EPA-600/2-76-048b
March 1976
Environmental Protection Technology Series
MOLECULAR SIEVE TESTS FOR CONTROL OF
NOX EMISSIONS FROM A NITRIC ACID PLANT
Volume II - Appendices
Industrial Environmental Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into five series. These five broad
categories were established to facilitate further development and application of
environmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The five series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
This report has been assigned to the ENVIRONMENTAL PROTECTION
TECHNOLOGY series. This series describes research performed to develop and
demonstrate instrumentation, equipment, and methodology to repair or prevent
environmental degradation from point and non-point sources of pollution.4This
work provides the new or improved technology required for the control and
treatment of pollution sources to meet environmental quality standards.
EPA REVIEW NOTICE
This report has been reviewed by the U.S. Environmental
Protection Agency, and approved for publication. Approval
does not signify that the contents necessarily reflect the
views and policy of the Agency, nor does mention of trade
names or commercial products constitute endorsement or
recommendation for use.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-600/2-76-048b
March 1976
MOLECULAR SIEVE TESTS FOR
CONTROL OF NOV EMISSIONS FROM A
X
NITRIC ACID PLANT
VOLUME 11-APPENDICES
John T. Chehaske and Jonathan S.
Greenberg
Engineering-Science, Inc.
7903 Westpark Drive
McLean, Virginia 22101
Contract No. 68-02-1406, Task 2
ROAP No. 21AFA-106
Program Element No. 1AB015
EPA Project Officer: E. J. Wooldridge
Industrial Environmental Research Laboratory
Office of Energy, Minerals, and Industry
Research Triangle Park, NC 27711
Prepared for
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Research and Development
Washington, DC 20460
-------
CONTENTS
APPENDIX Page
A. Data Reduction Technique with Example Calculations 1
Instantaneous Sieve Flow Rates and NOX Concentrations
from Reduced Strip Chart Data with Calculated Mass
Flow Rates, Mass Loadings and Control Efficiencies
B. NO Emission Data Reports for EPA Method No. 7 Tests 58
X
C. EPA Reference Method No. 7 66
D. Field Data Log for DuPont 411 Photometric Analyzer 71
E. Field Data for EPA Method No. 7 Tests 138
F. Laboratory Report for EPA Mentod No. 7 Tests and 186
Analytical Report for N02 Calibration Gases
G. Process Data 192
iii
-------
APPENDIX A
DATA"REDUCTION TECHNIQUE AND EXAMPLE CALCULATIONS
INSTANTANEOUS SIEVE FLOW RATES AND NOX CONCENTRATIONS
FROM REDUCED STRIP CHART DATA WITH CALCULATED MASS
FLOW RATES, MASS LOADINGS AND CONTROL EFFICIENCIES
-1-
-------
APPENDIX A
The outputs of the UV-visible photometric analyzers used
to measure the inlet and outlet N00/N0 concentrations were recorded
2 x
on strip chart recorders. Separate recorders were used for each
of the test sites. Figure A-l is a copy of the recorded instru-
ment output for inlet test site HV-23 during the first 115 minutes
of test 11. Figure A-2 is a copy of the recorded instrument
output for outlet test site HV-13 during the same period. Both
copies provide the basis for example calculations in this section.
A data reduction technique was used to provide instantaneous
sieve inlet and outlet NO concentrations at appropriate intervals
X
suitable for application of the trapezoidal rule for integration.
The major assumption in the integration method is that concentration
changed linearly between the endpoints of an interval, thus it was re-
quired that the points defining the intervals be carefully selected.
The following method was used for reducing the strip charts.
1. The nearly continuous strip chart records of inlet and
outlet N02 measurements were converted to continuous form using
linear interpolation in order to provide an estimate of the NO^
concentrations which existed while the analyzers were being operated
in either the NO or zero modes. First, the zero drift which
X
occurred during the intervals between zeroing of the instruments
was distributed over each interval using linear interpolations.
The technique was applied by drawing a straight line on the strip
chart between the points where the zero baseline was established.
This provided an estimate of the instrument zero baseline at any
point in time. Second, the N02 measurements which were missed as
a result of switching the instruments to the NO or zero modes
X
were approximated by drawing straight line on the strip chart
between points where the NO^ measurements terminated and started
again. Examples of the distribution of zero baseline drift are
found between 0700 and 0905 on Figure A-l and between 0700, 0758
-2-
-------
CO
I
FIGURE A-l, EXAMPLE OF RECORDED N02/NOX STRIP CHART DATA
(FIRST 115 MINUTES OF TEST - 11, INLET SITE nv-23)
-------
FIGURE A-2, EXAMPLE OF RECORDED N02/Nox STRIP CHART DATA
(FIRST 115 MINUTES OF TEST - 11 OUTLET SITE HV-13)
-------
and 0853 on Figure A-2. Examples of the estimation of N02 measure-
ments during periods when the analyzers were either in the zero or
NO mode are found from 0715 to 0720 and 0730 to 0735 on Figure
X
A-l and from 0750 to 0802 on Figure A-2.
2. Points were selected for reading N09 concentrations from
the recorded charts at appropriate intervals for use of the trape-
zoidal rule. The points selected included, but were not limited
to all points which corresponded to the beginning of each NO
X
measurement. Each point was carefully selected so that the contour
of the strip chart trace could be approximated by a series of
straight lines connecting the points. The location of points
selected in the example are identified by vertical lines with
corresponding times drawn on the strip charts.
3. For each point selected on the strip chart traces, the time
and the percent of chart values for the zero baseline and N0«
measurements were determined and copied on to a data reduction work-
sheet. Figure A-3 is a copy of the data reduction worksheet used
for test 11. The times corresponding to each point appear in
column 2. N02 percent of chart values for the inlet trace appear
in column 3 and the zero baseline values in column 4. Outlet N09
and zero baseline percent of chart values appear in column 9 and
10 respectively.
4. The difference between each N02 percent of chart value and
the corresponding zero baseline value was calculated. These values
appear in columns 5 and 11 on the worksheet. N0? concentrations
were calculated using the appropriate range factors. For the inlet
instrument, the factor was 50 ppm of N0» per percent of chart, for
the outlet instrument the factor was 5 ppm of N02 per percent of
chart.
5. The percent of chart values for each of the NO measure-
X
ments and the corresponding zero baseline values were determined
and copied onto the worksheet. The NO determinations on the work-
X
sheet are identified by the mode identification in column 1. For
-5-
-------
- FIGURE A-3, EXAMPLE DATA REDUCTION WORKSHEET
TEST - 11
3/I1-/7S- HERCULES rA/C. /?^A/ //INLET ;/V-ZZ, Q VTLET HV-ll UNlTA 07//-
Column ]
8<
OUTLET
10 11 12 13
14
15 16 17 18 19
Mc/e
hocuir
i. »r.
CHM.T
ffm
IMc*
% Of
CNAKf"
pm*
t/0,
Pfm
7!**
Ft**
40*
A/OI
cm/
S3. 75
zao
43.75-
6i.
38,0
110.0
55-00
IOZO
33-W
110
07/t
53.5"
43,5-
£54-
45.5-
vi. c
JV' ^
100
////
SSOO
lOiO
33^0
10
07/5-
67. Z£
noo
61.15
470
3&S-
I6.S
81.S
5SOO
1015
336O
0717
43. 0
ZlSO
65 O
1.1.5-
77.5
5500
33/O
78
UOi
0715
(S3 t
tl.5~
5475"
IOIO
in
U37\
0716
6/.0
ZO.Z5"
40.15
*&5-
-+&
5475-
IOZO
/Zf-
A/0
0750
ee.o
4Z.O
ZIOO
67-15-
3388
5-/.0
/Jp/. is
-tf-
lOiO
3360
101
63,
4275
II3B
470
3Q&-
(S/.Z5
777
S+SO
lOiO
81
A/Oi
63.7?
10.5
65.75-
43.75
3288
3<.Q
I7..75-
3.75
5475
A/O
Z0.5
^3.5-
ins
66
43 d 5
(>/.Z5
IZ-SO
6t 5
\
•&*•
5475
lOiO
3280
61
A/Ox
zo.r
itoo
65.1$
-3QA
II. 5-0
7777
i
•44-
5175
IOZO
3160
SB
O8IO
10,5
IIT5
•=H.S
1 1 SO
$7.50
S+7S
IOZO
-------
the inlet test site, the NO measurements were made approximately
X
every ten minutes for five minute intervals. On Figure A-l the
beginnings of the NO measurements occur at 0715, 0730, 0745 and
X
0800. The percent of chart values on the worksheet appear in
columns 3 and 4 below the N09 values for the same times. For the
outlet test site, the NO measurements were made approximately
X
once an hour due to the absence of NO in the outlet stream. On
Figure A-2 the beginning of an NO measurement occurs at 0750.
X
The percent of chart values for the NO measurements were read at
X
the end of each 5 minute NO determination, after the complete
X
oxidation of NO to N02 in the sealed sample cell had occurred.
6. The difference between each NO percent of chart value
-*Sfc
and the corresponding zero baseline value was calculated, and the
NO concentrations were determined in the same manner as in step 4.
2\.
The different values appear in columns 5 and 11, and the concen-
trations appear in column 7 and 13 on the worksheet.
7. The percent N02 in each NO measurement was calculated
from the ratio of the N09 measured at the beginning of each NO
£ X
measurement to the NO measured. The calculated percents appear
j\.
as the circled values in columns 8 and 14 on the worksheet. The
percent N09 for each point where no corresponding NO measurement
*L X
existed was calculated by interpolating between known NO percent
X
values. For the inlet test site, the calculated values appear as
uncircled values in column 8 of the worksheet.
8. The inlet N0~ concentrations which appear in column 6 on
the worksheet were converted to NO concentrations using the cal-
X
culated percent N02 in column 8. The calculated values for the inlet
appear in column 18. The outlet NO concentrations appearing in
column 19 were calculated from the outlet N09 concentrations in
column 12 using an N02 to N0x ratio of 1.0. (The average ratio
of N09 to NO at the outlet test sites during the eleven cycles
£- X
was 0.999 with a standard deviation of .040. The variations about
the mean were due to a combination of instrumental, recorder and
chart reading imprecision.)
-7-
-------
9. The inlet flows into the sieve and the flows diverted for
regeneration (regeneration flow) were read from copies of process
instrument charts for the respective times. All times were conver-
ted to elapsed time with reference to the beginning of each cycle.
These values appear in columns 15, 16 and 17 on the worksheet.
10. The data appearing in columns 15 through 19 for each of
the eleven cycles was keypunched and read into a computer program
which produced the outputs presented in this section, Tables A-l
through A-31. An example calculation for the first 4 minutes of
test cycle 11 with an explantion of each parameter preceeds the
output tables.
-8-
-------
EXAMPLE CALCULATIONS
FOR
TABLE A-31
The first five columns of Table A-31 contain the reduced
strip chart data that was read into the computer program. The
columns are:
TIME INTO CYCLE - (TIC) - The elapsed time from the beginning of
an adsorption cycle. Units: minutes.
INLET FLOW - (IF) - The flow rate of the tail gas stream into the
adsorbing bed. Units: standard cubic feet per minute.
REGEN FLOW - (RF) - The flow rate of the cleaned tail gas stream
which is diverted after leaving the adsorption bed for regenera-
tions of the second bed. Units: standard cubic feet per minute.
INLET CONG - (1C) - The concentration of NO in the inlet stream
"""~ ™rX
to the adsorption bed. For test cycles 1 through 8 this represents
the NO concentration at site HV-12, after the feed chiller and
X
mist eliminator. For test cycles 9-11, this represents the NO
X
concentrations at HV-23. Units: parts per million.
OUTLET CONG - (OC) - The concentration of the NO in the outlet
" X
stream after passing through the adsorption bed. For test cycles
1 through 11 this represents the NO concentrations at site HV-13.
X
The last seven columns are calculated instanteous mass flow
rates and control efficiencies. The columns are:
MASS FLOW RATE IN - (MFRI) - The NO mass flow rate into the
—'I-"1- ~~' ~ ~ - -—...- -JjT
adsorption bed. This value is calculated as follows:
MFRI = IF x 1C x C
Q
where C is the conversion factor for converting ppm ft at 15.556°C
(60°F) and 760 milimeters of mercury pressure to grams of NO as
X
N02 (M.W. = 46)
-9-
-------
46 gm mole
—
-1
22.414 I mole x
—ft 1 ^
288.716°K x 10~ ppm" x 28'316 * ft~
273.15°K
= 5.49815 x Iff5 gm ppm 1 ft"3
Example Calculation, Test 11
TIC
(min)
0
3
4
MASS
MFRI
(gm min )
1010.010
1003.962
1016.058
FLOW RATE ADS -
IF
(ft3 min"1)
5500
5500
5500
(MFRA) - The
1C
(ppm)
3340
3320
3360
C
(gm ppm ft )
5.49815 x 10~5
5.49815 x 10~5
5.49815 x 10~5
instantaneous mass flow rati
at which NO is absorbed by the molecular sieve bed. This value
X
is calculated as follows:
MFRA = IF x (IC-OC) x C
Example Calculation, Test 11
TIC
(min)
0
3
4
MASS
MFRA
(gm min •"•)
952.554
976.746
991.261
FLOW RATE REGEN
IF
(ft3 min"1)
5500
5500
5500
- (MFRR) - The
1C
(ppm)
3340
3320
3360
OC
(ppm)
190
90
82
instantaneous
C
(gm ppm ft )
5.49815 x 10~5
5.49815 x 10"5
5.49815 x 10~5
mass flow rate
of the NO diverted for the regeneration of the second bed. This
X
value is calculated as follows:
MFRR = RF x OC x C
-10-
-------
Example Calculation, Test 11
TIC MFRR RF OC C
(min) (gin min ) (ft min ) (ppm) (gin ppm ft )
0
3
4
MASS
10.655
5.047
4.576
FLOW RATE EMIT -
1020
1020
1015
(MFRE) - The
190
90
82
5.49815
5.49815
5.49815
instantaneous mass
x 10"5
x 10~5
-5
x 10
flow rati
NO emitted to the atmosphere from the stack outlet. This value
X
is calculated as follows:
MFRE = MFRI - MFRA - MFRR
Example Calculation, Test 11
TIC
(min)
0
3
4
MFRE
(gm min )
46.801
22.169
20.221
MFRI
(gm min )
1010.010
1003.962
1016.058
MFRA
(gm min )
952.554
976.746
991.261
MFRR
(gm min )
10.655
5.047
4.576
% REDUC OF NO,, DUE TO ADS - (RDTA) - The percentage of the instan-
"" ''" ™--i-"--r-""-—'-- J^ ,—..«__ _.
taneous NO removal efficiency of the PuraSiv N unit due to
X
adsorption. This value is calculated as follows:
% RDTA = (MFRA * MFRI) x 100
Example Calculation, Test 11
TIC
(min)
0
3
4
% RDTA
(%)
94.3113
97.2891
97.5594
MFRA
(gm min )
952.554
976.746
991.261
MFRI
(gm min )
1010.010
1003.962
1016.058
-11-
-------
% REDUC OF NO DUE TO REGEN - (% RDTR) - The percentage of the
instantaneous NO removal efficiency of the PuraSiv N unit due to
X,
regeneration. This value is calculated as follows:
% RDTR = (FMRR * MFRI) x 100
Example Calculation, Test 11
TIC
(min)
0
3
4
% REDUC
% RDTR
(°/ \
\/o )
1.0549
0.5027
0.4504
OF NO,, - (%R)
MFRR
_i
(gm min )
10.655
5.047
4.576
- The instantaneous
MFRI
(gm min )
1010.010
1003.962
1016.058
NO remova!
of the PuraSiv N unit. This value is calculated as follows:
% R = % RDTA + % RDTR
Example Calculation, Test 11
TIC % R % RDTA % RDTR
(min) (%) (%) (%)
0 95.366 94.311 1.055
3 97.792 97.289 0.503
4 98.009 97.559 0.450
-12-
-------
EXAMPLE CALCULATIONS
FOR
TABLE A-32
The first column contains the time interval of the cycle
for which the calculations pertain. The next eight columns are
calculated NO mass loadings and average control efficiencies for
X
each interval. The last column lists the average ppm emitted
during each interval. The columns are:
NOV IN DURING INTERVAL - (NIDI) - The mass of NO which enters
A X
the inlet to the adsorption bed during the designated interval
(a,b). This value is calculated as follows:
NIDI = ((MFRI(a) + MFRI(b)) x (b-a)) * 2
Example Calculation, Test 11
INT
(a,b)
0,3
3,4
NIDI
(gm)
3020.958
1010.010
NOV ABSORBED DURING
MFRI (a)
(gm min )
1010.010
1003.962
INTERVAL - (NADI)
MFRI(b)
(gm min )
1003.962
1016.058
- The mass
(b-a)
(min)
3
1
of NO whi
adsorbed by the adsorption bed during the designated interval
(a,b). This value is calculated as follows:
NADI = ((MFRA(a) + MFRA(b)) x (b-a) * 2
Example Calculation, Test 11
INT
(a,b)
0,3
3,4
NIDI
(gm)
2893.950
984.004
MFRI (a)
(gm min )
952.554
976.746
MFRI(b)
(gm min )
976.746
991.261
(b-a)
(min)
3
1
NO,, REGEN DURING INTERVAL - (NRDI) - The mass of NO which is diver-
"~y\ X
ted during the regeneration of the second bed during the designated
interval (a,b). This value is calculated as follows:
-13-
-------
NRDI = ((MFRR(a) + MFRR(b)) x (b-a)) * 2
Example Calculation, Test 11
INT
(a,b)
0,3 23
3,4 4
NOM EMITTED
— ~-?C
NRDI
(gm)
.553
.811
DURING
MFRR(a)
_i
(gm min )
10.655
5.047
INTERVAL - (NEDI)
MFRR(b)
(gm min )
5.047
4.576
- The mass of
(b-a)
(min)
3
1
NO emit
the atmosphere from the stack outlet during the interval (a,b).
This value is calculated as follows:
i
NEDI = NIDI - NADI - NRDI
Example Calculation, Test 11
INT
(a,b)
0,3
3,4
PERCENT
NEDI
(gm)
103.455
21.194
OF NO ADSORBED
NIDI
(gm)
3020.958
1010.010
DURING INTERVAL
NADI
(gm)
2893.950
984.004
- (% ADI)
NRDF
(gm)
23.553
4.812
- The percen
age of the NO removal efficiency due to adsorption during the
X
interval (a,b). This value is calculated as follows:
% ADI = (NADI * NIDI) x 100
Example Calculation. Test 11
INT
(a,b)
0,3
3,4
% ADI
/Of \
\/o /
95.796
97.425
NADI
(gm)
2893.950
984.004
NIDI
(gm)
3020.958
1010.010
-14-
-------
PERCENT NO.. FOR REGEN DURING INTERVAL - (%RDI) - The precentage of
"~r" ~ A.
the NO removal efficiency due to regeneration during the interval
X
(a,b). This value is calculated as follows:
% RDI = (NRDI v NIDI) x 100
Example Calculation, Test 11
INT % RDI
(a,b) (%)
0,3 0.780
3,4 0.476
PERCENT REDUCTION OF NOV
NRDI NIDI
(gm) (gm)
23.553 3020.958
4.812 1010.010
. DURING INTERVAL - (% RI)
efficiency of the PuraSiv N unit during the interval (a,b). This
value is calculated as follows:
% RI = % NADI + % NFRDI
Example Calculation, Test 11
INT
(a,b)
0,3
3,4
% RI
(%)
96.576
97.901
% NADI
GO
95.796
97.425
% NFRDI
(%)
0.780
0.476
AVERAGE PPM OF NO,, EMIT DURING INTERVAL - (APPM) - The average
~ " "~ ' ' ~~ AT """•• " "•" "" ''-••'•
concentrations of NO emitted to the atmospheric from the stack
x
outlet during the interval (a,b). This value is calculated as
follows:
APPM = (OC(a) + OC(b)) * 2
Example Calculation, Test 11
INT
(a,b)
0,3
3,4
APPM
(ppm)
140
86
OC(a)
(ppm)
190
90
OC(b)
(ppm)
90
82
-15-
-------
EXAMPLE CALCULATIONS
FOR
TABLE A-33
The first column contains the elapsed time from the beginning
of the cycle. Columns 2 through 5 contains the cumulative mass
loadings which occurred from the beginning of the cycle to the
time indicated. Columns 6 through 8 contain the average NO
X
reductions achieved over the indicated time period. Column 9
contains the average ppm of NO emitted from the beginning of the
X
cycle to the indicated time. The columns are:
TOTAL NO., IN - (TNI) - The total mass of NO which entered the
•** X
adsorption bed from the beginning of the cycle to the indicated
time (TIC). This value is calculated as follows:
TIC
TNI = £ NIDI
0
Example Calculation, Test 11
TIC
(min)
3
4
INT
(min)
(0,3)
(3,4)
TNI
(gm)
3020.958
4030.968
NIDI
(gm)
3020.958
1010.010
TOTAL NO ADS - (TNA) - The total mass of NO adsorbed
molecular sieve bed from the beginning of the cycle to the indicated
time. This value is calculated as follows:
TIC
TNA = Z NADI
0
Example Calculation, Test 11
TIC
(min)
3
4
INT
(min)
0,3
3,4
TNA
(gm)
2893.950
3877.954
-16-
NADI
(gm)
2893.950
984.004
-------
TOTAL NOV USED FOR REGEN - (TNR) - The total mass of NO diverted
A. **
for the regeneraton of the second bed from the beginning of the
cycle to the indicated time. This value is calculated as follows:
TIC
TNR = I NRDI
0
Example Calculation, Test 11
TIC
(min)
3
4
INT
(min)
0,3
3,4
TOTAL NOX EMITTED - (TNE)
TNR
(gm)
23.553
28.364
- The total
NRDI
(gm)
23.553
4.811
mass of NO.
X
atmosphere from the stack outlet from the beginning of the cycle
to the indicated time. This value is calculated as follows:
TIC
TNE = E NEDI
0
Example Calculation, Test 11
TIC
(min)
3
4
INT
(min)
0,3
3,4
TNE
(gm)
103.455
124.649
NEDI
(gm)
103.455
21.199
% NO.. REDUC DUE TO ADS - (% NRDTA) - The percentage of the average
A.
NO removal efficiency due to adsorption from the beginning of the
X
cycle to the indiciated time. This value is calculated as follows:
% NRDTA = TNA * TNI x 100
Example Calculation, Test 11
TIC
(min)
3
4
% NRDTA
(%)
95.795
96.204
TNA
(gm)
2893.950
3877.954
TNI
(gm)
3020.958
4030.968
-------
% NOX REDUC DUE TO REGEN - (%NRDTR) - The percentage of the average
N0x removal efficiency due to regeneration from the beginning of
the cycle to the indicated time. This value is calculated as
follows:
% NRDTR = TNUFR * TNI x 100
Example Calculation, Text 11
TIC
(min)
3
4
% NRDTR
(%)
0.780
0.703
TNUFR
(gin)
23.553
28.364
TNI
(gm)
3020.958
4030.968
AVG % REDUC OF NOY - (A % R) - The average NO removal efficiency
A. X
of the PuraSiv N unit from the beginning of the cycle to the
indicated time. This value is calculated as follows:
A % R = % NRDTA + % NRDTR
Example Calculation, Test 11
TIC
(min)
3
4
A % R
96.575
96.907
% NRDTA
95.795
96.204
% NRDTR
0.780
0.703
AVG PPM OF NO.Q. EMIT DURING INTERVAL - (APPME) - The average concen-
' ' " " J J A. ------- - r .__.-.,--...-.! —
tration of NO emitted to the atmosphere from the stack outlet,
X
from the beginning of the cycle to the indicated time. This
value is calculated as follows:
APPME = (I(b-a) x APPM) * TIC
Example Calculation, Test 11
TIC
(min)
3
4
APPME
(ppm)
140.0
126.5
(a,b)
(min)
0,3
3,4
(b-a)
(min)
3
1
APPM
(ppm)
140
86
-18-
-------
vo
I
TABLE A-l, SUMMARY OF CALCULATED NOX MASS FLOW RATES AND
CONTROL EFFICIENCIES FOR INSTANTANEOUS FLOW
AND CONCENTRATION DATA FOR TEST ~ 1
HERCULES INC.f RUN 1, INLET HV-12, OUTLET HV-13, UNIT 8, 1412-1800 3/5/75
TIME
INT3
CYCLE
CHINI
3.}
3.0
i.3
Id. 3
23.0
33.}
33.0
42. 3
49.0
96.3
64.0
63.3
78.3
83.0
93. 0
9d.3
101.0
113.3
123.0
133. 3
143.0
153. J
153.0
163.0
173.3
183.0
ias.3
193.0
20J.O
213. J
213.0
228.0
INLET
FL3W
(SCFM)
5625
5975
5975
5975
5975
5975
5953
5953
5953
5975
5975
5975
5703
5675
5675
3675
5675
5675
5675
5653
5675
5653
5653
5625
5625
5753
5650
5675
5730
5730
5675
5650
REGEN.
FL3W
(SCFMt
1325
1025
1320
1320
1020
1025
1025
1325
1325
1025
1025
1025
1J25
1025
l!J25
1)25
M25
1125
1025
1325
1025
1025
1025
1325
1025
1T25
1025
1025
1025
1025
1025
1025
INLET
CUNC.
JPPMI
2090
2080
203U
2020
2020
1980
2070
2200
2670
2800
2553
2600
2660
2660
265J
2653
26BO
2690
2660
2600
2770
2930
2900
2750
2700
2650
2650
2610
2650
2680
2660
2640
OUTLET
CONC.
(PPM)
166
- 92
80
109
64
65
70
64
75
79
81
81
84
86
89
91
95
99
95
114
118
130
135
141
142
151
155
161
170
174
179
185
MASS
FLOW
RATE
IN
tG/MINI
646.4
633.3
683.3
663.6
663.6
650.5
677.2
719.7
873.5
919.8
837.7
854.1
833.6
830.0
826.9
826.9
836.2
839.3
830.0
837.7
864.3
910.2
900.9
850.5
835.0
837.8
823.2
814.4
830.5
839.9
830.0
820.1
MASS
FLOW
RATE
AOS.
IG/MIN)
595.0
653.1
657.0
627.8
636.0
629.1
654.3
698.8
848. 9
893.9
811.1
827.5
807.3
803.1
799.1
798.5
806.6
808.4
800.3
772.3
827.5
869.3
858.9
806.9
791.1
790.3
775.1
764.1
777.2
785.4
T74.1
762.6
MASS
FLOW
RATE
REGEN.
IG/MIN)
9.36
5.18
4.49
6.11
4.71
3.66
3.94
3.61
4.23
4.45
4.56
4.56
4.73
4.85
5.02
5.13
5.35
5.58
5.35
6.42
6.65
7.33
7.61
7.95
8.33
8.51
8.74
9.07
9.58
9.81
• 10.09
10.43
MASS
FLOW
RATE
EMIT.
IG/MIN)
41.98
25.04
21.79
29.70
22.88
17.69
18.95
17.33
20.31
21.50
22.04
22.04
21»59
21.99
22.75
23.27
24.29
25.31
24.29
28.99
30.17
33.06
34,. 3 3
35'. 66
35.91
39.23
39.41
41.16
43.70
44.72
45.76
47.04
t
RfcDUC.
OF NOX
OJE T3
ADS.
92.06
95.58
94.15
94.60
95.84
95.72
96.62
97.09
97.19
97.18
96.82
96.88
94.84
96.77
96.64
96.57
96.46
96.32
96.43
95.62
95.74
95.56
95.34
94.87
94.74
94.30
94.15
93.83
93.58
93.51
93.27
92.99
*
REDUC.
OF NOX
OUt TO
REGEN.
1.45
0.76
0.66
0.92
0.71
0.56
0.58
0.50
0.48
0.48
0.54
0.53
0.57
0.58
0.61
0.62
0.64
0.66
0.65
0.83
0.77
0.80
0.84
0.93
0.96
1.02
1.06
1.11
1.15
1.17
1.22
1.27
t
REDUC.
3F
N3X
93.50
96.34
96.81
95.53
96.55
97.28
97.20
97.59
97.6?
97.66
97.37
97.42
97.41
97.35
97.25
97.19
97.10
96.98
97.07
96.41
96.51
96.37
95.19
95.81
95.70
95.32
95.21
94.95
94.74
94.67
94.49
94.26
-------
O
I
TABLE A-2, SUMMARY OF NOX MASS LOADING, AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NOX
EMITTED FOR INTERVALS DURING TEST ~ 1
HERUULES INC., RJN It INLET HV-12, OUTLET HV-13, UNIT B, 1412-1800 3/5/75
INTERVAL
OF
CYCLE
(MINI
0.0- 3.1)
3.0- 8.0
8.0- 18.0
18.3- 23.3
23.]- 33.3
33.0- 33.0
33. 3- 42.3
42.0- 49. d
49.0- 56.0
5i.3- 64.3
64.0- 68.0
6J.J- 78.3
78.0- 33.0
83.0- 93.0
93. D- 98. D
93.0-10S.3
103.J-113.J
113.J-123.0
123.3-138.0
133.0-143.0
143.0-153.0
153.J-li8.J
158.0-168.0
163.0-173.0
173.1-183.3
183.0-180.0
138.J-19S.3
193.0-205.0
2J5. 3-213.0
213.0-218.0
218.0-228.0
NQX
IN
DURING
INTERVAL
(GRAMS!
1994.5
3416.5
6734.5
3313.0
6573.3
3319.1
2793.8
5576.1
6276.6
7033.2
3383.7
8438.8
4159.0
8234.1
4134.3
8315.3
4183.9
8346.3
12232.4
4179.9
8872.4
4527.7
8756.8
4213.3
8364.1
4152.5
3187.9
5757.0
6681.6
4174.7
8250.4
NUX
ADSORBED
DUMNG
INTERVAL
(GRAMS*
1872.2
3275.3
6424.1
3159.5
6325.5
3208.5
2706.1
5416.9
6099.9
6820.0
3277.3
8174.2
4026.1
8011.1
3993.9
8023.1
4037.5
8043.9
11794.5
3999.3
8486.4
4321.8
8329.1
399S.O
7905.8
3912.8
7696.0
5394.7
6250.3
3898.7
7683.8
NOX
REGEN.
DURING
INTERVAL
(GRAMS)
21.81
24.18
53.00
27.06
41.67
19.02
15.10
27.42
30.38
36.07
18.26
46.49
23.95
49.31
25.36
52.41
27.33
54.67
88.34
32.69
69.88
37.34
77.77
39.87
82.56
43.11
89.04
65.29
77.55
49.73
102.57
NOX
EMITTED
DURING
INTERVAL
(GRAMS)
103.53
117.08
257.45
131.45
202.87
91.61
72.57
131.74
146.33
174.18
88.18
218.18
108.95
223.71
115.05
237.77
124.00
247.99
399.58
147.89
316.13
168.47
349.95
173.94
375.71
196.61
402.88
297.00
353.68
226.22
464.04
PERCENT
Of NOX
ADSCHBEO
DURING
INTERVAL
93.87
95.87
95.39
95.22
96.27
96.67
96.86
97.15
97.18
97.01
96.85
96.86
96.80
96.70
96.63
96.51
96.39
96.37
96.03
95.68
95.65
95.45
95.12
94.81
94.52
94.23
93.99
93.71
93.55
93.39
93.13
PERCENT
NOX FOR
REGEN.
DURING
INTERVAL
1.09
0.71
0.79
0.82
0.64
0.57
0.54
0.49
0.48
0.51
0.54
0.55
0.58
0.60
0.61
0.63
0.65
0.65
0.72
0.78
0.79
l). 82
0.89
0.95
0.99
1.04
1.09
1.13
1.16
1.19
1.24
PERCENT
REOUC.
OF N3X
DURIMG
INTERVAL
94.96
96.57
96.18
96.04
96.91
97.24
97.40
97.64
97.67
97.52
97.39
97.41
97.38
97.30
97.22
97.14
97.04
97.03
96.75
96.46
96.44
96.28
96.00
95.75
95.51
95.27
95.08
94.84
94.71
94.58
94.30
AVERAGE
PPM OF
NOX EMIT.
DURING
INTERVAL
128
96
95
97
75
67
67
70
77
BO.
81
82
85
87
90
93
97
97
11)4
116
124
133
138
141
147
153
158
166
172
176
182
-------
TABLE A-3, CUMULATIVE NOX MASS LOADING, AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NOX
EMITTED DURING TEST — 1
HERCULES INC.,
1, INLtT HV-12, OUTLET HV-13, UNIT B, 1*12-1800 3/5/75
TIME
INTO
CYCLE
inm
0
3.3
8.0
18.3
23.0
33.3
3B.O
42.0
4*. 3
56.0
6-..0
63.0
73.0
83.3
93.0
93.0
103.0
113.3
123.0
13d. 0
1*3.3
153.3
153.3
163.0
173.0
133.3
183.0
194.3
205.0
213.0
213.3
228.0
TOTAL
NOX
IN
(GR41S)
199*. 5
5411.1
12145.4
15463.6
22033.9
25353.3
28146.3
33722.9
39999.4
47029.6
50413.3
53852.1
63011.1
71295.3
75429.5
83744.9
87V33.7
96283.3
108362.6
112742.6
121615.0
126142.6
1J4699.5
139113.3
147477.3
Ial629.3
159817.7
165574.7
172256.3
176431.3
184681.4
TOTAL
NDX
ADS.
CGRAMSI
1872.2
5147.5
11571.6
14731.1
21056.6
24265.1
26971.2
32388.1
38487.9
45307.9
48585.2
56759.3
60765.4
68796.5
72790.4
80815.5
84853.1
92896.9
104691.4
103690.7
117177.2
121 499.0
129828.1
133823.1
141728.9
145641.7
153337.6
158732.4
164982.7
163881.4
176565.2
NDX
USED FOR
REG6N.
(GRAMS)
21.8
46.0
99.0
126.0
167.9
186.9
202.0
229.5
259.8
295.9
314.2
360.7
334.6
433.9
459.3
511. 7
539.0
593.7
682.0
714.7
7S4.6
821.9
899.7
939.6
1022.1
1065.2
1154.3
1219.6
1297.1
1346.9
1449.4
TOTAL
NOX
EMIT.
(GR4MSI
100.5
217.6
475.1
636.5
809.4
901.0
973.6
1105.3
1251.6
1425.8
1514.0
1732.2
1841.1
2064.8
2179.9
2417.6
2541.6
2789.6
3189.2
3337.1
3653.2
3821.7
4171.7
4350.6
4726.3
4922.9
5325.8
5622.8
5976.5
6202.7
6666.7
%
NOX
REDUC.
DUE TO
AJS.
93.87
95.13
95.27
95.26
95.56
95.71
95.82
96.04
96.22
96.34
96.37
96.44
96.47
96.50
96.50
96.50
96.50
96.49
96.43
96.41
96.35
96.32
96.24
96. 2J
96.10
96.05
95.95
95.87
95.78
95.72
95.61
*
NOX
REOUC.
DUE TO
REG=N.
1.09
0.85
0.81
0.82
0.76
0.74
0.72
0.68
0.65
0.63
0.62
0.61
0.61
0.61
0.61
0.61
3.61
0.62
0.63
0.63
0.65
0.65
0.67
3.68
0.69
0.70
0.72
0.74
0.79
0.76
0.78
AVG.
*
REOUC.
OF
NOX
94.96
95.98
96.09
96.08
96.33
96.45
96.54
96.72
96.87
96.97
97.00
97.06
97.08
97.10
97.11
97.11
97.11
97.10
97.06
97.04
97.00
96.97
96.91
96.87
96.80
96.75
96.67
96.60
96.53
96.48
96.39
AVG.
PPM
OF
NOX
EMIT.
128
101
97
97
90
87
85
83
82
82
82
82
82
83
83
84
85
86
88
88
91
92
95
96
99
100
103
105
108
109
112
-------
I
ro
ro
I
TABLE A-ZJ, SUMMARY OF CALCULATED NOX MASS FLOW RATES AND
CONTROL EFFICIENCIES'FOR INSTANTANEOUS FLOW
> i
AND CONCENTRATION DATA FOR TEST — 2
HERCULES INC., RUN 2, INLET HV-12, OUTLET HV-13, UNIT B. 1010-1408 3/6/75
TlHc
mo
CYCLE
CHIN)
3.0
2.0
5.0
13.3
12.3
2J.J
33.0
35.0
4,3.0
45.5
53.0
55.0
53.0
62.0
65.0
70.0
Td.O
8J.O
83.3
a?. a
95.9
113.3
115.0
12}.]
125. 3
13J.O
135.3
140.0
15}.)
152.0
155.0
163.3
165.0
173.3
176.0
185.0
19.3.0
193.3
233.0
205.0
21J.3
215. 0
220.0
233.0
235.0
23d. 3
INLET
FLCM
CSCFM)
5750
5575
5575
5575
5575
5675
5725
5725
5725
5725
5725
5725
5725
5725
5725
5725
5725
5725
5725
5725
5725
5725
5725
5725
5725
5725
5725
5725
5733
57'33
5725
5725
5725
57D1
5675
5650
5625
5625
5650
5650
5625
5625
5625
5625
5625
5625
RrGEN.
