United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park NC 27711
EPA-450/4-80-032
November 1980
Air
User's Manual for the
Plume Visibility
Model (PLUVUE)
-------
EPA-450/4-80-032
User's Manual for the Plume
Visibility Model (PLUVUE)
by
Clark D. Johnson, Douglas A. Latimer,
Robert W. Bergstrom and Henry Hogo
Systems Applications, Inc.
950 Northgate Drive
San Rafael, California
Contract No. 68-02-0337
Prepared for
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air, Noise, and Radiation
Office of Air Quality Planning and Standards
Research Triangle Park, North Carolina 27711
November 1980
-------
This report is issued by the Environmental Protection Agency to report technical data of
interest to a limited number of readers. Copies are available - in limited quantities - from
the Library Services Office (MD-35), U.S. Environmental Protection Agency. Research
Triangle Park, North Carolina 27711; or, for a fee, from the National Technical Infor-
mation Service, 5285 Port Royal Road, Springfield, Virginia 22161.
Publication No. EPA-450/4-80-032
11
-------
Preface
This publication contains information on and the computer programs
for the Plume Visibility Model (PLUVUE) which is based on Gaussian
dispersion assumptions, state-of-the-art chemical and physical reactions
and transformations of precursors in the atmosphere, light scattering
and absorption characteristics of the resultant aerosol and radiative
transfer through the aerosol along different lines of sight. The model
is applicable to assessing visibility impairment due to pollutants
emitted from well-defined point sources. The Plume Visibility Model
(PLUVUEI is one of the atmospheric dispersion models on the User's
Network for Applied Modeling of Air Pollution (UNAMAP) system. The
UNAMAP system may be purchased on magnetic tape from NTIS for use on a
user's computer system. For information on UNAMAP contact: Chief,
Environmental Operations Branch, Meteorology and Assessment Division,
(HD-8QL U.S. Environmental Protection Agency, Research Triangle Park,
NC 27711.
Although attempts are made to thoroughly check out computer programs
with a wide variety of input data, errors are found occasionally. In
case there ts a need to correct, revise or update this model, revisions
will be distributed in the same manner as this report. Revisions may be
obtained as they are issued by completing the mailing form on page V. A
user can be assured that the latest version of the Plume Visibility
Model C.PLUVUE] is on the UNAMAP system.
Comments and suggestions regarding this publication should be
directed to: Chief, Source Receptor Analysis Branch, Monitoring and
Data Analysis Division (MD-14), EPA, Research Triangle Park, NC 27711.
However, technical questions regarding execution of the model may be
handled by telephone call to the Chief, Modeling Support Section, Source
Receptor Analysis Branch in Durham, NC at 919-541-5335 or, using FTS,
629-5335.
-------
Acknowledgements
Although many individuals assisted with time and energy in the
preparation and review of this manual, credit for bringing it to fruition
belongs to the original and final project officers, Steven L. Eigsti and
James L. Dicke, respectively.
The efforts of the authors of the manual, Clark D. Johnson, Douglas
A. Latimer, Robert W. Bergstrom and Henry Hogo, under Contract No. 68-02-3337
with Systems Applications, Inc., San Rafael, California, are gratefully
acknowledged.
IV
-------
Chief, Environmental Operations Branch
Meteorology and Assessment Division (MD-80)
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
I would like to receive future revisions to the UACA'A Mowuo£
tfo V&l^Wbty ftodaJt
Name
Address
ZIP
Telephone CDpttonal}_
-------
CONTENTS
List of Illustrations ix
Li st of Tables *i
List of Exhibits xi
1 INTRODUCTION 1
1.1 Overview of the Model 2
1.2 Limitations of the Model 5
2 TECHNICAL OVERVIEW 9
2.1 Pollutant Transport, Diffusion, and Removal 9
2.1.1 Initial Dilution in a Buoyant Plume 11
2.1.2 Plume Rise 13
2.1.3 Gaussian Plume Diffusion 14
2.1.4 Observer-Plume Orientation 16
2.1.5 Limited Mixing 16
2.1.6 Surface Deposition 18
2.1.7 Power Law Wind Profile Extrapolation
of Surface Winds 19
2.2 Atmospheric Chemistry 19
2.2.1 Conversion of NO to N02 21
2.2.2 Conversion of S02 to S04= 24
2.3 Aerosol Size Distribution 33
2.4 Atmospheric Optics 34
2.4.1 Calculation of the Scattering and
Absorption Properties 34
2.4.2 Calculation of Light Intensity 35
2.5 Geometry of Plume, Observer, and Sun 40
2.6 Quantifying Visibility Impairment 48
3 PLUVUE INPUT DATA 51
4 PLUVUE OUTPUT 69
5 PLUVUE PROCEDURE FLOW CHART 99
Vtt
-------
APPENDIXES
A SAMPLE PLUVUE RUNS 125
B PLUVUE SOURCE CODE 257
C USER'S GUIDE TO VISPLOT: GRAPHICS OUTPUT FOR PLUVUE 359
D VISPLOT SOURCE CODE 371
GLOSSARY 411
REFERENCES 415
vm
-------
TABLES
1 Data Requirements for PLUVUE 53
C-l Input Card Formats 360
EXHIBITS
1 Emissions Source Data Table ./. 70
2 Meteorological and Ambient Air Quality Data 71
3 Observer-Plume-Sun Geometry for Observer-Based
Calculations 73
4 Background Scattering and Extinction Coefficients 74
5 Table of Initial Plume Rise and Dilution and Nitrogen
Dioxide Formation 75
6 Plume Concentrations of Aerosol and Gases 76
7 Visual Effects Table for Horizontal Sight Paths with a
Cl ear Sky Background 79
8 Observer-Based Calculation of Visual Effects for
Horizontal Views through the Plume with a Clear
Sky Background 80
9 Plume-Based Calculation of visual Effects for
Nonhorizontal Views through the Plume with a
Clear'Sky Background .'/. 81
XI
-------
10 Observer-Based Calculation of Visual Effects for
Nonhorizontal Sight Paths through the Plume 82
11 Plume-Based Calculations for Visual Effects for
Horizontal Views Perpendicular to the Plume, with
White, Gray, and Black Backgrounds 84
12 Observer-Based Calculations of Horizontal Views
through the Plume, with White, Gray, and Black
Background Objects 86
13 Plume-Based Calculations of Visual Effects for Lines of
Sight Along the Axis of the Plume 87
14 Observer-Based Calculations of Visual Effects for Views
Close to the PIume Trajectory 89
15 Conversion Rates for Secondary Aerosol Formation
Calculated by the OH Model for a Plume Parcel 240 km
from the Source at the Line of Observation 91
16 Verification of Data for Plotting Results of Observer-
Based and Plume-Based Calculations 92
17 Binary FORTRAN White Statements that Generate Data Files
to Be Used for Plotting Results 97
A-l Input Data File for Observer-Based Calculations 126
A-2 Beginning of Printed Results of PLUVUE Observer-
Based Calcul ations 128
A-3 Printed Results of Observer-Based PLUVUE Calculations
for Observed Points at 100 and 120 km from the
Emissions Source 135
A-4 The Results of the Observer-Based PLUVUE Runs at Points
220 and 240 km from the Emissions Source 139
A-5 Input Data File Used for Second Example of a PLUVUE Run 151
A-6 Beginning of Output for Plume-Based PLUVUE Run 152
A-7 Printout from Plume-Based PLUVUE Calculations for
Observed Points at 100 nd 120 km from the Source 178
-------
ILLUSTRATIONS
1 Schematic Logic Flow Diagram of the Plume
Visibility Model 10
2 Gaussian Plume Visual Impact Model:
Observer-Plume Geometry 17
3 Sensitivity of NO-to-N02 Conversion in Power Plant
Plumes to the Rate of Plume Dilution, Background Ozone
Concentration, and Solar Radiation 25
4 Comparison of Measured N02/NOX Mole Ratios in the Plume
Centerline Downwind of a Coal-Fired Power Plant with
Computer-Calculated Values Using Standard Pasquill
and Fitted 0yo2 26
5 Calculated Time-Dependence of Sulfate Formation in the
Center of Plumes from a 1600 MWE Coal-Fired Power Plant,
2 m/s Winds, Neutral and Stable Conditions 31
6 Light Scattering and Absorption in the Atmosphere 37
7 Geometries for Plume-Based Calculations for Horizontal
Views with a Sky Background 41
8 Geometries for Plume-Based Calculations for Nonhorizontal
Views with a Sky Background 43
9 Geometries for Plume-Based Calculations for Viewing of
White, Gray, and Black Objects for Horizontal Views
Perpendicular to the Plume 45
10 ^ Geometries for Plume-Based Calculations for Horizontal
Views Along the Axis of the Plume 46
11 Geometry Used for Observer-Based Calculations for
Nonhorizontal Views Through the Plume for Clear-Sky
Backgrounds 47
tx
-------
12 Plan View of Geometry for Observer-Based Calculations for
Views along the Plume 49
13 Schematic Diagram of Altitudes Used to Determine Plume
Contribution of Gases and Aerosols 77
14 Schematic Diagram of Plume-Based "Along Plume"
Optics Calculation 88
15 PLUVUE Logic Flow Chart 100
-------
A-8 Printout from Plume-Based PLUVUE Calculations for
Observed Points at 220 and 240 km from the Source 211
B-l PLUVUE Source Code 257
C-l Example of an Input Card Deck 364
C-2 This Is a Test Plot 365
C-3 Example of Line Printer Output 366
xiii
-------
1 INTRODUCTION
With the Clean Air Act Amendments of 1977, Congress declared as a
national goal the protection and restoration of visibility in national
parks and wilderness areas that have been designated as class I areas.
The implementation of a regulatory program designed to achieve this goal
requires both a modeling capability, with which the visual impact of emis-
sions from new or existing sources can be predicted, and a measurement
capability to measure existing impacts and to monitor progress toward the
national goal.
The purpose of this document is to provide documentation of a plume
visibility model, PLUVUE, which was designed to predict the impacts of a
single emissions source on visibility in class I areas. This model is a
refinement of the plume model developed by Systems Applications, Incor-
porated (SAI) for the U.S. Environmental Protection Agency (EPA) in
1978. Refinements of the 1978 model are described in this volume; how-
ever, the reader should refer to an earlier report (Latimer et al., 1978)
for additional details on the model and to the EPA's report to Congress on
visibility (EPA, 1979).
In addition, this user's manual and the visibility model should be
used in conjunction with the other technical guidance documents in this
series. In particular, the document entitled, "Workbook for Estimating
Visibility Impairment," EPA-450/4-80-031, should be consulted before the
plume visibility model is applied.
-------
1.1 OVERVIEW OF THE MODEL
The design objective of the model is to calculate visual range reduc-
tion and atmospheric discoloration caused by plumes consisting of primary
particulates, nitrogen oxides, and sulfur oxides emitted by a single emis-
sions source. Primary emissions of sulfur dioxide ($02) and nitric oxide
(NO) do not scatter or absorb light and therefore do not cause visibility
impairment. However, these emissions are converted in the atmosphere to
secondary species that do scatter or absorb light and have the potential
to cause visibility impairment. S02 emissions are converted to sulfate
(SO^3) aerosol, such as sulfuric acid, ammonium sulfate, and acid ammonium
sulfates. These aerosols are generally formed or grow to a size (0.1 to
1.0 un) that is effective in scattering light. Nitric oxide (NO) emis-
sions are converted to nitrogen dioxide (N02) gas, which is effective in
absorbing light. In turn, N02 is converted to nitric acid vapor (HN03),
which neither absorbs nor scatters light. In some situations, nitric acid
may form ammonium nitrate or organic nitrate aerosol, which scatters
light. However, in many nonurban plumes nitrate probably remains as HNOg
vapor without visual effects. Eventually, all primary particulates,
secondary aerosol, and gases in a plume are removed from the atmosphere as
a result of surface deposition and precipitation scavenging. PLUVUE is
designed to predict the transport, atmospheric diffusion, chemical conver-
sion, optical effects, and surface deposition of point-source emissions.
The model uses a Gaussian formulation for transport and dispersion.
The spectral radiance I(X) (i.e., the intensity of light) at 39 visible
wavelengths (0.36 < X < 0.75 un) is calculated for views with and without
the plume; the changes in the spectrum are used to calculate various
parameters that predict the perceptibility of the plume and contrast
reduction caused by the plume (see Latimer et al., 1978). The four
key perception parameters for predicting visual impact are:
-------
> Reduction in visual range.
> Contrast of the plume against a viewing background at the
0.55 un wavelength.
> The blue-red ratio (color shift) of the plume.
> The color change perception parameter AE(L*a*b*).
PLUVUE is designed to perform plume optics calculations in two
modes. In the plume-based mode, the visual effects are calculated for a
variety of lines of sight and observer locations relative to the plume
parcel; in the observer-based mode, the observer position is fixed and
visual effects are calculated for the specific geometry defined by the
positions of the observer, plume, and sun. For either mode, the model
requires the user to select up to 16 different distances downwind of the
emissions source. These distances determine the locations of the optics
calculations along the plume trajectory.
For the plume-based calculations, the distance downwind of the emis-
sions source is the main reference. At each distance, calculations are
done for a range of:
> Scattering angles (0).
> Azimuthal angles (a) between the line of sight and the
plume center!ine.
> Elevation angles (0) of the line of sight.
> Distances from the observer to the plume centerline (rp)
and from the observer to the background viewing object
(terrain) behind the plume (rQ).
For the observer-based calculations, both the observer posi-
tion and the direction of the plume trajectory are fixed by user-
supplied specifications appropriate to the given application:
> Wind direction
*
> Location of the source
-------
> Location of the observer
>. Date and time.
These specifications allow the specific plume-observer geometry (e, a, e,
rp) to be calculated for each downwind distance on the plume trajectory.
Calculations are performed for lines of sight emanating from the
observer's location and through the plume center at various downwind
distances. Each line of sight is matched with its particular set of these
specifications.
For either plume-based or observer-based calculations, there are four
types of calculations that can be performed at each downwind distance.
The first calculates the effects for horizontal lines of sight with a
clear sky background. Plume-based calculations include a range of scat-
tering angles (0), azimuthal angles between the line of sight and the
plume centerline (a), and observer-to-plume distances (rp). The observer-
based computation uses the specific values of these variables for each
downwind point appropriate for the given plume-observer geometry.
The second type of calculation is for nonhorizontal views of the
plume with a clear sky background. The plume-based calculations include a
range of different elevation angles (B) for the line of sight in addition
to the three parameters varied in the horizontal view calculations. The
observer-based calculations are done only once for the specific angles and
distances of each point of analysis along the plume trajectory.
The third type of calculation evaluates the effect of the plume on
horizontal views with white, gray, and black viewing object (terrain)
backgrounds with uniform spectral reflectances of 1.0, 0.3, and 0.0,
respectively. The plume-based calculations are done for the range of
scattering angles (0), observer-to-plume distances (rp) and observer-to-
background object distances (rQ) assuming the line of sight is perpen-
dicular to the plume centerline (a= 90°). However, in the observer-based
calculations, the values of the angles and distances for the specific
geometry are used.
-------
The fourth type of calculation is for views looking down the center-
line of the plume toward the source. The plume-based calculations con-
sider the range of plume segment lengths (Ax) along the plume. These seg-
ments are determined by the analysis points (up to 16) used to specify the
plume trajectory. The calculations are also done for a range of distances
from the observer to the plume (rp) for each different plume segment. The
observer-based calculations are much simpler for this case because all the
distances and angles are specified. The observer-based calculations
assume that the azimuthal angle between the observer's line of sight and
the plume centerline is small but not zero. The observer based calcula-
tions are done for white, gray, and black object (terrain) viewing back-
grounds, as well as for the sky viewing background.
1.2 LIMITATIONS OF THE MODEL
An effort is currently underway to compare PLUVUE model calculations
with field measurements near one emissions source in the Southwest. The
results of this study are not yet available, so it is difficult to assess
the accuracy and limitations of the model, even for this one applica-
tion. However, it is clear that there are significant uncertainties in
the model, primarily because it is based on the approximate Gaussian
formulation. A shibboleth is that plume dispersion models are accurate
only within a factor of two for near-source applications (within 50 km of
a source). Since PLUVUE is a Gaussian model, such limitations may also
apply to visibility model calculations. However, we should point out that
visual impacts are instantaneous phenomena, not 3-hour, 24-hour, or annual
averages. Also, visual impacts are proportional to line-of-sight inte-
grals of plume centerline N02 and aerosol concentrations, not to ground-
level concentrations at a point.
For applications to distant class I areas (more than 50 km from the
emissions source), the model is undoubtedly less accurate because of meso-
scale wind speed, wind direction, and stability variations. Thus, the use
of a Gaussian-based model for downwind distances greater than 50 km to
predict visual effects is probably a conservative approach (i.e., it over-
-------
estimates impacts); however, this has not yet been demonstrated conclus-
ively. Visual impacts for horizontal lines of sight are inversely propor-
tional to the vertical extent of plume mixing. This vertical extent of
plume mixing is defined by the vertical plume dispersion parameter (o^
and, at farther downwind distances, by the mixing depth. Thus, errors in
predicting vertical plume dimensions will carry throughout the calcula-
tions of plume visibility impacts. However, until field measurements of
mesoscale plume transport and diffusion are carried out, and until better
models based on these data are developed and verified, we do not know of a
better approach to modeling plume dispersion for the purposes of visi-
bility modeling than that provided in PLUVUE.
PLUVUE dispersion calculations are based on the standard Pasquill-
Gifford a and a values. However, the PLUVUE user has the option to
supply a , a values based on measurements or other a , a parameter-
y z y z
izations, if these are demonstrated to be more anpropriate for a qiven
application.
Other limitations are basic to the chemical mechanism used in PLUVUE
to predict conversion of sulfur and nitrogen oxides. Although this mecha-
nism is a reasonable approximation for most applications in nonurban
areas, it is not valid for applications in photochemical (urban) atmos-
pheres or for sources of significant quantities of reactive hydro-
carbons. For such applications, photochemical plume models or regional
models should be used.
Other approximations are used in the atmospheric optics calcula-
tions. These approximations are discussed in Latimer et al. (1978).
These approximations probably do not introduce significant errors in most
situations; however, this has not been demonstrated yet. Terrain viewing
backgrounds are idealized as white, gray, and black objects. The back-
ground atmosphere is treated as two layers: a homogeneous, surface mixed
layer and a relatively clean upper atmosphere layer. Diffuse radiation is
approximated using an analytical expression; errors in predicting diffuse
radiation intensities may adversely affect the accuracy of spectral radi-
-------
ance calculations but not necessarily the accuracy of calculations of
plume contrast, color differences, and reduction in visual range.
In PLUVUE, the calculated visual impact of a plume is quantified
using coloration, color difference, and contrast parameters that are
related to human visual perception. However, the relationships between
these optical parameters and the perceived scenic beauty of national parks
and wilderness areas (which is the basic quality that the national visi-
bility goal is designed to protect) are currently under study.
-------
TECHNICAL OVERVIEW
This chapter briefly outlines the technical details of the plume
visibility model (PLUVUE). Those interested in more detail should consult
Latimer et al. (1978).
As shown schematically in figure 1, the modeling of visibility
impairment requires mathematical descriptions for the following physical
and chemical atmospheric processes in succession:
> Emissions.
> Atmospheric transport, diffusion, and removal.
> Chemical and physical reactions and transformations of precursors
in the atmosphere.
> Light scattering and absorption characteristics of the resultant
aerosol.
> Radiative transfer through the aerosol along different lines of
sight.
Because the visibility model is based on atmospheric dispersion and
chemistry models, the accuracy of the former depends on that of the lat-
ter. We recognize that future improvements in modeling dispersion—
particularly on the regional scale and in complex terrain, as well as
improvements in modeling secondary aerosol formation—will increase the
accuracy of visibility models.
2.1 POLLUTANT TRANSPORT, DIFFUSION, AND REMOVAL
V
There'are two scales that are of interest in visibility impairment
calculations. They require two different types of models:
-------
EMISSIONS QU.y.i.tJ,
PRECURSORS
POLLUTANT CONCENTRATIONS
X
POLLUTION
CONTROL
EQUIPMENT
AND SITING
EMISSIONS
• PRIMARY
PARTICIPATES
(SOK. NO*.
PRIMARY PARTICULATE)
SECONDARY POLLUTANTS
(N02, SOJ, NOj)
SCATTERING AMD ABSORPTION
b
LIGHT INTENSITY
sc.t'
hv
r T
ATMOSPHERIC CHEMISTRY
2ND + 02 * 2NO;
NO * 03 * N02 * 02
N02 + hv
NO * 0
GAS-TO-PARTiaE
CONVERSION
soz
NO
.so;
• NOj
I
LIQUID WATER j
(aouos. WET I
PLUMES. TOG) I
TIME-DEPENDENT
PARTICLE SIZE DISTRIBUTION
n(r ,x,y,*,t)
PARTiaE GROWTH
• COAGULATION
• HYGROSCOPIC
GROWTH
I
LIGHT ABSORPTION
LIGHT SCATTERING
SCATTERING
DISTRIBUTION
SOLAR FLUX
SCATTERING
ANGLE
ATMOSPHERIC OPTICS
(LIGHT SCATTERED INTO
LINE OF SIGHT)
(LIGHT REMOVED FROM
LINE OF SIGHT)
BACKGROUND
INTENSITY
(E.G.. BLUE
SKY. WHITE
CLOUD.
MOUNTAIN)
1
GEOMETRY OF
OBSERVER
AND PLUME
VISUAL
RANGE
CONTRAST
• PLUNE
• HAZE
• OBJECT
COLOR
• OMOW-
TICITY
• HUNSELL
NOTATION
Figure 1. Schematic logic flow diagram of the plume visibility model.
-------
> A near-source plume model designed to predict the incre-
mental impact of one emissions source (such as a power
plant or smelter).
> A regional model designed to predict, over time periods of
several days, the impacts of several emissions sources
within a region whose spatial scale is in the range of
1000 km.
Calculation of near-source visual impacts, which is the design objec-
tive of PLUVUE, requires a basic model that accurately predicts the spa-
tial distribution of pollutants and the chemical conversion of NO to N02
and SOX and NOX to sulfates and nitrates. The plume model must be capable
of handling the spatial scale from emissions at the source to at least 100
km downwind. Because the regional-scale problem may be caused by the
long-range transport of pollutants over a spatial scale of 1000 km, an air
quality model is needed that can account for multiple sources and for
temporal variations in mixing heights, dispersion parameters, emission
rates, reaction rates, and wind speed and direction. This second type of
model, a regional visibility model, is beyond the scope of this user's
manual. PLUVUE is a near-source plume visibility model.
In the following subsections, we discuss atmospheric dispersion
modeling as it relates to the plume visibility model for the following
spatial scales:
> Initial dilution in a buoyant plume
> Gaussian plume diffusion
> Limitations on mixing.
2.1.1 Initial Dilution in a Buoyant Plume
Modeling of the initial dilution of a plume from the top of the stack
.*
to the point of final plume rise is important when modeling the conversion
of nitric oxide to nitrogen dioxide in a power plant plume because of the
11
-------
quick quenching of the thermal oxidation of NO. The rate of this reaction
is second order with respect to NO concentrations; therefore, the rate is
fastest in the initial stages of plume dilution. It is also important to
account for the initial dilution of buoyant releases because the rate of
dilution caused by the turbulent entrainment of ambient air by a rising
plume parcel can be considerably greater than that indicated by diffusion
coefficients based on measurements for nonbuoyant releases (e.g.,
Pasquill-Gifford o , o). Thus, initial plume dilution during plume rise
should be taken into account to calculate accurately both plume dilution
and atmospheric chemistry.
Briggs (1969) suggested that the characteristic plume radius
increases linearly with the height of the plume above the stack and can be
represented as follows:
R = 0.5 (Ah) . (1)
Briggs described plume rise, as a function of downwind distance (the "2/3
power law"), as follows:
Ah - 1 A F1/3v2/3,,-1 I9\
An = l.o r x u . (c)
For initial dilution, we can assume that the plume is circular in cross
section and has a Gaussian profile. We can also assume that the radius of
the plume is the distance from the plume centerline to the point at which
the plume concentration is 10 percent of the centerline concentration.
Thus, we have
VyP = ZP = 2'15 V2'15 °z • (3)
The concentration of a given species at the centerline of the plume can be
calculated by a modified Gaussian model that can be represented as
(4)
12
-------
where V is the velocity of the parcel, which has a horizontal component
(the wind speed u) and a vertical component w, which can be calculated by
differentiating equation (2). Thus
w.£.fl.6F1/3u-1/3t-1/3 . (5)
With this formulation, time-dependent plume temperature and NO concentra-
tions can be calculated for accurately predicting the thermal oxidation of
NO during plume rise.
Combining equations (1), (3), and (4), we can calculate the initial
dilution of plume material, after the plume has reached its final height,
as follows:
(6)
(Ah) u
Thus, plume material is assumed to be at least as dilute as that
shown by equation (6). For emissions sources having more than one stack,
it is assumed that there is an overlap of plumes from individual stacks.
For cases in which the initial dilution during plume rise is greater than
the standard Gaussian formula would predict at the downwind distance of
final plume rise, a virtual point-source offset is introduced so that
dilution at this distance is at least as much as that shown in equation
(6).
2.1.2 Plume Rise
The final plume rise in PLUVUE is calculated using the modified plume
rise formulas of Briggs (1969, 1971, 1972):
For unstable or neutral atmospheric conditions, the downwind distance of
final plume rise is x^ = 3.5 x*, where
13
-------
14 F5/8, if F < 55 "mV3
x =
1^34 F2/5, if F > 55 m4S"3
The final plume rise under these conditions is
(7)
= 1.6 F1/3(3.5 x
(8)
For stable atmospheric conditions, the downwind distance of final plume
-1/2
rise is Xf = TT u s , where the stability parameter s is defined as
follows:-
s = g 39/3z T
-1
(9)
The plume rise for stable atmospheric conditions is
- minimum of <
2.6(F/(u s)]
c .1/4 -3/8
5 F s
1/3
(10)
The buoyancy flux (F) in the above equations is calculated on the
basis of the flue gas volumetric flow rate per stack (tf), flue gas and
ambient temperature in degrees Kelvin (T^^, T^^igpi.), and gravita-
tional acceleration (g), as follows:
= qV M_ ^ambient |
* \ Tstack /
(11)
2.1.3 Gaussian Plume Diffusion
After the plume has achieved its final height (about 1 km downwind),
plume concentrations for uniform wind fields can be adequately predicted
using a Gaussian model if the wind speed u at plume height H (hs + Ah) and
14
-------
the rate of diffusion are known for the particular situation so that dif-
fusion coefficients (a , a ) can be selected:
X =
CJ a u
y z
exp
+ exp
(12)
Equation (12) is appropriate for a conservative species and can be modi-
fied to be appropriate for a nonconservative species by changing the
source term Q.
It is necessary for calculating plume visual impact to integrate,
along the line of sight, the plume extinction coefficient, the magnitude
of which depends on primary and secondary particulate and nitrogen dioxide
concentrations. Equation (12) can be integrated [Ensor, Sparks, and Pilat
(1973)] in the cross-wind direction y, from y = -°° to y = +», to obtain
the optical thickness of the plume:
+ 00
py
Jext
dy =
Q'(x)
exp
+ exp
, (13)
where bext is the incremental increase in extinction coefficient in the
plume and Q1 is the flux of the plume extinction coefficient over the
entire plume cross section at downwind distance x. In the vertical direc-
tion z, .from z = 0 to z = +», the plume optical thickness is
CO
•/
b dz =
pz J ext
Q'(x)
exp
15
t
ft)
21
(14)
-------
2.1.4 Observer-Plume Orientation
The magnitude of the visual impact of a plume depends on the orienta-
tion of the observer with respect to the plume because the plume optical
thickness will vary depending on this orientation. Figure 2 shows plan
and elevation views of an observer and a plume and indicates that the
>v
sight path distance through the constituents of the plume is a function of
angles a and 3. The optical thickness for most combinations of angles a
and 3 can be approximated as follows:
V
1 /?
Figure 2 suggests that plume optical thickness is greater for horizontal
sight paths than vertical ones, particularly during stable conditions when
the plume cross section is flattened.
2.1.5 Limited Mixing
When vertical diffusion is limited by a stable capping layer,
equation (12) is no longer valid, and a Gaussian formulation, with terms
for reflection from the top of the mixed layer (at altitude HL), is
used. Let H1 be the height of the virtual source positioned above the top
of the mixed layer:
H' -2
The Gaussian formulation for limited mixing is
16
-------
'OBSERVER
(a) Plan View
FUJMC
CMOss-sccntm
WOUND
'
-------
X =
a o
Y
+ exp
u
exp
BXP
(16)
In this instance of limited mixing, the plume material eventually becomes
uniformly mixed in the vertical direction for 0 < z < H^ In the limit,
the concentration is expressed as follows:
X =
exp
(17)
The calculation of plume optical thickness in the y-direction becomes
simply
py
Q'(x)
uH.
(18)
m
2.1.6 Surface Deposition
Surface deposition is calculated by integrating the plume concentra-
tions at the ground and multiplying by a deposition velocity, V^, that
characterizes gas and particulate surface depletion:
(19)
Since nocturnal ground-based stable layers shield a plume from the
ground at night, surface deposition is effectively zero at night. This is
handled in the model using a flag keyed to the time of day at which the
plume parcel is at a given downwind distance.
18
-------
2.1.7 Power Law Wind Profile Extrapolation of Surface Winds
PLUVUE is designed to use either wind speed aloft or surface wind
speed (commonly measured at 7 m above the surface). The power law
extrapolation presented in "User's Manual for a Single-Source (CRSTER)
Model" (EPA, 1977) is used. The surface wind speed is extrapolated to
stack height for the plume rise calculation, and the surface wind speed is
extrapolated to the final plume height for Gaussian concentration calcula-
tions. The power law extrapolation is as follows:
u = u0 (z/7)p (20)
where
u = wind speed at altitude z (ms~^)
UQ = surface wind speed (ms~^)
The profile exponent p is a function of stability and has the following
values:
Wind Speed Profile Exponent
Pasquill Stability Class (pj
A Extremely unstable 0.10
B Moderately unstable 0.15
C Slightly unstable 0.20
D Neutral 0.25
E Slightly stable 0.30
F Moderately stable 0.30
2.2 ATMOSPHERIC CHEMISTRY
As shown in figure 1, the conversion of emissions of nitric oxide
(NO) and sulfur dioxide (S02) to nitrogen dioxide (N02) gas and
sulfate (S04~) aerosol--species responsible for visual effects—must be
calculated in the visibility model.
19
-------
. The rate of chemical conversion of these primary emissions to second-
ary species responsible for visual impact is dependent on the concentra-
tion of the reacting species and ultraviolet (UV) solar flux. Thus, con-
version rates are dependent on both plume dilution and time of day. A
plume parcel at a given downwind distance has a specific age, time of
emission, and history of UV irradiation, which can affect the amount of
N02 and S04= in the plume at a given time. Thus, the chemical conversion
in each plume parcel must be treated separately, taking into account these
factors.
PLUVUE is structured to take a "snapshot" of a plume at a given
time. . In PLUVUE, the chemical conversion is calculated for each plume
parcel, observed at a given distance, in a Lagrangian manner; i.e., the
reaction rates are calculated at each of several discrete downwind dis-
tances and times from the point of emission to the downwind distance at
which the plume parcel is observed. Thus, the age of a plume parcel
observed at downwind distance xobs is XQ^/U, where u is the wind speed.
The time at which a plume parcel is at a given downwind distance relates
to the time of observation as follows:
x-k_ - x
t = t - obs (21)
1 tobs u U1;
The UV flux is calculated as a function of time that a plume parcel
is at a given downwind distance x from the solar zenith angle (i.e., the
angle between direct solar rays and the normal to the earth's surface).
The zenith angle is calculated on the basis of the latitude, longitude,
date, and time using a subroutine developed by Schere and Demerjian
(1977).
The rate of chemical conversion is also dependent on the location of
the plume parcel within the plume. PLUVUE makes calculations at the fol-
lowing altitudes within the plume (y = 0): at the plume centerline (z = H)
and at z = H ± n oz, where n = 1 and 2.
20
-------
2.2.1 Conversion of NO to
Nitrogen dioxide gas can cause a yellow-brown discoloration of the
atmosphere. Although some discoloration is a result of wavelength-
dependent light scattering caused by submicron aerosol, as discussed in
the workbook of this regulatory guidance series, the dominant colorant of
power plant plumes is NC^, which causes a yellow-brown discoloration that
may be apparent at significant distances downwind of large coal-fired
power plants, particularly in areas where the background visual range is
excellent.
Very little N02 is emitted directly from combustion sources. How-
ever, colorless nitric oxide is formed by the thermal oxidation of atmos-
pheric nitrogen at the high temperatures experienced in the combustion
zone (the boiler in a power plant) and the oxidation of nitrogen that may
be present in the fuel. Chemical reactions in the atmosphere can form
sufficient N02 from NO to cause atmospheric discoloration. Available
measurements of NO and N02 concentrations in power plant plumes in non-
urban areas suggest that the conversion of NO to N02 can be calculated
from a simple set of three reactions.
The first of these is the thermal oxidation of NO to N02:
*
2NO + 0 -> 2N0 . (22)
The reaction is termolecular, but bimolecular with respect to NO; it is
therefore very fast at high concentrations of NO but slow at the lower
concentrations that exist in the atmosphere or in a plume. The reaction
rate for equation (22), based on Baulch, Drysdale, and Home (1973) is
*
In urb'an areas, a complete photochemical mechanism should be
applied to calculate N02 concentrations. Also, it should be
noted that N02 is destroyed by reaction with the hydroxyl
radical (OH«), as discussed in the next subsection.
21
-------
d[N02]
(ft =
4.015 x 10 xt exp
-12 „. (1046)
[NO]2[OJ ppm/s . (23)
where R is the universal gas constant and T is the absolute temperature.
The reaction with ozone also affects the conversion of NO to N02:
NO + 03 -> N02 -«• 02 . (24)
The reaction is fast, with a rate (Leighton, 1961; Davis, Smith, and
Klauber, 1974; Niki, 1974) at 25°C of
d[N02]
/ = 0.44 [N0][0] Ppm/s . (25)
This reaction accounts for the ozone depletion measured within power plant
plumes and is important because ozone concentrations can be high even in
nonurban regions. Measured ozone concentrations in nonurban areas of the
western United States range from 0.02 to 0.08 ppm.
Whereas the thermal oxidation rate in reaction (23) decreases as the
plume mixes (because the NO concentration decreases), the formation of
nitrogen dioxide via equation (24) is enhanced as the plume mixes because
additional ozone from the atmosphere is mixed into the plume, allowing
equation (24) to proceed. When there are no reactions converting N02 to
NO (e.g., at night), equation (24) proceeds until all of the NO in the
plume is converted to N02 or until the ozone concentration in the plume
drops to zero. Therefore, the rate of conversion of NO to N02 via
equation (24) is limited by the rate of plume mixing that provides the
necessary atmospheric ozone.
To complete the set of chemical reaction mechanisms, we must consider
the photolysis of N02« When sunlight illuminates a plume containing
nitrogen dioxide, short wavelength light and ultraviolet radiation are
absorbed by the N02. As noted above, absorption of the shorter wavelength
22
-------
light produces the characteristic yellow-brown color associated with
N02- Absorption of the more energetic ultraviolet light (UV) results in
dissociation of the N02 molecule:
N02 + hv + NO + 0 . (26)
0 + 02 -> 03 . (27)
Leighton (1961) gave the rate of reaction (26) as
d[N02]
(28)
where K^ depends on the amount of light incident on the nitrogen diox-
ide. Davis, Smith, and Klauber (1974) gave the following expression for
Kd as a function of the solar zenith angle Zs:
With this set of chemical reactions, the chemical conversion of NO to
N02 in the atmosphere can be calculated from background pollutant concen-
trations and from plume NOX increments using the technique suggested by
Latimer and Samuelsen (1975) and White (1977). Making the steady-state
approximation, we have
K^
[N02] = -^ [N0][03] , (30)
where
[NO] = [NOX] - [N02] (31)
and
[03] = [03]b - [N02] - [N02]t - [N02]b (32)
23
-------
where [N02]t signifies the concentration of N02 formed via the termolecu-
lar reaction (22) 'and [N02]b signifies background concentrations. Substi-
tuting equations (28) and (29) into equation (27) we can solve for the
concentration of N02:
[N02] =0.5
[NOX] + [03]b + [N02]t + [N02]b
K
r
KH\
Wx] + [03]b+[N02]t+[N02]b+^J
- 4[NOX] [03]b + [N02]t
(33)
Using this formulation to compute NO-to-N02 conversion in a hypothe-
tical power plant plume, Latimer and Samuelsen (1978) studied the sensi-
tivity of N02 formation to the rate of plume dilution, background ozone
concentration, and solar radiation. The results of this analysis are pre-
sented in figure 3. This figure shows that thermal oxidation (e.g., [03]
= 0) converts up to 10 percent of the plume NO to N02, and additional con-
version results when ambient ozone is mixed into the plume. A recent com-
parison of observations with calculations using equation (33) indicates
good agreement, particularly if the diffusion of the plume is correctly
calculated by using fitted diffusion coefficients based on plume diffusion
measurements (see figure 4).
2.2.2 Conversion of S02 to S04=
It is critical to calculate the conversion of S02 emissions to sul-
fate (S04=) aerosol, because the latter can effectively scatter light and
cause reductions in visual range. The importance of S02 toSO^= conver-
sion can be seen from the schematic logic flow shown in figure 1. The
usual approach is to assume that sulfur dioxide (S02) gas is converted to
sulfate ^S04=) aerosol at some constant rate; this approach employs a
user-input value of a pseudo-first-order rate constant whose value is
empirically determined.
24
-------
1.1
t.l
0 It »
)0 M TO SO
(a) Solar radiation
t.r
ro
en
•.i
• \
a o.4
t.j
1.2
1.1
1.
• 11 10 »
M n to N too
I Mttwet (!•)
(b) Stability (TVA stability categories)
Source: Latimer and Samuel sen (1978).
w 100
(IM)
(c) Background ozone
Figure 3. Sensitivity of NO-to-N02 conversion in power plant plumes to the rate of plume dilution,
background ozone concentration, and solar radiation.
-------
ro
cr>
•TAJItMRD 9 ASQOtU • •
0 10 20 JO 40 JO 10 70 80 90 100
0 10 20 30 40 SO 60 70 80 90 100
** to
a
3 ..
*
«'
fi"
(c) CMC 3
rinto «_•_
STANDARD PASqtMU. 0 0
0 10 20 JO 40 JO W 70 80 90 100
Dovnvlitd 0t*tme« (ktloMttm)
(•} C«»e 5
10 W JO 40 JO 60 >0 80 90 100
8 o
8"
u
..
i! o
(b) CMC 2
STANDARD rASQVItL O_0.
FITTtD o «fi
10 20 30 40 W 60 TO SO 90 100
Downvliid 01*t*nc«
(d) Case 4
TANDARb PASQUtLL O 9
10 20 10 «0 50 60 10 «0 90 100
DnvnviM DUtcne* (kil)
(f) CMC 6
Figure 4. Comparison of measured N02/NOX mole ratios (circled points) in the plume centerline
downwind of a coal-fired power plant with computer-calculated values (solid lines)
using standard Pasquill and fitted a a .
-------
There is considerable variation, however, in such measured SC^-to-
S04= conversion rates, which range from a few tenths of a percent to
several percent per hour. Much of this variance in SC^-to-SC^ conversion
observed in field measurement programs in recent years can be explained
using a model that accounts for the reactions of plume S02 and N02 with
the hydroxyl (OH«) radical. This chemical mechanism is incorporated in
PLUVUE. In clean background areas, the gas-phase oxidation of SC^ and N0£
to sulfate aerosol and nitrate (nitric acid vapor) is due primarily to the
reaction of these species with OH». Previous assessments of homogeneous
(gas-phase-) oxidation of S0£ to sulfate estimated the proportion
assignable to the reaction with hydroxyl between about 75 percent in clean
atmospheres (Calvert et al., 1978; Altshuller, 1979) and as low as 40 per-
cent in polluted urban air (Isaksen, Hesstredt, and Hov, 1978), but more
recent estimates place these values much higher. Kinetic models forming
the basis of the early estimates used the value of 1.3 x 10"^^cm^mol"^s~^
for the rate constant of reaction for H02 and CI^C^ with NO. More
recently, however, this rate has been measured at 8.1 x lO'^cm^mol'^s"-'-
(Hampson and Garvin, 1978). This larger rate constant lowers the expected
concentration of these peroxy radicals by a factor of 6 and, in turn,
greatly reduces the S0£ conversion resulting from reactions with these
radicals. When recalculated using the new rate constant, the fraction of
S02-to-sulfate conversion that results from reaction with the hydroxyl
radical is approximately 95 percent for clean atmospheres and 70 percent
for the extremely polluted case.
These estimates are supported by the work of Miller (1978), who found
that the S02 oxidation rate was not dependent on the absolute concentra-
tions of hydrocarbons and nitrogen oxides but on the ratio of nonmethane
hydrocarbon to nitrogen oxides.
The rate of sulfate (and nitric acid) formation can be estimated by
calculating the steady-state concentration of OH« within a plume. This
steady-state plume OH» concentration is calculated by balancing the rate
of OH« production with the rate of OH- destruction. The following reac-
tions are used:
27
-------
> OH« production
H hv + 0( 'D) + 02
= 1.3 x 10~3 (cos
0('D) + M + 0(P) + M (K35 = 4.45 x
0('D) + H20 + 2 OH- (K36 = 3.4 x 105ppm"1min"1)
(34)
(35)
(36)
> OH* destruction (major sinks in plumes)
OH
- + S02 +HS03 ... (K3? = 2.0 x
(37)
OH- + N0
(K3g = 1.4 x
(38)
With the assumption of steady-state concentrations of 0('D) and OH-
in the plume, we can write the following equations:
d[OH«] . d[0'(D)] .
~
(39)
dt
- K36[0'(D)][H20]
(40)
[o('D)] -T^VK
l\-»r- • IN
35
(41)
See Latimer et al. (1980) for a discussion of other sources of OH
Rate constants are based on Whitten and Killus (1980), private
communication.
28
-------
= 2 K36[0('D)][H20] - K37[OH-][S02J (42)
2 K.,[0('D)][H90]
36L v /JL 2
K37l$02J + K3
With this steady-state concentration, plume pseudo-first-order S02-
4 and NC^-to-HNC^ conversion rates can be calculated as follows:
d[S07]
l • (44)
, ,
(45)
Note from equations (41) and (42) that plume OH« concentrations are
reduced below background tropospheric values for two reasons:
> Plume ozone (Og) concentrations are reduced below back-
ground values because of the reaction NO + 03 + N02 + Q£
(eq. 24).
> Plume concentrations of N02 and S02 are high, thus reduc-
ing steady-state OH» concentrations.
It should be pointed out that at night there is no production of OH» from
ozone photolysis; also, in early morning and late afternoon and in winter
OH» production is diminished because ultraviolet flux decreases as solar
zenith angles approach 90°. Thus, sulfate and nitrate are not formed at
The user is given the option in PLUVUE of supplementing the SC^-to-SC^
conversipn rate calculated on the basis of steady-state plume OH«
concentrations with a user-input pseudo-first-order rate constant, which
can be varied as a function of downwind distance.
29
-------
night and are formed only very slowly in concentrated plumes. Nitrate is
expected to remain as HN03 vapor and without visual effects until it is
eventually deposited. Ammonium nitrate could exist in aerosol form; how-
ever, sulfate competes for available atmospheric ammonia.
PLUVUE was run, with this OH» chemical mechanism included, for a
plume from a 1600 Mwe coal-fired power plant. On the basis of this case
study, the effect of the following on sulfate formation rate was studied:
> Plume dilution, corresponding to neutral and stable light-
wind conditions at various downwind distances.
> Time of day.
> Season.
The history of sulfate formation in a plume parcel based on this case
study is shown in figure 5. Note that time of day, season, and plume con-
centration all affect the rate of sulfate formation. This effect is
explained by the formulations shown in equations (41), (43), and (44).
The S02-to-S04= conversion rate is directly proportional to the plume
ozone and water vapor concentrations and to ultraviolet (UV) flux, and it
is inversely proportional to plume S02 and N02 concentrations.
The effect of UV flux is noted in both the seasonal and time-of-day
dependence of the sulfate formation rate. Note from figure 5 that no con-
version of S02 to sulfate occurs at night. Sulfate formation starts after
sunrise, reaches its maximum rate at noon (when ultraviolet flux reaches a
maximum), and then begins to decrease. Thus, a plume parcel observed at a
given distance downwind from a power plant may have undergone sulfate for-
mation during only a fraction of its journey. For example, a plume parcel
* It sho'uld be noted that sulfate can form not only by reactions with OH»
but also on existing, catalytic fly ash particles. However, this
sulfate coating on existing particles is not expected to significantly
add to aerosol surface area, which is important for light scattering.
30
-------
0
.02
o;
O J-
l/l -I—
> c
' c o
o •<-
o +->
o
.• ro
O
O =!
OO Q
cu
•*->
c
OJ
o
CL
.01
0.0
Plume Parcel Age (hrs)
4 6 8 10
12
14
1 r
21 JUNE
21 SEPTEMBER
21 DECEMBER
SUNRISE
0
20
NOON
^ \
/ /SPRING^
• ' OR FALL
40 60
Downwind Distance (km)
16
Notes:
(1) Time-dependent S02-to-SO| conversion rates for the history of a
parcel in the center of a well-mixed plume (neutral stability)
which is observed 100 km downwind at 1500 (in the afternoon) are
plotted for indicated seasons in Figure 5(a).
(2) Comparable conversion rates for a well-mixed plume observed
160 km downwind at 1500 are plotted in Figure 5(b).
(3) Conversion rates for stable plumes (isothermal stability) are
considerably less than 0.01 percent/hr. See shaded areas at
the bottom of graphs.
(a) Life history of a plume parcel observed 100 km downwind at 1500 hours.
Figure 5. Calculated time dependence of sulfate formation in the center
of plumes from a 1600 Mwe coal-fired power plant,
2 m/s winds, neutral and stable conditions
31
-------
10
Plume Parcel Age (hrs)
12 14 16 18
20
.06 -
.05
c
QJ
O O
O)
QJ C.
0*""'
CD CU
_| ^ ^^^
(O C
c
O O)
••- E
10 3
f nll
QJ O-
>
C C
O -i-
o
o o
t/i
Sf
CM
O C
C/) O
O
fD
O)
o:
04
.03
02
.01
I 1 I
21 JUNE
21 SEPTEMBER
21 DECEMBER
NOON
SUNRISE
0
60
80 100 120
Downwind Distance (km)
(b) Life history of a plume parcel observec
160 km downwind at 1500 hours.
Figure 5 (concluded)
32
-------
160 km downwind of its source, when winds are 2 m/s, would require a
transit time of more than 22 hours. During this period sulfate would be
formed only during the sunlight hours [see figure 5(b)].
The effect of plume S02 and N02 concentrations on the steady-state
OH* concentration and hence on sulfate formation is also shown in
figure 5. Note, by comparing figure 5(a) with 5(b), that sulfate forma-
tion is much more rapid when plume parcels are more dilute (at farther
downwind distances). In the dilute, neutral-stability plumes at downwind
distances greater than 100 km, sulfate formation rates reach noon peaks of
about 0.06, 0.02, and 0.004 percent per hour, respectively, for the
summer, fall, and winter simulations for this latitude. In the less
dilute, neutral-stability plumes at downwind distances of less than
100 km, the sulfate formation rates peak at 0.016, 0.008, and less than
0.002 percent per hour for summer, fall, and winter, respectively. How-
ever, formation rates in stable plumes are considerably less than 0.01
percent per hour even at noon on a summer day.
These model calculations support the argument made by Latimer (1980)
that the atmospheric discoloration of stable power plant plumes (where
particulate emissions are controlled) is caused primarily by nitrogen
dioxide (N02) gas, not by secondary sulfate aerosol. Sulfate aerosol is
not formed in plumes during nighttime transport, and formation is minimal
during daytime transport when plumes are concentrated (as they would be
during stable conditions). After plumes have become well mixed, signifi-
cant rates of sulfate formation can occur in the daytime, though these
rates approach zero with low sun angles. Thus, sulfate formation is a
long range (greater than 100 km), multiday phenomenon, not a near-source
problem.
2.3 AEROSOL SIZE DISTRIBUTION
The aerosol size distribution, is characterized by a series of aerosol
modes, each having a log-normal distribution of mass (or volume). Each of
the following modes is treated separately in PLUVUE:
33
-------
> Background accumulation mode (submicron) aerosol (typi-
cally having a mass median diameter of about 0.3 wn and a
geometric standard deviation of 2).
> Background coarse mode (> 1 un) aerosol (typically having
a mass median diameter of about 6 in and a geometric
standard deviation of 2).
> Plume primary particulate aerosol (e.g., fly ash
emissions).
> Plume secondary sulfate (SO^) aerosol (typically having a
mass median diameter of 0.1 to 0.3 un and a geometric
standard deviation of 2).
The expression developed by Winkler (1973) is used to calculate the
amount of liquid water associated with submicron background and plume sul-
fate aerosol as a function of relative humidity.
Secondary aerosol is assumed to form in the submicron plume secondary
aerosol mode. A time delay equal to the time between successive downwind
distances is introduced to account for coagulation and condensation time
delays.
2.4 ATMOSPHERIC OPTICS
In the atmospheric optics component of the plume visibility model,
the light scattering and absorption properties of the aerosol and the
resultant light intensity (spectral radiance) for various illumination and
viewing situations are computed. The details of these calculations are
given in appendix B of Latimer et al. (1978); the major points are sum-
marized in this section.
2.4.1 -Calculation of the Scattering and Absorption Properties
After the concentrations of the pollutants are specified by the
transport and chemistry subroutines, their radiative properties must be
34
-------
determined. For NC^, the absorption at a particular wavelength is a tabu-
lated function (Dixon, 1940) multiplied by the concentration. For aero-
sols, however, the procedure is more complicated.
In general, a particle's ability to scatter and absorb radiation at a
particular frequency is a function of size, composition, shape, and rela-
tive humidity. The flexibility to specify the size distribution of both
primary and secondary particles was desired. Therefore, the effect of
particle size on the wavelength dependence of the extinction coefficient
and the phase function, the solution of Maxwell's equations for scattering
by a sphere, and the so-called Mie equations were used in PLUVLJE. These
calculations are appropriate for atmospheric aerosol; comparisons of Mie
calculations, with empirical correlations of scattering-to-mass indicate
substantial agreement.
The Mie calculations in PLUVUE are performed using an IBM subroutine
written by J. V. Dave (Dave, 1970). The required inputs are the particle
size parameter (ratio of the circumference to the wavelength of radia-
tion), the index of refraction (real and imaginary part), and the number
and location of absorption cross sections and the Stokes transformation
matrix (Van De Hulst, 1957), which can be simply converted to the scatter-
ing distribution assuming randomly polarized light. The scattering and
absorption properties per particle are then summed over the particular
log-normal size distribution for the given aerosol mode.
2.4.2 Calculation of Light Intensity
The light intensity, or radiance (watts/m^/steradian) at a particular
f
location in the atmosphere is a function of the direction of observation n
and the wavelength X. Calculation of the light intensity in a medium
follows from the radiative transfer equation. This equation is a conser-
vation of energy statement that accounts for the light added to the line
of sight by scattering and the light Tost because of absorption and scat-
tering. Approximations and solution techniques applicable to planetary
atmospheres have been discussed by Hansen and Travis (1974) and Irvine
(1975).
35
-------
The physical situation that we are concerned with is shown sche-
matically in figure 6. To compute the spectral light intensity at the
observer, we sum (integrate) the scattered and absorbed light over the
path, r, associated with the line of sight fl. The resultant general
expression for the background sky intensity at a particular wavelength is
/ "(T) f
-] -b1 J
da' e"l df , (46)
where
r
T = the optical depth (T = / b0¥t dr, where
0 e
bext is the extinction coefficient),
u) = the albedo for single scattering
-------
CO
-J
OBSERVER
UNSCATTERE
LIGHT
DIRECT AND DIFFUSE
SOLAR RADIATION
INCOMING LIGHT)
ABSORBED LIGHT
LIGHT REFLECTED FROM
a OBJECT TOWARD OBSERVER
LIGHT SCATTERED
TOWARD OBSERVER
LIGHT SCATTER
AWAY FROM OBSERVER
-Ul-
Figure 6. Light scattering and absorption in the atmosphere.
-------
Equations (46) and (47) then completely describe the spectral
intensity of the sky and a background object. Once these two quantities
are known, the visual effects of the intervening atmosphere can be quanti-
fied. In evaluating equations (46) and (47), we encounter two main dif-
ficulties: First, the quantity in the integral is a fairly complicated
function, and accurate specification is tedious. Second, the atmosphere
is inherently inhomogeneous; thus, the radiative properties u>, p are some-
what complicated functions of r and fl. The following approximations are
therefore made in PLUVUE:
> Plane parallel atmosphere
> Two homogeneous layers
> Average solar flux approximation
> Average diffuse intensity approximation.
The equation for the background intensity at the surface becomes, for a
given viewing direction,
(48)
and for the intensity in the direction of an object in the planetary
boundary layer,
<49>
38
-------
where
~uLn, ^QP,(O) = the average albedo and phase function,
respectively;
TQQ = the optical depth of the path in the
boundary layer;
d i f
FC aw» I = the average solar direct intensity and
s>»av av
diffuse intensity, respectively;
*sky» *o = the ^tensities from the upper atmosphere
and object, respectively.
Thus, the background intensity and the intensity in the direction of
an object at distance R from the observer can be computed given the fol-
lowing inputs:
> Background radiative properties (e.g., size distribution, visual
range).
> Solar zenith angle.
> Scattering angle.
> Viewed object intensity.
> Direction of observation.
> Planetary boundary layer height.
The plume is treated as a homogeneous layer with a given optical
thickness and mean properties ~ui , and "p , „(©). We also assume that
plume plume
the plume does not affect the solar radiation illumination (an optically
thin plume).
dif
Diffuse radiation (I ) is computed using an approximation discussed
av
in appendix B of Latimer et al. (1978).
Spectral radiance, or light intensity I(X), is calculated for 39
wavelengths spanning the visible spectrum (0.36 un < \ < 0.74 wn, in 0.01
um increments}.
39
-------
2.5 GEOMETRY OF PLUME, OBSERVER, AND SUN
For performing as many as four different types of optics calculations
at selected points along the plume trajectory, PLUVUE has two modes:
plume-based and observer-based calculations. The calculations for plume
transport, diffusion, and chemistry are identical for calculations in both
modes. The major difference between the two types of calculations is the
orientation of the position of the viewer to the source and the plume.
Plume-based calculations are repeated for several combinations of
plume-observer-sun geometries. Because of the repetitions, these plume-
based calculations are more expensive and produce more printed output than
the observer-based calculations, which are performed for only the specific
line-of-sight orientations corresponding to the given observer position,
the portions of the plume being observed, and the specific position of the
sun relative to these lines of sight.
There are four types of optics calculations: (1) horizontal views
through the plume with a sky viewing background; (2) nonhorizontal views
through the plume with a sky viewing background; (3) horizontal views
through the plume with white, gray, and black viewing backgrounds; and
(4) horizontal views along the axis of the plume with a sky viewing
background.
Figure 7 illustrates the geometry of the plume-based optics calcula-
tions for horizontal views through the plume. This figure depicts sche-
matically the variety of distances from the observer to the plume and the
variety of horizontal azimuthal angles between the line of sight and the
plume trajectory. Calculations for all these geometries are repeated for
up to six different scattering angles.
These azimuthal angles are measured from the plume centerline to the
line of sight such that the angles range from 0° to 90°.
40
-------
OUTLINE
OF PLUME
POSITIO
POINTS FOR
OPTICS ANALYSIS
PLUME CENTERLI
OBSERVER POSITIONS ON EACH LINE OF
SIGHT CORRESPONDING TO VARIOUS
PLUME-OBSERVER DISTANCES (r )
HORIZONTAL LINES OF SIGHT AT FOUR
AZIMUTHAL ANGLES (a) RELATIVE TO
PLUME CENTERLINE
Figure 7. Geometries for plume-based calculations for horizontal views
with a sky background.
-------
Plume-based calculations for nonhorizontal views through the plume
are shown in figure 8. For one azimuthal angle (a), figure 8(a) shows the
range of vertical elevation angles (B) of the line of sight. The observer
position is determined by the intersection of the line of sight with flat
terrain. For one elevation angle (B) of the line of sight, figure 8(b)
shows the range of four azimuthal angles (a) between the plume centerline
and the line of sight. Again, these calculations are repeated for as many
as six different scattering angles at each point of analysis along the
plume trajectory.
Figure 9 shows the geometry for the optics calculation for horizontal
views perpendicular to the plume with white, gray, and black viewing back-
grounds. For each point on the plume trajectory and each scattering
angle, the calculations are executed for a range of distances from the
observer to the background object, starting at the plume centerline and
ending at 80 percent of the background visual range. The distances, from
the observer to the plume, range from 2 percent to 80 percent of the back-
ground visual range.
Figure 10 illustrates the configuration used for the plume-based cal-
culation for views along the axis of the plume. The calculations are made
from the second through the final downwind distances. At each point, the
observer is looking toward the emissions source with a sky background.
The calculations are made for views through plume segments defined by the
particular point of analysis, as well as successive analysis points
upwind. The calculations are repeated for observer positions at a range
of distances from the downwind point at which the plume segment is assumed
to end.
The observer-based geometry used for views through the plume center
with a clear sky background is shown in figure 11. At each point of
analysis along the plume trajectory, the optics calculation is made for
42
-------
CO
POINT ON PLUME TRAJECTORY
FOR OPTICS ANALYSIS
HORIZONTAL LINE PER
PENDICULAR TO PLUME
•VARIOUS OBSERVER POSITIONS FOR
a = 90° FOR NONHORIZONTAL VIEWS
(a) Variation in elevation angle (B) for a fixed azimuthal angle (a = 90°)
between the plume trajectory and the line of sight.
Figure 8. Geometries for plume-based calculations for nonhorizontal views
with a sky background.
-------
INES OF SIGHT
FOR EACH a VALUE
VARIOUS OBSERVER POSITIONS
FOR NONHORIZONTAL VIEWS
FOR 0 = 30°
(b) Variation in azimuthal angle (a) for a fixed elevation angle (0 = 30°).
Fipure 8 (concluded).
-------
VARIOUS BACKGROUND OBJECT
POSITIONS (NOT TO SCALE)
.£»
01
VARIOUS OBSERVER POSITIONS
(NOT TO SCALE)
Figure 9. Geometries for plume-based calculations for viewing of white, gray, and
black objects for horizontal views perpendicular to the plume.
-------
FIRST TWO OBSERVER
POSITIONS
FOURTH POINT FOR'
OPTICS ANALYSIS
(THE REFERENCE
FOR THIS FIGUREJ
POINTS ON PLUME TRAJECTORY
FOR OPTICS ANALYSIS
PLUME CENTERLINE
Figure 10. Geometries for plume-based calculations for horizontal views
along the axis of the plume.
-------
SOLAR POSITION SPECIFIED
)— BY SOURCE LOCATION,
TIME AND DATE
WIND
-SPECIFIED SOURCE
LOCATION
SPECIFIED
OBSERVER LOCATION
Figure ll. Geometry used for observer-based calculations for nonhorizontal views
through the plume for clear-sky backgrounds.
-------
only one scattering angle, one plume-observer distance, and one azimuthal
angle specific for the source position, observer position, wind direction,
date, and time of day used as input.
For calculations with white, gray, and black viewing backgrounds, the
geometries are the same as those for horizontal views with a sky back-
ground (figure 11), with the addition of the specific background object
distance, along each line of sight, from the observer through the points
on the plume trajectory.
Figure. 12 is a plan view of the geometry for an observer-based cal-
culation for views along the plume. At each analysis point along the
plume trajectory, the centerline concentration is integrated along a seg-
ment on the line of sight that would correspond to a Gaussian distribu-
tion. The line of sight is always horizontal. The calculation is per-
formed for a clear sky background and for white, gray, and black viewing
objects at the specific distance for each line of sight.
It should be noted that if the distance (rp) and azimuthal angle (a)
are such that the observer is within the plume, the total plume optical
thickness along the line of sight is reduced accordingly. The calculated
distance rp is the distance between the observer and the centroid of plume
material viewed by him.
2.6 QUANTIFYING VISIBILITY IMPAIRMENT
We can quantify visibility impairment once the spectral light inten-
sity or radiance I(X) has been calculated for the specific lines of sight
of an observer at a given location in an atmosphere with known aerosol and
pollutant concentrations. Visibility impairment—including reduction in
visual range, the perceptibility of plumes and haze layers, and atmos-
pheric discoloration—is caused by changes in light intensity as a result
of light scattering and absorption in the atmosphere.
48
-------
UD
-SPECIFIED SOURCE LOCATION
SPECIFIED
WIND DIRECTION
LINE OF SIGHT
^SPECIFIED
OBSERVER POSITION
Figure 12. Plan view of geometry for observer-based calculations for views along the plume.
-------
50
-------
PLUVUE INPUT DATA
The input data needed to run PLUVUE are contained in one file of 80
byte, card-image records. These data include the following parameters:
> Wind speed aloft or at the 7-m level.
> Stability category.
> Lapse rate.
> Height of the planetary boundary layer (mixing depth).
> Relative humidity.
> S02, NOX, and particulate emissions rates.
> Flue gas flow rate, exit velocity, and exit temperature.
> Flue gas oxygen content.
> Ambient air temperature at stack height.
> Ambient background NOX, NC^, 03, and S02 concentrations.
> Properties (including density, mass median radius, and
geometric standard deviation) of background and emitted
aerosols in accumulation (0.1-1.0 un) and coarse (1.0-
10.0 pro) size modes.
> Coarse mode background aerosol concentration.
> Background visual range or background sulfate and nitrate
concentration. **
> Deposition velocities for S02, NOX, coarse mode aerosol,
and accumulation mode aerosol.
> UTM coordinates of the source location.
> Elevation of the source location.
> UTM coordinates and elevation of the observer location for
"an observer-based analysis.
> UTM zone for the site and observer locations.
51
-------
> Time, day, month, year, and time zone for the time and
date of the simulation.
> For an observer-based run, terrain elevation at the points
along the plume trajectory at which the analysis will be
performed.
> For an observer-based run with white, gray, and black
viewing backgrounds, the distances from the observer to
the terrain that will be observed behind the plume.
> For an observer-based run, the wind direction.
The input data file also has numerous switches or flags to allow the
user to select the particular subset of the complete model that meets his
needs. Table 1 lists the input parameters with formats, summary descrip-
tions, and suggested values for some of the input parameters. The param-
eter IUSFC is simply a flag to allow the wind speed to be input at the
effective stack height (IUSFC = 0) or at the common 7-m instrument height
(IUSFC = 1).
IDIS is a flag that selects the desired Gaussian diffusion param-
eters, which may be Pasquill-Gifford (IDIS = 0), TVA (IDIS - 1), or user-
input values (IDIS = 9).
IFLG1 is a flag that allows the user to select or skip the calcula-
tion of visibility impairment of the plume for horizontal views with a
clear sky background. IFLG2 allows the user to select or skip the calcu-
lation of visibility impairment for nonhorizontal views and clear sky
background. IFLG3 allows the user to select or skip the calculation of
visibility impairment calculations of the plume as seen in front of white,
gray, and black backgrounds. IFLG4 allows the user to select or skip the
visibility impairment calculation for an observer looking straight down
the centerline of various segments of the plume or for an observer looking
across the plume at a small acute angle to the plume centerline. For all
of these, a value of 1 executes the calculations and a value of 0 branches
around them.
52
-------
TABLE 1. DATA REQUIREMENTS FOR PLUVUE
Card No
Format
Variables
Description
en
CO
1 ." 6A4
2 F5.1
15
F5.2
3 12
12
12
4 F10.0
F10.0
5 F10.1
6 F10.3
7 15
8 12
12
12
PLANT
U
I
ALAPSE
IUSFC
I NEW
NXSTAB
YINITL
ZINITL
HPBLM
RH
IDIS
IFLG1
IFLG2
IFLG3
Name of source
Wind speed (mph)
Stability index
Ambient temperature lapse rate ('F/IOOO')
Index for height for U (=1 for 7m,
0 for effective stack height)
Secondary stability index
Index for downwind distance where
stability changes from I to INEW
Initial plume y-dimension for area source
Initial plume z-dimension for area source
Mixing depth (m)
Relative humidity (percent)
Flag indicating diffusion parameters to be used
for stability index I ("1" for TVA, "0" for
Pasquill-Gif ford-Turner values, "9" for user
input values
Flag for optics calculation of horizontal views
with sky background
Flag for optics calculation with nonhorizontal
views and sky background
Flag for optics calculation for white, gray,
and black background
-------
TABLE 1 (Continued)
Carti No.
01
9
10
11
12
Format
12
12
12
12
12
Variable
Description
12
8F10.0
8F10.0
F10.2
F10.2
IFLG4
NX2
NT1
NT2
NZF
IDILU
Flag for optics calculation along the plume
centerline
Index indicating the number of downwind
distances desired (2 < NX2 < 16)
Starting index for the scattering angles used
in the generic calculation (set to 1 when
executing only observer-based calculations)
Ending index for the scattering angles used in
the plume-based calculation (set to 7 when
executing only observer-based calculations)
Index for the number of altitudes for visual
impact calculations: "1" for plume centerline
only, "2" for plume centerline and ground-level
downwind
Switch for printout of table for initial plume
rise data
OIST(I) Downwind distances for visibility impact
1=1, NX2 calculations (2 < NX2 < 16) (2 cards for
NX2 > 8)
DIST(I)(cont.)
QS02 Total S02 emissions rate from all stacks in
tons per day
QNOX Total NOX emissions rate from all stacks in
tons per day
-------
TABLE 1 (Continued)
Card No.
en
tn
Format
F10.2
Variables
Description
QPART
13
14
15
16
17
F10.1
F10.1
F10.1
F10.2
F5.1
F5.1
F10.1
F10.3
F10.3
F10.3
F10.3
F10.3
F10.3
F10.3
F10.3
FLOW
FGTEMP
F602
WMAX
UNITS
HSTACK
TAMB
AMBNOX
AMBN02
03AMB
AMBS02
ROVA
ROVC
ROVS
ROVP
Total primary participate emissions rates from
all stacks in tons per day
Flue gas flow rate (cfm) per stack
Flue gas exit temperature (°F)
Flue gas oxygen concentration (mole percent)
Flue gas stack exit velocity (m/s)
Number of stacks
Stack height (feet)
Ambient temperature (°F)
Ambient [NOX] in ppm [0]
Ambient [N02] in ppm [0]
Ambient [Og] in ppm [0.04]
Ambient [S02] in ppm [0]
Mass median radius (un) for background
accumulation mode aerosol [0.16]
Mass median radius (un) for background coarse
mode aerosol [3.0]
Mass median radius (un) for plume secondary
aerosol [0.10]
Mass median radius (vm) of emitted primary
particulate [1.0]
-------
TABLE 1 (Continued)
en
o>
Card No.
18
19
20
21
22a (INTYP=1)
Format
F10.3
F10.3
F10.3
F10.3
F10.3
F10.3
F10.3
F10.3
F10.3
15
F10.3
F10.3
Variables
SIGA
SIGC
SIGS
SIGP
OENA
DENC
DENS
DENP
CORAMB
INTYP
AMBS04
AMBN03
Description
Geometric standard deviation of background
accumulation mode aerosol radius [2.0]
Geometric standard deviation of background
coarse mode aerosol radius [2.2]
Geometric standard deviation of plume secondary
aerosol radius [2.0]
Geometric standard deviation of plume primary
aerosol radius [2.0]
Particle density (g/cm3) of background
accumulation mode aerosol [1.5]
Particle density (g/cnr) of background coarse
mode aerosol [2.5]
Particle density (g/cm3) of plume secondary
aerosol [1.5]
Particle density (g/cm3) of emitted primary
particulate [2.5]
Ambient coarse mode aerosol concentration
(vg/m3)
Switch for next card (=1 for AMBS04 and AMBNOo,
* 1 for RVAMB)
Ambient background sulfate mass concentration
(wg/m3)
Ambient background nitrate mass concentration
(ng/m3)
-------
TABLE 1 (Continued)
Card No.
22b (INTYP * 1)
23*
en
24
25
Format
F10.3
F5.2
F5.2
F5.2
F5.2
15
Variables
Description
F10.7
A-lf (If ICON = 1) 8F10.7
A-2* (continuation 8F10.7
of A-l)
26 15
RVAMB
VDS02
VDNOX
VDCOR
VDSUB
ICON
RS02C
RS02(NX),
NX=1,8
RS02(NX),
NX=9,NX2
NCI
Ambient background visual range (km)
deposition velocity (cm/sec) [1]
NOX deposition velocity (cm/sec) [1]
Coarse mode aerosol deposition velocity
(cm/sec) [0.1]
Accumulation mode aerosol deposition velocity
(cm/sec) [0.1]
Index for S02-to-S04= conversion rate added to
rate predicted from OH« chemistry. ICON = 0
for conversion rate, set constant with distance
from source. ICON = 1 for separate values for
each point of analysis downwind of the source
[0]
Rate constant for S02-to-S04= conversion to be
added to prediction from OH- chemistry (%/hr)
[0.0]
S02-to-S04= conversion rates to be added to
predictions from OH- chemistry at each point of
analysis on plume (%/hr)
(Continuation as needed)
Index to control type of calculations. NC1=1
for plume-based calculations, 2 for observer
based calculations only
-------
Card No.
A-3f (If NC1=1)
Format
15
612
TABLE 1 (Continued)
Variable
NC2
NPP
en
00
NAP
NTP
NZP
I01P
IPP
Description
Index to control calculations NC2=1 for plume-
based calculations only, 2 for observer-based
calculations
Indexes for controlling the subset of results
(from plume-based calculations of horizontal
views with sky, white, gray, and black
backgrounds) to be written to a file for later
use by the VISPLOT program for generating
plots. NPP controls the distance from the
observer to the plume for sky background [3]
Index for selecting the horizontal azimuthal
angle a between the line of sight and the plume
trajectory for plots of results for sky
backgrounds [4]
Index for selecting the scattering angle of
plume-based data to be plotted
Index for selecting the level of the line of
sight through the plume for plume-based data to
be plotted [3]
Index for selecting the distance from the
observer to the background object for the
plume-based data to be plotted
Index for selecting the distance from the
observer to the plume for plume-based plot data
with background object views
-------
TABLE 1 (Continued)
Card,. No.
in
us
A-3f (If NC2=2)
27
28
A-4f (If NC2=2)
A-5f (If NC2=2)
A-6f (If NC2=2)
Format
F10.1
Variables
Description
15
15
F5.0
F5.0
15
8F10.1
8F10.1
8F10.1
XOBS
F10.1
F10.1
F10.1
F10.1
F10.1
15
YOBS
ZOBS
XSTACK
YSTACK
ZSTACK
I ZONE
I MO
I DAY
TIME
TZONE
I YEAR
TER(NX), NX=1,8
TER (NX), NX=9, NX2
ROBJCT(NAZ), NAZ=1,8
UTM x-coordinate of observer position (in km)
for observer-based calculations
UTM y-coordinate of observer position (km)
Elevation (feet msl) of observer position
UTM x-coordinate of source (km)
UTM y-coordinate of source (km)
Elevation of source location (ft. MSL)
UTM grid zone number within which source is
located
Number of month for date of simulation
Day of month for date of simulation
Time of day (24-hr clock)
Time zone number
Year for date of simulation
Elevation of terrain at the selected points
downwind of the source along the plume
trajectory (ft. MSL) (for observer-based
calculation)
(Continuation as needed)
Distances in kilometers from observer to
background terrain for observer azimuths of
15°, 30°, 45°, 60°, 75°, 90°, 105°, 120°
-------
TABLE 1 (Concluded)
Card No.
A-7* (continuation of A-4)
A-8^ (continuation of A-5)
A-9f (If NC2=2)
A-101" (If IDIS*9)
(to A-10f + NX2)
Format
8F10.1
8F10.1
F10.1
F5.1
F5.1
Variable
Description
ROBJCT(NAZ),
NAZ=9,16
ROBJCT(NAZ),
NAZ=17,24
WIND
SY
SZ
Distances for azimuths of 135°, 150°, 165°,
180°, 195°, 210°, 225°, 240°
Distances for azimuths of 255°, 270°, 285°,
300°, 315°, 330°, 345°, 360°
Wind direction azimuth (degrees from North)
Dispersion parameters in meters,
one card for each distance
ii AH
0" if table is not desired, "1" if desired.
t "/\_n» refers to cards that are optional. They are inserted only when values of prior flags or indexes are set
to require additional input data, e.g., when ICON=1, cards A-l and A-2 are required.
Suggested values for some of the input parameters are shown in brackets.
-------
NZF is a switch that indicates whether the visibility impairment cal-
culations will be made for the plume centerline altitude only (NZF = 1) or
for both the plume centerline and ground level (NZF = 2).
IDILU is a switch that controls the printing of the table of initial
plume rise data. If IDILU = 0, the table is not printed, and if IDILU =1,
it is printed.
INTYP is a switch that allows the user to calculate the background
visual range (INTYP = 1) from user-input background coarse mode aerosol
concentrations and background sulfate and nitrate concentrations. If
INTYP * 1, the user inputs the background visual range and the background
coarse mode aerosol concentration, and the model computes the background
accumulation mode aerosol concentration that would be needed to cause the
given visual range.
ICON is a switch that allows the user to select the conversion rate
of $62 to S04=, in addition to the rate calculated by the OH- model, as a
constant with distance from the source (ICON = 0) or as a separate value
for each point of analysis downwind from the source (ICON = 1). These
conversion rates are in units of percent per hour. RS02C gives the con-
stant conversion rate for all points on the plume trajectory, while RS02
gives the downwind-distance-dependent conversion rates for each point of
analysis.
The parameters NCI and NC2 are used to control whether the visibility
impairment calculations are done for a plume-based scheme, an observer-
based scheme, or both. NCI set to 1 executes the plume-based calculations
and NC2 set to 2 calculates the observer-based calculations. If NCI is
set to 1 and NC2 is set to 2, both types of calculations will be made. If
NCI is set to 1 and NC2 is set to 1, only the plume-based calculations
will be made. Finally, if NCI is set to 2 and NC2 is set to 2, only the
observer-based calculations will be made.
61
-------
The stability index I specifies the stability category for the plume
dispersion parameters: I = 1 for stability A, I = 2 for stability B,
I = 3 for stability C, etc. I NEW and NXSTAB allow for a stability change
at some point downwind along the plume trajectory. INEW is the new sta-
bility and NXSTAB is the index of the element of downwind distance array
where the stability changes. If no stability change is desired, simply
set INEW to I and NXSTAB to the value of NX2 plus one.
NT1 and NT2 assign the starting and ending indexes for the scattering
angle array used for the plume-based visibility impairment calculations.
With NT1 = 1 and NT2 = 7, the default scattering angles (22°, 45°, 90°,
135°, 158°, and 180°) are used. These angles are taken from the array TT,
which has 0°, 22°, 45°, 90°, 135°, 158°, and 180° as its first seven ele-
ments. NT1 is one less than the actual starting index of TT, while NT2
corresponds to the actual ending index of TT. For a run with calculations
for 90° only, NT1 is set to 3 and NT2 is set to 4. For a run with calcu-
lations for 90°, 135°, 158°, and 180*, NT1 is set to 3 and NT2 is set
to 7.
The index NX2 defines the number of points downwind along the plume
trajectory where visibility impairment calculations will be made. The
value of NX2 should be at least 2 and not greater than 16.
The array DIST specifies the distance downwind from the source along
the plume trajectory of each point where visibility impairment calcula-
tions will be made. The units for this array are kilometers. It is
important, for accurate prediction of the oxidation of NOX to N02, to use
downwind distances that are close together and near the source. The first
downwind distance must be 1 km; 2.5 km, 5 km, and 10 km are recommended
for the succeeding three distances. The user is free to select the
remaining points according to the needs of the situation.
YINITL and ZINITL are used for area sources and define the initial
lateral and vertical dimensions of the plume. For emissions from stacks,
both YINITL and ZINITL should be set to zero. The units for these two
variables are meters.
62
-------
When plume-based calculations are complete, a subset of the results
must be selected for plotting with the program VISPLOT (appendix C).
VISPLOT is designed to plot the visibility impairment parameters from the
calculations for horizontal views with a sky background and for horizontal
views with white, gray, and black object backgrounds. The 6 indexes
listed on card A-3 determine the subset of results that will be written to
logical file unit eight. NPP selects the distance from the observer to
the plume in the following manner:
Distance from Observer to Plume
NPP (fraction of background visual range)
1 0.02
2 0.05
3 0.10
4 0.20
5 0.50
6 0.80
NAP determines the horizontal azimuthal angle alpha between the plume
centerline and the line of sight for a sky background:
Alpha
NAP (degrees)
1 30°
2 45°
3 60°
4 90°
NTP selects the scattering angle between the direct solar beam and the
line of sight from the point of analysis to the observer. The value of
NTP must be greater than or equal to NT1 and less than or equal to (NT2-
1). The values of NTP for each of the six scattering angles are shown
below:
63
-------
Scattering Angle
NTP (degrees)
1 22°
2 45°
3 90°
4 135°
5 158°
6 ISO8
NZP selects the results for calculations of views through the center of
the plume or views at ground level across the plume trajectory. The
values of NZP are limited by the value of NZF (card no. 8). If NZF = 1,
the calculations are done only for views through the plume centerline, and
NZP must be set to 3. If NZF = 2, NZP may be set to 3 for values from
calculations for views through the plume centerline, or NZP may be set to
6 for values from calculations for views at the surface through the plume
trajectory. The index IPP selects the distance from the observer to the
plume for plotting results of the calculations for views with white, gray,
and black objects behind the plume. The values of IPP correspond to the
distances shown below:
Distance from Observer to Plume
IPP (fraction of background visual range)
1 0.02
2 0.05
3 0.10
4 0.20
5 0.50
6 0.80
I01P is used to select the distance from the observer through the plume to
the white, gray, and black background objects behind the plume. The value
of I01P is limited by the value of IPP because the object background can
be no farther than a distance equivalent to 80 percent of the background
visual range from the observer. If IPP = 1, the range of values of I01P
is shown below:
64
-------
Distance from Observer to Object
I01P (fraction of background visual range)
1 0.02
2 0.05
3 0.10
4 0.20
5 0.50
6 0.80
When IPP = 2, the values I01P available are as follows:
IQ1P Distance from Observer to Object
1 0.05
2 0.10
3 0.20
4 0.50
5 0.80
When IPP = 3, I01P is limited to one of the following values:
I01P Distance
1 0.10
2 0.20
3 0.50
4 0.80
When IPP = 4, I01P is limited to these three values:
IQ1P Distance
1 0.20
2 0.50
3 ' 0.80
65
-------
When IPP = 5, I01P is limited to only two values:
I01P Distance
1 0.50
2 0.80
When IPP = 6, I01P must be set to 1, which corresponds to a distance from
the observer to the background object of 0.80 of the background visual
range. These six indexes do not place any restrictions on the calcula-
tions made by PLUVUE, but they provide a means of selecting the desired
subset of results to be saved for plotting.
The UTM coordinates and elevations for observer and source locations
and the UTM grid zone numbers are taken from standard USGS maps. TZONE is
the number of the time zone, with the Greenwich Meridian defined as 0.
Values of TZONE are shown below:
Standard Daylight
Time Zone Time Time
Eastern 5 4
Central 6 5
Mountain 7 6
Pacific 8 7
The array TER gives the elevation of terrain at each point downwind
for the visibility analysis. For the purpose of calculating plume-
observer-sun geometry only, the plume centerline is assumed to rise above
any terrain higher than the source elevation in order to maintain the same
effective height above the terrain for all points downwind. If the
terrain is flat or if it is desirable to maintain the same plume elevation
at all points, use zero for all TER values. The model will then set all
terrainielevations to the elevation of the source location.
66
-------
The ROBJT array allows the user to define the distances from the
observer to the background terrain. These distances are read in for
observer azimuths of from 15° to 360" in 15° increments. The distances
are measured in kilometers by creating a terrain profile for each azimuth
and determining the point at which the line of sight intersects the
terrain. The observer-based calculations can be performed without measur-
ing these values by setting all elements of the ROBJT array to zero. The
background object distance will then be set to the observer-to-plume
distance for each line of sight. WIND is the direction from which the
wind is b'.lowing, expressed in degrees.
For user-defined values of plume dispersion parameters (IDIS =9), SY
and SZ are read for each downwind distance. SY is the plume concentration
horizontal standard deviation and SZ is the plume concentration vertical
standard deviation in meters.
67
-------
PLUVUE OUTPUT
A PLUVUE run will write results on three files: the print file on
logical file unit six, the observer-based perceptibility data for plotting
on logical file unit seven, and the plume-based plot data on logical file
unit eight. If a PLUVUE run is for either observer-based or plume-based
calculations, either an observer-based or a plume-based plot file will be
created.
The principal PLUVUE run output is the print file written on logical
unit six. The file size depends on the number and type of calculations
invoked by the input file. All runs have the data tables for the emis-
sions source, meteorological and ambient air quality, and background radi-
ative transfer. The following discussion describes the output of each
table.
The emissions source data table verifies to the user that the Input
data were read correctly by the model. The descriptions 1n the printed
output adequately describe the parameters. See the example 1n exhibit 1.
Exhibit 2 is an example of the table of meteorological and ambient
air quality data. Almost all the data provides the user with more Input
verification, except for the background sulfate and nitrate concentra-
tions, which are calculated by the model to match the Input values of
background visual range and the ambient coarse mode aerosol concentra-
tion. If the background sulfate and nitrate concentrations are the Input,
the model will calculate the background visual range and print Its value
1n this "table. Following the table for meteorological and air quality
data, the table on aerosol statistics simply prints the user-defined
values for aerosol size distribution and density.
69
-------
METERS MSL
VISUAL IMPACT ASSESSMENT FOR 1600 MW POWER PLANT
EMISSIONS SOURCE DATA
ELEVATION OF SITE = 5650. FEET MSL
1722.
NO. OF UNITS = 4.
STACK HEIGHT = 600. FEET
183. METERS
FLUE GAS FLOW RATE = 1555980.
734.23
FLUE GAS TEMPERATURE = 138
332
FLUE GAS OXYGEN CONTENT =
S02 EMISSION RATE (TOTAL) =
CU FT/MIN
CU M/SEC
F
K
3.0 MOL PERCENT
37.50 TONS/DAY
3.937E 02 G/SEC
NOX EMISSION RATE (TOTAL,AS N02) =
FARTICULATE EMISSION RATE (TOTAL) =
131.80 TONS/DAY
1.384E 03 G/SEC
4.90 TONS/DAY
5.145E 01 G/SEC
Exhibit 1. Emissions source data table.
70
-------
METEOROLOGICAL AND AMBIENT AIR OAJALITY DATA
WINDSPEED = 4.5 MILES/HR
2.0 M/SEC
PASQU1LL-G1FFORD-TURNER STABILITY CATEGORY E
LAPSE RATE = 0.00 F/1000 FT
0.0G9E-01 K/M
POTENTIAL TEMPERATURE LAPSE RATE =
AMBIENT TEMPERATURE = 45.0 F
9.B00E-03 K/M
280.4
45.0 %
M
0.82 ATM
K
RELATIVE HUMIDITY =
MIXING DEPTH = 1000
AMBIENT PRESSURE =
BACKGROUND NOX CONCENTRATION =
BACKGROUND NO2 CONCENTRATION =
BACKGROUND OZONE CONCENTRATION
BACKGROUND S02 CONCENTRATION =
BACKGROUND COARSE MODE CONCENTRATION = 10.0 UG/M3
BACKGROUND SULFATE CONCENTRATION = 2.9 UC/M3
BACKGROUND NITRATE CONCENTRATION = 0.0 UG/M3
BACKGROUND VISUAL RANGE = 185.0 KILOMETERS
SO2 DEPOSITION VELOCITY = 1.00 CM/SEC
NOX DEPOSITION VELOCITY = 1.00 CM/SEC
COARSE PARTICULATE DEPOSITION VELOCITY = 0.10
0.090 PPM
0.000 PPM
0.038 PPM
0.000 PPM
SUBMICRON PARTICULATE DEPOSITION VELOCITY =
AEROSOL STATISTICS
CM/SEC
0.10 CM/SEC
BACKGROUND
PLUME
MASS MEDIAN
RADIUS
MICROMETERS
GEOMETRIC
STANDARD
DEVIATION
PARTICLE
DENSITY
G/
-------
Exhibit 3 presents the table for observer-based calculations, showing
the observer-plume geometry for each downwind distance along the plume.
The titles are defined in the glossary.
Exhibit 4 is the table of background conditions. The mass median
radius, geometric standard deviation, and the calculated value of bscat/M
at 0.55 mm are given for the background accumulation mode aerosol, back-
ground coarse mode aerosol, and the plume primary aerosol. Refer to the
glossary for a detailed explanation.
Although the detailed table of information on the initial plume dilu-
tion and nitrogen dioxide formation is not printed by default, the user
may obtain this table by changing the input flag from the default value.
Exhibit 5 is an example. The results are printed for ten-second time
intervals from the time of emission. Definitions of the titles may be
found in the glossary. The plume rise above the source elevation at 1 km
downwind is maintained for any terrain elevation farther downwind at
points along the plume trajectory.
Exhibit 6 shows plume concentrations calculated for each downwind
distance selected by the user. The S02-to-S04= and NOx-to-N03~ conversion
rates are those predicted by the OH» chemical model. The concentrations of
the various species and the mass concentration ratios are indicated at the
top of the table; the increment above background and total are listed for
the six altitudes, reading from top to bottom. The altitudes are at the
plume centerline, ground level, ±1 o^, and ±2 o^ concentration vertical
standard deviations, as shown in figure 13. NTOT is the total nitrogen
mass concentration, STOT is the total sulfur mass concentration, PRIMARY
is the plume primary particulate, and BSP-TOTAL is the sum of the scatter-
ing coefficients for the plume primary particulate and sulfate aerosol.
BSPS/BSP is the ratio of the total sulfate to the total (sulfate plus
primary particulate) aerosol scattering coefficient for the plume. At the
bottom of this table, the cumulative surface deposition of S02, NOX,
$04' , and N03~ are given in terms of the mole fraction of initial flux.
NOX is used for initial flux of N03" and S02 is used for initial flux of
SO .
72
-------
GEOMETRY OF USER-SPECIFIED PLUME-OBSERVER-SUN ORIENTATION
WIND DIRECTION (DEGREES) = 11.3
SIMULATION IS FOR 900. HOURS ON 9/21
SOLAR ZENITH ANGLE (DEGREES) = 51.0
SOLAR AZIMUTH ANGLE (DEGREES) = 51.0
GEOMETRIES FOR L1NES-OF-SIGHT THROUGH PLUME PARCELS AT GIVEN DOWNWIND DISTANCES (X)
X (KM)
1.0
2.0
5.0
10.0
20.0
4O.O
60.0
80. 0
100.0
120.0
140.0
160.0
180.0
200. 0
220.0
240.0
AZIMUTH
19.6
19.7
20.0
20.5
21.8
26. 1
35.7
69.3
145. 1
169.8
177.7
181.4
183.5
184.9
185.8
186.6
RP
87.0
86.8
83.8
78.9
69.0
49.5
30.6
14.9
17.5
34.5
53.6
73.2
93.0
112.8
132.7
152.6
ALPHA
8.3
8.4
8.7
9.2
10.5
14.8
24.4
58.0
46.2
21.5
13.6
9.9
7.8
6.4
5.5
4.7
BETA
-0.0
-0.0
0.0
0.0
0. 1
0. 1
0. 1
0.2
0. 1
0.4
0.3
-0.0
0. 1
0.2
0. 1
-0.0
T1IETA
48.4
48.4
48.2
47.9
47.2
45. I
41.3
42.3
93.2
111.8
117.5
120.3
121 .6
122.5
123.2
123.7
Exhibit 3. Observer-plume-sun geometry -for observer-based calculations.
-------
BACKGROUND CONDITIONS
ACCUMULATION MODE COARSE PARTICLE MODE PRIMARY PARTICLE HODE
MASS RADIUS SIGMA BSCAT. 55/MASS MASS RADIUS SIGMA ESCAT.55/MASS MASS RADIUS SIGMA BSCAT. 55/MAFS
0.1250E 00 0.2200E 01 0.2044E-02 0.2700E01 0.2200E01 0.4469E-03 0.8500EOO 0.I500E 01 0.1242E-02
COEFFICIENTS AT 0.15 MICROMETERS , 1./KM
BTARAY =0.9747E-02 BTAAER =0. 1202E-OI ADSII02 =0.0000E 00 BTABAC =0.2115E-01
Exhibit 4. Background scattering and extinction coefficients,
-------
INITIAL PLUME RISE AND DILUTION AND NITROGEN DIOXIDE FORMATION
1600 MW POWER PLANT
TIME X
(SEO (M)
0. 0.0
10. 20. 1
20. 40.2
30. 60.3
40. 80. 3
50. 100.6
60. 120.7
70. 140.8*
80. 160.9
90. 181.0
100. 201.1
110. 221.3
120. 241.4
130. 261.5
140. 281.6
150. 301.7
160. 321.8
170. 342.0
180. 362.1
190. 3O2.2
200 . 402 . 3
210. 422.4
220 . 442 . 5
230. 462.6
240. 482.8
250. 502.9
260. 523.0
270. 543.1
280 . 563 . 2
290. 583.3
300. 603.4
310. 623.6
320. 643.7
330. 663.8
34O . 683 . 9
350. 704.0
360. 724. 1
370. 744.3
380. 764.4
390 . 784 . 5
400. 804.6
410. 824.7
.420. 844.8
430. 864.9
440. 885. 1
450. 905.2
460. 925.3
470. 945.4
480. 965.5
490. 985.6
DELTA H U
(M) (M/S)
O.0 2.01
31.6 2.01
50.2 2.01
65.7 2.01
79.6 2.01
9'2.4 2.01
104.3 2.01
115.6 2.01
126.4 2.01
136.7 2.01
146.7 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.0!
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
147. 2.01
W
(M/S)
17.50
0.70
0.57
0.50
0.45
0.42
0.40
0.38
0.36
0.35
0.34
0.33
0.32
0.31
0.30
0.29
0.29
0.28
0.28
0.27
0.27
0.26
0.26
0.25
0.25
0.25
0.24
0.24
0.24
0.24
0.23
0.23
0.23
0.23
0.22
0.22
0.22
0.22
0.22
0.21
0.21
0.21
0.21
0.21
0.21
0.20
0.20
0.20
0.20
0.20
V
(M/S)
17.50
2. 13
2.09
2.07
2.06
2.06
2.05
2.05
2.04
2.04
2.04
2.04
2.04
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.03
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
2.02
SIGMA
(M)
0.0
15.8
25. 1
32.9
39.8
46.2
52.2
57.8
63.2
68.4
73.3
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.3
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
73.5
TEMP O2 NO2-NO RATIO NOX NO NO2T SO2 P ARTICULATE
(K) MOL P EftUIL ACTUAL (PPM) (PPM) (PPM) (PPM) UG/M3
332.0 3.0 5.9E 04 4.2E-03 340.166 338.750 1.416 69.579 2.38E 04
290.3 17.5 9.4E 05 6 . 2E-O3 65.375 64.974 O.4O1 13.372 4.57E 03
284.3 19.6 .3E 06 9 . OE-03 25.906 25.676 0.230 5.299 1.81E 03
282.7 20.1 .4E 06 .OE-O2 15.128 14.975 O. 154 3.094 1.O6E03
281.9 20.4 .5E 06 . 1E-01 10.333 10.22O 0.113 2.114 7.23E02
281.5 20.5 . 5E 06 . 2E-02 7.688 7.600 0.088 1.573 5 . 38E 02
281.3 20.6 . 5E 06 . 2E-02 6.038 5.966 0.071 1.235 4.22E 02
2H1.1 20.7 .5E 06 . 2E-02 4.922 4.862 0.060 1.007 3.44E02
281.0 20.7 .6E 06 .3E-02 4.123 4.O72 0.051 0.043 2.88E02
280.9 20.8 .6E 06 .3E-02 3.527 3.483 0.045 0.721 2.47E 02
280.8 20.8 .6E 06 . 3E-02 3.067 3.028 0.039 0.627 2.15EO2
280.8 20.8 .6E 06 .3E-02 3.053 3.0!3 0.040 0.624 2. 14E O2
280.8 20.8 .6E 06 .3E-02 3.055 3.015 0.040 0.625 2.14E02
280.8 20.8 .6E 06 .3E-02 3.057 3.017 0.041 0.625 2.14E02
280.8 20.8 .6E 06 . 4E-02 3.059 3.O18 0.041 0.626 2.14E02
280.8 20.8 .6E 06 .4E-02 3.060 3.019 0.042 0.626 2. 14F, O2
280.8 20.8 .6E 06 . 4E-02 3.062 3.020 0.042 0.626 2. 14E O2
280.8 20.8 .6E 06 . 4E-02 3.063 3.020 0.043 0.626 2. 14K 02
280.8 20.8 .6E 06 . 4E-O2 3.064 3.O21 O.043 0.627 2.14EO2
280.8 20.8 .6E 06 . 4E-O2 3.065 3.021 O.O44 0.627 2. 14E 02
280.8 20.8 .6E 06 . 5E-02 3.066 3.022 0.044 0.627 2.14E02
280.8 20.8 .6E 06 .5E-02 3.067 3.022 0.045 0.627 2. 5E O2
280.8 20.8 .6E 06 -5E-02 3.068 3.022 O.045 0.627 2. 5E O2
280.8 2O. 8 ,6E 06 .5E-O2 3.068 3.O23 O . O46 0.628 2. 5E O2
280.8 20.8 .6E 06 . 5E-02 3.069 3.023 O.046 0.628 2. r,E P2
280.8 20.8 .6E O6 .5E-O2 3.070 3.023 0.047 0.628 2. 5E 02
280.8 20. a .6E 06 .6E-02 3.070 3.023 O.047 O.62U 2. 5E O2
280.8 20.8 .6E 06 .6E-02 3.071 3.023 0 . O48 0.628 2. 5E O2
2C0.8 20.8 . 6E 06 . 6E-O2 3.071 3.023 O.048 O.628 2. 5E 02
280.8 20.8 .6E 06 .6E-02 3.072 3.023 0.049 0.62O 2. T«E O2
2H0.8 20. a .6E 06 . 6E-02 3.O72 3.O23 O.049 0.628 2. 5E O2
200. 8 2O. 8 .6E 06 . 6E-02 3.O73 3.023 O.050 0.628 2. 5E O2
280.8 20. O .6E 06 .7E-O2 3.O73 3.O23 O.O50 0.629 2. 5E 02
2ft0.8 2O. a . 6E O6 .7E-O2 3 . 073 3.O23 O.O51 O.629 2. r>K O2
280.8 2O. 8 . 6E O6 . 7E-O2 3.O74 3.O23 O.O51 O.629 2. 5E O2
28O.8 20.8 . 6E 06 . 7E-O2 3.O74 3.023 O.052 O . 629 2. 5E O2
280.8 20.8 .6E 06 .7E-02 3.075 3.022 0.052 0.629 2. 5E 02
280.8 20. 0 .6E 06 . 7E-02 3.075 3.022 0.053 O.C>29 2. 5E O2
280.8 20.8 .6E 06 . 8E-02 3.075 3.O22 0.053 0.629 2. 5E 02
280.8 20.8 . 6E 06 . 8E-02 3.075 3.O22 O.054 0.629 2. 5E 02
283. 8 20. O ,6E 06 . 8E-02 3.076 3.022 0.054 0.629 2. 5E 02
280.8 20.8 . 6E 06 . 8E-02 3.076 3.021 O.035 0.629 2. 5E 02
2G0.3 20.8 .6E 06 . 8E-02 3.076 3.021 0.055 0.629 2. 5E O2
280.8 20.8 ,6E 06 . 8E-02 3.077 3.021 0.056 0.629 2.15E 02
280.8 20.8 .6E 06 .9E-02 3.077 3.021 0.056 0.629 2.I5E 02
280.8 20.8 .6E 06 .9E-02 3.077 3.020 0.057 0.629 2. 5E 02
280.8 20.8 .6E 00 .9E-02 3.077 3.020 0.057 0.629 2. 5E 02
280.8 20.8 .6E 06 .9E-02 3.077 3.020 0.058 0.629 2. 5E O2
2C0.8 20.8 .6E 06 .9E-02 3.078 3.020 0.058 9.630 2. 5E 0?
280.8 20.8 ,6E 06 1.9E-02 3.078 3.019 0.039 0.630 2. 5F. ©*>
Exhibit 5. Table of initial plume rise and dilution and nitrogen dioxide formation.
-------
DOWNWIND DISTANCE (KM)
PLUME ALTITUDE (M)
SIGMA Y (M)
SIGMA Z (M)
S02-S04 CONVERSION RATE
NOX-N03 CONVERSION RATE=
CONCENTRATIONS OF AEROSOL AND GASES CONTRIBUTED
1600 MW POWER PLANT
1.0
330.
150.
33.
0.0000 PERCENT/HR
0.0000 PERCENT/HR
BY
ALTITUDE
H+2S
INCREMENT?
TOTAL AMD?
H+1S
INCREMENT?
TOTAL AMB?
H
INCREMENT?
•TOTAL AMB?
n-is
INCREMENT?
TOTAL AMB?
H-2S
INCREMENT?
TOTAL AMB?
0
INCREMENT?
TOTAL AMB?
NOX
(PPM)
1.738
1.738
7.790
7.790
12.844
12.844
7.790
7.790
1.738
1.738
0.000
0.000
N02
(PPM)
0.071
0.071
0. 187
0. 187
0.2R4
0.2«4
0. 187
0. 187
0.071
0.071
0.009
0.000
N03-
( PPM)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
N02/NTOT
(MOLE JO
4.073
4.073
2.401
2.401
2.211
2.211
2.401
2.401
4.073
4.073
0.000
100.000
N03-/NTOT
(MOLE JO
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
S02
( PPM)
0.356
0.356
1.593
1.593
2.627
2.627
1.593
1.593
0.356
0.356
0.000
O.OOO
S04=
(UG/M3)
0.000
2.936
0.000
2.936
0.000
2.936
0 . 000
2.936
0.000
2.936
0.000
2.936
S04=/STOT
(MOLE %)
0.000
0.210
0.000
0.047
0.000
0.028
0.000
0.047
0.000
0.210
0.000
100.000
03
( PPM)
-0.037
0.001
-0.038
O.OOO
-0.03.3
0.000
-0.038
0.000
-0.037
0.001
O.OOO
0.038
PRIMARY
( UG/M3) (
121.587
134.523
544.916
557.851
898.414
911. 349
544.915
557.851
121.587
134.523
0.000
12.936
BSP-TOTAL
10-4 M-l)
1.511
1.639
6.770
6.898
11. 162
11.290
6.770
6.898
1.511
1.639
0.000
0. 128
BSPSN/BJ
(%)
0.000
5.096
0.000
1.211
0.000
0.740
0.000
1.21 1
0.000
5.096
O.000
65. 142
CUMULATIVE SURFACE DEPOSITION (MOLE FRACTION OF
S02? 0.0000
NOX? 0.0000
PRIMARY PARTICULATE? 0.0000
S04? 0.0000
INITIAL FLUX)
N03?
0.0000
Exhibit 6. Plume concentrations of aerosol and gases.
-------
u
H+a
-H'JPLUME CENTERLINE)
POINT OF ANALYSIS
(at downwind distance x)
Figure 13 . Schematic diagram of altitudes used to determine plume contribution of gases and aerosols
-------
Exhibit 7 is an example of the table, generated at each downwind dis-
tance, of visual effects for horizontal lines of sight for the plume-based
mode of calculation.
Exhibit 8 is an example of the observer-based calculation of visual
effects for horizontal sight paths, with a clear sky background. Most of
the optical parameters are the same as those in the plume-based table of
visual effects for horizontal sight paths. The difference between the two
is that the plume-based table gives data for a range of all significant
variables, whereas the observer-based calculations are for the line of
sight of the specific geometry of the observer position, plume parcel
location, and position of the sun.
Exhibit 9 is an example of a plume-based calculation of the visual
effects for nonhorizontal views through the plume, with a clear sky back-
ground. These calculations are performed for all combinations of scatter-
ing angles (THETA), azimuthal angles between the line of sight and the
plume centerline (ALPHA), and line-of-sight elevation angles (BETA). RP
is the distance along the line of sight from the observer to the point on
the plume centerline and is calculated for each combination of ALPHA and
BETA. Note that some of these angle combinations are physically
impossible.
Exhibit 10 is an observer-based calculation of the visual effects for
nonhorizontal views through the plume, with a clear sky background. The
calculation is performed in the same manner as the plume-based method, but
it is made only once for the specific THETA, ALPHA, and BETA for the
observer position, location of the point on the plume, and scattering
angle. The model will skip this calculation if the line-of-sight eleva-
tion angle is less than five degrees.
These calculations are for views through the plume with a clear sky
background. This table gives data for the scattering angles specified
by NT1 and NT2 in the input file.
78
-------
VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
1600 MW POKER PLANT
POWNWIND DISTANCE (KM) « 40.0
PLUME ALTITUDE (M) = 330.
SIGHT PATH IS THROUGH PLUME CENTER
THETA ALPHA
90.
RP/RV0
RV JJREDUCED
YCAP
X
Y DELYCAP
DELL C(550) BRATIO
DELX
DELY E(LUV) E(LAB)
vo
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
60.
60.
60.
60.
60.
60.
90.
90.
90.
90.
90.
90.
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
'0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
167.9
167. 1
167. 1
167. 1
167. 1
167. 1
172.4
172.4
172.4
172.4
172.4
172.4
174.7
174.7
174.7
174.7
174.7
174.7
176.
176.
176.
176.
176.
176.
9.22
9.67
9.67
9.67
9.67
9.67
6.84
6.84
6.84
6.84
6.84
6.84
5.58
5.58
5.58
5.58
5.58
5.58
4.83
4.83
4.83
4.83
4.03
4.63
42.34
43.82
46.80
51. 13
57.03
58.74
45.35
47.05
49.42
52.87
57 . 55
58.90
47.30
48.77
50.82
53.80
57.83
58.98
48.58
49.89
51.73
54.40
58.00
59.04
71. 13
72. 13
74.08
76.78
80.21
81. 16
73. 15
74.24
75.74
77.82
80.51
81.25
74.40
75.33
76.59
78.36
80.66
81.30
75.21
76.03
77. 14
78.71
80.76
81.33
0.36B5
0.3527
0.3332
0.3148
0.3025
O.3017
0.3376
0.3435
0.3284
0.3133
0.3026
0.3010
0.3496
0.3381
0.3254
0.3122
0.3026
0.30(8
0.3444
0.3344
0.3232
0.31 14
0.3026
0.3010
0 . 3749
0 . 3567
0.3364
0.3189
0.3111
0.3121
0.3686
0.3522
0.3353
0.3198
0.3119
0.3124
0.3624
0 . 3485
0.3338
0.3198
0.3122
O.3126
0.3580
0.3457
0.3324
0.3196
0.3124
0.3126
-17. 14
-15.66
-12.69
-8.36
-2.46
-0.75
-14. 14
-12.44
-10.06
-6.61
-1.93
-0 . 59
-12. 18
-10.72
-8.66
-5.69
-1 .66
-0 . 5O
-10.91
-9.59
-7.75
-5.08
-1 .48
-0.45
-10.44
-9.44
-7.49
-4.80
-1.36
-0.41
-8.43
-7.33
-5.84
-3.73
-1.07
-O.32
-7. 17
-6.25
-4.98
-3.21
-0.91
-0.28
-6.36
-5.55
-4.43
-2.86
-O.O2
-0.25
-0.2874
-0.2650
-0.2187
-0. 1482
-0.0465
-0.0150
-0.2332
-0.2O74
-0. 1707
-0. 1157
-O.0363
-0.0117
-0. 1992
-0. 1772
-0. 1458
-O.09BB
-0.0310
-O.0100
-0. 1772
-0. 1577
-0. 1297
-0.0879
-0.0276
-O.OO89
0.3736
0.5245
0.7170
0.9068
1.0030
0.9968
0.4198
0.5695
O.7406
0.9109
1 . OO09
0.9975
0.4673
0.6037
O.7599
O.9161
1 . 0002
0.9979
0.5036
0.6301
0.7752
0.9207
0.9998
O.9981
0.0667
0.0509
O.O3I5
0.0131
0.0007
-O.O001
O.0558
0.0418
0.0267
0.01 16
O.0OO8
O.OOOO
O . 0479
0.0363
O.O236
O.O105
0.0008
O.OOOO
O.O426
0 . 0326
O.0214
0.0096
0 . OOO8
O.OOOO
0.0617
0 . 0435
O.0232
0.0057
-0.0021
-O.001 1
0.0553
0.0390
0.0221
0.0066
-0.0014
-O.OOO8
0.0492
0.0353
0 . 0206
0.0066
-0.0010
-0.0007
0.0447
0 . 0325
0.0192
0.0064
-0.0008
-O.OOO6
47. 1943
37. 1934
24 . 2334
1 1 . 0906
2.2125
0.8166
41 .6851
32. 1265
21.2013
9 . 7382
I . 7370
0.6292
37. 1 140
28.7089
19. 1364
8.8297
1 .4950
0.5340
33.8710
26 . 3O29
17.6215
8. 1607
1.3395
O.4732
32.445
24.756
1 5 . 73 1
7 . 435
1.900
O.694
20.432
2 1 . 2O4
13.696
6.3.r)H
I .470
0.536
25. 1 15
19.004
12.337
5.709
1.249
0.455
22.795
17.367
1 1 . 345
5 . 250
1 . 109
0 . 403
Exhibit 7. Visual effects table for horizontal sight paths with a clear sky background. Plume-based calculations for a 90°
scattering angle.
-------
VISTTAL EFFECTS FOR HORIZONTAL SIGHT PATHS
1600 MW POWER PLANT
DOWNWIND DISTANCE (KM) = 40.0
PLUME ALTITUDE (M) = 300.
PLUME-OBSERVER DISTANCE ( KM) = 49.5
AZIMUTH OF LINE-OF-SIGHT = 26.1
ELEVATION ANGLE OF LINE-OF-SIGUT = -0.0
SOLAR ZENITH ANGLE = 31.0 AT 900. ON 9/21
SIGHT PATH IS THROUGH PLUME CENTER
THETA ALPHA RP/RV0 RV 75REDUCED YCAP L X Y DELYCAP
45.
15. 0.27 149.9 10.95 56.02 79.65 0.3060 0.3087 -11.14
DELL 0(550) BRATIO DELX DELY E(LUV) E(LAB
-5.95 -0.1802 1.0003 0.0049 -0.0046 8.6885 7.36
00
o
Exhibit 8. Observer-based calculation of visual effects for horizontal views through the plume with a clear sky background
-------
VISUAL EFFECTS FOR WOW-HORIZONTAL CLEAR SKY VIEWS THROUGH PLUME CENTER
1600 MW POWER PLANT
DOWNWIND DISTANCE (KM)
PLUME ALTITUDE ( M)
THETA ALPHA
90.
30.
30.
30.
39.
30.
30.
45.
45.
45.
oo 45.
-1 45.
45.
60.
60.
60.
60.
60.
60.
90.
90.
90.
90.
90.
90.
• BETA
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
40.
330
RP
2.48
I. 19
0.74
0.50
0.37
0.33
1.77
0.87
0.57
0.43
0.35
0.33
1.46
0.74
0.50
0.40
0.35
0.33
1.27
0.66
0.47
0.38
0.34
0.33
0
•
YCAP
25.37
19.93
17.94
16.99
16.54
16.40
25. 16
18.71
16.34
15.23
14.70
14.55
25. 16
18. 14
15.55
14.34
13.77
13.60
25. 19
17.79
15.06
13.78
13. 18
13.00
L
57.46
51.79
49.46
48.29
47.71
47.54
57.26
50.38
47.46
45.99
45.26
45.04
57.26
49.70
46.42
44.76
43.94
43.69
57.29
49.27
45.75
43.93
43.07
42.80
X
0.3386
0.3425
0.3456
0.3479
0.3492
0.3497
0.3225
0 . 3244
0 . 327 1
0.3291
0.3302
0.3306
0.3127
0.3136
0.3161
0 . 3 1 80
0.3192
0.3195
0.3060
0.3062
0.3086
0.3105
0.31 16
0.3120
Y
0.3550
0.3565
0.3583
0.3597
0.3607
0.3611
0.3431
0.3418
0.3428
0.3437
0.3443
0.3446
0.3339
0.3315
0.3322
0 . 333 1
0.3337
0.3339
0 . 327 1
0.3240
0.3246
0.3254
0.3260
0.3262
DEL YCAP
-0.97
4.54
6.62
7.59
8.04
8. 17
-1. 17
3.32
5.02
5.83
6.20
6.32
-1. 10
2.75
4.24
4.94
5.27
5.37
-1. 14
2.40
3.74
4.37
4.68
4.77
DELL C( 550)
-0.92 -0.0226
5.60 0.3116
9.31 0.6013
11.50 0.8230
12.67 0.9615
J 3 . 04 1 . 0085
-1. 12 -0.0258
4.19 0.2369
7.31 0.4648
9.19 0.6399
10.22 0.7499
10.54 0.7874
-1 . 12 -0.0252
3 . 50 0 . 2000
6.27 0.3955
7.97 0.5458
8.90 0.6403
9.19 0.6726
- 1 . 09 -0 . 0240
3.08 0. 1768
5.60 0.3512
7. 16 0.4O54
8. O2 0.5698
8.30 0.5986
BRAT I O
0. 1827
0. 1302
0. 1113
0. 1017
0.0967
0.0951
0.2322
0. 1762
0. 1534
0. 1417
0. 1359
0. 1341
0 . 2748
0.2146
0. 1880
0. 1742
0. 1672
0. 1651
0.3102
O.2467
0.2172
0.2014
0. 1935
0. 1910
DELX
0 . 0888
0. 1003
0. 1059
0. 1093
0. 1 1 12
0. 1118
0.0727
0 . O822
0.0874
0.O9O5
0.0921
0.0927
0.0629
0 . O7 1 4
0 . 0764
0.O795
0.081 1
O.O816
0.0,162
0.0640
O.O689
0 . O7 1 9
0.0730
0 . O74 1
DELY E( LUV)
0.0983
O. 1120
0. 1178
0. 1212
0. 1230
0. 1237
0.0864
0.0973
0. 1023
0. 1052
0. 1067
0. 1072
0.0773
0 . 0870
0.0918
0.0946
0.0961
0.0965
0 . 0704
0.0794
0 . 084 1
0.0869
0 . OOO4
0 . 0888
57.7633
53 . 8330
50.7981
49 . 0779
48.2481
48. Ol 16
50.3859
46 . 0057
42.9264
41. 1367
40.2159
39.9331
45 . 2707
41 .0308
38. 1345
36.4384
35.5340
35 . 2796
41.5168
37 . 4838
34.7722
33. 10O5
32.3471
32.0878
E( LAB)
37.966r,
37 . 4204
36.9105
36 . 7584
36 . 7720
36.7995
33.0586
31.8559
31.0935
3O.7584
30 . 6333
30.6033
29.61O3
28.3301
27.5731
27 . 2289
27.0890
27.0521
27 . O898
2.1 . 8337
25 . 1 1 88
24.7941
24.6612
24.6258
Exhibit 9. Plume-based calculation of visual effects for nonhorizontal views through the plume with a clear sky background
-------
VISUAL EFFECTS FOB. NGN-HORIZONTAL CLEAR SKY VIEWS THROUGH PLUME CENTER
1000 NW POWER PLANT
DOWNWIND DISTANCE (KM) = 2>.0
PLUNK ALTITUDE < M) = GOO.
PLUME-OJ5SEHVER DISTANCE (KM) = 1.1
AZIMUTH OF LINE-OF-SICirr = 14.2
ELEVATION ANGLE OF LlNE-OF-SICiTT = 17.7
SOLAR ZENITH ANCLE = 51.0 AT 900. ON 9/21
THKTA ALl'IIA BETA RP YCAP L X Y DELYCAP DELL CC550) BRATIO DELX DELY E(LUV) E(LAB)
3U.
15. 9O. 1.03 41.14 70.3O O.3807 0.3890 30.33 30.99 2.7O88 0.0646 0.1400 0.1467 77.417O 59.8263
oo
ro
Exhibit 10. Observer-based calculation of visual effects for nonhorizontal sight paths through the plume.
-------
Exhibit 11 shows sample results of the plume-based calculations of
the visual effects for horizontal views perpendicular to the plume, with
white, gray, and black backgrounds. The visual effects are calculated for
various observer-plume and observer-object distances for each of the
selected scattering angles and three reflectances.
Exhibit 12 shows sample results of the observer-based optics calcula-
tions for white, gray, and black background objects. These calculations
are performed for the line of sight and for observer-to-plume and obser-
ver-to-object distances specified by the input data. Unlike the plume-
based calculations, the angle ALPHA between the lines of sight and the
plume centerline is not limited to 90 degrees.
Exhibit 13 is a sample output from the plume-based calculations of
visual effects along the axis of the plume. This calculation is made for
the same set of scattering angles used in the other plume-based calcula-
tions, and it is made for views along the plume centerline, the variable
of which is the length of the line of sight within the plume. The model
calculates the optical effects for views through plume segments that begin
at the given downwind distance and end at analysis points successively
farther upwind. The shortest segment ends at the analysis point immedi-
ately upwind of the point under consideration, and the longest segment
ends at the point nearest the source. (Figure 14 is a schematic diagram
of the layout for one point of analysis). The length of the plume segment
in kilometers is defined in the column titled LENGTH. The concentrations
of coarse mode and accumulation mode aerosols and N02 for each segment are
obtained from the mean of the endpoint values. The calculations are made
for a range of distances from the end of each of these plume segments.
All of these plume-based calculations assume a clear background sky.
Exhibit 14 is an example of the output for observer-based calcula-
tions of visual effects along the axis of the plume. Unlike the plume-
based calculations, these are made for white, gray, and black background
objects as well as for the clear sky background. The first data line is
for the view with a clear sky background. The second, third, and fourth
83
-------
oo
PLUME VISUAL EFFECTS FOR HORIZONTAL VIEWS
PERPENDICULAR TO TOE PLUME OF WHITE, CRAY, AND
FOR VARIOUS OBSERVER-PLUME AND OBSERVER-OBJECT
1600 MW POWER PLANT
BLACK OBJECTS
DISTANCES
DOWNWIND
THETA =
REFLECT
1.0
1.0
1.0
1.0
1.0
1.0
1.0
l.O
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
DISTANCE (KM) =
90.
RP/RVO
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
O.80
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
O.O5
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
RO/RVO
0.02
0.05
0. 10
0.20
0.50
0.80
0.05
0. 10
0.20
0.50
0.80
O. 10
0.2O
0.50
0.80
0.20
0.50
0.60
0.50
0.80
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
0.05
0. 10
0.20
0.50
0.80
0. 10
0.20
0.50
0.80
0.20
0.5O
O.CO
0.50
O.80
60.0
YCAP
72.63
70.05
66.37
60.79
52.46
49.67
71.43
67.74
62. 16
53.83
51.04
69.66
64.08
55.75
52.96
66.86
58.53
55.74
62.28
59.49
60.57
29.40
3 1 . 40
34.40
38.78
45. 14
47. 17
32.84
35.77
40. 16
46.51
48.54
37.69
42.08
48.43
50.46
44.86
51.21
53.24
54.96
56.99
L
88.28
87.04
85.20
82.28
77.57
75.89
87.70
85.89
83.01
78.38
76.73
86.84
84.02
79.49
77.87
85.45
81.05
79.49
83.08
81.58
82. 16
61. 16
62.93
65.31
68.62
73.00
74.32
64.06
66.37
69.61
73.90
75. 19
67.82
70.95
75. 12
76.37
72.82
76.83
78.03
79.04
80. 19
X
0 . 3777
0.3769
0.3753
0.3715
0.3602
0.3537
0.3676
0.3656
0.3612
0 . 3494
0 . 3427
0 . 3544
0.3495
0 . 3372
0.3305
0.3369
0.3243
0.3178
0.3144
0.3081
0.3072
0.3535
0 . 3486
0 . 3438
0 . 3405
0 . 3427
0 . 3457
0 . 3327
0.3297
0.3281
0.3316
0.3348
O.3147
0.3147
0.3194
0.3228
0.3012
0.3069
0.3103
0.2976
O.3O09
Y
0.3827
0.3813
0 . 3790
0 . 3746
0.3657
0 . 3622
0 . 3707
0 . 3680
O.3630
0.3531
0.3493
0.3556
0.3501
0.3395
0.3354
0 . 3372
O . 3262
0 . 3220
0.3185
0.3144
0.3146
0 . 3584
0.3551
0.3525
0.3519
0.3566
0.3592
0.3365
0.3357
0.3369
0.3430
0.3460
0.3185
0.3213
0.3286
0.3318
0.3069
0.3150
0.3182
0 . 3076
0.31O7
DELYCAP
-21.96
-20.77
-19.09
-16.60
- 1 3 . 03
-1 1.91
- 1 9 . 40
-17.72
-15.22
-11.65
-10.54
-15.80
-13.30
-9.74
-8.62
-10.52
-6.96
-5.84
-3.20
-2.09
-1.O1
-2. 13
-3.23
-4.76
-6.99
-10.05
-10.95
-1.85
-3.38
-5.62
-8.68
-9.58
-1.47
-3.70
-6.76
-7.66
-0.92
-3.98
-4.88
-0.23
-1. 13
DELL
-9.59
-9.31
-8.89
-8.23
-7. 17
-6.82
-6.64
-8.20
-7.49
-6.37
-5.98
-7.24
-6.48
-5.26
-4.83
-5.06
-3.70
-3.22
-1.67
-1. 13
-0.54
-1.82
-2.61
-3.58
-4.80
-6. 16
-6.50
-1.48
-2.52
-3.82
-5.27
-5.64
-1.O7
-2.47
-4.05
-4.45
-0.60
-2.34
-2.79
-0. 13
-0.63
CC550)
-0.2316
-0.2282
-0.2227
-0.2131
-0. 1949
-0. 1879
-0.2147
-0.2084
-0. 1972
-0. 1762
-0. 1680
-0. 1879
-0. 1746
-0. 1494
-0. 1397
-0. 1407
-0. 1093
-0.0972
-0.0514
-0.0358
-0.0169
-0.0695
-0.0915
-0. 1 167
-0. 1454
-O. 1745
-0. 1815
-0.0562
-0.0855
-0. 1187
-0. 1525
-0. 1606
-0.041O
-0.0807
-0. 1210
-0. 1308
-0.0236
-0.0740
-0.0862
-0.0060
-0.0217
BRAT 10
0.5295
0.5261
0.5216
0.5147
0.5017
0.4938
0.6734
0.6666
0.6568
0.6393
0.6290
O . 834O
0 . 8208
0.7978
0 . 7846
0 . 9874
0.9583
0.9417
1.0495
1.0299
1 . 0299
0.7019
0.5949
0.5264
0.4863
0.4765
0 . 4803
0.8185
0 . 700 1
0 . 6289
O.6072
0.6115
O.8989
0.7921
0.7572
0.7623
0.9553
0.9076
0.9137
0.9897
0.9970
DELX
0.0442
0 . 0440
0 . 0438
0.0438
0.0446
0.0452
0.0346
0.0341
0.0335
0.0338
0 . 0343
0.0229
0.0218
0.0216
0.0221
0.0092
0 . 0087
0.0093
-0.0012
-0.0004
-0.0013
0.0307
0.0364
0.0412
0 . 0446
0.0460
0.0458
0 . O2O5
0.0270
0 . 0322
0.0350
0.035O
0 . 0 1 20
0.0188
0 . 0228
0 . 0229
0.0054
0.0102
0.0104
0.0009
O . OO 1 0
DELY E( LUV) E( LAB)
0.0391 34.1093 24.6740
0.0393 33.7108 24.3392
O.0396 33.2942 23.9377
0.0408 33.0983 23.5509
0.0443 34.1845 23.6581
O.0462 35.0715 23.9325
0.O286 26.9379 19.O907
0.0236 26.3145 18.5597
0.0291 25.7904 17.9841
0.0317 26.4043 17.8743
0.033327.1649 18.1163
0.O162 18.1701 12.7461
0.0162 17.2587 11.9472
0.0181 17.3044 11.5279
0.0194 17.9254 11.7121
0.0034 8.4426 6.3962
0.0048 7.5876 5.3202
0.0060 7.9745 5.3071
-0.0029 2.370O 2.1031
-0.0017 1.4628 1.3505
-0.0014 1.1373 0.8409
0.0264 16.7854 11.6157
0.0350 22.0708 15.1620
0.O424 27.7181 18.7852
0.0478 33.1177 22.1574
0.0490 36.1701 24.1844
0.0481 36.0360 24.2300
0.0163 12.2380 7.8780
0.0255 18.3487 11.9340
0.0327 24.3757 15.8333
O.O354 28.O451 18.2964
0.O349 28.O405 18.4O59
0.0O84 7.8159 4.7402
O.0171 14.3175 8.9548
0.0210 18.5915 11.8069
0.0207 18.7206 11.9858
0.0027 3.7478 2.1999
0.0074 8.3988 5.2161
0.0071 8.6719 5.4961
-0.0000 0.7462 0.4842
-O.OO04 1.2094 0.9237
Exhibit T\. plume-based calculations of visual effects for horieontal views perpendicular to the plume, with white,
-------
0.3
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
.0.80
0.02
0.02
0.02
0.02
0.02
0.02'
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.80
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
0.05
0. 10
0.20
0.50
0.00
0. 10
0.20
0.50
0.00
0.20
0.50
0.80
0.50
0.89
0.80
58.06
10.87
14.92
20.70
29.36
42 . 00
46.09
16.30
22.07
30.73
43.37
47.47
23 . 99
32.65
45.29
49.38
35.43
48.07
52. 16
51.82
55.92
56.99
80.79
39.41
45.57
52.65
61. 13
70.89
73.63
47.40
54. 14
62.31
71.83
74.51
56. 11
63.90
73. 11
75.71
66. 11
74.89
77.40
77. 19
79.58
80. 19
0.3001
0.29CO
0.3020
0.3070
0.3159
0.3336
0.3421
0.2821
0.2910
0 . 3029
0 . 3226
0.3312
0.2755
0.2095
0.3105
0.3193
« . 2767
0 . 2983
0.3069
0.2094
0 . 2977
0.2970
0.311O
0.3032
0.3120
0.3216
0 . 334O
0.3518
0.3578
0 . 2068
0 . 3009
0.3172
0.3379
O.3445
0.2818
0.3005
0 . 3232
0 . 3302
0.2860
0.3094
0.3166
0.3022
0 . 309 1
0.3094
-0.06
6.36
4.29
1.39
-2.88
-8.78
-10.54
5.67
2.76
-1.50
-7.41
-9. 17
4.68
0.42
-5.49
-7.25
3.20
-2.71
-4.47
1.05
-0.72
0.35
-0.03 -0.0018
14.07 1.3903
6 . 58 0 . 4087
1.57 0.0832
-2.44 -0.0765
-5.67 -0. 1634
-6.36 -0. 1706
8.41 0.5237
3.05 0.1463
-1.25 -0.0388
-4.73 -0. 1396
-5.48 -0. 1573
5. O2 0.2363
0.34 0.0149
-3.46 -0. 1056
-4.28 -0. 1268
2.55 0.0953
-1.67 -0.0548
-2.59 -0.001 1
0.63 0.0186
-0.41 -0.0152
0.20 0.0052
0.9958
O.3631
0 . 3804
0.3987
0.4216
0 . 4578
0 . 4728
0 . 5447
0 . 5397
0 . 5476
0.5832
0.6019
0.6980
0.6904
0 . 7266
0.7499
0 . 8300
0.8695
0.8983
0.9451
0.9789
0.9771
0.0002
0.0472
0 . 0473
0.0474
0 . 0475
0.0467
0 . 046 1
0 . 0274
0.0314
0 . 0345
0 . 0357
0.0333
0.0159
0 . 02 1 1
0.0236
0.0233
0.0082
0.01 14
0.0109
0.0025
0.0017
0.0010
-0.0001
0 . 0486
0.0527
0.0551
0.0553
0.0514
0.0490
0.0275
0.0344
0.0385
0 . 0374
0.0356
0.0153
O.0218
0 . 0227
0.0213
0.0073
0.0090
0 . 0077
0.0018
0 . 0002
0.0005
0.2165
16.6763
21. 1070
28.4951
34.8358
37.2250
36 . 4725
1 1 . 6438
18.0712
25 . 4729
28.9642
28.441 1
8.0676
14.9901
19.3940
19.0920
4.9194
9. 1 183
9.0191
1.6919
1 . 4369
0.6604
0. 1521
16.3187
15.6010
19.0693
22.6389
24.5138
24.3679
10.3541
12.0440
16.0946
18.5956
18.5424
6.5536
9. 1949
12.0788
12. 1203
3.6275
5 . 4478
5.6125
1. 1 1 14
0.9239
0.4156
00
Ol
Exhibit 11 (concluded)
-------
PLUME VISUAL EFFECTS FOR HORIZONTAL VIEWS
OF THE PLUME OF WHITE, CRAY, AND BLACK OBJECTS
FOR SPECIFIC OBSERVER-PLUME AND OBSERVER-OBJECT DISTANCES
1600 NW POWER PLANT
DOWNWIND DISTANCE (101)= 60.0
P LIME-OBSERVER DISTANCE (KM) = 30.6
AZIMUTH OF LIHE-OF-SIOHT = 35.7
ELEVATION ANGLE OF LINE-OF-SICHT = -0.0
SOLAR ZENITH ANCLE = 51.0 AT 900. ON 9/21
00
THETA =
REFLECT
1.0
0.3
e.e
41.
RP/RV0
0. 17
0. 17
0. 17
RO/RV0
0.56
0.56
0.56
YCAP
94.87
91.11
89. GO
L
97.98
96.46
95 . 79
X
0.3452
0.0391
0.3363
Y
0.3423
0.3394
O.3381
DEL YCAP
-18.28
-13.69
- 1 1 . 73
DELL
-6.89
-5.37
-4.68
C(550)
-0. 1721
-0. 1408
-0. 1259
BRAT I O
0 . 8437
0 . 7885
0.7603
DELX
0.0209
0.0235
0 . 0248
DELY E(LUV) E(LAB)
0.0092 18.8304 12.1529
0.0120 20.5322 12.5367
0.0133 21.4622 12.8576
Exhibit 12. Observer-based calculations of horizontal views through the plume, with white (REFLECT = 1.0), gray
(REFLECT = 0.3), and black (REFLECT = 0.0) background objects.
-------
VISUAL EFFECTS FOR LINES OF
1600 MW POWER PLANT
SIGHT ALONG PLUME
DOWNWIND DISTANCE (KM)
THETA LENGTH RP/RVO
90.
20.
20.
20.
20.
20.
20.
20.
40.
40.
40.
40.
40.
40.
40.
50.
50.
50.
50.
50.
50.
S3 50.
55.
55.
55.
55.
55.
55.
55.
58.
58.
58.
58.
58.
58.
58.
59.
59.
f.9.
59.
59.
59.
59.
0.00
0.02 '
0.05
0. 10
.0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
O.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
O.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
= 60.0
RV PREDUCED
59.9
59.9
59.9
59.9
59.9
105.2
153. 1
23.5
26.9
32.0
40.4
57.3
105.2
153. 1
23.5
26.9
32.0
40.4
57.3
105.2
153. i
23.5
26.9
32.0
40.4
57.3
105.2
153. 1
23.5
26.9
32.0
40.4
57.3
105.2
153. 1
23.5
26.9
32.0
40.4
57.3
105.2
153. 1
67.65
67.65
67.65
67.65
67.65
43. 11
17.24
87.28
85.46
82.72
78. 17
69.05
43. 11
17.24
87.28
85.46
82.72
78. 17
69.05
43. 11
17.24
87.28
85.46
C2.72
78. 17
69.05
43. 11
17.24
87.28
85.46
82.72
78. 17
69. 05
43. 11
17.24
87.28
85.46
82.72
78. 17
69.05
43. 11
17.24
YCAP
30. 17
32.50
35.65
40. 09
46.60
55 . 62
58.32
28.74
31. 18
34.46
39. 10
45.90
55.38
58.23
28.72
31. 15
34.44
39.08
45.89
55.38
58.23
28.71
31. 15
34.44
39.08
45.89
55 . 38
58.23
28.71
31. 15
34.44
39.08
45.89
55.38
58.23
28.71
31. 15
34.44
39.08
45.89
55.38
58.23
L
61.83
63.79
66.28
69.56
73.95
79.42
80.93
60.58
62.69
65 . 36
68.85
73.51
79.28
80.88
60.56
62.67
65.34
68.83
73.50
79.28
80.88
60.56
62.67
65.34
68.83
73.50
79.28
80.88
60.56
62.67
65 . 34
68.83
73.50
79.28
80.88
60.56
62.67
65.34
68.83
73.50
79.28
80.88
X
0.4052
0.3791
0.3541
0.3309
0.3113
0.3009
O.3014
0.4013
0.3750
0.3503
0.3277
0.3092
0.3002
O.301 1
0.40(1
0.3749
0.3501
0.3276
O.3091
0.3002
0.3011
0.401 1
0.3748
0.3501
0.3276
0 . 309 I
0.3002
O.301 1
0.401 1
0.3748
0.3501
0.3276
O.3091
0.3002
0.301 1
0.4011
0.3748
0.3501
0.3276
0.3091
0.3002
0.301 1
Y DELYCAP
0.3840
0.3613
0 . 3402
0 . 3220
0.3092
0.3082
0.3112
0.3805
0.3578
0 . 3370
0.3195
0.3077
0 . 3078
0.3111
0 . 3803
0 . 3577
O . 3370
0.3195
0 . 3077
0 . 3078
O.31 11
0 . 3805
0 . 3577
0 . 3370
O.3195
0 . 3077
0 . 3078
0.3111
0 . 3805
0.3577
0.3370
0.3195
0 . 3077
0 . 3078
0.3111
0 . 3805
0.3577
0 . 3370
0.3195
0 . 3077
0 . 3078
0.3111
-29 . 33
-26.99
-23 . 85
-19.41
-12.92
-3.91
-1.23
-30 . 76
-28.33
-25.05
-20.42
-13.62
-4. 15
-1.31
-30.80
-28.36
-25.07
-20.44
-13.64
-4. 16
-1.32
-30.80
-28.36
-25.08
-20.44
-13.64
-4. 16
-1.32
-30.80
-28.36
-25.08
-20.44
-13.64
-4. 16
-1.32
-30.80
-28.36
-25.08
-2O . 44
-13.64
-4. 16
-1.32
DELL
-19.75
-17.79
-15.30
-12.02
-7.64
-2. 18
-0.67
-2 1 . 00
-18.90
-16.23
-12.74
-8.09
-2.32
-0.72
-2 1 . 03
-18.92
-16.25
-12.76
-8. 10
-2.33
-0.72
-21.03
-18.92
-16.25
-12.76
-8. 10
-2.33
-0.72
-21.03
-18.93
-16.25
-12.76
-8. 10
-2.33
-0.72
-21.03
-18.93
-16.25
-12.76
-8. 10
-2.33
-0.72
C(550) BRATIO DELX DELY E(LUV) E(LAB)
-0.5193
-0.4803
-0 . 427 1
-0.3513
-0.2376
-0.0735
-0.0227
-0.5441
-0.5032
-0.4475
-0.3681
-0.2489
-0.0770
-0.0238
-0.5443
-0.5033
-0 . 4476
-0.3681
-O.2490
-0.0770
-0.0238
-0.5442
-0.5033
-0.4476
-0.3681
-0.2490
-0.0770
-0.0238
-0.5442
-0.5033
-0.4476
-0.3681
-0.2489
-0.0770
-0.0238
-0.5442
-0.5033
-0.4476
-0.3681
-0.2489
-0.0770
-0.0238
0.2323 0.1031 0.0708 61.5959 43.549
O.3872 0.0770 0.0480 49.5869 33.977
0.5678 0.0519 0.0270 36.7866 25.047
0.7694 0.0286 0.0088 23.5992 16.757
0.9601 0.0089 -0.0040 11.5355 9.462
1.0381 -0.0017 -O.OO50 3.5696 3.092
1.0216 -0.0014 -0.0020 1.4220 1.088
0.2429 0.0990 0.0673 59.4993 42.365
0.4039 0.0727 0.0445 47.5866 33.069
0.5904 0.0479 0.0238 35.0478 24.468
0.7959 0.0253 0.0063 22.352) 16.551
0.9852 O.0067 -O.OO55 11.1173 9.596
1.0505 -0.0025 -0.0054 3.8180 3.253
1.0273-0.0017-0.0021 1.5649 1.165
0.2442 O.0987 0.0673 59.3818 42.314
0.4059 O.O724 O.0445 47.4759 33.024
0.5931 0.0477 0.0238 34.9487 24.429
0.7992 0.0251 0.0062 21i.2723 16.521
O.9833 0.OO66 -O.O055 1 1 . O73B 9.580
1.0520 -0.0025 -O.O054 3.822O 3.253
1.0280 -O.O017 -0.0021 1.5703 1.167
0.2446 0.0987 0.0673 59.3595 42.305
O.4065 O.O724 O.O445 47.4548 33.O15
0.5939 0.0476 O.O238 34.9293 24.421
0.8001 O.0251 O.O062 22.256O 16.514
0.9892 0.0065 -O.OO55 11.0634 9.576
1.O525 -0.0026 -0.0054 3.8221 3.2f>3
1.0282 -O.OO17 -0.0021 1.5714 1.167
0.2448 0.0987 0.0673 59.3489 42.3O1
0.4069 0.0724 0.0445 47.4446 33.011
O.5944 O.O476 0.0238 34.9199 24.417
0.8007 O.0251 0.0062 22.2477 16.511
O.9897 O.0065 -O.O055 11.0582 9.573
1.O527 -O.OO26 -O.O054 3.O222 3.252
1.0284 -0.0017 -0.0021 1.5718 1.168
0.2449 0.0987 0.0673 59.3456 42.299
0.4070 0.0724 0.0445 47.4415 33.010
0.5943 0.0476 0.0238 34.9170 24.416
O.O008 0.0251 0.0062 22.2452 16.510
0.9099 0.0065 -0.0055 11.0566 9.573
1.0528 -0.0026 -0.0054 3.8222 3.252
1.0284 -0.0017 -0.0021 1.5720 1.168
Exhibit 13. Plume-based calculations of visual effects for lines of sight along the axis of the plume.
-------
00
00
ANALYSIS
POINTS
SOURCE
POINT OF
ANALYSIS
THE DIFFERENT PLUME SEGMENTS
USED AT THE SIXTH ANALYSIS POINT
DOWNWIND FROM THE SOURCE
t I
VARIOUS OBSERVER POSITIONS USED FOR
EACH PLUME SEGMENT CONSIDERED
Figure 14. Schematic diagram of plume-based "along plume" optics calculation.
-------
VISUAL EFFECTS FOR LIKES OF SIGHT ALONG PLUTIE
I •
1600 MW POWER PLAWT
DOWNWIND DISTANCE (KM) = 100.0
PLUME-OBSERVER DISTANCE (KM) = 17.5
AZIMUTH OF LINE-OF-SIGHT = 145.1
ELEVATION ANGLE OF LINE-OF-SIGHT = 0.1
SOLAR ZENITH ANGLE = 51.0 AT 900. ON 9/21
THETA LENGTH RP/RV0 RV rJREDUCED YCAP L
X
42.
FOR SKY BACKGROUND:
10. 0.09 165.8
FOR WHITE BACKGROUND:
10. 0.09 165.8
FOR CRAY BACKGROUND:
10. 0.09 165.5
FOR BLACK BACKGROUND:
10. 0.09 165.3
10.38 105.25
10.39 105.36
10.57 103.55
Y DELYCAP
101.99 0.3459 0.3523
102.03 0.3466 0.3522
101.36 0.3437 0.3512
10.64 102.78 101.06 0.3425 0.3507
-9.09
-9. 11
-8. 17
-7.77
DELL C(550) BRATIO
DELX
DELY E(LUV) E(LAR)
CO
-3.30 -0.0772 0.7572 0.0216 0.0184 19.9524 12.717
-3.30 -0.O769 0.7631 0.0214 0.0183 19.7874 12.64O
-3.00 -0.0705 0.7487 0.0222 0.0191 20.5127 12.973
-2.87 -0.0677 0.7420 0.0225 0.0194 20.0360 13.12O
Exhibit 14. Observer-based calculations of visual effects for views close to the plume trajectory The first line is data for
clear sky background. The second, third, and fourth lines are for white, gray, and black backgrounds, respectivelj
-------
lines show the results for white, gray, and black backgrounds, respec-
tively. The calculations are made for the defined observer position, with
the line of sight intersecting the plume at the user-specified distance
downwind of the source. The model uses the plume center line concentration
for this point. This concentration is integrated along the line of sight,
and the length of this integration is calculated to correspond to a
Gaussian plume distribution. The azimuthal angle between the line of
sight and the plume centerline is included. As in the results for the
plume-based calculations, LENGTH indicates the distance over which the
plume centerline concentrations are applied. The percentage of reduction
in visual range is defined only for the clear sky background. The remain-
ing optical parameters compare the visual effects of looking through the
plume to looking at the background without it.
Exhibit 15 is an example of the printed results of the OH» model cal-
culations of the conversion rates of S02 to S04= and NOX to HNO§. For
each downwind distance, the conversion rates are shown for each point
upwind. These rates are based on the solar radiation for the time of day
at which a plume parcel is at the given distance downwind of the source.
The output shows the conversion rates for plume parcels as they advect to
each analysis point along the plume trajectory. The conversion rates are
calculated for the six altitudes shown in figure 13.
The last two tables (see exhibit 16) verify the values of visual
range reduction, blue-red ratio, plume contrast, and AE(L*a*b*) written to
logical files 7 and 8. These files are the input data for the plotting
program (VISPLOT). Exhibit 16 shows the format of the tables set for
sixteen analysis points and four backgrounds. The visual range reduction
data are set to zero for white, gray, and black backgrounds, since visual
range is defined for a horizon sky background. The values saved for
plotting are taken from the calculations for horizontal views of the plume
with a sky background and from the calculations for horizontal views of
white, gray, and black backgrounds behind the plume. The model prints
both tables for plume-based and observer-based data only if both calcula-
tions are done. If PLUVUE is run for observer-based calculations or
90
-------
HISTORY OF PLUME PARCEL AT DOWWIND DISTANCE =, 240.0 KM
PARCEL LOCAL S02-T0-S04= CONVERSION RATE ( 7./HR)
ACE TIME
( Sir*.1
0.
0.
0.
1.
2.
5.
0.
11.
13.
16.
19.
22.
24.
27.
30.
33.
1
3
7
4
O
5
3
0
8
6
3
1
9
6
4
1
2359
8
32
114
237
522
808
1004
1340
1625
1911
2157
42
328
614
900
H+2S
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
00
00
00
00
01
01
00
00
00
00
00
00
04
n+is
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0,00
0.01
H
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
H-1S
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.01
H-2S
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.00
.00
.00
.00
.00
.00 '
.00
.01
.01
.00
.00
.00
.00
.00
.00
.04
0
0.00
0.00
0.00
0 . 00
o.oo
0.01
0.94
2.95
1 .89
0. 13
0.00
0.00
0.00
0.00
o.or>
i . <.f»
NOX-TO-HN03 CONVERSION RATE (3/HR)
H+2S
0.
0.
O.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
00
00
00
01
09
08
00
00
00
00
00
01
28
H+
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
O.
0.
IS
00
00
00
00
00
00
00
02
01
00
00
00
00
00
00
04
H
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
00
00
00
00
01
01
00
00
00
00
00
00
02
II-
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
IS
00
00
00
00
00
00
00
02
01
00
00
00
00
00
00
04
H-2S
0
0
0
0
0
0
0
0
0
0
0
0
0
0
O
0
.00
.00
.00
.00
.00
.00
.01
.09
.08
.00
.00
.00
.00
.00
.01
.28
0
0.
0.
0.
0.
0.
0.
6.
20.
13.
0.
0.
0.
0.
0.
0.
1 1.
00
00
00
00
00
04
61
65
26
93
00
00
00
00
38
64
Exhibit 15,
Conversion rates for secondary aerosol formation calculated by the OH<
parcel 240 km fnom the source at the time of observation (0900).
model for a plume
-------
PLOT FILE VERIFICATION
SKY BACKGROUND OBSERVER-BASED DATA
NX I 2 3 4 3 6 7 B 9 10 1! 12 13 14 15 16
DISTANCE (KM) 1 2 5 10 20 40 60 80 100 120 140 160 180 200 220 • 240
REDUCTION OF VISUAL
RANGE <5J) 52.530 52.937 53.826 51.327 40.167 27.501 16.039 7.419 1O.637 23.591 40.679 47.959 45.8O6 43.730 42.247 41,06
BLUE-RED RATIO "
1.022 1.021 1.019 1.014 1.003 0.956 0.861 0.742 0.758 0.858 O.923 0.951 0.957 0.958 0.957 O.95
PLUME CONTRAST AT
0.55 MICRONS -0.057 -0.070 -0.082 -0.090 -0.105 -0.135 -0.153 -0.111 -0.084 -0.112 -0.094 -0.068 -0.046 -0.030 -0.019 -0.01
PLUME PERCEPTIBILITY
DELTA E(L*A*B*> 2.312 2.814 3.333 3.621 4.148 5.491 8.602 12.527 12.982 8.313 5.066 3.462 2.386 1.677 1.206 «.91
WHITE BACKGROUND
NX 1 2345 6 7 8 9 10 11 12 13 14 15 16
DISTANCE (KM) 1 2 5 10 20 40 60 80 100 120 140 160 180 200 220 24O
REDUCTION OF VISUAL
RANGE (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0OO 0.000 0.000 O.OOO 0.000 O.OOO 0.000 O.OO
BLUE-RED RATIO
10 1.259 1.248 1.219 1.187 1.146 1.065 0.934 0.757 0.766 0.903 1.089 0.000 O.OOO 0.000 0.000 0.00
ro
PLUME CONTRAST AT
0.55 MICRONS -0.088 -0.100 -0.111 -0.118 -0.132 -0.162 -0.180 -0.114 -O.085 -O.122 -O.O45 0.000 O.OOO 0.000 0.000 O-OO
PLUME PERCEPTIBILITY
DELTA E(L*A*B*) 5.061 5.232 5.344 5.290 5.397 5.971 8.184 12.323 12.845 7.558 3.153 O.OOO O.OOO O.OOO 0.000 O.OO
GRAY BACKGROUND
NX 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16
DISTANCE (KM) 1 2 5 10 20 40 60 80 10O 120 140 160 180 200 22O 240
REDUCTION OF VISUAL
RANGE (7.) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.OOO 0.00
BLUE-RED RATIO
0.996 0.996 0.996 0.994 0.985 0.939 0.846 0.740 0.752 0.799 0.872 0.000 0.000 0.000 O.OOO 0.00
PLUME CONTRAST AT
0.35 MICRONS -0.026 -0.040 -0.054 -O.O63 -O.O79 -0.110 -0.129 -0.1O7 -0.078 -0.045 0.173 O.OOO O.OOO 0.000 O.OOO O.OO
PLUME PERCEPTIBILITY
DELT/V .ECL.*A*B*> 1.0O6 1.575 2.155 2.531 3.1O8 4.874 8.398 12.601 13. I6O 8.819 6.239 O.0OO O.00O O.OOO O.OOO O.OO
(.a") Obsemver--based calculations.
-------
BLACK BACKGROUND
NX 1 2 3 4 5 6 7 8 9 10 11 12 13 14 IP 16
DISTANCE (KM) 1 2 5 10 20 40 60 80 100 120 14O 160 180 200 220 240
REDUCTION OF VISUAL
RANGE (J?) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.OOO 0.000 0.000 0.0(
BLUE-RED RATIO
0.882 0.886 0.894 0.902 0.904 0.871 0.791 0.732 0.745 0.740 0.729 0.000 0.000 0.000 O.OOO 0.0<
PLUME CONTRAST AT
0.55 MICRONS 0.003 -0.011 -0.026 -0.037 -0.054 -0.084 -0.102 -0.104 -0.075 -0.004 0.314 0.000 0.000 O.OOO O.OOO O.O
PLUME PERCEPTIBILITY
DELTA E(L*A*B*) 2.137 2.279 2.446 2.650 3.234 5.126 8.925 12.729 13.303 1O.133 11.O3O 0.000 0.000 O.OOO 0.000 0.0<
Exhibit 16(a) (concluded)
-------
PLOT FILE VERIFICATION
PLUME- BASED DATA
SKY BACKGROUND
NX 1 2 3 4 3 6 7 8 9 10 11 12 13 14 15 16
DISTANCE (KM) 1 2 5 10 20 40 60 80 100 120 140 160 180 2»0 220 240
REDUCTION OF VISUAL
RAFGE (75) 11.973 9.556 6.737 5.153 4.127 3.519 3.288 3.166 3.086 3.027 2.979 2.940 2.90R 2.570 2.213 1.96
BLUE- RED RATIO
0.921 0.857 0.827 0.825 0.819 0.808 0.801 0.796 0.793 0.791 0.79O 0.789 0.789 0.801 0.818 0.83
PLUME CONTRAST AT
0.55 MICRONS -0.094 -0.108 -0. 1O6 -0.090 -0.094 -0.O95 -0.097 -0.099 -0.100 -0.101 -0.101 -0.101 -0.101 -0.092 -0.001 -0.07
PLUME PERCEPTIBILITY
DELTA E(L*A*B*> 4.864 7.459 8.674 8.601 8.758 9.270 9.619 9.862 10.024 10.125 10.184 10.214 10.223 9.523 8.617 7.91
WHITE BACKGROUND
NX 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
DISTANCE (KM) 1 2 5 10 2O 40 60 80 100 120 140 160 180 200 220 240
REDUCTION OF VISUAL
RANGE (75) O.OOO O.000 0.000 0.000 0.00O 0.000 0.000 0.000 O.OOO 0.000 O.OOO O.OOO O.OOO O.O00 O.O00 O.OO
BLUE-RED RATIO
1.101 0.985 0.909 0.886 0.866 0.844 O.833 0.826 0.821 0.818 O.816 0.815 O.814 O.824 0.837 0.84
PLUME CONTRAST AT
0.55 MICRONS -0.169 -0.169 -0.152 -0.135 -0.124 -0.121 -O. 121 -0.122 -0.123 -0.123 -0.123 -0.123 -0.122 -0.111 -0.098 -0.03
PLUME PERCEPTIBILITY
DELTA E(L*A*B*) 6.447 7.392 8.359 8.361 8.637 9.291 9.721 10.015 10.212 10.338 10.414 10.452 10.465 9.753 8.827 8.10
GRAY BACKGROUND
NX 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
DISTANCE (KM) 1 2 5 10 20 40 60 80 100 120 140 160 180 200 220 240
REDUCTION OF VISUAL
RANGE <.%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00
BLUE-RED RATIO
0.890 0.849 0.836 0.840 0.840 0.834 0.830 0.827 0.825 0.824 0.823 0.823 0.823 0.834 0.848 0.85
PLUME CONTRAST AT
0.55 MICRONS 0.010 -0.022 -O.O43 -0.O47 -O.052 -0.059 -0.064 -O.067 -0.O68 -O.070 -O.070 -0.071 -0.071 -0.065 -0.058 -0.05
PL.WOE PET>.CE\?T1BH.ITY
F.tU*/v*TMO 3.9T5 5.863 6.657 6.541 6.612 6.954 7.194 7.361 7.472 7.541 7.38O 7. 396 7.598 7.036 6 . 42f> .1.
90
-------
BLACK BACKGROUND
NX 1 2 3 4 5 6 7 8 9 10 11 12 13 14 13 16
DISTANCE (KM) 1 2 8 16 20 40 60 80 100 120 140 160 180 200 220 240
REDUCTION OF VISUAL
RANGE (X) 0*000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00
* BLUE-RED RATIO
0.037 0.648 0.689 0.726 0.752 0.767 0.773 0.775 0.777 0.778 0.780 0.781 0.782 0.798 0.817 0.83
PLUME CONTRAST AT
0400 MICRONS 0.192 0.128 0.069 0.042 0.021 -.0.003 -0.005 -0.010 -0.013 -0.016 -0.017 -0.018-0.018 -0.018 -0.017 -0.01
PLUME PERCEPTIBILITY
DELTA E(L*A*B«) 9.360 9.262 8.329 7.441 6.937 6.827 6.857 6.901 6.932 6.946 6.947 6.941 6.931 6.427 5.801 5.32
Exhibit 16(b) (concluded)
-------
plume-based calculations, the model writes only the proper plot file and
print's the corresponding table.
The plot files are written in the same order that the data are
printed in the tables of exhibit 16. Exhibit 17 shows the binary FORTRAN
write statements that generate these files. These four statements write
the values of the four arrays: visual range reduction, blue-red ratio,
plume contrast, and AE(L*a*b*). For each of the four arrays, the data are
organized such that the first sixteen elements are for a sky background,
the second sixteen elements are for a white background, the third sixteen
elements are for a gray background, and the last sixteen elements are for
a black background. Each group of sixteen elements corresponds to the
sixteen 'downwind distances.
96
-------
WRITE(6,50001)
50001 FORMATC 1H1,55X,22HPLOT FILE VERIFICATION)
IF(NC2.NE.2)GO TO 30025
C
C WRITE OUT THE VISUAL IMPACT PARAMETERS FOR PLOTTING OF THE
C RESULTS OF OBSERVER-BASED CALCULATIONS. PLT1 IS PERCENT REDUCTION
C IN VISUAL RANGE, FOR THE 16 DOWNWIND POINTS. NN= 1 FOR CLEAR
C SKY BACKGROUND. NN=2 FOR WHITE BACKGROUND. NN=3 FOR GRAY
C BACKGROUND. NN=4 FOR BLACK BACKGROUND. PLT1 IS SET TO
C ZERO FOR NN-2,3,4. PLT2 - BLUE-RED RATIO. PLT3 PLUME
C CONTRAST AT 0.55 MICROMETER. PLT4 - DELTA E(LAB)
C
WRITE(7)((FLT1(NX,NN),NX=1,16),NN=1,4)
WRITE( 7) ( (FLT2( NX, NN) , NX= 1, 16) , NN= 1,4)
WRITE(7H(PLT3(NX,NN),NX=1,16),NN=1,4)
WRIT£(7)((PLT4(NX,NN), NX= 1,16) ,NN=1,4)
WRITE(6,50002)
50002 FORMATC 1HO,56X, 19HOBSERVER-BASED DATA)
IF(NC1.NE.1)GO TO 30030
C
•* VISUAL IMPACT PARAMETERS FOR PLOTTING OF THE RESULTS OF
C THE PLUME-BASED CALCULATIONS WITH THE DESIRED SCATTERING ANGLE
C DISTANCES, -\KD PLUME-OBSERVER GEOMETRY AS SPECIFIED IN THE
C PLUME-BASED CALCULATIONS FOR CLEAR SKY AND WHITE, GRAY, AND
C BLACK BACKGROUNDS.
C
30025 CONTINUE
WRITE(8)((PLOT1(NX,NN) ,NX= 1, 16) ,HH= 1,4)
WRITE( 8) (( PLOT2( NX, NN) , NX= 1, 16) , NN= 1,4)
WRITE(8)«PLOT3(NX,NN) ,NX=1,16) ,NN=1,4)
VRITE( 3) (( PLOT4( NX, NN) , NX= 1, 16) , NN= 1,4)
IFCNC2.NE.1)VRITE<6,50001)
VRITE<6,50017)
50017 FORMAT(1H0.57X, 16HPLUME-BASED DATA)
Exhibit 17. Binary FORTRAN write statements that generate data files to
be used for plotting results.
97
-------
5 PLUVUE PROCEDURE FLOW CHART
The procedure flow of PLUVUE is represented in the following
figures. Figure 15(a) depicts the relationship of input and output to a
PLUVUE model execution. Figure 15(b) illustrates the general procedure
flow of PLUVUE. This diagram provides the user with a guide to the
general organization of the model. Figure 15(c) is a more detailed flow
diagram of MAIN. This still represents the general procedure flow without
considering the details of each individual step. Figures 15(d), 15(e),
and 15(f) provide flow diagrams of the subroutines PERDIF, INRAD, and
BSIZE, respectively. These diagrams represent the flow of the program
execution in these routines without attempting to represent individual
lines. The other subroutines of PLUVUE are so short that procedure flow
diagrams are not useful at the level of detail being presented. Line-by-
line examination of the source-code listing is necessary for understanding
the details of the remaining routines.
99
-------
f Program
control and
input data
Single source
plume visibility
model PLUVUE
Hard copy
print file
Plotting
program
!
1
Plotted
results
(a) Relation of I/O to PLUVUE.
Figure 15. PLUVUE logic flow chart.
100
-------
Start
Input data
/
Read
Input File)
Compute aerosol proper-
ties from Mie equations
• Integrate over par-
ticle size
• Interpolate to
39 wavelengths
• 7 scattering angles
(+NX2)
Compute background atmo-
spheric visual effects
• Compute radi- I
ance I(A) for I
diffuse reflec-l
tor
Compute I(A)
for Rayleigh
atmosphere
Compute I(A)
for background
atmosphere
Compute colora-|
tion parametersl
INRAD
BSIZE
DAMIE
I
SPLNA
PERDIF
RAYREF
BACCLN
Overview of the PLUVUE structure.
Fl'9ure 15 (continued)
101
-------
Compute background
object visual effects
• Compute I(A) for
horizon sky
• Compute I (A) for
viewed object
6
Xlumin
Ro
• Compute coloration
parameters
l
Calculate N02, SOH,|
and primary partic-
ulate concentra-
tions at distance X
NX IX
NZ|Z
Calculate plume |
visual effects for
horizontal views i
with sky background!
• Compute I(A) I
for plume
Compute colora-
tion parameters
NT 19
NA, a
NPlr
CHROMA
BACCLN
BACOBJ
CHROMA
' ' SZPAS
SYPAS
PLMCLN
CHROMA
©
Figure 15(b) (continued)
102
-------
Calculate plume vis-
ual effects for non-
horizontal views with
sky background
. Compute I(x) for
plume
. Compute colora-
tion parameters
Calculate plume vis-
ual effects-for hor-
izontal views with
object behind plume
NX
Calculate I(x)
for viewed
object with
and without a
plume
Compute colora-
tion parameters
Calculate plume vis-
ual effects for views
along plume center!ine
• Calculate back-
ground sky inten-
sity
• Calculate plume
intensity
• Calculate inten-
sity for plume
with air in front
of plume
• Compute chroma-
ticities, con-
trast, etc.
(X)
101
r
NT 8
NAia
NB!B
NT 16
K Xlumin
IP rn
L
0
r
NZl (Z)
NT I
NXIN
NROBJ !rp
K (Xlumin;
PLMCLN
CHROMA
PLMOBJ
CHROMA
BACCLN
PLMAX
-*•
PLMAX
CHROMA
(continued)
103
-------
Print out
results, includ-
ing OH model
results
Write out
data for
plots
V
Binary
plot
file(s)
C Stop J
Figure 15(b) (concluded)
104
-------
Dimension
arrays & data
statements
Input data
\
Read
input
data
Conversion
of data to
proper units
Wri te
out
input
Calculate
N02-N0
equilibrium
constant
(c) Flow chart of MAIN.
Figure 15 (continued)
105
-------
Convert source
UTM coordinates
to lat., long.
Calculate solar
elevation angle
Convert sur-
face wind to
stack height
Plume rise
calculations
Subroutine
MAPUTG
Subroutine
CLOCK
Subroutine
SOLARZ
Figure 15(c) (continued)
106
-------
Convert sur-
face wind to
plume height
Convert WIND to
plume trajectory
in radians
1
Calculate
OBSPLU(I)
AZIMUTH(I)
AALPHA(I)
TT(I+7)
ABETA(I)
Observer-based
plume geometry
Call
INRAD
Subroutine INRAD
Solve for back-
ground sky P
functions, £>ext>
P functions for
aerosol, bscat
for aerosol, etc.
Sub
BSIZE
i
Sub
DAM IE
Sub
SPLNA
Figure 15(c) (continued)
107
-------
Print back-
ground aero-
sol
Print plume geometry
data for plume-based
calculation
Write out scatter-
ing coefficients
for background
Visual effects for
background sky
without plume
1,
Calculate
diffuse
reflector
nrnnprti PC
PERDIF
RAYREF
BACCLN
CHROMA
Visual effects for
background sky with
views of white, gray,
and black objects
©
Figure 15(c) (continued)
108
-------
r
6(1)
L,
K(Xlumin)
rfl(J)
I
I I
BACCLN
BACOBJ
CHROMA
Initial plume
rise Lagrangian
loop for parcel
velocity, posi-
tion, dilution
Calculate
photolysis
rate constants
X(NX)
/ Do loop \
'on downwindX
i distance. /
\NX=1,NX2 /
\ j
i
*
/n j. V
/Does sta-\
bility change\ Yes
at this dis-/ ~~*"
\ tancp? /
No •*
f NX.GT. \Yes
NXSTAB? f^^
^ ' /
!NO
/NX I
\_
Calculate
distance
offset for
nou/ c i*ah"i 1
Calculate
new stabil
distance o
,
~1
T NXSTAB \ YeS»
/
|NO
r SY =
r sz =
itv
ay» az f°r
ity and
ffsets
L
(from f
SY = SYPAS
C7 - C7pAC
Oi. Oi-ittj
SYPAS
SZPAS
<
* I1U
©
Figure I5(c) (continued)
®
109
-------
SV = SVPAS
SZ = SZPAS
Calculate
surface
deposition
Adjust mass fluxes
for deposition
and conversion to
SO and NO
Gaussian calculation of
x/Q for plume above
inversion height
Is
plume
center!ine below
inver-
sion?
Gaussian cal-
culation for
plume below
inversion
Calculate time of day
at present position
for plume parcel
I=NX,NX2
I
Photolysis rates
and N02-N0
equilibrium
Figure 15{c) (continued)
110
-------
©
Total NO background
/\
Ozone concentration
OH radical concentration
Calculate N02,
sulfate, and
nitrate conver-
sion in plume
Print concentrations
of aerosols and
gases contributed
by source
Visual effects for
zontal views with
horizon sky background
No
Do loop
NONC1.NC2
NZ (altitude)
NC
I r
! Nll(e)
NA|(o)
No
Plume based
calculation
\
i
PLMCLN
;F19ure I5(c) (continued)
111
-------
14
CHROMA
(Calculate
coloration
parameters)
Calculate
visual range
reduction
Print out
results
Yes
Visual effects
nonhorizontal
views through
plume with clear
sky background
Observer-
based
calculation
PLMCLN
CHROMA
Calculate
visual range
reduction
Print out
results
No
Figure 15(c) (continued)
112
-------
Plume-based
calculation
PLMCLN
CHROMA
Write out
results
IFLG3
isual effects^ =1?
pr horizontal
pews through plume Tv
white, gray, and lYes
lack objects. /
IS
Fi9urel5(c) (Continued)
No
Observer-
based
calculation
Write out
results
PLMCLN
CHROMA
113
-------
|NC
r
Yes
Plume-based
calculation
for
object views
e
REFL(K)
rP
rn
Write out
results
PLMIN
PLMOBJ
CHROMA
Observer-based
calculation
for
object views
REFL(K)
Write out
results
PLMIN
PLMOBJ
CHROMA
Figure 15(c) (continued)
114
-------
Visual effects
for lines of sight
along plume
NC
NZ
6
No
No
Plume-based
calculation
NXIN=1,(NX-1) loop
on number of seg-
ments that ean be
in line of sight
loop on
plume
seg-
ments
in
of
sight
line
NXX=
(NX-NXIN),
(NX-1)
rp - Distance
from obser-
ver to plume
BACCLN
PLMAX
PLMAX
I(x) for back-
ground atmosphere
without plume
Change in I(A) for
each plume segment
Change in I(x) for
atmosphere between
observer and plume
CHROMA
Calculate
reduction in
visual range
15(c) (continued)
115
-------
NC
NZ .
