EPA Report Number 904/9-77-001
June 1977
RURAL NON-POINT POLLUTION STUDIES IN MARYLAND
(Non-Point Pollution Studies on Agricultural
Land Use Types Prevalent in the Coastal Plain
Zone of Maryland)
by
David L. Corral!
Tung-Lin Wu
Jack W. Pierce
and
Maria A. Faust
•
Chesapeake Bay Center
for Environmental Studies
Smithsonian Institution
Route 4, Box 622
Edgewater, Md. 21037
Grant Number R804536-01
Project Officer
Mr. William R. Payne
Environmental System Branch
Environmental Research Laboratory
Athens, Georgia 30601
Environmental System Branch
Environmental Research Laboratory
U. S. Environmental Protection Agency
Athens, Georgia 30601
-------
EPA Report Number 904/9-77-001
June 1977
RURAL NON-POINT POLLUTION STUDIES IN MARYLAND
(Non-Point Pollution Studies on Agricultural
Land Use Types Prevalent in the Coastal Plain
Zone of Maryland)
by
David L. Correll
Tung-Lin Wu
Jack W. Pierce
and
Maria A. Faust
Chesapeake Bay Center
for Environmental Studies
Smithsonian Institution
Route 4, Box 622
Edgewater, Md. 21037
Grant Number R804536-01
Project Officer
Mr. William R. Payne
Environmental System Branch
Environmental Research Laboratory
Athens, Georgia 30601
Environmental System Branch
Environmental Research Laboratory
U. S. Environmental Protection Agency
Athens, Georgia 30601
-------
DISCLAIMER
This report has been reviewed by the Environmental Research Laboratory,
U. S. Environmental Protection Agency, and approved for publication. Approval
does not signify that the contents necessarily reflect the views and policies
of the U. S. Environmental Protection Agency, nor does mention of trade names
or commercial products constitute endorsement or recommendation for use.
-------
PREFACE
This research grant was funded to improve and extend a non-point sources
research program previously funded by NSF/RANN from 1973 to December 1976 and
by the Environmental Protection Agency since that time. The study site is the
Rhode River, a tidal arm of Chesapeake Bay, and its watershed. It is located
in the Maryland coastal plain on the western shore of Chesapeake Bay in an
area which is primarily agricultural.
The purposes of the grant included (1) the measurement of the relationship
of pollution with herbicides, nutrients, sediments, heavy metals, and bacteria
to agricultural land uses; and (2) the collection of data for the testing of
field and basin-sized watershed models.
This grant was initiated on June 14, 1976, but has profited from the
prior existence of a large data bank and some research conducted "in anticipa-
tion" of the award of the grant to obtain 'baseline' data in the early spring
before crops v/ere planted.
The grant was also amended to include a study of the effects of agricul-
tural land runoff on submerged, rooted aquatic plants in Chesapeake Bay. The
funds for this amendment came from EPA region Ill's Chesapeake Bay Program.
The purposes of this amendment included (1) the field testing of two hypotheses
of the causes of plant die-offs in recent years - agricultural herbicides and/
or increased shading due to sediments and phytoplankton; and (2) laboratory
bioassay studies of herbicide effects on rooted aquatics.
iii
-------
ABSTRACT
The research program was initiated in April, 1976 (to obtain baseline
data before crop planting) and full-scale activity (funded) began in June.
Data on herbicide and fertilizer application, soil chemistry, and the volume
and composition of runoff waters were obtained for a cornfield watershed for
a complete year. Rainfall, soil moisture and temperature, plant growth and
nutrient removal, soil coverage by plants, soil erosion rates, soil mineral-
ogy and particle size distribution were also monitored. A woodlot watershed
has also now been instrumented. Data on the volume and composition of runoff
from this second field-sized watershed are also being gathered,, as well as
soil temperature, moisture, and compositional data. Runoff samples from eight
basin-sized watersheds and rainfall composition were also analyzed for cation
and herbicide concentrations. A site for a pasture watershed has been selected
and a weir has been constructed. Instrumentation of the weir and soil stations
are under way. Some water quality data have been collected. A total of six
fraction collectors have been constructed and a suspended sediment splitter
was designed and built. An improved rainfall gauging network has been
instrumented including seven recording and 20 manual gauges. A freezer, an
explosion proof refrigerator, and a walk-in cold room have been purchased and
installed. A Tracer gas chromatograph with both (E-C and Hall detectors was
purchased and is now operational. Improved areas for well ventilated solvent
extraction and concentration have been provided for herbicide extraction.
Surveys of farmer and homeowner land use practices have been carried out.
Sampling and measurement of herbicide concentrations in estuarine waters,
suspended sediments, and bottom sediments, turbidity, suspended sediment load
and phytoplankton chlorophyll concentrations, bottom sediment characteristics,
iv
-------
salinity, and submerged, rooted aquatic plant populations was carried out
monthly at five stations in the Rhode River estuary, four times a year at
eight stations in the Choptank River estuary, and at four stations in the
shallows near the Poplar Islands in the open areas of Chesapeake Bay.
Beginning in the spring of 1977, weekly studies were conducted at one Rhode
River station including in situ bioassays of respiration and photosynthetic
rates of the plants.
The first set of laboratory bioassays under controlled conditions has been
completed. Zanriichellia palustris (Horned pondweed) was grown in aquaria
under controlled conditions selected to simulate conditions prevalent at the
Rhode River station which is assayed weekly. Moncontaminated forest soils
• were used for bottom sediments. Linuron and atrazine toxicity were separately
studied in a total of 16 tanks. Plant responses measured included weight gain,
growth in length of leaves, photosynthetic rates, and respiratory rates. These
parameters were measured at eight time points over a time span of four weeks.
All samples taken prior to May 1977 have been analyzed for all parameters
with the major exception of cations and herbicides. Many soil and
estuarine bottom sediment samples have not yet been analyzed for herbicides
and, while all runoff samples have been processed and prepared for cation
analysis, the atomic absorption assays are not completed. Some of the acquired
data has not yet been computer processed and not very much detailed data
analysis and summarization has been completed.
This report was submitted as the first annual progress report on research
Grant No. R804536-01 by the Smithsonian Institution's Chesapeake Bay Center
for Environmental Studies under the partial sponsorship of the U. S. Environ-
mental Protection Agency. This report covers the work done during the period
April 1976 to June 1977.
v
-------
CONTENTS
Page Mo.
Preface iii
Abstract iv
List of figures vii
List of tables ix
1. Introduction 1
2. Conclusions 10
3. Recommendations 11
4. Methods 13
5. Quality Control in Herbicide Analyses 35
6. Research Results on Watershed 42
7. Results of Estuarine Plant/Herbicide Research 49
8. References 52
VI
-------
List of Figures
Page No.
Figure 1. Chesapeake Bay area map 54
Figure 2. Rhode River watershed map 55
Figure 3. Watershed 109 map, a field-sized cropland (corn) 56
watershed
Figure 4. Watershed 110 map, a field-sized forest watershed 57
Figure 5. Watershed 111 map, a field-sized pastureland 58
watershed
Figure 6. Rain gauge locations on Rhode River watershed 59
Figure 7. Rhode River estuary map 60
Figure 8. Choptank River map 61
Figure 9. Poplar Island map 62
Figure 10. Severn River map 63
Figure 11. Corn height and total plant soil coverage for 64
watershed 109 during the growing season (1976)
Figure 12. Relationship of corn plant height to plant soil 65
coverage for watershed 109
Figure 13. Relationship between corn plant height and leaf 66
area index on watershed 109 (1976)
Figure 14. Corn plant total biomass per surface area at 67
various plant ages on watershed 109 (1976)
Figure 15. Corn plant above and below ground biomass per 68
surface area at various plant ages on watershed
109 (1976)
Figure 16. Relationship between mean corn biomass per surface 69
area and mean plant height for watershed 109 (1976)
Figure 17. Mean total phosphorus in corn plants per surface 70
area on watershed 109 (1976)
Figure 18. Mean above and below ground total phosphorus in 71
corn plants per surface area on watershed 109 (1976)
-------
Page No.
Figure 19. Mean total Kjeldahl nitrogen in corn plants 72
per surface area on watershed 109 (1976)
Figure 20. Mean above and below ground total Kjeldahl 73
nitrogen in corn plants on watershed 109
(1976)
Figure 21. Hydrograph of a storm event on watershed 109 74
in April 1977
Figure 22. Zannichellia palustris bioassay data -
plant growth
A. Shoot elongation in various concentrations 75
of atrazine
B. Shoot elongation in various concentrations 76
of linuron
Figure 23. Zannichellia palustris bioassay data -
net oxygen production per day
A. Effects of atrazine 77
B. Effects of linuron 78
Figure 24. Zannichellia palustris bioassay data -
gross photosynthesis in the light
A. Effects of atrazine 79
B. Effects of linuron 80
-------
List of Tables
Page No.
Table 1. Land use analysis (1976) of Rhode River 81
watersheds shown in Figure 2
Table 2. Daily rainfall for field-sized watersheds 85
Table 3. Soil moisture data for watershed 109
A. Gravimetric core data 88
B. Gypsum block sensor data 96
C. Equations used for calculation of soil 1(^
moisture
Table 4. Soil temperature data for watershed 109 ^°
Table 5. Height and leaf area index of corn plants on 147
watershed 109 in 1976
Table 6. Corn plant populations and nutrient mass with-
drawal by corn plants on watershed 109 in 1976
A. Total phosphorus 148
B. Total Kjeldahl nitrogen 150
Table 7. Total phosphorus concentrations in corn plant
parts on v/atershed 109
A. July 2, 1976 152
B. July 23, 1976 152
C. August 12, 1976 153
D. September 3, 1976 153
E. October 18, 1976 154
Table 8. Total Kjeldahl nitrogen concentrations in corn
plant parts on watershed 109
A. July 2, 1976 ' 155
B. July 23, 1976 155
C. August 12, 1976 156
ix
-------
Page No.
D. September 3, 1976 156
E. October 18, 1976 . 157
Table 9. Corn dry weight and total nutrient content for
various plant parts on watershed 109
A. July 2, 1976 158
B. July 23, 1976 159
C. . August 12, 1976 16°
D. September 3, 1976 161
E. October 18, 1976 162
Table 10. Dry weight to fresh weight ratios of corn plant
parts on watershed 109
A. July 2, 1976 163
B. July 23, 1976 163
C. August 12, 1976 164
D. September 3, 1976 164
E. October 18, 1976 165
Table 11. Checklist of weeds found in cultivated fields of 166
watershed 109 in 1976
Table 12. Weed populations, aboveground biomass, leaf numbers, 167
and leaf area indexes for watershed 109 in the fall
of 1976
Table 13. Mean soil bulk densities for watershed 109 173
Table 14. Mass of soil per surface area in depth zones 174
corresponding to those sampled on watershed 109
in 1976
Table 15. Soil compositon on watershed 109 - percent sand, 175
silt, clay, and organic matter
Table 16. Soil mineralogy (of silts and of clays) on 177
watershed 109
-------
Page Mo.
Table 17. Soil pH and nutrient composition on watershed
109
A. Total phosphorus, distilled water extract- 181
able orthophosphate, potassium chloride
extractable orthophosphate, and total
orthophosphate; pH and organic carbon
B. Total Kjeldahl nitrogen, distilled water 190
extractable ammonia and nitrate, potassium
chloride extractable ammonia and nitrate,
and total ammonia
Table 18. Alachlor and atrazine concentrations in the soil 199
of watershed 109
Table 19. Application rates for agricultural herbicides 205
and fertilizers on watershed 109
Table 20. Corn harvest data for watershed 109 206
Table 21. Summary of farm survey data by watershed basins 207
for 1976
Table 22. Summary of residential area survey data for 1976 - 208
1977 (ongoing survey)
Table 23. Bacterial discharge data for field-sized watersheds
A. 109 (cornfield) 209
B. 110 (forest) 211
C. Ill (pasture) 213
Table 24. Particulate discharge data for field-sized
watersheds
A. 109 (cornfield) 214
B. 110 (forest) 214
Table 25. Nutrient discharge data for field-sized watersheds
A. 109 (cornfield) 215
B. 110 (forest) 230
Table 26A. Soil nutrient pool sizes on watershed 109 236
-------
Page No.
Table 26B. Composition of runoff from storm event on water- 246
shed 109 in April 1977
Table 27. Herbicide discharge data for all watersheds 247
(101, 102, 103, 105, 106, 107, 108, 109)
Table 28. Paraquat data from weir samples (analyses 329
carried out on suspended particulate fraction
by Mr. William Payne, EPA, Athens, Georgia)
Table 29. Submerged, rooted aquatic plant populations 330
Table 30. Estuarine bottom sediment characteristics 332
(percent sand, silt, clay, organic matter,
and mineralogy of silt and clay)
Table 31. Suspended particulate data in estuarine 338
surface waters (total suspended and mineral
suspended particulates, mineralogy of
suspended particulates
Table 32. Salinity, turbidity, and photosynthetically 344
active light penetration data and trans-
mi ssometer data
Table 33. Phytoplankton chlorophyll a concentrations 350
Table 34. Herbicide concentrations at estuarine stations 351
A. Surface waters 352
B. Bottom sediments 353
Table 35. Bioassay data on Zannichellia palustris (Horned
pondweed) collected at station 30.2in Rhode
River on May 23, 1977
A. In situ data 355
B. Laboratory bioassays 356
Table 36. Bioassay data ori Zannichellia palustris (Horned
pondweed) under controlled laboratory conditions
in microcosms. (Weight gain, shoot growth,
respiration rates, and photosynthetic rates)
A. Controls 357
B. Atrazine 358
C. Linuron . 359
xii
-------
Page No.
Table 37. Average ZannicheTlia response to various concen-
trations of atrazine or linuron
A. Net oxygen release per day per dry weight 360
B. Gross photosynthesis per hour per mg dry 361
weight
xm
-------
INTRODUCTION
This is the first annual progress report on this grant. It is both a
status report and a detailed data report. It is not an in-depth analysis of
results. It does include information with respect to an amendment to this
grant entitled "The Relationship Between Die-Off of Submerged Higher Aquatic
Plants in Chesapeake Bay and Herbicides in Land Runoff", which was funded by
Region III of Environmental Protection Agency. Some prior work on this aspect
of the research program was funded in June and July, 1976 under Contract WD-6-
99-0766-J from Region III (Correll, Wu, and Pierce; 1976).
The watershed research part of this grant was focused, for the first year,
upon:
(1) The selection and instrumentation of three field-sized watersheds
with predominantly one land use. These were row crops(corn), pasture!and, and
forest.
(2) The measurement of a restricted set of parameters (herbicides, cations)
on runoff from eight previously instrumented basin-sized watersheds and of a
much more detailed set of watershed and runoff parameters from the three field-
sized watersheds.
The research in the above amendment was focused upon testing two hypotheses
of the causes for a general die-off of rooted, submerged aquatic plants in
Chesapeake Bay in recent years. These hypotheses were:
(1) That the plants are being inhibited or killed by agricultural
herbicides in land runoff, and
(2) That increased turbidity due to erosion and increased phytoplankton
blooms are shading out the rooted plants.
-------
These two hypotheses need not be mutually exclusive since both agri-
cultural herbicides and reduced light penetration would reduce photosynthesis
(many of the herbicides are photosynthetic inhibitors).
The watershed program'at Rhode River
The Chesapeake Bay Center for Environmental Studies, established in 1965
by the Smithsonian Institution, is a 1,000 hectare research facility on the
Rhode River. Rhode River is a subestuary on the western shore of Chesapeake
Bay just south of Annapolis, Maryland, This site was chosen for long-term
environmental research because it offered the opportunity to study an estuary
and its associated watershed which had many desirable features for an intensive
study. The system is small enough (485 ha of open water and 3,332 ha of
watershed) to be studied in some detail, yet large enough to have most of the
characteristics of an estuary and multiple land use watershed typical of the
coastal plain on the western shore of Chesapeake Bay. A large part of the
research program at the Center is concerned with man's effect on the watershed
through air pollution, land use practices, and the changing pattern of land
brought about by a rapidly growing human population.
The goals of the watershed program include:
(1) The accurate measurement of the loading of the estuarine receiving
waters with land runoff waters and the contents of the runoff waters.
(2) The determination of the present average area yield loading rates
for each major land use category on the watershed for each parameter. This
will enable accurate predictions of the effects of urbanization, etc. on
diffuse source estuarine loading to be made by a deterministic approach.
(3) The determination of sufficiently detailed information on watershed
characteristics, local meterology and runoff parameters from small single-use
2
-------
watersheds, typical of each major land use category to allow the development
of mechanistic predictive models.
(4) The determination of the effects of variations in land use practices
upon runoff from each major land use category.
(5) Testing the results and predictions derived from studies of the Rhode
River watershed for their validity or transferafaility on other coastal plain
watersheds in this region.
(6) To develop a tested methodology for application in other regions.
These goals point out the extent to which this program is focused upon the
impact of man's activities upon the watershed. The watershed was settled by
Europeans in the 1650's and cleared for agriculture. Prior to that time, it
was occupied intermittently by Indian villages for several thousand years. It
should be noted that this watershed had a human population of about 3,000 in
1973, and in 1976 the portion of the watershed under study (2,964 ha) had a
land use composition as follows: 15.8% row crops; 2.2% freshwater (nontidal)
swamps and ponds; 1.9% tidal marshes; 58.6% forest and old fields; 10.2%
pasture; and 11.2% residential, commercial, and other categories. A land use
history based upon written records has been compiled by Dan Higman and an oral
land use history is being compiled by Amy Hiatt. The spatial pattern of land
use on the watershed can best be described as a mosaic, and is typical of this
region. Thus, it is not possible to select subwatershed basins of any size
(more than a few ha) which contain only one land use. Instead, basins contain-
ing a more complex mixture of land uses must be studied and the results
analyzed with respect to the effects of land use.
-------
Description of watershed
The geography of the Rhode River watershed and the various subwatersheds
which are under study are shown in Figure 2. The location of the weather
station (W) and rain gauges (R) are also shown. Table 1 lists the subwater-
sheds under study by name and number, as well as giving their total surface
areas and a summary of the proportions of six land use categories present on
each. The monitored watersheds vary in size from a few hectares to about 1,200
hectares. Land use varies from all or nearly all one type to complex mixtures
of all land use categories. The larger basins include some (102, 108) with
relatively high proportions of row crops, one (121) with more upland wet areas,
one (122) with more tidal wet areas, many (103, 105, 107, and 122) with high
proportions of forest and old fields, some (101, 106) with more pasture, and
two (123, 124) with more residential area. Small single-use watersheds (109,
110, 111) have been selected for intensive study of areas which best typify
row crops, forest, and pasture land uses. The slopes of the larger watersheds
average between 3 and 9 percent with an overall average slope for the whole
study area of about 5 percent. Geologically the Rhode River watershed has
sedimentary soils from the Pleistocene Talbot formation at low elevations on
the eastern portion of the watershed and Eocene Nanjemoy formation soils at
low elevations further west, Miocene Calvert formation soils at intermediate
elevations and Pleistocene Sunderland formation soils at the highest elevations.
A few outcrops of Pleistocene Wicomico formation soils are also found. The
mineralogy of the soils in the various parts of the watershed is fairly
uniform with a high level of montmorillonite and quartz, intermediate levels
of illite and kaolinite, and low levels of gibbsite, chlorite, potassium
feldspar, and plagioclase. The soils differ locally primarily with respect to
the proportions present of sand, silt, and clay. Bedrock is several thousand
4
-------
feet below the surface. The aquaclude is a clay layer, the Marlboro clay
at about sea level elevation throughout the watershed.
Scope of the research
The Rhode River watershed research program began in the summer of 1971.
At that time the monitoring of water composition in five streams was begun.
Also, Dr. Edward Pluhowski, of the U. S. Geological Survey built a 90° notch
weir on watershed 101 and began to establish a rough correlation between
stream flow on each of the other four streams and the flow he measured at
station 101. The composition of grab samples from these streams was measured
until it became apparent in 1973 that permanent weirs and volume-integrated
composite sampling on each watershed would be necessary to accurately measure
discharge rates. By early 1974, the first five of these weirs were completed.
The network of weirs has been enlarged to 11 permanent and 2 temporary weirs
in operation at the beginning of 1977. Six more permanent stations are under
construction or planned for 1977. These monitoring stations are of two general
types but all are designed to measure the volume of water movement and to
sample proportional to that flow. In addition to composite samplers, six
fraction collectors for the discrete sampling of storm events have been built.
Special rainfall collectors for rainfall and dryfall chemistry were first
used in early 1973.- Now several types are in use. They are located at the
weather station in Figure 2. A network of rain gauges was established in 1973.
One has been operated at the weather station for many years. The weather
station, operated by Dan Higman, measures sunlight, rainfall, evaporation,
wind speed and direction, air temperature, dew point, and barometric pressure.
Rainwater and stream water samples are now analyzed for: pH, turbidity,
temperature, total and orthophosphate phosphorus in filtered and whole water,
5
-------
total Kjeldahl nitrogen, nitrate, nitrite, ammonia, organic matter, alkalinity,
total and mineral suspended participates, suspended particle mineralogy, eleven
cations (Ca, Mg, K, Fe, Ni, Cu, Zn, Pb, Cr, Cd, Mn), total viable bacterial
cells, total and fecal coliform bacteria, fecal Streptococci, and six herbicides
(alachlor, atrazine, simazine, linuron, trifluralin, and paraquat).
Land use is determined by the analysis of low elevation aerial photos and
ground truth surveys. Land use practices of landowners are surveyed by the use
of door to door questionnaires. The land use practices surveyed include area
planted in each crop, applications of agricultural chemicals (e.g. herbicides,
fertilizers, lime), livestock populations, residential use of pesticides,
fertilizers and lime, and human populations.
In the case of field-sized watersheds, selected to typify major land use
categories, a number of parameters are measured to enable a better assessment
of the mechanisms or causes of changes in the composition of runoff waters.
These include detailed studies of land use practices, plant populations,
productivity, soil cover, frequent surveys of soil chemistry (e.g. levels of
various forms of nitrogen and phosphorus, levels of pesticides, pH, major
cations such as Ca, Mg, and K), detailed geochemistry (e.g. percentage of
organic matter, sand, silt and clay; mineralogy of silt and of clay), frequent
monitoring of soil temperature and moisture. The soil parameters are usually
determined as vertical profiles at each of a series of elevational contours.
Submerged aquatic plants research program
Dense beds of a number of species of higher plants formerly occurred
widely in Chesapeake Bay as submerged 'seagrass1 or 'seaweed' beds ten to
twenty years ago. These plant beds have suffered great declines, especially
in the last few years. The populations of many valuable animal species are
-------
now suspected to be, in turn, adversely affected by this vegetat.ional decline.
For example, Canvasback ducks depend heavily upon Potamogeton pectinatus (sago
pondweed) for forage and the 'seaweed' beds provide 'nursery grounds' for many
shellfish and finfish species. The dense beds of plants acted (1) to stabilize
the bottom sediments and (2) as wave filters to protect shorelines on the Bay,
thus their decline has been speculatively linked to increased rates of shore-
line erosion in recent years. The plant beds also function not only as primary
producers, but also as a mechanism of nutrient recycling from bottom sediments.
At least three speculative hypotheses have been advanced to help explain the
decline of higher aquatics in the Bay.
The first hypothesis is plant diseases. In one case, the so-called north-
east disease of milfoil, a specific virus has been shown to be involved in the
decline. However, many species of plants in several families are involved and
no strong evidence is available linking general plant population declines to
diseases.
The second hypothesis is increased turbidity due to both erosion and
phytoplankton, and consequent shading out of submerged plant beds. There is
some support for the contention that turbidity due to phytoplankton has increased
in the upper Bay in the last ten to twenty years (chlorophyll levels have gone
up significantly). Erosion has also been high in areas adjacent to housing
and industrial land developments. However, the evidence is not very compelling
that this is 'the major1 causal mechanism for the plant decline. Erosion has
not increased in many localities on the Bay where plants have died out and the
effects of erosion are rather localized.
The third hypothesis is that increased levels, as well as new types of
herbicides, used on agricultural lands in Maryland are the cause of the plant
die-offs. The list of herbicides which have been introduced on a wide scale
7
-------
in Maryland agriculture in the last twenty years as a partial or complete
substitute for mechanical crop cultivation includes simazine, atrazine,
linuron, alachlor, trifluralin, and paraquat. These compounds are generally
toxic to the 'seaweed1 or 'seagrass' plants, since they are vascular plants.
In fact, when these plants were abundant on the bay, atrazine and simazine
were used in their control. Some of this list of compounds are of special
interest, since they are more likely to be transported into the estuary
(linuron) or they are likely to be relatively persistent (simazine and atrazine).
Fieldwork
This research program was designed to experimentally approach the question
of whether any of these herbicides is, in fact, responsible for part of the
dramatic die-off of submerged aquatic plants in recent times. Much of the field
research is being carried out in the Rhode River, a subestuary of Chesapeake
Bay near Annapolis, Maryland. The Rhode River estuary has a surface area of
about two square miles of open water. The discharge of runoff water from most
of its watershed into the Rhode River is currently being monitored and sampled
for chemical analyses as part of the watershed research program. Less intensive,
but more extensive field research is being conducted on the Choptank River, a
large eastern shore subestuary of Chesapeake Bay, and at the Poplar Islands
(on the open bay). The watershed of the Choptank River supports relatively
intensive no-till agriculture while the crops on the Rhode River watershed are
primarily grown with minimum-till practices. No agriculture is practiced on
or immediately adjacent to the Poplar Islands.
Laboratory work
Bioassays of the effects of the herbicides most abundant in the bay on
important species of rooted, submerged higher aquatic plants are being conducted
8
-------
in the laboratory under controlled conditions. This is being done to test
whether herbicide concentrations encountered in Chesapeake Bay can be shown
directly, to be toxic to the plants.
-------
CONCLUSIONS
After one year of funded activity, we feel that our non-point source
pollution research and estuarine plant/herbicide research program is pro-
ceeding well. Our initial intensive effort to measure the application of
herbicides and fertilizer to a cornfield watershed, as well as enough
parameters during the growing season and prior to planting to calculate a
mass-balance for these components has succeeded. A backlog of frozen,
stored samples is being analyzed for herbicides and no final results can be
reported yet, but no serious sampling or analysis omissions have been found
and the research is flowing smoothly as planned. The construction and
instrumentation of a cornfield watershed weir, a woodlot watershed weir,
and a pasture watershed weir have been completed. Samples from previously
existent basin-sized watershed weirs are being analyzed routinely for cations
and herbicides. Landowner chemical application data is being collected by
door to door survey. Estuarine data on plant populations, habitat factors,
shading factors, and herbicide factors.is being collected. Plant bioassays
in the laboratory are ongoing. Data from all phases of the program are being
processed and stored on a computer data bank. We have no reason to suspect
that our original two year work projections and time schedules cannot be met.
10
-------
RECOMMENDATIONS
I. Watershed Research Program
As a result of our research efforts to-date several recommendations can
be made to improve future results.
1. More emphasis should be placed on shallow ground water hydrology.
a. Ground water wells for the measurement of water table slopes,
percolation rates and ground water composition would be very helpful.
b. A neutron probe would provide much better soil moisture data for
hydrological purposes.
c. Some exploration of stratigraphy to establish the aquae!ude for
these watersheds would be very useful.
2. A much closer interaction with the people involved in watershed
modeling for EPA would be desirable.
3. The use of an apparatus to measure the light scattering due to
particulates in unprocessed water samples, such as a ruby layer system
marketed by Spectrex, would be valuable in the determination of the
degree of aggregation and flocculation of suspended particulates.
II. • Estuarine Plant Die-Off Program
As a result of this research study, a series of recommendations can now
be made with respect to further resolving and defining, in an objective
quantitative way, the causes of the observed die-off of submerged higher
aquatic plants in Chesapeake Bay. Also some recommendations can be made with
respect to other ramifications of our findings.
1. Data on the concentrations of other commonly used herbicides,
especially paraquat and the phenoxyacetic acids should be collected.
11
-------
2. Bioassays of chronic toxicity to filter-feeding shellfish and their
larvae such as oysters should be run by varying the concentrations of
herbicides in suspended particulates.
3. Attempts should be made to identify and quantitate principal
degradation products of such herbicides as atrazine and to test their
toxicity.
4. A sediment seed-bank study should be carried out in Chesapeake Bay
to establish the come back potential of the rooted, submerged higher
aquatic plant species native to the Bay.
5. Bioassays of synergistic herbicide effects on submerged, rooted
aquatic plants should be initiated.
6. Bioassays of the toxicity to submerged, rooted aquatic plants of
potential replacement herbicides for preemergent applications on soybeans
and corn should be initiated.
7. Bioassays of the toxicity of paraquat on submerged, rooted aquatic
plants should be carried out to test whether this herbicide is toxic to
the plants after it binds to clays and particulate organic matter.
12
-------
METHODS
I. Land Use Survey
1. Farm land use
Using the 1972 tax map as a guide (with some revisions) we have
identified 53 farms in the Rhode River watershed. These lands cover
about 6648 acres or about 74% of the watershed. For the purposes of
this survey we have defined a "farm" as any individual parcel (or
combination of adjacent parcels with the same owner) which consists of
20 acres or more. Only about 60% of these "farms" contain any land that
is actually being used for the production of crops, so the term is some-
thing of a misnomer. The remaining lands fall under a variety of land
use categories: woodland, recreational, abandoned fields, etc. Since
almost all real farms also contain some of these other land uses we saw
no reason to limit the sample.
So far we have surveyed all of the farms in the watersheds covered
in this report. Detailed data on livestock, land use ground truth for
each field, fertilizers, lime, and pesticides have been compiled. Where
advisable the amounts and identity of farm chemicals have been further
confirmed at the local farm cooperatives, where most local farmers obtain
their materials.
2. Residential land use practices
A retired door-to-door salesman who lives on the watershed, was hired
part-time to conduct this survey. A questionnaire was designed to put
the home owners at ease by asking such questions as how do you keep your
lawn so good looking? The residential parts of the watershed were first
divided into neighborhoods whose boundaries correspond to both drainage
13
-------
basins and neighborhood age, affluence, etc. Then each was subjected to
a stratified random subsampling of about 20% of the homes and businesses.
3. Land use on field-sized watersheds
a. Herbicide application on cornfield 109
Herbicides are applied (by a tractor-drawn sprayer) to the corn
fields in the normal manner recommended by U.S.D.A. and the manufac-
turers. The more commonly used herbicides that are recommended by
the state of Maryland on corn fields are atrazine, simazine, alachlor,
and paraquat. In order to accurately measure the dose per surface
area of applied herbicides, the rate of spray application is measured
in three ways: (1) the time of application is measured per whole
field and volume of spray per time is measured under actual field
conditions; (2) 142 mm Whatman #42 filter paper discs are placed flat
on the field prior to spraying at ten stations and later analyzed for
pesticide; (3) large volume soil cores are taken for 0 - 1 cm
segments. Samples of spray and the filters and soil samples are then
analyzed in the laboratory.
b. Fertilizer application on cornfield 109
Times and application rates and methods are noted from observation,
consultation with the farmer and manufacturer's labels, actual samples
of granular and liquid fertilizer are also laboratory analyzed. Spray
application rates are also measured as above (part a).
c. Other land use data on 109 and 111
Lime application rates are calculated from farmer data and times
of application are noted. Cultivation times and methods are noted
for 109. Dates and populations of cattle on 111 are recorded
routinely. The dates and yields of hay mowing for 111 are recorded.
14
-------
Dates and yields of corn harvest from 109 are also recorded. Any
other farm management practices are also noted.
II. Soil Analysis
1. Sampling
Soils are sampled as needed for the purposes of the pesticide and
nutrient transport models with a split tube soil coring tube and/or a
large volume shallow coring apparatus (as developed by Charles Smith,
Athens, Georgia, EPA). Sets of integrated soil samples are taken at
specified intervals by taking three cores at each of ten stations on
*
each watershed, segmenting them, and combining segments (one from each
core) from like depths at each location and in some cases from stations
on the same elevatfonal contour line (Correll and Miklas, 1975).
Stations are placed along elevation contours. Cores have been divided
into segments; 0 - 1 cm, 1 - 2.5 cm, 2.5 - 5 cm, 5 - 8 cm, 8 - 12 cm,
18-24 cm, and 24 - 30 cm. These segment dimensions may change as model
requirements are defined. Composite soil samples are then homogenized
with a twin-shelled blender. Sampling frequency varies from daily (for
herbicides) immediately after application of chemicals to seasonal.
Soil samples are kept frozen until they can be analyzed.
2. Temperature and moisture
At each soil sampling station moisture and temperature probes
v/ere buried at depths of 5, 15, 30, and 75 cm with electrical leads
connected to sockets in a junction box aboveground for manual readings.
Delmhorst gypsum block moisture sensors and a Delmhorst, Model KS-1,
moisture testor are used. The ranges of the tester have been modified
to allow zeroing against 0, 100, or 10,000 ohms resistance. In situ
calibration curves for each probe were constructed by gravimetric
15
-------
moisture determinations from soil cores at the appropriate depths under
various moisture conditions. Temperature was measured with Fenwal preci-
sion unicurve thermistors, coated with epoxy cement and resistance was
read with a battery powered Fluke digital multimeter. During intensive
study periods reading of probes are made daily. At other times they are
read approximately weekly.
3. Percent sand, silt, and clay, organic matter; mineralogy
Soils are fractionated into sand, silt, and clay by screening and
hydrodynamic methods and each fraction is weighed. The amount of organics
is determined by firing. Mineralogy is determined on silt and clay
fractions by X-ray diffraction. Preparation is described by Carroll
(1970). Soils are analyzed for free-iron oxides and allophane (Jackson,
1956).
4. pH
pH was measured with a hydrogen electrode system after suspension of
an aliquot of soil core in one ml of distilled water per g of soil and
centrifugation.
5. Cations
A sample of 0.1 g of oven-dried soil is placed into a 30 ml micro-
Kjeldahl flask. 5 ml of concentrated nitric acid is added and boiled
gently until the solution is about 2 ml, cool the Kjeldahl flask and add
10 ml of distilled water and again boil down to about 2 ml. The solution
is then diluted to 50 ml with distilled water in a volumetric flask.
Aliquots of this solution are subjected to atomic absorption analysis for
Fe, Mn, Zn, Ni, Cu, Cd, Pb, Cr, K, Ca, and Mg. A Jarrell Ash 82-500
atomic absorption spectrophotometer was used. Concentrations reported
are corrected for efficiency of analysis.
16
-------
6. Herbicides
a. Extraction
To a glass thimble which contains approximately 3 g of anhydrous
sodium sulfate an accurately weighed wet soil sample of 10 g is added.
Then add another 3 g of anhydrous sodium sulfate on top of the soil
sample. This thimble is subjected to a soxhlet extraction with a
mixture of 50 ml benzene and 150 ml of methylene chloride. Water
content of the soil is determined by drying a duplicate sample of
0.20 g wet soil at 100° C for 24 hours.
b. Clean-up procedure
The organic extract is treated overnight with anhydrous sodium
sulfate and is then concentrated to about 8 ml with a Kuderna-Danish
Evaporator on a water bath, a glass chromatographic column packed
with 15 g of alumina (activity grade V) and topped with 5 g anhydrous
sodium sulfate, is washed with 50 ml petroleum ether. The sample is
applied to the column and eluted with 100 ml hexane and then a mixture
of 50 ml bezene and 50 ml hexane. The combined elute is then con-
centrated to about 8 ml and stored in a refrigerated glass tube.
c. GLC chromatography
A 2yl sample of a cleaned-up sample is injected into a Packard,
model 802, gas chromatograph equipped with a tritium electron capture
detector, or a Tracor, model 560, gas chromatograph equipped with a
Hall, model 310, detector and a Ni 63 E-C detector. A 6 ft X 4 mm
coiled all glass column is used. The column is packed with 10% DC
200 on Gas-chrom Q (80-100 mesh). Input temperature is 190°, column
temperature is 165°, detector temperature is 200°, and outlet
17
-------
temperature is 190°. Standard herbicides are run between each
unknown sample and the next. Calibration series are run with
standard solutions of each herbicide.
d. Confirmation of GC peaks
It is necessary to confirm the identity of various peaks
occasionally. We plan to do this in two ways.
First, we plan to confirm by subjection of samples to integrated
GC/mass spectrograph analysis. This confirmation work is to be done
by Dr. Edward Oswald in the Analytical Chemistry Laboratory of the
EPA facility at Research Triangle Park, North Carolina.
Secondly, we make confirmations by the two column procedure. A
second GC column (Carbowax 20 M) is run (Muir and Baker, 1976).
7. Nutrients
a. Nitrogen
i. Total Kjeldahl nitrogen is determined by digestion with
sulfuric acid and hydrogen peroxide, distillation and
Nesslerization (Martin, 1972).
ii. Total ammonia is determined by Kjeldahl distillation from
undigested but alkaline samples plus Nesslerization.
iii. Water soluble ammonia is determined as above but on
distilled water extracts of soil
iv. Exchangeable ammonia is determined on 1 M K Cl extracts of
previously water extracted soils.
v. Nitrate is determined by the modified Conway microdiffusion
method Stanford, et al (1973).
18
-------
b. Phosphorus
Total phosphorus, acid labile, and orthophosphate were determined
as described by Correll and Miklas (1974). Total phosphorus was
determined on whole soil only. Orthophosphate was determined on
whole soil, a 1 M K Cl extract, and on a distilled water extract. The
extraction procedure is to extract one gram of soil with 15 ml
distilled water, then with 10 ml distilled water, removing soil from
extraction liquid by centrifugation. The extracted soil is then
reextracted in the same manner but with 1 M K Cl.
III. Meteorological Measurements
1. Rainfall and dry fall
Tilting bucket rain gauges (Stevens) with a resolution of 0.01 inch
per pulse and a readout on paper tape every five minutes are located at
six stations (Figure 6). A strip chart recording weighing rain gauge is
also located at the weather station (Figure 2). A total of 20 manual
rain gauges are now located on the watershed (Figure 6). Rainfall is
also collected in a special apparatus mounted 13 meters above the ground
for chemical analysis (nutrients and heavy metals). The rain collectors
consists of two identical four liter pyrex glass bottles, and two
Nalgene polyethylene 28 cm diameter funnels. The funnels are fitted to
the top of the bottles with a rubber stopper. Fiberglass window screen-
ing was placed over the funnels to prevent insects from getting into the
bottles. Both funnels were exposed to atmospheric fall out at all times.
One funnel was used for bulk precipitation measurements, the other was
used for dry fal1.
19
-------
Bulk precipitation samples were taken continuously. The sampler
was emptied after each rain event and then repositioned. If sufficient
sample was taken from one rain event, it was then analyzed. If the
rainfall amount was too small, it was placed in a sealed plastic bottle
and refrigerated at 4° C until the next bulk precipitation sample was
added to it. This procedure went on until sufficient sample was obtained.
The bulk precipitation collector bottle funnel and screen were cleaned,
and dates and times recorded each time a sample was removed. This
procedure assumes that each rain event washes the dry fall off the funnel
into the bulk precipitation collector bottle. Thirty-three bulk
precipitation sampling events were analyzed for 1976. The exposure time
ranged from one day to twenty-eight days. Elemental loading rates in
Kg/ha-day were determined for each bulk precipitation sampling event.
This data was then cumulated into monthly, seasonal, and yearly values.
Dry fall samples were taken intermittently. If a rain event occurred
while the sampler was in position, the sample was discarded. Each time
a sample was taken or discarded, the entire sampler was cleaned, then
it was repositioned, and the dates and times were recorded. If no rain
event occurred during sampling time, a liter of distilled water was used
to wash the dry fall off the funnel into the collector bottle. The
sample was then analyzed for the five elements. Exposure time ranged from
two to six days and the mean time was 2.9 days. One hundred thirteen
days of dry fall data were analyzed in 39 separate sampling events for
1976. Naturally more samples were taken in dry months than wet months.
Exposure time, surface area of the funnel, and concentration were all
used in determining the loading rate in Kg/ha-day. This loading rate
was determined for each dry fall sampling event. Time points between
20
-------
sampling events were given mean loading rate values as determined by
averaging the loading rates determined immediately before and after the
missing time interval. Loading rates were then cumulated for the entire
month and were then adjusted by subtraction of a fraction equal to the
proportion of the time when rain was falling. These adjusted monthly
values were cumulated into seasonal and yearly values, and expressed as
percent of bulk precipitation.
Another large surface area stainless steel apparatus is located at
the Center on a roof top for the collection of rainfall for pesticide
analysis.
2. Evaporation and wind run
These parameters are monitored with automated standard weather
equipment (evaporation pan and anemometer).
3. Air temperature, dew point, wind speed and direction, and sunlight
These parameters are monitored with automated thermister, Lithium
chloride sleeve dew point apparatus, anemometer and weathervane {at
elevation of 20 meters), and an Eppley precision pyroheliometer.
IV. Plant Populations on Field-Sized Watersheds
1. Corn plant heights and soil coverage on watershed 109
Corn plant height and total plant soil coverage are measured in the
cornfield watershed at approximately 10 day intervals during the growth
season. Heights were measured at five stations on randomly selected
plants. Soil coverage was measured by taking vertical color pictures
from an elevation of 6 meters. Percent leaf coverage was estimated by
projecting the color slides onto a grid with randomly selected intercepts
premarked. The percentage of intercepts which fell on plants was then
used to calculate soil coverage (point-intercept method).
21
-------
2. Biomass and nutrient removal of corn on watershed 109
At approximately 20 day intervals during the growing season and at
harvest time corn plants were excavated at five stations. They were
separated into roots, stems, leaves, flowers, corn kernels, and corn cobs
for dry weight determinations, total Kjeldahl nitrogen content, and total
phosphorus determinations. Nutrient assays were done by the same
techniques as for soils. In September aboveground weed biomass was
P
measured as numbers and dry weight by species in three 25 m plots at
each of the ten stations. Three random 0.5 X 0.5 m subplots were
sampled.
3. Plant leaf area indexes
At approximately 20 day intervals during the growing season corn
leaf areas per plant were determined and in September weed leaf areas were
determined by species in the same plots used for biomass.
4. Plant populations on watershed 109 cornfields
In September the numbers of plants of each species on the cornfield
watershed were measured per surface area in the same plots used for
biomass and leaf area.
5. Plants on watershed 110
•j
Twenty 1 m wooden litter fall boxes, with screen bottoms, were
distributed over the entire watershed in a stratified random pattern.
Leaf, seed, and miscellaneous litter were collected at one or two week
intervals. These samples are sorted by species and counted. Regressions
of weight and leaf areas for each species are used to establish these
parameters based on data collected the two prior years.
22
-------
V. Runoff Waters
1. Hydrographs and water sampling
All weirs (Stations 101, 102, 103, 105, 106, 107, 108, 109, 110, 111
in Table 1) are now 120° sharp crested V-notch weirs. The instrumentation
of these weirs was described in Correll, Pierce, and Faust (1975). It
has now been improved to include two parallel sampling pumps one of which
pumps to a glass sample bottle, the other to a plastic sample bottle
which contains a small volume of 18 N sulfuric acid initially. In some
cases, on very small watersheds, the normal 25 lobe sampling cam in the
Leupold and Stevens Model 61 R flow meter has been replaced by a 50 lobe
cam. Custom fraction collectors have been built for use on some weirs,
especially on small single land use watersheds. These fraction collectors
are designed to trigger automatically at a predetermined water stage.
They then collect a fixed aliquot of water every time the flow meter
sampling switch is triggered (giving a pulse) by a given volume of flow.
A pulse counter triggers the fraction collector to move from one bottle
to the next when the preset number of pulses have been received, and an
event marker on the flow meter strip chart records the times of fraction
collector movement. Twelve bottles of twelve liters volume each can be
collected. Since the fractions-are collected at identical times to the
volume-integrated composite samples, the composition of flows prior and
subsequent to storm event flows can be calculated. All stations are
entirely battery operated and are usually serviced twice a week. Volume-
integrated samples are collected weekly.
Grab samples are also taken every two weeks at a recorded time and
discharge rate for analysis of non-conservative parameters. Samples from
storm events are split with a stainless steel water-sediment splitter
(Fleming and Leonard; 1973). Samples are refrigerated prior to analysis.
23
-------
2. Particulates
Samples of water from weirs are filtered and the concentrations of
total participates and mineral phase are then determined, as well as
size fractions and mineralogy. The volume-integrated composite samples are
filtered through pre-weighed and treated, 0.45 urn nominal pore size
filters to remove the particulates. Weight-gain of the filters gives
total particulate material, and loss of material upon combustion gives
a measure of organic material. Spot-samples at known flow rates will
be taken for mineralogy by X-ray diffraction and size distribution.
Mineralogy will be done on selected volume-integrated samples also.
(Carroll, 1970).
3. Cations
Samples for heavy metals determinations are prepared by concentration
of 500 ml of whole water to 10 ml after acidifying with 5 ml cone. HN03.
Samples are then diluted appropriately and assayed for Fe, Mn, Zn, Ni,
Cu, Cd, Pb, Cr, K, Ca, and Mg by atomic absorption.
4. Nutrients
Samples are analyzed for concentrations of (1) total and ortho-
phosphate before and after Millipore HA filtration, (2) nitrate plus
nitrite, (3) ammonia, (4) organic nitrogen, (5) total organic matter.
The techniques used are those in common practice for nonautomated wet
chemistry. These concentrations multiplied by the water discharge rates
give total discharges per watershed.
a. Particulate and dissolved ortho- and total phosphorus
Samples plus or minus Mi Hi pore HA filtration in the field are
analyzed for phosphate by the stannous chloride method (Standard
Methods, 1971) before and after digestion with perchloric acid
24
-------
(King, 1932). Composited samples are only analyzed for total
phosphorus.
b. Nitrate plus nitrite
Nitrate is converted to nitrite by passage through an amalgamated
cadmium column. Then nitrite is determined colorimetrically
(Standard Methods, 1971).
c. Ammonia
Determined by oxidation to nitrite with sodium hypochlorite and
then as above.
d. Organic matter
Determined by Kjeldahl digestion as described by Martin (1972),
distillation of the released ammonia and Nesslerization.
e. Organic matter in fresh water samples. Determined by the wet
oxidation method of Maciolek (1962).
5. Herbicides
Samples of 2 or 10 £ are treated with 5 g CaCl2 • 6H20 per liter
overnight under refrigeration. They are then filtered through a 47 mm
Gel man, type A, glass fiber filter. The filter is placed in a glass
thimble with anhydrous sodium sulfate and is extracted with a mixture
of 50 ml benzene and 150 ml methylene dichloride in a Soxhlet extractor.
The filtrate is first extracted with 80 ml benzene, then two times with
100 ml and 50 ml of methylene dichloride. The organic extracts are then
combined.
The organic extracts from (1) the filter (particulates) and (2) the
filtrate fractions are then concentrated, cleaned up on alumina columns,
and chromatographed (GLC) as described under the section on soils.
25
-------
The extracted filter is then stored in a freezer and shipped on
dry ice to the Athens, Georgia EPA laboratory for paraquat analysis.
6. Bacteria
Bacteria that are indicators of fecal pollution and water quality
are monitored. These bacteria are total coliforms, fecal coliforms,
total and fecal Streptococci and Salmonella. Water samples are collected
from the weirs in sterile bottles at weekly intervals. Collected samples
are properly treated to retain viability of the above bacteria and
returned to the laboratory within two hours of collection. The
identification of pathogenic bacteria involves procedures and techniques
recommended and described in Standard Methods for Examination of Water
and Waste Water (1971). Two methods are used for the identification and
enumeration of pathogenic bacteria, the Membrane Filter and Multiple
Tube Fermentation techniques. These techniques separate these organisms
based upon their physiological and temperature requirements such as
lactose fermentation, selenite, and azide tolerance, etc. Positive
cultures for Salmonella will be confirmed by using biochemical and
serological characters of these organisms. Isolated cultures will be
serotyped with Salmonella 0 group A - E antisera, Salmonella 0 poly
valent antisera, and Salmonella V^ antisera. All of the above antisera
are commercially available (Blair, et al, 1973). Total viable counts of
heterotrophic, aerobic bacteria are determined by standard plate counts.
VI. Estuarine Field Studies
1. Sampling stations descriptions
Figures 7 (Rhode River), 8 (Choptank River), 9 (Poplar Islands),
and 10 (Severn River) and the following listings give the details of
26
-------
station locations. Severn River stations were only visited once, in
June, 1976 under EPA contract WD-6-99-0766-J. Rhode River stations are
sampled once a month, year around. Other stations are sampled in April,
June, August, and October. Stations were selected in shallows (0.5 -
2 meters at mean low tide) in areas which are relatively protected from
wave action.
a. Rhode River
Station River Latitude N/
No. axis (Km) Longitude W
Description
28
28.4
29
30.2
31.5
b. Severn
91
92
93
94
95
96
RR 0.0
RR 1.0
RR 2.1
RR 4.0
RR 5.1
River
SeR 1.9
SeR 7.3
SeR 10.9
SeR 13.2
SeR 16.0
SeR 20.2
38° 51'
76° 31'
38° 52'
76° 31'
38° 52'
76° 31 '
38° 53'
76° 32'
38° 52'
76° 32'
38° 58'
76° 28'
39° 0'
76° 30'
39° T
76° 32'
39° 2'
76° 34'
39° 4'
76° 33'
39° 4'
76° 36'
9"
8"
25"
15"
57"
22"
3"
44"
40"
55"
18"
18"
30"
15"
45"
6"
6"
0"
0"
51"
48"
24"
Mouth of the Rhode River
on Cheston Point
In Canning House Bay, South
of channel marker RR 4
In shallows south of channel
marker RR 7
In shallows of Fox Cove
Center of sediment trap
area at mouth of Muddy
Creek
In shallows south of warning
marker at Horn Point
On north shore just upstream
from Hwy. 50 bridge
In shallows on south shore
at Brewer Point
In shallows on southwest
shore of Round Bay, just
west of small marsh point
On the western shore of
Cedar Point
At upper extent of five
foot channel near a small
27
island
-------
c. Choptank River
Station River
No. axis (Km)
71 CR 0.6
72 CR 10.2
73 CR 20.8
74 CR 30.8
75 CR 39.6
76 CR 48.4
77 CR 67.9
78 CR 88.3
d. Poplar Islands
81
82
83
84
Latitude N/
Longitude W
38° 39'
76° 20'
38° 37'
76° 13'
38° 36'
76° 8'
38° 34'
76° 31
38° 36'
75° 58'
38° 40'
75° 56'
38° 46'
75° 57'
38° 52'
75° 50'
38° 46'
76° 22'
38° 45'
76° 22'
38° 45'
76° 21'
38° 45'
76° 21'
0"
0"
42"
45"
12"
21"
6"
24"
33"
30"
27"
42"
42"
48"
57"
24"
12"
30"
33"
42"
18"
57"
0"
45"
Description
In shallows just north of
channel marker 9
In shallows on upstream
shore of Todd Point
In shallows on upstream
shore of Horn Point
On south shore at concrete
bulkhead just downstream
from channel marker 27
On southeastern shoreline
opposite Warwick Creek
channel marker 1
On eastern shoreline opposite
channel marker 41 (at mouth
of Hunting Creek)
On southeastern shore •
opposite channel marker 58.
On upstream side of a
narrow point.
On the western shore
opposite channel marker 79,
just downstream from
Denton
Midway between Jefferson
Island and northern Poplar
Island in 3-4 feet of water
On inner (eastern) side of
south end of Poplar Island
Near dock on northeastern
side of Coaches Island
On eastern shore of south-
eastern corner of Coaches
Island
28
-------
2. Submerged higher aquatic plants
A common steel garden rake is used to collect plants by scrapping the
surface of the bottom sediments in random paths in areas of 0.6 to 1.2
meters depth. A total area of bottom of from 10 to 100 square meters per
station is sampled, depending upon plant abundance. Samples of plants
from each station are sorted by species, counted, dried to constant
weight at 60° C in an oven and weighed. On site visual observations are
also recorded of presence or absence of plants.
The Shannon diversity index was calculated from plant population
(numbers) data by the formula:
Shannon Index = -z p^ In p^
where; p-j = number of individuals of species i per m2 divided by
o
the total number of individuals per nr
3. Habitat parameters
a. Salinity
Vertical profiles of salinity were determined at each station
with a Beckman model RS5-3 induction type salinometer calibrated
before each cruise with standard seawater.
b. Bottom sediment characterization
At each station 3 Pflueger cores were taken unless the bottom was
too hard in which case 3 Ekman Dredge samples were taken. These
samples were analyzed for percent organics, mineralogy, and mineral
particle size distribution. In the case of cores these parameters
were measured as vertical profiles. These parameters were determined
as in the section on soils.
29
-------
4. Shading parameters
a. Phytoplankton chlorophyll a concentrations
Between stations the boat was operated at an even speed and
surface waters were pumped continuously from a depth of 0.5 m through
a flow-thru door (110-880A) on a Turner model 111 fluorometer. The
fluorometer had a F4T4-BL blue excitation lamp, a Corning 5-60
excitation filter, a Corning 2-64 emission filter, and a red
sensitive photomultiplier tube (R-136). The signal was recorded on
an integrating strip chart recorder. A sample of known volume was
taken at a marked time position on the chart for each transect
filtered through a Mi Hi pore HA filter, and the filter was dissolved
in 90% acetone saturated with MgCOg and stored in the dark. The
acetone extract was then analyzed for chlorophyll a by the method of
Loftus and Carpenter (1971). The average in vivo fluorometer response
was then determined by regression of the transect recording versus
the in vitro concentrations. Concentration of chlorophyll a was
determined by multiplying times the ug in vitro chlorophyll a, per
in vivo response unit from the regression.
b. Turbidity
A Hach, model 2100A, turbidimeter was used to measure the
turbidity of samples in the field. It was calibrated, in Jackson
units, with sealed standards before each measurement. Three samples
of surface waters were analyzed at each station.
c. Suspended particulate characterization
Surface water samples were filtered through prewashed and. weighed
Mi Hi pore HA filters. Weight gain was used to assay for total parti c-
ulates. Mineral particulates were determined after firing organic
30
-------
matter present in the sample. Size fractions and mineralogy were
determined as described by Carroll (1970).
d. Photosynthetically active radiation penetration
A Lambda model LI-185 quantum radiometer equpped with a LI-190S
quantum sensor and a LI-192S underwater quantum sensor was used,
beginning in the spring of 1977, to measure incoming PAR quanta flux
and underwater penetration of PAR to various depths.
5. Herbicide parameters (estuarine)
a. Sampling and extraction
At each station 15 £ of surface waters are taken and 50 g Ca C^
are added. The sample is allowed to stand overnight and is then
filtered through a Gilman, type A, glass fibre filter. The filter
is then treated with anhydrous sodium sulfate and extracted with
benzene and methylene dichloride. The filtrate is extracted with
benzene and then with methylene dichloride. Sediment cores (3) are
taken at each station with a Pflueger corer. In cases of hard
bottom conditions, a set of three Ekman dredge samples were taken.
These sediment samples were stored on ice until they could be
segmented (cores) into surface to 3 cm and 3 - 6 cm segments. Sub-
samples of 10 g weight were then mixed with 10 g anhydrous sodium
sulfate and extracted with benzene and methylene dichloride
b. Cleanup and GLC
These steps were carried out as described under soils.
31
-------
VII. Submerged Aquatic Plant/Herbicide Bioassays
1. Growth Conditions
Two 4 foot x 8 foot x 1 foot (deep) steel water jackets were.built,
insulated with styrofoam, and equipped with recirculating thermostated
water chillers (Neslab model CF 75 with PD-2 pumps). Two 4 foot x 8 foot
reflector lined fluorescent light banks were built. Each contains 24 -
80 watt fluorescent units with daylight type tubes. The light banks
are on timers set for 16 hour photoperiods. Vycor immersion heaters
were used to provide a constant heat load to the water jackets and the
temperature was maintained at 23 C. One water jacket was used to
temperature control 9-20 gallon all-glass aquaria, which are used as
holding tanks for experimental plants. The second water jacket was used
to temperature control 16 - 10 gallon all-glass aquaria for test
(bioassay) purposes. All aquaria were aerated with air from two commer-
cial aquaria compressors. Aerators are horizontal tubes with small holes
every inch of their length which run the full length of the aquaria.
They are regulated with needle valves and their depth can be adjusted.
Glass plates are kept over 90% of the surface of each aquarium. Forest
soils from watershed 110's drainage channel were analyzed for particle
size distribution, mineralogy, and percent organic matter to select a
sample for tank bottom sediments which best matched conditions at station
30.5 (Figure 6). This was done to assure a noncontaminated baseline in
the aquaria, since no herbicides have ever been used within approximately
one mile of watershed 110. In addition, samples were analyzed for
herbicides. Each tank was filled to a depth of 5 cm with this soil.
Herbicide, in alcohol or methanol, was added to a calculated concentra-
tion and was well mixed. Plants were transplanted into the soil
32
-------
(approximately 200 young ZannicheTh'a palustris per tank in the first
experiment). Well water plus enough instant ocean salt mixture
(Aquarium Systems, Inc.) to bring it to 5 parts per thousand was added
and it was aerated until the pH was about 8. The next day, after
excessive turbidity had subsided, herbicide was added to bring the
water to a level calculated to be a thousand fold lower in concentration
than the sediments. Eight tanks were used to assay atrazine effects and
eight for linuron effects. In each case two banks were controls
(untreated), two were given 1 ppm of herbicide in the sediments, two
were given 10 ppm of herbicide in the sediments, and two were given
100 ppm of herbicide in the sediments. Experiments were carried out for
four weeks from herbicide addition.
Bottom sediments in test tanks
Parameter
% organic
% sand
% silt
% clay
Desired to
replicate
Station 30.5
11.5
29.1
61.2
9.7
Actually used
from 110
mean ± SE
11.4+5.0
32.1 + 2.5
60.2 +_ 5.7
7.7 + 4.0
2. Assays
Tanks were routinely monitored for water temperatures and turbidity.
Photosynthetically active radiation was measured. At the surface of the
light banks PAR was 430 y E/m^ sec. At the water surface in the aquaria
o
PAR varied from 80 to 140 y E/m sec. Subsainples of plants were bio-
assayed two times a week by washing off the accumulated growth of algae
and sediments then placing them in BOD bottles filled with Millipore
HA filtered well water which had been adjusted to the same salinity and
33
-------
pH as the test tanks. A YSI BOD oxygen electrode probe was then
inserted in each bottle and the bottle was floated in the water jacket
under the light banks. Each assay was routinely begun at the beginning
of the 8 hour dark period. DO was read after thoroughly mixing the
bottle contents at 0, 4, and 8 hours of darkness, then at more frequent
intervals during the light period. The plants from each bottle were then
counted and their length and dry weights were measured. The data points
for dark and light DO sets were then subjected to linear least squares
regression to obtain DO slopes for respiration and photosynthetic rate
estimates.
3. Herbicide sampling
Bottom sediments from each tank were sampled at the beginning and
end of the four week run. Water samples were taken (one liter each)
once a week and were not replaced. Samples were analyzed as described
in other earlier sections.
34
-------
QUALITY CONTROL IN HERBICIDE ANALYSES
To insure the precision and accuracy of the application of the analytical
method, a quality control program has been set up at CBCES for herbicide
analysis. The quality control program is one of the most important parts of
the herbicide analysis, and is the result of discussions with William Payne
and Jackie Benner of the Environmental Protection Agency, during their recent
visit to CBCES concerning herbicide analyses performed under EPA Grant Number
R804536-01.
The results from trace analysis of environmental samples are obtained
through many steps in the laboratory. Analytical methods, quality control of
instrumentation performance, computer handling and data analysis are all
important toward generating reliable analytical results. The CBCES Quality
Control Program is designed to handle large numbers of samples and to emphasize
the fact that these samples should be handled with the utmost care in the
preparation stage. Generally, the three most common difficulties with any
type of trace analysis are (1) Impurities imparted from the chemicals that are
used in the sample handling processes, (2) Contamination from glassware and
other containers, and (3) Errors made due to unsatisfactory personnel
performance.
(1) Impurities from chemicals - Blank Test
The major materials used in the herbicide analytical process that should
be tested for impurities should be solvents, filters, alumina, and anhydrous
sodium sulfate. Dichloromethane, benzene, hexane, acetone, and petroleum
ethers are all nanograde solvents from Mallinckrodt Inc. Filters are purchased
from Gelman Co. (Type AE) and are throughly cleaned in the CBCES lab as
described later in this section. Alumina and anhydrous sodium sulfate are
35
-------
purchased from Applied Science Laboratories, Inc. All of these chemicals are
suitable for trace analysis of pesticides. The quality control program ensures
that the low level of impurities present in these materials are monitored
through the use of blank tests.
A filter that is cleaned through the use of the filter cleaning process,
is extracted in a Soxlet extractor and processed through the entire procedure
as if it is a routine sample. One blank test is necessary every week. All of
the blank test results will be tabulated and dated for background information.
(2) Contamination from glassware - Cleanliness Test
• Almost all of the containers in the herbicide analysis are pyrex glassware.
Glassware is cleaned with water, soap, and with chromic acid. It is rinsed
throughly with tap water, and finally with distilled water. The glassware is
then dried in the oven at 100° C overnight before use.
Inspection of the cleanliness of the glassware should be made constantly.
Benzene is used as a test for herbicide contamination. After rinsing the glass-
ware with benzene, the benzene solution is tested with a gas chromotograph.
Other precautions concerning contamination from glassware include the
following:
(A) Do not store herbicide standards and commercial herbicides with
sample extracts in the same refrigerator.
(B) Avoid making herbicide standards in the same hood that is used for
sample preparation.
(3) Unsatisfactory personnel performance - Spiked Sample Test
Laboratory personnel involved with the herbicide analyses for the EPA
project are those who have had at least four years of college education, and
are chosen on a competitive basis. Judgment was made based on academic
standings, skillfulness of chemical analysis, enthusiasm, and interests in
chemical research, and recommendations from their previous supervisors.
36
-------
Training and education of CBCES personnel for herbicide analysis are
one important step toward a good quality control program. The broad over-
view of the entire research program, its goal and significance, is explained
and discussed, detailed laboratory procedures are explained and demonstrated.
Regular discussion sessions are held at least once a month in order to
exchange ideas and to evaluate suggestions for improvements. It has been
made clear, however, that nothing should be changed from our routine course
of analytical procedure. We all follow the procedures that are outlined in
this manuscript. Every day visits and observations of the skillfulness of
operations, neatness of the laboratory and other essentials are the duty of
the CBCES research chemist. Corrections will be made when it is necessary in
order to maintain a successful program.
Occasionally a spiked sample test will be given to each of the laboratory
personnel. The test will not be known to the person. This can be done by
substituting a standard herbicide mixture for a CBCES numbered sample, or a
sample can be spiked with a standard herbicide mixture. Spiked sample tests
can be done for the entire procedure or they can be just for a particular step.
The detailed method is the same as described in the precision and accuracy
section. The results will be made known and will be used for judgment of
skillfulness and carefulness of the laboratory personnel. Improvements in
quality control and in the reliability of our analytical results will result
from these routine quality control measures.
37
-------
Filter Cleaning
Gelman glass fiber filters (Type AE, 142 mm, no organic binder) are
precleaned according to the following procedures:
1. Soak a batch of the Gelman filters in distilled water for one day,
drain the water from the filters and oven dry the filters at 60° c for
24 hours.
2. Put the dried filters into the side chamber of a large extractor and
extract with a mixture of 2.5 £ of 2/1 methylene chloride and benzene
for 72 hours.
3. Air dry the filter under the hood and wrap with aluminum foil until
dry.
38
-------
Precision and Accuracy
The precision and accuracy of the entire analytical procedure for
herbicide analysis can be determined by a standard recovery study. In order
to determine the effectiveness of each step of the analytical procedure, a
recovery study of each step is conducted (refer to following schematic for
steps).
1. Addition to natural samples
To wet soil, wet sediment, particulate sample or filtrate sample 4 ml
of standard herbicide mix is added, and then the entire analytical
procedure is carried out. Before the standard addition to these various
forms of natural samples is performed, a major effort should be made to
determine the effectiveness of the procedure itself. This can be
accomplished by pippeting 4 ml of standard herbicide mixture into an
empty Soxhlet extractor and proceeding as if there is a sample, and thus
the complications due to adsorption and other effects can be eliminated.
2. Addition to organic solution I
Add 4 ml of standard herbicide mixture to organic solution I and
proceed as usual. The difference between the percent recovery of this
addition and the previous one will reveal the effectiveness of the
Soxhlet extraction.
3. Addi ti on to concentrate I
Add 4 ml of standard herbicide mixture to concentrate I just before
the cleanup procedure. This will enable us to determine the loss (if any)
due to the Kuderna-Danish evaporation process.
4. Addition to organic solution II
Add 4 ml of standard herbicide mixture to organic solution II. The
39
-------
comparison between this and the previous one will determine the percent
recovery of the column chromatographic cleanup procedure.
5. Addition to concentrate II
Add 4 ml of standard herbicide mixture to organic concentrate II.
The GC analysis will determine the matrix effect of the sample extract.
40
-------
SCHEMATIC OF HERBICIDE ANALYSIS
WET SOIL
WET SEDIMENT
[ FILTRATE
SOXHLETTXTRACTIOW SOLVENT EXTRACTION
ORGANIC SOLUTION J
KUDERNA DANISH-CONCENTRATION
1
CONCENTRATE I
COLUMN CLEANUP
l
ORGANIC SOLUTION H
KUDERNA DANISH-CONCENTRATION
i
COWCENTRATEH
GAS CHROMATOGRAPH a COMPUTER
i
41
-------
RESEARCH RESULTS FROM WATERSHED PROGRAM
Status of Watershed Activities
The major goals of the first year of the grant included (i) the construc-
tion and instrumentation of three V-notch weirs on cornfield, woodlot, and
pasture field-sized watershed; (2) the instrumentation of these watersheds,
(3) a major effort to obtain a full set of data on the application of agricul-
tural herbicides and fertilizers to the cornfield watershed and the composition
of the runoff from this watersheds; and (4) the analysis of volume-integrated
samples from our previously instrumented basin-sized watersheds for herbicides
and heavy metals.
By April 9, 1976 the cornfield weir site and watershed had been selected
and baseline soil samples were taken. Soil sampling stations were established.
A temporary, manual, rain gauge was put in position on this watershed on April
15 and total rainfall per storm, as well as the approximate time and duration
were recorded. A detailed map of watershed 109 is given in Figure 3. Record-
ing rain gauges (3) were ordered in June when funding was made available and
have now been received. Three more were ordered in September when permission
was received and have now been received. Additional manual gauges v/ere also
purchased and all are now in place as shown in Figure 6. A 120 V-notch weir
and instrument shed were built and instrumented to take volume-integrated
samples (only) by May 7 when corn planting commenced. A fraction collector
was designed and six were constructed. One is in use on each of the field-
sized watersheds. Fertilizer and herbicide application rates were measured
and soil cores were taken daily for herbicides, every two days for nutrients
for the first week, then with decreasing frequencies with time. Soil core
samples were stored in a freezer until analyses could be performed and the
42
-------
backlog of herbicide samples has not been overcome yet. Weir samples of
runoff were analyzed for all parameters planned. Vertical color photos were
taken at each of five stations every ten days during the growing season from
an elevation of 6 meters. Each time these were taken corn heights were
measured and at several times during the growing season the weight and nutrient
contents of the roots, stems, leaves, and ears were measured. At the end of
the growing season the corn and weed populations were also surveyed (number,
above ground biomass, and leaf area per square meter) for each species in a
series of random plots near each station.
As of mid-June we began to analyze all volume-integrated water samples
from basin-sized watersheds (8) for selected herbicides and heavy metals as
proposed. As of July 19 we began shipping one gallon subsamples from the
basin watersheds and the cornfield watershed to the Athens, Georgia EPA
laboratory for herbicide analysis. Many of the streams were dried up during
this time due to a very dry year so shipments averaged only a few samples per
week. At that time we also began shipping to Athens, Georgia the solvent-
extracted filters containing the suspended particulates from weir samples.
These were to be analyzed for paraquat in Mr. Payne's laboratory. In October,
we stopped shipping water samples to Athens, at the request of EPA. Only
suspended sediment and bottom sediment samples are now shipped to Athens for
the analysis of paraquat.
In late July and August the weir and instrument shed for the woodlot
watershed were constructed and instruments were installed for volume-integrated
water sampling. In the spring of 1977, soil moisture and temperature stations
were established (see Figure 4). Severe ice and frozen soil conditions broke
the foundations of the weir in early January 1977, and it was not repaired
until mid-April, at which time sampling was begun again.
43
-------
A pasture watershed was selected, permission to build a weir and carry
out studies there were obtained from the owner, and weir construction has been
completed. Soil stations with temperature and moisture probes have been set
up (see Figure 5). Weir instrumentation should be complete by July 1, 1977.
Land use practices surveys are ongoing.
In July, Dr. Correll visited the Iowa State University non-point pollution
study and discussed their work with these investigators, at the same time he
visited with Rob Johanson and Tony Donigian from Hydrocomp who were visiting
the Iowa site. As a result, we modified some of our sampling (e.g. we now run
distilled water extractable orthophosphate and ammonia, put in deeper soil
moisture and temperature probes, and measure total-P, and total-N in soils
less frequently).
We have purchased and received the budgeted explosion-proof refrigerator
and deep freezer and the twin-shell blender. We have received a 10 by 12 foot
walk-in cold room, and it is in use. Our Packard GC system is working well.
We have ordered and received a Tracor GC system with a Hall detector and they
are now operating satisfactorily. Our amendment request to increase funding
for herbicide analyses for watershed samples has been received and implemented.
A sediment splitter apparatus for storm water samples from weirs has been
constructed and is in use.
Rainfall and Soil Temperature/Moisture
Table 2 lists rainfall daily totals for watersheds 109 and 110. Storms
of over 2.5 cm were recorded in 1976 on May 1, May 29 -31, June 16, July 11,
July 16, August 7-9, August 14 - 15, August 27, September 15 - 17,
September 30 - October 3, October 9, October 20, October 24 - 25, October 30,
and December 7. We had an unusually wet summer and fall. In 1977 storms of
44
-------
over 2.5 cm were recorded on January 1 - 12, March 22, and April 2-5. Soil
moisture data are tabulated for manual gravimetric determinations on cores
(Table 3A) and for gypsum block sensor data (Table 3B). Data on soil tempera-
tures for watershed 109 is in Table 4. Soil moisture data from 75 cm depths
on 109 and at all depths for 110 were not included because they have not been
calibrated.
Cornfield Plant Populations
Soil coverage and corn heights are shown in Figure 11. Since fields 3
and 4 were planted later, data from those fields is plotted separately. By
mid-July plant heights and soil coverage had reached their maxima, approximately
80% and 290 cm, respectively.
The relationship between corn height and soil coverage is shown in
Figure 12. This relationship is so clear that it was considered unnecessary
to measure soil coverage in 1977. Corn leaf area index at four times are
listed in Table 5 and graphed in Figure 13. Leaf area index for the corn plants
averaged 3.1 on July 23 and declined to 2.9 in August and September.
Corn plant populations and nutrient withdrawal data are given in Table 6.
Total phosphorus withdrawal peaked at 5.7 g P/m2 in fields 1 and 2 and
4.3 g P/m2 in fields 3 and 4 on September 3. Total Kjeldahl nitrogen with-
drawal peaked at 28.6 g N/m2 for fields 1 and 2 and at 25.7 g N/m2 for fields
3 and 4 on September 3. In both cases most was in the aboveground corn biomass.
2
Corn total biomass per m is plotted in Figure 14. Above and below ground
biomass is plotted in Figure 15. The relationship between total corn biomass
and corn height is given in Figure 16. Total phosphorus in corn plants at
various ages is plotted in Figure 17. This is broken down into above and below
ground total phosphorus in corn plants in Figure 18. Total Kjeldahl nitrogen
45
-------
in whole corn plants is shown in Figure 19 and this is shown for above and
below ground plant parts in Figure 20. Tables 7 and 8 give a detailed break-
down of the composition of corn plant parts at various times (Table 7 is
total phosphorus, Table 8 is total Kjeldahl nitrogen). Table 9 gives details
of the dry weights for corn plant parts and their nutrient content per plant.
Table 10 contains dry weight to fresh weight ratios for corn plant parts.
It was noted that all during the growing season, weeds of several species
were abundant in the cornfields even though herbicides had been applied.
Weeds accounted for a significant percentage of ground cover and no doubt a
significant amount of nutrient removal. Therefore, some effort was made to
measure the weeds. Table 11 is a checklist of weeds commonly found in the
cornfield. Table 12 has data on weed populations in the fall of 1976. Weeds
were more abundant earlier in the season but no study was carried out then.
During the 1977 season more effort has been expended upon this aspect of the
plant populations. Corn population studies were also focused in 1977 on the
early part of the growing season.
Cornfield Soil Compositional Studies
Table 13 gives mean bulk densities of the soil at each station at three
depths. Table 14 gives the estimated soil mass per square meter in each slice
of depth analyzed routinely in 1976 for the cornfield. Table 15 gives soil
composition on the cornfield in terms of sand, silt, clay, and organic matter.
Table 16 contains the mineral composition of the silt and of the clay fractions
in the cornfield. Table 17 gives detailed soil nutrient compositions at
various times, as well as pH and organic carbon levels. Table 26 gives the
soil nutrient pool sizes for the cornfields in various soil slices. Table 18
gives all the soil herbicide analyses from the cornfield which have been
completed at this time. 46
-------
Land Use Practices Data
Table 19 gives estimates of the rates of application of fertilizer and
herbicides to the cornfields of watershed 109 in 1976 as measured by a
series of different techniques. Table 20 gives data on harvestable corn
production on the cornfield. Of the estimated 39.7 Kg/ha of phosphorus
applied, about 15 were removed in the harvest. Of the estimated 167.4 Kg N/ha
applied, about 90 were removed in the harvest. Table 21 gives summary data
of the application rates for pesticides and fertilizers by farmers on each
monitored watershed. It also gives livestock population data. Table 22 is a
summary of the progress made so far on land use practices used by residential
and business populations. The data obtained is much less accurate and
detailed than was the case for the farmer survey.
