EPA-600/2-76-043
February 1976
Environmental  Protection Technology Series
               MODELING  PESTICIDES AND  NUTRIENTS
                                ON  AGRICULTURAL LANDS
                                          Environmental Research Laboratory
                                         Office of Research and Development
                                         U.S. Environmental Protection Agency
                                                 Athens, Georgia 30601

-------
                RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have  been grouped  into five series. These five  broad
categories were established to facilitate further development and application of
environmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The five series are:

     1.    Environmental Health Effects Research
     2.    Environmental Protection Technology
     3.    Ecological Research
     4.    Environmental Monitoring
     5.    Socioeconomic Environmental Studies

This report  has been  assigned to the ENVIRONMENTAL PROTECTION
TECHNOLOGY series. This series describes research performed to develop and
demonstrate  instrumentation, equipment, and methodology to repair or prevent
environmental degradation from point and non-point sources of pollution. This
work provides the new  or improved technology required for the control and
treatment of pollution sources to meet environmental quality standards.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.

-------
                                    EPA-600/2-76-043
                                    February  1976
MODELING PESTICIDES AND NUTRIENTS ON

         AGRICULTURAL LANDS
                 by

      Anthony S. Donigian, Jr.
         Norman H. Crawford
       Hydrocomp, Incorporated
    Palo Alto, California  94304
   Research Grant No. R803116-01-0
           Project Officer

          George W. Bailey
  Environmental Research Laboratory
U.S. Environmental Protection Agency
       Athens, Georgia  30601
U.S. ENVIRONMENTAL PROTECTION AGENCY
 OFFICE OF RESEARCH AND DEVELOPMENT
  ENVIRONMENTAL RESEARCH LABORATORY
       ATHENS, GEORGIA  30601

-------
                            DISCLAIMER
     This report has been reviewed by the Environmental Research
Laboratory, U.S. Environmental  Protection Agency, and approved
for publication.  Approval  does not signify that the contents
necessarily reflect the views and policies of the U.S. Environ-
mental Protection Agency, nor does mention of trade names or
commercial  products constitute endorsement or recommendation
for use.

-------
                                ABSTRACT
Modifications, testing, and further development of the Pesticide Transport
and Runoff (PTR) Model have produced the Agricultural Runoff Management
(ARM) Model presented in this report.  The ARM Model simulates runoff,
snow accumulation and melt, sediment loss, pesticide-soil interactions,
and soil nutrient transformations.  The Model is capable of simulating
sediment, pesticide, and nutrient content of runoff from small
agricultural  watersheds.  The report discusses the major modifications to
and differences between the PTR and the ARM Models.  Detailed presentation
of an energy-balance method of snow simulation, and a first-order
transformation approach to nutrient modeling are included.   Due to lack of
data, the nutrient model was not tested with observed data; testing and
refinement are expected to begin in the near future.

Instrumented watersheds in Georgia provided data for testing and
refinement of the runoff, sediment and pesticide portions of the ARM
Model.   Comparison of simulated and recorded values indicated good
agreement for runoff and sediment loss, and fair to good agreement for
pesticide loss.  Pesticides which are transported only by sediment
particles were simulated considerably better than pesticides which move
both in solution and on sediment.  These results indicate the need for
further study of methods to simulate those pesticides which are
transported by both mechanisms.  A sensitivity analysis of the ARM Model
parameters demonstrated that soil moisture and infiltration, land surface
sediment transport, pesticide-soil interactions, and pesticide degradation
are the critical mechanisms in simulating pesticide loss from agricultural
watersheds.  Recommendations are included for (1) additional research on
these mechanisms, (2) modification of the ARM Model to simplify
application and use, and (3) demonstration of the use of the ARM Model  in
agricultural  land planning and management.

This report was submitted in fulfillment of Research Grant No.
R803116-01-0 by Hydrocomp, Incorporated under the sponsorship of the
Environmental Protection Agency.  Work completed as of September 1975.
                                   m

-------
                                  CONTENTS

                                                                  Page
Abstract	     iii
List of Figures	     vi
List of Tables     	     x
Acknowledgments    	     xiii
Sections
I     Conclusions  	      1
II    Recommendations	      3
III   Introduction    	      5
IV    The Agricultural Runoff Management (ARM) Model   ...      8
V     Snow Accumulation and Melt Simulation	     29
VI    Nutrient Modeling  	     41
VII   Data Collection and Analysis Programs   	     63
VIII  ARM Model Testing and Simulation Results   	     68
IX    Sensitivity Analysis  	     112
X     Conclusions and Recommendations   	     126
XI    References	     130
XII   Appendices	     135

-------
FIGURES
No.
1
2

3
4
5
6

7
8
9
10
11
12
13
14
15
16
17

18


ARM Model Structure and Operation 	
Assumed Soil Depths for Pesticide and
Nutrient Storages 	
Pesticide and Nutrient Movement in the ARM Model .
LANDS Simulation 	
Infiltration Capacity and Areal Source-Zone Functions
Comparison of Land Cover Algorithms in the
PTR and ARM Models 	
Adsorption/Desorption Algorithms in the ARM Model
Snow Accumulation and Melt Processes 	
Snowmelt Simulation 	
Nitrogen Cycle 	
Phosphorus Cycle 	
Nutrient Transformations in the ARM Model ....
Experimental Watersheds in Georgia 	
Experimental Watersheds in Michigan 	
PI Watershed, Watkinsville, Georgia 	
P3 Watershed, Watkinsville, Georgia 	
1973 Monthly Rainfall, Runoff, and Sediment Loss
for the PI Watershed 	
1973 Monthly Rainfall, Runoff, and Sediment Loss
for the P3 Watershed 	
Page
9

11
. 12
. 14
17

22
. 25
30
33
43
44
50
. 65
. 67
. 69
70

71

72
VI

-------
                            FIGURES (Continued)


No.

19     Runoff and Sediment Loss from the PI Watershed
          on May 28 (a.m.), 1973	     76

20     Runoff and Sediment Loss from the PI Watershed
          on June 6, 1973	     77

21     Runoff and Sediment Loss from the PI Watershed
          on June 13, 1973	     78

22     Runoff and Sediment Loss from the PI Watershed
          on June 21, 1973	     79

23     Runoff and Sediment Loss from the PI Watershed
          on September 9, 1973	     80

24     Runoff and Sediment Loss from the P3 Watershed
          on May 28 (a.m.), 1973	     81

25     Runoff and Sediment Loss from the P3 Watershed
          on June 6, 1973	     82

26     Runoff and Sediment Loss from the P3 Watershed
          on July 8, 1973	     83

27     Runoff and Sediment Loss from the P3 Watershed
          on July 14, 1973	     84

28     Runoff and Sediment Loss from the P3 Watershed
          on September 9, 1973	     85

29     Monthly Paraquat Loss  from the PI and P3 Watersheds
          for the 1973 Growing Season	     90

30     Paraquat Loss from the PI Watershed on June 13,  1973 .     92

31     Paraquat Loss from the PI Watershed on June 21,  1973 .     93

32     Paraquat Loss from the PI Watershed on
          September 9, 1973	     94

-------
                  FIGURES  (Continued)
No.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
Paraquat Loss from the P3 Watershed on July 8, 1973 .
Paraquat Loss from the P3 Watershed on July 14, 1973
Paraquat Loss from the P3 Watershed on
September 9, 1973 	
Monthly Diphenamid Loss from the PI and P3
Watersheds for the 1973 Growing Season ....
Diphenamid Loss on Sediment from the PI Watershed
on June 13, 1973 	
Diphenamid Loss in Water from the PI Watershed
on June 13, 1973 	
Diphenamid Loss on Sediment from the PI Watershed
on June 21 , 1973 	
Diphenamid Loss in Water from the PI Watershed
on June 21 , 1973 	
Diphenamid Loss on Sediment from the P3 Watershed
on July 8, 1973 	
Diphenamid Loss in Water from the P3 Watershed
on July 8, 1973 	
Diphenamid Loss on Sediment from the P3 Watershed
on July 14, 1973 	
Diphenamid Loss in Water from the P3 Watershed
on July 14, 1973 	
Hydrology Parameter Sensitivity - Total Runoff
Hydrology Parameter Sensitivity - Peak Runoff
Page
95
96
97
100
102
103
104
105
106
107
108
109
115
(PI  Watershed,  storm of June  21,  1973)   ...        116
                       vi i i

-------
                            FIGURES (Continued)
No.                                                              Page
47     Sediment Parameter Sensitivity - Total  Sediment Loss  .     118
48     Sediment Parameter Sensitivity   Peak  Sediment  Loss
          (PI Watershed, storm of June 21,  1973)    ....     119
49     Pesticide Parameter Sensitivity - Total  Pesticide  Loss     121
50     Pesticide Parameter Sensitivity - Peak  Pesticide Loss
          in Water (PI  Watershed, storm of  June 21,  1973)         122
51     Pesticide Parameter Sensitivity - Peak  Pesticide Loss
          on Sediment (PI Watershed,  storm  of  June  21,  1973)      123
52     ARM Model Structure and Operation	     137
                                 IX

-------
TABLES
No.
1
I
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

ARM Model Components 	
Hydrologic Model (LANDS) Parameters 	
Sediment Production Parameters 	
Pesticide Simulation Parameters 	
Snowmelt Parameters 	
Coupled System of Differential Equations for
Nitrogen Transformations 	
Coupled System of Differential Equations for
Phosphorus Transformations 	
Test Watersheds for ARM Model Testing 	
1973 Summary of Rainfall, Runoff, and Sediment Loss
for the PI Watershed (Recorded and Simulated)
1973 Summary of Rainfall, Runoff, and Sediment Loss
for the P3 Watershed (Recorded and Simulated)
Sequence of Critical Events and Operations on the
PI and P3 Watersheds during the 1973 Growing Season
Monthly Paraquat Loss from the PI and P3 Watersheds
during the 1973 Growing Season 	
Diphenamid Loss from the PI Watershed during the
1973 Growing Season 	
Diphenamid Loss from the P3 Watershed during the
1973 Growing Season 	
Hydrology Parameter Values for the Sensitivity Analysis
Sediment Parameter Values for the Sensitivity Analysis
Page
10
15
20
26
40
51
58
64
73
74
86
91
101
101
113
113

-------
                             TABLES (Continued)

No.                                                              Page
17     Pesticide Parameter Values for the Sensitivity Analysis   114
18     ARM Model Components	138
19     ARM Model Input Parameter Description  	   139
20     Calibration Run Output - Monthly Summary (pesticide
          simulation)	143
21     Production Run Output - Monthly Summary (pesticide
          and nutrient)	144
22     Calibration Run Output   Storm Events (hydrology
          and sediment simulation only) 	   147
23     Calibration Run Output   Storm Events (pesticide
          simulation)	148
24     Calibration Run Output   Storm Events (nutrient
          simulation)	149
25     Production Run Output - Daily Printout (pesticide
          simulation)	150
26     Meteorologic Data Input Sequence and Attributes .   .   .   152
27     Input Sequence for the ARM Model	154
28     ARM Model Parameter Input Sequence and Attributes
          (excluding nutrient parameters)  	   155
29     ARM Model Nutrient Parameter Input Sequence and
          Attributes	159
30     Sample Input and Format for Daily Meteorologic Data   .   170
31     ARM Model Precipitation Input Data Format  	   171
32     Daily Snowmelt Output (Calibration Run,  English Units)     172
                                  XI

-------
                             TABLES (Continued)

No.                                                              Page
33     Daily Snowmelt Output Definitions (Calibration
          Run, English Units)	     173
34     ARM Model  Output Heading (excluding nutrients) .   .   .     174
35     Nutrient Simulation Output Heading 	     176
36     PI  and P3  Watershed Parameters	     180
                                 xi i

-------
                            ACKNOWLEDGEMENTS

Many people and organizations were instrumental to the successful
completion of this project.  Dr. George W. Bailey, and his staff at the
EPA Environmental Research Laboratory in Athens, Georgia (ERL-Athens),
provided coordination, data, and assistance critical  to the project work.
The ERL-Athens sponsored cooperative agreements for data collection and
analysis programs with the USDA Southern Piedmont Conservation Research
Center (SPCRC) in Watkinsville, Georgia and the Michigan State University
Departments of Crop and Soil Science, and Entomology in East Lansing,
Michigan.  Dr.  Ralph Leonard and his staff at the SPCRC were responsible
for the watershed instrumentation and runoff sampling program in Georgia,
and provided assistance for hydrologic and sediment data analysis and
interpretation.  The Michigan program was operated by Dr.  Boyd G. Ellis
and his staff at MSU who supplied watershed information, meteorologic
data, and historical data for calibration purposes.  The individual staff
members of all these supporting programs are too numerous  to mention
without the possibility of omission; their dedication to the program and
their assistance to Hydrocomp is gratefully acknowledged.

Numerous individuals at Hydrocomp contributed to this project throughout
its duration.  Dr. Norman H. Crawford, as principal investigator, provided
the general direction of the research effort.  Mr. Anthony Donigian, Jr.,
project manager, supervised the project work and the  final  report.
Calibration, model development, and programming were  ably  performed by Mr.
Douglas C. Beyerlein and Mr. James Hunt; Mr. Hunt was singularly
responsible for the nutrient model development and wrote the corresponding
section of the final report.  Data analysis and technical  assistance were
provided by Mr. Howard Yamaguchi, Mr.  John C. Imhoff, and Ms.  Danielle
Wellander.  Mrs. Margaret Muller patiently performed  artistic and
graphical consultation, and supplied drafting expertise.  Clerical
assistance and support throughout the project was provided by Ms. Suzi
Cummins and  Ms. Donna D'Onofrio.
                                   xm

-------
                                SECTION I

                               CONCLUSIONS
(1)   The Agricultural  Runoff Management (ARM)  Model  has been used
     successfully for simulating runoff,  sediment,  and pesticide loss from
     small  agricultural  watersheds.   Model  testing  for sediment and
     pesticide loss has  been performed on watersheds in the Southern
     Piedmont and is presently underway on  watersheds in the Great Lakes
     region.

(2)   The simulation of surface runoff with  the ARM  Model has been verified
     by split-sample testing for the Southern  Piedmont watersheds.   The
     hydrology parameters calibrated on six months  of 1972 data allowed
     the Model to simulate 1973 data with reasonable accuracy.   Past
     experience with the hydrologic  simulation methodology indicates that
     similar  accuracy can be expected in  other geographical  regions.

(3)   The method of snowmelt simulation presented in  this report has been
     employed successfully on watersheds  across the  United States.
     Although its use on small  agricultural  watersheds has been limited,
     the methodology of  energy balance calculations  is conceptually valid.
     Calibration and testing is presently underway  on watersheds in the
     Great  Lakes region.

(4)   Tillage  operations  and practices have  a significant impact on  both
     surface  runoff and  sediment loss from  watersheds in the Southern
     Piedmont.  The effect is relatively  greater on  sediment loss than on
     surface  runoff and  tends to decrease with time  since the last  tillage
     operation.  Both total  sediment loss and  peak  sediment concentrations
     are increased by frequent tillage operations while peak runoff is
     generally reduced and delayed in time.

(5)   The ARM  Model simulation of sediment production is relatively
     accurate except for storms immediately following tillage operations.
     In general, monthly sediment loss and  storm concentrations are close
     to observed values  when the hydrologic simulation is accurate.  The
     sediment simulation methodology allows for the  inclusion of tillage
     operations, but further testing and  calibration are needed to  more
     reliably quantify tillage effects.

(6)   Simulation of pesticide loss from the  Southern  Piedmont watersheds
     with the ARM Model  indicates the following:

     a.  Simulation results  are good for  pesticides  like paraquat that are
         completely adsorbed onto sediment  particles.   In these cases, the
         accuracy of the pesticide simulation  is  directly dependent upon
         the  accuracy of the sediment simulation.

-------
     b.   Simulation of pesticides that move both  in water and on  sediment
         is  dependent upon the partitioning between the two  phases  (water
         and sediment) as specified  by the adsorption/desorption  function.
         Simulation results  for  this type of pesticide (e.g. diphenamid)
         using  laboratory isotherm data  is fair to poor.  Initial
         comparison of simulation results from single-valued (SV) and
         non-single-valued (NSV) adsorption/desorption functions  is
         inconclusive.  The  SV function  appears to simulate  some  storms
         better than the NSV function, but the reverse is true  for  other
         storms.   Further comparisons and evaluations are warranted.

     c.   Pesticide attenuation processes are critical to the simulation of
         pesticide loss since they determine the  amount of pesticide
         available for transport from the land surface.  Storms,  even
         minor  ones, occurring immediately or soon after pesticide
         application are the major events for pesticide loss.   The  applied
         pesticide has not attenuated to a significant extent;  thus,  it is
         highly susceptible  to transport.  The first order degradation
         rate presently used in  the  ARM  Model appears to underestimate
         attenuation at the  beginning of the growing season  and
         overestimate it at  the  middle and end of the growing season.
         Accurate  simulation of  pesticide attenuation would  provide a more
         valid  base for the  evaluation of adsorption/desorption functions
         and improvement of  the  overall  pesticide simulation.

(7)   The ARM Model provides  a structure  for simulating the transport  and
     soil  transformations of plant nutrients.  Testing and comparison of
     simulated  and observed  results  will provide  a basis for modification
     and refinement of the nutrient  algorithms presented in  this  report.
     Data from  the Southern  Piedmont and Great Lakes watersheds is  expected
     to be available for nutrient model  testing  in the near  future.

(8)   A sensitivity analysis  of the ARM Model parameters for  hydrology,
     sediment production, and pesticide  loss indicates that  the most
     sensitive  parameters are related to soil moisture and infiltration,
     land surface  sediment transport, pesticide-soil interactions,  and
     pesticide  degradation.   These mechanisms are the critical  ones for the
     accurate simulation of  pesticide loss from  agricultural watersheds.

-------
                               SECTION  II

                            RECOMMENDATIONS
(1)   Application and testing of the ARM Model  on  watersheds  in different
     regions of the country is  of primary concern at this  time.   The
     hydrologic methodology of  the ARM Model  has  demonstrated its general
     applicability from the results of testing on hundreds of watersheds;
     similar testing is needed  for the sediment production methodology.
     In this way, the simulation of the transport mechanisms  (runoff and
     sediment loss) for agricultural  pollutants can  be tested, refined,
     and verified for general application.  Moreover,  the  relationship of
     the ARM Model  parameters to climatic and  edaphic  characteristics
     could be investigated.

(2)   Testing of the nutrient model  is crucial  to  the reliable simulation
     of plant nutrients.   Although a  nutrient  model  has been  developed,
     only testing and comparison with observed data  can indicate the
     validity of the model  assumptions and the need  for model  refinements.

(3)   The impacts of different agricultural  management  techniques on  the
     transport mechanisms of runoff and sediment  loss  need to be further
     investigated.   Since the ARM Model  will  be applied to managed
     agricultural lands,  the relationships  between land management
     techniques and the ARM Model  parameters  must be established.  This  is
     a necessity if the Model is to be used for evaluating the efficacy  of
     land and agricultural  management plans.   Also,  for widespread use,
     the Model must accommodate practices employed in  different
     agricultural regions of the country.

(4)   Pesticide-soil interactions and  pesticide attenuation processes must
     be further investigated in order to improve  the accuracy and
     reliability of the pesticide simulation.   Both  the single-valued and
     non-single-valued adsorption/desorption  functions warrant further
     investigation, in addition to a  kinetic,  or  non-equilibruim,  approach
     to the pesticide-soil  interaction processes.  First-order pesticide
     degradation should be replaced with a  more sophisticated degradation
     model.  Various candidate  approaches are  presently under
     investigation.  Environmental  conditions  (e.g.  soil temperature, soil
     moisture, and oxygen content)  need to  be  included where  they are
     significant.

(5)   To promote the general  use of the ARM Model  for investigation,
     evaluation, and management of agricultural runoff, the following
     recommendations are extended:

     a.  The ARM Model structure should be  modified  to allow  a
         more user-oriented method of application.   The acceptance and

-------
    use of the ARM Model  by the user community is contingent upon
    the ease of Model  application, calibration,  parameter
    evaluation, data management, and output interpretation.   To
    date, Model development has concentrated on  the testing  and
    evaluation of algorithms to simulate the physical  processes.
    Efforts should now be directed to the goal of making the
    Model more amenable for use by potential users.

b.  The use of the ARM Model as a tool  for the planning and
    evaluation of agricultural  management techniques for the
    control of sediment,  pesticides, and nutrients should be
    demonstrated.  It is  insufficient to develop and document a
    model like the ARM Model without a  clear demonstration of its
    potential application in the planning and management process.
    In addition, recommendations, guidelines, and a proposed
    methodology should be developed to  insure the effective
    use and to avoid misuse of the ARM  Model.

-------
                               SECTION III

                               INTRODUCTION

MODELING PROGRAM
The development of models to simulate the water quality impact of nonpoint
source pollutants is receiving considerable attention by the engineering
and scientific community.  One of the major reasons for this interest was
the passage of the Federal Water Pollution Control Act Amendments of 1972,
specifically requiring the evaluation of the contribution of nonpoint
source pollution to overall water quality.  This report describes a
modeling effort whose goal is the simulation of water quality resulting
from agricultural lands.   The beginnings of this research modeling effort
date from 1971 when the U.S.  Environmental Protection Agency, through the
direction of the Environmental Research Laboratory in Athens, Georgia
(ERL-Athens), sponsored the development and initial testing of the
Pesticide Transport and Runoff (PTR) Model.1  The Agricultural  Runoff
Management (ARM) Model presented in this report is the combined result of
further model testing and refinement, algorithm modifications,  and
inclusion of additional capabilities not present in the PTR Model.
Moreover, the ultimate goal of the continuing ARM Model development effort
is the establishment of a methodology and a tool for the evaluation of the
efficacy of management practices to control the loss of sediment,
pesticides, nutrients, and other nonpoint pollutants from agricultural
lands.  The present version of the Model, presented in this report, is  a
'snapshot' of the ARM Model in its testing and refinement process.  When
recommended for public use, the final ARM Model will be a tool  for
evaluating the water quality impact  of agricultural management practices.

MODELING PHILOSOPHY
The guiding philosophy  of the modeling effort is to represent, in
mathematical form, the physical processes occurring in the transport of
nonpoint source pollutants.   The hydrologic and water quality related
processes occurring on the land surface (and in the soil  profile)  are
continuous in nature; hence, continuous simulation is critical  to  the
accurate representation of these physical processes.  Although nonpoint
source pollution from the land surface takes place only during
runoff-producing events, the status of the soil moisture  and the pollutant
prior to the event is a major determinant of the amount of runoff  and
pollutants that can reach the stream during the event.  In turn, the soil
moisture and pollutant status prior to the event is the result of
processes which occur between events.   Cultivation and tillage practices,
pesticide and fertilizer applications, pesticide degradation and nutrient
transformations, all  critically affect the mass of pollutant that  can
enter the aquatic environment during a runoff-producing event.   Models

-------
that simulate only single events cannot accurately evaluate agricultural
land management practices since between-event processes are ignored.
Although all between-event processes cannot be quantitatively described at
the present state of technology, continuous simulation provides a sound
framework for their approximation and for further research into their
quantification.

When modeling nonpoint source pollution, the above stated philosophy is
joined by the fact that the transport mechanisms of such pollutants are
universal.  Whether the pollutants originate from pervious or impervious
lands, from agricultural  or urban areas, or from natural or developed
lands, the major transport modes of runoff and sediment loss are
operative.  (Uind transport may be significant in some areas, but its
importance relative to runoff and sediment loss is usually small.) In this
way, the simulation of nonpoint source pollution is analogous to a
three-layered pyramid.  The basic foundation of the pyramid is the
hydrology of the watershed.  Without accurate simulation of runoff,
modeling nonpoint pollutants is practically impossible.  Sediment loss
simulation, the second layer of the pyramid, follows in sequence the
hydrologic modeling.  Although highly complex and variable in nature,
sediment modeling provides the other critical transport mechanism.  The
pinnacle or final layer of the pyramid is the interaction of various
pollutants with sediment loss and runoff, resulting in the overall
transport simulation of nonpoint source pollutants.

The general goals of the research effort described in this report are (1)
to utilize the most advanced state of present technology in the simulation
of nonpoint source pollutants, and (2) to delineate critical areas for
further research and investigation.  In addition, the final version of the
ARM Model will be designed for general applicability throughout the United
States and for use by state and local agencies for the water quality
evaluation of agricultural land management practices.

REPORT CONTENTS AND FORMAT


As stated previously, this report describes the progress of the continuing
ARM Model development work.  Further testing and refinement of Model
algorithms is in progress at the present time; thus, this report provides
a detailed look at the existing version of the Model and a glimpse at
projected future modifications.  The major differences between the present
ARM Model and its predecessor, the PTR Model, are as follows:
      (1)  Modifications of the input and output  (I/O) procedures
      (2)  Modifications to the sediment model, SEPT, algorithms
      (3)  Option to utilize non-single-valued adsorption-desorption
          function
      (4)  Simulation capability for snow accumulation and melt
      (5)  Simulation capability for plant nutrients (not tested
          on observed data).

-------
In order to prevent a duplication of material presented in the PTR Model
report,1 this report will be restricted to an explanation of the major
modifications listed above and a presentation of the results of testing
the ARM Model on new data.  However, some duplication is necessary in
order to provide a cohesive presentation.  The reader will be referred to
the PTR Model report for elaboration of material summarized here.

Modifications to the I/O procedures will be described in the User Manual
(Appendix A) along with a complete explanation of Model operation and use.
Section IV provides a brief description of the overall ARM Model
structure, including modifications to the sediment model and the addition
of the non-single-valued adsorption/desorption option.  Since major
efforts were devoted to addition of the snow accumulation and melt routine
and development of the plant nutrient model, Section V and Section VI
describe the respective physical processes and algorithms.  Following a
brief presentation of the companion data collection programs in Section
VII, the results of Model testing are presented in Section VIII.  A
sensitivity analysis of Model parameters is reported in Section IX.
Finally, Section X summarizes the overall conclusions and recommendations.
The appendices include a brief user manual, a sample input listing, and a
source code of the ARM Model.

-------
                                SECTION IV

             THE AGRICULTURAL RUNOFF MANAGEMENT (ARM) MODEL
The ARM Model simulates runoff (including snow accumulation and melt),
sediment, pesticides, and nutrient contributions to stream channels from
both surface and subsurface sources.   No channel routing procedures are
included.  Thus, the Model is applicable to watersheds that are small
enough that channel processes and transformations can be assumed
negligible.  Although the limiting area will vary with climatic and
topographic characteristics, watersheds greater than one to two square
miles are approaching the upper limit of applicability of the ARM Model.
Channel processes will significantly affect the water quality resulting
from larger watersheds.

Figure 1 demonstrates the general structure and operation of the ARM Model
The major components of the Model individually simulate the hydrologic
response (LANDS) of the watershed, sediment production (SEDT), pesticide
adsorption/desorption (ADSRB), pesticide degradation (DEGRAD), and
nutrient transformations (NUTRNT).  The executive routine, MAIN, controls
the overall execution of the program; calling subroutines at proper
intervals, transferring information between routines, and performing the
necessary input and output functions.  Table 1 describes the functions of
each of the ARM Model components.

In order to simulate vertical movement and transformations of pesticides
and nutrients in the soil profile, specific soil zones (and depths) are
established so that the total soil mass in each zone can be specified.
Total soil mass is a necessary ingredient in the pesticide
adsorption/desorption reactions and nutrient transformations.  Figure 2
depicts the zones and depths, assumed in the ARM Model.  The depths of the
surface and upper soil zones are specified by the model input parameters,
SZDPTH and UZDPTH, respectively.  The upper zone depth corresponds to the
depth of incorporation of soil-incorporated chemicals.  It also indicates
the depth used to calculate the mass of soil in the upper zone whether
agricultural chemicals are soil-incorporated or surface applied.  The
depths of the surface and lower zones are  important because the active
surface zone is crucial to the washoff and degradation of agricultural
chemicals, while the extent of the lower zone determines to what degree
soluble pollutants will contaminate the groundwater.  The zonal depths
will vary with the geology and topography of the watershed.  Although the
relative specification of the soil depths indicated in Figure 2 is
reasonable,  further evaluation of these zones is presently in progress.

The transport and vertical movement of pesticides and nutrients, as
conceived  in the ARM Model,  is indicated in Figure 3.  Pollutant
                                     8

-------
ARM Model structure and operation
 INPUT
OUTPUT-«-
 MAIN
 EXECUTIVE
 PROGRAM
                         LANDS
                         HYDROLOGY
                         AND SNOW
                         SEDT
                         SEDIMENT
                         PRODUCTION
-*-CHECKR CHECK INPUT SEQUENCE

-»-NUTRlO READ NUTRIENT INPUT

--OUTMON   OUTYR  OUTPUT SUMMARIES
                               PEST
  NUTRNT
  NUTRIENT TRANSFORMATION
  AND REMOVAL
YtS
                                        yes
      NUTR *-
                         ADSRB
                         PESTICIDE  ADSORPTION
                         AND REMOVAL
 DEGRAD
 PESTICIDE
 DEGRADATION
                                                              Figure 1

-------
                     Table 1.   ARM MODEL COMPONENTS
Major
Program
MAIN
Component
Subroutine
LANDS

SEDT
ADSRB
DEGRAD

NUTRNT
            CHECKR
            BLOCK DATA

            NUTRIO
            OUTMON
            OUTYR
            DSPTN
            TRANS
Function
Master program and executive control
routine
Checks input parameter errors
Data initialization for common
variables
Reads and checks nutrient input data
Prints -monthly output summaries
Prints yearly output summaries
Performs hydrologic simulation and
snowmelt calculations
Performs sheet erosion simulation
Performs pesticide soil adsorption/
desorption simulation
Performs desorption calculations
Performs pesticide degradation
simulation
Performs nutrient simulation
Performs nutrient transformations
                                10

-------
           Assumed  soil depths for pesticide  and  nutrient  storage
         Isiim NtMMKI ""'  *"**''   '"'v'    '      :T^.''                     SURFACE ZONE
UZDPTH      '•:'•:'. ::::::::••: •:•:• •:••:::: •:• -x- •:• •:•::::: :•:•':'•': ':'•': :::::::::>::::::::::::::: :^:^:-:^'^:>^:^:
            [[[ ^^.^^^^^  ^^^^ ^^^^








 1.83 M       :        ::;'::.;:;:-:;:'-;:.:./ ;:!:i!i:i:!H:::::iii:::::i:::::;;'i::::"  =.::::   '"•    ;;" .  ;;  -;'^r  =••-••• :'•'  LOWER ZONE







                 "^"^^^^^^^^^^^^^^^^"""^^^^^^^^^^^^^^18^8^^  GROUNDWATER ZONE

-------
Pesticide and Nutrient  movement in the  ARM model
TOTAL UPTAKE
AND DEGRADATION
                                                                          P/N ON SEDIMENT
                                                                          PESTICIDE  PARTICLES
                                                                          P/N IN  OVERLAND FLOW
                                                                              IN  INTERFLOW
                                                             PERCOLATION
UPTAKE AND
DEGRADATION


LOWER ZONE P/N
STORAGE


LOWER ZONE P/N
INTERACTIONS
                                                                            LOSSES TO GROUNDWATER
                                                                                                      KEY
                                                                                                 (   INPUT     )
                                                                                                  P-PESTICIDE

                                                                                                  N-NUTRIENT
                                                         TO
                                                                            Figure 3

-------
contributions to the stream can occur from the surface zone, the upper
zone, and the groundwater zone.  Surface runoff is the major transport
mechanism carrying dissolved chemicals, pesticide particles, or sediment
and adsorbed chemicals.  The interflow component of runoff can transport
dissolved pesticides or nutrients occurring in the upper zone.  Vertical
chemical movement between the soil zones is the result of infiltrating and
percolating water.  From the surface, upper, and lower zones, uptake and
transformation of nutrients and degradation of pesticides is allowed.  On
the watersheds tested, the groundwater zone has been considered a sink for
deep percolating chemicals since the groundwater flow contribution has
been negligible.  However, on larger watersheds this contribution could be
significant.

HYDROLOGY
To truly comprehend the movement of pesticides and nutrients in the ARM
Model, one must have a basic understanding of the hydrology subprogram,
LANDS.  A flowchart of LANDS is shown in Figure 4 (the snowmelt subroutine
will be described in Section V).  The mathematical foundation of LANDS was
originally derived from the Stanford Watershed Model2, and has been
presented, with minor variations, in numerous subsequent publications.1-3
For this reason, the algorithms will not be fully described here.   The
major parameters of the LANDS subprogram are defined in Table 2, and in
the User Manual (Appendix A).  These parameters are identical to those in
the PTR Model and also in the Hydrocomp Simulation Program, HSP3.   In
brief, the LANDS subprogram simulates the hydrologic response of the
watershed to inputs of precipitation and evaporation.   LANDS simulates
runoff continuously through a set of mathematical functions derived from
theoretical and empirical evidence.   It is basically a moisture accounting
procedure on the land surface for water in each major component of the
hydrologic cycle.  The parameters (Table 2) within the mathematical
functions are used to characterize the land surface and soil profile
characteristics of the watershed.  These parameters must be selected,
tested, and modified when LANDS is applied to a new watershed.
Calibration is the process whereby the parameters are modified as  a result
of a comparison of simulated and recorded runoff data for the watershed.
The calibration procedure is described in the User Manual (Appendix A).

Modifications to the Stanford and HSP versions of the LANDS algorithms
have been discussed in the PTR Model Report.1  The present version of
the LANDS subprogram of the ARM Model includes these modifications to
simulate the areal variation in agricultural chemical  concentrations on
the land surface.  For completeness  and clarity, the following section
entitled, "Areal Zone Concept", describing the LANDS modification  is
abstracted from the PTR Model Report.
                                    13

-------
                                     LANDS  Simulation
/    ACTUAL
      ET
POTENTIAL ET
PRECIPITATION
TEMPERATURE
RADIATION
WIND.OEWPOINT

                                                                                      (     INPUT     >

                                                                                      ("    OlJfPUT'>
                                                                                          FUNCTION
                                                                                      |    STORAGE     |

                                                                                 EVAPOTRANSPIRATION- ET
                                                                            Figure 4

-------
            Table 2.   HYDROLOGIC MODEL (LANDS) PARAMETERS


A         A fraction representing the impervious area in a
          watershed.

EPXM      The interception storage parameter, related to vegetal
          cover density.

UZSN      The nominal upper zone soil moisture storage parameter.

LZSN      The nominal lower zone soil moisture storage parameter.

K3        Index to actual evaporation (a function of vegetal
          cover).

K24L,
K24EL     Parameters controlling the loss of water from
          groundwater storage.  K24L is the fraction of
          groundwater recharge that percolates to deep groundwater
          tables.  K24EL is the fraction of the segment area
          where shallow water tables put groundwater within reach
          of vegetation.

INFIL     This parameter is a function of soil characteristics
          defining the infiltration characteristics of the
          watershed.

INTER     This parameter defines the interflow characteristics
          of the watershed.

L         Length of overland flow plane.

SS        Average overland flow slope.

NN        Manning's "n" for overland flow.

IRC,
KK24      The interflow and groundwater recession parameters.

KV        The parameter KV is used to allow a variable recession
          rate for groundwater discharge.
                                15

-------
Area! Zone Concept


The major concern in modifying the HSP LANDS module for pesticide
transport was the desire to accommodate the expected areal variation in
pesticide concentration over the land surface.  It is generally accepted
in hydrology that infiltration is time and area dependent.  Infiltration
capacity will vary even within small watersheds with reasonably
homogeneous soil characteristics.  This areal variation in infiltration
results in source areas, or zones, with low infiltration capacity within
the watershed, contributing a large component of overland flow.  Since
overland flow and sediment loss are the major mechanisms of pesticide
transport to the watercourse, the low infiltration source areas will also
experience a greater loss of pesticide than the remainder of the
watershed.  Consequently, the pesticide concentration on the land surface
will vary, in spite of an initially uniform application.  The pesticide
concentration within the soil profile will also vary as a function of the
volume of infiltration.  Obviously, the extent of pesticide areal
variation depends upon the solubility and transport characteristics of the
specific pesticide applied and upon topographic and watershed
characteristics.  Natural hydrologic conditions and watershed
characteristics are sufficiently non-uniform to justify the above
described mechanisms leading to areal variations in infiltration and
pesticide concentrations.

HSP LANDS employs a cumulative frequency distribution of infiltration
capacity to account for the areal variation.  Figure 5a graphically
presents the infiltration function of HSP LANDS.  A mean infiltration
capacity, f, is calculated and a linear approximation to the actual
cumulative distribution is assumed.  Interflow is determined as a function
of infiltration and lower zone moisture storage.  It is evaluated in
Figure 5a as a second linear cumulative distribution denoted by f(c-l).
Since the X-axis is unity (i.e. 100 percent of watershed area), the area
of each wedge in Figure 5a represents the portion of the moisture supply
allocated to each component.  During any time interval, the available
moisture supply is distributed to surface detention, interflow detention,
and  infiltration.  Overland flow and interflow are determined as losses
from surface detention and interflow detention respectively.  Lower zone
moisture storage and groundwater components are derived from the
infiltration component.

The  LANDS subprogram of the ARM Model employs the same infiltration
function as HSP LANDS, with one modification; the watershed is divided
into five zones, each representing 20 percent of the total area.  The
zonal division is based on infiltration capacity.  Schematically, Figure
5b shows that zone 1 will infiltrate much less water than zone 5.
Conversely, zone 5 will provide  less overland flow than zone 1.  Thus, the
areal variation in infiltration capacity is approximated.  Zones with
lower infiltration capacity will serve as the major source areas for
                                     16

-------
Figure 5a. Cumulative frequency  distribution  of infiltration
           capacity showing infiltrated volumes, interflow
           and  surface detention
             INCREMENT
             TO SURFACE
            'DETENTION
INCREMENT
TO INTERFLOW
DETENTION
            - ZONE 1
           0        20        40        60        80
             % OF AREA WITH INFILTRATION CAPACITY ^ INDICATED VALUE

Figure 5b.  Source-zones superimposed  on the infiltration
           capacity function

Infiltration capacity and areal source-zone  functions
                                 Figure 5
                               17

-------
overland flow, sediment, and pesticide loss.  Generally, zones with high
infiltration will contain more pesticide in the soil profile because of
the greater amount of infiltrated water.

Conceptually, the zones are not necessarily concentric, continuous, or
contiguous.  Each is connected directly to the stream channel by the
overland flow plane.  As with any simulation model, this source zone
concept is an approximation.  It is an attempt to portray mechanisms which
are known to occur, but are impossible to simulate in detail.

A full description of the operation and calibration procedures for the
LANDS subprogram is included in the User Manual (Appendix A).

SEDIMENT LOSS SIMULATION
The basis for sediment loss simulation in the PTR Model was derived from
work by Moshe Negev at Stanford University.**  Although Negev simulated
the entire spectrum of the erosion process, only sheet and rill erosion
were included in the the PTR Model since gully erosion was not significant
on the small test watersheds,  the two component processes of sheet and
rill erosion pertain to (1) detachment of soil fines (silt and clay
fraction) by raindrop impact, and (2) pick-up and transport of soil fines
by overland flow.  These mechanisms were represented in the PTR Model by
the following algorithms:

Soil fines detachment:


           RER(t) = (1 - COVER(T))*KRER*PR(t)JRER                  (1)


Soil fines transport:


           SER(t) = KSER*SRER(t)*OVQ(t)JSER                        (2)


           ERSN{t) = SER(t)*F                                      (3)


where    RER(t)     soil fines detached during time
                   interval t, tonnes/ha
         COVER(T) = fraction of vegetal cover as a function of
                   time, T, within the growing season
         KRER     = detachment coefficient for soil properties
         PR(t)    = precipitation  during the time interval, mm
         JRER     = exponent for soil detachment
         SER(t)     transport of fines by overland flow, tonnes/ha
         JSER       exponent for fines transport by overland flow
                                    18

-------
        KSER     = coefficient of transport
        SRER(t)  = reservoir of soil fines at the beginning
                   of the time interval, t, tonnes/ha
        OVQ(t)   = overland flow occurring during the time
                   interval, t, nun
        F        = fraction of overland flow reaching the
                   stream during the time interval, t
        ERSN(t)  = sediment loss to the stream during the
                   time interval, t, tonnes/ha

Since the original equations by Negev were designed for simulation on an
hourly basis, the coefficients KSER and KRER were modified to allow 5 and
15 minute simulation.  In the operation of the algorithms, the soil fines
detachment (RER) during each interval is calculated by Equation 1 and
added to the total fines storage or reservoir (SRER).  Next, the total
fines transport (SER) is determined by Equation 2 and the sediment loss to
the stream (ERSN) is calculated in Equation 3 by the fraction of overland
flow which reaches the stream.  A land surface flow routing technique3
determines the overland flow contribution to the stream in each time
interval.  After the fines storage (SRER) is reduced by the sediment loss
to the stream (ERSN), the algorithms are prepared for simulation of the
next time interval.

Although the general operation of the algorithms described above is
identical in the ARM Model, certain modifications have been necessary.  A
more comprehensive vegetal cover function and an attempt to simulate the
effects of tillage operations have been included.  Also, Equation 2 has
been modified to more closely represent the physical process of sediment
transport by overland flow.  Table 3 defines the sediment parameters
included in the ARM Model.

The goal of simulating sediment washoff by overland flow is to approximate
the capacity of the flow to transport detached soil fines.  Equation 2,
derived from Negev's formulation, actually calculates transport as a
continuous function of the detached fines.  If Equation 2 is rearranged as
follows,

                                       JSER
           SER(t)/SRER(t) = KSER*OVQ(t)                           (4)


it becomes obvious that this formulation is calculating the fraction of
detached fines which can be transported in any time interval, regardless
of the physical transport capacity of the overland flow.  This is
conceptually incorrect; transport capacity is a function of overland flow,
soil and surface characteristics?'6   As long as the transport capacity
is less than available detached fines, it should be independent of the
fines storage, SRER.  Thus, the formulation of Equation 2 in the ARM Model
is
                                    19

-------
                Table 3.   SEDIMENT PRODUCTION PARAMETERS

COVPMO     Fraction of land cover on a monthly basis  (12 values).
TIMTIL     Time when soil  is tilled (Julian day,  i.e.,  day of
           the year, e.g., January 1 is 1,  December 31  is 365 or
           366, etc.), (5  dates).
YRTIL      Corresponding year (last two digits only)  for TIMTIL
           (5 values).
SRERTL     Fine deposits produced by tillage corresponding to
           TIMTIL and YRTIL (5 values).
JRER       Exponent of rainfall  intensity in soil  splash equation.
KRER       Coefficient in  soil splash equation.
JSER       Exponent of overland flow in sediment  washoff equation.
KSER       Coefficient in  sediment washoff equation.
SRERI      Initial detached soil fines deposit.
                              20

-------
           SER(t) = KSER*OVQ(t)JSER                               (5)
subject to


           SER(t) iSRER(t)                                       (6)


Although this remains a simple representation of the complex erosion
process, the formulation is conceptually sound and provides an opportunity
for future improvements.  The effects of slope, surface roughness,
rainfall intensity, etc. on transport capacity can be included in this
formulation as required by future testing and research.

The vegetal cover or crop canopy function in the PTR Model required the
input of the maximum vegetal cover attained in the growing season and
dates of application (assumed to coincide with planting), crop maturity,
and harvesting.  As shown in Figure 6a, the vegetal cover was assumed to
increase linearly from zero at the time of application (TIMAP) to the
maximum cover fraction (COVMAX) at the time of crop maturity (TIMAT).  The
cover remained at the maximum value until harvesting when it returned to
zero.  Land  cover was assumed to be zero before and after the growing
season.  This assumption proves to be invalid to varying degrees on most
agricultural watersheds.  Consequently, the land cover algorithm shown in
Figure 6b is used in the ARM Model.  Monthly cover values assumed to occur
on the first of the month, are specified by the user.  Cover on any day is
determined by linear interpolation between the monthly values.  This
algorithm allows greater flexibility than the original PTR Model
algorithm, but additional investigation into plant growth and crop canopy
functions is needed.  Various research efforts7i8>9  have related the
concept of leaf area index (LAI) to light interception by a crop canopy.
An analogy between light interception and rainfall interception could lead
to a more precise crop canopy function, if an algorithm for the changes in
LAI (for different crops and cropping patterns) with time could be
developed.  Research on this topic by Watson10 and McCollum11 appears
promising.  At the present state-of-the-art, the cover function in the ARM
Model is adequate until a more physically representative function can be
developed.

Tillage operations and conservation practices have a major effect on the
sediment loss from an agricultural watershed.  Although this is obvious,
the magnitude and mechanism of tillage operations could not be evaluated
with the seven months of data (July 1972-February 1973) available for the
PTR Model development.  Minimum tillage practices were followed and
numerous non-runoff-producing events helped to compact the land surface
prior to the first major runoff-producing event.  However, during the 1973
growing season several severe storms immediately following tillage and
planting operations (see Section VIII) served to dramatize the need to
                                    21

-------
Figure 6a. Land  cover algorithm in the  PTR model

                            TIMAP        TIMAT        TIMHAR
       .75


       .50


       25
       ."
     5.75
          JAN ' FEB ' MAR ' APR ' MAY ' JUN ' JUL ' AUG ' SEP ' OCT ' NOV ' DEC '  a
COVMAX
                 i     r    i    I    i    i    i    i    I    T   r
          JAN '  FEB '  MAR ' APR ' MAY ' JUN ' JUL ' AUG ' SEP ' OCT ' NOV ' DEC '
Figure 6b. Land cover algorithm in the ARM model

Comparison  of land cover algorithms in the PTR and ARM
                             models
                                    Figure 6
                                22

-------
accommodate tillage operations within the Model structure.  With regard to
sediment production, the effect of tillage operations is to increase the
mass of soil fines available for transport and produce a reasonably
uniform distribution of fines across the watershed. , Consequently, the ARM
Model allows the user to specify the dates of tillage, planting, or other
land-surface disturbing operations.  For each of these dates the user must
specify a new detached soil fines storage (SRERTL) resulting from the
operation.  At the beginning of each tillage day the ARM Model resets the
fines storage in each of the areal zones to the new value, resulting in a
uniform fines distribution across the watershed.  The amount of fines
storage produced by different tillage operations is related to the depth
and extent of the operation, and edaphic characteristics.  Further study
is needed to develop guidelines for the specification of fines storage as
affected by tillage and other agricultural management operations.

In conclusion, the present version of the sediment loss algorithms of the
ARM Model is a stepping stone on the continuing path of model  development.
As additional testing, refinements, and retesting is performed, a greater
understanding of the erosion process and methods for its simulation will
evolve.

PESTICIDE ADSORPTION/DESORPTION SIMULATION
Once the hydrology and sediment production of a watershed have been
simulated, the process of pesticide adsorption/desorption onto sediment
particles is a major determinant of the amount of pesticide loss which
will occur.  This process establishes the division of available pesticide
between the water and sediment phases, and thus specifies the amounts of
pesticide transported in solution and on sediment.  The algorithm employed
to simulate this process .in the PTR Model was described as follows:


                  X/M   KC(1/N) + F/M                             (7)


where    X/M  = pesticide adsorbed per unit soil, yg/gm
         F/M  = pesticide adsorbed in permanent fixed
                state per unit soil.  F/M is less than
                or equal to FP/M, where FP/M is the
                permanent fixed capacity of soil  in mg/gm
                for pesticide.  This can be approximated by
                the cation or anion exchange capacity for that
                particular soil type.
         C    = equilibruim pesticide concentration in solution,
                mg/1
         N    = exponent
         K    = coefficient
                                    23

-------
Basically this algorithm is comprised of an empirical term, F/M, plus the
standard Freundlich single-valued (SV) adsorption/desorption isotherm
(Figure 7a).  The empirical term, F/M, accounts for pesticides which are
permanently adsorbed to soil particles and will not desorb under repeated
washing.  As indicated in Figure 7a, the available pesticide must exceed
the capacity of the soil to permanently adsorb pesticides before the
adsorption/desorption equilibrium is operative.  Thus the pesticide
concentration on soil particles must exceed FP/M before the equilibrium
soil and solution pesticide concentrations are evaluated by the Freundlich
curve.  An in-depth description and discussion of the underlying
assumptions is presented in the PTR Model report.1

A major conclusion of the PTR Model development work was that the above
algorithm did not adequately represent the division of pesticides between
the sediment and solution phases.  This was especially true for pesticides
which are transported by both sediment and surface runoff, i.e.  soluble
pesticides which also adsorb onto soil particles.  Research has indicated
that the assumption of single-valued adsorption/desorption (Figure 7a) is
not valid for many pesticides . 12- 13- ^  In these cases, the adsorption and
desorption processes would follow different curves as indicated in Figure
7b.  Although a controlled laboratory experiment cannot hope to duplicate
the vagaries of nature present in a field situation, the basic mechanisms
should be similar in both circumstances.  Since field data has been
inconclusive, the present version of the ARM Model allows the user to
specify the use of either single-valued (SV) as in Figure 7a or
non-single-valued adsorption/desorption (Figure 7b).  Table 4 defines the
pesticide simulation parameters in the ARM Model.  The DESORP parameter
indicates the adsorption/desorption function to be used.  The NSV
algorithm (Figure 7b) utilizes the above SV algorithm (path No. 1) as a
base from which different desorption curves are calculated.  The form of
the desorption curve is identical to Equation 7 except that K and N values
are replaced by K' and N1 respectively.  The prime denotes the desorption
process.  The user specifies the N1 value as an input parameter (NP), and
the ARM Model calculates K' from the following expression based on work by
Davidson e-t al. 14

               , _   (N/N').   (1-N/N1)
                                                                  (8)
where   K1    = desorption coefficient
        K     = adsorption coefficient
        N'      desorption exponent
        N       adsorption exponent
        S     = solution pesticide concentration prior to
           x    initiating desorption

When the desorption process is initiated, the maximum attained solution
concentration Smax, is utilized with K, N, and N1 to calculate a value of K'
                                     24

-------
Figure 7a.   Single-valued  adsorption/desorption  algorithm
         _FP
         M
         _L
       CJ

       <=>
       CJ
       C£


       GO
         T
         If.
          M
         J_
1-AOSORPTION
2-DESORPTION
3-NEW ADSORPTION
4-NEW DESORPTION
                  PESTICIDE SOLUTION CONC. (C)  MG/ML

Figure 7b.  Non-single-valued adsorption/desorption algorithm


Adsorption/desorption algorithms  in  the ARM Model


                                   Figure 7
                              25

-------
                Table 4.  PESTICIDE SIMULATION PARAMETERS

APMODE      Application mode, SURF-surface applied, SOIL-soil
            incorporated.
DESORP      NO-single-valued adsorption/desorption algorithm used,
            YES-non-single-valued adsorption/desorption algorithm used.
SSTR        Pesticide application for each block (5 values).
TIMAP       Time of pesticide application (Julian day).
YEARAP      Year of pesticide application (last two digits only).
CMAX        Maximum solubility of pesticide in water.
DD          Permanent fixed pesticide adsorption capacity of the soil.
K           Coefficient in Freundlich adsorption equation.
N           Exponent in Freundlich adsorption equation.
NP          Exponent in Freundlich desorption equation.
SZDPTH      Depth of the surface zone.
UZDPTH      Upper zone depth or depth of soil incorporation.
BULKD       Bulk density of soil.
DEGCON      First-order pesticide degradation rate.
                                    26

-------
As desorption continues (path No. 2), the Model continues to use the K1
and N' values to calculate the soil and solution concentrations.  When
re-adsorption is initiated (path No. 3), the Model follows the desorption
curve back to the junction with the SV adsorption curve, and continues on
this curve until desorption again occurs.  At the new occurrence of
desorption, a new K1 is calculated resulting in a new desorption curve
(path No. 4).  The process is continued indefinitely producing a series of
desorption curves emanating from the base SV adsorption curve.

The results of testing both algorithms is presented in Section VIII, ARM
Model Testing and Simulation Results.  Further testing on different
pesticides on different soil types  is presently in progress.  Brown15
has indicated that the equilibrium type algorithms presented above may not
be valid under field conditions.  Consequently, a kinetic non-equilibrium
approach is another possibility for future investigations.

PESTICIDE ATTENUATION
The attenuation processes of degradation and volatilization of pesticides
are critical to the simulation of pesticide loss since these mechanisms
control the mass of chemical available for transport at any time following
application.  Highly volatile or degradable pesticides can be reduced to
insignificant levels after only one month of exposure in the field (see
Section VIII).  On the other hand, non-volatile or non-degradable
pesticides can continue to contribute to stream pollution months, or
possibly years, after the initial application.  In addition,
volatilization and degradation, by microbial, chemical, or photochemical
means, often accounts for the great majority of the applied pesticide
removed from the soil environment; surface runoff and erosion removal of
pesticides is generally a small fraction of the total application amount.

The PTR Model included surface and soil-incorporated volatilization models
and a general pesticide degradation model.  However, the volatilization
models, derived from work by Farmer and Letey16 were not utilized in
the pesticide simulation due to lack of field data for testing purposes.
The degradation model assumed a simple first-order decay.  It was needed to
estimate the amount of pesticide available for transport at any time
during the growing season.  In this way the runoff and erosion transport
processes occurring during storm events could be evaluated.  Neither model
allowed for the effects of environmental conditions on the attenuation
processes.

Due to the lack of data for testing, the volatilization models are not
included in the present version of the ARM Model.   The simple first-order
degradation model remains so that the surface transport mechanism can be
simulated and evaluated.  Further research on these attenuation processes
and on the effects of soil moisture, soil temperature, pH, etc. is needed
                                     27

-------
before reliable models can be developed and utilized in the ARM Model.
Steen17 has suggested a subsurface pesticide attenuation model which
attempts to account for soil temperature and moisture conditions.  This
model is presently under evaluation for addition to the ARM Model.
                                   28

-------
                               SECTION V

                 SNOW ACCUMULATION AND MELT SIMULATION
In the simulation of water quality processes, the mechanisms of snow
accumulation and melt are often neglected.  The stated reasons for this
omission generally pertain to an assumed minor influence on water quality,
the extensive data requirements, and the extreme complexity of the
component processes.  Obviously, in the southern latitudes of the United
States and at many coastal locations, snow accumulation during winter
months is often negligible.  However, considering its location in a
temperate climatic zone, over 50 percent of the continental United States
experiences significant snow accumulation.  In many areas streamflow
contributions from melting snow continue throughout the spring and well
into the summer.  For many urban areas, the supply of water during the
critical summer period is entirely a function of the extent of snow
accumulation during the previous winter.  Section III stressed the
importance of continuous simulation in the modeling of agricultural
nonpoint source pollutants.  Snow accumulation and melt is a major factor
in continuous hydrologic simulation.  Thus, the consideration of these
processes is an important part of any hydrologic model which is to provide
a basis for the simulation of water quality processes.

PHYSICAL PROCESS DESCRIPTION
Snow accumulation and melt are separate but often concurrent mechanisms.
The initial snow accumulation is largely a function of air (and
atmospheric) temperature at the time of precipitation; whereas, snowmelt
is an energy transfer process in the form of heat between the snowpack and
its environment.  Basically, 80 cal/cm2 of heat must be supplied to obtain
one centimeter of water from a snowpack at 0 °C (203 cal/cnror750 Btu/ft2
for one inch of melt at 32 °F).  This heat or energy requirement is
derived from the following sources:
     (1)  Solar (shortwave) radiation
     (2)  Terrestrial (longwave) radiation
     (3)  Convective and advective transfer of sensible heat from
          overlying air
     (4)  Condensation of water vapor from the air
     (5)  Heat conduction from soil and surroundings
     (6)  Heat content of precipitation

The complexity of the snowmelt process is due to the many factors that
influence the contributions from each of the above energy sources.  Figure
8 conceptually indicates the factors and processes involved in snow
accumulation and melt on a watershed.  The combination of precipitation
and near or below freezing temperatures results in the initial
                                   29

-------
CO
o
                   TERRESTRIAL
                   RADIATION
            +4
    + RAIN/SNOW
                       AIR
                      TEMPERATURE
                                          DETEMINATION
                                            /
                                     + + + •¥
                                                                    CONDENSATION  i
                                                      TEMPERATURE
SNOW
COMPACTION-^/ SNOW SURFACE
  AND DEPTH
                                                                                  HEA.T EXCHANGE
                                                                                    LIQUID STORAGE
                                                                                    IN SNOWPACK
                                                                                           WIND
                               GROUNDMELT
         LAND SURFACE
                                                                               AREAL EXTENT
                                                                               OF SNOW COVER
          Snow accumulation and  melt  processes     Figures

-------
accumulation of the snowpack.  Although relative humidity and air pressure
influence the form of precipitation, temperature is the major determining
factor in the rain/snow division.  The rain/snow division is important to
the hydrologic response of the watershed.  Precipitation in the form of
rain can become surface runoff immediately, and will contain sufficient
heat energy to melt a portion of the snowpack.  On the other hand,
precipitation in the form of snow will augment the snowpack, and is more
likely to contribute to soil moisture, groundwater, and subsurface flow as
the snowpack melts.

Just as the snow begins to accumulate, the major melt processes are
initiated.  Both solar (shortwave) radiation and terrestrial (longwave)
radiation are contributors to the snowmelt process, although solar
radiation provides the major radiation melt component.  The effective
energy transfer to the snowpack from solar radiation is modified by the
albedo, or reflectivity, of the snow surface and the forest canopy in
watersheds with forested land.  Terrestrial radiation exchange occurs
between the atmosphere, clouds, trees, buildings and even the snowpack
itself.  Generally, solar radiation dominates the net radiation exchange
during daylight hours resulting in a heat gain to the snowpack.
Terrestrial radiation continues during the night causing a net heat loss
from the snowpack during the dark hours.  The radiation balance, in
addition to the other heat exchange processes, allows melting of the pack
during the day and a refreezing during the night.

When air temperatures are above freezing, convective and advective heat
transfer to the snowpack producess another melt component.   Condensation
of water vapor on the snowpack from the surrounding air, and the opposing
mechanism of snow evaporation from the pack, respectively add and subtract
a component in the snowpack heat balance.  Wind movement is a significant
factor in all of these processes; its effect on heat transfer is readily
acknowledged by anyone who has experienced a chilling northeaster.
Depending on climatic conditions condensation and convection can
contribute to a significant portion of the snowmelt.

The remaining melt mechanisms include the ground melt component resulting
from heat from the land surface and surroundings, and rainmelt due to the
heat input of rain impinging on the snowpack.  Ground melt is due to the
temperature difference between the snowpack and the land surface and
subsurface.  Areas that experience relatively light snowfall and low
temperatures will have a small ground melt component due to the insulating
effects of frost and frozen ground conditions.  On the other hand,  ground
melt can be significant in areas with rapid accumulation and deep
snowpacks.  Also, urban areas with heat input from roads, buildings, and
underground utilities, and special geologic areas (hot springs, volcanic
activity, etc.) can experience an unusually high ground melt contribution.

Snowmelt caused by rain on a pack is usually quite small.  Twenty-five
millimeters (1 inch) of rainfall at 10 °C (50 °F) will produce only 3.2
                                    31

-------
millimeters (0.125 inch) of melt.  However, rain often occurs at high
atmospheric humidity when condensation of water vapor can take place;
condensation of 25 millimeters (1 inch) of water vapor (water equivalent)
can produce 190 millimeters (7.5 inches) of melt.  Thus, water vapor
condensation can cause rapid snowmelt, and seems to be responsible for the
myth that rainfall causes rapid snowmelt.

The release of melt from the snowpack is  a function of the liquid
moisture holding capacity of the snowpack and does not necessarily occur
at the time of melt.  The snowpack contains moisture in both frozen and
liquid form; spaces between snow crystals contain water molecules.  As
melt occurs, more water molecules are added to the spaces in the snowpack
until the moisture holding capacity is reached.  Additional melt will
reach the land surface and possibly result in runoff.  As the snowpack
increases in depth over the season, compaction of the pack results in a
lower depth and a higher snow density.  As density increases the moisture
holding capacity of the snowpack decreases due to less pore space between
snow crystals and a change in crystal structure.

Thus, the snowmelt reaching the land surface results from complex
interactions between the melt components, climatic conditions, and
snowpack characteristics.  For the most part, the snowpack behaves like a
moisture reservoir gradually releasing its storage.  However, the
combination of extreme climatic conditions and snowpack characteristics
can lead to abnormally high liquid moisture holding capacity and sudden
release of melt in relatively short time periods.18  The damage which
can occur during such events emphasizes the need to further study and
understand the snowmelt process.

ALGORITHM DESCRIPTION
The objective of snow accumulation and melt simulation is to approximate
the physical processes (described above) and their interactions in order
to evaluate the timing and volume of melt water released from the
snowpack.  The algorithms used in simulating the processes shown in Figure 8
are based on extensive work by the Corps of Engineers,19 Anderson and
Crawford,20 and Anderson.21  Empirical relationships are employed when
quantitative descriptions of the process are not available.  The
algorithms presented below are identical to those employed in HSP and have
demonstrated reasonably successful results on numerous watersheds.22- 23> 2**- 25
A flowchart of the snowmelt routine is shown in Figure 9.  The major
simulated processes can be divided into the two general categories of melt
components and snowpack characteristics.  The algorithms for the
individual processes within each of these categories are briefly presented
below  in computer format and English units to promote recognition of the
equations in the Model source code.  The interested reader is referred  to
the original source materials for a more in-depth explanation.
                                     32

-------
CO
CO
KEY


	HEAT

CD  INPUT/OU1PUT

     FUNCTION

     STORAGE
                                                       PRECIPITATION
TEMPERATURE
WIND
PENPOINT
RADIATION
                                                                                                  NET
                                                                                               CONDENSATION
                                                                                               CONVECTION
                                           WATER RELEASED
                                            FROM SNOWPACK
                                                           Snowmelt  simulation
                                                                                                     Figure 9

-------
Melt Components


Radiation Melt-
The total melt component in each hour due to incident radiation energy is


                 RM = (RA + LW)/203.2                             (9)
where  RM = radiation melt, in/hr
       RA = net solar radiation, langleys/hr
       LW = net terrestrial radiation, langleys/hr
    203.2 = langleys required to produce 1 inch of melt from snow at 32 °F

The effects of solar and terrestrial radiation are evaluated separately.
An input parameter, RADCON, allows the user to adjust the solar radiation
melt component to the conditions of the particular watershed.  Daily solar
radiation is required input data for the present version of the snowmelt
routine.  Hourly values are derived from a fixed 24-hour distribution and
are modified by the effective albedo (calculations described under
'snowpack characteristics') and the watershed forest cover.  An input
parameter, F, indicates the fraction of the watershed covered by forests.
On small agricultural watersheds F will usually be zero.  However, forest
cover affects many snowmelt processes and must be included whenever the
snowmelt routine of the ARM Model is applied to forested watersheds or
forested portions of agricultural watersheds.

Terrestial radiation is not generally measured; hence, an estimate must be
obtained from theoretical considerations and modified by environmental
factors (e.g. cloud cover, forest canopy, etc.).  The following
relationship for terrestrial radiation based on Stefan's Law of Black Body
Radiation is found in "Snow Hydrology".19
                 R = aTAMF +  (1-F)0.757> - aTSf*                   (10)


where   R = net terrestrial radiation, langleys/min
        F = fraction forest cover
      TA = air temperature, °K
      TS = snow temperature, °K          1Q
        a = Stefan's constant,  0.826 x 10"  , langleys/min/°K

The  snowmelt  routine employs a linear approximation to the above
relationship  and modifies the  resulting hourly  terrestrial radiation for
cloud cover effects.   Back radiation from clouds can partially offset
terrestrial radiation  losses from the snowpack.  Since cloud  cover data
information is not generally available and transposition of data from the
                                     34

-------
Dsest observation point can be highly inaccurate, a daily cloud cover
rrection factor is estimated to reduce this radiation loss from the
ck.  For days when precipitation occurs, terrestrial radiation loss from
a pack is reduced by 85 percent to account for the effects of complete
oud cover; this reduction factor decreases to zero in the days following
2 storm event.

ndensation-Convection Melt-
e melt resulting from heat exchange due to condensation and convection
 often combined in a single equation.  A constant ratio between the
efficients of convection and condensation (Bowen's ratio) is generally
sumed.  Since the two mechanisms are operative under different climatic
tuations, the algorithms are presented here separately.  Condensation
curs only when the vapor pressure of the air is greater than saturation,
areas convection melt occurs when the air temperature is greater than
sezing.  The algorithms are as follows:


   CONV = CCFAC*.00026*WIN*(TX-32)*(1.0-0.3*(MELEV/10000))      (11)


   CONDS = CCFAC*.00026*WIN*8.59*(VAPP-6.108)                   (12)
ere  CONV   = convection melt, in/h
     CONDS  = condensation melt, in/hr
     CCFAC  = input correction factor to adjust melt values to
              field condi-tions
     WIN    = wind movement, mi/hr
     TX     = air temperature, °F
     MELEV  = mean elevation of the watershed, 1000's ft
              (Note:  the expression 1.0-0.3*(KELEV/10000) is a
               linear approximation of the relative change in air
               pressure with elevation, and corresponds to P/Po
               in "Snow Hydrology".)
     VAPP   = vapor pressure of the air, millibars
     6.108  = saturation vapor pressure over ice at 32 °F, millibars
   0.00026,
     8.59    = constants in the analogous expression in "Snow Hydrology"
              (Note:  0.00026 corresponds to the daily coefficient,
               0.00629, adjusted to an hourly basis.)

in melt-
enever rain occurs on a snowpack,  heat is transmitted to the snowpack,
d melt is likely to occur.  The quantity of snowmelt from this component
 calculated as follows, assuming the temperature of the rain equals air
mperature:
                                  35

-------
                 RAINM = ((TX-32)*PX)/144                         (13)
where  RAINM = rain melt, in/hr
       PX    = rain, in/hr
       TX    = air temperature, °F
       144   = units conversion factor, °F

Ground melt-
As mentioned previously, melt due to heat supplied from the land surface
and subsurface can be significant in the overall water balance.  Since
ground melt is relatively constant, an input parameter specifies the daily
contribution.  Heat loss from the snowpack can result in snowpack
temperatures less than 32 °F.  When this occurs, the ground melt component
is reduced 3 percent for each degree below 32 °F.

Snowpack Characteristics
Rain/Snow Determination-
The form of precipitation is critical to the reliable simulation of runoff
and snowmelt.  The following empirical expression based on work by
Anderson21 is used to calculate the effective air temperature below
which snow occurs:
          SNTEMP = TSNOW + (TX-DEWX)*(0.12 + 0.008*TX)            (14)


where  SNTEMP = temperature below which snow occurs
       TSNOW  = input parameter
       TX     = air temperature
       DEWX   = dewpoint temperature

Variable meteorologic conditions and the relatively imprecise estimates of
hourly temperature derived from maximum and minimum daily values can cause
some discrepancies in this determination.  For this reason, the use of
TSNOW as an input parameter allows the user flexibility in specifying the
form of precipitation recorded in meteorologic observation.  The above
expression allows snow to occur at air temperatures above TSNOW if the
dewpoint temperature is sufficiently depressed.  However, a maximum
variation of one Fahrenheit degree is specified resulting in a maximum
value for SNTEMP = TSNOW + 1.

Snow Density and Compaction-
The variation of the density of new snow with air temperature is obtained
from "Snow Hydrology"19 in the following form:


                DNS = IDNS + (TX/100)2                          (15)
                                     36

-------
where  DNS  = density of new snow
       IDNS = density of new snow at an air temperature of 0 °F
       TX   = air temperature, °F

Snow density is expressed  in inches of water equivalent for each inch of
snow.  With snow fall and  melt processes occurring continuously, the snow
density is evaluated each  hour.  If the snow density is less than C.55,
compaction of the pack  is  assumed to occur.  The new value for snow depth
is calculated by the empirical expression:


     DEPTH2 = DEPTH1*(1.0-0.00002*(DEPTH1*(.55-SDEN)))           (16)


where  DEPTH2    new snow  depth, in
       DEPTH1  = old snow  depth, in
       SDEN    = snow density

Area! Snow Coverage-
The areal snow coverage of a watershed is highly variable.  Watershed
response differs depending on whether the precipitation, especially in the
form of rain, is falling on bare ground or snow covered land.  The areal
snow coverage is modeled by specifying that the water equivalent of the
existing snowpack, PACK, must exceed the variable IPACK for complete
coverage.  IPACK is initially set to a low value to insure complete
coverage for the initial events of the season and is reset to the maximum
value of PACK attained to  date in each snowmelt season.  Since the ratio
PACK/IPACK indicates the fraction of the watershed with snow coverage,
less than complete coverage results as the melt process reduces the value
of PACK.  An input parameter, MPACK, allows the user to specify the water
equivalent required for complete snow coverage.  Thus MPACK is the maximum
value of IPACK, resulting  in complete coverage when PACK is greater than
MPACK, and less than complete coverage (PACK/MPACK) when PACK decreases to
values less than MPACK.

Albedo-
The albedo or reflectivity of the snowpack is a function of the condition
of the snow surface and the time since the last snow event.  During the
snow season, the maximum and minimum values for albedo are specified as
0.85 and 0.60, respectively.  It is reset to approximately the maximum
value with each major snow event and decreases gradually as the snowpack
ages.

Snow evaporation-
Evaporation from the snow surface is usually quite small, but its
inclusion in snowmelt calculations is necessary to complete the overall
water balance of the snowpack.  The physical process is the opposite of
condensation occurring only when the vapor pressure of the air is less
than the saturation vapor pressure over snow.   The following empirical
                                   37

-------
relationship is used to calculate hourly snow evaporation:


     SEVAP = EVAPSN*0.0002*WIN*(VAPP-SATVAP)*PACKRA              (17)
where  SEVAP  = snow evaporation, in/hr
       EVAPSN - correction factor to adjust to field conditions
       WIN    = wind .novement, mi/hr
       VAPP   = vapor pressure of the air, millibars
       SATVAP = saturation vapor pressure over snow, millibars
       PACKRA = fraction of watershed covered with snow

Snowpack Heat Loss-
Heat loss from the snowpack can occur if terrestrial back radiation from
the pack is large, or if air temperatures are very low.  Since this heat
is emitted by the pack, it is simulated as a negative heat storage,
NEGMLT, which must be satisfied before melt can occur.   Any heat available
to the snowpack first offsets NEGMLT before melting can occur.   The hourly
increment to NEGMLT is calculated from the following empirical relation
whenever the air temperature is less than the temperature of the pack:


             GM = 0.0007*(TP-TX)                                 (18)


where  GM = hourly increment to negative heat storage,  in
       TP = temperature of the pack, °F
       TX = air temperature, °F

NEGMLT and GM are calculated in terms of inches of melt corresponding to
the heat loss from the pack.  The current value of NEGMLT is used to
calculate the temperature of the pack simulating the drop in temperature
as heat loss from the pack continues.  A maximum value of NEGMLT is
calculated as a function of air temperature and the water equivalent of
the pack by assuming that the temperature in the pack varies linearly from
ambient air temperature at the snow surface to 32 °F at the soil surface.
This maximum negative heat storage is calculated as follows:


          NEGMM = 0.00695*(PACK/2.0)*(32.0-TX)                   (19)


where  NEGMM = maximum negative heat storage, in
       PACK  = water equivalent of the snowpack, in
       TX    = air temperature,  °F  (<32 °F)
     0.00695 = conversion factor,  °F-i
                                    38

-------
Snowpack Liquid Water Storage-
Liquid water storage within the snowpack is limited by a user input
parameter, WC, which specifies the maximum allowable water content per
inch of snowpack water equivalent.  Thus, the maximum liquid water storage
is calculated as WC x PACK.  However, this value is reduced if high snow
density values are attained.

MODEL OPERATION AND DATA REQUIREMENTS
The snowmelt routine operates on an hourly interval calculating the
various components of the snow accumulation and melt process and providing
hourly values of the water released from the snowpack (Figure 9).   Since
the LANDS simulation is performed on 5 or 15 minute intervals, the hourly
melt values are divided into the shorter time intervals to continue the
simulation.  Because the snowmelt process is much slower than the runoff
process, the hourly time interval appears to be adequate.

In addition to precipitation and evaporation, the present version of the
snowmelt routine in the ARM Model requires continuous data series  for
daily max-min air temperature, daily wind movement, daily dewpoint
temperature, and daily solar radiation.  Since the routine operates on an
hourly basis, hourly values for each of these meteorologic values  would be
preferable.  However, with the exception of experimental watersheds, few
locations would have such detailed data on a regular basis.   Consequently,
the routine provides an empirical hourly distribution for wind movement
and solar radiation, and assumes that dewpoint temperature is relatively
constant throughout the day.  The daily max-min air temperature values are
fitted to a sinusoidal distribution assuming minimum and maximum
temperatures occur during the hour beginning at 6:00 AM and 3:00 PM.
Thus, daily values are required for the meteorologic data series.

Table 5 defines the input parameters required for model operation, many of
which have been discussed above.  Parameter evaluation and model
calibration are discussed in Appendix A.  An understanding of the  physical
processes and the algorithm approximations is critical to the intelligent
use of the snowmelt routine.  Consequently, the potential user is  advised
to re-read and study the algorithm descriptions and parameter definitions
prior to attempting application of the snowmelt routine.
                                   39

-------
                      Table 5.  SNOWMELT PARAMETERS
RADCON:     Parameter to adjust theoretical solar radiation melt
            equations to field conditions
CCFAC:      Parameter to adjust theoretical condensation and convection
            melt equation to field conditions
EVAPSN:     Parameter to adjust theoretical snow evaporation to
            field conditions
MELEV:      Mean elevation of the watershed
ELDIF:      Elevation difference between the temperature station and
            the midpoint of the watershed
TSNOW:      Wet-bulb air temperature below which snowfall occurs
MPACK:      Water equivalent of the snowpack required for complete
            coverage of the watershed
DGM:        Daily groundmelt
WC:         Maximum water content of the snow
IDNS:       Index density of new snow at 0°F
SCF:        Snow correction factor to compensate for deficiencies in
            the gage during snowfall
PETMAX:     Temperature below which input potential evapotranspiration
            is reduced by 50 percent
PETMIN:     Temperature below which input potential evapotranspiration
            is reduced to zero
PETMUL:     Potential evapotranspiration multiplier to adjust observed
            daily input values
WMUL:       Wind multiplier to adjust observed daily wind values
RMUL:       Solar radiation multiplier to adjust observed daily solar
            radiation values
F:          Fraction of watershed with forest cover
KUGI:       Index to the extent of undergrowth in forested areas

-------
                               SECTION VI

                           NUTRIENT MODELING
Water pollution from agricultural land has been increasing due to greater
use of machinery and chemicals to improve crop yields.  Chemicals are
applied to prevent unwanted plants (herbicides) and animals (pesticides),
and to increase available plant nutrients (fertilizers).  After
application, herbicides persist in the soil until they are degraded to
less harmful compounds or are removed from the soil by washoff or
leaching.  Fertilizers on the other hand are applied as a supplement to
nutrients present in the soil profile.  Plants do not absorb all the
applied fertilizer.  Typically, only 5 to 10 percent of the applied
phosphorus and about 50 percent of the applied nitrogen is recovered in
the crop.  The remaining nutrients can be retained in the soil in
unavailable forms or lost by volatilization, leaching, and surface
washoff.  Although greater fertilizer application will improve crop
yields, it will increase nutrients in the soil available for contamination
of streams and groundwaters.

Excess nutrient applications are undesirable from three viewpoints:
health, aesthetics, and economics.  Drinking water containing high nitrate
concentrations may cause methomoglobinemia in small children.  High
nitrates can result from natural soil conditions or excess fertilization
from agriculture or silviculture.  The U.S. Public Health Service Drinking
Water Standards for nitrate were set to prevent the occurrence of this
disease.  Aesthetically, addition of nitrogen and phosphorus in surface
waters can greatly accelerate the eutrophication process causing unsightly
algal blooms and preventing recreational and other uses of the water body.
The final point of concern is the efficient utilization of energy
resources.  Ammonia, the most common nitrogen fertilizer, requires natural
gas for its production.  Thus, unnecessary loss of fertilizer is a waste
of scarce energy supplies.  Recent increases will tend to reduce
fertilizer use; this alone may not be sufficient to ameliorate the impact
of nutrients from agriculture on the aquatic environment.

Methods for nutrient control can be investigated and developed through
costly field experiments or through the use of a mathematical model of the
important processes occurring on and in the soil profile.

Nutrient simulation in the ARM Model  attempts to predict nutrient losses
from erosion, surface washoff, leaching, and biological conversion.  With
testing and calibration the Model could be used to develop fertilizer
management plans to maximize fertilizer efficiency and minimize the water
quality impact of fertilizer use.
                                    41

-------
NUTRIENT CYCLES


Nitrogen


Many nitrogen compounds are indigenous to the soil and undergo chemical
and biological transformations of importance to crop production and
pollution control.  A general nitrogen cycle for agricultural lands is
depicted in Figure 10.  Most soil nitrogen is in the organic form as
decaying plant residues and rather resistant soil humus.26  Organic
nitrogen can be broken down to ammonia through the process of
mineralization, also called ammonification.  Ammonia is usually strongly
adsorbed to soil surfaces and can undergo nitrification to nitrite and
nitrate.  Nitrite is rapidly converted to nitrate which is the most common
form of the mobile nitrogen compounds.  Dissolved nitrates can be removed
by overland flow and interflow, and leached to groundwater.  Biologically,
nitrate can be absorbed by plants, reduced anaerobically to various
nitrogen gases and immobilized by microorganisms in the presence of
nitrogen-deficient organic material.  Nitrogen absorbed by plants is often
lost from the soil through harvesting.  Nitrogen input to the soil occurs
by a number of pathways including rainfall, plant residues, dry fall of
dust and dirt, biological fixation of atmospheric nitrogen, and direct
application of fertilizer nitrogen.  Although the soil nitrogen cycle is
quite complex, the major pathways can be sufficiently quantified to allow
mathematical simulation.

Phosphorus
While phosphorus does not exist in as many forms as nitrogen, phosphorus
compounds undergo transformations important to agriculture as shown in
Figure  11.  Organic phosphorus can be mineralized to inorganic phosphates
and  under special circumstances, the reaction can be reversed to
immobilization of inorganic phosphates to organic phosphorus.  Inorganic
phosphates are either strongly adsorbed to clay particles, or present as
insoluble calcium, magnesium, iron or aluminum phosphates.  Soluble
phosphate concentration rarely exceeds 0.2 mg/1.  Thus, the major
mechanism for the loss of phosphorus compounds is soil erosion.27

PAST WORK
 A number of  models  have been developed  recently to predict nutrient
 washoff from agricultural  lands.  Models  in which actual soil processes
 were  considered  are discussed below.

 A complex watershed model  for irrigated land was developed by Dutt and
 others28 at  the  University of Arizona.  The model includes procedures
                                     42

-------
CO
                                                      ATMOSPHERIC
                                                        NITROGEN
                                                            N2
                                                        REMOVED FROM
                                                           CYCLE
                                                        BY HARVESTING
                                                                                        REMOVED FROM
                                                                                           CYCLE
                                                                                         BY LEACHING
                                                   Nitrogen  Cycle
                                                                                  Figure 10

-------
 WEATHERING
OF PHOSPHATE•
      ROCKS
PHOSPHATE
FERTILIZER
SOURCE
REMOVED FROM CYCLE
BY HARVESTING
                                                              DECOMPOSITION
                                                              AND EXCRETA
                                                           INSOLUBLE
                                                           PHOSPHATES
                                                        BLEACHING
                                Phosphorus  Cycle
                                                          Figure 11

-------
for calculating moisture  flow  and  chemical and biological nutrient
reactions.  The nitrogen  transformation rates were developed by regression
analysis on data  from arid  regions.  The  following assumptions were made:

     (1)  no denitrification or  volatilization occurs
     (2)  soil pH is in the range  of 7.0  to 8.5
     (3)  symbiotic and non-symbiotic nitrogen fixation is small compared
          to other nitrogen transformations
     (4)  nitrite is only present  in trace amounts
     (5)  fertilizers and other  nitrogen  additions are applied uniformly
          and thoroughly  mixed with the soil
     (6)  the microbial populations of different soils are approximately
          equivalent in their  responses to parameters associated with
          nitrogen transformations.

The model would be difficult to  use in non-arid regions because the
reaction rates are permanently fixed by the regression equations.

Hagin and Amberger29 have developed a computer model for predicting
nitrogen and phosphorus movement and transformations on agricultural land.
They used the IBM Continuous System Modeling Program (CSflP)  for
simulating ecological processes  and transport phenomena in the soil.  The
model includes mineralization and  immobilization of nitrogen,
nitrification, denitrification,  sediment washoff of phosphate and
transport of oxygen and heat.  The report is particularly useful because
it contains considerable  information on the effect of various
environmental  factors on  the reaction rates.  Graphs are included for
correcting reaction rates for temperature, pH, moisture and oxygen level.
Unfortunately, the model  was not tested on observed data.  Thus, the model
assumptions have not been verified.

The Agricultural Research Service has developed the Agricultural Chemical
Transport Model (ACTMO)30 which  includes hydrologic, sediment, and
chemical transport simulation.   The nitrogen simulation considers
mineralization of organic nitrogen to nitrate, plant uptake of nitrate,
and nitrate removal by overland  flow and leaching.  The mineralization
rate is a first-order reaction modified for temperature and moisture
levels.  The rate of nitrate uptake by plants is a function of the
evapotranspiration rate.  The model does not include the loss of nitrogen
by sediment transport or  denitrification.   ACTMO was tested with available
hydrologic, sediment and  pesticide data on a small watershed, but no
testing of the nitrogen model was reported.

A preliminary model of nitrogen  transformations in agricultural  soils was
reported by Mehran and Tanji.31  They developed a complex nitrogen
transformation model for  batch reactors assuming all reactions proceed by
first-order kinetics.  The model will  be added to a water movement model
in the future to allow for advective movement of nitrogen compounds in the
soil column.  The model  did not  adjust reaction rates for environmental
                                   45

-------
factors such as temperature, pH, water content, aeration and organic
matter.  Through adjustment of reaction rates, the model was able to
reproduce data collected in four different laboratory experiments.

ALGORITHM DESCRIPTIONS


In the ARM Hodel, as a first approximation, all chemical and biological
reactions are represented by first-order kinetics.  The rate of a first
order reaction is proportional to the amount of the reactant; the
proportionality factor is the rate constant.  Below is a general
discussion of first-order kinetics as they relate to biological and
chemical reactions.  The method of temperature correction for the reaction
rates is also discussed, followed by a presentation of the algorithms
which represent the nitrogen and phosphorus transformations in the ARM
Model.

First-Order Kinetics
The biological conversion of compound A to compound B with reaction rate
constant k can be expressed as
                                                                (20)
The rate of this reaction is expressed in terms of the rate of change in
A and B with time or
                       - 3t {A} = it {B} = k                  (21)


Solution of the differential  equation for A and B yields
                         ,-kt
                        o"
A  = A.e" -                                     (22)
                  B  =  AQ (1 -  e-)                             (23)


where   AQ = initial  amount of compound A at time t = 0.


                                               reaction of B 9°in9 to A,
                                   46

-------
                         	*f
                        A<        -B                             (24)
                              kb
and


                         {A}    ^ {B}  -  kf  {A} -  kb  {B}           (25)
where  kf  = forward  rate constant
       kfc  = backward rate constant
At equilibrium when the  rate of change in concentration is zero,
Equation 25 becomes
                         0 =  kf {A}  -  kb(B}                        (26)


On solving for A, a linear relationship is obtained between A and B at
equilibrium
                            {A}  =    (B)                           (27)
                                  Kf
Chemical reactions that proceed rapidly can be viewed as instantaneously
obtaining equilibrium or quickly approaching equilibrium with rapid
forward and backward reaction rates.  Modeling of adsorption-desorption
chemical reactions with first-order kinetics produces a linear
relationship between adsorbed and dissolved compounds at equilibrium.
This is a simplification of the equilibrium relationship defined by more
complex methods.

Two equations are commonly used to describe the equilibrium distribution
of a compound between adsorbed and dissolved states.  The Freundlich
equation is
                             x   KCl/n                             (28)
                             m ~

where    x^  = amount adsorbed per unit weight adsorbent
         m
                                    47

-------
        C   = equilibrium concentration  of adsorbate in solution after
              adsorption
        K,n = empirical  constants

Usually n is greater than 1.0.   However, if n is set to 1.0, the
equation reduces to a linear relationship between the amount adsorbed
and dissolved.  The Langmuir equation is another relationship relating
adsorbed concentration to the dissolved  concentration at equilibrium:
                                                                  (29)
        x_
where   m   = amount adsorbed per unit weight adsorbent
        C   = equilibrium concentration of adsorbate in solution after
              adsorption
        a,b = empirical constants

When the solution concentration is small such that 1/b »  C, the Langmuir
equation reduces to a linear isotherm
                              m
Thus, a first-order kinetic approach to adsorotion-desorption reactions
results in a linear isotherm which is also obtainable from the Freundlich
and Langmuir equations.  A general discussion of adsorption-desorption
reaction kinetics is given by Oddson et al . 3Z

Temperature Correction of Reaction Rates
In chemical and biological reactions, an increase in temperature will
cause an increase in the reaction rate for a certain temperature range.
Reaction rates can be adjusted for different temperatures by a
simplification of the Arrhenius Equation:33
                       kT * k356                                   (31)


where    w   = reaction rate at temperature T
         k'  = reaction rate at 35 °C
         e   = temperature correction coefficient
         T   = temperature in degrees Celsius

Typically biological reaction rates will double with each ten Celsius
degree rise in temperature.  This corresponds to 8 = 1.07.   For nutrient
                                    48

-------
transformations  in  the ARM  Model,  the  reaction  rates are modified for
temperatures less than 35 °C.   At  temperatures  of 35 °C or greater, the
reaction rates are  assumed  to  remain constant.   In this temperature range
the assumption of a  constant temperature  correction coefficient, 0, is
doubtful, and different bacterial  species demonstrate widely varying
behavior.  Each  nutrient reaction  rate  requires  its own temperature
correction coefficient.

Nitrogen Transformations
Seven different  forms of nitrogen  and  ten reaction rates are used to
represent nitrogen  transformations  in  the soil.  Figure 12a is a diagram
of the nitrogen  forms, and  their interaction.   Table 6 presents the
resulting system of  coupled differential equations.  The reaction rate
equations for the specific  transformations are  developed below.

Mineralization and  Immobilization-
These processes  are  difficult  to measure independently so researchers
usually report only  the net amount  of mineralization or immobilization.
The basic mechanisms occurring in the  soil can  be visualized as
                                 microbial
             mi nerali zati on   i mmob i1i zati on
       Organic -N	»-NH4,  N03	^protein complexes        (32)
                                 (uptake)

There is net mineralization when mineralization exceeds microbial uptake,
and net immobilization when uptake  exceeds mineralization.  The amount of
organic nitrogen in  the soil far exceeds other  nitrogen forms.
Mineralization, even at the slow rate,  can have considerable impact on the
amount of inorganic  nitrogen available  for plant uptake and leaching.  The
most significant studies to date on quantifying the rate of organic nitrogen
mineralization have  been done  by George Stanford and his co-v/orkers at the
Agriculture Research Service,  Beltsville, Maryland-3ltl 35> 36  Stanford
incubated 39 different soils to determine the soil  nitrogen mineralization
potentials and mineralization  rates.  The soil nitrogen mineralization
potential is the amount of  organic  nitrogen in the soil which is
susceptible to mineralization.  The incubation studies found that 5 to 41
percent of the organic nitrogen was mi neralizable,  and that the
first-order decay rate was  relatively uniform for the different soils.
Mineralization rates were also measured at different temperatures for
selected soils.  The reaction  rate  approximately doubled for each ten
Celsius degree increase in  the temperature range investigated.

The mineralization rate was also found to be dependent on  soil moisture.
The rate increased up to a maximum, at about 80 to 90 percent filled pore
space, and then declined with  higher soil moisture.   At higher moisture
levels the rate of oxygen diffusion into the soil was retarded, resulting
in lower mineralization due to the  lack of oxygen.
                                     49

-------
en
o
                       Nutrient transformations in the  ARM model
                                         N2
                                            KD
                    PLNT-N
                                                           KK2
                    KPL
                                                 NO2
                                            K1
                                       NH4-A
K1
 NH4 - S
                                                   KAM
         KIM
 ORG-N
                                 A. Nitrogen transformations in ARM  model
KKIM
                                                        PLNT-P
ORG
-P
                                                KM
                                                •• —.

                                                KIM
                                                            KPL
 P04-S
   P04-A
                                B.  Phosphorus  transformations  in ARM  model
                                                                            Figure 12

-------
           Table 6.  COUPLED SYSTEM OF DIFFERENTIAL EQUATIONS

                      FOR NITROGEN TRANSFORMATIONS
Organic Nitrogen:




     ^- {ORG-N}  =  KIM {NH4-S} + KKIM {N03} - KAM {ORG}





Solution Ammonia:




     ^- {NH4-S}  =  KAM {ORG-N} - (KSA + Kl + KIM){NH4-S} + KAS {NH4-A}





Adsorbed Ammonia:




        {NH4-A}  =  KSA {NH4-S} - (KAS + K1){NH4-A}
Nitrite:




     |f {N02}  =  Kl {NH4-S} + Kl {NH4-A} - (KD + K2){N02} + KK2{N03}





Nitrate:
                                                     i *



     |f {N03}  =  K2 {N02} - (KK2 + KKIM + KPL){N03}





Nitrogen Gas:




        (N2)     KD{N02)
Plant Nitrogen:




       - {PLNT-N}  =  KPL{N03>
                                  51

-------
The mineralization rate equation used in the ARM Model  is


                        ^.{ORG-N} = KAM{ORG-N}6KA|^T"35)          (33)
where    ORG-N = organic nitrogen mass, kg/ha
         KAM   = mineralization rate constant at 35° C, per day
         e*AM  = temperature correction coefficient for mineralization
         T     = soil temperature, °C

The decrease in organic nitrogen will result in an increase of ammonia as
shown in Figure 12a.  At this time corrections for oxygen and moisture
levels are not included.  Work is presently underway to incorporate the
effects of these environmental factors.

