0.0101
0.0158

E(LUV)
6 . 7379
10.9703
16.C,?O9
16.6062
16.9-003
17. 2 J 33
IO.6C.09
16.C240
17. K'/13
1 7 . 27 1 O
17.5,103
9.2143
If,. 240 1
13.O079
10. n;.:$o
4.0133
6.o::;o
6. !4ai
O.G.'VJ4
o. rwio
o. :r~22
4. n-V>3
o. rt'.:.r>c»
12.01 IO
15.7209
i7.4-.oo
17.3016
6 . 4OCO
1 1 . r/K<-2
15.2073
17.7700
17.3772
5. 1210
IO. 1309
10.0223
10.0204
2.22T2
6.0',C3
6 . 0700
0.0050
0.3137
0.0709
2.2050
6 . or 07

E( LAB)
4.57.15
9.0000
1 .5 '»7 3
1 . 3420
1 . 270 I
i . :;:',•"*
7.2474
i . <:oio
1 . 0 » 22
I . 4203
l . 40fj l
6. K' .0
3. ;i._.. ;»
3.0730
G. r*2'J3
2.9C ' 4
3.9412
0 . 02 >.?
0 . 0020
O. 7'Ci'if)
O. 220, 71
2 . C.VJ! 1 0
5.9'ri:;
3. 0455
lO.2ri:;9
I 1 . 'KOI
1 1 . 4O44
4.2073
7.4rr:4
9 . C202
1 1 . 4002
1 1 . 0737
3.2702
6 . 4240
0.4437
3 . 6 1 27
1.3007
3.7003
3.9G03
0 . 2O70
0.3003
O . 0009
2.2032
4.40,'m
           Exhibit A-8  (continued)

-------
ro
ro
o
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.02
0.02
0.02
0.02
0.09
0.05
0.03
0.03
0.03
0. 10
0. 1O
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0. 10
0.20
0.50
O.CO
0.05
0. 10
0.20
0.50
0.00
0. 10
0.20
0.50
0.00
0.20
0.50
0.00
0.50
0.00
O.CO
19. 1O
30.45
46 . 74
51.05
11.20
19.60
30.61
46 . 36
51.41
19.01
31.56
47.00
52.06
32. 5fl
40.01
53.79
50.90
56. 10
56.63
50.94
62.07
74.05
77.27
39 . 96
5 1 . 42
62.21
73.00
76.95
51.66
63.01
74.26
77.34
63 . 05
75 . 35
70.36
76.04
79.69
00.02
0.2760
0.2367
0.3065
0.3150
0.2632
0.2734
0.2364
0.0073
0.3167
0.2650
0.2C01
0 . 3024
0.3110
0.2707
0.2942
0.3036
0.2374
0.2970
0.2962
0 . 2070
O.C023
0.3239
0.3316
0.2699
0.2037
0.3000
0.3237
0.3315
0 . 2729
0.2922
0.3169
0.3240
0.2010
0 . 3070
0.3151
0.3000
0.3091
0.3090
-0. 13
-1.70
-4.03
-4.69
0.57
0.29
-1.62
-4.42
-3.23
0.50
-0.67
-3.70
-4.50
0.35
-1.97
-2.03
0. 12
-0.54
0.04
-0.15 0.0013
-1.49 -0.04C-2
-2.52 -0.0720
-2.72 -0.0766
0.96 0.0560
0.33 0.0204
-1.35 -0.0422
-2.76 -0.0002
-3.03 -0.0069
0.57 0.0270
-0.56 -0.0160
-2.30 -0.0007
-2.66 -0.0777
0.29 0.0109
-1.21 -0.0300
-1.64 -0.0502
0.00 0.0021
-0.30 -0.0106
0.02 0.0000
O.7194
0.7113
0.7177
0 . 7f!27
0.3?
0.7577
0.7273
0.7206
0.7323
O.0907
0.3172
0.0061
0.0129
0.9336
0.9176
0.9233
0.9902
0.991 1
0.9963
0.0104
0.0103
0.0196
0.0190
0.0006
0.0 13O
0.0179
0.0204
0 . 02O7
0.0034
O.O1 17
0.0153
0.0150
0 . 0*23
0.0073
0.0076
0.0005
0.0010
0.0002
0.0213
o . or:37
0 . 02T 1
0 . O227
O.010S
O.O171
O.O221
0.0233
0 . 0226
0 . 0064
0.0133
O.0164
0.0159
0 . OO23
0.0063
0.0062
0.0003
O.O002
0.0001
1 1 . 4^.3
is.or.rn
17.7-I5
I7.or"v>
3.9774
9. 1T33
14.9C04
10.0^71
io.or:2i
3.2312
9 . 3<0()
13. 3-" 06
13.6611
1.5231
6 . 2073
6.4'MS
0.3''-?7
O.C.659
0. 1 (24
7 . 50m
10.0022
1 1 . <.O.T)
1 1 . 4377
2.9300
6.0212
9 . 4706
11.5215
1 1.0154
2. 1903
5. 00 '4
0.4,'l02
O.Ol-:-:*
0 . 9009
3 . 7003
4.0.724
0.2'>;»7
0.5050
0 . 0033
             Exhibit A-8 (continued)

-------
IN3
                 PLUME VISUAL EFFECTS FOR HORIZONTAL VIEWS
                 PERPENDICULAR TO THE PLUME OF  MUTE,  CRAY,  AND
                 FOR VARIOUS OBSERVER-PLUME AND OUSEUVER-OBJECT
                 1600 MW POWER PLANT
BLACK OBJECTS
DISTANCES
DOWIWIHD DISTANCE
TIFETA = 135.
(icri) =
REFLECT RP/RVO RO/RVO
.0
.0
.0 •
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
1.0
1.0
l.O >
l.O
1.0
0.3
O.3
0.3
O.3
0.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
O.3
0.3
0.0
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. IO
0. 10
O. IO
0. 10
0.20
0.20
O.20
O.50
O.50
O.CO
O.02
O.O2
0.02
O.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0.10
O. 10
0. 10
0. 10
0.20
0.20
O.20
0.50
0.50
0.80
0.02
0.02
0.05
0. IO
0.20
0.50
O.OO
0.05
0. 10
0.20
0.50
O.OO
O. IO
0.20
0.50
O.CO
0.20
O.50
O.OO
0.50
0.89
0.00
O.O2
O.O5
0. IO
O.2O
0.50
O.OO
0.05
0. 10
0.20
0.50
0.00
0. 10
0.20
0.50
O.GO
0.20
0.50
0.00
0.50
0.00
0.30
0.02
220.0
YCAP
91. 02
C4.90
7O.O1
72.46
62.99
59.03
06.44
70. 16
71.35
62. 17
59. 10
O1.81
71.O7
62.01
59.77
76.38
64.74
61.71
60. 11
64. 3O
65.27
31.20
33.82
37. 09
44.42
53.77
56.70
34.25
30.00
44. 19
53.21
56.05
39.32
45.08
53.96
56.76
47.30
53.90
53.70
58.57
61.29
62.04
5.22

L
96.75
93.05
91. 16
88.20
03.45
81.76
94.51
90.36
87.67
03.02
81.36
92.50
87.92
83.36
81.73
90.04
84.37
82.77
06.07
84. 13
84.64
62.71
64.85
67.97
72.53
78.35
80.03
63. 19
68.05
72.38
78.02
79.66
69.01
72.97
78.46
80.06
74.40
79.57
01. 14
01.07
82.55
02.95
27.41

X
0.3402
0.3473
O.3437
0 . 3433
0 . 3302
0.3233
0.3433
0 . 3487
0 . 3442
0.3310
0.3241
O.3392
0.3392
0.3259
O.3191
0 . 3234
O.3173
O.3106
0.3105
O.GO38
O.3033
0.3274
O.3219
O.3156
0.3O98
O.3116
0.3150
0.3102
O.3136
0.3096
0.3123
0.3159
0.3051
0.3034
0.3073
0.3109
0.2938
0.2990
0.3O27
0.2923
0.2961
0.2954
0.2559


Y DELYCAP
0.3503
0.3563
0.3562
0.3502
0.3392
O.G350
0.3524
0.3553
0.3490
0.33O9
0 . 3347
0 . 3463
0 . 3434
0.G322
0 . 3230
O.3336
0 . 3226
0.3fC3
0.3172
0.3122
0.3125
0.337O
O . 3309
0.3254
0.3223
0.3274
0.3310
0.3268
0.3223
0.3209
O.3271
0.3308
0.3128
0.3127
0 . 3202
0.3240
0.3024
0.3102
0.3142
0.3043
0.3081
0.3001
0.2612
-3.09
-6.70
-O.04
-7.24
-6.09
-5.74
-5. 16
-8.69
-0.34
-6.91
-6.47
-5.04
-7.02
-6.28
-5.00
-3.H2
-4.34
-3.06
-0.98
-1.27
-0.30
-0.66
-1.64
-2.66
-3.67
-3.02
-5.40
-1.21
-2.55
-3.90
-5 . 58
-6.05
-1.23
-3.01
-4.83
-5.35
-0.79
-2.89
-3.41
-0.22
-0.82
-0.06
0.30

DELL C( 550)
-1.25 -0.0311
-2.01 -0.070O
-3.52 -0.0901
-3.36 -0.0077
-3. 11 -0.0034
-3.03 -0.0317
-2. 15 -O.0545
-3.02 -0.09O4
-3.09 -0. 1026
-3.54 -0.0961
-3.43 -O.0937
-2. 10 -0.0571
-3.64 -O.0930
-3. 2O -O.0O9O
-3.06 -0.005-5
-1.51 -O.O421
-2. 19 -0.0636
-2.02 -O.O590
-0.49 -0.0150
-0.66 -O.O2O6
-0.15 -O.0049
-0.55 -0.0109
-1.29 -O.042O
-1 .92 -0.O602
-2.37 -O.0692
-2.05 -0.0700
-2.96 -O.OO01
-O.94 -O.O315
-1.04 -0.0500
-2.52 -0.0743
-3. 17 -0.003O
-3.32 -0.0912
-0.08 -0.02O7
-1.94 -0.0594
-2.73 -0.0773
-2.92 -0.0022
-0.50 -0.0163
-1 .62 -0.0403
-1.O4 -O.0543
-0. 12 -0.0041
-0.44 -0.0141
-0.03 -0.0012
1.09 O.0003

BRAT 10
0.0343
0 . 70 1 9
0 . 7424
0 . 7372
0 . 73 1 5
O.7291
0 . G"-49
0.70i} 1
0.7533
O . 7443
0 . 74 1 6
O. 07,07
O.O:i2
O . 3292
0.325 O
0.9027
0 . 9436
O . 94O5
1.0O63
1.0013
1.00151
0.9O47
O . 3242
0 . 7043
O.7347
O . 7242
0.7251
O.O706
0.0037
0.7556
0.7335
0.7362
0.9198
O.O305
0.0173
0.8133
0.9733
0.9319
0.9322
0.9931
0.9902
0.9997
0 . OIJ43

DELX DELY
0.0O73 0.0076
0.0159 O.O158
0.0199 0.0195
O.0199 O.O202
0.0199 0.0215
O.O19O O.O221
0.0120 0.0119
O.O 199 O.O 133
0.0203 0.0197
O.0207 O.0212
O.02O6 O.0219
O.O1O3 O.OO93
O.O159 O.0134
0.0106 0.0146
O.0156 0.0152
0.0050 O.O036
O.O07O O.O05O
O.O07I O.O055
O.O002 -O.OOO5
O.OOO3 -O.OO07
-O.OO02 -0.0004
0.0004 0.0068
O.O129 O.O133
O.O171 O.OI91
O.O 187 0.O220
0.0195 O.O230
0.0196 O.O228
0.0092 O.O098
O.O 152 0.0160
0.0184 0.0206
O.O203 0.0223
0.0205 0.0226
0.0066 0.0066
0.0122 O.O 124
0.0152 0.0158
0.0156 0.0153
0.0026 0.0021
0.0069 0.0039
0 . 0073 0 . 006O
0.0003 -0.0000
O.O007 -O.OOO1
O.OOOO -0.0001
0.0078 0.0097

E(LUV)
6.7303
14.0144
17. iom
17.2?r>5
1 7 . :\ \ 27
13. O9O4
10.062-)
16. £?,'.! J
17. '.-4 1 3
13. 1220
13.4247
9 . 1 1 r«o
13. 33 15
1 3 . H77 ')
i ;i . r; :or>
4. ar.o3
6.215I
6.3763
0.6573
0.3070
O.2704
4.O794
0.0723
13.2990
16.40H1-
18.3170
18.309,;;
6.-tr>o->
1 1..T020
13.3734
18. (.0- 1
10. 72-: 7
3.0934
10.421,1
13.3373
14. 1 156
2. K, 13
6 . 25 I 1
6 . 5977
0 . 2700
0.3124
0.070J
2 . 2747

E(LAB)
4 . 5740
9.546:)
1 . 6463
l.r.220
1 . 72 f 4
1.7913
7.2144
1 .41- TO
I . r:oi4
1 . r^?n
1 1.94T3
6 . Ofj 7O
O."~40
8.76,13
O . 3472
r% r-* -• r*'-*
*«• • O. -. H * . J
4.0253
4.Q.14:?
o . r»,i;;o
O.7003
O . 22 1 O
2.n-"30
6 . O'?7.'»,
3. 7: '67
1O.6I40
1 1 . 79O4
1 1 . noo i
4 . 2007
7 . r> i '••<-,
10. 1765
1 1 -90OO
12.0L41
') . 2320
6.5315
O . 74O9
0.0242
i.3i r,4
3.C3TJ
4. 1001
0. 1065
O . 6OO 1
O.or»34
2 . i n:.:7
        Exhibit A-8 (continued)

-------
ro
ro
0.0
0.0
0.0
0.0
o.o
0.0
o.o
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
o. io
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.05
0. 10
0.20
o.r>0
0.00
0.05
0. 10
0.20
0.50
0.00
0. 10
0.20
0.50
0.80
0.20
0.50
0.00
0.50
O.CQ
0.00
11.92
20.05
32 . 40
49 . C-2
55.36
11.08
20.79
32.55
49.37
54.75
21. 11
33.59
50. 17
53.47
04.04
52.11
57.41
54.48
00.00
00.66
41. 13
52.27
63.71
75.08
79.27
41.07
52.75
63.03
75.71
70.92
53. 11
64.67
76. 19
79.33
65 . 65
77.36
CO. 43
73.76
01.86
82.21
0.2630
0.2717
0.2C25
0.3020
0.3112
0.2591
0.2691
0.2820
O.3028
0.3121
0.2610
0.2758
0.2979
0,3072
0.2667
0.2U97
0 . 299 1
0 . 2C32
0.2926
0.2918
0.2717
0 . 2046
0.2994
0.3213
0 . 329 1
0.2665
0 . 2G03
0.2978
0.3211
0.3290
0.2596
0.2390
0.3140
0.3221
0 . 2779
0.3040
0.3123
0.2979
0.3062
/•O.3061
0.52
-0.36
-2. 14
-4.56
-5.26
0.48
0.08
-1.99
-5.00
-5.87
0.41
-0.95
-4.21
-3. 15
0.29
-2 . 27
-3.21
0. 11
-0.62
0.04
0.85
-0.40
-1.72
-2.72
-2.92
0.78
0.09
-1.59
-3.00
-3.28
0.44
-0.75
-2.51
-2.86
0.23
-1.34
-1.77
0.06
-0.34
0.02
0.0531
-0.0009
-0.0311
-0.0751
-0.0793
0.0471
0.01J7
-0.0473
-O.083G
-0.0901
0.0221
-0.0219
-0.0719
-0.0806
0 . OOC9
-0.0402
-0.0322
0.0017
-0.0112
O.OC01
o.7*r»6
0.7203
0.7143
0.7>O3
0.7223
0.0311
0.7644
0.7310
0.7279
0.7332
0.0959
O.H222
0.0033
0.8143
0.9584
0.9204
0 . 9275
0.9911
0.9925
0.9967
0.01 IO
O.O 157
0.017,0
0.0193
0.0196
0.0000
0.0131
0.0174
0.0200
0 . 0204
0.0050
0.01 «2
0.0151
0.0155
0.0021
0 . 0070
0 . 0074
0.0004
0 . 0009
0 . 000 1
0.0154
0 . 02 II
o.or*37
0.0.237
0 . 023 1
O.O103
O.O163
0 . O22 1
0.0235
0 . 0229
0 . 0062
0.0103
0.0163
0.0161
0 . OO22
0 . 0065
0 . 0062
0 . 0003
O.0001
0 . 000 1
6 . 2DOO
1 1 . c: i- 1 4
16.CT.-J
1G.57'M
10.4704
4.0-" 23
9 . 4000
15.4902
18.0703
lo.osm
3 . 2774
9 . 62<'3
14.0973
14.2422
1 . 49 49
6 . 3C309
6 . 7067
O.3122
O.G5':-9
0.0996
4.5033
7.r~>rx-
io.4'jr?.o
n.rvtoo
1 1 . 0906
2.97011
6. 1435
9.7930
1 1 . 9547
12.0002
2. 17r»0
5.94(0
O.777f>
0.9620
0 . 92?0
3..TJ3T
4. 1412
0. ir.36
0.5719
0.0600
           Exhibit A-8 (continued)

-------
ro
T^OtFWW POWER
DOWWUTO jpj STANCE (KM)
TI1I5TA LENGTH RP/RV0
43.
20.
20.
20,.
20',
20.
20'.
20.
40.
40.
40.
40.
40.
40.
40.
60.
60.
60.
60.
60.
60.
60V
00.
no.
80.
CO.
oo.
60.
80.
100.
100.
100.
100.
100.
100.
100.
120..
120.
120.
120.
120.
120.
120.
140.
140.
140.
140.
140.
140.

0.00
0.02
0,05
0 •' 10
0.20
0.50
0.00
0.00
0.02
0.05
0.10
0.20
0.50
0.00
0.00
0.02
0.05
O.10
0.20
0.50
0.80
0.00
0.02
0.05
0.10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0.10
0.20
0.50
&f- "FOR- LUTES OP SIGHT ALONG PLUME
PLANT
= 220.0
RV ^REDUCED YCAP L X

179.6
179. 1
178.4
177.3
175.8
173.7
173. 1
100.7
173.7
176.2
172.6
167.6
160.7
171. 1
102.7
179. 1
174.3
167.6
150.3
148.7
171. 1
183.1
177.7
170.3
160.0
147. 1
140.9
171.2
109.3
173.2
163.0
151. 1
134.0
149, 1
171.2
173.5
164.0
153.3
133.0
133.2
149.1
171.2
161.3
151.2
142.9
138.3
135.3
149. 1

2.89
3.19
3.59
4.15
4.96
6.08
6.42
2.34
3.38
4.77
6.68
9.41
13. 11
7.53
1.22
3.20
5.81
9.33
14.45
19.61
7.50
1.02
3.96
7.81
13,03
20.49
19,49
7.49
2.04
6.38
11.44
18.32
27. 11
19.43
7.48
6.22
10.94
17.13
25.38
26.94
19.40
7.47
12.72
18,23
22.77
25.23
26.86
19.09

90.77
92.00
93.64
95.95
99.29
103. O4
105. 16
03.21
03.03
07.49
90 . 94
95.97
1O2.04
1O4.05
79.45
01.57
84.42
08.42
94.27
102.31
104.60
77.66
79.91
02.94
87.20
93.43
102.04
10-1.59
76.70
79. 10
82.21
06.60
93.02
101.91
104.04
76.36
70.70
01.03
06.30
92.01
101.03
104,32
76.14
70.59
81.68
86.15
92.71
101.00

96.32
96.32
97.49
90.41
99.73
101.47
101.96
93. 11
93.90
94.95
96.39
98.42
101.09
101. O4
91.45
92.39
93.64
93>04
97.74
100.89
101.78
90.63
91,65
92.99
94.03
97.41
100.78
101,75
90.23
91.29
92.68
94.57
97.24
100.73
101.73
90.03
91. 11
92.52
94.45
97.15
100.70
101.72
09.94
9 1 . 02
92.44
94.30
97. 11
100.69

0.3544
0.3493
0.3432
0.3359
0.3270
0.3213
0.3207
O.G672
0.3595
0.3507
0.3403
0.3296
0.3213
O.G206
0.3697
0.3613
0.3517
0.3409
0.3294
O.3210
0.3203
0.3696
0.3610
0.3513
0.3403
0.3289
0.3208
0.3204
0.3S90
0.3604
0.3507
0.3398
0.3205
0.3206
0.3203
0.3683
0.3599
0.3502
0.3394
0.32C2
0.3203
0.3203
0.3681
0.3596
0.3499
0.3392
0.3201
0.3205
Y DELYCAP

0.3640
0.3306
0.3517
0.3438
0.3358
0.3310
0.3311
0.3693
0.3617
0.3530
0.3435
0.3343
0.3301
O.3308
0.3672
0.3594
O.3506
O.3413
0.3323
O.3296
0.3306
0.3652
O.3574
O.3409
0.3399
0.3319
0.3293
0.3305
0.3641
0.3564
0.3400
0.3391
0.3314
0.3292
0.3305
0.3636
0.3559
0.3473
0.3388
0.3312
0.3291
0.3305
0.3633
0,3557
0.3474
0.3307
0.3311
0.3291

-14.38
-13.20
-11.60
-9.37
-6.14
-1.78
-0.54
-22. 12
-20.32
-17.90
-14.50
-9.56
-2.81
-0.06
-26.00
-23.90
-21.08
-17. 11
-11.32
-3.37
-1.04
-27.03
-25.64
-22.63
-10.39
-12.20
-3.63
-1.13
-20.O1
-26 . 5 1
-23.41
-19.O4
-12.64
-3. CO
-1.19
-29 . 20
-26.93
-23.00
-19.37
-12.07
-3,00
-1.21
-29.02
-27. 17
-24.00
-19.54
-12.99
-3.93
DELL

-5.64
-5. 15
-4.50
-3.61
-2.34
-0.67
-0.20
-0.91
-0. 15)
-7. 10
-5 . 63
-,1 . 6O
- 1 . 06
-0.32
-10.62
-9 . 60
-O.43
-6.76
—4 . 3JI
-1.27
-0.39
- 1 1 . 47
-10.45
-9. 12
-7.29
-4.73
-1.30
-0.42
- 1 1 . 09
-10.04
-9.43
-7.56
-4.91
-1.43
-0,44
-12. 10
- 1 1 . 03
-9.63
-7.70
-5 . 00
-1.46
-0.43
-12.21
-11. 13
-9.71
-7.77
-3.03
-1.40
CC350)

-0. 1339
-0. 1230
-0. 1101
-0.0905
-O.Of.ll
-0.01GO
-0.0013
-0.2141
-O, 1903
-0. 1763
-0. 1449
— 0 . 09.10
-0.0003
-O.0004
-O . 2575
-0.2301
-0.2117
-0. 1740
-0. 1177
-O.0364
-0.0112
-0.27O6
-0.2576
-0.2291
-0. 1G3-1
-O. 12i4
-0.0394
-0.0122
-0.2Q37
-0.2060
-0.2374
-0. 1952
-0. 1320
-0.0403
-0,0126
-0.293!)
-0.2712
-0.2412
-0. 1903
-0. 1341
-0.0415
-0,0120
-0,2953
-0,2731
-0.2429
-0, 1997
-0. 13750
-0.0410
BRATIO DELX 0ELY E(LUV) E(LAB)

0.5069 0.0350 0.0333 31.614? 21.O1O
0.6374 0.0298 0.0274 27.0254 17.723
0.7413 0.0235 0.020* 21.4441 in. cm
0.0309 O.OJ61 0.0125 14.7155 9.f!ri2
0.03,10 0.0077 0.0044 7. 144::! 4.F3I
0.99O9 0.0007 -O.OOOr, 1.1971 O.«X'>
1.0013 -o.ooot -o.ooo'-;. 0.3722 o.on
0.5302 0.0473 O.OCM! 39. f« 192 20.216
0.6117 O.O396 O.OrJO'. 33.54.16 2I.9O!>
0.7006 0.0306 O.O2JV 26.414.". 16. 9^2
O.O207 O.O203 0.0121 10.G090 ll.^.T.
O.9347 O.0092 O.O03O O.O437 fl.r'U
1.0013 O.OOO6 -0.001 '• 1.0-156 l.T.'V)
I.O027 -0.0002 -O.OOO7 O. r,'.»« 0 o.RM
O.5279 0.0495 O.OCOO 4O.JJ06O 26. O^
0.6110 0 . 04 t 1 0 . 0270 .14 . < .'?"'.» 22 . 27R
0.7098 0.0314 O.OI92 26.,'mO 17.JM7
O.C236 O.O2O3 O.OOOO 1O.2721 11. Tt',?
0.9307 0.0030 O.OOK- 9.1i:M C..JVJJ
1.O033 O.OOO.J -O.OO19 2. IW''. I.P.'Sj
1.0040 -O.O004 -0.0000 0.7C>9fl O.
0.7140 0.0303 0.017-'. 26. 3H70 17. 1V5
O.C280 0.0193 O.OO0 1- I7.9
1.0059 -0.0000 -O.OO22 2. 20 Hi 1.9!i'>
1.0050 -O.OOO3 -0.0010 0.,1~::H O.r, fi.r-f.r,
1.0077 -0.0002 -0.0024 2.0.19'!. 2. TV1
1.005O -O.O006 -0.0010 0..1079 O.TOrt
0.5367 0.0473 O.OC21 08.11174 25. i "09
0.0209 0.0393 0.0244 32.7S67 21.f«0!*i
0.7206 0.0296 0.0160 25.iy>nO 16.071
0.0343 0.0107 0.0070 I7.8«.*W 11.71.1
0.9489 0.0075 -0.0003 0.7°r»5 6.556'.)
1.0091 -0.0003 -0.0024 2.0.175 2.4
0.7200 0.0292 0.0139 25,3323 16.7ri
O.B373 0,0!84 0.0071 17.1,111 II. <»«?•>
0.9510 0.0073 -0.0004 0.6002 6.P
-------
140.
160.
100.
100.
160.
10O.
10O.
160.
100.
100.
100.
100.
100.
100.
100.
200.
200.
200.
200.
200.
200.
200.
210.
210.
210.
210.
210.
210.
210.
215.
215.
215.
215.
215.
215.
215.
218.
21O.
210.
2JO.
218.
218.
218.
219.
219.
219.
219.
219.
219.
219.
0.80
0.00
0.02
0.05
0. 10
0.20
0.50,
0.00
0.00
0.02
0.05
0. 10
0.20
0.50
O.CO
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
0.00
0.02
0.05
0. 10
o.no
0.50
0.09
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
O.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
171.2
150.9
1 47 . 5
143.0
130.4
135.4
149. 1
171.2
150.9
147.5
140. 1
133.5
105.4
149. 1
171.2
151.0
147.5
143. 1
130.5
135.4
149.2
171.2
151.0
1 47 . 5
143. 1
\33.5
135.4
149.2
171.2
151.0
147.5
143. 1
130.5
135.4
149.2
171.2
151.0
147.5
143. 1
130.5
133.4
149.2
171.2
151.0
K7.3
143. 1
130.5
135.4
149.2
171.2
7.47
1O.45
20.29
22 . 69
25. 17
26.03
19.30
7.47
10.41
20.26
22.66
25. 14
26. Ol
19.30
7.47
18.39
20.25
22.05
25. 13
26.01
19.30
7.47
10.39
20.25
22.64
25. 13
26.81
19.38
7.47
10.39
20.24
22.64
25. 13
26.01
19.33
7.47
10.39
20.24
22.64
25. 13
26.01
19.30
7.47
10.39
20.24
22.64
25. 13
26. Ol
19. 3O
7.47
104.50
76.04
70.41
a i . 59
06.00
92.60
101.70
104.50
76.00
70.36
01.55
06.05
92.03
101.77
104.49
75.90
70.34
O1.54
06.03
92.62
101.77
104.49
75.97
70.34
O1.53
06.03
92.02
101.77
104.49
75.97
7O.34
01.53
06.03
92.02
101.77
104.49
75.97
70.34
01.53
06.03
92.62
101.77
104.49
75.97
70.34
01.53
06.03
92.62
101.77
104.49
101.71
09.09
•)0.97
92.40
94 . 35
97.09
1 CO . 6O
101.71
39 . 07
90.95
92.00
94.34
97. Oil
100.60
!OI .71
09.06
90.94
92.30
94.33
97.00
100.60
101.71
09.06
90.94
92.30
94.33
97.00
100.00
101 .71
09.06
90.94
92.30
94.33
97.00
100. 6O
101.71
09.06
90.94
92.30
94.33
97.00
100.60
101.71
09.06
90.94
92.30
94.33
97.03
100.68
101.71
0.3202
O.3079
0.3594
0.3490
0.3390
0.3200
0.3204
0.3202
0.3070
0.3593
0.3497
0.3009
0.0279
0.3204
0.3202
0.3677
0.3592
0 . 3496
0.3009
0.3279
0.3204
0.0202
0.3677
0.3592
0.3496
0.3309
O.3279
0.3204
0.0202
0.3677
0.3592
OT3496
0.3009
0 . 3279
0.3204
0.3202
0.3077
0.3592
0.3496
0.3009
0.3279
0.3204
0.3202
0.3677
0.3592
0.3496
0.3309
0.3279
0.3204
0.3202
0.3305
0.3600
O.3550
0. 0470
0 . 3300
0 . 33 1 0
0 . 329 1
0.3305
0.3602
0.3550
0.3473
0.3300
0.3310
0.3290
0.3305
0.3632
0.3550
0.3473
0.3300
0.3310
0.3290
0.3305
0.3032
0.3550
0.3473
0.3300
0.3310
0.3290
0.3305
0.3632
0.3556
0.3473
0.33O6
0.3310
0.3290
0.3305
0.3632
0.3556
0.3473
0 . 3306
0.3310
O.3290
0.3305
0 . 3632
0.3556
0.3473
0 . 3306
0.3310
0.329O
0.3305
-1.20
-29.64
-27.29
-24. 10
-19.02
-13.05
-3.95
-1.24
-29.71
-27.34
-24. 16
-19.07
-13.09
-3.96
- 1 . 24
-29.74
-27.37
-24, 10
-19.69
-13. 10
-3.97
-1.24
-29.75
-27.30
-24. 19
-19.69
-13. 11
-3.97
-1.25
-29.75
-27.30
-24. 19
-19.70
-13. 1 1
-3.97
-1 .23
-29 . 75
-27.30
-24. 19
-19.70
-13. 11
-3.97
-1.23
-29.75
-27.30
-24. 19
-19.70
-13. 11
-3.97
-1.25
-0.40 -0.0129
-12.27 -0.2902
-11. IO -0.27;»9
-9.70 -0.2405
-7.01 -O.2000
-5.07 -o. io:;4
-1 .49 -0.0419
-0.40 -0.0130
-12.00 -o.r>9or>
-11.21 -O.2742
-9.7:; -0.24:;,:;
-7.m -o.n^T?
-5.09 -o. mo
-1.49 -0.0419
-0.40 -0.0100
-12.31 -0.2900
-1 1.22 -O.7740
-9.79 -0.2409
-7.04 -0.2000
-5.09 -0. 1350
-1.50 -0.0419
-0.46 -0.0130
-12.31 -0.2900
-1 1.22 -0.2743
-9.79 -0.2409
-7.04 -0.2000
-5.09 -0. 1050
-1.50 -0.0419
-0.47 -0.0130
-12.31 -0.2000
-11.23 -0.2743
-9.79 -0.2439
-7.04 -0.2000
-3. IO -0. 1350
-J .50 -0.0419
-0.47 -0.0100
-12.31 -0.2900
-1 1.23 -0.2743
-9.79 -0.2439
-7.04 -0.2006
-5. 10 -0. 1356
-1.50 -0.0419
-0.47 -0.0100
-12.31 -0.2900
-11.23 -0.2743
-9.79 -0.2409
-7.04 -0.2006
-3; 10 -0. 1356
-1.50 -0.0419
-0.47 -0.0100
1 . 0070
o. n"'-o3
O.<-240
0 . 7249
0.3092
0. <>.'»27
l.OI 1 1
1 . 0075
O. 14 «5
0. <>"'»2
O.7203
~« . 31 07
0.9541
l.OI 17
i . OTTO
0.5425
0 . 0272
0.7275
O.34I9
o.or>r>i
l.OI.'JO
i.oo3i
0.5429
O.C.276
O . 7279
0 . 0420
O.9U15
1.0125
1 . 0032
0.5400
0 . 0273
0 . 723 1
0 . 3423
0.9537
1 .0123
1 . 0032
0.5431
0.6279
0.7232
0 . 8426
0.9558
1 . 0 1 26
1 . 0032
0 . 543 1
0.0279
0.7202
O . 0426
0.9553
1.OI20
1 . 0002
-O.OOO7
0 . 047 1
o.onno
0.02OO
0.01 32
0 . OO7 1
-O.OOO3
-0.0007
0 . O470
0.0335
O.02,'i3
0 . 0 1 8 1
0 . 0070
-O.OW1
-O.OOC7
O.0409
0 . 0034
O.O237
0.0130
0 . 0070
-O.OOO5
-0.0007
0.0*09
0 . 0334
0 . 0237
O.O1CO
0.0070
-0.0005
-0.0007
0 . 0409
0.0034
0 . 0237
o.oi no
0.0070
-0.0003
-0.0007
O.0409
O . 0304
0.0237
0 . 0 1 00
0.0070
-0.0005
-0.0007
0.0463
0 . 0334
0.0237
0.0180
0.0070
-O.OO03
-O.OOO7
-O.OOIO
O.OOI7
0 . 02-1 1
0.0150
0 . 007 1
-0.0005
-0.0021
-O.OOIO
O.0317
0.0241
0.01 17
0.0071
-0.0005
-0 . 0021
-O.OOIO
0.0317
0 . 024 1
0.0157
0 . 00? 1
-o . ooo:;
-0 . 00215
-O.OOIO
0.0317
0 . 024 1
0.0157
0 . 007 1
-0.0005
-0 . 0025
-0.0010
0.0317
0.0241
0.01 57
0 . 007 1
-0.0005
-0.0025
-O.OOIO
0.0317
0 . 024 1
0.0157
0 . 0070
-0 . 0003
-0.0025
-0.0010
0.0317
0.0241
0.0157
0 . 0070
-0.0005
-0.0023
-0.0010
O.93IT2 0.720
3H. 4-122 £5.0?v,
?2. !{C' 13 21. 4f!7
I'fT I'T'T^ \ f) --".r-
17.0102 H.f. ».",
o.!i'>73 o.^/i
2.-'10OCi 2.00!",
0.9404 ^.T.'irj
" O.3207 2" . r."> l
''H . /r".!!7 'M."".T
,1'" .^66 K'.O"1)
I0.9P61 ILfVM
". 5 IOO  0.672
10 . r.'y.i \ 11. n75
ll.4,"'.in 0.4''"1
f\ r~*r\f^r? t\ f^r'r'
O.9!f02 O.7P,5
0" . 2^54 2!7 . P'VA
:?2. {'>'*•?• 2 1 . "'•')
25.O72'. 10. 0^0
16.?;:: 10 ii.rvri
3.470.2 <«.•"?'»
2.00HO 2.C'..r,
0.'>r>0.7 0.7i?5
"3 . 25O5 2o . F'02
32. 1594 2<.:M"«3
25.0233 lO.O'.l
10.3770 M.KOO
3.4717 0.4^5
iJ.3937 r. .r'.r;
0.9109 O.T.'SO
CO. 2434 25.noi
32. 1574 21.rr?7
25.0203 10.004
< 0 . C70O 1 1 . 509
0 . 4700 0 . 4(vr>
2.3930 2. COP,
0.9S40 O.700
33.2473 25.501
02. 1507 21.P.37
25.0253 70.004
IO.U75ST 111! 509
3 . 47O2 0 . 405
2.393f> 2.T01
0.9-^41 O.700
Exhibit A-8 (continued)

-------
         VISUAL EFFECTS FOrt LINES OF
         1000 MW POWSH PLANT
           SIGHT ALONG PLUME
DOWNWIND DISTANCE (KM)
220.0
THETA LENGTH RPXRVO
90.
20.
20.
20.
20.
20.
20. "
20. "
40.
40.
40.
40.
40.
40.
40.
00.
00.
00.
60.
00.
00.
OO.
80.
GO.
no.'
80.
80.
80.
80.
100.
100.
100.
100.
too.
100.
100.
120.
120.
120.
120.
120.
120.
120.
140.
140.
140.
140.
140.
140.
140.

0.00
0.02
0.03
0. 10
0.20
0.00
0.80
0.00
0.02
0.03
0. 10
0.20
0.50
O.80
0.00
0.02
0.03
0. 10
O.20
O.50
0.00
0.00
0.02
O.03
0. 10
0.20
0.50
0.00
0.00
0.02
0.05
0.10
0.20
0.50
0.00
0.00
0.02
0.05
0.10
0.20
0.30
0.00
0.00
0.02
0.03
0.10
0.20
0.30
0.00
nv TZPJSDUCED

180. 1
179.3
170.7
177.6
176.0
173. 0
173.1
102.1
100. 1
177.3
173.6
168.2
160.9
171. I
183.0
101.6
170.5
109.4
159.4
143.9
171. 1
187.3
1O1.5
173.0
103.3
140.7
149. 1
171.2
1C3.3
170. 1
160. 1
134.4
136.0
149.2
171.2
100.2
170.0
130.4
141.7
136.4
149.3
171.2
169.3
130.2
146. 1
140.4
136.0
149.3
171.2

2.67
2.99
3.41
4.00
4.06
6.03
6.41
1.54
2.66
4. 14
6. 17
9.09
13.02
7.52
-0.31
1.01
4.62
O.43
13. C3
19.52
7.49
-1.23
1.92
6.07
11.71
19.63
19.39
7.47
-0.44
3.72
9. 16
10.54
26.40
19.33
7.46
2.39
7.60
14.36
23.40
26.29
19.30
7.46
0.46
14.46
21.02
24.08
26.21
19.20
7.46
YCAP

50.74
51.47
52.44
53.81
55.78
58.43
59.22
46.06
47.16
48.64
50.71
53.73
57.33
59.O2
43.74
45.02
46.74
49. 13
52.67
37. 5O
58.92
42.63
43.99
45.02
40.39
02.16
57.34
58.06
42.08
43 . 40
43.37
48.02
51.90
57.23
58.03
41.81
43.23
43. 14
47.83
51.77
57.20
58.82
41.68
43. 10
45.03
47.74
51.70
57.18
58.01
L

76.54
76.98
77.56
78.37
79.31
81.01
81.43
73.61
74.32
73.23
76.53
78.32
O0.06
81.32
72.08
72.93
74.04
75.57
77.70
80.48
01.26
71.32
72.24
73.45
75.09
77.39
00.39
81.23
70.93
71. 9O
73. 16
74.06
77.24
80.34
31.22
70.77
71.73
73.01
74.74
77. 16
00.31
81.21
70.67
71.63
72.93
74.60
77.12
30.30
81.20
X

0.3067
0.3314
0.3231
0.3177
0.3096
0.3032
0.3026
0.3488
0.3109
0.3310
0.3216
O.3109
0.3030
0.3023
0.3300
0.3421
0.3323
0.3215
0.3104
0.3026
0.3023
0.3302
0.3414
0.3313
0.3207
0.3097
0.3023
0.3022
0.3493
0.3403
0.3307
0.320O
0.3092
0.3021
0.3021
0.3406
0.3399
0.3302
0.3193
0.3009
0.3020
0.3020
0.3402
0.3393
0.3298
0.3192
0.3007
0.3019
0.3020
Y DELYCAP

0.3493
0.3427
0.3331
0.3264
0.3177
0.3126
0.3128
0.3346
0.3459
0.3363
0.3209
0.3101
0.3116
O.3124
0 . 3520
0.3431
0.3334
0.3233
0.3142
0.31 10
0.3122
O.3496
0.3408
O.33I4
0.3216
O.3131
O.3107
0.3121
0.3402
O.3396
0.3303
O . 3208
0.3126
0.3103
0.3121
0.3476
0.3391
0.3298
0.3204
0.3123
0.3104
0.3120
0.3474
0.3388
0.3296
0.3202
0.3122
0.3104
0.3120

-8.76
-8.03
-7.06
-3.70
-3.73
-1.03
-0.32
-13.44
-12.33
- 1 0 . 87
-0.00
-3.79
-1.70
-0.52
-13.77
-14.50
-12.7O
-10.37
-6.O3
-2.04
-0.63
-10.90
-15.54
-13.71
-11. 14
-7.30
-2.21
-0.00
-17.43
-16.03
-14. 17
-11.52
-7.64
-2.30
-0.72
-17.72
-10.31
-14.40
-11.71
-7.70
-2.34
-0.73
-17.06
-16.43
-14.31
-11.81
-7.84
-2.37
-0.74
DELL

-3.04
-4.00
-4.02
-3.22
-2.03
-0.59
-0. 13
-7.93
-7.27
-6.34
-3.06
-3.27
-O.94
-0.23
-9.01
-8.60
-7.53
-ft . 03
-O.9O
-I. 12
-0.34
-1O.27
-9 . 03
-8. 13
-6.00
-4.21
-1.22
-0.33
-10.05
-9.70
-3.44
-0.74
-4.30
-1.27
-0.39
-10.04
-9.07
-O.39
-0 . 00
-4.44
-1.30
-0.40
-10.93
-9 . 93
-0.67
-6.92
-4.43
-1.31
-0.41
C(55>0)

-0. 1414
-0. 1303
-0. 1103
-0.0937
-O.OG47
-0.0200
-0.0002
-0.2207
-0.2090
-0. 1304
-0. 1533
-0. 1037
-0.0321
-O.0099
-O . 2722
-O.25I7
-0 . 2203
-0. IR41
-O. 1243
-O.O333
-0.0119
-O.2944
-O.2723
-0 . 242 1
-O. 1991
-0. 1347
-0.0417
-0.0129
-0.3050
-O.2C21
-0.2003
-O.2013
-0. 1395
-0.0401
-0.0103
-0.3093
-0.2803
-0.2343
-0.2093
-0. 1417
-0.0430
-0.0130
-0.3119
-0.2004
-0.2303
-0.2109
-0. 1426
-0.0441
-0.0136
BHATIO I)ELX DELY E(LUV> EtLAm

0.5396 0.0346 0.0361 20.1133 10.011
0.0010 0.0292 0.0295 23.9202 1R.C.09
0.7461 0.0229 0.021.'l 13.0001 J2. I'M
0.8442 0.0154 0.0132 12.7922 R. M4
0,9440 0.0072 0.0045 6.000V O.i'09
1.0010 0.0000 -O.OOOI 0.9G07 O.T'>0
1.0027 -0.0001 -0.0004 O.32I4 O.274
0.5305 O.04G5 0.0414 34.7201 22.970
0.0196 0 . 0330 0 . 0327 29 . 2922 19. J 01
0.7131 0.0293 0.020022.3002 14. 7M
0.3312 0.0192 0.0121 JO. 009^, 9.T41
0.9443 O.0030 0.0029 7.3OK 4.'x'""»
1 . O007 O . OOO3 -0 . 00 1 0 1 . 4970 1.00 '
1.0033 -0.0003 -O.OOOO O..r;40r. 0.
O.7372 0.0231 0.0171 21.9719 K-.CrOO
O.O32G O.O173 O.QO71 14.1423 1O.OI4
0.9G33 0.0005-0.0005 7. MOO 0.000
1.O176 -0.0006 -0.0027 2.0K?5 1.770
1.0106 -0.0007 -O.O01 1 0.3000 0.0,7,7
0.5029 O.0439 0.0044 33.6O47 22.091
0.6397 0.0372 0.0209 23.0790 13.027
0.7419 0.0274 O.O1G1 21.0110 I4.4f0
O.0375 0.0108 0.0072 14.4002 9.900
0.9693 0.0001 -0.0009 7.0727 0.000
1.0197 -0.0008 -0.0023 2.0015 !..?"•>
1.O11G -0,0008 -0.0012 0.8239 0.040
0.5561 0.0453 0.0042 33.0009 22.:W>
0.6432 0.0368 0.0250 27.3079 10.0^0
0.7456 0.0270 0.0104 21.4059 1 4.374
0.0612 0.0163 0.0070 14.2007 9.907
0.9728 0.0009 -0.0010 0.9910 Ti.Or.4
1.0214 -0.0009 -0.0023 2.0009 l.,°10
1.0124 -0.0008 -0.0012 0.11370 O.ftA-r,
 Exhibit A-8 (continued)

-------
K.O.
'100.
160.
16O.
100.
100.
160.
ICO.
ino.
KJO.
mo.
150.
ino.
i no.
200.
200.
2CO.
200.
200.
200,
200.
*> i n
t* I V .
210.
2)0.
210.
2?0.
210.
210.
215.
215.
2*3.
215.
215.
215.
215.
218.
213.
210.
213.
210.
210.
210.
219.
219.
219.
219.
219.
210.
219.
0.00
0.02
0.05
0. 10
0.20
0.50
o.oo
0.00
0.02
0.05
0. 10
0.20
0.50
O.QO
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
Onn
. uu
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0.10
0.20
0.50
0.80
0.00
0.02
0.05
0.10
0.20
0.50
0.80
153.2
151.0
146.3
140.6
136.6
149.3
171.2
153.3
151. 1
140.3
140.6
136.6
149.3
J71.2
155.3
151. 1
146.4
140.6
136.6
149.3
171.2
1 rn o
luo . »>
151.1
140.4
140.6
133.6
, 149.3
171.2
155.3
151. 1
1 40 . 4
140.6
133.6
149.3
171.2
155.3
151. 1
146.4
140.6
136.6
149.3
171.2
155.3
151. 1
146.4
140.6
136.6
149.3
171.2
!6. 10
10.86
20.93
24.03
26. 10
19.20
7.46
16 . 05
10.33
20.09
24.01
26. 17
19.23
7.43
16.04
10.32
20.09
24.00
26. 16
19 . 2O
7.'*'6
. . A V
1 XI f\A.
IO . O**
1Q.32
20.09
24.00
26.13
19.20
7.46
16.04
10.32
20.09
24.00
26. 16
19. 2O
7.46
16.04
1C. 32
20.09
24.00
26. 16
19.20
7.46
16.04
10.32
20.89
24.00
26.16
19. 2O
7.46
41.61
43.04
44.97
47.09
61.67
57. 17
50.00
41.00
43.01
44.0.1
47.07
51.05
37. 16
50. CO
41.07
43 . 00
44.94
47.66
51.04.
57.16
50.30
A. i n/t
** 1 • OCl
43.00
44.93
47.66
51.64
57. 16
50. OO
41.50
43.00
44-93
47.65
51.64
57.16
50.80
41.50
43.00
44.93
47.65
5 1 . 64
57. 16
58.80
41.56
43.00
44.93
47.65
51.64
57. 10
50. GO
70.63
71.61
72.90
74.65
77. 10
CO. 29
31.20
70.61
71.3?
T*> "**t
74! 0*
77.0?
c;o . 2?
01.20
70.60
7 1 . 53
72.07
74.63
77.09
09.29
Ol 20
*j* Jl . h« ,r
ryr\ f-f\
f O. OO
71.50
72.07
74.63
77.09
00.29
01.20
70.59
71.50
72.07
74.63
77.09
CO. 29
01.20
70.59
71.53
72.87
74.63
77.09
80.29
01.20
70.59
71.50
72.07
74.63
77.09
T0.29
01.20
0.3479
0.3fJ92
0.5296
0.3190
O.CCC3
0.3319
o.cr«20
0 . •' J73
0 . 359 1
0. (3294
0.3 Iff?
0 . 0053
0.3019
0.5020
0.3477
0.5090
0.3294
0.3109
0.30C4
0.3019
0.3020
On^'yy
. Bvc 7
0.3390
0.3294
0.3109
0.30C4
0.3019
0.5020
^0.3477
* 0.3390
•.Q294
j ,0.3109
0.8084
0.0019
0.0020
0.3477
0.3390
0.3294
0.3109
0.3C54
0.3019
0.3020
0.347?
0.3390
0.3294
0.31S9
0.3024
0.3019
0.3020
0.3475
0.33.57
0.32°^
0.3201
0.3122
0.3104
0.3120
0.3472
0 . 3307
O 1**Q*i
o!3201
0.3121
0.3101
0.3120
0.3472
0.3307
0.3293
0.32O1
0.3121
0.3104
0.3120
01jf7'>
. tt*tf -I
0.3307
0.3293
0.3201
0.3121
0.3104
0.3120
0.3472
0 . 35O7
0.3293
0.3201
0.3121
0.3104
0.3120
0.3472
0.3307
0.3295
0.3201
0.3121
0.3104
0.3120
0.3472
0.3307
0.3293
0.3201
0.3121
0.3104
0.3120
-17.93
-16.30
-14.57
-11.03
-7.03
-2.30
-0.74
-17.90
-10.53
- 14.0O
-11.03
-7.90
-2.30
-0.75
-17.90
-10.54
-14.01
- 1 1 . 09
-7.90
-2.39
-0 . 75
_ 1 1 (\Sl
— 1 < . v»J
-16.55
-14.61
- 1 1 . 09
-7.91
-2.39
-0.75
-17.90
-16.55
-14.61
- 1 1 . 09
-7.91
-2.39
-0.75
-17.90
-16.55
-14.61
- 1 1 . 89
-7.91
-2.39
-0.75
-17.93
-16.53
-14.61
- 1 1 . 89
-7.91
-2.39
-0.75
-10.90
-•O.OO
-C'..71
-0.90
-4.51
- 1 . 32
-0.41
- 1 1 /o:>
-'.0.0:2
"•"• 75
-0 . 07
-4 . r?2
— 1 . 32
-o!41
-11.01
-.'0.03
r\ TO
'; 1 » t \f
-0 . 90
-4.52
-1.32
-0.41
_ i i r\ i
— 1 1 « U 1
-10. O3
-0.74
-0 . 90
-4.52
- 1 . 32
-0.41
-11.01
-10.03
-3.74
-0.90
-4.52
- 1 . 32
-0.41
-11.01
-10.03
-0.74
-o.oa
-4.52
-1.32
-0.41
-11.01
-';0.03
-O.74
-0.90
-4.52
"* 1 • o2
-0.41
-o.rs in?
-0 . ."£WJ
-oirvrXi
-o.nm
-0. 1450
-0.04---2
-0.0 KIT
-o." no
— O."f?.'»rj
— i~S o "T 1
-0 . 2 1. - 7
-0. 145'J
-0. Ov'!-5
-0.0 "37
-0.5101
-o.sTXj
— O '"'{"'i
-Q\6\\7
-0. 1.432
-0.0443
-0 . O 1 37
/\ rt . r> |
— '.) . \l NJ 1
-0.2090
-0.2375
-0.2117
-0. 1452
-0.0443
-0.0157
-0.3151
— 0.2.'5?'3
-0.2373
-0.2117
-0. 1432 -
-0.0443
-0.0107
-0.3131
-0.2393
-0.2573
-0.2H7
-0. 1432
-0.0443
-0.0137
-0.3131
-0.23'->0
-0.2573
-0.2117
-0. 1453
-0.0440
-O.O157
o.3~sr"» 0.0452 o.o5-'o r'.rs .."r.^o r^.rvv>
o.1'''.^'} o.O5f»;j o.onr" .T'.rrir'. ir*,..1"'
O.T ••"-;• 0.03'*«f1S O.010'' rj1.1"1. -'"O ''"•.:'"•'>
O.C.41 0.0103 0.0009 K>. !5fW *'.f "''<•>
0.0. '-34 0.0030-0.0011 .<'».?'X.9 J».r.A«
i . o:r>o -o . 0009 -o . 0020 2 . 07 in « . r. * ,-.
1.0(00 -0.0003 -0.0012 O.GM5 r\.'^
O.-T'iOn 0.0-J5O 0.0540 55.'<-f>( ""l.'^'t
o . <•> '-7^ o . 05''»3 o . or:5;; :r? . ^,r; ^ n » '•, \ '. s : -, ••
O "' "''"Vl O ()'^^>7 O O f 'l^ ^1 f"~r. ^ | /i r-*f\ .1
o.r"'«5 O.OK»I o.oo'jo i^.o^^o ^.nr,
o.°'rrfi o.oo">7 -o.oo 11 o.ooryj n.i ;;:». i
i. s \ c, 0 . 0440 0 . 054O 55 . 1 05r, 22 . > V »
O.6-*'93 0.0302 0.025:; 37.'ilK> 1".vni7
O.7.r»11 0.0200 O.OiOT 2^ .^4^" lA.^^o
O.CI-79 O.OI01 0.0000 14.C6R3 O.."'!1*
0.0707 0.0050 -0,00 1 1 O.CT/.J n.-'v".!.
l.OS'Kl -0.0010 -0.0020 2. 075^ l.f.fA
1.0(33 -O.OC703 -0.00<2 0.8500 ^ f^^

0.0v93 0.0302 O.O23T 27.0O21 I-".*1 53
0.7-r.27 0.0200 0.0103 31. 27551 K-.TT:'
o.ar.04 0.0101 o.oooo 14. coo? '.».'••"•*.
0.9793 0.0050 -0.0011 O.n777 IS.R:TJ
1.02-C.!.; -0.0010 -0.002,1 2.073H l.fM4
1.0J39 -O.OOOCi -0.0012 0.0^05 O.^'O
0.5^22 0.0449 O.OC40 53.0709 22. »75
0.0499 0.0302 0.0235 27.5990 in.45.-2
0.7329 0.0203 0.0. '02 21.25TO l"-.r?.'«
O.O.IGO o.o 101 o.oooo Kj.o'sro o,r.4i
0.9793 0.0030 -0 . 00 1 1 ^ 0 . £3703 R.^rVJ
1.0340 -0.0010 -O.OQ23 3.0754 ».O<-J
1.0140 -0.0003 -0.0012 O.C5O3 O.ors.j
0.5023 0.0449 0.0340 33. OCW> 22. \74
0.0100 0.03^3 0.0255 27.SJ9R7 1 .?. . ^..'!
0.7:»29 0.0200 0.0102 21.2521 14. :*•?,->
O.OC-07 0.0101 0.0030 14.057? O.r-M
0.9794 0.003-3 -0.0011 O.G750 ".nil
1.0246 -0.0010 -0.0020 2.0754 (..".14
1.0140 -0.0003 -0.0013 O.C^OO O-C'''.1!
0.5023 0.0449 0 . 0540 353 . CC9O 22 . f 7 -1-
O.C>:>00 0.0502 0.02-J5 ?7.r>OC?/> 1."..'':'.1
0.7,~30 0.0206 0.0102 :.11.25.i«> <4.r"'pi
0.0'.07 0.0101 0.00,',9 14. 0577 9..?4«
0.9794 0.0030 -O.O0 1 1 0.0757 P.nr^t
1.0347 -0.0010 -0.0023 2.0754 l.fT-1-
1.0140 -O.OOOO -0.0013 O.fT.L'Of. O.Cr::'5
Exhibit A-8 (continued)

-------
         VISUAL EFFECTS FOR LINEf OF
         1600 JW POVER PLANT
DOWNWIND DISTANCE (KM) =  220.0
THETA LENGTH RP/RV0
 135.
                      IW  r.RElrtJCED
                                     SIGHT ALOWG PLUPIE
                                       YCAP
X
Y DELYCAP
DELL  C< 550)  BRATIO
DELX
DELY  E(LTTV)  E(LAB)
20.
29.
20.
29.
20. '
20.
20.
40.
40.
40.
40.
40.
4O.
49.
<>O.
60.
60.
6O.
6O.
60.
60.
B^».
80.
80.
80.
80.
80.
OO.
iro.
100.
100.
100.
10O.
100.
1OO.
120.
120.
120.
120.
120.
120.
120.
140.
140.
140.
0.00
0.02
0. 06
0. 10
0.20
0.50
0.30
0.00
0.02
0.05
0.10
0.20
0.50
O.80
O.OO
0.02
O.O5
0. 10
0.2O
0.50
0.80
, 0.0O
0.02
0.05
O. 10
O.20
0.50
0.80
O.OO
0.02
0.05
0.10
0.20
0.50
0.80
0.00
0.O2
0.05
0.10
0.20
0.50
0.80
0.00
0.02
0.05
100.3
179.7
170.9
177.3
176. 1
173.0
170.2
103.2
181.0
J7O. 1
174.2
163.6
161. 0
171. !
107.5
183.4
173.0
170. fy
16O. 1
149. 0
171.2
190.2
134. 0
176. 0
165. 1
149. 0
149.3
171.2
109.6
131.5
170.9
156.6
136.8
149.4
171.2
184.8
174.9
161.9
144.4
137.2
149.4
171.2
174.7
163. 1
143.4
2.52
2.85
3.29
3.90
4.79
6.03
6.40
1.00
2. 16
3.71
5.03
8.37
!2.95
7.02
-1.36
0.87
3.01
7.O1
13.45
19.46
7.4O
-2.OO
0.52
4.O7
10.78
19.04
19.32
7.46
-2.47
1.09
7.60
15.33
26.04
19.26
7.46
0.10
5.46
12.46
21.93
25.06
19.23
7.45
5.54
11.03
19.77
54.04
54.04
55.91
57.42
59.59
62.52
63.36
40.69
49.91
51.56
53. 07
07.23
61. GO
63. 13
46. 02
47 . 44
49.37
52.07
56.01
6 1 . 42
63.01
44.72
46.25
40.30
51. 19
55.41
61.22
62.94
44.09
45.66
47.77
5O.75
53. 10
61. 12
62.91
43.77
45.36
47.51
50.53
54.93
61.07
62.89
43.61
45.21
47.37
70.50
7C.97
79.50
00.43
81.63
03.20
03.64
75.23
76.04
77.04
78.40
O0.33
O2. 83
03.53
73. 5O
74.50
75.70
77.34
79.64
G2.62
03.46
72.73
73.73
75.04
76.01
79.29
02.52
G3 . 43
72.31
73 . 35
74. 7O
76.53
79. 12
O2. 46
33.41
72. 10
73. 15
74.53
76.41
79.03
82.43
33.40
71.99
73.05
74.45
0.3325
0.3271
0.320O
0.3133
0.3052
0.290O
0 . 2982
0.3443
0.3362
0.0270
0.3160
0.3061
0 . 2'>84
0.2900
0 . 3457
0.337O
0 . 327 1
O.3I63
0.3054
0.29CO
0.2978
0.3447
0.33-19
0.026O
0.3153
0.3043
0.2976
0.2976
0.3436
0.3348
0.0250
0.3144
0.3039
0.2974
0.2973
0 . 3428
0.3340
0 . 3243
0.3139
0.3035
0.2972
0.2975
0.3422
0.3333
0.3230
0.0473
0 . 3406
0.3328
0 . 3239
0.3150
0 . 30-»O
0.3100
0.3527
0.0437
0 . 3337
O.3201
0.3132
O.30OO
O.3096
0.3497
O.34O6
O.3306
0.3203
O.3111
0.3081
0 . 3094
0.3471
0.3381
O.32O4
0.3184
O.3999
0.3077
O.3093
0.3437
0.3360
0.3272
0.3173
0.3093
0.3076
0.3092
0.3450
0.3361
0.3266
0.3171
0 . 309 1
0.3073
0.3092
0.3447
0.3358
0.3264
-9.06
-9.04
-7 . 95
-6.42
-4.20
-1.22
-O.37
-13. 14
-13.91
-12.25
-9.92
-6.54
-1.93
-O.59
-17.77
-16.34
-14.41
- 1 1 . 7O
-7.74
-2,31
-0.71
-19.04
-17.51
-15.45
-12.56
-0.33
-2.5O
-0.7O
-19.66
-1O.09
-J5.97
-12.99
-0.63
-2.60
-O.O1
-19.97
-1O.30
-16.23
-13.21
-0.70
-2.65
-0.83
-20. 12
-18.52
-16.36
-5.42
-4.95
-4.33
-0.46
-2.24
-0.64
-0. 19
-0.61
-7.03
-6 . 04
-5.47
-0.53
-1.O2
-O.OJ
-10.29
-9.37
-a. !6
-ft . 52
-4.21
- J .22
-O.07
-1 1. 12
-10. 13
-0.02
-7.04
-4.55
-1 .02
-O.41
-11.54
-1O.5O
-9, 14
-7.30
-4.72
-1.3O
-O.43
- 1 1 . 75
-IO.G9
-9.31
-7 . 43
-4.01
-1.40
-0.44
-11.03
-10.79
-9.39
-0. 1464
-0. 1354
-0. 1203
-0.0992
-0.0671
-0.0203
-O.OO>'»4
-0. 2'l'i'3
-0.2172
-0. 1932
-0. 1590
-0. 1070
-O.O333
-0.OIO3
-0.2320
-0.2003
-0.2320
-O. 19OO
-O. 1291
-O.O309
-O.0124
-O . 303 1
-0.2322
-0.2309
-0.2004
-0. 1390
-0.0432
-O.OI34
-O.016O
-0 . 3922
-0.2599
-O.2133
-O. 1446
-0,0447
-O.0133
-0.3209
~0.2'>'i3
-0.2039
-0.2171
-0. 1403
-0.0454
-0.0140
-0.3230
-0.2937
-0.2657
0.5900 0.0343 0.0367 29.4519 f>.C«4r?
0.6022 0.02O9 0.0299 25.0155 K..2,T)
O.7481 O.O225 0.022O I9.<">!»94 I2.nf!'>
0.8471 0.0151 0.0132 13.2C.O7 r..f\T)
0.9472 0.0009 0.0044 G.2O5G t».^7O
1.0O36 O.OO04 -O.OO07 0. '>':"'> O.r<"~
1 . OO36 -O . OOO2 -0 . OO05 O . C< T.7 O . :V>2
0.5.790 O.0400 0.0420 {70.2! ';-> 20, f.M
O.0234 0.0379 O.O~r,0 "O.^m 1^.70T
0.7233 O.O233 0.0230 20. M. T4 »5.ir>
O.0376 0.0133 O.OI24 15.7G5C5 fO. «2')
0.9513 O.0073 0.0026 7.^72 5 . r>">A
1.01O3 O.0001 -0.00«7 l.rr^!, i.J'JVJ
1.0O7! -0.0004 -O.OOO3 O.5905 O.''"}
0.5427 0.0474 0.0091 30.4032 2r..'v>4
O.0294 0.0330 O.O209 3O.541O IC1.,0,01?
O.7-J13 0.0233 O.O20O 23.ar.05 15.rr"/V
O.C430 0.O100 O.O007 13.0574 lO.nn
0.9019 O.O070 0.0000 7.0
O.6CJ33 O.O375 O.O275 29.H229 IO.5O3
O.7415 O.O277 0.017022.0534 15. «:t7
O.0131 O.OI09 O.O079 J5.2OO5 IO.CK'. •
O.97O9 O.0062 -O.OOOO 7. TOO" 5.7J'»
1.0207 -0.0003 -0.0027 a.o.-.u; i.r.r,
1.0121 -0.0003 -0.0012 0.(V?fX> 0.0' 3
0.5572 O.O453 0.0(151 05.0705 23.27O
O.O456 O.O304 O.02O2 29.2)43 19.r2'>
O.7494 0.0200 0.0107 22.4040 14.004
O.O-.61 O.O100 O.007O 14.O15H lO.T/vr
O.9779 0.0O55 -O.OO11 7.2J71 5.77.T
1.O241 -O.OO10 -0.0029 2.1700 t . f"VJ
1.OI37 -O.OOO9 -0.0012 O.".*?".? f.677
O.5024 O.O444 0.0045 C4.0-':03 2'J.''r.l
0.0513 0.0356 0.0250 23.nO.fTr> 19.)"'..li
0.7534 0.O259 0.0101 22.0010 14. ."44
0.8722 O.0104 O.OOOG 14.5490 lO.r.VI
0.9-'S33 0.0051 -O.OO 14 7.0997 S.TfV)
1.0200 -0.00 1 I -0.0030 2.2140 1.022
1.0(50 -0.0009 -0.0012 0.9104 0.<»'\i
0.5063 0.0430 0.0342 34.3075 22.0f.<»
0.6536 0.0351 O.0254 23.5C»O« r
0.7000 0.0235 0.01K9 21.R"iO« K..703
Exhibit A-8  (continued)

-------
ro
ro
00
140.
140.
140.
140.
100.
160.
100.
160.
16O.
100.
too.
180.
180.
130.
180.
100.
180.
IPO.
200.
200.
200.
200.
200.
200.
200.
210.
210.
210.
210.
21O.
210.
210.
215.
215.
2?I».
215.
215.
215.
215.
218.
218.
218.
218.
218.
218.
213.
219.
219.
219.
219.
219.
219.
219.
0. 10
O.20
0.50
O.CO
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.30
O.OO
0.02
0.05
0. 10
0.20
0.50
O.30
0.00
0.02
0.05
0. 10
0.20
0.50
0.30
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
O.OO
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
141.9
137.3
149.3
171.2
158.3
153.6
143.6
142.0
137.4
149.5
171.2
153.4
153.6
143.7
142. 1
137.4
'49.5
171.2
153.4
153.6
143.7
142. 1
137.4
149.5
171.2
158.4
153.6
143.7
142. 1
137.4
149.5
171.2
153.4
153.6
143.7
142. I
137.4
149.3
171.2
158.4
153.6
143.7
142. 1
137.4
149.5
171.2
158.4
153.6
143.7
142. 1
137.4
149.5
171-2
23.29
25.78
19.22
7.45
14.41
16.99
19.68
23.23
25.75
19.21
7.43
14.37
16.96
19.65
23.21
25.74
19.21
7.45
14.36
16.95
19.64
23.21
25.74
19.21
7.45
14.36
16.95
19.64
23.21
25.74
19.21
7.45
14.36
16.95
19.04
23.21
25.74
19.21
7.45
14.36
16.95
19.64
23.21
25.74
19.21
7.45
14.36
16.95
19.64
23.21
25.74
19.21
7.45
30.41
54.87
6 1 . 04
62.83
43.53
45. 14
47.31
50.36
54.83
61.03
62.87
43.49
45. 10
47.27
50.33
54.81
61.02
62.87
43.47
45.09
47.26
50.32
34. BO
61.01
62.37
43.47
43.08
47.26
50.31
54.00
61.01
62.87
43.47
45.08
47.25
50.31
54.30
61.01
62.37
43.47
45.08
47.25
50.31
54.00
61.01
62.87
43.47
45.03
47.25
50.31
54.80
61.01
62.07
76.34
78.98
02.42
33.39
71.94
73.01
7-'.. 41
76.31
78.96
02.41
03.39
71.91
72.93
74.39
76.29
70.95
O2. 40
00.39
71.90
72.97
74.38
76.28
78.94
32.40
33.39
71.90
72.97
74.33
76.23
78.94
82.40
33.39
71.90
72.97
74.38
76.28
78.94
02.40
83.39
71.90
72.97
74.33
76.28
73.94
82.40
83.39
71.90
72.97
74.38
76.23
78-04
32 . 40
33.39
0.3134
0.3033
0 . 2972
0.2974
0.3419
0.3332
0.3236
0.3132
0.3031
0.2971
0 . 2074
0.3417
0.3330
0.;]234
0.3131
0.3030
O.2971
0.2974
0.3*16
0.3329
0.3233
0.3130
0.3030
0.2970
0.2974
0.3410
0.3329
0.3233
0.3130
0.3030
0.2970
0.2974
Jfr.3416
0.3329
0.3233
0.3130
0.3030
0.2970
0.2974
0.3416
0.3329
0.3233
0.3130
0.3030
0.2970
0.2974
0.3416
0.3329
0.3233
0.3130
0.3030
0.2970
0.2974
0.3168
0 . 30O9
0.3074
0.3092
0.3446
0.3357
0.3263
0.3168
0.3089
0.3O74
0.3092
0.3443
0.3357
0.3262
0.3167
0.3088
0.3074
0.3092
0 . 3445
0.3357
0.3262
0.3167
0 . 3083
0.3074
0.3002
0.3443
0.3357
0.3202
0.3167
0 . 3033
0.3074
0.3092
0 . 3445
0.3357
0.3262
0.3167
0.3088
0.3074
0.3092
0 . 3445
0.3357
0.3262
0.3167
0.3008
0.3074
0.3092
0.3445
0.3357
0.3262
0.3167
0.3088
0.3074
0.3O92
-13.31
-O.86
-2.68
-0.84
-20.20
-18.59
-16.42
-13.37
-8.89
-2.69
-0.85
-20.23
-18.62
-16.45
-13.39
-8.91
-2.70
-0.83
-2P . 25
-18.64
-16.46
-13.40
-8.92
-2.70
-0.35
-20 . 23
-18.64
-16.47
-13.41
-0.92
-2.70
-0.85
-J20.25
-18.64
-16.47
-13.41
-8.92
-2.70
-0.85
-20.25
-18.64
-16.47
-13.41
-0.92
-2.71
-0.85
-20.23
-18.64
-16.47
-13.41
-8.92
-2.71
-0.85
-7.50
-4.83
- 1 . 42
-O.44
-11.90
-10.83
-9 . 43
-7.53
-4.87
- 1 . 43
-0.44
-11.93
-10.05
-9 . 45
-7.54
-4.89
- 1 . 43
-0.43
-11.94
-10.86
-9.46
-7.55
-4.39
-1.43
-0.45
-11.94
-10.87
-9.46
-7.55
-4.39
-1.43
, -0.45
-11.94
-10.87
-9.46
-7.55
-4.89
-1.43
-0.45
-11.94
-10.87
-9 . 46
-7.55
-4.09
-1.43
-0.45
-11.94
-10.87
-9.46
-7.55
-4.89
-1.43
-0 . 45
-0.2183
-0. 1473
-0.0457
-0.0141
-O.3239
-0.2093
-O.2603
-O.2100
-0. 1431
-0.0453
-0.0142
-O.3241
-0.2003
-O . 2000
-0.21°2
-0. 14,32
-0 . 04:?3
-0.0142
-0.3242
-0.200O
-0.2600
-O.2102
-0 . 1 40 J
-0.0459
-0.0142
-0.3242
-0.2003
-0.2606
-0.2102
-0. 1433
-0.0459
-0.0142
-0.3242
-0.2003
-0.2006
-O.2192
-0. 1433
-0.0459
-0.0142
-0.3242
-0.2908
-0.2000
-0.2192
-0. 1433
-0.045O
-O.O142
-0.3242
-0.290O
-0.2000
-0.2192
-0. 1403
-0.0453
-0.O142
0.8769 0.0151 0.0004 14.0791 10.1f?T
0.9M73 0.0049 -O.OO 15 7.OI54 ft. 771
1.0233 -0.0012 -0.0030 2.2054 1.00'?
1.0139 -O.OOO9 -0.0012 O.0021 O.7CO
0.5093 0.0435 O.O341 34. 21 t 2 22.^03
0.0533 0.0343 0.025320.4140 10. Oil
0.7033 0.0232 0.0 ISO 21.7OOO 14.70'!
O.O303 O.0143 0.0003 14.2730 >O. U!7
0.9004 0.0047 -0.0010 6.0303 5.739
1.0303 -O.OO 13 -O.0030 2.2447 1 . OO">
1.O167 -0.0010 -0.0010 0.040O O.VO4
O.5713 O.O433 0.0341 04.1242 22.Tf»-'l
O.OO 1 3 O.O040 O.0252 23.0327 1.O.f\",:>
O.7061 0. 02-1O 0.01 !"•''. 21.or,o| 14. c.^o
O.T?31 0.0147 0.0000 14.2149 1O. 107
0.9^27 0.00^6 -0.001O 0.0241 5.7^0
1.0314 -O.0013 -0.0030 2.24'M- 1 . 04^
1.0172 -0.0010 -0.0013 O.O'-ir, O.TO'V
0.5731 0.0432 0.0341 34.O707 22.(y?l
O.0030 0.0343 0.02^2 23.2007 13.005
0.7030 0.0249 0. 015O 2 1 . 0210 14.0V 'I
O.C350 0.0140 0.0063 14. IO20 10. I20
0.9044 0.0046 -0.0010 0.0040 5.743
1.0322 -0.0013 -0.0030 2.2400 1.04">
1.0176 -0.0010 -0.0013 0.0477 O.TO7
0.5730 0.0432 0.0341 34.0700 22.0'."!
0.0030 0.03*3 0.0252 23.2016 IB. 001
O.7006 0.0249 0.0 ISO 21.0100 14.079
O.C330 0.0140 0.0000 14. ! 754 fO. 123
O.9f>49 0.0040 -P. 00 10 O.O005 5.7*1
1.0025 -0.0013 -0.0000 2.2400 1.04'»
1.0177 -0.0010 -0.0013 0.0480 0.707
0.3738 0.0432 0.0341 C4.00O1 22.rt4T
0.0033 0.0343 0.0252 23.2707 1C. 061
0.7083 0.0249 0.015321.6114 14.070
0.0353 0.0146 0.0000 14. 170O 10.122
0.9031 0.0046 -0.0010 6.0904 5.741
1.0320 -0.0013 -0.0030 2.2405 1.040
1.0177 -0.0010 -0.0013 0.0404 0.707
O.G733 O.O432 0.034! 04.0070 22.O47
0.0039 0.0345 0.0252 2G.2703 IP. 001
O.7089 O.0249 0. 0153 2 1 . 0 MO 14.
-------
                                       07 AEROSOL ANI> GASES CONTRIBUTED BY
                                   1600 MW POWER PLAIIT
DOWNWIND DISTANCE (KM) =  240.0
PLUTTO ALTITUDE .CM)     =   392.
SIGMA Y (M)            =  6411.
SIGMA Z CM)            =   363.
SO2-SO4 CONVERSION RATE=      0.0215 PERCENT/HR
NOX-NO3 CONVERSION RATE=      O. 15OO PERCENT/HR
ALTITUDE
H+2S
INCREMENT!
TOTAL AMB!
11+ IS
INCREItENT!
TOTAL AMB!
II
INCREMENT!
TOTAL AMB!
H-1S
INCREMENT!
TOTAL AMB!
H-2S
INCREMENT!
TOTAL AMB!
0
INCREMENT!
TOTAL AMB!
NOX
C PPM)

0.014
O.O14

0.019
0.019

0.001
O.031

0.001
O.031

0.001
O.031

0.031
O.031
1102
(PPII)

0.010
O.O1O

0.013
0.013

O.O21
O.C21

0.021
O.021

0.020
0.020

0.019
0.019
NO3-
(PPM)

0.000
0.000

0.000
0.000

0.000
o.ooo

0.000
o.ooo

o.ooo
o.ooo

0.001
0.001
NC2/NTOT N03-/NTOT
(HOLE %) CKOLE K)

6O. 133
6O. 133

69.063
69.063

66.303
66.303

65. 154
65. 154

6 1 . 007
6 1 . C07

59 . 379
59 . 379

3.091
3.091

O.674
0 . 674

O.350
O.3GO

O.400
0 . 460

1.302
1.302

2.439
2.439
S02
( PPM)

0.003
O.003

0.004
0.004

0.006
O.O06

0.006
0.006

0.006
0.006

0.006
0.006
CUG/H3)

0.073
3.O09

O.024
2.900

O.022
2.933

O.O29
2.965

O.031
3.017

0. 135
3.071
(HOLE rn

O.643
2 1 . OO4

O. 137
15.^95

O.O36
10.437

O. 116
1O.434

0.319
1O.666

0.531
10. vir»o
O3
< PPI-D

-O.009
O.029

-O.OIO
O.023

-0.013
O.023

-O.014
O . O24

-O.OI7
O.021

-0.019
O.O19
PRIMARY B55P-TOTAL ERPSN/B
(UG/NO) ( 10-4 11- n (!5>

0.980
13.024

1.356
14.292

2.208
15. 144

2.2O8
15. K4

2.200
15. 144

2.208
15. 144

O.O14
O. 143

o.oio
0. 146

O.O2T
O. 1,V>

0.02"
o. jr>6

o.ono
o. t:;.'i

o.oni
O. 159

14
f>C

c.
57

*^
5^

n
53

7
54

12
r«4

-.549
i . O4^>

. °!77
. T7r>

.217
. r.^-ni

. n/1'0
. ^oo

,741


. 247
. 772
 CUMULATIVE SURFACE DEPOSITION (HOLE FRACTION OF INITIAL FLUX)
                 S02!    0.OOOO
                 NOX!    O.OCOO
 PRIMARY PARTICDLATE!    0.0000
                 S94!    0.0000
                 N03!    O.CCOO
  Exhibit A-8 (continued)

-------
                   VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
                   1000 1W POWER PLANT
DOWNWIND DISTANCE (KM) =« 240. 0
PLUPTE ALTITUDE (PD = 392.
SIGHT PATH IS THROUGH PLUME CENTER
THETA ALPHA RP/RV0 RV ^REDUCED
43.
30.
30.
3O.
30.
30.
30.
45.
45.
45.
45.
45.
45.
GO.
60.
60.
60.
60.
K> ft\
CO c'°-
0 90.
90.
90.
Ort
X*J •
90.
90.

OBSERVER
90.
90.
30.
30.
3O.
30.
3O.
30.
45.
45.
43.
45.
45.
43.
60.
6O.