8
NXIN
Print out
results.
I(A) for background sky
or background object
Change in I(A) due to
plume material
Change in I(A) caused
by background atmo-
sphere
Calculate coloration
parameters
-Eigure 15(c) (continued)
1
i
Observer-
based
calculation
KA
BACCLN
NZ
1-sky
2-white
object
3 - gray
object
4-black
object
BACOBJ
PLMAX
PLMAX
CHROMA
Calculate
visual range
and visual
range reduction
X(NX)
(see page
116
-------
Write SOi;
and N0§
formation
rate'
Write
binary
files for)
plotting
Write out binary file
of data for plotting
V / (may be saved to tape)
Print copy of
optics data
for plotting
C
STOP
(END J
Figure 15(c) (concluded)
117
-------
Subroutine
PERDIF
Calculates
light intensities I(X)
from perfect
diffuse reflector
Calculates
parameters
for other
optics routines
D
Perfect diffuse reflector
calculation
BACOBJ
Return to MAIN
(d) Flow chart of subroutine PERDIF.
Figure 15 (continued)
118
-------
Subroutine
INRAD
Define mass median radius and
geometric standard deviation
from user input (MAIN) for
accumulation mode aerosol
Calculate bscat and P (phase
functions) for 9 wavelengths
and 7 scattering angles
Calculate cubic spline inter-
polation coefficients for
scattering coefficients
Subroutine
BSIZE
Subroutine
SPLNA
Interpolate bscat/M
for 39 As for
accumulation mode
Calculate cubic
spline inter-
polation coef-
ficients for
accumulation I
mode aerosol i
phase functions
el
Subroutine
SPLNA
Interpolate phase
functions for 39
X.s and 7 scatter-
ing angles (e)
i
Define mass median radius and
geometric standard deviation
for coarse mode aerosol
©
(e) Flow chart of subroutine INRAD.
• •->
Figure 15 (continued)
119
-------
©
Calculate bscat and P for
9 xs, 7 es with coarse
size distribution
Cubic spline interpolation
coefficients for bscat/M
Subroutine
BSIZE
Subroutine
SPLNA
Calculate
t>scat/M for
39 Xs
r
Cubic spline I
interpolation I
coefficients I
for accumula- I
tion mode phase!
functions I
el
Subroutine
SPLNA
Interpolate
phase function
for coarse mode
L.
Define mass
median radius and geometric
standard deviation for plume
primary aerosol
Calculate bscat and P for
9 xs and 7 6s
Subroutine
BSIZE
Figure 15(e) (continued)
120
-------
Calculate cubic spline interpolation
coefficients for
bscat/M
r *
Subroutine
SPLNA
Interpolate
bscat/M for 39
AS, primary
particulate
I
Calculate cubic spline}
interpolation coef-
ficients for primary
mode phase functions
•
L
Subroutine
SPLNA
Interpolate
phase function
for plume
primary mode
Adjust accumulation
mode bscat/M for
relative humidity
at 7 xs
Calculate cubic spline interpolation
coefficients for accumulation mode
bscat/M adjustment for relative
humidity
Subroutine
SPLNA
Interpolation
of RH adjust-
ment for bScat/M
at 39 Xs
Figure ls(e) (continued)
121
-------
Calculate Rayleigh
scattering optical
depth in the vertical
Yes
Return
to MAIN
Calculate visual range
from input background
[SO?] and
Calculate background
[50^] from input
visual range
Compute vertical
optical depths
Calculate horizontal
optical depths
Adjust optical depth
for N02 absorption
Figure 15(e) (continued)
122
-------
©
Adjust
bscat/V to
bscat/M
Return to MAIN
Figure 15(e) ('concluded)
Calculation of
Mie scattering jx
Phase functions
•
Subroutine
BSIZE
Log-normal
aerosol
size
distribution
Subroutine
DAMIE
D
Return to
subroutine INRAD
A
(f) Flow chart of subroutine BSIZF.
Fl'9ure 15 (concluded)
123
-------
APPENDIX A
SAMPLE PLUVUE RUNS
Two sample runs were done to show how PLUVUE may be used in a par-
ticular case to execute the user's desired calculations. By selecting the
proper values for control parameters in the input data file, the user can
choose the needed subset from all the different optics calculations
available.
The first sample is an observer-based run. Exhibit A-l shows the
input data file. The details of the formats and variables are given in
chapter 3 on input data. This input data file specifies that the run will
do observer-based optics calculations of all four types:
> Horizontal lines of sight through the plume (with a hori-
zon sky background).
> Nonhorizontal lines of sight through the plume (with a sky
background) if the elevation angle of the line of sight
exceeds 5".
> Horizontal lines of sight through the plume (with white,
gray, and black backgrounds).
> Horizontal lines of sight at small angles to the plume
centerline (with sky, white, gray, and black backgrounds).
The input data file also specifies flat terrain along the plume trajec-
tory. The distance to background terrain is specified for every viewing
azimuth at 15° intervals. The position of the plume trajectory is set by
the 11.3~~degree wind direction, and the position of the sun is set for
9;00 a.m. on 21 September 1979 at the source location. The observed
Points on the plume trajectory were chosen at 20 km intervals from 20 km
125
-------
1600 iiw POWER PLART
ro
CTl
4.5
100517
1000.0
15.
0
1 1 1
1
5+0.00
0.
116 1 7 1
roe.
37.50
1 555900. O
4.060O.O
45.0
O.OOO
0. 125
2.200
1.000
10.OOO
2
185.
1.00 1
0
0.5
2
469
498. 9
12 9
0.0
0.0
145
185
160
2.
120.
131.80
138.0
0.000
2.750
2.200
2.000
00 0.10 0.10
5.
140.
3
,0
.0
,0
4254.8
4338.5
210900.
0.0
0.0
111.
150.
185.
4.90
3.0
0.038
0. 125
1.500
1.800
10.
160.
20.
180.
40.
200.
60.
220.
80.
240.
6800.0
5650.0
7. 1979
0.0
O.O
90.
100.
185.
17.5
0.000
0.850
1.500
2.000
0.0
0.0
185.
50.
185.
0.0
0.0
152.
75.
183.
0.0
0.0
149.
100.
185.
0.0
0.0
54.
120.
185.
0.0
0.0
185.
140.
185.
11.3
Exhibit A-1. Input data file for observer-based calculations.
-------
to 240 km. Near the source, the observed points were chosen at 1, 2, 5,
and 10 km. PLUVUE requires that the first point be at 1 km, to match the
result of the initial plume rise calculation. The observed points at 2,
5, and 10 km were used to maintain the accuracy of the plume chemistry
calculations, since the reaction rates are calculated at these observed
points and are constant over the intervals from one point to the next.
Exhibit A-2 presents the beginning of the printed output, through the
visual effects tables of the second observed point on the plume. The
table for the initial plume rise calculations was printed because the
value of the input variable IDILU was set for this condition. The table
for nonhorizontal sight paths was not printed for the first two observed
points because the elevation angle did not exceed 5* for either line of
sight.
Exhibit A-3 is the printed output from this same observer-based PLUVUE
run, for points at 100 and 120 km from the emissions source.
Exhibit A-4 shows the printed results for the final two observed
points at 220 and 240 km. Figure A-4 also includes the tables of the
history of the secondary aerosol formation. At the end of the printed
output, the final table verifies the values of the data written on Fortran
unit 7- This data is used by VISPLOT to generate plots of the key plume
perceptibility and visual range reduction parameters.
Exhibit A-5 presents the input data file for the second sample PLUVUE
execution. The principal difference between the first sample and the
second sample is that the first is an observer-based run and the second is
a plume-based run. The second sample starts with the same stability as
the first sample; however, at the fourteenth downwind distance (200 km
from the source) the stability changes from a Pasquill-Gifford E to a
Pasquill-Gifford D. Both samples have a mixed layer height of 1000 m and
a relative humidity of 45 percent. The background visual range (185 km)
and ambient temperature (45'F) at the stack height (600 ft) are the same
for both samples. The emissions data and aerosol size distribution data
are also the same for both cases. For the 16 observed points on the plume
trajectory, the second case uses the same distances from the source as the
127
-------
VISUAL T FTP ACT ASSESSMENT ron 1600 HW POWER FLAirr
EMISSIONS SOURCE DATA
ELEVAT10II OF SITE = 5650. FEET MSL
1722. METERS MSL
NO. OF UNITS = 4.
STACK HEIGHT = <>OO. FEET
l 83 . riETERS
FLUE GAS FLOW RATE = 1555*30. CU FT/WIN
734.23 CU M/SEC
FLUE CAS TEMPERATURE = 130. F
og/i If
FLUE CAS OXYGEN CONTENT = "*3.0 KOL PERCENT
O02 EH I SSI ON RATI5 (TOTAL) = 37. 5O TORSVDAY
3.937E 02 GXSEC
NOX EMISSION RATE (TOTAL. AS N02) = 131.30 TONS/DAY
1 . 331 -E 03 GXSEC
PARTICULATE EMISSION RATE (TOTAL) = *-.'>o TONSx»AY
5. I4?E Ol GXSEC
AND AMDIENT AIR OUALITY DATA
W-1HD3PEED = 4.5 HlLESxIIR
2.0 TIXSEC
PASOUILL-GIFFOnD-TURNEFl STABILITY CATEGORY E
LAPSE RATE = 0.00 FXIOOO Ft
0.000E-OI KXM
POTENTIAL Tnr?PFRAT!JRE LAPSE RATE = '9.800E-03 KXM
_, AHDIENT TEMPERATUPJ5 = 45.0 F
ro SCO. 4 K
C» RELATIVE HWflDITY = 45.0 J?
NIXING DEPTH = 1OOO. fl
Arf^IENT PRESSURE = O.C2 ATTI
RACKGHOUND NOX CONCENTRATION = O.OC0 PPM
BACKGROUND NO2 CONCENTRATION = O.OOO PPM
BACKGROUND OZONE CONCENTRATION = 0.030 PPM
BACKGROUND SO2 CONCENTRATION = O.OOO PPM
BACKGROUND COAPPE IIODE CONCENTRATION = 1O.O UC/M3
DACKGnOimD SULF/VTE CONCENTRATION = 2.9 UGxM3
BACKGROUND NITRATE CONCENTRATION = 0.0 UGxfKJ
n^cKcnouNo VISUAL R/INGK = iB5.e rciLoriETEns
S02 DEPOSITION VELOCITY = 1. 00 CfZXSEC
MOX DEPOSITION VELOCITY = 1.00 CflXSEC
COARSE PARTFCULATE DEPOSITION VELOCITY = 0.10 CttXSEC
SUDFHCRON P ARTICULATE DEPOSITION VELOCITY = 0. 10 CMXSEC
AKROSOL STATISTICS
BACKGROUND PLUME
ACCWnjL.VriON COARSE ACCUTHILATION COARSE
riASS MEDIAN KODE TZODE MODE MODE
RADIUS
NICROrrETERS 0.125 2.7GO 0. 123 0.8!50
GEOMETRIC
STANDARD
DEVIATION 2.200 2.200 1.500* 1.300
PARTICLE
DENSITY
CX( CIt:--*3> 1 . BO0 2 . OO0 1 . OOO 2 . 0OO
-------
GEOMETRY OF USER-SPECIFIED PLUWE-OBSERVER-SUN ORIENTATION
WIND DIRECTION (DEGREES) = 11.3
SirnJLATFON IS FOR 900. HOURS ON 9/21
SOLAR ZENITH ANGLE (DEGREES) =31.0
SOLAR AZIMUTH ANGLE (DECREES) = 129.0
GEOMETRIES FOR LINES-OF-SIGHT THROUGH PLUME PARCELS AT GIVEN DOWNWIND DISTANCES (X)
r\a
10
X (KM)
1.0
2.0
5.0
10.0
20.0
40.0
60.0
80.0
100.0
120.0
140. 0
160.0
180.0
200.0
220.0
240.0
AZIMUTH
19.6
19.7
20.0
20.5
21.8
26. 1
35.7
69.3
,145. 1
169.8
177.7
181.4
183.5
184.9
185.8
186.6
RP
87.8
CO. 8
83.8
78.9
09.0
49.5
30.6
14.9
17.5
34.5
53.6
73.2
93.0
112.8
132.7
152.6
ALPHA
8.3
8.4
8.7
9.2
10.5
14.8
24.4
58.0
46.2
21.5
13.6
9.9
7.8
6.4
5.5
4.7
DETA
0.0
0.0
0.0
0.0
0.0
0.0
0. 1
0.2
0. 1
0. 1
0.0
0.O
0.0
0.0
0.0
0.0
THETA
105.0
104.9
104.7
104.3
103.3
100.0
92.6
66.8
41.5
53.9
59. 1
61.6
63. 1
64. 1
64.8
65.3
BACKGROUND CONDITIONS
ACCUMULATION MODE COARSE PARTICLE MODE PRIMARY PARTICLE MODE
MASS RADIUS SIGMA BSCAT.55/MASS MASS RADIUS SIGMA BSCAT.55/MASS MASS RADIUS SIGMA BSCAT S3/MAR<5
0.1250EOO 0.2200E 01 0.2844E-02 0.2750E01 0.2200C01 0.4469E-03 0.8500EOO 0. 1500E 91 0 1'>42F-O'>
COEFFICIENTS AT 0.55 MICROMETERS , 1./KM ••-•*«=•-, ^
BTARAY =0.9747E-02 BTAAER =0.1282E-01 ABSNO2 =0.0000E 00 BTABAC =0.2115E-01
Exhibit A-2 (continued)
-------
TIHE
( SEC)
0.
10.
20.
no.
40.
5O.
00.
7O.
no.
9O.
100.
110.
110.
no.
i •: o .
MO.
160.
17O.
MO.
190.
200.
2IO.
210.
2-1O.
24-0.
2'-»O.
2no.
270.
2.10.
290.
3OO.
310.
31O.
30O.
340.
3!»0.
360.
370.
380.
390.
400.
410.
41O.
43O.
440 .
4r»o.
440.
470.
4HO.
400.
X DELTA II
( M) ( M)
0.0 0.0
20 . i 31.6
4O . 2 5O . 2
6O.3 65.7
80.5 79.6
100.6 ''92.4
120.7 104.3
140.8 115.6
160.9 126.4
1O1.O 136.7
20 J.I 146.7
22 ? . 3 156.3
24.!. 4 165.6
265.5 174.7
23>.6 183.6
.101.7 192.2
321.8 200.6
342.0 20O.7
362.1 200.7
302.2 200.7
402.3 200.7
422.4 203.7
442.5 200.7
462.6 200.7
402. O 2OO.7
502.9 208.7
523. O 2O8.7
543.1 200.7
563.2 203.7
5,13.3 203.7
6O3.4 208.7
623.6 203.7
643.7 208.7
6G3.8 203.7
633.9 208.7
7O4.O 203.7
724.1 203.7
744.3 203.7
764.4 208.7
734.5 208.7
804.6 208.7
024.7 208.7
344.8 203.7
064.9 203.7
383. 1 308.7
905.2 208.7
925.3 208.7
945.4 203.7
965.5 203.7
9G3.6 208.7
U
( ri/s)
2.01
2.01
2.O1
2.01
2.O1
2.01
2.01
2.O1
2.01
2.01
2.01
2.01
.1.01
1.O1
.1.01
2.O1
2.01
2.O1
2.O1
1.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.O1
2.01
2.01
2.01
1.01
2.01
1.01
2.01
.1.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
INITIAL
W
( ri/S)
17.50
i.oo
o.co
0.71
O.64
0.6O
0.56
O.54
0.51
0.49
0.48
0 . 46
0.45
O.44
0.43
0.42
0.41
0.40
0.39
0.39
0.38
O.37
0.37
0.36
0.36
0.35
0.05
O.34
0.34
0.33
0.03
0.33
0.02
0.32
0.32
0.31
0.31
0.31
O.31
0.30
0.30
0.30
0.30
0.29
0.29
0.29
0.29
0.29
0.20
0.28
PLUME
1600
V
( MXS)
!7.5O
2. .15
o 17
M . 1C
2. 13
2. 11
2. 1O
2.09
2.O8
2.03
2.O7
2.07
2.06
2.06
2.O6
2.OO
2. 05
2.05
2.05
2.05
2.05
2.05
2.05
2.04
2.04
2.04
2.0!-
2.04
2.O4
2.01
2.04
2.O4
2.04
2.O4
2.04
2.04
2.04
2.04
2.04
2.O3
2.03
2.03
2.03
2.03
2.O3
2.03
2.03
2.03
2.03
2.03
2.03
niSE AND
DILUTION
AND NITROGEN DIOXIDE FORMATION
IIW POWEH PLANT
SICMA
(M)
0.0
7.3
11.7
15.3
18.5
21.5
24.3
26.9
29.4
31.8
34. 1
36.3
33.5
40.6
42.7
' 44.7
46.7
48.5
40.5
40.5
43.5
48.0
43.5
48.5
40.5
40.5
40.5
48.5
48.5
40.5
48.5
48.5
48.5 .
48.5
48.0
48.5
48.5
43.5
48.5
48.5
48.5
4d.5
48.5
43.5
48.5
48.5
43.5
40.3
43.5
40.5
TKMP
O2 NO2-NO IIATIO NOX NO NO2T SO2 PART1CULATE
MOL P EOUIL ACTUAL (PPM) (PPM) (PPM) (PPM) U<;/UO
332. 0
029 . 9
298.8
291.O
2.17.6
205.7
104.6
203.8
203.2
202.8
2C2.5
2.Ti'2.3
2J'2. 1
281.9
20 1 . 7
281.6
231.5
201.4
201.4
ID 1.4
201.4
201.4
2-) 1.4
20 1.4
20 1 . 4
101.4
201.4
281.4
281.4
281.4
201.4
201.4
281.4
281.4
201.4
201.4
201.4
281.4
281.4
21)1.4
281.4
231. 4
281.4
281.4
281.4
201.4
201.4
201.4
28 1 . 4
201.4
3.0 5.9E 04 4.2E-03 34O. 166 338.750 1.416 69.579 2. OFF, 04
3.8 7.2E O4 6.2E-03 O23.O92 323.O93 1.999 66 . C-f>O 2.2CE O4
14.5 5.OE O5 O.6E-O3 131.423 I2O.39O 1.033 24., 136 8.4VE OO
17.3 9.OE O5 I.3E-02 69.976 69.100 O.O76 14. 1)13 4.O9E OO
13.4
19. 1
19.5
19.3
19.9
2O. 1
2O. 2
20. 3
20.4
20. 4
20. 5
20.5
20. 5
10.6
20. 6
20.6
20.6
20.6
20. 6
20.6
20.6
2O. 6
20.6
20. 6
20.6
20.6
20. 6
10.6
20. 6
10.6
20. 6
20. 6
20.6
20.6
DO. 6
20.6
20.6
20. 6
20.6
20. 6
20.6
20.6
20.6
20. 6
20.6
20. 6
. I E 06 1 . 6E-O2 47 . 57 1 46 . P,4 1 0 . 73O 9 . 70O 0 . (JOE O3
.2E Qfy 1.8E-02 33.313 34.7O6 O.6I6 7.213 2.47F, 03
.3E 06 I.9E-02 27.713 27. 136 O.528 5.0C.9 I.94EO3
.3EO62.IE-O2 22.5J;3 22.123 O.4-5O 4.0(9 1 . 5GE 03
.4E Ofi 2.2E-O2 13.916 1(3. 5 1O O.4O6 3 . "'i > 1 . 32E O3
.4E 06 2.3E-02 !6. ICO 15.818 0.362 0.-~O'> 1 . ICE O1
.4E O6 1.4E-O2 I4.O7O 13.745 O.OItJ :»..-:7.5 9.C4E 01
.5E 06 2.4E-02 I2.40O 12.105 O.295 2.33. 8.67E02
.5E 06 2.5E-02 11.049 10.779 O.270 2. SO') 7.70E02
.5E OS 2.6E-02 9.937 9.639 O.243 2.03O 6.95E 02
.5E 06 2.6E-02 9.0O7 3.773 O.229 .CM 6 . 3OE O2
.5E 00 2.7E-O2 3.2.10 3.007 O.213 .GCJJ 5.75E 01
.5E 00 2.7E-02 7.340 7. 347 O. 193 .G-M 3.2.*:-EO2
.5E 06 2.7E-02 6.977 6.791 O. MO .41V 4.r^EC1
.5E 06 2.8E-02 6.9C72 6.794 0.109 . 4r. J 4.,'SF. 02
.5E 00 2.QE-02 6.9C7 6.796 O.I91 .419 4.TOEO2
.5E 06 2.3E-02 6.991 6.797 0.194 .430 4.O9EO2
.5E 00 2.9E-02 6.9f3 6.798 0.196 .401 4."?E O.1
.5E OO 2.9E-02 6.99O 6.799 0.199 .431 4.00EO1
.5E O6 3.0E-02 7.OOI 6 . OOO 0.2O1 .402 4.90E 02
.5E O6 3.0E-02 7.0O5 6.R01 0.2O4 .'.OH 4.9OE 02
.5E O6 3.0E-02 7.0O7 O.C01 O.200 .403 4.9OE O2
.5E 00 3.1E-02 7.010 6.P/M 0.209 .404 4.9GE 02
.5E063.1E-02 7.O13 6.O01 O.2H .404 4.91EO2
.5E 00 3.IE-O2 7.015 6.801 0.214 .403 4.91E02
.5E 06 3.2E-02 7.017 6. GO! 0.216 .405 4.91E 02
.5E O6 3.2E-O2 7.O19 6.4J01 O.2I9 .406 4. 9 IE O2
.5E 06 3.3E-02 7.021 6.fiOO O.211 .400 4. 9 IE 02
.3E O6 3.3E-O2 7.0C3 6. BOO O.214 .407 4. 9 1C 02
.5E 06 3.3E-G2 7.025 6.799 O.226 .407 4.91E O2
.5E 06 3.4E-02 7.0?7 6.793 0.213 .407 4.92E O2
.5E 06 3.4E-02 7.01>3 0.797 O.201 . 4O3 4.92E O2
.5E O6 3.4E-02 7.030 6.797 0.203 . 40O 4.91E O2
.5E 06 3.5E-02 7.0'Jl 0.796 0.206 .403 4.9CE 02
.5E 06 3.5E-O2 7.O03 6.793 0.2U8 .409 4.92C O2
.5E 06 3.5E-02 7.004 6.794 0.241 .4^9 4.9r.F. O2
.5E 06 3.6E-02 7.030 0.792 0.243 .409 4.92C C-2
.5E O6 3.6E-02 7.007 0.791 0.246 .409 4.9^M 02
.3E 06 3.7E-02 7.003 6.790 0.248 .440 4.92E 02
.5E O6 3.7E-02 7.039 6.7O9 O.230 .440 4.9I!E O2
.5E 06 3.7E-02 7.040 6.787 0.253 .440 4.92C 02
.5E 06 3.0E-02 7.041 6.780 0.253 .440 4.90E 02
.5E 06 3.CE-02 7.042 6.705 0.258 .440 4.90^ 02
.5E OS 3.0E-O2 7.043 6.783 O.260 .441 4.0HF, O2
.5E 06 3.9E-02 7.044 6.702 0.262 .441 4.9:'F. O1
.5E O6 3.9E-O2 7.O45 6.73O O.265 .441 4.9CE <>2
Exhibit A-2 (continued)
-------
DOI-ftlWIfTD DISTANCE
SIW/A z ?:r>L AI7D CASES COUTH I BITTED
i GOO rn/ POWE.T. PLAJNT
I .o
392.
"0.
29.
O.5000 PERCENT/ITR
O.OOOO PERCErnVHR
DY
ALTITUDE NOX RO2 N03-
(PPH) (PIT!) (PPM)
H+2S
INCREMENT! 3.904 0.105 0.000
TOT/VL AMD! 3.904 0.105 0.000
11+ IS
INCREMENT! 17.497 0.701 0.000
TOTAL AMD! • 17.497 0.701 O.OOO
11
INCREMENT! 20.848 1.J32 0.000
TOTAL AMD! 28.848 1.132 0.000
H-1S
INCREMENT! 17.497 0.701 O.OCO
TOTAL AMD! 17.497 0.701 0.000
II-2S
INCREMENT! 3.904 0.105 0.000
TOTAL AMD! 3.904 0.105 0.000
0
INCREMENT! 0.000 0.000 0.000
TOTAL AITD! 0.000 0.000 0.000
N02/NTOT
(MOLE '/.} (
4.751
4.751
4.0C3
4.008
3.923
3.923
4.008
4. OC8
4.751
4.751
0.000
100.030
NO3-/NTOT
MOLE 7.)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
SO2
( PPII)
O.790
0.790
3.576
3.576
5.007
5.O97
3 . 576
3.576
0 . 793
0.79O
0 . 000
0.000
S04=
(UG/H3)
2.
s!
9.
12.
15.
10.
9.
12.
2.
5.
0.
2.
165
101
701
637
994
930
701
637
165
101
000
936
S94=/STOT
(MOLE T.)
o . or.9
0. 163
0.069
0.090
0.069
0.002
0.069
0.090
0.069
0. 163
0.069
100.000
O3
( PPM)
-0.037
0.001
-0 . 037
0.001
-0.037
0.001
-0.037
0.001
-0.037
O.O01
O.OOO
0 . 033
PRIMARY BSP-TOTAL '.
(UG/M3)
273.000
200 . 022
1223.004
1236.020
20 1 7 . B<'2
2030.778
1223. P01
1236. O17
273 . 005
2o6 . 02 I
O.OOO
I2.9yC>
( 10-4 PI-1)
3 . 454
3 . 5U3
1 5 . 43 1
15.610
25.524
21 . 6'K1
1 ?> . 40 1
1 !> . 6 1 0
3.404
3 . 503
O.OOO
0. 123
BPPS
( %)
1.
4.
1.
2.
1.
o
1.
2 .
1.
4.
1.
65.
N/ns
782
0130
702
;-Q3
702
099
702
oO:)
702
0^0
702
!<22
CUMULATIVE SURFACE DEPOSITION (MOLE FRACTION OF INITIAL FLUX)
S02! 0.0000
no/ft o.oooo
PRIMARY PARTICIPATE! O.OOOO
004! O.OOOO
R03! O.OCOO
''
VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
1600 MW POWER PLAUT
DOWNWIND DISTANCE (KM) = 1.0
PLUME ALTITUDE ( M) = 392.
PLUME-onSERVER DISTANCE (KH) = 87.8
AZINUTII OF LINE-OF-SIGHT = 19.6
ELEVATION ANGLE OF LINE-OF-SICHT = 0.0
SOLAR ZENITH ANCLE = 51.0 AT 900. ON
SIGHT PATH IS THROUGH PLUME CENTER
9/21
THETA ALPHA RP/RVO RV ^REDUCED YCAP L
105.
8. 0.47 87.8 52.53 55
.02 79 . 07
X
0.2972
Y DELYCAP
0.3075
-3. 12
DELL C(550)
-1
.76 -0.0569
DRAT I O
1 . 0220
DELX
-0.0020 -C
DELY E( LUV)
KOOD7 2.600'
E(
4- 2
LAB)
.31 1
Exhibit A-2 (continued)
-------
u>
PLWfE VISUAL EFFECTS FOR HORIZONTAL VIEWS
OF THE PLVTJE OF WHITE, GRAY, AHO f'-LACK OUJECTS
FOR SPECIFIC ODPEKVER-PLUNE AND Ol'.SEUVEU-OBJECT DISTANCES
1600 NW POWER PLANT
DOWNWIND DISTANCE (131) = 1.0
PLW-re-OBSERVER DISTANCE (KFI) = 87.0
AZIMUTH OF LINE-OF-SIGHT = 19.6
ELEVATION ANGLE OF LINE-OF-SICHT = 0.0
SOLAR ZENITH ANGLE = 51.0 AT 900. ON 9/21
Til ETA = 105.
REFLECT RP/RV0 RO/RVO YCAP
1.0 0.47 0.73 55.07
0.3 0.47 0.73 54.90
0.0 O.47 0.73 54.95
VISUAL EFFECTS FOR LINES
1600 WW POWER PLANT
DOWNWIND DISTANCE (KJ1> = 1.0
79.
79.
79.
OF
L
;f
10 0.2974 0
05 0
03 0
.2971 0
. 2970 0
Y
.3076
.3075
.3074
DEL YCAP
-5.
-1.
0.
76
36
53
DELL C(5r
-3.20 -O.OJ
-o.70 -o.o:
0.30 O.OC
SIGHT ALOnG PLUTfE
PLUWF.-ODSERVER DISTANCE
-------
DOWNWIND DISTANCE (KM)
PLUME ALTITUDE (M)
SIGMA Y (M)
SIGMA Z (M)
S02-S04 CONVERSION RATE
NOX-N03 CONVERSION RATE=
CONCENTRATIONS OF AEROSOL AND CASES CONTRIBUTED
1600 MW POWER PLANT
2.0
392.
123.
39.
0.5000 PERCENT/HR
0.0000 PERCENT/HR
BY
_•
CO
CO
ALTITUDE
H>2S
INCREMENT!
TOTAL AMD!
H+1S
INCREMENT!
TOTAL AMD!
H
INCREMENT!
TOTAL AIIB!
H-1S
INCREMENT!
TOTAL AMD!
II-2S
INCREMENT!
TOTAL AMD!
O
INCREMENT!
TOTAL Arroi
NOX
( PPM)
1.868
1.868
8.373
8.373
13.B05
13.803
8.373
8.373
1.868
1.868
0.000
O.OOO
N02
( PPM)
0. 123
0. 125
0.693
0.693
1.462
1.462
0.693
0.695
0. 123
O. 123
0.000
0.000
N03-
(PPM)
0.000
0.000
0.000
0.000
0.000
O.000
e.ooo
0.000
O.OOO
O.OOO
0.000
0.000
N02/NTOT
(MOLE JJ)
6.711
6.711
8.3C3
8.303
10.593
10.593
8.303
8.303
6.711
6.711
O.OOO
98.393
N03-/NTOT
(MOLE %)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
1.607
1.607
S02
( PPM)
0.382
0.302
1.710
1.710
2.020
2.C20
1.710
1.710
0.382
O.332
0.000
0.000
S04=
(UG/T-ra)
2.071
5.007
9.232
12.218
15.303
18.239
9.282
12.218
2.O71
5.007
0.000
2.936
S04=/RTOT
(MOLE '/.)
0. 138
0.333
0. 138
0. 102
0. 138
0. 104
0. 138
0. 102
0. 138
0.333
0 . 367
100. OOO
03
( PPM)
-0.037
0.001
-O.037
0.001
-0.037
0.001
-0.037
0.001
-0.037
O.001
0.000
o.ooa
PRIMARY
(UG/M3) (
130.686
143.622
583.694
598.630
965.643
978.581
585 . 693
598.029
130.086
143.022
0.000
12.936
BSP-TOTAL
10-4 M-l)
1.603
1.811
7.541
7.009
12.432
12.501
7.541
7.609
1 . 083
i.ni i
0.000
O. 123
BSPSN/BS
(F.)
3.501
7.G65
3.501
4.532
3.501
4. 130
3.501
4.532
3.501
7.065
8.007
65. 142
CUMULATIVE SURFACE DEPOSITION (MOLE FRACTION OF INITIAL FLUX)
S02! O.OOOO
NOX! 0.0000
PRIMARY PARTICULATE! 0.0000
SO4! 0.0000
N03! 0.0000
Exhiblit A-2 (continued)
-------
VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
1600 MW POWER PLANT
DOWNWIND DISTANCE CIO1!) = 2.0
PLUME ALTITUDE
-------
or /^rw^oi. Arm CASES COUTHIJVJTF.D nv
1000 riw POWKN PLANT
DOWNWIND DT.^TANCR C-KPW = 100.0
PM/IW ALTITUDE fNt" = 0'>2.
SIC;PIA y ( Pi) = 3015.
SICP'A 7. (Pf) = IIJ7.
JS02-S04 CONVERSION RATE= O.5O35 PERCF.NTXim
NOX-NO3 CONVERSION II ATE = O.O24O PERCKNTXlIU
ALTITUDE NOX NO2 NO3- NO2/HTOT
(PPM) U'Pfl) (PPM) (MOLE 75) (
JI+2S
~i
U>
tn
iNcitErnr.NT»
TOTAL AMD!
11+ IS
INCREMENT!
TOTAL AMU!
II
INCREMENT!
TOTAL AMFJ!
H-1S
1NCRF.METIT!
TOTAL AMI1!
I1-2S
INCREMENT!
TOTAL AMU!
O
INCREMENT!
TOTAL AMR!
0.016
O.O16
.
0.072
0.072
0. 119
0. 119
O.O73
0 . 073
O.O27
O.027
O . O26
0 . 026
0.011
O.OI I
0.030
o.o::a
o . or»n
o.ooii
o . onn
o . r,;;a
O.OI7
0.017
O.OI7
O.017
O.OOO
O . O03
O.OOO
0 . 000
0.000
0 . 000
0.000
0.000
o.ooo
o . ooo
o.ooo
0.000
6n.«M"'2
6JI. 963
52.046
5 2. i 5-10
4H. 73*1
4
0.601
O. (.<>!
O.OGll
0 . 05»
o.o;n
0 . 03 1
0.05O
0.0511
o . 3a i
o.uai
O. 4^ 1
o . •:•': i
P02
(PIT!)
O . OO3
O . O03
O.O14
0,014
O.O23
0 . 023
O.OI4
0 . 0 1 4
0 . 005
O.OO5
O.005
0 . 005
(UO/M3)
o.ir:o
3. 11 16
3 . n3
6 . «:i i
6 . 400
9 . 336
3.924
0 . (K>0
1 . 457
4.302
1 . 405
4 . 3V 1
RO4-/PTOT
6 .O.'IO
24 .114
6 . 727
I I.2:J9
6 . 720
9.51 0
6 . 727
1 1 . 106
6 . TOO
ia.oir>
6.709
ia. 170
O3
( PIMI)
-O.OIO
O - O2H
-O.O24
0 . O 1 4
-O.O26
O . O 1 2
-O.024
0.014
-0.015
O.O23
-0.017
O.O21
PRIMARY n<*P-TOTAL P.^r^n/P,1
( UC/W3) f IO-4 M- I ) ( r:t
1 .
14.
5 .
17.
(1.
2 1
5.
fa.
i ,
14.
1 .
14.
12'1 0.1*50 /"-.22*
or/9 '>. «•."'' (•'• ' l'';
nn 1 r) . 17'l f,',\ . f',7ri
Of»7 '•.'!'>! ( '• •' \.\
2'»6 o.ri'j'") f.n.H/'fj
2::^ O.-.. CJ <•<.:">">
oni o. (7'i r,r».n^2
oi7 o.noj fi*".-.']')
(169 '', . <)?t~ f,< f.'"'i
.','.'>4 ') . *')•'. f><- . '. ". ;
«39 ').')">'• <><".. ' 1*7
7?:; '/. i"LN «".<•.[•'/:
CliriDLATlVE SURFACE DEPOSITION (KOLE FRACTION OF INITIAL FLUX)
SO21 0.OOOO
noxi o.oooo
PRIMARY PARTICULAR! O.OOOO
PO4! O.OOOO
HO3! O.OOOO
Exhibit A-3. Printed results of observer-based PLUVUE calculations for observed points at 100 and 120 km from the
emissions source.
-------
VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
1000 MW rovER PLANT
DOWNWIND DISTANCE (KM) = 1OO.O
PLUME ALTITUDE < M) = 092.
FLUME-OBSERVER DISTANCE (KM) = 17.5
AZIMUTH OF LINE-OF-SIGHT = 145.1
ELEVATION ANCLE OF LINE-OF-SIGHT =
SOLAR ZEN ITFI ANGLE,* 51.0 AT 900.
SIGHT PATH IS THROUGH PLUME CENTER
THETA ALPHA RP/RVO RV RHEDUCED
42.
46. 0.09 165.0 10.64
0. 1
ON 9/2 1
YC4P
104.22
L
101.61
X
0.3461
Y DELYCAP DELL C(550) BRATIO DELX
0.3520 -9.77 -3.06 -0.0044 O.rr376 0.0224
DELY E(LUV) F.(LAH)
jn fV>.49f*'» 'r'.'V.i
(A)
en
PLUTIE VISUAL EFFECTS FOR HORIZONTAL VIEWS
OF THE PLurra OF WHITE, GRAY. AND CLACK OBJECTS
FOR SPECIFIC OBSERVER-PLUME AND OBSERVER-OBJECT DISTANCES
1600 MW POWER PLANT
DOWNWIND DISTANCE (KM) = 100.0
PLWTE-OHSERVER DISTANCE (KM) = 17.5
AZIMUTH OF LINE-OF-SIGHT = 145.1
ELEVATION ANGLE OF LINE-OF-SIGIIT = 0.1
SOLAR ZENITH ANGLE = 51.O AT 900. OH 9/21
THETA = 42.
Y DELYCAP
0.3520 -9.86
0.3310 -O.93
.ECT
1.0
0.3
0.0
RP/RVO
O.09
0.09
0.09
RO/RV0
O.O7
O.O7
0.07
YCAP
1O4.50
1O2.76
102.02
L
101.71
101. OS
100.77
X
0.3472
0.3444
0 . 04G2
DELL C(550)
-3.59 -0.0Q45
-0.53 -3.16 -O.O754
BRATIO
0.7662
0.7520
0.7453
0
0
0
DELX
.0221
. 0223
.0232
0.
O.
0.
DELY
0132
O139
0193
E(
20.
20.
21.
LUV) E(LAB>
1B32 I2.r>y«3
O979 13.1602
2141 13.G026
VISUAL EFFECTS FOR LIITES OF SIGHT ALONG PLUME
1600 MW POWER PLANT
DOWNWIND DISTANCE (KTI) = 100.0
PLUPTE-OBSERVER DISTANCE (KM) = 17.5
AZIMUTH OF LINE-OF-SICHT = 145.1
ELEVATION ANGLE OF LINE-OF-SIGHT = O.I
SOLAR ZENITH ANGLE = 51.0 AT 900. ON 9/21
THETA LENGTH RP/RV0 RV JJREDUCED YCAP L X Y DELYCAP
42.
FOR SKY BACKGROUND:
10. 0.09 165.O 10.3O 105.25 101.99 0.3459 0.3523 -9.09
FOR WHITE BACKGROUND:
!0. 0.09 165.0 10.39 105.36 102.03 0.3466 0.3522 -9.11
FOR GRAY BACKGROUND:
10. O.09 165.5 10.57 103.55 101.36 0.3437 0.3512 -0.17
FOR BLACK BACKGROUND:
10. O.09 165.3 10.64 102.78 1O1.O6 0.3425 0.3507 -7.77
DELL C(550) BRATIO
DELX
DELY E(LUV) E(LAB)
-3.30 -0.0772 0.7572 O.0216 0.0104 19.9524 12.717
-3.30 -0.0769 0.7631 0.0214 0.01G3 19.7074 12.649
-3.00 -0.0705 0.7407 0.0222 O.0191 20.5127 12.973
-2.87 -0.0677 0.7420 0.0225 O.0194 2O.O36O 10.12O
A-3 I.continued")
-------
CONCENTRATIONS OF AEROSOL AND GASES CONTRIBUTED BY
1600 MW POWER PLANT
DOWNWIND DISTANCE (KTD =/ 120.0
PLUTIF. ALTITUDE (M) = 392.
SIGMA Y = 3490.
SIGMA Z (M) „ =195.
SO2-S04 CONVERSION RATE= 0.5048 PETlCENT/Tm
NOX-N03 CONVERSION RATE= 0.0339 PERCENT/IIR
ALTITUDE
H+2S
INCREMENT!
TOTAL AJflJ!
H-H S
INCREMENT!
TOTAL AttB!
II
INCREMENT!
TOTAL Alffi!
II- IS
INCREMENT!
TOTAL AMD!
11-2S
INCREMENT!
TOTAL AHD!
0
INCREMENT!
TOTAL AITD!
NOX
( PPM)
0.013
0.013
0.059
0.059
O.O98
0.090
0.060
0.060
0.026
0.026
0.026
O.O26
TI02
( PPII)
0.009
0.009
0.033
0.033
0.031
O.O31
O.O34
0.034
0.017
0.017
O.O17
O.O17
N03-
(PPM)
0.000
O.OOO
0.000
O.OOO
O.OOO
0.000
O.OOO
0.000
O.OOO
0.000
0.000
O.OOO
IT02/RTOT
(T20LE «)
69.931
69.931
56.353
56.354
51.034
5 1 . 054
56 . 043
56.043
64.655
64.656
63 . 037
00.037
N03-/NTOT
(KOLE 7.)
0.041
0.041
0.090
O.09O
0.046
0.046
0 . 0"-0
o.oua
0.409
O.409
O.G93
0.003
S02
( PPM)
0.002
O.O02
0.011
0.011
O.O1B
O.O1O
0.011
O.OJ1
0.005
O.O05
O.O05
0.005
S04=
(ucxrtn)
0.009
3.305
3 . 024
6.760
6.299
9.235
fj f *O*"*
6 . 023
1.705
4 . 6<-2
1 . 7O3
4.641
S04=/STOT
(HOLE ;:)
O. J60
23.010
O.O22
10.31.3
O.O12
1 1 . G?.3
O.02I
13.269
G.O33
19.003
O . Oil
19. ;'-O7
03
( ppro
-0 . OO3
o.oao
-0.022
0.016
-0.025
0.013
-0.022
O.OI6
-0.015
O.OC3
-O.O17
O . O'J I
PRIrtARV
(UG/TI3) (
0.92O
10.053
4. 153
17.039
6 . 349
19 . 7'33
4.227
• 17. 160
i . mn
14. 7T4
1 . 0?, 1
14.774
BSP-TOTAL
10-4 ri-D
0,030
O . ' 04
O . | f i f)
O.l'.G '
O.264
O. ;j">2
n . t fi n
O . CO 1
n . 07 i
O. ~?">
o . 07 t
o. ."••;•)
CUMULATIVE SURFACE DEPOSITION (KOLE FRACTION OF INITIAL FLUX)
SO2f O.OOOO
NOXf O.COGO
PRIMARY PARTICULATE1 O.OOOO
S04J O.OCOO
N03T 0.0000
Exhibit A-3 (continued)
-------
VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
1600 HW POWER PLANT
DOWNWIND DISTANCE (KM) = 120.O
PLUNF, ALTITUDE (PI) = 392.
PLUMT5-ODSEHVER DISTANCE (KTI) = 34.5
AZIMUTH OF LINE-OF-SICHT = 169.8
ELEVATION ANGLE OF LINE-OF-SIGHT = 0.1
SOLAR ZENITH ANGLE = 51.0 AT 900. ON 9/21
SIGHT PATH IS THROUGH PLUME CENTER
THETA ALPHA RP/RVO RV JJREDUCED YCAP L X
54.
21. 0.19 141.4 23.59 78.97 91.23 0.3307 0.
PLUME VISUAL EFFECTS FOR HORIZONTAL VIEWS
OF THE PLUME OF WHITE. GRAY, ADD CLACK OBJECTS
Y DCLYCAP DELL C(5oO) BTATIO DELX DELY E(L
3340 -8.03 -3.91 -0.1122 O.r/573 0.0159 0.0073 10.
FOR SPECIFIC OCSERVER-PLUME AND OHSERVER-OflJECT DISTANCES
1600 NW POWER PLANT
DOWNWIND DISTANCE ( KM) = 120.0
PLUME-OBSERVER DISTANCE (KM) = 34.5
AZIMUTH OF LINE-OF-SIGHT = 169.0
ELEVATION ANCLE OF LINE-OF-S1GUT = 0.1
SOLAR ZENITH ANCLE = 51.0 AT 900. ON 9/21
THETA = 54.
-* REFLECT RP/RVO RO/RVO YCAP L X Y DELYCAP
GO 1.0 0.19 0.45 79. 9O 91.69 0.3336 0.3347 -10.26
O.3 0.19 0.45 75.16 09.48 O.H242 O.3299 -2.O5
0.0 0.19 0.45 73.10 83.50 0.3190 0.3277 0.33
VISUAL EFFECTS FOR LINES OF SIGHT ALONG PLUME
1600 MW POWER PLANT
DOWNWIND DISTANCE (KTI) = 120.0
PLUME-ODSERVER DISTANCE (KM) = 34.5
AZIMUTH OF LINE-OF-SIGHT = 169.0
ELEVATION ANCLE OF LINE-OF-SIGHT = 0. 1
SOLAR ZENITH ANGLE = 51.0 AT 900. ON 9/21
THETA LENGTH RP/RVO RV 8KEUUCED YCAP L X
54.
FOR SKY BACKGROUND:
24. O.19 142.9 22.78 79.15 91.31 0.3337 0.
FOR WHITE BACKGROUND:
24. 0.19 143.5 22.45 80.21 91.79 0.3364 0.
FOR GRAY BACKGROUND:
24. 0.19 139.5 24.61 75.13 C9.47 0.3263 0.
FOR BLACK BACKGROUND:
24. 0.19 137.5 25.68 72.93 GO. 45 0.3224 0.
DELL C(550) BRATIO DELX DELY E(LUV) E(LAB)
-4.42-0.1220 0.9031 0.0133 0.0061 11.0061 7.5578
-1.02 -0.044O 0.7002 O.OI3.T O.O122 1H.IS71 3. .".104
0.10 -0.0044 0.739O O.0220 O.O154 17.4343 10. in'12
Y DELYCAP DELL C(550) BRATIO DELX DELY EH
3373 -9.09 -3.96 -0.1105 0.8307 0.0179 0.0113 13
3386 -10.49 -4.50-0.1213 0.3663 0.0153 0.0097 13
3337 -3.00 -1.33 -0.0445 0.7662 0.0213 0.015O 17
3314 0.21 0.10-0.0033 0.7037 0.0245 0.0192 19,
Exhibit A-3 {.concluded)
-------
COnCENTRATIOns OF AEr/>?9L ATO CASES CONTRIBUTED BY
i. 1600 nw POWER PLANT
DOVNWI1TO DISTANCE'(KM) = 220.0
PLUrTE ALTITUDE (M) = 392.
SIGMA Y (M) = 561O.
SI GHA Z (Tl) = 222.
S02-SO4 CONVERSION IIATE= " 6.5127 PERCENT/IIR
NOX-N03 CONVERSION RATE= 0.0090 PERCENT/HR
,,_.
CO
UD
ALTITUDE
II+2S
INCREMENT!
TOTAL AIID!
11+ IS
INCREMENT!
TOTAL AMD!
H
INCREMENT!
TOTAL AMD!
II- IS
INCREMENT!
TOTAL AMD!
H-2S
INCREMENT!
TOTAL AMD!
0
INCREMENT!
TOTAL ATTO!
NOJC
( PPM)
*0.007
0.007
0.032
0.032
0.033
0.053
0.035
0.035
0.022
0.022
0.020
• O . 020
r;o2
( PPM)
0.035
O.003
0.021
0.021
0.033
O.033
0.022
0.022
0.015
0.015
0.013
0.013
N03-
( PPM)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
0.002
0.002
N02/NTOT
(MOLE JO
70 . 020
70.021
64.940
64.940
61. 167
61. 167
64.209
64.209
65.324
65.324
59.262
59 . 262
N03-/ITTOT
(HOLE 55)
2.706
2.700
0.366
0.366
0. 190
0. 190
0.341
0.341
1. 178
1. 170
10.799
1O.799
S02
( PPM)
0.001
0.001
0.006
0.006
0.009
0.009
0.006
0.006
0.004
0.004
0.004
0.004
P04=
(UG/M3)
O.GC'9
3. COS
3.714
6.650
6. 120
9.056
3.960
6.904
2.631
5 . 567
2.923
5.RG9
SO4=X^'rOT
(KOLE ::>
14.6C4
42.902
14.23.T
22.0'4-i
1 4 . 223
19.70.»
14.254
22.435
14.417
26 . 279
16.021
27.660
03
( PPM)
-0.005
0 . 033
-0.015
0.023
-O.018
O.02O
-O.016
O.O22
-O.OI3
0 . 025
-0.013
0.025
PRIMARY
( UC/M3 ) (
0.515
13.451
2.269
15.205
3 . 7<"-3
16.6G4
2.425
15.361
1 .590
14.526
1 .590
14.520
BSP-TOTAL
10-4 M-l)
0.031
0. 159
0. 1T4
O. 2'>2
0.221
0 . IX-9
O. 143
0.271
0.095
0 . 221
O. 103
0 . 23 !
BSPF
( ;»>
70.
f>7.
7."..
72 .
7p,
7;?.
7C,.
72.
70.
7J .
no.
72.
:n/p?
421
TO
^r/'.
(XO
001
4 )H
120
ov«
r^i
1 1 ",
CUMULATIVE SURFACE DEPOSITION (MOLE FRACTION OF INITIAL FLUX)
S02! 0.0000
BOX! 0.0000
PRIMARY PARTICULATE! 0.0OOO
S04! 0.0000
1103! 0.0000
Exhibit A-4. The results of the observer-based PLUVUE run at points 220 and 240 km from the emissions source. The
tables of secondary aerosol conversion are printed after the optics data for the last observed point.
The last table verifies the output for plotting.
-------
VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
1600 MW POWER PLANT
DOWNWIND DISTANCE (KM) = 220.O
PLUPTE ALTITUDE (M) = 392.
PLUME-OBSERVER DISTANCE (KM) = 132.7
AZIMUTH OF LINE-OF.rSIGHT = 185.8
ELEVATION ANGLE OF LINE-OF-SIGHT =
SOLAR ZENITH ANGLE = 51.0 AT 900
SIGHT PATH IS THROUGH PLUME CENTER
THETA ALPHA RP/RVO RV ^REDUCED
65.
5. 0.72 106.8 42.23
OF THE PLUME OF WHITE, CRAY, AND BLACK OBJECTS
FOR SPECIFIC ODSERVER-PLUME AND ODSERVER-OHJECT DISTANCES
1600 MW POWER PLANT
DOWNWIND DISTANCE (101) = 220.0
PLUME-ODSERVER DISTANCE (KM) = 132.7
AZIMUTH OF LINE-OF-SIGHT = 185.8
ELEVATION ANGLE OF LINE-OF-SICHT =0.0 f
SOLAR ZENITH ANGLE = 51.0 AT 900. ON 9/21
THETA s 65.
REFLECT RP/RV0 RO/RVO YCAP L X Y DELYCAP DELL C(550) BRATIO DELX
BACKGROUND OBJECT IS BETWEEN OBSERVER AND CENTER OF PLUME AND CALCULATION IS STOPPED.
0.0
ON 9X21
YCAP
73.06
L X Y DELYCAP DELL C(550) BRATIO DELX DELY E(LUV> E(LAB)
88.49 0.3115 0.3202 -0.99 -0.47 -0.0193 0.9566 0.0010 -0.0013 1.5864 1.206
DELY E(LW) E(LAB)
VISUAL EFFECTS FOR LINES OF SIGHT ALONG PLUME
1600 MW POWER PLANT
DOWNWIND DISTANCE (KM) = 220.0
PLUME-OBSERVER DISTANCE (KPI) = 132.7
AZINUTII OF LINE-OF-SICHT = 185.8
ELEVATION ANGLE OF LINE-OF-SIGHT
SOLAR ZENITH ANGLE = 51.0
THETA LENGTH RP/RV0 RV %l
65.
FOR SKY BACKGROUND:
148. 0.72 59.3
FOR WHITE BACKGROUND:
1. 0.72 183.8
FOR GRAY BACKGROUND:
1. 0.72 183.5
FOR BLACK BACKGROUND:
\. e.72 183.2
rr ••
T
>UC!
67
0
0
e
3
900.
ED
.95
.63
.83
.96
0.0
ON 9/21
YCAP
70.
81.
61.
53.
60
65
82
32
87.
92.
82.
TB.
L
30
43
83
09
0.
0.
0.
0.
X
3148
3234
3O03
2865
Y DELYCAP
0.
0.
0.
0.
3209
3300
3109
2996
-3
-0
0
e
.74
.40
. 17
.42
DELL C(550) BRATIO
DELX
DELY E(LUV) E(LAB)
-1.79 -0.0565 0.9799 0.0027 -0.0008 3.2402 2.475
-0.18-0.0O51 1.0007 0.0002 0.0000 0.2536 0.206
0.09 0.0O27 0.9934 0.0003 0.00O3 O.2337 0.156
0.25 0.0078 0.9888 O.0005 0.O005 0.4062 0.917
-------
C0WCEWTRATIOSS OF AEROSOL AWD GASES CONTRIBUTED BY
1600 MW POWER PLANT
DOWNWIND DISTANCE (KM) = 240.0
PLUME ALTITUDE (M) = 392.
SIGMA Y (M) = 5997.
SIGMA Z
-------
PLUME VISUAL EFFECTS FOR HORIZONTAL VIEWS
OF THE PLUME OF WHITE, CRAY, AND BLACK OBJECTS
FOR SPECIFIC OBSERVER-PLUME AND OBSERVER-OBJECT DISTANCES
1600 NW POWER PLANT
DOWNWIND DISTANCE (KM) = 240.0
PLUME-OBSERVER DISTANCE (KM) = 152.6
AZIMUTH OF LINE-OF-SICHT = 186.6
ELEVATION ANCLE OF tlNE-OF-SIGRT =
SOLAR ZENITH ANGLE =
THETA = 65.
REFLECT RP/RVO ROXRVO
0.0
51.0 AT 900. ON 9/21
YCAP
J{
Y DELYCAP
DELL C(550) BRATIO
DELX
DELY E(LUV) E(LAB)
BACKGROUND OBJECT IS BETWEEN OBSERVER AND CENTER OF PLUME AND CALCULATION IS STOPPED.
r\>
VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
16O0 MW POWER PLANT
DOWNWIND DISTANCE (KM) = 240.0
PLUME ALTITUDE (M) = 392.
PLUME-OBSERVER DISTANCE (KM) = 152.6
AZIMUTH OF LINE-OF-SICHT = 186.6
ELEVATION ANGLE OF LINE-OF-SIGUT =0.0
SOLAR ZENITH ANGLE = 51.0 AT 900. ON 9X21
SIGHT PATH IS THROUGH PLUME CENTER
THETA ALPHA RPXRV0 RV ^REDUCED YCAP L X
65.
5. 0.83 109.0 41.06
Y DELYCAP
73.03 38.48 0.3115 0.3203 -0.52
DELL C(550) BRATIO DELX DELY E(LUV) E(LAB)
-0.25 -0.0120 0.9549 6.0010 -O.t)008 1.2722 0.918
VISUAL EFFECTS FOR LINES OF SIGHT ALONG PLUME
1600 MW POWER PLANT
DOWNWIND DISTANCE (KM) = 240.0
PLUME-OBSERVER DISTANCE (KM) = 152.6
AZIMUTH OF LINE-OF-SIGHT = 186.6
ELEVATION ANCLE OF LINE-OF-SIGHT = 0.0
SOLAR ZENITH ANGLE = 51.0 AT 900. ON 9X21
THETA LENGTH RPXRV0 RV ^REDUCED YCAP L X Y DELYCAP
65.
FOR SKY BACKGROUND:
182. 0.33 62.2 66.39 70.49 87.25 0.3143 0.3207 -3.35
FOR WHITE BACKGROUND:
0. O.83 185.0 0.00 81.51 92.36 0.3232 0.3298 -O.00
FOR GRAY BACKGROUND:
O. 0.83 185.0 0.00 61.59 82.71 0.3001 0.3108 -0.00
FOR BLACK BACKGROUND:
O. O.83 185.0 O.OO 53.O6 77.93 0.2864 0.2994 0.00
DELL C(550) BRATIO
DELX
DELY E(LUV) E(LAB)
-1.61 -0.0511 0.9042 0.0023 -0.0009 2.8692 2.221
0.00 -0.0000 1.0000 0.0000 -0.0000 0.0000 0.000
0.00 -0.0000 1.0000 0.0000 0.0000 0.0000 0.000
O.OO -0.0000 1.OO00 O.0000 O.OOOO O.OOOO O.OOrt
Exhibit A-4 (continued)
-------
HISTORY OF PLUTTE PARCEL AT DOWNWIND DISTANCE = 1.0 KM
PARCEL LOCAL S02-TO-SO4= CON VERSION RATE (JS/ITR)
•'•' ACE TIME
(IIR) II+2S II+1S H H-1S II-2S 0
O.I 900 0.50 0.50 0.50 0.50 0.50 0.50
NOX-TO-HNO3 CONVERSION RATE
n>28
0.00
H+1S
0.00
H
0.00
IT-IS
0.00
H-2S
0.00
0
0.00
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE => 2.0 KM
PARCEL LOCAL SO2-TO-SO4= CONVERSION RATE (TJ/HR)
AGE TIME
(IIR)
0. 1
0.3
051
900
H+2S
0.50
0.50
n>lJ9 H H-1S H-2S 0
0.50 0.50 0.50 0.50 0.50
0.50 O.50 0.50 0.50 2.16
NOX-TO-HN03 CONVERSION RATE (J?/HR)
H+2S H+1S H H-1S
0.00 0.00 0.00 0.00
0.00 0.00 0.00 O.OO
H-2S 0
0.00 0.00
0.00 11.64
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE = 3.0 KM
SO2-TO-SO4= CONVERSION RATE
CO
PARCEL .
AGE
(HID
0. 1
0.3
0.7
LOCAL
TIME
026
G35
900
n+2s
0.50
0.50
0.50
m-is
0.50
0.50
0.50
H
0.50
0.50
0.50
H-1S
0.50
0.50
0.50
H-2S
0.50
0.50
0.50
0
0.50
2.05
2. 16
NOX-TO-RN03 CONVERSION RATE (JS/HR)
n+2s
o
0
o
.00
.00
.00
n+is
0
0
0
.00
.00
.00
H
0.
0.
0.
n-js
00
00
00
0.
0.
0.
00
00
00
H-2S
0.
0.
0.
oo
00
00
0
0.
10.
1 1 .
00
O3
64
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE = 10.0 KM
S02-TO-SO4= CONVERSION RATE (3/HR)
PARCEL
AGE
(HR)
0. 1
0.3
0.7
1.4
LOCAL
TIME
745
753
010
900
H+2S
0.50
0.50
0.50
0.50
n+is
0.50
0.50
0.50
0.50
H
0.50
0.50
0.50
0.50
H-1S
0.50
0.50
0.50
0.50
H-2S
0.50
0.50
0.50
0.50
0
0.50
1.70
1.02
2. 16
NOX-TO-HNO3 CONVERSION RATE
H+2S
0.00
0.00
0.00
n+is
0.00
0.00
0.00
H
0.00
0.00
0.00
H-1S
0.00
0.00
0.00
H-2S
0.00
0.00
O.OO
0
0.00
O.40
9.21
O.00 0.00 0.00 0.00 0.00 11.64
Exhibit A-4 (continued)
-------
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE = 20.0 KM
PARCEL
.."AGE
um>
o. i
0.3
0.7
1.4
2.8
LOCAL
TINE
622
630
655
737
900
S«2-TO-SO4= CONVERSION RATE
n+2S
O.50
0.50
0.50
0.50
0.50
n+is
0.50
0.5O
0.50
0.50
0.5O
H
0.50
0.50
O.5O
O.50
0.50
n-is
0.50
0.50
O.5O
0.50
0.50
H-2S
0.50
0.50
0.50
0.50
0.50
O
0.50
1. t.'J
1.26
1.5.1
2. 16
N0X-TO-HNO3 CONVERSION RATE
IH-2S
0.
0.
O.
0.
0.
00
00
00
oo
01
U> IS
o.
0.
0.
0.
0.
oo
00
oo
00
oo
H
0.
0.
o.
0.
o.
H-1S
oo
oo
00
00
01
o.
o.
o.
0.
o.
00
00
00
00
00
H-2S
o
0
o
0
o
.00
.00
.00
.00
.01
0
0.
4.
5.
7.
11.
00
73
34
50
G*
HISTORY OF PLUME PARCEL AT ttOWNWIND DISTANCE = 40.0 KM
SC2-TO-SO4= CONVERSION RATE (rS
PARCEL
ACE
0.52
n+is
0.50
O.GO
0.50
0.50
0.5O
0.50
0.50
H
0.50
0.50
0.50
0.50
0.50
0.50
0.50
n-is
0.50
0.50
0.50
0.50
0.50
0.50
0.50
H-2S
0.50
0.50
0.50
0.50
0.50
0.50
0.51
0
0,50
O.50
0.50
0.50
o.no
0.52
0.50
NOX-TO-HN03 CONVERSION RATE (3/HR)
n+2s
0.00
0.00
0.00
o.oo
0.00
0.00
0. H
n>is
O.OO
O.OO
0.00
0.00
O.OO
0.00
0.02
n
0.00
0.00
0.00
0.00
0.00
0.00
0.01
H-1S
0.00
O.OO
0.00
0.00
O.OO
0.00
0.02
H-2S
O.OO
0.00
O.OO
O.OO
O.OO
0.00
0. 10
0
0.00
O.OO
0.00
O.OO
o.oo
0. 1 1
0.54
Exhibit A-4 (continued)
-------
PAir-CEL
ACE
(IIR)
0. 1
. 0.3
0.7
1.4
2.8
5.5
8.3
11.0
LOCAL
TIME
2205
2210
2230
2020
42
320
614
900
r DOWNWIND DISTANCE = ee.o KM
S02-'J
H+2S
0.00
0.00
0.00
0.50
0.50
0.50
0.50
0.03
0-SO4=
THIS
0.50
0.50
0.5O
0.50
0.50
0.50
0.50
0.50
CONVE
n
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
,nsiow
n-is
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
IXATE (
n-2S
o.oo
0.50
0.50
0.50
0.50
0.50
0.50
0.52
%/rm)
o
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.54
FOX-TO- imoo conVERSION BATE
n-»-2s
o.oo
0.00
0.00
0.00
0.00
0.00
o.oo
0.21
n+is
o.oo
0.00
0.00
0.00
o.oo
0.00
o.oo
0 . 00
n
0.00
0.00
0.00
0.00
0.00
o.oo
0.00
0.02
H-1S
o.oo
0.00
o.oo
0.00
0.00
0.00
o.o^
0.00
H-2S
o.oo
0.00
0.00
0.00
0.00
0.00
0.00
0. 17
o
o.oo
o.oo
o.oo
0.00
o.oo
o.oo
O.O1
0 . 23
HISTORY OF PLUTTE PARCEL AT DOW WIND DISTANCE = 100.0 101
in
PARCEL
AGE
LOCAL
TIME
(IIR)
0.
0.
O.
1.
2.
5.
8.
1 1.
13.
HISTORY
1
3
7
4
8
5
3
0
8
OF
PARCEL
AGE
1919
1928
1952
2034
2157
42
323
614
900
PLUME PARCEL
LOCAL
TIME
(IIR)
0
0
0
1
2
5
8
11
13
16
. 1
.3
.7
.4
.8
.5
.3
.0
.8
.6
1604
1642
1707
1743
191 1
2157
42
328
614
900
S02-T0-S04=
fi>2S
0.
0.
0.
0.
0.
0.
O.
0.
0.
50
50
50
50
50
50
00
50
55
n+is
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.51
CONVERSION
n
o.
0.
0.
0.
0.
0.
0.
0.
0.
50
50
50
50
50
50
50
50
00
II- IS
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.51
RATE (T.
IT-2S
0.50
0.50
0.50
0.50
0.00
0.50
0.50
0.00
O.OO
;/n
0
0.
0.
0.
0.
0.
o.
o.
0.
0.
R)
50
50
50
CO
CO
50
00
00
00
AT DOWNW7ND DISTANCE = 120.0 KM
SC2-TO-S04=
R+2S
0
0
0
0
0
0
0
0
0
0
.50
.00
.00
.00
.00
.00
.CO
.50
.00
.06
R+13
0.50
0.50
0.00
O.5O
0.50
0.50
0.50
0.50
0.50
0.51
CONVL'
n
o
0
0
0
0
0
0
0
0
0
.50
.50
.50
.50
.50
.50
.50
.50
.50
.50
•JISTON
n-is
o.oo
0.50
0.50
0.50
0.50
0.50
O.50
0.50
0.50
0.51
RATE
0
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
r.o
00
50
00
00
00
TO
03
TTOX-TO-HN03 CONVERSION RATE (S/RTl)
H+2S
0.00
0.00
o.oo
0.00
0.00
0.00
o.oo
0.00
0.02
n+is
0.00
0.00
0.00
o.oo
0.00
0.00
0.00
0.00
O.O4
R
0.00
0.00
0.00
0.00
0.00
0.00
o.oo
O.O')
O.f>?
n-is
0.00
0.00
o.oo
o.oo
0.00
0.00
o.oo
o.oo
0.04
H-2S
0.00
0.00
o.oo
0.00
0.00
0.00
0.00
0.00
0.21
0
0.00
0.00
o.oo
o.oo
o.oo
0.00
o.oo
O.01
0 . 20
NOX-TO-ITNO3 CONVERSION RATE (5S/RR)
II+2S
0.00
0.00
0.00
0.00
0.00
0.00
o.oo
o.oo
0.01
0.40
11+ IS
o.oo
0.00
o.oo
0.00
0.00
0.00
o.oo
0.00
0.00
0.06
II
0.00
0.00
o.oo
0.00
0.00
0.00
o.oo
0.00
o.oo
0.00
n-is
o.oo
0.00
0.00
0.00
0.00
o.oo
0.00
0.00
0.00
0.06
n-2s
o.oo
0.00
o.oo
o.oo
o.oo
0.00
o.oo
0.00
0.00
0.22
0
o.oo
0.00
o.oo
o.oo
o.oo
o.oo
o.oo
0.00
0.01
0.22
Exhibit A-4 (continued)
-------
en
HISTORY OF
PARCEL
ACE
(ITR)
0V I
0.3
0.7
1.4
2.8
3.5
3.3
11.0
13.8
16.6
19.3
HISTORY OF
PARCEL
AGE
(HR)
0. 1
O.3
0.7
1.4
2.8
5.5
8.3
11.0
13.3
16.6
10.3
22. 1
HISTORY OF
PARCEL
ACE
(HR)
0. 1
0.3
0.7
1.4
2.8
5.5
8.3
11.0
13.8
16.6
19.3
22. 1
24.9
PLUTTF. PARCEL
LOCAL
TiriE
1348
1356
K-21
15G2
1625
191 1
2137
42
328
614
900
PLUT7E PARCEL
LOCAL
TIME
1102
1110
1135
1217
1340
1625
1011
2157
42
320
614
900
PLDTTE PARCEL
LOCAL
TIME
016
Q25
C50
931
1054
1340
1625
1911
2157
42
32O
614
000
AT DOWNWIND DISTANCE = 140.0 KM
S02-TO-S04* CONVERSION RATE
NOX-TO-HNO3 CONVERSION RATE
D>2S
0.50
O.50
0.50
0.50
0.50
0.50
0.50
O.5O
0.50
0.50
0.58
H+1S
0.50
0.50
0.50
0.5O
0.50
0.5O
0.50
0.50
0.50
0.5O
0.51
H
0.50
0.50
0.50
0.50
O.50
0.50
0.50
0.50
0.50
0.50
0.51
n-is
O.50
O.50
0.50
0.50
0.50
0.50
O.50
O.50
0.50
O.GO
0.51
H-2S
0.50
0.50
0.50
O.50
0.50
0.50
0.50
0.50
0.5O
0.50
0.53
O
0.50
O.60
0.57
0.51
0.50
0.50
0.50
0.5O
0.50
0.50
0.53
AT DOWNWIND DISTANCE * 160.0 KM
SO2-TO-S04= COIlVERSION HATE (3/IIR)
H+2S
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
O.50
0.50
0.50
0.59
n>is
0.50
0.50
0.5O
0.5O
0.50
0.50
0.50
0.50
0.50
0.50
0.5O
0.51
II
0.50
0.50
0.50
0.50
0.5O
0.50
0.50
0.50
0.50
0.50
0.50
0.51
n-is
0.50
O.50
0.50
9.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.51
H-2S
0.50
0.5O
0.50
0.50
0.50
0.50
O.50
0.50
0.50
0.50
0.50
0
0.5O
28
16
82
26
0.53
0.50
0.50
0.50
0.50
0.50
2
2
1
1
0.53 0.53
AT DOWNWIND DISTANCE = 180.0 KM
S02-T0-S04= CONVERSION RATE
H+2S
0.50
0.50
0.50
0.50
0.50
0.51
0.50
0.50
O.5O
O.GO
0.50
O.GO
O.G i
H+1S
0.50
0.50
0.50
0.50
0.50
0.50
0.50
O.5O
0.50
0.50
O.GO
0.50
o. 52
It
0.50
0.50
0.50
0.50
0.50
0.50
0.50
O.50
O.5O
O.5O
O.GO
0.5O
0.51
H-1S
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
O.5O
O.GO
O.GO
0.GO
O.52
H-2S
0.50
0.50
0.50
0.50
0.50
0.51
0.50
0.50
0.50
O.GO
O.GO
O.5O
o. 53
0
0.50
3.50
3.50
3.49
3.33
1.08
0.50
0.50
O.5O
0.50
O.GO
O.GO
O. 54
II+2S
0.00
O.00
0.00
o.oo
o.oo
o.oo
0.00
o.oo
0.00
0.01
0.54
D>1S
0.00
0.00
0.00
0.00
0.00
o.oo
0.00
0.00
0.00
o.oo
0.03
H
0.00
o.oo
0.00
o.oo
0.00
0.00
o.oo
0.00
0.00
0.00
O.04
H-1S
0.00
0.00
0.00
0.00
0.00
0.00
o.oo
o.oo
0.00
0.09
0.03
H-2S
0.00
o.oo
0.00
o.oo
o.oo
0.00
0.00
o.oo
0.00
0.01
0.23
0
0.00
0.73
0.52
0.03
0.02
O.OO
0.00
0.00
o.oo
0.00
0.22
NOX-TO-HN03 CONVERSION RATE (7S/HR)
II+2S
O.
O.
0.
0.
0.
0.
0.
O.
0.
0.
0.
0.
00
00
00
00
00
00
00
00
00
00
02
65
n+is
0
0
0
0
0
0
0
0
0
0
0
0
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
. 10
H
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
H-1S
00
00
00
00
00
00
00
00
00
00
«o
01
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
00
00
00
00
00
00
00
00
00
00
oo
10
n-2S
0
o
0
0
0
o
0
rt
0
0
0
0
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.01
.23
0
0.
12.
11.
9.
5.
0.
00
45
65
23
31
19
0.00
0.
0.
0.
o.
0.
oo
00
00
oo
22
NOX-TO-HN03 CONVERSION RATE (3/HR)
II+2S
0
0
0
0
0
0
0
0
o
o
o
o
o
.00
.00
.00
.01
.02
.04
.00
.00
.OO
.OO
.OO
.02
.76
n+is
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
o.
00
00
00
00
00
01
00
00
oo
oo
oo
oo
12
H
0
0
0
0
0
0
0
0
o
o
o
o
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
O.O7
H-1S
0.
0.
0.
0.
0.
0.
0.
0.
0.
O.
0.
O.
0.
0O
00
00
00
00
01
00
00
oo
oo
oo
oo
12
n-2S
0
0
0
0
o
0
0
0
0
o
o,
o.
o.
.00
.00
.00
.01
.02
.04
.00
.00
.00
.00
.00
01
24
0
20
20
20
19
4
0
0
0
0
o.
0.
o.
0
.00
.93
.97
.92
.82
.on
.03
.00
.00
.OO
.OO
01
30
-------
•^^^^^n^
O, 1
o. a
O.7
1.4
3. 0
5.0
0.3
11. 0
- 10. 0
16.0
19.3
22. 1
24.9
27.6
HISTORY OF
PARCEL
AGE
O. 1
0.3
0.7
1.4
2.8
5.5
0.3
11.0
13. 0
16.6
19.3
22. 1
24.9
27.6
30.4
HISTORY OF
PARCEL
ACE
urn)
0. 1
0.3
0.7
1.4
2.0
0.0
0.3
11. 0
13.0
16. fj
19.3
22. 1
24.9
27.6
30.4
33. 1
931
srto
OO4
6<-5
C9O
1O34
134O
1625
1011
2157
42
oca
614
900
PLUTCE PARCEL
LOCAL
TINE
245
253
318
400
522
COO
1034
1340
1625
1911
2157
42
328
6!4
9CO
PLUME PARCEL
LOCAL
Tirffi
2359
0
32
1 J4
237
522
aoo
1054
1340
1625
1911
2157
42
328
614
900
gr-*-"*g? TT^^TT^^ IT ZI — IS II — •£?=* *r
a. so o.oo o.oo o.so o.co o no
o.oo o.oo o.ao o.ao o.ao i so
O.GO O.GO O.5O O.GO O.SO 1 OO
O.SO O.SO O.SO O.GO O.SO 2 O2
o.so o.so o.ao o.so 0.50 2 oo
O.51 O.SO 0.50 O.SO 0.51 1.74
0.32 O.GO O.SO O.SO O.52 O.64
0.50 0.50 0.00 0.50 O.50 0.50
0.50 0.50 0.50 0.50 O.5O 0.50
0.50 0.50 0.50 O.SO 0.50 0.50
0.50 0.50 O.GO 0.50 0.50 0.50
0.50 0.50 O.GO O.GO 0.50 O.GO
O.GO O.GO O.GO 0.50 O.GO O..~0
0.62 0.52 0.51 0.52 0.54 O.57
AT DOWNWIND DISTANCE = 220.0 KM
S02-T0-S04= CONVERSION RATE < r?/TTR>
\
n+2S n+is H n-is n-2s o
0.50 O.50 0.50 0.50 0.50 0.50
O.50 O.SO O.GO 0.50 O.GO 0.51
O.SO 0.50 O.GO 0.50 0.50 0.51
0.50 0.50 O.SO 0.50 O.GO 0.53
0.50 0.50 0.50 0.50 O.GO O.69
0.50 0.50 O.SO 0.50 0.50 0.01
0.53 0.50 O.SO 0.50 0.53 0.71
0.53 0.50 0.50 0.50 O.53 0.50
O.GO 0.50 0.50 0.50 O.GO O.GO
0.50 0.50 0.50 O.GO 0.50 O.GO
O.GO O.GO 0.50 0.50 O.F0 0.50
0.50 0.50 O.,50 0.50 O.GO O.GO
0.50 O.GO O.GO 0.50 O.GO O.GO
0.5O 0.50 O.GO 0.50 O.GO O.f.O
O.04 0.52 O.G1 0.52 0.54 O.G7
AT DOWTOINn DISTANCE = 24O.O 101
S02-T0-S04= CONVERSION RATE ( rt/TTR)
H+2S n>is n H-IS n-2S o
O.5O 0.50 O.SO O.SO O.SO 0.50
0.50 0.50 0.50 O.SO O.GO O.GO
O.SO 0.50 O.GO O.GO O.GO O.SO
0.50 O.SO O.GO O.GO O.GO O.GO
O.GO O.GO 0.50 O.GO O.GO O.GO
O.GO O.GO O.GO 0.50 O.GO O.GO
0.51 O.GO 0.50 O.GO 0.51 0.54
0.56 O.Gl O.GO 0.51 0,55 0.50
0.55 0.51 O.SO O.51 0.53 O.54
0.50 O.GO 0.50 0.50 0.50 O.GO
O.GO O.GO 0.50 O.GO O.GO O.GO
0.50 0.50 0.50 0.50 O.GO O.GO
O.GO 0.50 0.50 0.50 O.GO O.GO
0.50 O.GO O.GO 0.50 0.50 0.50
0.50 0.50 0.50 0.50 0.50 0.50
0.65 0.53 O.Gl 0.52 0.54 O.G4
o.
o.
o.
0.
O.
O.
O.
0.
o.
0.
0.
0.
0.
0.
as
00
oo
oo
OO
Ol
06
12
01
00
00
00
00
02
f>7
l¥-^
O .
O.
0.
O.
O.
O.
o.
0.
0.
0.
0.
o.
0.
0.
IS!
oo
Oi>
oo
00
00
Ol
02
00
00
00
00
Ol
oo
* 4
o .
o.
0
o
o
o
o
0
o
0
0
0
0
0
.00
.00
.00
.00
.00
.01
.01
.00
.00
.00
.00
.00
.00
.or.
rt— is
o. oo
o .00
O.OO
o
o
o
o
0
0
0
0
o
0
o
.00
.00
.01
.02
.00
.00
.00
.00
.03
.00
. 13
Tl—
o .
o.
0.
o.
oo
t>f>
00
oo
O.OI
o
o
0
o
0
o
o
0
0
.06
. 12
.01
.00
.00
.00
.00
.01
. 25
o"
7'.
O.
10.
14.
O
1
0
0
0
0
0
o
o
oo
3.-'i
^—-\
. (t(t
. OT
. oi>
.00
.03
.00
.00
. or>
,n9
. n '
. •">
NOX-TO-HN03 CONVERSION RATE
NOX-TO-RNO3 CONVERSION RATE
IR2S
0.00
0.00
O.OO
0.00
o.oo
O.02
0.20
0.24
O.02
O.OO
0.00
0.00
O.OO
O.OO
0.?7
n+is
0.00
0.00
0.00
0.00
O.OO
0.00
0.03
0.03
0.00
0,00
O.OO
0.00
0.00
O.OO
0.16
H
0.00
0.00
0.00
O.OO
O.OO
0.00
0.02
O.O2
O.OO
0.00
0.00
O.OO
O.OO
O.OO
0.0<>
H-IS
O.OO
0.00
O.OO
O.OO
O.OO
0.00
0.03
0.03
0.00
O.OO
O.OO
O.OO
O.OO
O.OO
0. 1G
n-2s
0.00
0.00
O.OO
O.OO
O.OO
O.02
O.2O
0.20
O.OI
O.OO
O.OO
O.OO
O.OO
O.OI
0.27
0
o.oo
0.06
0 . of)
0.23
1 . r-3
2. J4
1 . 45
o . r-3
o . 02
O.OO
o.oo
0.00
o. oo
O. O J
o.2S
O.OO
0.00
O.OO
0.00
O.OO
O.OO
0.05
0.39
0.37
0.03
0.00
0.00
O.OO
0.00
0.03
1.08
R+1S
0.00
0.00
O.OO
O.OO
O.OO
0.00
O.OI
0.03
O.03
0.00
0.00
0.00
0.00
O.OO
0.00
0. 10
H
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.03
0.00
O.OO
0.00
0.00
0.00
0.00
0. 10
H-IS
0.00
0.00
0.00
O.OO
0.00
0.00
0.01
0.03
0.03
0.00
0.00
O.OO
0.00
0.00
0.00
0. 17
n-2s
O.OO
0.00
O.OO
o.oo
O.OO
O.OO
0.03
0.33
0.24
0.01
0.00
O.OO
o.oo
O.OO
0.01
0.20
0
0.00
0.00
O.OO
O.OO
o.oo
O.OI
0.27
o.r>7
o.ao
0.01
O.OO
O.OO
O.oo
O.OO
O.OI
0 . ',J 1
Exhibit A-4 (continued)
-------
PLOT FILE VERIFICATION
OBSERVER-BASED DATA
SKY BACKGROUND
NX I 2 3 4 5 6 7 8 9 10 11 12 13 14 IP If,
DISTANCE (KM) 1 2 5 !0 20 40 60 CO 100 120 140 160 180 2OO 22O 2*O
REDUCTION OF VISUAL
RANGE (JO 52.530 52.937 53.826 51.327 40.107 27.G01 16.039 7.419 10.037 23.591 4O.G79 47.959 45.006 43.730 42.247 4t.<>6
BLUE-RED RATIO
1.022 1.021 1.019 1.0!4 1.003 0.956 0.861 0.742 O.753 0.330 0.923 O.951 O.957 0.953 0.957 O.«5
PLUME CONTRAST AT
0.55 MICRONS -0.057 -O.O70 -0.032 -0.090 -0.105-0.135 -0.153 -0.111 -O.OO4 -0.112 -O.O94 -0.068 -0.046 -0.000 -O.OJ9 -O.O1
PLUTJE PERCEPTIBILITY
, DELTA E(L*A#B*> 2.312 2.814 3.333 3.621 4.140 5.491 8.602 12.527 12.9CT 0.315 5.006 3.402 2.386 1.677 l.r».or, O.O1
WHITE BACKGROUND
NX 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
DISTANCE (KM) 1 2 5 10 20 40 60 CO 100 120 14O 100 100 200 220 2<«-0
REDUCTION OF VISUAL
RANGE (3) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00
BLUE-RED RATIO (
1.259 1.248 1.219 1.137 1.146 1.065 0.934 0.757 0.706 O.903 1.009 0.000 0.000 0.000 0.000 O.Ofl
PLUME CONTRAST AT
0.55 IHCRONS -O.OG8 -0.100 -0.111 -0.110 -0.132 -0.162 -0.180 -0.114 -0.005 -0.122 -O.O43 0.000 0.000 O.OOO O.OOO O.OC1
PLUT1E PERCEPTIBILITY
DELTA E(L*A«B*> 5.061 5.232 5.344 5.290 0.397 5.971 8.1G4 12.323 12.840 7.G58 3.153 0.000 0.000 0.000 0.000 O.O1
Exhibit A-4 (continued)
-------
CRAY BACKGROUND
NX ''•' 1 2 3 4 5 6 7 8 9 !O II 12 13 14 15 16
DISTANCE (ICM) 1 2 5 10 20 40 60 80 100 120 140 100 1OO 209 220 2*o
REDUCTION OF VISUAL
RANGE (%) * 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.oo
BLUE-RED RATIO
0.996 0.996 0.996 0.994 0.905 0.939 0.846 0.740 0.752 0.799 0.372 0.000 0.000 0.000 O.O^O O.CO
PLUME CONTRAST AT
0.55 MICRONS -0.026 -0.040 -0.054 -0.063 -0.079 -0.110 -0.129 -0.107 -0.070 -0.045 0.173 0.000 0.000 0.000 O.OOO o.OO
PLUME PERCEPTIBILITY
DELTA ECL*A»B«) 1.006 1.575 2.155 2.531 3.100 4.074 8.398 12.601 13.160 O.319 6.239 0.000 0.000 O.OOO O.OOO O.oo
-• BLACK BACKGROUND
4i
10 NX 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 K,
DISTANCE (KM) 1 2 5 1O 20 40 60 80 IOO 12O 14O 16O 180 2OO 22O 24O
REDUCTION OF VISUAL
RANGE (JJ) 0.000 0.000 0.000 O.OOO 0.000 0.000 0.000 O.OOO O.OOO 0.000 O.OOO O.OOO 0.000 O.OOO O.OOO o.on
BLUE-RED RATIO
0.302 O.CC6 0.894 0.902 O.904 0.O71 0.791 O.732 O.745 0.74O O.729 O.OOO 0.000 O.COO O.OOO O.OO
PLUME CONTRAST AT
0.55 MICRONS 0.003 -0.011 -0.026 -0.007 -0.054 -0.004 -0.102 -0.104 -0.075 -0.004 0.314 0.000 0.000 O.OOO O.O^O O.OO
PLUME PERCEPTIBILITY
DELTA E(L#A*B#) 2.137 2.279 2.446 2.050 3.234 5.126 0.925 12.729 13.303 10.133 11.033 0.000 0.000 O.OOO O.OOO O.oo
Exhibit A-4 (concluded)
-------
first case. The plume-based calculations were limited to scattering
angles of 45°, 90°, and 135* by setting NT1 to 2 and NT2 to 5.
Exhibit A-6 presents the beginning of the printout for the plume-based
run of PLUVUE. All tables are included for the input data verification,
background optical properties, initial plume~rise, plume gas and aerosol
concentrations, and all visual effects, for the first two observed points
on the plume (1 and 2 km from the source). Note that the size of the
print file is quite large, even for three different scattering angles.
When the number of scattering angles is increased to six, the number of
optics tables is doubled, and the print file becomes almost twice as large
as it is in this sample.
Exhibit A-7 presents the results of the same PLUVUE run for the
observed points at 100 and 120 km from the source. For both points, the
tables are printed for: plume contributions of pollutants; results from
optics calculations for horizontal lines of sight with sky backgrounds;
results from optics calculations for nonhorizontal lines of sight with sky
backgrounds; results from optics calculations for horizontal lines of
sight with white, gray, and black backgrounds; and results from optics
calculations for views along axes of plumes with sky backgrounds.
Exhibit A-8 presents the tables for the last two observed points on
the plume trajectory, plus the usual tables for secondary aerosol forma-
tion rates and the table verifying the data written to Fortran logical
unit 8. This data is used as input by the program VISPLOT to generate
plots of the four key visibility impairment parameters: percentage reduc-
tion in visual range, plume contrast, blue-red ratio, and 4E.
150
-------
1600 NW POWER PLANT
4.5 5+0.
000414
0. 0.
1000.0
45.
0
1 1 1 116 2
1
1. 2.
100. 120
37.50
1555980.0
4.0600.0
45. 0
0.000
O. 125
2.20O
1.000
10.000
2
185.
l.OO 1.00 0.
0
0.0
1 1
343323
49O.9
12 9
00
5 1
5. 10. 20. 4O. 60. 80
140. 160. ICO. 200. 220. 240
131.80 4.90
138.0 J 3.0 17.5
0.000 0.038 0.000
2.750 0.125 0.850
2.200 1.500 1.500
2.000 1.000 2.000
10 0. 10
433O.5 5650. O
21OOOO. 7. 1979
Exhibit A-5. Input data file used for second example of a PLUVUE run.
-------
VISUAL IMPACT ASSESSMENT FOR 1600 IW POWER PLANT
EMISSIONS SOURCE DATA
ELEVATION OF SITE = 3650. FEET JfSL
1722. METERS MSL
NO. OF UNITS = 4.
STACK HEIGHT = 600. FEET
103. METERS
FLUE CAS FLOW HATE = 1555980. CU FT/MIN
734.23 CU M/8EC
FLUE GAS TEMPERATURE " 138. F
332. K
FLUE CAS OXYGEN CONTENT • 3.0 MOL PERCENT
S02 EMISSION RATE (TOTAL) = 37.30 TONS/DAY
K (TOTAL, AS
1.3S4E 03 G/SEC
PARTICULATE EWISSIOR RATE (TOTAL) = 4.90 TONS/DA\
3. 145E 01 G/SEC
Exhibit A-6. Beginning of output for plume-based PLUVUE run,
including the tables of visual effects for the
second observed point.
-------
AWD Awnrnrrr Am QUALITY DATA
WJWOSPEED = 4.O MILES/im
2.0 M/PEC
P/lSQUILL-CrFFOIW-TUnWEIl STABILITY CATEGORY E
LAPSE RATE = O.OO F/1000 FT
0.OOOE-0 J K/M
POTENTIAH'TEMPERATURE LAPSE RATE = 9.300E-03 K/M
AMBIENT TEMPERATURE = 45.0 F
280.4 K
RELATIVE HUMIDITY = 45.0 %
MIXING DEPTH = 1000. N
AMBIENT PRESSURE = 0.82 ATM
BACKGROUND NOX CONCENTRATION = 0.000 PPM
BACKGROUND N02 CONCENTRATION = O.000 PPM
BACKGROUND OZONE CONCENTRATION = 0.038 PPM
BACKGROUND S02 CONCENTRATION = 0.000 PPM
BACKGROUND COARSE NODE CONCENTRATION = 10.0 UG/M3
BACKGROUND SULFATE CONCENTRATION = 2.9 UG/M3
BACKGROUND NITRATE CONCENTRATION = 0.0 UG/M3
BACKGROUND VISUAL RANGE = 1B5.0 KILOMETERS
S02 DEPOSITION VELOCITY = 1.00 CM/SEC
NOX DEPOSITION VELOCITY = 1.00 CM/SEC
COARSE PARTICULATE DEPOSITION VELOCITY = 0.10 CM/SEC
SUBMICRON PARTICULATE DEPOSITION VELOCITY = 0.10 CM/SEC
:± AEROSOL STATISTICS
u> BACKGROUND PLUME
ACCUMULATION CO/YRSE ACCUMULATION COARSE
MASS MEDIAN MODE MODE MODE MODE
RADIUS
MICROMETERS 0.123 2.730 0.125 0.8T0
GEOMETRIC
STANDARD
DEVIATION 2.200 2.200 1.500 1.500
PARTICLE
DENSITY
G/(CM#*3) 1.000 2.000 1.800 2.000
SIMULATION IS FOR 900. HOURS ON 9/21
SOLAR ZENITH ANCLE (DEGREES) = 51.0
SOLAR AZIMUTH ANCLE (DEGREES) = 129.0
BACKGROUND CONDITIONS
ACCUMULATION MODE COARSE PARTICLE MODE PRIMARY PARTICLE MODE
MASS RADIUS SIGMA BSCAT.55/MASS MASS RADIUS SIGMA BSCAT.55/MAS9 MASS RADIUS SIGMA BSCAT S3/MA5?S
0.1250E 00 0.2200E 01 0.2844E-02 0.2750E 01 0.2200E 01 0.4469E-03 0.8500E 00 0. 1500K 01 O 1242F-O'»
COEFFICIENTS AT 0.55 MICROMETERS , 1./KM ' ' "
BTARAY =0.9747E-02 BTAAER =0.1202E-01 ABSN02 =O.OOOOE 00 BTABAC =0.21I5E-0I
Exhibit A-6 (continued)
-------
INITIAL PLUME RISE AND DILUTION AND NITROGEN DIOXIDE FORWATTON
16CO MW POTHER PLANT
TIME
(SEC)
0.
10.
20.
30.
40.
|-|-|
oo.
70.
8O.
90.
100.
110.
120.
100.
140.
15O.
100.
170.
(80.
190.
200.
210.
220.
230.
240.
250.
200.
270.
230.
290.
300.
310.
320.
330.
340.
350.
300.
370.
380.
390.
400.
410.
420.
400.
440.
450.
4C>0 .
470.
t-^o .
*''° •
X
(M)
0.0
20. 1
40.2
00.3
80.5
1OO 6
A W • V
120.7
140.8
100.9
131.0
201. 1
221.3
241.4
201.5
281.0
301.7
321.8
342.0
302. 1
332.2
402.3
422.4
442 . 5
402.0
402.8
502.9
523.0
543. 1
503.2
533.3
003.4
023.6
043.7
003.8
033.9
704.0
724. 1
744.3
704.4
7C4 . 5
304.0
324.7
844.8
804.9
OC5. 1
9O5.2
925.3
<>45 . 4
<><>5 . 3
OSS . ^
DELTA H
(M)
O.0
31.0
50.2
05.7
,79.6
no 4
f tat • ^V
104.3
115.6
120.4
130.7
146.7
150.3
105.0
174.7
183.6
192.2
200.6
203.7
208.7
203.7
208.7
203.7
203.7
208.7
203.7
208.7
203.7
203.7
208.7
203.7
208.7
208.7
203.7
208.7
203.7
203.7
203.7
203.7
203.7
208.7
203.7
203.7
208.7
208.7
2OO.7
203.7
2OO.7
2OO.7
20O.7
aoa.-z-
U
2.O1
2.O1
2.01
2.O1
2.01
2. Ol
2^01
2.01
2.O1
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.O1
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.01
2.O1
2.O1
2. Ol
a.ot
Ct . O I
W
(MxS)
17.50
1.00
0.CO
0.71
0.04
OAO
• W
0.56
O.54
0.51
0.49
0.48
0.46
0.45
0.44
0.<'3
O.42
0.41
O.40
0.39
0.39
0.38
O.37
0.37
0.36
0.30
0.35
O.G5
0.34
0.34
0.33
0.33
0.33
0.32
0.32
0.32
0.31
0.31
0.31
0.31
0.30
0.30
0.30
0.3O
0.29
0.29
O.29
O.29
O.29
O.2O
O.2O
V
(M/S)
17.50
2.25
2. 17
2. 13
2. 11
2 1O
• I *-/
2.09
2.08
2.08
2.07
2.07
2.06
2.00
2.00
2.00
2.O5
2.05
2.O3
2.05
2.05
2.05
2.05
2.04
2.04
2.04
2.04
2.04
2.04
2.04
2.04
2.O4
2.04
2.04
2.04
2.04
2.04
2.04
2.04
2.03
2.03
2.03
2.03
2.O3
2.03
2.O3
2.O3
2.O3
2.O3
2.03
2.oa
SIGMA
(M)
0.0
7.3
11.7
15.3
18.5
*>\ n
M M • V
24.3
20.9
29.4
31.8
34. 1
30.3
33.5
40.0
42.7
44.7
40.7
43.5
48.5
43.5
48.5
48.5
43.5
43.5
48.5
48.5
48.5
43.5
43.5
48.5
48.5
48.5
43.5
48.5
43.5
48.5
48.5
48.5
43.5
48.5
43.5
43.5
48.5
48.5
43.5
48.5
4O.5
40.3
<1-O. 5
40. S
TMHP
(TO
3:; 2.0
"V.9.9
29l!0
2.37.6
O£jrj ^ *p
234.6
233.8
2.30 . 2
2C'2 . 8
2C2 . 5
2,"2.3
2"2. 1
231.9
2,3 1 . 7
231.6
2-1 1 . 5
201.4
23 1 . 4
231.4
2,31.4
231.4
2,3 1 . 4
23 1 . 4
201.4
231.4
231.4
231.4
231.4
2*31.4
20 1 . 4
2.31.4
231.4
201.4
201.4
231.4
•J31.4
23 1.4
231.4
231.4
231.4
231.4
20 1 . 4
2<3 1 . 4
2IH . 4
20 1.4
201.4
2O1 .4
231 .4
201 .4
O2 NO2-NO
MOL P EOUIL
3.0 5.9E 04
3.G 7.2E 04
14.5 5.(?E 05
17.3 9.0E
13.4
19 1
m J • M
19.5
19.3
19.9
20. 1
20.2
20.0
2O. 4
2O . <•
20. 5
20.5
20.0
20.0
20.0
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20 . 6
20.6
20.6
20.6
20.6
20 . 6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20 . 6
2O. 6
20. 0
2O. C.
2O. 6
20.6
23. O
ao. c.
. IE
.2E
.OE
.3E
. 4E
.4E
.4E
.GE
.5E
.5E
.5E
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.5F.
.GE
.GE
.GE
.GE
.GE
.GE
.GE
.5E
.GE
.5E
5E
5E
arc
GE
GE
05
O6
OG
06
00
00
06
06
06
00
00
06
OG
05
06
06
06
06
06
06
06
06
00
06
06
06
06
06
06
06
06
06
06
00
00
00
00
06
06
06
06
OO
06
06
00
O6
OS
RATIO N07< NO
ACTUAL ( PPri) ( PPM>
4.2E-O3 340.166 333. 75O
6.2E-03 325.. 392 323.390
3.6E-03 121. 42O 120.300
1 . OE-02
1.6E-02
1 . OC-O2
1 . OE-02
2. IE-03
2.2E-02
2.3E-02
2.4E-02
2 . 4E-02
2.GE-02
2.6E-02
2.6E-02
2.7E-02
2 . 7E-02
2 . 7E-02
2.3E-02
2. BE- 02
2 . fiE-02
2. OE-02
2. OE-02
0 . OE-02
3 . OE-02
3. OE-02
3 . 1 E-02
3. IE-OS
3 . 1 E-02
3.2E-02
3 . 2E-02
3.3E-02
3.3E-02
3 . 3E-02
3 . 4E-02
3.4E-02
3 . 4E-02
3.5F.-02
3.5E-02
3.5E-02
3 . 6E-02
3 . 6E-02
3.7E-02
3 . 7E-02
3 . 7F.-02
3 . aE-02
3 . 315-02
3 . OE— O2
3.9E-O3
3. OE-O2
69 . 076
47 . 57 1
"1 . 020
27.715
22.530
1O.916
16. 130
1 4 . 070
12.400
1 1 . 040
9 . 007
9 . 007
G.220
7.:.? 46
6 . 077
6 . OG2
6.037
6.001
OfNOrr
• * e • 7
6 . oon
7.001
7 . oor»
7.007
7.010
7.010
7.01-1
7.017
7.010
7.021
7.02:.'.
7.021
7 . 0.?7
7 . OrjlO
7.000
7 . 03 1
7 . 000
7 OO''1
7 . 000
7.037
7 . 03G
7 . 000
7.040
7.O41
7 . O42
7.O40
7.04-J
7 . O-j"1"*
69. 100
40 . 34 1
27. 136
22. 123
13.510
1G.G13
13.745
!2. 101
10.779
9.0G9
3.773
3.007
7 . 347
0.791
0.794
6 . 796
6.707
0.703
0.709
0 . COO
0 . GO 1
O.G01
6.301
6.C01
6 . CO 1
O.C01
6 . GO 1
6 . r.OO
6 . COO
6 . 709
6 . 700
6.707
6.707
6.706
6.705
6.704
6.702
6.701
6.700
6 . 7«0
0 . 7O7
6.7.3')
0 . 7«{3
6 . 7f>3
6. 7O2
O. 73O
NO2T
< PPM)
1.416
1.999
1.003
O.376
0.730
O.O 10
O.523
0 . 400
0 . 4OO
O.062
0.025
0.205
0.270
0 . 243
O.T29
0.213
0. 103
0. 106
0. 1O9
0. 101
0. 104
0. 190
0. 109
O.201
0.204
0.200
0.209
0.211
0.214
0.216
0.219
0.221
0.224
0.220
0.2C3
0.201
O.203
0. 2J?0
o . 2r'O
0 . 24 1
0.243
0 . 240
0 . 248
0.2,10
0.253
O.255
O.258
O.2GO
O. 2O2
O.26O
SO2 PARTTCTTLA1
(rrri) irr,/nr»
69.179 2.0.?F. O4
14. 3 HO A.fiP, r:\
9.7^O 3 . rv* r ' on
7.2f!l 2.^.7.' P. r>C',
5.'"-1>9 1 . 9'P. 'v>
4.'. 19 I.T.T. o".
o . ."v^o i . r.".p c^"*.
o.roo i . r~r. r-
2 . -37-3 ^ . "•''* ^ ', ^'^
2.^") Pi. (•"''. '\";
2.260 7.7Pr: ^:".
2.Or3 f > . 9 ""« ' . 'Y'.
1 . .'X'2 0 . "C P, -
1.42? 4.T"''. 0'"
1.4-.3 4.r-f, <• ."
1 . 4.7:0 4. r.or. 0"
1 .400 4. POP, Or1
1 .401 4.r~P. 0"
1 . 4?. 1 4. OOP r>-
\ . 4 "2 4 . nw. r>;'
1 . 4'!3 4. OOP. (T
1 '"'HO ^' ^or r>*
i . 4 "4 4. 0'' r". o:
1.404. 4.0M-. n
i . 4ri 4 . o • r". r:
l.4ri 4. OIF. r:
1.4P6 4.91T. 0-
!.<•;;<> <-. 01 P o:
1.407 4. 9 IP, o
1.407 4.0 "P. O:
1.4';? 4. or '.P. o:
i. •"•"'} 4.0: P. o:
i . 40.3 * . or.r. 0-
1.4::3 4.CT.P. ( '
1.4'") 4.0f'.rl 0'
1 /".f.O /". O'"[' (**'
l . <,r") 4.o."p o-
1.4^0 4.or:r'i r:
1 .440 4.0rP, 0
1.440 4.0::'"; o:
1 .440 4.~: r, o
!.<•• :o 4.ort: o
I /*. /* o <^i o * * r ,"* /^ '
l . 441 4. o^f'". r1'
i . '*•'"• l <•. err1; r>.
-------
OF ATinossi, Ann GASES CONTRICUTTD
i6oo MW POWER PLANT
i.o
392.
79.
29.
0.0000 PERCENT/HR
0.0000 PERCEinviJU.
•I-
DOWNWIND DISTANCE (KM) =
PLUME ALTITUDE (M) =
SIGMA Y (II) =
SIGMA Z (M) . =
S02-S04 CONVERSION RATE=
NOX-N03 CONVERSION RATE*
ALTITUDE
R+2S
INCREMENT!
TOTAL AMD!
H+1S
INCREMENT!
TOTAL MID!
II
INCREMENT!
TOTAL AMD!
I H-1S
i INCREMENT!
TOTAL AMD!
II-2S
INCPEMENT!
TOTAL AMD!
0
INCREMENT!
TOTAL AITO!
CUMULATIVE SURFACE DEPOSITION (MOLE FRACTION OF INITIAL FLUX)
S02! 0.0000
NOX! 0.0000
PRIMARY PARTICIPATE! 0.0000
S04! 0.0000
N03! O.OCOO
BY
NOX
( PPM)
3.904
3.904
17.497
17.497
20.G40
28.848
17.497
17.497
3.904
3.904
0.000
0.000
N02
( PPFZ)
0. 1G5
0. 103
0.701
0.701
1. 132
1. 132
0.701
0.701
0.103
0. 103
0.000
0.000
NO3-
( PPII)
0.000
O.COO
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
II02/NTOT
(HOLE X)
4.751 J
4.731
4.008
4.003
3.923
3.923
4.003
4.008
4.751
4.751
0.000
100.000
N03-/FITOT
(HOLE '.'.)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
o.ooo
0.000
o.ooo
( ppnV
0.700
0 . 799
3.579
3.579
5 . 90 1
5.901
3.579
3.579
0.799
0.799
0.000
O.OOO
(UG/H3)
0.000
2.933
0.000
2.936
0.000
0 . 000
2. 906
0.000
2.936
0 . 000
2.936
S04=/STOT
(HOLE %)
0.000
0.09 4
0.000
0.021
0.000
0.013
O.OOO
0.021
0 . 000
O.094
O.OOO
10O.O')0
01
( PPTI)
-0.037
0 . 00 1
-0.037
0.001
-0.037
0.001
-0.037
0.001
-0.037
0.001
O.OOO
O.O3O
M * \ 1 I I/Li 1 1
(UG/H3)
273 . GCO
236 . 022
1223.034
1236.C20
2017.042
2030. 77G
1 223 . 03 1
1236. UI7
273.035
2fJ6 . 02 1
0.000
12.9.'fr,
r BPP-TOTAL rnrrn/r-1
( fo-<- n-i) c:>
n.
IP.
25.
2;'..
in.
0.
0.
o.
P93 0.000
521 r?..r.v2
nos o.^oo
O60 O.OOO
r.rx. o.H'.'-n
r>2i Liir-vr:
ooo o.r^o
Exhibit A-6 (continued)
-------
VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
160O MW POWER PLANT
DOWNWIND DISTANCE (KM) » 1.0
PLUME ALTITUDE (M) = 392.
SIGHT PATH IS THROUGH PLUME CENTER
THETA ALPHA
45.
30.
30.
30.
3O.
30.
30.
45.
45.
45.
45.
45.
45.
60.
60.
60.
60.
60.
60.
90.
90.
90.
90.
90.
90.
X OBSERVER
90.
90.
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
60.
60.
60.
60.
60.
60.
90.
90.
90.
9O.
90.
9O.
RP/RVO
0.02
0.05
O. 10
0.20
0.50
0.00
O.O2
0.05
0. 10
0.20
O.5O
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
O.02
0.05
O. 10
0.20
0.50
0.00
POSITION
0.03
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
O.80
0.02
0.O5
0. 10
O.2O
O.5O
o.&o
RV JSREDUCED
138.0
137.2
136. 1
134.5
132.2
148. 1
152.4
151.8
150.9
149.6
147.7
148.2
158.7
153. 1
157.3
156.2
154.6
154. 1
162.3
161.8
161.2
160. 1
158.7
158.3
AT 1/2
162.2
142.0
140.7
138.9
136.3
132.9
148. 1
155.5
154.5
153. 1
151. 1
148.3
148.2
161.3
160.4
159.2
157.5
155. 1
154.4
164.7
163.9
162.0
161.3
159. 1
158.5
25.38
25.82
26.43
27.32
28.55
19.95
17.60
17.95
18.44
19. 15
20. 14
19.08
14.23
14.53
14.95
.15.56
16.42
16.68
12.25
12.52
12.89
13.44
14.21
14.45
OF A 22.
12.32
23.25
23.95
24.92
26.31
28. 18
19.95
15.94
16.48
17.24
18.34
19.84
19.88
12.81
13.27
13.92
14.86
16. 17
16.55
10-98
11. 4O
11.97
12.81
13.98
14.33
YCAP
90.86
92.58
94.99
98.51
103.37
104.80
93.42
94.03
96.00
99.63
103.65
104.02
94.87
96. 10
97.83
100.35
103.81
104.83
95. 05
96.96
98.52
100.79
103.92
104.84
5 DEGREE
96. 12
47.66
49 . 04
50.90
53.O2
57.78
58.97
49.82
50.95
52.54
54.06
50. 10
59.07
51.05
52.03
53.42
55.45
58.27
59. 12
51.87
52.76
54.01
55. OS
58.39
59. 15
L
96.36
97.06
98.03
99.42
101.29
101.83
97.40
97.97
93.75
99.88
101.39
101.83
97.98
98.47
99. 15
100. 13
101.45
101.84
98.37
98.81
99.42
100.30
101.49
101.84
X
0.3429
0.3377
0.3316
0.0? ">
0.3L »0
0.3198
0.3386
0.3344
0.3295
0.3240
0.3198
0.3196
0.3360
0.3325
0.3202
0.3234
0.3197
0.3195
0.3343
0.3312
0 . 3273
0.3230
0.3196
0.3195
WIND DIRECTION
98.48
74.63
75.50
76.63
78.38
89.63
01.29
75.90
76.67
77.62
78.98
80.81
81.34
76.73
77.32
78. 14
79.32
80.91
81.37
77.22
77.75
7O.49
79.54
80.97
Ol .39
0.3335
0.3252
0.3192
0.3124
0.3055
0.3014
0.3017
0.3209
0.3162
0.3108
0.3051
0.3015
0.3017
0.3184
0.3144
0.3097
0.3048
0.3915
0.3017
0.3167
0.3131
0.3O90
0.3045
0.3O16
O.3O17
Y DELYCAP
0.3537
0.3478
0.3411
0.3343
0.3305
0.3309
0.3501
0.3453
0.3397
0.3340
0.3307
0.3310
0.3479
0.3437
0.3333
0.3337
0 . 3303
0.3310
0.3463
0.3426
0.3382
0.3333
0.3308
0.3310
-14.04
-12.33
-9.92
-6.40
-1.54
-O. 1 1
- 1 1 . 49
-10.08
-8. 11
-5.23
-1.26
-0.09
-10.04
-8.81
-7.03
-4.56
-1. 10
-0.08
-9.06
-7.95
-6.39
-4. 12
-0.99
-0.07
SECTOR FROM TIHC
0.3454
0.3366
0.3294
0.3215
0.3143
0.3115
0.3124
0.3329
0.3271
0.3207
0.3145
0.3119
0.3126
0.3306
0.3256
0.3200
0.3145
0.3121
0.3127
0.3290
O.3245
0.3193
0.3145
0.3122
0.3127
-8.78
- 1 1 . 03
-10.45
-0.51
-5.66
-1.70
-0.52
-9.66
-0.54
-6.95
-4.62
-1.39
-0.42
-0.44
-7.45
-6.07
-4.03
-1.21
-0.37
-7.61
-6.73
-0.47
-3.64
-1 .09
-0.33
DELL
-5.51
-4.81
-3.83
-2.44
-0.58
-0.04
-4.46
-3.90
-3. 12
-1.99
-0.47
-O.O3
-3.03
-3.39
-2.71
-1.73
-0.41
-0.03
-3.49
-3 . 03
-2.44
-1.56
-O.37
-0.03
CC550) BRATIO DELX DELY E(LTTV) E( LAB^
-O. 1322
-0. 1 173
-O.O959
-0.0009
-0.0173
-0 . 0003
-0. 1073
-0.0^54
-0 . 073')
-0.0520
-0.01 44
-0 . 0023
-0.0907
-o . OG:J i
-O.OGCO
-0.0450
-0.012(3
-O.0023
-0.0844
-0.0743
-0.0612
-0.0403
-0.0113
-0.0022
PLUME CENTERLINE
-3.38
-6.94
-6.03
-4.89
-3.20
-0.94
-0.28
r3.59
-4.91
-3.95
-2.59
-0.77
-0.23
-4.03
-4.25
-3.43
-2.26
-O.67
-0.20
-4.33
-3 . 82
-3.O9
-2.03
-0.60
-o. ia
-0.0321
-0.2013
-0. 1793
-0. 1477
-0. 1002
-0.0318
-0.0106
-0. 1609
-0. 1458
-0. 1201
-0.031-1
-0.0259
-0.0030
-0. 1423
-0. 1270
-0. 1046
-0.0710
-0.0223
-O.0073
-0. 1286
-O. 1 144
-O.O942
-O.O64O
-0.O2O3
-O.OOGO
O.6672 0.0240 0.O227 22.5098 14.97O
O.7495 O.O189 O.O10O 17.7977 ll.onr.
0 . 8429 O . O 1 27 0 . O 1 00 12.1 OOfi 7 . rjo 1 ,
O.OO4O 0.OOOO 0.0032 5. (19 14 O.9IO
0.9757 0.0011 -0.0005 1 . 4O-77 1 . COM
0.9095 0.0009 -O.OOOI O.9277 O.572
0.7152 0.0197 0.0191 18.9100 12.<">:>
0.7334 O.O13<3 0.0142 14.9701 9.7'V1«
O.O052 0.0106 O.OOR7 1O.2247 O.OA.I
0.9434 0.0051 0.0029 4.977O O.L"^
O.9C70O O.O009 -O.OOO3 1.1549 O.^li
0.9731 0.0003 -O.OOOI 0.7554 O.-KV5
0.7455 O.OI72 O.O109 10.7O59 1 1 . r'v»
O.G'J>31 0.0136 0.012" 10.2470 O.054
0.3794 0.0093 0.0073 9.0091 R.rrv.
O.9494 0.0043 0.0027 4.4lf!0 2.'vo:;
0.9323 O.OOOO -O.OOOO l.OlOrt O.715
0.9733 0.0007 -O.OOOI 0.05,15 O.™r.
0.707O 0.0134 0.0153 15.1723 9.^7U
0.8:i43 0.0123 O.O115 12.04K2 7.1'fSO
O.G'J95 O.O033 O.OO71 O.2O11 n.:»r-5
0.9536 0.0041 0.0023 4.OLNH 2. '"TO
0.9.342 0.0008 -0.0002 0.9Ktr> O.O44
0.9304 O.OOOO -O.OOOI 0.5905 O.;'f.r>
AT THE GIVEN DISTANCE FROM TTTE POUHCF
0.7319 0.0146 0.0143 14.0711 9.<:27
0.6938 0.0234 0.0234 20.5244 10.9O7
0.7G05 0.0174 0.0161 15.7502 10.7O1
0.3926 0.0107 0.0000 10.2532 7.19T
0.9368 0.0038 0.0011 4.0054 0.71'J
1.0102 -O. 0004 -0.0017 1.0000 1 . 22H
0.9918 -0.0001 -0.0003 0.5COO 0.49'
0.7383 0.0191 0.0197 17.2147 11.641
0.3176 0.0144 0.0139 13.2920 9.O17
0.9034 0.0090 0.0074 0.7002 0 . O4H
0.9359 0.0033 0.0013 3.9400 3.O7H
1.0030-0.0003-0.0013 1.09OO 0.9JT1
0.9933 -0.0001 -0.0006 0.40(13 O.P90
0.7663 0.0166 0.0174 15.2011 IO.?4n
0.0066 O.O126 0.0124 11.7750 7.901
0.9144 0.0030 0.0063 7.74O5 5 . ,04H
0.9061 0.0030 0.0013 3.500O 2.7O:i
1.0O68 -O.O002 -0.0011 0.9410 O.f'51
0.9942 -O.OOOO -0.0003 0.4O09 <).:*44
0.7O66 O.O149 O.O157 13.rt!?2n 9.. "79
O.O5O2 0.0114 O.O113 1O.7I5O 7.CL"H
O.9210 O.OO72 O.OO62 7.O'.O7 4./T.4
0.9366 0.0O27 O.OO13 3./9:?6 C.^!7/>
i . 0O6 l -O.O0O2 -0.OOIO o.rti'.to n.rf-ri
O.9O47 -O.OOOO -O.OOO5 O..'K..ri7' O . :i f O
SJT'!>0J< AT,.i.^;l "^ .^ S5'° RSCSSE 'w.Jw-t>,.g1REC:TI05 sSCTOR«F'lllo!?^'r!JS PL!J!In':«£n:r'Tr:Rl-J ?E AT_T]7I? G1VT-^' PISTAJICF: r-norr -rur:
-------
VISUAL EFFECTS
K>00 HW POWER PLANT
DOWNWIND DISTANCE (Ktt) = 1.0
PLUME ALTITUDE (PI) = 392.
SIGHT PATH IS THROUGH PLUPffi CENTER
L sronr
TIFETA ALPHA RP/RVO
135.
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
60.
— ' fjo.
«vi 6O.
60.
60.
6O.
90.
90.
90.
90.
90.
90.
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
O.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.30
0.02
0.05
0. 10
0.20
O.50
O.CO
RV ^REDUCED
144.8
143.2
140. <*
137.7
133.4
143. 1
157.7
156.4
154.7
152. 1
143.7
14O.2
163.2
162. 1
160.6
15O.4
155.4
154.6
166.3
165.4
164.0
162. I
159.4
153.7
21.71
22.61
23.05
25 . 59
27.92
19.95
14.75
15.44
16.40
17.77
19.63
19.03
11.00
12.39
13.20
14.38
15.98
16.46
10.09
10.61
11.33
12.38
13. Ol
14.24
YCAP
47.59
49 . 46
52. 10
55.97
61.39
63.03
50.60
52. 13
54 . 23
57.45
61.07
63.21
52.30
53.64
55.52
5O.23
62. 14
63.3!
53.44
54.65
56.35
5O.05
62.33
63.30
L
74.59
75 . 76
77.36
79.62
K2.60
G3.47
76.46
77.38
7O.65
30.45
02.86
03.57
77.40
73.27
79.36
O0.91
O3.01
O3.62
70. 16
7O.06
79. 03
01.22
03. 10
33.66
X
0.3219
0.3«45
0.3072
0.2999
0.2063
0.2971
0.3174
0.3120
0.3059
0.2999
0.2067
O.2973
0.3140
0.3102
0.3051
0.2008
0.2069
O.2074
0.3131
0.3090
0.3044
0.2007
0.2070
0.2075
Y DELYCAP
0.3360
0.3273
0.31C4
0.3103
0.3002
0.3096
0.3319
0.3251
0.317O
0.3111
0.3003
0.3099
0.3294
0.3236
0.3172
0.3113
0.3091
0.310O
0.3276
0.3225
0.3168
0.3114
0.3093
0.3101
-16.40
-14.53
-1 1.00
-8.02
-2.61
-0.97
-13.40
- 11 . 07
-9.71
-6.54
-2. 12
-0.79
- 1 1 . 70
-10.36
-O.43
-5.71
- 1 . C5
-0.60
-1O.55
-9.35
-7.65
-5. 15
-1.67
-0.62
DELL C(350)
-9.39 -o.rwco
— 0.02 — O.fDTSK)
-0.62 -0. 1C27
-4.30 -0. iriGO
-1.37 -0.0417
-0.50 -O.0150
-7.52 -0..'5010
-6.00 -0. !7«?
-[J.33 -0. J40ri
-3.33 -0. 1010
-1 . 12 -O.O^GO
-o.4i -o.oi no
-0.5O -O. 1759
-5.71 -O. 1567
-4.62 -0. 1204
-3.06 -o.oass
-o.o7 -o.or:o5
-0.36 -O.01 13
-5.02 -0. 1.134
-5. 12 -0. 141::
-4. 15 -0. 1 160
-a. 75 -0.0703
-O.C7T -0.0'V.;'.
-O.G2 -0.0102
P.RATTO
0.00^2
O. CfY2 1
0.0106
1 . 02 11
i . or,4 1
1 . 0075
0. ":"-~3
o . O2ao
o . o::o2
1.0 K27
1 . O272
i . or.oo
O.7'>60
0 . 3 :r>6
o.or.::i
i . oooo
1 . 0234
1 . OO52
0.7359
o. 3:~vi3
o.or-.T
1 . 0070
i.onio
1 . 0047
DF.LX
0.0203
O.OKG
0.0092
0.0010
-o.ooin
-0.0009
O.0103
0.0139
O.OO79
0.0013
-0.0014
-0.0007
0.0107
0 . 0 1 22
O.OO70
O.O017
-O.OO1 1
-o.oooo
O.013O
O.O1 10
0 . OO64
0 . 00 1 0
-0.0010
-o.ocoo
DELY
0 . 025 1
0.01 04
0 . 0074
-o.ooor>
— 0. OO.*27
-o . oo i ;i
0 . 02 \ 0
0.0 I42
0.0050
0 . OOO 1
-0.0021
-0.001 1
o.oi r,r>
0.0127
0.0003
O . 0003
-O.0013
-o.oooo
0.0107
0.0110
o.oooo
O . 0004
-0.0010
-0.0003
F,f LTJV) F,' L/
P3 . ? 4OO 1 0 . '
1 7 . <""7?. *?..<
ii.osrr', •'..:
5.O4!i.r; <• .r
2.^COr, \ .'
0.^0 if! r>.7
I9.ro:;i i :'..''
IA.707'i 1n.J
o . ::on:?. <-• . c
4.21 - /4 r'. . ',.
i . or» n . '.'•
3 . "'? i '* n . °
i . roo.T • . cv
0.017O o.'1
OBSERVER POSITION AT 1/2 O? A 22.5 DECIDE Will!) DIRECTION SECTOR FROM TMK PLUP7K CENTEnLHIE AT TTTR GIVEN DIPTATICr.
90. 0.03 166.1 10.22 53.74 70.33 0.3120 0.3263 -10.26 -5.05 -0.154:.: O.C037 O.O140 O.O15T
7''>•:•
K..
Exhibit A-6 (continued)
-------
VISUAL EFFECTS FOR NON-HORIZONTAL CLEAR SKY VIEWS THROUGH PLUME CENTER
K.CO riW POWER PLANT
DOWNWIND DISTANCE (KM) = 1.0
PLUME ALTITUDE « 392.
THETA ALPHA BETA RP YCAP L X Y DELYCAP
45.
DELL C< 550) BRATIO
DELK
DELY EC LUV) E< LAB)
01
00
90.
30.
30.
r*f».
r;o.
3O.
30.
45.
45.
45.
45.
45.
60.
60.
6O.
60.
6O.
60.
90.
90.
90.
90.
9O.
90.
30.
GO.
GO.
30.
30.
3O.
45.
45.
45.
45.
45.
45.
60.
60.
60.
60.
6O.
f»O.
90.
90.
fJO
*5O *
oo.
90.
15.
•'30.
A5 .
00.
73.
90.
15.
30.
45.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
43.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
3O.
45.
GO.
73.
90.
2.95
1.41
A . PR
O.f.O
O.44
O.G9
2. 10
1.04
0.63
0.42
0.39
1.73
0.08
0.6O
0.47
0.41
0.39
1.51
0.73
0.55
0.45
0.41
0.39
2.95
1.41
0.83
0.60
0.44
0.39
2. 10
1.O4
0.68
0.51
O.42
0.39
1.73
0.83
0.60
0.47
0.41
0.39
1.51
O.7O
0.55
0.45
0.41
O .39
70.49
64.55
**J. 37
(> 1 . G3
60. 04
60.69
64.85
36.92
T>4 . 02
52. Ol
51. Ol
61.75
52.68
49.34
47.78
47. 04
46.02
59.70
49.84
46.21
44.51
43 . 7 1
43.47
36.94
33. 12
31.71
31.04
30.72
30.62
34.75
29.73
27.87
27.00
26.59
26 . 46
33.59
27.85
25.73
24.74
24.27
24. 12
32.82
26. 6O
24.30
23.22
22.71
22. se
87.25
84.26
f*l . **J
C2.'G7
82.31
02.23
G/K4.2
CO. 16
73.49
77.30
77. 19
02.00
77.70
75 . 63
74.71
74.24
74. 1O
81.69
75.99
73.71
72.59
72.06
71 .90
67.26
64.29
63. 13
62.57
62.30
62.22
65.53
61.45
59.81
59.01
58.62
53.51
64.66
59.79
57.81
56.85
56.39
56.25
64. 05
5O.64
50.42
55.33
04.01
G4.O5
0.3297
0.3339
*». ?*?**> 1
0 . :.J074
0.3001
0.0333
0 . 0204
O.0251
0.0230
0.3005
0.3308
0.3145
0.3194
0.3228
0.3247
O.3257
0.3261
0.3103
O.3102
0.3139
0.3210
0.3222
0.3225
0.3110
0.3153
0.3178
0.3192
0.3200
0.3202
0.3018
0.3062
0.3092
0.3110
0.3120
0.3122
0.2961
0.3004
0.3038
O.305B
O.3069
O.0072
O . 2920
O.2962
O.299O
O . 3O2O
0.3031
0.3033
0.3406
0.3434
n . ft**?'*
0. 0 462
0.04-68
0 . 0470
0.0721
O.3048
0.0? 70
0.3390
0.3393
0.3264
0.329O
0.0316
0.3032
0.3040
O.G043
0.0223
O.3248
0.3276
0.3293
0.3003
0.3306
S
0.3217
O.0245
0.3264
0.3276
0.3233
0.3285
0.3129
0.3152
0.3174
0.3139
0.3197
0.3199
O.G072
0.3091
0.3116
O.3132
0.3141
0.3144
O.003O
0.3O46
O.3O72
O.3O9O
O.31O0
O. 3 1O4
28.89
40.35
A.A, . J*O
46.;; 7
47. 30
47 . 77
20 . 2 *
02.72
36.2!
38.67
38.90
20. 13
28.48
31.57
33.02
33.70
33.91
18. 10
23.64
28.44
29.75
30.37
30.50
10.60
17.73
20.39
21.64
22.22
22.39
8.42
14.34
16.56
17.60
18.09
18.23
7.23
12.46
14.41
15.33
15.77
15. 09
6.49
1 1.21
12.93
13. Ol
14.21
14.33
16.63
27.94
nn . ?!6
07.23
39.00
39.55
13. 39
20. C3
29 . 23
33 99
34.31
12. 18
21.38
26.42
29.36
30.93
31.42
11.07
19.67
24.45
27.25
23.75
29.22
8.87
18.09
22.98
25.73
27.25
27.72
7.20
15.25
19.66
22.21
23.58
24.01
6.28
13.59
17.67
20.06
21.34
2i .75
5.66
12.44
16.27
1O.34
19.76
20. i a
0.6097
i , oonn
2 . n f 90
0. I5O2
0.5054
3.7041
0.5558
1 .05O6
2 . 0332
2.89O3
3.0121
O.4O22
1. 1751
1.7743
2.2353
2.5231
2.6239
0.4333
1 . O373
1.5901
2.0134
2 . 2747
2.G03C5
0.3931
1. 1400
1 . 7373
2.2344
2.5901
2.7022
0.3129
0 . 9222
I . 4499
1.8353
2. 1104
2. 1974
O . 270O
0.0014
1.2617
1.6156
1 . 8302
1 .9142
0.2413
O . 72O9
1 . 13OO
1 .4551
I . r>!>r.<>
1 . 7244
1% , f*f^f*^
'.). .»<<•.»
O. 1472
0. 1379
O. 1004
0. 1021
0.2747
O. 199H
0. 1704
O. t!7SO
0. 1309
0 . GO30
O . .1239
O. 1930
0. 17C"
0. 1720
0. 1700
0.0330
O . 2409
0.2093
O. 1902
0. 1O34
O. 103 1
O.2031
0. 1954
0. 1710
0. 1002
0. 1343
0. 1532
0.31CO
0.2301
0.2020
0. 1C34
0. 1010
0. 1795
0.3334
0.2016
0.2263
0.2O94
0.2014
O. 199O
O.OG31
0 . 2G43
O.245G
0 . 22<»6
O . 2 1 74
O. 2147
O . f^ .**•*>
O.O.H12
o. 030 i
o.o::.3o
O . O393
O.0902
0.0390
O . O724
0.070'J
0.0320
0.0327
0 . 0307
0.0007
0 . 0727
O.O739
O.O774
O.0779
0. 0405
O.O023
0 . OOC3
O.O722
0.0739
O . O744
0.0012
0.0731
0.07C1
O.0300
O.O319
0.0323
O.O320
O . O040
0.0093
0.0724
0.0739
0.0743
O.O403
0.0582
O.O041
0 . 0672
0.0033
O.O693
O . O422
O.OS4O
O.O6OI
O.O334
O. O">5 1
O.OGGG
0.O090 5*"! . ^ 10 ^.3 . r^rlj>
O.O340 57.0464 OCI.'^O'.O
O.O903 53.602'; 46 . P479
O.O904 5'>.r.743 4G.6411
O.O9^9 59.6157 49 . 77O 1
O.O9r»4 59.7'?21 30. '-','44
O . OO 1 1 46 . 27 1 4 00 . 3447
0 . 0759 4° . O 5 ! 4 00 - 07r.f»
o . or/.io 50 . 9?oo 4° . 06^0
" 0. 0372' 5 I . 9i"^n.r> 40.4321
O.OC-70 52.1037 40.790O
0.0354 41. 4302 27 . 26 1 7
O.O7O2 43.O40.D GG.O'^O
0.07^9 40.0193 00.62T'7
0.030} 47.0'X-'.; C0.r,776
O.O321 47.4U9 GO. 002.0
0.0327 47.3'170 09.9604
0.0313 33.G.T99 24.934O
O.OOC9 4<.0'>G3 00.7734
0.0729 40.0124 00. 90 CO
0.0760 40.7033 On^OO^
0.0734 44. 1O07 00.9293
0.0790 44.3JC~> 07.27)9^
0.0650 40.2775 2C.4I36
0.0709 41.2020 00.9lfiO
0.0300 41.2142 3G.039O
0.0391 41.2702 34.Cf.43
O.O906 41.3753 35 . 7O24
0 . 09 1 1 41. 420 :> 35 . 9 VP-0
0.0502 34.4105 22.4531
0.0700 35.3470 20.4071
0.0770 35.4254 20.7207
0.0303 33.5494 30.1464
0.032O 35.0003 30.9077
0 . 0323 35.7103 31.1 924
0.0503 30.7205 19.'?924
0.0045 31.7202 20.7133
O.0711 31.9236 25.9219
0.0747 32. 1 f37 27.3O27
0.0703 32.2020 23.0712
O.O77O 02. O 171 2:;.0 I
O.OOOO 20. I64O ,'>l.rOJ3
0.OG63 29 . 46O3 23.9<"5
O.07O5 29.Z-72I 2I».2°.jr'*-
O.O724 20.P734 2rt .'•>"'•'•
O - 0731 2O . 'J.'lfiO CO . I?'/1.'. '"
-------
VISUAL EFFECTS FOH !?OW-IIORIZ0NTAL CLEAR SKY VIEWS THROUGH PLUME CENTER
1600 MV POWER PLAWT
DOWNWIND DISTANCE (KM)
PLUNE ALTITUDE (M)
TIIETA
133.
tn
vo
ALPHA
30.
39.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
eo.
60.
60.
6O.
60.
60.
90.
90.
9O.
9O.
90.
9O.
BETA
15.
30.
45.
60.
75.
90.
15.
30.
1-5.
60.
75.
90.
!5.
30.
45.
60.
75.
90.
15.
30.
45.
6O.
75.
9O.
1.
392
RP
2.95
1.41
0.03
0.60
0.44
0.39
2. 10
1.04
0.68
0.51
0.42
0.39
1.73
0.03
0.60
0.47
0.41
0.39
1.51
0.7O
0.55
0.45
0.41
0.39
0
•
YCAP
36. 68
32. 19
30.53
29.74
29.36
29.24
35.24
29.40
27.23
26. 2 1
25.73
25.59
34.52
27.07
25.40
24.24
23.69
23.53
34.06
26.05
24. 1Q
22.92
22.33
22. 15
L
67.07
63.53
62. 14
61.46
61. 13
61.03
65.96
61. 16
59.22
58.27
57.O1
57.60
65.40
59.00
57.50
56.36
55.01
55.65
65.04
5O.07
56.30
55.03
54.41
54.22
X
0.3064
0.3112
0.3141
0.3159
0.3168
0.3171
0.2968
0.3014
0.3048
0.3068
0.3079
0.3003
0.2909
0.2952
0.29O9
0.3011
0.3023
0.3027
0 . 20f>9
O.2909
0.2946
O.2969
O.2932
0 . 2937
Y
0.3199
0.3232
0.3256
0.3271
0.3200
0.3203
0.3105
0.3129
0.3156
0.3173
0.3103
0.3106
0.3045
0.3062
0.3090
0.31 1O
0.3120
0.3124
O . 300 1
0.3014
0.3043
0.3063
0.3074
0.0078
DELYCAP
6. 19
14.34
17.39
18.02
19.48
19.68
4.73
11.54
14.09
15.29
15.85
16.02
4.03
10.01
12.25
13.31
13. Ol
13.96
3.57
0.99
11.03
11.99
12.43
12.50
DELL
4.96
14.17
19. 12
21.96
23.46
23.93
3.06
1 l.OO
16.20
10.77
20. 15
20. 5O
3.29
1O.44
14.48
16.06
18. 15
18.55
2.93
9.51
13.28
15.53
16.74
17. 13
CC550)
0.2202
0.0360
1.3096
1 . 7790
2.0350
2. 1229
0. 1714
0 . 673U
1. 1094
1 . 4442
1.6546
1 .7263
O. 1463
0.5O47
O.9649
1 . 2,172
1 . 44 1 1
1 . 5033
O. 13O2
0.5206
0.3605
1. 1322
1.2981
1.3343
DRAT I O
0.2777
0.2000
O. 1739
0. 1617
0. 1550
O. !f.40
0 . 032 1
0.2420
0.2090
0. 1933
0. ior,a
0 . 1 330
0.3727
0.2739
0.2356
0.2171
O . 2O32
0.2035
O . 4040
O.2097
0 . 2f>73
0.1*363
0.2204
O.2233
DELX
0.0586
0.0711
O.O765
0.0793
O.0007
0.0O12
0.0491
O.O613
0.0671
0.0703
O.0719
0 . 0724
0 . O432
O.O33I
O.0612
0.0645
0.0663
O.0068
0 . 039 I
O . 0507
O.O569
O.OOO4
0.0622
O.0627
DELY E( LUV)
0.0647 42. 1500
0.0R03 42.4001
0.0369 41.7653
0.0?03 41.4^62
0.0920 41.3573
0.0926 41.341 I
O.0553 35.9700
0.07CO 36.20.14
0.0760 35.7002
O.OOO5 35.5462
O.0i323 35.477O
0.0329 35.4639
0.0493 32.O230
0.0033 32.3733
0.07O3 32. 1O05
O.0741 31.9C':a
0.0761 31.9r.02
0.0767 31.9573
0.0449 29.2005
O.0585 29.6000
0.0055 29.1.210
O.0095 29.4777
0.0715 29.4G97
0.0721 29.5002
E( LAB)
26 . 6694
GO. 177)
32. 14O4
3 3. 4023
34. '252
34. "027
22.65 '39
2.1 . OC73
0*7 r:'*/'sri
2?.. 7 124
20 .3^12
29 . o i :; i
2O. 12 "3
22. 94 10
24. 721O
~.i . H34 1
26.5403
20 . 70 1 0
lO.3:):il
21.0121
22.7023
23 . B9.10
24.546O
24 . 7570
Exhibit A-6 (continued)
-------
PLUME VISUAL EFFECTS FOR HORIZONTAL VIEWS
PERPENDICULAR TO THE PLUTIE OF WHITE, GRAY, AND
Ftm VARIOUS OBSERVER-PLUME AND OBSERVER-OBJECT
16O0 MW POWER PLANT
BLACK OBJECTS
DISTANCES
DOWNWIND
TIIETA =
REFLECT
.0
.0
.O
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.O
.0
.0
.0
.0
.O
0.3
O.3
0.3
0.3
0.3
0.3
O.3
0.3
0.3
0.3
DISTANCE (KM) =
45.
PJVRV0
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
O. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
RO/RVO
O.02
0.05
0. 10
0.20
0.50
o.co
0.05
0. 10
0.20
0.50
0.00
0. 10
O.2O
0.50
0.00
0.20
0.50
0.00
0.50
0.00
O.CO
0.02
0.05
0. 10
0.20
0.50
0.00
0.05
0. 10
0.20
O.50
1.0
YCAP
94.59
92.56
93.26
94.29
95.71
96. 13
93.90
94.37
95.40
96.82
97.24
97.74
96.95
98.38
98.80
100.43
100.65
101.07
104. 14
104.20
105.24
47.34
61.00
67. 19
76.45
89.86
94. 16
53.82
68.30
77.56
90.97
L
97.87
97.05
97.34
97.75
93.32
98.49
98.40
97.78
98. 19
98.76
98.93
99. 12
98.81
99.37
99.53
100. 17
100.25
100.41
101.50
191.60
101.99
74.43
82.39
85.61
90.08
95.94
97.70
78.37
86. 17
90.59
96.40
X
0.3376
O.3405
0 . 33O9
0.3370
0.3355
0.3355
0.3339
0.3355
0.3537
0.3324
0 . 3323
0.3295
0.3290
0 . 3285
0.3285
0.3245
0.3241^"
0.3241
0.3208
0.3207
0.3206
0.3280
0.3293
0.3259
0 . 3243
0.3288
0.3325
0.3186
0.3218
0.3208
0.3256
Y DELYCAP
0.3479
0.3504
O.3488
0.3472
0.3463
0.3464
0.3436
0.3449
0.3433
0 . 3425
O.3427
0.3387
0 , 3388
0.3381
0.3383
0.3337
0.3335
0.3337
0.3309
0.3309
O.3312
0.3368
0.3386
0.3363
0 . 3364
0 . 3420
0.3450
0 . 3275
0.3314
0.3321
0.3381
-3.42
-6.06
-6.94
-7.77
-8.92
-9.26
-3.02
-5.83
-6.67
-7.81
-8. 15-
-2.45
-5.11
-6.25
-6.59
-1.63
-3.98
-4.32
-0.49
-1. 19
-O. 15
12.38
18.21
13.30
6.00
-4.47
-7.77
11.03
14.41
7. 10
-3.36
DELL
-1.36
-2.53
-2.74
-3.04
-3.44
-3.56
-1. 19
-2.29
-2.60
-3.00
-3. 12
-0.95
-1.98
-2.39
-2.51
-0.62
-1.51
-1.63
-0. 18
-0.45
-O.06
8.68
10.96
7. (20
2.85
-1.82
-3.04
6.94
7.75
3.36
-1.37
CC550)
-0 . O329
-0.0609
-0.0656
-0.0724
-0.0818
-0.0846
-0.029O
-0.0556
-0.0026
-0.0722
-0.0751
-O.O235
-0.0485
-0.0535
-0.0615
-O.O156
-0.0379
-0 . 04 1 1
-0.0047
-0.0116
-0.0014
0.3527
0.4257
0.2475
0.0861
-0.0463
-0 . O745
0.2561
0.2661
0. 1003
-0.0357
BRAT 10
0.9325
0.85O1
0 . 0266
0.7992
0.7853
0.7852
0.9506
O.O92?
0.8606
0 . 0440
O . O439
O.9799
0.9306
0.9111
0.9108
O.99O9
0.9771
0.9767
1 . OO50
1 . 0035
1 . 0027
0.O640
O.6765
0.6309
0.6387
0.7124
0.7517
0.0327
0 . 6»77
0.6396
0.7650
DELX
0.0057
0.0109
0.0122
0.0137
0.0147
0.0148
0 . OO44
0.0009
0.0104
0.0115
0.0116
0.002O
0.0064
O . 0077
0.0070
0.0012
0.0033
0 . 0034
-0.0001
-O.OOOO
-O.O001
0 . 0035
0.0206
0.0240
0.0238
0.0192
0.0166
0.0098
0.0199
0.0202
0.0100
DELY
0.0057
0.0109
0.0125
O.O142
O.O152
0.0151
O.OO42
0.0006
O.O104
0.0114
O.O1 14
0.0025
0.0059
O.O070
0.0070
O.OOOO
O . 0024
0.0024
-0.0002
-O.OOO3
-0 . 000 I
0.0074
0.019O
0.0237
O.0236
0.0186
0.0103
0 . 0038
0.0108
0.0193
0.0147
EC LUV)
5 . 3636
1O.2366
1 1 . 7232
13.4232
14.091'»
14.7432
4. 1092
C.4374
10.2216
1 1 . 5U97
1 1.0O94
2.7330
6 . HU2.J
7.7096
7.7936
1.2171
3 . 4023
3.5251
0.2213
0. 5224
0. 1 105
9 . C935
17.0403
19.5151
20.5171
18.O244
16.0398
9.01 14
16.4100
17.2344
14.O472
E(LAB)
3 . 04r$2
6.9344
7 . 9 1 40
0.9 am
9 . 77,'K,
9 . Q220
2.0093
5 . 7OOO
6 . 3'K»2
7.4'TJ
7.0999
l.n:535
4. 2LiO<>
5. '077
5 . 1 fi')6
o . rvroo
2.0413
2 . 447H
0 . 2004
O.4')2C
0 . OJi27
Exhibit A-6 (continued)
-------
0.3
0.3
0.3
0.3
0.3 '
O.3
0.3
0.3
0.3
O.3
0.3
0.0
0.0
O.0
0.0
0.0
O.O
0.0
O.O
O.O
0.0 '
0.0
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.30
0.80
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.80
0.00
0. 10
0 - 20
0.50
0.00
0.20
0.50
0.30
O.50
0.80
0.80
0.02
0.05
0. 10
0.2v>
0.50
0.80
0.05
0. 10
0.20
0.50
o.ao
0. 10
0.20
0.50
0.80
0.20
0.50
O.80
0.50
0.00
O.80
95.27
03.01
79. 12
92.53
96.03
76.69
94.80
99. 10
96.30
102.22
102.62
27.09
47.47
56.02
08.81
87.36
93.31
33.78
57. 13
69.92
80.47
94.42
48. 12
71.47
90.03
95.98
66.52
92.30
98.25
93.06
101.08
101.50
90. 14
03.46
91.30
97.04
90.76
90. 19
97.96
99.65
90.59
100.85
101.00
59.09
74.51
79.64
86.42
94.90
97.36
66.38
00.27
86 . 97
95 = 36
97.80
74.92
87.73
96.01
93.43
C5.28
96.95
99.32
97.23
100.53
100.50
O.C293
0.31 10
0.3165
0.3217
0.3235
0.3071
0.3174
0.3212
0.3122
0.3178
0.3169
O.3147
0.3206
0.3172
0.3172
0.3256
0.3312
0.3027
O.3128
0.3136
O.3224
O.3200
0.2964
0 . 3092
0 . 3 1 06
0.3242
0.2967
0.3143
O.3199
0.3001
0.3166
0.3153
0.3412
0.0203
0.3271
0.0336
0.3368
0.3102
0.3290
0.3322
0.3250
0.3294
0.3292
O.3216
0.3293
O.3279
0.3303
0 . 3-100
0 . 3444
0.3107
0 . 0223
0 . 3258
0.3361
0.3406
0 . 3062
0.0207
0.0316
0.0361
O . 3089
0.0269
0.';3I3
0.0223
0 . 0208
0.0284
-6.66
9. 11
8.66
-1.80
-5. 10
6.24
0.47
-2.03
2.05
0.30
0.69
19. 13
20.74
21.97
1 1.90
-2.56
-7. 13
17.05
23.00
13. Ol
-1.45
-6. 02
14.07
14.56
0. 10
-4.47
9.61
2. 38
-2. 19
3. 14
0.93
1.06
-2.60 -0.0647
5.04 0. 1609
4.06 0.1206
-0.73 -0.0205
-1.90 -0.0507
2.96 O.OG61
0.19 0.0021
-1.09 -0.0207
O.02 0.0193
0.1 I 0.0006
0.26 0.0007
23. JO 2.3r.31
24. 11 1.5208
14.61 0.6391
6 . 27 0 . 2066
-1.07 -0.0287
-2.O1 -0.O700
13.90 O.O977
13.24 O.6603
6 . O2 0 . 224 1
-O.61 -O.O 176
-2.37 -O.O601
9.O9 O.4051
7.5O 0.2491
O.04 -O.O01D
-1 .73 -O.O459
5. 13 0. 1634
0.90 0.0219
-O.O5 -O.O246
1.29 O.0319
0.36 0.0O61
O . 4 1 0 . 0009
0 . 007O
o . oooo
0 . 7'!-72
0.0230
0 . K7 1 6
0 . 0773
O.CO32
0.9043
0.9 433
0.9639
0.9769
O.341T,
0.334o
O.41 1O
O.3I76
0.6742
O . 736 1
0.4706
0.4500
O.5594
O . 7244
0.7909
O.6I9O
0.6065
0.7O14
0.0532
0 . 74
9.2720
o.r>.",73
5 . r.'>70
3. MTO;)
'2 . 4.'2 1 0
1 . 0:?r>2
o.2"»r>
6. irm
o.rr, ;n
6 . 59,1-1
5 . 7 1 .; i
4.0090
3.9125
2.9019
1 . 400 1
0.9.1555
0.552O
27.0;>21
20.9U'?fl
22. 07 1 6
10.0152
12. 1242
10.6424
IO. 1540
2O.6H22
14.976O
1 0 . O 1 0 1
8 . 5 1 72
1 1 .OH 17
13.0994
7 . 5405
5.')') 15
6 . 0034
5.0LT5 !
3.2"-°-*i
2. l^~>'\
1 .T074
o.n:n<>
Exhibit A-6 (continued)
-------
ro
PLUTO VISUAL EFFECTS FOR HORIZONTAL VIEWS
PERPENDTULAR TO THE PLUHE OF WHITE, GRAY, AND
FOR VARIOUS OBSERVER-PLUriE AND OBSERVER-OBJECT
1600 NW POWER PLANT
BLACK OBJECTS
DISTANCES
DOWNWIND
TIIETA =
REFLECT
.0
.0
.0
.O
.0
.0
.0
.0
.0
.0
.O
.0
.0
.0
.0
.0
.0
.0
.0
.0
.O
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
DISTANCE (KTI) =
90.
RP>RVO
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
RO/RVO
0.02
0.05
0. 10
0.20
0.50
0.8O
0.05
0. 10
0.20
0.50
0.80
0. 10
0.20
0.50
0.80
0.20
0.50
0.80
0.50
0.80
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
0.05
0. 10
0.20
0.50
0.00
0. 10
0.20
0.50
0.80
0.20
0.50
0.80
O.SO
1.0
YCAP
81.48
69.59
66.57
62.02
55.29
53.07
79. 18
67.46
62.91
56. 18
53.96
75.88
64. 16
57.43
55.21
70.07
59.27
57.05
63.39
59.59
60.08
34.24
30.02
40.50
44. 18
49.45
51. 10
37.09
41.39
45.07
50.34
51.99
41. 14
46.32
51.59
53.24
47. 13
53.42
55.07
55.63
•
L X Y DELYCAP DELL C(55O) BRATIO DELX DELY E(LUV) E(LAB)
92.35 0.3374 0.3478 -13.10 -5.51 -0.1371 0.9O43 0.0039 0.0042 6.4764 5.9714
86.81 0.3393 0.3409 -21.24 -9.54 -0.232O 0.9O03 O.0063 0.0068 10.0764 10. 1O14
35.30 0.3379 O.3467 -1O.O9 -O.79 -O.2191 0.9632 0.0064 O.O073 10.306O 9.5733
82.94 0.3348 0.3423 -15.36 -7.57 -0.1962 0.9349 O.0071 O.OOO6 10.O466 B.O164
79.23 0.3260 0.3340 -10.19 -5.52 -0.1530 0.0752 0.0104 0.0126 11.3230 0. 5.1 -1-0
77.94 0.3211 O.3306 -8.51 -4.77 -0.1363 0,8395 0.0127 O.O146 12.6KI1 O.9102
91.32 0.3351 0.3443 -11.64 -5.02-0.1271 .0230 0.0021 0.0022 5.3320 5.1505
05.75 0.3345 0.3426 -10.00 -O.34 -0.2091 .0444 O.0030 0.0032 O.7302 0.5103
03.41 0.3312 0.3302 -14.40 -7. 10 -0. 1O52 .0129 0.0035 0.0044 7.9445 7.5013
79.73 0.3224 0.3296 -9.30 -5.01 -0.1400 0.9471 0.0067 O.0002 O.4224 6.GO73
70.46 0.3175 0.3262 -7.62 -4.25 -0.1225 O.90O1 O.OO91 0.O1O2 9.5,149 6.O047
89.81 0.3314 O.3391 -9.58 -4.27-0.1112 .0633-0.0001 -0.0003 4.2755 4.2748
04.06 0.3269 0.3333 -13.22 -6.44-0.1695 . 1010 -0.0007 -O.OO05 6.4547 6.4473
00.44 0.3101 0.3246 -8.05 -4.31 -0.1214 .0279 O.0024 0.0032 5.2745 4.7361
79.18 0.3133 0.3212 -6.37 -3.52-0.1028 0.9O43 O.0048 0.O051 5.9703 4.62O3
87.43 O.3250 0.3312 -6.51 -3.07 -0.0833 .0932 -O.O027 -0.0027 3.7022 3.3460
81.45 0.3134 0.3196 -6.22 -3.29-0.0935 .1045-0.0023-0.0018 3.49OO 3.3601
GO. 22 0.3087 0.3162 -4.53 -2.48 -O.0732 .0568 0.0002 0.0002 2.5959 2.51<79
83.66 0.3126 O.3191 -2.10 -1.09 -0.0304 .0709 -0.003O -0.0023 2.3093 1.67,10
O1.63 0.3056 0.3138 -1.99 -1.07-0.0307 .0011 -0.0029-0.0022 2.2020 1.5642
O2.33 0.3069^0.3151 -0.70 -0.37 -0.0100 .0389 -0.0015 -0.0009 1.1194 0.716O
65.18 0.3242 0.3326 2.70 2.19 0.0828 1.0371 0.0013 0.0006 2.2660 2.2227
68.06 0.3211 0.3293 3.33 2.53 0.0931 0.0967 0.0089 0.0092 6.O022 4.4790
69.05 0.3166 0.3254 1.34 0.96 0.0331 0.0006 0.0140 0.0153 10.0340 6.6111
72.37 0.3129 0.3230 -1.60 -1.05 -0.0350 0.7532 0.0171 0.0188 13.7197 O.703O
75.75 0.3134 O.3254 -5.74 -3.42-0.1043 0.7641 0.0167 0.0179 14.O775 9.030O
76.76 0.3155 0.3276 -7.02 -4.06-0.1211 0.7820 0.0156 0.0165 14.2437 9.45)10
67.38 0.3144 0.3218 2.41 1.84 0.0669 1.0002 0.0022 0.0017 2.0309 1.9477
70.47 0.3122 0.3199 2.23 1.50 0.0547 0.3781 0.0095 0.0098 6.6355 4.4402
72.96 0.3090 0.3181 -0.71 -0.46 -0.0163 0.8181 0.0132 0.0139 10.3703 6.5137
76.30 0.3099 0.3209 -4.85 -2.07 -0.0090 0.0259 0.0132 0.0134 11.7125 7.3313
77.29 0.3119 0.3232 -6.13 -3.53-0.1066 0.0452 0.0120 0.0121 11.1334 7.3722
70.30 0.3051 0.3122 1.99 1.41 0.0408 0.9803 0.0025 0.0021 1.9030 1.6226
73.78 0.3044 0.3126 0.55 0.35 0.0099 0.0099 0.0086 O.OOC4 6.4469 3.9733
77.05 0.3057 0.3159 -3.60 -2.11 -0.0672 0.0945 0.0090 0.0003 7.93G3 5.0330
78.04 0.3078 0.3181 -4.88 -2.79 -0.0059 0.9155 0.0079 0.0070 7.4294 4.9317
74.30 0.2980 0.3060 1.36 0.87 0.0282 0.9746 0.0022 O.OOI8 1.5230 1.1367
78.14 0.3012 0.3109 -1.77 -1.03 -0.0345 0.9577 0.0045 0.0033 3.0110 2.3448
79.10 O.3033 0.3132 -3.O5 -1.72 -0.0549 O.9006 0.0034 O.0021 3.4202 2.3947
79.42 O.2976 O.30O2 O.44 0.25 O.OO72 O.9039 O.OO10 O.O006 0.6071 O.44O1
Exhibit A-6 (continued)
-------
CO
0.3
O.3
0.0
0.0
0.0
0.0
0.0
0.0
O.O
O.O
0.0
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
o.o
o.o
0.50
O.80
"0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 1O
0.20
0.20
0.2O
0.00
0.50
0.89
o.ao
0.30
0.02
0.05
0. 10
0.20
0.50
0.00
0.05
0. 10
0.20
0.50
0.30
0. 10
0.20
0.50
0.00
0.20
o.r>o
0.30
0.50
0.00
0.80
57.62
53.27
13.99
24.49
29.33
36.54
46 . 94
50.25
19.06
30.22
37.43
47.03
51. 14
26.25
3O.68
49.0O
52.39
36.96
50.92
54.23
52.31
56.77
57. 15
01.54
CO . 9 1
4-1.23
56.61
61. 10
66.96
74. 1O
76.24
50.79
6 1 . 87
67 . 62
74.74
76.79
53.31
63.54
75.52
77.54
67.27
70.65
73.61
77.49
CO. 07
CO. 2O
0.3004
0.3003
0.2955
0.3015
0.2902
0.2905
0.3073
0.3129
0.2035
0.2934
0 . 2946
0,3030
0.3094
O.2778
0.2901
0.2997
0.3053
0.2736
0.2954
O.3009
0.29O3
0.29OI
0.2973
O.3109
0.3113
O.2999
0.3003
0.3071
0.3101
0.32!3
0.3263
0.2334
0.3009
0.3050
0.3160
0,3218
0 . 2043
0.2994
0.31 17
0.3I6O
0 . 2379
O.C067
0.3! 10
0.3029
O.G097
0.3096
-O.IiO
0. 15
9.47
13.06
10.01
4.31
-3.04
-6.3O
0.43
10.90
5.20
-2.95
-5.49
6.94
6.45
-1 .69
-4,24
4.73
0. 14
-2.41
1.53
0. 14
0.51
-O.28
0 . 03
13.91
1 ! . 62
10.01
3.39
-2.39
-3.75
1 1.00
10. 7O
4.06
-1.02
-3.21
7.22
4.98
-1 .04
-2.46
3.71
O.09
-1 .30
O.92
0.08
O.29
-0.
0.
2 .
7!
0.
0.
-0.
-0.
0.
O.
0.
-0.
-0.
0.
0.
-0.
-0.
0.
-0.
-0.
0.
-0.
0.
0101
0021
0'-27
2331
0007
1200
0779
1 142
7770
5525
1550
0614
0993
350f.
IO22
037O
0702
1415
0020
0464
0270
0007
O077
O.9997
0. ^93:1
o. r'.'i'i i
>O.'?04 !•
0.434-J
0.04O,')
0.0932
0.7022
o.oo2
0.0*39
0.0405
0 . 0-T 1 4
o . 0200
0.0174
0 . 029 1
0 . O344
0.0203
0.0103
0.0130
0.017O
0 . 0207
0.01 12
0.0079
O.O092
O.0003
o.o^io
O . O024
0.0003
O.OOO3
0.57^0
0 . 27'/3
D . 7^23
23. 00 m
21. "037
2O.O'.27
I7.or,3i
5 . OvO'i
3.7719
3. f/003
7.U309
3.0003
1 . 90O9
9.772)
13. '"no
10. 1712
3. 22^9
6 . C^°3
o. rw>9
4. 3O,"i">
2. .'^oo:)
1 . 4972
O.91.JO
O.43J3
0. 1727
19.9^00
21.0013
1 0 . 2222
13. 1 I 19
1O.61.V)
9. 7014
13.0794
14 . orroni
1 1 . 20" I
O.3007
7. 0rj
5. 2^? 7
4. 0'V20
3.37.14
2 . <->:''"2
1 . orX'5
O.C705
O.5791
Exhibit A-6 (continued)
-------
PLUTCE VISUAL EFFECTS FOR HORIZONTAL VIEVS
PERPENDICULAR TO TIR PLUTIE OF WHITE, GRAY, AND
FOR VARIOUS O3SV.JIVER-PLUME AND OHSERVER-OBJECT
16OO MW POWER PLANT
BLACK OBJECTS
DISTANCES
DOWNWIND
TlfETA =
REFLECT
.0
.0
.O
.0
.O
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.O
.0
.0
.0
.0
0.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
DISTANCE
135.
RPXRVO i
0.02
O.O2
0.02
0.02
O.O2
0.02
0.03
O.05
0.05
O.05
0.05
O. 10
0. 10
O. 10
0. 10
O.20
0.20
0.20
0.50
0.50
O.80
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
(KPI) =
io/nvo
0.O2
O.O3
0. 10
0.20
O.50
O.OO
0.O5
0. 10
0.20
0.50
O.GO
0. 1O
0.20
0.5O
0.00
0.20
0.50
0.00
O.50
0.00
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
0.05
0. 10
0.20
0.50
0.00
O. 10
0.20
0.50
0.00
0.20
1.0
YCAP
Ol. 19
69.08
66.40
62.36
56.35
54.35
79.40
67.61
63.57
57.56
55.56
76.02
65.27
59.26
57.25
72. 07
61.75
59.75
66. 09
63.23
64. O4
33.94
37.51
40 . 33
44.52
50.51
52.38
37.31
41.54
45.73
51.71
53.58
42.08
47.43
53.4!