Immobilization of inorganic nitrogen in the soil has been reviewed by
Bartholomew.37  When plant residues low in nitrogen are added to the
soil, ammonia or nitrate will be removed from the soil solution to make
more protein needed for larger microorganism populations.  The
immobilization process has not been studied extensively and immobilization
rates are not readily available.  Bartholomew indicated immobilization was
a first order reaction with temperature and moisture dependence.  More
reaction rate and temperature dependence data are needed to adequately
model this process.

The ARM Model represents immobilization as potentially removing ammonia
and nitrate according to the following equations:


                                } = KIM{NH4-S}8|(I|JIT"35)         (34)
                                                                (35)


where   KIM, KKIM  = immobilization rate constants at 35 °C, per day
      NH4-S, N03   = ammonia in solution and nitrate concentration, kg/ha
      6KIM, 9KKIM  = temperature correction coefficients
                T  = temperature, °C

Nitrification-
Nitrification is a two-step process in which ammonia is oxidized first to
nitrite and then to nitrate.  This is an important soil reaction because a
largely immobile form of nitrogen, ammonia, is converted to a highly
mobile form, nitrate, which may be absorbed by plants, lost by leaching
and demtrification, or removed by surface runoff.  Alexander38
                                    52

-------
provided a good description of the nitrification process and an overview
of current research.  Quantification of the nitrification process can be
approached from a simplification of the works of A, D.  McLaren,39 of
U.C. Berkeley, who has published many articles relating nitrogen
transformations to enzyme kinetics and bacterial growth dynamics.  The
basic equation is
                         •* f + - + rfff!                   (36)
where   {s}  = nitrogen substrate concentration
          m  = biomass
          A  = nitrogen oxidized per unit weight of biomass synthesized
          a  = nitrogen oxidized per unit weight of biomass per unit time for
               maintenance
          B  = amount of enzyme per unit biomass involved in waste metabolism
          k" = proportionality constant
          k  = half saturation constant
           m
The first term on the right side of Equation 36 represents consumption  for
microbial growth, the second is for maintenance, and the third term
accounts for substrate oxidized by the enzyme system but not needed for
growth or maintenance.  The basic equation can be simplified by assuming a
fully enriched soil where dm/dt = 0, and small substrate concentrations
(s«K ).  Following these assumptions, Equation 36 becomes



                     - at • °+ K(s)                      (37)
This equation can be simplified further when the first term is  much
smaller than the second, resulting in the first-order rate equation.


                                  = k{s}                        (38)
Although McLaren was able to evaluate the parameters appearing in  Equation
36, parameter estimates are not available for other soil  types under field
conditions.  Alexander38 presented some discussion on the effects  of
temperature, pH, aeration, and moisture on the nitrification  process.
More quantitative information on environmental factors was published in  a
report by Hagin and Amberger.29
                                    53

-------
In the ARM Model  nitrification  is  represented  as  a  two-step  process, each
step with its own rate constant and  temperature correction (actor   The
oxidation of solution and adsorbed ammonia  to  nitrite  is  followed by the
rapid oxidation of nitrite to nitrate.   These  reactions  are


        . d_{NH4-S  +  NH4-A} = Kl {NH4-S  + NH4-A}6K[T"35)          (39)
                       _      =  K2  {N02>e^T-35)                  (40)
where    NH4-S + NH4-A   = mass of ammonia in solution and adsorbad, kg/!ia
                   N02   = mass of nitrite, kg/ha
                Kl, K2   = first and second step rate constants at
                           35 °C, per day
               em> Qw  = first and second step temperature correction
                ^   N     coefficients
                     T   = temperature, °C

Dem'trification-
Until  recently prediction of denitrifi cation rates has not been possible
although the mechanisms have been known for some time.  Denitrification is
favored in wet, poorly aerated soils that have sufficient decomposable
organic matter.  The tremendous increase in the use of nitrogen
fertilizers and the possibility of losing over 30 percent of the applied
nitrogen through denitrification has sparked recent interest in
quantifying and predicting these losses.40

The most quantitative description of the denitrification process has been
published recently by Stanford et al.1*1'1*2  Similar to the incubation
studies used for measuring mineralization  rates and potentials, 30  soil
types  were mixed with water and  incubated  at 35 °C following the addition
of nitrate.  The rate of nitrate disappearance was used to measure  the
denitrification rate.  The authors found denitrification fit a first-order
process better than a zero-order process.  Unlike the results  from  the
mineralization studies where  the mineralization  rate was relatively
 constant among the soils, the  denitrification rate constant varied  by  a
 factor of  30  from the slowest rate to  the  fastest rate.  Seventy-eight
 percent of this variation could  be predicted by  a regression equation
 based on a  soluble carbon index.  The  soluble carbon  index was better  than
 a total  carbon index  because  much of the total  carbon of  soils  is  highly
 resistant  to  decomposition.

 Stanford et al.**1-1*2  also evaluated  the  denitrifi cation rate constant
 at temperatures other than  35 °C.  They  found the reaction  rate  increased
                                     54

-------
about twofold for each ten Celsius degree increase in temperature over the
range 15 to 35 °C.  There was little change in the rate constant when the
temperature increased from 35 °C to 45 °C.

Denitrification  is  represented  in the ARM Model as a two-step process,
first reduction  of  nitrate to nitrite, and then reduction of nitrite to
nitrogen gas.  The  rate equations are


                        = KK2 {N03}6K^T-35)                    (41)
and
                        = KD (N02}e^T-35)                      (42)
where        N03,  N02    = nitrate and nitrite mass, kg/ha
             KK2, KD      = first and second step rate constants at 35 °C,
                            per day
               KK2'  KD   = temperature correction coefficients
                      T   = temperature,  °C

In spite of the importance of oxygen level on the denitrification rate, it
was not possible to include a correction for oxygen level because it is
not simulated in the present model.  Thus, at this time, the
denitrification reactions are either turned on or turned off all the time
depending on the values of KK2 and KD.  Future work will attempt to
include oxygen uptake and diffusion in the soil and allow for internal
adjustment of denitrification rate as a function of oxygen level.

Plant Uptake-
The primary mechanism for removal of nitrogen from agricultural land is
through plant uptake.  Viets43 provided a general review of nitrogen
uptake by plants.  Van der Honert and Hooymons1*1* showed that the rate of
nitrate uptake was a first-order reaction at nitrate concentrations less
than 5 mg/1 and a zero-order reaction at higher concentrations.  The
effect of temperature and pH on the rate of uptake was also discussed.

The ARM Model represents plant uptake of nitrates according to the
following equation:
                            KPL
                                    55

-------
where    PLNT-N   = mass of nitrogen taken up by plants, kg/ha
            N03   = mass of nitrate, kg/ha
            KPL   = plant uptake rate constant, per day
           QKPL   = temperature correction coefficient
              T   = temperature, °C

All plant nitrogen is assumed to be removed during harvesting.  Future work
will need to evaluate the extent to which plant nitrogen contributes to soil
nitrogen in the form of plant residues remaining on the watershed.

Ammonia Adsorption-Desorption-
Ammonia can exist in three different forms in the soil:  dissolved in soil
water, adsorbed to surfaces of soil particles and fixed inside crystal
lattices.  Mortland and Wolcott1*5 discussed the various ammonia
complexes with clays but did not present a general theory to allow
prediction of the different forms.  Instead of developing a complex model
for specific soil types and conditions, a much simpler approach was used
that might represent a much broader range of soils.  The ARM Model assumes
two forms of ammonia exist in the soil:  the adsorbed ammonia attached to
the soil particles, and dissolved ammonia which moves with the soil water.
Rate of transfer from one type to the other is governed by first-order
reactions.  These reactions can be represented by
                               KSA
                                      ..{NH4-A>                    (44)
                               KAS

and the rate equations are
                                                                 (45)
                    - KAS{NH4-A}6KAS(T"35)



where    NH4-S     mass of ammonia in solution, kg/ha
         NH4-A   = mass of ammonia adsorbed to soil, kg/ha
          KSA    = first-order rate constant for adsorption
                   reaction at 35 °C, per day
          KAS    = first-order rate constant for desorption
                   reaction at 35 °C, per day
    8KSA' eKAS   = temperature correction coefficients
             T   = temperature, °C

Usually very little ammonia is in solution; most is adsorbed to soil
particle surfaces.  This would correspond to an adsorption reaction rate
much greater than the desorption rate or KSA»KAS          reaction rate
                                     56

-------
Phosphorus Transformations


Phosphorus was assumed to exist  in only four forms:  organic phosphorus,
solid phosphate compounds,  dissolved phosphates, and phosphorus absorbed
by plants.  The reactions of mineralization-immobilization,
adsorption-desorption, and  plant uptake are modeled as first-order rates.
A diagram of the phosphorus cycle as represented by the ARM Model is given
in Figure 12b, and Table 7  contains the system of coupled differential
equations developed below.

'lineralization-Iriiniobilization-
Organic phosphorus is not as important in the phosphorus cycle as organic
nitrogen is in the nitrogen cycle.  Larsen46 reviewed the literature on
soil phosphorus and did not present any general findings on mineralization
and immobilization rates.   In the ARM Model, phosphorus mineralization and
immobilization mechanisms were assumed to be similar to the corresponding
nitrogen processes.  Thus,  they are represented as


                   - £r(ORG-P} - KM {ORG-P}eJ.T~35)             (46)
                     ^{P04-S} =  KIM  {P04-S}e|(I|JIT'35)           (47)
where    ORG-P   - mass of organic phosphorus, kg/ha
         P04-S   = mass of phosphate in solution, kg/ha
           KM    = first-order mineralization rate at 35 °C, per day
          KIM    = first-order immobilization rate at 35 °C, per day
     8KM' eKIM   = temperature correction coefficients
             T   = temperature, °C

Soil organic phosphorus is assumed to be insoluble and only leaves the
watershed with the eroded sediment.

Adsorption-Desorption-
Organic phosphorus mineralization results in the release of inorganic
phosphates which can remain in the soil solution, precipitate as sparingly
soluble salts of calcium, magnesium, aluminum, or iron phosphates, or
adsorb onto the surface of clay or calcium carbonate soil particles/*b
The Model represents these three forms of phosphate in two categories;
that is, phosphates in solution, and phosphates in solid form including
both adsorbed and precipitated forms.  Solid phosphates will be referred
to as adsorbed phosphates, and the transfer between solution and adsorbed
phosphates is modeled by adsorption and desorption reactions:
                                    57

-------
          Table 7.  COUPLED SYSTEM OF DIFFERENTIAL EQUATIONS
                    FOR PHOSPHORUS TRANSFORMATIONS
Organic Phosphorus:


        {ORG-P} =  - KM {ORG-P} +  KIM {P04-S}
Solution Phosphate:


        {P04-S} =  KM {ORG-P} - (KIM + KSA + KPL) {P04-S} +  KAS {P04-A}
Adsorbed and Combined Phosphate:


        {P04-A}  =  KSA {P04-S} - KAS {P04-A}
Plant Phosphorus:


        {PLNT-P}  =  KPL {P04-S}
                                  58

-------
                       {R04-S}:
                                 KSA
                                 KAS
The resulting  rate  expressions  are
                                :{P04-A}
                                                                 (48)
 ' 3t(P04'S}  =
where
    P04-S
    P04-A
      KSA

      KAS

9KSA 0KAS

        T
                     KSA{P04-S}8
                                  (T-35)
                                KSA
                                              -  KAS{P04-A}6
                                                             (T-35)
                                                           KAS
                                                                 (49)
                    =  mass  of phosphate  in  solution,  kg/ha
                    =  mass  of phosphate  adsorbed,  kg/ha
                    =  first-order  rate constant  for adsorption
                      at  35 °C,  per day
                    =  first-order  rate constant  for desorption
                      at  35 °C,  per day
                    =  temperature  correction coefficients

                    -  temperature,  °C
Fried et al.1*7 studied  the  desorption  reaction and found that the data
fit a first-order  rate  equation.  The  reaction rate increased by 80
percent for a temperature increase of  12  Celsius degrees.  Enfield and
Shew'ts studied both  reactions  and found that the magnitude of the
adsorption rate was  much greater than  the desorption rate, or KSA » KAS.
At equilibrium, in most soils  the dissolved phosphates rarely exceed 0.2
Rig/1 and the majority of the phosphates are in solid form.

Plant Uptake-
Fried et a!47 also studied  the rate of phosphate uptake by plant roots
under laboratory conditions and found  that the absorption rate was
approximately proportional  to  the solution concentration, thus a first
order mechanism.  Van der Honert et al.1*1* showed that phosphate uptake
was a first-order  reaction  up  to 1.0 mg P04/1.  Since soil solutions
rarely exceed this concentration, a first-order uptake mechanism is a
reasonable assumption.

The rate expression  used in the ARM Model is
                           =  KPL  {P04-S}0
                                            T"35)
                                                           (50)
                                          Kp
where    PLNT-P   = mass of plant phosphorus, kg/ha
          P04-S   = mass of phosphates in solution, kg/ha
           KPL    = first-order absorption rate, kg/ha
          9KPL    = temperature correction coefficient
              T   = temperature, °C
                                    59

-------
The nutrient model assumes that plant phosphorus can be removed from the
watershed only by harvesting.   This assumption is valid for plants, such
as grain crops, that contain phosphorus largely in the portion harvested.
Moreover, the conversion of phosphorus is plant residues to soil organic
phosphorus is a slow process especially in dry, cold regions.  However, in
warm, humid areas and where substantial plant residues remain on the
watershed, the conversion of plant phosphorus to soil organic phosphorus
may be significant.  Further development of the nutrient model will need
to evaluate the importance of this process and possibly allow for its
simulation.
Review of Assumptions

The nutrient model required many assumptions in its development.  A review
of these assumptions is essential to a full understanding of the model.
The assumption of first-order kinetics is generally valid for chemical and
biological reactions when the reactants are not in high concentrations.
From the literature cited, it appears conditions existing in the soil are
such that first-order kinetics is a reasonable assumption.  Temperature
correction of reaction rates using a simplified form of the Arrhenius
equation is flexible and can closely approximate changes in rates reported
in the literature.  The reaction rates were assumed to be constant for
temperatures greater than 35 °C because the behavior of chemical and
biological reactions is not well defined at high temperatures.  Until the
ARM Model is able to simulate soil temperatures, the average daily air
temperature will be used to approximate soil temperatures.

The environmental factors of pH, moisture, oxygen, and organic matter are
not directly taken into account for reaction rate modification.  Soil pH
is relatively constant due to the high buffering capacity of the soil
itself.  Any pH correction could be done when the reaction rates are input
to the Model.  Reaction rates should be corrected for moisture levels
because biological activity is dependent on soil moisture.  Oxygen levels
in the soil are needed to determine if oxidative processes like
mineralization and nitrification, or reductive processes, like
denitrification, will occur.  Organic matter in the soil can deplete the
oxygen in the soil and accelerate the rate of denitrification.

Some of the limitations in the nutrient model due to neglecting pH,
moisture, oxygen, and organic matter can be circumvented by having
separate reaction rates for each of the four soil layers.  For example,
the denitrification rate could be set to zero in the surface and upper
zone because they are usually well aerated.  Likewise the denitrification
rate would be close to zero in the groundwater zone because of low organic
content.  Thus, the input of four values, one for each soil layer, is a
temporary correction for soil properties and environmental factors at
different depths.
                                     60

-------
Numerical Solution Techniques
Tables 6 and 7 display the nitrogen and phosphorus rate equations which
result from the assumption of first-order kinetics.  Analytic solutions of
coupled systems of equations for constituent concentrations are quite
difficult when advective processes, like leaching and sediment loss, are
simulated in addition to reaction rate adjustments for temperature.
Because of the problems with analytic solutions, the nutrient model
numerically solves the coupled system of differential equations for the
nitrogen and phosphorus masses in each soil layer.

There are numerous solution techniques available.  The choice depends upon
the equations to be solved, the accuracy desired and the amount of
computer time available.    The technique used in the nutrient model is
a simple Euler integration scheme illustrated by the following example.
Given the differential equation for a first-order reaction rate


                                                                 (51)
where    y(t)  = mass at time t
            k  = rate constant

the time derivative can be approximated by
                 d  vm-y(t + At) - y(t)                       (52)
                 dTyUj~       At
when At, the time step, is small.  Substitution of the derivative
approximation into the differential  Equation 51, yields


                 v(t  + At) - y(t) _                             (53)
Rearranging and solving for y(t + At) gives


                 y(t + At) «y(t) - Atky(t)                      (54)


Thus, the mass at the next time step can be approximated with the mass  at
the present time; the differential equation is integrated step by step  to
obtain the mass for future time steps.  The coupled system of differential
                                     61

-------
equations of nitrogen and phosphorus  transformations  are solved by a
similar procedure in the ARM Model.   The accuracy of  the solution depends
on the size of the term Atk which should be much less than one in order
to change the mass by only a small  amount in each time step.

CONCLUSIONS

A preliminary model  of nitrogen and phosphorus  compounds has  been
developed for agricultural lands.  The model includes advective losses to
the stream through sediment, overland flow and  interflow,  and leaching to
groundwater.  An attempt was made to  represent  with actual  first-order
kinetics chemical and biological  transformations occurring in the soil.
Numerous assumptions were necessary for model development;  verification
of the nutrient model must await the  comparison of simulated  results with
recorded field data.  Further development of model algorithms and testing
with field data will be undertaken in a continuing research grant.
                                    62

-------
                               SECTION VII

                  DATA COLLECTION AND ANALYSIS PROGRAMS
The ARM Model development effort is supported by an extensive data
collection and analysis program sponsored by the U.S. Environmental
Protection Agency's Environmental Research Laboratory in Athens, Georgia
(ERL-Athens).  Test sites located in Georgia and Michigan have been
instrumented for the continuous monitoring and sampling of runoff and
sediment.  Collected samples are refrigerated on site and later analyzed
for pesticide and nutrient content.  In addition, meteorologic conditions
are continuously monitored and soil core samples are taken and analyzed
immediately following application and periodically throughout the growing
season.  Table 8 presents pertinent details on the test watersheds.  The
individual programs in Georgia and Michigan are described below.

GEORGIA TEST SITE
This program is a joint effort between the ERL-Athens and the U.S.
Department of Agriculture's Southern Piedmont Conservation Research Center
(SPCRC) in Watkinsville, Georgia (see Location Map, Figure 13).  Two test
watersheds (PI, P3) since 1972 and two additional test watersheds (P2, P4)
since 1973 have been instrumented, in addition to two small runoff plots
(SP1, SP3).  A series of twelve 6x9 meter attenuation plots were
instrumented to study the degradation and vertical movement of pesticides
in the soil profile.  Recording rain gages have been established at each
test watershed, and a weather station was set up at the attenuation plots
to record air temperature, pan evaporation, and wind data.  The
attenuation plots were also instrumented to record soil moisture and
temperature at various soil depths, wind velocity and direction, solar
radiation, air temperature, and relative humidity at different heights
above the soil surface.  This data is automatically recorded on magnetic
tape by a PDP-8 computer.

The SPCRC is responsible for the general care (pesticide applications,
planting, harvesting, etc.) of the test watersheds, the collection,
operation, and analysis of rainfall, runoff, and sediment data, and the
nutrient analyses of runoff samples.  Automated stage recording and
sampling instrumention provides continuous monitoring of the watersheds.
Minimum-till age procedures are followed whereby tillage operations are
performed only as preparation for planting.  Runoff and sediment samples
are transferred to the ERL-Athens where pesticide analyses are performed.
The pesticide analyses are accomplished by an integrated method involving
gas chromatographic and calorimetric analysis techniques.50  At the end
of the 1975 growing season the joint ERL-Athens/ USDA program in Georgia
will have completed four seasons of continuous data collection and
analysis of agricultural runoff.
                                     63

-------
                                              Table 8.   TEST WATERSHEDS  FOR ARM MODEL TESTING
CT»
•P*
               Watershed    Location
               Designation
               PI



               P2


               P3
               OOo(East)
 Watkinsville,
 Georgia
Watkinsville.
Georgia
                            Watkinsville,
                            Georgia
                  Owner/
                 Operator
USDA/EPA
USDA/EPA
Watkinsville,    USDA/EPA
Georgia
                 USDA/EPA
East Lansing,    Michigan
Michigan        State Univ
              007(West)    East Lansing,    Michigan
                           Michigan        State Univ
            Area      Mean     Soils
            (ha)    Elevatior
                 (m above tnsl)
                            Conservation
2.70      238      Cecil     non-terraced
                sandy loam
1.30      231      Cecil     non-terraced
                sandy loam

1.26      239      Cecil     terraced
                sandy loam
             1.38      239      Cecil      terraced
                             sandy loam

             0.80      272     Spinks      non-terraced
                             sandy loam,
                           Also Traverse
                           Hillsdale,  Tuscola
                               loam

             0.55      271     Spinks      non-terraced
                             sandy loam,
                           Also Traverse
                           Hillsdale,  Tuscola
                               loam
      1973 Growing Season
Crop      Pesticide  Application
          Applied     (kg/ha)

 soybeans  paraquat     1.12
          diphenamid    3.36
          trifluralin   1.12
 corn
 paraquat
atrazine
                                             corn
           paraquat
          atrazine
1.12
3.36
                                                          soybeans  paraquat     1.12
                                                                   diphenamid    3.36
                                                                   trifluralin   1.12
              1.12
              3.36
                                             soybeans  paraquat     1.12
                                                      diphenamid    3.36
                                                      trifluralin   1.12
                                                                           soybeans  paraquat      1.12
                                                                                    diphenamid     3.36
                                                                                    trifluralin    1.12

-------
            Experimental watersheds in Georgia
CTl
                                                                                       EXPERIMENTAL
                                                                                       AREA
                                                                                      GEORGIA
                                                               Figure 13

-------
MICHIGAN TEST SITE


The Michigan test site is operated by  the  Michigan  State University's
Department of Crop and Soil  Science and Department  of Entomology in a
cooperative agreement with the  ERL-Athens.  The  two test watersheds
(listed in Table 8) are located approximately two miles  south of East
Lansing, Michigan on the MSU Campus (Figure 14).  Initially instrumented
in 1941, the watersheds have been  operated since that time under various
research projects.  A permanent weather station  (East Lansing 3 SE, Index
No.  2395) adjacent to the watersheds  provides continuous information on
rainfall, evaporation, solar radiation, air temperature, and wind
movement.

Similar to the program at the ERL-Athens,  the Michigan test watersheds are
instrumented for continuous monitoring and sampling of runoff and
sediment; a Coshocton wheel  for sample splitting is included in the
automated instrumentation.  Pesticides are applied  and analyzed in soil
core and runoff samples by a gas chromatograph feeding directly to a
computer for data logging.  In  addition, snow depth and  water equivalent
is recorded, and snowmelt runoff samples are  analyzed for pesticide and
nutrient content.  Pesticides have also been  applied in  the fall to
facilitate detection in the snowmelt.   Initiated in 1973, the MSU project
is expected to continue in operation for both pesticide  and nutrient
monitoring until Spring 1976.
                                  66

-------
Experimental  watersheds in Michigan
                    EAST LANSING
  MT. HOPE ROAD
   FOREST ROAD
                                   MICHIGAN

                                      STATE

                                 UNIVERSITY
                                     UJ
                      PESTICIDE FIELD
                      LABORATORY
                                    W. 007    006 E.
                                    MSU WATERSHEDS
BENNET
                                             ROAD
                                                   Q
             Z
             cc.
             O
             Q




             I
                            i
                                                Figure 14

-------
                              SECTION VIII

                 ARM MODEL  TESTING AND SIMULATION  RESULTS
Hodel testing for runoff,  sediment  loss,  and  pesticide  loss  was  completed
on one additional year of  data  (January  1973-December  1973)  from the PI
and P3 watersheds in Watkinsville,  Georgia.   Data  for  1974 and for the
four remaining watersheds  (Section  VII)  in  Georgia and  Michigan  is
presently being analyzed and prepared for testing  purposes.   In  addition,
nutrient runoff data for 1974 from  both  the Georgia and Michigan sites
will become available for  future  testing of the  nutrient portions of the
ARM Model.

Figures 15 and 16 present  detailed  maps  of  the PI  and  P3 test watersheds
in Georgia.  As indicated  in Table  8, PI is a natural watershed  while P3
is a terraced watershed with a  grass  waterway.   This difference  is
especially important in the relative  sediment loss from the  two
watersheds.  PI and P3 received identical management practices during
1973:  minimum tillage was employed,  soybeans were planted,  and the
herbicides paraquat (l,r-dimethyl-4,4-bipyridinium ion), diphenamid (N,
N-dimethyl-2, 2-diphenylacetamide), and  trifluralin (a,a,a-trifluoro-2,
6-dinitro-N, N-dipropyl-p-toluidine)  were applied  at 1.1, 3.4 and 1.1
kg/ha, respectively.  Pesticide simulations were performed for paraquat
and diphenamid; trifluralin was not simulated due  to the lack of reliable
laboratory isotherm data.   The  following portions  of this section discuss
the hydrology, sediment production, and  pesticide  simulation results for
the PI and P3 watersheds.   Results  are presented and analyzed, and data
and simulation problems are enumerated.   This section  concludes  with a
discussion on indicated future  topics of research  and  major conclusions
from the ARM Model testing.

HYDROLOGY AND SEDIMENT PRODUCTION SIMULATION


The  hydrologic subroutine, LANDS, is the most highly developed and tested
portion of the ARM Model.   The algorithms have  been employed and tested in
the  Stanford Watershed Model and the Hydrocomp  Simulation Program on
numerous watersheds of differing size across  the country.  Although their
use  on extremely  small watersheds has been  limited, the simulation results
on  the PI and P3  watersheds are highly promising.    Figures 17 and 18 and
Tables 9 and  10  present the recorded monthly rainfall  and recorded and
simulated monthly runoff and sediment loss  for the  PI and P3 watersheds,
respectively.  In both cases, monthly runoff is  reasonably well  simulated
for 1973, especially for the critical summer period, June through October.
On  the PI watershed, the summer period appears  to be more accurately
simulated than the winter-spring period.  This  may  indicate a possible
seasonal  variation  in hydrologic parameters that warrants further
                                    68

-------
SAMPLING  SITE AND
INSTRUMENTATION

RECORDING  RAIN GAGE

DRAINAGE PATTERN

CONTOUR LINES
            P1  Watershed. Watkinsville, Georgia (2.70 ha)
                                Figure 15
                         69

-------
•V*"
SAMPLING  SITE AND
  INSTRUMENTATION
DRAINAGE  PATTERN
RECORDING  RAIN GAGE
    CONTOUR  LINES
   GRASS  WATERWAY
    BOUNDARY LINE
  P3 Watershed, Watkinsvitle, Georgia (1.26 ha)
                                               Figure 16

-------
    200
 <
 u_
 5 100
 on
  o
  z
  o;
 I OO
00
      60
      40
      20
      16
       8
                          i     i    I     I
                       I    I
              I    T
                               RECORDED
                               SIMULATED
T	T
                                                T	T
                      M
     A    M    J    J

       TIME, MONTHS
A
                                                     0    N
        Figure 17.  1973 monthly rainfall, runoff,  and  sediment
                    loss for the PI watershed
                                  71

-------
o

ID
oi
CO
CO
CO
o
Ul
o
LU
CO
                                            I     I    I     I     I
                                                      RECORDED

                                                      SIMULATED
FMAMJJA

          TIME, MONTHS
                                                     OND
        Figure  18.   1973  monthly rainfall, runoff, and sediment
                    loss  for the P3 watershed
                                  72

-------
                     Table 9.  1973 SUMMARY OF RAINFALL, RUNOFF, AND SEDIMENT  LOSS  FOR THE
                                     PI WATERSHED  (RECORDED AND SIMULATED)
OJ
Month    Rainfall
        mm    (in)
Jan  135.4  (5.33)
Feb   69.3  (2.73)
Mar  250.7  (9.87)
Apr  127.5  (5.02)
flay  174.0  (6.85)
Jun  135.1  (5.32)
Jul   65.3  (2.57)
Aug   31.8  (1.25)
Sep   119.9  (4.72)
Oct     6.6    (.26)
llov   44.5   (1.75)
Dec   196.1   (7.72)
Total
     1356.2  (53.39)
*  Estimated  values
Total
Recorded
mm (in)
1.3
7.4
51.6
15.0
49.8
43.9
19.1
1.3
23.1
0
0
10.5
(.05)
(.29)
(2.03)
(.59)
(1.96)
(1.73)
(.75)
(.05)
(.91)
(0)
(0)
(.73)
Runoff
Simulated
mm (in)
7.
8.
62.
40.
66.
41.
14.
2.
20.
0
•
15.
9
6
7
1
3
0
7
3
3

5
0
(.31)
(.34)
(2.47)
(1.58)
(2.61)
(1.65)
(.58)
(.09)
(.80)
(0)
(.02)
(.59)
Sediment Loss
Recorded Simulated
tonne/ha ton/ac tonne/ha ton/ac
0
(0)
.002
4.
19
.83
16
16
2

1
0
0

.9
.6
.0
.09
.1


.85
(.
(1
(.
(7
(7
(.
(
(


(
001)
.87)
37)
.54)*
.42)*
89)
.04)
.49)
(0)
(0)
.38)
.09
.13
3.43
.96
10.5
7.7
2.62
.11
1.64
0
.02
.60
(
(
(
(
.04)
.06)
1.53)
.43)
(4.70)
(
(





3.47)
1.17)
(.05)
(.73)
(0)
(.01)
(.27)
                                     231.0  (9.09)  280.3  (11.04)
                                     due to equipment malfunction.
42.56  (19.00) 27.97   (12.46)

-------
                         Table 10.   1973 SUMMARY  OF
          RAINFALL,  RUNOFF,  AND SEDIMENT LOSS  FOR THE P3 WATERSHED
                          (RECORDED AND SlflULATED)
 Month    Rainfall
         mm    (in)
 Jan   100.8  (3.97)
 Feb    73.9  (2.91)
 Mar   239.5  (9.43)
 Apr    34.8  (1.37)
 May   156.0  (6.14)
 Jun   120.4  (4.74)
 Jul   123.2  (4.85)
 Aug   22.9  (.90)
 Sep   135.1   (5.32)
 Oct    5.1   (.20)
Nov   43.2   (1.70)
Dec   180.9   (7.12)
Total
Recorded
mm (in)
18.8
10.4
66.3
0
35.3
20.0
35.3
0
21.8
0
0
11.7
(.74)
(.41)
(2.61)
(0)
(1.39)
(.79)
(1.39)
(0)
(.86)
(0)
(0)
(.46)
Runoff
Simulated
mm (in)
6.4
9.9
65.3
4.3
45.0
22.6
41.7
0
20.1
0
.8
14.0
(-25)
(.39)
(2.57)
(.17)
(1.77)
(.89)
(1.64)
(0)
(.79)
(0)
(.03)
(.55)
Sediment Loss
Recorded Simulated
tonne/ha ton/ac tonne/ha ton/ac
.31
.02
.61
0
2.77
1.48
1.48
0
.08
0
0
.11
(.14)
(.01)
(.27)
(0)
(1.24)
(.66)
(.66)
(0)
(.04)
(0)
(0)
(.05)
.09
.13
.83
.02
2.02
1.16
2.37
0
.34
0
.01
.18
(.04)
(.06)
(.37)
(.01)
(.90)
(.52)
(1.06)
(0)
(.15)
(0)
(.01)
(.08)
Total
    1235.8 (48.65) 219.6  (8.65) 230.1   (9.05)     6.86   (3.07)   7.15    (3.20)

-------
investigation.  The terraces  and  grass waterway on P3 seemed to have
little effect on monthly  runoff volumes.   In fact, the LANDS parameters
initially calibrated on the PI watershed performed somewhat better on the
P3 watershed as indicated by  the  monthly runoff volumes.  In any case, the
runoff results presented  in Figures  17 and 18 are a true verification of
the LANDS subroutine and  the  calibration.  Verification refers to the
results of split-sample testing,  i.e., a comparison of simulated and
recorded values for a period  of record other than that on which a model is
calibrated.  The results  in Figures  17 and 18 were obtained with
parameters calibrated in  the  PTR  Model development work on data for July
to December 1972.  The agreement  between the 1973 simulated and recorded
values verifies the hydrologic simulation by the LANDS subroutine.

The simulation of sediment loss continues to require algorithm refinement
and testing.  Due to sediment algorithm changes (Section IV), the sediment
parameters were re-calibrated to  obtain the results presented in Figures
17 and 18.  Even with the re-calibration efforts, certain discrepancies
remain between recorded and simulated monthly sediment loss.  The
simulated sediment values on  PI agree reasonably well with recorded values
except for the extremely  large amounts in May and June.  In these months,
a major portion of the monthly sediment loss was estimated because an
unusual sequence of events (described below) resulted in equipment
malfunctions on the PI watershed.  Consequently, the recorded values
contain a certain margin  of error.  The P3 monthly sediment loss (Figure
18) is substantially less than the PI values due to the effects of
terracing and the grass waterway.  The simulated monthly sediment loss for
P3 is somewhat closer to  recorded values but further improvement is
needed.  A more detailed  examination of the effects of the grass waterway,
the terraces, and the existence of a winter cover crop on the P3 watershed
sediment loss is indicated.

Simulated and recorded storm  hydrographs and curves of sediment
concentration (gm/1) and  sediment mass flow (kg/min) for the PI watershed
are presented in Figures  19-23 for the 1973 storms of May 28 (AM), June 6,
June 13, June 21, and September 9.  Corresponding results for the P3
watershed are shown in Figures 24-28 for the 1973 storms of May 28 (AM),
June 6, July 8, July 14,  and  September 9.  Although these storms occurred
during a five-month summer period, the simulation accuracy is
representative of the results obtained throughout the 1973 calendar year.
These storms were chosen  because  they (1) demonstrate the effects of
tillage operations or (2) occur during the critical period for pesticide
loss, i.e. one to three months following application.

In general the agreement  between  recorded and simulated runoff is quite
good, while the agreement between recorded and simulated sediment loss is
fair to good.  Numerous factors could be responsible for the deviations in
both runoff and sediment  loss.  However, before a full evaluation of the
simulation results can be performed, the sequence of events which occurred
on the watersheds during  this period must be specified.  Table 11 presents
                                    75

-------
oo
s
o

 rs
Ll-
Ll-
O
0.4
     0.2
to
GO
o
 LU
 O
 LU
 CO
       60
       40
       20
     1200 -
 co
 O
 LU
 O
 LU
 OO
               T	r
                                   _-^  \
                                                      	i
                                                RECORDED
                                          	  SIMULATED

                                          •EQUIPMENT MALFUNCTION
        0
                               TIME, HOURS

                      Runoff and sediment loss from the PI watershed
                      on May 28 (a.m.), 1973
                                   76

-------
cj

0.4


0.3


0.2


0.1


0.0
 60
     40
5   20
    800
2   400 -
                     \*
                                    RECORDED 	
                                    SIMULATED	
                                    EQUIPMENT MALFUNCTION
                                    MALFUNCTION CORRECTED
                                     JLll=i—L	L
           1200
        Figure 20.
                      1230
1300
                                                       1330
                          TIME. HOURS
                 Runoff and  sediment  loss  from the  PI
                 watershed on June 6,  1973
                                 77

-------
   B.4
   8.3
bO
as
CJ
uT  0.2
    0.1
    8.0
ts>

     60 h
     40
-   20
   1000
 5  500
                 r;   i
                         T     r
                           RECORDED
                           SIMULATED
 11
/ \
I    \
                          i  >h--4.	L
           1800
        Figure 21.
          1830           1900
                  , HOURS
                                                      1930
     Runoff and  sediment loss  from the PI
     watershed on  June 13, 1973
                 78

-------
   0.25
   6.20
   0.15
   0.10
   0.05
     40
~   20
    300
2  200
!r   100
     '0
           1800
                                            —I	1	L
                    347.2/1  \
^x
1 1 1 - 1 1 '

II 1 1 1
•A
:A
RECORDED 	

SIMULATED 	







              I
              I
              I
              I
              I
              f
                   1830           1900

                       TIME.HOURS
                                                       1930
Figure  22.
                    Runoff and  sediment loss  from the PI
                    watershed on June 21, 1973.
                                  79

-------
0.20
0.15
8.10
0.05
0.00

  12
P—I
 too
  80
  40
                          T	1	1	T
            1	T
T—q
        2030
                  2100
      2130
HME. HOURS
                                                 2200
    Figure 23.  Runoff and sediment loss from  the  PI  watershed
                on September 9, 1973
                                 80

-------
co

o
    0.12
    0.08
    0.04
    0.00
       8
CO
CO
O
o
LU
CO
CO
CO
o
o
UJ
CO
       0
      60
      40  -
      20  -
       0
                       T	T
                                     T	T
                                  1	T
                      / X_
   I	I
I     I    I     I
	L    I
                       1    i     i    i     i    i     i    r
                                            \     i
                                 / \
                                       RECORDED

                                       SIMULATED
                       ——_>
-3	L
    J	L
    j	I
            400
           430           500

            TIME, HOURS
                     530
         Figure  24.   Runoff and sediment loss from the P3 watershed

                      on  May 28 (a.m.), 1973
                                   81

-------
CO
s
o

 A
u_
u_
o
z:
^
Oi
     0.16 -
     0.12 -
0.08 -
co
CO
O
 Q
 UJ
 CO
 CO
 CO
 o
 LL)
 5:
 i—i
 o
 LU
 CO
         0
             1200
                      1230
1330
                                  TIME, HOURS
           Figure 25.   Runoff and sediment loss  from the P3 watershed
                        on  June 6, 1973
                                     82

-------
00

o

 f\
U_
u_
o
0.10





0.05




0.00

  12





   8
CO
00
o
UJ
o
UJ
CO
 CD
 ixi
 CO
 CO
 o
 LU
 Q
 LU
 CO
                                             I     I         I    I
        0
   80
       40
        0

                                                	    RECORDED

                                                	    SIMULATED
                430
                                                          600
                                   TIME,  HOURS
           Figure 26.  Runoff and  sediment loss from the P3 watershed
                       on July 8,  1973
                                     83

-------
co

o
i
CO
co
O
O
Ul
CO
CO
CO
o
LU

»-4
o
LU
CO
     0.06
t    0.04
o
     0.02
     0.00
 0



16





12




 8
                               i—i	r
                                           T	1	\	T
                              	1	1    l    I     i     i
             I   SJ    1
                                    i     t    l
                                                i     l     i
X
i	
                                                	  RECORDED

                                                •—  SIMULATED
                    1800
        1830

     TIME,  HOURS
                                            J	L
                                                1900
                                                        1930
         Figure 27.  Runoff and sediment  loss  from the P3 watershed
                    on July 14, 1973
                                   84

-------
o
 A
u_
Lu.
O


OS
CO
CO
O
O
LU
CO
CO
CO
o
s
CO
                                                        RECORDED
                                                 	  SIMULATED
               2100
2130
2200
                                                         2230
                                TIME, HOURS
          Figure 28.   Runoff and sediment loss from the  P3 watershed
                      on September 9, 1973

-------
         Table 11.  SEQUENCE OF CRITICAL EVENTS AND OPERATIONS
       ON THE PI AND P3 WATERSHEDS DURING  THE  1973 GROWING SEASON


Date      Watershed                Event/Operation

Prior to     PI      Watershed  was covered with soybean stubble and residue*
5-22-73
             P3      Winter cover crop  (barley) was harvested and removed.

5-22-73      PI, P3  Fertilizer was applied  and incorporated with a
                     disc harrow.

5-28-73      PI, P3  Severe storms occurred  (AM and PM storms) resulting
                     in high sediment loss from the freshly tilled land
                     surface.

6-4-73       PI, P3  Watersheds were refertilized  and tilled (fertilizer
                     incorporation) with a disc harrow.

6-6-73       PI, P3  Severe storms occurred  with high sediment loss from
                     the PI watershed.

6-7-73       PI      Watershed  was re-fertilized and tilled (fertilizer
                     incorporation) with a disc harrow.

6-13-73      PI      Watershed  was planted in  the  morning.  Planting
                     operation  includes a  rolling  cultivator which
                     lightly tills the  soil.  A severe evening storm
                     resulted in heavy  sediment loss.
             P3      No storm occurred.

6-15-73      P3      Watershed  was planted and a rolling cultivator was
                     used.

6-21-73      PI      Medium intensity storm  occurred.
             P3      No storm occurred.

11-7-73      P3      Soybeans were harvested.

11-14-73     P3      Winter cover crop, rye, was planted with a grain drill.

11-19-73     PI      Soybeans were harvested and residue remained on the
                     watershed.  No winter crop was planted.
                                     86

-------
the dates and corresponding events and operations which occurred on the PI
and P3 watersheds during the 1973 growing season.  In light of these
events and the simulation results for runoff and sediment loss, the
following conclusions are indicated:

      (1)  Tillage operations have a major effect on runoff and sediment
           loss from small agricultural watersheds.  The effect on
           sediment loss appears to be somewhat greater than the effect
           on runoff.

      (2)  Peak flow tends to increase, and the rising limb of the
           hydrograph becomes steeper as the time since tillage
           operations increases, i.e., freshly tilled soil  tends to
           dampen the peak and retard the overland flow.  This is
           especially noticeable when comparing early storms (Figures
           19, 20, 21, 24, 25) with storms later in the season (Figures
           22, 23, 26, 27, 28).  Natural compaction of the land surface
           and the compacting effect of rainfall tend to increase the
           hydrologic responsiveness of the land surface as the growing
           season progresses.  The present version of the ARM Model does
           not account for this phenomenon.  Thus, the simulated
           hydrographs indicate what might be expected from a no-tillage
           cropping system.

      (3)  The storms of May 28 (Figures 19 and 24) and June 6 (Figures
           20 and 25), especially on the PI watershed, dramatize the
           enormous influence of tillage operations prior to a storm
           event.  Although the recorded data is sketchy due to
           equipment malfunction, the general indication is that the
           simulated PI sediment loss is considerable less than what
           would have been observed.  However, the June 21st storm on
           PI, which occurred approximately one week after tillage
           operations and after the June 13th event, is well simulated
           for both runoff and sediment loss.  Consequently, more
           testing is needed to fully evaluate the discrepancies in
           simulated and recorded sediment loss for the early season
           storm events.

      (4)  The combined influence of the terraces and the grass waterway on
           the P3 watershed results in much lower sediment loss than on
           the PI watershed.  In addition the winter cover crop on the
           P3 watershed tends to lower the winter sediment loss from
           what is observed on the PI watershed.  In general, the
           simulated monthly sediment loss and storm sediment curves are
           reasonably close but somewhat higher than recorded values.
           Further research is needed into the effects of terracing,
           contour planting, grass waterways and other management
           practices on the ARM Model parameters.
                                     87

-------
      (5)  The spatial variation in rainfall is a critical  factor in
          simulation, especially in thunderstorm-prone areas  such as
          Georgia.  Although the PI and P3 watersheds are  only  2 miles
          apart, the monthly rainfall shown in Figures 17  and 18 can
          vary  significantly.  This is most noticeable in  the months  of
          April and July.  Also, the storms of June  13 and June 21 on
          the PI watershed did not even occur on the P3 watershed while
          the July 14 storm on P3 completely missed  the PI watershed.
          The spatial variation is especially critical if  the rainfall
          measured at the gage is not representative of what  actually
          fell  on the watershed.  The June 6th storm (Figure  20) on  the
          PI watershed  is a possible example.  Runoff volume  and peak
          flows for all  the other major summer storms are  either well
          simulated or  slightly higher than recorded; both are  below
          recorded values on June 6.  Since the ARM  Model  does  not
          recognize the  hydrologic effects of tillage operations, one
          would expect  the June 6th simulated values to be higher than
          recorded.  Thus the spatial variation in rainfall  is  a prime
          suspect.  This aspect needs to be evaluated in all  areas
          where thunderstorms occur.

In summary,  although some discrepancies exist between simulated  and
recorded runoff  and sediment loss, the results presented here  indicate
that the ARM Model can represent the general behavior of the  PI  and P3
watersheds.   This  provides a workable foundation for  the analysis and
evaluation of the  pesticide simulation results presented below.

PESTICIDE SIMULATION


The goal of  the  pesticide simulations was to evaluate the use  of a
non-single-valued  (NSV)  adsorption/desorption function (described in
Section IV)  to represent the pesticide-soil interactions.   A  conclusion  of
the PTR Model work was that the single-valued (SV) adsortion/desorption
function did not appear  to adequately simulate these  interactions.1  The
major problems were associated with the simulation of pesticides contained
in both the  water  and sediment components of surface  runoff,  and the
division between the two transport phases.  Since the goal  of the
pesticide modeling effort is to use pesticide characteristics  determined
from laboratory  experiments, the pesticide  parameters are not subject to
calibration.  The  values used to obtain the simulation results were those
derived from laboratory  isotherm data.  The parameter values  are identical
for both the SV  and NSV  functions in order  to provide a meaningful
evaluation of the  performance of the different functions.   The simulation
results will be  described separately for each pesticide since paraquat and
diphenamid have  quite different chemical and transport characteristics.
                                   88

-------
Paraquat
Simulated and recorded monthly paraquat loss is presented in Figure 29 and
Table 12 for the PI and P3 watersheds.  Paraquat is a highly ionic
herbicide that rapidly and essentially irreversibly adsorbs onto sediment
particles.  Consequently, the question of single-valued versus
non-single-valued adsorption/desorption is irrelevant for paraquat
simulation since paraquat is entirely and permanently bound to the
sediment.  Comparison of Figure  29 with Figures 17 and 18 will show that
the monthly paraquat loss closely follows the monthly sediment loss.  This
is also true for the simulated curves.  Deviations in the simulated
sediment loss are reflected by the simulated paraquat loss.  This is also
evident in the storm graphs of paraquat concentration and mass removal
shown in Figures 30, 31 and 32 for the June 13, June 21 and September 9
storms on PI, and Figures 33, 34, and 35 for the July 8, July 14, and
September 9 storms on P3.  For example, the June 21 storm on PI is
accurately simulated for both runoff and sediment loss (Figure 22).  The
simulated paraquat concentrations and mass removal for this storm (Figure
31) are also in agreement with recorded values.  On the other hand, the
June 13 storm on PI is under-simulated for sediment loss (Figure 21);
thus, the paraquat mass removal for this storm (Figure 30) is also
under-simulated, even though simulated and recorded concentrations are in
good agreement.  This same relationship can be recognized in other storms
on both watersheds.  In general, although concentration (ppm) is a
significant unit of measurement in terms of environmental effects, mass
removal (kg/min) is a more indicative measurement unit for simulating
pesticide transport.  Pesticide concentrations can vary considerable
during a storm event for no apparent reason.  This could be a result of
equipment problems leading to non-uniform application, or preferential
pesticide adsorption on particles passing the gage at any time.  Pesticide
mass removal demonstrates the close association between pesticide loss and
the transport mechanisms of runoff and sediment loss.

For paraquat, the measured pesticide concentrations are almost independent
of the instantaneous flow and sediment concentrations.  Comparison of the
paraquat concentrations measured on sediment from the PI and P3
watersheds, demonstrates that the P3 recorded paraquat concentrations are
considerably higher than those on PI.  For pesticides like paraquat that
are permanently bound to the soil particles, the measured concentrations
are a direct function of the following factors:

     (a)  the amount of pesticide applied
     (b)  the amount of pesticide in the surface zone prior to application
     (c)  the depth of the active surface zone
     (d)  the rate of pesticide attenuation and degradation

The present version of the ARM Model includes input parameters to
accommodate factors a, c, and d (above).  However, the Model assumes no
                                    89

-------
    600
    400
    200
co
CO
CO
o
<
a.
      0
    120
     80
     40
      0
	   RECORDED
—   SIMULATED
 ^PESTICIDE ANALYSIS DIS-
  CONTINUED AFTER 9/9/73
                           PI  Watershed
                           P3 Watershed
                             TIME, MONTHS

        Figure 29.  Monthly paraquat loss from the PI and P3
                    watersheds for the 1973 growing season
                                90

-------
Month

June
July
August
September**
October
November
December
                        Table 12.  MONTHLY PARAQUAT LOSS
                    FROM THE PI AND P3 WATERSHEDS DURING THE
                              1973 GROWING SEASON
          PI Watershed
     Recorded       Simulated
   gm     (Ibs)     gm      (Ibs)
  703.5   (1.551)   298.7   (.658)
  153.9    (.339)   204.8   (.451)
    9.1    (.020)    6.8   (.015)
   45.0    (.099)    87.6   (.193)
                   0.0    (0.0)
                   1.4   (.003)
                   34.1   (.075)
        P3 Watershed
 Recorded        Simulated
gm    (Ibs)     gm     (Ibs)
0.
98.
0.
4.
_
0
2
0
3

(0
(
(0
(.

.0)
.217)
.0)
010)
-
•
114
0
14
0
45
.4
.0
.5
.0
(.
(.
001)
252)
(0)
(.
(0
032)
.0)
               .45   (.001)
                5.9  (.013)
              all paraquat loss was detected on sediment, paraquat was not found
              in solution for any events.
          **
pesticide analyses were discontinued  after  9/9/73.

-------
                                                   RECORDED
                                            	   SIMULATED
1800
1830
                          TIME, HOURS
 Figure 30.   Paraquat loss from the PI watershed on June 13, 1973
                               92

-------
Q-
Q.
o   40
o
o
    20
     0

    12
     8
o
ce
i
o-
     0
     1800
                   RECORDED

                   SIMULATED
1830
 TIME, HOURS
1900
       Figure 31.   Paraquat  loss  from  the  PI watershed
                    on  June 21,  1973
                                93

-------
     30  -
a.
o.
«    20
O
O
<£.
3
cr
      10
       0
     3.0
     2.0
03




>
O

LU
C£



-------
Q.

Q.
      60
o
o

-------
Q.
QL.
     80-
O
o
O
40
      0
    0.8
i
UJ
C£
    0.4
    0.0
                                 	  RECORDED
                                 	  SIMULATED
                 1800              1830
                         TIME, HOURS
       Figure 34.  Paraquat loss from the P3 watershed
                   on July 14, 1973
                                96

-------
 a:   80
     40
 o
 o
      0
    0.8
    0.6
o

Cu

01  0.4


-------
pesticide is present in  the  soil  prior  to  application;  future
modifications will  include this capability.   Thus, with the present Model,
some variation from measured concentrations was  expected.   The initial
simulation runs on  the PI watershed  produced  paraquat concentrations much
lower than recorded.  The depth of the  active surface zone (SZDPTH
parameter) was then reduced  from  3.2 mm to 1.6 mm and the  daily
degradation rate (DEGCON parameter)  was increased from 0.0001 to 0.002 per
day.  These changes produced the  results presented here.  The parameter
changes are within  reasonable limits for these parameters  since little
information is available on  the extent  of  an  active  surface zone, and mass
balance calculations have not produced  reliable  information on degradation
rates for paraquat.  These are two areas which require further
investigation.

Although the parameter changes gave  reasonable results for the PI
watershed, the same changes  on the P3 watershed  yielded low simulated
concentrations as shown  in Figures 33,  34, and 35.   These  low
concentrations resulted  in monthly paraquat loss close to  recorded values
because simulated monthly sediment loss was much higher than recorded;
thus compensating errors occurred.  Further investigation  indicated that
prior to application, almost twice as much paraquat  was present in the top
centimeter of the soil profile on the P3 watershed as compared to the PI
watershed, i.e. approximately 6.8 kg/ha of paraquat  was detected on the PI
watershed and 12.5  kg/ha on  the P3 watershed  in  the  top centimeter of the
soil.  The terraced P3 watershed  experiences  only much less sediment loss
and corresponding paraquat loss,  resulting in more paraquat remaining on
the watershed from the previous season. This additional paraquat would,
in effect, double the stated application rate on the P3 watershed when
proportioned to the depth of the  active surface  zone.  The result would be
a doubling of the simulated  paraquat concentrations  in Figures 33, 34, and
35 and closer agreement  between simulated  and recorded values.  This
phenomenon did not occur in  the PTR  Model  work because 1972 was the first
year of paraquat application. Thus, inclusion of the paraquat present in
the soil prior to application would  further improve  the agreement between
simulated and recorded values.

Diphenamid


The simulation of diphenamid loss allowed an  initial evaluation and
comparison of the single-valued  (SV) and non-single-valued (NSV)
adsorption/desorption functions.   Since the majority of pesticides are
transported by both runoff and sediment, the  behavior of these chemicals
in the soil-water environment is  an  important factor in simulating their
movement.  The division  between  the  water and sediment phase is critical
to the evaluation of the impact  of different  pesticides.  Highly soluble
pesticides will infiltrate  to greater depths  in  the  soil profile than less
soluble ones.  Soil erosion  prevention  practices will have a greater
effect on pesticides whose major transport mechanism is sediment loss
                                    98

-------
while water-trans ported pesticides  will  be  affected more by runoff
reduction practices.   In addition,  attenuation and degradation processes
are influenced differently by the solution  and adsorbed states of the
pesticide.  These  processes determine  the length of time following
application that a pesticide will be susceptible to transport by runoff
and sediment, and  thus  are critical to the  simulation of pesticide
transport.

Figure 36 and Tables  13 and 14 (NSV function only) present the monthly
diphenamid loss for both the PI and P3 watersheds.  The results of
employing both the SV and NSV functions  are included in Figure 36.  The
storm event simulations for diphenamid concentrations and mass removal are
presented in Figures  37, 38, 39 and 40 for  the June 13 and June 21 events
on the PI watershed.   Each figure presents  the concentration (top graph)
and mass removal (bottom graph)  for either  the water or sediment phase.
Thus, for June 13, Figure 37 displays  the diphenamid loss by sediment and
Figure 38 displays diphenamid loss  by  runoff.  Figures 39 and 40 are the
analogous graphs for  the storm of June 21.  The corresponding results for
the P3 watershed for  the July 8 and July 14 events are contained in
Figures 41, 42, 43 and  44.   Results of employing both the SV and NSV
adsorption/desorption functions  are displayed in all figures.

Since diphenamid is a highly degradable  herbicide, recorded concentrations
in the runoff are  essentially negligible within two months following
application.  Consequently,  the first  runoff-producing storms after
application are the critical  events for  diphenamid loss.  Since the major
storm events after application occurred  in  June on the Pi watershed,
essentially all the diphenamid loss occurred in June.  However, July was
the major month for storms  on the P3 watershed; thus, the recorded
diphenamid loss for P3  occurs in July.

In general, the simulation  of diphenamid transport often shows
considerable deviation  from the  recorded values.   The simulated monthly
diphenamid loss (Figure 36)  on the  PI  watershed is reasonably close to the
observed values, while  on  the P3 watershed  the values are quite different.
The monthly diphenamid  loss  on P3 emphasizes the need for accurate
hydrology and sediment  simulation on storms following pesticide
application, especially for degradable pesticides like diphenamid.  On
June 20, 1973 a relatively  minor, but  intense, thunderstorm (9.65 mm, 0.38
inches, in 9 minutes) on the P3 watershed produced a simulated peak flow
of 0.013 cms (0.46 cfs)  although no actual   runoff or sediment loss was
observed.  This minor storm produced the entire simulated monthly
diphenamid loss for the month of June  shown in Figure 36.   Since the storm
occurred within five  days  of application, the diphenamid on the land
surface was exceptionally  susceptible  to movement even by the relatively
small  amount of runoff  simulated.  Thus  the diphenamid loss is
                                     99

-------



800




600




400
CO
<
O£
CD
•s
CO
8 200
_J
O
t— c
1
Ll 1
UJ
§ 0
O

40






20




0
	 1 	 1 	 1 	 1 	 1 	 1 	 1 	 1
I
\
\
1
i\ PI Watershed
\\
v\
~ \'\
VI










\\\ 	 , RECORDED
\\\ 	 NSV SIMULATION
V,\ SV SIMULATION
\\\ PESTICIDE DISCONTINUED
\V AFTER 9/9/73
V
\
¥i

^
\
1 L-l^.^* L _ J. 1 I
1 1 I 1 1 1 1 1
\
. \
\
\ P3 Watershed
x \
\\
\ I
\ \ i \
- \ Y \ _
f \ \
/ ^\ \
/ X>^\

/ 1 NN\ 	 * II i i






















J J A S 0 N D
                     TIME,  MONTHS

Figure 36.   Monthly  diphenamid  loss  from the PI  and P3
            watersheds  during the  1973 growing season
                       100

-------
Month
June
July
August
September*
October
November
December
                               Table 13.  DIPHENAMID LOSS FROM THE PI WATERSHED
                                        DURING THE 1973 GROWING SEASON
          On Sedinent                      In Water                         Total
   Recorded       Simulated        Recorded        Simulated        Recorded       Simulated
 gm     (Ibs)    gm     (Ibs)     gm    (Ibs)     gm     (Ibs)     gm    (Ibs)    gm     (Ibs)

12
2
7
01
,14



(.027)
(.002)
(0.0)
(0.0)

-
-
49.9
0.0
0.0
0.0
0.0
0.0
0.0
(.11)
0.0)
(0.0)
(0.0)
(0.0)
(0.0)
(0.0)
636.5
2.7
.03
0.0
-
-
-
(1.404)
(.006)
(0.0)
(0.0)

-
-
667.4
.9
0.0
0.0
0.0
0.0
0.0
(1.47)
(.002)
(0.0)
(0.0)
(o.o)
(0.0)
(0.0)
648.7
3.4
.04
.14
-
-
-
(1.44) 721.9
(.007) .9
(0.0)
(0.0)

-
-
0.0
0.0
0.0
0.0
0.0
(1.59)
(.002)
(0.0)
(0.0)
(0.0)
(0.0)
(0.0)
      pesticide analyses were discontinued after 9/9/73
 Month
                               Table  14.  DIPHEMAMID LOSS FROM THE P3 WATERSHED
                                        DURING THE 1973 GROWING SEASON
          On Sediment                      In Water                         Total
   Recorded       Simulated        Recorded        Simulated        Recorded       Simulated
 gm      (Ibs)    gm     (Ibs)     gm    (Ibs)     gm     (Ibs)      gm    (Ibs)     gm     (Ibs)
June
July
August
September *
October
November
December
0.0
1.1
0.0
.001
(0.0)
(.002)
(0.0)
(0.0)
0.0
1.1
0.0
0.0
0.0
0.0
0.0
(0.0)
(.002)
(0.0)
(0.0)
(o.o)
(0.0)
(0.0)
0.0
24.0
0.0
.15
(P. 3)
(.053)
(0.0)
(0.0)
32.2
9.1
0.0
0.0
0.0
0.0
0.0
(.071)
(.020)
(0.0)
(0.0)
(0.0)
(0.0)
(0.0)
0.0
25.1
0.0
.15
(0.0)
(.055)
(0.0)
(0.0)
32.2
10.0
0.0
0.0
0.0
0.0
0.0
(.071)
(.022)
(0.0)
(0.0)
(0.0)
(0.0)
(0.0)
       pesticide analyses were discontinued  after 9/9/73

-------
  CL.
  CL.
  Z
  LU
  O
  LU
  GO
  O
  Z
  O
  <_)


  O
  I—I


  •=£

  LU
  3:
  Cu
  fc—H

  O
Z
O
LU t£)
o:
   "t%
o i—
>-i Z
S LU
-«
LU O
:r LU
O. CO
i—i
a

16







12




8





4
0

3.2







1.6



0.0
18
	 1 	 , 	 1 	 ! 	 1 	 1 1 1 1
%
_ \ -
\
\
\
\
\
\
\
- V ^
•v 	 s
. \
\ \ __ 	 ,
\
\ 	 RECORDED
_ \ 	 NSV SIMULATION
\ 	 SV SIMULATION


I
v^
~^\ _

i VH-^ i i i i ' '\ i i
	 1 1 1 1 1 II 1 i
XI
x" \
1 1
r i
i »
i i
) \
i i
i >
f i
i i
r t
- • r\ »
1 1 \ t
II VI
;/ \ i
;/ \ •

li i ,^iS"' _iv ^Tr | J ^.^J p !
00 1830 1900 1930





































                                  TIME,  HOURS


          Figure 37.  Diphenamid loss  on sediment from the PI
                       watershed on  June 13,  1973
                                       102

-------
o
i— a.
z o-
UJ
o  •>
Z Oi
O LU
O I—
      16  -
Q.
i—I
Q
  O
  v— i
  LU
  I
  Q.
  HH
  Q
       0
       1800

                                                  RECORDED
                                                  NSV SIMULATION
                                                  SV SIMULATION
1830              1900

       TIME,  HOURS
         Figure  38.   Diphenamid loss in water from the PI watershed
                      on June 13, 1973
                                   103

-------
I— o.
O I—
z z
O UJ
OS
  t-H
O Q
i—< UJ
SI i/)

-------
££0.8
•Z. Q-
LU
O  •>
=r o:
O LU
g~0.4
LU
o:
Q.
t—i
Q
    0.0
                                            -   RECORDED

                                            ---   NSV SIMULATION

                                            --   SV SIMULATION

a.;
I-H I
O
      1800
                         1830
                                 TIME, HOURS
        Figure 40.
                     Diphenamid loss in water from the PI watershed

                     on June 21, 1973
                                   105

-------
o
C£ d.
f- 0-

LU  «
01—

o uj
o s
UJ O
3:
CL.
       0.8
       0.4
       0.0
      0.03
  O
  UJ
  to
  o
  a:

  o
   a.
   i—i
   o
      0.02
      0.01
       0.00
                                i\
                                                     	  RECORDED

                                                     	  NSV  SIMULATION

                                                     	  SV SIMULATION
             430
500
530
                                      TIME, HOURS
          Figure 41.  Diphenamid  loss on sediment from the  P3  watershed
                      on  July  8,  1973
                                     106

-------
                                             	   RECORDED
                                             —   NSV SIMULATION
                                             	   SV SIMULATION
0.0
      430
    Figure 42.
       500               530
             TIME, HOURS
Diphenamid loss in water from the P3 watershed
on July 8, 1973
                               107

-------
       0.6
  0.
  O.
  Q
  LU
  CO
  o
  o
0.4
       0.2
  D-
  i—i
  O
       0.0
     0.008
Q h^


i§  0.004
LU Q
HI LU
D. CO
i—i
Q
     0.000
                                              RECORDED
                                              NSV  SIMULATION
                                              SV SIMULATION

                     1800
                                 1830
                       TIME, HOURS
           Figure 43.   Diphenamid loss on sediment  from the
                       P3 watershed on July 14,  1973
                                  108

-------
~    0.08
2.
  Q.
I— 0.
Z LU
O I—
D-
i—t
a
  CD
  LU
  
-------
directly dependent on  the  timing  and magnitude of  the  individual  storm
events on the watershed.

From an analysis of the  simulated and  recorded results  in  Figures 37 to
44, the following points are  indicated:

     (1)  The results  of comparing the SV  and NSV  adsorption/desorption
          functions are  inconclusive.  The NSV function produces  greater
          diphenamid concentrations on sediment  and  less in solution than
          the SV function.  For the June 21  storm  on the PI watershed
          (Figures 39  to 40)  the  SV function represents reasonably well
          the mass diphenamid removal  both on sediment and in solution.
          While on the P3  watershed, the NSV function  is generally closer
          to the recorded  values.

     (2)  Although the June 13 simulated flow and  sediment loss (Figure
          21) are less than recorded,  the  simulated  diphenamid loss is
          much greater than recorded.  Since the storm occurred
          approximately  six hours after pesticide  application, the
          discrepancy could be due to  an inaccurate  estimation of the
          actual amount  of pesticide applied or  the  amount lost by
          degradation/volatilization in the  intervening six hours.  In
          addition to the  adsorption/desorption  function,  the assumed
          depth of the surface zone has a  critical impact on diphenamid
          concentrations,  especially during  the  initial storm events.
          Since the initial storms following pesticide application are the
          important events for pesticide loss, the uncertainties  and
          behavior of the  attenuation  and  adsorption/desorption be further
          investigated during this time period.

     (3)  Comparison of diphenamid concentrations  for  all  four storms
          indicates that simulated concentrations  are  greater than
          recorded for the June storms (Figures  37 to  40)  and less than
          recorded for the July storms (Figures  41 to  49).  Although the
          storms occurred on  different watersheds, this trend demonstrates
          the possibility that the assumed first-order degradation rate
          underestimates degradation during  the  initial month of the
          growing season and  overestimates degradation near the middle and
          end of the growing  season.   A  similar  conclusion resulted from
          the PTR Model  work.  The accurate  representation of pesticide
          attenuation processes is crucial to  the  evaluation of the amount
          of pesticide available for movement  by any storm event.  Efforts
          are presently underway to develop  such a representation.

      (4)  As noted in the discussion of  the  paraquat simulation, the unit
          of pesticide mass  removal (grams/minute) is  more indicative of
          pesticide loss than the instantaneous  pesticide concentrations.
          This  is especially  noticeable  in Figure  41.   The instantaneous
          diphenamid concentrations vary  erratically throughout the event
                                    110

-------
          while the diphenamid  mass  removal  is similar to the hydrograph
          and the  sediment  mass loss.  Thus  the connection between
          pesticide loss  and  its  transporting mechanisms is clearly
          displayed by  the  pesticide mass  removal graphs.

CONCLUSIONS


The testing of the ARM  Model  has  indicated that the hydrology and sediment
simulations reasonably  represent  the observed data while the pesticide
simulations can show considerable deviation  from recorded values.  This is
especially true for pesticides  that  move by  both runoff and sediment loss.
The effects of tillage  operations and management practices need to be
further evaluated  for hydrology and  sediment production.  Parameter
changes as a result of  agricultural  practices need to be quantified.
Although the results of sediment  simulation  have been promising, certain
deviations in the  results indicate a lack  of understanding of certain
aspects of the physical process.   Other processes in the soil erosion
mechanism, such as natural  compaction of the surface following tillage and
the effect of rainfall  intensity  on  the transport capacity, need to be
evaluated for possible  inclusion  in  the Model.  Although the hydrology
model has been applied  to hundreds of watersheds in the United States, the
accompanying sediment model has been applied to only a few.  If the ARM
Model is to be generally applicable, the most immediate need is to
evaluate the sediment simulation  capability  in varying climatic and
edaphic regions.

For pesticide simulation, the results demonstrate the need to further
investigate the processes of  pesticide degradation and pesticide-soil
interactions.  Both the SV  and  NSV adsorption/desorption functions require
further research.  A non-equilibrium approach should be investigated to
determine its applicability.  The interactions in the active surface zone
appear to control  the major portion  of pesticide loss especially for
highly sediment-adsorbed pesticides  like paraquat.  The depth of the
active surface zone and the extent of pesticide degradation in that zone
are critical to the simulation  of pesticide  loss for any storm event.

The need for testing the ARM  Model in other  regions also pertains to the
pesticide functions.  The mechanisms recommended for further research
should be studied  and evaluated in many regions of the country.
Investigations of  these mechanisms is presently continuing for the Georgia
and Michigan watersheds.  Other agricultural areas must be included in
future studies in  order to  establish the general applicability of the ARM
Model.
                                     Ill

-------
                              SECTION  IX

                          SENSITIVITY ANALYSIS
To fully evaluate,  quantify,  and  display  the effects  of parameter changes
on simulation results,  sensitivity  analyses were  performed for the
hydrology, sediment,  and  pesticide  parameters  of  the  ARM Model.   The
sensitivity of the  snowmelt and nutrient  parameters will  be investigated
in future work.   The  analyses involved  a  series of Model  runs  on the PI
watershed in Georgia.   Each run was performed  while changing the value of
a single parameter.   The  calibrated parameter  set provided baseline
simulation results.   Two  Model runs were  performed for each parameter with
parameter values  greater  than and less  than the calibrated value.  Thus, the
change in simulation  results  obtained from a change in the parameter value
indicates the sensitivity of  the  Model  to the  specific parameter.  Tables
15, 16, and 17 present  the ARM Model hydrology, sediment, and  pesticide
values respectively chosen for the  sensitivity analyses.   The  hydrology
parameters were analyzed  on a six-month period, April 1973 to  September
1973, while the sediment  and  pesticide  parameters were analyzed on the
critical summer period, June  1973 to September 1973.  -The results are
presented in Figures  45 to 51 in  terms  of the  effects of parameter changes
on (1) total runoff,  sediment, and  pesticide loss during the simulation
period, and (2)  peak  runoff,  sediment mass, and pesticide mass removal (in
water and on sediment)  for the storm of June 21,  1973.  The ARM Model
parameters are defined  in Section IV, Tables 2, 3, and 4.  The sensitivity
results are displayed in  terms of percent parameter change versus the
resulting percent change  in runoff, sediment,  or  pesticide loss.  Thus the
slope (positive or negative)  indicates  the relative sensitivity of the
parameters; i.e., steeper slopes  correspond to the more sensitive
parameters.  The shaded areas in  each figure indicate the region where the
stated parameter change produces  a  greater percent change in the quantity
of interest, e.g. a +44 percent  change  in JSER results in a +60 percent
change in sediment loss in Figure 46.   The hydrology, sediment, and
pesticide parameter sensitivities are discussed separately below.

HYDROLOGY PARAMETERS


Figures 45 and 46 display the effects of  changes  in  the hydrology
parameters on the total runoff for  the  April to September 1973 period and
the peak runoff for the June  21  storm,  respectively,  on the PI watershed.
Infiltration (INFIL)  and  lower zone soil  moisture (LZSN) characteristics
have the greatest impact  on total runoff  volumes. This is generally true
in most areas of the  country.  For  this reason, the  INFIL and  LZSN
parameters are most directly  involved  in  the hydrologic calibration of a
specific watershed.  Although the topographic  (L, SS, NN) and  vegetal
canopy  (EPXM) parameters  do affect  runoff volume, their relative impact is
                                    112

-------
Table  15.  HYDROLOGY PARAMETER VALUES FOR SENSITIVITY  ANALYSIS
                         (English Units)
Parameter

UZSN

LZSN

INFIL

INTER


SS

L

NN

K3

EPXM
Baseline Value
0.05
18.0
0.5
0.7
0.05
160.0
0.20
0.40
0.12
Trial #1
0.01
14.0
0.2
0.4
0.02
100.0
0.10
0.20
0.06
Trial #2
0.25
22.0
0.8
1.0
0.08
220.0
0.30
0.60
0.18
     Table 16.  SEDIMENT PARAMETER VALUES FOR SENSITIVITY ANALYSIS
                             (English Units)
Parameter
Baseline Value
Trial #1
Trial #2
JRER
KRER
JSER
KSER

COVPMO
SRERTL
2.2
0.17
1.8
1.2
J 0 A S 0
0.0, 0.0, 0.25, 0.5, 0.7
5.0, '2.0
1.4
0.10
1.0
0.8
3.0
0.24
2.6
1.6
                                            increased 20%  decreased 20%

                                            increased 20%  decreased 20%
                                   113

-------
     Table 17.   PESTICIDE PARAMETER VALUES FOR SENSITIVITY ANALYSIS
                           CEnglish Units)
Parameter
CMAX
DD
BULKD
K
N
NP
SSTR
UZDPTH
SZDPTH
DEGCON
DESORP
Baseline Value**
0.00026
0.0
103.0
1.8
1.6
3.7
5*4.002
6.125
0.125
0.08
YES
Trial #1
0.00013
0.00010
93.0
0.6
1.0
2.3
5*2.0
4.125
0.062
0.04
NO
Trial #2
0.00052
0.00020
113.0
3.0
2.2
5.1
5*6.0
8.125
0.250
0.12

**
   Baseline pesticide values are for diphenanrid characteristics
                                114

-------
-1-30 -
 -30 -
                   -30
-20     -10       0     +10     +20
  % CHANGE  IN INDICATED PARAMETERS
+ 30
+40
                Figure 45.   Hydrology parameter  sensitivity - total runoff

-------

+ 30
    « 9/9/73 STORM-
      USED FOR EPXM
        -40     -30     -20     -10       0      +10     +20
                           % CHANGE IN INDICATED PARAMETERS
+ 30
+ 40
            Figure 46.   Hydrology parameter sensitivity  -  peak runoff
                         (PI  watershed, storm of June  21,  1973)

-------
less than what might  be  expected.   The  interflow parameter (INTER) is
generally thought  to  have  no  effect on  runoff  volume.  This is generally
true, especially in large  watersheds.   The  runoff change shown in Figure
45 due to the interflow  parameter  is a  result  of the manner in which
interflow is calculated  in the  ARM Model.   The interflow component is
subtracted from the moisture  available  for  surface runoff, and reaches the
stream channel through a delaying  storage mechanism.  The remaining
surface runoff undergoes a kinematic overland  flow routing technique which
determines the amount of surface runoff reaching the stream channel during
the time interval.  The  surface runoff  which does not reach the stream is
available to infiltrate  during  the next time interval.  Thus as interflow
increases a larger fraction of  surface  moisture is assured of reaching the
stream through the interflow  storage mechanism resulting in a minor
increase in runoff volume.

The effects of parameter changes on peak runoff (Figure 46) are similar
but not as dramatic.  Infiltration and  soil moisture characteristics
remain important.  However, topographic factors such as slope, length of
flow, and surface  roughness have a significantly greater impact on peak
runoff rates as compared to runoff volumes.  The relative ranking of the
parameters is much the same in  both Figures 45 and 46.  However, overland
flow length (L) and surface roughness (NN)  increase in importance, and the
impact of the interflow  parameter  (INTER) is reversed.  An increase in
interflow will reduce peak runoff  while slightly increasing total  runoff.
In general, Figures 45 and 46 indicate  that agricultural management
practices which influence  land  slope, surface  roughness, and overland flow
length have a relatively greater impact on  peak runoff than on total
runoff volumes.

SEDII-IENT PRODUCTION PARAMETERS


The effects of sediment  parameter  changes on total sediment production
(June to September 1973) and  peak  sediment  loss (storm of June 21, 1973)
on the PI watershed are  shown in Figures 47 and 48, respectively.   A
review of the sediment algorithm and parameters described in Section IV
would be helpful to the  understanding of this  discussion.  In general, the
washoff parameters (JSER,  KSER) appear  to have the greatest impact on both
total and peak sediment  loss.   Since the simulation period for the
sensitivity analysis  was during the summer  growing season, tillage
operations produced a large volume  of detached soil fines.  Thus,  sediment
transport by flow was not  restricted by the amount of soil fines available
for transport.  The singular  importance of  the washoff, or transport,
parameters is because the washoff  process was  the controlling mechanism
during the simulation period.   In  areas where  tillage operations are not
performed, or during  seasons when  the land  surface is not disturbed, the
soil  splash parameters (JRER, KRER) would have a greater impact than is
indicated in Figures  47  and 48.  In such circumstances, the soil splash
mechanism could control  sediment loss by limiting the amount of detached
                                     117

-------
Co
                 + 30 -

                -30
                          -40     -30     -20     -10        0      +10     +20     +30     +40
                                            % CHANGE  IN INDICATED PARAMETERS

                           Figure 47.   Sediment parameter sensitivity - total sediment  loss

-------
-F30  -
                                                                       * 9/9/13 STORM USED
                                                                        FOR COVPMO

 -30 -
          -40
-20      -10        0      +10     -1-20
   %  CHANGE IN INDICATED PARAMETERS
            Figure  48.   Sediment parameter sensitivity -  peak  sediment loss
                         (PI watershed,  storm of June 21,  1973)

-------
soil fines available  for washoff by overland flow, i.e., detached  soil
fines would be less than the transport capacity of overland flow    Since
the soil  splash parameters determine the detachment of soil fines, their
effect on sediment loss would be greater than the effect of the washoff
parameters when the land surface is undisturbed.

The two remaining sediment parameters are the monthly vegetal cover
fraction (COVPI10) and the detached fines produced by tillage operations
(SRERTL).  The sensitivity of each of these parameters indicated in
Figures 47 and 48 is  influenced by the fact that the analysis was
performed on a summer period.  The major events during this period
occurred in June and  July when vegetal cover was minimal; hence, the
effect of COVPMO on the total sediment loss is rather small.  Since no
crop canopy had developed for the June 21 stoni, the COVPMO sensitivity in
Figure 48 was derived from the September 9 storm on PI.  The impact of
cover would be much greater during the late fall when a  full canopy would
exist.  On the other  hand, the impact of SRERTL as shown in Figures 47 and
48 is relatively greater during the summer period due to the possible
occurrence of storms  following tillage operations.  This is indicated by
the greater impact of SRERTL on peak sediment loss (Figure 48) than on
total sediment (Figure 47) because the June 21 storm occurred within one
week of planting and  tillage operations.  In reality little is known about
the absolute value of detached fines resulting from different tillage
operations.  Logically, one would expect that the effects of tillage would
not extend more than  one to two months, i.e.  the amount of detached fines
from tillage operations would not limit transport of sediment by overland
flow until one to two months following the operation.  However, further
investigation of this topic is needed.

Although the sensitivity of the sediment parameters is affected by the
period on which the analysis was performed, the summer period is the
critical time for simulation of pesticide loss.  Consequently, the
analysis also indicates the relative importance of sediment parameters for
simulating pesticides transported by sediment particles.

PESTICIDE PARAMETERS
{neFiaur^S4Qf l^^ r^V0" the Pesti<^* parameters are  shown
in Figures 49, 50 and 51.  The effects of parameter changes on total
pesticide loss (June  to September 1973) is presented in Figure 49 while
                      ^ °6-k PeSt1c1de ™»val iJ watlr ani on
  dlEin? ^t?^ °Si?6-k  PeSt1c1de ™»val i  watr  ani on
sediment (June 21 storm on Pi)  is  shown  in Figures 50 and 51
respectively.  The relative positions of the parameter sensitivity lines
™re°n                                          ''1     "
                         int                -
                       points are noteworthy:


                          ^ *? "f1^1*
                          of values tested for the present version  of the
                  he           *    "1^1* 1"P«ct on pesticide loss
                 the
                                    120

-------
+30 -
 -30 -
          -40     -30     -20      -10        0      -1-10     +20
                              % CHANGE  IN INDICATED  PARAMETERS
+ 30
40
           Figure 49.   Pesticide parameter sensitivity - total pesticide  loss

-------
+ 80
-1-60
                 -30
     Figure 50.
       -10   0 +10      +30     +50     +70
CHANGE IN INDICATED PARAMETERS
                       iH6  farameter sensitivity    peak
                                    water       "
                           122

-------
-1-80
 -70      -50     -30     -10   0 -HO     +30     +50     +70
                 % CHANGE IN INDICATED PARAMETERS

   Figure 51.   Pesticide parameter sensitivity   peak
                pesticide loss on sediment (PI  watershed,  storm
                of June 21,  1973)
                            123

-------
     pesticide algorithms.  In effect,  the equilibrium pesticide
     concentration in runoff never approaches  the pesticide
     solubility.

(2)   As  a  corollary to (1), the adsorption/desorption characteristics
     for the  specific pesticide-soil  combination are the major
     determinants of pesticide loss.   Other than pesticide
     application (SSTR) which obviously has a  critical effect on
     pesticide loss, the adsorption/desorption characteristics  (K,  N,
     NP) have the greatest impact (i.e.  steepest slopes in Figures
     49, 50,  and 51) on both total and peak pestictde loss.

(3)   The soil bulk density (BULKD) is an important parameter since  it
     determines the mass of soil involved in the pesticide-soil -water
     equilibrium in each vertical soil  zone.  An increase in BULKD
     results  in a greater mass of soil  in each zone.  For pesticides
     which move by both runoff and sediment loss, the larger surface
     soil  mass would retain more pesticide in  the surface zone.
     Thus, more pesticide would be available for transport from the
     active surface zone.  The increase in pesticide loss with  BULKD
     in  Figures 49, 50 and 51 demonstrates this effect.  On the other
     hand, pesticides like paraquat that are completely adsorbed  onto
     sediment particles would behave differently.  Since complete
     mixing is assumed in the surface zone, the greater surface soil
     mass  resulting from a larger BULKD would  produce lower pesticide
     concentrations in the surface zone for the same application
     rate.  The lower concentrations would result in less total and
     peak  pesticide loss.  Consequently, the relative impact of
     changes  in soil bulk density is dependent upon the
     adsorption/desorption characteristics of the specific
     pesticide-soil combination.

(4)   The depth of the active surface zone (SZDPTH) has essentially
     identical effects on pesticide loss as described above for bulk
     density.  Increasing SZDPTH results in a greater soil mass in
     the active surface zone.  The effects on pesticide loss
     described above are due to the greater soil mass.  Comparison  of
     the SZDPTH and BULKD sensitivity lines in Figures 49, 50 and 51
     demonstrates the parallel effects.  The differences between
      S*f J™DTuare du(: to the effect of BULKD °* all the soil zones
     t^+lf I7n5futains-,0nly to the surface zone-  Thus* the
     conation      1S      * function of the pesticide-soil


(5)            f J^TT soil zone  (UZDPTH) ha* a  relatively minor
               P?h«1C1?e 10S^ Wlth1n the ran9e of Parameter values
                5nt ^ ^^ism for pesticide loss from the  upper
     small oortnn n      i€0mp°!;!nt of runoff-  Since Interflow Is a
     small portion of total runoff during the summer months  on  the PI
                                 124

-------
          watershed, Figures 49, 50 and 51 indicate the minimal effect of
          UZDPTH.  However, for highly soluble pesticides in areas with
          significant interflow, the UZDPTH parameter would have greater
          impact.

     (6)  The pesticide degradation rate (DEGCON) has a greater influence
          on total pesticide loss than is indicated in Figure 49.
          Degradation determines the time during which significant
          pesticide loss can occur.  During the pesticide sensitivity
          trials, the only significant events for the loss of degradable
          pesticides occurred on June 13 and June 21.  Since pesticides
          were applied on June 13, the daily first-order degradation rate
          had no effect on pesticide loss for that storm.  Figures 50 and
          51 demonstrate the influence of degradation for the storm of
          June 21 on peak pesticide loss in water and on sediment
          respectively.  Thus, the DEGCON sensitivity lines in Figures 50
          and 51 are more indicative of the importance of degradation
          rates on pesticide loss than the corresponding lines in Figure
          49.
CONCLUSIONS
The utility of the sensitivity analyses performed on the ARM Model
parameters (excluding snow and nutrient parameters) is the information and
understanding gleaned from an analysis of Model behavior resulting from
parameter variations.  Comparing the ARM Model results with the physical
processes simulated can provide a sound base for further algorithm
refinements.   Highly sensitive parameters indicate topics for additional
investigation.  Moreover, an understanding of the ARM Model is critical to
successful calibration and application to other areas.  Although the
results presented here should not be extrapolated beyond the individual
parameter values in Tables 15, 16, and 17, the relative importance and
impact of the various parameters is generally valid for agricultural
watersheds in the southern Piedmont.  Experience indicates that the.
relative ranking of the hydrology parameters is more widely applicable
across the United States.  However, testing in other climatic,
topographic,  and edaphic regions, and with a larger range of parameter
values is needed before a similar claim can be made for the sediment and
pesticide parameters.  In general, the results indicate that the most
sensitive parameters are related to soil moisture and infiltration, land
surface, sediment transport, pesticide-soil interactions, and pesticide
degradation.   Study of these topics would provide the greatest benefit to
further algorithm refinement.
                                    125

-------
                               SECTION  X

                    CONCLUSIONS AND RECOMMENDATIONS
Unfortunately, as man acquires  a greater understanding of his physical
environment, the number and complexity of the  questions which probe his
mind tend to increase rather than decrease.   In  other words, research
often tends to raise more questions  than it  answers.   In many respects
this is true for the research effort on the  continued development and
refinement of the ARM Model described in this  report.  Some questions have
been answered while new problems have been uncovered.  Perhaps the
greatest benefit derived from this work is the insight and increased
understanding of the processes  controlling the quantity and quality of
agricultural runoff.  As these  processes are further  studied, better
simulation methods will develop.  This understanding  is a significant
addition to the existing body of knowledge on  this topic.  This report is
an attempt to distribute this additional knowledge to the scientific
community for general review and comment.   Thus, the  major findings of
this research effort are as follows:

     (1)  The Agricultural Runoff Management (ARM) Model has been used
          successfully for simulating runoff,  sediment, and pesticide loss
          from small agricultural watersheds.   Model  testing for sediment
          and pesticide loss has been performed on watersheds in the
          Southern Piedmont and is presently underway on watersheds in the
          Great Lakes region.

     (2)  The simulation of surface  runoff with the ARM Model has been
          verified by split-sample testing for the Southern Piedmont
          watersheds.  The hydrology parameters calibrated on six months
          of 1972 data allowed the Model to simulate 1973 data with
          reasonable accuracy.   Past experience with  the hydrologic
          simulation methodology indicates that similar accuracy can be
          expected in other geographical regions.

     (3)  The method of snowmelt simulation presented in this report has
          been employed successfully on watersheds across the United
          States.  Although its use on small agricultural watersheds has
          been limited, the methodology of energy balance calculations
          is conceptually  valid.  Calibration and testing is presently
          underway on watersheds in the Great Lakes region.

     (4)  Tillage operations and practices have a significant impact on
          both surface runoff and sediment loss from watersheds in the
          Southern Piedmont.  The effect is relatively greater on sediment
          loss than on surface runoff and tends to decrease with time
          since the last tillage operation.  Both total sediment loss and
                                   126

-------
     peak sediment concentrations are increased by frequent tillage
     operations while peak runoff is generally reduced and delayed in
     time.

(5)   The ARM Model simulation of sediment production is relatively
     accurate except for storms immediately following tillage
     operations.   In general, monthly sediment loss and storm
     concentrations are close to observed values when the hydrologic
     simulation is accurate.   The sediment simulation methodology
     allows for the inclusion of tillage operations, but further
     testing and calibration  are needed to more reliably quantify
     tillage effects.

(6)   Simulation of pesticide  loss from the Southern Piedmont
     watersheds with the ARM  Model  indicates the following:

     a.   Simulation results are good for pesticides like paraquat
         that are completely  adsorbed onto sediment particles.   In
         these cases, the accuracy of the pesticide simulation  is
         directly dependent upon the accuracy of the sediment
         simulation.

     b.   Simulation of pesticides that move both in water and on
         sediment is dependent upon the partitioning between the two
         phases (water and sediment) as specified by the
         adsorption/desorption function.  Simulation results for this
         type of pesticide (e.g. diphenamid) using laboratory
         isotherm data is fair to poor.  Initial comparison of
         simulation results from single-valued (SV) and
         non-single-valued (NSV) adsorption/desorption functions is
         inconclusive.  The SV function appears to simulate some
         storms better than the NSV function, but the reverse is true
         for other storms. Further comparisons and evaluations  are
         warranted.

     c.   Pesticide attenuation processes are critical  to the
         simulation of pesticide loss since they determine the  amount
         of pesticide available for transport from the land surface.
         Storms,  even minor ones, occurring immediately or soon  after
         pesticide application are the major events for pesticide
         loss.  The applied pesticide has not attenuated to a
         significant extent;  thus,  it is highly susceptible to
         transport.  The first order degradation rate presently  used
         in the ARM Model appears to underestimate attenuation  at the
         beginning of the growing season and overestimate it at  the
         middle and end of the growing season.   Accurate simulation
         of pesticide attenuation would provide a more valid base for
         the evaluation of adsorption/desorption functions and
         improvement of the overall  pesticide simulation.
                                 127

-------
     (7)   The ARM Model  provides a structure for simulating  the transport
          and soil  transformations of  plant nutrients.  Testing and
          comparison  of  simulated and  observed  results will  provide a
          basis  for modification and refinement of  the nutrient algorithms
          presented in this  report.  Data from  the  Southern  Piedmont and
          Great  Lakes watersheds is expected to be  available for nutrient
          model  testing  in the near future.

     (8)   A sensitivity  analysis of the ARM Model parameters for
          hydrology,  sediment production, and pesticide loss indicates
          that the most  sensitive parameters are related  to  soil moisture
          and infiltration,  land surface sediment transport,
          pesticide-soil  interactions, and pesticide  degradation.  These
          mechanisms  are the critical  ones for  the  accurate  simulation of
          pesticide loss from agricultural watersheds.

The questions that have  been raised or left unanswered by this  research
effort are presented  below in terms of needs, or opportunities, for
further study of the  simulation of agricultural runoff.   It  is  hoped
that others in the research  community  will recognize  the  importance of
these topics and provide impetus for further research efforts.

     (1)   Application and testing of the ARM Model  on watersheds in
          different regions  of the country is of primary  concern at this
          time.   The  hydrologic methodology of  the  ARM Model has
          demonstrated its general applicability from the results of
          testing on  hundreds of watersheds; similar  testing is needed for
          the sediment production methodology.  In  this way, the
          simulation  of  the  transport  mechanisms  (runoff  and sediment
          loss)  for agricultural pollutants can be  tested, refined, and
          verified for general application.  Moreover, the relationship of
          the ARM Model  parameters to  climatic  and  edaphic characteristics
          could  be investigated.

     (2)   Testing of  the nutrient model  is crucial  to the reliable
          simulation  of  plant nutrients.  Although  a  nutrient model has
          been developed, only testing and comparison with observed data
          can indicate the validity of the model  assumptions and the need
          for model refinements.