FLCW
ISCFM)
1050
1055
1055
1055
1055
1055
1055
1055
1055
1355
1055
1050
1050
1050
1350
1050
1050
1050
1045
1050
1050
1040
1040
1J40
1035
1025
1025
1030
1325
1025
1025
1025
1325
1025
1040
1045
1345
1050
1050
1055
1055
1055
1055
1055
1055
1055
INLET
CONC.
(PPM)
2470
2430
2410
2630
2670
2680
2630
2680
2710
2653
2770
2820
2870
3043
3100
3180
330U
3260
3310
3440
3390
3220
3150
31JJ
3100
3120
32SJ
3350
3301)
3300
3310
3360
3380
3300
3360
3480
3320
3000
2990
2980
2970
2960
3030
3120
2970
2910
OUTLET
CONC.
-------
I
NJ
GO
I
TABLE A-5, SUMMARY OF NOX MASS LOADING, AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NOX
EMITTED FOR INTERVALS DURING TEST — 2
HERCULES INC.t RUN 2, INLET HV-12, OUTLET HV-13t UNIT 8, 1010-1408 3/6/75
INTERVAL
JF
CYCLE
(MINI
0.3- 2.3
2.0- 5.0
5.0- 10.3
13.0- 12.0
12.0- 20.0
23. 0- 30.3
33.3- 35.0
35.0- 40.0
43.0- 45.0
45.0- 50.0
53.3- 55.3
55.0- 58.3
58.3- 62.0
62.0- 65.0
65.0- 70.0
70. J- 73.3
78.0- 80.3
8J.3- 85.3
85.0- 89.0
8J.O- 95.3
95.0-110.0
113. 0-115.0
lla. 3-120.0
123.0-125.0
125.3-130.0
133.0-135.0
135.0-1+0.0
14J.J-150.3
150.0-152.0
152.0-155.3
155. 3-160. J
163.3-16J.3
Io5.0-170.3
170.3-170.0
173.3-185.3
185.0-190.0
19J. 3-193.0
193.0-200.0
200.0-205.0
205.0-21J.3
213.0-215.0
215.0-220.3
223.0-230.0
233.0-235.0
235.3-238.0
uox
IN
DURING
INTERVAL
(33AMSI
1 52 5 . 7
2225.3
3362.2
1624.6
6613.5
8323.3
4173.6
4241.5
4217.9
4265.1
4393.9
2686.6
3722.5
2903.4
4941.9
3153.3
2064.9
5170.1
4249.4
6449.6
15604.7
5012.7
4913.3
4378.9
4894.7
5035.3
5217.3
1 J443.4
?063.4
3114.1
5243.3
5303. 9
5245.3
6247.3
9532.4
5269.6
7813.4
1856.6
4636.4
4613.6
4584.9
4631.3
9513.1
4703.6
2727.8
NOX
ADSORBED
DURING
INTtRVAL
(GRAMS)
1463.6
2178.0
3745.7
1570.9
6421.9
8126.1
4100.6
4164.4
4140.0
4184.9
4315.5
2634.6
3648.8
2842.8
483U.O
7966.2
2012.3
5032.4
4132.3
6260.8
15064.0
4812.0
4709.7
4663.3
4671.2
4801.0
4961.5
9879.7
1951.5
2935.1
4934.3
4974.1
4894.3
5806.9
8394.6
4665.9
7146.6
1686.5
4212.3
4187.6
4159.7
42C2.2
8633.3
4261.7
2458.2
NOX
REGEN.
DURING
INTERVAL
(GRAMS)
10.52
8.96
22.04
10.15
36.89
35.96
14.36
14.21
14.36
14.79
15.33
9.53
13.51
10.56
19.05
35.33
9.64
25.20
21.43
34.64
98.64
36.45
37.88 .
39.07
40.20
42.13
45.91
101.39
21.02
32.12
56.22
59.03
62. 98
80.05
126.65
74.84
125.10
31.69
78.99
79.18
79.76
80.48
164.45
83.82
50.55
NOX
EMITTED
DURING
INTERVAL
(GRAMS)
46.63
38.40
94.44
43.49
159.68
158.18
63.55
62.91
63.55
65.47
68.08
42.41
uO.15
47.04
84.82
157.31
42.93
112.52
95.67
154.22
441.98
164.21
170.65
176.54
183.28
193.16
209.84
462.32
95.38
146.91
257.77
270.69
287.98
360.85
561.19
328.36
546.64
138.47
345.0*
343.91
345.49
348.63
712.34
363.08
218.98
PERCENT
OF NOX
ADSCK3EO
CURING
INTERVAL
96.25
97.87
96.98
96.70
97.03
97.67
98.14
96.18
98.15
98.12
98.10
98.07
98.02
98.01
97.93
97.64
97.45
97.34
97.24
97.07
96.54
96.00
95.76
95.58
95.43
95.33
95.13
94.60
94.35
94.25
94.02
93.78
93.31
92.94
92.82
92.34
91.41
90.83
90.85
90.82
90.73
90.73
90.78
90.51
90.12
PERCENT
NOX FOR
REGEN.
DURING
INTERVAL
3.69
0.40
0.57
0.62
0.56
0.43
0.34
0.34
0.34
0.35
0.35
0.35
0.36
0.36
0.39
0.43
0.47
0.49
0.50
0.54
0.63
0.73
0.77
0.80
0.82
0.34
0.38
0.97
1.02
1.03
1.07
1.11
1.20
1.28
1.32
1.42
1.60
1.71
1.70
1.72
1.74
1.74
1.73
1.78
1.85
PERCENT
REDUC.
OF N3X
OURI1G
INTERVAL
96.94
98.27
97.55
97.32
97.59
98.10
98.48
98.52
98.49
98.46
98.45
98.42
98.38
98.38
98.28
98.07
97.92
97.82
97.75
97.61
97.17
96.72
96.53
96.38
96.26
96.16
95.98
95.5.7
95.36
95.28
95.09
94.93
94.51
94.22
94.14
93.76
93.01
92.54
92.56
92.54
92.46
92.47
92.51
92.29
91.97
AVERAGE
PPM OF
NOX EMIT.
DURING
INTERVAL
92
51
76
88
79
62
49
49
49
51
53
55
59
61
66
77
83
88
93
100
115
128
133
137
142
150
162
179
187
190
199
213
223
235
245
260
271
274
273
273
275
278
283
289
290
-------
I
NJ
TABLE A-6, CUMULATIVE NOX MASS LOADING, AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NOX
EMITTED DURING TEST — 2
HERCULES IMC., «UM 2, INLET HV-12, OUTLET HV-13t UNIT 8, 1010-1408 3/6/75
TMc
IHT3
CYCLE
(MINI
3
2.0
5.}
10.0
12.9
2J.3
33.3
35.3
40.0
43.3
5J.3
55.0
58. 3
62.0
65.3
7J.O
78.0
83. 0
35.0
84.3
95.0
113. J
113.3
123. 0
12J.3
130.3
13J.J
143.0
153.3
152.3
15J.3
163.0
167.3
173.3
176.3
185.0
193. J
193.0
203. J
235.3
213.3
215.3
22J.O
233.0
235.0
233.0
T3T4L
NOX
IN
IG*4M3)
1525.7
3751.1
7613.2
9237.8
15356.3
24176.6
28355.1
32b96.7
36314.6
41079.7
45478.6
4S165.1
51887.6
54788.3
59729.9
67888.7
69953.6
75123.6
79373.3
85822.6
101*27. 3
U644D.3
111358.3
116237.?
121131.3
126163.1
131385. t
141S28.3
143o97.2
147011.3
152263.1
157564.)
Io2809.3
169057.3
178639.5
1339J9.)
191727.4
193584.3
199223.4
202331.1
207416.3
212047.3
221557.4
226266.3
223993.3
TCTAL
NOX
ADS.
I3SAMS)
1468.6
3646.6
7392.3
8963.2
15385.1
23511.3
27611.9
31776.3
35916.3
40101.1
44416.6
47051.2
50700.0
53542.9
58380.9
66347.0
68359.4
73391.7
77524.0
83784.8
98848.8
133660.8
103370.6
113J33.9
117705.0
122506.0
127467.6
137347.2
139298.7
14?233.8
147163.6
152142.8
157037.1
162344.0
171738.6
1766J4.4
183751.1
185437.5
189649.9
193837.4
197997.1
202199.3
21-3832.6
215094.4
217552.6
NOX
USED FOR
REGEN.
(GRAMS)
10.5
19.5
41.5
51.7
88.6
124.5
138.9
153.1
167.5
182.2
197.6
207.1
220.6
231.2
250.2
235.6
295.2
320.4
341.8
376.5
475.1
511.5
549.4
5B3.5
628.7
670.8
716.7
813.1
839.2
871.3
927.5
996.5
1049.5
1129.6
1256.2
1331.0
1456.1
1487.8
1566.8
1646.0
1725.8
1306.2
1970.7
2054.5
2105.1
TOTAL
NOX
EMIT.
(GRAMS)
46.6
85.0
179.5
222.9
382.6
540.8
604.4
667.3
730.8
796.3
864.4
9U6.8
966.9
1014.0
1098.8
1256.1
1299.0
1411.5
1507.2
1661.4
2103.4
2267.6
2438.3
2614.8
2798.1
2991.3
3201.1
3663.4
3759.3
3906.2
4164.0
4434.7
4722.6
5083.5
5644.7
5973.6
6520.2
6658.7
7003.7
7347.6
7693.1
8041.7
8754.1
9117.2
9336.1
*
N'JX
REOUC.
OU3 TO
49S.
96.25
97.21
97.10
97.03
97.03
97.25
97.38
97.48
97.56
97.62
97.66
97.69
97.71
97.73
97.74
97.73
97.72
97.69
97.67
97.63
97.46
97.39
97.32
97.24
97.17
97.10
97.02
96.84
96.80
96.75
96.66
96.56
96.45
J6.32
96.14
96.03
95.84
95.79
95.68
95.57
95.46
95.36
95.16
95.06
95.00
X
NJX
KEDLIC.
DUE TO
REGEN.
0.69
0.52
0.55
0.56
0.56
0.52
0.49
0.47
0.45
0.44
9.43
0.43
0.43
0.42
0.42
0.42
0.42
0.43
0.43
0.44
0.47
0.48
0.49
0.51
0.52
0.53
0.55
0.58
0.58
0.59
0.61
0.63
0.64
0.67
0.70
0.72
0.76
3.77
0.79
0.81
0.63
0.85
0.89
0.91
0.92
AVG.
«
REOUC.
OF
NOX
96.94
97.73
97.64
97.59
97.59
97.76
97.87
97.95
98.01
98.06
98.10
98.12
98.14
98.15
98.16
98.15
98.14
98.12
98.10
98.06
97.93
97.87
97.81
97.75
97.69
97.63
97.56
97.42
97.39
97.34
97.27
97.19
97.10
96.99
96.84
96.75
96.60
96.56
96.47
96.38
96.29
96.21
96.05
95.97
95.92
AVG.
PPM
OF
NOX
EMIT.
92
68
72
75
76
72
68
66
64
63
62
61
61
61
62
63
64
65
66
68
75
77
79
82
84
87
89
95
97
98
132
105
108
113
119
123
129
130
134
137
140
143
149
152
154
-------
Ul
I
TABLE A-7, SUMMARY OF CALCULATED NOX MASS FLOW RATES AND
CONTROL EFFICIENCIES FOR INSTANTANEOUS FLOW
AND CONCENTRATION DATA FOR TEST ~ 3
HERCULcS INC.i *(JV 3, INLET HV-12t OUTLET HV-13t UNIT A 1408-1812 3/6/75
TIME
INT3
CYCLE
(MINI
J.O
6.}
T.O
12.3
22.0
27.0
37.3
42.0
47.0
52.0
S7.0
67.0
72.0
82. 3
87.0
97.0
102.3
112.0
117.3
123.0
132.0
144.3
147. J
157.3
162.0
172.3
177.3
162.0
187.0
192.3
197.3
202.0
205.3
207.0
209.0
212.0
217.0
222.0
232.0
244.0
INLET
FLDrf
(SCFMI
5625
5875
5875
5875
5853
5853
5853
5853
5S50
5853
5850
5853
5850
J825
5850
5853
5875
5850
5875
5875
5875
5853
585'3
5825
5825
5825
5825
5125
3425
3*25
3425
3500
2700
2700
2700
4133
5750
5125
5550
5450
R£GEN.
FLOW
tSCFH)
1055
1045
1045
1U40
1040
1040
1040
1040
1340
1140
1035
1035
1035
1035
1035
1035
1035
1035
1035
1035
1035
1035
1035
1020
1020
1320
1015
1350
1050
930
930
930
930
1125
1125
1050
1020
1040
1030
1030
INLET
CONC.
(PPM)
2910
2 BOO
2910
2830
2820
2840
2B20
2870
2900
2920
3060
3353
34UO
3520
3420
3350
3323
3450
336U
3340
3280
3190
3160
3100
3080
3081)
3040
3020
2420
1970
1060
2000
151U
1380
1100
750
1200
1560
2250
2580
OUTLET
CONC.
(PPM)
291
168
161
186
126
160
89
86
82
82
84
90
92
104
108
114
116
122
129
139
142
155
156
164
170
174
178
172
168
162
164
148
308
274
156
148
131
138
130
150
MASS
FLOW
RATE
IN
(G/MIN)
900.0
934.4
940.0
904.4
907.0
913.5
907.0
923.1
932.8
939.2
984.2
1077.5
1119.3
1127.3
1100.0
1077.5
1072.4
1109.7
1085.3
1078.9
1059.5
1026.0
1016.4
992.8
986.4
936.4
973.6
851.0
455.7
371.0
199.6
384.9
224.2
204.9
163.3
169.1
379.4
439.6
686.6
773.1
MASS
FLUW
RATE
APS.
(G/MINI
810.0
850.2
888.0
844.4
866.5
862.0
878.4
895.4
906.4
912.8
957.2
104B.6
10U9.7
1094.0
1065.3
104J.8
1034.9
1070.4
1043.7
1034.0
1013.6
976.2
966.2
940.3
932.0
930.7
916.6
802.5
424.1
343.5
168.7
356.4
176.4
164.2
149.1
135.7
338.0
400.7
646. 9
728.1
MASS
FLOW
RATE
REGFN.
(G/MIN)
16.88
9.65
9.25
19.64
7.20
9.15
5.09
4.92
4.69
4.69
4.78
5.12
5.24
5.92
6.15
6.49
6.60
6.94
7.34
7.91
8.08
8.82
8.88
9.20
9.53
9.76
9.93
9.93
9.70
8.28
8.39
7.57
15.75
16.95
9.65
6. 54
7. 35
T.B9
7.36
8.49
MASS
FLOW
RATE
EMIT.
(G/MIN)
73.12
44.61
42.76
49.45
33.32
42.31
23.54
22.74
21.69
21.69
22.24
23.83
24.36
27.39
28.59
30.18
30.87
32.30
34.33
36.99
37.79
41.03
41.30
45.33
44.91
45.97
47.07
38.54
21.94
22.22
22.50
20.91
29.97
23.73
13.51
24.82
34.07
30.99
32.31
36.45
t
REDUC.
OF NOX
DUE T3
ADS.
90.00
9V. 00
94.47
93.36
95.53
94.37
96.84
97.00
97.17
97.19
97.25
97.31
97.36
97.05
96.84
96.60
96.51
96.46
96.16
95.84
95.67
95.14
95.06
94.71
94.48
94.35
94.14
94.30
93.06
91.78
8V. 53
92.60
79.60
80.14
85.82
80.27
89.08
91.15
94.22
94.19
«
REDUC.
OF NOX
DUE TO
REGEN.
1.88
1.07
0.98
1.18
0.79
1.00
0.56
0.53
0.50
0.50
0.49
0.48
0.47
0.52
0.56
0.60
0.62
0.63
0.68
0.73
0.76
0.86
0.87
0.93
0.97
0.99
1.02
1.17
2.13
2.23
4.20
1.97
7.03
8.27
5.91
5.05
1.94
1.80
1.07
1.10
«
REDUC.
OF
*ax
91.88
95.07
95.45
94.53
96.33
95.37
97.41
97.54
97.68
97.69
97.74
97.79
97.82
97.57
97.40
97.20
97.12
97.09
96.84
96.57
96.43
94.00
95.94
95.64
95.45
95.34
95.17
95.47
95.19
94. 01
83.73
94.57
86.63
88.42
91.73
85.32
91.02
92.9$
95.29
95. 28
-------
TABLE A-8, SUMMARY OF NOX MASS LOADING., AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NOX
EMITTED FOR INTERVALS DURING TEST ~ 3
HERCULES INC.f RUN 3. INLET HV-12, OUTLET HV-13f UNIT A 1408-1812 3/6/75
I
to
ON
I
INTERVAL
3F
CV:LE
(MI Ml
0.0- 6.3
6.J- 7.3
7.0- 12.0
12.0- 22.0
22.0- 27. J
27.0- 37.0
37. J- 42.0
42.0- 47.0
47. J- 52.3
52.0- 57.0
57.0- 67.0
67.0- 72.0
72.0- 82.0
82.0- 37.0
37.0- 97.3
97.3-102.0
102.0-112.0
112.0-117.3
117.3-123.3
128.0-132.0
132.3-14-..3
144.0-147.0
147. 0-157.0
157.;>-162.0
162.0-172.0
17^.3-177.3
177.J-182.0
182.J-187.0
187.3-192.0
192.0-197.3
197.3-2J2.3
202.0-20^.0
23S>. 3-207. J
207.0-209.0
209.0-212.0
212.0-217.0
217.0-222.0
222.3-232.0
232.0-244.0
NOX
IN
3 J RING
INTERVAL
(33AMS)
5413.3
922.2
4611.1
9057.4
4551.2
9102.5
4575.3
4639.7
4679.9
4839.5
10308.6
5492.0
11233.3
5563.4
10387.6
537*. 3
1091J.4
5487. 5
11933.1
4276. 7
12513.2
3063.6
100*6.1
4948.1
9864.2
4933.1
4561. 5
3266. 7
2066.7
1426.5
1461.2
1213.1
214.5
36S.2
493.5
1371.1
2047.4
5633.3
8758.1
NJX
ADSORBED
3URIMG
INTtHVAL
(GRAMS 1
4980.5
869.1
4330.8
3554.3
4321.3
8702.0
4434.6
4504.6
4548.0
4675.1
10028.3
5345.7
10918.8
5398.3
10530.5
5189.4
10526.8
5285.2
11427.0
4095.2
11938.8
2913.6
9532.6
4630.7
9313.4
4618.3
4297.8
3066 . 5
1911.4
1273.0
1312.8
1069.7
171.3
304.3
413.8
1184.2
1846.6
5238.0
8250.4
NOX
REGEN.
DURING
INTfcRVAL
(GRAMS!
79.60
9.45
49.71
89.20
40.38
71.19
25.02
24.02
23.44
23.67
49.51
25.89
55.77
30.16
63.17
32.72
67.72
35.71
83.88
31.98
101.41
26.55
90.37
46.33
96.46
49.23
49.66
49.07
44.96
41.67
39.88
46.63
16.35
26.60
27.29
39.73
38.09
76.26
95.14
NOX
EMITTED
3URING
INTERVAL
(GRAMS)
353.20
43.68
230.50
413.84
189.09
329.25
115.70
111.07
108.43
109.81
230.32
120.45
258.73
139.95
293.86
152.62
315.83
166.57
392.25
149.55
472.93
123.50
423.13
220.60
454.40
232.61
214.03
151.19
110.40
111.80
108.53
101.77
26.85
37.24
57.49
147.22
162.66
316.51
412.56
PERCiNT
OF NOX
ADSORBED
DURING
INTERVAL
92.00
94.24
93.92
94.45
94.95
95.60
96.92
97.09
97.18
97.22
97.29
97.34
97. 2>
96.95
96.72
96.55
96.48
96.31
96.00
95.76
95.41
95.13
94.89
94.60
94.42
94.25
94.22
93.87
92.48
89.24
89.84
87.82
79.86
82.66
82.99
86.37
90.19
93.02
94.20
PSRCrNT
NOX FUR
REGEN.
DURING
INTERVAL
1.47
1.02
1.08
0.98
0.90
0.78
0.55
0.52
0.50
0.49
0.48
0.47
0.50
0.54
0.58
0.61
0.62
0.65
0.70
0.75
3.81
0.87
0.90
0.9$
0.98
1.00
1.09
1.50
2.18
2.92
2.73
3.83
7.62
7.22
5.47
2.90
1.86
1.35
1.09
PERCENT
REDU:.
OF N3X
OUR HG
INTERVAL
93.48
95.26
95.00
95.43
95.85
96.38
97.4T
97.61
97.68
97.72
97.77
97.81
97.70
97.49
97.30
97.16
97.11
96.96
96.70
96.50
96.22
95.97
95.79
95.54
95.39
95.25
95.31
95.37
94.66
92.16
92.57
91.64
87.48
89.89
88.47
89.26
92.06
94.38
95.29
AVERAGE
PPM OF
NOX EMIT.
DURING
INTERVAL
228
165
174
156
143
124
87
84
82
83
87
91
98
106
111
115
119
126
134
141
148
155
163
167
172
176
175
171
165
163
156
213
292
215
151
138
134
134
140
-------
I
S3
TABLE A-9, CUMULATIVE NOX MASS LOADING, AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NO
EMITTED DURING TEST — 3
H£RCULES INC.,
3, INLeT HV-12t OUTLET HV-13, UNIT A 1408-1812 3/6/75
TIH=
m3
CYCLE
(MIMi
0
6.0
7.3
12.3
22.0
27.3
37.0
42.9
47.0
52.3
57.0
67.9
72. J
82.0
87.3
97. 0
102. 0
112.0
117.0
123. J
1.-.2.0
iv*.:j
147.3
157. J
162. J
172. J
177. J
182.0
1U7.J
192.0
197.}
232.3
206.0
207.0
209.0
212.0
217.3
222.0
232.0
244.9
TOTAL
NOX
IN
(G1AMSI
5413.3
633b.S
10946.5
20J03.9
24555.1
33657.5
38232.9
42872. 6
47552.5
52361.3
62669.6
68161.7
79394.9
34963.3
95350.9
101225.7
112136.3
117623.5
129526.7
133503.4
140316.6
1-.9333.2
159426.3
Io4374.4
174233.6
179138.7
183700.2
186966.9
189033. i
190460.1
191921.3
193139.4
193353.9
193722.3
194220.6
195591.7
197639.')
203269.3
212027.9
TOTAL
NOX
ADS.
(3RAMS)
4980.5
5849.5
10180.4
18734.7
23056.0
31758.0
36192.6
40697.2
45245.2
49920.3
59949.0
65294.7
76213.5
81611.8
92142.3
97331.7
137858.6
113143.8
124570.8
128666.0
140604.9
143518.4
153051.0
157731.7
167045.1
171663.3
1759&1.1
179027.6
130938.9
182211.9
183524.7
184594.4
184765.-7
185070.0
185463.8
186667.9
188514.5
193752.6
202002.9
NOX
USED FOR
PEGfcN.
(GRAMS)
79.6
89.0
138.8
228.0
268.8
340.0
365.1
389.1
412.5
436.2
485.7
511.6
567.4
597.5
660.7
693.4
761.1
796.8
880.7
912.7
1014.1
1040.6
1131.0
1177.8
1274.3
1323.5
1373.2
1422.3
1467.2
1508.9
1548.8
1595.4
1611. 8
1638.4
1665.6
1705.4
1743.5
1819.7
1914.9
TOTAL
NOX
fcMIT.
(GRAMS)
353.2
396.9
627.4
1041.2
1230.3
1559.6
1675.3
1786.3
1894.8
2004.6
2234.9
2355.4
2614.1
2754.0
3047.9
3200.5
3516.3
3682.9
4075.2
4224.7
4697.6
4621.1
5244.3
5464.9
5919.3
6151.9
6365.9
6517.1
6627.5
6739.3
6847.8
6949.6
6976.4
7013.7
7071.2
7218.4
738 1.0
7697.5
8110.1
*
NOX
REDUC.
DUE TO
ADS.
92.00
92.33
93.00
93.66
93.89
94.36
94.66
94.93
95.15
95.34
95.66
95.79
95.99
96.06
96.13
96.15
96.19
96.19
96.17
96.16
96.10
96.08
96.00
95.96
95.87
95.83
95.79
95.75
95.72
95.67
95.62
95.58
95.56
.5.53
95.50
95.44
95.38
95.32
95.27
»
NOX
REDUC.
OU€ TO
REGtN.
1.47
1.41
1.27
1.14
1.09
1.01
0.95
0.91
0.87
0.83
0.78
0.75
0.71
0.70
0.69
0.69
0.68
0.68
0.68
0.68
0.69
0.70
0.71
0.72
'J. 73
0.74
0.75
0.76
0.78
3.79
0.81
0.83
0.83
0.85
0.86
0.87
3.88
0.90
0.90
AVG.
X
REDUC.
OF
N3X
93.48
93.74
94.27
94.79
94.99
95.37
95.62
95.83
96.02
96.17
96.43
96.54
96.71
96.76
96.82
96.84
96.86
96.87
96.85
96.34
96.79
96.77
96.71
96.68
96.60
96.57
96.53
96.51
96.49
96.46
96.43
96.40
96.39
96.38
96.36
96.31
96. ZT
96.21
96.17
AVG.
PPM
OF
NJX
EMIT.
228
219
200
180
173
160
151
144
138
133
126
124
121
120
119
119
119
119
120
121
123
124
126
127
130
131
132
133
134
134
134
135
135
136
136
136
136
136
136
-------
00
TABLE VIO, SUMMARY OF CALCULATED NOX MASS FLOW RATES AND
CONTROL EFFICIENCIES FOR INSTANTANEOUS FLOW
AND CONCENTRATION DATA FOR TEST — l\
HERCULtS IMC., RIM 4, INLET HV-12, OUTLET HV-13, UNIT B 0850-1255 3/7/75
TIMc
HT3
CYCLE
(
0.3
5.3
12. J
25.3
35.0
43.3
53.3
55.0
62.3
73.0
75.3
33.0
8.2.0
ai.j
90.3
97.3
10J.O
in.o
113.3
123.0
13). 0
137.0
It5.3
153.3
163.0
16!>.3
175.3
133. 0
19J.O
205. J
213.3
220.0
235.3
245.0
INLET
FLOW
CSCF-U
5700
5730
5700
5701
5703
5703
5733
5703
5730
4503
4450
4453
4450
4475
4500
4500
5625
5675
5675
5675
570)
5700
5703
57'JO
5725
5725
5725
572i
5753
5775
5775
5775
5800
5800
R6GEN.
FLOW
(SCrM)
1015
1015
1015
1015
1015
1015
1015
1015
1310
1010
1C 00
1020
1020
1020
1020
1020
965
1000
1015
1010
1310
1010
1010
1'MO
1010
1010
1010
1310
1010
1010
1310
1010
1010
1010
INLET
CONC.
(PPMJ
2780
2760
2760
2800
2500
2440
2510
2600
2730
3030
2320
IB 30
1640
1613
1600
1560
1363
29TO
3930
4070
4080
4180
4150
4140
3980
367,1
3390
350O
3680
3910
3730
3310
3263
3310
OUTLET
CONC.
IPPHI
68
18
75
68
58
58
58
59
62
66
68
65
64
60
56
54
50
61
74
86
109
121
138
149
162
175
179
181
198
222
232
238
242
249
MASS
FLOW
R4TE
IH
• G/MIN)
871.2
865.0
865.0
877.5
783.5
764.7
786.6
814.8
855.6
749.7
567.6
447.7
401.3
396.1
395.9
336.0
420.6
926.7
1216.9
1269.9
1278.6
1310.0
1300.6
1297.5
1252.8
1155.2
1067.1
1101.7
1163.4
1241.5
1184.3
1051.0
1039.6
1055.5
MASS
FLOW
RATE
ADS.
(G/MIN)
849.9
859.3
841.5
856.2
765.3
746.5
766.4
796.3
836.1
733. J
551.9
431.8
385.6
381.4
382.0
372.6
405.1
907.7
1193.8
1243.1
1244.5
1272.1
1257.3
1250.3
1201.8
1103.1
1010.7
1044.7
1100.8
1171.0
1110.7
975.4
962.4
976.1
MASS
FL3M
RATE
REGEN.
(G/HIN)
3.79
1.00
4.19
3.79
3.24
3.24
3.24
3.29
3.44
3.67
3.74
3.65
3.59
3.36
' 3.14
3.03
2.65
3.35
4.13
4.78
6.05
6.72
7.66
8.27
9.00
9.72
9.94
10.05
11.00
12.33
12.88
13.22
13.44
13.83
MASS
FLOW
RATE
EMIT.
(G/MINI
17.52
4.64
19.32
17.52
14.94
14.94
14.94
15.20
15.99
12.66
12.90
12.26
12.07
11.40
10.71
10.33
12.81
15.68
18.96
22.06
28.11
31.20
35.59
38'. 42
42.00
45.37
46.40
46.92
51.60
58.16
60.78
62.35
63.73
65.58
X
REDUC.
OF NOX
DJE TO
ADS.
97.55
99,35
97.28
97.57
97.68
97.62
97.69
97.73
97.73
97.82
97.07
95.45
96.10
96.27
96.50
96.54
96.32
97.95
93.10
97.89
97.33
97.11
9S.67
96.40
95.93
95.23
94.72
94.83
94.62
94.32
93.78
92.81
92.58
92.48
X
REDUC.
OF NOX
DUE TO
REGEN.
0.44
0.12
0.48
0.43
0.41
0.42
0.41
0.40
0.40
0.49
0.66
0.81
0.89
0.85
0.79
0.78
0.63
0.36
0.34
0.38
0.47
0.51
0.59
0.64
0.72
0.84
0.93
0.91
0.95
0.99
1.09
1.26
1.29
1.31
X
RtDJC.
3F
M3X
97.99
99.46
97. 7T
98.00
98.09
98.05
98.10
98.13
98.13
98.31
97.73
97.26
96.99
97.12
97. 2»
97.32
96.95
98.31
98.44
98.26
97.80
97.62
97.26
97.04
96.65
96.07
95.65
95.74
95.56
95.32
94.87
94.0T
93.67
93.79
-------
TABLE A-ll, SUMMARY OF NOX MASS LOADING, AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NOX
EMITTED FOR INTERVALS DURING TEST — L\
HERCULES INC.f RUN 4f INLET HV-12t OUTLET HV-13. UNIT B 0650-1255 3/7/75
VO
I
IMTcRVAL
3F
CYCLE
(MINI
3.3- 5.0
5.0- 12.0
12.0- 25.0
25.0- 35.0
35. 0- 40.0
43.0- 50.3
5J.O- 55.0
55.0- 60.0
63. 3- 70.0
7J.J- 75.0
75. 3- 83.3
30.0- 82.0
82.0- 85.0
85.0- 93.3
90.0- 97. J
47.0-130.0
100.0-110.3
lU.J-Ui.O
lls.0-120.0
UJ. 0-133.0
13J.J-137.0
137. 0-145.0
145.J-15J.J
15J. 0-1 60.0
163.)-166.J
166.3-1 75. J
175.3-183.0
183.3-190.0
190.0-205.0
205.0-210.3
210.0-220.0
220.0-235.0
235.0-245.0
NOX
IN
DURIN3
INTERVAL
(GRAMS)
4340.5
6054.8
11326.1
8305.0
3670.4
7756.5
4003.6
4176.0
8026.2
3293.3
2533.4
349.0
1196.1
1983. )
273S.4
120-1.9
6736.5
5353.9
6217.0
12742.9
9063.2
10442.3
6495.1
12751.2
7223.9
10003.2
5421.9
11325.5
18036.3
6064.6
11176.6
15679.3
10475.6
NOX
AOSlMbED
DURING
INTERVAL
(GR4MSJ
4273.1
5952.8
11034.8
8107.5
3779.5
7574.7
3911.9
4081.2
7847.4
3210.8
2457.1
817.4
1150.4
19i)8.4
2641.2
1166.6
6564.0
5253.6
6092.2
12437.9
8807.9
10117.6
627J.2
12262.7
69)5.7
9493 . 8
5138.6
10727.6
17038.6
5704.2
10430.5
14533.7
9692.7
NQX
REGEN.
DURING
INTERVAL
(GRAMS!
12.00
18.16
51.87
35.16
16.18
32.37
16.32
16.84
35.54
18.51
18.46
7.23
10.43
16.26
21.59
8.52
30.03
18.71
22.26
54.14
44.70
57.53
39.84
86.35
56.14
88.46
49.98
105.23
174.92
63.03
130.50
199.91
136.33
NOX
EMITTED
DURING
INTERVAL
(GRAMSI
55.38
83.84
239.43
162.28
74.70
149.40
75.34
77.96
143.26
63.91
62.89
24.33
•iS.20
55.28
73.66
34.71
142. 45
86.60
102.54
250.83
207.58
267.15
185.02
402.09
262.09
412.97
233.31
492.62
823.22
297.35
615.67
945.65
646.55
PERCcNT
OF NOX
ADSORBED
DURING
INTERVAL
98.45
98.32
97.43
97.62
97.65
97.66
97.71
97.73
97.77
97.50
96.80
96.23
96.18
96.39
96.52
96.43
97.44
. 98.03
97.99
97.61
97.22
96.89
96.54
96.17
95.59
94.99
94.78
94.72
94.47
94.06
93.32
92.69
92.53
PERCENT
NOX FOR
REGEN.
DURING
INTERVAL
0.28
0.30
0.46
0.42
0.42
0.42
0.41
0.43
0.44
0.56
0.73
0.85
0.87
0.82
0.79
0.70
0.45
0.35
0.36
1.42
0.49
0.55
0.61
0.68
0.78
0.88
0.92
0.93
0.97
1.04
1.17
1.Z8
1.30
PERCENT
RtOUC.
OF N3X
DURING
INTERVAL
98.72
98.62
97.89
98.05
98.07
98.07
98.12
98.13
98.22
98.06
97.52
97.13
97.06
97.21
97.31
97.13
97.89
98.38
98.35
98.03
97.71
97.44
97.15
96.85
96.37
95.87
95.70
95.6.5
95.44
95.10
94.49
93.97
93.89
AVERAGE
PPM OF
NOX EMIT.
DURING
INTERVAL
43
46
71
63
SB
58
59
61
64
67
67
64
62
58
55
52
56
67
80
98
115
129
144
156
169
177
180
190
210
227
235
240
246
-------
TABLE A-12, CUMULATIVE NOX MASS LOADING, AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NOX
EMITTED DURING TEST — 4
HERCULSS INC., RUN 4, INLET HV-12, OUTLET HV-13, UNIT B 0850-1255 3/7/75
I
?
TIMS
WJ
CYCLE
(MINI
0
5.3
12.3
25.0
35. a
43.3
50.0
55.0
63. J
70.0
75. J
80. 0
82.0
85.3
93. 0
97.3
103.0
11). 3
115.0
123.0
113.0
137.0
145.3
153.0
163.3
loo.O
175.0
133.3
190. 3
205.3
213.3
220.3
235.0
245.0
T3T4L
NOX
IN
(G^AMS)
4340.5
10395.3
21721.4
30326.3
33b96.7
41653.2
45656.9
49832.3
57859.0
61152.3
63690.7
64539.7
65735.8
67715.3
70452.2
71662.1
78393.6
83757.5
89974.5
102717.4
111777.6
122219.9
128715.0
141466.2
143693.1
153690.3
lo4U2.2
175437.7
193474.5
199539.1
210715.7
226395.3
236670.6
T1TAL
NOX
AOS.
(GR4MS)
4273.1
10225.9
21260.7
29368.2
33147.7
40722.5
44634.4
48715.6
56563.0
59773.8
62230.9
63048.3
64198,. 8
6611)7.2
68748.4
6SS15.0
76479.1
81732.7
87824.9
103262.8
109J70.7
119188.3
125458.6
137721.3
144627.0
154125.8
159264.4
169992.0
187030.6
192734.9
203165.3
217699.1
227391.8
NOX
USbD FOR
REGf=N.
(GRAMS)
12.0
30.2
82.0
117.2
133.4
165.7
182.1
198.9
234.4
253.0
271.4
278.7
289. I
305. J
326.9
335.5
365.5
384.2
406.5
460.6
505.3
562.8
602.7
639.0
745.2
833.6
883.6
98d.8
1163.8
1226.8
1357.3
1557.2
1693.5
TOTAL
NOX
EMIT.
(GRAMS)
55.4
139.2
378.7
540.9
615.6
765.0
840.4
918.3
1061.6
1125.5
1188.4
1212.7
1247.9
1303.2
1376.9
1411.6
1554.0
1640.6
1743.2
1994.0
2201.6
2468.7
2653.8
3055.8
3317.9
3730.9
3964.2
4456.8
5280.0
5577.4
6193.1
7138.7
7785.3
%
NOX
REDUC.
3U£ TO
AOS.
98.45
98.37
97.88
97.81
97.79
97.77
97.76
97.76
97.76
97.75
97.71
97.69
97.66
97.62
97.58
97.56
97.55
97.58
97.61
97.61
97.58
97.52
97.47
97.35
97.27
97.12
97.05
96.90
96.67
96.59
96.42
96.16
96.00
X
NOX
REDUC.