55.28
49, 13
L X Y DELYCAP DELL C(55O) BRATIO DELX DELY E(LUV) E( LAB)
92.22 0.3366 0.3473 -13.72 -5. 78 -0.1401 0.9067 0.0O37 0.O044 6.7125 6.2337
06.55 O.3376 0.G400 -22.52 - 10. 10 -0. 23O5 O.9787 O.OO62 O.OO75 11.5595 1O.C259
05.21 O.3354 0.3452 -20.45 -9.47 -0.2277 0.9344 O.0007 O.OO84 11.4515 10.4574
03.12 0.3312 0.3403 -17.34 -8.44-0.2090 0.92->6 0.0079 0.0103 11.6740 10.0645
79. O3 O.3217 0.3319 -12.73 -6.73-0.1753 O.G626 0.0113 O.0142 13.4221 1O. 1356
70.68 0.3169 0.3288 -11.22 -6.11 -0.1627 O.O3O7 O.0134 O.O139 14.0O36 10.4296
91.42 O.3331 O.3426 -12.20 -5.24-0.1292 .0239 0.0O17 0.0021 5.5011 5.36IO
05.02 0.3313 0.3402 -19.25 . -O.06 -0.2148 .0473 O.0026 0.0035 9.3039 9.0725
83.75 0.3270 0.3353 -16.13 -7. OO -0.1950 .0030 0.0037 O.OO52 8.9701 Q.36O4
80.51 0.3175 0.3268 -11.53 -6.05 -0.1591 O.9424 0.0072 0.0091 9.9533 7.9154
79.38 0.3128 0.3236 -10.01 -5.41 -0.1457 O.907O O.OO93 O.OIOO 10.9G99 O.O770
90.25 0.3280 0.3362 -10.04 -4.44-0.1121 .0706 -O. 0007 -0.0006 4.4553 4.4426
84.63 0.3221 O.3296 -14.43 -6.92-0.1749 . 1057 -0. 0012 -O. 0004 6.9502 6.9370
81.45 0.3127 0.3211 -9.O3 -5.11 -0. 136O .0310 0.0024 O.0034 6.2241 5.5902
O0.34 0.3000 0.3100 -8.31 -4.45 -0.1215 O.9912 0.0046 0.0051 6.8533 5 . 46G7
00.40 0.3202 0.3271 -6.O2 -3. 16 -O.OO27 .099O -O.0032 -O.O029 3.9444 3.4361
O2. C9 0.3076 0.3156 -7.33 -3.76 -0.1015 .1127 -0.0027 -0.0020 3.9730 3.8*31
81.72 0.3031 0.3125 -5.82 -3.07 -0.0852 .0679 -0.0004 -O.0003 3.1271 3.O355
85.46 0.3072 0.3153 -2.20 -1.10-0.0294 .O727 -0.0032 -O.OO24 2.5O72 1.72O1
83.58 0.3003 0.3104 -2.34 -1.21 -0.0329 .0870 -0.0032 -0.0024 2.4369 1.7533
84.41 0.3019 0.3119 -O.73 -O. 38 -0.0095 .0393 -O.OO16 -O.O009 1.1563 O.7323
64.95 0.3221^0.3313 2.08 1.69 0.0715 .0389 0.0011 0.0012 1.7652 1.7239
67.68 0.31OO 0.3276 2.05 1.53 0.06C9 O.O91O 0.0039 0.0105 6.3379 4.4932
69.73 0.3128 0.3231 -0.22 -0.15 0.0054 0.7943 0.0143 0.0168 11.1302 7.2950
72.60 0.3086 0.3203 -3.57 -2.30 -0.0646 0.7484 0.0174 0.0202 15.2030 9.8355
76.40 0.3090 0.3234 -8.28 -4.79 -0.1335 O.7604 0.0170 0.019O 16.6OO7 10.9304
77.52 0.3112 O.3259 -9.73 -5.46 -0.1499 0.7782 0.0159 0.0177 16.0590 10.0433
67.54 0.3107 0.3109 1.85 1.41 0.0571 1.0052 O.0017 O.O018 1.6548 1.5296
70.58 0.3076 0.3167 0.99 0.69 0.0329 0.0019 0.0091 0.0104 6.O920 4.4992
73.39 0.3041 0*3148 -2.36 -1.51 -0.0414 O.O2O8 O.0129 0.0145 11.2330 7.1203
77.13 0.3050 0.3102 -7.08 -4.06 -0.1147 0.8292 0.0130 O.O138 12.9O37 8.4802
78.24 0.3072 0.32O7 -8.53 -4.73-0.1321 O.O487 0.0119 0.O125 12.3774 8.4142
7O.95 O.3004 O.3002 1.53 1.O7 0.0410 O.9878 0.0019 O.O020 1.5O14 1.27O4
74.49 0.2990 O.3086 -0.66 -0.42 -0.0085 0.8996 0.0079 0.0003 6.5477 4.0350
78.14 0.3004 0.3123 -3.38 -3.06 -0.0879 0.9046 0.0084 0.0081 8.4964 5.5956
79.22 0.3027 0.3150 -6.03 -3.76 -0.1067 0.9261 0.0073 0.0068 O.0714 5.6354
75.36 0.2928 0.3018 1.04 0.65 0.0233 O.9823 O.0016 0.0015 1.1715 0.6374
Exhibit A-6 (continued)
-------
tn
0.3
0.3
0.3
0.3
0.3
0.0
0.0*
0.0
0.0
0.0
0.0
0.0
O.O
O.O
O.O
O.O
0.0
0.0
0.0
O.O
O.O
O.O
O.O
0.0
0.0
O.O
0.20
0.120
o.r>o
0.50
0.80
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 1O
0. 10
0.20
0.20
0.20
0.5O
0.50
0.00
0.50
0.00
0.50
O.CO
o.r,o
0.02
0.05
0. 10
0.20
0.50
O.GO
0.05
0. 10
O.20
O.50
O.CO
0. 10
0.2O
O.5O
0.00
0.20
O.50
0.00
o.r>o
0.00
0.00
55.91
57.78
59. 13
61.26
62.22
13.69
23.98
29. 16
36.88
48.00
51.53
19.27
30.37
33.09
49.21
52.74
27. 19
39.79
50.91
54.44
30.96
53.40
56 . 93
55.O1
60.41
61. 10
79.58
00.63
01.30
02.53
33.05
43 . 03
56. 10
60.95
67 . 2 1
74.05
77.02
51.04
62.00
68. 11
75.60
77.74
59. 19
69.34
76 . 64
70.73
60.75
70. 13
OO. 16
79 . 52
02.0O
02.45
0.2957
0.2930
0 . 2°27
0.2954
0.2956
0.2906
0.2967
O.2933
0.2938
0.3029
0 . 3007
0.27OO
0 . 2079
0.2394
0.2990
0 . 3048
0.2725
0. 20-15
O.2946
O.3003
0.2737
0.29O1
O.2957
0 . 2057
O.2932
O.292O
O.G071
0.3096
0.3049
0.3077
0.3003
0.2967
0.3055
0.3042
0.3074
0.3193
0 . 3246
0.2C41
0.2971
0.3015
0.3140
0.3194
0 . 2RO 1
0.2053
0 . 3003
O.3137
0 . 234 1
0.3031
O.30O3
0.299O
0.3064
O.3067
-2.00
-4.33
0.34
-0.05
0. 11
0.05
12.50
O.45
2.34
-6.38
-9. 10
7.87
9.66
3.54
-5. 17
-7.09
6.49
5.24
-3.47
-6. 19
4.42
-0.97
-3.69
1.43
-0.21
0.4O
-1.61
-2.35
0. 19
-0.45
0.06
17.51
15.02
0.29
1.79
-3.05
-5. 17
10.76
9.34
2.69
-3. 10
-4 . 45
6.52
3.92
-2.06
-3.46
3.33
-0.57
-2.O3
O.O2
-0. 11
0.26
-0 . 0477
-0 . 0603
0.0059
-0.0139
O.OO17
1 . 046 1
1. 1225
0.4206
0.0762
-0. 1111
-0. 1440
0.6954
0 . 4742
0 . 1 002
-0.0909
-0. 1259
0.3138
0. 1530
-0.0621
-O. 1000
0. 1266
-O.O 109
-0 . Ofi 1 2
0.0247
-0.0052
O.0069
0.0713
0.9951
O.9900
1.0031
0.9953
0 . 3702
0.3001
0 . 44 1 3
0.5473
0.6951
0 . 75 1 1
0.5245
0.4915
0.5999
0.7571
0 . O 1 37
0.6676
O.6551
O.0243
O.«925
O.K026
0.0024
O.9577
O.9H23
O.9679
0.9716
0.0037
0 . 0026
0 . OOO7
0.0300
0.0003
0 . 0425
0.0456
0.0373
0.0291
0.0202
0.0170
0.0269
0.0319
0.0247
O.0162
0.0131
0.0165
O.O109
o.oi in
o . oonr,
0. 00*90
O.O073
O . 004O
0.0029
O.O015
0.0012
0 . 0028
0.0015
O.OO05
-O.OOO5
0.0002
0 . 045 1
0.0492
0 . 0407
0.0310
0.0217
0.0105
0.0279
0.0336
0.0259
0.0165
0.0133
0.0166
O.O 197
O.O 100
O.OO76
o.oons
0 . 005.1
O.O023
O.O022
0.0004
0.0007
3.76H3
3.5f»'?7
o. -""'>:»
o.r><.93
o. 105.3
13.4014
22.6-173
2 1 . 7.363
21.4559
18.6144
16. 76 -IS
I2.77O2
13. 1753
17.5503
14.8532
13.O74.'l
8.0927
13.3033
lO.4r;:i3
8.7502
5.6727
5 . O44 [
4. 1703
2.O5.T3
1. 161 1
O.OI 26
2. 5? on
2.7754
o."-:^rj
0 . 52C10
0. 1201
10.6307
19.C007
15.63H2
13.3337
11.7270
1 1 .0719
12.071 1
13.3939
10. 90; JO
9. 2112
8.rt20
0.09157
0 . 5 ! 3 1
Exhibit A-6 (continued)
-------
VISUAL EFFECTS FOR LINES OF SIGHT ALONG PLUME
1000 MW POWER PLAT1T
DOWNWINU DTSTANCE (KM) = 1.0
THETA LENGTH RPXRVO RV "nv-nnr-vr) YCAP L
45.
Y DELYCAP
DELL C(350) BRATIO
DEL*
DELY EC LUV) E< LAB)
o>
CONCENTRATIONS • - ' '• nosOL AND CASES CONTRIBUTED
1600 ii., . J,mR PLANT
DOWNWIND DISTANCE (KM) = 2.0
PLUHE ALTITUDE (M) = 392.
SIGMA Y (PI) = 123.
SIGMA Z (M) = 39.
S02-S04 CONVERSION RATE= 0.0000 PERCENT/HR
BY
NOX-N03 CONVERSION RATE= 0.0000 PERCENT/MR
ALTITUDE
H+2S
INCREMENT!
TOTAL AMD!
11+ IS
INCREMENT!
TOTAL AMD!
H
INCREMENT!
TOTAL AMD!
II- IS
INCREMENT!
TOTAL AMD!
H-2S
INCREMENT!
TOTAL AMD!
0
INCREMENT!
TOTAL AMD!
NOX
(PPM)
1.860
1.868
8.373
8.373
13.805
13.005
8.373
8.373
1.868
1.868
0.000
0.000
N02
( PPM)
0. 125
0. 125
0.695
0.095
1.462
1.462
0.695
0.695
0. 125
0. 125
0.000
0.000
N03-
(PPM)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
N02/NTOT
(HOLE %)
6.711
6.711
8.303
8.303
10.593
10.593
8.303
8.303
6.711
6.711
0.000
98.303
N03-/NTOT
(MOLE J?)
0.000
0.000
0.000
0.000
•^0.000
0.000
0.000
0.000
0.000
0.000
1.607
1.607
S02
( PPM)
0.382
0.382
1.713
1.713
2.824
2.824
1.713
1.713
0.382
0.382
0.000
0.000
SO4=
(UC/M3)
0.000
2.936
0.000
2.936
0.000
2.936
0.000
2.936
0.000
2.936
0.000
2.936
SO4=/STOT
(MOLE r.1
0.000
0. 195
0.000
0.044
0.000
O.O26
0.000
0.044
0.000
0. 195
0.230
100.000
03
( PPM)
-0.037
0.001
-0.037
0.001
-0.037
O.001
-0.037
0.001
-0.037
O.001
0.000
0.038
PRIMARY
(UG/M3) (
130.086
143.622
585.694
59O.630
905.645
970. 5O1
585.693
593.029
130.686
143.622
0.000
12.930
BSP-TOTAL
10-4 M-l)
1.624
1.752
7.277
7.405
11.997
12. 125
7.277
7.405
1.624
1.752
0.000
0. 128
BSPSN/BS
( 7Z)
0.000
4.767
0.000
1. 120
0.000
0.009
0.000
1. 128
0.000
4.767
5 . 690
65. 142
CUMULATIVE SURFACE DEPOSITION (MOLE FRACTION OF
S02! 0.0000
NOX! 0.0000
PRIMARY PARTICULATE! 0.0000
S04! 0.0000
N03! 0.0000
INITIAL FLUX)
Exhibit A-6 (continued)
-------
VISOAL EFFECTS FOR
I60O MW POTVER
DOWNWIND DISTANCE (KM) = ':.»
PLUME ALTITUDE (W) = .....
SIGHT PATH IS THROUGH PLU
HORIZONTAL SIGHT PATHS
THETA ALPHA RP/RVO
45.
30.
30.
30. .
3O.
30.
30.
45.
45.
45.
45.
45.
45.
6O.
60.
6O.
6O.
6O.
60.
90.
9O.'
9O.
90.
90.
90.
0.02
0..05
0. 10
0.20
0.50
0.GO
0.02
0.05
0. 10
0.20
0.5O
0.80
0.02
0.05
0. IO
0.20
O.5O
O.CO
0.02
0.05
0. 10
0.2O
0.50
0.80
RV '
148.4
147.2
145.6
143.3
140. 1
148.2
159.0
150.9
157.7
155.9
153.4
152.6
164.7
164.0
162.9
161.4
159.2
153.6
167.6
166.9
166.O
164.6
162.7
162. 1
jCED
i? .00
20.43
21.30
22.56
24.27
19.03
13.61
14.09
14.77
15.75
17. 10
17.51
10.96
11.37
11.94
12. 7fl
13.94
14.29
9.41
9.77
10.2O
1 1.O2
12. 06
12.37
YCAP
G5.65
80.00
9 1 . 29
96. CO
102.63
1O4.54
09.34
91.24
93.91
97.78
1O3.O7
104.61
91.30
93.04
95.36
9O.73
1O3.31
104.65
92.74
94.23
96.32
99.35
103.43
104.67
L
94. 17
95. 17
96.53
90.47
101.01
1O1.73
95.73
96.51
97.60
99. 14
101 . 17
101.75
96.57
97.25
93. IO
99.51
1O1.27
101.77
97. 13
97.73
90.06
99.73
1O1.33
101. 7O
X
0.3597
0 . 3504
0.3398
0.3206
0.3203
0.3197
0.3521
0.3440
0.3364
0.3272
O.32OI
O.3I95
O.3477
0.3416
0.3343
0.3263
O.320O
0.3194
0.344O
0.3393
O.3329
0.3237
0.3199
0.3194
Y DELYCAP
0.3606
0.3503
0 . 347 1
0.3362
0.3303
0.3307
0.3630
0.3547
O.3454
0.3360
0.3306
0.3300
0.3594
0.3522
0.3440
O.3357
O.33O7
O.33O9
0.356O
0.3504
0.343O
O.3334
0.330O
0.3309
-19.23
-16.91
-13.62
-0.03
-2.20
-0.37
-15. 57
-13.67
- 1 1 . OO
-7. 12
-1.04
-0.3O
-13.53
- 1 1 . 07
-9 . 55
-6. IO
- 1 . 39
-0.26
-12. 17
-1O.6O
-O.59
-3.56
-1 .43
-0.24
DELL
-7.70
-6.70
-5,33
-3.40
-O.O6
-0. 14
-6. 14
-5 . 35
-4.27
-2.73
-O.69
-0. 11
-5.30
-4.62
-3.69
-2.36
-O.6O
-O. IO
-4.74
-4. 14
-0.31
-2. 12
-0.54
-0.09
C(550)
-0. 1019
-0. 1615
-0. 1323
-o.pfl"5
-o.02r>d
-0.0001
-0. 1455
-0. 12r>2
-0. 1O5O
-O.O709
-O . O204
-O.G043
-0. 1257
-O. 1 I 16
-O.09I4
-O.0612
-O.0177
-O . O042
-O. 11 27
-O. 1000
-O.082O
-O.O 5 49
-0.0153
-O.0033
BRAT 10
0.5186
0.6375
O.7733
O. 90.12
0 . 97C3
0.0746
0.5790
0.6323
O.301O
O.O 194
O.0323
O.9709
0.6103
0. 7 1*27
O.O 198
0.0270
O.0345
0. OG27
O.O 439
0.7349
O.«336
O.0326
O.03GO
0.0345
DELX DELY
0.0408 0.0375
0.0315 0.0273
O.0210 O.OI61
0.0093 O.OO52
O.OO14 -O.OOO7
0.0003 -0.0000
0.0332 0.0310
0 . O20O 0 . O23O
O.O 173 O.O 14:)
O.OOO3 0.0030
O.OO12 -O.OOO4
O.OOO7 -0.0002
0.02G3 0.0233
O.O227 O.O2 1 I
O.O 155 O.O 130
O.OO74 O.0047
O.001 1 -O.0003
O.0006 -O.OOO2
0.0259 0.0257
0.O2O3 O.O 103
O . 0 1 4O O . 0 1 2O
O . OO63 O . O044
0.001O -O.O003
O.OOO3 -0.0002
E( LUV)
35.0798
20. 1 104
19.0071
9. 1506
I . 079O
O.OO51
30 . 209O
23.O707
16.2400
7.C"50
1 . 54O4
0 . 720O
26 . O5 1 O
2 1 . 22"5
1 4 . 4 .*t9 2
7 . OO4O
1 . 3525
0.0204
24.4367
10.3OO2
13.2<0*>
6 . 4 1 33
1 . 22 1 1
0.5652
E( LAB)
24. 119
13.500
1 2 . 267
5 . 03O
1 .307
o.r>*>3
20 . 230
15.604
1O.45O
5 . 00 1
I . 1 "1
O.473
1 7 . fl47
1 3 . COO
9.3*9
4 . < n \
O.07O
O.<00
16. 10O
1 2 . 643
0.5J 1
4 . OO4
0 . O7 1
o.ooo
OBSERVER POSITION
90.
0.03
AT 1/2 OF A 22.5
167.4 9.50
DEGREE WIND DIRECTION SECTOR FROM THE PLUNK CENTERLINE AT TOE GIVEN DISTANCE FROM TITE SOURCE
93.11 97.27 0.3434 0.3551 -11.00 -4.59 -0.1006 O.67I2 0.0243 0.0241 23.1300 15.200
90.
30.
30.
30.
30.
3O.
3O.
45.
45.
45.
45.
45.
45.
60.
60.
60.
0.02
0.05
0. 10
0.2O
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.03
0. 10
151.7
150. 1
147.9
144. 0
140.7
140.2
162.3
161. 1
159.5
157. 1
153.0
152.3
166.0
165.O
164.4
18.01
18.08
20.06
21.73
23.96
19. OO
12.25
12.91
13.01
15. 10
16.06
17.38
9.02
10.37
11. 13
45.37
47.04
49.30
52. OO
57.50
5O.OO
40.09
49 . 44
51.33
54. 10
57.09
59.00
49.59
50.76
52.41
73. 16
74.24
75.71
77.77
SO. 48
O1.24
74.90
75.75
76.90
70.54
00.69
O1.31
75. O4
76.56
77.55
0.3423
0 . 3320
0.3207
0.3O94
0.3019
O.3O17
0.G346
0.3267
0.3178
0.3003
0.3020
0.3017
0.3302
0.3236
0.3159
0.3533
0.3412
0.3204
0.3167
0.31 15
0 . 3 1 23
0.3473
0.3376
0.3271
0.3170
0.3119
0.3125
0.3434
0.3351
0.3259
-14. 11
-12.45
-10. 1 1
-6.69
-1.99
-O.60
- 1 1 . 40
-10.05
-O. 15
-5.39
-1.60
-0.48
-9.90
-0.72
-7.07
-0.41 -0.2371
-7.34 -0.2 MO
-5.O7 -0. 1737
-3.0O -O. 1 17O
-1. 10 -0.0371
-O.33 -O.O 122
-6.67 -0. 1006
-5.03 -0. IOO7
-4.67 -O. 13JI9
-3.04 -0.0942
-0.03 -0.0297
-O.26 -0.0000
-5.74 -0. 1639
-5.02 -0. 1450
-4.03 -0. 12OO
0.5347
O.665O
O.O126
0.0319
1.0373
O.0034
0.5929
0.7052
O.H3IO
0.9534
1 . O05 1
0.004O
0.6322
0.7327
O . 0463
0 . 04O6
0.0302
O.01OO
0 . 0076
O.OOO1
-O.O001
0.0329
0 . 0249
O.OIOO
0.0067
0 . OOO2
-o.oooo
O.02O4
0.021O
O.0141
0 . 040 1
O.O379
O.O 152
o.ooc;:;
-0 . 00 1 0
-0.0000
0.0341
0 . 0244
0 . 0 1 3O
0 . 0033
-O.OOI3
-0.0007
0.0302
0.021O
O.O 127
32.0061
24.0177
16.O70O
7.251 3
1.61 44
o.oo::4
27. 1035
21.01 r.O
13.G574
6.2059
1.2732
O.5253
24.0*173
IO."241
1 2 . -!• 1 1 6
2 1 . 7 1 5
1 6 . 420
1O.OO3
5. 154
1 . '"•'"• ?•
o . no3
lo..?"!*
10.030
9. 14*2
4.31:
1. 137
0 . 4< 0
1 0 . 00 1
12.372
Exhibit A-6 (continued)
-------
60.
60.
60.
90.
90.
90.
90.
90.
90.
0.20
O.50
0.80
O.02
0.05
0. 10
0.20
0.50
0.80
162.4
159.6
158.8
109.5
163.6
167.3
165.5
163.0
162.3
12.22
13.73
14. 18
8.41
8.89
9.56
10.53
11.87
12.27
54.81
53. 10
59.07
50.59
51.64
53. 13
55.29
58.24
59. 11
78.93
30 . 8 1
31.35
76.45
77.09
77.97
79.22
00.09
01.37
0.3070
O.3020
O.3010
0.3272
0.3214
0.3146
0.3073
0.3020
0.301O
0.3169
0.3122
0.3126
0.3406
0.3332
0 . 325O
0.3163
0.3123
0.3127
-4.67
-1.38
-0.42
-8.90
-7.84
-6.36
-4.20
-1.24
-0.3O
-2.62 -0.0014
-0.76 -0.0257
-0.23 -0.0034
-5. 12 -0. 14f>9
-4.49 -0. 1307
-3.60 -0. 1076
-2.35 -O.O730
-0.63 -0.0230
-O.21 -0.0076
0.9360
1 .0341
0.«M>33
O.OOIO
O.7G31
O.C573
0.9534
1.0035
0.9900
0 . 0060
O.0002
-O.0009
O.O255
O.0196
0.0123
0.0055
0.0002
-0.0000
0.0037
-0.00)0
-O.OOO5
0 . 0274
0 . 020O
0.01 17
O.0033
-0.0009
-0.0003
3.0301
1 . OO4 1
0 . 45 1 5
2 1 . 0202
17.O754
1 1 . 373 1
5. 1725
0 . 9779
0 . 4032
3 . 300
O.075
0 . OH4
14.579
1 1 . 27O
7 . 453
3 . 524
0 . ,109
0 . 043
OBSERVER POSITION AT 1/2 OF A 22.5 DECREE WIND DIRECTION SECTOR FROM TITE PLUNK CENTEHLINF. /VT THE GIVEN DISTANCE FITOH TITF, POUT1CE
9O. 0.03 169.2 8.52 50.03 76.61 0.3237 0.33O6 -8.64 -4.97 -0.1429 O.6351 O.0239 0.0234 2O.0770 If.. 739
VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
160O MW POWER PLANT
DOWNWIND DISTANCE (KTD = 2.0
PLUME ALTITUDE (M) = 392.
SIGHT PATH IS THROUGH PLUME CENTER
THETA ALPHA
135.
RP/RVO
RV r!REDUCED
YCAP
X
Y DELYCAP
DELL C<550> BRATIO
DELX
DELY E(LUV) E(LAH)
oo
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
60.
60.
6O.
60.
60.
60.
90.
90.
90.
90.
90.
90.
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.30
0.02
0.05
0. 10
0.20
0.50
O.GO
0.02
0.05
0. 10
0.20
0.50
0.80
154.0
152. 1
149.5
145.9
141. 1
143.2
164. 1
162.7
160.7
157.9
154. 1
153.0
160.3
167. 1
165.5
163. 1
159.9
150.9
170.7
169.7
168.2
166.2
163.3
162.4
16.74
17.77
19. 17
21. 14
23.74
19.00
11.30
12.07
13. 13
14.65
16.68
17.23
9.02
9.66
10.56
11.04
13.58
14. 10
7.70
8.27
9.03
10.19
11.74
12.20
45.86
47.96
50.91
55.24
61.22
63.00
49.36
51.06
53.45
56.95
61.76
63. 19
51.30
52.77
54.03
57.09
62.06
63.30
52.58
53.91
55.78
50.51
62.26
63.37
73.48
74.02
76.63
79.20
32.51
83.46
75.70
76.74
78.16
CO. 17
32.00
83.56
76.00
77.76
78.97
80.69
32.96
33.62
77.65
70.43
79.51
81.04
03.07
03.65
0.3391
0.3276
0.3155
0.3039
0.2970
0.2973
0.3312
0.3225
0.3130
0.3034
fr:2974
0.2975
0.3267
0.3194
0.3113
0.3030
0.2975
0.2976
0.3236
0.3173
0.3101
0.3026
0.2976
0.2976
0.3531
0.3393
0.3253
0.3131
0.3003
0.3096
0.3466
0.3353
0.3243
0.3137
0.3090
0.3099
0.3424
0.3332
0.3233
0.3133
0.3093
0.3100
0.3394
0.3313
0.3224
0.3138
0.3093
0.3101
-18. 14
-16.04
-13.08
-8.76
-2.78
-1.00
-14.63
-12.93
-10.54
-7.05
-2.23
-0.80
-12.70
-11.22
-9. 14
-6. 11
-1.93
-0.69
- 1 1 . 42
-10.09
-8.22
-5.49
-1.73
-0.62
-10.50 -0.2743
-9. 16 -0.2444
-7.33 -0.2017
-4.78 -0. 1377
-1.47 -0.0454
-0.52 -O.O163
-0.28 -0.2194
-7.24 -0. 1955
-5.02 -0. 1613
, -3.01 -0. 1101
1 -1. 17 -0.0303
-0.42 -0.0135
-7. 10 -0. 1896
-6.22 -0. 1689
-S.OO -0. 1394
-3.29 -0.0932
-l.OI -0.0314
-0.36 -0.0116
-6.33 -0. 1699
-3.55 -0. 1514
-4.47 -0. 1250
-2.94 -0.0333
-0.91 -0.0201
-0.32 -0.0104
0.5329
O . 0762
O.G345
0.9302
1 . 0273
1.0066
0.5913
0.7127
O.G4CO
0.9748
1 . 0207
1 . 005 1
0.6311
0.7390
0.0398
0.9740
1.0174
1 . 0044
0.6602
0 . 7387
O.O692
0.9743
1.0153
1.0039
0.0411
0 . O296
0.0174
O.O053
-0.0011
-O.OOOO
0.0332
0.0245
O.0149
0.0054
-0.0007
-0.0006
0.0206
0.0214
O.O133
0.0049
-0.0003
-O.0003
0.0256
0.0193
0.0121
0.0046
-0.0004
-0.0004
0.0421
0 . 0284
0.0144
0.0022
-0 . O026
-0.0014
0.0357
0.0243
0.0134
0.0023
-0.0019
-0.0011
0.0315
0 . 0223
0.0123
0.0029
-0.0010
-O.0009
0 . 0235
0 . 02O4
0.0113
0 . 0029
-0.0014
-O.OOOG
34.6430
26. 1530
10.6015
7 . 2400
2 . 0375
0.9794
29.3157
22 . 3340
14.4377
6 . 270O
1 . 5r»40
0 . 7043
25 . 97C2
19.953.1
12.9005
5 . 0-109
1 . 3434
0.0521
23 . 0340
1O.2220
1 1 . 09 1 2
5. 1903
1. 1901
0.5796
23 . otw
17.7JK.
1 1 . 473
5. or,-?.
1 . P.40
0 . 7P/>
19.H23
1 5 . o:n
9 . 7C9
4.711
1 . 43«
o . oc:>
17.401
13. Wl
O.?!"/)
4. 109
1 . 220
o.r>r>,4
1 5 . f?22
12. KtO
7.977
3 . 700
1.093
0.470
OBSERVER POSITION AT 1/2 OF A 22.3 DEGREE WIND DIRECTION SECTOR FROM THE PLUME CENTEFcLINE AT THE GIVEN DISTANCE FROM Tim
90. 0.03 170.5 7.04 52.91 77.84 0.3220 0.3373 -11.09 -6.14-0.1654 0.6360 0.0239 0.020322.2307
Exhibit A-6 (continued)
-------
VISUAL EFFECTS FOR NOW-HORIZONTAL CLEAR SKY VIEWS THROUGH PLUME CENTER
1600
DOWNWIND DISTANCE (Ifll) '
PLUME ALTITUDE =
TfTETA
43.
UD
9O.
ALPHA
BETA
MW POWER. PLANT
2.0
392.
HP YCAP
Y DELYCAP
DELL C( 550) BTIATIO
DELX
DELY E(LUV) E(LAB)
30.
30.
30.
30.
30.
30".
45.
45.
45.
45.
45.
45.
6O.
60.
CO.
CO.
CO.
CO.
9O.
90.
90.
90.
90.
90.
30.
30.
3O.
30.
GO.
30.
45.
45.
45.
45.
45.
45.
CO.
60.
00.
CO.
CO.
CO.
90.
90.
90.
90.
90.
90.
15.
30.
f!5.
'GO.
75.
90.
15.
30.
45.
CO.
75.
90.
15.
30.
45.
CO.
75.
90.
15.
30.
45.
CO.
75.
9O.
15.
30.
45.
CO.
75.
90.
15.
30.
45.
CO.
75.
90.
15.
30.
45.
CO.
75.
90.
15.
30.
45.
CO.
75.
90.
2.95
1.41
O.C3
O.CO
0.44
0.39
2. 10
1.04
O.C3
0.51
0.42
0.39
1.73
0.03
O.CO
0.47
0.41
0.39
1.51
0.7,1
O.55
0.45
0.41
0.39
2.95
1.41
O.OO
O.CO
O.44
0.39
2. 10
1.04
O.C3
0.51
0.42
0.39
1.73
O.OO
O.CO
0.47
0.41
0.39
1.51
0.73
0.51
0.45
0.41
0.39
C1.4C
54.44
51.07
50. C5
50. 07
49.09
57 . OC
4O. 19
44.94
43 . 4 1
42. C9
42. 4O
54.79
44.05
41.21
39. 5O
3O.7O
38. 4C
53.33
42. C7
30. 7C
3C.93
3C.07
35.81
32. GO
2O.22
2C.59
25.81
25.43
25.32
31.11
25.52
23. 4C
22.49
22.03
21.O9
30.34
24.09
21.78
20.70
20. 19
20.04
29. OC
23. 1C
20. 69
19.53
10.90
18.01
82.64
78.74
77.22
7C.49
76. 13
7C.02
80.23
74.97
72.07
7 LOG
71 .37
71.22
7O.94
72. 02
70.35
69. 14
CO.5C
C8.3O
78. 09
71.36
CO. CO
67.25
6G.60
66.40
63.93
60. 12
5O.62
57.09
57.53
57.42
62.63
57.61
55.58
54.58
54. 1O
53.95
G1.9B
56.21
53.83
52. CC
52.09
51.92
C1.57
55.27
02.64
51.33
50.70
50.51
0.3397
0.3445
0.3472
0 . 3408
0.3497
0.3500
0.3278
0.3324
0.3355
0.3374
0.3384
0 . 3307
O.3204
0.3240
0.3283
0 . 03O4
O.3315
O.3310
O.3151
O.3I94
O.3230
0.3253
O.32C5
O . 3269
0.3214
O.3261
O.329O
0.3300
0.3318
O.3321
O.3097
0.3137
O.3168
O.3188
0.3198
0.3201
0.3025
O.3061
0 . 3094
O.3I 15
0.312C
O.3130
0.2974
0.3007
0.3040
0.30C3
0.3075
0.3079
0.3518
0.3547
0.3566
0.3578
O.3536
0.3530
0.341O
0.3439
0.3459
0.3472
0 . 3430
0 . 3402
O.3350
0.33CC
0.3309
O . 3404
0.3412
0.3415
0.3300
0.3313
0.3337
O.3G53
0.3GC2
0.3365
0.3345
0 . 3373
0.3393
0 . 340C
0.3414
0.3417
0.3243
0.3236
0.3275
0.3209
0.0297
0.3299
0.3173
0.317O
0.3199
0.3214
0.3222
0.3225
0.3121
0.3122
0.3143
0.3159
0.3I6O
0.3171
19.06
30.24
34.09
35.89
36.73
36.97
15.46
23.99
27. 16
28.65
29 . 33
29.56
13. 19
2O. 65
23.43
24.74
25.36
25 . 54
11.73
18.47
20.99
22. 17
22.73
22.09
6.34
12. O4
13.27
16.40
16.93
17.09
4.70
1O. 13
12. 14
13.09
13.53
13.66
4.01
O.70
10.47
11.30
11.69
11.01
3.53
7.77
9.37
10. 12
10.48
10.58
12.02
22.41
27.96
31. 14
32.82
33.35
9.61
18.64
23.61
2f» . 5 1
28. 06
28.55
8.32
16.50
21.09
23.79
25.25
25.71
7.47
15.O3
19.34
21.91
23.29
23.73
5.54
13.93
18.47
21. 1O
22.48
22. 92
4.23
1 1.41
15.43
17.79
19.05
19.45
3.60
10.01
13.68
15.86
17.04
17.42
3. 18
9.07
12.49
14.54
13.65
16.01
0.4791
1 . 2544
1.9251
2.4397
2.7026
2 . 8725
O.37C4
0.9900
1.5360
1.9093
2 . 209 1
2.2977
O.0227
O.0603
1.3259
1 . 6337
1.9033
1.9356
O . 2373
0.7703
1. 1379
1 . 5039
1.7109
1.7793
0.2415
0.0348
1 . 3437
1 . 7427
1 . 9C97
2.0737
0. 1853
O.6616
1 . 0743
1.3915
1.3903
1.6537
0. 1072
O.5693
0.92C8
1.2016
t . 3744
1.4334
0. 1393
0.5093
0.8300
1.0767
1.2319
1 . 2849
0. 1932
O. 1413
O. 1226
0. 1 139
O. 1097
0. 1033
O.2446
0. 1773
0. 1533
0. 1420
O. 1366
0. 1350
O . 2O 1 2
O.2056
O. 17V 1
0. 1634
0. 1568
0. 1349
O.31 1 1
0 . 2239
O. 1967
O. 131O
O . 1 734
O. 1712
0.2238
O. 1041
0. 1423
0. 132O
O. 1270
0. 1254
0.2799
0.2033
0. 1734
O. 1653
O. 159O
0. 1571
0.32OO
O . 2384
0.2063
0. 1907
O. 1S31
0. 1008
0.3524
0.2651
O.2292
O.2I 14
0.2027
0.2001
0.0709
O.O91O
O.O972
0. 1000
O. 1014
0. 1019
O.0671
0 . 0797
0.0355
0.0335
O . O90 1
O . 0906
O . O590
O.O721
0 . O732
O.O815
0 . O332
0.0337
O.O544
0.0607
O.0730
O . O764
O . 0732
O . O733
0.0716
O.0839
O.O393
0.0922
O.O937
O.O942
0.0599
0.0715
0 . 077 1
0 . 0302
O.0317
0.0322
0.0327
O . O639
0.0097
0.0729
O.O743
0.0750
O.047C
0.0505
0.0643
0.0677
0.0694
0.0699
0.0808 60.6703 39.2753
O.O959 C2.4OI9 44.1922
0.1020 G2.2953 46.0707
0. 1051 62.2103 43. 1003
O.IO67 C2.2119 49.0201
0.1072 G2.2202 49.:;O50
o . 0709 5 1 . 9:10 1 30 . 3or,3
0.033O 53.233'? 37.47r;2
0.0912 53. 1341 39.701 1
O.O943 53.0403 4 1 . 0.'L'JlO
O.O961 53.0276 4 I . R343
0.0966 33.0261 42. 1O34
O.O64O 40. SOI 2 29.71*:; I
0.0773 47.7030 33.4OC3
0.0342 47.7123 35.5007
O.0376 47.6072 30. <>;;<: 5
O.O393 47.70-', 1 37.r<;;;>o
0,0303 47.7120 37.0231
O.O59O 42.50^«5 27.13J52
O.O724 43.3137 30.003?)
O.O70O 43.0207 32.7441
O.OG20 43.0312 G4.O3OO
0.0343 44.O24I 34.7017
O.O349 44.O4IO 35.O2J'.rJ
0.0779 47.5295 30.7314
0.0927 46.7550 33.3303
0.0939 43.5527 34.07O5
0.1021 44.0O33 35.53O4
0. 1033 44.6346 30. 1 107
0.1043 44.5057 30 . f7O2 1
0.0670 40.C313 20.3571
0.0310 39.73O2 2O.2517
O.O371 38.50:VJ 29. 3358
0.0004 37.0300 3O.1721
0.092O 37.6370 3O.0304
O.O925 37.5543 3O.7045
0.0006 36.4303 23.49?', 1
O.O733 33.4301 23.1003
O.O795 34.4O50 26.24O?
0.0320 33.8404 27.O027
O.O346 33.5913 27.4317
0.0351 33.5173 27.0004
0.0354 33.3702 21.4503
0.0676 32.4106 23.013O
0.0739 31.5101 24.00I?0
0.0773 31.0239 24.0OO7
0.0791 30.0O30 25.2401
0.0797 30.7404 25.304:5
Exhibit A-6 (continued)
-------
DOWWtWD DISTANCE (KM)
PLUME ALTITUDE (M)
VISUAL EFFECTS FOR NON-HORIZONTAL CLEAR SKY VIEWS THROUGH PLUME CENTER
K.OO MW POWER PLAtfT
THETA
135.
ALPHA
30.
3O.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
00.
60.
60.
60.
60.
6O.
90.
90.
90.
90.
90.
90.
BETA
ts.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
2.
0
•
- 392.
RP
2.95
1.41
0.00
0.60
0.44
0.39
2. 10
1.04
0.60
0.51
0.42
0.39
1.73
0.88
0.60
0.47
0.41
0.39
1.51
0.78
0.55
0.45
0.41
0.39
YCAP
32.95
27.77
25.85
24.94
24.50
24.37
32.09
25.61
23.21
22.09
21.55
21.39
31.72
24.49
21.81
20.55
19.96
19.78
31.51
23.76
20.89
19.55
18.91
18.72
L
64. 15
59.71
57.93
57.05
56.62
56.49
63.44
57.70
55 . 33
54. 15
53.58
53.41
63. 14
56.61
53.06
52.49
51.83
5 ! . 63
62.96
55.88
52.87
51.36
50.62
50.40
X
0.3169
0.3219
O.S252
0.3272
0.3284
0.3238
0 . 3049
0 . 3089
0.3122
0.3144
0.3156
0.3159
0 . 2976
0.3009
0.3043
0.3066
0.3078
O.C082
0.29^6
0.2953
0.2987
O.3011
0.3024
0 . 3028
Y
0 . 3333
0.3364
O.3388
0.3404
0.3414
0.3418
0.3226
0.3238
0.3260
0.3275
O.3285
0.3288
0.3151
0.3154
0.3176
0.3193
0.3202
0.3205
O.3098
0.3094
0.3115
0.3133
0.3143
0.3146
DELYCAP
2.46
9.91
12.71
14.01
14.62
14.80
1.60
7.75
10.07
11. 16
11.67
11.83
1.23
6.63
8.66
9.62
10.08
10.22
1.02
5.90
7.75
8. 62
9.03
9. 15
DELL
2.05
10.35
14.91
17.55
18.96
19.39
1.34
8.33
12.30
14.65
15.92
16.32
1.03
7.24
10.84
12.99
14. 16
14.53
0.86
6.52
9.85
11.86
12.95
13.30
C(550)
0. 1029
O.5915
1.0151
1.3397
1 . 5429
1.6120
O.O740
0 . 4666
0.0072
1.0G89
1.2333
1 . 2O94
0.0607
0.4003
O.6959
0.9223
1.0656
1. 1142
0.0527
0.3580
0.6229
O.8263
0.9550
0.99C8
DRAT I O
0.2363
0. 1630
O. 1446
0. 1334
0. 1279
0. 1.161
0 . 29O3
O.2136
0. 1043
O. 1700
O. 1631
0. 1610
0.3336
0.2493
0.2151
0. 1901
0. 1803
0. 1373
0 . 36C10
0 . 2735
0.2404
0.2211
0.2117
0 . 2033
DELX
0.0692
O.O318
0.0375
0.0907
0.0923
0.0929
0.0572
0 . 0637
0.0745
0.0773
0.0795
0 . O300
0.0499
0 . 0607
O.0066
0.0700
0.0718
O . 0723
0.0448
0.0552
0.0610
0.0645
0.0063
O.0669
DELY E( LUV) E( LAR)
0.0781
0.0935
0. 1001
0. 1036
0. 1055
0. 1061
0.0074
0.0303
0.0372
0.0907
0.0925
0.0931
0.0599
0.0725
0 . 0739
0.032-1
0.0343
0.0349
0.0546
0.0665
0.0723
0.0764
0 . 0703
0.0739
50. 1413 31. ,1702
43.7492 33.r,702
47.0323 34.4302
46.0577 f5.CC.5r>
45 . 6069 3f» . 4?r>9
45.4333 35.620R
43. 1547 27.3623
41.4566 23. 4493
39.3197 29. 1 142
33.K737 29.6367
33.4050 29.9694
33.2649 3O.0302
33.5333 24.3313
36.9222 25.2924
35.4619 25.9256
34.6169 26.4301
34. 1937 26.7495
34.0660 26.C531
35.2133 22.2457
33.7205 23.0769
32.4133 23.7042
31.6597 24.2065
31 .2327 24.5235
31. 1690 24.0311
Exhibit A-6 (continued)
-------
PLOTO3 VISUAL. EFFECTS FOR HORIZONTAL VIEWS
PERPEND i CVLATI TO TTIE PLUTIE OF win TIC, CRAY. AND
FOA VARIOUS ODSERVER-PLUME AND OBSERVER-OBJECT
MW POWER PLANT
BLACK OBJECTS
DISTANCES
DOWNWIND DISTANCE
THETA = 45.
(KID =
REFLECT WVRVft RO/RVO
1.0
1.0
1.0
1.0
1.0
l.O *
1.0
1.0
1.0
1.0
l.O
l.O
l.O
1.0
l.O
l.O
1.0
l.O
l.O
1.0
1.0
O.3 '
O.3
O.3
0.3
0.3
0.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
O.3
0.0
0.0
0.0
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
O.O5
0. 10
O. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.02
O.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.02
0.02
0.02
0.02
0.05
0. 10
0.20
0.50
0.00
O.05
0. IO
0.20
0.50
0.00
0. 10
0.2O
0.50
0.00
O.2O
0.50
O.OO
0.50
O.OO
O.OO
O.02
O.05
0. 10
0.20
O.5O
0.00
0.05
0. 10
O.20
0.50
0.00
0. 10
0.20
0.50
0.00
0.20
0.50
0.00
0.50
0.00
0.00
0.02
0.05
0. 10
2.0
YCAP
92.73
39.26
90.00
91.09
92.61
93.07
94.27
91.49
92.50
94. 10
94.56
96.43
94.66
96. 13
96.64
99. 5O
99.22
99.67
103.90
103.00
105. 17
43.56
55.01
61.60
7 1 . 67
06.21
90.90
50.46
63. 17
73. 16
37 . 70
92.39
60.25
75.25
09.79
94.47
74.03
92.02
97.50
95.79
101.63
1O2.43
22.40
40.33
49.54
L
97. 12
95,69
96.00
96 . 45
97.07
97.26
97.74
96.61
97.06
97.67
97.80
9O.61
97. 9O
9O.51
9O.69
99. G4
99.70
99. 07
101.49
101.45
101.96
71 .96
79 . 06
02.76
O7.82
94.41
96.37
76.37
03.55
00.54
95.04
96. 9O
O1.99
09.52
95.91
97.02
O9.32
97. 16
99.03
90.35
100.62
100.93
54.57
69.73
75.O1
X
0.3430
O.G513
0.3497
0.3477
0 . 346 1
O.3461
0 . 33C7
0.3439
0.0421
0.3407
O.Q4C6
O.G32O
0.3354
0.3341
0.3341
0.3261
0.3263
0.3269
0.3210
O.3211
O.32O6
O.3316
0.3361
0.3330
O.3023
O.3303
0 , 3426
0.3199
O.323O
0.3261
0.3327
0.3372
0.3109
0.3100
O.3262
0.3307
O.3064
0.3190
0.3235
0.3116
0.3170
0.3167
0.3121
0.3227
0.321O
Y DELYCAP
0.3540
0 . 3606
0.3590
0.3574
0.3567
0 . 356O
0.3402
O.3523
0.3509
0.3502
0.3504
O.3415
0.3434
0.3429
0 . 343 1
0.334O
0.3353
0.3355
0.3309
0.3309
0 . 33 1 1
0 . 3406
0.3454
.0.3440
O.3453
0.3521
0.3554
0.3200
0.3355
0.3370
0.3455
0 . 3409
0.3204
0.3294
0.3379
0.3415
0.3175
0.3302
0.3339
0 . 3246
0.3293
O.3291
0.3192
0.3322
0.3332
-5.28
-9.67
-10.20
-10.97
-12.02
-12.32
-4.65
-0.71
-9.40
-10.53
-10. O3
-3.76
-7.40
-O.45
-O.75
-2.40
-5.41
-5.72
-0.73
-1.59
-0.22
0.59
12.22
7.79
1 .22
-0. 12
-1 1.03
7.67
9. 2O
2.71
-6.64
-9.54
6.35
4.79
-4.55
-7.46
4.37
-1.52
-4.43
1.45
-0.30
0.50
14.54
21.60
15.49
DELL
-2. 11
-3.09
-4.08
-4.34
-4 . 69
-4.79
-1.04
-3.46
-3.73
-4.09
-4. 19
-1.47
-2.O9
-3.25
-3.06
-O.95
-2.07
-2. 17
-O.27
-0.60
-O.OO
6.21
7.63
4.04
0.59
-3.36
-4.37
4.94
5. 13
1.30
-2.73
-3.76
3.57
2 . 29
-1.86
-2.92
2.O9
-0.61
-1.71
0.5O
-0. (2
0. 19
20 . 66
(9.33
10.70
CC550)
-0.0515
-0.0943
-0.0979
-0. 1033
-0. 1106
-0. 1129
-0.0454
-0.0046
-0.0902
-0.0979
-O. 1002
-0.0369
-0.0715
-0.0797
-0.0022
-0 . 0245
-0.0324
-0.0551
-0 . 0074
-0.0161
-0.O023
0 . 2456
O . 2C74
0. 1476
0 . O2 I 1
-O.OJ527
-0. 1049
0. 1703
0. 1724
0.0399
-0.06O7
-0.O919
0. 1162
0.0668
-0.04O7
-0.0733
0.0599
-0.0106
-0.0455
0.0138
-0.0033
0.OO4O
1.0099
1. 1462
0.4540
BRAT 10
O.G412
0.721 1
0.6954
0 . 6729
0.6613
0.661 1
O.P.916
0 . 7944
0.7647
0 . 749 1
0 . 7433
0.9412
O . O7OO
0 . 0500
O.G494
0.0836
0.9513
0.9506
1.O033
1 . OO55
1 . O023
0 . G23:;
0.6154
0.5677
0.5646
0 . f. 1 2 1
0 . 6337
O.n2:il
O.0591
0 . 6443
O.6933
0.7232
0.3537
0.7365
0.7065
0 . 0203
0.0970
0.0796
0.9176
O.9595
0.9693
0 . 9O22
0.3<>00
0.3301
0.3032
DELX
O.0119
0.0210
0 . (?330
0 . 0243
0.0253
0 . 0'J54
0.0092
0.0172
0.0107
0.0199
O.0199
O.0061
O.0120
0.0133
0.0134
O . 0028
O.OCK.O
0.0062
O.0002
0 . OOO4
-O.OOO1
0.0121
O.O273
O.031 1
0.0310
0 . 0287
O . O268
0.01 12
0 . 0239
0.0255
0 . 023 1
O.0213
0.009O
0.0103
O.0166
0.0149
0.0059
0.0094
0.0077
0 . 0020
0.0019
0 . OOOO
0.0455
0.0327
0.0457
DELY E( LUV) EC LAB)
0.0118 1O.7966 7.2CM4
0.0211 19.3312 13. 1213
0.0228 20.8745 14.0928
0.0245 22.6410 Ifi.UVM)
O.O256 23.9901 16.0O2T
O.0255 24.0031- 16.O553
O . OOO7 0 . 4549 5 . 006:>
O.O160 15.6013 1O.GG75
0 . 0 1 79 17. 4530 1 I . -I'.1 23
o.oi92 io.(;c:-o is.-x'io
O.O192 I8.93O4 !2.v',vC1
0.0053 5.6753 3.6070
O.O1O4 11.2174 7.3050
0.0118 12.7216 (). 265-1.
o.o iia 12.0:51 0.350:5
O.0'>18 2.0205 1.7127
O.OO42 5.3190 3.7955
O.OO42 0.9712 3.903,'.
-O.0002 O.0«25 O.3305
-O.O004 O.G250 0.7132
-O.OOO2 O. J41O O.I 170
O.O111 9.5920 7.3716
0.0267 20. 41 a;; 14.5575
0.0315 24.4511 10.O365
O.O325 27.3391 1 7.0339
O.0237 26.6031 I7.KO3
O.O267 25.1066 10.5130
0.01O1 O.57fT> 6.6569
O.O229 13. 6707 12.
-------
ro
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0 .
0.0
0.0
0.0
0.0
o.o
0.0
0.02
0.02
0.02
0.05
0.05
0.05
0.05
O.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
O.20
0.50
0.50
O.QO
0.20
0.00
O.GO
0.05
O. 1O
0.20
0.50
O.QO
0. 10
0.2O
0.50
0.00
0.20
0.50
0.89
0.50
O.GO
O.GO
63.33
G3.47
09.97
31.68
51 .03
64.04
84.96
91.45
44.74
66.93
87.04
93.54
64.22
90.07
96.57
92.31
100.70
1O1.25
83.64
93.23
95.99
63. 11
76.72
C4.42
93.37
96.00
72.74
85.48
94.76
97.45
84.09
96.03
98.66
96.95
100.27
100,48
0.3233
0.3346
0.3411
0.2988
0.3131
0.3168
0.3291
O.3357
0.2930
0.3094
0.3225
0.3292
0.2943
0.3153
O . 3220
0.3')73
0.3164/"
0.3149
0.3301
0.3500
0.3547
0.3071
0 . 3236
O.3302
O.3433
0.3482
0.3031
0.3215
0,3356
0.3408
0.3069
0.3279
0.3332
0.3217
0 . 3203
0.3202
6.44
-6.46
-10.48
12.95
16.98
7.93
-4.97
-0.99
10.69
10.01
-2.88
-6.91
7.31
0. 15
-3.O7
2.39
0.25
0.81
3.49 0.1156
-2.74 -0.0690
-4. !9 -0. 1014
12.70 0.6318
11.69 0.4937
4.27 0.1300
-2. 10 -0.0543
-3.57 -O.OQ02
7.71 0.3077
5.33 0.1719
-1.21 -0.0334
-2.72 -0.0694
3.95 0.1241
0.06 -O.O020
-1.51 -0.0412
0.98 0.0243
0. 10 -0.0003
O.31 0.0067
0 . 4737
0.5.",r«4
0.62GO
0.5247
0 . 46OQ
0.5421
0.6631
O.711 1
0.6702
0.6200
0.7520
0.6064
o.noso
0 . 0407
0.9O19
0.9344
0.9523
0.9724
0 . 0303
0.0304
0 . 0274
0 . 0280
O.0378
0.0321
0 . 0249
0 . 022O
0.0177
0.0247
0.0183
0.0155
0.0096
0.01 11
0.0083
0.0031
0 . 0026
0.0012
O.O393
O.O303
0.0271
0 . 027 1
0 . 0366
0.0313
O.0236
O.0207
0.0160
0.0226
0.0160
O.0132
O.O030
O . 0032
O.O056
0.0020
0.0010
O.OO06
31.5347
23. O40O
23 . 7O43
1 6.934-5
26. 19 J 7
25.0913
22.3100
20.5921
ll.OGCO
19.4196
16.5564
14.4373
7.3492
9.6173
7.5439
2.59,17
2 . 2452
I . 02C4
19.0163
17. 7477
16.724C.
14.7990
13.C033
16.206O
14. 1495
13. 1642
9.5572
12.4222
9 . 9721
9.0091
5.3050
5.5721
4.5354
1.6946
1 . 2300
O . 6339
Exhibit A-6 (continued)
-------
PLVTtE VISUAL KFFECTS FOR noniZOTTTAL VIEWS
PEnPJSJTOICl/LATl TO THE PLUWE OF MI TIE, GRAY, AJTD
Foil VARIOUS ODSERVER-PLUWE AND OUSERVER-OBJECT
1600 MW POWER PLANT
BLACK OBJECTS
DISTANCES
POWrrWIJCD J
THETA =
REFLECT I
.0
.0
.0
.0
.0*
.0
.0
.0
.0
.0
.0
.0
l.O
1.0
1.0
.0
.0
.0
.0
.0
1.0
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
O.3
0.3
0.3
DISTANCE
90.
uvnvo i
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.03
0.03
0.05
0.03
0.10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.80
nai> =
10/RVO
0.02
0.05
0. JO
0.20
0.50
o.oo
0.03
0. 10
0.20
0.50
O.OO
0. 10
0.20
0.50
O.GO
0.20
0.50
0.30
0.50
O.OO
0.CO
O.02
0.05
0. 10
O.20
O.50
o.ao
O.05
0. 10
0.20
0.50
o.ao
0. 10
0.20
0.30
0.00
0.20
O.50
0.00
0.50
O.OO
0.00
2.O
YCAP
01.93
69.90
66.63
61.68
54.33
51.92
79.62
67.68
62.74
55.41
52.97
76.20
64.22
56. 09
54.46
71. 19
59.05
56.62
63.53
59.57
6O.94
32.77
35.65
38.31
42.27
47.95
49 . 75
35.80
39.37
43.32
49 . 0 1
50.80
40.09
44.00
50.49
52.28
46.43
52.65
54.44
55.42
57.40
53.20
L
92.56
86.96
85.33
02.76
70.68
77.25
91.52
85.86
83.32
79.29
77.88
90.00
84. 10
80. 13
73.75
87.59
81.33
79.98
83.74
81.62
112. 36
64. Ol
66.28
68.27
71.08
74.82
75.93
66.40
69.04
71. 80
75.43
76.58
69.56
72.79
76.39
77.47
73.85
77.69
78.74
79.30
00.42
00.87
X
0 . 3447
0.3526
O.351 1
0 . 3476
O.G379
0.3323
0.34J4
0.3456
O.3419
0.3319
O.3264
0.3364
0.3351
O . 3249
0.3195
O.32O2
0.3174
0.3120
0.3136
O.3063
O.3O72
O.3299
0.3305
0.3259
O.3223
0.3234
0.3208
0.3100
0.3185
0.3158
O.3175
0.3200
O.3069
0.3003
0.3107
0.3132
0.2984
O.3034
0.3059
0.2975
0.3006
0.3002
Y
0.3549
0.3612
0.3589
0.3545
0.3457
0 . 3422
0.3501
0.3523
O.3477
0.3385
0.3349
0.3434
0.3399
0 . 3304
0.3267
0.3335
O.3223
0.3106
0.3195
0.3141
O.3152
0 . 3304
0.3C08
O.3353
O.3335
0.3068
0.3392
0.3203
0.3261
0.3253
0.0293
0.3318
0.3137
0.3162
0.3209
0 . 3233
0.3061
0.3127
0.3153
0.3000
0.3109
0.3112
DELYCAP
-12.64
-20 . 93
-10. O3
-15.70
-11. 13
-9.66
-11.21
-17.70
-14.64
-10.O8
-8.61
-9. 18
-13. 16
-8.60
-7. 12
-6. 19
-6.44
-4.96
-1.95
-2.01
-O.64
1.24
0.96
-0.85
-3.51
-7.24
-8.37
1. 12
0.21
-2.45
-6. 18
-7.32
0.93
-0.97
-4.70
-5.83
0.66
-2.54
-3.67
0.23
-0.72
0.08
DELL C(550)
-3.31 -0. 1316
-9.33 -0.2201
-8.76 -0.2180
-7.73 -O.2000
-6.06 -0. 1661
-5.45 -0. 1529
-4.82 -O. 1220
-8.23 -0.2066
-7. 19 -0. 1074
-3.45 -0. 1512
-4.O3 -O. 1371
-4.09 -0. 1068
-6.41 -0. 1694
-4.61 -0. 1299
-3.96 -0. 1 146
-2.92 -O.O800
-3.41 -0.0901
-2.72 -O.OC08
-1.01 -0.0292
-1.08 -0.0321
-0.34 -0.O096
1.O2 O.OHOO
0.75 O.O273
-0.62 -O.0199
-2.34 -O.0734
-4.35 -0. 1278
-4.09 -0. 1410
0.06 0.0308
0.15 O.O049
-1.63 -0.0522
-3.69 -0. 1 103
-4.24 -0. 1244
0.67 0.0224
-0.64 -O.022O
-2.78 -0.0854
-3.35 -0. IOO7
0.43 0.0129
-1.48 -0.04OO
-2.08 -0.0653
0.13 0.0033
-0.40 -0.0141
0.05 0.0010
DRAT 10
0 . 0065
0 . 7843
0.7733
0.7555
O.7131
O.6954
0.9261
0.0340
0.8527
0.0190
O . 7928
0.9911
0.9852
O.9339
0.9034
.0486
. 04Tj9
.O116
.0531
.0024
.O3OO
0.9447
0.7734
0.6391
0 . 6449
0.6465
O.6531
0.9529
0.0045
0 . 74O3
O . 7367
0 . 7497
0.9619
0.8490
0.0337
0.8,134
0.9733
0.9372
0.9539
0.9089
0.9903
0.0950
DELX
0.0112
0.0196
0.0196
0.O199
0 . O222
0.O239
0.0034
0.0141
O.0142
0.0163
O . O 1 80
0.0040
0.0074
0.0093
0.01 11
0 . 0003
O.OO 18
0.0036
-O.002O
-O.OO 19
-O.OO 12
0.0071
0.0183
0.0233
O.0265
0.0268
0.O26O
0.0008
0.0153
0.0199
O . O20O
O.O2O1
O.0043
O.0125
0.0140
0.0133
0.0026
0 . OO67
0.0060
0.0000
0 . OOO8
0.0003
DELY
0.9113
0.0191
0.0193
O.O2O7
0 . 0243
O.0262
0.0030
0.0129
0.O139
O.0171
0.OIO9
0.0040
0.0061
0.O09O
0.0107
-O.OOO4
O.O009
0.0026
-0.0019
-O.OO 19
-0.00O9
0.O065
O . 0 1 07
0.0232
O.O293
0.O292
0.0201
0.0031
O.OI60
0.O21 I
O.0217
0.0207
O.OO35
0.0120
0.0133
0.0124
O.OO) 9
O.O051
0.0042
0.0004
-O.OOO2
0 . 000 1
E(LUV)
10.3608
17.9773
17.7223
17.31 17
19.5390
20.0603
8.4020
13.6777
13.4777
14.3327
16.041 1
3.6302
8.0. 'jr. 3
9.2995
10.3312
2.9733
3 . 3423
4.2023
I.3C61
1 . 72-13
O.3919
4 . 23Gt>
1 1 . 7943
16.6227
2O.967O
22.7312
22 . 3 1 36
3.5191
1 1 . 0460
15.70,10
17.3100
17.4134
2 . 7239
9.5 149
12.0094
1 1 . 60O2
1.7133
5 . 6O23
5 . 40 1 5
0.5496
o , 30 36
0 . 2O'.i7
E(LAB>
8.2304
14.0153
13.6416
13.3C39
13.7459
14.22O9
6.V»r>3n
10.9376
10.4028
1O.4307
1O.39 72
4.76T.O
7.3924
6 . 353 1
7. 1002
2.9393
3.1143
3.3011
1,3740
1 . 3727
O.3938
2.9366
7.0171
10.9633
13.6,169
14.9210
14.7634
2.3725
7 . 0337
10.O132
1 1 . ,1234
11.4141
1 . 7.135
5.3651
7 . 6037
7 . 5663
1 . 06.12
3.4192
3 . 5360
0.3312
O . 602O
O. 1217
Exhibit A-6 (continued)
-------
0.0
0.0
o.o
o.o
o.o
o.o
o.o
0.0
o.o
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
O.O
O.02
0.02
0.02
0.02
0.02
0.02
0.05
0.O5
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.5O
0.50
0.80
0.02
0.05
0. !0
0.20
O.5O
O.CO
0.05
0. IO
0.20
0.50
0.80
0. 10
O.20
0.50
0.80
0.20
0.50
O.CO
0.50
O.GO
0.09
11.70
20.97
26. 17
33.94
45.21
48.82
17.03
27.23
35.O0
46.26
49.87
24.58
36.48
47.75
51.35
35.82
49.91
53.51
51.94
56 . 47
57.03
40.70
52.96
5O.23
64.95
73.05
75.36
4O.33
59.22
65. 7O
73.74
76.01
56.70
66.92
74 . 69
76.91
66.41
76.03
7O.20
77.27
79.90
80.21
0.2928
0.3034
0.3019
0.3046
0.3163
0.3229
0.2798
0.2937
0.2979
0.3104
O.3I71
0.2748
0.2904
0.3O37
0.3104
0.2766
0.2966
0.3032
0.2C95
0 . 2900
0.2970
0.2971
0.3U3
0.3129
0.3 1OO
O.3323
0.3370
0.2C47
0.3021
0 . 3099
0 . 3247
0.33O3
0.2O13
0.3004
0.3162
0 . 3220
0 . 2G6 1
0 . 3000
0.3130
0.3023
0.3095
0.3095
7. 19
10.34
6.06
1.71
-5. 57
-7.02
6.40
7.92
2.77
-4.51
-6.76
5.27
4.25
-3.03
-6. 28
3.59
-0.87
-3. 12
1.17
-0. 17
0.39
15.43 1.5660
13.97 0.9624
7.15 0.3539
1.38 O.0554
-3.51 -0. 1070
-4.63 -O. 1355
9.34 O.5099
8.13 0.4040
2.21 O.0053
-2.03 -0.0301
-3.98 -0. 1186
5.61 O.2662
3.33 0.1279
-1.00 -0.0612
-3.08 -0.0944
2.85 0.1074
-0.53 -0.0208
-l.CO -O.O581
0.70 0.0210
-0.09 -0.0058
0.22 0.0058
0.3C93
O.3500
0.4135
0.4922
O.0934
0.6333
0.555O
0.4367
O.H660
0.6014
O.7269
0.6986
0.6481
0.774O
0.R269
0.0261
O.3639
0.9235
0.9422
0.9650
0.9753
O.O412
0.04H7
0.0424
0 . 0362
0.0294
O.O269
0.0252
0.0341
0.0294
0.0235
O.0211
0.0152
0 . O220
O.016O
0.0144
O.0002
0.0097
0 . 0072
0 . OO26
0 . 0020
O.OO10
0.0423
O.0520
0.0463
0.0401
0.0319
0.0289
0.0254
0.0356
0.0312
0.0242
0.0215
0.0148
0.0217
0.0158
0.0132
0 . 0074
0.0073
0.0050
0.0019
0.0006
0.0006
16.5031
22.3137
24. 1C5'>
23.O503
24.5f«31
22.9333
1 1 . 3094
18. 3076
2O.479 :>
19. 5949
18. 1196
7 . 33C»2
14.4307
13.7277
12.331 1
4.0301
7.3703
6.0309
1 . 7733
1 . 4729
0 . 7029
16.62O3
19. 1051
16.9135
16.41OO
15.6730
15.0263
1O.6061
13.O300
12.0032
12.2673
1 1 . 6740
6.767!
9 . 2^24
8.0373
7 . D205
3w% r* «-» r¥-
• * l>l>*>
4.2C17S
3 . 7*573
1. 1034
O.C3G7
O.4451
Exhibit A-6 (continued)
-------
PLWWTC VISUAL. EFFECTS FOR HOtUZOirTAL VIEWS
pEJii'ErroicuLAn TO Tire PLUTOS OF WHITE, GRAY, AND
FOR VARIOUS OBSERVER-PLUME AND OBSERVER-OBJECT
I60O NW POWER PLANT
BLACK OBJECTS
DISTANCES
ui
DOWNWIND I
THETA a j
REFLECT }
.0
.0
.0
•9
.0
.0
.0
.0
.0
.0
.O
.0
.0
.0
.0
.0
.O
.0
.0
.O
.0
O.3
0.3
0.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
6.3
0.3
0.3
0.3
0.3
0.3
0.0
0.0
) I STANCE
35.
uvRve i
0.02
OJ '02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 1O
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
O. IO
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.80
0.02
0.02
(KTI) =
io/nvo
0.02
0.05
0. 10
0.20
0.50
O.CO
0.05
0. 10
0.20
0.50
O.CO
O. IO
0.20
0.50
0.00
0.20
0.50
O.OO
0.50
0.39
O.OO
0.02
O.05
O. 10
O.2O
0.50
0.00
O.05
O. 10
0.20
0.50
O.CO
0. 10
0.20
0.50
0.09
0.20
O.50
0.00
0.50
0.00
0.00
O.O2
0.05
2.0
YCAP
81.00
69.05
66.75
62.35
55.78
53.58
79.97
68.08
63.68
57. 11
54.91
77.32
65.54
5S.98
56.78
73.27
61.71
59.51
67.05
63.27
64. 9O
32.63
35.40
38.43
42.93
49.38
51.41
36. 15
39.76
44.26
50.71
52.74
41. 14
46. 13
52.58
54.61
48.51
55.31
57.34
58.94
61. 10
62. 16
11.55
20.72
L
92.49
86.84
85.39
03. 11
79.51
78.24
91.68
86.06
83.81
80.26
79.01
90.48
84.73
81 .30
00.08
03.59
02.77
81.59
05.54
83.60
O4.45
63. C9
66.09
68.36
7 1 . 53
75.71
76.95
66.66
69.32
72.43
76.52
77.74
70. GO
73.65
77 . 65
78.84
75. 17
79.24
80.39
81.28
82.45
83.02
40.54
52.68
X
0.3438
0.3508
O.C485
0 . 3439
O.G334
0.3230
O.C393
0 . C422
0.3375
0.3269
0.0215
O.3329
0.3301
0.3195
O . 3 1 42
O.3233
0.31 16
O.O065
0.3081
0.3013
O.C023
0.3278
0.3272
0.3219
0.3179
0.3190
0.0216
O.3142
0.3137
0.3107
0.3126
0.3152
0.3021
0.3028
0.3054
0.3081
0.2932
O.290O
0.3006
0.2926
0.2957
0.2956
0.2875
0.2982
Y
0.3543
O.0602
0.3573
0.3524
0.3437
0.3405
O.C403
0.3498
0.3447
0.3357
0.3325
0.0403
0.3361
0.0269
0.0206
0.0294
0.3104
0.3151
0.0157
0.3(08
0 . 3 1 2O
0.3G69
0.0069
0.0029
O.0010
0.0348
0.0075
0.0220
0.0226
.0.3219
0.0266
0.0294
0.3095
0.0121
0.3176
0.3205
0.0019
O.009O
0.0119
0.3047
0.0077
0.3003
0.2934
0.3081
DEL YCAP
-13. 11
-21.95
-20. 11
-17.35
-13.30
-11.98
-11.63
-10.78
-16.02
-11.97
-10.65
-9.53
-14. 15
-10. IO
-fl.79
-6.40
-7.37
-6.06
-2.03
-2.30
-0.67
0.77
-0.06
-2. 12
-5. 16
-9.41
-10.70
0.69
-0.79
-3,03
-O.OO
-9.36
0.59
-1.96
-6.21
-7.50
0.42
-3.48
-4.77
0. 15
-1.01
0.06
6.71
9.32
DELL
-5.51
-9.82
-9.29
-8.44
-7.05
-6.55
-4.98
-0.62
-7.74
-6.30
-5.78
-4.20
-6.78
-5.26
-4.71
-2.97
-3.78
-0.20
-1.01
-1. 19
-O.04
0.63
-0.04
-1 .52
-3.07
-5.48
-6.04
0.53
-0.56
-2.48
-4.67
-5.24
O.41
-1.25
-3.55
-4. 15
0.26
-1.95
-2.60
0.08
-0.54
0.03
14.22
12.39
C(5SO)
-0. 1338
-0.2330
-0.2245
-0.2098
-0. 1832
-0. 1733
-0. !204
-0.2106
-0. 1947
-0. 1658
-0. 1551
-O. 1O71
-0. 1731
-0. 1410
-0. 1290
-0.0790
-0. IO38
-0.0900
-O.O231
-O.O307
-O.OO91
O.0297
O.OOO9
-0.041 I
-O.0961
-0. 15OO
-O. 1602
O.0207
-0.0115
-0.0712
-O. 1301
-0. 1441
0 . 0 1 70
-0.0357
-0. 1013
-0. 1168
0.0097
-0.0500
-0.0759
O . 0024
-0.0170
0.0007
1.4012
0.8381
BRATIO DELX DELY E(LTTV)
O.G699 0.0110 0.0114 10.9272
O.7853 O.0195 O.O197 18.4473
0.7603 0.0198 0.0206 18.6935
0.7457 0.0206 O.O223 19.4252
0.7036 0.0200 0.026021.6421
0.6035 0.0245 O.O277 22. 3256
0.9334 O.OOOO O.OO78 O.4/45
0.8393 0.0135 O.0131 14.O1I3
O.Gf.04 0.0142 0.0146 14.4406
0.8156 0.0166 O.0101 16.3052
O.7919 O.O18O O.O196 17.4154
0.9996 0.0042 O.O036 5.5OI4
O.99O7 O.0063 O.0O6O 8.9973
0.9365 O.O091 O.0093 10. 11 Of.
0.9O34 0.0107 0.01OO I 1 . 0~S7
.0545 -0.0001 -O.OOO7 2.9910
.0533 0.0013 O.OOO7 4.1001
.02O2 0.0000 O.O022 4.5O28
.0546 -O.OO22 -O.OO2O 1 . OOOIi
.0669 -0.0022 -O.O021 1.9415
.OOO5 -O.OO 12 -O.OO08 O.9203
0.9473 0.0063 O.0063 4.1479
0.7714 O.O1O2 O.O198 12.3221
0.635O O.0235 0.0266 17.7747
O.6411 O.O267 O.OOO7 22.5743
0.6402 0.0269 O.OOO5 24.6161
O.6540 O.0262 0.0294 24.15(5
0.9594 O.0032 O.O05O 3.300O
O.0094 O.O152 O.0163 11.0722
O.7405 0.0196 O.O216 16.011)0
0.7392 0.0206 0.O222 19.O796
0.7522 O.0199 O.0212 1O.0997
O.9695 O.0036 0.O033 2.42O6
0.8573 0.0116 0.0119 9.6799
O.C467 0.0134 0.0132 12.5075
0.8616 0.0127 0.0123 12.3IO9
O.9000 0.0020 O.OO 16 1.4111
O.94O2 O.O059 O.0046 5.5968
0.9650 0.0050 0.0037 5.4306
0.9922 0.0006 0.00OO 0.4O20
1.0052 0.0003-0.0005 0.7575
0.9965 0.0002 0.0001 0. 1433
0.3997 0.0394 0.0418 15.3339
0.3574 0.0471 0.0519 22.0517
E( LAB)
8.4020
14.4627
14.3943
14.4723
5. 1459
5 .5627
6 . 6C1?
I . 2770
I. I 294
I. 5 l 90
I . S7C7.0
4.7502
7.r2::2
7 . 5 1 4 1
7 . 7377
2.9302
0.9O17
3.67OO
1 . 4O29
1.5191
0.6003
2.C572
8.2372
1 1 .7:i?0
14.7K!0
16.1 434
16.O197
2. 1037
7 . 00 1 4
10.6)96
12.0719
12.0045
1.5210
5.9955
0 . 07 1 2
0.0913
0.3540
3.5704
3.7045
0 . 24O 1
0.6 5 36
0 . 0306
15.5O51
10.28r-7
Exhibit A-6 (continued)
-------
o.o
0.0
o.o
o.o
o.e
o.o
o.o
o.o
o.o
o.o
o.o
o.o
0.0
0.0
o.o
0.0
9.0
>t o
.0
O.O2
0.02
O.02
O.02
O.05
,'0.05
0.05
0.05
0.05
0. IO
0. 10
O. IO
0. 10
0.20
0.2O
0.20
0.50
0.50
0.80
0. IO
0.20
O.50
0.00
O.05
0. 10
O.20
0.50
0.00
O. IO
0.20
O.50
0.00
O.20
0.50
0.00
0.50
0.00
0.00
26.29
34.61
46 . 64
50.48
17.37
27.62
33.94
47.97
31.81
23.63
37.81
49.84
53.68
37. 9O
52.57
56.41
55.46
60. 17
60.99
58.33
65.47
73.98
76.39
40.77
59 . 53
66.50
74.33
77. 19
57.72
67.90
73.99
70. 3O
67.97
77.64
79.37
79.03
81.95
C2.39
0.2969
0.2990
0.3119
0.3187
0.2743
0.2C01
O.2927
O.3056
0.3124
O.2696
0 . 2049
0 . 2906
0.3054
0.2719
0.2914
0 . 2900
0.2330
0.2932
0.2926
0.3099
0.3162
O.3305
O.3362
O . 2003
O.29O2
O . 0063
0.3221
0.3200
O.2771
O.2964
0.3130
O.3190
0.2824
0.3045
0.3105
O . 2993
0.3064
O.3066
5 . 58
0.06
-7.74
-10. 14
5.97
6.91
1.39
-6.41
-O.OI
4.92
3.26
-4.54
-6 . 94
3.35
-1.01
-4.21-
1.O9
-0.46
O.36
3.68 0.2857
0.03 O.OJ47
-4,72 -O. 1327
-5.81 -0. 1586
8.48 0.5273
0.91 0.3434
1.08 O.0491
-3.87 -0.11 10
-3.00 -O. 1391
5 . O5 0 . 2382
2.48 0.0902
-2.71 -O.OOOO
-3.9O -0. 11 12
2.53 0.0961
-1.06 -0.0333
-2.33 -0.0695
O.63 O.O1O8
-O.25 -0.0093
O.20 O.O052
O.42J 1
O . 4909
O.5992
0.6367
0 . 572 1
O.3007
0 . T.776
0 . 6O09
0.731.2
O.715U
0 . 6645
0 . 7006
0.0369
0 . 0309
0.37C3
0 . 9305
0 . 9473
0.9730
O . 970O
0 . O4O9
0.0052
O . 0292
0.0270
0 . 0232
O.O321
0 . O200
O.O229
O.O2O7
O.O 136
0.0203
0.015O
0.0137
O.0072
0.0036
O.0063
0 . OO23
0.0015
O.OOO9
O . O464
O.O403
0 . O329
0.03O1
0.0241
O.O347
0.0308
0 . O243
0 . O2 1 9
0 . 0 1 37
0.0208
0.0153
O.OI30
0 . 0007
0 . 0009
O.O044
O.O017
0 . 0003
0.0005
24 . orm
27. O X»O
26 . 11363
24.7041
1O.4605
13.4302
2O. 9502
20.0T,72
19.,°.OI3
7 . 2358
14. 1045
14. 1333
12.9040
4 . 4"^3
7. 1COG
6 . CM 03
1 . ;}C1V7
1.2318
0.02S2
16.3137
17.^263
16.7732
10.2094
9.7.140
13. 17O6
13.0150
12.9326
12.3173
6. 1623
O.?'003
0.663'i
O.29I4
3. 419,1
4. ICOt
3.9173
l.or>49
0.73(12
O.3942
VJSVM, EFFECTS FOR LINES OF SIGHT ALONG PLUME
1600 MW POWER PLANT
DOWNVIND DISTANCE (KM) = 2.0
THETA LENGTH RP/RV0
43.
RV ^REDUCED
YCAP
X
Y DELYCAP DELL CC5S0) BRATIO
1.
1.
»
•
•
.
•
0.00
0.02
0.05
0. 10
0.20
O.50
0.80
90.6
89.6
08.2
06.3
O3.6
93.4
148.3
51.00
51.57
52.32
53.36
54.03
49.53
19.01
80.90
02.90
83.58
89.35
94.06
102.46
104,71
92. 10
92.98
94. 14
95.73
97.98
103.94
101.79
0.3674
0.3592
0.3498
0.3392
0.3202
0.3206
0.3203
0.3744
0.3635
O.3553
0.3449
0.3348
O . 330 1
0.3308
-24.02
-22.08
-19.47
-15. O0
-10.46
-3. 12
-0.97
-9.77 -0.2291
-8.92 -0.2113
-7.78 -0.1803
-6.23 -0.1547
-4.04 -0.1045
-1.17 -0.0323
-0.36 -0.0100
0.4326
0.5332
0.6527
0.7900
0.9204
1.G056
1.0032
DELX
0.0485
0.0401
0.0306
0.0193
0.0034
0.OOO1
-0.0003
DELY E(LW> E(LAB)
0.0433
0.0344
0.0244
O.O1C16
0.0035
-O.OO14
-0.0007
41.2763
34.7454
27.0034
17.9345
8.3634
1 .6739
28.131
23.293
17.830
11.OO9
3,
1,
707
402
0.676O O.HCK.
Exhibit A-6 (continued)
-------
VISUAL EFFECTS FOR LINES OF SIGHT ALONG PLUME
1000 MW POWER PLANT
DOWNWIND DISTANCE (KM) = 2.0
TIIETA LENGTH RP/RVO
90.
1. 0.00
1. 0.02
1. 0.05
1. 0.10
1. 0.20
1. 0.50
1. 0.00
RV r.REDUCED
96.7
95.0
92. 0
09.9
03.9
93.4
143.3
47
40
49
51
53
49
19
.76
.65
.82
.39
.59
.53
.31
YCAP
40.70
42.20
44.21
47.05
51.22
57.01
58.74
69
71
72
74
76
CO
31
L
.99
.03
.39
.25
.33
.20
. 17
0.
0.
0.
0.
0.
0.
0.
X
3512
3412
3003
3137
3076
CO 13
3017
Y DELYCAP
0.
0.
0.
0.
0.
0.
0.
3399
3485
3364
3242
3138
3103
3120
-18.79
-17.29
-15.28
-12.44
-8.28
-2.52
-0.80
DELL C(550)
-11.53 -0.3211
-10.54 -0.2909
-9.18 -0.2641
-7.33 -0.2172
-4.75 -0.1470
-1.4O -0.0453
-O.44 -0.0141
BHATIO
0
O
0
O
0
1
1
. 4460
. 5044
.7O19
.3340
.9944
. O4 1 1
. O22 1
DELX
0
0
O
0
0
-0
-0
.0494
.0393
.0233
.0166
.0054
.OO13
.0010
DELY
0
0
0
0
0
-0
-0
. 0466
.0353
. 0232
.0110
. 0000
. 0027
. oo i ::
E(LUV)
G7.
no.
23.
>5 .
0.
t5 •
0.
4636
92 13
09 75
0017
7500
O-tOO
91 00
E( LAH>
25.
21.
,10 .
to.
5.
I .
0.
919
17;i
ooo
KX7
<*-.T»
— * »-i ••
677
VISUAL EFFECTS FOR LINES OF
1600 MW POWER PLANT
SIGHT ALONG PLUME
TIIETA LENGTH'RP/RVO
133.
1.
E (KTI)
= 2.
0
RVO RV r.HEDUCED
0.00
0.02
0.O3
0. 10
0.2O
0.50
0.00
101.2
99.0
96.3
92.5
87.5
93.4
143.3
45.31
46.47
47.97
49.97
52.71
49.52
19.31
YCAP
38.92
40. G3
43.51
47.23
52.69
60.33
62.63
L
60.72
70. 1 1
71.93
74.36
77.71
C2 . 03
33.26
X
0 . 3499
0.3377
0.3250
0.3122
0.3009
0.2957
0.2968
Y DELYCAP
0.3620
0 . 3479
0.3336
O.3199
0.3090
0.3068
0.3009
-25 . 07
-23.09
-20.43
-16.67
-11. 14
-3.43
-1.09
DELL C(550)
-15.25 -0.3330
-13.O5 -0.35-1.4
-12.02 -0.3133
-9.57 -O.2596
-6. ID -0. 1753
- 1 .82 -O.0543
-0.57 -0.0169
BRATIO
0.4309
0.5630
0 . 7246
O.G<>32
1.O394
1 . 0656
1 . 0336
DELX
0.0518
O.O396
0.0268
0 . 0 1 40
0.0026
-O.O027
-0.0016
DELY
0.0511
0.0370
O . 0227
O.0091
-0.0017
-O.OO37
-O.G015
E(LUV)
4 1 . 6979
33 . 3366
25 . 0572
15. 0^50
7. 1735
2. r,^oo
1 . 3069
EC LAB)
29 . 505
23. Om
17.379
1 1 . rivj
6 . 547
2.. TOO
O.9I7
Exhibit A-6 (concluded)
-------
00
DOWNWIND DISTANCE (KM)
FLUKE ALTITUDE CM)
SIGMA Y CM)
SIGMA Z (M)
S02-SO4 CONVERSION RATE=
NOX-N03 CONVERSION RATE=
CONCENTRATIONS OF AEROSOL AND GASES CONTRIBUTED BY
1600 flW POWER PLANT
•• 100.0
: 392.
= 3013.
137.
0.0035 PERCENT/HR
0.0245 PERCENT/HR
ALTITUDE NOX
CPPM)
H+2S
INCREMENT! 0.016
TOTAL AMB! O.O16
II+ IS
INCREMENT! 0.072
TOTAL AMB! 0.072
II
INCREMENT? 0.119
TOTAL AIIB! 0. 119
11- IS
INCREMENT! 0.073
TOTAL AMB! 0.073
II-2S
INCREMENT? 0.027
TOTAL AMB! 0.027
0
INCREMENT! 0.026
TOTAL AMD! 0.026
NO2
C PPH)
0.011
0.011
0.033
0.038
0.058
0.058
0.038
0.033
0.017
0.017
0.017
0.017
K03- H02/NTOT N03-/NTOT
CPPM) (MOLE tt) CMOLE X)
0.000
0.000
O.OOO
0.000
0.000
0.000
0.000
0.000
0.000
O.OGO
0.000
O.OOO
CUHULATIVE SURFACE DEPOSITION (HOLE FRACTION
SO2!
NOX!
PRIMARY P ARTICULATE!
S04!
NO3!
0.0000
0.0000
0.0000
O.COOO
0.0000
68.943
68.944
52.698
52.698
40.407
40.437
52.510
52.510
64.440
64.448
63.043
63.043
0.599
0.599
0.057
0.057
0.030
O.030
0.057
0.057
0.379
0.379
0.420
0.420
SO2
C PPM)
0.003
0.003
O.015
0.015
0.024
0.024
0..115
0.015
0.005
O.C05
0.005
0.005
SO4='
CUCXNO)
0.016
2.9G2
O.O10
2.946
0.009
2.945
0.010
2.9
-------
VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
1600 1W POWER PLAKT
DOWNWIND DISTANCE (KM) = 1OO.O
PLUME ALTITUDE (H) = 392.
SIGHT PATH IS THROUGH PLUME CENTER
vo
THETA ALPHA 1UVR.VO
45.
30.*
3O.
30.
SO.
30.
30.
43.
45.
45.
45.
45.
45.
60.
60.
60.
60.
60.
6O.
90.
90.
90.
90.
90.
90.
I <
0.02
0.05
0. 10
0.20
0.50
0.80
O.02
0.05
0. 10
0.20
O.5O
0.80
0.02
0.O5
O. 10
0.20
0.50
O.GO
0.02
0.05
0.1O
0.20
0.50
0.80
RV 5?REDUCED
178.2
175.3
172.3
169.3
165.3
164. 1
180.0
177.3
176.3
174. 1
171. 1
170.2
180.8
179.2
178.0
176.2
173.7
172.9
131.3
180.0
179. 0
177.4
175.2
174.6
3.67
5.25
6.85
8.48
10.67
11.31
2.70
3.89
4.71
5.90
7.51
7.99
2.28
3. 13
3.80
4.78
6. 12
6.52
2.00
2.69
3.27
4. 12
5.29
5.64
YCAP
87.42
85.54
87.73
93.70
101.79
104. 11
90. 12
83.60
91.77
96.36
1O2.54
104.31
91.64
91.11
93.79
97.60
102.91
1O4 . 40
92.84
92.69
95.07
98.52
103. 15
104.46
L'
94.92
94.12
95.05
97.51
100.69
101.57
96.05
95.42
96.73
90.58
100.97
101.64
96.67
96 .j46
97.55
99. 10
101. tl
1O1.68
97. 16
97. 10
98.06
99.42
101.20
1O1.70
X
0.3618
0.3622
0.3505
0.3333
0.3205
0.3192
0.3561
0.3566
0.3441
0.3CO7
0.3203
O.3191
0.3326
0.3309
0.3405
0.3292
0.3201
O.3191
0.3493
0.0473
0.3302
0.3202
0.3200
0.3191
Y DELYCAP
0.3706
0.3677
0.3545
O . 3333
O.3301
0 . 3305
0.3671
O.3651
0.3515
0.3380
0.330-5
O.3307
0.3644
0.3603
0.0493
0 . 3373
0.33O7
0.3307
O.3619
0.0580
0.0470
0.3373
0 . 3303
0.3303
-17.49
-19.37
-17. 18
-11.21
-3. 11
-0.80
-14.79
-16.31
-13. 13
-8.55
-2.37
-0.60
- 1 3 . 27
-13.80
-11.11
-7.23
-2.00
-O.51
-12.07
-12.22
-9.04
-6.39
-1.76
-0.45
DELL C( 5J»O)
-6.94 -0. 1644
-7.74 -O. 1G5S
-6. 02 -0. 1630
-4.35 -0. 1 131
-1. 13 -0.0339
-0.3O -0.0094
-5.81 -0. 1371
-6.45 -0. 1540
-5. 13 -0. 1264
-3.29 -0.0851
-0.09 -O.0255
-0.23 -O.OO71
-5. 19 -0. 1223
-5.41 -O. 1293
-4.31 -O. 1061
-2.77 -O.O715
-0.75 -0.0214
-0. 19 -O.0059
-4.70 -0. 1 107
-4.76 -0. 1 139
-3.80 -O.0935
-2.44 -O.O029
-0.66 -0.0139
-0. 17 -0.0032
BRATIO
O.5275
0.5626
0.7014
0.8337
0.99O3
0.9932
O.5504
0.5376
0.7421
0.89°0
0.9920
O.995O
0.5318
O . 63O9
O.7635
O.909I
0.9929
O.9958
O . 6073
O.6613
O.7374
O.9164
0.993G
0.9963
DELX DELY E(LUV) E(LAB)
0 . 0429 0 . 0396 37 . 556 3 2JJ . 1 4<
0.0433 0.0,'JOO 37.0310 L^.^r.
0.0316 0.0234 27.3070 J7.P7
0.0144 0.0075 13.0077 8.2 1.7P/
o.oooa -o.oooo o.7in.o O.RCK
O.0373 0.0361 33.0641 22.SOr
0.0373 O.OG<'9 H3.3385 22. O*V
O.O252 0.02O4 22.5592 14.47r
0.0119 0.0072 I0.82P5O 6. HIT
0.0014-0.0005 i.m-o j.r.rv
O.OOO3 -O.OOO4 O.54O4 O.4»<
O.O337 0.0034 30.9905 2O.Of>r
0.0320 0.029O 29.0143 I9.IO'
0.0217 0.0133 19.7739 12.07
O.0104 O.OO07 9.52,14 R.on
0.0013 -O.OCOa 1.5032 l.Kf
0.0002 -o.oooa o.43r>r> o.^3 19.02-
0.02B4 0.0209 20. 1420 17, 15'
0.0193 0.0107 17.8770 11.44*
O.O093 O.OO03 8.6333 5.4K
0.0012 -0.0002 1.3944 1 .00",
0.0002 -0.0003 0.4022 O.P-O;
90.
OBSERVER POSITION AT 1X2 OF A 22.5 DEGREE WIND DIRECTION SECTOR FROM THE PLUME CENTEIIUNF. AT TOF. GIVER DISTANCE FRtWI THE
0.11 178.3 3.35 95.39 98.19 0-.3372 0.3466 -9.52 -3.6O-O.O907 O.8O1O 0.0183 0.0155 16.9OOO 1O.79'
90.
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
178.8
176.0
173.0
169.8
165.5
164.2
130.5
178.4
176.8
174.4
171.3
170.3
3.33
4.86
6.49
8.24
10.56
11.24
2.44
3.57
4.46
5.72
7.43
7.93
48.73
47.57
48.90
52.54
57.46
58.07
50.39
49.45
51.39
54. 19
57.95
59 . 02
75.31
74.58
75.41
77.62
80.46
81.24
76.33
73.75
76.94
78.59
00.73
31.32
0.3443
0.3444
0 . 3323
0.3151
0 . 3029
0.3013
0.3307
0.3390
0.3261
0.3128
0.3028
0.3018
0.8562
0.3323
0 . 3380
O . 32O7
0.31 19
0.312*
0.3323
0.3499
0 . 3349
0.3200
0.3124
0.3126
-10.73
-11.91
-10.53
-6.94
-2.02
-0.62
-9.09
-10.03
-0.09
-5.30
-1.53
-0.47
-0.27 -0. 1752
-7.0O -O. 1979
-ft. 16 -O. 1796
-3.95 -0. 1217
-1. 12 -0.0381
-0.34 -0.0122
-5.24 -O. 1462
-5.02 -0. 16-1'J
-4.64 -0. 1351
-2.93 -0.0915
-0.85 -0.0286
-0.26 -0.0092
0.5313
O.5039
0.7114
0.3957
0.999O
0 . 9939
0.5592
0.3924
0 . 7495
0.9076
0.9931
0.9991
0.0423
0.0420
0.0305
0.0134
0 . 00 11
0 . 0000
0.0369
0.0372
0 . 0244
0.0111
O.OO10
0.0001
0.0429
0.0095
0.0243
O.OO75
-0.0014
-0.0003
0.0391
0 . 03^7
0.0217
0.0073
-o.oooa
-o.oooo
33. 0323 22.2.1'
32.5«r»0 2l.r
23.0090 IP.24:
1O.94K6 7.0.T
1. 9 130 1. t?r.r
0.0509 O.nO'
29.9757 I9.9flu
29.4707 I9.<^
19.6723 12.62..
9. 10fi7 5.02-'
1.4744 1.1 fv;
0.4092 0. <*• 1
Exhibit A-7 (continued)
-------
60.
60.
6O.
6O.
60.
60.
90.
90.
90.
90.
90.
9O.
0.02
0.05
0. 10
0.2O
0.50
0.80
O.O2
0.0?,
0. 10
0.20
0.50
0.8O
181.2
179.7
170.4
176.4
173. O
173.0
101.7
100.4
179.3
177.6
175.3
174.6
2.03
2.00
3.59
4.63
6.05
6.47
1.79
2.47
3.09
3.99
5.23
5.60
51.02
50.99
52.64
55.01
50. 19
59.09
52.06
51.97
53.42
55.52
50.34
59. 14
76.09
76. 7O
77.60
79.06
OO.O6
O1.36
77.34
77.20
70. !4
79 . "6
O0.95
O1.3O
0.3352
0.3333
0.3227
0.3115
O.3027
0.3018
0.3321
0.3297
0.3203
0.3105
0.3027
0.3010
0.3493
0.3453
0 . 3325
0.3201
0.3127
0.3127
0.3465
0 . 342 1
0.3309
0.3197
0.3123
0.3123
-O. 16
-O.49
-6.83
-4.40
-1.29
-0.39
-7.42
-7.52
-6.06
-3 . 96
-1. 14
-0.35
4 . 63
4.03
3.09
I!. 51
0.71
0.21
4.24
4.29
3.43
2.21
O.63
0.19
-O.
-0.
-O.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
inoi
1379
1 133
070')
0240
0077
1 109
1214
C999
0677
O2 12
0003
O.
O.
0.
O.
O.
0.
O.
O.
0.
0.
O.
0.
5O42
o::32
77 46
9103
99GO
9092
6097
6002
7923
9227
9979
9993
0
0
O
0
O
0
0
O
O
0
0
0
.0334
.03 15
.0210
.0097
.OO1O
.0001
.0304
.O279
.0107
. 0033
. 00^9
.OOOl
0
0
O
0
-0
-0
0
t
0
0
-0
-0
. 036 1
. 0'52 1
.019*
.O069
. oooo
. 0005
. O333
. 02rt9
.O177
.GOT.'*
.00114
. OOO4
27.
25.
17.
rt.
i .
0.
2'5.
211.
»r».
7.
1 .
0.
02 »• ';.'.'•
(099
dftOO
30 ro
\?.r>:\
059 1
1 r\ . r «/•>
i ^ . r '* '>
! 1 . 070
5 . l m
O.C07*
o.r.'iT
I'T-.'Vi-)
ir,. ir.r,
JO.O.'M
'"•.O'V^
O.PT')
o.:%o:;
OBSERVER POSITION AT 1/2 OF A 22.5 DEGREE WIND DIRECTION SECTOR FROM THE PLUW'1 C^NTF.nUNK AT THE GIVEN DISTANCE PTIOT1 TJTF.
90. 0.11 179.1 3.17 53.62 70.26 0.3194 O.3297 -5.07 -3.32 -0.097O O.8074 O.OI77 O.OI63 14.7775 9.
VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
1600 MW POWER PLANT
DOWNWIND DISTANCE (KM) = 100.0
PLUME ALTITUDE (PI) = 392.
SIGHT PATH IS THROUGH PLUME CENTER
THBTA ALPHA RP/RVO
135.
30.
30.
30.
30.
30.
3O.
45.
45.
45.
45.
45.
45.
60.
60.
60.
60.
60.
60.
90.
90.
90.
90.
90.
90.
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.03
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
RV ^REDUCED
179.3
176.5
173.4
170. 1
165.6
164.3
180.3
170.0
177. 1
174.7
171.4
170.4
131.5
1CO.O
178.6
176.6
173.9
173. 1
182.0
180.7
179.5
177.8
175.4
174.7
3. 11
4.59
6.25
8.06
10.48
11. 18
2.25
3.36
4.28
5.59
7.37
7.89
1.89
2.71
3.45
4.52
6.00
6.44
1.63
2.32
2.96
3.90
5. 19
5.57
VCAP
51.79
50.46
51.94
56.05
61.59
63. 19
53.68
52.60
54.79
57.93
62. 17
63.30
54.74
54.36
56.20
50.07
62.46
63.40
55.58
55.46
57. 10
59.46
62.64
63.54
L
77. 18
76.37
77.27
79.66
02.71
83.56
78.30
77.66
78.94
80.72
83.02
33.66
78.91
78.69
79.75
81.24
83. 17
83.71
79.39
79.33
CO. 25
81.56
83.27
83.74
X
0.5404
0.3403
0.3200
0.3108
0.2908
0.2979
0.3348
0.3330
eT.3220
0.3087
0.2988
0.2930
0.3312
0.3293
0.3186
0.3074
0.2988
0.2900
0 . 3232
0.3237
0.3164
0.3063
0.2988
0 . 2980
Y DELYCAP
0.3547
0.3510
0.3353
0.3101
0.3093
0.3099
0.3508
0 . 3482
0.3327
0.3181
0.3099
0.3102
0.3477
0.3433
0.3304
0.3177
0.3102
0.3103
0.3443
0.3403
0.3287
0.3173
0.3103
0.3104
-12.20
-13.53
-12.05
-7.95
-2 . 40
-0.81
-10.31
- 1 1 . 39
-9.21
-6.06
-1.82
-0.61
-9.26
-9.64
-7.79
-5. 12
-1.53
-0.51
-8.42
-0.53
-6.9O
-4.53
-1.35
-0.45
DELL
-6 . 30
-7.60
-6.71
-4.32
-1.26
-0.42
-5.63
r -6 . 32
-5.04
-3.26
-0.96
-0.32
-5.07
-3.29
-4 . 23
-2.74
-0.00
-0.27
-4.59
-4.65
-3.72
-2.42
-0.71
-0.24
C(350)
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-0
-o
-0
-0
-0
. 1325
.2003
. 1875
. 1276
.0411
.0343
. 1522
. 1712
. 1410
. 0960
.0309
. 0 1 03
. 1357
. 1437
. 1134
. OoOO
.0259
.0091
. 1229
. 1265
. 1043
.0710
.0223
.0030
BRAT 10 DELX DELY E(LTJV) E( LAH>
0.5317 O.O423 0.0437 34.93^0 23.132
O.5711 0.0422 0.0401 04.040') 22.317
0.7166 O.O299 O. 0*243 24.5769 15.7!^
0.9030 0.0127 O.OO72 H . If1.** 7.2-T.3
1.O046 0.0003 -0.0017 2.0008 1.717
1.0028 -0.0002 -0.0010 0.7734 O.6O1
O.3592 0.0367 0.0393 3 1 . *4*O 2O.770
0.5933 0.0369 0.0373 3O.S394 2O. l'V>
0.7332 0.0239 0.0213 20. <. 521 IO.O05
0.9129 O.O106 0.0071 9.4025 5.999
1.0022 0.0008 -0.0010 1.5249 1.279
1.0019 -0.0001 -O.O007 0.(K.';<> O.*«y>
0.5041 0.0302 0.0367 23.905* 19. !')5
O.OJJ64 O.OT12 O.OC25 20.0371 17.! ^
0 . 7777 0 . 0206 0.0193 17. 99*5 1 1 . <" ,-''.
0.9205 O.O093 O.0007 8.3207 ,5. mi
1.0013 0.0003-0.0007 1.29*3 1 . O7 1
1.O015 -0.0001 -0.0005 0.4736 O.<09
0.6095 0.0302 0.0339 26.7094 17. '597
0.6062 0.0276 0.0293 24.2*95 15.762
0.7955 O.O1O4 0.0178 16.3O*4 lO.:>rc2
0.9264 0.0035 0.0063 7.r>7tt!> 4.791
1.0003 0.0007-0.0006 1.1 5O* ;.">*2
1.0013 -O.OOOO -O.0003 O.*lTi 0.353
OBSERVER POSITION AT 1/2 OF A 22.5 DEGREE WIND DIRECTION SECTOR FROM THE PLUME CENTERLINE AT THE GIVEN DISTANCE FROTT THE
90. O.ll 179.4 3.05 57.32 80.37 0.3154 0.3273 -6.6O -3.60-0.1O13 0.0102 0.0173 0.0165 15.373^
Exhibit A-7 (continued)
-------
DOWNWIND DISTANCE
PI.UWE ALTJTUDE (W)
THETA
43.
00
90.
ALPHA
30.
30.
3O.
3O.
3O.
30.
45.
45.
45.
45.
45.
45.
60.
CO.
GO.
6O.
60.
6O.
90.
90.
90.
90.
90.
90.
30.
3O.
30.
30.
30.
3O.
45.
45.
43.
45.
45.
45.
VISUAL EFFECTS FOR F9N-HORIZONTAL CLEAR SKY VIEWS TimOUCn PLUME CENTER
HW POWER PLANT
DELL CC550) BPJVTIO
BETA
15.
30.
45.
6O.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
3O.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
100.
392
RP
2.93
1.41
0.08
O.60
O.44
O.39
2. 10
1.O4
0.63
O.51
O.42
0.39
1.73
O.Q8
0.6O
0.47
O.41
0.39
1. 51
0.7O
O.55
0.45
O.41
0.39
2.95
1.41
0.00
0.60
O.44
0.39
2. 10
1.04
0.68
0.51
0.42
0.39
0
.
YCAP
39.24
27.66
23.42
21.42
20.47
20. 18
39.25
26.50
21.83
19.64
18.61
18. 3O
39 . 40
26. Ol
21. 11
18.81
17.73
17.41
39.54
25.73
20.67
18.30
17. 19
16.86
22.96
15.74
13.08
11.83
11.23
11.05
23.43
15.46
12.53
11. 13
10.50
10.30
L
GO. 95
59 . 6 1
53.54
53.45
52.40
52.07
63.96
53.54
53.88
51.47
5O.26
49.90
69.07
58.08
53. 10
50.50
49.21
48.81
60. 17
57.82
52.62
49.90
48.33
48. 12
53.06
46 . 67
42.93
40.98
40.01
39.70
55.55
46.30
42.08
39.07
33.76
30.42
X
0.3342
0.3374
0.3415
O . 3447
O . 3468
0.3475
0.3190
O.3192
O.3220
O.3243
0.3258
0.3263
0.3104
0.3093
O.3114
0.3133
0.3145
O.315O
0.3047
0.3028
0 . 3O44
0.3061
0.3072
0 . 3O76
0.3188
O . 3207
O.3242
O.3271
0.3291
0 . 3299
0.3040
0.3029
0.3049
0.3068
0.3030
0 . 3085
Y
0.3341
0.3352
0.3377
0.3600
O.3616
0.3622
O.3410
0.3088
0.3399
0.3413
0.3423
0 . 3426
0.3324
0.3286
O.3291
0 . 300 1
0.3309
O.3312
0.3263
O.3213
O.3217
0.3223
0.3231
O.3234
0.3407
O . 3406
0.3427
0.3449
0.3463
0.3472
O.3269
0.3233
0.3238
0.3248
0.3236
0.3259
DELYCAP
-2.36
3.43
5.63
6.66
7. 13
7.20
-2.33
2.30
4.03
4.83
5.27
5.39
-2. 2O
1 .81
3.33
4.05
4.39
4.49
-2.00
1.53
2.9O
3.54
3.03
3.94
-3.33
0.33
1.77
2.43
2.73
2.82
-2.90
0.03
1.21
1.73
2.00
2.07
-1.67
3.29
6.2O
8. 10
9.09
9.40
-1.66
2.22
4.62
6. 12
6.93
7.22
-1.56
1.76
3.84
5. 16
3.89
6. 13
-1.46
1.49
3.37 O
56
.22
5.44
4.
-0.O379
O.1654
0.3417
0.4760
O.5596
0.5078
-0.0365
0.1101
O.2324
0.3555
O.4202
O.4422
-0.0337
0.0969
O.2104
0.2977
O.3525
O.3713
-O.O312
O.OO42
1045
O.2610
0.3104
O.3269
-3.32
0.47
2.78
4. 19
4.96
5.20
-2.84
0. 1O
1.93
3.O8
3.72
3.92
0.1051
O.0493
0.1338
0.2060
O.3494
0.3707
O.0067
0.0312
0.1339
O.2127
0.2621
0.2709
0.2441
O.1783
0.I50:>
0. 13^3
O.1203
0.1231
0.3 134
0.2475
0.2157
O.1079
O. IfHKi
0.1350
O.3653
0.2994
O.203O
O.2453
O.2349
0.2316
O.4O63
0.3401
O.3OU9
O.2323
O.2716
O.2601
O.2634
O. I9II3
O. 1693
O.152O
0.1435
0.1404
0.3337
0.27 10
0.2403
O.2220
0.2132
0.2101
0
0
0
0
0
0
0,
0,
0,
O,
0.
0.
0.
0.
O.
0.
0.
0.
O.
O.
O.
O.
O.
O.
0.
0.
0.
0.
0.
0.
O.
0.
0.
O,
0.
0,
DELX
0734
0347
O914
0958
0935
0994
0302
0666
0719
0755
O775
O781
O496
O366
Oft 13
O645
0663
0668
O439
P501
0544
0573
0509
0595
069O
07C5
0043
OQ85
091 1
O920
O342
0607
0652
OOO2
O7OO
0706
DELY EC LUV) E< LAm
0.
O.
O.
0.
0.
O.
O.
0.
0.
0.
O.
O.
O.
0.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
0831
O963
1030
1072
1097
1 IO6
O700
0799
oa:,2
O333
0904
O91O
0614
0697
O744
O774
O790
070 r,
O553
0627
0670
O697
O7I2
0717
57,
54,
51,
30.
49.
49.
4O.
44.
42.
40.
40.
U9.
42.
30.
36.
35.
34.
34.
an.
33.
33.
3! .
31.
39.
1431
1H59
7607
G565
7076
1614
72O7
r'»92
H27O
0954
G7.12
5018
1423
O2 1 3
•:-r.9 1
7406
5249
1304
:»2 17
I 4O t
C691
1057
9333
OS
36
35
35
35
36
3O
29,
29,
23,
23.
no.
27.
25.
25.
24.
6035
.2507
O7O1
O302
9375
OO4O
7720
704O
OH79
76O4
60O4
049O
05OO
mio
1951
C.'l'lf*
75^ 1
24.40 IO
2D.2927
22.6265
22.3J?H
22. U:r,5
0.
0.
0.
0.0840 49.
O.096O 44.
0.1023 41,
1063 40,
10O9 39,
1098 39,
O.O7O2 41,
0.07O7 37,
0.0033 34,
0.0063 32
0.OOOO 31
0.0006 31
0051
9001
9043
2I9O 29
4233 29
21 16
4O14
1410
2204
3137 23
32
31,
30,
29
27
23
24
2:)
25I2
OOO6
1304
7722
6012
0034
K'.rtl
<»()14
5422
9370
7320
6005
Exhibit A-7!(continued)
-------
60.
60.
f*Q.
60.
60.
60.
90.
90.
9O.
9O.
90.
90.
15.
30.
45.
60.
,,75.
1 90.
15.
30.
45.
60.
75.
90.
1.73
0.03
0.60
0.47
0.41
O.39
1.51
0.70
0.55
0.45
0.41
0.39
23.73
13.38
12.29
10.84
10. 16
9.95
23.98
13.34
12. 15
10.65
9.93
9.74
55 . 07
46. 18
41.71
39.35
38. 16
37.00
56. 1O
46. 13
4 t . 49
39.03
37.79
37.41
O.2957
0.2933
0.2946
0.2961
0.2971
0.2975
O.2903
0.2072
0.2831
0.2803
0.2901
0.2904
0 . 3 1 30
0.3127
0.3123
0.3131
O.3I37
O.3139
0.31 17
0.3035
0.3049
0.3033
O.3057
0.3059
-2.53
-O.01
0.97
1 . 44
1.60
1.72
-2 . 31
-0.05
0.83
1.23
1.43
1.51
-2.51
-O.01
1.56
2.56
3. 12
3.30
-2.28
-0.07
1.34
2.24
2.74
2.90
-O.0757
O . O240
O. 1 11O
O. 1773
O.2I9B
0 ..2042
-O.OOO1
0.02O1
O.0970
0. 1562
O. 1933
0 . 2062
O . 3307
O. 3'»0.'J
O. ;*93'5
O . 2744
O . 204 1
0.2003
O.4276
O.3033
0 . 3343
0.^147
O.3033
O . "OO'l
0.0439
O.031 1
O . O349
0.0575
O.O591
0.0396
O . O405
0.0450
0 . Q4(J«i
0.0307
0.0321
O.0323
O . 06 1 3
O. 06.12
0.0721
O.O746
0 . 07f.O
O.O703
0.0550
0 . 00 1 O
O.OG43
0.0003
O.0031
3*.
32.
29.
23.
27.
33!
29.
20.
25.
24.
24.
54O1 23.90011
4039 22.nr>.°,r,
7014 21.r,29tt
1343 2O.7744
3320 2O.!;nr?3
i r:r»7 21. or>~o
007? 20.1003
702O 10.I7O4
200.? lO.^rr,?
4302 I3.r,7fj1
2371 lO.20.r?r>
VISUAL EFFECTS FOR NON-HORIZONTAL CLEAR SKY VIEWS THROUGH PLUME CENTER
1600 riw POWER PLANT
00
ro
DOWNWIND DISTANCE (KM)
PLUHE ALTITUDE (M>
THETA
135.
ALPHA
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
60.
60.
60.
60.
60.
60.
90.
90.
90.
90.
90.
90.
BETA
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
100.
392
RP
2.95
1.41
0.38
0.60
0.44
0.39
2. 1O
1.04
0.68
0.51
0.42
0.39
1.73
0.88
0.60
0.47
0.41
0.39
1.51
0.7O
0.53
0.45
0.41
0.39
0
f
YCAP
25. 17
16.87
13.81
12.36
11.67
11.46
26.07
16.90
13.51
11.91
11. 16
10.93
26.62
16.97
13.40
11.72
10.93
10.69
26.99
17.03
13.34
11.61
10.79
10.53
L
57.28
40. 14
44.00
41.83
40.73
40.38
58. 14
48. 17
43.56
41. 12
39.89
39.51
58.65
48.26
43.39
40.81
39.50
39. 10
59.00
48.33
43.31
40.62
39.26
33.84
X
0.3153
O.3165
0.3197
0.3225
0.3246
0.3233
0.300/6
0 . 2986
0.3002
0.3019
0.3030
0.3035
0.2923
0.2892
0.2900
0.2912
0.2921
0.2924
0 . 2870
0 . 283 1
0.2836
0.2845
0.2852
0.2853
Y
0.3403
0.3397
0.3417
0.3440
0.3457
0.3464
0.3259
0.3216
0.3218
0.3227
0.3233
0.3238
0.3166
0.3107
0.3101
0.3106
0.3111
0.3113
0.3102
0.3033
0.3023
0.3023
0.3028
0.3030
DEL YCAP
-5.32
-O.99
0.66
1.43
1.79
1.89
-4.42
-0.96
0.36
0.99
1.23
1.37
-3.87
-0.89
0.25
0.79
1.05
1. 13
-3.50
-0.83
0. 19
0.63
0.91
0.93
DELL C<530> BRATIO
-4.83 -
-1.22 -
0.98
2.33
3.06
3.29
-3.97
19
-1
0.34
1.62
2.22
2.42
-3.46
11
-1
0.37
1.
1.
2,
-3.
-I.
31
83
00
11
03
0.29
13
60
1.75
0.1443
0.0176
0.0927
O.1765
0.2283
0.2453
O.1159
0.0190
0.0650
O.1304
0.1711
0.1849
0.1001
0.0180
0.0536
0.1007
0.1434
0. 1552
0.0C96
0.0169
0.0463
0.0954
0.1262
0. 1367
0.
0.
0.
0.
0.2666
0.2034
1745
1577
1481
1448
0.3389
0.2303
0.2501
0.2322
0.2225
0.2194
0.3931
0.3366
0.3054
O.2366
O.2763
0.2731
0.4346
0.3798
0.3481
O.3287
0.3130
0.3146
DELX
0.0678
O.O764
0.0820
0.0360
0.0383
0.0394
0.0528
0.0333
0.0625
0.0053
0.0070
O.0075
0.0446
0.0490
O.0523
O.O347
0.0361
0.0503
0.0393
0.0430
0.0459
O.0479
0.0492
0.0496
0.
0.
0.
0.
0,
0.
0,
0.
O.
0,
0,
O,
0.
0.
0,
0,
0,
0,
0,
0,
0,
0,
0,
DELY E(LUV) E(LAB)
0851
09f-3
1030
1071
1093
1103
0707
0787
0831
0339
0376
0881
0014
0673
0714
0733
0751
0756
0550
0604
0636
0657
0669
52.
48.
44.
42.
42.
41,
44.
39.
36.
34.
33.
33.
39.
34.
31.
30.
29.
23.
35.
31,
23,
26.
20.
6364
13C3
0394
9043
07C-1
3345
4363
0003
6244
7434
7598
4550
1702
7944
8374
1011
1051
8703
4790
3010
6334
9961
1 134
31
31
0.0673 23.8413
34.3734
32.0479
0034
1581
30.9023
30.9736
28.9076
27.0445
25.7722
23.07GO
24.7448
24.0475
23.
-------
PLUME VISUAL EFFECTS FOR HOUIZOrTTAL VIEWS
PKRPEWDICULAII TO THE PJLUHE OF WHITE, GRAY, AND
FOR VARIOUS 0DSERVF.R-PLUNE AND OBSERVER-OBJECT
160O MW POWER PLANT
BLACK OBJECTS
DISTANCES
00
CO
DOWNWIND 1
TlfKTA =
REFLECT I
.0
.0
.0
.0
.0.
1.0
1.0
1.0
.0
.O
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
O.3
0.3
0.3
O.3
0.3
0.3
0.3
0.3
0.3
O.3
0.3
0.3
0.3
0,3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
DISTANCE
45.
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
O. 10
0. 1O
0. 10
0.20
0.20
0.20
0.50
0.5O
0.80
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.80
(KTI> =
io/nvo
0.02
0.05
0. 10
0.20
0.50
0.00
0.05
0. 10
0.20
0.50
O.CO
0. 10
0.20
0.50
O.CO
0.20
0.50
O.OO
O.50
O.OO
O.CO
0.02
0.05
0. 10
O.20
0.50
O.CO
0.05
0. 10
0.20
0.50
0.00
0. 10
0.20
0.50
0.00
0.20
0.50
0.00
0.50
o.ce
o.no
100.0
YCAP
92.91
88.64
09. 18
90.63
92.66
93.20
92.77
39. 16
90.57
92.53
93. 13
95.24
92.95
94.91
95.51
93.02
93.35
9O.95
1O3.7O
103.50
1O3. 1 1
35.00
42.04
51.04
64.46
04.02
90.34
42.72
52. 14
65. 14
04. 11
90.26
50. 09
67.52
O6.49
92.64
70.50
O9.94
96. OO
94.40
100.71
101.96
L
97.20
95.43
95.66
96.26
97.09
97.34
97. 14
95.65
96.24
97.04
97.20
98. 13
97.21
98.00
98.24
99.54
99.36
99.59
101.41
101.37
101.94
65.78
70.03
76.72
04.22
93.46
96. 14
71 .09
77.0O
04.57
90.51
96. 11
7O.41
05.70
94.53
97.00
87.26
95.97
98.47
97.79
100.27
100.75
X
0.3462
0.3575
0.3562
0.3536
0.3514
0.3514
O.G452
0.3532
0.3509
O. 349 1
O.3490
0.3371
0.0414
O.G399
0.3399
O.0203
0.029O
0.3299
0.0210
O.0216
O.0207
O.G022
O.OOOO
0.0003
0.3300
O.0405
0.0466
0.0209
0.0245
0.0271
O.G001
0.0443
0.30O9
0.3165
0.3239
O.3053
0.3037
0.3108
0.3253
0.3102
0.3171
0.3161
Y
0.3567
0.3662
0.0649
0.3627
0.0617
0.0619
0.0546
0.3602
0.05O5
0.3577
0.3500
0.0455
0 . 0400
0.0475
0.3470
0.0064
0.0371
0.0074
0.0309
0.0009
0.0311
0 . 0426
0 . 0406
0.0420
0.0457
0.0557
0.0600
0.0007
0.0049
0.0402
0.0516
0.3561
0.3190
0.0279
0.0410
0.0458
0.0153
0.3303
0.0053
0.0207
0 . 0208
0 . 3207
DELYCAP
-5. 10
-10.29
- I 1 . 02
- 1 1 . 43
-11.96
-12. 11
-6. 15
-11.03
- 1 1 . 49
-12. 10
-12.26
-4.96
-9.11
-9.72
-9. CO
-3.24
-6.27
-6.44
-0.93
-1.81-
-0.28
0.03
-O.74
-2.85
-6.0O
-10. 02
-1 1.59
-0.06
-1.75
-5.02
-10.22
-1 1.67
-0.01
-2.94
-7.04
-9.29
0.05
-4.40
-5.05
0.06
-1.22
0.03
DELL
-2.03
-4. 15
-4.42
-4.53
-4.67
-4.70
-2.44
-4.42
-4.56
-4.72
-4.76
-1.95
-3.58
-0.76
-3.O1
-1.25
-2.40
-2.45
-0.33
-0.68
-0. 10
0.03
-0.51
-1.69
-0.01
-4.00
-4.60
-0.04
-1.03
-2.66
-4 . 26
-4.63
-0.00
-1 .45
-3.24
-3.66
0.02
-1.79
-2.27
0.02
-0.47
0.01
C(550)
-0 . 0493
-0. 1015
-0. 1071
-0. 1084
-0. 1102
-0. 1103
-0.0605
-0. 1091
-O. 110O
-0. 1 132
-0. 1 139
-0.0491
-0.0097
-0.0927
-0,0903
-0.0026
-O.0619
-0.0630
-O.OG9O
-0.0190
-0.0000
0.0001
-0.0107
-0.0471
-0.0780
-O. 1004
-0. 1000
0 . O002
-O.0297
-0.0706
-0. 1042
-0.1110
0.0001
-0.0403
-O.OO16
-0.0904
0 . 000 1
-0.0477
-0.0590
0.0000
-0.0107
0.0000
BRAT 10
0.7379
0 . 6434
0.6273
0.6163
O.61O1
0.609O
0.7957
0.6965
0.6761
0.6650
0.6643
0.3326
O.OQ90
0.7921
0 . 79 1 2
0.9533
0.9222
0.9210
0.9903
0.0908
1 . O009
0.0139
0.6772
0.6227
O.5993
O.6O03
0.6053
0.0052
O.7IOO
O.6603
O.«,530
O.6533
0 . 9063
O.797O
O.7779
O. 70 1-4
0.9574
0.9053
0.9129
0.9090
0.9393
0 . 9960
DELX
0.0143
0 . 0279
0.0296
0.0302
0.0306
0 . 03O7
0.0137
0 . 0265
O . 0275
0 . 0282
0 . 0233
0.0105
0 . O 1 80
0.0191
O.0192
0 . 0049
0.0090
0.0002
O.OOO5
0 . 0000
-O.OOOO
O.O128
O.O245
O . 0234
O.OOOO
O.O009
O.0008
O.O121
0 . 0225
0.0266
0 . 0233
0 . 0235
0 . 0070
0.0160
0.0193
0.0194
O.OO32
0.0092
0.0094
0 . 0006
0.0013
0.0002
DELY E( LUV) E( LAB)
0.0145 12.9348 8.77O7
0.0267 24.2007 16.4433
0.0286 26.10O3 17.6270
O.O293 27.3776 13.3524
O.O3O6 23.3055 13.921/}
0.0306 23.4344 10.9849
0.0151 14.1015 9.3364
0.0239 23.1033 15.35f:r,
0.0255 24.6233 16.2762
0.0267 25.3764 17.0212
0.0267 25.0007 17. (O'U
0.0O92 9.53O3 6.1622
O.OI5O 16. COOn 10.4263
O.OI65 17.5716 11.2319
0.0166 17.7243 11.3330
O.OO04 4.5016 2.C369
0.006O 8.2763 5.2163
0.0062 3. ''.509 5.031:)
-O.OOO1 0.6505 0.4303
-O.OOOO 1.2r;j:7 0.0417
-O.OOO2 O. K5~9 0. 1563
O.O101 8. 1 fO5 5.5236
0.0249 17.0370 11.2730
O.OOOO 22.5021 14.69,10
0.0120 27.0003 17.460!
O.O023 20. 12Q3 19.O417
O.OO 13 28.3399 19.QOO2
O.O120 8.52(7 5.49O6
O.O223 17.5734 11.1193
O.O274 23.4272 I4.G005
O.O283 26.5102 17.1107
O.0274 26.0561 17.2OO9
0.0064 5.3752 3.2701
0.0151 10.0749 O. 5534
0.0176 17.9927 11.0O93
0.0171 18.0253 11.4727
0.0025 2.3056 1.5016
0.0069 8.4605 5.1470
0.0066 0.7047 5.4049
0.0003 0.5359 0.3049
0.0001 1.2020 0.0407
0.0000 0.1647 0.0067
Exhibit A-7 (continued)
-------
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.2O
O.20
0.50
0.50
0.00
0.02
0.05
0. 10
0.20
O.50
O.CO
0.05
0. 10
0.20
0.50
O.CO
0. 1O
0.20
0.50
o.no
0.20
0.5O
O.CO
0.50
0.00
O.CO
10. in
22.00
34.70
53.24
00.31
09.00
21.27
36 . 27
54.24
CO. 50
89.03
36. 16
56.62
82. 03
91,41
50.37
06.33
94 . 05
90.41
99 . 40
100.61
30.20
54. 14
65.54
7O.04
91.03
95 . 62
53.2O
66.76
7O.62
91.92
95.60
66.67
79.98
92.97
96. 5O
80.96
94.46
97. 9O
96. 17
99.80
100.24
0.2860
0.2979
0.3052
0.3156
0.3353
0.3445
0.2832
0.2903
0.3116
0.3328
0 . 3423
0.231O
0.3007
O.G236
0.3332
0.2077
0.3136
0.3232
O.305O
0.3152
0.3140
0.2967
0.3107
0.3215
0.3343
0.3529
0.3592
0.2939
0.3118
0.3202
0.3407
0.3553
0.2935
0.3151
0.3379
0.3449
0.3015
0.3271
0.3343
0.3202
0.3270
0.3277
2.23
3.35
O.65
-3.67
-9.61
- 11 . 37
2.55
2.22
-2.67
-9.42
-11.42
2. 11
-0.29
-7.04
-9.04
1.46
-3 . 59
-5.59
0.49
-0.96
0. 17
4.29
3.74
0.51
-2. 11
-4. 14
-4.55
2.O8
1.72
-1.53
-4.05
-4.5O
1.64
-0. 16
-3.00
-3.59
0.01
-1.51
-2.20
0.20
-0.37
0.06
0.2017
0. 1041
0.0200
-0.0549
-O. 1001
-0. 108O
0. 1367
0.0697
-0.0400
-0.0997
-0. 1102
0.0617
-0.0027
-0 . 076 1
-O.OC90
0.0249
-0.0407
-0.0572
0 . 0049
-0.0113
0.0014
0.6363
0.5647
0.565O
0.5747
O.5943
O.6031
0 . 7494
O . 0459
0.6325
0 . 6457
0.6560
0.3579
0.7653
0.7692
O.781O
0.9392
O.0952
0 . 9O3?.
O.9333
0.9349
0.9935
O . 020 1
0 . 0279
0.0299
0.0308
0.0311
0.0303
O.0132
O.0229
0 . 0263
0 . 0236
O . O235
0.0065
0.0159
O.OI94
0.0195
0 . 0030
0.0094
0 . 0095
o . oooa
0.0014
0.0003
O.O213 7.3231 6.33f>0
0.0307 13.3364 lO.67f.D
0.034422.0025 14. I6O2
O.O354 27.3559 17. 3445
0.033229.4781 19.1109
0.0316 28.9976 19.105C
0.0138 6.8444 5.0736
0.0247 16.2243 10.293T5
0.0293 23.4105 14.57C5
O.O290 26.0501 17. 17C5
O.0277 26.5152 17.2402
0.0063 4.1948 2.9KJ2
0.0162 13.5613 O. M36
0.0182 18.2348 11.3536
O.O173 1O. 1614 11 .5146
0.0026 2.2323 1.4744
O.O074 0.6356 5.1703
O.O06O 0.0200 5.4*20
O.OOO5 0.6462 0.40S2
0 . OOO2 1 . 3655 0 . 0460
0.0001 0.2393 O. 1455
CO
Exhibit A-7 (continued)
-------
VISUAL. EFFECTS FOR HORIZONTAL
TO TUK FLUKE or WIIITK, CRAV, Am>
FOR VARIOUS OBSERVER-PLUME AND OBSERVER-OBJECT
1600 MW POWER PLANT
BLACK OBJECTS
DISTANCES
00
Down
TOET/
REFLF
VTWD DISTANCE CKH) =
k = 90.
:CT luvnva no/nvo
. 0 01'. 02 0 . 02
.O 0.02 0.05
.0 0.02 0.10
.0 0.02 0.20
.0 0.02 0.50
.0, 0.02 O.GO
.O
.0
.0
.0
.0
.O
.0
.0
.0
.O
.O
.0
.O
.0
.O
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
O.3
0.3
0.3
0.3
0.05
0.05
0.05
0.05
0.03
0. JO
0. 10
O. 10
0. 10
0.20
0.2O
0.2O
O.50
0.50
0.80
0.02
0.02
0.02
0.02
O.02
0.02
0.05
O.05
0.05
0.05
0.05
0. 10
0. 1O
0.10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.05
0. 10
0.20
0.5O
0.80
O. 10
0.20
O.5O
0.00
0.20
O.50
O.CO
O.5O
0.80
O.CO
0.02
0.05
O. 10
0.20
0.50
O.OO
O.05
O. 1O
0.20
0.50
0.00
0. 10
0.20
0.50
O.OO
0.20
0.50
0.80
0 . 50
0.00
0.80
1OO.O
YCAP
88.32
78.69
73.70
67.04
57. 15
53.07
33.34
73.01
66.55
56.93
53.73
79.39
68.00
5O.39
55. 19
73.37
6O.49
57 . 29
64.29
6O. 11
61.21
30.41
32.09
35.57
40.07
48.51
50.93
33.29
35.99
41. 12
40.51
50.86
30.04
42.57
49.97
52.32
45.06
52.07
54.42
54.99
57.24
50.06
L
95.30
91. 10
00.79
05.54
00.20
7O.40
93. 17
OC.46
85.29
OO. 16
7O.32
91.42
86.02
80.97
79. 17
88.64
02. 12
O0.36
O4. 13
81.91
82.51
62. 04
63.45
66.22
70. 11
75. 17
76.66
64.42
66.54
7O.28
75.17
76.62
60.00
71.29
76.07
77.49
72.95
77.34
70.73
79.06
00.33
00.79
X
0.3481
0.3621
0.3618
0.3579
0.3460
0.3309
0.3497
0.3600
O.3557
0.3434
0.3363
0.3435
0.3468
O.3341
0.3270
0.3335
0.3238
0.3168
0.3158
0.3087
0.0001
0.3354
0.3362
0.3300
0.3252
O.327O
O.3303
0.3243
0.3245
0.3214
0,3244
0 . 3278
0.3096
0.3109
0.3151
0.3186
0.2987
0.3051
0.3086
0.2971
0.3000
0.2999
Y DELYCAP
0.3503 -6.26
0.3696 -12.14
0.3601 -11.76
O.3032 -10.34
0.3520 -O.33
0.3405 -7.71
0.3501
0.3644
O.3592
0.34O5
0.3441
0 . 349O
0.3491
O.3377
0.3331
0 . 3377
O.3267
0.3220
0.3207
0.3151
0.3155
0.3449
0.3444
O.3396
0.3372
O.U416
O . 3447
0.3321
0.3317
0.0314
0.3371
0 . 3403
0.3163
O.3186
0.3256
0 . 329 1
0.3062
0.3142
0.3170
0.3076
0.3109
0.3110
-7.49
-12.45
-1O.03
-0.55
-7.05
-6.07
-9.30
-7.O9
-6.39
-4.01
-4.99
-4.29
-1. 19
-1.47
-0.37
-1. 12
-2.59
-3.59
-4.90
-6.68
-7. 19
-1.40
-3. 17
-4.66
-6.67
-7.26
-1. 12
-3.20
-5.22
-5.00
-0.72
-3. 12
-3.70
-0. 19
-O.OO
-0.03
DELL
-2.57
-5.24
-5.29
-4.97
-4.46
-4.30
-3. 17
-5.62
-5 . 22
-4.59
-4.38
-2.67
-4.40
-3.77
-3.54
-1.O7
-2.63
-2.35
-O.61
-0.79
-0.20
-0.95
-2.0O
-2.67
-3.31
-4.OO
-4. 17
-1.11
-2.35
-3. 14
-4.00
-4.21
-0.02
-2. 13
-3. 10
-3.33
-0.47
-1.82
-2. 10
-0. 11
-0.49
-0.03
CC550)
-O.O641
-0. 1317
-0. 1357
-0. 1312
-0. 1223
-0. 1195
-0.0009
-0. 1455
-O. 1394
-0. 1279
-0. 1235
-0.0708
-0. 1226
-0. 1O31
-0. 1025
-0.0530
-0.0705
-0.071 I
-O.O194
-O.0257
-0.0064
-0.0308
-0.0719
-O.O863
-0.0997
-O. 1 132
-0. 1165
-0.039O
-0.0705
-0.0966
-0. 1150
-0. 1195
-0.02O4
-O.O6O5
-O.091O
-0.0974
-0.0164
-0.0569
-0.0644
-0.0042
-0,0167
-0.0012
BRAT 10
0 . 7053
0.6415
0.6303
0.6266
O.6I99
0.6160
0.7063
0.6930
0 . 6875
0 . 67O4
0.6733
O.8751
0 . O209
O.C092
0.0029
0 . 9632
O.942O
O.935O
I.OIOi
1.0126
1 . 0074
O.O265
O.7O44
O.649O
0.6173
O . 6O75
0.6091
O.O530
O.7426
O.6333
O.6629
O.60<6
O.926O
O . fi249
0.7906
O.7921
0.9737
0.9203
0.9218
0.9970
0.9969
0.9991
DELX DELY E(LUV) E(LAB)
0.0146 0.0147 12.9536 8.9000
0.0291 0.0275 23.0680 16.6770
0.0303 0.02O7 24.4147 17.0261
0.0302 O.O293 24.2035 16.7301
0.0303 O.O314 24.6990 16.6932
0.0304 0.0325 25.1053 16.G069
0.0168 O.O160 14.3617 9.331O
0.02O4 0.0250 22.5O37 15.5920
O.02OO 0.025422.1233 15.1352
0.027O 0.0271 22.3538 14.9416
0.0279 0.0201 22.73!?0 15.0514
0.0120 O.O104 10.O636 6.7752
0.0191 O.O152 15.2002 10.2121
O.0105 O.OI63 14.9313 9.3193
O.O1O5 0.0171 15.3038 9.3936
O.0059 O.OO3O 4.3773 3.2733
O. OO32 O.O053 6.3144 4.5374
0.0034 0.0060 7.0233 4.525O
O.OOO2 -O.OOO7 0.3135 O.7<*-O3
0.0003 -O.OOO9 1.O73G 0.9073
-O.O003 -O.O005 0.0533 0.2303
0.0125 O.O129 7.0149 5.3307
O.O240 O.O242 15.3214 1O.4144
O.0274 O.O295 19.5732 13.1173
O.O204 O.O331 23.3022 15.41T>
O.O303 O.0341 25.6374 16.8176
O.OOO4 O.O336 25.0314 10.9235
O.O121 O.O119 7.94'M 5.2333
O.021O O.O216 13.3123 1O.03I4
O.O256 0.0272 20. 1373 13.O776
0.0277 O.O293 23. HMO 15.0119
O.O279 0.0292 23.2720 15.!O-V>
O.0069 O.O002 4.9233 3.1O1O
O.O151 O.O144 11.3711 7.4722
0.0134 0.0131 15.1001 9.3390
O.01O7 O.O179 15.7112 10.O212
0.0029 0.0020 2. K5~0 1.3114
O.OOO4 0.0006 7.0310 4.3530
0.0007 0.0067 7.3029 4.6103
0.0004 -O.OOOO 0.3311 0.2243
0.0009 -0.0002 0.9640 O.7176
0.0001 -0.0001 0.0013 0.0070
Exhibit A-7 (continued)
-------
0.0
0.0
O.0
0.0
O.0
O.0
0.0
0.0
O.0
O.0
O.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.O
0.02
0.02
0.02
0.02
O.02
O.02
0.05
0.05
0.09
0.05
0.05
0. 1O
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.02
0.05
0. (0
0.20
0.50
O.GO
0.05
O. 10
0.20
0.50
O.OO
0. 10
0.20
0.50
0.00
0.20
0.50
O.OO
0.50
0.00
0.00
5.59
12. 13
19.23
29.66
44.OO
49.67
11.04
20. 12
30.22
44.91
49.64
20.32
31.60
46.36
51.09
32.92
43.46
.73. 19
51.01
56.01
50.72
20.39
41.46
50.99
61.39
72.79
75. 09
41.00
52.01
61.07
72. C5
75.07
52.23
63. 1O
73. CO
76.75
64. 13
75. 14
78.01
76.70
79.64
00.04
0.2692
0.279O
O.2073
0.2977
0.3172
O.3263
0.2661
O.2G04
0.2936
O.3146
0.3239
0.2652
0.2330
0.3054
0.314O
0.271O
0.2956
O.3O49
0.2076
0.2972
0.2962
0.2749
O.2093
O.3014
0.3154
0.3350
0.3430
0.2725
0.2910
0 . 3000
O.3312
O.3306
0 . 2726
0.2949
0.3195
0.3272
0.2011
O.30CO
0.3159
0.3009
0.3091
0.0090
i.oa
1.50
-0.09
-2.57
-5.97
-6.97
1.21
O.O1
-2.01
-5.07
-7.00
1.00
-0.56
-4.42
-5.55
0.69
-2.31
-3.44
0.23
-0.63
o.oa
3.05
2.47
-0. 10
-2. 17
-3.7O
-4. 11
2.01
0.92
-1.69
-3.71
-4. 13
1. 14
-O.46
-2.76
-3.24
0.56
-1.43
-1.99
O. 14
-0.36
O.04
0.2309
0. 1471
0 . 006O
-O.O676
-0. 10O1
-0. 1152
0. 1145
0 . 047O
-0.0331
-0. 10OO
-0. 1176
0.0517
-O.O134
-O . 0029
-O.O951
O.O208
-0.0453
-O.O613
0.0041
-0.0126
O.O011
0.6599
O.5O45
O.5775
0.501O
0.5975
0.6052
0.7634
O.6626
0.6421
O.6504
0.6596
0 . G303
0.777O
0.7754
0.7360
0.94-33
0.901O
0.9 143
0.9350
0.9331
O.9944
0.0177
O . O252
0.0277
0 . 0293
0.0.1O3
O.O3O4
0.0113
0 . 0203
0.0252
0 . 0277
0 . 0279
O.O056
O.O146
0.0135
O . 0 1 33
O . QO26
0 . OOO7
O.CO39
O . O307
0.0012
O.0002
0.O203 4.B33! 4.T1 12.2170
O.0067 23.6701 15.3139
0.0354 26.1207 16.9777
0.0341 25.O505 16.9334
O.0131 4.O1G1 3.O096
0.0245 12.9675 O.5013
0.0301 20. O 150 12.7274
O.030O 23.6409 15.1002
O.O297 23.4910 13. 2075
0.0061 2.9712 2.1502
O.O 162 11.2291 6. 9:*. 17
0.0190 15.0334 9.9~23
0.0103 15.9005 10.0CJ70
O.O025 1.5752 1.O041
O.O075 7.2T>3 4.4O55
O.OO70 7.53J5 4.0702
0 . 0005 0 . 4462 0 . 2:jn 1
0.0002 1.0502 0.6G53
O.O001 O. 1030 O. 1O14
00
o>
Exhibit A-7 (continued)
-------
PLUWE VISUAL EFFECTS FOR HORIZONTAL VIEWS
PERPENDICULAR TO TI!E PLUWE OF WHITE, CllAY, AND
FOR VARIOUS OCSERVER-PLUME AND OBSERVER-OBJECT
1600 MW POWER PLANT
BLACK OBJECTS
DISTANCES
00
DOWNWIND DISTANCE
THETA = 135.
(HI) =
REFLECT RPXRVO . •' ' RO/RVO
1.0
1.0-
1.0
1.0
1.0
1.0
l.O
1.0
1.0
1.0
1.0
l.O
1.0
1.0
1.0
1.0
1.0
l.O
1.0
1.0
1.0
O.3
O.3
0.3
0.3
O.3
O.3
0.3
O.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.02
0.02
O.02
0.02
0.02
0.02
0.03
O.05
0.03
O.O5
0.03
0. 1O
O. 10
0. 1O
0. 1O
O.20
0.20
0.20
0.30
0.50
0.00
0,02
0.02
O.O2
O.O2
O.O2
O.02
0.03
0.03
0.03
O.O5
0.03
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.02
0.05
0. 10
0.20
O.50
O.C3
0.03
0. 10
0.20
o.r>o
0.39
O. 10
O.20
O.50
0.30
O.20
O.50
o.no
0.50
o.oo
0.00
0.02
0.05
0. 10
0.20
0.50
O.OO
0.03
O. 10
0.20
0.50
O.CO
0. 10
0.20
0.50
o.ao
0.20
0.50
0.00
0.50
O..C9
0.00
100.0
YCAP
C3.56
79.21
74.71
63.78
59.92
56.95
03. 9S
74.03
63.31
59.70
56. OO
O0.68
69.95
61.33
53.44
75.62
63.70
60. OO
67.87
63.93
65. 19
30.64
32.61
36.57
42.61
51.27
54.01
33.93
37.05
42. 03
51.28
53.93
39.33
44.52
52.91
55.57
47. 3O
55.28
57 . 94
53.57
61.11
62.05
L
95.40
91.34
09.27
36.41
31.31
00. 17
93 . 45
80.97
06. 13
31.69
30.09
92.00
06.99
02.57
Ol.OO
39.69
rtn no
OO . O'-iS
32.29
35. V 6
03.97
34.60
62.23
63.00
66.98
71.31
76.06
78.49
64.94
67.34
71.50
76.37
78.44
69.02
72.60
77.84
79.39
74.41
79.22
80.72
81.07
02.46
32.95
X
O.C473
0.06O2
0.3533
0.3335
0 . 3406
O.GGOO
0 . G470
O.3565
0.3510
0.3G30
0.0312
0 . 3402
O.G417
O.0235
0.3213
0.3237
O.3102
0.31 16
0.3104
0.3036
O.G032
O.G334
O.G325
0.3236
0 . 3203
O.0222
0.3235
0.3207
0.3196
0.3163
0.3195
O.G230
0.3049
0.3037
0.3101
0.3137
0.2937
0.3001
0.3038
0.2924
0.2961
0.2954
Y DELYCAP
0.8576
0.3600
0.3057
0.3601
0 . 3499
0 . 3*6 1
0.3563
0.3615
0.3558
0.3454
0.3416
0 . 3467
0.0451
0 . 0042
O.OGO2
O.0005
0.0229
o.3iao
0.0169
0.01 19
0.3124
0 . 0430
0.3.no
-:).35
-M.60
-0.50
-1.97
-2.27
-0. 12
-0.53
-0.03
CC550)
-O.O644
-0. 1323
-0. 1367
-0. 1330
-0. 1262
-0. 1237
-0 . 03 1 0
-O. 1v56
-O. 1405
-0. 1312
-O. 1277
-O.O7O3
-0. 1224
-0. 1 103
-o. lor.o
-0.0519
-O.O790
-0.07GO
-o.oi as
-0.0256
-O.OO60
-O.OG52
-0.074T
-O.OOO2
-0. 1O42
-0. 1179
-0. !212
-0 . 0402
-0.0314
-O. 1007
-O. 1 197
-O. 1242
-O.02G9
-0.0703
-0.0954
-0. 1O12
-0.0164
-0.0590
-0.0669
-0.0041
-0.0173
-0.0012
BRATIO
0 . 7373
0.6403
0.6325
0.6200
0.61G2
O^M-7
0.7919
0 . 700 1
o.o r:o 2
0.6777
0 . 67P.O
o.c^rii
O.C257
O.C009
0 . f!939
0.9673
O . 9444
0.9309
1.0107
1.0136
1 . OO75
O.C2O?
O.7OC3
0.6500
0.0171
0.0069
o . oor? 3
O.U5C3
0 . 747 1
0.6,1514
0 . 6635
0.6650
0.9305
O.C23S
0.7926
0 . 7940
0.9764
0.9230
0 . 9246
0.9973
0.99^6
0.9993
OELX DELY E(LUV) E(LAB)
0.0145 0.O147 12.9710 O.9<°>2T
0.0233 0.0275 23.9629 16.6^44
O.oriOl 0.0239 24.3759 17.2252
0.0302 0.0300 23. 1327 I7.2rcv-
O.Or,03 O.0"23 26.O3r,9 17.4020
0.0:)03 0.0')32 26.4394 17.5J.rO
O.OK>4 O.O153 14. 2361 9 . 7'.','^,
O.0';7.1 O.O243 2'.>.6f'O3 15.3:;2-:-
0.0277 O.O257 22.7700 15.42^.",
0.'">r>77on
o.oif4 0.0100 9.cr,<.'i 6..T07:;
O.OJR4 0.01 GO 15.2300 IO.lf?'>;;
0. 030*2 O.O100 15.0^7O ! O . K- •" -^
o.oian 0.0174 1 6.0000 10.275')
o.oona o.oons 4,0500 a.i:;irj
0.0079 O.0'>53 7.02^3 4.6:;7rj
O.OOCSI O.OOOO 7.. 2720 4.675:»
O.OOOO -O.O(^O7 O.78'>5 0 . 7222
0.0002 -o.O'"fio 1.0314 0.9 '>:••:•
-O.O003 -O.OOO5 0.0320 0 . 2.1O4
0.0124 0.0129 7.0057 5.35:t7
0.02C3 0.0243 15.5533 JO. 5305
O.0271 O.0209 20.20;)2 1D.4C^2
O.O29I 0.0037 24.'X"t-O 15.9'.\2.')
O.OJ101 O.C-"47 20.93': 2 17.T371
0.0002 0.0343 26.93C9 17. 6: .'30
0.0117 O.0117 7.9105 5.2"7A
0.0211 O.O214 15.0049 1O.KIO'.',
O.P251 O.O275 2O.°r>^l 13.49O-:.
O.O274 O.OOOO 24.2001 15.6470
O.O276 O.O297 24.0955 15.79O4
0.0004 0.0059 4.3047 3.0033
0.0143 O.O143 12.1243 7. 59 ID
O.Oir.O 0.0182 16.1523 10.1230
0.0134 0.01O1 16.3917 10.3903
O.O026 0.0018 2.O697 1.2477
O.GOfiO 0.0066 7.2213 4.4092
0.0034 0.0066 7.5955 4.7553
O.OOO3 -0.0000 0.2944 0.2O'J1
0.0003 -0.0002 0.9557 O.7;?:iO
O.OOOO -O.0001 0.0763 O.0027
Exhibit A-7 (continued)
-------
O.0
o.o
o.o
o.o
o.o
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
o.o
0.0
o.o
o.o
0.0
0.0
O.O2
O.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05 •'•'
O.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
O.GO
O.02
0.05
0. 10
0.20
0.50
0.00
O.O5
0. 10
0.20
o.no
0.80
0. 10
0.20
0.50
O.80
0.20
0.50
0.09
0.50
O.CO
0.80
5.G2
12.65
20.23
31.09
47.57
52.75
12.48
21. 19
31.99
47.67
52.70
21.61
30.62
49.31
54.34
35. 17
51.67
56.71
54.59
59.08
60.70
29.00
42.27
52. 13
62. 07
74.57
77.75
42.02
53. 19
63.36
74.64
77.72
53.64
64.69
75.66
78.68
65.91
77. 10
00.03
78.82
81.79
82.23
0.2645
0.2750
0.2827
0.2932
0.3126
0.3218
0.2617
0.2757
0 . 2300
0.3100
0.3193
0.2611
0.2705
0.3O08
0.3101
0.2609
0.2911
0.3003
0 . 2333
0.2920
0.2919
0 . 27 1 1
0.2858
0.2982
0.3126
0.3335
0.3408
0.2608
O . 2075
0.3057
0.32O7
0.3362
0.2692
0.2916
0.3167
0.3245
0.2779
0.3049
0.3130
0.2900
0.3062
0.3062
0.98
1.25
-0.48
-3. 16
-6.81
-7.O8
1.08
0.48
-2.56
-6.71
-7.92
0.90
-0.92
-5.07
-6.28
O.62
-2.71
-3.92
0.21
-0.74
0.07
2.68
1.98
-0 . 53
-2.56
-4. 13
-4.45
1.73
0.52
-2.06
-4.06
-4.47
0.98
-0.73
-3.04
-3.51
0.49
-1.60
' -2. 16
0. 12
-0.40
0.04
0.2101
0. 1223
-0.0074
-O.0761
-0. 1134
-0. 1200
0.0996
O.0331
-0.06.18
-O. 1 135
-0. 1226
0.0450
-0.0206
-O.0374
-0.0991
0.0181
-0.0483
-0.0641
0.0035
-O.O 134
0.0010
0.6727
0.5953
0.5338
0.5349
0.598O
0.605O
0 . 7793
0.6721
0.6470
0 . 6522
0.66O5
0.0376
0.7338
0 . 7787
0.7034
0.9499
0.9053
0.9176
0.9372
0.9901
0.9949
O.0164
0 . 0203
0 . O267
0 . O2C6
O.O299
O.O3O1
O.O106
O.O197
0 . O244
0.0273
O.O276
0.0051
0.0139
0.01.10
0.01C4
0.0023
0.00153
0.0930
0.0006
0.001 1
0 . 0002
O.OI96 4.73O1 4.4766
O.0296 11.9079 0.59:57
0.0347 19.0714 12.59O3
0.0369 24.7358 15.8033
0.0359 27.3915 17.6063
O.O347 27. 1389 17.0371
O.O 126 4.7462 Q.6633
0.024O 13.26O9 8.6351
O.O3O1 20.8002 13.15O3
0.0311 24.7150 15.7406
0.0302 24.5909 15.8471
O . O057 2 . 875 1 2 .0340
0.0159 11. 5031 7 . 0645
O.O191 16.4790 10.2575
O.0183 16.5693 10.4460
0.0023 1.4372 0.9C10
0.0074 7.4084 4.5051
0.0069 7.7541 4.8031
0 . 0004 0 . 4O32 0 . 25 26
O.OO01 1.0253 0.0911
0 . 000 1 0.1 443 0 . 0302
00
CO
Exhibit A-7 (continued)
-------
03
VISUAL EFFECTS FOR LI WES OF SIGHT ALORG FLUIDS
1600 JW POWER PLANT
DOWTWIJTD DISTANCE (KM) = 100.0
TWETA LENGTH RP/RVO RV ^REDUCED YCAP - L X
45.
20.
20.
20.
20.
20.
20.
20.
4O.
40.
40.
4O.
4O.
40.
40.
60.
6O.
60.
60.
60.
60.
60.,
O0.
80.
80.
80.
80.
OO.
80.
90.
90.
90.
9O.
90.
90.
90.
93.
95,
95.
95.
95.
95.
95.
0.00
0,02
0.05
0. 10
0.20
0.50
0.30
0.00
0.02
0.05
0. 10
O.2O
0.50
o.no
0.00
0.02
0.05
0. 10
0.20
0.50
0.09
0.00
0.02
0.O5
O. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 1O
0.2O
0.50
0.00
0.00
0.02
0.05
0. 10
0.20
0.50
0.G0
169.5
160.3
166.7
164.5
161.4
157.3
163. 1
160.4
156.5
151.5
144.8
135.6
129.2
163.2
133.2
131.5
122. O
111.3
90.5
129.4
163.2
78. 1
79.0
01. 0
05.4
96. 0
129.5
163.2
7O.2
79. 1
01.0
05.5
96. O
129.5
163.2
7O.2
79. 1
Ol.O
05.5
96. 0
129.5
163.2
0.40
9.05
9.90
11.08
12.74
14.96
11.02
13.31
15.40
1O. 10
21.73
26.73
SO. 14
11. 7O
25.30
2O.94
33.62
39.05
47.01
30. 04
11.77
57.77
57.29
56.22
53.O1
47.67
30.02
1 1.76
57.73
57.26
56.20
53.OO
47.66
30.01
11.76
57.72
57.25
56.20
53.79
47.66
30.01
11.76
78.79
80.97
03.92
88.05
94.07
102.20
104.0O
69.79
72.67
76.55
82. Ol
89.99
101.01
104.27
66.05
69.76
73.95
79.86
80.51
100.52
104. 10
65.05
68.03
73. 11
79. 16
30.02
100.35
104.04
65.51
60.70
73.00
79.06
87.95
100.33
104.03
65.49
60.60
72.90
79.04
87.94
100. C2
104.03
91. 15
92. 13
93.42
95. 19
97.66
100.80
101.7O
36.90
00.30
90. 12
92.59
96.00
100.39
101.63
05.34
O6.O9
O0.91
91.03
95.30
100.20
101.56
O4.O3
86.43
80.51
91.31
95. 1O
100. 14
101.54
04.76
06 . 37
80.46
91.27
95. 15
100. 13
1O1.54
04.75
C6.36
80.45
91.26
93. 14
100. 12
101.54
0.3839
0.372O
0.3602
0.3463
0.3320
0.3214
0.3205
O.3936
0.3795
0.3641
O . 3477
0.3316
0.320O
0.3202
0.3026
O.37OO
O.3024
O.3460
0.3G03
0.3202
0.3200
0.3911
0.3766
O.361O
0 . 3449
0.3295
0.3199
O.3199
0.3007
0.3762
0.3600
0 . 3446
0.3203
0.3199
0.3199
0.3006
0.3762
0,3607
0.3446
0.3293
0.3198
0.3199
Y DELYCAP
0.3651
0.3737
0.3612
0.3401
0.3358
0.3300
0 . 3307
0.3816
0.3092
0.3561
O.3430
0.3320
O . 32O7
0.33O3
0.3776
0.3654
0.3527
O.3402
0.33O2
O.32O1
0.33O1
0.3765
0 . 3043
0.3517
0.3304
0.3207
O.32OO
O.33O1
0.3704
O.3042
0.3510
0 . 3304
0.3206
0 . 3200
0.3301
0.3764
0.3642
0.3516
0.3394
0.3296
0.3200
0.3301
-26 . 37
-24.22
-21.33
-17.27
- 1 1 . 37
-3.34
-1.02
-35.54
-32.69
-2O.O4
-23.44
-15.53
-4.65
-1.44
-3O.OO
-35.71
-31.54
-25.67
-17.07
-5. 16
-1.61
-39.09
-36.72
-32.45
-26 . 44
-17.01
-3.34
-l.OO
-40.06
-36.00
-32.39
-26.56
-17,69
-5.30
-1.69
-40.09
-36.01
-32.62
-26.50
-17.71
-5.30
-1.69
DELL
-10.01
-9.04
-0.57
-6.83
-4.40
-1.26
-0.30
-15. 12
-13.73
-11.92
-9.4O
-6. 1O
-1.76
-0.54
-16.73
-15. 10
-13. 17
-10.47
-6.74
-1.95
-0.60
-17.27
-15.07
-13.00
-10. Ol
-0.96
-2. 02
-0.03
-17.35
- 1 5 . 75
-13.06
-10.06
-7.0O
-2.04
-0.63
-17.37
-13.76
-13.63
-10.07
-7.00
-2.04
-rO.63
CC550)
-0.2541
-0 . 2349
-0 . 2009
-0. 1717
-0. 1 160
-0.0359
-0.01 11
-0.3559
-0.3291
-O.2920
-0 . 24O3
-0 . 1 026
-0.05O3
-O.O153
-O.3021
-O.3020
-0.3224
-O.2051
-O. 1702
-O.0534
-0.0171
-O.4O22
-O.3719
-0.33O7
-O.2719
-O. 133O
-0.0503
-0.0170
-0.4O02
-0.372O
-O.3313
-0.2726
-0. 1343
-0.0370
-0.O170
-0.4033
-O.3729
-0.3316
-0.2727
-O. 1344
-0.0570
-0.01 76
BRATIO DELX DELY E(LTJV) E(LAB)
0.3074 0.0644 9.0539 31.8051 3-T.497
0.4933 0.0532 0.0425 43.6619 29.161
0.6195 0.04O5 0.0300 34.0741 22. 1OO
0.7652 0.0265 O.O107 22.9667 14.674
0.9136 0.0110 0.0044 11.0772 7.250
1.O007 O.OOOO -O.O015 2.1010 1 . 7O5
1.0031 -0.0002 -O.OOQ3 0.729O 0.6O2
0.3708 O.0737 0.05OO 55.73O5 37.700
0.4325 0.0395 0.037O 46.5420 3O.(VM
O.6152 0.0440 O.O247 33 . 9B20 23.4Tt5
O.7675 0.0275 O.O110 24. 125O 15.rr.4
0.92IO 0.0113 O.O005 11.0504 ft. 350
1.OO03 O.OOO1 -O.O02'} 2.0501 2.522
1.0O39 -O.OOOO -O.OO 12 1 . orJGO O.r^.4
0.3702 O.O724 0.0462 54.395O 36 . 9OO
0.4304 O.O373 O.OC30 45. 2 161 GO. 152
O.6235 O.0421 O.O.'?I2 3<-.7.';20 2P.O-57
O.7709 0.0257 O.OOCn 23.2354 I5.70H
0.0290 0.0003 -o.oo 13 i i . O7on o.rnn
1.0110 -O.0003 -0.0034 3.2^5 2. 772
1.0031 -O.OOOO -O.OO 14 1.2421 O.°^.7
0.3308 O.O707 0 . O43 I 53.2545 30 . :v>9
0.4052 O.O502 O.0323 44. KOI 29 . OV7
0.03O3 0.0406 O.O2O2 33.P359 22.714
O.7343 O.O244 O.OOC3 22.5OOO I5.6O1
O.0367 0.0009 -o.oo ia 1 1 . 3O72 o.rnnt
1.O146 -O.OOO9 -O.0033 3.3I4O 2.fT?5
l.OOOO -0.0010 -O.OO 14 1.3002 1 . O">r?
O.3325 0.07O2 O.O45O 52.0f7.2l 30 . 2OO
O.4972 O.0557 O.OG27 43.I10O3 2<> . 57 1
0.0327 0.0402 O.O2O1 33.0O64 22.027
O.7309 O.0241 O.OO70 22. 31 'TO 15.53H
O.0302 O.0036 -O.OO1O 1 1 . 2OOH R.8O6
1.O15O -O.OO 10 -0.0035 3.3205 2.T^O
1.O104 -0.0010 -O.OO14 1.3210 1 . OOO
0.3331 O.0701 0.0450 52.0155 36.1K1
0.4979 0.0556 O.O327 43.0275 20.540
0.0336 O.0401 0.0201 33.5405 22.6O3
0.7379 0.0240 0.0079 22.2073 15.521
0.0401 O.O006 -0.001') 11.1713 O.7O7
1.O163 -O.O010 -O.OO35 3.3210 2.IKO
1.0107 -0.0010 -0.0014 1.324O 1.OIO
Exhibit A-7 (continued)
-------
98.
90.
98.
93.
98.
98.
98.
99.
99.
99.
99.
99.
99.
99.
0.00
0.02
O.03
O. 10
0.20
0.50
0.80
0.00/'
0.02
0.03
0. 10
0.20
0.50
0.0O
78.2
79. 1
81.0
85.3
96.8
129.5
163.2
78. 2
79. 1
81.0
85.5
96.0
129.5
163.2
67.72
57.23
56.20
53.79
47.66
30.01
11.76
57.72
57.25
56. 19
53.79
47.66
30.01
11.76
65.49
68.68
72.98
79.04
87.94
100.32
104.03
65.49
68.68
72.98
79.04
87.94
100.32
104.03
84.75
86.36
88.45
91.26
95. 14
100. 12
1O1.54
04.75
86.36
30.45
91-26
95. 14
109. 12
101.54
0.3906
0.3762
0.36O7
0.3446
0.3293
O.3198
0.3199
0.3906
0.3762
0.3007
0.3446
0.3293
0.3198
0.3199
0.3764
0.3642
O.3516
0.3394
0.3296
O . 3289
0.3301
0.3764
0.3642
0.3516
0.3394
O.3296
0.3280
0.3301
-40. 10
-36.92
-32.63
-26 . 59
-17.72
-5.39
-1.70
-40. 10
-36.92
-32.64
-26.59
-17.72
-5.39
-1.70
-17.37
-15.77
-13.68
-10.07
-7.01
-2.04
-0.63
-17.37
-15.77
-13.63
-10.87
-7.01
-2.04
-0.63
-0.4033
-O.3730
-O.3316
-0.2727
-0. 1344
-O.O57O
-0.0176
-0.4033
-0 . 3730
-O.3317
-0.2727
-O. 1O44
-0.0570
-0.0176
0.3G34 O.07O1 O.0449 52.O95O 36.173
O.4933 O.0356 O.O327
-------
VISUAL EFFECTS FOR LINES OF SIGHT ALONG PLUME
1600 PW POWER PLANT
DOWNWIND DISTANCE (101) = 100.0
THETA LENGTH IUVH.VO
90.
20.
20.
20.
20.
20.
•20.
20.
40.
40.
40.
40.
40.
40.
40.
6O.
60.
60.
— . 60.
^ 60.
60.
60.
80.
OO.
80.
no.
80.
80.
8O.
90.
90.
90.
9O.
9O.
90.
90.
95.
95.
95.
95.
95.
95.
95.
0.00
0.02
0.05
0. 10
Or. 20
0.50
0.80
0.00
0.02
0.05
0. 1O
O.20
0.00
o.ao
o.oo
0.02
O.05
0. 1O
0.2O
0.5O
0.80
0.00
0.02
O.05
0. IO
0.20
0.50
0.80
O.OO
0.02
0.03
0. IO
0.20
0.50
0.30
0.00
0.02
0.05
0. 10
0.20
0.90
0.80
nv ^REDUCED
170.6
.'169.3
167.6
165.2
161.9
157.5
163.2
164.3
160.0
154.5
147. 1
137.0
129.4
163.2
145.2
137.7
128.0
115.2
98.0
129.6
163.3
81.5
80. O
82.4
86.4
97.4
129.6
163.3
80.2
80.9
82.4
86.4
97.4
129.6
163.3
80.2
80.9
G2.4
86.4
97.4
129.6
163.3
7.76
8.47
9.41
10.60
12.49
14.89
11.81
11, 17
13.00
16.50
20.50
25.97
30.07
11.77
21.00
25 . 09
30.83
37.74
47.05
29.97
11.76
55.95
56.31
55.47
53.31
47.37
29.94
11.75
56.64
56.27
55.45
53.29
47.37
29.93
11.75
56.64
56.27
55.44
53.29
47.36
29.93
11.75
YCAP
43.24
44.57
46 . 36
48.86
52.51
57.48
58.91
37.60
39.36
41.74
45.08
49.96
56.68
58.66
35.61
37.51
40.09
43.71
49.01
56.36
58.55
34.95
36.90
39.03
43.24
48.69
56.25
58.51
34.85
36.81
39.46
43. 18
40.64
56.23
58.50
34.84
36.80
39.44
43. 17
48.63
56.23
50.50
L
71.74
72.63
73.80
75.39
77.61
80.46
01.26
67.75
69. 04
70.72
72.97
76.06
QO.O1
01. 12
06.25
67 . 69
69.56
72.06
75.48
79.84
31.06
65.74
67.23
69. 16
71.75
75.23
79.77
81.04
65.66
67. 16
69. 11
71.70
75.25
79.76
81.04
65.63
67. 13
69. 10
71.69
73.24
79.76
01.03
X
0 . 3666
0.3547
0.3415
0.3273
0.3131
0.3031
O.3024
0.3751
0.3600
0.3440
0.3275
0.3119
0.3021
0.3019
O.3729
0.3575
0.3414
0.3251
0.3102
O.G015
O.3017
0.3707
0.3554
0.3395
0.3236
O.3O91
0 . 30 1 1
0.3013
0.3703
O.3350
O.3302
0.3233
0 . 3089
0.3010
0.3015
0.3702
0.3549
0.3391
O.3232
0.3089
O.3010
0.3015
Y DELYCAP
0.3723
0.3593
0.3452
0 . 3306
0.3174
0.3114
0.3123
0.3682
0.3537
0.3389
0 . 3243
0.3129
0.3099
O.31 18
0.3632
0.3490
0.3347
0.3212
0.3108
O.3093
O.3116
0.3617
O.3476
O.3334
0.3202
0.3101
0.3091
0.3116
0.3616
0.3474
0.3333
0 . 32OO
0.3100
0.3091
O.3113
0.3616
0.3474
0.3333
0.3200
0.3100
0.3091
0.3113
-16.26
-14.93
-13. 14
-10.64
-7.00
-2.06
-0.63
-21.90
-20. 14
-17.77
-14.44
-9.57
-2.86
-0.89
-23.91
-22.00
-19.43
-15.82
-10.52
-3. IO
-1.00
-24.58
-22.62
-19.99
- 1 6 . 20
-10.85
-3.29
-1.04
-24.67
-22.7!
-20,07
-16.35
- 1 0 . 89
-3.31
-1.04
-24.69
-22.73
-20.09
-16.36
-10.90
-3.32
-1.04
DELL
-9.84
-8.93
-7.73
-6.20
-3 . 93
-1. 14
-0.34
-13.03
-12.05
-10.R7
-8.62
-5.03
-1.59
-O.49
-15.35
-13. 9O
-12.04
-9.54
-6. 12
-1.77
-0.55
-IS. 05
-14.37
-12.43
-9.05
-6.32
-1.83
-0.57
-15.93
-14.43
-12.49
-9.9O
-6.35
-1.04
-0.57
-15.93
- 1 4 . 44
-12.00
-9.91
-6.36
-1.04
-0.57
C(550)
-0.2726
-0.2321
-0 . 2242
-0. 1344
-0. 1.147
-0 . 0336
-0.01 19
-0.3823
-0.3535
-0.3144
-0.25O6
-O. 1749
-0.0541
-0.0167
-0.4210
-0.3398
-0.3466
-O . 205 1
-O. 1928
-O.0506
-0.0lf54
-O.4323
-O.3093
-0.3550
-O. 2924
-0. 1977
-O.0612
-0.0100
-0.4333
-0.40O7
-0.3304
-O.2031
-0. 1932
-0.0613
-O.0190
-0.4334
-0 . 4000
-O.3364
-O.2931
-0. 1902
-0.0613
-0.0190
BT1ATIO DELX DELY E(LUV) E( LAH)
0.3920 0.0645 0.0592 45. G<33 31 . 296
O.5013 O.O525 0.0461 33.3^08 20. 005
0.6303 0.0303 0.0320 29.0933 lo.:*/y>
O.7792 O.O200 0.0174 19.6O33 I2.6OO
0.92^0 0.0107 0.0042 9.1441 0.1 4O
1.O036 O. 0004 -0.001 0 1.7394 1 . 000
1.0059 -0.0004 -O.OOO9 0.0526 O.M-1
0.3C25 0.0723 O.O049 43.4I4O 02.^0:2
O.4097 0.0576 0.04O5 4O.O037 2* . 66O
O.6377 0.0416 0.0207 3O.4003 CO. 131
0.7941 O.0200 0.0113 20. O 196 13.432
O.9470 O.0094 -O.OOO3 9.6097 7.WI
1.O202 -O.OOOO -0.0003 2.0500 2."^
1.0123 -0.0003 -0.0014 O.9376 O.7-T1
O.3942 0.0704 O.OOOO 40.3307 O 1 . 070
0.0144 0.0000 O.O303 33.437O 23. "41
O.6002 0.0339 0.0215 29.1079 I0.7OO
0.8 134 O.O220 0.0079 19.0001 13.413
O.9643 0.0070 -O.OO23 9.3730 7.r?"JA
1.0201 -O.OO 10 -O.OOOO 2.000? 2.4"0
1.O103 -O.OO1 1 -O.O0 16 1.1420 O.r.73
0 . 4003 O . O6O2 O . O4rt3 40 . 7420 0 1 . 44 '.!