Data on Runoff Waters from Watersheds
Table 23 gives the results obtained thus far on the bacterial composition
of runoff from the cornfield (109) in part A, the wooded watershed (110) in
part B, and the pasture watershed (111) in part C. Table 24 gives the
suspended particulate composition data obtained from 109 and 110. Table 25
contains nutrient discharge data for 109 and 110. A special effort was made
to tabulate as much data for spring of 1977 as possible to allow a better
comparison to be made of nutrient discharges from 109 and 110 for last fall
and this spring. Table 26 gives suspended particulate and nutrient data for
a small storm event on the cornfield watershed, which occurred on April 24,
1977. The hydrograph is shown in Figure 21. Our new fraction collector was
in place and six discrete samples, as well as a volume-integrated sample were
collected. No other significant runoffs occurred until late in-June. Table 27
47
-------
has the data which has been processed so far on herbicide discharges from 109,
110, and from seven basin-sized watersheds. Table 23 lists the samples which
have been analyzed for paraquat in Athens, Georgia. None of these had detect-
able levels of paraquat, but that is not very surprising since none of the
farmers on these watersheds use paraquat (See Table 21). Samples from flux
sections (especially number 122) would be more likely to have paraquat due to
tidal action.
48
-------
RESEARCH RESULTS FROM ESTUARINE PLANT/HERBICIDE RESEARCH.
Status of Activities
Sample collecting
The 12 stations on the Choptank River (Figure 8) and at the Poplar
Islands (Figure 9) described in the methods section were sampled in June,
August, and October 1976 and again in April and June 1977. The five Rhode
River stations (Figure 7) were also sampled every month from April 1976 to
June 1977, except in January and February when heavy ice conditions prevented
sampling. Data was also collected at six stations on the Severn River
(Figure 10 and methods) in June of 1976.
Laboratory bioassays
Plant bioassay equipment has been purchased and installed. Sixteen 10-
gallon and nine 20-gallon glass aquaria in temperature controlled water baths
are in use. They are illuminated by timer controlled fluorescent light banks.
Five cm of pesticide free soils, selected to match Rhode River station 8.5
bottom sediments with respect to % of sand, silt, clay, and organic matter,
as well as mineralogy, are placed in each tank and synthetic brackish water
is used. One series of plant assays on horned pondweed (Zannichellia palustris)
has been completed against 0, 1.0, 10, and 100 ppm of herbicide in the bottom
sediments. Two herbicides, atrazine and linuron, were used and each of the
eight herbicide/concentration conditions was replicated. Herbicide concentra-
tions in bottom sediments, solution, and suspended sediments were assayed at
the beginning and end of each experiment and the dissolved/suspended fractions
were assayed weekly during the experiment. Bioassays are run by selecting
subsamples of plants, transferring them to BOD bottles, measuring rates of
oxygen release in the light and uptake in the dark with Clark electrodes,
49
-------
then measuring, drying, and weighing the plants. A second series of assays
is in mid course now on Potamogeton pectinatus. (Sago pondweed). A third is
planned on eel grass (Zostera marina).
Data from field activities
Table 29 contains data on submerged plant populations. Table 30 contains
detailed data on bottom sediment characteristics such as percent sand, silt,
clay, and organic matter, as well as the mineralogy of the silt and clay
fractions. Table 31 gives data on suspended particulates in the surface
waters and Table 32 gives salinity, turbidity, and light penetration data.
Table 32 contains phytoplankton chlorophyll a concentrations.
Table 34 has all of the currently processed estuarine herbicide data.
Part A is for surface waters and part B for bottom sediments. In general,
whole surface waters have a thousand times less herbicide than bottom sediments,
but the suspended particulate fraction, on a weight basis, has the highest
concentrations.
Bioassay data on Zannichel1ia palustris
Table 35 has bioassay data from plants collected at station 30.2
(Figure 7) and immediately assayed in filtered estuarine water at depths of
20 and 50 cm. The same plants in the same water were then assayed in the
laboratory under standard temperature and light conditions. Table 36 gives
the data from a four week series of bioassays in the laboratory of plants
exposed to various concentrations of linuron or atrazine. Table 37 gives the
average response to linuron or atrazine in terms of net oxygen release per
day per gram of dry weight (Part A) and in terms of gross photosynthetic rates
(mg 02/hr g dry wt) in part B. The data for shoot length versus time are
given in Figure 22A for atrazine and Figure 22B for linuron. Data for plants
50
-------
exposed to 10 or 100 ppm of herbicide (in the sediments) ends before four
weeks are over because all remaining plants had died. A considerable amount
of variability especially between microcosms is seen in the data and confi-
dence limits have not been established. Control shoots grew on the average
twice as fast as those exposed to one ppm of atrazine and eight times as fast
as those exposed to one ppm of linuron. Figure 23A shows the change with
time in net daily oxygen production for plants exposed to atrazine and
Figure 23B gives the data for plants exposed to linuron. Control plants
produced less oxygen initially than those exposed to one ppm of herbicide,
but end up producing more oxygen in the last week. The differences were not
very large. Figure 24A gives the change in gross photosynthesis with time
when plants are exposed to atrazine.' Figure 24B gives data for change in
gross photosynthesis of plants exposed to linuron. It is obvious in the
case of growth, net oxygen production and gross photosynthesis that 10 or
100 ppm of either linuron or atrazine is very inhibiting and leads to plant
death. In the case of one ppm in the sediments the effects are much less
clear-cut.
These data are preliminary, in that only one species of plant has been
assayed and the data have not been thoroughly tested statistically. However,
the field data indicates the widespread presence of both linuron and atrazine
in Chesapeake Bay, The concentrations seem at this time to be in the range
V
which might inhibit submerged higher plants. Finally, it is known that these
compounds can act synergistically.
51
-------
REFERENCES
Blair, J. E., E. H. Lennett, J. P. Truant. 1973. Manual of Clinical
Microbiology. Williams and Wilken Co., Baltimore, Md. pp. 151-174.
Carroll, D. (1970). Clay Minerals: A Guide to Their X-Ray Identification.
Geol. Soc. Amer. Sp. Paper 126, 80 pp.
Correll, D. L. and Miklas, J. (1975). In: Mineral Cycling in Southeastern
Ecosystems. F. G. Howell, J. B. Gentry, and M. H. Smiths, editors.
ERDA Symposium Series (Conf-740513).
Correll, D. L.; Pierce, J. W.; Faust, M. A. (1975). A quantitative study of
the nutrient, sediment, and coliform bacterial constituents of water
runoff from the Rhode River watershed. In; Non-Point Sources of Hater
Pollution, Proc. Southeastern Regional Conf.; May 1975; Blacksburg, Va.
pp. 131-143. Va. Water Resources Research Institute.
Fleming, W. G. and R. A. Leonard. 1973. Water-sediment splitter for runoff
samples containing coarse-grained sediment. Soil Sci. Soc. Amer.
Proc. 37:961-2.
Jackson, M. L. (1969). Soil Chemical Analysis - Advanced Course. 2nd Ed.
M. L. Jackson, Madison, Wise. 895 pp.
King, E. J. (1932). The colorimetric determination of phosphorus. Biochem.
J. 26; 292-297.
Loftus, M. E. and Carpenter, J. H. (1971). A fluorimetric method for
determining chlorophylls a, b, and c. J. Marine Res. 29; 319-338.
Maciolek, J. A. 1962. Limnological organic analyses by quantitative
dichromate oxidation. U. S. Fish and Wildlife Service Report #60.
Martin, D. F. (1972). Marine Chemistry. Vol. 1. pp. 174-179. Marcel DekL?r.
New York, N. Y.
52
-------
Muir, D. C. and Baker, B. E. (1976). Detection of triazine herbicides and
their degradation products in tile-drain water from fields under
intensive corn (maize) production. J. Agric. Food Chem. 24; 122-125.
Standard Methods for the Examination of Water and Waste Water, 13th Ed.
American Public Health Assoc., New York, N. Y.
Stanford, G., J. N. Carter, E. C. Simpson Jr., and D. E. Schwaniger. 1973.
Nitrate Determination of a Modified Conway Microdiffusion Method. J.
of the Assoc. Official Anal. Chem. 56:1365-8.
53
-------
Figure 1. Chesapeake Bay area map.
- Chesapeake - Bay
•*• •/
0 5 10 O 20 25
STATUTE MILES
-------
-RAINGAUGE
-WEATHER
STATION
I-MONITORING
STATION
RHODE RIVER DRAINAGE BASINS
~n
-$
fD
IN5
xD
3-
O
Cu
rt)
ro
-s
s:
(U
<-l-
n>
-5
O)
Q.
"O
-------
,900
WATERSHED No. 109
16.4 hectares
N
:-:-Xv:-?agg^$tt
.•|-.-.-.-.-.-.-.'t(v&:'-..'re.'J
L800
~6,000 ~6,IOO
LAND USE
(|;3 Trees - 5.7 ho.
[/] Cultivated - 10.4 ha.
Q Residential, Roads 6k Buildings - 0.3 ha.
^^, Weir R - Rain gauge
-4-
> Sampling Station
1,700
><3»ie^8p?^iliW»)
*:::::x
IQ
c:
-s
CO
Q)
d-
fD
-$
00
rr
fD
Q.
TD
V
a>
-h
—J*
fD
CL
fD
Q.
O
O
a>
O
O
-s
CU
rl-
n>
~f
00
rr
fD
Q.
"6,500
r6,600
-------
Figure 4. Watershed 110 map, a field-sized forest watershed.
3,900
3,800
3,700
3,600
~*6,000
WATERSHED No. NO
+
6.3 hectares
N
•6,300
-h
6,400
LAND US E
Trees
6.2 ha.
R Rain Gauge
Road
O.I ha
Sampling Station
--i*. Weir
Leaf Litter Box
-------
4,800
4,700
en
00
4,600
t
WATERSHED No. Ill - 5.4 hectares
50
4,500
+5,800
LAND USE
j. ij j. v ,,.,
.,,'•.;.-•:•[>.,:•J"^..
i. -I1- •.'. A -l- .1 • •'• •.'."•.<.•" A- jTV
A . J. • .<•• All...I. .1 •-'•• -l •.'.-.'.- -J-- A-.I. >
.'. '•' .'• .'. • -'. • ... •/.'-•.'.. .1. • A ' J- ' A • .1 • A • -'• • \
.".• .«. • !.->.• I • J. • J-'. • A-A. .11 J.' J.-J-- -'- ' -'- ' J- k
. J. . J. . ... .' J. • .\
-h
5,900
•h
6,000
6,100
TREES - 1.0 ha.
PASTURE - 4.4 ha.
Sampling Station
Weir
R Rain Gauge
50
0
50
100 METERS
fD
cn
QJ
rt-
n>
-i
Q.
T3
\«
N
fD
CX
c
-s
fD
a>
3
O-
eu
c+
ro
-s
1/5
=3-
fD
a.
100
100 200 300 400 FEET
-------
RAIN GAUGE LOCATIONS - RHODE RIVER
WATERSHED
/ "^ •
/ "•-->-«~x
0
MILES
KM
/"X/
O MANUAL
RECORDIN^/
BOTH /
VO
j WEST
* RIVER
c
-%
o>
tQ
fa
a
IQ
n>
- 38«54'
o
o
DJ
rt-
00
o
PC
rr
o
o.
Ol
<-*•
n>
-s
CO
rr
fp
o.
~138°52I
76" 37'
76*35'
76°33'
7G«3I'
-------
Figure 7. Rhode River estuary map.
76°33' 76°32'
76°3»'
1/2
I km
1000 0 IOOO 2000 3OOO
38°54'
38°53*
38°52'
-------
CHOPTANK RIVER SAMPLING
76°
TATIONS
cr>
SAINT MICHAELS
EASTON
SAMPLING
STATIONS
^OXFOR
^ A R 10
CHANNEL
MARKERS
CHOPTANK
0
c.
-t
(V
O
o
TD
n>
-s
o>
-a
1 Miles
Kilometer
-------
Figure 9. Poplar Island map.
POPLAR ISLAND GROUP
••-,
.-••
'....
.' x I
-N-
' .<*.
X
^r
QD
UJ
v
-X
f <
! V,
» J
/v/ /
f<0 4
/•^ >v
t AS
• / /^
• / /••'•'**
• f • -''l ' 1 1
;<* m
* fe%&
\ ^ *&&
i ^ /.•
; ' /•
i "J ' •••
1 *•'
\ \ i
\ \ v-
» \\
\ A N.--.
\ \ ^lv
v v^H^
v ^^y
•.....„. >^ ^V;
'"-':, ^
^c^*
* fam
f. vw«\ ^v*
/,•<£&]&
£&?ql
;?;>s-*3»fjL'
'^&
IS4^/
..-•"
•*
>
^82
%
^
r&fefcV*
_V JEFFERSON
"J ~v'% ISLAND
-•&.
r-_.- -COACHES
ISLAND
A
SAMPLING
STATIONS
•- 1847
•- 1937
1972
1000
x.\ ..~tf^^i^i'im^s^i \
• ^^ ^f*:^::2mx>??':f*i '\
....... vi^^i^J:^eAA
\ i 7 r^ep>
.-...'-••
.•••v"
1000 FEET 62
-------
Figure 10. Severn River map. 76°30'
SEVERN RIVER SAMPLING ST/VTIONS
#96
#94 #93
O SAMPLING STATIONS
(#90 )
A CHANNEL MARKERS
(C "4")
3 MILES
I 0
234 KILOMETERS
63
76° 30'
-------
09 CORNFIELD SITE -1976
75
50
25
a 4
0
126 136 146 156 166
(May 6) (June 5)
300
200
^O
•t—
-C
0>
X
•»—
c:
jo
CL
100
196
176 186
(July 5)
Date
206 216 226 236 246
(Aug. 4) (Sept. 3)
0
SZ
n>
ex o
sz o
-S OJ
o rs
S ex
—i.
^ <-+
.a o
r+
fD —'
a>
(/> a
o —'
3 OJ
en
O
o
o
n>
-s
ta
fD
o
-s
QJ
c+
O)
-s
to
=r
a>
ex
-------
109 CORNFIELD SITE-1976
300
JC
o>
'o>
X
"cr
o>
en
o
V_
CD
200
100
o
o
A
o
A
O fields I a 2
A fields 3 a 4
0
25
50
75
100
C
-5
ro
ro
s: 33
OJ (13
<-+ — •
fD O»
-S r+
(/> -J-
=r o
(D 3
CX l/>
O"0
IO
• o
-h
O
O
-s
ro
DJ
O
O
<
CD
QJ
tQ
fD
O
-5
Average Soil Coverage (%)
-------
Figure 13. Relationship betv;ean corn plant height
and leaf area Index on watershed 109 (1975).
c;
CJ
- O
O
O
O
O
O
100
200
Corn he'nht (cm.
300
-------
3.0
FInure 14. Corn plant total biomass per surface
araa at various plant agss on watershed
109 (1975).
2.5
C\i
5
T3
CD
O
.Q
c:
s-
c.
o
c
rd
O!
2.0
1.5
1.0
.05
o
O
50
100 150
Corn age (days)
200
-------
3.0
Fioure 15. Corn nlant above and bslow around biomass
per surface area at various plant aqes on
watershed 109 (1975).
® a'oova ground biorr.ass
O below ground biomass
2.5
CM
£
•--.
•5
01
o
_a
Oi
2.0
1.5
1.0
,05
200
Age (days)
-------
t'
CD
1/5
(a
a
c
fC
QJ
Figure 15. Relationship between mean corn biomass per
surface area and mean plant height for
watershed 109 (1975).
(height and biomass ware averaged for stations
1, 3, and 6 and for stations 5 and 8 at each
sampling date).
Y = (1.25 x
1'63
R2 = 0.57
o
O
o
o
100
200
300
Mean corn height (cm)
400
59
-------
Ficvjre !?'• -Ji=ri" total ''hosnhorus ^n corn plants
oer surface area on vjatsrshsd 109 (1976)
Y - 0.243 X
O
O)
o
C!
D.
to
g
"a.
•p
c
•(••s
£."
ra
CJ
O
O
50
O
100 150
Corn ac;e (days)
200
* 0.48
-------
to
3
S_
O
"cL
{/>
c
J^,
CL
fC
-I-J
O
CJ
Figure 13. Mean above and below ground total phosphorus
In corn slants oar surface area on watershed
109 (1975).
© above ground total phosphorus in corn Y - 0.98 + .024X
O below ground total phosphorus In corn
Y = 0.35 - (1.36 x 1(T3) X
R2 =
50
100 150
Corn aga (days)
200
•71
-------
Fiqure 19.
Mean total kje'ldahl nitrorien in corn plants
per surface area on watershed 109 (1975).
30
Y = 0.630 X
0.722
o
o
CM
20
c
o
c
c
re
•a
c:
13
a;
o
10
= 0.59
o
100 150
Corn aae (clays)
ZOO
-------
30
00
CD
o
o
sr
oi
en
C
20
O!
10
Figure 20. Mean above and below ground
total Kjeldahl nitronsn in
corn slants on watershed 109
(1975).
R2 - 0.55
Above ground Kjeldahl nitrogen
Y - 4.03 * 0.13X
Belov/ ground Kjeldahl nitrogen
Y = 0.63 - (2.7 x lO'3 ) X
R- - 0.12
200
Corn ans (days)
-------
1....L 1-!- -1 -i : -;
iVOLUME-INTEGRATED
hr!": IS'AMPlLE i :
-INTEGRATED
SAMPLE
(4/24/77)
8 16
Time of day (hr)
8 16
(4/26/77)
-------
Figure 22. Zannichellia palustris bioassay data - plant growth.
50
45
40
LI i
I-' 30
S 25
-C".
10
5
A. Shoot elongation in various concentrations of atrazine.
A A
5
o
A
A A
1 ppm
R2 = 0.57
O
A —
o-
Control
1 ppm
i |
15
25
Control
R2 = 0.62
30
»-..._ ^
-------
•'igure 22. Zanrn'chellia palustris bioassay data - plant growth.
HO
45
15
10
0
B. Shoot elongation in various concentrationr, of linuron,
8
A— Contv^ol
O~ 1 ppm
A A
Cqntrol
R'- -- 0.62
o
I I
10
Tine (days)
R2 - 0.03
O
I I
30
-------
Figure 23. Zannichellia palustris bioassny data - net oxygen production per day
c-
c:
o
.(-.
•l->
( )
1-1
01
150
125
100
75
r,n
-25
-SO
-75
-10Q
-125
A. Effects of atrazine
' Control
R2 = 0.66
1QO ppm
R2 ='0.62
R = 0.93
A— Control
V— 10 ppm
n— 100 ppm
10 15
Time (clays)
20
30
-------
Fi
-------
Figure ?A. Zannlchellia palustris bioassay data - gross photosynthesis in the light.
A. Effects of atrazine
I/)
a.)
.t:
•i '•
(.1
o
o
.i."'
o..
o
Control
R2 - 0.09
Control
1 ppm
10 ppm
100 ppm
100 ppm
R2 = 0.70
R = 0.11
15
Time (days)
-------
Figure 24. Zanm'cheTMa palustris bioassay data - gross photosynthesis in the light.
S. Effects of 11 Huron
.r..o r
'15.0
. * n
I <; . '.;
/ . 3
5.0
2.5
0 -
A-
o-
V-
D-
Control
1 ppm
10 ppm
100 ppm
Control
R?- •-- 0.09
1 ppm
IT - 0.07
10 ppm
R2 « 0,35
25
30
Time, (days)
-------
TABLE 1. LAND USE ANALYSIS OF RHODE RIVER
ESTUARY WATERSHEDS UNDER STUDY.
Hectares in each land use category
Basin Row Crops Hay Fields Upland wet Tidal Forest.
areas marshes
101 (North 21.6 (9.6) 0.72 (0.3) 2.40 (1.1) 0.00 85.3
Branch of Muddy
Creek)
102 (Blue Jay 34.8 (18.1) 6.68 (3.5) 0.97 (0.5) 0.00 90.6
Branch of Muddy
Creek)
103 (William- 5.09 (2.0) 10.4 (4.1) 0.68 (0.3) 0.00 159
son Branch of
Muddy Creek)
105 (North 4.91 (13.1) 1.52 (4.1) 0.00 0.00 11.7
Branch of
Sellman Creek)
106 (South 12.1 (12.7) 14.7 (15.4) 0.00 0.00 42.8
Branch of
Sellman Creek)
107 (Fox . 2.45 (3.5) 0.00 0.19 (6.7) 0.00 16.8
Creek)
108 (Stein- 35.2 (23.5) 14.2 (9.5) 1.36 (9.1) 0.00 58.4
lein Branch
of Muddy Creek)
109 (Corn 10.4 (63.8) 0.00 0.00 0.00 4.26
Field)"5
110 (Forest) 0.00 0.00 0.00 0.00 5.71
111 (Pasture)3 0.00 0.00 0.00 0.00 1.00
121 (Main 260 (21.2) ** 59.0 (4.8) 0.00 549
Branch of Muddy
Creek Flux Sec-
tion)
81
-------
TABLE 1. LAND USE ANALYSIS OF RHODE RIVER
ESTUARY WATERSHEDS UNDER STUDY
Hectares in each land use category
7
Old Fields Pasture Feed Lots Residential Total
and others area
(37.7) 41.6 (18.4) 60.7 (26.9) 0.000 13.6 (6.0) 226
(47.2) 13.0 (6.8) 34.8 (18.1) 0.036 10.8 (5.6) 192
(62.8) 35.6 (14.1) 31.4 (12.4) 0.062 11.6 (4.6) 253
(31.2) 18.4(49.1) 0.80 (2.1) 0.000 0.16(0.4) 37.5
(44.9) 4.77(5.0) 19.6(20.7) 0.100 1.22(1.3) 95.3
(59.6) 4.67(16.6) 2.54(9.0) 0.000 1.56(5.5) 28.2
(38.9) 20.2 (13.5) 16.2 (10.8) 0.028 4.82(3.2) 150
(26.1) 1.37(8.4) 0.00 0.000 0.26(1.6) 16.32
(90.6) 0.53(8.4) 0.00 0.000 0.054(0.9) 6.3
(18.5) 0.00 4.4Q (81.5) °-000 0.00 5.40
(44.7) 157 (12.8) 109 (8.8) ** 94.8 (7.7) 1229.0
82
-------
Basin
TABLE 1. LAND USE ANALYSIS OF RHODE RIVER
ESTUARY WATERSHEDS UNDER STUDY.
Hectares in each land use category
Row Crops Hay Fields Upland v/et Tidal
areas marshes
Forest
122
Flux
123
(Fox Point
Section)4
(Bearneck
22
21
.1
.5
(7
(6
.4) **
.6) **
0.70 (0
(0
.2)
.00)
46.9
(8.9)
(15.7)
1(2.7)
203
129
Creek Flux
Section)0
124 (Cadle
Creek
Section)'
Total Area
2.6 (2.1)
**
0.5 (0.4) 0.8 (0.7) 19.0
422 (14.2) 48.2 (1.6) 65.8 (2.2) 56.6 (1.9) 1370
Footnotes:
1. Land use in 1976 for basins 101-111, and in 1972 for basins 121-124.
The numbers in parentheses are percentages.
2. This basin is part of basin 108.
3. This basin is part of basin 101.
4. Also includes basin 101,102, 103, 108, 110, and 26 ha of mud flats and
tidal creek.
5. Also includes 60.7 ha of tidal creek open waters.
6. Also includes 19.9 ha of tidal creek of open waters.
7. Feed lot area was arbitrarily determined to be 0.001 ha per hog.
** This category was not separated from the others.
83
-------
TABLE 1. LAND USE ANALYSIS OF RHODE RIVER
ESTUARY WATERSHEDS UNDER STUDY
Hectares in each land use category
Old Fields Pasture Feed Lots7 Residential Total
and others area
(67.9) 15.3(5.1) 0.5 (0.2) ** 10.5 (3.5) 299.4
(39.5) 40.3(12.3) 8.4 (2.6) ** 118 (36.2) 327.5
(15.7) 15.3(12.6) 19.1 (15.8) ** 63.9 (52.8) 121.6
(45.2) 367(12.4) 303 (10.2) 0.226(0.0) 331 (11.2) 2964
(89%)
84
-------
Table 2. Daily rainfall for field-sized watersheds (cm/day).
Date Cornfield (109) Forest (110)
(1976) (installed 4/15/76) (installed 2/17/77)
April 15 0.43
April 22 0.05
May 1 3.30
May 12 0.58
May 14 - 18 1.68
May 19 0.46
May 26 0.05
May 27 0.46
May 29-31 3.56
June 16 4.90
June 19 - 20 0.13
June 21 - 22 0.61
June 30 0.30
July 3-6 0.25
July 7 0.64
July 11 2.67
July 12 0.20
July 15 0.86
July 16 3.10
July 21 0.23
July 29 0.74
July 30 - August 1 0.84
August 7-9 5.64
85
-------
Table 2. (Continued)
Date Cornfield (109) Forest (110)
(1976) (installed 4/15/76) (installed 2/17/77)
August 14-15 3.96
August 27 3.07
September 2 0.20
September 10 0.64
September 15-17 4.22
September 20 0.08
September 26 - 27 0.84
September 30 - October 3 5.13
October 9 4.62
October 16-17 0.94
October 20 3.89
October 24 - 25 3.43
October 30 2.54
November 12 0.51 (snow)
November 21 0.15* (snow)
November 27 0.18*
November 28 1.40*
December 6 0.13*
December 7 3.61*
December 8 0.08* (snow)
December 11-12 0.30*
December 15-16 0.41*
December 20 0.84*
86
-------
Table 2. (Continued)
Date
'(1976)
December 26
December 28 - 29
(1977)
January 1-12
January 13-19
January 25
February 12
February 24
March 4
March 13
March 18
March 20
March 22
March 27 - 28
April 2 -
April 4
April 5
April 24
April 25
April 28
Cornfield (109)
(installed 4/15/76)
1.02*
0.25* (snow)
2.92* (snow)
1.96* (snow)
0.15* (snow)
0.05*
1.35*
0.15*
0.84*
0.58*
0.30*
3.15*
0.23*
{3.83*
1.02*
1.02*
0.43*
Forest (110)
(installed "2/1 7/77
0.18 (snow)
0.18
1.24
0.20
{0.74
0.36
3.30
0.28
2.03
1.50
0.48
1.09
1.22
0.48
Data from weather station at laboratory.
87
-------
Table 3. Soil moisture data for watershed 109 (mg F^O/cc),
A. Gravimetric core data
Date Depth Stations on watershed 109
1976
6/15
(167)
6/17
(169)
6/21
(173)
(cm)
5
5
15
15
30
30
5
5
15
15
30
30
5
5
15
15
30
30
1
133
114
178
178
172
189
323
329
310
300
336
298
267
269
309
325
295
328
2
103
139
217
214
181
161
331
351
339
311
314
283
289
305
310
324
301
359
3
123
121
223
215
252
244
374
332
379
402
326
314
269
291
308
316
340
386
4
177
165
311
306
386
405
403
402
553
468
474
479
335
326
392
435
378
369
5
190
182
269
290
355
328
379
411
435
420
480
534
350
372
414
421
472
469
6 .
173
235
294
253
277
298
386
435
404
469
397
410
323
337
384
391
347
384
7
214
217
217
263
212
232
371
377
443
343
338
376
350
301
430
420
347
382
8
157
208
239
263
245
-
362
326
416
405
377
392
311
325
453
421
414
439
9
160
157
177
188
306
314
376
397
397
389
456
472
276
246
306
276
442
449
10
-
386
371
382
371
456
440
515
435
421
400
424
433
496
519
515
460
-------
Table 3. (Continued)
A. Gravimetric core data
Date Depth
1976 (cm)
6/30
(182)
7/12
(194)
7/13
(195)
5
5
15
15
30
30
5
5
15
15
30
30
5
5
15
15
30
30
1
243
213
236
221
264
280
290
290
261
213
276
235
273
276
246
238
222
255
2
234
218
-
255
283
248
318
168
229
322
323
283
313
243
309
Stations
3 4
224
245
256
268
321
313
214
230
177
148
159
246
295
292
271
239
256
263
267
258
360
314
-
259
374
240
246
307
350
296
302
372
334
367
366
on watershed 109
567
295
269
-
356
266
405
395
338
320
346
371
381
421
376
439
-
-
405
38
. 317
364
337
370
314
403
321
393
308
339
-
-
358
325
318
445
284
334
388
374
-
348
..
'8
293
335
407
377
377
345
390
378
361
380
287
364
363
431
-
302
_
9
-
-
344
369
358
-
412
313
423
256
-
331
—
10
-
-
354
339
386
436
363
364
412
389
497
473
493
467
89
-------
Table 3. (Continued)
A. Gravimetric core data
Date Depth
1976 (cm)
7/15
(197)
7/20
(202)
7/23
(205)
5
5
15
15
30
30
5
5
15
15
30
30
5
5
15
15
30
30
1
292
264
247
255
300
267
202
246
195
173
270
284
-
247
-
-
_
2
337
311
292
274
231
289
234
267
261
225
246
249
276
-
-
'
_
Stations on watershed 1
3456
305
292
262
263
264
289
184
233
261
224
261
320
256
265
260
-
—
-
-
-
-
-
303 294
292 272
231 379
313 355
285 374
231 336
253
249
375
317
301
286
192
283
292
356
388
251
262
336
360
256
312
373
281
270
-
-
440
257
09
7
283
285
304
326
226
258
306
341
291
416
306
369
-
-
-
-
_
8
278
265
295
217
219
219
348
308
370
388
252
325
245
340
309
418
289
278
9
-
-
-
-
-
250
230
277
291
404
286
201
221
267
265
362
384
10
309
305
426
390
376
404
414
355
405
426
474
446
349
425
-
-
-
_
90
-------
Table 3. (Continued)
A. Gravimetric core data
Date Depth
1976 (cm)
7/26
(208)
7/29
(211)
7/30
(212)
5
5
15
15
30
30
5
5
15
15
30
30
5
5
15
15
30
30
Stations on watershed 109
1 23456789
______
385
. - - - - 300
358
_ .
181 - 225
161
222 261 - - 268 288
209 239 - - 344
201 219 - - 266 424
267 - 283
260 - 312 208 . - 261
270 - 292 237 - 224
268 290
227 326
- - 237 307
221 282
323 267
255 331
328 307
300 280
308 251
283 393
336
309
_ -
_
336
372
229
213
254
- - 238
337 - 345
358 - 291
10
370
356
.
-
-
-
364
335
384
453
-
-
-
. -
-
-
_
91
-------
Table 3. (Continued)
A. Gravimetric core data
Date Depth
1976 (cm) 1 2
8/2
(215)
8/6
(219)
8/11
(224)
5
5
15
15
30
30
5
5
15
15
30
30
5
5
15 285
15 315
30 231
30 250
Stations on watershed 109
3 4 5 67 8
209 329 238
240 321
305 -
348 -
______
_
199
263
282 -
284
337 - 307
283 - 274
320 354 -
346 412 -
255 312 -
329 442
- 390 304
257 228
9 10
277
279
-
-
_
-
375
290
452
377
-
-
-
356
377
-
_ _
92
-------
Table 3. (Continued)
A. Gravimetric core data
Date Depth
1976 (cm)
8/12
(225)
8/13
(226)
8/16
(229)
5
5
15
15
30
30
5
5
15
15
30
30
5
5
15
15
30
30
Stations on watershed 109
123456789 10
273 - 315 371 467 -
280 - - 300 380 305
344-359
279 - 410
260 296 - - 359 - 250 -
271 233 - 236 - 321 . -
240 - - 234 325 252 - 206 - 249
213 - 220 - 235 - - 281
197 173 186
182 253 265
- 254 - - 343 - - 221 - -
237 271
__________
364 284
- - - 362 253
238 308
322 _ 472 -
93
-------
Table 3. (Continued)
A. Gravimetric core data
Date Depth
1976 (cm)
8/18
(231)
8/20
(233)
8/23
(236)
5
5
15
15
30
30
5
5
15
15
30
30
5
5
15
15
30
30
Stations on watershed 109
1 23456789 10
- - 246 293
269 367
258 -
241
224 250 - - 296
244 297 - - 263
240 - 209 - 294
245 196
262 - 267 - 293
248 273
205
277 -
212 273 268
192 239 249
265
251
-----
— _ — — —
293
304
281 325
343 219
_
• - .
313 256 310 - 288
330 294 274 - 252
254
289
_
-----
323 - - 382
299 - - 406
_
_
_
— — — — —
94
-------
Table 3. (Continued)
A. Gravimetric core data
Date Depth Stations on watershed 109
1976 (cm) 1 2 3 45 6 7 8 9 10
8/26
(239) 5 282 - -
5 319...
15 -
ID ™ "• "" "" *" "* "" ™* ™ ™
30
30 - - - -
95
-------
Table 3. (Continued)
B. Gypsum block sensor data!
Date Depth
1976 (cm) 1
5/10
(131)
5/11
(132)
5/12
(133)
5/13
(134)
5/14
(135)
5/18
(139)
5
15
30
0 ™
15 . -
30
5
15
30
5
15
30
5
15
30
5
15
30
Stations
2 3 4
274
341
414
263
392
412
321
392
412
294
393
412
282
391
410
332
395
414
on watershed 1
5 6
264
422
405
260
420
405
315
417
405
288
417
404
280
420
405
339
431
408
09
7 8
317
375
347
317
375
348
317
375
348
>317
375
347
317
375
347
>317
376
348
9
335
302
407
335
302
407
343
302
407
339
302
407
335
302
407
345
302
407
10
-
-
-
-
-
-
-
-
-
mm
96
-------
Table 3. (Continued)
B. Gypsum block sensor data
Date Depth
1976 (cm)
5/19
(140)
5/20
(141)
5/21
(142)
5/23
(144)
5/24
(145)
5/25
(146)
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15 .
30
Stations
1234
>333
392
412
331
393
408
331
>395
- 412
262
>395
414
246 307 243 260
296 288 280 392
280 264 315 412
246 307 212 253
>299 288 >280 392
>281 264 >315 412
on watershed 109
5678
>370
>434
>408
363
427
403
283
431
407
252
414
407
252 266
388 374
408 342
248 268
370 374
405 342
>317
375
>348
>317
376
348
317
376
348
>317
376
>348
315 317
342 375
305 346
315 316
342 375
305 348
9
343
302
>407
347
302
407
347
302
407
293
>302
>407
279
302
407
236
302
407
10
-
-
-
-"
-
-
-
-
363
442
406
>363
>442
>406
97
-------
Table 3. (Continued)
B. Gypsum block sensor data
Date Denth
1976 (cm)
5/26
(147)
5/28
(149)
6/2
(154)
6/4
(156)
6/8
060)
6/9
061)
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
1
229
288
279
246
287
278
291
299
281
279
299
281
212
292
281
213
285
279
2
286
288
>264
309
287
264
309
288
264
307
288
264
247
288
264
234
288
264
Stations
3 4
274
>280
>315
264
280
315
268
>280
>315
186
>280
>315
203
280
314
204
280
315
254
395
415
305
395
415
>333
>395
>414
323
393
410
257
393
411
253
392
410
on watershed 1
5 6
250
356
408
271
370
406
>370
>434
>408
299
431
408
244
365
408
255
353
407
265
373
342
312
374
342
343
374
342
283
374
342
258
374
342
257
373
342
09
7
315
339
304
326
342
305
327
341
305
316
342
305
310
342
305
310
342
305
8
314
376
>348
316
373
344
>317
>376
>348
>317
>376
347
308
376
348
307
376
348
9
236
302
407
311
301
406
>347
>302
>407
340
301
405
241
302
407
232
302
407
10
>363
>442
>406
363
440
403
>363
>442
406
>363
>442
>406
363
442
406
>363
>442
406
98
-------
Table 3. (Continued)
B. Gypsum block sensor data
Date Depth
1976 (cm)
6/11
(163)
6/14
(166)
6/15
(167)
6/16
(168)
6/17
(169)
6/18
(170)
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
1
217
282
>281
201
257
274
201
- 255
273
200
249
272
294
297
274
294
296
276
2
221
>288
>264
209
288
264
210
288
263
210
288
264
311
. 288
264
312
288
264
Stations
3 4
208
>280
>315
202
>280
>315
202
280
314
205
281
317
286
282
315
289
282
' 317
246
3 5
414
243
393
414
243
392
411
246
392
414
330
390
409
333
393
411
on watershed 1
5 6
245
345
408
243
335
408
245
328
405
245
325
409
366
394
405
370
427
408
256
>374
>342
256
367
342
257
365
342
257
365
342
352
365
342
355
370
342
09
7
310
341
305
304
342
305
305
340
304
329
345
306
330
342
305
330
342
305
8
300
375
348
287
365
>348
288
361
346
285
358
350
319
376
349
319
376
349
9
223
302
407
207
301
406
208
300
407
200
299
408
344
300
405
351
302
407
10
>363
440
406
>363
>442
406
363
438
402
363
444
407
364
447
407
364
447
406
99
-------
Table 3. (Continued)
B. Gypsum block sensor data
Date Depth
1976 (cm)
6/21
(173)
6/24
(176)
6/30
(182)
7/1
(183)
7/2
(184)
7/7
(189)
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
1
234
275
275
212
256
273
188
220
259
189
217
257
190
215
256
183
211
252
2
296
288
264
272
288
264
204
287
264
205
287
264
204
284
263
233
276
253
Stations
3 4
280
283
317
229
279
314
188
246
299
207
245
296
185
239
261
259
241
256
260
382
411
255
352
411
241
298
410
246
298
407
246
297
318
241
295
366
on watershed 1
5 6
328
431
409
284
423
405
245
315
379
309
312
361
274
313
332
243
303
319
341
368
343
265
363
342
256
343
342
264
340
342
256
336
341
258
332
336
09
7
309
340
304
308
340
304
294
344
304
321
341
304
305
340
304
307
342
305
8
318
373
349
309
348
346
280
332
307
279
331
313
280
331
285
278
330
278
9
-
-
337
287
406
189
275
360
192
275
359
206
275
359
187
275
357
10
363
438
403
363
438
403
359
449
411
363
436
403
361
437
398
361
441
407
100
-------
Table 3. (Continued)
B. Gypsum block sensor data
Date Depth
1976 (cm)
7/12
(194)
7/13
(195)
7/14
(196)
7/15
(197)
7/16
(198
7/20
(202)
5
15
30
5
15
30
5
15
30
5
15
30'
5
15
30
5
15
30
1
293
227
252
276
230
251
223
225
252
284
222
252
-
.
201
220
251
2
310
277
249
308
278
249
296
279
249
308
279
249
•
-
292
281
249
Stations
3 4
286
264
255
282
268
256
254
259
256
285
251
256
-
-
221
249
256
329
354
359
282
343
343
251
313
319
323
302
318
-
-
243
295
298
on watershed 1
5 6
366
346
353
343
356
344
265
352
332
364
345
326
-
-
262
423
402
343
331
342
293
332
342
259
333
341
352
333
341
-
-
257
332
336
09
7
330
342
304
330
341
304
327
339
303
328
339
303
-
-
314
340
303
8
318
372
317
316
370
307
316
366
289
318
351
283
-
-
308
334
277
9
334
275
357
337
276
357
339
275
357
348
275
357
336
276
358
286
275
357
10
363
434
402
364
434
402
362
437
403
363
434
402
-
-
358
433
400
101
-------
Table 3. (Continued)
B. Gypsum block sensor data
Date Depth
1976 (cm)
7/21
(203)
7/23
(205)
7/26
(208)
7/29
(211)
7/30
(212)
8/2
(215)
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
1
193
218
252
190
213
251
-
-•
185
211
249
269
211
249
236
212
249
2
254
280
249
223
278
249
-
-
205
275
248
307
274
248
304
275
248
Stations
3 4
196
244
254
189
242
253
-
-
200
240
249
283
240
249
279
241
249
243
295
293
242
294
291
-
-
-
-
323
296
287
257
295
289
on watershed 109
567
256
407
399
247
342
375
-
-
246
303
306
364
303
400
341
316
397
255
331
336
255
331
336
255
330
335
256
329
.335
331
329
335
283
329
335
304
341
288
302
341
303
293
340
302
296
340
304
327
337
300
-
_
8
286
330
275
279
330
275
277
328
273
-
-
314
328
271
313
329
272
9
209
276
359
188
275
357
-
-
-
-
194
274
356
250
275
358
10
356
436
403
357
437
403
354
437
403
357
424
403
363
431
400
-
_
102
-------
Table 3. (Continued)
B. Gypsum block sensor data
Date
1976
8/6
(219)
8/11
(224)
8/12
(225)
8/13
(226)
8/16
(229)
8/18
(231)
Depth
(cm)
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
1
-
-
284
261
249
279
256
249
261
250
250
285
262
252
275
259
255
2
212
274
248
305
287
248
305
287
251
305
287
255
305
287
258
305
287
261
Stations
3 4
-
-
292
279
249
282
279
251
282
278
256
283
278
256
282
278
258
241
293
284
318
326
287
285
326
288
252
315
289
327
297
288 .
271
297
287
on watershed 1
5 6
243
303
306
362
395
402
361
406
400
354
407
496
363
404
435
353
407
417
-
-
344
329
336
328
329
' 337
299
330
.337
347
331
336
339
331
337
09
7
292
337
296
327
338
303
327
337
303"
326
338
303
326
337
303
326
338
303
8
277
328
271
315
373
342
315
373
337
314
371
323
314
350
281
313
346
' 281
9
190
275
356
334
298
357
334
299
357
331
298
357
332
292
358
329
290
358
10
353
417
403
363
433
401
363
431
400
363
436
402
363
436
402
363
433
400
103
-------
Table 3. (Continued)
B. Gypsum block sensor data
Date Depth .
1976 (cm)
8/20
(233)
8/23
(236)
8/26
(239)
9/3
(247)
9/7
(251)
9/8
(252)
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
1
216
242
256
196
227
254
191
219
253
210
221
251
-
-
193
215
251
2
280
288
262
217
288
262
207
288
261
295
287
257
'
-
212
286
255
Stations
3 4
251
271
256
194
245
251
189
241
248
220
245
249
-
-
189
242
249
244
295
285
241
293
282
241
293
282
443
294
282
240
294
281
-
_
on watershed 1
5 6
258
384
411
245
313
406
241
303
404
255
306
405
243
302
403
-
_
278
331
336
255
331
335 .
255
329
335
258
330
335
-
-
273
329
335
09
7
316
339
304
289
337
302
285
338
299
305
339
302
-
-
285
336
295
8
282
332
283
277
329
273
276
328
272
278
329
272
276
328
272
-
_
9
284
282
358
188
276
357
185
275
357
.
-
186
275
358
-
_
10
360
434
402
354
426
401
354
421
402
361
437
403
-
-
355
433
403
104
-------
Table 3. (Continued)
B. Gypsum block sensor data'
Date Depth
1976 (cm)
10/5
(279)
10/13
(287)
10/18
(292)
1977
1/5 o
(005)
1/13
(013)
1/19
(019)
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
1
287
202
280
285
294
280
285
293
279
*
210
276
*
216
277
*
*
275
2
309
287
264
305
287
263
304
287
263
*
*
*
*
*
*
*
*
*
Stations
3 4
286
279
312
287
279
314
282
278
311
*
*
299
*
*
306
*
*
*
330
364
295
325
377
315
326
379
334
*
*
397
*
*
399
*
*
*
on watershed 109
567
364
426
415
357
424
322
355
424
432
*
•*
*
*
*
*
*
*
*
350
344
342
338
367
342
344
368
342
*
*
*
*
*
*
*
*
*
324
339
304
324
338
303
324
339
303
*
*
303
*
*
303
*
*
303
8
315
374
346
313
372
343
313
372
343
*
*
341
*
*
340
*
*
339
9
338
30.1
405
331
301
405
330
301
404
*
*
408
*
*
403
*
*
401
10
364
431
389
363
429
397
363
429
398
*
*
392
*
*
396
*
*
392
105
-------
Table 3. (Continued)
B. Gypsum block sensor data
Date Depth
1977 (cm)
1/26
(026)
2/2
(033)
2/10
(041)
2/18
(049)
2/24
(055)
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
Stations
1234
* * * *
* * * *
263 * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
281 301 278 323
* 286 276 384
* * * *
on watershed 109
5678
* * * *
* * * *
* * * 338
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
354 344 322 312
* 370 336 370
* * * 340
9
*
*
*
*
*
*
*
*
*
*
*
*
326
*
*
10
*
*
389
*
*
*
*
*
*
*
*
*
362
424
*
* Moisture value not given because the soil temperature was at or below the
freezing point of water.
106
-------
Footnotes to Soil Moisture Data Tables
1. Equations for calibration of station 7 at 15 cm and 30 cm and of
station 10 at 15 cm and 30 cm were derived from the mean moisture content
for a common moisture reading (resistance) and from the mean Y intercept
obtained in the gravimetric calibration of all other probes at the same
depth. All other probes were calibrated using a linear least squares
regression of the gravimetric data taken adjacent to the probe.
2. Beginning January 5, 1977, soil moisture data is also available for
a depth of 75 cm. The probes at this depth have not yet been calibrated
and therefore, this data has not been included in the table.
107
-------
Table 3C. Equations for moisture calibration
linear regressions, corn field, 1976
growing season.
Station
1
2
3
4
5
6
Depth
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Equation
= 11.0715X + 182
= 9.2619X + 206
= 3.8025X + 243
= 10.7905X + 204
= 1.5094X + 273
= 1.6983X + 247
= 10.3361X + 186
= 4.1402X + 239
= 7.0434X + 245
= 9.1636X + 241
= 10.2859X + 292
= 13.6984X + 277
= 12.7501X + 242
= 14.2273X + 292
= 10.7853X + 300
= 9.6542X + 256
= 4.5684X + 328
= 0.7465X + 335
108
-------
Table 3C. (Continued)
Station Depth • • • •
7 5
15*
30*
8 5
15
30
9 5
15
30
10 5
15
30
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Equation
= 5.2141X + 276
= 6.2887X + 279
= 2.0519X + 284
= 4.1569X + 275
= 4.9975X + 326
= 7.9123X + 269
= 16.5042X + 182
= 2.8193X + 274
= 5.1107X + 356
= 1.4129X + 350
= 16.2500X + 279
= 12.1649X + 284
* Derived from the mean value of a common X value and the
mean Y intercept for probes at that depth.
109
-------
STATION
1
1
1
1
1
1
1
1
• 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
TIME
145
145
145
146
146
143
147
147
147
149
149
149
154
154
154
158
156
156
160
160
160
161
161
161
163
163
163
166
166
166
167
167
167
168
168
168
163
169
169
170
170
170
173
173
173
175
176
1000
1000
10CO
1310
1310
1310
1505
1505
1505
0900
0900
0900
1115
1115
1115
1225
1225
1225
1315
1315
1315
0900
0900
0900
1415
1415
1415
1440
1440
1440
0920
0920
0920
1615
1615
1615
1500
1500
1500
1430
1430
1430
1220
1220
DEPTH
CM
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
TEMPERATURE
CENTIG
26.
21 .
20.
32.
23.
20.
24.
22.
22.
26.
23.
21 .
32.
25.
22.
25.
23.
23.
27.
25.
23.
30.
25.
23.
29.
25.
23.
30.
25.
8
7
0
7
2
2
6
8
2
6
3
9
7
2
1
9
7
1
6
0
3
4
5
0
2
7
7
5
5
OJ
cr
ft>
CO
o
CD
-a
n>
-s
CU
ro
Q.
Q»
c-1-
O
-5
QJ
n>
CL
-------
STATION
TIME
DEPTH TEMPERATURE
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CM
76 176 1220 30
76 182 1330 5
76 182 1330 15
76 182 1330 30
76 183 0925 5
76 183 0925 IS
76 183 0925 30
76 184 1335 5
76 184 1335 15
76 184 1335 30
76 189 1400 5
76 189 1400 15
76 139 1400 30
76 194 1025 5
76 194 1025 15
76 194 1025 30
76 195 0925 5
76 195 0925 15
76 195 0925 30
76 196 1535 5
76 196 1535 15
76 196 1535 30
76 197 1250 5
76 197 1250 15
76 197 1250 30
76 202 1055 5
76 202 1055 15
76 202 1055 30
76 203 0930 5
76 203 0930 15
76 203 0930 30
76 205 0855 5
76 205 0855 15
76 205 0855 30
76 211 1415 5
76 211 1415 15
76 211 1415 30
76 212 1045 5
76 212 1045 15 •, •
76 212 1045 30
76 215 0835 5
76 215 0835 15
76 215 0835 30 :
76 224 0825 5
76 224 0825 15
76 224 0825 30
76 225 0930 5
76 225 0930 15
CENTIG
24.1
23.5
24.0
24.7
30.5
25.5
24.1
26.2
24.5
24.3
24.5
22.6
19.1
22 . 0
25.1
21.8
26.8
21 .9
26.5
22.1
23.7
22.8
23.2
23.0
28.1
23.7
25.7
23.5
19.2
22.3
20.4
21.6
21.8
Ol
or
tt>
o
o
rt-
_^«
=5
-------
ro
STATION
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
TIME DEPTH
:..'-• CM
76 225 0930 30 : '
76 226 0805 5 •'.
76 226 0805 15
76 226 0805 30
76 229 0900 5
76 229 0900 15
76 229 0900 30
76 231 0815 5
76 231 0815 15 '.
76 231 0815 30
76 233 1000 5
76 233 1000 15
76 233 1000 30
76 236:0935 5 .
76 236 0935 15
76 236 0935 30
76 239 0835 5 •.< '
76 233 0835 15
76 239 0835 30 '
76 252 0930 5
76 252 0930 15
76 252 0930 30
76 279 1305 5
76 279 1305 15
76 279 1305 30
76 287 1530 5
76 287 1530 15
76 287 1530 30
76 292 1300 5
76 292 1300 15
76 292 1300 30
77 005 1000 5
77 005 1000 15
77 005 1000 30 ; /
77 005 1000 75
77 013 0950 5
77 013 0950 15
77 013 0950 30
77 013 0950 75
77 019 1405 5
77 019 1405 15
77 019 1405 30
77 019 1405 75
77 026 0930 5 '• ',.
77 026 0930 15
77 026 0930 30
77 026 0930 75
77 033 0935 5
TEMPERATURE "•'•'.
. ,} t-
CENTIG , :!- •[
21 .8 ':
32,0- H; ••
" '•;':
22.4 Hi-:.
20.6 !p
:! ' '
22.3 ' f
19.1 ?!..,
21.1 ,' jp."
19.7 ?;! :
. ' '"'[-' '•
'20.6 ; :vi
23.1 ; # = {
'I1 '
21.8 ;i;|;.!
. 23.2 •:;.;.:'?
•i ,''••••
22.6 'V:/-
19.2 ;..:;:/
i' l;' ' ?
19.9 -!;'^;;
19.9 :•••?:,!•
'• •'.•'.
16.8 ; '•>> ,•
16.1 . ;; >;./
• J'V
13.7 ; i
10.1 !;::
11.8
-1 .8
.1 .V:
.9 :'•••
2.6 :
-2.5 •?•;.
.1 !V
.a ' .;.'
2.3 :
-2.4 ••'•<•:
-0.5 ;
.5 ''I..
2.0 . :
-2.1
-0.6 i:
.'1 • >'.'
1.5 ?
-5.5 ;
01
cr
0)
o
o
=1
fO
Q.
-------
STATION
TIME
DEPTH TEMPERATURE
CM ,
CENTIG
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
77 033 0935 15
77 033 0935 30
77 033 0935 75
77 041 1410 5
77 041 ;1410 15
77 041 :1410 30
77 041 ,1410 75 j
77 049 1505 5 !'
77 049 1505 15
77 049 1505 30 '.'
77 049 1505 75
77 055 .1100 5
77 055 1100 15 i
77 055 1100 30
77 055 1100 75
76 145 0930 5 . ij'
76 145 0930 15 >
76 145 0930 30 :!,;
76 146 '1220 5
76 146 1220 15
76 146 1220 30 'If
76 147 1455 5
76 147 1455 15
76 147 1455 30
76 149 0830 5
76 149 0830 15 :
76 149 0830 30
76 154 1045 5
76 154 1045 15 <
76 154 1045 30 ;
76 156 5
76 156 ' 15 .: :
76 156: 30 '
76 160 1110 5
76 160 1110 15 ''•
76 160 1110 30 )
76 161 1255 5
76 161 1255 15 ;
76 161 1255 30 :
76 163 0955 5 !
76 163 ;0955 15 ! >
76 163 0955 30 V
76 166 1400 5
76 166 1400 15
76 166 1400 30
76 167 1340 5
76 167 11340 15 V
76 167 1340 30
r3.4
-1 .4
1.1
-0.5
-1.0
-0.8
.5
-0.5
-0.2
-O.t
.7
2.6
-0.1
-0.1
•9
i ..:
- ' • . .,
'-; .•
'!;
(
'•' .',
28.5
23.9
22.4
35.5
25.6
22.8
29.5
25.6
25.0
29.3
25.6
24.3
36.2
26.7
24.1
cr
—i
(D
O
=3
n>
o.
-------
STATION TIME DEPTH
CM
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
76 168 .0905 5
76 168 0905 15
76 168 0905 30
76 169 1600 5
76 169 1600 15
76 169 1600 30
76 170 1435 5
76 170 1435 15
76 170 1435 30
76 173 1355 5
76 173 1355 15
76 173 1355 30
76 176 1015 5
76 176 1015 15
76 176 1015 30
76 182 1315 5
76 182 1315 15
76 182 '1315 30
76 183 0935 5
76 183 0935 15
76 183 0935 30
76 184 1330 5
76 184 1330 15
76 184 1330 30
76 189 1315 5
76 189 1315 15
76 189 1315 30
76 194 1210 5
76 194 :1210 15
76 194 1210 30
76 195 ;1040 5
76 195 :1040 15
76 195 '1040 30
76 196 "1532 5
76 196 1532 15
76 196 1532 30
76 197 1125 5
76 197 1125 15
76 197 1125 30
76 202 1025 5
76 202 1025 15
76 202 1025 30
76 203 1130 5
76 203 1130 15
76 203 1 130 30
76 205 :1305 5
76 205 :1305 15
76 205 1305 30
TEMPERATURE
CENTIG
27. 4
25.7
25.4 .
28.6
26.3
25.0
32.7
26.5
24.3
32.2
26.9
25.0
29.4 :
'25.9
25.6
32.2
28.3
27.3
24.4
24.9
26.3
37.4
26.5
25.2
26.0
25.2
25.3
25.8
23.5
23.2
22.6
20.8
22.3
26.6
23.3
22.0
26.5
22.4
22.2
26.6
22.9
22.9
27.5
24.1
23.7
25.8
24.3
23.8
O
O
rs
c:
fD
Q.
-------
STATION
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
TIME DEPTH
- .I.'. CM !
76 211 1345 5
76 211 1345 13
76 211 1345 30
76 212 1025 5
76 212 1025 15
76 212 1025 30
76 215 0845 5 '
76 215 0845 15
76 215 0845 30
76. 219 1015 5
76 219 1015 15
76 219 1015 30
76 224 0920 5
76 224 0920 15
76 224 0920 30 '
76 225 0915 5
76 225 0915 15
76 225 0915 30
76 22G 0835 5
76 226 0835 15
76 226 0835 30
76 229 0915 5
76 229 0915 15
76 229 0915 30
76 231 0830 5
76 231 0830 15
76 231 0830 30
76 233 0910 5
76 233 0910 15
76 233 0910 30
76 236 0920 5
76 236 0920 15
76 236 0920 30
76 239 0825 5
76 239 0825 15
76 239 0825 30
76 247 11105
76 247 1110 15
76 247 1110 30
76 252 1440 5
76 252 1440 15 '
76 252 1440 30
76 279 1255 5
76 279 1255 15
76 279 1255 30
76 287 1245 5
76 287 1245 15
76 287 1245 30
TEMPERATURE .if:
• ' • : ' !':•'• '-:-
JCENTIG j':.-'ji
'! 30.5 sir
i'26.3 !:.|ij
,i:25.0 : ,- ::;iJ
; 27.2 • -0 '•!;
:24.8 .v'!j
24.8 . 'iVj!
• '.: 120.2 ' '- <\
'• 21 .2 .! :!'
'-23.2 JjY
' : '''''•
"•22.2 •' '', ^
1 21 .4 :
.22.2 ••..•'•:'
22.6
21 .9
22.5
23.5
22.9
23.2 !
; 21 .6
22 . 3
23.3
20.0
20.5
21.7
19.2
19.9
21.4
24 . 0 i"
23.4
23.3
24.2
24.1
24.2
. 20.4 •
20.4 • . :
20.8
29.7
23.3
21.0
: 22.2
17.3
16.8
17.6
12.5
13.3
fa
cr
o
o
fD
CL
-------
STATION
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
76
76
76
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
76
76
76
76
76
76
76
76
76
76
76
76
76
TIME
292
292
292
005
005
005
005
013
013
013
013
019
019
019
019
026
026.
026
026
033
033
033
033
041
041
041
041
049
049
049
049
055
055
055
055
145
145
145
146
146
146
'147
147
147
149
149
149
154
1200
1200
1200
1050
1050
1050
1050
1055
1055
1055
1055
1350
1350
1350
1350
0920.
0920
0920
0920
0920
0920
0920
0920
1345
1345
1345
1345
1455
1455
1455
1455
1115
1115
1115
1115
1025
1025
1025
1235
1235
1235
1510
1510
1510
0845
0845
0845
1155
DEPTH
CM
5
15
30
5
15
30
75
5
15
30
75
5
15
30
75
5
15
30
75
5
15
30
75
5
15
30
75
5
15
30
75
5
15
30
75
5
15
30
5
15
30 .
5
15
30
5
15
30
5
TEMPERATURE
CENTIG
10
9.
11
-1
-1
-0
1.
-2
-1
-0
1.
-4
-4
-2
1 .
-3
-2
-2
.2
-6
-6
-4
-0
-0
-1
-1
-0
-0
-0
-0
-0
4.
1.
-0
.1
.
.8
3
.8
.9
.2
.0
9
.4
.1
.2
5
.4
.1
.8
1
.3
•7 'I
.0 '';
.4 '•;.
.1
.8
.6
.4
.4
.8
.7
.2
.3
.2
.1
3
2
.2
Ol
cr
o
o
n>
o.
-------
STATION TIME DEPTH
CM
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
76 154 1155 15
76 154 1155 30
76 156 5
76 156 15
76 156 30
76 160 1250 5
76 160 1250 15
76 160 1250 30
76 161 1335 5
76 161 1335 15
76 161 1335 30
76 163 0930 5
76 163 0930 15
76 163 0930 30
76 166 1420 5
76 166 1420 15
76 166 1420 30
76 167 1405 5
76 167 1405 15
76 167 1405 30
76 168 0915 5
76 168 0915 15
76 168 0915 30
76 169 1315 5
76 169 1315 15
76 169 1315 30
76 170 1515 5
76 170 1515 15
76 170 1515 30
76 173 1445 5
76 173 1445 15
76 173 1445 30
76 176 1300 5
76 176 1300 15
76 176 1300 30
76 182 1345 5
76 182 1345 15
76 182 1345 30
76 183 0920 5
76 183 0920 15
76 183 0920 30
76 184 1405 5
76 184 1405 15
76 184 1405 30 '.
76 189 1330 5
76 139 1330 15
76 189 1330 30
76 194 1045 5
TEMPERATURE
CENTIG
31.7
24.8
• 21 .3
36 . 3
25.0
21 .5
27.7
24.2
23.3
28.4
24.5
22.8
36.6
25.9
22.7
27.1
24.5
23.8
27.9
25.0
23.6
34.5
26.4
23.2
30.5
25.7
23.4
28.7
24.5
23.5
29.3
25.7
24.3
22.7
23.1
23.9
28.5
23.6
22.8
24.5
23.1
22.7
24.4
a>
cr
fD
o
o
ZJ
CD
Q.
-------
00
STATION TIME DEPTH
CM
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
76 194 1045 15
76 194 1045 30
76 195 0955 5
76 195 0955 15
76 195 0955 30
76 196 1515 5
76 196 1515 15
76 196 1515 30
76 197 1320 5
76 197 1320 15
76 197 1320 30
76 202 1130 5
76 202 1130 15
76 202 1130 30
76 203 1030 5
76 203 1030 15
76 203 1030 30
76 205 0925 5
76 205 0925 15
76 205 0925 30
76 211 1445 5
76 211 1445 15
76 211 1445 30
76 212 0900 5
76 212 0900 15
76 212 0900 30
76 215 0905 5
76 215 0905 15
76 215 0905 30
76 224 0950 5
76 224 0950 15
76 224 0950 30
76 225 1010 5
76 225 1010 15
76 225 1010 30
76 226 0925 5
76 226 0925 15
76 226 0925 30
76 229 1005 5
76 229 1005 15
76 229 1005 30
76 231 0755 5
76 231 0755 15
76 231 0755 30
76 233 0945 5
76 233 0945 15
76 233 0945 30
76 236 0955 5
TEMPERATURE '•. ' \
CENTIG
22.2 . ..'•'
21.8 ;
20.6
19.8 -;
21 .3 ;
23.2 :
21 .3:.- .; >'.
20.7
27.2 .".•'••
21 .7
20'. 8
25.4
21 '.6-
21 M ;•:
24'. i - ...; ;.'. .
22.0
21.6 ':
22.8 . ;;.-
22.5 i'
22.1 :
29.4 !
24.5 ;
22.7
23.8
22.9 I
22.8 i
19.1 '•
20.1
21!.7 :
21'.6
20.4
21.0 :
22. 4 '
20.9 :
21.1 "•:
23.5
21:.8
21.7
20.9 '
21 . 2
21.8
18.3 ;
19.3
20.5 -: •
18.3
18.2
19.9
22.9
cr
__j
fD
O)
Q.
-------
STATION
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
TIME DEPTH
. CM
76 236 0955 15
76 236 0955 30
76 239 0850 5
76 239 0850 15
76 239 0850 30
76 247 1320 5
76 247 1320 15
76 247 1320 30
76 252 0950 5
76 252 0950 15
76 252 0950 30
76 279 1340 5
76 279 1340 15
76 279 1340 30
76 287 1145 5
76 287 1145 15
76 287 1145 30
76 292 0915 5
76 292 0915 15
76 292 0915 30
77 005 1005 5
77 005 1005 15
77 005 1005: 30
77 005 1005 75
77 013 0955 5
77 013 0955 15
77 013 0955 30
77 013 0955 75
77 019 1410 5
77 019 1410 15
77 019 1410 30
77 019 1410 75
77 026 0935 5
77 026 0935 15
77 026 0935 30
77 026 0935 75
77 033 0940 5
77 033 0940 15
77 033 0940 30
77 033 0940 75
77 041 1355 5
77 041 1355 15
77 041 1355 30
77 041 1355 75
77 049 1420 5
77 049 1420 15
77 049 1420 30
77 049 1420 75
TEMPERATURE
CENTIG
21.2
2Q.8
23.2
22.2
21 .8
22.4
19.4
t9.6
19.7
18.4
19.2
19.9
16.7
16.5
14.4
11.3 ,
13.5
6.7
8.9
12.2
-1.8
-1 .1
.2
2.6
-3.5
-1.6
.2
2.2
-3.3
-2.7
-0.7
1.9
-2.0
-1 .5
-0.5
1.5
-5.4
-4.3
-2.1
1.1
-0.4
-0.9
-0.9
.7
-0.9
-0.4
-0.2
.8
01
cr
O
O
(D
Q.
-------
ro
STATION
3
3
3
3
4
A
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
TIME DEPTH TEMPERATURE v! ; i1
: CM CENTIQ ;
— ' ' — -—.-.. ____ ___.._ . " )'
77 055 1105 5 2.9
77 055 1105 15 ,2 .:
77 055 1105 30 -0,2
77 055 1105 75 .8 .H
76 131 0825 5 ••. ;;
76 131 0825 15 ;
76 131 0825 30
76 132 0930 5
76 132 0930 15
76 132 0930 30
76 133 1020 5 ;
76 133 1020 15 \ <\
76 133 1020 30 i!
76 134 5 O
76 134 15
76 134 30 ; ',
76 135 1135 5 :
76 135 1135 15 j ::.
76 135 1135 30 . ' i. :i
76 139 5 I ,
76 139 15 :
76 139 30
76 140 5
76 140 15
76 140 30
76 141 5
76 141 15
76 141 30
76 142 15 ' i
76 142 15 :
76 142 30
76 144 1525 5
76 144 1525 15
76 144 1525 30
76 145 1100 5
76 145 1100 15
76 145 1100 30
76 146 1410 5
76 146 1410 15
76 146 1410 30
76 147 1518 5
76 147 1518 15
76 147 1518 30
76 149 0915 5
76 149 0915 15
76 149 0915 30
76 154 5
76 154 15
QJ
CT
fD
o
o
c:
n>
D.
-------
ro
STATION ; TIME DEPTH TEMPERATURE
: . CM CENTIG
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
76 154 30
76 ,156 5
76 156 15
76 156 30
76 160 1440 5
76 160 1440 15 •
76 160 1440 30
76 161 1040 5
76 161 1040 15
76 161 1040 30
76 163 1035 5
76 163 1035 15 ,
76 163 1035 30
76 166 1440 5
76;166 1440 15
76 166 1440 30
76 167 1140 5
76 167 1140 15
76 167 1140 30
76 168 0930 5
76 168 0930 15
76 168 0930 30
76 169 1345 5
76 169 1345 15
76 169 1345 30
76 170 1410 5
76 170 1410 15 ;
76 170 1410 30
76 173 1500 5
76 173 1500 15
76 173 1500 30
76 176 1350 5
76 176 1350 15
76 176 1350 30
76 182 1400 5
76:182 1400 15
76 182 1400 30 .;
76 183 0955 5
76 183 0955 15
76 183 0955 30
76 184 1450 5
76 184 1450 15
76 184 1450 30 .
76 189 1130 5
76 189 1130 15
76 189 1 130 30
76 194 1310 5
76 194 1310 15
' '-, I
. • ' ' . j
32.2
25.6
22.4
27.6 '
33.1
22.4
• 28.6
24.9
24.0
27.8
25.0
23.8
29.9
24.4
23.5
26 . 1
25.0
24.6
27.9
25.6
24.5
31 .4
26.0
24. 1 :
29.2
26.3
24.6
33.3
26.4
24.8
29.7
26.8
25.7
24.2
24.2
25.2
30.4
25.8
24.3
24.6
24.3
24.3
27.9
, 23.5
cr
ro
O
o
3
fD
a.
-------
ro
ro
STATION
4
A
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
TIME
194
195
195
195
196
196
196
197
197
197
202
202
202
203
203
203
205
205
205
212
212
212
215
215
215
219
219
219
224
224
224
225
225
225
226
226
226
229
229
229
231
231
231
233
233
233
233
236
1310
1300
1300
1300
1505
1505
1505
1430
1430
1430
0745
0745
0745
1410
1410
1410
1345
1345
1345
1145
1145
1145
1105
1105
1105
1255
1255
1255
1110
1110
1110
1115
1115
1115
0950
0950
0950
1015
1015
1015
0935
0935
0935
1040
1040
1040
1035
1035
DEPTH TEMPERATURE
CM CENTIG
30
5
15
30
5
15
30
5 :
15
30
5
15
30 .
5
15
30
5
15
30
5 ';.
15 !
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
23
:25
21
22
26
23
22
28
23
22
21
••: ••<. 22
. 22
31
25
23
25
24
23
27
; 24
24
: 21
21
22
23
21
22
25
22
22
24
22
22
21
22
, 23
20
20
21
: 21
20
21
25
23
.1
.5
.8
.4
. 1
,0
.3
.7
.9
.4
.2
.2 •
. 8 :;
.'3' '...,
.0 , :'
.3
.9
.2 :
.6 . '
.6 .
.6
.2
.0
.3
.9
.6
.6
.1
.0
.0
.3
.4
.9
.9
.8
.0
.0
.3
.5
.8
.0 >
.3
.8
.8
.6
—I
PJ
cr
n>
-£=•
O
o
=3
ci-
_j.
rs
c:
CD
Q.
-------
no
co
STATION
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
TIME DEPTH
CM
76 236 i035 30
76 239 0920 5
76 239 0920 15
76 239 0920 30
76 247 1425 5
76 247 1425 15
76 247 1425 30
76 251 1445 5
76 251 1445 15
76 251 1445 30
76 279 1330 5
76 279 1330 15
76 279 1330 30
76 287 11155
76 287 111515
76 287 1115 30
76 292 0845 5
76 292 0845 15
76 292 0845 30
77 005 1010 5
77 005 1010 15
77 005 1010 30
77 005 .1010 75
77 013 1000 5
77 013 1000 15
77 013 1000 30
77 013 1000 75
77 019 1415 5
77 019 1415 15
77 019 1415 30
77 019 1415 75
77 026 0940 5
77 026 0940 15
77 026 0940 30
77 026 0940 75
77 033 0945 5
77 033 0945 15
77 033 0945 30
77 033 0945 75
77 041 1425 5
77 041 1425 15
77 041 1425 30
77 041 1425 75
77 049 1400 5
77 049 1400 15
77 049 1400 3
77 049 '1400 75
77 055 1150 5
TEMPERATURE
CENTIG
23.4
24,8
23.8
23.8
25.4
21 .5 '',
21.3 :
26,9 • ,
21.4
20.6
21.5
17.6
,17.3
13.4
12.2
14.1
' ; 8.6 •;••
.9.7
12.8
. -1 .6
. '-0.8 ,
.5 •.
2.8
-1.9
-0.8
.4
2.3
-2.4
-1.9
.0
2.1
-2.0
-1 .2
-0.4
1.5
-4.9
-3.9
-1.7
1.2
-0.7
-0.9
-0.8
'.9
-0.5
-0.1
-0.2
.9
2.9
'•if
Cr
n>
O
o
sr
Q.
-------
STATION
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
77
77
77;
76
76
76
76
76
76
76
76
76!
76
76
76
76
76
•76
76
76
7b
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76'
76
76
76
76
76
76
76
76
76
76
76
TIME
055
055
055
131
131
131
132
132
132
133
133
133
134
i34
134
135
135
i35
;139
139
139
140
140
140
141
1;41
.141
1:42
142
142
144
144
,144
145
;i45
:145
143
146
:146
147
147
147
'149
;1 49
149
154
154
154
1150
1150
1150
1000
1000
1000
0830
0830
0830
1000
1000
1000
1115
1115
1115
1520
1520
1520
1145
1145
1 145
1205
1205
1205
1512
1512
1512
0955
0955
0955
DEPTH TEMPERATURE
CM CENT 1C
is • .• , .8 ' ;' ' ,
30 !-0.2 ,
75 '1.0
5
15 : ' •' :
30 :
5
15
so ;
5 • • -••
15 •..!;:/..• .
30 . ' •':'<•;•'
5 . :- :' ; .' -
15 " -:', ; ; '
30 .. •. .• ;;'•>.
s •.."-: ;••: •. •
is. ; : ;••;.• '
30 ;.. ••••••
5 •< ••-;' • :
15': • ;,. :- ,
30
5 ' . " .v :
15
30
5
15 •••-.-.
so ;
15 ' .:' ' ,
15
30
5
15
30
5
15
30 ; i
5 '.'.••
15 .
30 :. •
5
15 ' : • '. ' ;: '• '
30 •• • l '. • ••:'
5 •''.•'. V :
15 •• ,; " : :
30 '•-••. ..:.
5
15
30 ,
—I
CXI
cr
o
o
o>
Q.
-------
CJ1
STATION TIME DEPTH TEMPERATURE
• !i CM CENTIG
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
76 156 5
76 i|56 15
76 156 30
76 160 1320 5
76 160 1320 15
76 160 1320 30
76 161 1030 5
76 161 1030 15
76 161 1030 30
76 163 1110 5
76 163 1110 15
76 163 1110 30
76 166 1430 5
76 166 1430 15
76 166 1430 30
76 167 1120 5
76 167 1120 15
76 167 1 120 30
76 168 0950 5 i
76 168 0950 15
76 168 0950 30
76 169 1335 5
76 169 1335 15 ' :
76 169 1335 30
76 170 1345 5
76 170 1345 15
76 170 1345 30
76 173 1525 5
76 173 1525 15
76 173 1525 30
76 176 1415 5
76 176 1415 15
76 176 1415 30
76 182 1430 5
76 182 1430 15
76 182 1430 30
76 183 0945 5
76 183 0945 15
76 183 0945 30
76,18,4 1445 5
76: 84 1445 15
76 34 1445 30
76 '' |9 1000 5
76' 89 1000 15
76 89 1000 30
76 194 1145 5
76 194 1145 15
76 194 1145 30
i i
'
28.8
24.6
22.1
25.4
22.5
22.1
27.0
24.8
23.6
27.5
23.9
23.4
25.6
24,9
24.4
. 26.9
25.1
24.2
31 .1
25.7
23.7
. j i. .
31 . 3
26.5
24.9
29 .7
27.0
: 25.7
23.6
24.2
25.1
31.3
i 26.2
: 24.2
23.8
24.2
24.2
26.2
23.2
22.7
OJ
cr
03
fD
D-
-------
CTl
STATION
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
. 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
! TIME DEPTH
'•i :: CM ,
76 '195 1245 5
76 i195 1245 15
76';195 1245 30
76/196 1445 5
76i:196 1445 15
76 .196 1445 30
76 :197 1435 5
76 ;197 1435 15
76 !197 1435 30
76;;i98 0935 5
76 i 198 0935 15
76 :198 0935 30
76 : 202 0830 5
76,202 0830 15 •
76 202 0830 30
76 | 203 1350 5
76 : 203 1350 15
76i203 1350 30
76 205 0955 5
76i.205 0955 15
76i205 0955 30
76J211 1500 5
76 | 211 1500 15 '
76 211 1500 30
76i;212 1135 5
76 i 212 1 135 15
76J212 1135 30 :
76|!215 0930 5
76'i215 0930 15
76!215 0930 30
76^219 1145 5
76'219 1145 15
76^219 1145 30
76:224 1010 5
76^224 1010 15
76 224 1010 30
76,225 1100 5
76.225 1100 15
76 :225 1100 30
76 226 1035 5
76,226 1035 15
76 226 1035 30
76 229 1045 5
76 ,229 1045 15
76 229 1045 30
76 231 1025 5
76 231 1025 15
76 231 1025 30
TEMPERATURE
' CENTIQ
: 24.1
21 .6
; 21.9
25.1
22.4
21 .7
27.9
23.6
21 .9
23.2
22.6
i 22.5
.i-21.3
, 21 .9
; •;; 22.4' .:•-
28.9
1 24.4 ''••;
.22.8
23.4 ,
,: 23.1 . ' "
''•J23.1 '•).