0-.02
O'.OS
O. 10
0.20
0.50
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
eon
. fc\7
0.50
0.80

POSITION
0.26

0.02
O.05
0. 10
0.20
0.50
0.30
0.02
0.03
0.10
0.20
0.50
0.80
0.02
0.O3

180.9
179.6
177.6
174.3
171.7
171.3
102.2
101. 0
179.5
177.9
175.7
175.0
102.7
101.7
109.5
179.2
177.4
176.8
103. 0
182. 1
131. 1
f f*O <\
\ \*\f * \f
178.4
177.9

AT 1X2 OF
179.3

181.2
179.9
177.9
175.1
171.9
171.6
182.4
131.3
179,8
170.1
175.8
175.1
182.9
102.0

2.20
2.94
4.02
5.53
7. 17
7.29
1.51
2. 14
2.95
3.86
5.05
5.41
1.23
1.76
2.42
3. 13
4.12
4.41
1.07
1.54
2.09
O 7Q
*rf . • W
3.56
3.82

A 22.
2.96

2.04
2.75
3.82
5.36
7.09
7.25
1.38
1.99
2.79
3.74
4.99
5.37
1.12
1.63
YCAP

94.79
93.48
93.39
96.21
102.50
104.28
96 . 42
94.94
95. 14
98.41
103. 11
104.44
97.29
96. 11
96.54
99.47
1O3.41
104.52
97.89
96.86
97.55
inn in
I W >1O
103.59
104.57

5 DECREE
101. 18

53.29
52.49
52.43
54. 13
57.94
59.01
54.29
53.38
53.50
55.49
58.33
59. 14
54.82
54.10
L

97.95
97.42
97.39
98.52
100.96
101.63
98.60
98.01
98.09
99.38
101. 19
191.69
98.94
98.48
90.65
99.00
101.30
101.72
99. 18
90.77
99.04
inft ni
J W . vv
101.37
101.74
y
X

0.3413
0.3431
0 . 34O4
O.3311
O.3203
0.3191
0.3C09
0.3412
0.3C03
O.3203
0.3201
0,3191
0.3372
0.3GO9
0.3057
0.3271
0.3199
0.3191
O.3359
0.3C74
0. 331)8
OT»lV»
. OuU.*
0.3198
0.3190

WIND DIRECTION
100.46

78.06
77.59
77.55
78.56
O0.72
O1.02
78.65
78. 12
78. 19
79.34
80.94
81.38
78.96
78.54
0.3238

0.3239
0.3254
0.3226
0.3132
0.3029
0.3018
0.3214
0.3237
0.3206
0.3108
0.3027
0.3018
0.3193
0.3214
Y DELYCAP

0,3523
0.3526
0.34O3
0.3304
0.3303
0.3306
0.3509
0.3521
0.3470
0.3375
0.3300
0.3303
0 . 3496
0.3304
0.3460
0.336O
0.3309
0.3300
0.3486
0.3492
0.3445
0*1 'Hit
• Ol>\7 O
0.3309
0.3309


-10. 12
- 1 1 . 43
- 1 1 . 32
-8.70
-2.41
-0 . 62
-8.49
-9.97
-9.77
-6.50
-1.80
-0.46
-7.62
-8.79
-8.37
-5.44
-1.50
-0.39
-7.02
-8.03
-7.36
—4 ?n
^ • I U
-1.32
-0.34

SECTOR FROM THE
0.3340

0.336O
0.3362
0.3316
0.3208
0.3124
0.3126
0.3345
0.3358
0.3310
0.3199
0.3128
0.3128
0.3332
0.334O
-3.72

-6.20
-7.00
-7.06
-5.35
-1.55
-0.47
-5.20
-6. 10
-5.99
-4.00
-1. 15
-0.33
-4.67
-5.38
DELL C( 550) BRATIO

-3.92 -0.0944
-4.44 -O. 10GO
-4.43 -0. 1110
-3.33 -O.OCifi?
-o.9i -o.orwo
-0.23 -0.0073
-3.27 -O.07GO
-3.O5 -O.O929
-3.73 -0.0^29
-2.4O -O.O640
-0.63 -0.0192
-0. 17 -O.0054
-2.92 -0.0696
-3.39 -O.OO14
-3.22 -O.079I
-2.07 -0.0r»32
-0.56 -O.O160
-0. 15 -0.0043
-2.69 -O.0630
-3.09 -0.0742
-2.02 -O.0693
— 1 . 02 — O . O466
-0.49 -0.0140
-0. 13 -0.0039

PLUPffi CENTER!, INF,
-1.41 -O.0370

-3.51 -0. 1001
-3.93 -0. 1146
-4.02 -0. 1179
-3.02 -0.0923
-0.05 -O.O2O9
-0.26 -0.0093
-2.93 -O.OU27
-3.45 -O.09O3
-3.39 -0.0936
-2.23 -0.0603
-0.63 -0,0213
-0. 19 -0.0063
-2.62 -0.0707
-3.0O -O.OC6D

0 . 729 1
0 . 7295
0 . 7807
0 . O969
O.9924
0.9953
0 . 7402
O.7f?O9
0.7CI30
O.9K6
0.9933
O.9969
0.7523
0.7439
0.0095
0 . 9249
O.9943
O.9974
O.7633
0.7622
0 . 82T6
OQT»O
• s v fc^v.
0.9931
0 . 9973

AT THE
0.9604

0.7321
0 . 7333
0.7364
0.9042
0.9976
0.9993
0.7422
0.7333
0.7923
0.9198
0.9975
0.9995
0.7540
0.7514
DELX DELY E(LUV) E(LAD-

0.0226 0.021321.1531 13.735
0.0242 0.0215 22. ICf.O 14.3JVi
0.0216 0.0173 19.4G96 12. -"Sr,
0.0122 0.0074 11.1019 6.9t:,|
O.OO14 -0.0003 l.C/Vrf* l.H7'>
O.O002 -0.0004 O.541O O.A?|
0.0200 O.OIOO 19. lilfir; l*».<.'>^
O.O224 O.O2M 20.9437 jr>.n'>~
0.0194 0.0167 17.00
0.0012 -0 . 0002 1 . <.2< fi 1 . 'VP.7
O.OG02 -O.OOO3 O.-VJM.", O.f!0">
0.01O3 0.01OO \7.n\37 ll.r, II
0.0201 0.01C"1< lO.C^O'!. 12.071
0.0163 O.OKO 15.76C?, lO.or-)
O.OOC-2 O.OOCT3 T.'Win 4.7n
0.0010 -O.OC01 1.2067 O.Hf.O
O.OOO2 -0.0002 O.r£r?t>o O.r^T
O.OI7I 0.0175 16.7O90 lO.l^ni
0.01G3 O.OI.*:2 17.7693 11. PO')
0.O149 O.0134 14.O912 n.°"V>

0.0009 -O.OOOJ! 1. 0692 0.7-^7
0.0002 -0.0002 0.29<6 O.r.r.S

GIVEN DISTANCE FROJ1 THE F™nrnF
0.0049 0.0029 4.5820 2.TT1

0.0222 0.0223 18.7266 12. KJM
0.0236 0.0230 19.543ft 12.C'Ofl
0.0203 0.0103 16.092.T lo.rari
0.0114 0.0076 9.4275 5.074
O.OOlt -O.OOOO 1.5131 1.2in
0.0001 -0.000'i O.4941 O.<21
0.0197 0.0213 17.0545 11. OP,'
0.0219 0.022''. 10.5422 12.012
0.0188 0.017O 15.7060 10.041
0.0091 O.C067 7.57PO 4.772
0.0009 -0.0004 1.1500 O.f/^
o.ocoi -O.OOQ4 o.o/'>2n o.ron
0.0130 0.0199 15.C3fl!> 10. ^«5
0.0197 O.O2OO 16.9OHO lO.^-O
Exhibit A-8 (continued)

-------
60.-
6O.
60.
60.
90.
90.
90.
90.
90.
90.
0.10
0.20
0.50
0.30
O.02
0.05
0.10
0.20
0.50
O.3O
130.3
179.4
177.5
176.9
103.2
102.4
101.4
100.2
173.5
173.0
2.29
3.03
4.07
4.38
0.97
1.42
1.97
2.62
3.52
3.79
54.36
56. !4
50.52
59.19
55. 19
54.56
54.97
56.54
58.04
59.23
78.69
79.71
81.05
31.42
79. 17
73.81
79.04
79.94
31. 11
O1.43
o.nini
0.3096
0.3026
0.301O
0.3100
0.3199
0.3162
0.3007
0.3023
O.3"1O
0 . 329 1
0.3192
0.3129
0.3129
0 . 3320
0.3327
O.3275
0.3107
0.3130
0.3129
-5. 13
-3.35
-0.96
-0.29
-4.29
-4.93
-4.51
-2.94
-0.04
-0.26
-2.09
-l.«5
-O.53
-0. 10
-2.4O
-2.77
-2.53
-1.03
-0 . 45
-0. 14
-O.OH39
-0 . 0363
-0.0173
-0.0057
-O. O673
-o.o7ar»
-O.0733
-0.0493
-0.0150
-O.O03O
O.OI31
0.9292
0.9970
O.9995
0.7653
0.7044
O.O30O
0.9357
0.9978
O.9990
O.01G3
0.0073
O.OO03
O.OOO1
O.O1G3
0.01O1
O.O144
O.O069
0 . 0003
O.OOO1
o.oinn
0 . 0060
-0 . OC03
-O.OOO3
o.oir??,
O.OI94
O.O142
o.ooas
-O.OOO2
-o.oooa
13.0590
0.5630
0 . 9707
0.3009
i4.f?^r:a
1 5 . 7700
12.3974
n . cr>oo
O."026
O.2031
n.ruo
4. TM-
o!r47
o.nrir;
0 . .::.^:i
     OBSERVER POSITION AT 1/2 OF A 22.5 DECREE WIND DIRECTION SECTOR FROM THE PLUNK CEHTERLINE AT THE GIVEN DISTANCE FROTI TT7F,

          90.    0.26   179.7    2.CO   07.1O   GO.30  0.3003  O.3162   -2.30   -t.27-O.O397   0.9640  O.O046   0.0030  3.C7CS  C.
-------
                     ,1
                      VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
                      1000 MW POWER PLANT
   DOW WIND DISTANCE (KM) =  240.0
   PLUriE ALTITUDE (M)     =   392.
   SIGHT PATH IS THROUGH PLUME CENTER
   THETA ALPHA  RP/RVO    RV  ^REDUCED
    135.
YCAP
X
Y DELYCAP
DELL  C(550)  fiRATIO
DELX
DELY  E(LUV)  E
ro
3O.
30.
30.
30.
no.
30.
45.
45.
45.
45.
45.
45.
00.
00.
00.
00.
60.
OO.
90.
90.
90.
90.
90.
90.
0.02
0.05
0. 10
0.20
0.50
0.89
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
O. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
101.4
100. 1
I7O.2
175.3
172.0
171.7
1C2.0
1Q1.5
180.0
173.2
175. 0
175. 1
183.1
1C2.2
ICO. 9
179.5
177.5
170.9
1G3.3
102. 5
101 .5
ICO. 3
170.5
178.0
1.94
2.03
3.09
5.25
7.04
7.21
1.3O
1.8B
2.08
3.00
4.93
5.34
1.05
1.54
2.20
2.97
4.04
4.30
0.91
1.34
1.89
2.50
3.49
3.77
57.01
50. 10
50.01
57.92
02. 10
03.39
58. 14
57. 11
57.23
59 . 46
02.64
03.54
50.74
57.93
58.20
00.20
02.07
03.02
59. 16
53.44
58.90
00.06
63.00
63.06
00.20
79.09
79.04
00.71
03.02
O3.00
30.83
80.20
30.33
31.50
03.27
33.74
31. 10
30.71
30.87
81.90
33.39
33.78
81.40
31.00
81.25
32.21
33.40
C3.81
0.3200
O.3214
0.3135
0.3091
0 . 2939
0.29OO
0.3175
0.3197
0.3100
0.3000
0.2938
0.2900
0.3159
0.3175
0.3141
0.3050
0.2938
0.2981
0,3147
0.3100
0.3123
O.3043
0.2907
0.2981
0.3340
0.3342
0.3293
0.3183
0.3100
O.31O2
0.3325
O.333O
0.3288
0.3173
0.3104
0.3104
0.3311
0.3319
0.3209
0.3108
0.3105
0.3105
0.3299
0.3306
0.3253
0.3103
0.31O6
0.3106
-6.99
-7.90
-7.90
-6.08
-1.C2
-O'.Ol
-5.86
-6.88
-6.76
-4.54
-1.35
-0.45
-5.26
-6.07
-5.79
-3.00
-1. 13
-0.38
-4.84
-5.55
-5. 10
-3.34
-0.99
-0.33
-3.73 -0. lOf.O
-4.29 -0. 1 133
-4.34 -0. 1224
-3.27 -0.0964
-0.90 -0.0310
-O.32 -O.01O3
-3. 14 -0.0357
-3.72 -O. 10111
-3.65 -0. 1023
-2.42 -0.0712
-0.71 -O.0229
-0,24 -0.0030
-2.31 -0.0704
-3.26 -0.0394
-3. 11 -0.0371
-2.02 -0.0592
-O.69 -O.O190
-0.20 -0.0060
'-2.53 -0.0700
-2.93 -0.0815
-2.72 -O.0763
-1.77 -0.05(9
-0.52 -0.0167
-0. 17 -0.0033
0.7333
O.7353
0.7394
0.9035
1.0010
1.OO17
0.7427
0.7349
0.7944
0.9229
0.9999
1.0011
0.7543
0.7522
O.3149
0.9317
O.9996
1 . 0009
0.7(355
O.7651
0 , 3323
0 . 9379
0.9995
1 . 0008
O.0219 0.0230
O.0233 0.0232
0 . 0203 0.01 C4
0.0111 0 . O074
0.0009 -0.0010
-O.OOO1 -O.OO07
0.0195 0.0215
O.O217 0.0229
o.oisr. 0.0179
0 . 0033 0 . C0f»0
O.OOO3 -O.OOOfi
-O.OOOO -0.0005
0.0179 0.0202
0.0194 0.021O
O.O1M 0.016O
0 . 0076 0 . OC/59
0,0007 -o.coo:.
0.0000 -0.0004
0.0100 0.0190
0.0130 0.0197
O.O142 O.0140
0 . 0067 0 . 0054
O.OO07 -0.0003
0.0000 -0.0004
19.5694
20. 3? 03
17.0537
9 . 6940
1 . 5'579
O.G721
I7.rvxif)
19.37CK-
16.3573
7. 81 HO
1. JJJ49
0.4101
10.0032
17.0733
14. 44 1O
6 . 7747
1 . 0005
0.3441
15.5909
10.4960
12.922O
o . o.n-?o
0.r>
9. U-r*.
<•. 2f<2
0.7'^c,
0.2^7
io.o-r.2
1 0 . OO't
O. 105
n.rMO
O.6'\'J
0 . 259
      OBSERVER. POSITION AT 1/2 OF A 22.5 DEGREE WIND DIRECTION SECTOR FROM THE PLUNE CENTER!,INE AT THE GIVEN DISTANCE FT.OT1 T77E
           90.     0.26    179.0    2.04   6.1.37   32.59  0.3024  0.3138   -2.62   -1.33  -0.0415   0.9662  0.0044  0.0029  3.9823  2.r»f!:7
  Exhibit A-8 (continued)

-------
     PLUME
     THETA
       45.
              VISUAL. KFFECTS FOR ITON-noniZOrrTAL CLEAIX SKY VIEWS TrmOUGIT
              IOOO WW POWEH PLANT
   DISTANCE  (KM)  =  24O.O
ALTITUDE (ID      =   392.
  ALPHA    BETA       HP    YCAP       L        X        Y DELYCAP    DELL
CC550)  BHATIO
DELX
DELY  E(LUV)   E(LAH)
ro
CO
CO
        90.
30.
30.
30.
30.
30.
30.
45 »
45.
45.
45.
45.
45.
60.
60.
60.
60.
60.
6O.
90.
9O.
9O.
90.
90.
90.
30.
30.
30.
3O.
30.
30.
45.
45.
45.
45.
45.
45.
60.
60.
60,
60.
60.
60.
90.
90.
90.
90.
90.
90.
15.
30.
i 45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
6O.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
toO.
75.
90.
15.
£0.
45.
60.
75.
90.
2.9-1
1.41
0.88
0.60
0.44
0.39
2. 10
1.04
0.63
0.51
0.42
0.39
1.73
O.8O
O.60
O.47
0.41
0.39
1.51
0.78
0.55
0.45
0.41
0.39
2.95
1.41
O.CO
0.60
0.44
0.39
2. 10
1.04
0.63
0.51
0.42
0.39
1.73
O.CO
0.60
0.47
0.41
0.39
1.51
0.78
0.55
0.45
0.41
0.39
38.66
25.54
20.73
18.46
17.38
17.06
39.02
24.98
19.82
17.41
16.27
15.93
39.3-3
24.77
19.43
16.94
15.76
15.41
39. 5O
24.66
19.20
16.65
15.45
15.09
23. 19
15. 00
11.98
1O.55
9.87
9.67
23.76
14.97
11.72
10.20
9.48
9.26
24.09
14.99
11.62
10.05
9.30
9.08
24.31
15.01
11.57
9.96
9.20
8.97
68.53
57.63
52.68
00 . 09
43.73
43.37
68.79
57.09
51.67
4*5.31
47.37
46.92
63.99
55.38
5 1 .23
43.22
46. 7O
46.23
69. 14
56.77
50.96
47.86
46 . 28
45 . CO
55.31
45.67
41.22
33.06
37.66
37.28
55.03
45 . 63
4O.O1
38.24
36 . 93
36.53
56.21
45.66
40.65
37.97
36.60
36. 18
56.43
45.69
40.57
37.81
36 . 40
35.97
0.3155
0.3157
0.3107
0.3214
0.3233
0.3240
O.3028
0.3005
O.3020
0.3037
0.3048
0.3052
O.2962
0.2927
0.2935
0.2948
0.2957
0.2960
0 . 29 1 9
0 . 2878
0 . 2302
0.2O92
O.2399
0.2902
0.3010
0 . 3000
O.3022
0.3045
O.3062
O.306O
0.2338
0.2355
0.2362
O . 2874
0.2383
0 . 2887
0 . 2025
0.2702
0 . 2733
0.2791
0.2797
0.2000
0.2705
0.2737
0.2734
0 . 2740
0.2744
0.2746
O.C375
0.3358
0.3375
0.3395
0.3411
0.3417
0.3246
0.3198
0.3200
0.3210
0.3218
0.3221
0.3171
0.31O9
0.3104
0.3110
0.0115
0.3117
0.3121
0.3051
0.3042
O.3044
0.3048
0.3050
0 . 3236
O.3206
0.3217
0.3235
0.3249
0.3255
0.3102
0.3042
0.3036
0.3042
0.3048
0.3050
0.3026
0.2052
0.2940
0.2941
0.2944
0.2945
0.2975
0.2094
0.2878
0.2376
0.2377
0.2378
-2.94
1.33
2.95
3.70
4.0*
4. 14
-2. .18
0.78
2.01
2.03
2.93
3.01
-2.31
0.57
1.66
2. 18
2.42
2.49
-2.11
0.45
1.43
1.O9
2. 11
2. 17
-3. 14
-0.39
O.OO
1. 15
1.37
1.44
-2.58
-0.42
0.41
0.80
0.93
1.03
-2.24
-0.40
0.31
0.64
0.80
0.85
-2.02
-0.37
0.23
0.55
0.70
0.74
-2.09 -0.0504
1.30 0.0793
3.42 0.1018
4 . 74 0 . 2774
5.47 0.0305
5.70 0.0434
-1 .83 -O.0433
0.76 0.0,137
2.42 0.1081
3 . 47 O . 2023
4.06 0.2434
4.25 0.2572
-1 .63 -O.O333
0.50 O.0430
1.97 0.1133
2.87 O. 1032
3.33 0.2024
3.55 O.2141
-1.49 -0.0347
O.45 O.O303
1.7O O.O991
2.51 O . 1 47 1
2.97 0.1773
3.12 O. 1376
-3.08 -O.O954
-0.53 O.0021
1.07 O.OB09
2.06 0. l.'ilO
2.61 0.1911
2 . 78 0 . 2044
-2.51 -0.0701
-0.57 -0.0029
0.66 0.0009
1.45 O. 10^3
1.89 0.1405
2.03 0.1,109
-2. 17 -0.0055
-0.54 -0.0041
0.51 0 . 0406
.18 0.0003
.56 0.1 103
.68 0.1256
- .95 -0.0.133
-0.51 -0.0044
0 . 42 0 . 0429
.02 0.0793
.35 0.1022
.46 0.1100
0.3405
0.20 37
0 . 2000
O.2120
0 . 200 1
0. 1001
O . 420 1
o.or. ,>2
O. 3222
0.2990
O.2870
0.2800
O . 4327
0.4192
0.3313
0 . 0,137
0.3400
O.342O
O.5200
0.40-10
O. 423«)
0 . 4O.24
o.ono.i
O.3350
O.3591
O.20 17
0 . 2,17 I
0 . 2059
O . 2230
0.2104
0 . 44 51
0.0349
0.0,100
0.0207
0.3170
0.0140
0.5007
0.4450
0 . 4 1 20
0.3912
0 . 3794
0.0756
0 . .14 1 4
0.4305
0.4570
0.4001
0.4244
0 . 4205
0.0547
0.0630
0.06C6
0 . 0726
0.0750
0.07,19
O.0421
0 . 0470
0.0319
O.0548
O.O505
O.O571
0.0354
0 . O400
0.O405
O.0459
0.0474
0 . 0473
O . 00 1 2
0 . 00,1 1
O . O332
0 . 0403
0.04 16
O . O42O
0.O512
0 . 0,173
O.O025
0.0059
o.oor.i
o . oo;v>
O.O30O
O.0433
0.0405
O . 0403
o . 0503
O.O.103
0.0327
0 . O300
O.0336
0 . 0405
0.0417
0.0421
0.0237
0 . 03 1 ,1
0.0307
0.0354
O.O304
0.0307
0.0665 43.9417 2? . 3~rtr,
0.0769 43.0010 20.. 121*2
O.0323 40.T.027 27.9.".;:2
0.0307 39.0141 27.JIC.rr,
0.0302 39.001.1 27. (17,12
0.0901 33.9507 27.0100
0.0106 37.4106 20.7000
O.OOO9 CM. 0.115 22.0050
0.00,13 32.2179 21.0002
O.O032 3 i. 0307 21.6C5I
0.0099 30.4143 2I.50C7
O.07O4 30.2254 21.5 23. 1OOO HI. 0703
0.05O6 24.7O93 17.'>C"7
0.0536 22.6033 10. 170O
0.0556 21.0112 15.0007
0.0567 20.0212 15.
-------
        DOWNWIND DISTANCE   DRATIO
                                                                               -4.10 -
                                                                               -1.70 -
                                                                               -0
                                                                               — I
-1
  20
0.74
1.24
1.41
3.25
1.44
0.29
0.44
0.05
0.93
2.79
  26
0.29
0.33
O.6S
0.00
2.49
  14
0.20
0.27
0.53
0.69
1211
0-J16
0277
0302
1126
•234
0943
0350
0173
0374
0326
O911
0310
0306
OI34
0473
0636
0730
0720
0276
0112
0412
0000
     0.0604
0.3023  0.
        0.
        0.
        0,
        0.
        0,
        O.
        0,
        0,
        0,
        0,
        0,
        0,
        0,
        0,
        0,
        0
        0
        0
        0,
        0,
        0,
        0,
        0,
0.
0.2057
O.2443
0.2323
0.2213
0. -MOO
0.3943
0.3029
0.H427
0.3312
0.3273
0.5005
O.4504
0.4233
0.<-0.'.0
O.3943
0.3911
0.5474
o. r»oo7
0.-J711

OX-407
O.4372
                          DELX

                         0502
                         0359
                         0001
                         0033
                         0053
                         Cv>6 1
                         O301
                         0413
                         0-1-43
                         (X-04
                         0476
03 1O
0344
0306
0333
0393
0396
0279
O300
0319
0333
0341
0344
                                 DELY  ECLUV)   E< LAD)
0.0676
0.0701
0.0311
0.0346
0.0370
0.0373
0.0337
0.0392
O.O023
0.0043
0.0062
0.0006
0.0453
0.0501
0.0527
0.0343
0.0330
0.0359
0.0^.07
0.0442
0. 0A
-------
                 PL.VJ1S VISUAL. EFFECTS FOR HORIZONTAL VIEWS

                 PEnPEITO/cr/LAR TO  TTIE PLUHE OF KIHTE, GRAY,  AND

                 FOR VARIOUS ODSERVER-PLUME AKD OBSERVER-OBJECT

                 1600 JW POWER PLANT
BLACK OBJECTS

DISTANCES
ro
oo
tn
DOWNWIND
TIH2TA =
REFLECT
1.0
1.0
1.0
1.0
l.O
1.0
1.0
l.O
1.0
1.0
l.O
1.0
l.O
1.0
1.0
1.0
1.0
1 .0
1.0
l.O
1.0
0.3
O.3
0.3
0.3
O.3
0.3
O.3
O.3
O.3
0.3
0.3
0.3
0.3
0.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
O.O
DISTANCE
45.
 =
RP/RVO noxnvo
0.02
0.02
O.O2
0.02
0.02
0.02
O.05
0.05
0.05
0.05
O.O5
0. 10
0. JO
0. 10
O. 10
0.20
O.2O
O.2O
O.50
O.50
0.80
O.02
' 0.02
0.02
0.02
O.02
O.O2
0.05
0.05
O.O5
0.05
0.05
0. 10
0. 10
0. 10
0. 1O
0.20
0.20
0.20
0.50
0.50
0.80
O.02
0.02
O.05
O. 10
0.20
0.50
o.ao
0.05
0. 10
0.20
0.50
O.OO
0. 10
0.20
0.50
0.00
O.2O
0.50
O. CO
0.50
O.CO
o.ao
O.O2
0.05
0. 10
O.20
0.50
O.OO
0.05
0. 10
0.2O
O.50
O.OO
0. 10
O.20
0.50
O.OO
0.20
0.50
0.00
0.50
O.OO
0.00
0.02
240.0
YCAP
95.09
94. 15
93.72
95.34
97.59
90.27
93. 16
03.49
94.49
96.66
97. G2
90.27
93.22
97.36
93.00
99.50
99.94
1OO.53
103.90
104.04
105. 17
34.04
42.20
52. 15
60 . 07
03.24
95. 10
42 . 40
52.47
66.81
07.55
94.23
53.39
67.96
03.37
94.95
70. 17
90.95
97.53
94.2O
100.99
101.92
8.68

L
98.39
97.70
97.52
9O. !7
99.06
99.33
90. 1O
97.43
97.03
90.70
9O.95
9O.54
9O. 12
90.97
99.22
99.OI
99. 9O
1OO. 22
1O1.49
101.54
101.96
65.66
71.04
77.39
O5 . 45
95.27
98. 03
71. 17
77.53
85.42
94.93
97.73
78. 13
O6.00
95. 02
93.01
87.09
96.39
99.04
97.75
1O0.38
100.74
35.41

X
0.3378
0.3423
0.3434
0 . 34O5
0.0302
0.3301
0.3394
0.3431
0.3413
0.3393
O.3392
0.3356
O.3373
0.3355
O.G355
0 . 0276
O.3279
O.3279
0.3213
O.3215
0 . 3207
0.3248
0.3197
0.3170
O.3172
0.3270
O.3333
0.3169
0.3155
0.3174
0 . 3200
O.3344
0.30O4
O.3125
0 . 3243
0.3300
0.3033
0.3167
O.3232
0.3101
0.3168
0.3160
0.2747


Y DELYCAP
0.3484
0.3523
0.3C23
O . 3503
0.34O9
0.3491
0.3494
0.3519
O.3501
0.3491
O.3493
O . G446
O.3451
O . 3443
0.3146
O.0362
O.3361
O. 3365
0.331O
O.C311
0.031 1
0.0352
0.0305
O.3291
O.3315
0 . 342 1
O . 3470
0.3273
0.3268
0 . 3308
O.3423
O.3472
O.3191
O . 3246
0.3374
O.3424
0.3151
0.3290
0.3342
0.3236
O.3208
0.3207
0 . 2043
-2. 13
-4.77
-6.40
-6.72
-7.04
-7. 12
-3.76
-6.71
-7.57
-7.97
-8.07
-3.93
-6.84
-7.27
-7.39
-2.56
-4.69
-4. Ol
-0.73
-1.35
-O.22
-0. 12
-0.58
-1.74
-3.59
-6. 1O
-6.O3
-0.30
-1.42
-3.64
-6.70
-7.70
-0.5O
-2.49
-5.97
-6.98
-0.29
-3.38
-4.40
-0.05
-0.94
-0.01
0.74

DELL C< 550)
-0.84 -0.0206
-1.09 -0.0463
-2.56 -0.0025
-2.62 -O.O002
-2.70 -0.0042
-2.72 -0.0045
-1.48 -O.OQ65
-2.65 -O.0053
-2.96 -0.0723
-3.06 -0.07CO
-3.09 -O.0742
-1.54 -O.O3CJ.
-2.67 -0.0663
-2.79 -0.06G7
-2.82 -O.0093
-O.9O -O.OJ53
-1.70 -O.0<"'39
- 1 . O2 -O . O467
-O.28 -O.0077
-O.50 -0.0141
-o.oa -0.0024
-0. 10 -O.0023
-O.4O -O.O t 12
-1.03 -O.02»r»
-1.70 -0.0460
-2.5O -O.OC.04
-2.67 -O.C'.-04
-O.26 -0.0072
-0.04 -0.0233
-1.81 -O.O476
-2.79 -O.0f.32
-3.O1 -O.0726
-0.29 -0.0002
- 1 . 23 -0 . 0336
-2.45 -0.0613
-2.73 -0.0672
-O. 14 -0.0042
- 1 . 3O -0 . 0302
-1.70 -0.0439
-0.02 -0.0010
-0.36 -0.0104
-o.oo -o.oooa
1.50 0.0033

BRAT 10
0.9041
0.3171
0.7739
0.7043
0.7591
0.7039
0.3502
O.7923
0.7734
0.7640
0.7042
0.0307
O . 34 -i-2
O.33O7
0.0000
O . 96O6
O.9359
O. 9343
O.9933
O.9933
1 . OOO,1
O.9153
0 . 333 1
0 . 7K07
O.7507
O.7533
O.7502
0.0304
0.0094
O . 7077
0.7574
O.76.07
0.9006
0 . 8424
0 . O22 1
O.02r;o
0.96'KJ
0.9261
0.9299
0.9934
0.9927
0 . 9976
O.G303

DP.LX
0.0060
0.0128
O.0167
O.0171
0.0174
0 . O 1 74
0.0099
O.O 164
O.0179
0.0134
O.OIO5
O . OOO9
O.O14O
O . 0 1 47
0 . O I 43
O . OO42
O.O07!
O . <">O72
O.OOO5
O.O003
O.OOOO
O.0054
O.O1 1O
0.0151
O.OI67
O.O174
O . O 1 74
0.0081
O.O 136
0.0169
O.O184
O.OIO5
O.O064
O.O12O
0.0147
O.O 149
0.002O
0 . 007 1
0.0073
0 . 0005
0.0010
0 . 000 1
0.0080

DELY
0.0062
0.0(23
O.0165
O.0173
0.0173
0.0179
O . O099
O.O156
0.0172
0 . 0 1 00
O.O 130
0 . 0033
0.0121
O.O 102
0.0133
0.0032
0.0051
O . OO02
-O.OOOO
-O.OOO2
-0.OOO1
O.OO57
O.O117
0.0165
O.01O7
O.O 183
O.OIO2
0 . 0036
0.0142
O.O1OO
O.019O
0.0105
0.0005
O.O1 13
O.OI4O
0.0137
O.OC24
o . oor>6
O.0055
0.0002
0.0001
0 . 0000
0.0009

ECLTJV)
3.0103
1 1 . R020
10.4504
io.23rv..
io.-K.r>i
17.0000
9. J904
14.0551
io.?i io
17., 1033
17.0020
3.2792
12. Ol 14
13.C097
13.930'i
3.9193
0.0333
6.73T'
O.0400
O.95G5
O. 1440
3.531O
0.0174
12.30139
15.6900
17. 29212
17. 1917
5.9540
1 1 . 1 275
13.51 1 1
17. f>3O2
17.3393
5 . 230 1
1O.7G10
(4.0941
14. 1797
2.3721
6 . 6200
6 . 8793
0.4052
0.9704
0. 1101
2 . O373

E
3.7499
7.8001
10.2300
10.7001
1 1 . 0340
11.1 221
6.001",
9 . r?.433
10.9l.1j;
1 1 . 44~o
j 1 . OOO2
5 . riT^i;
0.2210
o.?::'. 10
8.9100
2.4070
4. KJO.'J
4 . '>°73
O.JJ923
0.71 O4
O. 1217
2.r?om
5 . 2740
0.0532
9 . 9G17
11.1 K-7
11. 1020
3 . 87 1 2
7.O^14
9.7701
1 1 . 4105
1 1.5430
3.2402
6 . o:)33
0.3506
9 . 0070
1.3011
4 . 0407
4 . 2070
0.2301
0.0300
0.0014
2.4340
       Exhibit A-8 (continued)

-------
ro
u>
O.O
o.o
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.02
0.02
0.02
0.02
O.C2
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.80
0.03
0. 10
0.20
0.50
o.sa
0.05
0. 10
0.20
0.50
0.00
0. 10
0.20
0.50
O.GO
0.20
0.50
O.GO
0.50
o.ao
o.ao
19.94
34.03
54.67
04.23
93.74
19.79
34.09
54.95
83.64
92.90
35 . 02
50.28
84.52
93.64
57.59
07. 10
96 . 22
90. 16
99. 6O
100.53
51. GO
65 . 26
78.07
93.36
97.53
5 1 . 64
65.70
79.03
93. GO
97. 19
65.79
79.79
93.68
97.49
00.53
94.79
90.52
96.07
99.33
100.20
0.2816
0.2904
0.3014
0.3216
0.3312
0.2704
0.2834
0.3014
O.3227
0.3323
0.2811
0.2963
0.3109
0 . 32C6
0.2072
0.31 !3
0.3211
0.3047
O.3148
0.3139
0.2936
0.3050
0.3107
0 . 3309
0.3460
0.2096
0.3021
0.3170
0.3391
0.3462
0.2934
0.31 12
0.3341
0.3414
0.3012
0.3256
0.3332
0.3200
0.3270
0.3277
1.21
0.29
-2.24
-5.09
-6.70
1.07
0.04
-1.96
-6.20
-7.54
0.97
-0.63
-5.41 .
-6.01
0.60
-2.02
-4.22
0.24
-0.76
0.09
1.40
0.23
-1.20
-2.41
-2.64
1.24
0.66
-1. 12
-2.67
-2.98
0.76
-0.36
-2.29
-2.68
0.38
-1. 18
-1.65
0. 10
-0.29
0.03
o.ooao
0.0130
-0.0330
-0.0535
-0.06GO
O.OGC3
o . 02C3
-0.0239
-O.OOF5
-0.0719
0.0295
-0.0003
-0.0576
-0.0662
0.0119
-O.0314
-0.0427
O.0023
-O.OQO7
0 . 0006
0.73^9
0.7471
0 . 742 1
0 . 7497
0.7543
O.GG44
0.7756
0.7510
0.7529
0.7590
o.o33r>
0 . 324 1
O.OI67
0.0236
0.9543
0.9199
0.9275
0.9099
0.9399
0.9902
0.0116
0.0150
0.0166
O.0174
0.0174
0.0033
0.0131
0.0166
0.0105
o.o iao
0.0053
0.01 15
0.0147
0.0149
0 . 0024
0.0071
0 . 0074
0.0003
0.0011
0.0002
0.0136
O.OIOO
0.0193
0.0192
O.O 184
0.0096
0.0151
0.0190
O.O194
O.OIOO
0.0064
0.0123
O.O144
O.O133
O.0023
0.0039
0.0036
0,0003
0.0002
O.0001
ft . r»?.Ti
1 1 . r./y;.-)
13.0471
17.4040
17.2707
4.6101
9 . 7703
15.2403
13. 1002
17.931")
4.0701
10. 2031
14.2291
14.2002
1.9123
6.6957
6 . 940-3
0 . 44OO
1.0132
0. 1437
4.5000
7.41 43
9.31 13
11. K-21
11. 1700
3.2454
6. :?05
9 . 40 1 0
1 1 . 4773
1 1 . 5700
2.0231
6. 1004
O.R'j50
9.0314
1 . 17fV>
4 . 0330
4.2"3T
0.2041
0.6302
0.0033
           Exhibit A-8 (continued)

-------
        PL.VJTR VJSVAL EFFECTS FOR HOIUZOnTAL  VIEWS
        PERPKNDICULAn TO THE PLUME OF WIITTE, GRAY,  AND
        FOR VARIOUS OBSERVER-PLUME AND OBSERVER-ODJECT
        1600 1W POttER PLANT
BLACK OBJECTS
DISTANCES
DOWNWIND DISTANCE
TilKTA = 90.
(KTI) =
REFLECT RP/HV0 nO/IWO
1.0
1.0
1.0
1.0
1.0 .
1.0
l.O
1.0
1.0
1.0
1.0
1.0
l.O
l.O
l.O
1.0
1.0
1.0
1.0
1.0
l.O „
0.3
O.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
O.3
O.3
0.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
0-.'02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
O.05
0.05
0.05
O. IO
0. 10
0. IO
0.10
O.20
0.20
0.20
0.50
O.50
0.00
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.80
0.02
0.03
0. 10
0.20
0.50
O.CO
0.05
0. 10
0.20
0.5O
O.CO
0. 10
0.20
0.50
O.BO
0.20
O.GO
O.OO
0.50
0.00
O.GO
0.02
0.05
0. 10
0.20
O.5O
0.00
0.05
0. 10
O.20
0.50
0.00
0. 10
0.20
0.50
0.00
0.20
0.50
0.00
0.50
0.00
0.00
240 . 0
YCAP
92.06
05.37
73.62
71.36
00.62
57.07
06 . 40
73. 15
70.06
50.01
56.45
00.97
70.55
60.26
56.84
74.43
61.C3
53.41
64.62
60.51
61.31
31.02
33.42
37.05
42.90
51.27
53.90
33.72
37. 13
42.69
50.30
53.36
30. 10
43.29
51.27
53.79
45 . 09
52.04
55.36
55.00
57.46
53.07

L
96.05
94.05
91.07
O7.67
02. 19
00.24
94.52
90.36
O7. 19
O1.31
79.39
92. 13
07.28
01.99
OO. 11
09. 14
02.34
00.98
C4.3O
02. 13
02.56
62.56
64.53
67.34
71.51
76.06
70.43
64.77
67.40
71.37
76.50
70. 11
60. 12
71.70
76.36
70.36
72.90
77.OO
79.27
79.06
00.45
00.79

X
0.3C96
0.04-63
0.0490
0.0450
O.OC29
O.C257
0.3434
0.3492
0 . 0462
O.3339
O.3266
O.34I5
0 . 3427
O.33OO
0.3223
0.3327
0.3223
O.3152
0.3159
O.COOO
0.3003
O.3202
0.3232
0.3175
O.3121
0.3J37
0.3170
0.3204
0.3162
O.3122
0.3146
0.3100
0.3092
O.3074
0.3100
0.3143
0.2905
0.3032
0.3060
0.2970
0.3006
0.2999


Y DELYCAP
0.3499
0.3554
0.3563
0.3510
0.3397
0 . 3340
0.3524
0.3533
0.3511
O.3397
0.3350
0.3405
O . 3464
O . 3046
O.3203
0.3375
O.3261
O.3211
0.0210
0.3155
0.3157
0.3376
0.3313
0.3264
0 . 0229
0.3272
0.33O5
0.3230
0.3242
0.3222
0.3274
0.3007
0.3166
0.3157
0.3220
0.32C5
0.3063
0.3131
0.31C7
0.3076
0.3111
0.3110
-2.52
-5.46
-6.04
-6.02
-4.06
-4.51
-4.35
-7.31
-7.02
-5.57
-5. 13
-4.49
-6.03
-5.23
-4.74
-2.95
-3.66
-3. 17
-O.O7
-1.O7
-0.27
-O.51
-1.27
-2. IO
-2.00
-3.92
-4.22
-0.97
-2.03
-3.09
-4.39
-4.76
-1.06
-2.40
-3.92
-4.33
-0.60
-2.35
-2.76
-0. 19
-0.66
-0.05

DELL
-1.02
-2.29
-3.02
-2.03
-2.56
-2.47
-1.02
-3.23
-3.32
-2.94
-2. O2
-1.96
-3.23
-2.75
-2.60
-1.37
-1.91
-1.72
-O.45
-O.57
-0. 14
-0.43
-1.01
-1 .55
-1.91
-2.31
-2.4O
-0.77
-1 .49
-2.06
-2.59
-2.72
-0.77
-1.65
-2.31
-2.46
-0.45
-1.37
- 1 . 56
-0. 11
-0.37
-0.03

C( !>50)
-0.0256
-0 . 00-34
-0.0734
-0.0759
-0.0710
-0.0692
-0.0405
-0.03<-5
-0.0397
-0.0326
-O.O793
-0 .0519
-0.033B
-O.O79O
-0.0753
-0.03"9
-O.0572
-O.O521
-O.O142
-O.0137
-0 . OO47
-O.0152
-0 . 0345
-0.05O2
-0.0573
-0.0650
-0.0675
-O.O204
-O.O'I'OO
-0.0603
-0 . 0740
-0 . 0774
-0 . O20 1
-O.OG24
-O.OOCO
-0.0713
-0.0151
-0 . 0424
-0 . 0475
-0.0033
-0.0124
-0.001 1

BRAT 10
0.9029
0.3120
0.7716
0.7691
0.7650
0.70fiO
0.0123
O.7K63
0 . 7721
0.7725
0.7004
O.OO'.ll
0 . {S434
O.0409
0.0370
0.9613
0.9479
0.9<-.°2
1 . OOo I
1.0006
1 . 0044
0.91^0
o . 34-"J3
0.795O
O.T074
0 . 7577
0 . 7533
o . 0:122
O.C230
0 . 73 1 3
0.7033
0.7041
0.9190
0.0590
O.C?99
0 . r/J04
0.97.'»9
O.9010
0.9333
0.9977
0.9972
0.9995

DELX DELY E( LUV)
0.0061 0.0063 5.5995
0.0134 0.0133 11. 7 KM
0.0175 0.0169 14.7377
0.0173 O.OI72 14.5907
0.0173 0.0102 14.79'M
0.0172 0.01O8 15.0303
0.0104 0.0103 9.23«!i
0.0176 0.0164 14.7100
O.O105 O.0173 15.2012
0.0132 O.O133 15.2^77
0.0102 0.0139 15.5470
O.01OO 0.0091 O.3073
O.0150 O.0125 12. 17:::i
O.0144 O.O132 lI.Or.O4
O.OI44 O.O133 12. 1641
O.OO5O O.OO30 4. 1770
0 . O067 0 . O047 5 . 57,10
O.0007 O.0031 5.0090
O.OOO3 -O.OOO4 0.0230
O.0004 -O.O006 0.3110
-O.OOO2 -O.OOO3 O.2441
0.0054 0.0057 3.3OCO
O.O11O O.O116 7.-X"M
0.0149 0.0163 11. ino.1
O.0103 O.O1C7 13.0'><9
0.0 17O O.O196 15.2-VO
O.O171 O.O194 15.2701
O.OOH2 O.OO36 5.570:)
0.0 Iff 5 O.O141 9.930.'J
O.O164 O.01OO 13.<03
0.0000 -0.0001 0.0000

E( LAB)
3.7913
7. 9 »<••:•
10.0730
9 . G7<'0
9 . aw,
9 . ry. > 5
6 . .153 1
9.0000
10.2570
lO.OOOT
IO. KC7.0
n.oooo
O. fOlLH
7 . 737 1
7.0;?."/:-
2.755:)
3.027O
o.oir.n
0 . 5-X.7
0.7002
O . CO42
2.34.1IO
5.O101
*"* f~* /* t *"*
< . -:-V ICj
G.-TSo.l
9 . r?-0<-2
9 . or:o i
3.7r700
6 . 5003
o.oo?':-
IO. 120--.
10.2213
3. 1003
5 . OOOO
7.7330
7.9O31
1 . 2u.v3
3.4020
3 . 670'*
0. 1020
0.3410
O.OoriO
Exhibit A-8 (continued)

-------
ro
w
00
0.0
o.o
o.o
o.o
o.o
o.o
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0.10
0.10
0.10
0.20
0.20
0.20
0.50
0.50
0.00
0.02
0.05
0. 10
0.20
O.50
o.oo
0.05
0. IO
0.20
0.50
O.GO
o. io
0.20
O.5O
0.00
0.20
O.GO
o.ao
0.50
0.00
0.00
4.06
11. 15
19. 24
00.70
47.26
52.55
11.11
19.55
30.32
46 . C9
52.03
19.72
31.61
47.42
52.40
32.52
43.99
54.03
50.00
36. 15
56.67
26.30
39.03
51.00
62.20
74.30
77.63
39 . GO
5 1 . G6
62.39
74. 14
77.32
51.56
63.05
74.40
77.59
63.00
75.47
78.51
76.63
79.72
GO. 01
0.2103
0.2000
0.2731
0.2041
0.3038
0.3130
0.2620
0.2715
0.2040
O.3O47
0.3141
0.2647
0 . 279 1
0.3010
0.3104
0 . 2706
0.2933
0 . C030
0 . 2374
0.2969
O.2961
0.2600
0 . 2723
0.2C46
0.2990
0.3203
0.3236
0.2606
0.2015
0.29O1
0.3210
0.3200
0.2727
0.2911
0.3156
0.3235
0.2009
0.3065
0.3147
0.3000
0.3091
0.3009
0.33
0.52
-0.00
-1.53
-3.52
-4.09
0.40
0.24
-1.41
-3.00
-4.60
0.41
-0.62
-3.36
-4. 13
0.29
-1.79
-2.50
0. 10
-0.49
0.04
1.04
o.e-j
-0.09
-1.20
-2. 19
-2.37
0.01
0.27
-1. 17
-2.42
-2.67
O.47
-0.51
-2.09
-2.40
0.24
-1. 10
-1.4O
0.06
-0.20
0.02
O.O7a2
o.oiao
0.0029
-O.OG95
-0.0620
-0.0067
0 . 0470
0.0172
-0.0365
-O.O7O3
-O . 0762
0.0227
-0.0154
-0.0621
-0.0703
0.0091
-0.0344
-0.0454
0.0010
-0.0095
0.0005
O..1440
0 . 7934
0.7501
0.7409
0.7517
0.7501
0.0433
0.7001
0.7572
O.7357
0.7610
0.0965
O.G3K1
O.rj2O3
0.G200
0,9303
0.9240
0.9303
0.9912
0.9919
O.9967
O.OO70
0.0104
0.0130
O.O157
0.0169
0.0171
0.0074
O.0119
0.0136
O.017O
0.0101
0.0051
0.0106
0.0141
0.0144
0.0021
0.0006
0.007O
O.0005
0.0009
0.0001
0.0004
0.0132
O.OIOO
0.0204
O.O203
0.0197
0.0092
O.OI49
0.0194
0.02O3
0.0199
0.0062
0.0124
O.0151
0.0147
0 . OO22
0.O061
0.005O
0.0003
0 . 0002
O.O001
1.8907
5 . 0731
9 . Or.T-1
13.5577
13.4700
15.090')
3 . 40G5
7.9GIO
13.0799
15.9753
15.9542
3. 1379
0.5077
12.4399
12.5493
1 . 4134
5.7105
5. 9 004
0.3109
0.7915
0. 1007
1 . «2W
3 . 7rjr?o
6.41:05
O.O'^l
9. 91. '11-
9.9-1LJ1
2.1900
3.2115
0.32^1
IO. 17)4
10.2100
2. 1174
5.3241
7. 7" 17
7. 9411
0.9117
3.-X»7n
3.7ory,
o. irvj
0 . 5 1 42
O.OMO
             Exhibit A-8 (continued)

-------
                   PERPENDICULAR TO THE PLUME OF  WHITE,  CRAY, AlfD

                   FOR VARIOUS OBSERVER-PLUME AND OBSERVER-OBJECT

                   1600 MTf POKER PLANT
BLACK OBJECTS
DISTANCES
ro
CO
<£>
DOTWWIND DISTANCE
TUEtA = 135.
(ICM> =
REFLECT RP/RV0 RO/IW0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0.10
0.10
0.10
0.10
0.20
0.20
0.20
0.50
0.50
0.80
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0.10
0.10
0.10
0.10
0.20
0.20
0.20
0.50
0.50
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
0.05
0. 10
0.20
0.50
0.00
0.10
0.20
0.50
O.CO
0.20
0.50
0.00
0.50
0.00
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
0.05
0. 10
0.20
0.50
0.00
0.10
0.20
0.50
0.00
0.20
0.50
0.00
0.50
0.00
0.00
240.0
YCAP
92.36
06.04
79.02
73.37
63.76
60.56
07. 17
79. U6
72.35
63.00
59.37
02.28
72.62
63.40
60.31
76.69
65. 16
62.07
68.20
6t.42
65 . 30
31.31
34.09
33.25
44.90
54.41
57.39
04.41
33.34
44.67
53.09
56.73
39.41
45.36
54.41
57.26
47.35
56.17
59.02
58.58
61.37
62.05

L
96.97
94.33
91.61
OO.63
83.36
02.16
94.32
91.41
GQ.15
03.46
81.79
92.71
08.28
G3.67
02.03
90. 19
04.58
02.97
06. 12
04.20
04.65
62.00
65.06
68.23
72.05
78.72
80.42
65.32
68.00
72.70
78.41
80.07
69.07
73. 15
78.72
80.35
74.44
79.73
81.32
81.08
02.59
82.96

X
0.3389
0.3446
0.3460
0.3406
0.3275
0.3206
0.3416
0.3460
0.3416
0.3204
0.3215
O.G304
0.3370
0.3245
0.3177
0.3200
0.3168
0.3101
0.3105
0.3038
O.G033
0.3263
O.3198
0.3131
0.3072
0.30O9
0.3123
0.3170
0.3116
0.3073-
0.3098
0.3133
0.3047
0 . 3024
0 . 3009
0.3095
0.2936
0.2904
0.3021
0.2923
0.2960
0.2954

•
Y DELYCAP
0.3492
0.3537
O.3536
0.3476
0.3363
0.3320
0.3503
0.3530
0.3475
0.3364
0.3321
0.3456
0.3424
0.3311
0.3269
0.3335
0.3223
0.3100
0.3172
0.3123
0.3125
0.3353
0.3206
0.3226
0.3192
0.3243
0.3279
O.G256
0.3203
0.3104
0.3244
0.3201
0.3126
0.3117
0.3109
0.3227
0.3023
0.3098
0.3138
0.3043
0.3081
0.3081
-2.55
-5.56
-7.04
-6.33
-5.32
-5.01
-4.42
-7.49
-7.34
-6.08
-5.70
-4.57
-7.08
-5.68
-5.25
-3.01
-3.93
-3.50
-0.00
-1. 15
-0.27
-0.55
-1.37
-2.30
-3. 19
-4.30
-4.72
-1.05
-2.21
-3.42
-4.90
-5.33
-1. 14
-2.73
-4.38
-4.84
-0.74
-2.62
-3.09
-0.20
-0.74
-0.06

DELL C( 550)
-1.03 -0.0257
-2.32 -0.0536
-3.07 -0.0737
-2.92 -0.0766
-2.70 -0.0727
-2.63 -0.0712
-1.04 -0.0456
-3.28 -0.0345 .
-3.41 -0.0901
-3. 10 -O.OC-43
-3.00 -O.OC22
-1.98 -0.0517
-3.28 -0.0835
-2.09 -0.0G04
-2.76 -0.0773
-1.37 -O.OG31
-1.93 -0.0575
-1.02 -0.0533
-0.44 -0.01G6
-0.59 -0.010ft
-0. 14 -0.0044
-0.46 -0.0157
-1.07 -0.0356
-1.65 -0.0519
-2.05 -0.0600
-2.47 -0.0679
-2.57 -0.0690
-0.01 -0.0272
-1.59 -0.0507
-2.20 -0.0654
-2.78 -0.0772
-2.91 -O.OOOO
-0.02 -0.0266
-1.75 -0.0538
-2.47 -0.0703
-2.64 -0.0743
-0.47 -0.0151
-1.47 -0.0437
-1.67 -0.0491
-0. 11 -O.0030
-0.39 -0.0128
-0.03 -O.O011

BRATIO
0.9036
0.3147
0.7744
0.7695
0.7642
0.7621
0.8556
0.7915
0.7799
0.7721
0.7692
0 . 3376
O.H322
O.G413
0.3373
0.9644
0.9439
0.9443
1 . 0055
1 . 0072
1 . 0045
0.9202
O . O5OO
0 . 7966
0.7673
0.7077
0.7534
0 . G9O,1
0.0273
0.7320
0.7633
0.7644
0 . 9224
0.0615
0.3310
0.3315
0.97*7
0.9367
0.9369
0.9933
0.9932
0.9993

DELX
0.0060
0.0132
0.0173
0.0172
O.O172
0.0171
0.0103
0.0172
0.0102
0.0101
0.0130
0.0096
0.0145
0.0142
0.0142
O.OO47
0 . 0065
0.0066
0.0002
0.0003
-0.0002
0.0053
O.01O7
0.0146
O.016O
0.0168
0.0169
O.OOOO
0.0131
0.0161
0.0177
0.0179
0.0062
0.0112
0.0139
O.O142
0.0025
0.0063
0 . 0067
0.0003
0.0007
0.0000

DELY
0.0063
0.0132
0.0169
0.0175
0.0137
0.0192
0.0103
O.O162
O.OJ74
0.0107
0.0193
0 . 0039
O.O124
0.0135
O.O140
O.0034
0.0047
O.O031
-O.0004
-0 . 0006
-0.0003
0.0057
0.0116
0.0163
0.0190
0.0199
0.0197
O.0035
0.0140
O.OfOl
0 . 0200
0.0199
0.0063
0.0115
0.O146
0.0145
0.0020
0.0055
0.0056
-Q.OOOO
-0.0001
-0.0001

E(LtJV)
5.61O3
11.7541
14.9778
15.0990
15.5514
15.7920
9.2319
14.7719
15.02O6
16.04CJ
16.3141
0.4319
12.2595
12.4363
12.7!J-K5
4.043!
5 . 7277
5 . 8334
O.nooO
0.G10O
0 . 2425
3.0953
7.5395
1 1 . 449 Jl
14.r:,120
13.9790
16. 024';
5 . 6205
10. 1579
14.0027
10. 40 43
16.5764
4.3414
9.5344
12.7620
12.9724
2.0507
5.7619
6.031'i
0.20 14
0 . 74GO
0.0040

E(LAB)
3.7041
7.9753
10. 1045
10. 1100
10. 1959
10.2010
6 . 2023
9.9r»4'»
10.4197
10.4751
10.5501
5 . OO.T)
3.0037
3. 01 riO
3. ir:r>9
2.«r>3a
3.70r>5
3 . 7042
Orjo^o
* */»_* V *.*
0.7IG2
0. 1907
2.3570
5 . O300
7. 4065
9. 1925
10.2.141
10.3130
3.7440
6.5794
0.930.1
10.5004
10.6171
3 . O790
6 . 0073
Q.QSild
3. 1914
1 . 2^92
3.,ir»si
3 . 7G4 1
0. 1322
0.5,123
0.0333
         Exhibit A-8 (continued)

-------
i
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0.10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.60
O.GO
O.GO
0.02
0.05
0. »0
0.20
0.50
0.30
0.05
0. 10
0.20
O.50
0.00
0. 10
0.20
0.50
0.00
0.20
0.50
0.00
0.50
O.GO
0.80
5.15
11.02
20.44
32.70
50.40
56.03
11. CO
20.76
32.01
49.98
53.46
21.03
33.67
50.56
55.96
34.70
52.32
57.71
54.46
60.06
60.66
27.21
40.9*1
52.36
63.95
76.34
79.05
40.94
52.73
64.04
76.03
79.32
53.02
64.73
76 . 43
79 . 6 1
65.61
77.49
00.60
78.75
01.09
02.21
0.25 15
0.2009
0.2692
0.2799
0 . 2994
0.3035
0.25CO
0.2673
0.2797
0.3003
0.3095
0.2607
0 . 2740
0.2965
0.3058
0.2666
0.2091
0.2?03
0 . 2032
0.2925
0.2918
0.2596
0.2091
0.2813
0.2961
0.3181
0.3260
0.2652
0.2781
0.2950
0.3103
0.3262
0.2694
0.2079
0.3127
0.3209
0.2770
0.3036
0.3119
0.2970
0.3062
Q^-306 1
0.31
0.42
-0.27
-1.04
-3.90
-4.59
0.40
0.06
-1.73
-4.40
-5. 17
0.32
-0.87
-3.02
-4.67
0.24
-2,0.6
-2.91
0.09
-0.57
0.03
0.09
0.69
-0.30
-1.47
-2.36
-2.54
0.65
0.06
-1.30
-2.62
-2.07
0.36
-0.69
-2.27
-2.59
0. 18
-1.21
-1.60
0.05
-0.31
0.02
0 . 0039
0.0434
-0.0042
-0.0433
-0.0653
-0.0691
0.0394
0 . 0097
-0.0413
-0.0734
-0.0790
0.0102
-0.0200
-0.0650
-0.0729
0.0073
-0.0363
-0 . 0472
0.0014
-0.0101
0.0004
0 . 05 1 3
o.r/.m
0.70JO
0.7492
0.7523
O.7303
O.CS13
0.7920
0.7600
0 . 7509
0.7617
0.9011
0.0303
O.H221
O.G230
0.9613
0.9205
0.9327
0.9921
0.9932
0.9970
0.0064
0 . 0093
0.0 UK)
0.0152
0.0166
0.0169
0.0069
0.0113
0.0151
0.0175
0.0170
0.0048
0.0102
0.0137
0.0142
0.0019
0.0004
0 . 0060
0 . 0004
0 . 0003
0.0001
0.0031
0.0129
0.0(79
0.0.'i04
0.0205
0.0200
O.0039
0.0147
0.0194
0.0207
0 . 0202
0.006O
0.0122
0.0152
0.0140
0.0021
0.0060
O.0050
0.0003
0.0001
OwOOOl
i.oo in
5 . ryw
lO.O^r*/)
14. K53
10. 109!
16. 1231
3.5321
8.2017
13.6:233
16.0935
16.6943
3. 1992
8.0273
12.9494
13.0302
1.4347
5 . 3797
6. 1790
0.2303
0 . 7f »2'i
O.OG93
I. 707 1
3 . 7702
6.0210
9.0^:9
10.G050
10.3450
2.5933
5 . 3032
O.OO-VJ
10.5537
10.0492
2. 1159
5.4506
8.0011
8.2294
O.fWi?
3.5532
3. 01 "2
0. 1092
0.5204
0.0535
            Exhibit A-8 (continued)

-------
          V.TSKAZ. EFFECTS FOIl LIKES OF
          1000 WTf FOWE/l
            SIGHT ALONG PH7WE
DOWWI1TD DISTANCE 
240.0
TJ/E7V1 LENGTH flP/RVO
45.
20.
20.
20.
20.
20.
20.
20.
40.
40.
40.
40.
40.
40.
40.
60.
60.
6O.
60.
60.
60.
60.
RO.
80.
CO.
30.
30.
30.
00.
100.
100.
10O.
100.
100.
100.
100.
120.
120.
120.
120.
120.
120.
120.
140.
140.
14O.
Jl lf\f •
1 4O
A Tr v •
I4O
1 Tr V •
10.

0.00
0.02
0.05
0. 10 ,
0.20 '
0.50
O.GO
Q.OO
0".02
0.05
0. 10
0.20
0.50
0.80
0,00
0.02
0.05
0. 10
0.20
0.50
O.CO
O.OO
0.02
O.05
0. 10
0.20
0.50
O.OO
O.OO
0.02
0.05
O. 1O
0.20
0.50
0.00
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
RV ^REDUCED

180.3
180.3
179.7
178.0
177.7
175.9
175.4
182. 1
180.5
173.4
175.5
171.3
165.5
172.3
134.3
131.2
177. 1
171.5
163.5
152.6
172.8
184.3
130. 1
174. 0
165.5
153.5
152.8
172.9
102.7
176.5
163.4
157.2
141.4
153.0
172.9
177.4
169.3
159.8
146. 1
139.9
153.0
172.9
163.4
159.4
148.2
143. 1
140. 1
153. 1
172.9
156.7

2.28
2.53
2.85
3. CO
3.97
4.90
5. 13
1.55
2.41
3.55
5. 13
7.42
10.54
6.62
0.37
2.04
4.25
7.29
11.64
17. 5O
6.53
0. 12
2.64
5.97
10.53
17.02
17.39
6.56
1.23
4.53
8.99
15.02
23.55
17.31
6.55
4.03
8.20
13.63
21.05
24.39
17.20
6.54
0.99
13,05
19.89
22.64
24.29
17.26
6.54
15.30
YCAP

93. 10
94. 13
95.52
97.47
100.30
104. 14
105.25
06.32
37.09
90.02
92.99
97.33
103.25
104.97
82.52
O4.39
36.91
90.45
95.62
102.72
104.31
80.56
82.58
85.30
89. 13
94.72
102.44
104.71
79.60
81.69
84.50
G8.47
94.27
102.29
104.66
79. 11
81.24
34. 10
83. 13
94.04
102.21
104.63
78.87
81.01
83.90
87.96
93.92
102. 17
104.62
78.75
L

97.27
97.69
93.24
99.01
100. 11
101.58
101.99
94.45
95. 12
96.01
97.23
93.96
101.24
101.09
92.31
93.63
94.71
96. 19
93.28
101.04
101.33
91.94
92.34
94.02
95.04
97.92
100.93
101.79
91.51
92.44
93.67
95.36
97.74
100.00
101.77
91.29
92 . 24
93.50
95.22
97.65
100.35
101.76
91. 18
92. 14
93.41
95. 15
97.60
100.83
101.76
91. 13
X

0.3436
0.3445
0.3G95
0.3335
0.3268
0.3213
0.32GB
0.3006
0.3543
0.3468
0.33E2
0.3207
0.3213
0.3207
0.3037
0.3566
0 . 31 04
0.3339
0.3233
0.3211
0.3205
0.3639
0.3566
0.34G2
0.3306
O . 3233
0.3209
O.3205
0.3034
0.3561
0.3476
O.3381
O.3230
O.3207
0.3204
0 . 3029
0.3556
0.0472
0 . 3377
0.0277
0.3206
0.3203
0.3625
0.3553
0.3469
0.3374
0.3275
0.3205
0.3203
0.3623
Y DELYCAP

0.3596
0.3547
O . 3490
0.3423
0 . 3354
0.3311
0.3312
0.3654
0.3500
0.3512
0.3428
0 . 3346
0.3304
0.3309
0.3639
0.3570
0.3493
0.3410
0 . 3332
O.3299
0 . 3308
0.3618
0.3551
0.3476
0.3395
0.3322
0.3296
0 . 3307
O.3607
0 . 3540
0.3466
0.3387
0.3316
0.3294
0 . 3306
0.3601
0.3535
0.3461
0.3383
0.3314
0.3293
0.3306
0.3598
0.3532
0.3459
0.3381
0.3313
0.3293
0.3306
0.3597

-12.06
-11.06
-9.72
-7.35
-5. 14
- 1 . 49
-0.45
-19.01
-17.46
-15.37
-12.43
-O. 19
-2.40
-0.73
-22.93
-21.08
-13.53
-15.03
-9.96
-2.96
-0.91
-24.97
-22.97
-20.26
- 1 6 . 46
-10.91
-3.26
-1.01
-26 . OO
-23.92
-21. 11
-17. 17
- 1 1 . 39
-3.42
-1.07
-26 . 52
-24.41
-21.55
-17.53
-11.65
-3.51
-1. 10
-26 . 00
-24.66
-21.73
-17.73
- 1 1 . 70
-3.56
-1.11
-26.94
DELL

-4.69
-4.23
-3.75
-3.01
-1.95
-0.50
-0. 17
-7 . 57
-6.91
-6 . 

-0. 1115
-0. 1031
-0.0910
-0.0753
-0.0309
-0.0107
-O.C049
-0. l.O^rj
-0. 1090
-0. 1303
-o. >2oi
-o . or$ao
-o.oi'OT
-0.0003
-O.2007
-0.2037
-O. 1350
-0. 1520
-0. 1032
-O.0319
-O.OO99
-O..'2'JO7
-O.2299
-o..o:>40
-0. 1031
-O . .«. 1 37
-0.0051
-O.O109
-0.2099
-0.24O4
-0.2107
-0. 171.1
-o. i IGO
-0.0367
-0.0114
-0.2053
-0.2454
-O.21G2
-0. 1794
-0. 1213
-O.0373
-0.01 10
-0.2073
-0 . 2477
-0 . 2?.02
-0. 1011
-0. 1225
-0.0379
-0.0117
-0.20IW

O.6393 0.0.292 0.0284 27.0O46 17.836
0 . 7007 0 . 0249 0 . 0235 23 . 1 4<-7 1 5 . 11 n
0.7740 0.0193 0.0177 1.O.A203 11. PO.')
0.8090 0.0137 O.0110 12.GC92 P.. 007
0.91.62 0.006Q 0.0040 0.17O9 n.r^O
0.99,03 0.0007 -0.0004 1.0100 ^.Tr"
1.001O -0.0000 -0.0003 0.00,03 O.£t;o
0.0770 O.O'I-O? 0.0040 34. 90:?^ 2O.rv.?.
o.6:;o3 0.0043 0.0274 20.755.", i<>.rr->
0.7070 0.0203 0.019C5 20.0202 10.0,02
O.C073 0.0100 0.0 IK- 70.O990 10.2r.M-
0. 30."07C 2r-,..T")
0.047O 0.0304 0.0250 3O.f33CO 2O.OO1
0.7-02 0.0231 0.0179 2^-. 2975 If!. 01 7
O.G^9t O.OltlO 0.0090 10.012.0 1O.7JD
0.9':.34 O.0002 0.0017 r,.£,T>« n.ci'Y)
1 . 0329 0 . 0003 -0 . OO 1 0 .1 . «079«T I . &.W
1.0033 -0.0003 -o.oooa o.ooro o.n<"3
0.0747 O.O435 0.0304 30.0755 2^. 01 !»
O.OJO2 O.OOO2 0.0237 GO.<90(?. lO.rOtt
0.7)99 O.O277 O.O101 23.9310 in.W>
O..T3I 0.0 K50 O.OOOO lG.rJ3.2O 1O.70.2
O.9471 O.OO77 O.O007 O.2499 0 . r",7
1 . 0049 O . OOO 1 -0 . 00 1 9 2 . 0402 1 . 747
1.0043 -O.OOO4 -O.OOOO O.7545 o.r,O3
O.G77-3 O.OC-23 0.0292 0!> . '!-399 23. r^
0.0030 O.O353 0.0220 29.O900 I01. OOO
0.7-;'3.r> O.0271 O.015I 20.5479 in.r'">
O.C-157 0.0174 O.OO72 10.O097 in.7O'i
0.9:>O3 O.O073 O.OOO1 O. 1202 O.'M'O
l.OX'.O -O.OOO1 -0.0021 2. 12-tO l.TO'V
1.0051 -0.0003 -O.G009 O.C027 0.604
0.5.004 0.0':23 O.O230 30.0100 20.124
0.0003 0.0300 0.0220 29.0O29 1O.<:'S.7
0.7'X>4 O.0265 0.0140 20.20'M 10.^^7
o.n:-9G 0.0170 o.oooo 10.7944 10.0^0
0.9029 0.0009 -0.0001 7.9900 0.90.1
1.0^7,0 -O.0003 -0.0022 2. J503 I.. "03
1.0007 -O.OOOO -0.0009 O.tt302 O.r.Ol
0.5.024 0.0418 0.0233 34.7275 22. 'V^
0.00.00 0.03
-------
ro
! OO .
1*0.
100.
160.
100.
100.
100.
1.10.
ISO.
ft \f\f t
ICO.
tflO.
IfO.
100.
2OO
^*W •
200.
200.
200.
200.
200.
200.
220.
220.
220.
220.
220.
220.
220.
230.
230.
230.
230.
230.
230.
230.
235.
235.
235.
235.
235.
235.
235.
238.
238.
238.
238.
238.
238.
238.
239.
239.
239.
239.
239.
239.
239.
O.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
Ooo
• \JTJ
0.02
0.05
0. 10
0.20
0.50
O.CO
0.00
0.02
0.05
0.10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.30
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.2O
O.5O
0.8O
152.7
143.4
143.3
140. 1
153. 1
172.9
156.3
152.3
i1. 14.3 n
1 mm U • *?
143.3
140.2
153. 1
172.9
156 9
X W * f
152.3
143.6
143.3
140.2
153. 1
172.9
150.9
152.9
143.6
143.4
140.2
153.1
172.9
150.9
152.9
148.6
143.4
140.2
153. 1
172.9
156.9
152.9
148.6
143.4
140.2
153.1
172.9
156.9
152.9
148.6
143.4
140.2
153. 1
172.9
156.9
152.9
148.6
143.4
14O.2
153. 1
1T2.9
17.47
19.76
22.50
24.25
17.20
0.54
15.23
17.41
19 71
J f • • I
22.53
24.23
17.25
6.54
15 °O
1 V • 44 V
17.33
19.69
22.51
24.23
17.25
6.54
15.20
17.38
19.69
22.51
24.22
17.25
6.54
15.19
17.38
19.69
22.51
24.22
17.25
6.54
15.19
17.38
19.69
22.51
24.22
17.25
6.54
15.19
17.38
19.68
22.51
24.22
17.25
6.54
15. 19
17.38
19.68
22.51
24.22
17.25
6.54
80.90
83.80
87.03
93.00
102. 14
104.61
70.69
00.84
«•» 74
U\P • • r
87.83
93.03
102. 13
104.61
?n oo
• *J • W
80.81
83.72
87.31
93.81
102.13
104.01
78.05
00.80
83.71
87.00
93.80
102.13
104.00
78.04
80.80
83.71
87.89
93.80
102.13
104.60
78.64
80.80
83.71
87.80
93.80
102.13
104.60
78.64
80.80
83.71
87.80
93.80
102. 13
104.60
78.64
80.80
83.71
87.80
93.OO
1O2. 13
1O4.6O
92.09
93.37
93. 11
97.53
100.G2
101.75
91. 10
02.07
fin 33
. \9 • \f\J
95. 10
97.55
TOO.. 32
101.75
o i O9
J 1 . 'F f
92.06
93.34
95.09
97.56
100.02
101.75
91.08
92.05
93.33
93.08
97.56
100.02
101.75
91.08
92.05
93.33
93.08
97.55
200.82
101.75
91.08
92.05
93.33
95.08
97.55
100.82
101.75
91.08
92.05
93.33
95.08
97.53
100.82
101.75
91.08
92.03
93.33
95.08
97.53
1OO.G2
tOl.73
0.3331
0.3467
0.3373
0.3274
0.0203
0.3203
0.3022
0.3549
O fl4fifi
\J • ^J^vV
0.3372
0.3273
0.0205
O.G203
Oflf«r»1
. \Jr\'-*4 1
0.3349
O.G403
0.0371
0 . 3273
0.0205
0.0203
O.C021
0.3513
0.3455
O.G371
0.3273
O.C205
0.0203
0.3021
0.3548
0.3465
0.337>
0.3273
0.3205
0.3203
0.3621
0.3548
0.3465
0.3371
0.3273
0.3204
0.3203
0.3621
0.3548
0.3465
0.3371
0.3273
0.3204
0.3203
0.3621
0.3548
0.3465
0.3371
O.3273
0.3204
0.3203
0.3331
0.3458
0.3301
0.3312
0.3293
0.3306
0.3396
0.3531
034nn
• \f^\j\j
0.3300
0.3312
0.3393
0.3300
Ofirioo
. \f%f .' V
0.3531
0.3457
0.3330
0.3312
0.3293
0.0300
0.3596
0.3530
0.3457
0.3300
0.3312
0.3293
0.3306
0.3596
0.3530
0.3457
0.3300
0.3312
0.3293
0.3306
0.3596
0.3530
0.3457
0.3300
0.3312
0.3293
0.3306
0.3596
0.3530
0.3457
0.3300
0.3312
0.3293
6.3306
0.3596
0 . 3530
O.3457
0.3380
O.3312
O.3293
O . 33O6
-24.79
-21.90
-17.03
-11.05
-3.53
-1.12
-27.01
-24.05
-'» 1 90
te* * • J J
-17.fT3
- 11 . 09
-a . oo
-1. 1.')
-°? on
l.i • • * J*9
-24.90
•.***"> n*\
«***•* • \*'j
-17.91
-11.91
-3.00
-1.13
-27.07
-24.92
-22.01
-17.92
- 1 1 . 92
-3.01
r-1. 13
-27 . 03
-24.92
-S2.02
-17.93
-11.93
-3.01
-1. 13
-27.03
-24.93
-22.02
-17.93
-11.93
-3.01
-1. 13
-27.00
-24.93
-22.02
-17.93
-11.93
-3.01
-1. 13
-27.08
-24.93
-22.02
-17.93
-11.93
-3.61
-1. 13
-JO.OO
-3.79
-7.03
-4.09
- 1 . 33
-0.42
- 11 . 00
-J0.09
— o i ? '*
-7 '.07
-4.00
- i . r; ?
-0.42
- f 1 OO
II* \i**M
-!0. 11
-0.03
-7.03
-4.01
•• ! . 30
-0.42
- 1 1 . 09
-10. .12
-0.04
-7.09
-4.02
-1.30
-0.42
- 1 1 . 09
-10. 13
-O.G4
-7.09
-4.02
-1.30
-0.42
- 1 1 . 09
-10. 12
-O.C4
-7.09
-4.03
-1.30
-0.42
-11.09
-10. 12
-8.84
-7.09
-4.62
-1.36
-0.42
- 1 1 . 09
-10. 12
-8.84
-7.09
-4.62
-1.36
-O.42
-0.2437
—0. 221 1
-o. !'?.n
-0. 1200
-0.0300
-0.0110
-O.r»,504
-0 . 2'f'9 1
— O '''* ( '>
-0. lf?2 1
••0 . 1 flM
-0 . 0."-0 1
-0.0! !U
-O *V»Ori
V » i * >/ f * 9
-oiasio
-0. 1C23
-0. 1233
-O.OCfOl
-0.0 IIP.
-0.2500
-0.249G
-0.23J7
-0. 1033
-0. 1233
-0.03G1
-0.0113
-0.2090
-0.2493
-0.2217
-0. 1023
-0. 1233
-0.0331
-0.0113
-0.2096
-0.2493
-O.22I7
-0. 1023
-0. 1233
-0.0331
-0.0118
-0.2696
-0.2493
-0.2217
-0. 1023
-0. 1233
-0.0301
-0.0118
-0.2696
-0.2493
-0.2217
-O. 1023
-O. 1233
-O.O381
-0.0110
O.OC>03 0.0343 0.0216 29.102?. lO.r^fJ
0. ?'.'>"?> 0.0219 0.014322.0121 IP. ""•'>
O.T ""..'» 0.0 I'll 0.(W> 13.4799 f.O.r.42
O.OJT06 0.0000 -0.0003 7.012.'? rs.^r?
1 . 0&07 -0 . 0004 -0 . 0022 2 . 1 74O 1 . ,T 1
1.0" 66 -0.0005 -O.C009 O.R349 o.r,-r,4
0.!J""»4 O.O414 0.0231 3A.4SOO D.?..'"«4
Or..-' i"? n f\n/<.t n ntm ""> OT*^'* i<» .•>*»/*
. >>'.•'< IJ.vA*'.1! v/.'./i5IJ us.', ir>..t • '., i
O *""'• ""O 0 O^3'J 0 Qf'2 f*° "•*"">'• 1 "^ '"."*
O..""~l O,^"''^ O.COOfJ in.r?^(n>.'', fr>.;-«4
0 ! «.T7• -0 . 0003 7 . 7r.«7 n ! ^ • |
1 . 0 f 0 1 -0 . 0004 -0 . 0^23 f! . < 747 1.r—\
l.C"07 -0.0005 -O.COCy? O.r'VO' r> •-<-•>

0.0^2'j 0.0340 0.0215 .??• . O^rV7! I'*1. »'VJ
0.7rjJf.2 0.0237 0.01 42 ,?2.<"in71 in.r*'.^
o.cjfos 0.0103 0.0003 m.?no^ io.'"°'»
0.9!».''9 0.0004 -0.0003 7.7005 ,r-.?^O
1.0^09 -0 . 0004 -0 . 0022 2 - «. 74 «. 1 . r-VS
1.0C72 -o.oooo -o.ooio o.rr,2"5 o.^r
O-SC.".'! 0.0412 0.0201 IT'i . "rvy- R3..""1!!
0.0035 0.0340 0.0215 2O.?r!!O »O. I7O
0.7541 0.0230 0.0142 S!3.'«."30 l.n.^v,
o.c?74 0.0102 0.0005 ir,.r?:iio 10. '•"•;
0.9^97 0.0004 -0.0004 7.7lffl P.rvj
1.0113 -0 . 0003 -0 . 0022 3 . ! 70P. 1 . ,"72
1.O074 -0.0000 -0.0010 O.f5'»4.r; O.C'T-'?,
0.5074 0.0412 0.0301 R4.0W9 32..?- 17
O.G609 0.0340 0.021520.^401 ir».ir,r»
0.7344 0.0250 0.0142 83.4 143 1P.'^V1
0.0377 0.0103 0.0005 l-ri.rjl{57 10.'^"J
0.9000 0.0004 -0.0004 7.7057 B.fTV!
1.0114-0.0003-0.0023 2.1720 l.r'3
1.0073 -0.0000 -0.0010 0,.t
-------
VISUAL EFFECTS FOR LINES OF SIGHT ALONG PLUME
1600 MW POWER PLANT
DOWNWIND DISTANCE (KM) = 240.0
TNETA LENGTH RP/RV0 RV ^REDUCED YCAP L X
90.
20.
20.
20.
20.
20.
20.
20.
40.
40.
40.
40.
40.
40.
40.
60.
60.
60.
6O.
60.
60.
60.
00.
00.
K °°-
5 oo.
OO.
80.
00.
100.
100.
100.
100.
100.
100.
100.
120.
12O.
120.
120.
120.
120.
120.
140.
140.
140.
140.
140.
140.
14O.
A ~V •
160.
160.

0.00
0.02
' 0.05
0. 10
0.20 .
0.50 ''
0.00
0.00
0.02
0.05
0. 10
0.20
0.50
O.OO
0.00
0.02
0.05
O. 1O
' 0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
O.OO
0.00
0.02
0.05
0. 1O
0.20
0.50
O.OO
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
0.00
0.02

181. 1
100.6
1OO.O
179. 1
177.0
176.0
175.4
103.3
181.6
179.4
176.3
171.8
165.6
172.0
106.6
183.3
179.0
173.0
164.4
152.9
172.9
100.3
103.3
176.7
167.7
154.9
153. 0
172.9
107.3
100.7
172.0
160.0
143.2
153. 1
172.9
103. 1
175.0
164.2
149.5
140.9
153.2
172.9
175. 1
165.4
152.7
145.2
141. 1
153.2
172.9
162.0
156.4

2. 11
2.36
2.71
3. 19
3.09
4.0O
5. 17
0.92
1.03
3.04
4.73
7. 15
10.46
6.61
-O.OO
O.90
3.26
6.51
11. 14
17.36
6.57
-1.70
0.93
4.49
9.37
16. 2O
17.30
6.55
-1.26
2.32
7.04
13.49
22.59
17.22
6.53
1.01
5.43
11.25
19. 19
23.02
17. 19
6.53
5.36
10.09
17.46
21.52
23.72
17. 17
6.53
12.46
15.40

32. 16
52.77
53.59
54.74
56.40
58.63
59.27
47.96
40.91
50. 10
51.97
54.56
50.00
59. 1O
45.62
46.74
48.26
5O.40
53. 5O
57.76
59.00
44.40
45.62
47.26
49.57
52.94
57.58
58.94
43.OO
43.06
46.77
49. 16
52.66
57.48
50.91
43.50
44.70
46.51
40.95
52.51
57.43
50.09
43.34
44.64
46.39
40.04
52.44
57.41
58.00
43.27
44.57

77.40
77.76
78.24
70.91
79.06
81. 11
O1.46
74.02
75.42
76.20
77.2O
70.01
00.00
O1.36
73.32
74.05
75.0,1
76.33
70. 19
00.62
81.31
72.52
73.32
74.38
75. O3
77 . 86
80.52
81.27
72. 12
72.96
74.06
75.57
77.69
80.47
01.26
71.92
72.77
73.90
75.44
77 . 6 1
00.44
O1.23
71.01
72.60
73.02
75.37
77.56
00.43
01.24
71.76
72.63

0.3309
0.3266
0.3215
0.3154
0.3007
0.3032
0.3027
0.3423
0.3350
0.3282
0.3195
0.3102
O.3031
0.3025
0.3449
0.3376
O.3293
0.3198
0.3099
0.3020
O.3024
O.3446
0.3372
0.3287
0.3192
O.3093
0.3025
0.3023
O.3430
0.3364
O.3279
0.31U5
O.3000
0.3023
0.3022
0.3432
0.3358
0.3274
0.3180
0.3005
0.3022
0.3021
0.3427
0.3353
0.3270
0.3177
0.3003
0.3021
0.3021
0.3424
0.3351
Y DELYCAP

0.3439
0 . 3305
0.3321
0.3248
0.3173
0.3127
0.3120
0.3501
0 . 3427
O.3343
0.3252
0.3164
O.3120
0.3126
O.3402
0.3406
O.3321
0.323O
0.3147
O.3114
0.3124
0.3439
0.3384
0.33O1
0.3213
0.3135
O.3110
0.3122
0.3443
0.3371
0.3289
O.3204
0.3129
O.3I08
0.3122
0.343O
0.3364
0.3284
0.3200
0.3126
0.3107
0.3122
0.3433
0.3361
0.3281
0.3197
0.3125
0.3107
0.3121
0.3433
0.3360

-7.34
-6.73
-5.91
-4.77
-3. 12
-0.90
-0.27
-11.54
-10.60
-9.33
-7.55
-4.96
-1.43
-O.44
-13.90
-12.77
-1 1.26
-9. 13
-6 . 03
-1.7O
-0.55
-15.12
-13.90
- 12.26
-9 . 96
-6.59
-1.97
-0.01
- 1 5 . 73
-14.47
-12.77
-10.37
-6.00
-2.06
-O.64
-16.04
-14.75
-13.02
-10.59
-7.03
-2. 11
-0.66
-16. 19
-14.90
-13. 13
-1O.70
-7.11
-2. 14
-0.67
-16.27
-14.97
DELL

-4. 18
-3.02
-3.34
-2.68
-1.73
-0.49
-0. 15
-6.76
-6. 17
-5.39
-4.31
-2.79
-O.OO
-O.24
-0.27
-7 . r>4
-6.58
-5.26
-3.41
-O.98
-0.30
-9.07
-8.27
-7. 22
-5.77
-3.74
-1.09
-0.33
-9.48
-8.64
-7.54
-6.03
-3.91
-1. 14
-0 . 35
-9.69
-8.83
-7.70
-6. 16
-4.00
-1. 17
-0.36
-9.79
-O.93
-7.79
-6.23
-4.04
-1. 10
-0.37
-9.04
-0.90
CC550)

-0. 1176
-0. 1080
-0.0967
-0.0796
-0.0538
-0.0167
-0.0052
-0. 1929
-0. 1704
-0. 1506
-0. 1305
-0.0382
-O.0273
-O.OO84
-O.2383
-0.22O3
-O. I960
-O. 1612
-O. 1O9O
-0.0337
-0.O1O4
-0.2025
-O.2427
-O.2139
-0. 1775
-O. 1200
-0.0371
-0.01 15
-O.2743
-O.2537
-0.2256
-0. 1855
-0. 1253
-0.0380
-0.0120
-O.2799
-0.2589
-0.2302
-0. 1893
-0. 1280
-0.0390
-0.0122
-0.2825
-0.2612
-0.2323
-0. 1910
-0. 1292
-0.0400
-0.0124
-0.2836
-0.2623
BRAT 10 DELX DELY E(LUV) E( LAB)

0.6416 0.0288 0.0306 24.0296 15.009
0.7037 0.0243 0.025220.5110 13.35O
0.7777 0.0193 0.0189 1O.2279 1O.424
0.0032 0.0132 0.0116 11.0583 7.0O3
0.9503 0.0062 0.0041 5.2521 3.332
1.0011 O.OOO3 -O.O003 O.OI41 0.070
1.0021 -0.0001 -0.0004 0.2050 O.227
O.5H27 0.0400 0.0368 30.7591 2O.2L»8
0.6569 O.O334 O.0295 20 . O522 10.919
0.7450 O.O25B 0.0211 20.4)98 13.O99
O.8463 O.OI70 O.O120 13.~7P2 n.7It3
O.9485 O.OO76 O.0031 0.5030 4.371
1.0O5O O.0004 -O.OO 13 1.2772 I.I O9
I.O043 -O.OO03 -O.OOO7 O.4-V>O O . 383
O.5J107 O.O424 O.O35O 31.60O1 2O.76O
O.6572 O.0351 O.O274 20 . 7O7 1 17.3*O
0.7478 O.O'*07 O.OIO9 2O.O392 13.4T,'»
O.8516 O.O173 O.OO98 14.0158 9.1.33
O.955O O.O073 O.OO 14 0 . 773O 4.7'>r;
1.GO9O O.OOOO -0.0019 1 . 50P5 1.382
1.0003 -0.0004 -0.0009 0.5899 o.<;m
0.5853 O.0420 O.O327 31.1922 2O.5O2
O.0035 O.O346 O.O252 20.24:15 17.137
O.7548 O.O201 O.O169 20.4252 13.331
O.050O 0.0105 0.0081 13.7121 9. M-7
O.9015 O.OO06 O.OO03 0 . 7O27 4.975
1.O124 -O.OOO3 -O.OO22 1.7290 1 . 525
1.0O79 -O.OOO3 -0.00 10 O.6689 O.534
O.5915 0.0412 0.0313 3O.0538 2O.226
O.0091 O.O337 O.O239 25.7517 10.915
0.7007 0.0253 0.0157 19.9959 13. 181
O.8048 0.0150 0.0072 13.3904 9.095
0.9008 O.OO61 -O.O003 6.5832 5 . O30
1.0150 -0.0003 -O.OO24 I . O'Ml 1 1.592
1.0092 -O.OOO6 -0.001O O.7134 O.501
0.5956 0.04O5 0.0300 30.2057 2O . O4 1
O.6730 0.0331 0.0232 25.3945 10.701
0.7054 0.0247 O.O15I 19.0850 13.O09
O.C&95 0.0153 0.0067 13.1010 9.038
0.9703 0.0057 -0.0006 0.4750 5.040
1.0171 -0.0006 -0.0023 1.8457 1.023
1.0102 -0.0007 -0.0010 O.73CI6 0.570
0.5988 0.0400 0.0303 3O.0171 19.929
0.0770 0.0326 0.0229 25. 1045 10.005
0.7090 0.0242 0.0149 19.4835 12.994
0.0731 0.0150 0.0065 10.0O29 0.993
0.9740 0.0053 -0.0007 0.3947 f> . 03fJ
1.0106-0.0007-0.0023 1.0020 1.035
1.0109 -0.0007 -0.0011 0.7520 O r>W
0.6013 0.0397 0.0301 29.8059 19.H04
0.6796 0.0323 0.0228 25 . 0237 lf*.(W\
Exhibit A-8 (.continued1

-------
160.
160.
160.
160.
160.
100.
1OO.
180.
1OO.
180.
180.
ICO.
200.
200.
200.
200.
200.
200.
200.
220.
220.
220.
220.
220.
220.
220.
230.
230.
230.
230.
230.
230.
230.
235.
235.
235.
235.
235.
235 .
235.
238.
238.
238.
238.
238.
238.
238.
239.
239.
239.
239.
239.
239.
239.
0.05
O. 10
0.20
0.50
0.80
0.00
0.02
O.05
0. 1O
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
O.50
O.8O
151.3
145.3
141.2
153.3
172.9
161. 1
156.5
151.4
1.45 . 4
141.2
153.3
172.9
161. 1
156.5
151.4
145.4
141.3
153.3
172.9
161. 1
156.5
151.5
145.4
141.3
153.3
172.9
161. 1
156.5
151.5
145.4
141.3
153.3
172.9
161. 1
156.5
151.5
145.4
141.3
153.3
172.9
161. 1
156.5
151.5
145.4
141.3
153.3
172.9
161. 1
156.5
151.5
145.4
141.3
153.3
172.9
18.20
21.44
23.67
17. 16
6.53
12.94
15.42
18. 15
21.40
23.65
17. 16
6.53
12.92
15.40
18. 14
21.39
23.65
17. 16
6.53
12.91
15.39
13. 13
21.39
23.65
17. 16
6.53
12.91
15.39
18. 13
21.39
23.65
17. 16
6.53
12.91
15.39
18. 13
21.39
23.65
17. 16
6.53
12.91
15.39
IB. 13
21.39
23.65
17. 16
6.53
12.91
15.39
18. 13
21.39
23.65
17. 16
6.53
46.32
48.79
52.40
57.39
58.87
43.23
44.53
46.29
48.76
52.38
57.39
58.87
43.21
44.51
46.27
48.75
52.37
57.38
58.87
43.20
44.51
46.26
48.74
52.36
57.38
58.87
43.20
44.50
46.26
48.74
52.36
57.38
58.87
43.20
44.50
46.26
48.74
52.36
57.38
58.87
43.20
44.50
46.26
48.74
52.36
57.38
58.87
43.20
44.50
46.26
48.74
52.36
57.38
58.87
73.78
75 . 34
77.54
80.42
81.24
71.73
72.61
73.75
75.32
77.53
00.41
01.24
71.72
72.59
73.74
75.31
77.52
80.41
81.24
71.72
72.59
73.74
75.31
77.52
80.41
81.24
71.71
72.59
73.74
75.31
77.52
80.41
81.24
71.71
72.59
73.74
75.31
77 . 52
80.41
81.24
71.71
72.59
73.74
75.31
77.52
80.41
81.24
71.71
72.59
73.74
75.31
77.52
80.41
81.24
0.3268
0.3173
0.3031
0.3020
0.3021
0.3423
0.3349
0.3266
0.3174
0.3001
0.3^20
0.3021
0 . 3422
0.3348
0.3265
0.3173
0.3080
0.3020
0.3021
0.3421
0.3348
0.3265
0.3173
0.3080
0.3020
0.3021
0.3421
0.3348
0.3265
0.3173
0.3030
0.3020
0.3021
0 . 34^1
0.3348
0.3265
0.3173
0.3080
0.3020
0.3021
0.3421
0.3348
0.3265
0.3173
0.3080
0.3020
0.3021
0.3421
0.3348
0.3265
0.3173
0.3080
0.3020
0.3021
0.3200
0.3106
0.3124
0.3107
0.3121
0.3433
0.3360
O.3279
0.3196
0.3124
0.3107
0.3121
0.3433
0.3359
0.3279
0.3196
0.3124
0.3107
0.3121
0.3433
0.3359
0.3279
0.3196
0.3124
0.3107
0.3121
0.3433
0.3359
0 . 3279
0.3196
0.3124
0.3107
0.3121
0.3433
0.3359
0.3279
0.3196
0.3124
0.3107
0.3121
0.3433
0.3359
0.3279
0.3196
0.3124
0.3107
0.3121
0.3433
0.3359
0 . 3279
0.3196
0.3124
0.3107
0.3121
-13.22
-10.76
-7. 13
-2. 16
-0.67
-16.32
-15.01
-13.26
-10.79
-7. 17
-2. 16
-0 . 68
-16.34
-15.03
-13.27
-10.00
-7. 18
-2. 17
-0.68
-16.35
-15.04
-13.23
-10.01
-7. 10
-2. 17
-0.68
-16.35
-15.04
-13.28
-10.81
-7. 18
-2. 17
-0.68
-16.35
-15.04
-13.23
-10.81
-7. 18
-2. 17
-0.68
-16.35
-15.04
-13.28
-10.81
-7. 18
-2. 17
-0.68
-16.35
-15.04
-13.28
-10.81
-7. 18
-2. 17
-O.68
-7.83
-6.27
-4.07
-1. 19
-0.37
-9.87
-9.00
-7.85
-6 . 20
-4.00
-1.20
-0.37
-9.O9
-9.01
-7.OO
-6.29
-4.09
-1.20
-0.37
-9.89
-9.02
-7.87
-6.30
-4.09
-1.20
-0.37
-9.89
-9.02
-7.87
-6.30
-4.09
-1.20
-0.37
-9.89
-9.02
-7.87
-6.3O
-4.09
-f.20
-0.37
-9.89
-9.02
-7.87
-6.30
-4.09
-1.20
-0.37
-9.89
-9.02
-7.87
-6.30
-4.09
-1.20
-0.37
-0.2332
-0. 1910
-0. 1297
-0.0401
-O.O124
-0.2040
-0.2627
-0.2336
-0. 1921
-O. 1299
-O.0402
rO.0124
-0.2042
-0.2023
-0.2337
-0. 1922
-0. 1300
-0.0402
-O.0124
-0.2042
-0.2020
-0.2337
-0. 1922
-0. 1300
-0.0402
-0.0124
-0 . 2O42
-0.2020
-0.2337
-0. 1922
-0. 1300
-0.0402
-0.0124
-0.2042
-0.2628
-0.2337
-0. 1922
-0. 1300
-0.0402
-0.0124
-0.2842
-0.2628
-0.2337
-0. 1922
-0. 1300
-0.0402
-0.0124
-0.2842
-0.2628
-0.2337
-0. 1922
-0. 1300
-0.0402
-0.0124
0.7718 0.0240 0.0148 19.0*^0
0.0759 O.014J1 0.0004 12.0O21
0.9704 O.O034 -O.OOOO O.JWO
1.0198 -O.OOOO -0.0025 1.8700
1.O115 -0.0007 -0.0011 O.700O
0.0032 0.0395 O.O301 29.7707
O.OO17 O.O322 0.0227 24. »MO2
O.7709 O.O23O 0.0147 I9.2-TI9
0.0780 O.ffl40 0.0004 12.P4ir>3
0.97G2 0.0053 -0.0008 O.T^IO
1 . 020O -0 . 0008 -0 . 0025 1 . P72.'l
1.0119 -0.0007 -0.0011 0.70*3
0.0040 0.0394 0.0301 29.7201
0.6832 0.0321 0.0227 24.(Y>25
0.7756 0.0237 0.0147 19.2304
0.8797 0.0145 0.0004 12.P/>39
0.9797 0.0052 -0.0000 6.2708
1.0215 -0.0003 -0.0025 1 . P.735
1.0123 -0.0003 -0.0011 0.7077
0.6037 0.0393 0.0300 29.O992
0.6843 0.0320 0.0227 24.P/i69
0.7763 0.0237 0.0147 19.210O
O.OC09 0.0145 0.0064 12. 783-1
0.9007 0.0052 -0.0003 6.26!">5
1.0220 -0.0003 -0.0023 1 . O736
1.0125 -0.0003 -0.00 11 O.70O9
0.6000 0.0393 0.0300 29.6028
0.6847 0.0320 0.0227 24.COOO
0.7772 0.0237 0.0147 19.21O3
0.8813 0.0143 0.0004 12.77O7
0.9810 0.0052 -0.0008 6.2*22
1.0221 -0.0008 -0.0025 1.P.733
1.0126 -0.0003 -0.0011 0.7092
0.6062 0.0393 0.030029.0911
0.6849 0.0320 0.0227 24.P.391
0.7773 0.0237 0.0147 19.2OO7
O.8314 0.0143 0.0064 12.7774
0.9312 0.0052-0.0003 6.2611
1.0222 -0.0008 -0.0025 1 . O733
1.0126 -0.0003 -0.0011 0.7692
0.6002 0.0393 0.0300 29.6905
0.6849 0.0320 0.0227 24.P-305
0.7774 0.0237 0.0147 19.2002
0.8815 0.0145 0.0004 12.7768
0.9812 0.0052 -0.0008 6.2008
1.0222 -0.0003 -0.0023 1 . 8733
1.0126 -0.0008 -0.0011 0.7093
0.6002 0.0393 0.0300 29.0903
0.6050 0.0320 0.0227 24.0584
0.7774 0.0237 0.0147 19.2080
0.8815 0.0143 0.0064 12.7767
0.9812 0.0052 -0.0008 6.2607
1.O222 -O.OOOO -0.0025 1 . O733
1.O126 -0.0008 -0.0O11 O.7093
12.
«.'
r».
i.
0.
i*v
10.
12.
n.
f».
i .
«.
19.
10.
12.
0.
5.
1.
O.
19.
10.
12.
P,.
r».
i.
0.
19.
10.
12.
O.
5.
1.
0.
19.
16.
12.
O.
5.
1.
0.
19.
16.
12.
0.
5.
1.
0.
19.
16.
12.
8.
5.
1 .
O.
Exhibit. A-8 (continued)

-------
        VISUAL EFFECTS FOR LIIfES OF
        1600 1W POWER PLANT
SIGHT ALO1TC PLUHE
DOWTWIJfD DISTANCE (KW>
THETA LENGTH RP/RV0
135.
20.
20. .
20.
20.
20.
20.
20.
40.
40.
40.
40.
40.
40.
40.
6O.
60.
6O.
6O.
6O.
60.
ro 6O.
S °°-
01 80.
oo.
8O.
ao.
80.
80.
IOO.
too.
IOO.
100.
100.
100.
100.
120.
120.
120.
120.
120.
120.
120.
140.
m ^ v •
14O.
* ~\f *
140.
140.
140.
140.
140.