O.O.'iSO O.O02O O.O044 O7 . 472O 20 . O'V)
0.6037 O.OOOO O.02O2 23.2747 10..'!?!
O.GL'31 O.O2IO O.OOOO 13.4O31 IP. .201
O.9731 O.OOOO -0.0001 0 . 0.nm 7.000
1 . O353 -O . OO 1 7 -O . OO4 1 2 . 002O 2 . 04 rj
1.O199 -O.OO 13 -O.OO 17 1.2034 O.'.MO
0.4O03 O.O077 0.0434 40.HO30 Ol.P-IO
O.5206 0.0024 0.0042 07.2000 20.421
O.6701 O.OCOO 0.02O1 23-OrWO 19.319
0.n.'?-'iO O.O2O6 O.OO03 13.20OO 10..1IO
0.9L'24 O.OOv',2 -O.OO32 9 . OO39 7.071
1.O379 -O.OO 17 -0.0041 2.0042 2.054
1.02O9 -O.OO 13 -0.0017 1.2200 O.013
0.4075 O.O075 0.0434 43.40"4 3 (.020
0.0007 O.0020 0.0042 37.2O64 20. ^/>2
O.6744 0.0004 0.0201 28.00110 lO.JW
O.0042 O.O2OO 0.0008 18.2100 10.2O1
0.9:507 0.0002 -0.0032 H.OHft? 7.009
i.oar.s -o.oo 13 -0.0041 2.0003 2.004
1.0212 -0.0013 -0.0017 I . 220O 0.0 IO
Exhibit A-7 (continued)
-------
ro
90.
90.
90.
90.
90.
9O.
9O.
99.
99.
99.
99.
99.
99.
99.
0.00
O.02
O.O5
0. 10
O.20
0.50 ,.
O.80 '
0.00
0.02
0.05
0. 10
0.20
0.50
O.80
00.2
00.9
02.4
06.4
97.4
129.6
163.3
00.2
00.9
02.4
06.4
97.4
129.6
163.3
56.64
56.27
55.44
53.29
47.36
29.93
11.75
56.64
56.27
55.44
53.29
47.37
29.93
11.75
34.04
36.00
39.44
43. 17
4O.63
56.23
50.50
34. 04
36. OO
39.44
43. 17
4O.63
56.23
53. GO
65.63
67. 13
09. 10
71.69
75.24
79.76
C1.03
65.65
67. 15
69. 10
7 1 . 69
75.24
79.76
31.03
0.3701
0.37.49
O.3391
0.3232
O.3039
0.3010
0.3015
0.3701
0.3549
0.3391
0.3232
0.30O9
0.3010
O.3015
0.3616
0 . 3474
0.3333
0.3200
0.3100
0.3091
0.3115
0.3616
0.3474
O.3333
0.3200
O.31OO
0.3091
0.3115
-24.69
-22.73
-20.09
-16.37
-10.91
-3.32
-1.03
-24.69
-22.73
-20.09
-16.37
-10. '9 I
-3.32
-1.05
-15.93
-14.45
-12.50
-9.91
-6.36
- 1 . 04
-O.57
-13.93
-14.45
-12.50
-9.91
-6 . 30
- | . f}/i.
-O.G7
-0 . 4334
-O . 4003
-0..3504
-0.2931
-0. 19(12
-O.O&l!)
-0.0190
-0.4334
-0.4003
-O.3504
-0.2931
-0. 19G2
-0 . OO 1 3
-O.O190
O . 4073
o. :>.') 12
0. <>7Af)
O . 3347
O. °.'X2
1 . ()',Ki1
1 . 02 1 3
O.4079
O.53I2
O.0750
0 . 3349
O.° •'.!'*• 3
1 . o:'.f!'i
1 . OU I '1
0.0075
o.oiri2
0.0304
0 . 0203
0 . 0002
-0.0013
-O.OO13
0 . 0075
O.O322
0.0304
0.0205
O.OOC»2
-0 . CO 1 ,'l
-O.OOI.')
0 . 0434
0 . 0342
0.0201
0 . 0003
-0.0032
-0.0041
-O.0017
O.0434
O.O342
0.0201
0 . 0003
-0 . O032
-0.0041
-O.OOI7
45.4403 31.315
"7.1054 nr».r*on
13. 2OOO 1J*. 107
2.000O 2.5P.4
I.2235 O.O IO
45.444O 01.314
37.1935 25.007
23.020P. 10.200
ir,.2or>o r,;. 107
0.9600 2.r-n.i.
1 . 22CO 0. 0 I :>
Exhibit A-7 (continued)
-------
VISUAL EFFECTS FOR LINES OF
1600 J1W POWER PLAWT
SIGHT ALONG PLUME
DOWNWIND DISTANCE (KM)
THETA LENGTH BP/RV0
133.
20.
20.
20.
20.
20.
20.
20.
40.
40.
40.
40.
40.
40.
40.
6O.
60.
60.
60.
60.
60.
-• 60.
*° 00.
80.
80.
80.
80.
80.
80.
90.
90.
90.
90.
90.
90.
90.
95.
95.
95.
95.
95.
93.
95.
0.00
0.02 i.
0.05 "
0. 10
*0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
O.50
0.80
O.OO
0.02
0.05
O. 10
0.20
0.50
O.OO
0.00
O.O2
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
= 100. O
RV ^REDUCED
171.3
170.1
160.2
165.7
162.2
157.5
163.2
167. 1
162.5
156.5
148.6
137.9
129.5
163.2
150.2
1 42 . 0
131.6
117.9
99.6
129.7
163.3
88.4
82.2
83.4
87.0
97.7
129.7
163.3
81. 1
02.2
83.4
07. 1
97.7
129.7
163.3
01. 1
02.2
03.4
87. 1
97.7
129.7
163.3
7.32
O.07
9.06
10.41
12.31
14.04
11.00
9.67
12. 17
15.39
19.63
25 . 45
30.02
11.76
10.02
23.24
2O.88
36.27
46. 16
29.91
11.75
52.21
55.59
54.93
52.95
47.20
29.08
11.75
56. 18
55.55
04.90
52.93
47. 19
29. GO
1 1.74
56. 10
55.55
54.90
52.93
47. 19
29.80
11.74
YCAP
45.37
46.06
40. 07
5 1 . 69
53.79
61.30
63.00
30.02
40.01
43.50
47.2O
52.01
60.44
62.70
36.45
3O.61
41.54
45.65
51.69
60.06
62.57
35.64
37.87
40.86
45.09
51.29
59.92
62.52
35.53
37.76
40.76
45.00
51.23
59.90
62.51
35.51
37.74
40.75
44.99
31.22
59.90
62.31
L
73. 16
74. 12
75.39
77. 12
79.51
02 . 60
03 . 46
60.64
70.07
71.92
74.39
77.70
C2.09
33.30
66. O9
68.50
70 . 08
73.34
77. 11
O1.39
C3.23
06.20
67.93
70. 11
72.97
76.07
O1.O1
03.20
66. 18
67.07
70.04
72.92
76. O4
01.80
33.20
66. 17
67.03
70.02
72.91
76.03
01.80
03.20
X
0.3626
0.3003
0.3360
0.3224
0 . 3002
0.2934
0 . 2979
0.3701
0.3544
0.3331
0.3216
0.3063
0.2973
0.2973
0.300O
O.35O9
0.3046
0.3185
0.3041
0.2964
0.297O
0.3639
0.3402
0.3322
O.3106
0.3C2O
0.2900
0.2909
0.3033
0.3476
0.3317
0.3161
0.3026
0.2959
0.2900
0.3631
0.3475
0.3316
0.3161
0.3023
0.2959
0.2960
Y DELYCAP
0.3713
0.3577
0.3429
0.3270
0.3144
0 . 3003
0.3093
O.3665
0.3312
0.3357
0.3210
0.3094
O.0063
0.3009
0.3609
0.3459
O.3310
0.3172
O.3O7O
0.3002
O.3007
0.3592
O.3442
0.3293
O.3I61
O.3063
O.3OOO
O . 3OO7
0 . 309 1
O.3441
O.3294
0.3159
O.3062
0.3059
0.3007
O.3591
0.3441
0.3294
0.3159
0.3062
0.3059
0.3007
-10.53
-17.02
-14.99
-12. 14
-0.00
-2.36
-O.72
-25.01
-23.01
-20.31
-16.51
-1O.96
-3.29
-1.03
-27.34
-25. 17
-22.24
-1O. 11
-I2.O6
-3.06
-1. 15
-2O. 12
-20. O9
-22 . 89
- 18.06
-12.45
-3.80
-1.20
-28.23
-26.00
—22 . 99
-18. 74
-12.51
-3.02
-1 .21
-20.24
-26.01
-23.00
-10.73
-12.01
-3.02
-1.21
DELL
-10.77
-9.79
-0.51
-6.73
-4.30
-1.25
-0.33
-15.25
-13.02
-11.90
-9.43
-6.03
-1.75
-0.54
-16.93
-15.37
-10.29
-10.52
-6.74
-1.95
-O.61
-17.03
-15.91
- 1 3 . 75
-10.03
-6.97
-2.02
-0.03
-17.07
-15.98
-13.31
-1O.93
-7.0O
-2.03
-0.04
-17.00
-10.00
- 1 3 . 02
-10.94
-7.O1
-2.04
-0.64
C(550) BRATIO DELX DELY E(LUV) F/ LAP,)
-0.2G50
-0.2037
-0.2340
-0. 1900
-0. 1300
-0.0403
-o.or.:3
-0.4001
-0.07O1
-O.3292
-0.2703
-0. 1303
-0.0.107
-0.0173
-O.4413
-0.4032
-O.060O
-0.2930
-O.2O.-0
-O.O025
-O.O193
-0.4527
-0.4107
-O.0724
-O.OO03
-O.2072
-O.0641
-O.OI93
-0.4337
-0.4196
-O.3732
-O.3009
-O.2076
-0.0042
-0.0199
-0.4003
-0.4196
-0.3702
-0.3009
-0.2076
-0.0042
-0.0199
0.3920 0.0(544 0.0607 43. 0063 ^2.031
0.5O40 0.0021 0.0469 4O.O441 20 . GOO
0.0364 0.0336 0.0322 SO. 7,709 19.969
0.7375 0.0242 0.0171 21.1719 l?f. OO3
0.9371 0.0099 0.0033 0.2036 6.,°n.4
1.0109 0.0001 -0.0021 1.G77O 1 . 07O
1.0094 -O.OO05 -0.001O 0.7240 O.,S"3
0 . 3373 0 . 07 1 9 0 . 0303 .TO . 30"0 04 . » 0 *
0.0033 0.0002 0.040.J 4 1 . OOO4 27.0^.
0.0313 O.O303 0.0231 31.2101 2O.743
o.nnr* 0.0200 0.0104 20.23.°,7 i:?.>.:^i
0.9043 O.OO30 -0.0012 9.064O 7..rfy>
1.0294 -O.OOH -0.0037 2.7674 r.Til
1.OI09 -0.0010 -0.0010 1.1105 O.rr>7
0.4^06 O.O035 0.05O3 43.LV7H2 30.O.r'O
O.0294 O.OT20 O.O35T 30.0741 CX-.Vr-r)
0.6736 O.O060 O.O2O4 29 . 0426 2O.261
O..'n?3 O.O2O1 0.0007 1 O.OO 13 ir.f''1
O.'V'.no O.OO07 -0.0003 9.0920 7.96?.
1.O4I4 -O.OO20 -0.0043 0.1009 2.6 "I
1.O220 -O.OO 14 -0.0017 1.0049 O.97O
O.4106 O.O600 0.0437 40.9496 02. 4? r>
0.0404 O.O493 O.O007 03.1442 2O . "47
0.0944 O.O309 O.019O 23.4"-"i9 19. 904
O.:;~31 0.0132 O.OOOO 13.0210 IH.O'V,
l.07f,7 0.0040 -O.OO42 9.1 HO 7.990
I.O3O1 -O.0024 -O.O040 0.2971 2.77"
1.O200 -O.OO 15 -0.0013 1.0H90 I.O14
0.42O7 0.0049 O.0430 40.0700 "2.000
0.0005 0.0492 0.0330 07.OR77 20.101
O.7O03 0.0003 0.01O3 2O.261O l^.f?^
O.O044 O.OI73 O.OO54 1O.I4O3 10.0-1.7
1.0123 0.O042 -0.0040 9.0014 7.9fJI
1.O02O -O.OO25 -O.0043 3.017O 2.707
1.0273 -0.0016 -O.OO 13 1 . 4OOO 1 . O2 1
O.4219 0.0643 0.0480 40.0179 32.012
0.5019 0.0491 0.0330 07.0301 20.101
O.7020 0.0032 0.0103 20.2149 19.341
0.0002 0.0177 0.0004 13.1110 13.635
1.0140 0.0041 -0.0043 9. OHO 7.974
I.O036 -0.0023 -0.0040 3.0200 2.733
1.0.'J02 -0.0010 -0.0010 1.4031 1.022
Exhibit A-7 (continued)
-------
90.
93.
98.
on .
90.
98.
98.
99.
99.
99.
99.
99.
99.
99.
0.00
0.02
0.03
0. 10
0.20
0.30
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.30
ni. i
C3. 4
87. 1
97.7
129.7
103.3
81. 1
O2. 2
f!3. 4
37. 1
97.7
129.7
103.3
36. 18
55.33
54. 9O
52.93
47. 19
29. G3
11.74
50. 18
55.55
54.90
52.93
47. 19
29.00
11.74
35.50
37.73
40.74
44.99
51.22
59. 9O
02.51
33.50
37.73
40.74
44.99
51 .22
59. 9O
62.51
00. 17
07.03
7O.02
72.91
70 . 03
r» | *~\f\
0 1 . O J
G3 . 20
00. 17
07.05
70.02
72.91
70. G3
G 1 . GO
33.20
0.3631
0.35-74
0.0316
0.3161
0!2959
0.2900
0.3031
0.3474
0.3316
0.3101
0.3023
0.2939
0.2963
0.3391
0 . 344 1
0.3204
0.3159
O.3062
0.303>
0 . 30G7
0.3391
0.3441
0.3294
0.3159
O.3002
0 . 3059
0.30C7
-2O. 23
-20 . 0 1
-23.00
-1.1.75
-12.32
-3.O3
-1.21
-20.24
-26, Ol
-23.00
-13.75
-12.52
-3.O3
-1.21
-17.03
-10.OO
-13.O3
-10.94
-7.01
-2.04
-0.64
-17.63
-16.00
-13.02
-10.94
-7.O1
-2.04
-0.64
-O.45:'D
-O.'l l°0
-0.3732
-o.yor.9
-o.2oro
-0.0002
-6.0109
-0.4507
-0.4100
-0 . C702
-0.0009
-0.2070
-0 . 0042
-0.0199
O ^1,*^*^*>
O r*sj>'^4'
o'.7023
O.G563
1.0143
1 . 0333
1 . C203
0..23
0.5124
O . 7020
O.G509
1.0145
1 . Q-~»09
i . c'jcn
0.0047
O.OvOt
0.0332
0.0177
0.0041
-0.0023
-0.0010
0 . 0047
0.0-J91
0.0332
0.0177
0.0041
-O.O023
-O.OOS6
0 . 04CT.
O.O3O'»
O.01GD
O.OO34
-O . 0043
-0.000'j
-O.OO1O
0 . 04C 0
0 . O30I*
O.O1CO
O . 0054
-0.0043
-0.00'Vi
-o.ooi.",
<•<).
T7.
2O.
1G.
9.
3.
1.
«•.
07.
£3.
'•".
9.
0.
1 •
'"'TO
"'Y^i
iy>o i
!007
007 1
o.?.ori
40O4
(")r>7r>,
"2r>0
non4
?or?o
O^'O^i
f?.1'"iT
<:'Or,5
*^/". I «^t*^
•. l\>. p. . f
vo
OF AEROSOL AND CASES CONTRIBTJTED
1000 HW PO^VEIl PLANT
BY
Do^^rn'nRD DISTANCE dot) = 120.0
PLUfTE ALTITUDE (PI) = 392.
SICWA Y (TI) = 3490.
SIGMA Z (M) = 195.
SO2-S04 COWVERSION RATE= 0.0048 PERCENTXITR
NOX-N03 CONVERSION RATE= O.0336 PERCENT/HR
ALTITUDE
H+2S
INCREPIENT!
TOTAL AIID!
II* IS
INCREMENT!
TOTAL AMD!
H
INCPET1ENT!
TOTAL AHD!
H-1S
INCREMENT!
TOTAL AMD!
H-2S
INCREMENT!
TOTAL AMD!
0
INCREMENT!
TOTAL AMD!
CUMULATIVE
NOX
( PPM)
0.013
0.013
0.059
0.059
0.093
0.09O
0.000
0.060
0.026
0.020
0.026
0.026
N02
( PIT!)
0.009
0.009
0.033
O.C33
0.051
0.051
0.034
0.034
0.017
0.017
O.017
0.017
SURFACE DEPOSITION (
N03-
( PPM)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
MOLE FRACT1
H02/NTOT
(flOLE «)
69.922
69.922
36.230
56.250
51.6C2
5 1 . 6G3
35.930
55.930
64.626
64.626
63.061
63 . OO 1
N03-/NTOT
(MOLE «)
0.030
0.030
0.039
O.OG9
0.045
0.045
0.007
0.007
0.407
0.407
O.391
0.391
S02
( PPII)
0.003
0.003
0.012
0.012
0.020
O.020
0.012
0.012
0.005
0.005
0.003
0.005
[ON OF INITIAL FLUX)
S04=
(UC/H3)
0.018
2.954
0.011
2.947
0.010
2.946
0.012
2.947
0.019
2.955
O.O1O
2.954
£5O4=/T>TO7
(KOLK «)'
0. !72
2 1 . 749
0.024
5 . G24
0.013
3.6!3
0.024
5.723
0.039
12.291
0 . 037
12.290
03
( FPII)
-0.003
O.OGO
-0.022
0.010
-0.025
0.013
-0.022
0.010
-0.015
0.023
-O.O17
O.O21
PRIMARY
CUG/1 13) (
0.923
13.333
4. 153
17.03?
0 . O (r.)
0.012 v.nr?.
0 . 1 <-0 5° . (> > 0
0.052 O.029
o.nco 4<-i.r.<:r<
0.035 O.r.^O
0.214 IK>.l^rj
0.053 0.021
o. IGI ^'1*
o. 152 f»r;.<-/:.9
O.O23 2.247
O. 152 5H . 'X'O
SO2 t O.OOOO
NOX! O.OOOO
PARTICULATE! O . OOOO
SO41 O.OOOO
HO31 O.OOOO
-------
VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
1600 MV POWER PLANT
DOWNWIND DISTANCE (KM) = 120.0
PLUME ALTITUDE (M) = 392.
SIGHT PATH IS TOROUCrf'PLUME CENTER
TIIETA ALPHA RP/RVO
45.
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
60.
_^ 60.
JO 60.
01 60.
60.
6O.
90.
90.
90.
90.
90.
90.
0.02
0.05
•0. 10
0.20
O.50
0.OO
0.02
0.05
O. 10
0.20
0.50
O.CO
0.02
O.05
O. 10
0.20
0.5O
0.00
'0.O2
0.05
0. 10
0.20
O.50
0.80
RV ^REDUCED
170.5
175.7
172.6
169.5
165.4
164.2
100.3
178.2
176.3
174.2
171.2
170.3
1O1.0
179.4
173. 1
176.3
173. 0
173. O
181.5
100.2
179. 1
177.3
175.3
174.6
3.50
5.00
6.72
O.37
10.58
11.23
2.54
3.65
4.62
5.81
7.44
7.93
2. 14
3.05
3.73
4.71
6.06
6.47
1.90
2.62
3.20
4.06
5.24
5.60
YCAP
08.07
06.09
87.57
93.60
101.76
104. 10
90.74
89. 17
91.66
96.28
102.52
104.30
92. 10
90.98
93.69
97.62
102.89
104.39
93.10
92.58
94.98
98.46
103. 13
104.45
L
95.19
94.36
94.98
97.47
ICO. 68
101.56
96.31
95.66
96.68
98.55
100.97
10I.64J
96.86
96.41
97.51
99.07
101. 11
101.67
97.27
97.06
98.03
99.40
1O1.20
101.70
X
0.3596
0.3606
0.3500
0.3334
0.3203
0.3192
0.3343
0.3551
0.3443
O.33O9
0.3203
O.319I
O.3512
0.3313
0.3408
O.3293
O.3201
0.3191
0 . 34C8
0 . 3476
0.33G4
0.3203
0.3200
0.3191
Y DELYCAP
0.3605
0.3663
0.3546
0.3306
0.3300
0.3303
O.3653
0 . 3637
0.3517
O . 3303
0.3303
O.3307
0.3631
0.361 1
0.3493
O.3373
O.3307
O.3307
0 . 36 1 1
0.3582
O.3479
0.3374
0.3308
0.3303
-16.84
-10.82
-17.34
-11.31
-3. 15
-0.01
-14. 17
-15.74
-13.25
-0.63
-2.39
-0.61
-12.81
-13.92
-11.21
-7.29
-2.02
-0.52
-11.81
-12.33
-9.92
-6.45
-1 .78
-0.46
DELL
-6.67
-7.51
-6.00
-4.39
-1. 19
-0.30
-5 . 56
-6.21
-5. 13
-3.32
-0.90
-0.23
-3.00
-5.46
-4.35
-2.79
-0.76
-0. 19
-4.60
-4.O1
-3.O4
-2.40
-O.67
-O. 17
CC550)
-0. 1503
-0. 1303
-0. 1697
-0. 1 143
-0.0343
-0.0003
-O. 1314
-0. 14F.5
-O. 1276
-0.0359
-0.02.~3
-0.0072
-o. i ino
-0. 1303
-0. 1071
-O.O721
-O.0216
-O.OOOO
-O. 1084
-0. 1 149
-O . 0943
-0.0633
-O.OI9O
-0.0053
BRATIO
0 . 5496
0.5772
0.0993
0 . 33ffO
0.9907
0.9935
0.5702
0.0020
O . 74O2
0.3033
0.0021
O.99S2
O..ri903
O . 02OO
0.7006
O . 9OP4
0.0930
O.OOOO
O.6102
0.0 3 B-l
O . 7356
0.0133
0.093O
O.0005
DELX DELY E( LUV)
0.0403 0.0375 C5.8714
0.0417 0.03.12 05.0420
0.0320 0.0230 27.6142
0.0146 O.O073 13. K1CTO
0.0016 -O.0010 2.3717
O.O003 -O.OOOO 0.7103
O.0354 O.O343 32.1413
0.0r,02 O.O327 :?2. 1410
O.O255 O.O2O6 22.7740
O.O12O O.0073 10.0204
O.OOI4 -0.0003 1.0431
O.OO03 -O.OO04 O.5424
O.OH23 O.O32O 29.O".ri7
0.0324 O.O3O1 20.3O51
0.0219 0.0131 10.0007
O.OIO5 O.OO03 0.01,12
O.0013 -O.OOOH 1.3709
O.O002 -O.0003 0.4100
0.0209 0.0301 27.0744
O.0237 O.0272 2O.4O.nf)
O.0196 O.OIOO 1O.O539
O.0094 0.0003 8.71(10
O.O012 -O.OO03 1.4007
O.0002 -0.0003 O.4O33
E< LAB)
23.917
20. 63-')
17.731
T..CTOO
1 . 004
0 . 50O
2 1 . 4 1 1
21 .210
14.0 1 1
0 . P73
i . r^>rj
0 . 4 1 ')
lo.r-,',
10.2')«>
12.7^0
6. Of* 7
1 . MO
o.cni
10.574
17. nr*7
1 1 . 50 (
5. 403
1 . O 1 0
0 . GOO
OBSERVER POSITION AT 1/2 OF A 22.5 DEGREE WIND DIRECTION SECTOR FROM THE PLUME CENTERLINE AT THE GIVEN DISTANCE FROM THE SOURCE
90. 0.13 173.5 3.49 96.15 90.49 0.3346 0.3430 -8.75 -3.37 -0.0341 0.3303 0.0153 0.0123 14.5533 O.C2'J
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.5O
0.60
179. 1
176.4
173.2
170.0
165.6
164.4
180.8
178.8
176.9
174.6
171.4
170.4
3. 19
4.64
6.37
8. 13
10.47
11. 15
2.29
3.37
4.37
5.64
7.36
7.87
49. 15
47.94
48.83
52.50
57.45
58.87
50.79
49.83
51.34
54. 16
57.94
59.02
75.57
74.81
73.37
77.60
00.45
01.23
76.57
73.90
76.90
78.57
00.72
01.32
0.3421
O.3428
O.3326
0.3153
0.3029
0.3018
0.3368
0.3375
0.3264
0.3130
0.3028
0.3018
0.3538
0.3513
0 . 3382
0.3208
0.3118
0.3124
0.3503
0.3403
0.3351
0.3206
0.3124
0.3126
-10.33
-11.55
-10.65
-6.99
-2.03
-0.62
-0.69
-9.66
-8. 13
-5.33
-1.54
-0.47
-6.01 -0. 1604
-6.77 -O. !9I3
-6.21 -0. 1009
-3.93 -0. 1223
-1. 12 -0.0333
-0.34 -0.0123
-5.00 -O. 1396
-5.59 -0. 1500
-4.67 -0. 1360
-3.00 -0.0021
-0.05 -0.0203
-0.26 -0.0002
0.5333
O.5332
0.7090
O.O943
0.9083
0.099O
O.5790
0.0000
0.7472
0 . 9060
0.0000
0.00'>2
0.0403
0 . O4 1 1
0.0009
0.0133
0.0011
0 . 0000
0.0350
0 . 0357
0.0246
0.01 12
0.0011
0.0001
0.0406
0.0330
0.023O
0 . OO73
-0.0014
-0.0003
0.0371
0.0353
0.0219
0.0074
-0.0003
-0.0006
31 .01 16 21. IflO
f) 1.5201 2O. 741
23.0174 M.nri
11.052O 7.1 in
1.0320 l.SOO
0.0013 o.r>on
20.60.10 10.904
23.4102 1O.6O3
I9.G63O 12.744
0 . 2577 5 . 079
1 .4002 1 . 107
0.4023 0.410
Exhibit A-7 (continued)
-------
00.
60.
6O.
60.
60.
60.
90.
90.
90.
90.
90.
90.
0.02
0.03
0. IO
0.20
O.50
0.30
0.02
0.05
0. 10
0.20
0S50
0.30
101.4
179.0
173.5
176.0
173.9
173. 1
101.9
130.6
,.«• 179.4
177.7
173.4
174.7
1.93
2.00
3.52
4.56
6.OO
6 . 42
1.70
2.40
3.03
3.93
5. 19
5.56
51.62
50.94
52.59
54. 9O
53. 10
59.09
52.24
51.92
53.30
55.50
53.34
59. 14
77.0O
70.66
77.05
79.05
or\ **•<.
o J . uO
01.30
77.44
77 . 23
7C. 12
79.03
09.94
31.33
O.3338
0.3337
0.3230
0.31 16
0.3027
0.3018
0.3314
O.3300
O.3207
0.3106
0.3027
O.3018
O.3479
0.3456
0.3323
0.3202
0.3127
O.3127
0.3437
O . 3423
0.3311
0.3197
0.3123
0.312O
-7.06
-0.53
-6.O9
-4.51
-1.30
-0.39
-7.23
-7.57
-6. IO
-3.99
-1.13
-0.33
-4.50
-4.91
-3. 02
-2.53
-O.72
-- 0.2.2
-4. 13
-4.32
-3.43
-2. "3
-0 . 03
-O. 19
-0. 1254
-0. lOST
-O. 1 K2
-0.0773
-0 . 0242
-0.0077
-0. 115:5
-o. 1:222
-0. 1005
-0.0031
-0.0213
-O.C060
o!
0.
0.
0.
0.
o.
o.
o.
0.
0.
0.
r'™~
7 V""!
9 I li-1
9^79
9093
6 1 G4
G0~2
700.'?,
°'«17
9073
9093
O.O329
0 . 01- 1 9
O.02I2
0.0093
O.001O
0.0001
0.0290
0.0232
O . O 1 39
O.OOG9
0 . OOO9
0 . 000 1
0 . O340
O.OH24
0.0190
0 . 0009
-0.0000
-0.0003
O.O323
0.0292
0.0179
o.ooor>
-0 . OC94
-0 . 0004
20. r, 127
17 . '" '02
". '"14
1 . 2704
0.^-113
24 . 0440
23 . 4O70
15.P.200
7 . 44CO
i. nir,
O.T014
17.0-s
1 1 . i ry>
r>. i7r,
i .for;
o. rs1"!
K..TOI
irs . f*.;sr7.
IO. i."!4
4 . 0°'.^
o. r"'<
n.rvv,-
OBSERVER POSITION AT 1/2 OF A 22.5 TM3GREE WITID DIRECTION SECTOR FROM TOR PLUME CENTEKt,If-IK AT rTE GIVEN DISTANCE FTOM IT*,
90. 0.13 17O.3 3.33 54.10 73.54 0.3109 0.3267 -5.39 -3.04 -O.OTOCi O.C:21 O.O131 0.0134 ^.OOZr.
VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
1600 MW POWER PLANT
DOWNWIND DISTANCE (KJI) = 120.0
PLUi-IE ALTITUDE (M) = 392.
SIGHT PATH IS THROUGH PLUME CENTER
TIIETA ALPHA RP/RVO
135.
30.
_, 30.
0 30.
* 30.
30.
30.
45.
45.
45.
45.
45.
43.
60.
60.
60.
60.
60.
60.
90.
90.
90.
90.
90.
9O.
0.02
0.05
0. 10
0.20
0.50
0.30
0.02
0.05
0. 10
0.20
0.50
0.00
0.02
0.03
0. 10
0.20
0.50
0.80
0.02
0.03
0. 10
0.20
0.50
O.OO
RV ^REDUCED
179.3
176.9
173.7
170.3
165.3
164.5
131. 1
179. 1
177.2
174.3
171.5
170.3
101.7
130. 1
178.7
176.7
174.0
173.2
182. 1
130.8
179.6
177.9
175.5
174.3
2.99
4.39
6. 13
7.96
10.39
11. 10
2. 13
3. 17
4.20
5.52
7.31
7.83
1.78
2.64
3.33
4.47
5.95
6.39
1.57
2.26
2.91
3.83
5. 14
5.53
YCAP
52.29
50.90
51.89
56.01
61.59
63. 13
54. 16
53.05
54.75
57.91
62. 17
63.38
53. 10
54.31
56. 17
53.05
62.46
63.43
55 . 79
55.42
57.07
59.45
62.64
63.54
L
77.47
76 . 64
77 . 24
7^.64
02 . 7 1
33.55
73.57
77.92
78.91
30.71
03.02
33.66
79. 12
73.66
79.73
31.23
33. 17
33.71
79.51
79.30
80.24
31.55
33.27
O3.74
X
0.3301
0.3307
0.3203
0.3109
0 . 2933
0.2*79
0.3329
0.3334
0.3223
0.3CC3
0.29D9
0.29C0
0.3299
0.3297
0.31C9
0.3075
0.2908
0.29GO
0.3275
0.3260
0.3167
0.3066
0.2908
0.2900
Y DELYCAP
0.3322
0.3495
0.3360
0.3102
0.3093
0.3099
0.3407
0.3467
0 . 3329
0.3182
0.3099
0.3102
0.3462
0.3438
0.3306
0.3177
0 . 3 1 02
0.3103
0.3439
0.3406
0 . 3289
0.3173
0.3104
0.3104
- 1 1 . 70
-13.09
-12. 11
-7.93
-2.41
-0.81
-9.04
-10.94
-9.25
-6.09
-1.83
-0.61
-8.90
-9.68
-7.83
-3. 14
-1.54
-0.52
-8.20
-8.57
-6.93
-4.53
-1.36
-0.46
DELL
-6.50
-7.34
-6.74
-4 . 34
-1.27
-0.42
7O.41
-6.05
-5 . 06
-3.27
-0.96
-0 . 32
-4. CO
-5.31
-4.23
-2.75
-0.81
-0.27
-4.46
-4.67
-3.74
-2.42
-0.71
-0.24
CC5SO)
-0. 1751
-0. 19°0
-0. 1G33
-0. 12C2
-0.0413
-0.0144
-0. 1452
-0. 1644
-0. 1417
-0.0964
-O.0310
-0.0103
-0. 1304
-0. 1444
-0. 1190
-0.0309
-0.0261
-0.0091
-O. 1197
-0. 1271
-0. 104O
-0.0713
-0.0229
-O.0030
ERATIO
0.5540
0.5G55
0.7141
0.9010
1 . 0">42
1 . 0">27
0.5', 91
o . ooao
0 . 7.r>07
0.9110
1.0D19
1.0019
0.3091
o.or.31
0.7754
0.9194
1.0010
1.0J15
0.6IG3
0.6632
O.7033
0. 9£53
l.OCOO
1.0013
DELX
0.0401
0 . 0407
0.0303
0.0129
0.0003
-0.0002
0.0343
0.0334
0.0242
0.0103
0.0003
-O.O001
0.0313
0.0316
O . 0203
O.OO95
0.0003
-0.0000
0.0294
0 . 0230
0.0130
0.0030
0.0007
-0.0000
DELY
0.0413
0 . QC36
0 . 025 1
0 . 007.2
-0.0017
-0.0010
0.0377
0 . 0350
0 . 022O
0 . 0072
-0.0010
-0.0007
0.0352
O.OC29
0.0197
0.0003
-0.0007
-0.0006
0 . 0330
0.0296
0.0180
0.0064
-0.0006
-0.0005
E(LttV)
33.3191
G2.9249
24.C007
1 1 . 2W5
2 . 0207
O . 7709
29 . 9909
20.7210
20 . r,r,n4
9 . CV.X23
1 . 5403
0 . H722
27 . 0090
27 . i 150
IO. 1703
3.4171
1 . JTOtlfJ
0.4750
26 . \ 027
24 .
o . roo
OBSEUVEU POSITION AT 1/2 OF A 22.5 DEGREE WIND DIRECTION SECTOR FROM THE PLUME CENTF.HMNE AT THE GIVEN DISTANCE FHOff Tl/E
OO. 0.13 179.0 3.22 57. B7 GO-GO O.3I29 0.3244 -6.13 -3.29 -O.O937 O.3':-52 O.OI43 O.O135 13.1^,'to
A.-V (.continued")
-------
VISUAL EFFECTS FOR NON-HORIZONTAL CLEAR SKY VIEWS THROUGH PLUME CENTER
1600 MW POWER PLANT
10
DOWNWIND DISTANCE (KM)
PLUPIE ALTITUDE
THETA ALPHA
45.
30.
30.
30. *
30.
30.
30.
45.
45.
45.
45.
45.
45.
CO.
60.
00.
60.
60.
6O.
90.
90.
90.
90.
90.
90.
90.
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
(M'>"
BETA
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
3O.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
= 120.
= 392
RP
2.95
1.41
O.G3
0.60
0.44
0.39
2. 10
1.04
0.63
0.51
O.42
0.39
1.73
0.00
O.60
0,47
O.41
0.39
1.51
0.78
0.55
O.45
0.41
0.39
2.95
1.41
0.00
0.60
0.44
0.39
2. 10
1.04
0.68
0.51
0.42
0.39
O
t
YCAP
38.06
27.23
22.98
20.97
20.02
19.73
38.96
26. 17
21.49
19.30
10.27
17.96
39. 15
25.74
2O.02
18.53
17.44
17. 12
39,32
25.49
20.42
13.05
16.93
16.60
22.77
15.53
12. 07
11.61
11.01
10.02
23.29
15.30
12.36
10.90
10.33
10. 13
L
68.68
59.22
55.09
52.96
51.09
51.56
68.75
53.23
53.52
51.08
49.06
49.48
6O.39
57.O2
52.79
5O. 16
40.05
40.45
69.01
57. GO
52 . 35
49.59
4O.21
47.79
54.07
46.39
42.60
40.63
39.63
39.32
55.40
46.00
41.02
39.59
30.46
38. 12
X
0,3344
0.3375
0.3415
0.3447
0.3468
0.3476
0.3191
0.3192
0.3210
0.3241
0.3256
0.3261
0.31O5
0.3092
0.31 12
0.3131
0.3143
0.3147
0.3O48
O . 3027
O.3O42
0.3058
O.3069
O.3073
0.3191
O.3208
0 . 3243
0.3272
0.3292
0.3300
0 . 3O42
0.3030
0.3048
0.3067
0.3080
0.3004
Y
0.3544
0.3554
0.3579
0.3602
0.3619
0.3625
O.3414
0.3390
0.3401
0.3414
0 . 3424
0.3427
0.3327
0.0207
0.3292
0.3302
0.3009
0.3D12
0.3266
0.3217
0.3217
0.3225
0.3231
O.3233
0.3411
0.3410
0.3431
0.3453
0 . 3470
0.3476
0.3274
0.3236
0.3240
0.3251
0.3259
0.3262
DELYCAP
-2.74
3.03
5.20
6.21
6.68
6.01
-2.65
1.97
3.72
4.54
4.93
5.04
-2.45
1 . 54
3.05
3.76
4. IO
4. 2O
-2.23
1.2')
2.65
3.29
3.59
3.60
-3.56
0. 14
1 . 55
2.20
2.51
2.59
-3 . 04
-0.00
1.04
1.5O
1.03
1.90
DELL C( 550)
-1.95 -0.0467
2.90 0.1403
5.03 0.3173
7.61 O.4462
8.58 0.5262
8.09 0.5532
-1.08 -0.0433
1.91 0.1051
4 . 26 O . 2340
5.73 O.3329
6.54 O.3949
6.O1 0.416O
-1.74 -O.0393
1.50 O.OO59
3.53 O.I 943
4.02 0.2705
5.54 0.3313
5.77 O.3492
-1.61 -O.0362
1 . 26 0 . O743
3.09 0. 17O3
4.25 O.2449
4.90 0.2916
5.11 0.3075
-3.51 -0. 1117
O. 19 O.0365
2.45 O. 1652
3.04 0.2631
4.59 0.3238
4.02 0.3442
-2.98 -0.0917
-0.11 O.0214
1.60 0.1198
2.00 0.1954
3.42 0.2427
3.62 0.2088
BRATIO
0.2442
0. 1789
O. 1503
0. 1352
0. 1267
0. 1238
0.3133
0 . 2434
O.2I09
O. 1991
0. 1390
0. IG03
0 . 3f»57
O.3OO6
0.2066
O.2471
O.2367
O.2305
O.4065
O.0415
0.0059
0 . 2-350
0.2739
O.2704
0.203O
O. 1905
0. 1696
O. 1530
0. 1437
0. 1403
O.3329
0.2722
0.2415
O . 2207
0.2141
O.2I 10
DELX
0.0736
0.0848
0.0914
0.0958
0 . O935
0.0994
0.0334
0.0565
O.O718
0.0753
0 . 0773
O.O7OO
O.O497
O.O565
O.O51 1
O.0642
O.066O
O.O666
O . 044O
O.O500
O . O542
0.057O
O.O336
O.Or.02
0.0693
O . 0737
0 . 0346
0.0336
0.O912
0.0921
0.O344
0.0603
0.0651
o . oo3 i
O.O699
O . O7O3
DELY EC LUV) E( LAU)
0.0034 57.29P.3 36.8107
O.0966 54.21C3 36.2337
0.1032 51.7251 35.T29O
0.1074 50.3015 35.7509
0.1100 49.7575 35.P.4O3
0 . 1 1 09 49 . 6040 35 . 002T
O.O704 48.3503 3O.9224
0.0301 44.7929 29.7547
O.O354 42.2501 29. 03 13
O.O306 40.7747 20.7013
O.O905 40.0203 20.5302
O.0911 39.7309 2G.GOO3
0.0617 42.0C30 27.1909
O.O099 39.2110 25.0004
O.O743 06.3195 25.1 GOO
O.O774 33.4143 24.O304
O.0790 04.6731 24.0010
O.O793 34.4494 24.0410
O.0556 03.7109 24.5900
0.0023 35.0391 20.0427
O.O67O 30. 1434 22.6102
O.0697 01.O276 22.2077
O.O712 31.1314 22.1157
O.O717 3O.9I07 22.O705
O.OO44 49.2303 32.4034
O.O905 45.0400 31.1701
O. 1O27 41.9903 30. 220.1
0.1007 40.20'VJ 29.GI94
O. 1O93 39.4riO9 29.7105
0.1103 39.2003 29.7156
O.O707 41.0094 27.0000
0.0791 37.2945 23.7212
0.0036 34.3294 24.6173
O.0065 32.5863 24.0344
O.O032 31.070O 20.7002
O.O330 01.30(17 23.<»-"/»7
Exhibit A-7 (continued)
-------
6O.
OO.
OO.
60.
60.
60.
90.
90.
90.
90.
90.
90.
15.
30.
45.
60.
75.
90';
15.
30.
45.
60.
75.
90.
1.73
O.O3
0.60
0.47
0.41
0.39
1.51
0.73
0.55
0.45
0.41
0.39
23.03
15.24
12. 15
10.70
10.01
9.01
23. C7
15.22
12.02
10.53
9.C2
9.61
53.75
40.00
41.49
39. 1 1
37.91
37.54
56 . 00
45.97
41.29
30.01
37.56
37. 17
0.2959
0.2034
0.2946
O.2900
0.2970
0.2973
O.2905
0.2O72
0.2COO
O.2391
O.2399
0.2902
0.3104
0.3 no
0.3!27
0.3K13
0.313O
0.3140
0.3121
0.3058
0.3051
0.3054
0 . 3O38
0.3059
-2.7O
-0. 15
0.03
1.29
1.51
1.53
-2.40
-0. 17
0.71
1. 12
1.32
1.30
-2 . 63
-0.20
1.34
2.31
2.00
3.04
-2.39
-0.23
1. 15
2.02
2.51
2.67
-0.0703
0.0150
0.0001
O. 1632
0 . 2O35
0.2173
-0.071O
0.0123
O.OO05
0. 1433
0. 1791
O. 1913
O.3359
o.n?07
0 . 2047
O.?~37
O.2055
0.2023
0.4203
0. 5>000
0 . 330 1
0.3104
O.3030
0.3022
O . O40 1
O . O3 I 2
O.0349
O . 0374
0.0309
0.0394
0 . O407
O.O450
O . O403
0 . 0305
O.O319
0.0323
0 . OO 1 7
0.00-13
O.0723
0 . O740
0.0702
0.0760
O.O534
0.0012
0.0040
O.0009
0.0031
0.0033
30.7054
32.0.')07
2.") . flCJO 1
20.2327
27 . 3343
27. 1120
33.3370
29 . 4447
20 . G333
25 . 3334
24.5300
24 . 2700
24. 10:72
22. '""V-
C 1 . .'lOO*"1
20 . 3 1 T»4
20.3231
20.4419
2 1 . O243
20 . 242 1
19.2^,33
13.0752
13.3000
13.3112
DOWNWIND DISTANCE (KM)
PLUME ALTITUDE
VISUAL EFFECTS FOR WON-HORIZONTAL CLEAR SKY VIEWS THROUGH PLUME CENTER
1000 MW POWER PLANT
_, THETA
10 135.
00
ALPHA
30.
30.
30.
30.
3O.
30.
45.
45.
45.
45.
45.
45.
60.
60.
CO.
60.
60.
60.
90.
90.
90.
90.
90.
90.
BETA
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
'• 120.
0
• 392.
RP
2.95
1.41
0.00
O.OO
0.44
0.39
2. 10
1.04
0.68
0.51
0.42
0.39
1.73
0.03
0.60
0.47
0.41
0.39
1.51
0.78
0.55
0.45
0.41
0.39
YCAP
23.01
16.68
13.61
12. 16
11.46
11.25
25.95
16.75
13.35
11.76
11.00
10.78
26 . 5 I
16.04
13.27
11.59
10.00
10.56
26.89
16.92
13.22
11.49
10.67
1O.43
L
57. 12
47.90
43.71
41.51
40.39
40.04
50.02
47.99
43.33
40.87
39.63
39.24
58.55
48. 10
43.20
40.60
39.28
38.07
58.91
40.20
43. 14
40.44
39. 06
38.04
X
0.3159
0.3167
0.3198
0.3227
0.3247
0.3255
0.3009
0.2900
0.3002
0.3019
0.3030
0.3934
0.2920
0.2093
0.2900
0.2912
0.2920
0.2923
0.2072
0.2032
0.2835
0 . 2044
0 . 205 1
0.2O53
Y
0.3408
0.3402
0.3421
0.3444
0X)462
0.3469
0.3264
0.3220
0.3221
0.3230
0.3238
0.3241
0.3171
0.3110
0.3104
0.3108
0.3112
0.3114
0.3106
0.3036
0.3025
0.3027
0.3029
0.3031
DELYCAP
-3.48
-1. 18
0.47
1.23
1.58
1.69
-4.54
-1.11
0.21
0.03
1. 12
1.21
-3.98
-1.01
0. 12
0.66
0.92
0.99
-3.60
-0.94
0.08
0.56
0.79
0.86
DELL C(550) BRATIO
-1
4.99
1.47
0.69
2.01
2.72
2.95
4.08
38
0.31
1,
1,
2.
37
96
15
-3.53 -
-1.26 -
0.
1.
18
10
1.61
1.77
3.20
17
0. 12
0.94
1.40
-1
0.1493
0.0281
0.0775
0.1573
0.2073
0.2240
0. 1198
0.0269
0.0541
1163
1552
1604
0.1033
0.0247
0.0440
0.0968
0.1301
0.1414
-0.0924
-0.0228
0.0330
0.0349
0.1144
0.
0.
0.
0.
O.
0.
0.
1.53 O.1245
0.2658
0.2034
1746
1578
1401
1449
0.3373
0.2303
0.2500
0.2329
O.2233
0.2202
0.3910
0.3303
0.30*^2
0.2077
0.2776
0.2744
0.4334
O.3O01
0.3492
O.3301
0.3196
0.3103
DELX
0.0681
0.0766
0.0321
O.0061
0.0306
0.0395
O.O531
0.0.106
O.O025
0.0053
0.0669
O.O075
O.O443
0.0491
0.0523
0.0546
0.0359
0.0564
0.039,1
0.0430
0.0453
0.0478
0.0490
0.0494
DELY EC LUV) E(LAB)
0.0050
0.0973
0.1024
O.1076
0.1103
0. 1112
0.0712
0.0790
0.0034
0.0302
0.0373
0.O334
0.0019
0.0081
0.0716
0.0740
0.0753
0.0757
0.0554
O.0007
0.0038
0.0058
0.0070
0.0074
52.
48.
44,
43,
42,
41,
44
39
30,
34,
33
33,
39,
34,
31
30,
29,
23.
35,
31,
28.
27.
26.
9551
3415
9739
0733
1750
92G7
7071
9934
7022
8521
0529
5432
4237
9697
9059
2012
2497
9501
7169
5247
7529
OCPO
190O
34.5807
32.9973
8040
2459
0099
0487
1000
1397
0779
1579
24.8103
24.70O3
0013
7212
22.4714
21.7039
4055
2901
1539
21.35OO
20.1321
19.5094
19.104O
31.
31.
31.
31.
29.
27.
25.
25.
25,
23
o i
w 1
21
23
25.9141 19.0575
Exhibit A-7 (.continued)
-------
VISUAL. EFFECTS FOU HORIZONTAL VIEWS
TO THE PLUME OF WHITE. CRAY. ATTD
FOR VARIOUS OBSERVER-PLUME AND OBSERVER-OBJECT
1600 MW POWER PLANT
BLACK OBJECTS
DISTANCES
vo
vo
DOTVNWIND DISTANCE
TIIETA = 45.
(KM) =
REFLECT RPXRV0 RO/RVO
1.9
1.0
1.0
1.0
l.O
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 ,
1.0 '
1.0
1.0
l.O
1.0
1.0
1.0
0.3
0.3
0.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0,3
0.3
0.3
0.3
0.3
0.3
O.3
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0.10
0. 10
0. 10
0. 10
0.20
0.20
O.20
0.50
0.50
O.BO
0:02
0.02
0.02
0.02
O.O2
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0.10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.02
0.05
0. 10
0.20
O.5O
o.oo
0.05
0. 10
0.20
0.50
0.00
0. 10
0.20
0.50
0.00
0.20
0.50
0.00
0.50
0.00
0.00
0.02
0.05
O. 1O
0.20
O.5O
0.00
O.O5
0. 10
0.20
0.50
0.00
0. 10
O.20
0.50
0.00
0.20
0.50
O.OO
0.50
0.09
0.00
120.0
YCAP
93. 16
09. 19
09.40
90.07
92.92
93.54
92.64
09.05
90.46
92.42
93.02
95. 13
92.06
94.02
95.42
90.75
9O.30
93.09
103.6O
103.56
105. 11
34.90
41.92
51.01
64.53
04.22
9O.50
42.55
51.96
64.93
03.99
90. 14
53.75
67.38
06.39
92.55
70.41
09.06
96.02
94.37
100.69
101.95
L
97.30
95.67
95.75
96.36
97.20
97.45
97.09
95.61
96. 19
97.00
97.24
9O.09
97. 17
97.97
9O.20
99.52
99.34
99.57
101.40
101.36
101.94
65.70
70.04
76.71
O4.25
93.55
96.24
71.28
77.23
84.49
93.45
96.00
70.33
85.71
94.48
97.05
87.21
95.94
93.44
97.78
100.27
100.75
X
0.3455
0.3560
0.3555
0.3528
0.3507
0.3506
0.3457
0.3535
0.3512
0.3494
0.3494
0.3375
0.3416
OJ3401
0.3401
0.3204
0.3299
0 . 3300
0.3213
0.3216
0.3207
0.3317
0.3319
0.3293
0.3300
0.3G97
0 . 3459
0.3214
0.3246
0 . 3273
0.0334
0 . 3447
0.3092
0.3166
0.3290
0.3355
0.3038
0.3188
0.3254
0 . 3 1 02
0.3171
0.3160
Y DELYCAP
0.3561
0.3649
0.3642
0.3620
0.3609
0 . 06 1 1
0.3551
0.3604
0.3507
0.3500
0.3503
0.3459
0.34O1
0 . 3477
0 . 3400
0.3365
O.G372
O.3375
0.3309
0.3309
0.331 1
0 . 3422
0 . 3424
0.3410
0.344O
0.3549
' 0.3593
0.3315
0.3350
0 . 3404
0.3519
0.?564
0.3193
0 . 3279
0.3412
0.3460
0.3153
0.3303
0.3353
0.3236
0.3288
0.3207
-4.05
-9.73
-10.79
-1 . 19
-1 .71
-1 .05
-6.28
-I . 14
-1 .60
-12.21
-12.37
-5.06
-9.20
-9.O1
-9 . 97
-3.31
-6.33
-6.50
-0.95
-1.03
-0.2O
-0.07
-0.07
-2.08
-5.93
-10. 12
-11.35
-0.23
-1.93
-5.48
-10.35
-11.79
-0. 15
-3.07
-7.95
-9.38
-0.04
-4.47
-5.91
0.03
-1.24
0.02
DELL C( 550)
-1.93 -0.0473
-3.92 -0.0959
-4.32 -0. 1049
-4.43 -0. 1062
-4.56 -0. 1079
-4.60 -0. 1084
-2.50 -O.0617
-4.47 -0. 1102
-4.60 -0. 1 J 19
-4.77 -O. 1143
-4.81 -0. 1149
-1.99 -O.O501
-3.62 -0.0907
-3.80 -0.0935
-3.O4 -O.O944
-1 .27 -0.0332
-2.42 -0.0625
-2.47 -0.0636
-O.36 -0.0100
-0.60 -0.0192
-0.11 -0.0031
-0.05 0.0003
-O.59 -0.0166
-1.71 -0.0477
-2.90 -0.0772
-4.22 -0. 1014
-4.50 -0. 1066
-0. 16 -0.0035
-1. 14 -0.0329
-2.74 -0.0720
-4.32 -0. 1055
-4.68 -0. 1124
-0.09 -0.0023
-1.52 -0.0422
-3.29 -0.0327
-3.69 -O.0913
-0.02 -0.0012
-1.83 -0.0485
-2.30 -0.0596
0.01 -0.0003
-0.47 -0.0139
0.01 -O.OOOt
BRATTO
0.7958
O.6620
0 . 6360
0 . 625 1
0.61G8
0.6183
0 . 7O76
0.6936
0 . 6732
0.6621
0.6615
O.O770
0 . 3072
0.7902
0.7O93
0.9570
0.9214
O.92O2
©.9992
O.99O7
1 . 0000
O.OI96
O.691O
0.6346
0.6097
0.6O95
0 . 6 1 <-3
O . O262
0.7097
0.6594
0.6506
0.6561
0.9033
O.7971
O.7766
0.7020
0.9563
0.9054
O.9124
0.9901
0.9097
0.9961
DRLX
0.0137
O.O265
0.0289
0.0295
0.0299
0.0299
O.O162
0.0269
0.0273
0.0206
0 . O2O7
0.0108
O.0133
O.0193
O.O194
0 . 005 1
O.0091
O.O093
0 . 0005
0 . 0009
-O.OOOO
O.O123
0.0232
0 . 0274
0.0294
O.03O1
0.0300
0.0127
O.0226
0.0203
o . 0233
O . 0238
0 . 0072
O.OI61
0.0194
0.0196
O . OO33
0 . 0092
O.OO95
O.0006
O.OO 13
0 . 0002
DELY E( LtTV)
O.O139 12.4250
O.O254 23.O379
0.0279 23.5069
0.0290 26.7045
O.O298 27.7691
0.0299 27. 3379
0.0156 14.5474
0.O242 23.3042
0.0258 24.G399
0.0269 20. 1434
0.0270 20.2030
O.0096 9.G2O4
0.0152 16.3729
O.O166 17.751O
O.0I67 17.90OO
O.O036 4.0402
0.0061 O.3624
O.0052 O. 5473
-0.000 1 0.6077
-0.0^03 1.2432
-0.00O2 0. 1300
0.0127 7.0152
0.O237 16.2373
0.0292 21 .0073
0.0320 20.3139
0.0315 2O.4474
O.0306 28. 1953
O.O127 8.97O3
0.0224 17.0709
0.O276 23.59PO
O.O2O5 26.7000
0.0277 26.0151
0.0067 5.6106
O.O151 14.0309
0.0178 18. 1424
0.0172 18. 1959
O.0025 2.6745
0.0009 8.5225
0.0066 B.7O12
0.0003 0.5320
0.0001 1.2953
0.0000 0. 1006
EC LAB)
8.3304
15.6595
17. 1992
17.91
O. ir,99
5.3310
1 0.7302
1 4 . 2O<-5
16.9307
IO.5795
13.0171
5 . 3O33
11. KJ5o
14.9307
17.2744
17.3750
3 . <-23O
3.001 1
1 1.4079
11.5030
i.naoo
5. 1332
5 . 4533
O.3027
O.0555
O.OO 44
Exhibit A-7 (continued)
-------
o.o
0.0
0.0
0.0
0.0
o.o
o.o
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
o.o
o.o
0.0
o.o
0.0
0.0
0.02
0.02
0.02
0.02 •'••
0.02
0.02
0.05
0.05
0.03
0.0?
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.80
0.02
0.05
0. JO
0.20
0.50
O.GO
0.05
0. 10
0.20
0.50
0.00
0. 1O
0.20
0.50
0.80
O.20
O.50
0.00
0.50
O.80
0.80
9.93
2 1 . 66
04.56
53.24
00.49
89.31
21.09
36.07
54.06
80.37
00.91
36.01
56.46
82.77
91.31
50.27
86.23
94.79
90.38
99.46
100.60
37.76
53.69
65.43
78.03
91.91
95.72
53.08
66.60
70.52
91.86
95.55
66.56
79.89
92.92
96.54
80.90
94.42
97.95
96. 16
99.79
100.23
0 . 2056
0 . 296O
0.3038
0.3146
O.3344
0 . 0430
0.2336
0.2981
0.3116
0.3331
O.3426
0.2819
0.3006
0.3238
0.3334
0.2877
0.3136
0.3233
0.3050
0.3151
0.3140
0.2957
0.3088
0.320O
0 . 3332
0.3520
0.3584
0.2945
0.3117
O . 3203
0.3490
0.3555
0 . 2938
0.3150
0.3380
0.3450
0.3015
0.3271
0.3344
0.3202
O.327O
0 . 3277
1.98
2.93
0.51
-3.68
-9.43
-11. 13
2.36
2.02
-2.85
-9.55
-11.53
1.96
-0.45
-7. 15
-9. 13
1.36
-3.60
-5.66
0.46
-0.99
0. 16
0.85 0.2509
3.29 0.1610
O.40 O.0233
-2.11 -0.0552
-4.06 -O.0932
-4.46 -0. 1057
2.68 0.1273
1.57 O.0633
-1.63 -0.0430
-4. 1 1 -0. 1011
-4.62 -0. 1113
1.53 0.0374
-O.25 -0.0053
-3.05 -0.0773
-3.63 -0.0899
0.76 0.0232
-1.35 -0.0415
-2.22 -0.0578
,O.19 0.0045
-0.30 -0.0115
0.06 0.0013
0.6533
0.5350
O.G303
0 . 5806
0 . 6O39
0.6122
0.7449
0.6492
0 . 6327
0 . 6436
0.6534
0.0673
0 . 7672
0.7683
0.7795
0.9399
0.3956
0.9035
0.9844
0.9053
0.993O
O.O1P.9
0 . 0260
o.orjni.
0 . 0.?93
0.0302
O.O3O1
0 . 0 1 C6
0 . 0223
0.0269
0 . 0289
0 . 02O9
0.0066
O.O 159
O.O 196
ft. 0197
0.0030
0.0094
O.0096
0.000O
0.0014
O.O003
O.0203
O.0238
0.0330
0.0343
O.O323
0.0309
0.0145
0 . 0246
0.0294
O.O293
O.O280
0 . 0007
0.0162
0.0183
0.0175
0 . O«27
0.0074
0.006O
0 . 0005
0.0002
0.0001
6 . 0636
14.3731
21. 1724
26.5553
20.7825
23.3447
7. 1470
16. 1543
23.5140
27.0700
26 . 7700
4.3191
13.5516
18.3693
10.3273
2. 2529
8.6724
B.G911
O.6301
1 . 3623
0.2310
3 . O906
9 . 957 1
13.5733
16.3249
13.6400
10.6517
5. 1959
10.2406
14.6547
17.3236
17.4137
2 . 94ff2
o. ir/)i
1 1 . 4442
1 1 . 6225
1 . 4654
5 . 2OO6
5 . 4G79
0.3922
0.8433
0. 14(K.
8
o
Exhibit A-7 (continued)
-------
VISUAL. KFFECTS FOR HoniZOWTAL VIEWS
PERPKlVDJCr/LAR TO THE PLUME OF WIIITF., GRAY, AND
FOR VARIOUS ODSERVER-PLUME AND OBSERVER-OBJECT
I6O0 MW POWER PLANT
BLACK OBJECTS
DISTANCES
t\i
O
DOWNWIND DISTANCE
-------
o
ro
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.02,
0.02'
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.80
0.02
0.03
0. 10
0.20
0.50
0.80
0.05
0. 10
0.20
0.50
0.00
0. 10
O.20
0.50
0.80
0.20
0.50
0.00
0.50
o.oe
0.00
5.47
11.93
19. lO
29.68
44.93
49 . 03
11.74
20.02
30. 13
44.84
49.53
20.23
31.60
46.31
51.05
32.87
43.42
53. 16
50.99
56.00
56.71
28.07
41. 14
50.93
61.41
72.87
75. 9O
40.81
51.90
61.80
72.81
75.33
52. 14
63.04
73.77
76.73
64.08
75. 11
77.99
76.69
79.63
80.03
0.2602
O.2731
0.2360
O.2967
O.3164
0.3256
O.2665
0 . 2303
0.2937
0.3149
O.3242
0.2653
O.2300
0.3056
0.3150
0.2710
0.2956
0.3050
0.2076
0.2972
0.2962
0.2740
0.2377
0.2999
O.3142
0.3349
0.3421
0 . 2732
0.2909
0.3039
0.3315
0.33O9
0 . 2728
O . 2949
0.3197
0 . 3274
0.2012
0.3000
0.3159
0 . 3009
0.309O
0.3090
0.95
1.30
-0. 14
-2.53
-5.85
-6.01
1.11
0.71
-2. 10
-5.93
-7.06
0.92
-O.63
-4.47
-5.59
0.64
-2.35
-3.47
0.21
-0.64
0.07
2.72 0.2121
2. 15 0. 12O5
-O. 16 0.0040
-2. 15 -0.067O
-3.70 -0. 1057
-4.01 -0. 1 125
1.03 0.1057
O.01 O.0427
-1.76 -0.0556
-3,75 -0. 1091
-4. 16 -O. 11O5
1.05 0.0477
-O.52 -0.0156
-2.80 -0.0038
-3.27 -0.0958
O.52 0.0192
-1.43 -O.O460
-2.00 -0.0613
0.13 0.0033
-0.36 -0.0123
0.04 0.0010
0.6759
O.6033
O.5925
O.5933
0.6070
0.6142
0.7632
0.6055
0.6419
0.6432
O.656O
0.3792
0 . 7734
0.7743
0.7343
O.9463
O.9019
0.9133
0.9364
0.9334
0.9946
O . 0 1 66
0.02:}4
O.O2S5
O.0233
0.0295
0 . 0296
O.O1 19
O.O207
O.O253
0 . 0230
O.O232
0.0053
0.0145
0.0137
0.0190
O.0026
0.0037
0.0090
0.0006
0.0012
0.0002
0.0193
0 . 0284
O.O334
O.O356
0 . 0'143
O.O333
0.0 1G9
0 . O244
O.OH02
0.0311
o.oaoo
O.0063
O.OI62
0.0192
0.01O3
O.OO25
O.O073
0.0071
0.0003
0 . 0002
0.0001
4.3739
I0.9333
17.6253
22.99H3
23.5001
25 . 2034
5 . 1 260
12.953O
20. 1303
23.3493
23.7197
3. 1035
1 1 . 2474
15.9327
16.0564
1 . 6077
7 . 3303
7.5979
0.4364
1.0512
0. 1571
4.^307
3.0477
1 1 . 724 1
14.BOH5
10 . 5590
10.5793
3 . 907 1
3.5135
12.3092
15.3072
15.4004
2.2043
6.9450
IO.OO65
10. 1CG3
1 . 0674
4.4^38
4.7115
0 . 2743
O . 6390
0.0972
Exhibit A-7 (continued)
-------
PLUTTC VISUAL EFFECTS FOR HORIZONTAL VIEWS
PERPEND ICT7LAR TO 'HIE PLUKE OF WIITE, GRAY, AND
FOn VARIOUS ODSERVER-PLUHS AHD ODOERVER-OBJECT
1600 MW POWER PLANT
BLACK OBJECTS
DISTANCES
ro
o
CO
DOWNWIND DISTANCE
TIIRTA = I35..C
(KM) =
REFLECT" RP/RVO RO/RVO
Iff
• V
1.0
1.0
1.0
l.O
1.0
1.0
1.0
1.0
1.0
l.O
1.0
l.O
l.O
1.0
l.O
1.9
1.0
l.O
1.0
1.0
O.3
0.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0,3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.02
0.02
0.02
0.02
0.02
0.02
0.05
O.05
O.05
0.05
0.05
O. 1O
O. 1O
0. 10
0. 10
0.2O
0.2O
0.20
O.5O
0.50
0.80
0.02
0.02
0.02
0.02
O.02
0.02
0.05
0.03
0.05
0.05
0.05
0. 10
e.io
O. 10
0.10
0.29
0.20
0.20
0.50
0.50
0.00
0.02
0.03
0. 10
0.20
0.50
O.QO
0.05
0. 10
0.20
O.50
O.OO
0. 10
O.2O
0.50
o.ao
O.20
O.50
0.00
0.50
O.GO
0.80
0.02
0.03
0. 1O
0.20
O.50
0.00
0.03
0. 10
0.20
0.50
O.QO
O. 10
0.20
0.50
0.00
0.20
0.50
O.CO
0.50
0.00
O.CO
120.0
YCAP
CO. 94
00.01
75.03
00.08
00. 16
57. 17
33.94
74.08
f>0.30
59.07
50.77
30.05
09.93
01.31
53.41
73.0O
03.09
00.79
07.87
03.98
03. 19
30.08
32.73
30.06
42.73
51.46
54.21
33 . C5
30.99
42. C3
51.23
53.89
39.26
44.47
72.88
53. G4
47.26
53 . 25
57.91
58.56
61. 10
02.04
L
95.36
91.70
89 . 42
86.55
81.94
3O.J9
93.43
88.97
Ofi. 17
81.07
80.07
91.98
8* . 98
82.56
no. 93
89.08
83.32
02.28
85.93
83.97
84.00
62.26
63.97
67.03
7 1 . <0
76.98
78.00
64.07
67.29
71.46
70.04
73.42
68.97
72.57
77.02
79.37
74.38
79.21
00.71
81.07
0-2.45
82.93
X
0.3467
0.0386
0.3581
0 . 3528
0.3099
0.3031
0 . 3433
0.0509
O.3514
0.3GQ3
O.C315
O.G405
0 . 3420
0.3£03
O.0220
0 . 0289
0.31O4
O.31 17
O.3104
O . 3037
O.OO02
0.3329
0.0314
0 . 0247
0.3193
0.3214
0.0248
O.0210
O.0199
0.0106
0.0198
0.0233
0.0052
0.3053
0.3103
0.3139
0.209
0.0002
0.0009
0 . 2°24
0.2962
O.i',054
Y DELYCAP
0.3570
0.0607
0.3650
0 . 0594
0 . 049 1
0.0453
0.3568
0.0618
0.0561
0.0457
O.0419
0.0171
O.0453
0.0044
O.0304
0.0007
O . 0200
0.0 1O9
O.35G9
0.0119
O.3124
0.0426
0.0403
0.0052
0 . OGOO
0.0032
0.0416
0.3295
O . 0279
O . 02OO
0.0047
0.0002
0.0123
0.0147
0 . 3227
0.0203
0.0022
0.0110
0.3149
0 , 0043
0.3079
0.0001
-5.97
- 1 1 . 59
-11.81
-10.62
-8.92
-8.4O
-7.66
-12.78
- 1 1 . 09
-9 . 42
-0.00
-6.21
-9 . 75
-7.77
-7. 10
-4. 10
-5.09
-4.78
-1.21
-1.59
-0.08
-1. 19
-2.73
-3.90
-5 . 36
-7.30
-7.90
-1.61
-0.57
-3.26
-7.56
-8.22
-1.29
-3.62
-5.91
-6 . 57
-0.80
-3 . 54
-4. 19
-0.23
-(.00
-0.07
DELL
-2.44
-4.96
-5.26
-5.00
-4.02
-4.50
-3.23
-5.71
-5.39
-4.00
-4.72
-2.70
-4 . 57
-4.00
-3.01
-1.87
-2.74
-2.51
-0.00
-0.82
-0. 19
-0.99
-2. 10
-2.04
-3.01
-4.22
-4.08
-1.26
-2.59
-3.44
-4 . 35
-4.57
-0.92
-2.04
-0.07
-0.62
-0.53
-1.99
-2.20
-0. 13
-0.54
-0.04
C( 550)
-0.0605
-0. 1206
-0. 1329
-0. 1294
-0. 1229
-0. 1205
-0.0814
-0. 1457
-0. 1407
-O. 1317
-O. 1283
-O.O707
-0. 1225
-0. 1107
-O. 1063
-O.O521
-O.O792
-O.0703
-0.0 1H6
-0.0257
-O.0060
-0 . 0342
-O.07I7
-0.03G3
-0. 1018
-0. 1149
-0. 1181
-0.0424
-O . OQO 1
-0. 1019
-0. 1204
-O. 1248
-0.0005
-0.0719
-0.0900
-0. 1010
-0.0173
-0.0595
-0.0072
-0.0044
-0.0174
-0.0013
BRATIO
0.7952
0.659.1
0 . 0400
0 . O;?A |
0.0266
o:r»2t{2
0.7<-7?.7
0 . 696O
0.6G33
O . 074 1
O.OG90
O.G707
O . O22G
0 . 007 1
0.0014
0.9000
0 . 9427
0.9054
1.0101
1.0129
1 . 0073
0 . 0323
0.713-j
0.0604
0 . 0207
0.0159
0.0174
0 . 0474
0.7449
0.GO29
0.0000
O.6G20
0.92u6
0,0273
0.7907
0.7919
0.9750
0 . 9223
0.9230
0.9973
0.990.1
0.9993
DF.LX PELY E(LtTV) E(LAB)
0.0108 0.0141 12.4027 8.4903
0.0273 O.o::02 22.3024 15.3M"
o.or»94 0.0233 24.0700 iG.;;:;ro
O.02"5 0.029324.^:^.0 1G.02J!
0.0296 O.03I5 23, -/'.20 10. "OOO
0.0296 O.O324 25.39f»4 17. !>-i
0.0230 0.02131 23.7500 15.7O"::,
O.O23O O.O29O 24.1951 lO.oS.IO
O.01IO O.O103 10.1593 6.7G07
0.0107 O.O152 13.4-J03 10.3O79
0.0135 o.oioa i5.r;M4 io.rj7f» 4.09O.')
O.OOO2 O.OOf>0 7.0603 4.72TJ
O.O001 -O.OO07 0.7977 O.7C6rj
0.0OO2 -0.0009 1.O926 O.9902
-O.QOOO -O.OOO5 O.35O4 O.2CO4
0.0119 0.0125 7.4080 5,17,10
O.O224 O.O232 14.3004 10,0002
O.O202 O>OC39 I9.007O 1O.OOCO
0.0203 O.OD27 23.3149 15.507O
0.O290 0. 03-18 20.0057 17.11150
O.0294 O.O034 20.0223 17.20:51
0.0123 0.0125 0.0042 5.55.14
O.O214 O.O210 15.702.': 10.2-10
O.0254 O.O277 21,1230 1G.OKI')
0.0277 0.0003 24.1KVJ: 15.79.':.?
0.0279 O.O300 24.0362 15.9472
O.0007 O.O002 5.0090 0. 10-22
0.0146 0.0144 12.201C%. 7.1>5':0
O.O1O2 0.0104 lO.OOnu 10.2~'0
o.oi36 o.oino io.jr»m io.4?on
0.0027 O.O019 2.1700 1.0101
0.0081 0.0066 7.2377 4.UO9O
0.0036 0.0007 7.0702 4.3010
0.O003 -0.0000 O.OO40 O.2»T7
O.OOO3 -O.00O2 O,'K«5.t 0.74O<)
0.0000 -O.f-001 O.OTO;:: O.OT»!i!
Figure A-7 (continued)
-------
ro
o
o.o
0.0
0.0
0.0
0.0
0.0
o.o
o.o
o.o
0.0
0.0
0.0
0.0
o.o
o.o
0.0
o.o
0.0
o.o
o.o
0.0
0.02,1.
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 1O
0. 10
0.10
0. 10
O.20
0.20
0.20
0.50
0.50
O.BO
0.02
O.05
0.10
0.20
0.50
0.80
0.05
0. 10
0.20
0.50
O.30
O. 10
0.29
0.50
0.30
0.20
0.09
o.eo
0.50
o.ao
0.00
5.71
12.47
20.20
31.44
47.73
52.94
12.38
21.09
31.91
47.62
52.66
21.52
33.55
49 . 26
54.31
33.11
5 1 . 93
-2.51 -0.0750
-4.03 -0. 1107
-4.33 -0. 1170
1.57 0.0913
0.42 0.0206
-2. 13 -0.0640
-4. 10 -0. 1144
-4.5O -O. 1232
0.09 ~0. 0412
-0:79 -0.022i>
-3.07 -O.OOB2
-3.53 -0.0997
0.44 0.0166
-1.62 -0.0439
-2. 17 -0.0645
O.lt 0.0032
-0.41 -0.0136
0.04 0.0009
0.6G32
0.6163
O.59O7
0.59'>4
0.6075
0.6141
0.7736
0.6747
0.6467
0.6493
0.6577
O.GH33
o.7cr»o
0.7774
0.7,".G6
0.9503
0.905i)
0.9109
0.9376
0.9904
0.9951
0.^154
0 . ' \TVJS
0.''VJ-55
0.0376
0.0291
O . 0203
0.0110
O.O 196
0 . O245
0.0275
0.0279
o.oor»3
O.Ol.'J')
0.0102
0.01CVS
0.0023
o.oo;;4
O . '*9G7
0.0306
0.0011
0 . 0002
n.OlfJ? 4.43m
o.on:73 11.22^1
0.0332 10.3J.V. '•
O.OTJ57 24.0173
o.oa.io 26.7sr»i
0.0133 26.5123
0.0133 S.JO'O
0 . 02'59 13.25 C4
0.0302 20-:>247
0.0314 24.9317
0.0305 24.Cl>4?
0.0060 3.0359
0.0159 11.5360
O.0193 16.6135
0.0137 16.726-f
0 . OO23 1 . £296
0.0074 7.5153
0 . OO70 7 . 32r.fJ
0.0004 0.39r»U
O.0001 1.02^4
O.O001 0. KJ^V
4.2.1 ir.
r. . or »."•
t T5 . Oi'T-^O
ir>,-:.~-"*.
!?.£:?•:••••
.17.C5'>r>
O.G- -?r,
O.6.'J;G"?
•3.2374
I5.nro7
16.001TJ
f\ 1 Cffr °
?!ocx-9
10.34:>''>
10.5437
O.9954
4.5r-,7<
4 . O^r»3
O . 245 1
0.6053
o.r.'T.i
Exhibit A-7 (continued)
-------
VISUAL EFFECTS FOIl LINES OF
I GOO flW POWER PLANT
SIGHT ALONG PLUME
£
DOWNWIND DISTANCE (KM)
THETA LENGTH RP/RVO
45.
20.
20.
20.
20. .
20.
20.
20.
40.
40.
40.
4O.
40.
4O.
40.
60.
60.
60.
60.
6O.
6O.
60. 1
00. '
80.
80.
80.
CO.
GO.
CO.
100.
100.
100.
100.
1OO.
100.
100.
110.
110.
110.
110.
110.
110.
110.
115.
115.
0.00
0.02
0.0&'
0.10
0.20
0.50
0.80
O.OO
0.02
0.05
0. 10
0.20
0.50
0.30
0.00
0.02
0.05
0. 10
0.20
O.50
0.80
O.60
0.02
0.05
O.10
0.20
O.50
O.CO
O.OO
0.02
O.05
0.10
0.20
0.50
O.GO
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
= 120.0
RV ^REDUCED
172.5
171.4
170.1
168.1
165.4
161.8
164.7
163.3
164.9
160.4
154.4
146. 1
135.3
164.3
153.3
152.7
144.9
134.4
12O.O
133.7
164.8
133.5
124.9
113.8
99. 1
104.8
133.8
164.8
92.1
92.8
94.6
93.8
104.9
133.3
164.8
92. 1
92.9
94.6
93.3
104.9
133.0
164.3
92.2
92.9
6.77
7.33
8.08
9.11
10.53
12.56
10.97
9.04
10. C3
13.23
16.52
21.01
26.37
10.93
14. 18
17.45
21.69
27.36
35. 13
27.71
10.91
27. 06
02.49
33.47
46.43
43.37
27.67
10.91
50.21
49.81
48.06
46.62
43.31
27.66
10.90
50. 19
49. CO
48.85
46.61
43.30
27.66
10.90
50.19
49.80
YCAP
31.29
83.28
85.96
89.71
95.17
102.62
104.78
72.47
75.15
78.75
83.81
91.21
1O1.09
104.39
69. 0«
72.00
75.95
81.49
89.62
100.87
104.22
67.79
70. OO
74.87
30.60
39.00
100.66
104. 14
67.34
70.39
74 . 49
80.28
88.73
100.53
104.12
67.20
70.33
74.44
80.24
88.74
100.57
104.11
67.27
70.32
L
92.27
93. 13
94.30
93.03
90.10
101.00
101.32
C3.21
39 . 47
91. 13
93.37
96.50
200.53
101.67
05.56
37.93
G9 . C4
92.30
95. 04
100.34
101.61
35.91
£17.40
39.34
91.96
95.58
100.26
101.53
05.69
tt? . 20
39. 17
91.02
95.49
100.23
101.57
35.66
07. 17
R9. 14
91.00
95.48
ICO. 22
101.57
85.65
07. 16
X
0.3779
0.3682
0.3570
0.3445
0.3313
0.3214
0.3206
0.0390
0.0762
0.3621
0.0460
0.3316
O.3209
0.3203
0.3089
0.3755
0.361O
0.31-56
0.3005
0.3204
0.0201
0.3875
0.3742
0.3597
O.3445
0.3296
0.3201
0.3200
0.3067
0.3734
0.3590
0.0438
0.3292
0.3200
0.3199
0.3005
0.3732
0.3583
0.3437
0.3291
0.3200
0.3199
0.3364
0.3732
Y DELYCAP
0.3816
0.3714
0.3599
0.347?
0.3361
0.3302
0.3303
0.3302
0.3687
0.3563
0.3437
0.3328
0.3290
0 . 3304
O.3762
O.3648
O.3527
0.3403
0 . 3309
0.3284
O.3302
0.3746
0.3602
0.3514
O.3397
0.3302
0.3282
0.3302
0.3742
0.3623
0.3510
0.3394
0.3299
0.3202
0.3301
0.3741
0.3623
0.3510
0.3393
0.3299
0.3282
0.3301
0.3741
0.3628
-23.86
-21.91
-19.29
-15.61
-10.27
-3. 01
-0.91
-32.36
-30.21
-26 . 64
-21.64
-14.32
-4.27
-1.32
-36.37
-33.47
-29 . 53
-24.04
-15.97
-4.01
-1.5O
-37.75
-34. 7G
-3O.70
-24.99
-16.60
-5.03
-1.53
-30.25
-35.22
-01. 12
-25.33
-16.89
-5.13
-1.61
-33.34
-35.30
-31.20
-25.42
-16.93
-5. 14
-1.62
-38.36
-35.32
DELL
-9.69
-3.03
-7.69
-6. 14
-0.96
-1.10
-0.34
-10.02
-12.56
-1O.92
-8.69
-5.00
-1.01
-0.49
-15.01
-14.09
-12.24
-9.74
-6.23
-1.02
-0.56
-16. 19
-14.70
-12.77
-10. 16
-6.05
-1.90
-0.59
-16.43
-14.93
-12.96
-10.32
-6.66
-1.94
-0.60
-16.47
-14.96
-10.00
-10. C4
-6.67
-1.95
-0.61
-16.43
-14.97
C(350>
-0.2283
-0.2111
-0. IO76
-0. 1542
-0. 1042
-0 . 0.'.»22
-o.o«oo
-0.3209
-o.caio
-O.20G3
-O..J'J1O
-O. 14°4
-0 . 0-102
-O.O140
-O.OG6G
-0.3389
-O.COS4
-0.2rv>
0 . ('.'"60 0 . 00 9 1 0 . OKY) SO . ! TOO 0 T . *>^n
0.00.15 O.O.102 0.0070 4-...r.or,^ 2^.4'.-':»
0. 6^.91 0.0420 0.01>v> "4.rj""'i r2.«?T
0.7743 O.0200 O.OlflO 25. 2003 in.ir.r.
0.9219 O.O112 0.0010 Il.v90< r*..W*
1.O049 O.OOO2 -O.OCCC5 2.7217 f:.0-0
l.OO'O -O.OOOO -O.OO (I O.<>r::;:7 O.70)
O.40O3 0.0<>37 O.0443 02.010O O5.27'>
O.OO32 0.053*1 O.OOOO 00.0011 .I'.!.'"'.-"
0.6002 O.0407 O.O2IO O0.7072 SIIi.^O.T
O.7r-23 O.O202 0.0090 22.0040 115.19:3
O.or.96 O.OO09 --O.OOOG 11.3476 O.-?2:<>
1.0009 -0.0003 -o.ooot o.o2.".o n.oo:».
1.0070 -O.OO07 -O.OO 13 1.1400 O.fV\",
0 . 4048 0 . 0072 O . 040 1 51.21 n 04 . OfV
0.3136 O.O133 O.OOIO 2oO 2,3. ^70
O.G-24 O.O300 O.0199 '?.'l . ",'J.70 21.rr,')
0.7r-X» O.02O9 O.OOO? f-Jl.'X-l'., 10.007
0.9059 O.O090 -O.OO JO 11.0042 O.^,.'*,
1.O122 -O.OOO7 -0.0000 0. 10I>T 2.0.1^
l.OOOG -0,0009 -O.OO.K, «. 21100 O.'X:1
0.40O2 0.0001 0.0-.-07 P0.557U 04.170.':
0.0177 0.0323 O.OOIO A2.O090 ST. TOO
o . G':-72 o . 0004 o.oi90 o:> . 27rfn :.•; i . oo '
O.794O O.O2O2 O.OO79 21.^-^21 K-.^OI
0.9'J07 0.0003 -0.0010 1 0.790! -T.^-'r.
1.0147 -0.0003 -0.0000 3.1000 U.70G
1.0098 -0.0009 -0.0014 1.20O1 O.OOO
0.4G94 0.0009 0.0<27 50.0r.Cr> r^-.niO
0.5192 0.0000 0.0313 41. R'»40 2.'*. 147
0.6409 O.0032 0.0195 02. Iv'Vf 21. OH)
0.7967 0.0200 O.007O 21 . OOf?G |rt.rr,'».
0.0/-24 O.O034 -0.0010 10.72!."7 O. -"">7
1.0156 -0.0009 -0.0000 0.1013 2.7O^
1.01O2 -0.00(0 -0.0014 1.2009 o.'V-ni
0.4009 0.0053 0.0427 50 . OO.V} O^.TO'^
O.5198 0.0520 0.0010 41.0:260 L".n,. f.'O
Exhibit A-7 (continued)
-------
ro
o
1 15.
1 15.
1)5.
115.
115.
110.
118.
1 10.
110.
no.
no.
110.
119.
119.
119.
119.
1)9.
119.
119.
O.05
0. 10
0.20
0.50
0.00
O.OO
0.02
0.05
0. 10
O.20
0.5O
0.80
0.00
-0.02
0.05
0. 10
0.20
0.50
0.80
94.6
98.3
104.9
133.3
164. 0
92.2
92.9
94.6
9O.O
104.9
133.8
164.8
92.2
92.9
94.6
93.8
104.9
133.8
164.8
48.85
46.61
43 . 3O
27.66
10.90
50. 19
49.79
48.85
46.61
43.30
27.66
IO.90
50. 19
49.79
48.85
46.61
43.30
27.66
10.90
74.43
80.23
80.74
109.57
104. 11
67.27
70.32
74.43
80.23
88.74
100.57
104. 11
67.27
70.31
74.43
80.23
80.74
100.57
104. 11
G9. 14
9 1 . 79
93.40
100.22
101.37
05.65
07. 16
O9. 14
91.79
95 . 47
100.22
101.57
05.65
87. 16
O9. 14
91.79
95.47
100.22
101.57
0.3.108
0.3437
0.3291
0.3200
0.3199
0.3364
0 . 3732
0.3508
0.3437
0.3291
0.3199
0.3199
0.3C64
0.3732
0.3508
0.3437
0.3291
0.3199
0.3199
0.351O
0.3393
0.3299
0.0202
0.3301
0.3741
0.3620
0.3510
0.3393
0.3299
0.3202
0.3301
0.3741
0.3628
0.3510
0.3393
0.3299
0.3202
O.3301
-31.21
-25 . 43
-16.94
-5. 15
-1.62
-38.37
-35 . 33
-3 1 . 22
-25 . 44
-16.95
-5. 15
-1.62
-38.37
-35.33
-31.22
-25 . 44
-16.95
-5. 15
-1.62
-13.00
-10.35
-6.60
-1.93
-0.61
-16.49
-14.90
-13. Ol
-10.35
-6.6O
-1.95
-0.61
-16.49
-14.98
-13.01
-10.35
-6 . 68
-1.95
-0.61
-0.3K.7
-0.20O4
-0. 1761
-0 . 0545
-0.0163
-0.3352
-0.3562
-O.OI67
-0.2604
-0. 1761
-0.0545
-0.0163
-0.3352
-0 . 3562
-0.3167
-0.2604
-0. 1761
-0.0543
-0.0103
O.6496 O.O3H1 0.0195 32.1095 21.507
0.7^74 O.O23O O.OO73 21.3649 14.fT>::
0.9 MM 0.0033 -0.00 <'» 1O.7U6 0. •">)
1.O159 -0.O009 -O.OOOIJ 3.IM2 2.707
1.0104 -O.O010 -0. 0014 1.^617 0.060
0.4101 0.0653 0.0427 50.3494 ?.4.ry>!J
0.G201 O.0523 O.OG13
-------
VISUAL EFFECTS FOR LINES OF SIGHT ALONG PLUME
1GO0 MW POWER PLANT
DOWNWIND DISTANCE (KTD = 120.0
TIIKTA LENCTJI RP/RVO HV 7JAEDUCED YCAP L X
90.
20.
20.
20.
20. *
20.
20.
20.
40.
40.
4O.
40.
4O.
4O.
40.
GO.
60.
CO.
6O.
GO.
rss 60. ,
0 GO.
*•* 80.
GO.
00.
CO.
O0.
00.
00.
100.
100.
100.
100.
100.
100.
100.
110.
110.
no.
no.
110.
110.
110.
0.00
0.02
0.05
0.10
0.20
0.50
o.co
0.00
O.O2
O.O5
O. 10
O.20
O.50
0.80
0.0O
O.02
0.05
O. 10
0.2O
0.50
0,80
O.OO
0.02
0.05
O. 1O
0.20
0.50
0.80
0.00
0.02
0.05
0. 1O
0.20
0.50
0.80
0.00
0.02
0.05
0. 1O
0.20
0.50
0.00
173.4
172.3
170.0
168.7
165.0
161.9
164.7
171.5
167.7
162.9
1P6.3
147.3
135.6
164.0
164.6
157.9
149.2
137.7
122.O
1G3.9
164. 0
141,7
132.2
119.9
103.7
105.5
134. 0
164. 0
94.3
94.7
96.0
99.7
105.7
134.0
164,9
94.3
94.7
96.0
99.7
105.7
134.0
164.9
6.25
6.06
7.67
0.79
10.37
12.49
10.96
7.30
9.33
11.96
15.50
2O. 38
26.69
10.92
11.03
14.66
19.34
25.56
34.04
27.64
1O.9O
23.40
28.55
35. 17
43.92
42.95
27.59
10.09
49.02
48.83
48. 10
46. 10
42.00
27.58
10.09
49.00
40.01
4O.O9
46.09
42.88
27.58
10.09
44.04
46.04
47.66
49.93
53.22
57.69
50.90
39.35
40. 9O
43. 17
46.25
50.75
56 . 92
58.74
37.21
39.00
41.40
44.79
49.75
56 . 60
53.63
36.38
38.23
40.71
44.21
49.35
56.46
58.58
36.09
37.95
40.47
44,01
49.20
56.41
50.56
36.04
37.91
40.43
43.97
49. 18
56 . 40
58.56
72.81
73.60
74.63
76.04
78.02
CO. 58
81.30
69 . 03
70. 18
71.69
73.73
76.55
no. is
CI. 16
67.46
68.78
70.43
72. 7O
75.93
79.97
81. 10
66.84
68.22
7O.OO
72. 4O
75.69
79.39
81.08
66.62
68.01
69.03
72.26
75.60
79.86
01.07
66.58
67.98
69.80
72.24
75 . 58
79.86
81.06
0.3603
0.3301
0.3305
0.3257
0.3126
0.3032
0.3024
O.3706
0.3570
O.3423
0.3270
0.3121
O.3024
0.3021
O.3695
0.3554
0.3405
0.3251
0.3106
0.3018
0 . 30 1 0
0.3675
O.3535
O.3307
0.3236
0.3096
0.3014
O.3OI7
0.3663
0.8524
O.3377
O.3220
0.3091
0.3O12
0.3016
0.3661
0.3522
0.3375
0.3227
0 . 3089
0.3012
0.3016
Y DELYCAP
0.3603
0.3567
0.3439
0.3304
0.3178
0.3117
0.3124
O.3667
0.3533
O.3393
0.3253
O.3109
0.31O3
O.3I 19
0.3610
0.3406
0.3351
O.3221
O.31 17
0.3096
O.3J 17
O.3597
0.3467
0.3334
O.3207
0.3108
0.3094
0.3117
0.3592
0.3461
0.3329
O.3203
0.3105
0.3093
0.3116
0 . 359 1
0.3461
0.3328
0.3202
0.3105
0.3093
0.31 16
-14.66
-13.46
- 1 1 . 04
-9.50
-6.3O
-1.04
-0 . 56
-2O. 16
-18.53
-16.34
-13.27
-8.78
-2.61
-0.81
-22. 3O
-2O. 52
-18. 11
- 1 4 . 73
-9.78
-2.94
-O.92
-23. 14
-21.30
-18.01
-15.31
-10. 19
-3.O8
-0.97
-23 . 44
-21.58
-19.O7
-15.53
-10.34
-3. 14
-0.99
-23 . 49
-21.62
-19. 11
-15.56
-10.36
-3. 15
-0.99
DELL
-8.77
-7.99
-6 . 95
-5.54
-3.57
-1.02
-0.31
-!2.G6
-1 1.40
-9.89
-7.06
-3.05
-1 .43
-0.44
-14. 13
- 1 2 . 82
-It. tl
-O.O2
-5.66
-1.63
-0.50
-14.75
-13.33
- 11 . 6O
-9.20
-5.91
-1.71
-0.53
-14.93
-13.59
- 1 1 . 77
-9.34
-6.01
-1.74
-0.54
-15.02
-13.62
- 1 1 . 00
-9.37
-6.02
-1.75
-0.54
C<550)
-0.2438
-0.2254
-0.2005
-O. 1649
-O. 1 1 IS
-0 . 0343
-O.OI07
-O.3495
-0 . 3202
-0.2074
-O. 21564
-0. 1S09
-O.O495
-0.O153
-'.>.3920
-0.3625
-O.3H24
-0 . 2(V3 1
-O. 1793
-O.OG55
-O.OI72
-O.4072
-O . 3766
-0.3349
-0.2754
-O. 1S62
-0.0576
-0.017O
-0.41 14
-0.3OO4
-O.33O3
-O.2702
-0. 1031
-O.0582
-0.0100
-O.4113
-o.nooa
-0.3306
-O.2705
-0. 1003
-0.0002
-O.01GO
BRAT 10 DELX DELY E(LUV) E
0.4243 0.0584 0.0552 42.6402 20.934
0.5270 0.0400 0.043J 35.7986 2:). 777
0.64O7 0.0363 0.0306 27.7C.OH K».0!»O
0.7,'*O4 0.02:14 0.0171 13.4804 II. £-37
O.929O O.O1O2 O.0O4G 8.6301 5.711
1.0066 0.0005 -0.001.T l.GOttl l.3">'.
1.0058 -O.OO03 -O.OOOO O.H700 O. 46.3361 3<.r:r
0.5! 69 0.0347 O.O4O1 ,'IO. 4'»5fi 25 . KO"
0.6477 O.O4OO O.O261 20 . .:'. I :i
O.7966 O.O245 O.OJ23 19. •':!:*'?• 12..':'.v{
0.9432 O.0096 O.OOO7 9 . r.or-7 0.,"'?«
1.0102 -O.OOO3 -O.0orj9 2.-H09 2.O4'»
i.oion -0.0007 -o.oo in o..-;r,r,n 0.711
0.4157 0.007O o.o-rno 43. <7;y> no.rf'v>,
O.Or»9O O.O529 O.03S4 37.30,:v? :>.;.. ">m
O.6G22 o.onno 0.0219 23.42:11 ia.'\'";
O.OI3G O.O225 O.OOUT 1O.G.1OO 12. C'^
0.9031 O.OOfSO -O.OO1G 9.1312 7.1?^
1.0239 -O.OOO9 -O.O03'i 2.6319 2.JTO-1.
1.OI41 -O.OO1O -O.0015 1.O401 O.fMO
O.4243 0.065O O.O-IGj 44.O2,",0 SO.CVO
O.5C1<»3 O.O5O9 O.O3G3 "C. . r5OO2 M.^a
O.6741 O.0361 0.02O;> 27.5494 18,6,11
0.3:234 0.0210 O.O075 in.OtXri 12.770
0.9(>97 0.0069 -O.OO24 a.R7f>O 7.f!'1.4
I.O297 -O.OO 13 -O.OO3O 2.75,?4 2.rT°,1l
1.OI69 -O.OO 11 -O.OO 16 I.I 1 34 (>.?T»!
0.4307 O.OG37 O.O46O 43.4954 29.700
0.5471 O.O497 O.0329 0,1.7435 24.2M-
0.6f53O 0. 0351 O.O197 27.O'i4.1 18.505
0.8^49 0.02OI O.OO71 IV.O.ino 12.663
O.9734 O.OO03 -O.OO27 O.69I9 7.:iI9
1.034O -O.OOIT* -O.OO39 2.7932 2.416
1.0189 -0.0012 -O.OO 16 1.14(>0 O.f]f>7
0.4H27 O.OG34 O.O459 43. "702 29.717
O.0495 O.O495 O.0329 :ir».<)ni2 24.210
0.6859 O.O349 O.OI96 2G.950O 1O.'*66
O.OItOO 0.0200 0.0070 17.5729 12.634
0.9U11 O.OOC.2 -0.0027 0.6441 7.2OO
1.0353 -0.0016 -0.0009 2.79.10 2.418
1.0196 -0.0012 -O.OO 16 1.1521 O.,'5">
Exhibit A-7 (continued)
-------
ro
o
oo
115.
113.
115.
1)5.
115.
115.
115.
118.
113.
118.
118.
118.
118.
118.
119.
119.
119.
119.
119.
119.
119.
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.8®
0.00
O.O2
0.05
0.10
0.20
0.50
0.80
94.3
94.7
96. 0
99.7
105.7
134.0
164.9
94.3
94.7
96.0
99.7
105.7
134.0
164.9
94.3
94.7
96.0
99.7
ion. 7
134.0
164.9
49.00
48. 01
40.09
' 46.09
42.80
27.58
10.89
49.00
48.81
43. 09
46.09
42.83
27.58
10.89
49.00
48.81
48.09
46.09
42.88
27. 58
10.89
36.04
37.90
40.42
43.97
49. 17
56.40
58.56
36.04
37.90
40.42
43.97
49. 17
56.40
58.56
36.04
37.90
40.42
43.97
49. 17
56.40
58.56
66 . 50
67.90
69 . 00
72.23
75.58
79.86
C1.06
66.58
67.98
69.79
72.23
75.58
79.86
81.06
66.50
67.90
69.79
72.23
73.50
79.86
81.06
0.3660
0.3321
0.3075
0.3226
0 . 3039
0.3O12
0.3016
O.3660
0.3521
0.3375
0 . 3226
0.3009
0.3012
0.3016
0.3660
0.3321
0.3375
0.3226
0.3C!',9
0.3012
0.2D16
0 . 359 1
0.3461
0 . 3320
0.3202
0.3105
0.3O93
0.3116
0.3591
0.3461
O.3320
0.3202
0.3105
0.3093
0.3116
0.3391
0 . 346 1
0.3328
0.3202
0.3)05
0.3093
0.3116
-23.50
-21.63
-19. 11
-•5.57
-10.37
-3. 13
-0.99
-23. GO
-21.63
-19. 11
-13.57
-10.37
-3. 15
-0.99
-23.50
-2 1 . 63
-19. 11
-13.57
-10.37
-3. 15
-0.99
-15.02
-13.01
-11. Ol
-9.37
-6.02
-1.73
-0.54
-15.03
-13.63
-11.01
-9.37
-6.02
-1.73
-0.34
-15.03
-13.63
-11.01
-9.37
-6.03
- 1 . 73
fO.54
-o.'M«3
-O.rvj'Xl
-o.o^.ci:.
-0.2733
-o. io:j3
-0.0532
-0.0130
-0.4113
-0.3303
-0.3336
-0 . 2735
-0. 1E33
-0.0532
-0.0130
-0.4110
-0 . 3G93
-0.3335
-0.2733
-0. 1333
-0 . 0502
-0.0 ICO
O.4 O.0033 O.O4r,9 -'-0.3426 20.700
o.r>;»'\'j 0.049-1. o.o3?.o r?r». 00512 r4.co7
().<•." r3 O.O^O'J O.OI96 :V>.9333 K'..^!*?
O.OifOO O.OI99 0.0070 l7.Cr>29 12.0°:r.
0.93^0 o.oo62 -o.oorr? 3.0320 7.2 ->i
1.0353 -0.0016 -0.0039 2.7034 2.410
1.0193-0.0012-0.0016 1.1534 O.T.70
0.4336 0.0033 0.0459 43.3C-55 29.7O3
0.53CO 0.0494 O.O329 T,5.59C^ 24.2">:>
0.6372 0.0343 0.0196 20.9291 1O.454
0.3394 0.0199 O.OC7O 17.5470 12.624
0.9324 0.0062 -0.0027 0.0233 7.20O
1.0339 -0.0016 -0.0039 2.7984 2.4ffl
1. 01^9 -0.0012 -0.0016 1.1537 O.070
0.43T7 O.0033 O.O4P9 43.3043 2^.703
0.5507 O.Pl-94 0.0329 H3.J.973 24.20-!
0.0372 0.0343 0.0196 20.92CO 10.
-------
VISUAL EFFECTS FOR LINES OF SIGHT ALONG PLUME
1600 1W POWER
DOWNWIND DISTANCE (KIW
THETA LENGTH RP/RV0
133.
PLANT
= 120.0
RV JJREDUCED
YCAP
X
Y DELYCAP
DELL C(550) DKATIO
DELX
DELY E(LUV) E(LAB)
20.
20.
20.
20.
20.
20.
20.
40.
40.
40.
40.
4O.
40.
40.
6O.
60.
00.
6O.
60.
60.
f»O.
no
*rU .
GO.
80.
no.
00.
{JO.
80.
100.
100.
100.
100.
100.
100.
100.
110.
110.
110.
110.
110.
110.
110.
0.08
• 0.02
. 0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. IO
0.20
0.50
0.30
0.00
0.02
0.05
0. 10
O.20
.- 0.50
O.30
Oon
. \f*r
0.02
0.05
0. 10
0.20
0.50
O.OO
0.00
0.02
0.05
0.10
0.20
0.50
0.80
0.00
0.02
0.05
0.10
0.20
0.50
0.89
174.1
172.9
171.3
169.2
166. 1
162.0
164.7
173.7
169.7
164.6
157.6
143. 1
135. 0
164.3
163.7
161.5
152.2
14O.O
123.4
134.0
164.3
1 3
0.3C-*2
O.31G9
0.3049
0.2969
O.2972
0261 i
* OV 1 &
0.3463
0.3319
0.3170
0.3036
0.2964
0.297O
0.3596
0.3454
0.33O7
0.3160
0.0029
0.2962
0.2970
0.3592
0.3430
0.3304
0.3158
0.3028
0.2901
0.2969
0.3673
0.3550
0.341'J
0.3277
0.3149
0.3088
0.3096
0.3650
0 . 3509
O.3364
0 . 3222
0.3105
O.3073
0.3091
O.3596
O.3457
O.33I7
O.31U4
O.3001
0.3006
0 . 3OO9
O.3573
O.3435
0.329O
0.3169
0.G071
0.3063
0.30C8
0.3567
0.3429
0.3292
0.3164
0.3068
0.3002
0 . 3088
0 . 3566
0.3429
0.3291
0.3163
0.3068
0.3062
0.3000
-16.65
-15.29
-13.46
-10.09
-7. 17
-2. 11
-0.64
-22.93
-2 1 . 09
-10.60
-13. 11
-10.01
-2.99
-0.93
-25 . 39
-23 . 37
-20.64
-16.OO
-11. 17
-3.33
- 1 . 06
-Oft 36
kwW * *J \J
-24.27
-21.44
-17.47
-11.64
-3.54
-1. 12
-26 . 70
-24.59
-21.74
-17.72
-11.01
-3.60
-1.14
-26 . 76
-24.64
-21.73
-17.75
- 1 1 . 04
-3.61
-1. 14
-9.53
-8.70
-7.57
-6.03
-3.09
-1. 11
-0 . 34
-13.70
-12.49
-10. CO
-O.OO
-5 . 52
-1.39
-0 . 49
-15.53
-14.O3
-12, 19
-9 . 07
-6.20
-1.79
-0.50
— 16 °5
I \f t t^tj
-14.72
-12. 74
-10. 10
-6.43
-1.00
-0.59
-16.51
-14.96
-12.95
-10.26
-6.59
-1.92
-0.00
-16.55
-14.99
-12.90
-10.29
-6 . 00
-1-92
-0.60
-0.2542
-o . na.~2
-0.2002
-0. 17,22
-0. 5 105
-O.OCtGl
-O.OllfJ
-O.CS43
-0.'J:J74
-O.COO1
-0 . 2'X>9
-0. J071
-O.0317
-0.0100
-0.0000
-0 . 37K5
-0 . 3.107
-O.2709
-O. 1073
-O.OSOO
-O.O«79
— O •'.^T 1
\f * » •— i^f I
-O.3931
-0.,'M-07
-0.2370
-0. 1043
-0.0002
-0.O1G3
-0.4204
-0.3071
-0.3332
-0.2001
-0. 1903
-o.oooa
-0.0 1G3
-0.4200
-0.3974
-0.3135
-0.2907
-0. I960
-0.0003
-0.0 1C. 5
0.4246 0.0532 0.9365 44. 7! 45 30. J. 09
0. 5.193 0.0475 0.0442 37.4073 24.«99
O.OT'33 0.0356 0.0309 r3.0024 10.00')
O.7051 O.O227 O.0170 J9.OO»tfO fS.TOO
O.0",64 O.0093 O.OO<-.'J O.TTO.T tf.fV;?
1.0109 0.0002-0.0017 1.0730 I. <••"/:
1.0779 -0.0004 -O.OOO9 0.6552 O.n~i
O.410O O.C075 C.OtJv-" O-".
O.GJOn O.Q331 O.OflO 19. Tn:;? 13-i.T.l
0.0:>72 O.OOG4 -0.0000 9.fXOf) 7.OO.»
I.O.-J33 -O.OOO7 -O.O'XJS S.'.'OOO 2. 10'H
1.0141 -0.0009 -0.0014 0.0022 '".77-?.
O.CS36 O.O054 O.O400 40.0007 3t.C.m
0.5-M2 0.0310 0.0^51 3O..';O.'»4 25.707
. Ol'flO 0 . OM59 0 . 03 11 23 . Or.02 < ° /nro
o.c"D2 o.ocos O.O07O 1G.GO7O »r..:r»
O.OV72 O.0003 -0.O0.14 9.1522 7.r-O^
i.or.'sa -0.0015 -o.oaco 2.r™:?2 c. <;";
i.oino -0.0012 -o.ooio «,.!7r»i o.rr,"
OA^RO O Of%r»fl n O^'.^iV At T'.OA 11 f^^T.
. . *^ \ftf4 \* . \J\l**\f V . \f*'*J C ^.''f . O * ' S .' ."ji.1 <•£
0.5353 O.O4O5 O.OC^OO C7.0007 r.R.rMO
0.094O O.0336 O.OJOr2 27.COGO !9.r:O4
o.c^05 o.oi37 o.oooo 13.0547 jr. «on
O.0028 0.0052 -0.003-j 3.3044 7.f-0^
1.O4I4 -0.0020 -0.OO42 3.OQ05 2. BOO
1.0224 -O.OO 13 -O.OO 17 l.SOSH O.^-TT
0.4^39 0.0012 0.0401 44.6043 5O.7O')
0.5057 0.047O O.O324 -16 . ^OJUO 2«.nr,!H
0.7008 O.O323 O.01J37 27.3256 10.O!4
O.0523 0.0177 O.OO39 ?7.<>r:4O 13.or,i
1.0O42 O.O046 -0.0007 3.7004 7.i>7'J.
1.0469 -O.O022 -O.0042 3.OO75 2.0m
1.C230 -0.0014 -0.0017 1.T-O73 O.OS?
0.4<-00 0.0009 0.0401 44.5210 SO. 643
O.G089 0.0407 0.0323 8(3.004.1 24.001
0.7106 0.0320 O.OlC'i 27.2007 10.073
0.0063 0.0175 0.0053 17.5fI03 in. 02')
1.0077 0.0044 -0.0037 0.0501 7.H62
l.OT>6 -0.0022 -0.0042 3.1003 S.OriJJ
1.0.->50 -0.0015 -0.0017 1.3151 O.O
Exhibit A-7 (continued)
-------
115.
115.
115.
H5.
1)5.
115.
115.
1 18.
118.
113.
113.
118.
118.
118.
119.
119.
119.
119.
119.
119.
119.
0.00
0.02
O.05
0. 10
0.20
0.50
0.80
Ooo
• w
0.02'1'
0.05
0.10
0.20
0.50
O.30
0.00
0.02
0.05
0. 10
0.20
0.50
0.30
95.9
96.0
97. 0
100.4
106.2
134.1
164.9
95 9
f *9 * J
96.0
97.0
100.4
106.2
134. 1
164.9
95.9
96.0
97.0
100.4
100.2
1«4. 1
164.9
48. 14
48.10
47.55
45 . 72
42.58
27.52
10.83
•AH 14
*U • * W
<8. 10
47.05
45.72
42.58
27.52
10.83
43. 14
48. 10
47.55
45.72
42.58
27.52
10.03
36.98
39.09
41.95
45.97
51.08
60. 11
62.58
rifi 97
W . x •
39.09
41.95
45.97
51.C3
60. 11
62.58
C6.97
39.09
41.95
45.97
51.83
60. 11
62.58
67.29
03.35
70. C6
73.55
77.23
31.91
83.23
G7 °1
\J f * •* X
03.04
•/0.36
73.55
77.23
31.91
3" . 23
67.29
03.34
70.30
73.55
77.23
31.91
C3.23
0.3592
0.3450
O.3304
0.3158
0.3028
0.2961
0.2969
Onno t
. vv ^ K
0.3450
0.3303
0.3158
O.U028
0.2961
0.2909
0.3301
0.3 WO
0.3003
0.3133
0.3023
O.2961
0.2969
0.3566
0.3428
0.3291
0.3163
0.3068
0.3062
0.3033
Onrtr.fi
. \>Wv
0.3423
0.3291
0.3163
0.3068
0.3062
0.3083
0.3366
0.3423
0.3291
0.3163
0.3008
0.3062
0.3088
-26.76
-24.64
-21.79
-17.76
- 1 1 . 04
-3.61
-1. 14
-°6 76
«.«v • • v
-24.64
-21.79
-17.76
- 1 1 . 84
-3.61
-1.14
-26 . 76
-24.64
-21.79
-17.76
-11.84
-3.61
-1. 14
-16.56
-15.00
-12.93
-10.29
-6.61
-1.92
-0.60
- 1 (t 56
1 \f • *J»J
-15.00
-12.93
-10.29
-6.61
-1.92
-0.60
-16.00
-15.00
-12.93
-10.29
-6.0t
-1.92
-0.00
-0.4273
-0.3075
-0.3535
-0.2907
-0. 1900
-0.0003
-0.01G3
— O ^-''Ofl
\f • - i^ .• U
-0.0974
-O.3534
-0.2907
-0. 1960
-0.0003
-0.0 ICT
-Q.v2">3
-0.0974
-0.3504
-0.2007
-0. i960
-O.O303
-0.0 IG3
0 . 4474 0 . O003 0 . 040 1
O..rfG99 O.O4'iO O.OGfiO
0 . 7 1 1 7 0 . O'!20 0 . 0 1 •"'j
0.fJ074 0.0174 0.0053
1.00G3 0.0044 -0.0007
1.0402 -0.0323 -0.0043
1.02viO -0.0013 -0.0017
0*'. *i76 O OOO3 O . QACt 1
• . ff fc \f Vf • \f\f\'f^9 \J • V * "if »
0 . 0702 0 . 0460 0 . 0323
0.71-Y) O.OCS20 0.01CO
O.CJ'iVS 0.0174 0.0053
i . o .'y i o . 004-i —o . 000"
1.0.V3 -0.0023 -0.004^
I.or2.',1 -O.OO15 -O.O017
0 . 4-177 0 . 0*03 (} . 04'i 1
0.15703 0.0<.','V O.OOC'i
O.VI21 0 . 0-IV) O.O1."'«
©."T'T') 0.0174 0.097"
1 . 0002 0 . 0«M4 -0 . OOC7
1.0493 -0. C.''1.- 3 — VCO-!'1.
1.0201 -O.COJ5 -O.C017
<'4 . 40fi 1
r1^ . ;^770
ri;.7, i-Trs
l':'.50«XJ
,1.0466
T. i07f?
1 . " * 00
P.O.C720
1V/. 1774
17. OOF f5
" . 04->9
3. J073
1 . 3f 09
/•..'... ;r,ri!>
r-0 . ii""r;
'V . 1 7"/*»0
1 7 . r>O>V>
O. 'i-"O4
••> . If >'.:•".
' .rf
rj .
^^•.r"*!
'•".? •'»;"!
If*. 019
7* . nif,
;> . f-'^/ii
'>.0'»1
ro
o
Exhibit A-7 (concluded)
-------
ro
CONCENTRATIONS OF AEROSOL ATTO GASES CONTRIBUTED
1600 MW POWER PLANT
DOWNWIND DISTANCE (KID = 220.0
= 392.
= 5C21.
= 300.
BY
PLUNE ALTITUDE (ID
SICMA Y (N)
SIGMA Z (
0.687
13.623
1.649
14.535
2.760
15.696
2.353
15.239
2.203
15.219
2.233
13.219
BSP-T0TAL
10-4 M-l)
O.OIO
O. 130
O.O21
O. 149
0.035
O. 163
0.030
0. 153
0.030
0. 158
0 . 044
0. 172
BSPSJf/BS
( ")
13.632
6 1 . 456
2.683
56 . "02
1 . 503
5 1 , 55O
2.034
53.253
6.111
5n . nnr;
35.259
57,r>ni
CUMULATIVE SURFACE DEPOSITION (MOLE FRACTION OF INITIAL FLUX)
SO21 0.0000
NOXf 0.0000
PRIMARY PARTICULATE! O.OGOO
S04! 0.0000
NO3! 0.0000
Exhibit A-8.
Printout from plume-based PLUVUE calculations for observed points at 220 and 240 km from the source.
The end of the printout also Includes the tables of secondary aerosol conversion rates and the table
verifying the data for plotting.
-------
VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
1600 MW POWER PLANT
DOWNWIND DISTANCE (KID = 220.0
PLUNE ALTITUDE CM) = 392.
SIGHT PATH IS THROUGH PLUME CENTER
ro
THGTA ALPHA
45.
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
60.
60.
60.
60.
60.
60.
90.
90.
90.
90.
90.
90.
OBSERVER
90.
RPXRVO
0.02
0.05
0.10
0.20
0.50
O.GO
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
9.20
0.50
0.80
POSITION
0.24
RV ^REDUCED
180.5
173.8
176.5
173.5
170.2
169.8
181.9
130.5
178.8
177.0
174.5
173.8
182.4
181.3
180.0
178.5
176.5
175 . 9
102.7
131.7
100.7
179.4
177.6
177. 1
AT 1/2 OF
179. 1
2.46
3.35
4.58
6.21
0.02
O.20
1.70
2.43
3.37
4.33
5.65
6.05
1.39
2.00
2.72
3.51
4.60
4.93
1.22
1.76
2.34
3.03
3.98
4.27
A 22.
3.21
YCAP
93.33
91.76
91.85
95 . 40
102.27
104.22
95. 18
93.64
93.92
97.76
102.93
104.40
96. 19
94.94
95.68
98.91
103.25
104.48
96.07
95.76
96.70
99.63
103.45
104.53
5 DEGREE
100.40
L
97.37
96.73
96.76
90.19
100.87
101.61
98. 11
97.49
97.60
99. 13
101. 12
101.67
98.51
98.01
98.31
99.58
101.24
101.71
98.78
98.34
98.74
99.86
101.32
101.72
X
0.3451
0,3470
0.3433
0.3319
0.3204
0.3191
0.3421
0.3443
0.3406
0.3293
0.3201
0.3191
0.3400
0.3417
0.3373
0.3278
0.3200
0.3191
0.3386
0.3400
0.3352
0.3269
0.3199
jfc.3190
WIND DIRECTION
1GO. 15
0.3251
Y DELYCAP
0.3555
0.3557
0.3502
0.3386
0.3304
0.3306
0.3539
0.3547
0.3494
0.3378
0.3307
0.3307
0.3524
0.3529
0.3471
0.3372
0.3308
0.3303
0.3512
0.3516
0.3456
0.3367
0.3309
0.3308
-11.58
-13. 15
-13.06
-9.51
-2.64
-0.68
-9.73
-11.27
-10.99
-7.14
-1.98
-0.51
-8.72
-9.97
-9.23
-6.00
-1.66
-0.43
-8.04
-9.15
-8.13
-5.28
-1.46
-0.38
SECTOR FROM THE
0.3349
-4.51
DELL 0(550) BRATIO
-4.50 -0. 1032
-5. 14 -O. 1247
-5. 10 -0. 1203
-3.67 -0.0952
-1.00 -0.0230
-0.26 -0.0000
-3.76 -0.01506
-4.33 -0. IOS.3
-4.26 -0. 1043
-2.74 -0.0700
-0.74 -0.0212
-0. 19 -0.0059
-3.30 -0.0797
-3.36 -0.0920
-3.50 -0.0374
-2.29 -0.0539
-0.62 -0.0177
-0. 16 -0.0049
-3.09 -0.0732
-3.53 -0.0040
-3. 12 -0.0707
-2.01 -0.0317
-0.55 -0.0155
( -0. 14 -0.0043
PLUNE CEHTERLINE
-1.71 -0.0447
0.6916
0.6934
0.7574
0.3913
0.9919
0.0054
0.7043
0.7012
0.7083
0.9090
0.9933
0.9906
0.7190
0.7199
0.7953
0.9195
0.9941
0.9972
0.7317
0.7333
0.8139
0.0257
0.9947
0.9975
AT THE
0.9479
DELX DELY E(LUV) E(LAD)
•
0.0263 0.0245 24.2245 15.0O2
0.0281 0.0247 25.3003 16. 401
0.0244 0.0192 21.7031 IP*. 901
0.0130 0.0070 11.8201 7.452
0.0015 -0.0007 2.0250 1.5 IO
0.0003 -0.0005 0.5030 O.403
O.0232 0.0220 21.9777 14. TOO
0.0254 0.0237 23.4050 in. 207
0.0217 0.0134 19.7000 12.002
0.0104 O.OOOO 9.5424 R.9C.1
0.0013-0.0003 1.5r,;?.r> 1.120
0.0002 -0.0000 0.4420 O.?'!.?
0.0212 0.0214 20.ai.53 10. r!<4
0.0223 0.0210 21.4650 10.O77
0.0184 0.0101 17.1200 10. 9513
0.0039 0.0001 G.2R42 5. im
0.0011 -0.0002 1.3197 O.947
0 . 0002 —0 . 0002 0 . ~702 0 . 2'°- 1
0.0197 0.0201 19.1140 12.GOH
0.0212 0.0200 20.0750 ltt.000
0.0103 0.0145 15.3512 O.P.12
0.0030 0.0050 7.4475 4.000
0.0010 -O.OC01 1.1710 O.TfM
0.0002 -0.0002 0.3255 0.240
GIVEN DISTANCE FROII THE SOUnflTr
0.0002 0.0030^5.7717 0.6 13
90.
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
60.
60.
60.
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0.10
0.20
0.50
0.80
0.02
0.05
0.10
180.8
179.2
176.9
173.0
170.3
169.9
102. 1
130.8
179.1
177.2
174.7
173.9
182.7
181.6
180.2
2.27
3.13
4.35
6.03
7.94
8.15
1.56
2.25
3. 18
4.20
5.59
6.00
1.27
1.05
2.57
52.41
51.44
51.49
53.64
57.79
50.97
53.54
52.59
52.76
55.09
50.22
59.10
54.15
53.39
53.84
77.54
76.97
77.00
70.27
80.64
01.29
78.21
77.65
77.75
79. 11
80.88
81.36
78.57
78. 12
78.39
0.3275
0.3293
0.3253
0.3140
0.3029
0.3018
0.3246
0.3267
0.3228
0.3116
0.3928
0.3018
0.3226
0.3242
0.3197
0.3395
0.3397
0.3335
0.3209
0.3123
0.3126
0.3378
0.3386
0.3327
0.3202
0.3127
0.3128
0.3362
0.3367
0.3303
-7.08
-0.04
-7.99
-5.05
-1.69
-0.52
-5.95
-6.09
-6.72
-4.39
-1.27
-0.30
-5.33
-6.10
-5.65
-4.03 -0. 1140
-4.61 -0. 1321
-4.63 -0. 1341
-3.31 -0. 1015
-0.93 -0.0317
-0.23 -0.0102
-3.30 -0.0943
-3.92 -0. 1116
-3.02 -0. 1112
-2.40 -0.0753
-0.70 -0.0233
-0.21 -0.0075
-3.00 -0.0344
-3.45 -0.09CIO
-3. 19 -0.0923
0.0943
0.0973
0.7033
0.0999
0.9973
0.9993
0.7065
0.7044
0.7732
0.0143
0.9975
0.9994
0.7203
0.7220
0.7994
0.0253 0.0203
0.0275 0.0264
0.0236 0.0200
0.0122 0.0077
0.0011 -0.0000
0.0001 -0.0007
0.0223 0.0240
0 . 0249 0 . 025**.
0.0210 0.0195
0.0093 0.0070
0.0010 -0.0003
0.0001 -0.0005
0.0203 0.0220
0.0224 0.02(15
0.0179 0.0171
21.4442 13.
22.3HS70 14.
10.9402 12.
10.0113 0.
1.6441 1.
0.5437
19.5^«0
20.7033 in.Ron
17.3444 11.ion
8.1459
107
'.-('»
0.
12,
1.2554 O.or/i
0.4002 0.754')
18.1KO 11. rm
19.0200 12. JY. I
is.orroo 9.001
Exhibit A-8 (continued)
-------
60.
60.
60.
90.
90.
90.
90.
90.
90.
•0.20
0.00
O.CO
0.02
0.05
0. 10
0.20
0.50
O.OO
170.7
176.6
175.9
103.0
102.0
100.9
179.6
177.7
177.2
3.40
4.55
4.90
1. 10
1.62
2.21
2.93
3.94
4.24
05.00
5O.42
09. 16
54.07
03. 09
54.51
56.24
50.55
59.2O
79.52
00.99
£U. 40
70. Ol
70.42
7O.7O
79.77
O1.06
01.42
0.3102
0.0^27
0.3^10
0.3212
0.3225
0.3176
O.3093
0.3026
0.301O
0.3196
0.3129
0.312?
0.334O
0.3303
0.32O7
0.3191
O.3130
0.3129
-3.69
-1 .06
-0.32
-4.91
-3.60
-4 . 9O
-3.23
-O.93
-O.20
-2 .
-•o. m
-0. 13
-2.76
-3. 10
-2. CO
-1. 01
-0.51
-O. 15
-0.0123
-O.OI90
-o.ory»3
-0.0775
-0.0090
-O.O314
-0.0301
-0.0172
-O.0053
0 . 9,'X«3
0 . 9r*T<»
O. 9"'05
0. 7;>33
0.7303
O.3I75
0.9:;09
O.9977
O.9995
0.0004 0.0063
0.0009 -o.oecK-
O.OOOl -O.CO04
0.0194 O.02K.
0.0207 0. 0.72O
0.0159
0.0076
o.oir»4
O.O053
0.0003 -O.0003
0.0001 -O.OO03
7.
17.0Q19
I7.OI49
13.49"0
6. nO'l*'!1
O ^**tf>^*i
O.2910
O.
n.
i».
o.
4.
O.
O.
017
OPT
OBSERVER POSITION AT 1/2 OF A 22.5 DEGREE WIND DIRECTION SECTOR FROM THE PUTTIE CENTEIILINE AT TITE GIVEN DISTANCE FH9H THE H
9O. O.24 179.2 3.13 56.7O O0.03 O.3076 0.3172 -2.7O -1.54 -O.O47O 0.9(520 O.OOOO O.OO40 4.9003 V.
Exhibit A-8 (continued)
ro
to
-------
VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
1600 HW POWER PLANT
DOWNWIND DISTANCE (Kfl) = 220.0
PLUMS ALTITUDE (M) = 392.
SIGHT PATH IS THROUGH PLUME CENTER
THBTA ALPHA PJVRVO
135.
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
40.
45.
60.
00.
GO.
60.
60.
60.
90.
90.
90.
90.
90.
90.
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0.10
0.20
0.50
0.80
RV 5JREDUCED
181.0
179.5
177.2
174. 1
170.4
170.0
182.3
131. 1
179.3
177.4
174.7
174.0
HI.?. 3
181.3
180.4
173.8
176.6
176.0
133. 1
182.2
181. 1
179.7
177.8
177.2
2.15
2.93
4.20
5.91
7.83
8.12
1.46
2. 13
3.06
4. 11
5.54
5.97
1. 18
1.75
2.47
3.33
4.52
4.37
1.02
1.53
2. 13
2.87
3.91
4.22
YCAP
56.01
54.92
54.96
57.35
62.00
63.33
57.29
56.22
56.40
59.01
62.51
63.50
57.99
57. 12
57.61
59.81
62.75
63.53
53.46
57.69
58.37
60.31
62.90
63.63
L
79.64
79.01
79.04
30.39
32.93
33.63
CO. 36
79.76
79.86
81.31
33.20
33.72
30.75
30.26
03.54
31.75
33.33
33.76
81.01
30.58
30.96
32.02
33.40
83.79
X
0.3236
0.3252
0.3212
0.3098
0.2939
0.29CO
0.3207
0.3227
0.3188
0.3075
0.2989
0.2930
0.3187
O.G202
0.3157
0-.3C62
0.2988
"0.2930
0.3173
0.3186
0.3137
0.3054
0.2938
0.2981
Y DELYCAP
0.3376
0.3376
0.3313
0.3185
0.3098
0.3101
0.3353
0.3366
0.3306
0.3173
0.3103
0.3104
0.3342
0.3347
0.3282
0.3172
0.3105
0.3105
0.3323
0.3332
0.3265
0.3167
0.3106
0.3105
-7.93
-9.07
-9.04
-6.64
-1.99
-0.67
-6.70
-7.77
-7.60
-4.99
-1.49
-0.50
-6.01
-6.83
-6.33
-4. 19
-1.25
-0.42
-5.54
-6.31
-5.62
-3.69
-1. 10
-0.37
DELL
-4.34
-4.96
-4.94
-3.53
-1.05
-0.35
-3.62
-4.22
-4.12
-2.67
-0.73
-0.20
-3.23
-3.71
-3.44
-2.23
-0.65
-0.22
-2.97
-3.40
-3.01
-1.90
-0.57
-0. 19
CC550)
-0. 1133
-0. 1370
-0. 1302
-0.1033
-0.034Q
-0.0113
-0.0932
-0. 1156
-0. 1154
-0.0785
-0.0252
-O.OOC3
-0.0874
-0. 1016
-0.0963
-0.0655
-0.0211
-0 . 0073
-0.0302
-0.092G
-O.O304
-0.0-174
-0.0135
-0.0004
BUATIO DELX DELY E(LUV) EC LAD)
0.6959 0.0253 0.0260 22.4154 14.430
0.6993 0.0272 0.0207 23.3O03 14. ™X>
0.7072 0.0231 0.02O4 19.6337 12.P.17
0.9043 0.0113 0.0075 10.2CICI1 6. 110
1.0010 0.0009 -0.0011 1.7073 1.427
1.0019 -0.0001 -0.0003 0.6313 0.!^^
0.7070 0.0220 0.0240 20. 45505 lH.r.41
0.7050 0.0240 0.0257 21.7212 14.014
0.7750 O.O207 0.0197 13.0571 11.493
0.9133 0.0095 0.0009 8.C9I4 5. 391
1.0C03 0.0003 -0.0007 1.2949 1.014
1.0013 -0.0000 -0.0000 0.4007 0.397
0.77.11 0.0200 0.0232 18.9090 12.2"'.
0.7235 0.0222 0.0237 19.G979 12. {VM
0.3014 0.0170 0.0172 13.0577 9.9<9
0.9271 0.0032 0.0003 7.3211 4.0O2
0.9993 0.0003 -0.0005 1.0057 0..179
1.0010 -0.0000 -0.0005 0.30)1 O.("V>
0.7335 0.0192 0.0219 17.3090 Il.PPO
0.7370 0.0205 0.0223 13.0001 12. Oil
0.8193 0.0150 0.0150 14.000O P..«24
0.9333 0.0073 0.0013 6.6003 4. 142
0.9990 0.0007 -0.0004 0.9709 0.772
1.0009 0.0000 -0.0004 0.3333 0.2F3
OBSERVER POSITION AT 1/2 OF A 22.3 DECREE WIND DIRECTION SECTOR FROM THE PLUNK CENTKIILINE AT THE GIVEN DISTANCE FROM THF.
90. 0.24 179.3 3.07 60.33 32.30 0.3036 0.3143 -3.17 -1.07-0.0499 0.9545 0.0056 0.0039 5.0454 3.IO7
Exhibit A-8 (continued)
-------
VISUAL EFFECTS POH NON-HORIZONTAL CLEAR SKY VIEWS THROUGH PLUME CENTER
1000
DOWNWIND DISTANCE (KI>1)
PLUPEE ALTITUDE (M>
THETA ALPHA
HW POWER, PLANT
' 22O.O
392.
45.
•O
_J
ft
90.
30.
30.
30.
30.
30.*
30.
45.
45.
45.
45.
45.
45.
CO.
00.
00.
00.
00.
GO.
90.
90.
90.
90.
90.
90.
30.
30.
30.
3O.
3O.
30.
45.
45.
45.
45.
45.
45.
00.
00.
00.
00.
00.
00.
90.
90.
90.
90.
90.
90.
BETA
15.
30.
45.
00.
75.
90.
15.
30.
45.
00.
75.
90.
15.
30.
45.
00.
75.
90.
15.
30.
45.
00.
75.
90.
15.
30.
45.
00.
75.
90.
15.
3O.
45.
00.
75.
90.
15.
30.
45.
OO.
75.
90.
15.
30.
45.
00.
75.
90.
UP
2.95
1.41
O.C3
0.00
0.44
0.39
2. 10
1.04
0.03
0.51
O.42
0.39
1.73
o.oa
0.00
0.47
0.41
0.39
1.51
0.7O
0.55
0.45
O.41
0.39
2.95
1.41
0.03
0.00
0.44
0.39
2. 10
1.04
0.03
0.51
0.42
0.39
1.73
0.03
0.60
0.47
0.41
0.39
1.51
0.78
0.55
0.45
0.41
0.39
YCAP
30.47
25.75
21.O9
10.90
17.05
17.53
30. 02
25. 11
20.09
17.73
10.02
10.29
39. 10
24. 07
19.05
17. 2O
10.05
15.71
39.31
24.74
19.39
10. 09
15.71
15.35
22.95
15.01
12.09
10.71
10.05
9.05
23.53
14.90
11.80
10.31
9.01
9.40
23.08
14.97
11.00
10. 14
9.41
9. 19
24. 12
14.99
11.02
10.04
9.29
9.07
L
08.39
57.03
53.00
50.00
49.35
40.90
03.05
57.22
51.97
49.21
47.O2
47,39
OO.C5
50.90
51.47
43.55
47.0O
40.03
09. OO
56.06
5i. 1O
48. 16
46 . 03
40. 15
55.00
45.69
41.40
39. 13
37. 9O
37.02
55.05
45.02
40.93
30.44
37. 17
30.70
50.01
45.04
40.75
38. 13
30.80
30.39
50.25
45.00
40.65
37.95
36.58
36. 16
X
0.3210
0.3220
0.3252
0.3281
0.3301
0.3309
O.3074
0.3057
O.G075
0.3093
0.3106
O.31 10
0.0002
0.2972
O.2983
0.2997
0.3007
0.3010
O.2955
0.2918
0.2925
O.2936
O . 2944
0.2947
0.3063
0.3060
0.3080
0.3111
0.3129
0.3130
0.2932
0.2903
0.2914
0.2928
0.2938
0.2941
0 . 2863
0 . 2824
0.2027
0.2837
0.2844
0.2847
0.2819
0 . 2773
0.2773
0.2700
0 . 2786
0 . 2788
Y
0.3429
0.3419
O . 3439
0.0461
0.3477
0.3403
O.3297
0.3255
0.3259
0.3270
0 . 3279
O.3202
O.3217
0.3161
0.3159
0.3165
0.3171
O.3173
O.3103
O.3099
0.3092
0.3O96
0.3100
0.3102
0.3292
0.3271
0.3204
0.3304
0.3319
0.3326
0.3155
0,3100
0.3097
0.3104
0.3111
0.31 13
0.3073
0.3004
0.2994
0.2997
0.3000
0.3001
0.3018
0.2941
0.2927
0.2927
0.2929
0.2930
DELYCAP
-3. 13
1.55
3.31
4. 13
4.51
4.62
-2.79
O.91
2.31
2.97
3. 2O
3.37
-2.50
0.07
1.87
2.44
2.71
2.79
-2.29
O.54
1.02
2. 12
2.37
2.44
-3.38
-0.37
0.77
1.31
1.55
1.02
-2.80
-0.43
0.40
0.91
1. 11
1. 17
-2.45
-0.41
0.37
0.74
0.91
0.96
-2.21
-0.39
0.30
0.03
0.79
0.84
DELL
-2.23
1.51
3.02
5.20
0.04
0.29
-1.9O
O.O9
2.71
3.06
4.0O
4.71
-1.7?
0.00
2.21
3.21
3.77
3.95
-1.02
0.03
1.92
2.O1
3.31
3.43
-3.33
-0.51
1.25
2.34
2.93
3. 12
-2.73
-0.5O
0.7O
1 .05
2. 13
2. 2O
-2.30
-0.66
0.00
1.34
1.70
1.09
-2. 14
-0.03
0.50
1. 16
1.53
1.00
C(550)
-0.0547
0 . OOC3 .
0.2J27
0.3072
0.3053
0.3350
-O.0473
O.0004
O. 1539
O.2257
O . 27O7
0 . 236O
-O.0419
O.04G3
0. 1271
O. 1376
0.2250
0 . 2305
-O.O3OO
O.0410
0. 1 109
O. 1643
0. 1973
0.2093
-0. 1041
0.0033
0.0975
0. 1033
O.2123
0.2270
-0.0335
-0.0021
0.0600
O. 1232
O. 1572
0. 1603
-0.0720
-0.0036
0.0562
0. 1021
0. 131O
0. 1408
-0.0644
-0.0040
0.0407
O.OG93
0. 1143
0. 1233
BEAT TO
0.3O90
0.23°0
O.COGO
0. 1G02
0. 171*:;;
0. 1716
O.G9OG
O.3244
0 . 2G3'>
0.2073
0 . 2504
o.2r>:?7
O.-J'V.rj
0 . P>329
0.3401
0.3244
0 . 3 1 "4
O.30C1
o.4a::4
O.4200
O . 3G93
0.3671
O.3347
O.3307
0.3273
0 . 2003
0.2279
0.20GO
O. 1905
0. 1920
0.4091
0.3493
0.3162
0.2900
0.2043
0.2012
0.4651
0.4091
O.3762
0.3557
0.3443
0.3407
0.5064
0.4532
0 . 4207
0.4001
0.30H6
0 . 3349
DELX
0.0602
0.0093
0.0752
0.0793
0.0319
0 . OQ23
0.0*07
0.033O
O.O574
0.000.1
0.0623
O.O029
O.O394
0 . 0045
O . O433
O . O3O9
O.O524
O.O329
0.0343
O.O391
0.0425
O . O443
0 . 046 I
0 . O466
0.0566
O.063O
0.0089
0.0725
0 . 0743
0.0750
0 . 0434
0.0402
0.0517
O.O542
0.0557
0.0562
0.0365
O.0402
O.0430
0 . 045 I
0.0463
0.0467
0.0321
0.0352
O . O376
0.0394
0.0405
0.0409
DELY E( LUV) E( LAr.]
0.0719 49.4029 31. C>?fr><>
0.0331 40.3072 30.r"79
0.0302 44.O224 ro.272?,
0.0933 42.74^0 00.1171
0.07,13 42. «'?':,'> f!O. lirr,.".
O.O907 4'».0401 30. I '.'07
O.0537 40.7197 rM.O.'r.D
0.0007 37.4220 24.7C?06
0.0713 ar, .1070 24.00 in
0.O743 G,'l.,'i!!7G 23.004-t
0.070O an. 1434 23..1G43
O.O706 0:1.9373 23.3024
O . O.107 31 . 327O 22 . .1 1 1 <>
0.0573 02.0700 21.3^63
0.0612 30.2^23 20.O1O3
O.O6(?7 29.O223 2O.213O
O.O052 23.373O 2O.O997
O.O657 23. I7O7 2O.O303
O . O433 3 I . 99O2 20 . 20.10
O.O51O 29.O127 19.0'r^l
0.0543 27.0449 13.:ir/>0
O.O5r,3 2.1.3306 lO.O-l-fJO
0.0531 23. 2716 17. ("570
0.0533 23.0G43 17.CK21
0.0726 42.7343 23.1111
O.0023 33.G439 20 . fT>9O
0.0039 06.Q327 23.C7IO
O.0910 34.4903 21.431O
O.0940 33.7504 25 . 3CTOO
O.0932 33.53.10 23.3203
0.05OO 35.2396 23.1039
0.0654 31.3076 21.5953
0.0693 23.700O 20.1925
0.0719 27.2307 2O.O55O
0.0734 26.4394 19.CO17
0.0739 20. 1927 10.7205
O.O5O6 30.7330 2O.1130
0.0559 27.1200 13.6343
0.0390 24.7307 I7.7O59
O.0611 23.3301 17.1790
0.0624 22.3339 10.9177
0.0623 22.3477 10.0305
0.0451 27.0631 1O.080O
0.049(3 24.2940 10.0975
0.0523 22. 1007 13.00^3
0.0541 20.7^37 11., 7009
0.0552 20.0.'V>7 ir».0r»63
0,0550 19.Cr>;»3 14.979J
Exhibit A-8 (continued)
-------
VISUAL EFFECTS FOR NON-lIOniZOWTAL CLEAR SKY VIEWS TimOUCn PLUWE CENTE*
1600 HW POWER PLANT
DOWNWIND DISTANCE (KM)
PLUME ALTITUDE
THKTA
135.
ALPHA
30.
30.
30.
30.
30.
30.
45.
45.
45.
45.
45.
45.
60.
60.
60.
60.
60.
60.
90.
90.
90.
90.
90.
90.
BETA
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
• 220.
0
' 392.
np
2.95
1.41
0.08
0.60
O.44
O.39
2. 10
1.04
O.63
0.51
0.42
0.39
1.73
O.C3
0.60
0.47
0.41
0.39
1.51
0.78
0.55
0.45
0.41
0.39
YCAP
25.56
16.43
13.05
1 1 . 46
10.70
10.47
26.50
16.63
12.97
11.23
10.44
10.20
27.03
16.76
12.96
11. 17
10.33
10. OS
27.39
16.06
12.96
11. 13
10.26
10.00
L
57.63
47.57
42.83
40.39
39. 11
38.71
50. 54
47.82
42.76
40.04
38.66
38.23
59.04
48.00
42.74
39.91
38.46
38.03
59.36
48. 13
42.74
39.84
33.35
37.89
X
0.3033
0.3021
0.3041
0.3064
O.3082
0.3088
0.2901
0.2803
0.2870
0 . 2832
0.2090
0.2393
0.2832
0.2706
0.2786
0.2703
0.2798
O.2SOO
0.2789
0.2737
0 . 2733
0.2738
0.2742
O.2743
Y
0.3285
O.3257
0.3268
0.3207
0.3C02
O.GC09
0.3142
0.3C30
0.3074
0.3079
0.3005
0.3087
0.3058
0.2983
0.2969
0.2970
0.2972
0.2973
0.3002
0.2919
0.2902
0.2399
0 . 2000
0.2900
DEL YCAP
-4.93
-1.43
-0.09
0.53
O.S2
0.90
-3.99
-1.23
-0. 18
0.32
0.55
0.63
-3.4f>
-1.09
-0. J9
0.24
0.45
0.31
-3. 10
-0.99
-0. 10
0.20
0.38
0.44
DELL C(550) BRATIO
-4.46 -0.1324
-1
79
0.14
0.09
1.44
1.62
-3.56 -
-1
54
0.26
0.54
O.99
14
07
36
0.28
0.41
0.80
0.92
74
24
0.28
O.34
0,60
Oi.OO
1.
•3.
-1.
-2
-1
0903
1263
1333
1042
0376
0206
0052
0931
10.16
0092
0331
0160
0533
0773
0056
0794
O299
0103
0409
0079
0.0751
3304
2073
2-153
2IC53
29
1999
4140
3500
U274
3079
2969
2933
4700
4196
039!
3097
3380
3532
3124
4643
4344
4132
0.4043
0.4OOG
0.
o.
0.
0.
o.
0.
o,
0.
o.
0.
0,
0,
0,
0,
0
0,
0,
0
0,
0
o
0,
0
DELX
0353
O019
0003
0009
O721
0729
0424
0403
0494
or. 16
O530
0334
0353
0383
O409
0427
0438
O441
031 1
O336
0357
0372
0331
0.
O.
0,
0.
0.
0,
0,
0,
0,
0,
o,
0,
0
o,
0
0
0
0
0
o
0
0
0
DELY E(LUV) E(LAO)
0733
0323
0331
0913
0943
0952
0590
005 1
0007
0711
0726
0731
0306
0554
OI302
0001
0613
0016
0450
0490
0514
0331
0340
40
41
33
30
30
35
29.
2O.
23.
32.
29.
26,
0750
7057
7093
9003
17G1
9347
37.G120
33.0721
so.onaa
19O2
3193
0493
9060
0301
0152
24.9930
24.1754
9130
6402
004O
0713
2141
0.03,34 0.0344
23,
29.
20,
20,
22,
21.
21,
29.
28.
27.
20.
26.
20,
24.
22,
21,
21.
20
20
21
19
18
17
17
17
19
17
10
16
15
9C97
423*5
55 1C
5229
57,?2
, OSO 1
0,1 1 1
0335
,7»77
, 0240
,noio
,7ir,r,
. 0224
. 9032
. 0793
.5310
. irr-37
. 6345
. 0 1 49
. 0203
.7210
2523 15.0274
Exhibit A-8 (continued)
-------
PL.VTTE VISUAL EFFECTS FOR HOItlZOrrTAL VIEWS
PERPENDICULAR TO 71TE PLUNE OF VfllTK, GHAY, AND
FOR VARIOUS OBSERVER-PLUME AND OBSERVER-OBJECT
1600 HW POWER PLAHT
BLACK OBJECTS
DISTANCES
DOWPfWJND DISTANCE
TI7IDTA = 45.
(KID =
REFLECT RP/RVO RO/RVO
l.O
l.O
l.O
1.0
l.O *
1.0
1.0
l.O
l.O
1.0
1.0
1.0
1.0
1.0
1.0
1.0
l.O
1.0
1.0
1.0
1.0 '
0.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
O.3
0.3
0.3
0.3
O.3
0.3
O.3
0.3
O.O
0.02
O".02
0.02
0.02
0.02
O.O2
0.00
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.2O
0.20
O.20
0.50
0.50
0.80
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.80
0.02
0.02
0.05
0. 10
0.20
0.50
O.CO
0.05
0. 10
0.20
0.50
O.O0
0. 10
0.20
O.50
O.G0
0.20
O.50
0.00
O.50
0.00
0.00
0.02
0.05
O. 10
O.20
0.50
0.00
0.05
0. 10
O.20
0.50
0.00
0. 10
0.20
0.50
0.80
0.20
0.50
0.00
0.50
0.80
0.09
0.02
220.0
YCAP
95.44
93. 10
92.76
94.05
96.56
97.23
94.55
92.43
93.45
95.57
96.21
95.89
94.51
96.60
97.23
99.25
99.45
10O.O8
103.83
103.90
105. 15
34.82
42. 10
51.84
66.31
87.34
94. 10
42.06
52.27
66.29
86.62
93. 17
50.40
67.72
87.76
94.23
70. 17
90.60
97.07
94.29
100.90
101.93
0.85
L
93.21
97.30
97. 13
97.70
98.66
93.92
97.85
97.00
97.41
98.26
98.52
9O.39
97.34
98.67
9C.92
99.71
99.79
100.03
101.46
101.49
101.96
65.64
7O.96
77.21
05. 17
94 . 89
97.68
71. 14
77 . 46
85. 16
94.53
97.30
70.13
85.88
95. C6
97.73
87.09
96.25
98.36
97.75
100.34
100.74
35.73
X Y DELYCAP
0.0391
0.0400
0.0461
0 . 3432
0.0409
O.0409
0.3410
0.0456
0.0439
0.3419
O.3418
0.0063
0.0037
0.0070
0.0070
0.0279
O.O 285
0.0206
0.3213
0.3215
0 . 3207
0.0260
O.0220
0.0196
O.0199
O.G290
0.0060
O.OI81
0.0177
0.0199
0.0007
0.0070
o.ooao
0.0137
0.0257
0.0322
0.0005
0.0173
0.3239
0.3101
0.3169
0.3160
0.2763
0.0497
0.0540
0.0554
0.0529
0.0516
0.0518
0.0009
O.0541
0.0524
0.0314
0.0517
O.0452
0.0461
0.0454
0.0457
0.0064
0.3005
0.0008
0.0010
0.00 11
0.301 1
0.0064
0 . 0027
0.0019
0.0344
0.0450
0.0497
0 . 0206
0.0209
0 . 3303
0.3449
0.0496
0.0194
0.0256
0.0006
0.0435
0.0150
0.0294
O.0046
0.0206
0 . 0200
0.0207
0.2061
-2.57
-5 . 74
-7.43
-7.71
-0.07
-O. 16
-4.0O
-7.77
-O.61
-9.06
-9. 1O
-4.31
-7.55
-0.03
-0. 16
-2.O1
-5. 1O
-5.31
-O.O0
-1.49
-0.24
-0. 14
-0.69
-2.05
-4. 14
-7.00
-7.03
-0.43
-1.63
-4.17
-7.72
-0.76
-0.49
-2.74
-6.50
-7.70
-0.20
-3.73
-4.05
-0.05
-1.03
-0.00
0.90
PELL
-1.02
-2.28
-2.94
-0.01
-0. 10
-0. 13
-1.73
-0.08
-O.OO
-0.5O
-0.50
- 1 . 69
-2.95
-0.09
-0. 12
-l.OO
-1 .97
-2.01
-0 . 3O
-0.56
-0.09
-0. 11
-0 . 47
-1.21
-2.06
-2.08
-0.07
-0.29
-0.96
-2.07
-0. 19
-0.44
-0.29
-1.05
-2.71
-0.02
-0. 14
-1.52
-1.00
-0.02
-0.40
-0.00
1.02
C(550)
-0 . 0249
-0.0359
-0.07 ID
-0.0726
-0.07G3
-O.O741
-0.0430
-0.0700
-0.0-325
-0.0341
-O.0340
-0 . 0422
-0.0709
-O.O761
-O.0707
-0.0209
-O.05O9
-0.0517
-O.OOO4
-0.0150
-O . 0020
-O . OO27
-0.0103
-0.0337
-O.0503
-O.0094
-0.0729
-O . OO30
-O.0272
-O.0347
-0.0779
-0.0023
-0.0031
-0.0071
-0.067G
-O.0744
-0.0042
-0.0400
-0.0436
-0.0010
-0.0! 15
-0 . 0003
0. 1 144
BRAT 10
0 . 3353
0 . 7-347
0.7415
0.7314
0.7200
0 . 7f>?7
O.0030
0.7059
0.7459
0.7005
O.730O
0.3330
O.3U2O
0.3174
o.nioo
0.95GG
O.931O
O.9299
O.9933
0.9900
1 . OOOO
O . 3933
O.GO90
0,7471
0.7225
0.7193
0.7227
O.300S
0.7.344
O.7091
O . 7204
0.7G21
0.9O30
0.0292
0 . 0073
0.3 1 19
O.9014
0.9200
0.9244
0.9927
O.9920
0.9973
0.0003
PELX
0.0072
0.0134
O.OI94
0.0193
O . 020 1
O . O2O2
0.01 15
O.0I90
0.0203
0.021 1
O . O2 1 1
O.OO97
O.O133
O.0102
O.O 103
O.OO40
O . OO77
0.0079
0 . OOO5
0.0000
O.OOOO
0.O063
0.0102
0.0177
0.0194
O . 02O2
O . O2O2
O . OO94
O.OI57
O.O193
O.021 1
0.0212
O.OOOO
0.0102
O.0161
O.0163
0.0000
O.OO77
0 . 00.30
0 . OOO5
0.0011
0.0001
0.0097
DELY E( LUV) E( LA*})
O.OO75 6.7536 4.5203
0.0154 14.07."3 9.4034
0.0191 17.7471 11.C023
0.0199 13.0»i'!.3 12.02'1'J
0.02O5 19.4073 12. 7'!.rM
O.O200 19.4749 12.73V)
0.0115 10.0141 7.0437
O.O17O 17.0994 1I.2Q20
0.0195 13.0^44 12.0310
0.0204 19.0737 12.9070
O.O2O4 19.9749 13.03'X)
0 . 0039 O . '» | 77 5 . 7349
O.O 131 13.95O2 3.902.')
O.O 140 15. 10;14 9.03r>
O.O 144 15. 2:756 9 . 7O04
O.O034 4.2174 2.03.10
O.O054 7. IG90 4.493:1
0.OO55 7.3JO3 4.5973
-O.OOOI O.5G72 O.42',V»
-O.OO02 1.O472 0.7fj:)7
-0.0002 O. IP91 0. 1041
O.OO09 4.2479 2.333:2
O.O14O 9.0092 0.297-r)
O.O193 14.0272 9.4035
0.0210 10.0037 11.5339
0.0216 19.3140 12.7000
O.O21O 19.0G37 12.8013
O.OO9O O.O<27 4.449O
0.0103 12.7C32 O.OO'jT
O.O2O5 17.006 1 11.1223
O.O215 2O.2001 12.9344
0.0209 20.2/07 13.O349
O.OOOO 5.5103 3.4123
O.O 123 11.7019 7.2293
O.O 132 15.0370 9.05^2
0.0143 15.4477 9 . 02O2
0.0025 2.5150 1.4742
O.OOOO 7. 2 lOO 4.394')
0 . OO5 9 7.4300 4.04*0
0.0002 O.4096 0.2490
0.0001 1.0090 0.7005
0.0000 0. 1214 0.0721
0 . 0 1 07 0 . 4323 2 . 940 \
Exhibit A-8 (continued)
-------
ro
00
0.0
o.o
o.o
0.0
o.o
0.0
o.o
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.02
0.02
O.O2
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.05
0. 10
0.20
0.50
O.GO
0.05
0. 1O
0.20
0.50
O.SO
0. 10
0.20
0.50
0.00
0.20
0.50
0.30
0.50
0.03
0.00
20.21
34.00
54.30
03.39
92.76
19.99
35.06
54.65
02.78
91.07
35. 19
56.23
C3.97
92.94
57.71
06.01
95.79
90.20
99 . 6 1
100.54
52. 11
65.23
7O.63
93. 19
97. 13
51.35
65.02
73. 06
92.92
96.77
65.93
79.77
93.44
97.21
00.60
94.66
90.35
96.00
99.05
100.21
0.2010
O.C931
0.3041
0.3244
0.3339
0.2797
0.2905
0.3039
0.3253
0.3349
0.2014
0.2975
0.3204
0.3301
0.2373
0.3120
0.321O
0.3043
0.3149
0.3139^
0.2962
0.3002
O.32IO
0.3418
0.3403
0.2910
O.3043
0.3205
0.3417
0.3407
0.2937
0.3123
0.3353
0.3426
0.0013
O.G261
0.3336
0.3201
0 . 3270
0.3277
1.40
0.25
-2.61
-6.54
-7.60
1.27
1.01
-2.26
-7. 14
-0.50
1. 14
-0.60
-5.96
-7.51
0.00
-3. 11
-4.66
0.20
-0.04
0. 10
1 . 70 0 . OG23
0.20 0.0 ISO
-1.49 -O.OCG7
-2.70 -0.0673
-3.04 -0.0723
1.46 0.0697
0.79 0.0339
-1.29 -0.0336
-3.04 -0.0740
-3.40 -0.0020
0.90 0.0345
-0.33 -0.0090
-2.53 -0.0f.37
-2.97 -0.0733
0.45 0.0139
-1.30 -0.0347
-t.C2 -0.0473
0.12 0.0027
-0.32 -0.009-5
0 . 04 0 . 0003
0.74.10
0.7007
0.70-". 4
0.7153
0.7212
0.3115
0.7459
0.7233
0. 72,14
0 . 7302
0 . 0320
O.G030
O.OOlrt
O.C096
0.9509
0.9131
0.0216
O.Omi
0.9S7.9
0.9957
0.0140
0.0175
0.0194
0 . 0202
0 . 0202
0 . 00<>7
0.0152
0.0191
0.0211
0.0212
0 . 006 1
0.0127
0.0 162
0.0164
0.002*.
0 . 0073
0.0031
0.0006
0.0012
O.O002
0.0162
0 . O2 1 2
O.O230
0.0221
0 . 02 1 2
O.O110
0.0173
O.0216
0.0220
0.0211
0.0066
0.0134
0.0157
0.0150
0 . 0024
0.0064
0 . OO60
0 . 0004
0 . 0002
0.0001
7.9151
13.6.141
i3.o:;r/>
20.016,5
19.7334
5. 3131
1 1 . 23G7
17.3447
20.469(3
20.3160
4 . 239 1
11. 1501
15.5090
15.5439
2.C253
7 . 20 Of>
7.5571
0.4323
1. 1103
0. 76.13
5 . 4704
0.7254
11.3517
12. GM7
12.C319
3.7400
7. 1193
10.77.1?
13.0006
13. 1100
2 . 747O
6 . 7595
9 . f^fi'-i
9 . 0469
1.2566
4. (MOO
4.6041
0 . 29 » 55
0.6920
O.C993
Exhibit A-8 (continued)
-------
ro
PLUME VTSUAL EFFECTS FOR HORIZOITTAL VIEWS
pERPKJ7»n;c/L/m TO THE PLUME OF WHITK, CRAY, AND
FOR VARIOUS OBSKRVER-PLUME AND OBSERVER-OBJECT
1600 HW POWER PLANT
BLACK OBJECTS
DISTANCES
DOWm/IWD DISTANCE
THETA = 90.
(KTI) =
REFLECT RP/RVO ROXRVO
1.0
1.0
1.0
1.0
1.0
1.0
1.0
l.O
l.O
1.0
1.0
l.O
1.0
1.0
1.0
l.O
l.O
l.O
1.0
1.0
1.0
O.3
0.3
O.3
0.3
O.3
0.3
O.3
0.3
0.3
0.3
0.3
0.3
O.3
0.3
0.3
0.3
0.3
O.3
0.3
0.3
0.3
0.0
0.0
0.02
0.02
0.02
0.02
0.02
0.02
0.03
0.05
O.O5
0.05
0.05
0. 10
0. 10
0. 10
O. 10
0.20
0.20
O.20
0.50
O.50
O.OO
O.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.80
0.02
0.02
0.02
0.05
0. 10
0.20
0.50
0.00
0.05
0. 10
O.20
0.50
o.ao
0. 10
0.20
0.00
o.ao
0.20
O.50
o.co
0.50
0.00
o.ao
O.O2
0.05
0. 10
O.20
0.50
o.ao
0.05
0. 10
0.20
0.00
o.ao
0. 10
0.20
0.50
o.ao
0.20
0.50
o.co
0.50
o.ao
o.co
0.02
0.05
220.0
YCAP
91.53
84.25
77.65
70.50
59.92
56.42
C5 . 73
76.97
69.41
59. 16
55.75
00.51
69. 04
59.71
56.35
74. 12
61.44
53.00
64.52
CO . 40
61.29
3O.92
30. 17
00.72
42.46
50.70
50.29
33.57
36.01
42.25
50.20
52.71
SO. 02
43.04
50.07
53.05
45.04
52.60
53.08
54.99
57.09
58.06
4.94
11.27
L
96.63
93.57
90.63
07.25
01.81
79. 07
94.21
90.02
Cfi . 72
O1.09
79 . 49
91.92
06 . 90
01.70
79.00
CD. 99
02.60
00. CO
04 . 23
R1.O7
C2.53
62 . 47
64 . 32
67. 10
71.21
76.52
7O.07
64 . 65
67. 16
71.07
76.21
77.72
6O.06
71.61
76.62
70. 10
72.94
77.66
79. 10
79.05
O0.42
00.79
26.60
40.00
X
0.3409
0 . 049 1
0.0517
0.0477 •
0.3056
O.G2O4
0.0451
0.0519
0 . 0480
O.0064
0.0292
O . 0424
0.3441
0.0314
0.0242
0.0301
O . 0229
0.3150
0.0159
O.OOOO
0.0002
0.029O
0 . 0254
0.0200
0.0147
0.0164
0.0197
0.0217
0.0103
0.3146
O.3172
O.S206
0.0096
O.0005
0.3122
0.0157
0.29O7
0.0030
0 . 0074
0.2970
0.0007
0.2999
0.2599
0.2672
Y DELYCAP
0.3512
O.OOOO
0.0500
0.0036
0 . 0424
0.0077
0.0541
O.OOO1
0.0004
0.0422
0.0075
O.0492
0.0474
0.0057
O.OO 10
0.0077
0.026O
O.0215
0.0209
O.OI04
O.3156
O.OOGO
O.3040
0.3291
0.0259
O.0002
0.0305
0.0000
0.0262
0.0246
0.0000
0.3034
0.0169
0.0167
0.0203
0.3267
0.3064
0.3135
0.3171
0.3076
0.3110
0.3110
0.2647
0.2701
-3.03
-6.53
-7.01
-6.0O
-5.56
-5. 16
-5.07
-0.49
-7.97
-6.33
-5.03
-4.95
-7.54
-5.77
-0.23
-3.26
-4.04
-3.00
-0.96
-I. JO
-O.29
-0.62
-1.52
-2.43
-3.01
-4.49
-4.03
-1. 12
-2.34
-3.52
-4.99
-5.41
-1. 14
-2.73
-4.32
-4.77
-0.73
-2.59
-3.04
-0.20
-0.73
-0.06
0.43
0.64
DELL CC550)
-1 .24 -0.0310
-2.78 -0.0706
-0.46 -0.0097
-0.25 -O.0308
-2.94 -0.0314
-2.O4 -O.0790
-2. 13 -0.0044
-0.77 -0.0903
-0.78 -0. 1020
-0.05 -O.O940
-0.21 -0.0910
-2. 17 -O.0374
-0.00 -O.09O3
-0.05 -O.OO75
-2.O7 -O.OOOO
-1 .52 -0.0400
-2. 1 1 -O.O603
-1.90 -0.0577
-0.49 -0.0107
-O.64 -0.0203
-O. 16 -0.003?
-0.52 -0.0 IC3
-1.21 -0 . O4 1 5
-1.79 -O.OOO2
-2.21 -O.0667
-2.65 -0,0703
-2.76- -0.0774
-0.O9 -O.OOO7
-1.73 -0.0372
-2.35 -0.0720
-2.96 -0.0051
-0. IO -0.0002
-0.03 -0.0282
-1.O2 -0.0579
-2.55 -0.0753
-2.72 -0.0795
-0.4O -O.0163
-1.51 -0.0469
-1.72 -O.0026
-0. 12 -0.0042
-0.41 -0.0133
-0.03 -0.0012
1.26 0.0900
1.09 0.0643
BRAT 10
O . 3039
0.7786
0.7390
O.7069
0.7024
0.72^0
0 . '50 1 7
0.7393
O.7010
O.7432
O . 74 1 3
O . 3706
O.3371
0.3233
o.n:»4~>
O. 9,190
O. 9 445
0.939O
1 . 0009
1 . 0076
1 . OOOO
o . oo;io
O.3216
0.7630
O.7344
O . 7240
O.7230
0.3729
0 . 3O23
0.7040
0.7050
0.7039
0.9166
O . 3477
0.3163
0.3171
O.97I7
0.90OO
0 . 9304
0.9975
0.9971
0.9995
0.0109
0.7577
DELX
0.O073
0.0161
0 . 0202
0.02OO
0.0200
0.02OO
O.OI21
O.0204
0 . 02 1 1
O . 02O3
O.O2O3
O.OIO9
O. 0 163
0.0103
O . O 1 33
0.0034
O.OO73
0.0073
O.OOOO
O.OOO4
-O . OOO2
0.0060
O.OIO2
0.0174
0 . 0 1 09
0.0197
0.0190
O.OO93
O.OI36
O.O1O3
O.02O6
0 . O2O7
0.0070
0.0127
0.0105
0.0108
O.0029
0.0072
0.0075
0.0003
0.0000
0 . OOOO
0.0004
0.0126
DELY
0.0076
0.0159
0.0194
0.0193
0.0210
O.O217
O . O 1 2O
0.0137
0.0196
O . O2O7
O . O2 1 3
O.0003
O. 0 135
O.OI4O
O.OI5O
O.O009
O.O049
O.O055
-O.OO').!
-O.0007
-O.OOO4
O.O063
O.O139
0.019O
O.O217
O.O227
0.0224
O.O099
0.0161
0 . 0205
O.O224
O.O222
0 . 0063
O.O120
0.0107
0.0106
O . OO22
0.0009
0 . 006O
0.0000
-0.0001
-O.0001
0.0101
0.0158
E(LUV)
6 . 7379
10.9703
16.C,?O9
16.6062
16.9-003
17. 2 J 33
IO.6C.09
16.C240
17. K'/13
1 7 . 27 1 O
17.5,103
9.2143
If,. 240 1
13.O079
10. n;.:$o
4.0133
6.o::;o
6. !4ai
O.G.'VJ4
o. rwio
o. :r~22
4. n-V>3
o. rt'.:.r>c»
12.01 IO
15.7209
i7.4-.oo
17.3016
6 . 4OCO
1 1 . r/K<-2
15.2073
17.7700
17.3772
5. 1210
IO. 1309
10.0223
10.0204
2.22T2
6.0',C3
6 . 0700
0.0050
0.3137
0.0709
2.2050
6 . or 07
E( LAB)
4.57.15
9.0000
1 .5 '»7 3
1 . 3420
1 . 270 I
i . :;:',•"*
7.2474
i . <:oio
1 . 0 » 22
I . 4203
l . 40fj l
6. K' .0
3. ;i._.. ;»
3.0730
G. r*2'J3
2.9C ' 4
3.9412
0 . 02 >.?