     (3)   The impacts of different agricultural management techniques on
          the transport  mechanisms of  runoff and  sediment loss  need to be
          further investigated.  Since the ARM  Model  will be applied to
          managed agricultural  lands,  the  relationships  between land
          management  techniques  and the  ARM Model  parameters must be
          established.   This is  a necessity  if  the  Model  is to be used for
          evaluating  the efficacy  of  land  and agricultural management
          plans.  Also,  for  widespread use,  the Model must accommodate
          practices employed in  different  agricultural  regions  of the
          country.
                                    128

-------
(4)   Pesticide-soil  interactions and pesticide attenuation processes
     must be further investigated in order to improve the accuracy
     and reliability of the pesticide simulation.   Both  the
     single-valued and non-single-valued adsorption/desorption
     functions  warrant further investigation, in addition to  a
     kinetic, or non-equilibruim, approach to the  pesticide-soil
     interaction processes.  First-order pesticide degradation  should
     be replaced with a more sophisticated degradation model.
     Various candidate approaches are presently under investigation.
     Environmental conditions (e.g.  soil temperature, soil  moisture,
     and oxygen content) need to be  included where they  are
     significant.

(5)   To promote the  general use of the ARM Model for investigation,
     evaluation, and management of agricultural runoff,  the following
     recommendations are extended:

     a.  The ARM Model structure should be modified to allow  a  more
         user-oriented method of application.  The acceptance and use
         of the ARM Model  by the user community is contingent upon
         the ease of Model  application, calibration, parameter
         evaluation, data management, and output interpretation.   To
         date,  Model development has concentrated  on the testing  and
         evaluation  of algorithms to simulate the  physical  processes.
         Efforts should now be directed to the goal  of making the
         Model  more  amenable for use by potential  users.

     b.  The use of the ARM Model as a tool  for the planning  and
         evaluation  of agricultural  management techniques for the
         control of sediment, pesticides, and nutrients  should  be
         demonstrated.  It is insufficient to develop and document a
         model  like  the ARM Model without a  clear  demonstration of
         its potential application in the planning and management
         process.  In addition, recommendations, guidelines,  and  a
         proposed methodology should be developed  to insure the
         effective use and to avoid  misuse of the  ARM Model.
                                 129

-------
                              SECTION XI

                              REFERENCES
 1.  Crawford, N.H., and A.S. Donigian, Or.  Pesticide Transport and
    Runoff Model for Agricultural Lands.  Office of Research and
    Development, U.S. Environmental Protection Agency, Washington D.C.
    EPA 660/2-74-013.  December 1973.  211 p.

 2.  Crawford, N.H. and R.K. Linsley.  Digital Simulation in Hydrology:
    Stanford Watershed Model IV.  Department of Civil Engineering,
    Stanford University.  Stanford, California.  Technical Report No.
    39. July 1966.  210 p.

 3.  Hydrocomp Simulation Programming:  Operations Manual.  Hydrocomp
    Inc.  Palo Alto, California, 2nd ed.  1969.  p.1-1 to 1-27,
    p. 3-5 to 3-16.

 4.  Negev, H.A.  Sediment Model on a Digital Computer.  Department of
    Civil Engineering, Stanford University.  Stanford, California.
    Technical Report No. 76.  March 1967.  109 p.

 5.  Meyer, L.D., and W.H. Wischmeier.  Mathematical Simulation of the
    Process of Soil Erosion by Water.  Trans. Am. Soc. Agric. Eng.
    12(6):754-758, 762, 1969.

 6.  David, W.P., and C.E. Beer.  Simulation of Sheet Erosion, Part I.
    Development of a Mathematical Erosion Model.  Iowa Agriculture and
    Home Economics Experiment Station, Ames, Iowa.  Journal Paper No.
    J-7897.  1974.  20 p.

 7.  Baker, D.N., and R.E. Meyer.  Influence of Stand Geometry on Light
    Interception and Net Photosynthesis  in Cotton.  Crop Science.
    6:15-19, January-February 1966.

 8.  Duncan, W.G., R.S. Loomis, W.A. Williams, and R. Hanan.  A Model
    for Simulating Photosynthesis  in Plant Communities.  Hilgardia.
    38(4):181-205, March  1967.

 9.  Richie, J.T.  Model for Predicting  Evaporation from  a Row Crop with
    Incomplete  Cover.  Water Resour. Res.  8(5):1204-1213, October  1972.

10.  Watson, D.J.  Comparative Physiological  Studies on the Growth of
    Field  Crops:  I. Variation  in  Net Assimilation Rate  and Leaf Area
    between Species  and Varieties,  and  within and between Years.
    Annuals of  Botany.   11(41):41-76, January  1947.
                                   130

-------
11.  McCollum, R.E.   Department of Soil  Science, North Carolina State
     University, Raleigh, N.C.  (unpublished material).

12.  Davidson, J.H., and J.R.  McDougal.   Experimental  and Predicted
     Movement of Three Herbicides in a Water-Saturated Soil.   J.  Environ.
     Qual.   2(4):428-433, October-December 1973.

13.  Van Genuchten,  M.Th., J.M. Davidson, and P.J.  Wierenga.   An
     Evaluation of Kinetic and Equilibrium Equations for the  Prediction
     of Pesticide Movement through Porus Media.   Soil  Sci.  Soc. Amer. Proc.
     38:29-35, January-February 1974.

14.  Davidson, J.M., R.S. Mansell, and D.R. Baker.   Herbicide
     Distributions within a Soil  Profile and their Dependence Upon
     Adsorption-Desorption.  Soil Crop Sci. Soc. Florida Proc. 1973.   26p.

15.  Brown,  D.S. U.S.  Environmental Protection Agency, Southeast
     Environmental Research Laboratory,  Athens,  Georgia, (personal
     communication). February 1975.

16.  Farmer, W.J.  and J.  Letey.  Volatilization  Losses of Pesticides
     from Soils.  Office of Research and Development,  U.S.  Environmental
     Protection Agency.  Washington D.C.  EPA-660/2-74-054.  August 1974.
     80 p.

17.  Steen,  W.C.  U.S. Environmental Protection  Agency, Southeast
     Environmental Research Laboratory.   Athens, Georgia,  (personal
     communication).  November 1974.

18.  Crawford, N.H.   Simulation Problems.  Simulation  Network
     Newsletter.  Hydrocomp Inc.  Palo  Alto, California.  Vol. 6 No. 4.
     May 15, 1974.

19.  Snow Hydrology, Summary Report of the Snow  Investigations.  U.S.
     Army Corps of Engineers,  North Pacific Division.   Portland,  Oregon.
     1956.   437 p.

20.  Anderson, E.A., and N.H.  Crawford.   The Synthesis of Continuous
     Snowmelt Runoff Hydrographs  on a  Digital Computer.  Department of
     Civil  Engineering, Stanford  University.   Stanford, California.
     Technical Report No. 36.   June 1964.  103 p.

21.  Anderson E.A.  Development and Testing of Snow Pack Energy Balance
     Equations.  Water Resour.  Res. 4(1):19-37, February 1968.

22.  Hydrocomp Inc.   Probable  Maximum  Floods  of  the Baker River,
     Washington.  Report prepared for  the Puget  Sound  Power and Light
     Company.  Palo  Alto, California.   1969.   70 p.
                                    131

-------
23.  Hydrocomp Inc.   Simulation  of Discharge  and Stage Frequency for
     Floodplain Mapping on the North  Branch  of the Chicago River.  Report
     prepared for the Northeastern Illinois  Planning Commission.  Palo Alto,
     California.  February 1971.   75  p.

24.  Hydrocomp Inc.   Determination of Probable Maximum Floods on the
     North Fork of the Feather River.  Report prepared for Pacific Gas and
     Electric.  Palo Alto, California, October 1973.  104 p.

25.  Hydrocomp Inc.   Simulation  of Standard  Project Flood Flows for the
     Bull Run Watershed.  Report prepared for Bureau of Water Works of the
     City of Portland.  Palo Alto, California.  March 1974.  67 p.


26.  Stevenson, F.J.  Origin and Distribution of Nitrogen in Soil.
     In:  Soil Nitrogen, W.V.  Bartholomew and F.E. Clark (eds.), Madison,
     Wis., Am. Soc.  Agron.  Agronomy  Monograph No. 10, 1965.  p. 1-42.

27.  Loehr, R.C.  Agricultural Waste  Management:  Problems, Processes,
     and Approaches.  New York,  Academic Press, 1974. 576 p.

28.  Dutt, G.R., M.T. Shaffer, and W.J.  Moore.  Computer Simulation
     Model of Dynamic Bio-Physiochemical Processes in Soils.  University
     of Arizona, Department of Soils, Water and Engineering Agricultural
     Experiment Station.  Tucson, Ariz.   Technical Bulletin 196.  1972.
     101 p.

29.  Hagin, J., and A. Amberger.  Contribution of Fertilizers and Manures
     to the iJ- and P- Load of Waters.  A Computer Simulation.  Report
     Submitted to Deutsche Forschungs Gemeinschaft.  1974.  123 p.

30.  Frere, M.H., C.A. Onstad, and H.N.  Holtan.  ACTMO, an Agricultural
     Chemical Transport Model.  U.S.  Department of Agriculture,
     Agricultural Research Service.  Hyattsville, Maryland.  ARS-H-3.
     1975.  54 p.

31.  Hehran, M., and K.K. Tanji.  Computer Modeling of Nitrogen
     Transformations in Soils.  J. Environ.  Qual.  3(4):391-395, 1974.

32.  Oddson, J.K., L. Letey, and L.V. Weeks.  Predicted Distribution of
     Organic Chemicals  in Solution and Adsorbed as a Function of
     Position and Time  for Various Chemicals and Soil Properties.  Soil
     Sci. Soc. Amer. Proc.  34:412-417, 1970.

33.  Sawyer, C.N., and  P.L. McCarty.   Chemistry for Sanitary Engineers,
     2nd ed.  New York, McGraw-Hill Book Company, 1967.  p. 204-205.

34.  Stanford, G., and  S.J. Smith.  Nitrogen Mineralization Potential  in
     Soil.  Soil Sci. Soc. Amer. Proc.  36:465-472, 1972.
                                     132

-------
35.  Stanford, G., M.H. Frere, and D.E. Schwaninger.  Temperature
     Coefficient of Soil Nitrogen Mineralization.  Soil Sci.
     115:321-323, 1973.

36.  Stanford, G., and E. Epstein.  Nitrogen Mineralization—Water
     Relations in Soils.  Soil Sci. Soc. Amer. Proc.  38:103-107, 1974.

37.  Bartholomew, W.V.  Mineralization and Immobilization of Nitrogen in
     the Decomposition of Plant and Animal Residues.  In:  Soil Nitrogen,
     W.V. Bartholomew and F.E. Clark (eds.), Madison, Wis. Am. Soc. Agron.
     Agronomy Monograph No. 10, 1965.  p. 285-306.

38.  Alexander, M.  Nitrification.  In:  Soil Nitrogen, W.V. Bartholomew and
     F.E. Clark (eds.), Madison, Wis., Am. Soc. Agron.  Agronomy Monograph
     No. 10, 1965.  p. 307-343.

39.  McLaren, A.D.  Temporal and Vectorial Reactions of Nitrogen in
     Soil:  A Review.  Can. J. Soil Sci.  50(2):97-109, 1970.

40.  Broadbent, F.E., and F. Clark.  Denitrification.  In:  Soil Nitrogen,
     W.V. Bartholomew and F.E. Clark (eds.), Madison, Wis. Am. Soc. Agron.
     Agronomy Monograph No. 10, 1965.  p. 344-359.

41.  Stanford, G., R.A. Vander Pol, and S. Dzienia.  Denitrifi cation
     Rates in Relation to Total and Extractable Soil Carbon.  Soil Sci.
     Soc. Amer. Proc.  39:284-289, 1975.

42.  Stanford, G., S. Dzienia, and R.A. Vander Pol.  Effect of
     Temperature on Denitrification Rate in Soils.  Soil  Sci. Soc. Amer.
     Proc.  39(5):867-875, August-September 1975.

43.  Viets, Franck G.  The Plant's Need for and Use of Nitrogen.
     In:  Soil Nitrogen, W.V.  Bartholomew and F.E. Clark (eds.), Madison,
     Wis., Am. Soc. Agron.  Agronomy Monograph No. 10, 1965.  p.503-549.

44.  Van den Honert, T.H., and J.J.M. Hooymons.  On the Absorption by
     Maize in Water Culture.  Acta Bot Neerlandica 43:376-384, 1955.

45.  Mortland, M.M., and A.R.  Wolcott.   Sorption  of Inorganic Nitrogen
     Compounds by Soil Materials.   In:   Soil  Nitrogen, W.V.  Bartholomew
     and F.E. Clark (eds.), Madison, Wis., Am. Soc. Agron.  Agronomy
     Monograph No. 10, 1965.  p. 150-197.

46.  Larsen, S.  Soil Phosphorus.   Advan. Agron.   19:151-210, 1967.

47.  Fried, M., C.E. Hagen, J.F. Saiz del Rio, and J.E.  Leggett.  Kinetics
     of Phosphate Uptake in the Soil-Plant System.  Soil  Sci.  84(6):427-437,
     1957.
                                     133

-------
48.  Enfield, C.G., and D.C.  Shew.   Comparison of Two Predictive
     Nonequilibrium One-Dimensional  Models for Phosphorus Sorption and
     Movement through Homogeneous  Soils.   J.  Environ. Qual.  4(2):198-202,
     1975.

49.  Acton, F.S.  Numerical  Methods  that Work.  New York, Harper & Row,
     1970.  541 p.

50.  Payne, W.R., Jr., J.D.  Pope,  Jr., and J.E.  Benner.   An  Integrated
     Method for Trifluralin,  Diphenamid,  and Paraquat in Soil and Runoff
     from Agricultural Land.   J. Agr.  Food Chem.   22(l):79-82, January-
     February 1974.

51.  Barnes, B.S.  Discussion of Analysis of Runoff Characteristics.
     Trans. Am. Soc. Civil  Eng.  105:106,  1940.

52.  Wischmeier, W.H., and  D.D.  Smith.  Predicting Rainfall-Erosion
     Losses from Cropland East of  the  Rock Mountains.  U.S.  Department
     of Agriculture, Agricultural  Research Service.  Agricultural
     Handbook No. 282.  1965.  47  p.

53.  Wischmeier, W.H., L.B.  Johnson, and B.V. Cross.   A Soil
     Erodibility Nomograph  for Farmland and Construction Sites.
     J. Soil Water Cons.  26(5):189-193,  1971.

54.  Wischmeier, W.H.  Estimating  the  Soil Loss  Equation's Cover and
     Management Factor for Undisturbed Areas.  In:  Present  and Prospective
     Technology for Predicting Sediment Yields and Sources.   U.S.
     Department of Agriculture,  Agricultural  Research Service.
     ARS-S-40.  June 1975.   p. 118-124.
                                    134

-------
                           SECTION XII
                           APPENDICES
A.  ARM Model  User Manual
    Model  Operati on and Parameters	136
    Data Requirements and Model I/O	146
    Parameter  Evaluation and Calibration	179

B.  ARM Model  Sample Input Listing	190

C.  ARM Model  Source Listing	201
                                  135

-------
                              APPENDIX A

                        ARM  MODEL  USER MANUAL
MODEL OPERATION AMP PARAMETERS


The general  structure and operation  of the  ARM Model  was  discussed in
Section IV,  and is depicted  graphically in  Figure  52.   The Model
consists of a series of subprograms  whose execution is  controlled by the
executive program, MAIN.   Table  18 lists all  subprograms  of the ARM
Model, defines their functions,  and  includes  the beginning line number
of each subprogram in the Model  source listing (Appendix  C).   The Model
operates on  a number of different time intervals.   The  major interval of
model operation is specified by  the  user and  corresponds  to the time
interval of available precipitation  data; 5 or 15  minute  intervals are
allowed by the present version of the ARM Model.  For days on which
storms occur, the LANDS,  SEDT, and ADSRB subprograms  perform
calculations on the 5 or 15  minute interval.   For  days  on which storms
do not occur, the LANDS subprogram continues  to operate on the 5 or 15
minute interval while the remaining  programs  operate on a daily basis.
In the present version of the Model, the DEGRAD subprogram always
operates on a daily basis, and snowmelt calculations  are  performed
hourly.  The time interval for nutrient transformations is determined by
a user-specified input parameter. The MAIN program monitors the passage
of real time and keys the operation  of the  separate subprograms at the
proper time intervals.

Table 19 includes a complete list and descriptions of the ARM Model
parameters.   The 'control' parameters (i.e. HYCAL, INPUT, OUTPUT, PRINT,
SNOW, PEST, NUTR, ICHECK) and 'nutrient control' parameters (TSTEP, NAPPL,
TIMHAR) specify the mode of operation, the  units and type of input and
output, and the simulation calculations to  be performed in each Model run.
The HYCAL and PRINT parameters determine the  mode  of Model operation and
the frequency of printed output, respectively.  The two modes of operation
allowed by the present version of the ARM  Model are referred to as
calibration (HYCAL = CALB) and production  (HYCAL = PROD)  runs.  The
monthly and yearly summaries obtained from calibration and production runs
are basically similar.  The production summaries provide  more detailed
information for pesticide and nutrient concentrations in  the soil profile.
Tables 20 and 21 are sample monthly  summaries for the calibration and
production modes of operation, respectively.   Note that the word  'BLOCK'
is used to indicate the areal-source zones  discussed in Section IV, in
order to prevent confusion with  the  vertical  soil  zones (i.e. surface,
upper, lower, groundwater).   The basic difference between the calibration
and production modes is the type and form of information obtained for
simulation periods between the monthly summaries.   A calibration  run
provides detailed information on runoff, sediment concentration and mass
                                    136

-------
            ARM Model structure and operation
CO
            INPUT
           OUTPUT*
 MAIN
 EXECUTIVE
 PROGRAM
                                   LANDS

                                   HYDROLOGY
                                   AND SNOW
                                   SEDT
                                   SEDIMENT
                                   PRODUCTION
»-CHECKR CHECK INPUT SEQUENCE

^NUTRIO READ NUTRIENT INPUT

»-OUTMON,   OUTYR  OUTPUT SUMMARIES
                                         PEST
             NUTRNT

             NUTRIENT TRANSFORMATION
             AND REMOVAL
yes
                                            NO
                                                  YES
      NUTR
                       ADSRB
                       PESTICIDE ADSORPTION
                       AND REMOVAL
DEGRAD
PESTICIDE
DEGRADATION
                                                                        Figure 52

-------
                    Table  18.  ARM MODEL COMPONENTS
Major
Program
MAIN
Component
Subroutine
LANDS

SEDT
ADSRB
DEGRAD

NUTRNT
           CHECKR
           BLOCK DATA

           NUTRIO

           OUTMON
           OUTYR
           DSPTN
           TRANS
                                    Beginning
Function                            Line No.
Master program and executive              10.
control routine
Checks input parameter errors           1200.
Data initialization for common          1600.
variables
Reads and checks nutrient input         6200.
data
Prints monthly output summaries         8000.
Prints yearly output summaries          9000.
Performs hydrologic simulation          2000.
and snowmelt calculations
Performs sheet erosion simulation       4000.
Performs pesticide soil adsorption/     5000.
desorption simulation
Performs desorption calculations        5800
Performs pesticide degradation          6000.
simulation
Performs nutrient simulation            7000.
Performs nutrient transformations       7800.
                                  138

-------
            Table 19.   ARM MODEL INPUT PARAMETER DESCRIPTION
TYPE

Control
NAME

HYCAL
Hydrology
           INPUT
           OUTPUT
           PRINT
           SNOW

           PEST

           NUTR

           ICHECK
IMTRVL
HYMIN
AREA
BGNDAY
BGNMON
BGNYR
ENDDAY
ENDMON
EMDYR

UZSN
UZS
LZSN
LZS
L
SS
NN
A
K3
EPXM
INFIL
INTER
IRC
DESCRIPTION

Specifies type of information desired
PROD-production run, prints full tables for each
   interval as specified by PRINT
CALB-calibration run, prints removal  values for
   each interval as specified by PRINT
Input units, ENGL-english, METR-metric
Output units, ENGL-english, METR-metric, BOTH-both
Denotes the interval of printed output, INTR-each
   interval, HOUR-each hour, DAYS-each day, MNTH-each
   month
NO-snowmelt not performed, YES,snowmelt calculations
   performed
No-pesticides not performed, YES-pesticide calculations
   performed
NO-nutrients not performed, YES-nutrients calculations
   performed
ON-checks most of the hydrology, snow (if used),
   sediment, and pesticide (if used)  input parameter
   values and prints out error and warning statements
   for input parameter values that are outside of
   acceptable value limits, OFF-no check is made
Time interval of operation (5 or 15 minutes)
Minimum flow for printed output during a time interval
Watershed area
                    Date simulation begins-day,  month,  year
Date simulation ends-day, month, year

Nominal upper zone storage
Initial upper zone storage
Nominal lower zone storage
Initial lower zone storage
Length of overland flow to channel
Average overland flow slope
Manning's for overland flow
Fraction of area that is impervious
Fraction index to actual evaporation
Maximum interception storage
Mean infiltration rate
Interflow parameter, alters runoff timing
Interflow recession rate
                                   139

-------
  Table 19.  (Continued)
Snow
Sediment
K24L     Fraction of groundwater recharge percolating to deep
            groundwater
KK24     Groundwater recession  rate
K24EL    Fraction of watershed  area where groundwater is within
            reach of vegetation
SGW      Initial  groundwater storage
GWS      Initial  groundwater slope
KV       Parameter to allow variable recession rate for
            groundwater discharge
ICS      Initial  interception storage
OFS      Initial  overland flow  storage
IFS      Initial  interflow storage

RADCON   Correction factor for  radiation melt
CCFAC    Correction factor for  condensation and convection melt
SCF      Snow correction factor for raingage catch deficiency
ELDIF    Elevation difference from temperature station to mean
            watershed elevation
IDNS     Initial  density of new snow
F        Fraction of watershed with complete forest cover
DGM      Daily groundmelt
WC       Water content of snowpack by weight
MPACK    Water equivalent of snowpack for complete watershed
            coverage

EVAPSN   Correction factor for snow evaporation
MELEV    Mean elevation of watershed
TSNOW    Temperature below which precipitation becomes snow
PACK     Initial  water equivalent of snowpack
DEPTH    Initial  depth of snowpack
PETMIN   Minimum temperature at which PET occurs
PETMAX   Temperature at which PET is reduced by 50 percent
PETMUL   Potential evapotranspi ration data correction factor
WMUL     Wind data correction factor
RMUL     Radiation data correction factor
KUGI     Index to forest density and undergrowth

COVPMO   Fraction of crop cover on a monthly basis (12 values)
TIMTIL   Time when soil is tilled  (Julian day, i.e. day of the
            year, e.g. January 1=1, December 31 = 365/366)
               (5 dates)
YRTIL    Corresponding year  (last two digits only) for
            TIMTIL  (5 values)
SRERTL   Fine deposits produced by tillage corresponding to
            TIMTIL and YRTIL (5 values)
SZDPTH   Depth of the surface zone
UZDPTH   Upperzone depth or  depth  of soil incorporation
BULKD    Bulk density of soil
JRER    Exponent of rainfall  intensity  in soil splash equation
KRER    Coefficient in soil splash equation
                                    140

-------
  Table 19.  (Continued)

           JSER     Exponent of overland flow in  sediment  washoff equation
           KSER     Coefficient in sediment washoff equation
           SRERI     Initial  fines  deposit

Pesticide   PESTICIDE   Title word  to begin  the reading of  pesticide  input
                       parameters
           APMODE   Application mode, SURF-surface applied, SOIL-soil
                       incorporated
           DESORP   NO-single-valued adsorption/desorption used,  YES-non-
                       single-valued adsorption/desorption algorithm used
           SSRT     Pesticide application for each block (5 values)
           TIf-iAP     Time of pesticide application (Julian  day)
           YEARAP   Year of pesticide application (last two digits only)
           CMAX     Maximum solubility of pesticide in water
           DD       permanent fixed capacity
           K        Coefficient in Freundlich adsorption equation
           N        Exponent in Freundlich  adsorption equation
           NP       Exponent in Freundlich  desorption equation
           DE6CON   First order pesticide decay rate
Nutrient
Control     TSTEP
           NAPPL

           TIMHAR
Timestep of chemical and biological transformations,
   must be an integer number of time steps in a day,
   and an integer number of simulation intervals
   (INTRVL) in a TSTEP, range of TSTEP is 5 or
   15 minutes to 1440 minutes
Number of fertilizer applications, values may range
   from 0 to 5
Time of plant harvesting, Julian day of the year,
   value may range from 0 to 366
Nitrogen Reaction  Rates
           Kl

           K2
           KK2
           KD
           KPL
           KAM

           KIM

           KKIM
           KSA

           KAS
Oxidation rate
   to nitrite
Oxidation rate
Reduction rate
               of ammonia (dissolved and absorbed)
               of nitrite
               of nitrate
to
to
nitrate
nitrite
                                      gas
Reduction rate of nitrite to nitrogen
Uptake rate of nitrate by plants
Ammonification or mineralization rate
               ammonia
               rate of dissolved ammonia
   of ORG-N to
immobilization
   to ORG-N
Immobilization rate
Transfer rate of ammonia
adsorbed (adsorption)
Transfer rate of ammonia
solution (desorption)
                    of nitrate to ORG-N
                         from solution to

                         from adsorbed to
                                    141

-------
Table 19.  (Continued)
Phosphorus Reaction Rates
           KM
           KIM
           KPL

           KSA

           KAS


Nitrogen Storages

           ORG-N

           NH3-S
           NH3-A
           N02
           N03
           N2
           PLNT-N

Phosphorus Storages

           OR6-P
           P04-S
           P04-A
           PLNT-P

Chloride Storage

           CL
Mineralization rate of ORG-P to P04-P
Immobilization rate of P04-P to ORG-P
Uptake rate of phosphate (adsorbed and in solution)
   by plants
Transfer rate of phosphate from solution to
   adsorbed form
Transfer rate of phosphate from adsorbed to
   solution form
Organic nitrogen assumed to be
   solid or attached to soil
Ammonia in solution
Ammonia adsorbed to soil
Nitrite
Nitrate
Nitrogen gas from denitrification
Plant nitrogen
Organic phosphorus attached to soil
Phosphate in solution
Phosphate adsorbed to soil
Plant phosphorus
Chloride
                                   142

-------
Table  20.    CALIBRATION  RUN  OUTPUT  -  MONTHLY  SUMMARY
                         (Pesticide  Simulation)
                           SU20UI.ECB.HOUU.Of	JUW	1SJ3

                                   SLOCK 1   BLOCK 2   BLOCK 3
           kATER.  INCHES
                                                               CLOCK 4    BLOCK 3
                                                                                    TCTAl
              •UKCFF
                 OV'RLANC fLOU
                 INTEPFinh
                 I»PCP.VICUS
                 TOT/I
                      O.M2
                      C.C34
                                    0.396
                                0.290
                                0.061
                                              0.311
0.141
0.013
                                                       0.210
                   C. C*T
                   0.09*
                                                                0.132
                                     o.orr
                                     0.«A4
                                                                         0.971
                                                                   0.163
                                                                   0.065
                                                                   0.0
                                                                   0.22 B
BASE FLCk
(MOhATCH RECHARGE
                                                                                    0.0
                                                                                    0.191
              PRECIPITATION
                                    0.75
                                             0.7!
                                                       0.7)
                                                                0.75
                                                                         0.7$
                                                                                    0.75
PCTtNTIAL
NET
CPOP COVER
0.27
0.27
0.27
0.27
C.27
0.27
                                                  0.27
                                                  C.27
                                                            0.27
                                                            0.27
                                                                                    0.27
                                                                                    0.27
                                                                                    1.00
              STORAGES
                 UPPER JUKE
                 LCrfEft 
-------
Table  21.    PRODUCTION  RUN OUTPUT     MONTHLY  SUMMARY
              (Pesticide  and  Nutrient  Simulation)
                       sueetii-Eci-aQtiiu.u—JIKE—1121
                                BLOCK I   BLOCK  Z   SLOCK )
                                                           BLOCK 4   BLOCK
                                               TOT41
        »»TER,  INCHES
RUKCFF
   GVERKNC FLO*
   |NPE"VIOU3
   TOfM.

BiSt  FLOk
CRDkATER RECHtRt!

PREC1PIT1TION
1.141
0.413
1.604
                                 ».T40
                               O.BBT
                               0.464
         1.351
                                          4.7*0
0.567
O.JM
                  0.9SS
                                                   4.140
                                                  0.401
                                                  O. ISO
                            0.751
                                                            4.740
                                     0.305
                                     0.110
                                     0.615
                                                                      4.740
                                                                                0.671
                                                                                0.385
                                                                                O.O
                                                                                I .OS*

                                                                                0.0
                                                                                1.66B

                                                                                4.740
        POT 1ST ML
        f£T
        CHOF COVER

     STOMGES
        UPPER  lUHE
        104ER  ZCNE
        C« 1U1CM4TE*
        INTE'CEPTIOS
        CV5Rt»NO FLOk
J.49J
2.621
     ««TER BM.4NCE-  O.OOM

   StDIPEKT,  TOMS/«CRC
     TOTK S(ClrE»T L«$
     FINES Ot POSIT

PEJT1CIOE. POJKOS

   !UF»CF LITER
     • OSOBCEC
                               1.493
                               2.62J
1.4«
2.42]
                                                  3.491
                                                  Z.«21
                                     S.4«
                                     2.621
O.C02
M.750
0.0
0.0
0.0
0.0
0.002
1B.7SO
0.0
0.0
0.0
0.0
0.002
1B.7SO
0.0
0.0
0.0
0.0
0.002
IB .750
O.J
0.0
0.0
0.0
0.002
11.750
9.4
0.0
0.0
0.0
      (ISSOLVEO

   UMF.R AWE L*TtR
      tOSCRBEO
      CRY£T»llIN»
      CISSOLVEC
      INTERFLCM STOftttt

   LOkFR lOtt UYER
      «OSORBEO
      CKTS74LL 1HE
      CISSOLVtO

   CRCUNOMTER L»TIR
      (CSCRSEO
      CRTSTALLINt
      OISSOLVEO

   PESTICIDE RENCVAL. IBS.
0.899
1.C94
 0.596
 0.544
 0.0
 0.0

 0.0
 0.0
 0.0
 0.0
 0^
                               0.9)4
                               1.10S
                                0.594
                                0.596
                                0.0
                                0.0

                                0.0
                                0.0
                                0.0
                                0.0
                                «.0
0.540
1.1)6
 0.597
 0.5«7
   0
   C

   0
   0
   0
 0.0
 0.0
                                                  0.176
                                                  1.109
                                                   0.597
                                                   0.597
                                                   0.0
                                                   0.0

                                                   0.0
                                                   0.0
                                                   0.0
                                                   0.0
                                                   0.0
                                     0.2BS
                                     1.110
                                      0.99T
                                      0. S97
                                      0.0
                                      0.0

                                      0.0
                                      0.0
                                      0.0
                                      0.0
                                      0.1
                                 o.ooi
                                          o.ooo
                                                    o.ood
                                                             0.000
                                                                      o.ow
                                                                                J.4M
                                                                                2.621
                                                                                0.191
                                                                                0.001
                                                                               11.750
                                                                                0.0
                                                                                0.0
                                                                                0.0
                                                                                0.0
                                                                                O.tOT
                                                                                1.105
                                                                                 2.9(2
                                                                                 2.911
                                                                                 0.9
                                                                                 0.0

                                                                                 0.0
                                                                                 0.0
                                                                                 0.0
                                                                                 0.0
                                                                                 0.0

                                                                                 0.0
                                                                                 0.0
                                                                                 0.0
                                                                                 0.0

                                                                                 0.0
                                                                                 0.0
                                                                                 0.0
                                                                                 0.0

                                                                                o.ooi
           OVERLAND FLOK UWWL   0.0
           SEOtXEHT R.EHOVM.       0.001
           IMERFLOM RECOVU.      0.0

         PESTICIDE OEOH»0»TIOH LOSS. IIS.
           10TM.
           »CN SURFKE
           FRO» UPPER ICNE
           MOM LOHR ZONt

           MSTIC10t_B«UNCr> 0^
         0.0
         0.000
         0.0
                                         0.0
                                         0.000
                                         0.0
          0.0
          0.000
          0.0
                                                           lloo
                                                           0.0
                                                                                0.0
                                               0.0
                                                0.097
                                                0.097
                                                0.0
                                                0.0
                                         144

-------
Table 21.   (Continued)
                    ORG-K   NH3-S   NH3-A
                                       102
                                                    N2  PLNT-N  ORG-P  PO4-S  P04-A HIT-'
                                                                                       :L
 STtHCE
SURIACF LAYER
BLOCK 1
BLCCK 2
BLOCK 3
BLCCK 4
flCCK 5
U>PIR *ot.E
BLOCK 1
BLCCK 2
BLCCK 3
CLOCK 4
BLOCK 5
INTERFLOW
BLOCK 1
BLCCK 2
BLOCK 1
CLOCK *V
BLCCK S
LOntR I CUE
GRCLNOMATER
REKVA'L
micrivE
SEDIMENT
BLCCK 1
BLOCK 2
(LOCK 3
CLOCK 4
BLOCK 5
OVEALfMO FLOW
CLOCK 1
BLCCK 2
BLOCK 1
8LCCK 4
BLOCK 5
I NT IF Fl CM
CLOCK 1
(LCCK 2
BLOCK 1
CLOCK 4
BLOCK 5
TOTAL TO STREAM
FEFCCIATIOK TC
GUCUMOWATER
81CIOGICAL - TOTAL
SLR FACE
UPFEA ZONE
LONER 20AE
GROLNCkATER
HARVEST
"ASS 8AIAKI
M1IOGEN • -0.141
FHtSPMfRUS • -0.007
CUM IDE . -C.001
23.
23.
23.
23.
24.
24.
1127.
1127.
1127.
1127.
1127.
1127.
0.
C.
0.
0.
0*
0.
11078.
0.


C.
1.
1.
0.
0.

0.
9.
0.
0.
0.
0.
0
0
0
0
0
0
0.

a.
0.
0.
0.
0.
0.
V.




0.092
0.090
0.091
0.092
0.093
0.093
6.701
9.480
6.975
6.033
5.760
5.256
0.0
0.0
0.0
0.0
55.911
0.321


0.0
0.0
0.0
0.0
0.0

0.000
0.001
0.000
0.000
o.ooc
0.000
1.959
4.056
5.156
4.897
1.597
2.090
3.959

0.5ST
0.0
0.0
0.0
0.0
0.0
o.o




9.1(1
0.177
a. 179
0.1(1
0.1(3
0.1(4
9.117
9.275
9.137
9.08<
9.062
9.025
0.0
0.0
0.0
0.0
4.731
0.015


0.006
O.C15
0.010
0.00!
0.001
Of±
»v
0.9
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.006

0.0
0.0
0.0
0.0
0-0
0.0
0.0




O.I 10
0.107
0.109
0.110
0.111
0.111
(.222
11.779
8.576
7.371
7.018
6.368
0.0
0.0
0.0
0.0
41.749
0.301


0.0
0.0
0.0
C.O
0.0

0*000
0.901
0.000
0.900
0.000
0.000
5.4(4
5.617
7.141
6.783
4.911
2.895
5.484

0.456
0.0
0.0
0.0
0.0
0.0
0.0




9.069
O.C'. (
•3.0*9
0.060
0.061
0.062
35.633
73.7(8
40.t02
28.439
22. (Sf
12. (39
0.0
0.0
0.0
0.0
6(5.735
5. (69


0.0
0.0
0.0
0.0
0.0
01*1*1
• HI
0.003
0.002
0.001
0.000
0.000
25.696
26.322
33.462
31.7(3
23.348
13.3*5
25.69T

5. !41
0.0
o.o
o.o
o.o
0.0
0.*




0.3
o.o
o.o
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0


0.0
0.0
0.0
0.0
0.0

0. 0
0.0
0.0
9.0
0.0
0.0
0.0
0.0
P.O
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0




0.069
0.069
0.969
O.C69
0.069
C. 069
1. (31
3.9(8
3.6(1
3.570
3. 506
1.409
0.0
0.0
0.8
0.0
25.136
0.850


0.0
0.0
0.0
0.0
0.0

0.0
0.0
o.c
0.0
C. •
0.8
0.8
0.0
o.o
O. 8
0.0
0.0
0.8

0.0
2(.8(6
0.069
3.631
25.136
0.050
0.0




5.
5.
5.
5.
5.
5.
225.
225.
225.
225.
225.
225.
0.
0.
0.
0.
2240.
0.


0.
0.
0.
0.

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0.
0.
0.
0.
0.
0.
0.




0.020
0.019
0.019
0.020
0.020
0.020
.103
.323
.114
.033
.029
.917
0.0
0.0
0« 0
0.0
14.666
0.0(0


0.9
0.0
0.0
0.0

0.000
0.000
0.000
0.000
0.000
0.311
0.321
0.407
0.387
0.284
0.165
0.111

0.112
0.0
0.0
0.0
0.0
0.0
0.0




O.tOO
0.5(6
0.594
0.602
0.637
0.609
29. 726
29.904
2 '.. 746
29.6(8
29.664
29.627
0.0
0.0
0* 0
0.0
117.145
0.052


0.010
0.024
0.015
O.007

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.c
0.010

0.0
0.0
0.0
0.0
0.0
0.0
o.«




0.001
0.031
0.011
0.031
0.03 1
0.031
0.0k 3
0.042
o.oto
0.040
0.043
0.039
0.0
0.0
0.0
0.0
0.375
0.030


0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.417
0.031
O.OV3
0.175
0.030
0.0




-O. 000
-3.000
-3.000
-0.000
-3.010
3.0
li.IBB
34.984
H.sji
12.728
9.613
4.727
3.3
3.3
0.0
3.3
68.790
0.443


3.0
3.3
3.3
0.0

3.002
0.001
3.430
3.333
3.333
14.579
14.934
18.985
13.932
13.247
F.»»A
14.57*

3.441
3.3
3.0
3.9
3.)
0.0
3.0




                                            145

-------
removal, and pesticide or nutrient concentrations  and mass removal for
each simulation interval  (5 or 15 minutes).   Tables 22, 23, and 24 present
the type of output obtained from calibration runs  with various simulation
options.  The goal of the calibration  form of operation is to provide the
information needed to compare simulated runoff, sediment loss, and
pesticide or nutrient loss with recorded values for storm events.  Since
information is provided in each simulation interval the PRINT parameter
must be specified for interval output  (i.e.  PRINT  = INTR) for all
calibration runs.  Due to output printing limitations, pesticides and
nutrients cannot be run simultaneously in the calibration mode.

The production mode of operation provides summaries of runoff, sediment,
pesticide, and nutrient loss, in addition to the amount of pesticide and
nutrients remaining in the various soil zones.  Thus, the production
mode provides a complete picture of the mass balance of pesticides and
nutrients applied to the watershed.  Pesticide and nutrient simulation
can be performed simultaneously in the production  mode.  The production
output is printed in tables similar to the monthly summaries.  The
frequency of printing is controlled by the PRINT parameter which allows
printing to be done on each interval (PRINT = INTR), each hour (PRINT =
HOUR), or at the end of each day (PRINT = DAYS) or each month (PRINT =
MNTH).  Table 25 presents a sample production output for daily printout.
Generally, production runs will be employed for daily or monthly print
intervals.  Use of the interval (INTR) or hourly (HOUR) printout in the
production mode should be restricted to short simulation periods due to
the large amount of printed output provided, e.g.  over 500 pages of
output is provided each day of simulation for a production run which
prints output for each 5 minute interval.

The SNOW, PEST, and NUTR control parameters specify whether or not
snowmelt, pesticide, or nutrient calculations, respectively, will be
performed in each model run.  As indicated above,  pesticide and nutrient
calculations can be performed simultaneously in a production run but not
in a calibration  run.  An error message will be printed, and execution
will be prevented, if this rule is violated.

The remaining control parameters,  INPUT, OUTPUT, and  ICHECK will be
discussed in the  following section on Model input and output  (I/O).

DATA REQUIREMENTS AND MODEL  INPUT/OUTPUT (I/O)


Data requirements for use of the ARM Model  include those related to
operation, parameter evaluation, and calibration.   This section will
discuss the  data  requirements  for  Model operation  and  I/O while the
following section will discuss parameter evaluation  and calibration.  Once
initial parameter values  have been chosen,  the driving force of Model
operation is the  input meteorologic data series.  Table 26 describes the
input  sequence  and attributes  of the meteorologic  data series  required  for
                                    146

-------
                      Table 22.  CALIBRATION RUN OUTPUT  -  STORM EVENTS
                          (Hydrology and  Sediment Simulation Only)
  DATE
        TIMfc
              FLUVMCFS-CKSI
                             SEUHENT UBS-KG-KG/HIN-GH/L)
                                                                    PESTICIDE IGH-GM/HIN-PPHI
                                                                MATE*
                                                                                       SEDIMENT
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
8
it
a
8
8
8
8
8
0
a
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
a
8
8
8
8
8
8
8
4:25
4130
4:35
4:40
4145
4:50
4:55
5: 0
5: 5
5UO
5U5
5:20
5J25
5:30
5:35
5:40
5:45
5:50
5:55
6: 0
6: 5
6:10
6:15
6:20
6:25
6:30
6:35
6:40
6:45
6:50
6:55
7: 0
7: 5
7:10
7H5
0.008
0.029
0.825
2.999
2.770
1.923
2.717
5.440
5.440
3.500
2.50?
1.977
2.6!>8
4.163
4.539
3.297
1.7o5
1.000
0.638
0.421
0.300
0.200
0.136
0.095
0.070
0.046
0.031
0.021
0.014
0.009
0.006
0.004
0.003
0.019
0.019
0.000
0.001
0.023
0.085
0.078
O.C54
0.077
0.154
0.154
0.099
0.071
0.056
O.C75
0.118
3.126
O.C93
0.050
0.028
0.018
0.012
0.008
0.006
0.004
0.003
0.002
0.001
O.C01
0.001
0.000
0.000
0.000
0.000
0.000
0.001
0.001
0.06
3.01
473.03
2J43.B4
1346. dO
742.54
1J*1.41
2
143.43
41.92
Ib.ta
7.U
5.09
2.04
O.Sil
O.OJ
j. a
0.0
0.0
0.0
0.0
0.0
0.0
0.0
U.Oi
0.02
O.J
0.03
1.37
214.76
927.90
611.45
337.11
481.88
1031.40
922.31
444.22
228.07
141.15
200.20
350.48
375.74
199.24
65.12
19.03
6.99
3.23
2.31
0.93
0.23
0.02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.01
0.01
0.0
0.01
0.27
42.95
185.58
122.29
67.42
96.38
206.28
184.46
88.84
45.61
28.23
40.04
70.10
75.15
39.85
13.02
3.81.
1.40
0.65
0.46
0. 19
0.05
0.00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.00
0.00
0.0
0.38
5.62
30.63
36.42
25.98
20.64
20.88
22.32
19.95
14.94
10.71
8.40
6.87
9.91
9.74
7.11
4.34
2.24
1.29
0.90
0.91
0.55
0.20
0.02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.52
0.07
0.0



*

*
**
***
**
**
**
• »
***
***
**•
»•*
**
**
*
*
*














Note:  Asterisks (*) indicate that  the detached fines  storage is less  than the overland flow
       sediment transport capacity  in an area! zone  (or block), e.g. three asterisks  (***)
       indicate that this occurs  in three such zones.

-------
                                    Table 23.  CALIBRATION RUN OUTPUT  -  STORM EVENTS
                                                   (Pesticide  Simulation)
              cm
                    TIME
                           FLOM(CFS-CMS)
                                          SEOIMEftT (LBS-KG-KG/MIN-GM/L)
J>
00
JULY
JULY
JUV
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JLLY
JULY
JUL>
JULY
JULY
JULY
JULY
JULY
JLLY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JU.Y
JULY
JULY
JULY
JULY
JULY
JULY
JULY
JLLY
JULY
JULY
JULY
8
8
8
8
8
8
E
8
8
8
8
8
8
8
8
a
8
8
8
a
8
8
a
8
8
8
E
8
8
8
8
8
8
a
8
8
8
8
8
8
8
4:25
4: 30
4:35
4:40
4J45
4:50
4:55
5i C
S: 5
5:10
5:15
5:20
5:25
5:30
5:35
5:40
5:45
5:50
5:55
tl 0
6: 5
6:10
6:15
6:20
6:25
6:30
6:35
6:40
<:45
6:50
6:55
7: 0
7: 5
7:10
7:15
7:20
7:25
7:30
7:35
7:40
7:45
0.010
0.032
0.877
3.119
2.847
1.967
2.766
5.504
5.5B3
3.662
2.587
2.025
2. 70S
4.213
4.581
3.328
1.752
1.006
0.644
0.426
0.306
0.205
0.139
C.097
0.071
0.047
0.032
0.021
0.014
0.009
C.C06
C.004
0.003
0.020
0.019
0.013
0.009
0.006
0.004
C.003
0.002
0.000
0 .001
0.025
0.088
0.031
O.OSo
U.07E
0.156
0 .1*8
0.104
0.073
0.057
0.077
0.119
3.130
0.094
0.05C
0.028
O.OIE
0.012
0.009
0.006
0.004
0.003
0.002
O.OC1
O.OC1
0.001
0.000
0.000
O.JOO
0.000
o.occ
0. 001
O.OC1
0.000
0.000
0.000
0.000
0.000
o.ooc
0.02
1.02
146.45
666.61
405.25
228.90
41E.41
1070.46
946.60
475. £7
243.96
157.09
209.54
377.55
3S«.«4
203.45
59.21
18.45
6.99
3.73
1.77
0.62
0.16
o.ei
0.0
C.C
o.e
0.(
0.0
0.0
0.0
0.0
0.01
c.a
o.e
0.0
0.0
0.0
0.0
0.0
0.0
o.d
0.46
66.49
302.64
183.96
103.92
190.05
486.08
429.76
21 5. SI
110.76
71.32
95.13
171.41
181.43
92.46
26.88
8.47
3.17
1.69
0.80
0.28
0.07
0.01
O.C
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.03
0.00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.00
0.09
13.30
60.53
36.80
20.78
38.01
97.22
85.95
43.18
22.15
14.26
19.03
34.28
36.29
18.49
5.36
1.69
C.63
0.34
0.16
0.06
0.01
0.00
0.0
0.0
0.0
0.0
0.0
c.o
0.0
0.0
0.00
0.00
0.0
0.0
0.0
c.o
0.0
0.0
0.0
0. 13
1.71
8.92
11.42
7.61
6.22
8.09
10.39
9.06
6.94
• 5.04
4.15
4.14
4.79
4.66
3.27
1.81
0.99
0.58
0.47
0.31
0.16
0.06
0.01
0.0
0.0
0.0
0.0
0.3
0.0
0.0
0.0
0.15
0.02
0.0
0.0
0.3
0.0
0.0
0.0
0.0
0.7
0.0
C. 0
0.0
0.3
0.0
0.0
0.0
0.1
e.o
C.O
0.0
0.0
e.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
3.0
0.0
0.0
0.0
0.3
0.0
e.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
3.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.033
0.019
2.715
12.336
7.359
4.113
7.4)9
19. 234
16.678
8.233
%. IS?
2.6SS
3.585
6.512
6.831
3. 45 2
0.934
0.314
0.1U
O.OSl
0.029
0.010
3.033
0.033
0.0
0.0
0.0
0.0
0.0
0.0
o. n
0.0
0.030
0.033
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.000
3.004
3.543
2.4&1
1.472
0.823
1.500
3.841
3.336
1.646
3.934
3.533
0.717
1.302
1.376
9.692
0.197
3.061
3.323
3.312
0.006
0.002
0.001
0.003
0.0
0.0
0.0
0.0
0.0
3.3
3.3
0.0
0.000
0.000
0.0
0.0
0.0
3.3
3.3
0.0
0.0
40.811
40.812
40.826
43.663
39.996
39.580
39.459
39.538
38.808
38.120
37.639
37. 388
37.680
37.991
37.928
37.4V9
36.608
36.178
36.089
36.066
36.056
36.052
3S.053
35.053
0. 0
0.0
0.0
0.0
0.0
3.0
3.0
0.0
36.050
34.050
0.0
0.0
0.0
3.0
3.3
0.0
0.0

-------
Table 24.  CALIBRATION RUN OUTPUT - STORM EVENTS
              (Nutrient Simulation)
                DISSOLVED IN WATER
GATE
VILLAGE CF
TI1E
IKE SCIL
NUTRIENT APPLICATION
JUKE 13
JUKE 13
JUKE 13
JUKE 13
JUKE 13
JUOf 13
JUNE 13
JUKE 13
JUNF 13
jUKF 13
JUKE 13
JUKF 13
1EHO
lEilS
ut 20
1B:25
1E:30
16:35
1E>40
18: '.5
lEt«0
IttS*
19t 0
ISt 5
FLOW
3
114. 1
5.548
135.4
4.925
226.4
4.006
292.6
2.895
325.1
2.141
361.5
1.63C
402.7
1.286
427.1
0.857
427.5
• 164)
C.OOO
0.0
1.721
15.9
3. 218
ee.i
3.417
82.4
4. COS
97.8
3.556
163.5
2.892
212.0
2.390
234.7
1.546
260.3
1.177
290.7
C.928
3CE.6
C.61S
308.6
PCM CL
(LSI (LB)
(KG/L) IMS/L)
IK A NEW FINES

0.000 0.001
3.0 0.3
0.136 6.336
1.3 58.5
0.254 11.851
7.0 224.5
C.270 12.583
6.5 303.4
0.317 14.746
7.7 3t3»0
0.281 12.094
12.9 602.0
C.22S 1C. 651
16.8 760.5
0.165 7.696
18.5 E64.3
0.122 5.692
23.6 «58j4
0.093 4.333
23.0 1C70.6
0.073 3.419
24.4 11*6*5
0.049 2.279
24.4 1126*5
NH3
ILB)
IPPM)
DEPOSIT

0.013
8.7
0.019
B.6
0.003
8.9
0.004
8.4
0.002
8.4
0.000
8.4
0.000
8.3
0.300
8.3
0.000
8.3
0.0
0.0
0.0
0.0
0.0
0.0
ORG-N
ILB)
(PPM)
STORAGE

0.740
506.6
1.107
502.7
0.164
493.3
0.243
494.2
0.138
491.6
0.027
488.7
0.007
487.3
0.002
487.4
0.000
487.4
0.0
0.0
0.0
0.0
0.0
0.0
PC4
«L6)
IPPM)
OF 2.000

0.019
13.3
0.029
13.2
0.004
13*0
0.006
12*9
0.004
12*9
0.001
12.8
0.000
1218
0.000
1218
0.000
12.8
0.0
0.0
0.0
0*0
0.0
0*0
ORG-P
ILB)
IPPM)
TONS /AC RE

0.148
101.3
0.221
100.3
0.033
99.)
0.049
98. S
0.028
98.3
0.005
97.7
0.001
97.5
0.000
97.5
0.000
97.5
0.0
0.)
0.3
0.0
0.0
0.3
TOT-N
ILB)


0.759
16.404
28.731
30.976
33.688
31.988
29.680
18.951
13.720
10.443
8.240
5.493
TOT-P
ILB)


0.167
0.386
0.291
0.323
0.348
0.287
0.230
0.166
0.122
0.093
3.073
0.049

-------
        Table 25.    PRODUCTION RUN OUTPUT -  DAILY PRINTOUT
                        (Pesticide  Simulation)
HATER, INCHES

   RUNOFF
      OVERLAND I-LOW
      IKTEPFl.nn
        TOTAL

      BASE FLOW
      GROWATcR RECHARGE

      PRECIPITATION

      EVAPfTHANSPIKATICN
        POTENTIAL
        KFT
        CROP C'WF.R

      STORAGES
        UP°fcR ZPNF
               '-'r>  PLHW
         INTf PP| PW

      HATER  BALAMCf*  0.0

             Tr)NS/AC«F
      t^OOFO
      UNES  OFP'TSIT

SUHFACF LAYER  PFSTITIOF

   PESTICIDE,  LPS
      CRYSTALLINE
      CISSOLVFO

   PFSTICIOf,  PPM
      AOSCRBEP
      CHYSTALLINF
      OISSHl VFO

   PEMOVAL, LPS
      s= 01 HE NT
      OVFOLANO FLOh
      P?BCrLATIUN

UPPER ZONE LAYER PFSTICICE

   PFSTICID?,  LBS
                            BLOCK 1
                             O.d^J
                             O.ilf

                             1.1 in
         bLUCR. 2   ttLJC* 3   «n.nCK 4   PLOCK 5
      CPYSTALL INF
      CI1SCLVFO
      INTERFLOW STORAGE
o.o/
0.07
 0.132
20.5UU
 0.0
 O.OM3
 O.J
 0.003
O.UoJ
O.JOl
 O.oOtt
 O.bOo
 0.0
 0.0

42.273
42.270
 0.0
 0.0

 0.003
 O.OviJ
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
          0. JUt>
          O.lvO
          2.10
0.07
          0.110
         <20.->oo
          0.0
          U.OJ3
          0.0
          0.000
O.OoJ
0.013
          O.o OSl
          0.0
          0.0
          0.0
          0.0

          0.003
          0.003
          0.0
          0.0
0.0
0.0
0.0
0.0
0.0
          0.2 JO
          o. lt>9
                    2.10
                               0.135
                               0.157

                               0.292
                              2.10
0.072
0.156

0.227
                              2.10
0.07
J.o7
o.lu»
0.0
J.063
0.0
0.000
U.028
0.010
0.610
0.0
0.0
*1.370
<»^.370
0.0
0.0
0.003
0.033
0.0
o.O
0.0
0.0
0.0
0.0
0.0
0.07
0.07
0.105
20.568
0.0
0.083
0.0
0.000
0.059
0.054
0.611
0.611
0.0
0.0
42.462
42.462
0.0
0.0
0.003
0.003
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.07
0.07
0. 106
20.568
0.0
0.083
0.0
0.000
0.033
0.088
0*613
0.613
0.0
0.0
42.586
42.586
0.0
0.0
0.002
0.002
0.0
0.0
0.0
0.0
0.0
0.0
0.0
                                                                                 TOTAL
0.335
0.196
0.0
0.531

0.0
0.903

2.10
                                                    0.07
                                                    0.07
                                                    0.59
                                         0*112
                                        20.568
                                         0.0
                                         0.093
                                         0.0
                                         0.001
                                                    0.054
                                                    0.037
                                          3.052
                                          3.052
                                          0.0
                                          0.0

                                         42.400
                                         42.400
                                          0.0
                                          0.0

                                          0.014
                                          0.014
                                          0.0
                                          0.0
                                                     0.0
                                                     0.0
                                                     0.0
                                                     0.0
                                                     0.0
                                          150

-------
Table  25.   (Continued)
        PF.STICITEt  PPM             0.0       0.0       0.0       0.0       0.0         0.0
           AUSORHFO                0.0       0.0       J.O       0.0       0.0         0.0
           CPYSTALLINC             0.0       0.0       0.0       0.0       0.0         0.0
           DISSOLVED               0.0       0.0       0.0       0.0       0.0         0.0

        P.tMCVAL,  LBS               0.0       0.0       0.0       0.0       0.0         0.0
           INTERFLOW               O.J       0.0       0.0       0.0       0.0         0.0
           PFRCOLATIOM             0.0       0.0       0.0       0.0       0.0         0.0

    LCHE"  ZONE  LAYER  PESTICIDE

        PESTICIDE,  LBS                                                                0.0
           ADSORBED                                                                   o.o
           CRYSTALLINE                                                                0.0
           DISSOLVED                                                                  0.0

        PFSTICIOe,  PPM
           ADSOOHCl)                                                                   0.0
           CRYSTALLINF                                                                0.0
           CISSCLVFI)                                                                  0.0

        PFMCVALt  L8S                                                                  0.0
           PCRCCLATION                                                                0.0

    GinUN3KATEP  LAYFR PCSTICtDE

        PESTItlOE,  LBS                                                                0.0
           ATSOPOEO                                                                   0.0
           CRYSTALLINE                                                                0.0
           DISSOLVED                                                                  0.0

    PESTICIDE CEOP4DATION  LLSSi  LBS.
        TOTAL                                                                          0.006
             SURFACC                                                                  0.006
             UPPFR  ZHNE                                                               0.0
        F-KOM  LOWER  IOHP.                                                               0.0
                                          151

-------
                                               Table 26.  METEOROLOGIC DATA INPUT SEQUENCE AMD ATTRIBUTES*
ui
ro
                       Data
Interval
                       Potential
                       Evapotransplration  Daily
                      Max-Min
                      Air Temperature     Daily
                      Mind                Daily

                      Solar Radiation     Daily
                      Dewpoint
 Daily
       Units
English    Metric


in x 100   mm x 1000
                 degrees F  degrees C
                 miles/day  km/day

                 langleys/  langleys/
                   day        day
degrees F  degrees C
      Comments
                                            Assumed equal  to lake evaporation  and
                                            lake evaporation = pan evaporation x pan
                                            coefficient
1.  Caution:  Time of observation
determines whether the recorded values
refer to the day of observation or the
previous day.
2.  Required only for nutrient and snow
simulation.

Required only for snow simulation.

1.  Total incident solar radiation.
2.  Required only for snow simulation.
3.  1 langley = 1 calorie/cm2

1.  Required only for snow simulation.
2.  Average daily value since variations
during the day are assumed minor.
                      Precipitation       5 minutes       in x 100   mm x 1000
                                          15 minutes

                           *  All meteorologic data is input in integer form.  Format specifications are described in Table 30.

-------
Model  operation.  Except for precipitation which is input on 5 or 15
minute intervals, daily meteorologic observations are needed.  The extent
of data requirements is dependent upon the simulation options.  Thus for
hydrology, sediment, and pesticide simulation, without snowmelt
calculations, only precipitation and evaporation are required in the
present version of the ARM Model.  For nutrient simulation, max-min air
temperature is an additional requirement, and for snow simulation, the
required data series include max-min air temperature, daily wind movement,
daily  solar radiation, and daily dewpoint temperature (in addition to
precipitation and evaporation).

The ARM Model accepts parameter and data input on a 'sequential' basis in
either English or Metric units, as specified by the INPUT parameter, i.e.
INPUT  = ENGL or INPUT - METR.  Table 27 presents the overall input
sequence for the ARM Model.  Model parameters are input in two different
formats depending on the simulation options chosen.  The majority of the
ARM Model  parameters (except the control parameters) are input in the
FORTRAN 'namelist1 format.  The input sequence and attributes for these
parameters are described in Table 28.  The nutrient parameters (except for
the 'nutrient control1 parameters) are input under format control due to
the number of transformations, reaction rates, and storages which must be
defined.  Table 29 describes the input sequence and attributes for the
nutrient parameters.  Study of Tables 28 and 29 and comparison with the
sample input listing in Appendix B should clarify the ordering of the
parameter input sequence.

As described in Table 28, the first two lines of the input sequence
provide space for specifying the watershed name, pesticide or chemical
name,  and other information describing the Model run.  Next, eight
control parameters and three control namelists (CNTL, STRT, ENDD) are
input.  The ICHECK control parameter allows the user to direct the ARM
Model  to check for errors and reasonableness of the parameter values;
the CHECKR subroutine performs this function.  With ICHECK = ON, the
Model  checks the input sequence, indicates errors, and then stops if any
errors are found.  After errors have been corrected the Model can be run
again  with ICHECK = ON in order to check corrections and to perform the
simulations.

The control namelist statements specify the simulation interval
(INTRVL),  the minimum flow for hydrograph output (HYMIN), the area of
the watershed (AREA), and the beginning and ending dates of simulation
(namelists STRT and ENDD respectively).

Next in sequence are the four hydrologic parameter namelist statements
(LND1, LND2, LND3, and LND4).  If snowmelt simulation is specified by
the SNOW control parameter (SNOW = YES), the corresponding snowmelt
namelists  (SN01, SN02, SN03, SN04) are next in line.  Otherwise, the
sediment namelist statements (CROP, MUD1, DIRT, SMDL) would follow.   If
                                   153

-------
       Table 27.  INPUT SEQUENCE FOR THE ARM MODEL

ARM Model Parameters
Potential Evapotranspiration
Max-Min Air Temperature
Wind Movement                               > 1st Year
Solar Radiation
Dewpoint Temperature
Precipitation
Potential Evapotranspiration
Max-Min Air Temperature
Wind Movement
Solar Radiation
Dewpoint Temperature
Precipitation
>*2nd  Year
etc.
                        154

-------
      Table 28.  ARM MODEL PARAMETER INPUT SEQUENCE AND ATTRIBUTES
            (excluding nutrient Input and parameters)
Namelist
Name
CNTL
STRT
ENDD
LND1
LND2
LND3
Parameter
Name
Type
English Units
Metric Units
           Watershed name (up to 80 characters)
           Chemical name and/or run information (up to 80 characters)
HYCAL
INPUT
OUTPUT
PRINT
SNOW
PEST
NUTR
ICHECK
INTRYL
HYMIN
AREA
BGNDAY
BGNMON
BGNYR
ENDDAY
ENDNON
ENDYR
UZSN
UZS
LZSN
LZS
L
SS
NN
A
K3
EPXM
INFIL
INTER
IRC
K24L
KK24
K24EL
character
character
character
character
character
character
character
character
integer
real
real
integer
integer
integer
integer
integer
integer
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
                        minutes
                        cubic feet/sec
                        acres
                                minutes
                                cubic meters/sec
                                hectares
                        inches
                        inches
                        inches
                        inches

                        feet
                                mi 11imeters
                                mi 11imeters
                                millimeters
                                mi 11imeters

                                meters
                        inches

                        inches/hour
                                millimeters

                                millimeters/hour
                                   155

-------
Table 28.
LND4





SN01





SN02





SN03

SN04





(Continued)
S6W
GWS
KV
ICS
OFS
IPS
RADCON
CCFAC
SCF
ELDIF
IDNS
F
DGM
we
MPACK
EVAPSN
MELEV
TSNOW
PACK
DEPTH
PETMIN
PETMAX
PETMUL
WMUL
RMUL
KU6I

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
integer
CROP
COVPMO
                                  inches
                                  inches
                                  inches
                                  inches
                                  1000 feet



                                  inches/day

                                  inches

                                  feet
                                  degrees F

                                  inches
                                  inches

                                  degrees F
                                  degrees F
real
MUD1


DIRT


SMDL







TIMTIL
YRTIL
SRERTL
SZDPTH
UZDPTH
BULKD
JRER
KRER
JSER
KSER
SRERI
PESTICIDE
APMODE
DESORP
integer
integer
real
real
real
real
real
real
real
real
real
character
character
character
                                             millimeters
                                             mi 11imeters
                                             millimeters
                                             millimeters
                                             kilometers



                                             millimeters/day

                                             millimeters

                                             meters
                                             degrees C

                                             mi 11imeters
                                             mi 11imeters

                                             degrees C
                                             degrees C
                                  days
                                  year
                                  tons/acre
                                  inches
                                  inches
                                  pounds/cubic foot
                                              days
                                              year
                                              tonnes/hectare
                                              millimeters
                                              millimeters
                                              grams/cubic  cm
                                   tons/acre
                                              tonnes/hectare
                                  156

-------
Table 28.  (Continued)

 AMDL       SSTR        real        pounds/Block          kilograms/block
            TIMAP       integer     days                  days
            YEARAP      integer     year                  year
            CMAX        real        pounds/pound          kilograms/kg
            DD          real        Ibs. pesticide/       kgs. pesticide/
                                     IBs. soil             kgs. soil
            K           real
            N           real
            NP          real
 DEG1       DEGCON      real        per day               per day
                                    157

-------
pesticide simulation is to be performed,  the sediment namelists are
followed by the title word 'PESTICIDE1  (starting in column 1), the
pesticide parameters APMODE and DESORP  and the pesticide namelist
statements (AMDL, DEG1).  This completes  the parameter input sequence
for hydrology, sediment, and pesticides.

If nutrient simulation is to be performed, as indicated by the control
parameter NUTR (i.e. NUTR = YES) then the nutrient parameters must
follow in sequence.  Reference to Table 29 and Appendix B is important
to understanding the nutrient input sequence.  The sequence begins with
the title word 'NUTRIENTS' (in column 1)  and is followed by the namelist
statement, NUTRIN.  This is the only namelist statement in the nutrient
parameter input sequence.  The remaining input of nutrient information
is done under format control.  Also, character strings are input and
checked by the program to verify the accuracy of the input sequence.
The section begins with the character string 'REACTION RATES' and then
the words 'NITROGEN' or 'PHOSPHORUS' to indicate which rates are being
input.  First order reaction rates may be input for both nitrogen and
phosphorus chemical and biological transformations.  Separate rates are
allowed for the four soil zones:  SURFACE, UPPER, LOWER, and
GROUNDWATER.  Following the character string, 'NITROGEN', the word
'SURFACE1 appears on the next line; then 10 reaction rates are listed in
F8.0 format on the following line.  These reaction rates refer to the
various nitrogen forms described in Table 29.  Following the surface
rates, the word  'UPPER' appears in column 1, and the reaction rates for
the upper zone are input on the next line.  Lower zone and groundwater
rates follow in a similar manner.  The word  'TEMPERATURE COEFFICIENTS'
appears after the groundwater rates and the following line contains the
ten constants used for correcting the corresponding reaction rates for
non-optimal temperatures.  Phosphorus reaction rates and temperature
coefficients are input in a similar manner except that there are only
five reaction rates appearing in an F8.0 format  (see Appendix B).  The
word END terminates input of reaction rates.  Specifying nitrogen or
phosphorus  rates is optional, and if values are not given, the program
will default the rates to 0.0.

The next section of nutrient input specifies the initial nitrogen,
phosphorus, and  chloride concentration present in the four soil layers.
The word  'INITIAL'  begins this section; title words are used in the
manner described above.  The seven different nitrogen forms, four
various  constituents are described  in Table 29.  The sequence is
demonstrated  in  Appendix  B.  Nutrient concentration  is  input by soil
layer.   If  initial  values  are not given for  the  nitrogen, phosphorus, or
chloride  forms,  the program  defaults them to 0.0.  The  character string
 'END' terminates  the initialization section.

The final section  of the  nutrient input sequence indicates the date and
amount of application  of nutrients  during the  simulation period.  Each
                                   158

-------
                            Block


                            NUTRIENT
Section &
 Subsection
                                            &.NUTRIS
Table 29.   ARK MODEL NUTRIENT PARAItTER  INPUT SEQUENCE AND ATTRIBUTES

      flare         Type         Column         Units                Comments
01
                            REACTION RATES
                                                          TSTEP
                                                          NAPPL
                                                          TII-HAR
                                                           &END
Type


Character

Character

Integer
Column         Units
Position   English  Metric

  1-8

  2-7

  Any      minutes  minutes
                            Integer
                            Integer
                            Character
                                 Any
                                                                                     Any
                                 Any
                                            day     day

NITROGEN
SURFACE











Kl
K2
KK2
KD
KPL
KAK
KIM
KKIM
Character
Character
Character
Real
Real
Real
Real
Real
Real
Real
Real
1-14
1-8
1-7
1-8
9-16
17-24
25-32
33-40
41-48
49-56
57-64



per day
per day
per day
per day
per day
per day
per day
per day



per day
per day
per day
per day
per day
per day
per day
per day
Name to Indicate start of
nutrient input sequence.
Naroelist name of nutrient
control information.
Length of timestep for
chemical and biological
transformations.  There must
be an even number of tine
steps in a day, and an even
number of simulation intervals
in a TSTEP.  Range= 5 or 15
to 1440.
Number of nutrient applica-
tions over a year of simula-
tion.  Values may range from
0 to 5.
Time of plant harvesting,
Julian day of the year.
Value may range from
0 to 366.
Indicate end of namelist
input of nutrient control
information.
Name to indicate start of
nutrient input sequence.
Indicates nitrogen reaction
rate will follow.
Surface layer reaction
rates follow.
Oxidation rate of ammonia
(dissolved and adsorbed) to
nitrite.
Oxidation rate of Nitrite
to nitrate.
Reduction rate of nitrate
to nitrite.
Reduction rate of nitrite
to nitrogen gas.
Uptake of nitrate by plants.

Ammonification or mineraliza-
tion rate of organic-N to
ammonia.
Immobilization rate of dissolved
amoonia to organic-N.
Immobilization rate of nitrate
to organic-H.

-------
                    Table  29.  (Continued)
                                   Block
Section &      Name
 Subsection
Type        Column         Units
            Position   English  Metric
                                                     UPPER ZONE
en
o
                                                     LOWER ZONE
KSA
KAS

Kl
K2
KK2
KO
KPL
KAM
KIM
KJCIM
KSA
KAS

Kl
K2
KK2
KO
KPL
KA!1
KIK
KXIM
KSA
KAS
Real
Real
Character
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Character
Real
Real
Real
Real
Real
Real
Real
Real
Real
Re.il
65-72
73-80
1-10
1-8
9-16
17-24
25-32
33-40
41-43
49-56
57-64
65-72
73-80
1-10
1-8
9-16
17-24
25-32
33-40
41-48
49-56
57-64
65-72
73-80
per day
per day

per day
per day
per day
per day
per day
per day
per day
per day
per day
per day

per day
per day
per day
per day
per day
per day
per day
per day
per day
per day
per day
per day

per day
per day
per day
per day
per day
per day
per day
per day
per day
per day

per day
per day
per day
per day
per day
per day
per day
per day
per day
per day
Conments
                                                                     Transfer rate of amrvonia frotr.
                                                                     solution to adsorbed (adsorption).
                                                                     Transfer rate of ammonia from
                                                                     adsorbed to solution (desorptlon).

                                                                     Upper zone reaction rates follow.

                                                                     Oxidation rate of aimonia
                                                                     (dissolved .and adsorbed) to
                                                                     nitrite.
                                                                     Oxidation rate of Nitrite
                                                                     to nitrate.
                                                                     Reduction rate of nitrate
                                                                     to nitrite.
                                                                     Reduction rate of nitrite
                                                                     to nitrogen gas.
                                                                     U?taka of nitrate by plants.

                                                                     Anronification or islneraliza-
                                                                     tion rate of organic-N to
                                                                     Irmobilization rate of dissolved
                                                                     anronla to organ 1c-H.
                                                                     Immobilization rate of nitrate
                                                                     to organic-!!.
                                                                     Transfer rate of a anon i a from
                                                                     solution to adsorbed (adsorption).
                                                                     Transfer rate of airaonia from
                                                                     adsorbed to solution (desorption).
                                                                     Lower zone reaction rates folow.

                                                                     Oxidation rate of anrnonia
                                                                     (dissolved and adsorbed) to
                                                                     nitrite.
                                                                     Oxidation rate of Nitrite
                                                                     to nitrate.
                                                                     Reduction rate of nitrate
                                                                     to nitrite.
                                                                     Reduction rate of nitrite
                                                                     to nitrogen gas.
                                                                     Uptake of nitrate by plants.

                                                                     Anmonif (cation or mineraliza-
                                                                     tion rate of organic-H to
                                                                     ammonia.
                                                                     Irrcobilization rate of dissolved
                                                                     annonla to organic-)!.
                                                                     loaobilization rate of nitrate
                                                                     to organ ic-N.
                                                                     Transfer rate of errnonia from
                                                                     solution to adsorbed (adsorption).
                                                                     Transfer rate of annonia from
                                                                     adsorbed to solution (desorption).

-------
                   Table  29.
cr>
(Continued)
Block Section & Nans
Subsection
GROUNDWATER
Kl
K2
KX2
Kf)
KPL
KAM
KIM
KKIM
KSA
KAS
TEMPERATURE
COEFFICIENTS
THK1
THK2
THKK2
THKD
THKPL
THKAM
THKIM
THKK1M
THKSA
THKAS
Type
Character
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Character
Real
Real
Real
Real
Real
Real
Real
Real
Real
Real
Col urn
Position
l-Ii
1-8
9-16
17-24
25-32
33-40
41-48
49-56
57-64
65-72
73-80
1-23
1-8
9-16
17-24
25-32
33-40
41-48
49-56
57-54
65-72
73-80
Units
English Metric

per
per
per
per
per
per
per
per
per
per

per
per
per
per
per
per
per
per
per
per

day
day
day
day
day
day
day
day
day
day

day
day
day
day
day
day
day
day
day
day

per day
per day
per day
per day
per day
per day
per day
per day
per day
per day

per day
per day
per day
per day
per day
per day
per day
per day
per day
per day
                                                                                                                               Comments
Groundwater reaction rates  follow.

Oxidation rate of ammonia
(dissolved and adsorbed)  to
nitrite.
Oxidation rate of nitrite
to nitrate.
Reduction rate of nitrate
to nitrite.
Seduction rate of nitrite
to nitrogen gas.
Uptake of nitrate by plants.

Ammonification or mineraliza-
tion rate of organic-M to
ammonia.
Immobilization rate of dissolved
znronia to organic-N.
Iwr.cbilizatiOR rate of nitrate
to organic-N.
Transfer rate of annonia  from
solution to adsorbed (adsorption).
Transfer rate of anmonia  from
adsorbed to solution (desorption).

Temperature coefficients  for
reaction rates.
                                                                                                                          Tenperature  coefficients for
                                                                                                                          corresponding  nitrogen
                                                                                                                          reactions, should be greater
                                                                                                                          than or equal  to 1.0.

-------
                    Table  29.    (Continued)
                                     Block
ro
Section &
Subsection
PHOSPHORUS
SURFACE





UPPER ZONE





llame


KM
KIM
K?L
KSA
KAS

m
Kit!
KPL
KSA
KAS
Type
Character
Character
Reel
Real
Real
Real
Real
Character
Real
Real
Real
Real
Real
Col urn
Position
1-10
1-7
1-C
9-16
17-24
25-32
33-43
1-10
1-8
9-16
17-24
25-32
33-40
Units
English


per day
per day
per day
per day
per day

per day
per day
per day
per day
per day
ffetrlc


per day
per day
per day
per day
per day

per day
per day
per day
per day
per day
                                                       LOWER ZONE
                                                       GROUriDUATER
KI1


KIM

KPL


KS^

KAS




KM
Character     1-10

Real          1-8
Real

Real


Real

Real


Character

Real
 9-16

17-24


25-32

33-43


 1-11

 1-8
per day  per day


per day  per day

per day  per day


per day  per day

per day  per day




per day  per day
                                                            Corantnts
Indicates phosphorus
reaction rates will  follow.
Surface layer reaction
rates.
Vlneralization rate  of
Organic-? to P04-5
Immobilization rate of
dissolved P04-P to Organic-P.
Uptake of phosphate
(dissolved and adsorbed)
by plants.
Transfer rate of phosphate
from solution to adsorbed.
Transfer rate of phosphate
from adsorbed to solution.

Upper zone reaction  rates
follow.
Mineralization rate  of
Organic-P to P04-P
dissolved.
Imobilization rate  of
dissolved P04-P to Organic-P.
Uptake of phosphate
(dissolved and adsorbed)
by plants.
Transfer rate of phosphate
from solution to adsorbed.
Transfer rate of phosphate
from adsorbed to solution.
Lower zone reaction  rates
follow.
Mineralization rate  of
Organic-P to P04-P
dissolved.
Immobilization rate  of
dissolved P04-P to Organic-P.
Uptake of phosphate
(dissolved and adsorbed)
by plants.
Transfer rate of phosphate
from solution to adsorbed.
Transfer rate of phosphate
from adsorbed to solution.

Lower zone reaction  rates
fellow.
Mineralization rate  of
Organic-P to P04-P
dissolved.

-------
                    Tab7e  29.    (Continued)
                                   Block
cr>
CO
END
                                   INITIAL
Section £
Subsection




Name
KIM
KPL
KSA
KAS
TEI1PERATURE
COEFFICIENTS






THKM
THKIH
THKPL
THKSA
THKAS

Type
Real
Real
Real
Real
Character
Real
Real
Real
Real
Real
Character
Column
Position
9-16
17-24
25-32
33-40
1-23
1-8
9-16
17-24
25-32
33-40
1-3
Units
English
per day
per day
per day
per day

per day
per day
per day
per day
per day

rVitric
per day
per day
per day
per day

per day
per day
per day
per day
per day


NITROGEN
SURFACE
NBLK
Character
Character
Character
Integer
1-7
1-8
1-7
16
                                                                  ORG-N

                                                                  NH3-S
                                           Real

                                           Real
1-8

9-16
Ib/ac   kg/ha

Ib/ac   kg/ha
                                                                                                                             Comments
                                                                                                                        Ircnobilization  rate of
                                                                                                                        dissolved P04-P to Organic-P.
                                                                                                                        Uptake of phosphate
                                                                                                                        (dissolved and  adsorbed)
                                                                                                                        by plants.
                                                                                                                        Transfer rate of phosphate
                                                                                                                        fron solution to adsorbed.
                                                                                                                        Transfer rate of phosphate
                                                                                                                        from adsorbed to solution.
                                                                                                                        Temperature coefficients
                                                                                                                        for reaction rates.

                                                                                                                        Temperature coefficients
                                                                                                                        for phosphorus  reactions,
                                                                                                                        should be greater than  or
                                                                                                                        equal to 1.0.
'END' terminates  input  of
rates.  Nitrogen  and  phosphorus
rates are optional, program
defaults them to  0.0  if not
specified.

Initialization of soil
constituents follows.
Initial nitrogen  forms  follow.

Surface layer initialization
follows.
Hurfcer of blocks  which  will be
input.  0 or 1 indicate the
average concentration over the
surface layer in  input  on one
line, and NBLK=5  means  five lines
of input follow,  one  line per
block.  Only 0,1,5 allowed.
A blank in co. 16 is  read as 0.
Potentially mineralizable nitrogen.

Ammonia in solution

-------
Table  29.
(Continued)
Block Section & Name
Subsection
HH3-A
N02
N03
N2
PLNT-N
UPPER ZONE
NBLK
OR6-N
NH3-S
NH3-A
N02
N03
N2
PLNT-N
LOWER ZONE
ORG-N
NH3-S
NH3-A
N02
N03
N2
PLNT-N

Type
Real
Real
Real
Real
Real
Character
Integer
Real
Real
Real
Real
Real
Real
Real
Character
Real
Real
Real
Real
Real
Real
Real

Column
Position
17-24
25-32
33-40
41-48
49-56
1-10
16
1-8
9-16
17-24
25-32
33-40
41-48
49-56
1-10
1-8
9-16
17-24
25-32
33-40
41-48
49-56

Units
English
Ib/ac
Ib/ac
Ib/ac
Ib/ac
Ib/ac


Ib/ac
Ib/ac
Ib/ac
Ib/ac
Ib/ac
Ib/ac
Ib/ac

Ib/ac
Ib/ac
Ib/ac
Ib/ac
Ib/ac
Ib/ac
Ib/ac

^etri<
kg/ha
kg/ha
kg/ha
kg/ha
kg/ha


kg/ha
kg/ha
kg/ha
kg/ha
kg/ha
kg/ha
kg/ha

kg/ha
kg/ha
kg/ha
kg/ha
kg/ha
kg/ha
kg/ha
                                                                                                           Comments

                                                                                                      Ammonia adsorbed to soil.
                                                                                                      Nitrite
                                                                                                      Nitrate
                                                                                                      Nitrogen gas from demitrification.
                                                                                                      Plant nitrogen
                                                                                                      Upper zone initialization
                                                                                                      follows.
                                                                                                      Number of blocks which will  be
                                                                                                      input.  0 or 1 indicate the
                                                                                                      average concentration over the
                                                                                                      surface layer is input on one
                                                                                                      line, and NBLK=5 means five lines
                                                                                                      of input follow, one line per
                                                                                                      block.  Only 0,1,5 allowed.
                                                                                                      A blank in co. 16 1s read as 0.
                                                                                                      Potentially mineralizable nitrogen.
                                                                                                      Ammonia in solution
                                                                                                      Ammonia adsorbed to soil.
                                                                                                      Nitrite
                                                                                                      Nitrate
                                                                                                      Nitrogen gas from demitrifi cation.
                                                                                                      Plant nitrogen
                                                                                                      Lower zone initialization.
                                                                                                      Potentially mineral izable nitrogen.
                                                                                                      Ammonia In solution
                                                                                                      Ammonia adsorbed to soil.
                                                                                                      Nitrite
                                                                                                      Nitrate
                                                                                                      Nitrogen gas from demitrifi cation.
                                                                                                      Plant nitrogen

-------
                    Table 29.    (Continued)
                                      Block
in
Section &
Subsection
GROUNDWATER







PHOSPHORUS
SURFACE





UPPER ZONE





LOWER ZONE

Name

ORG-N
NH3-S
NH3-A
N02
N03
H2
PLNT-N


NBLK
ORG-P
P04-S
P04-A
PLNT-P

N3LK
ORG-P
P04-S
P04-A
fLNT-P

ORG-P
Type
Character
Real
Real
Real
Real
Real
Real
Real
Character
Character
Integer
Real
Real
Real
Real
Character
Integer
Real
Real
Real
Real
Character
Real
Coluon
Position
i-11
1-8
9-16
17-24
25-32
33-40
41-48
49-56
1-10
1-7
16
1-8
9-16
17-24
25-32
1-10
16
1-8
9-16
17-24
25-32
1-10
1-8
Units
English

Ib/ac
Ib/ac
Ib/ac
Ib/ac
Ib/ac
Ib/ac
Ib/ac



Ib/ac
Ib/ac
Ib/ac
Ib/ac


Ib/ac
Ib/ac
Ib/ac
Ib/ac

Ib/ac
Itetrtc

kg/ha
kg/ha
kg/ha
kg/ha
kg/ha
kg/ha
kg/ha



kg/ha
kg/ha
kg/ha
kg/ha


kg/ha
kg/ha
kg/ha
kg/ha

kg/ha
     Comments
Groundwater zone  Initialization.
Potentially mlnerallzable nitrogen.
Airreonia in solution
Ammonia adsorbed  to  soil.
Nitrite
Nitrate
Nitrogen gas from demitriflcatlon.
Plant nitrogen
Initial phosphorus forms follow.
Surface layer.
Number of blocks  which will
be input.
Organic phosphorus.
Phosphate in solution.
Phosphate adsorbed to soil.
Plant phosphorus.
Upper zone phosphorus
initialization.
Number of blocks  which will
be input.
Organic phosphorus.
Phosphate in solution.
Phosphate adsorbed to soil.
Plant phosphorus.
Lower zone initialization.
Organic phosphorus.

-------
                    Table 29.
Ok
at
(Continued)
Block Section & Name
Subsection
P04-S
P04-A
PLNT-P
GROUNOWATER
ORG-P
P04-S
P04-A
PLNT-P
CHLORIDE
SURFACE
NBLK
CL
UPPER ZONE
NBLK
CL
LOWER ZONE
a
GROUNDWATER
CL
END

Type
Real
Real
Real
Character
Real
Real
Real
Real
Character
Character
Integer
Real
Character
Integer
Real
Character
Real
Character
Real
Character

Column
Position
9-16
17-24
25-32
1-11
1-8
9-16
17-24
25-32
1-8
1-7
16
1-8
1-10
16
1-8
1-10
1-8
1-11
1-8
1-3

Units
English
Ib/ac
Ib/ac
Ib/ac

Ib/ac
Ib/ac
Ib/ac
Ib/ac



Ib/ac


Ib/ac

Ib/ac

Ib/ac


Metric
kg/ha
kg/ha
kg/ha

kg/ha
kg/ha
kg/ha
kg/ha



kg/ha


kg/ha

kg/ha

kg/ha

                                       APPLICATION
                                                                     APDAY
Character
Integer
 1411
14-16
     Comments
Phosphate in solution.
Phosphate adsorbed to soil.
Plant phosphorus..
Groundwater initialization.
Organic phosphorus.
Phosphate in solution.
Phosphate adsorbed to soil.
Plant phosphorus.
Initial chloride levels follow.
Surface layer chloride.
Number of blocks which  will  be
input.
Chloride storage.
Upper zone Initialization.
Number of blocks which  will  be
input.
Chloride storage.
Lower zone.
Chloride storage.
Groundwater.
Chloride storage.
"END" terminates input of
initial nutrient storages.
Nitrogen, phosphorus, and
chloride storages  default to
0.0 if not input in this
SEC'IO'i.
Mane to indicate start of
nutrient application section,
expected the number of
applications is greater
than 0.
Application day of the  year
(Julian Day).

-------
                    Table 29.    (Continued)
                                   Block
Section &
 Subsection
NITROGEN
   SURFACE
Name        Type        Column         Units
                        Position   English  i-'etric
(ft
                                                      UPPER ZONE


N3LK
ORG-N
NH3-S
NH3-A
N02
N03
N2
PLNT-N

NBLK
ORG-N
NH3-S
NH3-A
N02
N03
N2
PLHT-N
Character
Character
Integer
Real
Real
Real
Real
Real
Real
Real
Character
Integer
Real
Real
Real
Real
Real
Real
Real
1-8
1-7
16
1-8
9-15
17-24
25-32
33-40
41-43
49-56
1-10
16
1-8
9-16
17-24
25-32
33-40
41-48
49-56



Ib/ac
Ib/ac
Ib/ac
Ib/ac
Ib/ac
Ib/ac
Ib/ac


Ib/ac
Ib/ac
Ib/ac
Ib/ac
Ib/ac
Ib/ac
Ib/ac



kg/ha
kg/ha
kg/ha
kg/ha
kg/ha
kg/ha
kg/ha


kg/ha
kg/ha
kg/ha
kg/ha
kg/ha
kg/ha
kg/ha
     Cements
Nitrogen applications  follow.
Surface applications follow.
Nunber of blocks which will
be input, 0 or 1 indicate one
line follows containing  the
average application over the
watershed.  A 5 indicates
five lines follow, one line
for each block.
Potentially mineral izable
nitrogen applied.
Ammonia in solution.
Armenia adsorbed to soil.
Nitrite
Nitrate
Nitrogen gas.
Plant nitrogen.
Upper zone applications  follow
Nunber of blocks which will
be input.
Potentially mineral izable
nitrogen applied.
        in solution.
                                                                                                                        Ammonia  adsorbed to soil.
                                                                                                                        Nitrite
                                                                                                                        Nitrate
                                                                                                                        Nitrogen gas.
                                                                                                                        Plant nitrogen.
                                                                                                                        Note: nutrients can only
                                                                                                                        be applied  to surface and
                                                                                                                        upper zone.

-------
                   Table 29.    (Continued)
                                   Block
00
                                  END
Section &
Subsection
PHOSPHORUS
SURFACE





UPPER ZONE





CHLORIDE
SURFACE


UPPER ZONE



Name


NBLK
ORG-P
P04-S
P04-A
PLNT-P

NBLK
ORG-P
P04-S
P04-A
PLNT-P


NBLK
a

NBLK
CL

Type
Character
Character
Integer
Real
Real
Real
Real
Character
Integer
Real
Real
Real
Real
Character
Character
Integer
Real
Character
Integer
Real
Character
Col umi
Position
1-10
1-7
16
1-8
9-16
17-24
25-32
1-10
16
U8
9-1S
17-24
25-32
1-8
1-7
16
1-8
1-10
16
1-8
1-3
Units
English



Ib/ac
Ib/ac
Ib/ac
Ib/ac


Ib/ac
Ib/ac
Ib/ac
Ib/ac



Ib/ac


Ib/ac

!*stri<



kg/ha
kg/ha
kg/ha
kg/ha


kg/ha
kg/ha
kg/ha
kg/ha



kg/ha


kg/ha

     Cements


Phosphorus  applications follow

Surface layer  application.

Number of blocks which will
be input.
Organic phosphorus.

Soluble phosphate.

Adsorbed phosphate.

Plant phosphorus.

Upper zone  application.

Nunber of blocks which will
be input.
Organic phosphorus.

Soluble phosphate.

Adsorbed phosphate.

Plant phosphorus.

Chloride applications follow

Surface layer  application.

Number of blocks which
will be input.
Chloride applied.

Upper zone  applications.

Number of blocks which will
be input.
Chloride applied.

"END" terminates  input
of applications  for  that
day.
Note:  Nitrogen,  phosphorus
and chloride do not  need
to be specified on input
sequence if none  are applied
that day.   Program defaults
all applications  to  0.0.

-------
nutrient application begins with the word APPLICATION followed by the
Julian day of application (e.g. 164 in Appendix B).  The words following
indicate which constituents are to be applied:  NITROGEN, PHOSPHORUS, or
CHLORIDE.   Below the constituent type, the application amounts are
entered for the surface and upper zone only.  The character string END
terminates the input of the nutrient application at one time.  For
multiple applications, the sequence is repeated with the character
string APPLICATION and the Julian day of application.  Applications have
to be sequential with the first one applied in the year appearing first
in the input sequence.  This completes the nutrient input sequence and
the entire ARM Model parameter input sequence.

As indicated in Table 27, the ARM Model parameters are followed by the
meteorologic data in the input sequence.  The daily meteorologic data is
input as a block of 31 lines (or cards) with 12 values in each line.
Thus, the 31 x 12 matrix corresponds to the 12 months of the year with a
maximum of 31 days each.  Table 30 demonstrates the format for the daily
meteorologic data.  The only modification to this is for daily max-min
air temperature since two values are input for each day.  In this case,
the six spaces allowed for each daily value are divided in half.   The
first three spaces contain the maximum, and the second three spaces
contain the minimum air temperature for the day.  Table 31 indicates the
format for precipitation data input on 5 or 15 minute intervals.   For
further clarification of these formats, see the sample input listing in
Appendix B.