0.00
0.02
0.05
0. 10
0.20 ''•
0.50
0.80
O.00
0.02
0.O5
O. 10
0.2O
0.50
O.80
O.OO
0.02
O.05
O. 10
0.20
O.5O
0.80
O.OO
0.02
0.05
O. 1O
O.2O
O.5O
0.80
0.00
O.02
O.O5
0. 10
0.20
0.50
O.80
0.00
0.02
O.05
0. 1O
0.20
0.50
0.80
O.OO
0.02
0.05
0. 10
0.20
0.50
0.80
* 240.0
RV 7JREDUCED

181.3
180.8
180.2
179.3
177.9
176.0
175.4
184. 1
182.3
1OO.O
176.8
172. 1
165.7
172.8
180.2
184.8
180.2
173.9
165. 0
153. 1
172.9
190.7
185.4
178.5
169. 1
155.8
153. 1
172.9
190.5
183,5
174.4
161.9
144.4
153.3
172.9
187. 0
178.4
167.2
151.8
141.7
153.3
172.9
179.6
169.5
156.2
146.6
141.9
153.4
172.9

1.99
2.25
2.61
3. 11
3.84
4.86
5. 17
0.49
1.44
2.70
4.45
6.97
10.41
6.6O
-1.73
O. 13
2.6O
5.98
10. 8O
17.26
6.56
-3.07
-0.24
3.49
8.58
15.78
17.24
6.54
-2.97
0.79
5.73
12.46
21.93
17. 16
6.53
-1.O9
3.54
9.63
17.93
23.42
17. 12
6.52
2.90
B.37
15.57
20.74
23.32
17. 10
6. 82
YCAP

5S.65
56.32
57.21
58.47
60.28
62.72
63.42
50.85
51.90
53.32
55.30
58. 18
62.09
63.22
48. 15
49.41
51. 11
53.49
56.96
61.71
63. 10
46.75
48. 11
49.95
52.53
56.31
61.50
63.03
46. 05
47.46
49.37
52.05
55.97
61.39
62.99
45.69
47. 13
49.07
51.80
55.80
61.33
62.97
45.51
46.96
48.92
51.68
55.71
61.30
62.96
L

79.43
79.81
80.32
81.02
82. Ol
83.31
83.68
76.61
77.24
78.08
79.23
8O.85
82.98
83.57
74.94
75.73
76.76
78. 18
80. 17
O2.77
83.51
74.05
74.92
76.06
77.62
79.81
82.66
83.47
73.60
74.51
75.70
77.33
79.62
82.60
83.45
73.37
74.30
75.52
77. 18
79.52
82.57
83.44
73.25
74. 19
75.42
77. 11
79.47
82.56
83.44
X

0.3267
0.3224
0.3172
0.3111
0.3043
0.2988
0.2983
0.3378
0.3312
O.3235
0.3148
O.3055
0.2985
0.2981
O.3399
0.3326
O.3242
O.3148
0.3050
0.2902
0.2979
O.3393
0.3318
O.3233
O.3139
O.3O43
0.2978
0.2977
O.3383
O.3308
O.3224
0.3131
0.3037
0.2976
0.2976
O.3375
0.3301
0.3217
0.3125
0.3033
0.2974
0.2976
O.3369
0.3295
0.3212
0.3121
0.3030
0.2973
0.2976
Y DELYCAP

0.3419
0.3363
0.329R
0.3223
0.3146
0.31O0
0.31O1
0.3480
0.3404
0.3318
0.3225
O.3I35
O . 309 1
O.3098
O.346O
O.3381
O.3293
0.32O1
0.3116
O . 3083
O.3093
0 . 3434
0.3356
O.3271
0.3182
O.3IO4
O.3081
0.3O94
O.3419
O . 3342
O.3259
0.3172
0.3098
0.3079
O.3O94
0.3411
0.3335
0.3253
0.3167
0.3094
0.3078
0.3093
O.34O8
0.3332
0.3250
0.3165
0.3093
0.3078
0.3093

-0.25
-7.56
-6.63
-5.37
-3.51
-1.02
-0.31
-12.98
-11.92
-10.49
-8.50
-5.59
-1.64
-0.50
-15.64
-14.37
-12.67
-1O.28
-6.79
-2.02
-0.62
-17.01
-15.65
-13.80
-11.21
-7.43
-2.22
-0.69
-17.70
-16.28
-14.37
- 1 1 . 69
-7.76
-2.33
-0.73
-18.04
-16.60
-14.66
-11.93
-7.92
-2.39
-0.75
-18.22
-16.77
-14.01
-12.05
-8. 01
-2.42
-0.76
DELL

-4.49
-4. 11
-3.59
-2.88
-1.07
-O.53
-O. 16
-7. 2O
-6.65
-5.00
-4.64
-3.01
-0.86
-0.26
-8.93
-O. 14
-7. 1O
-5.68
-3.6O
-1.06
-0.33
-9.01
-8.94
-7.79
-6.23
-4.O4
-1. 17
-0.36
-1O.25
-9.34
-8. 14
-6.51
-4.22
-1.23
-0.3B
-10.47
-9.55
-8.32
-6.66
-4.32
-1.26
-0.39
-10.59
-9.65
-8.41
-6.73
-4.37
-1.28
-0.40
C(550)

-0. 1217
-0. 1126
-0. 1002
-0.0024
-0.0558
-O.0173
-O.0033
-0. 1997
-0. 1847
-0. 1643
-0. 1351
-O.O914
-O.O283
-0.0088
-O.2467
-O.22O1
-O.2029
-O. 1669
-O. 1 129
-O.O349
-0.0108
-O.27I7
-O.2513
-0.2235
-0. 1838
-O. 1243
-0.O3O5
-O.O119
-O.284O
-0.2626
-0.2335
-O. 1921
-0. 1299
-O.O402
-O.0124
-O.2897
-0.2679
-0.2383
-0. 1960
-0. 1325
-0.0410
-0.0127
-O.2923
-0.2703
-0.2404
-0. 1977
-0. 1337
-0.0414
-0.0128
BRATIO DELX DELY E(LUV) E(LAR)

0.6420 0.02B3 0.0311 25.1666 16.426
0.7047 0.0242 0.0256 21.4465 13.053
O.7794 0.0190 0.0191 16.9209 1O.790
0.8656 0.0129 0.0116 11.4006 7. 205
0.9529 0.0060 0.0040 5.095O 0.4211
1.O026 O.0004 -O.OOO5 O.O3O7 O.701
1.OO29 -O.00O1 -0.0004 O.L>O49 O.242
O.5O49 O.O395 O.O373 32.O957 2O.964
O.66O1 0.0329 0.0297 27.1107 17.5O6
O.7492 O.O252 O.O212 21.I7O2 10.024
0.8314 O.OI65 O.OI1O 14.1926 9.O49
O.9536 O.OO72 O.0029 6.67*15 4.49O
1.OO78 O.OOO2 -O.OO14 1.0267 1 . 17O
1.OO57 -0.0003 -O.OO07 0.499O O.4O9
O.5O51 O.O4I6 0.0353 32.OOO4 21.4f.ft
O.6629 O.0343 O.O273 27.6454 17.O9fl
0.7347 O.O259 O.OIOfl 2 1 . 46O6 I3.O51
O.0394 O.O165 O.OO95 14.0201 9.090
O.9625 O.OO67 O.OO 11 6.fl42n 4.9411
I.OI3O -O.OOO2 -O.OO2O 1.6502 1.464
1.O082 -O.O003 -O.O009 O.64A6 0.515
0.5927 O.04IO O. 032O 32. 2717 21 . 150
O.6713 O.0335 O.O251 27.0f.r.9 17.652
O.7639 O.0230 O.O166 2O.941O 10.7O9
0.8688 O.OI53 0.0077 10.9401 9.402
O.97O9 O.O059 -0.OOO1 6 . 74O6 5.147
1.0173 -O.0006 -0.0024 1 . 84O4 1 . 62O
1.O103 -0.O006 -O.O01O O.7371 O.574
O.5994 O.O399 O.OO 13 3I.63O3 2O.O4C1
O.6785 O.0323 O.O237 26.4729 I7.4OO
O.7715 O.0240 O.O154 20.4392 13.547
O.8763 O.O147 O.OO67 10.5764 9.049
0.9776 O.OO53 -O.OOO7 6.6172 5.21O
1.O2O6 -O.O008 -O.0026 1.9069 1.695
1.0119 -O.OOO7 -O.OO 11 0.709O 0.6O5
O.6046 O.O391 0.0306 31.1940 2O.647
0.6841 0.0317 0.023O 26.0651 17.240
0.7774 O.O233 O.O14O 2O.0062 10.42O
0.8824 O.OI41 O.OO62 10.0115 9.291
0.9827 O.OO49 -0.0011 6.5009 5.204
1.0232 -0.0010 -0.0027 1.9052 1.729
1.0131 -0.0008 -0.0011 0.0100 0.622
0.6O86 O.O3O5 O.OOO3 3O.9146 2O.527
0.6884 0.0312 0.022725.0071 17.141
0.7819 0.0229 0.0145 19.0604 10.350
0.8069 0.0137 0.0060 10.1060 9.246
0.9066 0.0046 -0.0012 6.4195 R^^O
1.0251 -0.0011 -0.0027 2.0009 1.744
1.0140 -0.0008 -0.0011 0.005O O.601
Exhibit A-8  (continued!

-------
ro
160.
160.
160.
I6O.
160.
160.
160.
100.
IttO.
100.
100.
100.
100.
100.
200.
200.
200.
200.
200.
200.
200.
220.
220.
220.
220.
220.
220.
220.
230.
230.
230.
230.
230.
230.
230.
235.
235.
235.
235.
235.
235.
235.
238.
238.
238.
238.
238.
238.
238.
239.
239.
239.
239.
239.
239.
239.
O.OO
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
O.OO
0.02
0.05
0. 10
0.20
0.50
0.00
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
O.OO
0.02
0.05
0. 10
0.20
0.50
0.80
O.OO
0.02
0.05
0. 10
0.20
0.50
0.00
0.00
0.02
0.05
0. 10
0.20
0.00
O.QO
167.2
159.0
153.3
146.8
141.9
153.4
172.9
163.7
. 159. 1
' 153.4
146.8
142.0
153.4
172.9
163.7
159. 1
153.4
146.9
142.0
153.4
172.9
163.7
159. 1
153.4
146.9
142.0
153.4
172.9
163.7
159. 1
153.4
146.9
142.0
153.4
172.9
163.7
159. 1
153.4
146.9
142.0
153.4
172.9
163.7
159.1
153.4
146.9
142.0
153.4
172.9
163.7
159. 1
153.4
146.9
142.0
153.4
172.9
9.63
14.08
17. 14
20.66
23.27
17. 10
6.52
1 1.53
14. Ol
17.09
20.62
23.26
17.09
6.52
1 1.51
13.99
17.08
20.61
23.25
17.09
6.52
11.51
13.99
17.08
20.61
23.25
17.09
6.52
11.51
13.99
17.08
20.61
23.25
17.09
6.52
11.51
13.99
17.08
20.61
23.25
17.09
6.52
11.51
13.99
17.08
20.61
23.25
17.09
6.52
11.51
13.99
17.08
2G.61
23.25
17.09
6.02
45.42
46.80
4O.84
51.61
55.67
61.28
62.95
45.37
46.83
48.80
51.58
55.64
61.27
62.95
45.35
46.81
48.78
51.56
55.63
61.27
62.95
45.34
46.80
48.77
51.55
55.62
61.27
62.95
45.33
46.80
48.77
51.55
55.62
61.27
62.95
45.33
46.80
48.77
51.55
55.62
61.27
62.95
45.33
46.80
48.77
51.55
55.62
61.27
62.95
45.33
46.80
48.77
51.00
55.62
61.27
62.90
73. 19
74. 13
75.38
77.07
79.44
82.55
83.43
73. 16
74. 10
75.35
77.05
79.43
82.54
03.43
73. 14
74.09
75.34
77 . 04
79.42
82.54
83.43
73. 14
74.08
75.33
77.03
79.42
82.54
83.43
73. 13
74.08
75.33
77.03
79.42
82.54
83.43
73. 13
74.08
75.33
77.03
79.42
82.54
83.43
73. 13
74.08
75.33
77.03
79.42
82.54
83.43
73. 13
74.08
75.33
77.03
79.42
O2. 04
O3.43
O.3366
0.3292
0.3210
0.3119
0.3028
0.2973
0.2975
0.3364
O.3290
0.3208
0.3117
0.3027
0.2972
O.2975
0.3362
O.32O9
0.3207
0.3117
0 . 3027
0.2972
0.2975
0.3362
0.3289
0.3206
0.3116
0.3027
0.2972
0.2975
0.3362
0.3288
0.3206
0.3116
0.3026
0.29T2
0.2975
0.3362
0.3288
0.3206
0.3116
0.3026
0.2972
0.2975
0.3362
0.3288
0.3206
0.3116
0.3026
0.2972
0.2975
0.3362
0.3208
0.3206
0.3116
O.3026
O.2972
O.297O
0.3406
0.3330
0.3248
0.3164
0.3092
0.3077
0.3093
0.3405
0.3330
0.3248
0.3163
0.3092
0.3077
0.3093
O.3405
0.3330
0.3248
0.3163
0.3092
0.3077
O.3093
0.3405
0.3330
0.3247
0.3163
0.3091
0.3077
O.3093
0.3405
0.3330
0.3247
0.3163
0.3091
0.3077
0.3093
0.3405
0.3330
0 . 3247
0.3163
0.3091
0 . 3077
0.3093
0.3405
0.3330
0 . 3247
0.3163
0.3091
0.3077
0.3093
0.3405
0.3330
0.3247
O.3I63
O.3091
0 . 3O77
O.3O93
-18.31
-16.85
-14.00
-12. 1 1
-0.06
-2.44
-0.77
-18.35
-16.89
-14.92
-12. 14
-8.08
-2.45
-0.77
-18.38
-16.91
-14.94
-12. 16
-8.09
-2.45
-0.77
-18.38
-16.92
-14.95
-12. 17
-8.09
-2.45
-0.77
-18.39
-16.92
-14.95
-12.17
-8. 10
-2.45
-0.77
-18.39
-16.92
-14.95
-12. 17
-8. 10
-2.45
-0.77
-18.39
-16.92
-14.95
-12. 17
-8. 10
-2.45
-0.77
-18.39
-16.92
-14.95
-12. 17
-8. 10
-2.43
-O.77
-10.65
-9.70
-8.46
-6.77
-4.39
-1.29
-0.40
-10.68
-9.73
-8.49
-6.79
-4.41
-1.29
-0.40
-10.69
-9.74
-8.50
-6.8O
-4.41
-1.30
-0.40
-10.70
-9.75
-8.50
-6.80
-4.42
-1.30
-0.40
-10.70
-9.75
-8.50
-6.80
-4.42
-1.30
-0.40
-10.70
-9.75
-8.50
-6.80
-4.42
-1.30
-0.40
-10.70
-9.75
-8.50
-6.80
-4.42
-1.30
-0.40
-10.70
-9.73
-8.50
-6.0O
-4.42
-1 .30
-O.4O
-0.2934
-0.2713
-O.2413
-0. 1984
-O. 1342
-0.0415
-0.0128
-0.2909
-0.2717
-0.2417
-0. 1987
-O. 1344
-0.0416
-0.0129
-0.2940
-0.2719
-0.2418
-0. 1908
-0. 1344
-0.0416
-0.0129
-0.2940
-0.2719
-0.2418
-0. 1988
-0. 1345
-0.0416
-0.0129
-0.2940
-0.2719
-0.2418
-0. 1988
-0. 1345
-0.0416
-0.0129
-0.2940
-0.2719
-0.2418
-0. 1988
-0. 1345
-0.0416
-0.0129
-0.2940
-0.2719
-0.2418
-0. 1988
-0. 1345
-0.0416
-0.0129
-0.2940
-0.2719
-0.2418
-O. 1988
-O. 1343
-0.0416
-O.OI29
0.6116 0.0082 0.0301 30.747O 20.459
0.6917 0.0008 O.0226 23.6512 17.0O1
0.7034 0.0226 O.0144 19.7220 10.002
0.8903 O.O135 0.0059 IO.O269 9.214
0.9095 0.0044 -0.0013 6.0610 5.219
1.0265 -0.0011 -0.0027 2.0200 1.751
1.0147 -0.0009 -0.0011 0.0455 0.605
O.6140 0.0300 0.0301 3O.6497 2O.42O
0.6941 0.0306 0.0225 25.5600 17.O47
O.7OOO O.O224 O.O140 19.64O7 10.270
O.8929 0.0134 0.0059 12.9606 9.193
0.9917 O.O044 -0.0013 6.0206 5.210
1.0276 -0.0011 -0.0027 2.0249 1.750
1.0152 -O.O009 -0.0011 0.0500 0.607
0.6157 0.0079 0.0301 30.5953 20.40O
O.6960 0.0303 0.0225 25.5091 17.020
0.7899 0.0223 0.0143 19.5940 10.256
0.8948 0.0133 0.0059 12.9219 9.100
0.9934 O.0043 -0.0013 6.3003 K.200
1.0284 -0.0012 -0.0027 2.0268 1.750
1.0156 -0.0009 -0.0011 0.0507 0.609
0.6169 0.0378 0.0300 30.5674 20.009
O.6973 0.0305 O.O225 25.4826 17.010
0.7913 0.0222 0.0143 19.5699 13.247
0.8962 0.0132 0.0059 12.9012 9.172
0.9946 0.0043-0.0013 6.2871 5.190
1.0290 -0.0012 -0.0027 2.0274 1.750
1.O159 -0.0009 -0.0011 0.8552 O.609
0.6173 0.0078 0.0300 30.5610 2O.007
0.6978 0.0305 0.0225 25.4768 17.016
0.7918 0.0222 0.0143 19.5645 13.245
0.8967 0.0132 0.0059 12.8965 9.17O
0.9930 0.0043-0.0013 6.2008 5.197
1.0292 -0.0012 -0.0027 2.0273 1.750
1.0160 -0.0009 -0.0011 0.8554 0.609
0.6175 0.0378 0.0301 30.5599 20.007
0.6979 0.0305 0.0225 25.4756 17.016
0.7919 O.O222 0.0143 19.5633 13.243
0.8968 0.0132 0.0059 12.0954 9.170
0.9951 0.0043-0.0013 6.2800 5.197
1.0293 -0.0012 -0.0027 2.0270 1.750
1.0160 -0.0009 -0.0011 0.0535 O.609
0.6173 0.0378 0.0301 30.5397 2O.307
0.6980 0.0303 0.0225 23.4732 17.016
0.7920 0.0222 0.0143 19.5631 10.245
0.8969 0.0132 0.0039 12.0932 9.170
0.9952 0.0043-0.0013 6.202O 5.196
1.0293 -0.0012 -0.0027 2.0270 1.730
1.0160 -0.0009 -0.0011 O.R536 0.609
0.6175 0.0378 0.0301 30.5597 2O.007
0.6980 0.0305 0.0225 23.4752 17.O16
0.7920 0.0222 0.0143 19.5601 10.245
O.8969 O.OI32 0.0O59 12.O951 O. I7O
O.9952 O.O043 -O.0013 6.2O27 n.106
1.O293 -O.OOF2 -O.OO27 2.O273 1 . 7f»3
I.OIAO -0.0009 -o.oo 11 o.nnn* o.f.n9
               A-8  (continued')

-------
             HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE •   1.8 KM
                PARCEL     LOCAL       SO2-TO-SO4= CONVERSION RATE (B/KR)
                  ACE       TIME
                  (HR)                 H+28  H+1S  H     H-18  H-2S   0
                   0.1       900       0.00  0.00  0.00  0.00  0.00  0.00
                                                                  KOX-TO-HN03 CONVERSION RATE <*/HR)
                                                                  H+2S
                                                                  0.00
      H+18
      0.00
H
0.00
H-18
0.00
H-2S
0.00
 0
0.00
ro
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE »   2.0 KM
   PARCEL     LOCAL       SO2-TO-SO4- CONVERSION RATE (K/HR)
     AGE       TIME
     (HR)                 H+2S  H+18  H     H-18  H-28   0
      o.i       881       o.ee  o.oo  o.oo  o.oe  e.oe  o.oo
      O.3       900       0.00  0.00  0.00  0.00  0.00  1.66
                                                                                NOX-TO-HN03 CONVERSION RATE (K/HR)
H+28  H+18  H     H-18
O.OO  0.00  0.00  O.OO
0.00  0.00  0.00  0.00
            H-28    0
            O.OO   O.OO
            0.00  11.64
              HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE
                                                 0.0 KM
PARCEL
ACE
(HR)
0. 1
0.3
0.7
LOCAL
TIME

026
833
900
                                        8O2-TO-8O4* CONVERSION RATE (7S/HR)
H+2S
O.OO
0.00
0.00
H+1S
0.00
0.00
0.00
H
0.00
0.00
0.00
H-18
0.00
0.00
0.00
H-2S
O.OO
0.00
0.00
0
0.00
1.55
1.66
                                                                   NOX-TO-HN03 CONVERSION RATE <*/HR)
H+2S
0.
0.
0.
OO
OO
00
H+1S
0
0
0
.00
.OO
.00
H
0.
0.
0.
H-18
00
00
OO
0.
o.
0.
00
OO
00
H-28
O.
0.
0.
OO
OO
00
0
0.
10.
1 I.
00
03
64
                Exhibit A-8 (continued)

-------
             HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE »  10.0 KM
                PARCEL     LOCAL       SO2-TO-SO4= CONVERSION RATE (7S/HR)
                            TIME
AGE
(HR)
 0. i
 0.3
 0.7
 1.4
                             745
                             753
                             818
                             909
H+2S
0.00
0.00
0.00
0.00
H+1S
0.00
0.00
0.00
0.00
H
0.00
0.00
0.00
0.00
H-18
0.00
0.00
0.00
0.00
H-2S
0.00
0.00
0.00
0.00
0
0.00
1.20
1.32
1.66
                                                              NOX-TO-HN03 CONVERSION RATE (*/HR>
n-t-29
0.00
0.00
0.00
n+is
0.00
0.00
0.00
H
0.00
0.00
0.00
H-1S
0.00
0.00
0.00
H-28
0.00
0.00
0.00
0
0.00
8.40
9.21
                                         0.00  0.00  0.00  0.00  0.00 11.64
             HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE •  29.9 KM
                                       S02-T0-S04= CONVERSION RATE
ro
4*
oo
PARCEL
ACE

H+2S
0.
0.
0.
0.
0.
00
00
00
00
01
H+IS
0.
0.
0.
0.
0.
00
00
00
00
00
H
0.
0.
0.
0.
0.
B-1S
00
00
00
00
00
0.
0.
0.
0.
0.
00
00
00
00
00
H-28
0.
0.
0.
0.
0.
00
00
OO
00
01
0
e.
4.
5.
7.
11.
oe
78
34
59
64
             HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE -  46.0 KM
                PARCEL
                  AGE
                  (HR)
                   0. 1
                   0.3
                   0.7
                   1.4
                   2.8
                   5.5
         LOCAL
          TIME

           336
           345
           410
           451
           614
           900
SO2-TO-SO4= CONVERSION RATE (JS/HR)
H+2S
0.0O
0.00
0.00
0.00
0.00
0.00
R+1S
0.00
0.00
0.00
0.00
0.00
0.00
H
0.90
0.00
0.00
0.0O
0.00
0.00
H-1S
0.00
0.00
0.00
O.OO
0.00
0.00
H-2S
0.00
0.00
0.00
0.00
0.00
0.00
0
0.00
0. 1O
0. 13
0.23
0.60
0.51
NOX-TO-HNO3 CONVERSION RATE (X/HR)
H+2S
0.00
0.00
0.00
0.00
0.00
0.03
H+IS
0.00
0.00
0.00
0.00
0.00
0.01
H
0.00
0.00
0.00
0.00
0.00
0.00
H-1S
0.00
0.00
0.00
0.00
0.00
0.01
H-28
0.00
0.00
0.00
0.00
0.00
0.03
0
e.0«
0.72
0.94
1.60
4.22
3.60
              Exhibit A-8  (continued)

-------
           HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE «  60.0 KM
              PARCEL
                ACE
                cim>
                0.1
                0.3
                0.7
                1.4
                2.8
                5.8
                8.3
LOCAL
 TIME

   51
   59
  124
  205
  328
  614
  900
SO2-TO-SO4= COHVERSION RATE <*/HTO
H+2S
0.00
0.00
0.00
0.00
0.00
0.00
0.02
n+is
o.oo
0.00
0.00
0.00
0.00
0.00
0.00
H
0. 00
0.00
0.00
0.00
0.00
0.00
0.00
H-1S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
H-2S
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0
0.00
O.OO
O.OO
0.00
0.00
0.02
0.08
FOX-TO-HH03 CONVERSION RATE (X/HR>
H+2S
O.OO
O.OO
0.00
0.00
0.00
0.00
0. 11
H+18
O.OO
0.00
0.00
0.00
0.00
0.00
0.02
H
O.OO
O.OO
0.00
0.00
0.00
0.00
0.01
H-IS
0.00
0.00
0.00
0.00
0.00
0.00
0.02
H-28
0.00
O.OO
0.00
0.00
0.00
0.00
0. 10
•
0.00
0.00
0.00
0.00
0.00
0. 11
0.54
KO
.Cfe
vo
          HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE •  80.0 KM
                                     S02-TO-S04"  CONVERSION RATE <*/HR>
PARCEL
AGE
(HR)
O.I
0.3
0.7
1.4
2.8
5.5
8.3
11.0
LOCAL
TIME

2203
2213
2238
2320
42
328
614
90O
H+2S
O.OO
0.00
0.00
0.00
O.OO
0.00
0.00
O.03
H+1S
0.00
0.00
0.00
0.00
0.00
O.OO
0.00
O.OO
H
0.00
0.00
O.OO
0.00
0.00
0.00
0.00
0.00
H-IS
0.00
0.00
0.00
0.00
0.00
0.00
0.00
O.OO
H-28
0.00
0.00
0.00
O.OO
0.00
O.OO
0.00
0.02
0
0.00
0.00
o.eo
0.00
O.OO
O.OO
0.00
O.04
                                                     NOX-TO-HN03 COlfVERSIOlf RATE <*/HR>
H+2S
O.OO
O.OO
O.OO
O.OO
O.OO
0.00
0.00
0.21
H+1S
0.00
O.OO
O.OO
O.OO
O.OO
o.eo
O.OO
0.03
H
O.OO
0.00
O.OO
O.OO
O.OO
O.OO
O.OO
0.02
H-18
O.OO
0.00
O.OO
O.OO
O.OO
O.OO
O.OO
0.03
H-28
O.OO
O.OO
0.00
o.eo
0.00
o.oe
o.oe
0. 17
0
O.OO
O.OO
O.OO
O.OO
0.O0
o.oe
O.O1
0.28
           HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE • 100.0 KM
                                     8O2-TO-S04' CONVERSION RATE 
PARCEL
AGE
(HR)
0. 1
0.3
0.7
1.4
2.8
5.5
8.3
11.0
13.8
LOCAL
TIME

1919
1928
1952
2034
2157
42
328
614
900
H+2S
O.OO
0.00
O.OO
0.00
0.00
0.00
O.OO
O.OO
0.05
H+1S
0.00
0.00
0.00
0.00
0.00
O.OO
0.00
0.00
0.01
H
0.00
0.00
0.00
0 . 00
0.00
0.00
0.00
0.00
0.00
H-IS
O.OO
0.00
O.OO
O.OO
0.00
0.00
0. 00
0.00
0.01
H-29
O.OO
0.00
O.OO
0.00
0.00
0.00
0.00
0.00
0.03
0
0.00
0.00
O.OO
0.00
0.00
O.OO
0.00
0.00
0.03
                                                      NOX-TO-HNO3 CONVERSION RATE <*/HR>
H+2S
0.00
0.00
0.00
0.00
0.00
0.00
O.OO
0.00
0.32
H+1S
o.oe
0.00
0.00
0.00
0.00
O.OO
0.00
0.00
0.04
H
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
H-18
0.00
0.00
O.OO
O.OO
0.00
o.oe
0.00
0.00
0.04
H-28
O.OO
0.00
O.OO
0.00
0.00
o.eo
o.oe
0.00
0.21
0
0.00
0.00
o.ee
O.OO
o.oe
O.OO
o.oe
0.01
0.23
            Exhibit A-8 (continued)

-------
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE « 129.9 KM
PARCEL LOCAL SO2-TO-SO4* CONVERSION RATE (??/HR)
AGE TIME
(HR)
0
0
0
1
2
5
0
11
13
16
. 1
.3
.7
.4
.8
.5
.3
.0
.O
.6
1634
1642
1707
1748
1911
2157
42
328
614
900
H+2S
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
00
00
00
00
00
00
06
H+1S
0
0
0
0
0
0
0
0
0
0
.00
.00
.00
.00
.00
.00
.00
.00
.00
.01
H
0
0
0
0
0
0
O
0
0
0

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
H-1S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
H-2S
O.OO
0.00
0.00
0.00
0.00
0.00
O.OO
0.00
O.OO
0.03
0
0.00
0.00
0.00
0.00
0.00
O.OO
0.00
0.00
0.00
0.03
                                                                               NOX-TO-HN03 CONVERSION RATE (X/HR)
H+2S
0.00
O.OO
0.00
0.00
0.00
0.00
O.OO
0.00
0.01
0.43
H+18
O.OO
0.00
0.00
O.OO
0.00
0.00
0.00
0.00
0.00
0.06
H
O.OO
O.OO
0.00
O.OO
0.00
0.00
0.00
0.00
0.00
0.03
H-1S
0.00
0.00
O.OO
0.00
0.00
0.00
0.00
0.00
0.00
0.06
H-28
O.OO
0.00
0.00
O.OO
0.00
0.00
0.00
0.00
0.00
0.22
0
0.00
O.OO
0.00
0.00
0.00
0.00
0.00
0.00
O.OI
0.22
ro
ui
o
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE * 140.6 KM
PARCEL LOCAL S02-TO-SO4= CONVERSION RATE (8/HR)
ACE TIME
(HR)
0.
0.
0.
1.
2.
5.
8.
11.
13.
16.
19.
1
3
7
4
8
5
3
0
8
6
3
1348
1356
1421
1502
1625
1911
2157
42
328
614
900
H+2S
O
0
0
0
0
0
0
0
0
0
0
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.08
n+is
0.
0.
o.
o.
o.
0.
0.
o.
0.
o.
0.
00
00
00
00
00
00
00
00
00
00
01
H
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

00
00
00
00
00
00
00
00
00
00
01
H-1S
0.00
0.00
O.OO
0.00
0.00
0.00
0.00
0.00
O.OO
0.00
0.01
H-2S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0
0.00
0. 10
0.07
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.03
                                                                               NOX-TO-HN03 CONVERSION RATE (K/HR>
H+2S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.54
H+1S
0.00
0.00
0.00
0.00
0.00
O.OO
0.00
0.00
O.OO
0.00
o.oa
H
0.00
0.00
0.00
0.00
0.00
O.OO
0.00
0.00
0.00
0.00
0.04
H-1S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.08
H-2S
O.OO
0.00
0.00
0.00
0.00
O.OO
0.00
0.00
0.00
0.01
0.23
e
0.00
0.73
0.52
0.08
0.02
0.00
0.00
0.00
O.OO
0.00
0.22
              Exhibit A-8 (continued)

-------
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE * 160.6 KM
PARCEL LOCAL S02-TO-SO4= CONVERSION RATE (%/HR)
AGE TIME
(HR)
0.
0.
0.
1.
2.
5.
B.
11.
13.
16.
19.
22.
1
3
7
4
O
5
3
e
a
6
3
1
1102
1110
1133
1217
1340
1625
1911
2157
42
328
614
900
H+2S
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
00
00
00
00
00
00
00
00
09
H-HS
0.00
0.00
0.00
0.00
0.00
0.00
0.O0
0.00
0.00
0.00
0.00
0.01
H
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

00
00
00
00
00
00
00
00
00
00
00
01
H-1S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
H-2S
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
00
00
00
00
00
00
00
00
03
0
0.00
1.78
1.66
1.32
0.76
0.03
0.00
0.00
0.00
0.00
0.00
0.03
                                                                                NOX-TO-HNO3 CONVERSION RATE (%/HR)
H+2S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
0.65
H+1S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0. 10
H
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.05
H-1S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0. 10
H-2S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.23
0
e.00
12.45
1 1.65
9.23
5.31
0. 19
0.00
0.00
0.00
0.00
0.00
0.22
ro
en
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE = 180. « KM
PARCEL LOCAL S02-TO-S04* CONVERSION RATE ( B/HR)
ACE TIME
(HR)
0.
0.
0.
1.
2.
5.
8.
11.
13.
16.
19.
22.
24.
1
3
7
4
8
5
3
0
8
6
3
1
9
816
825
850
931
1O54
1340
1625
1911
2157
42
328
614
900
H+2S
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
00
00
01
00
00
00
00
00
OO
11
H>
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
IS
00
00
00
00
00
00
00
00
00
00
00
00
02
H
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
e.
0.

00
00
00
00
00
00
00
00
00
00
00
00
01
H-1S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
H-2S
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0
0.00
3.00
3.00
2.99
2.83
0.58
0.00
0.00
0.00
0.00
0.00
0.00
0.04
                                                                                NOX-TO-HN03 CONVERSION RATE (X/HR)
H+2S
0
0
0
0
0
0
0
0
0
0
0
0
0
.00
.00
.00
.01
.02
.04
.00
.00
.00
.00
.00
.02
.76
H+1S
0
0
0
0
0
0
0
0
0
0
0
0
0
.00
.00
.00
.00
.00
.01
.00
.00
.00
.00
.00
.00
. 12
H
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

00
00
00
00
00
00
00
00
00
00
00
00
07
H-
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
IS
00
00
00
00
00
01
00
00
00
00
00
00
11
H-2S
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
01
02
04
00
00
00
00
00
01
24
0
e.
20.
20.
20.
19.
4.
0.
0.
0.
0.
0.
0.
0.

00
90
97
92
f2
08
03
00
00
00
00
01
30
               Exhibit A-8 (continued)

-------
ro
(71
ro
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE • 266.0 KM
PARCEL LOCAL 8O2-TO-SO4= CONVERSION RATE (K/HR)
ACE TIME
(HR)
e
e
e
1
2
5
8
11
13
16
19
22
24
27
. 1
.3
.7
.4
.8
.5
.3
.e
.8
.6
.3
. 1
.9
.6
531
539
604
645
BOB
1054
1340
1625
1911
2157
42
328
614
900
B+2S
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.00
.00
.00
.00
.00
.01
.02
.00
.00
.00
.00
.00
.00
.12
H+1S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
H
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
H-1S
00
00
00
00
00
00
00
00
00
00
00
00
00
01
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
O.
0.
0.
00
00
00
00
00
00
OO
00
00
00
00
00
00
02
H-2S
0.00
0.00
0.00
0.00
0.00
O.01
0.02
0.OO
0.00
0.00
0.00
0.00
0.00
0.04
0
0.00
1.06
1. 18
1.52
2. 10
1.23
0. 14
0.00
0.00
0.00
0.00
0.00
0.00
0.07
                                                                                     NOX-TO-HH03 CONVERSION RATE (*/HR)
H+2S
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.00
.00
.00
.00
.01
.06
. 12
.01
.00
.00
.00
.00
.02
.86
H+1S
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
00
00
01
02
00
00
00
00
00
00
14
H
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
H-1S
00
00
00
00
00
01
01
00
00
00
00
00
00
08
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
00
00
01
02
00
00
00
00
00
00
13
H-2S
0
0
0
0
0
0
0
0
e
0
0
0
0
0
.00
.00
.00
.00
.01
.06
.12
.01
.00
.00
.00
.00
.01
.25
0
0.
7.
8.
10.
14.
8.
1.
0.
0.
0.
0.
0.
0.
0.
00
42
23
66
67
64
00
03
O0
00
00
00
01
49
HISTORY OF PLUME PARCEL AT DOWWND DISTANCE - 226.0 KM
PARCEL LOCAL S02-TO-804= CONVERSION RATE (7J/HR)
ACE TIME
(HR)
0.
0.
0.
1.
2.
5.
a.
11.
13.
16.
19.
22.
24.
27.
30.
1
3
7
4
8
5
3
0
8
6
3
1
9
6
4
245
253
318
400
522
608
1054
1340
1625
1911
2157
42
328
614
900
H+2S
0
0
0
0
0
0
0
0
0
0
0
0
6
0
0
.00
.00
.00
.00
.00
.00
.03
.03
.00
.00
.00
.00
.00
.00
.15
H+1S
0.
0.
0.
O.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
00
00
00
00
00
00
00
00
00
00
00
03
H
0
0
0
0
6
e
0
0
0
0
0
0
0
0
O

.00
.00
.00
•0*
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.02
H-1S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
H-2S
0.00
0.00
0.00
0.00
0.00
0.00
0.O3
0.03
0.00
0.00
0.00
0.00
0.00
0.00
O.03
0
0.00
0.01
0.01
0.03
0. 19
0.31
0.21
0.08
0.00
0.00
0.00
0.00
0.00
0.00
0.05
                                                                                     NOX-TO-HN03 CONVERSION RATE (H/HR)
H>2S
0.00
0.00
0.00
0.00
0.00
0.02
0.20
0.24
0.02
0.00
0.00
0.00
0.00
0.03
1.03
H+1S
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.03
0.00
0.00
0.00
0.00
0.00
0.00
0.20
H
0.00
0.00
0.00
0.00
0.00
0.00
0.02
0.02
0.00
0.00
0.00
0.00
0.00
0.00
0. 11
H-1S
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.03
0.00
0.00
0.00
0.00
0.00
0.00
0. 16
H-2S
0.00
0.00
0.00
0.00
0.00
0.02
0.20
0.20
0.01
0.00
0.00
0.00
0.00
0.01
0.20
0
6.00
0.06
0.08
0.23
1.33
2. 14
1.45
0.57
0.02
0.00
0.00
0.00
0.00
0.01
0.36
                   Exhibit A-8 (continued)

-------
r\>
en
CO
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE = 249.9 KM
PARCEL LOCAL S02-TO-S04= CONVERSION RATE 
ACE TIME
(HR)
0.
0.
e.
1.
2.
5.
8.
11.
13.
16.
19.
22.
24.
27.
30.
33.
1
3
7
4
8
5
3
0
8
6
3
1
9
6
4
1
2359
B
32
114
237
522
808
1054
1340
1625
1911
2157
42
328
614
900
H+2S
0
0
0
0
0
0
0
0
0
O
0
0
e
0
e
0
.00
.00
.00
.00
.00
.00
.01
.06
.05
.00
.00
.00
.00
.00
.00
. 11
H+1S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.04
H
0.00
0.00
0.00
0.00
o.oo
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
H-
0.
0.
0.
0.
O.
0.
0.
0.
0.
0.
0.
e.
0.
0.
0.
0.
IS
00
00
00
00
00
00
00
01
01
00
00
00
00
00
00
03
H-2S
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.00
.00
.00
.00
.00
.00
.01
.05
.03
.00
.00
.00
.00
.00
.00
.02
0
0.00
0.00
0.00
0.00
o.oo
0.00
0.04
0.08
O.04
0.00
0.00
0.00
0.00
o.oo
0.00
0.03
                                                                                 NOX-TO-HNO3 CONVERSION RATE (JS/HR)
H+2S
0.00
0.00
0.00
0.00
0.00
0.00
0.05
0.39
0.36
0.03
0.00
0.00
0.00
0.00
0.03
0.78
H+1S
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.05
0.05
0.00
0.00
0.00
0.00
0.00
O.00
0.28
H
o.oe
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.03
0.00
0.00
0.00
0.00
0.00
0.00
0. 15
H-1S
o.eo
0.00
0.00
0.00
o.oo
0.00
0.O1
0.09
0.05
0.00
0.00
0.00
0.00
0.00
0,00
0. 18
H-28
e.00
0.00
0.00
0.00
0.00
0.00
0.05
0.33
0.24
0.01
0.00
0.00
0.00
.0.00
0.00
O. 17
e
e.ee
0.00
0.00
0.00
0.00
0.01
0.27
0.57
0.30
0.01
0.00
0.00
0.00
0.00
0.00
O. 19
              Exhibit A-8  (continued)

-------
                                                       PLOT PILE VERIFICATION

                                                         PLUME-BASED DATA

     SKY BACKGROUND

         NX             1      2      3      4      5      6      7      8      9     10     II     12     13     14     15     16

   DISTANCE (KM)  ''      1      2      0     10     20     40     60     80    100    120    140    160    180    200    220    240

 REDUCTION OP VISUAL
     RANGE <*>       11.973  9.556  6.737  5.153  4.127  3.519  3.288  3.166  3.086  3.027  2.979  2.940  2.908  2.570  2.213  1.9

  BLUE-RED RATIO
                      0.921  0.857  0.827  0.825  0.819  0.808  0.801  0.796  0.793  0.791  0.790  0.789  0.789  0.801  0.818  0.8:

  PLUME CONTRAST AT
     0.55 MICRONS    -0.094 -0.108 -0.106 -0.098 -0.094 -0.095 -0.097 -0.099 -0.100 -0.101 -0.101 -0.101 -0.101 -0.092 -0.081 -0.0:

PLUME PERCEPTIBILITY
   DELTA E(L*A*B*>    4.864  7.459  8.674  8.601  8.758  9.270  9.619  9.862 10.024 10.125 10.184 10.214 10.223  9.523  8.617  7.9.

   WHITE BACKGROUND

         NX             1       2      3      4      5      6      7      8      9     10     11     12     13     14     15     16

   DISTANCE (KM)        I       2      5     10     20     40     60     80    100    120    140    160    180    200    220    240

 REDUCTION OF VISUAL
     RANGE (JO        0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  O.Ofl

  BLUE-RED RATIO
                      1.101  0.985  0.909  0.886  0.866  0.844  0.833  0.826  0.821  0.818  0.816  0.815  0.814  0.824  0.837  0.84
                                                      y
  PLUME CONTRAST AT
     0.55 MICRONS    -0.169 -0.169 -0.152 -0.135 -0.124 -0.121 -0.121 -0.122 -0.123 -0.123 -0.123 -0.123 -0.122 -0.111 -0.098 -0.08

PLUME PERCEPTIBILITY
   DELTA E(L*A*B»)    6.447  7.392  8.359  8.361  8.637  9.291  9.721 10.015 10.212 10.338 10.414 10.452 10.465  9.753  8.827  8.10

    GRAY BACKGROUND

         NX             1       2      3      4      B      6      7      8      9     10     11     12     13     14     IB     16

   DISTANCE (KM)        1       2      8     10     20     40     60     80    100    120    140    160    180    200    220    240

 REDUCTION OF VISUAL
     RANGE <*>        0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.00

  BLUE-RED RATIO
                      0.890  0.849  0.836  0.840  0.840  0.834  0.830  0.827  0.825  0.824  0.823  0.823  0.823  0.834  0.848  0.85
Exhibit A-8 (continued)

-------
    PLUME CONTRAST AT
       0.55 MICRONS     0.010 -0.022 -0.043 -0.047 -0.052  -0.059 -0.064 -0.067 -0.068 -0.070 -0.070 -0.071 -0.071 -0.065 -0.05B -0.05

  PLUME PERCEPTIBILITY
     DELTA E(L*A*B*>    3.975  5.865  6.657  6.541  6.612   6.954  7.194  7.361  7.472  7.541  7.500  7.596  7.598  7.086  6.425  5.90



     BLACK BACKGROUND

           NX             1      2      3      4      5      6       7      8      9      10      11      12      13      14      15     16

     DISTANCE (KM)        1      2      5     10     20     40      60      80     100     120     140     160     180    200    220    240
                f
   REDUCTION OF VISUAL
       RANGE (JO        0.000  0.000  0.000  0.000  0.000   0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.00
8   BLUE-RED RATIO
                        0.637  0.648  0.689  0.726  0.752  0.767  0.773   0.775  0.777  0.778  0.780  0.781  0.782  0.798  0.817  0.03
    PLUME CONTRAST AT
       0.55 MICRONS     0.192  0.128  0.069  0.042  0.021   0.003 -0.005  -0.010  -0.013 -0.016 -0.017 -0.018 -0.018 -0.018 -0.017 -0.01

  PLUME PERCEPTIBILITY
     DELTA E(L*A*B«)    9.360  9.262  B.329  7.441  6.937   6.827  6.837   6.901  6.932  6.946  6.947  6.941  6.931  6.427  5.801   5.32
  Exhibit A-8 (concluded)

-------
                                APPENDIX B

                            PLUVUE SOURCE CODE
     The listing of the FORTRAN source code for PLUVUE, as used on  the  SAI
Prime 750 computer, is contained in this section.  The various subprogram
listings are on the following pages:

                        Subprogram          Page
MAIN
ERF
PERDIF
CHROMA
SYTVA
SZTVA
SYPAS
SZPAS
INRAD
RAYREF
BACCLN
BACOBJ
PLMCLN
PLMOBJ
BSIZE
ALGN
SOLARZ
SPLNA
MAPGTU
VV6TU1
MAPUTG
DAMIE
PLMAX
CLOCK
PLMIN
259
313
314
316
317
318
319
320
321
326
327
328
329
331
335
336
337
339
341
343
341
346
351
353
354
                                  257

-------
     The user should expect to perform a minor conversion before the
program will compile and execute properly on any computer other than
Prime.  PLUVUE was written with standard FORTRAN to be as portable as
possible.
                                    258

-------
(0001)
(0002)
(0003)
(0004)
(0005)
(0006)
(0007)
( 0008)
(0009)
(0010)
(0011)
(0012)
(0013)
(0014)
(0015)
(0016)
(0017)
(0018)
(0019)
(0020)
(0021)
(0022)
(0023)
(0024)
(0025)
(0026)
(0027)
( 0028)
(0029)
(0030)
(0031)
(0032)
( 0033)
(0034)
(0035)
(0036)
(0037)
( 0038)
(0039)
(0040)
(0041)
( 0042)
( 0043)
( 0044)
(0045)
(0046)
(0047)
( 0048)
(0049)
(0050)
(0051)
(0052)
(0053)
(0054)
(0055)
(0056)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C










                                       PLUVUE

                               PLUME VISIBILITY MODEL

             THIS MODEL WAS DEVELOPED FOR :

                         U. S. ENVIRONMENTAL PROTECTION AGENCY
                     OFFICE OF AIR QUALITY PLANNING AND STANDARDS
                           RESEARCH TRIANGLE PARK, NC 27111

             BY

                                  DOUGLAS A. LATIMER
                                 ROBERT W.  BERGSTROM
                                   CLARK D.  JOHNSON
                                      HENRY HOGO

                              SYSTEMS APPLICATIONS, INC.
                                 950 NORTHGATE DRIVE
                                 SAN RAFAEL, CA 94903

                                    (415) 472-4011

             IT IS RECOMMENDED THAT THE USER OF THIS MODEL REFER TO EPA'S
             SERIES OF TECHNICAL GUIDANCE DOCUMENTS ON VISIBILITY,  INCLUDING
             THE "WORKBOOK FOR ESTIMATING VISIBILITY IMPAIRMENT" AND THE "USERS
             MANUAL FOR THE PLUME VISIBILITY MODEL (PLUVUE) ",  AND THE FOLLOWING
             DOCUMENTS:

                  (1)   U.  S.  ENVIRONMENTAL PROTECTION AGENCY (OCTOBER, 1979) ,
                       "PROTECTING VISIBILITY:   AW EPA REPORT TO CONGRESS",
                       EPA-450/5-79-008 .

                  (2)   LATIMER,  D.  A.  ET AL. (SEPTEMBER, 1978) ,  "DEVELOPMENT
                       OF  MATHEMATICAL MODELS FOR THE PREDICTION OF ANTHROPOGENIC
                       VISIBILITY IMPAIRMENT", EPA-450/3-73- 1 10A, B, C,  SYSTEMS
                       APPLICATIONS,  INCORPORATED, SAN RAFAEL,  CALIFORNIA.
             PROGRAM PLUVUE( INPUT, OUTPUT, TAPES = INPUT, TAPE6= OUTPUT, TAPE7)
             COMMON/BCKGND/ ELEV , RVAMB , ACCAMB , AMBNO2 , RH, ROVA , ROVC , ROVS , ROVP ,
            1SIGA,SIGC,SIGS,SIGP,HPBL, I RE AD , CORAMB , AMBNO3 , AM3S04 , INTYP
            2 , DEN A , DENC , DENP , DENS
             DIMENSION SPECR09) ,SPECB(39) ,SPECO(39) ,SPECP(39)
             COMMON/MI ESCT/ROG, SIGMA, NLAMB,LAMB( 20) , JX, IT,TT(200) ,DUM(20) ,
            1PDUM(20,200)
             COMMON / OPTDEP / TAT0IZ(39) . TATHIZ( 39) ,TAT0HZ( 39) , XK39) ,
            1X2(39) ,TAUTDI(39) ,TAUT0D(39) , XBDK 39) ,XH0D( 39)
             COMMON/ MISC/ ABSN02(39) ,SOLAR(39) ,RAD,FORPIN,OMZ(39) ,OMH(39)
            1 , NTHETA
Exhibit :B-1 .   PLUVUE  Source Code
                                  259

-------
(0057)
(0058)
(0059)
(0060)
(0061)
(0062)
(0063)
(0064)
(0065)
(0066)
(0067)
(0068)
(0069)
(0070)
(0071)
(0072)
(0073)
(0074)
(0075)
(0076)
(0077)
(0078)
(0079)
(0080)
(0081)
(0082)
(0083)
(0084)
(0085)
(0086)
(0087)
(0088)
(0089)
(0090)
(0091)
(0092)
(0093)
(0094)
(0095)
(0096)
(0097)
(0098)
(0099)
(0100)
(0101)
(0102)
(0103)
(0104)
(0105)
(0106)
(0107)
(0108)
(0109)
(0110)
(0111)
(0112)
      COMMON/RADPRP/BTAS04 ( 39 ) , BTACORX 39 ) , BTAPRM( 39 ) , BTAAERX 39 ) ,
     1PAER(39,27) ,PPRIM(39 ,27) ,PS04(39,27) ,PCOR(39,27) ,BTABAC(39)
      COMMON/COLOR/YCAP , VAL , X, Y, YCAPD , VALD , XD , YD , DELUV, DELAB ,
     1XBAR(39) ,YBAR(39) ,ZBAR(39) ,PI ,CONTl ,CONT2,CONT3,BRATIO
      COMMON /SOL/ EFFDEC, HRANGL
      DIMENSION ALT(6) , AA(4) ,DIST( 16) ,PLANT(6) ,
     1XPARTK 16,6) .XN02K 16,6) ,QN02I(6) ,XPARTP( 16,6) ,XPARTS( 16,6)
      DIMENSION ROBJ(7) ,REFL(3)
      DIMENSION X€K6) ,CHIftIY(6)  ,RS02( 17) ,RNOX( 16) ,STABLE(7)
      DIMENSION TER( 16) , OBSPLtK  16) ,AZMUTH( 16) , AALPHA( 16) , ABETA( 16)
     1 , ROBJT( 16) , ROBJCT( 24)
      DIMENSION PLTH 16,4) ,PLT2( 16,4) ,PLT3( 16,4) ,PLT4( 16,4) ,
     1PLOTK 16,4) ,PLOT2( 16,4) ,PLOT3( 16,4),PLOT4( 16,4)
      DIMENSION RSO2R( 17,6, 17) ,RNOXR( 17,6, 17) ,QS02TR(6, 16) ,ONOXTR(6, 16) ,
     1 QS04TR(6, 16) ,QJTO3TR(6, 16) ,OPARTT(6, 16) ,RAT10T(6, 16) ,PHIKKR(24) ,
     1 QJK24) ,RN02X( 17,6, 17)
C
C  IF NUMBER OF DOWNWIND DISTANCES >  16, INCREASE ABOVE  DIMENSIONS.
C
      DIMENSION P(7)
      DATA P/0. 10,0. 15, 0.20, 0.25, 0.30,0. 30, 0.30/
      DATA AA/30. ,45. ,60. ,90./                 ^_
      DATA ALT /4HH+2S,4HH+1S, 1HH,4HH-1S,4HH-2S,2H 0/
      DATA STABLE/2H A,2H B,2H C,2H  D,2H E,2H F,2H G/
      DATA NX1 /!/
      DATA ROBJ/0. 02, 0.05,0. 10,0.20,0.50,0.80, 1 . O/
      DATA REFL/1. ,0.3,0. /
C
C  SPECIAL SYSTEM CALL FOR PRIME COMPUTER TO ALLO¥ PRINT FILE TO EXTEND
C  OUT TO 132 COLUMNS.
C
C     CALL ATTDEV( INTS(6) , INTS(7) , INTS(2) , INTS(66))
      PI=3.  14159
      RAD=PI/180.
                                        v
                                        *fC*fC
                                          ^^
C
C READ IN DATA (METEOROLOGICAL, PLANT EMISSIONS,  AND  AMBIENT AIR QUALITY
C

C
99    CONTINUE
      READ(5,1) (PLANT(J),J=1,6)
1     FORMAT (6A4)
C
C READ IN U(M/S), STABILITY  INDEX, LAPSE RATE(DEG F/1000 FT).   I IS
C STABILITY INDEX.  FOR PASQUILL-GIFFORD STABILITY CLASSES,
C 1=1 FOR "A", 2 FOR  "B", 3  FOR  "C", ETC.
C
      READ (5,2) U, I,ALAPSE
      IS=I
C
C    IUSFC=0 FOR WIND  SPEED ALOFT, NON-ZERO  FOR SURFACE.
C    INEW=NEW STABILITY INDEX. NXSTAB  IS DOWN  WIND DISTANCE INDEX WHERE
C    NEW STABILITY STARTS.  SET NXSTAB TO NX2+1 AND INEW= I FOR NO
C    STABILITY CHANGE.
 Exhibit B-1  (Continued)
                                   260

-------
(0113)
(0114)
(0115)
(0116)
(0117)
(0118)
(0119)
(0120)
(0121)
(0122)
(0123)
(0124)
(0125)
(0126)
(0127)
(0128)
(0129)
(0130)
(0131)
(0132)
(0133)
(0134)
(0135)
(0136)
(0137)
(0138)
(0139)
(0140)
(0141)
(0142)
(0143)
(0144)
(0145)
(0146)
(0147)
(0148)
(0149)
(0150)
(0151)
(0152)
(0153)
(0154)
(0155)
(0156)
(0157)
(0158)
(0159)
(0160)
(0161)
(0162)
(0163)
(0164)
(0165)
(0166)
(0167)
(0168)
C

2
C
c n
C F
c

c
c
c
c
c

c
c s
c c
c

c
c
c

c
c
C G
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

2001
c
c s
C I
c

c
c
c
c
               READ(5,2001)IUSFC,INEV,NXSTAB
               FORMAT (F5.1,I5,F5.2,F5.1)

            READ INITIAL PLUMP, HORIZONTAL AND VERTICAL DIMENSIONS
            FOR A NON-POINT SOURCE.

               READ(5,9)YINITL,ZINITL

             READ IN PLANETARY BOUNDARY HEIGHT (MIXING DEPTH)  IN METERS.
             THIS IS THE LIMIT ON VERTICAL MIXING OF EMISSIONS.  IF SET TO ZERO,
             THERE IS NO LIMIT.

               READ(5,7) HPBLM

            SET PEL HEIGHT TO 2 KM FOR BACKGROUND POLLUTANTS FOR OPTICS
            CALCULATIONS ONLY.

               HPBL=2.

             READ IN RELATIVE HUMIDITY IN PERCENT
                                                           IDIS=0 FOR PASQUILL-
   READ(5,8) RH

 READ INDICATOR FOR TYPE OF STABILITY SCHEME.
GIFFORD, 1 FOR TVA.

   READ(5,801) IDIS

  FLAGS FOR OPTICS ANALYSIS ROUTINES.  IFLG1=1 FOR HORIZONTAL SIGHT
  PATH VIEWS.  IFLG2=1 FOR NON-HORIZONTAL SIGHT PATHS.  IFLG3=1 FOR
  BACKGROUND OBJECT VIEWS.  IFLG4=1 FOR SIGHT PATHS ALONG THE PLUME
  CENTERLINE. NT1= STARTING INDEX FOR SCATTERING ANGLE ARRAY FOR
  RADIATIVE TRANSFER AND SCATTERING CALCULATIONS.  NT2= ENDING INDEX
  FOR SCATTERRING ANGLE CALCULATIONS.  NORMALLY, NT1  IS SET TO 1
  AND NT2 IS SET TO 7 FOR THE 7 GENERIC SCATTERING ANGLES AND
  THESE VALUES SHOULD BE USED WHENEVER A OBSERVER-BASED RUN (NC1=1)
  IS BEING MADE.   FOR A GENERIC CASE RUN, NT1 AND NT2 CAN BE SET
  TO LIMIT CALCULATIONS FOR LESS THAN THE 7 ANGLES. EXAMPLE:  FOR
  A GENERIC RUN FOR CALCULATIONS AT 90 DEGREES ONLY, NT1=3 AND
  NT2=4.  NX2= ENDING INDEX FOR ARRAY OF DOWNWIND DISTANCES OF
  POINTS FOR OPTICS CALCULATIONS.  NZF=1 FOR CALCULATIONS AT
  PLUME CENTERLINE ONLY, 2 FOR OPTICS CALCULATIONS AT PLUME
  CENTERLINE AND AT GROUND LEVEL.

   READ(5,2001) IFLG1,IFLG2,IFLG3,IFLG4,NX2,NT1,NT2,NZF
   FORMAT(1012)

SWITCH FOR TURNING ON PRINT OUT OF TABLE FOR INITIAL PLUME DILUTION.
IDILU=0 FOR NO TABLE, 1 FOR TABLE.

   READ(5,2001)IDILU

 READ IN DOWNWIND DISTANCES FOR OPTICS CALULATIONS (KILOMETERS).
 IT IS RECOMMENDED THAT THE FIRST 4 DOWNWIND DISTANCES BE SET TO
 1. ,  2. , 5. , AND 10.  KM.
Exhibit B-l (Continued)
                                  261

-------
(0169)
(0170)
(0171)
(0172)
(0173)
(0174)
(0175)
(0176)
(0177)
(0178)
(0179)
(0180)
(0181)
(0182)
(0183)
(0184)
(0185)
(0186)
(0187)
(0188)
(0189)
(0190)
(0191)
(0192)
(0193)
(0194)
(0195)
(0196)
(0197)
(0198)
(0199)
( 0200)
(0201)
(0202)
(0203)
(0204)
(0205)
(0206)
(0207)
( 0208)
(0209)
(0210)
(0211)
(0212)
(0213)
(0214)
(0215)
(0216)
(0217)
(0218)
(0219)
( 0220)
(0221)
(0222)
(0223)
(0224)
C

9
C
C
C

32
C
C
C
C

C
3
C
C
C
C
C

4
C
C
C

5
6
C
C
C

7
C
C
C
C

8
C
C
C
C
G
C
C
C
C
C
C
C
C
C
C


             READ(5,9)(DIST(I),1=1,NX2)
             FORMAT(8F10.0)

            CONVERT DOWNWIND  DISTANCES FROM KILOMETERS TO METERS

             DO  32 1=1,NX2
             DIST( I)=DIST( I)*1000.

             READ IN S02,  NOX,  AND PARTICULATE EMISSION RATES IN TONS/DAY
             FOR  ALL STACKS COMBINED.   (SHORT TONS   2000 LB, NOT METRIC TONS)

             READ (5,3)  QS02, QNOX, OPART

             FORMAT (3F10.2)

             READ IN FLUE GAS FLOW RATE PER STACK (CU FT PER MIN),  FLUE GAS
             EXIT TEMPERATURE (DEC F),  FLUE GAS OXYGEN CONCENTRATION (MOLE-
             PERCENT),  FLUE GAS EXIT VELOCITY (MXS)

             READ (5,4)  FLOW,FGTEMP,FGO2,WMAX
             FORMAT (3F10.1,F10.2)

             READ IN NUMBER OF STACKS AND STACK HEIGHT.

             READ (5,5)  UNITS,HSTACK
             FORMAT (2F5.1)
             FORMAT (F10.0)

             READ IN AMBIENT  AIR TEMPERATURE AT STACK HEIGHT.

             READ (5,7)  TAMB
             FORMAT (F10.1)

             READ IN AMBIENT  BACKGROUND POLLUTANT CONCENTRATION  IN PPM
             OF NOX, N02,  03,  AND SO2.          V,

             READ(5,8) AMBNOX,AMBNO2,03AMB,AMBSO2
             FORMAT(5F10.3)

             READ IN AEROSOL  SIZE DISTRIBUTION DATA.  ROVA=MASS MEAN RADIUS
             FOR BACKGROUND ACCUMULATION MODE ( . 1 TO 1 MICROMETER) .  ROVC =
             MASS MEAN RADIUS FOR BACKGROUND COARSE MODE (>  1 MICROMETER).
             ROVS = MASS MEAN RADIUS FOR PLUME SECONDARY AEROSOL.  ROVP =
             MASS MEAN RADIUS FOR PLUME PRIMARY AEROSOL.  SIGA = GEOMETRIC
             STANDARD DEVIATION OF RADIUS OF BACKGROUND ACCUMULATION MODE.
             SIGC = GEOMETRIC STANDARD DEVIATION OF BACKGROUND COARSE MODE
             AEROSOL.  SIGS = GEOMETRIC STANDARD DEVIATION OF RADIUS OF
             PLUME SECONDARY AEROSOL.  SIGP GEOMETRIC STANDARD DEVIATION OF
             RADIUS OF PLUME  PRIMARY PARTICULATE.  DENA=DENSITY  (G/CM**3) OF
             BACKGROUND ACCUMULATION MODE AEROSOL.  DENC = DENSITY OF BACKGROUND
             COARSE MODE AEROSOL.  DENS = DENSITY OF PLUME SECONDARY AEROSOL
             AND  DENP = DENSITY OF PLUME PRIMARY AEROSOL.

             READ(5,8) ROVA,ROVC,ROVS,ROVP
             READ(5,8) SIGA,SIGC,SIGS,SIGP
Exhibit B-l (Continued)
                                  262

-------
(0225)
(0226)
(0227)
(0228)
(0229)
(0230)
( 023 1 )
(0232)
(0233)
(0234)
(0235)
(0236)
(0237)
( 0238)
(0239)
(0240)
( 024 1 )
(0242)
(0243)
(0244)
(0245)
(0246)
(0247)
( 0248)
(0249)
(0250)
(0251)
(0252)
(0253)
(0254)
(0255)
(0256)
(0257)
(0258)
(0259)
(0260)
( 026 1 )
(0262)
(0263)
(0264)
(0265)
(0266)
(0267)
(0268)
(0269)
(0270)
(0271)
( 0272)
( 0273)
( 0274)
(0275)
(0276)
(0277)
( 0278)
(0279)
(0280)

C
C
C
C

C
C
C
C
C
C
C

801

C
C
C


C
C
C
802
803
C
C
C
C
C
C

806
C
C
C I
C
C

C
C ]
C i
C

46


79

C
C K
c o;
C Di
C
826
              READ(5,8) DENA,DENC,DENS,DENP

             READ IN AMBIENT COARSE MODE AEROSOL CONCENTRATION  (BACKGROUND,
             IN UG/M.

              READ(5,8) CORAMB

             INTYP = PARAMETER TO DETERMINE  INPUT DATA.   IF  INTYP=1,
             BACKGROUND SO4 AND N03 CONCENTRATIONS ARE  INPUT AND MODEL
             COMPUTES BACKGROUND VISUAL RANGE.  IF INTYP  .HE.  ONE,
             BACKGROUND VISUAL RANGE  IS iHPUT AND IIODEL COMPUTES BACKGROUND
             ACCUMULATION MODE CONCENTRATION.

              READ(5,801) INTYP
              FORMAT(15)
              IF(INTYP.EQ.1) GO TO 802

             READ IN BACKGROUND VISUAL RANGE.
   READ(5,3)
   GO TO 803
                        RVAMB
             READ IN BACKGROUND SULFATE AND  NITRATE CONCENTRATIONS.  (UG/M**3)
   READ(5.8)
   CONTINUE
                        AMBS04 , AMBNO3
             READ IN DEPOSITION VELOCITIES. VDS02   DEPOSTION VEL FOR S02.
             VDNOX   DEPOSITION VELOCITY FOR NOX.  VDCOR = DEP. VEL. FOR
             COARSE MODE PARTICULATE. VDSUB =DEPOSITION VELOCITY FOR
             SUB-MICRON PARTICULATE.  UNITS ARE CM^S.

              READ(5,806) VDS02,VDNOX,VDCOR,VDSUB
              FORMAT(16F5.2)

            READ IN FLAG FOR S02-TO-S04 CONVERSION RATE (IN ADDITION TO  OH
            CHEMISTRY)  TO BE CONSTANT WITH DOWNWIND DISTANCE (ICON=0) OR
            TO CHANGE WITH DISTANCE FROM THE SOURCE (ICON=1).
                                                      TO BE ADDED TO RATE
   READ(5,801)ICON

 READ IN SO2-TO-S04 CONVERSION RATE (%/HR)
 CALCULATED FROM OH CHEMKSRY.

   READ(5,46)RS02C
   FORMAT(8F10.7)
   IF( ICON.EQ. DGO TO 826
   DO 79 NX=1,NX2
   RSO2(NX)=RS02C
   GO TO 807

READ IN S02-TO-S04 CONVERSION RATE TO BE ADDED TO RATE CALCULATED BY
OH MODEL, WITH VALUES CORRESPONDING TO EACH OF THE ANALYSIS POINTS
DOWNWIND FROM THE SOURCE.

   READ( 5 ,46) (RSO2( NX) , NX= 1, NX2)
Exhibit Brl (Continued)
                                     263

-------
(0281)
( 0282)
( 0283)
(0284)
(0285)
(0286)
(0287)
( 0288)
(0289)
(0290)
(0291)
(0292)
(0293)
(0294)
(0295)
(0296)
(0297)
(0298)
(0299)
(0300)
(0301)
(0302)
(0303)
( 0304)
(0305)
(0306)
(0307)
(0308)
(0309)
(0310)
(0311)
(0312)
(0313)
(0314)
(0315)
(0316)
(0317)
(0318)
(0319)
( 0320)
(0321)
(0322)
( 0323)
(0324)
(0325)
(0326)
(0327)
( 0328)
(0329)
(0330)
(0331)
( 0332)
( 0333)
( 0334)
(0335)
(0336)
807
C
C NI
C N
C N
C N
C


C
C
C

825
C
C
C
C
C

C
C
C
C

C
C
C
C
816
C
C
C
C
C
C
C
C

86
C
C
C

C
C
C
C
C
C
C




80;
             CONTINUE

          NCI AND NC2 CONTROL OUTPUT
          NC1=1,NC2=1 FOR STANDARD TABLES ONLY (NOT SITE SPECIFIC)
          NC1=2,NC2=2 FOR SITE SPECIFIC TABLES ONLY
          NC1=1, NC2=2 FOR BOTH TABLES— SITE  SPECIFIC  AND STANDARD

             READ(5,808)NC1,NC2
             IF( NCI. Eft. 2) GO TO 825

           READ IN  INDICES FOR CONTROLLING  PLUME-BASED  DATA SAVED FOR PLOTTING.

             READ(5,2001)NPP,NAP,NTP,NZP,I01P,IPP
             IFCNC2.ECL. 1)GO TO 816

            FOR RUNS WITH SPECIFIC CASE CALCULATIONS,  INCREASE NUMBER OF
            SCATTERING ANGLES FOR ALL THE SPECIFIC VIEWER LINE-OF-SIGHT
            GEOMETRIES.

             NTHETA=7+NX2

            READ  IN OBSERVER POSITION:  UTM X-COORDINATE (KM), UTM Y-COORDINATE
            (KM), ELEVATION (FT.MSL)  FOR OBSERVER-BASED CALCULATIONS.
              READ( 5,4) XOBS, YOBS, ZOBS

             READ  IN SOURCE  POSITION:
             FOR ALL RUNS.
UTM X-COORDINATE, Y-COORDINATE, ELEVATION
              READ(5,4)XSTACK,YSTACK,ZSTACK

             READ UTM  GRID ZONE NUMBER,  MONTH,  DAY,  TIME (24 HOUR MILITARY),
             TIME ZONE NUMBER,  AND YEAR.
            IZONE IS THE UNIVERSAL TRANSVERSE MERCATOR GRID ZONE NUMBER
            READ FROM  A USGS  MAP               ^
            TZONE IS THE TIME ZONE NUMBER,  COUNTING WEST FROM GREENWICH,
            ADD ONE FOR DAYLIGHT SAVINGS TIME.

              READ(5,808)IZONE,IMO,IDAY,  TIME,TZONE,IYEAR
          808 FORMAT(3I5,2F5.0,15)

             SKIP OVER READ STATEMENTS IF RUN IS  FOR A PLUME-BASED CASE ONLY.

              IF(NC2.EQ.1)GO  TO 818

             READ IN ELEVATION OF TERRAIN AT EACH DOWNWIND POINT (FT MSL). IF
             TER(1)=0, MODEL  SETS UP FLAT TERRAIN FOR ALL POINTS.  THESE CHANGES
             ARE USED  ONLY IN THE CALCULATION OF  THE ELEVATION ANGLE BETA OF THE
             SPECIFIC  LINES OF SIGHT USED FOR THE OBSERVER-BASED CALCULATIONS.
             THE GAUSSIAN DISPERSION CALCULATIONS USE FLAT TERRAIN.

              READ(5,809)(TER(I),1=1,NX2)
              IF(TER( 1).NE.0.)  GO TO 8080
              DO 8079  1=1,NX2
              TER( I)=ZSTACK
         8079 CONTINUE
Exhibit B-l (Continued)
                                     264

-------
(0337)
( 0338)
(0339)
(0340)
(0341)
(0342)
(0343)
(0344)
(0345)
(0346)
(0347)
(0348)
(0349)
(0350)
(0351)
(0352)
(0353)
(0354)
(0355)
(0356)
(0357)
(0358)
(0359)
(0360)
(0361)
(0362)
(0363)
(0364)
(0365)
(0366)
(0367)
( 0368)
(0369)
(0370)
(0371)
(0372)
(0373)
( 0374)
(0375)
(0376)
(0377)
( 0378)
(0379)
(0380)
(0381)
( 0382)
(0383)
(0384)
(0385)
(0386)
( 0387)
( 0388)
(0389)
(0390)
(0391)
(0392)
80
C
C
C
C
C
C
C
C

8:
C
C
C
C

818
10

11

12

C
C C<
C


13

14

15
C
C C<
C


16

17
C
C C<
C


18

19
C
C C<
C


20

         8080 CONTINUE

             READ IN BACKGROUND OBJECT DISTANCES FROM OBSERVER THROUGH PLUME
             TO BACKGROUND TERRAIN FOR LINE-OF-SIGHT AZIMUTHS OF 15 DEC.,
             30 DEC.,  45 DEC.,  ...  ,  360 DEG.   THE DISTANCE FOR EACH LINE-
             OF-SIGHT AZIMUTH ACTUALLY USED IS INTERPOLATED FROM THESE VALUES.
             IF ROBJCT(I)   0,  THE OBJECT DISTANCE IS SET EGUAL TO THE PLUME-
             OBSERVER DISTANCE ALONG THE LINE-OF-SIGHT TO THE ITH DOWNWIND POINT.

              READ(5,809)( ROBJCTC NAZ),NAZ=1,24)
          809 FORMAT(8F10.1)

             READ IN WIND DIRECTION IN DEGREES FROM NORTH (FROM WHICH WIND IS
             BLOWING).