DUE TO
REGEN.
0.28
0.29
0.38
0.39
0.39
0.40
0.40
0.40
0.41
0.41
0.43
0.43
0.44
0.45
0.46
0.47
0.47
0.46
0.45
0.45
0.45
0.46
0.47
0.49
0.50
0.53
0.54
0.56
0.60
0.61
0.64
0.69
0.71
AVG.
X
REDUC.
OF
NOX
98.72
98.66
98.26
98.20
98.18
98.16
98.16
98. 16
98.17
98.16
98.13
98.12
98.10
98.08
98.05
98.03
98.02
98.04
98.06
98.06
98.03
97.98
97.94
97.84
97.77
97.65
97.58
97.46
97.27
97.20
97.06
96.85
96.71
AVG.
PPM
OF
NOX
EMIT.
43
45-
59
60
60
59
59
59
60
60
61
61
61
61
60
60
60
60
61
64
67
70
73
78
82
87
90
95
104
107
113
122
127
-------
TABLE A-13, SUMMARY OF CALCULATED NOX MASS FLOW RATES AND
CONTROL EFFICIENCIES FOR INSTANTANEOUS FLOW
AND CONCENTRATION DATA FOR TEST — 5
HERCULES INC.i R'Jvl 5, INLET HV-12, OUTLET HV-l3t UNIT A 1255-1658 3/7/T5
CO
M
T11£
ISTJ
CYCLE
HINI
0.0
3.3
5.0
9.3
13.il
li.O
17. J
20.0
23. J
30.0
39.3
41.0
50.0
6i.J
80.0
Si. 3
95.3
102.3
11J.J
115. 0
121.)
125.0
1*3. J
143.3
155. J
163. J
170.0
185.3
190.0
201.0
235.0
211.0
215.3
230.0
235.0
243.0
INLET
FL1M
• SCF1)
5300
5575
5575
5575
5650
5653
5650
5675
5675
5675
5700
5700
5700
5725
5725
5653
5625
5625
545)
5453
5450
5450
5450
5450
5450
545')
5450
5500
5500
5553
5553
5500
5525
5553
5550
5553
RcGEN.
FLDrf
CSCFM)
1010
1015
1010
1010
1330
1025
1020
1020
1020
1025
1025
1025
1025
1020
1020
1020
1020
1020
1015
1020
1020
1 J20
1020
1320
1020
1020
1320
1020
1020
1020
1020
1020
1020
1020 '
1020
1020
INLET
CCNC.
IPPMI
3310
3330
3350
3200
30BO
2960
2760
2410
2340
2180
2040
2060
2090
2090
2050
2150
2260
2340
2340
2320
2290
2260
2250
2250
2220
2150
2160
1890
2090
2200
2200
2200
2200
2260
2300
2310
OUTLET
CONC.
(PPM)
249
150
140
129
146
189
235
180
106
72
61
52
49
54
61
64
75
80
81
85
85
86
92
95
99
105
110
114
115
120
125
129
130
134
138
140
MASS
FLOW
RATE
IN
(G/MIN)
1055.5
1020.7
1026.8
960.9
956.8
919.5
857.4
752.0
730.1
680.2
639.3
645.6
655.0
657.9
645.3
667.9
699.0
723.7
701.2
695.2
636.2
677.2
674.2
674.2
665.2
644.2
647.2
571.5
632.0
671.3
671.3
665.3
668.3
689.6
701. J
704.9
MASS
FLUM
RATE
ADS.
(G/HINI
976.1
974.7
983.9
941.3
911.4
860.8
784.4
695.8
697.1
657.7
620.2
629.3
639.6
640.9
626.1
648.0
675.8
699.0
676.9
669.7
660.7
651.4
646.6
645.7
635.6
612.8
614.3
537.1
597.2
634.7
633.2
626.3
628.8
648.7
659.7
662.2
MASS
FLOW
RATE
REGEN.
IB/MINI
13.83
8.37
7.77
7.16
8.27
10.65
13.18
10.09
5.94
4.06
3.44
2.93
2.76
3.03
3.42
3.59
4.21
4.49
4.52
4.77
4.77
4.82
5.16
5.33
5.55
5.89
6.17
6.39
6.45
6.73
7.01
7.23
7.29
7.51
7.74
7.85
MASS
FLOW
RATE
EMIT.
(G/MIN)
65.58
37.61
35.14
32.38
37,09
48.06
59.82
46.07
27.13
18.41
15.68
13.37
12.59
13.97
15.78
16.29
18.99
20.26
19.75
20.70
20.70
20.95
22.41
23.14
24.11
25.57
26.79
28.08
28.33
29.89
31.13
31.77
32.20
33.37
34.37
34.87
*
REOUC.
OF NOX
OJE T3
ADS.
92.48
95.50
95.82
95.97
95.26
93.61
91.49
92.53
95.47
96.70
97.01
97.48
97.66
97.42
97.02
97.02
96.68
95.58
96.54
96.34
9S.29
96.19
95.91
95.78
95.54
95.12
94.91
93.97
94.50
94.55
94.32
94.14
94.09
94.07
94.00
93.94
I
REDUC.
OF NOX
DUE TO
REGEN.
1.31
0.82
0.76
0.73
0.86
1.16
1.54
1.34
0.81
0.60
0.54
0.45
0.42
0.46
0.53
0.54
0.60
0.62
0.64
0.69
0.69
0.71
0.77
0.79
0.83
0.91
0.95
1.12
1.02
1.09
1.04
1.09
1.09
1.09
1.10
1.11
*
REOUC.
3F
MJX
93.79
96.32
96.58
96.70
96.12
94.77
93.02
93.87
96.28
97.29
97.55
97.93
98.08
97.88
97.55
97.56
97.78
97.20
97.18
97.02
96.98
96.91
96.68
96.57
96.38
96.03
95.86
95.09
95.52
95.55
95.36
95.22
95.18
95.16
95.10
95.05
-------
TABLE A-14, SUMMARY OF NOX MASS LOADING, AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NO
EMITTED FOR INTERVALS DURING TEST — 5
X
HERCULES INC.i RUN 5, INLET HV-12, OUTLET hV-13, UNIT 4 1255-1656 3/T/75
U>
N>
INTERVAL
3F
CYCLE
(MIS)
0.0- 3.0
3.0- 5.0
5.3- 9.D
9.0- 13.3
13. 3- 15.0
15.0- 17.0
17. J- 20.0
20.0- 23.0
23.0- 30.0
33.3- 35. J
35.0- 41.0
41.0- 50.3
53.0- 65.0
65.0- dO.3
83.3- 35.3
83.0- 9a.O
95.3-1U2.0
102.0-110.0
11J. 3-115. J
115.3-121.0
121.0-123.0
12».3-i40.'j
14J. 3-148.0
143.0-153.0
153.0-163.0
!&}. 0-170.0
173.3-185.3
185.0-190.0
193.3-203.3
203.0-205.3
205.3-211.0
211.J-215.3
215.0-230.0
233.3-235.3
235.0-243.3
NOX
IN
3URIN3
INTERVAL
C;*A*SI
3114.4
2047.6
4015.4
3875.3
1876.3
1776.9
2414.0
2223.1
4936.2
3298.8
3854.9
5852.6
9846.5
9773.6
3282.9
6834.2
4979.3
5699.5
3490.9
4144.1
2726.3
13135.6
5393.7
4683.0
5237.9
4523.2
9 14.). 3
3306.9
6516.7
3356.6
4009. a
2667.2
10184.5
3478.7
5626.9
NOX
ADSuRBED
DUPING
INTeRVAL
(GRAMS)
2926.3
1958.7
3850.5
3705.5
1772.2
1645.2
2220.3
2089.3
4741.8
3194.9
3748.5
5710.2
9603.8
9502.1
3135.2
6618.8
4811.5
5503.4
3366.6
3991.3
262^.3
9735.6
5169.5
4484.5
4993.3
429t.7
8635.0
2835.7
6154.7
3169.7
3778.3
2510.2
9581.6
3271.2
5287.6
NOX
RfcGEN.
DURING
INTERVAL
(GRAMS)
33.30
16.15
29.88
30.86
18.92
23.83
34.91
24.06
35.01
18.74
19.10
25.61
43.42
48.37
17.53
38.98
30.42
36.03
23.22
28.60
19.18
74.87
41.95
38. US
45.76
42.20
94.22
32.11
65.90
34.35
42.73
29.05
111.04
38.14
62.36
NUX
EMITTED
DURING
INTERVAL
(GRAMS)
154.78
72.75
135.03
138.93
85.15
107.88
158.84
109.80
159.38
85.22
87.14
116.82
199.23
223.12
80.18
176.41
137.36
160.03
101.14
124.22
33.30
325.16
182.19
165.38
198.75
183.23
411.54
141.02
291.07
152.55
188.72
127.95
491.81
169.36
276.96
PERCENT
OF NOX
ADSORBED
DURING
INTERVAL
93.96
95.66
95.89
95.62
94.45
92.59
91.97
93.98
96.06
96.85
97.24
97.57
97.54
97.22
97.02
96.85
96.63
96.56
96.44
96.31
96.24
96.35
95.84
95.66
95.33
95.01
94.47
94.25
94.5?
94.43
94.23
94.11
94.08
94.04
93.97
PERCENT
NOX FOR
REGEN.
DURING
INTERVAL
1.07
0.79
0.74
0.80
1.01
1.34
1.45
1.08
0.71
0.57
0.50
0.44
0.44
0.49
0.53
0.57
0.61
0.63
3.67
0.69
0.70 '
0.74
0.78
3.81'
0.87
0.93
1.03
1.07
1.01
1.02
1.07
1.09
1.09
1.10
1.11
PERCENT
REDUC.
OF NDX
DURING
INTERVAL
95.03
96.45
96.64
96.42
95.46
93.93
93.42
95.06
96.77
97.42
97.74
98.00
97.98
97.72
97.56
97.42
97.24
97.19
97.10
97.00
96.95
96.79
96.62
96.47
96.21
95.95
95.50
95.31
95.53
95.46
95.29
95.20
95. 17.
95.13
95. OS
AVERAGE
PPM OF
NOX EMIT.
DURING
INTERVAL
201
145
135
138
168
212
207
143
89
66
57
51
52
57
62
69
78
80
83
85
86
89
94
97
102
108
112
115
118
123
127
130
132
* 136
139
-------
I
U)
CO
I
TABLE A-15, CUMULATIVE NOX MASS LOADING, AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NOX*
EMITTED DURING TEST — 5
HERCULES INC., RU>4 5, INLET HV-12t OUTLET HV-13. UNIT A 1255-1658 3/7/75
TIMe
I.MTO
CfCLe
(
0
3.0
5.i3
9.0
13.3
15.0
17.9
20.3
23.0
33.3
35.1)
41.3
50.0
6i.3
8J.O
as. a
95. 3
102.0
113.3
115.3
121.3
123.3
143.0
148.3
155.0
163.0
173.3
185.0
193.3
200.0
205.3
211.0
215.0
23).}
235.0
243.3
T3T4L
VJX
IN
IG^AIS)
3114.4
5161.7
9177. *
13352.7
14929.0
16705.9
19119.9
21343.4
26279.2
29578.3
33432.3
39285.4
49131.9
58905.4
62183.3
69322.5
74001. 3
79701.3
83192.2
87336.3
90J63.1
100198.3
105592.4
110233.4
115513.3
120033.5
129179.3
132183.2
138704.9
142J61.5
146071.3
143738.4
158922.9
162401.6
16802S.5
TOTAL
NOX
AOS.
(SRAMS)
2926.3
481:5.0
8735.5
12441.0
14213.3
15853.4
18078.7
20168.0
24909.8
23104.6
31853.1
37563.3
47167.1
566o9.2
59654.4
66473.2
712B4.7
76788.1
83154.7
84146.0
86770.3
96505.9
131675.5
106160.0
111153.4
115448.1
124063.1
126918.9
133078.6
136248.3
140026.6
142536.8
152118.4
155389.6
160677.2
NOX
USED FOR
RKGfN.
(GRAMS)
33.3
49.4
79.3
110.2
129.1
152.9
187.8
211.9
246.9
265.6
284.8
310.4
353.8
402.2
419. 1
458.7
489.1
525.1
548.3
576.9
596.1
671.0
712.9
751.0
796.8
839.0
933.2
965.3
1031.2
1065.5
1108.3
1137.3
1248.4
1286.5
1348.9
TOTAL
NOX
EMIT.
(GRAMS)
154.8
227.5
362.6
501.5
586.6
694.5
853.4
963.1
1122.5
1207.7
1294.9
1411.7
1610.9
1834.1
1914.2
2090.6
2228.0
2388.0
2489.2
2613.4
2696.7
3021.8
3204.0
3369.4
3568.2
3751.5
4163.0
4304.0
4595.1
4747.6
4936.4
5064.3
5S56.1
5725.5
6002.4
4!
NQX
REOUC.
DUE T3
ADS.
93.96
94.63
95.19
95.31
95.21
94.93
94.55
94.49
94.79
95.02
95.28
95.62
96.00
96.20
96.25
96.31
96.33
96.34
96.35
96.35
96.34
96.31
96.29
96.26
96.22
96.18
96.05
96.01
95.94
95.91
95.86
95.83
95.72
95.68
95.62
X
N3X
PtOUC.
DUE TO
REGEN.
1.07
0.96
0.66
0.84
3.86
0.92
0.98
0.99
0.94
0.90
0.85
0.79
0.72
0.68
0.67
0.66
0.66
0.66
0.66
0.66
0.66
0.67
0.68
0.68
0.69
0.70
0.72
0.73
0.74
0.75
0.76
0.76
0.79
0.79
0.80
AVG.
X
REOUC.
OF
NQX
95.03
95.59
96.05
96.16
96.07
95.84
95.54
95.49
95.73
95.92
96.13
96.41
96.72
96.89
96.92
96.97
96.99
97.00
97.01
97.01
97.01
96.98
96.97
96.94
96.91
96.87
96.78
96.74
96.69
96.66
96.62
96.60
96.50
96.47
96.43
AVG.
PP«
OF
NOX
EMIT.
201
179
159
153
155
161
168
165
147
136
124
111
97
89
88
86
85
85
85
85
85
85
'86
86
87
88
90
90
92
92
93
94
97
97
99
-------
TABLE A-16, SUMMARY OF CALCULATED NOX MASS FLOW RATES AND
CONTROL EFFICIENCIES FOR INSTANTANEOUS FLOW
AND CONCENTRATION DATA FOR TEST ~ 6
HERCULES INC.f
6, INLET HV-12, OUTLET HV-13t UNIT A 1400-175* 3/11/75
.p-
I
me
INT3
CYCLE
(MINI
0.3
15.3
20.0
33. 3
35.0
45.3
53.3
6J.O
6t>.3
75.0
83.0
93.0
95. J
105.3
110.0
12J.3
125.3
UJ.J
143.3
153.0
165.3
173.3
183.0
195.3
203.3
213.3
225. J
233.3
234.0
INLcT
FLOW
ISCF1J
3153
4250
4300
4353
4353
4353
4353
4350
4353
4350
4353
5233
5175
5175
5175
5233
5233
5233
5233
5203
5233
5203
5203
5175
5175
5175
5175
5175
5175
REG=N.
FLOW
ISCFMI
1030
1035
1035
1030
1030
1030
'1030
1030
1030
1030
1030
1025
1025
1025
1025
1J25
1025
1025
1025
1025
1325
1025
1325
1025
1025
1025
1025
1025
1025
INLET
CONC.
(PPM)
1150
1060
890
750
720
710
710
710
710
710
633
800
880
973
1020
1190
1230
1200
1263
1200
1150
1150
1140
1143
1190
1150
1130
1110
1090
OUTLET
CONC.
(PPM)
8
11
10
10
8
6
6
9
9
10
10
10
11
14
14
15
16
18
16
20
21
21
24
25
29
29
29
29
29
MASS
FLOW
RATE
IN
(G/H1NI
199.2
247.7
210.4
179.4
172.2
169.8
169.8
169.8
169.8
169.8
162.6
228.7
250.4
276.0
290.2
340.2
351.7
360.2
360.2
343.1
328.8
328.8
325.9
324.4
327.2
327.2
321.5
315. 8
310.1
MASS
FLOW
RATE
AOS.
(G/MIN)
197.8
245.1
208.0
177.0
170.3
168.4
168.4
167.7
167.7
167.4
160.2
225.9
247.3
272.0
286.2
335.9
347.1
355.1
355.7
337.4
322. a
322.8
319.1
317.2
319.0
319.0
313.3
307.6
301.9
MASS
FLOW
14TE
REGEN.
(G/MIN)
0.45
0.63
0.57
0.57
0.45
0.34
0.34
0.51
0.51
0.57
0.57
0.56
0.62
0.79
0.79
0.85
0.90
1.01
0.90
1.13
1.18
1.18
1.35
1.41
1.63
1.63
1.63
1.63
1.63
MASS
FLOW
RATE
EMIT.
(G/MIN)
0.93
1.94
1.80
1.83
1.46
1.10
1.10
1.64
1.64
1.83
1.83
2.30
2.51
3.19
3.19
3.44
3.67
4.13
3.67
4.59
4.82
4.82
5.51
5% 70
6.62
6.62
6.62
6.62
6.62
*
REDUC.
OF NOX
DUE TO
AOS.
99.30
98.96
98.88
93.67
98.89
99.15
99.15
98.73
98.73
98.59
98.53
98.75
98.75
98.56
98.63
98.74
98.70
98.57
93.73
98.33
98.17
98.17
97.89
97.81
97.48
97.48
97.43
97.39
97.34
%
REDUC.
OF NOX
DUE TO
REGEN.
0.23
0.25
0.27
0.32
0.26
0.20
0.20
0.30
0.30
0.33
0.35
0.25
0.25
0.29
0.27
0.25
0.26
0.28
0.25
0.33
0.36
0.36
0.41
0.43
0.50
0.50
0.51
0.52
0.53
«
REDUC.
3F
-------
TABLE A-17, SUMMARY OF NOX MASS LOADING, AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NOX
EMITTED FOR INTERVALS DURING TEST — 6
HERCULEi INC.. RUM 6, INLET HV-12, OUTLET HV-13, UNIT A 1*00-175* 3/11/75
Ui
I
INTERVAL
DF
CYCLE
(MIN)
0.0- 15.0
15.0- 20.3
2J.O- 33.3
30.0- 35.0
35. J- 45.0
45.0- 50.0
50.0- 60.3
60. J- 65.0
05.0- 75. D
75. J- 8J.J
80. 0- 90.0
90.0- 95.0
95.3-105.0
105.0-110.0
liO.J-120.3
120.3-125.0
125.0-135.0
133.0-140.3
140. 0-150.0
15J.J-105.J
165.0-170.0
170.0-180.0
180.0-195.0
195.0-200.0
20J.J-210.3
210.0-225.0
22i. 3-230.0
230.0-234.0
NGX
IN
DLIRIN3
IMT£SV4L
IGS1MSI
3351.5
1145.3
1949. J
873.9
1710.1
849.1
1698.1
849.1
1693.1
831.1
1 95 6 . 8
1197.8
2631.9
1415.5
3152.2
1729.7
3559.5
1301.2
3513.6
5039.1
1643.9
3273.6
4877.2
1623.9
3272.1
4865.4
1593.4
1251.9
NCX
AOSDRBED
DURING
INTERVAL
(GRAMS)
3321.8
1132.9
1925.2
868.2
1693.3
841.9
1680.2
838.3
1675.4
819.2
1930.5
1182.8
2596.3
1395.6
311U.9
1707.6
3510.9
1776.9
3465.2
4951. 1
1613.9
3209.3
4772.4
1590.5
3139.6
4741.7
1552.1
1218.9
NOX
Rt'GEN.
DURING
INTERVAL
(GRAMS)
8.09
2.99
5.68
2.55
3.96
1.70
4.25
2.55
5.38
2.83
5.65
2.96
7.04
3.94
8.17
4.37
9.58
4.79
10.14
17.33
5.92
12.68
20.71
7.61
16.34
24.51
8.17
6.54
NUX
EMITTED
DURING
INTERVAL
(GRAMS)
21.58
9.35
18.10
8.21
12.78
5.48
13.69
8.21
17.34
9.13
20.60
'2.01
28.52
15.97
33.19
17.79
39.02
19.51
41.32
70.59
24.10
51.65
84.10
30.80
66.17
99.26
33.09
26.47
PERCENT
OF NOX
ADSORBED
DURING
INTERVAL
99.11
98.92
98.78
98.78
99.02
99.15
98.94
98.73
98.66
98.56
98.66
98.75
98.65
98.59
98.69
98.72
98.63
98.65
98.54
98.26
98.17
98.03
97.85
97.64
97.48
97.46
97.41
97.36
PERCENT
NOX FOR
RcGEN.
DURING
INTERVAL
0.24
0.26
0.29
0.29
0.23
0.20
0.25
0.30
0.32
0.34
0.29
0.25
0.27
0.28
3.26
0.25
0.27
0.27
0.29
0.34
0.36
0.39
0.42
0.47
0.50
0.50
0.51
0.52
PERCENT
REDUC.
OF N3X 1
DURING
INTERVAL
99.36
99.18
99.07
99.07
99.25
99.36
99.19
99.03
98.98
98.90
98.95
99.00
98.92
98.87
98.95
98.97
98.90
98.92
98.83
98.60
98.53
98.42
98.28
98.11
97.98
97.96
97.92
97. a9
AVERAGE
PPM OF
NOX EMIT.
DURING
INTERVAL
10
10
10
9
7
6
7
9
9
10
10
10
12
14
15
15
17
17
18
21
21
23
24
27
29
29
29
29
-------
TABLE A-18, CUMULATIVE NOX MASS LOADING, AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NOX
EMITTED DURING TEST -*- 6
HERCULES INC.t "UN 6, INLET HV-12t OUTLET HV-13F UNIT A 1400-175* 3/11/75
I
OJ
TIHE
IMT3
CYCLE
1,HIN)
0
15.0
23.3
30.0
35.3
45.3
5J.J
63.3
65.0
74. J
8J.O
9J.3
95. 3
Idi.J
1U.3
120.3
123.3
135.3
1*0.3
153.3
luS.J
173.3
183. 0
195.3
203.3
210.3
225.3
233.0
234. 9
TOTAL
NOX
IN
(GRAMS)
3351.5
4496.7
6445.7
7324.6
9334.7
9383.7
11581.3
12430.9
14129.)
14963.1
16916.9
18114.7
20746.6
22152.1
25J14.3
27044.3
30603.5
32404.7
35921.4
40460.4
*2604.->
45878.3
51755.2
52384.1
55656.2
60521.6
62115.0
63366.9
TOTAL
NOX
ADS.
(GSAMSI
3321.8
4454.7
6379.9
7248.1
8941.4
9783.3
11463.4
12301.7
139/7.1
14796.3
16726.8
17909.6
20505.9
21901.6
25012.4
26720.0
30230.9
320U7.8
35472.9
43424.1
4203d. 0
45247.2
SCO 19. 6
51610.2
54799.7
59541.4
61093. 5
62312.4
NOX
USED FOR
FE3EN.
(GRAMS!
8.1
11.1
16.8
19.3
23.3
25.0
29.2
31. 8
37.1
40.0
45.6
48.6
55.6
59.6
67.7
72.1
81.7
86.5
96.6
114.0
119.9
132.6
153.3
160.9
177.2
201.7
209.9
216.4
TOTAL
NOX
EMIT.
(GRAHSt
21.6
30.9
49.0
57.2
70.0
75.5
89.2
97.4
114.7
123.9
144.5
156.5
185.0
2ul.O
234.2
252.0
291.3
310.5
351.8
422.4
446.5
498.1
582.2
613.1
679.2
778.5
811.6
838.0
t
NOX
REDUC.
DUE TO
ADS.
99.11
99.07
98.98
98.95
98.97
98.98
98.98
98.96
9S.93
93.90
98.88
98.87
98.84
98.82
98.81
98.80
98.78
98.77
98.75
98.69
98.67
98.63
98.55
98.52
98.46
98.38
98.36
98.34
*
NOX
REDUC.
DUE TO
REGEN.
0.24
0.25
0.26
0.26
0.26
0.25
0.2S
0.26
0.26
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.28
0.28
0.29
0.30
0.31
0.32
0.33
0.34
0.34
AVG.
X
REDUC.
OF
NOX
99.36
99.31
99.24
99.22
99.22
99.24
99.23
99.22
99.19
99.17
99.15
99.14
99.11
99.09
99.07
99.07
99.05
99.04
99.02
98.97
98.95
98.91
98.85
98.83
96.78
98.71
98.69
98.68
AVG.
PPM
OF
NOX
EMIT.
10
10
10
10
9
9
9
10
10
10
11
11
12
13
13
14
15
15
16
17
17
17
-------
TABLE A-19, SUMMARY OF CALCULATED NOX MASS FLOW RATES AND
CONTROL EFFICIENCIES FOR INSTANTANEOUS FLOW
AND CONCENTRATION DATA FOR TEST — 7
HERCULES INC., RJN 7t INLET HV-12, OUTLET HV-i3, UNIT B 1002-1404 3/12/75
I
CO
TIME
mo
CVCLc
(IIN)
3.J
1.9
r.o
12.1)
20.0
25.3
33.0
43.0
48. 3
53.0
73.3
80.0
84.3
63.3
9i.3
133.0
103.3
lid. 3
133.0
133.3
143.0
153.0
163.3
173.0
17d.3
133.3
19-.. 3
198.3
203.0
2J3.3
213.0
223.3
229.0
233.0
242.3
INLcT
FLOW
(SCFMI
4333
4300
4300
4303
4300
4333
4303
4300
4300
4330
4333
4300
4330
4303
43JJ
4330
4330
4333
4300
4330
4300
4330
43 J 3
4303
4325
4325
4325
4325
4325
4325
4350
5225
5225
5225
5200
REG&N.
FLJW
(SCFMI
1025
1025
1025
1025
1025
1125
1J25
1025
132i
1025
1025
1025
1325
1025
1020
1020
1320
1020
1020
1020
1020
1020
1)20
1020
1020
1020
1020
1020
1020
1020
1015
1020
1020
1020
1020
INLFT
CJNC.
(PPM»
1950
1910
2030
2080
2100
2050
2100
2150
2170
2250
2650
2690
2770
2710
2b90
2750
2600
2480
2290
2300
2280
2240
226J
2320
2353
2390
2280
2330
2210
2190
2190
2160
2280
2740
2740
OUTLET
CONG.
(PPMI
78
48
54
58
68
68
46
46
46
46
50
53
49
52
61
61
62
61
59
59
60
62
64
70
71
72
7t
76
78
78
76
75
81
92
95
MASS
FLOW
RATE
Irt
(G/HINI
461.0
451.6
479.9
491.8
496.5
484.7
496.5
508.3
513.0
531.9
626.5
636.0
654. S
640.7
636.0
650.2
614.7
586.3
541.4
543.8
539.0
529.6
534.3
548.5
558.8
568.3
542.2
554.1
525.5
520.8
584.0
620.5
655.0
787.1
783.4
MASS
FLOW
RATE
AOS.
(G/HINI
442.6
440.2
467.2
478.0
480.4
468.6
485.6
497.4
502.2
521.1
614.7
624.1
643.3
628.4
621.5
635.7
603.3
571.9
527.5
529.8
5<4.9
514.9
519.2
531.9
541.9
551.2
524.6
536.0
507.0
502.2
563.7
599.0
631.7
760.7
756. 2
MASS
FLOW
RATE
REGFN.
(G/HIN)
4.40
2.71
3.04
3.27
3.83
3.63
2.59
2.59
2.59
2.59
2.82
2.82
2.76
2.93
3.42
3.42
3.48
3.42
3.31
3.31
3.36
3.48
3.59
3.93
3.98
4.04
4.15
4.26
4.37
4.37
4.24
4.21
4.54
5.16
5.33
MASS
FLOH
RATE
EMIT.
(G/HINI
14.05
8.64
9.72
10.44
12.24
12.24
8.28
8.28
8.28
8.28
9.00
9.00
8.82
9.36
11.00
11.00
11.18
11.00
10.64
10.64
10.82
11.18
11.54
12.62
12.90
13.08
13.45
13.81
14.17
14.17
16.02
17.34
18.73
21.27
21.83
t
REOUC.
OF NOX
DJE T3
AOS.
96.00
97.49
97.34
97.21
96.76
96.68
97.81
97.86
97.88
97.96
98.11
98.14
98.23
98.08
97.73
97.78
97.62
97.54
97.42
97.43
97.37
97.23
97.17
96.98
95.98
96.99
96.75
96.74
96.47
9S.44
96.53
96.53
94.45
96.64
96.53
%
RECUC.
OF NOX
DUE TO
REGEN.
0.95
0.60
0.63
0.66
0.77
0.79
0.52
0.51
0.51
0.49
0.45
0.44
0.42
0.46
0.54
0.53
0.57
0.58
0.61
0.61
0.62
0.66
0.67
0.72
0.71
0.71
0.77
0.77
0.83
0.84
0.73
0.68
0.69
0.66
0.68
«
R=DUC.
DF
NOX
96.95
98.09
97.97
97.88
97.53
97.47
98.33
98.37
98.39
98.44
98.56
93.58
98.65
98.54
98.27
98.31
98.18
98.12
98.03
98.04
97.99
97.89
97.84
97.70
97.69
97.70
97.52
97.51
97.30
97.28
97.26
97.21
97.14
97.30
97.21
-------
TABLE A-20, SUMMARY OF NOX MASS LOADING., AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NOX
EMITTED FOR INTERVALS DURING TEST ~ 7
HERCULES INC.t *UM 7t INLET HV-lZt OUTLET HV-13f UNIT B 1002-1404 3/12/75
I
CO
00
WHKVAL
JF
CYCLE
(MINI
3.3- 1.3
1.0- 7.3
7.0- 12.0
12.0- 20.0
2J. 0- 25.0
25.3- 38.3
33.0- 43.0
43. 0- 4d.O
4d.O- 58.0
58.0- 78.0
73.3- 33.3
80.0- 84.3
Si.O- 38. U
83.0- 93. J
93.3-103.3
103.3-138.0
lOd. J-113.0
113.J-133.J
133.3-133.0
133.3-148.0
1'.3. 3-153.0
153.0-163.0
lt>3.3-173.0
173.0-178.0
173.3-ld3.3
183.0-194.0
19*. 3-193. 3
193.J-203.3
203.J-208.3
203.3-213.3
213.0-223.0
223.0-229.0
229.0-238.0
23d. 0-242.0
NOX
l>4
DUP.1^3
INTERVAL
(•J<*AMS1
456.3
2794.5
2429.2
3952.9
2452.9
6377.4
2512.0
2553.3
5224.9
11534.6
1262.5
2531.7
2591.2
6333.3
3215.3
3162.1
6005.1
3457.9
2712.9
5414.0
2671.6
5319.5
5414. J
2763.3
2817.9
6137.3
2192.5
2699.3
2 61 5 . 7
2761.9
6022.5
3826.5
6489.6
3141.0
NUX
ADSORBED
DURING
INTERVAL
(GRAMS I
441.4
2722.1
2363.0
3833.8
2372.5
6202.2
2457.6
2499.0
5116.1
11357.6
1238.8
2534.9
2543.4
6249. 8
3143.2
3089.4
5859.7
8245.2
2643.2
5273.4
2599.4
517U.5
5255.6
2684.7
2732.9
5916.8
2121.1
2607.4
2523.0
2664.9
5813.5
3692.1
6266.0
' 3033.9
NOX
RE GEN.
DURING
INTERVAL
(GRAMS)
3.55
17.24
15.76
28.40
19.16
41.76
12.96
12.96
25.92
54.10
5.64
11.16
11.38
31.76
17.10
17.24
34.49
50.47
16.54
33.37
17.10
35.33
37.57
19.77
20. U5
45.03
16.82
21.59
21.87
21.54
42.24
26.25
43.66
20.97
N3X
EMITTtO
DURING
INTERVAL
(GRAMSI
11.34
55.10
50.42
90.75
61.22
133.43
41.41
41.41
82.83
172.86
18.01
35.65
36.37
101.82
55.00
55.45
110.91
162.31
53.20
107.30
55.00
113.61
120.83
63.81
64.96
145.92
54.51
69.96
70.87
75.50
166.82
108.20
179.99
86.21
PERCENT
OF NOX
ADSORBED
DURING
INTERVAL
96.74
97.41
97.27
96.99
96.72
97.25
97.64
97.87
97.92
98.04
98.13
98.19
98. IS
97.91
97.76
97.70
97.58
97.48
97.43
97.40
97.30
97.20
97.07
96.98
96.98
96.87
96.75
96.61
96.45
96.49
96.53
96.49
96.55
96.59
PERCENT
NOX FOR
REGEN.
DURING
INTERVAL
0.76
0.62
0.65
0.72
0.76
0.65
0.52
3.51
0.50
0.47
0.45
0.43
0.44
0.50
3.53
0.55
0.57
0.60
0.61
0.62
0.64
0.66
0.69
0.71
0.71
0.74
0.77
0.80
0.84
0.78
0.70
0.69
0.67
0.67
PERCENT
REDUC.
OF N3X
DURING
INTERVAL
97.51
98.03
97.92
97.70
97.50
97.91
98.35
96.38
98.41
98.51
1 96.57
98. 62
98.60
98.40
98.29
98.25
98.15
98.08
98.04
98.02
97.94
97.86
97.77
97.69
97.69
97.61
97.51
97.41
97.29
97.27
97.23
97.17
97.23
97.26
AVERAGE
PPM OF
NOX EMIT.
DURING
INTERVAL
63
51
56
63
68
57
46
46
46
48
50
49
50
57
61
62
62
60
59
60
61
63
67
71
71
73
75
77
78
77
75
78
86
93
-------
TABLE A-21, CUMULATIVE NOX MASS LOADING/ AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NOX
EMITTED DURING TEST — 7
HERCULES INC.t RU1 7, INLET HV-12t OUTLET HV-13, UNIT B 1002-1*04 3/12/75
TIMt
INTO
CYCLE
IMIN)
3
I.}
7.0
12.3
20.0
25.0
38. 3
43.0
4d.O
53.0
78.3
83. 3
84.!)
3d. 3
98.0
103.0
108.3
113.0
133. a
133.0
143.0
153.0
163.0
173.3
178. 0
183.0
194.0
19B.O
203.3
20li.il
213.3
223.0 '
229.0
238.3 .
242.0
TOTAL
NOX
IN
(GRAMS)
456.3
3250.3
5683.3
9632.9
12085.3
18463.2
20975.2
23528.5
28753.4
40333.9
41600.5
44182.2
46773.4
53156.7
56372.1
59534. J
65539.3
73997.2
76710.1
82124.1
B4795.7
90115.1
95529.2
98297.5
101115.3
107223.1
109415.5
112114.5
114730.3
117492.2
123514.7
127341.2
133830.8
136971.9
TOTAL
NCX
ADS.
1 GRAMS)
441.4
3163.5
5526.6
9360.4
11732.8
17935.1
20392.7
22391.6
28007.8
39365.4
40604.2
43139.1
45682.6
51932.3
55075.5
53165.0
64024.6
72269.8
74913.0
801S6.3
82785.8
87956.3
93211.9
95396.6
98629.5
104546.3
106667.4
109274.8
111797.8
114462.7
120276.1
123968.2
130234.2
133268.1
NQX
US tO FOR
RtGEN.
(GRAMS)
3.6
20. 8
36.6
65.0
84.1
125.9
138.9
151.8
177.7
231.8
237.5
248.6
260.0
291.8
308.9
326.1
360.6
411.1
427.6
461.0
478.1
513.4
551.0
570.8
590 . 8
635.9
652.7
674.3
696.2
717.7
759.9
786.2
829. 8
850.8
TOTAL
NJX
EMIT.
IGSAMS)
11.3
66.4
116.9
207.6
268.8
402.3
443.7
485.1
567.9
740.8
758.8
794.4
830.8
932.6
987.6
1043.1
1154.0
1316.3
1369.5
1476.8
1531.8
1645.4
1766.3
1830.1
1895.0
2040.9
2095.5
2165.4
2236.3
2311.8
2478.6
2586.8
2766.8
2853.0
*
NGX
REDUC.
DUE TO
ADS.
96.74
97.32
97.30
97.17
97.08
97.14
97.22
97.29
97.41
97.59
97.61
97.64
97.67
97.70
97.70
97.70
97.69
97.67
97.66
97.64
97.63
97.60
97.57
97.56
97.54
97.50
97.49
97.47
97.44
97.42
97.38
97.35
97.31
77.30
S
NOX
REDUC.
DUE T3
RESEN.
0.78
0.64
0.64
0.67
0.70
0.68
0.66
0.65
0.62
0.57
0.57
0.56
0.56
0.55
0.55
0.55
0.55
0.56
0.56
0.56
0.56
0.57
0.58
0.58
0.58
0.59
0.60
0.60
0.61
0.61
0.62
0.62
0.62
0.62
AVG.
X
REDUC.