0 . 0020
O. 7'Ci'if)
O. 220, 71
2 . C.VJ! 1 0
5.9'ri:;
3. 0455
lO.2ri:;9
I 1 . 'KOI
1 1 . 4O44
4.2073
7.4rr:4
9 . C202
1 1 . 4002
1 1 . 0737
3.2702
6 . 4240
0.4437
3 . 6 1 27
1.3007
3.7003
3.9G03
0 . 2O70
0.3003
O . 0009
2.2032
4.40,'m
Exhibit A-8 (continued)
-------
ro
ro
o
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.02
0.02
0.02
0.02
0.09
0.05
0.03
0.03
0.03
0. 10
0. 1O
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0. 10
0.20
0.50
O.CO
0.05
0. 10
0.20
0.50
0.00
0. 10
0.20
0.50
0.00
0.20
0.50
0.00
0.50
0.00
O.CO
19. 1O
30.45
46 . 74
51.05
11.20
19.60
30.61
46 . 36
51.41
19.01
31.56
47.00
52.06
32. 5fl
40.01
53.79
50.90
56. 10
56.63
50.94
62.07
74.05
77.27
39 . 96
5 1 . 42
62.21
73.00
76.95
51.66
63.01
74.26
77.34
63 . 05
75 . 35
70.36
76.04
79.69
00.02
0.2760
0.2367
0.3065
0.3150
0.2632
0.2734
0.2364
0.0073
0.3167
0.2650
0.2C01
0 . 3024
0.3110
0.2707
0.2942
0.3036
0.2374
0.2970
0.2962
0 . 2070
O.C023
0.3239
0.3316
0.2699
0.2037
0.3000
0.3237
0.3315
0 . 2729
0.2922
0.3169
0.3240
0.2010
0 . 3070
0.3151
0.3000
0.3091
0.3090
-0. 13
-1.70
-4.03
-4.69
0.57
0.29
-1.62
-4.42
-3.23
0.50
-0.67
-3.70
-4.50
0.35
-1.97
-2.03
0. 12
-0.54
0.04
-0.15 0.0013
-1.49 -0.04C-2
-2.52 -0.0720
-2.72 -0.0766
0.96 0.0560
0.33 0.0204
-1.35 -0.0422
-2.76 -0.0002
-3.03 -0.0069
0.57 0.0270
-0.56 -0.0160
-2.30 -0.0007
-2.66 -0.0777
0.29 0.0109
-1.21 -0.0300
-1.64 -0.0502
0.00 0.0021
-0.30 -0.0106
0.02 0.0000
O.7194
0.7113
0.7177
0 . 7f!27
0.3?
0.7577
0.7273
0.7206
0.7323
O.0907
0.3172
0.0061
0.0129
0.9336
0.9176
0.9233
0.9902
0.991 1
0.9963
0.0104
0.0103
0.0196
0.0190
0.0006
0.0 13O
0.0179
0.0204
0 . 02O7
0.0034
O.O1 17
0.0153
0.0150
0 . 0*23
0.0073
0.0076
0.0005
0.0010
0.0002
0.0213
o . or:37
0 . 02T 1
0 . O227
O.010S
O.O171
O.O221
0.0233
0 . 0226
0 . 0064
0.0133
O.0164
0.0159
0 . OO23
0.0063
0.0062
0.0003
O.O002
0.0001
1 1 . 4^.3
is.or.rn
17.7-I5
I7.or"v>
3.9774
9. 1T33
14.9C04
10.0^71
io.or:2i
3.2312
9 . 3<0()
13. 3-" 06
13.6611
1.5231
6 . 2073
6.4'MS
0.3''-?7
O.C.659
0. 1 (24
7 . 50m
10.0022
1 1 . <.O.T)
1 1 . 4377
2.9300
6.0212
9 . 4706
11.5215
1 1.0154
2. 1903
5. 00 '4
0.4,'l02
O.Ol-:-:*
0 . 9009
3 . 7003
4.0.724
0.2'>;»7
0.5050
0 . 0033
Exhibit A-8 (continued)
-------
IN3
PLUME VISUAL EFFECTS FOR HORIZONTAL VIEWS
PERPENDICULAR TO THE PLUME OF MUTE, CRAY, AND
FOR VARIOUS OBSERVER-PLUME AND OUSEUVER-OBJECT
1600 MW POWER PLANT
BLACK OBJECTS
DISTANCES
DOWIWIHD DISTANCE
TIFETA = 135.
(icri) =
REFLECT RP/RVO RO/RVO
.0
.0
.0 •
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
1.0
1.0
l.O >
l.O
1.0
0.3
O.3
0.3
O.3
0.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
O.3
0.3
0.0
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. IO
0. 10
O. IO
0. 10
0.20
0.20
O.20
O.50
O.50
O.CO
O.02
O.O2
0.02
O.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0.10
O. 10
0. 10
0. 10
0.20
0.20
O.20
0.50
0.50
0.80
0.02
0.02
0.05
0. IO
0.20
0.50
O.OO
0.05
0. 10
0.20
0.50
O.OO
O. IO
0.20
0.50
O.CO
0.20
O.50
O.OO
0.50
0.89
0.00
O.O2
O.O5
0. IO
O.2O
0.50
O.OO
0.05
0. 10
0.20
0.50
0.00
0. 10
0.20
0.50
O.GO
0.20
0.50
0.00
0.50
0.00
0.30
0.02
220.0
YCAP
91. 02
C4.90
7O.O1
72.46
62.99
59.03
06.44
70. 16
71.35
62. 17
59. 10
O1.81
71.O7
62.01
59.77
76.38
64.74
61.71
60. 11
64. 3O
65.27
31.20
33.82
37. 09
44.42
53.77
56.70
34.25
30.00
44. 19
53.21
56.05
39.32
45.08
53.96
56.76
47.30
53.90
53.70
58.57
61.29
62.04
5.22
L
96.75
93.05
91. 16
88.20
03.45
81.76
94.51
90.36
87.67
03.02
81.36
92.50
87.92
83.36
81.73
90.04
84.37
82.77
06.07
84. 13
84.64
62.71
64.85
67.97
72.53
78.35
80.03
63. 19
68.05
72.38
78.02
79.66
69.01
72.97
78.46
80.06
74.40
79.57
01. 14
01.07
82.55
02.95
27.41
X
0.3402
0.3473
O.3437
0 . 3433
0 . 3302
0.3233
0.3433
0 . 3487
0 . 3442
0.3310
0.3241
O.3392
0.3392
0.3259
O.3191
0 . 3234
O.3173
O.3106
0.3105
O.GO38
O.3033
0.3274
O.3219
O.3156
0.3O98
O.3116
0.3150
0.3102
O.3136
0.3096
0.3123
0.3159
0.3051
0.3034
0.3073
0.3109
0.2938
0.2990
0.3O27
0.2923
0.2961
0.2954
0.2559
Y DELYCAP
0.3503
0.3563
0.3562
0.3502
0.3392
O.G350
0.3524
0.3553
0.3490
0.33O9
0 . 3347
0 . 3463
0 . 3434
0.G322
0 . 3230
O.3336
0 . 3226
0.3fC3
0.3172
0.3122
0.3125
0.337O
O . 3309
0.3254
0.3223
0.3274
0.3310
0.3268
0.3223
0.3209
O.3271
0.3308
0.3128
0.3127
0 . 3202
0.3240
0.3024
0.3102
0.3142
0.3043
0.3081
0.3001
0.2612
-3.09
-6.70
-O.04
-7.24
-6.09
-5.74
-5. 16
-8.69
-0.34
-6.91
-6.47
-5.04
-7.02
-6.28
-5.00
-3.H2
-4.34
-3.06
-0.98
-1.27
-0.30
-0.66
-1.64
-2.66
-3.67
-3.02
-5.40
-1.21
-2.55
-3.90
-5 . 58
-6.05
-1.23
-3.01
-4.83
-5.35
-0.79
-2.89
-3.41
-0.22
-0.82
-0.06
0.30
DELL C( 550)
-1.25 -0.0311
-2.01 -0.070O
-3.52 -0.0901
-3.36 -0.0077
-3. 11 -0.0034
-3.03 -0.0317
-2. 15 -O.0545
-3.02 -0.09O4
-3.09 -0. 1026
-3.54 -0.0961
-3.43 -O.0937
-2. 10 -0.0571
-3.64 -O.0930
-3. 2O -O.0O9O
-3.06 -0.005-5
-1.51 -O.O421
-2. 19 -0.0636
-2.02 -O.O590
-0.49 -0.0150
-0.66 -O.O2O6
-0.15 -O.0049
-0.55 -0.0109
-1.29 -O.042O
-1 .92 -0.O602
-2.37 -O.0692
-2.05 -0.0700
-2.96 -O.OO01
-O.94 -O.O315
-1.04 -0.0500
-2.52 -0.0743
-3. 17 -0.003O
-3.32 -0.0912
-0.08 -0.02O7
-1.94 -0.0594
-2.73 -0.0773
-2.92 -0.0022
-0.50 -0.0163
-1 .62 -0.0403
-1.O4 -O.0543
-0. 12 -0.0041
-0.44 -0.0141
-0.03 -0.0012
1.09 O.0003
BRAT 10
0.0343
0 . 70 1 9
0 . 7424
0 . 7372
0 . 73 1 5
O.7291
0 . G"-49
0.70i} 1
0.7533
O . 7443
0 . 74 1 6
O. 07,07
O.O:i2
O . 3292
0.325 O
0.9027
0 . 9436
O . 94O5
1.0O63
1.0013
1.00151
0.9O47
O . 3242
0 . 7043
O.7347
O . 7242
0.7251
O.O706
0.0037
0.7556
0.7335
0.7362
0.9198
O.O305
0.0173
0.8133
0.9733
0.9319
0.9322
0.9931
0.9902
0.9997
0 . OIJ43
DELX DELY
0.0O73 0.0076
0.0159 O.O158
0.0199 0.0195
O.0199 O.O202
0.0199 0.0215
O.O19O O.O221
0.0120 0.0119
O.O 199 O.O 133
0.0203 0.0197
O.0207 O.0212
O.02O6 O.0219
O.O1O3 O.OO93
O.O159 O.0134
0.0106 0.0146
O.0156 0.0152
0.0050 O.O036
O.O07O O.O05O
O.O07I O.O055
O.O002 -O.OOO5
O.OOO3 -O.OO07
-O.OO02 -0.0004
0.0004 0.0068
O.O129 O.O133
O.O171 O.OI91
O.O 187 0.O220
0.0195 O.O230
0.0196 O.O228
0.0092 O.O098
O.O 152 0.0160
0.0184 0.0206
O.O203 0.0223
0.0205 0.0226
0.0066 0.0066
0.0122 O.O 124
0.0152 0.0158
0.0156 0.0153
0.0026 0.0021
0.0069 0.0039
0 . 0073 0 . 006O
0.0003 -0.0000
O.O007 -O.OOO1
O.OOOO -0.0001
0.0078 0.0097
E(LUV)
6.7303
14.0144
17. iom
17.2?r>5
1 7 . :\ \ 27
13. O9O4
10.062-)
16. £?,'.! J
17. '.-4 1 3
13. 1220
13.4247
9 . 1 1 r«o
13. 33 15
1 3 . H77 ')
i ;i . r; :or>
4. ar.o3
6.215I
6.3763
0.6573
0.3070
O.2704
4.O794
0.0723
13.2990
16.40H1-
18.3170
18.309,;;
6.-tr>o->
1 1..T020
13.3734
18. (.0- 1
10. 72-: 7
3.0934
10.421,1
13.3373
14. 1 156
2. K, 13
6 . 25 I 1
6 . 5977
0 . 2700
0.3124
0.070J
2 . 2747
E(LAB)
4 . 5740
9.546:)
1 . 6463
l.r.220
1 . 72 f 4
1.7913
7.2144
1 .41- TO
I . r:oi4
1 . r^?n
1 1.94T3
6 . Ofj 7O
O."~40
8.76,13
O . 3472
r% r-* -• r*'-*
*«• • O. -. H * . J
4.0253
4.Q.14:?
o . r»,i;;o
O.7003
O . 22 1 O
2.n-"30
6 . O'?7.'»,
3. 7: '67
1O.6I40
1 1 . 79O4
1 1 . noo i
4 . 2007
7 . r> i '••<-,
10. 1765
1 1 -90OO
12.0L41
') . 2320
6.5315
O . 74O9
0.0242
i.3i r,4
3.C3TJ
4. 1001
0. 1065
O . 6OO 1
O.or»34
2 . i n:.:7
Exhibit A-8 (continued)
-------
ro
ro
0.0
0.0
0.0
0.0
o.o
0.0
o.o
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
o. io
0. 10
0.20
0.20
0.20
0.50
0.50
0.00
0.05
0. 10
0.20
o.r>0
0.00
0.05
0. 10
0.20
0.50
0.00
0. 10
0.20
0.50
0.80
0.20
0.50
0.00
0.50
O.CQ
0.00
11.92
20.05
32 . 40
49 . C-2
55.36
11.08
20.79
32.55
49.37
54.75
21. 11
33.59
50. 17
53.47
04.04
52.11
57.41
54.48
00.00
00.66
41. 13
52.27
63.71
75.08
79.27
41.07
52.75
63.03
75.71
70.92
53. 11
64.67
76. 19
79.33
65 . 65
77.36
CO. 43
73.76
01.86
82.21
0.2630
0.2717
0.2C25
0.3020
0.3112
0.2591
0.2691
0.2820
O.3028
0.3121
0.2610
0.2758
0.2979
0,3072
0.2667
0.2U97
0 . 299 1
0 . 2C32
0.2926
0.2918
0.2717
0 . 2046
0.2994
0.3213
0 . 329 1
0.2665
0 . 2G03
0.2978
0.3211
0.3290
0.2596
0.2390
0.3140
0.3221
0 . 2779
0.3040
0.3123
0.2979
0.3062
/•O.3061
0.52
-0.36
-2. 14
-4.56
-5.26
0.48
0.08
-1.99
-5.00
-5.87
0.41
-0.95
-4.21
-3. 15
0.29
-2 . 27
-3.21
0. 11
-0.62
0.04
0.85
-0.40
-1.72
-2.72
-2.92
0.78
0.09
-1.59
-3.00
-3.28
0.44
-0.75
-2.51
-2.86
0.23
-1.34
-1.77
0.06
-0.34
0.02
0.0531
-0.0009
-0.0311
-0.0751
-0.0793
0.0471
0.01J7
-0.0473
-O.083G
-0.0901
0.0221
-0.0219
-0.0719
-0.0806
0 . OOC9
-0.0402
-0.0322
0.0017
-0.0112
O.OC01
o.7*r»6
0.7203
0.7143
0.7>O3
0.7223
0.0311
0.7644
0.7310
0.7279
0.7332
0.0959
O.H222
0.0033
0.8143
0.9584
0.9204
0 . 9275
0.9911
0.9925
0.9967
0.01 IO
O.O 157
0.017,0
0.0193
0.0196
0.0000
0.0131
0.0174
0.0200
0 . 0204
0.0050
0.01 «2
0.0151
0.0155
0.0021
0 . 0070
0 . 0074
0.0004
0 . 0009
0 . 000 1
0.0154
0 . 02 II
o.or*37
0.0.237
0 . 023 1
O.O103
O.O163
0 . O22 1
0.0235
0 . 0229
0 . 0062
0.0103
0.0163
0.0161
0 . OO22
0 . 0065
0 . 0062
0 . 0003
O.0001
0 . 000 1
6 . 2DOO
1 1 . c: i- 1 4
16.CT.-J
1G.57'M
10.4704
4.0-" 23
9 . 4000
15.4902
18.0703
lo.osm
3 . 2774
9 . 62<'3
14.0973
14.2422
1 . 49 49
6 . 3C309
6 . 7067
O.3122
O.G5':-9
0.0996
4.5033
7.r~>rx-
io.4'jr?.o
n.rvtoo
1 1 . 0906
2.97011
6. 1435
9.7930
1 1 . 9547
12.0002
2. 17r»0
5.94(0
O.777f>
0.9620
0 . 92?0
3..TJ3T
4. 1412
0. ir.36
0.5719
0.0600
Exhibit A-8 (continued)
-------
ro
T^OtFWW POWER
DOWWUTO jpj STANCE (KM)
TI1I5TA LENGTH RP/RV0
43.
20.
20.
20,.
20',
20.
20'.
20.
40.
40.
40.
40.
40.
40.
40.
60.
60.
60.
60.
60.
60.
60V
00.
no.
80.
CO.
oo.
60.
80.
100.
100.
100.
100.
100.
100.
100.
120..
120.
120.
120.
120.
120.
120.
140.
140.
140.
140.
140.
140.
0.00
0.02
0,05
0 •' 10
0.20
0.50
0.00
0.00
0.02
0.05
0.10
0.20
0.50
0.00
0.00
0.02
0.05
O.10
0.20
0.50
0.80
0.00
0.02
0.05
0.10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0.10
0.20
0.50
&f- "FOR- LUTES OP SIGHT ALONG PLUME
PLANT
= 220.0
RV ^REDUCED YCAP L X
179.6
179. 1
178.4
177.3
175.8
173.7
173. 1
100.7
173.7
176.2
172.6
167.6
160.7
171. 1
102.7
179. 1
174.3
167.6
150.3
148.7
171. 1
183.1
177.7
170.3
160.0
147. 1
140.9
171.2
109.3
173.2
163.0
151. 1
134.0
149, 1
171.2
173.5
164.0
153.3
133.0
133.2
149.1
171.2
161.3
151.2
142.9
138.3
135.3
149. 1
2.89
3.19
3.59
4.15
4.96
6.08
6.42
2.34
3.38
4.77
6.68
9.41
13. 11
7.53
1.22
3.20
5.81
9.33
14.45
19.61
7.50
1.02
3.96
7.81
13,03
20.49
19,49
7.49
2.04
6.38
11.44
18.32
27. 11
19.43
7.48
6.22
10.94
17.13
25.38
26.94
19.40
7.47
12.72
18,23
22.77
25.23
26.86
19.09
90.77
92.00
93.64
95.95
99.29
103. O4
105. 16
03.21
03.03
07.49
90 . 94
95.97
1O2.04
1O4.05
79.45
01.57
84.42
08.42
94.27
102.31
104.60
77.66
79.91
02.94
87.20
93.43
102.04
10-1.59
76.70
79. 10
82.21
06.60
93.02
101.91
104.04
76.36
70.70
01.03
06.30
92.01
101.03
104,32
76.14
70.59
81.68
86.15
92.71
101.00
96.32
96.32
97.49
90.41
99.73
101.47
101.96
93. 11
93.90
94.95
96.39
98.42
101.09
101. O4
91.45
92.39
93.64
93>04
97.74
100.89
101.78
90.63
91,65
92.99
94.03
97.41
100.78
101,75
90.23
91.29
92.68
94.57
97.24
100.73
101.73
90.03
91. 11
92.52
94.45
97.15
100.70
101.72
09.94
9 1 . 02
92.44
94.30
97. 11
100.69
0.3544
0.3493
0.3432
0.3359
0.3270
0.3213
0.3207
O.G672
0.3595
0.3507
0.3403
0.3296
0.3213
O.G206
0.3697
0.3613
0.3517
0.3409
0.3294
O.3210
0.3203
0.3696
0.3610
0.3513
0.3403
0.3289
0.3208
0.3204
0.3S90
0.3604
0.3507
0.3398
0.3205
0.3206
0.3203
0.3683
0.3599
0.3502
0.3394
0.32C2
0.3203
0.3203
0.3681
0.3596
0.3499
0.3392
0.3201
0.3205
Y DELYCAP
0.3640
0.3306
0.3517
0.3438
0.3358
0.3310
0.3311
0.3693
0.3617
0.3530
0.3435
0.3343
0.3301
O.3308
0.3672
0.3594
O.3506
O.3413
0.3323
O.3296
0.3306
0.3652
O.3574
O.3409
0.3399
0.3319
0.3293
0.3305
0.3641
0.3564
0.3400
0.3391
0.3314
0.3292
0.3305
0.3636
0.3559
0.3473
0.3388
0.3312
0.3291
0.3305
0.3633
0,3557
0.3474
0.3307
0.3311
0.3291
-14.38
-13.20
-11.60
-9.37
-6.14
-1.78
-0.54
-22. 12
-20.32
-17.90
-14.50
-9.56
-2.81
-0.06
-26.00
-23.90
-21.08
-17. 11
-11.32
-3.37
-1.04
-27.03
-25.64
-22.63
-10.39
-12.20
-3.63
-1.13
-20.O1
-26 . 5 1
-23.41
-19.O4
-12.64
-3. CO
-1.19
-29 . 20
-26.93
-23.00
-19.37
-12.07
-3,00
-1.21
-29.02
-27. 17
-24.00
-19.54
-12.99
-3.93
DELL
-5.64
-5. 15
-4.50
-3.61
-2.34
-0.67
-0.20
-0.91
-0. 15)
-7. 10
-5 . 63
-,1 . 6O
- 1 . 06
-0.32
-10.62
-9 . 60
-O.43
-6.76
—4 . 3JI
-1.27
-0.39
- 1 1 . 47
-10.45
-9. 12
-7.29
-4.73
-1.30
-0.42
- 1 1 . 09
-10.04
-9.43
-7.56
-4.91
-1.43
-0,44
-12. 10
- 1 1 . 03
-9.63
-7.70
-5 . 00
-1.46
-0.43
-12.21
-11. 13
-9.71
-7.77
-3.03
-1.40
CC350)
-0. 1339
-0. 1230
-0. 1101
-0.0905
-O.Of.ll
-0.01GO
-0.0013
-0.2141
-O, 1903
-0. 1763
-0. 1449
— 0 . 09.10
-0.0003
-O.0004
-O . 2575
-0.2301
-0.2117
-0. 1740
-0. 1177
-O.0364
-0.0112
-0.27O6
-0.2576
-0.2291
-0. 1G3-1
-O. 12i4
-0.0394
-0.0122
-0.2Q37
-0.2060
-0.2374
-0. 1952
-0. 1320
-0.0403
-0,0126
-0.293!)
-0.2712
-0.2412
-0. 1903
-0. 1341
-0.0415
-0,0120
-0,2953
-0,2731
-0.2429
-0, 1997
-0. 13750
-0.0410
BRATIO DELX 0ELY E(LUV) E(LAB)
0.5069 0.0350 0.0333 31.614? 21.O1O
0.6374 0.0298 0.0274 27.0254 17.723
0.7413 0.0235 0.020* 21.4441 in. cm
0.0309 O.OJ61 0.0125 14.7155 9.f!ri2
0.03,10 0.0077 0.0044 7. 144::! 4.F3I
0.99O9 0.0007 -O.OOOr, 1.1971 O.«X'>
1.0013 -o.ooot -o.ooo'-;. 0.3722 o.on
0.5302 0.0473 O.OCM! 39. f« 192 20.216
0.6117 O.O396 O.OrJO'. 33.54.16 2I.9O!>
0.7006 0.0306 O.O2JV 26.414.". 16. 9^2
O.O207 O.O203 0.0121 10.G090 ll.^.T.
O.9347 O.0092 O.O03O O.O437 fl.r'U
1.0013 O.OOO6 -0.001 '• 1.0-156 l.T.'V)
I.O027 -0.0002 -O.OOO7 O. r,'.»« 0 o.RM
O.5279 0.0495 O.OCOO 4O.JJ06O 26. O^
0.6110 0 . 04 t 1 0 . 0270 .14 . < .'?"'.» 22 . 27R
0.7098 0.0314 O.OI92 26.,'mO 17.JM7
O.C236 O.O2O3 O.OOOO 1O.2721 11. Tt',?
0.9307 0.0030 O.OOK- 9.1i:M C..JVJJ
1.O033 O.OOO.J -O.OO19 2. IW''. I.P.'Sj
1.0040 -O.O004 -0.0000 0.7C>9fl O.
0.7140 0.0303 0.017-'. 26. 3H70 17. 1V5
O.C280 0.0193 O.OO0 1- I7.9
1.0059 -0.0000 -O.OO22 2. 20 Hi 1.9!i'>
1.0050 -O.OOO3 -0.0010 0.,1~::H O.r, fi.r-f.r,
1.0077 -0.0002 -0.0024 2.0.19'!. 2. TV1
1.005O -O.O006 -0.0010 0..1079 O.TOrt
0.5367 0.0473 O.OC21 08.11174 25. i "09
0.0209 0.0393 0.0244 32.7S67 21.f«0!*i
0.7206 0.0296 0.0160 25.iy>nO 16.071
0.0343 0.0107 0.0070 I7.8«.*W 11.71.1
0.9489 0.0075 -0.0003 0.7°r»5 6.556'.)
1.0091 -0.0003 -0.0024 2.0.175 2.4
0.7200 0.0292 0.0139 25,3323 16.7ri
O.B373 0,0!84 0.0071 17.1,111 II. <»«?•>
0.9510 0.0073 -0.0004 0.6002 6.P
-------
140.
160.
100.
100.
160.
10O.
10O.
160.
100.
100.
100.
100.
100.
100.
100.
200.
200.
200.
200.
200.
200.
200.
210.
210.
210.
210.
210.
210.
210.
215.
215.
215.
215.
215.
215.
215.
218.
21O.
210.
2JO.
218.
218.
218.
219.
219.
219.
219.
219.
219.
219.
0.80
0.00
0.02
0.05
0. 10
0.20
0.50,
0.00
0.00
0.02
0.05
0. 10
0.20
0.50
O.CO
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
0.00
0.02
0.05
0. 10
o.no
0.50
0.09
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
O.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
171.2
150.9
1 47 . 5
143.0
130.4
135.4
149. 1
171.2
150.9
147.5
140. 1
133.5
105.4
149. 1
171.2
151.0
147.5
143. 1
130.5
135.4
149.2
171.2
151.0
1 47 . 5
143. 1
\33.5
135.4
149.2
171.2
151.0
147.5
143. 1
130.5
135.4
149.2
171.2
151.0
147.5
143. 1
130.5
133.4
149.2
171.2
151.0
K7.3
143. 1
130.5
135.4
149.2
171.2
7.47
1O.45
20.29
22 . 69
25. 17
26.03
19.30
7.47
10.41
20.26
22.66
25. 14
26. Ol
19.30
7.47
18.39
20.25
22.05
25. 13
26.01
19.30
7.47
10.39
20.25
22.64
25. 13
26.81
19.38
7.47
10.39
20.24
22.64
25. 13
26.01
19.33
7.47
10.39
20.24
22.64
25. 13
26.01
19.30
7.47
10.39
20.24
22.64
25. 13
26. Ol
19. 3O
7.47
104.50
76.04
70.41
a i . 59
06.00
92.60
101.70
104.50
76.00
70.36
01.55
06.05
92.03
101.77
104.49
75.90
70.34
O1.54
06.03
92.62
101.77
104.49
75.97
70.34
O1.53
06.03
92.02
101.77
104.49
75.97
7O.34
01.53
06.03
92.02
101.77
104.49
75.97
70.34
01.53
06.03
92.62
101.77
104.49
75.97
70.34
01.53
06.03
92.62
101.77
104.49
101.71
09.09
•)0.97
92.40
94 . 35
97.09
1 CO . 6O
101.71
39 . 07
90.95
92.00
94.34
97. Oil
100.60
!OI .71
09.06
90.94
92.30
94.33
97.00
100.60
101.71
09.06
90.94
92.30
94.33
97.00
100.00
101 .71
09.06
90.94
92.30
94.33
97.00
100. 6O
101.71
09.06
90.94
92.30
94.33
97.00
100.60
101.71
09.06
90.94
92.30
94.33
97.03
100.68
101.71
0.3202
O.3079
0.3594
0.3490
0.3390
0.3200
0.3204
0.3202
0.3070
0.3593
0.3497
0.3009
0.0279
0.3204
0.3202
0.3677
0.3592
0 . 3496
0.3009
0.3279
0.3204
0.0202
0.3677
0.3592
0.3496
0.3309
O.3279
0.3204
0.0202
0.3677
0.3592
OT3496
0.3009
0 . 3279
0.3204
0.3202
0.3077
0.3592
0.3496
0.3009
0.3279
0.3204
0.3202
0.3677
0.3592
0.3496
0.3309
0.3279
0.3204
0.3202
0.3305
0.3600
O.3550
0. 0470
0 . 3300
0 . 33 1 0
0 . 329 1
0.3305
0.3602
0.3550
0.3473
0.3300
0.3310
0.3290
0.3305
0.3632
0.3550
0.3473
0.3300
0.3310
0.3290
0.3305
0.3032
0.3550
0.3473
0.3300
0.3310
0.3290
0.3305
0.3632
0.3556
0.3473
0.33O6
0.3310
0.3290
0.3305
0.3632
0.3556
0.3473
0 . 3306
0.3310
O.3290
0.3305
0 . 3632
0.3556
0.3473
0 . 3306
0.3310
0.329O
0.3305
-1.20
-29.64
-27.29
-24. 10
-19.02
-13.05
-3.95
-1.24
-29.71
-27.34
-24. 16
-19.07
-13.09
-3.96
- 1 . 24
-29.74
-27.37
-24, 10
-19.69
-13. 10
-3.97
-1.24
-29.75
-27.30
-24. 19
-19.69
-13. 11
-3.97
-1.25
-29.75
-27.30
-24. 19
-19.70
-13. 1 1
-3.97
-1 .23
-29 . 75
-27.30
-24. 19
-19.70
-13. 11
-3.97
-1.23
-29.75
-27.30
-24. 19
-19.70
-13. 11
-3.97
-1.25
-0.40 -0.0129
-12.27 -0.2902
-11. IO -0.27;»9
-9.70 -0.2405
-7.01 -O.2000
-5.07 -o. io:;4
-1 .49 -0.0419
-0.40 -0.0130
-12.00 -o.r>9or>
-11.21 -O.2742
-9.7:; -0.24:;,:;
-7.m -o.n^T?
-5.09 -o. mo
-1.49 -0.0419
-0.40 -0.0100
-12.31 -0.2900
-1 1.22 -O.7740
-9.79 -0.2409
-7.04 -0.2000
-5.09 -0. 1350
-1.50 -0.0419
-0.46 -0.0130
-12.31 -0.2900
-1 1.22 -0.2743
-9.79 -0.2409
-7.04 -0.2000
-5.09 -0. 1050
-1.50 -0.0419
-0.47 -0.0130
-12.31 -0.2000
-11.23 -0.2743
-9.79 -0.2439
-7.04 -0.2000
-3. IO -0. 1350
-J .50 -0.0419
-0.47 -0.0100
-12.31 -0.2900
-1 1.23 -0.2743
-9.79 -0.2439
-7.04 -0.2006
-5. 10 -0. 1356
-1.50 -0.0419
-0.47 -0.0100
-12.31 -0.2900
-11.23 -0.2743
-9.79 -0.2409
-7.04 -0.2006
-3; 10 -0. 1356
-1.50 -0.0419
-0.47 -0.0100
1 . 0070
o. n"'-o3
O.<-240
0 . 7249
0.3092
0. <>.'»27
l.OI 1 1
1 . 0075
O. 14 «5
0. <>"'»2
O.7203
~« . 31 07
0.9541
l.OI 17
i . OTTO
0.5425
0 . 0272
0.7275
O.34I9
o.or>r>i
l.OI.'JO
i.oo3i
0.5429
O.C.276
O . 7279
0 . 0420
O.9U15
1.0125
1 . 0032
0.5400
0 . 0273
0 . 723 1
0 . 3423
0.9537
1 .0123
1 . 0032
0.5431
0.6279
0.7232
0 . 8426
0.9558
1 . 0 1 26
1 . 0032
0 . 543 1
0.0279
0.7202
O . 0426
0.9553
1.OI20
1 . 0002
-O.OOO7
0 . 047 1
o.onno
0.02OO
0.01 32
0 . OO7 1
-O.OOO3
-0.0007
0 . O470
0.0335
O.02,'i3
0 . 0 1 8 1
0 . 0070
-O.OW1
-O.OOC7
O.0409
0 . 0034
O.O237
0.0130
0 . 0070
-O.OOO5
-0.0007
0.0*09
0 . 0334
0 . 0237
O.O1CO
0.0070
-0.0005
-0.0007
0 . 0409
0.0034
0 . 0237
o.oi no
0.0070
-0.0003
-0.0007
O.0409
O . 0304
0.0237
0 . 0 1 00
0.0070
-0.0005
-0.0007
0.0463
0 . 0334
0.0237
0.0180
0.0070
-O.OO03
-O.OOO7
-O.OOIO
O.OOI7
0 . 02-1 1
0.0150
0 . 007 1
-0.0005
-0.0021
-O.OOIO
O.0317
0.0241
0.01 17
0.0071
-0.0005
-0 . 0021
-O.OOIO
0.0317
0 . 024 1
0.0157
0 . 00? 1
-o . ooo:;
-0 . 00215
-O.OOIO
0.0317
0 . 024 1
0.0157
0 . 007 1
-0.0005
-0 . 0025
-0.0010
0.0317
0.0241
0.01 57
0 . 007 1
-0.0005
-0.0025
-O.OOIO
0.0317
0 . 024 1
0.0157
0 . 0070
-0 . 0003
-0.0025
-0.0010
0.0317
0.0241
0.0157
0 . 0070
-0.0005
-0.0023
-0.0010
O.93IT2 0.720
3H. 4-122 £5.0?v,
?2. !{C' 13 21. 4f!7
I'fT I'T'T^ \ f) --".r-
17.0102 H.f. ».",
o.!i'>73 o.^/i
2.-'10OCi 2.00!",
0.9404 ^.T.'irj
" O.3207 2" . r."> l
''H . /r".!!7 'M."".T
,1'" .^66 K'.O"1)
I0.9P61 ILfVM
". 5 IOO 0.672
10 . r.'y.i \ 11. n75
ll.4,"'.in 0.4''"1
f\ r~*r\f^r? t\ f^r'r'
O.9!f02 O.7P,5
0" . 2^54 2!7 . P'VA
:?2. {'>'*•?• 2 1 . "'•')
25.O72'. 10. 0^0
16.?;:: 10 ii.rvri
3.470.2 <«.•"?'»
2.00HO 2.C'..r,
0.'>r>0.7 0.7i?5
"3 . 25O5 2o . F'02
32. 1594 2<.:M"«3
25.0233 lO.O'.l
10.3770 M.KOO
3.4717 0.4^5
iJ.3937 r. .r'.r;
0.9109 O.T.'SO
CO. 2434 25.noi
32. 1574 21.rr?7
25.0203 10.004
< 0 . C70O 1 1 . 509
0 . 4700 0 . 4(vr>
2.3930 2. COP,
0.9S40 O.700
33.2473 25.501
02. 1507 21.P.37
25.0253 70.004
IO.U75ST 111! 509
3 . 47O2 0 . 405
2.393f> 2.T01
0.9-^41 O.700
Exhibit A-8 (continued)
-------
VISUAL EFFECTS FOrt LINES OF
1000 MW POWSH PLANT
SIGHT ALONG PLUME
DOWNWIND DISTANCE (KM)
220.0
THETA LENGTH RPXRVO
90.
20.
20.
20.
20.
20.
20. "
20. "
40.
40.
40.
40.
40.
40.
40.
00.
00.
00.
60.
00.
00.
OO.
80.
GO.
no.'
80.
80.
80.
80.
100.
100.
100.
100.
too.
100.
100.
120.
120.
120.
120.
120.
120.
120.
140.
140.
140.
140.
140.
140.
140.
0.00
0.02
0.03
0. 10
0.20
0.00
0.80
0.00
0.02
0.03
0. 10
0.20
0.50
O.80
0.00
0.02
0.03
0. 10
O.20
O.50
0.00
0.00
0.02
O.03
0. 10
0.20
0.50
0.00
0.00
0.02
0.05
0.10
0.20
0.50
0.00
0.00
0.02
0.05
0.10
0.20
0.30
0.00
0.00
0.02
0.03
0.10
0.20
0.30
0.00
nv TZPJSDUCED
180. 1
179.3
170.7
177.6
176.0
173. 0
173.1
102.1
100. 1
177.3
173.6
168.2
160.9
171. I
183.0
101.6
170.5
109.4
159.4
143.9
171. 1
187.3
1O1.5
173.0
103.3
140.7
149. 1
171.2
1C3.3
170. 1
160. 1
134.4
136.0
149.2
171.2
100.2
170.0
130.4
141.7
136.4
149.3
171.2
169.3
130.2
146. 1
140.4
136.0
149.3
171.2
2.67
2.99
3.41
4.00
4.06
6.03
6.41
1.54
2.66
4. 14
6. 17
9.09
13.02
7.52
-0.31
1.01
4.62
O.43
13. C3
19.52
7.49
-1.23
1.92
6.07
11.71
19.63
19.39
7.47
-0.44
3.72
9. 16
10.54
26.40
19.33
7.46
2.39
7.60
14.36
23.40
26.29
19.30
7.46
0.46
14.46
21.02
24.08
26.21
19.20
7.46
YCAP
50.74
51.47
52.44
53.81
55.78
58.43
59.22
46.06
47.16
48.64
50.71
53.73
57.33
59.O2
43.74
45.02
46.74
49. 13
52.67
37. 5O
58.92
42.63
43.99
45.02
40.39
02.16
57.34
58.06
42.08
43 . 40
43.37
48.02
51.90
57.23
58.03
41.81
43.23
43. 14
47.83
51.77
57.20
58.82
41.68
43. 10
45.03
47.74
51.70
57.18
58.01
L
76.54
76.98
77.56
78.37
79.31
81.01
81.43
73.61
74.32
73.23
76.53
78.32
O0.06
81.32
72.08
72.93
74.04
75.57
77.70
80.48
01.26
71.32
72.24
73.45
75.09
77.39
00.39
81.23
70.93
71. 9O
73. 16
74.06
77.24
80.34
31.22
70.77
71.73
73.01
74.74
77. 16
00.31
81.21
70.67
71.63
72.93
74.60
77.12
30.30
81.20
X
0.3067
0.3314
0.3231
0.3177
0.3096
0.3032
0.3026
0.3488
0.3109
0.3310
0.3216
O.3109
0.3030
0.3023
0.3300
0.3421
0.3323
0.3215
0.3104
0.3026
0.3023
0.3302
0.3414
0.3313
0.3207
0.3097
0.3023
0.3022
0.3493
0.3403
0.3307
0.320O
0.3092
0.3021
0.3021
0.3406
0.3399
0.3302
0.3193
0.3009
0.3020
0.3020
0.3402
0.3393
0.3298
0.3192
0.3007
0.3019
0.3020
Y DELYCAP
0.3493
0.3427
0.3331
0.3264
0.3177
0.3126
0.3128
0.3346
0.3459
0.3363
0.3209
0.3101
0.3116
O.3124
0 . 3520
0.3431
0.3334
0.3233
0.3142
0.31 10
0.3122
O.3496
0.3408
O.33I4
0.3216
O.3131
O.3107
0.3121
0.3402
O.3396
0.3303
O . 3208
0.3126
0.3103
0.3121
0.3476
0.3391
0.3298
0.3204
0.3123
0.3104
0.3120
0.3474
0.3388
0.3296
0.3202
0.3122
0.3104
0.3120
-8.76
-8.03
-7.06
-3.70
-3.73
-1.03
-0.32
-13.44
-12.33
- 1 0 . 87
-0.00
-3.79
-1.70
-0.52
-13.77
-14.50
-12.7O
-10.37
-6.O3
-2.04
-0.63
-10.90
-15.54
-13.71
-11. 14
-7.30
-2.21
-0.00
-17.43
-16.03
-14. 17
-11.52
-7.64
-2.30
-0.72
-17.72
-10.31
-14.40
-11.71
-7.70
-2.34
-0.73
-17.06
-16.43
-14.31
-11.81
-7.84
-2.37
-0.74
DELL
-3.04
-4.00
-4.02
-3.22
-2.03
-0.59
-0. 13
-7.93
-7.27
-6.34
-3.06
-3.27
-O.94
-0.23
-9.01
-8.60
-7.53
-ft . 03
-O.9O
-I. 12
-0.34
-1O.27
-9 . 03
-8. 13
-6.00
-4.21
-1.22
-0.33
-10.05
-9.70
-3.44
-0.74
-4.30
-1.27
-0.39
-10.04
-9.07
-O.39
-0 . 00
-4.44
-1.30
-0.40
-10.93
-9 . 93
-0.67
-6.92
-4.43
-1.31
-0.41
C(55>0)
-0. 1414
-0. 1303
-0. 1103
-0.0937
-O.OG47
-0.0200
-0.0002
-0.2207
-0.2090
-0. 1304
-0. 1533
-0. 1037
-0.0321
-O.0099
-O . 2722
-O.25I7
-0 . 2203
-0. IR41
-O. 1243
-O.O333
-0.0119
-O.2944
-O.2723
-0 . 242 1
-O. 1991
-0. 1347
-0.0417
-0.0129
-0.3050
-O.2C21
-0.2003
-O.2013
-0. 1395
-0.0401
-0.0103
-0.3093
-0.2803
-0.2343
-0.2093
-0. 1417
-0.0430
-0.0130
-0.3119
-0.2004
-0.2303
-0.2109
-0. 1426
-0.0441
-0.0136
BHATIO I)ELX DELY E(LUV> EtLAm
0.5396 0.0346 0.0361 20.1133 10.011
0.0010 0.0292 0.0295 23.9202 1R.C.09
0.7461 0.0229 0.021.'l 13.0001 J2. I'M
0.8442 0.0154 0.0132 12.7922 R. M4
0,9440 0.0072 0.0045 6.000V O.i'09
1.0010 0.0000 -O.OOOI 0.9G07 O.T'>0
1.0027 -0.0001 -0.0004 O.32I4 O.274
0.5305 O.04G5 0.0414 34.7201 22.970
0.0196 0 . 0330 0 . 0327 29 . 2922 19. J 01
0.7131 0.0293 0.020022.3002 14. 7M
0.3312 0.0192 0.0121 JO. 009^, 9.T41
0.9443 O.0030 0.0029 7.3OK 4.'x'""»
1 . O007 O . OOO3 -0 . 00 1 0 1 . 4970 1.00 '
1.0033 -0.0003 -O.OOOO O..r;40r. 0.
O.7372 0.0231 0.0171 21.9719 K-.CrOO
O.O32G O.O173 O.QO71 14.1423 1O.OI4
0.9G33 0.0005-0.0005 7. MOO 0.000
1.O176 -0.0006 -0.0027 2.0K?5 1.770
1.0106 -0.0007 -O.O01 1 0.3000 0.0,7,7
0.5029 O.0439 0.0044 33.6O47 22.091
0.6397 0.0372 0.0209 23.0790 13.027
0.7419 0.0274 O.O1G1 21.0110 I4.4f0
O.0375 0.0108 0.0072 14.4002 9.900
0.9693 0.0001 -0.0009 7.0727 0.000
1.0197 -0.0008 -0.0023 2.0015 !..?"•>
1.O11G -0,0008 -0.0012 0.8239 0.040
0.5561 0.0453 0.0042 33.0009 22.:W>
0.6432 0.0368 0.0250 27.3079 10.0^0
0.7456 0.0270 0.0104 21.4059 1 4.374
0.0612 0.0163 0.0070 14.2007 9.907
0.9728 0.0009 -0.0010 0.9910 Ti.Or.4
1.0214 -0.0009 -0.0023 2.0009 l.,°10
1.0124 -0.0008 -0.0012 0.11370 O.ftA-r,
Exhibit A-8 (continued)
-------
K.O.
'100.
160.
16O.
100.
100.
160.
ICO.
ino.
KJO.
mo.
150.
ino.
i no.
200.
200.
2CO.
200.
200.
200,
200.
*> i n
t* I V .
210.
2)0.
210.
2?0.
210.
210.
215.
215.
2*3.
215.
215.
215.
215.
218.
213.
210.
213.
210.
210.
210.
219.
219.
219.
219.
219.
210.
219.
0.00
0.02
0.05
0. 10
0.20
0.50
o.oo
0.00
0.02
0.05
0. 10
0.20
0.50
O.QO
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
Onn
. uu
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0.10
0.20
0.50
0.80
0.00
0.02
0.05
0.10
0.20
0.50
0.80
153.2
151.0
146.3
140.6
136.6
149.3
171.2
153.3
151. 1
140.3
140.6
136.6
149.3
J71.2
155.3
151. 1
146.4
140.6
136.6
149.3
171.2
1 rn o
luo . »>
151.1
140.4
140.6
133.6
, 149.3
171.2
155.3
151. 1
1 40 . 4
140.6
133.6
149.3
171.2
155.3
151. 1
146.4
140.6
136.6
149.3
171.2
155.3
151. 1
146.4
140.6
136.6
149.3
171.2
!6. 10
10.86
20.93
24.03
26. 10
19.20
7.46
16 . 05
10.33
20.09
24.01
26. 17
19.23
7.43
16.04
10.32
20.09
24.00
26. 16
19 . 2O
7.'*'6
. . A V
1 XI f\A.
IO . O**
1Q.32
20.09
24.00
26.13
19.20
7.46
16.04
10.32
20.09
24.00
26. 16
19. 2O
7.46
16.04
1C. 32
20.09
24.00
26. 16
19.20
7.46
16.04
10.32
20.89
24.00
26.16
19. 2O
7.46
41.61
43.04
44.97
47.09
61.67
57. 17
50.00
41.00
43.01
44.0.1
47.07
51.05
37. 16
50. CO
41.07
43 . 00
44.94
47.66
51.04.
57.16
50.30
A. i n/t
** 1 • OCl
43.00
44.93
47.66
51.64
57. 16
50. OO
41.50
43.00
44-93
47.65
51.64
57.16
50.80
41.50
43.00
44.93
47.65
5 1 . 64
57. 16
58.80
41.56
43.00
44.93
47.65
51.64
57. 10
50. GO
70.63
71.61
72.90
74.65
77. 10
CO. 29
31.20
70.61
71.3?
T*> "**t
74! 0*
77.0?
c;o . 2?
01.20
70.60
7 1 . 53
72.07
74.63
77.09
09.29
Ol 20
*j* Jl . h« ,r
ryr\ f-f\
f O. OO
71.50
72.07
74.63
77.09
00.29
01.20
70.59
71.50
72.07
74.63
77.09
CO. 29
01.20
70.59
71.53
72.87
74.63
77.09
80.29
01.20
70.59
71.50
72.07
74.63
77.09
T0.29
01.20
0.3479
0.3fJ92
0.5296
0.3190
O.CCC3
0.3319
o.cr«20
0 . •' J73
0 . 359 1
0. (3294
0.3 Iff?
0 . 0053
0.3019
0.5020
0.3477
0.5090
0.3294
0.3109
0.30C4
0.3019
0.3020
On^'yy
. Bvc 7
0.3390
0.3294
0.3109
0.30C4
0.3019
0.5020
^0.3477
* 0.3390
•.Q294
j ,0.3109
0.8084
0.0019
0.0020
0.3477
0.3390
0.3294
0.3109
0.3C54
0.3019
0.3020
0.347?
0.3390
0.3294
0.31S9
0.3024
0.3019
0.3020
0.3475
0.33.57
0.32°^
0.3201
0.3122
0.3104
0.3120
0.3472
0 . 3307
O 1**Q*i
o!3201
0.3121
0.3101
0.3120
0.3472
0.3307
0.3293
0.32O1
0.3121
0.3104
0.3120
01jf7'>
. tt*tf -I
0.3307
0.3293
0.3201
0.3121
0.3104
0.3120
0.3472
0 . 35O7
0.3293
0.3201
0.3121
0.3104
0.3120
0.3472
0.3307
0.3295
0.3201
0.3121
0.3104
0.3120
0.3472
0.3307
0.3293
0.3201
0.3121
0.3104
0.3120
-17.93
-16.30
-14.57
-11.03
-7.03
-2.30
-0.74
-17.90
-10.53
- 14.0O
-11.03
-7.90
-2.30
-0.75
-17.90
-10.54
-14.01
- 1 1 . 09
-7.90
-2.39
-0 . 75
_ 1 1 (\Sl
— 1 < . v»J
-16.55
-14.61
- 1 1 . 09
-7.91
-2.39
-0.75
-17.90
-16.55
-14.61
- 1 1 . 09
-7.91
-2.39
-0.75
-17.90
-16.55
-14.61
- 1 1 . 89
-7.91
-2.39
-0.75
-17.93
-16.53
-14.61
- 1 1 . 89
-7.91
-2.39
-0.75
-10.90
-•O.OO
-C'..71
-0.90
-4.51
- 1 . 32
-0.41
- 1 1 /o:>
-'.0.0:2
"•"• 75
-0 . 07
-4 . r?2
— 1 . 32
-o!41
-11.01
-.'0.03
r\ TO
'; 1 » t \f
-0 . 90
-4.52
-1.32
-0.41
_ i i r\ i
— 1 1 « U 1
-10. O3
-0.74
-0 . 90
-4.52
- 1 . 32
-0.41
-11.01
-10.03
-3.74
-0.90
-4.52
- 1 . 32
-0.41
-11.01
-10.03
-0.74
-o.oa
-4.52
-1.32
-0.41
-11.01
-';0.03
-O.74
-0.90
-4.52
"* 1 • o2
-0.41
-o.rs in?
-0 . ."£WJ
-oirvrXi
-o.nm
-0. 1450
-0.04---2
-0.0 KIT
-o." no
— O."f?.'»rj
— i~S o "T 1
-0 . 2 1. - 7
-0. 145'J
-0. Ov'!-5
-0.0 "37
-0.5101
-o.sTXj
— O '"'{"'i
-Q\6\\7
-0. 1.432
-0.0443
-0 . O 1 37
/\ rt . r> |
— '.) . \l NJ 1
-0.2090
-0.2375
-0.2117
-0. 1452
-0.0443
-0.0157
-0.3151
— 0.2.'5?'3
-0.2373
-0.2117
-0. 1432 -
-0.0443
-0.0107
-0.3131
-0.2393
-0.2573
-0.2H7
-0. 1432
-0.0443
-0.0137
-0.3131
-0.23'->0
-0.2573
-0.2117
-0. 1453
-0.0440
-O.O157
o.3~sr"» 0.0452 o.o5-'o r'.rs .."r.^o r^.rvv>
o.1'''.^'} o.O5f»;j o.onr" .T'.rrir'. ir*,..1"'
O.T ••"-;• 0.03'*«f1S O.010'' rj1.1"1. -'"O ''"•.:'"•'>
O.C.41 0.0103 0.0009 K>. !5fW *'.f "''<•>
0.0. '-34 0.0030-0.0011 .<'».?'X.9 J».r.A«
i . o:r>o -o . 0009 -o . 0020 2 . 07 in « . r. * ,-.
1.0(00 -0.0003 -0.0012 O.GM5 r\.'^
O.-T'iOn 0.0-J5O 0.0540 55.'<-f>( ""l.'^'t
o . <•> '-7^ o . 05''»3 o . or:5;; :r? . ^,r; ^ n » '•, \ '. s : -, ••
O "' "''"Vl O ()'^^>7 O O f 'l^ ^1 f"~r. ^ | /i r-*f\ .1
o.r"'«5 O.OK»I o.oo'jo i^.o^^o ^.nr,
o.°'rrfi o.oo">7 -o.oo 11 o.ooryj n.i ;;:». i
i. s \ c, 0 . 0440 0 . 054O 55 . 1 05r, 22 . > V »
O.6-*'93 0.0302 0.025:; 37.'ilK> 1".vni7
O.7.r»11 0.0200 O.OiOT 2^ .^4^" lA.^^o
O.CI-79 O.OI01 0.0000 14.C6R3 O.."'!1*
0.0707 0.0050 -0,00 1 1 O.CT/.J n.-'v".!.
l.OS'Kl -0.0010 -0.0020 2. 075^ l.f.fA
1.0(33 -O.OC703 -0.00<2 0.8500 ^ f^^
0.0v93 0.0302 O.O23T 27.0O21 I-".*1 53
0.7-r.27 0.0200 0.0103 31. 27551 K-.TT:'
o.ar.04 0.0101 o.oooo 14. coo? '.».'••"•*.
0.9793 0.0050 -0.0011 O.n777 IS.R:TJ
1.02-C.!.; -0.0010 -0.002,1 2.073H l.fM4
1.0J39 -O.OOOCi -0.0012 0.0^05 O.^'O
0.5^22 0.0449 O.OC40 53.0709 22. »75
0.0499 0.0302 0.0235 27.5990 in.45.-2
0.7329 0.0203 0.0. '02 21.25TO l"-.r?.'«
O.O.IGO o.o 101 o.oooo Kj.o'sro o,r.4i
0.9793 0.0030 -0 . 00 1 1 ^ 0 . £3703 R.^rVJ
1.0340 -0.0010 -O.OQ23 3.0754 ».O<-J
1.0140 -0.0003 -0.0012 O.C5O3 O.ors.j
0.5023 0.0449 0.0340 33. OCW> 22. \74
0.0100 0.03^3 0.0255 27.SJ9R7 1 .?. . ^..'!
0.7:»29 0.0200 0.0102 21.2521 14. :*•?,->
O.OC-07 0.0101 0.0030 14.057? O.r-M
0.9794 0.003-3 -0.0011 O.G750 ".nil
1.0246 -0.0010 -0.0020 2.0754 (..".14
1.0140 -0.0003 -0.0013 O.C^OO O-C'''.1!
0.5023 0.0449 0 . 0540 353 . CC9O 22 . f 7 -1-
O.C>:>00 0.0502 0.02-J5 ?7.r>OC?/> 1."..'':'.1
0.7,~30 0.0206 0.0102 :.11.25.i«> <4.r"'pi
0.0'.07 0.0101 0.00,',9 14. 0577 9..?4«
0.9794 0.0030 -O.O0 1 1 0.0757 P.nr^t
1.0347 -0.0010 -0.0023 2.0754 l.fT-1-
1.0140 -O.OOOO -0.0013 O.fT.L'Of. O.Cr::'5
Exhibit A-8 (continued)
-------
VISUAL EFFECTS FOR LINEf OF
1600 JW POVER PLANT
DOWNWIND DISTANCE (KM) = 220.0
THETA LENGTH RP/RV0
135.
IW r.RElrtJCED
SIGHT ALOWG PLUPIE
YCAP
X
Y DELYCAP
DELL C< 550) BRATIO
DELX
DELY E(LTTV) E(LAB)
20.
29.
20.
29.
20. '
20.
20.
40.
40.
40.
40.
40.
4O.
49.
<>O.
60.
60.
6O.
6O.
60.
60.
B^».
80.
80.
80.
80.
80.
OO.
iro.
100.
100.
100.
10O.
100.
1OO.
120.
120.
120.
120.
120.
120.
120.
140.
140.
140.
0.00
0.02
0. 06
0. 10
0.20
0.50
0.30
0.00
0.02
0.05
0.10
0.20
0.50
O.80
O.OO
0.02
O.O5
0. 10
0.2O
0.50
0.80
, 0.0O
0.02
0.05
O. 10
O.20
0.50
0.80
O.OO
0.02
0.05
0.10
0.20
0.50
0.80
0.00
0.O2
0.05
0.10
0.20
0.50
0.80
0.00
0.02
0.05
100.3
179.7
170.9
177.3
176. 1
173.0
170.2
103.2
181.0
J7O. 1
174.2
163.6
161. 0
171. !
107.5
183.4
173.0
170. fy
16O. 1
149. 0
171.2
190.2
134. 0
176. 0
165. 1
149. 0
149.3
171.2
109.6
131.5
170.9
156.6
136.8
149.4
171.2
184.8
174.9
161.9
144.4
137.2
149.4
171.2
174.7
163. 1
143.4
2.52
2.85
3.29
3.90
4.79
6.03
6.40
1.00
2. 16
3.71
5.03
8.37
!2.95
7.02
-1.36
0.87
3.01
7.O1
13.45
19.46
7.4O
-2.OO
0.52
4.O7
10.78
19.04
19.32
7.46
-2.47
1.09
7.60
15.33
26.04
19.26
7.46
0.10
5.46
12.46
21.93
25.06
19.23
7.45
5.54
11.03
19.77
54.04
54.04
55.91
57.42
59.59
62.52
63.36
40.69
49.91
51.56
53. 07
07.23
61. GO
63. 13
46. 02
47 . 44
49.37
52.07
56.01
6 1 . 42
63.01
44.72
46.25
40.30
51. 19
55.41
61.22
62.94
44.09
45.66
47.77
5O.75
53. 10
61. 12
62.91
43.77
45.36
47.51
50.53
54.93
61.07
62.89
43.61
45.21
47.37
70.50
7C.97
79.50
00.43
81.63
03.20
03.64
75.23
76.04
77.04
78.40
O0.33
O2. 83
03.53
73. 5O
74.50
75.70
77.34
79.64
G2.62
03.46
72.73
73.73
75.04
76.01
79.29
02.52
G3 . 43
72.31
73 . 35
74. 7O
76.53
79. 12
O2. 46
33.41
72. 10
73. 15
74.53
76.41
79.03
82.43
33.40
71.99
73.05
74.45
0.3325
0.3271
0.320O
0.3133
0.3052
0.290O
0 . 2982
0.3443
0.3362
0.0270
0.3160
0.3061
0 . 2'>84
0.2900
0 . 3457
0.337O
0 . 327 1
O.3I63
0.3054
0.29CO
0.2978
0.3447
0.33-19
0.026O
0.3153
0.3043
0.2976
0.2976
0.3436
0.3348
0.0250
0.3144
0.3039
0.2974
0.2973
0 . 3428
0.3340
0 . 3243
0.3139
0.3035
0.2972
0.2975
0.3422
0.3333
0.3230
0.0473
0 . 3406
0.3328
0 . 3239
0.3150
0 . 30-»O
0.3100
0.3527
0.0437
0 . 3337
O.3201
0.3132
O.30OO
O.3096
0.3497
O.34O6
O.3306
0.3203
O.3111
0.3081
0 . 3094
0.3471
0.3381
O.32O4
0.3184
O.3999
0.3077
O.3093
0.3437
0.3360
0.3272
0.3173
0.3093
0.3076
0.3092
0.3450
0.3361
0.3266
0.3171
0 . 309 1
0.3073
0.3092
0.3447
0.3358
0.3264
-9.06
-9.04
-7 . 95
-6.42
-4.20
-1.22
-O.37
-13. 14
-13.91
-12.25
-9.92
-6.54
-1.93
-O.59
-17.77
-16.34
-14.41
- 1 1 . 7O
-7.74
-2,31
-0.71
-19.04
-17.51
-15.45
-12.56
-0.33
-2.5O
-0.7O
-19.66
-1O.09
-J5.97
-12.99
-0.63
-2.60
-O.O1
-19.97
-1O.30
-16.23
-13.21
-0.70
-2.65
-0.83
-20. 12
-18.52
-16.36
-5.42
-4.95
-4.33
-0.46
-2.24
-0.64
-0. 19
-0.61
-7.03
-6 . 04
-5.47
-0.53
-1.O2
-O.OJ
-10.29
-9.37
-a. !6
-ft . 52
-4.21
- J .22
-O.07
-1 1. 12
-10. 13
-0.02
-7.04
-4.55
-1 .02
-O.41
-11.54
-1O.5O
-9, 14
-7.30
-4.72
-1.3O
-O.43
- 1 1 . 75
-IO.G9
-9.31
-7 . 43
-4.01
-1.40
-0.44
-11.03
-10.79
-9.39
-0. 1464
-0. 1354
-0. 1203
-0.0992
-0.0671
-0.0203
-O.OO>'»4
-0. 2'l'i'3
-0.2172
-0. 1932
-0. 1590
-0. 1070
-O.O333
-0.OIO3
-0.2320
-0.2003
-0.2320
-O. 19OO
-O. 1291
-O.O309
-O.0124
-O . 303 1
-0.2322
-0.2309
-0.2004
-0. 1390
-0.0432
-O.OI34
-O.016O
-0 . 3922
-0.2599
-O.2133
-O. 1446
-0,0447
-O.0133
-0.3209
~0.2'>'i3
-0.2039
-0.2171
-0. 1403
-0.0454
-0.0140
-0.3230
-0.2937
-0.2657
0.5900 0.0343 0.0367 29.4519 f>.C«4r?
0.6022 0.02O9 0.0299 25.0155 K..2,T)
O.7481 O.O225 0.022O I9.<">!»94 I2.nf!'>
0.8471 0.0151 0.0132 13.2C.O7 r..f\T)
0.9472 0.0009 0.0044 G.2O5G t».^7O
1.0O36 O.OO04 -O.OO07 0. '>':"'> O.r<"~
1 . OO36 -O . OOO2 -0 . OO05 O . C< T.7 O . :V>2
0.5.790 O.0400 0.0420 {70.2! ';-> 20, f.M
O.0234 0.0379 O.O~r,0 "O.^m 1^.70T
0.7233 O.O233 0.0230 20. M. T4 »5.ir>
O.0376 0.0133 O.OI24 15.7G5C5 fO. «2')
0.9513 O.0073 0.0026 7.^72 5 . r>">A
1.01O3 O.0001 -0.00«7 l.rr^!, i.J'JVJ
1.0O7! -0.0004 -O.OOO3 O.5905 O.''"}
0.5427 0.0474 0.0091 30.4032 2r..'v>4
O.0294 0.0330 O.O209 3O.541O IC1.,0,01?
O.7-J13 0.0233 O.O20O 23.ar.05 15.rr"/V
O.C430 0.O100 O.O007 13.0574 lO.nn
0.9019 O.O070 0.0000 7.0
O.6CJ33 O.O375 O.O275 29.H229 IO.5O3
O.7415 O.O277 0.017022.0534 15. «:t7
O.0131 O.OI09 O.O079 J5.2OO5 IO.CK'. •
O.97O9 O.0062 -O.OOOO 7. TOO" 5.7J'»
1.0207 -0.0003 -0.0027 a.o.-.u; i.r.r,
1.0121 -0.0003 -0.0012 0.(V?fX> 0.0' 3
0.5572 O.O453 0.0(151 05.0705 23.27O
O.O456 O.O304 O.02O2 29.2)43 19.r2'>
O.7494 0.0200 0.0107 22.4040 14.004
O.O-.61 O.O100 O.007O 14.O15H lO.T/vr
O.9779 0.0O55 -O.OO11 7.2J71 5.77.T
1.O241 -O.OO10 -0.0029 2.1700 t . f"VJ
1.OI37 -O.OOO9 -0.0012 O.".*?".? f.677
O.5024 O.O444 0.0045 C4.0-':03 2'J.''r.l
0.0513 0.0356 0.0250 23.nO.fTr> 19.)"'..li
0.7534 0.O259 0.0101 22.0010 14. ."44
0.8722 O.0104 O.OOOG 14.5490 lO.r.VI
0.9-'S33 0.0051 -O.OO 14 7.0997 S.TfV)
1.0200 -0.00 1 I -0.0030 2.2140 1.022
1.0(50 -0.0009 -0.0012 0.9104 0.<»'\i
0.5063 0.0430 0.0342 34.3075 22.0f.<»
0.6536 0.0351 O.0254 23.5C»O« r
0.7000 0.0235 0.01K9 21.R"iO« K..703
Exhibit A-8 (continued)
-------
ro
ro
00
140.
140.
140.
140.
100.
160.
100.
160.
16O.
100.
too.
180.
180.
130.
180.
100.
180.
IPO.
200.
200.
200.
200.
200.
200.
200.
210.
210.
210.
210.
21O.
210.
210.
215.
215.
2?I».
215.
215.
215.
215.
218.
218.
218.
218.
218.
218.
213.
219.
219.
219.
219.
219.
219.
219.
0. 10
O.20
0.50
O.CO
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.30
O.OO
0.02
0.05
0. 10
0.20
0.50
O.30
0.00
0.02
0.05
0. 10
0.20
0.50
0.30
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
O.OO
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
141.9
137.3
149.3
171.2
158.3
153.6
143.6
142.0
137.4
149.5
171.2
153.4
153.6
143.7
142. 1
137.4
'49.5
171.2
153.4
153.6
143.7
142. 1
137.4
149.5
171.2
158.4
153.6
143.7
142. 1
137.4
149.5
171.2
153.4
153.6
143.7
142. I
137.4
149.3
171.2
158.4
153.6
143.7
142. 1
137.4
149.5
171.2
158.4
153.6
143.7
142. 1
137.4
149.5
171-2
23.29
25.78
19.22
7.45
14.41
16.99
19.68
23.23
25.75
19.21
7.43
14.37
16.96
19.65
23.21
25.74
19.21
7.45
14.36
16.95
19.64
23.21
25.74
19.21
7.45
14.36
16.95
19.64
23.21
25.74
19.21
7.45
14.36
16.95
19.04
23.21
25.74
19.21
7.45
14.36
16.95
19.64
23.21
25.74
19.21
7.45
14.36
16.95
19.64
23.21
25.74
19.21
7.45
30.41
54.87
6 1 . 04
62.83
43.53
45. 14
47.31
50.36
54.83
61.03
62.87
43.49
45. 10
47.27
50.33
54.81
61.02
62.87
43.47
45.09
47.26
50.32
34. BO
61.01
62.37
43.47
43.08
47.26
50.31
54.00
61.01
62.87
43.47
45.08
47.25
50.31
54.30
61.01
62.37
43.47
45.08
47.25
50.31
54.00
61.01
62.87
43.47
45.03
47.25
50.31
54.80
61.01
62.07
76.34
78.98
02.42
33.39
71.94
73.01
7-'.. 41
76.31
78.96
02.41
03.39
71.91
72.93
74.39
76.29
70.95
O2. 40
00.39
71.90
72.97
74.38
76.28
78.94
32.40
33.39
71.90
72.97
74.33
76.23
78.94
82.40
33.39
71.90
72.97
74.38
76.28
78.94
02.40
83.39
71.90
72.97
74.33
76.28
73.94
82.40
83.39
71.90
72.97
74.38
76.23
78-04
32 . 40
33.39
0.3134
0.3033
0 . 2972
0.2974
0.3419
0.3332
0.3236
0.3132
0.3031
0.2971
0 . 2074
0.3417
0.3330
0.;]234
0.3131
0.3030
O.2971
0.2974
0.3*16
0.3329
0.3233
0.3130
0.3030
0.2970
0.2974
0.3410
0.3329
0.3233
0.3130
0.3030
0.2970
0.2974
Jfr.3416
0.3329
0.3233
0.3130
0.3030
0.2970
0.2974
0.3416
0.3329
0.3233
0.3130
0.3030
0.2970
0.2974
0.3416
0.3329
0.3233
0.3130
0.3030
0.2970
0.2974
0.3168
0 . 30O9
0.3074
0.3092
0.3446
0.3357
0.3263
0.3168
0.3089
0.3O74
0.3092
0.3443
0.3357
0.3262
0.3167
0.3088
0.3074
0.3092
0 . 3445
0.3357
0.3262
0.3167
0 . 3083
0.3074
0.3002
0.3443
0.3357
0.3202
0.3167
0 . 3033
0.3074
0.3092
0 . 3445
0.3357
0.3262
0.3167
0.3088
0.3074
0.3092
0 . 3445
0.3357
0.3262
0.3167
0.3008
0.3074
0.3092
0.3445
0.3357
0.3262
0.3167
0.3088
0.3074
0.3O92
-13.31
-O.86
-2.68
-0.84
-20.20
-18.59
-16.42
-13.37
-8.89
-2.69
-0.85
-20.23
-18.62
-16.45
-13.39
-8.91
-2.70
-0.83
-2P . 25
-18.64
-16.46
-13.40
-8.92
-2.70
-0.35
-20 . 23
-18.64
-16.47
-13.41
-0.92
-2.70
-0.85
-J20.25
-18.64
-16.47
-13.41
-8.92
-2.70
-0.85
-20.25
-18.64
-16.47
-13.41
-0.92
-2.71
-0.85
-20.23
-18.64
-16.47
-13.41
-8.92
-2.71
-0.85
-7.50
-4.83
- 1 . 42
-O.44
-11.90
-10.83
-9 . 43
-7.53
-4.87
- 1 . 43
-0.44
-11.93
-10.05
-9 . 45
-7.54
-4.89
- 1 . 43
-0.43
-11.94
-10.86
-9.46
-7.55
-4.39
-1.43
-0.45
-11.94
-10.87
-9.46
-7.55
-4.39
-1.43
, -0.45
-11.94
-10.87
-9.46
-7.55
-4.89
-1.43
-0.45
-11.94
-10.87
-9 . 46
-7.55
-4.09
-1.43
-0.45
-11.94
-10.87
-9.46
-7.55
-4.89
-1.43
-0 . 45
-0.2183
-0. 1473
-0.0457
-0.0141
-O.3239
-0.2093
-O.2603
-O.2100
-0. 1431
-0.0453
-0.0142
-O.3241
-0.2003
-O . 2000
-0.21°2
-0. 14,32
-0 . 04:?3
-0.0142
-0.3242
-0.200O
-0.2600
-O.2102
-0 . 1 40 J
-0.0459
-0.0142
-0.3242
-0.2003
-0.2606
-0.2102
-0. 1433
-0.0459
-0.0142
-0.3242
-0.2003
-0.2006
-O.2192
-0. 1433
-0.0459
-0.0142
-0.3242
-0.2908
-0.2000
-0.2192
-0. 1433
-0.045O
-O.O142
-0.3242
-0.290O
-0.2000
-0.2192
-0. 1403
-0.0453
-0.O142
0.8769 0.0151 0.0004 14.0791 10.1f?T
0.9M73 0.0049 -O.OO 15 7.OI54 ft. 771
1.0233 -0.0012 -0.0030 2.2054 1.00'?
1.0139 -O.OOO9 -0.0012 O.0021 O.7CO
0.5093 0.0435 O.O341 34. 21 t 2 22.^03
0.0533 0.0343 0.025320.4140 10. Oil
0.7033 0.0232 0.0 ISO 21.7OOO 14.70'!
O.O303 O.0143 0.0003 14.2730 >O. U!7
0.9004 0.0047 -0.0010 6.0303 5.739
1.0303 -O.OO 13 -O.0030 2.2447 1 . OO">
1.O167 -0.0010 -0.0010 0.040O O.VO4
O.5713 O.O433 0.0341 04.1242 22.Tf»-'l
O.OO 1 3 O.O040 O.0252 23.0327 1.O.f\",:>
O.7061 0. 02-1O 0.01 !"•''. 21.or,o| 14. c.^o
O.T?31 0.0147 0.0000 14.2149 1O. 107
0.9^27 0.00^6 -0.001O 0.0241 5.7^0
1.0314 -O.0013 -0.0030 2.24'M- 1 . 04^
1.0172 -0.0010 -0.0013 O.O'-ir, O.TO'V
0.5731 0.0432 0.0341 34.O707 22.(y?l
O.0030 0.0343 0.02^2 23.2007 13.005
0.7030 0.0249 0. 015O 2 1 . 0210 14.0V 'I
O.C350 0.0140 0.0063 14. IO20 10. I20
0.9044 0.0046 -0.0010 0.0040 5.743
1.0322 -0.0013 -0.0030 2.2400 1.04">
1.0176 -0.0010 -0.0013 0.0477 O.TO7
0.5730 0.0432 0.0341 34.0700 22.0'."!
0.0030 0.03*3 0.0252 23.2016 IB. 001
O.7006 0.0249 0.0 ISO 21.0100 14.079
O.C330 0.0140 0.0000 14. ! 754 fO. 123
O.9f>49 0.0040 -P. 00 10 O.O005 5.7*1
1.0025 -0.0013 -0.0000 2.2400 1.04'»
1.0177 -0.0010 -0.0013 0.0480 0.707
0.3738 0.0432 0.0341 C4.00O1 22.rt4T
0.0033 0.0343 0.0252 23.2707 1C. 061
0.7083 0.0249 0.015321.6114 14.070
0.0353 0.0146 0.0000 14. 170O 10.122
0.9031 0.0046 -0.0010 6.0904 5.741
1.0320 -0.0013 -0.0030 2.2405 1.040
1.0177 -0.0010 -0.0013 0.0404 0.707
O.G733 O.O432 0.034! 04.0070 22.O47
0.0039 0.0345 0.0252 2G.2703 IP. 001
O.7089 O.0249 0. 0153 2 1 . 0 MO 14.
-------
07 AEROSOL ANI> GASES CONTRIBUTED BY
1600 MW POWER PLAIIT
DOWNWIND DISTANCE (KM) = 240.0
PLUTTO ALTITUDE .CM) = 392.
SIGMA Y (M) = 6411.
SIGMA Z CM) = 363.
SO2-SO4 CONVERSION RATE= 0.0215 PERCENT/HR
NOX-NO3 CONVERSION RATE= O. 15OO PERCENT/HR
ALTITUDE
H+2S
INCREMENT!
TOTAL AMB!
11+ IS
INCREItENT!
TOTAL AMB!
II
INCREMENT!
TOTAL AMB!
H-1S
INCREMENT!
TOTAL AMB!
H-2S
INCREMENT!
TOTAL AMB!
0
INCREMENT!
TOTAL AMB!
NOX
C PPM)
0.014
O.O14
0.019
0.019
0.001
O.031
0.001
O.031
0.001
O.031
0.031
O.031
1102
(PPII)
0.010
O.O1O
0.013
0.013
O.O21
O.C21
0.021
O.021
0.020
0.020
0.019
0.019
NO3-
(PPM)
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
o.ooo
o.ooo
o.ooo
0.001
0.001
NC2/NTOT N03-/NTOT
(HOLE %) CKOLE K)
6O. 133
6O. 133
69.063
69.063
66.303
66.303
65. 154
65. 154
6 1 . 007
6 1 . C07
59 . 379
59 . 379
3.091
3.091
O.674
0 . 674
O.350
O.3GO
O.400
0 . 460
1.302
1.302
2.439
2.439
S02
( PPM)
0.003
O.003
0.004
0.004
0.006
O.O06
0.006
0.006
0.006
0.006
0.006
0.006
CUG/H3)
0.073
3.O09
O.024
2.900
O.022
2.933
O.O29
2.965
O.031
3.017
0. 135
3.071
(HOLE rn
O.643
2 1 . OO4
O. 137
15.^95
O.O36
10.437
O. 116
1O.434
0.319
1O.666
0.531
10. vir»o
O3
< PPI-D
-O.009
O.029
-O.OIO
O.023
-0.013
O.023
-O.014
O . O24
-O.OI7
O.021
-0.019
O.O19
PRIMARY B55P-TOTAL ERPSN/B
(UG/NO) ( 10-4 11- n (!5>
0.980
13.024
1.356
14.292
2.208
15. 144
2.2O8
15. K4
2.200
15. 144
2.208
15. 144
O.O14
O. 143
o.oio
0. 146
O.O2T
O. 1,V>
0.02"
o. jr>6
o.ono
o. t:;.'i
o.oni
O. 159
14
f>C
c.
57
*^
5^
n
53
7
54
12
r«4
-.549
i . O4^>
. °!77
. T7r>
.217
. r.^-ni
. n/1'0
. ^oo
,741
. 247
. 772
CUMULATIVE SURFACE DEPOSITION (HOLE FRACTION OF INITIAL FLUX)
S02! 0.OOOO
NOX! O.OCOO
PRIMARY PARTICDLATE! 0.0000
S94! 0.0000
N03! O.CCOO
Exhibit A-8 (continued)
-------
VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
1000 1W POWER PLANT
DOWNWIND DISTANCE (KM) =« 240. 0
PLUPTE ALTITUDE (PD = 392.
SIGHT PATH IS THROUGH PLUME CENTER
THETA ALPHA RP/RV0 RV ^REDUCED
43.
30.
30.
3O.
30.
30.
30.
45.
45.
45.
45.
45.
45.
GO.
60.
60.
60.
60.
K> ft\
CO c'°-
0 90.
90.
90.
Ort
X*J •
90.
90.
OBSERVER
90.
90.
30.
30.
3O.
30.
3O.
30.
45.
45.
43.
45.
45.
43.
60.
6O.
0-.02
O'.OS
O. 10
0.20
0.50
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
0. 10
eon
. fc\7
0.50
0.80
POSITION
0.26
0.02
O.05
0. 10
0.20
0.50
0.30
0.02
0.03
0.10
0.20
0.50
0.80
0.02
0.O3
180.9
179.6
177.6
174.3
171.7
171.3
102.2
101. 0
179.5
177.9
175.7
175.0
102.7
101.7
109.5
179.2
177.4
176.8
103. 0
182. 1
131. 1
f f*O <\
\ \*\f * \f
178.4
177.9
AT 1X2 OF
179.3
181.2
179.9
177.9
175.1
171.9
171.6
182.4
131.3
179,8
170.1
175.8
175.1
182.9
102.0
2.20
2.94
4.02
5.53
7. 17
7.29
1.51
2. 14
2.95
3.86
5.05
5.41
1.23
1.76
2.42
3. 13
4.12
4.41
1.07
1.54
2.09
O 7Q
*rf . • W
3.56
3.82
A 22.
2.96
2.04
2.75
3.82
5.36
7.09
7.25
1.38
1.99
2.79
3.74
4.99
5.37
1.12
1.63
YCAP
94.79
93.48
93.39
96.21
102.50
104.28
96 . 42
94.94
95. 14
98.41
103. 11
104.44
97.29
96. 11
96.54
99.47
1O3.41
104.52
97.89
96.86
97.55
inn in
I W >1O
103.59
104.57
5 DECREE
101. 18
53.29
52.49
52.43
54. 13
57.94
59.01
54.29
53.38
53.50
55.49
58.33
59. 14
54.82
54.10
L
97.95
97.42
97.39
98.52
100.96
101.63
98.60
98.01
98.09
99.38
101. 19
191.69
98.94
98.48
90.65
99.00
101.30
101.72
99. 18
90.77
99.04
inft ni
J W . vv
101.37
101.74
y
X
0.3413
0.3431
0 . 34O4
O.3311
O.3203
0.3191
0.3C09
0.3412
0.3C03
O.3203
0.3201
0,3191
0.3372
0.3GO9
0.3057
0.3271
0.3199
0.3191
O.3359
0.3C74
0. 331)8
OT»lV»
. OuU.*
0.3198
0.3190
WIND DIRECTION
100.46
78.06
77.59
77.55
78.56
O0.72
O1.02
78.65
78. 12
78. 19
79.34
80.94
81.38
78.96
78.54
0.3238
0.3239
0.3254
0.3226
0.3132
0.3029
0.3018
0.3214
0.3237
0.3206
0.3108
0.3027
0.3018
0.3193
0.3214
Y DELYCAP
0,3523
0.3526
0.34O3
0.3304
0.3303
0.3306
0.3509
0.3521
0.3470
0.3375
0.3300
0.3303
0 . 3496
0.3304
0.3460
0.336O
0.3309
0.3300
0.3486
0.3492
0.3445
0*1 'Hit
• Ol>\7 O
0.3309
0.3309
-10. 12
- 1 1 . 43
- 1 1 . 32
-8.70
-2.41
-0 . 62
-8.49
-9.97
-9.77
-6.50
-1.80
-0.46
-7.62
-8.79
-8.37
-5.44
-1.50
-0.39
-7.02
-8.03
-7.36
—4 ?n
^ • I U
-1.32
-0.34
SECTOR FROM THE
0.3340
0.336O
0.3362
0.3316
0.3208
0.3124
0.3126
0.3345
0.3358
0.3310
0.3199
0.3128
0.3128
0.3332
0.334O
-3.72
-6.20
-7.00
-7.06
-5.35
-1.55
-0.47
-5.20
-6. 10
-5.99
-4.00
-1. 15
-0.33
-4.67
-5.38
DELL C( 550) BRATIO
-3.92 -0.0944
-4.44 -O. 10GO
-4.43 -0. 1110
-3.33 -O.OCifi?
-o.9i -o.orwo
-0.23 -0.0073
-3.27 -O.07GO
-3.O5 -O.O929
-3.73 -0.0^29
-2.4O -O.O640
-0.63 -0.0192
-0. 17 -O.0054
-2.92 -0.0696
-3.39 -O.OO14
-3.22 -O.079I
-2.07 -0.0r»32
-0.56 -O.O160
-0. 15 -0.0043
-2.69 -O.0630
-3.09 -0.0742
-2.02 -O.0693
— 1 . 02 — O . O466
-0.49 -0.0140
-0. 13 -0.0039
PLUPffi CENTER!, INF,
-1.41 -O.0370
-3.51 -0. 1001
-3.93 -0. 1146
-4.02 -0. 1179
-3.02 -0.0923
-0.05 -O.O2O9
-0.26 -0.0093
-2.93 -O.OU27
-3.45 -O.09O3
-3.39 -0.0936
-2.23 -0.0603
-0.63 -0,0213
-0. 19 -0.0063
-2.62 -0.0707
-3.0O -O.OC6D
0 . 729 1
0 . 7295
0 . 7807
0 . O969
O.9924
0.9953
0 . 7402
O.7f?O9
0.7CI30
O.9K6
0.9933
O.9969
0.7523
0.7439
0.0095
0 . 9249
O.9943
O.9974
O.7633
0.7622
0 . 82T6
OQT»O
• s v fc^v.
0.9931
0 . 9973
AT THE
0.9604
0.7321
0 . 7333
0.7364
0.9042
0.9976
0.9993
0.7422
0.7333
0.7923
0.9198
0.9975
0.9995
0.7540
0.7514
DELX DELY E(LUV) E(LAD-
0.0226 0.021321.1531 13.735
0.0242 0.0215 22. ICf.O 14.3JVi
0.0216 0.0173 19.4G96 12. -"Sr,
0.0122 0.0074 11.1019 6.9t:,|
O.OO14 -0.0003 l.C/Vrf* l.H7'>
O.O002 -0.0004 O.541O O.A?|
0.0200 O.OIOO 19. lilfir; l*».<.'>^
O.O224 O.O2M 20.9437 jr>.n'>~
0.0194 0.0167 17.00
0.0012 -0 . 0002 1 . <.2< fi 1 . 'VP.7
O.OG02 -O.OOO3 O.-VJM.", O.f!0">
0.01O3 0.01OO \7.n\37 ll.r, II
0.0201 0.01C"1< lO.C^O'!. 12.071
0.0163 O.OKO 15.76C?, lO.or-)
O.OOC-2 O.OOCT3 T.'Win 4.7n
0.0010 -O.OC01 1.2067 O.Hf.O
O.OOO2 -0.0002 O.r£r?t>o O.r^T
O.OI7I 0.0175 16.7O90 lO.l^ni
0.01G3 O.OI.*:2 17.7693 11. PO')
0.O149 O.0134 14.O912 n.°"V>
0.0009 -O.OOOJ! 1. 0692 0.7-^7
0.0002 -0.0002 0.29<6 O.r.r.S
GIVEN DISTANCE FROJ1 THE F™nrnF
0.0049 0.0029 4.5820 2.TT1
0.0222 0.0223 18.7266 12. KJM
0.0236 0.0230 19.543ft 12.C'Ofl
0.0203 0.0103 16.092.T lo.rari
0.0114 0.0076 9.4275 5.074
O.OOlt -O.OOOO 1.5131 1.2in
0.0001 -0.000'i O.4941 O.<21
0.0197 0.0213 17.0545 11. OP,'
0.0219 0.022''. 10.5422 12.012
0.0188 0.017O 15.7060 10.041
0.0091 O.C067 7.57PO 4.772
0.0009 -0.0004 1.1500 O.f/^
o.ocoi -O.OOQ4 o.o/'>2n o.ron
0.0130 0.0199 15.C3fl!> 10. ^«5
0.0197 O.O2OO 16.9OHO lO.^-O
Exhibit A-8 (continued)
-------
60.-
6O.
60.
60.
90.
90.
90.
90.
90.
90.
0.10
0.20
0.50
0.30
O.02
0.05
0.10
0.20
0.50
O.3O
130.3
179.4
177.5
176.9
103.2
102.4
101.4
100.2
173.5
173.0
2.29
3.03
4.07
4.38
0.97
1.42
1.97
2.62
3.52
3.79
54.36
56. !4
50.52
59.19
55. 19
54.56
54.97
56.54
58.04
59.23
78.69
79.71
81.05
31.42
79. 17
73.81
79.04
79.94
31. 11
O1.43
o.nini
0.3096
0.3026
0.301O
0.3100
0.3199
0.3162
0.3007
0.3023
O.3"1O
0 . 329 1
0.3192
0.3129
0.3129
0 . 3320
0.3327
O.3275
0.3107
0.3130
0.3129
-5. 13
-3.35
-0.96
-0.29
-4.29
-4.93
-4.51
-2.94
-0.04
-0.26
-2.09
-l.«5
-O.53
-0. 10
-2.4O
-2.77
-2.53
-1.03
-0 . 45
-0. 14
-O.OH39
-0 . 0363
-0.0173
-0.0057
-O. O673
-o.o7ar»
-O.0733
-0.0493
-0.0150
-O.O03O
O.OI31
0.9292
0.9970
O.9995
0.7653
0.7044
O.O30O
0.9357
0.9978
O.9990
O.01G3
0.0073
O.OO03
O.OOO1
O.O1G3
0.01O1
O.O144
O.O069
0 . 0003
O.OOO1
o.oinn
0 . 0060
-0 . OC03
-O.OOO3
o.oir??,
O.OI94
O.O142
o.ooas
-O.OOO2
-o.oooa
13.0590
0.5630
0 . 9707
0.3009
i4.f?^r:a
1 5 . 7700
12.3974
n . cr>oo
O."026
O.2031
n.ruo
4. TM-
o!r47
o.nrir;
0 . .::.^:i
OBSERVER POSITION AT 1/2 OF A 22.5 DECREE WIND DIRECTION SECTOR FROM THE PLUNK CEHTERLINE AT THE GIVEN DISTANCE FROTI TT7F,
90. 0.26 179.7 2.CO 07.1O GO.30 0.3003 O.3162 -2.30 -t.27-O.O397 0.9640 O.O046 0.0030 3.C7CS C.
-------
,1
VISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS
1000 MW POWER PLANT
DOW WIND DISTANCE (KM) = 240.0
PLUriE ALTITUDE (M) = 392.
SIGHT PATH IS THROUGH PLUME CENTER
THETA ALPHA RP/RVO RV ^REDUCED
135.
YCAP
X
Y DELYCAP
DELL C(550) fiRATIO
DELX
DELY E(LUV) E
ro
3O.
30.
30.
30.
no.
30.
45.
45.
45.
45.
45.
45.
00.
00.
00.
00.
60.
OO.
90.
90.
90.
90.
90.
90.
0.02
0.05
0. 10
0.20
0.50
0.89
0.02
0.05
0. 10
0.20
0.50
0.80
0.02
0.05
O. 10
0.20
0.50
0.80
0.02
0.05
0. 10
0.20
0.50
0.80
101.4
100. 1
I7O.2
175.3
172.0
171.7
1C2.0
1Q1.5
180.0
173.2
175. 0
175. 1
183.1
1C2.2
ICO. 9
179.5
177.5
170.9
1G3.3
102. 5
101 .5
ICO. 3
170.5
178.0
1.94
2.03
3.09
5.25
7.04
7.21
1.3O
1.8B
2.08
3.00
4.93
5.34
1.05
1.54
2.20
2.97
4.04
4.30
0.91
1.34
1.89
2.50
3.49
3.77
57.01
50. 10
50.01
57.92
02. 10
03.39
58. 14
57. 11
57.23
59 . 46
02.64
03.54
50.74
57.93
58.20
00.20
02.07
03.02
59. 16
53.44
58.90
00.06
63.00
63.06
00.20
79.09
79.04
00.71
03.02
O3.00
30.83
80.20
30.33
31.50
03.27
33.74
31. 10
30.71
30.87
81.90
33.39
33.78
81.40
31.00
81.25
32.21
33.40
C3.81
0.3200
O.3214
0.3135
0.3091
0 . 2939
0.29OO
0.3175
0.3197
0.3100
0.3000
0.2938
0.2900
0.3159
0.3175
0.3141
0.3050
0.2938
0.2981
0,3147
0.3100
0.3123
O.3043
0.2907
0.2981
0.3340
0.3342
0.3293
0.3183
0.3100
O.31O2
0.3325
O.333O
0.3288
0.3173
0.3104
0.3104
0.3311
0.3319
0.3209
0.3108
0.3105
0.3105
0.3299
0.3306
0.3253
0.3103
0.31O6
0.3106
-6.99
-7.90
-7.90
-6.08
-1.C2
-O'.Ol
-5.86
-6.88
-6.76
-4.54
-1.35
-0.45
-5.26
-6.07
-5.79
-3.00
-1. 13
-0.38
-4.84
-5.55
-5. 10
-3.34
-0.99
-0.33
-3.73 -0. lOf.O
-4.29 -0. 1 133
-4.34 -0. 1224
-3.27 -0.0964
-0.90 -0.0310
-O.32 -O.01O3
-3. 14 -0.0357
-3.72 -O. 10111
-3.65 -0. 1023
-2.42 -0.0712
-0.71 -O.0229
-0,24 -0.0030
-2.31 -0.0704
-3.26 -0.0394
-3. 11 -0.0371
-2.02 -0.0592
-O.69 -O.O190
-0.20 -0.0060
'-2.53 -0.0700
-2.93 -0.0815
-2.72 -O.0763
-1.77 -0.05(9
-0.52 -0.0167
-0. 17 -0.0033
0.7333
O.7353
0.7394
0.9035
1.0010
1.OO17
0.7427
0.7349
0.7944
0.9229
0.9999
1.0011
0.7543
0.7522
O.3149
0.9317
O.9996
1 . 0009
0.7(355
O.7651
0 , 3323
0 . 9379
0.9995
1 . 0008
O.0219 0.0230
O.0233 0.0232
0 . 0203 0.01 C4
0.0111 0 . O074
0.0009 -0.0010
-O.OOO1 -O.OO07
0.0195 0.0215
O.O217 0.0229
o.oisr. 0.0179
0 . 0033 0 . C0f»0
O.OOO3 -O.OOOfi
-O.OOOO -0.0005
0.0179 0.0202
0.0194 0.021O
O.O1M 0.016O
0 . 0076 0 . OC/59
0,0007 -o.coo:.
0.0000 -0.0004
0.0100 0.0190
0.0130 0.0197
O.O142 O.0140
0 . 0067 0 . 0054
O.OO07 -0.0003
0.0000 -0.0004
19.5694
20. 3? 03
17.0537
9 . 6940
1 . 5'579
O.G721
I7.rvxif)
19.37CK-
16.3573
7. 81 HO
1. JJJ49
0.4101
10.0032
17.0733
14. 44 1O
6 . 7747
1 . 0005
0.3441
15.5909
10.4960
12.922O
o . o.n-?o
0.r>
9. U-r*.
<•. 2f<2
0.7'^c,
0.2^7
io.o-r.2
1 0 . OO't
O. 105
n.rMO
O.6'\'J
0 . 259
OBSERVER. POSITION AT 1/2 OF A 22.5 DEGREE WIND DIRECTION SECTOR FROM THE PLUNE CENTER!,INE AT THE GIVEN DISTANCE FT.OT1 T77E
90. 0.26 179.0 2.04 6.1.37 32.59 0.3024 0.3138 -2.62 -1.33 -0.0415 0.9662 0.0044 0.0029 3.9823 2.r»f!:7
Exhibit A-8 (continued)
-------
PLUME
THETA
45.
VISUAL. KFFECTS FOR ITON-noniZOrrTAL CLEAIX SKY VIEWS TrmOUGIT
IOOO WW POWEH PLANT
DISTANCE (KM) = 24O.O
ALTITUDE (ID = 392.
ALPHA BETA HP YCAP L X Y DELYCAP DELL
CC550) BHATIO
DELX
DELY E(LUV) E(LAH)
ro
CO
CO
90.
30.
30.
30.
30.
30.
30.
45 »
45.
45.
45.
45.
45.
60.
60.
60.
60.
60.
6O.
90.
9O.
9O.
90.
90.
90.
30.
30.
30.
3O.
30.
30.
45.
45.
45.
45.
45.
45.
60.
60.
60,
60.
60.
60.
90.
90.
90.
90.
90.
90.
15.
30.
i 45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
6O.
75.
90.
15.
30.
45.
60.
75.
90.
15.
30.
45.
toO.
75.
90.
15.
£0.
45.
60.
75.
90.
2.9-1
1.41
0.88
0.60
0.44
0.39
2. 10
1.04
0.63
0.51
0.42
0.39
1.73
O.8O
O.60
O.47
0.41
0.39
1.51
0.78
0.55
0.45
0.41
0.39
2.95
1.41
O.CO
0.60
0.44
0.39
2. 10
1.04
0.63
0.51
0.42
0.39
1.73
O.CO
0.60
0.47
0.41
0.39
1.51
0.78
0.55
0.45
0.41
0.39
38.66
25.54
20.73
18.46
17.38
17.06
39.02
24.98
19.82
17.41
16.27
15.93
39.3-3
24.77
19.43
16.94
15.76
15.41
39. 5O
24.66
19.20
16.65
15.45
15.09
23. 19
15. 00
11.98
1O.55
9.87
9.67
23.76
14.97
11.72
10.20
9.48
9.26
24.09
14.99
11.62
10.05
9.30
9.08
24.31
15.01
11.57
9.96
9.20
8.97
68.53
57.63
52.68
00 . 09
43.73
43.37
68.79
57.09
51.67
4*5.31
47.37
46.92
63.99
55.38
5 1 .23
43.22
46. 7O
46.23
69. 14
56.77
50.96
47.86
46 . 28
45 . CO
55.31
45.67
41.22
33.06
37.66
37.28
55.03
45 . 63
4O.O1
38.24
36 . 93
36.53
56.21
45.66
40.65
37.97
36.60
36. 18
56.43
45.69
40.57
37.81
36 . 40
35.97
0.3155
0.3157
0.3107
0.3214
0.3233
0.3240
O.3028
0.3005
O.3020
0.3037
0.3048
0.3052
O.2962
0.2927
0.2935
0.2948
0.2957
0.2960
0 . 29 1 9
0 . 2878
0 . 2302
0.2O92
O.2399
0.2902
0.3010
0 . 3000
O.3022
0.3045
O.3062
O.306O
0.2338
0.2355
0.2362
O . 2874
0.2383
0 . 2887
0 . 2025
0.2702
0 . 2733
0.2791
0.2797
0.2000
0.2705
0.2737
0.2734
0 . 2740
0.2744
0.2746
O.C375
0.3358
0.3375
0.3395
0.3411
0.3417
0.3246
0.3198
0.3200
0.3210
0.3218
0.3221
0.3171
0.31O9
0.3104
0.3110
0.0115
0.3117
0.3121
0.3051
0.3042
O.3044
0.3048
0.3050
0 . 3236
O.3206
0.3217
0.3235
0.3249
0.3255
0.3102
0.3042
0.3036
0.3042
0.3048
0.3050
0.3026
0.2052
0.2940
0.2941
0.2944
0.2945
0.2975
0.2094
0.2878
0.2376
0.2377
0.2378
-2.94
1.33
2.95
3.70
4.0*
4. 14
-2. .18
0.78
2.01
2.03
2.93
3.01
-2.31
0.57
1.66
2. 18
2.42
2.49
-2.11
0.45
1.43
1.O9
2. 11
2. 17
-3. 14
-0.39
O.OO
1. 15
1.37
1.44
-2.58
-0.42
0.41
0.80
0.93
1.03
-2.24
-0.40
0.31
0.64
0.80
0.85
-2.02
-0.37
0.23
0.55
0.70
0.74
-2.09 -0.0504
1.30 0.0793
3.42 0.1018
4 . 74 0 . 2774
5.47 0.0305
5.70 0.0434
-1 .83 -O.0433
0.76 0.0,137
2.42 0.1081
3 . 47 O . 2023
4.06 0.2434
4.25 0.2572
-1 .63 -O.O333
0.50 O.0430
1.97 0.1133
2.87 O. 1032
3.33 0.2024
3.55 O.2141
-1.49 -0.0347
O.45 O.O303
1.7O O.O991
2.51 O . 1 47 1
2.97 0.1773
3.12 O. 1376
-3.08 -O.O954
-0.53 O.0021
1.07 O.OB09
2.06 0. l.'ilO
2.61 0.1911
2 . 78 0 . 2044
-2.51 -0.0701
-0.57 -0.0029
0.66 0.0009
1.45 O. 10^3
1.89 0.1405
2.03 0.1,109
-2. 17 -0.0055
-0.54 -0.0041
0.51 0 . 0406
.18 0.0003
.56 0.1 103
.68 0.1256
- .95 -0.0.133
-0.51 -0.0044
0 . 42 0 . 0429
.02 0.0793
.35 0.1022
.46 0.1100
0.3405
0.20 37
0 . 2000
O.2120
0 . 200 1
0. 1001
O . 420 1
o.or. ,>2
O. 3222
0.2990
O.2870
0.2800
O . 4327
0.4192
0.3313
0 . 0,137
0.3400
O.342O
O.5200
0.40-10
O. 423«)
0 . 4O.24
o.ono.i
O.3350
O.3591
O.20 17
0 . 2,17 I
0 . 2059
O . 2230
0.2104
0 . 44 51
0.0349
0.0,100
0.0207
0.3170
0.0140
0.5007
0.4450
0 . 4 1 20
0.3912
0 . 3794
0.0756
0 . .14 1 4
0.4305
0.4570
0.4001
0.4244
0 . 4205
0.0547
0.0630
0.06C6
0 . 0726
0.0750
0.07,19
O.0421
0 . 0470
0.0319
O.0548
O.O505
O.O571
0.0354
0 . O400
0.O405
O.0459
0.0474
0 . 0473
O . 00 1 2
0 . 00,1 1
O . O332
0 . 0403
0.04 16
O . O42O
0.O512
0 . 0,173
O.O025
0.0059
o.oor.i
o . oo;v>
O.O30O
O.0433
0.0405
O . 0403
o . 0503
O.O.103
0.0327
0 . O300
O.0336
0 . 0405
0.0417
0.0421
0.0237
0 . 03 1 ,1
0.0307
0.0354
O.O304
0.0307
0.0665 43.9417 2? . 3~rtr,
0.0769 43.0010 20.. 121*2
O.0323 40.T.027 27.9.".;:2
0.0307 39.0141 27.JIC.rr,
0.0302 39.001.1 27. (17,12
0.0901 33.9507 27.0100
0.0106 37.4106 20.7000
O.OOO9 CM. 0.115 22.0050
0.00,13 32.2179 21.0002
O.O032 3 i. 0307 21.6C5I
0.0099 30.4143 2I.50C7
O.07O4 30.2254 21.5 23. 1OOO HI. 0703
0.05O6 24.7O93 17.'>C"7
0.0536 22.6033 10. 170O
0.0556 21.0112 15.0007
0.0567 20.0212 15.
-------
DOWNWIND DISTANCE DRATIO
-4.10 -
-1.70 -
-0
— I
-1
20
0.74
1.24
1.41
3.25
1.44
0.29
0.44
0.05
0.93
2.79
26
0.29
0.33
O.6S
0.00
2.49
14
0.20
0.27
0.53
0.69
1211
0-J16
0277
0302
1126
•234
0943
0350
0173
0374
0326
O911
0310
0306
OI34
0473
0636
0730
0720
0276
0112
0412
0000
0.0604
0.3023 0.
0.
0.
0,
0.
0,
O.
0,
0,
0,
0,
0,
0,
0,
0,
0,
0
0
0
0,
0,
0,
0,
0,
0.
0.2057
O.2443
0.2323
0.2213
0. -MOO
0.3943
0.3029
0.H427
0.3312
0.3273
0.5005
O.4504
0.4233
0.<-0.'.0
O.3943
0.3911
0.5474
o. r»oo7
0.-J711
OX-407
O.4372
DELX
0502
0359
0001
0033
0053
Cv>6 1
O301
0413
0-1-43
(X-04
0476
03 1O
0344
0306
0333
0393
0396
0279
O300
0319
0333
0341
0344
DELY ECLUV) E< LAD)
0.0676
0.0701
0.0311
0.0346
0.0370
0.0373
0.0337
0.0392
O.O023
0.0043
0.0062
0.0006
0.0453
0.0501
0.0527
0.0343
0.0330
0.0359
0.0^.07
0.0442
0. 0A5
0.0130
0.0439
0.0492
42.3259
33.7393
33.GOCO
34.2095
33.52OO
31.3194
0 -1.7077
30.9140
23.0150
20.7O10
23.9730
25.7300
30.1400
20.5737
24.2274
2J.3231
22.0737
21.3377
27.0313
20.7197
21.3003
20.2040
19.3093
19.3495
27.31190
20 . "or.o
23 . 20 CO
24 . 7497
24 . 5734
24.5454
22.5471
20.9391
lO.fTX'T
19.2904
19.0007
13.0153
19.3110
17.0002
10.4307
10. 1402
0573
4795
0023
(340
10.
I7.
10 .
15.
14. 3.-.J 15
I4.2'?39
Exhibit A-8 (continued)
-------
PL.VJ1S VISUAL. EFFECTS FOR HORIZONTAL VIEWS
PEnPEITO/cr/LAR TO TTIE PLUHE OF KIHTE, GRAY, AND
FOR VARIOUS ODSERVER-PLUME AKD OBSERVER-OBJECT
1600 JW POWER PLANT
BLACK OBJECTS
DISTANCES
ro
oo
tn
DOWNWIND
TIH2TA =
REFLECT
1.0
1.0
1.0
1.0
l.O
1.0
1.0
l.O
1.0
1.0
l.O
1.0
l.O
1.0
1.0
1.0
1.0
1 .0
1.0
l.O
1.0
0.3
O.3
0.3
0.3
O.3
0.3
O.3
O.3
O.3
0.3
0.3
0.3
0.3
0.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
O.O
DISTANCE
45.
=
RP/RVO noxnvo
0.02
0.02
O.O2
0.02
0.02
0.02
O.05
0.05
0.05
0.05
O.O5
0. 10
0. JO
0. 10
O. 10
0.20
O.2O
O.2O
O.50
O.50
0.80
O.02
' 0.02
0.02
0.02
O.02
O.O2
0.05
0.05
O.O5
0.05
0.05
0. 10
0. 10
0. 10
0. 1O
0.20
0.20
0.20
0.50
0.50
0.80
O.02
0.02
O.05
O. 10
0.20
0.50
o.ao
0.05
0. 10
0.20
0.50
O.OO
0. 10
0.20
0.50
0.00
O.2O
0.50
O. CO
0.50
O.CO
o.ao
O.O2
0.05
0. 10
O.20
0.50
O.OO
0.05
0. 10
0.2O
O.50
O.OO
0. 10
O.20
0.50
O.OO
0.20
0.50
0.00
0.50
O.OO
0.00
0.02
240.0
YCAP
95.09
94. 15
93.72
95.34
97.59
90.27
93. 16
03.49
94.49
96.66
97. G2
90.27
93.22
97.36
93.00
99.50
99.94
1OO.53
103.90
104.04
105. 17
34.04
42.20
52. 15
60 . 07
03.24
95. 10
42 . 40
52.47
66.81
07.55
94.23
53.39
67.96
03.37
94.95
70. 17
90.95
97.53
94.2O
100.99
101.92
8.68
L
98.39
97.70
97.52
9O. !7
99.06
99.33
90. 1O
97.43
97.03
90.70
9O.95
9O.54
9O. 12
90.97
99.22
99.OI
99. 9O
1OO. 22
1O1.49
101.54
101.96
65.66
71.04
77.39
O5 . 45
95.27
98. 03
71. 17
77.53
85.42
94.93
97.73
78. 13
O6.00
95. 02
93.01
87.09
96.39
99.04
97.75
1O0.38
100.74
35.41
X
0.3378
0.3423
0.3434
0 . 34O5
0.0302
0.3301
0.3394
0.3431
0.3413
0.3393
O.3392
0.3356
O.3373
0.3355
O.G355
0 . 0276
O.3279
O.3279
0.3213
O.3215
0 . 3207
0.3248
0.3197
0.3170
O.3172
0.3270
O.3333
0.3169
0.3155
0.3174
0 . 3200
O.3344
0.30O4
O.3125
0 . 3243
0.3300
0.3033
0.3167
O.3232
0.3101
0.3168
0.3160
0.2747
Y DELYCAP
0.3484
0.3523
0.3C23
O . 3503
0.34O9
0.3491
0.3494
0.3519
O.3501
0.3491
O.3493
O . G446
O.3451
O . 3443
0.3146
O.0362
O.3361
O. 3365
0.331O
O.C311
0.031 1
0.0352
0.0305
O.3291
O.3315
0 . 342 1
O . 3470
0.3273
0.3268
0 . 3308
O.3423
O.3472
O.3191
O . 3246
0.3374
O.3424
0.3151
0.3290
0.3342
0.3236
O.3208
0.3207
0 . 2043
-2. 13
-4.77
-6.40
-6.72
-7.04
-7. 12
-3.76
-6.71
-7.57
-7.97
-8.07
-3.93
-6.84
-7.27
-7.39
-2.56
-4.69
-4. Ol
-0.73
-1.35
-O.22
-0. 12
-0.58
-1.74
-3.59
-6. 1O
-6.O3
-0.30
-1.42
-3.64
-6.70
-7.70
-0.5O
-2.49
-5.97
-6.98
-0.29
-3.38
-4.40
-0.05
-0.94
-0.01
0.74
DELL C< 550)
-0.84 -0.0206
-1.09 -0.0463
-2.56 -0.0025
-2.62 -O.O002
-2.70 -0.0042
-2.72 -0.0045
-1.48 -O.OQ65
-2.65 -O.0053
-2.96 -0.0723
-3.06 -0.07CO
-3.09 -O.0742
-1.54 -O.O3CJ.
-2.67 -0.0663
-2.79 -0.06G7
-2.82 -O.0093
-O.9O -O.OJ53
-1.70 -O.0<"'39
- 1 . O2 -O . O467
-O.28 -O.0077
-O.50 -0.0141
-o.oa -0.0024
-0. 10 -O.0023
-O.4O -O.O t 12
-1.03 -O.02»r»
-1.70 -0.0460
-2.5O -O.OC.04
-2.67 -O.C'.-04
-O.26 -0.0072
-0.04 -0.0233
-1.81 -O.O476
-2.79 -O.0f.32
-3.O1 -O.0726
-0.29 -0.0002
- 1 . 23 -0 . 0336
-2.45 -0.0613
-2.73 -0.0672
-O. 14 -0.0042
- 1 . 3O -0 . 0302
-1.70 -0.0439
-0.02 -0.0010
-0.36 -0.0104
-o.oo -o.oooa
1.50 0.0033
BRAT 10
0.9041
0.3171
0.7739
0.7043
0.7591
0.7039
0.3502
O.7923
0.7734
0.7640
0.7042
0.0307
O . 34 -i-2
O.33O7
0.0000
O . 96O6
O.9359
O. 9343
O.9933
O.9933
1 . OOO,1
O.9153
0 . 333 1
0 . 7K07
O.7507
O.7533
O.7502
0.0304
0.0094
O . 7077
0.7574
O.76.07
0.9006
0 . 8424
0 . O22 1
O.02r;o
0.96'KJ
0.9261
0.9299
0.9934
0.9927
0 . 9976
O.G303
DP.LX
0.0060
0.0128
O.0167
O.0171
0.0174
0 . O 1 74
0.0099
O.O 164
O.0179
0.0134
O.OIO5
O . OOO9
O.O14O
O . 0 1 47
0 . O I 43
O . OO42
O.O07!
O . <">O72
O.OOO5
O.O003
O.OOOO
O.0054
O.O1 1O
0.0151
O.OI67
O.O174
O . O 1 74
0.0081
O.O 136
0.0169
O.O184
O.OIO5
O.O064
O.O12O
0.0147
O.O 149
0.002O
0 . 007 1
0.0073
0 . 0005
0.0010
0 . 000 1
0.0080
DELY
0.0062
0.0(23
O.0165
O.0173
0.0173
0.0179
O . O099
O.O156
0.0172
0 . 0 1 00
O.O 130
0 . 0033
0.0121
O.O 102
0.0133
0.0032
0.0051
O . OO02
-O.OOOO
-O.OOO2
-0.OOO1
O.OO57
O.O117
0.0165
O.01O7
O.O 183
O.OIO2
0 . 0036
0.0142
O.O1OO
O.019O
0.0105
0.0005
O.O1 13
O.OI4O
0.0137
O.OC24
o . oor>6
O.0055
0.0002
0.0001
0 . 0000
0.0009
ECLTJV)
3.0103
1 1 . R020
10.4504
io.23rv..
io.-K.r>i
17.0000
9. J904
14.0551
io.?i io
17., 1033
17.0020
3.2792
12. Ol 14
13.C097
13.930'i
3.9193
0.0333
6.73T'
O.0400
O.95G5
O. 1440
3.531O
0.0174
12.30139
15.6900
17. 29212
17. 1917
5.9540
1 1 . 1 275
13.51 1 1
17. f>3O2
17.3393
5 . 230 1
1O.7G10
(4.0941
14. 1797
2.3721
6 . 6200
6 . 8793
0.4052
0.9704
0. 1101
2 . O373
E
3.7499
7.8001
10.2300
10.7001
1 1 . 0340
11.1 221
6.001",
9 . r?.433
10.9l.1j;
1 1 . 44~o
j 1 . OOO2
5 . riT^i;
0.2210
o.?::'. 10
8.9100
2.4070
4. KJO.'J
4 . '>°73
O.JJ923
0.71 O4
O. 1217
2.r?om
5 . 2740
0.0532
9 . 9G17
11.1 K-7
11. 1020
3 . 87 1 2
7.O^14
9.7701
1 1 . 4105
1 1.5430
3.2402
6 . o:)33
0.3506
9 . 0070
1.3011
4 . 0407
4 . 2070
0.2301
0.0300
0.0014
2.4340
Exhibit A-8 (continued)
-------
ro
u>
O.O
o.o
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.02
0.02
0.02
0.02
O.C2
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.80
0.03
0. 10
0.20
0.50
o.sa
0.05
0. 10
0.20
0.50
0.00
0. 10
0.20
0.50
O.GO
0.20
0.50
O.GO
0.50
o.ao
o.ao
19.94
34.03
54.67
04.23
93.74
19.79
34.09
54.95
83.64
92.90
35 . 02
50.28
84.52
93.64
57.59
07. 10
96 . 22
90. 16
99. 6O
100.53
51. GO
65 . 26
78.07
93.36
97.53
5 1 . 64
65.70
79.03
93. GO
97. 19
65.79
79.79
93.68
97.49
00.53
94.79
90.52
96.07
99.33
100.20
0.2816
0.2904
0.3014
0.3216
0.3312
0.2704
0.2834
0.3014
O.3227
0.3323
0.2811
0.2963
0.3109
0 . 32C6
0.2072
0.31 !3
0.3211
0.3047
O.3148
0.3139
0.2936
0.3050
0.3107
0 . 3309
0.3460
0.2096
0.3021
0.3170
0.3391
0.3462
0.2934
0.31 12
0.3341
0.3414
0.3012
0.3256
0.3332
0.3200
0.3270
0.3277
1.21
0.29
-2.24
-5.09
-6.70
1.07
0.04
-1.96
-6.20
-7.54
0.97
-0.63
-5.41 .
-6.01
0.60
-2.02
-4.22
0.24
-0.76
0.09
1.40
0.23
-1.20
-2.41
-2.64
1.24
0.66
-1. 12
-2.67
-2.98
0.76
-0.36
-2.29
-2.68
0.38
-1. 18
-1.65
0. 10
-0.29
0.03
o.ooao
0.0130
-0.0330
-0.0535
-0.06GO
O.OGC3
o . 02C3
-0.0239
-O.OOF5
-0.0719
0.0295
-0.0003
-0.0576
-0.0662
0.0119
-O.0314
-0.0427
O.0023
-O.OQO7
0 . 0006
0.73^9
0.7471
0 . 742 1
0 . 7497
0.7543
O.GG44
0.7756
0.7510
0.7529
0.7590
o.o33r>
0 . 324 1
O.OI67
0.0236
0.9543
0.9199
0.9275
0.9099
0.9399
0.9902
0.0116
0.0150
0.0166
O.0174
0.0174
0.0033
0.0131
0.0166
0.0105
o.o iao
0.0053
0.01 15
0.0147
0.0149
0 . 0024
0.0071
0 . 0074
0.0003
0.0011
0.0002
0.0136
O.OIOO
0.0193
0.0192
O.O 184
0.0096
0.0151
0.0190
O.O194
O.OIOO
0.0064
0.0123
O.O144
O.O133
O.0023
0.0039
0.0036
0,0003
0.0002
O.0001
ft . r»?.Ti
1 1 . r./y;.-)
13.0471
17.4040
17.2707
4.6101
9 . 7703
15.2403
13. 1002
17.931")
4.0701
10. 2031
14.2291
14.2002
1.9123
6.6957
6 . 940-3
0 . 44OO
1.0132
0. 1437
4.5000
7.41 43
9.31 13
11. K-21
11. 1700
3.2454
6. :?05
9 . 40 1 0
1 1 . 4773
1 1 . 5700
2.0231
6. 1004
O.R'j50
9.0314
1 . 17fV>
4 . 0330
4.2"3T
0.2041
0.6302
0.0033
Exhibit A-8 (continued)
-------
PL.VJTR VJSVAL EFFECTS FOR HOIUZOnTAL VIEWS
PERPKNDICULAn TO THE PLUME OF WIITTE, GRAY, AND
FOR VARIOUS OBSERVER-PLUME AND OBSERVER-ODJECT
1600 1W POttER PLANT
BLACK OBJECTS
DISTANCES
DOWNWIND DISTANCE
TilKTA = 90.
(KTI) =
REFLECT RP/HV0 nO/IWO
1.0
1.0
1.0
1.0
1.0 .
1.0
l.O
1.0
1.0
1.0
1.0
1.0
l.O
l.O
l.O
1.0
1.0
1.0
1.0
1.0
l.O „
0.3
O.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
O.3
O.3
0.3
O.3
0.3
0.3
0.3
0.3
0.3
0.3
0-.'02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
O.05
0.05
0.05
O. IO
0. 10
0. IO
0.10
O.20
0.20
0.20
0.50
O.50
0.00
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.50
0.50
0.80
0.02
0.03
0. 10
0.20
0.50
O.CO
0.05
0. 10
0.20
0.5O
O.CO
0. 10
0.20
0.50
O.BO
0.20
O.GO
O.OO
0.50
0.00
O.GO
0.02
0.05
0. 10
0.20
O.5O
0.00
0.05
0. 10
O.20
0.50
0.00
0. 10
0.20
0.50
0.00
0.20
0.50
0.00
0.50
0.00
0.00
240 . 0
YCAP
92.06
05.37
73.62
71.36
00.62
57.07
06 . 40
73. 15
70.06
50.01
56.45
00.97
70.55
60.26
56.84
74.43
61.C3
53.41
64.62
60.51
61.31
31.02
33.42
37.05
42.90
51.27
53.90
33.72
37. 13
42.69
50.30
53.36
30. 10
43.29
51.27
53.79
45 . 09
52.04
55.36
55.00
57.46
53.07
L
96.05
94.05
91.07
O7.67
02. 19
00.24
94.52
90.36
O7. 19
O1.31
79.39
92. 13
07.28
01.99
OO. 11
09. 14
02.34
00.98
C4.3O
02. 13
02.56
62.56
64.53
67.34
71.51
76.06
70.43
64.77
67.40
71.37
76.50
70. 11
60. 12
71.70
76.36
70.36
72.90
77.OO
79.27
79.06
00.45
00.79
X
0.3C96
0.04-63
0.0490
0.0450
O.OC29
O.C257
0.3434
0.3492
0 . 0462
O.3339
O.3266
O.34I5
0 . 3427
O.33OO
0.3223
0.3327
0.3223
O.3152
0.3159
O.COOO
0.3003
O.3202
0.3232
0.3175
O.3121
0.3J37
0.3170
0.3204
0.3162
O.3122
0.3146
0.3100
0.3092
O.3074
0.3100
0.3143
0.2905
0.3032
0.3060
0.2970
0.3006
0.2999
Y DELYCAP
0.3499
0.3554
0.3563
0.3510
0.3397
0 . 3340
0.3524
0.3533
0.3511
O.3397
0.3350
0.3405
O . 3464
O . 3046
O.3203
0.3375
O.3261
O.3211
0.0210
0.3155
0.3157
0.3376
0.3313
0.3264
0 . 0229
0.3272
0.33O5
0.3230
0.3242
0.3222
0.3274
0.3007
0.3166
0.3157
0.3220
0.32C5
0.3063
0.3131
0.31C7
0.3076
0.3111
0.3110
-2.52
-5.46
-6.04
-6.02
-4.06
-4.51
-4.35
-7.31
-7.02
-5.57
-5. 13
-4.49
-6.03
-5.23
-4.74
-2.95
-3.66
-3. 17
-O.O7
-1.O7
-0.27
-O.51
-1.27
-2. IO
-2.00
-3.92
-4.22
-0.97
-2.03
-3.09
-4.39
-4.76
-1.06
-2.40
-3.92
-4.33
-0.60
-2.35
-2.76
-0. 19
-0.66
-0.05
DELL
-1.02
-2.29
-3.02
-2.03
-2.56
-2.47
-1.02
-3.23
-3.32
-2.94
-2. O2
-1.96
-3.23
-2.75
-2.60
-1.37
-1.91
-1.72
-O.45
-O.57
-0. 14
-0.43
-1.01
-1 .55
-1.91
-2.31
-2.4O
-0.77
-1 .49
-2.06
-2.59
-2.72
-0.77
-1.65
-2.31
-2.46
-0.45
-1.37
- 1 . 56
-0. 11
-0.37
-0.03
C( !>50)
-0.0256
-0 . 00-34
-0.0734
-0.0759
-0.0710
-0.0692
-0.0405
-0.03<-5
-0.0397
-0.0326
-O.O793
-0 .0519
-0.033B
-O.O79O
-0.0753
-0.03"9
-O.0572
-O.O521
-O.O142
-O.0137
-0 . OO47
-O.0152
-0 . 0345
-0.05O2
-0.0573
-0.0650
-0.0675
-O.O204
-O.O'I'OO
-0.0603
-0 . 0740
-0 . 0774
-0 . O20 1
-O.OG24
-O.OOCO
-0.0713
-0.0151
-0 . 0424
-0 . 0475
-0.0033
-0.0124
-0.001 1
BRAT 10
0.9029
0.3120
0.7716
0.7691
0.7650
0.70fiO
0.0123
O.7K63
0 . 7721
0.7725
0.7004
O.OO'.ll
0 . {S434
O.0409
0.0370
0.9613
0.9479
0.9<-.°2
1 . OOo I
1.0006
1 . 0044
0.91^0
o . 34-"J3
0.795O
O.T074
0 . 7577
0 . 7533
o . 0:122
O.C230
0 . 73 1 3
0.7033
0.7041
0.9190
0.0590
O.C?99
0 . r/J04
0.97.'»9
O.9010
0.9333
0.9977
0.9972
0.9995
DELX DELY E( LUV)
0.0061 0.0063 5.5995
0.0134 0.0133 11. 7 KM
0.0175 0.0169 14.7377
0.0173 O.OI72 14.5907
0.0173 0.0102 14.79'M
0.0172 0.01O8 15.0303
0.0104 0.0103 9.23«!i
0.0176 0.0164 14.7100
O.O105 O.0173 15.2012
0.0132 O.O133 15.2^77
0.0102 0.0139 15.5470
O.01OO 0.0091 O.3073
O.0150 O.0125 12. 17:::i
O.0144 O.O132 lI.Or.O4
O.OI44 O.O133 12. 1641
O.OO5O O.OO30 4. 1770
0 . O067 0 . O047 5 . 57,10
O.0007 O.0031 5.0090
O.OOO3 -O.OOO4 0.0230
O.0004 -O.O006 0.3110
-O.OOO2 -O.OOO3 O.2441
0.0054 0.0057 3.3OCO
O.O11O O.O116 7.-X"M
0.0149 0.0163 11. ino.1
O.0103 O.O1C7 13.0'><9
0.0 17O O.O196 15.2-VO
O.O171 O.O194 15.2701
O.OOH2 O.OO36 5.570:)
0.0 Iff 5 O.O141 9.930.'J
O.O164 O.01OO 13.<03
0.0000 -0.0001 0.0000
E( LAB)
3.7913
7. 9 »<••:•
10.0730
9 . G7<'0
9 . aw,
9 . ry. > 5
6 . .153 1
9.0000
10.2570
lO.OOOT
IO. KC7.0
n.oooo
O. fOlLH
7 . 737 1
7.0;?."/:-
2.755:)
3.027O
o.oir.n
0 . 5-X.7
0.7002
O . CO42
2.34.1IO
5.O101
*"* f~* /* t *"*
< . -:-V ICj
G.-TSo.l
9 . r?-0<-2
9 . or:o i
3.7r700
6 . 5003
o.oo?':-
IO. 120--.
10.2213
3. 1003
5 . OOOO
7.7330
7.9O31
1 . 2u.v3
3.4020
3 . 670'*
0. 1020
0.3410
O.OoriO
Exhibit A-8 (continued)
-------
ro
w
00
0.0
o.o
o.o
o.o
o.o
o.o
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0. 10
0.10
0.10
0.10
0.20
0.20
0.20
0.50
0.50
0.00
0.02
0.05
0. 10
0.20
O.50
o.oo
0.05
0. IO
0.20
0.50
O.GO
o. io
0.20
O.5O
0.00
0.20
O.GO
o.ao
0.50
0.00
0.00
4.06
11. 15
19. 24
00.70
47.26
52.55
11.11
19.55
30.32
46 . C9
52.03
19.72
31.61
47.42
52.40
32.52
43.99
54.03
50.00
36. 15
56.67
26.30
39.03
51.00
62.20
74.30
77.63
39 . GO
5 1 . G6
62.39
74. 14
77.32
51.56
63.05
74.40
77.59
63.00
75.47
78.51
76.63
79.72
GO. 01
0.2103
0.2000
0.2731
0.2041
0.3038
0.3130
0.2620
0.2715
0.2040
O.3O47
0.3141
0.2647
0 . 279 1
0.3010
0.3104
0 . 2706
0.2933
0 . C030
0 . 2374
0.2969
O.2961
0.2600
0 . 2723
0.2C46
0.2990
0.3203
0.3236
0.2606
0.2015
0.29O1
0.3210
0.3200
0.2727
0.2911
0.3156
0.3235
0.2009
0.3065
0.3147
0.3000
0.3091
0.3009
0.33
0.52
-0.00
-1.53
-3.52
-4.09
0.40
0.24
-1.41
-3.00
-4.60
0.41
-0.62
-3.36
-4. 13
0.29
-1.79
-2.50
0. 10
-0.49
0.04
1.04
o.e-j
-0.09
-1.20
-2. 19
-2.37
0.01
0.27
-1. 17
-2.42
-2.67
O.47
-0.51
-2.09
-2.40
0.24
-1. 10
-1.4O
0.06
-0.20
0.02
O.O7a2
o.oiao
0.0029
-O.OG95
-0.0620
-0.0067
0 . 0470
0.0172
-0.0365
-O.O7O3
-O . 0762
0.0227
-0.0154
-0.0621
-0.0703
0.0091
-0.0344
-0.0454
0.0010
-0.0095
0.0005
O..1440
0 . 7934
0.7501
0.7409
0.7517
0.7501
0.0433
0.7001
0.7572
O.7357
0.7610
0.0965
O.G3K1
O.rj2O3
0.G200
0,9303
0.9240
0.9303
0.9912
0.9919
O.9967
O.OO70
0.0104
0.0130
O.O157
0.0169
0.0171
0.0074
O.0119
0.0136
O.017O
0.0101
0.0051
0.0106
0.0141
0.0144
0.0021
0.0006
0.007O
O.0005
0.0009
0.0001
0.0004
0.0132
O.OIOO
0.0204
O.O203
0.0197
0.0092
O.OI49
0.0194
0.02O3
0.0199
0.0062
0.0124
O.0151
0.0147
0 . OO22
0.O061
0.005O
0.0003
0 . 0002
O.O001
1.8907
5 . 0731
9 . Or.T-1
13.5577
13.4700
15.090')
3 . 40G5
7.9GIO
13.0799
15.9753
15.9542
3. 1379
0.5077
12.4399
12.5493
1 . 4134
5.7105
5. 9 004
0.3109
0.7915
0. 1007
1 . «2W
3 . 7rjr?o
6.41:05
O.O'^l
9. 91. '11-
9.9-1LJ1
2.1900
3.2115
0.32^1
IO. 17)4
10.2100
2. 1174
5.3241
7. 7" 17
7. 9411
0.9117
3.-X»7n
3.7ory,
o. irvj
0 . 5 1 42
O.OMO
Exhibit A-8 (continued)
-------
PERPENDICULAR TO THE PLUME OF WHITE, CRAY, AlfD
FOR VARIOUS OBSERVER-PLUME AND OBSERVER-OBJECT
1600 MTf POKER PLANT
BLACK OBJECTS
DISTANCES
ro
CO
<£>
DOTWWIND DISTANCE
TUEtA = 135.
(ICM> =
REFLECT RP/RV0 RO/IW0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0.10
0.10
0.10
0.10
0.20
0.20
0.20
0.50
0.50
0.80
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0.10
0.10
0.10
0.10
0.20
0.20
0.20
0.50
0.50
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
0.05
0. 10
0.20
0.50
0.00
0.10
0.20
0.50
O.CO
0.20
0.50
0.00
0.50
0.00
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
0.05
0. 10
0.20
0.50
0.00
0.10
0.20
0.50
0.00
0.20
0.50
0.00
0.50
0.00
0.00
240.0
YCAP
92.36
06.04
79.02
73.37
63.76
60.56
07. 17
79. U6
72.35
63.00
59.37
02.28
72.62
63.40
60.31
76.69
65. 16
62.07
68.20
6t.42
65 . 30
31.31
34.09
33.25
44.90
54.41
57.39
04.41
33.34
44.67
53.09
56.73
39.41
45.36
54.41
57.26
47.35
56.17
59.02
58.58
61.37
62.05
L
96.97
94.33
91.61
OO.63
83.36
02.16
94.32
91.41
GQ.15
03.46
81.79
92.71
08.28
G3.67
02.03
90. 19
04.58
02.97
06. 12
04.20
04.65
62.00
65.06
68.23
72.05
78.72
80.42
65.32
68.00
72.70
78.41
80.07
69.07
73. 15
78.72
80.35
74.44
79.73
81.32
81.08
02.59
82.96
X
0.3389
0.3446
0.3460
0.3406
0.3275
0.3206
0.3416
0.3460
0.3416
0.3204
0.3215
O.G304
0.3370
0.3245
0.3177
0.3200
0.3168
0.3101
0.3105
0.3038
O.G033
0.3263
O.3198
0.3131
0.3072
0.30O9
0.3123
0.3170
0.3116
0.3073-
0.3098
0.3133
0.3047
0 . 3024
0 . 3009
0.3095
0.2936
0.2904
0.3021
0.2923
0.2960
0.2954
•
Y DELYCAP
0.3492
0.3537
O.3536
0.3476
0.3363
0.3320
0.3503
0.3530
0.3475
0.3364
0.3321
0.3456
0.3424
0.3311
0.3269
0.3335
0.3223
0.3100
0.3172
0.3123
0.3125
0.3353
0.3206
0.3226
0.3192
0.3243
0.3279
O.G256
0.3203
0.3104
0.3244
0.3201
0.3126
0.3117
0.3109
0.3227
0.3023
0.3098
0.3138
0.3043
0.3081
0.3081
-2.55
-5.56
-7.04
-6.33
-5.32
-5.01
-4.42
-7.49
-7.34
-6.08
-5.70
-4.57
-7.08
-5.68
-5.25
-3.01
-3.93
-3.50
-0.00
-1. 15
-0.27
-0.55
-1.37
-2.30
-3. 19
-4.30
-4.72
-1.05
-2.21
-3.42
-4.90
-5.33
-1. 14
-2.73
-4.38
-4.84
-0.74
-2.62
-3.09
-0.20
-0.74
-0.06
DELL C( 550)
-1.03 -0.0257
-2.32 -0.0536
-3.07 -0.0737
-2.92 -0.0766
-2.70 -0.0727
-2.63 -0.0712
-1.04 -0.0456
-3.28 -0.0345 .
-3.41 -0.0901
-3. 10 -O.OC-43
-3.00 -O.OC22
-1.98 -0.0517
-3.28 -0.0835
-2.09 -0.0G04
-2.76 -0.0773
-1.37 -O.OG31
-1.93 -0.0575
-1.02 -0.0533
-0.44 -0.01G6
-0.59 -0.010ft
-0. 14 -0.0044
-0.46 -0.0157
-1.07 -0.0356
-1.65 -0.0519
-2.05 -0.0600
-2.47 -0.0679
-2.57 -0.0690
-0.01 -0.0272
-1.59 -0.0507
-2.20 -0.0654
-2.78 -0.0772
-2.91 -O.OOOO
-0.02 -0.0266
-1.75 -0.0538
-2.47 -0.0703
-2.64 -0.0743
-0.47 -0.0151
-1.47 -0.0437
-1.67 -0.0491
-0. 11 -O.0030
-0.39 -0.0128
-0.03 -O.O011
BRATIO
0.9036
0.3147
0.7744
0.7695
0.7642
0.7621
0.8556
0.7915
0.7799
0.7721
0.7692
0 . 3376
O.H322
O.G413
0.3373
0.9644
0.9439
0.9443
1 . 0055
1 . 0072
1 . 0045
0.9202
O . O5OO
0 . 7966
0.7673
0.7077
0.7534
0 . G9O,1
0.0273
0.7320
0.7633
0.7644
0 . 9224
0.0615
0.3310
0.3315
0.97*7
0.9367
0.9369
0.9933
0.9932
0.9993
DELX
0.0060
0.0132
0.0173
0.0172
O.O172
0.0171
0.0103
0.0172
0.0102
0.0101
0.0130
0.0096
0.0145
0.0142
0.0142
O.OO47
0 . 0065
0.0066
0.0002
0.0003
-0.0002
0.0053
O.01O7
0.0146
O.016O
0.0168
0.0169
O.OOOO
0.0131
0.0161
0.0177
0.0179
0.0062
0.0112
0.0139
O.O142
0.0025
0.0063
0 . 0067
0.0003
0.0007
0.0000
DELY
0.0063
0.0132
0.0169
0.0175
0.0137
0.0192
0.0103
O.O162
O.OJ74
0.0107
0.0193
0 . 0039
O.O124
0.0135
O.O140
O.0034
0.0047
O.O031
-O.0004
-0 . 0006
-0.0003
0.0057
0.0116
0.0163
0.0190
0.0199
0.0197
O.0035
0.0140
O.OfOl
0 . 0200
0.0199
0.0063
0.0115
0.O146
0.0145
0.0020
0.0055
0.0056
-Q.OOOO
-0.0001
-0.0001
E(LtJV)
5.61O3
11.7541
14.9778
15.0990
15.5514
15.7920
9.2319
14.7719
15.02O6
16.04CJ
16.3141
0.4319
12.2595
12.4363
12.7!J-K5
4.043!
5 . 7277
5 . 8334
O.nooO
0.G10O
0 . 2425
3.0953
7.5395
1 1 . 449 Jl
14.r:,120
13.9790
16. 024';
5 . 6205
10. 1579
14.0027
10. 40 43
16.5764
4.3414
9.5344
12.7620
12.9724
2.0507
5.7619
6.031'i
0.20 14
0 . 74GO
0.0040
E(LAB)
3.7041
7.9753
10. 1045
10. 1100
10. 1959
10.2010
6 . 2023
9.9r»4'»
10.4197
10.4751
10.5501
5 . OO.T)
3.0037
3. 01 riO
3. ir:r>9
2.«r>3a
3.70r>5
3 . 7042
Orjo^o
* */»_* V *.*
0.7IG2
0. 1907
2.3570
5 . O300
7. 4065
9. 1925
10.2.141
10.3130
3.7440
6.5794
0.930.1
10.5004
10.6171
3 . O790
6 . 0073
Q.QSild
3. 1914
1 . 2^92
3.,ir»si
3 . 7G4 1
0. 1322
0.5,123
0.0333
Exhibit A-8 (continued)
-------
i
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.02
0.02
0.02
0.02
0.02
0.02
0.05
0.05
0.05
0.05
0.05
0.10
0. 10
0. 10
0. 10
0.20
0.20
0.20
0.60
O.GO
O.GO
0.02
0.05
0. »0
0.20
0.50
0.30
0.05
0. 10
0.20
O.50
0.00
0. 10
0.20
0.50
0.00
0.20
0.50
0.00
0.50
O.GO
0.80
5.15
11.02
20.44
32.70
50.40
56.03
11. CO
20.76
32.01
49.98
53.46
21.03
33.67
50.56
55.96
34.70
52.32
57.71
54.46
60.06
60.66
27.21
40.9*1
52.36
63.95
76.34
79.05
40.94
52.73
64.04
76.03
79.32
53.02
64.73
76 . 43
79 . 6 1
65.61
77.49
00.60
78.75
01.09
02.21
0.25 15
0.2009
0.2692
0.2799
0 . 2994
0.3035
0.25CO
0.2673
0.2797
0.3003
0.3095
0.2607
0 . 2740
0.2965
0.3058
0.2666
0.2091
0.2?03
0 . 2032
0.2925
0.2918
0.2596
0.2091
0.2813
0.2961
0.3181
0.3260
0.2652
0.2781
0.2950
0.3103
0.3262
0.2694
0.2079
0.3127
0.3209
0.2770
0.3036
0.3119
0.2970
0.3062
Q^-306 1
0.31
0.42
-0.27
-1.04
-3.90
-4.59
0.40
0.06
-1.73
-4.40
-5. 17
0.32
-0.87
-3.02
-4.67
0.24
-2,0.6
-2.91
0.09
-0.57
0.03
0.09
0.69
-0.30
-1.47
-2.36
-2.54
0.65
0.06
-1.30
-2.62
-2.07
0.36
-0.69
-2.27
-2.59
0. 18
-1.21
-1.60
0.05
-0.31
0.02
0 . 0039
0.0434
-0.0042
-0.0433
-0.0653
-0.0691
0.0394
0 . 0097
-0.0413
-0.0734
-0.0790
0.0102
-0.0200
-0.0650
-0.0729
0.0073
-0.0363
-0 . 0472
0.0014
-0.0101
0.0004
0 . 05 1 3
o.r/.m
0.70JO
0.7492
0.7523
O.7303
O.CS13
0.7920
0.7600
0 . 7509
0.7617
0.9011
0.0303
O.H221
O.G230
0.9613
0.9205
0.9327
0.9921
0.9932
0.9970
0.0064
0 . 0093
0.0 UK)
0.0152
0.0166
0.0169
0.0069
0.0113
0.0151
0.0175
0.0170
0.0048
0.0102
0.0137
0.0142
0.0019
0.0004
0 . 0060
0 . 0004
0 . 0003
0.0001
0.0031
0.0129
0.0(79
0.0.'i04
0.0205
0.0200
O.0039
0.0147
0.0194
0.0207
0 . 0202
0.006O
0.0122
0.0152
0.0140
0.0021
0.0060
O.0050
0.0003
0.0001
OwOOOl
i.oo in
5 . ryw
lO.O^r*/)
14. K53
10. 109!
16. 1231
3.5321
8.2017
13.6:233
16.0935
16.6943
3. 1992
8.0273
12.9494
13.0302
1.4347
5 . 3797
6. 1790
0.2303
0 . 7f »2'i
O.OG93
I. 707 1
3 . 7702
6.0210
9.0^:9
10.G050
10.3450
2.5933
5 . 3032
O.OO-VJ
10.5537
10.0492
2. 1159
5.4506
8.0011
8.2294
O.fWi?
3.5532
3. 01 "2
0. 1092
0.5204
0.0535
Exhibit A-8 (continued)
-------
V.TSKAZ. EFFECTS FOIl LIKES OF
1000 WTf FOWE/l
SIGHT ALONG PH7WE
DOWWI1TD DISTANCE
240.0
TJ/E7V1 LENGTH flP/RVO
45.
20.
20.
20.
20.
20.
20.
20.
40.
40.
40.
40.
40.
40.
40.
60.
60.
6O.
60.
60.
60.
60.
RO.
80.
CO.
30.
30.
30.
00.
100.
100.
10O.
100.
100.
100.
100.
120.
120.
120.
120.
120.
120.
120.
140.
140.
14O.
Jl lf\f •
1 4O
A Tr v •
I4O
1 Tr V •
1-O
1 J V •
ts'.O
i ','\r •
K>0.
0.00
0.02
0.05
0. 10 ,
0.20 '
0.50
O.GO
Q.OO
0".02
0.05
0. 10
0.20
0.50
0.80
0,00
0.02
0.05
0. 10
0.20
0.50
O.CO
O.OO
0.02
O.05
0. 10
0.20
0.50
O.OO
O.OO
0.02
0.05
O. 1O
0.20
0.50
0.00
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
RV ^REDUCED
180.3
180.3
179.7
178.0
177.7
175.9
175.4
182. 1
180.5
173.4
175.5
171.3
165.5
172.3
134.3
131.2
177. 1
171.5
163.5
152.6
172.8
184.3
130. 1
174. 0
165.5
153.5
152.8
172.9
102.7
176.5
163.4
157.2
141.4
153.0
172.9
177.4
169.3
159.8
146. 1
139.9
153.0
172.9
163.4
159.4
148.2
143. 1
140. 1
153. 1
172.9
156.7
2.28
2.53
2.85
3. CO
3.97
4.90
5. 13
1.55
2.41
3.55
5. 13
7.42
10.54
6.62
0.37
2.04
4.25
7.29
11.64
17. 5O
6.53
0. 12
2.64
5.97
10.53
17.02
17.39
6.56
1.23
4.53
8.99
15.02
23.55
17.31
6.55
4.03
8.20
13.63
21.05
24.39
17.20
6.54
0.99
13,05
19.89
22.64
24.29
17.26
6.54
15.30
YCAP
93. 10
94. 13
95.52
97.47
100.30
104. 14
105.25
06.32
37.09
90.02
92.99
97.33
103.25
104.97
82.52
O4.39
36.91
90.45
95.62
102.72
104.31
80.56
82.58
85.30
89. 13
94.72
102.44
104.71
79.60
81.69
84.50
G8.47
94.27
102.29
104.66
79. 11
81.24
34. 10
83. 13
94.04
102.21
104.63
78.87
81.01
83.90
87.96
93.92
102. 17
104.62
78.75
L
97.27
97.69
93.24
99.01
100. 11
101.58
101.99
94.45
95. 12
96.01
97.23
93.96
101.24
101.09
92.31
93.63
94.71
96. 19
93.28
101.04
101.33
91.94
92.34
94.02
95.04
97.92
100.93
101.79
91.51
92.44
93.67
95.36
97.74
100.00
101.77
91.29
92 . 24
93.50
95.22
97.65
100.35
101.76
91. 18
92. 14
93.41
95. 15
97.60
100.83
101.76
91. 13
X
0.3436
0.3445
0.3G95
0.3335
0.3268
0.3213
0.32GB
0.3006
0.3543
0.3468
0.33E2
0.3207
0.3213
0.3207
0.3037
0.3566
0 . 31 04
0.3339
0.3233
0.3211
0.3205
0.3639
0.3566
0.34G2
0.3306
O . 3233
0.3209
O.3205
0.3034
0.3561
0.3476
O.3381
O.3230
O.3207
0.3204
0 . 3029
0.3556
0.0472
0 . 3377
0.0277
0.3206
0.3203
0.3625
0.3553
0.3469
0.3374
0.3275
0.3205
0.3203
0.3623
Y DELYCAP
0.3596
0.3547
O . 3490
0.3423
0 . 3354
0.3311
0.3312
0.3654
0.3500
0.3512
0.3428
0 . 3346
0.3304
0.3309
0.3639
0.3570
0.3493
0.3410
0 . 3332
O.3299
0 . 3308
0.3618
0.3551
0.3476
0.3395
0.3322
0.3296
0 . 3307
O.3607
0 . 3540
0.3466
0.3387
0.3316
0.3294
0 . 3306
0.3601
0.3535
0.3461
0.3383
0.3314
0.3293
0.3306
0.3598
0.3532
0.3459
0.3381
0.3313
0.3293
0.3306
0.3597
-12.06
-11.06
-9.72
-7.35
-5. 14
- 1 . 49
-0.45
-19.01
-17.46
-15.37
-12.43
-O. 19
-2.40
-0.73
-22.93
-21.08
-13.53
-15.03
-9.96
-2.96
-0.91
-24.97
-22.97
-20.26
- 1 6 . 46
-10.91
-3.26
-1.01
-26 . OO
-23.92
-21. 11
-17. 17
- 1 1 . 39
-3.42
-1.07
-26 . 52
-24.41
-21.55
-17.53
-11.65
-3.51
-1. 10
-26 . 00
-24.66
-21.73
-17.73
- 1 1 . 70
-3.56
-1.11
-26.94
DELL
-4.69
-4.23
-3.75
-3.01
-1.95
-0.50
-0. 17
-7 . 57
-6.91
-6 .
-0. 1115
-0. 1031
-0.0910
-0.0753
-0.0309
-0.0107
-O.C049
-0. l.O^rj
-0. 1090
-0. 1303
-o. >2oi
-o . or$ao
-o.oi'OT
-0.0003
-O.2007
-0.2037
-O. 1350
-0. 1520
-0. 1032
-O.0319
-O.OO99
-O..'2'JO7
-O.2299
-o..o:>40
-0. 1031
-O . .«. 1 37
-0.0051
-O.O109
-0.2099
-0.24O4
-0.2107
-0. 171.1
-o. i IGO
-0.0367
-0.0114
-0.2053
-0.2454
-O.21G2
-0. 1794
-0. 1213
-O.0373
-0.01 10
-0.2073
-0 . 2477
-0 . 2?.02
-0. 1011
-0. 1225
-0.0379
-0.0117
-0.20IW
O.6393 0.0.292 0.0284 27.0O46 17.836
0 . 7007 0 . 0249 0 . 0235 23 . 1 4<-7 1 5 . 11 n
0.7740 0.0193 0.0177 1.O.A203 11. PO.')
0.8090 0.0137 O.0110 12.GC92 P.. 007
0.91.62 0.006Q 0.0040 0.17O9 n.r^O
0.99,03 0.0007 -0.0004 1.0100 ^.Tr"
1.001O -0.0000 -0.0003 0.00,03 O.£t;o
0.0770 O.O'I-O? 0.0040 34. 90:?^ 2O.rv.?.
o.6:;o3 0.0043 0.0274 20.755.", i<>.rr->
0.7070 0.0203 0.019C5 20.0202 10.0,02
O.C073 0.0100 0.0 IK- 70.O990 10.2r.M-
0. 30."07C 2r-,..T")
0.047O 0.0304 0.0250 3O.f33CO 2O.OO1
0.7-02 0.0231 0.0179 2^-. 2975 If!. 01 7
O.G^9t O.OltlO 0.0090 10.012.0 1O.7JD
0.9':.34 O.0002 0.0017 r,.£,T>« n.ci'Y)
1 . 0329 0 . 0003 -0 . OO 1 0 .1 . «079«T I . &.W
1.0033 -0.0003 -o.oooa o.ooro o.n<"3
0.0747 O.O435 0.0304 30.0755 2^. 01 !»
O.OJO2 O.OOO2 0.0237 GO.<90(?. lO.rOtt
0.7)99 O.O277 O.O101 23.9310 in.W>
O..T3I 0.0 K50 O.OOOO lG.rJ3.2O 1O.70.2
O.9471 O.OO77 O.O007 O.2499 0 . r",7
1 . 0049 O . OOO 1 -0 . 00 1 9 2 . 0402 1 . 747
1.0043 -O.OOO4 -O.OOOO O.7545 o.r,O3
O.G77-3 O.OC-23 0.0292 0!> . '!-399 23. r^
0.0030 O.O353 0.0220 29.O900 I01. OOO
0.7-;'3.r> O.0271 O.015I 20.5479 in.r'">
O.C-157 0.0174 O.OO72 10.O097 in.7O'i
0.9:>O3 O.O073 O.OOO1 O. 1202 O.'M'O
l.OX'.O -O.OOO1 -0.0021 2. 12-tO l.TO'V
1.0051 -0.0003 -O.G009 O.C027 0.604
0.5.004 0.0':23 O.O230 30.0100 20.124
0.0003 0.0300 0.0220 29.0O29 1O.<:'S.7
0.7'X>4 O.0265 0.0140 20.20'M 10.^^7
o.n:-9G 0.0170 o.oooo 10.7944 10.0^0
0.9029 0.0009 -0.0001 7.9900 0.90.1
1.0^7,0 -O.0003 -0.0022 2. J503 I.. "03
1.0007 -O.OOOO -0.0009 O.tt302 O.r.Ol
0.5.024 0.0418 0.0233 34.7275 22. 'V^
0.00.00 0.03.6 0.0217 29.3049 19.004
0.7':-37 0.0202 0.0144 22.9003 10. 107
0.0:520 0.0107 0.0066 10.0007 10.0HH
0.9050 0.0007 -0.0003 7. MOO 0.^41
1.0039 -0.0003 -0.0022 2.1097 1.^00
1.0002 -0.0006 -0.0009 O.R4R9 0.000
0.5,041 0.0415 O.O282 30.0400 ^,0.910.
!xhib1t A-8 (continued)
-------
ro
! OO .
1*0.
100.
160.
100.
100.
100.
1.10.
ISO.
ft \f\f t
ICO.
tflO.
IfO.
100.
2OO
^*W •
200.
200.
200.
200.
200.
200.
220.
220.
220.
220.
220.
220.
220.
230.
230.
230.
230.
230.
230.
230.
235.
235.
235.
235.
235.
235.
235.
238.
238.
238.
238.
238.
238.
238.
239.
239.
239.
239.
239.
239.
239.
O.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
Ooo
• \JTJ
0.02
0.05
0. 10
0.20
0.50
O.CO
0.00
0.02
0.05
0.10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.30
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.2O
O.5O
0.8O
152.7
143.4
143.3
140. 1
153. 1
172.9
156.3
152.3
i1. 14.3 n
1 mm U • *?
143.3
140.2
153. 1
172.9
156 9
X W * f
152.3
143.6
143.3
140.2
153. 1
172.9
150.9
152.9
143.6
143.4
140.2
153.1
172.9
150.9
152.9
148.6
143.4
140.2
153. 1
172.9
156.9
152.9
148.6
143.4
140.2
153.1
172.9
156.9
152.9
148.6
143.4
140.2
153. 1
172.9
156.9
152.9
148.6
143.4
14O.2
153. 1
1T2.9
17.47
19.76
22.50
24.25
17.20
0.54
15.23
17.41
19 71
J f • • I
22.53
24.23
17.25
6.54
15 °O
1 V • 44 V
17.33
19.69
22.51
24.23
17.25
6.54
15.20
17.38
19.69
22.51
24.22
17.25
6.54
15.19
17.38
19.69
22.51
24.22
17.25
6.54
15.19
17.38
19.69
22.51
24.22
17.25
6.54
15.19
17.38
19.68
22.51
24.22
17.25
6.54
15. 19
17.38
19.68
22.51
24.22
17.25
6.54
80.90
83.80
87.03
93.00
102. 14
104.61
70.69
00.84
«•» 74
U\P • • r
87.83
93.03
102. 13
104.61
?n oo
• *J • W
80.81
83.72
87.31
93.81
102.13
104.01
78.05
00.80
83.71
87.00
93.80
102.13
104.00
78.04
80.80
83.71
87.89
93.80
102.13
104.60
78.64
80.80
83.71
87.80
93.80
102.13
104.60
78.64
80.80
83.71
87.80
93.80
102. 13
104.60
78.64
80.80
83.71
87.80
93.OO
1O2. 13
1O4.6O
92.09
93.37
93. 11
97.53
100.G2
101.75
91. 10
02.07
fin 33
. \9 • \f\J
95. 10
97.55
TOO.. 32
101.75
o i O9
J 1 . 'F f
92.06
93.34
95.09
97.56
100.02
101.75
91.08
92.05
93.33
93.08
97.56
100.02
101.75
91.08
92.05
93.33
93.08
97.55
200.82
101.75
91.08
92.05
93.33
95.08
97.55
100.82
101.75
91.08
92.05
93.33
95.08
97.53
100.82
101.75
91.08
92.03
93.33
95.08
97.53
1OO.G2
tOl.73
0.3331
0.3467
0.3373
0.3274
0.0203
0.3203
0.3022
0.3549
O fl4fifi
\J • ^J^vV
0.3372
0.3273
0.0205
O.G203
Oflf«r»1
. \Jr\'-*4 1
0.3349
O.G403
0.0371
0 . 3273
0.0205
0.0203
O.C021
0.3513
0.3455
O.G371
0.3273
O.C205
0.0203
0.3021
0.3548
0.3465
0.337>
0.3273
0.3205
0.3203
0.3621
0.3548
0.3465
0.3371
0.3273
0.3204
0.3203
0.3621
0.3548
0.3465
0.3371
0.3273
0.3204
0.3203
0.3621
0.3548
0.3465
0.3371
O.3273
0.3204
0.3203
0.3331
0.3458
0.3301
0.3312
0.3293
0.3306
0.3396
0.3531
034nn
• \f^\j\j
0.3300
0.3312
0.3393
0.3300
Ofirioo
. \f%f .' V
0.3531
0.3457
0.3330
0.3312
0.3293
0.0300
0.3596
0.3530
0.3457
0.3300
0.3312
0.3293
0.3306
0.3596
0.3530
0.3457
0.3300
0.3312
0.3293
0.3306
0.3596
0.3530
0.3457
0.3300
0.3312
0.3293
0.3306
0.3596
0.3530
0.3457
0.3300
0.3312
0.3293
6.3306
0.3596
0 . 3530
O.3457
0.3380
O.3312
O.3293
O . 33O6
-24.79
-21.90
-17.03
-11.05
-3.53
-1.12
-27.01
-24.05
-'» 1 90
te* * • J J
-17.fT3
- 11 . 09
-a . oo
-1. 1.')
-°? on
l.i • • * J*9
-24.90
•.***"> n*\
«***•* • \*'j
-17.91
-11.91
-3.00
-1.13
-27.07
-24.92
-22.01
-17.92
- 1 1 . 92
-3.01
r-1. 13
-27 . 03
-24.92
-S2.02
-17.93
-11.93
-3.01
-1. 13
-27.03
-24.93
-22.02
-17.93
-11.93
-3.01
-1. 13
-27.00
-24.93
-22.02
-17.93
-11.93
-3.01
-1. 13
-27.08
-24.93
-22.02
-17.93
-11.93
-3.61
-1. 13
-JO.OO
-3.79
-7.03
-4.09
- 1 . 33
-0.42
- 11 . 00
-J0.09
— o i ? '*
-7 '.07
-4.00
- i . r; ?
-0.42
- f 1 OO
II* \i**M
-!0. 11
-0.03
-7.03
-4.01
•• ! . 30
-0.42
- 1 1 . 09
-10. .12
-0.04
-7.09
-4.02
-1.30
-0.42
- 1 1 . 09
-10. 13
-O.G4
-7.09
-4.02
-1.30
-0.42
- 1 1 . 09
-10. 12
-O.C4
-7.09
-4.03
-1.30
-0.42
-11.09
-10. 12
-8.84
-7.09
-4.62
-1.36
-0.42
- 1 1 . 09
-10. 12
-8.84
-7.09
-4.62
-1.36
-O.42
-0.2437
—0. 221 1
-o. !'?.n
-0. 1200
-0.0300
-0.0110
-O.r»,504
-0 . 2'f'9 1
— O '''* ( '>
-0. lf?2 1
••0 . 1 flM
-0 . 0."-0 1
-0.0! !U
-O *V»Ori
V » i * >/ f * 9
-oiasio
-0. 1C23
-0. 1233
-O.OCfOl
-0.0 IIP.
-0.2500
-0.249G
-0.23J7
-0. 1033
-0. 1233
-0.03G1
-0.0113
-0.2090
-0.2493
-0.2217
-0. 1023
-0. 1233
-0.0331
-0.0113
-0.2096
-0.2493
-O.22I7
-0. 1023
-0. 1233
-0.0331
-0.0118
-0.2696
-0.2493
-0.2217
-0. 1023
-0. 1233
-0.0301
-0.0118
-0.2696
-0.2493
-0.2217
-O. 1023
-O. 1233
-O.O381
-0.0110
O.OC>03 0.0343 0.0216 29.102?. lO.r^fJ
0. ?'.'>"?> 0.0219 0.014322.0121 IP. ""•'>
O.T ""..'» 0.0 I'll 0.(W> 13.4799 f.O.r.42
O.OJT06 0.0000 -0.0003 7.012.'? rs.^r?
1 . 0&07 -0 . 0004 -0 . 0022 2 . 1 74O 1 . ,T 1
1.0" 66 -0.0005 -O.C009 O.R349 o.r,-r,4
0.!J""»4 O.O414 0.0231 3A.4SOO D.?..'"«4
Or..-' i"? n f\n/<.t n ntm ""> OT*^'* i<» .•>*»/*
. >>'.•'< IJ.vA*'.1! v/.'./i5IJ us.', ir>..t • '., i
O *""'• ""O 0 O^3'J 0 Qf'2 f*° "•*"">'• 1 "^ '"."*
O..""~l O,^"''^ O.COOfJ in.r?^(n>.'', fr>.;-«4
0 ! «.T7 6 . 0') J1 >• -0 . 0003 7 . 7r.«7 n ! ^ • |
1 . 0 f 0 1 -0 . 0004 -0 . 0^23 f! . < 747 1.r—\
l.C"07 -0.0005 -O.COCy? O.r'VO' r> •-<-•>
0.0^2'j 0.0340 0.0215 .??• . O^rV7! I'*1. »'VJ
0.7rjJf.2 0.0237 0.01 42 ,?2.<"in71 in.r*'.^
o.cjfos 0.0103 0.0003 m.?no^ io.'"°'»
0.9!».''9 0.0004 -0.0003 7.7005 ,r-.?^O
1.0^09 -0 . 0004 -0 . 0022 2 - «. 74 «. 1 . r-VS
1.0C72 -o.oooo -o.ooio o.rr,2"5 o.^r
O-SC.".'! 0.0412 0.0201 IT'i . "rvy- R3..""1!!
0.0035 0.0340 0.0215 2O.?r!!O »O. I7O
0.7541 0.0230 0.0142 S!3.'«."30 l.n.^v,
o.c?74 0.0102 0.0005 ir,.r?:iio 10. '•"•;
0.9^97 0.0004 -0.0004 7.7lffl P.rvj
1.0113 -0 . 0003 -0 . 0022 3 . ! 70P. 1 . ,"72
1.O074 -0.0000 -0.0010 O.f5'»4.r; O.C'T-'?,
0.5074 0.0412 0.0301 R4.0W9 32..?- 17
O.G609 0.0340 0.021520.^401 ir».ir,r»
0.7344 0.0250 0.0142 83.4 143 1P.'^V1
0.0377 0.0103 0.0005 l-ri.rjl{57 10.'^"J
0.9000 0.0004 -0.0004 7.7057 B.fTV!
1.0114-0.0003-0.0023 2.1720 l.r'3
1.0073 -0.0000 -0.0010 0,.t
-------
VISUAL EFFECTS FOR LINES OF SIGHT ALONG PLUME
1600 MW POWER PLANT
DOWNWIND DISTANCE (KM) = 240.0
TNETA LENGTH RP/RV0 RV ^REDUCED YCAP L X
90.
20.
20.
20.
20.
20.
20.
20.
40.
40.
40.
40.
40.
40.
40.
60.
60.
60.
6O.
60.
60.
60.
00.
00.
K °°-
5 oo.
OO.
80.
00.
100.
100.
100.
100.
100.
100.
100.
120.
12O.
120.
120.
120.
120.
120.
140.
140.
140.
140.
140.
140.
14O.
A ~V •
160.
160.
0.00
0.02
' 0.05
0. 10
0.20 .
0.50 ''
0.00
0.00
0.02
0.05
0. 10
0.20
0.50
O.OO
0.00
0.02
0.05
O. 1O
' 0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
O.OO
0.00
0.02
0.05
0. 1O
0.20
0.50
O.OO
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
0.00
0.02
181. 1
100.6
1OO.O
179. 1
177.0
176.0
175.4
103.3
181.6
179.4
176.3
171.8
165.6
172.0
106.6
183.3
179.0
173.0
164.4
152.9
172.9
100.3
103.3
176.7
167.7
154.9
153. 0
172.9
107.3
100.7
172.0
160.0
143.2
153. 1
172.9
103. 1
175.0
164.2
149.5
140.9
153.2
172.9
175. 1
165.4
152.7
145.2
141. 1
153.2
172.9
162.0
156.4
2. 11
2.36
2.71
3. 19
3.09
4.0O
5. 17
0.92
1.03
3.04
4.73
7. 15
10.46
6.61
-O.OO
O.90
3.26
6.51
11. 14
17.36
6.57
-1.70
0.93
4.49
9.37
16. 2O
17.30
6.55
-1.26
2.32
7.04
13.49
22.59
17.22
6.53
1.01
5.43
11.25
19. 19
23.02
17. 19
6.53
5.36
10.09
17.46
21.52
23.72
17. 17
6.53
12.46
15.40
32. 16
52.77
53.59
54.74
56.40
58.63
59.27
47.96
40.91
50. 10
51.97
54.56
50.00
59. 1O
45.62
46.74
48.26
5O.40
53. 5O
57.76
59.00
44.40
45.62
47.26
49.57
52.94
57.58
58.94
43.OO
43.06
46.77
49. 16
52.66
57.48
50.91
43.50
44.70
46.51
40.95
52.51
57.43
50.09
43.34
44.64
46.39
40.04
52.44
57.41
58.00
43.27
44.57
77.40
77.76
78.24
70.91
79.06
81. 11
O1.46
74.02
75.42
76.20
77.2O
70.01
00.00
O1.36
73.32
74.05
75.0,1
76.33
70. 19
00.62
81.31
72.52
73.32
74.38
75. O3
77 . 86
80.52
81.27
72. 12
72.96
74.06
75.57
77.69
80.47
01.26
71.92
72.77
73.90
75.44
77 . 6 1
00.44
O1.23
71.01
72.60
73.02
75.37
77.56
00.43
01.24
71.76
72.63
0.3309
0.3266
0.3215
0.3154
0.3007
0.3032
0.3027
0.3423
0.3350
0.3282
0.3195
0.3102
O.3031
0.3025
0.3449
0.3376
O.3293
0.3198
0.3099
0.3020
O.3024
O.3446
0.3372
0.3287
0.3192
O.3093
0.3025
0.3023
O.3430
0.3364
O.3279
0.31U5
O.3000
0.3023
0.3022
0.3432
0.3358
0.3274
0.3180
0.3005
0.3022
0.3021
0.3427
0.3353
0.3270
0.3177
0.3003
0.3021
0.3021
0.3424
0.3351
Y DELYCAP
0.3439
0 . 3305
0.3321
0.3248
0.3173
0.3127
0.3120
0.3501
0 . 3427
O.3343
0.3252
0.3164
O.3120
0.3126
O.3402
0.3406
O.3321
0.323O
0.3147
O.3114
0.3124
0.3439
0.3384
0.33O1
0.3213
0.3135
O.3110
0.3122
0.3443
0.3371
0.3289
O.3204
0.3129
O.3I08
0.3122
0.343O
0.3364
0.3284
0.3200
0.3126
0.3107
0.3122
0.3433
0.3361
0.3281
0.3197
0.3125
0.3107
0.3121
0.3433
0.3360
-7.34
-6.73
-5.91
-4.77
-3. 12
-0.90
-0.27
-11.54
-10.60
-9.33
-7.55
-4.96
-1.43
-O.44
-13.90
-12.77
-1 1.26
-9. 13
-6 . 03
-1.7O
-0.55
-15.12
-13.90
- 12.26
-9 . 96
-6.59
-1.97
-0.01
- 1 5 . 73
-14.47
-12.77
-10.37
-6.00
-2.06
-O.64
-16.04
-14.75
-13.02
-10.59
-7.03
-2. 11
-0.66
-16. 19
-14.90
-13. 13
-1O.70
-7.11
-2. 14
-0.67
-16.27
-14.97
DELL
-4. 18
-3.02
-3.34
-2.68
-1.73
-0.49
-0. 15
-6.76
-6. 17
-5.39
-4.31
-2.79
-O.OO
-O.24
-0.27
-7 . r>4
-6.58
-5.26
-3.41
-O.98
-0.30
-9.07
-8.27
-7. 22
-5.77
-3.74
-1.09
-0.33
-9.48
-8.64
-7.54
-6.03
-3.91
-1. 14
-0 . 35
-9.69
-8.83
-7.70
-6. 16
-4.00
-1. 17
-0.36
-9.79
-O.93
-7.79
-6.23
-4.04
-1. 10
-0.37
-9.04
-0.90
CC550)
-0. 1176
-0. 1080
-0.0967
-0.0796
-0.0538
-0.0167
-0.0052
-0. 1929
-0. 1704
-0. 1506
-0. 1305
-0.0382
-O.0273
-O.OO84
-O.2383
-0.22O3
-O. I960
-O. 1612
-O. 1O9O
-0.0337
-0.O1O4
-0.2025
-O.2427
-O.2139
-0. 1775
-O. 1200
-0.0371
-0.01 15
-O.2743
-O.2537
-0.2256
-0. 1855
-0. 1253
-0.0380
-0.0120
-O.2799
-0.2589
-0.2302
-0. 1893
-0. 1280
-0.0390
-0.0122
-0.2825
-0.2612
-0.2323
-0. 1910
-0. 1292
-0.0400
-0.0124
-0.2836
-0.2623
BRAT 10 DELX DELY E(LUV) E( LAB)
0.6416 0.0288 0.0306 24.0296 15.009
0.7037 0.0243 0.025220.5110 13.35O
0.7777 0.0193 0.0189 1O.2279 1O.424
0.0032 0.0132 0.0116 11.0583 7.0O3
0.9503 0.0062 0.0041 5.2521 3.332
1.0011 O.OOO3 -O.O003 O.OI41 0.070
1.0021 -0.0001 -0.0004 0.2050 O.227
O.5H27 0.0400 0.0368 30.7591 2O.2L»8
0.6569 O.O334 O.0295 20 . O522 10.919
0.7450 O.O25B 0.0211 20.4)98 13.O99
O.8463 O.OI70 O.O120 13.~7P2 n.7It3
O.9485 O.OO76 O.0031 0.5030 4.371
1.0O5O O.0004 -O.OO 13 1.2772 I.I O9
I.O043 -O.OO03 -O.OOO7 O.4-V>O O . 383
O.5J107 O.O424 O.O35O 31.60O1 2O.76O
O.6572 O.0351 O.O274 20 . 7O7 1 17.3*O
0.7478 O.O'*07 O.OIO9 2O.O392 13.4T,'»
O.8516 O.O173 O.OO98 14.0158 9.1.33
O.955O O.O073 O.OO 14 0 . 773O 4.7'>r;
1.GO9O O.OOOO -0.0019 1 . 50P5 1.382
1.0003 -0.0004 -0.0009 0.5899 o.<;m
0.5853 O.0420 O.O327 31.1922 2O.5O2
O.0035 O.O346 O.O252 20.24:15 17.137
O.7548 O.O201 O.O169 20.4252 13.331
O.050O 0.0105 0.0081 13.7121 9. M-7
O.9015 O.OO06 O.OO03 0 . 7O27 4.975
1.O124 -O.OOO3 -O.OO22 1.7290 1 . 525
1.0O79 -O.OOO3 -0.00 10 O.6689 O.534
O.5915 0.0412 0.0313 3O.0538 2O.226
O.0091 O.O337 O.O239 25.7517 10.915
0.7007 0.0253 0.0157 19.9959 13. 181
O.8048 0.0150 0.0072 13.3904 9.095
0.9008 O.OO61 -O.O003 6.5832 5 . O30
1.0150 -0.0003 -O.OO24 I . O'Ml 1 1.592
1.0092 -O.OOO6 -0.001O O.7134 O.501
0.5956 0.04O5 0.0300 30.2057 2O . O4 1
O.6730 0.0331 0.0232 25.3945 10.701
0.7054 0.0247 O.O15I 19.0850 13.O09
O.C&95 0.0153 0.0067 13.1010 9.038
0.9703 0.0057 -0.0006 0.4750 5.040
1.0171 -0.0006 -0.0023 1.8457 1.023
1.0102 -0.0007 -0.0010 O.73CI6 0.570
0.5988 0.0400 0.0303 3O.0171 19.929
0.0770 0.0326 0.0229 25. 1045 10.005
0.7090 0.0242 0.0149 19.4835 12.994
0.0731 0.0150 0.0065 10.0O29 0.993
0.9740 0.0053 -0.0007 0.3947 f> . 03fJ
1.0106-0.0007-0.0023 1.0020 1.035
1.0109 -0.0007 -0.0011 0.7520 O r>W
0.6013 0.0397 0.0301 29.8059 19.H04
0.6796 0.0323 0.0228 25 . 0237 lf*.(W\
Exhibit A-8 (.continued1
-------
160.