The Model  operates continuously from the beginning to the end of the
simulation period.  To simplify input procedures and reduce computer
storage requirements, the meteorologic data is input on a calendar year
basis.  Each block of meteorologic data indicated in Table 27 must
contain all daily values for the portion of the calendar year to be
simulated.  Thus if the simulation period is July to February, the Model
reads and stores all the daily meteorologic data for the July to
December period.  The Model then reads the precipitation data, on the 5
or 15 minute intervals, and performs the simulation day-by-day from July
to December.  When the month of December is completed, the Model  reads
the daily meteorologic data for January and February, and then continues
stepping through the simulation period by reading the precipitation and
performing the simulation day-by-day for the months of January and
February.   Thus the input data must be ordered on a calendar year basis
to conform with the desired simulation period.

The major forms of Model output have been presented in Tables 20 through
25 with the discussion of the calibration and production modes of
operation.  Daily snowmelt output for calibration runs is presented in
Table 32; the values are defined in Table 33.   Prior to simulation, the
ARM Model  prints a heading which contains run information, input
parameters, and initial storage values.  Table 34 presents the heading
for the hydrology, sediment, and pesticide parameters, while Table 35
                                  169

-------
       Table 30.  SAMPLE INPUT AND FORMAT FOR DAILY METEOROLOGIC  DATA
                                    Month
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
c
«o
18
18
18
0
35
28
28
28
28
28
28
28
28
28
27
33
19
41
41
54
54
55
118
32
24
24
24
25
25
91
17

14

^
01
u.
74
90
60
61
61
82
121
69
7
20
21
21
16
54
46
47
45
45
46
46
81
83
101
45
46
46
28
60



1
20

i.
(T3
60
170
43
43
43
71
4
41
35
20
20
21
123
123
132
103
61
61
61
61
112
44
104
87
87
87
72
86
50
31
31

26


a.
29
29
30
60
112
15
15
15
15
15
16
16
113
113
113
113
1
88
88
88
88
88
88
13
13
19
332
58
58
58

l
32

^
£
13
13
14
4
202
99
100
34
135
210
202
219
145
176
192
222
171
173
159
72
103
198
154
232
153
114
90
152
3
153
198
t
38
Column
c
3
•-3
266
70
65
70
171
8
72
70
37
108
68
142
132
90
156
121
160
70
72
161
84
149
183
62
262
109
126
59
137
213

1
44
Number
_
•"3
131
163
140
156
145
185
87
145
62
185
175
133
185
154
246
140
89
58
80
46
168
129
136
141
71
65
27
43
148
155.
103
•
50

O>
3
103
96
53
162
34
122
65
105
130
36
139
162
4
72
208
115
123
92
72
130
205
178
143
122
112
136
52
170
37
249
38

56

a.
O)
CO
19
63
189
124
115
24
161
92
145
218
185
145
99
211
125
158
191
139
112
119
73
79
132
152
112
92
33
66
79
165

i
62

^
o
o
41
69
97
104
117
138
124
90
117
159
76
34
110
117
76
83
90
110
117
104
83
83
83
77
71
65
59
53
48
69
14
t
68

>
o
90
72
48
48
114
54
12
0
78
72
60
48
48
54
24
24
60
120
66
24
48
36
66
36
30
48
24
78
54
204

I
74

u
8
68
68
47
52
47
42
31
57
36
10
57
36
57
36
36
104
73
47
57
73
104
109
99
83
10
42
68
36
16
47
68
i
80

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15  Day
16 	
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 Notes:   1.   Columns  1-7  are  ignored.  They  can  be  used  to identify the data.
         2.   All  data is  input  in  integer form.
         3.   Identical format for  evaporation, wind,  solar radiation, and
             dewpoint temperature.
         4.   For  Max-Min  air  temperature data, the  six spaces  allowed for
             each daily value (above) are divided in  half; the first three
             spaces contain the maximum temperature,  and the second three
             spaces contain the minimum temperature.  See listing in
             Appendix B.
                                             170

-------
          Table 31.   ARM MODEL PRECIPITATION  INPUT DATA  FORMAT
Column  No.

   1

   2-7

   8
                    Description and Format
      Blank
      Year, Month, Day (e.g. January 1, 1940 is 400101).

      Card Number:  each card represents a 3-hour period
            Card #1   Midnight to 3:00 AM
                 #2   3:00 AM  to 6:00 AM
                 #3   6:00 AM  to 9:00 AM
   9-80
Notes:      1,
           2.
                 #8   9:00 PM  to Midnight

      All eight cards are required if rain occurred any
      time during the day.  A card number of 9 signifies
      that no rain occurred during the entire day, and
      no other rainfall cards are required for that day.

      Precipitation data (OOO's of millimeters
      (00's of inches)).
      15-minute intervals:
        6 column per each 15-minutes in the 3-hour period
        of each card.  Number must be right justified,
        i.e. number must end in the 6th column for the
        15-minute period.
      5-minute intervals:
        2 columns per each 5-minute interval, i.e. the
        15-minute period still occupies 6 columns, but
        it is broken down into three 5-minute intervals.

Appendix B contains a sample of input data.
At least one precipitation card is required for each day
of simulation.
Blanks are interpreted as zeros by the Model: consequently,
zeros do no need to be input.
                                   171

-------
                            Table  32.  DAILY  SNOWMELT OUTPUT
                              (Calibration Run,  English Units)
DATE
       TIME
              H.CWICFS-CMS)
                              StUIHLMT  (LoS-KO-Ko/HIN-GM/l. I
    PESTICIDE (GH-GM/HIN-PPHI
HATER                     SEDIMENT
                 SNChMELT OUTPUT  FOB
                                     UECtHBCK
HOUR
1
2
3

-------
               Table 33.   DAILY SNOWMELT OUTPUT DEFINITIONS
                    (calibration run, English units)
HOUR:        Hour of the day, numbered 1 to 24
PACK:        Water equivalent of the snowpack, inches
DEPTH:       Snow depth, inches
SDEN:        Snow density in inches of water per inch of snow
ALBEDO:      Albedo, or snow reflectivity, percent
CLDF:        Fraction of sky that is cloudless
NE6MELT:     Heat loss from the snowpack, equivalent inches of melt
LIQW:        Liquid water content of the snowpack, inches
TX:         Hourly air temperature, degrees Fahrenheit
RA:         Incident solar radiation, langleys
LW:         Net terrestrial radiation, langleys (.negative value indicates
            outgoing radiation from the pack)
PX:         Total  snowmelt reaching the land surface,  inches
MELT:        Total  melt, inches
CONV:        Convection melt, inches
RAINM:       Rain melt, inches
CONDS:       Condensation melt, inches
ICE:         Ice formation at the land surface, inches
                                   173

-------
                                       Table 34.   ARM  MODEL OUTPUT  HEADING
                                                  (Excluding  Nutrients)
                        THIS IS A PRCDUCTICN RUN FOR PESTICIDES

                               WATERSHED:      P-3 kATERShED. NEAR .hATKI NSVILLE, GEORGIA
                               CHEMICAL:       FA PA cu AT   22C.0000
INFIL-   0.5CCC
SGV-   0.0
UZS«   3.0023
SS»   0.03CC
INTER-   0.700C
GHSo   3.0
LZSM  18.0000
NN-   0.2000
IRC-   0.0
KV"   0.0
LZS«  19.3600
A-   0.0
K24L"   110000
ICS»   O.C
K3«   0.4000
KK24»   0.6000
OFS-   0.0
        O.UOO
K2«EL»   0.0
!=$•   3.0

-------
               Table  34.   (Continued)
                   CCVPHC* C.60  0.70  0.70 0.70  0.0   O.C   Q.2C  0.60  0.65  O.£0  0.70  C.30

                   TIHTIL-   0    0  142   155   16$      YRT1U" 73  73  73  73  73      SRERTL-   2.000   2.000   2.000   2.003   1.033

                   SZOFTh-   0.0625       UZOPTH*   6.0625       EULKO- 1Q3.CCCO

                   JRER-   2.2CCO         KRER-  0.0700         JSER-   1.8000         KSER-    0.3500         SRER!>   0.0




                   TIKF.      364        Y6ARAP-       73       SSTR-    0. tit    C.616    0.616   0.616    0.616

                   CHAX» C.CCOC1C         CO-  0.000300           K- 120.0003            N>   2.0000           NP»    4.tOOO

                   06GCON- 0.002000
I—«
^1
tn

                   HYCAL-PRCO  JUPOT-ENGL  OU7PUT-BOTH  PR1NT-CAVS  SSCW-NC    PEST-YES   NUTR»^0    ICHECK-ON


                                DSSO»P»YSS

-------
                                                Table 35.   NUTRIENT  SIMULATION  OUTPUT HEADING
                                        THIS IS A PRCDUCTI6N RUN  FOR NUTRIENTS
cn
                INtRVL-   5



                BGNCAY.  12




                ENCCAY*  13
         WATERSHED!



         CHEMICAL!



         INPUT UNITS:



         OUTPUT UNITS:



         PPINT INTERVAL: EACH 04 V



         SKCMMELT N01 PERFORMED
                                                               TEST INPUT SEQUENCE



                                                               NITR03EN, PHOSPHORtSt  ANOCKORIOE



                                                              ENGLISH
HYHIN-   0. C010



BGNHON-  6




ENCMON-  6
AREA-     6.6700



BGNYR- 1973



6NDYR- 1973
                UZSN-   C.C5CO



                L»  16C.OOOJ



                INFIL«    C.5000



                SGfc-   0.0
UZS-   J.1000



£S«   0. 0500



INTER-   0.700C



CMS-   0.9
LZSN- 18.0000
m* 0.2 ooo
IRC" 0.0
KV- 0.0
LZS- 20.3900
A- 0.0
K24t« 1.0000
ICS- 0.0
KK24-
OFS-
0.4000
0.6000
0.0
                                                                   ISS-
 0.1230



  0.0



0.0
                CCVPMO  l.OC   1.00  1.00  1.00  l.CO  1.00  1.00  1.00  1.40  l.CO  1.00  1.00



                TIKTU-   0    0    0  155  16*      »RTIL- 73  73  73  73  73      SRf-RTL-  5.000   5.000   5.000   5*000   2.300



                SZCPTI—   0.12JO       t'ZOPTH-   £.1250       8ULKO- 103.0000



                JRcR-   2.2CCO         KRER.-   C.1700        JSER-   1.8000         KSER-   1.2030         SH£«I-   2.6303

-------
Table  35.    (Continued)
     HVCAL-PRCC  IMPUT-E.NGL  OUTPUT-ENGL  PRINT-CAYS  SNOH»NC
PEST«NO
                                                                            NUTR-VeS   ICHECK-OFF
                                             NUTRIENT SIMULATION INFCRMATION
     »<4»4 4 *»»»«<* •***«***»****»*:» ************
     *                                       *

     *     VABMNG:  NUTRIENT ALGORITHMS       *
     »     h/VE NOT SEEN VERIFIED »ITH       *
     «     CBSEPVEO DATA                     *
     *                                       *
             4**4444******************* 4*****
        TIKE STEP FOR  TRANSFORMATIONS
        sjtBEft OF NUTRIENT APPLI
        DATE CF PLANT  hAS'/ESTIKC

     N11ROGEN REACTION RATFS
           SURFACE
           UPPER ZCNS
           LC1.E* 20.ME
           OF-CUNCV.ATER
        TECFERATURE C3EF.

     FHCSFHOfCS REACTION RATES
           SURFACE
           UPPFK iCKE
                 iONE
        TEMPERATURE CCEF.
,TIONS •
CATIONS
, = 360
Kl
2.000J
2.0300
2.J)?0
2.0030
1.05J
KM
0.0077
O.J077
0.0077
J.0077
1.350
60 MIN
» 1

K2
4. COCO
4.0000
4.00CO
4.0000
1.050
KIM
0.0
0.0
0.0
O.C
1.050

KK2
0.0
0.0
0.3
C.O
1.050
KPL
fl. 0180
0.0180
0.0180
0.0130
1.C50

KD
0.0
0.0
0.0
0.0
1.050
KCA
2.0000
2.0000
2.0000
2.0003
1.050

KPL
0.336.)
0.0363
0.0363
0.03EC
1.C5C
K«S
0.10CC
C, 1003
0.10CC
0.1003
1.053

KAM
0.0077
0.0077
0.3077
O.OC77
1.050







KIN
0.0
0.0
0.0
C.O
1.053







KK 1H
0.0
0.0
0.0
0.0
1.050








-------
              Table  35.    (Continued)
                        UPFEA ZONE

                           iVERACE
                                 ULCCK 1
                                 eLCCK 2
                                 ELCCK 3
                                 ELOCK 4
                                 8LCCK 5

                        LOfcEP ZONE
I14'l.
1144.
1144.
1144.
1144.
1144.
0.0
0.0
0.0
0.0
3.0
0.0
43.000
4S.COO
48. COO
48.000
48.000
43.00G
C.O
0.0
C.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.c
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
228.
228.
228.
22 8.
228.
228.
0.0
0.0
0.0
0.0
0.0
0.0
9.600
9.600
9.600
9.600
9.600
9.600
0.0
0.0
0.0
0.0
0.0
0.0
3.0
3.3
3.0
3..1)
0.3
3.3
00
                           STCRACE

                        GRCLAtkATER

                           ST CRAGS
                        TOTAL  NITROGEN IN SYSTEM  »
                        TCTAl  fHCSPHORUS  IN SYSTEM
                        T3TAL  CHLGRIDc IN SYSTEM  •
11250.    0.0   480.000   0.0
                                                    3.
                                                         0.0
                 O.C
      12947.300  LB/AC
       2613.600  LB/AC
          C.3    LB/AC
                         0.0
                                                                                 0.0
                                                                                 0.0
                                                                                         0.0
                                         0.0
                                                                                                 0.0
                                                 0.0
                                                                                                         2275.
                                                                                                                 0.0
                                                                 0.0
                                                                                                                        96.000   3.3
                                                                                                                         0.0
                                                                                 0.0
                                                                                                                                         3.0
                                                                                                                                         J.3
                     SUTiiisKS  -  L9/AC

                     APPLICATION  fCH  DAY  164

                        SLKFACe LAYER

                           AVERAGE
                                 BLOCK  I
                                 BLOCK  2
                                 BLOCK  3
                                 BLIT.K  4
                                 bLCCK  5

                        UPPER ZONE

                           JVERAGE
                                 SLOCK  1
                                 ELOCK  2
                                 BLCCK  3
                                 ELCCK  4
                                 dLCCK  5
                                                 ORG-N    NH3-S    NH3-A
J.
0.
3.
0.
0.
0.
0.
0.
3.
0.
3.
0.
C.C
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.3
0.0
4.000
4.0CO
4.000
4.000
4.3.70
4.000
1«6.CCC
166. OOC
196.000
1«6. COO
196.003
166.000
0.3
0.0
0.0
0.3
0.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
                                                                           N02      NC3       N2   PLVT-V    ORG-P    PD4-S   P04-A  PLST-»
                                 0.0     0.0     0.0
                                 0.0     0.0     0. 0
                                 0.0     0.3     0.0
                                 0.0     C.O     0.0
                                 0.0     0.0     0.0
                                 0.0     0.0     0.0
                                 0.0     0.0     0.0
                                 0.0     0.0     0.0
                                 O.C     0.0     0.0
                                 0.0     0.0     0.0
                                 0.0     0.3     0.0
                                 0.0     0.0     0.0
                                                                                            CL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.0
0.0
0.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.400
C.400
0.430
0.400
0.400
0.400
19.600
19. £00
19.600
19.600
19.600
19.600
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
2.030
J.333
2.030
2.300
2.333
2.030
91.333
93.333
93.000
93.333
98. 000
93.330

-------
presents the heading for the nutrient parameters.  The control parameter
OUTPUT allows the user to specify Model output for the production mode
in English (OUTPUT = ENGL) or Metric (OUTPUT = METR) units, or both
(OUTPUT = BOTH).  The option for output in both sets of units should be
used sparingly due to the vast amount of computer printout which
results.  The calibration mode output for storm events is provided in a
mixed set of units (see Tables 22, 23, and 24) to simplify comparison of
simulated and recorded values in the calibration process.

PARAMETER EVALUATION AND CALIBRATION
The process of applying the ARM Model to a watershed requires a fitting
or calibration of the Model parameters to the specific watershed.   The
large majority of the parameters are easily determined from topographic
maps, watershed and soil characteristics, or pesticide chemical
properties.  Hydrology and sediment parameters which cannot be
deterministically evaluated must then be evaluated through the
calibration process as a result of comparison of simulated and recorded
results.  The following discussion provides guidelines for estimating
the ARM Model parameters relating to hydrology, snowmelt, sediment, and
pesticide simulation.  Nutrient parameters are excluded due to lack of
testing and experience with the nutrient nfodel.  In addition, the
parameters included below are limited to those which are not
self-explanatory by their definitions in Table 19.  A complete list of
the PI and P3 watershed parameters is provided in Table 36.
                                  179

-------
Table 36.   PI and P3 WATERSHED  PARAMETERS
Parameter

Hydrology
UZSN
LZSN
L
SS
NN
A
K3
EPXM
INFIL
INTER
IRC
K24L
KK24
K24EL
KV
Sediment
COVPMO
January
February
March
April
May
June
July
August
September
October
November
December
TIMTIL, YRTIL





BULKD
JRER
KRER
JSER
KSER
PI
Watershed

0.05
18.0
160.0
0.05
0.20
0.0
0.40
0.12
0,50
0.70
0.0
1.0
0.6
0.0
0.0


0.30
0.30
0.30
0.30
0.0
0,0
0.0
0.25
0.50
0.70
0,70
0.60
, SRERTL
0, 73, 0.0
0, 73, 0.0
142, 73, 5.0
155, 73, 5.0
164, 73, 2.0
103.0
2.20
0.17
1.80
1.20
                                      P3
                                   Watershed
                                       0.05
                                       18.0
                                       220.0
                                       0.03
                                       0.20
                                       0.0
                                       0.40
                                       0.12
                                       0.50
                                       0.70
                                       0.0
                                       1.0
                                       0.6
                                       0,0
                                       0.0
                                       0.60
                                       0.70
                                       0.70
                                       0.70
                                       0.0
                                       0.0
                                       0.20
                                       0.60
                                       0.85
                                       0.70
                                       0.70
                                       0.30
                                 0,  73,  0.0
                                 0,  73,  0.0
                               142,  73,  2.0
                               155,  73,  2.0
                               166,  73,  1.0

                                      103.0
                                       2.20
                                       0.07
                                       1.80
                                       0.35
              180

-------
Table 36-(continued)
Pesticide
TIMAP                   164
YEARAP                   73
AREA                   6.67

Pesticide-Diphenanrid
SSTR!>*4.002
CMAX               0.00026
DD                     0.0
K                      1.8
N                      1.6
NP                     3.7
DEGCON                0.08
APMODE                SURF
SZDPTH                0.125
UZDPTH                6.125

Pesticide Paraquat
SSTR               5*1.340
CMAX               0.00001
DD                  0.0003
K                     120,0
N                      2.0
NP                     4.6
DEGCON                0.002
APMODE                SURF
SZDPTH              0.0625
UZDPTH              6.0625

Initial Conditions (January 1, 1973}
UZS                   0.02
LZS                   19.51
SGW                    0.0
GWS                    0.0
ICS                    0.0
OFS                    0.0
IFS                    0.0
SRERI                  1.8
    166
     73
   3.08
  1.848
0.00026
    0.0
    1.8
    1.6
    3.7
   0.08
   SURF
  0.125
  6.125
5*0.616
0.00001
 0.0003
  120,0
    2.0
    4.6
  0,002
   SURF
 0.0625
 6.0625
    0.2
   18.0
    0.0
    0.0
    0.0
    0.0
    0.0
    0.3
                            181

-------
HYDROLOGY PARAMETERS


A:        A is the fraction representing the impervious area in the
          watershed.  Usually A will  be negligible for agricultural
          watersheds, except in cases of extensive outcrops along
          channel reaches.

EPXM:     This interception storage parameter is a function of cover
          density.
                 Grassland                 0.10 in.
                 Forest cover (light)      0.15 in.
                 Forest cover (heavy)      0.20 in.

UZSN:     The nominal storage in the upper zone is generally related to
          LZSN and watershed topography.  However, agriculturally
          managed watersheds may deviate significantly from the
          following guidelines:

               Low depression storage,
               steep slopes, limited
               vegetation                         O.OSxLZSN

               Moderate depression storage
               slopes and vegetation              O.OSxLZSN

               High depression storage,
               soil fissures, flat slopes,
               heavy vegetation                   0.14xLZSN

LZSN:     The nominal lower zone soil moisture storage parameter  is
          related to the  annual cycle of rainfall and evapotranspiration.
          Approximate values range from 5.0 to 20.0 inches for most of the
          continental United States depending on soil properties.  The
          proper value will need to be checked by computer trials.

K3:       Index  to  actual evaporation.  Values range from 0.25 for open
          land and  grassland to 0.7-0.9 for heavy forest.  The area
          covered by forest or deep rooted vegetation as a fraction of
          total  watershed area is  an estimate of K3.

K24L,  K24EL:     These parameters control the loss of water from near
          surface or active groundwater storage to deep percolation and
          transpiration  respectively.   K24L  is the fraction of the
          groundwater recharge that  percolates to deep groundwater
          table. Thus a value of  1.0  for K24L would preclude any
          groundwater contribution to  surface  runoff.  K24EL  is the
          fraction  of watershed area where shallow water tables put
          groundwater within  reach of  vegetation.
                                    182

-------
INFIL:     This parameter is an index to the mean infiltration rate on
          the watershed and is generally a function of soil
          characteristics.   As for LZSN, approximate or initial  values
          will need to be checked by computer trials.   INFIL can range
          from 0.01 to 1.0 in/hr depending on the cohesiveness and
          permeability of the soil.

INTER:     This parameter refers to the interflow component of runoff and
          generally alters runoff timing.  It is closely related to
          INFIL and LZSN and values generally range from 0.5 to 5.0.
          Examples of its effect are discussed below and in Section IX,
          Sensitivity Analysis.

L:        Length of overland flow is obtained from topographic maps and
          approximates the length of travel to a stream channel.  Its
          value can be approximated by dividing the watershed area by
          twice the length of the drainage path or channel.

SS:       Average overland flow slope is also obtained from topographic
          maps.  The average slope can be estimated by superimposing a
          grid pattern on the watershed, estimating the land slope at
          each point of the grid, and obtaining the average of all
          values measured.

NN:       Manning's n for overland flow.  Approximate values are:

               Asphalt                          0.014
               Packed Clay                      0.03
               Turf                             0.25
               Heavy Turf and
                Forest Litter                  0.35

IRC,
KK24:     These parameters are the interflow and groundwater recession
          rates.  They can be estimated graphically (51) or found by
          trial from simulation runs.  Since these parameters are
          defined below on a daily basis, they are generally close to
          0.0 for small watersheds that only experience runoff during or
          immediately following storm events.

                    _ Interflow discharge on any day
               1RL  " Interflow discharge 24 hours earlier

                    _ Groundwater discharge on any day	
                    - Groundwater discharge 24 hours earlier

KV:       The parameter KV is used to allow a variable recession rate
          for groundwater discharge.  If KV = 1.0 the effective
          recession rate for different levels of KK24 and the variable
          groundwater slope parameter GWS is as follows:
                                   183

-------
                                             GWS

               KK24       0.0        0.5       1.0       2.0

               0.99       0.99      0.985     0.98      0.97
               0.98       0.98      0.97      0.96      0.94
               0.97       0.97      0.955     0.94      0.91
               0.96       0.96      0.94      0.92      0.88

          For small watersheds without a groundwater flow component, a
          value of 0.0 is generally used.
SNOWMELT PARAMETERS
RADCON,
CCFAC:   These parameters adjust the 'theoretical melt1 equations for
         solar radiation and condensation/convection melt to actual field
         conditions.  Values near 1.0 are to be expected.  RADCON is
         sensitive to watershed slopes and exposure.

SCF:     The snow correction factor is used to compensate for catch
         deficiency in rain gages when precipitation occurs as snow.
         Px(SCF-l.O) is the added catch.  Values are generally greater
         than 1.0.

ELDIF:   This parameter is the elevation difference from the temperature
         station to mean elevation in the watershed in thousands of feet
         (or kilometers).  It is used to correct the observed air
         temperatures for the watershed using a lapse  rate of 3 degrees F
         per 1,000 feet elevation gain.

IDNS:    This parameter is the density of new snow at  0 degrees F.  The
         expected values are from 0.10 to 0.20.  Equation 15 gives a
         variation in snow density with temperature.

F:       This parameter is the fraction of the watershed that has complete
         forest cover.  Areal photographs are the best basis for
         estimates.

DGM:     DGM is the daily groundmelt.  Values of 0.01  in/day or less are
         usual.

WC:      This parameter is the maximum water content of the snowpack by
         weight.  Experimental values range from 0.01  to 0.05.

MPACK:   The estimated water equivalent of the snowpack  for complete areal
         coverage in a watershed.
                                    184

-------
EVAPSN:  Adjusts the amounts of snow evaporation given by an analytic
         equation.  Values near 0.1 are expected.

MELEV:   The mean elevation of each watershed segment in feet (meters).

TSNOW:   Temperature below which snow is assumed to occur.  Values of 31
         degrees to 33 degrees F are often used.

PETMIN, PETMAX:  These parameters allow a reduction in potential
         evapotranspiration for air temperatures near or below 32 degrees
         F.   PETMIN specifies the air temperature below which potential
         evapotranspiration is zero.  For air temperature between PETMIN
         and PETMAX, potential evapotranspiration is reduced by 50 percent
         while no reduction is performed for temperatures above PETMAX.
         Values of 35 degrees F and 40 degrees F have been used for PETMIN
         and PETMAX, respectively.

PETMUL, WMUL, RMUL:    These three parameters are used to adjust input
         potential evapotranspiration, wind movement, and solar radiation,
         respectively, for expected conditions on the watershed.  Values
         of 1.0 are used if the input meteorologic data is observed on or
         near the watershed to be simulated.

KUGI:    KUGI is an integer index to forest density and undergrowth for
         the reduction of wind in forested areas.  Values range from 0 to
         10; for KUGI = 0, wind in the forested area is 35 percent of the
         input wind value, and for KUGI = 10 the corresponding value is 5
         percent.  For medium undergrowth and forest density a value of 5
         is  generally used.

SEDIMENT PARAMETERS
JRER:    JRER is the exponent in the soil splash equation (Equation 1) and
         thus approximates the relationship between rainfall intensity and
         incident energy to the land surface for the production of soil
         fines.  Values in the range of 2.0 to 3.0 have demonstrated
         reasonable results on the limited number of watersheds tested.
         (A value of 2.2 was chosen for the Georgia watersheds.)

KRER:    This parameter is the coefficient of the soil splash equation and
         is related to the credibility or detachability of the specific
         soil type.  KRER is directly related to the 'K' factor in the
         Universal Soil Loss Equation (52).  Initial estimation of KRER
         can be performed in the same manner as the evaluation of the K
         factor (52, 53).  However, this initial value will  need to be
         checked through calibration trials.
                                    185

-------
JSER:    JSER is the exponent in  the  sediment washoff,  or transport,
         equation (Equation 5), and thus  approximates the relationship
         between overland flow intensity  and sediment transport capacity.
         Values in the range of 1.0 to  2.5 have been used on the limited
         number of watersheds tested  to date.  (A value of 1.8 was  chosen
         for the Georgia watersheds).

KSER:    This parameter is the coefficient in the sediment washoff, or
         transport, equation.  It is  an attempt to combine the effects of
         (1) slope, (2) overland  flow length, (3) sediment particle size,
         and (4) surface roughness on sediment transport capacity of
         overland flow into a single  calibration parameter.  Consequently,
         at the present time calibration  is the major method of evaluating
         KSER.  Terracing, tillage practices, and other agricultural
         management techniques will have  a significant  effect on KSER.
         Limited experience to date has indicated a possible range of
         values of 0.01 to 5.0.   However, significant variations from this
         can be expected.  (The values  determined on the PI and P3 Georgia
         watersheds were 1.2 and  0.35,  respectively.)

SRERI, SRERTL:  These parameters  indicate the amount of detached soil
         fines on the land surface at the beginning of  the simulation
         period (SRERI) and the amount produced by tillage operations
         (SRERTL).  Very little research  or experience  relates to the
         estimation of these parameters.   Thus, calibration is the method
         of evaluation.  For SRERI, one would expect that spring and
         summer periods on agricultural watersheds would require higher
         values than fall and winter  periods due to the growing season
         disturbances and activities  on the watershed.   Values of SRERTL
         are related to the severity  or depth of the tillage operation, and
         must be input to correspond  with the dates of tillage operations
         (TIMTIL, YRTIL).  Values of these parameters on the Georgia
         watersheds have ranged from 0.5 to 5.0 tons/ac.

COVPMO:  This parameter is the percent land cover on the watershed, and is
         used to decrease the fraction of the land surface that is
         susceptible to soil fines detachment by raindrop  impact.  Twelve
         monthly values for the first day of each month are input to the
         Model, and the cover on any day is determined by  linear
         interpolation.  COVPMO values can be evaluated as one minus the
         C  factor  in the Universal Soil Loss Equation,  i.e. COVPMO = 1 - C,
         when C is a monthly value.  Evaluation methods for the C factor
         have been published in the literature  (52, 54).
                                     186

-------
PESTICIDE PARAMETERS


DD, K, N, NP:   These parameters define the adsorption/desorption
         functions used in the present version of the ARM Model.  Their
         values must be determined for each pesticide-soil combination
         from laboratory experiments or from published research results.

CflAX:    CMAX is the water solubility of the specific pesticide being
         simulated.  Literature values are generally used, and no
         temperature correction is performed.  As indicated in Section IX,
         simulation results are relatively insensitive to CMAX.

DEGCON:  This parameter defines the daily first-order general attenuation,
         or degradation, rate for the pesticide.  Values can be derived
         from observed field measurements or from the literature.

SZDPTH, UZDPTH:  Although these parameters specify the depth of the
         vertical soil layers, their major impact is on pesticide
         simulation.  Very little experience exists for evaluation of
         these depths.  UZDPTH is generally evaluated as the depth of
         tillage or pesticide soil incorporation while SZDPTH is the depth
         of the active surface zone.  UZDPTH must be greater than SZDPTH.
         Expected ranges for these parameters would be 2.0 to 6.0 inches
         for UZDPTH and 1/16 to 1/4 inches for SZDPTH.

BULKD:   This soil parameter also has a major impact on pesticide
         simulation.  BULKD, the soil bulk density, can be evaluated in
         the laboratory or from the literature.
                                    187

-------
CALIBRATION


Calibration is an iterative procedure of parameter evaluation and
refinement as a result of comparing simulated and observed values of
interest.  It is required for parameters that cannot be deterministically
evaluated from topographic, climatic, edaphic, or physical/chemical
characteristics.  Fortunately, the large majority of the ARM Model
parameters do not fall in this category.  At the present time, calibration
of the ARM Model generally involves only hydrolgy and sediment parameters.
As indicated in Section VIII, the goal of pesticide transport modeling is
to develop a model which can be used in various regions of the country
with pesticide parameters evaluated from laboratory experiements or from
the literature.  If calibration is required for determining pesticide
parameters, then recorded pesticide data would be required for each
watershed simulated.  This would limit application to few watersheds
across the country.  Although future developments may require calibration
of pesticide parameters, the goal of the ARM Model development at present
is to limit calibration to hydrology and sediment parameters for which
data is more generally available.

Hydrology calibration must preceed sediment calibration since surface
runoff is the transport mechanism by which sediment loss occurs.  The
procedure is to compare simulated and recorded monthly runoff volumes  (as
indicated in Section VIII for the PI and P3 watersheds) obtained from
initial parameter values.  Calibration trials should not be performed  for
periods of less than 9 months to avoid the effects of initial soil
moisture conditions.  The hydrology parameters LZSN, INFIL, and INTER  are
the ones most directly evaluated by calibration; for managed, or
disturbed watersheds UZSN is often included in this list.  LZSN and
INFIL have the  greatest effect on runoff volumes and thus are most often
modified to  increase agreement between simulated and recorded monthly
runoff volumes.  When monthly values are in reasonable agreement,  the
INTER parameter is  often used to modify hydrograph shape to improve
simulation of storm hydrographs.  Minor adjustments to INFIL and UZSN  (in
the case of  small agricultural watersheds) can also be employed to improve
storm hydrograph simulation.  Thus, hydrologic calibration involves
comparison and  parameter modification for the simulation of both monthly
runoff volumes  and  storm hydrographs.  The sensitivity analysis in Section
IX  indicates the  relative effects of parameter changes as an aid to
calibration.  A detailed discussion of  the hydrologic calibration  process
is  available to the interested user  in  other  publications.1- 2- 3

Sediment parameter  calibration is more  uncertain  than hydrologic
calibration  due to  less experience with sediment  simulation in different
regions  of the  country.  The  process  is analogous; the major sediment
parameters are  modified to  increase  agreement between simulated and
recorded monthly sediment  loss and storm event sediment  removal.   A
                                    188

-------
balance between the generation of detached soil fines and the transport,
or removal, of soil particles must be developed so that the storage of
detached fines is not continually increasing or decreasing throughout the
calibration period.  The KRER and KSER parameters are most directly
involved in sediment calibration and the development of this sediment
balance since they are relatively less well defined by theoretical and
physical considerations.  Thus a balance must be established between the
KRER and KSER parameters in the agreement of simulated and recorded
monthly sediment loss.  The SRERTL parameter has a major effect on
sediment simulation on agricultural watersheds since it specifies the
amount of detached soil fines produced by tillage operations.  The soil
fines are then available for transport by overland flow from the
watershed.   The value of SRERTL is also instrumental in the balance
between soil fines generation and transport.  Storms occurring soon after
tillage operations would likely transport sediment at or near the
transport capacity of the overland flow, while storms occurring later in
the growing season would have sediment loss limited by the amount of fines
available for transport.  SRERTL should be large enough to have a major
impact on sediment loss by storms soon after tillage, but small enough to
have a minor effect on sediment loss late in the growing season.  As an
aid to calibration, an asterisk is printed in the ARM Model sediment
calibration output (see Table 22) whenever sediment removal is limited in
each areal  zone (or block) by the availability of soil fines.  Thus when
asterisks are printed, sediment removal is being controlled by the
generation  and availability of soil fines.  Whereas, when no asterisks are
printed, the washoff or transport mechanism is the major controlling
factor.  When the washoff mechanism is controlling, the JSER parameter can
be modified to improve the shape of the simulated sediment removal graph.
In a similar manner, the JRER parameter will affect the sediment removal
graph when  the generation and availability of detached soil fines is
controlling sediment removal.

In summary, the calibration process requires an understanding of the
physical process being simulated and of the impact of the critical ARM
Model calibration parameters.  Study of the parameter definitions,
algorithm formulation, and sensitivity analyses results presented in this
report should allow the user to become reasonably effective in calibrating
and applying the ARM Model.
                                   189

-------
                                 APPENDIX  B

                      ARM Model  Sample  Input Listing
//CCB75C8 JCB (C5lOt510fl,30).',;-|508BEYtRLElN'
//JOBLIB 00 CSMME=C510.DCB.J15Ce.ARM,DISPMOLD,K£EP)i
//       UMT»2214,VQL»SER=FILEC
//STEP! EXEC FGMARf
X/SYSPP-INT CC <\£QIT«A
//FT06FC01 CC SYSGUT»A
//FT05FCC1 CD «
SAMPLE INPUT FCP HYPCTI-ETICAL M1ERSHED
CATA SET UP FCP SNO, PESTICICE, *ND NUTRIENTS
HYCAL=PRCO
IKFUT»ENGL
CUPUT^ENGL
PR1NT=CAYS
PES1=YES
MTR=YES
!ChECK=CN
 ECNTL  INTPVl=5t HYHU-O.OC1.  *REA=3.08
6STRT
6ENOO
CLN01
SLND2
6LN03
                   BGNKCN=l2t   EGKYR=1973  CcNO
                                                              C.ENO
 6SN01
 8SN02
 6SN03
 6SNQA
 CCROP
 CKUD1

 6CIRT
 ESMOL
        U2SN = O.C5, UZS=0.002, L2SN = 16.0,  LZS>19.36   (.END
        L = 220., SS=0.03t NN = 0.20, A=0.00, K3=0.^0t  cPXM=0.12
        INFIL=C.50, !NTER=0.7i  IFC=O.Of Ki4L=1.0, KK2^=0.6f  K2ASL=0.0  6ENO
        SGW=0.0, GWS=O.C,  KV=C.C, ICS=0.0, OFS=0.0,  1FS=0.0   EENO
        PAOCCN=1.0tCCF*C=1.0,SCF = 1.0,ELL)If:=O.Of IUNS=0. l^t F=0. 0  £ENO
        OGH=0,CfWC==0.03,KPACK=l.O,EVAPSN=1.0,MtLcV=0.0,TSNOW=32.0  &ENO
        PACK=C.C, OEFTH*0.0   6ENC
        PETMK»^C.O,PET^AX=5C.OtFETMljL=UatWrtUL=l.O,RMUL=1.0,KUGI=0.0  6ENO
        CCVFKO>=C.6,0.7iC.7,(.l,C.CtC.O,U.2,0.6,0.8i>f O.dfO.7,0.3 fiEND
        TIMIl*C,0(142,155,U6,
        YRTIL*£*73,        £PEPTL=J. 0,2. 0,2. 0,2. 0,1.0  &£NO
                                .CC25,  BULKO=L03.0   tENO
                                  *l.a, KSER«0.35t S*fcRi=0.0   6ENO
 PESTICICE
        SSTF=5*C.tl6,
         DC = C.CC03, K=-l20.t M2.Ct NP*4.6
 CCEG1  DEGCCN=C.0020  «ENC
NURIEKT
 CNUTRIN   1STEF=60,  KAPPL=1, 11KHAR=34t

REACTICN PATES
MTROCEN
SLPFACE
     2.0     4.C
UPPER ZCKE
     2.0     4.0
LCkER ZCNE
     2.0     4.0
GFCUNChATER
     2.0     4.C
TEPPERATUFE CCEFFIC1ENTS
    1.C5    I.C5
                                           ,  CMAX=0.00001,
                                            6END
                                              &ENO
0.0
0.0
0.0
0.0
• IL' T *
:M5
L.C5
O.C
C.C
C.C
C.C
1.C5
.0360
.0360
.0360
.0360
1.05
.0077
.0077
.0077
.0077
1.05
0.0
0.0
0.0
0.0
1.05
0.0
0.0
0.0
0.0
1.05
0.2
0.2
0.2
0.2
1.05
1.0
1.0
1.0
1.0
1.05
 H-CSPHCRLS
 SURFACE
    .0011
 UFER ZCKE
             O.C
                    .01£
2.C
0.1
                                       190

-------
Appendix B (continued)
.0077
LChER ZCNE
.OC77
GBCUNCHJT6R
.0077
TEHPERMbRE
1.05
EM
IMTIAL
NITROGEN
SURFACE
24.
UPPER ZCNE
1144.
LCVER ZCNE
11250.
GSCUNCUATER
0.0
FKSPHCPUS
SURFACE
4.8
UPPER ZCNE
228.
LCkER ZCNE
2275.
GFCUNCVtATER
0.0
CKCR1CE
SUPFACE
0.0
U-PPER ZCNE
0.0
LCMER ZCNE
0.0
GPCUNCfclTER
C.O
AFFLICMICN
NITROGEN
SURFACE
0.0
UPPER ZCNE
0.0
FhCSPhORUS
SURFACE
0.0
UPPER ZCNE
0.0
ChUORICE
SURFACE
2.0
UPPER ZCNE
98.0
O.C .018 2.C 0.1

C.C .018 2.C 0.1

0.0 .018 2.C 0.1
CCEFFICIEN1S
1.C5 1.05 1.0! 1.05




O.C 1.0 O.C 0.0

C.O 48. C.C 0.0

O.C 480. C.C 0.0

0.0 0.0 O.C 0.0


O.C 0.2 C.C

0.0 5.£ C.C

C.C St. C.C

O.C 0.0 C.O









3C4


0.0 4.0 C.C 0.0

0.0 196. C C.O 0.0


O.C 0.4 C.C

O.C 19.6 C.C
















0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0





















0.0 0.0

0.0 0.0










                                    191

-------
Appendix B (continued)
ENC
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
E\iAP/3
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
E\AP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
c\)AP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
EVAP73
TEMP73
TEMP73
TEHP73
TEKP73
1EMP73
1EMP73
TEMP73
TEMP73
TEMP73
TEMP 73
TEMP73
TEKP73
TEMP73
TEfP73
7EMP73
TEMP73
TEKP73
TEMP73
1EMP73
TEKP73
TEMP 73
TEMP73
TEMP73
TEPP73
TEKP73
TEMP73
TEMP 73
TEMP 73

16
18
18
0
35
28
28
26
26
26
28
26
28
26
27
32
IS
41
41
54
54
55
118
32
24
24
24
25
25
91
17





























74
90
60
61
61
82
121
69
7
20
21
21
16
54
46
47
45
45
46
46
81
83
101
45
46
46
28
60
































60
170
43
43
43
71
4
41
35
20
20
21
123
123
132
103
61
61
61
61
112
44
104
87
67
87
72
£6
50
31
31





























2S
2S
3C
6C
112
1*
i;
is
if
15
U
U
112
112
113
112
1
ec
8£
86
E€
8E
et
12
12
IS
232
5t
5<
51






























13
13
14
4
202
S9
100
34
135
210
202
219
145
176
192
222
171
173
159
72
103
196
154
232
153
114
90
152
3
153
193
72 53
72 49
<3 36
55 34
£2 31
46 37
70 53
£9 «3
14 50
73 t>2
£7 46
£1 42
52 39
55 34
59 35
49 46
55 32
£5 26
£6 47
67 40
72 41
72 49
£2 55
13 44
71 51
£7 49
£5 50
15 55

266
70
65
70
171
8
72
70
37
108
68
142
132
90
156
121
160
70
72
161
84
149
163
62
262
109
126
59
137
213

76 57
62 55
bl 58
UU 65
60 62
79 63
77 57
U3 o3
83 68
89 56
90 75
90 68
83 55
82 51
85 59
84 69
7* 59
74 60
83 t>*
61 60
80 60
79 57
75 54
7o 55
81 54
81 65
81 62
81 60

131
163
140
156
145
1S5
67
145
62
185
175
133
185
154
246
140
89
58
80
4o
168
129
136
141
71
65
27
43
I4t>
155
103
84 56
87 64
63 65
79 60
79 60
84 i5
60 65
db e9
09 67
89 65
63 53
80 52
92 71
92 62
76 55
78 al
61 51
65 55
86 6*
66 69
74 63
82 59
83 59
83 62
88 67
88 71
62 6*
32 63

103
96
53
162
34
122
6>
105
130
36
139
162
4
72
208
115
123
92
72
130
205
178
143
122
112
136
52
1/0
37
249
38
7b 65
78 57
oO 57
02 56
03 60
03 65
05 04
90 o9
89 69
82 67
64 62
84 58
62 36
bl 39
79 56
82 52
b2 58
83 55
• 03 60
62 65
7i 52
72 48
71 54
76 56
64 55
91 67
*5 74
94 73

19
63
189
124
115
24
161
92
145
218
185
145
99
211
125
156
191
139
112
119
73
7S
132
152
112
92
33
66
79
165

90 7 C
92 63
So 64
90 6S
66 64
62 56
77 52
75 44
74 55
7b 46
76 61
73 44
74 45
75 52
74 48
69 46
60 42
69 39
65 42
63 45
03 3£
75 46
74 63
72 7C
83 41
63 55
83 55
77 43

41
69
97
104
117
138
124
90
117
159
76
34
110
117
76
83
90
110
117
104
83
83
83
77
71
65
59
53
48
69
14
71 45 50
71 53 48
70 57 46
70 51 42
67 43 41
67 36 37
67 58 39
77 53 42
78 51 34
78 51 40
79 51 39
77 57 54
77 56 60
68 45 63
67 53 55
62 39 33
60 37 44
53 41 47
64 32 47
78 42 51
64 34 57
69 36 56
73 34 53
73 43 60
72 42 59
63 43 44
59 37 50
55 35 47

90 68
72 68
48 47
48 52
114 47
54 42
12 31
0 57
76 36
72 10
60 57
48 36
48 57
54 36
24 36
24 104
60 73
120 47
£6 57
24 73
48 104
36 109
66 99
36 83
30 10
48 42
24 68
78 36
54 16
204 47
68
31 39 20
29 46 20
22 57 38
20 55 40
17 55 33
14 33 24
14 31 26
22 37 20
15 37 20
18 34 23
16 31 21
25 34 15
25 34 24
34 33 9
30 22 13
19 20 10
IS 17 3
24 26 6
29 20 15
25 25 18
34 23 5
22 22 8
24 28 19
23 29 15
27 43 27
27 45 32
32 35 34
27 34 27
                                     192

-------
Appendix B (continued)
TEKP73
TEKP73
TEMP 73
UIND73
NIN073
MIN073
59 52 68 57 79 55 92 69 65 A7 55 22 39 19 36 22
•7 45 72 55 81 60 &S oti 65 A7 51 36 49 24 24 16
h!ND73
UIN073
UNO 73
h!N073
UIK073
h!MD73
WIN073
UIN073
HMD73
hIN073
MKD73
UIN073
WIN073
UN073
UND73
UNO 73
UND72
WIND 73
WIND 73
KINO 73
KIN073
UIN073
k!N073
hIND73
MND73
UIN073
hIND73
RAOI73
PACI73
RADI73
P4DI73
RACI 73
RAOI73
PACI73
RAOI73
RAOI73
PAOI73
RAOI73
RAOI73
RAOI73
RACI 73
PAOI73
PADI73
RACI73
RACI 73
RACI73
PACI73
RADI73
RACI73
RACI73
RADI73
PACI73
SACI73
14 42
U2
126
209
195
S7
103
SO
134
126
103
147
134
80
40
65
125
110
39
49
49
45
27
71
29
53
40
80
80
23
45
72



























135
65
100
63
67
33
70
81
113
95
100
70
85
35
60
50
109
49
89
61
72
80
70
bO
58
75
67
91
91
48



























81 65
54
55
44
81
39
46
bO
75
65
60
90
42
118
100
60
40
30
30
52
41
77
80
80
60
35
55
98
137
71
62
42


























8S 65
34
69
yZ
3J
37
49
59
b5
62
65
60
67
21
41
46
34
32
16
38
100
109
48
13
17
40
40
79
74
50
34
49



























47
50
35
57
52
116
90
40
23
57
126
94
30
63
64
88
73
102
74
124
48
147
101
60
14C
60
62
78
5
110
95


























51 36
95
30
10
100
100
49
26
40
55
60
70
100
80
150
90
78
12
110
70
80
10
35
35
50
100
100
50
110
92
178
80



























80
80
120
40
90
220
50
190
UO
120
50
120
80
120
110
130
20
50
30
60
210
140
10
100
140
150
110
£0
220
190

193
166
247
149
160
274
107
178
155
195
67
112
75
169
24
115
198
C7
44
125
35
178
l€4
25
35
21
69 12
120
110
25
195
110
250
50
50
0
200
50
160
190
100
100
100
100
50
200
100
140
110
100
150
250
100
150
200
200
230
30
175
165
175
75
75
125
72
80
67
85
117
161
29
166
152
193
215
118
75
88
183
104
100
133
32
56
                                      193

-------
Appendix B (continued)
RACI73
»*CI73
HA0173
R*CI72
fl^OI 73
CEKPT73
CE*PT73
CEWPT73
CEWPT73
CEW>T73
CEWPT73
CEWPT73
OEhPT73
CEWPT73
CEWPT73
OEWPT73
CEMPT73
CEUPT73
CEV»PT73
CEV»PT73
CEWPT73
CEHPT73
OEV.PT73
CEWPT73
CEWPT73
CEHPT73
CEWPT73
CEMPT73
CEKP173
CEKPT73
OEfcPT73
OEWPT73
CEWPT73
CEWPT73
CEKPT73
OEVPT73
7212201
7312202
12122C3
7212204
7312205
7212206
7212207
7212208
7212211
7212212
7212213
7212214
7312215
121221*
7212211
7312218
7312229
1:1222-5
7212249
7212251
7212252
7212253
7312254
1312255


C
0
0
C
0
c
0
0
0
0
c
0
0
0
0
0
0
0
0
0
c
0
c
0
0
c
0
c
c
0
0














162510











0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0














5











c
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
c
0
0
0
0
0
0
0


























0
0
c
c
0
c
0
c
c
0
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
0
c
c
c













1 4












61
.52
33
39
38
44
53
55
57
48
44
49
39
30
35
36
33
34
46
40
54
56
56
54
5S
51
56
57
52
47
56













>12












61
62
68
67
63
61
60
62
36
69
69
66
51
55
63
67
63
67
66
57
56
59
61
58
58
65
62
60
58
62
0
4-

























63
68
67
t>0
59
62
68
71
67
69
38
60
65
6i
54
50
56
58
67
08
64
56
66
71
70
72
60
59
59
66
71


























66
63
56
61
70
ot>
67
72
72
63
6b
60
58
64
57
59
67
62
66
61
54
54
54
ol
69
75
/3
72
70
68
70


























75
68
71
66
63
49
51
51
51
57
48
46
49
51
51
44
47
45
49
41
48
59
49
52
66
67
69
57
58
52
0


























61
59
57
63
43
42
51
61
63
63
58
63
58
46
41
35
23
36
49
38
44
45
46
47
52
43
48
45
46
46
45
























47
47
1C2
161

24
29
21
30
30
29
30
32
31
31
24
43
£0
41
40
32
30
41
39
40
42
46
40
57
38
41
46
21
29
28
0
























48
81
68
102
175
22
36
47
49
31
25
19
24
29
19
25
22
9
-10
-5
-5
-I
-143
10
12
6
-3
24
23
37
29
26
29
14
6
5
























                                    194

-------
Appendix B (continued)
12122£<
1312251
121225C
13122(1
7212262
1312263
1212244
7312265
1212264
7212261
121226E
1312275
7212261
12122E2
1212263
1212264
1312265
12122C6
13122C7
72122(6
1312259
1212301
13122C2
1212303
1312304
1212305
11 1 o*ar x
• JL£ 3 I C
1212201
731220C
1212311
1312312
1212313
1212214
1212315
12123U
1212211
1312316
EVAP74
EVAP74
EVAP74
EVAP74
EVAP74
EWP74
EXAP74
EVAP74
EVAP74
EVAP74
EVAP74
EVAP74
EVAP74
EVAP74
ESAP74
EVAP74
EVAP74
EVAP74
EVAP74
EVAP74
EVAP74
EVAP74
EVAP74

15
£
3 4
212





1 2
3 4
212
92
£6
66
16
5
52
1C8
43
11
5
43
66
81
66
55
22
43
27
38
22
49
58
£4
1
1
2? 5
C. €.
1 1
212
1




222
1 1
212
76
69
88
69
158
132
94
82
65
94
132
50
50
94
69
69
19
SO
126
69
107
69
101
410
16
1 1
11
1
1
121
1 1




1 1
1
1 2 1
126
141
126
111
146
7
0
155
111
126
118
148
133
170
170
141
104
85
141
81
85
111
104
S
2 1 1
11
1
1
123
i 1 1




1 1
1
1 2 2
5C
£<
252
115
211
175
252
18S
156
132
I4C
14C
161
14'.
11*
1
14
14C
5€
14C
45
105
21C


1 1 2
322





1 1 1
1 1 2
322
140
156
176
201
55
22
165
115
123
164
144
171
159
150
205
114
167
V3
271
145
57
68
210
1

121
122





1
121
122
77
34
38
237
120
157
192
0
140
203
45
325
202
156
72
260
195
207
92
110
211
271
276
LO 1 3

211
121





1 1
211
121
206
120
217
174
109
28
at
120
102
210
217
150
131
77
05
94
197
52
510
133
158
Io3
82
1

2111
1212





1393
2111
1212
dO
Ittl
103
70
113
175
185
0
49
136
213
76
61
116
209
195
71
144
224
206
301
132
215

3 A fl9ai£. i i n o *5 i i
H alolo 1 l(J £ <£ 1 3
21111111122
1111 1 1





3 4 82816 110 2213
^1111111122
1111 1 I
177
155
57
172
131
7
20
32
34
63
84
125
100
92
26
98
66
46
117
101
11
95
95
                                  195

-------
Appendix B (continued)
EVAP74
EVAP74
E\AP74
S*AP74
EVAP74
EVAP74
ESAP74
E\AP74
1EPP74
1EPP74
TE*P74
TEMP74
TEKP74
IE HP 7 A
1EPP74
TEKP74
TEMPTS
TEPP74
1EPP74
TEKP74
TEPP74
7EPP74
1EMP74
1EPP74
1E*P14
7ENP74
1E*P<4
TEMP74
TEPP74
TEfP74
TEMPTS
TEfP74
7EPP14
7EKP74
UKP74
1EKP74
TE*P74
1EMP7A
TEKP7A
VIKD74
VIND74
V.IN074
k!ND14
h!N014
HN07
-------
Appendix B (continued)
UND74
hINDIA
hI»»D74
HND74
V.IND74
UKD14
WIND 14
hIND74
HND14
UND74
MC174
PADI14
1:00174
fSAOI74
RAOI74
MCI74
PAOI14
RACI74
SACI74
RAOI74
RAOI74
SACI74
RACI74
RAC174
P 401 14
RADI74
C4U7*
RAOI74
PACI74
FACI74
RACI74
RICI74
RA0174
RAOI74
CACI74
ISACI74
RACI74
BACI74
RAOI74
CACI74
RAOI74
CEWT74
C£kPT74
ClliPTl4
CEhPT74
CEHPT14
CEWPT14
CEMPT74
CEkPT74
CEhPT14
CEVIPT74
CEMPT74
CEkPT74
CEhPTl4
CEhPT74
CEhPT14
CEMM74
CEHP174
CEI.PT14
CEMPT74
140
10
100
14C
ISC
110
8C
220
190
30
193
166
247
149
160
274
107
178
155
195
67
112
79
169
24
115
198
67
44
125
25
17£
164
25
35
21
47
47
1C2
161
175
14
19
11
10
10
29
10
12
11
11
24
23
20
21
20
12
10
21
19
110
100
150
250
100
150
200



175
165
175
75
75
125
72
80
67
65
117
161
29
166
152
193
215
118
75
88
183
104
100
133
32
56
48
61



22
36
47
49
31
25
19
24
29
19
25
22
9
10
S
5
1
13
10
                                    197

-------
Appendix B (continued)
CEkP774
CEWT74
CEHP774
CEKPT74
CEWPT74
CEkPT74
 CEKPT74
 C£hPT74
 CEKPT74
 CEWPT74
 CEfcPT74
 7401019
 1401029
 1401C39
 740101?
 7401069
 1401C7S
 7401061
 7401C82
 7401063
 1401064
 7401C65
 7401C66
 7401067
 1401C88
 74010*9
 1401 1C9
 740111S
 7401129
 140113S
 7401149
 7401159
 7401161
 7401U2
 7401163
 7401164
 7401US
 7401166
 7401167
 7401166
 1401171
 7401172
 7401173
 7401174
 7401175
 7401176
 74C1177
 7401178
 7401189
 7401159
 74012C9
 7401219
 740122S
 1401239
 7401249
 1401251
 7401252
 7401253
   20
   22
   26
   20
   27
   16
   21
   26
   11
   14
    6
12
 6
 3
24
23
37
29
26
29
333
                                      2586526993
                                                           3 3
  252
                                                              I 4 614 I
                                         20 4
                                               141
                                      198

-------
Appendix B (continued)
 1401254
 14C1255
 140125*
 1401257                                                                2
 14C12S8        23              14
 1401269
 1401279
 1401289
 1401299
 1401301
 1401302
 14013C3
 1401304
 1401305
 14013C6
 14013C7                               13383911  5  4
 14013C8
 1401319
 1402011
 1402012
 1402013
 7402014
 1402015
 1402016
 1402017 652                      262
 1402018
 1402029
 1402C39
 1402049
 1402059
 1402CC9
 1402019
 1402C69
 1402CSS
 140210$
 7402119
 1402129
 1402139
 1402149
 1402159
 1402 U9
 1402171
 7402172
 1402173
 14C2174
 1402175                                                              22 3
 140217CLO 5
 1402177
 740217£
 1402181
 1402162
 1402183
 H021E4              101010         5
 14021£5
 1402166
7402167
7402188
 1402199
 14022C9
1402219
                                     199

-------
Appendix  B  (continued)
•540222S
1402239
1402249
                                   200

-------
                       APPENDIX  C

               ARM Model  Source Listing
1.
2.
3.
4.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
21.
22.
23.
34.
25.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
46.
49.
50.
£1.
£2.
£3.
54.
55.
56.
57.
£e.
59.
60.
61.
«al
64.
/
/
/
/
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C













C




C






 /CCE7508 JOB  (C51C , 51C ,6 ,251,'J750aBcY£RLEIN»
/< SERVICE CLASS=LAFC-£
//STEF1 EXEC FCPThCl,LEVEL-BIG,PARM.FORT='OPT=1,MAP,XREF*
//FCF1.SYSIN CC *
        *
        *
        *
AGRICLLTURAL RUNOFF MANAGEMENT (ARM) POOEL
                                  DEVELOPED BY:
                                           FOR:
                              HYCRCCOVP, INCCRPCRATED
                              1502 PAGE PILL RQAO
                              PALC ALTO, CA.  94304
                                415-493-5522

                              U.S. ENVIRONMENTAL
                               PRCTECTIGN AGENCY
                              UFFICE CF RESEARCH
                               AND DEVELOPMENT
                              SOUTHEAST ENVIPCN^E^AL
                               RESEARCH LAOOPATORY
                              ATHENS, GA.  30601
                                404-546-3147
                                MAIN PROGRAM
      IMPLICIT  PEXL(l)
      CIPEhSICN FESE {51,RESBl(5),RjS3(3),SftGXi:>),INTF(5),RGX(5),INFL<5) ,
     1 LZSE(5l,APERCe«5),RIB(5),cRSN(5J
      CIMENSICN SPER(«) .PCBTGWS),KOBTCT15),INFTOM(5),INFTOT(5),
     I ROITCM5) ,fCITCT(5),RXB(5),cKSTCMO),ciiiTuT(5),MNAM(12),RAO(24),
     2 TEMPX(24) , HNOM24) ,RAIN (28tt), SRE«MT(b) ,fcn.SNNTt 5 )
      CIFENSICN PFSTCHE),PRSTOT(5),PRCrGrt(5),PROTOT(5),UPITCMI5) ,
     1 IPITOTC5) ,J ,oOS< 5 ) ,SSTP(5),
     2 LAS(5),UCS(5),ICS(5),USTR(S),UPRIS(5)
      CI^ENSICN IF/IN (288),IRAD(12,3L>,
     2 IEV*PM2,21),IC£W( 12,311
      Dlf^SICN hSN/l"E (20) ,CHNAME120),CUVPMQI12),DPM(121
      CIMENSICN TIMIL(S) ,YRTIL(5J,SRERTU5)

      COMNCN /ALL/ RU,HYPIN,PRNTKE»HYCAL.,OPST,OUTPUT,TIMFAC,LZStAREA»
     1 RESBl,RCSE,SPGX,INTF,RGX,INFL,UZSo,APERCfl,Kie,ERSN,M,P3,A,
     2 CALe,PPOC,PEST^LTP.,ENGL,McTA,BCThfRESd,Y£S,NO,IKIN,IHR.TF,
     3 JCOlNT,PRIM,IMP,DAYSrHOUR,MNTH

      CCMMCN /LANC/ Nh ft- ,PRTOT , ERSNTT, FRTuM.ERSNTM ,CAY,
     1 RUTOl^.NEPTCf.RCSTCM.RITljM.RINTuM^ASTaM.RCHTOM.RUTOT,
     2 NEFTOT,PCSTCT,FITCT,RINTOT,BASToT,RCHTOI,ThBAL,EPTOM,EPTOT,
     3 UZS,l;ZSN,LZ^,UFIL,IHTcR,lRC.NN,l-,SS,SGWl,PR,SGW,GWS,KV,
     4 K24L,KK24,K2
-------
Appendix C (continued)
65.           7  CEVX,.P/CK,CEfT»-,KlNThfSDEN,lPACK,TMIN,SUMSNM,PXSNM,XK3,
£6.           8  KELRAM,RACKEK ,CCPMEP,CKAINM,CGNMcM, S&MM. SNfcGfM,SEVAPM,SUPSNYt
67.           9  PXSNY,*ELP*Y,R*^E»,CDkMEY,SGMY,CuNKEY,CRAINY,SNEGMY,SEVAPY,
66.           *  TSNeAL,CCVEF,CCVFKX,ROBTOM,kOBTGT,RXB,RJITCN,RCITOT,lKFTCM,
69.           1  INFTCTtEPSKf , EFSTGT.SrieF^TErtPX.RAU ,WINUX.RAIN,INPUT
10.      C
71.           COMMCN /PES1C/ '1ST,SPROTM,SPRSTM,SAiT,SCST,SDST,UTST.UAST,UCST,K ,
72.           I  UCST,FP,CI*A>,M,SFRCTT,SPKSTT,MUZ,FWU,UPRITP,
13.           2  LPRm,KGPlP.«FFlZ,Hl.Z,LSTR,LAS,LCS,LDS,li$TR,GAS,GCS,GDS,
7*.           3  APMCOE.TFEAL.
15.           4  DEGSCC.OEGSCt.CEGUCf ,
76.           5  DEGUOT.CEGt,CEOS,NIP,DEGGON,OEGLOM,DEGLOT,NCOHt
77.           6  PRSTCf,PRSlC1,FFCTCP,PRGTQT,UPITOM,UPITuT,STS,UTS,SAS,
78.           1  SCS,SC£,SSTP,l./S,LCS,UUStUSTR,UPRI$,UIST,TOTPAP,TIMAP,YEARAP,
79.           8  DESORP,SURF,SOIL,SULG
60.      C
81.           CCMHCN /NLT/  DEn,STEMP,SN,SNT,:>Nh:>M,$NROM,UN,UNT,UNI,UMT,
82.           1             LNRI*,NRS»',LN,LNRPM,l>N,SNRaM,UNkB»',LNRBK,GNRe»',TNi:BM,
83.           2             SNRJY,SNPO)r,UNiUY,NrNKBY,UNRBY,LNReY,GNRBY,
84.           2             lfvRe>,TNKHVtTNRHVMtTNKHVYtTNA*TPAtTCLAf
£5.           4             Krv,7t-Kh,KP,THKP,MtJAL,PHBAl_,CL8ALt
£«.           5             1£TEF,NSTcP,SFLG,UFLG,LFLG,GFLG
67.      C
tfi.      C
89.            INTEGER  6GM1JY, EGN^CN, BGNYRt  EN00AY,  cNOMCN,  ENOYR
90.            INTEGER  CYSTRTt CYENCt YEAR, MONTH,  DAY,  H,  HYCALt TIME
SI.            INTEGER  YR, PC, CY, CM, TF,  PRNTKE,  PRINT,  DA,  APMOCe, OUTPUT
92.            INTEGER  INFLT, JKCh, LiESORP, SURF, SOIL,  TIfFAC, ON, CFF
93.            INTEGER  CALE»PFCC,KUTR.feST,cNGL,H£TR,dUTH,INTR.HOUR.CAYS.NO ,YES
9A.            INTEGER  hSNA*E ,C»-NA^E,DPM
95.            INTEGER  JCCLNT ,T IfAP.TIMTIL,YRTIL.YEARAP.MNTH
96.      C
97.            PEAL*6   KKAC
98.            REAL*8  PEST IC/ •FESTICIO1/
99.            REAL*8  CHAF
ICO.      C
101.            PEAL  1PC, hf>, KV, K24L, KK24,  INFILt INI£R,  INFL
102.            REAL  IFS, 1CS, K2EUFT, KGPLB
1C7.            REAL  SPRTKT, EFShTT, ERSNMT
1C8.            REAL NF, MF, NCCH
1C9.            REAL IChS, hFACK, MELEV, KUG1,  HELKAM,  HELRAY,  IPACK
110.      C
111.      C      NUTRIENT VAFUBIES — DECLARED, DIMENSIONS, IN IT IALIZED
112.      C
113.      C
114.            INTEGER*^  1STEF,KSTEP,SFLG,UFLG,LFLG,GFLG
115.      C
116.            PEAL*A  CELl,JTt>F(^,2^),
117.           1        SN(2Ct5),SNT<20),SNRSM(2G,5) ,SNROM(20 ,5),
118.           2        UN() .UMTt^OJ ,UNRIK (20,5 ) ,
119.           2        NRSM20.5),       LN( 20) ,UNkPM(20»,          GN(2C>,
120.           4        SKREM(2C,5)tUNRbM(20,b) ,LNRbMUO) ,GNR6K(20) ,TNRBf (20)t
121.           5        SNRSYC2C.5) .SNkOY (20, 5 ) ,U,\Ki Y( 20,i) ,NRSY(20,5) t
122.           6        LNPFYC2C),SNRBY(20,5),UNRbY(tO,p),LNRBY(20),GNRBYt20).
123.           7        TNRjEY(2C),TNRhV(20),TNA.HVM120) ,TNKHVY(20) ,TNA, TP A,TCLA»
              8        KNUO,4),1HKM10) ,KPl 5 ,^ ) , THKP («>) ,N6ALt PHBAL,CLBAL
                                       202

-------
Appendix C (continued)
125.
126.
127.
128.
129.
130.
121.
122.
123.
134.
135.
136.
137.
138.
139.
140.
HI.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
156.
159.
UO.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
160.
181.
1£2.
183.
184.
C
C

C



C



C

C











C
C
C

















C
C
C
C
C
C
C
C
C
C
C
C
C
C
C


REAL*4 SNAFL(2C,5,5),UNAPL(20,5,5),KNI(10,4) ,KP 1(5,4)

INTEGER*4 /PC AY (* » , APLCNT/1/ , JHuUR, NAPPL, J , IBLK.TIHHAR,
1 S ELH V (20 )/C, 0,0, 0,0, 0,1, 0,0, 0,0, 0,0, 1,0, 0,0,0
INTEC-EM4 C F* H( 12 )XO, 31, 26, 3 1, 30, 31, 30, 31, 3 1, 30, 3 1, 30 X

CATA TIMTHX5*CX,YRTIL/5*0/,SRERTLXi>*O.OX
CATA CCVFfC/12*C.O/
CATA ICS, CFS/2«C.O/

CATA CN/'CN'X.CFFX'CFF'/

CATA GRAC/O.C*,C.C4, 0.03, 0.02,
* C. 02, C. 02.0. 02, C. 06,0.14,0. 13, 0.20, 0.1 7. 0.1 3, 0.06, 0.03,0
* C. 07, 0.10, 0.12, C.I 5, 0.13, 0.12.0. Oa/
CATA RACCIS/t«O.C, 0.019,
*0. 04 1,0. 06 7, 0.Ctf , O.lOi, 0.110, 0.11 0,0. 110,0.105,0.095,0.
*0.017,5*O.C/
CATA V>INCIS/1*O.C34, 0.035,
* C. 037,0. 04 l,O.C<*,C.flSO, 0.053, 0.054, 0.058, 0.057, 0.056,0.
* C. 040,0. 036, 0.C36.0. 036, 0.035/
DATA CPH/2 1,2 1,2 1,30, 31, 30, 31, 31 ,30, 31 ,30, 3 1/
CATA PETKLL ,hMJl ,FMUL/3*l .O/

CfTA INPUT — NAME LIST VARIABLES

NAMELIST XCNTLX IN1RVL.HYMIN.AREA
NAMELIST /SIR!/ EGNCAY,dGNMUN,8GNYR
NAMELIST XENCCX f NDOAY.E NUKON.cNDYR
NAMELIST /L^C1/ LZSN.UZS ,L2SN,LZS
KAPELIS1 /LhC2/ L , Si ,NN, A, K3 , EPXM
KAHELIST /Lf>C2/ INF IL, INTER, IRC ,K24L,KK24, K24EL
NAfELISI /L^C4/ SGh ,GHS, KV,ICS,CFS, IFS
NA^ELIST /SrCl/ FACCCN,CCFAC,SCF,ELOIF,IONS, F
NAMELIS1 /SNC2/ CGM ,V»C, MPACK ,E VAPS^ ,McLEV, TSNOM
KAVELIST /SK3/ FACK.OcPTH
NAMELIS1 XSNC4/ FETKIN.PETKAX, PETKUC,*MUL,RMUL,KUGI
hA^ELIST /CFCF/ CGVFMO
^A^'ELIST /NLC1/ TINTIL.YRTIL.SRERTL
KAMELIS1 XD1R1/ 5ZCPTH,UZDPTH,BULKO
NAMELIST XS^CLX JPER.KRtR, JSER.KSER ,SREKI
NAHELIST XAfCL/ SSTR ,T IMAP,Y£ARAP,CMAX,DD, K» K,NP
hAMELIST XDEG1X CEGCON

INPLT PAFAt-ElEF CESCRIPTION
kSNAME: V>ATERShE[ hAfE (80 CHARACTERS)
CK*AME: CHEMC«L ^A^E (80 CHARACTERS)
MCAL : INCICA1ES VF/T FACTORS ARc TO fafc SIMULATED
- FRCD fFCCLCTICN RUN-
> CAL6 CALieF/TION RUN
IhFtT : INFLT LMTS; ENGLISH(ENGL) , McTRIC(METR)





,0,0/









.01,0.05,


C81, 0.055.


050,0.043,































OlTPLTs OlTPLT LM1S: ENGLISH! ENGL) , METR1C(H£TR ), BOTH(BOTH
PPINT : DENOTES FRECLENCY OF OUTPUT; EACH INTERVALIIMTR) ,

EACH KtF(l-CUP), OK EACH OAY(bAYS),JR eACH MONTH(MNTH)
SNCW J (NO ShCkfELT NCT PcKFGAMEO, (Y£S) SNOhMELT CALC'S
PEST : (NO PESTICICES NOT PcRFJKMcO, (YES) PESTICIDE CALC
NL1R : (NO MTRIEMS NCT PERFURMED, (YfcS) NUTRIENT CALC'S
PERFORMED
•S PERFORMED
PERFCRMEC
IChECK: ChECKS ^ST CF THE INPUT IF SET EQUAL TO CN, OTHERWISE SET
                                     203

-------
Appendix C (continued)
185.
186.
1£7.
166.
169.
190.
191.
192.
193.
194.
195.
196.
197.
196.
199.
200.
201.
202.
203.
204.
205.
2C6.
207.
2Cfi.
2C9.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
221.
232.
223.
234.
235.
236.
237.
236.
239.
240.
241.
242.
243.
244.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

INTRVL
HYMN
AREA
BGNCAY
ENCCAY
UZSN
LZS
L2SN
L2£
L
< t
NN
A
K2
EF>H
INFIL
INTER
IRC
K24L

KK24
K24EL

SGK
GVJ
KV

ICS
CFI
IFS

CMY IF

PACCCN
CCFAC
SCF
ELCIF

ICNJ
F
BGK
KC
KF*CK
EV/FSN
fELEV
1JNCW
PACK
DEPTH
PETKIN
FEUAX
PE1KUL
V.KL
PML
KLGI
CCVFKO
TIMIL
KR1IL:
SFERTL:
SZCPTH:
                     TC  OFF
                     Tlf-E  IMERV/L  (  5 OR  15 MINUTES)
                     MNIPUf  FLCfc  FCR OUTPUT DURING A TINE INTERVAL (CFS, CMS)
                     hAlERShEC  /FEA (AC,  HA)
                     BGNKCN,  EGMP  :  DATE  SIMULATION BEGINS
                     ENCKCN,  ENCVF  :  DATE  SIMULATION ENDS
                     NCCIFAl  LPFER  ZCNfc STORAGE (IN, MM)
                     INITIAL  LFFEP  ZCNb STORAGE (IN, MM)
                     NCMNAL  LCVEP  ZCNE STORAGE (IN, MM)
                     INITIAL  LQVEP  ZCNE STORAGE (IN, MM)
                     LENGTH  CF  CVERLAND FLCW TO CHANNEL (FT, K)
                     AVERAGE  CVEPLANO FLOW SLOPE
                     f'ANMNC'S  f  FOR  GVERLANO FLOW
                     FRACTICN CF  4RE/ THAT IS IMPERVIOUS
                     INCEX 1C /C1LAL  EVAPORATION
                     ^»XIfL^  INTERCEPTION  STORAGE (IN, MM)
                     INFILTRiTICh  RATE (IN/HR, MM/hR)
                     IKTERFLCk  F/PAKETER,  ALTERS RUNuFF TIMING
                     IMERFLCV  FECESSION RATE
                     FPACTICN CF  GPGUNOWATER RECHARGE PERCOLATING TO DEEP
                     GFCLNCVMEF
                     GPCCNChAIEF  FECESSION RATE
                     FPfCTICN CF  VATERSHEO AREA WHERE GRUUNDWATER IS WITHIN
                     REACH CF VECETATION
                     INITIAL  GRCLNOWATER STORAGE (IN, MM)
                     GFCLNGtMEf  SLOPE
                     PAF-APEIEF  1C  ALLOW VARIABLE RECESSION RATE FCR GRCUNCHATER
                     CISChAFCE
                     INITIAL  IMEPCEPTION STORAGE (IN, MM)
                     INITIAL  CVERIANO FLOW STORAGE  (IN, MM)
                     INITIAL  IMEFFLCW STORAGE (IN, KM)

                     SNCW=YEJ SFCLLD PARAMETERS RAOCCN THROUGH KUGI BE  INPUTTED

                     CCPRECTICN FACTCR FOR RAOIATICN
                     CCPRECTICN F*CTCR FOR CONDENSATION AND CONVECTION
                     SNCW CCPRECTICN FACTOR FOR RAiNGAGE CATCI- DEFICIENCY
                     ELEVAT1CN tIFFERfcNCc FROM TcMP. STATION TO MEAN SEGMENT  ELEVATION
                     (1COC FT, KM
                     CENSIT>  CF NEW SNOW AT 0 DEGREES F.
                     FRtCTICh CF  SEGMENT WITH COMPLETE FOREST COVER
                     CAILY CPCIM>ELT  (IN/DAY, KM/DAY)
                     MAXIfliK kAlEU CCNTEUT OF SNuMPACK BY WEIGHT
                     ESTIfATEC h/TER EQUIVALENT OF SNOWPACK FCR COMPLETE COVERAGE
                     CCPRECTICN FACTCR FOR SNCW cVAPCRATION
                     KE*N EIEVAT1CN CF WATERSHED (FT, M)
                     TE»>PEPATLRE BELOW KHiCH SNCta FALLS  IF, C)
                     INITIAL kAlER EQUIVALENT OF SNuhPACK  (IN, MM)
                     INITIAL CEFTK CF  SNJtaPACK  (IN,  KM I
                     TEfFEP/TLRE «T WHICH ZERO PET  OCCURS  (F, C)
                     TEfPERMLRE AT WHICH PET IS RtLUCED BY 5C*  (r, C)
                     PCTENTIAL EVAPCTRANSPIRATICN MULTIPLICATION  FACTOR
                     V^INO t-LLTIFLlCATION FACTOR
                     R/CIATIcr »LLTIPLICATiCN FACTOR
                     INDEX 1C FCFEST DENSITY AND UNDERGROWTH (0.0-10.0)
                     PERCENTAGE CFOP COVER  ON MONTHLY  BASIS
                     TIKE (IN JLLIAN CAYS)  WricN SOIL  IS TILLEC
                     THE CCRRESFCNDING YEAR  IN WHICH  TIMTIL APPLIES
                     FINE CEFCSITS PRCDUCED  BY TILLAGE (TONS/ACRE, TONNES/HECTARE)
                     SLRFACE LAYEF SOIL DEPTH  (IN THE  RANGE OF 1/8  INCH  (IN, KM)
                                          204

-------
Appendix C (continued)
245.
246.
247.
248.
249.
250.
2!1.
252.
253.
254.
255.
2 £6.
257.
256.
2£9.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
275.
2CO.
261.
262.
283.
264.
2£5.
286.
287.
268.
289.
290.
291.
292.
293.
294.
255.
296.
297.
296.
299.
300.
301.
302.
303.
304.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C










C







C





C




C


UZCFTHI CEFTf (F SCR INCORPORATION AND UPPER ZONE (IN, MM)
6UKD : BL'IK DENSITY OF SOIL (LB/FT<3}|, (G/CM(3M
JRER * EXFCNE^ CF RAINFALL INTENSITY IN SOIL SPLASH EQUATION
KPER : COEFFICIENT IN SCIL SPLASH EUUATION
JSER : EXFCNENT Of CVERLANO FLOW IN SURFACE SCOUR ECUATICN
KSEP : CCEFFIC1ENT IN SURFACE SCOUR EuUATION
SPERI : IMTIAl FINES DEPOSIT (TONi/ACKE, TONNES/HECTAREI
CM.Y IF PEST=YES SI-CULD TITLE PcSTICIOc AND PARAMETERS APHOCE
UPCUGH DEC-CCN BE SPITTED
TITLE UCRC PESTICICE MUST BE INCLUDED IN THE INPUT
PBICR TO AKY PESTICICE INPUT PARAMETERS

AFPODE: APFLIC/TICr fOOEi SURFACE APPLIED (SURF),
SOIL INCORPORATED (SCIL)
DESORP: (hC) CrLY /CSOPPTION ALGORITHM USED, (YES)
ANC OESCRP1ICN LStO
SS1R PESTICICE /FFLICATION FOR EACH BLOCK (LB,
TII"«P TI*E CF fESTICIOE APPLICATION (JULIAN DAY)
SEQUENCE




BCTH ADSORPTION

KG)

YE*R*P TI-E CCFRESFC^DI^G YcAR IN WHICH TIMAP APPLIES
CMX MXIfLI> SCLtlBILITY CF PcSTICIOc IN WATER
(L6/LB)
CC PERMANENTLY FI>£0 CAPACITY (LB PESTICIDE/LB SOIL)
K CCEFIC]E^T IK FKEUNuLICH AOSORHTIUN CURVE
N EXFCNENT 11 FREUNLICH ADSORPTION CURVE
KP DESOPP1ICN EXFCNcNT IN FRcUNDLlCH CURVE
CEGCCN FIFST CPCEF PESTICIDE CECAY KATE (PER DAY)

PEAC
READ
REAC
REAC
READ
REAC
READ
READ
REAC
PEAC

PEAC
REAC
REAC
PEAC
RE /SO
REAC
READ

IF ^
REAC
REAC
REAC
READ

4GC REAC
READ
REAC
REAC
£,1096) (t^APEU),l*l,20)
5.1C9C) (Of>A*E{I),I=l,20)
5.1C57) h^CAL
5.1C9U IKFUT
5.1C5E) C11PLT
5,1C91) FRIN1
£,1C9S) !KU
5,IC9«) fEST
5,lC9
-------
Appendix C (continued)
305.
206.
307.
3C8.
309.
310.
211.
212.
•13.
214.
215.
216.
217.
218.
215.
220.
221.
222.
223.
224.
225.
326.
227.
328.
229.
330.
231.
232.
233.
334.
335.
336.
337.
338.
339.
340.
341.
242.
243.
344.
345.
346.
347.
348.
349.
350.
351.
•52.
353.
354.
255.
356.
351.
358.
359.
360.
361.
362.
363.
364.
IF (CHAO.EC.FES1IC) GO TO 401
WRITE (6,1122)
CC 10 1C6C
C
401 REAC (5.1CSU 4FK30E
REAC (5, 10S£) CESOPP
READ (5,APCU
REAC (5.CEG1)
C
C
C PPHTING OF INPUT PARAMETERS
C
402 IF (HYCAL.EC.CAIE) GC TO 1002
WRITE «,10«1)
IF (PES1.EQ.YES.AND.NUTR.EQ.NO) WRITE
IF (PEST. EC. NC .ANO.NUTR.cU.YES) WRITE
IF (PEST. EC. hC .ANO.NUTR.EQ.N01 WRITE
IF (PES1.EQ.YES.AND.NUTR.EQ.YES) WRITE
WRITE U.10S2)
GC TO 1C03
C
1002 WRITE U,10<3)
IF (PES1.EQ.YES.AND.NUTR.EQ.NO) WRITE
IF (PES1.EC.NC .AND.NUTR.EQ.YES* WRITE
IF (PEST.EC.NC .ANO.NUTR.EU.iMO) WRITE
WRITE «ilC*2>
IF (PEST. EC .KC .OR. NUTR.EQ.NO) GO TO
WRITE (6,1121)
GG TC icec
C
1003 WRITE (6,11C1) USNAMEU ), 1-1,20)
WRITE (6,11C6) (CI-NAME(I) ,1 = 1,20)
IF (1NPLT .EC. EltOL) WRITE (6,1108)
IF (INPIT .EC. KE1R) WRITc (6,1109)
IF (CUT PUT .EC. EKGL) WRITE (6,1110)
IF (OL1PLT .EC. CETR) WRITE (o,llll)
IF (CLTPLT .EC. ECTH) WRITE (6,1112)
IF (PRIM .EC. 1MR) WRITE (6,1113)
IF (PRINT .EC. KIR) WRITE (6,1114)
IF (PRIM .EC. COS) WRITE (6,1115)
IF (PRUT .EC. CMH) WRITE (6,1126)
IF (SNCV .EC. YES) WRITE (6,1116)
IF (SNCt .EC. NO WRITE (6,1117)
IF (PEJT .EC. NO GO TO 1010
IF (CESCPF .EC. YES) WRITE (6,1110)
IF (DESCRP .EC. K) WRITE (6,1119)
IF (AFKCE .EC. SCIl) WRITc (6,1105)
IF (AFfCCE .EC. URF) WRITE (6,1104)
101C WRITE U,1C*2)
C
WRITE (6,1164) 1MRVL,HYMIN,AREA
WRITE (6,1165) e<^DAY,BGNMUN.BGNYR
WRITE (6,1166) CKCOAY,ENDMON,ENOYR
WRITE (£,!!£-<) 12 JN ,US,LZSN, LZS
WRITE (6,1166) USS,NN,A,K3,EPXH














(6,1123)
(6,1124)
(6,1125)
(6,1126)




(6,1123)
(6,1124)
(6,1125)

1003




























WRITE (6,1169) UFIL, INTER, IRC, K24L,KK24,K24EL
WRITE (6,1170) 
-------
Appendix C (continued)
363.
366.
367.
368.
369.
370.
271.
372.
373.
374.
375.
376.
377.
376.
379.
3EO.
381.
362.
263.
364.
265.
286.
367.
368.
269.
390.
3S1.
292.
3S3.
                                     (SSTR(I),1=1,51
C
C
C
     WRITE (6,1173) MCK,DEPTH
     WRITE (6,1174) FETMIN,PETMAX,PET«UL,WMUL,RMUL,KUG1
1011 fcRITE (6,1175) (CCVFHG(I),I»1,12)
     WRITE <6,llE2)mmL(I>,I-l,5),(YRTlL(I),l=l,5)f (SRERTL (I), I'
     WRITE (6,1176) SZCPTH.UZOPTH.BULKD
     WRITE (6,1177) vFER,KRER,JS£R,KS£R,SR£RI
     IF (PEST .EC. NO GC TO 1012
     WRITE (6,11761 7HAP, YtARAP,
     WRITE U,mS) CJ-/X,DD,K,N,WP
     WRITE (6,1162) CECCON
1C12 WRITE (6,1120) MCA I,INPUT,OUTPUT,PR INT,SNOW,PEST,NUTR,ICKECK
     IF (PEST.EG.YES)  WRITE (6,1127) APMCOc.DESORP
     WRITE U,1C<2)
     IF ( INPLT .EC. fETR) GO TC 559
     GO TC 449

  CCKVERSICN OF METRIC INPUT DATA TO  tNGLISH UNITS

 559
                                                                     l,5)
     LZSN =
     LZSN =
     INFIL=
     L    =
             Lzs^/^^'FJ^
             L*3.2€l
             LZJ/^^FI^
     LZS
     SGW
     ICS
     CFS
     IPS  »
     EPXM =
     UZCPTh=
           -  ICS/ffFI*
           =  CFS/KfFU
396.
397.
3*8.
399.
400.
401.
402.
4C3.
404.
4CS.
406.
407.
4C8.
409.
410.
411.
412.
413.
        28326. =  LMT  CCNVERSIUN,  CN(3)/FT(3)
      eULKC = BULKC*2E228./454.
      SRERI= SRER1/(HE1CPT*2.471I
      CO 451  1=1,«
  451    SREPTL(I)  «  5PERTL(I)/(METOPT*2.471)

      IF (SNCV  .EC. NO   GO  TO  403
      ELOIF  r ELCIF43.2CI
      fELEV   f£LEV«2.Z€l
      TSNCk - l.8*1SNCfr  *  32.0
      PACK  « PACK/>MU
      CEPTH - OEPTh/t'hFIN
      F6TfAX« 1.8*FETMX + 32.0
            = l.£«PETHK + 32.0
415.
416.
417.
418.
420.
422.
423.
424.
  403 IF (PEST  .EC.  NO   GO  TO  449
      DO 501  I=ltJ
  501     SSTR(I) *  S51F(I)*2.205

  44S IEPRCR  «  0
      IF (ICMCK  .EC.  CFF) GO TO  452

      CALL Ch£CKR  fl-YMK, INTRVL ,UZSN,LZSN, 1RC,NN,L, SS,A,UZS,LZS,
     1             K24L,KK24,K24EL,K3,SSTR,UZDPTH,
     2             CH/>,BLLKD,ARcA,HYCAL,INPUT,OUTPLT,PRINT,PEST,
     3             
-------
Appendix C (continued)
425.          4             EGhYP,BGNMON,BGrtDAY,iERkOR,CAL6,PROD,
«26.          5             ENCl,PETR,bUTHtirtTK,HCUK,DAYS,MNTH,YES,NO,StlRFi
427.          6             SCIL.CN.OFH,SZOPTH,COVPKu,TIMTIL,RflDCCN,CCF*C,
428.          7             £CI,ELCIF,IUNS»F,DGK,hC,cV/APS>N,MELEV,TSNOV(,
429.          8             FElMN,PETKAX,PETMUL.fcf1UL,AMUL,KUGl,TIMAP,
430.          S             >EAPAP,DcGCUNtNUTR)
431.     C
422.           IF (IERROR  .GT.  Cl GG TO  1080
433.     C
434.       452 IF (NLTP  .EC. NO  GO TO  4-50
435.              CALL M.TFIC   UOERR,INTRVL,NAPPL,SNAPL,UNAPL,TIMHARt
436.          1                  INFLT,OUTPUT,APOAY,KNI,KPI)
437.              IF  (10EPF .EC. 1)  tO  TO 1080
438.     C
439.     C                   AC.LSTMENT  OF CONSTANTS
440.     C
441.       45C h = 60/1NTPU
442.           TIMFAC -  1NTPVC
443.           INTRVL "  24«l-
444>.     C
445.           KRER = KRER'M* UPER-l. )
446.           KSER - KSER*M*(JSER-U)
447.     C
448.           P => BUlKD*(I2CFU/l2-0»*'»3560.*AReA*0.2
449.     C                                 INITIALIZE TEMP OIST  VARIABLES
450.           TEMPI  - 35.
4J1.           CHANGE »  -12.
452.           GRAC(l) * 0.04
453.           GRACI2) > 0.C4
454).     C
455.           IPACK>0.01
456.     C
457.           JCOUNT *  EGNC4Y
458.           cc 601 I=l,eG^^c^
459.                JCCIM  * JCCINT  +  OPMMIUI
460.       601 CCNTIKUE
4£1.           IF   CFS
467.              SRGXdl *  IF*
4(6.       1005 CCNTIME
469.     C
470.           RESS1  * OFS
471.           PESS « CFS
472.           JCEP - 1CS
473.           SCEP1  -  ICS
474.           SRGXT  *  IFS
475.           SRGXT1 »  IFS
476.           SGhl - SGh
477.           >K3  >  K3
478.           COVRMX «  C.C
479.           CC  1006  1-1*12
460.       1CC6      IF (CCtFPX.ll.CCVPMOmi   COVRMX-COVPMOC11
481.     C
482.            IF  (PEST  .EC. KC) GC TO 1007
483.     C
4£4.            IIFLAG «  0
                                       208

-------
               Appendix C (continued)
1
465.            IJFLAG  «  0
4fi6.            M *  1.0/N
4£7.            MP *  1.0/NF
4€8.            NCCf  »  MP/M
489.      C
490.            *U •=  BUKO*MIZCFTH-SZOPTH)/12.0)
491.            M. *  BLIKC»6.C
4*2.            *UZ =  PU*43560.«;PEA*0.2
493.            *LZ *  H*4356C.* 12
515.               IF  (YEAR .EC.  EGhYR)   HNSTRT = 6GNHON
516.               IF  (YEAR .EC.  ENCYR)   MNEND ' EMJWON
517.      C
518      C
£19.      C  EVAP, TE^Fd'AX-MN), KtC, AND HIND  UATA INPUT
520.      C
521.             CC   1008  It *  1,31
522.       ICCfi   REAC  (5,12£4)  (IEVAP(MM,DA), MN *1 ,12)
523.      C
524.      C
525.             IF (SKCW.EC.tO  .«NC. NUTk.EO.NOi  GC TO 610
526.              CC   1013 C4 =  1,31
527.       1013   RE/0(£,12<5)  ((1TEHP(MN,DA,IT ), IT=1,2),MN=1,12»
528.      C
529.            IF (SNCfc  .EC. NO  GO TO 610
530.              DC   1C14 It *  1,31
£31.       1014   RE*C(5,1264)  (IfcINCIHN,DA),  HN=1,12)
532.      C
533.              00  6CC  CA =1,21
534.        600   RE4C  (5,12«)  (IRAC(MN, DA),  MN~1,12)
535.      C
536.              CC  605  CA'1,31
537.        605   REAC  (5,12*4)  ( IOEW(MN,OA),  MN«=1,12)
538.      C
-39.        61C   IF  (INPUT .EC.  ENGU GO TO  625
                 DC  7CC  CA«1,31
                     DC 65C H*«l,12
                        IEV/F(K^,CA)  ~ IEVAP(MN,OA)*3.937
                        IF (SNCfc.EC.YESI  IaIND(Mfc,DA)  = 1 MI NO(MN,OA)*0.621*
5*4.                     IF 
-------
Appendix C (continued)
            640
£47.
£48.
£49.
££0.
551.
££2.
£53.
£54.
555.
£56.
557.
559.
£60.
561.
562.
£<3.
564.
£(5.
566.
567.
568.
£69.
570.
£71.
572.
£73.
£74.
575.
£76.
577.
£78.
£79.
£60.
£61.
£E2.
583.
£64.
5€5.
£66.
5E7.
££8.
5E9.
59ll
£92.
£93.
£94.
£95.
596.
£97.
598.
599.
6CC.
601.
t02.
(C3.
6C4.
1
C£C
7CC
C
625 IF
C
C
C
C

C


C


C




C
C
C
8CO



C
1CC9
C


C



C
C




C

c




loie


1019
c
c
       CC <4C IT«L,2
       IP (StvCfc.EC.YES .OR. NUTR.EQ.YES)
           ITE»P(KN,OA,m  * l.o*ITcMP(MN,OA,ITI * 32.5
     CCNTIM.E
  CCKTIM.E
                          SAV THIN OF JAN 1 CN 11/31
(SNCfc.EC.YES .CR. NUTR.EQ.YeS) ITEMP(11,31 ,2) - ITEKP(1,1,2)
                   CO 1C60  KN1l--MMSTRTtMN£NO
                                                            BEGIN MONTHLY LOOP
                      CCVER1 « CCVPKCIMONTH1
                      IF (PCMH.LT.12)  COVtRZ > COVPMOlMONTH+ll
                      IF (KMh.EC.12)  COVER2 - CGVPMOU)

                      IF (t-YCAl .EC. PROD)  GO TO 1009
                      IF (MTF.EC.YES)  GO TO 800

                      VRITE (6,12(3)
                      VRITE «,2€2)
                      WRITE «,U<2)
                      €C 1C 1COS

                                     NUTRIENT CALIBRATION OUTPUT FORMAT
   WRITE U,4CC1>
   IF (C17FL1.EQ.ENGL .OR. OUTPUT .cQ. BOTH)
   IF (CITFUT .EQ. METR)  riftlTE  (6.4003)
                                                               WRITE (6,4002)
   CNSTP1 - 1

   CYEKC > DFKHCNTHJ
   IF (KCC(YE  ENOOAY

                                                             BEGIN DAILY LCOP
                      DC 1C5C  t/Y-CYSTRT,OYENO
                         IF ((PCtTH .EQ. 1) .AND.  (DAY .cQ.  1)) JCOUNT  >  0
                         TII-E - C
                         RAIM » C.C
                         EP * PETMJL*ltVAP(MJNTH,OAY)/lOOO.