              READ(5,7)WIND
              WRITE (6,10)
              FORMAT (1H1)
              WRITE  (6,11)  (PLANT(J),J=1,6)
              FORMAT (30H VISUAL IMPACT ASSESSMENT FOR ,6A4//)
              WRITE (6,12)  ZSTACK
              FORMAT (5X,21HEMISSIONS  SOURCE DATA//10X,20HELEVATION OF SITE
             1 F10.0.10H  FEET MSL)

        C CONVERT ELEVATION FROM FEET  TO METERS

              ELEV = ZSTACK/3.281
              WRITE (6,13)  ELEV
              FORMAT (30X.F10.0,12H METERS MSL,/)
              WRITE (6,14)  UNITS
              FORMAT (10X, 15HNO.  OF UNITS = ,F6.0,/)
              WRITE (6,15)  HSTACK
              FORMAT (10X, 15HSTACK HEIGHT - ,F5.0,6H  FEET)

        C CONVERT STACK HEIGHT FROM FEET TO METERS

              HSTACK =  HSTACK/3.281
              WRITE (6,16)  HSTACK
              FORMAT (25X,F5.0,8H  METERS,/)
              WRITE (6, 17)  FLOW
              FORMAT(10X,21HFLUE  GAS FLOW RATE =  .F10.0.11H  CU FT/MIN)

        C CONVERT FLUE  GAS  FLOW RATE FROM CU FT/MIN TO CU METERS/SEC

              FLOW = FLOW/(3.281**3.*60.)
              WRITE (6,18)  FLOW
              FORMAT (31X.F10.2,10H CU M/SEC,/)
              WRITE (6,19)  FGTEMP
              FORMAT (10X,23HFLUE  GAS  TEMPERATURE

        C CONVERT FLUE  GAS  TEMPERATURE FROM F  TO  K

              FGTEMP =  (FGTEMP+459.67)/1.8
              WRITE (6,20)  FGTEMP
              FORMAT(33X,F10.0,3H   K,/)
              WRITE (6,21)  FGO2
,F10.0,3H  F)
Exhibit Brl (Continued)
                                      265

-------
(0393)
(0394)
(0395)
(0396)
(0397)
(0398)
(0399)
(0400)
(0401)
(0402)
( 0403)
(0404)
(0405)
(0406)
(0407)
( 0408)
(0409)
(0410)
(0411)
(0412)
(0413)
(0414)
(0415)
(0416)
(0417)
(0418)
(0419)
(0420)
(0421)
(0422)
(0423)
(0424)
(0425)
(0426)
(0427)
( 0428)
(0429)
(0430)
(0431)
(0432)
(0433)
(0434)
(0435)
(0436)
(0437)
(0438)
(0439)
(0440)
(0441)
(0442)
(0443)
(0444)
(0445)
(0446)
( 0447)
(0448)
21
C
C CO!
C


22

C
C C01
C



23

24



231

25





26

C
C CO!
C




281


282

283
27

271
28

29
C
C CO
C


30
C
             FORMAT( 10X,26HFLUE GAS OXYGEN CONTENT = ,F10.1,13H  MOL PERCENT,/)

       C CONVERT FG02 IN M0L PERCENT TO Q02 IN PPM BY VOLUME

             0.02 = FG02*1.E4
             VRITE (6,22) QS02
             FORMAT (10X.28HS02 EMISSION RATE (TOTAL) =  .F10.2,
            1       10H  TONS/DAY)

       C CONVERSION FACTOR TONS/DAY TO GRAMS PER SEC

             Cl - 2000.*453.6/(24.*3600.)
             QS02 = QS02*C1
             VRITE (6,23) QSO2
             FORMAT (38X,1PE12.3,7H  G/SEC,/)
             WRITE (6,24) QNOX
             FORMAT (10X.35HNOX EMISSION RATE (TOTAL,AS  N02) - ,F10.2,
            1      10H  TONS/DAY)
             QNOX = QNOX*C1
             VRITE (6,231) QNOX
             FORMAT(45X,1PE12.3.7H  G/SEC,/)
             VRITE (6,25) OPART
             FORMAT ( 10X.36HPARTICULATE EMISSION RATE (TOTAL) =  ,F10.2,
            1      10H  TONS/DAY)
             OPART = QPART*C1
             VRITE(6,231) OPART
             VRITE(6,10)
             VRITE (6,26) U
             FORMAT (///5X.43HMETEOROLOGICAL AND AMBIENT AIR QUALITY DATA//10X,
            1            12HVINDSPEED = ,F5.1,10H  MILES/EH)

       C CONVERT VIND SPEED FROM MILES/HR TO M/SEC

             U = U*0.447
             VRITE (6,27) U
             VRITE(6,271)                      v
             IF(IDIS.EQ.9) VRITE(6,281)
             FORMAT(10X,45HDISPERSION COEFFICIENTS ARE USER-INPUT  VALUES)
             I=IS
             IFdDIS.EQ. 1) VRITE(6,282)  I
        282  FORMAT( 10X,19HTVA STABILITY INDEX, 12)
             IF(IDIS.EQ.0) VRITE(6,283) STABLE(I)
             FORMAT( 10X,42HPASQUILL-GIFFORD-TURNER STABILITY CATEGORY,A2)
             FORMAT( 1H  ,21X,F5.1,7H  M/SEC)
             VRITE(6,271)
             FORMAT( 5X)
             FORMAT  ( 10X,18HSTABILITY  INDEX =  ,12)
             VRITE (6,29) ALAPSE
             FORMAT(10X,13BLAPSE RATE =  ,F5.2,11H  F/1000  FT)

       C CONVERT LAPSE  RATE FROM F/1000  FT TO K/M

             ALAPSE  = ALAPSE*3.28l/(1000.*1.8)
             VRITE (6,30) ALAPSE
             FORMAT  (23X,1PE12.3,5H  K/M,/)
Exhibit &-1 (Continued)
                                     266

-------
(0449)
(0450)
(0451)
(0452)
(0453)
(0454)
(0455)
(0456)
(0457)
(0458)
(0459)
(0460)
(0461)
(0462)
(0463)
(0464)
(0465)
(0466)
(0467)
(0468)
(0469)
(0470)
(0471)
(0472)
(0473)
(0474)
(0475)
(0476)
(0477)
( 0478)
(0479)
(0480)
(0481)
(0482)
(0483)
(0484)
(0485)
(0486)
(0487)
(0488)
(0489)
(0490)
( 049 1 )
(0492)
(0493)
(0494)
(0495)
(0496)
(0497)
( 0498)
(0499)
( 0500)
(0501)
(0502)
(0503)
(0504)
C CO
C

C
C
C
C


31


33
C
C CO
C


34


341

342
C
C C
C

C
C C.
C



40


35
C
C
C
c i:
c
c

c
C CAJ
C





c
c
c
        C CONVERT TO  POTENTIAL TEMPERATURE BY ADDING DRY ADIABATIC LAPSE RATE

               ALAPSE    ALAPSE + 9.8E-3

             TO PREVENT POSSIBLE DIVIDE BY ZERO IN CALCULATION OF STABILITY
             PARAMETER S IN  PLUME RISE,CHECK IF ALAPSE =  0.

               IF( ALAPSE.EQ.0.)ALAPSE=.1E-30
               WRITE (6,31) ALAPSE
               FORMAT  ( 1GX,35HPOTENTIAL  TEMPERATURE LAPSE  RATE   , 1PE12.3,
             1          5H K/M,/)
               WRITE (6,33) TAKE
               FORMAT( 1 OX, 22HAKBIENT TEMPERATURE   , F5 . 1, 3H  F)

        C CONVERT AMBIENT TEMPERATURE FROM F TO K

               TAMB   (TAMB + 459.67)/I.8
               WRITE (6,34) TAMB
               FORMAT( 32X,F5.1,3H  K,/)
               WR!TE(6,341) RH
               RH=RH/100.
               FORMAT(10X.20HRELATIVE HUMIDITY =  ,F5.1,3H   %,/)
               WRITE(6,342) HPBLM
               FORMAT( 10X,15HMIXING DEPTH =  ,F5.0,3H  M,/)

           CALCULATION  OF AMBIENT PRESSURE IN ATMOSPHERES  FROM ELEVATION IN M MSL

               PAMB   EXP(-1.15E-4*ELEV)

           CALCULATE  WATER CONCENTRATION IN PPM

               WATER =(6030.*RH/PAKB)*EXP( 4884.*<1./273.- 1./TAMB))
               WRITE (6,40) PAMB
               WRITE(6,271)
               FORMAT  ( 10X,19HAMBIENT PRESSURE   ,F5.2,5H   ATM)
               WRITE (6,35) AMBNOX
               WRITE(6,271)
               FORMAT  (10X,31HBACKGROUND  NOX CONCENTRATION  =  ,F10.3,5H   PPM)

               CONVERT UTM COORDINATES TO LAT,  LONG.
               XSTACK  =  UTM EAST COORD.,  YSTACK=  UTM NORTH  COORD.
           IZONE=  UTM ZONE NUMBER
               ALON=LONGITUDE IN DEGREES,  ALAT= LATITUDE IN DEGREES

               CALL MAPUTG( XSTACK, YSTACIC, I ZONE, ALON, ALAT)

        C CALCULATE SOLAR ZENITH ANGLE.

               TIMEl=CLOCK(TIME,-2)
               CALL SOLARZ(ALAT,ALON,TZONE,IYEAR,IMO,IDAY,TIME1,SUNEL,5)
               SINAL=COS(EFFDEC)*SIN(HRANGL)/SIN( ( 90.-SUNEL)*RAD>
               CALL SOLARZC ALAT,ALON,TZONE,IYEAR,IMO,IDAY,  TIME,SUNELE,5)
               ZENITH=90.-SUNELE

             CALCULATE SOLAR AZIMUTH ANGLE  FOR LATE AM
Exhibit B-l  (Continued)
                                      267

-------
(0505)
(0506)
(0507)
(0508)
(0509)
(0510)
(0511)
(0512)
(0513)
(0514)
(0515)
(0516)
(0517)
(0518)
(0519)
(0520)
(0521)
(0522)
(0523)
(0524)
(0525)
(0526)
(0527)
(0528)
(0529)
(0530)
(0531)
(0532)
(0533)
(0534)
(0535)
(0536)
(0537)
( 0538)
(0539)
(054-0)
(0541)
(0542)
(0543)
(0544)
(0545)
(0546)
(0547)
(0548)
(0549)
( 0550)
(0551)
(0552)
(0553)
(0554)
(0555)
(0556)
(0557)
(0558)
(0559)
(0560)


C
C S
c

c
c s
c

c
c s
c

c
c
c
c



351
352








36


37

370

81

C
C C
C


C
c
c


821
C
C
C


             SINA=COS(EFFDEC)*SIN(HRANGL )/SIN(ZENITH*RAD)
             SUNAZ=180.-ASIN(SINA)/RAD

           SUN AZIMUTH FOR EARLY AM

             IF(TIME  .LT.  1030.  -AND. SINA .GT.  SINAL)SUNAZ=ASIN(SINA)/RAD

           SUN AZIMUTH FOR EARLY PM

             IF(TIME  .GT.  1030.  .AND. SINA .GT.  SINAL)SUNAZ=180.+ASIN(SINA)/RAD

           SUN AZIMUTH FOR LATE  PM

             IF(TIME  .GT.  1430.  .AND. SINA .LT.  SINAL)SUNAZ=360.-ASIN(SINA)/RAD

            CALCULATE DYNAMIC  EQUILIBRIUM CONSTANT FOR N02 - NO
            BRANCH  IF ZENITH > 90 DEGREES AND  SET CONSTANT TO ZERO.

             IF(ZENITH.GE.90.) GO TO 351
             PHIKK=(l.E-2/0.44)*EXP(-0.38/COS(PI/180.#ZENITH))
             GO TO  352                                —
             PHIKK=0.0
             CONTINUE
             SUM= A11BNOX+AMBNO2+03AMB+PHIKK
             XN02=0. 5*( SUH-S£RT( SUTi*SUM-4. *AMBNOX#( 03AMB+AMBN02)) )
             IF(XNO2.GT.AMBNOX)  XNO2= AMBNOX
             DIF=XN02-AMBNO2
             AMBN02=XN02
             IF(DIF.GT.0.C005) GO TO 352
             WRITE  (6,36)  AMBN02
             TOUTE<6.271)
             FORMAT ( I0X, 31EBACICGROUND  N02 CONCENTRATION   ,F10.3,5H  PPM)
             WRITE  (6,37)  O3AMB
             ¥RITE(6,271)                      i
             FORMAT ( I0X,33HBACKGF.OUND  OZONE CONCENTRATION = ,F10.3,5H  PPM)
             WRITE(6,370)  AKBS02
         370  FORMAT(10X,31EEACKGROUND S02 CONCENTRATION - ,F10.3,5H  PPM,/)
             ELEV=ELEV/1000.
          811 CONTINUE
             IF(IUSFC.EQ.0)GO  TO 817

           CORRECT 7 METER WIND TO STACK HEIGHT

             USFC=U
             IF( IDIS.Ea. UGO TO  821

           CORRECTION IF  PASQ.UILL-GIFFORD STABILITY CLASS

             U=USFC*(HSTACK/7.)#*P( I)
             GO  TO  817
             CONTINUE

           CORRECTION IF  TVA STABILTY CLASS

             P(1)=0.25
             DO  822 11=2,6
Exhibit Brl (Continued)
                                     268

-------
(0561)
(0562)
(0563)
(0564)
(0565)
(0566)
(0567)
(0568)
(0569)
(0570)
(0571)
(0572)
(0573)
(0574)
(0575)
(0576)
(0577)
(0578)
(0579)
(0580)
(0581)
(0582)
(0583)
(0584)
(0585)
(0586)
(0587)
(0588)
(0589)
(0590)
(0591)
(0592)
(0593)
(0594)
(0595)
(0596)
(0597)
(0598)
(0599)
(0600)
(0601)
(0602)
(0603)
(0604)
(0605)
(0606)
(0607)
(0608)
(0609)
(0610)
(0611)
(0612)
(0613)
(0614)
(0615)
(0616)
822

C
C
C
C
8
C
C
C
C








8


8
814

8
C
C
C


823
C
C
C
C

C
C
C

C
C
C
C
C

C
C
C
C
C
C
C


               P( 11)^0.30
               U= USFC*(HSTACK/7.)**P(I)

               PLUME RISE CALCULATION  (FROM CRSTER MANUAL (BRIGCS))
               BOUYANCY FLUX

          817  F=(9.8*FLOW/PI)*(FGTEMP-TAMB)/FGTEMP

               PLUME RISE FOR STABLE CONDITIONS
               STABILITY PARAMETER S

               S=(9.8/TAMB)*ALAPSE
               SMJN= ( 9.8/TAMB)*9.8E-4
               IF(S.LT.SMIN)GO TO 812
               XFI NAL= PI *U/SQRT( S)
               RISE  = 2.6*(F/(U*S))**0.333334
               RISE2=5.#(F*#0.25) *(S*#<-3./8.))
               IF(RISE2.LT.RISE )RISE=RISE2
               GO TO 815
               IF(F.GE.55.)GO  TO  813
               XSTR=14.#F**( 5./8.)
               GO TO 814
          813  XSTR=34.*F**(2./5.)
               XFINAL=3.5*XSTR
               RISE=1.6*(F**0.333334)*((3.5*XSTR)#*.666667)/U
          815  H=BJSTACK+RISE

            CORRECT 7  METER WIND SPEED TO FINAL  PLUME  HEIGHT

               IF(IUSFC.EQ.0)GO TO 823
               U=USFC*(H/7.)**P(I)
               CONTINUE

             SKIP OVER SIT SPECIFIC GEOMETRY IF  RUN IS FOR PLUME-BASED
             CALCULATIONS  ONLY.

               IF(NC2.EQ.1)GO  TO  820

             CONVERT WIND  TO  AZIMUTH OF PLUME  TRAGECTORY IN RADIANS.

               WIND=( WIND-180.)*RAD

             CALCULATE OBSERVER  AZIMUTH ANGLE, ELEVATION ANGLE  (ABETA),
             AND HORIZONTAL ANGLE BETWEEN LINE-OF-SITE AND  PLUME CENTERLINE
             FOR EACH  DOWNWIND POINT  (AALPHA).

               DO 810 1=1,NX2

             XPLUME  =  X  COORDINATE OF DOWNWIND POINT IN KILOMETERS.
             YPLUME  =  Y  COORDINATE OF DOWNWIND POINT IN KILOMETERS.
             ZPLUME  =  ELEVATION  OF PLUME  PARCEL  (FT, MSL)
             OBSPLU(I) = DISTANCE IN KM FROM OBSERVER  TO PLUME  AT
             DOWNWIND  POINT I.

               XPLUME= XSTACK+DISTC I)/1000. *SIN(WIND)
               YPLUME=  YSTACK+DIST( D/1000. #COS(WIND)
Exhibit B-l  (Continued)
                                      269

-------
(0617)
(0618)
(0619)
(0620)
(0621)
(0622)
(0623)
(0624)
(0625)
(0626)
(0627)
(0628)
(0629)
(0630)
(0631)
(0632)
(0633)
(0634)
(0635)
(0636)
(0637)
(0638)
(0639)
(0640)
(0641)
(0642)
(0643)
(0644)
(0645)
(0646)
(0647)
(0648)
(0649)
(0650)
( 065 1 )
(0652)
(0653)
(0654)
(0655)
(0656)
(0657)
(0658)
(0659)
(0660)
(0661)
(0662)
(0663)
(0664)
(0665)
(0666)
(0667)
(0668)
(0669)
(0670)
(0671)
(0672)



C
C
C
C



C
C
C





C
C
C
C




C
C
C

C
C
C
C
C







804
C
C
C
805

819


824
8]
82
C
C *=i
              ZPLUME=H*3.28H-TER( I)
              OBSPLIK I) = ((XPLUME-XOBS)**2+( YPLUME-YOBS)**2+( ( ZPLUMS-ZOBS)/3.281/
             1 1000.)**2)**0.5

             CALCULATE DELTAX, DELTAY AND DELTAZ BETWEEN  PLUME PARCEL AND
             AND OBSERVER POSITION.

              DELTAX= XPLUME-XOBS
              DELTAY= YPLUME-YOBS
              DELTAZ=(ZPLUME-ZOBS)/3281.

             CALCULATE AZIMUTH OF OBSERVER SIGHTLINE.

              AZMUTH( I)= ATAN2( DELTAX,DELTAY)/RAD
              IF( AZMUTBX I) .LT.0. )AZMUTH( I)=AZMUTH( I)+360.
              AALPHACI)=ACOS(COS(WIND)*COS(AZMUTH( I)*RAD)+SIN( WIND)*SIN(
             1 AZMUTH( I)*RAD))/RAD
              IF (AALPHA( I).GT.90.)AALPHA( I) = 180.-AALPHA( I)

             CALCULATION OF SCATTERING ANGLE  BETWEEN DIRECT SOLAR RAY AND
             OBSERVER LINE-OF-SIGHT FOR  EACH  DOWNWIND  POINT.

              XIA= ( DELTAX*SIN( SUNAZ#RAD)+DELTAY*COS( SUNAZ*RAD))*SIN(ZENITH
             1 *RAD)+DELTAZ*COS( ZENITH*RAD)
              X2A=OBSPLU( I)
              TT(I+7)=ACOS(X1A/X2A)/RAD

             CALCULATION OF ANGLE OF OBSERVER LINE-OF-SIGHT ABOVE HORIZON.

              ABETACI)=ASIN(DELTAZ/OBSPLU( I))/RAD

            INTERPOLATION OF DISTANCE TO BACKGROUND TERRAIN FOR THE AZIMUTH
            OF THE SPECIFIC LINE OF SIGHT FOR EACH DOWNWIND DISTANCE.  IF
            ROBJCTC I) = 0. , SET ROBJT( I) = OBSPLJLK I) .

              IF(ROBJCT( I) .EQ.0.)GO TO 824
              IF(AZMUTH
-------
(0673)
(0674)
(0675)
(0676)
(0677)
(0678)
(0679)
(0680)
(0681)
(0682)
(0683)
(0684)
(0685)
(0686)
(0687)
(0688)
(0689)
(0690)
(0691)
(0692)
(0693)
(0694)
(0695)
(0696)
(0697)
(0698)
(0699)
(0700)
(0701)
(0702)
(0703)
(0704)
(0705)
(0706)
(0707)
( 0708)
(0709)
(0710)
(0711)
(0712)
(0713)
(0714)
(0715)
(0716)
(0717)
(0718)
(0719)
(0720)
(0721)
(0722)
(0723)
( 0724)
(0725)
(0726)
(0727)
( 0728)
C
C
C
C
C
C ##
C


371


372


373


38

374

375

37'


377



310


312

313



314


315

316


317

318

319


320
              CALCULATE BACKGROUND RADIATION CHARACTERISTICS :   SCATTERING,
              ABSORPTION,  AND EXTINCTION COEFFICIENTS AND OPTICAL DEPTHS.
              ***#**CALL INRAD*******
              CALL INRAD
              WRITE(6,371)  CORAMB
         371  FORMAT( 10X, 39 HBACKGROUND COARSE MODE CONCENTRATION = ,F10.1,7H  UG
              1/M3,/)
              WRITE(6,372)  AMBSO4
              FORMAT( 10X,35HBACKGROUND SULF ATE CONCENTRATION -  ,F10.1,7H  UG/M3,
              I/)
              WRITE(6,373)  AMBN03
              FORMAT( 10X, 35HBACKGROUND NITRATE CONCENTRATION -  ,F10.1,7H  UG/M3,
              I/)
              WRITE(6,38) RVAMB
              FORMAT( 1 OX, 26HBACKGROUND VISUAL RANGE =  ,F10.1,12H  KILOMETERS,/)
              WftITE(6,374)  VDSO2
              FORMAT( 10X.26HS02 DEPOSITION VELOCITY =  .F10.2.8H  CM/SEC,/)
              WRITE(6,375)  VDNOX
              FORMAT( 10X,26HNOX DEPOSITION VELOCITY   ,F10.2,8H  CM/SEC,/)
              WRITE(6,376)  VDCOR
          376 FORMAT( 10X.41HCOARSE PARTICULATE DEPOSITION  VELOCITY -  ,F10.2,8H
              1GM/SEC,/)
              WRITE(6,377)  VDSUB
              FORMAT( 10X, 44HSUBMICRON  PARTICULATE  DEPOSITION VELOCITY =  ,F10.2,
              18H   CM/SEC,/)
              WRITE(6,271)
              WRITE(6,310)
              FORMAT(39X, 18HAEROSOL STATISTICS)
              WRITE(6,271)
              WRITE(6,312)
              FORMAT(36X, 10HBACKGROUND,32X,5HPLUME)
              VRITE(6,271)
              FORMAT(25X, 12HACCUMULATION, 1 1X.6HCOARSE, 1 IX, 12HACCUMULATION, 1 IX, 6H
              1COARSE)
              VRITE(6,313)
              FORMAT( 10X, 11HMASS MEDIAN, 8X, 4HMODE, 16X,4HMODE, 16X,4HMODE, 16X.4HMO
              IDE)
              VRITE(6,315)
              FORMAT(10X,6HRADIUS)
              WRITE< 6,316) ROVA, ROVC , ROVS , ROVP
              FORMAT( 10X, 1 1HMICROMETERS, 5X,F10.3,3( 10X.F10.3))
              ¥RITE(6,271)
              WRITE(6,317)
              FORMAT( 10X.9HGEOMETRIC)
              WftITE(6,318)
              FORMAT( 10X, 8HSTANDARD)
              WRITE(6,319)SIGA,SIGC,SIGS,SIGP
              FORMAT(10X,9HDEVIATION,7X,F10.3,3( 10X.F10.3))
              WRITE(6,271)
              WRITE(6,320)
              FORMAT(10X,8HP ARTICLE)
Exhibit B-l  (Continued)
                                      271

-------
(0729)
( 0730)
(0731)
( 0732)
(0733)
(0734)
(0735)
(0736)
( 0737)
(0738)
(0739)
(0740)
(0741)
(0742)
(0743)
( 0744)
(0745)
(0746)
(0747)
( 0748)
(0749)
(0750)
(0751)
(0752)
(0753)
(0754)
(0755)
(0756)
(0757)
(0758)
(0759)
(0760)
(0761)
(0762)
(0763)
(0764)
(0765)
(0766)
(0767)
( 0768)
(0769)
(0770)
(0771)
(0772)
( 0773)
(0774)
(0775)
(0776)
(0777)
(0778)
(0779)
(0780)
(0781)
(0782)
( 0783)
(0784)

321

322



3'



3'
387

3i

3

3
C
C
C
C


3






3
3
3
C
C**
C**
C**

100

102


103




104
106




             WRITE(6,321)
             FORMATC10X,7HDENSITY)
             WRITE( 6,322)DENA,DENG,DENS,DENP
             FORMAT( 10X,9HG/(CM**3),7X,F10.3,3(10X.F10.3))
             IF(NC2.Eft. 1)  GO TO 387
             WRITE(6,10)
             WRITE(6,378)
          378 FORMAT(///5X,57HGEOMETRY OF USER-SPECIFIED PLUME-OBSERVER-SUN ORIE
             1NTATION,//)
             WIND=WIND/RAD+180.
             WRITE(6,379)WIND
          379 FORMAT( 10X.26HWIND DIRECTION (DEGREES)  =,F5.1/)
             WRITE(6,271)
             WRITE(6,380)  TIME,IMO,IDAY
          380 FORMAT( 10X,18HSIMULATION IS FOR ,F5.0,10H HOURS ON ,12,1H/,12,/)
             WRITE( 6,381)ZENITH
          381 FORMAT(10X,30HSOLAR ZENITH ANGLE ( DEGREES) - , F5. 1, /)
             WRITE( 6,382)SUNAZ
          382 FORMAT( 10X.31HSOLAR AZIMUTH ANGLE (DEGREES) =,F8.1,///)

            SKIP OVER SPECIFIC  CASE DATA IF RUN IS FOR^A PLUME-BASED
            CALCULATION ONLY.

              IF(NC2.EQ.1)  GO TO 386
             WRITE(6,383)
          383 FORMAT(10X,83HGEOMETRIES FOR LINES-OF-SIGHT THROUGH PLUME PARCELS
             1AT GIVEN DOWNWIND DISTANCES (X),//,4X,6HX (KM),3X, 7HAZIMUTH,
            2  8X,2HRP,5X,5HALPHA,6X,4HBETA,5X,5HTHETA)
             DO 385  NX=1,NX2
             XPLUME= DIST( NX)/1000.
             WRITE(6,384)XPLUME,AZMUTH( NX) , OBSPLU( NX),AALPHA(NX),ABETA(NX),
             1  TT(NX+7)
          384 FORMAT(6F10.1)
          385 CONTINUE
          386 CONTINUE                         >•  .

             *
             WRITE OUT THE HEADER PAGE
             K
             WRITE(6,10000)
        10000 FORMAT(1H1,30X,21HBACKGROUND CONDITIONS,//)
             WRITE(6,10200)
        10200 FORMAT( 1H ,4X,17HACCUMULATION MODE,24X,20HCOARSE PARTICLE MODE.23X
             1.21HPRIMARY PARTICLE MODE)
             WRITE(6,10300)
        10300 FORMAT( 1H ,4X, 11HMASS RADIUS,4X,5HSIGMA,3X,13HBSCAT.55/MASS,8X,
             1  11HMASS RADIUS,4X,5HSIGMA,3X,13HBSCAT.55/MASS.8X,11HMASS RADIUS,
             2  4X.5HSIGMA.3X,13HBSCAT.55/MASS)
              WRITE(6,10400)  ROVA,SIGA,BTAS04(19),ROVC,SIGC,BTACOR( 19),ROVP,
             1SIGP,BTAPRM( 19)
        10400 FORMAT( 1H ,3E13.4,6X,3E13.4,5X.3E13.4)
        10600 FORMAT(1H ,3X,5HNOX =,E10.4,7H  NO2 =,E10.4,7H N03 -,E10.4,7H  SO
             12 -.E10.4.7H  S04 =,E10.4,6H  03 -,E10.4,5HACC =,E10.4,5HCOR =,
             1E10.4)
              WRITE(6,271)
              WRITE(6,10700)
Exhibit &-1 (Continued)
                                     272

-------
(0785)
(0786)
(0787)
( 0788)
(0789)
(0790)
(0791)
(0792)
(0793)
(0794)
(0795)
(0796)
(0797)
( 0798)
(0799)
(0800)
(0801)
(0802)
( 0803)
(0804)
(0805)
(0806)
(0807)
( 0808)
(0809)
(0810)
(0811)
(0812)
(0813)
(0814)
(0815)
(0816)
(0817)
(0818)
(0819)
( 0820)
(0821)
( 0822)
(0823)
(0824)
(0825)
(0826)
(0827)
( 0828)
(0829)
(0830)
(0831)
(0832)
( 0833)
(0834)
(0835)
(0836)
(0837)
(0838)
(0839)
( 0840)
1

C
C
C

C
C
C
C
C
C
C
C

K

C=
11
C:
C
C
C

C
C
C

C
C
C
C
C
C
C
C
C

C:
2<
1
C
C
C

C:
C:
4<

44
4<

CJ
41


        10700 FORMAT(1H  ,30X,40HCOEFFICIENTS AT 0.55  MICROMETERS ,  1./KM)
              BTARAY  - 0.01162*EXP(-ELEV/9.8)

              BTARAY   RAYLEIGH SCATTERING COEFFICIENT.

              ABN02T  ~ ABSN02( 19)*AMBN02

             ABN02T   ABSORPTION COEFFICIENT FOR N02  AT  .55 MICROMETERS
             BTAAERC19)  = BACKGROUND AEROSOL SCATTERING  COEFFICIENT AT
             .55 MICROMETERS.
             BTABAC(19)  = BACKGROUND EXTINCTION COEFFICIENT AT  .55
             MICROMETERS.  THIS SUMS THE RAYLEIGH AND AEROSOL SCATTERING
             AND N02  ABSORPTION.

              WRITE( 6,10800 ) BTARAY,BTAAER( 19),ABNO2T, BTA3AC(19)
        10800 FORMAT( 1H  ,6X,8HBTARAY =,E10.4,3X,8HBTAAER =,E10.4,3X,8HABSN02  -.
             1 E10.4,3X,8HBTABAC -,E10.4,//)
        C***  WRITE(6,10900)
        10900 FORMAT(1H  ,4X,40HNO.  WAVELN   TAT0IZ      TAT0DI
PAER .7F10.2)
              WRITE(6,271)

             LOOP ON WAVELENGTH

              DO 20000 I   1,39

             WAVE = WAVELENGTH (MICROMETERS)

              WAVE = 0.36 + 0.01*FLOAT(I)

             TAUTOD(I) = OPTICAL DEPTH FROM SFC TO TOP OF MIXED LAYER,
             TAUTDKI) - OPTICAL DEPTH FROM TOP OF MIXED LAYER TO TOP OF
             ATMOSPHERE.
             TATODI   OPTICAL DEPTH FROM SFC TO TOP OF ATMOSPHERE FOR THE
             ITH WAVELENGTH.
             PAER(I.J) - MIE SCATTERING PHASE FUNCTION FOR THE ITH
             WAVELENGTH AND THE JTH SCATTERING ANGLE.

              TATODI = TAUTOD(I) + TAUTDKI)
              WRITE(6,11000 ) I,WAVE,TATOIZ(I).TATODI, ( PAER(I,J),J=1,NTHETA>
        20000 CONTINUE
        11000 FORMAT(1H ,15 .10E11.4)

             CALCULATE PERFECT DIFFUSE REFLECTOR PROPERTIES.

              CALL PERDIF(SPECR.ZENITH)
              WRITE(6,40010)
              WRITE( 6,40020)
        40010 FORMAT(1H1.4X.62HVISUAL EFFECTS CAUSED BY BACKGROUND ATMOSPHERE (W
             1ITHOUT PLUME))
        40020 FORMAT( 5X, 23H*** CLEAR SKY VIEWS ***,//)
        40025 FORMAT(/,5X,17HELEVATION (KM) = ,F5.1,5X,20HVISUAL RANGE (KM) = ,
             1F5.0.5X, 15HACCUMULATION - ,F5.1,5X,17HN02 CONC (PPM)   ,F5.2,/>
              WRITE(6,40030)
        40030 FORMAT(6H THETA,5H BETA,4X,3HTAU,4X,4HYCAP,7X, 1HL,7X, 1HX.7X, 1HY,8H
             1 DELYCAP,4X,4HDELL,2X,6HC(400) ,2X,6HC(550) ,2X,6HC(700) ,2X,6HBRATIO
             2, 4X, 4HDELX, 4X, 4HDELY, 2X, 6HE( LUV) , 2X, 6HE( LAB) )
Exhibit B^l  (Continued)
                                      273

-------
(0841)
(0842)
(0843)
(0844)
(0845)
(0846)
(0847)
( 0848)
(0849)
(0850)
(0851)
(0852)
(0853)
(0854)
(0855)
(0856)
(0857)
(0858)
(0859)
(0860)
(0861)
(0862)
(0863)
(0864)
(0865)
(0866)
(0867)
( 0868)
(0869)
(0870)
(0871)
(0872)
(0873)
(0874)
(0875)
(0876)
(0877)
( 0878)
(0879)
(0880)
(0881)
(0882)
(0883)
(0884)
(0885)
(0886)
(0887)
( 0888)
(0889)
(0890)
( 089 1 )
(0892)
(0893)
(0894)
(0895)
(0896)

C
C
C



C
C
C


C
C
C
C
C

C
C
C

C
C
C


C
C
C
C


C
C
C
41
4(

C:
C=

4i
C=
C:

4i
41
4i
4i

C
C
C


              DO  40100  1=1,6

             LOOP FOR 6  PLUME-BASED SCATTERING ANGLES

              ITHETA =1+1
              THETA=TT(ITHETA)
              IFLAGP=0

             LOOP FOR 6  PLUME-BASED SIGHTLINE ELEVATION ANGLES

              DO  40100  IBETA=1,7
              BETA= FLOATCIBETA-1)*15.

             SPECR = RAYLEIGH ATMOSPHERE INTENSITIES
             SPECB = BACKGROUND ATMOSPHERE INTENSITIES.
             CALCULATE RAYLEIGH ATMOSPHERE INTENSITIES FOR 39 WAVELENGTHS

              CALL RAYREF    (ZENITH,BETA,THETA, ITHETA, SPECR)

             CALCULATE BACKGROUND ATMOSPHERE INTENSITIES FOR 39 WAVELENGTHS

              CALL BACCLNCZENITH,  BETA,  THETA,ITHETA, SPECB)

             CALCULATE VISUAL PERCEPTIBILITY PARAMETERS

              CALL CHROMA(SPECB,SPECR)
              IF(BETA.EQ.0.)  GO TO 40031

             CORRECT BACKGROUND ATMOSPHERE OPTICAL DEPTH FOR NON-VERTICAL
             VIEWING ANGLE.

              TAU=TAT0IZ(19)/SIN(BETA*RAD)
              GO  TO  40032

             OPTICAL DEPTH  FOR HORIZONTAL VIEW.

        40031 TAU=TAUT0D(19)+TAUTDI(19)
        40032 CONTINUE
              IF(IFLAGP.EQ.0) GO TO 40040
              WRITEC6.40060)  BETA.TAU,YCAP,VAL,X,Y,YCAPD,VALD,CONT1,CONT2,CONT3,
             1BRATI0,XD,YD,DELUV,DELAB
              GO  TO  40050
        40040 CONTINUE
              WRITEC6,40070)  THETA,BETA.TAU,YCAP,VAL,X,Y,YCAPD,VALD.CONT1,CONT2,
             1CONT3,BRATI0,XD,YD,DELUV,DELAB
              IFLAGP =  1
        40050 CONTINUE
        40060 FORMATC5X,F5.0,3F8.2,2F8.4,2F8.2,8F8.4)
        40070 FORMATC/,2F5.0,3F8.2,2F8.4,2F8.2,8F8.4)
        40100 CONTINUE
              IFLAGft=1

             LOOP FOR 6  PLUME-BASED SCATTERING ANGLES

              DO  40200  1=1,6
              IF(IFLAGQ.LT.0) GO TO 40131
Exhibit Br1 (Continued)
                                      274

-------
(0897)
(0898)
(0899)
(0900)
(0901)
(0902)
(0903)
(0904)
(0905)
(0906)
(0907)
(0908)
(0909)
(0910)
(0911)
(0912)
(0913)
(0914)
(0915)
(0916)
(0917)
(0918)
(0919)
(0920)
(0921)
(0922)
(0923)
(0924)
(0925)
(0926)
(0927)
(0928)
(0929)
(0930)
(0931)
(0932)
(0933)
(0934)
(0935)
(0936)
(0937)
( 0938)
(0939)
(0940)
(0941)
( 0942)
(0943)
(0944)
(0945)
(0946)
(0947)
(0948)
(0949)
(0950)
(0951)
(0952)
C
C
r
4'

4


4

C
C
C



C
C
C

C
C
C

C
C
C


C
C
C
C

C
C
C

C
C
C
C
C


C:
C=


41
C=
C:
4<
4<
4<
4<
        C**#  WRITE(6,40010)
            :  WRITE(6,40I20)
            :  WRITE(6,40130>
        40120 FORMAT(5X,61IT ' '  WHITE,  GRAY,  AND BLACK OBJECTS AT INDICATED  DISTA
             1NCES :::##,//)
        40130 FORMAT(6H THETA, 2X, 5I:IIO/RV, IX, 7HREFLECT, 4X, 4HYCAP, 7X, 1HL, 7X, 1HX, 7X
             1, !HY, 8H DELYCAP, 4X, ^IIDELL, 2X, 6HC( -:-00> , 2X, 6IIC( 550) , 2X, 6HC( 700) , 2X. 6
             1HBRATIO, 4X, 4HDELX, 4X, 4HDELY, 2X, 6HE< LUV) , 2X, 6HE( LAB) )
        40131 CONTINUE
              IFLAGQ=-1*IFLAGQ

             ASSIGN SCATTERING ANGLE

              ITHETA=1+1
              THETA=TT( ITHETA)
              IFLAGP=0

             CALCULATE BACKGROUND ATMOSPHERE INTENSITIES WITHOUT PLUME

              CALL BACCLN(ZENITH,0.,THETA,ITHETA,SPECR)

             LOOP FOR DIFFERZNT SHADES OF  BACKGROUND  OBJECTS.

              DO 40200 K=l,3

             K = 1 FOR WHITE OBJECTS,  2 FOR GRAY,  3 FOR BLACK

              XLUMIN= REFL(K)/( 2.*PI)
              DO 40200 J=l,7

             LOOP FOR 7 PLUI'IE-B-VSED  BACKGROUND  OBJECT DISTANCES AS  FUNCTION
             OF AMBIENT VISUAL RANGE.

              R0= ROBJ(J)*RVAMB

             CALCULATE INTENSITIES FOR BACKGROUND  OBJECT WITHOUT PLUME.

              CALL BACOBJ(ZENITH,BETA,THETA,ITHETA,RO,SPECB,XLUMIN)

            CALCULATE DIFFERENCE IN  COLOR  OF OBJECTS  VIEWED  THROUGH
            THE BACKGROUND ATMOSPHERE  COMPARED  WITH THAT VIEWED
            THROUGH A RAYLEIGH ATMOSPHERE.

              CALL CHROMA(SPECB,SPECR)
              IF( IFLAGP.EQ.1)  GO TO  40140
        C***  WRITE(6,40160) THETA,  ROBJ(J),REFL(K),YCAP.VAL,X,Y,YCAPD,VALD,
        C*** 1CONT1,CONT2,CONT3,BRATI0,XD,YD,DELUV,DELAB
              IFLAGP = 1
              GO TO 40150
        40140 CONTINUE
              WRITE(6,40170) ROBJ(J) ,REFL(K) , YCAP. VAL, X,Y, YCAPD, VALD, CONT1, CONT2
             1,CONT3,BRATI0,XD,YD,DELUV,DELAB
        40150 CONTINUE
        40160 FORMAT(/,F5.0,4F8.2,2F8.4,2F8.2,8F8.4)
        40170 FOnf1AT( 5X, 4F8.2, 2F8. 4, 2F8.2, 8F8. 4)
        40200 CONTINUE
Exhibit B.-l  (Continued)
                                      275

-------
(0953)
(0954)
(0955)
(0956)
(0957)
(0958)
(0959)
(0960)
(0961)
(0962)
(0963)
(0964)
(0965)
(0966)
(0967)
(0968)
(0969)
(0970)
(0971)
(0972)
(0973)
(0974)
(0975)
(0976)
(0977)
( 0978)
(0979)
(0980)
(0981)
( 0982)
(0983)
(0984)
(0985)
(0986)
(0987)
( 0988)
(0989)
(0990)
(0991)
(0992)
(0993)
(0994)
(0995)
(0996)
(0997)
(0998)
(0999)
( 1000)
( 1001)
( 1002)
( 1003)
( 1004)
( 1005)
( 1006)
( 1007)
( 1008)
C
C
C
C

C
C (
C








41






42
C
C (
C
C
45
C
43<
C
C
C
C'l
C




G
C <
C
C
C
G
G
C



92
93
C
C
C
           CONVERSION FACTOR FROM G/S  TO MICRO-G/SEC AT REFERENCE CONDITIONS (1
           ATMOSPHERE)  .  FOR  ONE STACK INSTEAD OF TOTAL STACK EMISSIONS.

             C2 =  ((l.E6/UNITS)/PAMB)*(FGTEMP/298.)

         CONVERT GXS TO PPM-CU M/S FOR GASES AND TO MICRO-G/CU M - CU MXS FOR
            PARTICULATES.
             QSO2   = QSO2*C2#  3.821E-4
             QNOX   = QNOX*C2*  5.315E-4
             OPART = QPART*C2
             0.02     FGO2* 1. E4*FLOW
             PI =  3.14159
              IFdDILU  .EQ.0)GO TO 45
             WRITE(6,10)
             WRITE (6,41)  (PLANT(J),J=1,6)
             FORMAT (35X.62HINITIAL PLUME RISE AND DILUTION AND NITROGEN DIOXID
             IE FORMATION//45X,6A4//2X,4HTIME,5X, 1HX,5X,7HDELTA H,4X,1HU.7X,1HW,
             17X, 1HV,4X,5HSIGMA,4X,4HTEMP,5X,2H02,4X,12HN02-NO RATIO,5X,3HNOX,
             16X,2HNO,5X,4HN02T,4X,3HS02,3X,11HPARTICULATE/2X,5H(SEC),3X,3H(M),
             15X,3H(M) ,5X,5H(M/S) ,3X,5H(M/S) ,3X,5H(M/S) ,3X,3H(M) ,5X,3H(K) ,4X,
             15HMOL P,3X,5HEQUIL,3X,6HACTUAL,2X,5H(PPM) ,4X,5H(PPM) ,2X,5H(PPM) ,
             13X, 5H( PPM) , 3X, 5HUG/M3/)
             FORMAT (F7.0.2F8.1,3F8.2,3F8.1,1P2E8.1.0P4F8.3,1PE10.2)
              THAT PLUME IS TRANSPORTED

              NSECF=1000./U
CALCULATE THE INTEGER CLOSEST TO THE NO.OF SECONDS AFTER EMISSION FROM
                              1 KM

             J0./U

    CONTINUE



DO LOOP LAGRANGIAN FRAME OF REFERENCE (EVERY 10 SECONDS)

    NSECF1=NSECF+1
    DO 50 NSEC = 1,NSECF1,10
    T = NSEC-1
    IF(T.EQ.0.0) GO TO 43

CALCULATION OF PARCEL VELOCITY, POSITION,DILUTION FACTOR

   POWER LAW RISE OF PLUME TO EFFECTIVE STACK HEIGHT.
             CHANGE FOR F   0.0

              IF(XFINAL.EQ..0.0)GO TO 92
              DELH=RISE*(U*TXXFINAL)**.66667
              GO TO 93
              DELH=0.0
              CONTINUE

             CORRECT DELH IF U*T > XFINAL
Exhibit Bi-1 (Continued)
                                      276

-------
( 1009)
( 1010)
( 1011)
( 1012)
( 1013)
( 1014)
( 1015)
( 1016)
( 1017)
( 1018)
( 1019)
( 1020)
( 1021)
( 1022)
( 1023)
( 1024)
( 1025)
( 1026)
( 1027)
( 1028)
( 1029)
( 1030)
( 1031)
( 1032)
( 1033)
( 1034)
( 1035)
( 1036)
( 1037)
( 1038)
( 1039)
( 1040)
( 1041)
( 1042)
( 1043)
( 1044)
( 1045)
( 1046)
( 1047)
( 1048)
(1049)
(1050)
( 1051)
( 1052)
( 1053)
( 1054)
( 1055)
( 1056)
( 1057)
( 1058)
( 1059)
( 1060)
(1061)
( 1062)
( 1063)
( 1064)

C
C
C

C
C
C


C
C
C




C
C
C
4:



C
C
C
4<
C
C
C

C
C
C
C

C
C
C

C
C
C

C
C
C


C
C
C



               IF(DELH.GT.RISE)  DELH=RISE

             CALCULATE  VERTICAL VELOCITY VIA POlvER LAV

               W= . 66667*RISE*FLOAT( NSECF)*#( -0. 66667) *FLOAT( NSEC) *#( -. 33333)

             W = WMAX AT STACK,  W =  0  AT XFINAL

               IF(KSEC.GT.NSECF)  ¥=0.
               IF (W.GT.WMAX)  W=WMAX

             VELOCITY VECTOR AT NSEC.

               V  = SQRTC U**2.+W*#2.)
               DEHOH  = DELH#*2*V*(1.57/2.15)/2.15
               IF (BEHOM.LT.FLOW)  DEWOM=FLOW
               GO TO  44

        C PROPERTIES AT TOP  OF  STACK

               DELH =0.0
               W  = WMAX
               DENOM  = FLOW
               V = W

        C CALCULATION OF PLUME  TEMPERATURE

               TEMP   TAMBSDENOM/ (DENOM-FLOW*(1.-(TAMB/FGTEMP)))

        C DOWNWIND DISTANCE  FROM STACK  IN METERS

               XM - U*T

        C HORIZONTAL OR VERTICAL  DISPERSION COEFFICIENT -  1/2.15 OF  PLUME
        C RADIUS.  RADIUS =  1/2 OF  PLUME RISE.

               SIG    (DELH/2.)/2.15

        C 02 CONCENTRATION IN PPM IN PLUME  IS NEEDED TO CALCULATE NO2 FORMATION

               X02 =  209460.  + (0,02  - FLOW*209460. )*TEMP/(DENOM*FGTEMP)

        C 02 IN MOL  PERCENT

               PO2 = X02*l.E-4

        C CALCULATION OF EQUILIBRIUM N02/NO RATIO

               C3 = 16.786 +  (8.841  -  16.786)#( TEMP-298.)/(500.-298.)
               RATIOE =  SQRTC10.**C3#4.09E-11*X02)

        C ACTUAL NO2/NO RATIO.  INITIALLY = EQUILIBRIUM. NEVER GREATER THAN  EQUIL

               IFCT.EQ.0.0) RATIOA=  8.03E-12*EXP(526.4/FGTEMP)*QNOX-FLOW
             1                      *X02*HSTACK/W
               IF(RATIOA.GT.RATIOE).RATIOA = RATIOE
Exhibit B-l  (Continued)
                                      277

-------
( 1065)
( 1066)
( 1067)
( 1068)
( 1069)
( 1070)
(1071)
( 1072)
( 1073)
( 1074)
( 1075)
( 1076)
( 1077)
( 1078)
( 1079)
( 1080)
( 1081)
( 1082)
( 1083)
( 1084)
( 1085)
( 1086)
( 1087)
( 1088)
( 1089)
( 1090)
(1091)
( 1092)
( 1093)
( 1094)
( 1095)
(1096)
( 1097)
( 1098)
( 1099)
( 1100)
( 1101)
( 1102)
( 1103)
( 1104)
(1105)
( 1106)
(1107)
( 1108)
( 1109)
( 1110)
(1111)
(1112)
(1113)
(1114)
(1115)
( 1116)
(1117)
(1118)
( 1119)
(1120)
C
C POL!
C








C
C CAL<
C
50
C
C EMI!
C



C
C C:
C Si
c P:
c
G IS
c
c





470




471

472





475

476
477
C CA
G DA
G
C

         POLLUTANT CONCENTRATIONS. NO2 RESULTING FROM TERMOLECULAR REACTION ONLY

             XNOX = QNOX*TEMP/( DENOM*FGTEMP)
             XSO2 = QS02*TEMP/(DENOM*FGTEMP)
             XPART = QFART*TEMP/(DENOM*FGTEMP)
             XNO = XNOX/(l.+RATIOA)
             XNO2T = XNO*RATIOA
             IF( IDILU  .EQ. 0)GO TO 50
             WRITE (6,42) T,XM,DELH,U,W,V,SIG,TEMP,P02,RATIOE,RATIOA,XNOX,XNO,
                          XN02T,XSO2, XPART

         CALCULATION OF CHANGE  IN N02/NO RATIO VIA TERMOLECULAR REACTION IN 10

             RATIOA=RATIOA+4.015E-12*EXP( 1046./( 1.987*TEMP))*XNO*X02*10.

         EMISSION RATES PER STACK ARE CONVERTED BACK TO TOTALS.

             QS02 - QS02*UNITS
             QNOX - QNOX*UNITS
             OJPART = QPART*UNITS

           CALCULATION OF VIRTUAL POINT  SOURCE DISTANCE OFFSET
           SO THAT CALCULATED SIGMA-X AND SIGMA-Y MATCH INITIAL
           PLUME DILUTION RESULTS AT  1  KILOMETER.

             -  STABILITY  CLASS


             I=IS
             IF( IDIS.EO-.9)GO TO 476
             DILUTE=((RISE*RISE/4.)/2.15)/2.15
             XM=XFINAL
             SIGYXZ=0.
             CONTINUE
             IF(IDIS.EQ. 1) GO TO 471        S
             SY=SYPAS( I.XM)
             SZ=SZPAS( I,XM)
             GO TO 472
             SY=SYTVA( I.XM)
             SZ=SZTVA( I,XM)
             SIGYZI=SIGYXZ
             SIGYXZ=SY*SZ
             IF(DILUTE.LE.SIGYXZ.AND.SIGYZI.EO-.0.)GO TO 476
             IF(DILUTE.LE.SIGYXZ)GO  TO 475
             XM=XM+1.E4
             GO TO 470
             XVIRTL=XM-XFINAL-1.E4+1.E4*( DILUTE-SIGYZI>/(SIGYXZ-SIGYZI)
             GO TO 477
             XVIRTL=0.
             CONTINUE
           CALCULATE PHOTOLYSIS  RATE  CONSTANTS FOR EACH OF 24 HOURLY PERIODS IN A
            Y.
            CONVERT STACK UTM COORDINATES TO LATITUDE AND LONGITUDE.

             CALL MAPUTG( XSTACK,YSTACK,IZONE,ALON,ALAT)
Exhibit B-l (Continued)
                                      278

-------
( 1121)
(1122)
( 1123)
( 1124)
( 1125)
( 1126)
( 1127)
(1128)
( 1129)
( 1130)
( 1131)
(1132)
(1133)
( 1134)
( 1135)
(1136)
( 1137)
( 1138)
( 1139)
( 1140)
( 1141)
( 1142)
( 1143)
( 1144)
( 1145)
( 1146)
( 1147)
( 1148)
( 1149)
( 1150)
(1151)
(1152)
(1153)
(1154)
(1155)
( 1156)
(1157)
( 1158)
( 1159)
(1160)
( 1161)
(1162)
( 1163)
(1164)
( 1165)
(1166)
( 1167)
(1168)
(1169)
( 1170)
(1171)
(1172)
(1173)
(1174)
(1175)
(1176)

C
C
C

C
c
c






c.
c
c

c
c
c

48
49
C
c *
c
C D
C D
C
C #:
C

c
c
c
c










c
c
c
c


495


              DO 49  1=1,24

             TIMER   HOURS OF DAY  (MILITARY CLOCK)

              TIMER=FLOAT( I)* 100.

             CALCULATE SUN ELEVATION ANGLE

              CALL SOLARZ(ALAT,ALON,TZONE, IYEAR, IMO, IDAY, TIMER, SUNELE, 5)
              AZEN=90.-SUNELE
              IF( AZEN. GT. 90. ) AZEN=90.
              PHIKKRC I)=0.0
              QJ( I)=0.0
              IF(AZEN.EQ.90.)GO TO 48

             DYNAMIC EQUILIBRIUM CONSTANT ( H02 AND NO)

              PHIKIOH I ) = ( 1 . E-2/0 . 44) *EXP( -0 . 38/COS( AZEN&RAD) )

             OZONE PHOTOLYSIS RATE CONSTANT

              QJ( I ) =2 . 23E-5S60 . #( COS( AZEN#RAD) ) **2 . 74
              CONTINUE
              CONTINUE

             ;**********:^**************^

        C DO LOOP FOR POLLUTANT CONCENTRATIONS AND VISUAL EFFECTS AT  16 DOWNWIND


                                               :S*^
              NZFLAG=0

             INITIALIZE EFFECTIVE EMISSION RATES FOR S02, NOX, S04, NO3, AND
            PRIMARY PARTICULATE, AND CONVERSION RATES FOR S02, NOX, AND N02.

              DO 495 nz-l,6
              DO 495 NT=NX1,NX2
              QSO2TR( NZ; NT) = QS02
              QNOXTR< NZ , NT) = QNOX
              QS04TR(NZ,NT)=0.
              QJJO3TR(NZ,NT)=0.
              QPARTT( NZ, NT) = OP ART
              RSO2RC 1 , NZ, NT) =RS02( 1 )
              RNOXR( 1,NZ,NT)=0.
              RNO2X( 1,'NZ,NT)=0.

             SET N02/NO RATIO TO INITIAL VALUE CALCULATED EARLIER. SET TO ZERO
             AT SURFACE.

              R AT I OT( NZ , NT) = RAT 1 0 A
              IF(NZ.EQ.6)RATIOT(NZ,NT)=0.
              CONTINUE
              CHIQIY(6)=0.
              QPART0=OPART
Exhibit B-l  (Continued)
                                      279

-------
( 1177)
( 1 178)
( 1179)
(1180)
( 1181)
(1182)
( 1 183)
( 1184)
( 1185)
(1186)
(1187)
( 1188)
( 1189)
( 1190)
( 1191)
( 1192)
( 1193)
(1194)
( 1195)
(1196)
(1197)
(1198)
(1199)
( 1200)
( 1201)
( 1202)
( 1203)
( 1204)
( 1205)
( 1206)
( 1207)
( 1208)
( 1209)
(1210)
(1211)
( 1212)
(1213)
( 1214)
( 1215)
( 1216)
( 1217)
( 1218)
(1219)
( 1220)
( 1221)
( 1222)
( 1223)
( 1224)
( 1225)
( 1226)
( 1227)
( 1228)
(1229)
( 1230)
(1231)
( 1232)
C
C
C

C
C
C
C





C
C
C

C
C
C

C
C
C

C
C
C

C
C j
C ]
C

C
G
G

C
C ]
C


G
C
C
C


510

C
G
C


             INITIALIZE VALUE FOR DOWNWIND DISTANCE  OF  PREVIOUS POINT.

             XM=0.

             INITIALIZE TOTAL DEPOSITION FOR S02,  NOX,  PRIMARY PARTICULATE,
             SULFATE AND NITRATE.

             TDS02= 0.
             TDNOX=0.
             TOPART= 0.
             TDS04=0.
             TDN03=0.

             *****LOOP ON DOWNWIND DISTANCE  *******

             DO 1000 NX - NX1.NX2

             XM0 - DOWNWIND  DISTANCE OF PREVIOUS POINT.

             XM0=XM

             XM = DOWNWIND DISTANCE  (METERS)

             XM=DIST(NX)

             XKM - DOWNWIND  DISTANCE (KILOMETERS)

             XKM=XM/1000.

            ADD IN VIRTUAL POINT SOURCE OFFSET TO ACCOUNT FOR INITIAL DILUTION
            DURING PLUME RISE.
                                             S,
  XADD=XM+XVIRTL

 IS = STABILITY

  I   IS

NXSTAB = DOWNWIND DISTANCE INDEX FOR DISTANCE WHERE STABILITY CHANGES

  IF(NX.GT.NXSTAB)GO TO 135
  IF(IDIS.NE.9) GO TO 510

 IDIS = 9 FOR READING IN SPECIAL SIGMA VALUES FOR EACH DOWNWIND
 DISTANCE

  READ(5,5) SY.SZ
  GO TO 136
  CONTINUE
  IF(IDIS.EQ. 1) GO TO 511

 PASQUILL-GIFFORD SIGMAS (1=1 FOR "A", 2 FOR "B", 3 FOR  "C", ETC)

  SY=SYPAS( I,XADD)+(YINITL/2.)/PI
  SZ=SZPAS(I,XADD)+(ZINITL/2.)/PI
ExhibitiB-1 (Continued)
                                     280

-------
( 1233)
( 1234)
( 1235)
( 1236)
( 1237)
( 1238)
( 1239)
( 1240)
(1241)
( 1242)
( 1243)
( 1244)
( 1245)
( 1246)
( 1247)
( 1248)
( 1249)
( 1250)
( 1251)
( 1252)
( 1253)
( 1254)
( 1255)
( 1256)
( 1257)
( 1258)
( 1259)
( 1260)
(1261)
( 1262)
( 1263)
( 1264)
( 1265)
( 1266)
( 1267)
( 1268)
( 1269)
( 1270)
( 1271)
( 1272)
( 1273)
( 1274)
( 1275)
( 1276)
( 1277)
( 1278)
( 1279)
( 1289)
(1281)
( 1282)
(1283)
( 1284)
(1285)
< 1286)
( 1287)
( 1288)

C
C
C
51

GO TO 512

TVA SIGMAS

1 SY=SYTVA( I,XADD) + (YINITL/2.)/PI
SZ=SZTVA( I,XADD)+(ZINITL/2. )/PI
512 CONTINUE
C
C
C

C
C
C
C
C
C
C
C
C
C
C
100




C
G
C
C
C
C
C
140






141
C
C
C
C
C

C
C
C



142


IF UPWIND OF STABILITY CHANGE, JUMP AROUND

IF(NX.LT.NXSTAB)GO TO 136

NXSTAB= DOWNWIND DISTANCE INDEX WHERE STABILITY CHANGES
NXSTAB MUST BE GREATER THAN 1
I=STABILITY INDEX FOR FIRST PART OF PLUME.
INEW=NEW STABILITY INDEX
SYNEW=SIGHA-Y FOR NEW STABILITY.
SZNEW=SIGMA-Z FOR NEW STABILITY.
CODE FOR NEW STABILITY. FIRST DETERMINE VIRTUAL DOWNWIND
DISTANCE FOR NEW STABILITY TO AVOID LARGE PLUME DIMENSIONAL
DISCONTINUITY AT STABILITY INTERFACE.

CONTINUE
IF( IDIS.EQ. 1)GO TO 101
DISTA=5000.
SYNEW=SYPAS( INEW,DISTA)
DELS IG= SYNEW-SY

FIND VIRTUAL DISTANCE FOR NEW STABILITY WHERE DIFFERENCE IN
SIGMA-Y FOR INITIAL STABILITY AND SIGMA-Y AT NEW STABILITY
STOPS DECREASING AND STARTS INCREASING, WITH A DISTANCE
INTERVAL OF 1 KM. ASSUME SYNEW IS FIRST LESS THAN SY, THEN AT SOME
DISTANCE GOES THROUGH ZERO AND STARTS INCREASING.

DISTB=DISTA
DISTA=DISTA+5000.
SYNEW=SYPAS( INEW.DISTA)
DELSG= SYNEW-SY
IF(ABS(DELSG) .GT. ABS( DELSIG) )GO TO 141
DELSIG=DELSG
GO TO 140
CONTINUE

VIRTUAL DISTANCE FOR NEW STABILITY FOR SIGMA-Y IS BETWEEN
DISTB AND DISTA.
CALCULATE DISTANCE OFFSET FOR FUTURE SY DETERMINATIONS.

DDISTY=DISTB+5000 . *( ( 0. -DELSIG) /( DELSG-DELSIG) ) -DIST( NX)

SAME PROCEDURE FOR SIGMA-Z

DISTA=5000.
SZNEW=SZPAS( INEW.DISTA)
DELS IG= SZNEW-SZ
DISTB=DISTA
DISTA=DISTA+5000.
Exhibit B-l  (Continued)
                                     281

-------
( 1289)
( 1290)
(1291)
( 1292)
( 1293)
( 1294)
( 1295)
( 1296)
( 1297)
( 1298)
( 1299)
( 1300)
( 1301)
( 1302)
( 1303)
( 1304)
(1305)
( 1306)
( 1307)
( 1308)
( 1309)
( 1310)
( 1311)
( 1312)
(1313)
(1314)
( 1315)
(1316)
( 1317)
( 1318)
( 1319)
( 1320)
( 1321)
( 1322)
( 1323)
( 1324)
( 1325)
( 1326)
( 1327)
( 1328)
( 1329)
( 1330)
(1331)
( 1332)
( 1333)
( 1334)
( 1335)
( 1336)
( 1337)
( 1338)
( 1339)
( 1340)
(1341)
( 1342)
( 1343)
( 1344)





143




C
C
C
101


144






145

C
C
C



146






147

135
C
C
C
C
C
C






122

136
             SZNEW=SZPAS(INEW.DISTA)
             DELSG=SZNEW-SZ
             IF(ABS(DELSG).GT.ABS(DELSIG))GO TO  143
             DELSIG=DELSG
             GO TO 142
             CONTINUE
             DDISTZ=DISTB+5000.*((0.-DELSIG)/( DELSG-DELSIG))-DIST(NX)
             SY=SYNEW
             SZ=SZNEW
             GO TO 136

           SAME PROCEDURE FOR TVA SIGMA-Y

             DISTA=5000.
             SYNEW=SYTVA(INEW.DISTA)
             DELSIG=SYNEW-SY
             DISTB=DISTA
             DISTA=DISTA+5000.
             S YNEW= S YTVA(INEW,DISTA)
             DELSG=SYNEW-SY
             IF(ABS(DELSG).GT.ABS(DELSIG))GO TO  145
             DELSIG=DELSG
             GO TO 144
             CONTINUE
             DDISTY=DISTB+5000.*(( 0.-DELSIG)/( DELSG-DELSIG))-DIST(NX)

            SAME PROCEDURE FOR TVA  SIGMA-Z

             DISTA=5000.
             SZNE¥=SZTVA(INEW,DISTA)
             DELSIG=SZNEW-SZ
             DISTB=DISTA
             DISTA=DISTA+5000.
             SZNEW=SZTVA( INEW.DISTA)
             DELSG=SZNEW-SZ
             IF(ABS(DELSG).GT.ABS(DELSIG))GO TO  147
             DELSIG=DELSG
             GO TO 146                     s
             CONTINUE
             DDISTZ=DISTB+5000.*( (0.-DELSIG)/( DELSG-DELSIG))-DISTC NX)
             IF(NX.LE.NXSTAB)GO TO  136

            CODE  FOR CALCULATING SIGMA-Y AND SIGMA-Z DOWNWIND
            OF STABILITY CHANGE.
            FIRST ADD DISTANCE OFFSET FOR NEW STABILITY BEFORE
            CALCULATING SY AND SZ

             XMY= DISTC NX) +DDISTY
             XMZ=DIST( NX) +DDISTZ
             IF( IDIS.EQ.. 1)GO TO  122
             SY=SYPAS( INEW.XMY)
             SZ=SZPAS(INEW.XMZ)
             GO TO 136
             SY= SYTVA( I NEW, XMY)
             SZ=SZTVA( INEW.XMZ)
             CONTINUE
Exhibit B-l (Continued)
                                      282

-------
( 1345)
( 1346)
( 1347)
( 1348)
( 1349)
( 1350)
(1351)
( 1352)
(1353)
( 1354)
( 1355)
( 1356)
( 1357)
( 1358)
( 1359)
( 1360)
( 1361)
( 1362)
( 1363)
( 1364)
( 1365)
( 1366)
( 1367)
( 1368)
( 1369)
( 1370)
( 1371)
( 1372)
( 1373)
( 1374)
( 1375)
( 1376)
( 1377)
( 1378)
( 1379)
( 1380)
( 1381)
( 1382)
( 1383)
( 1384)
( 1385)
(1386)
( 1387)
( 1388)
( 1389)
( 1390)
( 1391)
( 1392)
( 1393)
( 1394)
( 1395)
(1396)
( 1397)
( 1398)
( 1399)
( 1400)


51


52

53

54

55

56

57


C
C C,
C F]
C Al
C

C

C
C
C

C
C
C


68
C
C
C
69
C
C
C

C
C
C


C
C
C
C

C
C
              WRITE (6,10)
              WRITE (6,51) (PLANT( J),J=l,6)
              FORMAT (25X.50HCONCENTRATIONS OF AEROSOL AND GASES CONTRIBUTED  BY,
             1        //35X.6A4/)
              WRITE (6,52) XKM
              FORMAT(25H DOWNWIND DISTANCE (KM) -, F7.1)
              WRITE (6,53) H
              FORMAT(19H PLUME ALTITUDE ( M) ,5X,1H=,F7.0)
              WRITE (6,54) SY
              FORMAT(12H SIGMA Y (M) ,12X, 1H=,F7.0)
              WRITE (6,55) SZ
              FORMAT(12H SIGMA Z (M),12X,1H=,F7.0)
              WRITE(6,56)  RS02R( NX, 3,NX)
              FORMAT(27H S02-S04 CONVERSION RATE=   ,F10.4,11H PERCENT/HR)
              WRITE(6,57)  RNOXR(NX,3,NX)
              FORMAT(27H NOX-NO3 CONVERSION RATE=   ,F10.4,11H PERCENT/HR)
              WRITE(6,271)
              IFLAGP=0

        C CALCULATE DECREASE OF S02 AND NOX FLUX AND INCREASE IN PARTICULATE
        C FLUX  DUE TO SULFATE AND NITRATE FORMATION.
        C ALSO,  CALCULATE THE DECREASE IN FLUX DUE TO SURFACE DEPOSITION.

              NTT=0
            TIME IN HOURS AND DECIMAL FRACTION OF  HOUR
              TIMEHR=AINT( TIME/100.)+AMOD( TIME,100.)/60.

             CHECK IF  FIRST DOWNWIND POINT

              IF(NX.EQ.NX1)GO TO 68

             TIME IN HOURS FOR TRANSPORT FROM PREVIOUS (NX-1)  DOWNWIND POINT

              DTIME= ( ( DIST( NX)-DIST( NX-1))/U)/3600.
              GO TO 69
              DTIME=0.

             TIME AT PREVIOUS DOWNWIND POINT

              TIMER=TIMEHR-DTIME

             NTT STOPS SURFACE DEPOSITION AT NIGHT

              IF(TIMER.LT.7..OR.TIMER.GT.18.)NTT=1

             CALCULATION OF DEPOSITION

              YGRND=CHIQIY( 6)* 1000.
              DEPOT= YGRND*( XM-XM0)

            SUPPRESS SURFACE DEPOSITION AT NIGHT (ASSUME STABLE STRATIFICATION)
             DEPOSITION OF PRIMARY PARTICULATE

              DEPPAR=QPART*VDCOR*DEPOT*FLOAT( 1-NTT)/100.

            ADJUST EFFECTIVE PARTICULATE EMISSION  RATE FOR DEPOSITION
Exhibit B-l (Continued)
                                      283

-------
( 1401)
( 1402)
( 1403)
( 1404)
( 1405)
( 1406)
( 1407)
( 1408)
( 1409)
( 1410)
( 1411)
( 1412)
( 1413)
( 1414)
( 1415)
( 1416)
( 1417)
( 1418)
( 1419)
( 1420)
( 1421)
( 1422)
( 1423)
( 1424)
( 1425)
( 1426)
( 1427)
( 1428)
( 1429)
( 1430)
(1431)
( 1432)
( 1433)
( 1434)
( 1435)
( 1436)
( 1437)
( 1438)
( 1439)
( 1440)
( 1441)
( 1442)
( 1443)
( 1444)
( 1445)
( 1446)
( 1447)
( 1448)
( 1449)
( 1450)
( 1451)
( 1452)
( 1453)
( 1454)
( 1455)
( 1456)
C

c
C
c
c

c
c
c




c
c
c




c
c
c
c
c


c
c
c
c


c
C j
c

c
c
c

568

C
C
c
c





c
c
c
             OPART= QPART-DEPPAR

            LOOP ON DOWNWIND DISTANCES FROM PRESENT POSITION (DIST(NX)) TO
            FINAL POINT (DIST(NX2)).

             DO  570 NT=NX,NX2

            CALCULATE DEPOSITION FOR S02,  NOX,  SO4, AND NO3

             DEPS02=QS02TR(6,NT)*VDS02*DEPOT*FLOAT( 1-NTT)/100.
             DEPNOX= QNOXTR( 6,NT)*VDNOX*DEPOT#FLOAT( 1-NTT)/100.
             DEPS04=QSO4TR(6,NT)#VDSUB*DEPOT#FLOAT(1-NTT)/100.
             DEPN03=QNO3TR(6,NT)*VDNOX*DEPOT*FLOAT( 1-NTT)/100.

            LOOP ON ALTITUDE

             DO  568 NZ=1,6
             FORS02=((QS02TR(NZ,NT)*RS02R( NX,NZ,NT)/3.6E5)/U)*(XM-XMO)
             FORNOX=((QNOXTR(NZ,NT)*RNOXR( NX,NZ,NT)/3.6E5)/U)*( XM-XMO)
            1 *RN02X(NX,NZ,NT)

            ADJUST EFFECTIVE SO2 AND NOX EMISSION RATES^OR CONVERSION TO
            SECONDARY SPECIES AND FOR SURFACE DEPOSITION AFTER TRANSPORT
            FROM DIST(NX-l)  TO DIST(NX).

             QS02TR(NZ,NT)=QS02TR(NZ,NT)-FORSO2-DEPS02
             QNOXTRC NZ,NT)= QNOXTR( NZ,NT)-FORNOX-DEPNOX

            ADJUST EFFECTIVE SULFATE EMISSION RATE, INCLUDING SULFATE
            FORMATION AND SURFACE DEPOSITION.  (ADJUST MASS FLUX)

             QSO4TR(NZ,NT)= QS04TR(NZ,NT)
            1  +1.5/3.821E-4*FORSO2-DEPSO4

          ADJUST N03 MASS FLUX
                                             S.
             QN03TR(NZ,NT)=GN03TR( NZ,NT)+FORNOX-DEPN03

             ADJUST PARTICULATE MASS FLUX FOR SULFATE FORMATION

             QPARTT( NX, NT) =QPART+QS04TR(NZ,NT)
             CONTINUE
             IF(NT.NE.NX)GO TO 569

            CALCULATE TOTAL DEPOSITION TO DIST(NX) FOR SO2, NOX, PARTICULATE,
            SO4, AND NO3.

             TDS02= TDSO2+DEPSO2
             TDNOX= TDNOX+DEPNOX
             TOPART=TOPART+DEPPAR
             TDSO4= TDS04+DEPSO4
             TDNO3= TDNO3+DEPN03

            CALCULATE RATIO OF TOTAL DEPOSITION TO EMISSION RATE
Exhibit B-l  (Continued)
                                      284

-------
( 1457)
( 1458)
( 1459)
(1460)
(1461)
( 1462)
( 1463)
( 1464)
( 1465)
( 1466)
( 1467)
( 1468)
( 1469)
( 1470)
(1471)
( 1472)
( 1473)
( 1474)
( 1475)
( 1476)
( 1477)
( 1478)
( 1479)
( 1480)
(1481)
( 1482)
( 1483)
(1484)
(1485)
( 1486)
( 1487)
( 1488)
( 1489)
( 1490)
(1491)
( 1492)
( 1493)
( 1494)
( 1495)
(1496)
( 1497)
( 1498)
( 1499)
( 1500)
(1501)
( 1502)
( 1503)
( 1504)
( 1505)
( 1506)
( 1507)
( 1508)
( 1509)
(1510)
(1511)
(1512)





569
570
C
C DO
C
C






58
59
C
C
C


C
C
C




C
C
C
C

C
C
C

C
C
C
C

C
C
C








              FDSO2= TDSO2/QS02
              FDNOX= TDNOX/QNOX
              FDPART= TDPARTXQPART0
              FDSO4=((TDS04XQS02)/I.5)*3.821E-4
              FDN03=((TDN03/QNOX)/1.35)*5.315E-4
              CONTINUE
              CONTINUE
                                    2*SIGMA-Z+H, SIGMA-Z+H, H, H -SIGMA-Z
LOOP FOR 6 ALTITUDES:
H -2*SIGMA-Z, SURFACE

 DO 60 NZ    1,6
 RWZ = NZ
 IFCNZ.EQ.6) GO TO 58
 Z = H + <3.-RNZ)*SZ
 IF(Z.LT.0.) Z=0.
 GO TO 59
 Z = 0.0
 CONTINUE

GAUSSIAN DIFFUSION CALCULATION

 ARG1 = -0.5*(H+Z)*(H+Z)/SZ/SZ
 ARG2 = -0.5*(H-Z)*(H-Z)/SZ/SZ

PREVENTION OF EXPONENTIAL UNDERFLOW

 IF(ARG1.LT.(-290.)) ARGl=-290.
 IF(ARG2.LT.(-290.)) ARG2=-290.
 CHIQ=((TAMB/FGTEMP)/(2.*PI*SY*SZ*U))*(EXP( ARG1)+EXP(ARG2))
 IF(CHIQ.LT.2.E-30)CHIQ=2.E-30

CHECK IF EQUILIBRIUM PLUME CENTERLINE HEIGHT  IS ABOVE THE  TOP
OF THE MIXED LAYER.

 IF( H.GT.HPBLM) GO TO 594

VIRTUAL SOURCE TO ACCOUNT FOR REFLECTION OFF  CAPPING LAYER.

 HPRIME=2.*HPBLM-H

IF Z IS GTR  THAN TOP OF MIXED LAYER, CHANGE Z TO TOP OF MIXED
LAYER.

 IF(Z.GT. HPBLM) Z= HPBLM

REVISED CALCULATION FOR PLUME BELOW INVERSION.

 ARG1 = -0.5*(H+Z)*(H+Z)/SZ/SZ
 ARG2 ~ -0.5*(H-Z)*(H~Z)/SZ/SZ
 ARG3=-0.5*(HPRIME-Z)*(HPRIME-Z)/SZ/SZ
 ARG4= -0. 5*( HPRIME+Z) *( HPRIME+Z) /SZ/SZ
 IF(ARG3.LT. -290. ) ARG3=-290.
 IF(ARG4.LT. -290. ) ARG4=-290.
 CHIQ= ( TAMB/FGTEMP) /( 2. *P I*SY*SZ*U) *( EXP( ARG1) +EXP( ARG2) +EXP( ARCS)
1 + EXP(ARG4))
Exhibit Brl (Continued)
                                      285

-------
(1513)
( 1514)
( 1515)
( 1516)
(1517)
( 1518)
( 1519)
( 1520)
( 1521)
( 1522)
( 1523)
( 1524)
( 1525)
( 1526)
( 1527)
( 1528)
( 1529)
( 1530)
( 1531)
( 1532)
( 1533)
( 1534)
( 1535)
( 1536)
( 1537)
( 1538)
( 1539)
( 1540)
(1541)
( 1542)
(1543)
( 1544)
( 1545)
( 1546)
( 1547)
( 1548)
( 1549)
( 1550)
( 1551)
(1552)
( 1553)
(. 1554)
( 1555)
( 1556)
( 1557)
( 1558)
( 1559)
( 1560)
(1561)
( 1562)
( 1563)
( 1564)
( 1565)
( 1566)
( 1567)
( 1568)

C
C
C

C
C
C



C
C
C
C
592

594
C
C
C

C
C
C
C


596
C
C
C



C
C
C
C
C C
C P
C D
C T
C
C
C


C
C
C

C
C
C
C
             IF( CHIQ.LT.2.E-30)CHIQ=2.E-30

            FORMULA FOR UNIFORMLY MIXED CHI/ft.  CONCENTRATION CONSTANT  IN Z
            FROM SURFACE TO  INVERSION.
             CHIQ1 = ( TAMB/FGTEMP) /( SQRTC 2. *P I) *SY*HPBLM*U)

            BRANCH IF Z - PLUME CENTERLINE HEIGHT.

             IF(NZ.EQ.S) GO  TO 592
             IF(NZFLAG.EQ.1) CHIQ=CHIQ1
             GO TO 594

             IF GAUSSIAN PLUME CENTERLINE CHI/Q < CHI/Q FOR UNIFORMLY MIXED
             CASE, SET FLAG  TO USE CHI/Q FOR UNIFORMLY MIXED CASE.

             IF(CHIQ.LT.CHiai) NZFLAG=1
             IFCNZFLAG.EQ.1) CHIQ=CHIQ1
             CONTINUE

            BRANCH FOR FIRST DOWNWIND DISTANCE

             IF(NX.EQ. 1) GO  TO 596

            MAXIMUM CHIXQ CANNOT EXCEED CHI/Q FOR CENTERLINE AT PREVIOUS
            DOWNWIND POINT

             XQMAX=XQ(3)
             IF(CHIQ.GT.XQMAX) CHIQ=XQMAX
             CONTINUE

            SAVE CHI/Q VALUES FOR ALL 6 LEVELS.

             XQ(NZ)=CHIQ
             CHIQIY( NZ)=CHIQ*SQRT< 2.*PI)*SY
             CHIQIY(NZ)=CHIQIY(NZ)/1000.

            OH  MODEL FOR SULFATE AND NITRATE, FORMATION.  CALCULATE CONVERSION
            FOR PLUME PARCEL AT PRESENT POSITION AS  IT IS ADVECTED TO POINTS
            FARTHER DOWNWIND WHERE CONCENTRATIONS ARE CALCULATED.
          CALCULATE PLUME PARCEL CONCENTRATIONS CORRESPONDING TO THE PLUME
          PARCEL AT DOWNWIND DISTANCE NX WHICH  GETS TRANSPORTED TO
          DOWNWIND DISTANCE  I. SO4 AND N03 FORMATION RATES ARE CALCULATED FOR
          THE TIME CORRESPONDING TO PARCEL DISTANCE  I.

            TIME  IN HOURS AND DECIMAL FRACTIONS

             TIMEHR=AINT(TIME/100.)+AMODCTIME,100.)/60.
             DO 5960  I=NX,NX2

            TIME FOR TRANSPORT FROM PRESENT POSITION TO POINT DOWNWIND  (DIST(D)

             DTIME= ( ( DISTC I) -DIST( NX)) /U) /3600.

            CALCULATE TIME OF DAY PARCEL WOULD BE AT PRESENT POINT (DISTCNX))
             IN  ORDER TO BE TRANSPORTED  TO EACH POINT FARTHER DOWNWIND  FOR
            TIME OF OPTICS CALCULATIONS.
Exhibit Brl (Continued)
                                     286

-------
( 1569)
( 1570)
( 1571)
( 1572)
( 1573)
( 1574)
(1575)
(1576)
( 1577)
( 1578)
( 1579)
( 1580)
( 1581)
( 1582)
( 1583)
( 1584)
( 1585)
( 1586)
( 1587)
( 1588)
( 1589)
( 1590)
(1591)
( 1592)
( 1593)
(1594)
( 1595)
(1596)
( 1597)
( 1598)
(1599)
( 1600)
( 1601)
( 1602)
( 1603)
( 1604)
( 1605)
( 1606)
( 1607)
( 1608)
( 1609)
( 1610)
( 1611)
(1612)
( 1613)
( 1614)
( 1615)
(1616)
( 1617)
(1618)
(1619)
( 1620)
(1621)
( 1622)
( 1623)
( 1624)
C

5961
C
C
C


5962
C
C
C



C
C
C

C
C
C
C
C
C


C
C
C

C
C
C

C
C
C




C
C
C





39
C
C
C

C
              TI KER= TIMEHR-DTI ME
              IF(TIMER.GT.0.)GO TO 5962

             CORRECT FOR NEGATIIVE CLOCK TIME

              TIMER=TIMER+24.
              GO TO 5961
              CONTINUE

             IT1   HOUR OF DAY FOR PARCEL AT DIST(NX)

              IT1=INT(TIMER)
              IT2=IT1+1
              IF( IT2.E0..25) IT2=1

             RTIME = DECIMAL FRACTION OF TIME OF DAY (TIME BEYOND  ITl)

              RTIME=AMOD(TIMER,1. )

             LINEAR INTERPOLATION OF N02 - NO DYNAMIC EQUILIBRIUM CONSTANT
             AND INTERPOLATION OF PHOTOLYSIS RATE CONSTANT FOR TIME OF DAY
             WHEN PLUME PARCEL WOULD BE AT DIST(HX) AND BE TRANSPORTED TO
             TO DIST(NX+1), DIST(NX+2), ETC.

              PHIKKA=PHIKKR( ITl)+RTIME*(PHIKKR( IT2)-PHIKKRCITl))
              QJA=QJ(IT1)+RTIME#(QJ(IT2)-QJ( ITl))

             CONCENTRATION OF S02

              XS02R= QS02TR(NZ,I)#CHIQ

             CONCENTRATION OF NOX

              XNOXR= QNOXTR( NZ,I)*CHIQ

             CONCENTRATION OF N02

              XN02TR=XNOXR*RATIOT(NZ,!)/( 1.+RATIOT( NZ, I))
              SUMR=XNOXR+AMBNOX+03AMB+XN02TR+AMBNO2+PHIKKA
              XNO2R=0.5#( SUMR-SQRT( ABS( SUMR*SUMR-4.*( XNOXR+AMBNOX)*
             1 (O3AMB+XN02TR+AMBNO2))))

             NOX PLUME CONCENTRATION WITH AMBIENT BACKGROUND NOX ADDED.

              TOTR= XNOXR+AMBNOX
              IF( XN02R.GT.TOTR)XNO2R=TOTR
              IF(NX.EQ.NX2)GO TO 39
              RATIOT(NZ,I)=RATIOT(NZ,I)+4.015E-12*EXP( 1046./( 1.987*TAMB))*
             1 ( TOTR-XN02R)$209460.*(DIST( NX+1)-DIST(NX))/U
              CONTINUE

             OZONE CALCULATION

              X03R=03AMB-( XNO2R-XNO2TR-AMBN02)
Exhibit B-1  (Continued)
                                      287

-------
( 1625)
( 1626)
( 1627)
( 1628)
( 1629)
( 1630)
( 1631)
( 1632)
( 1633)
( 1634)
( 1635)
( 1636)
( 1637)
( 1638)
( 1639)
( 1640)
( 1641)
( 1642)
( 1643)
( 1644)
( 1645)
( 1646)
( 1647)
( 1648)
( 1649)
( 1650)
( 1651)
( 1652)
( 1653)
( 1654)
( 1655)
( 1656)
( 1657)
C 1658)
( 1659)
( 1660)
( 1661)
( 1662)
( 1663)
( 1664)
( 1665)
( 1666)
( 1667)
( 1668)
(1669)
( 1670)
(1671)
( 1672)
( 1673)
( 1674)
( 1675)
( 1676)
( 1677)
( 1678)
( 1679)
( 1680)
C
C


C
C
C


C
C
C



C
C
C

C
C
C


C
C
C

C
C
C



C
C
C


C
C
C

C
C
C

C
C
C

C
C
C


            OH RADICAL CONCENTRATION

             XOHR=2.*QJA*3.4E5*WATER#X03R/( ( 4.45E10+3. 4E5*WATER)*
             1 (2000.*XS02R+14.E3*XN02R))

            MAXIMUM  OH RADICAL CONCENTRATION

             XOHRMX= 4.S7E-7*QJAX 1.32E-3
              IF ( XOHR.GT.XOHRMX)XOHR= XOHRMX

            S02,  NOX, AND N02  -CONVERSION RATES

             RS02R( NX+1,NZ,1+1)=2000.*XOHR*60.* 100.+RS02(NX+1)
             RNOXRC NX+1,NZ,1+1) = 14.E3*XOHR*60.* 100.
             RNO2X(NX+1,NZ,I+1)= XN02R/TOTR

             BRANCH  IF PLUME PARCEL NOT AT FINAL POSITION ( I = NX)

              IF(I.NE.NX)GO  TO  5959

             SAVE S02 CONCENTRATION AND PARTICULATE CONCENTRATION.

             XS02=XS02R
             XPART=QPART*CHIQ>

            CALCULATE  MOLE RATIO OF SULFATE TO INITIAL S02 (%).

             RATIOS= QS04TRCNZ, D/1.5 * 3.821E-4xOS02*100.

            SAVE OZONE,  NOX, AND NO2 CONCENTRATIONS.