160.
160.
160.
160.
100.
1OO.
180.
1OO.
180.
180.
ICO.
200.
200.
200.
200.
200.
200.
200.
220.
220.
220.
220.
220.
220.
220.
230.
230.
230.
230.
230.
230.
230.
235.
235.
235.
235.
235.
235 .
235.
238.
238.
238.
238.
238.
238.
238.
239.
239.
239.
239.
239.
239.
239.
0.05
O. 10
0.20
0.50
0.80
0.00
0.02
O.05
0. 1O
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
O.50
O.8O
151.3
145.3
141.2
153.3
172.9
161. 1
156.5
151.4
1.45 . 4
141.2
153.3
172.9
161. 1
156.5
151.4
145.4
141.3
153.3
172.9
161. 1
156.5
151.5
145.4
141.3
153.3
172.9
161. 1
156.5
151.5
145.4
141.3
153.3
172.9
161. 1
156.5
151.5
145.4
141.3
153.3
172.9
161. 1
156.5
151.5
145.4
141.3
153.3
172.9
161. 1
156.5
151.5
145.4
141.3
153.3
172.9
18.20
21.44
23.67
17. 16
6.53
12.94
15.42
18. 15
21.40
23.65
17. 16
6.53
12.92
15.40
18. 14
21.39
23.65
17. 16
6.53
12.91
15.39
13. 13
21.39
23.65
17. 16
6.53
12.91
15.39
18. 13
21.39
23.65
17. 16
6.53
12.91
15.39
18. 13
21.39
23.65
17. 16
6.53
12.91
15.39
IB. 13
21.39
23.65
17. 16
6.53
12.91
15.39
18. 13
21.39
23.65
17. 16
6.53
46.32
48.79
52.40
57.39
58.87
43.23
44.53
46.29
48.76
52.38
57.39
58.87
43.21
44.51
46.27
48.75
52.37
57.38
58.87
43.20
44.51
46.26
48.74
52.36
57.38
58.87
43.20
44.50
46.26
48.74
52.36
57.38
58.87
43.20
44.50
46.26
48.74
52.36
57.38
58.87
43.20
44.50
46.26
48.74
52.36
57.38
58.87
43.20
44.50
46.26
48.74
52.36
57.38
58.87
73.78
75 . 34
77.54
80.42
81.24
71.73
72.61
73.75
75.32
77.53
00.41
01.24
71.72
72.59
73.74
75.31
77.52
80.41
81.24
71.72
72.59
73.74
75.31
77.52
80.41
81.24
71.71
72.59
73.74
75.31
77.52
80.41
81.24
71.71
72.59
73.74
75.31
77 . 52
80.41
81.24
71.71
72.59
73.74
75.31
77.52
80.41
81.24
71.71
72.59
73.74
75.31
77.52
80.41
81.24
0.3268
0.3173
0.3031
0.3020
0.3021
0.3423
0.3349
0.3266
0.3174
0.3001
0.3^20
0.3021
0 . 3422
0.3348
0.3265
0.3173
0.3080
0.3020
0.3021
0.3421
0.3348
0.3265
0.3173
0.3080
0.3020
0.3021
0.3421
0.3348
0.3265
0.3173
0.3030
0.3020
0.3021
0 . 34^1
0.3348
0.3265
0.3173
0.3080
0.3020
0.3021
0.3421
0.3348
0.3265
0.3173
0.3080
0.3020
0.3021
0.3421
0.3348
0.3265
0.3173
0.3080
0.3020
0.3021
0.3200
0.3106
0.3124
0.3107
0.3121
0.3433
0.3360
O.3279
0.3196
0.3124
0.3107
0.3121
0.3433
0.3359
0.3279
0.3196
0.3124
0.3107
0.3121
0.3433
0.3359
0.3279
0.3196
0.3124
0.3107
0.3121
0.3433
0.3359
0 . 3279
0.3196
0.3124
0.3107
0.3121
0.3433
0.3359
0.3279
0.3196
0.3124
0.3107
0.3121
0.3433
0.3359
0.3279
0.3196
0.3124
0.3107
0.3121
0.3433
0.3359
0 . 3279
0.3196
0.3124
0.3107
0.3121
-13.22
-10.76
-7. 13
-2. 16
-0.67
-16.32
-15.01
-13.26
-10.79
-7. 17
-2. 16
-0 . 68
-16.34
-15.03
-13.27
-10.00
-7. 18
-2. 17
-0.68
-16.35
-15.04
-13.23
-10.01
-7. 10
-2. 17
-0.68
-16.35
-15.04
-13.28
-10.81
-7. 18
-2. 17
-0.68
-16.35
-15.04
-13.23
-10.81
-7. 18
-2. 17
-0.68
-16.35
-15.04
-13.28
-10.81
-7. 18
-2. 17
-0.68
-16.35
-15.04
-13.28
-10.81
-7. 18
-2. 17
-O.68
-7.83
-6.27
-4.07
-1. 19
-0.37
-9.87
-9.00
-7.85
-6 . 20
-4.00
-1.20
-0.37
-9.O9
-9.01
-7.OO
-6.29
-4.09
-1.20
-0.37
-9.89
-9.02
-7.87
-6.30
-4.09
-1.20
-0.37
-9.89
-9.02
-7.87
-6.30
-4.09
-1.20
-0.37
-9.89
-9.02
-7.87
-6.3O
-4.09
-f.20
-0.37
-9.89
-9.02
-7.87
-6.30
-4.09
-1.20
-0.37
-9.89
-9.02
-7.87
-6.30
-4.09
-1.20
-0.37
-0.2332
-0. 1910
-0. 1297
-0.0401
-O.O124
-0.2040
-0.2627
-0.2336
-0. 1921
-O. 1299
-O.0402
rO.0124
-0.2042
-0.2023
-0.2337
-0. 1922
-0. 1300
-0.0402
-O.0124
-0.2042
-0.2020
-0.2337
-0. 1922
-0. 1300
-0.0402
-0.0124
-0 . 2O42
-0.2020
-0.2337
-0. 1922
-0. 1300
-0.0402
-0.0124
-0.2042
-0.2628
-0.2337
-0. 1922
-0. 1300
-0.0402
-0.0124
-0.2842
-0.2628
-0.2337
-0. 1922
-0. 1300
-0.0402
-0.0124
-0.2842
-0.2628
-0.2337
-0. 1922
-0. 1300
-0.0402
-0.0124
0.7718 0.0240 0.0148 19.0*^0
0.0759 O.014J1 0.0004 12.0O21
0.9704 O.O034 -O.OOOO O.JWO
1.0198 -O.OOOO -0.0025 1.8700
1.O115 -0.0007 -0.0011 O.700O
0.0032 0.0395 O.O301 29.7707
O.OO17 O.O322 0.0227 24. »MO2
O.7709 O.O23O 0.0147 I9.2-TI9
0.0780 O.ffl40 0.0004 12.P4ir>3
0.97G2 0.0053 -0.0008 O.T^IO
1 . 020O -0 . 0008 -0 . 0025 1 . P72.'l
1.0119 -0.0007 -0.0011 0.70*3
0.0040 0.0394 0.0301 29.7201
0.6832 0.0321 0.0227 24.(Y>25
0.7756 0.0237 0.0147 19.2304
0.8797 0.0145 0.0004 12.P/>39
0.9797 0.0052 -0.0000 6.2708
1.0215 -0.0003 -0.0025 1 . P.735
1.0123 -0.0003 -0.0011 0.7077
0.6037 0.0393 0.0300 29.O992
0.6843 0.0320 0.0227 24.P/i69
0.7763 0.0237 0.0147 19.210O
O.OC09 0.0145 0.0064 12. 783-1
0.9007 0.0052 -0.0003 6.26!">5
1.0220 -0.0003 -0.0023 1 . O736
1.0125 -0.0003 -0.00 11 O.70O9
0.6000 0.0393 0.0300 29.6028
0.6847 0.0320 0.0227 24.COOO
0.7772 0.0237 0.0147 19.21O3
0.8813 0.0143 0.0004 12.77O7
0.9810 0.0052 -0.0008 6.2*22
1.0221 -0.0008 -0.0025 1.P.733
1.0126 -0.0003 -0.0011 0.7092
0.6062 0.0393 0.030029.0911
0.6849 0.0320 0.0227 24.P.391
0.7773 0.0237 0.0147 19.2OO7
O.8314 0.0143 0.0064 12.7774
0.9312 0.0052-0.0003 6.2611
1.0222 -0.0008 -0.0025 1 . O733
1.0126 -0.0003 -0.0011 0.7692
0.6002 0.0393 0.0300 29.6905
0.6849 0.0320 0.0227 24.P-305
0.7774 0.0237 0.0147 19.2002
0.8815 0.0145 0.0004 12.7768
0.9812 0.0052 -0.0008 6.2008
1.0222 -0.0003 -0.0023 1 . 8733
1.0126 -0.0008 -0.0011 0.7093
0.6002 0.0393 0.0300 29.0903
0.6050 0.0320 0.0227 24.0584
0.7774 0.0237 0.0147 19.2080
0.8815 0.0143 0.0064 12.7767
0.9812 0.0052 -0.0008 6.2607
1.O222 -O.OOOO -0.0025 1 . O733
1.O126 -0.0008 -0.0O11 O.7093
12.
«.'
r».
i.
0.
i*v
10.
12.
n.
f».
i .
«.
19.
10.
12.
0.
5.
1.
O.
19.
10.
12.
P,.
r».
i.
0.
19.
10.
12.
O.
5.
1.
0.
19.
16.
12.
O.
5.
1.
0.
19.
16.
12.
0.
5.
1.
0.
19.
16.
12.
8.
5.
1 .
O.
Exhibit. A-8 (continued)
-------
VISUAL EFFECTS FOR LIIfES OF
1600 1W POWER PLANT
SIGHT ALO1TC PLUHE
DOWTWIJfD DISTANCE (KW>
THETA LENGTH RP/RV0
135.
20.
20. .
20.
20.
20.
20.
20.
40.
40.
40.
40.
40.
40.
40.
6O.
60.
6O.
6O.
6O.
60.
ro 6O.
S °°-
01 80.
oo.
8O.
ao.
80.
80.
IOO.
too.
IOO.
100.
100.
100.
100.
120.
120.
120.
120.
120.
120.
120.
140.
m ^ v •
14O.
* ~\f *
140.
140.
140.
140.
140.
0.00
0.02
0.05
0. 10
0.20 ''•
0.50
0.80
O.00
0.02
0.O5
O. 10
0.2O
0.50
O.80
O.OO
0.02
O.05
O. 10
0.20
O.5O
0.80
O.OO
0.02
0.05
O. 1O
O.2O
O.5O
0.80
0.00
O.02
O.O5
0. 10
0.20
0.50
O.80
0.00
0.02
O.05
0. 1O
0.20
0.50
0.80
O.OO
0.02
0.05
0. 10
0.20
0.50
0.80
* 240.0
RV 7JREDUCED
181.3
180.8
180.2
179.3
177.9
176.0
175.4
184. 1
182.3
1OO.O
176.8
172. 1
165.7
172.8
180.2
184.8
180.2
173.9
165. 0
153. 1
172.9
190.7
185.4
178.5
169. 1
155.8
153. 1
172.9
190.5
183,5
174.4
161.9
144.4
153.3
172.9
187. 0
178.4
167.2
151.8
141.7
153.3
172.9
179.6
169.5
156.2
146.6
141.9
153.4
172.9
1.99
2.25
2.61
3. 11
3.84
4.86
5. 17
0.49
1.44
2.70
4.45
6.97
10.41
6.6O
-1.73
O. 13
2.6O
5.98
10. 8O
17.26
6.56
-3.07
-0.24
3.49
8.58
15.78
17.24
6.54
-2.97
0.79
5.73
12.46
21.93
17. 16
6.53
-1.O9
3.54
9.63
17.93
23.42
17. 12
6.52
2.90
B.37
15.57
20.74
23.32
17. 10
6. 82
YCAP
5S.65
56.32
57.21
58.47
60.28
62.72
63.42
50.85
51.90
53.32
55.30
58. 18
62.09
63.22
48. 15
49.41
51. 11
53.49
56.96
61.71
63. 10
46.75
48. 11
49.95
52.53
56.31
61.50
63.03
46. 05
47.46
49.37
52.05
55.97
61.39
62.99
45.69
47. 13
49.07
51.80
55.80
61.33
62.97
45.51
46.96
48.92
51.68
55.71
61.30
62.96
L
79.43
79.81
80.32
81.02
82. Ol
83.31
83.68
76.61
77.24
78.08
79.23
8O.85
82.98
83.57
74.94
75.73
76.76
78. 18
80. 17
O2.77
83.51
74.05
74.92
76.06
77.62
79.81
82.66
83.47
73.60
74.51
75.70
77.33
79.62
82.60
83.45
73.37
74.30
75.52
77. 18
79.52
82.57
83.44
73.25
74. 19
75.42
77. 11
79.47
82.56
83.44
X
0.3267
0.3224
0.3172
0.3111
0.3043
0.2988
0.2983
0.3378
0.3312
O.3235
0.3148
O.3055
0.2985
0.2981
O.3399
0.3326
O.3242
O.3148
0.3050
0.2902
0.2979
O.3393
0.3318
O.3233
O.3139
O.3O43
0.2978
0.2977
O.3383
O.3308
O.3224
0.3131
0.3037
0.2976
0.2976
O.3375
0.3301
0.3217
0.3125
0.3033
0.2974
0.2976
O.3369
0.3295
0.3212
0.3121
0.3030
0.2973
0.2976
Y DELYCAP
0.3419
0.3363
0.329R
0.3223
0.3146
0.31O0
0.31O1
0.3480
0.3404
0.3318
0.3225
O.3I35
O . 309 1
O.3098
O.346O
O.3381
O.3293
0.32O1
0.3116
O . 3083
O.3093
0 . 3434
0.3356
O.3271
0.3182
O.3IO4
O.3081
0.3O94
O.3419
O . 3342
O.3259
0.3172
0.3098
0.3079
O.3O94
0.3411
0.3335
0.3253
0.3167
0.3094
0.3078
0.3093
O.34O8
0.3332
0.3250
0.3165
0.3093
0.3078
0.3093
-0.25
-7.56
-6.63
-5.37
-3.51
-1.02
-0.31
-12.98
-11.92
-10.49
-8.50
-5.59
-1.64
-0.50
-15.64
-14.37
-12.67
-1O.28
-6.79
-2.02
-0.62
-17.01
-15.65
-13.80
-11.21
-7.43
-2.22
-0.69
-17.70
-16.28
-14.37
- 1 1 . 69
-7.76
-2.33
-0.73
-18.04
-16.60
-14.66
-11.93
-7.92
-2.39
-0.75
-18.22
-16.77
-14.01
-12.05
-8. 01
-2.42
-0.76
DELL
-4.49
-4. 11
-3.59
-2.88
-1.07
-O.53
-O. 16
-7. 2O
-6.65
-5.00
-4.64
-3.01
-0.86
-0.26
-8.93
-O. 14
-7. 1O
-5.68
-3.6O
-1.06
-0.33
-9.01
-8.94
-7.79
-6.23
-4.O4
-1. 17
-0.36
-1O.25
-9.34
-8. 14
-6.51
-4.22
-1.23
-0.3B
-10.47
-9.55
-8.32
-6.66
-4.32
-1.26
-0.39
-10.59
-9.65
-8.41
-6.73
-4.37
-1.28
-0.40
C(550)
-0. 1217
-0. 1126
-0. 1002
-0.0024
-0.0558
-O.0173
-O.0033
-0. 1997
-0. 1847
-0. 1643
-0. 1351
-O.O914
-O.O283
-0.0088
-O.2467
-O.22O1
-O.2029
-O. 1669
-O. 1 129
-O.O349
-0.0108
-O.27I7
-O.2513
-0.2235
-0. 1838
-O. 1243
-0.O3O5
-O.O119
-O.284O
-0.2626
-0.2335
-O. 1921
-0. 1299
-O.O402
-O.0124
-O.2897
-0.2679
-0.2383
-0. 1960
-0. 1325
-0.0410
-0.0127
-O.2923
-0.2703
-0.2404
-0. 1977
-0. 1337
-0.0414
-0.0128
BRATIO DELX DELY E(LUV) E(LAR)
0.6420 0.02B3 0.0311 25.1666 16.426
0.7047 0.0242 0.0256 21.4465 13.053
O.7794 0.0190 0.0191 16.9209 1O.790
0.8656 0.0129 0.0116 11.4006 7. 205
0.9529 0.0060 0.0040 5.095O 0.4211
1.O026 O.0004 -O.OOO5 O.O3O7 O.701
1.OO29 -O.00O1 -0.0004 O.L>O49 O.242
O.5O49 O.O395 O.O373 32.O957 2O.964
O.66O1 0.0329 0.0297 27.1107 17.5O6
O.7492 O.O252 O.O212 21.I7O2 10.024
0.8314 O.OI65 O.OI1O 14.1926 9.O49
O.9536 O.OO72 O.0029 6.67*15 4.49O
1.OO78 O.OOO2 -O.OO14 1.0267 1 . 17O
1.OO57 -0.0003 -O.OO07 0.499O O.4O9
O.5O51 O.O4I6 0.0353 32.OOO4 21.4f.ft
O.6629 O.0343 O.O273 27.6454 17.O9fl
0.7347 O.O259 O.OIOfl 2 1 . 46O6 I3.O51
O.0394 O.O165 O.OO95 14.0201 9.090
O.9625 O.OO67 O.OO 11 6.fl42n 4.9411
I.OI3O -O.OOO2 -O.OO2O 1.6502 1.464
1.O082 -O.O003 -O.O009 O.64A6 0.515
0.5927 O.04IO O. 032O 32. 2717 21 . 150
O.6713 O.0335 O.O251 27.0f.r.9 17.652
O.7639 O.0230 O.O166 2O.941O 10.7O9
0.8688 O.OI53 0.0077 10.9401 9.402
O.97O9 O.O059 -0.OOO1 6 . 74O6 5.147
1.0173 -O.0006 -0.0024 1 . 84O4 1 . 62O
1.O103 -0.O006 -O.O01O O.7371 O.574
O.5994 O.O399 O.OO 13 3I.63O3 2O.O4C1
O.6785 O.0323 O.O237 26.4729 I7.4OO
O.7715 O.0240 O.O154 20.4392 13.547
O.8763 O.O147 O.OO67 10.5764 9.049
0.9776 O.OO53 -O.OOO7 6.6172 5.21O
1.O2O6 -O.O008 -O.0026 1.9069 1.695
1.0119 -O.OOO7 -O.OO 11 0.709O 0.6O5
O.6046 O.O391 0.0306 31.1940 2O.647
0.6841 0.0317 0.023O 26.0651 17.240
0.7774 O.O233 O.O14O 2O.0062 10.42O
0.8824 O.OI41 O.OO62 10.0115 9.291
0.9827 O.OO49 -0.0011 6.5009 5.204
1.0232 -0.0010 -0.0027 1.9052 1.729
1.0131 -0.0008 -0.0011 0.0100 0.622
0.6O86 O.O3O5 O.OOO3 3O.9146 2O.527
0.6884 0.0312 0.022725.0071 17.141
0.7819 0.0229 0.0145 19.0604 10.350
0.8069 0.0137 0.0060 10.1060 9.246
0.9066 0.0046 -0.0012 6.4195 R^^O
1.0251 -0.0011 -0.0027 2.0009 1.744
1.0140 -0.0008 -0.0011 0.005O O.601
Exhibit A-8 (continued!
-------
ro
160.
160.
160.
I6O.
160.
160.
160.
100.
IttO.
100.
100.
100.
100.
100.
200.
200.
200.
200.
200.
200.
200.
220.
220.
220.
220.
220.
220.
220.
230.
230.
230.
230.
230.
230.
230.
235.
235.
235.
235.
235.
235.
235.
238.
238.
238.
238.
238.
238.
238.
239.
239.
239.
239.
239.
239.
239.
O.OO
0.02
0.05
0. 10
0.20
0.50
0.80
0.00
0.02
0.05
0. 10
0.20
0.50
0.80
O.OO
0.02
0.05
0. 10
0.20
0.50
0.00
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
0.00
0.02
0.05
0. 10
0.20
0.50
0.00
O.OO
0.02
0.05
0. 10
0.20
0.50
0.80
O.OO
0.02
0.05
0. 10
0.20
0.50
0.00
0.00
0.02
0.05
0. 10
0.20
0.00
O.QO
167.2
159.0
153.3
146.8
141.9
153.4
172.9
163.7
. 159. 1
' 153.4
146.8
142.0
153.4
172.9
163.7
159. 1
153.4
146.9
142.0
153.4
172.9
163.7
159. 1
153.4
146.9
142.0
153.4
172.9
163.7
159. 1
153.4
146.9
142.0
153.4
172.9
163.7
159. 1
153.4
146.9
142.0
153.4
172.9
163.7
159.1
153.4
146.9
142.0
153.4
172.9
163.7
159. 1
153.4
146.9
142.0
153.4
172.9
9.63
14.08
17. 14
20.66
23.27
17. 10
6.52
1 1.53
14. Ol
17.09
20.62
23.26
17.09
6.52
1 1.51
13.99
17.08
20.61
23.25
17.09
6.52
11.51
13.99
17.08
20.61
23.25
17.09
6.52
11.51
13.99
17.08
20.61
23.25
17.09
6.52
11.51
13.99
17.08
20.61
23.25
17.09
6.52
11.51
13.99
17.08
20.61
23.25
17.09
6.52
11.51
13.99
17.08
2G.61
23.25
17.09
6.02
45.42
46.80
4O.84
51.61
55.67
61.28
62.95
45.37
46.83
48.80
51.58
55.64
61.27
62.95
45.35
46.81
48.78
51.56
55.63
61.27
62.95
45.34
46.80
48.77
51.55
55.62
61.27
62.95
45.33
46.80
48.77
51.55
55.62
61.27
62.95
45.33
46.80
48.77
51.55
55.62
61.27
62.95
45.33
46.80
48.77
51.55
55.62
61.27
62.95
45.33
46.80
48.77
51.00
55.62
61.27
62.90
73. 19
74. 13
75.38
77.07
79.44
82.55
83.43
73. 16
74. 10
75.35
77.05
79.43
82.54
03.43
73. 14
74.09
75.34
77 . 04
79.42
82.54
83.43
73. 14
74.08
75.33
77.03
79.42
82.54
83.43
73. 13
74.08
75.33
77.03
79.42
82.54
83.43
73. 13
74.08
75.33
77.03
79.42
82.54
83.43
73. 13
74.08
75.33
77.03
79.42
82.54
83.43
73. 13
74.08
75.33
77.03
79.42
O2. 04
O3.43
O.3366
0.3292
0.3210
0.3119
0.3028
0.2973
0.2975
0.3364
O.3290
0.3208
0.3117
0.3027
0.2972
O.2975
0.3362
O.32O9
0.3207
0.3117
0 . 3027
0.2972
0.2975
0.3362
0.3289
0.3206
0.3116
0.3027
0.2972
0.2975
0.3362
0.3288
0.3206
0.3116
0.3026
0.29T2
0.2975
0.3362
0.3288
0.3206
0.3116
0.3026
0.2972
0.2975
0.3362
0.3288
0.3206
0.3116
0.3026
0.2972
0.2975
0.3362
0.3208
0.3206
0.3116
O.3026
O.2972
O.297O
0.3406
0.3330
0.3248
0.3164
0.3092
0.3077
0.3093
0.3405
0.3330
0.3248
0.3163
0.3092
0.3077
0.3093
O.3405
0.3330
0.3248
0.3163
0.3092
0.3077
O.3093
0.3405
0.3330
0.3247
0.3163
0.3091
0.3077
O.3093
0.3405
0.3330
0.3247
0.3163
0.3091
0.3077
0.3093
0.3405
0.3330
0 . 3247
0.3163
0.3091
0 . 3077
0.3093
0.3405
0.3330
0 . 3247
0.3163
0.3091
0.3077
0.3093
0.3405
0.3330
0.3247
O.3I63
O.3091
0 . 3O77
O.3O93
-18.31
-16.85
-14.00
-12. 1 1
-0.06
-2.44
-0.77
-18.35
-16.89
-14.92
-12. 14
-8.08
-2.45
-0.77
-18.38
-16.91
-14.94
-12. 16
-8.09
-2.45
-0.77
-18.38
-16.92
-14.95
-12. 17
-8.09
-2.45
-0.77
-18.39
-16.92
-14.95
-12.17
-8. 10
-2.45
-0.77
-18.39
-16.92
-14.95
-12. 17
-8. 10
-2.45
-0.77
-18.39
-16.92
-14.95
-12. 17
-8. 10
-2.45
-0.77
-18.39
-16.92
-14.95
-12. 17
-8. 10
-2.43
-O.77
-10.65
-9.70
-8.46
-6.77
-4.39
-1.29
-0.40
-10.68
-9.73
-8.49
-6.79
-4.41
-1.29
-0.40
-10.69
-9.74
-8.50
-6.8O
-4.41
-1.30
-0.40
-10.70
-9.75
-8.50
-6.80
-4.42
-1.30
-0.40
-10.70
-9.75
-8.50
-6.80
-4.42
-1.30
-0.40
-10.70
-9.75
-8.50
-6.80
-4.42
-1.30
-0.40
-10.70
-9.75
-8.50
-6.80
-4.42
-1.30
-0.40
-10.70
-9.73
-8.50
-6.0O
-4.42
-1 .30
-O.4O
-0.2934
-0.2713
-O.2413
-0. 1984
-O. 1342
-0.0415
-0.0128
-0.2909
-0.2717
-0.2417
-0. 1987
-O. 1344
-0.0416
-0.0129
-0.2940
-0.2719
-0.2418
-0. 1908
-0. 1344
-0.0416
-0.0129
-0.2940
-0.2719
-0.2418
-0. 1988
-0. 1345
-0.0416
-0.0129
-0.2940
-0.2719
-0.2418
-0. 1988
-0. 1345
-0.0416
-0.0129
-0.2940
-0.2719
-0.2418
-0. 1988
-0. 1345
-0.0416
-0.0129
-0.2940
-0.2719
-0.2418
-0. 1988
-0. 1345
-0.0416
-0.0129
-0.2940
-0.2719
-0.2418
-O. 1988
-O. 1343
-0.0416
-O.OI29
0.6116 0.0082 0.0301 30.747O 20.459
0.6917 0.0008 O.0226 23.6512 17.0O1
0.7034 0.0226 O.0144 19.7220 10.002
0.8903 O.O135 0.0059 IO.O269 9.214
0.9095 0.0044 -0.0013 6.0610 5.219
1.0265 -0.0011 -0.0027 2.0200 1.751
1.0147 -0.0009 -0.0011 0.0455 0.605
O.6140 0.0300 0.0301 3O.6497 2O.42O
0.6941 0.0306 0.0225 25.5600 17.O47
O.7OOO O.O224 O.O140 19.64O7 10.270
O.8929 0.0134 0.0059 12.9606 9.193
0.9917 O.O044 -0.0013 6.0206 5.210
1.0276 -0.0011 -0.0027 2.0249 1.750
1.0152 -O.O009 -0.0011 0.0500 0.607
0.6157 0.0079 0.0301 30.5953 20.40O
O.6960 0.0303 0.0225 25.5091 17.020
0.7899 0.0223 0.0143 19.5940 10.256
0.8948 0.0133 0.0059 12.9219 9.100
0.9934 O.0043 -0.0013 6.3003 K.200
1.0284 -0.0012 -0.0027 2.0268 1.750
1.0156 -0.0009 -0.0011 0.0507 0.609
0.6169 0.0378 0.0300 30.5674 20.009
O.6973 0.0305 O.O225 25.4826 17.010
0.7913 0.0222 0.0143 19.5699 13.247
0.8962 0.0132 0.0059 12.9012 9.172
0.9946 0.0043-0.0013 6.2871 5.190
1.0290 -0.0012 -0.0027 2.0274 1.750
1.O159 -0.0009 -0.0011 0.8552 O.609
0.6173 0.0078 0.0300 30.5610 2O.007
0.6978 0.0305 0.0225 25.4768 17.016
0.7918 0.0222 0.0143 19.5645 13.245
0.8967 0.0132 0.0059 12.8965 9.17O
0.9930 0.0043-0.0013 6.2008 5.197
1.0292 -0.0012 -0.0027 2.0273 1.750
1.0160 -0.0009 -0.0011 0.8554 0.609
0.6175 0.0378 0.0301 30.5599 20.007
0.6979 0.0305 0.0225 25.4756 17.016
0.7919 O.O222 0.0143 19.5633 13.243
0.8968 0.0132 0.0059 12.0954 9.170
0.9951 0.0043-0.0013 6.2800 5.197
1.0293 -0.0012 -0.0027 2.0270 1.750
1.0160 -0.0009 -0.0011 0.0535 O.609
0.6173 0.0378 0.0301 30.5397 2O.307
0.6980 0.0303 0.0225 23.4732 17.016
0.7920 0.0222 0.0143 19.5631 10.245
0.8969 0.0132 0.0039 12.0932 9.170
0.9952 0.0043-0.0013 6.202O 5.196
1.0293 -0.0012 -0.0027 2.0270 1.730
1.0160 -0.0009 -0.0011 O.R536 0.609
0.6175 0.0378 0.0301 30.5597 2O.007
0.6980 0.0305 0.0225 23.4752 17.O16
0.7920 0.0222 0.0143 19.5601 10.245
O.8969 O.OI32 0.0O59 12.O951 O. I7O
O.9952 O.O043 -O.0013 6.2O27 n.106
1.O293 -O.OOF2 -O.OO27 2.O273 1 . 7f»3
I.OIAO -0.0009 -o.oo 11 o.nnn* o.f.n9
A-8 (continued')
-------
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE • 1.8 KM
PARCEL LOCAL SO2-TO-SO4= CONVERSION RATE (B/KR)
ACE TIME
(HR) H+28 H+1S H H-18 H-2S 0
0.1 900 0.00 0.00 0.00 0.00 0.00 0.00
KOX-TO-HN03 CONVERSION RATE <*/HR)
H+2S
0.00
H+18
0.00
H
0.00
H-18
0.00
H-2S
0.00
0
0.00
ro
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE » 2.0 KM
PARCEL LOCAL SO2-TO-SO4- CONVERSION RATE (K/HR)
AGE TIME
(HR) H+2S H+18 H H-18 H-28 0
o.i 881 o.ee o.oo o.oo o.oe e.oe o.oo
O.3 900 0.00 0.00 0.00 0.00 0.00 1.66
NOX-TO-HN03 CONVERSION RATE (K/HR)
H+28 H+18 H H-18
O.OO 0.00 0.00 O.OO
0.00 0.00 0.00 0.00
H-28 0
O.OO O.OO
0.00 11.64
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE
0.0 KM
PARCEL
ACE
(HR)
0. 1
0.3
0.7
LOCAL
TIME
026
833
900
8O2-TO-8O4* CONVERSION RATE (7S/HR)
H+2S
O.OO
0.00
0.00
H+1S
0.00
0.00
0.00
H
0.00
0.00
0.00
H-18
0.00
0.00
0.00
H-2S
O.OO
0.00
0.00
0
0.00
1.55
1.66
NOX-TO-HN03 CONVERSION RATE <*/HR)
H+2S
0.
0.
0.
OO
OO
00
H+1S
0
0
0
.00
.OO
.00
H
0.
0.
0.
H-18
00
00
OO
0.
o.
0.
00
OO
00
H-28
O.
0.
0.
OO
OO
00
0
0.
10.
1 I.
00
03
64
Exhibit A-8 (continued)
-------
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE » 10.0 KM
PARCEL LOCAL SO2-TO-SO4= CONVERSION RATE (7S/HR)
TIME
AGE
(HR)
0. i
0.3
0.7
1.4
745
753
818
909
H+2S
0.00
0.00
0.00
0.00
H+1S
0.00
0.00
0.00
0.00
H
0.00
0.00
0.00
0.00
H-18
0.00
0.00
0.00
0.00
H-2S
0.00
0.00
0.00
0.00
0
0.00
1.20
1.32
1.66
NOX-TO-HN03 CONVERSION RATE (*/HR>
n-t-29
0.00
0.00
0.00
n+is
0.00
0.00
0.00
H
0.00
0.00
0.00
H-1S
0.00
0.00
0.00
H-28
0.00
0.00
0.00
0
0.00
8.40
9.21
0.00 0.00 0.00 0.00 0.00 11.64
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE • 29.9 KM
S02-T0-S04= CONVERSION RATE
ro
4*
oo
PARCEL
ACE
H+2S
0.
0.
0.
0.
0.
00
00
00
00
01
H+IS
0.
0.
0.
0.
0.
00
00
00
00
00
H
0.
0.
0.
0.
0.
B-1S
00
00
00
00
00
0.
0.
0.
0.
0.
00
00
00
00
00
H-28
0.
0.
0.
0.
0.
00
00
OO
00
01
0
e.
4.
5.
7.
11.
oe
78
34
59
64
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE - 46.0 KM
PARCEL
AGE
(HR)
0. 1
0.3
0.7
1.4
2.8
5.5
LOCAL
TIME
336
345
410
451
614
900
SO2-TO-SO4= CONVERSION RATE (JS/HR)
H+2S
0.0O
0.00
0.00
0.00
0.00
0.00
R+1S
0.00
0.00
0.00
0.00
0.00
0.00
H
0.90
0.00
0.00
0.0O
0.00
0.00
H-1S
0.00
0.00
0.00
O.OO
0.00
0.00
H-2S
0.00
0.00
0.00
0.00
0.00
0.00
0
0.00
0. 1O
0. 13
0.23
0.60
0.51
NOX-TO-HNO3 CONVERSION RATE (X/HR)
H+2S
0.00
0.00
0.00
0.00
0.00
0.03
H+IS
0.00
0.00
0.00
0.00
0.00
0.01
H
0.00
0.00
0.00
0.00
0.00
0.00
H-1S
0.00
0.00
0.00
0.00
0.00
0.01
H-28
0.00
0.00
0.00
0.00
0.00
0.03
0
e.0«
0.72
0.94
1.60
4.22
3.60
Exhibit A-8 (continued)
-------
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE « 60.0 KM
PARCEL
ACE
cim>
0.1
0.3
0.7
1.4
2.8
5.8
8.3
LOCAL
TIME
51
59
124
205
328
614
900
SO2-TO-SO4= COHVERSION RATE <*/HTO
H+2S
0.00
0.00
0.00
0.00
0.00
0.00
0.02
n+is
o.oo
0.00
0.00
0.00
0.00
0.00
0.00
H
0. 00
0.00
0.00
0.00
0.00
0.00
0.00
H-1S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
H-2S
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0
0.00
O.OO
O.OO
0.00
0.00
0.02
0.08
FOX-TO-HH03 CONVERSION RATE (X/HR>
H+2S
O.OO
O.OO
0.00
0.00
0.00
0.00
0. 11
H+18
O.OO
0.00
0.00
0.00
0.00
0.00
0.02
H
O.OO
O.OO
0.00
0.00
0.00
0.00
0.01
H-IS
0.00
0.00
0.00
0.00
0.00
0.00
0.02
H-28
0.00
O.OO
0.00
0.00
0.00
0.00
0. 10
•
0.00
0.00
0.00
0.00
0.00
0. 11
0.54
KO
.Cfe
vo
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE • 80.0 KM
S02-TO-S04" CONVERSION RATE <*/HR>
PARCEL
AGE
(HR)
O.I
0.3
0.7
1.4
2.8
5.5
8.3
11.0
LOCAL
TIME
2203
2213
2238
2320
42
328
614
90O
H+2S
O.OO
0.00
0.00
0.00
O.OO
0.00
0.00
O.03
H+1S
0.00
0.00
0.00
0.00
0.00
O.OO
0.00
O.OO
H
0.00
0.00
O.OO
0.00
0.00
0.00
0.00
0.00
H-IS
0.00
0.00
0.00
0.00
0.00
0.00
0.00
O.OO
H-28
0.00
0.00
0.00
O.OO
0.00
O.OO
0.00
0.02
0
0.00
0.00
o.eo
0.00
O.OO
O.OO
0.00
O.04
NOX-TO-HN03 COlfVERSIOlf RATE <*/HR>
H+2S
O.OO
O.OO
O.OO
O.OO
O.OO
0.00
0.00
0.21
H+1S
0.00
O.OO
O.OO
O.OO
O.OO
o.eo
O.OO
0.03
H
O.OO
0.00
O.OO
O.OO
O.OO
O.OO
O.OO
0.02
H-18
O.OO
0.00
O.OO
O.OO
O.OO
O.OO
O.OO
0.03
H-28
O.OO
O.OO
0.00
o.eo
0.00
o.oe
o.oe
0. 17
0
O.OO
O.OO
O.OO
O.OO
0.O0
o.oe
O.O1
0.28
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE • 100.0 KM
8O2-TO-S04' CONVERSION RATE
PARCEL
AGE
(HR)
0. 1
0.3
0.7
1.4
2.8
5.5
8.3
11.0
13.8
LOCAL
TIME
1919
1928
1952
2034
2157
42
328
614
900
H+2S
O.OO
0.00
O.OO
0.00
0.00
0.00
O.OO
O.OO
0.05
H+1S
0.00
0.00
0.00
0.00
0.00
O.OO
0.00
0.00
0.01
H
0.00
0.00
0.00
0 . 00
0.00
0.00
0.00
0.00
0.00
H-IS
O.OO
0.00
O.OO
O.OO
0.00
0.00
0. 00
0.00
0.01
H-29
O.OO
0.00
O.OO
0.00
0.00
0.00
0.00
0.00
0.03
0
0.00
0.00
O.OO
0.00
0.00
O.OO
0.00
0.00
0.03
NOX-TO-HNO3 CONVERSION RATE <*/HR>
H+2S
0.00
0.00
0.00
0.00
0.00
0.00
O.OO
0.00
0.32
H+1S
o.oe
0.00
0.00
0.00
0.00
O.OO
0.00
0.00
0.04
H
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
H-18
0.00
0.00
O.OO
O.OO
0.00
o.oe
0.00
0.00
0.04
H-28
O.OO
0.00
O.OO
0.00
0.00
o.eo
o.oe
0.00
0.21
0
0.00
0.00
o.ee
O.OO
o.oe
O.OO
o.oe
0.01
0.23
Exhibit A-8 (continued)
-------
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE « 129.9 KM
PARCEL LOCAL SO2-TO-SO4* CONVERSION RATE (??/HR)
AGE TIME
(HR)
0
0
0
1
2
5
0
11
13
16
. 1
.3
.7
.4
.8
.5
.3
.0
.O
.6
1634
1642
1707
1748
1911
2157
42
328
614
900
H+2S
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
00
00
00
00
00
00
06
H+1S
0
0
0
0
0
0
0
0
0
0
.00
.00
.00
.00
.00
.00
.00
.00
.00
.01
H
0
0
0
0
0
0
O
0
0
0
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
H-1S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
H-2S
O.OO
0.00
0.00
0.00
0.00
0.00
O.OO
0.00
O.OO
0.03
0
0.00
0.00
0.00
0.00
0.00
O.OO
0.00
0.00
0.00
0.03
NOX-TO-HN03 CONVERSION RATE (X/HR)
H+2S
0.00
O.OO
0.00
0.00
0.00
0.00
O.OO
0.00
0.01
0.43
H+18
O.OO
0.00
0.00
O.OO
0.00
0.00
0.00
0.00
0.00
0.06
H
O.OO
O.OO
0.00
O.OO
0.00
0.00
0.00
0.00
0.00
0.03
H-1S
0.00
0.00
O.OO
0.00
0.00
0.00
0.00
0.00
0.00
0.06
H-28
O.OO
0.00
0.00
O.OO
0.00
0.00
0.00
0.00
0.00
0.22
0
0.00
O.OO
0.00
0.00
0.00
0.00
0.00
0.00
O.OI
0.22
ro
ui
o
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE * 140.6 KM
PARCEL LOCAL S02-TO-SO4= CONVERSION RATE (8/HR)
ACE TIME
(HR)
0.
0.
0.
1.
2.
5.
8.
11.
13.
16.
19.
1
3
7
4
8
5
3
0
8
6
3
1348
1356
1421
1502
1625
1911
2157
42
328
614
900
H+2S
O
0
0
0
0
0
0
0
0
0
0
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.08
n+is
0.
0.
o.
o.
o.
0.
0.
o.
0.
o.
0.
00
00
00
00
00
00
00
00
00
00
01
H
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
00
00
00
00
00
00
00
01
H-1S
0.00
0.00
O.OO
0.00
0.00
0.00
0.00
0.00
O.OO
0.00
0.01
H-2S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0
0.00
0. 10
0.07
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.03
NOX-TO-HN03 CONVERSION RATE (K/HR>
H+2S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.54
H+1S
0.00
0.00
0.00
0.00
0.00
O.OO
0.00
0.00
O.OO
0.00
o.oa
H
0.00
0.00
0.00
0.00
0.00
O.OO
0.00
0.00
0.00
0.00
0.04
H-1S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.08
H-2S
O.OO
0.00
0.00
0.00
0.00
O.OO
0.00
0.00
0.00
0.01
0.23
e
0.00
0.73
0.52
0.08
0.02
0.00
0.00
0.00
O.OO
0.00
0.22
Exhibit A-8 (continued)
-------
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE * 160.6 KM
PARCEL LOCAL S02-TO-SO4= CONVERSION RATE (%/HR)
AGE TIME
(HR)
0.
0.
0.
1.
2.
5.
B.
11.
13.
16.
19.
22.
1
3
7
4
O
5
3
e
a
6
3
1
1102
1110
1133
1217
1340
1625
1911
2157
42
328
614
900
H+2S
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
00
00
00
00
00
00
00
00
09
H-HS
0.00
0.00
0.00
0.00
0.00
0.00
0.O0
0.00
0.00
0.00
0.00
0.01
H
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
00
00
00
00
00
00
00
00
01
H-1S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
H-2S
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
00
00
00
00
00
00
00
00
03
0
0.00
1.78
1.66
1.32
0.76
0.03
0.00
0.00
0.00
0.00
0.00
0.03
NOX-TO-HNO3 CONVERSION RATE (%/HR)
H+2S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
0.65
H+1S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0. 10
H
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.05
H-1S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0. 10
H-2S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.23
0
e.00
12.45
1 1.65
9.23
5.31
0. 19
0.00
0.00
0.00
0.00
0.00
0.22
ro
en
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE = 180. « KM
PARCEL LOCAL S02-TO-S04* CONVERSION RATE ( B/HR)
ACE TIME
(HR)
0.
0.
0.
1.
2.
5.
8.
11.
13.
16.
19.
22.
24.
1
3
7
4
8
5
3
0
8
6
3
1
9
816
825
850
931
1O54
1340
1625
1911
2157
42
328
614
900
H+2S
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
00
00
01
00
00
00
00
00
OO
11
H>
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
IS
00
00
00
00
00
00
00
00
00
00
00
00
02
H
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
e.
0.
00
00
00
00
00
00
00
00
00
00
00
00
01
H-1S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
H-2S
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0
0.00
3.00
3.00
2.99
2.83
0.58
0.00
0.00
0.00
0.00
0.00
0.00
0.04
NOX-TO-HN03 CONVERSION RATE (X/HR)
H+2S
0
0
0
0
0
0
0
0
0
0
0
0
0
.00
.00
.00
.01
.02
.04
.00
.00
.00
.00
.00
.02
.76
H+1S
0
0
0
0
0
0
0
0
0
0
0
0
0
.00
.00
.00
.00
.00
.01
.00
.00
.00
.00
.00
.00
. 12
H
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
00
00
00
00
00
00
00
00
00
07
H-
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
IS
00
00
00
00
00
01
00
00
00
00
00
00
11
H-2S
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
01
02
04
00
00
00
00
00
01
24
0
e.
20.
20.
20.
19.
4.
0.
0.
0.
0.
0.
0.
0.
00
90
97
92
f2
08
03
00
00
00
00
01
30
Exhibit A-8 (continued)
-------
ro
(71
ro
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE • 266.0 KM
PARCEL LOCAL 8O2-TO-SO4= CONVERSION RATE (K/HR)
ACE TIME
(HR)
e
e
e
1
2
5
8
11
13
16
19
22
24
27
. 1
.3
.7
.4
.8
.5
.3
.e
.8
.6
.3
. 1
.9
.6
531
539
604
645
BOB
1054
1340
1625
1911
2157
42
328
614
900
B+2S
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.00
.00
.00
.00
.00
.01
.02
.00
.00
.00
.00
.00
.00
.12
H+1S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
H
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
H-1S
00
00
00
00
00
00
00
00
00
00
00
00
00
01
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
O.
0.
0.
00
00
00
00
00
00
OO
00
00
00
00
00
00
02
H-2S
0.00
0.00
0.00
0.00
0.00
O.01
0.02
0.OO
0.00
0.00
0.00
0.00
0.00
0.04
0
0.00
1.06
1. 18
1.52
2. 10
1.23
0. 14
0.00
0.00
0.00
0.00
0.00
0.00
0.07
NOX-TO-HH03 CONVERSION RATE (*/HR)
H+2S
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.00
.00
.00
.00
.01
.06
. 12
.01
.00
.00
.00
.00
.02
.86
H+1S
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
00
00
01
02
00
00
00
00
00
00
14
H
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
H-1S
00
00
00
00
00
01
01
00
00
00
00
00
00
08
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
00
00
01
02
00
00
00
00
00
00
13
H-2S
0
0
0
0
0
0
0
0
e
0
0
0
0
0
.00
.00
.00
.00
.01
.06
.12
.01
.00
.00
.00
.00
.01
.25
0
0.
7.
8.
10.
14.
8.
1.
0.
0.
0.
0.
0.
0.
0.
00
42
23
66
67
64
00
03
O0
00
00
00
01
49
HISTORY OF PLUME PARCEL AT DOWWND DISTANCE - 226.0 KM
PARCEL LOCAL S02-TO-804= CONVERSION RATE (7J/HR)
ACE TIME
(HR)
0.
0.
0.
1.
2.
5.
a.
11.
13.
16.
19.
22.
24.
27.
30.
1
3
7
4
8
5
3
0
8
6
3
1
9
6
4
245
253
318
400
522
608
1054
1340
1625
1911
2157
42
328
614
900
H+2S
0
0
0
0
0
0
0
0
0
0
0
0
6
0
0
.00
.00
.00
.00
.00
.00
.03
.03
.00
.00
.00
.00
.00
.00
.15
H+1S
0.
0.
0.
O.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00
00
00
00
00
00
00
00
00
00
00
00
00
00
03
H
0
0
0
0
6
e
0
0
0
0
0
0
0
0
O
.00
.00
.00
•0*
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.02
H-1S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
H-2S
0.00
0.00
0.00
0.00
0.00
0.00
0.O3
0.03
0.00
0.00
0.00
0.00
0.00
0.00
O.03
0
0.00
0.01
0.01
0.03
0. 19
0.31
0.21
0.08
0.00
0.00
0.00
0.00
0.00
0.00
0.05
NOX-TO-HN03 CONVERSION RATE (H/HR)
H>2S
0.00
0.00
0.00
0.00
0.00
0.02
0.20
0.24
0.02
0.00
0.00
0.00
0.00
0.03
1.03
H+1S
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.03
0.00
0.00
0.00
0.00
0.00
0.00
0.20
H
0.00
0.00
0.00
0.00
0.00
0.00
0.02
0.02
0.00
0.00
0.00
0.00
0.00
0.00
0. 11
H-1S
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.03
0.00
0.00
0.00
0.00
0.00
0.00
0. 16
H-2S
0.00
0.00
0.00
0.00
0.00
0.02
0.20
0.20
0.01
0.00
0.00
0.00
0.00
0.01
0.20
0
6.00
0.06
0.08
0.23
1.33
2. 14
1.45
0.57
0.02
0.00
0.00
0.00
0.00
0.01
0.36
Exhibit A-8 (continued)
-------
r\>
en
CO
HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE = 249.9 KM
PARCEL LOCAL S02-TO-S04= CONVERSION RATE
ACE TIME
(HR)
0.
0.
e.
1.
2.
5.
8.
11.
13.
16.
19.
22.
24.
27.
30.
33.
1
3
7
4
8
5
3
0
8
6
3
1
9
6
4
1
2359
B
32
114
237
522
808
1054
1340
1625
1911
2157
42
328
614
900
H+2S
0
0
0
0
0
0
0
0
0
O
0
0
e
0
e
0
.00
.00
.00
.00
.00
.00
.01
.06
.05
.00
.00
.00
.00
.00
.00
. 11
H+1S
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.04
H
0.00
0.00
0.00
0.00
o.oo
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
H-
0.
0.
0.
0.
O.
0.
0.
0.
0.
0.
0.
e.
0.
0.
0.
0.
IS
00
00
00
00
00
00
00
01
01
00
00
00
00
00
00
03
H-2S
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.00
.00
.00
.00
.00
.00
.01
.05
.03
.00
.00
.00
.00
.00
.00
.02
0
0.00
0.00
0.00
0.00
o.oo
0.00
0.04
0.08
O.04
0.00
0.00
0.00
0.00
o.oo
0.00
0.03
NOX-TO-HNO3 CONVERSION RATE (JS/HR)
H+2S
0.00
0.00
0.00
0.00
0.00
0.00
0.05
0.39
0.36
0.03
0.00
0.00
0.00
0.00
0.03
0.78
H+1S
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.05
0.05
0.00
0.00
0.00
0.00
0.00
O.00
0.28
H
o.oe
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.03
0.00
0.00
0.00
0.00
0.00
0.00
0. 15
H-1S
o.eo
0.00
0.00
0.00
o.oo
0.00
0.O1
0.09
0.05
0.00
0.00
0.00
0.00
0.00
0,00
0. 18
H-28
e.00
0.00
0.00
0.00
0.00
0.00
0.05
0.33
0.24
0.01
0.00
0.00
0.00
.0.00
0.00
O. 17
e
e.ee
0.00
0.00
0.00
0.00
0.01
0.27
0.57
0.30
0.01
0.00
0.00
0.00
0.00
0.00
O. 19
Exhibit A-8 (continued)
-------
PLOT PILE VERIFICATION
PLUME-BASED DATA
SKY BACKGROUND
NX 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16
DISTANCE (KM) '' 1 2 0 10 20 40 60 80 100 120 140 160 180 200 220 240
REDUCTION OP VISUAL
RANGE <*> 11.973 9.556 6.737 5.153 4.127 3.519 3.288 3.166 3.086 3.027 2.979 2.940 2.908 2.570 2.213 1.9
BLUE-RED RATIO
0.921 0.857 0.827 0.825 0.819 0.808 0.801 0.796 0.793 0.791 0.790 0.789 0.789 0.801 0.818 0.8:
PLUME CONTRAST AT
0.55 MICRONS -0.094 -0.108 -0.106 -0.098 -0.094 -0.095 -0.097 -0.099 -0.100 -0.101 -0.101 -0.101 -0.101 -0.092 -0.081 -0.0:
PLUME PERCEPTIBILITY
DELTA E(L*A*B*> 4.864 7.459 8.674 8.601 8.758 9.270 9.619 9.862 10.024 10.125 10.184 10.214 10.223 9.523 8.617 7.9.
WHITE BACKGROUND
NX 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
DISTANCE (KM) I 2 5 10 20 40 60 80 100 120 140 160 180 200 220 240
REDUCTION OF VISUAL
RANGE (JO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O.Ofl
BLUE-RED RATIO
1.101 0.985 0.909 0.886 0.866 0.844 0.833 0.826 0.821 0.818 0.816 0.815 0.814 0.824 0.837 0.84
y
PLUME CONTRAST AT
0.55 MICRONS -0.169 -0.169 -0.152 -0.135 -0.124 -0.121 -0.121 -0.122 -0.123 -0.123 -0.123 -0.123 -0.122 -0.111 -0.098 -0.08
PLUME PERCEPTIBILITY
DELTA E(L*A*B») 6.447 7.392 8.359 8.361 8.637 9.291 9.721 10.015 10.212 10.338 10.414 10.452 10.465 9.753 8.827 8.10
GRAY BACKGROUND
NX 1 2 3 4 B 6 7 8 9 10 11 12 13 14 IB 16
DISTANCE (KM) 1 2 8 10 20 40 60 80 100 120 140 160 180 200 220 240
REDUCTION OF VISUAL
RANGE <*> 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00
BLUE-RED RATIO
0.890 0.849 0.836 0.840 0.840 0.834 0.830 0.827 0.825 0.824 0.823 0.823 0.823 0.834 0.848 0.85
Exhibit A-8 (continued)
-------
PLUME CONTRAST AT
0.55 MICRONS 0.010 -0.022 -0.043 -0.047 -0.052 -0.059 -0.064 -0.067 -0.068 -0.070 -0.070 -0.071 -0.071 -0.065 -0.05B -0.05
PLUME PERCEPTIBILITY
DELTA E(L*A*B*> 3.975 5.865 6.657 6.541 6.612 6.954 7.194 7.361 7.472 7.541 7.500 7.596 7.598 7.086 6.425 5.90
BLACK BACKGROUND
NX 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
DISTANCE (KM) 1 2 5 10 20 40 60 80 100 120 140 160 180 200 220 240
f
REDUCTION OF VISUAL
RANGE (JO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00
8 BLUE-RED RATIO
0.637 0.648 0.689 0.726 0.752 0.767 0.773 0.775 0.777 0.778 0.780 0.781 0.782 0.798 0.817 0.03
PLUME CONTRAST AT
0.55 MICRONS 0.192 0.128 0.069 0.042 0.021 0.003 -0.005 -0.010 -0.013 -0.016 -0.017 -0.018 -0.018 -0.018 -0.017 -0.01
PLUME PERCEPTIBILITY
DELTA E(L*A*B«) 9.360 9.262 B.329 7.441 6.937 6.827 6.837 6.901 6.932 6.946 6.947 6.941 6.931 6.427 5.801 5.32
Exhibit A-8 (concluded)
-------
APPENDIX B
PLUVUE SOURCE CODE
The listing of the FORTRAN source code for PLUVUE, as used on the SAI
Prime 750 computer, is contained in this section. The various subprogram
listings are on the following pages:
Subprogram Page
MAIN
ERF
PERDIF
CHROMA
SYTVA
SZTVA
SYPAS
SZPAS
INRAD
RAYREF
BACCLN
BACOBJ
PLMCLN
PLMOBJ
BSIZE
ALGN
SOLARZ
SPLNA
MAPGTU
VV6TU1
MAPUTG
DAMIE
PLMAX
CLOCK
PLMIN
259
313
314
316
317
318
319
320
321
326
327
328
329
331
335
336
337
339
341
343
341
346
351
353
354
257
-------
The user should expect to perform a minor conversion before the
program will compile and execute properly on any computer other than
Prime. PLUVUE was written with standard FORTRAN to be as portable as
possible.
258
-------
(0001)
(0002)
(0003)
(0004)
(0005)
(0006)
(0007)
( 0008)
(0009)
(0010)
(0011)
(0012)
(0013)
(0014)
(0015)
(0016)
(0017)
(0018)
(0019)
(0020)
(0021)
(0022)
(0023)
(0024)
(0025)
(0026)
(0027)
( 0028)
(0029)
(0030)
(0031)
(0032)
( 0033)
(0034)
(0035)
(0036)
(0037)
( 0038)
(0039)
(0040)
(0041)
( 0042)
( 0043)
( 0044)
(0045)
(0046)
(0047)
( 0048)
(0049)
(0050)
(0051)
(0052)
(0053)
(0054)
(0055)
(0056)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
PLUVUE
PLUME VISIBILITY MODEL
THIS MODEL WAS DEVELOPED FOR :
U. S. ENVIRONMENTAL PROTECTION AGENCY
OFFICE OF AIR QUALITY PLANNING AND STANDARDS
RESEARCH TRIANGLE PARK, NC 27111
BY
DOUGLAS A. LATIMER
ROBERT W. BERGSTROM
CLARK D. JOHNSON
HENRY HOGO
SYSTEMS APPLICATIONS, INC.
950 NORTHGATE DRIVE
SAN RAFAEL, CA 94903
(415) 472-4011
IT IS RECOMMENDED THAT THE USER OF THIS MODEL REFER TO EPA'S
SERIES OF TECHNICAL GUIDANCE DOCUMENTS ON VISIBILITY, INCLUDING
THE "WORKBOOK FOR ESTIMATING VISIBILITY IMPAIRMENT" AND THE "USERS
MANUAL FOR THE PLUME VISIBILITY MODEL (PLUVUE) ", AND THE FOLLOWING
DOCUMENTS:
(1) U. S. ENVIRONMENTAL PROTECTION AGENCY (OCTOBER, 1979) ,
"PROTECTING VISIBILITY: AW EPA REPORT TO CONGRESS",
EPA-450/5-79-008 .
(2) LATIMER, D. A. ET AL. (SEPTEMBER, 1978) , "DEVELOPMENT
OF MATHEMATICAL MODELS FOR THE PREDICTION OF ANTHROPOGENIC
VISIBILITY IMPAIRMENT", EPA-450/3-73- 1 10A, B, C, SYSTEMS
APPLICATIONS, INCORPORATED, SAN RAFAEL, CALIFORNIA.
PROGRAM PLUVUE( INPUT, OUTPUT, TAPES = INPUT, TAPE6= OUTPUT, TAPE7)
COMMON/BCKGND/ ELEV , RVAMB , ACCAMB , AMBNO2 , RH, ROVA , ROVC , ROVS , ROVP ,
1SIGA,SIGC,SIGS,SIGP,HPBL, I RE AD , CORAMB , AMBNO3 , AM3S04 , INTYP
2 , DEN A , DENC , DENP , DENS
DIMENSION SPECR09) ,SPECB(39) ,SPECO(39) ,SPECP(39)
COMMON/MI ESCT/ROG, SIGMA, NLAMB,LAMB( 20) , JX, IT,TT(200) ,DUM(20) ,
1PDUM(20,200)
COMMON / OPTDEP / TAT0IZ(39) . TATHIZ( 39) ,TAT0HZ( 39) , XK39) ,
1X2(39) ,TAUTDI(39) ,TAUT0D(39) , XBDK 39) ,XH0D( 39)
COMMON/ MISC/ ABSN02(39) ,SOLAR(39) ,RAD,FORPIN,OMZ(39) ,OMH(39)
1 , NTHETA
Exhibit :B-1 . PLUVUE Source Code
259
-------
(0057)
(0058)
(0059)
(0060)
(0061)
(0062)
(0063)
(0064)
(0065)
(0066)
(0067)
(0068)
(0069)
(0070)
(0071)
(0072)
(0073)
(0074)
(0075)
(0076)
(0077)
(0078)
(0079)
(0080)
(0081)
(0082)
(0083)
(0084)
(0085)
(0086)
(0087)
(0088)
(0089)
(0090)
(0091)
(0092)
(0093)
(0094)
(0095)
(0096)
(0097)
(0098)
(0099)
(0100)
(0101)
(0102)
(0103)
(0104)
(0105)
(0106)
(0107)
(0108)
(0109)
(0110)
(0111)
(0112)
COMMON/RADPRP/BTAS04 ( 39 ) , BTACORX 39 ) , BTAPRM( 39 ) , BTAAERX 39 ) ,
1PAER(39,27) ,PPRIM(39 ,27) ,PS04(39,27) ,PCOR(39,27) ,BTABAC(39)
COMMON/COLOR/YCAP , VAL , X, Y, YCAPD , VALD , XD , YD , DELUV, DELAB ,
1XBAR(39) ,YBAR(39) ,ZBAR(39) ,PI ,CONTl ,CONT2,CONT3,BRATIO
COMMON /SOL/ EFFDEC, HRANGL
DIMENSION ALT(6) , AA(4) ,DIST( 16) ,PLANT(6) ,
1XPARTK 16,6) .XN02K 16,6) ,QN02I(6) ,XPARTP( 16,6) ,XPARTS( 16,6)
DIMENSION ROBJ(7) ,REFL(3)
DIMENSION X€K6) ,CHIftIY(6) ,RS02( 17) ,RNOX( 16) ,STABLE(7)
DIMENSION TER( 16) , OBSPLtK 16) ,AZMUTH( 16) , AALPHA( 16) , ABETA( 16)
1 , ROBJT( 16) , ROBJCT( 24)
DIMENSION PLTH 16,4) ,PLT2( 16,4) ,PLT3( 16,4) ,PLT4( 16,4) ,
1PLOTK 16,4) ,PLOT2( 16,4) ,PLOT3( 16,4),PLOT4( 16,4)
DIMENSION RSO2R( 17,6, 17) ,RNOXR( 17,6, 17) ,QS02TR(6, 16) ,ONOXTR(6, 16) ,
1 QS04TR(6, 16) ,QJTO3TR(6, 16) ,OPARTT(6, 16) ,RAT10T(6, 16) ,PHIKKR(24) ,
1 QJK24) ,RN02X( 17,6, 17)
C
C IF NUMBER OF DOWNWIND DISTANCES > 16, INCREASE ABOVE DIMENSIONS.
C
DIMENSION P(7)
DATA P/0. 10,0. 15, 0.20, 0.25, 0.30,0. 30, 0.30/
DATA AA/30. ,45. ,60. ,90./ ^_
DATA ALT /4HH+2S,4HH+1S, 1HH,4HH-1S,4HH-2S,2H 0/
DATA STABLE/2H A,2H B,2H C,2H D,2H E,2H F,2H G/
DATA NX1 /!/
DATA ROBJ/0. 02, 0.05,0. 10,0.20,0.50,0.80, 1 . O/
DATA REFL/1. ,0.3,0. /
C
C SPECIAL SYSTEM CALL FOR PRIME COMPUTER TO ALLO¥ PRINT FILE TO EXTEND
C OUT TO 132 COLUMNS.
C
C CALL ATTDEV( INTS(6) , INTS(7) , INTS(2) , INTS(66))
PI=3. 14159
RAD=PI/180.
v
*fC*fC
^^
C
C READ IN DATA (METEOROLOGICAL, PLANT EMISSIONS, AND AMBIENT AIR QUALITY
C
C
99 CONTINUE
READ(5,1) (PLANT(J),J=1,6)
1 FORMAT (6A4)
C
C READ IN U(M/S), STABILITY INDEX, LAPSE RATE(DEG F/1000 FT). I IS
C STABILITY INDEX. FOR PASQUILL-GIFFORD STABILITY CLASSES,
C 1=1 FOR "A", 2 FOR "B", 3 FOR "C", ETC.
C
READ (5,2) U, I,ALAPSE
IS=I
C
C IUSFC=0 FOR WIND SPEED ALOFT, NON-ZERO FOR SURFACE.
C INEW=NEW STABILITY INDEX. NXSTAB IS DOWN WIND DISTANCE INDEX WHERE
C NEW STABILITY STARTS. SET NXSTAB TO NX2+1 AND INEW= I FOR NO
C STABILITY CHANGE.
Exhibit B-1 (Continued)
260
-------
(0113)
(0114)
(0115)
(0116)
(0117)
(0118)
(0119)
(0120)
(0121)
(0122)
(0123)
(0124)
(0125)
(0126)
(0127)
(0128)
(0129)
(0130)
(0131)
(0132)
(0133)
(0134)
(0135)
(0136)
(0137)
(0138)
(0139)
(0140)
(0141)
(0142)
(0143)
(0144)
(0145)
(0146)
(0147)
(0148)
(0149)
(0150)
(0151)
(0152)
(0153)
(0154)
(0155)
(0156)
(0157)
(0158)
(0159)
(0160)
(0161)
(0162)
(0163)
(0164)
(0165)
(0166)
(0167)
(0168)
C
2
C
c n
C F
c
c
c
c
c
c
c
c s
c c
c
c
c
c
c
c
C G
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
2001
c
c s
C I
c
c
c
c
c
READ(5,2001)IUSFC,INEV,NXSTAB
FORMAT (F5.1,I5,F5.2,F5.1)
READ INITIAL PLUMP, HORIZONTAL AND VERTICAL DIMENSIONS
FOR A NON-POINT SOURCE.
READ(5,9)YINITL,ZINITL
READ IN PLANETARY BOUNDARY HEIGHT (MIXING DEPTH) IN METERS.
THIS IS THE LIMIT ON VERTICAL MIXING OF EMISSIONS. IF SET TO ZERO,
THERE IS NO LIMIT.
READ(5,7) HPBLM
SET PEL HEIGHT TO 2 KM FOR BACKGROUND POLLUTANTS FOR OPTICS
CALCULATIONS ONLY.
HPBL=2.
READ IN RELATIVE HUMIDITY IN PERCENT
IDIS=0 FOR PASQUILL-
READ(5,8) RH
READ INDICATOR FOR TYPE OF STABILITY SCHEME.
GIFFORD, 1 FOR TVA.
READ(5,801) IDIS
FLAGS FOR OPTICS ANALYSIS ROUTINES. IFLG1=1 FOR HORIZONTAL SIGHT
PATH VIEWS. IFLG2=1 FOR NON-HORIZONTAL SIGHT PATHS. IFLG3=1 FOR
BACKGROUND OBJECT VIEWS. IFLG4=1 FOR SIGHT PATHS ALONG THE PLUME
CENTERLINE. NT1= STARTING INDEX FOR SCATTERING ANGLE ARRAY FOR
RADIATIVE TRANSFER AND SCATTERING CALCULATIONS. NT2= ENDING INDEX
FOR SCATTERRING ANGLE CALCULATIONS. NORMALLY, NT1 IS SET TO 1
AND NT2 IS SET TO 7 FOR THE 7 GENERIC SCATTERING ANGLES AND
THESE VALUES SHOULD BE USED WHENEVER A OBSERVER-BASED RUN (NC1=1)
IS BEING MADE. FOR A GENERIC CASE RUN, NT1 AND NT2 CAN BE SET
TO LIMIT CALCULATIONS FOR LESS THAN THE 7 ANGLES. EXAMPLE: FOR
A GENERIC RUN FOR CALCULATIONS AT 90 DEGREES ONLY, NT1=3 AND
NT2=4. NX2= ENDING INDEX FOR ARRAY OF DOWNWIND DISTANCES OF
POINTS FOR OPTICS CALCULATIONS. NZF=1 FOR CALCULATIONS AT
PLUME CENTERLINE ONLY, 2 FOR OPTICS CALCULATIONS AT PLUME
CENTERLINE AND AT GROUND LEVEL.
READ(5,2001) IFLG1,IFLG2,IFLG3,IFLG4,NX2,NT1,NT2,NZF
FORMAT(1012)
SWITCH FOR TURNING ON PRINT OUT OF TABLE FOR INITIAL PLUME DILUTION.
IDILU=0 FOR NO TABLE, 1 FOR TABLE.
READ(5,2001)IDILU
READ IN DOWNWIND DISTANCES FOR OPTICS CALULATIONS (KILOMETERS).
IT IS RECOMMENDED THAT THE FIRST 4 DOWNWIND DISTANCES BE SET TO
1. , 2. , 5. , AND 10. KM.
Exhibit B-l (Continued)
261
-------
(0169)
(0170)
(0171)
(0172)
(0173)
(0174)
(0175)
(0176)
(0177)
(0178)
(0179)
(0180)
(0181)
(0182)
(0183)
(0184)
(0185)
(0186)
(0187)
(0188)
(0189)
(0190)
(0191)
(0192)
(0193)
(0194)
(0195)
(0196)
(0197)
(0198)
(0199)
( 0200)
(0201)
(0202)
(0203)
(0204)
(0205)
(0206)
(0207)
( 0208)
(0209)
(0210)
(0211)
(0212)
(0213)
(0214)
(0215)
(0216)
(0217)
(0218)
(0219)
( 0220)
(0221)
(0222)
(0223)
(0224)
C
9
C
C
C
32
C
C
C
C
C
3
C
C
C
C
C
4
C
C
C
5
6
C
C
C
7
C
C
C
C
8
C
C
C
C
G
C
C
C
C
C
C
C
C
C
C
READ(5,9)(DIST(I),1=1,NX2)
FORMAT(8F10.0)
CONVERT DOWNWIND DISTANCES FROM KILOMETERS TO METERS
DO 32 1=1,NX2
DIST( I)=DIST( I)*1000.
READ IN S02, NOX, AND PARTICULATE EMISSION RATES IN TONS/DAY
FOR ALL STACKS COMBINED. (SHORT TONS 2000 LB, NOT METRIC TONS)
READ (5,3) QS02, QNOX, OPART
FORMAT (3F10.2)
READ IN FLUE GAS FLOW RATE PER STACK (CU FT PER MIN), FLUE GAS
EXIT TEMPERATURE (DEC F), FLUE GAS OXYGEN CONCENTRATION (MOLE-
PERCENT), FLUE GAS EXIT VELOCITY (MXS)
READ (5,4) FLOW,FGTEMP,FGO2,WMAX
FORMAT (3F10.1,F10.2)
READ IN NUMBER OF STACKS AND STACK HEIGHT.
READ (5,5) UNITS,HSTACK
FORMAT (2F5.1)
FORMAT (F10.0)
READ IN AMBIENT AIR TEMPERATURE AT STACK HEIGHT.
READ (5,7) TAMB
FORMAT (F10.1)
READ IN AMBIENT BACKGROUND POLLUTANT CONCENTRATION IN PPM
OF NOX, N02, 03, AND SO2. V,
READ(5,8) AMBNOX,AMBNO2,03AMB,AMBSO2
FORMAT(5F10.3)
READ IN AEROSOL SIZE DISTRIBUTION DATA. ROVA=MASS MEAN RADIUS
FOR BACKGROUND ACCUMULATION MODE ( . 1 TO 1 MICROMETER) . ROVC =
MASS MEAN RADIUS FOR BACKGROUND COARSE MODE (> 1 MICROMETER).
ROVS = MASS MEAN RADIUS FOR PLUME SECONDARY AEROSOL. ROVP =
MASS MEAN RADIUS FOR PLUME PRIMARY AEROSOL. SIGA = GEOMETRIC
STANDARD DEVIATION OF RADIUS OF BACKGROUND ACCUMULATION MODE.
SIGC = GEOMETRIC STANDARD DEVIATION OF BACKGROUND COARSE MODE
AEROSOL. SIGS = GEOMETRIC STANDARD DEVIATION OF RADIUS OF
PLUME SECONDARY AEROSOL. SIGP GEOMETRIC STANDARD DEVIATION OF
RADIUS OF PLUME PRIMARY PARTICULATE. DENA=DENSITY (G/CM**3) OF
BACKGROUND ACCUMULATION MODE AEROSOL. DENC = DENSITY OF BACKGROUND
COARSE MODE AEROSOL. DENS = DENSITY OF PLUME SECONDARY AEROSOL
AND DENP = DENSITY OF PLUME PRIMARY AEROSOL.
READ(5,8) ROVA,ROVC,ROVS,ROVP
READ(5,8) SIGA,SIGC,SIGS,SIGP
Exhibit B-l (Continued)
262
-------
(0225)
(0226)
(0227)
(0228)
(0229)
(0230)
( 023 1 )
(0232)
(0233)
(0234)
(0235)
(0236)
(0237)
( 0238)
(0239)
(0240)
( 024 1 )
(0242)
(0243)
(0244)
(0245)
(0246)
(0247)
( 0248)
(0249)
(0250)
(0251)
(0252)
(0253)
(0254)
(0255)
(0256)
(0257)
(0258)
(0259)
(0260)
( 026 1 )
(0262)
(0263)
(0264)
(0265)
(0266)
(0267)
(0268)
(0269)
(0270)
(0271)
( 0272)
( 0273)
( 0274)
(0275)
(0276)
(0277)
( 0278)
(0279)
(0280)
C
C
C
C
C
C
C
C
C
C
C
801
C
C
C
C
C
C
802
803
C
C
C
C
C
C
806
C
C
C I
C
C
C
C ]
C i
C
46
79
C
C K
c o;
C Di
C
826
READ(5,8) DENA,DENC,DENS,DENP
READ IN AMBIENT COARSE MODE AEROSOL CONCENTRATION (BACKGROUND,
IN UG/M.
READ(5,8) CORAMB
INTYP = PARAMETER TO DETERMINE INPUT DATA. IF INTYP=1,
BACKGROUND SO4 AND N03 CONCENTRATIONS ARE INPUT AND MODEL
COMPUTES BACKGROUND VISUAL RANGE. IF INTYP .HE. ONE,
BACKGROUND VISUAL RANGE IS iHPUT AND IIODEL COMPUTES BACKGROUND
ACCUMULATION MODE CONCENTRATION.
READ(5,801) INTYP
FORMAT(15)
IF(INTYP.EQ.1) GO TO 802
READ IN BACKGROUND VISUAL RANGE.
READ(5,3)
GO TO 803
RVAMB
READ IN BACKGROUND SULFATE AND NITRATE CONCENTRATIONS. (UG/M**3)
READ(5.8)
CONTINUE
AMBS04 , AMBNO3
READ IN DEPOSITION VELOCITIES. VDS02 DEPOSTION VEL FOR S02.
VDNOX DEPOSITION VELOCITY FOR NOX. VDCOR = DEP. VEL. FOR
COARSE MODE PARTICULATE. VDSUB =DEPOSITION VELOCITY FOR
SUB-MICRON PARTICULATE. UNITS ARE CM^S.
READ(5,806) VDS02,VDNOX,VDCOR,VDSUB
FORMAT(16F5.2)
READ IN FLAG FOR S02-TO-S04 CONVERSION RATE (IN ADDITION TO OH
CHEMISTRY) TO BE CONSTANT WITH DOWNWIND DISTANCE (ICON=0) OR
TO CHANGE WITH DISTANCE FROM THE SOURCE (ICON=1).
TO BE ADDED TO RATE
READ(5,801)ICON
READ IN SO2-TO-S04 CONVERSION RATE (%/HR)
CALCULATED FROM OH CHEMKSRY.
READ(5,46)RS02C
FORMAT(8F10.7)
IF( ICON.EQ. DGO TO 826
DO 79 NX=1,NX2
RSO2(NX)=RS02C
GO TO 807
READ IN S02-TO-S04 CONVERSION RATE TO BE ADDED TO RATE CALCULATED BY
OH MODEL, WITH VALUES CORRESPONDING TO EACH OF THE ANALYSIS POINTS
DOWNWIND FROM THE SOURCE.
READ( 5 ,46) (RSO2( NX) , NX= 1, NX2)
Exhibit Brl (Continued)
263
-------
(0281)
( 0282)
( 0283)
(0284)
(0285)
(0286)
(0287)
( 0288)
(0289)
(0290)
(0291)
(0292)
(0293)
(0294)
(0295)
(0296)
(0297)
(0298)
(0299)
(0300)
(0301)
(0302)
(0303)
( 0304)
(0305)
(0306)
(0307)
(0308)
(0309)
(0310)
(0311)
(0312)
(0313)
(0314)
(0315)
(0316)
(0317)
(0318)
(0319)
( 0320)
(0321)
(0322)
( 0323)
(0324)
(0325)
(0326)
(0327)
( 0328)
(0329)
(0330)
(0331)
( 0332)
( 0333)
( 0334)
(0335)
(0336)
807
C
C NI
C N
C N
C N
C
C
C
C
825
C
C
C
C
C
C
C
C
C
C
C
C
C
816
C
C
C
C
C
C
C
C
86
C
C
C
C
C
C
C
C
C
C
80;
CONTINUE
NCI AND NC2 CONTROL OUTPUT
NC1=1,NC2=1 FOR STANDARD TABLES ONLY (NOT SITE SPECIFIC)
NC1=2,NC2=2 FOR SITE SPECIFIC TABLES ONLY
NC1=1, NC2=2 FOR BOTH TABLES— SITE SPECIFIC AND STANDARD
READ(5,808)NC1,NC2
IF( NCI. Eft. 2) GO TO 825
READ IN INDICES FOR CONTROLLING PLUME-BASED DATA SAVED FOR PLOTTING.
READ(5,2001)NPP,NAP,NTP,NZP,I01P,IPP
IFCNC2.ECL. 1)GO TO 816
FOR RUNS WITH SPECIFIC CASE CALCULATIONS, INCREASE NUMBER OF
SCATTERING ANGLES FOR ALL THE SPECIFIC VIEWER LINE-OF-SIGHT
GEOMETRIES.
NTHETA=7+NX2
READ IN OBSERVER POSITION: UTM X-COORDINATE (KM), UTM Y-COORDINATE
(KM), ELEVATION (FT.MSL) FOR OBSERVER-BASED CALCULATIONS.
READ( 5,4) XOBS, YOBS, ZOBS
READ IN SOURCE POSITION:
FOR ALL RUNS.
UTM X-COORDINATE, Y-COORDINATE, ELEVATION
READ(5,4)XSTACK,YSTACK,ZSTACK
READ UTM GRID ZONE NUMBER, MONTH, DAY, TIME (24 HOUR MILITARY),
TIME ZONE NUMBER, AND YEAR.
IZONE IS THE UNIVERSAL TRANSVERSE MERCATOR GRID ZONE NUMBER
READ FROM A USGS MAP ^
TZONE IS THE TIME ZONE NUMBER, COUNTING WEST FROM GREENWICH,
ADD ONE FOR DAYLIGHT SAVINGS TIME.
READ(5,808)IZONE,IMO,IDAY, TIME,TZONE,IYEAR
808 FORMAT(3I5,2F5.0,15)
SKIP OVER READ STATEMENTS IF RUN IS FOR A PLUME-BASED CASE ONLY.
IF(NC2.EQ.1)GO TO 818
READ IN ELEVATION OF TERRAIN AT EACH DOWNWIND POINT (FT MSL). IF
TER(1)=0, MODEL SETS UP FLAT TERRAIN FOR ALL POINTS. THESE CHANGES
ARE USED ONLY IN THE CALCULATION OF THE ELEVATION ANGLE BETA OF THE
SPECIFIC LINES OF SIGHT USED FOR THE OBSERVER-BASED CALCULATIONS.
THE GAUSSIAN DISPERSION CALCULATIONS USE FLAT TERRAIN.
READ(5,809)(TER(I),1=1,NX2)
IF(TER( 1).NE.0.) GO TO 8080
DO 8079 1=1,NX2
TER( I)=ZSTACK
8079 CONTINUE
Exhibit B-l (Continued)
264
-------
(0337)
( 0338)
(0339)
(0340)
(0341)
(0342)
(0343)
(0344)
(0345)
(0346)
(0347)
(0348)
(0349)
(0350)
(0351)
(0352)
(0353)
(0354)
(0355)
(0356)
(0357)
(0358)
(0359)
(0360)
(0361)
(0362)
(0363)
(0364)
(0365)
(0366)
(0367)
( 0368)
(0369)
(0370)
(0371)
(0372)
(0373)
( 0374)
(0375)
(0376)
(0377)
( 0378)
(0379)
(0380)
(0381)
( 0382)
(0383)
(0384)
(0385)
(0386)
( 0387)
( 0388)
(0389)
(0390)
(0391)
(0392)
80
C
C
C
C
C
C
C
C
8:
C
C
C
C
818
10
11
12
C
C C<
C
13
14
15
C
C C<
C
16
17
C
C C<
C
18
19
C
C C<
C
20
8080 CONTINUE
READ IN BACKGROUND OBJECT DISTANCES FROM OBSERVER THROUGH PLUME
TO BACKGROUND TERRAIN FOR LINE-OF-SIGHT AZIMUTHS OF 15 DEC.,
30 DEC., 45 DEC., ... , 360 DEG. THE DISTANCE FOR EACH LINE-
OF-SIGHT AZIMUTH ACTUALLY USED IS INTERPOLATED FROM THESE VALUES.
IF ROBJCT(I) 0, THE OBJECT DISTANCE IS SET EGUAL TO THE PLUME-
OBSERVER DISTANCE ALONG THE LINE-OF-SIGHT TO THE ITH DOWNWIND POINT.
READ(5,809)( ROBJCTC NAZ),NAZ=1,24)
809 FORMAT(8F10.1)
READ IN WIND DIRECTION IN DEGREES FROM NORTH (FROM WHICH WIND IS
BLOWING).
READ(5,7)WIND
WRITE (6,10)
FORMAT (1H1)
WRITE (6,11) (PLANT(J),J=1,6)
FORMAT (30H VISUAL IMPACT ASSESSMENT FOR ,6A4//)
WRITE (6,12) ZSTACK
FORMAT (5X,21HEMISSIONS SOURCE DATA//10X,20HELEVATION OF SITE
1 F10.0.10H FEET MSL)
C CONVERT ELEVATION FROM FEET TO METERS
ELEV = ZSTACK/3.281
WRITE (6,13) ELEV
FORMAT (30X.F10.0,12H METERS MSL,/)
WRITE (6,14) UNITS
FORMAT (10X, 15HNO. OF UNITS = ,F6.0,/)
WRITE (6,15) HSTACK
FORMAT (10X, 15HSTACK HEIGHT - ,F5.0,6H FEET)
C CONVERT STACK HEIGHT FROM FEET TO METERS
HSTACK = HSTACK/3.281
WRITE (6,16) HSTACK
FORMAT (25X,F5.0,8H METERS,/)
WRITE (6, 17) FLOW
FORMAT(10X,21HFLUE GAS FLOW RATE = .F10.0.11H CU FT/MIN)
C CONVERT FLUE GAS FLOW RATE FROM CU FT/MIN TO CU METERS/SEC
FLOW = FLOW/(3.281**3.*60.)
WRITE (6,18) FLOW
FORMAT (31X.F10.2,10H CU M/SEC,/)
WRITE (6,19) FGTEMP
FORMAT (10X,23HFLUE GAS TEMPERATURE
C CONVERT FLUE GAS TEMPERATURE FROM F TO K
FGTEMP = (FGTEMP+459.67)/1.8
WRITE (6,20) FGTEMP
FORMAT(33X,F10.0,3H K,/)
WRITE (6,21) FGO2
,F10.0,3H F)
Exhibit Brl (Continued)
265
-------
(0393)
(0394)
(0395)
(0396)
(0397)
(0398)
(0399)
(0400)
(0401)
(0402)
( 0403)
(0404)
(0405)
(0406)
(0407)
( 0408)
(0409)
(0410)
(0411)
(0412)
(0413)
(0414)
(0415)
(0416)
(0417)
(0418)
(0419)
(0420)
(0421)
(0422)
(0423)
(0424)
(0425)
(0426)
(0427)
( 0428)
(0429)
(0430)
(0431)
(0432)
(0433)
(0434)
(0435)
(0436)
(0437)
(0438)
(0439)
(0440)
(0441)
(0442)
(0443)
(0444)
(0445)
(0446)
( 0447)
(0448)
21
C
C CO!
C
22
C
C C01
C
23
24
231
25
26
C
C CO!
C
281
282
283
27
271
28
29
C
C CO
C
30
C
FORMAT( 10X,26HFLUE GAS OXYGEN CONTENT = ,F10.1,13H MOL PERCENT,/)
C CONVERT FG02 IN M0L PERCENT TO Q02 IN PPM BY VOLUME
0.02 = FG02*1.E4
VRITE (6,22) QS02
FORMAT (10X.28HS02 EMISSION RATE (TOTAL) = .F10.2,
1 10H TONS/DAY)
C CONVERSION FACTOR TONS/DAY TO GRAMS PER SEC
Cl - 2000.*453.6/(24.*3600.)
QS02 = QS02*C1
VRITE (6,23) QSO2
FORMAT (38X,1PE12.3,7H G/SEC,/)
WRITE (6,24) QNOX
FORMAT (10X.35HNOX EMISSION RATE (TOTAL,AS N02) - ,F10.2,
1 10H TONS/DAY)
QNOX = QNOX*C1
VRITE (6,231) QNOX
FORMAT(45X,1PE12.3.7H G/SEC,/)
VRITE (6,25) OPART
FORMAT ( 10X.36HPARTICULATE EMISSION RATE (TOTAL) = ,F10.2,
1 10H TONS/DAY)
OPART = QPART*C1
VRITE(6,231) OPART
VRITE(6,10)
VRITE (6,26) U
FORMAT (///5X.43HMETEOROLOGICAL AND AMBIENT AIR QUALITY DATA//10X,
1 12HVINDSPEED = ,F5.1,10H MILES/EH)
C CONVERT VIND SPEED FROM MILES/HR TO M/SEC
U = U*0.447
VRITE (6,27) U
VRITE(6,271) v
IF(IDIS.EQ.9) VRITE(6,281)
FORMAT(10X,45HDISPERSION COEFFICIENTS ARE USER-INPUT VALUES)
I=IS
IFdDIS.EQ. 1) VRITE(6,282) I
282 FORMAT( 10X,19HTVA STABILITY INDEX, 12)
IF(IDIS.EQ.0) VRITE(6,283) STABLE(I)
FORMAT( 10X,42HPASQUILL-GIFFORD-TURNER STABILITY CATEGORY,A2)
FORMAT( 1H ,21X,F5.1,7H M/SEC)
VRITE(6,271)
FORMAT( 5X)
FORMAT ( 10X,18HSTABILITY INDEX = ,12)
VRITE (6,29) ALAPSE
FORMAT(10X,13BLAPSE RATE = ,F5.2,11H F/1000 FT)
C CONVERT LAPSE RATE FROM F/1000 FT TO K/M
ALAPSE = ALAPSE*3.28l/(1000.*1.8)
VRITE (6,30) ALAPSE
FORMAT (23X,1PE12.3,5H K/M,/)
Exhibit &-1 (Continued)
266
-------
(0449)
(0450)
(0451)
(0452)
(0453)
(0454)
(0455)
(0456)
(0457)
(0458)
(0459)
(0460)
(0461)
(0462)
(0463)
(0464)
(0465)
(0466)
(0467)
(0468)
(0469)
(0470)
(0471)
(0472)
(0473)
(0474)
(0475)
(0476)
(0477)
( 0478)
(0479)
(0480)
(0481)
(0482)
(0483)
(0484)
(0485)
(0486)
(0487)
(0488)
(0489)
(0490)
( 049 1 )
(0492)
(0493)
(0494)
(0495)
(0496)
(0497)
( 0498)
(0499)
( 0500)
(0501)
(0502)
(0503)
(0504)
C CO
C
C
C
C
C
31
33
C
C CO
C
34
341
342
C
C C
C
C
C C.
C
40
35
C
C
C
c i:
c
c
c
C CAJ
C
c
c
c
C CONVERT TO POTENTIAL TEMPERATURE BY ADDING DRY ADIABATIC LAPSE RATE
ALAPSE ALAPSE + 9.8E-3
TO PREVENT POSSIBLE DIVIDE BY ZERO IN CALCULATION OF STABILITY
PARAMETER S IN PLUME RISE,CHECK IF ALAPSE = 0.
IF( ALAPSE.EQ.0.)ALAPSE=.1E-30
WRITE (6,31) ALAPSE
FORMAT ( 1GX,35HPOTENTIAL TEMPERATURE LAPSE RATE , 1PE12.3,
1 5H K/M,/)
WRITE (6,33) TAKE
FORMAT( 1 OX, 22HAKBIENT TEMPERATURE , F5 . 1, 3H F)
C CONVERT AMBIENT TEMPERATURE FROM F TO K
TAMB (TAMB + 459.67)/I.8
WRITE (6,34) TAMB
FORMAT( 32X,F5.1,3H K,/)
WR!TE(6,341) RH
RH=RH/100.
FORMAT(10X.20HRELATIVE HUMIDITY = ,F5.1,3H %,/)
WRITE(6,342) HPBLM
FORMAT( 10X,15HMIXING DEPTH = ,F5.0,3H M,/)
CALCULATION OF AMBIENT PRESSURE IN ATMOSPHERES FROM ELEVATION IN M MSL
PAMB EXP(-1.15E-4*ELEV)
CALCULATE WATER CONCENTRATION IN PPM
WATER =(6030.*RH/PAKB)*EXP( 4884.*<1./273.- 1./TAMB))
WRITE (6,40) PAMB
WRITE(6,271)
FORMAT ( 10X,19HAMBIENT PRESSURE ,F5.2,5H ATM)
WRITE (6,35) AMBNOX
WRITE(6,271)
FORMAT (10X,31HBACKGROUND NOX CONCENTRATION = ,F10.3,5H PPM)
CONVERT UTM COORDINATES TO LAT, LONG.
XSTACK = UTM EAST COORD., YSTACK= UTM NORTH COORD.
IZONE= UTM ZONE NUMBER
ALON=LONGITUDE IN DEGREES, ALAT= LATITUDE IN DEGREES
CALL MAPUTG( XSTACK, YSTACIC, I ZONE, ALON, ALAT)
C CALCULATE SOLAR ZENITH ANGLE.
TIMEl=CLOCK(TIME,-2)
CALL SOLARZ(ALAT,ALON,TZONE,IYEAR,IMO,IDAY,TIME1,SUNEL,5)
SINAL=COS(EFFDEC)*SIN(HRANGL)/SIN( ( 90.-SUNEL)*RAD>
CALL SOLARZC ALAT,ALON,TZONE,IYEAR,IMO,IDAY, TIME,SUNELE,5)
ZENITH=90.-SUNELE
CALCULATE SOLAR AZIMUTH ANGLE FOR LATE AM
Exhibit B-l (Continued)
267
-------
(0505)
(0506)
(0507)
(0508)
(0509)
(0510)
(0511)
(0512)
(0513)
(0514)
(0515)
(0516)
(0517)
(0518)
(0519)
(0520)
(0521)
(0522)
(0523)
(0524)
(0525)
(0526)
(0527)
(0528)
(0529)
(0530)
(0531)
(0532)
(0533)
(0534)
(0535)
(0536)
(0537)
( 0538)
(0539)
(054-0)
(0541)
(0542)
(0543)
(0544)
(0545)
(0546)
(0547)
(0548)
(0549)
( 0550)
(0551)
(0552)
(0553)
(0554)
(0555)
(0556)
(0557)
(0558)
(0559)
(0560)
C
C S
c
c
c s
c
c
c s
c
c
c
c
c
351
352
36
37
370
81
C
C C
C
C
c
c
821
C
C
C
SINA=COS(EFFDEC)*SIN(HRANGL )/SIN(ZENITH*RAD)
SUNAZ=180.-ASIN(SINA)/RAD
SUN AZIMUTH FOR EARLY AM
IF(TIME .LT. 1030. -AND. SINA .GT. SINAL)SUNAZ=ASIN(SINA)/RAD
SUN AZIMUTH FOR EARLY PM
IF(TIME .GT. 1030. .AND. SINA .GT. SINAL)SUNAZ=180.+ASIN(SINA)/RAD
SUN AZIMUTH FOR LATE PM
IF(TIME .GT. 1430. .AND. SINA .LT. SINAL)SUNAZ=360.-ASIN(SINA)/RAD
CALCULATE DYNAMIC EQUILIBRIUM CONSTANT FOR N02 - NO
BRANCH IF ZENITH > 90 DEGREES AND SET CONSTANT TO ZERO.
IF(ZENITH.GE.90.) GO TO 351
PHIKK=(l.E-2/0.44)*EXP(-0.38/COS(PI/180.#ZENITH))
GO TO 352 —
PHIKK=0.0
CONTINUE
SUM= A11BNOX+AMBNO2+03AMB+PHIKK
XN02=0. 5*( SUH-S£RT( SUTi*SUM-4. *AMBNOX#( 03AMB+AMBN02)) )
IF(XNO2.GT.AMBNOX) XNO2= AMBNOX
DIF=XN02-AMBNO2
AMBN02=XN02
IF(DIF.GT.0.C005) GO TO 352
WRITE (6,36) AMBN02
TOUTE<6.271)
FORMAT ( I0X, 31EBACICGROUND N02 CONCENTRATION ,F10.3,5H PPM)
WRITE (6,37) O3AMB
¥RITE(6,271) i
FORMAT ( I0X,33HBACKGF.OUND OZONE CONCENTRATION = ,F10.3,5H PPM)
WRITE(6,370) AKBS02
370 FORMAT(10X,31EEACKGROUND S02 CONCENTRATION - ,F10.3,5H PPM,/)
ELEV=ELEV/1000.
811 CONTINUE
IF(IUSFC.EQ.0)GO TO 817
CORRECT 7 METER WIND TO STACK HEIGHT
USFC=U
IF( IDIS.Ea. UGO TO 821
CORRECTION IF PASQ.UILL-GIFFORD STABILITY CLASS
U=USFC*(HSTACK/7.)#*P( I)
GO TO 817
CONTINUE
CORRECTION IF TVA STABILTY CLASS
P(1)=0.25
DO 822 11=2,6
Exhibit Brl (Continued)
268
-------
(0561)
(0562)
(0563)
(0564)
(0565)
(0566)
(0567)
(0568)
(0569)
(0570)
(0571)
(0572)
(0573)
(0574)
(0575)
(0576)
(0577)
(0578)
(0579)
(0580)
(0581)
(0582)
(0583)
(0584)
(0585)
(0586)
(0587)
(0588)
(0589)
(0590)
(0591)
(0592)
(0593)
(0594)
(0595)
(0596)
(0597)
(0598)
(0599)
(0600)
(0601)
(0602)
(0603)
(0604)
(0605)
(0606)
(0607)
(0608)
(0609)
(0610)
(0611)
(0612)
(0613)
(0614)
(0615)
(0616)
822
C
C
C
C
8
C
C
C
C
8
8
814
8
C
C
C
823
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
P( 11)^0.30
U= USFC*(HSTACK/7.)**P(I)
PLUME RISE CALCULATION (FROM CRSTER MANUAL (BRIGCS))
BOUYANCY FLUX
817 F=(9.8*FLOW/PI)*(FGTEMP-TAMB)/FGTEMP
PLUME RISE FOR STABLE CONDITIONS
STABILITY PARAMETER S
S=(9.8/TAMB)*ALAPSE
SMJN= ( 9.8/TAMB)*9.8E-4
IF(S.LT.SMIN)GO TO 812
XFI NAL= PI *U/SQRT( S)
RISE = 2.6*(F/(U*S))**0.333334
RISE2=5.#(F*#0.25) *(S*#<-3./8.))
IF(RISE2.LT.RISE )RISE=RISE2
GO TO 815
IF(F.GE.55.)GO TO 813
XSTR=14.#F**( 5./8.)
GO TO 814
813 XSTR=34.*F**(2./5.)
XFINAL=3.5*XSTR
RISE=1.6*(F**0.333334)*((3.5*XSTR)#*.666667)/U
815 H=BJSTACK+RISE
CORRECT 7 METER WIND SPEED TO FINAL PLUME HEIGHT
IF(IUSFC.EQ.0)GO TO 823
U=USFC*(H/7.)**P(I)
CONTINUE
SKIP OVER SIT SPECIFIC GEOMETRY IF RUN IS FOR PLUME-BASED
CALCULATIONS ONLY.
IF(NC2.EQ.1)GO TO 820
CONVERT WIND TO AZIMUTH OF PLUME TRAGECTORY IN RADIANS.
WIND=( WIND-180.)*RAD
CALCULATE OBSERVER AZIMUTH ANGLE, ELEVATION ANGLE (ABETA),
AND HORIZONTAL ANGLE BETWEEN LINE-OF-SITE AND PLUME CENTERLINE
FOR EACH DOWNWIND POINT (AALPHA).
DO 810 1=1,NX2
XPLUME = X COORDINATE OF DOWNWIND POINT IN KILOMETERS.
YPLUME = Y COORDINATE OF DOWNWIND POINT IN KILOMETERS.
ZPLUME = ELEVATION OF PLUME PARCEL (FT, MSL)
OBSPLU(I) = DISTANCE IN KM FROM OBSERVER TO PLUME AT
DOWNWIND POINT I.
XPLUME= XSTACK+DISTC I)/1000. *SIN(WIND)
YPLUME= YSTACK+DIST( D/1000. #COS(WIND)
Exhibit B-l (Continued)
269
-------
(0617)
(0618)
(0619)
(0620)
(0621)
(0622)
(0623)
(0624)
(0625)
(0626)
(0627)
(0628)
(0629)
(0630)
(0631)
(0632)
(0633)
(0634)
(0635)
(0636)
(0637)
(0638)
(0639)
(0640)
(0641)
(0642)
(0643)
(0644)
(0645)
(0646)
(0647)
(0648)
(0649)
(0650)
( 065 1 )
(0652)
(0653)
(0654)
(0655)
(0656)
(0657)
(0658)
(0659)
(0660)
(0661)
(0662)
(0663)
(0664)
(0665)
(0666)
(0667)
(0668)
(0669)
(0670)
(0671)
(0672)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
804
C
C
C
805
819
824
8]
82
C
C *=i
ZPLUME=H*3.28H-TER( I)
OBSPLIK I) = ((XPLUME-XOBS)**2+( YPLUME-YOBS)**2+( ( ZPLUMS-ZOBS)/3.281/
1 1000.)**2)**0.5
CALCULATE DELTAX, DELTAY AND DELTAZ BETWEEN PLUME PARCEL AND
AND OBSERVER POSITION.
DELTAX= XPLUME-XOBS
DELTAY= YPLUME-YOBS
DELTAZ=(ZPLUME-ZOBS)/3281.
CALCULATE AZIMUTH OF OBSERVER SIGHTLINE.
AZMUTH( I)= ATAN2( DELTAX,DELTAY)/RAD
IF( AZMUTBX I) .LT.0. )AZMUTH( I)=AZMUTH( I)+360.
AALPHACI)=ACOS(COS(WIND)*COS(AZMUTH( I)*RAD)+SIN( WIND)*SIN(
1 AZMUTH( I)*RAD))/RAD
IF (AALPHA( I).GT.90.)AALPHA( I) = 180.-AALPHA( I)
CALCULATION OF SCATTERING ANGLE BETWEEN DIRECT SOLAR RAY AND
OBSERVER LINE-OF-SIGHT FOR EACH DOWNWIND POINT.
XIA= ( DELTAX*SIN( SUNAZ#RAD)+DELTAY*COS( SUNAZ*RAD))*SIN(ZENITH
1 *RAD)+DELTAZ*COS( ZENITH*RAD)
X2A=OBSPLU( I)
TT(I+7)=ACOS(X1A/X2A)/RAD
CALCULATION OF ANGLE OF OBSERVER LINE-OF-SIGHT ABOVE HORIZON.
ABETACI)=ASIN(DELTAZ/OBSPLU( I))/RAD
INTERPOLATION OF DISTANCE TO BACKGROUND TERRAIN FOR THE AZIMUTH
OF THE SPECIFIC LINE OF SIGHT FOR EACH DOWNWIND DISTANCE. IF
ROBJCTC I) = 0. , SET ROBJT( I) = OBSPLJLK I) .
IF(ROBJCT( I) .EQ.0.)GO TO 824
IF(AZMUTH
-------
(0673)
(0674)
(0675)
(0676)
(0677)
(0678)
(0679)
(0680)
(0681)
(0682)
(0683)
(0684)
(0685)
(0686)
(0687)
(0688)
(0689)
(0690)
(0691)
(0692)
(0693)
(0694)
(0695)
(0696)
(0697)
(0698)
(0699)
(0700)
(0701)
(0702)
(0703)
(0704)
(0705)
(0706)
(0707)
( 0708)
(0709)
(0710)
(0711)
(0712)
(0713)
(0714)
(0715)
(0716)
(0717)
(0718)
(0719)
(0720)
(0721)
(0722)
(0723)
( 0724)
(0725)
(0726)
(0727)
( 0728)
C
C
C
C
C
C ##
C
371
372
373
38
374
375
37'
377
310
312
313
314
315
316
317
318
319
320
CALCULATE BACKGROUND RADIATION CHARACTERISTICS : SCATTERING,
ABSORPTION, AND EXTINCTION COEFFICIENTS AND OPTICAL DEPTHS.
***#**CALL INRAD*******
CALL INRAD
WRITE(6,371) CORAMB
371 FORMAT( 10X, 39 HBACKGROUND COARSE MODE CONCENTRATION = ,F10.1,7H UG
1/M3,/)
WRITE(6,372) AMBSO4
FORMAT( 10X,35HBACKGROUND SULF ATE CONCENTRATION - ,F10.1,7H UG/M3,
I/)
WRITE(6,373) AMBN03
FORMAT( 10X, 35HBACKGROUND NITRATE CONCENTRATION - ,F10.1,7H UG/M3,
I/)
WRITE(6,38) RVAMB
FORMAT( 1 OX, 26HBACKGROUND VISUAL RANGE = ,F10.1,12H KILOMETERS,/)
WftITE(6,374) VDSO2
FORMAT( 10X.26HS02 DEPOSITION VELOCITY = .F10.2.8H CM/SEC,/)
WRITE(6,375) VDNOX
FORMAT( 10X,26HNOX DEPOSITION VELOCITY ,F10.2,8H CM/SEC,/)
WRITE(6,376) VDCOR
376 FORMAT( 10X.41HCOARSE PARTICULATE DEPOSITION VELOCITY - ,F10.2,8H
1GM/SEC,/)
WRITE(6,377) VDSUB
FORMAT( 10X, 44HSUBMICRON PARTICULATE DEPOSITION VELOCITY = ,F10.2,
18H CM/SEC,/)
WRITE(6,271)
WRITE(6,310)
FORMAT(39X, 18HAEROSOL STATISTICS)
WRITE(6,271)
WRITE(6,312)
FORMAT(36X, 10HBACKGROUND,32X,5HPLUME)
VRITE(6,271)
FORMAT(25X, 12HACCUMULATION, 1 1X.6HCOARSE, 1 IX, 12HACCUMULATION, 1 IX, 6H
1COARSE)
VRITE(6,313)
FORMAT( 10X, 11HMASS MEDIAN, 8X, 4HMODE, 16X,4HMODE, 16X,4HMODE, 16X.4HMO
IDE)
VRITE(6,315)
FORMAT(10X,6HRADIUS)
WRITE< 6,316) ROVA, ROVC , ROVS , ROVP
FORMAT( 10X, 1 1HMICROMETERS, 5X,F10.3,3( 10X.F10.3))
¥RITE(6,271)
WRITE(6,317)
FORMAT( 10X.9HGEOMETRIC)
WftITE(6,318)
FORMAT( 10X, 8HSTANDARD)
WRITE(6,319)SIGA,SIGC,SIGS,SIGP
FORMAT(10X,9HDEVIATION,7X,F10.3,3( 10X.F10.3))
WRITE(6,271)
WRITE(6,320)
FORMAT(10X,8HP ARTICLE)
Exhibit B-l (Continued)
271
-------
(0729)
( 0730)
(0731)
( 0732)
(0733)
(0734)
(0735)
(0736)
( 0737)
(0738)
(0739)
(0740)
(0741)
(0742)
(0743)
( 0744)
(0745)
(0746)
(0747)
( 0748)
(0749)
(0750)
(0751)
(0752)
(0753)
(0754)
(0755)
(0756)
(0757)
(0758)
(0759)
(0760)
(0761)
(0762)
(0763)
(0764)
(0765)
(0766)
(0767)
( 0768)
(0769)
(0770)
(0771)
(0772)
( 0773)
(0774)
(0775)
(0776)
(0777)
(0778)
(0779)
(0780)
(0781)
(0782)
( 0783)
(0784)
321
322
3'
3'
387
3i
3
3
C
C
C
C
3
3
3
3
C
C**
C**
C**
100
102
103
104
106
WRITE(6,321)
FORMATC10X,7HDENSITY)
WRITE( 6,322)DENA,DENG,DENS,DENP
FORMAT( 10X,9HG/(CM**3),7X,F10.3,3(10X.F10.3))
IF(NC2.Eft. 1) GO TO 387
WRITE(6,10)
WRITE(6,378)
378 FORMAT(///5X,57HGEOMETRY OF USER-SPECIFIED PLUME-OBSERVER-SUN ORIE
1NTATION,//)
WIND=WIND/RAD+180.
WRITE(6,379)WIND
379 FORMAT( 10X.26HWIND DIRECTION (DEGREES) =,F5.1/)
WRITE(6,271)
WRITE(6,380) TIME,IMO,IDAY
380 FORMAT( 10X,18HSIMULATION IS FOR ,F5.0,10H HOURS ON ,12,1H/,12,/)
WRITE( 6,381)ZENITH
381 FORMAT(10X,30HSOLAR ZENITH ANGLE ( DEGREES) - , F5. 1, /)
WRITE( 6,382)SUNAZ
382 FORMAT( 10X.31HSOLAR AZIMUTH ANGLE (DEGREES) =,F8.1,///)
SKIP OVER SPECIFIC CASE DATA IF RUN IS FOR^A PLUME-BASED
CALCULATION ONLY.
IF(NC2.EQ.1) GO TO 386
WRITE(6,383)
383 FORMAT(10X,83HGEOMETRIES FOR LINES-OF-SIGHT THROUGH PLUME PARCELS
1AT GIVEN DOWNWIND DISTANCES (X),//,4X,6HX (KM),3X, 7HAZIMUTH,
2 8X,2HRP,5X,5HALPHA,6X,4HBETA,5X,5HTHETA)
DO 385 NX=1,NX2
XPLUME= DIST( NX)/1000.
WRITE(6,384)XPLUME,AZMUTH( NX) , OBSPLU( NX),AALPHA(NX),ABETA(NX),
1 TT(NX+7)
384 FORMAT(6F10.1)
385 CONTINUE
386 CONTINUE >• .
*
WRITE OUT THE HEADER PAGE
K
WRITE(6,10000)
10000 FORMAT(1H1,30X,21HBACKGROUND CONDITIONS,//)
WRITE(6,10200)
10200 FORMAT( 1H ,4X,17HACCUMULATION MODE,24X,20HCOARSE PARTICLE MODE.23X
1.21HPRIMARY PARTICLE MODE)
WRITE(6,10300)
10300 FORMAT( 1H ,4X, 11HMASS RADIUS,4X,5HSIGMA,3X,13HBSCAT.55/MASS,8X,
1 11HMASS RADIUS,4X,5HSIGMA,3X,13HBSCAT.55/MASS.8X,11HMASS RADIUS,
2 4X.5HSIGMA.3X,13HBSCAT.55/MASS)
WRITE(6,10400) ROVA,SIGA,BTAS04(19),ROVC,SIGC,BTACOR( 19),ROVP,
1SIGP,BTAPRM( 19)
10400 FORMAT( 1H ,3E13.4,6X,3E13.4,5X.3E13.4)
10600 FORMAT(1H ,3X,5HNOX =,E10.4,7H NO2 =,E10.4,7H N03 -,E10.4,7H SO
12 -.E10.4.7H S04 =,E10.4,6H 03 -,E10.4,5HACC =,E10.4,5HCOR =,
1E10.4)
WRITE(6,271)
WRITE(6,10700)
Exhibit &-1 (Continued)
272
-------
(0785)
(0786)
(0787)
( 0788)
(0789)
(0790)
(0791)
(0792)
(0793)
(0794)
(0795)
(0796)
(0797)
( 0798)
(0799)
(0800)
(0801)
(0802)
( 0803)
(0804)
(0805)
(0806)
(0807)
( 0808)
(0809)
(0810)
(0811)
(0812)
(0813)
(0814)
(0815)
(0816)
(0817)
(0818)
(0819)
( 0820)
(0821)
( 0822)
(0823)
(0824)
(0825)
(0826)
(0827)
( 0828)
(0829)
(0830)
(0831)
(0832)
( 0833)
(0834)
(0835)
(0836)
(0837)
(0838)
(0839)
( 0840)
1
C
C
C
C
C
C
C
C
C
C
C
K
C=
11
C:
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C:
2<
1
C
C
C
C:
C:
4<
44
4<
CJ
41
10700 FORMAT(1H ,30X,40HCOEFFICIENTS AT 0.55 MICROMETERS , 1./KM)
BTARAY - 0.01162*EXP(-ELEV/9.8)
BTARAY RAYLEIGH SCATTERING COEFFICIENT.
ABN02T ~ ABSN02( 19)*AMBN02
ABN02T ABSORPTION COEFFICIENT FOR N02 AT .55 MICROMETERS
BTAAERC19) = BACKGROUND AEROSOL SCATTERING COEFFICIENT AT
.55 MICROMETERS.
BTABAC(19) = BACKGROUND EXTINCTION COEFFICIENT AT .55
MICROMETERS. THIS SUMS THE RAYLEIGH AND AEROSOL SCATTERING
AND N02 ABSORPTION.
WRITE( 6,10800 ) BTARAY,BTAAER( 19),ABNO2T, BTA3AC(19)
10800 FORMAT( 1H ,6X,8HBTARAY =,E10.4,3X,8HBTAAER =,E10.4,3X,8HABSN02 -.
1 E10.4,3X,8HBTABAC -,E10.4,//)
C*** WRITE(6,10900)
10900 FORMAT(1H ,4X,40HNO. WAVELN TAT0IZ TAT0DI
PAER .7F10.2)
WRITE(6,271)
LOOP ON WAVELENGTH
DO 20000 I 1,39
WAVE = WAVELENGTH (MICROMETERS)
WAVE = 0.36 + 0.01*FLOAT(I)
TAUTOD(I) = OPTICAL DEPTH FROM SFC TO TOP OF MIXED LAYER,
TAUTDKI) - OPTICAL DEPTH FROM TOP OF MIXED LAYER TO TOP OF
ATMOSPHERE.
TATODI OPTICAL DEPTH FROM SFC TO TOP OF ATMOSPHERE FOR THE
ITH WAVELENGTH.
PAER(I.J) - MIE SCATTERING PHASE FUNCTION FOR THE ITH
WAVELENGTH AND THE JTH SCATTERING ANGLE.
TATODI = TAUTOD(I) + TAUTDKI)
WRITE(6,11000 ) I,WAVE,TATOIZ(I).TATODI, ( PAER(I,J),J=1,NTHETA>
20000 CONTINUE
11000 FORMAT(1H ,15 .10E11.4)
CALCULATE PERFECT DIFFUSE REFLECTOR PROPERTIES.
CALL PERDIF(SPECR.ZENITH)
WRITE(6,40010)
WRITE( 6,40020)
40010 FORMAT(1H1.4X.62HVISUAL EFFECTS CAUSED BY BACKGROUND ATMOSPHERE (W
1ITHOUT PLUME))
40020 FORMAT( 5X, 23H*** CLEAR SKY VIEWS ***,//)
40025 FORMAT(/,5X,17HELEVATION (KM) = ,F5.1,5X,20HVISUAL RANGE (KM) = ,
1F5.0.5X, 15HACCUMULATION - ,F5.1,5X,17HN02 CONC (PPM) ,F5.2,/>
WRITE(6,40030)
40030 FORMAT(6H THETA,5H BETA,4X,3HTAU,4X,4HYCAP,7X, 1HL,7X, 1HX.7X, 1HY,8H
1 DELYCAP,4X,4HDELL,2X,6HC(400) ,2X,6HC(550) ,2X,6HC(700) ,2X,6HBRATIO
2, 4X, 4HDELX, 4X, 4HDELY, 2X, 6HE( LUV) , 2X, 6HE( LAB) )
Exhibit B^l (Continued)
273
-------
(0841)
(0842)
(0843)
(0844)
(0845)
(0846)
(0847)
( 0848)
(0849)
(0850)
(0851)
(0852)
(0853)
(0854)
(0855)
(0856)
(0857)
(0858)
(0859)
(0860)
(0861)
(0862)
(0863)
(0864)
(0865)
(0866)
(0867)
( 0868)
(0869)
(0870)
(0871)
(0872)
(0873)
(0874)
(0875)
(0876)
(0877)
( 0878)
(0879)
(0880)
(0881)
(0882)
(0883)
(0884)
(0885)
(0886)
(0887)
( 0888)
(0889)
(0890)
( 089 1 )
(0892)
(0893)
(0894)
(0895)
(0896)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
41
4(
C:
C=
4i
C=
C:
4i
41
4i
4i
C
C
C
DO 40100 1=1,6
LOOP FOR 6 PLUME-BASED SCATTERING ANGLES
ITHETA =1+1
THETA=TT(ITHETA)
IFLAGP=0
LOOP FOR 6 PLUME-BASED SIGHTLINE ELEVATION ANGLES
DO 40100 IBETA=1,7
BETA= FLOATCIBETA-1)*15.
SPECR = RAYLEIGH ATMOSPHERE INTENSITIES
SPECB = BACKGROUND ATMOSPHERE INTENSITIES.
CALCULATE RAYLEIGH ATMOSPHERE INTENSITIES FOR 39 WAVELENGTHS
CALL RAYREF (ZENITH,BETA,THETA, ITHETA, SPECR)
CALCULATE BACKGROUND ATMOSPHERE INTENSITIES FOR 39 WAVELENGTHS
CALL BACCLNCZENITH, BETA, THETA,ITHETA, SPECB)
CALCULATE VISUAL PERCEPTIBILITY PARAMETERS
CALL CHROMA(SPECB,SPECR)
IF(BETA.EQ.0.) GO TO 40031
CORRECT BACKGROUND ATMOSPHERE OPTICAL DEPTH FOR NON-VERTICAL
VIEWING ANGLE.
TAU=TAT0IZ(19)/SIN(BETA*RAD)
GO TO 40032
OPTICAL DEPTH FOR HORIZONTAL VIEW.
40031 TAU=TAUT0D(19)+TAUTDI(19)
40032 CONTINUE
IF(IFLAGP.EQ.0) GO TO 40040
WRITEC6.40060) BETA.TAU,YCAP,VAL,X,Y,YCAPD,VALD,CONT1,CONT2,CONT3,
1BRATI0,XD,YD,DELUV,DELAB
GO TO 40050
40040 CONTINUE
WRITEC6,40070) THETA,BETA.TAU,YCAP,VAL,X,Y,YCAPD,VALD.CONT1,CONT2,
1CONT3,BRATI0,XD,YD,DELUV,DELAB
IFLAGP = 1
40050 CONTINUE
40060 FORMATC5X,F5.0,3F8.2,2F8.4,2F8.2,8F8.4)
40070 FORMATC/,2F5.0,3F8.2,2F8.4,2F8.2,8F8.4)
40100 CONTINUE
IFLAGft=1
LOOP FOR 6 PLUME-BASED SCATTERING ANGLES
DO 40200 1=1,6
IF(IFLAGQ.LT.0) GO TO 40131
Exhibit Br1 (Continued)
274
-------
(0897)
(0898)
(0899)
(0900)
(0901)
(0902)
(0903)
(0904)
(0905)
(0906)
(0907)
(0908)
(0909)
(0910)
(0911)
(0912)
(0913)
(0914)
(0915)
(0916)
(0917)
(0918)
(0919)
(0920)
(0921)
(0922)
(0923)
(0924)
(0925)
(0926)
(0927)
(0928)
(0929)
(0930)
(0931)
(0932)
(0933)
(0934)
(0935)
(0936)
(0937)
( 0938)
(0939)
(0940)
(0941)
( 0942)
(0943)
(0944)
(0945)
(0946)
(0947)
(0948)
(0949)
(0950)
(0951)
(0952)
C
C
r
4'
4
4
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C:
C=
41
C=
C:
4<
4<
4<
4<
C**# WRITE(6,40010)
: WRITE(6,40I20)
: WRITE(6,40130>
40120 FORMAT(5X,61IT ' ' WHITE, GRAY, AND BLACK OBJECTS AT INDICATED DISTA
1NCES :::##,//)
40130 FORMAT(6H THETA, 2X, 5I:IIO/RV, IX, 7HREFLECT, 4X, 4HYCAP, 7X, 1HL, 7X, 1HX, 7X
1, !HY, 8H DELYCAP, 4X, ^IIDELL, 2X, 6HC( -:-00> , 2X, 6IIC( 550) , 2X, 6HC( 700) , 2X. 6
1HBRATIO, 4X, 4HDELX, 4X, 4HDELY, 2X, 6HE< LUV) , 2X, 6HE( LAB) )
40131 CONTINUE
IFLAGQ=-1*IFLAGQ
ASSIGN SCATTERING ANGLE
ITHETA=1+1
THETA=TT( ITHETA)
IFLAGP=0
CALCULATE BACKGROUND ATMOSPHERE INTENSITIES WITHOUT PLUME
CALL BACCLN(ZENITH,0.,THETA,ITHETA,SPECR)
LOOP FOR DIFFERZNT SHADES OF BACKGROUND OBJECTS.
DO 40200 K=l,3
K = 1 FOR WHITE OBJECTS, 2 FOR GRAY, 3 FOR BLACK
XLUMIN= REFL(K)/( 2.*PI)
DO 40200 J=l,7
LOOP FOR 7 PLUI'IE-B-VSED BACKGROUND OBJECT DISTANCES AS FUNCTION
OF AMBIENT VISUAL RANGE.
R0= ROBJ(J)*RVAMB
CALCULATE INTENSITIES FOR BACKGROUND OBJECT WITHOUT PLUME.
CALL BACOBJ(ZENITH,BETA,THETA,ITHETA,RO,SPECB,XLUMIN)
CALCULATE DIFFERENCE IN COLOR OF OBJECTS VIEWED THROUGH
THE BACKGROUND ATMOSPHERE COMPARED WITH THAT VIEWED
THROUGH A RAYLEIGH ATMOSPHERE.
CALL CHROMA(SPECB,SPECR)
IF( IFLAGP.EQ.1) GO TO 40140
C*** WRITE(6,40160) THETA, ROBJ(J),REFL(K),YCAP.VAL,X,Y,YCAPD,VALD,
C*** 1CONT1,CONT2,CONT3,BRATI0,XD,YD,DELUV,DELAB
IFLAGP = 1
GO TO 40150
40140 CONTINUE
WRITE(6,40170) ROBJ(J) ,REFL(K) , YCAP. VAL, X,Y, YCAPD, VALD, CONT1, CONT2
1,CONT3,BRATI0,XD,YD,DELUV,DELAB
40150 CONTINUE
40160 FORMAT(/,F5.0,4F8.2,2F8.4,2F8.2,8F8.4)
40170 FOnf1AT( 5X, 4F8.2, 2F8. 4, 2F8.2, 8F8. 4)
40200 CONTINUE
Exhibit B.-l (Continued)
275
-------
(0953)
(0954)
(0955)
(0956)
(0957)
(0958)
(0959)
(0960)
(0961)
(0962)
(0963)
(0964)
(0965)
(0966)
(0967)
(0968)
(0969)
(0970)
(0971)
(0972)
(0973)
(0974)
(0975)
(0976)
(0977)
( 0978)
(0979)
(0980)
(0981)
( 0982)
(0983)
(0984)
(0985)
(0986)
(0987)
( 0988)
(0989)
(0990)
(0991)
(0992)
(0993)
(0994)
(0995)
(0996)
(0997)
(0998)
(0999)
( 1000)
( 1001)
( 1002)
( 1003)
( 1004)
( 1005)
( 1006)
( 1007)
( 1008)
C
C
C
C
C
C (
C
41
42
C
C (
C
C
45
C
43<
C
C
C
C'l
C
G
C <
C
C
C
G
G
C
92
93
C
C
C
CONVERSION FACTOR FROM G/S TO MICRO-G/SEC AT REFERENCE CONDITIONS (1
ATMOSPHERE) . FOR ONE STACK INSTEAD OF TOTAL STACK EMISSIONS.
C2 = ((l.E6/UNITS)/PAMB)*(FGTEMP/298.)
CONVERT GXS TO PPM-CU M/S FOR GASES AND TO MICRO-G/CU M - CU MXS FOR
PARTICULATES.
QSO2 = QSO2*C2# 3.821E-4
QNOX = QNOX*C2* 5.315E-4
OPART = QPART*C2
0.02 FGO2* 1. E4*FLOW
PI = 3.14159
IFdDILU .EQ.0)GO TO 45
WRITE(6,10)
WRITE (6,41) (PLANT(J),J=1,6)
FORMAT (35X.62HINITIAL PLUME RISE AND DILUTION AND NITROGEN DIOXID
IE FORMATION//45X,6A4//2X,4HTIME,5X, 1HX,5X,7HDELTA H,4X,1HU.7X,1HW,
17X, 1HV,4X,5HSIGMA,4X,4HTEMP,5X,2H02,4X,12HN02-NO RATIO,5X,3HNOX,
16X,2HNO,5X,4HN02T,4X,3HS02,3X,11HPARTICULATE/2X,5H(SEC),3X,3H(M),
15X,3H(M) ,5X,5H(M/S) ,3X,5H(M/S) ,3X,5H(M/S) ,3X,3H(M) ,5X,3H(K) ,4X,
15HMOL P,3X,5HEQUIL,3X,6HACTUAL,2X,5H(PPM) ,4X,5H(PPM) ,2X,5H(PPM) ,
13X, 5H( PPM) , 3X, 5HUG/M3/)
FORMAT (F7.0.2F8.1,3F8.2,3F8.1,1P2E8.1.0P4F8.3,1PE10.2)
THAT PLUME IS TRANSPORTED
NSECF=1000./U
CALCULATE THE INTEGER CLOSEST TO THE NO.OF SECONDS AFTER EMISSION FROM
1 KM
J0./U
CONTINUE
DO LOOP LAGRANGIAN FRAME OF REFERENCE (EVERY 10 SECONDS)
NSECF1=NSECF+1
DO 50 NSEC = 1,NSECF1,10
T = NSEC-1
IF(T.EQ.0.0) GO TO 43
CALCULATION OF PARCEL VELOCITY, POSITION,DILUTION FACTOR
POWER LAW RISE OF PLUME TO EFFECTIVE STACK HEIGHT.
CHANGE FOR F 0.0
IF(XFINAL.EQ..0.0)GO TO 92
DELH=RISE*(U*TXXFINAL)**.66667
GO TO 93
DELH=0.0
CONTINUE
CORRECT DELH IF U*T > XFINAL
Exhibit Bi-1 (Continued)
276
-------
( 1009)
( 1010)
( 1011)
( 1012)
( 1013)
( 1014)
( 1015)
( 1016)
( 1017)
( 1018)
( 1019)
( 1020)
( 1021)
( 1022)
( 1023)
( 1024)
( 1025)
( 1026)
( 1027)
( 1028)
( 1029)
( 1030)
( 1031)
( 1032)
( 1033)
( 1034)
( 1035)
( 1036)
( 1037)
( 1038)
( 1039)
( 1040)
( 1041)
( 1042)
( 1043)
( 1044)
( 1045)
( 1046)
( 1047)
( 1048)
(1049)
(1050)
( 1051)
( 1052)
( 1053)
( 1054)
( 1055)
( 1056)
( 1057)
( 1058)
( 1059)
( 1060)
(1061)
( 1062)
( 1063)
( 1064)
C
C
C
C
C
C
C
C
C
C
C
C
4:
C
C
C
4<
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
IF(DELH.GT.RISE) DELH=RISE
CALCULATE VERTICAL VELOCITY VIA POlvER LAV
W= . 66667*RISE*FLOAT( NSECF)*#( -0. 66667) *FLOAT( NSEC) *#( -. 33333)
W = WMAX AT STACK, W = 0 AT XFINAL
IF(KSEC.GT.NSECF) ¥=0.
IF (W.GT.WMAX) W=WMAX
VELOCITY VECTOR AT NSEC.
V = SQRTC U**2.+W*#2.)
DEHOH = DELH#*2*V*(1.57/2.15)/2.15
IF (BEHOM.LT.FLOW) DEWOM=FLOW
GO TO 44
C PROPERTIES AT TOP OF STACK
DELH =0.0
W = WMAX
DENOM = FLOW
V = W
C CALCULATION OF PLUME TEMPERATURE
TEMP TAMBSDENOM/ (DENOM-FLOW*(1.-(TAMB/FGTEMP)))
C DOWNWIND DISTANCE FROM STACK IN METERS
XM - U*T
C HORIZONTAL OR VERTICAL DISPERSION COEFFICIENT - 1/2.15 OF PLUME
C RADIUS. RADIUS = 1/2 OF PLUME RISE.
SIG (DELH/2.)/2.15
C 02 CONCENTRATION IN PPM IN PLUME IS NEEDED TO CALCULATE NO2 FORMATION
X02 = 209460. + (0,02 - FLOW*209460. )*TEMP/(DENOM*FGTEMP)
C 02 IN MOL PERCENT
PO2 = X02*l.E-4
C CALCULATION OF EQUILIBRIUM N02/NO RATIO
C3 = 16.786 + (8.841 - 16.786)#( TEMP-298.)/(500.-298.)
RATIOE = SQRTC10.**C3#4.09E-11*X02)
C ACTUAL NO2/NO RATIO. INITIALLY = EQUILIBRIUM. NEVER GREATER THAN EQUIL
IFCT.EQ.0.0) RATIOA= 8.03E-12*EXP(526.4/FGTEMP)*QNOX-FLOW
1 *X02*HSTACK/W
IF(RATIOA.GT.RATIOE).RATIOA = RATIOE
Exhibit B-l (Continued)
277
-------
( 1065)
( 1066)
( 1067)
( 1068)
( 1069)
( 1070)
(1071)
( 1072)
( 1073)
( 1074)
( 1075)
( 1076)
( 1077)
( 1078)
( 1079)
( 1080)
( 1081)
( 1082)
( 1083)
( 1084)
( 1085)
( 1086)
( 1087)
( 1088)
( 1089)
( 1090)
(1091)
( 1092)
( 1093)
( 1094)
( 1095)
(1096)
( 1097)
( 1098)
( 1099)
( 1100)
( 1101)
( 1102)
( 1103)
( 1104)
(1105)
( 1106)
(1107)
( 1108)
( 1109)
( 1110)
(1111)
(1112)
(1113)
(1114)
(1115)
( 1116)
(1117)
(1118)
( 1119)
(1120)
C
C POL!
C
C
C CAL<
C
50
C
C EMI!
C
C
C C:
C Si
c P:
c
G IS
c
c
470
471
472
475
476
477
C CA
G DA
G
C
POLLUTANT CONCENTRATIONS. NO2 RESULTING FROM TERMOLECULAR REACTION ONLY
XNOX = QNOX*TEMP/( DENOM*FGTEMP)
XSO2 = QS02*TEMP/(DENOM*FGTEMP)
XPART = QFART*TEMP/(DENOM*FGTEMP)
XNO = XNOX/(l.+RATIOA)
XNO2T = XNO*RATIOA
IF( IDILU .EQ. 0)GO TO 50
WRITE (6,42) T,XM,DELH,U,W,V,SIG,TEMP,P02,RATIOE,RATIOA,XNOX,XNO,
XN02T,XSO2, XPART
CALCULATION OF CHANGE IN N02/NO RATIO VIA TERMOLECULAR REACTION IN 10
RATIOA=RATIOA+4.015E-12*EXP( 1046./( 1.987*TEMP))*XNO*X02*10.
EMISSION RATES PER STACK ARE CONVERTED BACK TO TOTALS.
QS02 - QS02*UNITS
QNOX - QNOX*UNITS
OJPART = QPART*UNITS
CALCULATION OF VIRTUAL POINT SOURCE DISTANCE OFFSET
SO THAT CALCULATED SIGMA-X AND SIGMA-Y MATCH INITIAL
PLUME DILUTION RESULTS AT 1 KILOMETER.
- STABILITY CLASS
I=IS
IF( IDIS.EO-.9)GO TO 476
DILUTE=((RISE*RISE/4.)/2.15)/2.15
XM=XFINAL
SIGYXZ=0.
CONTINUE
IF(IDIS.EQ. 1) GO TO 471 S
SY=SYPAS( I.XM)
SZ=SZPAS( I,XM)
GO TO 472
SY=SYTVA( I.XM)
SZ=SZTVA( I,XM)
SIGYZI=SIGYXZ
SIGYXZ=SY*SZ
IF(DILUTE.LE.SIGYXZ.AND.SIGYZI.EO-.0.)GO TO 476
IF(DILUTE.LE.SIGYXZ)GO TO 475
XM=XM+1.E4
GO TO 470
XVIRTL=XM-XFINAL-1.E4+1.E4*( DILUTE-SIGYZI>/(SIGYXZ-SIGYZI)
GO TO 477
XVIRTL=0.
CONTINUE
CALCULATE PHOTOLYSIS RATE CONSTANTS FOR EACH OF 24 HOURLY PERIODS IN A
Y.
CONVERT STACK UTM COORDINATES TO LATITUDE AND LONGITUDE.
CALL MAPUTG( XSTACK,YSTACK,IZONE,ALON,ALAT)
Exhibit B-l (Continued)
278
-------
( 1121)
(1122)
( 1123)
( 1124)
( 1125)
( 1126)
( 1127)
(1128)
( 1129)
( 1130)
( 1131)
(1132)
(1133)
( 1134)
( 1135)
(1136)
( 1137)
( 1138)
( 1139)
( 1140)
( 1141)
( 1142)
( 1143)
( 1144)
( 1145)
( 1146)
( 1147)
( 1148)
( 1149)
( 1150)
(1151)
(1152)
(1153)
(1154)
(1155)
( 1156)
(1157)
( 1158)
( 1159)
(1160)
( 1161)
(1162)
( 1163)
(1164)
( 1165)
(1166)
( 1167)
(1168)
(1169)
( 1170)
(1171)
(1172)
(1173)
(1174)
(1175)
(1176)
C
C
C
C
c
c
c.
c
c
c
c
c
48
49
C
c *
c
C D
C D
C
C #:
C
c
c
c
c
c
c
c
c
495
DO 49 1=1,24
TIMER HOURS OF DAY (MILITARY CLOCK)
TIMER=FLOAT( I)* 100.
CALCULATE SUN ELEVATION ANGLE
CALL SOLARZ(ALAT,ALON,TZONE, IYEAR, IMO, IDAY, TIMER, SUNELE, 5)
AZEN=90.-SUNELE
IF( AZEN. GT. 90. ) AZEN=90.
PHIKKRC I)=0.0
QJ( I)=0.0
IF(AZEN.EQ.90.)GO TO 48
DYNAMIC EQUILIBRIUM CONSTANT ( H02 AND NO)
PHIKIOH I ) = ( 1 . E-2/0 . 44) *EXP( -0 . 38/COS( AZEN&RAD) )
OZONE PHOTOLYSIS RATE CONSTANT
QJ( I ) =2 . 23E-5S60 . #( COS( AZEN#RAD) ) **2 . 74
CONTINUE
CONTINUE
;**********:^**************^
C DO LOOP FOR POLLUTANT CONCENTRATIONS AND VISUAL EFFECTS AT 16 DOWNWIND
:S*^
NZFLAG=0
INITIALIZE EFFECTIVE EMISSION RATES FOR S02, NOX, S04, NO3, AND
PRIMARY PARTICULATE, AND CONVERSION RATES FOR S02, NOX, AND N02.
DO 495 nz-l,6
DO 495 NT=NX1,NX2
QSO2TR( NZ; NT) = QS02
QNOXTR< NZ , NT) = QNOX
QS04TR(NZ,NT)=0.
QJJO3TR(NZ,NT)=0.
QPARTT( NZ, NT) = OP ART
RSO2RC 1 , NZ, NT) =RS02( 1 )
RNOXR( 1,NZ,NT)=0.
RNO2X( 1,'NZ,NT)=0.
SET N02/NO RATIO TO INITIAL VALUE CALCULATED EARLIER. SET TO ZERO
AT SURFACE.
R AT I OT( NZ , NT) = RAT 1 0 A
IF(NZ.EQ.6)RATIOT(NZ,NT)=0.
CONTINUE
CHIQIY(6)=0.
QPART0=OPART
Exhibit B-l (Continued)
279
-------
( 1177)
( 1 178)
( 1179)
(1180)
( 1181)
(1182)
( 1 183)
( 1184)
( 1185)
(1186)
(1187)
( 1188)
( 1189)
( 1190)
( 1191)
( 1192)
( 1193)
(1194)
( 1195)
(1196)
(1197)
(1198)
(1199)
( 1200)
( 1201)
( 1202)
( 1203)
( 1204)
( 1205)
( 1206)
( 1207)
( 1208)
( 1209)
(1210)
(1211)
( 1212)
(1213)
( 1214)
( 1215)
( 1216)
( 1217)
( 1218)
(1219)
( 1220)
( 1221)
( 1222)
( 1223)
( 1224)
( 1225)
( 1226)
( 1227)
( 1228)
(1229)
( 1230)
(1231)
( 1232)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C j
C ]
C
C
G
G
C
C ]
C
G
C
C
C
510
C
G
C
INITIALIZE VALUE FOR DOWNWIND DISTANCE OF PREVIOUS POINT.
XM=0.
INITIALIZE TOTAL DEPOSITION FOR S02, NOX, PRIMARY PARTICULATE,
SULFATE AND NITRATE.
TDS02= 0.
TDNOX=0.
TOPART= 0.
TDS04=0.
TDN03=0.
*****LOOP ON DOWNWIND DISTANCE *******
DO 1000 NX - NX1.NX2
XM0 - DOWNWIND DISTANCE OF PREVIOUS POINT.
XM0=XM
XM = DOWNWIND DISTANCE (METERS)
XM=DIST(NX)
XKM - DOWNWIND DISTANCE (KILOMETERS)
XKM=XM/1000.
ADD IN VIRTUAL POINT SOURCE OFFSET TO ACCOUNT FOR INITIAL DILUTION
DURING PLUME RISE.
S,
XADD=XM+XVIRTL
IS = STABILITY
I IS
NXSTAB = DOWNWIND DISTANCE INDEX FOR DISTANCE WHERE STABILITY CHANGES
IF(NX.GT.NXSTAB)GO TO 135
IF(IDIS.NE.9) GO TO 510
IDIS = 9 FOR READING IN SPECIAL SIGMA VALUES FOR EACH DOWNWIND
DISTANCE
READ(5,5) SY.SZ
GO TO 136
CONTINUE
IF(IDIS.EQ. 1) GO TO 511
PASQUILL-GIFFORD SIGMAS (1=1 FOR "A", 2 FOR "B", 3 FOR "C", ETC)
SY=SYPAS( I,XADD)+(YINITL/2.)/PI
SZ=SZPAS(I,XADD)+(ZINITL/2.)/PI
ExhibitiB-1 (Continued)
280
-------
( 1233)
( 1234)
( 1235)
( 1236)
( 1237)
( 1238)
( 1239)
( 1240)
(1241)
( 1242)
( 1243)
( 1244)
( 1245)
( 1246)
( 1247)
( 1248)
( 1249)
( 1250)
( 1251)
( 1252)
( 1253)
( 1254)
( 1255)
( 1256)
( 1257)
( 1258)
( 1259)
( 1260)
(1261)
( 1262)
( 1263)
( 1264)
( 1265)
( 1266)
( 1267)
( 1268)
( 1269)
( 1270)
( 1271)
( 1272)
( 1273)
( 1274)
( 1275)
( 1276)
( 1277)
( 1278)
( 1279)
( 1289)
(1281)
( 1282)
(1283)
( 1284)
(1285)
< 1286)
( 1287)
( 1288)
C
C
C
51
GO TO 512
TVA SIGMAS
1 SY=SYTVA( I,XADD) + (YINITL/2.)/PI
SZ=SZTVA( I,XADD)+(ZINITL/2. )/PI
512 CONTINUE
C
C
C
C
C
C
C
C
C
C
C
C
C
C
100
C
G
C
C
C
C
C
140
141
C
C
C
C
C
C
C
C
142
IF UPWIND OF STABILITY CHANGE, JUMP AROUND
IF(NX.LT.NXSTAB)GO TO 136
NXSTAB= DOWNWIND DISTANCE INDEX WHERE STABILITY CHANGES
NXSTAB MUST BE GREATER THAN 1
I=STABILITY INDEX FOR FIRST PART OF PLUME.
INEW=NEW STABILITY INDEX
SYNEW=SIGHA-Y FOR NEW STABILITY.
SZNEW=SIGMA-Z FOR NEW STABILITY.
CODE FOR NEW STABILITY. FIRST DETERMINE VIRTUAL DOWNWIND
DISTANCE FOR NEW STABILITY TO AVOID LARGE PLUME DIMENSIONAL
DISCONTINUITY AT STABILITY INTERFACE.
CONTINUE
IF( IDIS.EQ. 1)GO TO 101
DISTA=5000.
SYNEW=SYPAS( INEW,DISTA)
DELS IG= SYNEW-SY
FIND VIRTUAL DISTANCE FOR NEW STABILITY WHERE DIFFERENCE IN
SIGMA-Y FOR INITIAL STABILITY AND SIGMA-Y AT NEW STABILITY
STOPS DECREASING AND STARTS INCREASING, WITH A DISTANCE
INTERVAL OF 1 KM. ASSUME SYNEW IS FIRST LESS THAN SY, THEN AT SOME
DISTANCE GOES THROUGH ZERO AND STARTS INCREASING.
DISTB=DISTA
DISTA=DISTA+5000.
SYNEW=SYPAS( INEW.DISTA)
DELSG= SYNEW-SY
IF(ABS(DELSG) .GT. ABS( DELSIG) )GO TO 141
DELSIG=DELSG
GO TO 140
CONTINUE
VIRTUAL DISTANCE FOR NEW STABILITY FOR SIGMA-Y IS BETWEEN
DISTB AND DISTA.
CALCULATE DISTANCE OFFSET FOR FUTURE SY DETERMINATIONS.
DDISTY=DISTB+5000 . *( ( 0. -DELSIG) /( DELSG-DELSIG) ) -DIST( NX)
SAME PROCEDURE FOR SIGMA-Z
DISTA=5000.
SZNEW=SZPAS( INEW.DISTA)
DELS IG= SZNEW-SZ
DISTB=DISTA
DISTA=DISTA+5000.
Exhibit B-l (Continued)
281
-------
( 1289)
( 1290)
(1291)
( 1292)
( 1293)
( 1294)
( 1295)
( 1296)
( 1297)
( 1298)
( 1299)
( 1300)
( 1301)
( 1302)
( 1303)
( 1304)
(1305)
( 1306)
( 1307)
( 1308)
( 1309)
( 1310)
( 1311)
( 1312)
(1313)
(1314)
( 1315)
(1316)
( 1317)
( 1318)
( 1319)
( 1320)
( 1321)
( 1322)
( 1323)
( 1324)
( 1325)
( 1326)
( 1327)
( 1328)
( 1329)
( 1330)
(1331)
( 1332)
( 1333)
( 1334)
( 1335)
( 1336)
( 1337)
( 1338)
( 1339)
( 1340)
(1341)
( 1342)
( 1343)
( 1344)
143
C
C
C
101
144
145
C
C
C
146
147
135
C
C
C
C
C
C
122
136
SZNEW=SZPAS(INEW.DISTA)
DELSG=SZNEW-SZ
IF(ABS(DELSG).GT.ABS(DELSIG))GO TO 143
DELSIG=DELSG
GO TO 142
CONTINUE
DDISTZ=DISTB+5000.*((0.-DELSIG)/( DELSG-DELSIG))-DIST(NX)
SY=SYNEW
SZ=SZNEW
GO TO 136
SAME PROCEDURE FOR TVA SIGMA-Y
DISTA=5000.
SYNEW=SYTVA(INEW.DISTA)
DELSIG=SYNEW-SY
DISTB=DISTA
DISTA=DISTA+5000.
S YNEW= S YTVA(INEW,DISTA)
DELSG=SYNEW-SY
IF(ABS(DELSG).GT.ABS(DELSIG))GO TO 145
DELSIG=DELSG
GO TO 144
CONTINUE
DDISTY=DISTB+5000.*(( 0.-DELSIG)/( DELSG-DELSIG))-DIST(NX)
SAME PROCEDURE FOR TVA SIGMA-Z
DISTA=5000.
SZNE¥=SZTVA(INEW,DISTA)
DELSIG=SZNEW-SZ
DISTB=DISTA
DISTA=DISTA+5000.
SZNEW=SZTVA( INEW.DISTA)
DELSG=SZNEW-SZ
IF(ABS(DELSG).GT.ABS(DELSIG))GO TO 147
DELSIG=DELSG
GO TO 146 s
CONTINUE
DDISTZ=DISTB+5000.*( (0.-DELSIG)/( DELSG-DELSIG))-DISTC NX)
IF(NX.LE.NXSTAB)GO TO 136
CODE FOR CALCULATING SIGMA-Y AND SIGMA-Z DOWNWIND
OF STABILITY CHANGE.
FIRST ADD DISTANCE OFFSET FOR NEW STABILITY BEFORE
CALCULATING SY AND SZ
XMY= DISTC NX) +DDISTY
XMZ=DIST( NX) +DDISTZ
IF( IDIS.EQ.. 1)GO TO 122
SY=SYPAS( INEW.XMY)
SZ=SZPAS(INEW.XMZ)
GO TO 136
SY= SYTVA( I NEW, XMY)
SZ=SZTVA( INEW.XMZ)
CONTINUE
Exhibit B-l (Continued)
282
-------
( 1345)
( 1346)
( 1347)
( 1348)
( 1349)
( 1350)
(1351)
( 1352)
(1353)
( 1354)
( 1355)
( 1356)
( 1357)
( 1358)
( 1359)
( 1360)
( 1361)
( 1362)
( 1363)
( 1364)
( 1365)
( 1366)
( 1367)
( 1368)
( 1369)
( 1370)
( 1371)
( 1372)
( 1373)
( 1374)
( 1375)
( 1376)
( 1377)
( 1378)
( 1379)
( 1380)
( 1381)
( 1382)
( 1383)
( 1384)
( 1385)
(1386)
( 1387)
( 1388)
( 1389)
( 1390)
( 1391)
( 1392)
( 1393)
( 1394)
( 1395)
(1396)
( 1397)
( 1398)
( 1399)
( 1400)
51
52
53
54
55
56
57
C
C C,
C F]
C Al
C
C
C
C
C
C
C
C
68
C
C
C
69
C
C
C
C
C
C
C
C
C
C
C
C
WRITE (6,10)
WRITE (6,51) (PLANT( J),J=l,6)
FORMAT (25X.50HCONCENTRATIONS OF AEROSOL AND GASES CONTRIBUTED BY,
1 //35X.6A4/)
WRITE (6,52) XKM
FORMAT(25H DOWNWIND DISTANCE (KM) -, F7.1)
WRITE (6,53) H
FORMAT(19H PLUME ALTITUDE ( M) ,5X,1H=,F7.0)
WRITE (6,54) SY
FORMAT(12H SIGMA Y (M) ,12X, 1H=,F7.0)
WRITE (6,55) SZ
FORMAT(12H SIGMA Z (M),12X,1H=,F7.0)
WRITE(6,56) RS02R( NX, 3,NX)
FORMAT(27H S02-S04 CONVERSION RATE= ,F10.4,11H PERCENT/HR)
WRITE(6,57) RNOXR(NX,3,NX)
FORMAT(27H NOX-NO3 CONVERSION RATE= ,F10.4,11H PERCENT/HR)
WRITE(6,271)
IFLAGP=0
C CALCULATE DECREASE OF S02 AND NOX FLUX AND INCREASE IN PARTICULATE
C FLUX DUE TO SULFATE AND NITRATE FORMATION.
C ALSO, CALCULATE THE DECREASE IN FLUX DUE TO SURFACE DEPOSITION.
NTT=0
TIME IN HOURS AND DECIMAL FRACTION OF HOUR
TIMEHR=AINT( TIME/100.)+AMOD( TIME,100.)/60.
CHECK IF FIRST DOWNWIND POINT
IF(NX.EQ.NX1)GO TO 68
TIME IN HOURS FOR TRANSPORT FROM PREVIOUS (NX-1) DOWNWIND POINT
DTIME= ( ( DIST( NX)-DIST( NX-1))/U)/3600.
GO TO 69
DTIME=0.
TIME AT PREVIOUS DOWNWIND POINT
TIMER=TIMEHR-DTIME
NTT STOPS SURFACE DEPOSITION AT NIGHT
IF(TIMER.LT.7..OR.TIMER.GT.18.)NTT=1
CALCULATION OF DEPOSITION
YGRND=CHIQIY( 6)* 1000.
DEPOT= YGRND*( XM-XM0)
SUPPRESS SURFACE DEPOSITION AT NIGHT (ASSUME STABLE STRATIFICATION)
DEPOSITION OF PRIMARY PARTICULATE
DEPPAR=QPART*VDCOR*DEPOT*FLOAT( 1-NTT)/100.
ADJUST EFFECTIVE PARTICULATE EMISSION RATE FOR DEPOSITION
Exhibit B-l (Continued)
283
-------
( 1401)
( 1402)
( 1403)
( 1404)
( 1405)
( 1406)
( 1407)
( 1408)
( 1409)
( 1410)
( 1411)
( 1412)
( 1413)
( 1414)
( 1415)
( 1416)
( 1417)
( 1418)
( 1419)
( 1420)
( 1421)
( 1422)
( 1423)
( 1424)
( 1425)
( 1426)
( 1427)
( 1428)
( 1429)
( 1430)
(1431)
( 1432)
( 1433)
( 1434)
( 1435)
( 1436)
( 1437)
( 1438)
( 1439)
( 1440)
( 1441)
( 1442)
( 1443)
( 1444)
( 1445)
( 1446)
( 1447)
( 1448)
( 1449)
( 1450)
( 1451)
( 1452)
( 1453)
( 1454)
( 1455)
( 1456)
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C j
c
c
c
c
568
C
C
c
c
c
c
c
OPART= QPART-DEPPAR
LOOP ON DOWNWIND DISTANCES FROM PRESENT POSITION (DIST(NX)) TO
FINAL POINT (DIST(NX2)).
DO 570 NT=NX,NX2
CALCULATE DEPOSITION FOR S02, NOX, SO4, AND NO3
DEPS02=QS02TR(6,NT)*VDS02*DEPOT*FLOAT( 1-NTT)/100.
DEPNOX= QNOXTR( 6,NT)*VDNOX*DEPOT#FLOAT( 1-NTT)/100.
DEPS04=QSO4TR(6,NT)#VDSUB*DEPOT#FLOAT(1-NTT)/100.
DEPN03=QNO3TR(6,NT)*VDNOX*DEPOT*FLOAT( 1-NTT)/100.
LOOP ON ALTITUDE
DO 568 NZ=1,6
FORS02=((QS02TR(NZ,NT)*RS02R( NX,NZ,NT)/3.6E5)/U)*(XM-XMO)
FORNOX=((QNOXTR(NZ,NT)*RNOXR( NX,NZ,NT)/3.6E5)/U)*( XM-XMO)
1 *RN02X(NX,NZ,NT)
ADJUST EFFECTIVE SO2 AND NOX EMISSION RATES^OR CONVERSION TO
SECONDARY SPECIES AND FOR SURFACE DEPOSITION AFTER TRANSPORT
FROM DIST(NX-l) TO DIST(NX).
QS02TR(NZ,NT)=QS02TR(NZ,NT)-FORSO2-DEPS02
QNOXTRC NZ,NT)= QNOXTR( NZ,NT)-FORNOX-DEPNOX
ADJUST EFFECTIVE SULFATE EMISSION RATE, INCLUDING SULFATE
FORMATION AND SURFACE DEPOSITION. (ADJUST MASS FLUX)
QSO4TR(NZ,NT)= QS04TR(NZ,NT)
1 +1.5/3.821E-4*FORSO2-DEPSO4
ADJUST N03 MASS FLUX
S.
QN03TR(NZ,NT)=GN03TR( NZ,NT)+FORNOX-DEPN03
ADJUST PARTICULATE MASS FLUX FOR SULFATE FORMATION
QPARTT( NX, NT) =QPART+QS04TR(NZ,NT)
CONTINUE
IF(NT.NE.NX)GO TO 569
CALCULATE TOTAL DEPOSITION TO DIST(NX) FOR SO2, NOX, PARTICULATE,
SO4, AND NO3.
TDS02= TDSO2+DEPSO2
TDNOX= TDNOX+DEPNOX
TOPART=TOPART+DEPPAR
TDSO4= TDS04+DEPSO4
TDNO3= TDNO3+DEPN03
CALCULATE RATIO OF TOTAL DEPOSITION TO EMISSION RATE
Exhibit B-l (Continued)
284
-------
( 1457)
( 1458)
( 1459)
(1460)
(1461)
( 1462)
( 1463)
( 1464)
( 1465)
( 1466)
( 1467)
( 1468)
( 1469)
( 1470)
(1471)
( 1472)
( 1473)
( 1474)
( 1475)
( 1476)
( 1477)
( 1478)
( 1479)
( 1480)
(1481)
( 1482)
( 1483)
(1484)
(1485)
( 1486)
( 1487)
( 1488)
( 1489)
( 1490)
(1491)
( 1492)
( 1493)
( 1494)
( 1495)
(1496)
( 1497)
( 1498)
( 1499)
( 1500)
(1501)
( 1502)
( 1503)
( 1504)
( 1505)
( 1506)
( 1507)
( 1508)
( 1509)
(1510)
(1511)
(1512)
569
570
C
C DO
C
C
58
59
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
FDSO2= TDSO2/QS02
FDNOX= TDNOX/QNOX
FDPART= TDPARTXQPART0
FDSO4=((TDS04XQS02)/I.5)*3.821E-4
FDN03=((TDN03/QNOX)/1.35)*5.315E-4
CONTINUE
CONTINUE
2*SIGMA-Z+H, SIGMA-Z+H, H, H -SIGMA-Z
LOOP FOR 6 ALTITUDES:
H -2*SIGMA-Z, SURFACE
DO 60 NZ 1,6
RWZ = NZ
IFCNZ.EQ.6) GO TO 58
Z = H + <3.-RNZ)*SZ
IF(Z.LT.0.) Z=0.
GO TO 59
Z = 0.0
CONTINUE
GAUSSIAN DIFFUSION CALCULATION
ARG1 = -0.5*(H+Z)*(H+Z)/SZ/SZ
ARG2 = -0.5*(H-Z)*(H-Z)/SZ/SZ
PREVENTION OF EXPONENTIAL UNDERFLOW
IF(ARG1.LT.(-290.)) ARGl=-290.
IF(ARG2.LT.(-290.)) ARG2=-290.
CHIQ=((TAMB/FGTEMP)/(2.*PI*SY*SZ*U))*(EXP( ARG1)+EXP(ARG2))
IF(CHIQ.LT.2.E-30)CHIQ=2.E-30
CHECK IF EQUILIBRIUM PLUME CENTERLINE HEIGHT IS ABOVE THE TOP
OF THE MIXED LAYER.
IF( H.GT.HPBLM) GO TO 594
VIRTUAL SOURCE TO ACCOUNT FOR REFLECTION OFF CAPPING LAYER.
HPRIME=2.*HPBLM-H
IF Z IS GTR THAN TOP OF MIXED LAYER, CHANGE Z TO TOP OF MIXED
LAYER.
IF(Z.GT. HPBLM) Z= HPBLM
REVISED CALCULATION FOR PLUME BELOW INVERSION.
ARG1 = -0.5*(H+Z)*(H+Z)/SZ/SZ
ARG2 ~ -0.5*(H-Z)*(H~Z)/SZ/SZ
ARG3=-0.5*(HPRIME-Z)*(HPRIME-Z)/SZ/SZ
ARG4= -0. 5*( HPRIME+Z) *( HPRIME+Z) /SZ/SZ
IF(ARG3.LT. -290. ) ARG3=-290.
IF(ARG4.LT. -290. ) ARG4=-290.
CHIQ= ( TAMB/FGTEMP) /( 2. *P I*SY*SZ*U) *( EXP( ARG1) +EXP( ARG2) +EXP( ARCS)
1 + EXP(ARG4))
Exhibit Brl (Continued)
285
-------
(1513)
( 1514)
( 1515)
( 1516)
(1517)
( 1518)
( 1519)
( 1520)
( 1521)
( 1522)
( 1523)
( 1524)
( 1525)
( 1526)
( 1527)
( 1528)
( 1529)
( 1530)
( 1531)
( 1532)
( 1533)
( 1534)
( 1535)
( 1536)
( 1537)
( 1538)
( 1539)
( 1540)
(1541)
( 1542)
(1543)
( 1544)
( 1545)
( 1546)
( 1547)
( 1548)
( 1549)
( 1550)
( 1551)
(1552)
( 1553)
(. 1554)
( 1555)
( 1556)
( 1557)
( 1558)
( 1559)
( 1560)
(1561)
( 1562)
( 1563)
( 1564)
( 1565)
( 1566)
( 1567)
( 1568)
C
C
C
C
C
C
C
C
C
C
592
594
C
C
C
C
C
C
C
596
C
C
C
C
C
C
C
C C
C P
C D
C T
C
C
C
C
C
C
C
C
C
C
IF( CHIQ.LT.2.E-30)CHIQ=2.E-30
FORMULA FOR UNIFORMLY MIXED CHI/ft. CONCENTRATION CONSTANT IN Z
FROM SURFACE TO INVERSION.
CHIQ1 = ( TAMB/FGTEMP) /( SQRTC 2. *P I) *SY*HPBLM*U)
BRANCH IF Z - PLUME CENTERLINE HEIGHT.
IF(NZ.EQ.S) GO TO 592
IF(NZFLAG.EQ.1) CHIQ=CHIQ1
GO TO 594
IF GAUSSIAN PLUME CENTERLINE CHI/Q < CHI/Q FOR UNIFORMLY MIXED
CASE, SET FLAG TO USE CHI/Q FOR UNIFORMLY MIXED CASE.
IF(CHIQ.LT.CHiai) NZFLAG=1
IFCNZFLAG.EQ.1) CHIQ=CHIQ1
CONTINUE
BRANCH FOR FIRST DOWNWIND DISTANCE
IF(NX.EQ. 1) GO TO 596
MAXIMUM CHIXQ CANNOT EXCEED CHI/Q FOR CENTERLINE AT PREVIOUS
DOWNWIND POINT
XQMAX=XQ(3)
IF(CHIQ.GT.XQMAX) CHIQ=XQMAX
CONTINUE
SAVE CHI/Q VALUES FOR ALL 6 LEVELS.
XQ(NZ)=CHIQ
CHIQIY( NZ)=CHIQ*SQRT< 2.*PI)*SY
CHIQIY(NZ)=CHIQIY(NZ)/1000.
OH MODEL FOR SULFATE AND NITRATE, FORMATION. CALCULATE CONVERSION
FOR PLUME PARCEL AT PRESENT POSITION AS IT IS ADVECTED TO POINTS
FARTHER DOWNWIND WHERE CONCENTRATIONS ARE CALCULATED.
CALCULATE PLUME PARCEL CONCENTRATIONS CORRESPONDING TO THE PLUME
PARCEL AT DOWNWIND DISTANCE NX WHICH GETS TRANSPORTED TO
DOWNWIND DISTANCE I. SO4 AND N03 FORMATION RATES ARE CALCULATED FOR
THE TIME CORRESPONDING TO PARCEL DISTANCE I.
TIME IN HOURS AND DECIMAL FRACTIONS
TIMEHR=AINT(TIME/100.)+AMODCTIME,100.)/60.
DO 5960 I=NX,NX2
TIME FOR TRANSPORT FROM PRESENT POSITION TO POINT DOWNWIND (DIST(D)
DTIME= ( ( DISTC I) -DIST( NX)) /U) /3600.
CALCULATE TIME OF DAY PARCEL WOULD BE AT PRESENT POINT (DISTCNX))
IN ORDER TO BE TRANSPORTED TO EACH POINT FARTHER DOWNWIND FOR
TIME OF OPTICS CALCULATIONS.