                      IF (SKCV.EC.NO .AND. NUTR.£Q»NU)  GO  TO  1018

                         TE*F « (ITECP(MONTHfDAY,l)+ITEMP(MONTHfOAYt2) I*. 5
                         IF (SNCV .EC. NO)  GO TO  lOltt
                         ViUC > IUND (MOUTH, DAY)
                         DEV> - ICEK(MONTHtDAY)
                         CC 1CI?  I«1,I.
-------
Appendix C (continued)
£05.
606.
607.
tee.
£09.
£10.
<11.
£12.
£13.
£14.
£15.
£16.
£17.
£18.
£19.
£20.
£21.
£22.
£23.
£24.
£25.
£26.
£27.
£26.
£29.
630.
£21.
£32.
£33.
£34.
£35.
£36.
£37.
£38.
£39.
£40.
£41.
£42.
£43.
£44.
£45.
£46.
£47.
£46.
£49.
££0.
£51.
£52.
£53.
£54.
£55.
£56.
£57.
£58.
£5S.
££0.
£61.
££2.
£63.
£€4.
C
C
C
C


C
C
C
C
C
C
C
C


C
C

C
C
C






C





C









C
C









C
C
C




























sec
910





S25

940


945
941



946


949






950
951

CFI



                      CHECK  1C  J6E  IF  SNOHMELT  CALC'S  WILL  BE  DONE -  IF  YES THEN
                      CALCLLATE  CCNTINUOUS  TEMP,  WIND, RAO  ANC APPLY  CCRPES MULT
                      FACTCfS

                IF  (SNCK  .EC. NO   GO  TO  949
                hINF=(1.0-F)  «  F«(.35-.03*KUGI)
                                             HINF REDUCES  WIM)  FCR FORESTED  AREAS

                     /* KLGI  IS  UDEX  TO  UNDERGROWTH ANU  FOREST  DENSITY,*/
                     /* WITH  VALLES 0  TO  10 - HI*0 IN  FOREST  IS  35* OF   */
                     /* MftC  IN  CFEN WHEN KUGI=0, ANC  5%  WHEN  KUGI«=10 -  */
                     /* V.INC  IS  aSSLA'EO MEASURED  AT  l-a FT  ABCVE GROUND  */
                     /•» OB  JNCW  SLRFACE   */

                TMIN  = ITEKF(KMH,DAY,2)
                CEfcX  » CEkX  - l.C*ELDIF
                             DEhPT LSES  A  LAPSE  RATE  OF  1  DEGREE/1000 FT

                IF  ((PACK .IE.  C.C).AND.(TMIN .GT. PETMAX)J   GO  TO

                CALCLLATE CCMIKCUS TEMP,  WIND,  AND RAD

                TGRAC * 0.0
                P •
                CO
                 IF  ( 1-7)   <40, C.CO,  910
                 CHANGE  =  ITEMF^CNTH.DAY,!) - TEMPI
                 IF  (I.NE.171  CC TC 940
                                    IMDEND  IS LAST DAY OF PRESENT MONTH
                 IF  (CAY .N£.  IPCENC)  CHANGE  =IT£MP(MONTH,OAY+1,2)  -
                 IF  (fCNTh.NE.12)  GO  TO  925
                 IF  (CAY .EC.  ^CENC)  CHANGE  *  ITcMP(11,31,2)  - TEMPI
                 GO  TO 940
                 IF  (CAY .EC.  I>CEKD»  CHANGE  '  lTcMP(MONTH+l,1,2) - TEPPI

                 IF  (AESKHAtGEl.GTtO.OOl) GO TO 945
                 TGRAC * 0.0
                 GO  TC 947
                 TGRAC * GF/CUXCHANGE
                 TEMPMI)  •  TE^FI  * TGRAO
                 hlNCX(I)   - Vt^LL*WIND*HINF*MINOIS( I)
                 RAC(I)    *  RCLL*F*RADCON*RADDIS(II
                 TEHPI * TEh-PI  * TGRAO
                CCNTINLE

                 CHECK OF  TILLAGE  TIfE
                         JCCLNT  » JCCUNT  +  I
                         CC  951  1*1,5
                            IF  (JCCUNT.NE.TIMTIL(I)  .OR.  YEAR ,NE.(YRTIL(11+1900) 1
              1                 GG TO 951
                            URITE (6,10«2)  MNAM(MONTH),  DAY,  TIKTIL(I), SRERTL(I)
                            CC  550  J*l,5
                               SFER(J) =  SRERTL(I)
                            CCMIKUE
                         COT1MC

            CFCP CANCFY  EFFECTS -  ASSUMES  LINEAR CHANGE  BETWEEN MONTHLY VALUES

                COVER
               1
CCVEB1 « (1.0 - (FLOAT(OYENO*1-UAY)/FLCAT(DYENCJ)I*
 (CCVEP2-CCVERI)
                                      211

-------
Appendix C (continued)
(£5.     C
666.           IF (NUTfl  .EC. NU  GO TO  1020
(67.     C
(66.     C                          NUTRIENT DAILY  CALCULATICNS.
(69.     C
670.     C                          FILL IN SOIL  TEMP ARRAY  WITH  AVG.  AIR TEKP
671.     C
(72.           CC £10  JHClP»lf24
673.              DC CCS   IZCM»lt4
674.                 SIEtPUZCKEtJt-QUR)  *  TEMP
(75.     8C5      CCN1INLE
676.     810   CONTINUE
(77.     C
678.     C                          TEST FOR APPLICATION OF  FERTILIZERS
675.     C
6CO.     615   IF (APLCKT  .GT.  MPPL)  GO  TO 860
681.           IF (APCAY(AFLCNl)  .GE. JCCUNT)   GO TO 820
6£2.              APLCNT =  AFLCM * 1
(£3.              GO 1C  615
(£4.     820   IF (JCCINT  .NE.  4FOAYUPLCNT) )   GO TC b60
(£5.     C
666.     C                          ADD  NUTRIENT  APPLICATIONS TO  STORAGES
667.     C                          AND  INCREMENT MASS  TOTALS IK  SYSTEf
(£8.     C
(£9.           CO €30   ieLK=l,«
(90.              CC 625   ,1*1,2C
691.                 SMJtlGLK)  - SNUtlBLK) *  SNAPL( J, iBLK, APLCNT )
692.                 LN(JtlBLK)  = UNUtlBLK) *  UNAPLU, IBLK, APLCNT»
693.     £25      CCNTINLE
694.     820   CCNTINLE
(95.     C
696.           CO £40   J*l,7
697.              SUM  "  0.0
69£.              DC £25   IEIK>1,5
(99.                 SIP *  SIP +  SNAPLUtlELK, APLCNT) * UNAPLUt IBLK, APLCNT )
700.     835      CONTINUE
701.              TKA  =  TN< «  UF/5.
702.     640   CCNTINLE
703.           CC 850   J=ll,14
704.              SLH  »  O.C
70S.              CC £45   IELK»1*5
706.                 SLP =  SL>> •»  SNAPLUtlBLKt APLCNT) * UN APLI J, IBLK, APLCNT )
707.     845      CCMINLE
7C8.              TPA  *  TF/ *  JL*/5.
7C9.     65C   CCNTINLE
710.           SUP  « C.O
711.           CC £55   ieil"l,*
712.              SLM  *  SL» +  Sh*PL(20iIBLK,APLCNT) «• UNAPL(20, IBLK,APLCNT)
713.     £55   CCNTINLE
714.           TCLA »  TCLA * St>/5.
715.     C
716.           hRITE  (6.4CC5)   *FICNT,  MNAMtMONTH), DAY,  JCOUNT
i!7.           APLCNT  «  APlC^^ « 1
718.     C
719.     £60   IF  IJCCLNT  .NE. T1MHAR)   GO TO  881
720.     C
721.     C                          CCMPUTE AMOUNT HARVESTED AND CECREASE STORAGES
722.     C
723.           CO £70   J*l,20
724.              TNRhV(J) =• 0.0
                                       212

-------
Appendix C (continued)
125.
726.
127.
720.
729.
130.
131.
132.
133.
134.
135.
136.
137.
738.
139.
140.
141.
142.
143.
144.
145.
146.
147.
146.
149.
150.
151.
752.
153.
754.
755.
156.
157.
158.
159.
ICO.
lei.
162.
163.
164.
765.
166.
767.
168.
l«.
170.
171.
772.
773.
174.
775.
176.
777.
778.
779.
7£0.
162!
1£3.
164.






665




£70

C
C
C
C
C
C
861


8£2


883
££4
C



££5
C
C
C
C
1C2C









7C6
7CE





1C21

1022
C
C
1023
                  IF  (£ELhV(.)  .EQ. 0)  GO TO 870
                  SU* * O.C
                  00  tt5   ICLK'1,5
                      SLH »   C.O
                  TNRHVMU) > 1NPHVMJ) * INRHV(J)
               CCNTINIE
               kRITE  (6.40C6)   I^AMMONTHI, DAY
               CC ££4  IZCNE»lt4
                  CC £62  »»ltlC
                     KN(J, IZCNE)
                  CCNTINCE
                  DC £€3  J»l,5
                     KF(JtI2CNE)
                  CONTINUE
               CCNTIME
                                    TRANSFER INPUT REACTION RATES (KNI.KPII  INTO
                                    REACTION RATES IN COMMON /NUT/  (KN.KP)
                                    PLANT UPTAKE fcATcS ARE INPUT FOR 100« COVERt
                                    RATES DECREASED LINEARLY FOR COVER < 1001.
KNHJ.IZONE)
KPI(J.IZONE)
               oo ees
                  KN(£»IZCNEI * KN(5»IZONE1*COVER
                  KF(3TIZCNE) * KP(3,IZONE»*COV£R
               CONTINUE
                                            PRcCIP READ L.OOP

               00 1021 J*lt8
                  JK « J«1EC/TIKFAC
                  J4 » JK - 16C/TIMFAC * 1
                  IF (TIfFAC.EC.5)  READ (5,1095* YR.MO,OY,CN.(IPAINIII,I-JJtJK»
                  IF (TIfF4C.EC.15) REAi) (5, 10«<*> YR»MO, OY,CN. (IRAIN( I) ,I*JJ,JK)
                  IF «YR+19CO).LE.BGNYR .AND. MO.LE.bGNMON .AND. DY.UT.BGNOAY)
               I             GC TC 1020
                  IF UNFtT.EC.ENGU GO TO 706
                  OC K6 I«JJ,JK
                     IPAINdJ -  IRAIN(I)*3.937 * 0.5
                  CCNTINtE
                  JJJ « J
                  YR » YP * 19CC
                  IF (CN.EC.SI ^JJ * 9
                  IT * (YE*P-YP) * (MONTH-MO) + (CAY-OY) * (JJJ-CN)
                  IF (IT.NE.C) CC TO 1022
                  IF (CN.EC.S) CC TO 1025
               CCNTIME
               GO TC 1C22
               fcRITE UtlCtO) »JJ,KNTH,OAY,YEAR,CN,MO,DY,YR
               GO TO 1C80
                        CC  1024   I«1,INTRVL
                                      213

-------
Appendix C (continued)
145.
166.
787.
788.
789.
790.
1S1.
7S2.
193.
794.
795.
196.
797.
198.
799.
£00.
£01.
£02.
£03.
EC4.
ECS.
£C6.
€C7.
808.
£09.
CIO.
Ell.
£12.
£13.
£14.
£15.
£16.
€17.
£18.
£19.
£20.
821.
£22.
£23.
£24.
£25.
£26.
£27.
£28.
£29.
£30.
£21.
£32.
£23.
C34.
£35.
836.
£37.
£38.
£39.
£40.
£41.
€42.
£43.
£44.



C

C
C
C
C

C
C
C
C




C












C

C



1024




USE

1025




1026













1028

1C29

1030


C






C







1031



1033

1034
C












1035



]


1C37




                            FMMI)  f  IRAINID/100.
                            R/IM  =  RAINT  + RAIN(I)
                            CCNTINUE

                         IF  (RA1M.GT.O.O)  60 TO 1026
                 RAIN  LCCP  IF  PCUTURE  STORAGES ARE NOT EHPTY

                 IF  ((REJS. IT. 0. COD. AND. (SRGXT.LT. 0.001))  GO TO 1040


                             FAIN  LCOP

                         CC  1C3<   I=1,INTRVL
                            TIME  « TIME *  1
                            TF «  1
                            PR -  PAIN(I)

                            1UI  * POD(TIME,H)
                            IhP -  (TIME -  IHIN)/H
                            IMf  » TIMFAC*IMIN
                            FFNTKE = 0
                            IF (PRINT.EQ.HOUR) GO TO 1028
                            IF (FPINT.EQ.DAYS) GO TO 1029
                            IF (FFINT.EQ.HNTH) PRNTKE * 2
                            IF (FPINT.EQ.INTR) PRNTKE - 1
                               CC  TC 1030
                               IF  (IPIN .LT. 1)  PRNTKE - 1
                               CC  TO 1030
                               IF  (IHR  .EQ. 24)  PRNTKE - 1

                            IF (FPNTKE  .NE. 1)  GO TO 1031

                            IF (t-YCAL .EQ. CALB)  GO TO 1031
                            WRITE (6,1101)
                            VFI1E (6,1102)
                            WRITE (6,11031
                IHR, IMIN, OAy,HKAf(MCNTH)
CALL LANDS
IF URESS .GE. 0.001).OR.(PR .GT. 0.0011)
CC 1C33  J«l,5
   EFSN(J) = 0.0
   CCNTINUE
IF (FFNTXE .EQ. 0)  GO TO 1035
CALL 
-------
Appendix C (continued)
£45.
£46.
£47.
£48.
£49.
£50.
£51.
£52.
££3.
£54.
£55.
£56.
£«7.
£58.
£59.
£60.
£61.
£62.
£63.
£64.
€65.
£66.
£67.
£68.
669.
£70.
£71.
£72.
£73.
€74.
£75.
£76.
£77.
£76.
679.
680.
£81.
£82.
£63.
£84.
£€5.
886.
£87.
£88.
€69.
€90.
891.
692.
£93.
£94.
£95.
696.
£97.
698.
899.
900.
SOI.
902.
SC3.
9C4.
 1C36
  971
C
C
 1036
C
C
C
C
 1C4C
 1042
 1C43
 1041
 10E1
C  METRIC
 1163
 1044
         CC  TC  971
        CtLl  CEGRAD
      IF (M.TF  .EQ. NO)   GO TO 1036
         C/LL  MJTRNT

         CCN1IMJE

     GC  TC  1C50

          NC  FAIN  LOOP
     TF    IMFVL
     PR -  O.C
     F3    O.C
     CC   10*2   I»l,5
        FESE1U)  =  0.0
     FRMKE  *  1
     IF (FR1M.EQ.MNTH)   PRNTKE « 2
     ICIK  -  CC
     I»-P  « 24
     IF O-VC4L.EQ.CALB  .OR.  PRNTK£.EU.i)  GO TO 1043
     WRITE (£,1101)   IHR,  IMINi DAY,  MNAM(MONTH), YE«R
     hRITE Utll02J
     ViRITE «t!103)
     CALL LA^CS
     SRJRT = 0.0
     £R£rT « C.O
     CC  1C41  J=l,5
         SPEFT = SRERT
         ERSr(J) =  0.0
         CCKTIMIE
     IF  (HYC/L.EC.CAL6
   IF (ClIPll.EC.  MtfTR)
     WRITE (6,1209)
     VRITE «,1210) ERSN,  ERSNT
     hRJTE (6,1211)  SRER,  SRERT
     IF  (CimT.tC. cNtL)  GC  TG 1044
CChVEPSI^S fCR COTPUT
     ERJNTT«EPSM*M£TOPT*2.471
     SRP1M*JFEPT*METOPT*2.471
     CC  116- 1=1,5
       EFSM-TU )=ERSMI)*METCiPT*2.47l
       JPEP^T(I)=SRER
-------
Appendix C (continued)
905.
9C6.
SC7.
SC8.
S09.
910.
911.
S12.
913.
914.
915.
S16.
917.
918.
919.
920.
921.
922.
923.
924.
925.
926.
927.
928.
929.
920.
931.
€39
«3£*
933.
934.
935.
936.
937.
938.
939.
940.
941.
942.
943.
944.
945.
946.
947.
948.
949.
950.
951.
952.
953.
954.
955.
956.
957.
958.
959.
S6C.
961.
962.
963.
964.
CALL CECFAC

S7i
IF
(M1F .EC. NO GO TO 1050
CALL M1FNT
C

C
C
C

105C





END DAILY LOOP
CCMINLE







MCMHLY SUMMARY

CALL CLTfQN (YEAR)
C
C
C

C
C



1C6C










END MONTHLY LOOP
CCNTIHE





YE /FLY SUMMARY
CALL CUYR (YEAR)
C



AFLCNT
C

C

C
C
C



































107C

10EG



1C9C
*
1C82
1
1
1C91
1C 9.2
1C93
1C94
1C95
1096
1C 91
1C98
1C9S
11CC
1101
1102
1102



« 1
END YEARLY LOOP
CCNTIMJE

WRITE (6



FORMAT (


,12£C)



•1',
•CARC ',1
FORMAT CO',

FCFf-AT STATEMENTS

i4*4*4£Rj)Ci<***** INCORRECT INPUT DATA DESIRED '
1,' FCR 'tI2»'/*t UtVSI^t1; RtAC CARD -,Il,' FOR ',
•ULLAGE CF THE SOIL OCCURS ON' , IX, A8 ,IX, I 2, 2X»
MTIMIL*' t!3,' ), RESULTING IN A NcH FINES DEPOSIT ;,
•STCFAGE CF'fF6.3,' TONS/ACRE')
FCRMAT (•!' ,25X, 'THIS IS A PRODUCT ION RUN* )
FCRMAT (
FCPMAT (
• 0')

• 1' ,<«X,'THIS IS A CALIBRATION RUN1)
FCRMAT (IX, 312,11*1216)
FCRMAT 1
IX, 2
12,11,3612)
FCRMAT (20A4)
FCRMAT (6X,*4)
FORMAT (7X./4)
FCRMAT (5X./4)
FCRMAT (AC)
FCRMAT
FCRMAT
FCRMAT
C 5X,'T
1104
110*
lice
11C1
lice
lies
1110
1111
1112
1113
1114
111£
1126
1116
1117
FCRMAT
FCRM/T
FCRMAT
FORMAT
FCRMAT
FORMAT
FCRMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
•1',2SX,1Z,' :'iI2t- ON • ,1 2, 1X,A8 , 1X.I4)
•+' .25X.' ,_ _ „ , ' )
•0«,24X,'eLCCK 1 BLOCK 2 BLOCK 3 BLCCK 4 BLOCK 5*
TAL')
•0'
• 0'
•0'
•0'
•C'
•C'
'0'
«o«
•C'
• o«
•C'
•0'
'0'
• C'
FCRMAT CO'
22X, 'PESTICIDE APPLICATION: SURFACE-APPLIED')
22X, 'PESTICIDE APPLICATION: SOIL-INCCRPCRATEO* )
22X, 'CHEMICAL: '.20A4)
22X,'VATEkSHED: ; *20A4)
22X, 'INPUT UNITS: ENGLISH')
22Xt'INFlT UNITS: METRIC1)
22X,'CliTPUT UNITS: ENGLISH')
22Xt'CUTPUT UNITS: METRIC')
22X,'CLTPUT UNITS: BCTH cNGLISH AND METRIC*)
22x»'FRiNT INTERVAL: EACH INTERVAL')
22X,'PPINT INTERVAL: EACH HOUR*)
•2x, 'PRINT INTERVAL: EACH DAY*)
22x, 'PRINT INTERVAL: EACH MONTH*)
22X,'JNCKMtLT CALCULATIONS PERFORPEC*)
22Xt'SNCbKELT NOT PERFORMED')
                                    216

-------
 Appendix C (continued)
 965.
 966.
 967.
 966.
 969.
 970.
 971.
 972.
 973.
 974.
 975.
 976.
 577.
 978.
 979.
 9£0.
 981.
 982.
 9£3.
 9£4.
 9E5.
 9 86,
 987.
 see.
 989.
 990.
 991.
 992.
 993.
 994.
 995.
 996.
 997.
 998.
 999.
1000.
1C01.
10Q2.
1003.
1004.
1005.
1006.
1CC7.
1C08.
1C09.
1010.
1011.
1012.
1C 13.
1014.
1015.
1016.
1017.
1018.
1019.
1020.
1021.
1022.
1023.
1024.
 1118 FCRPAT  ('0',22>,'*DSCRPTION AND OESORPTION ALGORITHMS USED*)
 1119 FCRMAT  CO' ,22X,'ADSORPTION CALCuLATfcl) ONLY , NO DESOftPTICN')
 112C FCRMAT  CO' ,/'0 ' , «HYCAL=' ,A4, 2X , • INPUT=« , A4 , 2X, 'OUTPUT* • ,A4,
                                                              2X,
 1121


 1122

 1123
 1124

 1126
 1127
1164
1165
1166
1167

1166

1169

U7C

1171

1172

1173
1174

11 <£
1176
1177

1178

1179

1182
1183

  362
 12CE
 12C9
 1210
 1211
 126C
 1263
l'PRINT = ',A4,2>, '=  ' ,F8.4, 10X, »GvJS=
     l'ICS=  «,F8.<,1C>,'CFS= ',F8.4,10X,
    >,8X,'AREA> *,F10.4)
•,12,13X,'BGNYR= ',14)
•,I2,13X,'ENDYR= ',14)
 •,Fb.4,10X,'LZSN» ',F8,4,
                                               N= ',F8.4,11X,
                                        •,F8.4,eX,«IRC= '.F8.4.10X,
                                            1,F8.4)
                                         .4,iOX,'KV= ',F8.4,11X,
                                    •IFS= •,F8.4)
 FCRMAT CO*
1F8.4,1C>,'ELCIF=
 FCRMAT (•0•,•CC^
l'EVAFSh= ' »FE.4f'
                         ^  • ,F d.4, 7X, 'CLFAC=
                    ,F8.4,dX , • I DNS=  ' , F8 .
                    ' ,F8.*,10X, • WC=  ' ,H6.
                    f 'MtLEV=  • , F8.0, 8X , • TSNOH
                                                    ,F8. 4, 8X, • SCF=
                                                    F= ',F8.4)
                                                    • PPACK= '.FS
                                                    -,F8.4)
                                               •,F8.4,7X,'BULKD= ',F8.4)
                                               .4,9X,'JSER= ',F8.4,9X,
 1265
 1264
4CC1
 FORMAT CC'i'FACM  ' ,Fo.4 ,9X, • DEPTh=  ',Ftt.4)
        CO','FETHN=  ',Ftt.4,7X,'PETMAX=  ' ,Fb. 4,7X , ' PETCUL
        1= :,FE.4,9X,'RMUL=  •,Fb.4,9X ,'KUG1-  «,F8.4)
 FCRMAT {'C',/'0',«CCVPMO= '.  !<:(Ft.2t2X)  )
 FORMAT {'0','SZCFTH=  ',F8.4,7X,
 FORMAT ('0','JREF=  • ,F6.4 ,9X,•KRER
l'KSER= ',F£.4,9>,'SRERI=  «,f8.4)
 FCRMAT CO',/'0« ,'TIKAP=  • , 18 ,8X,'Yt ARAP=  ',I8,7X,
1        '<£TP»    •,5(F6.3,3X))
 FORMAT C'0«,'CM/>»  ' ,Ffa.6 ,9X, '00=  ',Fd.6,UX,
l'K= ',F8.4,12X,'h=  • ,F8.4,12X,'NP= ' ,F8.4)
 FCRMAT  '0'.'CE(CCN=  •,Fb.6)
 FORMAT  '0',MIM1L=  ; ,5 ( 13 ,2X) , 4X, • YRTIL*  • , 5( 12 »2X) , 4X ,
1            «JREFTL=  i,i(F6.3,2X))
 FORMAT  • ',£7X,'VATER',24X,'SEDIMENT')

 FCRM.AT  '0', EXt'SEOIffci-IT ,  TONS/ACRE')
 FCRKAT  • • ,11X,'ERCDED SEDIMENT     • ,5(3X,F7.3),4X,F7.3 )
 FCRMAT  • ' ,11X, 'FINES DEPOSIT' ,oX,5 (3X,»-7 . 3) ,4X,F7. 3)
 FCRMAT  '1','ENC  CF  SIMULATION')
 FCRMAT  •!• I£X,'C*TE',4X,'TIME',4X,'FLUH(CFS-CMS)',6X,
 i        •SECI^E^^ (LBS-KG-KG/MIN-GM/L)',23Xf
 i        'PESTICIIE  (Gf-OM/MIN-PPM)')
 FCRKAT (8X.24I3)
 FCRMAT (8Xt12I6)
 FCRMAT  (•!',40X,'I' ,10X,'DISSOLVED IN WATER' , 11X ,'I ' ,
 1        6X,'ACSCFEEC  TO SEDIMENT',iX ,'I',/,
 !        • ',4X,«CATE»,6X,'TIME',7X,'FLOW    SEDIMENT1,
                           ,5X,'NH3' OX,'P04' ,6X,«CL'.
                                     ,3X,«ORG-P',6X,
                                                                    ,F8.4f
                                       217

-------
Appendix C (continued)
102$.
1026.
LC27.
1028.
1C2-5.
1030.
1C31.
1032.
1033.
IC24.
1C35.
1C36.
12CO.
1201.
12C2.
1203.
12C4.
1205.
1204.
1207.
1208.
1209.
1210.
1211.
1212.
1213.
1214.
1215.
1216.
1217.
1218.
1219.
1220.
1221.
1222.
1223.
1224.
1225.
1226.
1227.
1228.
1229.
1230.
1231.
1232.
1233.
1234.
1235.
1236.
1231.
1238.
1239.
1240.
1241.
1242.
1243.
1244.
1245.
124t.
1247.
             •TC1-M ,2>,'TCT-P'I
4002

4C03

4CC4
4005

4C06
C


C
C
C
C
FORNAT
1
FORMAT
1
FCRMAT
FORMAT
1
FCRMAT

HOP
END




('
4X,
( •
4X,
('
CO
,
(
24>,'
16)')
,24>,'
(
t
,
*G)')
40>,5
(CFS)

(CMS)

(2X,«
•NLTPIENT
Afi,2»,I2,
CO',







',

'.

5X,«

5X,'

(HG/L)
(LB)'

(KG)'

') ,4(
APPLICATION
• (DAY
•PLANT HARVE





















= i
t!3,'
,2X,

9(4X,

,2X,9UX,

3X,»
MC.
)• )
STING OCCURS






















(PPM)
•»12

ON • ,







MLB)' ),7X,ML8)«,

MKG)«),7X,' (KG)f,

') I
,' OCCURS ON ',

A8,1X,I2)







     SUBROUTINE ChECKP
    1
    2
    3
    4
    5
    £
    7
    €
O-YMIN,INTRVL,UZSN,LZSN,IRC,NN,L,SS,A,UZS.LZS,
 K24L,KK24,K24EL,K3,SSTR,bZDPTH,
 CMAX,BULKO,ARcA,HYCAL>INPUT,OUTPUT,PR INT,PEST,
 SNCw,APMOUc,OtSCKP,ICHECK.,ENCYR,ENOMCh,ENOCAY,
 eCNYfi.,BGNMJu.BGNuAY,I£RKURtCALfl,PROD,
 ENGL,METR,BOTH,INTR,HOUR,DAYS,MNTH,YES,NO,SURF,
 SOlL,ON,OFF,S/UPTH,CdVPMO,TIMTIL,RAOCCN,CCFAC,
 SCFfELDIF,IONS,F,DGH,WC,kVAPSNtMELEVtTSNOH,
 PETMIN,PcTMAX,PcIKJL,HMUL,PHUL,KUGI,TIMAP,
 YEAKAP,DcGCON,NUTR)
     DIKENSICN  S3TR(£),CCVPHO(12),TIMTIL(5)

     PEAL LZSN.IFC,^ tL,lZS,K24U,KK2<»,K24EL,K3
     PEAL  ICNS,fELEV,KUGI
     INTEGER  hYCAl , ItFLT ,CUTPUT ,PRI NT,SNCrt,APMODE tOESORP, ICt-ECK
     INTEGER  ENCYR,E^C^'C^,El^OOAY,6GNYR,BGNMUN,BGNDAY, FEST
     INTEGEP  CAL6,FFCC,ENGL.METR,BOTH,iNTR.HOUK,DAYS,YES,NO
     INTEGER  SLRF IEFFQR + 1
15C4 IF (NN  .LE. 1.0) CC TC 1505
          ViRITE  U.UC4)  NN
          IEFRCR = IEFFOF * 1
1505 IF (L .C-T.  l.C)  CC TC 1506
          fcRITE  «,HC5)  L
          IEFRCP > IEFFCR + 1
1506 IF 
-------
Appendix C (continued)
1248.
1249.
1250.
1251.
1252.
1253.
1254.
1215.
1256.
1257.
1258.
1259.
1260.
1261.
1262.
1263.
1264.
1265.
1266.
1267.
1266.
1269.
1270.
1271.
1272.
1273.
1274.
1275.
1276.
1277.
1276.
1279.
1280.
1261.
1282.
1283.
1264.
1285.
1286.
1287.
1288.
1289.
1290.
1291.
1292.
1293.
1294.
1295.
1296.
1297.
1298.
1299.
1300.
1301.
13C2.
1303.
1304.
1305.
1306.
12C7.

isoe


15C9


151C


1511


1512


1513


1514


1515



1516




1526
1516


1519


152C


1521


1522



1523



1524


152J



152?

IF


IF


IF


IF


IF


IF


IF


CC
IF


IEPRCR * IEFFOR * 1
(LZS .LT. LZS) GC TO 1509
WRITE (6.KC8)
IEFRCR * IEFFOR * 1
(K24L .LE. l.C) GC TO 1510
WRITE (6,UCS) K24L
IEFRCR * IEFFOR * 1
(KK24 .LE. l.C) GC TO 1511
WRITE (6, UK) KK24
IEFRCR * IEFFOP + 1
(K24EL .LE. l.C) GO TO 1512
WRITE (6,1611) K24EL
IEPRCR = IEFFCR * 1
(K3 .LE. 1.0) GO TC 1513
VPITE (6,1612) K3
IEPRCR » IEFPOR + 1
(LZCPTI- .Gl. SZDPTh) GO TO 1514
WRITE (6,1613)
IEPRCR = IEFFOR * 1
(SZCFTh .LT. 1.0) GO TO 1515
WRITE (6,1614) SZOPTH
IERRCR= IEFPCR * 1
1516 1=1,12
(CCVFPC(I) .LE. 1.0) GO TO 1516
WRITE (6,124
WRITE (6,1623) PRINT
IEFRCP = IEFFOR + 1
(SNCW .EC. YES .OR. iNOW .EQ. NO) GO TO 1525
WRITE (6,1624) SNOri
IERRCR 1EFROR * 1
(SNCW .EC. NO GO TO 1550
(FACCCN .CT. C.O) GO TO 1529
WRITE (6,162E) RADCON
IEFRCR* IEFFCR * I
(CCFAC .GT. C.C) GC TO 1530
                                   219

-------
Appendix C (continued)
12C8.
12CS.
1310.
1211.
1212.
1213.
1214.
1215.
1216.
1217.
1218.
1219.
1220.
1221.
1222.
1323.
1224.
1225.
1326.
1221.
1228.
132-5.
1230.
1331.
1222.
1333.
1234.
1225.
1336.
1337.
1336.
1339.
1240.
1241.
1242.
1243.
1344.
1345.
1246.
1347.
124£.
1349.
1350.
1351.
1352.
1353.
1254.
1355.
1256.
1357.
1258.
1359.
1260.
1261.
1362.
1263.
1364.
1365.
1266.
1367.


1530 IF


1521 IF


1532 IF


1533 IF


1534 IF


1525 IF


1536 IF


1537 IF


1536 IF


153« IF


154C IF


1541 IF


1542 IF


1543 IF


1544 IF


1550 IF


1551 IF
IF


1553 IF


1554 CO
IF

                     WPITE  (6.U2S) CCFAC
                     IEPRCR*  IEFFCR + 1
                    (SCF  .GT.  C.C) GC 10  1531
                     WRITE  (6,16201 SCF
                     IEPRCR=  1EPFCR + I
                    (ELC1F  .LT.  20.0) GO  TO  1532
                     WRITE  U.U21) ELD IF
                     IERRCR=  IEPFCR * I
                    (ICf>S  .LI.  1.0) GC TO 1533
                     WRITE  U.K22) IONS
                     IEFPCR*  1EFFCR * 1
                    (F  .IE.   1.0) GO TC 1534
                     WRITE  UiU23) F
                     IEFRCP=  IEFFCR * I
                    (CGK  .LT.  l.C) GG TO  1535
                     WRITE  (6,1(24) OGM
                     IEFRCP'  IEFFCR + 1
                    (WC  .LT.  1.0) GO TC 1536
                     WRITE  (t,U2i) UC
                     IEPRCR*  IEFPCR * 1
                    (EVAPSN  .€1. C.O) GO  TO  1537
                     WPITE  It,1(26} EVAPSN
                     IEFRCR"  IEFFCR * 1
                    (PELEV  .LI.  3CCOO.O)  GO  TO  1538
                     WRITE  U,U37) I-ELEV
                     IERROR*  IEPFCR
                    (TSNCW  .CT.  20.0
                     WRITE  (6,U26)
                     IEPPCF=  IEFFCR
                    (PETMN
                     WRITE
         +  1
         .AND
         TSNOM
         *  1
.GT. 3C.O)  GO  TO
U.U2S)  PETHIN
TSNOH .LT. 40.U)  GO TO 1539
  1540
                      IEPPCP=  IEFFCR  + I
                    (PETKA> .LI.  6C.O) GO TO 1541
                      WRITE U.U4C)  PETMAX
                      IEPRCP=  IEFFCR  + 1
                    (PETt'LL .Gl.  C.O)  GO  TO 1542
                      WRITE UtU41)  PETMUL
                      IEFPCP*  IEFFCR  » 1
                    (WKCL  .G1. 0-C) GO TO 1543
                      WPITE (6,H42)  rtMUL
                      IEPRQR*  IEFFCR  + 1
                    (RHLL  .Gl. O.C) GC TO 1544
                      WRITE (£,1£43)  RMUL
                      IEPRCP=  IEPFCR  * 1
                    (KUGI  .GE. O.C .«NO.  KUGI .Lt. 10.0)  GO TO 1550
                      WRITE ES  .CR. OESORP .EQ.  NO) GO TC 1554
                      WPITE U,l£*3)   OtSOKP
                      IERRCR = IEFPCR * 1
                    1555 1=1,5
                    (SSTR(I) .CT. 0.0) GO TO 1555
                      WRITE U,l<*4)
                                       220

-------
Appendix C  (continued)
1366.                 IEPRCR * MFFCP * 1
1369.       1SJJ CONTIME
1370.           IF  (CMX  .LE. 1.0) GC TO 1557
1271.                 WRITE  (6,U«6)   CMAX
1372.                 IEPRCR = IEFFOR + 1
1373.       1557 IF  (TlftP .GT. C .AND. TIMAP .LT. 367) GO TO 1558
1374.                 hRITE  U.H57)  TIHAP
1275.                 IEPRCP*  1EFFCR  «• I
1276.       1556 IF  OEARAP  +  1SCC .GE. dGNYR .ANC. YcARAP * 1900 .LE. ENCYR)
1377.           1     GC  7C 15S9
1276.                 kRITE  (6,1«!€)
1379.                 IEPRCR-  IEFFCR  * 1
1360.       155S IF  (CEGCCN  .LI. 1.0) GO TO 1565
1381.                 kRITE  (6,1659)  OEGCON
1362.                 IEPROR=  1EFFCR  + 1
1383.       156J IF  CMJTF  .EC. YES .CR. NUTR .EQ. NU  GO TO 1560
1284.                 KRITE  (6,16<5)  NUTR
1385.                 IEFPCP*  IEFFCR  .«• 1
13£6.       158C IF  (ICHECK  .EC. CM  GC TO 1581
1387.                 V.RITE  U,U€C)   1C HECK
1288.                 IERRCR - IEFFOP * 1
1289.       1561 IF  (ENOR .CT. EGNYR) GO TO 15S2
1390.           IF  (ENOR .EC. CCNYR .AND. ENDMON .&T. UGNMGN)  GO TO 1582
1291.           IF  (ENCYR .EC. EGKYR .AND. ENOMON .£C. BGNMON .AND. ENCOAY
1392.           1           .CE. EC^AYJ GO TO 1532
1393.                 UPITE  (6,U61)
1294.                 IEPRCP = IEFPOP * 1
1295.       1582 IF  (IEPPCR  .GT. C)  kRITc (6,1682) IERROR
1396.     C
1297.     C CHECKR  ERRCR  ST/1EPEMS
1398.     C
1299.       16CC FORMAT  ('0','ERFCP:  hYMIN HAS BEEN INPUTTED AS  ',F6.4,•; IT MLST 6
1400.           IE SET GREATER TMN O.G')
1401.       16C1 FCRMAT  ('0','EFFCP:  ^TRVL HAS BEEN INPUTTED AS ',14,'; IT MUST BE
1402.           1 SET  ECLAL  1C EITHER 5 OR 15 MINUTES')
1403.       1602 FORfAT  CO't'EPFCP:  UZSN HAS BEEN INPUTTfcD GREATER THAJk CR ECLAL T
1A04.           1C LZSKt THJ  IS ^CT  REALISTIC')
1*05.       UC2 FCRKAT  CC't'ERFCR:  IRC HAS BEEN INPUTTED AS 'fFB.4,';  IT MUST 8E
1406.           1 RUN AGAIN1)
1414.       16C1 FCRKA1  ('0',' VAPMNGi A HAS bEEN INPUTTED AS ',F8.4,';  IfPERVIOUS
K15.           KREA  JJ NCT CCMICEP.ED IN SEDIMcNT REMOVAL AS THE MODEL IS BASICAl
1416.          2LY FCR  ',/,«  ', 'AGRICULTURAL AREAi,  hd^tVER IF  IMPERVIOUS AREA IS
1417.          2DESIREC SET IChECK=CFF AND RUN AGAIN')
1418.       16CE FORMAT  CO'.'EPFCR:  UZS HAS BEEN INPUTTED GREATER THAN  CF ECU4L TC
1419.           1 LZS, TUS  IS NCT REALISTIC')
1420.       16CS FORMAT  ('0','EPPCR:  K24L  HAS BEEN INPUTTfcO AS ',F8.4,»; IT MUST BE
1421.           I SET  LESS T^A^ CR ECUAL TO 1.0')
1422.       161C FORMAT  CC'.'EPFCR:  KK24  HAS BEEN INPUTTED AS ',F8.4,«: IT MUST BE
1423.          1 SET  LESS TMf CF ECUAL TO 1.0')
1424.      1611 FORMAT  ('0','EPFCF:  K2*£L HAi  BtcN INPUTTED AS  »,F8.4,•; IT MLST B
1425.           IE SET LESS  1MN  CR ECtAL  TO 1.0')
1426.       1612 FCRMAT  ('0','EFFCF:  K3 HAS BEcN INPUTTED AS ',F8.4,'; IT MUST BE S
1*27.          1ET LESS THAh  CR  ECU«L TO  l.O'l
                                       221

-------
Appendix C (continued)
 1428.
 1429.
 1420.
 1421.
 1422.
 1433.
 1424.
 1435.
 1426.
 1437.
 1436.
 1439.
 1440.
 1441.
 1442.
 1443.
 1444.
 1445.
 1446.
 1447.
 1448.
 1449.
 1450.
 1451.
 1412.
 1453.
 1454.
 1455.
 1456.
 1457.
 1456.
 1459.
 14(0.
 1461.
 1462.
 1<63.
 1464.
 1465.
 1466.
 1467.
 1468.
 1469.
 1470.
 1471.
 1472.
 1473.
 1474.
 1475.
 1476.
 1477.
 1478.
 1479.
 14€C.
 1481.
 1462.
 1483.
 1484.
 1485.
 1486.
 1487.
1613 FCRMAT ('0','ERFCP: UZDPTH HAS BEEN  INPUTTED  LESS THAN  CP  ECUAL TC
    1 SZCPTH; THIS IS NOT REALISTIC')
1614 FCRMAT CC'.'EPFCF: SZOPTH HAS BEcN  INPUTTED  AS  ',F8.4,';  IT MUST
    1EE LESS THAh l.C INCHES')
1615 FCRMAT ('0','EPFCP: CNE OF THE VALUES FOR COVPMO HAS  BEEN  INPUTTEC
    I AS ',F€.4,': CCVFMC MUiT BE LESS THAN  1.0'*
1617 FORM.AT CO'.'ERFCR: CNc OF THE VALUcS FUR TIMTIL HAS  BEEN  INPUTTED
    1 AS •,!£,': TIMTIL MUST BE A POSITIVE INTEGER LESS  THAN 367')
161E FCRMAT {'0','EPFCP: BULKD HAi> BEcM INPUTTED AS «,F8.4, ';  IT MUST 6
    IE GREATER THAN 62.4 LB/FT(3)')
161S FORMAT CO'.'EPFCR: AREA HAS BEEN INPUTTED AS >,F8.6,'; IT SHCULO
    1BE INPUTTEC IN ACRES, HOWEVER IF THIS IS ACTUALLY THE CASE THEN SE
    2T ICHECK=CFF',/,'  '.'AND RUN AGAIN1)
162C FCPMAT ('0','ERFCR: HYCAL HAS BEcN INPUTTED AS ',A4,';  IT  MUST BE
    1SET EQUAL TC CAIE  OR PROD')
1621 FCRMflT CO','ERFCF: INPUT HAS BEEN INPUTTED AS ',A4,';  IT  MUST BE
    1SET ECUAL TC ENCl  OR METR')
1622 FORMAT ('0','ERFCP; CUTPUT HAS BEEN  INPUTTED  13  *,A4,'; IT MUST BE
    1 SET ECUAL TC EITHER ENGL, M.cTR, OR  BOTH')
1623 FORMAT ('0' ,'ERFCB: PRINT HAS BEcN INPUTTED AS *,A4,
    1SET ECUAL TC EITHER INTR, HOUR, DAYS,  OR HNTH')
                                                     iA4,
 IT MUST BE

IT MUST BE S
1624 FCRMAT CO'.'EFFCP: SNOW HAS BEEN INPUTTED AS
    1ET ECL/L TC ^ES CP NC')
162E FCRMAT <'0','ERFCR: RAOCON HAS BEEN INPUTTED  AS  ',F8.4,';  RADCON M
    UST BE GREATER THAN 1.0')
162? FCRMAT ('0','ERFCP: CCFAC HAS BEEN INPUTTED AS  ',F8.4,'; CCFAC MUS
    IT BE GPEATEP THIN 0.0*)
1«2C FCRKM ('0','ERFCR: SCF HAS BEEN INPUTTED AS  ',F8.4,';  SCF MUST BE
    I GREATER TH/N O.C')
1621 FORMAT CC't'ERFCP: ELDIF HA* BEEN INPUTTED AS  ',F8.4, •; ELOIF SHC
    ItLD BE INPUT IN THCUSAtJDS OF FEET AND CANNOT  EXCEED  30.0')
1622 FCRMT CO'.'EPfCF: ICNS HAS BEEN INPUTTED AS  (,Fe.4f': IONS MUST
    1BE LESS THAN l.C*)
1633 FORFAT («0','ERFCR: F HAS BEEN INPUTTED AS ',F8.4,'; F  MUST BE LES
    IS THAN CR ECLfL TC 1.0«)
1634 FORMAT I '0 • ,' fcAPN ING: DGM HAS BEEN INPUTTED AS  ',F8.4,*; VALUES GP
    1EATEP THAN  1.0 UCHES FOR DGM ARt QUESTIONABLE* I
1635 FCRMAT ('0','ERFCR: .WC HAS BEEN  INPUTTED AS ',F8.4,•; MC MUST BE L
    1ESS THAN l.C1)
1636 FCRfAT ('0','ERFCF: EVAPSN HAS BEEN INPUTTED  AS  *,F8.4(';  EVAPSN C
    1ANNCT EE I  NEGATIVE NUMBER')
1637 FORM/T {'0','ERFCR: MELEV HAS BEcN INPUTTED AS  ',F9.1, •;  K6LEV CAN
    1NCT HAVE A  VALUE  GREATER THAN 30000.0')
163E FCRPAT CO', "EFFCR: TSNUH HAS BEEN INPUTTED  AS  ',F8.4,';  TSNCW ML
    1ST HAVE A V/LIE CPEATER THAN 20.0 ANL LESS THAN  40.0')
163« FORMAT CO't'ERFCF: PcTMIN HAS BEcN INPUTTED  *S  ',F8.4,';  PETFIN f
    UST BE GREATER THAN 30.0')
164C FORMAT CC'.'ERFCP: PETMAX HAS BEEN INPUTTED  *S  ',F8.4,';  PETKAX X
    1UST EE LESS THAf  60.0')
1641 FCRMAT CO't'ERFCP: PETMUL HAS BEEN INPUTTED  AS  'tF8.4,';  PETKUL H
    1LST BE GREATER THAN 0.0')
1642 FORMAT ('0','ERfCF: WMUL HAS BEEN INPUTTED AS f,Fe.4,f; WMUL MUST
    1EE GREATER  THAN C.O*)
1643 FCRMAT CO't'ERPCR: RMUL HAS BEEN INPUTTED AS ',F6.4,«; PKLL MUST
    1EE GRE/TER  TH#N C.O')
1644 FORMAT  ('0','ERFCR: KUGI HAS BEEN INPUTTcO  AS •,F8.4,'; KUGI MUST
    1BE A  PCSITIVE NUMBER LESS THAN 10.0*)
165C FORMAT  ('0','ERFCR: PEST HAS BEEN INPUTTED  AS ',A4,«; IT  MUST BE S
    1ET EQUAL TC YES CR KG')
1452 FORMAT  ('0','EPKR: JPMODE HAS BEEN  INPUTTcO  AS • ,A4,' ; IT MUST BE
                                        222

-------
Appendix C (continued)
I486.
1489.
1490.
1491.
1492.
1493.
1494.
1495.
1496.
1497.
1499.
15CO.
15C1.
1502.
1*03.
1504.
1505.
1506.
1507.
1506.
150S.
1510.
1511.
1512.
1513.
1600.
1601.
16C2.
1603.
1604.
UC5.
1606.
14C7.
1608.
160S.
1610.
1611.
1612.
1613.
1614.
16161
1617.
1618.
1619.
1620.
1621.
1622.
1623.
1624.
1625.
1626.
1627.
1628.
1629.
1630.
1631.
1632.
1633.






















C


C
C
C
C

C
C
C
C
C

C







C




C








                1 SET  ECLAL 1C SIPF CR SOIL1)
            1653  FORM/IT <«0«,•fPFCF: DESORP HAS BEEN INPUTTED AS -,A4,'; IT MUST BE
                1 SET  ECIAL 1C YES CR NO')
            1654  FORMAT (»0», • fcAPMNG: SOME OF THc FIVE
                1LAL TC
                2INM
            llSt  FCRMAT
                1EE  SET
            1651  FORMAT
                                SSTR
0.0; IF TUS IS ACTUALLY OtSlktD ScT
                                                 VALUES INPUTTED APE EC
                                                 ICHECK=OFF AND RUN AG4
CO' .'ERFCP:
LESS THAN CR
(•C't'ERFCP:
                                                                  ^8.4,'; DEGCON M

                                                                       IT MUST BE $

                                                                       ; IT MUST BE
                                                                                 OC
                         CM.AX HAS BEEN INPUTTED AS  '.F8.4,*;  IT SHCULO
                         EGUAL TC l.O1)
                         TIMAP HAS BtEN INPUTTED AS ',14,'; TIMAP MUST
    16E A FCSITIVE  IMEGEK LESS THAN 3b7« )
1656 FORM/1 ('0','EPFCP: THE INPUTTED YEAR OF APPLICATION DCES NOT OCCU
    1R KITHIN THE FEHCD OF SIMULATION1)
165< FORMAT CO't'EPFCF: CEGCOM HAS BEEN  INPUTTED AS
    1LST BE LESS ThAN  1.0.«)
1665 FCRMAT 1*0* ,(EF:FCP: NUTR HAS BEEN INPUTTED AS
    1ET ECLAL TC YES CF HC*)
168C FORMAT ('0','ERFCF: ICHECK HAS BEEN  INPUTTED AS
    1 SET ECLAL  TC  CN  CR CFF«)
1661 FORMAT ('0','EFFCP: THt INPUTTED £NO DATE (ENCDAYtENDMCN .ENOYP)
    1CURS BEFORE ThE EEGIN DATE (BGNOAY,&GNHONtBGNYR)•)
1662 FORMAT CO'i'lhE  TCTAL NUMBtR UF DETECTED ERRCRS  IN THE  INPUT SEQU
    1ENCE EGUALSS13,', PLEASE CORRECT AND TRY AGAIN OR CONTACT HYCROCC
    2*Pf INC.*)

     RETURN
     END
                 ELCCK
                               ELCCK CATA TO INITIALIZE VARIABLES
                 IMPLICIT  RE/111)

                 CIFENSICN FESE(J),RESEH5)tROS6(5),SRGX{5),INTF(5),RGX(5l,INFL(5» ,
                1 UZSe(£).APERCB(5)fPIB(5),ERSNiS)
                 CIII'E^SICN SFEF(J),RCbTOM(5)fROBTUT<5)f INFTOM( 5) , INFTOTC 5 ) ,
                1 RCITCfCS) tPOITCT(5) , RXd(5) f ERSTCM (5 ), cRSTOT( 5) ,MN!AM( 12) fRAD( 2*),
                2 TEMPX(24),V>IND>(24),RAIN(2*a)
                 DIMENSICN FFSTC^<;),PRSTOT{5)^PROTOM(5),PROTOT(5),UPITCMI5),
                1 UPITOTlSlfSlHf) tUTS(b)»SAS(5J ,SCS) iSOS(5) tSSTP(5),
                2 UAS(5),UCS(5),US(5),USTR15) ,UPRIS<5)

                 COMMCN  /ALL/  RL ,1-YMIN ,PRNTKc,HYCALtOPST(OUTPUTtTIt'FAC,LZS,AREA,
                I RESeitPCSetSPGXtINTFiRGXrlNFLfUZSt,AP£ACd,Rie,ERSNtM,P3fA,
                2 CALe,PPOD,PESTf^LTP,ENGL,M6Tft,BCTh,RtibfYES,^C,I^'INtIHP.fTF,
                3 JCCLNl.FPIMt IMF .CAYS,HOUR.MNTH

                 CCMMCN  /LANC/ »'^#^,PRTOT,ERSlnT, PRTOM.ERSNTMtCAY,
                I RLTCC'tNEFTCK.PCSTCt'fRirUMiRIiNTOMffaASTOM.RCHTCMtRUTOT,
                2 NEPTCT,RCSlCTfPnCT,RINTLT,dASTOTtRCHTQT,TwBALtEPTO«f EPTCTt
                3 CZS,LZSNtL2SN,^FIL,INTER,iRC,NN,L, SS.iGHl ,PR tSGK.GWS ,KV,
                4 K24L,KK24,K24El,EP,I«:S,K3tEPXH,kEii.l,RESS,SCEP,SCEPl,SRGXTt
                5 SRGXT1.JRER.KREP ,JSER»KSERti*£AT,MMPIN,McTOPT,SNCHfCCFACt
                6 SCF.ICNStF.CGK.kCiMPACKtEVAPSN.MfcLfcV.TS^OVI.PETHIN.PETMAXtELOIF,
                7 OEWX,PACK,CEFTI-,»'CMHfSDENfIPACKtTHlNfSUMSNMfPXSNM,XK3»
                                       223

-------
Appendix C (continued)
1634.
1635.
1636.
1637.
1638.
1639.
1640.
1641.
1642.
1643.
1644.
1645.
1646.
1647.
1648.
1649.
1650.
1651.
1652.
1653.
1654.
1655.
1656.
1657.
1656.
1659.
166C.
1661.
1662.
1663.
1664.
1665.
1666.
1667.
1668.
1669.
1670.
1671.
1672.
1673.
1674.
1675.
1676.
1677.
1678.
1679.
16EO.
1681.
1662.
1663.
16E4.
1685.
1686.
1687.
1688.
1689.
1690.
1691.
1692.
1693.




C









C






C
C




C







C









C














                                            ,RObTuT,RXofAuITOf,ROITOT,INFTCM,
                                            TEMPX,RAD,WiNJX,KAlN,INPUT
                 CCKPCN  /PESTC/  £TST,SPR(jTM,SPRSTM,SAST,$CST,SOST,UTST,UAST,UCST,K,
                1 LDST,FP,ChA>,M,£PPCTT,SPRSTT,MUZ,FPUZ,UPRIT*,
                2 UPPITT,KGPie,FK2,HLZ,LSTR,LAS,LCS,LDS,GSrR,GAS.GCS,GCS,
                2 AFMCOE.TFE/L,
                4 OEC-SCN,OEG£CT.CEGUCh,
                5 DEGLCT,CEGL,CECS,NIP,OEGCON,DeGLuM, OfcGLOT.NCCH,
                6 PR£TCM,PRSKT,FFCTCH,PkOTOT,UPITOM,UPITOT,STS,UTS,SAS,
                7 SCS,SCSfSSlPtlAStUCS,ULiSfUSTRfUP»USfUlST,TOTPAP,TIfAP,YEARAP,
                e DESGRF ,SliRF,SCIL,SULG

                 CCMHCN  /NUT;  CELT, STEMP, SN,SNT,SNRiM,SNROM ,UN,UNT,UNI ,UMT ,
                1            L^RI^,^RS^•,L^,L^RPM,GN,SNR6M,UNRBH,LNRBM,GNREM,TNRBM,
                2            JSR£Y,SNROY,UNRIYtNRSYtLNRPYtSNRBY,UNR8Y,LNReY,GNRBY,
                3            TNREY,TNRhV,TNRHVM,TNfcHVY,TNA,TPA,TCLA,
                4            Kfk,UKK,KP,THKP,NBAL,PHBAL,CL8ALt
                5            TSTEP,KSTEP,SFLG,UFLG,LFLG,6FLG


                 INTEGEF  PRMKE.CLTPUT.HYCAL.CALb, PROD, NUTR, PEST, ENGL.METR, BOTH
                 INTEGER  SLRF,SCll,TIMFAC,YdS,NC,JCaUlT,TIMAP
                 INTEGEP  PRIM, IMR, HOUR, DAYS ,MNTH
                  REAL*E
PEAL
FEAL
                 PEAL  C( K, M, MZt HLZ
                 REAL  L2SN, IPC, NN, L, LZS, KV, K24L, KK24f  INFIL,  INTER
                 PEAL  IFS, K24EI, K3, NtPTOM, NcPTOT
                       INFTC», UF7CT, INTF, INFL
                       ^MPIN, >E1CFT, KGPLB
                 PEAL  NF, MFt KCM
                 REAL  ^ELRA^I fELPAY

                 REAL*4  CEL1,STE>F<4,24),
                1        SN(2C,5),£NT(20),SNRSM(20f5) ,SNROM< 20 ,5) ,
                2        UN ( 2 C, 5 ), INT (20), UNI (20, 5) ,UM Tl 20) ,UKRIM (20,5 ) ,
                3        NRSf(20,5l,       LN(20),LURPH(20),         GN(20»,
                4        SNRE^(2C,5) ,UNRbM(20,5) ,LNRBH(2UJ ,GNRBM(20) ,TNRBf (20) ,
                5        SKRSY(2C.£) ,SNROY (20, i ) ,UMKI Y(20, 5) ,NPSY(?0,5) ,
                6        LKPFY(2C),SNRBY(20f5) , UNRdY(^Oo) ,LNRBY (20) , GNRBY (20 ) ,
                7        TNREY(2C)(TNfiHV(20) ,TNKHVrt(20) ,TURHVY(20) ,TNA , TF A,TCL A,
                £        KN(lCf4),1hKN(10) ,KP( 3 ,4 ) ,THKP(5) t NfaALt PhBAL,CLB AL

                 DATA  FFTCT, EP£hTT/2+0.0/
                 DATA  PRTCC, ER £^TM/2*0.0/
                 CATA  PLTCK, FCSKM, RITOM, RINTCM,  NEPTuM/ 5*0. 0/
                 DATA  RLTCT, PCSTCT, RITOT, RINTCTt  NEPTOT/5*0.0/
                 CATA  PCETCI^f RCETOT, INFTOK,  INFTCIt ROlTOMt ROITOT/30*0.0/
                 CATA  FPCTC>f FKTCT, PRSTUM,  PRSTOT , UPiTOM, UPITOT/3C*0.0/
                 CATA  TkBALi FE£E, SRGX, INTF,  EKSTOM,  EKSTCT,  SDST/27*0.0/
                 CATA  PESEli EASTCH* RCHTOM, BASTOT, RCriTUT/9*0.0/
                 CATA  SFRCTK, SFRSTt-, fcPTCM, EPTCT/4*0.0/ , PRNTKE/0/
                 CATA  SIS, £1ST, 
-------
Appendix C (continued)
1694.
US5.
1696.
1698.
1699.
1700.
17C1.
1702.
1703.
1704.
1705.
1706.
1707.
1708.
1709.
1710.
1711.
1712.
1713.
1714.
1715.
1716.
1117.
1118.
1719.
1120.
1721.
1722.
1123.
1724.
1725.
1726.
1727.
2COO.
2C01.
2C02.
2003.
2C04.
2005.
2CC6.
2CC7.
2CC8.
2CCS.
2010.
2011.
2012.
2013.
2C14.
2015.
2016.
2C17.
2C18.
2C19.
2020.
2C21.
2022.
2023.
2024.
2025.























C







C

C
C
C
C

C
C
C
C
C

C









C




                CATA
                CATA
                CATA
                CATA
                DATA
                DATA
                CATA
                CATA
                CATA
               *
               *
                CATA
                CATA
                CATA
                CATA
                CATA
                CATA
                CATA
                CATA
                CATA
                CATA

                CATA
                1
                2
                3
                4
                C
                €
 EPSN/5«C.C/, SRER/5*0.0/, SRERT/0.0/
 SAS/5»0.0/t SCS/i*0.0/, SOS/5*0.0/, AREA, H, K/3*0.0/
 M, FF, CM>, SSTR/8*0.0/
 SFRC.T1, SfFSTT/2*0.0/
 LAS/5«0.0/, UC   •,'  JUNt  •,•  JULY  •,' AUGUST ;,
       •SEFT^eEPl ,« OCTOBER1,'NuVEMBER' .'CECEMBER'/
 f^PIN/25.1/, ^£TOPT/0.9072/, KGPLB/0.4536/
 CEGSC^, DEC-SOT, UEGUOM, DEGUOT, OfcGU, OEGS/6*0.0/
 C6GIC>, OEGLCT/2*0.0/,TOTPAP/0.0/
 MP,  hCCH/i*0.0/, TPBAL/0.0/, SULG/0.0/
SlJ^•s^^, FxihH, MELRAM, RADMEM, CORMCM, CRAINH,
  cc^^'E^, sct-M,  SNEGfM, SEVAHM, SUMSNY, PXSNY, MELRAY,
  PACfEY, CCP^EY, CONMtY, GRAINY, SGMY . SNEGKY, SEVAPY,
  TSI\E/L/21Y/100*0.O/.SNRCY/100*0. OX,
 LKRIY/1CCtG.O/.NRSY/100*0.O/.LNRPY/20*0.O/.SNPBY/1CO*O.C/,
 LNRBY/100«C.O/,LNKBY/20*0.0/,GNRBY/20*0.0/,TNRBY/2C*0.0/,
 TNRHV/20*C.O/,TNKHVM/20*0.0/,TNKHVY/20*0.0/,
 TNA/C.C/,TFA/0*0/,TCLA/0.0/
                 END
                 SU8RCUTINE
                                         HSP LANDS
                 IMPLICIT

                 CIKENS1CN  FESI (f ) ,RESB1I5 ) , ROSB(5 ) ,SRGX(5 ), INTF ( 5 ), RGX ( 5 ) ,RUZ8( 51 ,
                1  LZ£e<5),APERCe<5),PIB<5) ,ERSN(5)
                 CIKENSICN  SFEF(5),PCbTOM(5),ROBTOT(i),INFTUM(5),INFTOT<5),
                1  ROnCK5),FCITCT(5),RX6(5),ERSTCM(5),£RSTCJT(5),MNAH(12),RAO(24),
                                                                        »
                2  SRERI*T(5J
                CICENSICN  ShPC(3»,RXX(3),DEEPL(5),UZRA,INTF,RGX,£NFL,UZSc,APERCB,KlB,ERSN,M,P3,A,
                2  CALe,FFQC,PEST,iaTR,EN(;L,McTRiBGThtKESB,YES»NCfI*INflHP,TF.
                2  JCC LNT, PP 1 rT, IMF, CAYS, HOUR, MNTH
                                       225

-------
Appendix C (continued)
2026.
2027.
2028.
2029.
2C30.
2011.
2032.
2033.
2034.
2035.
2036.
2037.
2038.
2C39.
2040.
2041.
2042.
2C43.
2044.
2C45.
2046.
2Q47.
2048.
2C49.
2C50.
2C51.
2052.
2053.
2054.
2055.
2056.
2057.
2C58.
2C59.
2C60.
2C61.
2CC2.
2C63.
2C64.
2065.
20«6.
2047.
2C68.
2C69.
2C70.
2071.
2072.
2073.
2C74.
2075.
2076.
2C77.
2C78.
2C7S.
2060.
2C81.
2C€2.
2C83.
2C84.
2C65.
C












C



C

C








C






















C
C
C






                 COMPCN /LAKC7 MMK,PRTOT,ERSNTT,FRTOH,ERSNTM,CAY,
                1 RU10PtNEF7£ftPCS7CfSRITUM,RINTOM,&ASTOM,RCHTCMtRUTaTt
                2 KEPTCT,PCSUT,f 1TOT.RINTOT ,bASTOT ,RCHTOT ,Tk«BAL,EPTOM, EPTOT,
                3 UZS,UZSN,LZSf>, 1NFIL , INTE R i IRC.NN.L, Si ,SGW1 ,PB ,SGW,GWS ,KV,
                4 K24L,KK24,K;ETCFT, KGPLB
 REAL   INFIL, INTER, KN, INFLT, IRC,
 REAL   IRC4, 1CS, IPS, NcPTOH, NEPTOT
 PEAL   IKFTC*, UFTCTf QME TRC
 REAL   KKPIN, >ETCFT, KGPLB
 REAL   L2SfET, L2SFET, SGWMET, SCcPHT , RESSMT
 REAL   ThBLMT, SFOTK, RES6MT, SRGXMT
 REAL  ICN.S, hFACK PELEV, KUGI, NEGMLT, NEGMM
 REAL  fELT, INCT, KCLU, IPACK, ME LA AM, MELRAY,
                                                                MEL RAO
                 CATA  lKRR,, riBAL, SEVAP72 1*0.07
       SNCLT/3e4*C.O/,CLDf:7-1.07,ALbECa70.6/
       SLMSKC ,FX ShC , FELRAD ,RADMfcO,CDRMEO,CONMEC,CRAIND, SGKD,
                 CATA
                 CATA
                 CATA
                 CATA
                 CATA
                  LZS1  =  L2S
                  LZS1  »  LZS
                  NUMI  >  0
                  OPST  »  C.O
                  PACK1 * PACK
                  LlCfcl =• LICh
                                ZEFCING OF  VARIABLES
                                        226

-------
Appendix  C (continued)
2066.
20€7.
2C£S.
2C89.
2C90.
2C91.
2C92.
2CS3.
2094.
2C95.
2C96.
2097.
20S6.
2C99.
2100.
21C1.
2102.
2103.
2104.
2105.
2106.
2107.
21C8.
2109.
2110.
2111.
2112.
2113.
2114.
2115.
2116.
2117.
2118.
2119.
2120.
2121.
2122.
2123.
2124.
2125.
2126.
2127.
2128.
2129.
2130.
2131.
2132.
2133.
2134.
2135.
2136.
2137.
2138.
2139.
2140.
2141.
2142.
2143.
2144.
214S.

C


C





C



C


C




C
C
C




C




C
C
C
C

C

C





C








C
C
C
C
                 PRR  *  I

                 CO  184
• C.C
             184
                   LIRC«=1.C-IFC4
                  KK4=KKi4**U.C/*C.C)
                   LKK4 =  1.0  - KM

                 IF ((1440./llfFlU.LE. 100.) GO  TO  187
                 LIRC4  •  LIPC4/3.0
                 LKK4 *  LKK4/3.0

            1£7   DEC* O.COS£2*mN*L/SQRT(SS))**0.6)
                 SRC-  1C20.* =  (l.C  -MCE)
                 IF  (04FX  .LI.  0.1)   04FX  *  0.1
                 D4F =  C4F*C4FX

             186  RATIC=  INTEP«EXF(C.6S3147*LNRAT)
                 IF  ((RJTIC).Ll.(l.On  RATIO=1.0
                       C4F*R/TIC
                    TF/24
                                              TF  IS  1 FUR RAIN DAYS, AND 96
                                              OR  2t>8 FOR NON-RAIN DAYS
                 IF  (TF  ,GT.  2»   IhRR«0

                 CO  155   IIIM.TF

                 LNRAT *  L2J/L2SK
                 IF  JTF  .LT.  2)   GC  TC 4
                 NL^I =^LMI +  1
                 IF  (M>I  .N£. hJ  GC TO 4
                 KUMI -  0

                 S6AS *  0.0
                 SRCH    C.C
                 RCS = C.O
                 PU > 0.0
                 GWF = C.O
                 PGXT =  0.0
                 PERC »  C.O
                 INFLT »  0.0

               T1CFAC -  1II»E  INTERVAL IN MINUTES
               L      - LENGTH OF  CVERLAND SLOPE
               Mt    -  f-ANMKC'*  N  FCR OVERLAND SLOPE
                                       227

-------
Appendix C (continued)
2146.
2147.
2148.
2149.
2150.
2151.
2152.
2153.
2154.
2155.
2156.
2157.
2156.
2159.
2160.
2161.
2162.
2163.
2164.
2165.
2166.
2167.
2166.
2169.
2170.
2171.
2172.
2173.
2174.
2175.
2176.
2177.
2178.
2179.
2180.
2181.
2182.
2183.
2184.
2185.
2166.
2167.
2168.
2169.
2190.
2191.
2192.
2193.
2194.
2195.
2196.
2197.
2198.
2199.
2200.
2201.
2202.
2203.
22C4.
2205.
C / - IMPEPV101S AREA
C FA FERVICLJ *PEA
C
C
C
C
C PP IS INCCMNG FAINF/IL
C P3 IS RAIN PEACUNG SURFACE! .OO'S INCHES)
C P4 IS TOTAL MOISTLRE AVAILABLE! IN.)
C RE'S IS OVERLING FICfc STORAGE! IN.)
C C4F IS 'E1 IN CF. M0NLAL
C PA11C IS 'C' IN CF. MNUAL
C EP - DAILY EVAF ( IN.)
C EFhP - HOURLY EVAF
C EFIN - INTEFVAL EVAf
C EPXX - FACTCR FCR RECLCUG EVAP FOR SNOW AND TEMP
C
C
C
C
C DETERMINE IF J>ELT IS TO BE DONE
C
HRFLAG-0
ITEST = IMN/mFAC
IF (NLM .EC. 1 ) HRFLAG = 1
IF (ITEST. EC. 1) hRFLAG - l
C
C HRFLAG=1 INC1CA1ES BEGINNING OF THE HOUR
C
IF (HRFLAG. EC. 03 GO TC 999
IEND C
IF (IHP.EC.24) CC TO 202
IHRR = IhP •» 1
GO TO 5C1
202 IHRR IHRR * 1
5C1 EPhR = EVC1SK 1HPR1*EP
IF (EPHR.LE.(C.CCOD) EPHR=0.0
EFIN= EPHR
EP1M=EPIN
IF (SNCV .EC. NO GC TO 999
IF UFACK .IE. C.O).AND.(TMIN .GT. PfcTMAXJJ GO TO 999
C ******************** 4 **********
C faEiilN SNOWMELT









































4***

C ******************** 4******** 4* 4***
1SNOH = ISNCfc * 1.
SKTEHP * 22.
SEVAP - 0.0
SFLAG - 0
FRHR=O.C
EPXX = 1.0
IKENC = 60./(TII>FAC)
IPT = (IHPR-1)*1I«END
C SUM PREC1P FOR THE HOUR
PX=0.0
CO 502 II ' l.IKEND
5C2 PRHR = FRHR + R/IMIPT + II)
C CORRECT TcMP FOR ELEVATION












OIFF
C USING LAPSE RATE OF 3.5 DUPING RAIN
C PERIODS, AND AN HOURLY VAR
C LAPSE RATc (LAPSE(I)) FCR
IATION IN
CRY PERIOC
                                    228

-------
Appendix C (continued)
22C6.
2207.
2208.
2209.
2210.
2111.
2212.
2213.
2214.
2215.
2216.
2217.
2218.
2219.
2220.
2221.
2222.
2223.
2224.'
2225.
2226.
2227.
2228.
2229.
2220.
2231.
2232.
2233.
2234.
2225.
2226.
2237.
2228.
2239.
2240.
2241.
2242.
224.3.
2244.
2245.
2246.
2247.
2248.
2249.
2250.
2251.
2252.
2253.
2254.
2255.
22*6.
2257.
225€.
2259.
2260.
at i.
22C2.
2263.
2264.
2265.
C



C
C
C
C
C
C









C
C
C

C
C





C
C
C
C


C
C
C
C




C

C
C
C

C
C
C
C


C


C
                LAPS = LAFSEUHFP)
                IF  (PPhR  .G1. O.OJJ  LAPS = 3.5
                IX  = TEfPX(IHFR) - LAPS*ELDIt;
                                            REDUCE RfcG 6VAP FCR SNOWMELT
                                            CONDITIONS BASED CN PETMIN AND
                                            PcTMAX VALUES
                IF  (PACK.LE.IFACM GC TO 504
                E1E=0.0
                FACKPA =  l.C
                GO  TC 5C5
            •04 PACKRA =  PACK/IFKK
                ElE=l.O - F/CKR*
            5C£ EPX> » (1.C-F)*E1E •» F
                IF  ) GO TO 512
                IF  (EPXX  .GT. 0.5)  EPXX=0.5
IF (TX.LT.PETMM EPXX
                                           RcDUCE EVAP BY 50% IF TX IS BETWEEN
                                           PETMIN ANC PETMAX
                                         0.0
            512 EPhR = EPhR«EFX>
                EFIN = EPIMEfXX
                IEND=0
                SNEAL = 0.0
                IF ((TX .GT. TSKta) -AND. (PRHR .GT. .02)) DEMX = TX

                SET CEVFT 7ECF ECtAL TO AIR TEMP WHEN RAINING
                CK SNCV TO INCREASE SNOUMELT

                IF (DEhX .GT. TX) OEtaX = TX
                SNTEHP = TShCh *  (T>-OEWX)*(0.12 + 0.008*TX)
                RAI^/S^CV TEI^F. C1VISICN - SEE AMJERSONt rtRR. VOL. 4, NO. 1.
                FEE. 1S68, F. 21i EG. 2d
                IF  (SNTEHF  .Gl. 1
-------
Appendix C (continued)
2267.
2268.
2269.
2270.
2271.
2272.
2273.
2274.
2275.
2276.
2277.
2278.
2279.
2280.
2281.
2282.
2283.
2284.
2285.
2266.
22€7.
2288.
2289.
2290.
2291.
2292.
2293.
2294.
2295.
2296.
2297.
2298.
2299.
2200.
22C1.
2202.
22C3.
2304.
22C5.
2206.
23C7.
23C8.
2309.
2210.
2*11.
2212.
2213.
2214.
2215.
2216.
2317.
2218.
2219.
2220.
2221.
2222.
2223.
2224.
2225.





C
C
C
C

C



C










C

C
C
C
C
C
C
C
C







C




C
C



C


C
C
C

                PX = PX*SCF
                APR = APR *  (SCF-1.0)*PRHR
                PPHR = FRHtXSCF
                SLMSN » SLf£N + FX
                CNS = ICNS
                IF (TX .GT.  C.O)  DNS = DNS *  ((TX/100.)»*2)

                SNOW DENSITY MU TECP. - APPROX Tb FIG. 4, PLATE B-l
                SNCV. HYDRCLCGY  SEE ALSO ANbERSGN, TR 36, P.  21

                PACK = FACK  4 F>
                IF  (FACK.LE.IFACK ) GO TO 548
                IPACK  = PACK
                IF  (IPACK  .CT.  >FACK)   IPACK
MPACK
            546 DEPTH = DEPTH +  (PX/CNS)
                IF  (DEPTH  .CT. C.O  SOEN - PACK/DEPTH
                INDT =  INCT - 1CCC*FX
                IF  (INCT  .LI. O.C)  INDT - 0.0
                PX  = 0.0
                GO  TO 555
            55C KCLD -  KCLC - 1.
            555 IF  (KCLC  .IT. O.C)  KCLO = 0.0
                PACKRA  -  PACK/IFICK
                IF  (PACK  .GT. HACK)   PACKRA =  1.0

                IF  (PACK.CE.C.CC5)  GO  TO 580

                IPACK  IS  AN  UDE> TC AREAL COVERAGE  OF  THE  SNCHPACK
                FCR INITIAL  STCFI>£  IPACK = .1*MPACK  SO  THAT CCMPLETE
                /REAL  CCVER/CE FESULTS.   IF EXISTING PACK > .1 *MPACK  THEN
                IPACK  IS  SET  EGLJl  TC  HPACK WHICH  IS THc WATER ECUI. FCR
                CCPFLETE  ACE^L CCVERAGE PACKRA  IS  THt FRACTION AREAL COVERAGE
                AT  ANY  TI»>E.

                IPACK  = O.MKFACK
                XICE =  C.C
                XLNHLT  -  O.C
                NEG^LT  »  C.C
                PX  = PX * P/CK « LIQM
                PACK    0.0
                LIQK *  C.Q
               ZERC  SNCVihELT  CLTFLT  ARRAY
                CO  570  I-lt<4
                    DC  510 FMltU
             57C SNOLTd.HH)  »  O.C
                GO  TO  SS7


             5iC PXCNSN    FXCNSN  «  PX
                IF  (DEPTH .CT.  C.C) SD£N  * PACK/OEPTH
                IF  (INCT  .LT.  8CC.) INDT  =  INOT *  1.
                                            INOT IS INDEX  TO ALBEOC
                KELT ^  C.O
                IF  (SOEN  .LT. 0.55) DEPTH=CEPTH*(1.0 -  0.00002*CDEPTH*(.55-SOEN)))

                EMPIRICAL RELfTICNSHIP FOR SNOW COMPACTION

                 IF  (DEPTH .CT.  C.O) SDEN  '  PACK/DEPTH
                                        230

-------
Appendix C (continued)
2226.
2227.
2228.
222S.
2230.
2231.
2232.
2333.
2234.
2335.
2226.
2237.
2238.
2239.
2340.
2241.
2242.
2343.
2244.
2345.
2246.
2247.
2348.
234S.
2250.
2251.
2252.
2253.
2254.
2255.
23*6.
2357.
2358.
225S.
2360.
2361.
2262.
2263.
2364.
2265.
2366.
2367.
2368.
2369.
2370.
2271.
2372.
2273.
2374.
2275.
2376.
2377.
2578.
2379.
22£0.
2381.
2382.
2-83.
2284.
2365.

C
C
C










C
C









C
C
C
C
C



C
C
C
C


C
C

C







C

C





C
C
                 VIN «

                 HOOPLY HNC V/LLi

                 LREF = (TX 4 1CC.)/S
                 LREF = IFIX(LPEF)
                 SVPP = SVP (LPEF)
                 ITX = IFIX(IX)
                 SATVAP n SVFP *(»-CD(ITX,5)/5>*(SVP(LftEF * 1) - SVPP)
                 LREF = (CEfc> 4 KC.)/5
                 LREF = IFIX(LPEf)
                 SVPP = SVF (LPEF)
                 ICEV»X * IFIX(CEfr»
                 VAPP   SVFP 4 (KC( ICEHX,5)/5)*(SVH(LREF * 1) - SVPP)
                                 CALCULATION OF VAPt« PRESSURE AT AIRTEMP
                                 *rD CEMPOINT
                 SEVAP > 0.0
                 IF  (V4PF.LE.6.1CU GC TO 610
                 CNK = €.59*(WPF - 6*10ti)
                 GO  TC 620
             61C  CNV = 0.0
                 OLfMY=(\iAPP-S/TWF)*PACKRA
                 IF  (VAFP .LI. SMVAP) SEVAP   EVAPSN*0.0002*HIN*DCMMY
                 PACK = PACK 4 SEV/P
                 SEVAP7   SE\AFT  - SEVAP

                 CONDEt^SATI^ - CCNVECTION MELT, EQ. T-29B, P. 176, SNOH HYDROLOGY
                 CCNV - CONVECTICN, CCNDS - CONDENSATION
                 SEVAP - EVAF FRCh SNOw (NEGATIVE VALUE)

             62C  CNV = C.O
                 IF  (TX .GT. 22.) CNV = (TX-32.)* 11.0 - 0.3*(MELEV/10000. ))
                 CCXC = CCFAC*.OCC26*WIN

                 .COC26 = .GU25/24, I.E. .00026 IS THE DAILY COEFFICIENT
                 (FRCK S^0^ hYCRClCGY) REDUCED TO HOUKLY VALUES.

                 CCNV = CNV*COC
                 CCNCS « CNMCCXC
                                    CLCUD COVER
                                    CLCF IS FRACTION OPcN SKY - MINIMUM VALUE 0.15
                 IF  (IHFF.EC.l .CF. CLUF.LT.0.0) CLDF   (1.0 - 0.085*(KCLC/3.5))
                                    ALBEDO
                 IF  (CCMt-.Gl.S)  GC TC 640
                 IF  (MGMh.LT.4)  GC TC 640
                 AL8ECO = 0.€ - C.l*(S«AT(INDT/24.))
                 IF  (ALEECC .IT.  C.45)  ALBEDO = 0.45
                 GO  TC 650
             640  ALBECC = 0.£5 -  C.C7*(SaRT(l,NDT/24.0))
                 IF  (ALEECC .LT.  C.6)   ALBEDO * 0.6
                                    SHORT fcAVE RADIATION-RA - POSITIVE INCOMING
             65C  PA    RAC( IhFR)*(I.O -ALBEDO)*(i.O-F)
                                    LCNG WAVE RACIATICN - LH - POSITIVE INCOMING
                 CEGHR = TX - 22.C
                 IF  (CEGI-R.LE.C.C) GC  TO 660
                 LK  = F* 0.26*CECH: +  (1.0 - F)*(0.2*Ok:GHR - 6.6)
                 GC  TC 665
             66C  LV>  * F*C.2*CECHP * (1.0 - F)* (0.17*OEGHR - 6.6)

                                       LH IS A LINEAR APPROX. TO CURVES IN
                                       231

-------
Appendix C (continued)
2286.
2387.
2388.
2289.
2290.
2391.
2292.
2293.
2294.
2295.
2396.
2297.
2298.
2299.
2400.
2401.
2402.
2403.
2404.
2405.
2406.
2407.
24C8.
2409.
2410.
2411.
2412.
2413.
2414.
2415.
2416.
2417.
2*16.
2419.
2420.
2<21.
2422.
2*23.
2424.
2<25.
2426.
2427.
2428.
2429.
2430.
2421.
2432.
2433.
2424.
2435.
2426.
2427.
2438.
2429.
2440.
2441.
2442.
2443.
2444.
2445.
C
C
C
C
C

C
C

C
C
C
C

C

C
C
















C
C
C
C

C
C
C
C






C
C
C


C
C
C

C
C
FIG. 6, PL 5-3, IN SNUW HYDROLOGY.
6.6
IS AVc BACK. RALIAT1UN LOST FROM THE SNOUPACK
IN OPEN AkfcAS. IN LANGLEYS/HR.

CLUUU COVER CORRECTION
665 IF (LK .LT. C.O) LW « LW*CLOF

RAIN MELT
PAINF 0.0

RAINMcLT IS OPERATIVE IF
RAIMNb AND TEMP IS ABOVE

IF USFLAG .LT. 1).«ND.(TX .L.T. 32.)) RAINM DEGHR*PX/
TOTAL MELT
PM (Lk + M)/2C2.2
203.2 LANGLtYS REQUIRED TO PRODUCE
RUNOFF FRCM SNGrf AT 32 CEGREES F
IF (FACK.GE.IFACK) GO TO 680
Rf = RMP/CKF/
CCNV = CCNV1F/CKF*
CCNDS CCNCS«F*CKRA
RAINP = RAUMFKKRA
IF (IhPP.NE.t) CC TC 680
XLNEf = 0.01*(2Z.C - IX)
IF (XLNEM .CT. HNKLT) XLNMLT =* XLNEM
6€C PACKE RACK 4 F*
CORFE CCP^E * CCNCS
CCKME » CCKt-E + CCNV
CRAIN = CP 0.0
IF (TX .LT. 22.) r-EGM = 0.00695* (PACK/2.0) »( 32.0 - TX )









IT IS
32 F

144.


I INCH


















HALF CF PACK IS USED TO CALCULATE
MAXIMUM NEGATIVE MELT

TP * 22.0 - (NECMT/(0.00695*PACK))

IP IS TEMF CF TK SNOkPACK
0.00695 IS IN. fELT/IN. SNOli/DEGREE F

IF (TP.LE.T» GC 10 695
GM = O.CC07<(1P - TX)
NEG*LT = NEChLT ^ Gf
SNEGM « SNECC 4 C>
695 IF (NEGJ-LT .CT. NEGMfr) NEGMLT * NEGMM
t'ELT * C.C

PELTING PROCESS BALANCE

7CO FXBY = (l.C - PK*RA)»PX
PX PACKPMFX

FXBY IS FRACT1CK CF PREC1P FALLING ON BARc GROUND

IF ((MELT 4 P».IE.O.O) GO TO 795

SATISFY NEGH1 ffCH PRECIP(RAIN) AND SNOWMELT
























                                    232

-------
Appendix  C (continued)
2446.
2447.
2449.
2450.
2451.
2452.
2453.
2454.
2455.
2456.
2457.
2458.
2459.
2460.
2461.
2462.
2464.
2465.
2466.
2467.
2466.
2469.
2470.
2471.
2472.
2473.
2474.
2475.
2476.
2477.
2478.
2479.
2480.
2481.
2482.
2463.
24£4.
24£5.
2486.
24£7.
2488.
24£9.
2490.
2491.
2492.
24S3.
2494.
2495.
2496.
2497.
2498.
2499.
2500.
2£0l.
2502.
2503.
2504.
2505.
C





C








C
C
C
C
C
















C
C
C
C

















C
                IF (PELT.GE.NEGHT) GC TO 720
                NEGHLT = NECMT   PELT
                PELT - 0.0
                GC TO 725
            72C PELT = PELT - NEOLT
                tvEGHLT - O.C

            725 IF (PX.CE^ECMTJ GC TO 735
                hEGPLT - NEC-MT - PX
                PACK = PACK » F>
                PX = 0.0
                GO TC 740
            735 PX = PX - NEGHT
                PACK = PACK * NECM.T
                NEGPLT - O.C

            74C IF ((PX + MELT) .EQ. 0.0) GC TO  800

                CCPPAPE SNC^ELl TC EXISTING SNOwPACK AND WATER CCNTENT CF
                THE PACK

                IF (PELT.LE.F4CH GC TO 750
            75C
PELT =
CEPTH
PACK -
LIC* =
INDT *
GO TC
PACK =
 PACK +
  0.0
 C.O
 0.0
 c.c
765
 PACK -
                              LKh
            76C
IF (SCEN .C-T.
IF (PACK .GE.
IF (PACK.CE.C
LIQVi - LKV« 4 P4CK
PACK - 0.0
LIQS = VC*P*CK
IF (SCEh .GT. 0.6)
IF (LICS .LT. O.C)
KEIT
O.C)  DEPTH = DEPTH
(C.S*CEPTH)J  DEPTH
CC1) GC TO 760
                                                    (MELT/SDEM
                                                    1.UNPACK
                                   LICS
                                   LIQS
            MC*(3.0
            0.0
                            - (3.33)*SDEN)*PACK
                CCMFARE AVAILABLE MCISTURE WITH AVAILABLE STORAGE IN SNOWPACK
                -LIQS

            765 IF ((LICt. + fELT  •• PX).LE.LIQS) GO TO 775
                PX = KELT + P> «  LKh - LIQS
                LICH   LICS
                GC TC 760
            775 LIQU = LICh * PELT « FX
                FX = 0.0
            7£C IF (PX.IE.XLM*L1) GC TO 790
                FX = PX - XLM^Ll
                PACK   PACK •»
                >ICE = MCE +
                XLNKLT * 0.0
                GO TO 7S5
            7SC PACK = PACK + F>
                XICE = XICE + F>
                XLMLT = XL^^1lT - PX
                PX = O.C
            795 IF (XICE .Gl. P/CK) XICE - PACK
                                      233

-------
Appendix C (continued)
2506.
2507.
2508.
250S.
2*10.
2:il.
2512.
2513.
2114.
2515.
2J.16.
2517.
2518.
2 5 IS.
2*20.
2*21.
2122.
2*23.
2524.
2525.
2526.
2527.
2*28.
2S2S.
2*20.
2*31.
2532.
2523.
2134.
2535.
2536.
2527.
2528.
2539.
2540.
2541.
2542.
2543.
2544.
2545.
2546.
2547.
2*48.
2549.
2550.
2551.
2552.
2553.
2554.
2555.
2556.
2557.
2558.
2559.
25tO.
25*1.
25fe2.
25<3.
2564.
25<5.
C
C END KELT ING PROCESS BALANCE
C
8CC If (CEFTh .CT. C.O) SOEN * PACK/DEPTH
IF (SCEh .LI. 0.1) SCEN * 0.1
C GROUNOMELT
If UHRR.NE,li) CC TC 630
CGPK = CGP
IF (IP .LT. 5.CJ IP - 5.0
IF (IP .LT. 2Z.) DGHN = OGMM - OGM*.03*(32.0 - IP)
IF (PACK.LE.CCfrM GC TO 825
PX = P> * CO*
PACK FACK CCM»
CEPTK- - DEPTH - (CG>K/SDEN)
SGH *  4 LICK
SGH = SGK •» PACK
PACK = C.O
CEPTH * 0.0
LICU ^ 0.0
NEGKLT » C.C
83C CONTINUE
FX * F> + F>E>
SPX = £FX + F>
C
C HOUR VALUE ASSIGNMENT
SS7 JUMSNH » SL»«SN
PXSKI- - FXCKSh
SPXH = SPX
RADF'EH = RACKE
CCRfEH - CCffrE
CCNfEh » CC^^'E
CRAINH - CR/1>
SG^H = SGK
SNEGHH = SNEGK
SEVAPI- ~ SEV/FT
C
C DAILY SUNS
IF (FRira.M.CMSl GO TO 996
SUMSND » SLCiNO + SU^SN
FXSNC = PXSNC * PXCNSN
KELRAO =• >>EIPAC « SPX
PACKED P4OEC « RAOKE
CCPfEC CCFMC < CCRKE
CCNMED - COfEC « CC^^'E
CRAINC CPMKD 4 CRAIN
SGMO = SG^C * SGW
SNEGMD SNEGt-0 « SNEGM
SEVAPC » SEN4FC + SEVAPT
C
C MONTHLY SUMS
«6 SUMSNM = SL^SKF t SLKSN
FXSNW * PXJhl- PXCNSN
*ELRA* » ^ElPAf SPX
RAOMEK => RAChEf RAOME
CCPfEK CCFFEJ- CCRME
CCNHEH = CCff-Ef CCNME
CRAINK CPMKf- 4 CRAIN
SGPf « SGff 4 SGI1
                                    234

-------
Appendix C (continued)
2566.
2567.
25*8.
2569.
2570.
2571.
2572.
2573.
2574.
2575.
2576.
2577.
2578.
2579.
25EO.
2561.
2582.
2163.
25£4.
2585.
2566.
2567.
2568.
2569.
2590.
2591.
2592.
2593.
2594.
2595.
2J96.
2597.
2598.
2599.
2(00.
2601.
26C2.
26C3.
26C4.
2605.
2606.
2607.
2608.
2609.
2610.
2611.
2612.
2613.
2614.
2615.
2616.
2617.
2618.
2619.
2620.
2621.
2<22.
2623.
2624.
2625.