             X03=X03R
             XNOX=XNOXR
             XN02=XN02R
                                            S
            SAVE EFFECTIVE  EMISSION RATE OF NO2 AND S04 FOR LEVEL NZ

             QN03=QNO3TR1  (Continued)
                                      288

-------
(1681)
( 1682)
( 1683)
( 1684)
( 1685)
( 1686)
( 1687)
( 1688)
( 1689)
( 1690)
(1691)
( 1692)
(1693)
( 1694)
( 1695)
(1696)
( 1697)
(1698)
( 1699)
( 1700)
( 1701)
( 1702)
( 1703)
( 1704)
( 1705)
( 1706)
( 1707)
( 1708)
( 1709)
( 1710)
(1711)
( 1712)
( 1713)
( 1714)
( 1715)
( 1716)
( 1717)
( 1718)
(1719)
( 1720)
(1721)
( 1722)
( 1723)
( 1724)
( 1725)
( 1726)
( 1727)
( 1728)
( 1729)
( 1730)
( 1731)
( 1732)
( 1733)
( 1734)
( 1735)
( 1736)
C
C
C

5'
5'

C
C
C

J



5<


i
C
C
C



C
C
C

G
C
C

C
C
C

C
C
C


C
C
C

C
C
C

C
C
G
C


            CALCULATE MOLE RATIO OF  HN03  TO  INITIAL NOX(%).

              RATION=(QN03TR(NZ,I)/QNOX)* 100.
            >  CONTINUE
            )  CONTINUE
              IF( IFLAGP.EO.. 1) GO TO  5616

            WRITE OUT TITLES FOR PRINT FILE

              WRITE(6,5611)
         5611 FORMAT(9H ALTITUDE, 9X, 3HNOX, 7X, 3HNO2, 7X,4HN03-, 2X, 8HNO2/NTOT, 2X,
             19HNO3-/NTOT, 5X, 3HSO2, 7X, 4HSO4= , 2X, 9HSO4=/STOT, 5X, 2HO3, 5X, 7HPRIMARY
             2, 1X,9HBSP-TOTAL,2X,9HBSPSN/BSP)
              WRITE(6,5612)
        5612  FORMAT( 16X, 5H( PPM) , 5X, 5H( PPM) , 5X, 5H( PPM) , 2( 2X, 8H( MOLE  %)) , 5X,
             15H( PPM) , 3X, 7H( UG/M3) , 2X, 8H( MOLE %) , 5X, 5H( PPM) , 3X, 7H( UG/M3) , IX, 10H(
             210-4 M-l) ,3X,3H(?O ,/)
         5616 CONTINUE

            N02 PLUME INCREMENT

              XN021N= XN02-AMBN02
              QN02I(NZ)=XN02IN/CHIQ
              XN03=QN03*CHIQ

           TOTAL N03 (PLUME + AMBIENT)

              XN03T= XNO3+AMBNO3

           RATIO OF PLUME INCREMENT  N02 TO INITIAL NOX (%).

              RNO2=( 100.*(XNO2-AMBNO2)/CHIQ)/QNOX

           IF (PLUME N02 - AMBIENT N02) IS SMALL, RATIO SET TO  ZERO.

              IF(XN02IN.LT.0.0005)    RN02  - 0.

           MOLE RATIO OF TOTAL NO2 AND N03 TO TOTAL NOX (PLUME  + AMBIENT).

              RN02T=(XNO2/(TOT+XN03T))*100.
              RNO3T=(XNO3T/( TOT+XN03T))* 100.

           TOTAL S02 CONCENTRATION IN PLUME (PLUME + AMBIENT)

              XS02T= XS02+AMBSO2

           SULFATE PLUME INCREMENT

              XS04=QSO4*CHIQ

           SAVE PARTICULATE AND SULFATE PLUME INCREMENTS FOR ALONG PLUME
           OPTICAL ANALYSIS.

              XPARTP(NX,NZ)=XPART
              XPARTS(NX,NZ)=XSO4
Exhibit B-1  (Continued)
                                      289

-------
( 1737)
( 1738)
( 1739)
( 1740)
( 1741)
( 1742)
( 1743)
( 1744)
( 1745)
( 1746)
( 1747)
( 1748)
( 1749)
( 1750)
(1751)
( 1752)
( 1753)
( 1754)
( 1755)
(1756)
( 1757)
( 1758)
( 1759)
( 1760)
(1761)
( 1762)
( 1763)
( 1764)
( 1765)
(1766)
( 1767)
( 1768)
( 1769)
( 1770)
( 1771)
( 1772)
( 1773)
( 1774)
( 1775)
( 1776)
( 1777)
( 1778)
( 1779)
( 1780)
( 1781)
( 1782)
( 1783)
( 1784)
( 1785)
( 1786)
( 1787)
( 1788)
( 1789)
( 1790)
( 1791)
( 1792)
C
C
C

C
C
C

C
C
C

C
C
C

C
C
C

C
C
C
C

C
C
C

C
C
C
C

C
C
C
C




j
j



1
C
C
C

C
C
C
C
           TOTAL SULFATE CONCENTRATION.

              XS04T= XS04+AMBS04

           RATIO OF TOTAL S04 COMPONENT TO TOTAL SULFUR COMPONENT.

              RS04T=(XS04T#3.821E-4/1.5) /(XS02T+XS04T*3.821E-4/1.5)

           CONVERT TO PERCENT

              RS04T=RS04T*100.

           PLUME INCREMENT OF OZONE (THIS IS LESS THAN ZERO FOR NOX PLUMES).

              X03IN=X03-03AMB

           TOTAL AEROSOL CONCENTRATION (PLUME PLUS BACKGROUND)

              XPT   XPART + CORAMB + AMBS04

           EXTINCTION COEFFICIENT FOR PLUME PRIMARY PARTICULATE AND
           SULFATE AND CONVERT FROM I/KM TO 1/METERS

              BSP=10.*(BTAPRM(19)#XPART+BTAS04(19)*XS04)

           ADD IN BACKGROUND AEROSOL EXTINCTION

              BSPT= BSP+10.*BTAAER( 19 )

           RATIO OF SULFATE EXTINCTION COEFFICIENT IN PLUME TO TOTAL
           PLUME AEROSOL EXTINCTION COEFFICIENT (%).

              RSEC=1000.*BTAS04(19)*XS04/BSP
                                          s
           RATIO OF PLUME SULFATE EXTINCTION COEFFICIENT TO TOTAL
           AEROSOL EXTINCTION COEFFICIENT (%).

              RSECT=1000.*BTAS04(19)*XS04T/BSPT
              WRITE(6,5613) ALT(NZ)
              WRITE(6,5614) XNOX,XNO2IN,XN03,RN02,RATION,XS02,XS04,RATIOS,
             1X03IN,XPART,BSP,RSEC
         5613 FORMAT(2X,A4)
         5614 FORMATdlH INCREMENT!, 12F10.3)
              WRITE( 6,5615) TOT, XN02, XN03T, RNO2T, RN03T, XSO2T, XS04T, RSO4T, X03,
             1XPT.BSPT.RSECT
              IFLAGP=1
         5615 FORMATdlH TOTAL AMB!, 12F10.3,/)

           BRANCH AROUND IF NOT AT PLUME CENTERLINE HEIGHT.

              IF(NZ.HE.3) GO TO 60

           SAVE PLUME CENTERLINE CONCENTRATIONS, INCLUDING AMBIENT
           BACKGROUND CONTRIBUTION.
Exhibit B_-l  (Continued)
                                      290

-------
( 1793)
( 1794)
( 1795)
( 1796)
( 1797)
( 1798)
( 1799)
( 1800)
(1801)
( 1802)
( 1803)
( 1804)
( 1805)
( 1806)
( 1807)
( 1808)
( 1809)
(1810)
( 1811)
( 1812)
( 1813)
( 1814)
( 1815)
( 1816)
(1817)
( 1818)
( 1819)
( 1820)
( 1821)
( 1822)
( 1823)
( 1824)
( 1825)
( 1826)
( 1827)
( 1828)
( 1829)
( 1830)
(1831)
( 1832)
( 1833)
( 1834)
( 1835)
( 1836)
( 1837)
( 1838)
( 1839)
( 1840)
(1841)
( 1842)
(1843)
( 1844)
( 1845)
( 1846)
( 1847)
( 1848)










i

1

1

1
C
C
C
C




C
C
C
C

C
C
C
C
C
C
C
C
C


C
C
C
C




C
C
C

C
C
C
              XN02C=XN02
              XS04C=XS04T
              XPRMC=XPT
         60   CONTINUE
              WRITE(6,5622)
         5622 FORMAT(////62H CUMULATIVE  SURFACE DEPOSITION (MOLE FRACTION OF  INI
             1TIAL FLUX),/)
              WRITE(6,5617) FDS02
         5617 FORNAT(1H ,16X,4HS02»,F10.4)
              WRITE(6,5618) FDNOX
         5618 FORMAT(1H ,16X.4HNOX!,F10. 4)
              TVRITE(6,5619) FDPART
         5619 FORPL4T(21H PRIMARY PARTICIPATE?, F10. 4)
              ttRITE(6,5620) FDS04
              FORMAT( III , 16X,4ESO4 f, F10.4)
              WRITE(6,5621) FDN03
         5621 FORMAT(IH ,16X,4HN03?,F10.4)

        C CALCULATION OF N02 AND S04 FLUXES TAKING INTO ACCOUNT THE NON-
        C UNIFORM MOLE RATIOS ACROSS TEE PLUME.

              OJTO2H3)  = 0.39*QN02I(3) + 0.4C5-GNO2H2)  +  0. 125#QNO2I( 1)
              QN02K2)  - 0.39*QNO2I(2) + 0.61*QN02I( 1)
              QNO2H4)   - 0.39*OJiO2I(4)  + 0. 6 1~';QNO2I( 5)
              QS04=0.39#QS04TR(3,NX)-i-0.485#GS04TrU2,NX)+0. 125*QSO4TR( 1, NX)

           SKIP OVER HORIZONTAL  SIGHT PATHS WITH SKY BACKGROUND OPTICS
           CALCULATION IF IFLG1  = 0 .

               IF( IFLG1.EQ.0) GO TO 7001
LOOP FOR PLUME- BASED OR OBSERVER- BASED  CALCULATIONS OR BOTH
        C VISUAL EFFECTS (HORIZONTAL SIGHT PATHS)

              ********:^:,!:*:*:******

              P FOR PLUME- BASED

              DO 7000 NC=NC1,NC2
              NFLAG= 1

           ALTITUDE LOOP, NZF= 1 FOR PLUME CENTERLINE ONLY, NZF=2  FOR
           CENTERLINE AND SURFACE.

              DO 7000 NZ1 = l.NZF
              NZ=NZ1*3
              IF(NZ.EG.3) Z=H
              IF(NZ.EQ.6) Z=0.

           BRANCH FOR OBSERVER- SPEC IF 1C CALCULATION

              IF(NC.EQ.2)GO TO 6100
Exhibit B-l  (Continued)
                                      291

-------
( 1849)
( 1050)
( 1851)
( 1852)
( 1853)
( 1854)
( 1855)
( 1856)
( 1857)
( 1858)
( 1859)
( 1860)
( 1861)
( 1862)
( 1863)
( 1864)
( 1865)
( 1866)
( 1867)
( 1868)
( 1869)
( 1870)
( 1871)
( 1872)
( 1873)
( 1874)
( 1875)
( 1876)
( 1877)
( 1878)
( 1879)
( 1880)
( 1881)
( 1882)
( 1883)
( 1884)
( 1885)
( 1886)
( 1887)
( 1888)
( 1889)
( 1890)
(1891)
( 1892)
( 1893)
( 1894)
( 1895)
( 1896)
( 1897)
( 1898)
( 1899)
( 1900)
( 1901)
( 1902)
( 1903)
( 1904)

e

C
C
C


C
C
C

(


<

C
C
C

C
C
C

C
C
C










C
C
C

C
C
C

C
C
C
C

C
C
C

C
             NT=NT1-1
        6990 NT=NT+1
              ITHETA=NT+1

           ASSIGN  SCATTERING ANGLE

             THETA=TT(ITHETA)
             NFLAG=-1*NFLAG

           SKIP  WRITING TITLE EVERY SECOND TIME THROUGH

              IF(NFLAG.GT.0)  GO TO 65
        6100 CONTINUE
             WRITE(6,10)
             WRITE(6,61)(PLANT( J),J=1,6)
        61  FORMAT (20X.41HVISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS,/20X,6A4,
             I/)

           XKM = DOWNWIND DISTANCE IN KILOMETERS

             WRITE(6,52)  XKM                          _

           H  HEIGHT OF PLUME CENTERLINE.

             WRITE(6,53)  H

           BRANCH  IF DOING PLUME-BASED CALCULATION

              IFCNC.EQ. DGO TO 6400
             WRITE( 6,611)OBSPLU(NX)
          611  FORMATC31H PLUME-OBSERVER DISTANCE (KM)  =,F7.1)
             WRITE( 6,612)AZMUTH(NX)
          612  FORMAT(27H AZIMUTH OF LiNE-OF-SIGHT -,F7.1)
              WRITE(6,613)ABETA(NX)
          613  FORMAT(35H ELEVATION ANGLE OF ilNE-OF-SIGHT =,F7.1)
              WRITE(6,614)ZENITH,TIME,IMO,IDAY
          614  FORMAT(21H SOLAR ZENITH ANGLE -,F7.1,2X,4H AT ,F5.0,4H ON ,
             1   I2,1H/,I2)

           ASSIGN  SCATTERING ANGLE

              THETA=TT(NX+7)

            ASSIGN INDEX FOR PHASE FUNCTIONS FOR CALL TO PLMCLN

              ITHETA=7+NX

           ASSIGN  HORIZONTAL ANGLE BETWEEN OBSERVER LINE-OF-SIGHT AND PLUME
           CENTERLINE.

              ALPHA=AALPHA( NX)

           ASSIGN  OBSERVER-PLUME DISTANCE ALONG LINE-OF-SIGHT

              RP=OBSPLU(NX)
Exhibit B.-l (Continued)
                                      292

-------
(1905)
(1906)
(1907)
( 1903)
(1909)
( 1910)
( 1911)
( 1912)
( 1913)
(1914)
( 1915)
( 1916)
( 1917)
(1918)
(1919)
( 1920)
( 1921)
( 1922)
( 1923)
( 1924)
( 1925)
( 1926)
( 1927)
(1928)
( 1929)
( 1930)
( 1931)
( 1932)
( 1933)
( 1934)
(1935)
( 1936)
( 1937)
(1938)
(1939)
( 1940)
(1941)
( 1942)
( 1943)
( 1944)
( 1945)
( 1946)
( 1947)
( 1948)
(1949)
( 1950)
(1951)
( 1952)
( 1953)
(1954)
( 1955)
(1956)
( 1957)
(1958)
(1959)
(I960)
C
c
C
c
c
   ADJUST OPTICAL  THICKNESS  FOR LINE-OF-SIGHT NOT PERPENDICULAR TO PLUME

      YIKT=CHIQIY(NZ)/SIN(ALPHA*RAD)
 6400 CONTINUE
      IFCNZl.EQ. 1)  WITE(6,62)
      IF(NZl.Ea.2)  WRITE<6,63)
 62   FORMAT(35H SIGHT PATH  IS  THROUGH PLUHE CENTER./)
 63   FORMATOOH SIGHT PATH  IS  AT GROUND LEVEL,/)
      WRITE(6,64)
 64   FORMAT< 6H  THETA, IX, 5HALPHA, 2X, 6HRP/RVO, 4X, 2HRV, 2X, 8H%REDUCED,4X,
     14HYCAP,7X, 1HL,7X, 1HX,7X, 1HY.8H  DELYCAP, 4X. 4 HP I'LL. 2X, 6HC( 550) , 2X.
     26HBRATIO,4X,4HDELX,4X,4HDELY,2X,6HE( LUV),2X,6HE( LAB))
 65   CONTINUE
      WRITE(6,66)  THETA

   BRANCH FOR OBSERVER-BASED CALCULATION
      IF(NC.EQ.2)GO TO 6500
 66   FORMAT(/,F6.0)
C
C  INITIALIZE AND  INCREMENT  INDEX FOR HORIZONTAL ANGLE BETWEEN
C OBSERVER LINE-OF-SIGHT AND PLUME CENTERLINE  (PLUME-BASED CALCULATIONS)
C
      NA=0
 6995 NA=NA+1
      IF(NA.LT.5)GO TO 70
      ALPHA=AA(4)
      GO TO 73
      ALPHA=AA(NA)
   CHI/Q AT PLUME CENTEFXINE * EQUIVALENT DISTANCE  TO  MATCH CHI/Q
   INTEGAL IN Y-DIRECTION FOR GAUSSIAN  DISTRIBUTION.

      YINT=CHIQI Y( NZ)/SIN(ALPHA*RAD)
      NP=0

   INITIALIZE AND INCREMENT OBSERVER-PLUME DISTANCE INDEX
70
C
C
C
C
73

C
C
C
 6999 NP=NP+1
C
C  RP = DISTANCE TO PLUME FROM OBSERVER ALONG LINE-OF-SICRT
C
      RP= ROBJ(NP)*RVAMB
C
C   SPECIAL CASE FOR FA=5 FOR OBSERVER POSITIONED AT 1/2  OF A 22.5
C   DEGREE SECTOR FROM THE PLUME CENTERLINE.IF THIS  DISTANCE IS <
C   5 KM, IT IS SET TO 5 KM.
C
C
c
      IF(NA.LT.5)GO TO 6500
      RP=AMAX1((DIST(NX)/1000.)*TAN(22.5/2.*RAD),5.)
 6500 CONTINUE
      PLMDIS=RP

    CALCULATE RATIO OF PERPENDICULAR PLUME-OBSERVER DISTANCE TO SIGMA Y.

      RPR= RP/SY*1000.*SIN(ALPHA*RAD)
Exhibit B-l  (Continued)
                                      293

-------
( 1961)
( 1962)
( 1963)
( 1964)
( 1965)
( 1966)
( 1967)
( 1968)
( 1969)
( 1970)
( 1971)
( 1972)
( 1973)
( 1974)
( 1975)
( 1976)
( 1977)
( 1978)
( 1979)
( 1980)
( 1981)
( 1982)
( 1983)
( 1984)
( 1985)
( 1986)
( 1987)
( 1988)
( 1989)
( 1990)
( 1991)
( 1992)
( 1993)
( 1994)
( 1995)
( 1996)
( 1997)
( 1998)
( 1999)
(2000)
(2001)
(2002)
(2003)
(2004)
(2005)
(2006)
(2007)
(2008)
(2009)
(2010)
(2011)
(2012)
(2013)
(2014)
(2015)
(2016)

C
C Bl
C

C
C R]
C T<
C 01
C






6501





6502



660

C
C C
C P
G



C
C C
C A
C



C
C C
C (
C


C
C
C

660
C
C N
C
             YINTR=1.0

          BRANCH IF  OBSERVER TO PLUME DISTANCE IS GREATER THAN 2.17*SIGMA-Y

              IF(RPR.GT.2.17)  GO TO 6601

          REDEFINING RP IF OBSERVER IS WITHIN THE PLUME SO THAT RP IS DISTANCE
          TO PLUME CENTROID.   ALSO,  CALCULATE THE FRACTION OF TOTAL PLUME
          OPTICAL THICKNESS WITHIN LINE OF SIGHT.

             RPHALF=0.18*(RPR+0.25)+0.153*(RPR+0.75)+0.167*( RPR+1.5)
              IF(RPR.GT.0.5)GO TO 6501
             YINTRl=(RPR/0.5)*0.18
             YINTR=YINTR1+0.50
             RP= ( (RPR*YINTRl/2.+RPHALF)/YINTR)*(SY/1000.)/SIN( ALPHA*RAD)
             GO TO 6601
              IF(RPR.GT.1.0)GO TO 6502
             YINTRl=(RPR-0.5)*0.153/0.5
             YINTR=YINTRl+0.68
             RP= ( ( ( RPR-0.5)*YINTRl/2.+(RPR-0.25)*0.18+RPHALF)/YINTR)*(SY/1000.)
               /SIN(ALPHA*RAD)
             GO TO 6601
             YINTR1 = (RPR-1.0)*0. 142
             YINTR=YINTR1+0.833
             RP=(((RPR-1.)*YINTRl/2.+(RPR-0.75)*0.153+(RPR-0.25)*0.1S+RPHALF)
               /YINTR)*(SY/1000.)/SIN(ALPHA*RAD)
         6601 CONTINUE
             YINT1=YINT*YINTR

          CALCULATION OF MASS INTEGRAL ALONG LINE-OF-SIGHT WITHIN PLUME FOR
          PRIMARY PARTICULATE, SULFATE,  AND N02

              PLUMEP=YINT1*QPART
              PLUMES=YINT1*QS04
              PLUMEN= YINT1*QN02I(NZ)      v^

          CALCULATION OF OPTICAL THICKNESS OF PLUME DUE TO SULFATE, N02,
          AND PRIMARY PARTICULATE.

              TAPS04  = BTAS04C19)*PLUMES
              TAPN02  = ABSN02(19)*PLUMEN
              TAUPRM  = BTAPRM(19)*PLUMEP
           CALCULATE BACKGROUND SKY INTENSITIES (SPECB)
           (SPECP).    #*******CALL PLMCLN*********
AND PLUME INTENSITIES
              CALL PLMCLN(ZENITH,0.,THETA,ITHETA,PLUMEP,PLUMES,PLUMEN,SPECB,SPEC
             IP,RP,THICK)

            CALL ROUTINE TO CALCULATE COLORATION PARAMETERS

              CALL CHROMA(SPECP,SPECB)
         6608 CONTINUE

           NEXT CALCULATE REDUCTION IN VISUAL RANGE THROUGH PLUME DUE TO AEROSOL
Exhibit Brl  (Continued)
                                      294

-------
(2017)
(2018)
(2019)
(2020)
( 202 1 )
(2022)
(2023)
(2024)
(2025)
(2026)
(2027)
(2028)
(2029)
(2030)
(2031)
( 2032)
(2033)
(2034)
(2035)
(2036)
(2037)
( 2038)
(2039)
(2040)
(2041)
(2042)
(2043)
(2044)
(2045)
(2046)
(2047)
(2048)
(2049)
(2050)
(2051)
(2052)
(2053)
(2054)
(2055)
(2056)
(2057)
(2058)
(2059)
(2060)
(2061)
(2062)
(2063)
(2064)
(2065)
(2066)
(2067)
(2068)
(2069)
(2070)
( 207 1 )
(2072)



C
C
C
C

C
C
C

C
C
C
C
C














I
C
C
C

C
C
C
C

<
C
C
C
C
C




C
C
C


              CORN02=ALOG( GONT2+1.)
              THICK = TAPS04 + 7AUPRM + TAPN02 + CORN02
              SYALPH = (SY/1000.)/SIN(ALPHA*RAD)

           ADD IN OPTICAL DEPTH OF BACKGROUND AIR IN FRONT OF AND WITHIN
           PLUME.

              TAUPLU = BTABAC(19)*(PLMD!S + 2.17*SYALPH) + THICK

           BRANCH IF PLUME AEROSOL OPTICAL DEPTH - ZERO

              IF( THICK.EQ.O.) GO TO 6602

           BRANCH IF OPTICAL DEPTH OF AEROSOL IN FRONT OF PLUME AND OF PLUME
           AEROSOL IS NOT SUFFICIENT TO REDUCE VISUAL RANGE TO PREVENT SEEING
           BEYOND PLUME.

              IF(TAUPLU .LT.  3.912) GO TO 6602
              TAUHAF = BTABACC19)*PLMDIS + ((YINTR-0.5)/YINTR)*THICK
              RESIDP   3.912 - TAUHAF
              RESIDA - RESIDP
              IF(RESIDP .LT.  0.)  RESIDA - -l.*RESIDP
              DELT1 - 0.18*THICXXYINTR +0.5 *SYALPH*BTABAC (19)
              DELT2   0.333*THICK/YINTR + SYALPH*BTABAC( 19)
              DELT3 = 0.5*THICK/YINTR + 2.17*SYALPE*BTABAC(19)
              RV   PLMDIS +((RESIDP/RESIDA)*( 1.  + 1.17*(RESIDA - DELT2)/
             1 (DELT3 - DELT2)))*SYALPH
              IFCRESIDA .LT.  DELT2) RV = PLMDIS + (RES IDP/RES IDA)*(1.  + (RESIDA-
             1 DELT1)/(DELT2 - DELT1))*G.5*SYALPH
              IF(RESIDA .LT.  DELT1) RV   PLMDIS + 0.5*SYALPH*RESIDP/DELT1
              GO TO 6606
         6602 CONTINUE

           CALCULATION OF DISTANCE OBSERVER WOULD SEE BEYOND PLUME

              BKPLM = (3.912 - TAUPLU)/BTABAC( 19)

           VISUAL RANGE = DISTANCE TO PLUME +  WIDTH  OF PLUME + DISTANCE
           BEYOND PLUME.

              RV = PLMDIS + 2.17*SYALPH + BKPLM
         6606 CONTINUE

           MINIMUM VISUAL RANGE LOOKING THROUGH PLUME CENTERLINE WITH
           BACKGROUND EXTINCTION AND WITH PLUME S04,  N02,  AND PRIMARY
           PARTICULATE EXTINCTION.

               RVMIN=3.912/(BTABAC( 19) + BTAS04(19)*XS04C + ABSNO2( 19)*XN02C
             1 + BTAPRMC19)#XPRMC )
              IF(RV .LT. RVMIN)  RV= RVMIN
              IF( RV.GT.RVAMB)RV= RVAMB

           REDUCTION IN VISUAL RANGE LOOKING THROUGH THE PLUME

              REDRV=100.#<1.-RV/RVAMB)
              IFCNC.EQ.1)GO TO 6610
Exhibit B-l (Continued)
                                      295

-------
(2073)
(2074)
(2075)
(2076)
(2077)
(2078)
(2079)
(2080)
(2031)
(2082)
(2083)
(2084)
(2085)
(2086)
( 2087)
( 2088)
(2089)
(2090)
( 209 1 )
(2092)
(2093)
(2094)
(2095)
(2096)
(2097)
(2098)
(2099)
(2100)
(2101)
(2102)
(2103)
(2104)
(2105)
(2106)
(2107)
(2108)
(2109)
(2110)
(2111)
(2112)
(2113)
(2114)
(2115)
(2116)
(2117)
(2118)
(2119)
(2120)
(2121)
(2122)
(2123)
(2124)
(2125)
(2126)
(2127)
(2128)
C
c s,
C B,
C





C
c s:
c c
C N
C N1
C
6610



C
C S
C A
C




660

C
C W
G




660


C
C \i
C

88




67
C
C 1
C



700
           SAVE KEY VISUAL IMPACT PARAMETERS FOR PLOTTING LATER (OBSERVER-
           BASED CASE)

              PLTHNX, 1)=REDRV
              PLT2(NX, 1)=BRAT1O
              PLT3(NX,1)=CONT2
              PLT4(NX,1)=DELAB
              GO TO 6607

           SELECT THE PARTICULAR CASE FOR PLOTTING FOR THE PLUME-BASED
           CALCULATION.
           NP IS PLUME-OBSERVER DISTANCE INDEX, NA IS ALPHA  INDEX,
           NT IS SCATTERING ANGLE INDEX, AND NZ IS ALTITUDE  INDEX.

              IF(NP.NE.NPP)GO TO 6607
              IF(NA.NE.NAP)GO TO 6607
              IF(NT.NE.NTP)GO TO 6607
              IF(NZ.NE.NZP)GO TO 6607

           SAVE THE KEY VISUAL IMPACT VALUES FOR THE DESIRED RP, THETA, ALPHA,
           AND NZ FOR THE PLUME-BASED  PLOTS.        ^

              PLOT1 ( NX,1)= REDRV
              PLOT2(NX,1)= BRAT10
              PLOT3(NX,1)=CONT2
              PLOT4( NX, 1)= DELAB
         6607 CONTINUE
              IF(NC.EG.1) GO TO 6609

           WRITE OUT RESULTS FOR OBSERVER-BASED CASE CALCULATIONS

              RPLMOB= OBSPLU(NX)/RVAMB
              WIITE( 6,67) ALPHA,RPLKOB,RV,REDRV,YCAP,VAL,X,Y,YCAPD,VALD,CONT2,
             1BRATI0,XD,YD,DELUV,DELAB
              GO TO 7000                    .
         6609 CONTINUE                      >
              RROBJT=ROBJ(NP)
              IF( NA.EQ.5)RROBJT= RP/RVAMB

           WRITE OUT RESULTS FOR PLUME-BASED CASE CALCULATIONS

              IF( NA.EQ. 5) WRITE( 6,S8)
              FORMAT( 1H0.4X,127EOBSERVER POSITION AT 1/2 OF A 22.5 DEGREE WIND D
             1IRECTION SECTOR FROM THE PLUME CENTERLINE AT THE GIVEN DISTANCE FR
             2OM THE SOURCE,/)
              WRITE( 6 ,67) ALPHA, RPIO3JT, RV, REDRV, YCAP, VAL, X, Y, YCAPD, VALD,
             1CONT2,BRATIO,XD,YD,DELUV,DELAB
              FORMAT(5X,F3.0,F8.2,FO.1,3F8.2,2F8.4,2F8.2.6F8.4)

           TEST  IF DISTANCE, ALPHA, AND THETA  LOOPS ARE COMPLETED.

              IF(NP.LT.6  .AND. NA .LT. 5)GO TO 6999
              IF(NA.LT.5)GO TO 6995
              IF(NT.LT.(NT2-1))GO TO  6990
         7000 CONTINUE
Exhibit B-l  (Continued)
                                      296

-------
(2129)
(2130)
(2131)
(2132)
(2133)
(2134)
(2135)
(2136)
(2137)
(2138)
(2139)
(2140)
(2141)
(2142)
(2143)
(2144)
(2145)
(2146)
(2147)
(2148)
(2149)
(2150)
(2151)
(2152)
(2153)
(2154)
(2155)
(2156)
(2157)
(2158)
(2159)
(2160)
(2161)
(2162)
(2163)
(2164)
(2165)
(2166)
(2167)
(2168)
(2169)
(2170)
(2171)
(2172)
(2173)
(2174)
(2175)
(2176)
(2177)
(2178)
(2179)
(2180)
(2181)
(2182)
(2183)
(2184)
i


C
C
C
C

C
C
C
C
C
C
C
C
C

C
C
C

C
C
C
*

C
C
C

f

C
C
C



f


r

C
C
C
C
C



C
C
C

         7001 CONTINUE
              CHIQIZ= ( TAMB/FGTEMP) /( SQRT( 2 . *P I ) *SY#U)
              CHIQIZ=CHIQIZ/1000.

           BRANCH AROUND NON- HORIZONTAL SIGHT PATHS CALCULATIONS IF IFLG2
           WAS SET TO ZERO.

              IF( IFLG2.EQ.0) GO TO 8001
                NON- HORIZONTAL SIGHT PATHS CALCULATIONS xvxxxxxxxxxxxxvxxx******

                                             ##*^^

        C LOOP ON TYPES OF CALCULATIONS (PLUME-BASED OR OBSERVER- BASED OR BOTH)

              DO 8000 NC=NC1,NC2

           IF SPECIFIC CASE BETA LESS THAN 5 DEGREES,  SKIP CALCULATION.

              IF(NC.EQ.2.AND.ABETA(NX) .LT.5.)GO TO 8001

           BRANCH FOR SPECIFIC CASE CALCULATION

         7110 IF(NC.EQ.2)GO TO 7100
              NFLAG= 1

           INITIALIZE AND INCREMENT SCATTERING ANGLE INDEX

              NT=NT1-1
         7996 NT=NT+1
              ITHETA=NT+1

           ASSIGN SCATTERING ANGLE

              THETA=TT( ITHETA)
              NFLAG=-1*NFLAG
              IF(NFLAG.GT.0) GO TO 75
         7100 CONTINUE
              WRITE(6, 10)
              WRITE(6,71)(PLANT( J) ,J=1,6)
         71   FORMAT(20X,70HVISUAL EFFECTS FOR NON- HORIZONTAL CLEAR SKY VIEWS TH
             1ROUGH PLUME CENTER, //,20X, 6 A4,//)

           XKM - DOWNWIND DISTANCE IN KM
           H - PLUME CENTERLINE HEIGHT
           BRANCH IF DOING PLUME- BASED CALCULATION

              WRITE(6,52) XKM
              WRITE(6,53) H
              IF(NC.EQ. DGO TO 7200

           WRITE OUT DISTANCE FROM OBSERVER TO PLUME ALONG LINE-OF-SIGHT.

              WRITEC 6,611) OBSPLU( NX)
Exhibit Brl (Continued)
                                     297

-------
(2185)
(2186)
(2187)
(2188)
(2189)
(2190)
(2191)
(2192)
(2193)
(2194)
(2195)
(2196)
(2197)
(2198)
(2199)
(2200)
(2201)
(2202)
(2203)
(2204)
(2205)
(2206)
(2207)
(2208)
(2209)
(2210)
(2211)
(2212)
(2213)
(2214)
(2215)
(2216)
(2217)
(2218)
(2219)
(2220)
( 222 1 )
(2222)
(2223)
(2224)
(2225)
-,:2226)
( 2227)
(2228)
(2229)
(2230)
(2231)
(2232)
(2233)
(2234)
(2235)
(2236)
(2237)
(2238)
(2239)
(2240)
C
c
C

c
c
c

c
c
c

c
c
c


c
c
c

c
c
c

c
c
c

p

»


*

c
c
c

c
c
c

1

c
c
c
c



c
c
c
          WRITE OUT  AZIMUTH OF  OBSERVER LINE-OF-SIGHT TO PLUME

              WRITE( 6,612) AZMUTHX NX)

          WRITE OUT  ELEVATION ANGLE  OF OBSERVER LINE-OF-SIGHT.

              WRITE( 6,613)ABETA( NX)

          WRITE OUT  SOLAR ZENITH ANGLE,  TIME OF DAY,  MONTH,  DAY OF MONTH

              WRITE(6,614)ZENITH,TIME,IMO,IDAY

          ASSIGN  SCATTERING ANGLE AND INDEX FOR SCATTERING PHASE FUNCTIONS.

              THETA=TT(NX+7)
              ITHETA=7+NX

          ASSIGN  HORIZONTAL ANGLE BETWEEN PLUME CENTERLINE AND LINE-OF-SIGHT

              ALPHA=AALPHA( NX)

          ASSIGN  ELEVATION ANGLE FOR LINE OF SIGHT TO POINT ON PLUME CENTERLINE

              BETA=ABETA(NX)

          ASSIGN  DISTANCE TO PLUME CENTERLINE ALONG LINE-OF-SIGHT.

              RP=OBSPLU(NX)
         7200 CONTINUE
              WRITE(6,72)
         72    FORMAT(/,6H THETA,3X,5HALPHA,4X,4HBETA,6X,2HRP,
             14X,4HYCAP,7X,1HL,7X,1HX.7X,1HY,8H DELYCAP.4X,4HDELL,2X,6HC(550),
             2 2X, 6HBRATIO, 4X, 4HBELX, 4X, 4HDELY, 2X, 6HE( LUV) , 2X, 6HE( LAB) )
         75    CONTINUE
              WRITE(6,66)  THETA

          BRANCH FOR OBSERVER-BASED CASE CALCULATIONS.

              IF(NC.EGL2)GO TO 7300

           INITIALIZE AND INCREMENT FOR LOOP ON ALPHA ANGLE

              NA=0
         7997 NA=NA+1
              ALPHA=AA(NA)

           INITIALIZE AND INCREMENT FOR LOOP ON OBSERVER LINE-OF-SIGHT
          ELEVATION  ANGLE.

                NB=0
         7999 NB=NB+1
              BETA=15.*FLOAT(NB)

          CALCULATION OF OBSERVER LINE-OF-SIGHT TO PLUME DISTANCE.
Exhibit B-l  (Continued)
                                      298

-------
(2241)
(2242)
(2243)
(2244)
(2245)
(2246)
(2247)
(2248)
(2249)
(2250)
( 225 1 )
(2252)
(2253)
(2254)
(2255)
(2256)
(2257)
(2258)
(2259)
(2260)
(2261)
(2262)
(2263)
(2264)
(2265)
(2266)
(2267)
( 2268)
(2269)
(2270)
( 227 1 )
(2272)
(2273)
(2274)
(2275)
(2276)
(2277)
( 2278)
(2279)
(2280)
(2281)
(2282)
(2283)
(2284)
(2285)
(2286)
(2287)
( 2288)
(2289)
(2290)
(2291)
(2292)
(2293)
(2294)
(2295)
(2296)





73






C
C i
C
C


C
C i
C



78
C
C i
C




80i
80)

C
C *:
C
C :
C
C *:
C
C i
C i
C ,
C



C
C ]
C

C
C ]
C
              DELZ=H*l.E-3
              DELXY=DELZ*CGS( BETA:.': HAD) /S IN( EET-\#RAD)
              DELX=DELXY*COS( ALPHA*RAD)
              DELY=DELXY:frS IN( ALPHA:,1- RAD)
              RP= SQRT( DELZ*DELZ+ DEL Y-DELY+DELX^DELX)
         7300 CONTINUE
              CY=CHIQIY(3)*COS(BETA^RAD)
              CZ=CIIIQIY( 3) #S INC BETA* RAD)
              YZINT=SQRT( CY*CY+CZ*CZ) /SIN( ALPHA* RAD)
              PLUMEP= YZ I imOPATlT
              PLUMES= YZ ! NT* ( QS04+QN03 )
              PLUMEN= YZ I NT*QN02 1(3)

           CALL ROUTINE  TO CALCULATE SKY INTENSITIES  FOR PLUME AND SKY
           WITHOUT PLUME.

              CALL PLKCLN( ZEN I TH , BETA , THETA , I THETA , PLUMEP , PLUMES , PLDKEN , SPECB ,
             1 SPECP.RP, THICK)

           CALL ROUTINE  TO CALCULATE COLORATION PARAMETERS.

              CALL CKROMA( SPECP , SPECB)
              WRITEC 6 . 78)  ALPHA , BETA , RP , YCAP , VAL , X, Y, YCAPD , VALD , CONT2 ,
             1 BRAT I O , XD , YD , DELUV , DEL AB
              FORMAT( 5X, 2F3 . 0 , 3F8 . 2 , 2F8 . 4 , 2FS . 2 , 6F8 . 4 )

           CHECK IF END  OF LOOPS  FOR PLUME-BASED CALCULATION.

              IF(NC.EQ.2)GO  TO 8000
              IF(NB.LT.6)GO  TO 7999
              IF(NA.LT.4)GO  TO 7997
              IFCNT.LT. (NT2-1))GO TO 7996
         8000 CONTINUE
         8001 CONTINUE
              IF( IFLG3.EQ..0)  GO TO 9001

              :fc;|:>|c#####:f::K:}:*###############^

                 WHITE,,  GRAY,  AND BLACK  OBJECT VIEWS  tf**************************

                              ******^^
           OPTICAL EFFECTS ON  VIEW OF  OBJECT BEHIND PLUME.
           CALCULATION OF PLUME  P ARTICULATE,  SULFATE,  AND N02 INTEGRAL
           ACROSS PLUME.

              PLUMEP= CH I Q I Y( 3 ) tfQPART
              PLUMES=CHIQI Y( 3) *( QS04+QN03)
              PLUMEN= CH I a I Y( 3 ) *QN02 I ( 3 )

           LOOP FOR PLUME-BASED, OBSERVER- BASED,  OR BOTH TYPES OF CALCULATIONS

              DO 9000 NC=NC1,NC2

           BRANCH IF DOING THE PLUME-BASED  CALCULATION
Exhibit B-l  (Continued)
                                      299

-------
(2297)
(2298)
(2299)
(2300)
(2301)
( 2302)
( 2303)
( 2304)
(2305)
(2306)
(2307)
( 2303)
(2309)
(2310)
(2311)
(2312)
(2313)
(2314)
(2315)
(2316)
(2317)
(2318)
(2319)
(2320)
(2321)
(2322)
(2323)
(2324)
(2325)
(2326)
(2327)
(2328)
(2329)
(2330)
(2331)
(2332)
(2333)
(2334)
(2335)
(2336)
(2337)
(2338)
(2339)
(2340)
(2341)
(2342)
(2343)
(2344)
(2345)
(2346)
(2347)
( 2348)
(2349)
(2350)
(2351)
(2352)

C
c /
C




80*
C
C I
c

c
c
c <
c

89<


81<



81



87




C
C 1
c





c
C j
c
c



82

83


C
C
              IF(NC.EQ.1)  GO  TO  8002

          ADJUST FOR OBSERVER-BASED  ALPHA FOR SPECIFIC POINT

              F3= S IN( AALPHA( NX) *RAD)
              PLUMEP=PLUMEP/F3
              PLUMES=PLUMES/F3
              PLUMEN= PLUMEN/F3
        8002  CONTINUE

          BRANCH  IF  DOING THE OBSERVER-BASED CALCULATION.

              IF(NC.EQ.2)GO TO 8100

           INITIALIZE AND INCREMENT SCATTERING ANGLE INDEX FOR PLUME-BASED
          CASE CALCULATION.

              NT=NT1-1
        8995  NT=NT+1
              ITHETA= NT+1
              THETA=TT( ITHETA)                         ""
        8100  CONTINUE
              WRITE(6,10)
              IF(NC.EQ. 1)WRITE(6,81)(PLANT(J) , J=l,6)
              IF( NC. EQ.2)WRITE( 6 , 8t) ( PLANTC J) , J= 1,6)
              FORMATCi0X,41HPLUHE VISUAL EFFECTS FOR HORIZONTAL VIEWS,/,10X,
             160HPERPENDICULAR TO THE PLUME OF VHITE,  GRAY, AND BLACK OBJECTS,/.
            210X.56HFOR VARIOUS OBSERVER-PLUME AND OBSERVER-OBJECT DISTANCES,
            3//10X.6A4,//)
              FORMAT(10X,41HPLUME VISUAL EFFECTS FOR HORIZONTAL VIEWS,/,10X,
             146HOF THE PLUME OF WHITE,  GRAY, AND BLACK OBJECTS,/,
            210K.57HFOR SPECIFIC OBSERVER-PLUME AND OBSERVER-OBJECT DISTANCES,
            3//10X.6A4,//)
              WRITE(6,52) XKM

          BRANCH  IF  DOING PLUME-BASED CALCULATION

              IF(NC.EQ.1)GO TO 84
              WRITE( 6,611)OBSPLU( NX)
              WRITE( 6,612)AZMUTB( NX)
              WRITE(6,613)ABETA( NX)
              WRITE(6,614)ZENITH,TIME,IMO,IDAY

          ASSIGN  SPECIFIC SCATTERING ANGLE AND INDEX FOR SCATTERING ANGLE PHASE
            FUNCTIONS.

              THETA=TT(NX+7)
              ITHETA=7+NX
          84  WRITE(6,82)THETA
              FORMAT(9H THETA •-  ,F5.0)
              WRITE(6,83)
              FORMAT(/,IX,7HREFLECT,2X,6HRP/RV0,2X.6HRO/RV0,4X,4HYCAP,7X, 1HL, 7X,
             11HX.7X,1HY.8H DELYCA?,4X,4T!DELL, 2X,6HC( 550),2X,6HBRAT10,4X,4HDELX,
             24X,4HDELY,2X,6HEC LUV),2X,6HE(LAB),/)

           LOOP ON REFLECTIVITY OF OBJECT (K=l FOR WHITE, K=2 FOR GRAY, K=3 FOR
Exhibit Brl  (Continued)
                                      300

-------
(2353)
(2354)
(2355)
(2356)
(2357)
(2358)
(2359)
(2360)
(2361)
(2362)
(2363)
(2364)
(2365)
(2366)
(2367)
(2368)
(2369)
(2370)
(2371)
(2372)
(2373)
(2374)
(2375)
(2376)
(2377)
(2378)
(2379)
(2380)
(2381)
(2382)
(2383)
(2384)
(2385)
(2386)
(2387)
( 2388)
(2389)
(2390)
( 239 1 )
(2392)
(2393)
(2394)
(2395)
(2396)
(2397)
(2398)
(2399)
(2400)
(2401)
(2402)
(2403)
(2404)
(2405)
(2406)
(2407)
( 2408)
C
c


C
c
c

c
c
c
c

J

c
c
c
c

1






c
c
c
c
c
c




c
c
c
c



8<

c
c
c
8<



t
c
c
           BLACK)

              DO 8999  K=l,3
              XLUMIN=REFL(K)/(2.*PI)

           BRANCH  IF OBSERVER--BASED CASE

              IF(NC.EQ.2)GO TO  86

           INITIALIZE  AND  INCREMENT INDEX FOR OBSERVER TO PLUME  DISTANCE
           ALONG LINE-OF-SIGHT.

              IP=0
         8996 IP=IP+1
              NRO=7-IP

           INITIALIZE  AND  INCREIIENT INDEX FOR DISTANCE FROM OBSERVER TO
           BACKGROUND  OBJECT ALONG  LIRE-OF-SIGBT.

              101 = 0
         8997 101=101+1
              RP= ROEJ(IP)*RVAMB
              IPI01=IP+I01-1
              R0= ROBJ(IP101)*RVAMB
              RPR=(RP/SY)*1000.
              ROR= ( ( RO-RP) /SY) * 1000.
              IF(RPR.GT.2. 17.AND.ROR.GT.2. 17)GO TO 8991

            IF OBSERVER OR OBJECT BACKGROUND  IS WITHIN THE PLUME, CHANGE THE
            OBSERVER-TO-PLUME DISTANCE TO BE  THE DISTANCE TO THE CENTROID OF
            THE AREA UNDER THE  GAUSSIAN  CURVE FOR THE  PLUME BETWEEN THE
            OBSERVER AND THE BACKGROUND  OBJECT.

              CALL PLMIN(RPR,ROR,SY,RP,YINTR)
              PLUMP 1 = PLUMEP*YINTR
              PLUMS 1 = PLUMES*YINTR
              PLUMN1 = FLUMEN*YINTR

           CALL ROUTINE TO CALCULATE  INTENSITIES FOR OBJECT W/O PLUME
           (SPECO) AND WITH PLUME (SPECP).

              CALL PLMOBJ(ZEN ITH,BETA,THETA,ITHETA, PLUMP 1.PLUMS 1,PLUMN1,XLUMIN,
             1RO,RP,SPECO,SPECP)
              GO TO 89
        8991  CALL PLMOBJC ZENITH, BETA, THETA, ITHETA, PLUMEP, PLUMES, PLUMEN, XLUMI N,
             1RO,RP,SPECO,SPECP)

           CALL ROUTINE TO CALCULATE COLORATION PARAMETERS.

              CALL CHROMACSPECP,SPECO)
              IPIO1=IP+I01-1
              WRITE(6,85)  REFL(K),ROBJ(IP),ROBJ( IPI01),YCAP,VAL, X, Y, YCAPD,
             1VALD, CONT2, BRATIO, XD, YD, DELUV, DELAB
              FORMAT(F8.1,4F8.2,2F8.4,2F8.2,6F8.4)

           SPECIFY OBJECT  DISTANCE, PLUME-OBSERVER DISTANCE, AND SCATTERING ANGLE
Exhibit B-l  (Continued)
                                      301

-------
(2409)
(2410)
(2411)
(2412)
(2413)
(2414)
(2415)
(2416)
(2417)
(2418)
(2419)
(2420)
( 242 1 )
(2422)
(2423)
(2424)
(2425)
(2426)
(2427)
( 2428)
(2429)
(2430)
(2431)
(2432)
(2433)
(2434)
(2435)
(2436)
(2437)
( 2438)
(2439)
(2440)
(2441)
(2442)
(2443)
(2444)
(2445)
(2446)
(2447)
(2448)
(2449)
(2450)
(2451)
(2452)
(2453)
(2454)
(2455)
(2456)
(2457)
(2458)
(2459)
(2460)
(2461)
(2462)
(2463)
(2464)
C
C



C
C
C




C
C
C
89 <
C
C
C


C
C
C



C
C
C
C

90





C
C
C
C
C
C

C
C
C




C
C
C

           FOR SAVING RESULTS TO BE PLOTTED.

              IF( I01.NE.IO1P)GO TO 8990
              IF( IP.NE.IPP)GO TO 8990
              IF(NT.NE.NTP)GO TO 8990

           VISUAL RANGE REDUCTION IS DEFINED FOR CLEAR SKY ONLY.

              PLOT1(NX,K+1)=0.
              PLOT2( NX,K+1)=BRATIO
              PLOTS ( NX,K+1)= CONT2
              PLOT4( NX, K+ 1)=DELAB

           CHECK IF  END OF  LOOP ON BACKGROUND OBJECT DISTANCE INDEX.

          >0  IF( I01.LT.NRO)GO TO 8997

           CHECK IF  END OF  LOOP ON OBSERVER-PLUME DISTANCE INDEX.

              IF(IP.LT.6)GO TO 8996
               GO TO 8999
                                                      ASSIGN SCATTERING ANGLE.
CONTINUE WITH OBSERVER-BASED CALCULATION.

86 ITHETA=7+NX
   THETA=TT(ITHETA)
   RP=OBSPLU(NX)

JUMP OUT OF CALCULATION IF OBJECT  IS BETWEEN CENTER
OF PLUME AND OBSERVER.

   IF( OBSPLU( NX).GT.ROBJT( NX))WRITE( 6,90)
   FORMAT( 10X,85HBACKGROUND OBJECT IS BETWEEN OBSERVER AND CENTER OF
  1PLUME AND CALCULATION  IS STOPPED.)
   IF(OBSPLUC NX).GT.ROBJTC NX))GO TO 9000
   RPR=(RP/SY)*1000.
   ROR= (( ROBJTC NX) -RP) /SY) * 1000.
   IF(RPR.GT.2.17.AND.ROR.GT.2.17)GO TO 8992
                                             S,
            IF OBSERVER OR OBJECT IS WITHIN THE PLUME, CHANGE THE OBSERVER-TO-
            PLUME DISTANCE TO BE THE DISTANCE TO THE CENTROID OF THE AREA UNDER
            THE GAUSSIAN CURVE FOR THE PLUME BETWEEN THE OBSERVER AND THE BACK-
            GROUND OBJECT.

              CALL PLMIN(RPR,ROR,SY,RP,YINTR)

            CORRECT FOR VIEWS NOT PERPENDICULAR TO THE PLUME CENTERLINE

              RP=RP/S IN( AALPHAC NX) #RAD)
              PLUMP 1 = PLUMEP*YINTR
              PLUMS 1 = PLUMES*YINTR
              PLUMN1 = PLUMEN*YINTR

           CALL ROUTINE TO CALCULATE INTENSITIES WITH AND WITHOUT PLUME.

              CALL PLMOBJ ( ZENITH,ABETAC NX),THETA,ITHETA,PLUMP1,PLUMS 1,
Exhibit B-l  (Continued)
                                      302

-------
(2465)
(2466)
(2467)
(2468)
(2469)
(2470)
(2471)
(2472)
(2473)
(2474)
(2475)
(2476)
(2477)
(2478)
(2479)
(2480)
(2481)
(2482)
(2483)
(2484)
(2485)
(2486)
(2487)
(2488)
(2489)
(2490)
(2491)
(2492)
(2493)
(2494)
(2495)
(2496)
(2497)
(2498)
(2499)
(2500)
(2501)
(2502)
(2503)
(2504)
(2505)
(2506)
(2507)
(2508)
(2509)
(2510)
(2511)
(2512)
(2513)
(2514)
(2515)
(2516)
(2517)
(2518)
(2519)
(2520)
             1 PLUHH1, XLUMIN,ROBJTC NX) ,RP,SPEGO,S^ECP)
              GO TO 91
        8992  CALL PLIIOBJ(ZENITH,ABETA(NX)  ,THETA,ITHETA,PLOT1EP,PLUMES,
             1 PLUMEN,XLUMIN,ROBJT(NX),RP,SPECO,SPECP)
        C
        C  CALL ROUTINE TO CALCULATE  COLORATION  PARAMETERS.
        C
        91    CALL CHROMA(SPECP.SPECO)
        C
        C  SAVE RESULTS FOR PLOTTING.
        C
              PLTHNX, K+l)=0.
              PLT2( NX,K+1)=BRAT10
               PLT3( NX, K+l)=CONT2
              PLT4(NX,K+1)= DELAB
         8998 CONTINUE
              RPLMOB=OBSPLU(NX)/RVAMB
              RROBJT=ROBJT( NX) /RVAHB
              WRITE( 6,85)REFL(K),RPLMOB,RROBJT,YCAP,VAL,X,Y,YCAPD,VALD,
             1 CONT2, BRAT 10,13), YD, DELUV, DELAB
         8999 CONTINUE
        C
        C  CHECK IF LOOP ON SCATTERING  ANGLE FOR PLUME-BASED CASE  IS  COMPLETED
        C
              IF(NC.EQ. l.AWD.NT.LT. (NT2-1))GO TO 8995
         9000 CONTINUE
         9001 CONTINUE
        C
        C  SKIP VISUAL EFFECTS ALONG  PLUME  IF IFLG4=0
        C
              IF( IFLG4.EQ.0)GO TO 1301
        C
        C **********************************************************************
        C
        C** VISUAL EFFECTS ALONG  PLUME  *****************************************
        C
        c ************************************************************
        C
        C LOOP ON TYPE OF CALCULATION:  PLUME-BASED, OBSERVER-BASED, OR BOTH.
        C              -"
              DO 1300 NC=NC1,NC2
        C
        C  LOOP FOR CALC AT FLUKE CL  AND AT GROUND.
        C
              DO 1300 NZ1=1,KZF
              NZ=NZ1*3
              IF(NZ.EQ.3)Z=H
              IF(NZ.EQ.6)Z=0.
        C
        C  BRANCH IF DOING OBSERVER-BASED CALCULATION.
        C
              IF(NC.EQ.2)GO TO 1002
        C
        C  INITIALIZE AND INCREMENT LOOP FOR SCATTERING  ANGLE
              NT=NT1-1

Exhibit B-l  (Continued)
                                      303

-------
(2521)
(2522)
(2523)
(2524)
(2525)
(2526)
(2527)
( 2528)
(2529)
(2530)
(2531)
(2532)
(2533)
(2534)
(2535)
(2536)
(2537)
(2538)
(2539)
(2540)
(2541)
(2542)
(2543)
(2544)
(2545)
(2546)
(2547)
(2548)
(2549)
(2550)
(2551)
(2552)
(2553)
(2554)
(2555)
(2556)
(2557)
(2558)
(2559)
(2560)
(2561)
(2562)
(2563)
(2564)
(2565)
(2566)
(2567)
(2568)
(2569)
(2570)
(2571)
(2572)
(2573)
(2574)
(2575)
(2576)
1001


1002


1010


C
C Bl
C





C
C A!
C I!
C


1005

1020


1021

C
C B
C

C
C 0
C C
C



C
C D
C


C
C C
C

C
C C
C



              NT=NT+1
              ITHETA=NT+1
              THETA=TT( ITHETA)
              CONTINUE
              WRITE(6,10)
              WRITE(6,1010)(PLANT(J),J=1,6)
        1010  FORMATC10X.45HVISUAL EFFECTS FOR LINES OF SIGHT ALONG PLUME//,10X,
             1 6A4//>
              WRITE(6,52)XKM

           BRANCH FOR PLUME-BASED CALCULATION.

              IFCNC.EQ. 1)GO TO 1005
              WRITE( 6,611)OBSPLU( NX)
              WRITE( 6,612) AZMUTH( NX)
              WRITE( 6,613) ABETA( NX)
              WRITE(6,614)ZENITH,TIME, IMO, IDAY

           ASSIGN PLUME-BASED CASE SCATTERING ANGLE AND SCATTERING PHASE FUNCTION
           INDEX.

              THETA= TT( NX+ 7)                           ""
              ITHETA=7+NX
              CONTINUE
              WRITE(6,1020)
        1020  FORMATC6H THETA,IX,6HLENGTH,IX,6HRP/RV0,4X,2HRV,2X,8H%REDUCED,4X,
             1 4HYCAP,7X,1HL,7X,1HX.7X,1HY.8H DELYCAP.4X,4HDELL,2X,6HC(550),2X,
             2 6HBRATIO,4X,4HDELX,4X,4HDELY,2X,6HE(LUV),2X,6HE( LAB))
              CONTINUE
              WRITE(6,66)THETA

           BRANCH IF DOING PLUME-BASED  CASE CALCULATION

              IF(NC.Eft. DGO TO 1008

           OBLIQUE ANGLE CALCULATIONS FOR SPECIFIC CASE
           CONCENTRATIONS FOR PRIMARY PARTICIPATE, S04, AND N02

              CPAVE=XPARTP( NX,NZ)
              CSAVE=XPARTS( NX,NZ)
              CNAVE= XN021(NX,NZ)

           DISTANCE WITHIN PLUME

               XALONG = ( (SY/1000. ) #SQRT( P 1*2.) ) /(SIN( AALPHA( NX) *RAD))
              XLONG2= XALONG/2.

           CHECK IF OBSERVER IN PLUME,  IF YES , MODIFY XALONG

              IF( OBSPLUC NX).LT.XLONG2)XALONG=OBSPLU(NX)+XLOHG2

           CALCULATIONS  FOR  CLEAR SKY AND THREE BACKGROUND REFLECTANCES.

              ALONG=OBSPLU( NX)-XLONG2
              IF(ALONG.LT.0.0)ALONG=0.0
              DO 1009 K=l,4
Exhibit RT1  (Continued)
                                     304

-------
(2577)
( 2578)
(2579)
(2580)
(2581)
(2582)
(2583)
(2584)
(2585)
(2586)
(2587)
(2588)
(2589)
(2590)
(2591)
(2592)
(2593)
(2594)
(2595)
(2596)
(2597)
(2598)
(2599)
(2600)
(2601)
(2602)
(2603)
(2604)
(2605)
(2606)
(2607)
(2608)
(2609)
(2610)
( 26 1 1 )
(2612)
(2613)
(2614)
(2615)
(2616)
(2617)
(2618)
(2619)
(2620)
(2621)
(2622)
(2623)
(2624)
(2625)
(2626)
(2627)
( 2628)
(2629)
(2630)
(2631)
(2632)
C
C
C
C
C

C
C
C
C


10
C
C
C
C
C


C
C
C

C
C
C

C
C
C

C
C
C
C
C


C
C
C



96


97
C
C
C
G



           K=l  FOR CLEAR SKY, K=2 FOR WHITE OBJECTS, K=3 FOR GRAY OBJECTS,
           K=4  FOR BLACK OBJECTS.
           BRANCH IF K > 1

              IF(K.GT. 1)GO TO 1025

           BACKGROUND CLEAR SKY CASE
           CALL ROUTINE TO DEFINE BACKGROUND SKY INTENSITY WITHOUT PLUME

             CALL BACCLN(ZENITH,0.,THETA,ITHETA,SPECB)
             GO TO 1026
          25  CONTINUE

           CALCULATION FOR BACKGROUND OBJECT.

           DISTANCE CALULATIONS ARE THE SAME FOR K = 2,  3,  4.

              IF(ROBJT(NX) .LE.0.0)GO TO 1009
             XLUMIN=REFL(K-1)/(2.*PI)

           DISTANCE CALCULATIONS DONE ONCE  FOR K=2 / SKIP AROUND FOR K =3,4

              IF(K.GT.2)GO TO 95

           DISTANCE FROM OBJECT TO BACK SIDE OF PLUME

             RO=ROBJT( NX) -( OBSPLU( NX) +XLONG2)

           RESET RO IF OBJECT IS WITHIN BACK SIDE OF PLUME

              IF( ( ROBJT(NX)-OBSPLU(NX)).LT.XLONG2)R0=0.

           XALONG IS THE DISTANCE THAT THE  LINE OF SIGHT IS WITHIN  PLUME.
           RECALCULATE  XALONG IF OBJECT IS WITHIN BACK SIDE  OF PLUME AND
           OBSERVER IS OUTSIDE PLUME.

              IF( ( ROBJT(NX) -OBSPLU(NX) ).LT.XLONG2)XALONG= XLONG2+ ( ROBJT( NX)-
             1  OBSPLU(NX))

           ADJUSTMENT IF BOTH OBJECT AND OBSERVER  ARE IN FRONT OF PLUME.

              IF(OBSPLU(NX) .LT.XLONG2)GO TO 97
              IF( ROBJT(NX).LT.(OBSPLUi NX)-XLONG2))GO TO  96
             GO TO 97
             XALONG=0.
             R0=0.
             ALONG=ROBJT(NX)
             CONTINUE

           ADJUSTMENT IF BOTH OBSERVER AND  BACKGROUND OBJECT ARE WITHIN FRONT
           SIDE  OF  PLUME

             IF( ROBJT( NX) . GT. OBSPLU( NX) ) GO TO 98
             IF(OBSPLU(NX).GT.XLONG2)GO  TO 98
             XALONG=ROBJT( NX)
Exhibit B-l  (Continued)
                                      305

-------
(2633)
(2634)
(2635)
(2636)
(2637)
( 2638)
(2639)
(2640)
(2641)
(2642)
(2643)
(2644)
(2645)
(2646)
(2647)
(2648)
(2649)
(2650)
(2651)
(2652)
(2653)
(2654)
(2655)
(2656)
(2657)
(2658)
(2659)
(2660)
(2661)
(2662)
(2663)
(2664)
(2665)
(2666)
(2667)
(2668)
(2669)
(2670)
(2671)
(2672)
(2673)
( 2674)
(2675)
(2676)
(2677)
(2678)
(2679)
(2680)
(2681)
(2682)
(2683)
(2684)
(2685)
(2686)
( 2687)
( 2688)


98
C
C A
C *
C






104
C
C AI
C BE
C





102
C
C At
C W)
C






103
95
C
C C^
C AI
C

1026
C
C Sr
C


1027
C
C
C
C


C
C 11
              ALONG=0.
              R0=0.
              CONTINUE

            ADJUSTMENT  IF  OBSERVER IS OUTSIDE PLUME AND BACKGROUND OBJECT IS
            WITHIN FRONT SIDE OF PLUME.

              IF ( ROBJT( NX).GT.OBSPLU( NX))GO TO 104
              IF(ROBJT(NX).LT.(OBSPLU(NX)-XLONG2))GO TO 104
              IF((OBSPLU(NX)-XLONG2).LE.0.)GO TO 104
              R0=0.
              XALONG=ROBJT(NX)-(OBSPLU(NX)-XLONG2)
              ALONG= OBSPLU(NX)-XLONG2
              CONTINUE

           ADJUSTMENT FOR  OBSERVER WITHIN FRONT SIDE OF PLUME AND OBJECT
           BEHIND PLUME.

              IF(OBSPLU(NX).GT.XLONG2)GO TO 102
              IF( ROBJT( NX).LT.( OBSPLUC NX)+XLONG2))GO TO 102
              XALONG= XLONG2+OBSPLWNX)
              R0= ROB JT( NX) - ( OBSPLUC NX) +XLONG2)
              ALONG=0.
              CONTINUE

           ADJUSTMENT FOR  OBSERVER WITHIN FRONT SIDE OF PLUME AND OBJECT
           WITHIN BACK  SIDE  OF PLUME.

              IFCOBSPLU(NX) .GT.XLONG2)GO TO 103
              IF( ROBJTC NX).LT.OBSPLUC NX))GO TO 103
              IF( UOBJT( NX).GT. ( OBSPLU< NX)+XLONG2))GO TO 103
              R0=0.
              ALONG=0.
              XALONG=ROBJT(NX)
              CONTINUE
              CONTINUE                       v^

           CALL ROUTINE TO CALCULATE INTENSITY FOR BACKGROUND OBJECT
           AT BACK SIDE OF PLUME.

              CALL  BACOBJ(ZENITH,0.,THETA,ITHETA,RO,SPECB,XLUMIN)
              CONTINUE

           STORE  BACKGROUND INTENSITIES AT BACK SIDE OF PLUME IN SPECP ARRAY.

              DO  1027 1=1,39
              SPECP(I)=SPECB( I)
              CONTINUE

              INTENSITY FOR PLUME SEGMENT(LINE OF SIGHT FOR SPECIFIC CASE, NOT
              NECESSARILY  ON PLUME CENTERLINE.

              CALL PLMAXC ZENITH,THETA,ITHETA,CPAVE,CSAVE,CNAVE,XALONG,SPECP,
             1 SPECB)

           INTENSITY CHANGE FOR BACKGROUND AIR BETWEEN PLUME AND OBSERVER
Exhibit B-l  (Continued)
                                      306

-------
(2689)
(2690)
(2691)
(2692)
(2693)
(2694)
(2695)
(2696)
(2697)
(2698)
(2699)
(2700)
(2701)
(2702)
(2703)
(2704)
(2705)
(2706)
(2707)
( 2708)
(2709)
(2710)
(2711)
(2712)
(2713)
(2714)
(2715)
(2716)
(2717)
(2718)
(2719)
(2720)
( 272 1 )
( 2722)
(2723)
(2724)
(2725)
(2726)
(2727)
( 2728)
(2729)
(2730)
(2731)
(2732)
(2733)
(2734)
(2735)
(2736)
(2737)
( 2738)
(2739)
(2740)
(2741)
(2742)
(2743)
(2744)
C

C
C C
C

C
C 0
C


C
C 0
C
-

C
C C
C

C
C R
C



1006

1007


47

74

76

77


1009
C
C EN]
C

1008
G
C P]

C 11
C

C
C LI
C LI
C
              CALL PLMAX(ZENITH,THETA,ITHETA,0.,0.,0.,ALONG,SPECP,SPECB)

           CALL ROUTINE  TO  CALCULATE COLORATION  PARAMETERS

              CALL CHROMA( SPECP,SPECB)

           OPTICAL DEPTH BETWEEN OBSERVER AND PLUME

              TAUTOT^ BTABAC(19)*ALONG
              TAU1=TAUTOT

           OPTICAL DEPTH DUE TO PLUME PRIMARY PARTICIPATE AND S04

              TAUTOT= TAUTOT+XALONG*(CPAVE*BTAPRM( 19)+CSAVE*BTASO4( 19) +
              1 BTABAC(19)+CNAVE*ABSN02(19))+ALOG( CONT2+1.)

           CHECK  IF OPTICAL DEPTH .GT. VISUAL RANGE  LIMIT

              IF(TAUTOT.GT.3.912)GO  TO 1006

           REDUCTION IN  VISUAL  RANGE

              DELRV=(3.912-TAUTOT)/BTABAC ( 19)
              RV= XALONG+ ALONG+ DELRV
              GO TO 1007
              DELRV=(3.912-TAU)/(TAUTOT-TAU1)
              RV=ALONG+DELRV
              REDRV=((RVAMB-RV)/RVAMB)* 100.
              RR= OBSPLU(NX)/RVAMB
              IF( K.EQ.1)WRITE( 6,47)
              FORMAT(5X,19HFOR  SKY BACKGROUND:)
              IF( K. EQ. 2) WRITE( 6 , 74)
              FORMAT(5X,21HFOR  WHITE BACKGROUND:)
              IF( K. EQ. 3) WRITE( 6 , 76)
              FORMAT( 5X, 20HFOR  GRAY  BACKGROUND:)
              IF( K. EQ. 4) WRITE( 6 , 77)
              FORMAT(5X,21HFOR  BLACK BACKGROUND:)
              WRITE( 6,674 XALONG, RR, RV, REDRV, YCAP, VAL, X, Y, YCAPD, VALD, CONT2,
              1 BRATIO,XD,YD,DELUV,DELAB
              CONTINUE

        C END OF CALCULATIONS FOR NC=2

              GO^TO 1300
              CONTINUE

           PLUME-BASED CALCULATIONS  FOR PLUME CENTERLINE.
              NXEND=NX-1
           IF NX=1, SKIP OVER CALCULATION

              IF(NXEND.EQ.0)GO  TO 1300

           LOOP ON NUMBER OF PLUME SEGMENTS
           LOOP ON PLUME SIGMENTS THAT CAN BE IN  OBSERVER'S LINE-OF-SIGHT
Exhibit B.-l  (Continued)
                                      307

-------
(2745)
(2746)
(2747)
( 2748)
(2749)
(2750)
(2751)
(2752)
(2753)
(2754)
(2755)
(2756)
(2757)
(2758)
(2759)
(2760)
( 276 1 )
(2762)
(2763)
(2764)
(2765)
(2766)
(2767)
(2768)
(2769)
(2770)
( 277 1 )
( 2772)
( 2773)
(2774)
(2775)
(2776)
(2777)
( 2778)
(2779)
(2780)
(2781)
(2782)
( 2783)
( 2784)
(2785)
(2786)
( 2787)
( 2788)
(2789)
(2790)
(2791)
( 2792)
( 2793)
(2794)
(2795)
(2796)
(2797)
(2798)
(2799)
(2800)


C
C
C
C





a
W]



1022
C
C
C

C
C
C



C
C
C

C
C
C


1
C
C
C



C
C
C
C



C
C
C
1

1

1
1
C
C
C



L<



us





D



Cl



100

Nl





Ri
B





D

111

112

110
115

C



              DO 1200 NXIN=1,NXEND
              NXX1=NX-NXIN

           CALL ROUTINE TO CALCULATE INTENSITIES FOR BACKGROUND SKY
           WITHOUT PLUME.

              CALL BACCLN(ZENITH,0.,THETA,ITHETA,SPECB)
              DO 1022 1=1,39
              SPECP(I)=SPECB(I)

           LOOP ON PLUME SEGMENTS BETWEEN DISTANCE NX AND FIRST POINT.

              DO 1100 NXX=NXX1,NXEND

           USE MEANS OF END POINTS OF SEGMENTS TO DEFINE CONCENTRATIONS

              CPAVE= (XPARTP( NXX,NZ)+XPARTP(NXX+1,NZ))/2.
              CSAVE= ( XPARTS( NXX,NZ)+XPARTS( NXX+1,NZ))/2.
              CNAVE= ( XN021 ( NXX,NZ)+XN021 ( NXX+1,NZ))/2.

           DISTANCE WITHIN PLUME IN KILOMETERS.

              XALONG= ( DIST( NXX+1) -DIST( NXX) ) /1000.

           CHANGE INTENSITY FOR EACH SEGMENT OF PLUME ( 1 POINT TO THE NEXT).

              CALL PLMAX(ZENITH,THETA,ITHETA,CPAVE,CSAVE,CNAVE,XALONG,SPECP,
             1 SPECB)
              CONTINUE

           NESTED LOOP FOR VARIOUS OBSERVER-TO-PLUME-SEGMENT DISTANCES.

              DO 1200 NROBJ=1,7
              NR1=NROBJ-1
              XALONG=0.

           ROBJ NOT DEFINED FOR INDEX .LT. 1, THEREFORE NO INPUT BY AIRLIGHT
           BETWEEN PLUME AND OBSERVER.

              IF(NROBJ.EQ.1)GO TO 1115
              IF(NROBJ.EQ.2)GO TO 1111
              GO TO 1112

           DISTANCE OF LINE-OF-SIGHT FROM OBSERVER TO PLUME SEGMENT.

              XALONG= ROBJ(NR1)*RVAMB
              GO TO 1110
              CONTINUE
              XALONG= ( ROBJ( NR1)-ROBJ( NR1-1))*RVAMB
        1110  CALL PLMAX(ZENITH,THETA,ITHETA,0.,0.,0.,XALONG,SPECP,SPECB)
              CONTINUE

           CALCULATE COLORATION PARAMETERS

              CALL CHROMA( SPECP,SPECB)
              IF(NROBJ.EQ. DGO TO 1116
Exhibit B-l  (Continued)
                                      308

-------
(2801)
(2802)
(2803)
(2804)
(2805)
(2806)
(2807)
( 2808)
(2809)
(2810)
(2811)
(2812)
(2813)
(2814)
(2815)
(2816)
(2817)
(2818)
(2819)
(2820)
(2821)
(2822)
(2823)
(2824)
(2825)
(2826)
(2827)
( 2828)
(2829)
(2830)
(2831)
( 2832)
( 2833)
(2834)
(2835)
(2836)
(2837)
( 2838)
(2839)
(2840)
(2841)
(2842)
(2843)
( 2844)
(2845)
(2846)
(2847)
( 2848)
(2849)
(2850)
(2851)
( 2852)
(2853)
(2854)
(2855)
(2856)

1

1
C
C
C

1
C
C
C
1

C
C
C


C
C
C


C
C
C


C
C
C


C
C
C

C
C
C


C
C
C

C
C
C



1


               GO TO 1117
         1116   TAUTOT=0.
               GO TO 1118
         1117   CONTINUE

           OPTICAL DEPTH DUE TO AMBIENT BACKGROUND AIR

               TAUTOT= BTABAC (19) *RVAMB*ROBJ ( NR1)
         1118   NXX=0

           NESTED LOOP ON DISTANCE WITHIN PLUME  TO DETERMINE  VISUAL RANGE.

         1120   NXX=NXX+1
               TAUT1=TAUTOT

           DISTANCE WITHIN PLUME SEGMENT

               NXDIFF=NX-NXX
               XALONG=(DIST(NXDIFF+1)-DIST(NXDIFF))/1000.

           ADD OPTICAL DEPTH FOR PRIMARY PARTICULATE

               TAUTOT= TAUTOT+XALONG*BTAPRM( 19) * ( XPARTP(NXDIFF+1, NZ) +XPARTP(NXDI
              lFF,NZ))/2.

           ADD OPTICAL DEPTH FOR S04

               TAUTOT= TAUTOT+XALONG*BTASO4( 19) *( XPARTSC NXDIFF+1, NZ) +XPARTSC NXD I
              lFF,NZ))/2.

           ADD OPTICAL DEPTH FOR N02 ABSORPTION.

               TAUTOT= TAUTOT+XALONG*ABSN02 ( 19 ) * ( XNO21 (NXD IFF+ 1, NZ) +XNO21 ( NXD IFF,
              1NZ))/2.+ALOG( CONT2+1.)

           ADD OPTICAL DEPTH FOR BACKGROUND AIR  IN PLUME

               TAUTOT=TAUTOT+XALONG*BTABAC( 19)

           STOP  CALCULATION IF VISUAL RANGE EXCEEDED

               IF(TAUTOT.GT.3.912)GO TO  1160
               IF(NXX.LT.NXIN)GO  TO 1120

            DETERMINE  DISTANCE FROM BACKSIDE  OF PLUME TO VISUAL RANGE LIMIT

               DELRV=(3.912-TAUTOT)/BTABAC( 19)

           CALCULATE VISUAL RANGE

               IFCNROBJ.GT. 1)GO TO 1130
               RV= ( DIST(NX)-DISTCNXX1))/1000.+DELRV
               GO TO 1170
         1130   CONTINUE
               RV=ROBJ(NR1)*RVAMB+(DIST(NX)-DIST( NXX1))/1000.+DELRV
               GO TO 1170
Exhibit B-l  (Continued)
                                      309

-------
(2857)
(2858)
(2859)
(2860)
(2861)
(2862)
(2863)
( 2864)
(2865)
(2866)
(2867)
(2868)
(2869)
(2870)
(2871)
(2872)
(2873)
(2874)
(2875)
(2876)
(2877)
( 2878)
(2879)
(2880)
(2881)
(2882)
(2883)
(2884)
(2885)
(2886)
(2887)
( 2888)
(2889)
(2890)
(2891)
(2892)
(2893)
(2894)
(2895)
(2896)
(2897)
(2898)
(2899)
(2900)
(2901)
(2902)
(2903)
( 2904)
(2905)
(2906)
( 2907)
(2908)
(2909)
(2910)
(2911)
(2912)
11
C
C
C




1]

i:
c
C
c

c
G
C




1
1

1!
C
G
C
G

11
i:

G
C
C




3


3



3




3


        1180
  .0   CONTINUE

   INTERPOLATE INTO PLUME TO GET VISUAL RANGE

      DELRV=  (3.912-TAUT1)/(TAUTOT-TAUT1) *XALONG
      IF(NROBJ.GT. 1)GO TO 1165
      RV=(DIST(NX) -DIST(NX+1-NXX))/1000.+DELRV
      GO TO 1170
  >5   CONTINUE
      RV=ROBJ( NR1)*RVAMB+( DIST( NX) -DIST( NX+ 1-NXX) ) /1000. +DELRV
  T0   CONTINUE

   REDUCTION IN VISUAL RANGE

      REDRV=((RVAMB-RV)/RVAMB)*100.

   DISTANCE WITHIN PLUME

      ALONG= ( DIST( NX) -DIST( NXX1) ) /1000.
      IF(NROBJ.GT. DGO TO 1180
      RR=0.
      GO TO 1190
      RR=ROBJ(NR1)
1190   WRITE( 6,67)ALONG,RR,RV,REDRV,YCAP,VAL,X,Y,YCAPD,VALD,CONT2
     1,BRATIO, XD,YD,DELUV,DELAB
1200   CONTINUE

   CHECK IF AT END OF LOOP ON INDEX FOR SCATTERING ANGLES FOR
   THE PLUME-BASED CASE CALCULATIONS.

      IF(NT.LT.(NT2-1))GO TO  1001
1300   CONTINUE
1301   CONTINUE
 1000 CONTINUE

   PRINT THE S04 AND N03 FORMATION RATES FOR EACH PLUME PARCEL AT X,Z,T.