: 29.1 •
.. . ;;25.6 '!:
•23,9
• 26.9
:! 24.2'
:23.8 ;
;i20.3 '
!21.1 I
22.6
; 21 .7
: 21 .1
! 21 .9
i 24.0
21 .8
22.1
! 25.4
i 22.8
i 22;. 7
: 22.4
21 .8
22.7
21 .2
20.4
21.5
Q>
CT
fD
O
o
C
n>
ex
-------
ro
STATION TIME DEPTH TEMPERATURE;
i;.-:' CM ; CENTIG
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
76 ,233 11155
76 233 111515
76 233 1115 30 '.' -.
76 236 1025 5
76 236 1025 15
76 236 1025 30
76 239 0905 5 :
76 239 0905 15 '
76 239 0905 30
76 247 1340 5
76 247 1340 15
76 247 1340 30
76 251 1530 5
76 251 1530 15
76 251 1530 30
761279 1320 5
76 279 1320 15 ,
76 279 1320 30
76 287 1100 5 > '
76 287 1100 15
/ 76 287:1100 30
76 292 0815 5
76 292 0815 15
76 292 0815 30 "
. 77 005 1020 5
77 O05 1020 15
77 005 1020 30
77 005 1020 75
77 013 1025 5
77 013 1025 15
77 013 1025 30
77 013 1025 75
77 019 1425 5
77 019 1425 15
77 019 1425 30
77 019 1425 75
77 026 0950 5
77 026 0950 15
77 026 0950 30
77 026 0950 75
77 033 0955 5
77 033 0955 15
77 033 0955 30
77 033 0955 75
77 041 1445 5
77 041 1445 15
77 041 1445 30 '
77, 041 1445 75
21,5
; 19.9
:21.1
'•'• 24 . 1
22.6 , ,
22.4
; 23 . 6
:23.2
: 23,2
23.6
20.5
20.6
24.9
20.5
'19.7 ,
19.1
16.9'
,1 6.9 .
,11.3
'11 .6
13.7
7.9
10.1
12.5
-2.3
-1.4
-0.2
2.2
-3.1
-1 .8
-0.3
1.9
-4.3
-3.5
-1 .7
1.5
-2.7
-2.0
-1 .2
.9
-5.8
-4.9 ,
-3.2 •;.••
.5 :
-0.8
-1.2
-1.3
.2
a*
cr
fD
o
o
3
-------
INJ
CO
STATION
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
77
77
77
77
77
77
77
77
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
TIME ;
''iii.
'!,';''
,049
:049;
049
049
055
055
055
055
145
145
145
146
146
.146
147
147
147:
149
149
1 49
154
154
154
156
156
156
'160
160
160
161
161
161
163
163
163
166
166
166
167
167
167
168
16S
163
169
169
169
170
1355
1355
1355
1355
1200
1200
1200
1200
0825
0825
0825
1 130
1130
1 130
1450
1450
1450
0755
0755
0755
1005
1005
1005
1025
1025
1025
1210
1210
1210
0850
0850
0850
1350
1350
1350
1255
1255
1255
0850
0850
0850
1540
1540
1540
1425
DEPTH TEMPERATURE
CM CENTIG
5
15
30
75
5
15
30
75
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
.':-- • -1
— 0
-0
.4
2.
.0
-0
•/; ' .5
-:'
, ,
-'. ''
25
22
21
29
23
21
25
24
24
27
24
23
31
24
23
25
25
24
28
25
24
29
.1
.9
•3
6
; :
.2
: ', •
• . j1 .
' '.
.:. ,'
(
,2
.1
.3
.1
.1
.8
.0
.5
.1
.5
.5
.7
.3
.9
.5
.9
,2
.8
.0
.8
.7
.8
o>
cr
n>
O
=3
3
C
Q.
-------
ro.
CO
STATION TIME DEPTH TEMPERATURE
; CM , CENTIG
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6 .
,6
1 6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
76 170/1425 15
76 170 1425 30
76 173 1230 5 •'•'
76 173 1230 15
76 173 1230 30
76 176 0905 5 •, '•
76 176 0905 15
76 176 0905 30 '• •"'
76 182 1300 5
76 182 1300 15 :
76 182 1300 30
76 183 0900 5
76 183 0900 15
76 183 0900 30 '••";< '•••
76 |1 84 1300 5 .«'.
76 '184 1300 15 V ' '••
76 :184 1300 30
76 1189 1300 5 V ;•
76 !189 1300 15
76 189 1300 30 ,
76 i194 1005 5 < ;'.;
76 ,194 1005 15
76 ,194 1005 30
76 '195 1100 5
76 195 1100 15
76 195 1100 30
76 J196 1525 5
76 iV96 1525 15
76 il96 1525 30
76 197 1020 5
76 197 1020 15
76 '197 1020 30 •
76 202 0945 5
76 202 0945 15
76 |202 0945 30
76 1203 1150 5 - ".'
76 !203 1150 15 "
76 203 1150 30
76 205 0820 5
76 205 0820 15 ,
76 205 0820 30 ';
76 208 0955 5 .
76 i208 0955 15 ., - :
76 '208 0955 30 :- •
76 211 1230 5
76 211 1230 15
76 211 1230 30
76 212 0940 5
;; 25 . 7
. '-•; 24.1
:i 30.4
, 26.1
'25.0
27.4
26.0
25.9
'••• 30 . 3
27.9
27.2
23.7
/ 25.3
•a:. 26 .'5 •
...:i;;:33.5
•' [f/'26> 1
• •:••;' 35 .4
;•• :""'25.3
,'!;! 25.6
' ';;i;' 25. 7
• .Fi-;25.6
•':•:' 23. 3
: ::'23.8
•,!: 25.8
21 .8
: 22 . 9
28.6
25 . 0
; 23.2
' 26 . 2
: 23.2
. 23 . 4
'i 26.4
" U 23 '. 5
:.' • 23 .8
i 30.0
24.9
. ii-24.3
' :' 24 . 1
24 . 6
, 24.6
•.;/:-24.2
•'.•!:'. 23.2
• .:* 24.5 ,
28.9
26.2
25.4 ,
; , 26.8
OJ
cr
r>
o
n>
-------
STATION TIME DEPTH TEMPERATURE
;";;; CM S CENTJQ'
CO
O
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
77
77
77
77
212
212
215
215
2-15
224
224.
224
225
225
225
226
226
226
229
•229
.229
231;
231
231
:233
233
233
236
236
236
239.
239
239,
247.
247
247
252
252
252'
279
279
279
287
287
287
292
292
292
005
005
005
005
0940
0940
0815
0815
0815
0850
0850
0850
0840
0840
0840
0850
0850
0850
0940
0940
0940
0900
0900
0900
0835
0835
0835
0855
0855
0855
0800
0800
0800
1005
1005
1005
1300
1300
1300
1240
1240
1240
1430
1430
1430
1130
1130
1130
1040
1040
1040
1040
15
30 '
5
is ':
30 i
5 :
15
30 !
5 j
15
30 .
5 i
15 •!
30 i
5
15 ;!
30 ;
5 ' ' •
15 ..;!
30 :|
5 !;
15 !
30 ;
5 ••;
15 .:
30 '
5
15
30 :
5 ;
15 ,
30
5
15
30
5
15
30
5
15
30 -!
5
15
30
5 ;
15
30
75 :
, 25
25
20
22
23
: 21
' •" . • . 21i
22
21
22
22
';'•• 23
. .; • '-'•23
23
22
' - :. : 22
23
•-'. : 20
' 20
....•; 22
1 18
20
. 22
23
23
: 23
,23
23
23
; . 19
20
21
'14
20
20
: 20
19
19
15
12
13
,8.
9.
12
-2
-0
2.
.0
.1 •
.1
.2
.8
.3
.7
.7
.4
.0
.7
.6
.1
.4
.2
.6
.5; .
.8
.9
.0
.4
.5
.0
.2
.0
.0
.6
.8.
.8
.7
.4
.2
.6
.7
.3
.0
.2
.3
.1
.3
.4
6
6
.0
.3
.6
.1
o :
;{ .
:;. •
•'i;
!l,:
'! .
. '•',
'.':'•
' '\
• 'i'
''••
i;
-I
'j
• ';?.
tr
i!
;j
: ' !
j|
'.,
j.
h
. n
';.
••i
•
r
j t'
'ii
!
CT
O>
O
O
C.
(T>
Q-
-------
STATION
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
TIME DEPTH
V: • ';: CM .':"
77.013^ 0940 5
77 013: 0940 15 •'•'..
77 013 0940 30
77 013 0940 75
77 019' 1330 5
77 019 1330 15
77 019i 1330 30
77 019 1330 75
77 026 0910 5
77 026 0910 15 ,
77 026 0910 30
77 026 0910 75
77 033 0905 5 . .', ,
77.033 0905 15 >'
77 ;033! 0905 30 V.
77 i033' 0905 75 . •'•
77 041i; 1335 5 'V
77:041; 1335 15 ; i'
77:i04lk 1335 30 >;/
77 :041 1335 75 " :'.
77 049:' 1450 5 : "
:77 049M450 15 *j
.77 :049i 1450 30 X
77 049 i; 1450 75 ; '
77. 055 1125 5 '
.77 '055 1125 15
77,'055; 1125 30 ,''
77,:055: 1125 75 ,
76'": 145' 0905 5 ^ .
76 ;145 0905 15 ,
76 :i45 .0905 30 ,:
76,146 1200 5 j .
76 146 1200 15 i
76 146 1200 30 ,
76 147 1457 5 ' ,
76 147 1457 15 ;
76 147 1457 30 ' !
76 '149' 0815 5 ''•
76 149 0815 15 .
76 149 0815 30
76 >154 1020 5 ,"
76 154 1020 15
76 :154M020 30 ] .-
76 '156 5 '••'"'•
76 156 15 ;
76:156 30
76 160i 1055 5
76 160 1055 15 .
TEMPERATURE
: CENTIG
; -3.8
-2.2
,-0.1 '
1.7
-4.5
-4.0
: -1.8
1.4
-3.3
-2*5
-1,4
.6
-6.7
:, ,-5.8
.',-;:'t/ -3.7
•'' I;'":V':, \''.
••>; v-o.7
• -1.6
-1.7
, -0.3
:.l'';':'. -0*6
;, -0.3
.0
3.3
••..-.. 7 '
:• iV:,' -0.2
' :" '•: -.2
t ' '
•'' ; ; '
',: : !
': ' .' '
r ; .-: ' ,' ;
• :'. 1 '!
i . •
i • ':* . . i
.'/''•• '
1 26.6
21.7
Oi
cr
fD
n
o
fD
Q-
-------
STATION .. ;;TIME OEHTM T tMHtKA I UKt
: '!K;. CM CENTIG ''
rv>
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7,
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7.
7
7
7
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
. 76
76
.76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
,76
76
76
76
76
76
76
76
76
76
it 60
!'161
•?il'61
!!161
•:163
•163
:,163i
:166
;166
166
;167
;167'
167
J168
'!168
.168
''i 69 i
•;:V69.j
:i169
;',1;70;
:;il70:
,;,i;7o,
;,:t73i
.;i73':
:;173
;,176
i176
176
'182
:182
182
': 1 83
183
183
1 84
184
184
189
: 1 89
; 1 89
194
.194
!'194
!'195i
:,195i
'195
196
•196
1055
1230
1230
1230
0945
0945
0945
1405
1405
1405
1320
1320
1320
0900
0900
0900
1550
1550
1550
1445
1445
1445
1335
1335
1335
0935
0935
0935
1305
1305
1305
0905
0905
0905
1320
1320
1320
1345
1345
1345
1225
1225
1225
1025
1025
1025
1530
1530
30
5
15 ,
30 ,
5
15
30
5
15 '
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30 : ..
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30 :
5 ...;
15
30
5
15 ;
20
- 32
22
21
' 27
:23
22
27
23
22
34
24
22
24
23
'23
28
25
23
,33
25
23
31
25
24
26
24
24
31
26
25
22
24
25
34
24
23
26
24
24
26
:23
22
.20
21
!22
>25
22
.7
.4
.9
.0
.5
.5
.9
.3
.7
.4
.1
.5 .
.3
.8 '
.9
.6
.4
.2
.6
.5
.9
.3
.2
.9
.0
.2
.7
.8
.1
.7
.7
.7
.1
.1
.8
.4 ,
.8
.9
.5
.2
.7
.1
.9
. 5 . : •
.1 :
.4
.4
.9
a>
cr
o
o
fD
Q.
-------
STATION TIME DEPTH I TEMPERATURE
• f -.'•'. CM ; CENTIG
co
co
7
7
7
7
7
7
7
7 '
7
7
7
7
7
7
7
7
7
7
7
7
7 .;•
7
7
7
7
7
7
7
7
7
7
7
7 .
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
76 196 1530 30 ' .:•••
76 197 1110 5
76 197 1110 15
76 197 1110 30 ! ;
76 202 1005 5 "i
76 202 1005 15 • '
76 202 1005 30 :
76 203 1115 5 :
76 203 111515 ;
76 203 1115 30 ;
76 205 1255 5
76 205 1255 15
76 205 1255 30
76 208 ;;1055 5 ' v . •
76 208 '1055 15 '•' V
76 208 1055 30 ^ ,:
76 211 1320 5
76 211 1320 15 i ,
76 211 1320 30 :
76 212 ',1005 5 .;.;:' \
76 212 '1005 15 i
76 212 1005 30 :' \
76 219 1025 5
76 219 1025 15 !
76 219 1025 30
76 224 0930 5 ;.;
76 224 0930 15 ; •.•
. 76 224 0930 30 ',
76 225 0910 5
76 225 0910 15
76 225 0910 30 .
76 226 0825 5 , . .
76 226 0825 15 .' : •
76 226 0825 30 ; : >
76 229 0930 5
76 229 0930 15 :'.
76 229 0930 30 •
76 231 0845 5
76 231 0845 15 ;,
76 231 0845 30 '-!
76 233 0850 5 'i .
76 233 0850 15 , ;
76 233 0850 30 .'.' ;; • ".
76 236 0905 5 : •"'•".
76 236 0905 15
76 236 0905 30 ! ,
76 239 0810 5 '
76 239 0810 15 i ;
22.1
23.5
22.2
22.2
23,3
22.2
22.5
.25.5
23.4
23.2
25.2
23.9
. ,23.5
20.6
:21.4
22.8
28.8
25.0
.24.1 .
25.1
24 . 1
24.1
20.8
21 .3
22.0
21 .2
21 .8
22.2
22.1
22.7
22.8
21 .0
22.2
: ! 22.9
19.1
20.6
21.6
22.1
22.1
22.1
22.9
23.2
cu
cr
tt>
o
o
n>
Q.
-------
CO
STATION
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
TIME
239
247
247
247
252
252
252
;279
'279
279
287
287
287
292
292
'292
!005
:oos
005
'005
013
013
013
013
019
019
019
019
026
026
026
026
033
033
033
033
041
041
041
041
049
049
049
049
055
055
055
055
;0810
1035
,1035
1035
1355
1355
!1355
245
245
245
'-, 300
300
: 300
145
i 145
,1145
!'1045
1045
M045
1045
1105
1105
1105
1105
i 1400
1400
:1400
1400
0915
0915
0915
0915
0925
0925
:0925
0925
1350
1350
1350
1350
1425
1425
1425
1425
1120
1120
1120
1120
DEPTH
CM
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15 :
30
5
15
30
75
5
15
30
75
5
15
30
75
5
15
30
75
5
15
30
75
5
15
30
75
5
15
30
75
5
15
30
75
TEMPERATURE
CENTIG
•• : ,23
!19
:, 20
20
26
20
: . 1 9
•' 22
17
,:17
\. 719
': -;i'3
' 14
•'. •.• 'i'ro
ii;.^io
-Ui'12
'I :-1
.;. '"-0
• ,•:. 7
/ -3.
• . • -2
• ;.'rb
: ;!.6
2.
• ,~2
'*• <
. -3
2.
-1
-0
: '.o
2.
-4
•: -2
:' -0
!i.
, .-o
-0
: -0
?; , '-1.
-0
•~0
-0
1 .
4.
.9
-0
1 .
. 1
.7
.4
.8
.5
.1
.7
.4
.3
.3
.4
.5
.3
,6
.4
.7
.5
.4
1
.3
.3
4
.0
.0
5
.8
.7
1
.8
.8
.6
9
.3
.6
.4
6
.2
.2
.2
5
2
.1
5
QJ
CT
O
O
rs
c.
o>
Q.
-------
STATION 'TIME
CO
en
DEPTH TEMPERATURE
', ' :'• ' • • I
CM :• CENTIG -
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
.8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
76.131 1100 5 . ' '• . '
76 131 1100 15.
76 131.1 100 30 , . ' ;
76 132 0915 5 • ' ', ' >' i
76 132 0915 15 V
76 132 0915 30 ;
76 133 1015 5 :
76 133 1015 15 . ' " ' :,
76 133 1015 30 ' ". .'
76 134 5
76 134 15
76 134 30 :
. 76 135 1130 5 , |': ;
: 76 '135 1130 15;, ' \\ . .;/:•' •. • . •':
; 76 135 1130 30:i:-^' fn.': ' : 'T!
• 76 139' 5 M .• ?'•'•:•''••! '• J
•.-•'• 76 139 ,' is:'1 '• '<'>•'•' •;:'•' : •• .:'•;
76 :139 30, !- . :!! , '•• •: : •'.'''•
. 76 '140 5 ' ' i- • -,i '" "; ; • '. ',..;
' .- 76-:140. 15: . : i,!';..:-- .-..;' ^i'
• 76 140 30 ! •''•• '; '."•>:•'•
' 76 141' 5 ! .' •.:! '.••:•!' ' .:• ,;,
76! 141 15; •': i " - ' '•.- '•,'•
•• 76 141 30 ••.••'•' ;'; "!>
76 144 1530 5 :; ;
76 144 1530 I5i '-• ''•'• , -
76: 144 1530 30| ij ., '
76 -145 1120 s ; . !;••. -.'• ' •, ••;
, 76 '145 1120 15!< i1 ' . ; *;
76 145 1 120 30; i; i : "!
; 76 146 1205 5 : ' ' '! ! V ";'
, 76 146 1205 15! "•','•••'. i.i ;V
76 '146 1205 30: ' .
76 147 1521 5 i i '"•:.'•
76 147 1521 15j ' !. "•
76 147 1521 301 i ' '•'.'• •
76 149 0945 5 ' . !:'i:':
76 149 0945 15 ,!',"'
76 149 0945 30 •,' . ' <\ •'
76 ;154 5 •.'•••• if '.• ]' . '•'•;•
. 76 ,is4' isr1' '•...;! > ". M • : •;•
76 '154 30 '•'• , I:'1'- " '"•' • '•'•'•
76 156 5 •' ' .:' '• '.. :. I
76 156 15 ;•'
. 76 156 30- i •••••
' 76 160 1415 5 ! "I 33.3
76 160 1415 15 , ,; !- 25.2
76 160 1415 30, - 22.6 '
cu
cr
o
3
rt-
ro
a.
-------
STATION : TIME
DEPTH TEMPERATURE
GJ
CD
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
76^ 161 1045 5
76 161 1045 15 "I
76 161 1045 30 i
76 163 1050 5 ,':
76 163 1050 15
76: 163 1050 30 i
76 '166 1445 5
76 166 1445 15 i
76 166 1445 30
76, 167 1200 5 i
76 167 1200 15 f
76 167 1200 30 i
76 168 0935 5 !
76 168 0935 15 ;
76:168.. 0935 30 !
76 169 1355 5 \
76 169 1355 15 !
76 169 1355 30
76 170 1400 5
76 170 1400 15 ;
76 170 1400 30
76 173 1510 5 I
76 173 1510 15
76 173 1510 30 !
76 176 1525 5 !
76 176 1525 15
76 176 1525 30
76, 182 1415 5
76 182 1415 15 :
76 182 1415 30 '
76 183 1000 5 !
76 183 1000 15 '
76 183 1000 30 >'
76 184 1500 5 :
76 184 1500 15 i
76 184 1500 30
76 189 1045 5 ;
76 189 1045 15 .
76 189 1045 30 ,
76 194 1245 5 '
76 194 1245 15 :
76-, 194 1245 30 .
76 195 1315 5 . ''
76 195 1315 15
76 195 1315 30 i
76 196 1500 5 ;
76 196 1500 15
76 196 1500 30 i
CENTIG
30.4
23.5
22.8
31.3
25.4
24.4
28.8
25.5
24.1
32.6
24.9
23.8
26.9
25.4
24.9
28.6
25.7
24,7
31 .9
25.8
24.1
29.9
26.4
24.5
31 .9
26.6
24 .5
28.9
25.9
25.0
23.7
23.6
24.4
28.9
24.6
23.4
23.7
23.4
23.4
25.4
22.7
22.3
24.1
21 .5
21.6
24.2
22.0
21 .5
CU
cr
fD
O
o
:3
fD
CL
-------
STATION ,.'- TIME DEPTH TEMPERATURE
'.•'. i'.-/. CM/ CENTIG l!
CO
8
8
8
B
8
B
8
B
a
B
B
8
B
8 .
8
B
B
8
8
8
8
8
8
B
B
8
8
a
8
8
8
a
Q
8
8
8
B
B
B
B
8
a
8
B
8
8
8
8
76 197, 1355 5
76 197: 1355 15
76-197 1355 30
76 202 0805 5 V
76 202 0805 15 '••'•
76 202 0805 30 :;•
76 203: :1 430 5
76 203. 1430 15 , :
76 203 1430 30
76 205 1005 5 •• !
76 205 <1005 15 .'.
76 205 1005 30 ;,',!
76'' 208 !l 135 5 «' ;' •
76 208;1135 15 Nil
76 208 i1!35 30 ; -I;!
76 212 '1210 5 •: ;
76;212 :1210 15 ;
76 212 ,,1210 30 ,'~;,!'
76 215 '0955 5 •;'" '. '
76 215 '0955 15 v
76.215 0955 30 •'.' •
76 219 '1240 5 '
76 219 1240 15 '
76 219 1240 30 I.
76 224 1040 5
76 224 1040 15 '••
76 224 1040 30 .'•.'
76 225 1130 5 ,
76 225 1130 15 V
76 ;225 1 130 30
76 226 .1005 5
76i226 1005 15 :'"'<
76 226 1005 30 ']
76 229 1030 5 f,;!
76:;229 1030 15 ; :
76| 229 1030 30 ; • !
76 231 0950 5 !
76:231 0950 15 ;
76 231 0950 30 ,' :
76 233 1055 5 '•' ' ','
• 76 233 JOSS 15 ' ; j
76 233 1055 30 r -,'
76;236 1045 5
76!236 1045 15 '
76:236 1045 30
76 239 0930 5
76 239 0930 15
76 239 0930 30 '
.^26:5 .' •
• ':'. 22.4 "••.
: 21 .6
•',-.' 20.7 ' ':
21.2 .:
,21; 8
27.9
23.5
22.3
. M 23.2. ; '
::.;" 22.7 .. :'
.•'':;;i 22.. 6 . •
i ',!:.23..9' ';:
; '^21.2 ' •'
•: ''.'22.0 ••.;:
• ';J'27.'2 ; •/•
, t' 23-7
:':'|V.;23.1 ' -••
.•:'•; ;?•.; '20 .'-s. ; ••
'"'•• 20.7
,'22.0
23^2
20.8 ,
,21 .3
24.8
21 .4
21 .4
25.2 :
22.2
: 22.1
: 22.4
,::"2i .5 i
•22.1 '
21 .5
19.8
20.8
21 .3
19.1 -
• -20.3 • ;
: , 25.1
21 .8
21.5
24 . 2
22 . 6
22.4
(U
CT
fO
o
=3
fD
Q.
-------
co
00
STATION TIME DEPTH
;• '-\'. CM
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
' 8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
9
76 247'i 1455 5
76 247' 1455 15
76 247' 1455 30 •
76 251,; 0950 5
76 2511' 0950 15
76 251 0950 30
76 279 1325 5
76 279 1325 15
76 279! 1325 30
76 287 1030 5
76 287 1030 15
76 287. 1030 30
76 292 0830 5
76,292 0830 15
76 292 0830 30
77 005 1015 5
77 005 1015 15
77 005 1015 30
.77 005 1015 75
77 013 1015 5
77 013 1015 15
77 013 1015 30
77 013 1015 75
77 019 1420 5
77 019 1420 15
77 019' 1420 30
77 019 1420 75
77 026 0945 5 ' •
77 026 0945 15
77 026 0945 30
77 026 0945 75
77 033 0950 5
77 033 0950 15
77 033 0950 30
. 77 033 0950 75
77 041 1430 5
77 041 1430 15
77 041 1430 30
77 041 1430 75
77 049 1410 5
77 049 1410 15
77 049 1410 30
77 049 1410 75
77 055 1155 5
77 055 1155 15
77 055 1155 30
77 055 1155 75
76 131 1030 5
TEMPERATURE
CENTIG
23.1
20.1
20.1
18.5
17.6
19.3
20.2
17.0
16.9
13.1
11 .6
13.8
7.6
9.6
12.5
-1.6
-0.2
.8
: 2.6
: -2.1
-0.1
.7
2.2
-1 .6
'-0.6
.4
2.0
-1.5
-0.5
.1
1.6
-4.0
-2.0
-0.3
1.3
, -0.5
-0.6
-0.2
1.1
-0.3
-0.1
-0.1
1.6
4.4
1.3
' • '..4,
1.2
cr
0>
tt>
CL
-------
CO
STATION
9
9 •:
9
9
9
9
9
9
9
9
9
9
9
9
9
9 :'
9 ',.
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9 '
9
9 '
9 ''
9
9 !
' 9
9
9
9
9
9
TIME DEPTH
.-1".':. CM
76 131 1030 15
76: 131 1030 30
76 132 0900 5
76 132 0900 15 ,
76 132 0900 30
76 133 1010 5
76 133 1010 15
76 133 1010 30
76 134 5
76 134 13
76 134 30
76 135 1120 5
76 135 1120 15
76 135 1120 30
76 139 5
76:139 15
76i;139 30
76;:i40 5 V::
76 : 140 15 !
76 140 30
76,141 5
76 141 15
76 141 30 >
76 142 5
76' 142 15 i
76 '142 30 ,
76:144 1515 5
76 144 1515 15
76 144 1515 30
76;;i45 1200 5
76' 145 1200 15
76 145 1200 30 :
76 146 1400 5
76 146 1400 15 ,:
76' 146 1400 30 '
76 147 1415 5 i'
76 147 1415 15 .
76 147 1415 30 :
76 149 1000 5 ;:'
76 149 1000 15 i;1.
76 149 1000 30
76 1 54 5
76M54 15 ',:.
76 154 30 ::
76 156 5
76 156 15
76 156 30 '
76 160 1350 5
TEMPERATURE
CENTIG
i
•< ' ' . •
• V
,' ;
';•'/•' ; •
. i ' '
•: . ?/'
1 •; "
,'- ;••;,; • '; '
, ' !-
• / • • '
', "- •' ' ' • *
' • ' '•'.''(:;
: ' -.'• ': '..--'•
.''. ' ' ' ! '
'-*'. .- !•'•
^ 1, - .
29.8
OJ
cr
fD
-{=»
o
rs
r-t-
fB
Q.
-------
STATION '
1
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9 :
9
9
9
9
9 .
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
76
76,
76'
76.
76
76:
76
76'
76'
76:
76
76!
76
76
76i
76:
76
76
76:
76
76
76
76
76
76
76
76!
76!
761
76
76:
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
TIME
160
160
,1 61
161
161
163
163
163
166
166
:166
16?
167
167
168
1 68
168
1 69
169
169
170
170
170
176
176
176
.182
'182
182
183
183
183
184
184
184
189
189
189
194
194
194
:195
195
•195
196
196
196
197
1350
1350
0945
0945
0945
1113
1113
1113
1435
1435
1435
1100
1100
1100
0945
0945
0945
1325
1325
1325
1350
1.350
1350
1445
1445
1445
1420
1420
1420
0950
0950
0950
1440
1440
1440
1020
1020
1020
1355
1355
1355
1225
1225
1225
1450
1450
1450
1415
DEPTH TEMPERATURE
CM '.': CENTIG
15
30
5 : • ;•
15 ';
30
5 •' [• '•
15
30
5
15 ;
30 ;'':;..
15 '•:\-}
30 - ;.;'•< : :
5 '•• ;
15 • /
30
5
15
30
5 • • •.
15 ,
30
5
15 .
30
5
15
30
5
15
30
5 ..' . :
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
: 24.
21 .
24.
21.
21 .
. 27.
24.
22.
27.
23.
22.
:: V25.
1 24.
23.
27.
25:
23.
31 .
25.
23.
30.
25.
23.
; 29.
: 26.
24.
23.
• 20.
.: 24.
29.
24.
23.
; 23.
: 23.
23.
26.
23.
22.
24.
21 .
21 .
24.
, 22.
21 .
27.
2
1
9
8
3
4
3
8
9
3 ':•
8 •
9
5
7
8
1
7
5
5
3
9
8
8
9
1 .:
7
5
5
2
6
6
3
9
6
3
0
1
3
3
4
8
6
3
6
1
EU
cr
ro
o
o
05
Q.
-------
STATION
TIME
DEPTH" TEMPERATURE
CM
CENTIG
9
9
9
9
9
9
9
9 •
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
. 9
9
9
9
9
9
9
9
9
76 197 1115 15 ,
76 197 1415 30 :;
76 198 0910 5
76 198 0910 15 :
76 198 0910 30
76 202 0850 5 •!
76 202 0850 15 ''• • '
76 202 0850 30 :
76 203 ;i 330 5 '
76 203 1330 15 ",":
76 203 1330 30 '
76 205 1320 5 ; ,
76 205 '1320 15 ,: ,
76 205J1320 30 V
: 76 212 11 110-5 ;".',•'.'..
76 212 :;1110 15 . >'•.. ,
76 212. '11 10 30 "•:•;
76 215 1130 5 ;|
' 76 215 1130 15 'i!
76 215 1130 30 ' f
1 76 219 1130 5 :i'i! .
76 219 ;1130 15 i' -
76 219 1130 30 '."'•'.'
76 224 1025 5 -I-1
76 224 1025 15 ;!.i
76 224,;1025 30 , :, :'
76 225 -1050 5 : •';,. •
76 225 ;1 050 15 7
. 76 225 1050 30 l!
76 226 i1025 5 ••. ;
76 226 1025 15 ,
76 226 '1 025 30 ',\ '
76 229 1 100 5 :
76 229 1 100 15 '
76 229 1100 30 -;!•
76 231 1010 5 '•.•••••
, 76 231 '1010 15 ..'-!''
76 231 1010 30 V ,
76 233 .1100 5 : ,
• 76 233 ,1100 15 '
' 76 -233 1100 30 j
. 76 236 ;1015 5 :|
' 76 236 1015 15 i'
76 236 1015 30 • '•
76 239 0910 5 .
76 239 0910 15 -
76 239 0910 30 ,
76 247 ; • :•
22.8
21 .6
23,3 ,
22.4 :;
22.2 !
21 .9
21 .4
< 21 .a ;
27.7
23.4
22.2
24.8
23.2
, 22.5
i 27.0
:'23'.8 .; .;
23.3
21.3
; 21 .2 i'
22.4 .•
' .: ! , ••• • •
' .1 i' V:
. . ' :'-V' . '•
23.4
21 .1
21 .7
24.6 ,
21 .5
' 21 .8
25.8
-22.5
22.2
24.0
21 .9
22.4
,. 22.0 /
,20.2
•-;' 21 .3
,23.2
i 19.9
21 .0
24.7
1 22.3
22 . 0
24.1
23.0
22.7
Cu
cr
ro
o
o
ex
-------
IV)
STATION
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
10
10
10
10
76i
76;
76
76
76
76
76
76
76
76
76
76
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
7.7
77
77
77
77
77
76
76
76
76
TIME
251
251
251
279
279
279
287
287
237
292
292
2S2
005
005
005.
005
013
013
013
013
019
019
019
019
026
026
026
026
033
033
033
033
041
041
041
041
049
049
049
049
055
055
055
055
.145
145
145
146
1015
1015
1015
1315
1315
1315
1015
•1015
,1015
0800
0800
!0800
1025
'1025
:1025
M025
J1035
il035
1035
1035
i1435
;1435
1435
J1435
0955
0955
'0955
0955
1000
1000
1000
1000
1440
1440
1440
1440
1350
1350
1350
1350
1 145
' 1145
1 145
1145
0820
0820
0820
1030
DEPTH
CM
5
15
30
5
15
30
5
15
30
5
15
30
5 :
15
30
75
5
15
30
75
5
15
30
75
5
15
30
75
5
15
30
75
5
15
30
75
5
15
30
75
5
15
30
75
5
15
30
5
TEMPERATURE
CENTIG
21
18
20
20
17
17
12
11
14
6.
10
:13
-1
;.0
.7
a.
-2
.0
.6
','•'2.
-2
-1
.1
1.
-2
-1
-0
1 .
: -4
-3
-1
,6
-0
-0
-0
.3
-0
-0
-0
.6
3.
-0
-0
.9
.4
.7
.2
. 1
.1
.1
.7
.8
.4
7
.0
.1
.5
3
.0
0
.9
.1
7
.4
.0
.4
1
.6
.1
.6
.6
.9
.9
.5
.1
.1
6
,1
.0
Cu
cr
n>
o
o
fD
0.
-------
CO
STATIOr
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10 '
10
10
10
10
10
10
10 ,
10
10
10
10
10
10
10
10
10
10
10
10
10
10
4 TIME DEPTH
:' !• •' CM
76 146 1030 15
! 76 1'46 1030 30
76- 147 1445 5
76 147 1445 15
.76 147 1445 30
76 149 0745 5
76 149 0745 15
76 149 0745 30 .
76 154 0950 5
76 154 0950 15
76 154 0950 30
76 156 5
;,76 156 , 15
•i 76 '156 30 , ••
.1.76 i&O 1000 5
i 76 160 1000 15
:i 76 160 1000 30
•• 76 161 1145 5
1.76 161 1145 15
i 76 161 1145 30
!;76 163 0840 5
. i;76 163 0840 15
! 76 163 0840 30
76 166 1345 5
; 76 166 1345 15
i,76 166 1345 30
V76 167 1225 5
76 167 1225 15
76 167 1225 30
76 168 0845 5
76 168 0845 15
• 76 168 0845 30
i 76 169 1525 5
76 169 1525 15
76 169 1525 30
76 170 1420 5
: 76 170 1420 15
^76 170 1420 30
' 76 173 1310 5
76 173 1310 15 : .
i 76 173 1310 30 .'
i 76 176 0815 5
'76 176 0815 15
i 76 176 0815 30
1 76 182 1245 5
76 182 1245 15
.' 76 182 1245 30
•76 183 0855 5
TEMPERATURE
CENTIG
' •:
' . '
24 . 7
20,6
19.9
30. 1
21 .9
20.3
,:. 23.9
22.7
22.3
26.6
23.0
21 .9
31.8
23.5
21.8
24.6
23.3
23.0
28.1
: 24.9
23.3
32.8
25.5
23 . 1
29 . 9
2,5.6
23.8
25.3 .
• : 24 . 2
24.4
29.2
; 26.0 ,
i 25.4
22.9
PJ
cr
(D
o
3
rt-
-------
STATION ><
10
10
10
10
10
10
10
10.
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
J.TJME
if ', ,
j 183
183
'184
'184
184
•189
'.189
189
1 194
194
: 194
: 195
195
:-195
/196
196
M96
! 197
197
, 197
202
202
202
203
203
203
i 205
205
205
208
208
208
211
211
211
212
212
212
219
219
219
,224
224
224
225
; 225
225
226
0855
0855
1255
1255
1255
1215
1215
1215
0950
0950
0950
1150
1 150
1 150
1520
1520
1520
1150
1150
1150
0920
0920
0920
1215
1215
1215
1240
1240
1240
0845
0845
0845
1250
1250
1250
0930
0930
0930
0940
0940
0940
0910
0910
0910
0830
0830
0830
0905
DEPTH
CM ;;
15
30 i
5 :
15
30
5
15 :
30
5 - •• ';
15
30
5 : ':
15 ;
30
5 • ' '•
15
30
5 :
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5
15
30
5 i '
15
30
5
15
30
5
TEMPERATURE
CENTIG
: 23
. 24
34
24
23
24
23
23
24
22
22
: 24:
21
22
25
22
22
26
22
22
22
21
22
27
23
22
; 24
23
23
19
20
18
27
23
23
24
23
23
21
: 20
21
20
21
21
23
.7
.9
.1
.6
.9
.4
.5
.7
.0
.6
.9
.5
.4,
.2
:. 1
.8
.2
.5
.2
.1
.9
.6
.2
.2
.0
.6
,7
.2
.0
.2
.6
.7
.0
.8
.2
.6
.2
.3
.0
.8
.8
.9
.1
.9
.0
QJ
cr
fD
o
o
3
fD
Q-
-------
STATION
TIME
DEPTH TEMPERATURE
CM
CENTIG
en
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10.
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
76 226 0905 15 , ;.
76 226' 0905 30 , , . !.
76 229 ;0950 5 ' ;
76 229 0950 15 :«
76 229 0950 30
76 231 0915 5 ;
76 231 0915 15
76 231 0915 30
76 233 0830 5
76 233 0830 15
76 233 '0830 30
76 236 0840 5
76 236 0840 15
76 236 0840 30 . ;
76 239 0755 5
76, 239 0755 15 ; •
76 239:0755 30 .:
76. 239 0755 5
76 239 0755 15
76 239 '0755 30 ' ' '.
76 247 0930 5
76 247 0930 15 .-•••:
76 247'0930 30
76 247 0930 15
76 252 1135 5
76 252 1135 15
76 252 1135 30
76. 279 1230 5
, 76 279 1230 15
76 279 1230 30
76 287 1500 5
76 287 1500 15
76 287 1500 30
76 292 1000 5
76 292 1000 15
76 292 1000 30 '
76 292 1000 30
77 005 1035 5
77 005 1035 15
77 005 1035 30
77 005 1035 75
77 013,0930 5 : •
77 013 0930 15
77 013,0930 30 . '
77 013 0930 75
77 019 1340 5
77 019 1340 15
77 019 1340 30
22.0
22,4
21.4
21.7
22.5
19.9
20.0
21.2
17.1
18.9
20.7
21 .3
20.9
21.2
22.3
22.1
22.2
21 .2
20.3
19.0
19.7
20.4
20.4
23.3
18.5
19.0
20.4
16.9
16.9
17.7
13.7
14.0
9.6
10.1
12.6
12.6 '
-1 .6
-0.5
.7
3.4
-2.0
-0.3
.7
3.0
-2.1
-1.3
.4
OJ
cr
fD
Q.
-------
CTl
STATION ;]
I;
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10 ;
10
10
10 ;
10
10
10
80
80
80
77
77
77
77
• 77
77
77
77
77
: 77
• 77,
77'
>77
77
77
'77
,77^
77'.
'•• 77
'•'• 77
77
76,
76
76
TIME
1 > i >
019
026
026
026
026
033
033
033
033,
041!
041
041
041;,
049
049
049
049'
055
055
055
055
1 42
142
142
1340
0900
0900
0900
0900
0915
0915
0915
0915
1325
1325
1325
1325
1440
1440
1440
1440
1130
1130
1130
1130
DEPTH
CM
75
5
15
30
75
5
15
30
75
5
15
30
75
5
15
30 .',
75 >
5 • '• ; •
15 ;
30 • •••
75
5
15
30
TEMPERATURE
CENTIG
2.
:'; -1
. ' <•-<>
.1
2.
-5
-3
: ; -o
1.
' ! rO
•'-1
i ' i -0
'•' . ' :-.1.
• , :-i -o
' >o
•! V'-O
.: 1.
':. :i : 3.
... : . ..B
i -9
;-: 1-
7 . '-"i
.8 >
.9 •/:;-.
2
.1
.7
.7
8 . •:
•* :;.
.0 •-:
.6
4 .....'.'•
.2
. 1 -':,)
.2 ',•';.
5 ;;' . .
e '• ;•;•::
' " • :,
.0 .','•
6 . -<'•
1
I; •
cr
rt>
CO
a.
-------
Table 5. Height and leaf area index of corn plants on watershed 109 in 1976.
Station July 2 July 23 August 12 September 7
1
Corn height (cm)
Leaf area index
3
Corn height (cm)
'-. Leaf area index
•••.." . . - /. ". • -- .•-...
5 ; ' .. .:
-• Corn height (cm) :
Leaf area index
Corn height (cm)
Leaf area index
..-. \ •• '.-.; ~ • '
-v • - - ." 8" • ~ -' - '
Corn height (cm)
Leaf area index
105 270 229
1.11 2.71
202 292 289
' . -;;:;. i3. 57 .r 2.96
._•-'- .-.-- :-• ..-. -. :. - — . : -'• -,•-.-••--:- -. -.„ - '.. • . -.•
• 200 - •;. 301 . 258 . ;, .
;;.-•---" :;.~--~rr ; 4.39 ~:-:". s- 2.66 ; -
117 262 231
2.04 . 2.97 3.29
"-'-: * .-.-..:. --=-?.- :~. ":,. •••:--:--::. ...^ ;•'.,-:--.. ...; . .:,:,-::
-•---.-.- . . - • - \ •
: -™ :':.~:; =•:- ; -r~ -•" "•"-•'-.: •.•-•••••;•-- ••.;• ": •'• -.-•-=•--:•--.:•
>;239 -,;-^ •-•••-.;:;; 357 . ^ ;. 326 :
3.20 3.41 3.09
3.09 2.94
267
3.30
308
3.01
... ._. .
@2.89-;
231
2.39
' -• . •' • :-
., . . ......
336
2.95
2.91
147
-------
o
Table 6. Corn plant populations and nutrient mass (grams/m ) withdrawal by
corn plants of watershed 109 in 1976
A. Total phosphorus
Days since planting
Mean # „
Station plants/m
1 4.5
Above ground
; , Below ; ground >- T^V.:-. >.- :v.u-r.
-Total.:-- ' , "
:.--".-_.3.,.,r-;;;..-:.^ :;_:,: 4.8';^;
Above ground
Below ground
Total
, :. ^^.g^^, -- -:-3 ;8 "-- •
." Above ground. '- '•.'... v.;. :'' :.\. '.
Below ground
Total
Mean total
SD
2 4.7
7 4.1
10 3.7
50
(7/2)
1.020
;.^^o.07a.-v--:
-••.-••.-•••1.092 :-
". "3.470
0.811 ~
4.282
0.445**,
0.049
0.494
2.686
-
71
(7/23)
1.593
.-0.31-5
1.908
2.587
. 0.250
2.837
J.395
0.243
1.638
2.128
0.629
91
(8/12)
1.760
--0.135
1.895
2.434
0.178
2.434
3.085 "
0.369
3.454
2.584
0.792 ,
112
(9/3)
7.578
... 0.180 -••-.,-
7.758
"/ 3^805'
0.165
3.970
1,017* _
0.160
1.197
5.692
-
157
(10/18)
6.215
-0.275-
6.489
"5.385
0.269
5.654
4,021 :
0.167
4.188
5.216
1.120
* Total phosphorus in kernels omitted.
** No total phosphorus on tassles.
148
-------
Table 6. (Continued)
A. Total phosphorus
Days since planting
Mean # . 57 78
Station plants/m2 (7/2) (7/23)
'^- --"::-• :'- r V ., . • 4J ^ : ; . : • :
Above ground 2.809 2.226
.'•.,';> . : "Below;ground_.;. :,...,,.__.; 0.299 _. 0.259 .
/ . . ' ''"•*. "r'-')"' ""••*•""•'- -..'•'.••.. -••>.•' • v ' " . . ';•,;•-• '" " '! ' '." ,- •• •-:-• — .
:'• :".'. Total "^V --;-;• :^""r"';3' v-- s.ios " 2.435
-:-:=-• . • ..-•:•: i7-:-ft-v.-' •" :' ^- .,:•::-• ~ ^.:-.:^~'i. •.:-.••.:...••: .•.-...;•-,..-•
- . . - _^^ ->O .--• -— --• "----:.---.- .- P •".-'•:-":-.•-'• ------ —•--.- :- - •- — •— -• - •_ -••
98 119 164
(8/12) (9/3) (10/18)
-.-•— ••
2.907 2.092 3.042
0..123 : ,0.148 0.074
........ .. .-.- ..-
3.030r" 2.240 :' 3.116
"-". "... ".- ". '':•. - - '" "• •' " • '-. .":/ "- .-.. .-•' -.."
- - -r--*'v • '-- -- ; . - ~-~-
BeTw'ground ;;:: ;^";T":;.^-:-SrZS" .2.050_ ..'.0...202... -.".0.158 ~: \.. 0._J263^;"_: 0.083 _"
Total 15.411 2.520 4.385 6.271 3.798
Mean'total "" ~ -.— -—-, g^6Q 2.503" 3.708 4.256 3.457
- 4 3.9
9 3.9 : : •• - ' ' • -•••••
No total phosphorus data on tassles.
149
-------
Table 6. (Continued)
B. Total Kjeldahl nitrogen
Days after planting
Mean #
Station plants/nr
1 4.5
Above ground
Below ground :-;/-.._.,:..
Total •-.. ';..'. :
:-™3X •:://-;\^;:":4. s ;:--/ -•;-
Above ground
Below ground . .' : .-' -.
Total
'- — . .,..-:,.... ... „ .
;-:vr":6 : ';: : : '; 3.8"; v:;;~-
Above ground ... '•-',
Below ground
Total
Mean total
2 4.7
7 4.1
10 3.7
50
(7/2)
8. 280
0.536^
8.82
13.94
, 1.60 ..:..
15.54
, 4. 222
0.049
4.271
9.54
5.67
71
(7/23)
8.510
0.315
8.825
18.99
0.25
19.24
12.47
0.243
12.710
13.59
5.26
91
(8/12)
10.350
0.135
10.480
8.707
0.178
8.885
18.74
0.369
19.110
12.83
5.50
112
(9/3)
36.810
1.570
38.35
17.57
.. J.40"
18.94
7.78*.
0.16
7.94
28.65
-
157
(10/18)
24.930
-:'"- 0.275
25.20
" 28.680
0.269 -
28.950
18.290
0.167
18.460
24.2
5.32
* Nitrogen mass of kernels omitted.
150
-------
Table 6. (Continued)
B. Total Kjeldahl nitrogen
Days after planting
Station
5
Above ground
^ -- Below ground
•Total >'-
••;/.:.^E8;-v':.'-.,-
_ V "Above ground
' -'Below" ground
Mean # „
plants/m
4.T
'-. . .. 3.6
57
(7/2)
9.464
.-;:::-o;.,0.976..:,
--- - 10.44-- •"•
'•'•" 15.11^
•-"" ;v 0.306 '•'"-
78
(7/23)
16.79
;, 0.258
17.04
'16.45
0.202
98
(8/12)
11.07
- °'123 ,
11.19
12.87
0.158
119
(9/3)
30.46
0.148
30.61
20.00 •
0.853^-
164
(10/18)
17.02
0,074._
-17.71
"iV ,., I.
22.72
0.083
Total
...:..Mean-, total
15.412 16.65
13.03
20.86
22.80
-:L 16.85 .--;.
;vV. 25.74"_.,,:_20.28
4
9
3.9
3.9
151
-------
Table 7. Total phosphorus concentrations in corn plant parts (mg/g dry wt)
on watershed 109.
A. July 2, 1976
Total phosphorus (mg/g dry wt)
Roots Stalks Leaves Tassles Ears Husks
. . ".: •.."..- .-. Station 1
2.38 3.17 4.02
:,..;• r-•.-•:,.•':-•.-.:. -.-..:•:• .-:-•„-"• •,.••—•:, r-.- - ~Station -3 - -
.-• 5;09 .-.:••-'_:.:-;;..3.Q9j:-'_.v::r--Oo2..8.-J56 ;:^:':i., :6..6.1
;.s rl.lt;~; ~"?fi •97::;";::: :::"10-02;:T; i. • i;11.-?4
- ••=••--: - -••--••'• • -: •--•••..- Station 6
K44" " 1.74 2.56
:--—-:...-.:.:-.-.-: -•'.:-.-•.-..T_•-.-..-. --.^r?; ~,•;:-•-.•.:... : ---Station 8 .-•-.
2'''"ir~ • "•' :' ' lli:"""''-o '"JC" '••'"' ' ':-"''"•••'--.-'} ''QC
.to - - t.. Jb •-=. •;-,••-.-::--•-> -o. yo
B. July 23, 1976. . -
Station 1
3.45 2.57 2.67 3.71 4.68 4.00
Station 3
2.81 1.78 2.91 1.72 3.77 3.06
Station 5
2.23 1.76 2.00 2.72 4.22 2.94
Station 6
2.42 2.26 2.83 2.17 No sample 2.03
Station 8
2.51 2.60 2.49 2.31 4.80 2.81
152
-------
Table 7. (Continued)
C. August 12, 1976
Total phosphorus (mg/g dry wt)
Roots Stalks Leaves Tassles Kernels Cobs Husks
Station 1
1.28 1.77 2.60 1.56 2.58 2.76 1.36
.'-••" :•.'.-• ;..•..•;-. .---•-;_ - Station 3 :
'1.28"'- •' r2Yl7 :; 3.82 • -• 1.63 2.58 -1.48 ..-. , 1.53
:----'----":-:v-r- -•;.--^"^i--^-;-: •^r----v ••• 'Station 5: •'• -,-;:, •:-:---:-- ..•;.,- ••-•
..1..18..--:-.::, 1.13 ..::,•: 3.68 - 1.37 3.14 .. . . . 3.77; 1.52
2.14 2.68 3.57 2.16 None --'4.00 - '1.44
-•.••---••;.-..-------.i -..••.-:--..•-•------- ••—:-•.';- Station 8 '• -;••=-,.,. • -..-.
1.13;:.:.,:::,2.54.^.^1:3.5r-. .."...-1.99. '••..-':, 2.82 -;;^-i.2.;n.:-^ . - ,1.93.
. .D. September 3,. 1976
Station 1
0.9 2.1 4.2 1.1 3.4 5.5 2.5
Station 3
1.0 1.0 3.5 1.7 4.1 7.8 2.8
Station 5
1.0 0.7 3.2 1.0 4.8 6.4 1.4
Station 6
1.3 0.7 2.4 1.3 - - 1.0
Station 8
1.6 3.0 4.1 0.9 4.6 5.8 1.5
153
-------
Table 7. (Continued)
E. October 18, 1976
Total phosphorus (mg/g dry wt)
Roots Stalks Leaves Tassles Kernels Cobs Husks
• ' •" • •••-•••- -. station T
0.90 2.4 3.0 0.63 4.02 0.93 2.5
iori 3 --:-"-./1- ' -^- v:---.-.•••:-••- • -- -•--;
0.97: -- -n.85-.: .:,-•".-2.05: - 'V; 0.962 :- 3.95 - - - 0.83- 2.02
...:..". v, •_.."..:•'. i"." :'..-. -.•.;'•_' .... : : -.Station 5 - • . - •-.-••-..-
-/0;57..-^r'10.-633 ::; :^" 1^07.:- --,0.955 V- -..-. 3.49 ..,, -;;- -0.67 . - 0.679
.•••----.-;- ----.;•=—-•----.•:•-••----.•- ';.-.-••• _• • -•• -^station 6 " .•,..-..-.-...-•• , --
1.32 3.46 3.26 0.582 4.33 2.04 2.43
0.79 :\""1.14 \ 2.74...: ..0.965 3.46 0.77 1.01
154
-------
Table 8. Total Kjeldahl nitrogen concentrations in corn plant parts
(mg/g dry wt) on watershed 109.
A. July 2, 1976
Roots
Stalks
Kjeldahl nitrogen (mg/g dry wt)
Leaves Tassles
Ears
Husks
17.75
Station 1
16.54
31.73
10.01
13.68
iStation 3
32.76 ' ' 44.75
17.31
12.84
- Station 5 -
24.96 31.71
7.87
7.49
Station 6
29.28 23.11
12.31
:: ::- .: Station 8
...- T..36.83.:v;l. : ,.27..52
18.01
B. July 23, -1976
5.44
Station 1
32.24 34.32
30.15
17.24
11.08
5.97
Station 3
39.56 18.02
21.47
10.65
7.33
6.61
Station 5
29.70 13.14
27.71
21.35
9.53
7.49
Station 6
46.28 15.47
No sample 17.06
12.41
8.06
Station 8
34.84 13.10
29.17
15.30
155
-------
Table 8. (Continued)
C. August 12, 1976
Kjeldahl nitrogen (mg/g dry v/t)
Roots Stalks Leaves lassies Kernels Cobs Husks
Station 1
8.47 8.26 21.7 8.55 14.7 3.53 6.71
3.42 :'•'-. :. - 3.10 ".,_ ;." '-" 21 "Ai'l'"". '''..' 10.9 ."." " 12.2 4.51 2.21
. •'-"„."•' ":•''' Station 5
5.61 -;,'•.. 2.04- 18.1- 6.79 : - . J4.8. - -V, 33.0 • 8.39
'-•"—^ ••--.--—•• •" •:;-•:;- r -, -.: -,..-;:-^ _,-•. Station 6 '.' -: : " : - :'-"' " v" "
9.50 4.23 25.6 13.1 - 28.5 8.08
-.8' '..:... .--. ,- .
,2'.46;.,-^:,.--: -1.44 -,-- 21-v3^: :;i.~^:-:::9.28;. -^-^13.4 10.6 4.80
D. September 3, 1976 ._
Station 1
7.9 6.0 18.8 5.7 23.9 5.5 5.2
Station 3
8.5 6.2 17.9 9.3 18.1 7.8 9.4
Station 5
4.3 3.5 20.1 10.4 20.0 6.4 9.0
Station 6
10.6 4.6 18.0 8.8 - - 4.2
Station 8
5.2 7.3 21.5 5.9 13.2 5.8 4.8
156
-------
Table 8. (Continued)
E. October 18, 1976
Kjeldahl nitrogen (mg/g dry wt)
Roots Stalks Leaves lassies Kernels Cobs Husks
"-"" "• . "-: '-"''• " Station 1" ' •
6.4 6.4 10.9 8.3 16.0 4.0 10.8
Station 3 •-...-. ...- -.
::• ;6.8.;-•--•..''" 21'.3./.'.::-'".• ".3.4'-."'.:'. . 10.6
• - • • ." .•'-".:*:••-•-••• Station 5 •.-•.'."•.•••-'- • • J~ -
4.8. '•- •• - 1b,3--^-:-:-_7,-9 --.-;-:-;l 8. 5. •;-:--.;::-: 6.3
•• ..'•"••,-: •'.••• •-•' •.'.:•"•••.• '•'"."••: : ". r Station 6 •:-;'.. - .-. •••':.. '• ":'•; ;-.-:.•••- ; ' -•'•".
•14.1 12.9 14.4 12.5 ; 21.3 "8.1 8.5
Station 8
,9.'5."-. ,-..9.0 16.5 11.1 ^. 18.9 .5.4 ' - 4.6
157
-------
Table 9. Corn dry v/eight (g/plant) and total nutrient content (g/plant) for
various plant parts on watershed 109.
A. July 2, 1976 - (day 50 for stations 1, 3, and 6; day 57 for
stations 5 and 8).
Husks
Cobs
Kernels
lassies
Dry mass
Total P
. Kj. N "• _
Leaves
- Dry mass
Total P
Kj. N
Stalks
. . Dry mass
"Total 'P
Kj. N
Roots
Dry mass
Total P
Kj. N
Total
Dry mass
Total P
Kj. N
Not
Not
, " Not
1
present
present
present
-; :.
1
No sample ;
-43.
*
1.
28.
"' • - . '•.
"
6.
.
•
78.
•
1.
2 •-
1 74 •
370
5. .
053
471
7
016
119
4
243
960
'.:. ";...;:
• "
58
1
67
33
160
3
3
yet
yet
yet
.36
.009
..067
... ..
.2
.504
.908
.9
."21 0
.929
.2 •"
.169
.333
.7
.892
.237
Station
5
2.108
.024
•_ ._\067
51.8
' :' .519
1.292
74.0
•.. .'142 :
•950
13. 8 '
.073
.238
141.7
.758
2.547
6
2.08
*
.049"
27.4
.071
• .802
26.2
.046
,196
9.0
.013
.077
64.7
.130*
1.124
8
0.89 •
*
,025
71.5
'- .283
2.635
85.3
.201
1.051
39.4
.085
.570
197.1
.569*
4.281
Mean
1.61
.017
.052
50.4
.310
1.601
56.4
.130
.719
20.4
.071
.267
128.5
.518
2.630
sd
0.59
.020
16.5
.56
.70
27.2
.078
.37
14.9
.27
.197
55.9
.326
1.21
N:P
6.8:1
11.4:1
12.2:1
8.3:1
11.2:1
* No data on tassles
158
-------
Table 9. (Continued)
July 23, 1976 - (day 71 for stations 1, 3, and 6; day 78 for
stations 5 and 8).
Station
8
Mean
sd
N:P
.Husks ';;--••
Dry mass
Total P
Ears -•'-,:;y>'
Dry mass
Total P
Tassles -
Dry mass
• Total P
Kj. N ~
Leaves
Dry mass
:Iotarp-
Kjv N;-"
Stalks^-
Dry mass
..Total P
Kj. N
Roots
Dry mass
Total P
Kj. N
17.0 36.7 20.9 18.0 33.0 25.1 9.1
.068 .112 .061 .037 .093 .074 .03
.293 .391 .446 .307 .505 .390 .090
6.6:1
4.06 13.0 21.5 - 16.4 .13.7 7.3 .
-.019 .051 .091 No sample .081 .061 13.4:1
V~vl22 .279- :-.596- - . .418 ~v .370 - .210 •-'
6.70 4.96- 6.11 , 4.48. 4.43 - .5.34-1.02 .
v025 .0085 --.017 .010 . .010 -/ ..014. -..006 22:1 ,
.209" .089 .080 .069"" .058 * ".100~" '• .060 :"
51.3
T7.3 60.7 64.3 44.9 69.3
.:v;.047.;:;,\: ;.177/:;,;;r.l29_...; .127 . .173
"'':. .258 ; 2.401."' T.910 2.078 2.414" 1.870 ~: .770
21.0
-•; .052 33:1
75.8 107.0 :. 139.0 '85.3 . Ill .0 .. 104.13 ,25.0..
.195 .190 .245 .193 .289 " .222 .044 7:1
.412 .639 .919 .639 .895 • .700 .210
20.4 18.4 28.2 26.5 22.2 23.1 4.1
.070 .052 .063 .064 .056 .062 .006 9.3:1
.367 .209 .206 .253 .275 .260 .066
Total
Dry mass
Total P
Kj. N
141.3 240.8 280.0 93.9 256.3 202.5 80.0
.424 .591 .606 .431 .700 .550 .120 14.6:1
1.961 4.008 4.157 3.346 4.625 3.619 1.03
159
-------
Table 9. (Continued)
August 12, 1976 - (day 91 for stations 1, 3, and 6; day 98 for
stations 5 and 8).
Station
Husks ;
Dry mass
Total P
:.;.-.~Kj.--N .:,
Cobs •'••.
Dry mass
Total P
V;KJ;_N V
Kernels
,,U Dry ...mass.
Total P
Kj. N
Tassles
. Dry mass
. Total P
„• Kj. N.
Leaves
Dry mass
Total P
Kj. N
Stalks
Dry mass
Total P
Roots
Dry mass
Total P
Kj. N
Total
Dry mass
Total P
Kj. N
1
18.3
.025
:..:.. ,; .123
19.9
.054
.;_.:; 070
..-.•"•'... :37.2_.v
-: : :096
.547
3.5
- -. - .005
.030
39.2
.101
.851
61.9
.110
23.1
.030
.196
203.0
.421
2.328
3
21.7
.033
-:-.;. 146:
26.9
.040
:;^:;:.v.i2i
•:'.-;.46.5' .:•
:-.--.- J20
.567
2.9 ,-
- .005
.032
31.2
.119
.668
70.3
.153
28.9
.037
.099
228.0
.507
1.851
5
36.4
.055
•-._L,._3p5
10;"2
.038
.; .337
67.1
.210
.993
,6.1
. /.;•./. 008
. 041
39.9
.147
.722
93.5
.251
25.1
.030
.141
278.0
.739
2.730
6
29.4
.042
.v::,;237..
22.0
.088
.- :..;- > 627 ..
r. ' .
_
-
4.3
.009
.056
62.5
.223
1.600
168.0
.450
45.5
.097
.432
332.0*
.909
5.0298
8
- - -
39.0
.075
: ..187.
27.6
.058
.-. .293
115.0
.324
1.541
5.6
.0 1
.052
54.4 -
.190
1.159
203.0
.516
39.0
.044
.096
484.0
1.218
3.620
Mean
29.0
.046
: :.200
21.3
.056
.'.- -;2.35
.. 66.5
.188
.912
4.48
.008
. .042
45.4
.156
1.000
119.0
.296
32.3
.048
.193
305.0
.759
3.112
sd
9.0
.020
.. ..073
7.01
.020
. .140
34.7.
' .103
.467
1.36
.003
..012
12.7
.050
.386
63.0
.180
9.6
.028
.140
112.0
.321
1.254
N/P
9.6
9.3
10.7
11.6
14.2
2.9:1
8.9:1
9.1:1
* No kernels.
160
-------
Table 9. (Continued)
September 3, 1976 - (day 112 for stations 1, 3, and 6; day 119
for stations 5 and 8).
Husks
. Dry mass
. Total. P :
Kj.'N
Cobs
y~Vr Dry: : mass :
/ -Total"'. P"
:_; KJv N :
Kernels ;
: Dry/mass
Total P
KJ...N., . ;,
Tassles
Dry mass
Total P
Kj. N .,
Leaves
Dry mass
Total P
Kj. N
Stalks
Dry mass
Total P
Kj. N
Roots
Dry mass
Total P
Kj. N
Total
Dry mass
Total P
Kj. N
1
70.1
. •"_• :.'-. :.;.i75 ;
.470
:^~:-58.5;^.
': ,-V, ':094
. .322
-::••. vt --'-"- •-'/ '
^•X;201.0 ^
i£: V683 r
• 4.804
4.55
.005
.. .026
:-••:-:-.-••.—..-,- :-. .:-". ; _™-.
- 70.0
.294
1.316
206.0
.433
1.236
44.2
.040
.349
654.0
1.724
8.523
Station
3 5
37.2
..-• .104-
.350
-34.-1 V J
- .095 ~
•/. .266
":65.4- : •..:
r .268 :
.1.184
2.3
.004
.021 ..
.. . -.-.--.. _.; , - ._
43.8
.153
.784
169.0
.169
1.048
34.4
.0344
.292
386.0
.827
3.945
54.8
:.077
.543
:- 59.4 • '-;
..: y.083
. .380
231.0
1.109
4. 620
4.9
.005
. .051
"~~v-.'''-
67.0
-".214
1.347
105.0
.074
.368
36.3
.036
.156
558.0
1.600
7.465
6
73.2
. . ..073
.307
• '••-. -.
4.6
.006
,040
•:~:^\, f--~- -'--•
56.0
.134
1.008
85.7
.060
.394
32.2
.042
.341
252.0*
.315
2.090
8
32.1
... .048 •
.154
.':-44."8>-,vv.
. : '-.04'o'V-
.307.
221.0
. 1.017
2.917
3.0
.003
v°L8
'~-.^.f- -7_-;_ =•-•-•-;.;
73.1 ...:'.
.300'
1.572
87.1
.261
.636
45.5
.073
.237
507.0
1.742
5.794
Mean sd N/P
48.6 17.
,J01 . • ..: .:.
.379 ".
49:.-2 .'•.-.•;;.' 12.
'-:-. .078 v-;
• .260 "V- .
180.0 >'• 77.
.'v:-;769-'"- .
3.381 1.
3.87 1.
.005
.031:. .
:-^:^---^..;f-f~-^I<
62.0 ; 12.
.219
1.205 .
131.0 54.
.199
.736
38.4 6.
.045
.275
526.0 111.
1.473
6.432 2.
3
054 - 8.3 -::
170 " •"•""
1 '•--- :' : " -~^.
026- 8.7:- "•
307 ; :, -
o ''•:-:-••"• -.X;:
381 ' 9.7 •'
693
.v;:.;V:-.:;>^
32
001 13.7
014...
.---^-'^•^ -;r^u
0. : :.
077 '• 12.1 """•
310 . .
0
154 8.2
39
0
016 13.5
080
0
435 9.1
003
* No kernels.
161
-------
Table 9. (Continued)
October 18, 1976 - (day 157 for stations 1, 3, and 6; day 164
for stations 5 and 8).
Station
8
Mean
sd
N/P
t-tucVc • - ---•'-• ••
jflUSKS. • ..:•..-.-..-.-
Dry mass
Total P
. KJ. N
Cobs/v"' '••";:..: : '•;'"•'
- Dry- mass -' ^- ^
TotaT P
..;. KJ. N : ,:
Kernel s
Dry mass
-..U.otal p.., --J.-V
'••"Kjrr^-^-
Tassles
Dry mass
•--'. Total P
•~- rkj.'ir -
Leaves
Dry mass
Total P
Kj. N
Stalks
Dry mass
Total P
Kj. N
Roots
Dry mass
Total P
Kj. N
Total
Dry mass
Total P
Kj. N
— - — -- - • •
38. 7 26
.097
.418
- v .. / " . ' IT '
'•" "49V-4 '•".-:• 135
. .046
.- •',•.! 98, ::,-. •-;.••
•'•-" /"•;.••: ' :>JP:-v"v
192.0 192
.:U, 772- _.-,..
5""-y;072"rii>4
1.54 1
, .001 :••_
- - >013 -;-:-
52.5 - 35
.158
.572
128.0 110
.307
.891
67.9 58
.061
.435
530.0 517
1.442 1
5.599 6
- --
.........
.277
., -----
.8 -.'."..':
.030
, 1 22
.0
.758 ;
7090 '""•
.50
.001
.010 -
.3
.072
.314
.0
.204
.858
.2
.056
.361
.0
.178
.032
— —
11.4
.107
.-.'.; T ' " ' "
.: 26.7 .."•
.018
•168
185.0
, I- .. 646
;"3V423
3.16
.003
. ..025
29.5
.032
.304
55.5
.035
.266
31.0
.018
.270
342.0
.760
4.332
58.
•
32.
•
•
• ' -. •
57.
-•-•_-.--. • •
,.r,:..j ;
2.
a
•
59.
•
•
118.
,
1.
33.
m
•
703.
1.
4.
0
493
4 .
066
262
4
249
223
43
001
030
3
193
854
0
408
522
6
044
474
0
102
858
48.
•
36.
•
- . •
200.
. _ .
"'•"3'
1.
- ^
•
44.
•
»
123.
*
1.
29.
•
*
483.
1.
6.
6
224
9
028
199
0
692
780
57
002
017
0
121
726
0
140
no
0
023
276
0
055
332
36.6
.304
36.2 .
.038
.190
165.0
. . . . 520
•~" 3.118
2.04
.002
..••. :.019
44.1
.115
.554
107.0
.219
.929
43.9
.040
.363
515.0
1.107
5.431
18.4
.154
--
8.4 .
.019
.051
""'.
61.0
......32
•""1.126
.736
.001
.008
12.2
.065
.245
29.5
.145
.455
17.9
.019
.092
129.0
.245
.827
9.6
11.1
13.2
26
10.7
9.4
20
10.8
162
-------
Table 10. Dry weight to fresh plant weight ratios for corn plant parts for
watershed 109.
A. July 2, 1976
Roots Stalks Leaves lassies Ears Husks
Station 1
.16 ; . .11 . .24 ,, ..,,.. .-, .
Station 3
.22 .10 .28 . .14
1 Station 5 :
,15 .105 ,„ .23 . . .17
- '•"_ •••-.'.-"':-. Station 8 .
195 . .'. .099 .-,-.. : -.271 . ..298
B. July 23, 1976
" .: :r^;;rg -station 1:-/-
. ..
.14 - --.IB
Station 3
.21 .17 .34 .42 ; .11 , .22
Station 5
.28 .16 .27 .43 .13 .13
Station 6
.21 .16 .21 .32 - .20
Station 8
.21 .15 .28 .31 .10 .20
163
-------
Table 10. (Continued)
C. August 12, 1976
Roots Stalks Leaves lassies Kernel s Cobs Husks
Station 1
.186 .207 .279 .636 .400 .184 .253
Station 3
.177 .191. .259 .487 ._ ,415 .198 .247
. Stations 5
.179 " - .267 " .239 - " .533 ' . .447 ' . . .058 .241
;-.-;; ;rc-.v'•;•••'--•;^;c:;::v~v""::r::rvrT"r""" "Station :6 ~~"'~~ ~"~~ '"' -' ~'" "'"'"' ""
.145. .237 . .308 .429 . None . .141 .203
Station 8
.166 .261 .252 .589 .523 .216 .259
D.•• September 3, 1976 :.
Station 1
,20 .23 .44 .91 .68 .40 .46
Station 3
,27 .31 .30 .91 .58 .21 .27
Station 5
,18 .19 .50 .82 .64 .35 .33
Station 6
,18 .21 .50 .91 - . .40
Station 8
.19 .22 .71 .86 .64 .42 .35
164
-------
Table 10. (Continued)
E. October 18, 1976
Roots Stal ks Leaves lassies Kernels Cobs Husks
Station 1
.22 .27 .84 .96 .82 .70 .65
Station 3
,24 . .20 .82 .' . .94 .78 . .58 .57
.--.-•. - •'-'.-. Station 5 . :' . .. '• -
,18-' ".26 ; "-:;67 : .93 .82 "•'•-.'"-' - • \67 ".50
' • :" - L . '.::•.." ; station 6 ..'~ ;--:" : • •
,16 " .24 .83 ' .90 .76 ••'..-..' ..58 ' . .65
Station 8
,18 .27 .62 .87 .80 .59 .81
165
-------
Table 11. Checklist of weeds found in cultivated fields of watershed 109
in 1976.
Common name
Bermuda grass
Blackberry
Foxtail grass .-
Grape
Horse nettl e ";_'_
Ironweed " :
Morning glory :
Panic grass
Partridge pea
'Pokeweed •-'• '' "~ '
Trumpet creeper
Virginia creeper
Scientific name
Cynodon sp.
Rubus sp.
Setaria sp.
Vitis sp.
^- Sol anum carol i nense
"Vernonia noveboracensis
sp.
"Ipomea hederacea
..Alii urn sp.- ..>' - :•-•--•
Panicum sp.
Cassia fasciculata
Phytolacca americana
Campsis radicans
Parthenocissus sp.
166
-------
Table 12. Meed data for watershed 109 in fall of 1976.
Solarium carolinense
Station
number
1
2
3
.-:-'. 4
5
6
7
-, ...s ;,::;
-.-••g . -_. /
10."
Total -^;
• ••• „
- 1
2
3
4, .
.':'.; .5 •:-,...:
5 " -
. 7 •,.-.•
• 8
9
10
Total
Number
(#/n
6.68
0
0
6.69
2.22
0
.444
0
5.32
6.67
.:-:..2.8(f-
0
0
0
0
o '.. .:
0
. o
0
0
.889
.089
of plants
i2 ± a).
± 7.76
± '8.94 -
± 4.52
±1.33
± 5.29 "-
±12.8 .
±V 3.14/--:
- •.""••
± 2.67
± .281
Aboveground dry
wt. (g/m2 ± a)
14.1 ±
0
0
-18.8 ±
1.82 ±
0
1.02 ±
. '0. ; :
--15.2 - ± '••
. 24.3 >
..'•;; 7. 52 ":;i;;
Cassia
: 0 •••-•-"
0
0
0
_• 0 '---- •'-'-'.
••T^Q--." ~"~ •
: 0 ; - .'' •' .
0
0
3.07 ±
.307 ±
20.2
40.3 - ~
5.32
3.07
'23.1
46.7
^
fascicul
'-'..
-
. -
9.20
.971
Parthenocissus
1
2
3
4
5
6
7
8
9
10
0
0
0
0
0
0
.889
1.33
0
0
± 2.67
±4.00
0
0
0
0
0
0
.889 ±
2.67 ±
0
0
2.67
8.00
Leaf area
(mz/m2
.177 ±
0
0
- .214 ±
.031 ±
0
.003 ±
0
..... .088 ±
- .155 ±
i;;06^'
ata
0
0
0
' 0
- 0
'"'".. Q
'.'" o '
0
0
- .010 ±
.001 ±
sp.
0
0
0
0
0
0
.040 ±
.023 ±
0
0
index
± a)
.258
.467
.092
...009
'-
--M47
.319
• J^ 085
'
.030
.003
.120
.068
Leaf
90.7
0
0
64.4
16.0
0
2.22
0
"23.6
101
" "29.8
>'. 0 "
0
0
0
...0 .
0'
- o
0
0
333
33.3
0
0
0
0
0
0
125
15.6
0
0
number
± a)
± 101
±112
± 36.5
± 6.67
± 25.5
±199
''•-.-±... 40,2 ';
± 1000
± 105
± 375
± 46.7
Total
.222 ± .479
.356 ± .860
.006 ±
,014
14.1 ± 39.3
167
-------
Table 12. (Continued)
Vitis sp.
Station
number
1
2
3
-. - - 4 - -.
5
6
7
,, ' 8-
.9 -..-•.
10 :
Total .
Number
(#/rr
0
0
0
0
0
0
0
0 —
- 0 •'- ' -
1.33
. .133
of plants
iz ± a)
• .• - -... ..-
. ;-.:-..- -.--•.••:.-•.
± "4.0
± .421
Aboveground dry
wt. (g/m2 ± a)
0
0
0
0
- o
0
0
:i..^..Q.:.-:.r+:. '>!,. -.•:.-.-.;:
2.76 ± 8.27
.276 ± .873
Leaf area i
(m2/nr ±
0
0
0
0
0
0
0
- 0 :
0 "
.038 ±
.004 ±
ndex
a)
. . •-. .
.114
.012
Leaf number
(#/m2 ± a)
0
0
0
0
0
0
0
. .0 - ..:. ...f... .
.0
39.1 ± 117
3.91 ± 12.4
Rubus sp.
... 1
2
3
4
•-
.6
7
8
9
10
••'. -'0
0
0
-- -- o
. . o
1
4
.444
.444
.889
.33
.44
+
+
+
+
+
1.
1.
1.
4.
5.
33
33 ..:
76
00
81
;- 0
0
2.
0
.
0.
.... . •
10!
5.
89 ±
. r. .