C
C










C
C










C
C
C
C
C
















C


C
C
C







SNEGHM - SNECf-C-
SEVAPK • SEWf*


SUMSNY « SL*SM
PXSNY = PX£M
*ELRAY = *EIP*Y
RADMEY - RAl>EY
CCRMEY - CCFfEY
CONMEY - CCmY
GRAINY * CRMM
SGHY » SG^Y
SN6GPY « ShEG^Y
SEVAPY - SE^AFY


SUMSN « 0.0
PXCKSh - O.C
SPX = 0.0
RACHE > 0.0
CDRHE » 0.0
CCN^E - 0.0
GRAIN - 0.0
SGH =• C.O
SNEGC * 0.0
JEVAPT - O.C





SNOUTdl-RRtlJ
SNOCK IhRRti
SNC(-T
418EDG
CLDF
^EG^LT
HQt<
IX
FA
LW
FX
>ELJ
CQFV
PA IAN
CO^OS
>ice

f^GL) GO TO 345
ECTH .AND. INPUT ,EU. tNGL) GO TC 845

1C SNCVi OUTPUT

* PACK*MMPIN
- OEP7H*MMPIN
- ^EG^LT*MMPIN
» LKXVMMPIN
= 0.556*( TX-32.0)
-11,16
»I«NCOT) = SNOUT (JHRR,iSNOUTJ*KHPIN
                                   235

-------
Appendix C (continued)
2(26.
2627.
2628.
2629.
2630.
2631.
2632.
2633.
2634.
2<35.
2636.
2637.
2638.
2635.
2640.
2641.
2642.
2643.
2644.
2645.
2646.
2647.
2648.
2649.
2650.
2651.
2652.
2653.
2654.
2655.
2656.
2657.
2658.
2659.
2660.
2661.
2662.
2663.
2664.
2665.
2666.
2667.
2668.
2669.
2670.
2671.
2672.
2673.
2674.
2675.
2676.
2677.
2678.
2679.
26EO.
26E1.
26£2.
26£3.
26£4.
2685.
842 CCM1MIE
C
845 IF (MCJL.EC.FPCC) GO TO 998
C
IF ( IKPP .KE. 24 > GC TO 998
IF (PACK. LE. 0.0) GC TO 998
WRITE 16,592) fMM f-CNTH) ,OAY
WRITEU,55C)
C
00 EEO 1-1,24
WRITE 16.991) I,(, 'C*TEJ ,4X , • TIME1 ,4X , • FLOH (CFS-CMS 1 • , 6X,
> 'SECIhEM (LBS-Ko-KG/MIN-Gh/L)1 ,23X,
X 'PESTICICE IGM-GM/MIN-PPM)')
SS5 FCRHAT «• • ,f IX , "VATtR1 ,24X,« SEDIMENT' )
C
C CORRECT l. ATE* BALANCE FOR SNOWHELT
C PACK AND £NGri EVAP
C
C PRR IS INCOMING PRECIP
C PX IS MOISTURE TO THE LAND SURFACE
C SEVAP IS SNO*» cVAP - NEGATIVE
556 IF (IEKC.EC.U JIvfiAL PRMR+SEVAP-PX-PACK+PACK1-LIQW*LIQHI
IF ( (SNEAL.n.C.CCOl). AfJi3.(SN6AL.viT. -0.0001) ) SNBAL*0.0
1SN6AL 1SFEAL « SNEAL
C
C
PACKl * PAO
LIQH1 * LIQk
Q **4*4 4*** ********* ****************
C END SNOhMELT
C 4444444*4************************
C PX IS TOTAL MOISTURE INPUT


























TO
C THE LAND SURFACE FRCf PRECIP
C AND SNOHMELT CURING THE HOUR
C
955 IF (IEKC .G1. 0) FR=«PX*TI MFAC/60.
C IfcNL>0 INDICATES SNOWKELT
C OCCORKED DURING THE HCUC
C
C
C
C
C 4 * * INTEFCEP1ICN FUNC . * » »
C
C
C EPXf - VAX. INTEPCEfTION STORAGE












                                    236

-------
Appendix C (continued)
26E6.
2tB7.
26C8.
2£E9.
2650.
2691.
2692.
2693.
2CS4.
2695.
2696.
2657.
2658.
2699.
2700.
2701.
27C2.
2703.
2704.
27C5.
2706.
2707.
27C8.
27C9.
2710.
2711.
2712.
2712.
2714.
2715.
2716.
2717.
2718.
<719.
2720.
2721.
2722.
2723.
2724.
2725.
2726.
2727.
2728.
2729.
2730.
2731.
2732.
2733.
2734.
2135.
2736.
2737.
2738.
2739.
2740.
2741.
2142.
2743.
2144.
2145.
C
C
C
C
C
C





C
C












C
C
C
C
C
C










C
C
C
C
C
C
C
C
C
C
C
C
C






SCEF - 1
EFX -
RLI -



IF
SN
sc
EP
GO


204 E
Ii
I
203 P
R
1
SI
Gl
205 S<
P
Rl
Rl



4*4


206 IF
IF
IF
EP
SNI
SCI
GC
210 SCI
SNI
EP


***
P4 IS "
st-Rcm
R>X(I) =
RC-»(I)
RGX(I)


BE)


221 CC :
F4 '
PESI
IF i
ShPt
IF
            SCEF - EXISTING IMEF. STORAGE
                 - AVAILABLE INTEP. STORAGE
                 - IPPERVICIS PINCfF CURING INTERVAL
                 IF (CCVER.GT.C.CC01) GO TO 204
                      = SNET « JCEP
                      * 0.0
                       C.C
                 GO TC 203
                           (C(VEF/COVRMX)-SCEP
                  IF(EP>.LT.(C.CCCin  EPXaO.O
                  IF (FF.LT.EPX) GO TO 205
                  P3= FP.-EP)
                  RL= P3*A
                   FLI-PL
                         SCEF4if>
                  GC TC 206
                  SCEP - SCEF*FF
                  P3-O.C
                  RU=0.0
                  RLI-C.O
                         INTEPCEFTICN £VAP
r * *
                 IF UNLMI.NE.OJ.CR.UMIN.NE.O))  liC TO 221
                 IF (SCEP.LE.C.C) GC TO 221
                 IF (SCEP.OE.EPJM GC TO 210
                      - EFU - SCEP
                 SNET - SNET « KEP
                      - 0.0
                 GC TC it I
                 SCEP*SCEP-EF1K
                 EPIN * 0.0
                                  FUNC.   ***
                         I-CISTUFE IN STORAGE OLOCK
                    > SLRFACE CETENTICN  AND INTERFLOh FHtlH 6LCCK I
                     SLRFJCE CETENTICN FRCM BLOCK I
                    - INTEPFLCH  CCCPCNENT fKuM BLCCK I
                    * VCLLHE TO INTER. OETEN STOR. FROM  BLOCK I
                 BEGINNING CF BICCK LOOP
                   ICO 1=1,!
                     F2 * FESE(I)
                     (I) = FESeU)
                   mO,*F4).lE.H(2*I)-l J*04FH  GO  TO  10
                      ) = (f4-( I J2*N-l)vD
-------
Appendix C (continued)
2146.
2141.
2146.
2149.
2150.
2751.
2152.
2153.
2154.
2155.
2156.
2157.
2158.
2159.
2740.
2U1.
2762.
2163.
2164.
2165.
2166.
2167.
2168.
2169.
2110.
2171.
2112.
2113.
2114.
2175.
2176.
2177.
2778.
2179.
2760.
2181.
21(2.
2763.
2184.
2165.
2166.
2767.
2168.
2769.
I ISO.
2191.
2192.
2793.
2794.
27SS.
2796.
2197.
2198.
2799.
2€CO.
2801.
2EC2.
2E03.
2604.
2605.





C
C
C
C
C
C
C
C
C
















C

C
C
C
C
C
C
C
C
C
C


















RXXd) « (F«-(( (2«I)-1)*D4RA/10.)>
CO TO 31
10 shRcm - o.c
25 RXX(I) > C.C
21 RGXX * ShPC(I)-F>Xm


«»» LFFEF ZCtE FIKTICN ***

FPE(I) - * SURFACE CETEMION TO OVERLAND FLOW
LZSE(I) - tPFEP 2CHE STORAGE IN EACH BLOCK
LZS - TOTAL UFFEF iOE STORAGE
RLZE(I) - ACDITlCft 1C U.2. STORAGE DURING INTERVAL

IF azsEm.ii.c.o LZSBUMO.O
LZRA(I)« LZSEID/LZSN
IF (UZRA(I).CT.6.C) GC TO 7
IF (UZR«( I ) .GT.Z.C) GC TO 8
LZIU)= 2.C= RXX(I)* FFE(i)
RGXU)=RG»«PFEU)
RGXX=C.O
RLZB(I)=-£»-RC(n-RGX(I)-RX8(I)
UZSE(n=UZ£E(l)-»RUZ6(I)

RIE(I) * F4 - F»B(I>



• * * CFFEB 2CKE EVAP * * *


REflK - «CCLM CMLY EVAF POT. FOR L.I. AND GRDMATERt I.E
PCHTICN NCI SATISFIED FROM U.Z.


IF ( (^U^'I.^E.£ UCR.dMlN.NE.O)) GO TO 290
IF (EPIh.lE-.U.CM GO TO 290
EFFECT=1.C
IF(CZRA(I).IE.2.0) GO TO 230
IF (liZSUn.LE.EPIN) GO TO 270
L.ZSBm*l.Z £^E1 « (PA*EPIN*EFFECT)*0.20
                                    238

-------
Appendix C (continued)
26C6.
2£07.
2608.
2£09.
2610.
2811.
2612.
2E13.
2614.
2615.
2616.
2E17.
2filB.
2€19.
2820.
2E21.
2£22.
2623.
2824.
2E25.
2826.
2€27.
2E28.
2E29.
2£30.
2831.
2632.
2€33.
2634.
2E35.
2E36.
2£37.
2838.
2£39.
2640.
2E41.
2E42.
2843.
2644.
2£45.
2 £46.
2E47.
2£48.
2E49.
2£50.
2££1.
2852.
2153.
2 654.
2ES5.
2€56.
2E57.
2858.
2(29.
2£60.
2£61.
2C62.
2€«3.
2864.
2(«5.







C
C
C
C
C
C
C
C
C





C
C
C
C
C
C
C
C
C
















C
C
C
C
C
C
C
C
C
C
C



                    GC TC  2SO
            27C     EDIFF*  EFIN - UZSBdl
                    REF1N=  FEFU «  EOIFF*0.20
                    ECIFF=0.0
                    SKET-  ShET -i FA*UZSB( I)»0.20
                    U2S£(I)»C.O
                    PL2Ed)'0.0
               * * * *
                           IMEPFLCW FUNCTION * * *
                SRGX(I) -  IMERflCW DETENTION STORAGE FROM BLOCK I
                1NTFU) -  IMERFLCW LEAVING STORAGE FROM BLOCK I
                SRGX7 - TCT/L  IMERPLCW STORAGE
                RGX7  - TCT/L  IfTERFLGW LEAVING STCAAGc DURING INTERVAL

            290   IKTF(I)  =•  LIRC«*SRGXd»
                  SRGXd) = SP-CX(I )4(RGXd)*PA)-INTF(IJ
                   RL-Rl +  IMF(I)*0.20
                  SRGXTj* SHOT  4  (RGXd)*PA-INTFd)>*0.20
                  RGXT-RGXT  +  IMF(I)*0.20

            ***    CVERIAKC  FICk  FOOTING ***
            RXE(I) * VCLLfE TC CVERL/NO SURFACE DETENTION FROM BLCCK I
             RCJE(I) = VCLUPE OF CVERLAND FLOW TC STREAM FROM BLOCK I
             PtSe(I) * V(OLU»E Cf CVERLANO Q REMAINING ON SURFACE
                         FRCf BUCK  I

                Fl- RXEdl-(FEE(I*
                IF (RXfi(I).lE.(FESE(I))) GO TO 34
                CE= OEC*((F1)4*C.6)
                GC 7C 35
             24 CE» (F31/2.C
             31 IF CF3.GT.(2.C*CE))  OE - F3/2.0
                IF (F3.LE.O.CC5) GO  TC 40
                DIMV* c.o
             42 RESB(I)- RXE(I)-fCSEd)
                   RCSE(I)   PCSE(I)*PA
                  PCSIM(I) * FtJf(I) * INTF1I)
                    * * »  LPFEP 2CNE DEPLETION » * *

             OEEPL(I) - CIFFEFEKE  IN UPPER AND LOhER ZONE RATIOS
             pEPcem - UPPER zc^E  DEPLETION FROM EACH BLOCK
             FEFC  - TCTAL L.2. CEPLETION
             If^FLT  - 1CTAL  HFILTRATICN
             PCS  - TCKL C\EPL*hC  FLCW TO THE STREAM FROM ALL BLOCKS
                   IF  ((NUPI .EC. OJ.ANO.UMIN .EQ. 0))
                   PEPCE(I) - 0.0
                   GO  TC 4?
GO TC 44
                                      239

-------
Appendix C (continued)
2666.
2667.
26*8.
2«69.
2670.
2671.
2E72.
2£73.
2674.
2675.
2676.
2477.
2678.
2679.
2660.
2681.
2C£2.
2683.
2864.
2665.
2866.
2667.
2868.
2889.
2690.
2891.
2£92.
2893.
2894.
2695.
2896.
2697.
2696.
2899.
2900.
29C1.
29C2.
2903.
2904.
2905.
2906.
2907.
29C8.
2909.
2910.
2911.
2912.
2913.
2914.
2915.
2916.
2917.
2918.
2919.
2920.
2921.
2922.
2923.
2924.
2925.
C



C

C



C










C
C
C











C
C
C
C
C
C
C
C
C
C
C














44
                    CEEFL(I)- ( (l2Sem/UZSN)-(LZS/LZSNI)
                    IF (CEEPL(I) .LE.O.C1) GO TO 47
                     PEPCBCI )«C.1*INFIL*UZSN*(OEEPL C.O
             302   IF JSPGXT.CE.It.CCOllJ  GO TO 305
                   LZS » LZS 4  SFCXT/PA
                   SRGX1 * O.C
                     DO 304   III*  1,5
             304     SPGXIIK)-  O.C
                * * *  LCfcEP  2C^E  /KD  GRCUNOHATER   *  *  *
               SE4S  -  E4SE
               SRCh  -  SLP CF  CFOV/TER  RECHARGE
              PPEL - *  CF  INF1LTRMICN  AND  U.Z.  DEPLETION ENTERING L.Z
               Fit  - GPCLNCkATEP  Ff CHARGE  - IE. fCKTION  OF  1NFIL.
                     ANC U.Z. CEFLETICN ENTERING GROWATfcR
               K24L  -  FR/CTICN CF H^  LOST TO OEcP GAD WATER
 305
                       LZI-l. 5*/6S I (LZS/LZSN)-!. 0)4-1.0
                       PFELM1.C/H.O+LZI))**LZI
                       IF  (LZS.LT.L2SM   PREL*l.O-PREL*LNRAT
 3C9
                       F1A  » (l.C-FFEL)*INFLT
                       IF «MM.K£.0).OR.(lMIN.NE.O))  GO TO 309
                       F2 = F2 4 FFEL*PfcRC
                       F1A  » fit 4 (1.0-PREL)*PERC
                       L2S= LiS«F2
                      > F1A*(1.C - K24L)*PA
                        SGh*LKK44(1.0 * KV*GMS)
                    Rt » Pt * CfcF
                    SEAS* GWF
                    SP-Ch* F1A4K24KFA
                                        240

-------
Appendix C (continued)
2926*
2927.
2928.
2929.
2930.
2921.
2932.
2933.
2S34.
2935.
2936.
2937.
2938.
2939.
2940.
2941.
2942.
2943.
2944.
2945.
2946.
2947.
2948.
2949.
2950.
2951.
2952.
2953.
2954.
2955.
29*6.
2957.
2958.
2959.
29 tO.
29(1.
2962.
2963.
29(4.
2965.
2966.
29«7.
2968.
2969.
2970.
2971.
2972.
2973.
2914.
2975.
2976.
2977.
2978.
2979.
29€0.
2981.
29£2.
2963.
2984.
2965.


C
C
C
C
C
C
C
C








C
C
C
C
C
C


















C
C
C
C
C
C
C




C


C
C
C
C
SCk'SGU - GHF * Fl
GhS»GMS « Fl

« * * GPCLNCKTER EVAP * * *


LCS - EVAP LCS1 FRO GRCUNDWATER

NOTE: EVAP FPO CRChATER AND LZ IS CALCULATED ONLY DAILY

IF ( (»-PFL/G.EC.C).OR.(IhRR.NE.21J) GO TO 101
IF (GfcS .CT. (.COOn GV.S =« 0.97*GHS
LCS= SGV>*H24Et0.0

« » * LChEP 2CKE EVAP * * *

AE1R - EVAP LCS1 FRC> L.2.


IF (REFIK.LT.(C.COOD) GO TO 351
LNP*T - L2
220 IF (FEPirs.U. m*LNRAT) ) GO TO 340
AETR= REP^*( 1.C-(REP1N/(2.0*KF*LNRAT)I)
GC TC 35C
340 AETR« 0.5<(KF AETR=AETR*(2.0*K3>
LZS=L2S - AETP
SK£T= ShET -i F/4AETR
ASNET AJhET + LCS + PA*AETR
351 PEFIK 0.0
1C1 SNETI = ShET - SNEI1



V.EAL Is/TEP EJLlhCE IN THE INTERVAL
ThE/L - ACCLPLL/1EO V^TER BALANCE


H8AL * 
-------
Appendix  C  (continued)
2*86.
2*87.
2*E8.
2S89.
2*90.
2**1.
2S92.
                L2S1-L2S
                U2S1»UZS
                PESS1»RESS
                SCEPl'SCEP
                SRGXTl=SPGXT
                SNE11-SNET
2*S4.
2*95.
2**6.
2*97.
2*98.
2999.
2CCO.
3CC1.
3C02.
2003.
3004.
3CC5.
3006.
3007.
2C08.
3009.
3010.
2C11.
3012.
2013.
3C14.
3015.
2016.
2017.
2018.
2C19.
3020.
3C21.
3C22.
3C23.
3024.
3025.
3C26.
2C27.
3028.
3029.
3C30.
3C31.
3032.
3033.
2C34.
3035.
3C36.
2C37.
3C38.
3039.
3C40.
3041.
3C42.
3043.
3C44.
3C45.
ASEAS * ASEAJ « JflAS
ASRCH * ASFCt- 4 SRCH
APR = AFR 4 FPP
APU = API 4 Fl
ARUI = AFU 4 fUI
APOS - AFC5 4 FQS
APGXT * *FGX1 4 PGXT







IF ((NUM.NE.O.CR.dMIN.UE.O)l
AEP1K AEFIh 4 EPIN1
ASKE1 " 
-------
Appendix C (continued)
3046.
2047.
3048.
3049.
3CSO.
3C51.
3052.
3053.
3054.
3C5S.
3056.
3057.
3C58.
2059.
3060.
3061.
2062.
3063.
3064.
3C65.
2066.
3C67.
2C68.
3C69.
3C70.
3071.
3C72.
2C73.
3014.
3075.
3076.
3C77.
3C78.
3C79.
3C60.
3C61.
3C82.
3C£3.
3C64.
3CE5.
3C66.
3C87.
3C£8.
3C89.
3090.
3C«l.
3092.
3C93.
2CS4.
3095.
2096.
3C97.
3C9B.
3C99.
3100.
2101.
2102.
3103.
2104.
2105.

C
C
C
C








C
S




r.











C
C
C











C














                 IF (hYCAL.EC.FRCC) CC TO 160

                               CUFUT FOR HSP LANDS CALIBRATION RUN
                 IF (IF .GT. 2)  CC TO 170
                 RU « |Plp*ARM*42i6C.J/(TIMFAC*720.J
                 IF ETR|
                1      WRITE (6,4*01)  MNAWMONTH) , DAY, IHR, IHN, QMETRC
                 GC TC 170

             16C IF (SKCW.EQ.K .Cf. PRINT.NE.OAYS)  GO TO 169
                    StPSNh « SLf'hC
                    PXSNH - F>JNC
                    SPXh » fELPAt
                    RAC^EH * F/CCEC
                    CORKEh - CDRhEC
                    CCKfEH - CC^^EC
                    CR^IKI- * CFJIfC
                    SGI'H = SCMC
                    s^EG^^l  * SKECCO
                    SEVAPH * SEV/fC
169 IF (CUTFLT.EC.
    WRITE (6.26CI
    WRITE (6,362)
    VRITE (6,362)
                               CLTFUT FUk HSP LANCS PRODUCTION RUN  ANO SUMMARIES

                                ^ETR) GO TO 161
    hRITE
    VRITE
    KRITE
    WRITE
    WRITE
    IF
                       (C,2ti)
                       (6,264)
                       U.36C)
                       (£,381)
                       (6,361)
              /FCSB.AROS
              A1MF,ARGXT
              AFtI
              /FCSIT,ARU
              A«E»S
                       (6,47t)
                       (6,479)
  .._ 	 AFF,*PR,APfc,APR.APR,APR
   ((SNCV.EC.NC).CR.(PACK.LE.O.OJ)  GO TO 181
                      SNCIkMELT OUTPUT
WRITE
WRITE
WRITE
WRITE
WRITE (6,482) P/CKEh
WRITE (6,482) CO>EH
WRITE (6.48O CCF>6H
WRITE (6,48*1 CF/INH
WRITE (6,466) SCMi
WRITE (6,4£7) SfEGMH
WRITE (6,49C) F/CK
   CCVR = ICO.
   IF (FACK .LT. IPACK) COVR   (PACK/IPACK)*100,
   IF (FACK.GT.C.C1) GO TO 1078
                                       243

-------
Appendix C (continued)
2106.
2107.
3108.
2 I OS.
3110.
3111.
2112.
3113.
3114.
3115.
3116.
2117.
3118.
•119.
3120.
3121.
•122.
3123.
2124.
2125.
2126.
1127.
3128.
2129.
2120.
3131.
2132.
2133.
2134.
2125.
2136.
2137.
2138.
3139.
3140.
3141.
3142.
2143.
2144.
2145.
2146.
3147.
2148.
3149.
2150.
3151.
2152.
2153.
2154.
2155.
2156.
3157.
215fi.
2159.
3160.
2161.
2162.
3U3.
3164.
3165.
CCVP-0.0
SOEMO.O
1C1£ WRITE (6,491) SCEh
WRITE (6,492) CCVF
WRITE (6,4€U JEVAPH
161 WRITE (6,361)






WRITE (6,26£) AEFIN, AEPIN, AEPIN, AEPIN, AePIN, AEPIN
WRITE (6,26S) A£hET,ASNET,ASN6T,ASNtT,ASNET
WRITE (6,382) CCVER
WRITE U,37C)
WRITE (6,271) U2JE,L2S
WRITE (6,272) li«,LZS,LZS,LZS,LZS,LZS
WRITE (6,372) SGV,SGW,SGW,SGW,SGW,SGW
WRITE (6,274) SC E F,SCEP,SC£P, SCEP,SCfcP ,SCEP
WRITE (6,27!) REJE,RESS
WRITE (6,37C) SFG>,SRGXT
WRITE (6,371) TVEAL
IF ((SNCW.EC.VES).AND.(PACK.GT.O.OI) WRITE
161 IF (CLTFCT.EC. EKL) GO TO 171
C
C METRIC CCNVERSICKS FCR CUTPUT
APR *«PP.*tfFIh
ARCS ^AROS^^XPH
ARGXT *«RCX74MiFlK
ARtl =ARtI«fhFIf
ARU «AR(J*^^FI^
/SEAS aASCAClfPF Ih
A£RCH =ASRCKM'Hh
AEPIN **EPIMi>Mnfc
A!NET >AS^E1*^HH^
tzsMET*^.zs*^»•FI^
Lzs^•ET»Lzs*^^'FI^
SGWMET-SGWOHFI*
SCEFCT-SCEP^^fP^
RESS^TaF.ESS*^^•Fl^
TWBLf'T-TWEAl^^MFIh
£PGXTf>£RGX14»KllN
C SKCW
IF (SNCV .EC. NO GC TO 163
SLMSM- = SOfSNhOfPIN
PXSNH = PXSM-*^'^FIN
SPXh * SPXKJ-^PH
PAOMEH * RACPEMtfPIN
CCNHEH » CChNEKhCPIN
CCPf-EH - CCFfEMffPIN
CRAINH < CR^lKKfMPIN
SGNh * SG^'^•<^^PI^
SNEGKH « SKEOMf^PIN
PACKfL > PACK4>->FIN
SEVAPI- - SEVAFMFfPIN
TSNer'L = ^s^E*^.«^^PI^
162 00 162 1=1, I
APCSE(I) >4FC£E(I)*MMPIN
AINTF(I) *AIMF(I)*KMPIN
AFCSn(I) = AFC£lT(I)*MMPIN
UZSefT(I)*l2SE(I)*MKPIN
RESefT(I)=RESE(I)*ffPIN
SRGXCT ( I )«SPG> ( I )*»>KPIN
162 CCNTIME
WRITE I6,46C)
,ASNET









(6,489)










































                                                                TSNBAL
                                     244

-------
Appendix C (continued)
2166.
2167.
3166.
2169.
3170.
3171.
3172.
2173.
-114.
3175.
3176.
3177.
3176.
2179.
3160.
3181.
3182.
3183.
3184.
2185.
3186.
3187.
2168.
3169.
3190.
2191.
31*2.
3193.
3194.
3 IS 5,
2196.
3197.
2158.
3199.
3200.
3201.
3202.
3203.
3204.
3205.
22C6.
3207.
3208.
3209.
3210.
2211.
3212.
2213.
3214.
3215.
3216.
3217.
2218.
2219.
3220.
2221.
3222.
2223.
2224.
3225.
hRITE (6,3621
hRITE (6,363) AfCS6,AROS
hRITE (6,364) A1MF.ARGXT
hRITE (6,265) AFU
hRITE (6,360 APC5I7,ARU
hRITE (6,38C) A«f«
WRITE (6,36)) AJFCH
hRITE (6,361) AFF,APP(APR,AP*fAPR,Af>H
IF (SKCV.EC.KC .CF. PACK.LE.0.0) GO TO 162
hRITE (6,411) H>ShH
hRITE (6,475) f>SNH
hRITE (6,48C) JF>H
hRITE (6,4€1)
hRITE (6,482) MCMEH
hRITE (6,4€2) CCMEH
hRITE (6,484) CCRMEH
hRITE (6,465) CFJIMi
hRITE (6,4€«) «C>H
hPITE (6,461) ffEGfh
hRITE (6,49C) FACKPL
CCVR * 1CO.O
IF (FACK.LT.1F/CK) COVR => (PACK/ IPACK)»100.
IF (FACK.G1.C.C1) GO TO 1079
CCVP » O.C
SCEN * O.C
1C7S WRITE (6,491) J) GO TO 170
SL'MSNC C.C
PXSKC C.O
HELR/C C.C
RAO'EC C.C
CCRCEC C.O
CCKPEC .0
CRAUC ,C
SOC .C
SNEGfC .C
SEVAFC .0
C
C FCFPAT STATEMENTS
C
378 FORMAT (• + • ,i 1X,F«.2,2X,F6.3)
379 FCPM/T (' •,/l£,l>,I2,2X,I2,«:l,I2)
36C FCPH/T (•0«,€>,fVATER, INCHES'!
362 FCRMM ( «0« , 1 IX .'PLNCFF* )



















                                   245

-------
Appendix C (continued)
3226.
3227.
3228.
2229.
3230.
3231.
3222.
3233.
2224.
3235.
2226.
3237.
3236.
2239.
3240.
2241.
3242.
3243.
2244.
3245.
2246.
3247.
3248.
2249.
3250.
2251.
3252.
3253.
3254.
3255.
3256.
3257.
3253.
2259.
3260.
3261.
3262.
3263.
2264.
3265.
2266.
3267.
3268.
3269.
2270.
3271.
3272.
3273.
3274.
3275.
3276.
3277.
3278.
3279.
3280.
3281.
3262.
3263.
3284.
32£5.
363 FCRMAT
364 FCRHAT
365 FCPMAT
366 FORMAT
380 FCPMAT
361 FORMAT
261 FORMAT
47£ FCRfAT
47« FCRHAT
46C FORMAT
461 FC"PAT
482 FORMAT
483 FCRMT
464 FORMAT
465 FCRMAT
486 FCRMAT
461 FORMAT
• • ,14X,«CVEPLANO FLOW ,5X,5 (F6.3 ,2X ) , IX, F8
• • , 14 X,' INTERFLOW ,9X, 5(Fb. 3 t2XJ , 1X.F8.3)
• • ,14X,MMFERVlUUS't59X,Fb. J)
• • .14X ,'IOTAL1 |13X,5(F8.3,2X) , 1X.F8.3)
•C' illX.'EASc FLUVi' ,o3X,fa.3)
• • tllX,»C-RChATER KECHARGESSSX.FS.S)
.3)





•O1 ,1 IX, 'PRECIPITATION' ,bX,5 (F7.2.JX) ,1X,F7.2)
' • ,14X,'S.AC*',65X,F7.2)
• •,14X,«PAIN CN SNOW ,57X,F7.2J
• •f^Xt'f'ELT £ R.A1N1 ,58X,F7.2>
'O1 ,11X,'>ELT« )
' • ,14>, 'RADIATION' ,60X,F7.2)
• • ,I4X, 'CONVECTION', 59X,F7. 2)
• • ,14X, 'CONDENSATION1 ,57X,F7.2)
• • ,14X,'PAIA McLT' ,60X,P7.2)
' • ,14X,'CRCUNO MELT' ,58X,f7.2>
• •«14»,«CU»' K£G HcAT' ,57X,F7.2J
490 FCRMAT ( «0 • 1 1 IX . 'SNCfc PACK* ,63X,F7.2 )
4«1 FORMAT (• -tllXt'SNCti DENSITY' .60X.F7.2)
492 FORMAT
46£ FORMAT
361 FCRMAT
366 FCRMAT
36< FORMAT
363 FCRMAT
27C FCRMAT
371 FORMAT
372 FCRMAT
272 FCRMAT
314 FCRMAT
215 FCRMAT
316 FORMAT
371 FCRMAT
46< FORMAT
460 FCRMAT
1 '.IIX.'J 5NCM CCVEK* .60X.F7.2)
•0« ,llX,»SNCh EVAP" ,63X,F7.2)
•0' ,11X,'EVAPCTRANSPIRAT1CN' 1
• • ,14X,' POTENTIAL' ,9X, 5 (F7. 2,3X) , IX,F7.2I
' • ,14X,'NET' ,15X,5(F7.2,3XJ ,1X,F7.2)
• -,14X,'CROP COVeR' ,59X,F7.2)
•0' ,llX,'STCRAGcS' )
' I,14X, 'UPPER ZONE' ,8X,5(Fd.3,2X) .1X.F8.3)
• - ,14X,'LCV«ER ZONE' ,UX,3(Fo.3,2X), IX.F8.3)





















1 • ,14X,'CRCUNOHATER' ,7X,5 (F d.3 ,2X) ,1X,F8.3I
• •,14X,' INTERCEPTION' , 6X, 5( Fd.3 ,2X) , IX ,F8.
' • ,14X,'CVERLAND FLOrJ' ,5X,i (Ftf.3 ,2X ) , IX, F8
• • ,14X,« INTERFLOW ,9X, 5(F6. 3,2X1 ,1X,F8.3)
•0' ,11X,'VATER BALANCE=>',F8.4J
• (,llX,'SNCh BALANCED • ,F6.4)
•O1 ,6>,'VATER, MILLIMETERS*)
4901 FCRMAT ( »C' tA6 , IX , 12 ,2X,I2 t • : • ,12, 3X.F6.3)
C
17C APR * 0.0
AEPIN > 0.0
ARU = 0.0
ARUI •= 0.0
AROS » 0.0
ARGXT * 0.0
ASNET - 0.0
AS8AS - 0.0
ASRCH » 0.0
CC 172 I«l,5
APCSE(I) * O.C
AIMFU) > 0.0
ARCSIT(I) * C.C
172 CONTINUE
C
16C IF (SNCh.EC.m GO 7C 190
C
C ZER& HOURLY VALUES
SLMSNH - O.C
PXSKH * 0.0
RACMEH * O.C
CORK EH - O.C
CCMEh " O.C
3)
.3)





























                                    246

-------
Appendix C (continued)
3286.
3267.
3266.
3269.
3290.
3291.
3292.
4COO.
4001.
4CC2.
4003.
4004.
4CC5.
4006.
4007.
40C8.
4CC9.
4C10.
4011.
4012.
4013.
401-4.
4015.
4016.
4017.
4018.
4019.
4020.
4021.
4022.
4C23.
4C24.
4025.
4026.
4027.
4028.
4029.
4C30.
4C31.
4032.
4033.
4034.
4035.
4C36,
4037.
4038.
4039.
4C40.
4041.
4042.
4043.
4044.
4045.
4C46.
4C47.
4048.
4C49.
4050.
4C51.
4CS2.







C
C
C
c

c
c
c
c
c








c




c












c



c



c


c
c
c
c
c
c
CRAINH » O.C
SGPH * C.O
SNEGMH * O.C
SEVAPh - O.C
SPXH - 0.0
19C PETLRK
ENC




SIERCUTINE SECT


StDIMcNT EROSION MODEL


CIMENSJCN PESE(5 ) ,PESB1(5 ) ,ROSB( 51 ,SRGX(5 ), INTF ( 5 » ,RGX( 5 ) ,INFL(5) ,
1 LZSe,RJB(5),ERSN(5)
CIKENSICN SFER(J),RCBTCM(5J,ROBToT(bl,INFTOM(5),INFTOT(5),
1 ROITCM5) ,RCITC1 (5 ) ,RX8(5 ) ,ERSTCMO J ,£RSTOT ( 5 ) ,MKAH( 12 ) ,RAD( 24) ,
2 TEMPX(24),HNC><24) ,RAIN (268 ) ,UZSBMT( 5J ,R£SB*T (5 ) , SRGXPT (5) ,
3 SREPHT(S)
DIMENSICN AEPJN<5),AERSNM(5)
CI*ENSICN IST/R1J)

COMKCN /ALL/ RU ,hYMI N ,PRNTKE,HYCAL .DPST.GUT PUT.TIKFAC, LZS,AREA,
1 RESBl,FOSe,SFGX,INTffRGXfINFL,lUSfc,APtRCB,RIB,ERSN,M,P3,A,
2 CALE,FPQC,FEJT ,NLTP,£N)jL ,M£TR»BCTH,fil:SB,YES,NC,II*IN,IHR,TF»
3 JCCLNT,PRIM,IMP.,CAYS,HOUR,MNTH

CCHMCN /LANC/ f ltt> ,PRTOT, ERSNTT, PRTOW,EKSNTM,CAY,
I RUTCMtNEFTCW,RCS10H,RITuM,KIiNTOK,BAiTuMtRCHTCf,RUTOT,
2 NEP1CT,RCSKT,F ITOT .RINTOT .OASTCT ,nUHTUT ,Th6 AL, EPTOM, EPTOTt
2 OZStUZSN,LZ£N, INFIL,lNTcR ,IRC,NN,L, Si,SGWl ,PP,SGh,GWS ,KVt
4 K24L,KK24,K24El,EP,IFS,K3,£i>XM,RES^l,KcSS,SCEP,SCEPl,SRGXT,
* SRGXT1,JREP tKREF,JSER,KS£R,SRERT,MMf-lN,METGPT,SNCW,CCFAC,
6 SCF,ICNS,F,CGH,V.C»"PACK, EVAPSN.HtLE V, TiNUH ,PETMI N, PETHAX,ELDIFt
7 DEh>fPACK,CEFTl-tKNTHtSDEN,iPACK,TMlN,$JMSNM,PXSNMtXK3,
8 l•ELRA^',RAC^E^',CCP^•EHfCRAiNM,CUNME^•.,SoMM,SN£G^'H,SEVAPK,SL^•SNYt
9 PXSNY,l"ELR/Y,PEY,CORH£Y,SGMY,CCNKcY,CkAINY,SNEGMY,SEVAPY,
* 1SNEAL,CCVER,CCVfiMX,ROaTOM,ROBTCT,RXB,RJITC^,ROITOT,INFTCM,
1 INFTCT,ERSTC»',EFSTCT,SRERtTEMPX, HAD, WINUX.KA IN, INPUT

INTEGER PPMKE,h\CAL,OUTPUT,CALB,PRGO,ENGL,METR,BOTH,TIfFAC
INTEGER FEST,NLTP,YES,NO
REAL*8 PNA*

PEAL JREP, KPER, .SER, KSER
REAL EFSNT1, SFFTMT
REAL ^^PI^, ^E1CFT, KGPLB

CATA ERSNT/C.O/, AERSN/5»0.0/
CATA IASTPK/»*«/, IELANK/* •/

SEF - TRANSFCPT CAPACITY OF OVERLAND FLOW IN TUNS/ACRE
ERSN = ERCSICN PEACHING STREAM
SRER ~ FINES CEFCSI1 IN TONS/ACRE

ZEKING OF VARIABLES
                                    247

-------
Appendix C (continued)
4CS3.
4C54.
4055.
4056.
4057.
4058.
4059.
4C60.
4C61.
4C62.
4063.
4C64.
4065.
4C66.
4067.
4C68.
4C69.
4C70.
4071.
4C72.
4013.
4C14.
4075.
4C76.
4C77.
4C7S.
4079.
4CEO.
4C81.
4CE2.
4063.
4C64.
4CC5.
40£6.
4CC7.
4068.
4Ct9.
4CSO.
4091.
4C92.
4093.
4094.
4CS5.
40S6.
4C97.
4C98.
4C99.
4100.
4101.
41C2.
4103.
4104.
4105.
4106.
4107.
4108.
4109.
4110.
4111.
4112.
C


45SS

C
C
C




C



C
4444



C
4501


C
4446
4452
C

C





4456
C
C
C


C

C




C


C
C C
C
C




                SRERT > 0.0
                CO 459S I«l,5
                ISTAR(I) -
                ERSNT =• O.C

                              SCIL EROSION LOOP

                   REP - II. 0 - CCVER)*KRER*PR**JRER
                CO 4452 I-ltS
                      SPER(l) - SFER(I) * RER
                   IF URCSEdHFESEdM.GT.O.O) GO TO

                      EFSKMJ * G.O
                      SER = C.
                      C-C TC 444«
                      SER » K  SRER(I) - ERSN(I)
                      IF (SFEFU)  .LT. 0.) SRER(I) - 0.

                   AERSKdl * «£F£N(I) 4- ERSN(I)
                   CCMINOE

                 IF (PFMKE  .EC.  CJ   GC TO 4490

                   CC 4456  I«l,I
                      ERSNT * EFSKT  * AERSN(I)*0.2
                      JRERT » SFEPT  .+ SRER(I)*0.2
                      EPSTCKI)  *  ERSTGH(I) + AEKSN(I)
                      ERSTCKI)  »  ERSTOTII) * AERSN(I)
                      CCMIME

                              CIMLATIVE RECORDS

                 ERSNTf*  « ERSMM  «  ERSM"
                 ERSNTT  - ERENT LOSS TO LBS.t KGS.t  K6.S/HINUTE,  AND
                                                GM/L FOR OUTPUT
EPSM«2CCO,»AREA
EFSNTF4.454
                  ERSNTF
                  ERSMK
                  ERSKKP-
                  ERSNCf = EF«KTF«454./(RU*TIHFAC*60.*2d.32l
                                       248

-------
Appendix C (continued)
4113.
4114.
4115.
4116.
4117.
4118.
4119.
4120.
4121.
4122.
4123.
4124.
4125.
4126.
4127.
4128.
4129.
4130.
4131.
4122.
4133.
4134.
4135.
4136.
4137.
4138.
4139.
4140.
4141.
4142.
4143.
4144.
4145.
4146.
4147.
4148.
4149.
4150.
4151.
4152.
4153.
4154.
'155.
4156.
4157.
4158.
4159.
4UO.
5COO.
5001.
5CC2.
5C03.
5CC4.
5CC5.
SCC6.
SCOT.
5008.
5C09.
soio.
5011.
C
C
6S2

C
ES3

4SSS

C
C
C
C
446C



4462





4461



C
C
C
4480
44E1
44E2
4484
4485
49C2
C
44C1

448$
C
44SC
C


C
C
C
C

C
C
C

C

IF (NUTP .EC. YE5) C-C TO 892
WRITE (6,4*64) ERSNTP, ERSNTK, ERSNM, ERSNCf
GO TC ES3
IF (OUTPUT. EC. ENGU .OR. OUTPUT. EU. BOTH) WRITE (6,4902) ERSNTP
IF (OUFUT .EC. >ETR) *R1TE (o,<,902) ERSNTK

IF (HYCAL.EC.CALE .ANC. PEST. EQ. NO .AND. NUTR.EO.NO)
1 WRITE (0,4999) (ISTAR( I) ,1*1 ,5)
FCRhM <«*',74X,5AU
GO TO 4487


PRINTING OF OUTPUT

IF (CUTPUT.EC. FETR) GO TO 4462
WRITE U,44EC)
WRITE (6,44(1) (4EPSMI), 1 = 1,5), ERSNT
WRITE (6,44(2) <ETCFT*2.471
CO 4461 1=1,5
AERSMk(I)=AEFJN(I )*)»ETOPT*2.471
SRERfT(I)=SPEP(l)*^ETOPT*2.471
CCNTIhUi
WRITE (6,44(5)
WRITE (6,44(1) 4EPSKP, ERSNTI
WRITE (6.44E2) SFEPM, SRRTHT

FCRfAT STATEMENTS

FCRMAT J«C' ,€>, 'SEDIMENT, TONS/ACRE')
FCRI»AT (• ' .IIX.'ERCCEU SEUIrtENT • ,4X,5 (3X,f 7.3) ,4X,F7.3)
FORMAT (• • ,11X, 'FINES D£PCS1T' ,bX,5 (JiA,F7. 3) ,4X,F7.3)
FCRMAT (•*• ,26X,4(2X,F7.2)I
FORMAT CO' ,€>,'SEOI*ENT, TCNNES/HECTARE' )
FQRP/T ('+' ,20X,F€.2)

CO 448S 1=1, J
AERSN(I) a 0.0
CONTINUE

CONTINUE

RETURN
END




SUBROUTINE /CSPE



IMPLICIT PE/ld)
OIKENSICN PESE(5),RESei(5),ROSB(5),SRGXr5),INTF(5),RGX(5),INFL(5),
1 LZSe(5),AFEFC8(«),RIB(5) ,ERSN(5)
                                   249

-------
Appendix C (continued)
5012.
5013.
5014.
5015.
5016.
5C17.
5018.
5019.
5020.
5021.
SC22.
5023.
5024.
5025.
5C26.
5027.
5028.
5029.
5C30.
5031.
5C32.
5033.
5034.
5C25.
5036.
5C27.
5038.
5039.
5C40.
5041.
JC42.
5043.
5C44.
5045.
£046.
5047.
5048.
5C49.
5C50.
SCSI.
5052.
5053.
5054.
5055.
5C56.
5057.
5058.
SC59.
5C60.
5061.
5062.
SCO.
5C64.
5C65.
5C66.
5067.
5C68.
5C69.
5C70.
5C71.










C




C









C


C





C




C




C


C
C




C




C

                                          ,AUPRP(5J.UPRISMiil
                  u« «j\. * - * f *• w r n \ * i 9 wr r\ i, \ j t f Mur r\r \ s M ffurr\A^n%«*f
                 CIMEf^SlCN  CTL(5).fFLAGC5),CAOL(5),STLC5) ,KDL(51
                 CCMMCN /ALL/ RL ,h\MIN,PRNTK£,HYCAL fUPSTf OUTPUT, TIKFAC, LZS, AREAf
                1 RESeitPCSetSFGX«INTFTRGX.lNi'LtUZ^B,APEKC8,RIB,ERSNfM»P3«A*
                2 CALe,FRCD,FEST,NLTP,ENGL,METR,BCTH,RtSd,YES, KC, IMN, IhR ,TF,
                3 JCCLNT, FFIM.I MR, CAYS, HOUR, MNTH

                 CCMMCN /PES1C/ <1 ST,SPROTMtSPRST»<,SAST, SCSI t SCSI, LIST, U AST, UCST,K,
                2 UPRITT,KGPie,FFL2,CL2,LSTR,LAS,LCS,LUS,GSTR,CAS,GCS,GOS,
                3 AFMCCE,TFe*Lt
                4 CEGSC»>,CEG£C7,CECUCf t
                5 OEGLCl,OEGL*CEC£tNIP,OEGCON,OEGI.CH,OEGLJT,NCCfL, OUTPUT, CALB,PRCU,NUTR,PEST,ENGL,PETR, BOTH
                 INTEGER  CESCFP,YES,NC,TIMFAC

                 REAL  f, M, ft Kh, INFW, INfL
                 REAL  S1STKT, S^STfT, SCSTHT, SOSTMT
                 REAL  STSPE1, S/£t-El, SCSMET, SOSMET
                 PEAL  t-PFIN, ^EICFT, KGPLB
                 PEAL  ^P, MF, hCCM, KD, CT, ST , CAD

                 REAL  LTSTM, U/STMT-, UCSTMT, UOSTHT
                 REAL  L1SHE1, C/Sf'ET, UCSMET, UOSMET
                 REAL  fUZ, jNFh,  1N7F
                 REAL  KCU, CTL» £TU, CAOU

                 REAL  KNFh, MZ
                 PEAL  LSTRM, L/S^ET, LCSMET, LOSHET
                 REAL  GSTRF1, G/£fETt GCSHET, GDSMfcT
                 REAL  KCL, CU, STL

                 REAL  CtZ,X,FF,FTCT,FPUZ,CAOL,FPLZ
                 INTEGER  rFLAC* JFLAG« KFLAG


                 CATA  SPS1, SASCT,  SCSCT, SPRT,  SPRST, SPRTT,  SPRPTT/7*0.0/
                 CATA  SPRC7,  «PFF1/2*0.0/,  INFH/O.O/
                 CATA  ASPP, /!£PF<,  4SFRO, ASPRP/20*0 .0/
                 CATA  SCSC. SFCFJ,  SCSCT/ 11*0. O/

                 CATA  LPST, l/SCT,  LCSCT, UPRT/4*0.0/
                 CATA  LCSCT,  IPF F1/2*0. 0/ ,  JNFM/5*0.0/>  UPRIT/0.0/
                 CATA  /LPP, AUPFI,  AUPRP/15*0.0/
                 CATA  ALPRF/C.O/

                 DATA  CT/5*C.(/,JFL#G/5*0/,CAO/5*0.0/tST/5*0.0/
                                        250

-------
Appendix C (continued)
SC72.
5013.
5C74.
£075i
5C16.
5C77.
5C78.
5C79.
5C60.
5CE1.
5C62.
5CC3.
5CE5.
5C86.
5087.
5088.
5C£9.
5090.
5091.
£C92.
5CS3.
5CS4.
5095.
5C96.
5CS7.
5C98.
510ol
5101.
5102.
£103.
£ 104.
5105.
5106.
5107.
5108.
£109.
5110.
5111.
5112.
5113.
5114.
5115.
5116.
5117.
5116.
5119.
5120.
5121.
£122.
5123.
5124.
£125.
£126.
£127.
£128.
£129.
5130.
5121.
DATA
CATA
C
C
C
C
C
C
STST
SAST
SCST
SCST
CD CkJ
t " lj 11
esPTi
C
C
C
C
PA -
2 =
KK =
CC 5
II
F
A
I





£215 X
F
I






C
£316






C
C
C
£3Z1
5317




C
5319
                       CTU/5*C.C/,KFLAG/5*0/,CADU/5*0.0/,STU/5*0.0/
                       CTL/5*O.C/f*FlAG/i>*0/tCADL/5*0.0/,STL/5*0.0/,KDL/5*0.0/


                                  SURFACE SOLUTICN ADSORPTION-CESORPTION  KJDEL

                               ZEFCUG VARIABLES

                      > 0.0
                      ' 0.0
                      ' C.O
                      ' 0.0
                       - 0.0
                      r * o.c

                               ACSCPPTION-OESORPT10N SOLUTION LOOP
                                   WITH REVERSIBLE UESQftPTION
   1.0 - t
= LOCCOOO.*«(M-l»

 5320  1*1,£
 INFh   C.2*AF
 FTOT = S/SU ) * SCS(l)
 ASP1CT = ASFUT + PTOT
    (F7CT.G1.FF) GC TO 5315
    S*S
    SCSU) * FILO
    SCS(I) - Ch*X*INF«
    JFLAG(I) > C
    CT(I) = 0
    GC TC 522C
                                              I))*226512.
                                             SOS(I) * SSTRIII
                                    + FP
                                    - INFW*CMAX
                                    O)  GO TO 5316
    SCSII I < C.C
    IF (IM^.CE.O,
    SAS(I) •* F1CT
    SCS(I) « C.O
    JFLAGII) * C
    CTUI « 0
    GC TC £22C
                                     001) GO TO 5321
   CCt-PLTE C
                                    X BY THE ADSORPTION cUUATICN
                       INFWOCMAX)
                       C = C>/>*F1C1/(X
                       X = KI«*C*^M * FP
                       C - (F1C1/O+INFW*O) - 1.
                       IF (AE«(C).LE.O.Ol) GO TO 5319
                          C « C*FTCT/(X * INFW*CI
                          GC 1C £217

                          IF (CE5CFP .EQ. NO)  GC TO 5324
                                       251

-------
Appendix C (continued)
£133.
5134.
£135.
£126.
5137.
5138.
£139.
5140.
£141.
£142.
5143.
5144.
5145.
£146.
£147.
£148.
£149.
5150.
£151.
£152.
5153.
5154.
£155.
5156.
5157.
5158.
£15S.
£160.
£161.
£162.
£163.
5164.
£165.
£166.
£167.
5168.
5169.
£170.
£171.
£172.
£173.
5174.
£175.
£176.
£177.
£178.
517S.
£180.
51E1.
5182.
5163.
5184.
£185.
5186.
£187.
5168.
51E9.
5 ISO.
5191.
1
1
C
5324

C
£22C
C
C
C

C







C






C



£22?
C




C
C

C
£33C
C

C
C
C





C



C



                CALL OSFTN  (I ,CT ,(, JFLAG,CAD,KO,K, Z, NC.OM,
      SCJCIJ  •
                                   (C*1NFH)*(PTOT/U*C*INFW)»
                                   X*(PTOT/(X+C*INFH) )
                   CONTINUE
                CO 5330
                               PESTICIDE  REMOVAL LOOP
CS * 4C0.4«REMERSM(I>/H
IF (CS .CT.  l.C)  CS =  1.0
SAPS
          scsm*QS
          SAFS(I) * SCPS(I)
                    SCPS
                    SPPS
                    SAS(
                    SCSI
      >  *  SAfs
       = S*S(I> - SAPS(I)
       - scsii) - SCPS(u
                       SFRC(I)  =
                       SFCFS(l)
                       SPRPM)  '
                       SPRU )  «
             C.O
            * 0.0
             C.O
            C.C
                    IF
   
                    ASPRS(I)
                    ASPPC(I)
                    ASPRP(I)
         > SCS (I)* - SPKO(I)  - SPCFS(I)
         SFPC(I) » 3PKSU)  + SPRP(l)
         £FCF«(I)
          ASFP(I) 4
           ASFPSdl
         * ASFFF(I)
                     SPR(I)
                     *  SPRS(l)
                     *  SPRG(I)
                     +  SPRP(I»
                    RESEKI) * C.C

                    CCMINtE

                 IF (FRNTKE .EC. C)  GC TJ 5390

                               PFEFARATION OF OUTPUT
DC £22£
   SPRT '
   SFRCT
   SFRST
   SPRPT
                              SFFT +0SPRU )
                               SFFCT *ASPKO(I1
                               SFFST *ASPRS(I)
                               SFFFT »ASPRP(I»
                       S«ST - SAJT «• SASCI )
                       SCST =« SCSI * SCSCII
                       SCST - 
-------
Appendix C (continued)
51S2.
£193.
£194.
£195.
•156.
5197.
5198.
5199.
5200.
•201.
5202.
£203.
£204.
5205.
£206.
£207.
£208.
£209.
5210.
•211.
5212.
£213.
5214.
£215.
£216.
£217.
£218.
£219.
£220.
£221.
£222.
5223.
£224.
£225.
5226.
5227.
£228.
5229.
£230.
£231.
£232.
5233.
£234.
£235.
5236.
£237.
£238.
5239.
5240.
5241.
5242.
£243.
£244.
5245.
£246.
£247.
£248.
1249.
£250.
5251.
C

C
 I
C
C
             SCSCT  -  SC5CT  *  SCSCU)*0.2
             scscm  =   PRSTuT(l) * ASPRS(i)

        SFRCTP    SFRCTf * SPROT
        SPFSTM =»  SFRSTJ- + SPRST

        SFfTT - SFFTT * SPRT
        SFRCTT »  SFPCTT » SPRQT
        SPRPTT    JFPfTT * SPRPT
        SPRSTT *  SFRSTT » SPRST

     IF (PF.NTKE .EC. 2)  GC TO 5370
        IF (I-YCAL  .E(. PPOC)  GO TO 5340
        IF (RU .17. MMM  GO TO 5370
           SFRTGV  « IFPOT*454.
           SPRTCV  - (SFPCT/(RU*TIHFAC*60.*62.43))*1000000.
           SPRIGS  « JFPST*454.
           SFPTCS  • C.O
           IF (EFSM.CT.0.0)  SPRTCS= (SPRST/(ERSNT*2000. ) 1*1000000.
           GG TC  £27C
                   PFUTUG OF OUTPUT
 £340
     IF (OUTPUT.EC.
     tRITE (£t53£C)
     URITE ((,5311)
     VRITE (t,53£2)
     fcRITE (£,53£3)
     VRITE (£,£3C1)
     fcRITE (£>53£4)
     kRITE (£,£2*2)
     hRITE (6,5313)
     kRITE (t,53«l)
     hRITE (6t53*£)
     VRITE U,53££>
     VRITE «,53£1)
     VRITE (6,53£S)
£341 IF (OUTFIT.EC.
         »ETR) GO TO 5341

          JTS, STST
          <«S, SAST
          JCS, SCST
         JCf, SOST
          JFS, SPST
          <^
-------
Appendix C (continued)
£252.
5253.
£254.
£255.
5256.
5257.
5258.
£259.
£260.
5261.
5262.
5263.
5264.
£265.
5266.
5267.
5268.
5269.
5270.
£271.
5272.
5273.
5274.
5275.
5276.
5277.
£278.
5279.
5260.
£2£1.
5282.
5263.
£284.
5285.
£286.
5267.
5288.
£269.
5290.
5291.
5292.
S293.
£294.
5295.
5296.
5297.
£298.
5299.
5200.
5301.
5202.
5203.
5304.
52C5.
5306.
5207.
5208.
5309.
£210.
5211.
SPRT =SPPT*KCFIE
SPRST *SPRS1*KGFIE
SPFGT = SPRCT»KGFie
SPRPT =£PRF1*KC-FIE
DO £342 I»l,5
STSfEK I)=STS(I)*KGPLB
SASMET(I)=S/Sm*KGPLB
SCSMEK I)=SCS(I)*KGPLB
SCSPET(I)=SCS(1)*KGPLB
ASPR(I) »ASFF(I)*KGPLB
HSPRS(I) =*SPFS(I )*KGPLB
ASFFC(I) **SPFC«I)*KGPLB
ASPRP(I) =/JPFF(I)*KGPLB
£342 CCNTINLE
VRITE (6,53£C)
V.RITE It, 5363) JTSHET, STSTMT
fcRITE (6t53f2) S/SMET, SASTMT
hRITE (t,53i2) JCJMEJ, SCSTHT
hRITE (6,5361)  O.C
JSPFFd) * O.C
£36C CCMIM.E
C
£39C SPST * 0.0
SASCT - 0.0
SCSCT » 0.0
SDSCT • 0.0
SPRT « C.O
SPRST « 0.0
SPPCT * 0.0
SPRPT - 0.0
C
CO 5391 I- 1,5
£391 SSTR(I) * 0.0
C
C
C
C IPPER ZONE SOLi
C
C
C ZEFCUG VARIABLES
C
ITST - 0.0
LAST * C.O
                                    254

-------
Appendix C  (continued)
5312.
5313.
5314.
£315.
5316.
5317.
£218.
£319.
5220.
5321.
5322.
5323.
5324.
5225.
£226.
5227.
•328.
5329.
5330.
£331.
5332.
5333.
5224.
5335.
5236.
£237.
£338.
5339.
5340.
£341.
5242.
5343.
5344.
£345.
£246.
5347.
5348.
£249.
5350.
5351.
£2£2.
5253.
£354.
£355.
5356.
£257.
5356.
£359.
£260.
5361.
5362.
5363.
5364.
5265.
5366.
5267.
£268.
5369.
5270.
£371.




C
C
C
C
C

C






C







C









C

C







C



C


C


C

C
C
C
LCST = 0.0
LOST * C.O
LIST = C.C
*UPTCT - O.C

SCILTICN AOSORPTiQN-DcSORPTION LOOP

45202.4 - C.2 * <2£*C FT(2)/ACRE * 1 FT/U INCHES * 62.4

KK - PL2*K*2

CO 6320 IM,£
JKFMI) « *RE**Pa*(UZSB(I)+APERCB(I)+INFL( I)+RGX(I)
FTCT = U*S(I) •» LCSd) * UOS(I) + SPKP(I) + USTR(I)
ALPTCT * /LFTCT + PTOT
C5 * O.C
IF (JMFWdl .GT. 0.0) C5 =« UCS (1 )/ JNFH( I )

IF (FTCT.C1.FFLZ) GO TO 6315
L*Sd) " FTCT
LCSd) • C.C
LCSd) - C.C
KFLAG II ) * 0
CTUd) * C
GC TC 622C

6315 X - KK*CHX**M * FPUZ
PSLC = PICT - X - JHFM + JNFW(I)*O) - 1.
IF (AES(C).LE.O.Ol) GC TO 6319
C = C*fTCT/(X*JNFW(I)*C)
GC TC 6217

631S IF (JNFV(I) .LE. 0.001) X = PTOT
IF (CESCFP .EVi. NO) GO TO 6324
FJf^Fl. > JNFM(I)

CALL OSFTN ( I , C1L ,C, KFLAGt CAOU.KLU ,K ,Z ,NCOM,
1 SlLtXtHtZ.NIPtFPUZfPTCT.RJ/MfM)

6324 LOJd) « (C*JNFWd))*(PTCT/IX+C*JNFH(III)
U4£d) * X*(PTOT/(X+C*JNFktd)M

632C CCNTINLE

PESTICICE REMOVAL LOOP

                                                                   LB/FT<3»
                                                                   1*45302.4
                                    255

-------
Appendix C (continued)
£372.
5373.
5374.
5375.
£376.
5377.
£378.
5379.
£260.
£281.
5382.
£263.
5384.
5365.
5386.
5387.
£388.
£389.
£390.
5391.
53S2.
£293.
5394.
5395.
52*6.
5397.
£398.
5399.
5400.
54C1.
5402.
5403.
5404.
5405.
5406.
5407.
5408.
5409.
5410.
5411.
5412.
5413.
5414.
5415.
£416.
5417.
5418.
5419.
5420.
5421.
5422.
5423.
5424.
£425.
5426.
5427.
5428.
5429.
5430.
5431.

C










£327
£229

6326

C




C
£33C
C

C
C
C




C



C





€322
6334
C




C


C
6335
C
C
C


                CO 633C  I«l,5

                   IF  (JNFM(I)  .IE. 0.0001J  60 TO 6327
                   CSP > AREA*F/* AUfF(I) * UPR(I)
                   AUPRKI) = ALFPKI) + UPRKI)
                   AUPPP(I) = ALFFP(I) + UPRP(I)
                   LIST * LIST  «  LPRIS(I)

                   CCMINLE

                 IF  (PRKTKE .EC. C)  GO TO  6380

                                fFEPARATION OF OUTPUT
                    DC
                       LPRT >
                       LPRIT
                       LPRF7

                       LAST •
                       LCST '
                       LCST '
       LPP1 *
      • IFF IT
      • 11FFFT
AtPR(I)
* AUPRKI)
+ AUPRP(I)
       LAST * UAS(I)
       ten * ocsci)
       LCST » ODS(I)
LASCM) * CIAS(I)/MUZ)*1000000.
LCSC(I) > (LCS(I)/NUZ)*1000000.
IF (U2SEII) .LE. 0.0001)  GU TO 6333
UCSC(I) » (LDS(I)/(UZSB(I)*ARcA*45302
GC TC £334
LCSC(I) - C.O
UPS(I) * l/SCII) * UCSC(I) + UOSC(I)
              » UASC(I)*0.2
              * UCSC(I)*0.2
              * UOSC(I)*0.2
              IPS(I)*0.2
                                                               )*1 000000.
                       L'ASCT
                       UCSCT * tCSCT
                       (JCSCT > LCSCT
                       UPST » LPST +
                       LTS(I) • C*J(I) + UCStI)
                       fTST « LTST * UTS(I)
                           UOS(I) * UPRISCI)
                       CCNTIME
                               CLMLATIVE RESULTS
                    oc
6340   I*  It5
UPITOMI) « UPITCM(I)
                                             * AUPRKI)
                                       256

-------
Appendix C (continued)
5432.
•432.
5434.
£435.
£436.
£437.
£438.
5439.
£440.
£441.
£442.
£443.
£444.
£445.
5446.
5447.
£446.
5449.
£4£0.
5451.
5452.
£453.
5454.
5455.
£456.
5457.
£45£.
5459.
5460.
5461.
5462.
£463.
£464.
5465.
5466.
5467.
5468.
£469.
5470.
5471.
£472.
5473.
£474.
5475.
5476.
5477.
5478.
5479.
5480.
5481.
£482.
5483.
£464.
54E5.
5486.
5487.
5488.
5489.
5490.
5491.
634C LFITC1U) " UPITCT(I) + AUPRI(I)
IPRITM * LFFITf + UPRIT
LPRITT - UPFITT 4 UPRIT
C
IF (PRKTKE .EC. 2) GC TO 6365
C
IF (HYC*L .EC. FFCD) GO TO 6341
IF (RU.LT.hYMM GO TO 6365
UPPTGfc - LFRIH454.
LPPTCW - 1CCCCCC.*LPRI T/(RU*TIMFAC*60.*62.43)
TPRTGV. = LPRTC-h + SPRTGW
TPRTCh = LFRTCV + SPRTCW
TPRTGM - TFRTGWUMFAC
SPR1GN » SFP1CS/TIMFAC
hRITE (6,6440) 1 FPTGk ,TPR TGM, TPRTCW, SPRTGS , SPRTGM.SPRTCS
GC TO 6265
C
C PFlNTIhG OF OUTPUT
C
6241 IF (OUTFIT. EC. KETRI GO TO 6342
V«RITE (6,62£0)
VRITE (6*53*1) ITS, UST
kRITE U*£2*2) LAS, LAST
V.RITE (6,53«3) LCS, UCST
V>RITE (t.5261) LCS, LOST
V.RITE (6,63<2) LFRIS, UI ST
V-RITE (6,53£41 LFS, UPST
ViRITE (6,52fZ) l«£C, UASCT
V.RITE (6,53£2) LCSC, UCSCT
V.RITE «,526i) LCSC, UDSCT
VRITE (6,52£5) *LPR, UPRT
ViRITE (6,£3£8) /LPPI, UPRIT
V»RITE U,£3fc.) /LFPP, UPRPT
6342 IF (OUTPUT. EC. EKL) GO TO 6365
C
C KETRIC CCNVERSlChS FCR COTPUT
LTSTHT=LTST
-------
Appendix C (continued)
54*2.
5493.
5454.
5495.
5496.
5497.
5498.
5499.
5*00.
5501.
5502.
5503.
5504.
5105.
5506.
5507.
5508.
5509.
5*10.
5*11.
5512.
5513.
5514.
5fl5.
5 £16.
5517.
5516.
5519.
5520.
5*21.
5522.
5523.
5*24.
5525.
5526.
5*27.
5528.
5*29.
5530.
5*31.
5532.
5533.
5534.
5535.
5536.
5537.
5538.
5*39.
5540.
5541.
5542.
5543.
5544.
5*45.
5546.
5*47.
5548.
5549.
5550.
5551.


4345


C
C
C
C
€365



C37C
C
<28C






C

£261
C
C
C
C
C
C
C
C
C
C
C





C


C



73C5
C

C





IF (OUTFIT. EC. fCTH) GO TC 6345
VRITE U«53*4) LFS, UPST
tRITE (6,53*2) L/SC, UASCT
fcRITE U,53!3) LCSC, UCSCT
hRITE U,52U) LCSC, UOSCT
VRITE (£,53"i4) /IFF, UPRT
hRITE U,<35£) UPfllt UPRIT
VRITE «,5359) *LFRP, UPRPT


ZEFCING VARIABLES

CC 6370 1*1,5
ALPFU) * C.C
«UPRI(I} « C.C
AtPPF(I) « 0.0
CONTINLE

UPST * 0.0
LASC1 « 0.0
UCSCT - 0.0
LCSCT > 0.0
LPRT - C.O
LPPPT « 0.0
LPRIT « 0.0

CC £381 I* It!
LSTRdl * fl.O



LOWER ZONE AND GROUND VATEl
SOLUTION AUStiRPTION-DESOR




JCILTICN AD SORPT lON-Dc SORPTIUN LOOP

LCS > 0.0
LAS = 0.0
LOS - 0.0
LPRP > 0.0
ALPTCT « C.C

KNFM = AFE/« (LZ!*CPST»*226512.
KK * HL2*K*2

CO 7305 !•!,:
LSTR » LJ1P + LPRP(I)
ALFTCT « /IPTCT * LSTR
CCMINLE

IF (LSTP .LE. C.0001) GO TO 7330

1-1
FTCT « 1STR
C5 * 0.0
IF (KNFK .GT. O.CI C5 » LAS/KNFH
IF (PTCT.GT.FFL2) GC TO 7315
                                    258

-------
Appendix C (continued)
£552.
5553.
5554.
5555.
5556.
5557.
5556.
5559.
5560.
5561.
5562.
5563.
5564.
5565.
5566.
5567.
5568.
5569.
5510.
5511.
5512.
5513.
5514.
5515.
5576.
5517.
5518.
5519.
5560.
5581.
55E2.
5583.
5564.
55£5.
5566.
55£7.
55E8.
5589.
55SO.
5591.
55S2.
2593.
5594.
5595.
55<6.
5597.
55S8.
5599.
5600.
5601.
5602.
5603.
56C4.
sees.
56Q6.
5<07.
56C8.
5609.
5C10.
5611.






C









C

C







C


C


C


C

C
c
c


c

c

c


c
c
c
c



c
c
c

                    LAS  »  FTCT
                    LCS  -  0
                    LCS  -  0
                    *FL*C-m  * 0
                    cum  =  c
                    GO TC  7320

            1315  X  3 KK*CMAX«*M 4 FFLZ
                 FSLO =  FTCT  - X - KfsfV,*CMAX
                 IF (PSLC  .LT. O.C)  GC TO  7316
                    LAS  >  X
                    LCS  «  FSIC
                    LOS    O4X*MFfc
                    fFLAGU)  » 0
                    CTLdl  ="  C
                    GG 1C  7320
12lt
7311
7319
                    LCJ  -  O.C

                    C  -  C5
                    IF  (C  .LE.  O.CI   C    0.001
                    X  »  Kk*C**M  « FPLZ
                    C  -  (FTCl/(X*KhFk*C))  - 1.
                    IF  (A6S(C).IE.C.C1)  GO TO 7319
                       C = C*FTC1/(X+KNFW*C)
                       GC  TC  1211

                 IF  (Kr-Fh  .LE.  O.CCl) X = PTOT
                 IF  (DESCPF .EC.  K)  GC  TO
                 C*LL CSFTN  (l.CILiCffFLAG.CAOLtKOLiK.Z.HCOM,
                                      , NIP, FPLZ, PTGT.KNFW)
           1324    LOS  »
                       LAS    X*(F1CT/(X*C*KNFUI1

           1*2C    CCMINliE

                               PES1ICICE REMOVAL  LOCP

                 LPfiP    ICS*CFST/(CPST*LZS)
                 LOS *  LCS  -  LFRF

                 LSTR -  LAS « 1C!  +  LOS

                 ALPRP  * ALPFF  *  LFRF

           133C  IF (PRNTKE  .EC.  2)  GO TO 7379
                 IF (PRMKE.fE.l  .CR.  HYCAL. EQ.CALB)   GO TO 7380

                               FfEFAPATION OF OUTPUT


                 LASC =  (LASmZ)*lCOOOOO.
                 LCSC =  (LC£/^LZ)«1CCCOOO.
                 LCSC    (LCS/(LZS«AREA*226512.J)*1000000.

                               FPIKTING OF OUTPUT

                 IF (OUTFIT.EC. ^TR)  GO TO 7340
                                      259

-------
Appendix C (continued)
5(12.
5613.
5614.
5(15.
5(16.
5617.
5(18.
5(19.
5(20.
5(21.
5(22.
5(23.
5(24.
5(25.
5(26.
5(27.
5(28.
5(29.
5(30.
5(21.
5(32.
5(33.
5(34.
5(35.
5(36.
5(37.
5636.
5(3?.
5640.
5(41.
5(42.
5(43.
5(44.
5(45.
5(46.
5(47.
5(48.
5(49.
5(50.
5651.
5(52.
5££3.
5(54.
5(J5.
5656.
5(57.
5(58.
5659.
5((0.
5(61.
5((2.
5663.
5664.
5(65.
5666.
5667.
5668.
5669.
5670.
5671.
VRITE (6,73:01
VRITE (6,7351) IJTR
VRITE (6,7252) IAS
VRITE (6,7353) ICS
VRITE (6,73*4) LCS
VRITE (6,7355)
VRITE (6,7352) USC
VRITE (6,7353) LCSC
VRITE (6,7354) ICSC
VRITE ((,7351) *IPRP
VRITE ((,7359) *IPRP
734C IF (CLTPLT.EC. IKCL) GO TO 7379
C
C PETPIC CCNVEFSKhS FCR CUTPUT
LSTRMT=LSTR*KCPl£
LASMET = LAS*K-FLE
LCShET = LCS*KFLE
LDSPET=IOS*KGFLE
ALPRf = *LPPMKGflE
VRITE ((,73fC)
VRITE ((,72
-------
Appendix C (continued)
5672.
5613.
5614.
5675.
5616.
5677.
5678.
5679.
5660.
56E1.
56£2.
56£3.
56£4.
5665.
56£6.
5687.
5688.
5689.
56*0.
56*1.
56*2.
56*3.
56*4.
56*5.
56*6.
56*7.
56*8.
56*9
51CO
5101
•
•
•
5102.
5103
5704
5105
5106
57C7
5708
5709
51 10
5111
5112
5713
5714
5115
5716
5117
5718
5719
5120
5121
5122
5123
5124
5125
5726
5127
5128
5129
5130
5£00
•
•
•
•
•
*
•
•
•
•
•
•
•
•
*
•
•
•
•
•
•
»
•
•
•
•
•
•
•
IF CCFfNTKE .KE. I) .CR. (HYCAL.EQ.CALB) ) GO TC 7580
C
C PPHTING OF OUTPUT
IF IOLTPLT.EC. >ETR) GO TC 7530
WRITE (6,7££C)
WRITE (6.73£1) CJTR
WRITE (6.72J2) CAS
WRITE (6.73J3) CCS
WRITE (6,73£4) CCS
153C IF (OLTPLT.EC. EKL) GO TO 7580
C
C METRIC CCN\ER£ICFS FtR CCTPUT
GSTRMT=CSTR«I«GPIB
GASMET»GAS*I«GFIE
GCSMET = GCS*KFLE
GCSMET = GCS*KFIE
WRITE !6t75£C)
WRITE U,13
.EX,
,11>
,11X
,ex,
,8X,
,li>
,11X
,11X
1IX,
t
i
.
t
f
•SURFACE LAYER PESTICIDE*)
PESTICIDE, L8S' ,bX, MJX.F7 .3
•ACSCRBED* ,UX,M3X,F7.3),3X
'CRYSTALLINE.' , 8X,M 3X ,F7 .3 ) ,

)*3X
,F8.

.F8.3)
3)
2X,Ffi.3l
FESTlCIOfc, PPM',6X,M3X,F7.3),3X
'FEMCVAL, LBS' , 10X,i (3X, f 7 . 3 )
t
.
i
i
ex, «F
•SEDIMENT* ,11X,^(3X.F7.3),3X
•CVERLANU FLOH*,6X,5(3X,F7.3
•PERCOLATION' , 3X,5( 3X.F7 .3 ) ,
CISSOLVED' ,10X,5(3X,F7.3) ,3X
ESTIClDc, KGS* ,aX,5(3X,F7.3)
lEX.'FEMCVAL, KGS' , 10A.M 3X ,F7 .3 ) ,

«
i
«
(•+•

(
(
(
(
(
(
(
(
<
(

(




'0
•C
1
1
1
'0
•C
1
'0
•C

'0




i
,
t
i
•
•
i
i
i
i

i




. 5>
,11>
, 11X
«72>

. 5>
,EX,
,11X
,11X
,11X
,8X,
,£X,
,11)
,£X,
,£X,

,£X,




,
t
,
•

,
i
,
,
,
•
i
*
i
i

i




•UPPER ZONE L^YER PcSTICIDE'
,3X,
,F8.
),3X
2X.F
,F8.
,3X,
,F8.3)
F8.3)
3)
,F8.3)
8.3)
3)
F8.3)
3XtF£.3)

1
•INTERFLOH* ,10X,S(3X,F7.3) .3X.F8
•INTERFLOW STORAGE* ,2X, 312X.
2(2X,Fb.3,2X,F8.3,^X,F7.3))

•LCMER ZONE L/YER PESTICIDE'
PESTICIDE, LBS' ,61X,F8.3)
'ACSCRBED' ,64X,Fb.3)
•CRYSTALLINE' ,61X,F8.3)
•DISSOLVED', 63X,Fb.3)
PESTICIDE, PPM1 ,6lA,F8.3)
REMCVAL, LBS' ,OJX,F8.3)
•PERCOLATION' .61X.F8.3)
PESTICIDE, KGS' ,61X,F8.3)
REMOVAL, KGS' ,63X,Fb.J>

GRCONDMATER LAYER PESTICIDE*



F8.3


I










)





.3)
),3X,F8.3»

















                                    261

-------
Appendix C (continued)
5E01.
5602.
5603.
5604.
5605.
56C6.
5EC7.
56C8.
560-5.
5610.
5611.
5812.
5613.
5814.
5615.
5616.
5E17.
5818.
5619.
5620.
5821.
5622.
5623.
5824.
5625.
5826.
5827.
5628.
5629.
5830.
5621.
5632.
5633.
5634.
5635.
5836.
5837.
5638.
5639.
5E40.
5641.
5642.
5643.
5644.
5E45.
5646.
5647.
5648.
5E49.
5650.
5651.
5652.
5E53.
5E54.
5655.
5t56.
5E57.
5658.
5859.
5660.
C
C
C


C
C
C

C


C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C


C


C
*







SLBCGUTINE CStTN ( I ,CT,C, JFLAG ,CAD,KO,K,Z,NCOf t
1 ST,X,M,NIP.FP,PTCT,1NFW)



ClfENSKN CT(5) ..iFLAGlS) , CADI 5} ,KD15 ) ,STi 5)

INTEGER I,JfLAC
REAL CT,C,C/C,KCtK,2,NCOM,STfX,M,NlP,FP,PTOTf INFW

THE OESCPFTICN /LGCP1THM IS BASED ON THc FREUNDLICH EQUATION; THE
C1FFERENCE BEING 1MT TI-E CONSTANT IK) AND EXPONENT (N) OF THE
DEJCRPTICN ECUATICN CIFFER FROM THc ADSORPTION VALUES. OESCRPTICN
CCCURS hhEN THE CCKENTRAT ION OF PESTIClUc IN WATER (C) IS LESS THAN
TI-E CCNCENTRATKN (CD AT THE LAST TIMt STEP. ThE DESORPTICN
EXFCNENT (NP -- INFLTTEO BY THE USER) ANU THE DESQRPTION CONSTANT
(KC — CALCULATED E* SETTING THE DESORPTiUN EQUATION EQUAL TO THE
ACJCRPTIGN EGL/TICN AND SOLVING FOR Kl>) THfcN DEFINE THE NEW DESORP-
TICN CURVE. TI-E ASSLMFTICN OF RtVefcSIbLfc OESUhPTIQN IS MADE. ONCE
CESORPTICN STCFS AtSCRPIIu.N BEGINS BY MCViNG BACK UP TH€ OESORPTION
CLFVE UNTIL IT 1NTEP!ECTS THE ADSORPTION CURV«£ (I.E., WHEN C EGUALS
OC — TI-E CCNCENTPmCN OF PESTICIDE IN WATER AT WHICH TI-E ADSORP-
TICN AND CESCPF1ICN CURVeS INTERSECT). THEN ADSORPTION CONTINUES UP
TI-E ADSCBF1ICN CLPVE UNTIL UESCRPTICN UCCUkS AGAIN. OEFINTIONS CF
TI-E DESORPTICN VJRIIELES FOLLOW BELOW.

Cl : CCNCENTRATICN OF PESTICICE IN WATER (LB/LB)
n TI-E LAST TIME INTERVAL
CU : CCKENTRAT10N C AT HH1CH THE ADSORPTION AND
CESOFPTION fcgUATIONi MEET. CAC IS SET
ECUAL TU CT WHEN UE5LRPTION BEGINS AS A
I**RKER TO LATER OETcRMINE WHEN THE ADSORP-
TICN PKCCtSi LEAVES THc REVERSIBLE DESCRP-
TICN CUhVE AND RcTUK^S TO THE NON-REVERSIBLE
ACSCPPTION CURVE
ST : CCNCENTRATION OF ADSORBcO PESTICICE IN THE SCIL
UE/L6) AT THE LAST TIME INTERVAL
JFLAG : FLAG WHICH NOTES WHcTHcK C MAS CALCULATED CN THE
ADSORPTION CURVE DURING LAST TIME STEP 
-------
Appendix C (continued)
5E61.
5662.
5663.
5E64.
5665.
5666.
5867.
££68.
5669.
5670.
5671.
5672.
5E73.
5614.
5675.
6COO.
6CC1.
6002.
6C03.
6C04.
6C05.
6CC6.
6007.
6CC8.
6CCS.
6010.
ten.
6012.
6013.
6014.
6015.
6C16.
6C17.
6018.
6C19.
6C20.
6021.
6022.
6023.
6C24.
6025.
6026.
6C27.
6C28.
6C29.
6030.
6031.
6032.
6C33.
6C34.
6C35.
6036.
6C37.
6038.
6C39.
6C40.
6C41.
6042.
6043.
6044.
C



C


C




C


C
C
C
C

C
C
C
C
C
C
C







C




C









C
C




C
C
C
C
C

53S5 JFLAG(I) - 1
CTU) » C
GO TO «2S£

J3«6 IF (JFUGfll.EC.C) GO TO 5397
IF (C.LT-CAC(I) ) GO TO 5393

!3S1 JFLAG(I) » C
CTU) » C
£T(Ii » X/l«
CAD(I) > 0

53S6 FETLRN
END




),SAS(p) ,5CS<5) ,SOS(5) ,SSTP(5),
2 LAS (5) fUCS(5),LCS(i)fUSTR(5t ,UPRIS(d),UPRISM(5)*
2 STSNET ( 5) ,£ AJf El (5 ) t
4 SCSMET(5),£CSf ET(5),UTSMET(5) ,UASHET(p),UCSHET(5),UOS^ET(5»

CCMMCN /ALL/ FL ,!-^FlN,PRNTK£,HYCALfDPST, JUT PUT, TI KFAC, LZS,AREAt
1 RESBl,PCSe,£RG>,INTF,R(.X,INFL,UZSB,APckCBfftIB,EP.SN,M, P3,A,
2 CALBfPRCC,FEST , MTR ,cNGL ,METK, BCTHfRESd,YcS,NQ,ICIN,I(-R»TFt
2 JCOUN1,PRIM,IMP,CAYS,HCUR,MNTH

COHMCN /PES1C/ 51ST,£PROTMfSPRSTMtSAST,SCST,SCST,UTSTfUAST,UCST,Kt
I LCSTtFF,C^*>f^J,£FFCTT,SPRSTT,rtUZ,FPUZ,UPRIT^•t
2 UPRITT,KGPie,FFL2,fLZ,LSTR,LAS,LCi>,LDS,ii3TR,GAS,CCS,GDS,
2 AFHCCEfTFe/Lt
4 DEGSCJ-,DEGiCT,CEGUC^,
* DEGUCT,OEGL,CEG<,NIP,DEGCQN,OEGLCM,DcGLOT,NCCH,
6 PRSTCf fPRSTCTtPFCTCCfPROTOT, JPITQH, UPITOT.STS.UTStSASt
7 JCS.SOJ,SS1F,L/£,LiCStUDS,USTR,UPKIStUIST.TOTPAP,TIMAP,YEARAPt
8 DESORP.SllRF.SCUtSLLG


REAL LSTP,t/£,lC£»LCS
REAL ffFU, mCPT, KGPLB
INTEGER API»CCE,PFNTKE,HYCALtOUTPUTfCALB, PROD tENGL,METRt BOTH
INTEGEF SLFF,SCIL,TIMFAC


DEGRADATION OF PcSTICIUE FROM ADSORBED (A),
CRYSTALLINE (C) , AND DISSOLVED (0) FORMS
OEGCON * FIRST ORDER DECAY RATE (PER DAY)
                                   263

-------
Appendix C (continued)
6C45.
6C46.
6C47.
6C48.
6C49.
6C50.
6C51.
6C52.
6C53.
6C54.
60*5.
6056.
6C57.
6C58.
6059.
6060.
6061.
6062.
6063.
6C64.
6C65.
6C66.
6C67.
6C68.
6C69.
6C70.
6C11.
6C72.
6C73.
6C74.
6C7S.
6C16.
6077.
6078.
6C19.
6CCO.
6CE1.
6CE2.
6063.
6CE4.
6C85.
6C66.
6C£7.
6C68.
60E9.
6090.
6091.
6C92.
6093.
6CS4.
6C95.
6CS6.
60S7.
6CS8.
6CS9.
61CO.
6101.
6102.
61C3.
6104.
C
C UPPER ZONE
C
OEGU * C.O
IF (UTST .LE. O.C1 GC TO 8021
UST =« C.O
CO E02C I*l,£
CEGL/ = CEGCCMUAS(I)
LAS(I) = US!!) - CEGUA
UAST = LAST - CEGUA
CEGLC * CECCCMUCSU)
UCS(I) = LCSdl - OEGUC
UCST = UCST - CEGUC
DEGLC = CECCCMUOSUl
UCSU) = LCS(l) - OEGUO
UCST » LEST - CEGUO
CEGU = CEGL 4 CEGUA * OEGUC * OEGUO
LTS(I) * L'S(I) 4 UCS(I) * UOSU) + UPRISfl)
LTST * LTST + LTSUJ
8020 CONTINUE
C
C SURFACE ZONE
C
6C21 CEGS = C.C
IF (STST .LE. C.C) GO TO 8023
STST = 0.0
00 8022 1*1,5
CEGS* * CEGCCMSASU)
SAS(I) * S/SU) - OEGSA
SAST = SAST - CEGSA
CEGSC - CEGCCMSCS(I)
SCS(I) > SCS(I) - OEGSC
SCST - SCST - CEGSC
CEGSC > CECCCMSDS(I)
SDS(I) = iCS(I) - OEGSO
SCST * SCJT - CEGSO
OEGS - CECS 4 CEGSA 4- CEGSC * DEGSO
STS(l) = SAS(I) « SCSUJ 4- SOS(I)
STST = STST 4 STS(I)
EC22 CCNTINLE
C
C LOWER ZONE
C
£023 CEGL * 0.0
IF (LSTF .LE. O.C) GO TO 8090
CEGLA = DEGCCK*LA£
LAS * LAS - CEGU
CEGLC * DEGCCMICS
LCS = LCS - CEGLC
CEGLC * DEGCCMICS
LCS * LCS - CEGLC
DEGL = CEGL/ 4 CECLC * OEGLO
LSTR « LAS 4 LCS 4 LOS
C
£090 CCNTULE
C
C
C
C CLKLMIVE RESULTS
C
                                    264

-------
Appendix C (continued)
61C5.
£106.
61C7.
6108.
61C9.
6110.
till.
6112.
6113.
6114.
6115.
6116.
6117.
6118.
611S.
6120.
6121.
6122.
6123.
6124.
6125.
6126.
6127.
612B.
6129.
6120.
6131.
6132.
6133.
6134.
6135.
6136.
6137.
6138.
6139.
6140.
6141.
6142.
6143.
6144.
6200.
62C1.
6202.
62C3.
62C4.
6205.
62C6.
6207.
6208.
6209.
6210.
6211.
£212.
6213.
6214.
6215.
<216.
6217.
6218.
(219.






C

C

C







C
C









C
C






C


C
C
C
C


C
C
c
C
c
c
c
c
c
c
c
c
c
c
CEGSO » OEC5CI" * DECS
CEGSOT CEGSCT * DECS
CEGUCN - CECUf * DEGL
CEGLCT CECLCT < DEGU
CEGLCf * CEGICP -» OEGL
CEGLOT = CEGLCT + OEGL

TCEG * CEC-S » DEC-l * CEGL

IF ((FRNTI«E ^E. 1J.OR. (HYCAL.EQ.C ALB » ) GO TO £600

IF (CUTFUT.EC. *ETR) GO TO 8200
fcRITE (6,i505)
V.RITE (6, £501) TCXEG
WRITE U,Ef02 1 DECS
WRITE (6,£5C2) DEGU
WRITE (6,{f01) OEGL
€2CC IF (GLTFLT.EC. ENCL) GO TC 8600

METRIC CC^VEPS1C^S FCR OUTPUT
TDEGKT=TDEG*KGFIE
CEGSNT=CEGS«KCPie
CEGLKT=CEGO*KCFIE
CEGL^T*CEGL*KGPIE
WRITE (6,85C6)
WRITE (6.85C1) 1CEGKT
WRITE U.65C2) CEGSM
WRITE (6.85C2) CECU*T
WRITE (6.65C7) CEGLfl


£5Cl FORPAT • ',£>, 'TCTflL1 ,71X,F7.3)
£502 FCPPM • •,£),'FFCH SURF ACE1 ,64X, F7.3)
E5C3 FCRMM • •,£>t'FFG^ UPPER ZONE1 tblX fF7.3)
£505 FORMAT • C • , 5Xf • FESTICIDc OEGRAOATICN LOSS* LBS.M
£5Ct FCP^AT «0' ,5X,«FEST1CIOE OtGHADAT ION LOSS, KGS.'I
l5C~i FORMAT • •,E>,'FPO LOWER ZQNc1 , 6lX ,F7.3 )

£6CC RETLRN
END




SUBROUTINE MTP1C ( ICERRt INTRVL tNAPP ,SNAP Lt UNAPLt TIMHR,
1 INPUT, OUTPUT, APDAYfKNIfKPI 1

THIS SLBROUTINc RcAOS NUTRIENT INPUT SEQ















































*
FOR REACTION KATti, INITIAL STORAGES, AND
APPLICATIONS. INPUT iNFCRMATICN IS SCANNED
FOR ERKORS WHICH ARE FLAGGED BY ICERR=l.
CN RETURN TO MAIN IOCRR=I WILL STOP THE

SUBROUTINE ALSO OUTPUTS REACTION RATES,
INITIAL STORAbcS, AND APPLICATIONS

DECLARATIONS

CCMHON VARIABLES


RUN








                                   265

-------
Appendix C (continued)
6220.
(221.
6222.
6223.
6224.
6225.
6226.
6227.
6228.
6229.
6230.
6231.
6232.
6233.
6234.
6235.
6236.
6237.
6238.
6239.
6240.
6141.
6242.
6243.
6244.
6245.
6246.
6247.
6248.
6249.
6250.
6251.
6252.
6253.
6254.
6255.
6256.
6257.
6258.
6259.
6260.
6261.
6262.
6263.
6264.
6265.
6266.
6267.
6268.
6269.
6270.
6211.
6272.
6273.
6274.
6275.
6276.
6277.
6278.
6279.