      DO 30020 NT=1,NX2             ^
      WRITE(6,10)
      XKM= DIST( NT)/1000.
      WRITE( 6,30010) XKM
30010 FORMAT(47H HISTORY  OF PLUME PARCEL AT DOWNWIND DISTANCE =,F6.1,
     1 3H KM,//)
      WRITE(6,30011)
30011 FORMAT( 4X,6HPARCEL,5X, 5HLOCAL,5X,2X,
     1 34HS02-TO-S04= CONVERSION RATE (%/HR) ,5X,2X,
     1 34HNOX-TO-HNO3 CONVERSION RATE (?S/BR)>
      WRITE(6,30012) (ALT(NZ),NZ=1,6),(ALT(NZ),NZ=1,6)
30012 FORMAT(6X,3HAGE,7X,4HTIME,/,6X,4H(HR),10X,5X,6(2X,A4),5X,6(2X,A4),
     1 /)
      DO 30020 NX=1,NT
      DTIME=( ( DIST( NT)-DIST( NX))/U)/3600.
      TIMER=TIMEHR-DTIME
30013 IF(TIMER.GT.0.)GO TO 30014
      TIMER=TIMER+24.
      GO TO 30013
Exhibit B-l  (Continued)
                                      310

-------
C2913)
C2914)
C2915)
C2916)
C2917)
C2918)
C2919)
C2920)
C2921)
C2922)
C2923)
C2924)
C2925)
C2926)
C2927)
C 2928)
C2929)
C2930)
C2931)
C2932)
C2933)
C2934)
C2935)
C2936)
C2937)
C2938)
C2939)
C2940)
C2941)
C2942)
C2943)
C2944)
C2945)
C2946)
C 2947)
C 2948)
C2949)
C2950)
C2951)
C2952)
C2953)
C2954)
C2955)
C2956)
C2957)
C2958)
C2959)
C2960)
C2961)
C2962)
C2963)
C2964)
C2965)
(2966)
C2967)
(2968)
30014




30015
30020

50018

50001

C
C WR
C RE!
C IN
C SK
C BA(
C ZE1
C CO]
C





50002

50003

50004

50005

50006

50007

50008

50009

50010

50011

50012

50013

50014





               CONTINUE
               ITIMER=INT(TIMER)* 100+INT( AMOD( TIMER,1.)*60.)
               PLMAGE= ( DIST( NX) /U) /3600.
               WRITEC6,30015) PLMAGE,ITIMER, C RSO2RCNX, NZ.NT),NZ=1,6),
              1 (RNOXR(NX,NZ,NT) ,NZ=1,6)
               FORMATC5X,F5.1,6X,14,2(5X.6F6 . 2))
               CONTINUE
               DO 50018 NX=1,16
               DIST(NX)=DIST(NX)/1000.
               WRITEC6,50001)
               FORMAT(1H1,55X,22HPLOT FILE VERIFICATION)
               IF(NC2.NE.2)GO TO 30025

               TE OUT THE VISUAL IMPACT PARAMETERS FOR PLOTTING OF THE
               ULTS OF OBSERVER-BASED CALCULATIONS. PLT1 IS PERCENT REDUCTION
               VISUAL RANGE, FOR THE 16 DOWNWIND POINTS.NN=1 FOR CLEAR
               ' BACKGROUND.  NN=2 FOR WHITE BACKGROUND.  HN=3 FOR GRAY
            BACKGROUND.   NN=4 FOR BLACK BACKGROUND.  PLT1 IS SET TO
                 FOR NN=2,3,4.  PLT2   BLUE-RED RATIO.  PLT3   PLUME
                 AST AT 0.55 MICROMETER.   PLT4   DELTA E(LAB).
                                          16),NN=1,4)
                                          16),NN=1,4)
                                          16),NN=1,4)
                                          16),NN=1,4)
WRITEC 7)((PLT1(NX,NN),NX=1
WRITE(7)((PLT2(NX,NN),NX=1
WRITE(7)((PLT3(NX,NN),NX=1
WRITEC 7)((PLT4(NX,NN) , NX=1
WRITE(6,50002)
FORMATC1H0,56X, 19HOBSERVER-BASED DATA)
WRITEC6,50003)
FORMATC1H0,5X,14HSKY  BACKGROUND)
WRITEC 6,50004)C NN,NN=NX1,NX2)
FORMATC 1H0,9X,2HNX,7X, 16C5X, 12))
WRITEC6,50005)CDISTCNX) ,NX=NX1,NX2)
FORMATC1H0,3X,13HDISTANCE CKM),2X,16(3X,F4 .0))
WRITEC6,50006)
FORMATC1H0,IX,19HREDUCTION OF  VISUAL)
WRITEC6,50007)CPLT1CNX,1),NX=NX1,NX2)
FORMATC 1H ,5X,9HRANGE (%),6X»16( 1X,F6.3))
WRITEC6,50008)
FORMATC1H0.2X,14HBLUE-RED RATIO)
WRITEC 6,50009MPLT2C NX, 1) ,NX=NX1,NX2)
FORMATC tH ,20X,16C1X.F6.3))
WRITEC6,50010)
FORMATC1H0.2X, 17HPLUME  CONTRAST AT)
WRITEC6.5001DCPLT3CNX, 1) ,NX=NX1,NX2)
FORMATC1H ,5X, 12H0.55 MICRONS,3X,16C1X,F6.3))
WRITEC6,50012)
FORMATC1H0.20HPLUME PERCEPTIBILITY)
WRITEC6.50013MPLT4CNX, 1),NX=1,NX2)
FORMATC1H ,3X,15HDELTA  ECL*A*B*),2X,16C1X.F6.3))
WRITEC6,50014)
FORMATC/,1H0.3X, 16HWHITE BACKGROUND)
WRITEC 6,50004)C NN,NN=NX1,NX2)
WRITEC6,50005)CDISTCNX),NX=NX1,NX2)
WRITEC6,50006)
WRITEC 6,50007)C PLT1C NX,2),NX=NX1,NX2)
WRITEC6,50008)
Exhibit B-l  (Continued)
                                      311

-------
(2969)
(2970)
(2971)
(2972)
(2973)
(2974)
(2975)
(2976)
(2977)
(2978)
(2979)
(2980)
(2981)
(2982)
(2983)
(2984)
(2985)
(2986)
(2987)
(2988)
(2989)
(2990)
(2991)
(2992)
(2993)
(2994)
(2995)
(2996)
(2997)
(2998)
(2999)
(3000)
(3001)
(3002)
(3003)
(3004)
(3005)
(3006)
(3007)
(3008)
(3009)
(3010)
(3011)
(3012)
(3013)
(3014)
(3015)
(3016)
(3017)
(3018)
(3019)
(3020)
(3021)
(3022)
(3023)
(3024)
      WRITE( 6,50009) ( PLT2( NX,2),NX=NX1,NX2)
      WRITE(6,50010)
      WRITE(6,50011) ( PLT3( NX,2),NX= NX1,NX2)
      WRITE(6,50012)
      WRITE(6,50013)(PLT4( NX,2),NX=NX1,NX2)
      WRITE(6,50015)
50015 FORMAT(/,1H0.4X,15HGRAY BACKGROUND)
      WRITE(6,50004)(NN,NN=NX1,NX2)
      WRITE(6,50005)(DIST(NX),NX=NX1,NX2)
      WRITE(6,50006)
      WRITE(6,50007)(PLT1 ( NX,3),NX=NX1,NX2)
      WRITE(6,50008)
      WRITE(6,50009)(PLT2(NX,3),NX=NX1,NX2)
      WRITE(6,50010)
      WRITE(6,50011)(PLT3(NX,3),NX=NX1,NX2)
      WRITE(6,50012)
      WRITE( 6,50013) (PLT4( NX,3),NX=NX1,NX2)
      WRITE(6,50016)
50016 FORMAT(1H1,3X,16HBLACK BACKGROUND)
      WRITE( 6,50004) ( NN, NN=NX1, NX2)
      WRITE(6,50005) ( DIST( NX),NX=NX1,NX2)
      WRITE (6,50006)
      WRITE( 6,50007) ( PLT1 (-NX, 4) , NX=NX1, NX2)
      WRITE(6,50008)
      WRITE(6,50009)(PLT2(NX,4),NX=NX1,NX2)
      WRITE(6,50010)
      WRITE(6,50011)(PLT3(NX,4),NX=NX1,NX2)
      WRITE(6,50012)
      WRITE(6,50013) ( PLT4( NX,4),NX=NX1,NX2)
      IF(NC1.NE. DGO TO 30030
C
C
C
C
C
C
C
30025
   VISUAL IMPACT PARAMETERS FOR PLOTTING OF THE RESULTS  OF
   THE PLUME-BASED CALCULATIONS WITH THE DESIRED SCATTERING ANGLE
   DISTANCES, AND PLUME-OBSERVER^GEOMETRY AS SPECIFIED  IN THE
   PLUME-BASED CALCULATIONS FOR CLEAR SKY AND WHITE,  GRAY,  AND
   BLACK BACKGROUNDS.
      CONTINUE
      WRITE(8)((PLOT1(NX,NN),NX=1,16),NN=1,4)
      WRITE(8)((PLOT2(NX,NN),NX=1,16),NN=1,4)
      WRITE(8)((PLOT3(NX,NN),NX=1,16),NN=1,4)
      WRITE(8)((PLOT4(NX,NN),NX=1,16),NN=1,4)
      IFCNC2.NE.1)WRITE(6,50001)
      WRITE(6,50017)
50017 FORMAT(1H0.57X,16HPLUME-BASED DATA)
      WRITE(6,50003)
      WRITE(6,50004)(NN,NN=NX1,NX2)
      WRITE(6,50005)(DIST(NX),NX=NX1,NX2)
      WRITE (6,50006)
      WRITE( 6,50007)(PLOT1(NX,1),NX=NX1,NX2)
      WRITE(6,50008)
      WRITE(6,50009)(PLOT2(NX,1),NX=NX1,NX2)
      WRITE(6,50010)
      WRITE(6,50011)(PLOT3(NX,1),NX=NX1,NX2)
      WRITE(6,50012)
      WRITE(6,50013)(PLOT4(NX, 1),NX=NX1,NX2)
Exhibit B-l  (Continued)
                                      312

-------
(3025)        WRITE(6,50014)
(3026)        VRITE(6,50004)
(3027)        VRITE(6,50005)
(3028)        tfRITE(6,50006)
(3029)        WRITE(6,50007)
(3030)        WRITE(6,50008)
(3031)        WRITE(6,50009)
(3032)        VRITE(6,50010)
(3033)        VRITE(6,50011)
(3034)        VRITE(6,50012)
(3035)        1VRITE(6,50013)
(3036)        WRITE(6,50015)
(3037)        VRITE<6,50004)
(3038)        ViRITE(6,50005)
(3039)        WRITE(6,50006)
(3040)        WRITE(6,50007)
(3041)        T7RITE(6,500©8)
(3042)        WIITE(6,50009)
(3043)        WRITE(6,50010)
(3044)        WRITE(6,50011)
(3045)        \miTE(6,50012)
(3046)        WRITE(6,50013)
(3047)        VRITE(6,50016)
(3048)        WRITE(6,50004)
(3049)        WRITE(6,50005)
(3050)        WRITE(6,50006)
(3051)        WRITE(6,50007)
(3052)        WRITE(6,5Q003)
(3053)        WRITE(6,5G009)
(3054)        VRITE(6,50010)
(3055)        WRITE(6,50011)
(3056)        VRITE(6,50012)
(3057)        WRITE(6,50013)
(3058)  30030 CONTINUE
(3059)        ENDFILE 7
(3060)        ENDFILE 8
(3061)        STOP
(3062)        END
               (NN,NN=NX1,NX2)
               ( DI ST( NX) , NX= NX1, NX2)

               (PLOT1(NX,2),NX=NX1,NX2)

               (PLOT2(NX,2),NX=NX1,NX2)

               (PLOT3(NX,2) ,NX=NX1,NX2)

               (PLOT4(RX,2),NX=NX1,NX2)

               (NN,NN=NX1,NX2)
               (DIST(NX) ,NX=NX1,NX2)

               (PLOTKNX.3) ,NX=NX1,NX2)

               (PLOT2(KX,3),NX=NX1,NX2)

               ( PLOT3( NX,3),NX=NX1,NX2)

               (PLOT4(NX,3),NX=NX1,NX2)

               (NN,NN=NX1,NX2)
               (DIST(NX),NX=NX1,NX2)

               (PLOT1(NX,4),NX=NX1,NX2)

               (PLOT2(NX,4),NX=NX1,NX2)

               (PLOT3(NX,4),NX=NX1,NX2)

               (PLOT4(NX,4),NX=NX1,NX2)
      BLOCK DATA
(3063)
(3064)
(3065)
(3066)
(3067)
(3068)
(3069)
(3070)
(3071)
(3072)
(3073)
(3074)
(3075)
(3076)
(3077)
(3078)
(3079)
(3080)
(3081)
(3082)
(3083)
(3084)
(3085)
(3086)
(3087)
(3088)
(3089)
(3090)
(3091)
(3092)
(3093)
(3094)
(3095)
(3096)
(3097)
(3098)
(3099)
(3100)
(3101)
 DATA ABSN02 /I.58,
1             1.36,
2             0.46, 0.39,
3
4
 BLOCK DATA
 COMMON/MIESCT/ROG,SIGMA,NLAMB,LAMB(20) , JX, IT,TT(200) ,DUM(20) ,
1PDUM(20,200)
 COMMON/ MISC/ ABSNO2O9) ,SOLAR(39) , RAD, FORPIN,OMZ(39) ,OMH(39)
1,NTHETA
 COMMON,'COLOR/YCAP, VAL, X, Y, YCAPD, VALD, XD, YD, DELUV, DELAB,
1XBAR(39),YBAR(39),ZBAR(39),PI.CONT1,CONT2,CONT3,BRATIO
 REAL LAMB
 DATA LAMB / 0.35,0.40,0.45,0.50,0.55,0. 60,0.65,0.70,0.75,11*0.0/
 DATA TT /0.,22.,45.,90.,135.,158.,180.,193*0./
 DATA NLAMB / 9 /
 DATA NTHETA / 7 /
                    1.63,1.67,1.71,1.67,  1.63,  1.54, 1.45,
                    1.17, 1.06,  0.92,  0.80, 0.69,  0.61,  0.54,
                           1.31,  0.26,  0.21, 0.18,  0.15,  0.12, 0.1,
              0.080, 0.063, 0.053, 0.041,  0.035,  0.029,  0.024,
              0.021, 0.017, 0.014, 0.010,  0.0068,  0.0034,0./
 DATA  SOLAR/ 1163.,  1124.,  1121., 1423.,
1 1801., 1998., 2059., 2040., 2042.,  1959.
2 1839., 1785., 1731., 1704., 1712.,  1716.
3 1602., 1570., 1544., 1511., 1466.,  1456.,
4 1344., 1314., 1290.,1260.,  1235.   /
 DATA XBAR /  0.0000,  0.0014, 0.0042,  0.0143,  0.0435, 0.1344,
1 0.2839, 0.3483,  0.3362, 0.2908,  0.1954,  0.0956,  0.0320,
2 0.0049, 0.0093,  0.0633, 0.1655,  0.2904,  0.4334,  0.5945, 0.7621,
3 0.9163, 1.0263,  1.0622, 1.0026,  0.8544,  0.6424,  0.4479, 0.2835,
4 0.1649, 0.0874,  0.0468, 0.0227,  0.0114,  0.0058,  0.0029, 0.0014,
5 0.0007, 0.0003 /
 DATA YEAR / 0.0000, 0.0000,  0.0001,  0.0004,  0.0012, 0.0040,
1 0.0116, 0.0230,  0.0380, 0.0600,0.0910,  0.1390,  0.2080,  0.3230,
2 0.5030, 0.7100,  0.8620, 0.9540,  0.9950,  0.9950,  0.9520, 0.8700,
3 0.7570,0.6310, 0.5030, 0.3810, 0.2650,  0.1750,  0.1070,  0.0610,
4 0.0320, 0.0170,  0.0082, 0.0041,  0.0021,  0.0010,  0.0005, 0.0002,
5 0.0001   /
 DATA ZBAR / 0.0000, 0.0065,  0.0201,  0.0679,  0.2074, 0.6456,
1 1.3856, 1.7471,  1.7721, 1.6692,  1.2876,  0.8130,  0.4652, 0.2720,
2 0.1582, 0.0782,  0.0422, 0.0203,  0.0087,  0.0039,  0.0021, 0.0017,
3 0.0011, 0.0008,  0.0003, 0.0002,  13*0.0000 /
 END
1730., 1740., 1659.,
1941. ,
1699. ,
1427. ,
1879. .
1640. ,
1402. ,
1838. ,
1635. ,
1369. ,
                                     313

-------
      FUNCTION ERF(XX)
(3102)
(3103)
(3104)
(3105)
(3106)
(3107)
(3108)
(3109)
(3110)
(3111)
(3112)
(3113)
(3114)
(3115)
(3116)
(3117)
(3118)
(3119)
(3120)
C
C
C
C
C
   FUNCTION ERF(XX)

ERF=2/SQRT(PI)*INTEGRAL OF EXP(-T*T) FROM 0 TO X.
USING AN APPROXIMATION DUE TO HASTINGS  GOOD TO  SEVEN  SI
USING AN APPROXIMATION DUE TO HASTINGS. ABSOLUTE ERROR ABOUT 3E-7
   DIMENSION A(6)
   DATA A/. 0000430638,
  1 , . 0705230784 /
   X=ABS(XX)
   T=A( 1)*X
   DO 10 1=2,6
   T= ( T+A(  I ) ) *X
10 CONTINUE
   T=1./(T+1.)
   ERF=1.-T**16
   IF( XX. LT. 0 . ) ERF=-ERF
   RETURN
   END
                          0002765672, .0001520143, .0092705272, .0422820123
      SUBROUTINE PERDIF(SPECR,ZENITH)
 (3121)     .   SUBROUTINE  PERDIF(SPECR,ZENITH)
 (3122)  C*****
 (3123)  C*****   CALCULATE PERFECT DIFFUSE REFLECTOR PROPERTIES
 (3124)  C*****
 (3125)        COMMON/REF/XCAP0,YCAP0,ZCAP0,U0,V0,PROP
 (3126)        COMMON/COLOR/YCAP,VAL,X,Y,YCAPD,VALD,XD,YD,DELUV,DELAB,
 (3127)        1XBARO9) ,YBAR(39) ,ZBAR(39) ,PI .CONT1 ,CONT2,CONT3,BRATIO
 (3128)        DIMENSION SPECRO9)          ^
 (3129)        PI =  3.1415962
 (3130)        XLUMIN=1./(2.*PI)
 (3131)        CALL  BACOBJ(ZENITH,90.,90.,4.,0.,SPECR,XLUMIN)
 (3132)        XCAP0=0.
 (3133)        YCAP0=0.
 (3134)        ZCAP0=0.
 (3135)        DO  10 1=1,39
 (3136)        XCAP0=XCAP0+SPECR( I)*XBAR(I)
 (3137)        YCAP0=YCAP0+SPECR(I)*YBAR(I)
 (3138)        ZCAP0=ZCAP0+SPECR( I)*ZBAR( I)
 (3139)    10   CONTINUE
 (3140)        PROP=100./YCAP0
 (3141)        XCAP0=XCAP0*PROP
 (3142)        YCAP0=100.
 (3143)        ZCAP0=ZCAP,0*PROP
 (3144)        D0=XCAP0+1500.+3.*ZCAP0
 (3145)        U0=4.*XCAP0XD0  '
 (3146)        V0=900./D0
 (3147)        RETURN
 (3148)        END
 Exhibit B-l (Continued)
                                       314

-------
      SUBROUTINE CHROMA(SPECB,SPECR)
(3149)
(3150)
(3151)
(3152)
(3153)
(3154)
( 3 155)
(3156)
( 3 157)
(3158)
(3159)
(3160)
(3161)
(3162)
(3163)
(3164)
(3165)
(3166)
(3167)
(3168)
(3169)
(3170)
(3171)
(3172)
(3173)
(3174)
(3175)
(3176)
(3177)
( 3 178)
( 3 179 )
(3180)
(3181)
(3182)
(3183)
( 3 1 84 )
(3185)
(3186)
(3187)
(3188)
(3189)
(3190)
(3191)
(3192)
(3193)
( 3 194)
(3195)
(3196)
(3197)
(3198)
( 3 199 )
( 3200 )
( 320 1 )
( 3202 )
( 3203)
( 3204)
         10
      SUBROUTINE  CHROMA( SPECB,SPECR)
      k
C****# CALCULATES VARIOUS  COLORATION  PARAMETERS SUCH AS CHROMA-
C##*** TICITV COORDINATES,LUMINANCE,VALUE, CONTRAST,BLUE-RED RATIO,
C***## AND DELTA  E.
\j JS S?C Ij£ 3fC ?|C
      COMMON/COLOR/YCA?,VAL,X,Y,YCAPD,VALD,XD,YD,DELUV,DELAB,
      1XBAR(39),YBAR(39),ZBAR(39),PI,CONT1,CONT2,CONT3,BRATIO
      COMMON/REF/XCAP0,YCAP0,ZCAP0, U0,V0,PROP
      DIMENSION SPECBO9) ,SPECR(39)
      XCAP=0.
      YCAP=0.
      ZCAP=0.
      XCAPR=0.
      YCAPR=0.
      ZCAPR=0.
      DO 10  1=1,39
      XCAP=XCAP+SPECB(I)*XBAR( I)
      YCAP=YCAP+SPECB(I)*YBAR( I)
      ZCAP=ZCAP+SPECB(I)*ZBAR( I)
      XCAPR= XCAPR+SPECR( I) *XBAR( I)
      YCAPR=YCAPR+SPECR( I)*YBAR( I)
      ZCAPR=ZCAPR+SPECR( I)*ZBAR( I)
      CONTINUE
      XCAP=XCAP*PROP
      YCAP=YCAP*PROP
      ZCAP=ZCAP*PROP
      TXYZ= XCAP+YCAP+ZCAP
      XCAPR= XC APR*PROP
      YCAPR= YC APR*PROP
      ZCAPR= ZCAPRSPROP
      TXYZR= XCAPR+YCAPR+ZCAPR
      X=XCAP/TXYZ
      Y=YCAP/TXYZ
      XR= XCAPR/TXYZR
      YR=YCAPR/TXYZR
      XD=X-XR
      YD=Y-YR
      YCAPD= YCAP-YCAPR
      D= XCAP+15r#YCAP+3.*ZCAP
      DR= XCAPR+15 . *YCAPR+3. *ZCAPR
      U=4.*XCAP/D
      V=9.*YCAP/D
      UR=4.*XCAPR/DR
      VR=9.*YCAPR/DR
      CONT1 = (SPECB(4)-SPECR(4))/SPECR( 4)
      CONT2=(SPECB(19)-SPECR(19))/SPECR( 19)
      CONT3=(SPECB(34)-SPECR(34))/SPECR( 34)
      BRATIO=(SPECB(4)/SPECR( 4))/(SPECB(34)/SPECR( 34))
      VAL=116.*( YCAP/YCAP0)**.333-16.
      VALR=116.*(YCAPR/YCAP0)**.333-16.
      USTAR=13.*VAL*(U-U0)
      USTARR=13.*VALR*(UR-U0)
      VSTAR=13.*VAL#( V-V0)
      VSTARR=13.*VALR*(VR-V0)
      ASTAR=500.#(( XCAP/XCAP0)**.333-(YCAP/YCAP0)**.333)
Exhibit Brl  (Continued)
                                      315

-------
      SUBROUTINE CHROMA (SPECB,SPECR)
(3205)         ASTARR=500.*<(XCAPR/XCAP0)**.333-(YCAPR/YCAP0)**.333)
(3206)         BSTAR=200.*( ( YCAP/YCAP0)**.333-(ZCAP/ZCAP0)**.333)
(3207)         BSTARR=200.*( (YCAPR/YCAP0)**.333-(ZCAPR/ZCAP0)**.333)
(3208)         VALD=VAL-VALR
(3209)         USTARD= USTAR-USTARR
(3210)         VSTARD= VSTAR-VSTARR
(3211)         ASTARD= ASTAR-ASTARR
(3212)         BSTARD= BSTAR-BSTARR
(3213)         DELUV= SQRT( VALD*VALD+USTARD*USTARD+VSTARD*VSTARD)
(3214)         DELAB=SQRT(VALD*VALD+ASTARD*ASTARD+BSTARD*BSTARD)
(3215)         RETURN
(3216)         END
Exhibit  B-l  (Continued)
                                       316

-------
      FUNCTION SYTVA(I.X)
(3217)         FUNCTION SYTVA(I,X)
(3218)         REAL A(6) , B(6),C(6),D(6),LOGX
(3219)         DATA A/-.04054,-.04092,-.02536,-.02398,-.01837,-.01766/
(3220)         DATA B/.4871,.4745,.3092,.2857,.2165,.2022/
(3221)         DATA C/-1.16,-1.108,-.5988,-.5402,-.3099,-.2681/
(3222)         DATA D/2.057,1.993,1.497,1.459,1.217,1.174/
(3223)         LOGX= ALOG10(X)
(3224)         SYTVA=10.**(A(I)*LOGX*LOGX*LOGX+B( I)*LOGX*LOGX+C(I)*LOGX+D< I))
(3225)         RETURN
(3226)         END
 Exhibit B^l  (Continued)
                                       317

-------
      FUNCTION  SZTVA(l.X)
(3227)         FUNCTION SZTVAd.X)
(3228)         REAL A(6),B(6),C(6),D( 6),LOGX
(3229)         DATA A/-.04057,-.02174,-.01092,.002771,.006483,.009586X
(3230)         DATA B/.4847,.2555,.1266,-.03534,-.08176,-.1183/
(3231)         DATA C/-1.149,-.4799,-.1457,.369,.5107,.6285/
(3232)         DATA D/2.027,1.382,1.09,.5842,.4429,.3116/
(3233)         LOGX= ALOG10 ( X)
(3234)         SZTVA=10.**( A( I)*LOGX*LOGX*LOGX+B( I)*LOGX*LOGX+C(I)*LOGX+D(I))
(3235)         RETURN
(3236)         END
Exhibit fi-1  (Continued)
                                      318

-------
      FUNCTION SYPAS(I.X)
(3237)
(3238)
(3239)
(3240)
(3241)
(3242)
(3243)
(3244)
(3245)
(3246)
(3247)
(3248)
(3249)
(3250)
(325 1)
(3252)
(3253)
(3254)
(3255)
C
C
C
 1-
  FUNCTION SYPAS(I,X)

PASQUILL-GIFFORD HORIZONTAL DISPERSION COEFFICIENT (SIGMA Y)

  REAL A(7),B(7),C(7),D(7),LOGX
  DATA A/-.012280,-.02334,-.008289,-.0062276,-.009115,-.0032318,0. /
  DATA B/.00028741,.028256,-.0022985,-.0056984,-.0017835,-.011057, 0.
 I/
  DATA C/.89182,.91347,.91977,.92394,.92826,.92159,0./
  DATA D/2.3237,2.1556,2.0142,1.8288,1.7006,1.5289,0./
  IF(I.EQ.7)  GO TO 1
  LOGX= ALOG10(X/1000.)
  SYPAS=10.**(A(I)*LOGX*LQGX*LOGX+B( I> *LOGX*LOGX+C( I)*LOGX+D(I))
  RETURN
  LOGX=ALOG10(X)
  SYPAS=10.#*(-.0020555*LOGX*LOGX#LOGX-.014857*LOGX*LOGX+ 1.0648*
 1LOGX-1.6212)
  RETURN
  END
Exhibit  Brl  (Continued)
                                      319

-------
       FUNCTION SZPAS(I.X)
 (3256)
 (3257)
 (3258)
 (3259)
 (3260)
 (326 1)
 (3262)
 (3263)
 (3264)
 (3265)
 (3266)
 (3267)
 (3268)
 (3269)
 (3270)
 (3271)
 (3272)
 (3273)
C
C
C
  FUNCTION SZPAS(I,X)

PASQUILL-GIFFORD VERTICAL DISPERSION COEFFICIENT (SIGMA Z) .

  REAL A(7),B(7),C(7),D(7),LOGX
  DATA A/1.157,-.031027,-.0045741,.011157,-.0005092,.0037608,0./
  DATA B/2.815,.050674,.0040771,-.093465,-.10332,-.12889,0.x
  DATA C/3.316,1.0827,.92084,.72583,.67969,.65602,0./
  DATA D/2.804,2.0327,1.7824,1.4901,1.3284,1.1391,0./
  IF( I.EQ.7) GO TO 1
  LOGX= ALOG10 (X/1000.)
  SZPAS=10.**( A( I)*LOGX*LOGX*LOGX+B(I)*LOGX*LOGX+C( I>*LOGX+D( I))
  RETURN
  LOGX=ALOG10(X)
  SZPAS=10.**(-.0086351*LOGX*LOGX*LOGX-.036447*LOGX*LOGX+1.1243*LOGX
 1-1.8981)
  RETURN
  END
Exhibit B-l  (Continued)
                                      320

-------
      SUBROUTINE INRAD
(3274)
(3275)
(3276)
(3277)
(3278)
(3279)
(3280)
(3281)
(3282)
(3283)
(3284)
(3285)
(3286)
(3287)
(3288)
(3289)
(3290)
(3291)
(3292)
(3293)
(3294)
(3295)
(3296)
(3297)
(3298)
(3299)
(3300)
(3301)
(3302)
(3303)
(3304)
(3305)
(3306)
(3307)
(3308)
(3309)
(3310)
(3311)
(3312)
(3313)
(3314)
(3315)
(3316)
(3317)
(3318)
(3319)
(3320)
(3321)
(3322)
(3323)
(3324)
(3325)
(3326)
(3327)
(3328)
(3329)
C
C
C
C
  SUBROUTINE INRAD

CALCULATE OPTICAL PROPERTIES OF BACKGROUND ATMOSPHERE AND FOUR
AEROSOL MODES

  REAL LAMB
  COMMON/BCKGNDX ELEV, RVAMB, ACCAMB, AMBN02, RH, ROVA, ROVC, ROVS, ROVP,
 1SIGA,S1GC,SIGS,SIGP,HPBL,IREAD,CORAMB,AMBN03,AMBS04,INTYP
 2, DENA,DENG,DENP,DENS
  COMMON/MIESCT/ROG,SIGMA,NLAMB,LAMB(20),JX,IT,TT<200),DUM(20),
 1PDUM(20,200)
  COMMON/RADPRPXBTAS04 (39) , BTACOR( 39), BTAPRM( 39) , BTAAER( 39 ),
 1PAER(39,27),PPRIM( 39,27),PS04(39,27).PCOR(39,27),BTABAC(39)
  COMMON / OPTDEP / TAT0IZ(39),TATHIZ( 39),TAT0HZ(39),X1(39),
 1X2(39),TAUTDI(39),TAUT0D(39),XHDI(39),XH0D(39)
  COMMON/ MISC/ ABSN02(39),SOLAR(39),RAD,FORPIN,OMZ(39),OMH(39)
 1,NTHETA
  DIMENSION DUMP(41),D(2)
  DIMENSION COEF(57),W(57)
  DIMENSION WINKX9),REL(9)
  DATA WINK /  0. ,  0.03  , 0.05  ,  0.1
  DATA D / 0.,0. /
  IREAD = 0
  TWOPI = 2.*3.141596
  FORPI = 2.*TWOPI
                                           0.18 ,  0.3
1.5,0.75  ,  1.
               1./FORPI
               SQRT(3. 141596)
               SQRTPI*SQRT(2.)
  FORP IN
  SQRTPI
  SQR2PI
  HR = 9.8
  HA=3.5
  CONR = SQRT(2.*6356.*HR)
  CONA - SQRT( 2 . *6356 . *HA)
  PARMA - CONA*SQRTPI*0.5
  PARMR - CONR*SQRTPI*0.5
  DX = SQRT( 2 . *6356 . *HPBL)
  DR   DX/CONR
  DA = DXXCONA
  COMPUTE THE BACKGROUND RADIATIVE PROPERTIES

                                           _
     GENERATE THE BSCAT TO MASS RATIOS AND THE PHASE FUNCTIONS
      ACCUMULATION MODE

      ROG   ROVA
      SIGMA = SIGA
      DO 5 I - 1,39
      DUMP( I) = 0.36 + 0.01*FLOAT( I)
      IF( IREAD. Eft. 1) GO TO 210
      CALL BSIZE
      GO TO 250
  210 READ(5,1100) (
                    DUM( I) , I=1,NLAMB)
      DO 220 I = l.NLAMB
  220 READ(5,1200)  (PDUM(I,J),J=1,NTHETA)
  250 CONTINUE
Exhibit B-l  (Continued)
                                      321

-------
     SUBROUTINE  INRAD
(3330)
( 333 1 )
( 3332)
(3333)
(3334)
(3335)
(3336)
(3337)
( 3338)
(3339)
(3340)
(3341)
(3342)
(3343)
(3344)
(3345)
(3346)
(3347)
(3348)
(3349)
(3350)
(3351)
( 3352)
(3353)
(3354)
(3355)
(3356)
(3357)
( 3358)
(3359)
(3360)
(3361)
(3362)
(3363)
(3364)
(3365)
(3366)
(3367)
( 3368)
(3369)
(3370)
(3371)
(3372)
(3373)
( 3374)
(3375)
(3376)
(3377)
( 3378)
(3379)
(3380)
(3381)
(3382)
(3383)
(3384)
(3385)
1100 I
1200 1
(
1
^
]
13
14 (
r
12 i
]
]
15 ]
<
]
i
1
18
19 I
• i
17 i
10 i
c*#**#
c*****
c*****
C**« i
c*****





310

320
350




23
24

22


25




28
29

27
20
             FORMAT(9F7.4)
             FORMAT(7E11.4)
             CALL SPLNA  ( NLAMB, LAMB, DUM, 2, D, COEF, W)
             DO  12  I = 1,39
             X - DUMP( I)
             DO  13  J = 2,NLAMB
             IF(X.LE.LAMB(J)) GO TO 14
             0. = LAMB(J) - LAMB(J-l)
             Z - (X -  LAMB(J-1))/Q
             BTAS04( I ) = ( ( Z*COEF( 3*J-3) +COEF( 3*J-4) ) *Z+COEF( 3*J-5) ) *Z+DUM( J- 1)
             DO  10  JT  =  l.NTHETA
             DO  15  I - 1,NLAMB
             DUM( I) =  PDUM( I , JT)
             CALL SPLNA  ( NLAMB , LAMB , DUM, 2 , D , COEF , W)
             DO  17  I = 1,39
             X = DUMP( I)
             DO  18  J = 2, NLAMB
             IF(X.LE.LAMB(J>) GO TO 19
             ft = LAMB(J) - LAMB(J-l)
             Z - (X -  LAMB( J- 1 ) ) /Q
             PS04(I,JT)  =( (Z*COEF(3*J-3)+COEF(3*J-4) )*Z+COEF(3*J-5) )*Z+DUM( J-l)
             CONTINUE
              COARSE PARTICLE MODE

              ROG =  ROVC
              SIGMA  = SIGC
              IF( IREAD.EQ. 1)  GO TO 310
              CALL BSIZE
              GO TO  350
              READ(5, 1100)  (     DUM( I ) , I = 1 , NLAMB)
              DO 320 I = 1, NLAMB
              READ (5, 1200)  (PDUM( I , J) , J= 1 ,NTHETA)
              CONTINUE
              CALL SPLNA ( WLAMB, LAMB, DUM, 2/B, COEF, W)
              DO 22  I = 1,39
              X - DUMP( I)
              DO 23  J = 2, NLAMB
              IF(X.LE.LAMB(J)) GO TO 24
              Q = LAMB(J)  - LAMB(J-l)
              Z = (X - LAMB( J- 1 ) ) /Q
              BTACOR( I ) = ( ( Z*COEF( 3*J-3) +COEF( 3*J-4) ) *Z+COEF( 3*J-5) ) *Z+DUM( J-l)
              DO 20  JT - 1,NTHETA
              DO 25  I = 1, NLAMB
              DUM(I) - PDUM(I.JT)
              CALL SPLNA ( KLAMB , LAMB , DUM, 2 , D , COEF . W)
              DO 27  I - 1,39
              X = DUMP( I)
              DO 28  J = 2, NLAMB
              IF(X.LE.LAMB( J) ) GO TO 29
              Q - LAMB(J)  - LAMB(J-l)
              Z = (X - LAMB(J-1))/Q
              PCOR( I , JT) = ( ( Z*COEF( 3*J-3) +COEF( 3*J-4) ) *Z+COEF( 3*J-5) ) *Z+BUM( J-O
              CONTINUE
Exhibit B-l (Continued)
                                      322

-------
      SUBROUTINE  INRAD
(3386)
(3387)
(3388)
(3389)
(3390)
(3391)
(3392)
(3393)
(3394)
(3395)
(3396)
(3397)
(3398)
(3399)
(3400)
(3401)
(3402)
(3403)
(3404)
(3405)
(3406)
(3407)
(3408)
(3409)
(3410)
(3411)
(3412)
(3413)
(3414)
(3415)
(3416)
(3417)
(3418)
(3419)
(3420)
(3421)
(3422)
(3423)
(3424)
(3425)
(3426)
(3427)
(3428)
(3429)
(3430)
(3431)
(3432)
(3433)
(3434)
(3435)
(3436)
(3437)
(3438)
(3439)
(3440)
(3441)
C*** COMPUTE THE PRI314RY PARTICULATE PROPERTIES
      ROG - ROVP
      SIGMA   SIGP
      IF( IREAD.EQ.1) GO TO 410
      CALL BSIZE
      GO TO 450
  410 READ(5,1100)  (DUM( I),1=1,NLAMB)
      DO 420  I =  1,NLAMB
  420 READ(5,1200)  (PDUM( I,J),J=1,NTHETA)
  450 CONTINUE
      CALL SPLNA  (NLAMB,LAMB,DUM,2,D.COEF,¥)
      DO 32 I = 1,39
      X   DUMP(I)
      DO 33 J = 2.NLAKB
   33 IF(X.LE.LAMB(J)) GO TO  34
   34 ft = LAMB(J) - LAMB(J-l)
      Z   (X - LAMB(J-1))/Q
   32 BTAPRM(I) =((Z*COEF(3*J-3)+COEF(3*J-4))*Z+COEF(3*J-5))*Z+DUM(J-l)
      DO 30 JT -  1,NTHETA
      DO 35 I = 1,NLAMB
   35 DUM( I) - PDUM(I,JT)
      CALL SPLNA  (NLAMB,LAMB,DUM,2,D,COEF,W)
      DO 37 I   1,39
      X = DUMP( I)
      DO 38 J = 2,NLAMB
   38 IF(X.LE.LAMB(J)) GO TO  39
   39 Q = LAMB(J) - LAMB(J-l)
      Z = (X - LAMB(J-l))/a
   37 PPRIMC I, JT) = ((Z*COEF( 3*J-3) +COEF( 3*J-4) )*Z+COEF( 3*J-5) )*Z+DUM( J-l)
   30 CONTINUE

     ADJUST FOR THE RELATIVE  HUMIDITY
      <
      DO 41 I   1,9
      REL(I) = 0.1*FLOAT(1-1)
      CALL SPLNA(9,REL,WINK,2,D,COEF,W)
      DO 42 I = 2,9
      IF(RH.LE.REL( I)) GO TO  43
      Z - (RH-R®L( I-l»*10.
      FH = ( <:Z*COEF(3*I-3)+COEF(3*I-4))*Z+COEF(3#I-5))*Z+WINK( 1-1)
      FACT =  1.   +  (0.85*FH)/( l.-RH) /DENA
      DO 40 I   1,39
      BTAS04(I) = BTAS04(I)*FACT
      1C
      DETERMINE THE TYPE OF INPUT AND COMPUTE THE BACKGROUND RADIATIVE
C#**  PROPERTIES.   INTYP   1  MEANS THE N03,S04,COARSE MODE  LEVEELS ARE
C##*  SPECIFIED IN  UGM/M3.  INTYPE = 2 MEANS THE VISUAL RANGE  AND
C***  THE ACCUMULATION MODE ARE SPECIFIED IN KM-1 AND UGM/M3
      is
      DENS04=DENA
      DENN03=DENA
      DENCOR=DENC
      WAVE = 0.55
      WV2 = (1./WAVE)**2
   41
   42
   43
   40
Exhibit B.-1  (Continued)
                                      323

-------
     SUBROUTINE INRAD
(3442)
(3443)
(3444)
(3445)
(3446)
(3447)
(3448)
(3449)
(3450)
(3451)
(3452)
(3453)
(3454)
(3455)
(3456)
(3457)
(3458)
(3459)
(3460)
(3461)
(3462)
(3463)
(3464)
(3465)
(3466)
(3467)
(3468)
(3469)
(3470)
(3471)
(3472)
(3473)
(3474)
(3475)
(3476)
(3477)
(3478)
( 3479 )
(3480)
(3481)
(3482)
(3483)
(3484)
(3435)
(3486)
( 3487)
(3488)
( 3489 )
(3490)
(3491)
(3492)
(3493)
(3494)
(3495)
(3496)
(3497)
             W4 = WV2*WV2
             TAR0I2 = 0.008569*W4*( 1 . +0. 01 13#W2+0.00013*¥V4)*EXP( -ELEV/HR)
             RAY = TAROIZ/HR
             IF( INTYP.EQ..2) GO TO 500
             IF( INTYP.NE. 1) RETURN
             DO 460 I =  1,39
             X8   BTAS04( I ) # ( AMBS04/DENS04 +  AKEN03/DENN03)
             X9   BTACOR( I ) *CORAMB/DENCOR
             BTAAER(I) = ( X8+X9)*1 . E-03
             IF(BTAAER( I) .ITE.0.) GO  TO 458
             X8=0.
             X9=0.
             GO TO 459
        458  CONTINUE
             X8=X8/(XB+X9)
             X9=1.-X8
        459  CONTINUE
             DO 460 J =  1 , NTEETA
        460  PAER( I, J)=PS04( I , J ) «X8+PCOR( I,J)*X9
             SIGKOS   RAY + BTAAER( 19) +  ABSN02( 19) *AMBN02
             RVAMB = -ALOG( . 02) /SIGKOS
             GO TO 600
         500 CONTINUE                                  *-
       Cs**  DETERMINE THE MASS OF  THE ACCULATION MODE
             SIGKOS   -ALOG( .02) .'RVAMB
             SIGINT   BTACOR( 19) *CORAMB*1 .E-03/DENC + RAY + ABSN02( 19)*AMBN02
             IF(SIGKOS-SIGINT)  100,100,120
          100 AMBS04 - 0.
             CORAMB   ( SIGKOS -RAY- ABSN02( 19)*AMBN02)/( BTACOR( 19)*1 .E-03/DENC)
             IF( CORAMB. LT.0.) PRINT 2000
        2000 FORMAT( 1H .44HTROUBLE  WITH THE CONCENTRATION SPECIFICATION)
             GO TO  150
          120 AMBS04 = (SIGKOS -  SIGINT) /(BTAS04( 19) *1 . E-03/DENS)
          150 CONTINUE                          S
             DO 160 I -  1,39
             X8 - BTAS04( I ) * AMBSO4* 1 . E-03/DENS
             X9   BTACOR( I ) *CORAMB* 1 . E-03/DENC
             BTAAER(I)    X8 + X9
             X8 - X8/(X3 + X9)
             DO 160 J =  l.NTHETA
          160 PAER(I.J) = FS04( I ,J)*X8 + ( 1 .-X8) *PCOR( I , J)
             AMBN03   0.
          600 CONTINUE
       C*#*##
       C«##  COMPUTE THE VERTICAL AND HORIZONTAL OPTICAL DEPTHS
       C#***#
             DO 200 I    1,39
             WAVE = 0.36 + FLOAT( I ) #0 . 0 1
             WV2 = WAVE##(-2)
             WV4 = WV2#WV2
             TAR0IZ = 0. 003569*W4*( 1 . + 0.0113*W2 + 0. 00013*W4)*EXP(-ELEV/
             1HR)
             TAA0IZ = BTAAEB.( I ) *HA
             TATOIZ(I)    TAR0IZ + TAA0IZ
Exhibit B-l  (Continued)
                                      324

-------
      SUBROUTINE  INRAD
(3498)
(S499)
(3500)
(3501)
(3502)
(3503)
(3504)
(3505)
(3506)
(3507)
(3508)
(3509)
(3510)
(3511)
(3512)
(3513)
(3514)
(3515)
(3516)
(3517)
(3518)
(3519)
(3520)
(3521)
(3522)
(3523)
(3524)
(3525)
(3526)
(3527)
(3528)
(3529)
(3530)
(3531)
(3532)
(3533)
C***
    TARHIZ - TAR0IZ#EXP(-HPBL/HR)
    TAR0HZ = TAR0IZ - TARHIZ
    TAAHIZ - TAA01Z*EXP(-HPBL/HA)
    TATHIZ(I) - TARHIZ + TAAHIZ
    TAT0HZ(I) = TATOIZ(I) - TATHIZ( I)
    BETA0R = TAR0IZ/HR
    BTADAC(I) = BTAAER(I) + BETA0R + ABSN02( I)*AMBN02
    XKI) -  TARHIZ/TATHIZ( I)
    X2(I) = TAR0HZ/TAT0HZ( I)
    COMPUTE THE HORIZONTAL PATH DEPTH
    TAURQI
    TAUA0I
    TAUR0D
    TAUA0D
    TAURDI
    TAUADI
    TAUT0DCI) =
    TAUTDKI) =
200
               BE7A0R*PARMR
               BTAAER(1)*PARMA
               BETA0R#ERF( DR)*PARMR
               BTAAER( I)*ERF( DA)*PARMA
               TAUROI  - TAUR0D
               TAUA0I  - TAUA0D
                  TAUR0D + TAUA0D
                  TAURDI + TAUADI
    XHDI(I) = TAURDI/( TAURDI + TAUADI)
    XHOD(I) = TAITROD/(TAUR0D + TAUAOD)
    AD JEST THE OPTICAL DEPTH FOR N02
    TAA0HZ = TAA01Z - TAAHIZ
    TAT0IZ(I) = TAR0IZ + TAA0IZ + ABSN02( I ) *AMBN02*HPBL
    TAT0HZ( I) - TAT0IZ(I) - TATHIZ( I)
    TAUTOD(I) = TAUR6D + TAUA6D + ABSN02( I)*AMBN02*DX
    OMZ( I) = (TAROHZ + TAA0HZ) /TAT0HZ( I >
    OMH(I) - (TAUR0D + TAUA0D) /TAUT0D( I)
   It
    CHANGE THE SCATTERING COEFICIENTS FROM BSCAT/VOL TO BSCAT/MASS
      BTAS04(I)
      BTAPRM( I)
      BTACOR( I)
      CONTINUE
      RETURN
      END
              - BTAS04U)*!
              = BTAPRM(I)* 1
                BTACOR(I)* 1
,E-03/DENS04
,E-03/DENP
,E-03/DENC
  Exhibit B-l  (Continued)
                                    325

-------
     SUBROUTINE RAYREF(ZENITH,BETA,THETA,ITHETA.SPECR)
(3534)
(3535)
(3536)
(3537)
(3538)
(3539)
(3540)
(3541)
(3542)
(3543)
(3544)
(3545)
(3546)
(3547)
(3548)
(3549)
(3550)
(3551)
(3552)
(3553)
(3554)
(3555)
(3556)
(3557)
(3558)
(3559)
(3560)
(3561)
(3562)
(3563)
(3564)
(3565)
(3566)
(3567)
(3568)
(3569)
(357O)
(3571)
(3572)
(3573)
(3574)
(3575)
(3576)
(3577)
(3578)
(3579)
(3580)
(3581)
(3582)
(3583)
(3584)
(3585)
(3586)
(3587)
(3588)
C
C
C
   SUBROUTINE RAYREF(ZENITH,BETA,THETA,ITHETA,SPECR)

CALCULATE SPECTRAL RADIANCE OF  CLEAR SKY  IN A RAYLEIGH ATMOSPHERE.

   COMMON/BCKGND/ ELEV,RVAMB,ACCAMB,AMBNO2,RH,ROVA,ROVC,ROVS,ROVP,
   1SIGA,SIGC,SIGS,SIGP,HPBL
   COMMON / MISC / ABSN02(39),SOLAR(39),RAD,  FORPIN
   DIMENSION SPECR(39)
   TWO?I =  .5/FORPIN
   RHO  = .3
   RHOPI = 0.5#RHO*TWOPI
   XMU0 = COS(RAD*ZENITH)
   XMU  = SIN(RAD*BETA)
   PRAY- 0.75*( l.+COS(RAD*THETA)**2)
   HR = 9.8
   CONR = SQRT(2.*6356.*HR)
   SQRTPI   SQRT(3.1415962)
   TARMR = CONR*SQRTPI*0.5
   DX = SQRT(2.*6356.*HPBL)
   DR = DX/CONR
   DO 50 I =  1,39
   WAVE - 0.36  + FLOAT( I)*0.01
   WV2  = WAVE** (-2.)
   WV4  = WV2*WV2
   TAR0IZ   0.003569*WV4*(1.  +  0.0113*WV2 + 0.00013*WV4)*EXP(-ELEV
   1HR)
   TARHIZ   TAR91Z*EXP( -HPBL/HR)
   TAROHZ = TAR0IZ  -  TARHIZ
   FD0  - SOLAR(I)*EXP( -TAR0IZ/XMU0)
   FDH  - SOLAR( I)*EXP(-TARHIZ/XMU0)
   FDAV ~ (FD0  + FDH)*0.5
    IF(BETA.EQ.0.) GO  TO  100
   SKY  = FORPIN*PRAY* ( 1.-EXP( -TARHIZ/XMU))*SOLAR( I)
   SURF = SKY*EXP(-TAR0HZ/XMU)  + FORPIN*PRAY*( 1.-EXP( -TAROHZ
   1/XMU0))*FDAV                    s
   DIFUSE   XMU0*SOLAR( !)*(!.-EXP(-TAR0IZ/XMU0)*(1.-RHO))*(1.-EXP
   H-TAR0IZ/XMU))
   DIFUSE = DIFUSE/(TWOPI-RHOPI)
   SPECR(!) = SURF  +  DIFUSE
   GO TO 50
100 CONTINUE
   BETA0R
   TAUR0I
   TAUROD
   TAURDI
   SKYH =
   SURFH -
   1*FDAV
   DIFUSE - XMU0*SOLAR( I)*( 1.-EXP(-TAROIZ/XMU0)*( 1.-RHO))*( 1.-EXP
   K-TAUR0D)
   DIFUSE - DIFUSE/(TWOPI-RHOPI)
   SPECR(I)  = SURFH + DIFUSE
 50 CONTINUE
   RETURN
   END
                TAR0IZ/HR
                BETA0R*PARMR
                BETA0R*ERF( DR)
                TAUROI  -  TAUROD
              FORPINtfPFAY* ( 1.-EXP(-TAURDI))*SOLAR(I)
               SKYH*EXP( -TAUR0D)  +• FORPIN*PRAY*( 1. -EXP( -TAUR0D))
 Exhibit Brl (Continued)
                                       326

-------
      SUBROUTINE BACCLN(ZENITH,BETA,THETA,ITHETA,SPECB)
(3589)
(3590)
(3591)
(3592)
(3593)
(3594)
(3595)
(3596)
(3597)
(3598)
(3599)
(3600)
(3601)
(3602)
(3603)
(3604)
(3605)
(3606)
(3607)
(3608)
(3609)
(3610)
(3611)
(3612)
(3613)
(3614)
(3615)
(3616)
(3617)
(3618)
(3619)
(3620)
(3621)
(3622)
(3623)
(3624)
(3625)
(3626)
(3627)
(3628)
(3629)
(3630)
(3631)
(3632)
(3633)
(3634)
(3635)
(3636)
(3637)
(3638)
(3639)
(3640)
(3641)
(3642)
(3643)
(3644)
C
C
C
C
    SUBROUTINE BACCLN(ZENITH,BETA,THETA,ITHETA,SPECB)

  CALCULATE SPECTRAL RADIANCE OF CLEAR SKY OF GIVEN BACKGROUND ATMOS-
  PHERE WITH N02 AND FINE AND COARSE AEROSOL.

    COMMON/RADPRP/BTAS04 ( 39),BTACOR( 39),BTAPRM( 39),BTAAER( 39),
   1PAER(39,27).PPRIM(39,27),PS04(39,27),PCOR(39,27),BTABAC(39)
    COMMON/ OPTDEP / TATOIZ(39),TATHIZ( 39),TAT0HZ(39), XI (39),
   1X2(39),TAUTDI(39),TAUTOD(39),XHDI(39),XH0D(39)
    COMMON/ MISC/ ABSN02(39),SOLAR(39), RAD,FORPIN,OMZ(39),OMH(39)
   1,NTHETA
    DIMENSION SPECBC39)
    TWOPI ~ 0.5/FORPIN
    RHO   .3
    RHOPI - 0.5*RHO^TWOPI
    XMU0 = COS(RAD*ZENITH)
    XMU   SIN(RAD*BETA)
    PRAY   0.75*(l.+COS(RAD*TEETA)#*2)
    IF(BETA.Ea.0.)  GO TO 100
    DO 50 I   1,39
    FD0 = SOLAR( I)*EXP(-TAT0IZ( D/XMU0)
    FDH - SOLAR( I) *EXP(-TATHIZ( D/XMU0)
    FDAV   (FD0 + FDH)*0.5
    PTOTDI = X1(I)*PRAY + ( 1 .-Xl( I) )*PAER( I, ITHETA)
    PTOT0D - X2( DEFRAY + (1. - X2( I) )*PAER( I, ITHETA)
    PTOT0D   PTOT0D*OMZ( I)
    SKY   FORPIN*PTOTDI*(1.-EXP(-TATHIZ(I)/XMU))*SOLAR( I)
    SURF   SKY*EXP(-TAT0HZ( D/XMU) + FORPI N*PTOTOD*( 1 .-EXP(-TAT0HZ( I
   1)/XMU))*FDAV
    DIFUSE   XMU0#SOLAR( !)*(1.-EXP(-TAT0HZ( I)/XMU0)*(l.-RHO))*(1.-
   1EXP(-TAT01Z( I)/XMU))
    DIFUSE = DIFUSE*OMZ( I)/(TWOPI-RHOPI)
    SPECB(I) = SURF + DIFUSE
 50 CONTINUE
    RETURN
100 CONTINUE
   f«
    DO THE HORIZONTAL CASE

      DO 75 I ='1,39
      FD0 - SOLAR( I)*EXP(-TAT0IZ( D/XMU0)
      FDH - SOLAR( I)*EXP(-TATHiZ( D/XMU0)
      FDAV   (FD0 + FDH)*0.5
      PTOTDI = PRAY*XHDI(I) +
      PTOT0D   XHOD(I)#PRAY +
      PTOT0D   PTOT0D*OMH( I)
      SKYH = FORPIN*PTOTDI#( 1
                            ( l.-XHDK I))*PAER( I
                            (1.-XH0D( I))*PAER(I
ITHETA)
ITHETA)
                            -EXP(-TAUTDI( I)))*SOLAR(I)
   75
    SURFH - SKYH#EXP(-TAUT0D( I))  + FORPIN*PTOT0D*(1.-EXP(-TAUT0D(I)))
   1*FDAV
    DIFUSE = XMU0*SOLAR( I)"=( 1.-EXP(-TAT0IZ( I)/XMU0)*( l.-RHO))*( 1.-
   1EXP(-(TAUT0D( D+TAUTDK I))))
    DIFUSE = DIFUSE*OMH( I)/(TWOPI-RHOPI)
    SPECB(l)   SURFH + DIFUSE
    CONTINUE
    RETURN
    END
Exhibit B.-l  (Continued)
                                      327

-------
      SUBROUTINE BACOBJ ( ZENITH,BETA,THETA,ITHETA,RO,SPECO,XLUMIN)
(3645)
(3646)
(3647)
(3648)
(3649)
(3650)
(3651)
(3652)
(3653)
(3654)
(3655)
(3656)
(3657)
(3653)
(3659)
(3660)
(3661)
(3662)
(3663)
(3664)
(3665)
(3666)
(3667)
(3668)
(3669)
(3670)
(3671)
(3672)
(3673)
(3674)
(3675)
(3676)
(3677)
C
C
C
C
  SUBROUTINE BACOBJ ( ZENITH,BETA,THETA,ITHETA,RO,SPECO,XLUMIN)

CALCULATE SPECTRAL RADIANCE OF VIEWING BACKGROUNDS  OF SPECIFIED
REFLECTANCE AS VIEWED THROUGH BACKGROUND ATMOSPHERE.

  COMMON/RADPRP/BTAS04( 39),BTACOR(39),BTAPRM(39),BTAAER(39),
 1PAER( 39,27),PPRIM( 39,27),PS04( 39,27),PCOR( 39,27),BTABAC( 39)
  COMMON/ OPTDEP / TATOIZ(39),TATHIZ(39),TAT0HZ(39),Xl( 39),
 1X2<39),TAUTDI(39),TAUT0D(39),XHDI(39),XH0D(39)
  COMMON/ MISC/ ABSN02(39),SOLAR(39),RAD,FORPIN,OMZ(39),OMH(39)
 1,NTHETA
  DIMENSION SPECO(39)
  TWO?I = .5/FORPIN
  RHO  = .3
  RHOPI = 0.5*RHO*TWOPI
  XMU0   COS(RAD*ZENITH)
  XMU   SIN(RAD*BETA)
  PRAY  0.75*(1.+COS( RAD*THETA)**2)
  DO 50 1 = 1,39
  FD0  = SOLAR( I)*EXP(-TAT0IZ( I)/XMU0)
  FDH  = SOLAR(I)*EXP( -TATHIZ( I)/XMU0)
  FDAV  (FD0 + FDH)*0.5
  PTOT0D - XH0D( I)*PRAY + ( 1.-XH0D( I))*PAERT I,ITHETA)
  PTOT0D   PTOT0D*OMH(I)
  TRO   EXP ( -BTABAC ( I)*RO)
   50
  DIFUSE
 1TRO)
  DIFUSE -
  SPECO(I)
  SPECO(I)
  CONTINUE
  RETURN
  END
               XMU0«SOLAR( I)*( 1.-EXP( -TAT0IZ( I)/XMU0)*( 1.-RHO))*
-------
       SUBROUTINE PLKCLWZENITH,BETA,THETA, ITHETA,PLUMEP,PLUMES,
 (3678)
 (3679)
 (3680)
 (3681)
 (3682)
 (3683)
 (3684)
 (3685)
 (3686)
 (3687)
 (3688)
 (3689)
 (3690)
 (3691)
 (3692)
 (3693)
 (3694)
 (3695)
 (3696)
 (3697)
 (3698)
 (3699)
 (3700)
 (3701)
 (3702)
 (3703)
 (3704)
 (3705)
 (3706)
 (3707)
 (3708)
 (3709)
 (3710)
 (3711)
 (3712)
 (3713)
 (3714)
 (3715)
 (3716)
 (3717)
 (3718)
 (3719)
 (3720)
 (3721)
 (3722)
 (3723)
 (3724)
 (3725)
 (3726)
 (3727)
 (3728)
 (3729)
 (3730)
 (3731)
 (3732)
 (3733)
      SUBROUTINE PLMCLN(ZENITH,BETA,THETA,ITHETA,PLUMEP,PLUMES,
      1PLUMEN,SPECB,SPECP,RP,THICK)
C
C  CALCULATE SPECTRAL RADIANCES OF THE CLEAR SKY VIEWED  WITH LINES
C  OF SIGHT THROUGH THE PLUME AND BACKGROUND ATMOSPHERE.
C
      COMMON/RADPRP/BTAS04(39),BTACOR( 39) , BTAPRM( 39),BTAAER(39),
      1PAER(39,27),PPRIM(39,27),PS04(39,27),PCOR(39,27),BTABAC(39)
      COMMON/ OPTDEP / TAT0IZ(39),TATHIZ( 39),TAT0HZ(39), XI (39),
      1X2(39) .TAUTDK39) ,TAUT0D(39) ,XHDI(39) ,XH0D(39)
      COMMON/ MISC/ ABSN02(39),SOLAR(39),RAD,FORPIN,OMZ(39),OMH(39)
      1,NTHETA
      DIMENSION SPECB(39),SPECP(39)
      TWOPI = 0.5/FORPIN
      RHO = .3
      RHOPI   0.5*RHO*TWOPI
      XMU0 = COS(RAD*ZENITH)
      XMU = SIN(RAD*BETA)
      PRAY- 0.75*d.+COS(RAD*THETA)**2)
      IF(BETA.EQ.0.) GO TO  100
      DO 50 I = 1,39
      FD0 = S?OLAR( I)*EXP(-TAT0IZ( I)/XMU0)
      FDH = SOLAR( I)*EXP(-TATHIZ( D/XMU0)
      FDAV   (FD0 + FDH)*0.5
      PTOTDI = XI(I)*PRAY + (1.-XI(I))*PAER( I,ITHETA)
      PTOT0D   X2(I)*PRAY + ( 1.  - X2( I))*PAER( I,ITHETA)
      PTOT0D   PTOT0D*OMZ(  I)
      SKY = FORPIN*PT0TDI*(1.-EXP(-TATHIZ( I)/XMU))*SOLAR(I)
      SURF   SKY#EXP(-TAT0HZ( I)/XMU) + FORPIN#PTOT0D*( 1. -EXP(-TAT0HZ(
      1)/XMU))*FDAV
      DIFUSE = XMU0#SOLAR(I)#(l.-EXP(-TAT0IZ( I)/XMU0)*(l.-RHO))*(1.-
      1EXP(-TAT0IZ( I)/XMU))
      DIFUSE = DIFUSE*OMZ(I)/( TWOPI-RHOPI)
      SPECB(I) - SURF + DIFUSE
      CONTINUE
      GO TO 200
      CONTINUE

      DO THE HORIZONTAL CASE
 50

100
\j 3P *f» ?o *r* *P
      DO 75 I   1,39
      FD0 - SOLAR( I)*EXP(-TAT0IZ( D/XMU0)
      FDH = SOLAR( I) *EXP(-TATHIZ( D/XMU0)
      FDAV - (FD0 + FDH)#0.5
      PTOTDI - PRAY*XHDI(I) +
      PTOT0D - XH0D( I)*PRAY +
       PTOT0D = PTOT0D*Orffl( I)
      SKYH = FORPIN#PTOTDI*( 1
( l
( 1
-XHDK I))*PAER( I,
-XH0D( I ) ) *PAER( I
                                                ITHETA)
                                                ITHETA)
                            -EXP( -TAUTD Id))) *SOLAR( I )
      SURFH   SKYH#EXP(-TAUT0D( I)) + FORPIN*PTOT0D*( 1 .-EXP(-TAUT0D( I) ) )
     1*FDAV
      DIFUSE ~ XM[J0*SOLAR( !)*( 1.-EXP(-TAT0IZ( I)/XMU0)*d .-RHO) )*( 1.-
     1EXP(-(TAUT0D( D+TAUTDK I))))
      DIFUSE = DIFUSE*0?ffl( I)/(TWOPI-RHOPI)
      SPECB(I) = SURFH + DIFUSE
   75 CONTINUE
  200 CONTINUE
Exhibit B-l  (Continued)
                                      329

-------
      SUBROUTINE PLKCLW ZENITH,BETA,THETA,ITHETA,PLUMEP,PLUMES,
(3734)        DO 250 I - 1,39
(3735)  C**#**
(3736)  C***  COMPUTE THE PLUME TRANSMISSION
(3737)  C*****
(3738)        FD0   SOLAR( I) *EXP(-TAT0!Z( D/XMU0)
(3739)        FDH - SOLAR(I)*EXP(-TATHIZ(I)/XMU0)
(3740)        FDAV   (FD0+FDH)*.5
(3741)        TAUP1 = BTABAC(I)*RP
(3742)        TAPSO4 = BTAS04(I)*PLUMES
(3743)        TAPNO2 = ABSN02(I)*PLUMEN
(3744)        TAPRIM - BTAPRM( I)*PLUMEP
(3745)        TAUP2   = TAPSO4 + TAPNO2 + TAPRIM
(3746)        IFd.Ett. 19) THICK=TAUP2
(3747)        TAPTOT = TAUP1 + TAUP2
(3748)        XD2 = TAPS04/(TAPS04 + TAPRIM)
(3749)        OMEGAP =  1. - TAPN02/TAUP2
(3750)        PTOTPL   XD2*PSO4(I,ITHETA) + ( 1.-XD2)*PPRIM( I,ITHETA)
(3751)       . TP1   EXP(-TAUPl)
(3752)        TP2 - EXP(-TAUP2)
(3753)        TPTOT   EXP(-TAPTOT)
(3754)        PTOT0D   XH0D(I)*PRAY +  (1.-XH0D( I))*PAER( I,ITHETA)
(3755)        PTOT0D = PTOT0D*OMH( I)
(3756)        DIFUSE = XHU0»SOLAR
-------
      SUBROUTINE PLMOB J ( ZEN ITH, BETA, THETA, ITHETA, PLUMEP, PLUMES, PLUME*,
(3767)
(3768)
(3769)
(3770)
(3771)
(3772)
(3773)
(3774)
(3775)
(3776)
(3777)
(3778)
(3779)
(3780)
(3781)
(3782)
(3783)
(3784)
(3783)
(3786)
(3787)
(3788)
(3789)
(3790)
(3791)
(3792)
(3793)
(3794)
(3795)
(3796)
(3797)
(3798)
(3799)
(3800)
(3801)
(3802)
(3803)
(3804)
(3805)
(3806)
(3807)
(3808)
(3809)
(3810)
(3811)
(3812)
(3813)
(3814)
(3815)
(3816)
(3817)
(3818)
(3819)
(3820)
(3821)
(3822)
C
C
C
C
  SUBROUT INE PLMOB J ( ZEN ITR, BETA, THETA, I THETA, PLUMEP, PLUMES, PLUMEN,
 1XLUMIH.RO,RP,SPECO,SPECP)

CALCULATE SPECTRAL RADIANCE OF A VIEWED OBJECT OF GIVEN REFLECTANCE
FOR LINES OF SIGHT THROUGH PLUME AND BACKGROUND ATMOSPHERE.
  COMMON/RADPRP/BTAS04( 39),3TACOR( 39),BTAPRM( 39),BTAAER( 39),
 1PAER(39,27),PPRIM( 39,27),PS04(39,27) ,PCOR(39,27) ,BTABAC(39)
  COMMON/ OPTDEP / TAT0IZ(39),TATHIZC39),TAT0HZ(39),X1(39),
 1X2(39) .TAUTDK 39) ,TAUT0D(39) ,XHDI(39)  ,XH0D(39)
  COMMON/ MISC/ ABSN02(39),SOLAR(39),RAD,FORPIN.OMZ(39),OMH(39)
 1,NTHETA
  DIMENSION S?EGP(39),SPECO(39)
  TWOPI = ,5/FORPIN
  RHO = .3
  RHOPI = 0.5*RHO*TWOPI
  XMU0 = COS(RAD#ZENITH)
  XMU   SIN(RAD*BETA)
  PRAY   0.75*(1.^COS(RAD*THETA)**2)
  DO 50 I   1,39
  FD0   SOLAR(I)*EXP(-TAT0IZ(I)/XMU0)
  FDH   SOLAR( I)#EXP(-TATHIZ( D/XMU0)
  FDAV   (FB0 + FDH)#0.5
  PTOT0D = XH0D(I)*PRAY + (1.-XH0D( I))*PAER(I,ITHETA)
  PTOT0D = PTOT9D#OMH(  1)
  TRO = EXP(-BTABAC( I)*RO)
  DIFUSE = XMU0#SOLAR(!)*(1.-EXP(-TAT0IZ( I)/XMU0)*( l.-RHO))*(1.-
 1TRO)
  DIFUSE = DIFUSE*OMH(I)/(TVOPI-RHOPI)
  SPECO(I) =  XLUMIN*FDAV*TRO +  FORPIN*PTOT0D*(1.-TRO>*FDAV
  SPECO(I) -  SPECO(I) + DIFUSE

  COMPUTE THE PLUME TRANSMISSION
 C
  TAUP1   BTABAC( I)*RP
  TAPS04 = BTAS04( I)*PLUMES
  TAPNO2 = ABSNO2(I)*PLUMEN
  TAPRIM = BTAPRM( I)*PLUMEP
  TAUP2     TAPS04 + TAPN02 + TAPRIM
  TAUP3   FFABAC(I)*(RO-RP)
  TAPTOT   TAUP1 + TAUP2
  XD2   TAPS04/(TAPS04 + TAPRIM)
  OMEGAP   1.  - TAPN02/TAUP2
  PTOTPL   XD2*PS04(I,ITHETA) +
  TP1 = EXP(-TAUPl)
  TP2   EXP(-TAUP2)
  TPTOT = EXP(-TAPTOT)
  TP3 = EXP(-TAUP3)
  PTOT0D = XH0D(I)*PRAY +
  PTOT0D = PTOT0D*OMH( I)
  PL2 = XLUMIN*FDAV*TP3 + FORPIN*PTOT0D*FDAV*(1.-TP3)
  PL1 =      PL2*TP2 +  OMEGAP*FORPIN*PTOTPL*FDAV*(1.-TP2)
  SPECP(I)   PL1*TP1 +  FORPIN*PTOT0D*(l.-TPl)*FDAV
  DIFUSE = XMU0*SOLAR( !)*(!.-EXP( -TAT0IZ( I)/XMU0)*(1.-RHO))
  DIFUSE=DIFUSE#(OMH
-------
      SUBROUTINE PLMOBJ (ZENITH,BETA,THETA,ITHETA,PLUMEP,PLUMES,PLUMEN,
(3823)         DIFUSE =  DIFUSE/CTWOPI-RHOPI)
(3824)         SPECP(I)= SPECP (I)+DIFUSE
(3825)      50 CONTINUE
(3826)         RETUBN
(3827)         END
Exhibit  B-l  (Continued)
                                      332

-------
      SUBROUTINE BSIZE
(3828)
(3829)
(3830)
(3831)
(3832)
(3833)
(3834)
(3835)
(3836)
(3837)
(3838)
(3839)
(3840)
(3841)
(3842)
(3843)
(3844)
(3845)
(3846)
(3847)
(3848)
(3849)
(3850)
(3851)
(3852)
(3853)
(3854)
(3855)
(3856)
(3857)
(3858)
(3859)
(3860)
(3861)
(3862)
(3863)
(3864)
(3865)
(3866)
(3867)
(3868)
(3869)
(3870)
(3871)
(3872)
(3873)
(3874)
(3875)
(3876)
(3877)
(3878)
(3879)
(3880)
(3881)
(3882)
(3883)
C
C
C
C
   SUBROUTINE BSIZE

 CALCULATE OPTICAL PROPERTIES OF A GIVEN LOG-NORMAL AEROSOL  SIZE
 DISTRIBUTION BASED ON MIE SCATTERING THEORY

   COMMON/MIESCT/RVM.S IGMA,NLAMB,LAMB( 20) , JX, IT,TT(200) ,DUM(20) ,
  1PDUM(20,200)
   COMMON/ MISC/ ABSN02(39),SOLAR(39).RAD,FORPIN,OMZ(39),OMH(39)
  1 ,NTHETA
   REAL LAMB
   REAL RFR,RFI,QEXT,QJSCAT,QRPRD,ELTRMX(4,27,2) ,
  1 PIE(3,27),TAU(3,27),CSTHT(27),SI2THT(27)
   DIMENSION TTH27)
   COMPLEX ACAP(7000)
   DIMENSION SK27) ,S2(27) ,PHASE(27)
   DIMENSION XNT(200),ST(200),VT(200),R( 100),DR(200)
 '  RFR = 1.5
   RFI = 0.
   PI = 3.14159267
   TVOPI = 2.*3.14159267
    FTPIN   3./(4.*PI)
   PIN = .75
50 NPOINT = 15
   K = NPOINT
   ITWKP1 = 2*K + 1
   KP1 = K + 1
   KP2 = K + 2
   ALSIGM - ALOG( SIGMA)
   ALSGM2   ALSIGM**2
   SIGM2 = ALSGM2
   SOJIT2 = SQRT(2.)
   RSM   EXP (ALOG(RVM)-ALSGM2)
   RNM   EXP(ALOG( RVM) -3. *ALSGM2)
   TA   2.*ALSGM2
   CN - l./(SQRT(TWOPI)*ALSIGM)
   CS   PI*CN*RNM**2*EXP(TA)
   CV   (4./3.)*PI*CN*RNM**3*EXP(4.5*ALSGM2)
   Fl - ALOG(30.*SQRT2*ALSIGM)
   Fl   Fl/15.
   Fl   EXP(-Fl)
   AA - ALOG(1./F1)
   F2 - 1./F1
   VI - 1.
   V2   1.
   DO 20 I = 1,K
   VI = V1*F1
   R( I) = RSM*V1
   ST( I) - ALGN(ALSGM2,RSM,R( I))*CS
   VT( I)   ALGN(ALSGM2,RVM,R( I))*CV
   XNT(I) - ALGN(ALSGM2,RNM,R( I))*CN
20 DR( I) = AA
   R(KP1)   RSM
   ST(KPl)   ALGN(SIGM2,  RSM,RSM)*CS
   VT( KP1)   ALGN( SIGM2, RVM, RSM) *CV
   XNT(KPl) = ALGN(S!GM2,RNM,RSM)*CN
   DR(KPl) - AA
Exhibit  B-l  (Continued)
                                       333

-------
      SUBROUTINE BSIZE
(3884)
(3885)
(3886)
(3887)
(3888)
(3889)
(3890)
(3891)
(3892)
(3893)
(3894)
(3895)
(3896)
(3897)
(3898)
(3899)
(3900)
(3901)
(3902)
(3903)
(3904)
(3905)
(3906)
(3907)
(3908)
(3909)
(3910)
(3911)
(3912)
(3913)
(3914)
(3915)
(3916)
(3917)
(3918)
(3919)
(3920)
(3921)
(3922)
(3923)
(3924)
(3925)
(3926)
(3927)
(3928)
(3929)
(3930)
(3931)
(3932)
(3933)
(3934)
(3935)
(3936)
(3937)
(3938)
(3939)
     DO 21  I  =  KP2.ITWKP1
     V2 = V2*F2
     R( I) = RSM*V2
     ST(I)  =  ALGN(SIGM2,RSM,R(I))*CS
     VT(I)  =  ALGN(SIGM2,RVM,R( I))*CV
     DR( I)  =  AA
  21 XNT(I) ~ ALGN(SIGM2,RNM,R( I))*CN
J     DO THE INTEGRATION OVER THE DISTRIBUTIONS
     XNTOT  =  0.
     STOT = 0.
     VTOT - 0.
     DO 30  I  =  1,ITWKP1
     VTOT - VTOT +  VT(I)*DR(I)
     STOT  STOT +  ST(I)*DR(I)
     XNTOT  -  XNTOT  + XNT(I)*DR(I)
  30 CONTINUE
 1000 FORMAT( 1H  ,10X, 10E10.4)
 500 CONTINUE
     NT=NTHETA
     JX=NTHETA
      IT=27
     DO 570 J=1,NTHETA
      IF(TT(J).LE.90.)  GO TO 560
     TTK J) = 180.-TT(J)
     GO TO  570
 560  CONTINUE
     TT1(J)=TT(J)
 570  CONTINUE
     DO 40  IL = 1,NLAMB
     XLAM - LAMB(IL)
     WAVE = TWOPI/XLAM
      EXT  =  0.
      SCAT = 0.
      ABS  =  0.
      LL - 7000
      DO 31  J -  1,NT
      SKJ)  =0.                  S,
   31  S2(J)  =  0.
      DO 35  I  =  1,ITWKP1
      AL = WAVE*R( I)
      CALL DAMIE(AL,RFR,RFI, TT1,JX,QEXT,QSCAT,QRPRD,ELTRMX,PIE.TAU,
     1  CSTHT,SI2THT,ACAP,IT.LL)
      EXT =  Qj;XT*ST( I)*DR( I) + EXT
      SCAT = QSCAT*ST(I)*DR(I) +  SCAT
      ABS  =  (QEXT-QSCAT)*ST( I)*DR(I) + ABS
      DO 35  J=1,JX
      IF(TT(J) .NE.TTKJ)) GO TO 365
      SKJ) = SKJ) + ELTRMX(1,J,
   33 S2(J) = S2(J) + ELTRMX(2,J,
      GO TO 35
 365  CONTINUE
      JJ=J
      SKJJ)   SKJJ) + ELTRMXd,
   34 S2(JJ) = S2(JJ) + ELTRMX(2,
   35 CONTINUE
1      PRINT OUT THE RESULTS
1)*XNT(I)*DR(I)
1)*XNT( I)*DR( I)
J,2)*XNT( I)*DR( I)
J,2)*XNT(I)*DR(I)
 Exhibit B-1 (Continued)
                                       334

-------
      SUBROUTINE BSIZE
(3940)        CS -- XLAM**2/
-------
      FUNCTION ALGN(X.Y.Z)
(3948)
(3949)
(3950)
(3951)
(3952)
(3953)
FUNCTION ALGN(X,Y,Z)
TWOX = 2.*X
U = (ALOG(Y/Z))**2
ALGN = EXP(-UXTWOX)
RETURN
END
Exhibit B-l  (Continued)
                                      336

-------
      SUBROUTINE SOLARZCSLA,SLO,TZ,IY,IM,ID,TIME,D,NV)
(3954)
(3955)
(3956)
(3957)
(3958)
(3959)
(3960)
(3961)
(3962)
(3963)
(3964)
(3965)
(3966)
(3967)
(3968)
(3969)
(3970)
(3971)
(3972)
(3973)
(3974)
(3975)
(3976)
(3977)
(3978)
(3979)
(3980)
(3981)
(3982)
(3983)
(3984)
(3985)
(3986)
(3987)
(3988)
(3989)
(3990)
(3991)
(3992)
(3993)
(3994)
(3995)
(3996)
(3997)
(3998)
(3999)
(4000)
(4001)
(4002)
(4003)
(4004)
(4005)
(4006)
(4007)
(4008)
(4009)
        C***
        C***
        c***
        c***
        c***
        c***
        c***
SUBROUTINE SOLARZ(SLA,SLO,TZ,IY,IM,ID,TIME,D,NV)

   SLA...  LATITUDE (DEG)  SOUTH   MINUS
   SLO...  LONGITUDE (DEG)  EAST   MINUS
   TZ...   TIME ZONE
          ALSO INCLUDES FRACTION IF LOCAL TIME IS NOT
           STANDARD MERIDIAN TIME.   E.G. POONA, INDIA 5.5
   IY..  YEAR
   IM..  MONTH
   ID..  DAY
   TIME.. LOCAL STANDARD TIME IN HOURS AND MINUTES.
          1 30 PM   1330  ** STANDARD TIME **
   D..  RETURNED VALUE
   NV..  VALUE TO BE RETURNED,  SELECTED AS FOLLOWS	
         1...
         2. . .
         3. ..
         4. . .
         5. . .
         o * • •
   0 ( NV  ( 7.
DECLINATION (DEC.)
EQUATION OF TIME ADJUSTMENT (HRS.)
TRUE SOLAR TIME (HRS.)
HOUR ANGLE (DEC.)
SOLAR ELEVATION (DEC.)
OPTICAL AIRMASS
 OTHERWISE, D = 9999.
              COMMON /SOL/ EFFDEC, HRANGL
              DIMENSION MD( 11)
              DOUBLE PRECISION RAD.SDEC
              DATA MD/31,29,31,30,31,30,2*31,30,31.30/
              DATA A,B,C,SIGA/0.15,3.885,1.253,279.9348/
              RAD= 572957.75913E-4
              SDEC= 39784.988432E-5
              RE=1.
              IF (SLO.LT.0.)  RE=-1-
              KZ=TZ
              TC= ( TZ-FLOAT(KZ))*RE
              TZZ=FLOAT(KZ)*RE
              SLB=SLA/RAD
              K=ID
              TIMH=TIME/100.
              I = TIMH
              TIMLOC=(TIMH-FLOAT(I))/0.6+FLOAT(I)+TC
              IMC=IM-1
              IF ( IMC.LT.1) GO TO 10
              DO 5 1=1,IMC
            5 K=K+MD( I)
           10 LEAP=1
              NL=MOD(IY,4)
              IF (NL.LT.1) LEAP=2
              SMER=TZZ*15.
              TK=((SMER-SLO)*4.)/60.
              KR=1
              IF (K.GE.61.AND.LEAP.LT.2) KR=2
              DAD=(TIMLOC+TZZ)/24.
              DAD=DAD+FLOAT( K) -FLOAT( KR)
              DF= DAD*360./365.242
              DE=DF/RAD
              DESIN=SIN(DE)
              DECOS=COS(DE)
Exhibit Brl  (Continued)
                                      337

-------
      SUBROUTINE SOLARZ(SLA,SLO,TZ,IY,IM,ID,TIME,D,NV)
(4010)         DESIN2=SIN(DE*2.)
(4011)         DECOS2=COS(DE*2.)
(4012)         SIG=SIGA+DF+1.914327*DESIN-0.079525*DECOS+0.019938*DESIN2-0.00162*
(4013)        1DECOS2
(4014)         SIG=SIG/RAD
(4015)         DECSIN=SDEC*SIN(SIG)
(4016)         EFFDEC=ASIN(DECSIN)
(4017)         IF (NV.NE.1) GO TO  15
(4018)         D=EFFDEC*RAD
(4019)         RETURN
(4020)      15 EQT=0.12357*DESIN-0.004289*DECOS+0.153809*DESIN2+0.060783*DECOS2
(4021)         IF (NV.NE.2) GO TO 20
(4022)         D=EQT
(4023)         RETURN
(4024)      20 TST=TK+TIMLOC-EftT
(4025)         IF (NV.NE.3) GO TO 25
(4026)         D=TST
(4027)         IF (D.LT.O.) D=D+24.
(4028)         IF (D.GE.24.) D=D-24.
(4029)         RETURN                         .
(4030)      25 HRANGL=ABS(TST-12.)*15.        N
(4031)         IF (NV.NE.4) GO TO  30
(4032)         D=HRANGL
(4033)         RETURN
(4034)      30 HRANGL=HRANGL/RAD
(4035)         SOLSIN=DECSIN*SIN(SLB)+COS(EFFDEC)*COS(SLB)*COS(HRANGL)
(4036)         SOLEL=ASIN(SOLSIN)*RAD
(4037)         IF (NV.NE.5) GO TO  35
(4038)         D=SOLEL
(4039)         RETURN
(4040)      35 IF (NV.NE.6) GO TO  40
(4041)         IF (SOLEL.LE.O.) GO TO 40
(4042)         TK=SOLEL+B
(4043)         E=1./TK**C
(4044)         D=1./(A*E+SOLSIN)
(4045)         RETURN
(4046)      40 D=9999.
(4047)         RETURN
(4048)         END
Exhibit  B-l  (Continued)
                                      338

-------
      SUBROUTINE SPLNA ( N,X, Y, J,D,C, W)
(4049)
(4050)
(4051)
(4052)
(4053)
(4054)
(4055)
(4056)
(4057)
(4058)
(4059)
(4060)
( 406 1 )
(4062)
(4063)
(4064)
(4065)
(4066)
(4067)
(4068)
(4069)
(4070)
(4071)
(4072)
(4073)
(4074)
(4075)
(4076)
(4077)
( 4078)
(4079)
(4080)
(4081)
(4082)
(4083)
(4084)
(4035)
(4086)
(4087)
( 4088)
(4089)
(4090)
(4091)
(4092)
(4093)
(4094)
(4095)
(4096)
(4097)
(4098)
(4099)
(4100)
(4101)
(4102)
(4103)
(4104)


C
C
C
C
C
C
C
C
C
C
C
C
C



C
C
C
C
C




C
C
C
C
C
C
C
C




C
C
C
C











C
C
              SUBROUTINE SPLNA
              DIMENSION X( 10),
(N,X,Y, J.D.C.W)
Y( 10) ,  D(2) , C(30)
¥(30)
                       OVER TEE INTERVAL X(I)  TO Xd+l), THE INTERPOLATING
                       POLYNOMIAL
                            Y=Y( I)+A( I)*Z+B( I)*Z**2+E( I)*Z**3
                       WHERE Z=(X-X( I))/(X( I+1)-X( I))
                       IS USED.  THE COEFFICIENTS A(I),B(I) AND E( I) ARE COMPUTED
                       BY SPLNA AND STORED IN LOCATIONS C(3*1-2),C(3*I-1)  AND
                       C(3*I)  RESPECTIVELY.
                       WHILE WORKING IN THE ITH INTERVAL, THE VARIABLE Q WILL
                       REPRESENT Q=X(I+1)  - X(I),  AND Y(I) WILL REPRESENT
                       Y( I+1)-Y( !)
              Q=X(2)-X( 1)
              YI = Y(2)-Y( 1)
              IF (J.EQ.2)  GO TO 5

                       IF  THE FIRST DERIVATIVE AT THE END POINTS IS GIVEN,
                       A(l)  IS KNOWN,  AND THE SECOND EQUATION BECOMES
                       MERELY &( 1)+E( 1)=YI - Q*D(1).

              C( 1)=Q*D( 1)
              C(2)=1.0
              W(2)=YI-C( 1)
              GO TO  10

                       IF  THE SECOND DERIVATIVE AT THE END POINTS IS GIVEN
                       B(l)  IS KNOWN,  THE SECOND EQUATION BECOMES
                       A( 1)+E( 1)=YI-0.5*Q*Q*D( 1) .  DURING THE SOLUTION OF
                       THE 3N-4 EQUATIONS, Al WILL BE KEPT IN CELL C( 2)
                       INSTEAD OF C(l)  TO RETAIN THE TRIDIAGONAL FORM OF THE
                       COEFFICIENT MATRIX.

            5 C(2)=0.0
              W(2)=0.5*Q*Q*D( 1)
           10 M=N-2    ,_,
              IF (M.LE.0)  GO TO 20

                       UPPER TRIANGULARIZATION OF THE TRIDIAGONAL SYSTEM OF
                       EQUATIONS FOR THE COEFFICIENT MATRIX FOLLOWS —

              DO 15  1=1, M
              AI = Q
              Q=X( 1+2) -X( 1+1)
              H=AI/Q
              C( 3* I ) =-H/( 2 . 0-C( 3* I- 1 ) )
              W( 3* I ) = ( -YI-W( 3* I- 1 ) ) /( 2 . 0-C( 3* I- 1 ) )
              C( 3* 1+ 1 ) =-H*H/( H-C( 3* I ) )
              W( 3* 1+ 1 ) = ( YI-W( 3* I ) ) /( H-C( 3* I ) )
              YI = Y( I+2)-Y( 1+1)
              C( 3*1+2)= 1.0/( 1.0-C( 3*1+1))
           15
                      E(N-l)  IS  DETERMINED DIRECTLY FROM THE LAST EQUATION
Exhibit  B-l  (Continued)
                                       339

-------
      SUBROUTINE SPLNA (N,X, Y, J,D,C, W)
(4105)
(4106)
(4107)
(4108)
(4109)
(4110)
(4111)
(4112)
(4113)
(4114)
(4115)
(4116)
(4117)
(4118)
(4119)
(4120)
(4121)
(4122)
(4123)
(4124)
(4125)
(4126)
(4127)
(4128)
(4129)
(4130)
(4131)
(4132)
(4133)
C
C
C
C
C
C
C
C
C
C
C
C
C
           OBTAINED ABOVE, AND THE FIRST OR SECOND  DERIVATIVE
           VALUE GIVEN AT THE END POINT.
                                        3. 0-C( 3*N-4)
20 IF (J.Eft.1) GO TO 25
   C(3*N-3) = (Q#Q*D(2)/2.0-W( 3*N-4)
   GO TO 30
25 C( 3#N-3) = (Q*D(2)-YI-W(3*N-4)) <( 2.0-C(3*N-4))
30 M=3*N-6
   IF (M.LE.0) GO TO 40
           BACK SOLUTION FOR ALL COEFFICENTS EXCEPT
           A( 1 ) AND B( 1 ) FOLLOWS—
      DO 35 II=1,M
   35 C( I)=W( I)-C( I)*C( 1+1)
   40 IF (J.EQ. 1)  GO TO 45
            IF THE SECOND DERIVATIVE  IS  GIVEN AT THE END POINTS,
            A( 1) CAN NOW BE COMPUTED  FROM THE KNOWN VALUES OF
            B(l) AND Ed). THEN  Ad)  AND Bd)  ARE PUT INTO THEIR
            PROPER PLACES IN THE C  ARRAY.