OF
NOX
97.51
97.96
97.94
97.84
97.78
97.82
97.88
97.94
98.02
98.16
98.18
98.20
98.22
98.25
98.25
98.25
98.24
98.22
98.21
98.20
98.19
98.17
98.15
98.14
98.13
98.10
98.08
98.07
98.05
98.03
97.99
97. 9T
97.93
97.92
AVG.
PPN
OF
N3X
EMIT.
63
53.
54
58
60
59
57
56
54
53
53
53
52
53
53
54
54
55
55
55
56
56
57
57
57
58
59
59
60
60
61
61
63
63
-------
TABLE A-22, SUMMARY OF CALCULATED NOX MASS FLOW RATES AND
CONTROL EFFICIENCIES FOR INSTANTANEOUS FLOW
AND CONCENTRATION DATA FOR TEST ~ 8
HERCULES INC.,
8, INLET HV-12, OUTLET HV-13, UNIT A 1*04-1806 3/12/75
O
I
TIM£
W)
CYCLE
HIM)
o.o
2.0
5.0
11.3
16.)
ld.0
26. 3
31.0
41.0
43.0
56.0
72.)
76.0
83.0
101.3
llb.O
131. J
136.0
146.0
154.3
lol.O
176. J
192.3
196.3
20.J.O
216. J
221.0
227.0
236.3
242.0
INLET
FLOrf
ISCF1I
5200
S20)
505)
505)
505)
5050
5)25
505)
5050
5053
5050
5)53
5050
5350
5)75
5025
5025
502a
5025
5025
5025
5025
5025
5025
5025
500)
4975
4975
4975
4975
*EG=N.
FLOW
(SCFM)
1020
1)20
1)20
1020
1320
1020
1320
1020
1020
1020
1020
1320
1020
1)20
1320
1020
1)20
1020
1020
1020
1320
1020
1020
1)20
1020
1320
1020
1020
1020
1020
INLET
CONC .
(PPMI
2740
2730
2720
2630
2480
2440
2350
2270
2340
2380
2350
2280
2270
2340
2410
2520
2520
2460
2180
2060
2050
2050
2040
236')
2190
2540
2590
2560
2150
2310
JUTLET
CCNC.
1 PPMI
95
50
45
56
76
84
SB
49
46
45
45
51
51
56
61
70
71
72
75
76
78
84
91
91
96
106
114
120
121
121
MASS
FLO*
*4TE
IN
CG/MINI
7d3.4
780.5
755.2
730.2
688.6
677.5
649.3
630.3
649.7
660.8
652.5
633.1
630.3
649.7
672.5
696.2
696.2
679.7
602.3
549. 1
566.4
566.4
563.6
5o9.1
605.1
698.3
708.5
700.2
588.1
631.9
MASS
FLOW
RATE
ADS.
(G/M1N)
756.2
766.2
742.7
714.7
667.5
654.2
633.2
616.7
636.9
648.3
640.3
618.9
616.1
634.2
655.4
676.9
676.6
659.8
581.6
548.1
544.8
543.2
538.5
544.0
578.5
669.1
677.3
667.4
555.0
598.8
MASS
FLOW
RATE
REGCN.
IG/HINI
5.33
2.80
2.52
3.14
4.26
4.71
3.25
2.75
2.58
2.52
2.52
2.86
2.86
3.14
3.42
3.93
3.98
4.04
4.21
4.26
4.37
4.71
5.10
5.10
5.38
5.V4
6.39
6.73
6.79
6.79
MASS
FLOW
RATE
EMIT.
(G/HINI
21.83
11.49
9.97
12.41
16.84
18.61
12.77
10.86
10.19
9.97
9.97
11.30
11.30
12.41
13.60
15.41
15.63
15.85
16.52
16.74
17.18
18.50
20.04
20.04
21.14
23.20
24.79
26.09
26.31
26.31
%
RrDUC.
OF NOX
DJE TO
ADS.
96.53
98.17
98.35
97.87
9b.94
96.56
97.53
97.84
98.03
98.11
98.09
97.76
97.75
97.61
97.47
97.22
97.18
97.07
96.56
96.31
96.20
95.90
95.54
95.58
95.62
95.83
95.60
95.31
94.37
94.76
%
REDUC.
OF NOX
DUE TO
REGEN.
0.68
0.36
0.33
0.43
0.62
0.70
0.50
0.44
0.40
0.38
0.39
0.45
0.45
0.48
0.51
0.56
0.57
0.59
0.70
0.75
0.77
0.83
0.91
0.90
0.89
0.85
0.90
0.96
1.15
1.07
(
REDUC.
OF
NJX
97.21
98.53
98.68
93.30
97.55
97.25
98.03
98.28
98.43
98.49
98.47
98.21
98.21
98.09
97.98
97.79
97.71
97.67
97.26
97.06
96.97
96.73
96.44
96.48
96.51
96.68
96.50
96.27
95.53
95.84
-------
TABLE A-23, SUMMARY OF NOX MASS LOADING, AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NOX
EMITTED FOR INTERVALS DURING TEST — 8
HERCULES INC.t RUM 8, INLET HV-12t OUTLET HV-13, UNIT A 1404-1806 3/12/75
WcSVAL
OF
CYCLE
(MINI
3.0- 2.0
2. a- 5.3
5.0- 11.3
ii.o- lo.o
16.0- 18. 3
13.0- 26.0
2i.3- 31.3
31.0- 41.0
41. 3- 46.0
46.0- 56.3
56.0- 72.3
72.3- 76.0
76.0- 86.0
80.J-101.3
101.J-1 lo.O
Us. 0-131. J
131.3-1J6.3
136.0-146.0
14o.3-154.t)
154.0-161.3
llil.3-176.3
176.0-192.0
192.3-190.0
196.3-206.3
206.0-216.0
216.0-221.0
221.3-227.0
227.0-236.0
236.3-242.3
NOX
IN
OUSI^iS
INTERVAL
(GRAMS)
1563.9
2303.6
4456.4
3547.1
1 366 . 1
5307.0
3198.9
6403.0
3276.3
6566.6
102U4.4
2526.7
6400.0
9916.4
10265.2
10443.5
3439.7
640?. 7
4685.7
3974.3
8495.7
9039.9
2265.5
5871.0
6516.6
3516.8
4226.1
5797.5
3659.9
NOX
ADSORfaED
DURING
INTERVAL
(SRAMSI
1522.4
2263.4
4372.3
3455.4
1321.6
5149.6
3124.8
6268.1
3213.2
6441.6
10071.2
2470.0
6251.4
9672.1
9992.5
10151.3
3340.9
6206.7
4518.9
3H25.4
8160.0
8653.1
2164.9
5612.7
6238.3
3366.0
4034.1
5500.9
3461.3
NOX
REGEN.
DURING
INTERVAL
(GRAMS)
8.13
7.99
16.99
18.51
8.97
31.85
15.00
26.64
12.76
25.24
43.07
11.44
.30.00
49.21
55.10
59.31
20.05
41.22
33.87
30.23
68.14
78.51
20.41
52.44
56.64
30.84
39.37
60.82
40.71
NOX
EMITTED
DURING
INTERVAL
(GRAMS)
33.32
32.19
67.14
73.12
35.45
125.54
59.07
105.25
50.41
99.71
170.17
45.20
118.54
195.06
217.60
232.86
78.72
161.35
133.00
118.69
267.54
308.28
80.15
205.89
221.67
119.96
152.65
235.83
157.87
PEICcNT
OF NJX
AOSORBED
DURING
INTERVAL
97.35
98.26
98.11
97.42
96.75
97.03
97.66
97.94
98.07
98.10
97.93
97.76
97.63
97.54
97.34
97.20
97.13
96.83
96.44
96.25
96.05
95.72
95.56
95.60
95.73
95.71
95.46
94.88
94. 5T
PERCENT
N3X FOR
REGEN.
DURING
INTERVAL
0.52
0.35
0.38
0.52
0.66
0.60
0.47
0.42
0.39
0.38
0.42
0.45
0.47
0.50
0.54
0.57
0.58
0.64
0.72
0.76
0. 83
0.87
0.90
0.89
0.87
0.88
0.93
1.05
1.11
PERCENT
REDUC.
OF NOX
DURING
INTERVAL
97.87
98.60
98.49
97.94
97.40
97.63
98.15
98.36
98.46
98.48
98.35
98.21
98.15
98.03
97.88
97.77
97.71
97.47
97.16
97.01
96.85
96.59
96.46
96.49
96.60
96.59
96.39
95.93
95.69
AVERAGE
PPM OF
NOX EMIT.
DURING
INTERVAL
73
48
51
66
80
71
53
48
46
45
48
51
54
59
65
70
72
74
76
77
81
87
91
93
101
110
117
120
121
-------
TABLE A-24, CUMULATIVE NOX MASS LOADING, AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NOX
EMITTED DURING TEST — 8
HERCULES INC., RJ>J 8, INLdT HV-12, OUTLET HV-13, UNIT A 1*04-1306 3/12/75
I
-P>
(VJ
TiM£
W3
CYCLE
(in)
0
2.3
5.3
11.0
16.}
Id. 3
26. a
31.3
41.0
46.3
56.0
72.3
76.0
So.O
101.3
lla.O
1J1.3
136. J
1*0.3
154.3
lol.O
I7i».3
192.3
196.3
206.3
216.0
221.3
227. it
236.3
242.0
T3TAL
NOX
IN
(GRAMS)
1563.9
3867.5
8323.9
11870.9
13237.3
185*4.3
217*2.3
281*2.8
31*19.2
37-585.7
*8
-------
I
-p-
00
TABLE A-25, SUMMARY OF CALCULATED NOX MASS FLOW RATES AND
CONTROL EFFICIENCIES FOR INSTANTANEOUS FLOW
AND CONCENTRATION DATA FOR TEST ~ 9
HERCULES INC.i RJS 9, INLfcT HV-23, OUTLET HV-13 UNIT B 1017-1503 3/13/75
TIME
INTO
CYCLE
IMIN)
3.3
13. a
13.}
22.0
2s. 0
23.3
32. 0
37.3
43.3
53.3
73.3
78.0
31. J
83.3
33.3
dj.O
87.0
83.3
93.3
103. J
103.3
1AJ.J
125. J
133. a
14 J. J
15J.3
163.3
175.3
133.3
132.3
133. a
134. J
193.0
199.0
205. J
213.3
211. a
213. 0
21*. 0
213.3
216.0
217. J
213.3
219.0
22J.3
225.0
23J.3
INLHT
FLOW
(SCFMI
433)
4300
430-3
4333
3050
3343
3340
3043
3043
3040
5030
5175
3653
3653
3625
3625
3525
6103
6250
5330
5825
5325
58)3
5830
5775
5775
5750
5325
5803
533)
5800
5300
5830
5825
5830
5800
6350
6353
6375
4325
4325
4325
4325
4325
4325
4325
4325
RsGEN.
FLUH
(SCFMI
133J
1030
1030
1030
1030
1030
1030
1330
1030
1030
1035
1035
103J
1030
1030
1030
1030
1015
1020
1040
1035
1035
1035
1030
103.)
1035
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1015
1015
1015
1065
1065
1065
1065
1065
1065
1065
1065
INLET
CONG.
(PPM 1
16HU
1900
166U
1860
1810
laoo
1770
174i»
1750
2050
1850
1660
166!)
1500
1480
1360
1450
1447
1840
2940
2090
3020
3120
3360
3 4 "til
3643
3810
3860
3990
390'J
4290
4370
4123
4170
3980
3790
3790
331U
3750
3360
3240
3233
3260
2600
2600
3080
3290
OUTLET
CONC .
CPPMI
40
45
50
58
55
52
45
39
38
32
31
30
30
30
30
30
30
30
30
44
45
54
56
64
76
81
91
108
115
118
119
119
126
134
146
150
ISO
150
150
152
151
151
186
74
149
150
148
MASS
FLOW
RATE
IN
(G/HIN)
444.5
449.2
439.7
439.7
303.5
300.9
295.8
290.8
292.5
342.6
503.6
472.3
333.1
301.0
295.0
271.1
231.0
485.3
632.3
937.5
925.6
967.2
994.9
1071.5
1092. 3
1155.8
1204.5
1236.2
1272.4
1243.7
1368.0
1393.6
1313. B
1335.5
1269.2
1208.6
1323.2
1330.2
1314.4
799.0
770.5
768.1
775.2
618.3
618.3
732.4
782.3
MASS
FLDH
RATE
ACS.
(G/MINJ
435.0
438.6
427.9
426.0
294. »
292.2
288.3
284.3
286.2
337.3
500. 1
463.8
327.1
295.0
289.0
265.1
275.2
475.2
622.0
923.5
911.2
949.9
977.1
1051.1
1068.1
1130.0
1175.7
1201.0
1235.7
1206.1
133U.1
1355.6
1273.7
1292.6
1222.6
1160.11
1270.8
1277.11
1261. 0
762 . 11
734. 'J
732.2
731.0
600.7
582.11
696.7
747.2
MASS
FLOW
RATt
REGfcN.
(G/MINI
2.27
2.55
2.83
3.28
3.11
2.94
2.55
2.21
2.15
1.81
1.76
1.71
1.70
1.70
1.70
1.70
1.70
1.67
1.63
2.52
2.56
3.07
3.19
3.62
4.33
4.61
5.15
6.12
6.51
6.63
6.74
6.74
7.14
7.59
8.27
8.49
8.37
8.37
8.37
8.90
8.84
8.84
10.89
4.33
8.72
8.78
8.67
MASS
FLOW
RATE
EMIT.
(G/MINI
7.19
8.09
8.99
10.43
6.11
5.75
4.97
4.31
4.20
3.54
6.76
6.83
4.32
4.32
4.28
4.28
4.12
8.39
8.63
11.52
11.85
14.22
14.67
16.78
19.83
21.11
23.62
28.47
30.16
30.95
31.21
31.21
33.04
35.33
38.29
39.34
44.00
44.00
44.21
27.24
27.07
27.07
33.34
13.26
26.71
26.89
26.53
X
RE OUC.
OF NJX
DJE TO
ADS.
97.87
97.63
97.31
96.88
96.96
97.11
97.46
97.76
97.83
93.44
98.32
98.19
98.19
98.00
97.97
97.79
97.93
97.93
98.37
98.50
98.44
96.21
98.21
93.10
97.79
97.77
97.61
97.20
97.12
95.97
97.23
97.28
9S.94
95.79
9S.33
95.04
95.04
96.06
96.00
95.48
95.34
95.33
94.29.
97.15
94.27
95.13
95.50
X
REOUC.
OF NOX
DU: TO
REGEN.
0.51
0.57
0.64
0.75
1.03
0.98
0.86
0.76
0.74
0.53
0.35
0.36
0.51
0.56
0.58
0.63
0.60
0.34
0.27
0.27
0.28
0.32
0.32
0.34
0.39
0.40
0.43
0.49
0.51
0.54
0.49
0.48
0.54
0.57
0.65
0.70
0.63
0.63
0.64
1.11
1.15
1.15
1.40
0.70
1.41
1.20
1.11
I
R50UC.
DF
NOX
93.38
93.20
97.96
97.63
97.99
98.09
93.32
98.52
98.56
98.97
98.67
98.55
98.70
93.56
98.55
98.42
98.54
98.27
93.64
93.77
98.72
98.53
98.53
98.43
93.18
93.17
98.04
97.70
97.63
97.51
97.72
97.76
97.48
97.35
96.98
96.75
96.67
96.69
96.64
96.59
96.49
96.48
95.70
97.85
95.68
96.33
96.61
-------
TABLE A-25, SUMMARY OF CALCULATED NOX MASS FLOW RATES AND
CONTROL EFFICIENCIES FOR INSTANTANEOUS FLOW
AND CONCENTRATION DATA FOR TEST — 9 (CONTINUED)
HEP>CULES INC., RW! 9, INLET HV-23, OUTLET IIV-13 UNIT B 1017-1503 3/13/75
TIME
INT3
ClfCt-E
(1IN)
233.0
24.)..)
244.1
2*o. J
25J.O
255.1)
263.3
264.0
266.0
267.0
272.0
283.3
283.0
IMLST
FLOW
ISCFM)
4325
432S
4325
4325
4325
6125
6125
6125
6075
6075
6350
6225
6225
RSGEN.
FLOW
(SCFMI
1065
1J65
1065
1065
1J65
1190
1200
1140
1065
1035
1025
1325
1025
INLET
CONC.
(PPM)
3640
3630
3390
3080
3470
4050
4260
4220
285U
2850
2560
2160
2060
OUTLET
CONC.
(PPM)
149
151
158
160
166
174
189
194
195
200
201
192
188
MASS
FLOW
RATE
IN
IS/MINI
865.6
863.2
734.6
732.4
825.1
1361.9
1434.6
1421.1
951.9
951.9
851.6
739.3
705.1
MASS
FLOW
RATS
ADS.
(G/XIN)
830.1
827.3
697.2
694.4
785. 7
1305.3
1371.0
1355.8
886.8
885.1
784.7
673.6
640.7
MASS
FL3M
RATE
REGEN.
(G/MIN)
8.72
8.84
9.25
9.37
9.72
11.38
12.47
12.16
11.42
11.38
11.33
10.82
10.59
MASS
FLOW
RATE
EMIT.
(G/MIMI
26.71
27.07
28.32
28.68
29.75
47.21
51.18
53.17
53.71
55.42
55.53
54.89
53.75
t
REDUC.
OF NOX
OJE T3
ADS.
95.91
95.84
94.89
94.81
95.22
95.70
95.56
95.40
93.16
92.98
92.15
91.11
90.87
X
REDUC.
OF NJX
DUE TJ
REGEN.
1.01
1.02
1.26
1.28
1.18
0.83
0.87
0.86
1.20
1.20
1.33
1.46
1.50
<
REOJ-.
3F
NJX
96.91
96.86
96.15
96.U8
96.39
96.54
96.43
96.26
94.36
94.18
93.48
9Z.5T
92.38
-------
Jl-
Ul
I
TABLE A-26, SUMMARY OF NOX MASS LOADING, AVERAGE
CONTROL EFFICIENCY AND AVERAGE CONCENTRATION
OF NOX EMITTED FOR INTERVALS DURING TEST — 9
HcRCULES iMC.t RUN 9, INLcT HV-23, OUTLET HV-13 UNIT B 1017-1503 3/13/75
JF
CfCLE
(MIN) <
J.3- 13.3
13.0- 13. J
13.3- 22.0
22.3- 26.0
26.3- 23.0
2i.3- 32.3
32.0- 37.3
37.0- 43.3
43.3- 58.3
53.0- 73.3
73.3- 78.3
73.3- 31.3
31.3- 83.3
83.3- 85.0
85.3- 86.3
86.0- 37.3
87.3- 83.0
83.3- 93.3
93.3-103.3
103.3-103.3
108.3-120.3
12J. 3-125.0
12i.3-133.3
133.3-145.0
145.J-153.J
153.3-163.3
163.0-175.3
175.0-183.0
183.3-182.0
132.3-183.3
183.0-184.0
18*. 3-193. 3
193.3-195.3
195.3-205.0
235.3-213.3
213.0-211.0
211.3-213.0
213.0-214.0
21*. 0-215. 3
215.0-216.0 '
2U.O-217.0
217.3-213.3
213.0-219.0
219. 0-220.0
223.0-225.3
225.3-233.3
233.0-235.3
NOX
3USIN3
| ^ J F>^ V A L
1 G*. A'4i )
5803.3
2222.4
1759.0
1486.5
60^.4
1193.4
1466. 7
1751.3
4763.6
6384.2
2452.2
1203.2
634.2
596.0
283.0
276.0
383.2
2794.0
7849.2
4657.8
11356.7
4905.4
5166.1
16228.1
562 ).l
11801.4
18305.5
6271.5
2516.1
1335.9
1380.3
8122.2
6623.4
13023.5
6194.5
1265.9
2653.4
1322.3
1056.7
784.7
769.3
771.6
696.7
613.3
3376.7
3786.9
4119.8
NOX
AJSURPEO
DURING
INTtRVAL
(GRAMS )
5678.2
2166.2
1707.9
1440.7
586.5
1161.0
1431.6
1711.4
4675.8
6280.1
2409.6
1136.3
622.1
584.0
277.0
270.1
375.2
2743.1
7727.5
4536.7
11166.4
4817.5
5070.4
15894.0
5495.4
11528.9
17830.3
6U93.4
2441.8
1268.1
1342.9
7887.8
6415.6
• 12576.2
5958.5
1215.8
2548.7
1269.8
1012.3
748.7
733.4
731.6
665.8
591.8
3198.9
3609.7
3943.2
NOX
Re GIN.
DURING
INTERVAL
(GRAMS)
31.29
13.45
12.23
12.80
6.06
10.99
11.89
13.08
29.73
26.82
8.68
5.11
3.40
3.40
1.70
1.70
1.69
8.39
20.99
12.69
33.80
15.65
17.03
59.46
22.28
48.81
84.52
31.57
13.20
6.71
6.74
41.62
36.81
79.28
41.91
8.43
16.74
8.37
8.64
8.87
8.84
9.87
7.61
6.53
43.77
43.62
43.48
NOX
EMITTfcD
DURING
INTERVAL
(GRAMS)
99.33
42.70
38.83
33.07
11.86
21.44
23.21
25.53
58.02
77.21
33.97
16.73
8.64
8.60
4.28
4.20
6.25
42.54
100.71
58.42
156.44
72.23
78.64
274.59
102.34
223.63
390.66
146.58
61.11
31.08
31.21
192.76
170.93
368.09
1.4.07
41.67
88.00
44.10
35.72
27.15
27.07
30.20
23.30
19.99
133.98
133.53
133.09
PERCENT
OF NOX
ADSORBED
DUX I UG
INTERVAL
97.75
97.47
97.10
96.91
97.04
97.28
97.61
97.79
98.16
98.37
98.26
96.19
98.10
97.99
97.89
97.86
97.93
98.18
98.45
98.47
98.32
98.21
98.15
97.94
97.78
97.69
97.40
97.16
97.05
97.11
97.25
97.11
96.86
96.56
96.19
96.04
96.05
96.03
95.80
95.41
95.33
94.81
95.56
95.71
94.74
95.32
95.71
PERCENT
NOX FOR
REGEN.
DURING
INTERVAL
0.54
0.61
3.70
0.86
1.00
0.92
0.81
D.75
0.62
0.42
0.35
0.42
0.54
0.57
0.60
0.62
0.44
0.30
0.27
0.27
0.30
0.32
0.33
0.37
3.40
0.41
0.46
0.50
0.52
0.51
0.49
0.51
0.56
0.61
0.68
0.67
0.63
0.63
O.B2
1.13
1.15
1.28
1.09
1.06
1.30
1.15
1.06
PERCENT
REDUC.
OF NOX
DURING
INTERVAL
98.29
98.08
97.79
97.78
98.04
98.20
98.42
98.54
98.78
98.79
96.61
98.62
98.64
98.56
98.49
98.48
98.37
98.48
98.72
98.75
98.62
98.53
98.48
98.31
98.18
98.11
97.87
97.66
97.57
97.62
97. 74
97.63
97.42
97.17
96.87
96.71
96.68
96.66
96.62
96.54
96.46
96.09
96.66
96.77
96.03
96.47
96.77
AVERAGE
PPM OF
NOX EMIT.
DURING
INTERVAL
43
47
54
57
54
48
42
39
35
31
30
30
3D
30
30
30
30
30
37
45
50
55
60
70
78
86
100
111
116
118
119
123
130
140
148
150
150
150
151
151
151
168
130
111
149
149
148
-------
TABLE A-26, SUMMARY OF NOX MASS LOADING, AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NOX
EMITTED FOR INTERVALS DURING TEST ~ 9 (CONTINUED)
MERC11LE3 INC., RUtl 0, INLET HV-23, OUTLET IIV-13 UNIT T 1017-1503 V13/7S
•P-
INTERVAL
3F
CYCLE
«*!*!
2ib.0-.2fd.i)
24J.->-2-»4.J
24-».0-£-«&.0
24S.J-25J.3
25J. 0-253. J
2b3.0-2bO.O
26J. J-26-..0
264.0-2&0.0
263.0-267.0
267.0-272.0
272.0-28J.O
280.0-283.0
NOX
IN
3URIM3
INTERVAL
CJRAMSI
*321.9
3196. )
1*67.2
3115.1
5472.6
6 994. 2
5711.5
2373.1
951.9
4508.7
6363.3
2166.5
NOX
ADS'JRBED
DURING
INTtRVAL
(GRAMS)
4143.6
3049.0
139i.6
296 J.I
5227.4
669U.6
5453.5
2242.6
886.0
4174.6
5633.0
1971.4
NOX
REGEN.
CORING
INTERVAL
(GRAMS)
43.92
36.19
18.62
38.18
52.76
59.64
49.26
23.56
11.40
56.77
68.59
32.12
NOX
EMITTED
DURING
IMTERVAL
(5R4MJI
134.43
110.77
57.00
116. d6
192.41
245.9d
208.70
106.89
54.57
277.38
441.70
162.97
PERCENT
OF NOX
AOSCHBED
DURING
INTERVAL
95.87
95.40
94.85
95.02
95.52
95.63
95.48
94.50
93.07
92.59
91.67
91.00
PERCENT
NOX FOR
RSS:M.
DURING
INTERVAL
1.02
1.13
1.27
1.23
0.96
0.85
0.86
0.99
1.20
1.26
1.39
1.48
PERCENT
Rfcoj:.
OF *m
DURING
INTERVAL
96.89
96.53
96.12
96.25
96.48
96.48
96.35
95.50
94.27
93.85
93.06
92.48
AVERAGE
PPM OF
NOX EMIT.
SL'RIMG
INTE.RVAL
150
154
159
163
171
181
192
195
198
200
196
190
-------
TABLE A-27, CUMULATIVE NOX MASS LOADING, AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NOX
EMITTED DURING TEST ~ 9
HERCULES INC.. RUM 9, INLET HV-23, OUTLET HV-13 UNIT B 1017-1503 3/13/75
TIME
1NT3
CYCLE
• MINI
0
13.3
18.9
22.3
26.3
23.3
32. 3
37.0
43.3
5o.O
73.9
78. j
ai.o
83.3
35.0
86. 3
37.3
83. 0
93.0
103.0
Ui.3
12J.J
125.0
133.3
143.3
153.3
161.0
173.3
18J.3
132. J
133.3
134.0
19 J. 3
193.0
205.0
210. U
211.0
213.3
214.0
215.0
213.0
217.3
213.3
219.0
223.3
225.3
233.0
TOTAL
NOX
IN
(GRAMS!
5803.8
8031.2
9790.2
11276.7
11681.1
1307*. 5
14541.2
16291.2
21J54.8
27438.9
29691.2
31099.4
31733.5
32329.5
32612.5
32688.6
33271.7
36065.7
43914.9
43572.7
59929.3
64334.7
70033.3
H622d.3
91648.9
103650.2
121^55. 3
128227.3
130743.3
132049.2
133430.0
141552.2
148175.6
161199.1
167393.5
163659.5
171312.9
172635.2
173691.9
174476.6
175245.9
176017.5
176714.3
177332.5
180709.2
184496.1
TOTAL
NCX
ADS.
(GRAMS)
5678.2
7344.4
9552.3
10993.0
11579.5
12740.4
14172.0
15BB3.4
20559.3
26339.4
29249.0
3)435.3
31057.4
31641.4
31918.5
32168.6
32563.9
35306.9
43034.4
47621.0
58787.5
636i'5.0
66675.4
84569.4
900a4.8
101593.7
119424.1
125517.4
127959.2
129227.3
130570.1
138457.9
144673.6
157449.7
163408.2
164624.0
167172.7
163442.5
169454.9
170203.6
170936.9
171668.5
172334.3
172926.1
176125.0
179J34.7
NOX
USED FOR
*EGEN.
(GRAMS)
31.3
44.7
57.0
69.8
75.8
86.8
98. 7
111.8
141.5
168.3
177.0
182.1
185.5
188.9
190.6
192.3
194.0
202.4
223.4
236.1
269.9
235.5
302.6
362.0
384.3
433.1
517.6
549.2
562.4
569.1
575.9
617.5
654.3
733.6
775.5
783.9
800.7
809.0
617.7
826.5
835.4
845.2
852.9
859.4
903.2
946.8
TOTAL
NOX
EMIT.
(GRAMSI
99.3
142.0
180.9
213.9
225.8
247.2
270.4
296.0
354.0
431.2
465.2
431.9
490.5
499.1
503.4
507.6
513.9
556.4
657.1
715.5
872.0
944.2
1022.8
1297.4
1399.8
1623.4
2014.1
2160.6
2221. 7
2252.8
2234.0
2476.8
2647.7
3015.8
3209.9
3251.6
3339.6
3383.7
3419.4
3446.5
3473.6
3503.8
3527.1
3547.1
3681.1
3814.6
V
NJX
REDUC.
DUE TO
ADS.
97.75
97.67
97.57
97.48
97.46
97.45
97.46
97.50
97.65
97.81
97.85
•47.86
97.87
97.87
97.87
97.87
97.87
97.90
97.99
98.04
98.09
98.10
98.11
98.08
98.06
98.02
97.92
97.89
97.87
97.36
97.36
97.81
97.77
97.67
97.62
97.61
97.58
97.57
97.56
97.55
97.54
97.53
97.52
97.52
97.46
97.42
*
NOX
REDUC.
DUE TO
REGEN.
0.54
0.56
0.58
0.62
0.64
0.66
0.68
0.69
0.67
0.61
0.59
0.59
0.58
0.58
0.58
0.58
0.58
0.56
0.51
0.49
0.45
0.44
0.43
0.42
0.42
0.42
0.42
0.43
0.43
0.43
0.43
9.44
0.44
0.46
0.46
0.46
0.47
0.47
0.47
0.47
3.48
0.48
0.48
0.48
0.50
0.51
AVG.
%
RtDUC.
Of
NOX
98.29
98.23
98.15
96.10
98.10
98.11
98.14
98.18
98.32
98.43
98.44
98.45
98.45
98.46
98.46
98.46
98.46
98.46
98.50
98.53
98.55
98.54
98.54
98.50
98.48
98.43
98.35
98.31
98.30
98.29
98.29
98.25
98.21
98.13
98.08
98.07
98.05
98.04
98.03
98.02
98.02
98.01
98.00
98.09
97.96
97.93
AVG.
PPM
OF
NOX
EMIT.
42
44
46
47
47
48
47
46
44
41
40
39
39
39
39
39
39
38
38
38
40
41
42
46
47
50
56
57
58
59
59
62
64
68
7i
71
72
73
73
73
7*
74
74
74
76
77
-------
TABLE A-27, CUMULATIVE NOX MASS LOADING, AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NOX
EMITTED DURING TEST ~ 9 (CONTINUED)
MERCULES INC., RUN 9, INLET IIV-23, OUTLET IIV-13 UNIT H 1017-1503 3/13/73
oo
TIMc
INTO
CYCLE
(MINI
23i.O
2*J.J
2**. 3
2*0.0
25J.J
255. J
2o>.0
26*. a
2t>3.0
267. a
272.3
2BJ.D
283.0
TOTAL
NOX
IN
(GRAMS)
18aalS.9
192^37.3
196133.3
197031.3
200716.1
206188.7
21318*. J
218396.*
221269.*
222221.*
226730.1
233393.*
235259.9
TOTAL
NOX
AOS.
(GRAMS)
183678.0
167821.5
190870.5
192262.1
195222.2
200*49.6
2071i0.2
212593.7
21*836.3
215722.3
219896.8
225729.9
227701.3
NOX
USiO FOR
freG£N.
(GRAMS)
990.3
103*. 2
1070.*
1089. 0
1127.2
1179.9
1239.6
1288.8
1312.*
1323.8
1380.6
1*69.2
1501.3
TOfAL
NOX
EMIT.
(GRAMS)
39*7.7
*002.1
*192.9
*2*9.9
*366.8
*559.2
4805.1
5013.8
5120.7
5175.3
5*52.7
589*.*
6057.*
%
NOX
REOUC.
DUE TO
ADS.
97. 3B
97.35
.7.32
97.33
97.26
97.22
97.16
97.12
97.09
97.08
96.99
96.8*
96.79
%
NOX
REDUC.
OUfc TO
REGIN.
a. 53
0.5*
0.55
D.55
3.56
0.57
0.58
0.59
0.59
0.60
0.61
0.63
0.64
AVG.
%
REDUC.
OF
NOX
97.91
97.88
97.86
97.85
97.82
97.79
97.75
97.71
97.69
97.67
97.60
97. *7
97.43
AVG.
PPM
OF
NOX
EMIT.
78
79
81
81
82
8*
86
88
89
90
93
96
98
-------
TABLE A-28, SUMMARY OF CALCULATED NOX MASS FLOW RATES AND
CONTROL EFFICIENCIES FOR INSTANTANEOUS FLOW
AND CONCENTRATION DATA FOR TEST ~ 10
HERCULES INC.i RUM I0t INLET HV-23f OUTLET HV-13 UNIT A 1503-1905 3/13/75
.1
•P-
vo
I
TIME
HTJ
CYCLE
(SIN)
0.0
1.0
6.0
7.0
12.0
i+. a
la.)
20.0
21. 3
22.3
25.3
27.0
32.0
33.3
34.0
42.}
48.0
5J.O
51.)
53.0
57.3
63.0
60. J
63.0
72.0
7d.J
82.0
8+.0
35.0
37.0
92.3
93.0
96.3
93.0
102.3
117.3
132.3
137.0
147. 3
152.0
162.0
167.0
173.3
177.0
187.9
133.0
192.0
HLET
FLOW
(SCF>4I
o22i
5925
5953
5953
5925
5925
5953
5953
5953
5950
5975
5975
6030
6013
oOOJ
6075
6075
6075
6T75
6075
6375
6075
6075
6075
6103
6103
6100
6100
6100
o075
6375
6075
6075
6075
6075
6133
6103
6125
6150
6153
6100
6075
6075
6075
6075
6075
6050
RSGEN.
FLOW
(SCFMI
1025
1325
1025
1325
1025
1025
1325
1025
1025
1025
1025
1025
1025
1025
1025
1325
1325
1025
1325
1025
1025
1025
1025
1025
1025
1325
1325
1325
1025
1025
1025
1025
1025
1325
1025
1025
1075
1025
1325
1025
1025
1025
1325
1025
1025
1025
1025
INLET
CONC .
(CPK)
2060
2O60
2510
263J
3100
2970
3080
2910
2880
2880
3050
2980
2iJ50
2990
2720
2863
3000
2850
2980
3030
2910
2960
3100
3020
3110
2860
2950
290U
3043
2990
2920
2940
2710
2710
2950
3160
3 ZOO
3120
3050
3060
3210
3160
3120
3200
3380
3480
3380
OUTLET
CONC.
(PPM)
168
116
89
89
119
145
124
95
85
79
65
66
56
56
55
54
51
51
51
50
49
51
55
59
62
70
76
78
79
81
85
89
94
96
101
119
132
136
142
146
159
165
175
179
196
198
208
MASS
FLOW
RUE
IS
(G/MIN)
705.1
671.1
821.1
860.4
1009.9
967.5
1007.6
952.0
942.2
942.2
1002.0
979.0
940.2
986.4
897.3
955.3
1032.0
951.9
995.4
1012.1
972.0
988.7
1035.4
1008.7
1043.1
959.2
989.4
972.6
1019.6
998.7
975.3
932.0
935. 2
905.2
985.3
1059.3
1073.2
1050.7
1031.3
1034.7
1076.6
1055.5
1042.1
1068.8
1129.0
1162.4
1124.3
MASS
FLOW
RATE
ADS.
(G/MIN)
64U.7
633.3
792.0
831.3
971.1
920.3
967.0
920.9
914.4
916.3
980.6
957.3
921.7
967.9
879.2
937.2
985.0
934.9
978.3
995. -V
955.6
971.6
1017.1
989.0
1022.3
935.7
963.9
946.5
993.1
971.6
946.9
952.3
873.8
873.1
951.6
1019.9
1029.0
1004.9
983.3
985. :»
1023.3
1000.4
983.7
1009.1
1063.5
1096.2
1055.1
MASS
FLOW
R4TE
REGfN.
(G/MIN)
10.59
6.54
5.02
5.02
6.71
8.17
6.99
5.35
4.79
4.45
3.66
3.72
3.16
3.16
3.10
3.04
2.87
2.87
2.87
2.62
2.76
2.87
3.13
3.33
3.49
3.94
4.28
4.43
4.45
4.56
4.79
5.02
5.33
5.41
5.69
6.71
7.80
7.66
8.00
8.23
8.96
9.31}
9.86
10.09
11.05
11.16
11.72
MASS
FLOW
RATE
EMIT.
(G/MIN)
53.75
31.25
24.10
24.10
32.06
39.06
33.58
25.72
23.02
21.39
17.69
17.96
15.32
15.32
15.04
14.99
14.16
14.16
14.16
13.88
13.61
14.16
15.27
16.38
17.30
19.53
21.21
21.76
22.04
22.49
23.60
24.71
26.10
26.66
28.04
33.20
36.47
38.14
40.01
41.14
44.37
45.81
48.59
49.70
54.42
54.98
57.47
T
REOUC.
OF N3X
DUE TO
AOS.