667 ±
889 ±
5 ±
82 ±
8.67
2.00
1.76
31.6
7.98
•-.v.. .: 0
0
o'
... ... .0
0
003 ±
009 ±
007 ±
129 ±
089 ±
.009
.028
.015
.388
.145
Total
.755 ± 1.37
2.08 ± 3.51
.024 ±
,046
0 -
0
2.67 ± 8.00
0
--0 .-.-:...
o '
4,44 ±- 13.3
4.00 ± 9.38
21.8 ± 65.3
25.3 ..± 34.4
5.82 ± 9.54
1
2
3
4
5
6
7
8
9
10.
Total
0
0
0
0
.444 ±
0
2.67 ±
2.22 ±
.444 ±
0
1.33
4.47
5.33
1.33
Asclepias sp.
0 0
0 0
0 0
0 0
6.89 ± 20.7 .049 ±
0 0
8.71 ± 17.0 .113 ±
26.3 ±61.7 .041 ±
5.07 ± 15.2 .045 ±
0 0
.146
,216
,084
,136
.578 ± 1.01
4.70 ± 8.3 .027 ± .043
0
0
0
0
9.78 ± 29.3
0
62.2 ± 144
4.89 ± 9.75
5.33 ± 16.0
_0
8.22 ± 19.3
168
-------
Table 12. (Continued)
Grass (unidentified)
Station
number
1
2
3
.':-"•• 4 ,.-."
•5
6
7
..--:,• 8 v._,r;
:~.: 9: >-:-,-
"_.; ip. .;....
Total
"...; - :' '...'- '
f."r--;^-:.-.
2
3
4
•'•••:.-.. 5.. ;
.:,.,,6_,_,
. : " 7
8
9
JO
Total
Number of plants Aboveground dry
. (#/m2 ± a) wt. (g/m2 ± a)
3.56
0
.444
0 .
.444
0
0
0
".444
0
:. -489..
.
o
0
0
.0
.889
'-0 -
-.0
0
0
o -
.089
± 10.7 1.29
0
± 1.33 .044
•".-.. 0 - '•
±1.33 .018
0
0
...-:. - ..-:•- 0 • .-,-
± 1.33 .044
-:-:., ;'0 :."
±; .1.10 . . .-140
Sedge
-.. .,..-:_^:^Q-:---^
0
0
0
± 2.67 ;,-.•.. .489
,..-— ,~-0 --•:-
"- 0
0
0
..- 0
± .281 .049
± 3.87
± .133
± .053
-• "-_.- ".• • ".
± ,133
.*,'. •-..••/f05,'.;.
Leaf area index
(m2/m ± a)
.022 ±
0
.000 ±
0
.000 ±
0
0
0
.000 ±
o .
.- -002 ±
.066
.001
.001
.001
.007
Leaf number
(#/m2 ± a)
258
0
1.78
0
.889
0
0
0 .
. .889
0
26.2
± 775
± 5.33
•v
± 2.67
± - 2.67
± 81.5
(unidentified)
" .'" " j"_" -t' ''..""..''.!"".".'.
*: 1-47 W-
± .155
Q: .......--..,.
0
0
0
.008 ± '
•••o
-0 . .
0
0
0
.001 ±
.022
.003
-,-.0
0
0
0
5.78
" 0
... . 0 ..-..
0
0
0
.578
• •.-,. ^ ...
± .17.33
± 1.83
Setaria sp.
1
2
3
4
5
6
7
8
9
.10
.444
.444
.444
0
3.11
26.7
0
0
0
0
± 1.33 .133
± 1.33 .133
± 1.33 .133
0
± 7.94 1.16
± 30.4 37.0
0
0
0
0
± .40
± .40
± .40
± 2.92
± 61.4
.001 ±
.001 ±
.000 ±
0
.011 ±
.371 ±
0
0
0
0
.001
.001
.001
.026
.710
3.56
3.56
4.0
0
27.6
195
0
0
0
0
± 10.7
± 10.7
± 12.0
± 64.4
± 245
Total
3.11 ± 8.34
3.86 ± 11.7
.038 ± .117 23.4 ± 60.9
169
-------
Table 12. (Continued)
Panlcum sp.
Station
number
1
2
3
.-..-. 4 -,.
5
6
7 :
...... vg ..,.„,..,.
9 •/.
10 ,
Total-'-
- ., • .: . '
Number
(#/ir
0
0
0
-" .444
.444
1.33
0 .
"•0""
0 "-
4.00
..: .622
- , . .. -, ...
of plants Abovegrouad
i ± a) wt. (g/m
±•••'1733'
± 1.33
± 4.0
± 12.0
± 1.26
. • - -_•-
0
0
0
~- - ~ --.- .- -*•
1
:- 0
''"-.. ""-"0
--' -' "0
•'•-•:\ :•'
.:267 ±
.96 ±
.133 ±
.089 ±
.245 ±
5
- •«.•
^•':":."'"T'"'. ---•./: ;~-^.: : -";"":•- Camps is
^p^
2
3
. 4 . ..
.-.". :-"5 ~~~ "•'
. . 6 •'••:..
7
8'
9
10
."444
.444
3.11
13.8 .
- .888
-7.56
. 0
2.67
6.67
4.44
± r.33
± 1.33
± 4.37'
± 15.0.
±-1.75-,
± 9.68
± 2.00
± 9.16
+ 7.60
--••-^
3
2
. .21
..'. :>.;-- •'. •
'••••"' 30
0
3
..". 9
11
W±
!02 ±
.93 ±
.5 ±
.532^+.
.1,. ;-±-
.02 ±
.32 ±
.4 ±
^
9
3
33
. 1
23
3
13
27
dry Leaf area index
± a) (m2/m2 ± a)
.800' :
.87
.400
•..-•--. -.
•••;:. - ..-.- -' -
.267 1
.609 :':
. ,_• -
radicans
^ -,--,
]07
.92
.9 •....
.13 .'-----....
,4_. :.'...
.23
.2
.4
0
0
0
.008
.019
.004
0
0
0
3.8
1 . 38
"006
.006
.023
.075
-.005
.034
0
.016
.013
.006
± .023
± .056
± .011
±-41.3
± "4.36
± ; .019
± .019
± .039
± ..089
-± .011
± .041
± .027
± .021
± .011
Leaf number
(#/m2 ± a)
0
0
0
3.11
5.33
7.56
0
0 .
0
17.3
: 3.33
12.9
12.9
54.7
194
5.32
96.9
0
12.9
22.7
30.2
±'
±
±
±
±
±
+
±
±
±
-±
±
±
+
9.33
16.0
22.7
52
5.61
38.7
38.7
96.8
267
10.6
128
12.8
40.4
63.9
Total
4.00 ± 4.34
8.48 ± 10.0
.018 ± .022 44.3 ± 60.0
1
2
3
4
5
6
7
8
9
10
Total
1
22
.444
4.88
.78
.889
.889
.889
.889
32
33
69
11
76
76
76
± 1.76
1.29 ± 1.44
Ipomea hederacea
0
0
6.62 ± 19.6
.044 ± .133
3.38 ± 5.84
.668 ± 1.11
.800 ± 1.99
1.33 ± 2.91
.267 ± .566
2.18 ± 6.10
1.53 ± 2.10
0
0
.004 ±
.001 ±
.027 ±
.003 ±
.004 ±
.004 ±
.001 ±
.027 ±
.010
.003
.048
.004
.008
.008
.003
.081
.007 ± .011
0
0
14.2 ± 37.0
1.33 ± 4.00
41.8 ± 53.4
6.67 ± 8.48
6.67 ± 13.6
5.33 ± 10.6
4.44 ± 10.7
14.2 ± 37.0
9.46 ± 12.4
170
-------
Table 12. (Continued)
Allium sp.
Station
number
1
2
5
6
7
-•- 8 -:--
g, :-..--
"... 10-'.-
Number of plants
(#/m2 ± 0)
0
0
•::-.4:-
1.
•
2.
-*•
r
OO^tv
33 ±
444 ±
22 ±
89 -v±
444 • ±
78 '+
2.
1.
3.
"!.'
2.
00
33
5.3 ...
33
91
Abovegrouod dry
wt. (g/nr ± a)
0
0
.-.-.i™-,. 133
.028
.022
.068
- .on
'.'.""":- .078
+ ..
+
±
±
±
±
±
.052
.067
.100
.-283
.033
Leaf area index Leaf number
(m2/m2 ± 0) (#/m2 ± a)
0
0
_ *
:::'2±~jt ' '"
*
*
*
.:...". *
.'- *
;•• *
0
0
1
2
.,;,.--: -..V.-.5
•"•: - ::: : .-.'. 2
.00 ±,^12.0-
.33 ± 2.00
.444 ±
.22 ±.
.77 f
.444 ± '
.67 +
' 1.33
3.53
6.96
1.33
4.00
1.51 vi :; 1.74
053 ±
066
1.69 ±:-•'. "-'1.97.
^//v>f
2
3
.. - -. 4
i* .-^;V-5
. - 6
"•-.. 7
8
9
10
""--"- o "-"*"•"- ••••:"---~- ••-
0
0
. , -.'-. 444- +-.-.L 33 -:-•-£..
". ...".'". .',,.. 0" .. ,. ,,.'.. ,-,.._ ......... '.. ..
-".-.':. '-_: • fifiQ'-"4- "-:- 1 7fi --•- -••-••-•
. o ... .
:. 0 '.•.;:• ... ;...'.
. 0 "• " " "" "
v . . .
-•0-V'.:U:---:--.--
0
0
- .178 +-- .533
•a--.-:i.:^;r----»----.
o:'.;:~ ;;:„.: "
:-. QQfi +' 9 7P ---
0-
0 •. .,. ..... -.-.;;
0. : - ".' .
0
0
.•"..^.v-o
...- u
. .. . -" .
0
. 0
0
" ; •-" o •'"•-
0
0
.003 ± 1.008 ' - 4.44 +', 13.3
.T.:rf.-Wu:d:^~^
.".-.•-. , 0 ...
QQ] --^•"--••-"002 ; :- 7 11 + •" -21 3 :-
- ,.'- 0
. - .- ••-. . ..0 :.. . . -,
•••.-.:'.•• '•;• . : '0 "~
Total
.133 ± .300
.117 ± .314
.000 ± .001
1.16 ± 2.52
Total weeds per station
1
2
3
4
5
6
7
8
9
10
7.56
.889
10.7
21.8
18.7
37.8
8.44
12.9
15.6
21.3
7
1.
06
76
± 16.5
± 10.6
± 18.0
± 37.9
± 8.35
± 11.8
±13.3
± 19.9
18.5
3.16
12.8
39.9
16.5
68.0
13.2
34.4
45.0
40.0
± 18.8
± 9.03
±21.7
± 44.8
± 21.3
± 64.8
± 18.4
± 60.1
± 49.8
± 51.9
Total 15.6 ± 10.2 29.1
* Leaf area not determined.
± 19.7
.206 ±
.010 ±
.031 ±
.300 ±
.158 ±
.412 ±
.170 ±
.091 ±
.277 ±
.326 ±
.242
.021
.050
.445
.188
.692
.288
.105
.414
.376
365
16.4
77.3
263
129
306
97.4
47.1
79.1
563
± 739
± 38.8
± 135
± 241
± 126
± 209
± 144
± 58.4
± 85.5
± 945
.198 ± .132 194
± 175
171
-------
Table 12. (Continued)
Station Sarnpling dates
1 August 23, 1976
2 September 8, 1976
3 September 8, 1976
4 " """ September 7, 1976
5 August 23, 1976
% 6'r j>>/^ v:;-':.-"-"}'•- ^,:VT- "• - 'September.8, 1976
7 '.''':[ '•'•"• "•'•-. '"'•'- ' '•--.,••'•••.' Septembers, 1976
...^^.:. 1::^'^:^..v '."'._ J::/:r.,: September T7, 1976
. . 9 ... - . September 7, 1976
-•••• 1 P7n';-.' --U.-^;; -; ^ ~ ---• •;-•-..'..September -8, 1976
172
-------
I :
Table 13
Depth
5 cm
15 cm
Mean soil bulk densities (g dry wt/nr)
. :• '.''.'!<
Corn fie
1
1.152
1.143
2
1.209
1.282
3 4
1.176 1.086
•
for watershed 109.
"f''" ' "i: '':: : :,
. i '.•;•'••-'• i ;: ; '!
Id stations :.'. 1
. . i , ^ _
1 1 • i.
5 /;::
i.i7i ;
i
:;',.i ' 'I'' :
: ; • ' • ' ' i:- i ' \'l
1.171 ;./.: 1. 193. ;^l' 0.367 .^i
i ',
; ;;6i
1.190
> 'i
P.230.V
•••' ' i ]'•' '•': j]'i.: '
' :-: '!'';'> ;
: • •'''''.•'
•••• • j •
1.121
' ; .' : ' '
•>': ;1;293
1. :.. ,i
8
1.176
1 .311
9
1.192
1.299
10
1.261
1.281
30 cm
1-245 1.218 1.309 1.264 '', 1.362 ,', 1 .'264 1.205 1.218 1.383
1.421
OJ
Mean density, all stations, all depths = 1.236
N = 18 •
Coefficient of variance = 8.15%
-------
Table 14.
Depth
(cm)
0 - 1
1 - 2ig
2% - 5
5 - 8
8-12
12 - 18
18 - 24
24 - 30
Mass of
in 1976.
1
11.52
17.28
28.80
34.56
45.72
68.58
74.70
74.70
soil (kg
2
12.09
18.14
30.23
36.27
51.28
76.92
73.08
73.08
r
dry wt/m'
3
11.76
17.64
29.40
35.28
46.84
70.26
78.54
78.54
'•
; : \\
•) in depth
1 :'j.
>'>:
;;'
'. •;'•
ii
. j|
4 1
10.86 f
16.29 ;j:
! f-
r
27.15; •,
r
32.58 |
47.72 !
71.58 -i
i; ../
! • '
I zones
i : :
j ' •
i
I; •" '
i .•'
Station
!' ;,.
;i : 5
11.71
17.57
i
29.28
i
35.13
54.68
82.02
75.84 '.81.72
75.84 ;
81.72
•;. •','•'' p|> '••••' '••,.•:
' '•' • '. }:' 'l\ i'" \:"
corresponding to tho
• '': • : ''. i'i;''.^ '.'. ! •••' '..;'
' ' • •' • • i'i---;i:.!i'' ' '' ••"
. i , i ^ ! '-• '. '
:'[ i' ' ' ' •
;.i r '•?. '*
• '•• '-.'•; • "!:•••'. , •••'•.'•;.'•'
; ;•'. ••"•>'''•. •;•;.•-.' '1{
•' 6- ,:l, 7 \:
iiiVgo.'j-]
''••'. t \
17.85. ;;
' ! •'..• • • i
29.75 ;;
35.70V;-
49/20 !;:
: . • r
l-.ii.2i;. ;:
'• •; •'''••.'•'''.
'.; 16.82; •"•
- ' f '. - - <•
se sampl
: ' \
'
8
ii.76 ;
i •
17.64 ;.
i
1 '•' " "' |
U 28. 03 V '• '29.40 .:'
'-'' " • i.' I ' '' '<
1 i. . ' ' • ! ' ' ; '
N:33.63, •...; ;35.28 ::
;;51.72\ : ;52.44
73/80 ;;! 77. 58 |78.66 ;:,
75184. f-.72:.30 : ,':73.08
f- ; :. ;' - ; ,
75.84 -:; 72.30 73.08
;
ed on
9
11.92
;i7.88
29.80
;;35.76
51.96
77.94
82.98
82.98
watershed
10
12.61
18.92
31.53
37.83
51.24
76.86
85.26
85.26
109
Mean
1-10
11.73
17.60
29.34
35.20
50.28
75.42
77.33
77.33
-------
STATION CORE DEPTH -' • • SAND
ORGANIC
--J
01
"
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4 .
4
4
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
CODE
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
RANGE v'U
CM •;•';, ,<:
-1 ••1y.'
1 -2.5 ii/
2.5-5 '•••!•:,'
5 -o
8 -12
12-18 ,
18 -24 :
24 -30 :
-1 ' ' '!' '
1 -2.5 '
2.5-5
5 -o :'•?•
8 -12 •:•"./ ::
12 -18 M' ;
18 -24 .':!.; i
24 -30 : ':! ;
-i " ' '': !'
i -2. s I1- ;
2.5-5 .'•'•!>
& -o - ' : '
8 -12 ;;,•,•:
12 -is .'...i1
18 -24 : • '
24 -30 : i
-1 : :
1 -2.5' ,
2.5-5 !.:! >
5 -d -::i i
8 -12". " !
12 -18 ,'•''
18 -24
24 -30
-1 ::'.. i
i -2.5' ;,
2.5-5 . I' '
5 -o • ' ;
8 - 1 2 '
12 -18
18 -24
24 -30 /
-1 ;'•': .
1 -2.S i
2.5-5 -;.:
5 -u
8 -12,
12 -18.: !
18 -r-24
..%
46.00
43.00
43.00
45.00
35.00
58.00
44.00
40.00
75.00
71 ,00
82.00
73.00
73.00
75.00
77.00
76.00
65.00
65.00
63.00
65.00
64.00
63.00
64.00
65.00
52.00
50.00
50.00
52.00
54.00
59.00
53.00
57.00
32.00
31 .00
30.00
30.00
30.00
32.00
26.00
26.00
57.00
60.00
58.00
59.00
57.00
57.00
59.00
i : . , , V •'('!•
' ", rv •.',',
,!••• 2a.'oo!:''i;:
I;1* 50.00/J1
,'.'• 50 . 00 'i'.i'
V; 46.00; v
•.61 .00 ';; '
: 35.00,! ;;
52.00
" 49.00 •
'•'••'. 18.00
• 21 .00 '
' 13.00
. 22.00 .
.i;';.2o:00 J::;:;
!1" 25 .00 j '!:i:
;L 23 . oo'i -| ji
'!'• 19i'00iv.
!i> 29.00J -!
;;! 28.00s,'/
:!'. 32.00;: :
'! :; 30 .00; '
.i 30.00: .:
'j' 32.00^ :
:'• 28.00 :: !
i; 29.00 '>
' 34.00; . "
I 33.00 i
j 36.00 •",:•]
34.00':!
['-. 34,00, '
,'•'. 28.001 '
M; 38.00 .'.- .-
;i 34.00 , :
55.00 :,.
j 57.00 :i ;i
1... 52.00''.':
52.00;-'1
53.00'
,'. 60.00
'i' 58.00 .:
'i,; 58.00.,:;
-,31 . 00 ! I '.
;l; 27.00;:
':!.' 29.00; ;
•;: 27.00 '
!.--. 29.00
i 30.00
' 31 .00
.ft %'• ' '
/26.00
:6.00
>7.00
'9.00, :
5.00
'7.00
'4.00
11.00
7.00
7.00
6.00
.6.00 .
,7.00
v,oo :
V.oo :
:5.00
6.00' .'<
7 .00
5.00!
5.00^
6.00':
5.00
8.00
6.00
14.00
17.00
14.00
14.00
12.00,
13.00
9.00
9.00
13.00'
13.00 ,
18.00 .
18.00
17.00
8.00
16.00
16.00
12.00
'13.00
•13.00 .
,14.00
^14. 00 •
13.00
10.00
MATTER
:' »
.;•• 3.00
8.00
11.00
'" 13.00
1 14.00
'15.00
14.00
6.00
, 1.00
3.00
: 6.00
: 9.00
11.00
.; .12.00
10.00
•11. 00
4.00
69.00
7.00
; 10.00
10.00
; 13.00
12.00
3.00
12.00
18.00
20.00
: 16.00
19.00
i; 16.00
' 4.00
r 11.00
11.00
17.00
12.00
• 23.00
18. 00
19.00
'4.00
• 10.00
12.00
15.00
. 13.00
16.00
/ 20.00
CU
cr
o co
~i o
o>
0
ro -j.
-5 O
O
rs
cu
r«-
n>
-s
I/)
rr
fD
O.
CD
AO
-a
n>
o
a>
a>
3
Q.
rt-
i»
o
CO
-------
STATION
H
6
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
CORE
CODE
1
1
1
1
1
1
1
1
1
1 ,
1
1
1
1
•1
1
1
1
1
1 ,
1
1
1
1
1
1
1
1
1
1
1
1
1
DEPTH !
RANGE >\
CM -j
24 -30 '
-r •'••
1 -2.5.:,
2.5-5 ,'
5 -o . .
8 -12 i:
12-18 "
is -24 :'
24 -30 •••-.
-1 !
1 -2.5 '
2 . 5-5 ; i '
5 -o ;r
8 -12 '
12 -is :•;
18 -24 •'('
24 -30 ••:'!
— 1
1 -2.5;
2.5-5 ;.;
s -o ;•;
8 -12 ;.|
12-18 .'y;
18 -24 ;
24 -30 :
-1 ''<
1 -2.5'!
2.5-5 •'
5 -o
8 -12
12 -18
18 -24
24 -30 '•;_
.' .'
il
•;-'• SAND
'.':'-. 73.00
! 54.00
' 52.00
'•','• 52.00
!: 52.00
52.00
53.00
. 55.00
: 56.00
! 50.00
, 48.00
\ 49.00
50.00
!•:' 50. 00
;: 52.00
: 48.00
'C 50.00
•: ';49.00
'!• 47,00
il; 4i .00
'.,47.00
.',' '49.00
:; 47.00
:' 45.00
'43.00
,85.00
; 51 .00
52.00
; : 53.00
V53.00
55.00
';. 54.00
..: 52.00
,
. '' •: ' ; !-
>iij'
20.00 j!
; 36.00 T
37 . 00 i'
37.00 !:
3B.QO .;
39.00 '>.
-37.00 ;i
35.00 i!
33.00 !|
: ;37,00 ';!,
:;'37.00 i!
39.00 ji
'37.00 !:
':39.00 i':
-34.00 -I!;
36.00 1
:40.00 'i
• 50 .00 |!
38.00 !i
i ''45 . 00 1
' .36.00 -lil
: 38.00 ;'i:
;,38.00 il
.: 41, .00 i|
'J.43VOO |
V'4«00 i!
38.00 !:!
i :37 . 00 •!'.
> ;36.00 i;!
35.00 1
34.00 {..
34.00
! 37.00 i
:''!•' . p
. . I.
CLAY
&X ::•
7.00;
,,10.00
11 .00
: 1 1 .00 '
.10.00
9.00
-1.0.00
':i10.00
••'l 11 .00
,"' 13.00 ,
;!':. 15.00
ri:.:12.00 :
^13,00 ,
1 ;>:1.1 . oo
'"•14.00 ;
, i:16.00 '
•?,.';!l'0.'00 ;
''i * ' ' t
,!; 18.00 :
!;V14.00 '
iv.M7.00 •
•;t 13^00 ,
p 15.00
;, 14.00 .
::!;: 14. 00 ;.
!'.::1 1 . 00;.
MC.1i1.00.
-'Ml. 00
Hi! .1.1 .00
: 12.00
;'' 11.00
; 12.00
11 .00
:. i: :: : ':
ORGANIC
.MATTER
17.00
5.00
12.00
14.00
25.00
17.00
• ;i7.00
14.00
14.00
. 4.00
7.00
13.00
15.00
i V6.00
,,14.00
14.00
. 13.00
4.00
6.00
:: 12.00
-: 68.00
14.00
11.00
15.00
. 17.00
5.00
11.00
: 13.00
17.00
fa. oo
14.00
! 17.00
17.00
i' -
—J
tv
cr
ro
o
rs
CD
CL
-------
STA
H
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
CORE DEPTH MONTMORILLONITE
CODE RANGE <62U <2U
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CM
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
in — o A
1 o *.**
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8 .
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
13 -24
%
.00
.00
.00
.00
4.00
.00
.00
.00
1 1 .00
33.00
23.00
1 2.00
9.00
6.00
15.00
4.00
9.00
9.00
2.00
.00
8.00
1 1 .00
.00
64,00
1 3.00
10.00
8.00
36.00
10.00
31 .00
24.00
7.00
21 .00
2.00
3.00
5.00
8.00
8.00
8.00
27.00
20.00
10.00
12.00
24.00
15.00
52.00
%
50.00
30.00
14.00
23.00
25.00
43.00
13.00
62.00
.00
75.00
67.00
63.00
15.00
23.00
26.00
56-00
79.00
60.00
48.00
52.00
45.00
37.00
48.00
56.00
52.00
38.00
47.00
57.00
36.00
59.00
54.00
44.00
53.00
43.00
56.00
45.00
42.00
57.00
75.00
71 .00
61 .00
77.00
60.00
68.00
44.00
67.00
ILLITE
<62U <2U
%
2.00
2.00
1 .00
.00
.00
2.00
2.00
2.00
.00
5.00
7.00
3.00
2.00
2.00
4.00
2.00
13.00
2.00
1 .00
20.00
5.00
7.00
2.00
14.00
3.00
14.00
5.00
12.00
2.00
6.00
4.00
4.00
3.00
3.00
2.00
2.00
4.00
1.00
3.00
2.00 •
7.00
5.00
3.00
4.00
4.00
5.00
%
23.00
19.00
17.00
19.00
27.00
13.00
2.00
14.00
18.00
12.00
12.00
13.00
15.00
9.00
9.00
14.00
14.00
14.00
18.00
27.00
10.00
19.00
1 1 .00
21 .00
25.00
27.00
25.00
23.00
28.00
19.00
18.00
24.00
21 .00
27.00
19.00
28.00
27.00
14.00
9.00
15.00
22.00
14.00
18.00
12.00
22.00
13.00
KAOLINITE ;":.'•
<62U <2U '
%
1 .00
1.00
1 .00
.00
1 .00
1 .00
1 .00
1 .00
3.00
3.00
6.00
4.00
3.00
2.00
1.00
1 .00
4,00
1 .00
. .00
4.00
3.00
3.00
1 .00
5.00
3.00
8.00
5.00
6.00
3.00
7.00
7.00
2.00
2.00
1.00
1 .00
2.00
' 2.00
2.00
3.00
1.00
2.00
3.00 '
2.00
4.00
2.00
1.00
% I;..
1 1 .00 'I '
13.00 '•••
19.00 i"
12.00
15.00
15.00 j,
10.00 ''!'
10.00
19,00 ;,
6.00 '
10.00 I
9 . 00 .;
19.00:';i
••15.00;':!;.,
•;•!(•
12.00 •!
7.00 ;-.;;;
1 1 . 00 i
11 .00.1!;:.
12'. 00" i:
14. oo n'-
19,00 ;
11 .00 .".•'.
1 3 . 00 .
13.00 .
14.00 •)
1 .00 I'll
14.00'j|
11 .00: .
19.00
13.00 .
1 .00 '
13.00 .
13.00' I
21 .00:,':
11 .OO'.'j. •
15.00 <•
15.00 "
13.00
8.00 )
10.00 :
8.00 !
5.00'. :;'
9.00
11 .00 ••
14.00. , I
9.00 • :
GIBBSITE'
<62U <2U;::
%
.00
.00
.00
.00
1 .00
.00
.00
.00
.00
1.00
1.00
.00
.00
.00
.00
2.00
3.00
i 1 .00
1 .00
. .00
2.00
2.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
i .00
.00
.00
.00
.00
.00
.00
% J>
2.00 .
3.00
3,00
5.00
1 ,00
.00
.00
3.00
8.00
2.00
3.00
4.00
.00
.00,;
4.00
.00.
.oo1:
.00:'. :
.00;
2.00
8.00
6.00
5.00 •
.00 •
.00
8.00
3.00
2.00
2.00
.00
1 .00
2.00
.00 .
.00
1.00
.00 .
2.00'
.00
.00
.00; ,,
3.00
1 .00
4.00
4.00
6.00
2.00
I ; ; i CHLORITE !,
. ' -, *62U <2U " . '
'is.-;^ .
':'''V il oo
i ' -:i;. 00
'., '', 1 .00
1 .00
2.00
2.00
: 2.00
1.00
2.00
' 3.00
• 4.00
; 2.00
V; , 2.00
:-:|..-;V.OO '
Ir !.;• •;• • • . .
•: : • 3.:00.
,!:7.00
i1 •'••> '3.00
:1:.,.:;.;i:,'00
,'• ;. 6 . 00
M:; 3; 00
;;::j e.oo
"•'.; 2.00
' : 3.00
i;!/', 3.00
' ' -• ' - 2 • 00
- !': -'i.; ;1 f 00
•;':• 4.00
' ': 1.00
':• 2.00
,.2.00
.', :1 . 00
, 1.00
•'i'Wt.OO.
(''' 1 .00
: 1vOO
l: <': 1 .00
-•;< 1.;00
-:, : • 3.00
, \i 1 .00 '
'»•• '1:. 00
2 . 00
10.00
' ' 2.00
1.00
1 .00
% !'.
5.00 :.
9.00 .:
11 .00 :
12.00
5.00 ;
7.00
5.00
4.00
12 .00
3.00
4,00 !
4.00 ,
10.00
14.00 .
io;oo:
7.00 '
6.00 ,
7.00 ; .
s.oo ;' :
3.00.' ,
6.00 !.
7.00
8.00
3.00 .
4.00
6.00 .
3.00 .;
4.00'
6,00 :
5.00
7.00
5.00
6.00
5.00 :
5.00v
8.00
4.00
4.00
2.00
3.00
3.00 •'
2.00
4.00
2.00
2.00
3.00
QUARTZ
<62U • <2U
% %
82.00 6.00
81 .00 19.00
79.00 32.00
89.00 21 .00
78.00 3.00
83.00 21 .00
54.00 59.00
79.00 4.00
73.00 35.00
43.00 1.00
47.00 1.00
59.00 3.00
72.00 28.00
71 .00 33.00
66.00 32.00
77.00 12.00
44.00 9.00
75.00 5.00
83.00 9.00
44.00 3.00
68.00 9.00
47.00 15.00
88.00 13.00
8.00 3.00
71 .00 3.00
39.00 .00
70.00 3.00
16.00 2.00
80.00 7.00
43.00 3.00
52.00 2.00
66.00 7.00
66.00 6.00
76.00 4.00
80.00 4.00
77.00 5.00
70.00 3.00
74.00 6.00
72.00 3.00
62.00 2.00
57.00 .00
61.00 1.00
69.00 4.00
58.00 2.00
67.00 6.00
36.00 S.OO
POTAS FELDSPAR
<62U <2U
X
7.00
8.00
7.00
5.00
7.00
5.00
23.00
5.00
7.00
8.00
9.00
14.00
7.00
14.00
9.00
8.00
13.00
4.00
6.00
21 .00
7.00
14.00
4.00
4.00
3.00
14.00
6.00
13.00
2.00
4.00
9.00
8.00
5.00
5.00
5.00
5.00
8.00
4.00
3.00
3.00
8.00
10.00
7.00
8.00
6.00
3.00
%
3.00
8.00
2.00
5. 00
8.00
.00
6.00
2.00
4.00
.00
2.00
3. 00
9.00
5.00
7.00
4.00
2.00
3.00
5.00
.00
4.00
4.00
2.00
3.00
1 .00
5.00
3.00
1 .00
2.00
.00
.00
5.00
.00
.00
3.00
.00
7.00 •
4. 00
2.00
.00
3. 00
.00
.00
1 .00
6.00
1.00
— 1
fl>
cr
03
C71
•
in
o
_l*
3
_j.
n>
-s
O).
o
IQ
^^
O
-h
'in
— i
rt-
cn
Q)
0.
O
Cu.
tn
O
S.
ft)
-s
nr
CD
Q-
i
O
.
-------
STA
ft
6
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
CORE
CODE
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DEPTH MONTMORILLONITE
RANGE
CM
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
<62U
%
53.00
1 1 .00
6.00
6.00
1 0.00
6.00
22.00
15.00
4.00
11 .00
1 1 .00
16.00
8.00
1 1 .00
13.00
10.00
14.00
6.00
1 1 .00
1 1 .00
10.00
14.00
6.00
17.00
15.00
12.00
.00
1 .00
4.00
.00
49.00
4.00
6.00
<2U
%
70.00
67.00
39.00
37.00
67.00
33.00
41 .00
46.00
35.00
73.00
71 .00
62.00
72.00
71 .00
77.00
48.00
38.00
35.00
60.00
59.00
51 .00
56.00
11 .00
55.00
53.00
48.00
34.00
43.00
49.00
54.00
58.00
41 .00
32.00
ILUTE
<62U
%
9.00
2.00
2.00
2.00
1.00
1 .00
2.00
2.00
1 .00
2.00
2.00
1.00
3.00
2.00
1 .00
1 .00
1 .00
3.00
5.00
2.00
2.00
1 .00
1.00
2.00
2.00
3.00
2.00
1.00
2.00
.00
22.00
3.00
2.00
<2U
%
20.00
8.00
23.00
24.00
10.00
19.00
14.00
15.00
15.00
8.00
9.00
13.00
9.00
12.00
9.00
15.00
15.00
22.00
21 .00
19.00
23.00
16.00
1.00
18.00
21 .00
24.00
25.00
21 .00
21 .00
17.00
16.00
19.00
31 .00
KAOLlNITE-i '.-'I,
<62U
%
2.00
. 00
.00
.00
.00
.00
.00
.00
.00
5.00
3.00
2.00
4.00
2.00
' 2.00
.'• 2.00
: 1.00
1 .00
1 .00
1 2.00
2.00
2.00
.00
1 .00
.00.
.00
.00
.00
.00
. .00
14.00
1 .00
1.00
<2U '•'--,'
' p/ '
6.00 '•' .
7.00 ;' '
14.00 •;'.
1o.OO i
8.00 ; ; •
19.00 i
1 .00 '
1 3 . 00 :
19.00
9.00 ' '
11 .00 • , ;
14.00: ;
9.00.,
11 .00
7.00
1 .00 •
21 .00
12.00 ,
10.00.
13.00:
13.00'''
1 .00 •'.'-
1 . 00 :• , '
1 3 . 00, :
12.00 ;!
,1 1 .00 '
1 4 . 00 ' '
15.00 .
11.00 .
;13.00 .'
10.00 .
13-00
13.00
GIBBSITi; ,
<62U
: %
3.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
4.00
.00
.00
.',;!.' • . .
<2U;v'.
*;!;;;'•
• 0 0' ;' . : >'•
2 .00 : " '
7.ob'; ;
6 . 00 i'
4; 00 .. • ''
S'.'OO;:!
5.00;
8.00 ;
10.00
2;00
2.00 i
2.00 y
3iOO! '
2.00 ;;'::
2.00 i.
6.00;''
7.00 :
.00- •:'
2.00 •••
2.00
1.00
2.00 ''••
.00 [
3.00 :
3.00 :
3.00 ;
4.00,
5.00
4.00:
6.00' :
5.00
7.00 •':;
5.00
•"' i:C'HLORlTE:::
i '••••?
' '<62U
'•"•'*.'(''• :',
1 .'00, '
, 1 VOO '
:-:i'.''tiol
i::oo '
:2:. 00''
|vr.;ool
1.00'
1.00
11.00,
2.00
1 /DO
•:•;", V. 00';
:': 1 .;00
• i:.;oo:
: I'.OO1
i;. oo:
- v.oo,
i,.oo;
..'' 1!. 00:'
'., iVooh
' 2-]00!i
: '1!. 00;
. '.00 ;
1 VOO
v.oo
2.00
v.oo ;
1.00 i
.QO •
.00 !
: 4. OOj
1.00
, 1.00
<2U:].
1 .00
4.00
6.00
8.00
5.00 ,
8.00 ;
6; 00
6.00
7.00
3.00
3.00
3.00;
3.00
3: 00 '
2: 00 •
5.00^
7.00 •
8.00
3.00
4.00
5.00
.00 .
.00 :'
3.00
3.00
4.00 1 .
4.00
4.00 .
3.00
6.00 ,
3.00.
4.00
3.00
QUARTZ
<62U i<2U
27.00
77.00
76.00
78.00
72.00
81 .00
62.00
70.00
81 .00
70.00
73.00
65.00
65.00
78.00
72.00;
84.00
74.00
81 .00
73.00;
76.00
70.00
71 .00
68.00
67.00
64.00
74.00
80.00
80.00
87.00
73.00
6.00
77.00
79.00
4.00
12.00
8.00
8.00
7.00
12.00
12.00
9.00
11 .00
3.00
2.00
4.00
3.00
,00
1 .00
8.00
7.00
19.00
3.00
2.00
3.00
7.00
77.00
6.00
6.00
10.00
19.00
12.00
10.00
7.00
8.00
12.00
10.00
POTAS FELDSPAR
<62U <2U
4.00
5.00
6.00
4.00
7.00
4.00
5.00
6.00
4.00
5.00
6.00
10.00
14.00
4.00
7.00
3.00
4.00
5.00
5.00
6.00
8.00
6.00
20.00
5.00
8.00
5.00
11 .00
8.00
4.00
19.00
.00
7.00
7.00
1 . 00
2.00
4.00
.00
.00
.00
4.00
3.00
3.00
1 .00
2.00
.00
1 .00
1 .00
1 .00
3. 00
4.00
6.00
.00
1 .00
3.00
.00
6.00
4.00
2.00
.00
.00
2.00
4.00
.00
.00
4.00
6.00
-H
CT
fD
— '
•
,-^.
O
O
=5
rt-
rs
c:
Q.
1
-------
STA CORE DEPTH
H CODE RANGE
CM
1 -1
1 1 -2.5
1 2.5-5
1 5 -8
1 8-12
1 12 -18
1 1 18 -24
1 1 24 -30
2 1 -1
2 1 1 -2.5
2 1 2.5-5
2
2
2
2
2
3
3
3
3
3
3
3
3
A
4
A
4
A
4
4
A
5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
5 1 1 -2.5
5 1 2.5-5
5 15-8
5 1 8 -12
5 1 12 -18
5 1 18 -24
5 1 24 -30
6 1 -1
6 1 1 -2.5
6 1 2.5-5
6 15-8
6 1 8 -12
6 1 12 -18
6 1 18 -24
PLAGIOCLASE
<62U <2U
7.00
5.00
1 1 .00
5.00
4.00
8.00
17.00
10.00
3.00
4.00
2.00
6.00
5.00
4.00
2.00
4.00
7.00
5.00
5.00
5.00
4.00
10.00
4 .00
2.00
5.00
13.00
5.00
1.4.00
3.00
7.00
3.00
10.00
3.00
6.00
8.00
8.00
7.00
9.00
9.00
4.00
2.00
9.00
3.00
.00
2.00
2.00
.00
.00
3.00
1 .00
.00
.00
5.00
.00
3.00
.00
.00
.00
4.00
.00
.00
.00
1 .00
.00
.00
.00
.00
.00
.00
1 .00
.00
1 .00
1 .00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
2.00
.00
.00
.00
.00
.00
.00
.00
.00
TALC
<62U <2U *
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
AIYIPHIBOLE •'( ::|-
. <62U ;<2U.':i;. !!
.00
.00
.00
.00
.00 .
.00
.00
.00
. .00
.00
.00
; .00
.00
'' .00
1 , .00
: .00
1 .00
:' .00 '
.00
.00
,00
.00
.00
.00
.00
.00
.00
.00
• .00
.00 ,
.00
.00
.00
' .00 .
' .00
.'• .00
.00
.00
.00 .
•;;.oo
.00
.00
.; .00
.00
; .'00
.00
• :: !'.; :
•j '
.00 '.O:
..oo ',ii'':;
.00 ;..V::
.'00 '•;';/ K-
.00 '.';•;•:•
.00 •-;"[!••
.00 ;;M'
.00 Hi!-
.00 ;• M.J.I.
00 ' "''' • '
.00 Jr'l'1'
'.oo ... ';•,-{ *.
. 00 JL; :f'',
.oo'1 'v:
:'•• t i
1 i ; •• •
.00,. .;}-. j'
..oo .:<•; i '
-.00 ; '•>;;:•
.00 , ;<'.;.;:
. oo . ^iVii'i
.00 ,..';':;'
' .oo1 :;,";-:
.00 !?.-,
.00 ;..: f
• • : ,''•'. .-';
*'' It
CLIN ' ;
<62U <2U
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00 .
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
' l '-..-. ••'.••
..'00;;! .
.00 i
.b'o'!
.00 ; v
.00 !
.00 " V
.00 •;
.00 :
.00 '
.00 .
:oo :
Voo-. ;
;.oo •••
.00..;.
• ' 1 '!• .
.-00 .: '•
.'oo:r ,
' '•'
•00.. .
• W V . ;
. .00 .
>oo ••'
•.'oo,' :
;oo '.
loo.
.00.
.'00 • '•
'.00
.00
.00
.00 ! '!'
Joo :"'.
;oo !
..00 "
,i°°i;-
. 00; '
•.oo :
.00 ! '
' .00;!: j
. . 00 ,. •
.00.;,
-.00 ;•
.00 i^:
, 00 '
'.00
.00;,;'
,OOT;
! '.' 'l
1' 'j • !' ::
•":;•• 'CALCIT'EJ,-
'J.f;.;;<62U " !<2U'
':;::r'2.00 :!
i>.:':.'-2.:00 ':
:';':'.•;. bo
-••;-":-''Voo
i'.^.f.a.oo •;
•::"':;.PO' .•
' ; jl.OO :
^;-''.00 ;
'(' .00.
•',:•. 00' .•'
•;:?•.:'. oo- .;
'••'« "i.OO .;
:: .-J.'/!,. 00 '
.'rV'.l'.PO !:-,!
:>\W •' .:•!'
r. ••;!'!. 00' ;.i.
• . ii'V. 00' '•'.
•'•'• '• ,•• i i o o •'
• ! ' . 0 0 ' ^
'"•• .' ;! , .00 ' ;
'•f-;;,..oO:" ;:
,:-;!'-i-|.06 .?
;:j^i',.oo. ;.
' l:'!'.00 :•
':';:.00- ••
? -• ' i , o o i
". ' i'.QO
-'. ji'i.OO !;
'•• •' !.".00. :
' • ' , oo '
,"i ;i';>oo •;'
: ';.00 :
;.i.oo ;
:•• 'J;-oo :•.
?! i1'00^
'<•'.•• v!,.'.oo "!
• - i , .00 ' '
"••' ( '• .00 r'
,;,;>. 00 '
r,:];l'-00 . l:
*' -r -',.00 "•'
'. ;l:!'.00 ••
• I..OO
;:.!.i:.oo •'
..• : .00
''•"..; ••', ' '
'.':'•'• :
:' i , . . ;
. 0 0 V •
. 00 ; ^
.00]
,00'
.00;';
. OO1'
.'oo'v'i
.oo|
,.00|
.100,''
* 0 0 ' -
• 0 Oi •»
• oo;;
.00,:
:; ' '• j
t OOj •'•
• 0 Oi
.00-
• oo|:
• bo:
. 0 Oi •
.00
.00 :
.00
.00
.06
.00
.00 ;
.00
'. 00
.:00
.00
.00
.00 :
**• 00 ;
VOO '
.'off ;
.00
,00
.00
.00
.00 :
.00
.00
.00
.00
.00
' •:
,
DOLOMITE
<62U <2U
•/ V
n • f*
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
2.00
.00
.00
: .00
.00
'.00
.00
.00
••;-.• oo
' .00
.00
.00
:.00
.00
.00
.00
;.oo
-.00
.00
•!.oo
.00
.00
LOO
.;.oo
..00
.00
.00
.00
. .00
i .00
..00
;«.00
i.OO
.00
00
00
00
00
'.00
.00
.00
.00
, .00
..00
.00
.00
.00
.00
Qi
CT
n>
o
o
rs
c.
CO
CL
-------
STA
H
6
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
9
9
9
9
9
K> 9
0 9
9
10
10
10
10
10
10
10
10
CORE DEPTH
CODE RANGE
CM
1 24 -30
1 -1
1 1 -2.5
1 2.5-5
1 5 -8
1 8 -12
1 12 -18
1 18 -24
1 24 -30
1 -1
1 1 -2.5
1 2.5-5
1 5 -8
1 8-12
1 12-18
1 18 -24
1 24 -30
1 -1
1 1 -2.5
1 2.5-5
1 5 -8
1 8-12
1 12. -18
1 18 -24
1 24 -30
1 -1
1 1 -2.5
1 2.5-5
1 5 -8
1 8 -12
1 12 -18
1 18 -24
1 24 -30
PLAGIOCLASE
<62U
%
2.00
4.00
8.00
7.00
4.00
4.00
3.00
3.00
4.00
4.00
3.00
4.00
6.00
3.00
3.00
.00
4.00
3.00
4.00
4.00
4.00
5.00
4.00
5.00
9.00
5.00
4.00
9.00
2.00
5.00
.00
5.00
3.00
<2U
%
.00
.00
.00
.00
.00
5.00
2.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
2.00
.00
5.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
TALC
<62U
%
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
<2U
X
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
:AMPHIBOLE !.„" '
•<62U
%.
.'oo
.00
.00
.00
.00
.00
.00
,00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
1 .00
.00
.00
.00
. ; '••*'-. '
<2U '• •
. % ;:;••• ':
.00: :1 ;i i!
.00 : '.'.'•
.00 ';'';;'. ;
.00 :'•'•''•
.00 :. :i . :
.00 '^'•••'.
.00 '•:•.. .
.00 vij. ,
.00 !''• ":
-.00 r:';j ;
.00 .-;,> .!
.00 ;•. '
.00 ::: i
-.00 •;*:'•
.00 <:; :;
.00 • ;i .:
.00 ••'•"• '"
.00 : ,.
.00 >: :
.00 ; • '
.00 .; . •'-
.00 •' '
.00
.00 ":':
.00 !
.00 '•" . '
.00 i '
.00 •:
.00 i
.00
.00
.00
.00 , <
CLIN
<62U
% :
.00 ;
.00 i
.00
.00
.00
.00 :
.00
.00 ;
.00
.00
.00 .
.00
.00
.00 !.
.00
.00
.00
.00
.00
.00 .
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
^jj>;:',;7 ip.cALCitEiiVi'
<2U .'•' .'j:<62U
oo'.j ' T .i.oo'.
OQ.l > Iv.OOi '"•.
00^ '•' ':•. .I'.OO ''"
00 " ,':-v.[!1;Obi':
oo : :i 3 . oo
00^ '[iai. 00 ..
oo •!• : ; ;i.oo
oo:; ', '".LOO
oo .' ;:.2.oo
00 : v ii.OOi
00 . • ;;; ;[i;00:
oo,';::.:is ji.'ooi '
00'. ! ,. '•'• MJ.'OO .
00 j; '."! :H.OO ''..
OO1 '•',' ''i. 00:
00 :;' .'""'• :ji.00:
oo;;. l.":|'.oo
oo ! ; '. '[i.oo
00, [ 'j-vOO
oo ' . !' ;; ![.oo -
QOl : -•!!.'. 00
00 i !l' . 00
00 ' : ;!.00
00: .; |!2.oo
00. ; 'ji-OO
00 v ' .,; .00
00 !•' : '! :)'2.00
00 !:.: ; :1;.00
oo'': . •:' .ji^oo
oo; : '2.00
00; •"•• .00
00 ' :2.00
00 : : 2.00
1 ' ; i : | ' ..
';;<2U,; .':
:-i^ ^ ••+
;oofe:!f:
' .OO"-!'1!"'--"
.ooj^i';'
'.00 : '•'•'•' *•'<'
* 00-' ! i '
.-,00 :| ,^1
.00i|: ;;;:
.00 •;, •=-•
.00:; ;:'.:';•:
'.00 'j' | '•'
. 00.! •:'";'•'
« 00 i 'I .,! i.
i 00 '-\' :\ - '
.OQ'i-ii •.!;;;
. 00:; I'.'-"]1
.00 '1 ; *
,00 'f
• borij:-;. •'
.bo '|: •'<
.'.oo- 'j';.'
.00 'i -
.oo.f .':,,
.00 ..ji1 'i.
;. 0 0 ; Ji ''
. bo 'i .1 ' ['.
.00 '•: ',••'
-.00.; :,:',: '
,00,i: ;!'
.00 \.'1'
..00'^, .1
.00., ;
.00 ;
.00 ••; :
DOLOMITE
<62U <2U
x ;r;i x
.00 -.00
.00 i ':.00
.00 : .00
.00 •'.':'. .00
.00 .00
.00 • .00
.00 •:"• .00
.00 • .00
.00 .: .00
.00 ' : .00
.00 i. .00
.00 ;:i; .00
.00 ••:''; .00
.00 -:.00
.00 .00
.00 ' ;.00
.00 '; v.OO
.00 • ..oo
.00 .00
.00 .00
.00 .;. .00
.00 .< .00
.00 .00
.00 J .00
.00 .00
.00 .00
.00 .00
.00 . .00
.00 .00
.00 - .00
.00 ' .00'
.00 .00
.00 .00
CD
O"
CTi
fD
Q.
-------
YR DATE COMPOSITED
STATIONS
ft
76 1 14 1
76 1 14 1
76 1 14 1
76 114 1
76 1 14 1
76 1 14 1
76 114 1
76 1 14 1
76 1 14 2 3 4 5
76 1 14 2 3 4 5
76 114 2 3 4 5
76 1 14 2 3 4 5
76 114 2 3 4 5
76 1 14 2 3 4 5
76 1 14 2 3 4 5
76 1 14 2 3 4 5
76 1 14 6 7 8 9
76 1 14 6 7 8 9
76 1 14 6 7 8 9
76 1 14 6 7 8 9
76 1 14 6 7 8 9
76 114 6 7 8 9
76 14 6 7 8 9
76 14 6 7 8 9
76 14 10
76 14 10
76 14 10
76 14 10
76 14 10
76 14 10
76 14 10
76 14 10
76 28 4
76 28 5
76 28 8
76 28 9
76 31 45
76 31 45
76 131 4 5
76 131 4 5
76 131 4 5
76 131 4 5
76 131 4 5
76 131 4 5
76 131 4
76 131 5
76 131 8 9
CORE
CODE
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
3
3
3
1
1
1
1
1
1
1
1
3
3
1
DEPTH
RANGE
CM
-1
1 -2.5
2.5-5
5 -8 .
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
-1
-1
-1
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
-1
-1
TOTAL
P
UG/G
7.32E02
7.99E02
9. 17E02
8. 19E02
9.43E02
1 .20E03
1 .03E03
7.21E02
9. 18E02
.05E03
.02E03
.01E03
.07E03
.OGE03
.37E03
9.22E02
8.28E02
8.66E02
7.94E02
7.79E02
9.05E02
7.07E02
6.30E02
1 .02E03
8. 19E02
8.81E02
8.95E02
8.80E02
1 .06E03
8.71E02
6.89E02
7.80E02
1 .32E03
1 .OOE03
1 .OOE03
8. 19E02
B.59E02
1 .33E03
1 .04E03
9.83E02
8.34E02
1 .06E03
1 .03E03
8.94E02
1 .22E03
1 .06E03
9.07E02
WATER-SOLU
PQ4 '
UG/G ,
1 .51 EOO
1 .97EOO '•'.'.
;
6.00EOO :
9.00EOO ;
5.00EOO '
2.75EOO
1 .03EOO
8.14EOO
4.67EOO
1 .06E01
2.50E01 '
2.07E01 '.,>
1 .50E01 : -
4.8PEOO ',"
2.93EOO
i
1 .89EOOi;
3. 07 EOO
9.00EOO
1.30E01 ;
3.00EOO
.65! EOO
.45; EOO
1 .70EOO
1.06EOO
2. 10E01
2.00E01
3.00EOO
• 1 .13EOO
.78 EOO .
2.20EOO
3.20EOO
1 .50EOO
1 .30EOO ' .
3.30EOO .
3.00EOO
3.00EOO •
2. 90 EOO
2.80EOO :>.
1 .90EOO ••'.:
1 . 90EOO •/
1 .30E01
1 .40EOO
1.20EOO
2.20EOO
KCL-EXT.R ACID-SOL
P04 .•; v P04 •['•
: UG/G ',:; j, UG/G \ N
• ' !
1 .50EOO
i ' •
' . 2.-19E02 '!
.67 EOOij : 3.I31E02,;'
1.36EOO
;i . .•. ; - jj>:
• • '-!.!;
1..33EOO
.40 EOO
4.62EOO
3.63EQO
4.22EOO
2.22EOO
.53 EOO
.37 EOO
i 2.10E02'
1 2.G6E02?
' 2.30E021
! 1.71E02
! 1.58E02"
D.16E02"
' 5.54E02
i 4.85E02:"
; 6.47E02,;
i 3.01E02''!
• - 3. 16E02 <
i 3.64E02!
'.90'EOOli 7.07EO'2'l
1.19EOO|| 3.0GE02/J
.: •-. ;fi, : 2.46E021
1.74EOO!| 2.10E02'i
1.44EOOJ" 3.78EO'2J
'.43 EOO
, • . .••"• i'1
,21 EO'O
.79 £00,
i ' .-'
.00 EOO
? , .•
.00 EOO
'• ',.' i •
•; ' ; • •'•' i
' "• ! • '
.54 EOO
.29 EOO
i' 2.37E02!
,. 2.G5E02..'
2 . 76E02'1
3.29E02I
3.21E02'
4.49E02
: 2.77E02:,
; . 3. 19E02 I
'• •• 2 . 90E02 ".
':. 2.38E02;
', 2.15E02
, 2.32E02
3 . 36E02 '
.90 EOOJ' 8.61E02
.90 EOQ
1 .40EOO
.90 EOO
2.43EOO
.90 EOiO
1 . 13EO'0
.51 EOO
.44 EOO
.41 EOO
3.97EOO
.36 EOO
1 ..40EOO
.77 EOO
.73 EOO
• 6.45E02,
' 5.47E02;
' 3.88EO'2
7.37E02,
: 4.88E02'
. 6.62E02-
6.84E02'-
5.85E021
. 5.77E02'
: 8.52E02
2.99E02
6.29E02!
. 4.22E02'
4.82E02
ifTOTAL' ORGAN 1C";. ORGAN 1C
!'i ,' MATTER 'r;:.' ' C
j; UOrCAL/G : .'','J , %
•;•;> a; IOEOI .,;i.j>;.
!i(! ':;;i 4 .90E01 ; •-, !'.•"'!.
'X Vi;7j30E01 '' .:ii
p :'| 7»30E01 '. ' j,'
1 •' ; 8:'90£01 " '•';'.}
;K. '•; 8.20E01 ".- ' :'i<-
i;; '•::; 8i20E01 : V-f;'
ji'.:;:;'; 2,90Eoi ;- vip
f -:1 g!'2'OE01 ' '.'
i; ': aliiOEoi '. : ':••'
.!:. >:6^90E01 '..vVi
;'f; ,:;ivl ;:34E02/;. • ;j
it ' 6^ 20C0 1 i\:
•iS:'''1 3i70E01 ; ";'f
•j:'*3i-40E01 -:: '!:•
;|: .• ;• 1 [-25E02 -':'>'A
j ' '". '• 3 • 07E02 >•:'
•-• .'•igi'ioEoi V:-.iv
i«',';'9'l IOEOI .•• 'i;;
jf ,;, 9I70E01 ;./".;"
!i •;' 7' :OOE0 1 ' '' ','
'90E01 ;;,:
i!',i :;'! 9v 1 OE01 '!' i;|
B'^^-gL OOE01 ••••';'^
i; ::! t:. 08E02 !.••' '<]•'
.!<• .1 1.03E02 •
|V ";f 6!. 50E01 ' . :"
.If • ' 9;. 30E01
t:',;i5!.40E01 V :•-.;
•j].::;;:9'.ooEoi i ; ;•
i' '..r 9i. >70E01 ' ;:
f. ':'j9:. 20E01 :ij':'i''
'• :' : 8'.70E01 •'•'••''"•
T;:-;,!9..40E01
y •• .8. 30E01 :: .
'•'•:" 8. OOE01 v '.'••'
./"i 8. 10E01 J':'''!
.97
' 1 . 38
'. .94
! 1 , 54
; 1 .60
•' 2 . 63
; 1 .26
.30
! .63
! .99
! 1.65
| ". 97
2 . 33
.69
.69
i I1. 64
'2.41
i 1 .55
, 1 .80
,1 .80
! 1 .25
.' 1 .74
! .72
i 2.44
i '.94
: 1 .50
2.17
2.04
1 .85
2.50
1 .02
1.41 .
1.68
1 .41
: 1 .97
2.53
1 .33
'1.18
1 . 42
-1" -.:•: 7'. IOEOI ,S.-V!/ 1 .22
-'' '^'- 6. 80E01 '.' -' '•: ' 1 .04
•:' ;;. 5.00E01 . ' 1 .46
1.50E01 , .78
-,- :', 8.. 10E01 i- ... ••': • 1 .42
\f '•'•> 7;.30E01 '.-Itv:'.; 1.79
li" •'; e'.40Eoi '-.'•'• -•' 1 .51
(•-.'•• i
ORGANIC
•'J :i r-
': MATTER
^4.02
,; (4 . 1 0
! '3,95
! i;3,.88
', :3 . 96
.14.46
11 J4 . 02
., ;2.94
5.40
'i :e.i8
I. 15.92
,5.30
V6.02
;'4.36
,' '3.75
i 3.53
5.01
•5.11
i :4.92
j '5,44
,!.:5.61
i ;:4.45
'i 14.34
|.';J4 ,13
; --4.85
\4.74
V:!4.26
!'.•'• 4 . 71
; ; ;4.96
'•',' '3 . 09
: ;4.65
i 3,95
i;:;5.95
.j '. 6 . 1 7
:i 5.76
! J4.79
! 5.80
•. 5.73
,5.67
"••• 5,61
M5.61
=.'!5.24
t;4.80
3.78
• 5.64
; ;5.99
1 5.91
PH
5.5
5.2
6.3
5.2
6.0
6.2 3>
5.6
5.2
c fi O'0—l
s'b -S O 0
5 a . . ,
. t> CT CT CT
^ '9 O I/) — '
5.5 -a i^
fi T :=r -"-"3
°t%J o c. =r
5.9 to 3 o
4.9 ._,- o -o
5.0 cu rr :=r
r+ — ' O
ro o -s
6.2 -• -S £=
5.5 ,-, •£_?
5.1 1C
5-2 cu ro 2:
5.2 3 X co
5.2 °- % 2.
5.4 O cu — •
-s o — '
(£3 c+ fD
4.9 CU CU CL
5.5 2. 2£
5.2 O fD cu
•*-4 o n>
5.1 T -^
40 <-*•
H •=* • 3- fD
5.0 O X
co "a c+
S. J -3- _j
6.2 O cu
6j\ t/^ C^
•4 -a ri-
5.6 rr cu
4.6 2- S
4.7 ro ro
4.8 " 0
4.9 cu -s
50 ms c*^"
• J a. rr
5.3 o
47 <-t--U
o rr
4.6 rt- 0
4 • g CU in
5.3 ~l~=r
cu
cr
i
fD
^"J
r^
-a LT>
o
o ->•
-s — >
^-o
* — . ~c
IQ
CU
Q. 3
Q °"
3
"£. c.
-s
0 -".
— it fD
l^ r+
o
-•• n
— ' O
• -a
o
GO
££
0 .
13
o
3
5;
rt
ro
-s
^r
fD
^
i«O
^_^
-a
cu
=5
a.
-^*
3'
^
fD
-------
(V,
YR DATE
76 131
76 31
76 31
76 31
76 31
76 31
76 131
76 131
76 131
76 131
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 134
76 134
76 134
76 134
76 134
76 134
76 134
76 134
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 134
76 134
76 134
76 134
76 134
COMPOSITED CORE DEPTH
STATIONS CODE RANGE
H CM
8
8
8
8
8
8
8
8
8
9
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
4
4
4
4
4
4-
4
4
6
6
6
6
6
6
6
6
8
8
8
8
8
9
9
9
9
9
9
9
9
9
3
3
3
3
3
3
3
3
5
5
5
5
5
5
5
5
7
7
7
7
7
7
7
7
9
9
9
9
9
1
3
3
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
- 2.
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
-1
-1
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
• • Vir. •
TOTAL WATER-SOLU ' :KCL~EXTR
P P04 ' ! P04
UG/G UG/G . UG/G
9.49E02
8.16E02
8.89E02
7.63E02
6.59E02
7.47E02
6.45E02
1 .05E03
1 .05E03
9.75E02
6.91E02
6.59E02
7.46E02
8.33E02
7.98E02
7.21E02
6.14E02
5.88E02
1 .08E03
1 .71E03
1 .32E03
1 .22E03
1 . 14E03
8.08E02
8.52E02
1 .17E03
8.26E02
7.96E02
7.79E02
8.91E02
1 .01E03
1 .18E03
1 .19E03
1 .36E03
6.92E02
7.55E02
6.80E02
7.02E02
5.15E02
6.32E02
6.5-1E02
7.06E02
7.04E02
7.42E02
8.47E02
7.13E02
7.60E02
2.80EOO
4.40EOO
3.40EOO
1 .40EOO
.20 EOO
.01 EOO
.19 EOO
1 .70EOO
1 .70EOO
2. OOEOO
.58 EOO
1 .60EOO
6.20EOO
1 .15E01
6. OOEOO
3.30EOO
1 .OOEOO
.15 EOO
1 .80E01
1 .50E01
1 .80E0.1
3.70E01
1 .10E01
1 .50E01
1 .80E01
1 .40E01
5.4QEOO
3.30EOO
6.40EOO
B'.OOEOO
5.30EOO
5.10E01
3.90EOO
2.30E01
2. 10EOO
1 .80EOO
1 .50EOO
1 .30EOO
1 .50EOO
1 . 10EOO
.18 EOO
.33 EOO
3.30EOO
2.70EOO
1 .80EOO
2.10EOO
1 . 10EOO
. 1 .42EOO
>'. .97ii£00
3.43EOO
.94/EOO
.41 ::EOO
.84. iEOO
.60' EOO
. ,77!!EOO
.77/EOO
.94 iEOO
.00 -EOO
:, .OO'IEOO
. .49' EOO
.86'iEOO
.00! EOO
..OOi-EOO
: .00;:EOO
.00 :EOO
5.10EOO
.3.00E01
, 5. OOEOO
5.60EOO
2. 10EOO
2. OOEOO
.00 EOO
3. OOEOO
4.30EOO
1 .60EOO
3.10EOO
4. OOEOO
3.90EOO
1 .30EOO
2.30EOO
7. OOEOO
.94 EOO
.65 EOO
.35 EOO
.46 EOO
.62 EOO
.34 EOO
.24 EOO
. .19; EOO
.90 EOO
1. OOEOO
1 1. OOEOO
.30 EOO
.04 EOO
ACID-SOL
•si < "'
P04 j.Y '
UG/G •;•]
5. 14EO'2
4.90E02
6.21E02
2.76E02
2.52E02
1 .89E02,
1 .94E02
3.45E02
3.45E02
3.30E02
1.50E02
8.50EO:1
1 .06E02
1 . 61E02
1 . 73E02
1 .36E02 •
1 .03E02 .
7.20E01 >
9.60E01
1.01E02
; ''
1.70E02
•:; -J
4.07E02
4.53E02
3.41E02
3. 58E02
3.01E02
3.46E02
5. 10E02
7.86E02
3.30E02 '
4.39E02
2.41E02
1 .97E02
2. 17E02
2.25E02
2. 20E02
3. 16E02
2.32E02
2.50E02
2.30E02
1.95E02
1.65E02
JOTAL- ORGANIC ; {ORGANIC *:! ORGAN 1C
: ' ! - 'i • ,"•; ''i- ''
;:' • MATTER •• ; ',,; c •( MATTER
.'< < 9.80E01,';<^!
"•* 9.60E01;'. .J jl
.:'; , 7.30Eor: .: .;'..<
. 7.30E01 , ! I'
1 .'50E01 '< '
1 .43E02 ; :j i
' 4.50E01 •'.' f;|
•;.!! f 9.40E01 •• • '•!
,'. ' 9.40E01 ., : ''•
'.i: 7.10E01 -.'I .I-].
•'•') '• ' .', : - '• v' .; i
;.: >'. :;07E02 ;-r; ';;'
•<. ' • J:i2E02 • •'";• !
, ;. .;05E02 ••;;-^
••.' ! ' ;'19E02 ; : "3
- I- .31E02 ':/! .:';,
;; ;.'7.60Eoi : : ;; !
' ; 4.40E01 '.;; ;
i" ' 7.50E01 '•)•'•'. j
:• ', 7.40EOT :'>'-'l'--
7. 10E01' ''': "••'•
: 2.60E02' ..:'i ,' i
: 7.70E01 , :;;
:f : a. 10E01 . ••! .; ;
; ; s. OOEOO :^i ;
'-.'I; 2.5'OEOI .".';. , :'
;/'; 9.60E01 '•'" : ;
': !' 8. 10E01 •''', v
: ;' 6.80E01 ii ': :
' • ; 1.01 £02 •-",.
' ; . 7.60E01 ;.' '
'.'.: 6.20E01 ,M
9.80E01 '• ;'
••; 2.20E01 : •
; 9.30E01 , :
:> 7.30E01.
i: 1 .06E02
:'.i 9.30E01 '•: ': '
' • 9.60E01; ".•. ;
' 4.80E01 .•''.' "
,' , 4/10E01 :.
', 4/60E01! '„ i:
' : 8.30E01 ;1 , '
• 1.18E02 ,: ':
j.i 1.21E02 :•••>.'
'. :- 1.18E02 ..' ' !
•:• 1.:61E02 • ' ' '
1 .56
.53
3.22
1 .33
.82
.72
.59
1 .39
1 .39
1 .73
1 .60
.79
1 .58
1 .83
1.11
1 .63
1 .20
.51
1 .22
1 .95
1 .56
1 .91
2.09
1 .15
.84
.88
1 .85
1 .41
1 .09
1 .50
1 .38
.89
.79
.26
1 .46
1 .22
1 .50
.92
.58
1 .05
.82
1 .05
1 .51
1 .62
1.58
1.54
1.23
5.34
'.[ 5.77
'.' 5.52
; 5.22
5.02
4.19
3.80
! 5.75
5.75
',i- 4.84
i 4.37
! 4.21
\4.29
i : 4.31
' 4.58
.. :', 4.43
:'i! 3.71
' ;.| :3.34
! 4.54
1 4.37
! ! 4.32
'•\ ;4.41
3.89
;.'-i 4.16
' 2.82
i 3.06
.; 5.95
j 5.88
5.84
5.97
5.82
.'•; 5.56
,i 5.29
5.12
4.73
4.76
,4.86
5.27
:• 13.29
4.78
3.89
3.95
5.49
, 5.44
• 5.04
4.74
5.07
PH
5.3
5.7
5.9
6.0
5.8 >
5.9
5.8
54 c~>
a.*» Q
5.4 "5
4.9 U
(0
6.0 cx
6.3
6.0
6.0
5.7
6.2
6.3
6.1
6.3
6.9
6.6
6.5
6.7
4.6
4.9
4.9
5.3
5.6
5.1
o>
cr
n>
o
o
rt-
(0
CL
-------
YR DATE COMPOSITED CORE DEPTH TOTAL WATER-SOLU KCL-EXTR ACID-SOLjOTALpORGANIC',' ORGANIC '- ORGANIC PH
STATIONS CODE RANGE
H CM
76 34
76 34
76 34
76 35
76 35
76 135
76 135
76 135
76 135
76 135
76 135
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 42
76 142
7^ 76 142
Co 76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
8
8
8
10
10
10
10
10
10
10
10
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4
6
6
6
6
6
§
6
6
8
8
8
8
9
9
9
3
3 •
3
• 3
3
3
3
3
5
5
5
5
5
5
5
5
7
7
7
7
7
7
7
7
9
9
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12 .
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
P
UG/G
6.80E02
6.17E02
6.53E02
8.54E02
7.95E02
6.40E02
7.64E02
6.90E02
6.38E02
5.87E02
5.35E02
8.93E02
1 .02E03
1 .05E03
1 .03E03
1 .20E03
7.45E02
7.49E02
6.99E02
1 .16E03
1 .02E03
9.51E02
7.97E02
1 .02E03
1 .03E03
1 .30E03
1 .60E03
7.B3E02
1 .11E03
1 .78E03
1 .81E03
1 .18E03
1 .15E03
9.75E02
1.02E03
P04
UG/G
1 .OOEOO
.90 EOO
.08 EOO
1 .98E01 .
8.80EOO
4.20EOO :
4. OOEOO
2.30EOO
1 .80EOO
1 .60EOO
1 .OOEOO
2.60EOO
2.60EOO
4.20EOO ,
4. 50 EOO
4.30EOO
3.40EOO
5. OOEOO
3.30EOO ':'•
8.50EOO '
1 .OOE01
1 .10E01
1 .60E01
1 .20E01
1 . 10E01
8.80EOO
8.90EOO
7. OOEOO
3.40EOO
1 .43E01
1 .30EOO
1 .50EOO
2.90EOO
.60 EOO
1 .30EOO
4. 10EOO
3.70EOO
2.80E01
1 .30E01
3.70EOO
4.10EOO
1 .20EOO :
.93 EOO
5.50EOO
5.30EOO
7.90EOO
6.40EOO
>04'
UG/G '
.03: EOO
.40 EOO
.10 EOO
3.00EQO
1 .40EOO
,65,EOO .
V.10EOO
.23 EOO
, ,00. EOO
.00 EOO
.00' EOO
.49 \EOO
,:.16"EOO
; .00. EOO
' .00 EOQ '•
,00! EOO
.00 ; EOO
.od 'EOO
'.OO-'EO'O
: 2.60EOO
5.90E01
5.10EOO
8. OOEOO
. 5.60EOO
3. 10EOO
2.90EOO
2.40EOO
2.10EOO
1 .40EOO
5.65EOO
1 .99EOO
.93 EOO
1 .03EOO
.93 EOO
2.45EOO
2. 10E01
3.30EOO
1 .60E01
6.90EOO
1 .90EOO
.17: EOO
.05iEOO
.00 EOO
4.70EOO
4.30EOO
4.90EOO
.23 EOO
P04 !•• ;jij ;
• i >
1 .44E02;:;,
1 . 11E02 ;i:-
1 .49E02 :f '•:'.'
3. 87 £.02 'i
2.47E02 M ••'
1.76E02 ., '
2.29E02 1
.'. • 't. :
1 ''. ' ,'
• -; ' ',-
2.55E02 ,v ••.
2.47E02>i;ii i
2.61E02;ij
2.46E02,; ''
2.74E02 ,;:".
2.41E02''
1.75E02 .;, , •
1.39E02; JJ. :
6. 1 1 E02 '!,;
6.21E02 ,'
6.37E02 !!'
7.43E02 ;.
5.58E02 'r '
6.40E02 j
6.73E02 >
1 . 15E03 •':'.
. , .. |
; ,
• - '• "i ; ;
2.99E02 !
3.67E02 t
1 .16E03 •'••
7.61E02 ,,
4.37E02 '"*
4.33E02 '-'•••
3.83E02 ; ',
3. 79E02 '••-:•;
•'"'•• •
( •
• : • /'
;MATTER!., i;;r.;;'
• , ~* •'. • .1*' ••
. 3.-30Eoi':.-'':1r"
7.50E01 ;!': ;!<:
2.20E01 .''::':'
•1.06E02 • '::'
1..29E02''1' ••••
1. 43E02, •-.'
1 4.80E01 "' -I •
5. 10E01 ,';:;
5. 10E01
1 .06E02
3.70E01 ,, .'•'
; 8.00E01 "•':•' '\ ••:•••
:. '7.60E01 '.:;'M-
: ,7.50E01';, '•• •;..-.'••
; 7.60E01 . '; '•'•'•
' g.ooEor- ' '••
. 8.30E01 ;,- ;::
i 4. 70E01. ':•'•!•;.
; 2.'40E01 '•' 'i ' •'•'
.'5.40E01 :;": '••'".. I
6. 10E01 ' ••• 'y
4.30E01 i ' ••;•;
.'5, 50E01 '/• l!; ,'•
! 7.60E01 -:'- . .
7.50E01 : ;;..-
! 3.30E01 ': :t
•,;1..80E01 '•>'•...'•*:•
• • -• i '•:,'•• .';':j-
• : . :.:' •' ;•'
. ; 1
• ' :' . ' ' J . ''
' ' 1 ' '• ~-
9.70E01 ; ;
: 9.30E01 ' -,;r
8.10E01 ; :
:0.60E01
1.09E02 ;
. 7.20E01 i
' 4.50E01 ; ' X'
'3.00E01 i ',,-"
f t
••• ' ' ' \ i '!•"'
'. i' ' :
c
1 ,30
1 .58
1.19
1 .52
2,18
4.43
1 .34
1 .69
1 .31
2.10
1 .26
1.19
1 .33
1..28
1 .06
1 .17
.94
.98
.19
1 .58
.96
1 .12
1 .21
,89
1 .08
.59
.53
1 .25
1 .07
.94
1 .34
1 .41
1 .10
.33
.98
1 .30
1 .13
1 .13
1 .63
.95
1 .42
.74
.84
.79
1 .80
1.51
1.54
;MATTER
•:],'
4.80
; 4.59
4.78
• •. 4.73
i.v3.76
4.83
5.03
:, 4.60
'-; 4.30
, 3.77
] !
'!• :''4, 13
v.;1" 4.38
'.,! 4.37
|:; 4 . 28
i--'4.94
! 1 .24
!''! 3.06
•'',-•• 4.87
,| 5.14
-i 4,58
I 5.07
; 4,22
ii- 4,31
I 3.41
I 3.25
I' 5.25
! ' 5.64
5.64
1 .98
5.62
• 5.58
, 5.34
4.50
.'• '5.02
! 5.73
5.16
'. 5.29
5.45
i 5.38
4.53
* 4.42
5.37
5.27
5.23
5.78
5.1 **
5.5
5.8 0
6.0 o
5.3 =
5.3 -•".
4.9 ^
5.1 ro
a.
5.5
6.0
6.0
6.9
5.2
5.3
6.6
6.8
6.8
6.9
6.9
6.4
6.5
5.2
5.0
4.9
4.7
4.9
4.9
4.9
—I
OJ
(0
'
.
, — »
o
o
r+
~j.
3
C
fD
a.