Exhibit Brl (Continued)
286
-------
( 1569)
( 1570)
( 1571)
( 1572)
( 1573)
( 1574)
(1575)
(1576)
( 1577)
( 1578)
( 1579)
( 1580)
( 1581)
( 1582)
( 1583)
( 1584)
( 1585)
( 1586)
( 1587)
( 1588)
( 1589)
( 1590)
(1591)
( 1592)
( 1593)
(1594)
( 1595)
(1596)
( 1597)
( 1598)
(1599)
( 1600)
( 1601)
( 1602)
( 1603)
( 1604)
( 1605)
( 1606)
( 1607)
( 1608)
( 1609)
( 1610)
( 1611)
(1612)
( 1613)
( 1614)
( 1615)
(1616)
( 1617)
(1618)
(1619)
( 1620)
(1621)
( 1622)
( 1623)
( 1624)
C
5961
C
C
C
5962
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
39
C
C
C
C
TI KER= TIMEHR-DTI ME
IF(TIMER.GT.0.)GO TO 5962
CORRECT FOR NEGATIIVE CLOCK TIME
TIMER=TIMER+24.
GO TO 5961
CONTINUE
IT1 HOUR OF DAY FOR PARCEL AT DIST(NX)
IT1=INT(TIMER)
IT2=IT1+1
IF( IT2.E0..25) IT2=1
RTIME = DECIMAL FRACTION OF TIME OF DAY (TIME BEYOND ITl)
RTIME=AMOD(TIMER,1. )
LINEAR INTERPOLATION OF N02 - NO DYNAMIC EQUILIBRIUM CONSTANT
AND INTERPOLATION OF PHOTOLYSIS RATE CONSTANT FOR TIME OF DAY
WHEN PLUME PARCEL WOULD BE AT DIST(HX) AND BE TRANSPORTED TO
TO DIST(NX+1), DIST(NX+2), ETC.
PHIKKA=PHIKKR( ITl)+RTIME*(PHIKKR( IT2)-PHIKKRCITl))
QJA=QJ(IT1)+RTIME#(QJ(IT2)-QJ( ITl))
CONCENTRATION OF S02
XS02R= QS02TR(NZ,I)#CHIQ
CONCENTRATION OF NOX
XNOXR= QNOXTR( NZ,I)*CHIQ
CONCENTRATION OF N02
XN02TR=XNOXR*RATIOT(NZ,!)/( 1.+RATIOT( NZ, I))
SUMR=XNOXR+AMBNOX+03AMB+XN02TR+AMBNO2+PHIKKA
XNO2R=0.5#( SUMR-SQRT( ABS( SUMR*SUMR-4.*( XNOXR+AMBNOX)*
1 (O3AMB+XN02TR+AMBNO2))))
NOX PLUME CONCENTRATION WITH AMBIENT BACKGROUND NOX ADDED.
TOTR= XNOXR+AMBNOX
IF( XN02R.GT.TOTR)XNO2R=TOTR
IF(NX.EQ.NX2)GO TO 39
RATIOT(NZ,I)=RATIOT(NZ,I)+4.015E-12*EXP( 1046./( 1.987*TAMB))*
1 ( TOTR-XN02R)$209460.*(DIST( NX+1)-DIST(NX))/U
CONTINUE
OZONE CALCULATION
X03R=03AMB-( XNO2R-XNO2TR-AMBN02)
Exhibit B-1 (Continued)
287
-------
( 1625)
( 1626)
( 1627)
( 1628)
( 1629)
( 1630)
( 1631)
( 1632)
( 1633)
( 1634)
( 1635)
( 1636)
( 1637)
( 1638)
( 1639)
( 1640)
( 1641)
( 1642)
( 1643)
( 1644)
( 1645)
( 1646)
( 1647)
( 1648)
( 1649)
( 1650)
( 1651)
( 1652)
( 1653)
( 1654)
( 1655)
( 1656)
( 1657)
C 1658)
( 1659)
( 1660)
( 1661)
( 1662)
( 1663)
( 1664)
( 1665)
( 1666)
( 1667)
( 1668)
(1669)
( 1670)
(1671)
( 1672)
( 1673)
( 1674)
( 1675)
( 1676)
( 1677)
( 1678)
( 1679)
( 1680)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
OH RADICAL CONCENTRATION
XOHR=2.*QJA*3.4E5*WATER#X03R/( ( 4.45E10+3. 4E5*WATER)*
1 (2000.*XS02R+14.E3*XN02R))
MAXIMUM OH RADICAL CONCENTRATION
XOHRMX= 4.S7E-7*QJAX 1.32E-3
IF ( XOHR.GT.XOHRMX)XOHR= XOHRMX
S02, NOX, AND N02 -CONVERSION RATES
RS02R( NX+1,NZ,1+1)=2000.*XOHR*60.* 100.+RS02(NX+1)
RNOXRC NX+1,NZ,1+1) = 14.E3*XOHR*60.* 100.
RNO2X(NX+1,NZ,I+1)= XN02R/TOTR
BRANCH IF PLUME PARCEL NOT AT FINAL POSITION ( I = NX)
IF(I.NE.NX)GO TO 5959
SAVE S02 CONCENTRATION AND PARTICULATE CONCENTRATION.
XS02=XS02R
XPART=QPART*CHIQ>
CALCULATE MOLE RATIO OF SULFATE TO INITIAL S02 (%).
RATIOS= QS04TRCNZ, D/1.5 * 3.821E-4xOS02*100.
SAVE OZONE, NOX, AND NO2 CONCENTRATIONS.
X03=X03R
XNOX=XNOXR
XN02=XN02R
S
SAVE EFFECTIVE EMISSION RATE OF NO2 AND S04 FOR LEVEL NZ
QN03=QNO3TR1 (Continued)
288
-------
(1681)
( 1682)
( 1683)
( 1684)
( 1685)
( 1686)
( 1687)
( 1688)
( 1689)
( 1690)
(1691)
( 1692)
(1693)
( 1694)
( 1695)
(1696)
( 1697)
(1698)
( 1699)
( 1700)
( 1701)
( 1702)
( 1703)
( 1704)
( 1705)
( 1706)
( 1707)
( 1708)
( 1709)
( 1710)
(1711)
( 1712)
( 1713)
( 1714)
( 1715)
( 1716)
( 1717)
( 1718)
(1719)
( 1720)
(1721)
( 1722)
( 1723)
( 1724)
( 1725)
( 1726)
( 1727)
( 1728)
( 1729)
( 1730)
( 1731)
( 1732)
( 1733)
( 1734)
( 1735)
( 1736)
C
C
C
5'
5'
C
C
C
J
5<
i
C
C
C
C
C
C
G
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
G
C
CALCULATE MOLE RATIO OF HN03 TO INITIAL NOX(%).
RATION=(QN03TR(NZ,I)/QNOX)* 100.
> CONTINUE
) CONTINUE
IF( IFLAGP.EO.. 1) GO TO 5616
WRITE OUT TITLES FOR PRINT FILE
WRITE(6,5611)
5611 FORMAT(9H ALTITUDE, 9X, 3HNOX, 7X, 3HNO2, 7X,4HN03-, 2X, 8HNO2/NTOT, 2X,
19HNO3-/NTOT, 5X, 3HSO2, 7X, 4HSO4= , 2X, 9HSO4=/STOT, 5X, 2HO3, 5X, 7HPRIMARY
2, 1X,9HBSP-TOTAL,2X,9HBSPSN/BSP)
WRITE(6,5612)
5612 FORMAT( 16X, 5H( PPM) , 5X, 5H( PPM) , 5X, 5H( PPM) , 2( 2X, 8H( MOLE %)) , 5X,
15H( PPM) , 3X, 7H( UG/M3) , 2X, 8H( MOLE %) , 5X, 5H( PPM) , 3X, 7H( UG/M3) , IX, 10H(
210-4 M-l) ,3X,3H(?O ,/)
5616 CONTINUE
N02 PLUME INCREMENT
XN021N= XN02-AMBN02
QN02I(NZ)=XN02IN/CHIQ
XN03=QN03*CHIQ
TOTAL N03 (PLUME + AMBIENT)
XN03T= XNO3+AMBNO3
RATIO OF PLUME INCREMENT N02 TO INITIAL NOX (%).
RNO2=( 100.*(XNO2-AMBNO2)/CHIQ)/QNOX
IF (PLUME N02 - AMBIENT N02) IS SMALL, RATIO SET TO ZERO.
IF(XN02IN.LT.0.0005) RN02 - 0.
MOLE RATIO OF TOTAL NO2 AND N03 TO TOTAL NOX (PLUME + AMBIENT).
RN02T=(XNO2/(TOT+XN03T))*100.
RNO3T=(XNO3T/( TOT+XN03T))* 100.
TOTAL S02 CONCENTRATION IN PLUME (PLUME + AMBIENT)
XS02T= XS02+AMBSO2
SULFATE PLUME INCREMENT
XS04=QSO4*CHIQ
SAVE PARTICULATE AND SULFATE PLUME INCREMENTS FOR ALONG PLUME
OPTICAL ANALYSIS.
XPARTP(NX,NZ)=XPART
XPARTS(NX,NZ)=XSO4
Exhibit B-1 (Continued)
289
-------
( 1737)
( 1738)
( 1739)
( 1740)
( 1741)
( 1742)
( 1743)
( 1744)
( 1745)
( 1746)
( 1747)
( 1748)
( 1749)
( 1750)
(1751)
( 1752)
( 1753)
( 1754)
( 1755)
(1756)
( 1757)
( 1758)
( 1759)
( 1760)
(1761)
( 1762)
( 1763)
( 1764)
( 1765)
(1766)
( 1767)
( 1768)
( 1769)
( 1770)
( 1771)
( 1772)
( 1773)
( 1774)
( 1775)
( 1776)
( 1777)
( 1778)
( 1779)
( 1780)
( 1781)
( 1782)
( 1783)
( 1784)
( 1785)
( 1786)
( 1787)
( 1788)
( 1789)
( 1790)
( 1791)
( 1792)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
j
j
1
C
C
C
C
C
C
C
TOTAL SULFATE CONCENTRATION.
XS04T= XS04+AMBS04
RATIO OF TOTAL S04 COMPONENT TO TOTAL SULFUR COMPONENT.
RS04T=(XS04T#3.821E-4/1.5) /(XS02T+XS04T*3.821E-4/1.5)
CONVERT TO PERCENT
RS04T=RS04T*100.
PLUME INCREMENT OF OZONE (THIS IS LESS THAN ZERO FOR NOX PLUMES).
X03IN=X03-03AMB
TOTAL AEROSOL CONCENTRATION (PLUME PLUS BACKGROUND)
XPT XPART + CORAMB + AMBS04
EXTINCTION COEFFICIENT FOR PLUME PRIMARY PARTICULATE AND
SULFATE AND CONVERT FROM I/KM TO 1/METERS
BSP=10.*(BTAPRM(19)#XPART+BTAS04(19)*XS04)
ADD IN BACKGROUND AEROSOL EXTINCTION
BSPT= BSP+10.*BTAAER( 19 )
RATIO OF SULFATE EXTINCTION COEFFICIENT IN PLUME TO TOTAL
PLUME AEROSOL EXTINCTION COEFFICIENT (%).
RSEC=1000.*BTAS04(19)*XS04/BSP
s
RATIO OF PLUME SULFATE EXTINCTION COEFFICIENT TO TOTAL
AEROSOL EXTINCTION COEFFICIENT (%).
RSECT=1000.*BTAS04(19)*XS04T/BSPT
WRITE(6,5613) ALT(NZ)
WRITE(6,5614) XNOX,XNO2IN,XN03,RN02,RATION,XS02,XS04,RATIOS,
1X03IN,XPART,BSP,RSEC
5613 FORMAT(2X,A4)
5614 FORMATdlH INCREMENT!, 12F10.3)
WRITE( 6,5615) TOT, XN02, XN03T, RNO2T, RN03T, XSO2T, XS04T, RSO4T, X03,
1XPT.BSPT.RSECT
IFLAGP=1
5615 FORMATdlH TOTAL AMB!, 12F10.3,/)
BRANCH AROUND IF NOT AT PLUME CENTERLINE HEIGHT.
IF(NZ.HE.3) GO TO 60
SAVE PLUME CENTERLINE CONCENTRATIONS, INCLUDING AMBIENT
BACKGROUND CONTRIBUTION.
Exhibit B_-l (Continued)
290
-------
( 1793)
( 1794)
( 1795)
( 1796)
( 1797)
( 1798)
( 1799)
( 1800)
(1801)
( 1802)
( 1803)
( 1804)
( 1805)
( 1806)
( 1807)
( 1808)
( 1809)
(1810)
( 1811)
( 1812)
( 1813)
( 1814)
( 1815)
( 1816)
(1817)
( 1818)
( 1819)
( 1820)
( 1821)
( 1822)
( 1823)
( 1824)
( 1825)
( 1826)
( 1827)
( 1828)
( 1829)
( 1830)
(1831)
( 1832)
( 1833)
( 1834)
( 1835)
( 1836)
( 1837)
( 1838)
( 1839)
( 1840)
(1841)
( 1842)
(1843)
( 1844)
( 1845)
( 1846)
( 1847)
( 1848)
i
1
1
1
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
XN02C=XN02
XS04C=XS04T
XPRMC=XPT
60 CONTINUE
WRITE(6,5622)
5622 FORMAT(////62H CUMULATIVE SURFACE DEPOSITION (MOLE FRACTION OF INI
1TIAL FLUX),/)
WRITE(6,5617) FDS02
5617 FORNAT(1H ,16X,4HS02»,F10.4)
WRITE(6,5618) FDNOX
5618 FORMAT(1H ,16X.4HNOX!,F10. 4)
TVRITE(6,5619) FDPART
5619 FORPL4T(21H PRIMARY PARTICIPATE?, F10. 4)
ttRITE(6,5620) FDS04
FORMAT( III , 16X,4ESO4 f, F10.4)
WRITE(6,5621) FDN03
5621 FORMAT(IH ,16X,4HN03?,F10.4)
C CALCULATION OF N02 AND S04 FLUXES TAKING INTO ACCOUNT THE NON-
C UNIFORM MOLE RATIOS ACROSS TEE PLUME.
OJTO2H3) = 0.39*QN02I(3) + 0.4C5-GNO2H2) + 0. 125#QNO2I( 1)
QN02K2) - 0.39*QNO2I(2) + 0.61*QN02I( 1)
QNO2H4) - 0.39*OJiO2I(4) + 0. 6 1~';QNO2I( 5)
QS04=0.39#QS04TR(3,NX)-i-0.485#GS04TrU2,NX)+0. 125*QSO4TR( 1, NX)
SKIP OVER HORIZONTAL SIGHT PATHS WITH SKY BACKGROUND OPTICS
CALCULATION IF IFLG1 = 0 .
IF( IFLG1.EQ.0) GO TO 7001
LOOP FOR PLUME- BASED OR OBSERVER- BASED CALCULATIONS OR BOTH
C VISUAL EFFECTS (HORIZONTAL SIGHT PATHS)
********:^:,!:*:*:******
P FOR PLUME- BASED
DO 7000 NC=NC1,NC2
NFLAG= 1
ALTITUDE LOOP, NZF= 1 FOR PLUME CENTERLINE ONLY, NZF=2 FOR
CENTERLINE AND SURFACE.
DO 7000 NZ1 = l.NZF
NZ=NZ1*3
IF(NZ.EG.3) Z=H
IF(NZ.EQ.6) Z=0.
BRANCH FOR OBSERVER- SPEC IF 1C CALCULATION
IF(NC.EQ.2)GO TO 6100
Exhibit B-l (Continued)
291
-------
( 1849)
( 1050)
( 1851)
( 1852)
( 1853)
( 1854)
( 1855)
( 1856)
( 1857)
( 1858)
( 1859)
( 1860)
( 1861)
( 1862)
( 1863)
( 1864)
( 1865)
( 1866)
( 1867)
( 1868)
( 1869)
( 1870)
( 1871)
( 1872)
( 1873)
( 1874)
( 1875)
( 1876)
( 1877)
( 1878)
( 1879)
( 1880)
( 1881)
( 1882)
( 1883)
( 1884)
( 1885)
( 1886)
( 1887)
( 1888)
( 1889)
( 1890)
(1891)
( 1892)
( 1893)
( 1894)
( 1895)
( 1896)
( 1897)
( 1898)
( 1899)
( 1900)
( 1901)
( 1902)
( 1903)
( 1904)
e
C
C
C
C
C
C
(
<
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
NT=NT1-1
6990 NT=NT+1
ITHETA=NT+1
ASSIGN SCATTERING ANGLE
THETA=TT(ITHETA)
NFLAG=-1*NFLAG
SKIP WRITING TITLE EVERY SECOND TIME THROUGH
IF(NFLAG.GT.0) GO TO 65
6100 CONTINUE
WRITE(6,10)
WRITE(6,61)(PLANT( J),J=1,6)
61 FORMAT (20X.41HVISUAL EFFECTS FOR HORIZONTAL SIGHT PATHS,/20X,6A4,
I/)
XKM = DOWNWIND DISTANCE IN KILOMETERS
WRITE(6,52) XKM _
H HEIGHT OF PLUME CENTERLINE.
WRITE(6,53) H
BRANCH IF DOING PLUME-BASED CALCULATION
IFCNC.EQ. DGO TO 6400
WRITE( 6,611)OBSPLU(NX)
611 FORMATC31H PLUME-OBSERVER DISTANCE (KM) =,F7.1)
WRITE( 6,612)AZMUTH(NX)
612 FORMAT(27H AZIMUTH OF LiNE-OF-SIGHT -,F7.1)
WRITE(6,613)ABETA(NX)
613 FORMAT(35H ELEVATION ANGLE OF ilNE-OF-SIGHT =,F7.1)
WRITE(6,614)ZENITH,TIME,IMO,IDAY
614 FORMAT(21H SOLAR ZENITH ANGLE -,F7.1,2X,4H AT ,F5.0,4H ON ,
1 I2,1H/,I2)
ASSIGN SCATTERING ANGLE
THETA=TT(NX+7)
ASSIGN INDEX FOR PHASE FUNCTIONS FOR CALL TO PLMCLN
ITHETA=7+NX
ASSIGN HORIZONTAL ANGLE BETWEEN OBSERVER LINE-OF-SIGHT AND PLUME
CENTERLINE.
ALPHA=AALPHA( NX)
ASSIGN OBSERVER-PLUME DISTANCE ALONG LINE-OF-SIGHT
RP=OBSPLU(NX)
Exhibit B.-l (Continued)
292
-------
(1905)
(1906)
(1907)
( 1903)
(1909)
( 1910)
( 1911)
( 1912)
( 1913)
(1914)
( 1915)
( 1916)
( 1917)
(1918)
(1919)
( 1920)
( 1921)
( 1922)
( 1923)
( 1924)
( 1925)
( 1926)
( 1927)
(1928)
( 1929)
( 1930)
( 1931)
( 1932)
( 1933)
( 1934)
(1935)
( 1936)
( 1937)
(1938)
(1939)
( 1940)
(1941)
( 1942)
( 1943)
( 1944)
( 1945)
( 1946)
( 1947)
( 1948)
(1949)
( 1950)
(1951)
( 1952)
( 1953)
(1954)
( 1955)
(1956)
( 1957)
(1958)
(1959)
(I960)
C
c
C
c
c
ADJUST OPTICAL THICKNESS FOR LINE-OF-SIGHT NOT PERPENDICULAR TO PLUME
YIKT=CHIQIY(NZ)/SIN(ALPHA*RAD)
6400 CONTINUE
IFCNZl.EQ. 1) WITE(6,62)
IF(NZl.Ea.2) WRITE<6,63)
62 FORMAT(35H SIGHT PATH IS THROUGH PLUHE CENTER./)
63 FORMATOOH SIGHT PATH IS AT GROUND LEVEL,/)
WRITE(6,64)
64 FORMAT< 6H THETA, IX, 5HALPHA, 2X, 6HRP/RVO, 4X, 2HRV, 2X, 8H%REDUCED,4X,
14HYCAP,7X, 1HL,7X, 1HX,7X, 1HY.8H DELYCAP, 4X. 4 HP I'LL. 2X, 6HC( 550) , 2X.
26HBRATIO,4X,4HDELX,4X,4HDELY,2X,6HE( LUV),2X,6HE( LAB))
65 CONTINUE
WRITE(6,66) THETA
BRANCH FOR OBSERVER-BASED CALCULATION
IF(NC.EQ.2)GO TO 6500
66 FORMAT(/,F6.0)
C
C INITIALIZE AND INCREMENT INDEX FOR HORIZONTAL ANGLE BETWEEN
C OBSERVER LINE-OF-SIGHT AND PLUME CENTERLINE (PLUME-BASED CALCULATIONS)
C
NA=0
6995 NA=NA+1
IF(NA.LT.5)GO TO 70
ALPHA=AA(4)
GO TO 73
ALPHA=AA(NA)
CHI/Q AT PLUME CENTEFXINE * EQUIVALENT DISTANCE TO MATCH CHI/Q
INTEGAL IN Y-DIRECTION FOR GAUSSIAN DISTRIBUTION.
YINT=CHIQI Y( NZ)/SIN(ALPHA*RAD)
NP=0
INITIALIZE AND INCREMENT OBSERVER-PLUME DISTANCE INDEX
70
C
C
C
C
73
C
C
C
6999 NP=NP+1
C
C RP = DISTANCE TO PLUME FROM OBSERVER ALONG LINE-OF-SICRT
C
RP= ROBJ(NP)*RVAMB
C
C SPECIAL CASE FOR FA=5 FOR OBSERVER POSITIONED AT 1/2 OF A 22.5
C DEGREE SECTOR FROM THE PLUME CENTERLINE.IF THIS DISTANCE IS <
C 5 KM, IT IS SET TO 5 KM.
C
C
c
IF(NA.LT.5)GO TO 6500
RP=AMAX1((DIST(NX)/1000.)*TAN(22.5/2.*RAD),5.)
6500 CONTINUE
PLMDIS=RP
CALCULATE RATIO OF PERPENDICULAR PLUME-OBSERVER DISTANCE TO SIGMA Y.
RPR= RP/SY*1000.*SIN(ALPHA*RAD)
Exhibit B-l (Continued)
293
-------
( 1961)
( 1962)
( 1963)
( 1964)
( 1965)
( 1966)
( 1967)
( 1968)
( 1969)
( 1970)
( 1971)
( 1972)
( 1973)
( 1974)
( 1975)
( 1976)
( 1977)
( 1978)
( 1979)
( 1980)
( 1981)
( 1982)
( 1983)
( 1984)
( 1985)
( 1986)
( 1987)
( 1988)
( 1989)
( 1990)
( 1991)
( 1992)
( 1993)
( 1994)
( 1995)
( 1996)
( 1997)
( 1998)
( 1999)
(2000)
(2001)
(2002)
(2003)
(2004)
(2005)
(2006)
(2007)
(2008)
(2009)
(2010)
(2011)
(2012)
(2013)
(2014)
(2015)
(2016)
C
C Bl
C
C
C R]
C T<
C 01
C
6501
6502
660
C
C C
C P
G
C
C C
C A
C
C
C C
C (
C
C
C
C
660
C
C N
C
YINTR=1.0
BRANCH IF OBSERVER TO PLUME DISTANCE IS GREATER THAN 2.17*SIGMA-Y
IF(RPR.GT.2.17) GO TO 6601
REDEFINING RP IF OBSERVER IS WITHIN THE PLUME SO THAT RP IS DISTANCE
TO PLUME CENTROID. ALSO, CALCULATE THE FRACTION OF TOTAL PLUME
OPTICAL THICKNESS WITHIN LINE OF SIGHT.
RPHALF=0.18*(RPR+0.25)+0.153*(RPR+0.75)+0.167*( RPR+1.5)
IF(RPR.GT.0.5)GO TO 6501
YINTRl=(RPR/0.5)*0.18
YINTR=YINTR1+0.50
RP= ( (RPR*YINTRl/2.+RPHALF)/YINTR)*(SY/1000.)/SIN( ALPHA*RAD)
GO TO 6601
IF(RPR.GT.1.0)GO TO 6502
YINTRl=(RPR-0.5)*0.153/0.5
YINTR=YINTRl+0.68
RP= ( ( ( RPR-0.5)*YINTRl/2.+(RPR-0.25)*0.18+RPHALF)/YINTR)*(SY/1000.)
/SIN(ALPHA*RAD)
GO TO 6601
YINTR1 = (RPR-1.0)*0. 142
YINTR=YINTR1+0.833
RP=(((RPR-1.)*YINTRl/2.+(RPR-0.75)*0.153+(RPR-0.25)*0.1S+RPHALF)
/YINTR)*(SY/1000.)/SIN(ALPHA*RAD)
6601 CONTINUE
YINT1=YINT*YINTR
CALCULATION OF MASS INTEGRAL ALONG LINE-OF-SIGHT WITHIN PLUME FOR
PRIMARY PARTICULATE, SULFATE, AND N02
PLUMEP=YINT1*QPART
PLUMES=YINT1*QS04
PLUMEN= YINT1*QN02I(NZ) v^
CALCULATION OF OPTICAL THICKNESS OF PLUME DUE TO SULFATE, N02,
AND PRIMARY PARTICULATE.
TAPS04 = BTAS04C19)*PLUMES
TAPN02 = ABSN02(19)*PLUMEN
TAUPRM = BTAPRM(19)*PLUMEP
CALCULATE BACKGROUND SKY INTENSITIES (SPECB)
(SPECP). #*******CALL PLMCLN*********
AND PLUME INTENSITIES
CALL PLMCLN(ZENITH,0.,THETA,ITHETA,PLUMEP,PLUMES,PLUMEN,SPECB,SPEC
IP,RP,THICK)
CALL ROUTINE TO CALCULATE COLORATION PARAMETERS
CALL CHROMA(SPECP,SPECB)
6608 CONTINUE
NEXT CALCULATE REDUCTION IN VISUAL RANGE THROUGH PLUME DUE TO AEROSOL
Exhibit Brl (Continued)
294
-------
(2017)
(2018)
(2019)
(2020)
( 202 1 )
(2022)
(2023)
(2024)
(2025)
(2026)
(2027)
(2028)
(2029)
(2030)
(2031)
( 2032)
(2033)
(2034)
(2035)
(2036)
(2037)
( 2038)
(2039)
(2040)
(2041)
(2042)
(2043)
(2044)
(2045)
(2046)
(2047)
(2048)
(2049)
(2050)
(2051)
(2052)
(2053)
(2054)
(2055)
(2056)
(2057)
(2058)
(2059)
(2060)
(2061)
(2062)
(2063)
(2064)
(2065)
(2066)
(2067)
(2068)
(2069)
(2070)
( 207 1 )
(2072)
C
C
C
C
C
C
C
C
C
C
C
C
I
C
C
C
C
C
C
C
<
C
C
C
C
C
C
C
C
CORN02=ALOG( GONT2+1.)
THICK = TAPS04 + 7AUPRM + TAPN02 + CORN02
SYALPH = (SY/1000.)/SIN(ALPHA*RAD)
ADD IN OPTICAL DEPTH OF BACKGROUND AIR IN FRONT OF AND WITHIN
PLUME.
TAUPLU = BTABAC(19)*(PLMD!S + 2.17*SYALPH) + THICK
BRANCH IF PLUME AEROSOL OPTICAL DEPTH - ZERO
IF( THICK.EQ.O.) GO TO 6602
BRANCH IF OPTICAL DEPTH OF AEROSOL IN FRONT OF PLUME AND OF PLUME
AEROSOL IS NOT SUFFICIENT TO REDUCE VISUAL RANGE TO PREVENT SEEING
BEYOND PLUME.
IF(TAUPLU .LT. 3.912) GO TO 6602
TAUHAF = BTABACC19)*PLMDIS + ((YINTR-0.5)/YINTR)*THICK
RESIDP 3.912 - TAUHAF
RESIDA - RESIDP
IF(RESIDP .LT. 0.) RESIDA - -l.*RESIDP
DELT1 - 0.18*THICXXYINTR +0.5 *SYALPH*BTABAC (19)
DELT2 0.333*THICK/YINTR + SYALPH*BTABAC( 19)
DELT3 = 0.5*THICK/YINTR + 2.17*SYALPE*BTABAC(19)
RV PLMDIS +((RESIDP/RESIDA)*( 1. + 1.17*(RESIDA - DELT2)/
1 (DELT3 - DELT2)))*SYALPH
IFCRESIDA .LT. DELT2) RV = PLMDIS + (RES IDP/RES IDA)*(1. + (RESIDA-
1 DELT1)/(DELT2 - DELT1))*G.5*SYALPH
IF(RESIDA .LT. DELT1) RV PLMDIS + 0.5*SYALPH*RESIDP/DELT1
GO TO 6606
6602 CONTINUE
CALCULATION OF DISTANCE OBSERVER WOULD SEE BEYOND PLUME
BKPLM = (3.912 - TAUPLU)/BTABAC( 19)
VISUAL RANGE = DISTANCE TO PLUME + WIDTH OF PLUME + DISTANCE
BEYOND PLUME.
RV = PLMDIS + 2.17*SYALPH + BKPLM
6606 CONTINUE
MINIMUM VISUAL RANGE LOOKING THROUGH PLUME CENTERLINE WITH
BACKGROUND EXTINCTION AND WITH PLUME S04, N02, AND PRIMARY
PARTICULATE EXTINCTION.
RVMIN=3.912/(BTABAC( 19) + BTAS04(19)*XS04C + ABSNO2( 19)*XN02C
1 + BTAPRMC19)#XPRMC )
IF(RV .LT. RVMIN) RV= RVMIN
IF( RV.GT.RVAMB)RV= RVAMB
REDUCTION IN VISUAL RANGE LOOKING THROUGH THE PLUME
REDRV=100.#<1.-RV/RVAMB)
IFCNC.EQ.1)GO TO 6610
Exhibit B-l (Continued)
295
-------
(2073)
(2074)
(2075)
(2076)
(2077)
(2078)
(2079)
(2080)
(2031)
(2082)
(2083)
(2084)
(2085)
(2086)
( 2087)
( 2088)
(2089)
(2090)
( 209 1 )
(2092)
(2093)
(2094)
(2095)
(2096)
(2097)
(2098)
(2099)
(2100)
(2101)
(2102)
(2103)
(2104)
(2105)
(2106)
(2107)
(2108)
(2109)
(2110)
(2111)
(2112)
(2113)
(2114)
(2115)
(2116)
(2117)
(2118)
(2119)
(2120)
(2121)
(2122)
(2123)
(2124)
(2125)
(2126)
(2127)
(2128)
C
c s,
C B,
C
C
c s:
c c
C N
C N1
C
6610
C
C S
C A
C
660
C
C W
G
660
C
C \i
C
88
67
C
C 1
C
700
SAVE KEY VISUAL IMPACT PARAMETERS FOR PLOTTING LATER (OBSERVER-
BASED CASE)
PLTHNX, 1)=REDRV
PLT2(NX, 1)=BRAT1O
PLT3(NX,1)=CONT2
PLT4(NX,1)=DELAB
GO TO 6607
SELECT THE PARTICULAR CASE FOR PLOTTING FOR THE PLUME-BASED
CALCULATION.
NP IS PLUME-OBSERVER DISTANCE INDEX, NA IS ALPHA INDEX,
NT IS SCATTERING ANGLE INDEX, AND NZ IS ALTITUDE INDEX.
IF(NP.NE.NPP)GO TO 6607
IF(NA.NE.NAP)GO TO 6607
IF(NT.NE.NTP)GO TO 6607
IF(NZ.NE.NZP)GO TO 6607
SAVE THE KEY VISUAL IMPACT VALUES FOR THE DESIRED RP, THETA, ALPHA,
AND NZ FOR THE PLUME-BASED PLOTS. ^
PLOT1 ( NX,1)= REDRV
PLOT2(NX,1)= BRAT10
PLOT3(NX,1)=CONT2
PLOT4( NX, 1)= DELAB
6607 CONTINUE
IF(NC.EG.1) GO TO 6609
WRITE OUT RESULTS FOR OBSERVER-BASED CASE CALCULATIONS
RPLMOB= OBSPLU(NX)/RVAMB
WIITE( 6,67) ALPHA,RPLKOB,RV,REDRV,YCAP,VAL,X,Y,YCAPD,VALD,CONT2,
1BRATI0,XD,YD,DELUV,DELAB
GO TO 7000 .
6609 CONTINUE >
RROBJT=ROBJ(NP)
IF( NA.EQ.5)RROBJT= RP/RVAMB
WRITE OUT RESULTS FOR PLUME-BASED CASE CALCULATIONS
IF( NA.EQ. 5) WRITE( 6,S8)
FORMAT( 1H0.4X,127EOBSERVER POSITION AT 1/2 OF A 22.5 DEGREE WIND D
1IRECTION SECTOR FROM THE PLUME CENTERLINE AT THE GIVEN DISTANCE FR
2OM THE SOURCE,/)
WRITE( 6 ,67) ALPHA, RPIO3JT, RV, REDRV, YCAP, VAL, X, Y, YCAPD, VALD,
1CONT2,BRATIO,XD,YD,DELUV,DELAB
FORMAT(5X,F3.0,F8.2,FO.1,3F8.2,2F8.4,2F8.2.6F8.4)
TEST IF DISTANCE, ALPHA, AND THETA LOOPS ARE COMPLETED.
IF(NP.LT.6 .AND. NA .LT. 5)GO TO 6999
IF(NA.LT.5)GO TO 6995
IF(NT.LT.(NT2-1))GO TO 6990
7000 CONTINUE
Exhibit B-l (Continued)
296
-------
(2129)
(2130)
(2131)
(2132)
(2133)
(2134)
(2135)
(2136)
(2137)
(2138)
(2139)
(2140)
(2141)
(2142)
(2143)
(2144)
(2145)
(2146)
(2147)
(2148)
(2149)
(2150)
(2151)
(2152)
(2153)
(2154)
(2155)
(2156)
(2157)
(2158)
(2159)
(2160)
(2161)
(2162)
(2163)
(2164)
(2165)
(2166)
(2167)
(2168)
(2169)
(2170)
(2171)
(2172)
(2173)
(2174)
(2175)
(2176)
(2177)
(2178)
(2179)
(2180)
(2181)
(2182)
(2183)
(2184)
i
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
*
C
C
C
f
C
C
C
f
r
C
C
C
C
C
C
C
C
7001 CONTINUE
CHIQIZ= ( TAMB/FGTEMP) /( SQRT( 2 . *P I ) *SY#U)
CHIQIZ=CHIQIZ/1000.
BRANCH AROUND NON- HORIZONTAL SIGHT PATHS CALCULATIONS IF IFLG2
WAS SET TO ZERO.
IF( IFLG2.EQ.0) GO TO 8001
NON- HORIZONTAL SIGHT PATHS CALCULATIONS xvxxxxxxxxxxxxvxxx******
##*^^
C LOOP ON TYPES OF CALCULATIONS (PLUME-BASED OR OBSERVER- BASED OR BOTH)
DO 8000 NC=NC1,NC2
IF SPECIFIC CASE BETA LESS THAN 5 DEGREES, SKIP CALCULATION.
IF(NC.EQ.2.AND.ABETA(NX) .LT.5.)GO TO 8001
BRANCH FOR SPECIFIC CASE CALCULATION
7110 IF(NC.EQ.2)GO TO 7100
NFLAG= 1
INITIALIZE AND INCREMENT SCATTERING ANGLE INDEX
NT=NT1-1
7996 NT=NT+1
ITHETA=NT+1
ASSIGN SCATTERING ANGLE
THETA=TT( ITHETA)
NFLAG=-1*NFLAG
IF(NFLAG.GT.0) GO TO 75
7100 CONTINUE
WRITE(6, 10)
WRITE(6,71)(PLANT( J) ,J=1,6)
71 FORMAT(20X,70HVISUAL EFFECTS FOR NON- HORIZONTAL CLEAR SKY VIEWS TH
1ROUGH PLUME CENTER, //,20X, 6 A4,//)
XKM - DOWNWIND DISTANCE IN KM
H - PLUME CENTERLINE HEIGHT
BRANCH IF DOING PLUME- BASED CALCULATION
WRITE(6,52) XKM
WRITE(6,53) H
IF(NC.EQ. DGO TO 7200
WRITE OUT DISTANCE FROM OBSERVER TO PLUME ALONG LINE-OF-SIGHT.
WRITEC 6,611) OBSPLU( NX)
Exhibit Brl (Continued)
297
-------
(2185)
(2186)
(2187)
(2188)
(2189)
(2190)
(2191)
(2192)
(2193)
(2194)
(2195)
(2196)
(2197)
(2198)
(2199)
(2200)
(2201)
(2202)
(2203)
(2204)
(2205)
(2206)
(2207)
(2208)
(2209)
(2210)
(2211)
(2212)
(2213)
(2214)
(2215)
(2216)
(2217)
(2218)
(2219)
(2220)
( 222 1 )
(2222)
(2223)
(2224)
(2225)
-,:2226)
( 2227)
(2228)
(2229)
(2230)
(2231)
(2232)
(2233)
(2234)
(2235)
(2236)
(2237)
(2238)
(2239)
(2240)
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
p
»
*
c
c
c
c
c
c
1
c
c
c
c
c
c
c
WRITE OUT AZIMUTH OF OBSERVER LINE-OF-SIGHT TO PLUME
WRITE( 6,612) AZMUTHX NX)
WRITE OUT ELEVATION ANGLE OF OBSERVER LINE-OF-SIGHT.
WRITE( 6,613)ABETA( NX)
WRITE OUT SOLAR ZENITH ANGLE, TIME OF DAY, MONTH, DAY OF MONTH
WRITE(6,614)ZENITH,TIME,IMO,IDAY
ASSIGN SCATTERING ANGLE AND INDEX FOR SCATTERING PHASE FUNCTIONS.
THETA=TT(NX+7)
ITHETA=7+NX
ASSIGN HORIZONTAL ANGLE BETWEEN PLUME CENTERLINE AND LINE-OF-SIGHT
ALPHA=AALPHA( NX)
ASSIGN ELEVATION ANGLE FOR LINE OF SIGHT TO POINT ON PLUME CENTERLINE
BETA=ABETA(NX)
ASSIGN DISTANCE TO PLUME CENTERLINE ALONG LINE-OF-SIGHT.
RP=OBSPLU(NX)
7200 CONTINUE
WRITE(6,72)
72 FORMAT(/,6H THETA,3X,5HALPHA,4X,4HBETA,6X,2HRP,
14X,4HYCAP,7X,1HL,7X,1HX.7X,1HY,8H DELYCAP.4X,4HDELL,2X,6HC(550),
2 2X, 6HBRATIO, 4X, 4HBELX, 4X, 4HDELY, 2X, 6HE( LUV) , 2X, 6HE( LAB) )
75 CONTINUE
WRITE(6,66) THETA
BRANCH FOR OBSERVER-BASED CASE CALCULATIONS.
IF(NC.EGL2)GO TO 7300
INITIALIZE AND INCREMENT FOR LOOP ON ALPHA ANGLE
NA=0
7997 NA=NA+1
ALPHA=AA(NA)
INITIALIZE AND INCREMENT FOR LOOP ON OBSERVER LINE-OF-SIGHT
ELEVATION ANGLE.
NB=0
7999 NB=NB+1
BETA=15.*FLOAT(NB)
CALCULATION OF OBSERVER LINE-OF-SIGHT TO PLUME DISTANCE.
Exhibit B-l (Continued)
298
-------
(2241)
(2242)
(2243)
(2244)
(2245)
(2246)
(2247)
(2248)
(2249)
(2250)
( 225 1 )
(2252)
(2253)
(2254)
(2255)
(2256)
(2257)
(2258)
(2259)
(2260)
(2261)
(2262)
(2263)
(2264)
(2265)
(2266)
(2267)
( 2268)
(2269)
(2270)
( 227 1 )
(2272)
(2273)
(2274)
(2275)
(2276)
(2277)
( 2278)
(2279)
(2280)
(2281)
(2282)
(2283)
(2284)
(2285)
(2286)
(2287)
( 2288)
(2289)
(2290)
(2291)
(2292)
(2293)
(2294)
(2295)
(2296)
73
C
C i
C
C
C
C i
C
78
C
C i
C
80i
80)
C
C *:
C
C :
C
C *:
C
C i
C i
C ,
C
C
C ]
C
C
C ]
C
DELZ=H*l.E-3
DELXY=DELZ*CGS( BETA:.': HAD) /S IN( EET-\#RAD)
DELX=DELXY*COS( ALPHA*RAD)
DELY=DELXY:frS IN( ALPHA:,1- RAD)
RP= SQRT( DELZ*DELZ+ DEL Y-DELY+DELX^DELX)
7300 CONTINUE
CY=CHIQIY(3)*COS(BETA^RAD)
CZ=CIIIQIY( 3) #S INC BETA* RAD)
YZINT=SQRT( CY*CY+CZ*CZ) /SIN( ALPHA* RAD)
PLUMEP= YZ I imOPATlT
PLUMES= YZ ! NT* ( QS04+QN03 )
PLUMEN= YZ I NT*QN02 1(3)
CALL ROUTINE TO CALCULATE SKY INTENSITIES FOR PLUME AND SKY
WITHOUT PLUME.
CALL PLKCLN( ZEN I TH , BETA , THETA , I THETA , PLUMEP , PLUMES , PLDKEN , SPECB ,
1 SPECP.RP, THICK)
CALL ROUTINE TO CALCULATE COLORATION PARAMETERS.
CALL CKROMA( SPECP , SPECB)
WRITEC 6 . 78) ALPHA , BETA , RP , YCAP , VAL , X, Y, YCAPD , VALD , CONT2 ,
1 BRAT I O , XD , YD , DELUV , DEL AB
FORMAT( 5X, 2F3 . 0 , 3F8 . 2 , 2F8 . 4 , 2FS . 2 , 6F8 . 4 )
CHECK IF END OF LOOPS FOR PLUME-BASED CALCULATION.
IF(NC.EQ.2)GO TO 8000
IF(NB.LT.6)GO TO 7999
IF(NA.LT.4)GO TO 7997
IFCNT.LT. (NT2-1))GO TO 7996
8000 CONTINUE
8001 CONTINUE
IF( IFLG3.EQ..0) GO TO 9001
:fc;|:>|c#####:f::K:}:*###############^
WHITE,, GRAY, AND BLACK OBJECT VIEWS tf**************************
******^^
OPTICAL EFFECTS ON VIEW OF OBJECT BEHIND PLUME.
CALCULATION OF PLUME P ARTICULATE, SULFATE, AND N02 INTEGRAL
ACROSS PLUME.
PLUMEP= CH I Q I Y( 3 ) tfQPART
PLUMES=CHIQI Y( 3) *( QS04+QN03)
PLUMEN= CH I a I Y( 3 ) *QN02 I ( 3 )
LOOP FOR PLUME-BASED, OBSERVER- BASED, OR BOTH TYPES OF CALCULATIONS
DO 9000 NC=NC1,NC2
BRANCH IF DOING THE PLUME-BASED CALCULATION
Exhibit B-l (Continued)
299
-------
(2297)
(2298)
(2299)
(2300)
(2301)
( 2302)
( 2303)
( 2304)
(2305)
(2306)
(2307)
( 2303)
(2309)
(2310)
(2311)
(2312)
(2313)
(2314)
(2315)
(2316)
(2317)
(2318)
(2319)
(2320)
(2321)
(2322)
(2323)
(2324)
(2325)
(2326)
(2327)
(2328)
(2329)
(2330)
(2331)
(2332)
(2333)
(2334)
(2335)
(2336)
(2337)
(2338)
(2339)
(2340)
(2341)
(2342)
(2343)
(2344)
(2345)
(2346)
(2347)
( 2348)
(2349)
(2350)
(2351)
(2352)
C
c /
C
80*
C
C I
c
c
c
c <
c
89<
81<
81
87
C
C 1
c
c
C j
c
c
82
83
C
C
IF(NC.EQ.1) GO TO 8002
ADJUST FOR OBSERVER-BASED ALPHA FOR SPECIFIC POINT
F3= S IN( AALPHA( NX) *RAD)
PLUMEP=PLUMEP/F3
PLUMES=PLUMES/F3
PLUMEN= PLUMEN/F3
8002 CONTINUE
BRANCH IF DOING THE OBSERVER-BASED CALCULATION.
IF(NC.EQ.2)GO TO 8100
INITIALIZE AND INCREMENT SCATTERING ANGLE INDEX FOR PLUME-BASED
CASE CALCULATION.
NT=NT1-1
8995 NT=NT+1
ITHETA= NT+1
THETA=TT( ITHETA) ""
8100 CONTINUE
WRITE(6,10)
IF(NC.EQ. 1)WRITE(6,81)(PLANT(J) , J=l,6)
IF( NC. EQ.2)WRITE( 6 , 8t) ( PLANTC J) , J= 1,6)
FORMATCi0X,41HPLUHE VISUAL EFFECTS FOR HORIZONTAL VIEWS,/,10X,
160HPERPENDICULAR TO THE PLUME OF VHITE, GRAY, AND BLACK OBJECTS,/.
210X.56HFOR VARIOUS OBSERVER-PLUME AND OBSERVER-OBJECT DISTANCES,
3//10X.6A4,//)
FORMAT(10X,41HPLUME VISUAL EFFECTS FOR HORIZONTAL VIEWS,/,10X,
146HOF THE PLUME OF WHITE, GRAY, AND BLACK OBJECTS,/,
210K.57HFOR SPECIFIC OBSERVER-PLUME AND OBSERVER-OBJECT DISTANCES,
3//10X.6A4,//)
WRITE(6,52) XKM
BRANCH IF DOING PLUME-BASED CALCULATION
IF(NC.EQ.1)GO TO 84
WRITE( 6,611)OBSPLU( NX)
WRITE( 6,612)AZMUTB( NX)
WRITE(6,613)ABETA( NX)
WRITE(6,614)ZENITH,TIME,IMO,IDAY
ASSIGN SPECIFIC SCATTERING ANGLE AND INDEX FOR SCATTERING ANGLE PHASE
FUNCTIONS.
THETA=TT(NX+7)
ITHETA=7+NX
84 WRITE(6,82)THETA
FORMAT(9H THETA •- ,F5.0)
WRITE(6,83)
FORMAT(/,IX,7HREFLECT,2X,6HRP/RV0,2X.6HRO/RV0,4X,4HYCAP,7X, 1HL, 7X,
11HX.7X,1HY.8H DELYCA?,4X,4T!DELL, 2X,6HC( 550),2X,6HBRAT10,4X,4HDELX,
24X,4HDELY,2X,6HEC LUV),2X,6HE(LAB),/)
LOOP ON REFLECTIVITY OF OBJECT (K=l FOR WHITE, K=2 FOR GRAY, K=3 FOR
Exhibit Brl (Continued)
300
-------
(2353)
(2354)
(2355)
(2356)
(2357)
(2358)
(2359)
(2360)
(2361)
(2362)
(2363)
(2364)
(2365)
(2366)
(2367)
(2368)
(2369)
(2370)
(2371)
(2372)
(2373)
(2374)
(2375)
(2376)
(2377)
(2378)
(2379)
(2380)
(2381)
(2382)
(2383)
(2384)
(2385)
(2386)
(2387)
( 2388)
(2389)
(2390)
( 239 1 )
(2392)
(2393)
(2394)
(2395)
(2396)
(2397)
(2398)
(2399)
(2400)
(2401)
(2402)
(2403)
(2404)
(2405)
(2406)
(2407)
( 2408)
C
c
C
c
c
c
c
c
c
J
c
c
c
c
1
c
c
c
c
c
c
c
c
c
c
8<
c
c
c
8<
t
c
c
BLACK)
DO 8999 K=l,3
XLUMIN=REFL(K)/(2.*PI)
BRANCH IF OBSERVER--BASED CASE
IF(NC.EQ.2)GO TO 86
INITIALIZE AND INCREMENT INDEX FOR OBSERVER TO PLUME DISTANCE
ALONG LINE-OF-SIGHT.
IP=0
8996 IP=IP+1
NRO=7-IP
INITIALIZE AND INCREIIENT INDEX FOR DISTANCE FROM OBSERVER TO
BACKGROUND OBJECT ALONG LIRE-OF-SIGBT.
101 = 0
8997 101=101+1
RP= ROEJ(IP)*RVAMB
IPI01=IP+I01-1
R0= ROBJ(IP101)*RVAMB
RPR=(RP/SY)*1000.
ROR= ( ( RO-RP) /SY) * 1000.
IF(RPR.GT.2. 17.AND.ROR.GT.2. 17)GO TO 8991
IF OBSERVER OR OBJECT BACKGROUND IS WITHIN THE PLUME, CHANGE THE
OBSERVER-TO-PLUME DISTANCE TO BE THE DISTANCE TO THE CENTROID OF
THE AREA UNDER THE GAUSSIAN CURVE FOR THE PLUME BETWEEN THE
OBSERVER AND THE BACKGROUND OBJECT.
CALL PLMIN(RPR,ROR,SY,RP,YINTR)
PLUMP 1 = PLUMEP*YINTR
PLUMS 1 = PLUMES*YINTR
PLUMN1 = FLUMEN*YINTR
CALL ROUTINE TO CALCULATE INTENSITIES FOR OBJECT W/O PLUME
(SPECO) AND WITH PLUME (SPECP).
CALL PLMOBJ(ZEN ITH,BETA,THETA,ITHETA, PLUMP 1.PLUMS 1,PLUMN1,XLUMIN,
1RO,RP,SPECO,SPECP)
GO TO 89
8991 CALL PLMOBJC ZENITH, BETA, THETA, ITHETA, PLUMEP, PLUMES, PLUMEN, XLUMI N,
1RO,RP,SPECO,SPECP)
CALL ROUTINE TO CALCULATE COLORATION PARAMETERS.
CALL CHROMACSPECP,SPECO)
IPIO1=IP+I01-1
WRITE(6,85) REFL(K),ROBJ(IP),ROBJ( IPI01),YCAP,VAL, X, Y, YCAPD,
1VALD, CONT2, BRATIO, XD, YD, DELUV, DELAB
FORMAT(F8.1,4F8.2,2F8.4,2F8.2,6F8.4)
SPECIFY OBJECT DISTANCE, PLUME-OBSERVER DISTANCE, AND SCATTERING ANGLE
Exhibit B-l (Continued)
301
-------
(2409)
(2410)
(2411)
(2412)
(2413)
(2414)
(2415)
(2416)
(2417)
(2418)
(2419)
(2420)
( 242 1 )
(2422)
(2423)
(2424)
(2425)
(2426)
(2427)
( 2428)
(2429)
(2430)
(2431)
(2432)
(2433)
(2434)
(2435)
(2436)
(2437)
( 2438)
(2439)
(2440)
(2441)
(2442)
(2443)
(2444)
(2445)
(2446)
(2447)
(2448)
(2449)
(2450)
(2451)
(2452)
(2453)
(2454)
(2455)
(2456)
(2457)
(2458)
(2459)
(2460)
(2461)
(2462)
(2463)
(2464)
C
C
C
C
C
C
C
C
89 <
C
C
C
C
C
C
C
C
C
C
90
C
C
C
C
C
C
C
C
C
C
C
C
FOR SAVING RESULTS TO BE PLOTTED.
IF( I01.NE.IO1P)GO TO 8990
IF( IP.NE.IPP)GO TO 8990
IF(NT.NE.NTP)GO TO 8990
VISUAL RANGE REDUCTION IS DEFINED FOR CLEAR SKY ONLY.
PLOT1(NX,K+1)=0.
PLOT2( NX,K+1)=BRATIO
PLOTS ( NX,K+1)= CONT2
PLOT4( NX, K+ 1)=DELAB
CHECK IF END OF LOOP ON BACKGROUND OBJECT DISTANCE INDEX.
>0 IF( I01.LT.NRO)GO TO 8997
CHECK IF END OF LOOP ON OBSERVER-PLUME DISTANCE INDEX.
IF(IP.LT.6)GO TO 8996
GO TO 8999
ASSIGN SCATTERING ANGLE.
CONTINUE WITH OBSERVER-BASED CALCULATION.
86 ITHETA=7+NX
THETA=TT(ITHETA)
RP=OBSPLU(NX)
JUMP OUT OF CALCULATION IF OBJECT IS BETWEEN CENTER
OF PLUME AND OBSERVER.
IF( OBSPLU( NX).GT.ROBJT( NX))WRITE( 6,90)
FORMAT( 10X,85HBACKGROUND OBJECT IS BETWEEN OBSERVER AND CENTER OF
1PLUME AND CALCULATION IS STOPPED.)
IF(OBSPLUC NX).GT.ROBJTC NX))GO TO 9000
RPR=(RP/SY)*1000.
ROR= (( ROBJTC NX) -RP) /SY) * 1000.
IF(RPR.GT.2.17.AND.ROR.GT.2.17)GO TO 8992
S,
IF OBSERVER OR OBJECT IS WITHIN THE PLUME, CHANGE THE OBSERVER-TO-
PLUME DISTANCE TO BE THE DISTANCE TO THE CENTROID OF THE AREA UNDER
THE GAUSSIAN CURVE FOR THE PLUME BETWEEN THE OBSERVER AND THE BACK-
GROUND OBJECT.
CALL PLMIN(RPR,ROR,SY,RP,YINTR)
CORRECT FOR VIEWS NOT PERPENDICULAR TO THE PLUME CENTERLINE
RP=RP/S IN( AALPHAC NX) #RAD)
PLUMP 1 = PLUMEP*YINTR
PLUMS 1 = PLUMES*YINTR
PLUMN1 = PLUMEN*YINTR
CALL ROUTINE TO CALCULATE INTENSITIES WITH AND WITHOUT PLUME.
CALL PLMOBJ ( ZENITH,ABETAC NX),THETA,ITHETA,PLUMP1,PLUMS 1,
Exhibit B-l (Continued)
302
-------
(2465)
(2466)
(2467)
(2468)
(2469)
(2470)
(2471)
(2472)
(2473)
(2474)
(2475)
(2476)
(2477)
(2478)
(2479)
(2480)
(2481)
(2482)
(2483)
(2484)
(2485)
(2486)
(2487)
(2488)
(2489)
(2490)
(2491)
(2492)
(2493)
(2494)
(2495)
(2496)
(2497)
(2498)
(2499)
(2500)
(2501)
(2502)
(2503)
(2504)
(2505)
(2506)
(2507)
(2508)
(2509)
(2510)
(2511)
(2512)
(2513)
(2514)
(2515)
(2516)
(2517)
(2518)
(2519)
(2520)
1 PLUHH1, XLUMIN,ROBJTC NX) ,RP,SPEGO,S^ECP)
GO TO 91
8992 CALL PLIIOBJ(ZENITH,ABETA(NX) ,THETA,ITHETA,PLOT1EP,PLUMES,
1 PLUMEN,XLUMIN,ROBJT(NX),RP,SPECO,SPECP)
C
C CALL ROUTINE TO CALCULATE COLORATION PARAMETERS.
C
91 CALL CHROMA(SPECP.SPECO)
C
C SAVE RESULTS FOR PLOTTING.
C
PLTHNX, K+l)=0.
PLT2( NX,K+1)=BRAT10
PLT3( NX, K+l)=CONT2
PLT4(NX,K+1)= DELAB
8998 CONTINUE
RPLMOB=OBSPLU(NX)/RVAMB
RROBJT=ROBJT( NX) /RVAHB
WRITE( 6,85)REFL(K),RPLMOB,RROBJT,YCAP,VAL,X,Y,YCAPD,VALD,
1 CONT2, BRAT 10,13), YD, DELUV, DELAB
8999 CONTINUE
C
C CHECK IF LOOP ON SCATTERING ANGLE FOR PLUME-BASED CASE IS COMPLETED
C
IF(NC.EQ. l.AWD.NT.LT. (NT2-1))GO TO 8995
9000 CONTINUE
9001 CONTINUE
C
C SKIP VISUAL EFFECTS ALONG PLUME IF IFLG4=0
C
IF( IFLG4.EQ.0)GO TO 1301
C
C **********************************************************************
C
C** VISUAL EFFECTS ALONG PLUME *****************************************
C
c ************************************************************
C
C LOOP ON TYPE OF CALCULATION: PLUME-BASED, OBSERVER-BASED, OR BOTH.
C -"
DO 1300 NC=NC1,NC2
C
C LOOP FOR CALC AT FLUKE CL AND AT GROUND.
C
DO 1300 NZ1=1,KZF
NZ=NZ1*3
IF(NZ.EQ.3)Z=H
IF(NZ.EQ.6)Z=0.
C
C BRANCH IF DOING OBSERVER-BASED CALCULATION.
C
IF(NC.EQ.2)GO TO 1002
C
C INITIALIZE AND INCREMENT LOOP FOR SCATTERING ANGLE
NT=NT1-1
Exhibit B-l (Continued)
303
-------
(2521)
(2522)
(2523)
(2524)
(2525)
(2526)
(2527)
( 2528)
(2529)
(2530)
(2531)
(2532)
(2533)
(2534)
(2535)
(2536)
(2537)
(2538)
(2539)
(2540)
(2541)
(2542)
(2543)
(2544)
(2545)
(2546)
(2547)
(2548)
(2549)
(2550)
(2551)
(2552)
(2553)
(2554)
(2555)
(2556)
(2557)
(2558)
(2559)
(2560)
(2561)
(2562)
(2563)
(2564)
(2565)
(2566)
(2567)
(2568)
(2569)
(2570)
(2571)
(2572)
(2573)
(2574)
(2575)
(2576)
1001
1002
1010
C
C Bl
C
C
C A!
C I!
C
1005
1020
1021
C
C B
C
C
C 0
C C
C
C
C D
C
C
C C
C
C
C C
C
NT=NT+1
ITHETA=NT+1
THETA=TT( ITHETA)
CONTINUE
WRITE(6,10)
WRITE(6,1010)(PLANT(J),J=1,6)
1010 FORMATC10X.45HVISUAL EFFECTS FOR LINES OF SIGHT ALONG PLUME//,10X,
1 6A4//>
WRITE(6,52)XKM
BRANCH FOR PLUME-BASED CALCULATION.
IFCNC.EQ. 1)GO TO 1005
WRITE( 6,611)OBSPLU( NX)
WRITE( 6,612) AZMUTH( NX)
WRITE( 6,613) ABETA( NX)
WRITE(6,614)ZENITH,TIME, IMO, IDAY
ASSIGN PLUME-BASED CASE SCATTERING ANGLE AND SCATTERING PHASE FUNCTION
INDEX.
THETA= TT( NX+ 7) ""
ITHETA=7+NX
CONTINUE
WRITE(6,1020)
1020 FORMATC6H THETA,IX,6HLENGTH,IX,6HRP/RV0,4X,2HRV,2X,8H%REDUCED,4X,
1 4HYCAP,7X,1HL,7X,1HX.7X,1HY.8H DELYCAP.4X,4HDELL,2X,6HC(550),2X,
2 6HBRATIO,4X,4HDELX,4X,4HDELY,2X,6HE(LUV),2X,6HE( LAB))
CONTINUE
WRITE(6,66)THETA
BRANCH IF DOING PLUME-BASED CASE CALCULATION
IF(NC.Eft. DGO TO 1008
OBLIQUE ANGLE CALCULATIONS FOR SPECIFIC CASE
CONCENTRATIONS FOR PRIMARY PARTICIPATE, S04, AND N02
CPAVE=XPARTP( NX,NZ)
CSAVE=XPARTS( NX,NZ)
CNAVE= XN021(NX,NZ)
DISTANCE WITHIN PLUME
XALONG = ( (SY/1000. ) #SQRT( P 1*2.) ) /(SIN( AALPHA( NX) *RAD))
XLONG2= XALONG/2.
CHECK IF OBSERVER IN PLUME, IF YES , MODIFY XALONG
IF( OBSPLUC NX).LT.XLONG2)XALONG=OBSPLU(NX)+XLOHG2
CALCULATIONS FOR CLEAR SKY AND THREE BACKGROUND REFLECTANCES.
ALONG=OBSPLU( NX)-XLONG2
IF(ALONG.LT.0.0)ALONG=0.0
DO 1009 K=l,4
Exhibit RT1 (Continued)
304
-------
(2577)
( 2578)
(2579)
(2580)
(2581)
(2582)
(2583)
(2584)
(2585)
(2586)
(2587)
(2588)
(2589)
(2590)
(2591)
(2592)
(2593)
(2594)
(2595)
(2596)
(2597)
(2598)
(2599)
(2600)
(2601)
(2602)
(2603)
(2604)
(2605)
(2606)
(2607)
(2608)
(2609)
(2610)
( 26 1 1 )
(2612)
(2613)
(2614)
(2615)
(2616)
(2617)
(2618)
(2619)
(2620)
(2621)
(2622)
(2623)
(2624)
(2625)
(2626)
(2627)
( 2628)
(2629)
(2630)
(2631)
(2632)
C
C
C
C
C
C
C
C
C
10
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
96
97
C
C
C
G
K=l FOR CLEAR SKY, K=2 FOR WHITE OBJECTS, K=3 FOR GRAY OBJECTS,
K=4 FOR BLACK OBJECTS.
BRANCH IF K > 1
IF(K.GT. 1)GO TO 1025
BACKGROUND CLEAR SKY CASE
CALL ROUTINE TO DEFINE BACKGROUND SKY INTENSITY WITHOUT PLUME
CALL BACCLN(ZENITH,0.,THETA,ITHETA,SPECB)
GO TO 1026
25 CONTINUE
CALCULATION FOR BACKGROUND OBJECT.
DISTANCE CALULATIONS ARE THE SAME FOR K = 2, 3, 4.
IF(ROBJT(NX) .LE.0.0)GO TO 1009
XLUMIN=REFL(K-1)/(2.*PI)
DISTANCE CALCULATIONS DONE ONCE FOR K=2 / SKIP AROUND FOR K =3,4
IF(K.GT.2)GO TO 95
DISTANCE FROM OBJECT TO BACK SIDE OF PLUME
RO=ROBJT( NX) -( OBSPLU( NX) +XLONG2)
RESET RO IF OBJECT IS WITHIN BACK SIDE OF PLUME
IF( ( ROBJT(NX)-OBSPLU(NX)).LT.XLONG2)R0=0.
XALONG IS THE DISTANCE THAT THE LINE OF SIGHT IS WITHIN PLUME.
RECALCULATE XALONG IF OBJECT IS WITHIN BACK SIDE OF PLUME AND
OBSERVER IS OUTSIDE PLUME.
IF( ( ROBJT(NX) -OBSPLU(NX) ).LT.XLONG2)XALONG= XLONG2+ ( ROBJT( NX)-
1 OBSPLU(NX))
ADJUSTMENT IF BOTH OBJECT AND OBSERVER ARE IN FRONT OF PLUME.
IF(OBSPLU(NX) .LT.XLONG2)GO TO 97
IF( ROBJT(NX).LT.(OBSPLUi NX)-XLONG2))GO TO 96
GO TO 97
XALONG=0.
R0=0.
ALONG=ROBJT(NX)
CONTINUE
ADJUSTMENT IF BOTH OBSERVER AND BACKGROUND OBJECT ARE WITHIN FRONT
SIDE OF PLUME
IF( ROBJT( NX) . GT. OBSPLU( NX) ) GO TO 98
IF(OBSPLU(NX).GT.XLONG2)GO TO 98
XALONG=ROBJT( NX)
Exhibit B-l (Continued)
305
-------
(2633)
(2634)
(2635)
(2636)
(2637)
( 2638)
(2639)
(2640)
(2641)
(2642)
(2643)
(2644)
(2645)
(2646)
(2647)
(2648)
(2649)
(2650)
(2651)
(2652)
(2653)
(2654)
(2655)
(2656)
(2657)
(2658)
(2659)
(2660)
(2661)
(2662)
(2663)
(2664)
(2665)
(2666)
(2667)
(2668)
(2669)
(2670)
(2671)
(2672)
(2673)
( 2674)
(2675)
(2676)
(2677)
(2678)
(2679)
(2680)
(2681)
(2682)
(2683)
(2684)
(2685)
(2686)
( 2687)
( 2688)
98
C
C A
C *
C
104
C
C AI
C BE
C
102
C
C At
C W)
C
103
95
C
C C^
C AI
C
1026
C
C Sr
C
1027
C
C
C
C
C
C 11
ALONG=0.
R0=0.
CONTINUE
ADJUSTMENT IF OBSERVER IS OUTSIDE PLUME AND BACKGROUND OBJECT IS
WITHIN FRONT SIDE OF PLUME.
IF ( ROBJT( NX).GT.OBSPLU( NX))GO TO 104
IF(ROBJT(NX).LT.(OBSPLU(NX)-XLONG2))GO TO 104
IF((OBSPLU(NX)-XLONG2).LE.0.)GO TO 104
R0=0.
XALONG=ROBJT(NX)-(OBSPLU(NX)-XLONG2)
ALONG= OBSPLU(NX)-XLONG2
CONTINUE
ADJUSTMENT FOR OBSERVER WITHIN FRONT SIDE OF PLUME AND OBJECT
BEHIND PLUME.
IF(OBSPLU(NX).GT.XLONG2)GO TO 102
IF( ROBJT( NX).LT.( OBSPLUC NX)+XLONG2))GO TO 102
XALONG= XLONG2+OBSPLWNX)
R0= ROB JT( NX) - ( OBSPLUC NX) +XLONG2)
ALONG=0.
CONTINUE
ADJUSTMENT FOR OBSERVER WITHIN FRONT SIDE OF PLUME AND OBJECT
WITHIN BACK SIDE OF PLUME.
IFCOBSPLU(NX) .GT.XLONG2)GO TO 103
IF( ROBJTC NX).LT.OBSPLUC NX))GO TO 103
IF( UOBJT( NX).GT. ( OBSPLU< NX)+XLONG2))GO TO 103
R0=0.
ALONG=0.
XALONG=ROBJT(NX)
CONTINUE
CONTINUE v^
CALL ROUTINE TO CALCULATE INTENSITY FOR BACKGROUND OBJECT
AT BACK SIDE OF PLUME.
CALL BACOBJ(ZENITH,0.,THETA,ITHETA,RO,SPECB,XLUMIN)
CONTINUE
STORE BACKGROUND INTENSITIES AT BACK SIDE OF PLUME IN SPECP ARRAY.
DO 1027 1=1,39
SPECP(I)=SPECB( I)
CONTINUE
INTENSITY FOR PLUME SEGMENT(LINE OF SIGHT FOR SPECIFIC CASE, NOT
NECESSARILY ON PLUME CENTERLINE.
CALL PLMAXC ZENITH,THETA,ITHETA,CPAVE,CSAVE,CNAVE,XALONG,SPECP,
1 SPECB)
INTENSITY CHANGE FOR BACKGROUND AIR BETWEEN PLUME AND OBSERVER
Exhibit B-l (Continued)
306
-------
(2689)
(2690)
(2691)
(2692)
(2693)
(2694)
(2695)
(2696)
(2697)
(2698)
(2699)
(2700)
(2701)
(2702)
(2703)
(2704)
(2705)
(2706)
(2707)
( 2708)
(2709)
(2710)
(2711)
(2712)
(2713)
(2714)
(2715)
(2716)
(2717)
(2718)
(2719)
(2720)
( 272 1 )
( 2722)
(2723)
(2724)
(2725)
(2726)
(2727)
( 2728)
(2729)
(2730)
(2731)
(2732)
(2733)
(2734)
(2735)
(2736)
(2737)
( 2738)
(2739)
(2740)
(2741)
(2742)
(2743)
(2744)
C
C
C C
C
C
C 0
C
C
C 0
C
-
C
C C
C
C
C R
C
1006
1007
47
74
76
77
1009
C
C EN]
C
1008
G
C P]
C 11
C
C
C LI
C LI
C
CALL PLMAX(ZENITH,THETA,ITHETA,0.,0.,0.,ALONG,SPECP,SPECB)
CALL ROUTINE TO CALCULATE COLORATION PARAMETERS
CALL CHROMA( SPECP,SPECB)
OPTICAL DEPTH BETWEEN OBSERVER AND PLUME
TAUTOT^ BTABAC(19)*ALONG
TAU1=TAUTOT
OPTICAL DEPTH DUE TO PLUME PRIMARY PARTICIPATE AND S04
TAUTOT= TAUTOT+XALONG*(CPAVE*BTAPRM( 19)+CSAVE*BTASO4( 19) +
1 BTABAC(19)+CNAVE*ABSN02(19))+ALOG( CONT2+1.)
CHECK IF OPTICAL DEPTH .GT. VISUAL RANGE LIMIT
IF(TAUTOT.GT.3.912)GO TO 1006
REDUCTION IN VISUAL RANGE
DELRV=(3.912-TAUTOT)/BTABAC ( 19)
RV= XALONG+ ALONG+ DELRV
GO TO 1007
DELRV=(3.912-TAU)/(TAUTOT-TAU1)
RV=ALONG+DELRV
REDRV=((RVAMB-RV)/RVAMB)* 100.
RR= OBSPLU(NX)/RVAMB
IF( K.EQ.1)WRITE( 6,47)
FORMAT(5X,19HFOR SKY BACKGROUND:)
IF( K. EQ. 2) WRITE( 6 , 74)
FORMAT(5X,21HFOR WHITE BACKGROUND:)
IF( K. EQ. 3) WRITE( 6 , 76)
FORMAT( 5X, 20HFOR GRAY BACKGROUND:)
IF( K. EQ. 4) WRITE( 6 , 77)
FORMAT(5X,21HFOR BLACK BACKGROUND:)
WRITE( 6,674 XALONG, RR, RV, REDRV, YCAP, VAL, X, Y, YCAPD, VALD, CONT2,
1 BRATIO,XD,YD,DELUV,DELAB
CONTINUE
C END OF CALCULATIONS FOR NC=2
GO^TO 1300
CONTINUE
PLUME-BASED CALCULATIONS FOR PLUME CENTERLINE.
NXEND=NX-1
IF NX=1, SKIP OVER CALCULATION
IF(NXEND.EQ.0)GO TO 1300
LOOP ON NUMBER OF PLUME SEGMENTS
LOOP ON PLUME SIGMENTS THAT CAN BE IN OBSERVER'S LINE-OF-SIGHT
Exhibit B.-l (Continued)
307
-------
(2745)
(2746)
(2747)
( 2748)
(2749)
(2750)
(2751)
(2752)
(2753)
(2754)
(2755)
(2756)
(2757)
(2758)
(2759)
(2760)
( 276 1 )
(2762)
(2763)
(2764)
(2765)
(2766)
(2767)
(2768)
(2769)
(2770)
( 277 1 )
( 2772)
( 2773)
(2774)
(2775)
(2776)
(2777)
( 2778)
(2779)
(2780)
(2781)
(2782)
( 2783)
( 2784)
(2785)
(2786)
( 2787)
( 2788)
(2789)
(2790)
(2791)
( 2792)
( 2793)
(2794)
(2795)
(2796)
(2797)
(2798)
(2799)
(2800)
C
C
C
C
a
W]
1022
C
C
C
C
C
C
C
C
C
C
C
C
1
C
C
C
C
C
C
C
C
C
C
1
1
1
1
C
C
C
L<
us
D
Cl
100
Nl
Ri
B
D
111
112
110
115
C
DO 1200 NXIN=1,NXEND
NXX1=NX-NXIN
CALL ROUTINE TO CALCULATE INTENSITIES FOR BACKGROUND SKY
WITHOUT PLUME.
CALL BACCLN(ZENITH,0.,THETA,ITHETA,SPECB)
DO 1022 1=1,39
SPECP(I)=SPECB(I)
LOOP ON PLUME SEGMENTS BETWEEN DISTANCE NX AND FIRST POINT.
DO 1100 NXX=NXX1,NXEND
USE MEANS OF END POINTS OF SEGMENTS TO DEFINE CONCENTRATIONS
CPAVE= (XPARTP( NXX,NZ)+XPARTP(NXX+1,NZ))/2.
CSAVE= ( XPARTS( NXX,NZ)+XPARTS( NXX+1,NZ))/2.
CNAVE= ( XN021 ( NXX,NZ)+XN021 ( NXX+1,NZ))/2.
DISTANCE WITHIN PLUME IN KILOMETERS.
XALONG= ( DIST( NXX+1) -DIST( NXX) ) /1000.
CHANGE INTENSITY FOR EACH SEGMENT OF PLUME ( 1 POINT TO THE NEXT).
CALL PLMAX(ZENITH,THETA,ITHETA,CPAVE,CSAVE,CNAVE,XALONG,SPECP,
1 SPECB)
CONTINUE
NESTED LOOP FOR VARIOUS OBSERVER-TO-PLUME-SEGMENT DISTANCES.
DO 1200 NROBJ=1,7
NR1=NROBJ-1
XALONG=0.
ROBJ NOT DEFINED FOR INDEX .LT. 1, THEREFORE NO INPUT BY AIRLIGHT
BETWEEN PLUME AND OBSERVER.
IF(NROBJ.EQ.1)GO TO 1115
IF(NROBJ.EQ.2)GO TO 1111
GO TO 1112
DISTANCE OF LINE-OF-SIGHT FROM OBSERVER TO PLUME SEGMENT.
XALONG= ROBJ(NR1)*RVAMB
GO TO 1110
CONTINUE
XALONG= ( ROBJ( NR1)-ROBJ( NR1-1))*RVAMB
1110 CALL PLMAX(ZENITH,THETA,ITHETA,0.,0.,0.,XALONG,SPECP,SPECB)
CONTINUE
CALCULATE COLORATION PARAMETERS
CALL CHROMA( SPECP,SPECB)
IF(NROBJ.EQ. DGO TO 1116
Exhibit B-l (Continued)
308
-------
(2801)
(2802)
(2803)
(2804)
(2805)
(2806)
(2807)
( 2808)
(2809)
(2810)
(2811)
(2812)
(2813)
(2814)
(2815)
(2816)
(2817)
(2818)
(2819)
(2820)
(2821)
(2822)
(2823)
(2824)
(2825)
(2826)
(2827)
( 2828)
(2829)
(2830)
(2831)
( 2832)
( 2833)
(2834)
(2835)
(2836)
(2837)
( 2838)
(2839)
(2840)
(2841)
(2842)
(2843)
( 2844)
(2845)
(2846)
(2847)
( 2848)
(2849)
(2850)
(2851)
( 2852)
(2853)
(2854)
(2855)
(2856)
1
1
C
C
C
1
C
C
C
1
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
1
GO TO 1117
1116 TAUTOT=0.
GO TO 1118
1117 CONTINUE
OPTICAL DEPTH DUE TO AMBIENT BACKGROUND AIR
TAUTOT= BTABAC (19) *RVAMB*ROBJ ( NR1)
1118 NXX=0
NESTED LOOP ON DISTANCE WITHIN PLUME TO DETERMINE VISUAL RANGE.
1120 NXX=NXX+1
TAUT1=TAUTOT
DISTANCE WITHIN PLUME SEGMENT
NXDIFF=NX-NXX
XALONG=(DIST(NXDIFF+1)-DIST(NXDIFF))/1000.
ADD OPTICAL DEPTH FOR PRIMARY PARTICULATE
TAUTOT= TAUTOT+XALONG*BTAPRM( 19) * ( XPARTP(NXDIFF+1, NZ) +XPARTP(NXDI
lFF,NZ))/2.
ADD OPTICAL DEPTH FOR S04
TAUTOT= TAUTOT+XALONG*BTASO4( 19) *( XPARTSC NXDIFF+1, NZ) +XPARTSC NXD I
lFF,NZ))/2.
ADD OPTICAL DEPTH FOR N02 ABSORPTION.
TAUTOT= TAUTOT+XALONG*ABSN02 ( 19 ) * ( XNO21 (NXD IFF+ 1, NZ) +XNO21 ( NXD IFF,
1NZ))/2.+ALOG( CONT2+1.)
ADD OPTICAL DEPTH FOR BACKGROUND AIR IN PLUME
TAUTOT=TAUTOT+XALONG*BTABAC( 19)
STOP CALCULATION IF VISUAL RANGE EXCEEDED
IF(TAUTOT.GT.3.912)GO TO 1160
IF(NXX.LT.NXIN)GO TO 1120
DETERMINE DISTANCE FROM BACKSIDE OF PLUME TO VISUAL RANGE LIMIT
DELRV=(3.912-TAUTOT)/BTABAC( 19)
CALCULATE VISUAL RANGE
IFCNROBJ.GT. 1)GO TO 1130
RV= ( DIST(NX)-DISTCNXX1))/1000.+DELRV
GO TO 1170
1130 CONTINUE
RV=ROBJ(NR1)*RVAMB+(DIST(NX)-DIST( NXX1))/1000.+DELRV
GO TO 1170
Exhibit B-l (Continued)
309
-------
(2857)
(2858)
(2859)
(2860)
(2861)
(2862)
(2863)
( 2864)
(2865)
(2866)
(2867)
(2868)
(2869)
(2870)
(2871)
(2872)
(2873)
(2874)
(2875)
(2876)
(2877)
( 2878)
(2879)
(2880)
(2881)
(2882)
(2883)
(2884)
(2885)
(2886)
(2887)
( 2888)
(2889)
(2890)
(2891)
(2892)
(2893)
(2894)
(2895)
(2896)
(2897)
(2898)
(2899)
(2900)
(2901)
(2902)
(2903)
( 2904)
(2905)
(2906)
( 2907)
(2908)
(2909)
(2910)
(2911)
(2912)
11
C
C
C
1]
i:
c
C
c
c
G
C
1
1
1!
C
G
C
G
11
i:
G
C
C
3
3
3
3
1180
.0 CONTINUE
INTERPOLATE INTO PLUME TO GET VISUAL RANGE
DELRV= (3.912-TAUT1)/(TAUTOT-TAUT1) *XALONG
IF(NROBJ.GT. 1)GO TO 1165
RV=(DIST(NX) -DIST(NX+1-NXX))/1000.+DELRV
GO TO 1170
>5 CONTINUE
RV=ROBJ( NR1)*RVAMB+( DIST( NX) -DIST( NX+ 1-NXX) ) /1000. +DELRV
T0 CONTINUE
REDUCTION IN VISUAL RANGE
REDRV=((RVAMB-RV)/RVAMB)*100.
DISTANCE WITHIN PLUME
ALONG= ( DIST( NX) -DIST( NXX1) ) /1000.
IF(NROBJ.GT. DGO TO 1180
RR=0.
GO TO 1190
RR=ROBJ(NR1)
1190 WRITE( 6,67)ALONG,RR,RV,REDRV,YCAP,VAL,X,Y,YCAPD,VALD,CONT2
1,BRATIO, XD,YD,DELUV,DELAB
1200 CONTINUE
CHECK IF AT END OF LOOP ON INDEX FOR SCATTERING ANGLES FOR
THE PLUME-BASED CASE CALCULATIONS.
IF(NT.LT.(NT2-1))GO TO 1001
1300 CONTINUE
1301 CONTINUE
1000 CONTINUE
PRINT THE S04 AND N03 FORMATION RATES FOR EACH PLUME PARCEL AT X,Z,T.
DO 30020 NT=1,NX2 ^
WRITE(6,10)
XKM= DIST( NT)/1000.
WRITE( 6,30010) XKM
30010 FORMAT(47H HISTORY OF PLUME PARCEL AT DOWNWIND DISTANCE =,F6.1,
1 3H KM,//)
WRITE(6,30011)
30011 FORMAT( 4X,6HPARCEL,5X, 5HLOCAL,5X,2X,
1 34HS02-TO-S04= CONVERSION RATE (%/HR) ,5X,2X,
1 34HNOX-TO-HNO3 CONVERSION RATE (?S/BR)>
WRITE(6,30012) (ALT(NZ),NZ=1,6),(ALT(NZ),NZ=1,6)
30012 FORMAT(6X,3HAGE,7X,4HTIME,/,6X,4H(HR),10X,5X,6(2X,A4),5X,6(2X,A4),
1 /)
DO 30020 NX=1,NT
DTIME=( ( DIST( NT)-DIST( NX))/U)/3600.
TIMER=TIMEHR-DTIME
30013 IF(TIMER.GT.0.)GO TO 30014
TIMER=TIMER+24.
GO TO 30013
Exhibit B-l (Continued)
310
-------
C2913)
C2914)
C2915)
C2916)
C2917)
C2918)
C2919)
C2920)
C2921)
C2922)
C2923)
C2924)
C2925)
C2926)
C2927)
C 2928)
C2929)
C2930)
C2931)
C2932)
C2933)
C2934)
C2935)
C2936)
C2937)
C2938)
C2939)
C2940)
C2941)
C2942)
C2943)
C2944)
C2945)
C2946)
C 2947)
C 2948)
C2949)
C2950)
C2951)
C2952)
C2953)
C2954)
C2955)
C2956)
C2957)
C2958)
C2959)
C2960)
C2961)
C2962)
C2963)
C2964)
C2965)
(2966)
C2967)
(2968)
30014
30015
30020
50018
50001
C
C WR
C RE!
C IN
C SK
C BA(
C ZE1
C CO]
C
50002
50003
50004
50005
50006
50007
50008
50009
50010
50011
50012
50013
50014
CONTINUE
ITIMER=INT(TIMER)* 100+INT( AMOD( TIMER,1.)*60.)
PLMAGE= ( DIST( NX) /U) /3600.
WRITEC6,30015) PLMAGE,ITIMER, C RSO2RCNX, NZ.NT),NZ=1,6),
1 (RNOXR(NX,NZ,NT) ,NZ=1,6)
FORMATC5X,F5.1,6X,14,2(5X.6F6 . 2))
CONTINUE
DO 50018 NX=1,16
DIST(NX)=DIST(NX)/1000.
WRITEC6,50001)
FORMAT(1H1,55X,22HPLOT FILE VERIFICATION)
IF(NC2.NE.2)GO TO 30025
TE OUT THE VISUAL IMPACT PARAMETERS FOR PLOTTING OF THE
ULTS OF OBSERVER-BASED CALCULATIONS. PLT1 IS PERCENT REDUCTION
VISUAL RANGE, FOR THE 16 DOWNWIND POINTS.NN=1 FOR CLEAR
' BACKGROUND. NN=2 FOR WHITE BACKGROUND. HN=3 FOR GRAY
BACKGROUND. NN=4 FOR BLACK BACKGROUND. PLT1 IS SET TO
FOR NN=2,3,4. PLT2 BLUE-RED RATIO. PLT3 PLUME
AST AT 0.55 MICROMETER. PLT4 DELTA E(LAB).
16),NN=1,4)
16),NN=1,4)
16),NN=1,4)
16),NN=1,4)
WRITEC 7)((PLT1(NX,NN),NX=1
WRITE(7)((PLT2(NX,NN),NX=1
WRITE(7)((PLT3(NX,NN),NX=1
WRITEC 7)((PLT4(NX,NN) , NX=1
WRITE(6,50002)
FORMATC1H0,56X, 19HOBSERVER-BASED DATA)
WRITEC6,50003)
FORMATC1H0,5X,14HSKY BACKGROUND)
WRITEC 6,50004)C NN,NN=NX1,NX2)
FORMATC 1H0,9X,2HNX,7X, 16C5X, 12))
WRITEC6,50005)CDISTCNX) ,NX=NX1,NX2)
FORMATC1H0,3X,13HDISTANCE CKM),2X,16(3X,F4 .0))
WRITEC6,50006)
FORMATC1H0,IX,19HREDUCTION OF VISUAL)
WRITEC6,50007)CPLT1CNX,1),NX=NX1,NX2)
FORMATC 1H ,5X,9HRANGE (%),6X»16( 1X,F6.3))
WRITEC6,50008)
FORMATC1H0.2X,14HBLUE-RED RATIO)
WRITEC 6,50009MPLT2C NX, 1) ,NX=NX1,NX2)
FORMATC tH ,20X,16C1X.F6.3))
WRITEC6,50010)
FORMATC1H0.2X, 17HPLUME CONTRAST AT)
WRITEC6.5001DCPLT3CNX, 1) ,NX=NX1,NX2)
FORMATC1H ,5X, 12H0.55 MICRONS,3X,16C1X,F6.3))
WRITEC6,50012)
FORMATC1H0.20HPLUME PERCEPTIBILITY)
WRITEC6.50013MPLT4CNX, 1),NX=1,NX2)
FORMATC1H ,3X,15HDELTA ECL*A*B*),2X,16C1X.F6.3))
WRITEC6,50014)
FORMATC/,1H0.3X, 16HWHITE BACKGROUND)
WRITEC 6,50004)C NN,NN=NX1,NX2)
WRITEC6,50005)CDISTCNX),NX=NX1,NX2)
WRITEC6,50006)
WRITEC 6,50007)C PLT1C NX,2),NX=NX1,NX2)
WRITEC6,50008)
Exhibit B-l (Continued)
311
-------
(2969)
(2970)
(2971)
(2972)
(2973)
(2974)
(2975)
(2976)
(2977)
(2978)
(2979)
(2980)
(2981)
(2982)
(2983)
(2984)
(2985)
(2986)
(2987)
(2988)
(2989)
(2990)
(2991)
(2992)
(2993)
(2994)
(2995)
(2996)
(2997)
(2998)
(2999)
(3000)
(3001)
(3002)
(3003)
(3004)
(3005)
(3006)
(3007)
(3008)
(3009)
(3010)
(3011)
(3012)
(3013)
(3014)
(3015)
(3016)
(3017)
(3018)
(3019)
(3020)
(3021)
(3022)
(3023)
(3024)
WRITE( 6,50009) ( PLT2( NX,2),NX=NX1,NX2)
WRITE(6,50010)
WRITE(6,50011) ( PLT3( NX,2),NX= NX1,NX2)
WRITE(6,50012)
WRITE(6,50013)(PLT4( NX,2),NX=NX1,NX2)
WRITE(6,50015)
50015 FORMAT(/,1H0.4X,15HGRAY BACKGROUND)
WRITE(6,50004)(NN,NN=NX1,NX2)
WRITE(6,50005)(DIST(NX),NX=NX1,NX2)
WRITE(6,50006)
WRITE(6,50007)(PLT1 ( NX,3),NX=NX1,NX2)
WRITE(6,50008)
WRITE(6,50009)(PLT2(NX,3),NX=NX1,NX2)
WRITE(6,50010)
WRITE(6,50011)(PLT3(NX,3),NX=NX1,NX2)
WRITE(6,50012)
WRITE( 6,50013) (PLT4( NX,3),NX=NX1,NX2)
WRITE(6,50016)
50016 FORMAT(1H1,3X,16HBLACK BACKGROUND)
WRITE( 6,50004) ( NN, NN=NX1, NX2)
WRITE(6,50005) ( DIST( NX),NX=NX1,NX2)
WRITE (6,50006)
WRITE( 6,50007) ( PLT1 (-NX, 4) , NX=NX1, NX2)
WRITE(6,50008)
WRITE(6,50009)(PLT2(NX,4),NX=NX1,NX2)
WRITE(6,50010)
WRITE(6,50011)(PLT3(NX,4),NX=NX1,NX2)
WRITE(6,50012)
WRITE(6,50013) ( PLT4( NX,4),NX=NX1,NX2)
IF(NC1.NE. DGO TO 30030
C
C
C
C
C
C
C
30025
VISUAL IMPACT PARAMETERS FOR PLOTTING OF THE RESULTS OF
THE PLUME-BASED CALCULATIONS WITH THE DESIRED SCATTERING ANGLE
DISTANCES, AND PLUME-OBSERVER^GEOMETRY AS SPECIFIED IN THE
PLUME-BASED CALCULATIONS FOR CLEAR SKY AND WHITE, GRAY, AND
BLACK BACKGROUNDS.
CONTINUE
WRITE(8)((PLOT1(NX,NN),NX=1,16),NN=1,4)
WRITE(8)((PLOT2(NX,NN),NX=1,16),NN=1,4)
WRITE(8)((PLOT3(NX,NN),NX=1,16),NN=1,4)
WRITE(8)((PLOT4(NX,NN),NX=1,16),NN=1,4)
IFCNC2.NE.1)WRITE(6,50001)
WRITE(6,50017)
50017 FORMAT(1H0.57X,16HPLUME-BASED DATA)
WRITE(6,50003)
WRITE(6,50004)(NN,NN=NX1,NX2)
WRITE(6,50005)(DIST(NX),NX=NX1,NX2)
WRITE (6,50006)
WRITE( 6,50007)(PLOT1(NX,1),NX=NX1,NX2)
WRITE(6,50008)
WRITE(6,50009)(PLOT2(NX,1),NX=NX1,NX2)
WRITE(6,50010)
WRITE(6,50011)(PLOT3(NX,1),NX=NX1,NX2)
WRITE(6,50012)
WRITE(6,50013)(PLOT4(NX, 1),NX=NX1,NX2)
Exhibit B-l (Continued)
312
-------
(3025) WRITE(6,50014)
(3026) VRITE(6,50004)
(3027) VRITE(6,50005)
(3028) tfRITE(6,50006)
(3029) WRITE(6,50007)
(3030) WRITE(6,50008)
(3031) WRITE(6,50009)
(3032) VRITE(6,50010)
(3033) VRITE(6,50011)
(3034) VRITE(6,50012)
(3035) 1VRITE(6,50013)
(3036) WRITE(6,50015)
(3037) VRITE<6,50004)
(3038) ViRITE(6,50005)
(3039) WRITE(6,50006)
(3040) WRITE(6,50007)
(3041) T7RITE(6,500©8)
(3042) WIITE(6,50009)
(3043) WRITE(6,50010)
(3044) WRITE(6,50011)
(3045) \miTE(6,50012)
(3046) WRITE(6,50013)
(3047) VRITE(6,50016)
(3048) WRITE(6,50004)
(3049) WRITE(6,50005)
(3050) WRITE(6,50006)
(3051) WRITE(6,50007)
(3052) WRITE(6,5Q003)
(3053) WRITE(6,5G009)
(3054) VRITE(6,50010)
(3055) WRITE(6,50011)
(3056) VRITE(6,50012)
(3057) WRITE(6,50013)
(3058) 30030 CONTINUE
(3059) ENDFILE 7
(3060) ENDFILE 8
(3061) STOP
(3062) END
(NN,NN=NX1,NX2)
( DI ST( NX) , NX= NX1, NX2)
(PLOT1(NX,2),NX=NX1,NX2)
(PLOT2(NX,2),NX=NX1,NX2)
(PLOT3(NX,2) ,NX=NX1,NX2)
(PLOT4(RX,2),NX=NX1,NX2)
(NN,NN=NX1,NX2)
(DIST(NX) ,NX=NX1,NX2)
(PLOTKNX.3) ,NX=NX1,NX2)
(PLOT2(KX,3),NX=NX1,NX2)
( PLOT3( NX,3),NX=NX1,NX2)
(PLOT4(NX,3),NX=NX1,NX2)
(NN,NN=NX1,NX2)
(DIST(NX),NX=NX1,NX2)
(PLOT1(NX,4),NX=NX1,NX2)
(PLOT2(NX,4),NX=NX1,NX2)
(PLOT3(NX,4),NX=NX1,NX2)
(PLOT4(NX,4),NX=NX1,NX2)
BLOCK DATA
(3063)
(3064)
(3065)
(3066)
(3067)
(3068)
(3069)
(3070)
(3071)
(3072)
(3073)
(3074)
(3075)
(3076)
(3077)
(3078)
(3079)
(3080)
(3081)
(3082)
(3083)
(3084)
(3085)
(3086)
(3087)
(3088)
(3089)
(3090)
(3091)
(3092)
(3093)
(3094)
(3095)
(3096)
(3097)
(3098)
(3099)
(3100)
(3101)
DATA ABSN02 /I.58,
1 1.36,
2 0.46, 0.39,
3
4
BLOCK DATA
COMMON/MIESCT/ROG,SIGMA,NLAMB,LAMB(20) , JX, IT,TT(200) ,DUM(20) ,
1PDUM(20,200)
COMMON/ MISC/ ABSNO2O9) ,SOLAR(39) , RAD, FORPIN,OMZ(39) ,OMH(39)
1,NTHETA
COMMON,'COLOR/YCAP, VAL, X, Y, YCAPD, VALD, XD, YD, DELUV, DELAB,
1XBAR(39),YBAR(39),ZBAR(39),PI.CONT1,CONT2,CONT3,BRATIO
REAL LAMB
DATA LAMB / 0.35,0.40,0.45,0.50,0.55,0. 60,0.65,0.70,0.75,11*0.0/
DATA TT /0.,22.,45.,90.,135.,158.,180.,193*0./
DATA NLAMB / 9 /
DATA NTHETA / 7 /
1.63,1.67,1.71,1.67, 1.63, 1.54, 1.45,
1.17, 1.06, 0.92, 0.80, 0.69, 0.61, 0.54,
1.31, 0.26, 0.21, 0.18, 0.15, 0.12, 0.1,
0.080, 0.063, 0.053, 0.041, 0.035, 0.029, 0.024,
0.021, 0.017, 0.014, 0.010, 0.0068, 0.0034,0./
DATA SOLAR/ 1163., 1124., 1121., 1423.,
1 1801., 1998., 2059., 2040., 2042., 1959.
2 1839., 1785., 1731., 1704., 1712., 1716.
3 1602., 1570., 1544., 1511., 1466., 1456.,
4 1344., 1314., 1290.,1260., 1235. /
DATA XBAR / 0.0000, 0.0014, 0.0042, 0.0143, 0.0435, 0.1344,
1 0.2839, 0.3483, 0.3362, 0.2908, 0.1954, 0.0956, 0.0320,
2 0.0049, 0.0093, 0.0633, 0.1655, 0.2904, 0.4334, 0.5945, 0.7621,
3 0.9163, 1.0263, 1.0622, 1.0026, 0.8544, 0.6424, 0.4479, 0.2835,
4 0.1649, 0.0874, 0.0468, 0.0227, 0.0114, 0.0058, 0.0029, 0.0014,
5 0.0007, 0.0003 /
DATA YEAR / 0.0000, 0.0000, 0.0001, 0.0004, 0.0012, 0.0040,
1 0.0116, 0.0230, 0.0380, 0.0600,0.0910, 0.1390, 0.2080, 0.3230,
2 0.5030, 0.7100, 0.8620, 0.9540, 0.9950, 0.9950, 0.9520, 0.8700,
3 0.7570,0.6310, 0.5030, 0.3810, 0.2650, 0.1750, 0.1070, 0.0610,
4 0.0320, 0.0170, 0.0082, 0.0041, 0.0021, 0.0010, 0.0005, 0.0002,
5 0.0001 /
DATA ZBAR / 0.0000, 0.0065, 0.0201, 0.0679, 0.2074, 0.6456,
1 1.3856, 1.7471, 1.7721, 1.6692, 1.2876, 0.8130, 0.4652, 0.2720,
2 0.1582, 0.0782, 0.0422, 0.0203, 0.0087, 0.0039, 0.0021, 0.0017,
3 0.0011, 0.0008, 0.0003, 0.0002, 13*0.0000 /
END
1730., 1740., 1659.,
1941. ,
1699. ,
1427. ,
1879. .
1640. ,
1402. ,
1838. ,
1635. ,
1369. ,
313
-------
FUNCTION ERF(XX)
(3102)
(3103)
(3104)
(3105)
(3106)
(3107)
(3108)
(3109)
(3110)
(3111)
(3112)
(3113)
(3114)
(3115)
(3116)
(3117)
(3118)
(3119)
(3120)
C
C
C
C
C
FUNCTION ERF(XX)
ERF=2/SQRT(PI)*INTEGRAL OF EXP(-T*T) FROM 0 TO X.
USING AN APPROXIMATION DUE TO HASTINGS GOOD TO SEVEN SI
USING AN APPROXIMATION DUE TO HASTINGS. ABSOLUTE ERROR ABOUT 3E-7
DIMENSION A(6)
DATA A/. 0000430638,
1 , . 0705230784 /
X=ABS(XX)
T=A( 1)*X
DO 10 1=2,6
T= ( T+A( I ) ) *X
10 CONTINUE
T=1./(T+1.)
ERF=1.-T**16
IF( XX. LT. 0 . ) ERF=-ERF
RETURN
END
0002765672, .0001520143, .0092705272, .0422820123
SUBROUTINE PERDIF(SPECR,ZENITH)
(3121) . SUBROUTINE PERDIF(SPECR,ZENITH)
(3122) C*****
(3123) C***** CALCULATE PERFECT DIFFUSE REFLECTOR PROPERTIES
(3124) C*****
(3125) COMMON/REF/XCAP0,YCAP0,ZCAP0,U0,V0,PROP
(3126) COMMON/COLOR/YCAP,VAL,X,Y,YCAPD,VALD,XD,YD,DELUV,DELAB,
(3127) 1XBARO9) ,YBAR(39) ,ZBAR(39) ,PI .CONT1 ,CONT2,CONT3,BRATIO
(3128) DIMENSION SPECRO9) ^
(3129) PI = 3.1415962
(3130) XLUMIN=1./(2.*PI)
(3131) CALL BACOBJ(ZENITH,90.,90.,4.,0.,SPECR,XLUMIN)
(3132) XCAP0=0.
(3133) YCAP0=0.
(3134) ZCAP0=0.
(3135) DO 10 1=1,39
(3136) XCAP0=XCAP0+SPECR( I)*XBAR(I)
(3137) YCAP0=YCAP0+SPECR(I)*YBAR(I)
(3138) ZCAP0=ZCAP0+SPECR( I)*ZBAR( I)
(3139) 10 CONTINUE
(3140) PROP=100./YCAP0
(3141) XCAP0=XCAP0*PROP
(3142) YCAP0=100.
(3143) ZCAP0=ZCAP,0*PROP
(3144) D0=XCAP0+1500.+3.*ZCAP0
(3145) U0=4.*XCAP0XD0 '
(3146) V0=900./D0
(3147) RETURN
(3148) END
Exhibit B-l (Continued)
314
-------
SUBROUTINE CHROMA(SPECB,SPECR)
(3149)
(3150)
(3151)
(3152)
(3153)
(3154)
( 3 155)
(3156)
( 3 157)
(3158)
(3159)
(3160)
(3161)
(3162)
(3163)
(3164)
(3165)
(3166)
(3167)
(3168)
(3169)
(3170)
(3171)
(3172)
(3173)
(3174)
(3175)
(3176)
(3177)
( 3 178)
( 3 179 )
(3180)
(3181)
(3182)
(3183)
( 3 1 84 )
(3185)
(3186)
(3187)
(3188)
(3189)
(3190)
(3191)
(3192)
(3193)
( 3 194)
(3195)
(3196)
(3197)
(3198)
( 3 199 )
( 3200 )
( 320 1 )
( 3202 )
( 3203)
( 3204)
10
SUBROUTINE CHROMA( SPECB,SPECR)
k
C****# CALCULATES VARIOUS COLORATION PARAMETERS SUCH AS CHROMA-
C##*** TICITV COORDINATES,LUMINANCE,VALUE, CONTRAST,BLUE-RED RATIO,
C***## AND DELTA E.
\j JS S?C Ij£ 3fC ?|C
COMMON/COLOR/YCA?,VAL,X,Y,YCAPD,VALD,XD,YD,DELUV,DELAB,
1XBAR(39),YBAR(39),ZBAR(39),PI,CONT1,CONT2,CONT3,BRATIO
COMMON/REF/XCAP0,YCAP0,ZCAP0, U0,V0,PROP
DIMENSION SPECBO9) ,SPECR(39)
XCAP=0.
YCAP=0.
ZCAP=0.
XCAPR=0.
YCAPR=0.
ZCAPR=0.
DO 10 1=1,39
XCAP=XCAP+SPECB(I)*XBAR( I)
YCAP=YCAP+SPECB(I)*YBAR( I)
ZCAP=ZCAP+SPECB(I)*ZBAR( I)
XCAPR= XCAPR+SPECR( I) *XBAR( I)
YCAPR=YCAPR+SPECR( I)*YBAR( I)
ZCAPR=ZCAPR+SPECR( I)*ZBAR( I)
CONTINUE
XCAP=XCAP*PROP
YCAP=YCAP*PROP
ZCAP=ZCAP*PROP
TXYZ= XCAP+YCAP+ZCAP
XCAPR= XC APR*PROP
YCAPR= YC APR*PROP
ZCAPR= ZCAPRSPROP
TXYZR= XCAPR+YCAPR+ZCAPR
X=XCAP/TXYZ
Y=YCAP/TXYZ
XR= XCAPR/TXYZR
YR=YCAPR/TXYZR
XD=X-XR
YD=Y-YR
YCAPD= YCAP-YCAPR
D= XCAP+15r#YCAP+3.*ZCAP
DR= XCAPR+15 . *YCAPR+3. *ZCAPR
U=4.*XCAP/D
V=9.*YCAP/D
UR=4.*XCAPR/DR
VR=9.*YCAPR/DR
CONT1 = (SPECB(4)-SPECR(4))/SPECR( 4)
CONT2=(SPECB(19)-SPECR(19))/SPECR( 19)
CONT3=(SPECB(34)-SPECR(34))/SPECR( 34)
BRATIO=(SPECB(4)/SPECR( 4))/(SPECB(34)/SPECR( 34))
VAL=116.*( YCAP/YCAP0)**.333-16.
VALR=116.*(YCAPR/YCAP0)**.333-16.
USTAR=13.*VAL*(U-U0)
USTARR=13.*VALR*(UR-U0)
VSTAR=13.*VAL#( V-V0)
VSTARR=13.*VALR*(VR-V0)
ASTAR=500.#(( XCAP/XCAP0)**.333-(YCAP/YCAP0)**.333)
Exhibit Brl (Continued)
315
-------
SUBROUTINE CHROMA (SPECB,SPECR)
(3205) ASTARR=500.*<(XCAPR/XCAP0)**.333-(YCAPR/YCAP0)**.333)
(3206) BSTAR=200.*( ( YCAP/YCAP0)**.333-(ZCAP/ZCAP0)**.333)
(3207) BSTARR=200.*( (YCAPR/YCAP0)**.333-(ZCAPR/ZCAP0)**.333)
(3208) VALD=VAL-VALR
(3209) USTARD= USTAR-USTARR
(3210) VSTARD= VSTAR-VSTARR
(3211) ASTARD= ASTAR-ASTARR
(3212) BSTARD= BSTAR-BSTARR
(3213) DELUV= SQRT( VALD*VALD+USTARD*USTARD+VSTARD*VSTARD)
(3214) DELAB=SQRT(VALD*VALD+ASTARD*ASTARD+BSTARD*BSTARD)
(3215) RETURN
(3216) END
Exhibit B-l (Continued)
316
-------
FUNCTION SYTVA(I.X)
(3217) FUNCTION SYTVA(I,X)
(3218) REAL A(6) , B(6),C(6),D(6),LOGX
(3219) DATA A/-.04054,-.04092,-.02536,-.02398,-.01837,-.01766/
(3220) DATA B/.4871,.4745,.3092,.2857,.2165,.2022/
(3221) DATA C/-1.16,-1.108,-.5988,-.5402,-.3099,-.2681/
(3222) DATA D/2.057,1.993,1.497,1.459,1.217,1.174/
(3223) LOGX= ALOG10(X)
(3224) SYTVA=10.**(A(I)*LOGX*LOGX*LOGX+B( I)*LOGX*LOGX+C(I)*LOGX+D< I))
(3225) RETURN
(3226) END
Exhibit B^l (Continued)
317
-------
FUNCTION SZTVA(l.X)
(3227) FUNCTION SZTVAd.X)
(3228) REAL A(6),B(6),C(6),D( 6),LOGX
(3229) DATA A/-.04057,-.02174,-.01092,.002771,.006483,.009586X
(3230) DATA B/.4847,.2555,.1266,-.03534,-.08176,-.1183/
(3231) DATA C/-1.149,-.4799,-.1457,.369,.5107,.6285/
(3232) DATA D/2.027,1.382,1.09,.5842,.4429,.3116/
(3233) LOGX= ALOG10 ( X)
(3234) SZTVA=10.**( A( I)*LOGX*LOGX*LOGX+B( I)*LOGX*LOGX+C(I)*LOGX+D(I))
(3235) RETURN
(3236) END
Exhibit fi-1 (Continued)
318
-------
FUNCTION SYPAS(I.X)
(3237)
(3238)
(3239)
(3240)
(3241)
(3242)
(3243)
(3244)
(3245)
(3246)
(3247)
(3248)
(3249)
(3250)
(325 1)
(3252)
(3253)
(3254)
(3255)
C
C
C
1-
FUNCTION SYPAS(I,X)
PASQUILL-GIFFORD HORIZONTAL DISPERSION COEFFICIENT (SIGMA Y)
REAL A(7),B(7),C(7),D(7),LOGX
DATA A/-.012280,-.02334,-.008289,-.0062276,-.009115,-.0032318,0. /
DATA B/.00028741,.028256,-.0022985,-.0056984,-.0017835,-.011057, 0.
I/
DATA C/.89182,.91347,.91977,.92394,.92826,.92159,0./
DATA D/2.3237,2.1556,2.0142,1.8288,1.7006,1.5289,0./
IF(I.EQ.7) GO TO 1
LOGX= ALOG10(X/1000.)
SYPAS=10.**(A(I)*LOGX*LQGX*LOGX+B( I> *LOGX*LOGX+C( I)*LOGX+D(I))
RETURN
LOGX=ALOG10(X)
SYPAS=10.#*(-.0020555*LOGX*LOGX#LOGX-.014857*LOGX*LOGX+ 1.0648*
1LOGX-1.6212)
RETURN
END
Exhibit Brl (Continued)
319
-------
FUNCTION SZPAS(I.X)
(3256)
(3257)
(3258)
(3259)
(3260)
(326 1)
(3262)
(3263)
(3264)
(3265)
(3266)
(3267)
(3268)
(3269)
(3270)
(3271)
(3272)
(3273)
C
C
C
FUNCTION SZPAS(I,X)
PASQUILL-GIFFORD VERTICAL DISPERSION COEFFICIENT (SIGMA Z) .
REAL A(7),B(7),C(7),D(7),LOGX
DATA A/1.157,-.031027,-.0045741,.011157,-.0005092,.0037608,0./
DATA B/2.815,.050674,.0040771,-.093465,-.10332,-.12889,0.x
DATA C/3.316,1.0827,.92084,.72583,.67969,.65602,0./
DATA D/2.804,2.0327,1.7824,1.4901,1.3284,1.1391,0./
IF( I.EQ.7) GO TO 1
LOGX= ALOG10 (X/1000.)
SZPAS=10.**( A( I)*LOGX*LOGX*LOGX+B(I)*LOGX*LOGX+C( I>*LOGX+D( I))
RETURN
LOGX=ALOG10(X)
SZPAS=10.**(-.0086351*LOGX*LOGX*LOGX-.036447*LOGX*LOGX+1.1243*LOGX
1-1.8981)
RETURN
END
Exhibit B-l (Continued)
320
-------
SUBROUTINE INRAD
(3274)
(3275)
(3276)
(3277)
(3278)
(3279)
(3280)
(3281)
(3282)
(3283)
(3284)
(3285)
(3286)
(3287)
(3288)
(3289)
(3290)
(3291)
(3292)
(3293)
(3294)
(3295)
(3296)
(3297)
(3298)
(3299)
(3300)
(3301)
(3302)
(3303)
(3304)
(3305)
(3306)
(3307)
(3308)
(3309)
(3310)
(3311)
(3312)
(3313)
(3314)
(3315)
(3316)
(3317)
(3318)
(3319)
(3320)
(3321)
(3322)
(3323)
(3324)
(3325)
(3326)
(3327)
(3328)
(3329)
C
C
C
C
SUBROUTINE INRAD
CALCULATE OPTICAL PROPERTIES OF BACKGROUND ATMOSPHERE AND FOUR
AEROSOL MODES
REAL LAMB
COMMON/BCKGNDX ELEV, RVAMB, ACCAMB, AMBN02, RH, ROVA, ROVC, ROVS, ROVP,
1SIGA,S1GC,SIGS,SIGP,HPBL,IREAD,CORAMB,AMBN03,AMBS04,INTYP
2, DENA,DENG,DENP,DENS
COMMON/MIESCT/ROG,SIGMA,NLAMB,LAMB(20),JX,IT,TT<200),DUM(20),
1PDUM(20,200)
COMMON/RADPRPXBTAS04 (39) , BTACOR( 39), BTAPRM( 39) , BTAAER( 39 ),
1PAER(39,27),PPRIM( 39,27),PS04(39,27).PCOR(39,27),BTABAC(39)
COMMON / OPTDEP / TAT0IZ(39),TATHIZ( 39),TAT0HZ(39),X1(39),
1X2(39),TAUTDI(39),TAUT0D(39),XHDI(39),XH0D(39)
COMMON/ MISC/ ABSN02(39),SOLAR(39),RAD,FORPIN,OMZ(39),OMH(39)
1,NTHETA
DIMENSION DUMP(41),D(2)
DIMENSION COEF(57),W(57)
DIMENSION WINKX9),REL(9)
DATA WINK / 0. , 0.03 , 0.05 , 0.1
DATA D / 0.,0. /
IREAD = 0
TWOPI = 2.*3.141596
FORPI = 2.*TWOPI
0.18 , 0.3
1.5,0.75 , 1.
1./FORPI
SQRT(3. 141596)
SQRTPI*SQRT(2.)
FORP IN
SQRTPI
SQR2PI
HR = 9.8
HA=3.5
CONR = SQRT(2.*6356.*HR)
CONA - SQRT( 2 . *6356 . *HA)
PARMA - CONA*SQRTPI*0.5
PARMR - CONR*SQRTPI*0.5
DX = SQRT( 2 . *6356 . *HPBL)
DR DX/CONR
DA = DXXCONA
COMPUTE THE BACKGROUND RADIATIVE PROPERTIES
_
GENERATE THE BSCAT TO MASS RATIOS AND THE PHASE FUNCTIONS
ACCUMULATION MODE
ROG ROVA
SIGMA = SIGA
DO 5 I - 1,39
DUMP( I) = 0.36 + 0.01*FLOAT( I)
IF( IREAD. Eft. 1) GO TO 210
CALL BSIZE
GO TO 250
210 READ(5,1100) (
DUM( I) , I=1,NLAMB)
DO 220 I = l.NLAMB
220 READ(5,1200) (PDUM(I,J),J=1,NTHETA)
250 CONTINUE
Exhibit B-l (Continued)
321
-------
SUBROUTINE INRAD
(3330)
( 333 1 )
( 3332)
(3333)
(3334)
(3335)
(3336)
(3337)
( 3338)
(3339)
(3340)
(3341)
(3342)
(3343)
(3344)
(3345)
(3346)
(3347)
(3348)
(3349)
(3350)
(3351)
( 3352)
(3353)
(3354)
(3355)
(3356)
(3357)
( 3358)
(3359)
(3360)
(3361)
(3362)
(3363)
(3364)
(3365)
(3366)
(3367)
( 3368)
(3369)
(3370)
(3371)
(3372)
(3373)
( 3374)
(3375)
(3376)
(3377)
( 3378)
(3379)
(3380)
(3381)
(3382)
(3383)
(3384)
(3385)
1100 I
1200 1
(
1
^
]
13
14 (
r
12 i
]
]
15 ]
<
]
i
1
18
19 I
• i
17 i
10 i
c*#**#
c*****
c*****
C**« i
c*****
310
320
350
23
24
22
25
28
29
27
20
FORMAT(9F7.4)
FORMAT(7E11.4)
CALL SPLNA ( NLAMB, LAMB, DUM, 2, D, COEF, W)
DO 12 I = 1,39
X - DUMP( I)
DO 13 J = 2,NLAMB
IF(X.LE.LAMB(J)) GO TO 14
0. = LAMB(J) - LAMB(J-l)
Z - (X - LAMB(J-1))/Q
BTAS04( I ) = ( ( Z*COEF( 3*J-3) +COEF( 3*J-4) ) *Z+COEF( 3*J-5) ) *Z+DUM( J- 1)
DO 10 JT = l.NTHETA
DO 15 I - 1,NLAMB
DUM( I) = PDUM( I , JT)
CALL SPLNA ( NLAMB , LAMB , DUM, 2 , D , COEF , W)
DO 17 I = 1,39
X = DUMP( I)
DO 18 J = 2, NLAMB
IF(X.LE.LAMB(J>) GO TO 19
ft = LAMB(J) - LAMB(J-l)
Z - (X - LAMB( J- 1 ) ) /Q
PS04(I,JT) =( (Z*COEF(3*J-3)+COEF(3*J-4) )*Z+COEF(3*J-5) )*Z+DUM( J-l)
CONTINUE
COARSE PARTICLE MODE
ROG = ROVC
SIGMA = SIGC
IF( IREAD.EQ. 1) GO TO 310
CALL BSIZE
GO TO 350
READ(5, 1100) ( DUM( I ) , I = 1 , NLAMB)
DO 320 I = 1, NLAMB
READ (5, 1200) (PDUM( I , J) , J= 1 ,NTHETA)
CONTINUE
CALL SPLNA ( WLAMB, LAMB, DUM, 2/B, COEF, W)
DO 22 I = 1,39
X - DUMP( I)
DO 23 J = 2, NLAMB
IF(X.LE.LAMB(J)) GO TO 24
Q = LAMB(J) - LAMB(J-l)
Z = (X - LAMB( J- 1 ) ) /Q
BTACOR( I ) = ( ( Z*COEF( 3*J-3) +COEF( 3*J-4) ) *Z+COEF( 3*J-5) ) *Z+DUM( J-l)
DO 20 JT - 1,NTHETA
DO 25 I = 1, NLAMB
DUM(I) - PDUM(I.JT)
CALL SPLNA ( KLAMB , LAMB , DUM, 2 , D , COEF . W)
DO 27 I - 1,39
X = DUMP( I)
DO 28 J = 2, NLAMB
IF(X.LE.LAMB( J) ) GO TO 29
Q - LAMB(J) - LAMB(J-l)
Z = (X - LAMB(J-1))/Q
PCOR( I , JT) = ( ( Z*COEF( 3*J-3) +COEF( 3*J-4) ) *Z+COEF( 3*J-5) ) *Z+BUM( J-O
CONTINUE
Exhibit B-l (Continued)
322
-------
SUBROUTINE INRAD
(3386)
(3387)
(3388)
(3389)
(3390)
(3391)
(3392)
(3393)
(3394)
(3395)
(3396)
(3397)
(3398)
(3399)
(3400)
(3401)
(3402)
(3403)
(3404)
(3405)
(3406)
(3407)
(3408)
(3409)
(3410)
(3411)
(3412)
(3413)
(3414)
(3415)
(3416)
(3417)
(3418)
(3419)
(3420)
(3421)
(3422)
(3423)
(3424)
(3425)
(3426)
(3427)
(3428)
(3429)
(3430)
(3431)
(3432)
(3433)
(3434)
(3435)
(3436)
(3437)
(3438)
(3439)
(3440)
(3441)
C*** COMPUTE THE PRI314RY PARTICULATE PROPERTIES
ROG - ROVP
SIGMA SIGP
IF( IREAD.EQ.1) GO TO 410
CALL BSIZE
GO TO 450
410 READ(5,1100) (DUM( I),1=1,NLAMB)
DO 420 I = 1,NLAMB
420 READ(5,1200) (PDUM( I,J),J=1,NTHETA)
450 CONTINUE
CALL SPLNA (NLAMB,LAMB,DUM,2,D.COEF,¥)
DO 32 I = 1,39
X DUMP(I)
DO 33 J = 2.NLAKB
33 IF(X.LE.LAMB(J)) GO TO 34
34 ft = LAMB(J) - LAMB(J-l)
Z (X - LAMB(J-1))/Q
32 BTAPRM(I) =((Z*COEF(3*J-3)+COEF(3*J-4))*Z+COEF(3*J-5))*Z+DUM(J-l)
DO 30 JT - 1,NTHETA
DO 35 I = 1,NLAMB
35 DUM( I) - PDUM(I,JT)
CALL SPLNA (NLAMB,LAMB,DUM,2,D,COEF,W)
DO 37 I 1,39
X = DUMP( I)
DO 38 J = 2,NLAMB
38 IF(X.LE.LAMB(J)) GO TO 39
39 Q = LAMB(J) - LAMB(J-l)
Z = (X - LAMB(J-l))/a
37 PPRIMC I, JT) = ((Z*COEF( 3*J-3) +COEF( 3*J-4) )*Z+COEF( 3*J-5) )*Z+DUM( J-l)
30 CONTINUE
ADJUST FOR THE RELATIVE HUMIDITY
<
DO 41 I 1,9
REL(I) = 0.1*FLOAT(1-1)
CALL SPLNA(9,REL,WINK,2,D,COEF,W)
DO 42 I = 2,9
IF(RH.LE.REL( I)) GO TO 43
Z - (RH-R®L( I-l»*10.
FH = ( <:Z*COEF(3*I-3)+COEF(3*I-4))*Z+COEF(3#I-5))*Z+WINK( 1-1)
FACT = 1. + (0.85*FH)/( l.-RH) /DENA
DO 40 I 1,39
BTAS04(I) = BTAS04(I)*FACT
1C
DETERMINE THE TYPE OF INPUT AND COMPUTE THE BACKGROUND RADIATIVE
C#** PROPERTIES. INTYP 1 MEANS THE N03,S04,COARSE MODE LEVEELS ARE
C##* SPECIFIED IN UGM/M3. INTYPE = 2 MEANS THE VISUAL RANGE AND
C*** THE ACCUMULATION MODE ARE SPECIFIED IN KM-1 AND UGM/M3
is
DENS04=DENA
DENN03=DENA
DENCOR=DENC
WAVE = 0.55
WV2 = (1./WAVE)**2
41
42
43
40
Exhibit B.-1 (Continued)
323
-------
SUBROUTINE INRAD
(3442)
(3443)
(3444)
(3445)
(3446)
(3447)
(3448)
(3449)
(3450)
(3451)
(3452)
(3453)
(3454)
(3455)
(3456)
(3457)
(3458)
(3459)
(3460)
(3461)
(3462)
(3463)
(3464)
(3465)
(3466)
(3467)
(3468)
(3469)
(3470)
(3471)
(3472)
(3473)
(3474)
(3475)
(3476)
(3477)
(3478)
( 3479 )
(3480)
(3481)
(3482)
(3483)
(3484)
(3435)
(3486)
( 3487)
(3488)
( 3489 )
(3490)
(3491)
(3492)
(3493)
(3494)
(3495)
(3496)
(3497)
W4 = WV2*WV2
TAR0I2 = 0.008569*W4*( 1 . +0. 01 13#W2+0.00013*¥V4)*EXP( -ELEV/HR)
RAY = TAROIZ/HR
IF( INTYP.EQ..2) GO TO 500
IF( INTYP.NE. 1) RETURN
DO 460 I = 1,39
X8 BTAS04( I ) # ( AMBS04/DENS04 + AKEN03/DENN03)
X9 BTACOR( I ) *CORAMB/DENCOR
BTAAER(I) = ( X8+X9)*1 . E-03
IF(BTAAER( I) .ITE.0.) GO TO 458
X8=0.
X9=0.
GO TO 459
458 CONTINUE
X8=X8/(XB+X9)
X9=1.-X8
459 CONTINUE
DO 460 J = 1 , NTEETA
460 PAER( I, J)=PS04( I , J ) «X8+PCOR( I,J)*X9
SIGKOS RAY + BTAAER( 19) + ABSN02( 19) *AMBN02
RVAMB = -ALOG( . 02) /SIGKOS
GO TO 600
500 CONTINUE *-
Cs** DETERMINE THE MASS OF THE ACCULATION MODE
SIGKOS -ALOG( .02) .'RVAMB
SIGINT BTACOR( 19) *CORAMB*1 .E-03/DENC + RAY + ABSN02( 19)*AMBN02
IF(SIGKOS-SIGINT) 100,100,120
100 AMBS04 - 0.
CORAMB ( SIGKOS -RAY- ABSN02( 19)*AMBN02)/( BTACOR( 19)*1 .E-03/DENC)
IF( CORAMB. LT.0.) PRINT 2000
2000 FORMAT( 1H .44HTROUBLE WITH THE CONCENTRATION SPECIFICATION)
GO TO 150
120 AMBS04 = (SIGKOS - SIGINT) /(BTAS04( 19) *1 . E-03/DENS)
150 CONTINUE S
DO 160 I - 1,39
X8 - BTAS04( I ) * AMBSO4* 1 . E-03/DENS
X9 BTACOR( I ) *CORAMB* 1 . E-03/DENC
BTAAER(I) X8 + X9
X8 - X8/(X3 + X9)
DO 160 J = l.NTHETA
160 PAER(I.J) = FS04( I ,J)*X8 + ( 1 .-X8) *PCOR( I , J)
AMBN03 0.
600 CONTINUE
C*#*##
C«## COMPUTE THE VERTICAL AND HORIZONTAL OPTICAL DEPTHS
C#***#
DO 200 I 1,39
WAVE = 0.36 + FLOAT( I ) #0 . 0 1
WV2 = WAVE##(-2)
WV4 = WV2#WV2
TAR0IZ = 0. 003569*W4*( 1 . + 0.0113*W2 + 0. 00013*W4)*EXP(-ELEV/
1HR)
TAA0IZ = BTAAEB.( I ) *HA
TATOIZ(I) TAR0IZ + TAA0IZ
Exhibit B-l (Continued)
324
-------
SUBROUTINE INRAD
(3498)
(S499)
(3500)
(3501)
(3502)
(3503)
(3504)
(3505)
(3506)
(3507)
(3508)
(3509)
(3510)
(3511)
(3512)
(3513)
(3514)
(3515)
(3516)
(3517)
(3518)
(3519)
(3520)
(3521)
(3522)
(3523)
(3524)
(3525)
(3526)
(3527)
(3528)
(3529)
(3530)
(3531)
(3532)
(3533)
C***
TARHIZ - TAR0IZ#EXP(-HPBL/HR)
TAR0HZ = TAR0IZ - TARHIZ
TAAHIZ - TAA01Z*EXP(-HPBL/HA)
TATHIZ(I) - TARHIZ + TAAHIZ
TAT0HZ(I) = TATOIZ(I) - TATHIZ( I)
BETA0R = TAR0IZ/HR
BTADAC(I) = BTAAER(I) + BETA0R + ABSN02( I)*AMBN02
XKI) - TARHIZ/TATHIZ( I)
X2(I) = TAR0HZ/TAT0HZ( I)
COMPUTE THE HORIZONTAL PATH DEPTH
TAURQI
TAUA0I
TAUR0D
TAUA0D
TAURDI
TAUADI
TAUT0DCI) =
TAUTDKI) =
200
BE7A0R*PARMR
BTAAER(1)*PARMA
BETA0R#ERF( DR)*PARMR
BTAAER( I)*ERF( DA)*PARMA
TAUROI - TAUR0D
TAUA0I - TAUA0D
TAUR0D + TAUA0D
TAURDI + TAUADI
XHDI(I) = TAURDI/( TAURDI + TAUADI)
XHOD(I) = TAITROD/(TAUR0D + TAUAOD)
AD JEST THE OPTICAL DEPTH FOR N02
TAA0HZ = TAA01Z - TAAHIZ
TAT0IZ(I) = TAR0IZ + TAA0IZ + ABSN02( I ) *AMBN02*HPBL
TAT0HZ( I) - TAT0IZ(I) - TATHIZ( I)
TAUTOD(I) = TAUR6D + TAUA6D + ABSN02( I)*AMBN02*DX
OMZ( I) = (TAROHZ + TAA0HZ) /TAT0HZ( I >
OMH(I) - (TAUR0D + TAUA0D) /TAUT0D( I)
It
CHANGE THE SCATTERING COEFICIENTS FROM BSCAT/VOL TO BSCAT/MASS
BTAS04(I)
BTAPRM( I)
BTACOR( I)
CONTINUE
RETURN
END
- BTAS04U)*!
= BTAPRM(I)* 1
BTACOR(I)* 1
,E-03/DENS04
,E-03/DENP
,E-03/DENC
Exhibit B-l (Continued)
325
-------
SUBROUTINE RAYREF(ZENITH,BETA,THETA,ITHETA.SPECR)
(3534)
(3535)
(3536)
(3537)
(3538)
(3539)
(3540)
(3541)
(3542)
(3543)
(3544)
(3545)
(3546)
(3547)
(3548)
(3549)
(3550)
(3551)
(3552)
(3553)
(3554)
(3555)
(3556)
(3557)
(3558)
(3559)
(3560)
(3561)
(3562)
(3563)
(3564)
(3565)
(3566)
(3567)
(3568)
(3569)
(357O)
(3571)
(3572)
(3573)
(3574)
(3575)
(3576)
(3577)
(3578)
(3579)
(3580)
(3581)
(3582)
(3583)
(3584)
(3585)
(3586)
(3587)
(3588)
C
C
C
SUBROUTINE RAYREF(ZENITH,BETA,THETA,ITHETA,SPECR)
CALCULATE SPECTRAL RADIANCE OF CLEAR SKY IN A RAYLEIGH ATMOSPHERE.
COMMON/BCKGND/ ELEV,RVAMB,ACCAMB,AMBNO2,RH,ROVA,ROVC,ROVS,ROVP,
1SIGA,SIGC,SIGS,SIGP,HPBL
COMMON / MISC / ABSN02(39),SOLAR(39),RAD, FORPIN
DIMENSION SPECR(39)
TWO?I = .5/FORPIN
RHO = .3
RHOPI = 0.5#RHO*TWOPI
XMU0 = COS(RAD*ZENITH)
XMU = SIN(RAD*BETA)
PRAY- 0.75*( l.+COS(RAD*THETA)**2)
HR = 9.8
CONR = SQRT(2.*6356.*HR)
SQRTPI SQRT(3.1415962)
TARMR = CONR*SQRTPI*0.5
DX = SQRT(2.*6356.*HPBL)
DR = DX/CONR
DO 50 I = 1,39
WAVE - 0.36 + FLOAT( I)*0.01
WV2 = WAVE** (-2.)
WV4 = WV2*WV2
TAR0IZ 0.003569*WV4*(1. + 0.0113*WV2 + 0.00013*WV4)*EXP(-ELEV
1HR)
TARHIZ TAR91Z*EXP( -HPBL/HR)
TAROHZ = TAR0IZ - TARHIZ
FD0 - SOLAR(I)*EXP( -TAR0IZ/XMU0)
FDH - SOLAR( I)*EXP(-TARHIZ/XMU0)
FDAV ~ (FD0 + FDH)*0.5
IF(BETA.EQ.0.) GO TO 100
SKY = FORPIN*PRAY* ( 1.-EXP( -TARHIZ/XMU))*SOLAR( I)
SURF = SKY*EXP(-TAR0HZ/XMU) + FORPIN*PRAY*( 1.-EXP( -TAROHZ
1/XMU0))*FDAV s
DIFUSE XMU0*SOLAR( !)*(!.-EXP(-TAR0IZ/XMU0)*(1.-RHO))*(1.-EXP
H-TAR0IZ/XMU))
DIFUSE = DIFUSE/(TWOPI-RHOPI)
SPECR(!) = SURF + DIFUSE
GO TO 50
100 CONTINUE
BETA0R
TAUR0I
TAUROD
TAURDI
SKYH =
SURFH -
1*FDAV
DIFUSE - XMU0*SOLAR( I)*( 1.-EXP(-TAROIZ/XMU0)*( 1.-RHO))*( 1.-EXP
K-TAUR0D)
DIFUSE - DIFUSE/(TWOPI-RHOPI)
SPECR(I) = SURFH + DIFUSE
50 CONTINUE
RETURN
END
TAR0IZ/HR
BETA0R*PARMR
BETA0R*ERF( DR)
TAUROI - TAUROD
FORPINtfPFAY* ( 1.-EXP(-TAURDI))*SOLAR(I)
SKYH*EXP( -TAUR0D) +• FORPIN*PRAY*( 1. -EXP( -TAUR0D))
Exhibit Brl (Continued)
326
-------
SUBROUTINE BACCLN(ZENITH,BETA,THETA,ITHETA,SPECB)
(3589)
(3590)
(3591)
(3592)
(3593)
(3594)
(3595)
(3596)
(3597)
(3598)
(3599)
(3600)
(3601)
(3602)
(3603)
(3604)
(3605)
(3606)
(3607)
(3608)
(3609)
(3610)
(3611)
(3612)
(3613)
(3614)
(3615)
(3616)
(3617)
(3618)
(3619)
(3620)
(3621)
(3622)
(3623)
(3624)
(3625)
(3626)
(3627)
(3628)
(3629)
(3630)
(3631)
(3632)
(3633)
(3634)
(3635)
(3636)
(3637)
(3638)
(3639)
(3640)
(3641)
(3642)
(3643)
(3644)
C
C
C
C
SUBROUTINE BACCLN(ZENITH,BETA,THETA,ITHETA,SPECB)
CALCULATE SPECTRAL RADIANCE OF CLEAR SKY OF GIVEN BACKGROUND ATMOS-
PHERE WITH N02 AND FINE AND COARSE AEROSOL.
COMMON/RADPRP/BTAS04 ( 39),BTACOR( 39),BTAPRM( 39),BTAAER( 39),
1PAER(39,27).PPRIM(39,27),PS04(39,27),PCOR(39,27),BTABAC(39)
COMMON/ OPTDEP / TATOIZ(39),TATHIZ( 39),TAT0HZ(39), XI (39),
1X2(39),TAUTDI(39),TAUTOD(39),XHDI(39),XH0D(39)
COMMON/ MISC/ ABSN02(39),SOLAR(39), RAD,FORPIN,OMZ(39),OMH(39)
1,NTHETA
DIMENSION SPECBC39)
TWOPI ~ 0.5/FORPIN
RHO .3
RHOPI - 0.5*RHO^TWOPI
XMU0 = COS(RAD*ZENITH)
XMU SIN(RAD*BETA)
PRAY 0.75*(l.+COS(RAD*TEETA)#*2)
IF(BETA.Ea.0.) GO TO 100
DO 50 I 1,39
FD0 = SOLAR( I)*EXP(-TAT0IZ( D/XMU0)
FDH - SOLAR( I) *EXP(-TATHIZ( D/XMU0)
FDAV (FD0 + FDH)*0.5
PTOTDI = X1(I)*PRAY + ( 1 .-Xl( I) )*PAER( I, ITHETA)
PTOT0D - X2( DEFRAY + (1. - X2( I) )*PAER( I, ITHETA)
PTOT0D PTOT0D*OMZ( I)
SKY FORPIN*PTOTDI*(1.-EXP(-TATHIZ(I)/XMU))*SOLAR( I)
SURF SKY*EXP(-TAT0HZ( D/XMU) + FORPI N*PTOTOD*( 1 .-EXP(-TAT0HZ( I
1)/XMU))*FDAV
DIFUSE XMU0#SOLAR( !)*(1.-EXP(-TAT0HZ( I)/XMU0)*(l.-RHO))*(1.-
1EXP(-TAT01Z( I)/XMU))
DIFUSE = DIFUSE*OMZ( I)/(TWOPI-RHOPI)
SPECB(I) = SURF + DIFUSE
50 CONTINUE
RETURN
100 CONTINUE
f«
DO THE HORIZONTAL CASE
DO 75 I ='1,39
FD0 - SOLAR( I)*EXP(-TAT0IZ( D/XMU0)
FDH - SOLAR( I)*EXP(-TATHiZ( D/XMU0)
FDAV (FD0 + FDH)*0.5
PTOTDI = PRAY*XHDI(I) +
PTOT0D XHOD(I)#PRAY +
PTOT0D PTOT0D*OMH( I)
SKYH = FORPIN*PTOTDI#( 1
( l.-XHDK I))*PAER( I
(1.-XH0D( I))*PAER(I
ITHETA)
ITHETA)
-EXP(-TAUTDI( I)))*SOLAR(I)
75
SURFH - SKYH#EXP(-TAUT0D( I)) + FORPIN*PTOT0D*(1.-EXP(-TAUT0D(I)))
1*FDAV
DIFUSE = XMU0*SOLAR( I)"=( 1.-EXP(-TAT0IZ( I)/XMU0)*( l.-RHO))*( 1.-
1EXP(-(TAUT0D( D+TAUTDK I))))
DIFUSE = DIFUSE*OMH( I)/(TWOPI-RHOPI)
SPECB(l) SURFH + DIFUSE
CONTINUE
RETURN
END
Exhibit B.-l (Continued)
327
-------
SUBROUTINE BACOBJ ( ZENITH,BETA,THETA,ITHETA,RO,SPECO,XLUMIN)
(3645)
(3646)
(3647)
(3648)
(3649)
(3650)
(3651)
(3652)
(3653)
(3654)
(3655)
(3656)
(3657)
(3653)
(3659)
(3660)
(3661)
(3662)
(3663)
(3664)
(3665)
(3666)
(3667)
(3668)
(3669)
(3670)
(3671)
(3672)
(3673)
(3674)
(3675)
(3676)
(3677)
C
C
C
C
SUBROUTINE BACOBJ ( ZENITH,BETA,THETA,ITHETA,RO,SPECO,XLUMIN)
CALCULATE SPECTRAL RADIANCE OF VIEWING BACKGROUNDS OF SPECIFIED
REFLECTANCE AS VIEWED THROUGH BACKGROUND ATMOSPHERE.
COMMON/RADPRP/BTAS04( 39),BTACOR(39),BTAPRM(39),BTAAER(39),
1PAER( 39,27),PPRIM( 39,27),PS04( 39,27),PCOR( 39,27),BTABAC( 39)
COMMON/ OPTDEP / TATOIZ(39),TATHIZ(39),TAT0HZ(39),Xl( 39),
1X2<39),TAUTDI(39),TAUT0D(39),XHDI(39),XH0D(39)
COMMON/ MISC/ ABSN02(39),SOLAR(39),RAD,FORPIN,OMZ(39),OMH(39)
1,NTHETA
DIMENSION SPECO(39)
TWO?I = .5/FORPIN
RHO = .3
RHOPI = 0.5*RHO*TWOPI
XMU0 COS(RAD*ZENITH)
XMU SIN(RAD*BETA)
PRAY 0.75*(1.+COS( RAD*THETA)**2)
DO 50 1 = 1,39
FD0 = SOLAR( I)*EXP(-TAT0IZ( I)/XMU0)
FDH = SOLAR(I)*EXP( -TATHIZ( I)/XMU0)
FDAV (FD0 + FDH)*0.5
PTOT0D - XH0D( I)*PRAY + ( 1.-XH0D( I))*PAERT I,ITHETA)
PTOT0D PTOT0D*OMH(I)
TRO EXP ( -BTABAC ( I)*RO)
50
DIFUSE
1TRO)
DIFUSE -
SPECO(I)
SPECO(I)
CONTINUE
RETURN
END
XMU0«SOLAR( I)*( 1.-EXP( -TAT0IZ( I)/XMU0)*( 1.-RHO))*
-------
SUBROUTINE PLKCLWZENITH,BETA,THETA, ITHETA,PLUMEP,PLUMES,
(3678)
(3679)
(3680)
(3681)
(3682)
(3683)
(3684)
(3685)
(3686)
(3687)
(3688)
(3689)
(3690)
(3691)
(3692)
(3693)
(3694)
(3695)
(3696)
(3697)
(3698)
(3699)
(3700)
(3701)
(3702)
(3703)
(3704)
(3705)
(3706)
(3707)
(3708)
(3709)
(3710)
(3711)
(3712)
(3713)
(3714)
(3715)
(3716)
(3717)
(3718)
(3719)
(3720)
(3721)
(3722)
(3723)
(3724)
(3725)
(3726)
(3727)
(3728)
(3729)
(3730)
(3731)
(3732)
(3733)
SUBROUTINE PLMCLN(ZENITH,BETA,THETA,ITHETA,PLUMEP,PLUMES,
1PLUMEN,SPECB,SPECP,RP,THICK)
C
C CALCULATE SPECTRAL RADIANCES OF THE CLEAR SKY VIEWED WITH LINES
C OF SIGHT THROUGH THE PLUME AND BACKGROUND ATMOSPHERE.
C
COMMON/RADPRP/BTAS04(39),BTACOR( 39) , BTAPRM( 39),BTAAER(39),
1PAER(39,27),PPRIM(39,27),PS04(39,27),PCOR(39,27),BTABAC(39)
COMMON/ OPTDEP / TAT0IZ(39),TATHIZ( 39),TAT0HZ(39), XI (39),
1X2(39) .TAUTDK39) ,TAUT0D(39) ,XHDI(39) ,XH0D(39)
COMMON/ MISC/ ABSN02(39),SOLAR(39),RAD,FORPIN,OMZ(39),OMH(39)
1,NTHETA
DIMENSION SPECB(39),SPECP(39)
TWOPI = 0.5/FORPIN
RHO = .3
RHOPI 0.5*RHO*TWOPI
XMU0 = COS(RAD*ZENITH)
XMU = SIN(RAD*BETA)
PRAY- 0.75*d.+COS(RAD*THETA)**2)
IF(BETA.EQ.0.) GO TO 100
DO 50 I = 1,39
FD0 = S?OLAR( I)*EXP(-TAT0IZ( I)/XMU0)
FDH = SOLAR( I)*EXP(-TATHIZ( D/XMU0)
FDAV (FD0 + FDH)*0.5
PTOTDI = XI(I)*PRAY + (1.-XI(I))*PAER( I,ITHETA)
PTOT0D X2(I)*PRAY + ( 1. - X2( I))*PAER( I,ITHETA)
PTOT0D PTOT0D*OMZ( I)
SKY = FORPIN*PT0TDI*(1.-EXP(-TATHIZ( I)/XMU))*SOLAR(I)
SURF SKY#EXP(-TAT0HZ( I)/XMU) + FORPIN#PTOT0D*( 1. -EXP(-TAT0HZ(
1)/XMU))*FDAV
DIFUSE = XMU0#SOLAR(I)#(l.-EXP(-TAT0IZ( I)/XMU0)*(l.-RHO))*(1.-
1EXP(-TAT0IZ( I)/XMU))
DIFUSE = DIFUSE*OMZ(I)/( TWOPI-RHOPI)
SPECB(I) - SURF + DIFUSE
CONTINUE
GO TO 200
CONTINUE
DO THE HORIZONTAL CASE
50
100
\j 3P *f» ?o *r* *P
DO 75 I 1,39
FD0 - SOLAR( I)*EXP(-TAT0IZ( D/XMU0)
FDH = SOLAR( I) *EXP(-TATHIZ( D/XMU0)
FDAV - (FD0 + FDH)#0.5
PTOTDI - PRAY*XHDI(I) +
PTOT0D - XH0D( I)*PRAY +
PTOT0D = PTOT0D*Orffl( I)
SKYH = FORPIN#PTOTDI*( 1
( l
( 1
-XHDK I))*PAER( I,
-XH0D( I ) ) *PAER( I
ITHETA)
ITHETA)
-EXP( -TAUTD Id))) *SOLAR( I )
SURFH SKYH#EXP(-TAUT0D( I)) + FORPIN*PTOT0D*( 1 .-EXP(-TAUT0D( I) ) )
1*FDAV
DIFUSE ~ XM[J0*SOLAR( !)*( 1.-EXP(-TAT0IZ( I)/XMU0)*d .-RHO) )*( 1.-
1EXP(-(TAUT0D( D+TAUTDK I))))
DIFUSE = DIFUSE*0?ffl( I)/(TWOPI-RHOPI)
SPECB(I) = SURFH + DIFUSE
75 CONTINUE
200 CONTINUE
Exhibit B-l (Continued)
329
-------
SUBROUTINE PLKCLW ZENITH,BETA,THETA,ITHETA,PLUMEP,PLUMES,
(3734) DO 250 I - 1,39
(3735) C**#**
(3736) C*** COMPUTE THE PLUME TRANSMISSION
(3737) C*****
(3738) FD0 SOLAR( I) *EXP(-TAT0!Z( D/XMU0)
(3739) FDH - SOLAR(I)*EXP(-TATHIZ(I)/XMU0)
(3740) FDAV (FD0+FDH)*.5
(3741) TAUP1 = BTABAC(I)*RP
(3742) TAPSO4 = BTAS04(I)*PLUMES
(3743) TAPNO2 = ABSN02(I)*PLUMEN
(3744) TAPRIM - BTAPRM( I)*PLUMEP
(3745) TAUP2 = TAPSO4 + TAPNO2 + TAPRIM
(3746) IFd.Ett. 19) THICK=TAUP2
(3747) TAPTOT = TAUP1 + TAUP2
(3748) XD2 = TAPS04/(TAPS04 + TAPRIM)
(3749) OMEGAP = 1. - TAPN02/TAUP2
(3750) PTOTPL XD2*PSO4(I,ITHETA) + ( 1.-XD2)*PPRIM( I,ITHETA)
(3751) . TP1 EXP(-TAUPl)
(3752) TP2 - EXP(-TAUP2)
(3753) TPTOT EXP(-TAPTOT)
(3754) PTOT0D XH0D(I)*PRAY + (1.-XH0D( I))*PAER( I,ITHETA)
(3755) PTOT0D = PTOT0D*OMH( I)
(3756) DIFUSE = XHU0»SOLAR
-------
SUBROUTINE PLMOB J ( ZEN ITH, BETA, THETA, ITHETA, PLUMEP, PLUMES, PLUME*,
(3767)
(3768)
(3769)
(3770)
(3771)
(3772)
(3773)
(3774)
(3775)
(3776)
(3777)
(3778)
(3779)
(3780)
(3781)
(3782)
(3783)
(3784)
(3783)
(3786)
(3787)
(3788)
(3789)
(3790)
(3791)
(3792)
(3793)
(3794)
(3795)
(3796)
(3797)
(3798)
(3799)
(3800)
(3801)
(3802)
(3803)
(3804)
(3805)
(3806)
(3807)
(3808)
(3809)
(3810)
(3811)
(3812)
(3813)
(3814)
(3815)
(3816)
(3817)
(3818)
(3819)
(3820)
(3821)
(3822)
C
C
C
C
SUBROUT INE PLMOB J ( ZEN ITR, BETA, THETA, I THETA, PLUMEP, PLUMES, PLUMEN,
1XLUMIH.RO,RP,SPECO,SPECP)
CALCULATE SPECTRAL RADIANCE OF A VIEWED OBJECT OF GIVEN REFLECTANCE
FOR LINES OF SIGHT THROUGH PLUME AND BACKGROUND ATMOSPHERE.
COMMON/RADPRP/BTAS04( 39),3TACOR( 39),BTAPRM( 39),BTAAER( 39),
1PAER(39,27),PPRIM( 39,27),PS04(39,27) ,PCOR(39,27) ,BTABAC(39)
COMMON/ OPTDEP / TAT0IZ(39),TATHIZC39),TAT0HZ(39),X1(39),
1X2(39) .TAUTDK 39) ,TAUT0D(39) ,XHDI(39) ,XH0D(39)
COMMON/ MISC/ ABSN02(39),SOLAR(39),RAD,FORPIN.OMZ(39),OMH(39)
1,NTHETA
DIMENSION S?EGP(39),SPECO(39)
TWOPI = ,5/FORPIN
RHO = .3
RHOPI = 0.5*RHO*TWOPI
XMU0 = COS(RAD#ZENITH)
XMU SIN(RAD*BETA)
PRAY 0.75*(1.^COS(RAD*THETA)**2)
DO 50 I 1,39
FD0 SOLAR(I)*EXP(-TAT0IZ(I)/XMU0)
FDH SOLAR( I)#EXP(-TATHIZ( D/XMU0)
FDAV (FB0 + FDH)#0.5
PTOT0D = XH0D(I)*PRAY + (1.-XH0D( I))*PAER(I,ITHETA)
PTOT0D = PTOT9D#OMH( 1)
TRO = EXP(-BTABAC( I)*RO)
DIFUSE = XMU0#SOLAR(!)*(1.-EXP(-TAT0IZ( I)/XMU0)*( l.-RHO))*(1.-
1TRO)
DIFUSE = DIFUSE*OMH(I)/(TVOPI-RHOPI)
SPECO(I) = XLUMIN*FDAV*TRO + FORPIN*PTOT0D*(1.-TRO>*FDAV
SPECO(I) - SPECO(I) + DIFUSE
COMPUTE THE PLUME TRANSMISSION
C
TAUP1 BTABAC( I)*RP
TAPS04 = BTAS04( I)*PLUMES
TAPNO2 = ABSNO2(I)*PLUMEN
TAPRIM = BTAPRM( I)*PLUMEP
TAUP2 TAPS04 + TAPN02 + TAPRIM
TAUP3 FFABAC(I)*(RO-RP)
TAPTOT TAUP1 + TAUP2
XD2 TAPS04/(TAPS04 + TAPRIM)
OMEGAP 1. - TAPN02/TAUP2
PTOTPL XD2*PS04(I,ITHETA) +
TP1 = EXP(-TAUPl)
TP2 EXP(-TAUP2)
TPTOT = EXP(-TAPTOT)
TP3 = EXP(-TAUP3)
PTOT0D = XH0D(I)*PRAY +
PTOT0D = PTOT0D*OMH( I)
PL2 = XLUMIN*FDAV*TP3 + FORPIN*PTOT0D*FDAV*(1.-TP3)
PL1 = PL2*TP2 + OMEGAP*FORPIN*PTOTPL*FDAV*(1.-TP2)
SPECP(I) PL1*TP1 + FORPIN*PTOT0D*(l.-TPl)*FDAV
DIFUSE = XMU0*SOLAR( !)*(!.-EXP( -TAT0IZ( I)/XMU0)*(1.-RHO))
DIFUSE=DIFUSE#(OMH
-------
SUBROUTINE PLMOBJ (ZENITH,BETA,THETA,ITHETA,PLUMEP,PLUMES,PLUMEN,
(3823) DIFUSE = DIFUSE/CTWOPI-RHOPI)
(3824) SPECP(I)= SPECP (I)+DIFUSE
(3825) 50 CONTINUE
(3826) RETUBN
(3827) END
Exhibit B-l (Continued)
332
-------
SUBROUTINE BSIZE
(3828)
(3829)
(3830)
(3831)
(3832)
(3833)
(3834)
(3835)
(3836)
(3837)
(3838)
(3839)
(3840)
(3841)
(3842)
(3843)
(3844)
(3845)
(3846)
(3847)
(3848)
(3849)
(3850)
(3851)
(3852)
(3853)
(3854)
(3855)
(3856)
(3857)
(3858)
(3859)
(3860)
(3861)
(3862)
(3863)
(3864)
(3865)
(3866)
(3867)
(3868)
(3869)
(3870)
(3871)
(3872)
(3873)
(3874)
(3875)
(3876)
(3877)
(3878)
(3879)
(3880)
(3881)
(3882)
(3883)
C
C
C
C
SUBROUTINE BSIZE
CALCULATE OPTICAL PROPERTIES OF A GIVEN LOG-NORMAL AEROSOL SIZE
DISTRIBUTION BASED ON MIE SCATTERING THEORY
COMMON/MIESCT/RVM.S IGMA,NLAMB,LAMB( 20) , JX, IT,TT(200) ,DUM(20) ,
1PDUM(20,200)
COMMON/ MISC/ ABSN02(39),SOLAR(39).RAD,FORPIN,OMZ(39),OMH(39)
1 ,NTHETA
REAL LAMB
REAL RFR,RFI,QEXT,QJSCAT,QRPRD,ELTRMX(4,27,2) ,
1 PIE(3,27),TAU(3,27),CSTHT(27),SI2THT(27)
DIMENSION TTH27)
COMPLEX ACAP(7000)
DIMENSION SK27) ,S2(27) ,PHASE(27)
DIMENSION XNT(200),ST(200),VT(200),R( 100),DR(200)
' RFR = 1.5
RFI = 0.
PI = 3.14159267
TVOPI = 2.*3.14159267
FTPIN 3./(4.*PI)
PIN = .75
50 NPOINT = 15
K = NPOINT
ITWKP1 = 2*K + 1
KP1 = K + 1
KP2 = K + 2
ALSIGM - ALOG( SIGMA)
ALSGM2 ALSIGM**2
SIGM2 = ALSGM2
SOJIT2 = SQRT(2.)
RSM EXP (ALOG(RVM)-ALSGM2)
RNM EXP(ALOG( RVM) -3. *ALSGM2)
TA 2.*ALSGM2
CN - l./(SQRT(TWOPI)*ALSIGM)
CS PI*CN*RNM**2*EXP(TA)
CV (4./3.)*PI*CN*RNM**3*EXP(4.5*ALSGM2)
Fl - ALOG(30.*SQRT2*ALSIGM)
Fl Fl/15.
Fl EXP(-Fl)
AA - ALOG(1./F1)
F2 - 1./F1
VI - 1.
V2 1.
DO 20 I = 1,K
VI = V1*F1
R( I) = RSM*V1
ST( I) - ALGN(ALSGM2,RSM,R( I))*CS
VT( I) ALGN(ALSGM2,RVM,R( I))*CV
XNT(I) - ALGN(ALSGM2,RNM,R( I))*CN
20 DR( I) = AA
R(KP1) RSM
ST(KPl) ALGN(SIGM2, RSM,RSM)*CS
VT( KP1) ALGN( SIGM2, RVM, RSM) *CV
XNT(KPl) = ALGN(S!GM2,RNM,RSM)*CN
DR(KPl) - AA
Exhibit B-l (Continued)
333
-------
SUBROUTINE BSIZE
(3884)
(3885)
(3886)
(3887)
(3888)
(3889)
(3890)
(3891)
(3892)
(3893)
(3894)
(3895)
(3896)
(3897)
(3898)
(3899)
(3900)
(3901)
(3902)
(3903)
(3904)
(3905)
(3906)
(3907)
(3908)
(3909)
(3910)
(3911)
(3912)
(3913)
(3914)
(3915)
(3916)
(3917)
(3918)
(3919)
(3920)
(3921)
(3922)
(3923)
(3924)
(3925)
(3926)
(3927)
(3928)
(3929)
(3930)
(3931)
(3932)
(3933)
(3934)
(3935)
(3936)
(3937)
(3938)
(3939)
DO 21 I = KP2.ITWKP1
V2 = V2*F2
R( I) = RSM*V2
ST(I) = ALGN(SIGM2,RSM,R(I))*CS
VT(I) = ALGN(SIGM2,RVM,R( I))*CV
DR( I) = AA
21 XNT(I) ~ ALGN(SIGM2,RNM,R( I))*CN
J DO THE INTEGRATION OVER THE DISTRIBUTIONS
XNTOT = 0.
STOT = 0.
VTOT - 0.
DO 30 I = 1,ITWKP1
VTOT - VTOT + VT(I)*DR(I)
STOT STOT + ST(I)*DR(I)
XNTOT - XNTOT + XNT(I)*DR(I)
30 CONTINUE
1000 FORMAT( 1H ,10X, 10E10.4)
500 CONTINUE
NT=NTHETA
JX=NTHETA
IT=27
DO 570 J=1,NTHETA
IF(TT(J).LE.90.) GO TO 560
TTK J) = 180.-TT(J)
GO TO 570
560 CONTINUE
TT1(J)=TT(J)
570 CONTINUE
DO 40 IL = 1,NLAMB
XLAM - LAMB(IL)
WAVE = TWOPI/XLAM
EXT = 0.
SCAT = 0.
ABS = 0.
LL - 7000
DO 31 J - 1,NT
SKJ) =0. S,
31 S2(J) = 0.
DO 35 I = 1,ITWKP1
AL = WAVE*R( I)
CALL DAMIE(AL,RFR,RFI, TT1,JX,QEXT,QSCAT,QRPRD,ELTRMX,PIE.TAU,
1 CSTHT,SI2THT,ACAP,IT.LL)
EXT = Qj;XT*ST( I)*DR( I) + EXT
SCAT = QSCAT*ST(I)*DR(I) + SCAT
ABS = (QEXT-QSCAT)*ST( I)*DR(I) + ABS
DO 35 J=1,JX
IF(TT(J) .NE.TTKJ)) GO TO 365
SKJ) = SKJ) + ELTRMX(1,J,
33 S2(J) = S2(J) + ELTRMX(2,J,
GO TO 35
365 CONTINUE
JJ=J
SKJJ) SKJJ) + ELTRMXd,
34 S2(JJ) = S2(JJ) + ELTRMX(2,
35 CONTINUE
1 PRINT OUT THE RESULTS
1)*XNT(I)*DR(I)
1)*XNT( I)*DR( I)
J,2)*XNT( I)*DR( I)
J,2)*XNT(I)*DR(I)
Exhibit B-1 (Continued)
334
-------
SUBROUTINE BSIZE
(3940) CS -- XLAM**2/
-------
FUNCTION ALGN(X.Y.Z)
(3948)
(3949)
(3950)
(3951)
(3952)
(3953)
FUNCTION ALGN(X,Y,Z)
TWOX = 2.*X
U = (ALOG(Y/Z))**2
ALGN = EXP(-UXTWOX)
RETURN
END
Exhibit B-l (Continued)
336
-------
SUBROUTINE SOLARZCSLA,SLO,TZ,IY,IM,ID,TIME,D,NV)
(3954)
(3955)
(3956)
(3957)
(3958)
(3959)
(3960)
(3961)
(3962)
(3963)
(3964)
(3965)
(3966)
(3967)
(3968)
(3969)
(3970)
(3971)
(3972)
(3973)
(3974)
(3975)
(3976)
(3977)
(3978)
(3979)
(3980)
(3981)
(3982)
(3983)
(3984)
(3985)
(3986)
(3987)
(3988)
(3989)
(3990)
(3991)
(3992)
(3993)
(3994)
(3995)
(3996)
(3997)
(3998)
(3999)
(4000)
(4001)
(4002)
(4003)
(4004)
(4005)
(4006)
(4007)
(4008)
(4009)
C***
C***
c***
c***
c***
c***
c***
SUBROUTINE SOLARZ(SLA,SLO,TZ,IY,IM,ID,TIME,D,NV)
SLA... LATITUDE (DEG) SOUTH MINUS
SLO... LONGITUDE (DEG) EAST MINUS
TZ... TIME ZONE
ALSO INCLUDES FRACTION IF LOCAL TIME IS NOT
STANDARD MERIDIAN TIME. E.G. POONA, INDIA 5.5
IY.. YEAR
IM.. MONTH
ID.. DAY
TIME.. LOCAL STANDARD TIME IN HOURS AND MINUTES.
1 30 PM 1330 ** STANDARD TIME **
D.. RETURNED VALUE
NV.. VALUE TO BE RETURNED, SELECTED AS FOLLOWS
1...
2. . .
3. ..
4. . .
5. . .
o * • •
0 ( NV ( 7.
DECLINATION (DEC.)
EQUATION OF TIME ADJUSTMENT (HRS.)
TRUE SOLAR TIME (HRS.)
HOUR ANGLE (DEC.)
SOLAR ELEVATION (DEC.)
OPTICAL AIRMASS
OTHERWISE, D = 9999.
COMMON /SOL/ EFFDEC, HRANGL
DIMENSION MD( 11)
DOUBLE PRECISION RAD.SDEC
DATA MD/31,29,31,30,31,30,2*31,30,31.30/
DATA A,B,C,SIGA/0.15,3.885,1.253,279.9348/
RAD= 572957.75913E-4
SDEC= 39784.988432E-5
RE=1.
IF (SLO.LT.0.) RE=-1-
KZ=TZ
TC= ( TZ-FLOAT(KZ))*RE
TZZ=FLOAT(KZ)*RE
SLB=SLA/RAD
K=ID
TIMH=TIME/100.
I = TIMH
TIMLOC=(TIMH-FLOAT(I))/0.6+FLOAT(I)+TC
IMC=IM-1
IF ( IMC.LT.1) GO TO 10
DO 5 1=1,IMC
5 K=K+MD( I)
10 LEAP=1
NL=MOD(IY,4)
IF (NL.LT.1) LEAP=2
SMER=TZZ*15.
TK=((SMER-SLO)*4.)/60.
KR=1
IF (K.GE.61.AND.LEAP.LT.2) KR=2
DAD=(TIMLOC+TZZ)/24.
DAD=DAD+FLOAT( K) -FLOAT( KR)
DF= DAD*360./365.242
DE=DF/RAD
DESIN=SIN(DE)
DECOS=COS(DE)
Exhibit Brl (Continued)
337
-------
SUBROUTINE SOLARZ(SLA,SLO,TZ,IY,IM,ID,TIME,D,NV)
(4010) DESIN2=SIN(DE*2.)
(4011) DECOS2=COS(DE*2.)
(4012) SIG=SIGA+DF+1.914327*DESIN-0.079525*DECOS+0.019938*DESIN2-0.00162*
(4013) 1DECOS2
(4014) SIG=SIG/RAD
(4015) DECSIN=SDEC*SIN(SIG)
(4016) EFFDEC=ASIN(DECSIN)
(4017) IF (NV.NE.1) GO TO 15
(4018) D=EFFDEC*RAD
(4019) RETURN
(4020) 15 EQT=0.12357*DESIN-0.004289*DECOS+0.153809*DESIN2+0.060783*DECOS2
(4021) IF (NV.NE.2) GO TO 20
(4022) D=EQT
(4023) RETURN
(4024) 20 TST=TK+TIMLOC-EftT
(4025) IF (NV.NE.3) GO TO 25
(4026) D=TST
(4027) IF (D.LT.O.) D=D+24.
(4028) IF (D.GE.24.) D=D-24.
(4029) RETURN .
(4030) 25 HRANGL=ABS(TST-12.)*15. N
(4031) IF (NV.NE.4) GO TO 30
(4032) D=HRANGL
(4033) RETURN
(4034) 30 HRANGL=HRANGL/RAD
(4035) SOLSIN=DECSIN*SIN(SLB)+COS(EFFDEC)*COS(SLB)*COS(HRANGL)
(4036) SOLEL=ASIN(SOLSIN)*RAD
(4037) IF (NV.NE.5) GO TO 35
(4038) D=SOLEL
(4039) RETURN
(4040) 35 IF (NV.NE.6) GO TO 40
(4041) IF (SOLEL.LE.O.) GO TO 40
(4042) TK=SOLEL+B
(4043) E=1./TK**C
(4044) D=1./(A*E+SOLSIN)
(4045) RETURN
(4046) 40 D=9999.
(4047) RETURN
(4048) END
Exhibit B-l (Continued)
338
-------
SUBROUTINE SPLNA ( N,X, Y, J,D,C, W)
(4049)
(4050)
(4051)
(4052)
(4053)
(4054)
(4055)
(4056)
(4057)
(4058)
(4059)
(4060)
( 406 1 )
(4062)
(4063)
(4064)
(4065)
(4066)
(4067)
(4068)
(4069)
(4070)
(4071)
(4072)
(4073)
(4074)
(4075)
(4076)
(4077)
( 4078)
(4079)
(4080)
(4081)
(4082)
(4083)
(4084)
(4035)
(4086)
(4087)
( 4088)
(4089)
(4090)
(4091)
(4092)
(4093)
(4094)
(4095)
(4096)
(4097)
(4098)
(4099)
(4100)
(4101)
(4102)
(4103)
(4104)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SUBROUTINE SPLNA
DIMENSION X( 10),
(N,X,Y, J.D.C.W)
Y( 10) , D(2) , C(30)
¥(30)
OVER TEE INTERVAL X(I) TO Xd+l), THE INTERPOLATING
POLYNOMIAL
Y=Y( I)+A( I)*Z+B( I)*Z**2+E( I)*Z**3
WHERE Z=(X-X( I))/(X( I+1)-X( I))
IS USED. THE COEFFICIENTS A(I),B(I) AND E( I) ARE COMPUTED
BY SPLNA AND STORED IN LOCATIONS C(3*1-2),C(3*I-1) AND
C(3*I) RESPECTIVELY.
WHILE WORKING IN THE ITH INTERVAL, THE VARIABLE Q WILL
REPRESENT Q=X(I+1) - X(I), AND Y(I) WILL REPRESENT
Y( I+1)-Y( !)
Q=X(2)-X( 1)
YI = Y(2)-Y( 1)
IF (J.EQ.2) GO TO 5
IF THE FIRST DERIVATIVE AT THE END POINTS IS GIVEN,
A(l) IS KNOWN, AND THE SECOND EQUATION BECOMES
MERELY &( 1)+E( 1)=YI - Q*D(1).