90.87
94.37
96.45
96.62
96.16
95.12
95.97
96.74
97.05
97.26
97.87
97.79
98.04
98.13
97.98
98.11
98.30
98.21
98.29
98.35
98.32
98.28
98.23
98.05
98.01
97.55
97.42
97.31
97.40
97.29
97.09
96.97
9i.S3
96.46
96.58
9S.23
95.88
95.64
95.34
95.23
95. US
94.78
94.39
94.41
94.20
94.31
93.85
I
REOUC.
OF NOX
DUE TO
REGEN.
1.50
0.97
0.61
0.58
0.66
0.84
0.69
0.56
0.51
0.47
0.37
0.38
0.34
0.32
0.35
0.32
0.29
0.30
0.29
0.28
0.28
0.29
0.33
0.33
0.33
0.41
0.43
0.45
0.44
0.46
0.49
0.51
0.59
0.60
0.53
0.63
0.73
0.73
0.78
0.80
0.83
0.88
0.95
0.94
0.98
0.96
1.04
X
RcOUC.
OF
sax
92.38
95.34
97.07
97.20
96.83
95.96
96.67
97.30
97.56
97.73
98.23
93.17
98.37
98.45
98.32
98.43
98.59
98.51
93. id
93.63
98.60
98.57
98.53
93.38
98.34
97.96
97.86
97.76
97.84
97.75
97.58
97.48
97.12
97.06
97.15
96.87
96.60
96.37
96.12
96.02
95.88
95.66
95.34
95.35
95.18
95.27
94.89
-------
TABLE-A-28, SUMMARY OF CALCULATED NOX MASS FLOW RATES AND
CONTROL EFFICIENCIES FOR INSTANTANEOUS FLOW
AND CONCENTRATION DATA FOR TEST — 10 (CONTINUED)
HERCULES INC., RUN 10, II1LET MV-23 OUTLET IIV-13 UHIT A 1503-110S 3/13/75
O
I
• TIM£
INTJ
CVCLE
MINI
237.0
217.3
223. j
22^.0
231.3
237.0
242.1)
INLHT
FLO<<
(SCFM)
0075
6053
6053
6053
6053
6050
6053
*=GEN.
FLOW
(SCFM)
1025
1025
1)25
132b
1025
1035
1025
IMLST
CUNC.
(PPM)
3500
3610
3580
3560
3520
3600
3520
3UTLET
CCNC.
(PPM)
230
245
254
258
264
264
268
MASS
FLOW
RATE
IN
(G/MIN)
1169.0
1200.8
1190.8
1134.2
1170.9
1197.5
1170.9
MASS
FLOW
RATE
ADS.
(G/MIN)
1092.2
1119.3
1106.4
1098.4
1083.1
1109.7
1081.7
MASS
FLDM
RiTfc
RfGtN.
(G/MIN)
12.96
13.81
14.31
14.54
14.88
15.02
15.10
MASS
FLCW
RATE
EMIT.
(G/MIN)
63.86
67.69
70.18
71.28
72.94
72.79
74.04
»
RSOUC.
OF NOX
OUc TO
ADS.
93.43
93.21
92.91
92.75
92.50
92.67
92.39
X
REDUC.
OF NOX
Ddc TO
REGEN.
1.11
1.15
1.20
1.23
1.27
1.25
1.29
t
REOJC.
OP
N3X
94.54
94.36
94.11
93.9U
93. 7T
93.92
93.68
-------
Ui
I-1
TABLE A-29, SUMMARY OF NOX MASS LOADING, AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NOX
EMITTED FOR INTERVALS DURING TEST — 10
HERCULES INC., RUN 10, INLET HV-23, OUTLET HV-13 UNIT A 1503-1905 3/13/75
INTERVAL
JF
CYCLE
IUIM
3.3- 1.3
1.0- 6.0
s.j- 7.3
7.0- 12. 0
12.0- 14.3
14.0- 18.0
18. J- 20.0
23.3- 21.3
21.0- 22.0
22.0- 25.0
25. J- 27. i)
27.0- 32.0
32. 3- 33.3
33.0- 34.0
34.3- 42.0
42.0- 48.3
48.0- 50.U
50.0- 51.0
51.0- 53.3
53.0- 57.0
57.0- 63.0
63. J- 66.0
66.0- 68.0
6i.O- 72.3
72.,)- 73.3
7d.O- 82.3
82.0- 84.0
84.0- 35.0
85.0- 87.0
87. J- 92.0
92.0- 93.0
93. Or 96.0
9o.O- 98.0
96.0-102.0
102.0-117.3
117.0-132.0
132. 0-137. J
137.0-147.0
1*7.3-152.0
152.3-162.0
162.0-167.0
167.3-173.3
173.0-177.0
177.3-1B7.0
187.0-188.0
183.3-192.0
192.0-207.0
NQX
IN
OU^INJ
HTiRVAL
I334MS)
688.1
3730.5
B4.T.7
4675.6
1977.4
3953.2
1959.6
947.1
947.2
291S.2
1983. 7
4797.9
963.3
941.3
7413.3
5871.9
195*. 0
973.5
2007.4
3 96 3 . I
5882.0
3036.2
2044.2
4103.5
6016.3
3897.2
1962.1
996.1
2013.3
4935.0
578.7
2830.8
1810.3
3781.0
15338.7
15993.3
5339.3
10410.1
5165.3
10556.4
5330.2
6292.3
4221.9
10989.0
1145.7
4573.4
17203.2
NOX
ADSORBED
OUKItiG
INTERVAL
(GRAMS )
637.0
3563.2
B11.6
4505.9
1891.4
3774.6
1887.9
917.6
915.3
2845,4
1937.9
4697.5
944.8
923.5
7265.6
5766.7
1919.9
956.6
1973.7
3901.9
5781.8
2?83.1
2006.1
4022.5
5874.0
3799.3
1910.4
969.8
1964.7
4796.4
949.6
2739.1
1746.9
3649.4
14786.3
15366.6
5
-------
TABLE A-29, SUMMARY OF NO
x MASS LOADING, AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NOX
EMITTED FOR INTERVALS DURING TEST — 10 (CONTINUED)
IIERCULE3 IIIC., RUN 10, INLET IIV-23, OUTLET HV-13 UNIT A 1503-1905 3/13/7S
I
Ln
1NTE*YAL
OF
CYCLc
MINI
2J7.J-217.3
217.J-223.3
223.0-225.0
22>. 3-231.0
231. 3-237. D
237.0-242.0
NCX
IN
3U3ISJ
I 4TESVAL
U*AMS>
11849. J
7175.0
2375.0
7065.2
7105.1
5921.0
NOX
ADSORBED
DUUISG
INTERVAL
( GRAMS J
11057.7
6677.0
2204.7
6544.3
6578.2
5476.5
NCX
REGEN.
DURING
INTERVAL
(GhAMS)
133.85
84.36
28.85
88.25
89.70
75.32
NOX
EMITTED
DURING
INTERVAL
(GRAMS)
657.75
413.59
141.46
432.66
437.20
367.09
PfcRCiNT
Of NJX
ADSORBED
DURING
INTERVAL
93.32
93.06
92.83
92.63
92.58
92.53
PERCENT
NJX FOR
REGEN.
DURING
INTERVAL
1.13
1.18
1.21
1.25
1.26
1.27
PERCENT
REOU:.
OF NDX
DURING
INTERVAL
94.45
94.24
94.04
93.88
93.85
93.80
AVERAGE
PPM OF
NOX EMIT.
DURING
INTERVAL
237
250
256
261
264
266
-------
TABLE A-30, CUMULATIVE NOX MASS LOADING, AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NOX
EMITTED DURING TEST ~ 10
HERCULES INC.t RUM 10. INLET HV-23, OUTLET HV-13 UNIT A 1503-1905 3/13/75
TIME
HT3
CYCLE
(HIM)
0
1.0
6.1)
7.9
12. a
14.3
13.3
23.3
21.0
22. 3
23.3
27. 0
32.3
33.0
34.3
42.3
43.0
sa.o
51.0
53.3
L-7.0
63. J
66.3
63.3
72.3
73.0
82. 3
84.0
85.3
37.0
92.3
93.3
96.0
9d.3
102. a
117.3
132.3
137.0
147.3
152.0
162. J
167.3
173.0
177.3
137.0
1S3.0
192.0
T3T4L
NOX
IN
IG3AMSI
688.1
4418.6
5259.3
9934.9
11 J12.3
15302.6
17622.1
18769.?
19711. t
22627.5
24b03.5
29406.4
30369.7
31311.5
38721.3
44593.7
46547.7
47521.3
49528.7
53496.8
59378.8
62414.9
64*59.1
68562. i
74369.4
78466.6
80423.6
81424.7
83443.)
88378.3
89356.7
92187.4
93997.3
97778.3
113117.5
129115.5
134425.3
144035.3
15033*3.4
160556.3
165637.3
172179.3
176401.7
187390.7
188536.4
193109.7
TOTAL
NOX
ADS.
(GRAMS)
637.0
4200.2
5011.9
9517.8
11409.2
151fa3.8
17071.7
17S89.4
13904.7
21750.1
23688.0
283B5.5
29330.3
31253.8
37519.4
43286.1
45206.0
46162.6
48136.3
52038.2
57820.0
60803.1
628U9.1
66331.7
72705.6
76504.9
78415.3
79385.0
81349.8
86146.2
87095.8
89834.3
91581.-7
95231.1
110017.5
125384.1
130468.7
140409.7
145331.3
155374.2
160433.3
166385.4
173370.9
130733.6
181813.5
186116.2
NOX
USED FOR
REGfcN.
(GRAMS)
8.6
37.4
42.5
71.8
86.6
117.0
129.3
134.4
139.0
151.2
158.6
175.7
178.9
182.0
206.6
224.4
230.1
233.0
238.7
249.8
266.7
275.7
282.1
295.8
318.1
334.5
343.2
347.6
356.6
380.0
384.9
400.4
411.1
433.3
526.3
635.1
673.8
752.1
792.7
87fa.6
924.3
981.8
1021.7
1127.3
1138.4
1184.2
TOTAL
NOX
EMIT.
(GRAMS)
42.5
180.9
205.0
345.4
416.5
561.3
621.1
645.5
667.7
726.3
761.9
845.1
860.5
875.6
995.8
1083.2
1111.6
1125.7
1153.8
1208.7
1292.0
1336.2
1367.8
1435.2
15^5.7
1627.2
1670.2
1692.1
1736.6
1851.8
1876.0
1952.2
2004.9
2114.3
2573.7
3096.3
3232.8
3673.5
3876.4
4303.9
4529.4
4812.6
5009.2
5529.8
5584.5
5809.3
t
NOX
REDUC.
DUE TO
ADS.
92.58
95.06
95.30
95.83
95.78
95.72
95.79
95.85
9?. 91
96.12
96.26
96.53
96.58
96.62
96.89
97.07
97.12
97.14
97.19
97.27
97.37
97.42
97.44
97.48
97.50
97.50
97.50
97.49
97.49
97.47
97.47
97.45
97.43
'.7.39
97.26
97.11
97.06
96.94
96.89
96.77
96.71
96.63
96.58
96.45
96.43
96.38
*
NOX
REDUC.
DUfc TO
REGEN.
1.24
3.85
0.81
U.72
0.73
0.74
0.73
0.72
0.71
0.67
0.64
0.60
0.59
0.58
0.53
0.50
0.49
0.49
0.48
0.47
0.45
0.44
0.44
3.43
0.43
0.43
3.43
0.43
0.43
0.43
0.43
0.43
0.44
0.44
3.47
0.49
0.53
•3.52
0.53
0.55
0.56
i).57
0.58
0.60
0.60
0.61
AVG.
*
REDUC.
OF
NOX
93.82
95.91
96.10
96.52
96. 50
96.46
96.52
96.56
96.61
96.79
96.90
97.13
97.17
97.20
97.43
97.57
97.61
97.63
97.67
97.74
97.82
97.86
97.83
97.91
97.93
97.93
97.92
97.92
97.92
97.90
97.90
97.88
97.87
97.84
97.72
97.60
97.56
97.46
97.42
97.32
97.27
97.20
97.16
97.05
97.04
96.99
AVG.
PPN
OF
NOX
EMIT.
153
111
108
106
110
115
115
114
112
107
104
97
96
95
87
83
81
81
80
78
75
74
73
73
72
72
72
72
73
73
73
74
74
75
80
85
87
90
92
96
98
100
102
107
137
109
-------
TABLE A-30, CUMULATIVE NOX MASS LOADING, AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF N0y
EMITTED DURING TEST — 10 (CONTINUED)
HERCULES INC., RUN 10, IIILET MV-23, OUTLET HV-15 UNIT A 1503-1005 3/15/75
Ui
*-
TIMc
INTD
CYCLE
HIM)
207.0
217.0
223.0
225.3
231. J
237. J
242.3
TjTAL
•40X
IN
IG^IS)
210309.9
222159.2
229334.2
2317J9.3
238774.5
245879.6
251800.6
TOTAL
NOX
AOS.
(GRAMS)
202221.3
213279.0
219S56.0
222160.8
228705.1
235283.3
240761.9
NOX
USED FIR
REGEN.
(GRAMS)
1369.3
1503.2
1587.5
1616.4
1704.7
1794.4
1869.7
TOTAL
NOX
EMIT.
(G-^MS)
6719.3
7377.1
7790.6
7932.1
6364.8
8802.0
9169.0
£
N3X
SEOUC.
DUt T3
ADS.
9o.l5
96.00
95.91
95.88
95.78
95.69
95.62
X
NOX
REDUC.
DUE TQ
RbGEN.
0.65
0.68
0.69
0.70
0.71
0.73
0.74
AVG.
«
REDUC.
OF
N3X
96.81
96.68
96.60
96.58
96.50
96.42
96.36
AVG.
PPM
OF
NOX
EMIT.
117
123
126
127
131
134
137
-------
TABLE A-31, SUMMARY OF CALCULATED NOX MASS FLOW RATES AND
CONTROL EFFICIENCIES FOR INSTANTANEOUS FLOW
AND CONCENTRATION DATA FOR TEST — 11
HERCULES INC.t RUN 11, INLET HV-23, OUTLET HV-13 UNIT A 0711-1114 3/14/75
Ui
Ul
I
TIME
mj
CfCLS
• MINI
3.3
3.3
4.3
6.0
14.3
15.3
19.3
23.3
34.3
33.3
49.3
59.0
64.3
79.0
94.3
97.0
109. J
124.3
139.3
15*. 3
160. 0
169.3
134.0
199.0
214.0
220.3
229.3
243.3
INLET
FLOW
(SCFM1
5503
5500
553)
5530
5475
5475
5453
5453
5475
5475
5475
5475
5475
5453
5475
5475
5475
5475
5475
5475
5450
5425
5450
5475
5475
5475
5475
5475
REGEN.
FLOW
(SCFM)
1020
1020
1015
1015
1020
1020
1U20
1020
1020
132U
1020
1)20
1020
1020
1020
1020
1020
1023
1020
1020
1020
1320
1020
1020
1320
1020
1320
1020
INLET
CONG.
(PPM)
3343
3320
3360
3310
322U
3220
3380
3390
3290
3280
3260
3200
3150
3120
3110
3100
31 JO
3130
3090
3980
3060
3060
3050
2990
2963
2960 '
2940
2880
OUTLET
CONC.
(PPM)
190
90
62
78
112
124
101
61
64
61
58
58
61 •
79
95
99
114
128
141
156
164
178
200
219
230
235
240
246
MASS
FLOW
RATE
IN
(G/MINI
1010.0
10J4.0
1016.1
1000.9
969.3
969.3
1012.8
1015.8
990.4
987.4
981.3
963.3
94H.2
934.9
936.2
933.2
933.2
942.2
930.2
927.2
916.9
912.7
913.9
9)0.1
891.0
891.0
835.0
866.9
MASS
FLOW
RATE
ADS.
(G/MINI
952.6
976.7
991.3
977.4
935.6
932.0
982.5
391.5
971.1
969.0
963.9
945.8
929.9
911.2
907.6
903.4
898. 9
903.7
887.7
860.2
867.8
859.6
854.0
834.1
821.8
820.3
812.8
792.9
MASS
FL3W
RATE
REGfcN.
(6/MINI
10.66
5.05
4.58
4.35
6.23
6.95
5.66
4.54
3.59
3.42
3.25
3.25
3.42
4.43
5.33
5.55
6.39
7.18
7.91
8.75
9.23
9.98
11.22
12.28
12.90
13.18
13.46
13.80
MASS
FLOW
RATE
EMIT.
(G/MIN)
46.80
22.17
20.22
19.23
27.43
30.37
24.63
19.73
15.68
14.9*
14.21
14.21
14.94
19.24
23.27
24.25
27.92
31.35
34.54
38.21
39.95
43.11
48.71
53.64
56.34
57.56
58.79
60.26
S
Re DUG.
OF NOX
DJE TO
ADS.
94.31
97.29
97.56
97.64
9b.52
96.15
97. Cl
97.61
98.05
93.14
98.22
98.19
98.06
97.47
9i.95
96.81
9S.32
95.91
95.44
9V. 94
94.64
94.13
93.44
92.68
92.23
92.06
91.84
91.46
*
REOUC.
OF NOX
DUE TO
REGEN.
1.05
0.53
0.45
0.43
0.65
0.72
0.56
0.45
0.36
0.35
0.33
0.34
0.36
0.47
0.57
0.59
0.69
0.76
0.85
0.94
1.00
1.09
1.23
1.36
1.45
1.48
1.52
1.59
S
REOUC.
OF
NOX
95.37
97.79
93.01
98.08
97.17
96.87
97.57
98.06
98.42
98.49
98.55
98.53
98.42
97.94
97.51
97.40
97. Jl
96.67
96.29
95.88
95.64
95.28
94.67
94. 04
93.63
93.54
93.36
93.05
-------
TABLE A-32, SUMMARY OF NOX MASS LOADING, AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NOX
EMITTED FOR INTERVALS DURING TEST — 11
HERCULES INC., RUN 11, INLET HV-23, OUTLET HV-13 UNIT A 0711-111* 3/14/75
INTERVAL
3F
CYCLE
(MINI
3.3- 3.0
3.0- 4.0
4.3- 6.J
6.3- 14.0
1*.3- 15. 3
li>.J- 19.3
n. a- 23.0
23. 3- 34.3
3*. 3- 39.0
39.3- 49.3
49.3- 59.1)
59.0- 64.0
64. j- 79.3
79.0- 94.0
9-,. 3- 97.0
97.3-109.0
109 .0-1- •».''}
124.J-139.3
139.0-154.0
154. J-160.0
16). 0-169. i}
16J.3-18WO
184. 3-199. J
199.3-214.0
2U.3-22J.3
223.3-229.0
229.0-243.0
NOX
IN
DURING
I 4TERVAL
(saAisi
3021.0
1010.0
2017.3
7880.9
969.3
3964.2
4057.2
11034.0
4944.3
9843.5
9723.1
4773. 7
14123.5
14033.2
2834.0
11198.1
It 065. 3
14042.7
13929.9
5532.2
8233.4
13699.9
136J4.9
13433.2
5346.2
7992.2
12263.7
NOX
ADSORBED
DUPING
INTtRVAL
(GRAMS)
2894.0
984.0
196S.6
7651.7
93J.8
3829.0
3948.2
10794.5
485U.2
9664.4
9548.5
4689.2
13803.2
13641.1
2716.4
10813.4
13519.0
13435.4
13259.3
5243.9
7773.3
12852.2
12661.0
12419.5
4926.3
734d'.7
11239.6
NOX
RfcGEN.
DURING
INTERVAL
(GRAMS)
23.55
4.81
B.93
42.54
6.62
25.24
20.41
44.72
17. b3
33.37
32.53
16.68
• 58.89
73.19
16.32
71.67
101.79
113.14
124.92
53.84
86.31
158.99
176.23
188.85
78.23
119.87
190.79
NOX
EMITTED
DURING
INTERVAL
(GRAMS)
103.45
21.19
39.45
186.67
28.90
109.95
88.66
194.73
76.54
145.74
142.07
72.37
256.38
318.84
71.28
313.04
444.57
494.17
545.61
234.47
373.75
688.68
767.67
824.84
341.69
523.56
833.29
PERCENT
OF NOX
ADSORBED
OUAING
INTERVAL
95.80
97.43
97.63
97.09
96.34
96.59
97.31
97.63
98.10
98.18
98.20
93.13
97.77
97.21
96.88
96.56
96.12
95.66
95.19
94.79
94.41
93.81
93.06
92.45
"2.15
91.95
91.65
PERCENT
NOX FOR
REGEN.
DURING
INTERVAL
0.78
0.48
0.44
0.54
0.68
0.64
0.50
0.41
0.35
0.34
0.33
0.35
0.42
0.52
0.58
0.64
0.72
0.81
0.90
0.97
1.05
1.16
'.30
1.41
1.46
1.50
1.56
PERCENT
1EDUC.
OF NOX
DURING
INTERVAL
96.58
97.90
98.04
97.63
97.02
97.23
97.81
98.24
98.45
98.52
98.54
98.48
98.18
97.73
97.46
97.20
96.84
96.48
96.08
95.76
95.46
94.97
94.36
93.86
93.61
93.45
93.21
AVERAGE
PPM OF
NOX EMIT.
DURING
INTERVAL
140
80
80
95
118
113
91
72
62
60
58
59
70
87
97
106
121
134
148
160
171
189
210
224
232
238
243
-------
TABLE A-33, CUMULATIVE NOX MASS LOADING, AVERAGE CONTROL
EFFICIENCY AND AVERAGE CONCENTRATION OF NOX
EMITTED DURING TEST ~ 11
HERCULES INC.t RUS 11, INLET HV-23, OUTLET HV-13 UNIT A 0711-1114 3/14/75
Ui
•^J
I
TIME
INT3
CYCLE
(HIM)
0
3.3
4.0
6.3
14. J
15.3
14.3
23.0
34.0
39.3
49.0
59.3
64.0
79.3
94.3
97.0
1J9.J
124.0
139.3
154.0
163.3
169.0
134.0
199.3
214.1)
223.0
229.3
243.3
TDTAL
NOX
IN
(GRAMS)
3J21.3
4031.3
6043.3
13928.9
14898.2
13362.4
22919.7
33953.6
33897.9
43741.4
58464.5
03243.2
77366.7
91399.3
94203. J
.J5431.9
119467.3
13351.1.')
147439.7
152972.1
161205.5
174905.4
18331D.3
201943.5
2J7289.6
215281.1
227545.5
TOTAL
NOX
ADS.
(GRAMS)
2894.0
3876.0
5646.6
13498.3
14432.1
13261.1
22209.3
33003.8
37854.0
47518.4
57366.8
61756.0
75564.2
89205.4
919H1.8
132735. 2
116254.2
129639.6
142948.9
143192.8
155966.2
168818.4
181479.4
193898.9
196825.1
206173.9
217413.5
NOX
USED FOR
REGEN.
(GRAMS)
23.6
28.4
37.3
79.8
86.4
111.7
132.1
176.8
194.3
227.7
263 . 2
276.9
335.8
409.0
425.3
497.0
598.8
711.9
836.8
890.7
977.0
1136.0
1312.2
1501.1
1579.3
1699.2
1890.0
TOTAL
NOX
EMIT.
(GRAMS)
103.5
124.6
164.1
350.8
379.7
489.6
578. 3
773.0
849.6
995.3
1137.4
1210.2
1466.6
1785.4
1856.7
2169.8
2614.3
3108.5
3654.1
3838.6
4262.3
4951.0
5718.7
6543.5
6885.2
7408.8
8242.1
X
NOX
REDUC.
DUE TO
AOS.
95.80
96.20
96.67
96.91
96.87
96.81
96.90
97.20
97.32
97.49
97.61
97.65
97.67
97.60
97.58
97.47
97.31
97.14
96.95
96.88
96.75
96.52
96.27
96.02
95.92
95.77
95.55
X
NOX
REDUC.
DUE TO
REGEN.
0.78
0.70
0.62
0.57
0.58
0.59
0.58
0.52
0.50
0.47
0.45
0.44
0.43
0.45
0.45
0.47
0.50
0.53
0.57
0.58
0.61
0.65
0.70
0.74
0.76
0.79
0.83
AVG.
X
REDUC.
OF
NOX
96.58
96.91
97.29
97.48
97.45
97.40
97.48
97.72
97.82
97.96
98.05
98.09
98.10
98.05
98.03
97.94
97.81
97.67
97.52
97.46
97.36
97.17
96.97
96.76
96.68
96.56
96.38
AVG.
PPM
OF
NOX
EMIT.
140
126
111
102
133
105
103
93
89
83
79
77
76
78
78
81
86
91
97
99
103
110
118
125
128
132
139
-------
APPENDIX B
NOX EMISSION DATA REPORTS FOR EPA METHOD NO. 7 TESTS
-58-
-------
OXIDES OF NITROGEN I AS NQ2) DATA AND RESULTS
1
Ul
VO
1
RUN 10 DATE TIME
l-HV-12-l 3/5 1316
l-MV-12-2 3/5 13*5
l-HV-12-3 3/5 1*15
1-HV-12-* 3/5 l**6
l-HV-12-5 3/5 1516
l-HV-12-6 3/5 15*5
l-HV-12-7 3/5 16*5
l-HV-12-8 3/5 17*5
2-HV-12-9 3/6 1015
2-HV-12-103/6 1115
2-HV-12-U 3/6 1215
2-HV-12-12 3/6 1316
3-HV-12-13 3/6 1*15
3-HV-12-1* 3/6 1515
3-HV-12-15 3/6 1616
3-HV-12-16 3/6 1715
*-HV-l2-l7 3/7 0915
*-HV-12-l8 3/7 1015
*-HV-12-l9 3/7 1115
*-HV-12-20 3/6 1215
NO
3
5
19
9
20
13
15
1
1
3
5
19
9
20
13
15
1
3
5
19
FLASK
VOL
ML
1965
1955
2116
2053
2069
2071
206*
2039
2039
1965
1955
2116
2053
2069
2071
206*
2039
1965
1955
2116
PRESSURES
INL FLASK
BARO VAC
29.75 26.50
29.7* 26.65
29.72 26.60
29.71 26.60
29.71 26.70
29.70 26.60
29.68 26.65
29.66 26.60
29.78 26. *0
29.77 26.60
29.76 26.65
29.75 26.50
29.73 26.35
29.73 26. *0
29.71 26.50
29.70 26. *5
29.65 26. *S
29.63 26.65
29.61 26.25
29.61 26.35
— IN.HG
FNL FNL
8ARO FLAS
29.76 0.50
29.77 *.90
29.78 0.05
29.77 0.60
29.73 0.20
29.73 0.0
29.72 0.05
29.76 0.85
29.65 0.*5
29.6* 5.85
29.6* 1.95
29.63 0.05
29.61 1.75
29.60 1.05
,29.61 0.*5
29.58 6.10
29.83 2.10.
29.8* 0.90
29.8* *.85
29.85 1.75
TEMP
F
INL FNL
75
7*
75
75
70
73
68
71
75
73
73
7*
7*
7*
75
73
7*
73
72
72
71
70
70
73
81
76
75
71
7*
73
73
73
73
72
73
7*
67
65
65
6*
N
MASS
UG
7550
6550
8900
7650
10500
10500
10650
7200
6850
7250
9900
11850
8350
10150
9100..
6900
6850
5900
11200
1*000
FLOW
RATE
SCFH
5700
5700
5975
5975
5975
5675
5650
5700
5575
5725
5725
5650
5875
5850
5875
5325
5700
**75
5700
5775
NOX
PPM
233*
2*26
2*90
2267
3088
3039
3089
2159
2068
28*0
3270
3372
2635
3078
2685
2627
21*5
1805
*133
*1*5
NOX
RATE
LB/HR
95.0*
98.77
106.28
96.79
131.83
123.21
12*. 68
87.92
82.35
116.16
133.76
136.12
110.60 •
128.65
112.68
99.9*
87.3*
57.71
168.30
170.99
-------
OXIDES OF NITROGEN I AS N02) DATA AND RESULTS
1
o>
o
1
RUN ID
5-HV-12-21
5-HV- 12-22
5-HV- 12-23
5-HV-12-24
5-HV-12-25'
6-HV- 12-26
6-HV-12-27
6-HV- 12-28
6-HV-12-29
6-HV-12-30
6-HV- 12-3 1
6-HV-12-32
6-HV- 12-33
7-HV-12-34
7-HV-12-35
T-HV-12-36
7-HV-12-37
8-HV-12 38
8-HV-12-39
8-HV-12-40
DATE TIME
3/7 1316
3/6 1415
3/7 1517
3/7 1615
3/7 1658
3/U 1415
3/11 1445
3/11 1515
3/11 15*5
3/11 1620
3/11 1645
3/11 1715
3/11 1745
3/12 1023
3/12 1117
3/12 1215
3/12 1316
3/12 1430
3/12 1516
3/12 1615
NO
9
20
13
15
6
1
I
5
21
26
20
8
15
1
3
5
19
22
20
8
FLASK
VOL
ML
2053
2069
2071
2064
2073
2039
1965
1955
2080
2055
2069
2058
2064
2039
1965
1955
2116
2063
2069
2058
PRESSURES
INL FLASK
BARO VAC
29.60
29.58
29.56
29.53
29.54
29.65
29.65
29.62
29.62
29.61
29.60
29.60
29.60
29.53
29.53
29.55
29.55
29.54
29.54
29.50
26.50
26.25
26.50
26.35
26.50
27.35
27.10
26.75
26.60
26.65
26.75
26.75
26.65
26.55
26.45
26.45
26.35
26.40
26.20
26.40
— IN.HG
FNL FNL
BARO FLAS
29.84 3.55
29.82 4.10
29.82 1.75
29.82 4.10.
29.82 1.00
29.51 0.55
29.51 0.80
29.50 0.20
29.53 7.50
29.53 0.70
29.55 2.25
29.55 1.50.
29.50 0.90
29.46 0.65
29.47 1.05
29.46 2.05
29.42 0.05
29.42 0.45
29.33 0.20.
29.33 0.0
TEMP
F
INL FNL
73
76
77
75
78
74
73
75
77
74
75
73
77
77
78
78
78
78
77
77
65
65
65
65
65
78
78
78
78
78
77
75
76
75
73
72
68
68
74
70
N
MASS
UG
8600
8200
9000
6850
9800
3650
2300
3650
4600
2800
3450
5150
4750
4750
9000
8550
9500
8150
9550
9600
FLOW
RATE
SCFM
5675
5725
5450
5550
5550
4250
4350.
4350
5175
5200
5200
5175
5175
4300
4300
4300
4325
5025
5050.
5025
NOX
PPM
2817
2757
2708
2295
2857
1076
717
1132
1863
844
1090
1582
1431
1435
2866
2846
2689
2398
2842
2801
NOX
RATE
LB/HR
114.21
112.78
105.42 -
90.98
113.28
32.67
22.30
35.20
68.88
31.36
40.51
58.48
52.90
44.10
88.04
87.44
83.09
86.09
102.54
100.55
-------
1
o>
1 •
f— "
1
RUN 10
8-HV-12-41
9-HV- 12-42
9-HV- 12-43
9-HV- 12 44
9-HV- 12-45
10HV- 12-46
10HV- 12-47
10HV-12-48
10HV-12-49
11HV- 12-50
MHV-12-51
11HV-12-52
HHV-12-53
l-HV-13-Ol
l-HV- 13-02
l-HV-13-03
1-HV- 13-04
l-HV-13-05
l-HV- 13-06
1-HV- 13-07
D1TE TIME NO
3/12 1745 15
3/13 1047 1
3/13 1132 3
3/13 1219 5
3/13 1317 19
3/13 1530 22
3/13 1632 20
3/13 1732 8
3/13 1847 15
3/14 0747 1
3/14 0847 3
3/14 0947 5
3/14 1047 19
3/5 1258 2
3/5 1318 4
3/5 1350 23
3/5 1420 21
3/5 1454 24
3/5 1520 25
3/5 1550 14
OXIDES OF NITROGEN (AS N02)
FLASK PRESSURES — IN.HG
VOL INL FLASK FNL FNL
. ML BARO VAC BARO FLAS
2064
2039
1965
1955
2116
2063
2069
2058
2064
2039
1965
1955
2116
2035
2041
1984
2080
2053
2076
2124
29.48 26.35
29.44 26.35
29.43 26.25
29.41 26.35
29.39 26.30
29.32 26.30
29.32 26.35
29.35 26.30
29.26 26.25
29.59 26.45
29.62 26.50
29.63 26.70
29.66 29.65
29.75 26.40
29.75 26.65
29.74 26.50
29.72 26.55
29.71 26.20
29.71 26.55
29.70 26.55
29.32 0.40
29.56 2.90
29.59 3.30.
29.63 3.60.
29.65 2.25
29.70 2.65
29.70 1.35
29.70 2.25
29.70 1.85
29.79 0.65
29.79 0.75
29.79 0.35
29.79 1.35
29.76 0.05
29.76 1.50
29.77 0.05
29.78 0.0
29.77 1.25
29.73 0.45
29.72 1.20
DATA AND RESULTS
TEMP N FLOW
F MASS RATE
INL FNL UG SCFM
76
70
68
70
73
73
77
70
72
60
60
60
59
73
75
73
75
75
73
73
71
59
58
59
59
59
59
59
60
51
51
54
54
71
70
70
73
73
73
74
8150
3750
5500
9750
1 1000
7200
5550
9350
10450
1 1000
9500
13150
9550
355
380
450
237
265
244
295
5025
3040
5000
5S25
5825
5975
6075
6150
6050
5475
5475
5475
5475
4675
4675
4950
4955
4925
4950
4650
NQX
PPM
2417
1202
1863
3347
3291 .
2236
1626
2869
3146
3150
2833
3879
2428
104
116
135
67
81
71
87
NOX
RATE
LB/HR
86.77
26.11
66.57
139.28
136.96
95.45
70.58
126.05
135.97 '
123.19
110.79
151.73
94.96
3.49
3.89
4.78
2.40
2.88
2.52
2.89
-------
1
N>
1
RUN ID DATE TI.'IE
l-Htf-13-08 3/5 1650
l-HV-13-09 3/5 1750
2-HV-13-10 3/6 1021
2-HV-13-U 3/6 1120
2-HV-13-12 3/6 1220
2-HV-13-13 3/6 1320
3-HV-13-1* 3/6 1*20
3-HV-13-15 3/6 1520
3-HV-13-16 3/6 1621
*-HV-13-l7 3/7 0921
*-HV-l3-18 3/7 1021
*-HV-l3-l9 3/7 1121
*-HV-13-20 3/7 1220
5-HV-13-21 3/7 1320
5-HV-13-22 3/7 1420
5-HV-13-23 3/7 1524
5-MV-13-2* 3/7 1620
5-HV-13-25 3/7 1654
6-HV-13-26 3/11 1*20
6-HV-13-27 3/ H 1*50
NO.
16
18
2
4
23
21
24
25
1*
2
4
23
21
24
25
14
16
18
2
4
OXIDES OF NITROGEN (AS N02I
FLASK PRESSURES — IN.HG
VOL INL FLASK FNL FNL
ML SARD VAC 8ARO FLAS
2071
2078
2035
2041
198*
2080
2053
2076
2124
2035
2041
1984
2080
2053
2076
2124
2071
2078
2035
20*1
29.68 26.55
29.66 26.60
29.78 26.65
29.77 26.65
29.76 26.55
29.75 26.45
29.73 26.40
29.73 26.50
29.71 26.40
29.65 26.50
29.63 26.45
29.61 26.55
29.61 26.50
29.60 26.45
29.58 26.40
29.56 26.45
29.53 26.50
29.5* 26.45
29.65 27.00
29.65 26.85
29.72 1.40
29.70 2.00
29.65 0.65
29.6* 0.10
29.63 1.45
29.61 5.75
29.61 0.50
29.61 4.55
29.60 1.45
29.8* 1.45
29.8* 0.35
29.84 0.65
29.84 1.75
29.8* 0.90
29.83 2.25
29.82 2.15
29.82 2.60
29.82 3.70
29.51 0.50
29.51 0.25
DATA AND
TEMP
F
INL FNL
70
71
73
73
72
7*
7*
7*
75
73
73
72
72
73
76
77
75
77
74
73
74
7*
73
73
73
72
72
73
73
64
64
65
65
65
65
65
65
65
77
77
RESULTS
N FLOW
MASS RATE
UG SCFM
470
506
336
167
280
354
5*0
235
330
118
103
466
522
200
265
208
420
290
135
30
4625
*650
*520
*675
4700
4580
4835
4815
4840
4685
3480
4690
4765
4655
4630
**30
*S30
4530
3265
3320
NOX
PPM
143
157
101
49
89
1
131
161
82
99
35
29
140
156
58
81
62
130
9*
40
8
NOX
RATE
LB/HR
4.74
5.22
3.27
1.64
3.01
4.29
5.58
2.83
3.43
1.20
0.74
4.70
5.33
1.96
2.70
1.97
4.23
3.05
0.94
0.21
-------
ON
1
RUN ID
6-HV-'U-2B
6-HV-13-29
6-HV-13-30
6-HV-13-31
6-HV-13-32
6-HV- 13-33
7-HV- 13-34
7-HV- 13-35
7-HV- 13-36
B-HV-13-38
8-HV- 13-39
8-HV- 13-40
6-HV-13-41
9-HV- 13-42
•'-*
9-HV-13-43
9-HV-13-44
9-HV- 13-45
10HV-13-46
IOHV-13-47
10HV-13-48
DATE
3/11
3/11
3/11
3/11
3/11
3/11
3/12
3/12
3/12
3/12
3/12
3/12
3/12
3/13
3/13
3/13
3/13
3/13
3/13
3/13
TIME N0.