* — *
-------
YR DATE
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 145
76 145
76 145
76 145
76 145
76 145
76 145
76 145
76 145
76 145
76 145
76 145
76 145
76 145
76 145
76 145
76 149
76 149
76 149
76 149
76 149
76 149
76 49
76 49
76 45
76 45
76 45
76 45
76 45
76 45
76 145
76 145
76 149
76 149
76 149
COMPOSITED
STATIONS
H
8
8
8
8
10
10
10
10
10
10
10
10
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4
6
6
6
6
6
6
6
6
8
8
8
9
9
9
9
3
3
3
3
3
3
3
3
5
5
5
5
5
5
5
5
7
7
7
7
7
7
7
7
9
9
9
CORE
CODE
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DEPTH
RANGE
CM
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
IB -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
TOTAL
P
UG/G
6.34E02
8.99E02
7. 14E02
7.64E02
6.55E02
7.75E02
6.70E02
8.53E02
WATER-S.OLU
P04
UG/G
5.70EOO
3.60EOO
3.30EOO
3.80EOO
2. OOEOO
1 .80EOO
1 .40EOO
2. OOEOO
7 .20EOO
1 .60E01
2.30EOO
1 .20EOO
2. 17EOO
4.54EOO
1.19E01
2.02EOO
3.89EOO
2.91 EOO
2.46EOO
.85 EOO
1 .59E01
1 .78E01
1 .09E01
1 .06E01
1 . 16E01
8.99EOO
9.73EOO
7.04EOO
6.80EOO
5.0QEOO
2.40E01
3.60EOO
5.60EOO
1 .30EOO
1 .OOEOO
1 . 10EOO
3.39EOO
8.72EOO
6.86EOO
5.77EOO
4.64EOO
2.74EOO
2.97EOO
1 .93EOO
2.50EOO
4.10EOO
6.90EOO
KCL-EXTR ACID-SOL TO
• ••••;'-;:. :-..- ,
P04 '.','•• P04 ''!. i i
•; UG/GJ. UG/G;j! ''
'2. OOEOO '< !;!, .'-
1 .90EOO .'.; ' !f !
1 .70EOO ; ". ,,
1 .10EOO .: ' ij.-
:.80 EOO 3.80E02
.79 COO 3.04E02.:
' . 16 EOO 2.74E02' ':
:.50. EOO 2.92E02'
1.70EOO 5.07E02 ;
1 .60EOO 3.25E02
.87 EOO 2.56E02
'!. 16: EOO 1.95E02* .':
1.24EOO ;'^!;:-:
4.49EOO ' i::!, , :
1 .94E01 '.i i'li- •'
1 .26'EO'O . :T; ' •
•1 . 15.EOO . j "•••;•
:.38 EOO •.:•:.- i
'.591 EOO "•' '•:!':
.67i;EOO •-.••>' :
2.92EOO . ' ii; :
'9.41EOO ,!• ; •; ••
3.70EOO ;i ; . ,
4.05EOO :: !'
4.01EOO ,. ' •'
3.35EOO : •'•
6.31EOO > '••',. •'
8.65EOO :. ':!•'. :
;i.i7Eoo : :\ '''.-
.00 EOO ; :i ... ;
7.70EOO : .
.07 EOO i
.37 EOO , !
.53 EOO
.75 EOO ! ' .
2. OOEOO ' i"
.65! EOO
'2.25EOO
.97 EOO
1. OOEOO
.BO EOO ; :
.32; EOO !|
.79i EOO
.93 EOO
2.40EOO '
.61 EOO :
:1.70EOO
rAL ORGANIC ORGANIC
' i
;MATTER i '••';. ' ' C
;G-CAL/G , . ; %
'",•• -I'1 ' •'-• ;::; ; 1 .03 '
.|V;,; ' v V'1. ; ^^
, ;jt.' ." i '';'•;. '•• . 98
: •.!' ;•[.. ! :.' """'.. 31
;1. 41E02 ••'!•.. ;:.72 :
1. 1 1E02 -. 1 .31
• 8. 50E01 1' ' 1 .01
;8.30E01, •••••; > 1 .21
9. 30E01; jfr : • il .43
9.70E01 '•.'• :'. '.;.'1.11
;g^90E01- ;ji , i -(1 .61
;8. OOE01 ';;•>• j1, .73 :
• ••!' ):, • • ••('.:• '»•'! '
* ' ii'it ..' r • ' • ; i . 1 • ( • - .
'.']'' '.•••! ;'- • ' * .'-
i '"•'••••}.- ' . " '
'; :^ ' !'i I "t- ;'^ *30 •-
••-... . i
' ;• •' ' '' :''',: »07 '
i •' ' '.<•','*
• 1'': .' .' '•'''• ', ' '
'•'. ''•' '•• ' • i . •,';'• ; "
' v"1'' ;; : i .'.'••• -' ;
::-, •!• !'! *'•' :!'
: '•:' -'•'- '' ' '.'• "•
'- •'••' •. ' .••-'• 1 .56
,i: • . : '. , '.96
J -.;-,- ' " 1 .30
.'- , : : •' ' ;.89
.v • : ::.;T ' '.si .
;••'' ' .' ' , .".; .37 '
:;1 ; ' '•/•'.'
'' : '••• \
i' ' ' ' • •' :
: ,' ;
; i • • • i ' , • ' •
:' . ' !-: • "1. 13
•'-.;•••• v 1 .34
'••-,- -':•' , .1.23
.ORGANIC PH
;;MATTER
; 5.25
; 5.01
. "4.92
! 4.96
i 5.09 5.4 -c,
5.04
i.5.00 5.4
4.89 5.7 o
; 4.95 5.8 §
; 4.33 5.2 n-
;:4.40 ^*
3.63 5.0 c
':•', CX
•,
•;
1 :
1 t
5.70
5.98
6.14
5.98
••': 6.04
4.69
4.20
4.69
5.83
5.86
5.68
cr
—_*
n>
C.
CD
Q-
-------
YR DATE COMPOSITED CORE DEPTH
TOTAL WATER-SOLU KCL-EXTR ACIp-SOL TOTAL ORGANIC ORGANIC ORGANIC
PH
STATIONS CODE- RANGE P P04
# CM UG/G UG/G
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
Co 76
en 76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
149
149
149
149
149
145
145
145
145
145
145
145
145
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
161
161
8
8
8
8
8
10
10
10
10
10
10
10
10
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
6
6
6
6
6
6
6
6
10
10
10
10
10
10
10
10
1
1
9
9
9
9
9
3
3
3
3
3
3
3
3
7
7
7
7
7
7
7
7
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.
3.
1 .
1 .
80EOO
20EOO
50EOO
20EOO
.46 EOO
4.
3.
1 .
1 .
4.
1 .
1 .
1 .
1 .
5.
9.
3.
1 .
1 .
2.
1 .
:?.
8.
7.
9.
8.
8.
7.
6.
1i
8.
4.
2.
2.
2.
1 .
2.
3.
2.
3.
2.
1 .
79EOO
93EOO
40E01
01E01
42EOO
81EOO
78EOO
42EOO
96EOO
98EOO •
14EOO, .'..
42EOO !:.
95EOO :.
86EOO ;
42EOO
30EOO
26EOO
42EOO
58EOO
50EOO
22EOO
48EOO
90EOO
55EOO
77E01 :
91 EOO
63EOO
75EOO
08EOO
48EOO
71 EOO
37EOO
05EOO
81 EOO
66EOO
21 EOO
92EOO
1.47EOO
1 .
19EOO
1 .07EOO
2.01 EOO
3.
19EOO
P04 P04.
UG/G UG/G: I'
:.74 EOO
.53 EOO
.33 EOO
. <4 EOO
.33 EOO
.83 EOO
1 .57EOO
2.99EOO
.50 EOO
.68 EOO
.?£ EOO
.56 EOO i
.25 EOO ,
2.41EOO ' ,
,3.<$4EOO ,
.88 EOO <
2.85EOO I '
';.00 EOO ,
.00 EOO ,
.04 EOO
3.04EOO I )
1 .72EOO
3.15EOO
1 .02E01
3.'28EOO ,
4.;34EOO , ] '
1 .94 EOO
1 .40EOO
3.29EOO
2.64EOO
.42 EOO
4.34EOO
.40 EOO
MATTER
G-CAL/G
1
1
.
•
•
i
t
,
'
» i
«
II ' '1
i ', i -1
I 1
(,
i J
*
I •
, 1
C '•"(;!'
% ••'•••• ','.
.20 , '• ';i
.31 >
93 '
31 .-:;;
39 : :'r '
• \
• ',
, i
. 1 1 ;••: si
•o" ,'!
.15',:,U
.17 •!';:;'
90 :•'!
.24 ;
79 •
e? > ••;;•
.02 -• >'•:•
2.00 '; Y
,
1
I .1
1
.
•
.
1
1
1
*
.32 EOO >
.77 EOO , }
.12 EOO
1.J14EOO
.'47 EOO
.00 EOO ,
.13 EOO
.27 EOO
...14 EOO
.12 EOO
.37 EOO
3.60EOO . ,
2.39EOO
,
•
•
' i 1
I 1
•
64 : : <
.15^ !; ''
.01 ' :-..) :'
.19 -J
64 'i!
57 ..;
97
.13
.32
.45 .,: :
84 • j
si :
e? ;
19 : -•.;
56 :
90
.08 ,' '
96
.17 '
so '••:
.80
.• - 1
! • -
.35 ;i'
MATTER
%
5.80
5.77
4.65
4.24
4.39
13.64
23.90
11 .31
12.49
4.06
3.74
9.18
3.14
5.35
4.41
5.26
13.16
4.69
5.03
4.51
2.72
7.03
8.49
15.38
16.81
9.87
4.35
3.48
3.72
14.44
2.93
14.06
13.33
16.27
5.19
4.67
14.13
——I
cu
cr
ro
O
o
rt-
_j,
3
fD
a.
o
3
d-
C
fD
CL
-------
YR DATE COMPOSITED CORE DEPTH
TOTAL WATER-SOLU ' KCLrEXTR ACID-SOL TOTAL ORGANIC ORGANIC :;ORGANIC
PH
STATIONS CODE RANGE P
If CM UG/G
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
CO 76
o 76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
176
1
1
1
1
1
1
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4
6
6
6
6
6
6
6
6
8
8
8
8
8
8
8
8
10
10
10
10
10
10
10
to
1
3
3
3
3
3
3
3
3
5
5
5
5
5
5
5 '
5
7
7
7
7
7
7
7
7
9
9
9
9
9
9
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
5
2
2
3
1
1
1
9
2
1
1
1
8
7
7
5
2
5
2
2
1
,
4
7
1
5
3
3
2
1
2
1
3
1
1
1
.
.
2
3
1
3
3
1
2
1
3
PQ4
UG/G::
.77EOO
.57EOO
.50EOO
.55EOO
.85EOO
.25EOO
.27E01
.62EOO
.20E01
.59E01
.28E01
.01E01
.67EOO
.43EOO
.30 EOO
.20EOO
.83E01
. 10 EOO
.OOEOO
.10EOO
.20EOO
44 iEOO
.39EOO
.66EOO
.63E01
. 12EOO
.01EOO
.38EOO
.25EOO
.37EOO
. 10EOO
.30EOO
.80EOO
.90EOO
.OOEOO
.50EOO
83 EOO
54 EOO
.30E01
.80EOO
.06E01
.92EOO
.49EOO
.85EOO
. 1 1 EOO
.99EOO
.03EOO
. < P04 P04 > MATTER C
. UG/G; UG/G, ' G-CAL/G %
3JV1EOO '
U88EOO '
1 .59EOO
2.40EOO
1*4:1 EOO i i
•' 11. 15EOO i
5!.'50EOO
4V43EOO ,
'1.25E01 '
6104EOO
3. 7,1 EOO .
5.34EOO
3.92EOO ' '
3.'24EOO
3. OOEOO , , 1
2i.OOEOO
; 1 •, 12E01
2i.60EOO
-.83', EOO
J 79'' EOO
.86'j EOO I
.63; EOO
.38' EOO '
. 5,1 r' EOO ' ,
1 .73EOO
.52 EOO
.32 EOO
.24: £00
.15: EOO
.33 EOO
2. OOEOO
1.06EOO
2.10EOO
.61: EOO , ."
.31 EOO. • ' , :' •
.82 EOO i '
.72' EOO : . , ' •
. 64| EOO • j
4.89EOO j
1.09EOO :/ ' .
.69 EOO ''• i
.46 EOO ' ' . '(
.27 EOO - i
.09' EOO ' ,
.12 EOO
.13 EOO ''••••:. .
2.18EOO :
I
i '.
r
' '
t
i
1
. 1 .13
,. 1.33
1 .13
i .60
1 .56
.28
.40
.92
.68
. '•'.' 1 .30
1 .22
• ••• !; 1 .42
"':' .;'•'.-• 1.24
,' ; :. . •, •• 1.13
: 1.11
.56
''. ' i
. • "' ',•<•'•
J ' ,
' - '
• 1.18
i MATTER
ii % -
i '
>•
i '',
i
'i ! •
!i •. •
•'!i! . '•
•• ;'3
•:: •, '5
i:: 5
, 5
I •• 5
' '.A
i ':3
: • 2
I '
i
i
4
4
4
4
4
4
4
3
.34
.76
.43
.41
.78
.45
.41
.97
.56
.83
.86
.84
.87
.54
.04
.68
o
o
3
c:
(T>
Q-
QJ
CT
fD
O
O
CO
CL
-------
YR DATE
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 1 76
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
^ 76 176
--J 76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 203
76 203
76 203
76 203
76 203
76 203
76 2?3
76 203
76 203
COMPOSITED
STATIONS
a
1
1
1
1
1
1
1
2 3
2 3
2 3
2 3
2 3
2 3
2 3
2 3
6 7
6 7
6 7
6 7
6 7
6 7
6 7
6 7
6 7
6 7
6 7
6 7
6 7
6 7
6 7
10
10
10
10
10
10
10
10
1
1
1
1
1
1
1
1
2 3
4
4
4
4
4
4
4
4
8
8
8
3
8
8
8
8
8
8
8
8
8
8
8
4
5
5
5
5
5
5
5
5
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
5
CORE
CODE
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DEPTH
RANGE
CM
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
.24 -30
24 -30
24 -30
24 -30
24 -30
24 -30
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
TOTAL
P
UG/G
1 .18E03
1 .26E03
1 .20E03
1 .16E03
1 .11E03
1 .01E03
1 .04E03
9.39E02
1.18E03
WATER-SQLU
P04
UG/G '.
2.00EOO
3.20EOO:
3.42EOO
4.23EOO
3. 17EOO
3.49EOO
i.eoEoo :
7.70EOO
1.68E01
1 .59E01
1 .31E01
1 .38E01
1 .31 E01
6.81 EOO-
2, 59 EOO ,
2.57EOO
1 . 15E01 :
6.47EOO,
4.44EOO
5.64EOO
4.78EOO
2.02EOO
1 .34EOO
1 .34EOO
1 .34EOO
1 .34EOO
1 .34EOO
1 .34EOO
1 .34EOO
1 .34EOO
2.09EOO
3.59EOO
3.46EOO
5.49EOO
1 .69EOO
2.71 EOO
1 .59EOO
1 .80EOO
3.15EOO
2.28EOO
2.52EOO
1 .89EOO
2.39EOO
3.46EOO
2.71 EOO
1 . 18EOO
1 .41E01
':KCL-;EXTR ACID-SOL tOTAL1; ORGANIC; ORGANIC '; ORGANIC
•". * PQ4 . P04!-"!i' . •; MATTER:-;;:I| • ; c '••''•''.•'MATTER
UG/G UG/G';.!;;. LG-CAL/G •,:'- i % ". , • %
.81 EOO
.99 EOO
.64 EOO
1 .24EOO
1 .02EOO
.62 EOO
1 .62EOO
3.64EOO
6.32EOO
4.86EOO
3.51EOO
' 5.53EOO
3.54EOO
4.56EOO
5.86EOO
4-27EOO
.5.37EOO
. 3.02EOO
1 .87EOO
1 .09EOO
2.98EOO
2'.23EOO
2.43EOO
2.43EOO
2:.43EOO
2.43EOO
2.43EOO
2.43EOO
2.43EOO
2.43EOO
'1 .85EOO
1 .71EOO
1 .90EOO
2.33EOO
.89 EOO
1 .48EOO
. 3.83EOO
1 .14EOO
3.90EOO 3
8.61EOO 2
2.56EOO 2
V.89EOO 3
3.27EOO 2
5.36EOO 2
4.80EOO 3
2.29EOO 1
3.12EOO 5
;•(<• • i: 'r. :: •. .Mi/,:j ';'-' M .13 • '.;>.!•,••,
'•:•• U:1"' -,'• h7-.':' : vi<.i.,::. . • 2.33 '••';'•''
-i'.!V ' .!'!";- '•-••• . i . :••'•'•'• •: 1 .22 ' ;'-:'
• H'!; ':•!?':- "•.!,: :<;-;.: .89 .;:•
''' • . 1 .96 •"
i .I-'- .. • ;.:•'.••;. '•' :• •• "•. ., .71
,.!- '.1-:-. .' • -•• .-..•::;•' 1.12 • :
: ••!;'•.- ".•( ',-•' :.-:.::!- '• : : 1.05 -,- *
I ..:' ••. "••'•'•.',••..•••' 1 .33
.'.. . ;-.; '..: •:•!:. : .84
• H ::., -; :.^?:i V- n:, - . "<••& ' •!;'
/,MJJ: t /:||:i. t "':,i;is'. j-jMi «32 ;' :ji.
'..•' "• .'! ' - ;'•. ' 'i,'1'-" :' '••' ••'''' ''>''; '''•' i : .«::
.' 'ii!'.:-':'- ..'
'• ';j:';i- :i '
l' '';•.• : -
.. ': :;;
'• '! '''. '
. ;, !,
' :'.'!' ' ;-
':' i, ' '
•• [,',:. .'.: ''•'
•' Mi!'- •'• .;
" 1. .'• -
i- ' -
r '. .'. '
. ; ;'''-:
'*!'{•' '• .;•
••:•• I-,'-
. ': '- 'V
? •. ;
. 26E02
. 73E02 •;.:•:'
;• • . • ••••-•• . >; •( t; • ',-•
• -r\. •.•••• • - .;•: •: ' • '•• i , ; ..
: ]'.'•< '.•'•: ' I- '• .'•',''•
.'. •/ ••'•>:•
'. . .t!.,':: . ' j
. ••• •-. .• V . 1 . « • '
-:•;'• '^••'l'- '- '-v.
h'i.1,, :••<; •.-•:•'•: 'i LOO 'V-;
!--i ' ' .,]i :>••• 1.17 ' ' "<
;;•< •; .••:••';•.• - 1.44 • ;. --.. ..
VVV. . ; '! • '•;. 1.06 ' . :.
.:.'-,';:;: .; M;' , ''.r • 98 '• '•
•.••'•.• •:'!;.•.••.• ' 1.31 -.-.;
'"::•••• 'v •'••'• .91 • ':
•••• "• ' • ,i;--' • .38 • ' r
. : ';.!'.: • .71 ' ,.':'
' -i •• - '".I .•,.." 1 .18 . -
.: . • -,.-;: • •.'. '.si .• ; : .
;•>;',• :| :•:• ;•;•' 1 .38 -. •'••!,
vi-i--'; ':?;• :;;••• --:' 1.43 • •.'';<'''
'••'..- ••• .-.•••.•.- 1 . 1 2 •.
•-.:•• '' , ••:,. '''•:'' ::> .65 . ' -:-
:. •"•-.'• " '" '•'• ('.' v, .69
8.50E01 1 .35 . 3.72
;7.30E01 ..,' 1 .04 3.72
.21E02| i, 9.40E01; ;•. 1.07 .,,3.82
. 27E02 i7.70E01 • 1.16 3.91
. 06E02 •• t;;9.30E01 . ; •' 1.01 4.18
. 17EO!2 • j'7.00E01 '1.44 4.29
.48E02 .07.00E01 .93 3.80
. 28E02 .. 3.00E01 .87 3.27
.78E02 '..'5.50E01 . 1.15 ,4.80
PH
5.9
5.2
5.6
5.1
6.6
7.0
5.6
5.2
8.1
CJ
cr
o
o
n>
ex
Z3
d
ro
O.
-------
YR DATE
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
Co 76 203
CO 76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
COMPOSITED
STATIONS
H
2 3
2 3
2 3
2 3
2 3
2 3
2 3
6 7
6 7
6 7
6 7
6 7
6 7
6 7
6 7
10
10
10
10
10
10
10
10
1
1
1
1
1
1
1
1
2 3
2 3
2 3
2 3
2 3
2 3
2 3
2 3
6 7
6 7
6 7
6 7
6 7
6 7
6 7
6 7
4
4
4
4
4
4
4
8
8
8
8
8
8
8
8
4
4
4
4
4
4
4
4
8
8
8
8
8
8
8
8
5
5
5
5
5
5
5
9
9
9
9
9
9
9
9
5
5
5
5
5
5
5
5
9
9
9
9
9
9
9
9
CORE DEPTH
CODE RANGE
CM
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
TOTAL WATERJSOL'U '••
p P04 ',:
UG/G UG/G
1 .55E03
1 .54E03
.24E03
. 19E03
.30E03
.48E03
.B6E03
9.66E02
9.70E02
7.81E02
1 .08E03
9.11E02
9.13E02
1 .07E03
1 .15E03
6.30E02
9.33E02
9.09E02
9.43E02
8.91E02
8.42E02
7.94E02
7.71E02
2.93E01 i
1 .53E01 • '
4.80EOO. :'
1 .33E01 ;
.80 EOO .
.40 EOO
.63 EOO
. 2.00EOO
1 .94 EOO
1 .57EOO '
2.58EOO,
2.08EOO! ''•'
2.60EOO I
1 .27EOO • .,'
. 1.57EOO !
2.07EOO ; '.
.22 E00;' !
1 .15EOO :•
3. 14EOO • ,
1 .85EOO
2.19EOO, '
1 .35EOO
1 . 10EOO-'. ;
2.83EOO
3.84EOO :
2.67EOO
1 . 74EOO ! !•
7.50EOO
2.52EOO "
1 ; 91EOO;
1.28EOO: ,
8.28EOO
1 . 19E01 ;
7.02EOO
1 .30E01
5.90EOO
, 9.49EOO
5.27EOO
7.38EOO :
1 .27EOO
2.47EOO
1.85EOO !
1.60EOO
1 .60 EOO .
1.49EOO i
1.01EOO
.87 EOO
•KOL'TEXTR
• ''-h'.
''P04 •
UG/G
!l :'07E01
:3.'65EOO
ACID-SOL .TOTAL ORGANIC! ORGANIC;': ORGANIC
'•'!.!•. ji i :-' ' ' . >.
,l)04-, . M'- MA.TTCR ! •':'• i c :•; MATTER
UG/Gi; ' M! G-CAL/G'.'; I-;;': %'•'<' %
7.83E02
6.44E02. "i
i. 5.90E01'';:/. -
I-: 4.i60E01 •'•'':•• '••
'T;:. • 5.02E02 : ii'j6.60EOl' ,^ • •
2/32EOO
3.!27£00
1 .;73EOO
1 .29EOO
.86 EOO
.72 £00
.96, £00
.64, EOO
1 .;13EOO
1 .34EOO
1Y49EOO
1 .90EOO
.16! EOO
.16' EOO
2;32EOO
.96 EOO
1 J17EOO
1 ;'10EOO
.97 EOO
:. 84" EOO
2.02EOO
1 :36EOO
'.75' EOO
1 ;57EOO
2J04EOO
1 .'78EOO
.72 EOO
3/71 EOO
1 .69EOO
1 .65EOO
2.34EOO
1 : 5.0 EOO
1.76EOO
1 .22EOO
.64 EOO
1 .08EOO
.30 EOO
MS EOO
.10 EOO
.10' £00
.10 EOO
.26 EOO
5.19E02 I.
5.27E02 ;';'
4.91E02 :\'
4.66E02 .•'"-.
2.94E02 !•
2.05E02 V1
2.57E02 :'i'
3.06E02, i
1 .95E02 ,'•'.
2.89E02. : '•!''
1 .67E02 !.
4.29E02 ':.':'
2.21E02 :•!•.
2.55E02 i'.
\ .5.80E01' . , :
•'I4.40E01I ':;;' '•
\ 1 .60E01,/ .',• i
I '5.00EOO' " i:
-:G.-30E01: '•:-•">
j. 9.60E01 ..,
::: 8.80E01i; ' J* -r. .
f:'-7.20E01,: , : ',!•
.^•e.-eOEOI;,:. . '
I : 7. 30E01 }•!,,:;, .-•
jf,'2'.;70EOi,:;:jv' :.
[••2..-30E01'- '-\: •'
i\ 4. 'IOEOI is:-'''. ••
i -e-BOEOl!;; ' :
3.55E02 ;-:sil.'-'5.90EOr!'.v i
3.94E02 •;
2.32E02 ' I
2.24E02 .',:
2.35E02 .'•'-
1.95E02 :l;
';
•'i '::' '
' '••'• • ; '••'!
1 t: ! . • '
• " '. i •
- ., "l .' • '.
• u ' • !
' " >••
".' -
', ' '
'•*'•.• ' ! •
• . "'••' ':
'
.. .
! '* ' ' ' •• '
••-.,'
1 '
.,'.•
"•''-' ' :'
f 6.70E01! • !
,';7.90E01L :
; 6. OOEOi;. ' , '
5.60E01
!:.i4.3pE01,;. ..;•;
':,;..;.- '• •' ;•:/'•"'' • '•
• ' '•' • '•'• ';'• '
i : ' '• (
\ '. : ' "' ' < •
i '• ' ' ' '• ' '• '
' '' ' 1
". ' • . ' .' ,;'' . • .'
\ ' ''<•':
1 . • • ' ' ' - ' '
*. " • . ' . ; : ' -' \
'' ' ' - ' ' • ' " j
,.j.' - ' . •
'• '". ! i ..
i . - •' ' • , . ''
' ' '•* ' i •'','•'•.
f ' •. : '. ;.'
!:'. . ''/ li
1 .37
1 .18
.82
1 .17
.94
.65
.67
1 .00
1 .09
1 .28
1 .26
.82
1.45
.70
.38
.86
1 .24
1 .42
.79
1 .22
1 .06
.76
1.01
ji : 4.91
"!l:l 4.58
i 4.68
^.' 4.60
;:; 4.35
', 4.09
'!" 3.20
! 4.58
•i 4.84
; :|; ,' 4 . 55
•':'.'.•• 4.80
:,|.i 4.63
i ' 4.73
'''!'i 3.97
,; 3.79
'!'"• 3.24
",'•• 4.46
-.:!•• 4.35
.!•!• 4.18
4.30
:: 4.01
. ;': 3.93
3.80
4.29
: 4.42
. 4.93
. 4.84
6.34
1 8.44
i 5.65
49.13
V 5.06
4.98
;: 5.76
.91
' 5.26
4.38
5.73
4.10
6.44
1 . 4.90
; 6.11
5.60
5.35
, • 6.62
5.57
PH
6.6
6.5
6.3
6.7
7.2 -£,
7.3
5.9
5.3 0
5.6 §
5.8 c-fr
5.9 3'
5.8 c
5.8 g.
5.5
5.3
5.7
5.5
5.4
5.8
5.8
6.5
5.2
5.1
cv
cr
O)
o
13
C.
fD
Q.
-------
YR DATE
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 287
76 287
76 287
76 207
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
_, 76 287
0 76 287
0 76 297
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 237
COMPOSITED
STATIONS
H
10
10
10
10
10
10
10
10
1
1
1
1
1
1
1
1
2 3
2 3
2 3
2 3
2 3 '
2 3
2 3
2 3
6 7
6 7
6 7
6 7
6 7
6 7
6 7
6 7
10
10
10
10
10
10
10
10
4
4
4
4
4
4
4
4
8
8
8
8
8
8
8
8
5
5
5
5
5
5
5
5
9
9
9
9
9
9
9
9
CORE DEPTH
CODE RANGE
CM
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8 .
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 -30
TOTAL WATER-SOLU
P P04 :•'
UG/G UG/G :,.
9.24E02
9.85E02
1 . 18E03
1 . 10E03
7.97E02
1 .08E03
8.39E02
7.68E02
1 .28E03
1 .29E03
1 .31E03
1 .46E03
1 . 10E03
1 .16E03
1 .27E03
1 .22E03
1 .04E03
1 .13E03
1 .01E03
1 .41E03
9.99E02
1 .12E03.
1 . 10E03
1 .38E03
9.98E02
9.47E02
9.54E02
2.01E03
1 .09E03
1 .02E03
1 .12E03
1.20E03
1 .02EOO
1 .21 EOO
1 .27EOO
5.28EOO.
1 .49EOO
1 .73EOO
1 .56EOO
.40 EOO
2.30EOO
1 .80EOO
3.80EOO
6.30EOO
2.10EOO .
2.70EOO
1 . 40EOO
1 .OOEOO
6.60EOO
6.20EOO
5.20EOO
6.80EOO
6.50EOO
4. OOEOO
3.30EOd
2.90EOO
2.40EOO
2.50EOO
2.70EOO
1 .80EOO
1 .30EOO
.88 EOO
1 .20EOO
.91 EOO
1 .50EOO
2.90EOO
1 .80EOO
2.60EOO
.99 EOO
.66 EOO.
1 .90EOO
2.40EOO
.w$
KCL-EXTR
P04 '';••
.79 EOO
.64 'EOO
.'00 'EOO
2.38EOO
.34 EOO
,00 EOO
.76. EOO
.35 EOO
2.10EOO
2.40EOO
3.10EOO
5.70EOO
1.70EOO
1 .70E!00
• 00 ;EOO
5.40EOO
. Z.OOE'oo"
1 .27EOO
•1 .90E001
"1 .OOEOO'
2. 10EOO
1 .90EOO
2.40EOO
5.60EOO
1 .40EOO
. .96 .EOO
'.94 EOO
-, .50 EOO
.77 EOO
2.60EOO
1 .60EOO
2. OOEOO
1 .70EOO
1 -40EOO
3. OOEOO
1 .60EOO
.34 .EOO
.20' EOO
1 .60EOO
.73 EOO
fc,
ACID-SOL TOTAL ORGANIC ; ORGANIC
t '
P04 •' MATTER C
UG/G ( G-CAL/G %
l
I !•
f i'
!
4.63E02
5.35E02 i ,
5.95E02 '•••
7.60E02 '
3.91E02 )
3.86E02' ;'
3.95E02;'!'
4. 14£02< r
1.02£0$ !!
9.02E02 '::
9.03E02 ! '
8.64E02 •' •
7.34E02 ;
7.50E02 -
9.52E02 •
7. 51 £02
4.27E02
4.79E02 •• ;..
4.32E02 ';!;
3.54E02 .•',-•
3.40E02- ,:
3.89E02 . •'•
4. 87E02 -
1 . 03E03-'
' 3.78E02 -',•'
3.18E02,
3.33E02 :.-,'
4.22E02
3. 17E02
3.35E02 !
3.92E02 '
3.38E02;*;.
!
1
9
1
1
1
'=.9
,1
..•7
:;• 4
a
•6
: 7
7
6
: 5
: 4
2
;1
. ,9
1
8
9
7
4
4
8
8
. : 8
;g
8
8
;f
i
.50E01
.06E02 : '
. 16E02 .:•.':
. 03E02 '.'• ••;;
.OOE01 !';,;;
; 34E02' '.':.\'i:f.
, $O'EOI:' ; iv.;i:'
. OOE01 :., 'j' .•:!'•,
:50E01-! l';,-'1.
.90E01: ;:-';:V'.
.20E01, ';:•'..!'•
.20E01 :,. •: ''V';
. OOE01 ". ••"'••.
,70E01:,;;,<;
.40E01 '. -;
.80E01' ;!:','
..17E02 ,':
.OOE01 :| :
.01E02 '.'
-. 80E01 • ;i
.50E01;1 ^i"
.50E01 ,. ; :•'••
.30E01
. 10E01 .
.50E01.
. 60E01 '.'
. 70EQ1 • ' V»-.,
.50E01 , 'i'i '"
.70E01 ! ;
. 10E01 •': ,;"'
".7.60EOV; .=
'6
.40E01;- .i
.62
1 .22
1 .53
1 .35
3.40
, 1 .20
1.07
1 .26
' 1 . 1 1
1.19
.87
1 .30
, 1 . 69
!: .65
.48
; .84
1 .08
1 .09
1.11
; 1 .19
1 .25
1 ,17
.52
1 .66
1 .03
1 .36
.90
1 .13
1 .18
1 .58
.95
.67
ORGANIC
MATTER
13.96
4.86
4.67
' 4.68
: 14.24
4.54
6.47
3.67
3.62
4.36
5.22
5.18
10.06
::•• 4.89
; 4,04
: 3.07
•'• 5..41
5 . 28
5.57
5.53
6.20
5.99
•4.58
•. 4.16
4.77
.4.92
'5.20
5.45
6.03
6.62
5.92
5.16
4.54
; 4.84
'4.51
J 4.39
. 4.53
4.44
4.45
3.88
PH
5.9
6.1
5.9
7.3
7.6
6.8
6.9
5.7
6.1
6.4
6.2
6.6
6.5
6.1
6.4
6.0
5.5
5.5
5.7
5.6
5.4
5.4
5.2
5.3
6.2
5.7
6.1
6.6
6.3
5.5
5.6
5.6
cr
fD
o
o
13
ct-
fO
a.
Q.
' '•' $ .
rV-i-f;
-------
YR DATE
76 1 14
76 114
76 1 14
76 1 14
76 114
76 114
76 114
76 1 14
76 1 14
76 114
76 14
76 14
76 14
76 14
76 14
76 14
76 14
76 14
76 14
76 14
76 14
76 14
76 14
-; 76 14
0 76 14
76 14
76 14
76 14
76 14
76 14
76 14
76 14
76 28
76 28
76 28
76 28
76 31
76 31
76 31
76 31
76 31
76 31
76 31
76 31
76 31
76 31
76 131
76 131
COMPOSITED
STATIONS
H
1
1
1
1
1
1
1
1
234
234
234
234
234
234
234
234
678
678
678
678
678
678
678
678
10
10
10
10
10
10
10
10
4
5
Q
9
4 5
4 5
4 5
4 5
4 5
4 5
4 5
4 5
4
5
8 9
8 9
5
5
5
5
5
5
5
5
9
9
9
9
9
9
9
9
CORE
CODE
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
3
3
3
1
1
1
1
1
1
1
1
3
3
1
DEPTH
RANGE
CM
-1
1 -2.5
2.5 -5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5 -5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5 -5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5 -5
5 -8
8 -12
12 -18
18 -24
24 ' -30
-1
-1
-1
-1
-1
1 -2.5
2.5 -5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
-1
-1
- 2.
TKN
UG/G
1 .30E03
1 .10E03
1 .12E03
1 .05E03
1 .15E03
1 .86E03
8.96E02
3.57E02
1 .04E03
9.71E02
1 .27E03
8.89E02
1 . 13E03
1 .08E03
4.17E02
5.38E02
9.49E02
1 . 19E03
1 .47E03
1 .23E03
1 .22E03
9.47E02
7.94E02
5.85E02
1 . 14E03
1 .05E03
1 . 15E03
1 .07E03
1 . 14E03
9.69E02
9.91E02
7.64E02
1 .80E03
2.09E03
1 .83E03
1 .37E03
1 .47E03
1 .04E03
8.58E02
1 .06E03
8.61E02
8.. 11 £02
4.73E02
3.50E02
1 .48E03
1 .58E03
1 .62E03
1 .36E03
WATER-SOLU'i
N03
UG/G
3.31E02 •
1 .70E01
3.40E01;
j : 'i . .1
' ' ! r' ,
4!.OOEOO ',
3. OOEOO •
1 .70E01: •':•
7. 00 EOO .!'
1 .50E01 i:
3. OOEOO
2. OOEOO .'-
S'.OOEOO
3. OOEOO •.";'
4. OOEOO
2.71E01 ' ",.
4.70EOO !
1 .60E01 '."I'
5. OOEOO jj
: • > '
' ' . '• l'. •
1 .10E01.
9. OOEOO
2.30E01
1 .58E02
1.70E01
1. OOEOO <
4. OOEOO
1 .01E02
2.30E02 '
5.30E01
8.1.0E01 '
6.70E01 ':
3. OOEOO
1 .10E01
4. OOEOO
5. OOEOO :
2. OOEOO ''•
2.70E01 :
1 .OOEOO .;
8.00E01 ;:
1 .12E02
4.60E01
4.50E01
KCLrEXTR
i N03
UG/G
' !• :>:
I /' i>:
it ' 'i;.
<.; ••:,ji
I < * '
;.'• •'!'.
4. OOEOO
4. 00 EOO
. • ; •
2. OOEOO
3. OOEOO
3. OOEOO
4. OOEOO
4. OOEOO
, .'00' EOO
2 .; OOEOO
1 /•;
,,3; OOEOO
•' •; j.
4. OOEOO
'. ;. j.^
'' '•••!•
'•'• ' * -
I'.OOEOO
2.30EOO
4.70EOO
! i
.00 EOO
1 .OOEOO
1 .30E01
. 1:.20E01
5. OOEOO
S'.OOEOO
e!.ooEoo
2. OOEOO
2. OOEOO
2. OOEOO
1 .OOEOO
1 .OOEOO
2. OOEOO
1,. OOEOO
1 .20E01
V'.30E01
6. OOEOO
3LOOEOO
TOTAL . WA'TER-^SOL'U '
. N03 i ; NH4 . ; !".
UG/G r; UG/G .,;,.:"
7. IOEOI !.i, • .- ;:: ;•*. !>:',
1 . 09E02 -i
5.60E01 j:
2.60E01
4.20E01 '
1 .52E02
1 . 12E02 ,
3. OOEOO
2.10E01 '
8.70E01 '
1 .35E02 i
4.50E01 •;.
6.60E01
8.80E01
3.00E01
8. IOEOI :
8.40E01
7.00E01
2.60E01 :
3.70E01
7. 10E01 . :
B.60E01
4.70E01 '
7.80E01
9. IOEOI
• . ,; ; ,;• ; 'j!'|:
i '• '(.' ' ' i'';...
2.20E01:-': '
v.ioEoi.'l ;•
1.60E01
2.00E01!
1..90E01;' '
., 't -1' ' i ' . .
.00 EOO : .••
.00 EOO •''':'•
7. OOEOO,: :
1 .'40E01 ['•;••
1 . OOE01 ';../'
•4, OOEOO : • •
'4.'OOEOO!i|;.
2. OOEOO '
'1 .20E01:
9. OOEOO'
5. OOEOO
4. OOEOO .
3/10E01 1
• .00 EOO1
8. 601101 '•'•-• ;. • i e
6. 'IOEOI . .00 EOO'
3.00E01 • 3. OOEOO
3. IOEOI 4. OOEOO: .
7.80E01 ; 9. OOEOO. .
7.10E01 -, 4. OOEOO
1 .50E02 ' 4. OOEOO
9.47E02 : 7.60E01 :
1 .32E03 1 .43E02 •
7.67E02 . 4.20E01 '
5.23E02 , 4.90E01 •
2.85E02 ; j .1 .20E02.
2.59E02 , 1 .50E01 .
9.20E01 3. OOEOO
8. IOEOI i 2.'OOEOO
1 .04E02 1 .OOEOO
1.05E02 !: 3. OOEOO,
1 .60E02 , 2. OOEOO.
1.73E02 ' .' 2. OOEOO'
2.37E02 ! 5.50E01 ;
2.44E02 ! 4.50E01 '„
4.90E02 . 1 .80EOV
6.09E02 ; 7.20E01 ...
KCL-EXTR
NH4
UG/G
1 .16E02
2;i'20E01
1 .55E02
2.30E01
r.70E01
2.10E01
t.90E01
3.50E01
6.80E01
1 .10E01
1.30E01
1 .50E01
1 .80E01
1 .OOE01
3.10E01
1 .50E01
1 .89E02
8.70E01
5, OOEOO
3. OOEOO
1 .71E01
8. OOEOO
1 .20E01
3.30E01
1 .74E02
2.30E01
5. OOEOO
8. OOEOO
1 .30E01
1 .OOE01
1 .20E01
1 .42E02
1 .91E02
8.00E01
6.90E01
7.00E01
1 .60E01
1 .60E01
8. OOEOO
3. OOEOO
1 .OOEOO
3. OOEOO
2. OOEOO
8. IOEOI
9.30E01
8. OOEOO
7.80E01
TOTAL
NH4
UG/G
;2.30E02
•1 .53E02
1 .72E02
1 .63E02
:2.11E02
1 .98E02
1 .50E02
\. 13E02
2.46E02
1 .91E02
V.96E02
V.33E02
1 .71E02
!l|.36E02
•3,.80E01
B. 20E01
'4. 11E02
I2..-14E02
>i'. 83E02
:2i.01E02
:2.'25E02
; j. 32E02
:. 59E02
5.20E01
3. 05E02
: '.97E02
..89E02
.92E02
!. 98E02
1 .89E02
2..60E02
1..35E02
4.91E02
6. 08E02
7.22E02
3'. 40E02
2.96E02
1 .93E02
1 .48E02
1 .49E02
1 .26E02
1 .38E02
1 .30E01
1 .30E01
3.33E02
3.36E02
3. 24E02
3.40E02
3 O» -H
-•• 3 O
Ct- Q- ci-
-j 01
Cu 3 —i
(1>
O>
3 CD Q.
Q->» CD
rr
o o
ci- rt- =3
cx> DJ —'•
to -s
_>. O
c: tn
3 CD
3
O -
O
-s
a.
CD
CD
X
a.
Qj CU
O Ct-
rl- CD
CU ~S
cr
—' CD
CD X
rt-
£y -^
3 cu
3 O
O rl-
3 CU
-i. cr
CD
Cu
3 Cu
cu
cr
O
rl-
C
CD
d.
-------
YR DATE
76 131
76 131
76 131
76 131
76 131
76 131
76 131
76 131
76 131
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 134
76 134
76 134
76 134
76 134
76 134
76 134
76 134
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 135
76 134
76 134
76 134
76 134
76 134
76 134
76 134
COMPOSITED CORE DEPTH
STATIONS CODE RANGE
It CM
8
8
8
8
8
8
8
8
9
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4
6
6
6
6
6
6
6
6
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
3
3
3
3
3
3
3
3
5
5
5
5
5
5
5
5
7
7
7
7
7
7
7
7
9
9
9
9
9
9
9
1
1
1
1
1
1
3
3
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
24
1.
2.5
5
8
12
18
24
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
-5
-8
-12
-18
-24
-30
-1
-1
-1
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
•• O
-12
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
TKN WATER-SOLU
....N031 •',••'.
UG/G - UG/G :
1 .20E03
1 .48E03
8.79E02
8.19E02
6.31E02
5. 11E02
1 .71E03
1 .71E03
.47E03
.27E03
. 10E03
.12E03
.33E03
.17E03
.03E03
8.53E02
5.94E02
1 . 19E03
1 .37E03
1 .16E03
1 .23E03
9.33E02
8.20E02
2.52E02
4.79E02
1 .68E03
1 . 15E03
1 .12E03
1 .08E03
9.54E02
7.70E02
2.68E02
3.44E02
1 .03E03
1 .02E03
1.19E03
1 .25E03
1 .35E03
1 .02E03
6.04E02
6.35E02
1 .51E03
1 .12E03
1 .26E03
1 .31E03
1 .21E03
8.56E02
5.59E02
1 .50E01
1 . 20E01.
1 .20E01
9. OOEOO
5. OOEOO
2. OOEOO
7.10EOJ ;
7.10E01
7.30E01
2.30E01
2. 10E01
3.20E01
4.70.E01 >i
2.20E.01 :
'1 . 20E01 >•;
4. 70 EOO .
3'.80EOO;:!
3.90E01 .'i
8.50E01 ''
1 .45E02
2.60E01
8'. 10EOO
1 . 10E01 .
7.60EOO
• '
1 .90E01 '
5. OOEOO
3.20E01
'.00 EOO
1 .70EOO
.00 EOO
3.00EOO
1 .30EOO ,
!.; •
8.3QEOO
6.90EOO
7.60EOO
5.30EOO
:4.30EOO
4.70EOO'
3.60E01 :
3.30E01 '
1 .90E01
6. OOEOO
1 .20E01
8. OOEOO
3. OOEOO
:' KGL-EXTR
U.r,:N03
:P2.0'OEOO
':"-, 1 1 ;:OOEOO
i'i l'] 00 EOO
i 2;'OOEOO
2. 'OOEOO
• 1;OOEOO
:' 7.:'OOEOO
7. OOEOO
: 6:OOEOO
,67 EOO
6, OOEOO
'1 .40E01
:IJ'1Y30E01
•;i|1;i'1,'OE01
i ' j?4 :: 6 0 E 0 0
!'-i8.:40EOO
i;'!4'.-20EOO
i;!:6-/60EOO
;!:;2.80E01
i:!'3.20E01
:;j1 .29E02
''• 2,30EOO
5.-90EOO
1 :5.70EOO
' '3.50EOO
il 2.10E01
j.! .80' EOO
l.'.l .20EOO
vl .20EOO
.1 .00- EOO
ji,3.30EOO
!:'3. OOEOO
:, 4. OOEOO
1 •• , ! •
.' . '•'!.'•
i 2.90EOO
•2.60EOO
; 9.50EOO
;;: ,3. OOEOO
2.40EOO
: J2.10EOO
'"is. OOEOO
:t 4. OOEOO
'.:. 3. OOEOO
'; 3. OOEOO
. 3. OOEOO
: 2. OOEOO
: 3. OOEOO
TOTAI^ WAJTER-SOLUj KCL-EXTR
N03' .', •; .'. NH4 '. •:•!! : : NH4
UG/Gi' , :'UG/G ;i .'j , UG/G
1 - i" 'i-. ' . - • ' i i
4.57E02
3. 14E02 . •••
8.10E01
7.50E01 "
9.40E01 ;
1 . 01E02, -
2.01E02
2.01E02 •.
2.00E02
1 .71E02
1 .21E02 ,
1.95E02
2. 06E02 ;
4. 19E02-::'.
8.00E01 !!
1 .57E02 '
8.40E01 :
1 .'63E02 .
1 ..52E02 . •
2.37E02
7.40E01 ,
6.80E01
2.02E02
.00:EOO :
7.60E01 ''
3.6PE02
1 .97E02
i .51E02 :
1.14E02
1 .36E02
2.53E02
5.10t01
.00 EOO
1 .23E02
8.40E01 ."
9.90E01 ""
1.01E02 .
1 . 1SE02
1.11E02
8.60E01
5.30E01
2.42E02 s
. 78E02
. 70E02
.11E02
.06E02
.18E02
,1;..boEOl.
4;iooEOO.r
3. 00 EOO
2. OOEOO,.
1 .OOEOO
.1 .OOEOO.1
2.40E01
2.40E01
2.70E01
3. 60 EOO
4.60EOO
2.70E01 i
7.60E01:
'V.OOE01 ':
3 . 9 0 E 0 0 ' •
I'veoEOO i
1j.20EOO'
5.90EOV '•'.
2.05E02 :
2. 30 £02 .
2i30E01 .',
>.00 EOO '
,1 .70EOO
2. OOEOO
1..70EOO
8.30E01
2.50E01 :
2.70E01
.3.30EOO
1 .60EOO
3.30EOO
7.20E001
3.30EOO
2.20EOO
. l _
,1!i10EOO
:.78 EDO/
1..60EOO:
1 .40EOO
'..26 E00;:
.00 E00:
6. 90E01.
2.90E01
5. OOEOO
5. OOEOO
1.70EOO.
;1 .20 EOO
' 2.10EOO
• i! i'.80E01
; re. OOEOO
ii6;. OOEOO
••|! 4. .OOEOO
ill 2'. OOEOO
j' 2. OOEOO
'!, 5.60E01
;' 5.60E01
' 4.60E01
,: 3. OOEOO
. 5.9PEOO
: 2.10E01
:-i 5.40E01
:Ll.20E01
n; 3V70EOO
!» 3.90EOO
• 12:60EOO
•: 4.80E01
"kl ;33E02
.fv.63E02
43i.20E01
'.''• 2.40EOO
, ! r:90EOO
i 1.70EOO
!:-; 2.20EOO
I \ 1 .38E02
: (.4.50E01
'8. OOEOO
i6. OOEOO
L : 5. OOEOO
;' 6.00EOO
!: | 8. OOEOO
. ; 4. OOEOO
4.90EOO
3.50EOO
J2.90EOO
; ,; 1 .70EOO
i 'J3.70EOO
; ; 4.20EOO
&: .1 .40 EDO
! •'' 1 .70EOO
];..! 1 .04E02
; '. 4.20E01
',,: 1 .OOE01
J 4. OOEOO
: '6JOOEOO
'?•:' 4. OOEOO
-:.3.00EOO
TOTAL
:: NH4
UG/G
2.24E02
,1-.86E02
1.. B1E02
1 .26E02
6.80E01
7.60E01
3. 09E02
3.09E02
2.71E02
1 .72E02
1 .43E02
1 .80E02
2.76E02
1.41E02
:1 .20E02
.1 .20E02
1 5.90E01
2.84E02
4.71E02
5.02E02
1.75E02
9.00E01
9. 10E01
3.50E01
5.50E01
3.79E02
1 .83E02
1 .43E02
1 . 17E02
1 .21 £02
9.80E01
1 .90E01
2. 10E01
2. 20E02
1 .94E02
1 .50E02
V. 61E02
t.53E02
1 .24E02
1 .22E02
.3-60E01
3.09E02
3.06E02
2.27E02
1.64E02
1.29E02
1.43E02
1.15E02
cu
cr
o
o
rs
t-t-
~j.
rs
c:
ro
o.
c:
n>
o.
-------
YR DATE
76 134
76 135
76 135
76 135
76 35
76 35
76 35
76 35
76 35
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 42
_, 76 42
vo 76 42
ro 75 42
76 42
76 42
76 42
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 42
76 42
76 42
76 42
76 42
76 42
76 42
76 142
76 142
76 142
76 142
76 142
COMPOSITED CORE DEPTH
STATIONS CODE RANGE
H CM
8
10
10
10
10
10
10
10
10
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4
6
6
6
6
6
6
6
6
8
8
8
8
8
8
8
9
3
3
3
3
3 '
3
3
3
5
5
5
5
5
5
5
5
7
7
7
7
7
7
7
7
9
9
9
9
9
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
24
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
— 1
-2.5
-5
-8
-12
-18
-24
TKN WATER-SOLU
N03 •
UG/G UG/G
6.73E02
.58E03
.35E03
.26E03
.09E03
.OOE03
.OOE03
.02E03
7.60E02
1 .05E03
7.57E02
1 .31E03
1 .17E03
9.85E02
1 .01 £03
6.14E02
1 .56E02
7.94E02
1 .08E03
1 .09E03
4.57E02
1 .10E03
1 .49E03
3.44E02
1 .25E02
1 .33E03
1 .43E03
1 .52E03
1 .98E03
1 .46E03
1.16E03
8.56E02
4.82E02
4
1
1
1
5
5
5
4
3
9
3
3
8
9
6
1
4
4
2
4
3
1
6
7
5
1
4
4
2
1
1
8
7
4
3
5
3
1
8
7
9
3
2
2
1
1
8
.OOEOO
.30E01
.60E01
.40E01
. 20EOO
. 30EOO
.OOEOO
.OOE'OO
. 10EOO
.10E01
.50E01
.80 £01
.40EOO ,
.80EOO
.90EOO
.40E01
.50EOO
.60E01
.30E01
.80E.01 ,
.90 £.01
. 90E!01 .
.90EOO
.50EOO
.50EOO
. 18E02
. 50E01
. 60E.01
. 70E01
.40E01
. 10E01
.OOEOO
.OOEOO
.40E01
.50E01
.70E01
.OOE01
.70E01
.OOEOO
.30EOO
.80E01
.60E01
.50E01
.60E01
.50E01
.OOE01
•OOEOO
KCL-EX'TR
N03"j
UG/G'-;
2. 00 £00
6.40EOO
4.20EOO
3.30EOO
1 .80EOO
2. 00 £.00
1 .70EOO
1 .46EOO
5.30EOO
•• 8.00EOO
6.50EOO
; 4.50EOO
: 6.50EOO
3'.40EOO
2.90EOO
4. OOEOO
' 3.60EOO
7.80EOO
8.70E01
1.00E01
5.80EOO
s 4.10EOO
3.30EOO
4.20EOO
2.60EOO
3.40E01
1J.60EO.V
2.30E01
2. 90E01
1 .30E01
2.40E01
4. OOEOO
5. OOEOO
2.20E01
1 .70E01
7.70EOO
8.20EOO
5.90EOO
4.40EOO
2.90EOO
3/90EOO
2..60E01
6. OOEOO
7. OOEOO
4. OOEOO
6. OOEOO
8. OOEOO
TOTATiji
UG/G' f
9.70E01
3. 19E02
; WAT,ER-SOLU: KCL-EXTR
: ,NH4 .; ., 'NH4
1/0/0: i UG/G
:p .'b!o^"Eoo
"i 1:.|74E02
2.05EO"2l 3.I10E01
1 .56E02
1 .'19E02
1 .27E02
• 2.50E01 i
1 4.J40EOO l!
' 2.'40EOO ..:;
3. OOEOO
1 .41E02
3.50E01
i 3V90E01
.;'l..20E01
:!!4.90EOO
1 . 27E02f; ''• 2.I40EOO /'.;' 5..00EOO
4.52E02
6.10E01
2.86E02
1 .50E02
1 .68E02
1 . 30E02
6.00E01
8.40E01
8.60E01
8. 10E01
'• 2 .jao'E'oo .
i. .;36;!:E'00
. 5.;60E01 •
!: :3.|7'OE01 '.'
, ..2.I50 £.01 '
••• 1 !!40E01 !'
' 3.|6'OEOO i
3.'40E:00 :
(. 2.I70EOO :
2.!40EOO I
2.09E02I:. . 3.'40E01 ',•
2.07E02
2.62E02
2.29E02
• i;.:80E01
;; 4.:BOE:01
2.'80E61
1 . 39E02I: '• 1 JO'OEOI '
1 .97E02
i: 4.u:oE.oo :
2.11E02I gJg'oEbo
5.20E01
.
• i 'i ' :
..' M
:.i._.
- j . ;
J- -.
,' i '
"l
2.42E02
. 3.'20EOO
1 VJ18E02
,. 1 .|59E02 .
- 6.'4bE01 j
1 ..20E01
• e.'opEoo;
•i 2 .iOOEOO
2.JOOEOO
I'.OOEOO
4.J40E01
1.91E02I 3.|60E01
1 .84E02J 9.;50E01 ;
1.93E02I' 7.-80E01
2.01E02
1.71E02
1 .04E02
1 .19E02
.
i '
•
••
.
1 .!40E01 '
9.40EOO
5. !OOEOO
3.'40EOO
6.'70E01
2.'OOE01 '
1 /30E01 •
' 1 .'40E01 '
5. '00 EDO
2. OOE'OO
2. 'OOEOO
, -2.70EOO
! 3.;10EOO
i f3.'90E01
! :3.30E01
: ;2'.60E01
il '.50E01
3.40EOO
; :2.'60EOO
!3.-10EOO
M.12.: EDO
5.40E01
2.40E01
;4.40E01
4'.20E01
':i1v70E01
;'.5:4dEOO
|5.40EOO
:• :2J80EOO
' V.87E02
1 .56E02
T.46E02
. 2.40E01
, 5.00EOO
1 5. OOEOO
.;.'• . .
2;OOEOO
. 7.7.0E01
i 5.90E01
1 J32E02
\1 . 14E02
2.30E01
..1 .30E01
3.70EOO
3.20EOO
1 .30E02
' 3.60E01
1 .80E01
. 2.30E01
6. OOEOO
3. OOEOO
2. OOEOO
TOTAL
NH4
UG/G
1 .30E02
4.96E02
2.43E02
2.20E02
2. 02E02
1 .42E02
1 .70E02
1..44E02
9.10E01
3.03E02
2. 51 £02
2.25E02
2. 15E02
2.34E02
1 .71E02
1 .36E02
4.50E01
2. 7QE02
3.78E02
2.58E02
2.75E02
1.99E02
1 .27E02
9.00E01
8.60E01
3.35E02
3. 15E02
4. 18E02
4.04E02
2.61E02
2.32E02
1.32E02
8.70E01
cr
O
3
ct-
fD
CL
O
O
n>
Q.
-------
YR DATE
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 142
76 145
76 145
76 145
76 145
76 145
76 145
76 145
76 145
76 145
76 145
76 145
76 145
76 145
76 145
^76 145
OJ 76 1 45
76 149
76 149
76 149
76 149
76 149
76 149
76 149
76 149
76 145
76 145
76 145
76 145
76 145
76 145
76 145
76 145
76 149
76 149
76 149
76 149
76 149
76 149
76 149
COMPOSITED CORE DEPTH
STATIONS CODE RANGE
# CM
8
10
10
10
10
10
10
10
10
1
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4
6
5
6
6
6
6
6
6
8
8
8
8
8
8
8
9
24
1
2.5
5
a
12
18
24
1
2.5
5
8
12
18
24
3 1
3 1 1
3 1 2.5
3 1 5
3 1 8
3 1 12
3 1 18
3
5
5
5
5
5
5
5
5
7
7
7
7
7
7
7
7
rt
9
9
9
9
9
9
24
1
2.5
5
B
12
18 '
24
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
-30
_ <
-2.5
-5
-8
-12
-18
-24
-30
"" 1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
mm- Q
-12
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
TKN WATER-SOLU:
NQ3 : '
UG/G UG/G
6. OOEOO :
1 .35E03 4.20E01 ; •'
1 .28E03 2.80E01 i -
1.22E03 2.40E01
9.58E02 2.50E01
9.74E02 1.10E01.
8.40E02 1 . 10E01
8.75E02 1 .OOE01
5.55E02 7. OOEOO
2.44E02
1 .20E02:
8.80E01
3.80E01 '
2.30E01
1 .30E01 ;
7.80EOO i
'2.50E01 ;
1 .20E02
5.20E01
5.50E01 .
4.10E011
2. 10E01
KCL-EXTR
1 N03 .
' UG/G
: 4 I OOEOO
4:;10E01
• :i ''i .' ••
elooEoo
7^00EOO
, 6.00EOO
1 .OOE01
6100EOO
6. OOEOO
2iOOE01
5.00E01
: 5.70E01
,• 3.50E01
1.30E01
• 9.30EOO
6130EOO
; 2',OOE01
' 4!|.30E01
; 5.00E01
1 3.20E01
; 4.50E01
4..40E01
1 T j : ' '
TOTAL
N03. '
UG/G
•! .' , '
2.08E02 i
3.35E02 i
2.68^02
2.58E02
1.73E02 '•
1 .11E02 :
1.40E02 :•>
1.78E02
• . i -
' •'
: .: •
•''••' :
' ' 4' j . • '(
• t •
•i V '' < (
'''•-. ' -' : ' =" '
• *: i
' Vs '
i - ; f [ •
1 .10E01 f: 4V70EOO • ; :i
1 .90E01
7.70EOO
9.80E01
7.30E01
: 1 .50E01
1 .80E01 '
1 .50E01
9. 10EOO
8. 10EOO
4. 90 EOO
2.07E02
9.20E01
1 .32E02 ':
4.00E01
2.20E01
1.10E01
7.20EOO
7.60EOO '
6.40E01
4.40E01
2.80E01
3.10E01
1 .20E01
8. OOEOO
5.40EOO
' 4.20EOO
1 140E01
114QE01
• 5.10EOO
, 1..60E01
4:70EOO
4. OOEOO
•:2.40EOO
2. OOEOO
4. 10EOO
,1 .02E03
2.60E01
. 4.16E02
9.70E01
2.00E01
!• 1.20E01
7.20EOO
• 3.90EOO
9.30EOO
7.20EOO
6.30EOO
' 2.50EOO
5.90EOO
2. OOEOO
j '
:;"j. . ' •
'' '<
;-'rj "•
•»•;,'.
'•' \ ' i .
, '.i ' ; '.
' . ' • \
j '
, j - -
. . • r ' '
; j ' .
' '•
I. i
• ' . .. i. . :•.
• 1 ; ' '
- ' • ' ••'
WATER-SOLU;
; NH4
UG/G ,!;::
- -•'. I '' ' . . •;
'2.30EO^ .:':
1 2.20E01 '
1 .40E01 ":
5. OOEOO
4. OOEOO
; 6. OOEOO :
5LOOEOO ' '
6. OOEOO , :
.33E02 'ij .
> 14E02 ,:
.21 £02
2.90E01
'.70 EOO ;
:, .90 EOO ;!;•
i; .00 EOOil'i.
; .00 EOO':;1;'
1 4 , 30E01 ::; ;
5120E01 :''"'
; 2.30E01 .?';
t .30E01 •:';
;• 1 .70EOO :
1 2.20EOO ! ;
2. 10EOO ':.;•
,2. 10EOO '!
1 .47E02 i ;
"7.10E01 :,
' 4.70E01' '
5.30EOO ;
1 .70EOO' :
9. OOEOO :
1.70EOO
5.20EOO ..
4.00E01
6i.60E01 ;
5.80E01 i
2.60E01 .;•;
'8.10EOO i;
1'. 10EOO
.80 EOO
•' .00 EOO :.i
,2. OOE01 •'
3.60E01 :'.'
".6.90E01
8. 10EOO
2.80EOO
1 .40EOO ;'
1.30 EOO :
KCL-EXTR
NH4
UG/G
AlOQEOO
6.30E01
3.80E01
1 .80E01
1 .10E01
1 .40E01
8. OOEOO
9. OOEOO
9. OOEOO
6.60E01
5.60E01
1 .07E02
5.00E01
4. OOEOO
1 .50EOO
'-. 00 EOO
.00 EOO
4.70E01
3.30E01
4.80E01
3.40E01
2. OOEOO
1 .40EOO
.00 EOO
.70 EOO
1 .38E02
1 .37E02
8.90E01
1 .30E01
2.80EOO
4.20EOO
:1 .OOEOO
1 .OOEOO
2.50E01
9.40E01
8.50E01
1 .70E01
4.20EOO
1 .80EOO
.80 EOO
:.00 EOO
5.30E01
3.70E01
5.30E01
2.00E01
5.90EOO
4.10EOO
1 .60EOO
TOTAL
NH4
UG/G
2.67E02
2.23E02
2.39E02
1 .80E02
2.81E02
1.63E02
2.14E02
1.42E02
'' •
. •
; ;
* '
1
cr
rt>
CO
o
o
c:
CO
ex
o
c-t-
^j,
13
C
(D
O.
-------
YR DATE COMPOSITED
STATIONS
CORE DEPTH
CODE RANGE
CM
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
149
145
145
145
145
145
145
45
45
54
54
54
54
54
54
54
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
154
1G1
161
161
161
161
161
161
8
10
10
10
10
10
10
10
10
1
1
2
2
2
2
2
2
2
2
6
6
6
6
6
6
6
6
10
10
10
10
10
10
10
10
1
1
1
1
1
1
1
9
3
3
3
3
3
3
3
3
7
7
7
7
7
7
7
7
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
24
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
24
1
2.5
5
a
12
18
24
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
TKN WATER-SOLU
,N03
UG/G UG/G
i ' • ;.
7.;10E01 ';
4.:40E01
2.J50E02
2.00E01
1 .20E01
1 . 10E01
8.70EOO
1 . 10E01
2.42E02
3.40E01
3.60E01
3.60E01 ,
2.;soEoi ..;:
1 .eoE'oi .
1.!30E01
8. OOEOO
8.20E01
1 .eoEoi ;.'
1 .40E01
2.10E01
2.70E01
2.80E01
1 .90F.01
1 .40E01
1 .01 [£02
1 .80E01
3.40E01
2.80E01
2.60E01
2-.40E01
1 .40E01
1 .40E01
2.34E02
3.40E01
3.80E01
3.50E01
1 .60E01
9.00EOO
9.00EOO
1 .10E01
1 .96E02
7.80E01
4/30E01
2.00E01
2.20E01
1 .70E01
6.60EOO
KCL-EXTR
N03
UG/G
2.10EOO
'4.30E01
9.50E01
,1 .97E02
5.20E01
1 .70E01
8. OOEOO
8.20EOO
8.50EOO
•• ;!•..
9. OOEOO
5. OOEOO
5. OOEOO
5. OOEOO
5. OOEOO
4. OOEOO
4. OOEOO
:i .5QE01
1 .10E01
6. OOEOO
5. OOEOO
7.00EOO
1 .40E01
5. OOEOO
5.00£00
1 .92E02
3.00E01
1 .40E01
e.ootoo
4. OOEOO
7. OOEOO
4. OOEOO
7. OOEOO
2.00E01
3. OOEOO
4. OOEOO
4. OOEOO
2. OOEOO
1 .OOE01
1 . IOE01
2.31E02
4.50EOO
5.40EOO
8.70EOO
4.50EOO
3.50EOO
3.40EOO
• V '
'.if (
(j
'i'-'
• :S
TOTAL ! : WA'TER-SOLU
N03 '! . -i!NH4 . J
UG/G '.. JUG/G '!
j;f j..- 'v90:.'EOOi |
.•'''Hi : 11.60E01 i-ij
j i ;' 2J90E01 :j
• i >' 6'.30Eoi ; ';
: ' :;! 2:80E01 !'
' :;; '''. ' V: 10E01 , i]
:-' ,,'• ' 3.40EOO !;
•!"s '• 1:v60EOO! ''
i:..j ;'; '1..70EOO. i!
'. •' •-.; 1;.57E02 ,j
•• i ' 4. 30E01 : ,
: i;; .I/ 5.20E01 |:
•<'''••;'• • 2::60E01 !.;'
: j ,. .6. OOEOO! '1
: ! •'•: 4. OOEOO •' ';
!.! t. OOEOO .
' ; : 1|. OOEOO ' I
: :;! ^ 3.50E01 !' = i
1 i ; i i;vooEoi :
' ' ;•' ;: 'VJIOEOI i
.'•-, 1'..-50E01 '
'••'•:'' 7.'OOEOO!
i ;' ; 1:.:QOEOO • I
' t'.' 00 EOO;
; 2. OOEOO ; •
i ' • 4.70E01 :
' 2.70E01
;•'. ,! l::30EOl
'i.'; :i 9. OOEOO
' : '.' 3. OOEOO : .
:: 4. OOEOO :
' i. ;oo EOO . ,
. ; 2.00EOO
: . ' 1i.' 18E02
' : . 2.70E01 ,
: ; i|.ioEoi •
' ' ' 1;.20E01 . •
4.00EOO '
, • .jOO EOO
; ',.• 2. OOEOO :
• '•' 3. OOEOO ;
H.05E02
: ' . 3.50E01 '
;' ' '• 2. 90 £01 :
. • 1 .. 70E01
4.50EOO ; '
3.50EOO
3.40EOO .
'i '< ," •'..- :'
) , | •
•-' • •• !•
; :.
, '
' ,: : :• ;..•••'
•>. nji :
KCL-EXTR
i!;'NH4
i;^UG/G
'';l'!J70EOO
i2.'20EO 1
:7.'30E01
!9:'J1 OE01
6.'50E01
•I'JSOEOI
4J40EOO
.80. EOO
I;. 00 EOO
:'\j'.j,i,. ;
'3ii90E01
•^JSOEOI
'1 'J90E01
:'7JOOEOO
'S^OOEOO
;'2. OOEOO
2JOOEOO
:.6J10E01
:1.'60E01
1.'50E01
2J40E01
:i4.!60E01
•4. OOEOO
2.00EOO
i1 .;OOEOO
/1.26E02
6/80E01
3.00E01
il V90E01
:e.:boEoo
!2; OOEOO
• 2.:OOEOO
.00 EOO
1..78E02
6.10E01
'S.SOEOI
.2.10E01
7. OOEOO
5. OOEOO
i9. OOEOO
8.00EOO
•7.30E01
,1 . 17E02
1 .40E01
8.30EOO
•6.;40EOO
6.80EOO
3.40EOO
"!••!
' > r •
' • :'- • ••
• ' ., i
TOTAL
NH4
UG/G
f
' . \
i
".
' • .
: 'r .
' j'
i;- '
\ ,
;'
i '
J
O
O
rs
c
a.
C
fO
Q.
-------
en
YR DATE
76 161
76 161
76 161
76 161
76 61
76 61
76 61
76 61
76 61
76 61
76 61
76 61
76 61
76 61
76 161
76 161
76 161
76 161
76 161
76 161
76 161
76 61
76 61
76 61
76 61
76 61
76 61
76 61
76 61
76 61
76 61
76 61
76 61
76 61
76 61
76 161
76 161
76 161
76 161
76 161
76 161
76 176
76 176
76 176
76 176
76 176
76 176
76 176
COMPOSITED CORE DEPTH TKN WATER-SOLU'
STATIONS CODE RANGE N03
tt CM UG/G UG/G : ;,
1
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4
6
6
6
6
6
6
6
6
8
8
3
8
8
B
8
8
10
10
10
10
10
10
10
10
1
1
1
1
1
1
1
3
3
3
3
3
3
3
3
5
5
5
5
5
5
5
5
7
7
7
7
7 •
7
7
7
9
9
9
9
9
9
9
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
24
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
_a
-12
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
— 1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
» C
-8
-12
-18
-24
3
2
4
8
6
3
2
2
2
1
3
6
3
2
5
1
8
4
5
4
3
2
1
1
7
8
4
2
2
1
1
5
4
1
5
4
3
3
2
7
4
1
5
1
1
1
7
8
.60EOO ;
. 05E02 .1
. 60E01 i
.40E01
.90E01 •:
. 40E01
.90E01 '
.90E01
.30E01
.85E02 '
.27E02 i
.20E01 '
.30E01 •!
.10E01 ;;
.OOEO;0;:'j
. lOEO'l! >.
. 30EOO: ;
.80E01 ••;.
.90E01 i
.OOE01 :
. 10E01 i
.30E01 .:
.50 £01 i'i
.10E01
.70EOO ;
.80E01 i
.50E01 .'I
.90E01 .''
.40E01 |
.90E01 ,
.10E01 :
.40EOO '
.20EOO .
.44E02 i
.40E01
. 20E01 |
.90E01
.90E01 ,
.60E01 •;
.30EOO
.20EOO :
.46E02 '
.10E01 :
.90£01 .
.20E01 •:
.50E01
.40EOO
.OOEOO ,:
K'CL'-EXTR TOTAL • WA^ER-SOLU KCL-EXTR TOTAL'
; .N03 -: N03 ': - 1NH4 ' NH4 NH4
,;UG/G.k UG/G ' UG/G; , •' ,UG/G UG/G
1 .'86EOO
7.60EOO
3.60EOO
1:.60EOO
1 . 10E01
3.70EOO
3.70EOO
5.40EOO
3.90EOO
2.20E01
3.00E01
1 .50E01
S.40EOO
7.60EOO
;6. 10'EOO
I3.60EOO
,5.20'EOO
i;50E01
5.50EQ1
1!.OOE01
4.40EOO
;2.50£00
2.10EOO
'{ .70EOO
4.40EOO
1 .04E01
3.80EOO
2.70EOO
.1 .80EOO
2. OOEOO
2.20EOO
1 .30EOO
1 .40EOO
1 .60E01
8.20EOO
9.7.0EOO
4 .20EOO
3.90EOO
3. 10EOO
1 .50EOO
2.80EOO
6.60EOO
3.40EOO
9.50EOO
4.10E01
2.10EOO
.70 rEOO
8.90EOO
. | „ 3J60EOO
'• .;-!- . 3JOOE01
\\'\ '2.'10E01
' i1 :2.!60E01
1 ,!30E01
3j70EOO
1 .'80 EDO
1 J80EOO
' - 1.90EOO,
9.50E01
8.30E01
5;10E01
2.10E01
3.80EOO
' } 1 .50EOO
:, ' 1 <80EOO
• , 1J70EOO
, " 3JOOE01
1 , 3i30E01
1 ' \ 8i90E01
; 9i70EOO
li60E01
, 9! 40 £00
2i 10EOO
2. OOEOO
1 ;04E02
2;30E01
1 i90E01
< . 6.80EOO
i 7. OOEOO
4130EOO
2i70EOO
2180EOO
! 6. 40 £01
: 2.00E01
•vr , 1 lOOEOI
'';''' 1 .60 £01
- :i 1.80E01
1 :' 6.60EOO
''••'.'. 1.90EOO
>'•-,' 1.60 £00
• 2.80E01
. •! •'• . 9. 40 £00
3.60EOO
5.70EOO
. •'. 2.70EOO
2. 50 £00
.:..-•'•:••• 2.70EOO
1
i. 3
'; 5'
•;:'3
:. :4
'•2
9
> 5
' 1
3
1
1
".' 1
5
7
'.'i ijt
'^•1
fi^3
;:;i7
J',:5
:;'3
.'2
•i";J
!'V3
:i'i2
', 2
:; T
' 3
;:';-2
.'•i
• ;7
• 4
2
i 2
8
3
I
r?
2
1
1
! ,2
,' "i
1
3
3
7
5
, 4
.GOEOO M
.30E01 : "]!:ii
.'20E01 .! i
.20E01 .,'i.'
.60E01 ,:
.OOEOO :,
.40EOO !
.80EOO i .
.90EOO
.39E02
.13E02 •:
.24E02 :
.60E01
.60EOO . . .
.50EOO . , j:
.80EOO ' i,
.40EOO !i^'
.70E01 , • ;
.30E01 "'•;'
.70E01
.OOE01 i1':
..10 £01 j' i
.30EOO •• . '•
.10EOO :
.60EOO ,:
.12E02 .
.30E01
.30E01 :
.50E01 . i!
.OOEOO ' '
-30EOO :
.70EOO
.80EOO
.30E01
.60E01 :,
^.40E01 " .'. .
.:70E01 •(: ;
.'70E01 • !! •;
.30E01
.!10E01 ! I
.•OOEOO
.'BOEOI ;...
.;10E01 'i'i
.60EOO i'
.70EOO '
.70EOO
.50EOO
.'10EOO
at
cr
a>
o
<-*•
o.
o
3
c-t-
n>
ex.