C









C






C
C


C


C


C


C
C
C
C
C







C
C
C










1


1
                 INTEGER 44   1S1EF ,KSTEP,SFLG,UFLG,LFLG,GFLG

                 REAL**  CEL1,HE*F(4,24),
                1        SM20,5I,SNT(20), SNRSM<20,5) ,S*ROM(20»5) ,
                2        UNC2C.5 l,lNT(20),UNI(20,i) ,UMT(20) ,UNRIM(20,5),
                3        NRSM2C.S),        LM20) ,LNRPM(20) ,          GN(20),
                4        SNREK l2C,5),UNRBM{20,S>),LNRbh(20),GNRBM(20),TNRBV(20)»
                5        SNP«Y«2C,5) ,SI\KUY(20,5),UNRI YUO ,5),NRSY(20,5» ,
                6        LNRFY(2C),SNR8YUO,5) , UNR6Y( 20,P) .LNRBYI20) ,GNRBY(20) ,
                7        TNREY(2C»,TNRhV(20),TNRhVM120).TNRHVY(20),TNA,TPA,TCLAt
                8        KM 1C,«),T(-KM10) ,KP(5,4),THKP(&) ,NEALf PHBAL ,CLB H.

                 CCMHCN /MT/   Ctn,STEMP,SN,iNTtSNRSM,SNROM,UK,UNT,UNI ,UMT,

                2            Sr'R«Y,SMCY,UNRIY,NR;>Y,LiiiRPY,SNRBY,UNRBY,LNRElY,GNRBY,
                3            lKPEY,TNRhV,TNRHVM,TNKHVY,TNA,TPA,TCLA,
                4            KN,TI-Kf>,KP,THKP,NdAL,PhbAL,CLBALt
                5            TSTEF,NSTEP,SFLG,UFLG,LFLG»6Ft.G


                 INTEGER**   hAFPL«KAPP,TIMHAR,TIMHR
                 KAHELIST /^L^RI^/  TSTEP,NAPPL,TIMHAR

                 INTEGER**   N£1R1,KENO,APDAY(5),1GERR,ICHK,IZCNE, IELK.J,
                1            I^FPl.INPCT,OUTPUT

                 REAL*4  SNAFL(2C,5»5),SNAPLT(20),UNAPL(20,3,5).UNAPLTC20 I ,
REAL*8
CCNC, LEF«C/«LB/AC' /,
       EUNK8/1
           KGPHA/ 'KG/HA' /,
             •/
                                                                NTRT/' NUTR IENT» /,
                                       CHARACTER STRINGS USED TC COKPARE  AND
                                       INTERPRET INPUT SEQUENCE, NAHES  OF
                                       RcACTION RAT£S, AND INPUT UNITS  OPTION.
                  INTEGER**   CH*R,T>PE,BLANK/'     •/,
                 I         PHCJ/'PHCJ1/, CHLO/'CHLC1/,
                 2         UPPE/'tFFE'/, LOHE/'LOKE1/.
                 3         IMl/'IMT/i APPL/'APPL'/,
                  R£AC/«k£AC'/,  NITR/•NITR•/,
                  ENQ/'ti^O •/, SURF/'SURF'/,
                  GRJU/'GKOU'/,  TEMP/»TEHP'/t
                  METR/'McTPV,  ENGL/• ENGL'/.
                 5
                 6
   Kl1
  KAM1
  KM',
                    1  K21.  '
                    1 KIM",  '
                    KIM*.  •
                                      KK21
                                     KKIM*
                                     KPL'i
1   K0« ,
1  KSA',  '
 KSA'.  •
 KPL»,
 KAS'/t
KAS'/
                                       INITIALIZATION OF STORAGES AdO  FLAGS
                  IOERR * 0
                  SFLG » 1
                  LFLG » 1
                  LFLG > 1
                  GFLG » 1
                  CC 130  J*1,2C
                     DC 120  ieiK'lt5
                        (.N(J.IELK)
                        LM( JiieiC
                     CCKTIMJE
                     LN(J) =• C.C
                     GN(J) * C.O
                  CCMIKLE
 0.0
 C.O
' 0.0
                                        266

-------
Appendix
£260.
6261.
6262.
6263.
(284.
6265.
6286.
6267.
£288.
£265.
£290.
6291.
£292.
£293.
£254.
£295.
6296.
£297.
£2S8.
£299.
63CO.
£301.
(2C2.
6203.
£304.
£305.
£3C6.
£2C7.
£308.
£309.
£310.
£311.
£212.
(213.
£214.
£215.
£316.
(217.
£3l8.
£219.
£220.
£221.
£222.
£323.
£324.
£325.
£226.
6327.
£228.
6329.
£330.
£221.
£332.
6333.
£234.
£335.
(236.
£337.
6338.
£339.
C (continued)



122


134
12£
C
C
126





142







C
C
C
C
C
C
C
C






145

C
C
C
C
C
150






160







CO 135 IZChE«l,4
DC 122 -=1,1C
KM(J,I2ChE) * 0.0
CCMINLE
CC 134 v-l,S
KFI(J,I2OE) = 0.0
ccMiiae
CC NT IN IE


READ (£,2CC1) CI-JR6
IF (CHAP8 .EC. ELANK8I GO TO 136
IF (CMR8 .EC. MFT) GO TO 142
IOEPP = 1
hRITE (£,4JS«I CHARS
RETLRN
REAC (5.MTFIM
WRITE (£,46CCI
ViRITE (£,4CCS)
hRITE (£,4CC7)
fcRITE (£,4CC£>
ViRITE (£,4£1C) 1 0 MIN) AND CHECK THAT TSTEP IS
AN INTEGER MULT iPLc Uf ThE SIMULATICN
INTERVAL (5 OK 15 MINI .
CELT IS THE TIME JTEP IN HOURS BECAUSE
REACTION RATES ARE PER HCUR (INTERNALLY!.

IChK - 0
IF ( MCC(14«CtTnEP) ..Ne. 0) ICHK = i
IF ( fCCHSTEF.IMRVL) .NE. 0) ICHK*1
IF (IChK .EC. 0) GC TO 145
WRITE U.477O TSTEP
TSTEF = £0
DELT * 1STEF/£0.
f.STEF 144C/1STEF


INPUT REACTION RATES


PEAC (5,30CC) It-tR
IF (CMR .EC. eiAhK) GO TO 150
IF (CH/R .EC. RE/C) GO TO 160
ICEPR - 1
WRITE (£,4£1
-------
Appendix C (continued)
 6340.
6 241.
6342.
6243.
6344.
6345.
6246.
6347.
6348.
6349.
6250.
«251.
6352.
6253.
6354.
6355.
6356.
6357.
6358.
6359.
6360.
6361.
6262.
6363.
6364.
6365.
6366.
6267.
6368.
6269.
6270.
6371.
6372.
6373.
6374.
6275.
6276.
6277.
6278.
6379.
6380.
6361.
6382.
62£2.
63E4.
63E5.
62£6.
6387.
6368.
63E9.
6390.
6291.
6392.
6293.
6394.
6295.
6296.
6397.
6398.
6399.
C
C
C
170





ISO
C






190
C






2CO
C






2C5
C






210

C
C
C
220





230
C





   RETURN

                     NITROGEN RATES

REAC (5.3CCO  CHAR
IF (CH/R .EC. SIPF)  GO TO 180
   ICERR « 1
   WRITE (6.462C1  TYPE
   WRITE (6.463C)  SURF. CHAR
   RETLRN
PE*C (5,301C)  (KM(J.l),J»l,lO)

REAC (£,3CCC)  CHAR
IF (CHAP .EC. UFFE)  GO TO 190
   IOERR   1
   WRITE (6,462C)  TYPE
   WRITE (6«463C)  LPPE, CHAR
   RETLRN
RE«C (5.301O  (KM(J,2) ,J*1( 10)

READ (5.3CCC)  CH/R
IF (CH*P .EC. LCWE)  GO TO 200
   ICEPR - 1
   WRITE (6,462O  TYPE
   WRITE (6,<63C)  LCWE, CHAR
   RETURN
REJC (5,3010  (*MU,3),J*1,10)

READ (5,2CCC)  CHAR
IF (CHAF .EC. GFCL)  GO TO 205
   IOEPR - 1
   WRITE (6.462C)  TYPE
   WRITE (6,4(30  GRCU, CHAR
   PETLPN
RE4C (5,3010  (KM(J,4),J=l,lOi

REAC (5,3CCC)  CH/R
IF  (CH#P .EC. llt-f)  GO TO 210
    ICEPP - 1
   WRITE (6,4£2C)  TYPE
   WRITE (6.463C)  TEKP, CHAR
   RETLRN
 RE/>C  (5,201C)
 GC  TC  160
                                        ,J=1,10)
                                      PHOSPHORUS RATES
                 PEAC I5.3CCC)
                 IF (CH/iR .EC. Sim  GO TO 230
                    IQERR = 1
                    WRITE (6t462C)  1YPE
                    WRITE <6,463C)  SURF. CHAR
                    RETLRN
                 RE«C (5,301O   (KFI
                      (5»30CC)  CMR
                 IF (CHAR  .EC. LFFE)  GO TO 240
                    IOERR  =  1
                    WRITE  (6,4620  TYPE
                    WRITE  <6«463C)  LPPE, CHAR
                                        268

-------
Appendix C (continued)
 £400.
 6401.
 £402.
 £403.
 £404.
 6405.
 6406.
 6407.
 £408.
 6409.
 6410.
 £411.
 6412.
 6413.
 £414.
 6415.
 £416.
 £<17.
 £418.
 £419.
 6420.
 6421.
 £422.
 £423.
 (424.
 (425.
 6426.
 €427.
 £428.
 £429.
 6430.
 6421.
 £432.
 £433.
 6434.
 £435.
 £436.
 £437.
 £436.
 £439.
 6440.
 £441.
 6442.
 £443.
 6444.
 £445.
 £446.
 £447.
 £446.
 £449.
 £450.
 £451.
 £452.
 £453.
 6454.
 £455.
 £456.
 6457.
 £458.
 £459.
240
C
250
C
260
C
21C

C
C
C
C
3CO
C
C
C
C
C
C
C
C
C
C
C
C
€
C
C
    PETLPN
 RE40 C,301C)
 REAC (5.300CI  O/P.
 IF (OAR .EC. LCVE)  GO TO 250
    ICEPP = 1
    kRITE (6.462C)  WE
    HR1TE U,/£3C1  LChE, CHAR
    RETLPN
 READ (5.301C)  IfcFI C J ,3) , J«l,5)

 REAC (5.30CC)  O/R
 IF (CHAR .EC. GFCU  GO TO 260
    IQERR * 1
    ViRITE (6,4£2C1  1VPE
    V.RITE U,*£3C1  GRCU, CHAR
    PETLPN
 READ (5.301C)  (KPK J ,41 , J=«lt5l

 READ C5.30CC)  CI-/R
 IF (CHAP .EC. TE*F)  GO TO 270
    IOEPR * I
    VRITE (6.462CI  TYPE
    WRITE U,«3C)  TEMP, CHAR
    RETURN
 REAC (5t3ClC)
 GO TO 160
                      OUTPUT OF REACTION RATES AND TEMPERATURE
                      CORRECTION FACTORS.
 HRITE |6t4£!CI
L
 HRITE (£,46£C)
(KNNAPEUl.J-lflO) *
(» 0.0
                      2)  VALIDITY OF NUMERICAL SOLUTION TECHNICUE
                         THE EXPRESSION K.NK J, IZONE) *DELT IS THE
                         FRACTION OF THE CONST ITUTENT REKCVEO
                         DURING THE TIMESTfcP.  THIS NUMBER SHOULD
                         BE MUCH LESS THAN 1. FOR ACCURATE SOLUTION
                         CHECK SET AT 0.5.
                      3)  ON OR OFF, IF KNI AND KPI ARE ALL ZERO FOR
                         A ZONE, THEN NO TrtANSFORPAT IONS *RE DCNE.
                         S»U,L, AND toH-G ARE FLAGS TO INDICATE
                         IF TRANSFORMATIONS ARE DONE (II CR NOT(O).

 CO  311   IZOE-lt*
    SLM  *  G.C
    CO  303  J"1,K
       KMfJ,I2OEI = KNI(J,lZONEI/24.
       IF  (KM(J,12CNE)  .GE. 0.0)  GO TO 301
          ICEFP * I
          VRITE (6,47801   KNNAMEU), IZONE, KNKJ.IZONEI
          RE1LFN
       IF  (Cm**M(J«IZONE) .LT. O.f>)  GO TO 302
          hRITE (£,41.9C)   KNNAME(J), IZONE
                                       269

-------
Appendix C (continued)
6460.
£461.
6462.
6463.
6464.
6465.
6466.
6467.
6468.
6469.
6410.
6471.
6472.
(473.
6474.
6475.
6476.
6477.
6478.
6479.
64EO.
6481.
6482.
6483.
6484.
6465.
6486.
6487.
6488.
6489.
6490.
64S1.
6492.
6493.
6494.
6495.
6496.
6497.
6498.
6499.
65CO.
6501.
6502.
6503.
6504.
6«05.
65Q6.
6507.
6508.
6509.
6510.
6511.
6112.
6513.
6514.
6515.
6516.
6517.
6518.
6519.
302
303






3C4

3C5
3C6


307

ace

3C9

310
311



313



314
C
C
C
C
C
319





320









330


340


350

C
SI? = SIP « KM I U, I ZONE)
CONTINUE
CO 306 wit!
KFUJtHOEl - KPK J,IZQNE)/24
IF (KF!(U,12CNE) .GE. 0.0) GO
1CEFP « 1
WRITE U,48CO) KPNAMEU) ,
RETLFN
IF (CELT*1 = SO -t KPI(J,IZONE)
CGMIME
IF (SUf .IT. C.OCC01) GO TO (307
GC TC 211
SFLG = C
GC TC 311
UFLG » 0
GC TC 311
LFLG « 0
GC TC 211
GFLG * 0
CCNTINLE
CO 313 J=IilC
IF (THKN(J) .CE. 1.0) GO TO 313
WRITE (6,4612) KNNAHE(J)
CCNTINLE
CO 214 J=l,5
IF (THKP(J) .GE. 1.0) GO TO 314
hRITE (6,<€14) KPNAMEU)
CCNTINLE





•
TO IQt

I ZONE, KPHJ.IZCNEI

) GO TO 205
I ZONE


,308.309,310) , IZONE



















INPUT CF INITIAL NUTRIENT STORAGES


READ (5.3CCC) CJ-/R
IF (CH/R .EC. el/^K) GO TO 319
IF (CH/P .EC. IMT) GO TO 320
IOEPR » 1
VtRITE (6,466!) CHAR
RETLRN
RE/10 (5,30CC) TYPE
IF (TYPE .EC. El/MO GO TO 320
IF (TYPE .EC. MTR) GO TO 330
IF (TYPE .EC. FI-CS) GO TO 340
IF (TYPE .EC. CUC) GO TO 350
IF (TYPE .EC. EH:) GO TO 560
ICEPR « 1
tiRITE (6,472!)
WRITE (6.474C) TYPE
RETLRN
NSTRT * 1
NENC = 7
GO TO 36C
NSTRT = 11
NENC = 14
GC TC 36C
NSTRT » 20
NENO * 20




























                                    270

-------
Appendix C (continued)
6520.
6521.
6522.
6523.
6524.
6525.
6526.
6527.
6528.
6529.
6530.
6531.
6532.
6533.
6524.
6535.
6536.
6537.
6538.
6539.
6540.
6541.
6542.
6543.
6544.
6545.
6546.
6547.
6548.
6549.
6550.
6551.
6552.
6553.
6554.
6555.
6556.
6557.
6558.
6559.
6560.
6561.
6562.
6563.
6564.
6565.
6566.
6567.
6568.
6569.
6570.
6571.
6572.
6573.
6574.
6575.
6576.
6577.
6578.
6579.
C
C
360





365




370




360
390

C
4CO

410




42C

43C
C
C
C
440





450




460




470
4£C

C
49C

SCO


                                      SURFACE

                 PEAO (5,3020)  CMR,  NBLK
                 IF  (CHAP  .EC. SIPF)   GO TO 365
                    IOEPP  * 1
                    WRITE  (6.467C)  1YP6
                    WRITE  (6.463C)  SLRF, CHAR
                    PETUPN
                 IF  (NBLK.EC.C .CP.  NELK.EQ.l .OR.  NBLK.tQ.5J   GO TO 370
                    IOERR  * 1
                    WRITE  (6.467C)  1YPE
                    WRITE  (6.469O  SURF, NBLK
                    RETURN
                 IF  (NBLK  .EC. 5) GC  TO 400
                 READ (5,301C)  (£NT(J),J=NSTRT,NENDJ
                 CC  390  J=NJTPT,NEND
                    DC 3EO  IEIM1,5
                       JMJ.1EIK) -  SNT(J)
                    CCNTINUE
                 CCNTINUE
                 GO  TC 440

                 CO  41C  IELM1,«
                    REAC (5,2010)  (SN(J,IBLK),J-NSTRT,N£NO)
                 CCNTINUE
                 CC  430  J=N£TPT,NENO
                    SUM >  O.C
                    OG <2C  IELK-1,5
                       SLM = SUC * SN4J.IBLKJ
                    CCMINLE
                    SNT(J)   SLH/5.
                 CCNTINUE

                                      UPPER ZONE

                 READ (5,3C2C)  CI-AR,  NBLK
                 IF  (CHAP  .EC. UFFE)   GO TO 450
                    ICEPP  - 1
                    WRITE  (6,467C) TYPE
                    WRITE  U.463C)  UPPE, CHAR
                    RETURN
                 IF  (NGLK.EC.O .CF.  NELK.EQ.l .OR.  NBLK.EQ.5)   GO TO 460
                    ICERR  - 1
                    WRITE  (6.467C)  TYPE
                    WRITE  (6,469C)  LPPE, NBLK
                    RETURN
                 IF  (KBLK  .EC. 5) GC  TO 490
                 REAC (5,301C)  (LNT(J),J=NSTRT,N£NOI
                 CO  46C  J=^^FT,^END
                    CC 470  IELK'1,5
                       UNtJ.ieiK) '  UNT(J)
                    CCNTINUE
                 CCNTINUE
                 GC  TC 520

                 CO  50C  IELK*1,5
                    PEAC (5,2010)  (UN(J,IBLK),J=NSTRT,NEND)
                 CONTINUE
                 CO  520
                    SUP *  O.C
                                       271

-------
Appendix C (continued)
4180.
6561.
6*82.
6583.
6564.
6585.
6566.
€567.
6588.
6589.
6590.
6591.
6592.
6593.
6594.
6595.
6596.
6597.
6598.
6599.
t>t CO.
66C1.
6602.
66C3.
6604.
6605.
66C6.
6607.
6608.
66C9.
6(10.
6611.
6612.
6(13.
6614.
6615.
6616.
6617.
6618.
6619.
6620.
6621.
6622.
6623.
6624.
6625.
6626.
6627.
6628.
6629.
6630.
6(31.
6622.
6633.
6634.
6625.
6636.
6(37.
6636.
6(39.


510

52C
C
C
C
530





540
C
C
C






550
C

C
C
C
56C

C
















C
C
C





565


DC 510 lElK-1,5
SIM - SIP « UMJ.IBLKI
CCNTINLE
LNT(J) - SIPS5.
CCMIME

LOWER ZONE

READ (5,3CCC) CHAR
IF (CHAR .EC. L(fcE) GO TO 540
IGEPR = 1
WRITE (6,467C) TYPE
WRITE (6|463C) LCWJc, CHAR
RETLRK
PEAC (5,301C) (LMJ), J»NSTRT,NEND)

GROUNOtiATER

REAC (5t3CCC) CHAR
IF (CHAR .EC. GFCL) GO TO 550
ICEFP = 1
WRITE (6,467C) TYPE
WRITE (6,4(3C) GRCU, CHAR
RETLRK
REAC (5,301C) (GMJ),J=NSTRT,NEND)

GO TO 220

OUTPUT OF INITIAL NUTRIENT STORAGES

WRITE (6,40CS)
WRITE (6.4CCS)

CCNC = LEFAC
IF UNFIT .EC. *ETR) CONC*KGPHA
WRITE (6.40CC) CCNC
WRITE (6.47CC)
WRITE (6,4010)
WRITE (6,4025) (SNT IJ) , J«l ,7 ) , (SNTl J) , J=li , 1«) ,SNT( 20 )
WRITE (6,«03C) (I8LI<,(SN(JfI8LK),J=l,7),(SN(J,IBLK),J-ll,14),
1 l,5
SK(J,1EIK) * SNU,IBLK)*.8*24
UN(J.IEIK) > UMJ,IBLK)*.8924
CCNTINLE
LN(J) = LMJ)<-8924
GN(J) CMJ)*.8924
                                     272

-------
Appendix C (continued)
££40.
££  IN  THE SYSTEM
                                      UNITS = LB/AC.

                 TNA * 0.0
                 CC 575  J»l,7
                    SUM = O.C
                    CC 574  IEIKM.5
                       SLM = JLH + SMJ.IBLK) * UN(J,IBLK)
                    CCNTINUE
                    TNA * TN< + IMJ) + GNU) * SUM/5.
                 CCNTINLE

                 TPA » C.O
                 CC 5£5  J»llf14
                    SLM » C.C
                    DC ££C  1ELK * 1,5
                       SLP * SLf « Sh(J,IBLK) > UN(J,IBLK)
                    CCNIIKtE
                    TPA ^ TP* * IMJ) * GN(J) * SUM/5.
                 CONTINUE

                 TCLA » 0.0
                 CC 590  IELK-1,;
                    TCLA = TCL* •» 5N(20tIBLK) «• UNUO.IBLK)
                 CCNTINUE
                 TCLA = LNJ2C) » GM20) * TCLA/5.

                 IF (INFLT .EC. >ETRJ  GO TO 595
                    CCNC = LEP/C
                    WRITE (£,4€2C)  1NA.CONC, TPA, CCNC, TCLA, CCNC
                 GO TC £CO
                    CCNC = KCPM
                    Ttvf-ET « ThA<1.121
                    TPMET * TFA*1.12l
                    TCL^ET = TCL/<1.121
                    hRITE J6,4£2C)  1NMET.CCNC, TPMcT ,CONC, TCLMET.CONC
                                      NUTRIENT APPLICATIONS
                 IF (MAFPL.GE.C .AhO. NAPPL.Lii.5)  GO TO 610
                    ICEPR « 1
                    hRITE (£,471C)  NAPPL
                    RETLRN
                 IF (MFFL .EC. C)  GO TO 910

                 CCNC = LEP*C
                 IF (INFLT .EC. *ETR)  CONC=KGPHA
                 kRUE U.4CCC)  CCNC

                 00 900  IAFFL-1 ,f/PPL
                    DC £14  J=1,2C
                       ShAFLT(j) > 0.0
                       LNAPLT(v) * 0.0
                       CC  £12  IELK-1,5
                          Sh/FlU,IBLJ«,IAPPL) - 0.0
                                       273

-------
Appendix C (continued)
 6700.
 6701.
 67C2.
 67C3.
 61C4.
 67C5.
 67G6.
 67C7.
 6708.
 67C9.
 4710.
 6711.
 £112.
 £113.
 6114.
 €115.
 £116.
 6117.
 £118.
 6119.
 £120.
 6121.
 6122.
 6723.
 6124.
 6125.
 6126.
 6127.
 6128.
 6129.
 6130.
 6131.
 6122.
 £133.
 6134.
 6125.
 6136.
 6137.
 6126.
 6139.
 6140.
 6141.
 6142.
 £143.
 6144.
 6145.
 £146.
 6747.
 6148.
 £149.
 6750.
 6151.
 6152.
 6153.
 6154.
 6755.
 6156.
 6157.
 6158.
 6159.
612
614
C
62C
£30
635
640
£50


6£C


67C

C
C
C
66C
 6SC
 7CO
 71C
      LN4FLU tlBLK.IAPPL)
   CCMIME
CCNTINCE
                                      0.0
REAC (5.-C2C)
         IF
         IF
IF
 IF
 IF
               CUP,
              ELANK)
(CHAR .EC.
(CI-AR .EC.
ICERR » I
WRITE (£,4120)
WRITE (£,<£20)
FETLRN
(APCAYUAFFD.GE.O
ICERP * 1
WRITE U,412C>
WRITE (£,4130)  IAPPL,
APDAY(IAPPL)
 GO TO 620
GO TO 630
                            APPLt  CHAR
                       .AND. APUAY(IAPPL).LE.366)  GC TC 635
                                    APOAY(IAPPL)
   (IAPPI .EC. 1)  GO
   l*PCM UAFFLI .GT.
   ICERR * 1
 TO 640
 APOAY(IAPPL-D)
                                                 GO  TO  640
   WRITE (£.'1201
   tPITE (£,4125)
   RETIRN
REAC (5.2CCO)  TYPE
IF (TYPE .EC. ELANK)
IF (TYPE .EC. MTR)
IF (TYPE .EC. FHCS)
IF (TYPE .EC. CHLC)
IF (TYPE .EC. ENU
   ICERR « 1
   WRITE (£,4120)
         (£,4745)
NSTBT
NENC
   GC
NS1RT
NENC
   GC
NSTRT
NENC
   WRITE
   RETURN
       «  1
       7
       TC £60
       -  11
       14
       TC ££0
       -  2C
       2C
                             IAPPL
                                GO TO 640
                               GC TO 650
                               GO TO 660
                               GO TO 670
                              GO TO 870
                             TYPE.  IAPPL
                   SURFACE
 REAC  (5,2C20)  CHAR,  NBLK
 IF  (CHAR  .EC. JURF)  GO TO 690
    ICERP  -  I
    WRITE  (£,4120)
    WRITE  (£,4150)   IAPPL, TYPc, SURF, CHAR
    FETLRN
 IF  (NBLK.EC.C .OR. NBLK.EM.1 .OR. NBLK.EQ.5)  CO TO 700
    ICEPR  =*  I
    WRITE  (£,4120)
    WRITE  (£,*£SO)   SURF, NBLK
    PETtPN
 IF  (NBIK  .EC. 51  GO TO 730
 REAC  (5.2C10)  (SNAPLT(J),J=NSTRT,NENO)
 CC  720  >*NSTFT,NENO
    CC 71C  IELK~1,5
       SN/FL(«,1BLK,IAPPL) = SNAPLT(J)
    CCNTIME
                                        274

-------
Appendix C (continued)
6760.
6761.
6762.
6763.
6764.
6765.
6766.
6767.
6768.
6769.
6770.
6771.
6772.
6773.
6774.
6775.
6776.
6777.
6778.
6179.
6780.
67E1.
6782.
67£3.
6164.
67£5.
61E6.
67£7.
6788.
6789.
6790.
6791.
6792.
6793.
6794.
6795.
6796.
6797.
6798.
6799.
68CO.
6801.
6E02.
6£C3.
66C4.
6£C5.
68C6.
6£07.
6£C8.
6£C9.
6E10.
6611.
6612.
6£13.
6614.
6615.
6616.
6E17.
6ua.
6£19.
720

C
720

740




750

760
C
C
C
77C





78C




79C




, 8CC
810

C
820

820




84C

aso
£60
C
C
C
£70



1
2
C



                    CCMINLE
                    CC 1C 77C

                    CC 740   IEIK'1,5
                       REAC  (S.2C1CI   (SNAPL(J,IBLK.1APPL»,J=NSTRT,NEN01
                    CCNTINUE
                    DC 760   .^STFT,NEND
                       SIM = C.O
                       CC 75C   IEIK»1,5
                          SL> * Sif +  SNAPLU,I8LK,IAPPL)
                       CCNTIME
                       SNAPUCJI  « SL*/5.
                    CCNtlNUE

                                       LPPER  ZONi

                    RE/C (5.2C20)  Ch/R, N6LK
                    IF (CHAP .EG. LPPE)  GO  TO  780
                       1CEPR «  1
                       VRITE (6,41201
                       kPITE (6,41£0i  1APFL, TYPE,  SIAF, CHAR
                    IF (NBLK.EC.C  .OR. NBLK.EU.l  .OR.  NBLK.EQ.5)  GO TO 790
                       ICEPR »  I
                       fcRITE (6,4120)
                       kRITE U,«tSO)  UPPE,  NBLK
                       FETl^
                    IF (NBIK .EC.  5)  GO TC  820
                    REAC (5.2C10)   (LNAPLT(J),J=NSTRT,NENO)
                    CC 610  ..*fSTFT,NEND
                       CC ECC   IEIK=1,5
                          UMFl(J,IBLKfIAPPL)  = UNAPLT(J)
                       CCNTULE
                    CCMINUE
                    GC TC E6C

                    CC 820  IBLK'1,5
                       REAC (5,3C1C)   *L* 4 UNAPL(J,IBLK,1APPLI
                       CCNTIME
                       tNAFLT(J) «  SLH/5.
                    CC^TI^LE
                    GC TC 64C

                                      OUTPUT  OF NUTKIENT APPLICATIONS

                    kRITE (6.476C)  APCAY(IAPPL)

                    HRITE (6i«025)  (SNAPLT(J),J=l ,7 ) , (SNAPLT(J ),J- 11,141,SNAPLTI20)
                    kRITE (6,
-------
Appendix C (continued)
££20.
6821.
££22.
6823.
6624.
££25.
££26.
6E27.
6E28.
££29.
££30.
6631.
6832.
6632.
6834,
6E35.
6636.
6637.
££28.
6639.
6E40.
6E41.
6642.
££43.
6 £44.
6E45.
££46.
6647.
6648.
££49.
££50.
6651.
6£S2.
££53.
6654.
6E55.
6656.
££57.
6E58.
6659.
6660.
6661.
6662.
6663.
68£4.
6665.
6666.
6667.
6668.
6669.
6E70.
6E71.
6672.
6 £73.
££74.
6675.
6676.
6677.
6678.
££79.
1
2
C
C
C
IF (INI
CC ESO
CC (

I
860 CCN'
8SC CCNTIN
C
9CC CCNTINIE
C
C
SIC RETURN
C
C
C
3COO FCRPAT (
3CC1 FORMAT (
3C10 FCRN*T (
3C20 FCRfAT (
4CCO FCRMAT (•
1 •
2 3
4C05 FCRMAT (
4CC7 FORMAT (•
1 /t
2 /,
3 /,
4 /,
4C1C FCRMAT '
4C20 FCRMAT •
4C2E FCRMAT '
4C3C FCRMAT •
4C90 FORMAT '
411C FCRCAT •
412C FCRMM '
4599 FORMAT (
1
46CC FCRMAT (
4£10 FCRMAT (
1
2
4619 FORMAT (
4£20 FORMAT (
1
4£30 FCRMAT (
4£40 FCPMAT (
1
4£5C FORMAT (
1
2
2
4
5
466C FCRPAT (
1
                                    ,13)
                        CC',/,'C',*NLTRIENTS - « ,A5,11X, * ORG-N' ,3X,' NH3-S* ,3X,
                            2-A* ,EX, •NC2',5X,'N03I,6X,*N2',2X,•PLNT-N*,3X,'ORG-P't
                         3X,'FC4-S*,2X,'P04-A«,2X,« PLNT-P' ,6X,*CL*)

                          Oli4CC*«*)/i •f***,38X,**',
                          •  ',«*    WARNING: NUTRIENT ALGORITHMS*,6X,»**,
                          •  •,«*    HAVE NOT BccN VERIFIED WITH',7X,'*»,
                          •  ',**    OBSERVED DATA',21X,***,
                          •  ','*• ,28X,•*',/• •t'tOC*') )
                          0' |2>,'£IRFACE LAYER')
                          0' ,£X, 'STORAGE*,12X,F8.0,6F8.3,F8.0,3F8.3fF8.3)
                          C',6X,'/VEPAGc',l2X,F8.0,6f6.j,F8.0,3F8.2,F8.3)
                           •.IZXt'ELCCK*,I2,6X,fa.O,6F8.3tF&.0,3F8.3,F8.3)
                          C',2>,*IFPE8 ZONE*)
                          C>,'Xv'lChER ZONE*)
                          C*,2X,'CPCUNOWATER*)
                                            EXPECTING THE WORD  NUTRIENT   BUT  *,
 t0.f t	ERROR—
 •REAC  H  «,A8)
 •l',40>,'NUTRIENT SIMULATION
 '0',2X,'TIfE STEP FOR TRANSFORMATIONS * -,
 /,'  '.IX.'NCI'ack  OF NUTRIENT APPLICATICNS
                                                        INFORMATION')
                                                                   •-I5,'
 KIN',
12.
                           t • • t z* t•LMic OF
                           C' ,'	ERROR—-
                   PLANT HARVESTING = *.I4)
                   IN REACTION RATES SECTION OF INPUT*)
                            ',12>,'EXPECTING ',A5,' BUT READ  IN   •,A4)
                            ',12>,'EXPECTING NITR, PHOS, OR ENC,  BUT  REAO
                           0','MIFOGEN REACTION  RATES', 1U(4XVA4)/,
                            • ,tX,«SLRFACE' ,12X,10(2X,F6.4)/
                            •,£X.'LPPcR ZONE*,9X,10«2X.F6.4)/
                            •,6X,'LCk«£H ZUNE',9X. 10(2X,F6.4)/
                            •,£X,'GRCUNUMATER',8X,10(2X,F6.4)/
                            •,2X,'TEKPERATURE  CJcF.•,5X,IOF8.3)
                          'C1 .'FKSPHQhUS  REACTION  RATES',   5(4X,A4)/
                          ' •,£X,*SCRFACE',12X,5(2X,F6.4j  /
                                        276

-------
Appendix C  (continued)
£E60»
6881.
6662.
6££3.
6864.
66C5.
6686.
6687.
6688.
6689.
6890.
££91.
6892.
6893.
6694.
6695.
6696.
6697.
6698.
6899.
6900.
6901.
£902.
69C3.
69C4.
6905.
6906.
6907.
69C8.
69C9.
6910.
6911.
£912.
£913.
6914.
6915.
6916.
6917.
6918.
6919.
6920.
6921.
£<22.
6923.
6924.
£925.
£926.
£927.
6928.
6929.
7COO.
7C01.
7C02.
7CC3.
7C04,
7CC5.
7C06.
7007.
7008.
7C09.




4€£5
4£70

4690

47CC
4710

4720
4725
4730


4735

4140

4145

475C

476C
477C

47EC

479C



48CO

4810



4612

4tl4

4620


C
C

C
C
C
C
2
3
4
5
FORMAT
FGRMT
1
FGRf/T
1
FCRMA1
FORP/T
1
FCRJ"AT
FCRPAT
FCRPAT
1
2
FCRI*£T
1
FCPKJT
1
FCRPAT
1
FORMAT
1
FCRMAT
FORMAT
1
FORMAT
1
FGRHAT
1
2
5
"FORMAT
i
FCRMAT
i
2
3
FORMAT
1
FCRMAT
1
FCRMAT
1
2


END




• *.£
• • f
• ',£;
1 '.2
CO','
CO1,'
•INFL
C ',1
' IbH
1* «t3
CO','
•RANCI
CO'.'
CO'.'
(• '.1
•AFFL
* V 1 L L ' 1
(' ',1
' CCE
CO',1
•PEAC
CC',1
•RE/C
CO',1
1 E > F E1
CO','
( 'C • , '
1 EXE*
( '0 • »••
A4, •
CO','
' IN
• IS
•REEL
CO','
A4 , *
( '0 ' » '•
• Ih

•fi£CL
CO','
,» PE,
CO','
•FKJ
CO', 2;
' • ,2X
• • t2X







SLBPOIT1NE rail
C
C
C
G
C










                              ,£X, UPPER ZUNE*,9X,5C2X,F6.4I  /
                                   IOUER ZONE',9X,5(2X,F6.4I  /
                              ,£X,'CPCUNO*ATER',8X,5(2X,F6.4)  /
                              .'X.ME^tRATURE COEF.' , 5X.5F8.3)
                              ,• --- EPROR ---  EXPECTING  1NIT  BUT READ IN «,A4)
                                   EPRCR - IN INITIAL -,A5,' STORAGE SECTION OF

                                   *FCfi «,A5,' EXPECTING BLOCKS»0, 1, OR 5',
                                   VALUE - sm
                             't3X,« INITIAL STCRAGES')
APPLICATIONS
   '
                                                  CAN
                                            NUMBER OF NUTRIENT
                                  FPCf C TO 5 ONLY, INPUT VALUE = ',131
                                   EPRCR --- IN NUTKIENT APPLICATION SECTICK'I
                                   EPRCR -- IN INITIAL STuRAGE SECTION')
                                  t'IN APPLICATICN NO. '.IZi* THE DAY OF •,
                                  /TICN IS NOT IN THE RANGE  1 TC 366, INPUT ',
                                                                            FOR
        ','ThE CAY OF APPLICATION NO.  *,I2,
        NCT EXCEED THE PKEVlCUo APPLICATICN DAY')
        >,'EXPECTING NITR,  PHCS, CHLO,  OR  END,  BUT  *,
        IN «,A5)
        ','EXPECTING NITR,  PHCS, CHLO,  OR  ENC,  BUT  •
        IN «,A5,' FOR APPL. NO. ;,I2)
        ','IN APPLICATION NO.  ',U,( FCR ' ,A4,
            ',A5, ' BUT KcAD  IN •,A51
            ftTION FCR DAY  •,IJ)
            D TSTEP SPECIFIED, INPUT  UAS  ',14,
             CONTINUING WITH TiTtP =  £0 MIN.')
      	EFPCR	  INVALID NITROGEN REACTION RATE
      I* ZCNE ',12,' INPUT VALUE =* »,F8.6)
|»0',i	fcAPNlNG	  NlTKutEN  REACTION RATE  ',A4,
      ZChE '.I2./14X,
      TCC LARGE FCR TIME STtP  SELECTED, CONSIDER  ',
      C1NC TSTEP FCR MORE  ACCURATE SOLUTICN')
      	EFFCA	  I.4VALIU PKJ3PHORUS  REACTION  RATE
      ir.ZONE ',12,' INPUT VALUE - §,F8.6)
      	VAPNING	  PHGSHLRLS REACTICN RATE •
      2CNE ',I2/14X,
      TCC LARGE FCR TIME STEP  SELECTEC, CCNSIDEB  '.
      C1NG TSTEP FOR MORE  ACCUATc SOLUTION')
      — V.AFNING—  TEMPERATURE COEFFICIENT FCR  NITRCGEN*
      ACTICN SATE '.A*,' SHuULJ dt >=  l.O'l
     i	k«RNlNG	  TEMPei^ATURE COEFFICIENT FOR  *t
             REACTICN RATc ',A<»,' ShCULD  EE >=  1.0*1
            \L MTROGcN IN SY3TEM = • ,2X, F10.3,2X,A5/
            L PHGSPHOAUS IN SfSTEM =  ' ,F10.3,2X,*5/
            L CHLORIDE IN  SYSTEM - ',2X,F10.3,2X,A5I
                                                                              FCR
                                       THIS SUfaROUTINE IS CALLEC EVERY INTERVAL ON
                                       A RAIN DAY UR ONLY ONCE  » DAY ON A  NC RAIN
                                       CAY TO COMPUTE NUTRIENT  LOSSES AND  TRANS-
                                       FORMATIONS.  AOVECTIVE LCSS  IS COMPUTED
                                        277

-------
Appendix C (continued)
7010.
7011.
7012.
7013.
701*.
7015.
7016.
7C17.
7C18.
7019.
7C20.
7C21.
7022.
7C23.
7024.
7025.
7C26.
7C27.
7028.
1C29.
7030.
1C31.
7032.
7033.
7C3*.
7035.
7C36.
7037.
7038.
7C39.
7C*0.
70*1.
70*2.
7C*3.
1C**.
70*5.
70*6.
70*7.
70*8.
1C*9.
7050.
7051.
7C52.
7C53.
7C£*.
7055.
7056.
7C57.
7058.
7C59.
7C60.
7CC1.
7042.
7C63.
7C€*.
7065.
7066.
7C67.
7C68.
7C6S.
C
C
C
C
C
C
C
C

C









C






C
C


C



C




C
C
C









C
C
C

C

C


                                       EVERYTINE SUBROUTINE IS CALLED, WHILE
                                       CHEMICAL AND 6 ILLOGICAL TRANSFORMATIONS
                                       ARE CONE AT SELECTED INTERVALS AS
                                       SPECIFIED BY INPUT PARAMETER TSTEP.

                                       CECLARATIONS
                                       COMMON VARIABLES
                 INTEGEP**   1SIEF ,KSTEP,SFLG,UFLG,LFLG,GFLG
PEAL**  LEL1,£TE*H*,2*),
        SM2C.5I tSNT(20),SNRSM(20t5) tSNROM (20 ,5) ,
        UM20,5),LNT(20),UNI(20,5),UMr(20i , UNRIP (20,5 )»
        NPSM2C.5),        LNUOI,LNRPM(20),          GN(20),
        SNREM2C,£) ,UMRBM(20,5) ,LNKbK(20) ,GNREM(20) ,TNRBM20)t
        SNPSY(2C,5) ,SNROY(20,:>),UNRIY(20,5) ,NfiSY(20,5) ,
        Lh&FY(2C) ,SNRBY(20,5) .UNRBYCiO.i) ,LNR PY (201 , GNRBY (20 1 ,
        TNREY(2C),TKRhV(20),TNRHVM(20)(TNRHVY(20) ,TNA, TP« ,TCL A,
        Kh(10t*),THKM10),KP{5,*),THKt>(5l>NBAL»PHBAL,CL8AL

CCMMCN /NLT/   CELT, STEMP, SN.SNT ,SNRSN, SNROM.UN, UNT.UNI ,UMTf
            LNP l^•,^RS^,LN,LNRPMfG^.S^RB^^,UNRB^',LNPeM,G^REM,TNRBM,
            SNP <>tSNRCY,UNRIY,NRSY,LNRPY,SN*BY,UNRBY,LNREY,GNPBY,
                1
                2
                3
                *
                5
                6
                7
                8
1
2
3
*
 INTEGER**
                              K^,^^-K^fKPfTHKPtNBAL,PI-oAL,CLUAL,
                              1JTEF,NSTEP,SFLG,UFLG,LFLG,GFLG
                             FR^TKE,HYCAL,OUTPUTfTIMFAC,IMIN, IHR, TF ,J COUNT,
                              C*LE, FFCC, ENGL,MtTR,80Tri,YcS. NO, PEST, KUTR
         RL,l-YI"I*,CPST,LZS,AREA,R£Sei(5)fROSB(5),SPGX(5 ), INTF(S),
         RGX(5),IKFL(5>,UZSB(5),APERCb(5),RIB(5),ERSN(5),f>ESBI5)f
                  REAL**
 CCFKCh /ALL/   RL,hYMN,PRNTKE,HYCAL,UPST,OUTPtT,TIMFAC ,L2S,APEA,
1            FESBl,POSe,SRbX,INTF,KGX, INFL ,UZS 6 ,APE°CB,R IB ,ERSN ,
2            *,F3,A,CALB,PRCD,PEST,NUTfc,ENGL,METR,BCTH,RESE,YES,NO,
3            IHIN, IhR,TF,JCOUNr, PRINT, iNTft, DAYS , HOUR, MNTH

                       DECLARATIONS FOR INTERNAL STCRAGE ALLOCATION

 REAL**   SNF< UO,£t,SNRO(20,5) , SNRP (20,i) ,ASNRS(20,5 J /100*0.0/ ,
1         ASNCci(2C>,ASNRU(20,5)/lCO*0.0/,  ASNPOT( 20) ,
          ASNFF(2C,£)/lCO*0.0/,ASNRPT(20l,UNTl(20,5)tUNRH20t5)>
          UNSF (20,5), NRS( 20,5 J.AUNRI (2U,iJ/100*0. 0/,AUNR IT 120),
          ALNFF (2C,5)/iOO*0.0/,AUNRPT(20),ANRS(20,5)/100*'0.0/f
          A^R5T(2C),L^RP(20),ALNRP(20l/20*0.0/t
          ASN?E(2C,£)/100*0.0/,ASN*BT<20),
          AUKFE (2C,5)/100*0.0/,AUNKBT(20),
          ALKPE(2C)/20*0.0/,  AGNRd(201/20*0.0/,ATNRB(20 )/20*0.0/

                       DECLARATIONS FOR OTHER INTERNAL VARIABLES

 INTEGER**   IT.1PE ^CYCLE.IHOUR, IBIOfI ZONE, IBLK

 FEAL*8   CCNC,LeF/C/«LB/AC'/,KGPHA/«KG/HA«/

 REAL**   FS»FC,FF,TW,TViI,FII,FLItT(*) t
1         CELrE(2C,5),DELN(20),
                 2
                 2
                 *
                 €
                 7
                 £
                                        278

-------
Appendix C (continued)
7C70.
7C71.
7C72.
7073.
7C74.
7C75.
7C76.
7C77.
7C78.
7C79.
7C60.
70£1.
7C62.
7C63.
7(64.
7065.
7C€6.
7C£7.
7068.
7C£9.
7C90.
7091.
7C92.
7093.
7C54.
7CS5.
7C96.
7C97.
7058.
7099.
7100.
7101.
7102.
7103.
7104.
7105.
7106.
7107.
7108.
7109.
7110.
7111.
7112.
7113.
7114.
7115.
7116.
7117.
7 lid.
7119.
7120.
7121.
7122.
7123.
7124.
7125.
7126.
7127.
7128.
7129.





C
C
C
C
C
C
C





C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
                2        SU»>,SL*C,SUM,NDSM(20),NDSC(20),NASM(20I,
                3        NASC^OI.ERSNT.CUNFC.CONFS.TbTN.TOTP,
                4        CCNXF71.1217,SNMET(20,5I ,UNMtT(20,i) ,LNMET(20) ,GNMET(20),
                5        SNTfET(2CJ,L'NTMET(20),UNlTMT(20).UNlMET(20,5),
                C        PA,CLfV(2C) ,DUMA(20,5J

                                       INITIALIZATION  AND  DECLARATION OF  SELECTCRS
                                       CSEO  FOR AOVECTING  ANU  REMOVING NUTRIENTS
                                       BY MEANS OF  SEDIMENT  (SO),  OVERLANC FLOW
                                       (OF),  INTERFLOW  (IF),  PERCOLATION  (PCI,
                                       BIOLOGICAL  (8L).

                 INTEGER**.   SELSC (201/1,0,1,0,0, 0,0,0,0,0,1,0, 1,0, 0,0,0 ,0,0,07,
                1            SELCF(20)/0,1,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,17,
                2            SELIF(20)70,1,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,17,
                3            JELPC(2C)/0,1,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,17,
                4            SELEI(20170,0,0,0,O.I,1,0,0,0,0.0,0,1,0,0,0,0,0,07
                              ERIEF DESCRIPTION OF  VARIABLE  NAMING CONVENTION:
                              1) FIFST  TWO  LETTERS  SN,UN,LN,GN  STAND FOR SLPFACE,
                                LFFER  ZONE,  LOrfER  ZONE, AND GRCUNDWATER NLTRIENTS
                                LM    INTERFLO»  STORAGE OF  DISSOLVED NUTRIENTS
                              2) FIFST  LETTER A STANDS FOR AN ACCUMULATION OF A
                                MTRIEM LOSS OVER THc INTERVALS  BETWEEN PRINTING
                              3) 11-E THIRD  CR FOURTH LcTTE*  'R'  STANDS FCR REMOVAL
                              4) FCLLCHING  THE «R«  A LETTER  INDICATES THE CAUSE CF
                                PEfCVAL;   "S^SEOIMENT, • 0' "OVERLAND FLCH,
                                •F'=FERCOLATION, •I•=iNTcKFLOH ,  •B«=BIOLCCICAL
                              5) LETTERS 'M1  AND  'Y« INUICATt MCNTHLY AND YEARLY
                                SLMS OF REMOVALS,  MCNTHLY SUM  IS  ACCUMULATED IN
                                M1RNT ANi> PASSED  TC  MAIN FOR OUTPUT, AND YEARLY
                                4PCUNTS ARE  CALCULATED AND  PRINTED IN MAIN
                              £) THE LETTER «T« APPEARING AT THE  VEFY ENC INDICATES
                                UE TOTAL  OR AVERAGE  MASS OF THE  5 BLOCKS IN THE
                                SLPFACE AND  UPPER  ZCNES

                                NLTRIENTS  ARE STORED  IN VECTORS  ANC ARRAYS IN  THE
                                FCLLCWING  SEQUENCE CF ELEMENTS:
                                1 * CRG-N,   ORGANIC NITROGEN
                                2 * NH3-S,   AHMONIA IN SOLUTION
                                • ' NHJ-A,   AMMONIA ACSORBEO TC  SOIL
                                4 - NC2,     NITRITE
                                5 - N03,     NITRATE
                                t » N2-GAS,  NITROGEN  GAS FROM CENITRIFICATION
                                1 = PLNT-N,  PLANT  NITROGEN
                                t * CPEN
                                « « CPEN
                                1C = CPEN
                                II = CRG-P,  ORGANIC  PHOSPHORUS
                                12 * PC4-S,  PHOSPHATE IN SOLUTION
                                13 = PC4-A,  PHOSPHATE ADSORbEC  TO SOIL
                                14 * PLNT-P, PLANT PHOSPHORUS
                                1* = OPEN
                                U - CPEN
                                17 - OPEN
                                IE   OPEN
                                I? = CPEN
                                2C - CL,
CHLORIDE
                                       279

-------
Appendix C (continued)
1130.
1131.
1132.
1133.
7134.
1135.
1136.
1137.
1138.
1139.
1140.
7142.
7143.
7144.
7145.
1146.
7147.
7148.
7149.
7150.
71*1.
7152.
7153.
7154.
7155.
1156.
1157.
1158.
1159.
1160.
7U1.
7162.
1163.
1164.
7165.
7166.
7167.
7168.
116?.
1170.
7171.
7172.
7173.
7114.
1115.
7176.
1171.
1178.
7179.
7180.
7181.
71C2.
7183.
1184.
7185.
7186.
7187.
71£8.
7189.

C
C
C
C
C

C
C
C




2C

4C

5C
C
C
C
6C





1C

8C


sc
C
C
C
C
ICO






11C
12C
C
C
C

C
C
C
C




PA
                      l.C -
                 DO 120  IELM1.J
                                      ADVcCTIVc LOSSES
                                      SURFACE ZONE
                                      SEDIMENT REMOVAL
                    IF (ERSM1EIM .LE. 0.0)  60 TO 40
                    FS * 2CCC.*AFE**0.2*ERSN(IBLK)/H
                    IF (FS .CT. l.C)  FS»1.0
                    CC 20  J*1,2C
                       SNRSUtlElK) * SELSD(J)*FS*SN(J,IBLKJ
                    CCMINLE
                    GC 1C tC
                    CO 50  JM.2C
                       SKPSJJ.IEIM * 0.0
                    CCKTINtE

                                      OVERLAND FLOW AND PERCOLATION

                    IF ((P2»FESeiCieLK)) .LE. 0.0)  GO TO 80
                    FC * PCSE(iem/(PA*(P3«-RESBi(IBLK)))
                    FP = RieciELK)/(F3+RESbl(IBLK))
                    DC 1C  J«lt2C
                       SNRCU.IBLK) = SELOF(J)*FO*SN( J.IBLK)
                       SKRFU.IEIM = SELPC(J)*FP*SN(Jf IBLKI
                    CCMINLE
                    CC TC IOC
                    DC SC  J«lt2C
                       SNRC(.,1BIK) ' 0.0
                                    - 0.0
                                       CHANGE SURFACE STORAGES AND ACCUMULATE
                                       REMOVALS
                    CCKTINLE
                    DC  110     SM J.IBLK)  -  SNRSU.IBLK) -  SNRO(J,IBLK|
                 1                    SNPP(JtlBLK)
                        l^(J,lBLK) <  UMJ.IBLK)  +  SNRP(JtldLK)
                        /SNRSiUiIElK) * ASNRS(JtlBLK)  *  SNRSC J.IBLK)
                        ASNRC(JtlElK) * ASNRO(JiIBLK)  *  SNRG(JtlBLK)
                        «SNRF(J,IELK) - ASNRPC J.IBLK)  •»•  SNRP( J.IBLK)
                    CCNTINtE
                 CONTIKLE
                 CO  220   IELf-1,!
                                       UPPER ZONE
                                       PERCOLATION AND  INTERFLOW
                                       UNTI  - TRANSFER  FROM OZ  TO INTERFLCV
                     TK  *  UZSEdBlf) * RGX(IBLK)  *
                     TVI > SPCXIEIK)  # INTF(IBLK)
                     IF  (TV, .LE. C.C)   GO TO 140
                     FII * RGMI8LK)/TM
APfcRCBIIBLK)
                                                 UFL(IBLK)
                                       280

-------
Appendix C (continued)
 7190.
 7191.
 7192.
 7193.
 7194.
 7195.
 7196.
 7197.
 7198.
 7199.
 7200.
 72CI.
 72C2.
 7203.
 7204.
 72C5.
 7206.
 •|2C7.
 72C8.
 12C9.
 7210.
 7211.
 7212.
 7213.
 7214.
 7215.
 7216.
 7217.
 7218.
 7219.
 7220.
 7221.
 7222.
 7223.
 7224.
 7225.
 7226.
 1227.
 7226.
 7229.
 7230.
 7231.
 7232.
 7233.
 7234.
 7225.
 7236.
 7237.
 7238.
 7239.
 7240.
 7241.
 7242.
 7243.
 7244.
 7245.
 7246.
 7247.
 1248.
 7249.
       120
130

UC
150
C
C
C
16C
170

UC

ISC
C
C
C
2CC
210
22C
C
C
C
C
230
24C
C
C
C
         FP
         CC
      IM( JtlELM  =
      CNPFU ,1EIM
   CCNT1NLE
   GC 1C  16C
   CO 150  v=lt2C
      LKTlUt 16I.K)
      INRPU tiem
   CCNTINCE
          + APERCBl IBLK) J/TK

          » SELIF(J)*FII*UN(J,IBLK)
          UNlUtlBLK) *  UNTKJ.IBLK)
           SELPC(J)*FP*UM J.IBLK)
                            0.0
                            0.0
                      LOSS  FROM INTfckFLOW STORAGE
   IF  (TV.I  .LE.  C.O)   GO TO 180
   FL1 -  INTFUELM/TViI
   CC  170   J*1,2C
       LNPI(v.IElK)  =  FLl*UNl(JtIBLK)
   CCNTINLE
   GC  TC  20C
   OC  ISO   J=lt2C

   CCMlMiE
                      REMOVE AND ADO STORAGES />ND ACCUMULATE
   CC 210  J'ltiC
      LM(J,IELK)
      ALNRI (J,IELK)
      ^LNRF (j.lELK)
      LN(J)  =  U (J)
   CCMIKLE
CONTINUE
      CO 240  ieLK»l,5
         CO 220   *»1,2C
            ^FS(J,l£lM
                        -  UN(J>IBLK)  - UNTI (J,ItJLK) - UNRP < J , IBLK)
   CCKTINUE
CCNTINLE
                           UM(J»IBLK)  - UNKltJ.IBLKJ
                             AUNRKJ.IBLK)  *• UNRHJ.IBLK)
                             AUi«RP(J, IBLK)  + UNRPUt IBLK)
                           * UNRP(J,IBLKJ*0.2
                      COMPUTE  NUTRIENT REMOVAL TO STREAM (NRS)
                      AND  ACCUMULATIONS
                     SNRSUtlBLK)  4- SNRO(JtlBLK) * UNRKJtIBLKl
                    =  ANRS(JtlBLK)  + NRS(JtlBLK)
                      LOWER  ZONE
250

2*0

270
C
zee
Tli = L2S * CFJT
IF (TV. .LE. C.O)   GC  TO 260
FP = CFST/Tfc
CC 250  J=1,2C
   LKBP(J) *  JELFC(J)*FP*LN(JI
CCNTINLE
GO TO 260
CO 270  J*lt2C
   LNFF(J) «  0.0
CONTINUE
OC 29C  J'
   LMJ) =
l,2C
 t^(J) -
                          LNRPUJ
                                       281

-------
Appendix C (continued)
7250.
7251.
7252.
72J3.
7254.
7255.
1256.
7257.
7258.
7259.
7260.
1261.
7262.
7263.
1264.
7265.
7266.
7267.
7266.
1269.
7270.
7271.
7272.
7273.
7274.
7275.
7276.
7277.
7278.
7279.
7zeo.
7261.
1262.
1283.
72E4.
72E5.
1266.
7267.
7266.
7269.
7290.
7291.
1292.
7293.
1294.
1295.
7296.
7297.
1298.
7299.
73CO.
7301.
7302.
7303.
7304.
7305.
73C6.
1307.
7308.
7309.


290
C
C
C
C
C
C
C
C
C
C
C





3CC
C
310
C
C
C
C
C



320
330


340
C
C
C


C

C
C
C
C



430
44C
C
C
C
450

C

C

GNU) » CHJ) « LNftP(J)
ALNRF(J» = ALNFP(J) +• LNRP(J)
CCNTINLE

GRCUNOHATER
NO ADVECTIVE LOSS FROM GROUNDWATER


CHECK TO SEc IF PHYSICAL AND BIOLOGICAL
TRAUSFCRMAT10NS ARE TO BE DONE THIS
INTERVAL UN A kAIN DAY, OR SETUP THE
NUMBER OF TIMtS TO LOOP FOR A NO RAIN
DAY

IF (TF .GT. 1) CC TO 300
ITIKE = IPIN +  1

CtLL TRANS ( CELT, IZONE ,DUMV,SN,KN ,THKN,KP, THKP ,T, OUMV ,CELNB)

CCMPUTE AND ACCUMULATE At-CUNT REMCVEC
BIOLOGICALLY

DO 440 IEIK«1,5
CC 43C J«l,20
ASNRE(JiIBLKI - ASNR6(J,I6LK) * SEL8H J) *DELNB ( J, IBLK)
CCNTINLE
CCN 1INLE

UPPER ZONE TRANSFORMATIONS

IF (LFLG .EC. C) GO TO 560
IZCNE - 2

CALL TRANS (CELT, I20Nfc,DUMV,UH,KN ,THKN,KP, THKP ,T,OUPV ,OELNB )

CC 550 IELK»1,5
                                     282

-------
Appendix C (continued)
1210.
1211.
7212.
7213.
7214.
1215.
7216.
1317.
1218.
1219.
1220.
7321.
1322.
7223.
1224.
1225.
7326.
7227.
7228.
7329.
7230.
7331.
7332.
1233.
7234.
7235.
1236.
1237.
7238.
1239.
1240.
7241.
7342.
7343.
7344.
7345.
1246.
1347.
1348.
1249.
1350.
7251.
7252.
7353.
1254.
7355.
7356.
7357.
7258.
7259.
7360.
1261.
7362.
7363.
1364.
7365.
1366.
7367.
7368.
1369.


540
550
C
C
C
560

C

C


650
C
C
C
660

C

C


150
C
8CO
C
C
C
E1C
C
C
C
C
C
C




S10

92C
C








920




940
                       CC 54C   J«l,20
                          AUNReU.IBLK)
                       CCNTINLE
                    CCN1INLE
                          AUNRB(J,IELK)  *  SELBLC J) *DELNB( J, 1BLKI
                    IF  (LFLG  .EC.  C)
                    IZCNE » 2
                      LOWER  ZONE  TRANSFORMATIONS

                      GO  TO  660
                    CALL TRANS  I CELT , UONE,LN,DUMA,KN,THKN,KP,THKP,T,DELN,CUMAI

                    CC 650   c=l,;0
                       ALNRBU)  *  ALNRfc(J) +  SELBL (J) *DELN(J)
                    CCNTINUE
                    IF  (GFLG  .EQ.  C)
                    IZONE - 4
                      GROUNOUATER  ZONE

                      GO  TO 800
                    CALL TRANS  {CELT , IZONc,GK,DUMA,KM,THKN,KP,THKP,T,DELN,CUMA)

                    CC 750   ^«1,2C
                       AGNR6U)  - AGNRB(J)  *  SELBLC J) *DcLN(J)
                    CCNTINLE

                 CCNTINLE
                 IF (PRMKE  .EC.  C)
                                                   AUNRdl J , IBLK)
                     END  OF NO RAIN  INTERVAL  LCOP

                     GC  TO 1300

                     CCMPUTE BIOLOGICAL REMOVALS
                     ACCUMULATE MONTHLY VALUES  OF  AOVECTIVE
                     AND  BIOLOGICAL  REMOVALS
                     ATNKb * ACCUM.  TOTAL  NUTR  REMOVAL  BIOL.
CC 920  J-1,20
   SUM - O.C
   DC 910   IEIK«1,5
      SIM = SLM  «  ASNRB(J,IBLK)
   CCNTINLE
   ATNRE(J)   SLC/5.  + ALNRB(J) * AGNRb(J)
CCNTINLE

CC 940  J=l,20
   DC S20   IEIK«1,5
      SNPSM (J,IELK) = SNRSMU, IBLK)  * ASNRS ( J , IBLK)
                    = SNRCM(J,IBLK)  * AS.JRUiJ, IBLK)
                    - UNklM(J.IBLK)  «• AUNKI (J,IBLK)
                   =  NRSM(J,IBLK) +  ANnS(J,IBLK)
            (J.IELK) = SfJKBMU.IBLK)  + «SNRB ( J , IBLK )
      LhPBf-(c.IELKJ = UNR8M(J,IBLK)  + AUNRBt J , IBLK)
   CCNTINLE
   LNRFHJ)   LrfFM(J) * ALNRP(J)
   LNREMJ) - LNFEMJ) + ALNKB(J)
   GNREf(j)   G^pe^'(J) «• AGNRBIJJ
   TNREMJ) - TNPEMIJ) * ATNRB(J)
CONTINLE
                                       233

-------
Appendix C (continued)
1310.
1271.
7272.
1213.
1214.
1315.
1216.
1317.
1378.
1 279.
1280.
1281.
7282.
7383.
1384.
1385.
1366.
1267.
7388.
1289.
1290.
1291.
7292.
7293.
1394.
1295.
1296.
7397.
1298.
7299.
14GG.
1401.
7402.
7403.
1404.
7405.
7406.
74 C7.
74C6.
14C9.
7410.
74U.
1' 12.
1413.
1414.
7415.
1416.
1417.
7418.
7«19.
1420.
1421.
1<22.
7423.
1424.
1425.
7426.
1427.
1428.
1429.
C

C
C


C
C
C
C
C
C
C
C
C
C
C



945









950






960
910
C
C
C
C




511


912
C
C
C
C




SEO
                 IF (FRNTKE  .EC.  21   GC TO  1200
                                       CUTPUT OPTIONS

                 IF (H*C«L .EC.  FFCD)  GO TO 1100
                 IF (TF.GT.l  .CR.  fU.LT.HYMIN)  GO  TO  1200
                                       COMPUTE  CONCENTRATIONS  AND  H/SSES  IN STREAM
                                       FOR  CMLIBRATICN  OUTPUT
                                       NDSM=NUTRItNTS DISSOLVED  IN STREAM,fASS
                                       NUSC=^UTRIENTS DISSOLVED  IN STREAM,  CCNC.
                                       NASM=NUTkIENTS ADSOivdkD IN  STREAM,  ("ASS
                                       NASC=NLTRIENTS AOSOK3EC IN  STREAM,  CCNC.
                                       CGNFC  *  CONVERSION  FACTCP TC GET  KG/I UNITS
                                       CONFS  »  CCNV. FACTOR  TO GET ADSORBED NUTR.
                                               CONC. IN PPM  OF SEDIMENT
                 ERSNT  >  O.C
                 CO 945   IELK=lt«
                    ERSM  * EFJM  + ERSNdBLKI
                 CCNTINLE
                 EPSNT  =•  EPSM/5.
                 CCNFC  =  454CCC./(FU*TlMFAC*60.*2b.32)
IF
CC
(ERSNT .CT.
970  J-1.2C
SLI-C = O.C
SLK* x c.C
DC 950  lELKMiS
   SLfC = SUt-C +
   SlfA » £LM +
CCNTINLE
NCSMJ) » SU>C*AREA/5.
NOSC(J) - NC!MJ)*CCNFC
                                 C.C)   CONFS *  1.0E6/J ERSNT*2000.*AREA1
   IF (ERSM  .LE.
      NASC(J) =
   GC TC 97C
   NASCU) *  C.C
CONTINUE
                    ASN*OU.IBLK)
                    ASNRS(J.IBLK)
                                                960
                                                      AUNRI ( J , I ELK )
                0.0)  GO TO
                  (J)*CCNFS
                                       COMPUTE TOTAL MASS OF N (TCTN)  AND F (TOTP)
                                       IN STREAM
TCTN   0.0
TCTP   0.0
CO 971  J=l,7
   TCTN = TCTN  4NCSHJ) + NASMU)
CCNTINLE
CO 972  J=ll,14
   TOTF = TCTF  4  hDSfCJ) +  NASM(J)
CCNTINLE

                      MODIFICATIONS FOR
                      CONVERT  MASi FKCM
                                    METRIC
                                    LB.  TO
OUTPUT
KG. CONC.
                                                                          IN KG/L
                  IF (CLTPLT.EC.ENGl .CR. OUTPUT.Eu.BOTH)  GO TC 1000
                  CO 980  J=1,2C
                     NCSI>(J) ' ^CE^ (JJ/2.205
                     NAS^(J)   NA/2.205
                  CCNTINLE
                                        284

-------
Appendix C  (continued)
7430.
1432.
1433.
7434.
7435.
7436.
1437.
1438.
7439.
1440.
1441.
7442.
7443.
7444.
7445.
7446.
1447.
1448.
7449.
7450.
7451.
7452.
7453.
7454.
7455.
7456.
7457.
7458.
1459.
14(0.
7461.
7462.
1463.
7464.
7465.
7466.
7467.
7468.
7469.
7470.
1471.
7472.
7473.
7474.
7415.
7476.
7477.
1478.
1479.
7480.
7481.
1482.
7483.
7484.
7485.
7486.
1487.
7488.
1489.


C
1COO




C
C
C
C
11CC























1110
1120
C
1CTN - TCTNy2.2C«
1CTP - TGTP/2.2CJ

htRITE U,412C) KCSMSKNDSM*) ,NDSM(2) ,NOSK( 12),
1 MSM3),NASM(l)tNASMU3),NASM(ll)
V.RITE (6,4140) r»CSC (5) ,NDSC(4) ,NOSC Ul ,UOSC( 12 ),
1 MSC<31,NASCU),NASCU3),NASC(ll)
GO TO 1200

PRODUCTION OUTPUT
CCMPUTE UATcRSHEO AVG. FROM

CO 1120 J-1,20
SNT(J) • C.O
LNT(J) « 0.0
LM1U) - C.C
ASNPSTU) « C.C
ASKRCT(J) * C.C
ASNRPT(J) « C.C
ALfPIT(J) > C.O
ALNPPT(J) « C.O
ANRST(J) » O.C
ASKRET(J) > C.O
AUhFET(J) - C.C
CC 1110 IEIM1,5
£M(J) > lltl4),SNT(20)
                       ( IBLK, (SN (J, IBLK) tJ=lt 7) t(SN(Jt IBLK), J*lltl4)»
                       tJ, IbLK), J=L,7), ( A SNRS ( J , IBLK ) , J= 1 1, 14 )
                                 ,J=l,7),lAiNKOT(J) , J=ll ,14),ASNRCT(20)
                      (IELK,USNRO(J,IBLK)t J=l,7), ( ASNRO ( J . IBLK ) , J= 11, 14 I
                      ,*SNRGUO, IBLK),  IbLK=l,!>)
                       («SNfPT(J) ,J=l,7),UiNRPT(J),J"U,l4l,ASNPPT(20)
                      (IELK,(ASNRP(J, IBLK), J=l,7), (ASNRP(J, IBLK ), J= 1 1, 14 I
                                        IBLK=l,5)
                                        285

-------
Appendix C (continued)
4490.
7491.
4492.
7493.
74S4.
74S5.
7496.
7497.
14991
7500.
7501.
7502.
7503.
7504.
7505.
75C6.
7507.
75C6.
7509.
7510.
7511.
7512.
1513.
7514.
7515.
7516.
7517.
7518.
7519.
7520.
1521.
7522.
7523.
7524.
1525.
7126.
7527.
1528.
7J29.
1530.
7531.
7532.
7533.
7534.
7f35.
7136.
7537.
7538.
7539.
7540.
7541.
7«42.
7543.
1544.
7545.
7546.
7547.
7548.
7549.



C
C
C
















C
C
C









C
1
C
C
C







C





C






                 WRITE  (6,4C£0)   (/SKABT(J),J=l,7),(ASNRBT
                 WRITE  (6,40£C)   (ZUNftBTJ J ), J=l ,7), (AUNR.BT (J )* J=ll ,14) , AUNR8T (20)
                 WRITE  U,402C)  (16LK, ^T(JJ*CCNVF

   A£NRCT(J)  « <^RCT{J)*CONVF
   A£NFFT(J)
                               * /£^ReT(JJ*CCNVF
   LMCET(J)
   CNMKTIJ)
   AtNPIT(J)
   AINPFT(J)
   AUNPCT(J)

   LN»«ET(J)  =
   ALNRF(J)
   ALKPE(J)  •
   GNKET(J)  =
   AGNFE(J)  '•
   CC  1140
                                 IMT(J)*CUNVF
                                 /L^PIT(J)*CONVF
                               ' 
-------
Appendix C (continued)
1550.
1551.
1552.
1553.
7554.
1555.
1556.
7557.
1556.
1559.
1560.
1561.
1562.
1563.
1564.
1565.
1566.
1567.
1566.
1569.
7570.
7511.
1572.
7573.
7514.
7575.
1576.
7577.
7518.
1519.
15£0.
1581.
1582.
1583.
1564.
75£5.
7 5 £6.
7587.
1586.
7589.
7590.
1591.
7592.
1593.
1594.
1595.
1596.
1597.
1598.
1599.
76GO.
7601.
7602.
7603.
1604.
7605.
1606.
1607.
76C8.
16C9.
1140
1150
C
C
C



1
2



1


1


1


1
C
C
C



1
2


1
2



1


1


1
C
C
C
SKPETfJ.iem * SN( J,IBLK)*CONVF
«SNRS(j,IEm - ASNRSU, I8LK)*CONVF
ASNRGU.IEIM * ASNROl J , IBLK)*CONVF
«SNRPU,IEIK) - ASNRP(J,IBLK)*CONVF
*SNRe(J,IElt) = ASNR8(J,IflLK)*CONVF
UMET(JiIElK) - UN( J,I6LK)*COAIVF
LMFETU.IEIK) = UNI(J,IBLK)+CCNVF
ALNRI(J.IEIK) = AUUK1(J,IBLK)*CONVF
JtNRFU.lELK) - AUNfcP(J,IBLK)*CONVF
/CNReU.IClM = AUNRfl(J,I8LK)»CONVF
CCMIME
CCNTIME
WRITE (6.40C5)
WRITE (6,4000) CCNC
SURFACE
WRITE
WRITE
WRITE


WRITE
WRITE
WRITE

WRITE
WRITE

WRITE
WRITE

WRITE
WRITE




WRITE
WRITE
WRITE


WRITE
WRITE


WRITE
WRITE
WRITE

WRITE
WRITE

WRITE
WRITE


(6,4010)
(6,4020
(6,4020)


(6,4040)
(6,4C!C)
(6,4020)

(6,4060)
(6,4020)

(6.4C7C)
(6,4020)

U,4CEC)
(6,4020)




(6,4090)
(6,4020)
(6,4020)


(6.41CC)
(6,4020)


U,4C4C)
(6,4100)
(6,4020)

(6,4010)
(6,4020)

(6.4CEC)
(6,4020)



(SNTMET(J ),J=1,7),(SNTHET(J
(IBLK, (SNKcTJJ, IBLK) ,J=l,7)
l£NPET(J,IBLK) , J=ll, It},
S*MET(20,IBLK), I8LK=1,5)

(*SNPST(J ),J=1,7), (ASNRSTU
( I ELK, (ASNRSU, IBLK ),J=i,7),
,ASNRS(20, IBLK), IBLK=l,5)

) , J3 1 1
t



) , J*il
(ASNRS

(*SNPCT(J) ,J=1,7) , (AiNROT (J), J=ll
(IELK,(ASNRO(J,I6LK), J*l,7),
,/>£NPC(20, IBLK), IBLK-1,3)
(ASNPPTU ) ,J=1,7) , (ASNRPT(J
( IELK, (ASNRP(J, IBLK), J=l,7),
,/lSNRF(20, IBLK), IBLK=l,t>)
(/SNRBT(J) ,J=1,7),(ASNR0T(J
( IELK, (ASNRBU, IBLK ),J» 1,7).
,4SNRe(20,IBLK), IbLK=l,5)

UPPER ZONE


(ASNRO

) , J*ll

*14),SNTMET(20)




,14),ASNRST(20>
(J, IBLK),J=11,14)

,14),ASNROT(20)
(J,IBLK),J=11,14)

,14),ASKRPT(20)
(ASNRP(J,IBLK),J=11,14)

) , J= 1 1
(ASNRB





(tNTMET(J) ,J=l,7),(UNTMErU),J=ll
( IELK,(UNMfcTU,IBLK), J=l,7),
(L^HET(J,IBLK),J=ll,14)r
L^^'ET(20,IBLK) , IBLK =1,5)
(LNITHT(J),J=L,7), (UNITHT(J
(IBLK,(UNIMET(J,1BLK),J>1,7
(LMMEKJ.IBLK) , J=ill,14),
IMMEK20, IBLK), IBLK-1,5)

(ALNPIT(J),J=i,7), (AUNKIKJ
(IELK,(AUNRI (J, IBLK), J=l,7),
,f LNRI120, I8LK) , I6LK=i,5)
(/UNPPKJ ) ,J=1,7), (AUNRPTtJ
(IELK,(AUNRP(J,IBLK), J=l,7),
,/LNPP(20, IBLK), IBLK=l,5)
(/1UNRBT(J) ,J=1,7) , (AUNRBI (J
(IELK,(AUNRb(J,IBLK), J=l,7),
,*LNP£(20,IBLK), 1BLK=1,5)




) , J=ll
) t



) » J=l I
(AUNRI

), J=ll
(AUNRP

) , J= 1 1
(AUNRB



,14),4SNRBT(20)
(J,IBLK),J=11,14)





,14),UNTCET(20)



,14),UNITMT(20)




,14),AUKRIT(20)
(J,I8LK),J=11,14)

,14),AUNRPT(20)
(J,I8LK),J=11,14)

,14), AUKRBTI 20)
(J,IBLK),J=11,14)


LOWER ZONE AND GROUNOHATER





                                    287

-------
Appendix C (continued)
7610.
7611.
7612.
7613.
7614.
7615.
7616.
7617.
7618.
7619.
7620.
7621.
7622.
1623.
7624.
7625.
7626.
7627.
7628.
1629.
7630.
7631.
7632.
7633.
7634.
7635.
7636.
7<37.
7638.
7639.
7640.
7641.
1642.
7643.
1644.
7645.
1646.
1647.
7648.
7649.
7650.
1651.
7652.
76S3.
1654.
7655.
7656.
7657.
7658.
7659.
7660.
7661.
7662.
7ECO.
7EC1.
7EC2.
7E03.
7C04.
7EC5.
7E06.


C
C
C
120C









121C



1220
C
C
1300
C
C
C
4CCC


4CC5
4C10
4C2C
4C30
4C40
4050
4C6C
4C70
4060
4CSC
4100
411C
4120
4130
4140
C

C
C
C
C

C
C
WRITE (6,411C)
WRITE (6,4020) (LNfET(J) , J»l ,7) , (LNMbT( J ), J= 11, 14) ,LNKET( 20)
WRITE (6,40«C)
WRITE (6,4010) (*LNRP(J) ,J«l ,7) , ( ALNRPU ) , J= 11,14) , ALNRPC20)
WRITE (6,40(C) (/LNRB(J) , J*l ,7) , ( ALKKB( J) , J» 11, 14) , ALNRG (20)
WRITE (6,412C)
WRITE (6,4G2C) (GKMETI J) ,J«1 ,7) , (GNKETC J ), J= 11,14) ,GNMET(20)
WRITE (6,404C)
WRITE (6,40EC) ( *GNR8(J) , J«l ,7) , ( AGNRB( J ) , J= 11,14) , AGNR6420)

ZERO OUT ACCUMULATIONS AFTER PRINTING

CO 122C J-1,2C
OC 1210 IBll-'ltS
ASNRS (* i lElM 0.0
ASNPC (« , I£l> ) 0.0
ASNPF <„ , If IK) 0.0
ASKRB («f IELK ) 0.0
ALNRK-.IEIK) 0.0
AINRPU.1EIK) 0.0
ALNR6 (J • IEIK) 0.0
AhRSU tJElM * 0.0
CCNTINLE
ALNFF(J) " O.C
ALNRC ( J) * O.C
AGNRE(J) * O.C
CCMINLE


PETLRK



FORMAT CC'.'MjTPIENTS - • ,A5,11X, 'ORG-N' ,3X, 'NH3-S' ,3X, 'NHS-A*
1 5X« *HC2' ,5X, 'N031 ,6X, «N2* , 2X , • PLNT-N1 »3X, 'ORG-P' ,3X,
2 'F04-S' ^2>,t9Q^-A< ,2X,'PLNT-Pf ,oX,'CL»)
FCRMAT CO')
FCRMAT 'C' ,3X,'SLRFACa LAYER' )
FORMAT •G* ,6>, 'JTORAGE1 , 12X.F8. Ot6F8. J,Ftt. 0, 3F8. 3tF8. 3)
FCRKAT ' • ,12X,'FLCCK'f 1 2,6X ,F8.0 ,6F8.3,FB.O ,3F8 .3, F8.3 )
FORMAT 'C'.tX.'FEMCVAL')
FCRMAT •G',S>,'t'CVERLAND FLCW ,3X,Fti.O,6FS.3f F8.0 ,3F8.3,F8.3)
FCPMAT 'C* ,S>t'FERCCLATiCN',5XfF8.0,6Ftt.3,F8.0,3F8.3,F8.3)
FCRMAT *C' ,9), 'E 1CLCGICAL' ,oX,F6.0,6F6.3,F6.0,3F 8.3,F8.3)
FCRMAT «C' ,i>» UPPER ZONE')
FORMAT '0' ,9>, 'IMERFUOH* ,7X,Fd.O,6Fd.3, Ftt.O ,3F8.3,F8.3 )
FORMAT '0' ,2>,'lCHEft ZONE')
FCRMAT ' 0 • , 2X, • CFCUNCHATER* )
FCRMAT (•*• «4CX,CF8.3,4X,2F8.3)
FCRMAT (' -,,SF8.1)

ENO




SL8RCLTIKE TP/KS (DELT, IZONE,N,NB,KN,THKN,KP,THKP ,T,OELN ,OELNB)

THIS SUBROUTINE
                                     288

-------
Appendix C (continued)
1EC7.
76C8.
78C9.
7610.
7611.
7612.
7813.
7614.
7615.
7816.
"iU7.
7618.
7619.
7620.
7621.
7622.
7623.
7624.
7625.
7626.
7627.
7628.
7629.
7630.
7631.
7£32.
7633.
1*34.
7635.
7836.
7£37.
7638.
7139.
7(40.
76L*4  N(2C),OEL1,DELN(20)tC(20,20)/400*0.0/t
                1        KNUG,4),Ti-KNUO» iKP ( 3 ,4) , THKP (5 ) ,T 14),
                2        Ne(iC,£),C6LNB(20,5),SUM,RcLT,FTN(10),FTP(5),
                3        KK(IC) ,KFC(5)

                 INTECEP44  IFCti,ICCL.IBLK,IZONE
                 IF (IZCfiE.EC.l  .CP. IZQNE.EC.2)  GO TO  310

                                      TEMPERATURE CORRECT ION  OF REACTION PATES

                 IF (TU2GKE) .GE. 35)  GO TO 37
                 PELT = T(IZCKE) - 35k
                 CO 35  J*1*1C
                    FTh(J) * ThKKJJ**RcLT
                 CCNTINLE
                 CC 36  j-1,5
                    FTP(J) * TI^KI
                 CCNTINL'E
                 GC TC 4C
                 CO 38  J«1,1C
                    FTN(J) = 1.0
                 CCN7IME
                                       289

-------
Appendix C (continued)
7667.
7£68.
7665.
7870.
7£7l.
7672.
7£73.
7874.
7£75.
7£76.
7£77.
7678.
7£79.
7660.
7681.
7662.
7683.
7££4.
7665.
7666.
7££7.
7888.
7E89.
7£50.
7651.
7652.
7£53.
7E54.
7855.
7656.
7£57.
7658.
7£59.
75CO.
7501.
7502.
7503.
7504.
75C5.
75C6.
7507.
75C8.
7509.
7510.
7911.
7512.
7513.
7514.
7515.
7516.
7517.
7518.
7519.
7520.
7521.
7522.
7523.
7524.
7525.
7526.


35
C
40

41


42
C
C
C
















C








C
C
C




100

2CO


3CO

C
C
C
C
C
C
C
310
CO 39  J»lt!
   FTF(J) -
CCNTINLE
                 CO
                             1.0
   41  0*1,10
   KNC(J) =• Ic<«)
> -KFCU)
) KFC(2I
) KFCC1)
) -«KPC(2) + KPCI4)
) K FC ( * )
) KFC(4I
) -KPCC5)
) * KFCOI


KNC17))








KNC(8)J





+ KPC(3)I




                                       SOLUTION

                  DO  200   IRCV«1,2C
                     SUH  «  O.C
                     DC  100  KCL-1,20
                        SIM «  SLK  4  CdROW, ICCL>*N(ICOLI
                     CCNTUUE
                     DELMIPCV)  *  CELT*SUN
                  CCNTINtlE
                  CO  300   J-1,20
                     MJ) * K(J) » CELN(J)
                  CCNTIhLE
                  PETLPN
                                       FOLLOWING  SECTION  IS  FOR  THE  BLOCKS
                                       USED  IN  THE  SURFACE ANU UPPF.R ZONE
                                       TEHPERATURE  CORRECTION  OF REACTION PATES

                  IF (T(I2CNE) .CE. 35)  GO  TC 370
                                        290

-------
Appendix C (continued)
7927.
7528.
7529.
7930.
7521.
7532.
7523.
7534.
7S35.
7936.
7S37.
7538.
7539.
7940.
7941.
7942.
7943.
7944.
7945.
7946.
7947.
7948.
7949.
7950.
7951.
7952.
7953.
7554.
7955.
7556.
7557.
7558.
7559.
7560.
7961.
7562.
7563.
7964.
7565.
7566.
1567.
7<68.
7569.
7570.
7571.
7572.
7573.
7574.
7575.
7576.
1577.
7578.
7579.
7580.
7581.
79E2.
79E3.
79£4.
79E5.
75E6.



350


360

370

3EC


350
C
4CO

410


420
C
C
C
















C








C
C
C





4SO

SCO
PELT = T(IZCKE) - 35.
CC 350 J»1,K
FTN(J) = ThKKJ)**RELT
CONTIM.S
CO 360 J-li5
FTPU1 * 7»-KF(J|**RELT
CCN1ULE
CO TO 4CO
CC 380 J=l»10
FTN(J) » 1.0
CCNT1NIE
CC 390 J-ltS
FTP(^) » 1.0
CCNTINtE

CO 410 J*lilC
KNC(J) = KMv,lZCNE)*FTN(J)
CCNTINtE
CC 420 J=l,5
KPC(J) * KM.,IZCNE)*FTP(J>
CCNTINLE

DEVELOP COEFFICIENT ARRAY

C(lti) = -K>CI6I
C(lt2) « KhC(l)
C(l,5) K^C(E)
C(2.1) = K^C(6)
C(2,2) - -(KNC(S) * KNC(l) + KNC(7)1
C(2,3) = KrC(lO)
C(3,2) - K^C(5I
C(3i2) => -(^C(1C) * KNC(D)
C(4,2) * K^CU)
C(4,2I * KKC(l)
C(4,4) -tt » KNCI2U
CI4.5) K^C(3)
C(5,4) KNC(2)
C(5,5» -(Ch((2J » KNC(S) « KNC(8))
C(6»4) KtC(4)
C(7.5I - KNCC1

Cdl.ll) « -KFCU)
C(U,12) > KK(FC(5I
CUB. 12) * KFCIO
C(13,13) - -KFCC!)
C(14,12) - *-FC(2)

SOLUTION

CO 7CO m»*l«!
DC 500 IFCk'lfZO
SLM » C.O
CC 45C ICCL*1.20
Slh > SIK * C(lROWtICOL)*No(lCOL.I8LK>
CCNTIM.E
CELh6(IFCV,IELK) « C£LT*SUH
COMIKLE
                                    291

-------
Appendix C (continued)
79E7.
7988.
7989.
7990.
7991.
7992.
7993.
ECCO.
ecoi.
ECC2.
8C03.
8CC4.
ecos.
ECC6.
8C07.
ECCS.
ECC9.
8010.
ECU.
8012.
8C13.
6C14.
8015.
8016.
8C17.
8018.
6C19.
8C20.
8C21.
8C22.
6C23.
8024.
8025.
8C26.
8C27.
8028.
EC29.
8C30.
8031.
8032.
8033.
EC34.
8C35.
8C36.
EC37.
EC38.
8C39.
8C40.
8041.
8C42.
8043.
8C44.
8C45.
8C46.
EC47.
8048.
EC49.
8C50.
8C51.
8CS2.