1520 23
1521 19
1620 9
1645 25
1721 14
1750 16
1028 2
1120 4
1220 23
1430 26
1520 25
1620 14
1720 16
1049 2
1135 4
1200 23
1325 6
1535 26
1635 25
1735 14
OXIDES'QF NITROGEN (AS N02 I
FLASK PRESSURES — IN.HG
VOL INL FLASK FNL FNL
ML BARO VAC liARO FLAS
1984
2116
2053
2076
2124
2071
2035
2041
1984
2055
2076
2124
2071
2035
2041
1984
2073
2055
2076
2124
29.62
29.62
29.61
29.61
29.60
29.60
29.53
29.53
29.55
29.55
29.54
29.50
29.48
29.44
29.43
29.41
29.39
29.33
29.32
29.35
26.65
26.70
26.65
26.70
26.60
26.60
26.45
26.50
26.50
26.45
26.55
26.45
26.40
26.40
26.30
26.55
26.35
26.30
26.30
26.25
29.53 0.0
29.53 0.0
29.55 3.80
29.55 4.50
29.54 1.60
29.50 0.50
29.47 0.45
29.47 0.65
29.46 0.75
29.41 0.40
29.33 1.60
29.35 1.05
.29.33 0.05
29.59 1.60
29.59 3.00
29.62 1.85
29.65 3.25
29.70 1.45
29.60 3.40
29.70 1.85
DATA AND
TEMP
F
INL FNL
75
77
73
75
75
75
77
78
78
78
77
77
76
70
68
68
73
73
69.
70
78
78
79
77
76
77
76
73
71
71
75
70
70
59
59
59
59
61
61
60
RESULTS
N FLOH
MASS RATE
UG SCFM
38
340 .
122
68
78
90
ISO
165
210
158
159
295
351
140
114
206
354
197
316
158
3320
3320
4175
4175
4150
4150
3275
3275
3280
4030
4030
4005
4005
2010
4140
4760
4770
4975
5050
5125
NOX
PPH
11
96
41
23
23
1
26
54
49
65
46
49
86
101
42
36
64
112
58
101
46
NOX
RATE
LB/HR
0.27 '
2.29
1.25
0.71
0.70
0.79
1.27
1.16
1.53
1.35
1.42
2.48
2.92
0.61 •
1.09
2.19
3.83
2.09
3.67
1.70
-------
1
.p-
1
• • • -II-H-— "••^•••••^••. -ii, .—II. ^ ^ m^-~^^~~~-*~~^—^~*^*~f~~—~^~—~**^—^^-~m^^^^—
OXIDES OF NITROGEN IAS NQ2 1
RUN 10 DATE
!OHV-l3-*9 3/13
HHV-13-50 3/1*
11HV- 13-51 3/1*
11HV-13-52 3/1*
11HV-13-53 3/1*
9-HV-23-01 3/13
9-HV-23-02 3/13
9-HV- 23-03 3/13
9-HV-23-0* 3/13
IOHV-23-05 3/13
10HV-23-06 3/13
IOHV-23-07 3/13
10HV-23-08 3/13
11HV- 23-09 3/1*
11HV-23-10 3/1*
11HV-23-11 3/1*
HHV-23-12 3/1*
CAL GAS 1 3/6
CAL GAS 2 3/6
CAL GAS 3 3/6
TIME NO.
1850 16
0750 2
0850 *
0951 23
1050 6
10*5 27
1130 2
1217 28
1315 29
1530 10
1630 11
1730 12
18*5 17 -
07*5 27
08*5 *
09*5 28
10*5 7
6
7
8
FLASK
VOL
ML
2071
2035
20*1
198*
2073
2092
2035
206*
2089
2050
2052
2067
2073
2092
20*1
206*
2099
2073
2099
2058
PRESSURES
INL FLASK
BARO VAC
29,26 26.20
29.59 26.50
29.62 26.55
29.63 26.70
29.66 26.50
29.** 26.20
29.*3 26.*0
29. *1 26. *5
29.39 26.35
29.32 26.25
29.32 26.35
29.36 26. *0
29.26 26.20
29.59 26. *5
29.62 26.35
29.63 26.50
29.66 26.60
29.76 26.75
29.76 26.65
29.76 26.50
— IN.HG
FNL FNL
BARO FLAS
29.70 1.75
29.79 1.85
29.79 *.10
29.79 2.95
29.79 0.20
29.56 0.75 •
29.59 1.90,
29.63 2.20
29.63 1.10
29.70 1.90
29.70 0.90
29.70 .1.05
.29.70 1.05
29.79 0.45
29.79 3.20
29.79 *.00
29.79 O.*0
29.53 8.78
29.80 2.85
29.80 2.35
DATA AND RESULTS
TEMP
F
INL FNL
72
60
60
60
59
70
68
70
73
73
73
70
72 ,
60
60
60
59
75
75
63
60
51
51
5*
5*
59
59
59
59
59
59
58
58
51
51
5*
55
7*
66
68
N
MASS
UG
308
225
281
63*
820
7150
5150.
10250
13150
8250
10150
12000
11650
11000
11500
7750
10250
6250
13350
12750
FLOW
RATE
SCFM
5025
**55
*455
**30
**55
30*0
5000
5825
5825
5975
6075
6150
6050
5*75
5*75
5*75
5*75
1
1
1
NOX
PPM
92
67
92
20*
228
2059
1582
3127
3802
2506
29*9
3*75
3375
30*5
3666
2531
28*0
2700
*167
*030
NOX
RATE
L8/HR
3.31 •
2.15
2.9*
6.*6
7.28
**.72
56.52
130.13
158.23
106.96
128.00
152.67
1*5.87
119.12
1*3. *0
98.99
111.07
0.02
0.03
0.03
-------
OXIDES Of NITROGEN US N02 ) DATA AND RESULTS
FLASK PRESSURES — IN.HG TEMP N FLOW NOX
VOL INL FLASK FNL FNL F MASS RATE NOX RATE
RUN ID DATE TIME NO. ML BARO VAC 8ARO FLAS INL FNL UG SCFM PPM LB/HR
CAL CAS 4 3/7 10 2050 29.76 26.60 29.80 0.0 74 68 142 1 40 0.00
CAL GAS 5 3/7 11 2052 29.75 26.65 29.80 0.0 74 68 138 I 39 0.00
CAL GAS 6 3/7 12 2067 29.75 26.60 29.80 1.60 74 68 142 1 43 0.00
-------
APPENDIX C
EPA REFERENCE METHOD NO. 7
-66-
-------
App. A
Title 40—Protection of Environment
,
"d
tilled waterAnd add/hese wa/hlngs to/
satne storage conti
/ 4.3 Saifiple analysis. Transfer the cqfitents
of the storage co/tainer t/a 60 mf volu-
metric/ask. DIUSte to thi mark /nth de-,
ionize* distilled water ./Pipette / 10
allqxyfit of this/Solution Into a 12B/ml. Erleg£ /17.71;
dd 40 mr of Ison/opanol
tw/ to four (frops of t/orln Indicator. Tiyate
/endpolny using OTO1 N ba/lum
chlorate. Run a/blank v/th each/>ertes
of sampl
6. Calibration.
6.1 ^Tse standard meth6ds and aq\ilpmenj
whlc/ have bain appro/sd by tb/ Admlnlj
tratfr to call/rate the/otamete/pltot tij
'gas meUft, and
Sta/dardlze /he barium perct
gainst 2/ml. of standard siflfurlc i
talnlng/00 ml. of/sopropa;
6.
Sll/Dry gas/volume. ./Correct
rgas i
I 29.93
fluation
i throv
/tandard>
volufce measilred by
whe
dry
ne samp
meter >
dry ga/ meter
tlons/cu. ft.
• Volum/of gas
dry/gas
tlotos), cu,
j— Abgclute tenfperat
lltlon/ 630* R.
T_—Average d|p gas met
•R.
PL, j< Baromerf Ic
mete/, inches
i— Absol/te pressure at
dl/ons, 29.9/inches Hg.
Sulfuirdloxlde goncentra)«on.
'at stand
• temp
at
ature.
orifice
ard
^80j3
acentraUbn of su/ur dlox
' at stanflard conflltlons,
basis, l6./cu. ft./
/.05 x 10-"/t Conversfon factorf Including the
number of rfams per/gram
equivalent of sulfur,
! g./g.-eq/, 463.6 g^lb.. and
i ml.// lb.-l./g/ml.
V, — Wlume of/barium .perch! or a
' tltrant ydsed for/he sam/e,
ml.
• Volume/of barium perchtfrate
tltra/t used fo» the bla/k. ml.
/—Norm/llty of barium perdhlorate
tirfant. g.-«5./l.
r.0,,—Totftl solution volume/of sulfuj
lloxlde, 60 ml.
V. —Volume o/ sample/aliquot A
tratedy
C Volume/of gas ssAnple thnfiugb
the fry gas meter (standard
lltlons) ,/u. ft., se/Equa-
flospherlc/nlssloi/ f rom Sufturlc ,
afacturlng Processes, U.S.
slon of Mr Pollutl/n, Publlomealth Srv-
Publlcallon No./999-AP->3. Clncl^hatl,
ttlo, 196
Corbet^ P. P., /he Detenmlnatlon/of SO,
and SO/ln Flue Isases, Joj/rnal of y5e Insti-
tute o/Fuel, 24yd37-243. 1961.
Many, K. E/and E. JK. Dlehl/Measurlj
SO^nd SO.ower J<: 94-97, o-
veynber, 395
atton, W. P. an/ J. A. Bflnk, Jr./New
qulpmene and 'lechnlque/ for Sampling
"Ohemlca/Process Glases, J. Afr Pollutl/n Con-
trol Ass/clatlon, ft, 162 (18*3) .
equation 6-2
METHOD T DETERMINATION OV NITBOGEK OHDI
EMISSIONS FBOM STATIONABT SOUBCCS
1. Principle and applicability.
1.1 Principle. A grab sample Is collected
In an evacuated flask containing a dilute
sulfurlc acid-hydrogen peroxide absorbing
solution, and the nitrogen oxides, except
nitrous oxide, are measure colorlmetrlcally
using the phenol dlsuUonlc acid (PDS)
procedure.
1.2 Applicability. This method Is applica-
ble for the measurement of nitrogen oxides
from stationary sources only when specified
by the test procedures for determining com-
pliance with New Source Performance
Standards.
2. Apparatus.
2.1 Sampling. See Figure 7-1.
2.1.1 Probe—Pyrex> glass, heated, with
filter to remove paniculate matter. Beating
Is unnecessary If the probe remains dry dur-
ing the purging period.
2.1.2 Collection flask—Two-liter, Pyrex,1
round bottom with short neck and 24/40
standard taper opening, protected against
Implosion or breakage.
2.1.3 Flask valve—T-bore stopcock con-
nected to a 24/40 standard taper joint.
2.1.4 Temperature gauge—Dial-type ther-
mometer, or equivalent, capable of measur-
ing 2* F. intervals from 25* to 126* F.
2.1.6 Vacuum line—Tubing capable of
withstanding a vacuum of 3 Inches Hg abso-
lute pressure, with "T" connection and T-bore
stopcock, or equivalent.
2.1.6 Pressure gauge—D-tube manometer.
36 inches, with 0.1-inch divisions, or
equivalent.
> Trade name.
586
-67-
-------
APP.A
Title 40—Protection of Environment
valve to Its "vent" position and turn off the
pump. Check the manometer for an; fluctu-
ation in the mercury level. If there Is a visi-
ble change over the span of one minute.
check for leaks. Record the initial volume,
temperature, and barometric pressure. Turn
the flask valve to its "purge" position, and
then do the same with the pump valve.
Purge the probe and the vacuum tube using
the squeeze bulb. If condensation occurs In
the probe and flask valve area, heat the probe
and purge until the condensation disappears.
Then turn the pump valve to its "vent" posi-
tion. Turn the flask valve to Its "sample"
position and allow sample to enter the flask
for about 15 seconds. After collecting the
sample, turn the flask valve to Its "purge"
position and disconnect the flask from the
sampling train. Shake the flask for 5
minutes.
4.2 Sample recovery.
4.2.1 Let the flask set for a minimum of
16 hours and then shake the contents for 2
minutes. Connect the flask to a mercury
filled XT-tube manometer, open the valve
from the flask to the manometer, and record
the S ask pressure and temperature along
with the barometric pressure. Transfer tbe
flask contents to a container for shipment
or to a 250 ml. beaker for analysis. Rinse the
flask with two portions of distilled water
(approximately 10 ml.) and add rinse water
to the sample. For a blank use 25 ml. of ab-
sorbing solution and the same volume of dis-
tilled water as used in rinsing the flask. Prior
to shipping or analysis, add sodium hydrox-
ide (IN) dropwlse Into both the sample and
the blank until alkaline to litmus paper
(about 25 to 35 drops In each).
4.3 Analysis.
4.3.1 If the sample has been shipped In
a container, transfer the contents to a 250
ml. beaker using a small amount of distilled
where:
V..— Sample volume at standard condi-
tions (dry basis), ml.
T.14= Absolute temperature at standard
conditions, 530° R.
Plt4— Pressure at standard conditions,
29.92 Inches Hg.
V, = Volume of flask and valve, ml.
V.-=> Volume of absorbing solution, 25 ml.
water. Evaporate the solution to dry-ness on a
steam bath and then cool. Add 2 ml, phenol-
dlsulfonlc add solution to the dried residue
and triturate thoroughly with a glass rod.
Make sure the solution contacts all the resi-
due. Add 1 ml. distilled water and four dropi
of concentrated sulfurlc acid. Heat the solu-
tion on a steam bath for 3 minutes with oc-
casional stirring. Cool, add 20 ml. distilled
water, mix well by stirring, and add concen-
trated ammonium hydroxide dropwlse with
constant stirring until alkaline to litmus
paper. Transfer the solution to a 100 ml.
volumetric flask and wash the beaker three
times with 4 to 5 ml. portions of distilled
water. Dilute to the mark and mix thor-
oughly. If the sample contains solids, trans-
fer a portion of the solution to a clean, dry
centrifuge tube, and centrifuge, or filter a
portion of the solution. Measure the absorb-
ance of each sample at 420 "m using the
blank solution as a zero. Dilute the sample
and the blank with a suitable amount of
distilled water If absorbance falls outside the
range of calibration.
5. Calibration.
5.1 Flask volume. Assemble the flask and
flask valve and fill with water to the stop-
cock. Measure the volume of water to ±10
ml. Number and record the volume on the
flask.
5.2 Spectrophotometer. Add 0.0 to 16.0 ml.
of standard solution to a series of beakers. To
each beaker add 25 ml. of absorbing solution
and add sodium hydroxide (IN) dropwlse
until alkaline to litmus paper (about 25 to
35 drops). Follow the analysis procedure of
section 4.3 to collect enough data to draw •
calibration curve of concentration In ig. NO*
per sample versus absorbance.
6. Calculations.
6.1 Sample volume.
(V'-2S
pressure of flask,
pressure of flask.
p,«- Final absolute
Inches Hg.
P, — Initial absolute
inches Hg.
T.~ Final absolute temperature of flask,
'R.
T.=Initial absolute temperature of flask.
-R.
6.2 Sample concentration. Read
-------
Chapter I—Environmental Protection Agency
App. A
2.1.7 Pump—Capable of producing a vac-
uum of 3 Inches Hg absolute pressure.
2.1.8 Squeeze bulb—One way.
2.2 Sample recovery.
2.2.1 Pipette or dropper.
2.2.2 Glass storage containers—Cushioned
for shipping.
SQUEEZE BUL1
IMP VALVE
FLASK VALVEi
FILTER
GROUND-GLASS SOCKET.
| NO. 12/5
r
4-V.
3-WAY STOPCOCKr
T-BORE. I. PVREI.
2-mm BOSE. 8-mm OO
FLASK _
FLASK SHIELD-. .',
GROUND-GLASS CONE.
STANDARD TAPER.
| SLEEVE NO. 24/40
GROUND-GLASS
SOCKET. | NO. 12/S
PYREX
FOAM ENCASEMENT
BOILING FLASK •
2-LITER. SOUND-BOTTOM. SKC3T %1Ct
WITH | SLEEVE NO. 24/40
Figure 7-1. Sampling train, flask valve, and (task.
2.2.3. Glass wash bottle.
2.3 Analysis.
2.3.1 Steam bath.
2.3.2 Beakers or casseroles—250 ml., one
for each sample and standard (blank).
2.3.3 Volumetric pipettes—1. 2, and 10 ml.
2.3.4 Transfer pipette—10 ml. with 0.1 ml.
divisions.
2.3.5 Volumetric flask—100 ml., one for
each sample, and 1,000 ml. for the standard
(blank).
2.3.6 Spectrophotometer—To measure ab-
lorbance at 420 nm.
2.3.7 Graduated cylinder—100 ml. with
1.0ml. divisions.
2.3.8 Analytical balance—To measure to
0.1 mg.
3. Reagents.
3.1 Sampling.
3.1.1 Absorbing solution—Add 2.8 ml. of
concentrated H,SO( to 1 liter of distilled
water. Mix well and add 6 ml. of 3 percent
hydrogen peroxide. Prepare a fresh solution
weekly and do not expose to extreme heat or
direct sunlight.
3.2 Sample recovery.
3.2.1 Sodium hydroxide (IN)—Dissolve
40 g. NaOH In distilled water and dilute to 1
liter.
3.2.2 Red litmus paper.
3.2.3 Water—Delonlzed, distilled.
3.3 Analysis.
3.3.1 Fuming sulfurlc acid—15 to 18% by
weight free sulfur trloxlde.
3.3.2 Phenol—White solid reagent grade.
3.3.3 Sulfurlc acid—Concentrated reagent
grade.
3.3.4 Standard solution—Dissolve 0.5496 g.
potassium nitrate (KNO3) In distilled water
and dilute to 1 liter. For the working stand-
ard solution, dilute 10 ml. of the resulting
solution to 100 ml. with distilled water. One
ml. of the working standard solution Is
equivalent to 25 tig. nitrogen dioxide.
3.3.5 Water—Delonlzed, distilled.
3.3.6 Phenoldlsulfonlc acid solution—
Dissolve 25 g. of pure white phenol In 150 ml.
concentrated sulfurlc acid on a steam bath.
Cool, add 75 ml. fuming sulfurlc acid, and
beat at 100* C. for 2 hours. Store In a dark,
stoppered bottle.
4. Procedure.
4.1 Sampling.
4.1.1 Pipette 25 ml. of absorbing solution
Into a sample flask. Insert the flask valve
stopper Into the flask with the valve In the
"purge" position. Assemble the sampling
train as shown In Figure 7-1 and place the
probe at the sampling point. Turn the flask
valve and the pump valve to their "evacuate"
positions. Evacuate the flask to at least 3
Inches Hg absolute pressure. Turn the pump
587
-69-
-------
Chapter I—Environmental Protection Agency
App. A
(Phenoldlsulronlc Add Procedure), In: 1968
talnless/steel (3
BOOK of ASTM standards. Pan 23, Philadel-
phia, Pa. 1968. ASTM Designation D-1608-60.
Jacob, M. B.. The Chemical Analysis of Air
Pollutants, New York, N.Y., Interscience Pub-
Ushers. Inc.. 1960. vol. 10. p. 351-356.
fur trioxlde) an
ed by ttfe test p
mpiianee with
ance Standards
2. Apparatus
2.1/Sampll
the
PITOT MANOMET
ICE BAJH IMPINGERS
'^> /BY-PASS
Y TEST
Fiouj* 8-1. S/furic acjfl mist sampling tr
-70-
-------
APPENDIX D
FIELD DATA LOG FOR DDPONT 411 PHOTOMETRIC ANALYZER
-71-
-------
NO FIELD DATA
x
Date
DUPONT All PHOTOWITRIC ANALYZER
Zero Gas
Cylinder Pressure I
Instrument Ser. No. O 1 ^~ 2_
Location /•{• t^fc/ /c'S^ . J3f & Sf-V^y^*^ /\ l^\
1
to
1
TIME
a3o
iZCO
/££>$"
171^
1730
C,
MODE
£i
E*.
M /^feA
K/tfA/
fr \ ^*C.*KY
*^ ^r d ^/(f
M-/^
Ze^
3^Sr
Zevo
3s^
Sa^ir
ZCsf /e= T~
(Indicate Ac
SPAN
SETTING
Z2O
//
,/
//
//
//
^5-o
ZZ2
rt
//
„
ft
ljustments)
ZERO
SETTING
%'§££
//
//
//
//
//
CF£?O
r0s£Z
;j
F sro ~L.
,,
//
FLOW
(cc/min)
-f^
-we?
fOO
^DO
•ftPO
Zero Gas 3 ^BO flfl/f Af'Oi. Cylinder Pressure 7<5 C>
Oxyger
METER
CONG.
(ppu)
<9a
3^eo
^00
L Cylinder Pressure Z.3 C?C/
AVERAGE
RECORDER
% OF CHART
r«?.«r
CONC.
FROM CHART
(ppm)
COMMENTS
Tes A s-o
7^5/ f^-
r^5/" /2,
•
ce// 7*e>*y //>- * /="
^"^ ^-^ ^-o
1^^ rec*-'~^
L**.* o~ 'v&^l,^
-------
Date
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER
Zero Gas ^ O. I Sp/rr
* ,i I, .^^^^^^J^-Xmm^-mMiiiiM
Instrument Ser. No.
Location
OI4-
..
.i»so
Gas
Oxygen
Cylinder Pressure
Cylinder Pressure
Cylinder Pressure
3055-
\
~~*
OJ
TIME
I US'
MODE
2 eve?
A/o
(Indicate Adjustments)
SPAN ZERO
SETTING SETTING
2.Z.2.
/I
it
C.
F
V
If
FLOW
(cc/min)
O
o
O
+O&
3-00
^00
G
METER
CONC.
(ppin)
270O
ooo
+000
tioo
ooo
1850
AVERAGE
RECORDER
% OF CHART
50
20
CONC.
FROM CHART
(ppm)
COMMENTS
(J^rrtj '*"£>
-&U
O *> i "t rs *t
Cell
ti. ,
c/
//3 "C
Cell
116
-------
NO FIELD DATA
x
Date
DUPONT 411 PHOTJWiTRIC ANALYZER
Zero Gas
Instrument Ser. No .
Location
lylinder Pressure /
A /c
Oxygen_
WO, Cylinder Pressure-
Cylinder Pressure
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
CONC.
(ppa)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
95- c?
it
O
S «
/3/-T
i-oo
I30O
.33o
I/
O
O
3*0
too
O
10 JO
/f/5"
O
/42O
'S
iz^to
y /
? fe
!1Z£
J5" C
if CO
p£> S
eg//
J7-I
-------
NO FIELD DATA ..
DUPONT 411 PHOTOMETRIC ANALYZER
.
Date -V-s / /-^
Instrument Ser. No. @ / ' *f- ^_
Location [~j- t^j^x* ij 1 1^* \ L~^cf^^t~^^i'i^' S**t\-
1
-j
Ui
1
TIME
IS'OO
,*o*
/T05
l roe
l&i
ISI6
152.O
15-30
I5VT
/s-fs-
IttO
[600
[&e>
16/5-
16 IO
MODE
•Zero
•S**X"r
5g2/e
A/0A
Slt
pJO^
Sa^fk
I\J ^A
JKlJtiflC
VO*
S&tf'p/'z
A,'0A
'•jOJftf'l'^
fJO x.
5clf#/?/€-
•^M^M^MMbe -L ^-7 tf -f-
(Indicate A
SPAN
SETTING
•2^2,^
//
„
>'
>,
//
//
;/
//
//
;/
//
//
//
^
djustments)
ZERO
SETTING
^iri-
%**7
//
»
//
^
//
//
//
//
//
^
//
//
//
FLOW
(cc/min)
^670
-too
«00
o
-^T-^ ^^ff~^
/ £s\__^^
O
«tf
o
^^? o
Zero Gas Cylinder Pressure
Zero Gas Cylinder Pressure
Oxygen Cylinder Pressure
METER
CONG.
(ppa)
-0/0
^^0
1740
esoo
/ £ £^ ^^
I O-^ *^
2^0
/73Q
/tf^O
/7gO
Z^?0
/?a^
Z^O
/7^
26 1C
\75~C
AVERAGE
RECORDER
% OF CHART
^o
2.O
CONC.
FROM CHART
(ppm)
COMMENTS
*4'** *'"* *****
P£>$ <>dS??f>f &
'
C// ~t<3f> . / Z./ "/^
-------
NO FIELD DATA
x
DATE
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
Page
of Git 2-
TIME
MODE
(Indicate Adjustments)
SPAN ZERO
SETTING SETTING
FLOW
(cc/min)
METER
cose.
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
(630
0
uoo
16
2.00Q
MO
zito
eel/
6SO
J>
2000 f
ifis-O
s/
^75O
1707
7/5T
n
O
26/O
mo
1750
17*0
O
/73.
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER.
(Continued)
DATE 3/S/7S""
Page 5 of C 1 f- ~L _Z^ /cr /
TIME
l$30
^MUHBOIiWqWl^^
MODE
-We
(Indicate A
SPAN
SETTING
ZZ^
flvHVBHHBBBBBBBBBBBHIHHIHHIBBBBBBBBI^l^^vdH
djustments)
ZERO
SETTING
^If?
'
FLOW
(cc/min)
•^^^^•^•AMIW^^^^ta-^^
•
METER
CO-^C.
(ppm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
1 1 • • ,,i , I I. m "mm ill •
COMMENTS
1
" ' ' __|,— ^.^ —
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER
Date
O. I at^t A/Q« Cylinder Pressure /
Instrument Ser. No.
Location
Zaro Gas
_£aga^? A/& Cylinder Pressure 6 ~7
Oxygen
Cylinder Pressure £L
OSES"
oo
TIME
2030
3100
0155
01 $0
MODE
Sa iff fi
(Indicate Adjustments)
SPAN
SETTING
if
u
If
ZERO
SETTING
FS/T
t/
FLOW
(cc/min)
400
O
4-OO
O
O
"f-oo
METER
CONC.
(ppm)
13 80
OZ.O
ooo
c3c>
ISOO
I6BO
15/0
i6e>o
AVERAGE
RECORDER
% OF CHART
20-
9?.
cose.
FROM CHART
(ppm)
COMMENTS
cltm*.f- 0630
t'-o
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE
Page Z-
of
V, le
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
COSC.
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
1000
C £S~G
FSlO
o
Z-f/0
IOCS'
te>
J/
wo
lots-
o
loio
y/
O
ce//
117 ° F
t/
o
+00
/60
100
if
o
itos
j /
O
e.
4-00
//30
O
3360
/3.r
I/
4-0 O
ItOO
O
-------
NO FIELD DATA
DUPONT 411 PHOTOMETRIC ANALYZER.
(Continued)
DATE
Page_
of
TIME
MODE
(Indicate Adjustments)
SPAN ZERO
SETTING SETTING
FLOW
(cc/min)
METER
CONC.
(ppm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
ttso
Fl O
^oo
A/0*
It
32.30
ZOS~
2190
o
5/^o
1 2-/-S.
•Zje.ro
I
oo
o
1115
too
0
33-70
e//
I/
o
12*0
)t
1300
o
3330
zio
H
o
132-0
Sanptf
4-&O
11.60,
h
o
-------
NO FIEJ..D DATA
DATE_
Page_
3/6/75"
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
of
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
CO.^C.
(p-pm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
C.
0
^•oo
Z.IZO.
O
/350
ZZ3O
h
a
3UO
c»
1070
11-15-
O
Z970
mo
1 4-20
MO*
a
O
1770
c e 11
F
II
^00
2.0OO
fftJF
G
L750
So.**
'£L
II
II
^00
O
"iZOO
A/'CX
I/
n
O
3t70
Z.4-W,
/<2L
n
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE
Page
of
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
2ERO
SETTING
FLOW
(cc/min)
METER
co;*c.
(ppm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
A/Ox
0
0
3
o
tsso
-too
Z53
,
CT
1600
NO
n
o
I
oo
to
1605
1616
o
3300
I&IO
ioo
/631
o
307^
3-00
o
3000
1 1
2Z.IO
o
WO
1706
M
0
2/5-C
17 *
i /
o
7/
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE
3/6775-
Page
of
TIME
(110
/730
n if
n*r
1770
Woo
I8S&
1836
Wtt
IBSO
MODE
So/^/e
A/c?*
Sa-irtf/e
AJO^
Sawfie.
NO*
Te12
%.qB&
SfX*.W
^"tfle.
(Indicate A
SPAN
SETTING
2^2,
Jl
//
/ /
)l
)/
ll
t t
}/
//
djustments)
ZERO
SETTING
c es~6
*' 5 1 O
u
//
//
/v
//
n
C&S[0
f&& FSift
//
//
FLOW
(cc/min)
+00
O
^-00
O
mo
O
foo
too
^-oo
&<:;
METER
COMC.
(ppm)
MOO,
t*€0fcj
1170
\Z75~
0610+°
1070
1 \&O
«i£°
ZliO
-no
ooo
3^5-0
IT"
AVERAGE
RECORDER
% OF CHART
17.75-
-L&
?9
CONC.
FROM CHART
(ppm)
COMMENTS
t//=SP"*L Cc>*fcfrTi& *7
//
//
//
//
c?e-// i-esrrfs / ^
-------
Date
NO FIELD DATA -
X
DUPONT 411 PHOTOWSTRIC ANALYZER
Zero Gas <£- &, I
Instrument Ser. No.
Location
Pressure
S~ O
>la Cylinder Pressure ~7O
Cylinder Pressure_
Z3.S-0
I
oo
TIME
01ZO
0135
Woo
IOCS'
MODE
AJO*
(Indicate Adjustments)
SPAN
SETTING
Z2.2.
11
H
)t
II
It
ZERO
SETTING
l/
sie
If
n
FLOW
(cc/min)
a
O
1-00
O
O
O
O
METER
CONG.
IS'' 0
ZT/O
I6OO
i no
.
'0
[610
lito
AVERAGE
RECORDER
% OF CHART
z/
CONG.
FROM CHART
(ppm)
COMMENTS
7^9
77^
*
'
-------
NO FIELD DATA
x
I
oo
DUPONT 411 PHOTOMETRIC ANALYZER.
(Continued)
DATE
Page Z, of Q I + 2, X
TIME
103O
103&
tot?
105" I
I WO
U06
\\isr
IttO
1130
i/45"
1200
1205'
\215~
MODE
MO
*
(Indicate Adjustments)
SPAN
SETTING
/v
it
V
ZERO
SETTING
C
r=
FLOW
(cc/min)
too
o
'too
o
1:00
O
• o
4-00
0
METER
CONC.
zoeo
310O
2-IO
ZI/0,
3670
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
-------
NO FIEJJ) DATA
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE_
Page
3 otOffl.
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
cose.
(ppm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
2-2 Z.
IZ3.0
a
333^
If
40O
tioo
o
3300
I
(30
1150
IWO
MO
152O
/33d?
n
LIZO
2160
+e
)t
O
33S0
/s
y/
o
0^0
^}
F5/+-
2,0
4-OO
l-HO
153
,
*
KJO*
I/
o
1350
)S50
11-00
O
><
ce//
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE
Page
of
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
CONG.
(pom)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
two
S a^/**^
It
yfso
O
I
oo
ItZSTSAm/tc
J/
O
S0O
1700,
O
1£5^
I /
O
Z21O
1510
I/
/ST30
MO*
O
LI1O
~[Z6
IS-7O
O
TtiO
4-PO
1*70,
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE
Page
of OAf£
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
2ERO
SETTING
FLOW
(cc/tain)
METER
co:*c.
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
600
A/O
J/
IS&O
NO
) 1
o
4:00
1570.
IfffO*
/630
O
2.11-0
I
00
c»
-wo
MIS'
I/
o
zwo
^00
I63O
I700
O
Z.2OO
/705~
17/0
-CBO
-------
NO FIELD DATA
X
Date 3//O/7S"
DUPONT 411 PHODXETRIC ANALYZER
Instrument Ser. No.
Location .
VW^r-
/ ^ 2.
Zero Gas
.Zaro-Gas
. / 0t>sr? ,G.Cyl±nder Pressure / «J
.
AJh Cylinder Pressure £3 C>
Cylinder Pressure ~Z. i
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
CONG.
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
03O
c
+0O
£l
j/
too
i /O °
iao ,,:.o
if
400
ce//
I
c»
VO
I
2.0
30
400
-------
NO FIELD DATA
x
Date
Instrument Ser. No.
Location
DUPONT 411 PHOTOMETRIC ANALYZER
Zero Gas -^0, I f>psr?
Cylinder Pressure
1 3 I O
3
A/
a
Oxygen_
A/Qj Cylinder Pressure
Cylinder Pressure
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
CONG.
(ppm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
C9.5-0
FSTO
-40
082V
c>e2$-
OZ5"
coo
2-0
130O
17,6
132O
it
VO
o
I
I/
COO
2,0
t/
O
P P
l&O
n
too
510
WO
76O
^00
4-70
O
400
l^oo
if
O
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER.
(Continued)
DATE
3/X//75-
Page
of Ot+t
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
J2ERO
SETTING
FLOW
(cc/min)
METER
owe.
(ppm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
Cg-SO
570
Jl
o
7*0
1520
560
O
87 O
-too
6-50
A/ O
x
O
\06O
/55O
11
-7ZC
l&OO
O
rzeo
[&05
1615
o
/SfO
h
-too
mo
i/
o
IZ10
it
~TS
O
IllO
PPS
oeso
-------
NO FIELD DATA
x
DOTONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE 3 /I//7S
Page 3
of
/ &/-
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
C0.1C.
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
17CO
o
fi+O
V
O
asr#
/7/S"
0
IZ6O
1730
/f
1270
/73S-
to
I
o
1750
I)
^-oo
0/30
(753-
-3-OO
2,0
~ceJT
4OO
99
mo
-------
Date 3//2/V5'
NO FIELD DATA ..
x
DUPONT 411 PHOTOMETRIC ANALYZER
Zero Gas ^—C\ Ippsrt
Instrument Ser. No. O/
Location
,^ Al
Cylinder Pressure / 3 &
Oxygen
(Indicate Adjustments)
3<7& 0lpf<&r Cylinder Pressure
r t ~
Cylinder Pressure
METER
CONG.
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
V
eel/
CO
I
r~-C>
US
CGI
I/"
. 7
-------
NO FIELD DATA
DUPONT 411 PHOTOMETRIC ANALYZER.
(Continued)
DATE
3//Z/7JT-
2, of Ot<7-7
TIME
MODE
(Indicate Adjustments)
SPAN i ZERO
SETTING SETTING
FLOW
(cc/min)
METER
COHC.
(ppm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
lots'
f^SJfi
\\00
ZZ6O
1105
1700,
/e?o
o
II 20
VO
\\Z5~
ce
ll
/2 2_
H3O
1150
llDO
fiJO
it
li
/J
I/
o
O
Z760
IB70
O
1670
.
+°
O
-------
FIE7.D DATA
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE
Page 3 of
L
I
VO
Ul
I
TIME
O
ilC
MODE
(Indicate Adjustments)
SPAN
SETTING
I/
It
H
I/
1 /
HERO
SETTING
li
FLOW
(cc/min)
&
&
^00
O
O
O
0
^-00
wo
METER
CONIC.
(ppm)
12,70
1600
2180
165-0
1*70
ooo
IBOC
AVERAGE
RECORDER
% OF CHART
Z.O
CONC.
FROM CHART
(ppm)
COMMENTS
cell
O, 5
ce.l}
C f &<*• $ Qy
/-
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER.
(Continued)
DATE
Page
of
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
CO>iC.
(ppm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
11-30
A/O
o
5
ceil
o
I7ZO
1720
*°
1 560
VD
C^
I
If
1670
.
*°
o
2.ZOO
15)0
o
2380
{53?
i/
0
h
1 650
o
it
o
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE
Page
of
TIME
MODE
(Indicate Adjustments)
SPAN ZERO
SETTING SETTING
FLOW
(cc/min)
METER
c
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER.
(Continued)
DATE
Page & of
vo
oo
TIME
l8tO
MODE
(Indicate Adjustments)
SPAN ZERO
SETTING SETTING
c&s-o
rsrzz.
FLOW
(cc/min)
-too
^•oo
33SO
ME'CER
CONC.
os~o
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
-------
NO FIELD DATA
x
Date
3 //
DUPONT All PHOTOMETRIC ANALYZER-
Zero Gas <£-€?. I'psit Xfe. Cylinder Pressure I
Instrument Ser. No. Ol ^~~L- ~ZstfT.
Location tfCr'c \J JfS R&SS&iSf*^ Alo^
£>
.0
1
HC/-Z3
TIME
cats-
Off/6
0630
o&9
ow
CWST
0330
W4C
1C 17
1350
1025-
IW5'
ID^O
MOO
//OjT
MODE
-feV-
~z^eso
Z
$?**>•
-zero
•zerv
zert
S^/k
S^fle
KJOx.