1:,; v
-------
YR DATE
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
_, 76 176
to 76 176
°^ 76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 176
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
COMPOSITED
STATIONS
*
1
2 3
2 3
2 3
2 3
2 3
2 3
2 3
2 3
6 7
6 7
6 7
6 7
6 7
6 7
6 7
6 7
6 7
6 7
6 7
6 7
6 7
6 7
6 7
10
10
10
10
10
10
10
10
1
1
1
1
1
1
1
1
2 3
2 3
2 3
2 3
2 3
2 3
2 3
2 3
4 5
4 5
4 5
4 5
4 5
4 5
4 5
4 5
8 9
8 9
8 9
8 9
8 9
8 9
8 9
8 9
8 9
8 9
8 9
8 9
8 9
8 9
8 9
4 5
4 5
4 5
4 5
4 5
4 5
4 5
4 5
CORE
CODE
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DEPTH
RANGE
CM
24 -30
-1
1 -2.5
2.5 -5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5 -5
5 -8
8 -12
12 -18
18 -24
24 -30
24 -30
24 -30
24 -30
24 -30
24 -30
24 -30
24 -30
-1
1 -2.5
2.5-5
5 -8
8 -12
12 -18
18 -24
24 ' -30
-1
1 -2.5
2.5 -5
5 -8
8 -12
12 -18
18 -24
24 -30
-1
1 -2.5
2.5 -5
5 -8
8 -12
12 -18
18 -24
24 -30
TKN
UG/G
1 .24E03
.22E03
.22E03
.20E03
.44E03
.22E02
.04E03
6.78E02
.35E03
.27E03
.35E03
.39E03
9.61E02
1.09E03
7.75E02
5.14E02
WATER-SOLU
N03;':
UG/G |
5. OOEOO
1 .90E02
5.80E01
3. 10E01
2.60C01
1 .90E01
1 .60E01
1 .50E01
S.30EOO
1 .45E02
1 .80E02 i
1 .46E02'
2.70E01
2.70E01 ',
3.90E01
1 .70E01
.30E01
•.30 £01 '
.30E01
.30E01
.30E01
.30E01
•30&01
.30E:01
4. 65 £02 .
6.40E01
4 . 1 0 E0 1
2.70E01
2.20E01
1 .70E01
2.00E01
1 .OOE01
1 .:60E01
1 .90E01
3.50E01
5.70E01
2. 10E01
5.30EJOO
4. OOEOO
5. 10EOO
3.60E01
3.30EXM
3. 10E01
1 .70E01
1 .30E01
1 .40E01
1 .40E01
8. 40 £00
KCLfEXTR
: ' N03
• , UG/G:
' :;i;.:20EOO
'1.1 0 E0 1
.5.30EOO
2.60EOO
;1 .40EOO
3. OOEOO
1 .OOE01
•1';:80EOO
'1-.50EOO
I7.60EOO
;r.20Eoi
:i g.'goEoo
•,h . 50E0.1
,;:4^40Eoi
;;i4,'60£01
:7.90'EOO
;'l .:30E01
•:.ijV;3'OEOV
;h:.:30E01
.'1 .'30E01
•U30E01
,J1 .30E01
h .30E01
:Ti30E01
•!4.:40E01
,9.:70E01
'7. SOEOO
•6',5QEOO
;:6.6'OEOO
• 1 .20E01
•;9!J1'OEOO
"4.90E01
7.10EOO
8.20EOO
:5.20EOO
•G.20EOO
5.40EOO
':4.30EOO
;6.40EOO
.2. SOEOO
8.20EOO
;5.90EOO
4. SOEOO
4.80EOO
5.10EOO
3.90EOO
..4.20EOO
.2.40EOO
TOTAJ
N03,
UG/G
i ' i
•j !
1 s i
/• i
; i
jiM
• '','i
!;-;|
V"-
J •. '
:'t;!-
•'!"'• t
:.-$
,• •
! '':'!
.'*•:•
,•':
1 -•*
• ;.;
;.' - i
''
!'•!
•
:• !
•;i
;• .
;
'
•'
J -' .
a '
]•:
t • '
!.; '
( ' .
'':•'
! \
i *
1 .-
!'.'.'
ill.
h '
!> ',
j'!!
iv'
!'-;:
!':• -
]'•:
IL I
' ' ••,
'. .
: '
j
i
i' ' •
!• ;
> ;
1 .18E02
1 .54E02
1 .71E02
2.56EQ2
1 .49E02
1 .03E02
7.60E01
4.60E01
1 .83E02
2.03E02
2.25E02
1 .74E02
1 .80E02
8. 10E01
1 .02E02
8.60E01
i. i >; •-,;•• •!.
W'ATER^SOUU
. 1 NH4 :
' i ,UG/G '•:::-
•. .2.V30.EOO;
! 3:.30E01.:, :•
:l!.20.E01:'
'4:.60EOO:
6v1.0EOO'
'. 4. OOEOO, •,
/ 3. SOEOO.' ;
! 2.90EOO. .:
! :ir.80EOO ;:'
, 3..00E01 !.
1 1i'. 90 EOT, .
8'. 40 EOO
•h>i!i..6o"Eoo:"i!
.'':i.50EOO .i'
ri'.;40EOO':;!:
'! 1 '.'OOEOO ''
''. 1|:.00£00
:;V.:OOEOO :
i .,li;.;OOEOO :j
•'• >1;:.;OOEOO ',
| 'li-:. 00 EOO
i. Ij.OOEOO <;
MKOOEOO,
:1..00EOO
i :6.:90E01
• i 2v10£01 ;•
:.:i:.i3oEoi: :
:-'2;.'20EOO ••;
: i;.'40EOO !•
i jti.'20Eoo .•'.
1 .60EOO' ,
; :1 . 10EOO :
9.60EOO
'1V10E01
8. OOEOO
2. SOEOO :
i ,1,.90EOO
:i .SOEOO
1 .90EOO
1 .00 EOO
: '1 .40E01 >
6.10EOO
2.60EOO
T.70EOO '
K80EOO ;'
2. 10 EOO
1U30EOO
1. 10EOO
;Kc'i~EXTR
] !i!NH4
J^G/G
I" •
.i2v70£00
i4:.'60E01
I2:;20E01
|1.!.:lo.O'E0 1
6l.: SOEOO
!4;J50EOO
i4|i;3'OEOO
J2'i50EOO
,;t:]90EOO
'iA'UOEOI
:i3!:i90E01
•j.lj'jil.OEOI
;6:;'90EOO
'i3:i40EOO
.lr;;!80EOO
• ifJOO EOO
•2.'30EOO
:2,:, 30EOO
!2:.i30EOO
:!2';,30EOO
;!2;:30EOO
i'2k3Q'iOO
:!2:;;30EOO
•]2;::30.EOO
:4:i'30EOO
]2l;60EOO
:8,.;10EOO
•it'.OOEOI
,M';,OOEOO
|::bo EOO
:.00 EOO
i.OO. EOO
:;2.50E01
;-'l:i90E01
!:1!.OOE01
•!3:.20EOO
'i .80EOO
.'i .90EOO
:^1;.20EOO
V..10EOO
-3.60E01
''V.'BOEOI
:3.30EOO
2.90EOO
'2.90EOO
:'2.40EOO
!1 .30EOO
.1J40EOO
TOlAL
: NH4
UG/G
! : ; i •;
J - i
' '•• \
• . i I i
. ! i
. ; •• i '
•• •;• i .•
' ; ' !
'' I''1 ^ '
. 1 1
; . . i ,
"•,.•:[
.'']•• \ \
t -' !
.'.;j'; i' -
>. i • 1 |
; if . 1 ;
; 'i' ; !".'
i
:!
•. • ': 1 •
* "
•' !' ! i '
'•'''!
! ' i i
V '•
', i i
' • • r .
1 j
;j
' ''! '
'li,
i ••':
. 1 i .
1 . 95E02
2.I02E02
2.04E02
2.07E02
2.04E02
1 J75E02
1 J57E02
5. 80E01
;2.:16E02
1.'67E02
.1 .'65E02
2.07E02
1.61E02
1 .13E02
9.80E01
8.70E01
o
o
c.
CD
(v
O~
CD
--J
O
O
rt>
ex
-------
YR DATE
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 203
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
76 247
COMPOSITED
STATIONS
6 7
6 7
6 7
6 7
6 7
6 7
6 7
6 7
10
10
10
10
10
10
10
10
1
1
1
1
1
1
1
1
2 3
2 3
2 3
2 3
2 3
2 3
2 3
2 3
6 7
6 7
6 7
6 7
6 7
6 7
6 7
6 7
10
10
10
10
10
10
10
10
8
8
8
8
8
8
8
8
4
4
4
4
4
4
4
4
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
5
5
5
5
5
5
5
5
9
9
9
9
9
9
9
9
CORE DEPTH
CODE RANGE
CM
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
3
3
3
3
3
3
3
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
24
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
-8
-12'
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
TKN WATER-SOLU
N03;i
UG/G UG/Gtj
• • i
1
1
1
1
1
1
7
7
8
1
1
1
1
1
1
1
.50E03
.24E03
.2GE03
.26E03
.02E03
.25E03
.99E02
.27E02
.93E02
.34E03
.48E03
.30E03
.21E03
.14E03
.03E03
.02E03
7.20E01
1 .50E01
1 .30E01 ,
7.10ECJ1
5.40EOO
4.70EOO
7.90EQO
1 .21E01
5.20E01
5.10E01
2.30E01
1 .80E01
1.10E01
5.40EOO
8.80EOO •'
6'.'40EOO. "
1 .30E01] '
1 .20E01
3.60EOO
2.20EOO '
7.8QEOO
5.80EOO-
1 .80EOO
1 . 10EOO
1 .70E01 !
1 .90E01 |
2.10E01 :
1 .70E01 ,
9.70EOO
2. 10E01 ,
1 .OOE01
1 .90E01
1 .14E02
1 .50E01 .
1 .20E01 :
5.20EOO
1 . 10E01
8.50EOO
1 .30E01
1 .10E01 •
6.70E01
1 .47E02 :
2.60E01
4.90E01
1 .50E01
4.90EOO
5. 40 EOO
5.40EOO
KCL-rEXT.R
N03
UG/G, .'
7.70E01
6.10EOO
5.0QEOO
4iOOEOO
2.30E01
8.50EOO
5.90EOO
5.10EOO
7.90EOO
1 .10E01
5.50EOO
6.60EOO
4.40EOO
5.10EOO
, ..'j ,
^.S.SOEOO
i 2.00E01
1 -OOE01
1 5.30EOO
;,1 .1GE01
4.20EOO
5.40EOO
i 9.90EOO
5. 10EOO
3.80EOO
1 .50E01
1.00E01
1 . 10E01
4.00E.OO
4.60EOO
4.60EOO
3.20E01
3.13E02
5.40EOO
2.70EOO
2.BOEOO
6.30EOO
4.60EOO
1 .40E01
5. OOEOO
1 .94E02
!;2.09C02
6.90EOO
5.70EOO
2.90EOO
4.90EOO
. : . [,, .|
"'-. •'. .-'; ! • :
TOIAL ...: WATER-SOLU
N03;; ' '; :-. NH4 '•'
UG/GJ- :UG/G ,';
1.-I5E02
2.01E02 ';
1.44E02 .
8.50E01 •!
1 . 19E02 "•
1.69E02
7.40E01
1 .50E02
1.77E02' :
2.26E02
1.60E02 ,
1 .66E02
2.26E02
1.96E02 ;
1 . 69E02 ;
1.23EQ2 ,:V
i • 'I ..-/'-I
''i ''f '' '•
••!'. •! . •, 't
;•! f. i j:
'! .'; \ •'•
•'!•' K ('•'•'
!''
! i;
i .' !••
i ' ' ; ' ' < ' '
!: ;
i/N; , '
'•'' ; •
'!!- "• .'•
' '
' ' ; i
''•' • . '
.-*••:•. :
t.03E01 ,
2. 20 EOO
2.30EOO • •'-
,1'.80EOO ', ••
1 .80EOO '.'••'
.1.80EOO :;
i. 60 EOO : ;
a-.ooEoo1^
7.60EOO
3.10EOQ: ii
1 .80 EOO :
1 .60EOO
.90 EOO
1 .10EOO
1 .50EOO ••..:.
1 .20EOO' r
4.:20EOO '•;
^00 EOO :'-\
.00 ;EOO. ,vi
.'oo ,EOO !.ii;
.00 ,EOO ;;;i
.00 'EOO '•:•!
.00 ,EOO' J'
.00 EOO : i
' .00 EOO . :
1 .10EOO ;
.80 EOO '
.00 lEOO •]
.70 EOO ;:
.00 EOO ' •:
.00 EOO !
.00 EOO
.00 EOO
.00 EOO .
2. OOEOO ;
.00 'EOO !i
.00 EOO '-"
.00 EOO
1 .80EOO •.'•
: .00 EOO : '
7. OOEOO ; •
.00 EOO ;
.00 EGO' ';
3.40EOO
.00 EOO
1..70EOO .
1 .60EOO .
.00 EOO •'.'•
KCL-EXTR
: r;NI^4
';UG/G
1 J03E02
5:J30EOO
4!;OOEOO
1 [SOEOO
3JOOEOO
IjlOOEOO
1 {90EOO
1:J90EOO
1i,'52E01
3:.' 10 EOO
3J60EOO
3J30EOO
5J60EOO
3' J 20 EOO
2J30EOO
2!.;90E01
.1IJ10EOO
1;J80EOO
.2'* 80EOO
1 i. 80 EOO
;3;;50EOO
1 .80EOO
.00 EOO
4, 40 EOO
B;.;70EOO
4;J10EOO
:1\|90EOO
:2:.90EOO
;1'.'20EOO
V.:50EOO
1'.'20EOO
1..30E01
4.80EOO
6.40EOO
5J20EOO
4:.; 20 EOO
3.80EOO
3: 70 EOO
3'.' 80 EOO
7.;OOEOO
1 .41E02
3. '40 EOO
6V70EOO
9.20EOO
3.30EOO
3.10EOO
i
2.40EOO
TOTAL
NH4
UG/G
2.10E02
1 .:93£02
1 .:64E02
2.J01E02
*; • *
1 .8
cr
CO
o
o
n>
Q.
ro
CL
-------
YR DATE
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
_ 76 287
<£> 76 287
K' 76 287
76 287
76 287
76 287
76 287
76 287
76 287
76 287
COMPOSITED CORE DEPTH
STATIONS CODE RANGE
H CM
1
2 3
2 3
2 3
2 3
2 3
2 3
2 3
2 3
6 7
6 7
6 7
6 7
6 7
6 7 •
6 7
6 • 7
10
10
10
10
10
10
10
10
4
4
4
4
4
4
4
4
8
8
8
8
8
8
8
8
5
5
5
5
5
5
5
5
9
Q
g
9
g
1
2.5
5
8
12
18
24
1
2.5
5
8
12
18
24
1
2.5
5
8
9 1 12
9 1 18
9 1 24
1
1 1
1 2.5
1 5
1 8
1 12
1 18
1 24
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
-8
-12
-18
-24
-30
-1
-2.5
-5
""8
-12
-18
-24
-30
TKN WATER-SOLD
N03
UG/G UG/G
1 .04E03
1 .24E03
1 .31E03
1 .38E03
1 .44E03
5.34E02
1 .35E03
1 .08E03
1 .36E03
1 .15E03
1 .07E03
8.71E02
5.54E02
5.51E02
1 .20E03
1 .46E03
1 .21E03
1 .05E03
1 .27E03
1 . 12E03
7.83E02
6.26E02
1 . 14E03
1 .26E03
1 .20E03
1 .38E03
1 .22E03
1 .28E03
1 .18E03.
9.39E02
7. 10EOO
8.10EOO
1 .03E01
6.00EOO
4.60EOO
3.00EOO
3.90EOO
2.80EOO
1 .27E01
3.50EOO
7.10EOO
6.40EOO
1 .03E01
6.30EOO
8.20EOO
6.20EOO
1 .50E01
5. 10EOO
4.80EOO
6.40EOO
5.50EOO
7.30EOO
1 .30EOO
.00 EDO
1 . 10E01
2.30E01
2.10E01
2.20E01
1 .SOEOt
1 .40E01
9.70EOO
4.70EOO
KCL-EXTR
N03
UG/G
6.90EOO
7.20EOO
5.60EOO
5.90EOO
2.30EOO
3.00EOO
3.90EOO
2.80EOO
5.30EOO
4.90EOO
5.70EOO
7.40EOO
8.60EOO
7.50EOO
8.90EOO
7.30EOO
6.70EOO
4.30EOO
4.40EOO
4.40EOO
4.40EOO
6.80EOO
6.50EOO
6.20EOO
7.90EOO
3.90EOO
6.10EOO
1 .10E01
6.50EOO
5.90EOO
4.60EOO
4.90EOO
TOTAL
N03
UG/G
7.-IOE01
1 .25E02
1 .04E02
5. 10E01
4.60E01
7.90E01
6.40E01
1 .80E01
1 .44E02
1 .31E02
1 .22E02
4.20E01
1 .02E02
1 .OOE02
1 .03E02
2.50E01
6.80E01
1 .05E02
2.80E01
6.00E01
1 .44E02
1 .49E02
2.09E02
5.90E01
1 . 09E02
3.20E01
1.11E02
1 .48E02
1. 18E02
4.80E01
7.00E01
2.90E01
WATER-SOLU KCL-EXTR
NH4 NH4
UG/G UG/G
1 .90EOO
1 .30EOO
4.30EOO
2.50EOO
4.60EOO
4.40EOO
1 .30EOO
2.70EOO
3.90EOO
.80EOO
.30EOO
.40EOO
.70EOO
.40EOO
.86 EOO
.62 EOO
4.60EOO
3.40EOO
3.00EOO
3.80EOO
2.60EOO
2.70EOO
1 .20EOO
.00 EOO
7.90EOO
3.50EOO
3.90EOO
1.40EOO
3.00EOO
4.00EOO
1.30EOO
1.20EOO
1 .23E01
2.90EOO
8.50EOO
2.90EOO
5.10EOO
4.10EOO
2.80EOO
1 .70EOO
1 .25E01
3.20EOO
2.20EOO
3. OOEOO
3.30EOO
2.90EOO
1 .OOEOO
.71 EOO
9.40EOO
4. OOEOO
5.30EOO
4.60EOO
4.40EOO
2.70EOO
1 .70EOO
1 .OOEOO
9.90EOO
8.40EOO
1 .10E01
9. OOEOO
2.40EOO
2.20EOO
4.20EOO
3.70EOO
TOTAL
NH4
UG/G
1 . 82E02
2. 10E02
2.50E02
.59E02
. 39E02
.78E02
.58E02
5.70E01
2.27E02
.65E02
.45E02
.81E02
. 66E02
1. 14E02
7.90E01
6.60E01
1.80E02
.74E02
.44E02
.59E02
. 98E02
.21E02
.01E02
5.90E01
2.38E02
.88E02
.76E02
.61E02
1 .62E02
1.74E02
1 .29E02
1.27E02
CO
o
o
c-h
— i.
=3
0>
Q.
OJ
cr
fD
o
o
fD
Q.
-------
Table 18. Alachlor and atrazine concentrations in the soil of watershed
109.
NOTE: Detection limits for the Tritium electron capture
detector used in these analyses v/ere as follows.*
Atrazine Linuron Alachlor Trifluralin
Soil (yg/g dry wt) 0.2 .04 .02 .004
* 15g soil sample
199
-------
Table 18. Alachlor and atrazine concentrations in the soil of watershed 109.
NOTE: Blank spaces indicate values which were below the detection limit.
r\>
o
o
Date Station
4/12/76 01
(103)
5/18/76 01
(139)
5/19/76 01
(140)
5/20/76 01
(141)
Depth
C\
cm)
0 - 1
1 - 2.5
2.5 - 5
5 - 8
8 - 12
12 - 18
24 - 30
Large volume
coring tube
Large volume
coring tube
0 - 1
1 - 2.5
2.5 - 5
5 - 8
8-12
12-18
18 - 24
24 - 30
Large volume
coring tube
0 - 1
1 - 2.5
2.5 - 5
5-8
8-12
12 - 18
18 - 24
24 - 30
Atrazine
f . / . \
(yg/g)
3.196E-01
1.469E+00
4.885E+00
2.512E+00
1.790E+00
3.576E+00
7.774E-01
-
1 . 054E+00
2.694E-01
_
Linuron Trifl ural in
(. - / _, \ . . . / / \
yg/g) (yg/g)
8.360E-02 6.900E-03
3.189E-01 6.800E-03
1.697E-01
1.137E-01 4.900E-03
3.720E-02
5.660E-02 7.100E-03
4.100E-03
5.100E-03
-
1.120E-02
6.200E-03
-
Alachlor
/ / \
(yg/g)
9.260E-02
4.361E+00
2.655E+00
2.632E+00
1.520E+00
2.583E-01
4.340E-02
7.986E-01
-
9.454E-01
2.011E-01
-
-------
Table 18. (Continued)
INi
o
Date Station
5/21/76 01
042)
5/22/76 01
(143)
5/23/76 01
(144)
Dep
(cm
Large
coring
0 -
1 -
2.5 -
5 -
8 -
12 -
18 -
24 -
0 -
1 -
2.5 -
5 -
8 -
12 -
18 -
24 -
0 _
1
2.5 -
5 -
8 -
12 -
18 -
24 -
th
volume
tube
1
2.5
5
8
12
18
24
30
1
2.5
5
8
12
18
24
30
1
2.5
5
8
12
18
24
30
Atrazine Linuron
{. \ / . . . \
yg/g) (yg/g)
7.127E-01
14.607E+00
2.063E+00
7.138E-01 1.407E-01
7.380E-02
7.360E-02
2.948E-01
1.072E-01
3.078E+00
2.508E-01
3.800E-02
4.280E-02
1.086E+00
4.515E-01
3.970E-02
Trifluralin
(i \ • • •
yg/g)
1.380E-02
5.600E-03
1.770E-02
1.330E-02
6.800E-03
9.500E-03
5.500E-03
4.300E-03
6.800E-03
9.900E-03
4.500E-03
Alachlor
(. V
yg/g)
5.020E+00
1.471E+00
3.600E-01
2.660E-02
1.307E+00
4.001E-01
1.493E-01
7.680E-02
5.220E-02
7.815E-01
4.066E-01
1.811E-01
3.390E-02
-------
Table 13. (Continued)
o
ro
Date Station
5/24/76 01
(145)
5/25/76 01
(146)
5/28/76 01
(149)
6/2/76 01
(154)
D<
(<
0
1
2.5
5
8
12
18
24
0
1
2.5
5
8
12
18
24
0
1
2.5
5
8
12
18
24
0
1
2.5
5
*pth
:m)
- 1
- 2.5
- 5
- 8
- 12
- 18
- 24
- 30
- 1
- 2.5
- 5
- 8
- 12
- 18
- 24
- 30
- 1
- 2.5
- 5
- 8
- 12
- 18
- 24
- 30
- 1
- 2.5
- 5
- 8
Atrazine
/ j \
•"(vg/g)
8.948E+00
2.860E-01
1.091E+00
1.186E+00
1 . 286E+00
3.172E-01
7.318E-01
5.665E-01
Linuron Trifluralin
/ » \ • / t \
(vg/g) (vg/g)
3.065E-01
2.659E-01
1.223E-01 4.200E-03
1.190E-02
3.750E-02
7.800E-03
8.210E-02 2.830E-02
9.100E-03
5.000E-03
7.690E-02
Alachlor
(. \
yg/g)
3.533E+00
5.547E-01
1.732E-01
5.270E-02
3.474E+00
8.407E-01
4.892E-01
1.335E-01
7.510E-02
4.610E-02
1.638E+00
8.125E-01
1.067E-01
4.961E-01
3.530E-01
1.112E-01
4.960E-02
-------
Table 18. (Continued)
ro
o
u>
Date Station
6/2/76 01
(154)
6/24/76 01
(176)
7/21/76 01
(203)
9/4/76 01
(248)
Depth Atrazine
(cm) (yg/g)
8 -
12 -
18 -
24 -
0 -
1 -
2.5 -
5 -
8 -
12 -
18 -
24 -
0 -
1 -
2.5 -
5 -
8 -
12 -
18 -
24 -
0 -
1 -
2.5 -
0 ™*
8 -
12 -
18 -
24 -
12
18
24
30
1
2.5
5
8
12
18
24
30
1
2.5 6.056E-01
5
8
12
18
24
30
1
2.5
5
8
12
18
24
30
Linuron Trifluralin Alachlor
(yg/g) (yg/g) (yg/g)
1.813E-0
4.410E-0;
4.700E-03
5.460E-0;
- .
6.300E-02
4.110E-02
4.300E-03
-------
Table 18. (Continued)
Date Station
10/13/76 01
(287)
Depth Atrazine Linuron Trifluralin Alachlor
(cm) (yg/g) (yg/g) (yg/g) (yg/g)
0 -
1 -
2.5 -
5 _
8 -
12 -
18 -
24 -
1
2.5
5
8
12
18
24
30
7.580E-02
7.570E-02
4.630E-02
ro
o
-------
Table 19. Application rates for agricultural herbicides and fertilizers on
watershed 109 (1976).
A. Herbicides (Kg/ha) applied to fields 1 and 2 on May 7, 1976
and to fields 3 and 4 on May 18, 1976.
1.
2.
3.
4.
Information from farmer
Measured by time and rate of spray
application and analysis of spray
Measured by filter paper disc method
Measured by large volume core method
Alachlor
2.27
1.20
1.24
1.10
Atrazine
1.70
1.16
1.24
0.82
B. Fertilizers (Kg/ha). Granular 10-20-20 was cultivated into
rows during planting (May 6 for fields 1 and 2, May 13 for
fields 3 and 4). Liquid nitrogen was applied with herbicides
at same time.
Granular Liquid-N
1.
2.
3.
Information from farmer
Measured by time and rate of spray
application and analysis of spray*
Measured by large volume core method
Nitrogen
Phosphorus
Total N
Organic N
Nitrate N
Ammonia N
Total P
Total N
Organic N
Nitrate N
Ammonia N
45.5
39.7
87.0
46.3**
13.0
27.7
39.8
NA
MA
NA
NA
96.6
0
80.4
27.1
30.1
23.2
0
139.5
48.8
72.4
18.3
* Granular data from laboratory analysis and rate of application (400 Ib/ac)
quoted by farmer.
** Urea - N
205
-------
Table 20. Corn harvest data for watershed 109 (1976)
Station
number
1
2
3
4
5
6
7
8
9
10
Mean
Number of
Plot #
1
95
115
114
92
80
60
104
97
91
87
_
harvestable
(25 m2 each)
2
111
92
114
97
85
81
63
81
92
93
_
ears
3
115
46
113
96
89
100
113
93
92
91
«
Mean
107
84
114
95
85
80
93
90
92
90
93
Average
number
kernels
per ear
673
725
714
677
619
584
700
751
763
560
677
Bushels
per
acre *
95.5
80.8
108
85.4
69.8
62.0
86.4
89.7
93.2
66.9
83.3
* 123,000 kernels/bushel - determined by displacement. Value quoted by
farmers for actual removal was 75. Nutrients in corn kernels at harvest
time were 16.6 Kg P/ha and 99.8 Kg N/ha. Approximately 10% of this was
left in the field.
206
-------
Table 21. Summary of farm survey data by watershed basins for 1976.
Basin
Total pesticides
applied (kg)
Total synthetic
fertilizer applied (kg)
- N = 288)
(urea-N = 193)
P - 413
liquid nitrogen*
M - 762
(NCh - N = 285)
(NH3 - N = 220)
(urea-N = 257)
total N - 1,378
Total livestock
populations
101
102
103
105
106
107
108
109
simazine
atrazine
atrazine
maleic hydrazide
maleic hydrazide
MTG (
atrazine
atrazine
atrazine
simazine
atrazine
alachlor
maleic hydrazide
Balan
Vorlex
atrazine
alachlor
2.3
39.5
33.2
52 gal.
10.5 gal.
1 some ' )
9-1
25.4
1.1
1.1
26.4
52.7
12 gal.
9 gal.
21 gal.
17.7
23.6
N
P
N
P
N
P
N
P
N
P
N
P
N
P
solid
N
(NOo
- 1,468
- 641
- 2,593
- 1,686
- 271
- 237
92
40
- 1,459
- 637
- 117
53
- 4,036
- 1,355
fertilizer*
- 616
- N = 135)
cattle
horses
poultry
burros
cattle
horses
hogs
mules
cattle
horses
hogs
burros
horses
cattle
hogs
poul try
cattle
poul try
cattle
horses
hogs
poul try
none
121
18
75
3
20
7
36
1
66
12
64
1
2
33
100
20
6
13
13
2
26
100
* Composition by laboratory analysis.
207
-------
Table 22. Summary of residential area survey data for 1976 - 1977 (ongoing
survey).
Basin
124
Rhode River
shoreline
123
Number of
people
per house
2.8
Number of homes Number Number sampled
and businesses selected as of 6/15/77
157 34
105 26
209 40
Data collected on basin 1
Number of Fertilizer
pets applications
per house per yr. per house
dogs 0.82 5-10-5 0.18
cats 0.11 10-10-5 0.036
unspec. 0.11
manure 0.036
Amway 0.036
24
Pesticide appl
per year per
28
10
9
i cat ions
house
'Scotts' herbicide 0.036
'Scotts + 2'
Agrico herbicide
0.036
0.036
Ortho insecticide 0.14
Seven
Chlordane
'Scotts dust1
Ma lathi on
Dursban
Amway adjuvant
0.14
0.07
0.07
0.036
0.036
0.036
208
-------
Table 23. Bacterial discharge data for field-sized .watersheds.
Q.
00
13
oo
re
A. Fecal coliform bacteria, fecal streptococcus, FC/FS ratio
and total viable aerobic heterotrophic bacteria in surface
samples at weir 109.
TVC cells x 10° ml
Day of
1976
117
' 124
131
- 138
145
153
159
166
173
180
188
194
201
208
215
222
229
236
243
251
257
264
271
278
286
292
300
306
313
320
327
334
341
348
355
362
FC
Cells/100 ml
200
8
120
380
130
200
50
480
500
no flow
no flow
no flow
no flow
no flow
no flow
380
400
no flow
no flow
no flow
no flow
no flow
no flow
50
120
40
30
30
10
5
5
5
10
5
4
4
FS
Cells/100 ml
270
88
89
390
130
140
85
300
980
-
-
-
-
-
-
2600
650
-
-
M
-
-
-
150
60
50
60
50
270
20
5
40
30
15
100
30
FC/FS
ratio
0.74
0.09
1.35
0.97
1.00
1.43
0.59
1.60
0.51
-
-
-
-
-
-
0.15
0.62
-
-
_
-
-
-
0.33
2.00
0.80
0.50
0.60
0.04
0.25
1.00
0.13
0.33
0.33
0.04
0.13
Incubation
48 hr
12.0
2.7
12.0
13.0
50.0
11.0
40.0
2.7
8.3
-
_
-
_
-
-
90.0
80.0
-
-
...
• -
-
-
16.0
14.0
1.0
170.0
1.7
1.0
7.7
0.33
3.7
2.3
1.7
3.0
10.0
7 days
14.0
6.7
13.0
TNTC
63.0
22.0
43.0
6.0
10.0
-
'
-
-
-
-
100.0
140.0
-
-
_
-
-
-
21.0
19.0
2.0
170.0
3.3
2.0
19.0
2.3
7.3
4.0
2.0
6.3
26.0
209
-------
Table 23. (Continued)
A. (Continued)
Day of
1977
003
010
017
024
031
038
045
052
058
066
073
080
087
094
101
108
115
122
129
136
143
150
157
164
FC
Cells/100 ml
<2
2
<2
<2
4
no flow
no flow
<2
<2
<2
22
14
30
60
350
100
520
120
55
no flow
no flow
no flow
no flow
no flow
FS
Cells/100 ml
10
280
10
16
72
_
_
4
<2
38
98
14
38
150
54
150
260
960
370
-
-
-
-
-
FC/FS
ratio
0.20
0.01
0.20
0.13
0.06
-
-
0.50
1.00
0.05
0.22
1.00
0.79
0.40
6.48
0.67
2.00
0.13
0.15
-
-
-
. -
-
TVC cells x 103 ml
Incubation
48 hr. 7 days
6.3
17.0
5.3
3.7
16.0
-
-
16.0
53.0
20.0
6.0
5.7
7.3
18.0
10.0
47.0
250.0
140.0
43.0
-
-
-
-
-
12.0
67.0
21.0
22.0
30.0
-
-
35.0
110.0
25.0
10.3
19.0
22.0
45.0
40.0
120.0
270.0
240.0
80.0
-
-
-
-
-
210
-------
Table 23. (Continued)
B. Fecal coliform bacteria, fecal streptococcus, FC/FS ratio,
and total viable aerobic heterotrophic bacteria in surface
samples at weir 110.
TVC cells x 103 ml
Day of FC FS FC/FS Incubation
1976 Cells/100 ml Cells/100 ml ratio 48 hr 7 days
300 240 970 0.24 30.0 54.0
306 40 60 0.67 22.0 34.0
313 no flow -
320 no flow -
327 no flow
334 640 1000 0.64 50.0 100.0
341 no flow
348 5 10 0.50 2.7 4.7
355 2 4 0.50 2.7 5.3
362 4 20 0.20 3.7 8.7
211
-------
Table 23. (Continued)
B. (Continued)
Day of
1977
003
010
017
024
031
038
045
052
058
066
073
080
087
094
101
108
115
122
129
136
143
150
157
164
FC
Cells/100 ml
no flow
12
no flow
no flow
no flow
no flow
no flow
no flow
no flow
no flow
no flow
no flow
no flow
no flow
no flow
4
160
60
35
no flow
no flow
no flow
no flow
no flow
FS
Cells/100 ml
210
-
.
-
-
-
-
-
-
-
-
-
-
-
50
350
260
15
-
-
-
-
-
TVC cells x 103 ml
FC/FS Incubation
ratio 48 hr 7 days
•H « ••
0.06 250.0 320.0
......
_
_
.
-
_
_
_
_
_
_
_
_
0.08 630.0 670.0
0.46 490.0 510.0
0.23 150.0 200.0
2.33 90.0 210.0
•
_
_
_
- - -
212
-------
Table 23. (Continued)
C. Fecal coliform bacteria, fecal streptococcus, FC/FS ratio,
and total viable aerobic heterotrophic bacteria in surface
samples at weir 111.
TVC cells x 103 ml
Day of
1977
058
066
073
080
087
094
101
108
115
122
129
136
143
150
157
164
FC
Cells/100 ml
2
2
2
2
32
570
18
no sample
2700
no sample
no sample
480
270
no sample
1000
40
FS
Cells/100 ml
2
6
2
18
24
290
34
-
no
-
-
350
230
-
2500
720
FC/FS
ratio
1.00
0.33
1.00
0.11
1.33
1.97
0.53
-
24.55
-
-
1.40
1.20
-
0.40
0.06
Incubation
48 hr 7 days
400.0
28.0
6.3
5.7
16.0
60.0
9.0
-
330.0
-
-
500.0
30.0
-
220.0
30.0
450.0
31.0
19.7
28.0
35.0
170.0
30.0
-
360.0
-
-
570.0
67.0
-
290.0
60.0
213
-------
Table 24. Particulate discharge data for field-sized watersheds.
A. Watershed 109 (cornfield)
76
76
76
76
76
76
76
76
76
76
76
76
76
76
73
75
76
76
76
76
76
76
76
76
76
76
76
117
124
131
138
138
145
153
159
166
173
188
194
215
222
229
278
286
292
300
306
313
320
327
341
341
348
355
DATE
1415
1500
1435
1420
1420
1350
1410
1420
1430
1508
1330
1345
1345
1350
141S
1440
1435
1410
1420
1600
1540
1415
1440
1600
1600
1535
1500
SPAN
76
76
76
76
76
76
76
76
76
76
75
76
76
76
76
76
76
76
76
76
76
76
145
153
159
166
173
180
194
201
222
229
236
286
292
300
306
313
320
327
334
348
355
362
1350
1410
1420
1430
1508
1500
1345
1430
1350
1418
1335
1435
1410
1420
1600
1540
1415
1440
1620
1535
1500
1515
SAMPLE FLOW TOTAL TOTAL
TYPE RATE FLOW SUSPENDED
SOLIDS
(L/SEC) (L) (MG/L)
GRB
GRB
GRB
GRB
FLX
FLX
FLX
FLX
FLX
FLX
FLX
FLX
FLX
FLX
FLX
FLX
FLX
FLX
FLX
FLX
FLX
FLX
FLX
GR3
FLX
FLX
FLX
6.12E-01
1.46E 00
2
4
1
1
7
5
5
1
8
4
1
1
1
1.
1.
q
y4'
4
5
4.92E-1
1
6
4
.74E05
.89E06
.13E05
.57E04
.S3E05
.35E04
.40E04
.65E06
.93E05
.45E05
.21E04
.05E06
.51E05
44E06
74E06
07F05
.4)5^5
.02E05
.06E05
.36E06
.91EOS
.58E06
44.0
16.7
7.5
8.4
21.0
10.4
13.3
7.1
320.1
28.0
213.8
265.3
1 104.0
150.4
40.8
67.1
5.7
9.2
8.1
2.8
7.6
17.8
96.0
2.5
17.7
6.6
9.6
MINERAL
SUSPENDED
SOLIDS
(MG/L)
32.
12.
4.4
5.0
15.
5.3
6.3
4.4
268
20.
163
218
949
119
29.
55.
4.2
8.4
4.8
1.3
4.8
12.
67.
1.2
12.
3.8
5.9
6
9
5
.9
1
.2
.4
.5
.3
7
2
1
6
3 \
0
B. Watershed 110 (forest)
DATE SPAN
SAMPLE FLOW TOTAL TOTAL MINERAL
TYPE RATE FLOW SUSPENDED SUSPENDED
SOLIDS SOLIDS
(L/SEC) (L) (MG/L) (MG/L)
76
76
76
76
76
76
300
306
334
348
355
362
820
910
1005
925
900
905
GRB
GRB
GRB
GRB
GRB
GRB
1.
1.
1.
1.
1 .
6.
26EOO
59E-1
08E-1
08E-1
91E-2
94E-3
22
9.
23
Q.
9.
12
1
.
5
9
.
1
9
6
15
5.
10
5.
5.
8.
0
.
2
9
7
1
0
214
-------
Table 25. Nutrient discharge data for field-sized watersheds.
A. 109 (cornfield)
Grab samples
ro
_~j
en
Day
110
113
117
124
.131
137
153
166
222
292
306
320
334
348
362
1976
Time
-
-
0830
1500
1435
1420
1410
1430
1350
1410
1600
1415
1620
1535
1500
Flow
U/sec)
-
-
-
-
.612
1.46
.222
0
2.47
.159
1.93
.747
1.46
1.07
1.93
Dissolved
Orthophosphate
(yq PA)
35
-
-
20
-
49
-
-
20
16
1
3
13
7
0
Dissolved
Total
Phosphorus
(yq P/A)
15
-
-
12
-
16
-
-
24
26
14
28
28
31
4
Orthophosphate
(uq PA)
91
-
-
114
-
134
-
-
137
88
34
43
73
57
10
Total
Phosphorus
(wg PA)
238
365
106
68
180
224
-
-
248
62
53
81
108
55
37
-------
Table 25. (Continued)
A. 109 (cornfield)
Grab samples
IN3
Day
110
113
117
124
131
138
153
166
222
292
306
320
334
348
362
1976
Time
-
-
0830
1500
1435
1420
1410
1430
1350
1410
1600
1415
1620
1535
1500
Flow
(A/sec)
-
-
- •
-
.612
1.46
.222
0
2.47
.159
1.93
.747
1.46
1.07
1.93
Nitrite
(yg N/A)
4
114
9
7
11
-
-
-
7
2
3
2
0
5
4
Nitrate
Nitrite
864
576
677
571
544
324
-
-
568
107
560
178
25
781
540
Ammonia
(yg N/A)
64
-
-
174
-
1-21
'
-
144
42
22
11
-
40
66
Total
Kjeldahl
Nitrogen
(yg N/A)
320
2646
400
554
441
1056
-
-
547
218
290
76
179
133
306
Organic
Matter
(q cal/A)
41
53
31
54
26
68
-
-
46
87
24
32
37
8
12
-------
Table 25. (Continued)
A. 109 (cornfield)
Grab samples
1977
Day
003
010
017
024
031
066
080
094
108
122
Time
1530
1630
1700
1640
1627
1210
1400
1420
1435
1030
Flow
U/sec)
.899
1.26
.747
.612
.108
.899
.612
1.46
.019
.747
Dissolved
Orthophosphate
(yg P/A)
6
11
0
8
-
11
20
14
18
25
Dissolved
Total
Phosphorus
(yg PA)
-
5
39
4
42
38
10
30
20
47
Orthophosphate
(yg PA)
33
58
25
12
-
76
55
87
-
133
Total
Phosphorus
(yg PA)
56
77
109
210
155
465
109
117
74
203
-------
Table 25. (Continued)
A. 109 (cornfield)
CO
Grab samples
1977
Day
003
010
017
024
031
066
080
094
108
122
Time
1530
1630
1700
1640
1627
1210
1400
1420
1435
1030
Flow
U/sec)
.899
1.26
.747
.612
.108
.899
.612
1.46
.019
.747
Nitrite
(yg N/a)
7
6
12
4
7
12
10
12
15
21
Nitrate
+
Nitrite
(yg N/A)
572
552
820
636
466
528
340
313
348
594
Ammonia
(yg MM)
70
92
-
91
-
87
-
98
63
172
Total
Kjeldahl
Nitrogen
(yg MM)
222
370
395
609
609
371
68
328
328
851
Organic
Matter
(g cal/A)
35
57
53
37
20
22
29
35
46
-------
Table 25. (Continued)
A. 109 (cornfield)
1976 Flow
Day Time Day Time U/int)
Integrated samples
Total phosphorus Organic matter
Concentration Total discharge Concentration Total discharge
(yg P/A) (grams) (g cal/a) (Kg cal)
c
•r~
s-
138 1420 145 1350
145 1350 153 1410
274000
4890000
250
193
68.5
944
47.2
40.0
12900
196000
5160000
196
1010
40.5
209000
ro
10
-------
Table 25. (Continued)
A. 109 (cornfield)
Nitrate
Integrated samples
Nitrite
Day
JP 138
si
£• 145
1976
Time Day
1420 145
1350 153
Time
1350
1410
Flow
U/int)
274000
4890000
Concen-
tration
(yg N/A)
359
262
Total
discharge
(grams)
98.3
1280
Kjeldahl
Concen-
tration
(yg N/A)
770
444
nitrogen
Total
discharge
(grams)
211
2170
Total nitrogen
Concen-
tration
(yg N/£)
1130
706
Total
discharge
(grams)
310
3450
5160000
267
1380
461
2380
728
3760
ro
o
-------
Table 25. (Continued)
A. 109 (cornfield)
1976 Flow
Day Time Day Time U/int)
Integrated samples
Total phosphorus
Concentration Total discharge
(yg P/&) (grams)
Organic matter
Concentration Total discharge
(g cal/A) (Kg cal)
153
159
166
173
180
S-
1X5 1= 1R8
ro = loo
— J C=
" 194
201
208
215
222
229
1410
1420
1430
1508
1500
1330
1345
1430
1400
1345
1350
1418
159
166
173
180
188
194
201
208
215
222
229
236
1420
1430
1508
1500
1330
1345
1430
1400
1345
1350
1418
1335
113000
15700
783000
53500
Stream dry
54000
1650000
(2000)
1080
893000
446000
12100
231
233
207
390
416
512
381
645
3200
844
164
26.
3.
162
20.
22.
845
0.
0.
2860
376
1.
1
67
9
5
762
697
98
42.0
54.0
109
96.0
186
102
91
129
394
88
43
4750
848
85300
5140
10000
1 68000
182
139
352000
39200
520
4020000
1070
4320
166
666000
() Estimated value
-------
Table 25. (Continued)
A. 109 (cornfield)
Nitrate
+
Integrated samples
Day
153
159
166
173
180
ro * 188
ro =
ro =
3 194
201
208
215
222
229
1976
Time Day
1410
1420
1430
1508
1500
1330
1345
1430
1400
1345
1350
1418
159
166
173
180
188
194
201
208
215
222
229
236
Time
1420
1430
1508
1500
1330
1345
1430
1400
1345
1350
1418
1335
Nitrite
Concen- Total
Flow tration discharge
U/int) (yg N/a) (grams)
113000
15700
783000
53500
Stream dry
54000
1650000
(2000)
1080
893000
446000
12100
376
383
449
325
-
1055
730
492
800
111
493
289
42.5
6.01
352
17.4
-
57.0
1200
0.984
0.864
694
220
3.50
Kjeldahl
Concen-
tration
(yg N/ft)
371
386
1600
894
-
2400
1580
928
2976
3270
457
393
nitrogen
Total
discharge
(grams)
41.9
6.06
1250
47.8
-
130
2610
1.86
3.21
2920
204
4.76
Total nitrogen
Concen- Total
tration discharge
(yg N/&) (grams)
747
769
2050
1220
-
3460
2310
1420
3780
4050
950
682
84.4
12.1
1610
65.3
-
187
3810
2.84
4.08
3620
424
8.25
4020000
644
2590
1800
7220
2440
9800
() Estimated value
-------
Table 25. (Continued)
ro i—
ro i—
OJ ea
A. 109 (cornfield)
1976 . Flow
Day Time Day Time (&/int)
Integrated samples
Total phosphorus
Concentration Total discharge
(yg P/a) (grams)
Organic matter
Concentration Total discharge
(g cal/jp (Kg cal)
236
278
286
292
300
306
313
320
327
1335
1440
1435
1410
1420
-
1540
1415
1440
278
286
292
300
306
313
320
327
334
1440
1435
1410
1420
-
-
1415
1440
1620
Stream dry
1050000
151000
1440000
1740000
907000
495000
409000
506000
-
304
125
95
58
65
99
137
69
-
319
18.9
137
101
59.0
49.0
56
34.9
-
86
21
30
32
27
35
45
30
-
90300
3170
43200
55700
24500
17300
18400
17300
6700000
114
765
40.3
270000
-------
Table 25. (Continued)
A. 109 (cornfield)
Nitrate
+
Integrated samples
Day
236
278
286
292
300
306
313
320
327
1976
Time Day Time
1335
1440
1435
1410
1420
-
1540
1415
1440
278 1440
286 1435
292 1410
300 1420
306
313
320 1415
327 1440
334 1620
Flow
U/int)
Nitrite
Concen- Total
tration discharge
(ug N/£) (grams)
Kjeldahl
Concen-
tration
nitrogen
Total
discharge
(grams)
Total nitrogen
Concen- Total
tration discharge
(yg H/a) (grams)
Stream dry - - - -
1050000
151000
1440000
1740000
907000
495000
409000
506000
281
90
357
111
573
253
183
110
295
13.6
514
193
520
125
74.8
55.7
608
242
255
462
211
184
263
328
638
36.5
367
804
191
153
107
166
889
332
612
573
784
437
446
438
933
50.1
881
997
711
216
182
222
67000000
267
1790
735
2460
626
4192
-------
Table 25. (Continued)
ro
en
A. 109 (cornfield)
1977 Flow
Day Time Day Time (&/int)
Integrated samples
Total phosphorus
Concentration Total discharge
(yg P/ft) (grams)
Organic matter
Concentration Total discharge
(g cal/a) (Kg cap
334
341
348
355
362
003
010
017
024
031
038
045
052
1
1
1
1
1
1
1
1
1
1
625
600
535
500
510
530
635
700
640
-
-
-
220
341
348
355
362
003
010
017
024
031
038
045
052
058
1
600
1535
1
1
1
1
1
1
1
1
1
500
510
530
630
700
640
627
-
-
220
210
309000*
1360000
691000
4580000
1860000*
2200000*
1350000*
450400*
149700*
No sample
No sample
(560000)
773400
14300000
1
1
1
69
79
20
95
56
77
09
210
1
55
-
-
460
505
1
23
213
24.3
82.9
435
104
169
147
94.6
23.2
-
-
258
391
1750
30
46
23
17
26
35
57
53
37
-
-
83
88
31.9
9270
6260
15900
77900
48400
77000
77000
23900
5540
-
-
46500
68100
456000
() Estimated value
* Grab sample
-------
Table 25. (Continued)
A. 109 (cornfield)
Nitrate
Integrated samples
IN3 -
O~)
Nitrite
Concen- Total
Day
334
341
348
355
362
003
010
017
024
031
038
045
052
1977
Time Day
1625
1600
1535
1500
1510
1530
1635
1700
1640
-
-
-
1220
341
348
355
362
003
010
017
024
031
038
045
052
058
Time
1600
1535
1500
1510
1530
1630
1700
1640
1627
-
-
1220
1210
Flow tration
(£/int) (yg N/i)
309000
136000
691000
458000
186000*
220000*
1350000
450400*
149700
No sample
No sample
(560000)
773400
1 4300000
326
266
271
337
572
552
820
636
466
-
-
556
754 .
455
discharge
(grams)
101
36.2
187
1540
1060
1214
1110
286
69.8
-
-
311
583
6500
Kjeldahl nitrogen
Concen- Total
tration
(yg N/A)
75
467
321
480
222
370
395
609
609
-
-
1270
1200
439
discharge
(grams)
23.1
63.5
222
2200
413
814
533
274
91.2
-
-
711
928
6270
Total
Concen-
tration
(yg N/&)
401
733
592
817
794
922
1220
1250
1080
-
-
826
1954
854
nitrogen
Total
discharge
(grams)
124
99.7
409
3740
1480
2030
1650
563
161
-
-
463
1510
12200
() Estimated value
-------
Table 25. (Continued)
oo
A. 109 (cornfield)
1977 Flow
Day Time Day Time U/int)
Integrated samples
Total phosphorus
Concentration Total discharge
g P/Q (grams)
Organic matter
Concentration Total discharge
(g cal/£) (Kg cal)
058
066
073
080
087
094
101
108
115
122
129
136
143
1210
1345
1105
1400
1325
1420
1335
1435
1325
1030
1200
1300
1105
066
073
080
087
094
101
108
115
122
129
136
143
150
1
1
1
1
1
1
345
105
400
325
420
335
1435
1
1
1
325
030
200
1300
1
1
105
055
1054000
646100
698900
1574000
1044000
1250000
542900
296400
(487400)
487600
129200
(65000)
32340
465
87
112
189
167
90
85
156
192
223
234
274
Dry
490
56.
78.
297
174
113
46.
46.
93.
109
30.
17.
(1536.
2
3
1
2
6
2
8
3)
19
28
16
27
30
29
22
48
33
45
43
39
-
20000
18100
11200
42500
31300
36300
11900
14200
16100
21900
5560
2540
-
8300000
187
1550
28
232000
() Estimated value
-------
Table 25. (Continued)
A. 109 (cornfield)
Nitrate
+
Integrated samples
Day
058
066
073
080
087
094
rx, ™ 101
»'i.
ft 108
115
122
129
136
143
1977
Time Day
1210
1345
1105
1400
1325
1420
1335
1435
1325
1030
1200
1300
1105
066
073
080
087
094
101
108
115
122
129
136
143
150
Time
1345
1105
1400
1325
1420
1335
1435
1325
1030
1200
1300
1105
1055
Flow
U/int)
1054000
646100
698900
1574000
1044000
1250000
542900
296400
487400
487600
129200
(65000)
22340
Nitrite
Concen- Total
tration discharge
(yg N/fc) (grams)
550
426
292
552
405
540
409
294
276
196
228
30
Dry
580
275
204
869
423
675
222
87.1
135
95.6
29.5
2.00
-
Kjeldahl nitrogen
Concen- Total
tration discharge
(yg N/&) (grams)
429
305
246
650
480
240
468
1070
870
610
490
652
-
452
197
172
1020
501
300
254
317
424
297
63.3
42.4
-
Total
Concen-
tration
(yg N/a)
979
731
538
1200
885
780
877
1360
1150
806
718
682
-
nitrogen
Total
discharge
(grams)
1030
472
376
2360
924
975
476
403
561
393
92.8
44.3
-
8300000
434
3600
487
4040
977
8110
() Estimated value
-------
ro
Table 25. (Continued)
A. 109 (cornfield)
mean concentrations
Integrated samples
Nitrate
Summer 1976
Fall 1976
Winter 1977
Spring 1977
Total
Yearly flow
Flow
U/int)
4023000
6698000
14280000
83000000
33300000
weighted
Total
phosphorus
(grams)
4320
765
1750
1550
8400
252
Total
nitrogen
(grams)
9800
4190
12200
8110
34300
1030
Nitrite
(grams)
2590
1790
6500
3600
14500
435
Kjeldahl
nitrogen
(grams)
7220
2460
6270
4040
20000
601
Organic
matter
(Kg cal)
666000
270000
456000
232000
1620000
48.6
-------
Table 25. (Continued)
B. 110 (forest)
Grab samples
ro
CO
o
Day
1976
300
306
334
348
362
1977
010
108
115
122
129
Time
0820
0907
1005
0925
0905
0936
0950
0840
0910
0920
Dissolved
Dissolved Total
Flow Orthophosphate Phosphorus
U/Sec) (yq P/Jl) (yg P/fc)
1.26
.159 28 26
.159 111 161
.108 11 41
.0069 0 0
1.07 29 32
.222 11 57
.222
.222 27 56
.108
Orthophosphate
(yg P/A)
47
146
28
44
84
34
-
67
_
Total
Phosphorus
(yg P/a)
105
66
193
66
28
107
101
125
111
174
-------
Table 25. (Continued)
B. 110 (forest)
Grab samples
ro
co
Day
1976
300
306
334
348
362
1977
010
108
115
122
129
Time
0820
0907
1005
0925
0905
0936
0950
0840
0910
0920
Flow
(a/sec]
1.26
.159
.159
.108
.0069
1.07
.222
.222
.222
.108
Nitrite
(yg NA)
2
2
1
3
3
4
14
6
3
Nitrate
Nitrite
(yg NA)
18
5
39
10
27
544
30
61
32
20
Total
Kjeldahl
Ammonia Nitrogen
(yg NA) (yg NA)
565
448
535
18 225
66 280
50 518
45 496
868
74 675
690
Organic
Matter
(g calA)
88
80
155
157
77
99
53
145
82
93
-------
Table 25. (Continued)
B. 110 (forest)
ro
Integrated samples
Total phosphorus Organic matter
Day
280
286
293
300
306
313
320
327
334
341
348
355
362
003
010
1976
Time Day
1720
0830
0910
0820
0910
0920
0855
0905
1005
0920
0925
0900
0910
-
-
286
293
300
306
313
320
327
334
341
348
355
362
003
010
104
Time
0830
0910
0820
0910
0920
0855
0905
1005
0920
0925
0900
0905
0925
-
-
Flow Concentration
U/int) (yg P/&)
88800
0
245000*
142000*
3620*
0
0
2260*
4560
207000*
25900
42300*
4200
0
Inoperative
212
-
105
66
(66)
-
-
193
(130)
66
(47)
28
68
-
-
Total discharge
(grams)
18.
-
25.
9.
0.
-
-
0.
0.
13.
1.
1.
0.
.
-
8
8
37
239
436
590
7
22
18
286
Concentration
(g cal/&)
174
-
88
80
(80)
-
-
155
(156)
157
(117)
77
88
-
-
Total discharge
(Kg cal)
15500
-
21600
11400
290
-
-
350
711
35300
3030
3260
370
-
-
766000
() Estimated value, * Grab sample
94
71.6
120
91800
-------
Table 25. (Continued)
B. 110 (forest)
Nitrate
+
Integrated samples
ro
co
CO
Day
280
286
293
300
306
313
320
327
334
341
348
355
362
003
010
1976
Time Day
1720
0830
0910
0820
0910
0920
0855
0905
1005
0920
0925
0900
0910
-
.-
286
293
300
306
313
320
327
334
341
348
355
362
003
010
104
Time
0830
0910
0820
0910
0920
0855
0905
1005
0920
0925
0900
0905
0925
-
Nitrite
Concen- Total
Flow tration discharge
U/int) (yg N/&) (grams)
88800
0
245000*
142000*
3620*
0
0
2260*
4560
207000*
25900
42300*
4200
0
In operative
(20)
-
18
5
(5)
-
-
39
(25) -
10
(19)
27
286
-
-
1
4
0
0
0
0
2
0
1
1
.78
-
.41
.71
.018
-
-
.088
.114
.07
.492
.14
.20
-
-
Kjeldahl
Concen-
tration
(yg N/£)
1664
-
565
448
(448)
-
-
535
(380)
225
(252)
280
399
-
-
nitrogen
Total
discharge
(grams)
148
-
138
63.6
1.62
-
-
1.20
1.73
46.6
6.53
11.84
1.68
-
-
Total
Concen-
tration
(yg N/0
1684
-
583
453
(453)
-
-
574
(405)
235
(271)
307
685
-
-
nitrogen
Total
discharge
(grams).
150
-
143
64.3
1.64
-
-
1.29
1.85
48.6
7.01
13.0
2.88
-
-
766000
16
12.0
550
421
563
431
-------
Table 25. (Continued)
ro
OJ
B. 110 (forest)
Integrated samples
Total phosphorus
Organic matter
Day
104
108
115
122
129
136
143
1977
Time Day
1115
0950
0840
0910
0920
0915
0935
108
115
122
129
136
143
150
Time
0950
0840
0910
0920
0915
0935
1120
Flow Concentration
(Vint) (yg P/a)
107000*
93700*
146000
124000
9070
0
0
101
174
111
174
(174)
-
-
Total discharge
(grams)
10.
16.
16.
21.
1.
-
-
8
3
2
6
58
Concentration
(g cal/i)
53
145
82
93
(93)
-
-
Total discharge
(Kg cal)
5670
13600
12000
11500
843
-
-
480000
139
() Estimated value
* Grab sample
66.5
91
43600
-------
Table 25. (Continued)
B. 110 (forest)
Nitrate
Integrated samples
Day
104
108
115
122
129
136
143
1977
Time Day
1115
0950
0840
0910
0920
0915
0935
108
115
122
129
136
143
150
Time
0950
0840
0910
0920
0915
0935
1120
Flow
U/int)
107000*
93700*
146000
124000
9070
0
0
480000
Nitrite
Concen- Total
tration discharge
(yq NA) (grams)
61
20
32
20
(20)
-
33
6
1
4
2
0
15
.53
.87
.67
.48
.181
-
-
.7
Kjeldahl nitrogen
Concen- Total
tration discharge
(yg NA) (grams)
868
690
675
690
(690)
-
-
727
92.9
64,7
98.6
85.6
6.26
-
-
348
Total
Concen-
tration
(yg NA)
929
710
707
713
(713)
-
-
759
nitrogen
Total
discharge
(grams)
99.4
66.5
103
88.4
6.47
-
-
364
Grab sample
-------
Table 26A. Soil nutrient pool sizes on watershed 109. (Fields 1, 2, 3, and 4)
Values are expressed on a square meter of surface area basis.
April 23, 1976
Orthophosphate
Depth and
elevation
0 - 1 cm
30'
50'
75'
100'
1 - 8 cm
30'
50'
75'
100'
8 - 18 cm
30'
50'
75'
100'
18 - 30 cm
30'
50'
75'
TOO1
Total
phosphorus
(g P)
10.3
9.51
10.7
8.43
78.2
65.9
84.8
68.3
124
44.9
135
125
125
77.4
177
131
Total
(g P)
5.66
2.86
6.43
2.83
26.6
21.9
19.6
22.7
28.7
25.0
43.7
31.0
48.4
44.0
78.3
48.6
Water
extractable
P04
(g P)
0.021
-
0.095
0.017
0.439
1.281
0.357
1.26
0.898
1.13
0.754
0.162
0.084
0.600
0.282
236
K Cl
extractable
P04
(g P)
0
-
0.054
0.017
0.092
0.267
-
-
0.056
-
0.070
0.076
0.162
0.129
Organic
matter 3
(Kg cal x 10 )
0.996
1.44
0.801
0.933
8.65
9.56
6.88
5.47
10.27
10.37
11.58
9.69
12.53
0.913
5.49
8.29
-------
Table 26A. (Continued). (Fields 1 and 2)
May 10, 1976
Orthophosphate
Depth and ,
elevation
0 - 1 cm
50'
75'
1 - 8 cm
50'
75'
8 - 18 cm
50'
75'
18 - 30 cm
50'
75'
Total
phosphorus
(g P)
10.7
9.70
72.6
83.9
91.4
124
109
152
Total
(g P)
5.71
8.32
45.7
49.4
34.1
74.3
29.9
90.7
Water
extractable
P04
(g P)
0.0260
0.0373
0.301
0.230
0.0887
0.289
0.0156
1.17
K Cl
extractable
P04
(g P)
0.00863
0.0274
0.0692
0.0634
0.0817
0.0545
0.113
0.105
Organic
matter
(Kg cal x 10J)
0.995
1.06
7.18
6.32
4.99
8.86
14.7
5.12
237
-------
Table 26A. (Continued). (Fields 3 and 4)
May 14, 1976
Orthophosphate
Depth and
elevation
0 - 1 cm
30'
50'
75'
100'
1 - 8 cm
30'
50'
75'
100'
8 - 18 cm
30'
50'
75'
TOO1
18 - 30 cm
30'
50'
75'
100'
Total
phosphorus
(q P)
10.8
7.95
12.6
7.96
68.0
57.9
113
61.7
84.4
75.1
119
85.9
95.7
103
156
89.8
Water
extractable
Total P04
(q P) (g P)
4.88 0.250
3.83 0.024
1.11 0.209
1.73 0.007
18.9 1.34
22.9 0.121
2.113
10.1 0.603
0.256
28.5 0.162
1.70
10.4 0.500
0.222
43.7 0.039
2.47
13.1 0.086
238
K Cl
extractable
P04
(q P)
0.054
0.015
0.059
0
0.127
0.054
0.886
0.078
0.017
0.081
0.333
0
0
0.042
0.224
0
Organic
matter
(Kg cal x 103)
1.34
1.09
0.871
-
8.77
7.75
12.7
8.70
6.53
8.62
10.1
14.4
12.19
6.62
2.55
8.96
-------
Table 26A. (Continued). (Fields 1, 2, 3, and 4)
July 21, 1976
-Orthophosphate
Depth and
elevation
0-1 cm
30'
50'
75'
100'
1 - 8 cm
30'
50'
75'
100'
8 - 18 cm
30'
50'
75'
100'
18 - 30 cm
SO-
SO'
75'
100'
Total
phosphorus
(g P)
7.94
11.1
13.6
13.6
65.6
78.1
117
96.3
no
117
159
120
133
168
258
148
Total
(q P)
2.79
3.79
6.71
3.76
30.9
21.9
50.9
22.4
29.1
32.3
66.4
24.3
36.7
45.3
74.0
35.6
Water
extractable
P04
(g P)
0.026
0.023
0.163
0.036
0.160
0.171
1.15
0.177
0.168
0.307
0.747
0.347
0.209
0.216
0.080
0.291
239
K Cl
extractable
P04
(g P)
0.002
0.010
0.036
0.045
0.112
0.063
0.408
0.392
0.144
0.161
0.366
0.517
0.154
0.258
0.233
0.536
Organic
matter ^
(Kg cal x 10 )
0.517
0.724
0.639
0.979
5.68
7.91
4.76
6.63
8.66
9.01
6.30
9.48
8.44
3.80
1.62
7.47
-------
Table 26A. (Continued). (Fields 1, 2, 3, and 4)
October 13, 1976
Qrthophosphate
Depth and
elevation
0 - 1 cm
30'
50'
75'
100'
1 - 8 cm
30'
50'
75'
100'
8 - 18 cm
30'
50'
75'
100'
18 - 30 cm
30'
50'
75'
100'
Total
phosphorus
• • • / P^ \ • • • •
(g P)
12.6
11.9
14.8
10.6
124
100
114
89.1
134
138
144
101
198
189
192
120
Total
• • / • • !•* \ •
(g P)
4.77
4.91
11.8
5.33
32.5
20.9
73.4
52.6
42.0
47.4
94.3
44.3
62.2
116
132
60.4
Water
extractable
P04
(g P)
0.019
0.023
0.077
0.026
0.209
0.187
0.506
0.358
0.101
0.134
0.636
0.281
0.367
0.160
0.479
0.179
240
K Cl
extractable
P04
(g P)
0.021
0.016
0.023
0.024
0.183
0.062
0.114
0.328
0.033
0.240
0.251
0.194
0.199
0.228
0.618
0.417
Organic
matter
(Kg cal x 103)
1.07
1.34
0.987
1.09
7.96
7.64
5.87
8.73
11.6
10.7
7.38
13.3
' 11.9
6.39
5.57
8.67
-------
Table 26A. (Continued). (Fields 1, 2, 3, and 4)
April 23, 1976
Ammonia
Nitrate
ro
Depth and
elevation
0 - 1 cm
30'
50'
75'
100'
1 - 8 cm
30'
50'
75'
100'm
8 - 18 cm
30'
50'
75'
100'
18 - 30 cm
30'
50'
75'
100'
Kjeldahl
nitrogen
(g N)
14.4
10.9
12.1
15.0
96.4
107
86.4
87.4
133
135
139
174
150
105
73.8
93.6
Total
(g N)
3.85
4.72
2.86
2.65
15.0
16.2
10.4
13.2
24.1
21.7
19.1
23.2
33.7
16.1
10.1
19.7
Water K Cl
extractable extractable
(g N) (g N)
0
0.113
0.249
0.897
0.847
1.48
1.70
0.682 1.53
2.66 (4.26)
0.618 3.02
2.96 3.51
Total
(g N)
1.15
0.965
0.245
0.818
4.69
3.44
7.11
4.39
7.6
10.3
10.0
12.3
18.8
9.51
8.58
8.59
Water K Cl
extractable extractable
(g N) (g N)
0.290 0.029
0.276
0.251
0.501
0.426 0.085
1.29 0.155
0.387 0.155
0.374 0.598
-------
Table 26A. (Continued). (Fields 1 and 2)
May 10, 1976
ro
-f=»
ro
Depth and
elevation
0 - 1 cm
50'
75'
1 - 8 cm
50'
75'
8 - 18 cm
50'
75'
18 - 30 cm
50'
75'
Kj el da hi
nitrogen
(q N)
19.2
16.6
112
76.7
110
106
89.1
64.8
Total
(g N)
3.84
3.34
19.3
12.3
19.3
17.0
11.2
6.85
Ammonia
Water
extractable
(g N
0.213
1.35
1.72
0.403
0.313
0.282
0.156
0.315
K Cl
extractable
(g N)
0.0947
0.790
2.20
0.976
0.626
0.230
0.312
0.394
Total
(g N)
5.80
3.22
35.5
9.63
10.1
13.4
15.2
26.2
Nitrate
Water
extractable
(g N)
0.545
0.756
16.7
0.485
1.33
0.410
0.546
2.21
K Cl
extractable
(g N)
0.0710
0.0677
0.148
0.156
0.209
0.128
0.234
0.236
-------
Table 26A. (Continued). (Fields 3 and 4)
May 14, 1976
GO
Depth and
elevation
0 - 1 cm
30'
50'
75'
100'
1 - 8 cm
30'
50'
75'
100'
8 - 18 cm
30'
50'
75'
100'
18 - 30 cm
30'
50'
75'
100'
Kjeldahl
nitrogen
(q N)
20.0
12.1
13.8
16.1
106
96.8
102
97.2
138
147
no
124
152
94.2
56.5
108
Total
(g N)
6.25
2.53
3.30
1.98
19.2
13.5
29.4
17.2
20.3
17.4
11.5
21.1
20.0
12.0
6.96
13.4
Ammonia
Water
extractable
(g N)
2.19
0.025
0.685
0.041
1.54
11.2
3.48
0.254
0.190
0.128
0.725
0.218
0.020
0.286
0.209
K Cl
extractabl e
(g N)
1.78
0.056
0.557
0.036
2.35
0.207
8.30
2.57
0.635
0.515
0.267
0.802
0.495
0.236
0.301
0.486
Total
(g N)
4.02
1.41
1.89
1.97
14.4
7.9
12.3
14.8
17.3
14.5
18.7
24.6
43.7
10.6
5.68
18.0
Nitrate
Water
extractable
(g N)
0.164
0.453
0.323
0.876
6.69
2.91
0.656
0.798
1.45
0.605
0.684
0.635
K Cl
extractable
(g N)
0.081
0.077
0.008
0.252
6.03
0.962
0.485
0.719
0.562
0.818
0.571
0.342
0.711
0.941
-------
Table 26A. (Continued). (Fields 1, 2, 3, and 4)
July 21, 1976
ro
Depth and
elevation
0 - 1 cm
30'
50'
75'
100'
1 - 8 cm
30'
50'
75'
100'
8 - 18 cm
30'
50'
75'
100'
18 - 30 cm
30'
50'
75'
100'
Kjeldahl
nitrogen
(q N)
11.3
17.3
15.6
121
103
112
97.7
150
148
132
149.5
175
116
99.6
128.5
Total
(q N)
2.71
2.41
2.51
18.5
14.1
15.2
16.5
27.2
23.6
16.8
23.3
21.1
11.0
14.3
16.1
Ammonia
Water
extractable
(q N)
0.096
0.118
0.165
0.176
0.169
0.247
0.514
0.132
0.234
0.251
0.210
0.230
0.274
0.179
0.142
K Cl
extractable
(q N)
0.192
1.18
0.418
0.297
0.265
0.523
0.739
0.532
0.219
0.330
0.213
0.426
0.290
0.209
0.172
Total
(q N)
2.23
1.67
2.12
15.6
10.8
16.4
16.4
26.6
19.1
15.4
13.9
24.9
17.0
14.5
9.11
Nitrate
Water
extractable
(q N)
0.660
0.828
0.416
2.37
0.895
2.08
12.8
0.979
0.639
1.75
1.33
1.30
1.49
1.37
0.680
K Cl
extractable
(g N)
0.100
0.888
0.095
0.631
0.399
0.418
0.506
0.617
1.85
0.556
0.542
0.937
0.837
0.510
0.687
-------
Table 26A. (Continued). (Fields 1, 2, 3, and 4)
October 13, 1976
Ammonia
Nitrate
-Pi
en
Depth and
elevation
0 - 1 cm
30'
50'
75'
100'
1 - 8 cm
30'
50'
75'
100'
8 - 18 cm
30'
50'
75'
100'
18 - 30 cm
30'
50'
75'
100'
Kjeldahl
nitrogen
(q N)
14.3
13.7
15.6
12.0
114
98.0
61.1
107
161
151
120
181
107
85.4
147
Total
(q M)
3.00
2.07
2.64
2.10
15.2
12.9
13.7
16.3
21.7
26.8
17.1
18.6
21.8
12.2
11.2
16.1
Water
extractable
(q N)
0.100
0.053
0.045
0.022
0.242
0.282
0.120
0.233
0.461
0.341
0.193
0.568
0.213
0.091
0.114
0.309
K Cl
extractable
(q N)
0.125
0.108
0.145
0.142
0.846
0.379
0.229
0.395
0.292
0.434
0^514
0.673
0.266
0.132
0.236
Total
(q N)
1.37
0.781
1.67
0.852
9.70
4.79
7.43
6.92
9.74
18.9
12.8
7.52
8.44
20.4
9.89
6.13
Water
extractable
(q N)
0.139
0.173
0.147
0.082
1.93
0.456
0.498
0.644
1.84
0.844
1.01
0.416
1.23
0.099
1.11
0.500
K Cl
extractable
(q N)
0.100
0.077
0.062
0.079
0.682
0.360
0.518
0.536
0.787
0.734
1.01
0.311
0.810
0.662
1.25
0.500
-------
Table 26B. Composition of runoff from storm event on watershed 109 in April
1977 (also see Figure 21).
A. Fraction collector samples.
Total
Kjeldahl-N
Sample (yg N/A)
A 2923
B 1820
C 1059
D 837
E 768
F 718
NOs + N02
(yq N/£)
976
730
486
729
455
442
B. Volume-integrated sampl
Total
Kjeldahl-N
Flow U) (yq M/a)
N03 + N02
(yg N/£)
Total -P
(yg P/0
760
515
270
184
208
189
Total
particulates
(mg/£,)
89.2
60.2
34.0
10.6
19.2
15.0
Mineral
particulates
(mg/a)
59.0
37.3
18.9
6.0
10.9
8.3
es (flow-weighted mean concentrations).
Total -P
(yg P/A)
Total
particulates
(mg/iO
Mineral
particulates
(mg/i)
April 18 - April 25
2.96 X 105 1070 294 156 18.7 11.2
April 25 - May 2
5.52 X 105 870 276 192 24.6 16.1
246
-------
Table 27. Herbicide discharge data for all watersheds (101, 102, 103, 105,
106, 107, 108, 109).
NOTE: Detection limits for the Tritium electron capture
detector used in these analyses were as follows:
Atrazine Linuron Alachlor Trifluralin
Dissolved in discharged
water (yg/&)
Suspended particulates
.8
.8
.1
.1
.08
.08
.01
.01
in discharged water
* Approximately 4£ of water sample
247
-------
Table 27. Herbicide discharge data for all watersheds (101, 102, 103, 105, 106, 107, 108, 109).
A. Concentration data (yg/&)*
Weir 101
Date
(1976)
5/24 -
(145 -
6/1 -
(153 -
6/7 -
ro (159 -
C3
6/14 -
(166 -
6/21 -
(173 -
6/28 -
(180 -
7/6 -
(188 -
7/12 -
(194 -
7/19 -
(201 -
7/26 -
(208 -
6/1
153)
6/7
159)
6/14
166)
6/21
173)
6/28
180)
7/6
188)
7/12
194)
7/19
201)
7/26
208)
8/2
215)
Linuron Trifluralin Atrazine Alachlor
Dissolved Participate Dissolved Participate Dissolved Participate Dissolved Participate
_•_
_
_ _
________
________
0.936 - 0.074 - 7.69 - 0.560
0.640 - 0.027 - 1.64 - 0.213
0 0 0.005 0 1.68 0 0 0.086
2.38 - 0.005 - 1.40 - 0.310
1.10 0 0.004 0 4.37 8.87 1.298 0.818
-------
Table 27. (Continued)
A. Concentration data
Weir 101
Date
(1976)
8/2
(215
8/9
(222
8/16
(229
8/23
(236
8/30
(243
9/7
(251
9/13
(257
9/20
(264
9/27
(271
10/4
- 8/9
- 222)
- 8/16
- 229)
- 8/23
- 236)
- 8/30
- 243)
- 9/7
- 251)
- 9/13
- 257)
- 9/20
- 264)
- 9/27
-271)
- 10/4
- 278)
- 10/12
Linuron
Dissolved Particulate
0.390
1.04
0.496
0
1.88
1.88
0.625
0.310
0.221
0.202
0.214
0
0
0.164
0
0
2.91
0.698
0.562
0
Trifluralin
Dissolved Particulate
0.015
0.026
0
0.051
0.018
0.015
0.023
0
0.013
0.059
0
0.005
0
0
0
0
0.059
0
0.025
0.034
Atrazine
Dissolved Particulate
0.676
1.79
0
1.48
2.57
3.25
1.80
2.69
3.06
11.54
1.54
1.52
0
0
3.01
0.90
11.64
3.03
0.89
1.58
Alachlor
Dissolved Parti
0
0
0
0
0
0
0
0
0
0
.074
.306
.120
.286
.190
.132
.288
.207
.078
0.