C( 1)=Q*D( 1)
C(2)=1.0
W(2)=YI-C( 1)
GO TO 10
IF THE SECOND DERIVATIVE AT THE END POINTS IS GIVEN
B(l) IS KNOWN, THE SECOND EQUATION BECOMES
A( 1)+E( 1)=YI-0.5*Q*Q*D( 1) . DURING THE SOLUTION OF
THE 3N-4 EQUATIONS, Al WILL BE KEPT IN CELL C( 2)
INSTEAD OF C(l) TO RETAIN THE TRIDIAGONAL FORM OF THE
COEFFICIENT MATRIX.
5 C(2)=0.0
W(2)=0.5*Q*Q*D( 1)
10 M=N-2 ,_,
IF (M.LE.0) GO TO 20
UPPER TRIANGULARIZATION OF THE TRIDIAGONAL SYSTEM OF
EQUATIONS FOR THE COEFFICIENT MATRIX FOLLOWS —
DO 15 1=1, M
AI = Q
Q=X( 1+2) -X( 1+1)
H=AI/Q
C( 3* I ) =-H/( 2 . 0-C( 3* I- 1 ) )
W( 3* I ) = ( -YI-W( 3* I- 1 ) ) /( 2 . 0-C( 3* I- 1 ) )
C( 3* 1+ 1 ) =-H*H/( H-C( 3* I ) )
W( 3* 1+ 1 ) = ( YI-W( 3* I ) ) /( H-C( 3* I ) )
YI = Y( I+2)-Y( 1+1)
C( 3*1+2)= 1.0/( 1.0-C( 3*1+1))
15
E(N-l) IS DETERMINED DIRECTLY FROM THE LAST EQUATION
Exhibit B-l (Continued)
339
-------
SUBROUTINE SPLNA (N,X, Y, J,D,C, W)
(4105)
(4106)
(4107)
(4108)
(4109)
(4110)
(4111)
(4112)
(4113)
(4114)
(4115)
(4116)
(4117)
(4118)
(4119)
(4120)
(4121)
(4122)
(4123)
(4124)
(4125)
(4126)
(4127)
(4128)
(4129)
(4130)
(4131)
(4132)
(4133)
C
C
C
C
C
C
C
C
C
C
C
C
C
OBTAINED ABOVE, AND THE FIRST OR SECOND DERIVATIVE
VALUE GIVEN AT THE END POINT.
3. 0-C( 3*N-4)
20 IF (J.Eft.1) GO TO 25
C(3*N-3) = (Q#Q*D(2)/2.0-W( 3*N-4)
GO TO 30
25 C( 3#N-3) = (Q*D(2)-YI-W(3*N-4)) <( 2.0-C(3*N-4))
30 M=3*N-6
IF (M.LE.0) GO TO 40
BACK SOLUTION FOR ALL COEFFICENTS EXCEPT
A( 1 ) AND B( 1 ) FOLLOWS—
DO 35 II=1,M
35 C( I)=W( I)-C( I)*C( 1+1)
40 IF (J.EQ. 1) GO TO 45
IF THE SECOND DERIVATIVE IS GIVEN AT THE END POINTS,
A( 1) CAN NOW BE COMPUTED FROM THE KNOWN VALUES OF
B(l) AND Ed). THEN Ad) AND Bd) ARE PUT INTO THEIR
PROPER PLACES IN THE C ARRAY.
C( 1)=Y(2)-Y( 1)-W(2)-C(3)
C(2)=W(2)
RETURN
45 C(2)=W(2)-C(3)
RETURN
END
Exhibit BM (Continued)
340
-------
SUBROUTINE MAPGTU ( ALON, ALAT, I ZONE, UTMX, UTMY)
(4134)
(4135)
(4136)
(4137)
(4138)
(4139)
(4140)
(4141)
(4142)
(4143)
(4144)
(4145)
(4146)
(4147)
(4148)
(4149)
(4150)
(4151)
(4152)
(4153)
(4154)
(4155)
(4156)
(4157)
(4158)
(4159)
(4160)
(4161)
(4162)
(4163)
(4164)
(4165)
(4166)
(4167)
(4168)
(4169)
(4170)
(4171)
(4172)
(4173)
(4174)
(4175)
(4176)
(4177)
(4178)
(4179)
(4180)
(4181)
(4182)
(4183)
(4184)
(4185)
(4186)
(4187)
(4188)
(4189)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SUBROUTINE NAPCTU (ALON,ALAT,IZONE,UTMX,UTMY)
**# CONVERTS LATITUDE AND LONGITUDE TO UTM COORDINATES
THIS IS A MODIFICATION OF THE US GEOLOGICAL SURVEY
PROGRAM NO J3S0 (TOPOGRAPHIC DIVISION)
GW LUNDBERG/SAI APR 79
ALON LONGITUDE IN DEGREES (WESTERN HEMISPHERE IS NEGATIVE)
ALAT LATITUDE IN DEGREES
IZONE ZONE OVERRIDE IF NOT ZERO
UTMX EASTING (KM)
UTMY NORTHING (KM)
DIMENSION B(12)
COMMON /WUTM/ A( 16)
SLAT = ALAT*3600.
SLON = -ALON*36C0.
*#* COMPUTE COEFFICIENTS FOR CONVERSION
CALL WGTU1
*** TEST FOR ZONE INPUT ON GEODETIC TO UTM INDICATING OVERRIDE OF
NORMAL 6 DEGREE LONGITUDE BAND.
IF( IZONE.E&.0)GO TO 30
*** COMPUTE CENTRAL MERIDIAM IN SECONDS FOR ENFORCED ZONE.
IF( IABS(IZONE)-30)10,10,20
10 UTZ=30.0-FLOAT(IABS(IZONE))
A( 9) = ((UTZ*6.0)+3.0)*3600.0
GO TO 40
20 UTZ=FLOAT(IABS(IZONE))-30.0
A( 9) = ( (UTZ*6.0)-3.0)*(-3600.0)
GO TO 40
*** COMPUTE UTM ZONE(IZONE) AND CENTRAL MERIDIAN IN SECONDS(A9)
FOR GEODETIC TO UTM CONVERSION WHERE ZONE IS NOT INPUT.
30 IZONE= 30-(INT(SLON)/21600)
UTZ=30.0-FLOAT(IZONE)
A( 9) = ((UTZ*6.0)+3.0)*3600.0
*** CONVERT GEODETIC TO UTM COORDINATES
*** RETURNS ZEROS IF LATITUDE EXCEEDS 84 DEGREES OR LONGITUDE
0. 16 RADIANS
40 IF(ABS(SLAT)-302400.0) 80,80,70
70 X=0.0
Y=0.0
GO TO 99
80 B( 10) = (A(9)-SLON) *4.848181109536E-6
IF(ABS(B(10))-0.16)90,90,70
90 B(9)=SLAT*4.848136811095E-6
SINP=SIN(B(9))
COSP=COS(B(9))
Exhibit B-l (Continued)
341
-------
SUBROUTINE MAPGTU (ALON,ALAT,IZONE.UTMX.UTNY)
(4190)
(4191)
(4192)
(4193)
(4194)
(4195)
(4196)
(4197)
(4198)
(4199)
(4200)
(4201)
(4202)
(4203)
(4204)
(4205)
(4206)
(4207)
(4208)
(4209)
(4210)
(4211)
(4212)
(4213)
(4214)
(4215)
(4216)
(4217)
RN=A(15)/SQRT(1.0-A( 16)*SINP*SINP)
T=SINP/COSP
TS=T*T
B(1D=COSP*COSP
ETAS=A(16)*B( 11)/( 1.0-A( 16))
B(1)=KN*COSP
B(3) = ( 1.0-TS+ETAS)*B( 1)*B( 1D/6.0
B(5)=((TS-18.0)*TS+5.0+( 14.0-58.0*TS)*ETAS) *B( D*B( ID*
1 B( ID/120.0 s
B(7)=(((179.0-TS)*TS-479.0)*TS+61.0)#B(1)*B(11)**3/5040.0
B(12)=B(10)*B(10)
X=(((B(7)*B( 12)+B(5))*B( 12)+B(3))*B( 12)+B( D)*B( 10)*A<8) +
1 A(5)
B(2)=RW*B( 1D*T/2.0
B( 4) = (ETAS*( 9.0+4.0*ETAS)+5.0-TS)*B(2)*B( 11)/12.0
B(6)=((TS-58.0)*TS+61.0+(270.0-330.0*TS)*ETAS)*B(2)*
1 B( 1D*B( ID/360.0
B(8)=(((543.0-TS)*TS-3111.0)*TS+1385.0)*B(2)*B(11)**3/
1 20160.0
Y= ( ( ( B( 8)*B( 12)+B(6))*B(12)+B(4))*B(12)+B(2))*B(12) +
1 ((((A(4)*B( 1D+A(3))*B( 1D+A(2))*B( 1D+A( 1)) *SINP*COSP+B(9)
1 *A( 10)
Y= ( Y-A( 7) ) *A( 8) +A( 6)
99 UTMX =
UTMY =
RETURN
END
X/1000.
Y/1000.
Exhibit B-l (Continued)
342
-------
SUBROUTINE WGTU1
28 27
(4218)
(4219)
(4220)
(4221)
(4222)
(4223)
(4224)
(4225)
(4226)
(4227)
(4228)
(4229)
(4230)
(4231)
(4232)
(4233)
(4234)
(4235)
(4236)
(4237)
(4238)
(4239)
(4240)
( 424 1 )
(4242)
(4243)
(4244)
(4245)
(4246)
(4247)
( 4248)
(4249)
(4250)
(4251)
(4252)
(4253)
(4254)
(4255)
(4256)
(4257)
(4258)
(4259)
(4260)
( 426 1 )
(4262)
(4263)
( 4264)
(4265)
(4266)
(4267)
(4268)
(4269)
(4270)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SUBROUTINE WGTU1
*** SETS UP COEFFICIENTS FOR CONVERTING GEODETIC TO
RECTIFYING LATITUDE AND CONVERSELY
A1-A4 COEFFICIENTS FOR CONVERTING GEODITIC TO RECTIFYING LATIT
A5 FALSE EASTING
A6 FALSE NORTHING
AS SCALE FACTOR AT CENTRA MERIDIAN
A9 CENTRAL MERIDIAN IN SECONDS
A 10 RADIUS OF SPHERE HAVING GREAT CIRCLE LENGTH EQUAL TO
SPHEROID MERIDIAN LENGTH
A11-A14 COEFFICIENTS FOR CONVERTING RECTIFYING LATITUDE TO
GEODETIC LATITUDE
A 15 SEMI MAJOR AXIS OF SPHERIOD
A16 ECCENTRICITY SQUARED
COMMON /WUTM/ A( 16)
DATA IFRST/1/
*** CONFUTE COEFFICIENTS ON FIRST PASS ONLY
IF ( IFRST .NE. 1) RETURN
IFRST = 0
A(5)=5.0E5
A(6)=0.0
A(7)=0.0
A( 8) =0.9996
*## CLARKE 1866 ELLIPSOID AXES LENGTHS
A( 15) =6378206. 4
B - 6356583.80
A( 16)= UA415)-E)/A( 15))*((A( lo)+B)/A( 15))
A( 10) = (((A( 16)*(7.0/3.2El)+(5.0/1.6El))*A( 16)+0.5)*A( 16)
1 + 1.0)*A( 16)*0.25
A( !)=-(( (A( 10) *( 1.95E2/6.4E1)+3.25)*A( 10)+3.75)*A( 10) +3.0)*
1 A( 10)
A(2) = (( ( 1.455E3/3.2E1)*A( 10)+(7.0El/3.0) )*A( 10)+7.5)*A( 10)**2
A(3)=-((7.0El/3.0)+A( 10)*(9.45E2/8.0))*A( 10)**3
A(4)=(3. 15E2/4.0)*A( 10)**4
A( !!) = (( (7.75-(6.57E2/6.4El)*A( 10))*A( 10)-5.25)*A( 10) +3.0)*
1 A( 10)
A( 12)=(((5.045E3/3.2E1)*A( 10)-( 1 . 51E2/3.0) )*A( 10)+10.5)*
1 A( 10)**2
A( 13)=(( 1.51E2/3.0)-(3.291E3/8.0)*A( 10))*A( 10)**3
A( 14) = ( 1.097E3/4.0)*A( 10)**4
FAC=A( 10)*A( 10)
A( 10) = (( (2.2SE2/6.4E1)*FAC+2.25)*FAC+1.0)*( 1.0-FAO*
1 ( 1.0- A( 10))*A( 15)
RETURN
END
Exhibit Brl (Continued)
343
-------
(4271)
(4272)
( 4273)
(4274)
(4275)
(4276)
(4277)
( 4278)
(4279)
(4280)
(4281)
(4282)
( 4283)
(4284)
(4285)
(4286)
(4287)
( 4288)
(4289)
(4290)
(4291)
(4292)
(4293)
(4294)
(4295)
(4296)
(4297)
(4298)
(4299)
(4300)
(4301)
(4302)
(4303)
( 4304)
(4305)
(4306)
( 4307)
( 4308)
(4309)
(4310)
(4311)
(4312)
(4313)
(4314)
(4315)
(4316)
(4317)
(4318)
(4319)
(4320)
(4321)
(4322)
(4323)
(4324)
(4325)
(4326)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SUBROUTINE MAPUTO ( UTMX,UTMY,IZONE,ALON,ALAT)
SUBROUTINE MAPUTO (UTMX,UTMY,IZONE,ALON,ALAT)
*** CONVERTS UTM COORDINATES TO LATITUDE AND LONGITUDE
THIS IS A MODIFICATION OF THE US GEOLOGICAL SURVEY
PROGRAM NO J380 (TOPOGRAPHIC DIVISION)
GV LUNDBERG/SAI APR 79
UTMX EASTING IN KILOMETERS
UTMY NORTHING IN KILOMETERS
IZONE UTM ZONE NUMBER
ALON LONGITUDE IN DEGREES
ALAT LATITUDE IN DEGREES
DIMENSION B(12)
COMMON /WUTM/ A( 16)
X - UTMX*1000.
Y - UTMY*1000.
*** COMPUTE CONVERSION COEFFICIENTS IF NEEDED
CALL WGTU1 ""
*** COMPUTE CENTRAL MERIDIAN IN SECONDS FROM IZONE INPUT
10 UTZ = 30.0 - FLOAT( IABS (IZONE))
A(9) = ((UTZ*6.0) + 3.00 * 3600.0
*** CONVERT UTM COORDINATES TO GEODETIC
B( 9) = ( ( A( 5) -X) * 1. 0E-6) /A( 8)
IF
-------
SUBROUTINE MAPUTO (UTMX.UTMY, IZONE, ALON, ALAT)
( 4327)
( 4328)
(4329)
(4330)
(4331)
(4332)
(4333)
(4334)
(4335)
(4336)
(4337)
( 4338)
(4339)
(4340)
(4341)
1 5040.0
B( 8) = ( ( ( TS* 1575 . 0+4095 . 0) *TS+3633 . 0) *TS+ 1385 . 0) *T*RN**8/
1 40320.0
B( 10)=B(9)*B(9)
SLAT= ( ( ( ( B( 8) *B( 10)+B(6))*B( 10)+B<4))*B( 10)+B(2))*B( 10)+B( 11))*
1 206264.80624709
SLON= U(B(7)#B( 10)+B(5))*B( 10)+B(3))*B( 10)+B( 1))*B(9)*
1 206264.80624709 + A(9)
C
C #*# CONVERT SECONDS OF ARC TO DEGREES AND RETURN
99 ALAT - SLAT/3600.
ALON - -SLON/3600.
C
RETURN
END
Exhibit B-1 (Continued)
345
-------
SUBROUTINE DAMIE (X.RFR.RFI,THETD,JX,QEXT,QSCAT,CTBRQS,ELTRMX,
SUBROUTINE DAMIE ( X, RFR.RFI, THETD, JX,QEXT,QSCAT,CTBRQS,ELTRMX,
1 PI,TAU,CSTHT,SI2THT,ACAP,IT,LL)
LARGE VERSION
SUBROUTINE FOR COMPUTING THE PARAMETERS OF THE ELECTROMAGNETIC
RADIATION SCATTERED BY A SPHERE. THIS SUBROUTINE CARRIES OUT ALL
COMPUTATIONS IN DOUBLE PRECISION ARITHMETIC.
THIS SUBROUTINE COMPUTES THE CAPITAL A FUNCTION BY MAKING USE OF
DOWNWARD RECURRENCE RELATIONSHIP.
X! SIZE PARAMETER OF THE SPHERE,( 2 * PI * RADIUS OF THE SPHERE)
WAVELENGTH OF THE INCIDENT RADIATION).
RF! REFRACTIVE INDEX OF THE MATERIAL OF THE SPHERE. COMPLEX
QUANTITY. .FORM! (Rll - I * RFI )
THETD(J)! ANGLE IN DEGREES BETWEEN THE DIRECTIONS OF THE INCIDENT
AND THE SCATTERED RADIATION. THETD(J) IS< OR= 90.0
IF THETD(J) SHOULD HAPPEN TO BE GREATER THAN 90.0, ENTER WITH
SUPPLEMENTARY VALUE
COMMENTS BELOW ON ELTRMX.
' JX! TOTAL NUMBER Of THETD FOR WHICii THE COMPUTATIONS ARE
REQUIRED. JX SHOULD NOT EXCEED IT UNLESS THE DIMENSIONS
STATEMENTS ARE APPROPRIATEDLY MODIFIED.
MAIN PROGRAM SHOULD ALSO HAVE REAL*8 THETD(IT ),ELTRMX( 4,IT ,2).
THE DEFINITIONS FOR THE FOLLOWING SYMBOLS CAN BE FOUND IN LIGHT
REAL X,RX,RFR,RFI,QEXT,QSCAT,T(5) ,TA(4) ,TB(2) ,TC(2)
REAL TD(2),TE(2),CTE 'OS
REAL ELTRMX(4,IT ,2),PI(3,IT ).TAU(3,IT ),CSTHT(IT ),SI2THT(IT)
1 ,THETD(IT)
COMPLEX RF,RRF,RRFX,WM1,FNA,FNB,TC1,TC2,WFN( 2)
COMPLEX FNAP,FNBP,ACAP(1)
IN THE ORIGINAL PROGRAM THE DIMENSION OF ACAP WAS 7000.
FOR CONSERVING SPACE THIS SHOULD BE NOT MUCH HIGHER THAN
THE VALUE, N=1.1*(NREAL**2 + NIMAG**2)**.5 * X + 1
TA(1) REAL PART OF WFN(1).. TA(2)t IMAGINARY PART OF WFN(1)..
TA(3) REAL PART OF WFN( 2)..TA(4) ! IMAGINARY PART OF WFN(2).
TB(1) REAL PART OF FNA.. TB(2)! IMAGINARTY PART OF FNA..
TC(1) REAL PART OF FNB.. 1X3(2)^ IMAGINARY PART OF FNB..
TD(1) REAL PART OF FNAP..TD(2) IMAGINARY PART OF FNAP.
TE(1) REAL PART OF FNBP.. TE(2)! IMAGINARY PART OF FNBP.
FNAP ? FNBP ARE THE PRECEDING VALUES OF FNA ? FNB RESPECTIVELY.
t PRIME VERSION WORKS ONLY IN SINGLE PRECISION WITH THE
COMPLEX ARITHMETIC.
EQUIVALENCE (WFN(1),TA(1)),(FNA,TB(1)),(FNB,TC(1))
EQUIVALENCE(FNAP,TD(1)), ( FNBP,TE(1))
DATA PII /3.1415926535897932/
FORMAT STATEMENTS FOLLOW
FORMAT(10X,' THE VALUE OF THE SCATTERING ANGLE IS GREATER THAN
1 90.0 DEGREES. IT IS '.E15.4)
FORMAT(//10X, 'PLEASE READ COMMENTS.' //)
FORMAT(//10X,'THE VALUE OF THE ARGUMENT JX IS GREATER THAN IT ')
FORMAT(//10X,'THE UPPER LIMIT FOR ACAP IS NOT ENOUGH. SUGGEST GET
1 DETAILED OUPUT AND MODIFY SUBROUTINE'//)
EXECUTABLE STATEMENTS FOLLOW
IF(JX.LE. IT) GO TO 20
WRITE(6,7)
WRITE(6,6)
(4342)
(4343)
(4344)
(4345)
(4346)
(4347)
( 4348)
(4349)
(4350)
(4351)
(4352)
(4353)
(4354)
(4355)
(4356)
(4357)
(4358)
(4359)
(4360)
(4361)
(4362)
(4363)
(4364)
(4365)
(4366)
(4367)
( 4368)
(4369)
(4370)
(4371)
(4372)
(4373)
(4374)
(4375)
(4376)
(4377)
( 4378)
(4379)
(4380)
(4381)
(4382)
(4383)
(4384)
(4385)
(4386)
(4387)
( 4388)
(4389)
(4390)
( 439 1 )
(4392)
(4393)
(4394)
(4395)
(4396)
(4397)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CSEE
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c***
C
C
C
5
6
7
8
C
C
Exhibit B-l (Continued)
346
-------
SUBROUTINE DAIIIE ( X,RFR,RFI ,THETD, JX,Q£XT,QSCAT,CTBRQS,ELTRMX,
CALL EXIT
RF = CMPLX(RFR,-RFI)
RRF = 1.0E0/RF
(4398)
(4399)
(4400)
(4401)
(4402)
(4403).
(4404)
(4405)
(4406)
(4407)
( 4408)
(4409)
(4410)
(4411)
(4412)
(4413)
(4414)
(4415)
(4416)
(4417)
(4418)
(4419)
(4420)
(4421)
(4422)
(4423)
(4424)
(4425)
(4426)
(4427)
(4428)
(4429)
(4430)
(4431)
(4432)
(4433)
(4434)
(4435)
(4436)
(4437)
(4438)
(4439)
(4440)
(4441)
(4442)
(4443)
(4444)
(4445)
(4446)
(4447)
(4448)
(4449)
(4450)
(4451)
(4452)
(4453)
20
C
C V
C
21
22
23
24
25
28
30
35
RX - 1.0E0/X
RRFX = RRF * RX
T(l) (X**2)*(RFR**2 + RFI**2)
SQRT(Td))
1.10E0 * T(1)
199) X,RFR,RFI,LL,NMX1
'X=',E14.6,2X,'RFR=
LL-1 ) GO TO 21
150) GO TO 22
,E14.6,2X, rRFI =
*,110)
0.
0,
0E0
0E0
THETD(J) =
GO TO 24
T( 1) ~
NMX1 -
WRITE(6
» FORMAT( 1H
1,2X,*NMX1
IF( NMX1 .LE
WRITE(6,8>
STOP
' NMX2 = T( 1)
IF( NMX1 .GT
NMX1 150
NMX2 - 135
ACAP(NMX1 + 1 ) = (0.0E0.0.0E0)
DO 23 N = 1,NMX1
NN - NMX1 - N + 1
ACAP(NN)= FLOAT(NN+1)*RRFX-1
CONTINUE
DO 30 J = l.JX
IF ( THETD(J) .LT
IF ( THETD(J) .GT
CSTHT(J) = 1.0E0
SI2THT(J) - 0.0E0
GO TO 30
IF ( THETD(J) .GE
T(l) = ( PII * THETD(J))/180.0E0
CSTHT(J) = COS(T(1))
SI2THT(J) ~ 1.0E0 - CSTHT(J)**2
GO TO 30
IF ( THETD(J) .GT. 90.0E0) GO TO
CSTHT(J) = 0.0E0
SI2THT(J) - 1-0E0
GO TO 30
WRITE(6,5) JTHETD(J)
VRITE(6,6)
CALL EXIT
CONTINUE
DO 35 J = 1,JX
PK1.J) 0.0E0
PI(2,J) 1.0E0
TAU(1,J) = 0.0E0
TAU(2,J) - CSTHT(J)
CONTINUE
T(l) COS(X)
T(2) - SIN(X)
WU = CMPLX( T(1),-T(2))
WFN(l) = CMPLX(T(2) ,T( 1))
WN(2) = RX * WN(1) - VM1
TCI = ACAP(l) * RRF + RX
TC2 - ACAP( 1) * RF + RX
FNA = (TC1*TA(3) - TA( 1) )/(TCl*WN(2) -
,E14.6,2X, 'LL=',I10
0E0/(FLOAT(NN+1)*RRFX+ACAP(NN+1))
ABS(THETD(J))
90.0E0) GO TO 25
28
1))
Exhibit B-l (.Continued)
347
-------
SUBROUTINE DAMIE (X.RFR.HFI,THETD,JX,QEXT,QSCAT,CTBRQS,ELTRMX,
(4454)
(4455)
(4456)
(4457)
(4458) G
(4459) G
(4460) G
(4461) G
(4462) C
(4463) G
(4464) C
(4465) C
(4466)
(4467)
(4468)
(4469)
(4470)
(4471)
(4472)
(4473)
(4474)
(4475)
(4476)
(4477)
( 4478)
(4479) 60
(4480)
(4481) C
(4482)
(4483)
(4484)
(4485) 65
(4486)
(4487)
( 4488)
(4489)
(4490)
(4491)
(4492) 70
(4493)
(4494)
(4495)
(4496)
(4497)
(4498)
(4499)
(4500)
(4501)
(4502)
(4503)
(4504)
(4505)
(4506)
(4507)
( 4508)
(4509)
Exhibit B_-l
FNB = ( TC2*TA(3) - TA(1))/(TC2 * WFN(2) - ¥FN(1))
FNAP - FNA
FNBP FNB
T( 1 ) = 1 . 50E0
FROM HERE TO THE STATMENT NUMBER 90 , ELTRMX( I , J , K) HAS
FOLLOWING MEANING!
ELTRMX( 1 , J , K) ! REAL PART OF THE FIRST COMPLEX AMPLITUDE.
ELTRMX( 2 , J , K) ! IMAGINARY PART OF THE FIRST COMPLEX AMPLITUDE.
ELTRMX(3,J,K) ! REAL PART OF THE SECOND COMPLEX AMPLITUDE.
ELTRMX( 4 , J , K) ! IMAGINARY PART OF THE SECOND COMPLEX AMPLITUDE.
K = 1 ! FOR THETD(J) AND K = 2 ! FOR 180.0 - THETD(J)
DEFINITION OF THE COMPLEX AMPLITUDE? VAN DE HULST,P.125.
TB( 1) = T( 1) * TB( 1)
TB(2) T( 1) * TB(2)
TC( 1) = T< 1) * TC( 1)
TC(2) - T( 1) * TC(2)
DO 60 J = 1,JX
ELTRMX( 1,J, 1) = TB(1) * PH2.J) + TC( 1) * TAU(2,J)
ELTRMX(2,Jsl) = TB(2) * PK2.J) + TC(2) * TAU(2,J)
ELTRMX(3,J, 1) = TC(1) * PK2.J) + TB( 1) * TAU(2,J)
ELTRMX(4,J, 1) = TC(2) * PK2.J) + TB(2)"fc TAU(2,J)
ELTRMX( 1,J,2) = TB< 1) * PK2.J) - TC( 1) * TAU(2,J)
ELTRMX(2,J,2) TB(2) * PK2.J) - TC(2) * TAU(2,J)
ELTRMX(3,J,2) - TC(J) * PI(2,J) - TB( 1) * TAU(2,J)
ELTRMX(4,J,2) - TC(2) * PK2.J) - TB(2) * TAU(2,J)
CONTINUE
QEXT = 2.0E0 * < TB< 1) + TC< 1)>
WRITE(6,999) TB( 1) ,TC( 1)
QSCAT =(TB(1)**2 + TB(2)**2 + TC(1)**2 + TC(2) **2>/0.75E0
CTBRQS = 0.0E0
N 2
T( 1 ) = 2*N - 1
T(2) = N - 1 .
T(3)=2*N+1 N
DO 70 J - 1,JX
PK3.J) - (T( 1)*PI(2,J)*CSTHT(J)-FLOAT(N)*PI( 1,J))/T(2>
TAU(3,J) = CSTHT(J)*(PI(3,J)-PI(1,J))-T< 1) *SI2THT( J)*PI(2,J>+
1 TAU( 1 , J)
CONTINUE
VM1 = ¥FN( 1)
WFN( 1) = WFN(2)
WFN(2) = T(1)*RX*WFN( 1) - WM1
TCI = ACAP(N)*RRF + FLOAT(N)*RX
TC2 = ACAP(N)*RF + FLOAT(N)*RX
FNA = (TC1*TA(3)-TA( 1) )/(TCl*VFN(2) - ¥FN(D)
TC2 = TC2
TA(3) = TA(3)
TA( 1) = TA( 1)
TCI TCI
WFN(2) = WFN(2)
WFN( 1) - ¥FN( 1)
FNB - (TC2*TA(3)-TA( 1) )/(TC2*VFN(2) - ¥FN(1))
T(5) = N
T(4) = T( 1)/(T(5)*T(2))
T(2) = (T(2)#(T(5) + 1.0E0))/T(5)
CTBRQS = CTERQS + T(2)*(TD( 1) *TB( 1) + TD(2)*TB(2) + TE( 1)*TC( 1)
(Continued)
348
-------
SUBROUTINE DAMIE (X,RFR,RFI ,THETD, JX,QEXT,QSCAT,CTBRQS,ELTRMX.
(4510)
(4511)
(4512)
(4513)
(4514)
(4515)
(4516)
(4517)
(4518)
(4519)
(4520)
(4521)
(4522)
(4523)
(4524)
(4525)
(4526)
(4527)
(4528)
(4529)
(4530)
(4531)
(4532)
(4533)
(4534)
(4535)
(4536)
(4537)
(4538)
(4539)
(4540)
(4541)
(4542)
(4543)
(4544)
(4545)
(4546)
(4547)
(4548)
(4549)
(4550)
(4551)
(4552)
(4553)
(4554)
(4555)
(4556)
(4557)
(4558)
(4559)
(4560)
(4561)
(4562)
(4563)
(4564)
(4565)
C
•
)
<
G
C'
c
C
G
75
80
90
100
115
120
I TEC2)#TCC2)) + T(4)*(TD( 1)*TE( 1
QEXT = QEXT + T(3)*(TB( 1)+TC< 1) )
T(4) = TB(1)**2 + TB(2)**2 + TC( 1)**2
QSCAT = QSCAT + T(3) *TC4)
T(2) = N*CN+1)
T(l) = T(3)/T(2)
WUTEC6,999j T(1),QEXT
K = CN/2)*2
DO 80 J = 1,JX
ELTRMX( 1,J,1)=ELTRMX(
J
, J
TDC2)*TEC2))
TCC2)**2
ELTRMXC 2 ,
ELTRMXC 3 ,
1 ) = ELTRMX( 2
1 ) = ELTRMX( 3
J,
J,
ELTRMX(4, J,
IF ( K .Eft.
ELTRMXC 1, J,2)=ELTRMX( 1
1)*CTBC 1)*PIC3, J)+TCC 1)*TAU(3,
1)+TC 1)*CTBC2)*PIC3,J)+TCC2)*TAUC3,
1)+TC 1)*CTCC 1)*PI(3,
) = ELTRMXC4, J, 1)+TC 1)*CTC(2)*PIC3,
N) GO TO 75
J,2) +TC 1)*CTBC 1)*PIC3,
,J)+TBC 1)*TAUC3
,J)+TBC2)*TAUC3
,2>=ELTKHX(2,
,2)=ELTRMXC3,
,2)=ELTRMXC4,
2)+T( 1)*(TB(2)*PI(3
2)+T( 1)*(TC( 1)*PI(3
2)+T( 1)*(TC(2)*PI(3
,J)-TCC1)*TAUC3,
,J)-TC<2)*TAU<3,
J))
J))
J))
J))
J))
J))
J)-TB<1)*TAU(3,J))
J)-TB(2)*TAU(3,J))
,2)=ELTRMXC1
,2)=ELTRMXC2
,2)=ELTRMXC3
J,2)+T( 1)*(-TB( 1)*PI(3, J)+TC( 1)*TAU(3,
J, 2) +T( 1) *( -TB( 2) *P I( 3, J) +TC( 2) *TAU( 3,
J))
J))
J,2)+T( 1)*(-TC(
J)+TB( 1)*TAU(3,J))
1.0E-6 ) GO TO 100
NMX2) GO TO 65
ELTRMXC2.J,
ELTRMXC 3,J,
ELTRMXC4,J.
GO TO 80
ELTRMXC1,J,
ELTRMXC 2, J,
ELTRMXC3,J,
ELTRMXC 4, J, 2) =ELTRMXC 4, J, 2) +TC 1) *C -TCC 2) *P IC 3, J) +TBC 2) *TAUC 3, J) )
CONTINUE
IFC TC4) .LT.
N = N + 1
DO 90 J = l.JX
PIC1.J) - PIC2.J)
PIC2,J) - PIC3,J)
TAUC1,J) - TAUC2,J)
TAUC2,J) = TAUC3,J)
CONTINUE
FNAP = FNA
FNBP = FNB
IF C N .LE.
NRITEC6.8)
CALL EXIT
DO 120 J = l.JX
DO 120 K = 1,2
DO 115 1= 1,4
TC I) - ELTRMXC I,
CONTINUE
ELTRMXC2,J,K) =
ELTRMXC 1,J,K) =
ELTRMXC3.J.K) =
ELTRMXC4,J,K) =
CONTINUE
TC1) = 2.0E0 * RX**2
QEXT = QEXT * T( 1)
WRITEC6,999) TCI),QEXT
FORMATC1H ,3E20.8)
QSCAT = QSCAT * TC1)
CTBRQS = 2.E0 * CTBRQS * TCI)
THE DETAIL ABOUT THIS SUBROUTINE CAN BE FOUND IN THE FOLLOWING
REPORT! SUBROUTINES FOR COMPUTING THE PARAM
ELECTROMAGNETIC RADIATION SCATTERED BY A SPHERE J.V. DAVE
,J,K)
TC 1)**2 +
TC3)**2 +
TC 1)*TC3)
TC2)*TC3)
TC 2)**2
TC4)**2
+ TC2)*TC4)
- TC4)*TC 1)
Exhibit Brl (Continued)
349
-------
SUBROUTINE DAHIE (X,RFR,RFI ,THETD, JX,QE3O',QSCAT,CTBRQS,ELTRMX,
(4566) C IBM SCIENTIFIC CENTER, PALO ALTO , CALIFORNIA.
(4567) C REPORT NO. 320 - 3236 .. MAY 1968 ..
(4568) 99999 RETURN
(4569) END
Exhibit B.-l (Continued)
350
-------
(4570)
(4571)
(4572)
(4573)
(4574)
(4575)
(4576)
(4577)
(4578)
(4579)
(4580)
(4581)
(4582)
(4583)
(4584)
(4585)
(4586)
(4587)
(4588)
(4589)
(4590)
(4591)
(4592)
(4593)
(4594)
(4595)
(4596)
(4597)
(4598)
(4599)
(4600)
(4601)
(4602)
(4603)
(4604)
(4605)
(4606)
(4607)
( 4608)
(4609)
(4610)
(4611)
(4612)
(4613)
(4614)
(4615)
(4616)
(4617)
(4618)
(4619)
(4620)
(4621)
(4622)
(4623)
(4624)
(4625)
C
C
C
C
C*
C*:
C*
55
60
65
70
75
80
SUBROUTINE PLKAX( ZEN ITH, THETA, ITHETA, CPAVE, GPS AVE, CNAVE, XALONG,
SUBROUTI NE PLMAX( ZEN I TH, THETA, I THETA, CPAVE, GPS AVE, CNAVE, XALONG,
1 SPECP.SPECB)
CALCULATE THE
LINE OF SIGHT
CHANGS IN SPECTRAL RADIANCE ALONG A SEGMENT OF THE
WITH SPECIFIED AVERAGE PLUME CONCENTRATIONS.
COMMON/RADPRP/BTAS04(39),BTACORC 39),BTAPRM(39),BTAAER( 39),
1PAER( 39,27),PPRIM(39,27),PSO4( 39,27),PCOR(39,27),BTABAC(39)
COMMON/OPTDEP/TAT0IZ(39),TATHIZ(39),TAT0HZ(39),X1(39),
1X2(39),TAUTDI(39),TAUT0D(39),XHDI(39),XH0D(39)
COMMON/MISC/ABSN02(39) ,SOLAR(39) , RAD,FORPIN, OMZC39) ,OMH(39) ,NTHETA
DIMENSION SPECPO9) ,SPECB(39)
TWOPI=.5/FORPIN
RHO=.3
RHOP1 = 0.5*RHO*TWOP I
XMU0=COS(RAD*ZENITH)
PRAY=0.75* (1.+COS(RAD*THETA)**2)
DO 50 1=1,39
FD0=SOLAR( I)*EXP(-TAT0IZ( D/XMU0)
FDH=SOLAR( I)*EXP(-TATHIZ( D/XMU0)
FDAV=(FD0+FDH)*0.5
PTOT0D=XH0D(I)*PRAY+( 1.-XH0DCI))*PAER( 1,1THETA)
PTOT0D=PTOT0D*OMH(I)
:#*
COMPUTE THE PLUME TRANSMISSION
:*
TAUP1 = BTABAC(I)*XALONG
TAPSO4= BTAS04(I)*CPSAVE*XALONG
TAPNO2=ABSN02(I)*CNAVE*XALONG
TAPRIM= BTAPRM( I) *CPAVE*XALONG
TAUP2= TAPS04+TAPN02+TAPRIM
TAPTOT= TAUP1+TAUP2
IF((TAPSO4+TAPRIM).Ea.0.0)GO TO 55
XD2=TAPS04/(TAPS04+TAPRIM)
GO TO 60
XD2=0.0
IF(TAUP2.
OMEGAP=1
GO TO 70
OMEGAP=1.
PTOTPL=XD2*PS04( I,
TP1 = EXP(-TAUP1)
TP2=EXP(-TAUP2)
TPTOT=EXP(-TAPTOT)
PTOT0D=XH0D(I)*PRAY+( l.-XH0D( I))*PAER(I,ITHETA)
PTOT0D=PTOT0D*OMH(I)
IF( TAPTOT.EQ.0.0)GO TO
XI1=TAUP2/TAPTOT
GO TO 80
Xll=0.0
CONTINUE
SPECPC I)=SPECP( I)*TTTOT+X11*OMEGAP*FORPIN*PTOTPL*FDAV*( 1.-TPTOT
1 ) + (1.-XI1)#FORPIN*PTOT0D#FDAV*( 1.-TPTOT)
DIFUSE=XMU0*SOLAR< !)*( 1 .-EXP(-TAT0IZ( I)/XMU0)*( l.-RHO))
DP=DIFUSE*< XI l*OMEGAP+( 1. -XI1)) *< 1. -TPTOT)
DP=DP/( TWOPI-RHOPI)
,EQ.0.0)GO TO 65
.-TAPN02/TAUP2
ITHETA) + ( 1.-XD2)*PPRIM( I,ITHETA)
75
Exhibit B-l (Continued)
351
-------
SUBROUTINE PLMAX( ZEKITH,THETA,ITEETA,CPAVE,CPSAVE,CN AVE,XALONG,
(4626) SPECP(I)=SPECP(I)+DP
(4627) SPECB( I)=SPECB(I)*TP1+FORPIN*PTOT0D*FDAV*(1.-TP1)+DIFUSE*( 1,
(4628) 1 TP1)/(TWOPI-RHOPI)
(4629) 56 CONTINUE
(4630) RETURN
(4631) END
Exhibit B-l (Continued)
352
-------
FUNCTION CLOCK(T1,IINC)
(4632)
(4633) C
(4634) C
(4635) C
(4636) C
(4637)
(4638)
(4639)
(4640)
(4641)
(4642)
(4643)
(4644)
(4645)
(4646)
****
FUNCTION CLOCK(Tl,I INC)
ADD A TIME IN MINUTES TO A 2400 HOUR TIME AND RETURN A 2400
HOUR TIME
T2 = I INC
1100 = INT(T1/100.)
T3 = Tl-100.0*FLOAT(1100) + T2
1100 = 1100 + INT(T3/60.)
CLCK=FLOAT(I100)*100.0 + T3 -60.0 * FLOAT(INT(T3/60.))
T4=CLCK-FLOAT(IFIX(CLCK) /100)*100.
CLOCK=CLCK
IF(T4.GT.59.) CLOCK= CLCK-40.
RETURN
END
Exhibit B*1 (Continued)
353
-------
(4647)
(4648)
(4649)
(4650)
(4651)
(4652)
(4653)
(4654)
(4655)
(4656)
(4657)
(4658)
(4659)
(4660)
(4661)
(4662)
(4663)
(4664)
(4665)
(4666)
(4667)
(4668)
(4669)
(4670)
(4671)
(4672)
(4673)
(4674)
(4675)
(4676)
(4677)
(4678)
(4679)
(4680)
(4681)
(4682)
(4683)
(4684)
(4685)
(4686)
(4687)
( 4688)
(4689)
(4690)
(4691)
(4692)
(4693)
(4694)
(4695)
(4696)
(4697)
(4698)
(4699)
(4700)
( 470 1 )
( 4702)
C
C
C
C
C
C
C
10
C
C
C
11
C
C
C
12
C
C
C
20
C
C
C
C
C
21
SUBROUTINE PLMIN( RPR, ROR.SY.RP, YINTR)
SUBROUTINE PLMIN( RPR, ROR.SY.RP, YINTR)
SUBROUTINE TO RECALCULATE PLUME CENTROID WHEN OBSERVER OR BACKGROUND
OBJECT IS WITHIN THE PLUME.
YINTRF=0.5
YINTRB=0.5
YINTR=YINTRF+YINTRB
IFCRPR.LT.2.17.AND.ROR.GT.2.17)GO TO 10
IF(RPR.GT.2.17.AND.ROR.LT.2.17)GO TO 20
IFCRPR.LT.2.17.AND.ROR.LT.2.17)GO TO 30
OBSERVER IN PLUME
RPHALF=0.18*(RPR+0.25)+0.153*(RPR+0.75)+0.167*(RPR+1.5)
IF(RPR.GT.0.5)GO TO 11
OBSERVER > 1/2 SIGMA-Y FROM CEN1. RLINE.
YINTRl=(RPR/0.5>*0.18
YINTRF=YINTR1
YINTR=YINTRF+YINTRB
RP= ( (RPR*YINTRl/2.+RPHALF)/YINTR)*(SY/1000.)
GO TO 100
IF(RPR.GT. 1.0) GO TO 12
OBSERVER BETWEEN 1/2 AND 1 SIGMA-Y FROM CENTERLINE OF PLUME.
YINTRl=((RPR-0.5)/0.5)*0.153
YINTRF=YINTRl+0.18
YI NTR= YINTRF+YINTRB
RP= ( ( ( RPR-0.5) /2. *YINTR1 ---RPHALF) /YI NTR) *SY/1000.
GO TO 100
YINTR1=
-------
(4703)
(4704)
(4705)
(4706)
(4707)
(4708)
(4709)
(4710)
(4711)
(4712)
(4713)
(4714)
(4715)
(4716)
(4717)
(4718)
(4719)
(4720)
(4721)
(4722)
(4723)
(4724)
(4725)
(4726)
(4727)
( 4728)
(4729)
(4730)
(4731)
(4732)
(4733)
(4734)
(4735)
(4736)
(4737)
( 4738)
(4739)
( 4740)
( 474 1 )
(4742)
(4743)
(4744)
(4745)
(4746)
(4747)
( 4748)
(4749)
(4750)
(4751)
(4752)
(4753)
(4754)
(4755)
(4756)
(4757)
(4758)
C
C
C
22
C
C
C
30
C
C
C
C
C
C
31
C
C
C
C
32
C
C
C
C
SUBROUTINE PLMIN(RPR,ROR,SY,RP,YINTR)
OBJECT BETWEEN 1/2 AND 1 SIGMA- Y FROM PLUME CENTERLINE.
YINTRl=((ROR-0.5)/0.5)*0. 153
YINTRB=YINTRl+0. 18
YINTR=YINTRF+YINTRB
RP=( (RPFRNT+(RPR+(ROR-0.5)/2. ) *YINTRl+( RPR+0. 25) *0. 18) /YINTR)*
1 SY/1000.
GO TO 100
CONTINUE
OBJECT BETWEEN 1 AND 2.17 SIGMA-Y FROM PLUME CENTERLINE.
YINTR1 = ( ROR- 1 . 0) *0 . 142
YINTRB=YINTRl+0. 18+0. 153
YINTR=YINTRF+YINTRB
RP=( (RPFRNT+(RPR+ (ROR- 1.0) /2. )* VI NTR1 + CRPR+0. 75)*0. 1 53+ ( RPR+0. 25)
1 *0. 18) /YINTR) *SY/ 1000.
GO TO 100
CONTINUE
BOTH OBSERVER AND OBJECT IN PLUME.
IF(RPR.GT.0.5)GO TO 35
IF(ROR.GT.0.5)GO TO 31
BOTH OBSERVER AND OBJECT ARE WITHIN 0.5 SIGMA-Y OF THE PLUME CENTERLINE
YINTRl=(RPR/0.5)*0. 18
YINTR2=(ROR/0.5)*0. 18
YINTR=YINTR1+YINTR2
RP= ( ( RPR* YINTR 1/2 . + ( RPR+C ROR/2 . ) ) *YINTR2) /YINTR) *SY/ 1000 .
GO TO 100
IF(ROR.GT. 1.0) GO TO 32
OBJECT BETWEEN 0.5 AND 1.0 SIGMA-Y FROM CENTERLINE AND
OBSERVER < 0.5 SIGMA-Y FROM CENTERLINE OF PLUME.
YINTRl=(RFR/0.5)*0. 18
YINTR2=((ROR-0.5)/0.5)*0. 153
YINTRB=YINTR2+0. 18
YINTR=YINTR1+YINTRB
RP= ( ( RPR*YINTRl/2 . + ( RPR+0 . 5+ ( ROR-0 . 5 ) /2 . ) *YINTR2+ ( RPR+0 . 25) *0 . 18)
1 /YINTR)*SY/1000.
GO TO 100
YINTRl=(RPR/0.5)*0. 18
OBJECT BETWEEN 1.0 AND 2.17 SIGMA-Y FROM CENTERLINE AND OBSERVER
< 0.5 SIGMA-Y FROM CENTERLINE.
YINTR2=(ROR-0.5)*0. 142
YINTRB=YINTR2+0. 153+0. 18
YINTR=YINTR1+YINTRB
RP= ( ( RPR*YINTRl/2 . +( RPR+ 1 . 0+( ROR- 1 . ) /2 .
1 +(RPR+0.25)*0. 18)/YINTR)*SY/1000.
GO TO 100
) *YINTR2+( RPR+0 . 75 ) *0 . 153
Exhibit Brl (Continued)
355
-------
SUBROUTINE PLMIN< RPR,ROR, SY, RP, YINTR)
(4759)
(4760)
(4761)
(4762)
(4763)
(4764)
(4765)
(4766)
(4767)
(4768)
(4769)
(4770)
(4771)
(4772)
( 4773)
( 4774)
(4775)
(4776)
(4777)
( 4778)
(4779)
(4780)
(4781)
( 4782)
(4783)
( 4784)
(4785)
(4786)
(4787)
( 4788)
(4789)
(4790)
( 479 1 )
(4792)
(4793)
(4794)
(4795)
(4796)
(4797)
( 4798)
(4799)
(4800)
(4801)
(4802)
(4803)
( 4804)
(4805)
(4806)
(4807)
( 4808)
(4809)
(4810)
(4811)
(4812)
(4813)
(4814)
35
C
C
C
C
36
C
C
C
C
37
C
C
C
40
C
C
C
C
41
C
C
C
C
IFCRPR.GT.1.0)GO TO 40
IF(ROR.GT.0.5)GO TO 36
OBJECT < 0.5 SIGMA-Y FROM CENTERLINE AND OBSERVER BETWEEN 0.5 AND
1.0 SIGMA-Y FROM CENTERLINE OF PLUME.
YINTRl=<(RPR-0.5)/0.5)*0.153
YINTRF=YINTRl+0.18
YINTR2=(ROR/0.5)*0.18
YINTR=YINTRF+YINTR2
RP=(((RPR-0.5)*YINTRl/2.+(RPR-0.25)*0. 18+(RPR+ROR/2. )*YINTR2)
1/YINTR)*SY/1000.
GO TO 100
IF(ROR.GT.1.0)GO TO 37
BOTH OBSERVER AND OBJECT BETWEEN 0.5 AND 1.0 SIGMA-Y FROM
PLUME CENTERLINE.
YINTR1=((RPR-0.5)/0.5)*0.153
YINTRF=YINTRl+0.18
YINTR2=((ROR-0.5)/0.5)*0.153 ^
YINTRB=YINTR2+0. 18
YINTR=YINTRF+YINTRB
RP= ( ( (RPR-0.5)*YINTRl/2.+(RPR-0.25)*0.18+(RPR+0.5+(ROR-0.5)/2.)
1 *YINTR2+(RPR+0.25)*0\ 18)/YINTR)*SY/1000.
GO TO 100
YINTRl=((RPR-0.5)/0.5)*0.153
SIGMA-Y FROM PLUME CENTERLINE AND OBJECT
FROM PLUME CENTERLINE.
OBSERVER BETWEEN 0.5 AND 1.0
BETWEEN 1.0 AND 2.17 SIGMA-Y
YINTRF=YINTRl+0.18
YINTR2=(ROR-1.0)*0.142
YINTRB=YINTR2+0.153+0.18
YINTR=YINTRF+YINTRB S
RP=(((RPR-0.5)*YINTRl/2.+( RPR-0.25)*0. 18+(RPR+1.0+(ROR- 1. )/2. )
1 *YINTR2+(RPR+0.75)*0.153+(RPR+0.25)*0.18)/YINTR)*SY/1000.
GO TO 100
IF(ROR.GT.0.5)GO TO 41
OBSERVER BETWEEN 1.0 AND 2.17 SIGMA-Y FROM PLUME CENTERLINE AND
OBJECT < 0.5 SY FROM PLUME CENTERLINE.
YINTR1=(RPR-1.0)*0.142
YINTRF=YINTRl+0.18+0.153
YINTR2=(ROR/0.5)*0.18
YINTR=YINTRF+YINTR2
RP=( ( (RPR-1.)*YINTRl/2.+(RPR-0.75)*0.153+(RPR-0.25)*0.18+(RPR+RORX
1 2.)*YINTR2)/YINTR)*SY/1000.
GO TO 100
IF(ROR.GT. 1.0) GO TO 42
OBSERVER BETWEEN 1.0 AND 2.17 SIGMA-Y FROM PLUME CENTERLINE AND OBJECT
BETWEEN 1.0 AND 1.5 SIGMA-Y FROM PLUME CENTERLINE.
YINTRF=YINTRl+0.18+0.153
YINTR2=( (ROR-0.5)/0.5)*0.153
Exhibit tl (Continued)
356
-------
(4815)
(4816)
(4817)
(4818)
(4819)
(4820)
(4821)
(4822)
(4823)
(4824)
(4825)
(4826)
(4827)
( 4828)
(4829)
(4830)
( 483 1 )
(4832)
(4833)
42
C
C
C
C
100
SUBROUTINE PLKIN( RPR,ROR,SY, RP.YINTR)
YINTRB=YINTR2+0.18
YINTR=YINTRF+YINTRB
RP=(((RPR-1.0)*YINTRl/2.+(RPR-0.75)*0. 153+(RPR-0.25)*0. 18+CRPR+0.5
1 +( ROR-0.5)/2.)*YINTR2+(RPR+0.25)*0.18)/YINTR)*SY/1000.
GO TO 100
YINTR1=(RPR-1.0)*0.142
BOTH OBSERVER
CENTERL1NE.
AND OBJECT BETWEEN 1.0 AND 2. 17 SIGMA-Y FROM PLUME
YINTRF=YINTRl+0.18+0.153
YINTR2=(ROR-1.0)*0.142
YINTRB=YINTR2+0.153+0.18
YINTR=YINTRF+YINTRB
RP= (((RPR-1.0) *YINTRl/2. +( RPR-0.75)*0. 153+C RPR-0.25) *0. 18+( RPR+1, 0
1 +( ROR- l.)/2.)*YINTR2+ (RPR+0.75 )*0. 153+ (RPR+0.25) *0. 18)/YINTR)*SY/
21000.
RETURN
END
Exhibit &-1 (Concluded)
357
-------
APPENDIX C
USER'S GUIDE TO VISPLOT: GRAPHICS OUTPUT FOR PLUVUE
The theoretical aspects of the visibility model PLUVUE are presented
in the main text. This section describes the use of VISPLOT, a graphics
software package that can be used in conjunction with PLUVUE. VISPLOT
takes the four parameters that characterize visibility impairment (percent
visual range reduction, blue-red ratio, plume contrast, and ££) from
PLUVUE and presents them in a graphic form. VISPLOT has the capability of
presenting the four parameters on a line printer or an off-line plotter.
Off-line plotting requires the use of standard CALCOMP routines. VISPLOT
is written in American National Standards Institute (ANSI) FORTRAN IV as
defined in ANSI publication X.39-1966.
Input Card Formats
A set of five to seven cards is required as input to VISPLOT:
> Overall control card.
> Axis scaling cards (optional).
> Title card.
> Set of azimuth angles (or downwind distances).
> Set of parameter cases (numeric labels).
> Set of alphanumeric labels for each parameter case
(optional).
> Wind speed, wind direction, and stability class.
The formats for each of the above cards are given in table C-l. A
set of wind speed, wind direction, and stability class is required for
each set of PLUVUE results. The input card deck is assigned to FORTRAN
359
-------
TABLE C-l . INPUT CARD FORMATS
Card
Column Format
Description
Overall control
Horizontal axis
maximum (optional)
1 - 10 F10.0
11 - 20 F10.0
21 - 30 F10.0
31 - 40 F10.0
41 - 50 F10.0
51 - 60 F10.0
1-10 F10.0
Choice of line-of-sight geometry,
Zero: observer-based lines of
sight.
Nonzero: plume-parcel-based line
of sight.
CALCOMP plotting option; user
must provide standard CALCOMP
routines.
Zero: line-printer plot only.
Nonzero: line-printer and
off-line pljjts.
Number of sets of PLUVUE results
to be plotted.
Flag to keep ordinate axis at
default values or to determine
new axis minimum and maximum
from PLUVUE results.
Zera: default values.
Positive nonzero: PLUVUE deter-
mined axis scales.
Negative nonzero: user-input.
values of ordinate axis minimums
and maximums.
Number of parameter cases per
plot; maximum is 8.
Alphanumeric labels flag (labels
for each parameter case).
Input horizontal axis maximum
only if plume-parcel-based line
of sight is used.
Default = 350 km. A zero or a
blank is a default.
360
-------
TABLE C-l (continued)
Card
Vertical axis
dimension (optional)
Column Format
Description
Title
Azimuth angles (or
downwind distance)
1-10 8F10.0 Minimum t£ axis value;
Default = 0.0.
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
1 - 80
1 - 5
6 - 10
11 - 15
76 - 80
80A1
16F5.0
Maximum t£ axis value;
Default = 40.0.
Minimum contrast axis value;
Default = - 0.6.
Maximum contrast axis value;
Default = 0.2.
Minimum blue-red ratio;
Default = 0.4.
Maximum blue-red ratio;
Default = 1.2.
Minimum visual range reduction;
Default * 0.0.
Maximum visual range reduction;
Default = 75.0.
A -999. in any field will
represent the use of the default
values.
Title used for the caption.
Azimuth angles (or downwind
distances) used in the PLUVUE
run;
maximum of 16 values. Azimuth
angles are entered if observer-
based lines of sight are used;
downwind distances are entered if
plume-based lines of sight are
used.
361
-------
TABLE C-l (concluded)
Card
Viewing backgrounds
(or wind speed cases)
Column Format
1 - 5
6 - 10
11 - 15
8F5.0
Description
A numeric label for the different
parameter cases should be the
same number of values as that
entered in columns 41 - 50 of the
control card.
36 - 40
Alphanumeric label card 1-12 3A4
(optional)
Stability class, wind 1-5
speed and wind direction
card*
F5.0
6 - 10 F5.0
11 - 15 F5.G
ATphanumeric labels for each of
the parameter cases above. One
card for each label.
Stability class 1 * neutral,
2 = stable
Wind speed in units of
meters/second.
Wind direction in degrees azimuth
(from the north).
s
There should be one card for each set of PLUVUE results.
362
-------
unit 5. A sample input deck is shown in exhibit C-l. The optical results
from PLUVUE are assigned to FORTRAN unit 7. For the plume-parcel-based,
line-of-sight runs, the results of the different runs representing
different parameter values can be merged into one file (locally named
TAPE7). The user is referred to the main text of this user's manual for a
description of these file formats. If the CALCOMP plotting option is
desired, then the user must provide a set of standard CALCOMP routines;
the CALCOMP routines required by VISPLOT are as follows:
> SUBROUTINE PLOTS (X.Y.IX)
> SUBROUTINE PLOT (X.Y.IX)
> SUBROUTINE SYMBOL (X,Y,HT,ITX,ANG,NCHR)
> SUBROUTINE NUMBER (X,Y,HT,FPN,ANG,NDEC)
> SUBROUTINE NEWPEN (IPEN)
For users without access to these CALCOMP routines, dummy routines
may be needed in order to run the VISPLOT program. To generate the dummy
routines, the user must have the following cards for each of the above
routines:
> SUBROUTINE (argument list) •
> RETURN
> END
For users with standard CALCOMP routines, no modification of VISPLOT
is required. The user should check that the five routines have the same
names on his system as those listed above.
Examples of off-line and line-printer line plots are shown in
exhibits C-2 and C-3, respectively, for the example input shown in
exhibit C-l.
363
-------
CO
(Tt
•P*
0. I . I . 0. 4.
T1I1S IS A TEST PLOT
1«>.6 21.1 2U.6 20.1 'J9.7 03.7 46.3 69.31 IO.UI4:>. I 16 1.6I69.UI74.6I77.7179.0101.4
I. 2. 3. 4.
4.3 4. 11.3
Exhibit C-l. Example of an input card deck
-------
l-CLEh.r; Sf.Y , 2-liiiITE 03JECT, 3-GRflY CS.'ECT .
;:JZCT.
or
70
g 60.
£50
o
bl
* 40
>30
K
520
bJ
Mo
0
735~ i£;'J
flZIMUTH flNT-LE
ExMbit C-2. This is a test plot—stable condition, 2 M/S wind speed,
11.3 degree wind direction
365
-------
i;
CO
en
en
U».UO+
OLi.om
2;i.0()
li iM.oo
i:
i.
T
A I!J.w»
• »
12.00
II.OJ
4. UO
0
0 0* 00*0
00* 0X0
OX f •••+•»• >+ 0
00 +
If:.': -f
O
0
w +
«o
o+
o
X
:R
O
0
O
O
* o
+0
0
0
.!.(»
*
0
xo
0
O
o
o
U.00«- ^ + +—
0.0 30.0 60.0 ')0.0
+ 4- I 4 + —
11:0.0 i:;o.o f:::i.o ::io.<> :i-:o.o
AZ i run ii AUCI.K ( IH-:«:HKI-:U)
+ +_.
270.0 UOO.O
uoo.o :IGO.O
THIS IS A TKtfT PLOT
STAUI.Ii Cdll I) I Tl ON. 2.J \\-"J Wllll) SI'EliD II . :i IC-K.MKK 1/IIW
Y on.ip.UT
'Exhibit C-3. Example of line-printer output
-------
I'
I.
I)
o
T
II
\
:-•
T
0. 11!
0 . 04
-0.0',
-O. 12
-0.211
-0.44
-0.52
O
X
0
X
•KX
O
X
no
o
o o
o
n
o o
RO 0 X o :<
x x x x o *xo oo oo o n
:."0 O X 00*00 0^ -H * + * OMOOO O f)l:
xo ;<
+ *+
so or.
*
0.0 30.0 00.0 90.0 120.0 1T>0.0 IHO.O 210.0 240.0 270.0 300.0 300.0 300.
AZIMUTH AHCI.R (III-XIIKF^)
THIS IS /V TEST PLOT
STAHLE CONDITinn. ~2.2 M/« WIFH) SPEFCD
ASSIIHCI) VIEI/IHC
CLKACl SKY
.:i DKCIIKI; wirm DMIECTIOM
2.M;:) VIUTli OMJECT 3. = (X) CI1AY ODJECT 4.«(0) BLACK OUJKCT
Exhibit C-3 (continued)
-------
I)
I.
II
r
II
i:
M
T
I
n
00
I .00
1.20*
I. 10
l.uo
U .
O.J',0
O.70
0.30
*
*
XX *
+ X *
0 +
o or:*
o
X
O
X *
O *
X
OX*
0 X>
X X*
o :;* MM
o;» oo ooxonxooxoooxooxoox
x
ox
i=X
0
O
X
XO
O
ox
xox
y
0.0 00.0 60.0 90.0 ICO.O 150.0 !IK».0 SIO.O 2-:0.0 2VO.O 000.0 000.0 000.0
THIS IS A TKST PLOT
STADI.G 'COHD1TIOII,
ni vn:wun:
2.2 M/9 WUH) SPERD
M. n iM-T.nr.i-'. wini) DIRECTION
KIUTK
C.»(X)
OBJECT
HLACK
Exhibit C-3 (continued)
-------
I*
H
n
c
N
T
V
I
s
II
i:
i
CO i,
WII1TK OIUKCT 3.-(X) GRAY OBJECT 4.MO) DLACK OBJECT
Exhibit C-3 (concluded)
-------
Appendix 0
VISPLOT SOURCE CODE
371
-------
(0001)
(0002)
(0003)
(AAA >4 \
UWU4)
(0005)
(0006)
(0007)
(0008)
(0009)
(0010)
(AA f 1 \
uu 11;
(0012)
(0013)
(0014)
(0015)
(0016)
(0017)
(0018)
( AA 1 Q \
V v v 1 » /
(0020)
(0021)
(0022)
/ AAOO \
V vVfcO /
(0024)
(0025)
(0026)
(0027)
(0028)
(0029)
(0030)
(0031)
(0032)
(0033)
(0034)
(0035)
(0036)
(0037)
(0038)
(0039)
(0040)
( 004 1 )
(0042)
(0043)
(0044)
(0045)
(0046)
(0047)
(0048)
(0049)
(0050)
( 005 1 )
(0032)
(0053)
(0054)
(0055)
(0056)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
G
C
C
C
C
C
C
C
C
C
G
C
C
C
C
C
C
C
PROGRAM VISPLT ( INPUT, OUTPUT, TAPES' INPUT, TAPE6=OUTPUT, TAPE? ,
1TAPE8,TAPE9)
VISPLT IS PART OF A SET OF SOFTWARE PACKAGE USED IN
VISIBILITY STUDY PROGRAMS. VISPLT IS A GRAPHICS PACKAGE
INCORPORATING CALCOMP PLOTTING ROUTINES (IF DESIRED)TO PLOT THE
RESULTS GENERATED FROM THE VISIBILITY MODEL, PLUVUE.
FORTRAN FILE UNITS
TAPE 5 - INPUT FILE (CONTROL OPTIONS, TITLES, ETC)
TAPE 6 - OUTPUT FILE (LINE PRINTER PLOTS, ETC)
TAPE 7 - PLUVUE RESULTS
MAIN ROUTINE
COMMON BLOCKS
COMMON /PLTS/ PLTH 18,8) ,PLT2( 18,8) ,PLT3( 18,8) ,
1 PLT8( 18,8),PLT1A( 18,8.2) ,PLT2A( 18,8.2) .
1 PLT3A( 18.8,2) ,PLT4A( 18,8,2)
COMMON /CPLT/ FRST(4) ,FIN( 4) .SCALK 4) ,TSTP(4) , ASTP(4) ,
1 NDEC(4) , ITITLE(5,4) ,NT(4),XMAX
COMMON /POOL/ XSIZ,YSIZ,CYCSIZ,X( 18) , INDX. IC1
COMMON /ITIT1/ ITIT(80) ,KALCMP, IOBS
COMMON /NEED1/ SCTANG(8) , IC2, ISTB, WIND, WDIR
COMMON /LBL2/ LBEL(3,B) v
VARIABLES IN COMMON BLOCKS ARE INITIALIZE IN THE UNLABELLED
BLOCK DATA. LOCAL VARIABLES ARE INITIALIZED HERE
DATA XOFF , YOFF/ 1 . , 1 . 5/
DATA NX.NANG/16,4/
READ CONTROL CARD WITH OPTIONS
READ (5,100) OBSVUE.CALCMP, CASE, AXFLAG, CAS l.ALBL
IOBS=IFIX(OBSVUE+0. 1)
KALCMP=IFIX(CALCMP+0. 1)
ICAS=IFIX(CASE+0. 1)
IAX=IFIX(AXFLAG+0. 1)
IF (AXFLAG.LT.O.) IAX=-1
IC1=IFIX(CAS1+0. 1)
LBLl=IFIX(ALBL+e. 1)
READ IN AXIS SCALING (IF DESIRED)
372
-------
,I*1,3>
2 CONTINUE
3 CONTINUE
SET UP X SCALING FACTOR FOR CALCOMP USE
X( 17) =0.
X(18) = XSIZ/XMAX
IF (IOBS.GT.0) X(1B)=CYCSIZ
READ PLUVUE RESULTS AND PLOT THEM
FIRST INITIALIZE PLOT PACKAGE
IF (KALCMP.LE.0) GO TO 4
CALL PLOTS(X1,Y1,14)
CALL PLTAX(0.07,0.07,999.,2.)
4 CONTINUE
DO 25 1=1,ICAS
READ (5,125) ISTB,WIND,WDIR
CALL RDPLT (IOBS,PLT1A,PLT2A,PLT3A,PLT4A,IC1)
373
-------
(0113)
(01 14)
(0115)
(0116)
(0117)
(0119)
(0120)
(0121)
(0122)
(0123)
(0124)
(0125)
(0126)
(0127)
(0128)
(0129)
(0130)
(0131)
(0132)
(0133)
(0134)
(0135)
(0136)
(0137)
(0138)
(0139)
(0140)
(0141)
(0142)
(0143)
(0144)
(0145)
(0146)
(0147)
(0148)
(0149)
(0150)
(0151)
(0152)
(0153)
(0154)
(0155)
(0156)
(0157)
(0158)
(0159)
(0160)
(0161)
(0162)
(0163)
(0164)
(0165)
(0166)
(0167)
(0168)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SET DP ORIGIN AND ABSCISSA
IF (KALCMP.GT.O)
1CALL ORCPLT (IOBS,XSIZ,X(18),I,ISTB,WIND,VDIR,JALPHA,XttAX,IAX)
JALPHAM
DRAW EACH OF THE FOUR PLOTS
PLOT 4 — LIGHT IITTENSITY ETC
INDX-1
CALL WMNMX (PLT4A( 1, 1, JALPHA) , IB,NX, 1 ,ZMIN,ZMAX)
IF (IAX.GT.O) FRST(4)=ZMIN
IF (IAX.GT.O) FIN(4)*ZMAX
PLT4A( NX+1,1, JALPHA) = FRST( 4)
SCAL1(4) = YS IZ/( F IN(4)-FRSTC 4))
CALL PLOTIT(FRST(4) ,F1N(4: SCALH4) ,TSTP(4) , ASTP(4) ,
1 NDEC(4),INDX,Ni:4),PLT4A(1,1,JALPHA))
CALL ISOPLT (A.B.3)
MOVE PEN UP (IF CALCOMP PLOTTING )
IF (KALCMP.LE.O) GO TO 5
CALL PLOT (8.,\ 'IZ+0.I,-3)
3 INDX=2
PLOTS ~
PLUME CONTRAST
CALL WMNMX( PLT3AC 1.1. JALPHA), 18, NX, l.ZMIN.ZMAX)
IF (lAX.GT.e) FRST(1)=ZM1N
IF (lAX.GT.e) FIN(3,=ZttAX
SCAL1(3)=YSIZ/( FIN(3)-FRST(3))
PLT3A( NX+1,1, JALPHA) =FRST( 3^
CALL PLOTIT (FRSTC3) ,FIN(3) .SCALK3) ,TSTP(3),ASTP(3) ,
1 NDEC(3),INDX,NT(3).PLT3A(1,1,JALPHA))
CALL ISOPLT(A,B,3)
MOVE PEN UP FOR NEXT PLOT
IF (KALCMP.LE.9) GO TO 16
CALL PLOT (e.,YSIZ*e.l,-3)
PLOT2 — BLUE-RED RATIO
19 INDX=3
CALL WMNMX(PLT2AC 1.1.JALPHA), 18,NX, l.ZMIN.ZMAX)
IF (IAX.GT.8) FRST(2)sZMIN
IF (IAX.GT.6) FIN(2)=ZMAX
SCAL1 (2)=YSIZ/(FIN(2)-FRST( 2))
PLT2A( NX*1,1,JALPHA)= FRST( 2)
CALL PLOTIT(FRST(2),FIN(2),SCAL1(2),TSTP(2),ASTP(2),
1 NDEC(2),INDX.NT(2),PLT2A( 1,1,JALPHA))
CALL ISOPLT(A,B,3>
374
-------
(ei69)
(0170)
(0171)
(0172)
(0173)
(0174)
(0175)
(0176)
(0177)
(0178)
(0179)
(0180)
(0181)
(0182)
(0183)
(0184)
(0185)
(0186)
(0187)
(0188)
(0189)
(0190)
(0191)
(0192)
(0193)
(0194)
(0195)
(0196)
(0197)
(0198)
(0199)
(0200)
(0201)
(0202)
(0203)
(0204)
(0205)
(0206)
(0207)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
MOVE PEN DP FOR NEXT PLOT
IF (KALCMP.LE.0) GO TO 15
CALL PLOT (0..YSIZ+0.l,-3)
PLOT1 — VISIBILITY REDUCTION
15 INDX=4
CALL WMNMX(PLT1A(1, 1,JALPHA) . 18,NX, 1 .ZWIN.ZMAX)
IF (IAX.CT.O) FRST(1)=ZMIN
IF (IAX.GT.O) FINU)=ZMAX
SCALH J)=YS1Z/(FIN( 1)-FRST( 1))
PLT1 A( NX+1, 1, JALPHA) =FRST( 1)
CALL PLOTIT (FRST( 1) ,F1U( 1) ,SCALH 1) ,TSTP( 1) , ASTP( 1)
1 NDEC( J) , INDX, NT( 1) ,PLTlA( 1,1,JALPHA))
CALL ISOPLT(A,B,3)
PLOT HEADER
IF (KALCNP.LE.O) GO TO 25
CALL HEADER (YSIZ.IOBS)
SUBMIT CALCOMP PLOT
CALL PLOT (10.,2.,999)
25 CONTINUE
STOP
FORMAT STATEMENTS
I00 FORMAT (8FI0.0)
105 FORMAT (16F5.0)
110 FORMAT (BF10.0)
115 FORMAT (80A1)
120 FORMAT (3A4)
125 FORMAT (A4,1X.2F5.0)
~ END
375
-------
(6208)
(0209)
(6210)
( 82 1 1 )
(0212)
(0213)
(0214)
(0215)
(0216)
(0217)
(0218)
(0219)
(0220)
( 022 1 )
(0222)
(0223)
(0224)
C
C
C
C
C
C
C
SUBROUTINE ORGPLT ( 10BS, XSIZE.SCALEX, ICASE, ISTAB, WIND, VDIR, JALPHA,
1 XMAX, 1A»
SET UP ORIGIN AKD ABSCISSA FOR CALCOMP PLOTS
CALL PLOT(I.0,1.5,-3)
IF (IOBS.LE.O) CALL XAXSTT (XSIZE.SCALEX)
IF (10BS.LE.O) GO TO 5
CALL LOCTCK (XSIZE.SCALEX)
CALL LOGLBL(XHAX,SCALEX,XMAX, I AX)
SET IH TITLE
5 CALL TITLE (PLANT,ICASE,ISTAB,WIND,WDIR.RNOX,JALPHA)
RETURN
END
376
-------
(0225)
(0226)
(0227)
(0228)
(0229)
(0230)
(0231)
(0232)
(0233)
(0234)
(0235)
(0236)
(0237)
(0238)
(0239)
(0240)
( 024 1 )
(0242)
(0243)
(0244)
(0245)
(0246)
(0247)
( 0248)
(0249)
(0250)
(0251)
(0252)
(0253)
(0254)
(0255)
(0256)
(0257)
(0258)
(0259)
(0260)
(0261)
(0262)
(0263)
BLOCK DATA
C
C INITIALIZE
C
COMMON /PU
1
1
COMMON /CP]
1
COMMON /POI
COMMON /si:
COMMON /NEI
COMMON /LB]
C
DATA XSIZ,1
DATA FRST/I
DATA FIN /,
DATA TSTP,,
DATA PLT1A.
DATA NDEC/:
DATA SCTAN
DATA LBEL/'
1
2
3
DATA ITITL
1
2
3
DATA NT/20
DATA TVERT
DATA FT/IE
IE
6*
IE
6*
IE
IE
END
/PUTS/ PLTH 18,8) ,PLT2( 18,8) ,PLT3( 18,8) ,
PLT8(18,8),PLT1A(18,8,2),PLT2A(18,8,2).
PLT3A(18,8,2),PLT4A( 18,8,2)
/CPLT/ FRST(4) ,FIN(4) .SCALK4) , TSTP(4) , ASTP( 4) ,
NDEC(4),ITITLE( 5,4).NT( 4),XMAX
/POOL/ XSIZ,ySIZ,CYCSIZ,X( 18).INDX,IC1
/SIZE/ JGRID(97,40),TVERT(52,2),PT(20,4)
/NEED1/ SCTANG(8),IC2,ISTAB,WIND,VDIR
/LBL2/ LBEL(3,8)
XSIZ,Y5IZ,CYCSIZ/6.5,2.0,2.5/,XMAX/360./
FRST/0.,0.6,-.16,0./
FIN /20.,1.0,0.0,20./
TSTP,ASTP/4*0.,5.,0.1,0.02,5./
PLT1A/288*0./
NDEC/2*1,2,1/,IC2/4/
SCTANG XI.,2.,3.,4.,5.,6.,7.,8.x
LBEL/4HCLEA.4HR SK,4HY ,4HVHIT,4EE OB,
4HJECT,4HGRAY,4H OBJ,4HECT ,
4HBLAC.4HK OB.4BJECT,
12*4H /
ITITLE/4HPERC,4HNT V.4HIS R,4HEDUC,4HTION,
4EBLUE.4H-RED.4H RAT.4HIO ,4H
4HPLUM.4HE CO,4HNTRA,4HST ,4H
4EDELT,4HA E ,3*4H /
4,14,7/
04*4H /
PT/1BD,1BE,1EL,1BT,1BA,IB ,1BE,13*1B ,
1EP,IHL,1HU,IBM,1HE,IB ,1BC,1HO,1HN,1BT,IBB,ISA,IBS, 1BT,
6*1B ,
1EB,1EL,1HU,1HE,IB-,1HR,1EE, 1BD,IB , 1ER, 1HA,1BT,1BI,1BO,
6*1B ,
1EP,1EE,1ER, 1BC,1BN,1BT,IB ,1BV,1BI,IBS,IB , 1ER, 1EE,1ED,
1BU,1BC,1BT,1BI,1BO,1HN /
377
-------
(0264)
(0265)
(0266)
(0267)
(0268)
(0269)
(0270)
( 027 1 )
(0272)
(0273)
(0274)
(0275)
(0276)
(0277)
(0278)
(0279)
(0280)
(0281)
(0282)
(0283)
(0284)
(0205)
(0286)
(0287)
( 0288)
(0289)
(0290)
( 029 1 )
(0292)
(0293)
(0294)
(0295)
(0296)
(0297)
(0298)
(0299)
(0300)
(0301)
(0302)
(0303)
(0304)
(0305)
(0306)
C
C
C
C
C
C
C
C
C
SUBROUTINE RDPLT(IOBS,PLT1A,PLT2A,PLT3A,PLT4A,NNA)
READS PLUVUE RESULTS
DIMENSION PLTK18,8),PLT2(18,8),PLT3(18,8),PLT4(18,8)
DIMENSION PLTIA(18,8,2),PLT2A(18,8,2),PLT3A(18,8,2),
1 PLT4AC18,8,2),DUMMY(18,8,4)
NANG)
NANG)
NANG)
NANG)
((DUMMY(I,J,1) . I«1
((DUMHYC I, J, 2) , 1= 1, NX) , J= 1
((DUMMY( I.J.3) ,1=1,NX) ,J= 1
«DUMMY( I,J,4) , 1=1,NX) ,J=1
RANG=4
LM=1
READ(7)
READ(T)
READ(7)
READ(7)
DO 3 KM,NANG
DO 2 LM.NX
PLT1(L,K)«DUMMY(L,K 1)
PLT2(L , K) = DUMMY( L, K, *.)
PLT3( L, K) = DUMMY( L, K, 3)
PLT4( L.K) =DUMMY( L,K,4)
CONTINUE
CONTINUE
60 CONTINUE
THE CLEAR 3KY VALUES ARE PUT IN J* 1 FOR 1M/S CASE,
J-2 FOR 2M/S CASE, J*3 FOR 4M/S CASE. THIS ALLOWS
USE OF PLOT IT VxO ANY MAJOR CHANGES, BUT IT'S NOT
ELEGANT.
DO 50 J=1,NANG
DO 50 1=1. NX
11=1
IF (J.GT. l.AND.IOBS.%£.e) GO TO 10
PLT1A(II,J,1)=PLT1CI,J)
IF (PLTlA(II.J.l).LT.e.) PLT1A(II,J,1)=0.
10 CONTINUE
PLT2AC 1 1 , J , 1 ) =PLT2( I , J)
PLT3A(II,J,1)=PLT3( I,J)
PLT4 A( II , J , 1 ) = PLT4( I , J )
50 CONTINUE
RETURN
END
378
-------
(0307)
(0308)
(0309)
(0310)
(0311)
(0312)
(0313)
(0314)
(0315)
(0316)
(0317)
(0318)
(0319)
(0320)
(0321)
(0322)
(0323)
(0324)
(0325)
(0326)
(0327)
(0328)
(0329)
(0330)
(0331)
(0332)
(0333)
(0334)
(0335)
C
c
C
SUBROUTINE HEADERCYSIZ,JOBS)
*** PLACE MESSAGE AT TOP OF PLOTS
COMMON /LBL2/ LBEL(3,8)
COMMON /POOL/ XSZ,YSZ,CYCZ,XN<18),IND.IC1
IF (IOBS.LE.0)
1CALL SYMBOLC0..YSIZ+.35,.07,28B ASSUMED VIEWING BACKGROUND:,O.,28)
IF (10BS.CT.0)
1CALL SYMBOL(0.,YSIZ+.35,0.07,18B LEGEND: ,0.,18)
XX=999.
YY=999.
DO 2 1=1,IC1
IF ( I.EQ.l.OR.I.EQ.5) XX=0.
IF ( I.EQ.1) YY=YSIZ+0.2
IF (I.EQ.5) YY=YSIZ+0.05
CALL NUMBER (XX,YY,0. 07,FLOAT( I),0..-1)
IF (I.EQ.l.OR.I.EQ.5) XX=999.
IF ( I.EQ.l.OR.I.EQ.5) YY=999.
CALL SYMBOL (XX,YY,0.07,lH-,0.,I)
DO 1 J=l,3
CALL SYMBOL (XX,YY,0.07,LBEL(J,I),0.,4)
1 CONTINUE
CALL SYMBOL (XX,YY,0.07,2H, ,0.,2)
2 CONTINUE
RETURN
END
379
-------
(0336)
(0337)
(6338)
(0339)
(0340)
(0341)
(0342)
(0343)
(0344)
(0345)
(0346)
(0347)
(0348)
(0349)
(0350)
.(0351)
(0352)
C
C
G
10
SUBROUTINE LOCTCK (XSIZ.CYCSIZ)
*** DRAWS THE X-AXIS LOGARITHMIC TICK MARKS
DO 20 1=1,3
XO = (I-1)*CYCSIZ
DO 10 J=l,10
X « ALOG10 (FLOAT(J)) * CYCSIZ
IF (X0+X .GT. XSIZ) RETURN
CALL PLOT (X+XO.O.,3)
CALL PLOT (X+XO.0.07,2)
CONTINUE
20 CONTINUE
RETURN
END
380
-------
(0353) SUBROUTINE LOGX (X, I AX)
(0354) C
(0355) C *** SET OP.THE X VALUES FOR VISIBILITY PLOTS
(0356) C
(0357) DIMENSION X(18)
(0358) C
(0359) C
(0360) DO 10 1=1,16
(0361) X(I) = ALOGlO(Xd))
(0362) 10 CONTINUE
(0363) C
(0364) RETURN
(0365) END
381
-------
(0366)
(0367)
(6368)
(0369)
(0370)
( 037 1 )
(0372)
(0373)
(0374)
(0375)
(0376)
(0377)
(0378)
(0379)
(0380)
(0381)
(0382)
(0383)
(0384)
( 0385 )
(0386)
(0387)
( 0388)
(0389)
(0390)
( 039 1 )
(0392)
(0393)
(0394)
(0395)
(0396)
(0397)
(0398)
(0399)
(0400)
( 040 1 )
(0402)
(0403)
(0404)
(0405)
(0406)
(0407)
( 0408)
(0409)
(0410)
( 04 1 1 )
(0412)
(0413)
(0414)
(0415)
(0416)
(04J7)
(0418)
(0419)
(0420)
( 042 1 )
G
G
C
C
C
C
C
C
C
C
G
C
G
C
C
G
G
C
C
SUBROUTINE PLOTIT (FRST.FIN.SCALl,TSTP,ASTP.NDEC,ITITLE.NT,Y)
*** PLOTS THE SUBPLOTS
DIMENSION Y( 18,1)
COMMON /POOL/ XSIZ,YSIZ,CYCSIZ,X(18),INDX,ICI
COMMON /ITIT1/ ITIT(80),KALCMP, IOBS
COMMON /NEED/ FINXX.FINYY.FRSTX.FRSTY
COMMON /WLBL1/ FCTR, DIST,CHRSZ,NCHR,OZLBL
COMMON /NEED1/ SCTANG(8),IC2,ISTAB,WIND,WDIR
DATA F1RSTX,FINX,SCALEX,ASTPX,NDECX,TSTPX,ITITLX,NTX/0.,360. ,
1 .0181,0.,0,45.,1H .-!/
CHRSZ=0.07
NCHR=3
FCTR*.2
D1ST*100.
FRSTX=0.
FINXX=360.
FRSTY=FRST
FINYY=FIN
XX=FLOAT( INDX)
YYM.
CALL ISOPLT (XX,YY, 1)
X( 18) = 1./X( 18)
- GO TO LINE PRINTER NOTING IF CALCOHP IS NOT DESIRED
IF (KALCMP.LE.O) GO TO 5
*** DRAW A FRAME
CALL NEVPEN (2)
CALL BOX (0.,0.,XSIZ,YSTZ)
*** RESET PEN AND DRAW X-AXIS TfGKS
CALL NEWPEN ( 1)
IF (10BS.LE.0)
1CALL WXAXS(0. ,0.,FIRSTX,FINX,SCALEX,TSTPX,ASTPX.NDECX.O. , ITITLX,
1 NTX)
IF (IOBS.GT.O) CALL LOGTCK(XSIZ,CYCSIZ)
*** DRAW THE ORDINATE AXIS AND SET Y SCALING
IF (ITITLE.EG. 1) CALL WYAXS (0. ,0. ,FRST,FIN,SCAL1 ,TSTP,ASTP.NDEC,
1 90..20HDELTA E ,20)
IF ( ITITLE.EQ.2) CALL WYAXS (0. ,0. ,FRST,FIN,SCAL1 ,TSTP, ASTP.NDEC,
1 90.,20HPLUME CONTRAST ,20)
IF ( ITITLE.Ed.3) CALL WYAXS (0. ,0. .FRST.FIN.SCAL1 ,TSTP,ASTP.NDEC,
1 90.,20HBLUE-RED RATIO ,20)
IF (ITITLE.EQ.4) CALL WYAXS (0. ,0. ,FRST,FIN,SCAL1 ,TSTP. ASTP.NDEC,
1 90.,20HPERCNT VIS REDUCTION ,20)
*** MASK THE FRAME
382
-------
(0422)
(0423)
(0424)
(0425)
(0426)
(0427)
(0428)
(0429)
(0430)
(0431)
(0432)
(0433)
<0434)
(0435)
(0436)
(0437)
(0438)
(0439)
C
C
C
*** DRAW THE EIGHT CASES VITH SPLINED LABELED LINES
5 DO 20 ICASE=1,1C1
IC2 = ICASE
Y(J8,ICASE)=(FJN-FRST)/YSIZ
Y( 17, ICASE)=Y( 17, 1)
FCTR=FLOAT( ICASE)*0.15
OZLBL=SCTANG( ICASE)
CALL CURVE. (X, Y( 1, ICASE) , 16 ,
1,KALCMP,0,0,3.)
20 CONTINUE
NCHR=3
X( 18)«1./X( 18)
RETURN
END
383
-------
(6446)
(0441)
(0442)
(0443)
(0444)
(0445)
(0446)
(0447)
(0448)
(0449)
(0450)
(045 1)
(0452)
(0453)
(0454)
(0455)
(0456)
(0457)
(0458)
(0459)
(0460)
(0461)
(0462)
(0463)
(0464)
(0465)
(0466)
(0467)
(0468)
(0469)
(0470)
(0471)
(0472)
(0473)
(0474)
(0475)
(0476)
(0477)
(0478)
(0479)
(0480)
(0481)
(0482)
C
C
C
C
C
C
G
SUBROUTINE TITLE(PLAint, ICASE, ISTAB, WIND, WDIR.RNOX, J)
*** PLOTS THE TITLE
DIMENSION ALPHA(2),FIG(2),STAB(2,2)
COMMON /1TIT1/ ITIT(BO), KALCMP, IOBS
DATA ALPHA/90.,7.5/
DATA FIG/1HA,1HB/.JBLANK/1H /
DATA STAB/4HNEUT.4HRAL .4HSTAB.4HLE /
X=-1.0
y=-e.6
CALL SYMBOL(X,Y,0.1,8H FIGURE ,0.,8)
CALL NUMBER(999.,999.,0.1,FLOAT( ICASE),0.,-1)
DO 1 1=1,60
X=FLOAT( I-l)*0. 1
1 CALL SYMBOL(X,999.,0.1,ITIT(I),0.,1)
Xl=999.
Yl=999.
DO 2 1-1,20
IF ( ITIT(H-60).NE.JBLANK ) GO TO 3
2 CONTINUE _
Xl = 0.
Yl=Y-0.2
GO TO 7
3 DO 4 1=1,20
X=FLOAT(I)*0.1+0.8
4 CALL SYMBOL(X,Y-0.2,0. 1,ITIT( I+60),e.,l>
7 CONTINUE
CALL SYMBOL(XI,Yl,0. 1, TESTABILITY CLASS ,0. , 16)
CALL SYMBOL(999.,999.,0.1,ISTAB,0.,4)
CALL NUMBER(0.,Y-.4,0.1,WIND,0.,1)
CALL SYMBOL(999.,999.,0.1,16H H/S WIND SPEED ,e.,16)
x»-i.e
Y=-0.6 S,
CALL NUMBER(X+1. .Y-.6.0. 1,WDIR,0.,1>
CALL SYMBOL(999.,999.,0.1.23H KM VISUAL RANGE ,0.,23)
RETURN
END
384
-------
(0483)
(0484)
(0485)
(0486)
(048?)
(0488)
(0489)
(0490)
(0491)
(0492)
(0493)
(0494)
(0495)
(0496)
(0497)
(0498)
(0499)
(0500)
(0501)
(0502)
(0503)
(0504)
C
C
C
C
C
C
C
SUBROUTINE XAXSTT(XSIZ.SCALEX)
*** ANOTATES X-AXIS
DIMENSION V(9)
DATA V/0.,45.,90.,135.,186.,225.,270.,315..360./
Y0=-0.1
XO=-SCALEX*45.
X1=-XO
DO 10 J=l,9
XO=XO + XI
CALL NUMBER (XO,Y0,0.07.V(J),0.,-1)
10 CONTINUE
*** ADD TITLE
XX=2.46
CALL SYMBOL
RETURN
END
(XX,-e.22,e.07,23HAZINUTH ANCLE (DEGREES),0.,23)
385
-------
(0505)
(0506)
(0507)
(0508)
(0509)
(0510)
( 05 1 1 )
(0512)
(0513)
(0514)
(0515)
(0516)
(0517)
(0518)
(0519)
(0520)
(0521)
(0522)
(0523)
C
C
C
C
10
C
C
C
C .
SUBROUTINE LOGLBL (XMAX,CYCSIZ,X,IAX)
*** ANNOTATES THE LOGARITHMIC X-AXIS
DIMENSION V(10)
DATA V/l.,2.,4.,6.,18..20.,40.,60.,100.,200.X
Y0=-0.1
DO 10 JM.10
XO=ALOG10(V(J))*CYCSIZ
CALL NUMBER( X0,Y0,0.07,V( J),0.,-1)
CONTINUE
*** ADD TITLE
CALL SYMBOL (2.45,-0.22,0.07,22HDOVNWIND DISTANCE (KM),0.,22)
RETURN
END
386
-------
(6524)
(0525)
(0526)
(0527)
(0528)
(0529)
(0530)
(0531)
(0532)
(0533)
(0534)
(0535)
(0536)
(0537)
(0538)
(0539)
(0540)
(0541)
(0542)
(0543)
(0544)
(0545)
(0546)
(0547)
(0548)
(0549)
(0550)
CDECK
C
C
C
C
C
C
C
C
10
20
WMJTMX
SUBROUTINE WMNMX (Z,ND1 , NX, HY, ZMIN, ZMAX)
*** RETURNS THE MINIMUM AND MAXIMUM VALUES OF AN ARRAY
GVL/SAI DEC 77
DIMENSION Z(ND1,1)
ZMIN = +1.E20
ZMAX - -1.E20
*** GET MISSING VALUE
XXFLG=-999.
DO 20 J=1,NY
DO 10 1=1,NX
ZIJ = Z(I,J)
*** SKIP IF MISSING DATA
IF (ZIJ .EQ. XXFLG) GO TO 10
IF (ZIJ .LT. ZMIN) ZMIN ZIJ
IF (ZIJ .GT. ZMAX) ZMAX = ZIJ
CONTINUE
CONTINUE
RETURN
END
387
-------
(6551)
(0552)
(0553)
(0554)
(0555)
(0556)
(0557)
( 0558)
(0559)
(0560)
(0561)
(0562)
(0563)
(0564)
(0565)
(0566)
(0567)
(0568)
CI
C
C
C
C
C
C
C
C
C
*
CDECK
BOX
SUBROUTINE
C
G
C
C
C
C
C
C
***
SIMPLY
CWL/SAI
X,Y
XLEN
YLEN
BOX (X.Y.XLEN.YLEN)
PLOTS A RECTANGLE
DEC 76
COORDINATES III INCHES
WIDTH OF THE BOX
HEIGHT OF THE BOX
OF
LOWER LEFT
CORNER
IN INCHES
IN
INCHES
CALL PLOT (X,Y,3)
CALL PLOT (X,Y+YLEN,2)
CALL PLOT (X+XLEN.Y+YLEN.2)
CALL PLOT (X+XLEN.Y.2)
CALL PLOT
RETURN
END
388
-------
(0569)
(0570)
(0571)
(0572)
(0573)
(0574)
(0575)
(0576)
(0577)
(0578)
(0579)
(0580)
(0581)
(0582)
(0583)
(0584)
(0585)
(0586)
(0587)
(0588)
(0589)
(0590)
(0591)
(0592)
(0593)
(0594)
(0595)
(0596)
(0597)
(0598)
(0599)
(0600)
(0601)
(0602)
(0603)
(0604)
(0605)
(0606)
(0607)
(0608)
(0609)
(0610)
( 06 1 1 )
(0612)
(0613)
(0614)
(0615)
(0616)
(0617)
(0618)
(0619)
(0620)
(0621)
(0622)
(0623)
(0624)
CI
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
CDECK WXAXS
SUBROUTINE WXAXS (X,Y,FIRSTV,FIRALV,SCALE,TSTEP,ASTEP,NDEC,ANGLE,
f IBCD.NCHAR)
*** DRAWS AN X (HORIZONTAL) AXIS
GW LUNDBERG/SAI FEE 78
X,Y = COORDINATES IN INCHES OF AXIS LINE STARTING
POINT
FIRSTV = STARTING VALUE FOR THE AXIS
FINALV = ENDING VALUE FOR THE AXIS
SCALE = INCHES/UNIT FOR FIRSTV,FINALV,TSTEP,ASTEP
TSTEP = STEP SIZE FOR TICS
ASTEP = STEP SIZE FOR LABELED TICS
NDEC = FORMAT FOR LABELS — SEE SUBROUTINE NUMBER
ANGLE = 0 DIVISION LABELS PARALLEL AXIS
' 0 DIVISION LABELS ARE NORMAL TO AXIS
IBCD = THE AXIS TITLE AS ARRAY OR HOLLERITH STRING
NCEAR = NUMBER OF CHARACTERS IN TITLE
< 0, TIC MARKS, ANNOTATION AND TITLE PLOTTED ON
CLOCKVISE SIDE OF AXIS LINE
> 0, ON COUNTER CLOCKWISE SIDE
THIS ROUTINE WAS WRITTEN FOR A MATRIX PLOTTER — IT DOES
NOT OPTIMIZE PEN MOVEMENTS. THE ROUTINE SHOULD BE MACHINE
INDEPENDENT
DIMENSION IBCD(l)
*** FOLLOWING ARE ADJUSTABLE — IF LABEL > 0, ALL TICS ARE
LABELED, IF LABEL = 0, THE LAST TIC IS NOT LABELED,
IF LABEL < 0, THE FIRST AND LAST ARE NOT LABELED
COMMON /WAXES/ LABEL,T.CSIZ, DIGSIZ.CHRSIZ
*** VERTICAL CHARACTER SPACING
DATA VSPACE/0.05/
*** DRAW THE AXIS LINE
X0 = X
Y0 * Y
CALL PLOT (X0.Y0.3)
NDIGS=0
AXL = (FINALV-FIRSTV)*SCAL£
XI * X0 + AXL
CALL PLOT (XI.Y0.2)
*** ADD UNLABELEL TICKS
POS = 1.
IF CWCHAR .LT. 0) POS = -1.
IF (TSTEP -EG. 0.) GO TO 200
NTIC = (FINALV-FIRSTV)/TSTEP + 1
DO 110 J=1,NT1C
XI * X0 +
-------
(0625)
(0626)
(0627)
(0628)
(0629)
(0630)
(0631)
(0632)
(0633)
(0634)
(0635)
(0636)
(0637)
(0638)
(0639)
(0640)
(0641)
(0642)
(0643)
(0644)
(0645)
(0646)
(0647)
( 0648)
(0649)
(0650)
(0651)
(0652)
(0653)
(0654)
(0655)
(0656)
(0657)
(0658)
(0659)
(0660)
(0661)
(0662)
(0663)
(0664)
(0665)
(0666)
(0667)
(0668)
(0669)
(0670)
(0671)
(0672)
(0673)
(0674)
(0675)
(0676)
C
C
C
C
'
C
C
C
C
C
C
C
C
C
C
GO TO 220
0) GO TO 220
CALL PLOT (X1.YI.2)
110 CONTINUE
*** ADD LABELED TICKS
200 IF (ASTEP .EQ. 0) GO TO 300
MAXDIG = 1
NTIC = (FINALV-FIRSTV)/ASTEP + 1
DO 220 JM.NTIC
XI = XO * (J-1)*ASTEP*SCALE
Yl « YO
CALL PLOT (X1.Y1.3)
Yl = YO - POS*1.4*TICSIZ
CALL PLOT (X1.Y1.2)
*** ADD THE LABEL IF WANTED
IF (NDEC .EQ. 999) GO TO 220
IF (J .EQ. 1 .AND. LABEL .LT. 0)
IF (J .EQ. NTIC .AND. LABEL .LE.
FPN « FIRSTV + (J- ')*ASTEP
IF (ANGLE .EQ. 0.) GO TO 210
*** NORMAL TO AXIS
MAXDIG IS USED TO GET TITLE OFFSET
IF (ND1GS .GT. MAXDIG) MAXDIC = ND1GS
Yl « Yi + VSPACE
IF (POS .LT. 0.) Yl = Y0-DIGSIZ*NDIGS-VSPACE+0.3*D1GSIZ
XI * XI + 0.5*DIGSIZ
CALL NUMBER (XI,Yl,DIGSIZ,FPN ,90.,NDEC)
GO TO 220
*** PARALLEL TO AXIS
210 XI = XI - C 5 * (NDIGS*DICSIZ - 0.3*DICSIZ)
Yl * YO * VSPACE
IF (POS .LT. 0.) Yl = YO - DIGSIZ - VSPACE
CALL NUMBER (XI,Y1,DtGSIZ,FPN ,0.,NDEC)
220 CONTINUE
*** ADD TITLE
300 IF (NCHAR .EQ. 0) GO TO 400
HSPACE = 0.3*DIGSIZ
IF (ANCLE .EQ. 0) HSPACE * 0.
OFFSET = MAXDIG»DIGSIZ * 2.6*VSPACE - HSPACE
Yl = YO + OFFSET
IF (POS .LT. 0.) Yl » YO - OFFSET - CHRSIZ
TSIZ = CHRSIZ*IABS(NCHAR)
XI « X0 + 0.5*(AXL-TSIZ)
CALL SYMBOL (XI,Y1,CHRSIZ,IBCD.0.,lABS(NCHAR))
*** ALL DONE
400 RETURN
END
390
-------
( 0677)
(0678)
(0679)
(0680)
(0681)
(0682)
(0683)
(0684)
(0685)
(0686)
(0687)
(0688)
(0689)
(0690)
(0691)
(0692)
(0693)
(0694)
(0695)
(0696)
(0697)
(0698)
(0699)
(0700)
(0701)
(0702)
(0703)
(0704)
(0705)
(0706)
(0707)
(0708)
(0709)
(0710)
(0711)
(0712)
(0713)
(0714)
(0715)
(0716)
(0717)
(0718)
(0719)
(0720)
(0721)
(0722)
(0723)
(0724)
(0725)
(0726)
(0727)
( 0728)
(0729)
(0730)
(0731)
(0732)
CI
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
ECK WYAXS
SUBROUTINE WYAXS (X, Y,FIRSTV,FINALV,SCALE,TSTEP, ASTEP, JTDEC, ANGLE,
9 IBCD,NCHAR)
*** DRAWS A Y (VERTICAL) AXIS
GV LUNDBERG/SAI FEE 78
X,Y = COORDINATES IN INCHES OF AXIS LINE STARTING
POINT
FIRSTV - STARTING VALUE FOR THE AXIS
FINALV = ENDING VALUE FOR THE AXIS
SCALE = INCHES/UNIT FOR FIRSTV,FINALV,TSTEP,ASTEP
TSTEP = STEP SIZE FOR TICS
ASTEP = STEP SIZE FOR LABELED TICS
NDEC = FORMAT FOR LABELS — SEE SUBROUTINE NUMBER
ANGLE = 0 DIVISION LABELS PARALLEL AXIS
' 0 DIVISION LABELS ARE NORMAL TO AXIS
IBCD = THE AXIS TITLE AS ARRAY OR HOLLERITH STRING
NCHAR = NUMBER OF CHARACTERS IN TITLE
< 0, TIC MARKS, ANNOTATION AND TITLE PLOTTED ON
CLOCKWISE SIDE OF AXIS LINE
> 0, ON COUNTER CLOCKV1SE SIDE
DIMENSION IBCD(I)
*** FOLLOWING ARE ADJUSTABLE — IF LABEL > 0, ALL TICS ARE
LABELED, IF LABEL = 0, THE LAST TIC IS NOT LABELED,
IF LABEL < 0, THE FIRST AND LAST ARE NOT LABELED
COMMON /WAXES/ LABEL, TICSIZ, DIGSIZ, CHRSIZ
*** CHARACTER VERTICAL SPACING
DATA VSPACE/0.05/
*** DRAW THE AXIS LINE
X0 = X
Y0 s Y
NDIGS = 0
CALL PLOT (X0,YO,3)
AXL = *SCALE
YI = Y0 + AXL
CALL PLOT (X0,Y1,2>
*** ADD UNLABELED TICKS
POS = L,
IF (NCHAR .LT. 0) POS = -1.
IF (TSTEP .£Gt. 0.) GO TO 200
NTIC = (FINALV-FI RSTV)/TSTEP + 1
DO 110 J=1,NT1C
XI = X0
Yl = Y0 + (J-1)*TSTEP*SCALE
CALL PLOT (X1.Y1.3)
XI = X0 + POS*TICSIZ
CALL PLOT (X1.Y1.2)
J10 CONTINUE
*** ADD LABELED TICKS
391
-------
(0733)
(0734)
(0735)
(0736)
(0737)
(0738)
(0739)
(0740)
(0741)
(0742)
(0743)
(0744)
(0745)
(0746)
(0747)
(0748)
(0749)
(0750)
( 075 1 )
(0752)
(0753)
(0754)
(0755)
(0756)
(0757)
(0758)
(0759)
(0760)
(0761)
(0762)
(0763)
(0764)
(0765)
(0766)
(0767)
(0768)
(0769)
(0770)
( 077 1 )
(0772)
(0773)
(0774)
(0775)
(0776)
(0777)
(0778)
(0779)
(0780)
(0781)
(0782)
(0783)
(0784)
(0785)
(0786)
C
C
C
C
C
C
C
C
C
C
C
C
200 IF (ASTEP .EG. 6) GO TO 300
MAXDIG = 1
NT1C = (FINALV-FIRSTV)/ASTEP + 1
DO 220 J=1,NTIC
xi * xe
Yl = Y0 + (J-1)*ASTEP*SCALE
CALL PLOT (Xl.Yl.S)
XI = XO + POS*1.4*TICSIZ
CAUL PLOT (X1.Y1.2)
*** ADD THE LABEL IF VANTED
IF (NDEC .EQ. 999) GO TO 220
IF (J .Ed. 1 .AND. LABEL .LT. 0) GO TO 220
IF (J .EQ. NTIC .AND. LABEL .LE. 0) GO TO 220
FPN = FIRSTV + (J-1)*ASTEP
NDIGS = NDEC + 2
IF (ABS(FPN).CT.1.0E-5)
1 NDIGS=IFIX(ALOG10(ABS(FPN))+.001)+NDEC+2
IF (FPN.LT.0.) NDIGS = NDICS + 1
IF (FPN. LT.-. 00000 LAND. ABS( FPN) .LT.0. 1) NDI GS= NDIGS+1
IF (ANGLE .EQ. 0.) GO TO 210
*** NORMAL TO AXIS _
MAXDIG IS USED TO GET TITLE OFFSET — SEE 300+1
IF (NDIGS .CT. MAXDIG) MAXDIG = NDIGS
XI
XO
210
VSPACE
IF (POS .GT. 0.) XI = XO-D1GSIZ*NDICS-VSPACE+0.3*DICSIZ
IF (FPN .GT. 0..AND.FIRSTV.LT.0.) XI = Xl-DIGSIZ
Yl = Yl - 0.5*DIGSIZ
CALL NUMBER (XI,Yl,DIGSIZ,FPN ,0.,NDEC)
GO TO 220
*** PARALLEL TO AXIS
XI * XO - VSPACE
IF (POS .LT. 0.) XI = X0 +SDIGS1Z + VSPACE
Yl = Yl - 0.5 * (NDIGS*DIGSIZ - 0.3*DIGSIZ)
CALL NUMBER (XI.Yl.DICSIZ.FPN ,90.,NDEC)
220 CONTINUE
*** ADD TITLE
300 IF (NCBAR .EQ. 0) GO TO 400
HSPACE = 0.3*DIGSIZ
IF (ANGLE .EQ. 0.) B5PACE = 0.
OFFSET = MAXDIG*DIGSIZ + 2.6*VSPACE - HSPACE
XI = XO - OFFSET
IF (POS .LT. 0.) XI = X0 + OFFSET + CBBSIZ
TSIZ = CHRSIZ*IABS(NCHAR)
Yl = Y0 + 0.5*(AXL-TSIZ)
CALL SYMBOL ( XI,Yl.CHRSIZ,IBCD.90.,lABS(NCHAR))
*** ALL DONE
400 RETURN
END
392
-------
(0787)
(0788)
(C789)
(0790)
(0791)
(0792)
(0793)
(0794)
(0795)
(0796)
(0797)
(0798)
(0799)
(0800)
(0801)
(0802)
(0803)
(0804)
(0805)
(0806)
(0807)
(0808)
(0809)
(0810)
(0811)
CDECK PLTAX
SUBROUTINE PLTAX (CHRSZ,DIGSZ,TICSZ,ENDS)
C
*** CHANGES DEFAULT AXES, FRAME, WXAXS, WYAXS ATTRIBUTES
CVL/SAI APRIL 78
CHRSZ AXIS TITLE CHARACTER HEIGHT IN INCHES
DIGSZ HEIGHT OF NUMERIC LABELS IN INCHES
TICSZ TIC SIZE
ENDS = 0. FIRST AND LAST DIVISIONS ARE UNLABELED
= I. LAST DIVISION IS UNLABELED
= 2. FIRST AND LAST DIVISIONS ARE LABELED
COMMON /WAXES/ LABEL,TICSIZ, DIGSIZ, CHRSIZ
IF (CHRSZ .NE. 999.
IF (DIGSZ .NE. 999.
IF (TICSZ .NE. 999.
IF (ENDS .EQ. 999.)
LABEL = -1
IF (ENDS .Ed. 1.) LABEL =
IF (ENDS .EQ. 2.) LABEL =
RETURN
END
.AND. CHRSZ .NE. 0.)
.AND. DIGSZ .NE. 0.)
.AND. TICSZ .NE. 0.)
RETURN
CHRSIZ = CHRSZ
DIGSIZ = DIGSZ
TICSIZ = TICSZ
393
-------
(0812)
(0813)
(0814)
(0815)
(0816)
(0817)
(0818)
(0819)
(0820)
( 082 1 )
(0822)
(0823)
(0824)
(0825)
(0826)
(0827)
(0828)
(0829)
(0830)
( 083 1 )
(0832)
(0833)
(0834)
(0835)
(0836)
(0837)
( 0338)
(0839)
(0840)
(0841)
(0842)
(0843)
(0844)
(0845)
(0846)
(0847)
( 0848)
(0849)
(0850)
( 085 1 )
(0852)
(0853)
(0854)
(0855)
(0856)
(0857)
(0858)
(0859)
(0860)
( 086 1 )
(0862)
(0863)
(0864)
(0865)
(0866)
(0867)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SUBROUTINE CURVE (XARRAY,YARRAY,FPTS,INC.KALCMP,LINTYP,INTEQ,SIGMA
1)
*** PURPOSE — PLOTS A SMOOTH CURVE THROUGH THE DATA VALUES FROM T
CW LUNDBERG.SAI JULY 77
MODIFIED BY H HOGO AUG 1977
XARRAY ARRAY CONTAINING X VALUES
YARRAY ARRAY CONTIANING Y VALUES
NPTS NUMBER OF DATA POINTS IN THE ARRAYS ACTUALLY USED
) 0 SCALING AT TOP OF ARRAYS
INC EVERY INC POINT WILL BE USED
LINTYP PLOT SPECIAL SYMBOL EVERY LINTYP POINT
) e CONNECTED SYMBOL PLOT
= 8 LINE PLOT
( e IT. CONNECTED SYMBOL PLOT
1NTEQ INTEGER EQUIVALENT OF SPECIAL SYMBOL
THIS ROUTINE CALLS SYMBOL, PLOT, KURVl AND KURV2
COMMON /WLBL1/ FCTR,DIST,CHRS7-NCHR.OZLBL
COMMON /HOUR/ OZR.NGG.TM
COMMON /NEED/ HC,Xfl,HCF,XNF
DIMENSION XARRAY(l). YARRAYC 1) , XH50), YK50), XP(50)
1MP(50)
DATA NSLOPE/0/,SLOPE1,SLOPEN/0.,8./
*** LOCATE SCALING (FIRSTV AND DELTAV) FOR EACH ARRAY
*** SCALING IN TOP OF ARRAYS — CALCOMP STANDARD
N=NFTS*1NC+1
FIRSTX=XARRAY(N)
FIRSTY=YARRAY(N)
N=N+INC
DELTAX= XARRAY( N)
DELTAY=YARRAY(N)
1X1 = 0
NUM=IABS(NPTS)
IF (KALCMP.LE.0) CO TO 10
*** CHECK IF SYMBOL PLOT WANTED —- LINTYP () 0
IF (LINTYP.Ett.0) GO TO 10
*** CENTERED SYMBOL PLOT
YP(50). TE
*** SCALE FIRST DATA POINT AND PLOT CENTERED SYMBOL
X= (XARRAY( 1)-FIRSTX)/DELTAX
Y= ( YARRAYC1)-FIRSTY)/DELTAY
CALL SYMBOL (X,Yr0. 1, INTEQ.0. ,-1)
394
-------
(6866)
(6869)
(0870)
( 087 1 )
(0872)
(0873)
(0874)
(0875)
(0876)
(0877)
( 0878)
(0879)
(0880)
(0881)
(0882)
(0883)
(0884)
(0385)
(0886)
(0887)
(0888)
(0889)
(0890)
(0891)
(0892)
(0893)
(0894)
(0895)
(0896)
(0897)
(0898)
(0899)
(0900)
(0901)
(0902)
(0903)
(0904)
(0905)
(0906)
(0907)
(0908)
(0909)
(0910)
( 09 1 1 )
(0912)
(0913)
(0914)
(0915)
(0916)
(0917)
(0918)
(0919)
(6920)
(0921)
(0922)
(0923)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
*** PLOT REMAINIRC
MARK=IABS(LINTYP)
N=l
SYMBOLS AT INCREMENTS OF MARK
DO 5 J=2.NUM
N=N+INC
IF (MOD(N.MARK).NE.O) GO TO 5
X=(XARRAY(N)-FIRSTX)/DELTAX
Y=(YARRAY( N)-FIRSTY)/DELTAY
CALL SYMBOL (X,Y,0. 1,INTEQ,0.,-1)
CONTINUE
*** IF THE SYMBOLS ARE NOT TO BE CONNECTED, RETURN
IF (LINTYP.LT.O) GO TO 30
*** LINE PLOT (OR CONNECT SYMBOLS)
*** SCALE FIRST DATA POINT AND MOVE PEN THERE
10 XI(1)=(XARRAY(1)-FIRSTX)/DELTAX
YI(1)=( YARRAY( 1) -F I RSTY) /DELTAY
*** SCALE THE REMAINING POINTS
N=l
DO 15 J=2,NUM
N=N+INC
XI (J) = (XARRAY(N)-FIRSTX)/DELTAX
YI (J) = (YARRAY(N)-FIRSTY)/DELTAY
15 CONTINUE
NSLP=NSLOPE
*** CHECK IF PERIODIC
IF (ABS(XI(NUM)-XH 1)).LT.0.01
I NSLP=-I
AND.ABS(YI(NUM)-YI( 1)) .LT.0.01)
*** SET UP SPLINE INTERPOLATION
NSLP=1
SLOPE1 = 57.29578*ATAN( (YI(1)-YI (2))/(XI(1)-XI(2)))
IF (SLOP.E1.GT.O.) SLOPE1=SLOPE1-180.
SLOPE1=AMIN1(SLOPE1,-90.)
SLOPEN=28.64789*ATAN((YI ( N)-YI(N-1))/(XI (N) -XI (N-1); )
CALL KURV1 (NUM,XI,YI,NSLP,SLOPE1,SLOPEN,XP,YP,TEMP,S,SIGMA)
CALL KURV2 (0.,X,Y,RUM,XI,YI,XP,YP,S,SIGMA)
X=AMAX1(HCF,X)
Y=AMAX1(XNF,Y)
USX= X*DELTAX+FIRSTX
USY= Y*DELTAY+FIRSTY
TM=1.
CALL ISOPLT (USX,USY,2)
TM=2.
*** LINE SEGMENTS VILL BE A TENTH
NP=10.*S-H
CONST*1./NP
INCH LONG — S IS THE ARCLENCTH
395
-------
(9924)
(0925)
(0926)
(0927)
(0928)
(0929)
(0930)
(0931)
(0932)
(0933)
(0934)
(0935)
(0936)
(0937)
(0938)
(0939)
(0940)
(0941)
(0942)
(0943)
(0944)
(0945)
(0946)
(0947)
(0948)
(0949)
(0950)
C
C
DIST=S
IF (KALCMP.LE.O) GO TO 20
IF (USX.GT.HC.OR.USY.GT.XN)
CALL WLBLF (XI( 1) , YK 1) , 1)
1X1=1
*** MAP AND PLOT SEGMENTS
20 DO 25 JM.NP
T=-J*CONST
CALL KURV2 (T,X, Y,NUM, XI ,YI ,XP,YP,S, SIGMA)
X=AMAXHHCF,X)
Y=AMAX1(XNF,Y)
USX= X*DELTAX+F I RSTX
USY= Y*DELTAY+F I RSTY
CALL 1SOPLT (USX,USY,2)
IF (KALCMP.LE.O) GO TO 25
IF (USX.LE.HC.AND.USY.LE.XN) GO TO 24
IF (IX1.GT.O) CALL WLBLF (X,Y, 1)
GO TO 25
24
25
CALL WLBLF (X,Y,2)
CONTINUE
IF (KALCMP.LE.O) GO TO 30
CALL WLBLF (0. ,0. ,3)
30 RETURN
END .
396
-------
(0951)
(0952)
(0953)
(0954)
(0955)
(0956)
(0957)
(0958)
(0959)
(0960)
(0961)
(0962)
(0963)
(0964)
(0965)
(0966)
(0967)
(0968)
(0969)
(0970)
(0971)
(0972)
(0973)
(0974)
(0975)
(0976)
(0977)
(0978)
(0979)
(0980)
(0981)
(0982)
(0983)
(0984)
(0985)
(0986)
(0987)
(0988)
(0989)
(0990)
(0991)
(0992)
(0993)
(0994)
(0995)
(0996)
(0997)
(0998)
(0999)
( 1000)
( 1001)
( 1002)
( 1003)
( 1004)
( 1005)
( 1006)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
6UBROUTI RE WLBLF (X2, Y2, I ENTRY)
*** SETS A LINE LABEL INTO A VECTOR PLOT PROVIDING THAT
A CALL TO SUBROUTINE PLTLBL EAS PRESET THE NECESSARY
PARAMETERS IN /WLBL1/
GW LUNDBERG/SAI DEC 177
X2,Y2 THE TERMINAL POINT OF THE CURRENT VECTOR
IN INCHES FROM PRESENT PLOT ORIGIN
*** NOTES —
( 1) THERE ARE THREE ENTRY POINTS — WLBLF SETS UP THE
PARAMETERS FOR WLBL1C WHICH ACTUALLY DOES THE L.ABEL INC.
WLBL1L CLEANS UP IN CASE THERE WAS NOT ENOUGH
ROOM FOR THE LAST LABEL
(2) THE LABELS ARE SEPERATED BY DIST INCHES EXCEPT FOR
THE FIRST LABEL WHICH STARTS FACT*DIST INCHES FROM
THE BEGINNING OF THE VECTOR PLOT —THIS PROVIDES FOR
STAGGERED LABELS.
DIMENSION XSV(20), YSV(20)
*** DIST IS THE DISTANCE IN INCHES BETWEEN LABELS. FACT
IS THE FACTOR (0-1) OF DIST TO USE FOR THE FIRST LABEL.
CHRSZ IS THE SIZE OF THE LABEL CHARACTERS IN INCHES.
NCHR IS THE NUMBER OF CHARACTERS (0-10), AND LABEL
IS THE A-FORMATED TEXT OF THE LABEL
COMMON /WLBL1/ FACT,DIST,CHRSZ,NCHR,OZL
DATA MXSV/20/
EMULATE MULTIPLE ENTRY WITH COMPUTED GO TO
GO TO (1000,2000,3000),IENTRY
MAIN ENTRY POINT
1000 CONTINUE
*** MOVE THE PEN TO THE FIRST POINT
CALL PLOT (X2,Y2,3)
*** IF THERE ARE TO BE NO .ABELS ~ JUST RETURN
IF (NCHR.EQ.0) RETURN
*** SET UP THE OFFSET NECESSARY TO CENTER THE LABEL AND
THE DISTANCE REQUIRED BY THE LABEL
OFF=CHRSZ/2.
SZLBL= NCHR*CHRSZ+2.*OFF-0.3*CHRSZ
*** INITALIZE THE ACCUMULATED LENGTH OF THE VECTORS, THE
LENGTH REQUIRED BEFORE FIRST LABEL, AND THE NUMBER
OF SAVED POINTS (VECTORS) THAT MAY HAVE BEEN PREEMPTED
BY THE LABEL
TOTSZ=0.
SKPSZ=FACT*DIST
NSV=0
*** REMEMBER THE STARTING LOCATION OF FIRST VECTOR
397
-------
( 1007)
( 1008)
( 1009)
( 1010)
( 1011)
( 1012)
( 1013)
( 1014)
( 1015)
( 1016)
( 1017)
( 1016)
( 1019)
( 1020)
( 1021)
( 1022)
( 1023)
( 1024)
( 1025)
( 1026)
( 1027)
( 1028)
( 1029)
( 1030)
( 1031)
( 1032)
( 1033)
( 1034)
( 1035)
( 1036)
( 1037)
( 1038)
( 1039)
( 1040)
( 1041)
( 1042)
( 1043)
( 1044)
( 1045)
( 1046)
( 1047)
( 1048)
( 1049)
( 1050)
( 1051)
( 1052)
( 1053)
( 1054)
( 1055)
(1056)
( 1057)
( 1058)
( 1059)
( 1060)
( 1061)
( 1062)
C
C
C*
C
C*
C
2
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
RETURN
ENTRY WLBL1C
Cxxxuxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
2000 CONTINUE
LABELS — PLOT THE VECTOR AND RETURN
*** IF THERE ARE TO BE NO
IF (NCHR.GT.0) GO TO 5
CALL PLOT (X2.Y2.2)
RETURN
*** IF SEEKING ROOM FOR THE LABEL ~ SKIP FOLLOWING
5 IF (NSV.GT.0) CO TO 15
xxx CALCULATE THIS VECTOR LENGTH AND ADD TO THE ACCUMULATED
LENGTH. IF A LABEL IS TO START IN THIS VECTOR, SKIP TO
120, ELSE PLOT THE VECTOR AND RETURN
VECSZ=SQRT((X2-X1)**2+< Y2-Y1: **2)
TOTSZ= TOTSZ+VECSZ
IF (TOTSZ.CT.SKPSZ) GO TO 10
CALL PLOT (X2.Y2.2)
X1 = X2
RETURN
*** ITS TIME FOR A LABEL ~ LOCATE START
10 RATI0= (VECSZ-TOTSZ+SKPSZ)/VECSZ
XIL=XI+RAT10*(X2-X1)
Y1L=YH-RAT10*(Y2-Y1)
*** PLOT SUBVECTOR AND REMEMBER THE END POINT
CALL PLOT (X1L,Y1L,2)
X1 = XIL
Y1=Y1L
*** FIND OUT IF THERE IS ENOUGH ROOM LEFT IN THIS VECTOR
FOR THE LABEL ~ IF THERE ISNT, SAVE (X2.Y2) AND RETURN
15 HAVSZ=SQRT( (X2-X1L)**2-K Y2-Y1L)**2)
IF (HAVSZ.CE.SZLBL) GO TO 26
NSV=NSV+1
*** CHECK FOR OVERFLOW
IF (NSV.CT.MXSV) STOP
XSV(NSV)=X2
YSV(NSV)=Y2
X1 = X2
Y1 = Y2
RETURN
*** CALCULATE THE END OF THE LABEL
IM SURE THERE IS AN EASIER WAY TO DO THIS, BUT IT
398
-------
( 1863)
( 1064)
( 1065)
( 1066)
( 1067)
( 1068)
( 1069)
( 1070)
( 1071)
( 1072)
< 1073)
( 1074)
( 1075)
( 1076)
( 1077)
( 1078)
( 1079)
( 1080)
( 1081)
( 1082)
( 1083)
( 1084)
( 1085)
( 1086)
( 1087)
( 1088)
( 1089)
( 1090)
(1091)
( 1092)
( 1093)
( 1094)
( 1095)
( 1096)
( 1097)
( 1098)
( 1099)
( 1100)
( 1101)
( 1102)
( 1103)
( 1104)
( 1105)
( 1106)
( 1107)
( 1108)
( 1109)
( 1110)
(1111)
( 1112)
( 1113)
( 1114)
( 1115)
( 1116)
(1117)
( 1118)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
20
ESCAPES ME
A=(X2-X1)**2+ ( Y2-Y1)**2
B=-2*<(X1L-X1)*(X2-XI)+ (Y1L-Y1)*(Y2-Y1))
C=(X1L-X1)**2+(Y1L-Y1)**2-SZLBL*SZLBL
SQRTD=SQRT( B*B-4*A*C)
Tl = (-B+SQRTD)/(2*A)
T2=(-B-SQRTD)/(2*A)
*** PICK THE MINIMUM T BETWEEN
IF (Tl.LT.O.) TIM.
IF (T2.LT.O.) T2M.
RATIO=AMIN1(T1,T2)
*** SET LABEL END POINT
X2L=X1+RATIO*(X2-X1)
Y2L=Y1 + RATIO*( Y2-Y1)
*** CALCULATE LABEL ANGLE
DX=X2L-X1L
DY=Y2L-Y1L
ANG=0.
IF (DY.NE.O.) ANG=ATAN2(DY,DX)
XL=X1L
YL=Y1L
COSA=COS(ANG)
SINA=SIN(ANG)
0-1 (MUST BE ONE)
*** REVERSE EVERYTHING
IF (DX.GE.O.) GO TO 25
XL=X2L
YL=Y2L
COSA=-COSA
SINA=-SINA
IF (DY.GE.O
IF ANGLE IN QUADRANTS 2 OR 3
IF (DY.LT.0
) ANG=ANG-3.1415926536
) ANG=ANG+3.1415926536
25 ANGD=ANG*180./3.1415926536
*** LOCATE AND PLOT LABEL
XL= XL+OFF*COSA+OFF*SINA
YL= YtH-OFF*S IN A-OFF*COSA
IDG=NCHR-2
CALL NUMBER (XL,YL,CHRSZ,OZL,ANGD,IDG)
*** FINISH OFF THIS SEGMENT BY MEANS OF A PSUEDO REENTRY
TOTSZ=0.
SKPSZ=DIST
RSV=0
X1=X2L
Y1=Y2L
CALL PLOT (X1.Y1.3)
CO TO 5
ENTRY WLBL1L
399
-------
( 1119)
( 1120)
( 1121)
( 1122)
( 1123)
( 1124)
( 1125)
( 1126)
( 1 127)
( 1128)
( 1129)
( 1130)
( 1131)
C*=
C
***:
3000
C
C
C
30
CONTINUE
*** PLOT THE SAVED VECTORS IF ANY
IF (NSV.EQ.O) RETURN
DO 30 1=1,
CALL PLOT
CONTINUE
NSV=0
RETURN
END
NSV
(XSV( I) ,YSV( I) ,2)
400
-------
( 1132)
( 1133)
( 1134)
( 1 135)
(1136)
( 1137)
( 1138)
(1139)
(1140)
(1141)
( 1142)
( 1143)
( 1144)
( 1145)
( 1 146)
( 1147)
( 1148)
(1149)
( 1150)
( 1151)
( 1152)
( 1153)
( 1154)
( 1155)
( 1156)
( 1157)
( 1158)
( 1159)
( 1160)
( 1161)
( 1162)
( 1163)
( 1164)
( 1165)
( 1166)
( 1167)
( 1168)
(1169)
( 1170)
( 1171)
( 1172)
( 1173)
( 1174)
( 1175)
( H76)
( 1177)
( 1178)
( 1179)
( 1180)
( 1181)
( 1182)
(1183)
( 1184)
( 1185)
( 1186)
(1187)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SUBROUTINE KURV1 (NPTS,X,Y,NSLOPE,SLOPE 1,SLOPEN,XP,YP,TEMP,S,SIGMA
1)
THIS SUBROUTINE DETERMINES THE PARAMETERS NECESSARY TO
COMPUTE AN SPLINE UNDER TENSION PASSING THROUGH A SEQUENCE
OF PAIRS (X(1),Y(1) X(N),Y(N)) IN THE PLANE, THE
SLOPES AT THE TWO ENDS OF THE CURVE MAY BE SPECIFIED OR
OMITTED, FOR ACTUAL COMPUTATION OF POINTS ON THE CURVE IT
IS NECESSARY TO CALL THE SUBROUTINE KURV2.
ON INPUT —
NPTS = THE NUMBER OF POINTS TO BE INTERPOLATED (N.GE.2),
X = AH ARRAY CONTAINING THE N X-COORDINATES OF THE
POINTS,
Y = AN ARRAY CONTAIING THE N Y-COODINATES OF THE
POINTS,
NSLOPE = A FLAG FOR ENDPOINT SLOPES. IF \ 0, THIS IS A CLOSED
LOOP AND NO SLOPES ARE GIVEN. IF = 6, THIS IS AN OPEN CURVE
AND NO SLOPES ARE GIVEN. IF ) 0, BOTH ENDPOINT SLOPES ARE
GIVEN
SLOPE 1,SLOPEN = THE DESIRED VALUES FOR THE SLOPE
OF THE CURVE AT (X(I),Y(1>) AND (X(N),Y(N)), RESPEC-
TIVELY. THESE QUANTITIES ARE IN DEGREES AND MEASURED
COUNTER CLOCKWISE FROM THE POSITIVE X-AXIS. THE POSITIVE
SENSE OF THE CURVE IS ASSUMED TO BE THAT MOVING FROM THE
POINT 1 TO POINT N.
XP.YP - ARRAYS OF LENGTH AT LEAST N,
TEMP = AN ARRAY OF LENGTH AT LEAST N WHICH IS USED FOR
SCRATCH STORAGE,
SIGMA = THE TENSION FACTOR. THIS IS NON-ZERO AND
INDICATES THE CURVINESS DESIRED.
LARGE (E.G. 50.)
POLYGONAL LINE.
IF SIGMA IS VERY
THE RESULTING CURVE IS VERY NEARLY A
A STANDARD VALUE FOR SIGMA IS 1.
ON OUTPUT -
N, X,Y, SLOPE 1, SLOPEN, AND SIGMA ARE UNALTERED,
XP.YF CONTAIN INFORMATION ABOUT THE CURVATURE OF THE
CURVE AT THE GIVEN NODE,
S = THE POLYGONAL ARCLENGTH OF THE CURVE.
*** AK CLINE, COMM. ACM 17, 4( 'PR. 1974) , 221
MODIFIED BY GW LUNDBERG/SAl MAY 177
DIMENSION X( NPTS) , Y(NPTS), XP(NPTS). YP(NPTS) . TEMP(NPTS)
DATA EXPMAX/87.4/
TEMAX=-9999.
DEGRAD=3. 1415926/150.
N=NPTS
SLP1= SLOPE 1
SLPN= SLOPEN
RP1=N+1
DELX1 = X(2)-X( 1)
DELY1 = Y(2)-Y( 1)
DELS 1 = SQRT( DELXl *DELX1+DELY1*DELY1 )
401
-------
( 1188)
(1189)
(1190)
( 1191)
( 1192)
( 1193)
( 1194)
( 1195)
( 1196)
( 1197)
( 1198)
( 1199)
( 1200)
(1201)
( 1202)
( 1203)
( 1204)
(1205)
( 1206)
( 1207)
( 1208)
( 1209)
(1210)
( 1211)
( 1212)
( 1213)
( 1214)
( 1215)
( 1216)
( 1217)
(1218)
( 1219)
( 1220)
(1221)
( 1222)
( 1223)
( 1224)
( 1225)
( 1226)
( 1227)
( 1228)
( 1229)
( 1230)
(1231)
( 1232)
( 1233)
( 1234)
( 1235)
( 1236)
( 1237)
( 1238)
( 1239)
( 1240)
(1241)
( 1242)
( 1243)
C
C
C
C
C
C
C
C
C
C
C
DX1=DELX1/DELS1
DY1«DELY1/DELS1
*** DETERMINE SLOPES IF NECESSARY
IF (NSLOPE) 55,45,5
5 SLPP1=SLP1*DEGRAD
SLPPN= SLPN*DEGRAD
*** SET UP RIGHT HAND SIDES OF TRIDIAGONAL LINEAR SYSTEM FOR
XP AND YP
19 XP(1)=DX1-COS(SLPP1)
YP( 1)=DY1-SIN(SLPP1)
TEMP(1)=DELS1
S=DELS1
IF (N.EQ.2) CO TO 20
DO 15 1=2,NM1
DELX2=X( I+1)-X( I)
DELY2=Y( I+1)-Y( I)
DELS2=SQRT( DELX2*DELX2+DELY2*DELY2)
DX2=DELX2/DELS2
DY2=DELY2/DELS2
XP(I)=DX2-DX1
YP(I)=DY2-DY1
TEMP(I) = DELS2
TEMAX=AMAX1(TEMAX,TEMP( I))
DELX1=DELX2
DELY1=DELY2
DELS1=DELS2
DX1=DX2
DY1=DY2
*** ACCUMULATE POLYGONAL ARCLENGTH
S=S+DELS1
15 CONTINUE
20 XP(N)=COS(SLPPN)-DX1
YP(N)=S1N(SLPPN)-DY1
*** DENORMALIZE TENSION FACTOR S
SIGMAP=ABS(SIGMA)*FLOAT(N-1)/S
DELT1 = SIGMAP*TEMAX
IF (DELT1.LT.EXPMAX) GO TO 25
SICMAP= 8.9*EXPMAX/TEMAX
SGN=1.0
IF (SIGMA.LT.B.) SGN=-1.8
SIGMA= SIGMAP*SGN*S/FLOAT(N-1)
25 CONTINUE
*** PERFORM FORWARD ELIMINATION ON TRIDIAGONAL SYSTEM
DELS=SIGMAP*TEMP( 1)
EXPS=EXP(DELS)
SINHS=.5*(EXPS-1./EXPS)
SINHIN=1./(TEMP(1)*SINHS)
DIAG1 = SINHIN*(DELS*.5*( EXPS+1./EXPS)-SINHS)
DIAGIN-1./DIAG1
XP(l)sDIACIN*XP(l)
YP(1)=DIAGIN*YP( 1)
402
-------
( 1244)
( 1245)
( 1246)
( 1247)
( 1248)
( 1249)
( 1250)
(1251)
( 1252)
( 1253)
( 1254)
( 1255)
( 1256)
( 1257)
( 1258)
( 1259)
( 1260)
( 1261)
( 1262)
( 1263)
( 1264)
( J265)
( 1266)
( 1267)
( 1268)
( 1269)
( 1270)
( 1271)
( 1272)
( 1273)
( 1274)
( 1275)
( 1276)
( 1277)
( 1278)
( 1279)
( 1280)
( 1281)
( 1282)
( 1283)
( 1284)
( 1285)
( 1286)
( 1287)
( 1288)
( 1289)
( 1290)
( 1291)
( 1292)
( 1293)
( 1294)
(1295)
( 1296)
( 1297)
( 1298)
( 1299)
30
35
C
C
40
45
C
C
C
C
C
C
50
SPDIAG=SINHIN*(SINES-DELS)
TEMP(1)=DJAGIN*SPD1AG
IF (N.EQ.2) GO TO 35
DO 30 1=2,NMl
DELS=SIGMAP*TEMP( I)
EXPS=EXP(DELS)
SINHS=.5*(EXPS-1./EXPS)
SINH1N=1./(TEMP(I)*SINHS)
DIAG2=SINHIN*(DELS*( . 5*( EXPS+1. /EXPS)) -SINES)
DIAGIN=1./(D1AG1+DIAC2-SPDIAG*TEMP( 1-1))
XP( I)=DIAGIN*(XP( I)-SPDIAG*XP( 1-1))
YP(I)=DIACIN*(YP(I)-SPDIAG*YP(1-1))
SFDIAG=SINHIN*(SINES-DELS)
TEMP( I)=DIAGIN*SPDIAG
DIAG1=DIAG2
CONTINUE
DIAGIN=I./(DIAGI-SPDIAG*TEMP(NM1))
XP(N)=DIAGIN*(XP(N)-SPDIAG*XP(NM1))
YP(N)=DIAGIN*(YP(N)-SPDIAG*YP(NM1))
*** PERFORM BACK SUBSTITUTION
DO 40 1=2,N
IBAK=NP1-I
XP( IBAK)=XP( IBAK)-TEMP(
YP( IBAK)=YP(IBAK)-TEMP(
CONTINUE
RETURN
IF (N.EQ.2) GO TO 50
*** IF NO SLOPES ARE GIVEN, USE SECOND ORDER INTERPOLATION ON
INPUT DATA FOR SLOPES AT EflDPOINTS
DELS2=SQRT( (X( 3) -X( 2)) **2+( Y( 3) -Y( 2) ) **2)
DELS 12=DELS 1+DELS2
C1 = -(DELS 12+DELS 1)/DELS 12/DELS1
C2= DELS12/DELS1/DELS2
C3=-DELS1/DELS 12/DELS2
SX=C1*X< 1)+C2*X(2)+C3*X(3)
SY=C1*V( l)*C2*Y(2)+C3*y(3)
SLPP1 = ATAN2( SY,SX)
DELNM1 = SQRT((X( N-2)-X(NMl))**2+( Y( N-2)-Y( NMl))**2)
DELN=SQRT( (X( NMl) -X( N)) **2+ ( Y( NMl) -Y< N)) **2)
DELNN=DELNM1+DELN
C1=(DELNN+DELN)/DELNN/DELN
C2=-DELNN/DELN/DELNM1
C3=DELN/DELNN/DELNM1
SX=C3*X( N-2) +C2*X( NMl) *C1*X( N)
SY=C3*Y( N-2) +C2*Y( NMl) +C 1*Y( N)
SLPPN=ATAH2(SY,SX)
GO TO 10
IBAK)*XP( IBAK+1)
IBAK)*XP( IBAK-H)
*** IF ONLY TWO POINTS AND NO
LINE SEGMENT FOR CURVE
XP(1)=0.
XP(2)=0.
YP(1)=0.
YP(2)=0.
SLOPES ARE GIVEN, USE STRAIGHT
403
-------
(1300)
(1301)
(1302)
(1303)
(1304)
(1305)
(1306)
(1307)
(1308)
(1309)
(1310)
(1311)
(1312)
(1313)
(1314)
(1315)
C
C
C
RETURN
*** CLOSED LOOP — PERIODIC SPLINE ~ CALCULATE SLOPES
FOR JOIN
55 DELN=SQRT((X( NM1)-X(N))**2+(Y(NM1)-Y(N))**2)
DELNN=DELS1+DELN
C1 = -DELS 1/DELN/DELNN
C2=(DELS 1-DELN)/DELS 1/DELN
C3= DELN/DELNN/DELS1
SX=C1*X(NM1)+C2*X< 1)+C3*X(2)
SY=C1*Y(NM1)+C2*Y( 1)+C3*Y(2)
IF (SX.EQ.O..AND.SY.EQ.O.) SX=1
SLPP1 = ATAN2(SY,SX)
SLPPN=SLPP1
GO TO 10
END
404
-------
( 1316)
( 1317)
( 1318)
( 1319)
( 1320)
(1321)
( 1322)
( 1323)
( 1324)
( 1325)
( 1326)
( 1327)
( 1328)
( 1329)
(1330)
(1331)
( 1332)
( 1333)
( 1334)
( 1335)
( 1336)
( 1337)
( 1338)
( 1339)
( 1340)
( 1341)
( 1342)
( 1343)
( 1344)
( 1345)
( 1346)
( 1347)
( 1348)
( 1349)
( 1350)
( 1351)
( 1352)
( 1353)
( 1354)
( 1355)
( 1356)
( 1357)
( 1358)
( 1359)
( 1360)
( 1361)
( 1362)
( 1363)
( 1364)
( 1365)
( 1366)
( 1367)
( 1368)
( 1369)
( 1370)
( 1371)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SUBROUTINE KURV2
-------
(1372)
(1373)
(1374)
(1375)
(1376)
(1377)
(1378)
(1379)
(1380)
(1381)
(1382)
(1383)
(1384)
(1385)
(1386)
(1387)
(1388)
(1389)
(1390)
(1391)
(1392)
(1393)
(1394)
(1395)
(1396)
(1397)
(1398)
( 1399)
(1400)
( 1401)
(1402)
(1403)
(1404)
C
C
C
C
C
C
C
C
«** DETERMINE INTO VEICE SEGMENT TN IS MAPPED
DO 15 1*11, N
DELX=X( I)-X( 1-1)
D£LY=Y< I)-Y(I-l)
DELS=SQRT( DELX*DELX+DELY*DELY)
IF (SUM* DELS- TN) 10,20,20
10 SUM= SUM* DELS
15 CONTINUE
*** IF ABS(T) IS GREATER THAN 1., RETURN TERMINAL POINT ON
CURVE
XS=X(N)
YS=Y(N)
RETURN
*** SET UP AND PERFORM INTERPOLATION
20 DEL1=TN-SUM
DEL2= DELS- DELI
EXPS 1 * EXP ( S I CMAP*DEL 1 )
S INHD1= . 5*< F.XPS 1- 1 . /EXPS 1 )
EXPS=EXP( S ICMAP*DEL2)
SINHD2=.5*
-------
( 1405)
( 1406)
( 1407)
( 1408)
( 1409)
( 1410)
( 1411)
( 1412)
( 1413)
( 1414)
( 1415)
( 1416)
( 1417)
( 1418)
( 1419)
( 1420)
( 1421)
( 1422)
( 1423)
( 1424)
( 1425)
( 1426)
( 1427)
( 1428)
( 1429)
( 1430)
(1431)
( 1432)
( 1433)
( 1434)
( 1435)
( 1436)
( 1437)
( 1438)
( 1439)
( 1440)
( 1441)
( 1442)
( 1443)
( 1444)
( 1445)
( 1446)
( 1447)
( 1448)
( 1449)
( 1450)
(1451)
( 1452)
( 1453)
( 1454)
( 1455)
( 1456)
( 1457)
( 1458)
( 1459)
( 1460)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SUBROUTINE ISOPLT (X,Y, IENTRY)
CREATE LINE PRINTER PLOTS OF PLUVUE RESULTS
DEFINE COMMON BLOCKS
COMMON /ITIT1/ 1TIT(80).KALCMP,IOBS
COMMON /NEED1/ SCTANG( 8),IL,ISTAB,WIND,VDIR
COMMON /POOL/ X1SIZ,YSIZ,CYCSIZ,XD(18),INDXX,IC1
COMMON /SIZE/ JGRID(97,40),TVERT<52,2),PT(20,4)
COMMON /CPLT/ FRST(4) ,FIN(4) .SCALK4) ,TSTP(4) ,ASTP(4) ,
1 NDEC(4),ITITLE(5,4),NT(4),XMAX
COMMON /LBL2/ LBEL(3,8)
DIMENSION TPRINT(13),JSYMB(8),TV1(10),XTIT(6,2)
DIMENSION STAB(2,2)
INITIALIZE LOCAL VARIABLES HERE
DATA JBLANK/1H /,MAXX/97/, MAXY/40/, MAXPNT/80/,TGRID/96 ./,
1 CGRID/39./,JPLUS/1H+/,JBAR/1HI/.TBLANKX1H /
DATA JSYMB/1H+,1H*,1HX,1HO,1H.,1HA,IEB,1HC/
DATA STAB/4HNEUT.4HRAL .4HSTAB,4HLE /
DATA XTlT/4HAZIM,4BTTrH ,4EANGL,4BJE (D.4BZGRE ,4HES) ,
1 4BDOWN,4HVIND,4H DIS, 4BTANC, 4BX (K,4HM) /
— FLAG FOR ENTRY POINT
GO TO (1,50,65). IENTRY
INITIALIZE GRID AND SET UP AXIS LABELS
1 IX=IFIX(Y+0. 1)
IF (IOBS.GT.0) IX=2
DO 5 J=1,MAXY
JGRID(1,J)=JBAR
JCRID(97,J)=JBAR
5 CONTINUE
INOV=IFIX(X+0. I)
IF (INOW.EQ. 1) 11=16
IF (INOV.EG. 1) 12=24
IF_( INOV.EQ.2.0R. INOW.Ea.3) 11=12
IF (INOW.EQ.2.0R.INOW.EQ.3) 12=27
IF (INOV.EQ.4) 11=9
IF ( INOW.EQ.4) 12=30
DO 10 1=1,52
TVERT(I,1)=TBLARK
IF (I.LE.Il.OR.I.GE.12) GO TO 10
K=I-I1
TVERT( 1, 1) =PT( K, IFOV)
10 CONTINUE
DO 20 J=l,40,4
JGRIDC1,J)=JPLUS
JGRID(97,J)=JPLUS
20 CONTINUE
INV=5-INOV
407
-------
(1461)
( 1462)
( 1463)
( 1464)
( 1465)
( 1466)
( 1467)
( 1468)
( 1469)
( 1470)
(1471)
(1472)
( 1473)
( 1474)
( 1475)
( 1476)
( 1477)
( 1478)
( 1479)
( 1480)
( 1481)
( 1482)
( 1483)
( 1484)
( 1485)
( 1486)
( 1487)
( 1488)
( 1489)
( 1490)
( 1491)
( 1492)
( 1493)
( 1494)
(1495)
(1496)
( 1497)
( 1498)
( 1499)
( 1500)
( 1501)
( 1502)
( 1503)
( 1504)
( 1505)
( 1506)
( 1507)
( 1508)
( 1509)
( 1510)
( 1511)
( 1512)
( 1513)
(1514)
( 1515)
( 1516)
C
C
C
C
C
C
C
C
C
9
30
35
CLOW=FRST( INW)
TLOW=0.
CH1GH=FIN(INW)
CSPAN=CCRID/(CHIGH-CLOW)
THIGH=XMAX
DO 30 1=1,10
TV1 ( I) = (FLOAT(M)/10.)*(CHIGH-CLOW)+CLOW
CONTINUE
TSPAN=TGRID/THIGH
DO 35 J=1,13
TPRINT(J)=(FLOAT(J-1)/12.)*THIGH
CONTINUE
CLEAR GRID
MAXX1=MAXX-1
MAXY1=MAXY-1
DO 40 KM,WAXY
DO 40 J=2,MAXX1
JGRID(J,K)=JBLANK
40 CONTINUE
RETURN
ENTRY FOR SAVING INTERPOLATED POINTS
50
CONTINUE ^
KX= IF IX( (X-TLOV) *TSPAN+1.5)
IF (IOBS.GT.O) KX=IFIX((( 10. **X)-TLOW) *TSP AN+1.5)
KY=IFIX( ( Y-CLOW)*CSPAN-0.5)
KY=MAXY-KY
(KY.LT.2) GO TO 60
(KY.GT.MAXY1) GO TO
60
IF
IF
IF (KX.LT.2) GO TO 60
IF (KX.CT.MAXX1) GO TO
JGRID(KX,KY)=JSYMB( ID
RETURN
60
60
ENTRY FOR PLOTTING GRID
65 CONTINUE
WRITE (6,120) TVERT(1,1),TV1(1)
DO 115 K=2,MAXY
L=MOD((K-1),4)
s
IF (L.EQ.
IF (L.NE.
115 CONTINUE
WRITE (6,
WRITE (6,
WRITE (6,
WRITE (6,
IF ( IOBS
1WRITE (6,
IF (IOBS
99999 RETURN
O)
0)
WRITE (6,130) TVERT(K, 1) ,TV1( I) , ( JGRID(J.K) , JM , J1AXX)
WRITE (6,135) TVERT(K, 1) , (JCRID( J,K) , JM,MAXX)
140) CLOW
155) TPRINT, (XTIT(I,IX),I=1,6)
150) ITIT
145) ISTAB.WIND.WDIR
LE.O)
160) (SCTANG(J),(LBEL(I,J),1=1,3),J=1,IC1)
CT.O) WRITE (6,165) (SCTANG( J) , (LBEL( I, J), 1= 1,3) , J= 1, ICD
408
-------
(1517)
(1518)
(1519)
(1520)
( 1521)
(1522)
(1523)
(1524)
(1525)
(1526)
(1527)
(1528)
(1529)
(1530)
(1531)
(1532)
( 1533)
(1534)
(1535)
(1536)
(1537)
(1538)
(1539)
C
C FORMAT STATEMENTS
C
120 FORMAT
130 FORMAT
135 FORMAT
140 FORMAT
145 FORMAT
1
2
150 FORMAT
155 FORMAT
160 FORMAT
1
2
3
4
165 FORMAT(
1
2
3
4
END
( 1H1, ////////, 9X,A4,F5. 2, 1H+. 12C8H ------- +) )
(9X,A4,F5.2,97A1)
(9X,A4,5X,97A1)
( 13X.F5.2, 1H+, 12C8H ------- +) )
( 1HO,/, 10X, 16HSTABILITY CLASS ,A4,F8.1,
16H M/S WIND SPEED ,F)0.1,
23B DEGREE VIND DIRECTION )
(26X,80A1)
(F21. 1, 12(F7. 1, IX) ,/, 1BO,55X,6A4,//)
( 1BO,/, 10X.29HASSUMED VIEWING BACKGROUND - ,
F5.e,4H=(+> , 1X,3A4,F5.0,4B=<*) , 1X.3A4, IX,
F5.0,4H=(X) , 1X,3A4,F5.0,4B=(0) , 1X,3A4,
F5.0,4H=(.) , 1X,3A4,F5.0,4B=(A) , 1X,3A4,
F5.0,4B=(B) , 1X,3A4,F5.0,4B=(C) , 1X,3A4 )
1BO,/, 10X, 19BVIND SPEED CASES -
F5.0,4H=(+) , 1X,3A4,F5.0,4B=(»)
F5.0,4B=(X) , 1X,3A4,F5.0,4H=(0)
F5.0,4B=( .) , 1X,3A4,F5.0,4B=(A)
1X.3A4, IX,
1X,3A4,
1X.3A4,
F5 . 0 , 4B= ( B) , IX, 3A4 , F5 . 0 , 4B= ( C) , IX, 3A4 )
409
-------
GLOSSARY
ABSN02: The value babs, the absorption coefficient, for the background
atmosphere NC^ concentration at 0.55 wn.
ACCUMULATION MODE: Aerosol in the size range from 0.1 to 1.0 un
ALPHA: The azimuthal angle (in the horizontal plane) between the plume
center!ine and the line of sight.
AZIMUTH: The azimuthal angle measured clockwise from north to the line of
sight.
BETA: The elevation angle of the line of sight above the horizon.
BSCAT.55/MASS: The value of bscat/per unit mass concentration for a
particular aerosol size distribution (at 0.55
BRATIO: The blue-red ratio used to characterize the wavelength-dependent
contrast and plume coloration with respect to the background. This
ratio is calculated using the ratio of plume to background
intensities at the blue end (X = 0.4 urn) and at the red end (x = 0.7
un) of the visible spectrum. If Ip represents the intensity for the
view of the background through the plume, and if 1^ represents the
intensity for the view of the background without the plume, then the
blue-red ratio is defined thus:
Ip(0.4 un)/Ih(0.4 wn)
BRATI° = Ip(0.7 un)/Ih(0.7 in)
BSP-TOTAL: The value of bscat for plume primary aerosol and sulfate
aerosol at 0.55 pm.
411
-------
BSPSN/BS (%): The ratio between the bscat for sulfate aerosol and the
bscat for plume primary aerosol and sulfate aerosol.
BTAAER: The value of bscat for the background atmosphere aerosol at
0.55 im.
BTABAC: The value of bext, the extinction coefficient for the background
atmosphere, at 0.55 un. BTABAC is the sum of BTARAY, BTAAER, and
ABSN02.
BTARAY: The value of bscat for the Rayleigh atmosphere at 0.55 ym.
COARSE PARTICLE MODE: Aerosol from 1.0 to 10.0 un.
C(550): The contrast at 550 nm between the light intensity from the plume
and the intensity of the background. The contrast is calculated by
the following equation:
C(550) =
I (X = 0.55 um) - Ib(X = 0.55 um)
Ib (X = 0.55 un)
where Ip = light intensity transmitted from the plume, and
light intensity transmitted from the background.
DELL: The difference in the color brightness parameter L* for the view of
the background without the plume and the view of the background with
the plume.
DELTA H (M): The rise of the plume parcel above the elevation of the
point of release, measured in meters.
DELX: The difference in the chromaticity coordinate x for the view of the
background with and without the plume.
DELY: The difference in the chromaticity coordinate y for the view of the
background with and without the plume.
DELYCAP: The difference in the luminance Y for the view of the background
with and without the plume.
DOWNWIND DISTANCE: Distance from the emissions source to points along the
plume trajectory.
E(LAB): The color difference parameter AE (L*a*b*) for the view through
the plume compared to the background sky. t£ (L*a*b*) includes
changes in chromaticity and brightness.
412
-------
E(LUV): The color difference parameter AE(L*u*v*), which includes changes
in chromaticity and brightness. E(L*u*v*) gives the value of ££.
(|_*u*v*) for the view through the plume compared to the background
sky.
H: The final height of plume rise.
INCREMENT: The increase in any parameter above the background value.
L: The color brightness parameter L*.
LENGTH: The length of the plume segment in the line of sight along the
plume. The plume centerline concentration is integrated over this
distance before the optical effects are calculated.
MASS RADIUS: The mass median radius.
N02T: The total concentration of N02 in a plume parcel; the sum of the N02
contributed by the plume and the N02 contributed by the background
air.
N02-NO EQUIL: The equilibrium ratio of the concentration of N02 to the
concentration of NO.
N02/NTOT (MOLE %): The ratio between the concentration of N02 and the
concentration of all NOX.
N03-/NTOT (MOLE %): The ratio between the concentration of HN03 and the
concentration of all NOX.
NTOT: The concentration total of all nitrogen oxides (including HNOj) in
the plume parcel.
02 (MOL P): The oxygen concentration in the plume expressed in mole
percent.
% REDUCED: The percentage reduction in visual range for the view of the
background with the plume compared to that without the plume.
PRIMARY PARTICLE MODE: The aerosol emitted directly by the source.
PRIMARY (UG/M3): The concentration of primary particulate in units of
pg/m3.
»
RATIO ACTUAL: The actual ratio of concentrations of N02 to NO.
413
-------
RP: Distance from the observer position to the plume center along the
line of sight.
RO/RVO: The ratio between the distance from the observer to the
background object and the background visual range.
RP/RVO: The ratio between the distance from the observer to the plume
centerline along the line of sight and the background visual range.
RV: The visual range for the line of sight through the plume.
SY: The length representing the vertical standard deviation for a
Gaussian plume concentration distribution.
SIGMA: The geometric standard deviation of the aerosol size
distribution. Also, the plume standard deviation for the initial
plume rise calculation.
SOLAR AZIMUTH ANGLE: The azimuthal angle from the north to the position
of the sun, measured clockwi ;e.
SOLAR ZENITH ANGLE: The vertical angle from directly overhead to the
position of the sun.
S04 =/STOT (MOLE %): The ratio between the concentration of S04= and the
sum of the concentrations of SOg, and SO.".
THETA: The scattering angle between the incoming direct solar rays and
the line of sight. The sun would be in front of the observer for
scattering angles less than 90°. THETA is the change in the
direction of propagation of light after scattering.
TOTAL AMB: The total of the background contribution and the plume
contribution for any parameter.
U: Horizontal velocity component for the plume parcel.
V: Resultant velocity of the plume parcel.
W: Vertical velocity component for the plume parcel.
X: Distance downwind between the observed point and the emissions source;
also used for chromaticity coordinate x.
Y: Chromaticity coordinate y.
YCAP: The color brightness parameter, luminance (Y).
414
-------
REFERENCES
Altshuller, A. P. (1979), "Model Predictions of the Rates of Homogeneous
Oxidation of Sulfur Dioxide to Sulfate in the Troposphere," Atmos.
Environ., Vol. 13, pp. 1653-1661.
Baulch, D. L., D. D. Drysdale, and D. 6. Home (1973), "Evaluated Kinetic
Data for High Temperature Reactions, Volume 2--Homogeneous Gas Phase
Reactions of the H2-N2-02 system (CRC Press, Cleveland, Ohio).
Briggs, G. A. (1972), "Discussion on Chimney Plumes in Neutral and Stable
Surroundings," Atmos. Environ., Vol. 6, pp. 507-610.
Briggs, G. A., (1969), "Plume Rise," U.S. Atomic Energy Commission
Critical Review Series, TID-25075, National Technical Information
Service, Springfield, Virginia.
Briggs, G. A., (1971), "Some Recent Analyses of Plume Rise Observations,"
in Proc. of the Second International Clean Air Congress, H. M.
Englund and W. T. Berry, eds., (Academic Press, New York, New York),
pp. 1029-1032.
Calvert, J. G., et aU (1978), "Mechanism of the Homogeneous Oxidation of
Sulfur Dioxide in the Troposphere," Atmos. Environ., Vol. 12, pp.
197-226.
Dave, J. V. (1970), "Subroutines for Computing the Parameters of the
Electromagnetic Radiation Scattered by a Sphere," IBM System 360
Program 3600-17.4.002.
Davis, D. D., G. Smith, and J. Klauber (1974), "Trace Gas Analysis of
Power Plant Plumes Via Aircraft Measurements: 03, NOX and S02
Chemistry," Science, Vol. 186, pp. 733-736.
Dtxon, J. K. 0940), "Absorption Coefficient of Nitrogen Dioxide 1n the
Vtsible Spectrum,: J. Chem. Phys., Vol. 8, pp. 1267-1277-
Ensor, D. S., L. E. Sparks, and M. J. Pilat (1973), "Light Transmittance
Across Smoke Plumes Downwind from Point Sources of Aerosol
Emtestons," Atmos. Environ., Vol. 7, pp. 1267-1277.
415
-------
EPA (1977), "User's Manual for a Single-Source (CRSTER) Model," EPA-450/2-
77-013, U.S. Environmental Protection Agency, Research Triangle Park,
North Carolina.
Hampson, R. F., Jr., and D. Garvin (1978), "Reaction Rate and
Photochemical Data for Atmospheric Chemistry-1977," NBS Special
Publication 513, National Bureau of Standards, Washington, D.C.
Hanson, J. E., and L. D. Travis (1974), "Light Scattering in Planetary
Atmospherics," Space Science Reviews, Vol. 16, pp. 527-610.
Irvine, W. M. (1975), "Multiple Scattering in Planetary Atmospheres,"
Icarus, Vol. 25, pp. 175-204.
Isaksen, I.S.A., Hesstredt, and 0. Hov (1978), "A Chemical Model for Urban
Plumes: Test for Ozone and Particulate Sulfur Formation in St. Louis
Urban Plume," Atmos. Environ., Vol. 12, pp. 599-604.
Latimer, D. A. (1980), "Power Plant Impacts on Visibility in the West:
Siting and Emissions Control Implications," J. Air Pollut. Control
Assoc., Vol. 30, pp. 142-146.
Latimer, D. A., et al. (1980), "Modeling Visibility," presented at the
American Meteorological Society/Air Pollution Control Association
Second Joint Conference on Applications of Air Pollution Meteorology,
24-27 March 1980, New Orleans, Louisiana.
S
Latimer, D. A., and 6. S. Samuelsen (1978), "Visual Impact of Plumes from
Power Plants," Atmos. Environ., Vol. 12, pp. 1455-1465.
Latimer, D. A., et al. (1978), "The Development of Mathematical Models for
the Prediction and Anthropogenic Visibility Impairment," EPA-450/3-
78-110a, b, and c, U.S. Environmental Protection Agency, Research
Triangle Park, North Carolina.
Latimer, D. A., and G. S. Samuelsen (1975), "Visual Impact of Plumes from
Power Plants," UCI-ARTR-75-3, UCI Air Quality Laboratory, School of
Engineering, University of California, Irvine, California.
Leighton, P. A. (1961), Photochemistry of Air Pollution (Academic Press,
New York, New York).
Miller, J). F. (1978), "Precursor Effects on S02 Oxidation," Atmos.
Environ., Vol. 12, pp. 273-280.
Niki, H. (1974), "Reaction Kinetics Involving 0 and N Compounds," Can. J.
Chem., Vol. 52, pp. 1397-1404.
416
-------
Schere, K. L., and K. L. Demerjian (1977), "Calculation of Selected
Photolytic Rate Constants over a Diurnal Range," EPA-600/4-77-015,
U.S. Environmental Protection Agency, Research Triangle Park, North
Carolina.
Van de Hulst, H. C. (1957), Light Scattering by Small Particles (John
Wiley and Sons, New York, New York).
White, W. H. (1977), "NOX-03 Photochemistry in Power Plant Plumes:
Comparison of Theory with Observation," Environ. Sci. Techno!., Vol.
11, No. 10, pp. 995-1000.
Winkler, P. (1973), "The Growth of Atmospheric Aerosol Particles as a
Function of the Relative Humidity--!I. An Improved Concept of Mixed
Nuclei," Aerosol Sci., Vol. 4, pp. 373-387.
417
-------
TECHNICAL REPORT DATA
(Please read Imtniciions on the reverse before completing)
Rl PORT NO.
EPA-450/4-80-032
2.
3. RECIPIENT'S ACCESSION* NO.
-I. TITLE AND SUBTITLE
USER'S MANUAL FOR THE PLUME VISIBILITY MODEL (PLUVUE)
5. REPORT DATE
November 1980
G. PERFORMING ORGANIZATION CODE
Johnson, Douglas A. Latimer, Robert W. Bergstroir
and Henry Hogo
8. PERFORMING ORGANIZATION REPORT NO.
i. PERFORMING ORGANIZATION NAME AND ADDRESS
Systems Applications, Inc.
950 Northgate Drive
San Rafael, California
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
12. SPONSORING AGENCY NAME AND ADDRESS
Office of Air Quality Planning and Standards
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
13. T.
LypE Of HLEPORT.AND PERIOD COVERED
Fi naT HTeporr
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
16. ABSTRACT
The plume visibility model (PLUVUE) is designed to predict the impacts of a
single emissions source on visibility in Federal Class I areas. The objective of the
model is to calculate visual range reduction and atmospheric discoloration caused by
olumes consisting of primary particulates, nitrogen oxides and sulfur oxides. The
model uses the Gaussian equation for transport and dispersion. The spectral radiance is
calculated for views with and without the plume to calculate other parameters related
to perceptibility and contrast reduction. Plume optic's calculations are made for two
modes, plume-based and observer-based. Four types of calculations can be performed
at each downwind distance: effects for horizontal lines of sight with a clear sky
background; effects of the plume on horizontal views with white, grey or black
object; views looking down the plume center!ine toward the source.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
c. COSATI Held/Group
Aerosols
Air Pollution
Atmospheric Diffusion
Mathematical Modeling
Meteorology
Nitrogen Dioxide
Radiative Transfer
Sulfates
Visibility
New Source Review
Point Sources
13 B
4 A
4 B
13. DISTRIBUTION STATEMENT
RELEASE TO THE PUBLIC
19. SECURITY CLASS (This Report)
NONE
21. NO. OF PAGtS
430
20 SECURITY CLASS (This page)
22. PRICE
EPA Form 2220-1 (S-73)
------- |