S*#fk
MO^
Sotrfe
A^'A
Sv.yl*
-2T»7 lfs'~t~ '~^~o Oe/niiie^—
(Indicate A
SPAN
SETTING
2£^
/,
/,
//
j,
//
//
//
f/
,',
I/
//
//
//
//
djustments)
UERO
SETTING
/4?5
/x
p-lfS
//
//.
/x
F-li?
//
V
/,'
I/
//
fr
//
/v
FLOW
(cc/min)
SCO
4^
£>00
^^D
4GO
^00 -
^•o
*?&a
teo
O
j^r-^J f*)
^tU' C— ^
a
^^
o
^c?
Oxyger
CONS.
(ppa)
zwo
3ZO
000
3770
000
r{^ / //
/^^^^^\
1 4 ^? C7
i i_ £?O
1 2 rc?0
WO
1 2 S O
/^/O
(Z50
1770
!7\ZQ~o
t F ^^
5as •> ^IfOf, jttr JJC-, Cylinder Pressure
i Cylinder Pressure
AVERAGE
RECORDER
% OF CHART
1£
ZO
^^
So
M.e
•2.0
CONC.
FROM CHART
(ppm)
•
^ - • • 1 m^^^^mm ., ^ ^
COMMENTS
ce;y ^^^ y/^-^
«.£*j*- •Fw-zero
cell -/-&*?& t / 3° s=
^Jj^-t-'-F,** T^O
5/
-------
DATE
3//3/ 75-
Page 7, of
NO FIELD DATA
•X
DUPONT- 411 PHOTOMETRIC ANALYZER
(Continued)
~ 1 3
TIME
MODE
(Indicate Adjustments)
SPAN ZERO
SETTING SETTING
FLOW
(cc/min)
METER
CO-IC.
(ppm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
-V
/30
o
/ATT?
II 30
//35
0
O
I
J&WW
o
n
11/7
O
/Z/7
nn
ce//
//f •/=
if
33-70
123$
o+o
-------
NO FIE1J) DATA
A
I
H1
O
M
I
DUPONT 411 PHOTOMETRIC ANALYZER.
(Cor.tlnued)
DATE
Page
o f
H\/'-1~*> J.
+0
TIME
/320
/33C
MODE
NO
/l/C
(Indicate Adjustments)
SPAN
SETTING
2ERO
SETTING
FS2~7
I/
FLOW
(cc/min)
o
O
too
o
0
METER
COrtC.
(ppm)
4-0 3O
****
3130
25*70
1C 30
7C
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
ii-?
fL.ni/ •(-•"•per &~r
rf.MK.gjr,/.
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE
3//S/7S
Page
of
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
co;
-------
N0x FIELD DATA
DUPONT 411 PHOTOMETRIC ANALYZER.
(Continued)
DATE
Page_
of
H V- ?- 3.
/*
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
CO;TO.
(ppm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
/7/5~
3450
O
73S
A/cV
If
306O
O
OJ
I
1750
1800
II
c?
11
w&o
(9
37/0
7.0SQ
1.010™
/V
4/5C
O
O
-------
NO FIELD DATA
A
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE
Page 6 of
H V - 2~ 3
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
cose.
(ppm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
. 5-2-7
-MO
1 to
F .r.
3*120
WlD
I
M
O
I
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER-
Date B/YfYT^J.
Instrument Ser. No. &/ *j- "2—
Location /•/£?#--(- ^ f s . £fS SC^SPFV" Xl/k
TIME
0630
&3ST
0<&2
C6fS
0651
1-711
07/^
0720
^^^f^^f^^^^^m^
0~W$
0750
oeco
0005T
O&S
MODE
Soffit
z<5vt>
•Z&V
Sfds?
(&>rde
S*~,/<
A/^
Sa^/f
rr
A/^A
St^
NO*
x*
^ CW*f(£?
A/^
A/t/-2.i 2r^/7' /o A=^x<
(Indicate A
SPAN
SETTING
ZiZ.
^
V
,,
,,
>,
//
//
..lll.l.l.l. ^1'^
-'X
//
//
//
//
djustmente)
ZERO
SETTING
C5SC
//
C ^5" <^
/^S-2 7
//
//
n
//
n
•WB^^— •^P«*m*^MI^B»*«V^W
i ;
//
//
J/
//
//
FLOW
(cc/min)
^^?
//
//
-ft^C?
^£>0
•^^0
^ o
-f^c?
C?
^— ^WM^KMOHAMA^hMaMH.
o
-frPO
o
400
&
Zero Gas -^-C/ I firsr? X-'u-iw-Cylinder Pressure / ' •-> C^
Zero C
s. Oxyger
Ttv
MET2R
CON:.
(ppm)
^5-
^^?C>
-fW
ft Bo °
lll^o
O^/)/X
^/c/Cx
Zpft^>
34/0
2.^ e1^
3320
ez./c.
33^^
ZZ./<5
3/«70
!as "3$^&(tss& AJOi Cylinder Pressure ^y $~ (^
i. Cylinder Pressure Z-2. &C>
AVERAGE
RECORDER
% Of CHART
Z3, 7
zo
>/AD
CONC.
FROM CHART
(ppm)
COMMENTS
Ajfyvft V?^" ?t?>0
ceV+sHr /or°c
S jf*LSS' -St^s/ ~/c trfcf "^ o
jtt _ ^. /7 x /^l "7 XX
'I G? "^ & C'^C'r fe» C/ / //
t
'
PO* s*-^/r a*«s
O
Ul
I
-------
NO FIEUD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER.
(Continued)
DATE
Page_
of Ql-f-2.
/-/ I/ -
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
CONC.
(ppm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
Z2
C-BSTO
P5Z-?
0.30
O
O
tlO
OflSO
O
CTv
O
J/
OOO
0=5/5
II
07 SO
O
H
.
If
O
.
O
35 7<9
ICC5
I/
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE
Page_
of
H U/-
/«=>/-
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
co^c.
(p?m)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
NO
o
/035"
it
n
2.1&0
7 ° /=
I
M
O
-too
1*170
n
O
^>
n
,
I12D™
my
nu
'too
4030
IOO
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER
Date 3 M- 75"
Instrument Ser. No. O 1 & (=>
1
M
O
do
1
TIME
n-'+sr
I 1 . ./--
/c. • / -J
izisr
IZ20
1+30
I**
sr^
^PA't'l
^-C ''"O
Ze^
^ /c?a.jo
Z(?'0
He^c^ies. B,
2.50
795-
775-
7^5-
7"?S-
7^7^
'7^
y /
ljustments)
ZERO
SETTING
C iOOO
U
a
»
u
u
C 806
/= 5-00
c BOO
;/
"
//
F'ttO
C SCO
"
FLOW
(cc/min)
4-eo
1-00
*co
<+oo
^t-oo
^C O
*00
Zero G
Spa^st
Zoro G
Oxygen
METER
CONG.
(ppm)
^s-
(700
032.
OSZ
ooo
ooo
SKO1*
Cc-O
as -^-O. !£>#,„ NQn Cylinder Pressure / i? O O
' /
,as ~S>5 aofrj AJC j_ Cylinder Pressure Z-/OO
i Cylinder Pressure ZS"£>0
AVERAGE
RECORDER
% OF CHART
7-?0
CONC.
FROM CHART
(ppm)
COMMENTS
re.sy- ?7.s-
7^5^ ^Z
Tesf Z/.
T^f I7.S-
les-h 357
Tes/ 33
•
Sc ,<=>,-? ZTx7 OZ3
*u/,c,s/: y* ooo. ^
riiT*?*' ii" A^frff ^f ,
/ —f'
f^Jj i~ -f-'rie z £=i^c>
-:e// f e™ p IQ& ° /=•
*e^. *Vcx^;/
/
0
-------
Date S/*/ 7 S-
Instrument Ser. No. C 1 £ &
Location // eVcT<^ / -SJ
NO FIELD DATA -
X
DUPONT 411 PHOTDMTRIC ANALYZER
Zaro Gas ^- C
7ar<» Gas ?>-'~^f>/->^
S^*-C=V /4/A_ Oxygen
- ^
Cylinder Pressure —S <•
Cylinder Pressure_
&ut-l1~ '
TIME
1730
<&3C
MODE
S»^e
<~a./*raKt
(Indicate A
SPAN
SETTING
-71S-
-71$-
djustments)
2ERO
SETTING
C Bco
Ff-fC-
%y?cc
FLOW
(cc/min)
C~^2 * C
.
'
I
I
-------
Date
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER'
Z.sro Gas •*2.Q< I Pf/r? AJO^CCylinder Pressure_
Instrument Ser. No. O / 6 £> -Ztte C
Location
C
1
I-1
h-1
O
1
TIME
030
af*
oess
toes
cvs-
ono
w&
ytso
W5-
\G^
ic^Q
noo
HIQ
IKS'
1115
MODE
Sl^Bfe
7er&
-Zcro
Spa,*?
2.er0
Spa.*
S*V/c
eJo*
S*~,le
lero
-LSrO
•2.e,t>
i**y/c
'Zero
1 i . r} .t /
rrd^c-Ui&S C&sS&tnzr- /f/^,
fit, +•/.,-?—'
(Indicate Ac
SPAN
SETTING
7«rs-
„
795T
//
//
V?^
7?5-
7^5-
7^?-r
7^
71^
-71?
7
F477
//
H
ll
FLOW
(cc/min)
^f^O
3tfO
3C»0
^00
^00
>00
•swo
O
soo
50O
^00
500
5 CO
O
too
O-tyger
METER
CONC.
(pp-,n)
1^0
ow
£><20
gj>5C
ooo
30
?^
oz3
-0'5~f>f>rn A/^g_ Cylinder Pressure [&O&
i Cylinder Pressure ^. B>O C>
AVERAGE
RECORDER
% OF CHART
5-0
3-0
CONC.
FROM CHART
(ppm)
COMMENTS
^' IA "f y ' '
£>ur/s}~] A/t a, Ar /^
cX «-
c^f^e^'^ ]££?*
c*n +"~r ?j& ^^
,
/oo pf~i F*f/ rc^/e
t^^f/r?- "^^^
*JJVA+ +,-„* zw
Pla.rH- Sh*'i~ CteKStSf
-------
NO FIELD DATA
x
DUPONT 411 FHOTOraTRIC ANALYZER
Instrument Ser. No.
Location //e>-g- ..//tp 5 .
Zaro Gas ^~ £ I&/•>,*>^'Q:'Cylinder Pressure_
? xvi- -^ it
7,~rn fltin_ ^ S~j?.?s?7As'L\ Cylinder Pressure_
^^ . ~
Oxygen Cylinder Pressure
/
O
/ 3 O O
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
CONG.
(pp.n)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
-»-7
-TO
-i-OO
iO'C
O
too
-e
-too
/-o
//
J Q
O
13 2.0
735-
O
/35"
4&O
OOO
O
4-0 C
toe
O
O
S
-------
Date
3 /.'
FIELD DATA
DUPONT 411 PHOTOMETRIC ANALYZER-
Zero Gas
Pressure
1 5~OO
KJ
I
•A • / /• >•" £&£l{^
Instrument Ser. No. O 1 6> & _Jta«r-C
Location
TIME
/f3S~
Iff .5"
H-4&
} >•/. C""/*!
^* \? ^x
If 5-4
./ cnj
1 -J i-' T
/so/
,5-07
/^0
/S25T
/53r
/.s-fc?
/S"^'
/5S5-
MODE
IJO^
Sv^le
Zero
~2evo
Sa^fk
t\) O/.
$a*,pk
t*JO ^
So^ftfoie.
A/C?x
S*»f/t
/\y \-f st
tJGLtffl 4?l '
A; Ox
S5V«
Me^ts/c'S £x^<*ftr*er A/tL
Outlet '
(Indicate A<
SPAN
SETTING
*75T
St
//
^/
/y
y,
y/
//
//
//
//
y/
"
>/
'/
Ijustments)
ZERO
SETTING
c 603
//
//
F+et
,,
//
//
//
//
//
//
//
//
//
;/
FLOW
(cc/min)
O
-5^0
1-CO
+00
-3-00
' o
*00
6>
1 £^ (__x
0
.>*^ ^^ ^^
*^/ (^^/ ^X
(p
*etf
0
4-00
Oxyger
METER
CONO.
(?95~
07J
007
d>«7
o^s-
066
07^
07^
085
0^6
093
^f
/S/'°
/O3
/ O S" /o
/ / ^f
!as 3S'j>'t,!rt A/OL Cylinder Pressure / f 0 C->
i Cylinder Pressure
AVERAGE
RECORDER
% OF CHART
^0
CONC.
FROM CHART
(ppm)
a
COMMENTS
c&u*~f no
j
p£>* S~~.,te i+s-f
'
i 5-2.0
^i trr^;f"'/^r}
-------
NO FIELD DATA
x
U>
DUPONT 411 PHOTOMETRIC ANALYZER.
(Continued)
DATE_
Page_
of
TIME
1&C5
1610
1 6
161$
1650
170$
17/0
1120
/ 73C
MODE
Zero
(Indicate Adjustments)
SPAN ZERO
SETTING SETTING
C
F
FLOW
(cc/mln)
C
4-00
o
O
O
i-CO
•ioc
METER
CONC.
(ppm)
/38
fc
ft4?
/s-/
/65"
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
/O7 * f=-
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE
Page
TIME
MODE
(Indicate Adjustments)
SPAN ZERO
SETTING SETTING
FLOW
(cc/min)
METER
CONC.
(ppm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
C 003
/
1-71 +0
737
0
178
)t
4-OO
re//
to?
*
1 SO
V
o
0
1155-
l-oo
'too
0/7
ieio
C 803
-too
ooo
SO
a- d
i&i?
000
30
1810
36
3 -7
-------
Date
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER-
Zero Gas <^ ^..
Ac2 Cylinder Pressure _ / t <
Instrument Ser. No.
Location Mc^r-C c.' /f3
C?L,+/<-*
Zaro Gas_
Oxygen
Cylinder Pressure
Cylinder Pressure
I &O
3
TIME
MODE
(Indicate Adjustments)
SPAN ZERO
SETTING SETTING
FLOW
(cc/min)
METER
CONC.
(pp.n)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
OB20
C ©03
0830
~f- 0 STZ O
IIO°F
9^33
5053
36. 5"
Ul
I
11OO
0
^-00
0135-
o
+00
II
o
tg
035$
Sa
/^
It
I/
^00
/ro
005
I/
o
S"?
oio
O
P/"
lo if
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE
Page_
of
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
CONC.
(p?m)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
025-
.03S"
1-OO
010
) I
+&0
It
o
05-7^
063
1105
O
066
110
1073 +,
O85~
ilO
0
05-6
H
Simpl
ii
o
11*0
^00
ooo
1/5-0
T)
V
too
j /
/v
0
it
If 7
,
*°
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE_
Page_
0
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
CONC.
(ppm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
I'iW
C
o
PDS>
160
C//
O
ff
o
MO
*
O
-zero
S-irrnn/-"
«Z^y*- Jr " ^*F**'
^00
COS"
3/
Z5T
7-&0
4-00
30
25%
J /
2,37
a
O
^s-o
310
O
PPS
u
n
4- CO
J335"
NO
o
-------
NO FIE7JJ DATA
x
DATE_
Page
3/6 / 75-
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
of
f~
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
COSC.
(ppm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
sto
7^5"
27 -f
355"
il
100
23
HO?
ii
o
18
1+08
If 10
oo
llzo
lf-Z-0
-6IZ
celt
1430
li
o&o
150
li
1 1 2.
II
-too
Og>0
077
*°
MO*
ft
o
C71
If
061+
+
1570
II
O
087
4-OO
-
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER.
(Continued)
DATE
75"
Page
S'
of
Q „
TIME
MODE
(Indicate Adjustments)
SPAN ZERO
SETTING SETTING
FLOW
(cc/min)
METER
CONC.
(ppm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
1530
7^5"
ooo
30
'
*>
o
/53CT
n
\
I-1
t-1
VO
I
1)
o
Ii
I/
o
S rt ^» (f 16 2 f
n
i/
NO*
ii
0
II
-O02.
1616
F+68
^00
ooo
30
1650
n
IS
4-00
cell
108°^
a
187
710
II
i-oo
^
1120
o
1-70
-------
NO FIEU) DATA
A
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE
-?sr
Page_
of Q I
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
COSC.
(ppm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
C&03
0
1-0
/735"
NO
*
7 /
n
O
Z&+
1710
n
n
IS'O
/I
\T50
u
LOO
IS'O
N>
O
I9IO
it
i /
30O
35"
-------
Date
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER'
Zero Gas
Pressurelj!T~C> C-)
Instrument Ser. No. @ / (S (~> "Zvra~<.
Location /~f-^^-f ^ /f> <; £&>,-*, 5>e=Mir~)^ A/,
TIME
C840
0850
0100
oicn
oyo
oiis-
^O^^/O
/PJ (2 CrC""
tar
\oo^
IOZO
I030
IO50
no?
\\10
MODE
Savyfe
~2j£t*O
IZzc^O
5pa.i1
Sat^t
),
/f
•Ze.ro
-Ze^o
S^fle
li
It
//
//
A/^
ov+fc-r- '
(Indicate A
SPAN
SETTING
7^5-
//
V
/y
;/
//
//
ft
//
//
//
//
//
//
//
djustments)
ZERO
SETTING
C Q03
F 15 B
^- \Z? £/ ^
t^^^^_f^" ^?
yy
/f
/t
//
//
^ *£f £j /
/,
//
"
//
//
^
FLOW
(cc/min)
zoo
f-PO
4:00
4-00
i-oo
• )l
• //
+00
1rOo
4-00
1-0 O
^00
-too
t€>0
O
a^ Oxyget
METER
CONC.
(PP'Tl)
S^\sft fc
^^I^IJ
-016
ooo
O3&
oe^,
0-70*°
O 7C>,
OV7^
0-7-7
oze
ooo
O6^/y/jtfi A/0 '•» Cylinder Pressure IfyOO
\ Cylinder Pressure ^,3-S»~£^
AVERAGE
RECORDER
% OF CHART
2. -7
30
37 -
3ST75T
3C?
CONC.
FROM CHART
(ppm)
COMMENTS
ft^F^Z^f^s*^.
a.%- OS~OO 3/7/7S- '
^josi- f>^ t^o
ceil ^&t>??& i o 5~ <3/r
P^^> >rt t"t?f£c=» OCf L-/
'
pD ± S^*?/* xc- / Z /
/ /x1 - >«>-«•»/• 's. // - /
-,0r~
.
-------
NO FIELD DATA
A
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE_
Page
of
TIME
MODE
(Indicate Adjustments)
SPAN ZERO
SETTING SETTING
FLOW
(cc/min)
METER
CONC.
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
125-
S3, 3
3O
7
3(2
-too
/ s
110
o
NJ
I
V
/o
1)
/y
/Z 2.
D
zae,
/33^
/*/
2,7.5"
+OO
yy
Of-S
053
-------
NO FIELD DATA
x
NO
CO
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE
Page 3
of
TIME
tizo
Wo
\4-JO
\5IO
1616
MODE
MO*
"Z&D
zero
153B je^-v
I/
(Indicate Adjustments)
SPAN
SETTING
if
ti
2ERO
SETTING
C 803
II
FLOW
(cc/min)
-too
o
^•oo
-too
too
METER
coac.
(p?m)
/-o
/Z5"
AVERAGE
RECORDER
% OF CHART
2.6
30
CONC.
FROM CHART
(ppm)
COMMENTS
ce//
TeTT
p/;"> 5
-iTT*-
Ar 162
-------
NO FIE],D DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE_
Page
of O
TIME
MODE
(Indicate Adjustments)
SPAN ZERO
SETTING SETTING
FLOW
(cc/min)
METER
co;rc.
(ppm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
16*0
It
I /
ts
1702,
u
17/f
I/
mz.
+OQ
1-717
ceo -3.
-too
,
1730
too
173?
-------
NO FIELD DATA
X
DUPONT 411 PHOTOMETRIC ANALYZER
Date •~~>JlOl~75 Z=ro Gas ^.O. / ^ */*' /L&Cy Under Pressure /3
Instrument Ser. No. Ol££
Location l-Jc^rf u /fS ffes$0tev Ala.
I-1
to
Ol
TIME
083$-
oeto
094$
O&S5
OF*
l^OO
MODE
"Zei^o
Ze^o
^>po-i^
Z*^c?
2cre
Ze^t?
On ~f~ifi~''
(Indicate A
SPAN
SETTING
-71.5T
77^
tl
//
//
//
djustments)
ZERO
SETTING
C803
(=4-6 ~7
C~7 1 O
F ^-6 G
lf
i,
If
P7&7
FLOW
(cc/min)
**} OO
4-CO.
„
too
4-00
" n
•
_&i«rGas 3 b> />/"*? JJOy_ Cylinder Pressure / ~7£>C
Oxygen Cylinder Pressure -4^P^^^ 2,Z.5~C>
METER
CONG.
(ppin)
/^^
000
Q&Q
-65
000
AVERAGE
RECORDER
% OF CHART
s-e
30
3^-
Jlec^s',^
/7,73-
30
CONC.
FROM CHART
(ppm)
COMMENTS
^^^^ *~~*
f*4~2 J / / 1 /^^™) ^ f~~
C&tl te*?f> l/0°f=
*
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER
Date 3/}/]-75~~
Zero Gas <£-[) } 0£>stf AlO^ Cylinder Pressure >3f O
Instrument Ser. No. O l£ £ *£f Zfejse^C
Location AJIr>7't-'/P5 Ri° "^^f^ftff^ AI&
1
_i
!
y.
1
TIME
O8b£
oezo
oeir
1500
1320
/3Zr
/350
/J55-
<3£-6
/*2>
I32T
MW
*35-
Hje?
AWT5T
MODE
Zero
~2-€?t^O
„
//
//
opeitf
2-e^O
,,
&>»f,k
A/^A
Ze^
//
^/f
iJOx
&$
o.Alf-t-' "
(Indicate Ac
SPAN
SETTING
79^
//
t/
//
//
/I
i,
//
• //
//
ff
//
H
//
//
ljustments)
liERO
SETTING
€710
f=4fi 7
C^l O
„
//
C Tt<0
//
//
C 7?<2
//
„
//
E-4- ^2 ^V
r S? V^
//
//
//
FLOW
(cc/min)
^00
4 -oo
O&G-
4%>
4-OO
ft
*-o&
400
,f
o
-too
u
+00
o
4OO
^ ^
!as 3?
— *•" / / _ ~ , ,»
Oxygen Cylinder Pressure £.c>/CJ
METER
CONG.
(ppoi)
-H6
<^PO
d^<^
-0«
«f>c^O
03^
f^l
C<90
0^°
OZ^
on
OOO
*/?*
0/-f
tfrl
AVERAGE
RECORDER
% OF CHART
33, e ^"
3>0
30
-2-1
3o
3^
^^.^
30
3?
3C?
CONC.
FROM CHART
(ppm)
COMMENTS
A^J-/ v9^ ^o
*.4»*-f- i^^-wr^
<1&1 1 *fc*m*&*t *f
-------
DATE S////75-
Page Z- of O16£
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER.
(Continued)
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
CONC.
(ppm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
I SCO
C
F
+ OO
COO
30
00%,
A/C
O
015-
400
008
SJO
Ooo
I
I-'
KJ
I
O
Oof
/i
&OO
\
1605
'1
A/O
If
O
1625-
l-oo
7? 0
1635
+&O
1650
O
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE
Paee 3 of Qt£g
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
co:>ic.
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
fOO
OOO
3O
70C
WOx
o
-too
1720
30
c'J 7^
I
M
00
/735T
/750
o
p/?S
1 7 5~0
'+00
. 3
l&CC
C7
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER
Date -3/AW /£;
Instrument Ser. No. O/£"^
Location r^C^r^C. tfu^ $ F$&* 5X fz&pja-'s' *\I &^
I
M
VO
1
TIME
OBIO
Ofi/5T
oevr
0&&
O8f£-
^\C9*tGf\
-*\^?\_'
W35
1007.
WZ7
U*1
.or?
io^o
nil
1/27
//30
MODE
S&t*)pt<£_
*e*>
If
±fA»
zero
•z^o
S*~j*
Sa^
MO*
?w
zerc
JxT/e
A/^^
Z^KO
*y«
C>LS*i-/&~f- '
(Indicate A
SPAN
SETTING
•7
too
4-00
+00
+00
-1-00
0
4OO
-+OC
too
O
too
too
Zero Gas ^O. /«A^ xi^1 L Cylinder Pressure 13CO
t f V
Zero Gas ,3_5" a/tsn AJfi- Cylinder Pressure / £ J5~ C>
Oxygen Cylinder Pressure ^ 3> — 2W>
t5 ^0^^ /^i .^S*_S^ *^ 4^
XJ^^
PP5 Sct^x/e- /OZ^
c-^i. *•" y 6- ^ / _ • * f^ ^*— ^~~ ^- *^
^/^ 5^^y'> // "J.O
/ / . 1 i "** & t~
C €11 -J- / / 3 r-
-------
NO FIELD DATA
x
o
I
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE
3//Z /75-
Page_
of
TIME
o
13 10
1330
MODE
2 eve?
AJC
2 esc
(Indicate Adjustments)
SPAN ZERO
SETTING SETTING
-73 5"
If
If
) t
C
FLOW
(cc/min)
0
O63
1-OO
C
o
METER
CO.^C.
(ppm)
oco
£>£>£
-ota
/0/
06O
Oil
OOO
0^3.
AVERAGE
RECORDER
% OF CHART
SC?
32,
CONC.
FROM CHART
(ppm)
COMMENTS
z o
Srt. **•"/•
ere//
-------
NO FIELD DATA
DATE
Page
3 //Z./7-5T
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
TIME
MODE
(Indicate Adjustments)
SPAN ZERO
SETTIHG SETTING
FLOW
(cc/min)
METER
CONC.
(p?tn)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
4CO
1610
O
PP5
16 ZO
til?
33.3
n
30
I
I-1
u>
mo
O
1:00
001-
000
1735-
400
JOLIti/W
r—*
too
/a./
IBID
40O
1633
If
+00
U
-------
Date
NO FIELD DATA -
x
DUPONT 411 PHOTOMETRIC ANALYZER
Zero Gas <^£>.L
Instrument Ser. No.
Location
3<5"
Oxygen_
Cylinder Pressure_
Cylinder Pressure_
Cylinder Pressure_
TIME
MOCE
(Indicate Adjustments)
SPAN
SETTING
2ERO
SETTING
FLOW
(cc/min)
METER
CONC.
(ppm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
Q9/-5T
C71C
i.
~ce77
!OS°F
f 32,
0630
oqcc
-too
u>
N3
I
tf
4- CO
CS-7
10/0
"26VC
4-OO
32-
C
3 O
<-*& S~f~
1016
i-O B
<£>*-,
A J
OS6
B ~>f>*ji -
P0S
/054
4-CO
Of 9
j i
fa.
\-sffi~l/4i\
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE 3//3/7-S
Page 2, of
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
CONC.
AVERAGE
RECORDER
OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
O30
Z.1.
tf
O
in?
/S
-COf
CI'IC
30
i~
/Z35-
It
10
MO
O
OJ
CO
I
)t
, 7
cell
/3
Zero
tec
136
Cell
iO*}°t=
"zero
+OO
f-e ll
^L^joS't
to T
-too
ZC2-
(87
ISO'l
+OO
0+5-
A535"
O
PE> S ,*?,*
/S-35-
/-e.
-------
NO FIELD DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE
Page 3 of
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
C0.1C.
(ppm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
. a.
C
OOD
30
11
400
os-/,
Cftft °
1635
II
o
te//
Ml* /=
1
h->
U>
I
itt
01-6
3
F&O
Jj
OCO
D
t
U
101,
wo
3/
P33
n
II
IO8
At
O
PPS
1753"
/£/£'
30
-------
NO FIE:J> DATA
X
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE
Page_
of
TIME
LtSO
MODE
NO
(Indicate Adjustments)
SPAN
SETTING
71$
ZERO
SETTING
C71C
^ 70
FLOW
(cc/min)
4&O
METER
COMC.
(ppm)
V-03
AVERAGE
RECORDER
% OF CHART
3(9
36.
CONC.
FROM CHART
(ppm)
COMMENTS
/=
f*P$
,
iO£°F
-------
NO FIELD DATA
Date
DUPONT 411 PHOTOMETRIC ANALYZER
Zero Gas ^//^A"
Gas
Oxygen
-x- AJO~- Cylinder Pressure_
' O O
Cylinder Pressure 2
IME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
CONG.
(ppm)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
/V
3O
^*
o
C
-too
U)
ON
I
7S5
oo©
30
n
O
i /
h
^00
coo
-too
n
O
3O
-------
NO FIE-J) DATA
x
DUPONT 411 PHOTOMETRIC ANALYZER
(Continued)
DATE
TIME
MODE
(Indicate Adjustments)
SPAN
SETTING
ZERO
SETTING
FLOW
(cc/min)
METER
CO'JC.
(p?m)
AVERAGE
RECORDER
% OF CHART
CONC.
FROM CHART
(ppm)
COMMENTS
toco
c
***
0
/=
IGS6
105$
it
&C0
VJ
I
liOO
I/
24 /-
1111
///f-
U12,
C 71
&OO
too
-------
APPENDIX E
FIELD DATA FOR EPA METHOD NO. 7 TESTS
-138-
-------
DATE
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
7*T
RUN NO.
Ajr-
: L1 /- J
nt .
Time
Flask Number
V, Volume of Flask and Valve, ml
V Volume of Absorbing Reagent, ml
Si
V Volume of Flask minus Reagent, ml
Pbi Initial Barometric Presure, in. Hg
Pfi Initial Flask Vacuum, in. Hg vac
P. Initial Absolute Pressure in Flask, in. Hg
P, f Final Barometric Pressure, in. Hg
Pff Final Flask Vacuum in. Hg vac
P Final Absolute Pressure in Flask, in. Hg
I Initial Flask Temperature, "F
T Initial Flask Temperature, °R
I, Final Flask Temperature, °F
T Final Flask Temperature, °R
V Volume of Sample at Dry Std. Cond., ml
sc
M Mass of NO 2 in Gas Sample, pg
C Concentration of NO as N07, dry basis, Ib/scf
2k fc
£
5(373
M
RC"$
^1.?g
K.lf
;i.oi
33&
-8.7ft
w,is
7v.<
f3S~
7^-
,<3V
/2&'"'
7
ZO9Q
2^
2O7
29.76
p£ Co . (oO
;?.H
%-fto
-%&£
W.K
7 iT
rsr
66
^?£
,'6>6S'
/3,3-s&
4.^<2>J
X )"'r
8
«2c\5B
^5
-ta^
29.7^
ZG.^O
3-26
59 Pb
x\ /» i-A./
-^^
Zlif
fa
&3
6B
r^p
/6<7
/ 2,7^0
,x /j--1
V - V. - V
n f a
P = P - P
* r r
Vgc = (17.71)
- P,
fr
ir
P - P
r r
C - (6.2 X 10)
sc
3*7
-139-
-------
DATE
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
CD 7
RUN NO
. C^rtL
// - h /~>r f\i* i)J r^3? J£/ '~r'Z~~
Time
Flask Number
V, Volume of Flask and Valve, ml
V Volume of Absorbing Reagent, ml
3.
V Volume of Flask minus Reagent, ml
P, . Initial Barometric Presure, in. Hg
PC. Initial Flask Vacuum, in. Hg vac
PA Initial Absolute Pressure in Flask, in. Hg
P, f Final Barometric Pressure, in. Hg
Pf ,. Final Flask Vacuum in. Hg vac
Pf Final Absolute Pressure in Flask, in. Hg
T Initial Flask Temperature, *F
I. Initial Flask Temperature, °R
I. Final Flask Temperature, °F
Tf Final Flask Temperature, *R
V Volume of Sample at Dry Std . Cond . , ml
sc
M Mass of N02 in Gas Sample, yg
C Concentration of NO as N0«, dry basis, Ib/scf
A» ••
10
S060
Q ^
tfCotf
k^lL
^660
d/6
mo
Goo
29.30
74
5^V
&$
5 2 3
! x/a
I4Z.
*'f/o-*
I (
2-0^2.
25
2027
ZQ 7^5"
2-kj oi^
j 10
ffl.8c
6, cc
*' ' -J '"'
14
'^/^j'l
(r Q
G^a
'fir
13?
*x™-*
/a
ZOG7
25
2o4i
29 ?£
ZU^
aJX
2<\S£
~ik>
28 2O
74
'^4
£p
6*3
:~7 IS"
)4Z
^'x'?-*
- V
— P
(17.71)
- P.
fr
ir
fi
Pf=Pbf - Pff
(6.2 X 10~5)
M
^•v*^^
V
sc.
K7:'M V
-140-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE OS
RUN NO. //?/c?
/- fflO
P Initial Absolute Pressure in Flask, in. Hg W
P. f Final Barometric Pressure, in. Hg I
P-, Final Flask Vacuum in. Hg vac M
P Final Absolute Pressure in Flask, in. Hg 1 1
T Initial Flask Temperature, °F nr£
T. Initial Flask Temperature, °R I I
rf Final Flask Temperature, °F 1 1
T Final Flask Temperature, *R (1
V Volume of Sample at Dry Std. Cond., ml 1/1
sc II \
M Mass of N0« in Gas Sample, yg / \
C Concentration of NO as N07, dry basis, Ib/scf f 1
JL ^ I
/ -
UM-1
/3/6
3
>9 ,./ 0-7
xi-v o/
7^
d5;^T
7^)
:ISO
V - V, - V
n f a
P a p - p
i rbi r
(17.71)
P - P
r f
T, T.
fr ir
P — P
r r
^0 svcl(u{b
C = (6.2 X 10~5)
M
^^^^^
V
sc
-141-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE 05 Ater 75
RUN NO. irJ<£ . HI/- 12
H£KjuksfLnr_. rSessen-w* /Us., tfun Ho.- /V./Z-3
Time
Flask Number
kr Volume of Flask and Valve, ml
N Volume of Absorbing Reagent, ml
N Volume of Flask minus Reagent, ml
pbi Initial Barometric Presure, in. Hg
pfi Initial Flask Vacuum, in. Hg vac
k Initial Absolute Pressure in Flask, in. Hg
pbf Final Barometric Pressure, in. Hg
yff Final Flask Vacuum in. Hg vac
Q?f Final Absolute Pressure in Flask, in. Hg
re. Initial Flask Temperature, °F
fE. Initial Flask Temperature, °R .,
1 ir v •••
fff Final Flask Temperature, °F
rTf Final Flask Temperature, *R
W Volume of Sample at Dry Std. Cond., ml
pt Mass of NO 2 in Gas Sample, vg
C Concentration of NO as NO-, dry basis, Ib/scf
^4/5
7
2H6
2$
2091
2972
2&£&
d/2
217(5
-O.of
29.73
75
555
10
330
HV-12-4
i446
9
2053
ZG
202&
29.71
26.60
3.1 1
29.77
-O.bO
29.1 J
75
535
7J
J55
M-u-6
'5/6
//
2069
25
20^4
29.71
£6.70
3.01
^7,73
fWO
^9.9.^
70
530
%t
541
V - V, - V
n f a
p = P — 7
Pi Fbi Ffi
V - (17.71)
sc
- p.
fr
ir
Pf=Pbf - Pff
(6.2 X 10~5)
M
^^^^^H
V
sc.
-142-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE OS Afar. 75
RUN NO. I'nlet • tfV-12.
Hzr^.ks. Inc. ftex&mer. /\Lz fan tfo.- UV>\Z-6
Time
Flask Number
Vf Volume of Flask and Valve, ml
V Volume of Absorbing Reagent, ml
V Volume of Flask minus Reagent, ml
Pfei Initial Barometric Presure, in. Hg
Pf . Initial Flask Vacuum, in. Hg vac
P. Initial Absolute Pressure in Flask, in. Hg
P,- Final Barometric Pressure, in. Hg
Pff Final Flask Vacuum in. Hg vac
P Final Absolute Pressure in Flask, in. Hg
I Initial Flask Temperature, °F
T Initial Flask Temperature, °R
Tf Final Flask Temperature, °F
T Final Flask Temperature, *R
V Volume of Sample at Dry Std . Cond . , ml
SC
M Mass of NO 2 in Gas Sample, yg
C Concentration of NO as NO-, dry basis, Ib/scf
/5*5
'3
2071
25
xofo
23.70
2660
3.10
^c/.7o
0,00
*9.73
73
533
*v^b *
53G
M-lZ'7
'64$
'5
9fl£ju~ "
f^ \Jr\j I*
25
2039
2966
^6.65"
. 3-03
^. 72
f 0,0,5"
^9.77
68
528
7/
^^5-
M-IZ-&
'745
1
2039
25-
20/^
29.66
^60
30^
29.76
+a.S5
306 /
77
53 /
7/
5S/
V - V. - V
n f a
P — P — P
ri rbi *
- (17.71)
- P.
fr
ir
p = P - P
*f bf ff
(6.2 X 10~5)
M
^WMHV
V
sc
-143-
-------
DATE
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
7"T
RUN NO
. 1-dLe (• W - / 3.