0.
0.
0.
0.
0
0
0.
0
0.
culate
134
190
176
308
494
070
046
(278 - 286)
-------
Table 27. (Continued)
A. Concentration data
Weir 101
ro
en
o
Date
(1976)
10/12 -
(286 -
10/18 -
(292 -
10/26 -
(300 -
11/1 -
(306 -
11/8 -
10/18
292)
10/26
300)
11/1
306)
11/8
313)
11/15
Linuron
Dissolved Participate
-
0.352
0.565 0.126
0.362
0.652 0
Trifluralin Atrazine
Dissolved Participate Dissolved Particulate
-
0.009
0.020
0.071
_
0
0.007 0 0
0.027 - 0.642
0.039 0 0.793
Alachlor
Dissolved Particulate
-
0
0.062 0.038
0.044
0.186 0.196
(313 - 320)
11/15 - 11/22 -.-_--_
(320 - 327)
11/22 - 11/29 0.167 _o - 1.048 - 0.233
(327 - 334)
* After day 286 a Ni 63 gc was used.
- No sample or sample not yet processed
0 Below detection limit
-------
Table 27. (Continued)
A. Concentration data (yg/&)*
Weir 102
Date
(1976)
5/24 -
(145 -
6/1 -
(153 -
6/7 -
JS 059 -
— j
6/14 -
(166 -
6/21 -
(173 -
6/28 -
(180 -
7/6 -
(188 -
7/12 -
(194 -
7/19 -
(201 -
7/26 -
(208 -
6/1
153)
6/7
159
6/14
166)
6/21
173)
6/28
180)
7/6
188)
7/12
194)
7/19
201)
7/26
208)
8/2
215)
Linuron Trifluralin Atrazine Alachlor
Dissolved Participate Dissolved Particulate Dissolved Participate Dissolved Participate
--------
__
________
________
_ _
_•
0000 10.43 21.18 1,014 0
0 0.317 0 0 2.81 1.67 0.315 0.331
0 0 0.025 0 10.86 0 2.979 1.957
0 0 - 14.54 - 2.85
-------
Table 27. (Continued)
A. Concentration data
r>o
01
Weir 102
Date
(1976)
8/2 -
(215 -
8/9 -
(222 -
8/16 -
(229 -
8/23 -
(236 -
8/30 -
(243 -
9/7 -
(251 -
9/13 -
(257 -
9/20 -
(264 -
9/27 -
(271 -
10/4 -
8/9
222)
8/16
229)
8/23
236)
8/30
243)
9/7
251)
9/13
257)
9/20
264)
9/27
271)
10/4
278)
10/12
Linuron
Dissolved Participate
0 1.54
0 1.12
0.994 0
0 0
-
-
1.03 2.00
0 0.690
0
0.371 0.175
Trifluralin
Dissolved Parti cul ate
0 0
0.085 0.040
0 0
0.092 0
-
-
0.047 0.018
0 0.005
0
0 0
Atrazine
Dissolved Participate
0 0
16.87 8.96
0 0
0.168 2.83
-
-
10.13 1.75
11.53 3.74
7.94
0 3.03
Alachlor
Dissolved Participate
1.460 0
0.491 0.598
0.703 2.09
1.148 0.729
-
-
0 0
0.439 0,721
0.641
0 0
(278 - 286)
-------
Table 27. (Continued)
A. Concentration data (yg/&)*
Date
(1976)
Weir 102
Linuron Trifluralin Atrazine Alachlor
Dissolved Particulate Dissolved Particulate Dissolved Participate Dissolved Particulate
10/12 - 10/18
(286 - 292)
10/18 - 10/26
(292 - 300)
10/26 - 11/1
(300 - 306)
11/1 - 11/8 0.075
(306 - 313)
11/8 - 11/15 0.482
(313 - 320)
11/15 - 11/22
(320 - 327)
11/22 - 11/29 0.483
(327 - 334)
2.433
0.938
0
0
0.191
0.039
0.085
0.123
0.054
0.045
0.011
0.009
0.017
1.79
0
0
0.546
0
0.184
0.169
0
0.048
0.025
0.037
0.100
* After day 286 a Ni 63 Tracor gc was used
- No sample or sample not yet processed
0 Below detection limit
-------
Table 27. (Continued)
A. Concentration data (yg/&)*
Date
(1976)
Linuron
Dissolved Particulate
Weir 103
Trifluralin Atrazine
Dissolved Particulate Dissolved Particulate
Alachlor
Dissolved Particulate
5/24 - 6/1
(145 - 153)
6/1 - 6/7
(153 - 159)
6/7 - 6/14
(159 - 166)
6/14 - 6/21
(166 - 173)
6/21 - 6/28
(173 - 180)
6/28 - 7/6
(180 - 188)
7/6 - 7/12
(188 - 194)
7/12 - 7/19
(194 - 201)
7/19 - 7/26
(201 - 208)
7/26 - 8/2
(208 - 215)
0.293
0.366
0.031
0.028
1.37
1.58
2.84
8.98
0.190
0.332
0.186
-------
Table 27. (Continued)
A. Concentration data (yg/&)*
en
en
Weir 103
Date
(1976)
8/2 -
(215 -
8/9 -
(222 -
8/16 -
(229 -
8/23 -
(236 -
8/30 -
(243 -
9/7 -
(251 -
9/13 -
(257 -
9/20 -
(264 -
9/27 -
(271 -
8/9
222)
8/16
229)
8/23
236)
8/30
243)
9/7
251)
9/13
257)
9/20
264)
9/27
271)
10/4
278)
Linuron
Dissolved Particulate
0.045 0
0.064 0
0
1.90 1.11
-
-
0 0
-
0.113 0.199
Trifluralin
Dissolved Particulate
0 0
0.018 0.005
0
0.010 0
-
-
0.027 0
-
0 0
Atrazine
Dissolved Particulate
0.568 0.510
4.16 1.59
0
5.56 0
-
-
5.72 5.04
-
0.363 4.30
Alachlor
Dissolved Particulate
0 0.110
0.386 0.075
- . 0.513
1.60 1.783
-
-
0.161 0.198
-
0.072 0
10/4 - 10/12
(278 - 286)
-------
Table 27. (Continued)
A. Concentration data
Weir 103
Date
(1976)
10/12 -
(286 -
10/18 -
(292 -
10/26 -
ro (300 -
en
^ 11/1 -
(306 -
11/8 -
(313 -
11/15 -
Linuron
Dissolved Particulate
10/18 0.213
292)
10/26
300)
11/1 0.502
306)
11/8 0.265
313)
11/15 0.497
320)
11/22
0.84
0.394
0.075
0
0.035
0.096
Trifluralin Atrazine
Dissolved Particulate Dissolved Particulate
0.010 0
0
0.007 0
0.018 0
0.071 0
0
.011 0
.011
.013 0.328
.030 0
.022 0
.000
0
0.400
0
0
0
0.225
Alachlor
Dissolved Particulate
0 0.
0.
0.034 0
0.062 0.
0.202 0.
0.
059
024
070
036
024
(320 - 327)
11/22 - 11/29
(327 - 334)
* After day 286 a Ni 63 Tracer gc was used
- No sample or sample not yet processed
0 Below detection limit
-------
Table 27. (Continued)
A. Concentration data
ro
en
Weir 105
Date
(1976)
5/24 -
(145 -
6/1 -
(153 -
6/7 -
(159 -
6/14 -
(166 -
6/21 -
(173 -
6/28 -
(180 -
7/6 -
(188 -
7/12 -
(194 -
7/19 -
(201 -
7/26 -
(208 -
6/1
153)
6/7
159)
6/14
166)
6/21
173)
6/28
180)
7/6
188)
7/12
194)
7/19
201)
7/26
208)
8/2
215)
Linuron Trifluralin Atrazine Alachlor
Dissolved Participate Dissolved Particulate Dissolved Participate Dissolved Particulate
________
________
•
________
0 0.142 000 10.05 0.213 0.413
0 0 0.011 0 2.53 3.33 0.138 0.206
0 0 0.037 0 3.62 7.24 0.581 0.623
0 6.134 0 0 0 6.07 0.764 0
0 0 0.018 0 1.93 1.05 0.292 0.352
-------
Table 27. (Continued)
A. Concentration data
Weir 105
Date
(1976)
8/2
(215
8/9
(222
8/16
rv> (229
en
CO
8/23
(236
8/30
(243
9/7
(251
9/13
(257
9/20
(264
9/27
(271
10/4 -
- 8/9
- 222)
- 8/16
- 229)
- 8/23
- 236)
- 8/30
- 243)
- 9/7
- 251)
- 9/13
- 257)
- 9/20
- 264)
- 9/27
- 271)
- 10/4
- 278)
10/12
Linuron
Dissolved Particulate
0.152
0
0
0.142
0
0
0.230
0
0.040
0
0
0
0
0
0.083
0.894
1.89
0.209
0.267
Trifluralin Atrazine
Dissolved Particulate Dissolved Particulate
0
0.008
0
0.081
0.009
0
0
0.008
0
0
0
0.007
0
0
0
0
0.031
0.018
0
3.60
2.00
3.88
15.03
1.49
0
2.69
2.57
0.717
7.07
0
6.38
0
3.49
0.59
1.76
7.01
3.51
0
Alachlor
Dissolved Particulate
0.568
0.113
0.243
0.145
0.274
0.127
0.089
0.198
0
0
0.480
0
0.385
0.475
0.207
0
0
0
0
(278 - 286)
-------
Table 27. (Continued)
A. Concentration data (yg/x,)*
Weir 105
ro
en
10
Date
(1976)
10/12 -
(286 -
10/18 -
(292 -
10/26 -
(300 -
11/1 -
(306 -
11/8 -
(313 -
11/15 -
(320 -
11/22 -
Linuron Trifluralin Atrazine Alachlor
Dissolved Participate Dissolved Participate Dissolved Participate Dissolved Participate
10/18 -
292)
10/26 - 0.424 - 0.003
300)
11/1 0.304 0.528 0.015 0.148 0
306)
11/8 0.258 1.10 0.040 0.100 ' 0
313)
11/15 0.573 0.266 0.085 0.016 0
320)
11/22 0 0.112 0.000 0.015 0
327)
11/29 - 0.179 - 0.047
_
0.307 - 0.018
0 0.055 0.111
0 0.065 0.127
0 0.122 0.151
0.049 0.023 0.197
1.887 - 0.090
(327 - 334)
* After day 286 a Ni 63 Tracer gc was used
- No sample or sample not yet processed
0 Below detection limit
-------
Table 27. (Continued)
A. Concentration data (yg/0*
en
o
Weir 106
Date Linuron Trifluralin Atrazine Alachlor
(1976) Dissolved Participate Dissolved Participate Dissolved Particulate Dissolved Particulate
5/24 - 6/1
(145 - 153)
6/1 - 6/7
(153 - 159)
6/7 - 6/14 - - - - - -
(159 - 166)
6/14 - 6/21 .___-_--
(166 - 173)
6/21 - 6/28 ........
(173 - 180)
6/28 - 7/6 0 - 0.012 - 2.15 - 0.242
(180 - 188)
7/6 - 7/12 0 0 0.010 0 0.510 0 0.225 0
(188 - 194)
7/12 - 7/19 0 0.390 0.010 0 2.99 21.09 0.364 0
(194 - 201)
7/19 - 7/26 0 0.655 0 0 0.703 1.12 0.030 0.199
(201 - 208)
7/26 - 8/2 0.044 0.053 0 0.010 0.66 2.18 0.096 0.120
(208 - 215)
-------
Table 27. (Continued)
A. Concentration data (yg/£)*
Weir 106
Date
(1976)
8/2 -
(215 -
8/9 -
(222 -
8/16 -
rs> (229 -
en
8/23 -
(236 -
8/30 -
(243 -
9/7 -
(251 -
9/13 -
(257 -
9/20 -
(264 -
9/27 -
(271 -
8/9
222)
8/16
229)
8/23
236)
8/30
243)
9/7
251)
9/13
257)
9/20
264)
9/27
271)
10/4
278)
Linuron
Dissolved Particulate
0.303 0
0 0
0 0
0 0.107
0 0.076
-
0.113 0-
-
0 0
Trifluralin
Dissolved Particulate
0.007 0
0.067 0
0 0
0.013 0.006
0 0
0.009 0.033
-
0 0
Atrazine
Dissolved Parti cul ate
3.35
7.95
0.595
2.68
0.439
-
3.14
-
1.64
1.20
0
0
0
0.39
-
8.75
-
0
Alachlor
Dissolved Particulate
0.156 0.205
0.192 0.623
0.185 0.247
0.033 0.121
0.070 0
-
0 0
-
0.124 0
10/4 - 10/12
(278 - 286)
-------
Table 27. (Continued)
A. Concentration data (yg/&)*
Weir 106
CT>
IX>
Date
(1976)
10/12 -
(286 -
10/18 -
(292 -
10/26 -
(300 -
11/1 -
(306 -
11/8 -
(313 -
11/15 -
(320 -
11/22 -
Linuron
Dissolved Particulate
10/18
292)
10/26 3.64 2.55
300)
11/1 1.413 0
306)
11/8 1.05 0.79
313)
11/15 0.058 0.122
320)
11/22 0 0.149
327)
11/29 0
Trifluralin Atrazine
Dissolved Particulate Dissolved Particulate
_
0.051 0.12 2.49 3.14
0.068 0.021 0.704 1.483
0.122 0.063 0 1.099
0.009 0.006 0 0
0.008 0.018 0 0
0.030 - 0
Alachlor
Dissolved Particulate
-
0.284 0.143
0.110 0.090
0.075 0.111
0.018 0.031
0.040 0.034
0
(327 - 334)
* After day 286 a Ni 63 Tracor gc was used
- No sample or sample not yet processed
0 Below detection limit
-------
Table 27. (Continued)
A. Concentration data
Weir 107
Date
(1976)
5/24 -
(145 -
6/1 -
(153 -
6/7 -
(159 -
6/14 -
(166 -
6/21 -
(173 -
6/28 -
(180 -
7/6 -
(188 -
7/12 -
(194 -
7/19 -
(201 -
7/26 -
(208 -
6/1
153)
6/7
159)
6/14
166)
6/21
173)
6/28
180)
7/6
188)
7/12
194)
7/19
201)
7/26
208)
8/2
215)
Linuron Trifluralin Atrazine Alachlor
Dissolved Particulate Dissolved Participate Dissolved Participate Dissolved Participate
--------
_ _
__
________
--------
0.784 0.142 0.021 0 4.73 5.51 0.158 0.188
0.690 0.177 0.023 0 4.60 8.60 0.234 0.376
0.530 0.876 0.031 0 6.36 0 0.241 0.311
0.467 0.751 0.014 0 3.44 1.07 0.208 0.280
0.671 0 0.025 0 2.35 2.27 0 0.206
-------
Table 27. (Continued)
A. Concentration data (yg/&)*
Weir 107
Date
(1976)
8/2 -
(215 -
8/9 -
(222 -
8/16 -
^ (229 -
en
4=1 8/23 -
(236 -
8/30 -
(243 -
9/7 -
(251 -
9/13 -
(257 -
9/20 -
(264 -
9/27 -
(271 -
Linuron
Dissolved Participate
8/9
222)
8/16
229)
8/23
236)
8/30
243)
9/7
251)
9/13
257)
9/20
264)
9/27
271)
10/4
278)
0.751
0.643
0.719
1.27
0.520
0.104
-
0
0
0.441
0
0
0
-
1.00
-
0.327
Trifluralin
Dissolved Parti cul ate
0.007 0
0.051 0
0 0
0.075 0
0 0
-
0.019 0.010
-
0 0,066
Dissol
2
10
1
6
3
3
0
.46
.59
.00
.11
.01
-
.61
-
Atrazine
ved Participate
0
1.94
0
0
0
-
1.74
-
.723 13.89
Al
Dissolved
0.255
0.751
0
1.789
0
-
0.056
-
0.161
achlor
Parti cul ate
0.
0.
0.
0.
.0.
-
0
-
0.
229
290
211
227
204
159
10/4 - 10/12
(278 - 286)
-------
Table 27. (Continued)
A. Concentration data (vg/a)*
Weir 107
Date
(1976)
10/12 -
(286 -
10/18 -
(292 -
10/26 -
INS (300 -
CT>
O1
11/1 -
(306 -
11/8 -
(313 -
11/15 -
(320 -
11/22 -
Linuron
Dissolved Participate
10/18
292)
10/26
300)
11/1
306)
11/8
313)
11/15
320)
11/22
327)
11/29
0
0.527
0.932
0.549
-
0.150
0.173
0.413
0.263
0.414
0.148
-
-
0.110
Trifluralin
Dissolved Participate
0.
0.
0.
0.
-
0.
0.
010
109
122
126
025
027
0.049
0.051
0.064
0.006
-
-
0.019
Atrazine
Dissolved Participate
3
1
0
0
0
0
.34 0.928
.85 0
2.325
0
-
.559
0
Alachlor
Dissolved Parti
0.097
0.263
0.239
0.143
-
0.323
0.074
0
0.
0.
0.
-
-
0.
culate
062
128
015
039
(327 - 334
* After day 286 a Ni 63 Tracer gc was used
- No sample or sample not yet processed
0 Below detection limit
-------
Table 27. (Continued)
A. Concentration data (yg/£)*
Weir 108
Date
(1976)
5/24 -
(145 -
6/1 -
(153 -
6/7 -
^ (159 -
CTv
O->
6/14 -
(166 -
6/21 -
(173 -
6/28 -
(180 -
7/6 -
(188 -
7/12 -
(194 -
7/19 -
(201 -
7/26 -
(208 -
Linuron
Dissolved Parti cul ate
6.1
153)
6/7
159)
6/14
166)
6/21
173)
6/28
180)
7/6
188)
7/12
194)
7/19
201)
7/26
208)
8/2
215)
0
0.359
0.329
0
0
-
0
0.384
0.727
0.608
0
0.464
0.256
0
0.506
-
0.367
0.297
0
0
Trifl
Dissolved
0.025
0.008
0.012
0.023
0
-
0
0.004
0.019
0.025
uralin
Participate
0
0
0.019
0
0
-
0.008
0
0
0.018
Atrazine
Dissolved Participate
2.77
1.59
2.64
5.44
1.06
-
32.44
1.17
4.78
0.736
5.36
0
0
5.19
3.93
-
2.55
0
0
3.67
Alachlor
Dissolved Particulate
1.534
0.197
0.246
0.517
0
-
0
0.078
0.674
0.177
1.157
0
0.183
0.437
0.249
-
0.637
0.065
0.690
0.164
-------
Table 27. (Continued)
A. Concentration data
CTi
10/4 - 10/12
(278 - 286
Weir 108
Date Linuron
(1976) Dissolved Particulate
8/2
(215
8/9
(222
8/16
(229
8/23
(236
8/30
(243
9/7
(251
9/13
(257
9/20
(264
9/27
(271
- 8/9 0.182
-222)
-8/16 0 0
- 229)
- 8/23 0 0
-236)
- 8/30 0.140 0
- 243)
- 9/7 0.544
- 251)
- 9/13 6.21 1.45
- 257)
- 9/20 0.624 2.16
- 264)
- 9/27 2.07 1.38
- 271)
- 10/4 0.603
- 278)
Trifluralin Atrazine
Dissolved Particulate Dissolved Particulate
0.012 - 1.35
0.019 0 4.10 0.66
0 0 0.410 0.51
0.031 0.006 5.87 2.44
0.032 - 4.63
0.536 0.059 20.88 13.36
0.024 0 5.16 3.38
0.056 0 11.62 0
0.028 - 0.420
Alachlor
Dissolved Particulate
0.098
0.113 0
0.056 0.424
0.074 0.509
0.341
0 0.693
0 0
0 0
0.070
-------
Table 27. (Continued)
A. Concentration data
Weir 108
01
CO
Date
(1976)
10/12 -
(286 -
10/18 -
(292 -
10/26 -
(300 -
11/1 -
(306 -
11/8 -
(313 -
11/15 -
Linuron Trifluralin Atrazine Alachlor
Dissolved Particulate Dissolved Particulate Dissolved Particulate Dissolved Particulate
10/18 1.09
292)
10/26
300)
11/1 0
306)
11/8 0.331
313)
11/15
320)
11/22 0.097
0.829 0.074
0
0.148 0.004
0 0.062
0.151
0.193 0.013
0.085 0
0.010
0.016 0
0.007 1.84
0.017
0.029 0.256
1.41 0.135
0
0 0.035
0.233 0.164
0
0.441 0
0.
0
0.
0.
0.
0.
170
056
090
019
045
(320 - 327)
11/22 - 11/29
(327 - 334)
* After day 286 a Mi 63 Tracer gc was used
- No sample or sample not yet processed
0 Below detection limit
-------
Table 27. (Continued)
A. Concentration data (yg/i)*
Weir 109
10
Date
(1976)
4/12 (spot)
(103)
4/16 (spot)
(107)
4/19 (spot)
(no)
4/22 (spot)
(113)
4/26 (spot)
(117)
5/3 (spot)
(124)
5/10 (spot)
(131)
5/11 (spot)
(132)
5/17 (spot)
Linuron
Dissolved Parti cul ate
0.0873
0.334
0
0.447
0.193
0
0
0
0.0665
0.626
0.614
0
0
0.554
1.768
0.999
2.098
0.938
Trifl
Dissolved
0.121
0.0022
0
0
0
0
0
0
0
uralin Atrazine
Participate Dissolved Participate
0
0
0
0
0
0
0
0
0
0
0.210
0
0
0
3.094
0
4.25
0
0
1.312
0
0
0
0
0
2.52
0
Alachlor
Dissolved Participate
0
0
0.689
0
0.593
1.30
4.76
0.607
0.295
0
0
0.328
0
0.270
0
0
0
0
-------
Table 27. (Continued)
A. Concentration data
Weir 109
Date
(1976)
5/24 -
(145 -
6/1 -
(153 -
6/7 -
ro (159 -
6/14 -
(166 -
6/21 -
(173 -
6/28 -
(180 -
7/6 -
(188 -
7/12 -
(194 -
7/19 -
(201 -
7/26 -
(208 -
6/1
153)
6/7
159)
6/14
166)
6/21
173)
6/28
180)
7/6
188)
7/12
194)
7/19
201)
7/26
208)
8/2
215)
Linuron
Dissolved Participate
0 0.746
0 0.454
0 0.239
0 0.256
0 0
_
0 0
0 0.645
-
-
Trifl
Dissolved
0
0.012
0.007
0.004
0.006
-
0.099
0.029
-
-
uralin
Particulate
0.009
0
0
0
0
-
0
0
-
-
Atrazine
Dissolved Particulate
15.65 4.23
2.86 1.43
0.48 3.52
4.56 6.85
5.30 6.41
-
13.85 14.55
9.16 25.90
-
-
Alachlor
Dissolved Particulate
0.394 0.258
0.161 0
0.168 0.732
0.957 0
0.189 0.198
-
0.994 1.88
0.669 0
• .
-
-------
Table 27. (Continued)
A. Concentration data (yg/Ji)*
Weir 109
Date
(1976)
8/2 -
(215 -
8/9 -
(222 -
8/16 -
(229 -
8/23 -
(236 -
8/30 -
(243 -
9/7 -
(251 -
9/13 -
(257 -
9/20 -
(264 -
9/27 -
(271 -
8/9
222)
8/16
229)
8/23
236)
8/30
243)
9/7
251)
9/13
257)
9/20
264)
9/27
271)
10/4
278)
Linuron Trifluralin Atrazine Alachlor
Dissolved Participate Dissolved Participate Dissolved Participate Dissolved Participate
0 - 0.047 - 6.65 ' - 0.412
0.178 0 0.017 0 3.72 0 0.076 0.193
0.363 000 0.86 0.84 0 0.418
__
--------
______;._
0 9.58 0.083 0 17.07 35.71 0.586 0
-•-
0.337 0.507 0.014 0.041 3.17 7.92 0 0.068
10/4 - 10/12
(278 - 286)
-------
Table 27. (Continued)
A. Concentration data
Weir 109
Date
(1976)
10/12 -
(286 -
10/18 -
(292 -
10/26 -
ro (300 -
ro
11/1 -
(306 -
Linuron
Dissolved Particulate
10/18 0.564
292)
10/26 0.200
300)
11/1
306)
11/8 0
313)
0.183
0.137
0.022
0
Trifluralin Atrazine
Dissolved Particulate Dissolved Particulate
0.008 0.
0.022 0.
0.
0.004 0.
008 0.758
007 1.22
024
001 0
0
0.594
0
0.057
Alachlor
Dissolved Particulate
0.033 0
0.043 0
0.
0.020 0.
029
009
11/8 - 11/15
(313 - 320)
11/15 - 11/22
(320 - 327)
11/22 - 11/29
(327 - 334)
* After day 286 a Ni 63 Tracer gc was used
- No sample or sample not yet processed
0 Below detection limit
-------
Table 27. (Continued)
B. Flow and total concentration data
CO
Weir 101
Date
(1976)
5/24
(145
6/1
(153
6/7
(159
6/14
(166
6/21
(173
6/28
7/6
(188
7/12
(194
7/19
(201
7/26
(208
- 6/1
- 153)
- 6/7
- 159)
- 6/14
- 166)
- 6/21
- 173)
- 6/28
- 180)
- 7/6
- 188)
- 7/12
- 194)
- 7/19
- 201)
- 7/26
- 208)
- 8/2
- 215)
Flow Linuron
U) (yg/A)
8.00E06
2.51E06
9.74E05
3.75E06
7.90E05
8.14E05 0.9362
1.13E06 0.6402
4.65E06 0
4.40E05 2.381
7.20E05 1.10
Trifluralin Atrazine Alachlor
_
_
_
_
_
0.0742 7.692 0.5602
0.0272 1.642 0.2132
0.005 1.68 0.086
0.0051 1.401 0.3101
0.004 . 13.24 2.12
-------
Table 27. (Continued)
B. Flow and total concentration data
ro
Weir 101
Date
(1976)
8/2
(215
8/9
(222
8/16
(229
8/23
(236
8/30
(243
9/7
(251
9/13
(257
9/20
(264
9/27
(271
10/4
- 8/9
- 222)
- 8/16
- 229)
- 8/23
- 236)
- 8/30
- 243)
- 9/7
- 251)
- 9/13
- 257)
- 9/20
- 264)
- 9/27
- 271)
- 10/4
- 278)
- 10/12
Flow
U)
8.
1.
3.
1.
2.
1.
2.
4.
7.
1,
27E06
16E07
03E06
44E06
15E05
23E05
26E06
53E05
69E06
92E07
Linuron
(ug/£)
0.
1.
0.
0.
1.
1.
3.
1.
0.
0.
604
04
496
164
88
88
54
01
783
202
Trifluralin
(vv/a)
0.
0.
0
0.
0.
0.
0.
0
0.
0.
015
031
051
018
015
082
038
093
Atrazine
(UCJ/A)
2.
3.
0
1.
5.
4.
13.
5.
3.
13.
22
31
48
58
15
44
72
95
12
Alachlor
(yq/O
0-
0.
0.
0.
0.
0.
0.
0.
0.
0.
208
190
482
428
780
190
132
358
207
124
(278 - 286)
-------
Table 27. (Continued)
B. Flow and total concentration data
Weir 101
en
Date
(1976)
10/12 -
(286 -
10/18 -
(292 -
10/26 -
(300 -
11/1 -
(306 -
11/8 -
(313 -
11/15 -
(320 -
11/22 -
10/18
292)
10/26
300)
11/1
306)
11/8
313)
11/15
320)
11/22
327)
11/29
Flow Linuron Trifluralin
U) (yg/&) (yg/0
4.16E06 0.3522 0.0092
3.04E07 0.691 0.027
2.27E07 0.3621 0.0271
1.36E07 0.652 0.110
8.62E06
7.13E06 0.1672 O2
6.76E06 - -
Atrazine Alachlor
(yg/*) (yg/i)
O2 O2
0 0.100
0.6421 0.0441
0.793 0.382
-
1.0482 0.2332
-
(327 - 334)
^No filtrate sample
2No particulate sample
- No sample or sample not yet processed
0 Below detection limit
-------
Table 27. (Continued)
B. Flow and total concentration data
cr>
Weir 102
Date
(1976)
5/24
(145
6/1
(153
6/7
(159
6/14
(166
6/21
(173
6/28
(180
7/6
(188
7/12
(194
7/19
(201
7/26
(208
- 6/1
- 153)
- 6/7
- 159)
- 6/14
- 166)
- 6/21
- 173)
- 6/28
- 180)
- 7/6
- 188)
- 7/12
- 194)
- 7/19
- 201)
- 7/26
- 208)
- 8/2
- 215)
Flow Linuron Trifluralin
(a) (ygA) (yg/&)
6.85E06
1.91E07
4.50E05 -
2.57E06
1.65E05
O.OOEOO
2.64E05 0 0
3.53E06 0.317 0
1.39E04 0 0.025
5.80E04 O1 Ol
Atrazine Alachlor
(yg/&) (ygA)
-
-
-
_
_
-
31.61 1.014
4.48 0.646
10.86 4.94
14. 541 2.851
-------
Table 27. (Continued)
B. Flow and total concentration data
Weir 102
Date
(1976)
8/2
(215
8/9
(222
8/16
(229
8/23
(236
8/30
(243
9/7
(251
9/13
(257
9/20
(264
9/27
(271
10/4
- 8/9
- 222)
- 8/16
- 229)
- 8/23
- 236)
- 8/30
- 243)
- 9/7
- 251)
- 9/13
- 257)
- 9/20
- 264)
- 9/27
-271)
- 10/4
- 278)
- 10/12
Flow Linuron Trifluralin Atrazine Alachlor
(a) (wq/4) (yq/M (wg/a) (yg/O
3.37E06 1.54 0 0 1.460
6.32E06 1.12 0.125 25.83 1.089
6.64E05 0.994 0 0 2.79
2.71E05 0 0.092 3.00 1.877
O.OOEOO - - -
O.OOEOO - -
2.11E06 3.03 0.065 11.88 0
1.33E04 0.690 0.005 15.27 1.16
7.04E06 O1 O1 7.941 0.6411
1.95E07 0.546 0 3.03 0
(278 - 286)
-------
Table 27. (Continued)
B. Flow and total concentration data
Weir 102
00
Date
(1976)
10/12
(286
10/18
(292
10/26
(300
11/1
(306
11/8
(313
11/15
(320
11/22
-10/18
- 292)
- 10/26
- 300)
- 11/1
- 306)
- 11/8
- 313)
- 11/15
- 320)
- 11/22
- 327)
- 11/29
Flow Linuron
(&) (u9/&)
3.09E06 2.4331
3.30E07 0.9381
O.OOEOO
1.04E07 O1
6.09E06 0.0752
5.07E06 0.482
5.02E06 0.1911
Trifluralin
(u9/£)
0.0541
0.0451
-
o.on1
0.0392
0.094
0.0171
Atrazine Alachlor
(u9/&) (u9/£)
oi
O1 0.0481
-
0.5461 0.0251
1.792 0.1842
0 0.206
O1 0.1001
(327 - 334)
'No filtrate sample
2No particulate sample
- No sample or sample not yet processed
0 Below detection limit
-------
Table 27. (Continued)
B. Flow and total concentration data
Weir 103
Date
(1976)
5/24
(145
6/1
(153
6/7
(159
6/14
(166
6/21
(173
6/28
(180
7/6
(188
7/12
(194
7/19
(201
7/26
(208
- 6/1
- 153)
- 6/7
- 159)
- 6/14
- 166)
- 6/21
- 173)
- 6/28
- 180)
- 7/6
- 188)
- 7/12
- 194)
- 7/19
- 201)
- 7/26
- 208)
- 8/2
- 215)
Flow Linuron Trifluralin
•(A) (yg/A) (yg/A)
1.28E07
3.17E06
9.57E05
2.20E06
4.77E05
O.OOEOO
O.OOEOO 0 0.031
2.44E06 0.659 0.028
3.66E03
8.32E04
Atrazine Alachlor
(yg/A) (yg/A)
-
-
-
-
-
4.21 0.332
10.56 0.376
-
-
-------
Table 27. (Continued)
B. Flow and total concentration data
Weir 103
Date
(1976)
8/2
(215
8/9
(222
8/16
•v, (229
00
8/23
(236
8/30
(243
9/7
(251
9/13
(257
9/20
(264
9/27
(271
10/4
- 8/9
- 222)
- 8/16
- 229)
- 8/23
- 236)
- 8/30
- 243)
- 9/7
- 251)
- 9/13
- 257)
- 9/20
- 264)
- 9/27
- 271)
- 10/4
- 278)
- 10/12
Flow Linuron
U) (yg/a)
9.32E05 0.045
8.02E06 0.064
6.57E05 O1
2.85E02 3.01
O.OOEOO
O.OOEOO
3.07E06 0
7.73EOO
6.74E06 0.312
1.62E07
Trifluralin Atrazine Alachlor
(yg/i) (yg/A) (ygM)
0 1.078 0.110
0.023 5.75 0.461
O1 O1 0.5131
0.010 5.56 3.38
- -
_
0.027 10.76 0.359
_
0 4.66 0.072
_ _ -
(278 - 286)
-------
Table 27. (Continued)
B. Flow and total concentration data
CO
Weir 103
Date
(1976)
10/12 - 10/18
(286 - 292)
10/18 - 10/26
(292 - 300)
10/26 - 11/1
(300 - 306)
11/1 - 11/8
(306 - 313)
11/8 - 11/15
(313 - 320)
11/15 - 11/22
(320 - 327)
11/22 - 11/29
Flow
U)
3.45E06
3.51E07
2.08E07
1.31E07
9.12E06
6.66E06
7.89E06
Linuron
(yg/O
1.053
0.3941
0.577
0.265
0.532
0.0961
-
Trifluralin
(ygA)
0.021
0.0111
0.020
0.048
0.093
O.OOO1
_
Atrazine
(yg/4)
0
0.4001
0.328
0
0
0.2251
-
Alachlor
(yg/*)
0.059
0.0241
0.034
0.132
0.238
0.0241
-
(327 - 334)
No filtrate sample
^No participate sample
- No sample or sample not yet processed
0 Below detection limit
-------
Table 27. (Continued)
B. Flow and total concentration data
ro
CO
ro
Weir 105
Date
(1976)
5/24
(145
6/1
(153
6/7
(159
6/14
(166
6/21
(173
6/28
(180
7/6
(188
7/12
(194
7/19
(201
7/26
(208
- 6/1
- 153)
- 6/7
- 159)
- 6/14
- 166)
- 6/21
- 173)
- 6/28
- 180)
- 7/6
- 188)
- 7/12
- 194)
- 7/19
- 201)
- 7/26
- 208)
- 8/2
- 215)
Flow Linuron
U) (yg/*)'
8.03E05
1.53E05
2.20E04
3.57E05
2.81E04
1.31E04 0.142
5.16E04 0
4.08E05 0
1.20E04 6.134
5.79E04 0
Trifluralin Atrazine Alachlor
(yg/i) (yg/fc) (yg/0
_
_
_
.
_
0 10.05 0.626
0.011 5.86 0.344
0.037 10.86 1.204
0 6.07 0.764
0.018 2.98 0.644
-------
Table 27. (Continued)
B. Flow and total concentration data
OJ
Weir 105
Date
(1976)
8/2 - 8/9
(215 - 222)
8/9 - 8/16
(222 - 229)
8/16 - 8/23
(229 - 236)
8/23 - 8/30
(236 - 243)
8/30 - 9/7
(243 - 251)
9/7 - 9/13
(251 - 257)
9/13 - 9/20
(257 - 264)
9/20 - 9/27
(264 - 271)
9/27 - 10/4
(271 - 278)
10/4 - 10/12
Flow
U)
3.44E06
1.32E06
1.41E05
2.12E04
1.18E04
6.49E03
7.22E04
9.13E03
6.04E05
2.19E06
Linuron
(yg/fc)
0.152
0
0
0.1422
0
0.083
1.124
1.89
0.249
0.267
Trifluralin
(yq/O
0
0.015
0
0.0812
0.009
0
0
0.039
0,018
0
Atrazine
3.60
8.38
3.88
15.032
4.98
0.590
4.45
9.58
4.23
7.07
Alachlor
(yg/£)
1.048
0.113
0.628
0.1452
0.749
0.334
0.089
0.198
0
0
(278 - 286)
-------
Table 27. (Continued)
B. Flow and total concentration data
Weir 105
Date
(1976)
10/12 -
(286 -
10/18 -
(292 -
10/26 -
INS (300 -
CO
.£»
11/1 -
(306 -
11/8 -
(313 -
11/15 -
(320 -
11/22 -
10/18
292)
10/26
300)
11/1
306)
11/8
313)
11/15
320)
11/22
327)
11/29
Flow
(0
4.30E05
6.12E06
4.51E06
2.27E06
1.22E06
9.06E05
9.14E05
Linuron
(yg/a)
0.4241
0.832
1.358
0.839
0.112
0.1791
-
Trifl ura Tin
(yg/a)
0.0031
0.163
0.140
0.101
0.015
0.0471
-
Atrazine Alachlor
(yg/a) • (yg/a)
0.3071 0.0181
0 0.166
0 0.192
0 0.273
0.049 0.220
1.8871 0.0901
-
(327 - 334)
No filtrate sample
^No participate sample
- No sample or sample not yet processed
0 Below detection limit
-------
Table 27. (Continued)
B. Flow and total concentration data
00
Weir 106
Date
(1976)
5/24 -
(145 -
6/1 -
(153 -
6/7 -
(159 -
6/14 -
(166 -
6/21 -
(173 -
6/28 -
(180 -
7/6 -
(188 -
7/12 -
(194 -
7/19 -
(201 -
7/26 -
(208 -
6/1
153)
6/7
159)
6/14
166)
6/21
173)
6/28
180)
7/6
188)
7/12
194)
7/19
201)
7/26
208)
8/2
215)
Flow Linuron
(A) (vg/A)
3.00E06
9.82E05
1.49E05
1.33E06
1.39E05
1.19E05 O2
2.60E05 0
1.59E06 0.390
2.87E04 0.655
1.76E05 0.097
Trifluralin Atrazine Alachlor
(ug/A) (yg/A) (vg/<0
_
-
_
_
_
0.0122 2.1502 0.2422
0.010 0.510 0.225
0.010 24.08 0.364
0 1.820 0.229
0.010 2.840 0.216
-------
Table 27. (Continued)
Flow and total concentration data
ro
CO
CT>
Weir 106
Date
(1976)
8/2
(215
8/9
(222
8/16
(229
8/23
(236
8/30
(243
9/7
(251
9/13
(257
9/20
(264
9/27
(271
10/4
- 8/9
- 222)
- 8/16
- 229)
- 8/23
- 236)
- 8/30
- 243)
- 9/7
- 251)
- 9/13
- 257)
- 9/20
- 264)
- 9/27
- 271)
- 10/4
- 278)
- 10/12
Flow
U)
9.15E06
4.24E06
5.50E05
1.64E05
2.58E04
O.OOEOO
2.46E05
O.OOEOO
1.54E06
6.77E06
Linuron
(yg/*)
0.303
0
0
0.107
0.076
-
0.113
-
0
_
Trifluralin
(yg/A)
0.007
0.067
0
0.019
0
-
0.042
-
0
_
Atrazine
(yg/0
4.550
7.950
0.595
2.680
0.829
-
11,89
-
1.640
_
Alachlor
(yg/i)
0.361
0.815
0.432
0.154
0.070
-
0
-
0.124
-
(278 - 286)
-------
Table 27. (Continued)
B. Flow and total concentration data
Weir 106
Date
(1976)
10/12
(286
10/18
(292
10/26
(300
11/1
(306
11/8
(313
11/15
(320
11/22'
- 10/18
- 292)
- 10/26
- 300)
- 11/1
- 306)
- 11/8
- 313)
- 11/15
- 320)
- 11/22
- 327)
- 11/29
Flow Linuron
(A) (pg/A)
1.43E06 6.190
1.22E07 1.413
7.84E06 1.840
3.62E06 0.180
2.12E06 0.149
1.73E06 O2
1.86E06
Trifluralin
(pg/A)
0.171
0.089
0.185
0.015
0.026
0.0302
_
Atrazine Alachlor
(pg/A) (pg/A)
5.630 0.427
2.187 0.200
1.099 0.186
0 0.049
0 0.074
O2 O2
_ _
(327 - 334)
No filtrate sample
2No particulate sample
- No sample or sample not yet processed
0 Below detection limit
-------
Table 27. (Continued)
B. Flow and total concentration data
oo
oo
Weir 107
Date
(1976)
5/24 -
(145 -
6/1 -
(153.-
6/7 -
(159 -
6/14 -
(166 -
6/21 -
(173 -
6/28 -
(180 -
7/6 -
(188 -
7/12 -
(194 -
7/19 -
(201 -
7/26 -
(208 -
6/1
153)
6/7
159)
6/14
166)
6/21
173)
6/28
180)
7/6
188)
7/12
194)
7/19
201)
7/26
208)
8/2
215)
Flow Linuron
(A) (yg/&)
4.
3.
8.
2.
2.
2.
6.
1.
9.
-
16E05
55E05
08E05
81E05
06E05 0.926
12E05 0.867
72E05 1.406
41E05 1.218
69E04 0.671
Trifluralin Atrazine Alachlor
(yg/&) (yg/A) (yg/&)
_
_
_
-
_
0.021 10.24 . 0.346
0.023 13.20 0.610
0.031 6.36 0.552
0.014 4.51 0.488
0.025 4.62 0.206
-------
Table 27. (Continued)
B. Flow and total concentration data
00
Weir 107
Date
(1976)
8/2
(215
8/9
(222
8/16
(229
8/23
(236
8/30
(243
9/7
(251
9/13
(257
9/20
(264
9/27
(271
10/4
- 8/9
- 222)
- 8/16
- 229)
- 8/23
- 236)
- 8/30
- 243)
- 9/7
- 251)
- 9/13
- 257)
- 9/20
- 264)
- 9/27
- 271)
- 10/4
- 278)
- 10/12
Flow Linuron
(A) (vg/A)
1.43E06 0.751
9.24E05 1.084
1.90E05 0.719
6.83E04 1.27
2.20E03 0.520
O.OOEOO
6.19E04 1.104
O.OOEOO
5.19E05 0.327
1.70EOO
Trifluralin Atrazine Alachlor
(vg/A) fug/A) (vg/A)
0.007 2.46 0.484
0.051 12.53 1.041
0 1.00 0.211
0.075 6.11 2.02
0 3.01 0.204
_
0.029 5.35 0.056
_
0.066 14.61 0.320
_ _ -
(278 - 286
-------
Table 27. (Continued)
B. Flow and total concentration data
o
Weir 107
Date
(1976)
10/12 - 10/18
(286 - 292)
10/18 - 10/26
(292 - 300)
10/26 - 11/1
(300 - 306)
11/1 - 11/8
(306 - 313)
11/8 - 11/15
(313 - 320)
11/15 - 11/22
(320 - 327)
11/22 - 11/29
Flow
(a)
4.63E05
2.40E06
1.88E06
9.90E05
6.96E05
5.82E05
3.91E05
Linuron
(yg/A)
0.413
0.790
1.346
0.697
-
0.1502
0.283
Trifluralin
(yg/A)
0.059
0.160
0.186
0.132
-
0.0252
0.046
Atrazine
(yg/A)
4.268
1.850
2.325
0
-
0.5592
0
Alachlor
(yg/A)
0.097
0.325
0.367
0.158
-
0.3232
0.113
(327 - 334)
!NO filtrate sample
No participate sample
- No sample or sample not yet processed
0 Below detection limit
-------
Table 27. (Continued)
B. Flow and total concentration data
Weir 108
Date
(1976)
5/24 -
(145 -
6/1 -
(153 -
6/7 -
(159 -
6/14 -
(166 -
6/21 -
(173 -
6/28 -
(180 -
7/6 -
(188 -
7/12 -
(194 -
7/19 -
(201 -
7/26 -
(208 -
6/1
153)
6/7
159)
6/14
166)
6/21
173)
6/28
180)
7/6
188)
7/12
194)
7/19
201)
7/26
208)
8/2
215)
Flow
U)
7.07E06
1.71E06
3.47E05
1.28E07
6.33E05
O.OOEOO
5.86E05
5.80E06
4.28E03
8.47E04
Linuron
0
0.823
0.585
0
0.506
-
0.367
0.681
0.727
0.608
Trifluralin
(vg/s.)
0.025
0.008
0.031
0.023
0
-
0.008
0.004
0.019
0.043
Atrazine
8.13
1.59
2.64
10.63
4.99
-
34.99
1.17
4.78
4.41
Alachlor
2.69
0.197
0.429
0.954
0.249
.
0.637
0.143
1.364
0.341
-------
Table 27. (Continued)
Flow and total concentration data
Heir 108
Date
(1976)
8/2
(215
8/9
(222
8/16
s (229
ro
8/23
(236
8/30
(243
9/7
(251
9/13
(257
9/20
(264
9/27
(271
10/4
- 8/9
- 222)
- 8/16
- 229)
- 8/23
- 236)
- 8/30
- 243)
- 9/7
- 251)
- 9/13
- 257)
- 9/20
- 264)
- 9/27
- 271)
- 10/4
- 278)
- 10/12
Flow
U)
6.
6.
4.
4.
3.
0.
4.
0.
3.
1.
63E06
59E06
80E05
94E05
30E02
OOEOO
84E05
OOEOO
91E06
69E07
Linuron
(yg/a)
0.1822
0
0
0.140
0.5442
7.66
2.78
3.45
0.6032
_
Trifluralin
(yg/ft)
0.0122
0.019
0
0.037
0.0322
0.595
0.024
0.056
0.0282
-
Atrazine
(yg/ft)
1.
4.
0.
8.
4.
34.
8.
11.
0.
-
352
76
920
31
632
24
54
62
4202
Alachlor
(yg/a)
0
0
0
0
0
0
0
0
0
.0982
.113
.480
.583
.3412
.693
.0702
-
(278 - 286)
-------
Table 27. (Continued)
B. Flow and total concentration data
oo
Weir 108
Date
(1976)
10/12 - 10/18
(286 - 292)
10/18 - 10/26
(292 - 300)
10/26 - 11/1
(300 - 306)
11/1 - 11/8
(306 - 313)
11/8 - 11/15
(313 - 320)
11/15 - 11/22
(320 - 327)
11/22 - 11/29
Flow
(0
1.59E06
2.43E07
1.51E07
6.31EQ6
4.41E06
3.81E06
4.20E06
Linuron
(yg/A)
1.92
O1
0.148
0.331
0.1511
0.290
-
Trifluralin
0.159
0.0101
0.020
0.069
0.0171
0.042
-
Atrazine
(yg/A)
1.41
oi
0
2.07
O1
0.697
-
Alachlor
(yg/A)
0.305
oi
0.091
0.254
0.0191
0.045
-
(327 - 334)
NO filtrate sample
^No participate sample
- No sample or sample not yet processed
0 Below detection limit
-------
Table 27. (Continued)
B. Flow and total concentration data
Weir 109
Date
(1976)
5/24
(145
6/1
(153
6/7
(159
6/14
(.166
6/21
(173
6/28
(180
7/6
(188
7/12
(194
7/19
(201
7/26
(208
- 6/1
- 153)
- 6/7
- 159)
- 6/14
- 166)
- 6/21
- 173)
- 6/28
- 180)
- 7/6
- 188)
- 7/12
- 194)
- 7/19
- 201)
- 7/26
- 208)
- 8/2
- 215)
Flow Linuron
U) (yg/&)
4.89E06 0.746
1.13E05 0.454
1.57E04 0.239
7.83E05 0.256
5.35E04 0
O.OOEOO
5.40E04 0
1.65E06 0.645
O.OOEOO
1.08E03
Trifluralin Atrazine Alachlor
(yg/O (ygA) (yg/i)
0.009 19.88 0.652
0.012 4.29 0.161
0.007 4.00 0.900
0.004 11.41 0.957
0.006 11.71 0.387
_
0.099 28.38 2.87
0.029 35.06 0.669
- -
_
-------
Table 27. (Continued)
B. Flow and total concentration data
vo
en
Weir 109
Date
(1976)
8/2
(215
8/9
(222
8/16
(229
8/23
(236
8/30
(243
9/7
(251
9/13
(257
9/20
(264
9/27
(271
10/4
- 8/9
- 222)
- 8/16
- 229)
- 8/23
- 236)
- 8/30
- 243)
- 9/7
- 251)
- 9/13
- 257)
- 9/20
- 264)
- 9/27
- 271)
- 10/4
- 278)
- 10/12
Flow Linuron Trifluralin Atrazine Alachlor
(A) (yg/A) (yg/A) (yg/A) (yg/A).
8.93E05 O2 0.0472 6.652 0.4122
4.46E05 0.178 0.017 3.72 0.269
1.21E04 0.363 0 1.70 0.418
O.OOEOO - - - -
O.OOEOO - -
O.OOEOO - -
O.OOEOO 9.58 0.083 52.78 0.586
O.OOEOO
O.OOEOO 0.844 0.055 11.09 0.068
1.05E06 - -
(278 - 286)
-------
Table 27. (Continued)
B. Flow and total concentration data
cr>
Weir 109
Date
(1976)
10/12 - 10/18
(286 - 292)
10/18 - 10/26
(292 - 300)
10/26 - 11/1
(300 - 306)
11/1 - 11/8
(306 - 313)
11/8 - 11/15
(313 - 320)
11/15 - 11/22
(320 - 327)
11/22 - 11/29
Flow
U)
1.51E05
1.44E06
O.OOEOO .
O.OOEOO
4.95E05
4.09E05
5.06E05
Linuron
(yg/*)
0.747
0.337
0.0221
0
-
-
-
Trifluralin Atrazine
(yg/a) (yg/a)
0.016 0.758
0.029 1.81
0.0241 O1
0.005 0.057
-
-
- -
Alachlor
(yg/a)
0.033
0.043
0.0291
0.029
-
-
-
(327 - 334)
!NO filtrate sample
No particulate sample
- No sample or sample not yet processed
0 Below detection limit
-------
ID
Table 27. (Continued)
C. Discharge data
Weir 101
Date Linuron Trifluralin Atrazine
(1976) (ygX!06) (ygXlQ6) (ygXlO'6)
5/24 -
(145 -
6/1 -
(153 -
6/7 -
(159 -
6/14 -
(166 -
6/21 -
(173 -
6/28 -
(180 -
7/6 -
(188 -
7/12 -
(194 -
7/19 -
(201 -
7/26 -
(208 -
6/1
153)
6/7 - -
159)
6/14 -
166)
6/21 -
173)
6/28
180)
7/6 0.7622 0.0602 6.262
188)
7/12 0.7232 0.0312 1.852
194)
7/19 0 0.023 7.81
201)
7/26 1.051 0.0021 0.6161
208)
8/2 0.792 0.003 9.53
215)
Alachlor
(vgxio6)
_
_
M
_
—
0.4562
0.2412
0.400
0.1361
1.53
-------
00
Table 27. (Continued)
C. Discharge data
Weir 101
Date
(1976)
8/2
(215
8/9
(222
8/16
(229
8/23
(236
8/30
(243
9/7
(251
9/13
(257
9/20
(264
9/27
(271
10/4
- 8/9
- 222)
- 8/16
- 229)
- 8/23
- 236)
- 8/30
- 243)
- 9/7
- 251)
- 9/13
- 257)
- 9/20
- 264)
- 9/27
- 271)
- 10/4
- 278)
- 10/12
Linuron
(ygXlO6)
5.00
12.06
1.50
0.236
0.404
0.231
8.00
0.458
6.02
3.88
Trifluralin
(ygXlO6)
0.124
0.360
0
0.073
0.004
0.002
0.185
0
0.292
1.79
Atrazine
(ygxio6)
18.36
38.40
0
2.13
1.20
0.510
30.37
2.59
30.38
251.90
Alachlor
(ygxio6)
1.72
2.20
1.46
0.616
0.168
0.023
0.298
0.162
1.59
2.38
(278 - 286)
-------
ro
to
Table 27. (Continued)
C. Discharge data
Weir 101
Date
(1976)
10/12 - 10/18
(286 - 292)
10/18 - 10/26
(292 - 300)
10/26 - 11/1
(300 - 306)
11/1 - 11/8
Linuron
(ygX!06)
1.462
21.01
8.221
8.87
Trifluralin
(ygXloS)
0.0372
0.821
0.6131
1.50
Atrazine
(ygX!06)
O2
0
14. 571
10.78
Alachlor
(ygX!06)
O2
3.04
i.ooi
5.20
(306 - 313)
11/8 - 11/15 -
(313 - 320)
11/15 - 11/22 1.192 O2 7.472 1.662
(320 - 327)
11/22 - 11/29 -
No filtrate sample
2No particulate sample
- No sample or sample not yet processed
0 Below detection limit
-------
Table 27. (Continued)
C. Discharge data
Weir 102
Date Linuron Trifluralin Atrazine Alachlor
(1976) _ (ygXIO6) _ (ygXIPS) _ (ygXlO6)
5/24 - 6/1
(145 - 153)
6/1 - 6/7
(153 - 159)
6/7 - 6/14
o (159 - 166)
6/14 - 6/21 -
(166 - 173)
6/21 - 6/28 -
(173 - 180)
6/28 - 7/6
(180 - 188)
7/6 - 7/12 0 0 8.34 0.268
(188 - 194)
7/12 - 7/19 1.12 0 15.81 2.28
(194 - 201)
7/19 - 7/26 0 0.000 0.151 0.069
(201 - 208)
7/26 - 8/2 O1 O1 0.8431 0.1651
(208 - 215)
-------
OJ
O
Table 27. (Continued)
C. Discharge data
Weir 102
Date Linuron Trifluralin Atrazine
(1976) (yq)006) (p
-------
Table 27. (Continued)
C. Discharge data
Weir 102
Date Linuron Trifluralin Atrazine Alachlor
(1976) (ygXIO6) (yqXIO6) (ggXlO6) (
10/12 - 10/18 7.521 0.1671 O1 O1
(286 - 292)
10/18 - 10/26 30.951 1.481 0 1.581
(292 - 300)
10/26 - 11/1 - - - -
(300 - 306)
co
1X3 11/1 - 11/8 O1 0.1141 5.681 0.2601
(306 - 313)
11/8 - 11/15 0.4572 0.2382 10.902 1.122
(313 - 320)
11/15 - 11/22 2.44 0.477 0 1.04
(320 - 327)
11/22 - 11/29
(327 - 334) 0.9591 0.0851 O1 0.502'
Ho filtrate sample
2No participate sample
- No sample or sample not yet processed
0 Below detection limit
-------
Table 27. (Continued)
C. Discharge data
Date
(1976)
Linuron
Weir 103
Trifluralin
Atrazine
(ygXIO6)
Alachlor
CO
CD
co
5/24 - 6/1
(145 - 153)
6/1 - 6/7
(153 - 159)
6/7 - 6/14
(159 - 166)
6/14 - 6/21
(166 - 173)
6/21 - 6/28
(173 - 180)
6/28 - 7/6
(180 - 188)
7/6 - 7/12
(188 - 194)
7/12 - 7/19
(194 - 201)
7/19 - 7/26
(201 - 208)
7/26 - 8/2
(208 - 215)
Spot sample was taken
1.61
0.068
25.77
0.917
-------
Table 27. (Continued)
C. Discharge data
Weir 103
Date Linuron Trifluralin Atrazine Alachlor
(1976) _ (ygXIQ6) _ (ygXlO6) _ (ugXIO6)
8/2 - 8/9 0.042 0 1.00 0.103
(215 - 222)
8/9 - 8/16 0.513 0.184 46.12 3.70
(222 - 229)
8/26 - 8/23 O1 O1 O1 0.3371
(229 - 236)
O
4=1 8/23 - 8/30 0.001 0.000 0.002 0.001
(236 - 243)
8/30 - 9/7 -
(243 - 251)
9/7 _ g/13 _ _ _
(251 - 257)
9/13 - 9/20 0 0.083 33.03 1.10
(257 - 264)
9/20 - 9/27 -
(264 - 271)
9/27 - 10/4 2.10 0 31.41 0.485
(271 - 278)
10/4 - 10/12 - - - -
(278 - 286)
-------
Table 27. (Continued)
C. Discharge data
Weir 103
Date
(1976)
10/12 -
(286 -
10/18 -
(292 -
10/26 -
(300 -
O
en
11/1 -
(306 -
n/8 -
(313 -
11/15 -
10/18
292)
10/26
300)
11/1
306)
11/8
313)
11/15
320)
11/22
Linuron
(ygXio6)
3.63
13. 831
12.00
3.47
4.85
0.6391
Trifluralin
0.072
0.3861
0.416
0.629
0.848
O1
Atrazine
(ygXIO6)
0
14. 041
6.82
0
0
1.501
Alachlor
(yt)Xlo6)
0.204
0.8421
0.707
1.73
2.17
0.1601
(320 - 327)
11/22 - 11/29
(327 - 334)
,JNo filtrate sample
^No participate sample
- No sample or sample not yet processed
0 Below detection limit
-------
Table 27. (Continued)
C. Discharge data
Weir 105
Date Linuron Trifluralin
(1976) (ygX!06) (ygXIO6)
5/24 -
(145 -
6/1 -
(153 -
6/7 -
(159 -
CD
cr>
6/14 -
(166 -
6/21 -
(173 -
6/28 -
(180 -
7/6 -
7/12 -
(194 -
7/19 -
(201 -
7/26 -
(208 -
6/1
153)
6/7
159)
6/14
166)
6/21
173)
6/28
180)
7/6 0.002 0
188)
7/12 0 0.001
194)
7/19 0 0.015
201)
7/26 0.074 0
208)
8/2 o 0.001
215)
Atrazine Alachlor
(ygXIO ) (ugXlO^)
-
-
-
•
0.132 0.008
0.302 0.018
4.43 0.491
0.073 0.009
0.172 0.037
-------
co
o
Table 27. (Continued)
C. Discharge data
Weir 105
Date
(1976)
8/2 -
(215 -
8/9 -
(222 -
8/16 -
(229 -
8/23 -
(236 -
8/30 -
(243 -
9/7 -
(251 -
9/13 -
(257 -
9/20 -
(264 -
9/27 -
(271 -
10/4 - 1
8/9
222)
8/16
229)
8/23
236)
8/30
243)
9/7
251)
9/13
257)
9/20
264)
9/27
271)
10/4
278)
0/12
Linuron
(yqX106)
0.523
0
0
0.0032
0
0.000
0.081
0.017
0.150
0.585
Trifluralin
(ygXlQS)
0
0.020
0
0.0022
0.000
0
; 0
0.000
0.011
0
Atrazine
(ygXlo6)
12.38
11.06
0.547
0.3192
0.059
0.004
0.321
0.087
2.56
15.48
Alachlor
(ygXio6)
3.60
0.149
0.089
0.0032
0.009
0.002
0.006
0.002
0
0
(278 - 286)
-------
co
o
CD
Table 27. (Continued)
C. Discharge data
Weir 105
Date
(1976)
10/12 -
(286 -
10/18 -
(292 -
10/26 -
(300 -
11/1 -
(306 -
11/8 -
(313 -
11/15 -
10/18
292)
10/26
300)
11/1
306)
11/8
313)
11/15
320)
11/22
Linuron
(ygYlO6)
0.1821
5.09
6.12
1.90
0.137
0.1621
Trifluralin
(viqXlO6)
0.0011
0.998
0.631
0.229
0.018
0.0431
Atrazine
(yqXloS)
0.1321
0
0
0
0.060
1.711
Alachlor
(ygXlQ6)
0.0081
1.02
0.866
0.620
0.268
0.0821
(320 - 327)
11/22 - 11/29
(327 - 334)
No filtrate sample
^No participate sample
- No sample or sample not yet processed
0 Below detection limit
-------
CO
O
Table 27. (Continued)
C. Discharge data
Weir 106
Date Linuron Trifluralin
(1976) (ygX106) (ygXlQ6)
5/24 -
(145 -
6/1 -
(153 -
6/7 -
(159 -
6/14 -
(166 -
6/21 -
(173 -
6/28 -
(180 -
7/6 -
(188 -
7/12 -
(194 -
7/19 -
(201 -
7/26 -
(208 -
6/1
153)
6/7
159)
6/14
166)
6/21
173)
6/28
180)
7/6 O2 0.0012
188)
7/12 0 0.003
194)
7/19 0.620 0.016
201)
7/26 0.019 0
208)
8/2 0.017 0.002
215)
Atrazine Alachlor
(yqV106) (yqX!06)
-
-
-
-
-
0.2562 0.0292
0.133 0.059
4.75' 0.579
0.052 0.007
0.500 0.038
-------
oo
o
Table 27. (Continued)
C. Discharge data
10/4 - 10/12
(278 - 286)
Weir 106
Date Linuron Trifluralin Atrazine
(1976) (ygX10&) (yqXl<>6) (yqXlO6)
8/2
(215
8/9
(222
8/16
(229
8/23
(236
8/30
(243
9/7
(251
9/13
(257
9/20
(264
9/27
(271
- 8/9 2.77 0.064 41.63
- 222)
- 8/16 0 0.284 33.71
- 229)
- 8/23 0 0 0.327
- 236)
- 8/30 0.018 0.003 0.440
- 243)
- 9/7 0.002 0 0.021
- 251)
-9/13
- 257)
- 9/20 0.028 0.010 2.92
- 264)
- 9/27
- 271)
- 10/4 0 0 2.53
- 278)
Alachlor
(ygX!06)
3.30
3.46
0.238
0.025
0.002
-
0
-
0.191
-------
Table 27. (Continued)
C. Discharge data
Weir 106
Date
(1976)
10/12 -
(286 -
10/18 -
(292 -
10/26 -
(300 -
11/1 -
(306 -
11/8 -
10/18
292)
10/26
300)
11/1
306)
11/8
313)
11/15
Linuron
(ugXloS)
8.85
17.24
14.43
0.652
0.316
Trifluralin
(ygXIO6)
0.245
1.09
1.45
0.054
0.055
Atrazine
(yqXIO5)
8.05
26.68
8.62
0
0
Alachlor
(yqXIO6)
0.611
2.44
1.46
0.177
0.157
(313 - 320)
11/15 - 11/22 O2 0.0522 O2 O2
(320 - 327)
11/22 - 11/29 -
(327 - 334)
No filtrate sample
2No particulate sample
- No sample or sample not yet processed
0 Below detection limit
-------
CO
ro
Table 27. (Continued)
C. Discharge data
Weir 107
Date Linuron Trifluralin Atrazine
(1976) (yqXloS) (vqX106) (ygX106)
5/24
(145
6/1
(153
6/7
(159
6/14
(166
6/21
(173
6/28
(180
7/6
(188
7/12
(194
7/19
(201
7/26
(208
-6/1
- 153)
-6/7
- 159)
- 6/14 - -
- 166)
- 6/21 -
- 173)
- 6/28 - -
- 180)
- 7/6 0.191 0.004 2.11
- 188)
- 7/12 0.184 0.005 2.80
- 194)
- 7/19 0.945 0.021 4.27
- 201)
- 7/26 0.172 0.002 0.636
- 208)
- 8/2 0.065 0.002 0.448
- 215)
Alachlor
(ygXlQ6)
-
-
-
-
-
0.071
0.129
0.371
0.069
0.020
-------
GO
Table 27. (Continued)
C. Discharge data
10/4 -10/12
(278 - 286)
Weir 107
Date Linuron Trifluralin Atrazine
(1976) (ygXlQ6) (ygXIO6) (ygXlO^
8/2
(215
8/9
(222
8/16
(229
8/23
(236
8/30
(243
9/7
(251
9/13
(257
9/20
(264
9/27
(271
- 8/9 1.07 0.010 3.52
- 222)
- 8/16 1.00 0.047 11.58
- 229)
- 8/23 0.137 0 0.190
- 236)
- 8/30 0.087 0.005 0.417
- 243)
- 9/7 0.001 0 0.007
-251)
- 9/13 -
- 257)
- 9/20 0.068 0.002 0.331
- 264)
- 9/27 -
- 271)
- 10/4 0.170 0.034 7.58
- 278)
Alachlor
(ygXIO6)
0.692
0.962
0.040
0.138
0.000
-
0.003
-
0.166
-------
CO
Table 27. (Continued)
C. Discharge data
Weir 107
Date
(1976)
10/12 -
(286 -
10/18 -
(292 -
10/26 -
(300 -
11/1 -
(306 -
11/18 -
(313 -
11/15 -
(320 -
11/22 -
10/18
292)
10/26
300)
11/1
306)
11/8
313)
11/15
320)
11/22
327)
11/29
Linuron
(ygXlo6)
0.191
1.90
2.53
0.690
-
0.0872
0.111
Trifluralin
(yqXIO6)
0.027
0.384
0.350
0.131
-
0.0152
0.018
Atrazine Alachlor
(yqXIO6) (yqX!06)
1.98 0.045
4.44 0.780
4.37 0.690
0 0.156
-
0.3252 0.1882
0 0.044
(327 - 334)
No filtrate sample
2No participate sample
- No sample or sample not yet processed
0 Below detection limit
-------
CO
en
Table 27. (Continued)
C. Discharge data
Weir 108
Date Linuron
(1976) (ugXIO6)
5/24 -
(145 -
6/1 -
(153 -
6/7 -
(159 -
6/14 -
(166 -
6/21 -
(173 -
6/28 -
(180 -
7/6 -
(188 -
7/12 -
(194 -
7/19 -
(201 -
7/26 -
(208 -
6/1 0
153)
6/7 1.41
159)
6/14 0.203
166)
6/21 0
173)
6/28 0.320
180)
7/6
188)
7/12 0.215
194)
7/19 3.95
201)
7/26 0.003
208)
8/2 0.052
215)
Trifluralin
(ygX106)
0.177
0.014
0.011
0.294
0
-
0.005
0.023
0.000
0.004
Atrazine
(ygX106)
57.48
2.72
0.916
136.1
3.16
-
20.50
6.79
0.020
0.374
Alachlor
(ygXIO6)
19.02
0.337
0.149
12.21
0.158
-
0.373
0.829
0.006
0.029
-------
CO
CTl
Table 27. (Continued)
C. Discharge data
10/4 - 10/12
(278 - 286)
Weir 108
Date Linuron Trifluralin Atrazine
(1976) (ugXio6) (wgXio6) (ygXlO6)
8/2
(215
8/9
(222
8/16
(229
8/23
(236
8/30
(243
9/7
(251
9/13
(257
9/20
(264
9/27
(271
- 8/9 1.212 0.0802 8.952
- 222)
- 8/16 0 0.013 31.37
- 229)
- 8/23 0 0 0.442
- 236)
- 8/30 0.069 0.018 4.10
- 243)
- 9/7 O.OOO2 O.OOO2 0.0022
- 251)
-9/13
- 257)
- 9/20 1.35 0.016 4.13
- 264)
- 9/27
- 271)
- 10/4 2.362 0.1092 1.642
- 278)
Alachlor
(ygX!06)
0.6502
0.745
0.230
0.288
O.OOO2
-
0
-
0.2742
-------
Table 27. (Continued)
C. Discharge data
Weir 108
Date
(1976)
10/12 - 10/18
(286 - 292)
10/18 - 10/26
(292 - 300)
10/26 - 11/1
(300 - 306)
11/1 - 11/8
(306 - 313)
11/8 - 11/15
(313 - 320)
11/15 - 11/22
Linuron
(ygXIO6)
3.05
O1
2.24
2.09
0.6661
1.10
Trifluralin Atrazine
(ygXIO6) (ygXIO6)
0.253 2.24
0.2431 O1
0.302 0
0.435 13.08
0.0751 O1
0.160 2.66
Alachlor
(ygXIO6)
0.485
O1
1.37
1.60
0.0841
0.171
(320 - 327)
11/22 - 11/29
(327 - 334)
No filtrate sample
2Mo particulate sample
- No sample or sample not yet processed
0 Below detection limit
-------
co
Table 27. (Continued)
C. Discharge data
Weir 109
Date Linuron Trifluralin Atrazine
(1976) (yqXlO6) (yqXIO6) (ygX106)
5/24 -
(145 -
6/1 -
(153 -
6/7 -
(159 -
6/14 -
(166 -
6/21 -
(173 -
6/28 -
(180 -
7/6 -
(188 -
7/12 -
(194 -
7/19 -
(201 -
7/26 -
(208 -
6/1 3.65 0.044 97.21
153)
6/7 0.051 0.001 0.485
159)
6/14 0.004 0.000 0.063
166)
6/21 0.200 0.003 8.93
173)
6/28 0 0.000 0.626
180)
7/6
188)
7/12 0 0.005 1.53
194)
7/19 1.06 0.042 57.85
201)
7/26 -
208)
8/2 - -
215
Alachlor
(ygXlO^)
3.19
0.018
0.014
0.749
0.021
-
0.155
1.10
-
-
-------
Table 27. (Continued)
C. Discharge data
Weir 109
Date Linuron Trifluralin Atrazine Alachlor
(1976) (ygXIO6) (ygXIO6) (ygXIO6) (ygXIO6)
8/2 - 8/9 O2 0.0422 5.942 0.3682
(215 - 222)
8/9 - 8/16 0.079 0.008 1.66 0.120
(222 - 229)
8/16 - 8/23 0.004 0 0.021 0.005
w (229 - 236)
—i
8/23 - 8/30
(236 - 243)
8/30 - 9/7 -
(243 - 251)
9/7 - 9/13 / -
(251 - 257)
9/13 - 9/20 -
(257 - 264)
9/20 - 9/27 -
(264 - 271)
9/27 - 10/4 0 00 0
(271 - 278)
10/4 - 10/12 -
(278 - 286)
-------
IN)
O
Table 27. (Continued)
C. Discharge data
Weir 109
Date Linuron Trifluralin Atrazine Alachlor
(1976) (ygXIO6) (ygXIO6) (ygXIO6) (
10/12 - 10/18 0.113 0.002 0.114 0.005
(286 - 292)
10/18 - 10/26 0.485 0.042 2.61 0.062
(292 - 300)
10/26 - 11/1 -
(300 - 306)
11/1 - 11/8 -
(306 - 313)
11/8 - 11/15 -
(313 - 320)
11/15 - 11/22 -
(320 - 327)
11/22 - 11/29 -
(327 - 334)
No filtrate sample
2No participate sample
- Ho sample or sample not yet processed
0 Below detection limit
-------
Table 27. (Continued)
D. Seasonal summaries
Linuron
OJ
ro
Weir 101
Trifluralin
Atrazine
Alachlor
Season
Spring
Summer
(180 -
243)
Fall
(243 -
327)
Flow
(£x!07)
-
3.21
10.78
Flow wt
mean
cone.
(yg/A)
-
0.689
0.554
Total
loading
(g)
.
22.12
59.74
Flow wt
mean
cone.
(yg/A)
-
0.021
0.049
Flow wt
Total mean
loading cone.
(g) (yg/A)
_
0.676 2.65
5.24 3.25
Total
loading
(g)
-
84.96
349.78
Flow wt
mean
cone.
(yg/A)
-
0.273
0.144
Total
loading
(g)
-
8.76
15.52
Winter
-------
co
ro
ro
Table 27. (Continued)
D. Seasonal summaries
Linuron
Weir 102
Trifluralin
Atrazine
Alachlor
Season
Spring
Summer
(188 -
243)
Fall
Winter
Flow wt
mean
Flow cone.
UxlO7} (pg/A)
-
1.45 0.970
9.13 0.650
— -.
Total
loading
(g)
14.05
59.38
_
Flow wt
mean
cone.
(yg/A)
-
0.056
0.030
w
Total
loading
(g)
0.815
2.70
_
Flow wt
mean
cone.
(yg/a)
-
13.06
1.72
Flow wt
Total mean
loading cone.
(g) (yg/0
-
189.21 1.17
156.84 0.099
Total
loading
(g)
16.95
9.04
-------
CO
IV>
co
Table 27. (Continued)
D. Seasonal summaries
Linuron
Weir 103
Trifluralin
Atrazine
Alachlor
Season
Spring
Summer
(188 -
243)
Fall
(243 -
327)
Flow
UxlO?)
-
1.20
9.80
Flow wt
mean
cone.
(yg/0
-
0.180
0.413
Total
loading
(n)
-
2.16
40.53
Flow wt
mean
cone.
(yg/a)
-
0.021
0.025
Total
loading
(q)
-
0.253
2.43
Flow wt
mean
cone.
(yg/*)
-
6.05
0.885
Total
loading
(g)
-
72.90
86.80
Flow wt
mean
cone.
(yg/a)
-
0.420
0.076
Total
loading
(g)
-
5.06
7.40
Winter
-------
CO
ro
Table 27. (Continued)
D. Seasonal summaries
Linuron
Weir 105
Trifluralin
Atrazine
Alachlor
Season
Spring
Summer
(180 -
243)
Fall
(243 -
327)
Flow
UxlO7)
-
0.546
1.84
Flow wt
mean
cone.
(yg/A)
-
0.110
0.787
Total
loading
(g)
-
0.602
14.44
Flow wt
mean
cone.
(yg/a)
-
0.007
0.105
Total
loading
(g)
-
0.039
1.93
Flow wt
mean
cone.
(yg/0
-
5.38
1.11
Total
loading
(g)
-
29.42
20.41
Flow wt
mean
cone.
(yg/A)
-
0.807
0.157
Total
loading
(g)
-
4.41
2.88
Winter
-------
Table 27. (Continued)
D. Seasonal summaries
Weir 106
Flow wt Flow wt Flow wt Flow wt
mean Total mean Total mean Total mean Total
Flow cone. loading cone. loading cone. loading cone. loading
Season (axlO7) (yg/Ji) (g) (yg/£) (g) (yg/£) (g) (yg/&) (g)
co
ro
en
™ 243)
Spring - ___ - - --
Summer 1.63 0.212 3.44 0.023 0.373 5.03 81.80 0.475 7.73
(180 -
Fall 3.08 1,35 41.52 0.096 2.95 1.59 48.82 0.164 5.04
Winter -- ___- ___
-------
Table 27. (Continued)
D. Seasonal summaries
Linuron
Weir 107
Trifluralin
Atrazine
Alachlor
00
ro
01
Season
Spring
Summer
(180 -
243)
Fall
Hinter
Flow7
(£/107)
_
3.94
7.29
_
Flow wt
mean
cone.