   C( 1)=Y(2)-Y( 1)-W(2)-C(3)
   C(2)=W(2)
   RETURN
45 C(2)=W(2)-C(3)
   RETURN
   END
Exhibit BM  (Continued)
                                      340

-------
      SUBROUTINE MAPGTU ( ALON, ALAT, I ZONE, UTMX, UTMY)
(4134)
(4135)
(4136)
(4137)
(4138)
(4139)
(4140)
(4141)
(4142)
(4143)
(4144)
(4145)
(4146)
(4147)
(4148)
(4149)
(4150)
(4151)
(4152)
(4153)
(4154)
(4155)
(4156)
(4157)
(4158)
(4159)
(4160)
(4161)
(4162)
(4163)
(4164)
(4165)
(4166)
(4167)
(4168)
(4169)
(4170)
(4171)
(4172)
(4173)
(4174)
(4175)
(4176)
(4177)
(4178)
(4179)
(4180)
(4181)
(4182)
(4183)
(4184)
(4185)
(4186)
(4187)
(4188)
(4189)

C
C
C
C
C
C
C
C
C
C
C
C


C


C
C

C
C
C
C

C
C







C
C
C
C



C
C
C
C
C









              SUBROUTINE NAPCTU (ALON,ALAT,IZONE,UTMX,UTMY)

              **# CONVERTS LATITUDE AND LONGITUDE TO  UTM COORDINATES
                  THIS  IS A MODIFICATION OF THE  US GEOLOGICAL SURVEY
                  PROGRAM NO J3S0 (TOPOGRAPHIC DIVISION)
                      GW LUNDBERG/SAI  APR 79

                  ALON    LONGITUDE IN DEGREES (WESTERN  HEMISPHERE IS NEGATIVE)
                  ALAT    LATITUDE IN DEGREES
                  IZONE   ZONE  OVERRIDE IF NOT ZERO
                  UTMX    EASTING (KM)
                  UTMY    NORTHING (KM)

              DIMENSION B(12)
              COMMON /WUTM/ A( 16)

              SLAT = ALAT*3600.
              SLON = -ALON*36C0.

              *#* COMPUTE COEFFICIENTS FOR CONVERSION
              CALL WGTU1

              *** TEST FOR ZONE  INPUT ON GEODETIC  TO UTM  INDICATING  OVERRIDE  OF
                  NORMAL 6 DEGREE  LONGITUDE BAND.

              IF( IZONE.E&.0)GO TO  30

              *** COMPUTE CENTRAL  MERIDIAM IN SECONDS FOR ENFORCED ZONE.
              IF( IABS(IZONE)-30)10,10,20
           10 UTZ=30.0-FLOAT(IABS(IZONE))
              A( 9) = ((UTZ*6.0)+3.0)*3600.0
              GO TO 40
           20 UTZ=FLOAT(IABS(IZONE))-30.0
              A( 9) = ( (UTZ*6.0)-3.0)*(-3600.0)
              GO TO 40

              *** COMPUTE UTM ZONE(IZONE)  AND CENTRAL MERIDIAN  IN SECONDS(A9)
                  FOR GEODETIC TO  UTM CONVERSION WHERE ZONE  IS  NOT INPUT.

           30 IZONE= 30-(INT(SLON)/21600)
              UTZ=30.0-FLOAT(IZONE)
              A( 9) = ((UTZ*6.0)+3.0)*3600.0

              *** CONVERT GEODETIC TO UTM COORDINATES

              *** RETURNS ZEROS IF LATITUDE EXCEEDS 84 DEGREES  OR LONGITUDE
                  0. 16 RADIANS
           40 IF(ABS(SLAT)-302400.0) 80,80,70
           70 X=0.0
              Y=0.0
              GO TO 99
           80 B( 10) = (A(9)-SLON) *4.848181109536E-6
              IF(ABS(B(10))-0.16)90,90,70
           90 B(9)=SLAT*4.848136811095E-6
              SINP=SIN(B(9))
              COSP=COS(B(9))
Exhibit  B-l  (Continued)
                                      341

-------
      SUBROUTINE MAPGTU (ALON,ALAT,IZONE.UTMX.UTNY)
(4190)
(4191)
(4192)
(4193)
(4194)
(4195)
(4196)
(4197)
(4198)
(4199)
(4200)
(4201)
(4202)
(4203)
(4204)
(4205)
(4206)
(4207)
(4208)
(4209)
(4210)
(4211)
(4212)
(4213)
(4214)
(4215)
(4216)
(4217)
   RN=A(15)/SQRT(1.0-A( 16)*SINP*SINP)
   T=SINP/COSP
   TS=T*T
   B(1D=COSP*COSP
   ETAS=A(16)*B( 11)/( 1.0-A( 16))
   B(1)=KN*COSP
   B(3) = ( 1.0-TS+ETAS)*B( 1)*B( 1D/6.0
   B(5)=((TS-18.0)*TS+5.0+( 14.0-58.0*TS)*ETAS) *B( D*B( ID*
  1 B( ID/120.0                 s
   B(7)=(((179.0-TS)*TS-479.0)*TS+61.0)#B(1)*B(11)**3/5040.0
   B(12)=B(10)*B(10)
   X=(((B(7)*B( 12)+B(5))*B( 12)+B(3))*B( 12)+B( D)*B( 10)*A<8) +
  1  A(5)
   B(2)=RW*B( 1D*T/2.0
   B( 4) = (ETAS*( 9.0+4.0*ETAS)+5.0-TS)*B(2)*B( 11)/12.0
   B(6)=((TS-58.0)*TS+61.0+(270.0-330.0*TS)*ETAS)*B(2)*
  1 B( 1D*B( ID/360.0
   B(8)=(((543.0-TS)*TS-3111.0)*TS+1385.0)*B(2)*B(11)**3/
  1 20160.0
   Y= ( ( ( B( 8)*B( 12)+B(6))*B(12)+B(4))*B(12)+B(2))*B(12) +
  1 ((((A(4)*B( 1D+A(3))*B( 1D+A(2))*B( 1D+A( 1)) *SINP*COSP+B(9)
  1 *A( 10)
   Y= ( Y-A( 7) ) *A( 8) +A( 6)
99 UTMX =
   UTMY =
   RETURN
   END
X/1000.
Y/1000.
Exhibit B-l  (Continued)
                                      342

-------
             SUBROUTINE WGTU1
28 27
(4218)
(4219)
(4220)
(4221)
(4222)
(4223)
(4224)
(4225)
(4226)
(4227)
(4228)
(4229)
(4230)
(4231)
(4232)
(4233)
(4234)
(4235)
(4236)
(4237)
(4238)
(4239)
(4240)
( 424 1 )
(4242)
(4243)
(4244)
(4245)
(4246)
(4247)
( 4248)
(4249)
(4250)
(4251)
(4252)
(4253)
(4254)
(4255)
(4256)
(4257)
(4258)
(4259)
(4260)
( 426 1 )
(4262)
(4263)
( 4264)
(4265)
(4266)
(4267)
(4268)
(4269)
(4270)

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C


C
C


C




C
C


C



















                      SUBROUTINE WGTU1

                      *** SETS UP COEFFICIENTS FOR CONVERTING GEODETIC TO
                          RECTIFYING LATITUDE AND CONVERSELY

                          A1-A4 COEFFICIENTS FOR CONVERTING GEODITIC TO RECTIFYING LATIT
                          A5    FALSE EASTING
                          A6    FALSE NORTHING
                          AS    SCALE FACTOR AT CENTRA MERIDIAN
                          A9    CENTRAL MERIDIAN IN SECONDS
                          A 10   RADIUS OF SPHERE HAVING GREAT CIRCLE LENGTH EQUAL TO
                                SPHEROID MERIDIAN LENGTH
                          A11-A14  COEFFICIENTS FOR CONVERTING RECTIFYING LATITUDE TO
                                   GEODETIC LATITUDE
                          A 15   SEMI MAJOR AXIS OF SPHERIOD
                          A16   ECCENTRICITY SQUARED
                      COMMON /WUTM/ A( 16)
                      DATA IFRST/1/

                      ***  CONFUTE COEFFICIENTS ON FIRST PASS ONLY
                      IF  ( IFRST .NE.  1)  RETURN
                      IFRST = 0

                      A(5)=5.0E5
                      A(6)=0.0
                      A(7)=0.0
                      A( 8) =0.9996

                      *##  CLARKE 1866 ELLIPSOID AXES  LENGTHS
                      A( 15) =6378206. 4
                      B  -  6356583.80
                      A( 16)=  UA415)-E)/A( 15))*((A( lo)+B)/A( 15))
                      A( 10) = (((A( 16)*(7.0/3.2El)+(5.0/1.6El))*A( 16)+0.5)*A( 16)
                     1 + 1.0)*A( 16)*0.25
                      A( !)=-(( (A( 10) *( 1.95E2/6.4E1)+3.25)*A( 10)+3.75)*A( 10) +3.0)*
                     1 A( 10)
                      A(2) = (( ( 1.455E3/3.2E1)*A( 10)+(7.0El/3.0) )*A( 10)+7.5)*A( 10)**2
                      A(3)=-((7.0El/3.0)+A( 10)*(9.45E2/8.0))*A( 10)**3
                      A(4)=(3. 15E2/4.0)*A( 10)**4
                      A( !!) = (( (7.75-(6.57E2/6.4El)*A( 10))*A( 10)-5.25)*A( 10) +3.0)*
                     1 A( 10)
                      A( 12)=(((5.045E3/3.2E1)*A( 10)-( 1 . 51E2/3.0) )*A( 10)+10.5)*
                     1 A( 10)**2
                      A( 13)=(( 1.51E2/3.0)-(3.291E3/8.0)*A( 10))*A( 10)**3
                      A( 14) = ( 1.097E3/4.0)*A( 10)**4
                      FAC=A( 10)*A( 10)
                      A( 10) = (( (2.2SE2/6.4E1)*FAC+2.25)*FAC+1.0)*( 1.0-FAO*
                     1 ( 1.0- A( 10))*A( 15)
                      RETURN
                      END
       Exhibit  Brl  (Continued)
                                             343

-------
(4271)
(4272)
( 4273)
(4274)
(4275)
(4276)
(4277)
( 4278)
(4279)
(4280)
(4281)
(4282)
( 4283)
(4284)
(4285)
(4286)
(4287)
( 4288)
(4289)
(4290)
(4291)
(4292)
(4293)
(4294)
(4295)
(4296)
(4297)
(4298)
(4299)
(4300)
(4301)
(4302)
(4303)
( 4304)
(4305)
(4306)
( 4307)
( 4308)
(4309)
(4310)
(4311)
(4312)
(4313)
(4314)
(4315)
(4316)
(4317)
(4318)
(4319)
(4320)
(4321)
(4322)
(4323)
(4324)
(4325)
(4326)

C
C
C
C
C
C
C
C
C
C
C
C


C


C
C

C
C


C
C





























     SUBROUTINE MAPUTO ( UTMX,UTMY,IZONE,ALON,ALAT)
             SUBROUTINE MAPUTO (UTMX,UTMY,IZONE,ALON,ALAT)

             ***  CONVERTS  UTM COORDINATES TO LATITUDE AND LONGITUDE
                  THIS  IS A MODIFICATION OF THE US GEOLOGICAL SURVEY
                  PROGRAM NO J380  (TOPOGRAPHIC DIVISION)
                     GV LUNDBERG/SAI  APR 79

                  UTMX    EASTING IN KILOMETERS
                  UTMY    NORTHING IN KILOMETERS
                  IZONE  UTM ZONE NUMBER
                  ALON    LONGITUDE IN DEGREES
                  ALAT    LATITUDE IN DEGREES

             DIMENSION B(12)
             COMMON /WUTM/ A( 16)

             X -  UTMX*1000.
             Y -  UTMY*1000.

             ***  COMPUTE CONVERSION COEFFICIENTS IF NEEDED
             CALL WGTU1                             ""

             ***  COMPUTE CENTRAL MERIDIAN IN SECONDS FROM IZONE  INPUT
           10 UTZ  = 30.0 -  FLOAT( IABS (IZONE))
             A(9) = ((UTZ*6.0) + 3.00 * 3600.0

             ***  CONVERT UTM COORDINATES TO GEODETIC
             B( 9) = ( ( A( 5) -X) * 1. 0E-6) /A( 8)
              IF 
-------
      SUBROUTINE MAPUTO (UTMX.UTMY, IZONE, ALON, ALAT)
( 4327)
( 4328)
(4329)
(4330)
(4331)
(4332)
(4333)
(4334)
(4335)
(4336)
(4337)
( 4338)
(4339)
(4340)
(4341)
1 5040.0
B( 8) = ( ( ( TS* 1575 . 0+4095 . 0) *TS+3633 . 0) *TS+ 1385 . 0) *T*RN**8/
1 40320.0
B( 10)=B(9)*B(9)
SLAT= ( ( ( ( B( 8) *B( 10)+B(6))*B( 10)+B<4))*B( 10)+B(2))*B( 10)+B( 11))*
1 206264.80624709
SLON= U(B(7)#B( 10)+B(5))*B( 10)+B(3))*B( 10)+B( 1))*B(9)*
1 206264.80624709 + A(9)
C
C #*# CONVERT SECONDS OF ARC TO DEGREES AND RETURN
99 ALAT - SLAT/3600.
ALON - -SLON/3600.
C
RETURN
END
Exhibit B-1  (Continued)
                                     345

-------
     SUBROUTINE DAMIE (X.RFR.RFI,THETD,JX,QEXT,QSCAT,CTBRQS,ELTRMX,
             SUBROUTINE DAMIE ( X, RFR.RFI, THETD, JX,QEXT,QSCAT,CTBRQS,ELTRMX,
            1 PI,TAU,CSTHT,SI2THT,ACAP,IT,LL)
              LARGE VERSION
              SUBROUTINE FOR COMPUTING THE PARAMETERS OF THE ELECTROMAGNETIC
              RADIATION SCATTERED BY A SPHERE. THIS SUBROUTINE CARRIES OUT ALL
              COMPUTATIONS IN DOUBLE PRECISION ARITHMETIC.
              THIS SUBROUTINE COMPUTES THE CAPITAL A FUNCTION BY MAKING USE OF
              DOWNWARD RECURRENCE RELATIONSHIP.
              X! SIZE PARAMETER OF THE SPHERE,( 2 * PI * RADIUS OF THE SPHERE)
              WAVELENGTH OF THE  INCIDENT RADIATION).
              RF! REFRACTIVE INDEX OF THE MATERIAL OF THE SPHERE.  COMPLEX
              QUANTITY. .FORM! (Rll - I * RFI  )
              THETD(J)! ANGLE IN DEGREES BETWEEN THE DIRECTIONS OF THE INCIDENT
              AND THE SCATTERED RADIATION.  THETD(J) IS< OR= 90.0
              IF THETD(J) SHOULD HAPPEN TO BE GREATER THAN 90.0, ENTER WITH
              SUPPLEMENTARY VALUE
            COMMENTS BELOW ON ELTRMX.
            ' JX! TOTAL NUMBER Of THETD FOR WHICii THE COMPUTATIONS ARE
              REQUIRED.  JX SHOULD NOT EXCEED IT UNLESS THE DIMENSIONS
              STATEMENTS ARE APPROPRIATEDLY MODIFIED.
              MAIN PROGRAM SHOULD ALSO HAVE REAL*8 THETD(IT ),ELTRMX( 4,IT  ,2).
              THE DEFINITIONS FOR THE FOLLOWING SYMBOLS CAN BE FOUND IN         LIGHT
              REAL   X,RX,RFR,RFI,QEXT,QSCAT,T(5) ,TA(4) ,TB(2) ,TC(2)
              REAL   TD(2),TE(2),CTE 'OS
              REAL   ELTRMX(4,IT ,2),PI(3,IT  ).TAU(3,IT ),CSTHT(IT ),SI2THT(IT)
            1 ,THETD(IT)
              COMPLEX    RF,RRF,RRFX,WM1,FNA,FNB,TC1,TC2,WFN( 2)
              COMPLEX    FNAP,FNBP,ACAP(1)
              IN THE ORIGINAL PROGRAM THE DIMENSION OF ACAP WAS 7000.
              FOR CONSERVING SPACE THIS SHOULD BE NOT MUCH HIGHER THAN
              THE VALUE, N=1.1*(NREAL**2 + NIMAG**2)**.5 * X +  1
              TA(1)  REAL PART OF WFN(1).. TA(2)t IMAGINARY PART OF WFN(1)..
              TA(3)  REAL PART OF WFN( 2)..TA(4) ! IMAGINARY PART OF WFN(2).
              TB(1)  REAL PART OF FNA.. TB(2)!  IMAGINARTY PART OF FNA..
              TC(1)  REAL PART OF FNB.. 1X3(2)^  IMAGINARY PART OF FNB..
              TD(1)  REAL PART OF FNAP..TD(2)  IMAGINARY PART OF FNAP.
              TE(1)  REAL PART OF FNBP.. TE(2)!  IMAGINARY PART OF FNBP.
             FNAP ? FNBP ARE THE PRECEDING VALUES OF FNA ? FNB RESPECTIVELY.
            t PRIME VERSION WORKS ONLY  IN SINGLE PRECISION WITH THE
             COMPLEX ARITHMETIC.
              EQUIVALENCE (WFN(1),TA(1)),(FNA,TB(1)),(FNB,TC(1))
              EQUIVALENCE(FNAP,TD(1)), ( FNBP,TE(1))
             DATA PII /3.1415926535897932/

             FORMAT STATEMENTS FOLLOW
              FORMAT(10X,' THE VALUE OF THE SCATTERING ANGLE IS GREATER THAN
             1 90.0 DEGREES.  IT  IS '.E15.4)
              FORMAT(//10X,  'PLEASE  READ COMMENTS.' //)
              FORMAT(//10X,'THE  VALUE OF THE  ARGUMENT JX  IS GREATER THAN IT  ')
              FORMAT(//10X,'THE  UPPER LIMIT FOR ACAP IS NOT ENOUGH. SUGGEST GET
             1 DETAILED OUPUT AND MODIFY SUBROUTINE'//)

             EXECUTABLE STATEMENTS FOLLOW
               IF(JX.LE.  IT) GO TO 20
              WRITE(6,7)
              WRITE(6,6)
(4342)
(4343)
(4344)
(4345)
(4346)
(4347)
( 4348)
(4349)
(4350)
(4351)
(4352)
(4353)
(4354)
(4355)
(4356)
(4357)
(4358)
(4359)
(4360)
(4361)
(4362)
(4363)
(4364)
(4365)
(4366)
(4367)
( 4368)
(4369)
(4370)
(4371)
(4372)
(4373)
(4374)
(4375)
(4376)
(4377)
( 4378)
(4379)
(4380)
(4381)
(4382)
(4383)
(4384)
(4385)
(4386)
(4387)
( 4388)
(4389)
(4390)
( 439 1 )
(4392)
(4393)
(4394)
(4395)
(4396)
(4397)


C
C
C
C
C
C
C
C
C
C
C
C
C
C
CSEE
C
C
C
C
C






C
C
C
C
C
C
C
C
C
C
c***
C



C
C
5

6
7
8

C
C



Exhibit B-l  (Continued)
                                      346

-------
      SUBROUTINE DAIIIE ( X,RFR,RFI ,THETD, JX,Q£XT,QSCAT,CTBRQS,ELTRMX,
               CALL  EXIT
               RF  =   CMPLX(RFR,-RFI)
               RRF =  1.0E0/RF
(4398)
(4399)
(4400)
(4401)
(4402)
(4403).
(4404)
(4405)
(4406)
(4407)
( 4408)
(4409)
(4410)
(4411)
(4412)
(4413)
(4414)
(4415)
(4416)
(4417)
(4418)
(4419)
(4420)
(4421)
(4422)
(4423)
(4424)
(4425)
(4426)
(4427)
(4428)
(4429)
(4430)
(4431)
(4432)
(4433)
(4434)
(4435)
(4436)
(4437)
(4438)
(4439)
(4440)
(4441)
(4442)
(4443)
(4444)
(4445)
(4446)
(4447)
(4448)
(4449)
(4450)
(4451)
(4452)
(4453)

20






C
C V
C



21



22



23






24




25



28


30





35








               RX  -  1.0E0/X
               RRFX  =  RRF  * RX
               T(l)    (X**2)*(RFR**2 + RFI**2)
                        SQRT(Td))
                       1.10E0 * T(1)
                        199)  X,RFR,RFI,LL,NMX1
                          'X=',E14.6,2X,'RFR=
                              LL-1  )  GO TO 21
                              150)  GO TO 22
         ,E14.6,2X, rRFI =
                *,110)
                                   0.
                                   0,
0E0
0E0
THETD(J) =
GO TO 24
  T( 1)  ~
  NMX1  -
  WRITE(6
» FORMAT( 1H
1,2X,*NMX1
  IF( NMX1 .LE
  WRITE(6,8>
  STOP
'  NMX2  = T( 1)
  IF( NMX1 .GT
  NMX1    150
  NMX2  -  135
  ACAP(NMX1 +  1  )  =  (0.0E0.0.0E0)
  DO 23 N  =  1,NMX1
  NN -  NMX1 -  N  +  1
  ACAP(NN)= FLOAT(NN+1)*RRFX-1
  CONTINUE
  DO 30 J  =  l.JX
  IF (  THETD(J)  .LT
  IF (  THETD(J)  .GT
  CSTHT(J) =  1.0E0
  SI2THT(J) -  0.0E0
  GO TO 30
  IF (  THETD(J)  .GE
  T(l)  = ( PII * THETD(J))/180.0E0
  CSTHT(J) =   COS(T(1))
  SI2THT(J) ~  1.0E0  -  CSTHT(J)**2
  GO TO 30
  IF (  THETD(J)  .GT. 90.0E0) GO TO
  CSTHT(J) = 0.0E0
  SI2THT(J) -  1-0E0
  GO TO 30
  WRITE(6,5) JTHETD(J)
  VRITE(6,6)
  CALL  EXIT
  CONTINUE
  DO 35 J  =  1,JX
  PK1.J)   0.0E0
  PI(2,J)    1.0E0
  TAU(1,J) = 0.0E0
  TAU(2,J) - CSTHT(J)
  CONTINUE
  T(l)     COS(X)
  T(2)  -   SIN(X)
  WU =  CMPLX(  T(1),-T(2))
  WFN(l) =  CMPLX(T(2) ,T( 1))
  WN(2) = RX  *  WN(1)  -  VM1
  TCI = ACAP(l)  *  RRF  + RX
  TC2 - ACAP( 1)  *  RF +  RX
  FNA = (TC1*TA(3) - TA( 1) )/(TCl*WN(2)  -
                   ,E14.6,2X, 'LL=',I10
                                            0E0/(FLOAT(NN+1)*RRFX+ACAP(NN+1))
ABS(THETD(J))
                                   90.0E0)  GO  TO  25
                                                 28
                                                            1))
Exhibit B-l  (.Continued)
                                      347

-------
SUBROUTINE DAMIE (X.RFR.HFI,THETD,JX,QEXT,QSCAT,CTBRQS,ELTRMX,
(4454)
(4455)
(4456)
(4457)
(4458) G
(4459) G
(4460) G
(4461) G
(4462) C
(4463) G
(4464) C
(4465) C
(4466)
(4467)
(4468)
(4469)
(4470)
(4471)
(4472)
(4473)
(4474)
(4475)
(4476)
(4477)
( 4478)
(4479) 60
(4480)
(4481) C
(4482)
(4483)
(4484)
(4485) 65
(4486)
(4487)
( 4488)
(4489)
(4490)
(4491)
(4492) 70
(4493)
(4494)
(4495)
(4496)
(4497)
(4498)
(4499)
(4500)
(4501)
(4502)
(4503)
(4504)
(4505)
(4506)
(4507)
( 4508)
(4509)
Exhibit B_-l
FNB = ( TC2*TA(3) - TA(1))/(TC2 * WFN(2) - ¥FN(1))
FNAP - FNA
FNBP FNB
T( 1 ) = 1 . 50E0
FROM HERE TO THE STATMENT NUMBER 90 , ELTRMX( I , J , K) HAS
FOLLOWING MEANING!
ELTRMX( 1 , J , K) ! REAL PART OF THE FIRST COMPLEX AMPLITUDE.
ELTRMX( 2 , J , K) ! IMAGINARY PART OF THE FIRST COMPLEX AMPLITUDE.
ELTRMX(3,J,K) ! REAL PART OF THE SECOND COMPLEX AMPLITUDE.
ELTRMX( 4 , J , K) ! IMAGINARY PART OF THE SECOND COMPLEX AMPLITUDE.
K = 1 ! FOR THETD(J) AND K = 2 ! FOR 180.0 - THETD(J)
DEFINITION OF THE COMPLEX AMPLITUDE? VAN DE HULST,P.125.
TB( 1) = T( 1) * TB( 1)
TB(2) T( 1) * TB(2)
TC( 1) = T< 1) * TC( 1)
TC(2) - T( 1) * TC(2)
DO 60 J = 1,JX
ELTRMX( 1,J, 1) = TB(1) * PH2.J) + TC( 1) * TAU(2,J)
ELTRMX(2,Jsl) = TB(2) * PK2.J) + TC(2) * TAU(2,J)
ELTRMX(3,J, 1) = TC(1) * PK2.J) + TB( 1) * TAU(2,J)
ELTRMX(4,J, 1) = TC(2) * PK2.J) + TB(2)"fc TAU(2,J)
ELTRMX( 1,J,2) = TB< 1) * PK2.J) - TC( 1) * TAU(2,J)
ELTRMX(2,J,2) TB(2) * PK2.J) - TC(2) * TAU(2,J)
ELTRMX(3,J,2) - TC(J) * PI(2,J) - TB( 1) * TAU(2,J)
ELTRMX(4,J,2) - TC(2) * PK2.J) - TB(2) * TAU(2,J)
CONTINUE
QEXT = 2.0E0 * < TB< 1) + TC< 1)>
WRITE(6,999) TB( 1) ,TC( 1)
QSCAT =(TB(1)**2 + TB(2)**2 + TC(1)**2 + TC(2) **2>/0.75E0
CTBRQS = 0.0E0
N 2
T( 1 ) = 2*N - 1
T(2) = N - 1 .
T(3)=2*N+1 N
DO 70 J - 1,JX
PK3.J) - (T( 1)*PI(2,J)*CSTHT(J)-FLOAT(N)*PI( 1,J))/T(2>
TAU(3,J) = CSTHT(J)*(PI(3,J)-PI(1,J))-T< 1) *SI2THT( J)*PI(2,J>+
1 TAU( 1 , J)
CONTINUE
VM1 = ¥FN( 1)
WFN( 1) = WFN(2)
WFN(2) = T(1)*RX*WFN( 1) - WM1
TCI = ACAP(N)*RRF + FLOAT(N)*RX
TC2 = ACAP(N)*RF + FLOAT(N)*RX
FNA = (TC1*TA(3)-TA( 1) )/(TCl*VFN(2) - ¥FN(D)
TC2 = TC2
TA(3) = TA(3)
TA( 1) = TA( 1)
TCI TCI
WFN(2) = WFN(2)
WFN( 1) - ¥FN( 1)
FNB - (TC2*TA(3)-TA( 1) )/(TC2*VFN(2) - ¥FN(1))
T(5) = N
T(4) = T( 1)/(T(5)*T(2))
T(2) = (T(2)#(T(5) + 1.0E0))/T(5)
CTBRQS = CTERQS + T(2)*(TD( 1) *TB( 1) + TD(2)*TB(2) + TE( 1)*TC( 1)
(Continued)
                                 348

-------
     SUBROUTINE DAMIE  (X,RFR,RFI ,THETD, JX,QEXT,QSCAT,CTBRQS,ELTRMX.
(4510)
(4511)
(4512)
(4513)
(4514)
(4515)
(4516)
(4517)
(4518)
(4519)
(4520)
(4521)
(4522)
(4523)
(4524)
(4525)
(4526)
(4527)
(4528)
(4529)
(4530)
(4531)
(4532)
(4533)
(4534)
(4535)
(4536)
(4537)
(4538)
(4539)
(4540)
(4541)
(4542)
(4543)
(4544)
(4545)
(4546)
(4547)
(4548)
(4549)
(4550)
(4551)
(4552)
(4553)
(4554)
(4555)
(4556)
(4557)
(4558)
(4559)
(4560)
(4561)
(4562)
(4563)
(4564)
(4565)






C












•



)







<

















G
C'


c
C
G
        75
        80
        90
         100
         115
         120
I  TEC2)#TCC2))  + T(4)*(TD( 1)*TE( 1
  QEXT = QEXT + T(3)*(TB( 1)+TC< 1) )
  T(4)  = TB(1)**2 + TB(2)**2 + TC( 1)**2
  QSCAT = QSCAT + T(3) *TC4)
  T(2)  = N*CN+1)
  T(l)  = T(3)/T(2)
WUTEC6,999j T(1),QEXT
K =  CN/2)*2
  DO  80 J = 1,JX
  ELTRMX( 1,J,1)=ELTRMX(
           J
          , J
                                                   TDC2)*TEC2))
                                                       TCC2)**2
ELTRMXC 2 ,
ELTRMXC 3 ,
                          1 ) = ELTRMX( 2
                          1 ) = ELTRMX( 3
                        J,
                        J,
              ELTRMX(4, J,
              IF  (  K .Eft.
             ELTRMXC 1, J,2)=ELTRMX( 1
                  1)*CTBC 1)*PIC3, J)+TCC 1)*TAU(3,
             1)+TC 1)*CTBC2)*PIC3,J)+TCC2)*TAUC3,
             1)+TC 1)*CTCC 1)*PI(3,
) = ELTRMXC4, J, 1)+TC 1)*CTC(2)*PIC3,
N) GO TO 75
          J,2)  +TC 1)*CTBC 1)*PIC3,
,J)+TBC 1)*TAUC3
,J)+TBC2)*TAUC3
                         ,2>=ELTKHX(2,
                         ,2)=ELTRMXC3,
                         ,2)=ELTRMXC4,
                         2)+T( 1)*(TB(2)*PI(3
                         2)+T( 1)*(TC( 1)*PI(3
                         2)+T( 1)*(TC(2)*PI(3
                                              ,J)-TCC1)*TAUC3,
                                              ,J)-TC<2)*TAU<3,
                                                  J))
                                                  J))
                                                  J))
                                                  J))

                                                  J))
                                                  J))
                                               J)-TB<1)*TAU(3,J))
                                               J)-TB(2)*TAU(3,J))
,2)=ELTRMXC1
,2)=ELTRMXC2
,2)=ELTRMXC3
                       J,2)+T( 1)*(-TB( 1)*PI(3, J)+TC( 1)*TAU(3,
                       J, 2) +T( 1) *( -TB( 2) *P I( 3, J) +TC( 2) *TAU( 3,
                                                               J))
                                                               J))
                       J,2)+T( 1)*(-TC(
                                                             J)+TB( 1)*TAU(3,J))
                              1.0E-6 )  GO TO 100
                           NMX2)  GO TO 65
 ELTRMXC2.J,
 ELTRMXC 3,J,
 ELTRMXC4,J.
 GO TO 80
 ELTRMXC1,J,
 ELTRMXC 2, J,
 ELTRMXC3,J,
 ELTRMXC 4, J, 2) =ELTRMXC 4, J, 2) +TC 1) *C -TCC 2) *P IC 3, J) +TBC 2) *TAUC 3, J) )
 CONTINUE
 IFC TC4) .LT.
 N = N + 1
 DO 90 J =  l.JX
 PIC1.J) - PIC2.J)
 PIC2,J) - PIC3,J)
 TAUC1,J) - TAUC2,J)
 TAUC2,J) = TAUC3,J)
 CONTINUE
 FNAP = FNA
 FNBP = FNB
 IF C N .LE.
 NRITEC6.8)
 CALL EXIT
 DO 120 J = l.JX
 DO 120 K = 1,2
 DO  115  1=  1,4
 TC I) - ELTRMXC I,
 CONTINUE
 ELTRMXC2,J,K) =
 ELTRMXC 1,J,K) =
 ELTRMXC3.J.K) =
 ELTRMXC4,J,K) =
 CONTINUE
 TC1) = 2.0E0 * RX**2
 QEXT = QEXT * T( 1)
WRITEC6,999) TCI),QEXT
  FORMATC1H ,3E20.8)
 QSCAT = QSCAT *  TC1)
 CTBRQS = 2.E0 *  CTBRQS * TCI)
 THE DETAIL ABOUT THIS SUBROUTINE CAN BE FOUND IN THE FOLLOWING
 REPORT!                               SUBROUTINES FOR COMPUTING THE PARAM
 ELECTROMAGNETIC  RADIATION SCATTERED BY A SPHERE                    J.V.  DAVE
                ,J,K)

                TC 1)**2 +
                TC3)**2 +
                TC 1)*TC3)
                TC2)*TC3)
                                         TC 2)**2
                                         TC4)**2
                                         + TC2)*TC4)
                                         - TC4)*TC 1)
Exhibit  Brl  (Continued)
                                      349

-------
      SUBROUTINE DAHIE (X,RFR,RFI ,THETD, JX,QE3O',QSCAT,CTBRQS,ELTRMX,
(4566)  C      IBM SCIENTIFIC CENTER, PALO ALTO , CALIFORNIA.
(4567)  C      REPORT NO. 320 - 3236 .. MAY 1968 ..
(4568)  99999  RETURN
(4569)         END
Exhibit B.-l  (Continued)
                                      350

-------
(4570)
(4571)
(4572)
(4573)
(4574)
(4575)
(4576)
(4577)
(4578)
(4579)
(4580)
(4581)
(4582)
(4583)
(4584)
(4585)
(4586)
(4587)
(4588)
(4589)
(4590)
(4591)
(4592)
(4593)
(4594)
(4595)
(4596)
(4597)
(4598)
(4599)
(4600)
(4601)
(4602)
(4603)
(4604)
(4605)
(4606)
(4607)
( 4608)
(4609)
(4610)
(4611)
(4612)
(4613)
(4614)
(4615)
(4616)
(4617)
(4618)
(4619)
(4620)
(4621)
(4622)
(4623)
(4624)
(4625)


C
C
C
C

















C*
C*:
C*









55
60


65
70








75
80





       SUBROUTINE PLKAX( ZEN ITH, THETA, ITHETA, CPAVE, GPS AVE, CNAVE, XALONG,
               SUBROUTI NE PLMAX( ZEN I TH, THETA, I THETA, CPAVE, GPS AVE, CNAVE, XALONG,
              1 SPECP.SPECB)
             CALCULATE THE
             LINE OF SIGHT
 CHANGS IN SPECTRAL RADIANCE ALONG A SEGMENT OF THE
 WITH SPECIFIED AVERAGE PLUME CONCENTRATIONS.
               COMMON/RADPRP/BTAS04(39),BTACORC 39),BTAPRM(39),BTAAER( 39),
              1PAER( 39,27),PPRIM(39,27),PSO4( 39,27),PCOR(39,27),BTABAC(39)
               COMMON/OPTDEP/TAT0IZ(39),TATHIZ(39),TAT0HZ(39),X1(39),
              1X2(39),TAUTDI(39),TAUT0D(39),XHDI(39),XH0D(39)               	
               COMMON/MISC/ABSN02(39) ,SOLAR(39) , RAD,FORPIN, OMZC39) ,OMH(39) ,NTHETA
               DIMENSION SPECPO9) ,SPECB(39)
               TWOPI=.5/FORPIN
               RHO=.3
               RHOP1 = 0.5*RHO*TWOP I
               XMU0=COS(RAD*ZENITH)
               PRAY=0.75* (1.+COS(RAD*THETA)**2)
               DO 50 1=1,39
                  FD0=SOLAR( I)*EXP(-TAT0IZ( D/XMU0)
                  FDH=SOLAR( I)*EXP(-TATHIZ( D/XMU0)
                  FDAV=(FD0+FDH)*0.5
                  PTOT0D=XH0D(I)*PRAY+( 1.-XH0DCI))*PAER( 1,1THETA)
                  PTOT0D=PTOT0D*OMH(I)
             :#*
                COMPUTE THE PLUME TRANSMISSION
             :*
                  TAUP1 = BTABAC(I)*XALONG
                  TAPSO4= BTAS04(I)*CPSAVE*XALONG
                  TAPNO2=ABSN02(I)*CNAVE*XALONG
                  TAPRIM= BTAPRM( I) *CPAVE*XALONG
                  TAUP2= TAPS04+TAPN02+TAPRIM
                  TAPTOT= TAUP1+TAUP2
                  IF((TAPSO4+TAPRIM).Ea.0.0)GO TO 55
                  XD2=TAPS04/(TAPS04+TAPRIM)
                  GO TO 60
                  XD2=0.0
                  IF(TAUP2.
                  OMEGAP=1
                  GO TO 70
                  OMEGAP=1.
                  PTOTPL=XD2*PS04( I,
                  TP1 = EXP(-TAUP1)
                  TP2=EXP(-TAUP2)
                  TPTOT=EXP(-TAPTOT)
                  PTOT0D=XH0D(I)*PRAY+( l.-XH0D( I))*PAER(I,ITHETA)
                  PTOT0D=PTOT0D*OMH(I)
                  IF( TAPTOT.EQ.0.0)GO TO
                  XI1=TAUP2/TAPTOT
                  GO TO 80
                  Xll=0.0
                  CONTINUE
                  SPECPC I)=SPECP( I)*TTTOT+X11*OMEGAP*FORPIN*PTOTPL*FDAV*( 1.-TPTOT
              1   ) + (1.-XI1)#FORPIN*PTOT0D#FDAV*( 1.-TPTOT)
                  DIFUSE=XMU0*SOLAR< !)*( 1 .-EXP(-TAT0IZ( I)/XMU0)*( l.-RHO))
                  DP=DIFUSE*< XI l*OMEGAP+( 1. -XI1)) *< 1. -TPTOT)
                  DP=DP/( TWOPI-RHOPI)
,EQ.0.0)GO TO 65
.-TAPN02/TAUP2
          ITHETA) + ( 1.-XD2)*PPRIM( I,ITHETA)
               75
Exhibit  B-l  (Continued)
                                      351

-------
      SUBROUTINE PLMAX( ZEKITH,THETA,ITEETA,CPAVE,CPSAVE,CN AVE,XALONG,
(4626)            SPECP(I)=SPECP(I)+DP
(4627)            SPECB( I)=SPECB(I)*TP1+FORPIN*PTOT0D*FDAV*(1.-TP1)+DIFUSE*( 1,
(4628)        1   TP1)/(TWOPI-RHOPI)
(4629)   56    CONTINUE
(4630)         RETURN
(4631)         END

Exhibit B-l  (Continued)
                                      352

-------
           FUNCTION CLOCK(T1,IINC)
(4632)
(4633)  C
(4634)  C
(4635)  C
(4636)  C
(4637)
(4638)
(4639)
(4640)
(4641)
(4642)
(4643)
(4644)
(4645)
(4646)
****
FUNCTION CLOCK(Tl,I INC)

  ADD A TIME IN MINUTES TO A 2400 HOUR TIME AND RETURN A 2400
  HOUR TIME
 T2 = I INC
 1100 = INT(T1/100.)
 T3 = Tl-100.0*FLOAT(1100) + T2
 1100 = 1100 + INT(T3/60.)
 CLCK=FLOAT(I100)*100.0 + T3 -60.0 * FLOAT(INT(T3/60.))
 T4=CLCK-FLOAT(IFIX(CLCK) /100)*100.
 CLOCK=CLCK
 IF(T4.GT.59.) CLOCK= CLCK-40.
 RETURN
 END
Exhibit B*1  (Continued)
                                      353

-------
(4647)
(4648)
(4649)
(4650)
(4651)
(4652)
(4653)
(4654)
(4655)
(4656)
(4657)
(4658)
(4659)
(4660)
(4661)
(4662)
(4663)
(4664)
(4665)
(4666)
(4667)
(4668)
(4669)
(4670)
(4671)
(4672)
(4673)
(4674)
(4675)
(4676)
(4677)
(4678)
(4679)
(4680)
(4681)
(4682)
(4683)
(4684)
(4685)
(4686)
(4687)
( 4688)
(4689)
(4690)
(4691)
(4692)
(4693)
(4694)
(4695)
(4696)
(4697)
(4698)
(4699)
(4700)
( 470 1 )
( 4702)

C
C
C
C






C
C
C
10

C
C
C





11
C
C
C





12
C
C
C





20
C
C
C
C
C







21
      SUBROUTINE PLMIN( RPR, ROR.SY.RP, YINTR)
              SUBROUTINE PLMIN( RPR, ROR.SY.RP, YINTR)

            SUBROUTINE TO RECALCULATE PLUME CENTROID WHEN OBSERVER OR BACKGROUND
            OBJECT IS WITHIN THE PLUME.

              YINTRF=0.5
              YINTRB=0.5
              YINTR=YINTRF+YINTRB
              IFCRPR.LT.2.17.AND.ROR.GT.2.17)GO TO  10
              IF(RPR.GT.2.17.AND.ROR.LT.2.17)GO TO  20
              IFCRPR.LT.2.17.AND.ROR.LT.2.17)GO TO  30

            OBSERVER IN PLUME

              RPHALF=0.18*(RPR+0.25)+0.153*(RPR+0.75)+0.167*(RPR+1.5)
              IF(RPR.GT.0.5)GO TO  11

            OBSERVER > 1/2 SIGMA-Y FROM CEN1. RLINE.

              YINTRl=(RPR/0.5>*0.18
              YINTRF=YINTR1
              YINTR=YINTRF+YINTRB
              RP= ( (RPR*YINTRl/2.+RPHALF)/YINTR)*(SY/1000.)
              GO TO 100
              IF(RPR.GT. 1.0) GO TO  12

            OBSERVER BETWEEN 1/2 AND  1  SIGMA-Y FROM CENTERLINE OF PLUME.

              YINTRl=((RPR-0.5)/0.5)*0.153
              YINTRF=YINTRl+0.18
              YI NTR= YINTRF+YINTRB
              RP= ( ( ( RPR-0.5) /2. *YINTR1 ---RPHALF) /YI NTR) *SY/1000.
              GO TO 100
              YINTR1=
-------
(4703)
(4704)
(4705)
(4706)
(4707)
(4708)
(4709)
(4710)
(4711)
(4712)
(4713)
(4714)
(4715)
(4716)
(4717)
(4718)
(4719)
(4720)
(4721)
(4722)
(4723)
(4724)
(4725)
(4726)
(4727)
( 4728)
(4729)
(4730)
(4731)
(4732)
(4733)
(4734)
(4735)
(4736)
(4737)
( 4738)
(4739)
( 4740)
( 474 1 )
(4742)
(4743)
(4744)
(4745)
(4746)
(4747)
( 4748)
(4749)
(4750)
(4751)
(4752)
(4753)
(4754)
(4755)
(4756)
(4757)
(4758)
C
C
C






22
C
C
C






30
C
C
C


C
C
C





31
C
C
C
C







32
C
C
C
C






      SUBROUTINE PLMIN(RPR,ROR,SY,RP,YINTR)
             OBJECT BETWEEN 1/2 AND 1 SIGMA- Y FROM PLUME CENTERLINE.

               YINTRl=((ROR-0.5)/0.5)*0. 153
               YINTRB=YINTRl+0. 18
               YINTR=YINTRF+YINTRB
               RP=( (RPFRNT+(RPR+(ROR-0.5)/2. ) *YINTRl+( RPR+0. 25) *0. 18) /YINTR)*
              1  SY/1000.
               GO TO 100
               CONTINUE

             OBJECT BETWEEN 1 AND 2.17 SIGMA-Y FROM PLUME CENTERLINE.

               YINTR1 = ( ROR- 1 . 0) *0 . 142
               YINTRB=YINTRl+0. 18+0. 153
               YINTR=YINTRF+YINTRB
               RP=( (RPFRNT+(RPR+ (ROR- 1.0) /2. )* VI NTR1 + CRPR+0. 75)*0. 1 53+ ( RPR+0. 25)
              1 *0. 18) /YINTR) *SY/ 1000.
               GO TO 100
               CONTINUE

             BOTH OBSERVER AND OBJECT IN  PLUME.

               IF(RPR.GT.0.5)GO TO 35
               IF(ROR.GT.0.5)GO TO 31

            BOTH OBSERVER AND OBJECT ARE  WITHIN 0.5 SIGMA-Y OF THE PLUME CENTERLINE

               YINTRl=(RPR/0.5)*0. 18
               YINTR2=(ROR/0.5)*0. 18
               YINTR=YINTR1+YINTR2
               RP= ( ( RPR* YINTR 1/2 . + ( RPR+C ROR/2 . ) ) *YINTR2) /YINTR) *SY/ 1000 .
               GO TO 100
               IF(ROR.GT. 1.0) GO TO 32

             OBJECT BETWEEN 0.5 AND 1.0 SIGMA-Y FROM CENTERLINE AND
             OBSERVER <  0.5 SIGMA-Y FROM  CENTERLINE OF PLUME.

               YINTRl=(RFR/0.5)*0. 18
               YINTR2=((ROR-0.5)/0.5)*0. 153
               YINTRB=YINTR2+0. 18
               YINTR=YINTR1+YINTRB
               RP= ( ( RPR*YINTRl/2 . + ( RPR+0 . 5+ ( ROR-0 . 5 ) /2 . ) *YINTR2+ ( RPR+0 . 25) *0 . 18)
              1 /YINTR)*SY/1000.
               GO TO 100
               YINTRl=(RPR/0.5)*0. 18

             OBJECT BETWEEN 1.0 AND 2.17  SIGMA-Y FROM CENTERLINE AND OBSERVER
             <  0.5  SIGMA-Y FROM CENTERLINE.
 YINTR2=(ROR-0.5)*0. 142
 YINTRB=YINTR2+0. 153+0. 18
 YINTR=YINTR1+YINTRB
 RP= ( ( RPR*YINTRl/2 . +( RPR+ 1 . 0+( ROR- 1 . ) /2 .
1 +(RPR+0.25)*0. 18)/YINTR)*SY/1000.
 GO TO 100
                                                      ) *YINTR2+( RPR+0 . 75 ) *0 . 153
Exhibit  Brl  (Continued)
                                      355

-------
     SUBROUTINE PLMIN< RPR,ROR, SY, RP, YINTR)
(4759)
(4760)
(4761)
(4762)
(4763)
(4764)
(4765)
(4766)
(4767)
(4768)
(4769)
(4770)
(4771)
(4772)
( 4773)
( 4774)
(4775)
(4776)
(4777)
( 4778)
(4779)
(4780)
(4781)
( 4782)
(4783)
( 4784)
(4785)
(4786)
(4787)
( 4788)
(4789)
(4790)
( 479 1 )
(4792)
(4793)
(4794)
(4795)
(4796)
(4797)
( 4798)
(4799)
(4800)
(4801)
(4802)
(4803)
( 4804)
(4805)
(4806)
(4807)
( 4808)
(4809)
(4810)
(4811)
(4812)
(4813)
(4814)
35

C
C
C
C







36
C
C
C
C








37
C
C
C







40
C
C
C
C







41
C
C
C
C


             IFCRPR.GT.1.0)GO TO 40
             IF(ROR.GT.0.5)GO TO 36

           OBJECT < 0.5 SIGMA-Y FROM CENTERLINE  AND  OBSERVER BETWEEN 0.5 AND
           1.0 SIGMA-Y FROM CENTERLINE OF PLUME.

             YINTRl=<(RPR-0.5)/0.5)*0.153
             YINTRF=YINTRl+0.18
             YINTR2=(ROR/0.5)*0.18
             YINTR=YINTRF+YINTR2
             RP=(((RPR-0.5)*YINTRl/2.+(RPR-0.25)*0. 18+(RPR+ROR/2. )*YINTR2)
            1/YINTR)*SY/1000.
             GO TO 100
             IF(ROR.GT.1.0)GO TO 37

           BOTH OBSERVER AND OBJECT BETWEEN 0.5  AND  1.0 SIGMA-Y FROM
           PLUME CENTERLINE.

             YINTR1=((RPR-0.5)/0.5)*0.153
             YINTRF=YINTRl+0.18
             YINTR2=((ROR-0.5)/0.5)*0.153              ^
             YINTRB=YINTR2+0. 18
             YINTR=YINTRF+YINTRB
             RP= ( ( (RPR-0.5)*YINTRl/2.+(RPR-0.25)*0.18+(RPR+0.5+(ROR-0.5)/2.)
            1 *YINTR2+(RPR+0.25)*0\ 18)/YINTR)*SY/1000.
             GO TO 100
             YINTRl=((RPR-0.5)/0.5)*0.153
                                         SIGMA-Y FROM PLUME CENTERLINE AND OBJECT
                                         FROM PLUME CENTERLINE.
OBSERVER BETWEEN 0.5 AND 1.0
BETWEEN 1.0 AND 2.17 SIGMA-Y
  YINTRF=YINTRl+0.18
  YINTR2=(ROR-1.0)*0.142
  YINTRB=YINTR2+0.153+0.18
  YINTR=YINTRF+YINTRB             S
  RP=(((RPR-0.5)*YINTRl/2.+( RPR-0.25)*0. 18+(RPR+1.0+(ROR- 1. )/2. )
 1 *YINTR2+(RPR+0.75)*0.153+(RPR+0.25)*0.18)/YINTR)*SY/1000.
  GO TO 100
  IF(ROR.GT.0.5)GO TO 41

OBSERVER BETWEEN  1.0 AND 2.17 SIGMA-Y FROM PLUME  CENTERLINE AND
OBJECT < 0.5 SY FROM PLUME CENTERLINE.

  YINTR1=(RPR-1.0)*0.142
  YINTRF=YINTRl+0.18+0.153
  YINTR2=(ROR/0.5)*0.18
  YINTR=YINTRF+YINTR2
  RP=( ( (RPR-1.)*YINTRl/2.+(RPR-0.75)*0.153+(RPR-0.25)*0.18+(RPR+RORX
 1 2.)*YINTR2)/YINTR)*SY/1000.
  GO TO 100
  IF(ROR.GT. 1.0) GO TO 42

OBSERVER BETWEEN  1.0 AND 2.17 SIGMA-Y FROM PLUME  CENTERLINE AND OBJECT
BETWEEN 1.0 AND 1.5 SIGMA-Y FROM PLUME  CENTERLINE.

  YINTRF=YINTRl+0.18+0.153
  YINTR2=( (ROR-0.5)/0.5)*0.153
Exhibit tl  (Continued)
                                      356

-------
(4815)
(4816)
(4817)
(4818)
(4819)
(4820)
(4821)
(4822)
(4823)
(4824)
(4825)
(4826)
(4827)
( 4828)
(4829)
(4830)
( 483 1 )
(4832)
(4833)





42
C
C
C
C







100

      SUBROUTINE PLKIN( RPR,ROR,SY, RP.YINTR)
               YINTRB=YINTR2+0.18
               YINTR=YINTRF+YINTRB
               RP=(((RPR-1.0)*YINTRl/2.+(RPR-0.75)*0. 153+(RPR-0.25)*0. 18+CRPR+0.5
              1 +( ROR-0.5)/2.)*YINTR2+(RPR+0.25)*0.18)/YINTR)*SY/1000.
               GO TO 100
               YINTR1=(RPR-1.0)*0.142
             BOTH OBSERVER
             CENTERL1NE.
AND OBJECT BETWEEN 1.0 AND 2. 17 SIGMA-Y FROM PLUME
               YINTRF=YINTRl+0.18+0.153
               YINTR2=(ROR-1.0)*0.142
               YINTRB=YINTR2+0.153+0.18
               YINTR=YINTRF+YINTRB
               RP= (((RPR-1.0) *YINTRl/2. +( RPR-0.75)*0. 153+C RPR-0.25) *0. 18+( RPR+1, 0
              1 +( ROR- l.)/2.)*YINTR2+ (RPR+0.75 )*0. 153+ (RPR+0.25) *0. 18)/YINTR)*SY/
              21000.
               RETURN
               END
Exhibit  &-1  (Concluded)
                                      357

-------
                                 APPENDIX  C

            USER'S  GUIDE  TO  VISPLOT:   GRAPHICS  OUTPUT  FOR  PLUVUE
     The theoretical  aspects of the visibility model PLUVUE are  presented
in the main text.  This section describes the use of VISPLOT, a  graphics
software package that can be used in conjunction with PLUVUE.  VISPLOT
takes the four parameters that characterize visibility impairment  (percent
visual range reduction, blue-red ratio, plume contrast, and ££)  from
PLUVUE and presents them in a graphic form.  VISPLOT has the capability of
presenting the four parameters on a line printer or an off-line  plotter.
Off-line plotting requires the use of standard CALCOMP routines.  VISPLOT
is written in American National Standards Institute (ANSI) FORTRAN IV as
defined in ANSI publication X.39-1966.

Input Card Formats

     A set of five to seven cards is required as input to VISPLOT:

     >  Overall control card.
     >  Axis scaling cards (optional).
     >  Title card.
     >  Set of azimuth angles (or downwind distances).
     >  Set of parameter cases (numeric labels).
     >  Set of alphanumeric labels for each parameter case
        (optional).
     >  Wind speed, wind direction,  and stability class.

     The formats for each of the above cards are given in table  C-l.  A
set of wind speed, wind direction, and stability class is required for
each set of PLUVUE results.  The input card deck is assigned to  FORTRAN
                                   359

-------
                       TABLE  C-l .  INPUT CARD FORMATS
         Card
Column    Format
           Description
Overall control
Horizontal axis
maximum (optional)
1 - 10    F10.0
                          11 - 20   F10.0
                          21 - 30   F10.0


                          31 - 40   F10.0
41 - 50   F10.0


51 - 60   F10.0


1-10    F10.0
Choice of line-of-sight geometry,
Zero:  observer-based lines of
sight.
Nonzero: plume-parcel-based line
of sight.

CALCOMP plotting option; user
must provide standard CALCOMP
routines.
Zero:  line-printer plot only.
Nonzero:  line-printer and
off-line pljjts.

Number of sets of PLUVUE results
to be plotted.

Flag to keep ordinate axis at
default values or to determine
new axis minimum and maximum
from PLUVUE results.
Zera:  default values.
Positive nonzero:  PLUVUE deter-
mined axis scales.
Negative nonzero:  user-input.
values of ordinate axis minimums
and maximums.

Number of parameter cases per
plot; maximum is 8.

Alphanumeric labels flag (labels
for each parameter case).

Input horizontal axis maximum
only if plume-parcel-based line
of sight is used.
Default = 350 km.  A zero or a
blank is a default.
                                       360

-------
                            TABLE C-l (continued)
          Card
Vertical  axis
dimension  (optional)
Column    Format
                    Description
Title

Azimuth angles  (or
downwind distance)
1-10    8F10.0   Minimum  t£ axis value;
                   Default = 0.0.
                           11  -  20


                           21  -  30


                           31  -  40


                           41  -  50


                           51  -  60


                           61  -  70


                           71  -  80
1 - 80

1 - 5
6 - 10

11 - 15
                          76 - 80
80A1

16F5.0
Maximum  t£ axis value;
Default  = 40.0.

Minimum  contrast axis value;
Default  = - 0.6.

Maximum  contrast axis value;
Default  = 0.2.

Minimum  blue-red ratio;
Default  = 0.4.

Maximum  blue-red ratio;
Default  = 1.2.

Minimum  visual range reduction;
Default  * 0.0.

Maximum  visual range reduction;
Default  = 75.0.

A -999.  in any field will
represent the use of the default
values.

Title used for the caption.

Azimuth  angles (or downwind
distances) used in the PLUVUE
run;
maximum of 16 values.  Azimuth
angles are entered if observer-
based lines of sight are used;
downwind distances are entered  if
plume-based lines of sight are
used.
                                       361

-------
                            TABLE C-l  (concluded)
         Card
Viewing backgrounds
(or wind speed cases)
Column    Format
1 - 5
6 - 10
11 - 15
8F5.0
                    Description
A numeric label for the different
parameter cases should be the
same number of values as that
entered in columns 41 - 50 of the
control card.
                          36 - 40

Alphanumeric label card   1-12    3A4
(optional)
Stability class, wind     1-5
speed and wind direction
card*
          F5.0
                          6 - 10    F5.0
                          11 - 15   F5.G
         ATphanumeric labels for each of
         the parameter cases above.  One
         card for each label.

         Stability class 1 * neutral,
         2 = stable

         Wind speed in units of
         meters/second.

         Wind direction in degrees azimuth
         (from the north).
         s
  There should be one card for each set of  PLUVUE results.
                                       362

-------
unit 5.  A sample  input deck  is  shown  in exhibit C-l.  The  optical  results
from PLUVUE are assigned to FORTRAN unit 7.  For the plume-parcel-based,
line-of-sight runs, the results  of the different runs representing
different parameter values can be merged into one file (locally named
TAPE7).  The user  is referred to the main text of this user's manual for  a
description of these file formats.  If the CALCOMP plotting option  is
desired, then the  user must provide a set of standard CALCOMP routines;
the CALCOMP routines required by VISPLOT are as follows:

     >  SUBROUTINE PLOTS (X.Y.IX)
     >  SUBROUTINE PLOT (X.Y.IX)
     >  SUBROUTINE SYMBOL (X,Y,HT,ITX,ANG,NCHR)
     >  SUBROUTINE NUMBER (X,Y,HT,FPN,ANG,NDEC)
     >  SUBROUTINE NEWPEN (IPEN)

     For users without access to these CALCOMP routines, dummy routines
may be needed in order to run the VISPLOT program.   To generate the dummy
routines, the user must have the following cards for each of the above
routines:

     >  SUBROUTINE	(argument list) •
     >  RETURN
     >  END

     For users with standard CALCOMP routines, no modification of VISPLOT
is required.  The  user should check that the five routines have the same
names on his system as those listed above.
     Examples of off-line and line-printer line plots are shown in
exhibits C-2 and C-3, respectively, for the example input shown in
exhibit C-l.
                                   363

-------
CO
(Tt
•P*
                      0.          I .         I .         0.         4.
                        T1I1S  IS A TEST PLOT
                       1«>.6 21.1 2U.6 20.1  'J9.7  03.7 46.3 69.31 IO.UI4:>. I 16 1.6I69.UI74.6I77.7179.0101.4
                      I.    2.   3.   4.
                       4.3   4.  11.3
                Exhibit C-l.  Example  of an input card deck

-------
     l-CLEh.r; Sf.Y   , 2-liiiITE 03JECT, 3-GRflY CS.'ECT .
                                                         ;:JZCT.
    or
 70


g 60.


£50
o
bl
* 40
>30
K
520
bJ
Mo


  0
                                    735~       i£;'J
                                     flZIMUTH flNT-LE
 ExMbit C-2.   This is  a test plot—stable condition, 2 M/S wind speed,
               11.3 degree wind direction

                                             365

-------
i;
CO
en
en

    U».UO+
    OLi.om
    2;i.0()
 li    iM.oo
 i:
 i.
 T
 A    I!J.w»
         • »
     12.00
     II.OJ
     4. UO
                                           0
                                       0  0* 00*0
                                     00*         0X0
                                   OX     f •••+•»• >+ 0
           00 +
           If:.':  -f
                                                      O
                                                       0
                             w +
                            «o
                                    o+
                                     o
                           X
                                                            :R
                                                            O
                          0
                                                             O
                         O
 * o
+0
0
                                                             0
                                                             .!.(»
                   *
                   0

                  xo
                                                               0
                                                                O
                 o

                 o
     U.00«-	^	+	+—
          0.0    30.0     60.0     ')0.0
                                            	+	4-	I	4		+ —
                                             11:0.0    i:;o.o    f:::i.o    ::io.<>    :i-:o.o
                                                       AZ i run ii  AUCI.K ( IH-:«:HKI-:U)
                                                                    	+	+_.
                                                                    270.0   UOO.O
uoo.o   :IGO.O
                     THIS IS  A TKtfT PLOT

 STAUI.Ii   Cdll I) I Tl ON.          2.J \\-"J  Wllll) SI'EliD        II . :i  IC-K.MKK  1/IIW
                                                                                                   Y on.ip.UT
'Exhibit C-3.   Example of line-printer output

-------
I'
I.
I)
o

T
II
\
:-•
T

   0. 11!
   0 . 04
  -0.0',
   -O. 12
-0.211
   -0.44
   -0.52
O
X
0
X

•KX
 O
 X
                      no
                         o
                     o    o
                                                           o
                                                           n
                o                                         o
               RO   0 X  o                                :<
                x    x x x o      *xo oo oo o            n
                :."0 O      X 00*00 0^ -H * + * OMOOO O   f)l:
                 xo ;<
                           + *+
                                       so or.
                      *
         0.0   30.0     00.0    90.0    120.0   1T>0.0    IHO.O    210.0   240.0    270.0   300.0    300.0   300.
                                                 AZIMUTH  AHCI.R (III-XIIKF^)
                   THIS  IS /V TEST PLOT

STAHLE    CONDITinn.        ~2.2 M/« WIFH)  SPEFCD
  ASSIIHCI)  VIEI/IHC
                                          CLKACl SKY
                                            .:i DKCIIKI; wirm DMIECTIOM


                                            2.M;:)  VIUTli OMJECT    3. = (X) CI1AY ODJECT    4.«(0)  BLACK OUJKCT
 Exhibit C-3 (continued)

-------
  I)
  I.
  II
  r

  II
  i:
  M

  T
  I
  n
00

     I .00
     1.20*
     I. 10
     l.uo
    U .
    O.J',0
        O.70
     0.30
 *

 *




XX *

+ X *
 0 +
o or:*

   o
                                                           X
                                                          O
     X *
     O   *
      X
     OX*

      0 X>
         X X*
       o     :;*                 MM
       o;» oo ooxonxooxoooxooxoox
  x

 ox
i=X
 0
                                                       O
                                                      X
                                                     XO
                                                     O
                                                  ox
                                                xox
                                                      y
         0.0   00.0    60.0     90.0   ICO.O    150.0    !IK».0   SIO.O   2-:0.0    2VO.O   000.0   000.0   000.0
                   THIS  IS  A  TKST PLOT
   STADI.G   'COHD1TIOII,
     ni vn:wun:
                            2.2 M/9  WUH) SPERD
                                         M. n  iM-T.nr.i-'. wini) DIRECTION
         KIUTK
                                                                   C.»(X)
                                                                                                OBJECT
                                                                                                               HLACK
Exhibit C-3  (continued)

-------
   I*
   H
   n
   c
   N
   T

   V
    I
   s

    II
    i:
    i
CO  i,
  WII1TK OIUKCT    3.-(X) GRAY OBJECT    4.MO) DLACK OBJECT
      Exhibit C-3  (concluded)

-------
    Appendix 0
VISPLOT SOURCE CODE
          371

-------
(0001)
(0002)
(0003)
(AAA >4 \
UWU4)
(0005)
(0006)
(0007)
(0008)
(0009)
(0010)
(AA f 1 \
uu 11;
(0012)
(0013)
(0014)
(0015)
(0016)
(0017)
(0018)
( AA 1 Q \
V v v 1 » /
(0020)
(0021)
(0022)
/ AAOO \
V vVfcO /
(0024)
(0025)
(0026)
(0027)
(0028)
(0029)
(0030)
(0031)
(0032)
(0033)
(0034)
(0035)
(0036)
(0037)
(0038)
(0039)
(0040)
( 004 1 )
(0042)
(0043)
(0044)
(0045)
(0046)
(0047)
(0048)
(0049)
(0050)
( 005 1 )
(0032)
(0053)
(0054)
(0055)
(0056)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
G

C
C
C

C
C
C









C
C
C
G


C
C
C
C








C
C
C
PROGRAM VISPLT ( INPUT, OUTPUT, TAPES' INPUT, TAPE6=OUTPUT, TAPE? ,
1TAPE8,TAPE9)


VISPLT IS PART OF A SET OF SOFTWARE PACKAGE USED IN
VISIBILITY STUDY PROGRAMS. VISPLT IS A GRAPHICS PACKAGE
INCORPORATING CALCOMP PLOTTING ROUTINES (IF DESIRED)TO PLOT THE
RESULTS GENERATED FROM THE VISIBILITY MODEL, PLUVUE.


	 FORTRAN FILE UNITS

TAPE 5 - INPUT FILE (CONTROL OPTIONS, TITLES, ETC)
TAPE 6 - OUTPUT FILE (LINE PRINTER PLOTS, ETC)
TAPE 7 - PLUVUE RESULTS



MAIN ROUTINE



	 COMMON BLOCKS

COMMON /PLTS/ PLTH 18,8) ,PLT2( 18,8) ,PLT3( 18,8) ,
1 PLT8( 18,8),PLT1A( 18,8.2) ,PLT2A( 18,8.2) .
1 PLT3A( 18.8,2) ,PLT4A( 18,8,2)
COMMON /CPLT/ FRST(4) ,FIN( 4) .SCALK 4) ,TSTP(4) , ASTP(4) ,
1 NDEC(4) , ITITLE(5,4) ,NT(4),XMAX
COMMON /POOL/ XSIZ,YSIZ,CYCSIZ,X( 18) , INDX. IC1
COMMON /ITIT1/ ITIT(80) ,KALCMP, IOBS
COMMON /NEED1/ SCTANG(8) , IC2, ISTB, WIND, WDIR
COMMON /LBL2/ LBEL(3,B) v

	 VARIABLES IN COMMON BLOCKS ARE INITIALIZE IN THE UNLABELLED
BLOCK DATA. LOCAL VARIABLES ARE INITIALIZED HERE

DATA XOFF , YOFF/ 1 . , 1 . 5/
DATA NX.NANG/16,4/


	 READ CONTROL CARD WITH OPTIONS

READ (5,100) OBSVUE.CALCMP, CASE, AXFLAG, CAS l.ALBL
IOBS=IFIX(OBSVUE+0. 1)
KALCMP=IFIX(CALCMP+0. 1)
ICAS=IFIX(CASE+0. 1)
IAX=IFIX(AXFLAG+0. 1)
IF (AXFLAG.LT.O.) IAX=-1
IC1=IFIX(CAS1+0. 1)
LBLl=IFIX(ALBL+e. 1)

	 READ IN AXIS SCALING (IF DESIRED)

372

-------
,I*1,3>
  2 CONTINUE
  3 CONTINUE

	SET UP X SCALING FACTOR FOR CALCOMP USE

    X( 17)  =0.
    X(18) = XSIZ/XMAX
    IF (IOBS.GT.0) X(1B)=CYCSIZ

	 READ PLUVUE RESULTS AND PLOT THEM

	 FIRST INITIALIZE PLOT PACKAGE

    IF (KALCMP.LE.0) GO TO 4
    CALL PLOTS(X1,Y1,14)
    CALL PLTAX(0.07,0.07,999.,2.)
  4 CONTINUE

    DO 25 1=1,ICAS
    READ (5,125) ISTB,WIND,WDIR
    CALL RDPLT (IOBS,PLT1A,PLT2A,PLT3A,PLT4A,IC1)
                  373

-------
(0113)
(01 14)
(0115)
(0116)
(0117)
(0119)
(0120)
(0121)
(0122)
(0123)
(0124)
(0125)
(0126)
(0127)
(0128)
(0129)
(0130)
(0131)
(0132)
(0133)
(0134)
(0135)
(0136)
(0137)
(0138)
(0139)
(0140)
(0141)
(0142)
(0143)
(0144)
(0145)
(0146)
(0147)
(0148)
(0149)
(0150)
(0151)
(0152)
(0153)
(0154)
(0155)
(0156)
(0157)
(0158)
(0159)
(0160)
(0161)
(0162)
(0163)
(0164)
(0165)
(0166)
(0167)
(0168)
C
C


C
C
C
C
C
C

C








C
C
C


C

C
C
C








C
C
C


C
C
C









	 SET DP ORIGIN AND ABSCISSA

    IF (KALCMP.GT.O)
   1CALL ORCPLT (IOBS,XSIZ,X(18),I,ISTB,WIND,VDIR,JALPHA,XttAX,IAX)

    JALPHAM

	 DRAW EACH OF THE FOUR PLOTS

	PLOT 4  —  LIGHT IITTENSITY  ETC

    INDX-1

    CALL WMNMX (PLT4A( 1, 1, JALPHA) , IB,NX, 1 ,ZMIN,ZMAX)
    IF (IAX.GT.O) FRST(4)=ZMIN
    IF (IAX.GT.O) FIN(4)*ZMAX
    PLT4A( NX+1,1, JALPHA) = FRST( 4)
    SCAL1(4) = YS IZ/( F IN(4)-FRSTC 4))
    CALL PLOTIT(FRST(4) ,F1N(4: SCALH4) ,TSTP(4) , ASTP(4) ,
   1            NDEC(4),INDX,Ni:4),PLT4A(1,1,JALPHA))
    CALL ISOPLT (A.B.3)

	 MOVE PEN UP (IF CALCOMP  PLOTTING  )

    IF (KALCMP.LE.O) GO TO 5
    CALL PLOT  (8.,\ 'IZ+0.I,-3)
  3  INDX=2

 	  PLOTS  ~
PLUME CONTRAST
     CALL  WMNMX( PLT3AC 1.1. JALPHA), 18, NX, l.ZMIN.ZMAX)
     IF  (lAX.GT.e)  FRST(1)=ZM1N
     IF  (lAX.GT.e)  FIN(3,=ZttAX
     SCAL1(3)=YSIZ/( FIN(3)-FRST(3))
     PLT3A( NX+1,1, JALPHA) =FRST( 3^
     CALL  PLOTIT (FRSTC3) ,FIN(3) .SCALK3) ,TSTP(3),ASTP(3) ,
    1            NDEC(3),INDX,NT(3).PLT3A(1,1,JALPHA))
     CALL  ISOPLT(A,B,3)

 	 MOVE  PEN UP FOR NEXT PLOT

     IF  (KALCMP.LE.9)  GO TO  16
     CALL  PLOT  (e.,YSIZ*e.l,-3)

 	 PLOT2  —   BLUE-RED RATIO

  19 INDX=3
     CALL  WMNMX(PLT2AC 1.1.JALPHA), 18,NX, l.ZMIN.ZMAX)
     IF  (IAX.GT.8)  FRST(2)sZMIN
     IF  (IAX.GT.6)  FIN(2)=ZMAX
     SCAL1 (2)=YSIZ/(FIN(2)-FRST( 2))
     PLT2A( NX*1,1,JALPHA)= FRST( 2)
     CALL  PLOTIT(FRST(2),FIN(2),SCAL1(2),TSTP(2),ASTP(2),
    1            NDEC(2),INDX.NT(2),PLT2A( 1,1,JALPHA))
     CALL  ISOPLT(A,B,3>
                    374

-------
(ei69)
(0170)
(0171)
(0172)
(0173)
(0174)
(0175)
(0176)
(0177)
(0178)
(0179)
(0180)
(0181)
(0182)
(0183)
(0184)
(0185)
(0186)
(0187)
(0188)
(0189)
(0190)
(0191)
(0192)
(0193)
(0194)
(0195)
(0196)
(0197)
(0198)
(0199)
(0200)
(0201)
(0202)
(0203)
(0204)
(0205)
(0206)
(0207)
C
C
C


C
C
C









C
C
C


C
C
C

C


C
C
C







	 MOVE PEN DP FOR NEXT PLOT

    IF (KALCMP.LE.0) GO TO 15
    CALL PLOT (0..YSIZ+0.l,-3)

	 PLOT1  —  VISIBILITY REDUCTION

 15 INDX=4
    CALL WMNMX(PLT1A(1, 1,JALPHA) . 18,NX, 1 .ZWIN.ZMAX)
    IF (IAX.CT.O) FRST(1)=ZMIN
    IF (IAX.GT.O) FINU)=ZMAX
    SCALH J)=YS1Z/(FIN( 1)-FRST( 1))
    PLT1 A( NX+1, 1, JALPHA) =FRST( 1)
    CALL PLOTIT  (FRST( 1) ,F1U( 1) ,SCALH 1) ,TSTP( 1) , ASTP( 1)
   1            NDEC( J) , INDX, NT( 1) ,PLTlA( 1,1,JALPHA))
    CALL ISOPLT(A,B,3)

	 PLOT HEADER

    IF (KALCNP.LE.O) GO TO 25
    CALL HEADER  (YSIZ.IOBS)

	 SUBMIT CALCOMP PLOT

    CALL PLOT (10.,2.,999)

 25 CONTINUE
    STOP

	 FORMAT STATEMENTS

I00 FORMAT (8FI0.0)
105 FORMAT (16F5.0)
110 FORMAT (BF10.0)
115 FORMAT (80A1)
120 FORMAT (3A4)
125 FORMAT (A4,1X.2F5.0)
  ~ END
             375

-------
(6208)
(0209)
(6210)
( 82 1 1 )
(0212)
(0213)
(0214)
(0215)
(0216)
(0217)
(0218)
(0219)
(0220)
( 022 1 )
(0222)
(0223)
(0224)


C
C
C





C
C
C

C


    SUBROUTINE ORGPLT ( 10BS, XSIZE.SCALEX, ICASE, ISTAB, WIND, VDIR, JALPHA,
   1  XMAX, 1A»

	 SET UP ORIGIN AKD ABSCISSA FOR CALCOMP PLOTS

    CALL PLOT(I.0,1.5,-3)
    IF (IOBS.LE.O) CALL XAXSTT (XSIZE.SCALEX)
    IF (10BS.LE.O) GO TO 5
    CALL LOCTCK (XSIZE.SCALEX)
    CALL LOGLBL(XHAX,SCALEX,XMAX, I AX)

	 SET IH TITLE

  5 CALL TITLE (PLANT,ICASE,ISTAB,WIND,WDIR.RNOX,JALPHA)

    RETURN
    END
                       376

-------
(0225)
(0226)
(0227)
(0228)
(0229)
(0230)
(0231)
(0232)
(0233)
(0234)
(0235)
(0236)
(0237)
(0238)
(0239)
(0240)
( 024 1 )
(0242)
(0243)
(0244)
(0245)
(0246)
(0247)
( 0248)
(0249)
(0250)
(0251)
(0252)
(0253)
(0254)
(0255)
(0256)
(0257)
(0258)
(0259)
(0260)
(0261)
(0262)
(0263)
BLOCK DATA
C
C 	 INITIALIZE
C
COMMON /PU
1
1
COMMON /CP]
1
COMMON /POI
COMMON /si:
COMMON /NEI
COMMON /LB]
C
DATA XSIZ,1
DATA FRST/I
DATA FIN /,
DATA TSTP,,
DATA PLT1A.
DATA NDEC/:
DATA SCTAN
DATA LBEL/'
1
2
3
DATA ITITL
1
2
3
DATA NT/20
DATA TVERT
DATA FT/IE
IE
6*
IE
6*
IE
IE
END
  /PUTS/ PLTH 18,8) ,PLT2( 18,8) ,PLT3( 18,8) ,
         PLT8(18,8),PLT1A(18,8,2),PLT2A(18,8,2).
         PLT3A(18,8,2),PLT4A( 18,8,2)
  /CPLT/ FRST(4) ,FIN(4) .SCALK4) , TSTP(4) , ASTP( 4) ,
         NDEC(4),ITITLE( 5,4).NT( 4),XMAX
  /POOL/ XSIZ,ySIZ,CYCSIZ,X( 18).INDX,IC1
  /SIZE/ JGRID(97,40),TVERT(52,2),PT(20,4)
  /NEED1/ SCTANG(8),IC2,ISTAB,WIND,VDIR
  /LBL2/ LBEL(3,8)

XSIZ,Y5IZ,CYCSIZ/6.5,2.0,2.5/,XMAX/360./
FRST/0.,0.6,-.16,0./
FIN /20.,1.0,0.0,20./
TSTP,ASTP/4*0.,5.,0.1,0.02,5./
PLT1A/288*0./
NDEC/2*1,2,1/,IC2/4/
SCTANG XI.,2.,3.,4.,5.,6.,7.,8.x
LBEL/4HCLEA.4HR SK,4HY   ,4HVHIT,4EE OB,
     4HJECT,4HGRAY,4H OBJ,4HECT  ,
     4HBLAC.4HK OB.4BJECT,
     12*4H        /
ITITLE/4HPERC,4HNT V.4HIS R,4HEDUC,4HTION,
       4EBLUE.4H-RED.4H RAT.4HIO  ,4H
       4HPLUM.4HE CO,4HNTRA,4HST  ,4H
       4EDELT,4HA E ,3*4H     /
       4,14,7/
       04*4H    /
PT/1BD,1BE,1EL,1BT,1BA,IB ,1BE,13*1B  ,
   1EP,IHL,1HU,IBM,1HE,IB ,1BC,1HO,1HN,1BT,IBB,ISA,IBS, 1BT,
   6*1B ,
   1EB,1EL,1HU,1HE,IB-,1HR,1EE,  1BD,IB , 1ER, 1HA,1BT,1BI,1BO,
   6*1B ,
   1EP,1EE,1ER, 1BC,1BN,1BT,IB ,1BV,1BI,IBS,IB  , 1ER, 1EE,1ED,
   1BU,1BC,1BT,1BI,1BO,1HN /
             377

-------
(0264)
(0265)
(0266)
(0267)
(0268)
(0269)
(0270)
( 027 1 )
(0272)
(0273)
(0274)
(0275)
(0276)
(0277)
(0278)
(0279)
(0280)
(0281)
(0282)
(0283)
(0284)
(0205)
(0286)
(0287)
( 0288)
(0289)
(0290)
( 029 1 )
(0292)
(0293)
(0294)
(0295)
(0296)
(0297)
(0298)
(0299)
(0300)
(0301)
(0302)
(0303)
(0304)
(0305)
(0306)

C
C
C



















C
C
C
C
C
C














    SUBROUTINE RDPLT(IOBS,PLT1A,PLT2A,PLT3A,PLT4A,NNA)

	  READS PLUVUE RESULTS

    DIMENSION PLTK18,8),PLT2(18,8),PLT3(18,8),PLT4(18,8)
    DIMENSION PLTIA(18,8,2),PLT2A(18,8,2),PLT3A(18,8,2),
   1          PLT4AC18,8,2),DUMMY(18,8,4)
NANG)
NANG)
NANG)
NANG)
            ((DUMMY(I,J,1) . I«1
            ((DUMHYC I, J, 2) , 1= 1, NX) , J= 1
            ((DUMMY( I.J.3) ,1=1,NX) ,J= 1
            «DUMMY( I,J,4) , 1=1,NX) ,J=1
RANG=4
LM=1
READ(7)
READ(T)
READ(7)
READ(7)
DO 3 KM,NANG
DO 2 LM.NX
PLT1(L,K)«DUMMY(L,K  1)
PLT2(L , K) = DUMMY( L, K, *.)
PLT3( L, K) = DUMMY( L, K, 3)
PLT4( L.K) =DUMMY( L,K,4)
CONTINUE
CONTINUE
 60 CONTINUE

   THE CLEAR 3KY VALUES ARE PUT IN J* 1 FOR 1M/S CASE,
   J-2 FOR 2M/S CASE, J*3 FOR 4M/S CASE.  THIS ALLOWS
   USE OF PLOT IT VxO ANY MAJOR CHANGES, BUT  IT'S NOT
   ELEGANT.