6CO
7CC
C


C
C
C
C

C
C
C
C

C
C




C


C



C












C

C














DC tCO >*1,2C
NE(J.IBLK) - NB(J,IBLK) * DELNBi J,I BLK)
CCNTINLE
CONTINUE

RETURN
END




SIBRGLTINE CITHC* ,F3,/,C*LB,PRCD,PEST,NUTR,cNGL,METR,BCTH,RESB,YES,NO,
2 IKIN,UR,JF,JCGUNT,PRINT,INTR,OAYS,hCUR,MNTH

1NTEGER*4 FRM *E ,»-YCAL, OUTPUT, TIHFAC, 1MIN, IHR,TF, JCOUNT ,
1 C ALE, FPCD,ENGL, MET*, BOTH, YES, NO, PEST, NUTR

REAL*4 RL',hmN,CPST,LZS,AREA,RESBl (b) ,ROSB<5) ,SPGX (5 1 , INTFC5),
1 RGX(5 )tINFL(5J,UZSB(5),APERCb(5),RittJ5),EPSN(5 J,RESB(5),
2 f ,F2 ,*

CCM>-CN /LfNC/ *Mh,PRTOT,ERSNTT,PRTOM,£RSNTM,CAY,
1 RLTC^I,^EPTC^,FC£^C^' ,RITOM,RI.NTOM,b*.STjM,RCHTCH,RlfrOT»
2 NEPTCT,RC£TCT,FITCT,RINTOT,oASTGT,KChTOT,TwBAL,EFTCM,EPTOT,
2 UZ £, LZ £K, L25^,1^FIL, INTER, IRC, NN,L,SS,^uMl,PR,SGh, CMS, KV,
4 K24L,KK24,KiAEL,EP,IFS,K3,EPXM,REiSl,KciS,SCEP,SCEPl,SRGXT,
5 £RGXTl,JFEF,KREF,JSER,KSER,6REKT,hMPIN,METOPT,SMCW,CCFAC,
6 SCF,ICNS,F,CGM,VC,^PACK,EVAPSN,MELtV,TSNOW,PETMIN,PETKAX,ELDIF,
7 DEkX,F*CK,CEFTh .KCNTh, SDfcN, I PACK, TM IN, SJrtSNM , PXSNM,XK3,
£ ^'ELR«^,RAC^E^',CCF^E^',CKAI^M,CUNMEM,iGMM,S^EGfM,SEVAPM,SUMSNY,
9 PX£NY^ELP/*,F/l>EY,CL)RMEY,SGMY,CCNKcY,CRAINY,SNEGMY,SEVAPY,
* 1SNEAL,CCVEF,CCVFMX,RUBTCM,KOBTCT,KXB,RUITOM,ROITOT,INFTOM,
1 INF TOT, ERSTC M, E F £TCT,SRER,TdMPX, RAD ,W1NUX, RAIN, INPUT

REAL*8 MN4M12)

REAL*4 PPTCT,EF£NTTtFRTOM,£RSNTM,RUTOH,KlTOMfRINTOM,BASTOM,
1 RCH1Cf-,FnOTfN£PTCT,RCSTOT,kITGT,RINTCT,e*STOT,RChTOT,
2 TV«E^L,EFTCM,EFTOT,U/S,UZiN,LZSN,INFIL,INTER,IRC,
2 NN, L,<£ ,£GW1,PR,SGW,GHS,KV,K^4L,KK24,K24EL,EP, IF£,
4 K3,EF>M,FESSl,RESS,SCEP,i>CLPl,SkGXT,SRGXTl,JRER,XRER,
5 J£EF,l«SEF,SFEfiT,M»'PlU,METOPT, NcPTLH. ,ROSTOH,
t CCF/C,£(F,ICNS,f ,DGM,rtC,»'PACK,=VAP^N,fELev,TSNCW,PETMIN,
7 PETM>, EICIF, DEUX, PACK, DEPTH, SoEN,IPACK,TMIN,SUM£NM,
9 PXSM"»XK2 ,HELRAM, RAOMEMfCUFiMtM t Ck AiNM ,SGMM,SNEGMM,SEVAPN,
A SL»-£NY,F>£NY,MELRAY,RAOMfcY,CDRMEY,SGMY,CaNKEYf
E CRAUY,^EGMV,S&VAPY,TSNtAL,CU^MEM,
C CCVERtCCVFMX,ROBTOH(^) , RCbTO T (5 ) , KXB ( 5 ) , R CITCM (5 I,
C RCITCTt '. ) ,INfTCH(5),iNFTbT(5),cK3IOM( 5),ERSTCT(5),
E £REF(5) ,TEMPX(24J ,RAU (24 ) ,W1NDX (24) ,R «1N( 288 I
                                    292

-------
Appendix C (continued)
8C53.
8C54.
€C55.
£C56.
8CS7.
8C58.
8C59.
8C60.
6C61.
8062*
8063.
8C£4.
acts.
£C66.
€U7,
8C68.
8069.
8C70.
8071.
£C72.
8073.
8C7A.
8075.
£C76.
8C77.
8C78.
£C79.
8C80.
8C81.
8CE2.
8C£3.
EC£4*
8C£S.
6C86.
8C87.
8C88.
8C89.
8C50.
8C91.
8CS2.
8C93.
8CS4.
8CS5.
8CS6.
8CS7.
acse.
8C«.
8100.
8101.
8102.
8103.
8104.
8105.
8106.
£107.
8108.
8109.
8110.
8111.
8112.
C

C
C









C
C








C

C






C









C
C

C
C
C
C
C









C




1
1
2
^
4
5
e
7
£


1
1
2
3
4
C
6
7



1
1
2
3
4
C

1
1
2
o
4
5
6
7
£








1
1
2
a
4
5
£
7
C

                 INTEGER**  C,M,£PRCTT,SPRSTT,MlU,FPU£,UPRITK,
                2 UPRmfKGPie,FH2,VlZ,LSTR,l_AS,LCS,LUS.GSTf<.,GAS,GCS,GOS,
                  DEGSCF,CEG£C1,CECUO,
                  DEGLC1.CECL tCECS .NIP.DEGCON,OEGLOM,OtGLOT,NCCM,
                  PRSTCf ,PPS1CT,FFCTC^,PROTCT,UPITOK,lJPIIaT,STStUTS.SASf
                  SCS,£CS,SSlF,U/i,UCS,UOS,USTR,UPKlS,UIST,IOTPAP,TlMAP,YEARAP.
                £ DESOPP,SLRF,EGSOT, Lit GUUM.DEGUOT.DEGU, DECS.
                         MF,CEGCCN,D£GLJM,0£GLOT,NCOK,
                         PRSKM J),PRSTOT(b),PROTCM(5),PRaTCjT(5» tUFITOM(5»t
                         UFnCT{5),STS(5),UTSO),SA^(5J,SCSl5)fSDS(5)fSSTR(51,
                         LAS(i) ,ICS(5) ,UOS(3) ,USTK(5) ,UPhIS(5) tUIST
                 INTEGER**  *F^CCE,DESCRP,SURF,SOILtTIMAP,Y6ARAP
COMMCN
                        /KLT/  C£Ll,STEMP,SN,SNT,SNRSH,SNROM,UN,UNT,UNI,tMT,
                             L^RI^•,NR5>',LNfL^KPM,GN,iNR6M,UNRB^',LNPBM,G^RE^lfTNRBM,
                             SKRIY,SNROY,UNRIY,NRSY,LNKPY,SNRBY,UNPBY,LNPeY,GNfBY,
                             INFEYfTNRhVrTNRHVMtTNKhVYfTNA.TPAtTCLA,
                             TSTEF,NSTcP,SFLG,UFLG.Lf CG.GFLG
        S^(2C,5)ȣNT(20)tSNF^SM120>5) ,SNROM( 20,51
        UK(2C,5),LNT(20) ,UNI(20,!>) tUMT(20) ,UNRIM (20t5 )
        NRSM20,;).
                                                  .,          GN(20)i
                                    ,UNRBh(20t5),LNRBM(20),GNREM(20),TNRe»'(20»f
                                    ,SNKOY(20,5) ,LNRIY12U,5) ,NRSY(20,5) ,
                         LNFFY(2C),SNR6Y120,5) ,UNKaY120,5) ,LNRBY(20) ,GNRBY<20)t
                         TNPEY(2C) .TNRhV(20) tTNRHVM(^O) ,TNRHVY(20) ,TNA, TP A, TCL *t
                                                           ,NbAL. PH EALt CLB AL
                 INTECEM4  1SIEI^STEP,SFLG,UFLG,LFLG,GFLG
                                      HYDROLOGY AND PESTICIDE  VARIABLES  USED
                                      INTERNALLY

                 REAL**  PRT/C.Oy ,FRTT,PRTTCM(i) ,PRTTCT(5J ,OEGTOM,CEGTOT,
                         DEC 1/C.C/t PEAL, COVK.PACKMM.TSNBMM,
                         U2Sf-ET,L2SKEI,SG«KcT,SCcPMT,KtSSMT,
                         UASI^T.LCJTMT.UOSTMT.LSTKMT.LASMcT.LCSFET.LDSMET,
                         G£^F^^.C;S^'ET,GCS^'ET,GuS^'.ET,L.EGTrtT,CECSMT,DEGUMTt
                         DEGLM,lFEALM,UZS6MTt5) ,KfcSbHTl3» ,SRGXMT(5)»
                         SPEFFT(«),STSMcT(5) tSASMtTti ),SCiMET(5) ,SCSHET{51,
                         L1S»-ET(«),UASKET(5) .UCSMET (a ) .UDSMET (5) .UPRISM (5 I
                                       293

-------
Appendix C (continued)
8113.
£114.
8115.
8116.
8117.
8118.
8119.
8120.
8121.
£122.
8123.
8124.
8125.
8126.
8127.
£128.
8129.
8130.
8131.
8 132.
8133.
£134.
8135.
8136.
8137.
8138.
6139.
£140.
£141.
8142.
8143.
6144.
8145.
£146.
8147.
£148.
£149.
3150.
8151.
£152.
8153.
8154.
8155.
6156.
£157.
8158.
8159.
BUO.
8161.
CU2.
£163.
8164.
8165.
8166.
£167.
£168.
£1£5.
£170.
8171.
8172.
C
C

C

1
2
3
4
C
t
7
C
C
C
C
C

C

1051
C
C


C


C




C
S73
C
C
C
C
C
C










S89




951
C
C
C
NUTRIENT INTERNAL VARIABLES

PEAL*8 CCNC, LEF/C/«LB/AC'/t KGPHA/ "KG/HA1/

PE*L*4 N6ALM f FI-ELPTfCLBLMTf
ShfE1(2C,5),SNTMcTl20),UNMET(20,5),UNTKET(20),
LM-E7(2C),GNMET(i:OJ,iNRiMT(20) ,SNROHT(20),
UNPIM(2C),SNRBMT(20),UNRBMT(20),NRSPT(20),
NPSYT(2C),SNRSYT(20>i SN*uYTUO),SNRBYT(20),
UNP.m(2C),UNRBYT(20),UNITMTUO*,UNI*ET(20,5),
TP(20)/2C*0.0/,TNR,TPK,TCLR,TNS,TPi,TCLS,
£Lf,£LK£,£UfO,SUMI,SUMd,iUKRS, CONVF/1.121/



PCNTHLY SUMMARY

IF (PEST .EC. NO GO TO 973

CC 1051 1- |,5
•PRnCMI) = FPSTCH(I) * PROTCM(I) + UPITOM(I)


CEGTCP - CEOSCM + DEGUCM + OEGLOM
CECT - CECT « DEGTOM

PRTM - JFPCTM * SPRSTM * UPR1TM
PPT PFT + ffJ*

P8*L * J15T + LTST * LSTR » GSTR *• P*T + CEGT - TOTPAP
IF ((FEAL .IE. 0.0). AND. (PBAL .GE. -0.0009)) PBAL = 0.0
IF (JCCIM.LI.TIJ'AP .AND. YEAK.LE. (YEARAP*1900) J PBAL » 0.0
7PEAL * TFE/L * PBAL

IF (NLTR .EG. NCI GO TO 990

COMPUTE MONTHLY NUTRIENT TOTALS BY /ONE,
ACCUMULATE YEARLY REMOVALS,
COMPUTE TOTAL N, P, CL MASS BALANCES

SURFACE
DC 991 J-1.2C
SL»»« * C.C
StPC * 0.0
SL*e - c.o
SNT(J) =• C.O
CC *E9 IEIK>1,5
Sl^S ' 5tfS * SNRSM(J,IBLK)
5LKC - StAC *• SNROM(J,lBLKi
SLfB * SL^E + SNRBM(J,IBLKJ
£NT(J) > £M(J) v SN(J,I8LK)
CCNTIKLE
SNPSt-T(J» • Sl.f'S/S.
SNRCKT(J) » SLfO/5.
SNRBMU) * SLfB/5.
SNT(JJ * £NT(J)/5.
CCNTINtE

UPPER ZONE

                                     294

-------
Appendix C (continued)
6173.
£174.
£175.
8176.
£177.
6178.
8179.
8180.
eiei.
8162.
8183.
8184.
81£5.
8186.
£1€7.
8188.
8189.
8190.
£191.
8192.
8193.
8194.
8195.
£196.
8197.
8198.
€199.
8200.
£201.
8202.
82C3.
8204.
8205.
8206.
£207.
£2C8.
£209.
8210.
8211.
8212.
8213.
8214.
8215.
8216.
£217.
8218.
8219.
8220.
8221.
8222.
6223.
8224.
8225.
8226.
8227.
8228.
8229.
£230.
£231.
£232.










992




9S3
C
C
C




994

995
C
C
C





C


C

996




9S7
C
C
C
C
C
C
C
C
C
C
C
C
C


                 CC 993  J-1.2C
                    SLPI - 0.0
                    SUKB = C.C
                    LMTIJ) =• C.O
                    LMKJ) = c.C
                    CC S92  1ELK«1,5
                       SIM * SLM + UNRIMU.IBLK)
                       SIPB -  UN(J.IBLK)
                       LMKJ) = LMKJ) * UNKJ.IBLK)
                    CCMINLE
                    LNPIf-T(J) = SLKI/5.
                    LNPEMN) = SL>B/5.
                    LNT(J) * LM(J)/5-
                    UMT(J) > LMT(J)/5.
                 CCNTINLE
                                      TOTAL REMOVAL TO STREAM
                 CC 995 J=l,20
                    SLHRS - C.C
                    DO 994  ieiK«l,5
                       SLhRS   SLKFS * NRSH(J,IBLK)
                    CONTINUE
                    NPSfKJI   SlfFS/5.
                 CONTIME
                                      YEARLY ACCUMULATIONS
                 CC 997  J=lf2C
                    CC 99fc   IEIK'1,5
SNRCY(J,IEIK) =
                                       Si4RSY(J,16LK)
                                       SNRGY(J,IBLK)
                                       SNRBY(JtlBLK)

                                       UNRIY(J.IBLK)
                                       UNKBY(J»IBLK)
                       F>PSY(J,ieiK) = NRSY(J.IBLK) «•
                    CCNTINUE
                    LNPFXJ) * I^FFY(J) + LNRPM(J)
                    LNREXJ) - LNPEY(J) + LNRBM(J)
                    GNREY(J) * GhFEY(J) * GNRBM(J)
                    TNPHVYIJ) * UFHVY(J) + TNRHVM(J)
                 CCNTINLE
<• SNRSM(J,I6LK)
«• SNROiKJtIBLK)
* SNRBM(J,IBLKI

* UNRIMU. IBLK)
* UNKBM(J»IBLK)

NRSM(J.IBLK)
                                      MASS BALANCES AND TOTAL  REHCVALS
                                      TR(
-------
Appendix C (continued)
EZ33.
8234.
£235.
8236.
8237.
8238.
£239.
£240.
£241.
8242.
8243.
8244.
£245.
8246.
£247.
£248.
E24S.
8250.
8251.
6252.
£253.
6254.
8255.
£256.
£257.
£258.
8259.
£260.
8261.
£262.
8263.
8264.
£265.
8266.
£267.
£268.
8269.
£210.
£271.
£272.
£273.
£274.
(275.
£216.
8277.
C278.
£279.
62£0.
£281.
8282.
8263.
£2 £4.
8265.
€286.
82£7.
82£8.
6289.
8290.
£291.
6292.


502

503



£04



5C5

C





510

511

C





512

512

C



£14


C
C
55C


C













                    CC 502  1EIK«1,5
                       SLHB » SL»E «• NRSM(J,IBLK)
                    CCMIME
                    TR(J) - 1FU) 4 SUMB/5. * TNRHVH(J)
                 CCNTINLE
                 TNP = 0.0
                 CO 504  0=1,7
                    TNR « TNJ! « 1PIJ)
                 CCNTINLE
                 TPR =« C.O
                 CO 505  J*llt14
                    TPP - Iff * TFU)
                 CGNTINLE
                 TCLR « TP(20)

                 INS = 0.0
                 CO 511  J«l,7
                    SLHB » C.O
                    CC 510  1EIK « 1,5
                       SLHB = SLfE 4- SMJ,IBLK) + UN(JVIBLK) 4- UNKJ.IBLKI
                    CCNflNLE
                    INS - TKS * SL^B/5. *• LN(J) * GN(J>
                 CCNTINLE
                 TPS = C.O
                 CC 513  J>11,14
                    SLFE = O.C
                    CC £12   lELK-1,5
                       SLPB   £U^E * SN(JtlBLK)  »• UN(J,IBLK) * UNKJtIBLK)
                    CCMIKLE
                    TFS « TPJ +  5LKB/5. + LN(JI  * GN(J)
                 CCNTINLE
                 PhEAL - TPS  * TFP - TPA

                 SLHB * C.O
                 CC 514  lELK'lt:
                    SLHB = SLPE  «  SN(20tIBLK)  *  UNUO,IBLK> * UNI ( 20, IBLK )
                 CCNTINLE
                 TCLS * SUf.6/5.  *  LNI20) * GN(20j
                 CLBAL » TCLi <  TCIR - TCLA
                        VRITE  (6,12CO)  MNAM(HONTH), YEAR
                        VPITE  Utl2Cl)
                        VFITE  (6,11C3I

                  IF  (CUTFLT.EC.  fETR)  GO  TO  1053
                  WRITE  U.36C)
                  WRITE  (6,262)
                  WRITE  (6,362) PCETCC, ROSTOH
                  WRITE  (6,364) IhFTCC, RINTOM
                  WRITE  (6,26*) RITCN
                  WRITE  (6,36<) PCITCf, RUTOH
                  WRITE  (6,3£C)
                  WRITE  (6,361)
                  WRITE  (6,361) FFTCFfPRTOMTPRTOK,PRTOH,PRTOH,PRTOM
                  IF  (SNCW .EC. NO  GO TO 1071
                  WRITE  (6,47£) SOSN»>
                                         296

-------
Appendix C (continued)
 8293.
 6294.
 €295.
 6296.
 8297.
 6298.
 6299.
 6200.
 82C1.
 8202.
 £303.
 8304.
 6305.
 6306.
 8201.
 83CB.
 82G9.
 8210.
 8311.
 8212.
 8213.
 6*l,SRGXT
TVEAL
          (6,489) TSNBAL
(SNO.EC.YES)  ViRITE
   WRITE U,12C9)
   WRITE (6,1210) fcKSTOH,  ERSNTM
   WRITE (6,1211)  SRER, SRERT

   IF (FE51 .EC. NO  GO TO 974
WRITE
WRITE
WRITE
WFITE
WRITE
VFITE
WRITE
WFITE
WRITE
WRITE
WFITE
WRITE
WPITE
WFITE
WRITE
WPITE
WRITE
WRITE
WRITE
WPITE
WRITE
WPITE
WRITE
WPITE
(6,1220)
(6,1221)
(6, 1222)
(6, 1223)
(6, 1227)
(6,1224)
(6,1222)
(6,1223)
(6,1227)
(6,1226)
(6, 1228)
(6,1229)
(6,1230)
(6,1221)
(6,1222)
(6,1229)
(6,1230)
(6,1221)
(6,1240)
(6,1241)
(6, 1242)
(6,1243)
(6,1248)
(6,1245)

STS, STST
SAS, SAST
SCS, SCST
SOS, SOST
UTS, UTST
UAS, UAST
UCS, UCST
UDS, UOST
UPMS, U1ST
LSTR
LAS
LCS
LOS
GSTR
GAS
GCS
COS
PRTTOM, PRTM
PROTCH, SPROTH
PRSTOK, SPRSTM
UPiTCH, UPR1TM

OEGTCH
                                        297

-------
Appendix C  (continued)
8353.
£354.
8355.
8356.
1357.
8358.
£359.
£360.
£361.
£362.
€263.
8364.
8265.
£366.
8367.
8368.
8269.
8370.
8271.
8372.
€273.
£374.
8275.
£376.
£277.
£378.
£379.
8380.
£281.
8282.
8283.
8284.
£365.
8386.
8287.
8288.
£389.
83SO.
8291.
8392.
8393.
8394.
8395.
8396.
8397.
£398.
8299.
£4CO.
£401.
£402.
£403.
8404.
64C5.
£4C6.
£407.
84C8.
£4C9.
£410.
8411.
£412.




C

C
C
C















C























C
C

C
C
C






              S74
  WRITE (6,1246) DEGSOM
  ViRITE (6,1247) OEGUOM
  WRITE (6,1252) DEGLGM
  WRITE (6.1266) TPBAL

IF (NITP .EC. NO)  GO TC 1053
CCNC
fcRITE
hRITE
V.PITE
kRITE
hRITE
1
hRITE
WRITE
1
WRITE
hRITE
1
V.RITE
hRITE
VRITE
WRITE
ViRITE
WRITE
1
2
WRITE
WRITE
1
2
WRITE
WRITE
1
2
WRITE
WRITE
WRITE
1
2
3
4
WRITE
WRITE
LBPAC
(6,1C<2)
(6.4CCC)
<6,4CC«)
(6,4CC6)
(6,402C)

(6,4CC7)
(6.402C)

(6,4015)
(6.4C2C)

(6.4CC8)
(6,4CCS)
(6,4011)
(6,4012)
(6,4013)
(6,4C2C)


(6,4014)
(6,4C2C)


(6,4015)
(6,4C2C)


(6,4016)
(6,4C17)
(6,401£)




(6,4Cm
(6,4021)
                                       MONTHLY NUTRIENT OUTPUT
                                  CCNC

                                  (SNTU) ,J=1,7), (SNT( J),J=ll,14),SNT(20l
                                 ( 1ELK, (SN(J.IttLK),J=l,7),(Srt(J,IBLK),J=ll,L4)
                                  ,SN(20,IBLK),   IBLK=l,i)
                                  CINT(J),J=1,7),
                                  ,LN(20,IBLK),   IfaLK=l,i>)
                                  (LNIT(J),J=l,7),(UM J(J), J=ll,14) .UNIT (20)
                                 (I ELK,(UNIIJ,IBLK),J=1,7),(UN I(J,I ELK),J= 11,14),
                                 IM(20,IBLK),   IBLK=1,5)
                                  (LN(J),J=1,7I, (LMJ),J=11,14) ,LN(20)
                                  (GN( J),J=1,7) ,(GMJJ,J=11,14),GN(20)
                                   (SNPSMTU ),J=
                                  ( IELK, (SNRSMU
                                  (SNRSK(J,IBLK)
                          1,7),(SNRSMT(J),J=11,14),SNRSMT(20)
                           TQIlft  I—1  7ft
                          r 1 DLI\ I t U—1t i I t
                                   (SNPCKT(J) ,J=
                                  ( IELK, (SNROM(J
                                  (SfRC^(J.IBLK)
                                   (LNRIKT(J) ,J
                                  (LKRIP(J.IELK)
                                       (20,IBLKJ
                                            ,J=1
                                            ,J=1
                                   (SNPtHT (J) ,J=
                                   (LNPB^T(J) ,J=
                                   (LNCBM(J) ,J=1
                                   (CNPBM(J) ,J=1
                                   (INPHVM(J) ,J=
                                         PHBALr
                          ,   IbLK=i,5)
                          1,7), ISNROHT(J),0=11,14),SNPCMT(20)
                          ,IBLK),J=l,7),
                          ,J=11 ,14),
                          ,   IBLK=1,5)
                          l,7),(UNRiMT(J),J=ll,14),UNRIMT(20l
                          ,IBLK),J=i,7),
                                           11,14),NRSfT(20)
                                           11,14),LNRPP(20)
                                           11,14) ,TNRBK(20)t
                                           J«ll,14),SNPeMT(20),
                                           J=11,14),UNPBMT(20),
                                           11,14) ,LNPBM20),
                                           ll,14),GNReM20r
                                           J-ll ,14),TNPHVM(20)
,   IBLK=1,5)
,7),(NkSHT(J),J=
,7) ,(LNRPM(J),J=
,7} .(THftbMU) , J=
1,7), (Si\KbMT(J )
1,7), (UIMK8MT (J ) ,
,7),(LNhbH(J),J=
,7),(GNftbM(J),J=
1,7)  , (TNRHVH(J),
CLBAL
             1052 IF (C11FIT.EC.  EhCL)  GC  TO 1055
               COVERJICN* 1C ^ETFIC
                   PARAMETERS CEFUED FCR  VARIABLES NOT RESET TO ZERO.
                  PRTCt- =
                  POSTCf-
                  RITCK =
                  PLTC^ •
                  BASTCf
                                          298

-------
Appendix C (continued)
£414.
6415.
8416.
E417.
6418.
£419.
£420.
£421.
6422.
£423.
£424.
£425.
6426.
£427.
£428.
6429.
£430.
£421.
8432.
£433.
£434.
£435.
£436.
£437.
£438.
£43S.
6440.
6441.
£442.
8443.
£444.
6445.
£446.
£447.
£448.
£449.
£450.
6451.
£452.
£453.
£454.
£455.
8456.
£457.
£458.
£459.
£460.
6461.
£462.
6463.
£464.
£465.
£466.
6467.
£466.
6469.
£470.
£471.
6472.
      EPTC* -EFTCMtPFI*
      NEPTCM
      RESSPT-PESS'ft'FlK
C  SltlMEM

      SRRTKT=SRERmElCFT*2.471
      >
      IF (SNO  .EC. KC)  GO TO 970
      CCMEM
      CCRMEf
      GRAIN*
      PACKMK «
      SEVAF* « SE\#F^'<^•^PIN
      1SNEM*   TSt'EAL'^fPIN
C  PEJTICIDE
  97C IF (PEST .EC. NO  GC TO 975
      SCSTfT=SCST«KCFlE
      LIST=tISl*KCFlB
      LSTP^T=LSTR*KGPI
      LASf ET=L«S*HCFLE
      G£TRMT=GSTR«KGFIE
      GASMET=GAS*KGPL6
      GCSMET=GCS*KCFie
      CDSHET*GDS*I'CFLE
      PPTN
      SPRSlf = £PRS1MKCFLB
      LFRITM^LPRIIMKCFLB
      CEGT^T=CEGTC^*KCFL8
C
C ARP/> METRIC CCCIFICMICHS
  S75 CC 104£  1=1,5
         INFTCM1»=1NFUMI)»MMPIN
                                        299

-------
Appendix C (continued)
 6413.
       RCI7CMI
       UZSBfld
 £415.
 €416.
 £417.
 £418.
 £479.
 £460.
 £4E1.
 8482.
 £4£3.
 84E4.
 8465.
 8466.
 £467.
 8488.
 £4£9.
 8490.
 £491.
 8492.
 £493.
 8494.
 8495.
 £496.
 £497.
 £498.
 £499.
 £500.
 £501.
 £5C2.
 E5C3.
 E5C4.
 85C5.
 85C6.
 £5C7.
 £5C8.
 65C9.
 8fio.
 8511.
 €512.
 8513.
 8514.
 £515.
 8516.
 £517.
 tflfi.
 8519.
 E*20.
 £521.
 £522.
 ££23.
 8£24.
 ££25.
 £526.
 fi*27.
 E«28.
 E«29.
 8530.
 8*21.
 £532.
       SRGXMd
       EPSTCMI
       SRERMd
      IF  (PEJ7
       STS^ETd
       SASFETU
       SCSMETd
       SCSCET(
       LT«MiT(
       U'ASMET(
       UCS^-EK
       UCSWE1C
           *FCITCHIJ*MMP1N
           = 12S£(I)*I"*PIN
           = FESE (
           = 5FG> (
           =EFSTCh(I)»METOPT*2.471
           *SFEF (I)*I»ETOPT*2.471
           EC.  ^C)   GC TO  1048
           =SIS(I)*KGPLB
           = ^£(1)*KGPLB
                I)*KGPLB
                I)*KGPLB
                1)*KGPL8
                I)*KGPLB
                I)*KGPL8
                1)*KGPLB
           = £CSI
           = scs
           = LCS
           = LC£I
                =LPP1S(I )*KGPLB
       PRTTCf <
       PROTCf(
       PPSTCKI
       LPITCf d
104E CCNTIKLE
     VRITE (tf46CI
           (t,3til
           (£t362)
           = FFC1CI»(n*KGPl.8
           = FFSTCKH*KGPLB
           = LFITCMI)*KGPL8
1C€£
      (6,24f)
      (6,2£C)
      (6.3EC)
VRITE
k-PITE
WRITE
hRITE
ViRITE
V.RITE
hRITE Ut3ei)
VtPHE (£,361)
IF (SNCk .EC.
VRITE (£.4in
WRITE (ti47«)
      U.4EC)
      (t,481»
      Ut4E2)
      (6,462)
      (tt48<)
      (fc,48«)
      (£t4fi<)
      U.4E1)
      (6t49C)
   CCVP = 1CO.O
   IF (PACK ,U
   IF (PACK .CT
   CCVR - O.C
   SCEN » 0.0
WRITE (6,491)
      (£,492)
      U,4et)
      Uf3fi>
              PCEICf.POSTOM
                   PITCH
                   FCITGf ,RUTON
                   RO1C*
                   FFTtH,PfiTQMtPRTUM,PRTOM,PRTOMtPBTOM
                   NO  GC TO 1069
                    IlfSKM
     WRITE
     WRITE
     WRITE
     WRITE
     WRITE
     WRITE
     WRITE
     WRITE
     WRITE
               ^ELPAM

               FACHEH
               CC»>MEN
               CFAINf
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
               FACKFM

               . IPACK)
               . 0.01)
JCEN
CCVR
JEXAPM
                              COVR =  (PACK/IPACK)*100.
                             GO TO 1088
            (t,3£«)
            (£,3£2)
            U.37C)
            (6,371)
            (6.272)
            (6,3721
            (6f374)
            (6,21f)
              EFTCM,EPTaM,EPTQM,£PTCM,EPTOM,EFTCM
              f>EMO,NEPTOM,NcPTGM,NEPTuK,NEPTCM,NEPTOM
              CCVER

              U2SEMT,CZSMET
              L2£l'E^,LZSMET,LZSMET,LZSMcT,L•ZS^ET,LZS^'ET
               SCEFMT,SCEPMTtiCEPMT.SCEPMT,SCEPHT,SCEPMT
               RE<8NT,RESSMT
                                         300

-------
Appendix C (continued)
6 J33.
8534.
£535.
££36.
£537.
£538.
££39.
££40.
££41.
8542.
££43.
(£45.
8*46.
£547.
££48.
£549.
(550.
£££1.
£552.
(£53.
£££4.
£555.
££56.
£557.
£558.
££59.
£560.
£561.
£562.
8563.
(£64.
£565.
(566.
8££7.
£568.
££69.
(£10.
€571.
(£72.
(£73.
£514.
(£75.
(576.
£517.
(578.
£579.
£5EO.
8581.
8582.
85E3.
££84.
8585.
€£86.
8£87.
£££8.
8589.
£590.
8591.
(£92.






C

C



























C

C
C
C












C





                 WRITE  (6,37(1  SPOPT.SRGXTM
                 WRITE  u,2ii)  nem
                 IF  (SNCW  ,E<.  YES)  XRITc  (6,4891
                 WRITE  U,12(61
                                TSNBMM
WRITE
WRITE
IF (
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WPITE
WRITE
WRITE
WRITE
WRITE
WRITE
(6,1210
(6*1211)
FEST .EC
(6,12C1)
(6,12211
(6, 1222 )
(6,1223)
(6,1221)
(6,1224)
(6,1222)
(6,1223)
(6,1221)
(6,1226)
U,122€)
(6,1229)
(6.123C)
(6,12-1)
(6,1232)
U,122S)
(6,1230)
(6,1221)
(6,1229)
(6,12*CCNVF

           - ShT(J)*CCNVF
           » INT(J)*CONVF
           » IMT(J)*CCNVF
            U(J)*CCNVF
            GMJ)*CCNVF
                                      301

-------
Appendix C  (continued)
E5S3.
£594.
£595.
£596.
£597.
££98.
£599.
860C.
66C1.
£6C2.
££03.
££04.
86C5.
66C6.
8607.
£608.
86C9.
8610.
8611.
8612.
8613.
£614.
£615.
8616.
8617.
£618.
£619.
£620.
£621.
6622.
8623.
8624.
£625.
£626.
£627.
8628.
£629.
8630.
£631.
8632.
E633.
£634.
£635.
£636.
£637.
£638.
8639.
8640.
8641.
8642.
8643.
£644.
£645.
£646.
£647.
£648.
£649.
£650.
8651.
£6*2.




C




519
52C



C
C
















C























C
C
C
11
DC 519   IELK-1,5
   SKRSMJtieiK)
   SNRCMJ.iEiK)
   INRIM«,IELK)
                                        SNR SM (J , IBLK )* CONVF
                                        SNROMIJ, I6LK)*CONVF
                                        UNRIM(J,IBLK)*CONVF
                        IF  (MCAL .EC. CALB)  GO TO  519
                                       = SN(J,1BLK)*CONVF
                                         UN(J,IBLK)*CONVF
                         IMF-ETU.IELK) * UNI(J,IBLK)*CONVF
                    CCMINUE
                 CCNTIME
                 NEALCT  >  Ne«L*CCI»VF
                 PHBLPT  *  FhE#l*CCNVF
                 CLBLM  •
CCNC =
WRITE
kRITE
kRITE
KRITE
WRITE
1
V.RITE
WRITE
1
hRITE
WRITE
1
2
WRITE
WRITE
V.RITE
WRITE
WRITE
WRITE
1
2
WRITE
WRITE
1
2
WRITE
WRITE
1
2
WRITE
WRITE
WRITE
1
2
2
4
WRITE
WRITE
KGFHf
(6,1C52)
(6.4CCC)
(6,4CC£)
(6,4CC6)
(6.4C2C)

(6.4CC7)
(6,4030)

(6.4C15)
(6»402C)


<6.40C8)
(6,4CC*)
(6,40111
(6,4012)
(6,4013)
(6,4C2C)


(6,4014)
(6,4C2C)


(6,4015)
(6,4C5C)


(6,4016)
(6,4017)
(6,4C1£)




(6,401%)
(6,4021)
                                  CCNC

                                  (SNTH£TU) ,J=l,7),(SMMcT(J), J=l 1 ,14),SNTPETt20)
                                 (IELK,(SNMET(J,IBLK),J=1,7), (SNKET{J,IBLK ).J>11,14)
                                  ,£NPET(20,IBLK),   IfaLK=l,5)
                                  (LNTMcT(J),J=1,7),(UNTMET(J),J=ll,14), UNTMET<20)
                                 ( IELK,(UNMET(J,IBLK),J=l,7),(UNMET(J,IBLK ) ,J=11,14)
                                  ,LNFET(20tlBLK),   IBLK=1,5)
                                  (INITHT(J) ,J=1,7) ,{UN1TMT(J) , J=ll ,14),UMTHT(20)
                                  ( IBLK, (UNIMET( J , IBLK. ) , J= 1 , 7 J ,
                                  (LNICcTtJ,IBLK),J»11,14),
                                  IMHEH20 ,IBLK) ,   IbLK=l,5)
                                  (LNCET(J) ,J=l,7),(LNHtTU), J=U,14),LNfET(20)
                                  (CNNET(J),J«1,7),(GNfET(J),J=11,14),GNfcT120)
                                             ,J=1,7),(SNRSMT(J),J=ll,l4),SNPSHT(20)
                                  ( IELK,(SNRSK(J,IBLK),J=1,7J,
                                  (<^RS^*(J,I BLK) ,J=11,14) ,
                                  ShFSf420,IBLK),   IBLK=1,5)
                                   (SNPCKT(J),J=1,7),(SNROMI(J),J=11,14),SNRCMT(20)
                                  (IELK,(SNROM(J,IBLK),J=l,7),
                                  ^5^RCH(J,IBLK),J=11,14),
                                  IKFCM^O.IBLK) ,   I8i.K=l,5)
                                   (INPIMKJ ),J=1,7),(UNR1MTU),J=11,14),UNRIMT(20)
                                  I1CLK,(UWR1M(J,IBLK),J=l,7),
                                  LNPIf(20.1BLK),   IBLK=1,5)
                                   (^RS^•T(JJ ,J=1,7J , (NkSMT(J) ,J= 11,14) ,NRSPTJ20)
                                   (INRFK(J),J'1,7),(LNftPMiJ),J=11,14),LNRPP(20)
                                   (TNREH(J) ,J=1,7J,(TNKfaM(J),J= 11,14),TNRBK(2011
                                   (£NRBMT(J),J=lf7),(SNRBMT{J),J=ll,14),SNP8MT(20),
                                   (LNRBMT(J),J=1,7),(UNR6MT(J),J=l1,14),UKRBMTC20)»
                                            ,J=1,7) , (LNnbM(J) , J=ll,14) , LNRBM20),
                                                                   ,14),GNPBf(20)
                                                                   11 ,14),TNPHVM(20)
               . ^ . . .  _.-_^, w *f  & » • » r • ^«» •»»*••»•*• rv »J
               (TNFHVM(J) ,J=1,7», (TNRHVM(J), J=
               ^EALHT,  PHdLMT,  CLfaLMT
                                 ZEFC^G OF VARIABLES
                        FPTC»«  «  O.C
                                         302

-------
Appendix C (continued)
8453.
865*.
8655.
8656.
£657.
8658.
8659.
8660.
8661.
£662.
8663.
£66*.
6665.
£666.
(667.
£668.
£669.
6670.
£671.
€672.
E673.
€67*.
£675.
£676.
£677.
£678.
£679.
8680.
£6£1.
8682.
£6 £3.
866*.
86£5.
£6£6.
8687.
8668.
£6£9.
£690.
£691.
£692.
8693.
£69*.
£695.
£696.
£697.
£698.
£699.
87CO.
£101.
67C2.
£703.
£7C*.
8705.
£7C6.
£707.
C7C8.
6709.
£110.
£711.
8712.
PUTCK » 0.0
KEPTCK « O.C
RGSTCM « Q.C
RITO - 0.0
RINTCP * C.C
6ASTCM * O.C
PCHTCK * O.C
EFTCf =• O.C
EFSKTI- « C.C
FRTI« » C.C
SPRCTIi C.C
 C.O
tPRITh C.C
CEGSCf C.O
CEGUO C.C
DEGlCf C.C
SUHSKK ^ O.C
PXSKf * 0.0
CELRAM * Q.C
RACHEC » Q.C
CDRMEH - O.C
CQNfE* - O.C
CRAIhK - O.C
SGPP * C.O
SNEC-fK - O.C
SEVAPK « O.C
C
CC 105£ -1,5
ER£lCf 1 * 0.0
RCE1CP I = 0.0
IhFTC* 1 - 0.0
PR-IK* 1 * C.O
FRC1CK 1 = 0.0
PR£lCf« 1 * 0.0
tPIICf I * 0.0
1058 BCITCK1 * 0.0
C
IF (NUlft .EC. NO GO TO 1060
C
C ZERO MONTHLY ACCUMULATIONS
C
DO 522 J-1.2C
LNFFMJ) * O.C
LNPEMJ) * O.C
GNREf(J) > O.C
TNPEKJ) * O.C
TNRHVKJ) * C.C
00 521 IElK-1,5
SKRSr'CJ.lELKl > 0.0
SKPGK.,Hll<) * 0.0
LKRIMuflELK) - 0.0
hPSM.tieiKJ 3 0.0
 0.0
LNReK.,lELK) * 0.0
5Z1 CCKTIME
522 CCNTINU
C
1C6C RETVJRK
C
C FORMATS
                                    303

-------
Appendix C (continued)
8113.
6114.
8115.
€116.
£117.
6118.
£719.
8720.
£121.
8122.
8723.
8124.
£125.
8120.
8127.
6128.
8129.
£130.
6131.
8122.
£133.
£134.
£125.
£136.
£137.
6138.
£139.
8140.
£i41.
£142.
£143.
£744.
£145.
£746.
£147.
£148.
£149.
8750.
8751.
£752.
£153.
£154.
£755.
£156.
8757.
8758.
£759.
8760.
£761.
6762.
8143.
3764.
£765.
£766.
8167.
£768.
8769.
£770.
£771.
£772.
C
1C92 FCPM«T
12CC FCRMAT
12C1 FORMAT
1102 FORMAT
C 5X,'TC
12C£ FORMAT
12C1 FCRMAT
12CS FORMM
121C FCRMAT
1211 FORMAT
1220 FCPMAT
1221 FORMAT
1222 FORMAT
1222 FCRMAT
1224 FORMAT
1224 FCRMJT
1221 FORMAT
1226 FORMAT
122S FCRMAT
122C FORMAT
1221 FCPMAT
1222 FCRMAT
122S FORMAT
124C FCRMAT
1241 FCRMAT
1242 FORMAT
1242 FORMAT
1245 FCRMAT
1244 FCRMM
1241 FCRMAT
124£ FCRMAT
124S FCRMAT
12JC FCRMAT
1252 FCRMAT
12fct FCRMAT
36C FCPMAT
362 FORMAT
342 FCRMAT
344 FORMAT
245 FORMAT
366 FCPMAT
36C FCRMAT
2£1 FCRMAT
261 FORMAT
41£ FORMAT
47S FORMAT
48C FCRMAT
4E1 FORMAT
482 FCRMAT
463 FORMAT
464 FORMAT
4E5 FCRMAT
4£4 FCRMAT
461 FCRM/T
4«5C FORMAT
491 FCRMAT
492 FCRMiT
4££ FCRMAT
361 FCRMAT
• 0« 1
'!« ,2EX, 'SUMMARY FCR MONTH OF ',A8,1X,I41
• * • • 25X • • • 1
•0' ,24X,'ELCCK 1 BLOCK 2 BLOCK 3 BLOCK 4 BLOCK
TAL'l
•C' ,£>, 'SEDIMENT, TONNES/HECTARE' 1
•C' EX, 'PESTICIDE, KILOGRAMS'!
•0' €X,'«EClMtNT, TUNS/ACRt'l
' • HXt'ERCCED SEDIMENT ' ,5(3X, F7 .3) , 4X.F7.31
• • HX.'FINtS DEPOSIT' ,toX,5(3X,F7. 3) ,4X,F7. 31
•0' 5X, 'PESTICIDE, POUNDS'l
'0' £X,'£tPFACE LAYER' ,9X,5 (3X.F7.31 ,3X, F8.31
• • HX.'ADSCRfaEU' ,11X,5(3X,F7.3J ,3X,F8.31
' ' 11X, 'CRYSTALLINE' ,8X,5(3A,F/. 3), 3X.F8.3I
'0* EX.'LPPER ZONE LAYER' ,oX,5(3X,F7. 31 ,3X,F8.3 }
1 • 11X,' 1NTERFLU* STORAGE', 2X,5(2X,F8. 31 ,3X,F8. 31
• ' 11X,'CISSCLVED',10X,5(3A,F7.31,3X,F8.31
•0' £X,'IOV»£R ZONE LAYER' ,&9X,F8. 31
' • HX.'/OSCRtJcb' ,64X,F8.31
• ' 11X, 'CRYSTALLINE' ,61X,FB.31
' • 11X,'CISSCLVEO',63X,F8.3)
•0' 6X,'CRCONOWATER LAYER «,5ttX,F8. 31
•C1 6>, 'FESTICIDc REMOVAL, KGS. ' , 2X ,5 (F7.3,3X1 ,F8.31
•0' £X, 'PESTICIDE REMOVAL, LBS. • ,2X, 5(F7.3,3X 1 ,F6.31
• • IIX.'CVERLANO FLOW REMCV AL' , 1X,5(F7.3 ,3X} , F8.3I
• ; nx.'SECIMENT REMOVAL' ,t>X,5t 'PESTICIDE DEGRADATION LOSS, LES.'l
'0* 6>, 'PESTICIDE DEGRADATION LUSS, KGS.1}
•1' 25X,'£UMfAKY FOR ',I4»
• ' IIX.'FRCM LUHER ZONE ' t 5faX. F7.31
•C' 11X, 'PESTICIDE BALANCED ,F8.41
•0' ,£>,'VATER, INCHES')
'C' ,11X,'FLNOFF'1
' ' ,14X,'CVERLAND FLOW , 5X ,i (Fd.3 t2Xl ,1X, F8. 31
' ' t14X,MNTERFLOta',9X,5(F6.3,2X)tlX,F8.3)
1 ' ,14X, 'IMPERVIOUS' ,59X,Ffa. 31
' ' , 14X,'TOTAL' ,i3X,5(F8.3,2X) ,IX,F8.3)
•C* illXt'EASc FLOW ,&3X,FB.3l
• • ,1 IX, 'GREATER RECHARGE', 55X.F8. 31
*C* , HX,'FRECIPITATIJN',oX,SlF7.2,3X) ,IX,F7.21
' « ,14X,«SNCW,6f>X,F7.2)
• ',14X,'FAIN ON SNOW ,57X,F7.2)
' ',14X,'tELT f> KAIN1 ,58X,F7.2l
•C't llXt^ELT' J
' • tHXt'FACIATION' tOOX,F7.21
' • ,14X,'CCNVECT10N' ,59X,F7.2)
• • ,14X,'CC^DENSATIC.J•,57XtF7.2)
1 • ,14X,'PAIN MELT' ,oOX,F7.2l
' ' ,1OX,F7. 21
• '.11X,'? SNCM COVER' ,60X,F7. 21
•0',11X,'SNCV< EVAP' ,63X,F7.21
*0* .IIX.'EVAFQTRANSPIRATIUN* 1
                                                                         5»
                                     304

-------
Appendix C  (continued)
6773.
£774.
£775.
£776.
£777.
£778.
£779.
8780.
8781.
8782.
£183.
8784.
£785.
E7E6.
£7£7.
£7£8.
8789.
£790.
8791.
8792.
£793.
6794.
8795.
8796.
8797.
€798.
8799.
8£00.
££01.
8802.
86C3.
££04.
88C5.
8EC6.
8807.
aecs.
88C9.
8£10.
8£11.
8812.
8813.
8£14.
8£15.
££16.
9COO.
9CC1.
9C02.
9C03.
9C04.
9C05.
SCC6.
9C07.
9CC8.
9CC9.
9C10.
9011.
9012.
9013.
SO 14.
9015.













C
C
C
3££
369
3E2
37C
371
372
372
374
375
376
311
489
46C



4COO


FORMAT
FCRMAT
FCRMAT
FORMAT
FCRMAT
FORMAT
FCRMAT
FORMAT
FORMAT
FCRM AT
FORMAT
FCRMAT
t
1
fl
•0
•
f
•
•
•
1
'0
14X,










1 .
FCPMAT CO1
1«X ,
14X,
llXt
14X,
14X,
14X,
14X,
1*X i
14X,
11X,
11X,
6 > i '



FORMAT 1'0','Ml
1 5X,«rC2i
4C05
4CC6
4C07
4CC£
4CC9
4011
4C12
4012
4014
4015
4C16
4C17

4C1£




4019
4021



4C3C

C
C
C
C
C
C
C
C
C
C
FCRMAT
FORMAT
FCRMAT
FORMAT
FCRMAT
FCRMAT
FCRMAT
FORMAT
FORMAT
FORMAT
FCRMAT
FORMAT
1
FORMAT
1
2
3
4
FORMAT
FCRMAT
1
2
3
FORMAT
END



C 1 OOfl
i lOKll.


f XJTC/tC
I PI 1 CUC

                           •0
                           •c
                           '0
                           •0
                           •c
                           •0
                           •c
                           '0
                           •0
                           •0
                           'C
                          CO
                           FE
                          PC
                          /,
     •FCTENriAL',9X,p(F7.2,3X»,1X,F7.2I
     •NET' ,1&X,5(F7.2,JX) ,IX,F7.2)
     •CRCP COVER',59X,F7.2)
     •STCRAGfcS' )
     •LPFER ZONE',8X,5(Fb.j,2X»,lX,F8.3)
     •LOhtR ZONE' ,ax,alho.^,2X),1X.F8.3)
     •CRCUNUHATcK1 , /X,D(Fo.3,2X1 ,IX,F8 .3)
     • INTERCEPT I OU« ,e>A,MFo.3,2x),lX,F8.3)
     •CVERLAuO  FLOht,5X,5(Fo.J,2X) ,1X,F8.3)
     • INTERFLOW ,,«PhOSPHGROS
                              •,6>,'ChLCRIOE
 •,6>,'ChLCRIOE   =  '.F8.3J
, 12X,'ELCCK«,I2,OX,F8.0,oF6.3,Fb.O,3F8.3,F8.3
                                   (YEAR)
                                       THIS  SUdROUTINc OUTPUTS YEARLY
                                       TABLES,  AND ZhRCi ACCUMULATIONS
                 CCMMCN /ALL/  RL ,HYMIN,PfcNTKE,HYCAL,OPST,OUTPLT,TIMFAC ,LZStAREA,
                               " I ,POSe,SRGX,IfUF ,KGX, INFL,UZSe,APEPCB,RIBtERSN,
                              .- ,A«CALB,PRCO,PEST,NUTR,fcNGL,METR,BCTh,RESE»YES,NO,
                              INiIhRtTF,JCOUNr,PKINT,INTR,OAYS,HCUP,MNTH
                                         305

-------
Appendix C  (continued)
9C16.
9017.
SO 1 8.
9020.
9021.
9C22.
9C23.
5024.
9025.
9026.
9C27.
9028.
9C29.
9C30.
9031.
9C32.
9033.
9C34.
9035.
9C26.
9C37.
9C38.
9039.
9040.
9041.
9042.
9C43.
9C44.
9C45.
9046.
9C47.
9C48.
 9C49.
9C50.
9CSI.
9C£2.
9053.
9C54.
 SC55.
 9C56.
 9C57.
9C58.
 9C59.
 9C60.
 9C61.
9062.
 9063.
 9C64.
 9C«5.
 9C66.
 SC67.
 9Ct8.
 SC69.
 9C70.
 SC71.
 9C72.
 9C73.
 SC74.
 9C75.
C


C
C

C
C
C
 C
 C
 INTEGEP*4  FPtvTKE.hYCAL, OUTPUT, T1MFAC,IMIN,IHR,TF,JCCUNT,
             C/lE,FRCC,fcfcGL,MtTR,BQTh,Y£S,NO,PEST,NUTR

 REAL*4
     1
     2
Rl,»-YMh,CPST,LZS,AREA,RESbl(5),KOSB(5),SRGX<5»,INTF(5)t
RGX(5), INFL(5),UZSt><^> - APERc c (5 ) ,RI B ( 5), ERSN (5 ) , PESB ( 5) ,
M,P2,^
      COMfCN  /LANCX *Mf ,PRTOT, ERSNTT ,PRTOK,ERSNTM, CAYt
2 NEPTCT,FCS1C1 , FHOT.RINTOT.BASTOT,KCHTOT,TWBAL,EPTOM,EPTOTt
2 LZS,LZ5N,L25N, UFIL,INTER,IkC,NN,L,6S,SGWl,PP,SGW,GWS,KV,
4 K24L.KK24,K21EI, EP , IFS,K3,EPXM.RESil.KtSS,SCEP.SCEPI,SRGXT,
5 SRGXT1.JPEF ,KREF,JSER,KSER,SRERT,MMPiN,METOPT,SNCW,CCFAC,
« SCF.ICNS.F ,CGy,K:,*PACK,EVAPSN,MEl_tV,TSNOn,PETMIN,PETHAXtei.DIF,
  1r*c^v C / r* ^ FCCTk  kOKTL^  v Fl C j\l  T D A /~ V  T M I Kl C I I Jul C Kt U D VC KlM  W ^
  UCWA^r^l_rvfLtr l(trUr\lrlfjL^Ci^lfirM%«^f inirMfOUnOMi^TrAjni^fA^jj
C rtLK*r^r\^l>rt* T t. L J* f t r* 11*»^ A 1 n>r>f 0 (Jl\ Me M f 5 w MM f ^i^CurMv 5 c V A H M yoUr^onivy
S PXSNY.J-FLP/Y ,P/C^EY,CURMEY.SGMY,CONVEY, GRAINY, SNEGMY.SEVAPY,
4 1SN6*L,CCVEP ,CCVFHX,ROBTGM,RG6TGT,RX6,RQITGM,ROITOT,INFTGM,
1 I NFTOT,ERSTCf,EF

 REAL*4  FRTC1 ,EFJKTT ,PRTOM,ERSNT«,RUTOM,RITOM,RINTOM,BASTOM,
1        RCh1C*,FUOT,NtPTGT,KOSTOT,RITOT,RlNTCT,eASTOT,R(>TOT,
c        T^E/LiEFTCM,EFTGT,UZS,UZSN,LiSN,1NFIL,INTER,IRC,
3        KN.L.SS ,£GW1 ,PR ,SGW,G^S ,KV ,«£<*(. , KK^4, K24EL,EP, IFS,
4        K3,EF>K,FESJ1,R£SS,SCEP,SCEP1,SKGXT,SRGXTI,JRER,KRER,
S        J«EF,KSEF,SREfiT,M^PIN,MfcTUPT,   NEPTOH.ROSTOM,
£        CCF*C,SCF,ICNS,f,OGH,WC,KPACK.EVAPSN,FELEV,TSNCW ,PETMIN,
7        PE7^AX,[lCIF,OtWX,PACK,4JfcPTh,SOfc^,IPACKfT^'IN,SU^'SNM,
9        PXShf ,Xf3,MELRAM,RACMcM,CDkM£M,CKAlNM,SGMf,SNEGMF,SEVAPM,
f        ciuv.,RXe(5),RCITCM(5),
               RCnCT(5),INFTGM(5)t INFTOT (5 ) ,£RSTUM( 5), ERSTOT (5 ) ,
               SREF(5) ,TEMPX(24),RAU(24*,H1NOXC24),RAIN(288I
       INTEGEP*4  C/Y,SKW»«CNTH
              /PES1C/ il,M,SPPCTT,SPRSTT,MU£,F^U^,UPRIT»»,
      2 UPRITT,KGPLE,FfL2,KLZ,LSTK,LAS,LCS,LDS,GSTR,GAS,GCS,GDS,
      3 APHCDE.TFE/L,
      4 DEGSCH,CEGSCT,C£GUCM,
      5 CEGLGT,CEGl ,CEC£ ,NIP.DEGGCN,OcGLOM,CcGLOT, NCCH,
      fc PRSTC^,PRS^CT,FFCTC^,PROTOT,UPITUM,UPITOT,STS,UTS,SASt
      7 SCS,SCS,SSTF,l/<,UCS,Ui>S,USTR,UPKI$,UiST,TGTPAP,TIMAP,YEARAP,
      £ OESCRP,SLRF,£CIL,SLLG
       REALM  SlS1,GFLB,FPl.G,MLZfLSTH,LAi,LCS,tDS,GSTR,GAS,
               GC£,GCS,TFBAL,OcGSOM,UcGiUT,UcGUJM,OEGUOT,DEGUtOEGSi
               MF,CEGCC^.CEGLJM,OEGLOT,NCO^,
               PR SICK !),PRSTGT(b),PRGTCMlaJ,PROTOT(5»,UPITOM(5l,
               UFITCT(5),STS(5).UTS(5),SAS15).SCS(5),SOS(5),SSTR|5).
               tAS(5)flCS(5).UDS(5),USTR(f>) ,UPRIS (I>» tUIST
 t.
 2
 4
 c
 t
 7
                                         306

-------
Appendix C  (continued)
9C76.
9C77.
9C76.
9C79.
9C80.
9C81.
9C62.
9C£3.
9C84.
S0£5.
9C86.
9C87.
sees.
sees.
<»C90.
90S1.
9C92.
9093.
9094.
9C95.
9C96.
9C97.
9C98.
SCS9.
9100.
9101.
91C2.
9103.
9104.
9105.
9106.
9107.
9106.
9109.
9110.
Sill.
5112.
9113.
9114.
9 US.
9116.
9117.
9118.
9U9.
9120.
9121.
9122.
9123.
9124.
9125.
9124.
9127.
9128.
9129.
9130.
9131.
9132.
9133.
9134.
9135.
C

C






C









C
C

C
C
C
C
C









C
C
C

C








C
C
C



C

C

C



i
1
2
3
«
c

1
1
2
3
4
5
6
7
8








1
1
2
2
4
5
t
7
£



1

1
1
2
2
«
c
6
7





1061





                 INTEGEP.*4  *FKCE ,DESORP, SURF, SOIL ,T IMAP.YEARAP

                 CCNPCK /KCT/  CELTtSTEMP, SNtSNT , SNfcSM,SNhOM,UN,UNT,UNI »UMT,
                                                                ,LNPBK,GNR EK.TNPBM,
                             UPEY,TKRhVfTNRHVM,TNkHVY,Ti1A,TPA,TCLA»
                 REAL**  CEL1,) ,SKGXMT(5),
                                (;),STS^ET(5),SASMETlb),SCSH£T(5),SCSPET(5l,
                                                               5J ,UPRISM(51
                                      NUTRIENT  INTERNAL VARIABLES

                 REAL'S  CCNC, LEftC/*LB/AC'/,  KGPHA/'KG/HA1/
PEAL*4
                         NEALM.FhELf'T.CLBLHT,
                         SNFET(2C,5) ,SNTMET( 20), UNMET (20,5) ,UMKET(201,
                         L^^'ET(2C),G^NET(20),SNR5HT(20) ,SuROMT(20) t
                         UNF IM ( 2 C ) .SNFbMT (20) .UNRoHT (20 ) , NRSf T (20 ),
                         NR
-------
Appendix C (continued)
 S136.
 S137.
 SI 38.
 9139.
 9140.
961
 9142.
 9143.
 5144.
 9146.
 9147.
 9148.
 5149.
 9150.
 9151.
 9152.
 9153.
 9154.
 9155.
 9156.
 9157.
 9158.
 9159.
 9160.
 9161.
 9162.
 9163.
 9164.
 9 US.
 9166.
 9167.
 9168.
 9169.
 9170.
 9171.
 9172.
 9173.
 9174.
 9115.
 9176.
 9177.
 9178.
 9179.
 9180.
 9181.
 9182.
 5183.
 9184.
 9165.
 91£6.
 9187.
 9168.
 9189.
 9190.
 9191.
 9192.
 91S3.
 9194.
 9195.
IP
CO
           523
524
526
C
C
   971
  (KtTR .EC. NO  £0 TO 977
  526  J*1,2C
  SLfS « O.C
  SUt'C » C.C
  SUHB « 0.0
  DC 523   ieiMl.5
      SLMS
      SLHC
                   SLfJ
                    SNKSY(J,IBLM
                    SNROY(J,1BLK)
         CCM1ME
         SKPJYTIJ)
         SNPCYT(J)
               SlKS/5.
               JLI-0/5.
               SlPB/5.
                           UNR[Y(J.I8LK)
                           UNRBY(J.IBLK)
        » O.C
   SLffi - C.C
   DC 524  IEIK'1,5
      SL^I = SUM *
      SLMB » Sl>E *
   CCNT1ME
   LNPIYT(J) « JLM/5.
   LKPEYT(J) » flfByS.

   SLfFS » C.C
   CC 525  IElK-1,5
      Sl^RS = SL^FS  * NRSY(JrI6LKI
   CCNTIM.E
   NFSYKJ) - FS/5.
CONTIME
   k-RITE  (6,1250
   kRITE  (6,12511
   VR1TE  (6,1103)
 IF  (CLTFCT.EC.
                   YEAR
 VRI7E
 hRITE
 WRITE
 VRITE
 V.RITE
 hRITE
 WRITE
             (6,36C1
             (£,362)
             «,362)
             (6.36O
             «,2£C)
             U.3E1)
                            GO TO 1066
PCETOT,
UFTCT,
RHCT
PCI7CT,
E/HOT
RCHOT
                      ftOSTOI
                      RINTOT

                      RUTOT
       oniic ictzcii rvriui
       WRITE (£,361) PFTCT,PRTOT,PRTOT,PRTOT,PRTOT,PP.TOT
 WRITE
 WRITE
 WRITE
 WRITE
 WRITE
 WRITE
 WRITE
 WRITE
 WRITE
 WRITE
                     NO  GC
                     Slf-SNY
IF (SNCV .EC. NO  GC TO 1072
WRITE (6,47t)
      (t,47«)
      (6.46C) CEIFAY
      U,4M)
      (6,482)
      (£,46-)
      (£,464)
      (6,48f )
      (6*466)
      (6,467)
      (6.490
   CCVP = ICC.
   IF (PACK  .IT. 1PACK) COVP. =  (PACK/IPACK 1*100.
                     CC^^'EY
                     CCFCEY
                     CF/INY
                     ShEGMY
                                         308

-------
Appendix C (continued)
9196.
9197.
9198.
S199.
9200.
9201.
9202.
9203.
9204.
9205.
92C6.
9207.
9208.
9209.
9210.
9211.
9212.
9213.
9214.
9215.
9216.
9217.
9218.
9219.
9220.
9221.
9222.
9223.
9224.
9225.
9226.
9227.
9228.
9229.
9230.
9231.
9232.
9233.
9234.
9235.
9236.
9237.
9238.
9239.
9240.
9241.
9242.
9243.
9244.
9245.
9246.
9247.
9248.
9249.
9250.
9251.
92S2.
9253.
9254.
9255.
IF (PACK.C1.C.C1I GO TO 1074
CCVP'0.0
SOEK'0.0
1C74 WRITE (6t491) SCEK
WRITE (6,492) CCVF
WRITE (6,4Et) SE\APY
1C72 WRITE (6,361)
WRITE (6,36£) EF7CT,£PTOT,EPTOT,EPTOT,EPTOT,EPTOT
WRITE (6.36S) NEFTOT,NEPTGT,NEPTGT,N£PTOT,NcPTOT,NEPTOT
WRITE (6,362) CCVER
WRITE (6,27C)
WRITE (£,371) L2ES) WRITE (6.469) TSNBAL
WRITE (6.120S)
WRITE (6.121C) EPSTOT, ERSNTT
WRITE (6,i;il) SRER, SRERT
C
IF (PES1 .EC. KC) GO TO 978
C
WRITE (6,122G)
WRITE (6.1221) SIS, STST
WRITE (6,1222) S4S, SAST
WRITE (6,1222) SCS, SCSI
WRITE (6,1221) SOS, SOST
WFITE (6,1224) LTS, UTST
WRITE (6,1222) UAS, UAST
WRITE (6,1222 ) LCS, UCST
WRITE (6,1227) LOS. UOST
WRITE (6,1226) UPRIS, UIST
WRITE (6.122O LSTR
WRITE (6,122<) LAS
WRITE (6.123C) LCS
WRITE (6,1231) LOS
WRITE (6,1232) GSTR
WRITE (6,122?) GAS
WRITE U.123C) GCS
WRITE (6,1231) COS
WRITE (6.124C) FRTTOT, PRTT
WRITE (6,1241) FRCTOT, SPROTI
WRITE (6,1242) FRSTUT, SPRSTT
WRITE (6,1242) UPITOT, tPRITT
WRITE (6,1246)
WRITE (6,124!) OEGTOT
WRITE (6.124O OEGSOT
WRITE (6,1241) DEGUOT
WRITE (6,1252) OEGLUT
WRITE (6,1266) TP6AL
C
97£ IF (NLTR .EC. NO CO TO 1066
C
C YEARLY NUTRIENT OUTPUT
C
C
CCNC > LBFAC
                                   309

-------
Appendix C (continued)
9256.
9257.
9258.
9259.
9260.
9261.
9262.
9263.
9264.
9265.
9266.
S267.
9268.
9269.
9210.
S271.
9212.
9213.
9274.
9215.
9276.
9277.
9218.
9279.
92EO.
9281.
9262.
92E3.
9284.
9285.
9286.
92E7.
9268.
9269.
9290.
9291.
9292.
9293.
9294.
9295.
9296.
9297.
9298.
9299.
9300.
9201.
9302.
9303.
9304.
9305.
9306.
9307.
9308.
93C9.
9310.
9211.
9212.
9213.
9214.
9215.


C












C























C
C

C

















                 WRITE
                 WRITE

                 WRITE
                 WRITE
                 WRITE
                1
                 WRITE
                 WRITE
                1
                 WRITE
                 WRITE
                1
                 WRITE
                 WRITE

                 WRITE
                 WRITE
                 WRITE
                 WRITE
                1
                2
                 WRITE
                 WRITE
                1
                2
                 WRITE
                 WRITE
                1
                2
                 WRITE
                 WRITE
                 WRITE
                1
                2
                 WRITE
                 WRITE
      (6.1C92)
      (6.40CC)

      (6.40C5)
      (6.4CC6)
      U,4G2C)

      (6.4CCT)
      (6,4020)

      (6.4015)
      (6,4030)

      (6,4CC£)
      (6,4CC«)

      (6,40111
      (6.4C12)
      (6,4C13)
      (6,4C2C)
      (6,4014)
      (6,4015)
      (6,4C2C>
      (6.401(1
      (6,4017)
      (6,4Clt)
      (6,401S)
      (6.4C21)
 CCNC
 (SNT(J),J'1,7),(SNT(J),J=11,14),SNT(20)
( 1ELK, (SN(J.ItJLK) ,J = 1 ,/),( SH< J,I8LK),J=«U,14)
 ,SN(20,IBLK),  IBLK=1,5)
 (INl(J) ,J-l,7) , (UNK J) ,J=11,14),UNT(20)
( IELK,(UN(J,1BLK),J=1,7),(UN(J,IBLK),J'11,14I
 ,LN(20,1BLK),  I8LK=1,5)
 (LNIT(J),J=1,7),(UNIT(J),J=11,14) ,UNIT(20I
IM(20,1SLK) ,
 (LN(J),J=1,7),(LMJ) ,J=U,14) ,LN(20I
 Y(J), J=ll,l4) ,LNRP>(201
 (TNPBY(J) ,J=-1 ,7),(TNRBY(J) , J= 11, 1 4) ,TNR6Y(20 1 ,
 (SNRBYT(J),J=1,7),(SNRBYI(J),J=ll,14),SNPBYT(201,
 (LNReYTU) ,J=1,7), (UNRBYT(J), J»l 1 , 14 ) , UNRBYT ( 20) ,
 (LNRBYlJ) ,J=1,7),(LNKBY(J),J=11,14),LNPBY(201,
 (GNPEY(J),J=1,7),(GNRBY(J),J=11,14),GNRBY(201
 (INRHVY(J),J»1,7).(TNAHVY(J),J=ll,141,TNPHVY(201
 hEAL, PHriAL, CLBAL
            1C6£  IF  (CLTPLT .EC. EKGL1 CO TO 1065
                  PRTCT  •FRTCTf'NMN
                  PCSTCT=PCSTCT*f>FIN
                  PIKTCT=PIMCT*K»'PIN
                  RITCT  *PITC1*»-HMK
                  PLTCT
PCHTCT
EPTOT
                         PC^•TtT<^•^FIN
                         EPTC1»M"FIh
                  tzs^•ET«l.zs*^^FI^
                  T*fMFIK
                                         310

-------
Appendix C (continued)
9217.
9218.
9219.
$320.
9222.
9223.
9224.
9225.
9226.
9227.
9228.
9229.
9230.
9231.
9332.
9223.
9334.
9235.
9336.
9237.
933e.
9239.
9340.
93*1.
9342.
9243.
9344.
9345.
9246.
9347.
9348.
9349.
9350.
93«l.
9252.
9353.
9354.
9355.
9356.
9257.
9358.
9359.
9360.
9361.
9262.
9363.
9364.
9265.
9266.
9367.
9366.
9369.
9270.
9371.
9272.
9373.
9314.
9375.
 SKCfc
    IF (SM> .EC. NO  GC TO 982
    SIMSNY * Sl>SM«**PIN
    PXSNY = PXShY*»*>FIN
    PAOMEY -
   CCRMEY
   GRAINY
   £GNY «
   SNEGKY
             CfUIKYOKPIh
   JEVAPY
   1SN8MY
FISTICICE
             PACK^frflN
             SEWFYOf-PlA
             ^s^E*L<^•^•PIN
962 IF (PES1 .EC. NO  GO TO 979
    SCS^^T»SCST4KCFlE
    SDSTM»SDSHKOFie
    LAS1f'T-LAS7*K€FlE
    tCS7HT»LCSKKC-Fie
    ICSTCT=LCST(1)*^^PIN
                       I)*Mt70PT*2.471
                     I)*fETOPT*2.471
                 .EC. NCJ  GO TC 1062
               =SAS(I)*KGPLB
               »SCS(I)*KGPL8
               ȣCS(I)*KGPL8
                                        311

-------
Appendix C (continued)
 9376.
 9377.
 9378.
 9279.
 9260.
 9261.
 9-82.
 93£3.
 92E4.
 S3€5.
 9366.
 93£7.
 9286.
 S390.
 9391.
 9392.
 9293.
 9394.
 9295.
 9296.
 9397.
 9*98.
 9399.
 9400.
 9401.
 9402.
 9403.
 9404.
 S405.
 9406.
 9407.
 S4C8.
 9409.
 9410.
 9411.
 9412.
 9413.
 9414.
 9415.
 9416.
 9417.
 9418.
 9419.
 9420.
 9421.
 9422.
 9*23.
 9424.
 9425.
 9426.
 9427.
 9428.
 9429.
 9430.
 9431.
 9432.
 S433.
 9434.
 9435.
       UCSHETd
       UDSHETI I
       UPPISMI
       PRTTCTd
       PRCTCTd
       FRSTCTd
       LPITCTd
1042 CCNTINLE
«LCSd)*KGPL8
»LCS(II*KGPLB
-IFP1SU)*KGPLB
*FFTUT(I)*KGPLB
*FPGKT(I)*KGPLB
=FFS1CT(I)*KGPLB
«LFI1CT(n+KGPl.B
     KRITE
     KRITE
     KRITE
     KRITE
     KRITE
     KRITE
     WRITE
     KRITE
     WRITE
           (6.46C)
           (6.26«1
           (6,362)
           (6,26<)
                     FJCKMf

                     .  IPACK)
                     .  0.01)
           (6,3£C)
           (6,381)
           (6,361)
     IF (SNCW .EC.
     KRITE (6,471)
     KRITE (6,47<)  F>JNY
     KRITE (6,48C)  >ELR*Y
     KRITE (6,4£1)
     KRITE (6,4£2)  FfCHEY
     KRITE (6,482)  CCKMEV
     KRITE (6,4£4)  CCFHEY
     KRITE (6.48*)  CFMNY
     KRITE (6,4£6)
     KRITE (6,4fi<)
     KRITE (6.49C)
        COVP * 1CC.C
        IF (PACK  .IT
        IF (PACK  .GT
        CCVP = O.C
        SDEN - 0.0
1C€£ WRITE (6,491)
     KRITE (6,492)
     KRITF (6.4£()
1C89 KRITE (6.261)
     WRITE (6.26E)
     WRITE (6,36«)
     KRITE (6,3£2)
     KRITE (6,37C)
     KRITE (6,271)
     WRITE (6.372)
     WRITE U.272)
     WRITE (6,374)
     KRITE <6,37f)
     WRITE (6,37£)
     WRITE (6,377)
     IF (SNCK .tC.
     KRITE (6,12C£)
     KRITE (6,121C)
     WRITE (6,12111
   PCETCT,ROSTOT
   IhFTQT,RINTOT
   P11CT
   RCITOT.RUTOT
   E^JTOT
   PCHOT
   FfKT,PRTOT,PRTGT,PRTOT,PRTOT,PRTCT
   NC )  GO TO 1089
              COVA =  (PACK/1 PACK)* 100.
             GO TO 1088
                     !CEN
                     CCVR
                     IEVAPY

                    EFTCT,EPTOT ,EPTOT,£PTOT,EPTOT,EPTOT
                    NEFTOT,NEPTOT,N£PTOT,NfcPTOT,NEPTOT,NEPTOT
                    CCVER

                    12
-------
Appendix C (continued)
9436.
9437.
9438.
9439.
9440.
9441.
9442.
9443.
9444.
9445.
9446.
9447.
9448.
9449.
9450.
9451.
9452.
9453.
9454.
9455.
9456.
9457.
9458.
9459.
9460.
9461.
9462.
9463.
9464.
9465.
S466.
9467.
9466.
9469.
9470.
9471.
9472.
9473.
9474.
9475.
9476.
9477.
9478.
9479.
9480.
9481.
9482.
9483.
9484.
9485.
9486.
5487.
9486.
9469.
9490.
9491.
9492.
9493.
9494.
9495.

























C
C
9£(
C
C
C












C









C




529
520
WRITE (6,1223) iCSHEl.SCSTMT
WRITE (6,1227)  SNRSY(J,IBLK)*CONVF
£NRCY(J,IEIK) = SNROY(J,I8LK)*CONVF
LrRIY(.,IEU) » UNRIY(J.IBLK)* CONVF

IF (MC4L .EC. CALB) GO TO 529
SNPE1 (v,lELK) * SMJ,IBLK)*CONVF
LNf'EKJtIELK) = UN( J, 1BLKJ*CONVF
LMfET(J ,1EIK) * UNHJ, IBLK)*CONVF
CCMINLE
CCMINCE
                                    313

-------
Appendix C  (continued)
9497.
949E.
9499.
9500.
9501.
9502.
9503.
95C4.
9505.
9506.
9507.
9508.
95C9.
9510.
9511.
9512.
9513.
9514.
9515.
?516.
9517.
9518.
9519.
9520.
9521.
9522.
9523.
9524.
9525.
9526.
9527.
9528.
9529.
9530.
9531.
9532.
9533.
9534.
9535.
9536.
9537.
9536.
9539.
9540.
9541.
9542.
9543.
9544.
9545.
9546.
9547.
9548.
9549.
9550.
9551.
9552.
9553.
9554.
9555.


C
C



C













C























C
C
C











                 KBALK.T
                 PhBLPT
                 CLBLM
                 CCNC - KGFh/
                 WRITE U,1C<2)
                 WRITE (6.40CO)
                1
 WRITE
 WRITE
 WRITE
L
 WRITE
 WRITE
I
 WRITE
 WRITE
                 WRITE
                 WRITE

                 WRITE
                 WRITE
                 HRITE
                 WRITE
                 1
                 2
                 1
                 2
                 1
                 2
                 3
                 4
                       U,4CC5)
(£,402C)

U,4CC7)
(6,4C2C)
                        (6,4020)
                 CCNC
 (S^THET(J),J=l,7),(S^TMcT(J),J=ll,14),SNTMET(201
(IELK,(SNMET(JTlBLK), J=l,7), (SKHET (J , IBLK 1 , J= 1 1, 14 1
 ,£M"ET(20,lbLK),  I6LK=1,5)
 (INTMETU) ,J=l,7),(UNTMET(Jl,J*ll,14),UNTfET(20l
I I ELK, (UNMET! J ,IijLKJ , J=l, 7) , ( UNMET (J , IBLK ) ,J= 1 1 , 14 )
                 WRITE
                 WRITE
                 WRITE
                 WRITE
                  WRITE
                  WRITE
                  WRITE
                  HRITE
                  WRITE
       (6.40C9)

       (6t4011)
       (t,40121
       Ut4C13)
       (£.4020)
       (6,4014)
       (6,4C2C)
       (4,4015)
       (6.4C2C)
       (6,4Cltl
       (6,4017)
       (6,401E)
       (6,4C19)
       (6,40211
          (INITMT(J) ,J=1,7*,(UMTMT( J ) , J=ll ,14 ) , UMTMT (201
          ( IBLK, ( UN IMcT( J, IBLK), J = l,7),
          (LM fET (J, IBLK ),J=llt 141,
          LMCET(20,IBLK),   1BLK=1,51
          (LNfETl J) ,J=1,71 , (LMMnTiJl, J=ll,14) ,LNKET(20i
          (GNCET(J) , J*l,7if (GNHET(J), J= 11 , 14) ,GNKET( 201
          (£NPSYT(J) ,J=1,7) , (SNRSYTU) , J=ll ,141, SNPSYT(201
          (1ELK,(SNHSY(J,IBLK),J=l,71,
          (SftRSY(J,lBLK) ,J = 11,141,
          £MJSY(20,lbLKI ,  !BLK=lf51
          (£NPCYT(J),J=1,7),(SNROYT(J),J=ll,14),SNROYT(201
          iIELK,(SNKQY(J,IBLK),J-l,7),
          ( 0.0
                                         314

-------
Appendix C (continued)
9556.
9557.
•5558.
9559.
9560.
9561.
9562.
9563.
9364,
9S65.
9566.
<567.
9568.
9569.
9570.
9571.
9572.
9513.
9514.
9575.
9516.
9577.
9576.
<579.
S580.
95€1.
9562.
9563.
9£€4.
9585.
9566.
9567.
9588.
9569.
9590.
9591.
9592.
9593.
9594.
9595.
9596.
9597.
9598.
9599.
9600.
96C1.
96C2.
9603.
96C4.
9405.
96C6.
9607.
96C8.
9609.
9610.
9611.
9612.
9613.
9614.
9615.
SFPCTT - C.O
SPFSTT - 0.0
UPRI1T - C.C
CEGSCT » 0.0
CEGLCT « C.O
OEGLC7 * 0.0
SUPSNY * 0.0
PXSNY - 0.0
fELRAY - O.C
RADFEY - O.C
CDRKEY » O.C
CCNPEY - O.C
CRAINY -- C.C
SGMY ^ C.O
SNEGfY = O.C
SEVAPY « C.C
C
DC 1C£€ i«l|5
ERS7C1U) * 0.0
FCBTCHIJ « 0.0
IfvFTCT(I) - 0.0
PPTTCT(l) « 0.0
FPSTCT(I) - 0.0
FPCTCUI) = 0.0
LFUCTd) - 0.0
K68 FCITCT (I) » 0.0
C
IF (SLIP .EC. KC) GC TO 1070
C
C ZERO YEARLY NUTRIENT ACCCVULATICNS
C
CC 534 J»1,2C
LNRFY(J) * C.C
LNR6Y(J) « O.C
GNRBYiJ) * O.C
TNR6XJ) « O.C
TNRt-VYtJJ « C.C
DC 523 IEIK«1,5
ShRSY<^ tltlK) * 0.0
£NFCY<,,l£tKJ * 0.0
LKRI>(w) = 0.0
rPSYU.IELK) 0.0
s^ReY ( 3X, F7 .3 » * 4X.F7 .3 1
1211 FCRMAT • • .llXt'FINES DcPOi.IT' »6X,al3X,F7.3) ,4X,F7.3)
                                                                     CLOCK 5«,
                                     315

-------
Appendix C  (continued)
9616.
9617.
9618.
9619.
9620.
9621.
9622.
9623.
9624.
9625.
9626.
9627.
9628.
9629.
9630.
9631.
9632.
9633.
9634.
9635.
9626.
9637.
9636.
9639.
9640.
9641.
9642.
9643.
9644.
9645.
9646.
9647.
9646.
9649.
9650.
9651.
9652.
96«3.
9654.
9655.
9656.
9657.
9656.
9659.
9660.
9661.
9662.
9663.
9664.
9665.
9666.
9667.
9666.
9669.
9670.
9671.
9672.
9673.
9674.
9675.
122C FCRMAT
1221 FCRMAT
1222 FCRM/T
1223 FORMAT
1224 FCRMAT
122< FORMAT
1227 FCRMAT
1226 FORMAT
1229 FCRMAT
123C FCRMAT
1221 FCRMAT
1222 FCRMAT
1239 FCRMM
124C FORMAT
1241 FORMAT
1242 FORMAT
1243 FORMAT
124S FCRMAT
124t FCRMAT
1247 FCRMAT
1246 FCRMAT
1249 FCRMAT
125C FCRMAT
1251 FCRMAT
1252 FCRMAT
1266 FCRMAT
36C FCRMAT
362 FCRMAT
362 FORMAT
3<4 FCRMAT
365 FORMAT
366 FCRMAT
38C FCRMAT
III FCRMAT
361 FCRMAT
47i FORMAT
479 FORMAT
46C FCRMAT
461 FORMAT
462 FCRMAT
462 FORMAT
464 FORMAT
465 FCPMAT
466 FCRMAT
461 FORMAT
49C FORMAT
491 FCRMAT
492 FCRMAT
466 FORMAT
367 FCRMAT
366 FORMAT
369 FORMAT
382 FCRMAT
27C FCRMAT
371 FCRMAT
272 FCRMAT
272 FORMAT
374 FCRMAT
375 FCRMAT
376 FCRMAT
• 0' ,
•0'«
' * »
• >
• 0'
1 •
1 •
•0'
• •
• •
t •
«0'
•0'
•C'
1 1
1 •
, «
• •
1 •
, •
•0'
•0' ,
• 1* ,
' + ' ,
• :,
•0' ,
•C',
•c» ,
• ,
* ,
• .
* 1
•c ,
• ,
•0 i
1 1
* *
' • 1
'C',
* * 1
• • 1
' " 1
' :
• '
' -1
•0'
1 '.
• •
•0'
•0'
• •
*
• •
•0'
• •
• 1
• •
• 1
, •
« •
                              ,SX,'PESTICIDE ,  POUNDS')
                               EX,'SURFACc  LAYER',9X,5(3X.F7.3),3X,F8.3)
                              ,11X,'*OSCFBED' ,HX,5(3X,t-7.J),3X,F8.3)
                               11X,'CRYSTALLINE', tiX ,MJ X.F7.3),3X,F8.3)
                               8X,'LFFfcR  ZONE L «YcH • ,6X, :>< 3X , F 7 .3) , 3X ,F8 .3 )
                               MX,' INTERFLOW  ST JKAGE ' , 2A ,5 UX ,F 8.3) ,3X,F8.3)
                               IIX.'CISSCLVED',10X,i(3X,F7.3»,3X.F8.3)
                               tX,'LOWER  ZONE LAYER' ,59X,F8.3)
                               11X,'ADSCRBED' ,6«tX,Fti.3)
                               1 IX,'CRYSTALLINE' ,61X,Fb.3)
                               IIX.'CISSCLVED',o3X,F8.3)
                               EX,'GRCUNDWATER LAYER', i>8X,F8.3)
                               fiX,'PESTICIDE  REMOVAL,  KGS.•,2X,5 (F7.3,3X),F8.3)
                               6X,'FESTICIUE  REMOVAL, LBS.•,2X,5(F7.3,3X) , F8.3)
                               11X,'CVERLAND FLJn RtMOV AL ', IX,5(F7.3,3X),F8.3)
                               1IX,'SEDIMENT RErlOVAL* ,6X,b(F7.3 ,3X ) , F8.3)
                               1IX ,' INTERFLOW  REMOVAL',bX,5(F7.3 ,3X),F8.3)
                               11X,'TOTAL',68X,F7.3)
                               IIX.'FRCM SURFACE' ,61X,F7.3)
                               IIX.'FPCM UPPER ZONE',baX,F7.3)
                               6>,'PESTICIDE .DEGRADATION LOSS, LES.')
                                 ,'FESTICIDc DEGRADATION LOSS, KGS.'I
                              ,25X,'SUMMAKY  FOR >,I4)
                              ,11X,'FRCM LOWER ZONE',5UX,F7.3)
                              ,11X,'PESTICIDE BALANCE*' ,F(Ftt.3,2X),LX,F8.3)
                              , 14X ,'IMPERVIOUS',59X,Fd.3)
                               14X,MOTAL',13X,5(F8.3,<;X) ,IX,F8.2»
                              ,11X,'EASE FLOW ,63X,Fd.3l
                              , 11X,'GRCkATtR RECHARGE',i>5X,F 8. 3)
                              ,llX,'FRECI*'lTAT10.N',6Xfa(F7.2,3X) , IX.F7.2)
                              ,14X,'SNCN',6^X,F7.2)
                                   •PAIN ON SNlivJ' ,57X,F7.2)
                              ,14X,'f-ELT £. RAIN',5dX,F7.2)
                              tllX.'tELT*)
                              ,14X,'FACIAT10N',60X,F7.2)
                                   •CCNVECTICN1,59X,F7.2)
                                   'CONUtNSATlCN' ,57X,F7.2)
                                   •PA^ McLT' ,oOX,F7.2)
                              ,14>,'CRCUNb MELT',5tiX,F7.2)
                              ,14X,'Cl.M Ncto HEAT' ,t>7X,F7.2)
                              ,llX,'SNCh PACK',b3X,F7.2)
                              ,llX,'SNCVi DENSITY* ,OOX,I17.2)
                                    9 SNCW CCVER',60X,F7.2)
                              ,HX,'£NCk EVAP* ,o3X,F7.2)
                              ,1IX,'EVAPCTRANSPI RATION1')
                                    POTENTIAL',^X,S(F7.2,3X),1X,F7.2)
                              ,14X,'KET',15X,5(F7.2,3X) ,1X,F7.2)
                                    CCCP COVER',59X,F7.2)
                              ,11X,'STCPAGES')
                              ,]4X,'LPPER ZONE',8X,5(F8.3,2X),IX.F8.3)
                              , 14X,'LCK£R ZONE',aX,&(Fo.3,2X), 1X.F8.3)
                              ,14X,'GRCLM>taATER',7X,S(Fti.3,2X),1X,F8.3)
                              , 14X,'INTERCEPT ION',6X,5(Fo.3,2X),IX,F8.3)
                              ,14X,'CVERLAND  FLUW ,3X,i> (F8.J.2X) ,1X,F8.3>
                              ,14X,' INTERFLOW ,9X, 5 (F8. 3,2X) ,1X,F8.3)
                                          316

-------
Appendix C  (continued)
9676.
9677.
5678.
9679.
5660.
 96£3.
 5664.
 9665.
9689.
9690.
9651.
9692.
9653.
5694.
9695.
5656.
5657.
5658.
9699.
9700.
9701.
5702.
5103.
97C4.
57C5.
57C6.
5707.
9108.
97C9.
9110.
9900.
5901.
5902.
9«C3.
55C4.
99G5.
371 FORMAT
489 FCRMAT
    FCRMAT
    FORMAT
   1
   2
    FCRMAT
    FORMAT
    FCRMAT
    FCRMAT
    FORMAT
    FORMAT
    FORMAT
    FCRMAT
    FCRMAT
    FORMAT
    FCRMAT
    FCRMAT
          C
          C
          C
          4CCC
4C05
4C06
4C07
4CC8
4CC9
4011
4C12
4C12
4C14
4015
4016
4CH
           4C1£  FCRMAT
                I
                2
                3
                t.
           4C15
           4021
           4C2C
           C
    FORMAT
    FORMAT
                1
                2
                3
                        CO'

                        CO'
                  ,11X,'VATER BALANCED ,F8.4)
                             6ALANCt= *,F8.4I
                            , MILLIMETERS'!

                             NUTRIENT FORMATS
CO* ,'M.IF IEMS - ' ,A5,11X,'OKG-N' ,3X,'NH3-S» ,3X,»NH3-A't
 5X,»NC2« ,5X,'N03' ,6X,•U2«t2X,'PLNT-N• ,3X,'ORG-P't3X,
 •FC4-J* i2>t» FC4-A* f<£Xt • PLNT-f t6Xf • CL •)
  •O'.JX.'STCRAGE* )
                          •0
                          •0
                          •0
                          •C
                             • t - A t  . i un«v>cw i
                             • t9X,'£UPI-ACt LAYcR' ,3X ,F O.0.6F3 .3 ,F8.0, 3F8 .2 ,F8.3 I
                             »t?X, 'LFFtR  iONc' t6X,t-b.O,6Fo.3tF8.0,3F8.3iF8.3)
                             • t9X,'LOk»EB  ZONc't6X,F«.U,oFd.3,f 8 .0, 3F8.3t F8.3)
                             ' t5> .'C-RCONUWATER' , 5X ,Fti. 0,oF8.3 ,F 8.0, 3F8.3 tF6.3)
                             t  IV  • C * U f tJ A 1 • 1
                           •C'.iX
 CC1

 CO'
 CC1
 i'O
  F6
 CO
 /,'
 /,'
 /,;
 /t-

 CC
 /,'
                                  'lEOI^ENT'.eX.Fa.O.oFB.S.Fa

                                   INTcRFLOn' ,7X,FtJ.O»
                                         TO  SlKc«M «,Fa.u,oFd
' t5X,«
.C,6F€
't6X,«
 * 15> t
 •»5>,
 • t9>,
 •»5),

1 ,2>
                           .0,3F8.3,F8.3)
                           .3,F8.0,3F8.3,F8.31
                           d.O,3F8.3,F8.3)
                           .3,F8.0,3F8.3,F8.3I
FERCCLATICN TO '/,•  ',liXf  'GROUNOWATER•t2Xt
.3,fc.O,3Fo.3,F8.3)
EICLCG1CAL - TOTAL  ',F3.0,
'SURFACE',9X,F6.0i6Fo.i,Fa
•UPPER /LONE',6X,F6.0»6F t
           //LKEC.SVSIN CC *

           /*
                                        317

-------
                                  TECHNICAL REPORT DATA
                           (Please read Instructions on the reverse before completing)
 REPORT NO.
 EPA-600/2-76-043
              3. RECIPIENT'S ACCESSION-NO.
 TITLE AND SUBTITLE

 MODELING PESTICIDES AND NUTRIENTS  ON
 AGRICULTURAL LANDS
              5. REPORT DATE
                February 1976 (Issuing Date)
              6. PERFORMING ORGANIZATION CODE
 AUTHOR(S)

 Anthony S.  Donigian, Jr., and  Norman  H.  Crawford
                                                          8. PERFORMING ORGANIZATION REPORT NO.
. PERFORMING ORGANIZATION NAME AND ADDRESS

 Hydrocomp,  Incorporated
 1502  Page  Mill  Road
 Palo  Alto,  California  94304
              10. PROGRAM ELEMENT NO.
                1BB039
              11.KBNXeW(0CWGRANT NO.

               R803116-01-0
12. SPONSORING AGENCY NAME AND ADDRESS
  Environmental  Research Laboratory
  Office of Research and Development
  U.S.  Environmental Protection Agency
  Athens, Georgia  30601
              13. TYPE OF REPORT AND PERIOD COVERED
               Final
              14. SPONSORING AGENCY CODE
               EPA-ORD
15. SUPPLEMENTARY NOTES
16. ABSTRACT
Modifications, testing, and further development of the Pesticide  Transport and Runoff
(PTR)  Model  have produced the Agricultural  Runoff Management  (ARM)  Model.   The ARM
Model  simulates runoff, snow accumulation and melt, sediment  loss,  pesticide-soil
interactions, and soil nutrient  transformations on small agricultural  watersheds.  The
report discusses the major modifications to and differences between the PTR and ARM
Models.   An  energy-balance method  of snow simulation, and a first-order transformation
approach to  nutrient modeling are  included.  Due to lack of data,  the  nutrient model
was  not tested with observed data;  testing and refinement are expected to  begin in the
near future.

Instrumented watersheds in Georgia  provided data for testing  and  refinement of the
runoff, sediment and pesticide portions of the ARM Model.  Comparison  of simulated
and  recorded values indicated good  agreement for runoff and sediment loss, and fair to
good agreement for pesticide loss.   Pesticides transported only by  sediment particles
were simulated considerably better  than pesticides that move  both  in solution and on
sediment.  A sensitivity analysis  of the ARM Model parameters demonstrated that soil
moisture and infiltration, land  surface sediment transport, pesticide-soil inter-
actions, and pesticide degradation  are the critical mechanisms in  simulating pesticide
loss from agricultural watersheds.	
17.
                               KEY WORDS AND DOCUMENT ANALYSIS
a.
                  DESCRIPTORS
 b. IDENTIFIERS/OPEN ENDED TERMS
  COSATI Field/Group
  Simulation, Runoff, Hydrology,  Soil
  erosion, Nitrogen, Phosphorus,  Snowmelt,
  Watersheds, Pesticides
  Agricultural runoff,
  Hydrologic modeling,
  Pollutant pathways,
  Nitrogen compounds,
  Phosphorus compounds,
  Snowpacks, Small water-
  sheds
       12A
        2A
        6F
        8H
18. DISTRIBUTION STATEMENT


  RELEASE UNLIMITED
  19. SECURITY CLASS (This Report)
       UNCLASSIFIED
21. NO. OF PAGES

       332
  20. SECURITY CLASS (This page)
       UNCLASSIFIED
                            22. PRICE
EPA Form 2220-1 (9-73)
318
                                                    U.S. GOVERNMENT PRINTING OFFICE 1976-657-695/5366 Region No. 5-11

-------