(yg/A)
_
0.979
0.788
_
Total
loading
(g)
_
3.86
5.74
.
Flow wt
mean
cone.
_
0.024
0.132
_
Total
loading
(g)
_
0.096
0.961
H
Flow wt
mean
cone.
(yg/A)
_
6.59
2.61
_
Total
loading
(g)
_
25.97
19.03
_
Flow wt
mean
cone.
(yg/A)
-
0.632
0.284
_
Total
loading
(g)
-
2.49
2.07
_
-------
Table 27. (Continued)
D. Seasonal summaries
Weir 108
co
Season
Spring
Summer
Fall
(243 -
327)
Flow
UxlO7)
-
3.62
5.99
Flow wt
mean
cone.
-
0.206
0.215
Total
loading
(q)
-
7.43
12.85
Flow wt
mean
cone.
-
0.013
0.026
Total
loading
(g) '
-
0.462
1.59
Flow wt
mean
cone.
' (ug/A)
-
5.96
0.397
Total
loading
(g)
-
215.4
23.75
Flow wt
mean
cone.
(yg/&)
-
0.443
0.067
Total
loading
(g)
-
16.04
3.99
Winter
-------
Table 27. (Continued)
D. Seasonal summaries
Weir 109
co
ro
00
Season
Spring
Summer
Fall
(243 -
300)
Flow
UxlO7)
-
0.402
0.159
Flow wt
mean
cone.
(pg/a)
-
0.349
0.376
Total
loading
(q)
-
1.40
0.598
Flow wt
mean
cone.
(pg/A)
-
0.027
0.028
Total
loading
(g)
-
0.108
0.044
Flow wt
mean
cone.
(pg/O
-
19.18
1.72
Total
loading
(g)
-
77.11
2.73
Flow wt
mean
cone.
(pg/A)
-
0.634
0.042
Total
loading
(g)
-
2.55
0.067
Winter
-------
Table 28. Paraquat data from weir samples (analyses carried out on suspended
particulate fraction by Mr. William Payne, EPA, Athens, Georgia).
All samples analyzed (X) were below detection limit.
Date
1976
July 12 - 19
July 19 - 26
July 26 - Aug. 2
August 2-9
August 16
September 7
September 13
September 20
September 27
October 4
October 5
101
X
X
X
X
X
X
X
Watershed
102 103 105 1
X
X
X
X
X X
X
XXX
number
06 107 108 109 121
XXX
X
X
X X
X
X
X
X XX X X
122
X
X
329
-------
TIME
76
76
76
76
76
77
77
76
76
76
76
76
77
77
76
76
76
76
76
77
76
76
76
77
76
76
76
77
76
76
76
77
76
76
76
77
76
76
76
77
76
76
76
77
76
76
174
202
245
266
302
103
138
174
202
245
266
302
103
138
169
238
169
239
296
117
169
239
296
117
169
238
294
117
169
238
294
117
169
238
294
117
169
238
294
117
169
238
294
117
169
239
1040
1233
1200
1130
1030
1 100
1135
1050
1400
1045
1310
1155
1209
1257
1615
1200
1445
1100
1415
1620
1000
1230
1520
1 145
1715
1610
1400
1530
1450
1305
1840
1430
1330
1200
1640
1300
1115
1030
1500
1100
0830
0754
0945
0850
STATION
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHQ
RHO
RHO
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
POP
POP
28
28
28
28
28
28
28
29
29
29
29
29
29
29
71
71
72
72
72
72
73
73
73
73
74
74
74
74
75
75
75
75
76
76
76
76
77
77
77
77
78
78
78
78
81
81
DEPTH
M
1
1
1
1
1
,
.00
.00
.00
.00
.00
75
100
1
1
1
1
1
,
1
2
1
1
1
1
1
1
1
,
1
1
1
*
1
1
1
.
1
2
1
.
1
2
1
.
1
1
1
t
1
1
.00
.00
.00
.50
.00
75
.00
.00
.00
.50
.00
.00
.00
.50
.50
75
.00
.50
.00
75
.00
.50
.50
75
.00
.00
.50
75
.00
.00
.00
75
.00
.00
.00
75
.00
.00
AREA POTAMOGETON POTAMOGETON MYRIOPHYLLUM RUPP1A ZANICHELLIA ELODEA 20STERA
RAKED PERFOLIATUS PECTINATUS SPICATUM MARITIMA PALUSTRIS CANADENSIS MARITIMA — <
It DRY WT H DRY WT # DRY WT # DRY WT # DRY WT # DRY WT # DRY WT cr
M**2 MG MG MG MG MG MG MG £
40 3 50 169 1270 34 290
120 6 217 1 37
100
80 .
60
40 28 305 8 3
10 4 60 6 90 1637 57400
60 116 13308 36 3158
100
80 i
40
40
40
40
40
40 11 140 40 840 9 190
30
40
40
40
60
40 7 168
40
40
30
40
40
40
40
60
40
40
40
40
40
40
20
32
40
40
10
32
40
40 656 6500
60
to
croo
fD C
cr
-5 3
fD fD
cu — ^
J-** 3
Q.CQ
CU O
N ~5
fD O
•~> o
^3 f~ ^
fD
< Q.
CU
— ' CU
C .0
fD C
GO CU
• r-t-
O
-^j
— i
CU
25
c-t-
0
-a
,
CU
—i.
O
l/>
•
CO
CU
3
^
(/>
"O
o
fD
(/>
rr
o
— i
-------
TIME
76 295 1015
77 118 0912
76 169 1030
76 239 0930
76 295 1415
77 1 18 0942
76 169 1130
76 239 1015
76 295 1500
77 118 1007
76 169 1245
76 239 1100
76 295 1530
77 118 1034
76 162 0900
76 162 1015
76 162 1100
76 162 1145
76 162 1315
76 162 1400
76 174 1150
76 202 1315
76 245 1125
76 266 1235
76 302 1115
77 103 1140
77 138 1220
76 174 1250
76 202 1615
'76 245 1300
76 266 1040
76 302 1330
77 103 1252
77 138 1335
76 174 0900
76 202 1500
76 266 1400
76 302 1415
77 103 1430
77 138 1520
STATION DEPTH
M
POP 81 1.00
POP 81 1.00
POP 82 1 .00
POP 82 - 1.00
POP .82 . 1.50
POP 82 1.00
POP 83 -1.00
POP 83 • 1.00
POP 83 1.50
POP 83 1 .00
POP 84' 1 .00
POP 84 1.50
POP 84 1 .50
POP 84 1 .00
SEV 91 1.50
SEV 92 1.00
SEV 93 1.00
SEV 94 ' 1.00
SEV 95 1.00
SEV 96 1.00
RHO 28.4 1.00
RHO 28.4 1.00
RHQ 28.4 1 .00
RHO 28.4 1 .00
RHO 28.4 1 .50
RHO 28.4 1 .00 .
RHO 28.4 .50
RHO 30.2 1.00
RHO 30.2 1.00
RHO 30.2 1 .00
RHO 30.2 1 .00
RHO 30.2 1.00
RHO 30.2 1.00
RHO 30.2 .75
RHO 31 .5 .50
RHO 31.5 .50
RHO 31.5 1.00
RHO 31 .5 .50
RHO 31.5 1.00
RHO 31.5 .50
AREA POTAMOGETON POTAMOGETON MYRIOPHYLLUM RUPPIA ZANICHEIUA ELODEA ZOSTERA
RAKED PERFOLIATUS PECTINATUS SPICATUM MARITIMA PALUSTRIS CANADENSIS MARITIMA
# DRY WT H DRY WT H DRY WT # DRY WT H DRY WT # DRY WT # DRY WT
M**2 MG MG MG MG MG MG MG
120
40
40 318 41300
40
80
40
40
40
80
40
40
6
20
40
40
40 1 40 1 30
40 9 30
40 124 10800 3
40 8 310 1 20 1
40 6 10
40
120
50
80
60
40
40
40
80
100
80
40
40
20
.4
80
40
4
40
8 26
3 30
21 130
2 17
570 11 40
20
32 830
13 530
3 187
1 6
25 310
246 3200
72 3000
44
76 820
98 470
4 10
4 20
7
124 699
14 50
25 91
15 230
21
ro
V£>
o
o
=j
rt-
3
C
re
o.
-------
TIME
76 104
76 104
76 146
76 146
76 174
76 174
76 202
76 202
76 245
76 245
76 104
76 104
76 146
76 146
76 174
76 202
76 202
76 245
76 245
76 169
76 169
76 296
76 169
76 169
76 239
76 239
76 296
76 169
76 169
76 239
'76 239
76 296
76 169
76 169
76 238
76 238
76 169
76 169
76 238
76 238
76 169
76 169
76 238
76 238
76 294
76 169
76 169
1245
1245
0955
0955
1040
1040
1233
1233
1200
1200
1145
1145
1135
1 135
1050
1400
1400
1045
1045
1615
1615
1615
1445
1445
1 100
1100
1415
1000
1000
230
145
145
715
715
1530
1530
1840
18.40
1430
1430
1330
1640
1640
STATION
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
CHP 71
CHP 71
CHP 71
CHP 72
CHP 72
CHP 72
CHP 72
CHP 72
CHP 73
CHP 73
CHP 73
CHP 73
CHP 73
CHP 74
CHP 74
CHP 74
CHP 74
CHP 75
CHP 75
CHP 75
CHP 75
CHP 76
CHP 76
CHP 76
CHP 76
CHP 76
CHP 77
CHP 77
DEPTH
FROM TO
CM
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
3
6
3
6
3
6
3
3
6
3
6
3
3
6
3
6
3
3
6
3
6
3
6
3
6
3
6
3
6
3
3
6
SAND
25.93
21 .73
20.31
4.15
94.15
92.19
84.37
05.99
2.89
1.93
97.74
95.01
88.15
98.18
97.82
78.02
81 .30
95.21
96.77
99.56
89.22
97.80
98.10
96.90
98.03
8.84
10.50
SILT
55.10
68.22
60.83
75.26
3.70
4.29
10.32
9.09
13.12
77.72
.87
3.19
10.96
.51
.65
19.14
17.54
3.05
1 .63
.38
10.18
.85
.88
1 .98
1.07
57.54
67.34
CLAY ORGANIC
MATTER
18.97
10.05
18.87
20.58
2.06
3.51
5.31
4.92
83.99
20.35
1.39
1.80
.88
1.31
1.52
2.84
1.15
1.74
1.60
.06
.60
1.34
1.02
1.12
1.03
33.62
22.17
8.13
7.94
17.03
4.47
3. 8
.03
5.98
4.C..8
2.o2
13.43
15.76
11 .21
3. 0
3.29
4.40
.6
2.95
13.40
10.26
10.29
16.87
12.24
13.02
.82
1.02
1 .09
.80
.7o
2. 8
3.09
.24
.54
.3
.62
2. o5
1.01
.16
.82
.5
19.55
33.45
MONTMORILLO ILLITE
<62U <2U <62U <2U
37.00
28.00
29.00
59.00
68.00
7.00
13.00
31 .00
39.00
42.00
45.00
.00
.00
.00
.00
2.00
.00
20.00
18.00
.00
.00
.00
3.00
13.00
20.00
3.00
.00
15.00
4.00
38.00
37.00
50.00
24.00
23.00
5.00
11.00
13.00
19.00
34.00
29.00
21.00
44.00
7.00
6.00
3.00
11.00
13.00
17.00
20.00
12.00
6.00
25.00
11.00
14.00
9.00
5.00
7.00
6.00
KAOLINITE
<62U <2U
12.00
13.00
6.00
5.00
3.00
2.00
3.00
14.00
12.00
5.00
7.00
10.00
10.00
1.00
1.00
1.00
2.00
9.00
12.00
6.00
4.00
8.00
6.00
13.00
7.00
3.00
2.00
3.00
4.00
GIBBSITE CHLORITE
<62U <2U <62U <2U
3.00
3.00
7.00
3.00
.00
.00
.00
4.00
4.00
.00
.00
.00
.00
.00
.00
.00
.00
2.00
3.00
.00
.00
.00
.00
4.00
3.00
.00
.00
.00
.00
7.00
9.00
6.00
3.00
2.00
1 .00
1.00
6.00
3.00
2.00
6.00
12.00
16.00
4.00
3.00
1.00
8.00
11 .00
9.00
6.00
6.00
6.00
9.00
12.00
8.00
7.00
5.00
9.00
5.00
0)
cr
n>
co
O
m
in
c.
fa
-$
— i.
n>
cr
o
ct-
c+
O
in
CD
QL
3'
CD
— •$
o
-5
CXI
o
tt>
-s
in
^
O
in
*
-------
TIME
76 238
76 238
76 169
76 169
76 238
76 238
76 294
76 169
76 169
76 239
76 239
76 169
76 169
76 239
76 239
76 169
76 169
76 239
76 239
76 169
76 169
76 162
ft 76 162
to 76 162
76 162
76 162
76 162
76 162
76 146
,76 146
76 104
76 104
76 174
76 174
76 202
76 202
76 245
76 245
76 104
76 104
76 146
76 146
76 174
76 174
76 202
1300
1300
1500
1500
1100
1 100
0830
0945
0945
0850
0850
1030
1030
0930
0930
1130
1 130
1015
1015
1245
1245
0900
1015
1100
1145
1315
1400
1400
1045
1045
1200
1200
1 150
1150
1315
1315
1125
1125
1000
1000
1450
1450
1250
1250
1615
STATION DEPTH
FROM TO
CM
CHP 77
CHP 77 3
CHP 78
CHP 78 3
CHP 78
CHP 78 3
CHP 78
POP 81
POP 81 3
POP 81
POP 81 3
POP 82
POP 82 3
POP 82
POP 82 3
POP 83
POP 83 3
POP 83
POP 83 3
POP 84
POP 84 3
SEV 91
SEV 92
SEV 93
SEV 94
SEV 95
SEV 96
SEV 96 3
RHO 28.
RHO 28. 3
RHO 29.
RHO 20. 3
RHO 2U.4
r
-------
TIME
STATION DEPTH
FROM TO
SAND
SILT
CLAY ORGANIC
MATTER
MONTMORILLO ILLITE
<62U <2U <62U <2U
KAOLINITE
<62U <2U
CM % % % % % '/. % % % %
76 202
76 245
76 245
76 104
76 104
76 146
76 146
76 174
76 174
76 202
76 202
76 245
76 245
1615
1300
1300
0900
0900
1500
1500
1400
1400
RHO 30.2 3
RHO 30.2
RHO 30.2 3
RHO 31.5
RHO 31.53
RHO 31.5
RHO 31.53
RHO 31.5
RHO 31.5 3
RHO 31.5
RHO 31.53
RHO 31 .5
RHO 31.53
6
3
6
3
6
3
6
3
6
3
6
3
6
86.85
28.48
24.60
37.28
22.52
21.25
32.81
37.05
9.24
63.32
63.41
54.40
68.48
61.26
60.04
57.48
3.91
8.20
11 .99
8.32
8.99
17.49
7.15
5.47
2. 1
3. 0
6.96
11.42
12.29
10.68
14.70
11.62
11.54
8.35
7. 5
10.35
44.00
32.00
33.00
13.00
66.00
19.00
26.00
11.00
6.00
4.00
18.00
5.00
9.
6.
18
6.
7.
8.
00
00
.00
00
00
00
GIBBSITE CHLORITE
<62U <2U <62U <2U
X %
.00
.00
1.00
.00
.00
.00
% %
5.00
5.00
2.00
5.00
5.00
6.00
Cu
cr
co
o
o
o
tt>
Q.
GO
CO
-------
TIME
76 104
76 104
76 146
76 146
76 174
76 174
76 202
76 202
76 245
76 245
76 104
76 104
76 146
76 146
76 174
76 202
76 202
76 245
76 245
76 169
76 169
76 296
76 169
76 169
76 239
76 239
76 296
76 169
76 169
76 239
76 239
76 296
76 169
76 169
76 238
7.6 238
76 169
76 169
76 238
76 238
76 169
76 169
76 238
76 238
76 294
76 169
76 1GS
1245
1245
0955
0955
1040
1040
1233
1233
1200
t200
1145
1145
1135
1135
1050
1400
1400
1045
1045
1615
1615
1615
1445
1445
1100
1100
1415
1000
1000
1230
1 145
1145
1715
1715
1530
1530
1840
1840
1430
1430
1330
1640
1640
STATION
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
CHP 71
CHP 71
CHP 71
CHP 72
CHP 72
CHP 72
CHP 72
CHP 72
CHP 73
CHP 73
CHP 73
CHP 73
CHP 73
CHP 74
CHP 74
CHP 74
CHP 74
CHP 75
CHP 75
CHP 75
CHP 75
CHP 76
CHP 76
CHP 76
CHP 76
CHP 76
CHP 77
CHP 77
DEPTH
FROM TO
CM
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
3
6
3
6
3
6
3
3
6
3
6
3
3
6
3
6
3
3
6
3
6
3
6
3
6
3
6
3
6
3
3
6
QUARTZ
<62U <2I
4.00
7.00
2.00
4.00
2.00
60.00
65.00
20.00
21 .00
13.00
5.00
27.00
25.00
51.00
62.00
60.00
58.00
29.00
32.00
52.00
47.00
52.00
27.00
29.00
26.00
51 .00
49.00
38.00
58.00
POTAS FELDSPR PLAGIOCLASE TALC AMPHIBOLE CLIN CALCITE DOLOMITE
J <62U <2U
-------
TIME
STATION DEPTH
QUARTZ POTAS FELDSPR PLAGIOCLASE
TALC
AMPHIBOLE
CLIN
CALCITE
DOLOMITE
FROM TO
CM
76 238
76 238
76 169
76 169
76 238
76 238
76 294
76 169
76 169
76 239
76 239
76 169
76 169
76 239
76 239
76 169
76 169
76 239
76 239
76 169
76 169
76 162
£76 162
cr> 76 162
76 162
76 162
76 162
76 162
76 146
76 146
76 104
76 104
76 174
76 174
76 202
76 202
76 245
76 245
76 104
76 104
76 146
76 146
76 174
76 174
76 202
1300
1300
1500
1500
1100
1100
0830
0945
0945
0850
0850
1030
1030
0930
0930
1 130
1130
1015
1015
1245
1245
0900
1015
1100
1 145
1315
1400
1400
1045
1045
1200
1200
1 150
1150
1315
1315
1 125
1125
1000
1000
1450
1450
1250
1250
1615
CHP 77
CHP 77
CHP 78'
CHP 78
CHP 78
CHP 78
CHP 78
POP 81
POP 81
POP 81
POP 81
POP 82
POP 82
POP 82
POP 82
POP 83
POP 83
POP 83
POP 83
POP 84
POP 84
SEV 91
SEV 92
SEV 93
SEV 94
SEV 95
SEV 96
SEV 96
RHO 28.
RHO 28.
RHO 29.
RHO 29.
RHO 28.4
RHO 28.4
RHO 28.4
RHO 28.4
RHO 28.4
RHO 28.4
RHO 28.4
RHO 28.4
RHO 30.2
RHO 30.2
RHO 30.2
RHO 30.2
RHO 30.2
RHO 30.2
RHO 30.2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
6
3
6
3
6
3
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
3
3
3
3
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
<62U <2U <62U <2U <62U <2U <62U <2U <62U <2U <62U <2U <62U <2U <62U <2U
% % % % % % % % % % % % 'A % % %
74.00
55.00
49.00 •
60.00
24.00
44.00
27.00
39.00
37.00
66.00
44.00
59.00
14.00
44.00
69.00
61.00
62.00
55.00
.00
9.00
14.00
14.00
51 .00
.00
20.00
5.00
7.00
2.00
17.00
18.00
9.00
26.00
63.00
34.00
36.00
11.00
23.00
6.00
6.00
.00
19.00
10.00
14.00
6.00
10.00
20.00
8.00
11.00
6.00
22.00
5.00
4.00
4.00
.00
.00
7.00
6.00
7.00
.00
.00
3.00
7.00
.00
5.00
8.00
5.00
10.00
9.00
2.00
6.00
6.00
10.00
22.00
22.00
7.00
20.00
7.00
17.00
5.00
14.00
14.00
.00
7.00
11 .00
.00
7.00
2.00
3.00
.00
.00
4.00
6.00
12.00
.00
.00
2.00
1.00
.00
5.00
5.00
2.00
5.00
4.00
2.00
6.00
.00
.00
2.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
\00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
Q»
cr
(D
CO
o
•
- s
c~>
o
=5
ct
-J.
=3
c
rt>
Q.
'
-------
TIME
STATION DEPTH
QUARTZ POTAS FELDSPR PLAGIOCLASE
TALC
AMPHIBOLE
CL1N
CALCITE
DOLOMITE
FROM TO
CM
76 202
76 245
76 245
76 104
76 104
76 146
76 146
76 174
76 174
76 202
76 202
76 245
76 245
1615
1300
1300
0900
0900
1500
1500
1400
1400
RHO 30.2 3
RHO 30.2
RHO 30.2 3
RHO 31 .5
RHO 31.53
RHO 31.5
RHO 31.53
RHO 31 .5
RHO 31.5 3
RHO 31 .5
RHO 31 .5 3
RHO 31.5
RHO 31 .5 3
6
3
6
3
6
3
6
3
6
3
6
3
6
<62U <2U <62U <2U <62U <2U <62U <2U <62U <2U <62U <2U <62U <2U <62U <2U
% % % Si % % % % % % % % % % % %
16
35
26
62
5.
55
.00
.00
.00
.00
00
.00
.00
6.00
8.00
7.00
.00
4.00
.00
5.00
5.00
4.00
.00
2.00
.00
.00
.00
.00
.00
1.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
— 1
DJ
cr
n>
co
O
*
o
o
r.1
CT
3*
E
tt>
Q.
GO
co
-------
TIME
STATION DEPTH TOT SUSP MIN SUSP MONTM ILL1T KAOLI GIBBS CHLOR QUART KSPAR PLAGI TALC AMPHI CLINO CALCI DOLOM
76
76
76
76
76
76
76
77
77
77
77
77
77
77
77
77
77
77
77
77
77
co?7
OJ76
«>76
76
76
76
76
76
77
77
77
77
77
77
77
77
77
77
77
77
77
76
76
76
77
77
104
146
174
202
245
266
302
103
103
103
103
103
103
103
138
138
138
138
138
138
138
138
104
146
174
202
245
266
302
103
103
103
103
103
103
138
138
138
138
138
138
138
169
238
296
117
117
1245
0955
1040
1233
1200
1130
1030
1100
1100
1100
1100
1100
1100
1100
1135
1135
1135
1135
1135
1135
1135
1135
1145
1135
1050
1400
1045
1310
1155
1209
1209
1209
1209
1209
1209
1257
1257
1257
1257
1257
1257
1257
1615
1200
1615
1201
1201
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
CHP
CHP
CHP
CHP
CHP
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28 .
28
28
28
28
28
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
71
71
71
71
71
.
,
.
.
%
,
t
,
,
,
,
1
1
1
.
.
.
.
1
1
1
1
t
.
.
,
f
.
.
.
t
,
(
1
1
t
9
,
.
1
1
1
.
.
,
,
.
SOLIDS SOLIDS
M MG/L MG/L %%%%%%%%%%%%
10
10 4.8 4.8 8.00 28.00 12.00 2.00 8.00 27.00 6.00 9.00 .00 .00 .00
10 22.9 9.4 24.00 32.00 10.00 3.00 8.00 17.00 4.00 2.00 .00 .00 .00
10 25.5 14.1 18.00 11.00 10.00 .00 10.00 37.00 7.00 7.00 .00 .00 .00
10
10
10 .00 17.00 4.00 .00 5.00 7.00 9.00 7.00 .00 ,00
10
25
50
75
.00
.25
.50
10
25
50
75
.00
.25
.50
.75
10
10 7.4 5.9 .00 36.0048.00 .00 33.0021.009.00 5.00 1.00 4.00 3.00
10 16.5 6.8 5.00 36.00 17.00 1.00 12.00 18.00 6.00 2.00 .00 1.00 .00
10 23.8 10.5 8.00 25.00 11.00 3.00 12.00 23.00 8.00 7.00 1.00 .00 .00
10
10
10 5.00 19.00 16.00 .00 7.00 45.00 4.00 2.00 .00 .00 .00
10
25
50 .
75
.00 •
.25
10
25
50
75
.00
.25
.50
10 6.3 3.3 .00 30.00 11.00 .00 8.00 40.00 5.00 3.00 2.00 .00 .00
10
10 .00 ^.00 .00 .00 4.00 64.00 5.00 22.00 .00 .00 .00
10
25
% g-
fD
co
•
CO
c:
-a
re-
3
Q.
fD
Q.
-a
a>
fl£
o
fj,
Co
fD
O-
Co
c*
Co
—j.
3
fD
c-t-
c
CO
-$
fD
to
c:
-h
CD
O
fD
•s.
Co
fD
7s
-------
TIME
STATION DEPTH TOT SUSP MIN SUSP MONTM ILLIT KAOLI GIBBS CHLOR QUART KSPAR PLAQI TALC AMPHI CLINO CALCI DOLOM
77
77
77
77'
77
77
76
76
76
77
77
77
77
77
77
77
77
76
76
76
77
77
Co 77
co ' '
Q.
'
-------
TIME
STATION DEPTH TOT SUSP WIN SUSP MONTM 1LLIT KAOLI GIBBS CHLOR QUART KSPAR PLAGI TALC AMPHI CLINO CALCI DOLOM
77
77
77
77
77
76
76
76
77
77
77
77
77
77
77
76
76
76
77
77
77
77
OJ77
077
77
76
76
76
77
77
77
77
77
77
77
77
77
77
77
76
76
76
77
77
77
77
77
117
117
117
17
17
69
230
294
17
17
17
17
17
17
17
169
238
294
117
117
117
1 17
1 17
117
117
169
238
294
117
117
117
117
117
117
117
117
117
1 17
117
169
239
295
118
118
118
118
118
1305
1305
1305
1305
1305
1840
1430
1330
1200
1200
1200
1200
1200
1200
1200
1640
1300
1115
1030
1030
1030
1030
1030
1030
1030
1500
1100
0830
0754
0754
0754
0754
0754
0754
0754
0754
0754
0754
0754
0945
0850
1015
0912
0912
0912
0912
0912
CHP
CHP
.CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
POP
POP
POP
POP
POP
POP
POP
POP
75
75
75
75
75
76
76
76
76
76
76
76
76
76
76
77
77
77
77
77
77
77
77
77
77
78
78
78
78
78
78
78
78
78
78
78
78
78
78
81
81
81
81
81
81
81
81
1
1
1
1
•
•
,
•
.
,
,
1
1
1
•
•
,
.
,
,
•
1
1
1
.
,
.
.
,
.
.
1
1
1
1
2
2
2
.
1
•
•
,
,
.
1
SOLIDS SOLIDS
M MG/L MG/L %%%%%%%%%%%%
75
.00
.25
.50
.75 .
10 67.1 51.7 5.00 12.005.00 .00 6.00 57.00 13.002.00 1.00 .00 .00
10
10 .00 21.00 13.00 .00 12.00 40.00 7.00 6.00 1.00 .00 .00
10
25
50
75
.00
.25
.50
10 58.6 37.7 ' .00 19.008.00 5.00 11.0040.009.00 6.00 1.00 .00 .00
10
10 .00 -.00 3.00 .00 5.00 60.00 15.00 12.00 .00 .00 .00
10
25
50
75
.00
.25
.50
10 78.2 63.6 .00 22.00 8.00 3.00 8.00 37.00 13.00 7.00 1.00 .00 .00
10
10 .00 9.00 6.00 .00 5.00 36.00 31.00 14.00 .00 .00 .00
10
25
50
75
.00
.25
.50
.75
.00
.25
.50
10 15.7 8.7 .00 27.00 10.00 .00 11.00 36.00 6.00 8.00 1.00 .00 .00
.00
10 .00 b. 00 1.00 .00 4.00 71.00 7.00 10.00 .00 .00 .00
10
25
50
75
.00
-H
v &
X cr
ro
<*>
•
^.^
0
o
3
r+
J,
•^
C.
n>
Q.
-------
TIME
STATION DEPTH TOT SUSP MIN SUSP MONTM ILLIT KAOLI GIBBS CHLOR QUART KSPAR PLAGI TALC AMPHI CLINO CALCI DOLOM
77 118 0912
77 118 0912
77 118 0912
77 118 0912
76 169 1030
76 239 0930
76 295 1415
77 118 0942
77 110 0942
77 1 18 0942
77 118 0942
77 1 18 0942
77 118 0942
77 110 0942
77 118 0942
77 118 0942
76 169 1130
76 239 1015
76 295 1500
77 118 1007
77 18 1007
77 18 1007
77 18 1007
77 18 1007
77 18 1007
77 18 1007
76 69 1245
76 239 1100
76 295 1530
77 118 1034
77 .1 18 1034
77 18 1034
77 18 1034
77 18 1034
77 18 1034
77 18 1034
77 18 1034
77 18 1034
76 62 0900
76 162 1015
76 162 1100
76 162 1 145
76 162 1315
76 162 1400
76 146 1045
76 104 1200
76 174 1150
POP 81
POP 81
POP 81
POP 81
POP 82
POP 82
POP 82
POP 82
POP 82
POP 82
POP 82
POP 82
POP 82
POP 82
POP 82
POP 82
POP 83
POP 83
POP 03
POP 83
POP 83
POP 83
POP 83
POP 83
POP 83
POP 83
POP 84
POP 84
POP 84
POP 84
POP 84
POP 84
POP 84
POP 84
POP 84
POP 84
POP 84
POP 84
SEV 91
SEV 92
SEV 93
SEV 94
SEV 95
SEV 96
RHO 28.
RHO 28.4
RHO 28.4
SOLIDS SOLIDS
M MG/L MG/L %%%%%%%%%%%%
1.25
1.50
1.75
2.00
.10 4.9 2.6 .00 37.00 10.00 6.00 8.00 21.00 10.00 6.00 2.00 .00 .00
1.00
1.00
.10
.25
.50
.75
1.00
1.25
1.50
1.75
2.00
.10 11.4 5.1 .00 21.005.00 3.00 7.00 50.006.00 7.00 1.00 .00 .00
1.00
1 .00
.10
.25
.50
.75
1.00
1.25
1.50
.10 12.3 6.2 .00 27.00 7.00 .00 9.00 38.00 7.00 11.00 2.00 .00 .00
1 .00
1.00
.10
.25 .
.50
.75
1 .00
1.25
1.50
1.75
2.00
.10 11.7 2.5 16.00 10.00 5.00 .00 8.00 36.00 19.00 8.00 .00 .00 .00
.10 11.7 3.3 .00 37.00 17.00 .00 12.00 21.00 7.00 3.00 3.00 .00 .00
.10 14.7 3.2 .00 25.00 9.00 .00 22.00 24.00 16.00 .00 4.00 .00 .00
.10 52.4 11.8 9.00 23.00 24.00 .00 8.00 26.00 5.00 3.00 3.00 .00 .00
.10 15.0 3.9 17.00 13.00 27.00 .00 11.00 19.00 6.00 4.00 2.00 .00 .00
.10 26.8 21.1 .00 16.00 33.00 .00 19.01 29.00 1.00 .00 1.00 .00 .00
.10 8.7 7.4 7.00 44.00 12.00 1.00 10.00 17.00 5.00 3.00 1.00 .00 .00
.10
.10 20.5 12.6 10.00 30.00 9.00 .00 8.00 32.00 7.00 6.00 .00 .00 .00
% s-
0>
co
«
,-«.
o
0
^*
3
c.
tt>
o.
-~ *
-------
TIME
STATION DEPTH TOT SUSP MIN SUSP MONTM ILLIT KAOLI GIBBS CHLOR QUART KSPAR PLAGI TALC AMPHI CLINO CALCI DOLOM
76
76
76
76
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
OJ 77
^76
76
76
76
76
76
77
77
77
77
77
77
77
77
77
77
77
77
77
76
76
76
76
76
202
245
266
302
103
103
103
103
103
103
103
103
138
138
138
138
138
138
138
138
138
138
104
146
174
202
245
266
302
103
103
103
103
103
103
103
138
138
138
138
38
38
04
46
74
202
245
1315
1125
1235
1115
1 140
1140
1140
1140
1140
1140
1140
1140
1220
1220
1220
1220
1220
1220
1220
1220
1220
1220
1000
1450
1250
1615
1300
1040
1330
1252
1252
1252
1252
1252
1252
1252
1335
1335
1335
1335
1335
1335
0900
1500
1400
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
28.
28.
28.
28.
28.
28.
28.
28.
28.
28.
28.
28.
28.
28.
28.
28.
28.
28.
28.
28.
28.
28.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
31 .
31 .
31 .
31.
31.
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
5
5
5
5
5
,
.
.
,
.
,
,
1
1
1
1
.
.
.
,
1
1
1
1
2
2
9
,
,
,
.
f
,
.
,
,
,
1
1
1
.
.
.
.
1
1
B
^
,
,
t
SOLIDS SOLIDS
M MG/L MG/L %%%%%%%%%%%%
10 26.1 26.1 11.00 13.00 9.00 .00 7.00 42.00 12.00 6.00 .00 .00 .00
1.0
10
10
10
25 '...'•
50
75
.00
.25
.50
.75
10
25
50
75
.00
.25
.50
.75
.00
.25
10
10 12.3 7.8 9.00 31.00 15.00 .00 11.00 10.00 16.00 4.00 3.00 1.00 .00
10 14.6 4.6 13.00 27.00 17.00 1.00 10.00 12.00 13.00 5.00 1.00 .00 .00
10 27.6 12.6 10.00 19.00 10.00 2.00 9.00 38.00 10.00 8.00 .00 .00 .00
10
10
10 .00 16.00 9.00 .00 6.00 31.00 11.00 26.00 .00 .00 .00
10
25
50
75
.00
.25
.50
10
25
50
75
.00
.25
10
10 22.5 19.4 10.00 23.00 11.00 2.00 8.00 31.00 13.00 4.00 1.00 .00 .00
10 23.4 9.5 6.00 26.00 18.00 4.00 13.00 24.00 7.00 .00 2.00 .00 .00
10 53.9 36.8 42.004.00 7.00 1.00 4.00 20.00 11.008.00 .00 .00 .00
10
—i
V. *"
% or
n>
OJ
•
s~ .
o
2".
3"
c:
a.
-------
TIME STATION DEPTH TOT SUSP MIN SUSP MONTM ILL1T. KAOLI GIBBS CHLOR QUART KSPAR PLAGI TALC AMPHI CUNO CALCI DOLOM
SOLIDS SOLIDS
M MG/L MG/L %%%%%%%%%%%%%
cr
n>
GO
o
o
3
C.
n>
o.
76 266 1400
76 302 1415
77 103 1430
77 103 1430
77 138 1520
77 138 1520
RHO 31.5
RHO 31.5
RHO 31
RHO 31
RHO 31
.5
.5
.5
.10
.10
.10
.25
.10
RHO 31.5 .25
1.00 11.00 8.00 .00 9.00 50.00 6.00 5.00 10.00 .00 .00
CO
-------
TIME
STATION DEPTH SALINITY CONDUC TEMP TURB PHOTOMETERS WAT/DK TRANSM
76 104
76 146
76 174
76 202
76 245
76 266
76 302
77 103
77 103
77 103
77 103
77 103
77 103
77 103
77 138
77 133
77 133
77 138
77 138
77 138
77 133
77 133
76 104
76 146
76 174
76 202
76 245
76 266
76 302
77 103
77 103
77 103
77 1C3
77 103
77 03
77 38
77 38
77 38
77 38
77 138
77 138
77 138
76 169
76 238
76 296
77 117
77 117
1245
0955
1040
1233
1200
1 130
1030
1100
100
100
100
100
100
100
135
135
135
135
135
135
135
135
1145
1135
1050
1400
1045
1310
1155
1209
1209
1209
1209
209
209
257
257
257
257
1257
1257
1257
1615
1200
1615
1201
1201
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO 28
RHO -28
RHO 28
RHO 28
RHO 28
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
RHO 29
CHP 71
CHP 71
CHP 71
CHP 71
CHP 71
M
.10
.10
.10
.10
.10
.10
.10
.10
.25
.50
.75
1.00
1.25
1.50
.10
.25
.50
.75
1.00
1.25
1.50
1.75
.10
.10
.10
.10
.10
.10
.10
.10
.25
.50
.75
1.00
1.25
.10
.25
.50
.75
1.00
1.25
1.50
.10
.10
.10
.10
.25
PPT
6.36
8.05
8.47
8.48
11 .90
13.29
10.32
5.10
5.23
5.16
5.06
7.82
7.82
7.90
8.01
8.25
5.60
7.78
7.85
8.33
11.20
12.59
9.54
5.46
5.43
5.48
5.46
7.52
7.54
7.63
7.52
8.48
14.02
12.48
7.80
MMHOS
7.35
7.44
7.44
7.33
12.27
12.32
12.20
12.23
12.55
8.00
8.05
6.03
8.04
12.23
12.23
12.25
12.02
11.00
C
15.75
15.34
15.24
15.68
21 .22
20.92
19.65
19.53
18.92
16.60
16.70
16.70
16.70
22.37
22.60
22.22
22.48
14.80
JU
4.6
16
o.O
9.3
2.2
9.1
6-8
7.2
11
6.0
6.0
6.0
4.0
4.7
7.7
d.2
o.O
30
0.8
d.8
9.3
14
b.O
4.0
4.0
4.0
2.2
6.3
3.4
11
DECK WATER
UE+ M2/SEC
1250
1250
1250
1250
1250
1250
1250
1950
1960
1970
1970
1980
1990
2000
2050
1430
1430
1430
1430
1430
1430
2390
2390
2390
2380 .
2360
2360
2350
2050
2000
820
620
450
410
330
260
210
900
620
430
300
195
130
95
105 ..
950
750
570
450
330
280
1050
735
470
280
200
150
110
1100
700
PENETR
65.60
49.60
36.00
32.80
26.40
20.60
16.80
46.20
31 .60
21.80
15.20
9.80
6.50
4.80
5.10
66.40
52.40
39.90
31 .50
23.10
19.60
43.90
30.80
19.70
11.80
8.50
6.40
4.70
53.70
35.00
%
19.00
16.50
15.50
11 .50
12.25
11.50
12.50
11.50
9.50
9.50
9.25
6.50
6.00
5.60
4.75
fu
ft>
OJ
ro
cu oo
rs cu
a. —«
_j,
r*- 3
-S -*•
->• <1-
00 C
in -S
O cr
3 _..
co D.
fD c+
Q.
G» "O
ct- rr
cu o
« r+
o
1/1
CD
rh
O
CU
O
<
fD
-a
a>
3
fD
d-
-5
a>
-------
TIME
STATION DEPTH SALINITY CONDUC TEMP TURB PHOTOMETERS WAT/DK TRANSM
77 117
77 117
77 117
77 117
77 117
77 117
76 169
76 239
76 296
77 117
77 117
77 117
77 17
77 17
77 17
77 17
77 17
76 169
76 239
76 296
77 17
77 17
77 17
77 17
77 17
77 17
77 17
77 17
77 17
76 169
76 238
76 294
77 17
77 17
77 17
77 17
77 17
77 117
77 117
77 117
77 117
76 169
76 238
76 294
77 117
77 117
77 117
1201
1201
1201
1201
1201
1201
1445
1100
1415
1620
1620
1620
1620
1620
1620
1620
1620
1000
1230
1520
1520
1520
1520
1520
1520
1520
1520
1520
1145
1715
1610
1400
1400
1400
1400
1400
1400
1400
1400
1400
1530
1450
1305
1305
1305
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
71
71
71
71
71
71
72
72
72
72
72
72
72
72
72
72
72
73
73
73
73
73
73
73
73
73
73
73
73
74
74
74
74
74
74
74
74
74
74
74
74
75
75
75
75
75
75
M
.50
.75
1.00
1.25
1.50
1.75
.10
.10
.10
.10
.25
.50
.75
1.00
1.25
1.50
1.75
.10
.10
.10
.10
.25
.50
.75
1.00
1.25
1.50
1.75
2.00
.10
.10
.10
.10
.25
.50
.75
1.00
1.25
1.50
1.75
2.00
.10
.10
.10
.10
.25
.50
PPT
7.90
8.00
8.90
8.70
8.30
13.25
15.17
8.55
8.55
8.55
8.65
8.70'
8.12
12.63
13.66
9.20
9.30
9.30
9.20
9.20
7.58
11 .07
11.34
9.10
9.10
9.00
9.00
5.96
9.50
10.87
7.30
7.30
MMHOS
11 .00
11.00
12.00
11.90
12.45
12.50
12.50
12.60
12.55
13.55
13.60
13.60
13.55
13.45
13.50
13.50
13.50
13.50
13.40
10.90
11.00
C
14.90
14.60
14.20
14.10
17.15
17.10
17.15
16.95
13.60
18.00
17.80
17.90
17.60
17.60
18.50
18.50
18.35
18.40
18.25
18.50
uu
9
13
28
3.4
5.9
.0
5.8
6.0
5.5
4.8
.7
5.0
3.3
3.7
3.9
2.4
2.4
9.4
.5
2.5
4.4
4.0
4.0
4.0
4.3
10
9.5
4.3
10
9
DECK WATER
UE* M2/SEC
2000
1950
1950
1950
1950
490
580
610
590
•630
640
590
630
1350
1350
1350
1350
1350
1350
1300
1300
1350
1750
1800
1800
1800
1800
1800
1850
1850
1850
2000
2000
2000
550
320
180
50
40
240
220
190
140
115
80
63
60
700
550
475
425
350
290
220
175
145
850
700
530
410
320
240
175
150
150
850
600
360
PENETR
27.50
16.40
9.20
2.60
2.10
49.00
37.90
31.10
23.70
18.30
12.50
10.70
9.50
51.90
40.70
35.20
31 .50
25.90
21.50
16.90
13.50
10.70
48.60
38.90
29.40
22.80
17.80
13.30
9.50
8.10
8.10
42.50
30.00
18.00
CO
cr
n>
GO
ro
o
o
c-t-
cr
n>
Q.
-------
CTl
TIME
77 17
77 17
77 17
77 17
77 17
76 69
76 238
76 294
77 117
77 117
77 17
77 17
77 17
77 17
77 17
76 169
76 238
76 294
77 117
77 117
77 1 17
77 117
77 117
77 1 17
77 1 17
76 169
76 238
76 294
77 117
77 117
77 117
77 117
77 117
77 117
77 117
77 1 17
77 117
77 117
77 117
76 169
76 239
76 295
77 118
77 118
77 118
77 118
77 118
1305
1305
1305
1305
1305
1840
1430
1330
1200
1200
1200
1200
1200
1200
1200
1640
1300
1115
1030
1030
1030
1030
1030
1030
1030
1500
1 100
0830
0754
0754
0754
0754
0754
0754
0754
0754
0754
0754
0754
0945
OB50
1015
0912
0912
0912
0912
0912
STATION
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
•CHP
POP
POP
POP
POP
POP
POP
POP
POP
75
75
75
75
75
76
76
76
76
76
76
76
76
76
76
77
77
77
77
77
77
77
77
77
77
78
78
78
78
78
78
78
78
78
78
78
78
78
78
81
81
81
81
81
81
81
81
DEPTH
M
.75
1.00
1.25
1.50
1.75
.10
.10
.10
.10
.25
.50
.75
1.00
1.25
1.50
.10
.10
.10
.10
.25
.50
.75
1.00
1 .25
1.50
.10
.10
.10
.10
.25
.50
.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
.10
1.00
.10
.10
.25
.50
.75
1.00
SALINITY CONDUC
PPT MMHOS
7.30
7.40
4.33
6.59
8.12
4.80
4.70
4.80
4.70
1 .44
2.74
2.85
.80
.80
.90
.90
. 14
.71
.59
.00
.00
.00
.00
.00
.00
8.48
13.46
12.70
7.40
7.40
7.40
1 1 .00
11.00
7.40
7.40
7.40
7.30
1.50
1.50
1.55
1.60
.00
.10
.14
.10
.15
.10
10.10
10.20
10.20
TEMP
C
18.
18.
18.
19.
19.
19.
18.
19.
19.
19.
19.
18.
18.
18.
18.
18.
18.
14.
13.
13.
50
60
40
10
00
10
90
20
20
30
10
50
56
58
20
16
02
00
90
70
TURB
JU
9
9
32
16
.9
12
12
12
17
21
15
12
27
30
30
37
22
30
15
9
10
10
10
12
12
3.6
8.9
5.3
18
22
25
PHOTOMETERS
DECK WATER
UE* M2/SEC
2000
2000
1950
1950
2000
2150
2150
2150
2100-
2200
2200
2200
1900
1250
840
800
800
600
600
600
610
1250
1250
1250
1300
600
700 .
1300
790
840
880
900
880
190
55
22
16
13
1300
800
350
220
70
17
3
900
150
16
5
1
200
100
50
20
45
20
10
10
5
5
10
340
250
62
32
WAT/DK TRANSM
PENETR
9.50
2.80
1.10
.80
.60
60.50
37.20
16.30
10.50
3.20
.80
.10
47.40
12.00
1 .90
.60
.10
33.30
16.70
8.30
3.30
3.60
1 .60
.80
.80
.80
.70
.80
43.00
29.80
11.40
6.90
3.60
DJ
cr
n>
OJ
ro
o
o
r+
~j.
3
n>
a.
-------
TIME
77 118
77 118
77 118
77 118
76 169
76 239
76 295
77 118
77 18
77 18
77 18
77 18
77 18
77 18
77 118
77 118
76 169
76 239
76 295
77 118
77 118
77 118
^77 118
•^177 118
77 118
77 1.18
76 169
76 239
76 295
77 118
77 118
77 118
77 118
77 118
77 118
77 118
77 118
77 118
76 162
76 162
76 162
76 162
76 162
76 162
76 146
76 104
76 174
0912
0912
0912
0912
1030
0930
1415
0942
0942
0942
0942
0942
0942
0942
0942
0942
1130
1015
1500
1007
1007
1007
1007
1007
1007
1007
1245
1 10Q
1530
1034
1034
1034
1034
1034
1034
1034
1034
1034
0900
1015
1 100
1145
1315
1400
1045
1200
1150
STATION
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
POP
SEV
SEV
SEV
SEV
SEV
SEV
RHO
RHO
RHO
81
81
81
81
82
82
82
82
82
82
82
82
82
82
82
82
83
83
83
83
83
83
83
83
83
83
84
84
84
84
84
84
84
84
84
84
84
84
91
92
93
94
95
96
28.
28.4
28.4
DEPTH
M
1.25
1.50
1.75
2.00
.10
1.00
1.00
.10
.25
.50
.75
1.00
1.25
1.50
1.75
2.00
.10
1 .00
1 .00
.10
.25
.50
.75
1.00
1.25
1.50
.10
1.00
1 .00
.10
.25
.50
.75
1 .00
1.25
1.50
1.75
2.00
.10
.10
.10
.10
,10
.10
.10
.10
.10
SALINITY CONDUC
PPT MMHOS
7.40
7.40
8.66
13.53
11.28
7.90
8.00
7.90
7.90
7.85
8.57
13.60
12.36
7.50
7.50
7.70
7.75
8.57
13.75
11 .16
7.80
7.80
7.90
7.90
7.85
7.72
5.90
8.20
10.20
10.10
10.70
10.80
10.80
10.80
10.70
10.35
10.40
10.50
10.75
10.75
10.75
10.75
10.70
TEMP
C
14.00
13.70
13.75
13.70
13.90
13.65
14.20
14.00
13.85
13.70
14.00
13.90
13.90
13.70
13.80
TURB
JU
27
23
2.3
5.4
.7
19
22
19
29
23
2.3
5.8
5-3
10
11
12
15
2.9
.5
2.8
11
ti
10
11
11
3.9
3.8
4.1
6.1
4.9
7.0
7.3
PHOTOMETERS
DECK WATER
UE* M2/SEC
840
840
850
1150
1250
1350
1300
1300
1250
1200
1250
1200
1300
1350
1350
1350
1400
1300
1300
1950
1950
1950
1950
1950
1950
1950
1950
1950
12
6
2
100
375
250
160
100
45
12
7
5
350
250
170
120
75
45
55
950
650
500
350
280
220
150
110
70
WAT/DK TRANSM
PENETR
X %
1.40
.70
.20
39.10
30.00
18.50
12.30
7.70
3.60
1 .00
.60
.40
26.90
18.50
12.60
8.90
5.40
3.50
4.20
48.70
33.30
25.60
17.90
14.40
11.30
7.70
5.60
3.60
DJ
D-
fD
CO
PO
O
o
c:
n>
o.
-------
TIME
STATION DEPTH SALINITY CONDUC TEMP
TURB PHOTOMETERS WAT/DK TRANSM
76
76
76
76
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
, , 77
£ 76
C» 76
76
76
76
76
76
77
77
77
77
77
77
77
77
77
77
77
77
77
76
76
76
76
76
202
245
266
302
103
103
103
103
103
103
103
103
138
138
138
138
138
138
138
138
138
138
104
146
174
202
245
266
302
103
103
103
103
103
103
103
138
138
138
138
138
138
104
146
174
202
245
1315
1125
1235
1115
1 140
1140
1 140
1 140
1 140
1 140
1 140
1 140
1220
1220
1220
1220
1220
1220
1220
1220
1220
1220
1000
1450
1250
1615
1300
1040
1330
252
252
252
252
252
252
1252
1335
1335
1335
1335
1335
1335
0900
1500
1400
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
28.4
28.4
28.4
28.4
28.4
28.4
28.4
28.4
28.4
28.4
28.4
28.4
28.4
28.4
28.4
28.4
28.4
28.4
28.4
28.4
28.4
28.4
30.2
30.2
30.2
30.2
30.2
30.2
30.2
30.2
30.2
30.2
30.2
30.2
30.2
30.2
30.2
30.2
30.2
30.2
30.2
30.2
31 .5
31.5
31 .5
31 .5
31.5
M
.10
.10
.10
.10
.10
.25
.50
.75
1.00
1.25
1.50
1.75
.10
.25
.50
.75
1.00
1.25
1.50
1 .75
2.00
2.25
.10
.10
.10
.10
.10
.10
.10
.10
.25
.50
.75
1 .00
1.25
1.50
.10
.25
.50
.75
1.00
1.25
.10
.10
.10
.10
.10
PPT
8.40
11.55
13.10
10.40
5.32
5.34
5.33
5.44
5.33
7.67
7.58
7.68
7.69
7.69
7.95
5.15
7.80
7.44
8.15
10.75
12.15
9.68
6.01
5.98
5.90
6.28
7.84
7.48
7.50
7.55
5.77
5.32
9.70
MMHOS
7.63
7.68
7.53
7.60
7.45
12.10
12.05
12.12
12.07
12.00
12.02
8.83
8.87
8.76
9.00
12.30
12.31
11 .97
11.80
C
15.40
15.28
14.72
14.68
14.24
21.20
21.12
20.85
20.85
19.96
19.32
17.38
17.65
17.05
16.61
23.93
22.83
22.90
20.83
JU
11
a. 4
3.5
11
10
12
12
11
4.0
4.0
4.0
6.0
6.0
8.0
o.O
9.5
9.9
20
28
30
29
.0
9.0
12
24
14
30
DECK WATER
UE* M2/SEC
1350
1350
1350
1350
1350
1350
2260
2260
2260
2260
2250
2260
2260
2260
2260
2260
1400
1400
1400
1400
1400
1400
1400
2460
2460
2460
2460
2470
2480
930
700
530
390
290
220
975
825
520
360
300
200
170
115
62
26
900
670
440
290
190
120
60
1150
730
470
250
170
90
PENETR
X
68.80
51.90
39.30
28.90
21.50
16.30
43.10
36.50
23.00
15.90
13.30
8.80
7.50
5.10
2.70
1.20
64.30
47.80
31 .40
20.70
13.60
8.60
4.30
46.70
29.70
19.10
10.20
6.90
3.60
X
11.25
10.75
10.25
18.00
17.25
16.50
15.50
9.25
2.00
5.75
5.50
5.00
1 .00
6.25
4.50
1.25
.00
CD
cr
tt>
OJ
ro
o
o
fD
D.
-------
TIME
STATION DEPTH SALINITY CONDUC TEMP TURB PHOTOMETERS WAT/DK TRANSM
76 206
7G 302
77 103
77 103
77 138
77 133
1400
1415
1430
1430
1520
1520
RHO 31
RHO 31
RHO 31
RHO 31
RHO 31
RHO 31
.5
.5
.5
.5
.5
.5
M
.10
.10
.10
.25
.10
.25
PPT
11 .52
5.70
5.40
7.29
7.43
MMHOS
9.02
12.84
12.43
C
24.77
27.41
23.40
JU
37
22
35
DECK WATER
UE* M2/SEC
640
640
2300
2300
400
100
740.
140
PENETR
% %
62.50
15.60
32.20
6.10
DJ
cr
CO
IX)
o
o
3
C
n>
CL
CO
-------
Table 33. Phytoplankton chlorophyll a concentrations. (For Rhode River
stations: 1.5 = Sta. 31.5; 4.2 = transect from 28 to 28.4; 41
transect from 28.4 to 29; 40 = transect from 29 to 30.2.
TIME
STATION DEPTH
CHLOROPHYLL
76 162
76 162
76 162
76 162
76 162
76 169
76 169
76 169
76 169
76 169
76 159
76 169
76 159
76 169
76 169
76 174
76 174
76 174
7S 174
76 201 1500
76 202
76 202
75 202
76 233
76 233
76 238
76 238
76 238
76 239
76 239
76 239
76 239
76 239
76 245
78 245
76 245
76 245
76 266
76 266
76 266
76 266
76 294
76 294
76 294
76 294
76 295
76 295
76 2S5
76 296
76 296
76 296
76 302
76 302
76 302
76 302
SEV 91T
SEV 92T
SEV 93T
SEV S4T
SEV 95T
CHP 71T
CHP 72T
CH? 73T
CHP 74T
CHP 75T
CHP 76T
CHP 77T
POP 81 T
POP 82T
POP 83T
RHO 40
RHO 41
RHO 42
RHO 1.5
RHO 1 .5
RHO 40
RHO 41
RHO 42
CHP 71T
CH? 74T
CHP 75T
CHP 76T
CHP 77T
CHP 72T
CHP 73T
POP 81T
POP 82T
POP 83T
RHO 40
RHO 41
RHO 42
RHO 1 .5
RHO 40
RHO 41
RHO 42
RHO 1.5
CHP 74T
CHP 75T
CHP 76T
CHP 77 T
POP 81 T
POP 82T
POP 83T
CHP 71T
CHP 72T
CHP 73T
RHO 40
RHO 41
RHO 42
RHO 1.5
M
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
ABC
UG/L UG/L UG/L
2.061
1.941
1.531
2.571
3.131
2.97
2.70
3.27
3.66
4.27
6.57
1 .231
.96
.98
1.981
1.021
1.051
1.421
7.47
1.34
1 .061
1 .221
1 .321
3. 18£00
3.16EOO
3.82EOO
4.02EOO
8.37EOO
3.17EOO
3.18EOO
.86 £00
.12 EOO
.12 EOO
6.47EOO
4.04EOO
5.29EOO
4.64EOO
1 .09E01
1.12E01
1 .30E01
1 .21 E01
1 .88EOO
1 .68EOO
3.81EOO
5.04E01
2.29EOO
2.21 EOO
2.67EOO
.33 EOO
.50 EOO
1 .20EOO
1 .33E01
1 .6CE01
2.32E01
1.11E01
350
-------
Table 34. Herbicide concentrations at estuarine stations. Blank spaces
indicate values which were below the detection level.
NOTE: Detection limits for the Tritium electron capture
detector used in these analyses were as follows:*
Dissolved in surface
water (yg/£)
Suspended particulates
in surface water (yg/a)
Bottom sediment
Atrazine .
0.2
0.2
0.2
Linuron
.04
.04
.04
Alachlor
.02
.02
.02
Trif lurann
.004
.004
.004
(ug/g dry wt)
* 152, of surface water or 15g of bottom sediments.
351
-------
TIME
STATION DEPTH
ATRAZINE
LINURON
TRIFLURALIN
ALACHLDR
76 104
76 146
76 174
76 202
76 104
76 146
76 174
76 202
76 169
76 169
76 169
76 169
76 169
76 169
76 169
76 169
76 169
76 169
76 169
76 169
76 162
76 162
76 162
76 162
76 162
76 162
76 146
76 104
76 174
76 202
76 104
76 146
76 174
76 202
76 104
76 146
76 174
76 202
1245
0955
1040
1233
1 145
1135
1050
1400
1615
1445
1 145
1840
1640
1500
0945
1030
1 130
1245
0900
1015
1 100
1 145
1315
1400
1045
1200
1150
1315
1000
1450
1250
1615
0900
1500
RHO 28
RHO 28
RHO 28
RHO 28
RHO 29
RHO 29
RHO 29
RHO 29
CHP 71
CHP 72
CHP 73
CHP 74
CHP 75
CHP 76
CHP 77
CHP 78
POP 81
POP 82
POP 83
POP 84
SEV 91
SEV 92
SEV 93
SEV 94
SEV 95
SEV 96
RHO 28.4
RHO 28.4
RHO 28.4
RHO 28.4
RHO 30.2
RHO 30.2
RHO 30.2
RHO 30.2
RHO 31.5
RHO 31.5
RHO 31.5
RHO 31.5
M
.10
.10
.10
,10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
DISSOLVD
UG/L
.OOE+00
5.23E-01
.OOE+00
2.50E+00
B.58E-01
.OOE+00
.OOE+00
9.84E-01
3.13E-01
1 .13E+00
4.30E-01
.OOE+00
7.27E-01
1.01E+00
.OOE+00
.COE+00
B.97E-01
9.95E-01
1.22E+00
6.3GE-01
7.96E-01
7.29E-01
3.06E-01
.OOE+00
7.64E-01
.OOE-01
.OOE+00
2.23E+00
6.45E-01
1.06E+00
.OOE+00
1.16E+00
2.17E+00
2.08E+00
2.14E+00
9.60E-01
6.45E-01
2.30E+00
SUS PART
UG/L
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+OO
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+OO
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
8.14E-01
.OOE+00
DISSOLVD
UG/L
.OOE+00
.OOE+00
8.30E-01
3.31E-01
1.76E-01
.OOE+00
.OOE+00
8.34E-02
3.69E-04
8.42E-02
6.58E-02
3.42E-01
3.39E-02
B.51E-02
.OOE+00
1.84E-01
1.27E-01
2.59E-01
7.86E-02
6.77E-02
.OOE+00
2.88E-02
3.96E-02
1.58E+00
7.39E-02
2.12E-01
.OOE+00
6.58E-01
1.43E-01
1.48E-01
.OOE+00
4.94E-02
2.49E-01
.OOE+00
1.44E+00
2.53E-01
2.33E-01
2.S7E-01
SUS PART
UG/L
.OOE+00
.OOE+00
1.28E-01
1.10E+00
.OOE+00
3.11E-01
4.B1E-01
6.90E-01
4.79E-01
2.83E-01
1.36E-01
2.73E-01
2.07E-01
5.58E-02
1.72E-01
4.73E-01
1.27E-01
2.85E-01
4.17E-02
7.09E-02
2.99E-01
.OOE+00
1.05E-01
1.07E+00
2.29E+00
7.96E-02
3.52E-01
3.34E-01
.OOE+00
3.20E-01
1.98E-01
9.86E-02
7.55E-01
5.37E-01
1.70E-01
7.62E-02
3.53E-01
7.12E-01
DISSOLVD
UG/L
.OOE+00
.OOE+00
1.93E-02
2.66E-02
.OOE+00
.OOE+00
1.01E-02
1.31E-02
.OOE+00
9.86E-03
5.18E-03
3.13E-02
4.93E-03
.OOE+00
.OOE+00
7.38E-03
.OOE+00
1.15E-02
1.09E-02
1.34E-02
6.76E-03
.OOE+00
.OOE+00
2.99E-02
8.08E-03
1.79E-02
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
3.72E-02
1.59E-02
3.70E-02
6.93E-03
5.26E-03
2.14E-02
SUS PART
UG/L
.OOE+00
.OOE+00
4.98E-03
8.44E-03
.OOE+00
4.29E-03
.OOE+00
1 .31E-02
6.84E-04
.OOE+00
.OOE+00
.OOE+00
.OOE+00
1 .16E-02
2.29E-02
3.19E-02
.OOE+00
.OOE+00
6.75E-03
.OOE+00
1 .94E-02
.OOE+00
.OOE+00
2.50E-02
.OOE+00
2.90E-03
5.38E-03
2.67E-02
6.91E-03
.OOE+00
.OOE+00
.OOE+00
3.72E-02
9.23E-03
.OOE+00
.OOE+00
.OOE+00
.OOE+00
DISSOLVD
UG/L
.OOE+00
.OOE+OO
.OOE+OO
.OOE+OO
.OOE+OO
.OOE+OO
.OOE+OO
8.42E-02
.OOE+OO
.OOE+OO
.OOE+OO
.OOE+OO
.OOE+OO
.OOE+OO
1.14E-01
5.11E-02
.OOE+OO
.OOE+OO
.OOE+OO
.OOE+OO
4.20E-02
2.84E-01
.OOE+OO
.OOE+00
.OOE+OO
.OOE+OO
.OOE+OO
.OOE+OO
.OOE+OO
.OOE+OO
.OOE+OO
.OOE+OO
.OOE+00
.OOE+OO
.OOE+OO
1.34E-01
.OOE+OO
.OOE+OO
SUS PART
UG/L
.OOE+00
.OOE+00
.OOE+00
.OOE+00 -j.,
.OOE+00
'.OOE+00
.OOE+00 oo
.OOE+00 ^
.OOE+00 -h
.OOE+00 %
.OOE+00 CO
.OOE+00 ^
.OOE+00 O>
.OOE+00 £"
.OOE+.OO -S
.OOE+00 •"
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+OO
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
1 .48E-01
.OOE+00
.OOE+00
.OOE+00
.OOE+00
3.51E-02
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
cu
cr
CD
CO
^
—
n>
-s
cr
o
— J.
CL
CD
O
O
3
n
CD
3
r+
PJ
c-t-
O
3
CO
o>
c+
fP
CO
c
-5
CD
CO
Qi
^j.
0
3
CO
-------
TIME
STATION DEPTH
ATRAZINE
LINURON TR1FLURALIH ALACHLOR
en
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
104
104
146
146
174
174
202
202
104
104
146
174
202
202
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
169
162
162
162
162
162
162
162
146
146
1245
1245
0955
0955
1040
1040
1233
1233
1145
1145
1135
1050
1400
1400
1615
1615
1445
1445
1145
1145
1840
1B40
1640
1640
1500
1500
0945
0945
1030
1030
1130
1130
1245
1245
0900
1015
1 100
1 145
1315
1400
1400
1045
1045
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
CHP
POP
POP
POP
POP
POP
POP
POP
POP
SEV
SEV
SEV
SEV
SEV
SEV
SEV
RHO
RHO
F
28
28
28
28
28
28
28
28
29
29
29
29
29
29
71
71
72
72
73
73
74
74
75
75
76
76
77
77
78
78
81
81
82
82
83
83
84
84
91
92
93
94
95
93
96
28.4
20.4
:ROIV
CK
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1 TO
1
3
6
3
6
3
6
3 '
6
3
6
3
3
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
3
3
3
3
3
6
3
6
UG/G
UG/G
UG/G
UG/G
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
3.83E-01
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
. OOE+00
.OOE+00
5.65E-01
6.75E-01
9.28E-01
5.39E-01
2.46E-01
2.88E-01
4.68E-01
1.71E-01
3.20E-01
1.73E-01
6.96E-01
2.32E-01
2.19E-01
.OOE+00
B.21E-01
6.03E-01
5.27E-01
2.96E-01
5.72E-01
1 .2BE-01
3.25E-01
2.82E-01
4.40E-01
2.00E-01
4.15E-01
9.80E-02
2.70E+00
.OOE+00
1.62E+00
6.22E-01
.OOE+00
1 .07E-01
8.42E-01
1 .78E-01
2.60E-01
3.06E-01
5.01E-01
1.39E+00
3.66E-01
4.17E-02
1 .20E+00
1.33E+00
1 .30E-01
3.77E-01
1.20E+00
8.28E-01
2.20E-01
1.13E-02
1.14E-02
.OOE+00
2.15E-02
.OOE+00
.OOE+00
1.69E-02
1.09E-02
.OOE+00
.OOE+00
.OOE+00
3.71E-02
.OOE+00
3.21E-02
.OOE+00
2.24E-02
.OOE+00
1.90E-02
.OOE+00
1.79E-02
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
7.73E-03
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
1.22E-02
4.34E-02
.OOE+00
.OOE+00
.OOE+00
.OOE+00
6.67E-02
.OOE+00
.OOE+00
2.59E-02
4.10E-02
.OOE+00
7.04E-03
8.60E-02
2.10E-02
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOF.+OO
1.84E-01
.OOE+00
.OOE+00
.OOE+00
. QOE-t-CO
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
2.10E-01
.OOE+00
.OOE+00
1.91E-01
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
, OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
CD
o
r+
O
CO
CD
D.
_j.
n>
in
OJ
cr
GO
o
r+
3
C
ft)
Q.
-------
co
en
TIME
STATION DEPTH
FROM TO
CM
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
76
104
104
174
174
202
202
104
104
146
146
174
174
202
202
104
104
146
146
174
174
202
202
1200
1200
1150
1150
1315
1315
1000
1000
1450
1450
1250
1250
1615
1615
0900
0900
1500
1500
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
RHO
28
2B
28
28
28
28
30
30
30
30
30
30
30
30
31
31
31
31
31
31
31
31
.4
.4
.4
.4
.4
.4
.2
.2
.2
.2
.2
.2
.2
.2
.5
.5
.5
.5
.5
.5
.5
.5
3
3
3
3
3
3
3
3
3
3
3
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
ATRAZINE
UG/G
1.38E+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
7.36E-01
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
3.56E-01
.OOE+00
7.99E-01
.OOE+00
LINURON
UG/G
4.B1E-01
2.72E-01
.OOE+00
2.27E-01
.OOE+00
8.09E-01
.OOE+00
3.47E-01
1.97E+00
7.87E-01
8.27E-01
3.47E-01
B.77E-01
6.36E-01
.OOE+00
.OOE+00
.OOE+00
.OOE+00
2.69E+00
3.5BE-01
1.14E+00
1.49E+00
TR1FLURALIN ALACHLOR
UG/G
1.48E-02
.OOE+00
.OOE+00
3.13E-02
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
4.72E-02
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
6.18E-02
2.2BE-02
5.82E-02
.OOE+00
UG/G
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
8.22E-01
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
.OOE+00
CO
CO
o
O
3
ft)
Q.
— Jt
n>
a*
cr
CO
o
o
rt-
=5
n>
Q-
-------
Table 35. Bioassay data on Zanm'chellia palustn's (horned pondweed) collected
at station 30.2 in Rnode Kiver on
A. in situ data at station 30.2
May 23, 1977.
Conditions: salinity - 7.81 parts per thousand
PAR
Air
1
10
20
30
40
water temperature
(\i E/m^ sec) 11:30 am Noon
1100 750
cm depth 750 520
cm depth 600 400
cm depth 450 300
cm depth - 215
cm depth - 160
Bottle 1
Parameter (light -20 cm
deep)
- 27 - 29° C
1:30 pm
820
570
400
300
180
—
Bottle 2 Bottle 3
(light- 50 cm (dark)
deep)
2:15 pm
550
380
270
180
130
90
Bottle 4
(dark)
Net photosynethesis
(mg 02/hr g dry wt)
Respiration rate
(mg 02/hr g dry wt)
Gross photosynthetic rate
(mg 02/hr g dry wt)
Net oxygen production
rate on 16 hr photoperiod
(mg 02/day g dry wt)
26.0
22.0
6.3
7.1
32.7
362
28.7
298
355
-------
Table 35. (Continued)
B. Laboratory bioassays on the same plants as used in part A
under normal bioassay conditions used in Table 36 - 37.
Conditions: salinity - 5.0 parts per thousand
water temperature - 23° C
Net photosynethsis
(mg 02/hr g dry wt)
Respiration rate
(mg 02/hr g dry wt)
Gross photosynthics rate
(mg 02/hr g dry wt)
Net oxygen production
rate on 16 hr photoperiod
(mg 02/day g dry wt)
PAR (y E/m2 sec) Under light bands
Air 200 - 270
Parameters
Bottle 1
(light)
Bottle 2
(light)
Bottle 3
(dark)
Bottle 4
(dark)
6.6
6.8
8.2 8.3
92.8 94.4
1.7
1.5
356
-------
Table 36. Bioassay data onZannichellia palustris (horned pondweed) rates of oxygen release or use
CO
en
(mg 0^/hr q dry wt) under controlled microcosm
salinity, 16 hr photoperiod of 65 - 80 p E (m^
assays).
conditions,
sec at actual
(23° C, 5 parts per thousand
bottle locations during
A. Controls
Exposure
time
(days)
2
5
7
12
14
19
21
26 (27)
28 (29)
System
Light
0.33
0.14
0.41
3.01
5.68
7.20
10.1
6.95
10.3
1
Dark
-6.8
-5.7
-6.0
-2.0
-4.8
-2.9
-2.7
-3.4
-3.2
System
Light
0.43
0.66
3.32
2.76
7.87
7.05
9.16
4.73
-
2
Dark
-5.7
-4.5
-6.2
-3.4
-5.0
-2.1
-1.9
-2.4
-
System
Light
1.43
2.70
11.6
4.53
6.99
5.05
7.39
8.10
8.48
3
Dark
-7.8
-5.1
-10.4
-2.7
-3.8
-1.3
-3.3
-4.1
-4.6
System
Light
3.28
6.16
3.30
4.05
9.64
8.16
6.95
7.50
10.7
4
Dark
-6.7
-6.3
-8.2
-3.3
-3.8
-2.1
-2.4
-3.5
-3.7
-------
CO
en
OD
Table 36. (Continued)
B. Treatment with atrazine (ppm in bottom sediment)
Exposure
time
(days)
2
5
7
12
14
19
21
26 (27)
28 (29)
(1.0)
System 5
Light
4.55
2.64
1.47
3.84
6.47
5.90
5.12
2.46
_
Dark
-4.9
-4.4
-5.8
-2.9
-3.4
-2.5
-2.9
-2.8
_
(1.0)
System 6
Light
0.00
1.54
1.47
0.90
4.23
7.46
-
-
_
Dark
-2.5
-5.0
-4.6
-3.2
-2.4
-3.1
-
-
_
(10)
System 7
Light Dark
0.17 -3.3
-0.28 -4.0
-0.10 -2.7
-1.66 -3.8
-1.25 -2.0
-
-
-
— . • _
(10)
System 8
Light Dark
4.99 -6.0
0.50 -3.8
-0.79 -3.4
-2.68 -6.3
-1.13 -4.1
-
-.
-
~ «
(100)
System 9
Light Dark
-0.77 -4.1
0.00 -2.2
-0.46 -3.0
-
-
-
-
-
_ _
(100)
System 10
Light Dark
+1.85 -5.1
-0.39 -3.7
-0.84 -2.6
-4.5 -5.7
-
-
-
-
_ «,
-------
Table 36. (Continued)
C. Treatment with linuron (ppm in bottom sediments)
co
CJ1
in
Exposure
time
(days)
2
5
7
12
14
19
21
26 (27)
28 (29)
(1.0)
System 11
Light
1.05
2.14
2.69
0.85
10.4
7.77
7.13
6.93
-
Dark
-6.4
-5.8
-6.2
-2.3
-3.3
-2.2
-4.3
-5.5
_
(1.0)
System 12
Light
6.90
6.69
2.76
1.93
5.72
5.13
5.02
1.28
2.38
Dark
-7.
-5.
-6.
-1.
-2.
-1.
-2.
-1.
-3.
9
9
5
8
9
2
2
0
3
(10)
System 13
Light
+0.73
-0.20
-0.57
-3.07
-3.50
-0.72
-2.82
-1.23
-
Dark
-8,2
-4.9
-6.2
-3.3
-3.5
-3.2
-3.9
-2.5
-
(10)
System 14
Light
-1
-0
-2
-2
-2
-1
-3
.12
.47
.01
.18
.28
.60
.79
-
-
Dark
-8.1
-3.9
-6.5
-2.7
-4.4
-4.5
-6.2
-
-
(100) (100)
System 15 System 16
Light Dark Light Dark
-1.93 -6.6 -1.81 -5.0
-3.36 -3.2 -2.73 -4.1
-1.50 -4.2 -2.39 -4.9
-3.87 -5.6
_2.43 -2.2
- - - -
-2.65 -1.1
_
_
-------
co
en
o
Table 37. AverageZannichellia response to various concentrations of atrazine or linuron.
A. Net oxygen release per day (mg 0£/day g dry wt)
Exposure
time
(days)
2
5
7
12
14
19
21
26( 27)
28 (29)
Controls
-31.9
-18.5
13.1
34.8
86
93.1
114
82.4
126.5
1
+6.7
-4.3
-17.9
+13.6
+62.2
+84.5
+58.4
+16.9
-
Atrazine in sediments
(ppm)
10 100
3.4
-20.0
-35.8
-93.5
-50.6
-
-
-
-
-28.3
-26.9
-32.8
-118
-
-
-
-
-
Linur
1
6.3
23.7
50.5
5.8
103.7
89.5
70.9
39.6
11.8
on in sedime
(ppm)
10
-68.2
-37.5
-71.4
-65.8
-77.5
-49.5
-93.3
-39.6
-
nts
100
-76.4
-78.0
-67.8
-107
-56.4
-
-51.0
-
-
-------
Table 37. (Continued)
B. Gross photosynthesis per hour per mg dry wt.
Exposure
time
(days)
2
5
7
12
14
19
21
26 (27)
28 (29)
Controls
8.1
7.8
12.4
6.3
11.9
8.9
11.0
10.2
13.7
Atrazine
1
3.5
6.8
6.7
5.4
8.4
9.5
8.1
5.3
-
in sediments
(ppm)
10 100
7.3 5.9
4.3 2.8
2.6 2.2
2.9 1.2
1.8
-
-
-
-
Linuron
1
11.1
10.3
9.1
3.5
11.1
8.2
9.4
7.4
5.7
in sediments
(ppm)
10
8.0
4.3
5.1
0.4
1.1
2.7
1.8
3.7
-
100
4.0
0.6
2.6
1.8
-0.2
-
-1.6
-
-
------- |