    DO 50 J=1,NANG
    DO 50 1=1. NX
     11=1
    IF (J.GT. l.AND.IOBS.%£.e) GO TO  10
    PLT1A(II,J,1)=PLT1CI,J)
    IF (PLTlA(II.J.l).LT.e.) PLT1A(II,J,1)=0.
 10 CONTINUE
    PLT2AC 1 1 , J , 1 ) =PLT2( I , J)
    PLT3A(II,J,1)=PLT3( I,J)
    PLT4 A( II , J , 1 ) = PLT4( I , J )
 50 CONTINUE
    RETURN
    END
               378

-------
(0307)
(0308)
(0309)
(0310)
(0311)
(0312)
(0313)
(0314)
(0315)
(0316)
(0317)
(0318)
(0319)
(0320)
(0321)
(0322)
(0323)
(0324)
(0325)
(0326)
(0327)
(0328)
(0329)
(0330)
(0331)
(0332)
(0333)
(0334)
(0335)
C
c
C
   SUBROUTINE HEADERCYSIZ,JOBS)

***  PLACE MESSAGE AT TOP OF PLOTS

   COMMON /LBL2/ LBEL(3,8)
   COMMON /POOL/ XSZ,YSZ,CYCZ,XN<18),IND.IC1

   IF (IOBS.LE.0)
  1CALL SYMBOLC0..YSIZ+.35,.07,28B ASSUMED VIEWING BACKGROUND:,O.,28)
   IF (10BS.CT.0)
  1CALL SYMBOL(0.,YSIZ+.35,0.07,18B LEGEND:           ,0.,18)
   XX=999.
   YY=999.
   DO 2 1=1,IC1
   IF ( I.EQ.l.OR.I.EQ.5)  XX=0.
   IF ( I.EQ.1) YY=YSIZ+0.2
   IF (I.EQ.5) YY=YSIZ+0.05
   CALL NUMBER (XX,YY,0. 07,FLOAT( I),0..-1)
   IF (I.EQ.l.OR.I.EQ.5)  XX=999.
   IF ( I.EQ.l.OR.I.EQ.5)  YY=999.
   CALL SYMBOL (XX,YY,0.07,lH-,0.,I)
   DO 1 J=l,3
   CALL SYMBOL (XX,YY,0.07,LBEL(J,I),0.,4)
 1 CONTINUE
   CALL SYMBOL (XX,YY,0.07,2H,  ,0.,2)
 2 CONTINUE

   RETURN
   END
                                379

-------
(0336)
(0337)
(6338)
(0339)
(0340)
(0341)
(0342)
(0343)
(0344)
(0345)
(0346)
(0347)
(0348)
(0349)
(0350)
.(0351)
(0352)
C
C
G
   10
SUBROUTINE LOCTCK (XSIZ.CYCSIZ)

*** DRAWS THE X-AXIS LOGARITHMIC TICK MARKS

DO 20 1=1,3
    XO = (I-1)*CYCSIZ
    DO 10 J=l,10
        X « ALOG10 (FLOAT(J)) * CYCSIZ
        IF (X0+X .GT. XSIZ) RETURN
        CALL PLOT (X+XO.O.,3)
        CALL PLOT (X+XO.0.07,2)
    CONTINUE
   20 CONTINUE

      RETURN
      END
                      380

-------
(0353)        SUBROUTINE LOGX (X, I AX)
(0354)  C
(0355)  C     *** SET OP.THE X VALUES  FOR VISIBILITY PLOTS
(0356)  C
(0357)        DIMENSION X(18)
(0358)  C
(0359)  C
(0360)        DO 10 1=1,16
(0361)            X(I) = ALOGlO(Xd))
(0362)     10 CONTINUE
(0363)  C
(0364)        RETURN
(0365)        END
                        381

-------
(0366)
(0367)
(6368)
(0369)
(0370)
( 037 1 )
(0372)
(0373)
(0374)
(0375)
(0376)
(0377)
(0378)
(0379)
(0380)
(0381)
(0382)
(0383)
(0384)
( 0385 )
(0386)
(0387)
( 0388)
(0389)
(0390)
( 039 1 )
(0392)
(0393)
(0394)
(0395)
(0396)
(0397)
(0398)
(0399)
(0400)
( 040 1 )
(0402)
(0403)
(0404)
(0405)
(0406)
(0407)
( 0408)
(0409)
(0410)
( 04 1 1 )
(0412)
(0413)
(0414)
(0415)
(0416)
(04J7)
(0418)
(0419)
(0420)
( 042 1 )
G
G

C
C
C




















C
C
C

C
C
G


C
G
C





C
G
G








C
C
 SUBROUTINE PLOTIT (FRST.FIN.SCALl,TSTP,ASTP.NDEC,ITITLE.NT,Y)

 *** PLOTS THE SUBPLOTS

 DIMENSION Y( 18,1)
 COMMON /POOL/ XSIZ,YSIZ,CYCSIZ,X(18),INDX,ICI
 COMMON /ITIT1/  ITIT(80),KALCMP, IOBS
 COMMON /NEED/ FINXX.FINYY.FRSTX.FRSTY
 COMMON /WLBL1/ FCTR, DIST,CHRSZ,NCHR,OZLBL
 COMMON /NEED1/ SCTANG(8),IC2,ISTAB,WIND,WDIR
 DATA F1RSTX,FINX,SCALEX,ASTPX,NDECX,TSTPX,ITITLX,NTX/0.,360. ,
 1  .0181,0.,0,45.,1H  .-!/
 CHRSZ=0.07
 NCHR=3
 FCTR*.2
 D1ST*100.
 FRSTX=0.
 FINXX=360.
 FRSTY=FRST
 FINYY=FIN
 XX=FLOAT( INDX)
 YYM.
 CALL  ISOPLT (XX,YY, 1)
 X( 18) = 1./X( 18)

- GO TO LINE  PRINTER NOTING  IF CALCOHP IS  NOT DESIRED

  IF (KALCMP.LE.O)  GO TO 5

 *** DRAW A  FRAME

 CALL  NEVPEN (2)
 CALL  BOX (0.,0.,XSIZ,YSTZ)


 *** RESET PEN AND DRAW X-AXIS TfGKS
 CALL  NEWPEN ( 1)
  IF (10BS.LE.0)
 1CALL  WXAXS(0. ,0.,FIRSTX,FINX,SCALEX,TSTPX,ASTPX.NDECX.O. , ITITLX,
 1  NTX)
  IF (IOBS.GT.O)  CALL LOGTCK(XSIZ,CYCSIZ)

  *** DRAW THE ORDINATE AXIS  AND SET Y SCALING

  IF (ITITLE.EG. 1)  CALL WYAXS (0. ,0. ,FRST,FIN,SCAL1 ,TSTP,ASTP.NDEC,
 1                  90..20HDELTA E              ,20)
  IF ( ITITLE.EQ.2)  CALL WYAXS (0. ,0. ,FRST,FIN,SCAL1 ,TSTP, ASTP.NDEC,
 1                  90.,20HPLUME CONTRAST       ,20)
  IF ( ITITLE.Ed.3)  CALL WYAXS (0. ,0. .FRST.FIN.SCAL1 ,TSTP,ASTP.NDEC,
 1                  90.,20HBLUE-RED RATIO       ,20)
  IF (ITITLE.EQ.4)  CALL WYAXS (0. ,0. ,FRST,FIN,SCAL1 ,TSTP. ASTP.NDEC,
 1                  90.,20HPERCNT VIS REDUCTION ,20)

  *** MASK THE FRAME
                       382

-------
(0422)
(0423)
(0424)
(0425)
(0426)
(0427)
(0428)
(0429)
(0430)
(0431)
(0432)
(0433)
<0434)
(0435)
(0436)
(0437)
(0438)
(0439)
C
C
C
  *** DRAW THE EIGHT CASES VITH SPLINED LABELED LINES

5 DO 20 ICASE=1,1C1
           IC2 =  ICASE
           Y(J8,ICASE)=(FJN-FRST)/YSIZ
           Y( 17, ICASE)=Y( 17, 1)
           FCTR=FLOAT( ICASE)*0.15
           OZLBL=SCTANG( ICASE)
           CALL  CURVE. (X, Y( 1, ICASE) , 16 ,
                                   1,KALCMP,0,0,3.)
   20 CONTINUE
      NCHR=3
      X( 18)«1./X( 18)

      RETURN
      END
                             383

-------
(6446)
(0441)
(0442)
(0443)
(0444)
(0445)
(0446)
(0447)
(0448)
(0449)
(0450)
(045 1)
(0452)
(0453)
(0454)
(0455)
(0456)
(0457)
(0458)
(0459)
(0460)
(0461)
(0462)
(0463)
(0464)
(0465)
(0466)
(0467)
(0468)
(0469)
(0470)
(0471)
(0472)
(0473)
(0474)
(0475)
(0476)
(0477)
(0478)
(0479)
 (0480)
 (0481)
 (0482)
C
C

C
C
C
 C
 G
 SUBROUTINE TITLE(PLAint, ICASE, ISTAB, WIND, WDIR.RNOX, J)

 ***   PLOTS THE TITLE

 DIMENSION ALPHA(2),FIG(2),STAB(2,2)
 COMMON /1TIT1/ ITIT(BO), KALCMP, IOBS
 DATA ALPHA/90.,7.5/
 DATA FIG/1HA,1HB/.JBLANK/1H /
 DATA STAB/4HNEUT.4HRAL .4HSTAB.4HLE  /

 X=-1.0
 y=-e.6
 CALL SYMBOL(X,Y,0.1,8H FIGURE ,0.,8)
 CALL NUMBER(999.,999.,0.1,FLOAT( ICASE),0.,-1)
 DO 1 1=1,60
 X=FLOAT( I-l)*0. 1
1 CALL SYMBOL(X,999.,0.1,ITIT(I),0.,1)
 Xl=999.
 Yl=999.
  DO 2 1-1,20
  IF ( ITIT(H-60).NE.JBLANK  ) GO TO 3
2 CONTINUE                       _
  Xl = 0.
  Yl=Y-0.2
  GO TO 7
3 DO 4 1=1,20
  X=FLOAT(I)*0.1+0.8
4 CALL SYMBOL(X,Y-0.2,0. 1,ITIT( I+60),e.,l>
7 CONTINUE
  CALL SYMBOL(XI,Yl,0. 1, TESTABILITY CLASS  ,0. , 16)
  CALL SYMBOL(999.,999.,0.1,ISTAB,0.,4)
  CALL NUMBER(0.,Y-.4,0.1,WIND,0.,1)
  CALL SYMBOL(999.,999.,0.1,16H H/S WIND  SPEED ,e.,16)
  x»-i.e
  Y=-0.6                    S,
  CALL NUMBER(X+1. .Y-.6.0. 1,WDIR,0.,1>
  CALL SYMBOL(999.,999.,0.1.23H KM VISUAL RANGE       ,0.,23)
  RETURN
       END
                                384

-------
(0483)
(0484)
(0485)
(0486)
(048?)
(0488)
(0489)
(0490)
(0491)
(0492)
(0493)
(0494)
(0495)
(0496)
(0497)
(0498)
(0499)
(0500)
(0501)
(0502)
(0503)
(0504)
C
C

C
C
C
C
C
   SUBROUTINE XAXSTT(XSIZ.SCALEX)

*** ANOTATES X-AXIS

   DIMENSION V(9)
   DATA V/0.,45.,90.,135.,186.,225.,270.,315..360./
   Y0=-0.1
   XO=-SCALEX*45.
   X1=-XO
   DO 10 J=l,9
   XO=XO + XI
   CALL NUMBER (XO,Y0,0.07.V(J),0.,-1)
10 CONTINUE
***  ADD TITLE
   XX=2.46
   CALL SYMBOL

   RETURN
   END
                  (XX,-e.22,e.07,23HAZINUTH ANCLE (DEGREES),0.,23)
                                385

-------
(0505)
(0506)
(0507)
(0508)
(0509)
(0510)
( 05 1 1 )
(0512)
(0513)
(0514)
(0515)
(0516)
(0517)
(0518)
(0519)
(0520)
(0521)
(0522)
(0523)

C
C
C


C




10
C
C
C

C .


SUBROUTINE LOGLBL (XMAX,CYCSIZ,X,IAX)

*** ANNOTATES THE LOGARITHMIC X-AXIS

DIMENSION V(10)
DATA V/l.,2.,4.,6.,18..20.,40.,60.,100.,200.X

Y0=-0.1
DO  10 JM.10
   XO=ALOG10(V(J))*CYCSIZ
   CALL NUMBER( X0,Y0,0.07,V( J),0.,-1)
CONTINUE

*** ADD TITLE

CALL SYMBOL (2.45,-0.22,0.07,22HDOVNWIND DISTANCE  (KM),0.,22)

RETURN
END
                   386

-------
(6524)
(0525)
(0526)
(0527)
(0528)
(0529)
(0530)
(0531)
(0532)
(0533)
(0534)
(0535)
(0536)
(0537)
(0538)
(0539)
(0540)
(0541)
(0542)
(0543)
(0544)
(0545)
(0546)
(0547)
(0548)
(0549)
(0550)
CDECK

C
C
C
C
C
C
C
C
    10
   20
WMJTMX
SUBROUTINE WMNMX (Z,ND1 , NX, HY, ZMIN, ZMAX)

*** RETURNS THE MINIMUM AND MAXIMUM VALUES OF AN ARRAY
        GVL/SAI  DEC 77

DIMENSION Z(ND1,1)

ZMIN = +1.E20
ZMAX - -1.E20

*** GET MISSING VALUE
XXFLG=-999.

DO 20 J=1,NY
    DO 10  1=1,NX
        ZIJ = Z(I,J)

        *** SKIP  IF MISSING DATA
        IF (ZIJ .EQ. XXFLG) GO TO 10
        IF (ZIJ .LT. ZMIN) ZMIN   ZIJ
        IF (ZIJ .GT. ZMAX) ZMAX = ZIJ
    CONTINUE
CONTINUE

RETURN
END
                            387

-------
(6551)
(0552)
(0553)
(0554)
(0555)
(0556)
(0557)
( 0558)
(0559)
(0560)
(0561)
(0562)
(0563)
(0564)
(0565)
(0566)
(0567)
(0568)
CI

C
C
C
C
C
C
C
C





C

*
CDECK
BOX

SUBROUTINE
C
G
C
C
C
C
C
C

***







SIMPLY
CWL/SAI

X,Y
XLEN
YLEN


BOX (X.Y.XLEN.YLEN)

PLOTS A RECTANGLE
DEC 76







COORDINATES III INCHES
WIDTH OF THE BOX
HEIGHT OF THE BOX







OF






LOWER LEFT






CORNER
IN INCHES
IN

INCHES



CALL PLOT (X,Y,3)
CALL PLOT (X,Y+YLEN,2)
CALL PLOT (X+XLEN.Y+YLEN.2)
CALL PLOT (X+XLEN.Y.2)
CALL PLOT 

RETURN
END
               388

-------
(0569)
(0570)
(0571)
(0572)
(0573)
(0574)
(0575)
(0576)
(0577)
(0578)
(0579)
(0580)
(0581)
(0582)
(0583)
(0584)
(0585)
(0586)
(0587)
(0588)
(0589)
(0590)
(0591)
(0592)
(0593)
(0594)
(0595)
(0596)
(0597)
(0598)
(0599)
(0600)
(0601)
(0602)
(0603)
(0604)
(0605)
(0606)
(0607)
(0608)
(0609)
(0610)
( 06 1 1 )
(0612)
(0613)
(0614)
(0615)
(0616)
(0617)
(0618)
(0619)
(0620)
(0621)
(0622)
(0623)
(0624)
CI


c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c

c
c

c
c







c
c









CDECK WXAXS
      SUBROUTINE WXAXS (X,Y,FIRSTV,FIRALV,SCALE,TSTEP,ASTEP,NDEC,ANGLE,
     f     IBCD.NCHAR)

      *** DRAWS AN X (HORIZONTAL) AXIS
              GW LUNDBERG/SAI  FEE 78

          X,Y = COORDINATES  IN INCHES OF AXIS LINE STARTING
                POINT
          FIRSTV = STARTING  VALUE FOR THE AXIS
          FINALV = ENDING VALUE FOR THE AXIS
          SCALE = INCHES/UNIT FOR FIRSTV,FINALV,TSTEP,ASTEP
          TSTEP = STEP SIZE  FOR TICS
          ASTEP = STEP SIZE  FOR LABELED TICS
          NDEC = FORMAT FOR  LABELS — SEE SUBROUTINE NUMBER
          ANGLE = 0  DIVISION LABELS PARALLEL AXIS
                ' 0  DIVISION LABELS ARE NORMAL TO AXIS
          IBCD = THE AXIS TITLE AS ARRAY OR HOLLERITH STRING
          NCEAR = NUMBER OF  CHARACTERS IN TITLE
                < 0, TIC MARKS, ANNOTATION AND TITLE PLOTTED ON
                    CLOCKVISE SIDE OF AXIS LINE
                > 0, ON COUNTER CLOCKWISE SIDE

          THIS ROUTINE WAS WRITTEN FOR A MATRIX PLOTTER — IT DOES
          NOT OPTIMIZE PEN MOVEMENTS.  THE ROUTINE SHOULD BE MACHINE
          INDEPENDENT

      DIMENSION IBCD(l)

      *** FOLLOWING ARE ADJUSTABLE — IF LABEL > 0, ALL TICS ARE
          LABELED,  IF LABEL  = 0, THE LAST TIC IS NOT LABELED,
          IF LABEL < 0, THE  FIRST AND LAST ARE NOT LABELED
      COMMON /WAXES/ LABEL,T.CSIZ, DIGSIZ.CHRSIZ

      *** VERTICAL CHARACTER SPACING
      DATA VSPACE/0.05/

      *** DRAW THE AXIS LINE
      X0 = X
      Y0 * Y
      CALL PLOT (X0.Y0.3)
      NDIGS=0
      AXL = (FINALV-FIRSTV)*SCAL£
      XI * X0 + AXL
      CALL PLOT (XI.Y0.2)

      *** ADD UNLABELEL TICKS
      POS = 1.
      IF CWCHAR .LT. 0) POS  = -1.
      IF (TSTEP -EG. 0.) GO  TO 200
      NTIC = (FINALV-FIRSTV)/TSTEP + 1
      DO 110 J=1,NT1C
          XI * X0 + 
-------
(0625)
(0626)
(0627)
(0628)
(0629)
(0630)
(0631)
(0632)
(0633)
(0634)
(0635)
(0636)
(0637)
(0638)
(0639)
(0640)
(0641)
(0642)
(0643)
(0644)
(0645)
(0646)
(0647)
( 0648)
(0649)
(0650)
(0651)
(0652)
(0653)
(0654)
(0655)
(0656)
(0657)
(0658)
(0659)
(0660)
(0661)
(0662)
(0663)
(0664)
(0665)
(0666)
(0667)
(0668)
(0669)
(0670)
(0671)
(0672)
(0673)
(0674)
(0675)
(0676)


C
C









C
C



'
C

C
C
C






C
C





C
C









C
C


                      GO TO 220
                      0)  GO TO 220
        CALL PLOT (X1.YI.2)
110 CONTINUE

    *** ADD LABELED TICKS
200 IF (ASTEP .EQ. 0) GO TO 300
    MAXDIG = 1
    NTIC = (FINALV-FIRSTV)/ASTEP + 1
    DO 220 JM.NTIC
        XI = XO * (J-1)*ASTEP*SCALE
        Yl « YO
        CALL PLOT (X1.Y1.3)
        Yl = YO - POS*1.4*TICSIZ
        CALL PLOT (X1.Y1.2)

        *** ADD THE LABEL  IF WANTED
        IF (NDEC  .EQ. 999) GO TO 220
        IF (J .EQ. 1  .AND. LABEL .LT. 0)
        IF (J .EQ. NTIC  .AND. LABEL  .LE.
        FPN « FIRSTV  + (J- ')*ASTEP

        IF (ANGLE .EQ. 0.) GO TO 210

        *** NORMAL TO AXIS
            MAXDIG IS USED TO GET TITLE OFFSET
        IF (ND1GS .GT. MAXDIG) MAXDIC = ND1GS
        Yl « Yi + VSPACE
        IF (POS .LT.  0.) Yl = Y0-DIGSIZ*NDIGS-VSPACE+0.3*D1GSIZ
        XI * XI + 0.5*DIGSIZ
        CALL NUMBER  (XI,Yl,DIGSIZ,FPN  ,90.,NDEC)
        GO TO 220

        *** PARALLEL TO  AXIS
210     XI = XI - C  5 *  (NDIGS*DICSIZ - 0.3*DICSIZ)
        Yl * YO * VSPACE
        IF (POS .LT.  0.) Yl = YO - DIGSIZ -  VSPACE
        CALL NUMBER  (XI,Y1,DtGSIZ,FPN  ,0.,NDEC)
220 CONTINUE

    *** ADD TITLE
300  IF (NCHAR  .EQ. 0) GO TO 400
    HSPACE = 0.3*DIGSIZ
     IF (ANCLE  .EQ. 0) HSPACE  * 0.
    OFFSET = MAXDIG»DIGSIZ *  2.6*VSPACE - HSPACE
    Yl =  YO + OFFSET
     IF (POS  .LT.  0.)  Yl  »  YO  - OFFSET  - CHRSIZ
    TSIZ  = CHRSIZ*IABS(NCHAR)
    XI «  X0 + 0.5*(AXL-TSIZ)
    CALL  SYMBOL (XI,Y1,CHRSIZ,IBCD.0.,lABS(NCHAR))

    *** ALL DONE
400 RETURN
    END
390

-------
( 0677)
(0678)
(0679)
(0680)
(0681)
(0682)
(0683)
(0684)
(0685)
(0686)
(0687)
(0688)
(0689)
(0690)
(0691)
(0692)
(0693)
(0694)
(0695)
(0696)
(0697)
(0698)
(0699)
(0700)
(0701)
(0702)
(0703)
(0704)
(0705)
(0706)
(0707)
(0708)
(0709)
(0710)
(0711)
(0712)
(0713)
(0714)
(0715)
(0716)
(0717)
(0718)
(0719)
(0720)
(0721)
(0722)
(0723)
(0724)
(0725)
(0726)
(0727)
( 0728)
(0729)
(0730)
(0731)
(0732)
CI


c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c

c
c

c
c







c
c











c
c
ECK WYAXS
    SUBROUTINE WYAXS (X, Y,FIRSTV,FINALV,SCALE,TSTEP, ASTEP, JTDEC, ANGLE,
   9     IBCD,NCHAR)

    *** DRAWS A Y (VERTICAL) AXIS
            GV LUNDBERG/SAI  FEE 78

        X,Y = COORDINATES  IN INCHES OF AXIS LINE STARTING
              POINT
        FIRSTV - STARTING VALUE FOR THE AXIS
        FINALV = ENDING VALUE FOR THE AXIS
        SCALE = INCHES/UNIT FOR FIRSTV,FINALV,TSTEP,ASTEP
        TSTEP = STEP SIZE FOR TICS
        ASTEP = STEP SIZE FOR LABELED TICS
        NDEC = FORMAT FOR LABELS — SEE SUBROUTINE NUMBER
        ANGLE = 0  DIVISION LABELS PARALLEL AXIS
              ' 0  DIVISION LABELS ARE NORMAL TO AXIS
        IBCD = THE AXIS TITLE AS ARRAY OR HOLLERITH STRING
        NCHAR = NUMBER OF CHARACTERS IN TITLE
              < 0, TIC MARKS, ANNOTATION AND TITLE PLOTTED ON
                  CLOCKWISE SIDE OF AXIS LINE
              > 0, ON COUNTER CLOCKV1SE SIDE

    DIMENSION IBCD(I)

    *** FOLLOWING ARE ADJUSTABLE — IF LABEL > 0, ALL TICS ARE
        LABELED, IF LABEL = 0,  THE LAST TIC IS NOT LABELED,
        IF LABEL < 0, THE FIRST AND LAST ARE NOT LABELED
    COMMON /WAXES/ LABEL, TICSIZ, DIGSIZ, CHRSIZ

    *** CHARACTER VERTICAL SPACING
    DATA VSPACE/0.05/

    *** DRAW THE AXIS LINE
    X0 = X
    Y0 s Y
    NDIGS = 0
    CALL PLOT (X0,YO,3)
    AXL = *SCALE
    YI = Y0 + AXL
    CALL PLOT (X0,Y1,2>

    *** ADD UNLABELED TICKS
    POS = L,
    IF (NCHAR .LT. 0) POS = -1.
    IF (TSTEP .£Gt. 0.) GO TO 200
    NTIC = (FINALV-FI RSTV)/TSTEP + 1
    DO 110 J=1,NT1C
        XI = X0
        Yl = Y0 + (J-1)*TSTEP*SCALE
        CALL PLOT (X1.Y1.3)
        XI = X0 + POS*TICSIZ
        CALL PLOT (X1.Y1.2)
 J10 CONTINUE

    *** ADD LABELED TICKS
                         391

-------
(0733)
(0734)
(0735)
(0736)
(0737)
(0738)
(0739)
(0740)
(0741)
(0742)
(0743)
(0744)
(0745)
(0746)
(0747)
(0748)
(0749)
(0750)
( 075 1 )
(0752)
(0753)
(0754)
(0755)
(0756)
(0757)
(0758)
(0759)
(0760)
(0761)
(0762)
(0763)
(0764)
(0765)
(0766)
(0767)
(0768)
(0769)
(0770)
( 077 1 )
(0772)
(0773)
(0774)
(0775)
(0776)
(0777)
(0778)
(0779)
(0780)
(0781)
(0782)
(0783)
(0784)
(0785)
(0786)









C
C









C

C
C
C







C
C





C
C









C
C


200 IF (ASTEP .EG. 6) GO TO 300
    MAXDIG = 1
    NT1C = (FINALV-FIRSTV)/ASTEP +  1
    DO 220 J=1,NTIC
        xi * xe
        Yl = Y0 + (J-1)*ASTEP*SCALE
        CALL PLOT (Xl.Yl.S)
        XI = XO + POS*1.4*TICSIZ
        CAUL PLOT (X1.Y1.2)

        *** ADD THE LABEL  IF VANTED
        IF (NDEC  .EQ. 999) GO TO 220
        IF (J .Ed. 1 .AND. LABEL .LT. 0) GO TO 220
        IF (J .EQ. NTIC  .AND. LABEL .LE. 0) GO TO 220
        FPN = FIRSTV + (J-1)*ASTEP
        NDIGS = NDEC + 2
        IF (ABS(FPN).CT.1.0E-5)
    1    NDIGS=IFIX(ALOG10(ABS(FPN))+.001)+NDEC+2
        IF (FPN.LT.0.) NDIGS =  NDICS  +  1
        IF (FPN. LT.-. 00000 LAND. ABS( FPN) .LT.0. 1) NDI GS= NDIGS+1

        IF (ANGLE .EQ. 0.) GO TO 210

        *** NORMAL TO  AXIS           _
            MAXDIG  IS  USED TO GET  TITLE OFFSET — SEE  300+1
        IF (NDIGS .CT. MAXDIG)  MAXDIG = NDIGS
         XI
XO
 210
                  VSPACE
        IF (POS .GT. 0.) XI = XO-D1GSIZ*NDICS-VSPACE+0.3*DICSIZ
        IF (FPN .GT. 0..AND.FIRSTV.LT.0.) XI = Xl-DIGSIZ
        Yl = Yl - 0.5*DIGSIZ
        CALL NUMBER (XI,Yl,DIGSIZ,FPN ,0.,NDEC)
        GO TO 220

        *** PARALLEL TO AXIS
        XI * XO - VSPACE
        IF (POS .LT. 0.) XI = X0 +SDIGS1Z + VSPACE
        Yl = Yl - 0.5 * (NDIGS*DIGSIZ - 0.3*DIGSIZ)
        CALL NUMBER (XI.Yl.DICSIZ.FPN ,90.,NDEC)
220 CONTINUE

    *** ADD TITLE
300 IF (NCBAR .EQ. 0) GO TO 400
    HSPACE = 0.3*DIGSIZ
    IF (ANGLE .EQ. 0.) B5PACE = 0.
    OFFSET = MAXDIG*DIGSIZ + 2.6*VSPACE - HSPACE
    XI = XO - OFFSET
    IF (POS .LT. 0.) XI = X0 + OFFSET + CBBSIZ
    TSIZ = CHRSIZ*IABS(NCHAR)
    Yl = Y0 + 0.5*(AXL-TSIZ)
    CALL SYMBOL ( XI,Yl.CHRSIZ,IBCD.90.,lABS(NCHAR))

    *** ALL DONE
400 RETURN
    END
                       392

-------
(0787)
(0788)
(C789)
(0790)
(0791)
(0792)
(0793)
(0794)
(0795)
(0796)
(0797)
(0798)
(0799)
(0800)
(0801)
(0802)
(0803)
(0804)
(0805)
(0806)
(0807)
(0808)
(0809)
(0810)
(0811)
CDECK PLTAX
      SUBROUTINE PLTAX (CHRSZ,DIGSZ,TICSZ,ENDS)
C
      *** CHANGES DEFAULT AXES, FRAME, WXAXS, WYAXS ATTRIBUTES
              CVL/SAI  APRIL 78
          CHRSZ      AXIS TITLE CHARACTER HEIGHT IN INCHES
          DIGSZ      HEIGHT OF NUMERIC LABELS IN INCHES
          TICSZ      TIC SIZE
          ENDS = 0.  FIRST AND LAST DIVISIONS ARE UNLABELED
               = I.  LAST DIVISION IS UNLABELED
               = 2.  FIRST AND LAST DIVISIONS ARE LABELED
      COMMON /WAXES/ LABEL,TICSIZ, DIGSIZ, CHRSIZ
      IF (CHRSZ .NE. 999.
      IF (DIGSZ .NE. 999.
      IF (TICSZ .NE. 999.
      IF (ENDS .EQ. 999.)
      LABEL = -1
      IF (ENDS .Ed. 1.) LABEL =
      IF (ENDS .EQ. 2.) LABEL =

      RETURN
      END
.AND.  CHRSZ .NE.  0.)
.AND.  DIGSZ .NE.  0.)
.AND.  TICSZ .NE.  0.)
RETURN
CHRSIZ = CHRSZ
DIGSIZ = DIGSZ
TICSIZ = TICSZ
                                 393

-------
(0812)
(0813)
(0814)
(0815)
(0816)
(0817)
(0818)
(0819)
(0820)
( 082 1 )
(0822)
(0823)
(0824)
(0825)
(0826)
(0827)
(0828)
(0829)
(0830)
( 083 1 )
(0832)
(0833)
(0834)
(0835)
(0836)
(0837)
( 0338)
(0839)
(0840)
(0841)
(0842)
(0843)
(0844)
(0845)
(0846)
(0847)
( 0848)
(0849)
(0850)
( 085 1 )
(0852)
(0853)
(0854)
(0855)
(0856)
(0857)
(0858)
(0859)
(0860)
( 086 1 )
(0862)
(0863)
(0864)
(0865)
(0866)
(0867)


C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C





C

C
C
C
C
C
C
C







C


C
C

C
C
C
C
C



C
 SUBROUTINE CURVE (XARRAY,YARRAY,FPTS,INC.KALCMP,LINTYP,INTEQ,SIGMA
1)

 *** PURPOSE — PLOTS A SMOOTH CURVE THROUGH THE DATA VALUES FROM T
     CW LUNDBERG.SAI   JULY  77

      MODIFIED BY H HOGO AUG 1977

     XARRAY  ARRAY CONTAINING X VALUES
     YARRAY  ARRAY CONTIANING Y VALUES
     NPTS    NUMBER OF DATA POINTS IN THE ARRAYS ACTUALLY USED
            ) 0  SCALING AT TOP OF ARRAYS
     INC     EVERY INC POINT WILL BE USED
     LINTYP  PLOT SPECIAL SYMBOL EVERY LINTYP POINT
            ) e  CONNECTED SYMBOL PLOT
            = 8  LINE PLOT
            ( e  IT. CONNECTED SYMBOL PLOT
     1NTEQ   INTEGER EQUIVALENT OF SPECIAL SYMBOL
     THIS ROUTINE CALLS  SYMBOL, PLOT, KURVl AND KURV2
 COMMON /WLBL1/ FCTR,DIST,CHRS7-NCHR.OZLBL
 COMMON /HOUR/ OZR.NGG.TM
 COMMON /NEED/ HC,Xfl,HCF,XNF
 DIMENSION XARRAY(l). YARRAYC 1) , XH50), YK50), XP(50)
1MP(50)

 DATA NSLOPE/0/,SLOPE1,SLOPEN/0.,8./
 *** LOCATE SCALING (FIRSTV AND DELTAV) FOR EACH ARRAY
 *** SCALING  IN TOP OF ARRAYS — CALCOMP STANDARD
 N=NFTS*1NC+1
 FIRSTX=XARRAY(N)
 FIRSTY=YARRAY(N)
 N=N+INC
 DELTAX= XARRAY( N)
 DELTAY=YARRAY(N)
  1X1 = 0

 NUM=IABS(NPTS)
  IF (KALCMP.LE.0)  CO  TO  10

 *** CHECK IF SYMBOL  PLOT WANTED —-  LINTYP  ()  0
  IF (LINTYP.Ett.0)  GO  TO  10

 *** CENTERED SYMBOL  PLOT
YP(50). TE
  *** SCALE FIRST DATA POINT AND PLOT CENTERED SYMBOL
  X= (XARRAY( 1)-FIRSTX)/DELTAX
  Y= ( YARRAYC1)-FIRSTY)/DELTAY
  CALL SYMBOL (X,Yr0. 1, INTEQ.0. ,-1)
                        394

-------
(6866)
(6869)
(0870)
( 087 1 )
(0872)
(0873)
(0874)
(0875)
(0876)
(0877)
( 0878)
(0879)
(0880)
(0881)
(0882)
(0883)
(0884)
(0385)
(0886)
(0887)
(0888)
(0889)
(0890)
(0891)
(0892)
(0893)
(0894)
(0895)
(0896)
(0897)
(0898)
(0899)
(0900)
(0901)
(0902)
(0903)
(0904)
(0905)
(0906)
(0907)
(0908)
(0909)
(0910)
( 09 1 1 )
(0912)
(0913)
(0914)
(0915)
(0916)
(0917)
(0918)
(0919)
(6920)
(0921)
(0922)
(0923)
C


C







C
C

C
C
C
C
C


C
C
C






C

C
C


C
C














C
C


   *** PLOT REMAINIRC
   MARK=IABS(LINTYP)
   N=l
SYMBOLS AT INCREMENTS OF MARK
   DO 5 J=2.NUM
   N=N+INC
   IF (MOD(N.MARK).NE.O) GO TO 5
   X=(XARRAY(N)-FIRSTX)/DELTAX
   Y=(YARRAY( N)-FIRSTY)/DELTAY
   CALL SYMBOL (X,Y,0. 1,INTEQ,0.,-1)
   CONTINUE

   *** IF THE SYMBOLS ARE NOT TO BE CONNECTED, RETURN
   IF (LINTYP.LT.O)  GO TO 30

   *** LINE PLOT (OR CONNECT SYMBOLS)
   *** SCALE FIRST DATA POINT AND MOVE PEN THERE
10 XI(1)=(XARRAY(1)-FIRSTX)/DELTAX
   YI(1)=( YARRAY( 1) -F I RSTY) /DELTAY
   *** SCALE THE REMAINING POINTS
   N=l
   DO 15 J=2,NUM
   N=N+INC
   XI (J) = (XARRAY(N)-FIRSTX)/DELTAX
   YI (J) = (YARRAY(N)-FIRSTY)/DELTAY
15 CONTINUE

   NSLP=NSLOPE
   *** CHECK IF PERIODIC
   IF (ABS(XI(NUM)-XH 1)).LT.0.01
  I  NSLP=-I
            AND.ABS(YI(NUM)-YI( 1)) .LT.0.01)
   *** SET UP SPLINE INTERPOLATION
   NSLP=1
   SLOPE1 = 57.29578*ATAN( (YI(1)-YI (2))/(XI(1)-XI(2)))
   IF (SLOP.E1.GT.O.)  SLOPE1=SLOPE1-180.
   SLOPE1=AMIN1(SLOPE1,-90.)
   SLOPEN=28.64789*ATAN((YI ( N)-YI(N-1))/(XI (N) -XI (N-1); )
   CALL KURV1 (NUM,XI,YI,NSLP,SLOPE1,SLOPEN,XP,YP,TEMP,S,SIGMA)
   CALL KURV2 (0.,X,Y,RUM,XI,YI,XP,YP,S,SIGMA)
   X=AMAX1(HCF,X)
   Y=AMAX1(XNF,Y)
   USX= X*DELTAX+FIRSTX
   USY= Y*DELTAY+FIRSTY
   TM=1.
   CALL ISOPLT (USX,USY,2)
   TM=2.
   *** LINE SEGMENTS VILL BE A TENTH
   NP=10.*S-H
   CONST*1./NP
               INCH LONG — S IS THE ARCLENCTH
                      395

-------
(9924)
(0925)
(0926)
(0927)
(0928)
(0929)
(0930)
(0931)
(0932)
(0933)
(0934)
(0935)
(0936)
(0937)
(0938)
(0939)
(0940)
(0941)
(0942)
(0943)
(0944)
(0945)
(0946)
(0947)
(0948)
(0949)
(0950)
C
C
      DIST=S
      IF (KALCMP.LE.O) GO TO 20
      IF (USX.GT.HC.OR.USY.GT.XN)
      CALL WLBLF (XI( 1) , YK 1) , 1)
                               1X1=1
   *** MAP AND PLOT SEGMENTS
20 DO 25 JM.NP
   T=-J*CONST
   CALL KURV2 (T,X, Y,NUM, XI ,YI ,XP,YP,S, SIGMA)
   X=AMAXHHCF,X)
   Y=AMAX1(XNF,Y)
   USX= X*DELTAX+F I RSTX
   USY= Y*DELTAY+F I RSTY
   CALL 1SOPLT (USX,USY,2)
   IF (KALCMP.LE.O) GO TO 25
   IF (USX.LE.HC.AND.USY.LE.XN) GO TO 24
   IF (IX1.GT.O) CALL WLBLF (X,Y, 1)
   GO TO 25
24

25
      CALL WLBLF  (X,Y,2)
      CONTINUE
       IF  (KALCMP.LE.O)  GO  TO 30
      CALL WLBLF  (0. ,0. ,3)
    30  RETURN

       END  .
                         396

-------
(0951)
(0952)
(0953)
(0954)
(0955)
(0956)
(0957)
(0958)
(0959)
(0960)
(0961)
(0962)
(0963)
(0964)
(0965)
(0966)
(0967)
(0968)
(0969)
(0970)
(0971)
(0972)
(0973)
(0974)
(0975)
(0976)
(0977)
(0978)
(0979)
(0980)
(0981)
(0982)
(0983)
(0984)
(0985)
(0986)
(0987)
(0988)
(0989)
(0990)
(0991)
(0992)
(0993)
(0994)
(0995)
(0996)
(0997)
(0998)
(0999)
( 1000)
( 1001)
( 1002)
( 1003)
( 1004)
( 1005)
( 1006)

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C


C
C

C
C

C
C

C
C

C
C
C


C
C
C
C
C



C
C
     6UBROUTI RE WLBLF (X2, Y2, I ENTRY)

     *** SETS A LINE LABEL INTO A VECTOR PLOT PROVIDING THAT
         A CALL TO SUBROUTINE PLTLBL EAS PRESET THE NECESSARY
         PARAMETERS IN /WLBL1/
             GW LUNDBERG/SAI  DEC 177

     X2,Y2    THE TERMINAL POINT OF THE CURRENT VECTOR
              IN INCHES FROM PRESENT PLOT ORIGIN

     *** NOTES —
         ( 1)  THERE ARE THREE ENTRY POINTS — WLBLF SETS UP THE
             PARAMETERS FOR WLBL1C WHICH ACTUALLY DOES THE L.ABEL INC.
             WLBL1L CLEANS  UP  IN CASE THERE WAS NOT ENOUGH
             ROOM FOR THE LAST LABEL
         (2)  THE LABELS ARE  SEPERATED BY DIST INCHES EXCEPT FOR
             THE FIRST LABEL WHICH STARTS FACT*DIST INCHES FROM
             THE BEGINNING OF THE VECTOR PLOT —THIS PROVIDES FOR
             STAGGERED LABELS.

     DIMENSION XSV(20), YSV(20)

     *** DIST IS THE DISTANCE IN INCHES BETWEEN LABELS.  FACT
         IS THE FACTOR (0-1)  OF DIST TO USE FOR THE FIRST LABEL.
         CHRSZ IS THE SIZE OF THE LABEL CHARACTERS IN INCHES.
         NCHR IS THE NUMBER OF  CHARACTERS (0-10),  AND LABEL
         IS THE A-FORMATED TEXT OF THE LABEL
     COMMON /WLBL1/ FACT,DIST,CHRSZ,NCHR,OZL
     DATA MXSV/20/

     EMULATE MULTIPLE ENTRY  WITH COMPUTED GO TO
     GO TO (1000,2000,3000),IENTRY

     MAIN ENTRY POINT
1000 CONTINUE

     *** MOVE THE PEN TO  THE FIRST POINT
     CALL PLOT (X2,Y2,3)

     *** IF THERE ARE TO  BE  NO   .ABELS ~ JUST RETURN
     IF (NCHR.EQ.0)  RETURN

     *** SET UP THE OFFSET NECESSARY TO CENTER THE LABEL AND
         THE DISTANCE REQUIRED  BY THE LABEL
     OFF=CHRSZ/2.
     SZLBL= NCHR*CHRSZ+2.*OFF-0.3*CHRSZ

     *** INITALIZE THE ACCUMULATED LENGTH OF THE VECTORS,  THE
         LENGTH REQUIRED  BEFORE FIRST LABEL,  AND THE NUMBER
         OF SAVED POINTS  (VECTORS)  THAT MAY HAVE BEEN PREEMPTED
         BY THE LABEL
     TOTSZ=0.
     SKPSZ=FACT*DIST
     NSV=0

     *** REMEMBER THE STARTING  LOCATION OF FIRST VECTOR
                       397

-------
( 1007)
( 1008)
( 1009)
( 1010)
( 1011)
( 1012)
( 1013)
( 1014)
( 1015)
( 1016)
( 1017)
( 1016)
( 1019)
( 1020)
( 1021)
( 1022)
( 1023)
( 1024)
( 1025)
( 1026)
( 1027)
( 1028)
( 1029)
( 1030)
( 1031)
( 1032)
( 1033)
( 1034)
( 1035)
( 1036)
( 1037)
( 1038)
( 1039)
( 1040)
( 1041)
( 1042)
( 1043)
( 1044)
( 1045)
( 1046)
( 1047)
( 1048)
( 1049)
( 1050)
( 1051)
( 1052)
( 1053)
( 1054)
( 1055)
(1056)
( 1057)
( 1058)
( 1059)
( 1060)
( 1061)
( 1062)


C

C
C*
C
C*
C
2
C
C



C
C

C
C
C
C







C
C



C
C



C
C
C



C
C






C
C
C
      RETURN
                   ENTRY WLBL1C
Cxxxuxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 2000 CONTINUE
                                LABELS — PLOT THE VECTOR AND RETURN
  ***  IF THERE  ARE TO  BE NO
  IF (NCHR.GT.0)  GO TO 5
  CALL PLOT (X2.Y2.2)
  RETURN

  ***  IF SEEKING  ROOM  FOR THE LABEL ~  SKIP FOLLOWING
 5 IF (NSV.GT.0) CO TO  15

  xxx  CALCULATE THIS VECTOR LENGTH AND  ADD TO THE ACCUMULATED
       LENGTH.   IF A LABEL IS TO START IN THIS VECTOR, SKIP TO
       120,  ELSE PLOT THE VECTOR AND RETURN
  VECSZ=SQRT((X2-X1)**2+< Y2-Y1: **2)
  TOTSZ= TOTSZ+VECSZ
  IF (TOTSZ.CT.SKPSZ)  GO TO 10
  CALL PLOT (X2.Y2.2)
  X1 = X2

  RETURN

  ***  ITS  TIME  FOR A LABEL ~ LOCATE START
10 RATI0= (VECSZ-TOTSZ+SKPSZ)/VECSZ
  XIL=XI+RAT10*(X2-X1)
  Y1L=YH-RAT10*(Y2-Y1)

  ***  PLOT SUBVECTOR AND REMEMBER THE END POINT
  CALL PLOT (X1L,Y1L,2)
  X1 = XIL
  Y1=Y1L

   *** FIND OUT IF THERE IS ENOUGH ROOM LEFT IN THIS VECTOR
       FOR THE LABEL ~  IF THERE ISNT, SAVE (X2.Y2) AND RETURN
 15 HAVSZ=SQRT( (X2-X1L)**2-K Y2-Y1L)**2)
   IF (HAVSZ.CE.SZLBL)  GO TO 26
   NSV=NSV+1

   *** CHECK FOR OVERFLOW
   IF (NSV.CT.MXSV) STOP
   XSV(NSV)=X2
   YSV(NSV)=Y2
   X1 = X2
   Y1 = Y2
   RETURN

   *** CALCULATE THE END OF THE LABEL
        IM SURE THERE IS AN EASIER WAY TO DO THIS, BUT IT
                           398

-------
( 1863)
( 1064)
( 1065)
( 1066)
( 1067)
( 1068)
( 1069)
( 1070)
( 1071)
( 1072)
< 1073)
( 1074)
( 1075)
( 1076)
( 1077)
( 1078)
( 1079)
( 1080)
( 1081)
( 1082)
( 1083)
( 1084)
( 1085)
( 1086)
( 1087)
( 1088)
( 1089)
( 1090)
(1091)
( 1092)
( 1093)
( 1094)
( 1095)
( 1096)
( 1097)
( 1098)
( 1099)
( 1100)
( 1101)
( 1102)
( 1103)
( 1104)
( 1105)
( 1106)
( 1107)
( 1108)
( 1109)
( 1110)
(1111)
( 1112)
( 1113)
( 1114)
( 1115)
( 1116)
(1117)
( 1118)
C



C



C
C



C
C


C
C




C




C
C








C
C




C
C







C
C
C
20
    ESCAPES ME
A=(X2-X1)**2+ ( Y2-Y1)**2
B=-2*<(X1L-X1)*(X2-XI)+ (Y1L-Y1)*(Y2-Y1))
C=(X1L-X1)**2+(Y1L-Y1)**2-SZLBL*SZLBL

SQRTD=SQRT( B*B-4*A*C)
Tl = (-B+SQRTD)/(2*A)
T2=(-B-SQRTD)/(2*A)
*** PICK THE MINIMUM T BETWEEN
IF (Tl.LT.O.) TIM.
IF (T2.LT.O.) T2M.
RATIO=AMIN1(T1,T2)

*** SET LABEL END POINT
X2L=X1+RATIO*(X2-X1)
Y2L=Y1 + RATIO*( Y2-Y1)

*** CALCULATE LABEL ANGLE
DX=X2L-X1L
DY=Y2L-Y1L
ANG=0.
IF (DY.NE.O.) ANG=ATAN2(DY,DX)

XL=X1L
YL=Y1L
COSA=COS(ANG)
SINA=SIN(ANG)
                                   0-1  (MUST BE ONE)
*** REVERSE EVERYTHING
IF (DX.GE.O.) GO TO 25
XL=X2L
YL=Y2L
COSA=-COSA
SINA=-SINA
IF (DY.GE.O
                          IF ANGLE  IN QUADRANTS 2  OR 3
   IF (DY.LT.0
)  ANG=ANG-3.1415926536
)  ANG=ANG+3.1415926536
25 ANGD=ANG*180./3.1415926536

   *** LOCATE AND PLOT LABEL
   XL= XL+OFF*COSA+OFF*SINA
   YL= YtH-OFF*S IN A-OFF*COSA
   IDG=NCHR-2
   CALL NUMBER (XL,YL,CHRSZ,OZL,ANGD,IDG)

   *** FINISH OFF THIS SEGMENT BY MEANS OF A PSUEDO  REENTRY
   TOTSZ=0.
   SKPSZ=DIST
   RSV=0
   X1=X2L
   Y1=Y2L
   CALL PLOT (X1.Y1.3)
   CO TO 5
               ENTRY WLBL1L
                  399

-------
( 1119)
( 1120)
( 1121)
( 1122)
( 1123)
( 1124)
( 1125)
( 1126)
( 1 127)
( 1128)
( 1129)
( 1130)
( 1131)
C*=
C
***:

3000
C
C






C






30




CONTINUE

*** PLOT THE SAVED VECTORS IF ANY
IF (NSV.EQ.O) RETURN
DO 30 1=1,
CALL PLOT
CONTINUE
NSV=0
RETURN

END
NSV
(XSV( I) ,YSV( I) ,2)
   400

-------
( 1132)
( 1133)
( 1134)
( 1 135)
(1136)
( 1137)
( 1138)
(1139)
(1140)
(1141)
( 1142)
( 1143)
( 1144)
( 1145)
( 1 146)
( 1147)
( 1148)
(1149)
( 1150)
( 1151)
( 1152)
( 1153)
( 1154)
( 1155)
( 1156)
( 1157)
( 1158)
( 1159)
( 1160)
( 1161)
( 1162)
( 1163)
( 1164)
( 1165)
( 1166)
( 1167)
( 1168)
(1169)
( 1170)
( 1171)
( 1172)
( 1173)
( 1174)
( 1175)
( H76)
( 1177)
( 1178)
( 1179)
( 1180)
( 1181)
( 1182)
(1183)
( 1184)
( 1185)
( 1186)
(1187)


C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C











 SUBROUTINE KURV1  (NPTS,X,Y,NSLOPE,SLOPE 1,SLOPEN,XP,YP,TEMP,S,SIGMA
1)

THIS SUBROUTINE DETERMINES THE PARAMETERS  NECESSARY TO
COMPUTE AN SPLINE  UNDER TENSION PASSING THROUGH A SEQUENCE
OF PAIRS (X(1),Y(1)	X(N),Y(N))  IN THE PLANE,  THE
SLOPES AT THE TWO  ENDS OF THE CURVE  MAY BE SPECIFIED OR
OMITTED, FOR ACTUAL COMPUTATION OF POINTS  ON  THE CURVE IT
IS NECESSARY TO CALL THE SUBROUTINE  KURV2.

ON INPUT —
NPTS = THE NUMBER  OF POINTS TO BE INTERPOLATED  (N.GE.2),
X = AH ARRAY CONTAINING THE N X-COORDINATES OF  THE
    POINTS,
Y = AN ARRAY CONTAIING THE N Y-COODINATES  OF  THE
    POINTS,
NSLOPE = A FLAG FOR ENDPOINT SLOPES.  IF \ 0, THIS IS A CLOSED
    LOOP AND NO SLOPES ARE GIVEN.  IF = 6,  THIS  IS AN OPEN CURVE
    AND NO SLOPES  ARE GIVEN.  IF ) 0, BOTH ENDPOINT SLOPES ARE
    GIVEN
SLOPE 1,SLOPEN = THE DESIRED VALUES FOR THE SLOPE
    OF THE CURVE AT (X(I),Y(1>)  AND  (X(N),Y(N)), RESPEC-
    TIVELY.  THESE QUANTITIES ARE IN DEGREES  AND MEASURED
    COUNTER CLOCKWISE FROM THE POSITIVE X-AXIS.  THE  POSITIVE
    SENSE OF THE CURVE IS ASSUMED TO BE THAT  MOVING FROM THE
    POINT 1 TO POINT N.
XP.YP -  ARRAYS OF LENGTH AT LEAST N,
TEMP = AN ARRAY OF LENGTH AT LEAST N WHICH  IS USED FOR
    SCRATCH STORAGE,
SIGMA =  THE TENSION FACTOR.   THIS IS NON-ZERO AND
    INDICATES THE CURVINESS DESIRED.
    LARGE (E.G. 50.)
    POLYGONAL LINE.
                 IF SIGMA IS VERY
THE RESULTING CURVE IS VERY NEARLY A
A STANDARD VALUE FOR SIGMA IS 1.
ON OUTPUT -
N, X,Y, SLOPE 1, SLOPEN, AND SIGMA ARE UNALTERED,
XP.YF CONTAIN INFORMATION ABOUT THE CURVATURE OF THE
    CURVE AT THE GIVEN NODE,
S = THE POLYGONAL ARCLENGTH OF THE CURVE.

 *** AK CLINE, COMM. ACM 17, 4( 'PR. 1974) ,  221
     MODIFIED BY GW LUNDBERG/SAl  MAY  177

 DIMENSION X( NPTS) ,  Y(NPTS), XP(NPTS). YP(NPTS) .  TEMP(NPTS)

 DATA EXPMAX/87.4/
 TEMAX=-9999.
 DEGRAD=3. 1415926/150.
 N=NPTS
 SLP1= SLOPE 1
 SLPN= SLOPEN
 RP1=N+1
 DELX1 = X(2)-X( 1)
 DELY1 = Y(2)-Y( 1)
 DELS 1 = SQRT( DELXl *DELX1+DELY1*DELY1 )
                      401

-------
( 1188)
(1189)
(1190)
( 1191)
( 1192)
( 1193)
( 1194)
( 1195)
( 1196)
( 1197)
( 1198)
( 1199)
( 1200)
(1201)
( 1202)
( 1203)
( 1204)
(1205)
( 1206)
( 1207)
( 1208)
( 1209)
(1210)
( 1211)
( 1212)
( 1213)
( 1214)
( 1215)
( 1216)
( 1217)
(1218)
( 1219)
( 1220)
(1221)
( 1222)
( 1223)
( 1224)
( 1225)
( 1226)
( 1227)
( 1228)
( 1229)
( 1230)
(1231)
( 1232)
( 1233)
( 1234)
( 1235)
( 1236)
( 1237)
( 1238)
( 1239)
( 1240)
(1241)
( 1242)
( 1243)


C
C



C
C
C




















C
C




C
C








C
C








   DX1=DELX1/DELS1
   DY1«DELY1/DELS1

    *** DETERMINE SLOPES IF NECESSARY
   IF (NSLOPE)  55,45,5
 5  SLPP1=SLP1*DEGRAD
   SLPPN= SLPN*DEGRAD

   *** SET UP RIGHT HAND SIDES OF TRIDIAGONAL LINEAR SYSTEM FOR
       XP AND YP
19  XP(1)=DX1-COS(SLPP1)
   YP( 1)=DY1-SIN(SLPP1)
   TEMP(1)=DELS1
   S=DELS1
   IF (N.EQ.2)  CO TO 20
   DO 15 1=2,NM1
   DELX2=X( I+1)-X( I)
   DELY2=Y( I+1)-Y( I)
   DELS2=SQRT( DELX2*DELX2+DELY2*DELY2)
   DX2=DELX2/DELS2
   DY2=DELY2/DELS2
   XP(I)=DX2-DX1
   YP(I)=DY2-DY1
   TEMP(I) = DELS2
   TEMAX=AMAX1(TEMAX,TEMP( I))
   DELX1=DELX2
   DELY1=DELY2
   DELS1=DELS2
   DX1=DX2
   DY1=DY2

   *** ACCUMULATE POLYGONAL ARCLENGTH
   S=S+DELS1
 15 CONTINUE
20 XP(N)=COS(SLPPN)-DX1
   YP(N)=S1N(SLPPN)-DY1

   *** DENORMALIZE  TENSION FACTOR  S
   SIGMAP=ABS(SIGMA)*FLOAT(N-1)/S
   DELT1 = SIGMAP*TEMAX
    IF (DELT1.LT.EXPMAX) GO TO 25
   SICMAP= 8.9*EXPMAX/TEMAX
   SGN=1.0
    IF (SIGMA.LT.B.) SGN=-1.8
   SIGMA= SIGMAP*SGN*S/FLOAT(N-1)
 25 CONTINUE

   *** PERFORM  FORWARD  ELIMINATION ON  TRIDIAGONAL SYSTEM
   DELS=SIGMAP*TEMP( 1)
   EXPS=EXP(DELS)
   SINHS=.5*(EXPS-1./EXPS)
   SINHIN=1./(TEMP(1)*SINHS)
   DIAG1 = SINHIN*(DELS*.5*( EXPS+1./EXPS)-SINHS)
   DIAGIN-1./DIAG1
   XP(l)sDIACIN*XP(l)
   YP(1)=DIAGIN*YP( 1)
                      402

-------
( 1244)
( 1245)
( 1246)
( 1247)
( 1248)
( 1249)
( 1250)
(1251)
( 1252)
( 1253)
( 1254)
( 1255)
( 1256)
( 1257)
( 1258)
( 1259)
( 1260)
( 1261)
( 1262)
( 1263)
( 1264)
( J265)
( 1266)
( 1267)
( 1268)
( 1269)
( 1270)
( 1271)
( 1272)
( 1273)
( 1274)
( 1275)
( 1276)
( 1277)
( 1278)
( 1279)
( 1280)
( 1281)
( 1282)
( 1283)
( 1284)
( 1285)
( 1286)
( 1287)
( 1288)
( 1289)
( 1290)
( 1291)
( 1292)
( 1293)
( 1294)
(1295)
( 1296)
( 1297)
( 1298)
( 1299)















30
35


C
C




40

45
C
C
C


















C
C
C
50



SPDIAG=SINHIN*(SINES-DELS)
TEMP(1)=DJAGIN*SPD1AG
IF (N.EQ.2) GO TO 35
DO 30 1=2,NMl
DELS=SIGMAP*TEMP( I)
EXPS=EXP(DELS)
SINHS=.5*(EXPS-1./EXPS)
SINH1N=1./(TEMP(I)*SINHS)
DIAG2=SINHIN*(DELS*( . 5*( EXPS+1. /EXPS)) -SINES)
DIAGIN=1./(D1AG1+DIAC2-SPDIAG*TEMP( 1-1))
XP( I)=DIAGIN*(XP( I)-SPDIAG*XP( 1-1))
YP(I)=DIACIN*(YP(I)-SPDIAG*YP(1-1))
SFDIAG=SINHIN*(SINES-DELS)
TEMP( I)=DIAGIN*SPDIAG
DIAG1=DIAG2
CONTINUE
DIAGIN=I./(DIAGI-SPDIAG*TEMP(NM1))
XP(N)=DIAGIN*(XP(N)-SPDIAG*XP(NM1))
YP(N)=DIAGIN*(YP(N)-SPDIAG*YP(NM1))

*** PERFORM BACK SUBSTITUTION
DO 40 1=2,N
IBAK=NP1-I
XP( IBAK)=XP( IBAK)-TEMP(
YP( IBAK)=YP(IBAK)-TEMP(
CONTINUE
RETURN
IF (N.EQ.2) GO TO 50

*** IF NO SLOPES ARE GIVEN, USE SECOND ORDER INTERPOLATION ON
    INPUT DATA FOR SLOPES AT EflDPOINTS
DELS2=SQRT( (X( 3) -X( 2)) **2+( Y( 3) -Y( 2) ) **2)
DELS 12=DELS 1+DELS2
C1 = -(DELS 12+DELS 1)/DELS 12/DELS1
C2= DELS12/DELS1/DELS2
C3=-DELS1/DELS 12/DELS2
SX=C1*X< 1)+C2*X(2)+C3*X(3)
SY=C1*V( l)*C2*Y(2)+C3*y(3)
SLPP1 = ATAN2( SY,SX)
DELNM1 = SQRT((X( N-2)-X(NMl))**2+( Y( N-2)-Y( NMl))**2)
DELN=SQRT( (X( NMl) -X( N)) **2+ ( Y( NMl) -Y< N)) **2)
DELNN=DELNM1+DELN
C1=(DELNN+DELN)/DELNN/DELN
C2=-DELNN/DELN/DELNM1
C3=DELN/DELNN/DELNM1
SX=C3*X( N-2) +C2*X( NMl) *C1*X( N)
SY=C3*Y( N-2) +C2*Y( NMl) +C 1*Y( N)
SLPPN=ATAH2(SY,SX)
GO TO 10
IBAK)*XP( IBAK+1)
IBAK)*XP( IBAK-H)
*** IF ONLY TWO POINTS AND NO
    LINE SEGMENT FOR CURVE
XP(1)=0.
XP(2)=0.
YP(1)=0.
YP(2)=0.
       SLOPES ARE GIVEN, USE STRAIGHT
                403

-------
(1300)
(1301)
(1302)
(1303)
(1304)
(1305)
(1306)
(1307)
(1308)
(1309)
(1310)
(1311)
(1312)
(1313)
(1314)
(1315)
C
C
C
   RETURN

   *** CLOSED LOOP — PERIODIC SPLINE ~ CALCULATE SLOPES
       FOR JOIN
55 DELN=SQRT((X( NM1)-X(N))**2+(Y(NM1)-Y(N))**2)
   DELNN=DELS1+DELN
   C1 = -DELS 1/DELN/DELNN
   C2=(DELS 1-DELN)/DELS 1/DELN
   C3= DELN/DELNN/DELS1
   SX=C1*X(NM1)+C2*X< 1)+C3*X(2)
   SY=C1*Y(NM1)+C2*Y( 1)+C3*Y(2)
   IF (SX.EQ.O..AND.SY.EQ.O.) SX=1
   SLPP1 = ATAN2(SY,SX)
   SLPPN=SLPP1
   GO TO 10
   END
                             404

-------
( 1316)
( 1317)
( 1318)
( 1319)
( 1320)
(1321)
( 1322)
( 1323)
( 1324)
( 1325)
( 1326)
( 1327)
( 1328)
( 1329)
(1330)
(1331)
( 1332)
( 1333)
( 1334)
( 1335)
( 1336)
( 1337)
( 1338)
( 1339)
( 1340)
( 1341)
( 1342)
( 1343)
( 1344)
( 1345)
( 1346)
( 1347)
( 1348)
( 1349)
( 1350)
( 1351)
( 1352)
( 1353)
( 1354)
( 1355)
( 1356)
( 1357)
( 1358)
( 1359)
( 1360)
( 1361)
( 1362)
( 1363)
( 1364)
( 1365)
( 1366)
( 1367)
( 1368)
( 1369)
( 1370)
( 1371)

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C

C
C

C
C
C







  SUBROUTINE KURV2  
-------
(1372)
(1373)
(1374)
(1375)
(1376)
(1377)
(1378)
(1379)
(1380)
(1381)
(1382)
(1383)
(1384)
(1385)
(1386)
(1387)
(1388)
(1389)
(1390)
(1391)
(1392)
(1393)
(1394)
(1395)
(1396)
(1397)
(1398)
( 1399)
(1400)
( 1401)
(1402)
(1403)
(1404)
C
C
C
C
C
C
C
C
   «** DETERMINE INTO VEICE SEGMENT TN  IS MAPPED
   DO 15 1*11, N
   DELX=X( I)-X( 1-1)
   D£LY=Y< I)-Y(I-l)
   DELS=SQRT( DELX*DELX+DELY*DELY)
   IF (SUM* DELS- TN) 10,20,20
10 SUM= SUM* DELS
15 CONTINUE

   *** IF ABS(T) IS GREATER THAN  1., RETURN  TERMINAL POINT ON
       CURVE

   XS=X(N)
   YS=Y(N)
   RETURN

   *** SET UP AND PERFORM  INTERPOLATION
20 DEL1=TN-SUM
   DEL2= DELS- DELI
   EXPS 1 * EXP ( S I CMAP*DEL 1 )
   S INHD1= . 5*< F.XPS 1- 1 . /EXPS 1 )
   EXPS=EXP( S ICMAP*DEL2)
   SINHD2=.5*
-------
( 1405)
( 1406)
( 1407)
( 1408)
( 1409)
( 1410)
( 1411)
( 1412)
( 1413)
( 1414)
( 1415)
( 1416)
( 1417)
( 1418)
( 1419)
( 1420)
( 1421)
( 1422)
( 1423)
( 1424)
( 1425)
( 1426)
( 1427)
( 1428)
( 1429)
( 1430)
(1431)
( 1432)
( 1433)
( 1434)
( 1435)
( 1436)
( 1437)
( 1438)
( 1439)
( 1440)
( 1441)
( 1442)
( 1443)
( 1444)
( 1445)
( 1446)
( 1447)
( 1448)
( 1449)
( 1450)
(1451)
( 1452)
( 1453)
( 1454)
( 1455)
( 1456)
( 1457)
( 1458)
( 1459)
( 1460)

C
C
C
C
C
C









C
C
C






C
C
C

C
C
C
























    SUBROUTINE  ISOPLT (X,Y, IENTRY)

	 CREATE LINE PRINTER PLOTS OF  PLUVUE RESULTS


	 DEFINE COMMON BLOCKS

    COMMON /ITIT1/  1TIT(80).KALCMP,IOBS
    COMMON /NEED1/  SCTANG( 8),IL,ISTAB,WIND,VDIR
    COMMON /POOL/ X1SIZ,YSIZ,CYCSIZ,XD(18),INDXX,IC1
    COMMON /SIZE/ JGRID(97,40),TVERT<52,2),PT(20,4)
    COMMON /CPLT/ FRST(4) ,FIN(4) .SCALK4) ,TSTP(4) ,ASTP(4) ,
   1              NDEC(4),ITITLE(5,4),NT(4),XMAX
    COMMON /LBL2/ LBEL(3,8)
    DIMENSION TPRINT(13),JSYMB(8),TV1(10),XTIT(6,2)
    DIMENSION STAB(2,2)

	 INITIALIZE LOCAL VARIABLES HERE

    DATA JBLANK/1H    /,MAXX/97/, MAXY/40/, MAXPNT/80/,TGRID/96 ./,
   1     CGRID/39./,JPLUS/1H+/,JBAR/1HI/.TBLANKX1H /
    DATA JSYMB/1H+,1H*,1HX,1HO,1H.,1HA,IEB,1HC/
    DATA STAB/4HNEUT.4HRAL  .4HSTAB,4HLE   /
    DATA XTlT/4HAZIM,4BTTrH  ,4EANGL,4BJE (D.4BZGRE ,4HES)  ,
   1          4BDOWN,4HVIND,4H DIS, 4BTANC, 4BX  (K,4HM)    /

— FLAG FOR ENTRY  POINT

    GO TO (1,50,65). IENTRY

	 INITIALIZE GRID AND SET UP AXIS LABELS

  1 IX=IFIX(Y+0. 1)
    IF (IOBS.GT.0)  IX=2
    DO 5 J=1,MAXY
    JGRID(1,J)=JBAR
    JCRID(97,J)=JBAR
  5 CONTINUE
    INOV=IFIX(X+0. I)
    IF (INOW.EQ. 1)  11=16
    IF (INOV.EG. 1)  12=24
    IF_( INOV.EQ.2.0R. INOW.Ea.3)  11=12
    IF (INOW.EQ.2.0R.INOW.EQ.3)  12=27
    IF (INOV.EQ.4)  11=9
    IF ( INOW.EQ.4)  12=30
    DO 10 1=1,52
    TVERT(I,1)=TBLARK
    IF (I.LE.Il.OR.I.GE.12) GO TO 10
    K=I-I1
    TVERT( 1, 1) =PT( K, IFOV)
 10 CONTINUE
    DO 20 J=l,40,4
    JGRIDC1,J)=JPLUS
    JGRID(97,J)=JPLUS
 20 CONTINUE
    INV=5-INOV
                   407

-------
(1461)
( 1462)
( 1463)
( 1464)
( 1465)
( 1466)
( 1467)
( 1468)
( 1469)
( 1470)
(1471)
(1472)
( 1473)
( 1474)
( 1475)
( 1476)
( 1477)
( 1478)
( 1479)
( 1480)
( 1481)
( 1482)
( 1483)
( 1484)
( 1485)
( 1486)
( 1487)
( 1488)
( 1489)
( 1490)
( 1491)
( 1492)
( 1493)
( 1494)
(1495)
(1496)
( 1497)
( 1498)
( 1499)
( 1500)
( 1501)
( 1502)
( 1503)
( 1504)
( 1505)
( 1506)
( 1507)
( 1508)
( 1509)
( 1510)
( 1511)
( 1512)
( 1513)
(1514)
( 1515)
( 1516)













C
C
C







C
C
C











C
C
C















9
 30
 35
     CLOW=FRST( INW)
     TLOW=0.
     CH1GH=FIN(INW)
     CSPAN=CCRID/(CHIGH-CLOW)
     THIGH=XMAX
     DO 30  1=1,10

     TV1 ( I) = (FLOAT(M)/10.)*(CHIGH-CLOW)+CLOW
     CONTINUE
     TSPAN=TGRID/THIGH
     DO 35  J=1,13
     TPRINT(J)=(FLOAT(J-1)/12.)*THIGH
     CONTINUE
	 CLEAR GRID

    MAXX1=MAXX-1
    MAXY1=MAXY-1
    DO 40 KM,WAXY
    DO 40 J=2,MAXX1
    JGRID(J,K)=JBLANK
 40 CONTINUE
    RETURN

	 ENTRY FOR SAVING INTERPOLATED POINTS
 50
      CONTINUE                          ^
      KX= IF IX( (X-TLOV) *TSPAN+1.5)
      IF (IOBS.GT.O)  KX=IFIX((( 10. **X)-TLOW) *TSP AN+1.5)
      KY=IFIX( ( Y-CLOW)*CSPAN-0.5)
      KY=MAXY-KY
         (KY.LT.2)  GO TO 60
         (KY.GT.MAXY1)  GO TO
 60
IF
IF
IF (KX.LT.2) GO TO 60
IF (KX.CT.MAXX1) GO TO
JGRID(KX,KY)=JSYMB( ID
RETURN
                            60

                            60
  	 ENTRY FOR PLOTTING GRID

   65 CONTINUE
      WRITE (6,120) TVERT(1,1),TV1(1)
      DO 115 K=2,MAXY
      L=MOD((K-1),4)
                                      s
      IF (L.EQ.
      IF (L.NE.
  115 CONTINUE
      WRITE (6,
      WRITE (6,
      WRITE (6,
      WRITE (6,
      IF ( IOBS
     1WRITE (6,
      IF (IOBS
99999 RETURN
              O)
              0)
            WRITE (6,130) TVERT(K, 1) ,TV1( I) , ( JGRID(J.K) , JM , J1AXX)
            WRITE (6,135) TVERT(K, 1) , (JCRID( J,K) , JM,MAXX)
              140)  CLOW
              155)  TPRINT,  (XTIT(I,IX),I=1,6)
              150)  ITIT
              145)  ISTAB.WIND.WDIR
              LE.O)
              160)  (SCTANG(J),(LBEL(I,J),1=1,3),J=1,IC1)
              CT.O) WRITE (6,165) (SCTANG( J) , (LBEL( I, J), 1= 1,3) , J= 1, ICD
                        408

-------
(1517)
(1518)
(1519)
(1520)
( 1521)
(1522)
(1523)
(1524)
(1525)
(1526)
(1527)
(1528)
(1529)
(1530)
(1531)
(1532)
( 1533)
(1534)
(1535)
(1536)
(1537)
(1538)
(1539)
C
C 	 FORMAT STATEMENTS
C
  120 FORMAT
  130 FORMAT
  135 FORMAT
  140 FORMAT
  145 FORMAT
     1
     2
  150 FORMAT
  155 FORMAT
  160 FORMAT
     1
     2
     3
     4
  165 FORMAT(
     1
     2
     3
     4
      END
( 1H1, ////////, 9X,A4,F5. 2, 1H+. 12C8H ------- +) )
(9X,A4,F5.2,97A1)
(9X,A4,5X,97A1)
( 13X.F5.2, 1H+, 12C8H ------- +) )
( 1HO,/, 10X, 16HSTABILITY CLASS  ,A4,F8.1,
 16H M/S WIND SPEED  ,F)0.1,
 23B DEGREE VIND DIRECTION  )
(26X,80A1)
(F21. 1, 12(F7. 1, IX) ,/, 1BO,55X,6A4,//)
( 1BO,/, 10X.29HASSUMED VIEWING BACKGROUND -  ,
 F5.e,4H=(+> , 1X,3A4,F5.0,4B=<*) , 1X.3A4, IX,
 F5.0,4H=(X) , 1X,3A4,F5.0,4B=(0) , 1X,3A4,
 F5.0,4H=(.) , 1X,3A4,F5.0,4B=(A) , 1X,3A4,
 F5.0,4B=(B) , 1X,3A4,F5.0,4B=(C) , 1X,3A4  )
1BO,/, 10X, 19BVIND SPEED CASES -
 F5.0,4H=(+) , 1X,3A4,F5.0,4B=(»)
 F5.0,4B=(X) , 1X,3A4,F5.0,4H=(0)
 F5.0,4B=( .) , 1X,3A4,F5.0,4B=(A)
                                1X.3A4, IX,
                                1X,3A4,
                                1X.3A4,
F5 . 0 , 4B= ( B) , IX, 3A4 , F5 . 0 , 4B= ( C) , IX, 3A4  )
                            409

-------
                                 GLOSSARY
ABSN02:  The value babs, the absorption coefficient, for the  background
     atmosphere NC^ concentration at 0.55  wn.

ACCUMULATION MODE:  Aerosol in the size range from 0.1 to  1.0 un

ALPHA:  The azimuthal angle (in the horizontal plane) between the  plume
     center!ine and the line of sight.

AZIMUTH:  The azimuthal angle measured clockwise from north to the line of
     sight.

BETA:  The elevation angle of the line of  sight above the  horizon.

BSCAT.55/MASS:  The value of bscat/per unit mass concentration for a
     particular aerosol size distribution  (at 0.55
BRATIO:  The blue-red ratio used to characterize the wavelength-dependent
     contrast and plume coloration with respect to the background.  This
     ratio is calculated using the ratio of plume to background
     intensities at the blue end (X = 0.4 urn) and at the red end  (x =  0.7
     un) of the visible spectrum.  If Ip represents the intensity for  the
     view of the background through the plume, and if 1^ represents the
     intensity for the view of the background without the plume, then  the
     blue-red ratio is defined thus:

                               Ip(0.4 un)/Ih(0.4  wn)
                      BRATI° = Ip(0.7 un)/Ih(0.7  in)

BSP-TOTAL:  The value of bscat for plume primary aerosol and sulfate
     aerosol at 0.55 pm.
                                  411

-------
BSPSN/BS (%):  The ratio between the bscat for  sulfate  aerosol  and  the
     bscat for plume primary aerosol and sulfate  aerosol.

BTAAER:  The value of bscat for the background  atmosphere  aerosol at
     0.55 im.

BTABAC:  The value of bext, the extinction coefficient  for the  background
     atmosphere, at 0.55 un.  BTABAC is the  sum of  BTARAY,  BTAAER,  and
     ABSN02.

BTARAY:  The value of bscat for the Rayleigh atmosphere at 0.55 ym.

COARSE PARTICLE MODE:  Aerosol from 1.0 to 10.0 un.

C(550):  The contrast at 550 nm between the  light intensity from the  plume
     and the intensity of  the background.  The  contrast is calculated by
     the following equation:
                C(550)  =
                         I   (X = 0.55 um) - Ib(X = 0.55 um)
                                 Ib (X = 0.55 un)
     where  Ip  =  light  intensity transmitted from the plume,  and
     light  intensity transmitted from the background.

 DELL:   The  difference  in  the color brightness parameter L* for the view of
     the  background  without  the plume and the view of  the background  with
     the  plume.

 DELTA  H (M):   The rise of the plume parcel above the elevation of the
     point  of  release, measured in meters.

 DELX:   The  difference  in  the chromaticity coordinate x for the view of the
     background  with and  without the plume.

 DELY:   The  difference  in  the chromaticity coordinate y for the view of the
     background  with and  without the plume.

 DELYCAP:  The  difference  in  the luminance Y for the view of the background
     with and  without  the plume.

 DOWNWIND DISTANCE:  Distance from the emissions source to points along the
      plume  trajectory.

 E(LAB):  The color difference parameter  AE (L*a*b*) for the view through
      the plume compared to the background sky.  t£ (L*a*b*) includes
      changes in chromaticity and brightness.
                                    412

-------
E(LUV):  The color difference parameter  AE(L*u*v*),  which  includes changes
     in chromaticity and brightness.   E(L*u*v*)  gives  the  value of ££.
     (|_*u*v*) for the view through the plume  compared  to the background
     sky.

H:  The final height of plume rise.

INCREMENT:  The increase in any parameter above  the  background  value.

L:  The color brightness parameter L*.

LENGTH:  The length of the plume segment in the  line of sight along  the
     plume.  The plume centerline concentration  is integrated over this
     distance before the optical effects are calculated.

MASS RADIUS:  The mass median radius.

N02T: The total concentration of N02 in a plume  parcel; the  sum  of the  N02
     contributed by the plume and the N02 contributed by the background
     air.

N02-NO EQUIL: The equilibrium ratio of the concentration of  N02  to the
     concentration of NO.

N02/NTOT (MOLE %):  The ratio between the concentration of N02  and the
     concentration of all NOX.

N03-/NTOT (MOLE %):  The ratio between the concentration of  HN03 and the
     concentration of all NOX.

NTOT:  The concentration total of all nitrogen oxides (including HNOj)  in
     the plume parcel.

02 (MOL P):  The oxygen concentration in the plume expressed in mole
     percent.

% REDUCED:  The percentage reduction in visual range for the view  of the
     background with the plume compared to that without the  plume.

PRIMARY PARTICLE MODE:   The aerosol emitted directly by the  source.

PRIMARY (UG/M3):  The concentration of primary particulate in units of
     pg/m3.
           »
RATIO ACTUAL:  The actual ratio of concentrations of N02 to  NO.
                                 413

-------
RP:  Distance from the observer position to the plume center  along  the
     line of sight.

RO/RVO:  The ratio between the distance from the observer  to  the
     background object and the background visual range.

RP/RVO:  The ratio between the distance from the observer  to  the  plume
     centerline along the line of sight and the background visual range.

RV:  The visual range for the line of  sight through  the  plume.

SY:  The length representing the vertical standard deviation  for  a
     Gaussian plume concentration distribution.

SIGMA:  The geometric standard deviation of the aerosol  size
     distribution.  Also, the plume  standard deviation for the  initial
     plume rise calculation.

SOLAR  AZIMUTH ANGLE:  The azimuthal  angle from the north to the position
     of the sun, measured clockwi ;e.

SOLAR  ZENITH ANGLE:   The  vertical  angle from directly overhead  to the
     position of the  sun.

S04  =/STOT  (MOLE %):  The ratio  between the concentration of  S04=  and  the
     sum of the concentrations of  SOg, and SO.".

THETA:  The scattering  angle  between the  incoming  direct solar  rays and
     the  line of  sight.   The  sun would be  in front of the observer for
     scattering  angles  less than 90°.   THETA  is the  change in the
     direction  of  propagation of light after  scattering.

TOTAL  AMB:  The  total of  the  background contribution and the  plume
     contribution  for any parameter.

U:  Horizontal  velocity component  for the  plume parcel.

V:  Resultant  velocity  of the plume parcel.

W:  Vertical  velocity component  for the plume  parcel.

X:  Distance  downwind between the observed  point  and the emissions source;
      also  used  for chromaticity coordinate  x.

 Y:  Chromaticity coordinate y.

 YCAP:   The  color  brightness parameter, luminance  (Y).

                                   414

-------
                                REFERENCES
Altshuller, A. P. (1979), "Model Predictions of the Rates of Homogeneous
     Oxidation of Sulfur Dioxide to Sulfate in the Troposphere," Atmos.
     Environ., Vol.  13, pp.  1653-1661.

Baulch, D. L., D. D. Drysdale, and D. 6.  Home (1973), "Evaluated Kinetic
     Data for High Temperature Reactions, Volume 2--Homogeneous Gas Phase
     Reactions of the H2-N2-02 system (CRC Press, Cleveland, Ohio).

Briggs, G. A. (1972), "Discussion on Chimney Plumes in Neutral  and Stable
     Surroundings,"  Atmos.  Environ., Vol. 6, pp. 507-610.

Briggs, G. A., (1969), "Plume Rise," U.S. Atomic Energy Commission
     Critical Review Series, TID-25075,  National Technical Information
     Service, Springfield,  Virginia.

Briggs, G. A., (1971), "Some Recent Analyses of Plume Rise Observations,"
     in Proc. of the Second  International Clean Air Congress,  H.  M.
     Englund and W.  T. Berry, eds., (Academic Press,  New York,  New York),
     pp. 1029-1032.

Calvert, J. G.,  et aU (1978), "Mechanism of the Homogeneous Oxidation of
     Sulfur Dioxide  in the Troposphere,"  Atmos. Environ., Vol.  12,  pp.
     197-226.

Dave, J. V. (1970),  "Subroutines for Computing the Parameters of the
     Electromagnetic Radiation Scattered  by a Sphere," IBM System 360
     Program 3600-17.4.002.

Davis, D. D., G. Smith, and  J. Klauber (1974), "Trace Gas Analysis of
     Power Plant Plumes Via  Aircraft Measurements:  03, NOX and S02
     Chemistry," Science, Vol. 186, pp.  733-736.

Dtxon, J. K. 0940), "Absorption Coefficient of Nitrogen Dioxide 1n the
     Vtsible Spectrum,: J.  Chem. Phys.,  Vol. 8, pp. 1267-1277-

Ensor, D. S., L. E.  Sparks,  and M. J. Pilat (1973), "Light Transmittance
     Across Smoke Plumes Downwind from Point Sources of Aerosol
     Emtestons," Atmos. Environ., Vol. 7, pp. 1267-1277.
                                  415

-------
EPA (1977), "User's Manual for a Single-Source  (CRSTER)  Model,"  EPA-450/2-
     77-013, U.S. Environmental Protection Agency,  Research  Triangle  Park,
     North Carolina.

Hampson, R. F., Jr., and D. Garvin  (1978), "Reaction  Rate  and
     Photochemical Data for Atmospheric Chemistry-1977," NBS Special
     Publication 513, National Bureau of Standards, Washington,  D.C.

Hanson, J. E., and L. D. Travis (1974), "Light  Scattering  in Planetary
     Atmospherics," Space Science Reviews, Vol.  16, pp.  527-610.

Irvine, W. M.  (1975), "Multiple Scattering in Planetary  Atmospheres,"
     Icarus, Vol. 25, pp. 175-204.

Isaksen,  I.S.A., Hesstredt, and 0.  Hov  (1978),  "A Chemical  Model  for  Urban
     Plumes:   Test for Ozone  and Particulate  Sulfur Formation  in St.  Louis
     Urban  Plume," Atmos. Environ., Vol. 12,  pp.  599-604.

Latimer,  D. A.  (1980), "Power Plant Impacts on  Visibility  in the West:
     Siting and  Emissions Control  Implications,"  J. Air  Pollut.  Control
     Assoc., Vol. 30, pp. 142-146.

Latimer,  D. A.,  et  al.  (1980),  "Modeling Visibility," presented  at the
     American  Meteorological  Society/Air Pollution Control  Association
     Second Joint Conference  on Applications  of Air Pollution  Meteorology,
     24-27  March  1980, New  Orleans, Louisiana.
                                                  S
Latimer,  D. A.,  and  6. S.  Samuelsen (1978),  "Visual Impact of  Plumes  from
     Power  Plants,"  Atmos.  Environ., Vol.  12,  pp. 1455-1465.

Latimer,  D. A.,  et  al.  (1978), "The Development of Mathematical  Models for
     the  Prediction  and  Anthropogenic Visibility Impairment,"  EPA-450/3-
     78-110a,  b,  and c,  U.S.  Environmental  Protection Agency,  Research
     Triangle  Park,  North  Carolina.

Latimer,  D. A.,  and  G.  S.  Samuelsen (1975),  "Visual Impact of  Plumes  from
     Power Plants,"  UCI-ARTR-75-3,  UCI  Air Quality Laboratory, School of
     Engineering,  University of California,  Irvine, California.

Leighton, P.  A.  (1961),  Photochemistry of  Air Pollution  (Academic Press,
     New  York, New  York).

Miller, J). F.  (1978), "Precursor  Effects on S02 Oxidation," Atmos.
      Environ., Vol.  12,  pp. 273-280.

 Niki,  H.  (1974), "Reaction Kinetics Involving 0 and N Compounds," Can. J.
      Chem., Vol. 52, pp. 1397-1404.
                                    416

-------
Schere, K. L., and K. L. Demerjian  (1977),  "Calculation  of  Selected
     Photolytic Rate Constants over a Diurnal Range,"  EPA-600/4-77-015,
     U.S. Environmental Protection Agency,  Research Triangle  Park,  North
     Carolina.

Van de Hulst, H. C. (1957), Light Scattering by Small  Particles  (John
     Wiley and Sons, New York, New York).

White, W. H. (1977), "NOX-03 Photochemistry in Power Plant  Plumes:
     Comparison of Theory with Observation," Environ. Sci.  Techno!., Vol.
     11, No. 10, pp. 995-1000.

Winkler, P. (1973), "The Growth of Atmospheric Aerosol Particles as a
     Function of the Relative Humidity--!I.  An Improved Concept of Mixed
     Nuclei," Aerosol Sci., Vol.  4, pp.  373-387.
                                  417

-------
                                   TECHNICAL REPORT DATA
                            (Please read Imtniciions on the reverse before completing)
  Rl PORT NO.
EPA-450/4-80-032
   2.
                                 3. RECIPIENT'S ACCESSION* NO.
-I. TITLE AND SUBTITLE
USER'S MANUAL  FOR THE PLUME VISIBILITY MODEL (PLUVUE)
                                 5. REPORT DATE
                                   November 1980
                                                            G. PERFORMING ORGANIZATION CODE
          Johnson, Douglas A. Latimer,  Robert W. Bergstroir
and Henry Hogo
                                 8. PERFORMING ORGANIZATION REPORT NO.
 i. PERFORMING ORGANIZATION NAME AND ADDRESS
 Systems  Applications, Inc.
 950 Northgate Drive
 San Rafael,  California
                                 10. PROGRAM ELEMENT NO.
                                 11. CONTRACT/GRANT NO.
12. SPONSORING AGENCY NAME AND ADDRESS
Office  of Air Quality Planning  and Standards
U.S.  Environmental Protection Agency
Research Triangle Park,  North Carolina  27711
                                 13. T.
                LypE Of HLEPORT.AND PERIOD COVERED
                Fi naT HTeporr
                                 14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT
      The plume visibility model  (PLUVUE) is  designed to predict the  impacts of a
 single emissions source  on visibility in Federal  Class I areas.  The objective of the
 model is to calculate  visual  range reduction and  atmospheric discoloration caused by
 olumes consisting of primary particulates, nitrogen oxides and sulfur oxides.  The
 model uses the Gaussian  equation for transport  and dispersion.  The  spectral radiance is
 calculated for views with and without the plume to calculate other parameters related
 to perceptibility and  contrast reduction.  Plume  optic's calculations are made for two
 modes, plume-based  and observer-based.  Four types of calculations can be performed
 at each downwind distance:  effects for horizontal lines of sight with a clear sky
 background; effects of the plume on horizontal  views with white, grey or black
         object; views  looking down the plume center!ine toward the source.
17.
                                KEY WORDS AND DOCUMENT ANALYSIS
                  DESCRIPTORS
                    b.lDENTIFIERS/OPEN ENDED TERMS
                           c. COSATI Held/Group
 Aerosols
 Air Pollution
 Atmospheric  Diffusion
 Mathematical Modeling
 Meteorology
 Nitrogen  Dioxide
Radiative Transfer
Sulfates
Visibility
New Source Review
Point Sources
13 B
 4 A
 4 B
 13. DISTRIBUTION STATEMENT

 RELEASE  TO  THE  PUBLIC
                    19. SECURITY CLASS (This Report)
                     NONE
                                               21. NO. OF PAGtS
                              430
                                               20 SECURITY CLASS (This page)
                                                                          22. PRICE
EPA Form 2220-1 (S-73)

-------