H'-.rc ul'& . Inc.. & e 5 5em>£6
2.^
/9^0
ZQ.77
2 6. tO
0-/7
A % &
~£8f
23. 79
73
533
73
533
/Z/<>
5"
1*955
*5
/9SO
^976
2G65
3.11
J114
~l,l£
^769
7^
533
73
S33
V - V, - V
n f a
sc
(17.71) (Vn)
- P
P
F
— P
fi
= p - P
Pbf ff
(6.2 X 10~5)
,
fr
.
ir
sc
-144-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE
RUN NO.
/ ' / / ^? /I / /"T I/ iii I / 0 i >f
*f
a
V
n
Pbi
Pfi
Pi
Pbf
Pff
Pf
Time
Flask Number
Volume of Flask and Valve, ml
Volume of Absorbing Reagent, ml
Volume of Flask minus Reagent, ml
Initial Barometric Presure, in. Hg
Initial Flask Vacuum, in. Hg vac
Initial Absolute Pressure in Flask, in. Hg
Final Barometric Pressure, in. Hg
Final Flask Vacuum in. Hg vac
Final Absolute Pressure in Flask, in. Hg
T/3/6
7
b/ / ^
1 2S
vtff
b?./.f
1 *
1 O\ (9 lOL^
3.25
I^/J
LO.O^
Iz9.^8
I Initial Flask Temperature, °F \ ~~f ^L
Tir
rf
Tfr
Vsc
M
i
j
Initial Flask Temperature, °R
Final Flask Temperature, °F
Final Flask Temperature, *R
Volume of Sample at Dry Std. Cond., ml
Mass of N0_ in Gas Sample, yg
Concentration of NO as NO™, dry basis, Ib/scf
534
7r?
1^55
M/2-/3
///<"
?
20 $-3
&T
^0^
*?U3
,£,3^
3-36
2? tl
- /, -\$
2.786
7^
(» J N»X |
73
533
//t/'/5-^
A57<
//
,o/d)^
24
a o w
^cl,ij
2G,«/o
333
5^,£o
- A 05"
23.55
7'/
534
72
5^2
V - V- - V
n f a
P = P - P
*i bi fi
(17.71)
- P,
fr
ir
_ p
ff
C - (6.2 X 10~5)
M
sc
-145-
-------
DATE
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
(o
RUN NO.
1-lU /
/ / ; -r- n A 1 ^ur> w
/-/etGvkaj AA/C- tSc3*<7e*hAPft /-ILv , lJo/S.-/f
Time
Flask Number
k
r
n
ki
ki
k
kf
kf
k
k
Fir
k
Ffr
sc
Volume of Flask and Valve, ml
Volume of Absorbing Reagent, ml
Volume of Flask minus Reagent, ml
Initial Barometric Presure, in. Hg
Initial Flask Vacuum, in. Hg vac
Initial Absolute Pressure in Flask, in. Hg
Final Barometric Pressure, in. Hg
Final Flask Vacuum in. Hg vac
Final Absolute Pressure in Flask, in. Hg
Initial Flask Temperature, °F
Initial Flask Temperature, °R
Final Flask Temperature, *F
Final Flask Temperature, *R
Volume of Sample at Dry Std. Cond., ml
pi Mass of N02 in Gas Sample, pg
C
Concentration of NO as N07, dry basis, Ib/scf
/£/£
13
Zoil
A<
,3o4C,
#1,71
5Z/
*??,£/
+OA$
30.06
If
S35
73
^53^
/W-I2-IC,
/y
yo/;y
a<
5C7?
2ct lo
3,25
%l$
~(o,IO
Z3.4d
73
533
7^
534
V • V, - V
n f a
Pi"Pbi - Pfi
Pf"Pbf - Pff
(17.
71)
Cv
n
)
" P
T
^
£ -
fr
P
T
JU
i "
ir
(6.2 X 10~5)
M
sc
-146-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE /
RUN NO. /4 V ' I 2 ~
//f/r/v/25. /9c . ResE&~r*ir; ALz . tdinflk
Time
Flask Number
Vf Volume of Flask and Valve, ml
V Volume of Absorbing Reagent, ml
9
V Volume of Flask minus Reagent, ml
P.. Initial Barometric Presure, in. Hg
Pf . Initial Flask Vacuum, in. Hg vac
P Initial Absolute Pressure in Flask, in. Hg
P, f Final Barometric Pressure, in. Hg
P_f Final Flask Vacuum in. Hg vac
P Final Absolute Pressure in Flask, in. Hg
I Initial Flask Temperature, °F
I Initial Flask Temperature, °R
Tf Final Flask Temperature, °F
T Final Flask Temperature, *R
V Volume of Sample at Dry Std. Cond., ml
sc
M Mass of NO 2 in Gas Sample, ug
C Concentration of NO as NO-, dry basis, Ib/scf
°(tf
1
W3\
M
loH
m &
WA6
cUO
Af.ff-5
-klv
27.73
If-
534
&7
527
Ititf
•3
11 U
^
'140
n(3
M&
5.08
n%4-
-0,10
X894
?3
533
(06
^25
til/-/3£
II If
vT
ft&
^
/?30
M.y
2 (x
-3.36
%m
-4$$
^.99
1*
532
(., f
525
V- - V
f a
71)
fr
M
ci-J
- P
ff
(6.2 X 10"5)
M
V
sc
-147-
-------
DATE
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
g7
RUN NO.
/ / f •?? \
A/ercu/es Inc . ^^seo^^/V^ /cu^iOn- lYiM-St
1 Time
Flask Number
JV- Volume of Flask and Valve, ml
(v Volume of Absorbing Reagent, ml
I «•
|v Volume of Flask minus Reagent, ml
pbi Initial Barometric Presure, in. Hg
pfi Initial Flask Vacuum, in. Hg vac
p. Initial Absolute Pressure in Flask, in. Hg
p, f Final Barometric Pressure, in. Hg
p Final Flask Vacuum in. Hg vac
OP,. Final Absolute Pressure in Flask, in. Hg
I i
b. Initial Flask Temperature, °F
IT. Initial Flask Temperature, °R
p. Final Flask Temperature, *F
|TfT. Final Flask Temperature, *R
[V Volume of Sample at Dry Std. Cond., ml
|M Mass of N02 in Gas Sample, yg
C Concentration of NO as N07, dry basis, Ib/scf
13 If
1
£J
left
i.^\ I I V^
^&,M
3.2<&
y\$$
»L 7^
23.10
11
63Z
(oi
fS2
Mi^2-a
nii
3o£3
%£
flo£8>:
Sft. (-.0
%(>.&
d/o
2f/,8f
-3,^5'
2^2.9
73
533
X X^
52S
//y/?- /
/^
^•^
? (->/ •/
Orj x^~
*~^,$c
dm
2§P>
-V. to
2$. 12.
1(-
53^,
(^
': "^
$"25"
- V
p = p — p
Pi Fbi fi
Pf=Pbf
Vgc - (17.71) CVn)
pf - p.
^
ir
(6.2 X 10~5)
M
••^^^^
V
sc.
-148-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE
RUN NO
. /-/I/ /2
Ur«c»L**T»c. (Wse'fctP* AU tf0|J U* -MI* -33
Time
Flask Number
V Volume of Flask and Valve, ml
V Volume of Absorbing Reagent, ail
3.
V Volume of Flask minus Reagent, ml
P.. Initial Barometric Presure, in. Hg
Pf . Initial Flask Vacuum, in. Hg vac
P. Initial Absolute Pressure in Flask, in. Hg
P,f Final Barometric Pressure, in. Hg
P Final Flask Vacuum in. Hg vac
P Final Absolute Pressure in Flask, in. Hg
I Initial Flask Temperature, °F
I Initial Flask Temperature, °R
I- Final Flask Temperature, °F
Tf Final Flask Temperature, °R
V Volume of Sample at Dry Std. Cond., ml
M Mass of N02 in Gas Sample, yg
C Concentration of NO as NO-, dry basis, Ib/scf
\fn
13
2oii
^*o
ri f5 *V »L
W.&
&£O
3o&
39.81
~/. 7x5"
23.07
77
537
(e Z
5-25T
iWA-aJ
/6/r
If
3io&
^o
'7/ol ? ^
3i?.<3
r\- fc, Oo
3J8
& 1 > \j ff~~.
*-^T /O
^5.72
7 '£
63S
(D£
525
Mm-x
/4-f8
' / *— ^^?
r®
(0
£073
ar
2o&
M,?i
3tt&>
304
%Wl
-l.oo
2882
76
538
t ^
S2S
V, - V
= P
r
sc
(17.71)
- p.
fr
ir
- P
ff
(6.2 X 10~5)
M
••^•••
V
sc
-149-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE
RUN NO.
/^jj^a /////3.XJ
1 Time
Flask Number
wf Volume of Flask and Valve, ml
ff Volume of Absorbing Reagent, ml
1 c*
wn Volume of Flask minus Reagent, ml
P, i Initial Barometric Presure, in. Hg
pf. Initial Flask Vacuum, in. Hg vac
p. Initial Absolute Pressure in Flask, in. Hg
p,- Final Barometric Pressure, in. Hg
p Final Flask Vacuum in. Hg vac
p Final Absolute Pressure in Flask, in. Hg
rC Initial Flask Temperature, *F
fT. Initial Flask Temperature, °R
pf Final Flask Temperature, "F
rr_ Final Flask Temperature, *R
\V Volume of Sample at Dry Std. Cond., ml
sc r
[M Mass of N02 in Gas Sample, yg
C Concentration of NO as NO,, dry basis, Ib/scf
W/xT
/
?0*31
56^
^/^
27,^
^2735-
330
$. ^1
+0«£T
20.0 G
7^
53
?a
5^8
/Wfil-27
3
/?^6"
c^"
/^^o
.^7^6"
27, / o
^.rr
ft. zi
/^\ i^ /^\
*^' / 13 ' _/
-25 7/
73
533
?e
539
Hill 0 _/v£
/5?<
/r
)Q S*
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE
/ flw "zr $u,jt
RUN NO. J^^l^-^- ///// X / rv- rtU <*J />
/Xu/J Mo
Time
Flask Number
Vf Volume of Flask and Valve, ml ^(D^Q
V Volume of Absorbing Reagent, ml ^\
3. t^'5.Jx
V Volume of Flask minus Reagent, ml 2-O55
P, . Initial Barometric Presure, in. Hg • 7\£
cl
0\ V-^^j"*^v
c^*O
^baS
21C
/^r /• <"
£>t u • fe^ ->
2-9^
3?.rvT
- 3,80
£^7
73
533
7?
639
•fU.£
//
2069
a£
-ZO^/^
fi-ltuU
~2C ^7"
^A-v) ' JtS
2.(SS
^
-------
DATE
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
I / //MA TxS v I^^OT" Alp/?prJ n c '77
-4—I f < //T ' - —i ^^ * > f fT IXLt V>|A -Q«-^ -/-^
NO.
Rvio AV
Time
Flask Number
V. Volume of Flask and Valve, ml
V Volume of Absorbing Reagent, ml
3.
VD Volume of Flask minus Reagent, ml
Pfei Initial Barometric Presure, in. Hg
Pfi Initial Flask Vacuum, in. Hg vac
PA Initial Absolute Pressure in Flask, in. Hg
P,, Final Barometric Pressure, in. Hg
P- - Final Flask Vacuum in. Hg vac 1
P. Final Absolute Pressure in Flask, in. Hg
I. Initial Flask Temperature, *F
I. Initial Flask Temperature, °R
Tf Final Flask Temperature, 8F
I Final Flask Temperature, *R
V Volume of Sample at Dry Std. Cond., ml
M Mass of N02 in Gas Sample, yg
C Concentration of NO as N0?, dry basis, Ib/scf
Hi/fo'#
nx
&^
2n^
^
<&^
Mfl
^^
z-8s5
tf&
\],&)
31-Q5
73
633
77
637
am j?
n-iv
l<
3.0k
-? ^
/*-'
535
7h
.-S36
it/a a
V - V- - V
n f a
sc
(17.71)
- P
fr
ir
(6.2 X 10~5)
M 1
"V~
scj
-152-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE
r r
RUN NO.
/\VAJ A/0 HdmA Ik fa -7j
Time
Flask Number
Vf Volume of Flask and Valve, ml
V Volume of Absorbing Reagent, ml
3.
V Volume of Flask minus Reagent, ml
Pfei Initial Barometric Presure, in. Hg
Pf. Initial Flask Vacuum, in. Hg vac
P. Initial Absolute Pressure in Flask, in. Hg
P. f Final Barometric Pressure, in. Hg
Pf , Final Flask Vacuum in. Hg vac
P Final Absolute Pressure in Flask, in. Hg
I Initial Flask Temperature, °F
r. Initial Flask Temperature, °R
I, Final Flask Temperature, °F
T Final Flask Temperature, *R
V Volume of Sample at Dry Std. Cond., ml
SC
M Mass of NO- in Gas Sample, ug
C Concentration of NO as N0», dry basis, Ib/scf
3t **
/hP3
/
&
20IJ
// n
-3
$£
ll'/O
^t^bf,.^
SC/^5
^.96
93. U
-0,l,f
11
^37
7^
535"
^(,4S
3.o&
21.41
-I.CS
78
^538
7^
533
\4tlte-M
/2 \5
^
ft&
2.f
/?30
*~\ Q /x^~
^/\ if 0 w
<&A$
3/0
ft AC*
-US
2i4i
76
533
12
53^
V • V- - V
n f a
P
r
sc
(17.71)
- P,
fr
ir
- P
ff
(6.2 X 10~5)
M
V
sc.
-153-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE
RUN NO.
./to
Time
Flask Number
V Volume of Flask and Valve, ml
V Volume of Absorbing Reagent, ml
\f Volume of Flask minus Reagent, ml
Pfei Initial Barometric Presure, in. Hg
Pf. Initial Flask Vacuum, in. Hg vac
PA Initial Absolute Pressure in Flask, in. Hg
P,f Final Barometric Pressure, in. Hg
Pff Final Flask Vacuum in. Hg vac
P. Final Absolute Pressure in Flask, in. Hg
r Initial Flask Temperature, °F
I. Initial Flask Temperature, °R
Tf Final Flask Temperature, °F
I. Final Flask Temperature, 'R
V Volume of Sample at Dry Std. Cond., ml
M Mass of NO, in Gas Sample, yg
C Concentration of -NO as NO-, dry basis, Ib/scf
Mfrl
i3l£
7
1116
Soil
X2>$
^20
$^3
fto/
25?.4y
76
538
ce
528
im-*8
I*l3o
Cf
top
&f
-?03&
#9.*v
3Ldto
3.<4
Oc? / o
OCi *rJ
-@,4£
2S97
79
538
(oQ
523
/^fi^i
i
//
P06?
t^"N ^* "
jo^V
^^ / ' 4t
yr 2§
3.s4
57.3
-O.XC
29/3
77
537
7^
53^/
- V
sc
(17.71)
- P,
fr
ir
bf
" P
ff
- (6
2 X 10"5)
M
^•••^•H
V
sc.
-154-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE
/2
RUN NO
. /-/!//a LL-S-
/-kvjmk^ Inc. - Bexs&TKr Ata i?«n./£. M/-/^/
Time
Flask Number ,
V Volume of Flask and Valve, ml
V Volume of Absorbing Reagent, ml
EL
V Volume of Flask minus Reagent, ml
P.. Initial Barometric Presure, in. Hg
Pf. Initial Flask Vacuum, in. Hg vac
P. Initial Absolute Pressure in Flask, in. Hg
P, , Final Barometric Pressure, in. Hg
Pf f Final Flask Vacuum in. Hg vac
P Final Absolute Pressure in Flask, in. Hg
T Initial Flask Temperature, °F
I Initial Flask Temperature, °R
Tf Final Flask Temperature, °F
T Final Flask Temperature, *R
V Volume of Sample at Dry Std. Cond., ml
sc
M Mass of N0» in Gas Sample, yg
C Concentration of NO as N0_, dry basis, Ib/scf
X £•
IW
f>&
%0f&
z<
R033
^Ko
^0
3/0
^
D'OO
z-9.33
77
,537
^0
530
//(//?/
(115
/ ^
I\J
O^r\ '. /
(X^bV
/^* *
A.J1
•2031
we
c/Lov>
3./3
^33
9.40
23.92.
7(o
53^
If
53 /
V - V- - V
n f a
P - P
r r
(17.71) (Vn)
Pf - P
[Tfr
V
- P
ff
C - (6.2 X 10~5)
M
•"•WH^
V
sc
-155-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE
/3
RUN NO.
Heti&Usttc. /rWcrc^/e //L. / \vnjAk' Wfr-h
1 Time
Flask Number
fff Volume of Flask and Valve, ml
w Volume of Absorbing Reagent, ml
1 3.
w Volume of Flask minus Reagent, ml
pbi Initial Barometric Presure, in. Hg
pfi Initial Flask Vacuum, in. Hg vac
p Initial Absolute Pressure in Flask, in. Hg
p.- Final Barometric Pressure, in. Hg
b> Final Flask Vacuum in. Hg vac
IPf Final Absolute Pressure in Flask, in. Hg
ff Initial Flask Temperature, °F
rC. Initial Flask Temperature, °R
rTf Final Flask Temperature, "F
JTfr Final Flask Temperature, *R
k Volume of Sample at Dry Std. Cond., ml
sc
|M Mass of N02 in Gas Sample, yg
C Concentration of NO as NO,, dry basis, Ib/scf
toil
1
£$
ft/'/
^?//f
^.3^
JO 9
XI. &
'110
2G.6G
70
530
$-1
ft/ 3
//m-V-5
7/3-2
3
/9(£
%<
37.V3
X t£f&- -'
A 18
21 ft
-3,30
2G2Q
6>f?
528
^8
5/3
/y/'/; - W
/?/?
^
/9^
2^
/ Cb •") /^
y ^i *-/• 1
%b:tf
O-O o
3^,^
-3,0
ZG.OH
70
^5D
.57
5/9
. v, - vo
n f a
Pi=Pbi - Pfi
V - (17.71) (V )
sc n
p - p
*f ri
fr
ir
Pf=Pbf - Pff
C - (6.2 X 10~5)
M
•^^^H
V
sc
-156-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE
RUN NO. ,T*/U.4 A/I/ / 1
LL* \ A/7'w A /IL /JL.M,
/-T<2f\? vk^fr /WL - KjeSSe/ftlP/? HkA. /KSU N (? -
Time
Flask Number
V, Volume of Flask and Valve, ml
V Volume of Absorbing Reagent, ml
3
V Volume of Flask minus Reagent, ml
P.. Initial Barometric Presure, in. Hg
Pf . Initial Flask Vacuum, in. Hg vac
P. Initial Absolute Pressure in Flask, in. Hg
.•— . ^^^a— ii . .. ii i-^ ^ ..^ m-~~m— .••••—.
P, - Final Barometric Pressure, in. Hg
P Final Flask Vacuum in. Hg vac
P Final Absolute Pressure in Flask, in. Hg
I Initial Flask Temperature, °F
I Initial Flask Temperature, °R
Tf Final Flask Temperature, °F
T Final Flask Temperature, *R
V Volume of Sample at Dry Std. Cond., ml
sc
M Mass of N0» in Gas Sample, yg
C Concentration of NO as NO-, dry basis, Ib/scf
tft/#tf\
/3IT
7
2 tIC,
^
Xo? /
3?. 3 9
2^o
30 9
^,2^
2710
73
533
o
5/9
«/c
c(
a o G 3
a^"
47
/^3^
'
25"
^^b^
o r* ^tf^l ^/ ° *s
doz
PI, 70
-2, ^ ,<
2.705
73
533
•S"7?
^T/9
g-97
:?^. 70
-1/55"
23^35"
77
r?
5/9
V - V, - V
n f a
P - P - P
*i bi fi
- (17.71)
- P,
fr
ir
P = p - P
*f rbf ff
(6.2 X 10~5)
M
••^^^^•
V
sc.
-157-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE
RUN NO.
•14 I/ 12
HVAS.
, U TA/C , IL^,.* AL fax ( )7r /_/,//* «
Time
Flask Number
r
a
n
ki
Volume of Flask and Valve, ml
Volume of Absorbing Reagent, ml
Volume of Flask minus Reagent, ml
Initial Barometric Presure, in. Hg
bfi Initial Flask Vacuum, in. Hg vac
k
Initial Absolute Pressure in Flask, in. Hg
[P, , Final Barometric Pressure, in. Hg
L
k
r
kr -
k
Ffr
sc
Final Flask Vacuum in. Hg vac
Final Absolute Pressure in Flask, in. Hg
Initial Flask Temperature, °F
Initial Flask Temperature, °R
Final Flask Temperature, °F
Final Flask Temperature, 'R
Volume of Sample at Dry Std. Cond., ml
M Mass of N0« in Gas Sample, yg
C
Concentration of NO as N02, dry basis, Ib/scf
/7J^
g©
^5^
^^
?07J
^v / *2^^
X^ ^ r^ /~\
365
~~ ?\s Xo
27.45
JO
530
<"?
^9
y?
/ ^r
S?^6/
Jlr
20 v?
c)<9
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE
RUN NO.
/ / "•""" ^f-t ^^} J x*'°""} X" J
/••feruutkS; //7C- /fester //67- /Tw/Vb. 50 .<7 v5"2
Time
Flask Number
Vf Volume of Flask and Valve, ml
V Volume of Absorbing Reagent, ml
Si
V Volume of Flask minus Reagent, ml
?bi Initial Barometric Presure, in. Hg
Pf . Initial Flask Vacuum, in. Hg vac
P. Initial Absolute Pressure in Flask, in. Hg
P, f Final Barometric Pressure, in. Hg
P Final Flask Vacuum in. Hg vac
P Final Absolute Pressure in Flask, in. Hg
I Initial Flask Temperature, °F
T Initial Flask Temperature, °R
Tf Final Flask Temperature, °F
I. Final Flask Temperature, *R
V Volume of Sample at Dry Std . Cond . , ml
sc
M Mass of NO- in Gas Sample, yg
C Concentration of NO as N09, dry basis, Ib/scf
A fc
C!)7^7
/
3031
33
_/ | i J £j
P\~ \**f I §
ytgi
s~\ /) i ./
3-l4
MH]
-0,(>5
23.1 4
60
520
^7
£n
oSv7
3
l%£
fa
/f/<9
& (o2
2(*,^o
3.12
& 7f
- 0. 7^.
29.0^
60
520
^ 1
^n
9/7
S'
ft&
^
IJ30
39 tf
2L70
*9?
%<\rf\
^sr
29A4
(oO
5zo
54
&4
n
V. - V
f a
P
r
(17.71)
- P
*
fr
ir
rbf
- P
ff
- (6.2 X 10~5)
M
^•••^•IM
V
sc
-159-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE
RUN NO.
ftl/
Time
Flask Number
W Volume of Flask and Valve, ml
(v Volume of Absorbing Reagent, ml
1 3-
N Volume of Flask minus Reagent, ml
pbi Initial Barometric Presure, in. Hg
|Pf . Initial Flask Vacuum, in. Hg vac
p Initial Absolute Pressure in Flask, in. Hg
p, , Final Barometric Pressure, in. Hg
P., Final Flask Vacuum in. Hg vac
IP Final Absolute Pressure in Flask, in. Hg
b Initial Flask Temperature, °F
p. Initial Flask Temperature, °R
rTf Final Flask Temperature, °F
rC Final Flask Temperature, *R
IV Volume of Sample at Dry Std. Cond., ml
sc
[M Mass of N02 in Gas Sample, yg
C Concentration of NO as NO,, dry basis, Ib/scf
(Q+7
7
£?/!6
209i
$$££
0\ \ff. k~,Jf
101
f~)C "~IQ
-\3$
28^
£C1
6/9
^4
5/Y
- P
fi
V - (17.71) (Vn)
sc n
- p,
fr
ir
- P
ff
C = (6.2 X 10~5)
M
tmarmmBfm
V
sc
-160-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE 05 War 75
RUN NO. Outlet-
/ ^ u ks lnc*- . /y s&cY??
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE OS Mar, 7/T
RUN NO.
•//V-/3
/fercuk'^ Inc. , /33se/-n cr Ain. ^ fa , Ji/./*. d
Time
Flask Number
Vf Volume of Flask and Valve, ml
V Volume of Absorbing Reagent, ml
3.
tf& Volume of Flask minus Reagent, ml
P, . Initial Barometric Presure, in. Hg
P£. Initial Flask Vacuum, in. Hg vac
P± Initial Absolute Pressure in Flask, in. Hg
P, f Final Barometric Pressure, in. Hg
Pff Final Flask Vacuum in. Hg vac
Pf Final Absolute Pressure in Flask, in. Hg
I Initial Flask Temperature, °F
T. Initial Flask Temperature, °R
Tf Final Flask Temperature, °F
T Final Flask Temperature, 'R
V Volume of Sample at Dry Std. Cond., ml
SC
M Mass of N0» in Gas Sample, yg
C Concentration of N0x as N02> dry basis, Ib/scf
1 420
6
2080
2S
Z055
29.72
26.55
,-?/?
Z97ff
0.00
29.7/3
75"
535
73
633
4V-/3-5
10*
20SB
25
2.02&
Z9.7/
Zt>&0
•s.//
^9.77
' 1.26
31 02
75"
5dS
73
/S33
^//3-6
'520
12
2076
25
205/
29.7!
2^.55
3'^
1CL13
*0.44
31 /8
75
iT . • >
•^<~- — '
73
4C-', ~J
- V
P = P - P
*i bi fi
Pf=Pbf - Pff
£5. STOPCOOC
C17.71) CVn)
Lfr
ir
(6.2 X 10~5)
M
•^^^^•a
V
sc
-162-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE C") O
RUN NO
. l-llJ- /3C%tL» V
/ /~\ A i
/Jflfic:,;L*t ~£(&-. f^c?ft5;C-"M<2rt ///.A. /•// 3 -7
Time
Flask Number
Vf Volume of Flask and Valve, ml
V Volume of Absorbing Reagent, ml
a.
V Volume of Flask minus Reagent, ml
P, . Initial Barometric Presure, in. Hg
Pf . Initial Flask Vacuum, in. Hg vac
P. Initial Absolute Pressure in Flask, in. Hg
P, f Final Barometric Pressure, in. Hg
P Final Flask Vacuum in. Hg vac
P Final Absolute Pressure in Flask, in. Hg
I Initial Flask Temperature, *F
T Initial Flask Temperature, °R
Tf Final Flask Temperature, *F
T Final Flask Temperature, *R
V Volume of Sample at Dry Std. Cond., ml
M Mass of NO „ in Gas Sample, yg
C Concentration of NO as N09, dry basis, Ib/scf
3t ^
l&o
/J
3 134
2 5
%>?
N.70
SC. &
f s.,5
09 ")")
/¥ 1 / *J
CA. /t / O^
+ 1.20
d3-9z
73
5^33
14
SZfl
Mts-e
f(*go
/i*
**-TL
^
'Iff f
£%(ft
3(~. &
313
£113
i \t^0
•^A/2
T'C
530
74
5.W
lU/3-1
n 'so
ie>
J07B
3^
P0^3
,?/ LL
Of i _
/ / ^i
.^.(06
y\, 70
t-^PC
o\ 70
11
63/
l4
534
V - V,: ~ V
n f a
p - p
bi fi
sc
(17.71)
- p.
fr
ir
- P
ff
(6.2 X 10~5)
M
^VH4M*
V
sc.
-163-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE
RUN NO.
//£/-•: i c &Jss^rrxir. £)Lai . /jun /2> //^- /3 --//o
Time
Flask Number
N. Volume of Flask and Valve, ml
|V Volume of Absorbing Reagent, ml
I **•
[V Volume of Flask minus Reagent, ml
p. . Initial Barometric Presure, in. Hg
pfi Initial Flask Vacuum, in. Hg vac
p. Initial Absolute Pressure in Flask, in. Hg
p, f Final Barometric Pressure, in. Hg
b* Final Flask Vacuum in. Hg vac
[Pf Final Absolute Pressure in Flask, in. Hg
ff Initial Flask Temperature, °F
JT. Initial Flask Temperature, °R
JTf Final Flask Temperature, °F
JTfr Final Flask Temperature, 'R
w Volume of Sample at Dry Std. Cond., ml
sc
[M Mass of N02 in Gas Sample, yg
C Concentration of NO as NO,, dry basis, Ib/scf
/oz/
2
2045-
25
20/O
y> O "*7O
^- xj CL )
J./J
ffifa
-o.tr
29oo
/O
633
7,?
S33
/ A/K-/^-//
V^c
4
zo4i
z^
26/6
29.77
3.12
2*1. 64-
-0,/o
2Q.S4
73
$33
7,3
.^3.
f •/'--> r
,2Z>
/
/ 98^
25
'25$
Z97£
^G.55
J.2-/
^?.0
-L4£
28. /3
7Z
532-
73
553
Pi=Pbi - Pfi
sc
C17'71) CV
- p
T- T.
fr ir
Pf=Fbf - Pff
(6.2 X 10~5)
M
^IV^i^V
V
sc.
-164-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE
7«T
NO
. Hi- - /3 •
/ kr<^J^tln<-. />*.s3za>gr A fa. l\nn A/o.
Time
Flask Number
V. Volume of Flask and Valve, ml
V Volume of Absorbing Reagent, ml
3.
V Volume of Flask minus Reagent, ml
P.. Initial Barometric Presure, in. Hg
Pfi Initial Flask Vacuum, in. Hg vac
P. Initial Absolute Pressure in Flask, in. Hg
P, f Final Barometric Pressure, in. Hg
P Final Flask Vacuum in. Hg vac
P Final Absolute Pressure in Flask, in. Hg
T Initial Flask Temperature, °F
T Initial Flask Temperature, °R
Tf Final Flask Temperature, °F
T Final Flask Temperature, *R
V Volume of Sample at Dry Std. Cond., ml
sc
M Mass of N02 in Gas Sample, yg
C Concentration of NO as N09, dry basis, Ib/scf
X £•
-13
i*li'/3-m
ftsto
8
%odo
te
MSJ
2%K
tt.tf
340
2K !
///L/-/3-//
Hie
/o
2o£3
K
£ 028
2*1.13
3£4o
J33
3R.Q
-f.7Jko.fo
^> 8&
7*/
^
n
53Z
60.11
74-
5&
-, ^
1 '+
53^
/•/(/ 1376
1 £2 o
/£
m^
1$
HO^I
mz
%L&
323
3U/
4&
25-0^
7V
Sl4
7*3
533
\~^j/ ^^J ^jX
- V- - V
n f a
= P _ p
bi fi
sc
C17.71)
- P
*
fr
Ir
(6.2 X 10"5)
M
•^^^•^
V
sc.
-165-
-------
DATE
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
i /MM
RUN NO.
i f i f
HU / 3
//p^c/y/fe Ax. /l^sOT^e/-//^. fij*iM) uin\ Jt
Time
Flask Number
V, Volume of Flask and Valve, ml
V Volume of Absorbing Reagent, ml
£*
V Volume of Flask minus Reagent, ml
\
Pfei Initial Barometric Presure, in. Hg
Pfi Initial Flask Vacuum, in. Hg vac
PA Initial Absolute Pressure in Flask, in. Hg
P. , Final Barometric Pressure, in. Hg
P Final Flask Vacuum in. Hg vac
P Final Absolute Pressure in Flask, in. Hg
T Initial Flask Temperature, 8F
I. Initial Flask Temperature, °R
T£ Final Flask Temperature, °F
T Final Flask Temperature, *R
V Volume of Sample at Dry Std. Cond., ml
sc
M Mass of NO 2 in Gas Sample, yg
C Concentration of NO as N07, dry basis, Ib/scf
/<:; 3 \
3,124
^
Iff 1 1
2*1.71
X flO
33/
- /, i<
28.15
655
73
533
/// '/O
17
\ /
w
&h
F
/
^
a/we
l\«
"T
\
-7i
\
I
•-^^^^•••^^•^^•••^i^^^-
V - V. - V
n f a
P = P _ p
pi bi fi
p — p — p
Pf Pbf ff
V - C17.71) (V )
sc n
C = (6.2 X 10~5)
pf - !±."
T, T.
fr ir
M I
V
SCJ
-166-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE
RUN NO. //l/~/3 O^Le-f-
+ (eruJ^lrK. fepoxr/fc. ?*i4l6.
1 Time
Flask Number
N Volume of Flask and Valve, ml
(V Volume of Absorbing Reagent, ml
ff Volume of Flask minus Reagent, ml
v,. Initial Barometric Presure, in. Hg
r oi °
IPfi Initial Flask Vacuum, in. Hg vac
[P. Initial Absolute Pressure in Flask, in. Hg
IP, - Final Barometric Pressure, in. Hg
IPff Final Flask Vacuum in. Hg vac
[Pf Final Absolute Pressure in Flask, in. Hg
rf. Initial Flask Temperature, °F
rT. Initial Flask Temperature, °R
T£- Final Flask Temperature, *F
rT Final Flask Temperature, *R
W Volume of Sample at Dry Std. Cond., ml
sc v ' '
M Mass of N02 in Gas Sample, yg
1C Concentration of NO as N0_, dry basis, Ib/scf
| 2C £
UtW 7
&J2I
2
fihZg
2t
2o/o
${. L£
%(,.&
3./S
2 1%4
-IJS
2K3V
73
5^5
( n *-r
<~?<^/
Uv-i^i
II ¥ ' IX /
(QZI
2o4
pvv
Po/f
^9,d3
3£A
J-/8
-0,3^
ZQ
- p,
fr
ir
„,,,, p
ff
(6.2 X 10~5)
M
••••••••i
V
sc
-167-
-------
DATE
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
07 fl/l/iff
RUN NO.
//e/tz//e,S /DC . ./5t?S5e/73?r //fa . /f^ /|/6 A/'A'-on
Time
Flask Number
y Volume of Flask and Valve, ml
V Volume of Absorbing Reagent, ml
3.
VQ Volume of Flask minus Reagent, ml
Pfei Initial Barometric Presure, in. Hg
Pfi Initial Flask Vacuum, in. Hg vac
P£ Initial Absolute Pressure in Flask, in. Hg
P, f Final Barometric Pressure, in. Hg
P Final Flask Vacuum in. Hg vac
P. Final Absolute Pressure in Flask, in. Hg
T. Initial Flask Temperature, *F
T Initial Flask Temperature, °R
Tf Final Flask Temperature, °F
T- Final Flask Temperature, *R
1 Volume of Sample at Dry Std. Cond., ml
M Mass of NO 2 in Gas Sample, yg
C Concentration of NO as N0?, dry basis, Ib/scf
?2O
•frft
,vA^J
SHU
%(>.&
^-/' * f
f X It* t/
-us
2309
11
S3l~
£3
5Z5
tfrfrfi
132G
in
zt
^osB
5?. ^0
5C. i<
3. /5
ffi®*
-030
2x34
73
<^i\
* — '^-j^-'
(-, 5
525
Wft qg
Mlo
3o?6
Zs
20 <"(
2UO
3J3
^\B 3
-J.&
2.7 ZZ
J&
53^
(-, ^
$15
V - (17.71) CV )
sc n
P - P
f 1
fr
ir
P - P
bi fi
Pf=Pbf - Pff
- (6.2 X 10 5)
M
H^V^^^
V
sc.
-168-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE
n
RUN NO
. '///-/
5
//iTCu/rS ln». "
—
n
Vf - Va
sc
(17.71) (Vn)
- p.
fr
ir
P = P - P
*f bf ^ff
'2 X 10
-5,
sc
-169-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE
mm HO
.CV-i-L.it Mf:
/-w^f ft // L
A
/f^Y'/U
Time
Flask Number
V- Volume of Flask and Valve, ml
V Volume of Absorbing Reagent, ml
3.
V^ Volume of Flask minus Reagent, ml
P, . Initial Barometric Presure, in. Hg
Pj. Initial Flask Vacuum, in. Hg vac
PA Initial Absolute Pressure in Flask, in. Hg
P. - Final Barometric Pressure, in. Hg
Pff Final Flask Vacuum in. Hg vac
P. Final Absolute Pressure in Flask, in. Hg
I Initial Flask Temperature, °F
T. Initial Flask Temperature, °R
Tf Final Flask Temperature, °F
Tf Final Flask Temperature, *R
V Volume of Sample at Dry Std. Cond., ml
M Mass of N02 in Gas Sample, pg
C Concentration of N0x as N02> dry basis, Ib/scf
iWts-U
HAD
3L
yo.is
So
2.0/0
5U5
21.on
2.G5
f--\ s^\ ^s »
/\ / "l /
+ 0,$0
J5D.O/
7^
53
77
^S7
iM'i-Vl
1 4 ro
V
^c//
35
2^/6
,3tt^
2t,fi6'
^.50
?ri , C\
± f^ ••> K 7. bx
^k/_;r
2.77
^f,^)
0,00
2C?.r^5>
75"
<-:-'-
78
5i3
V = (17.71) CVn)
sc n
- P,
fr
ir
— F
fi
Pf"Pbf - Pff
(6.2 X 10~5)
M
^i*V^MH
V
sc
-170-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
^AtjV
DATE
Flask Number
Volume of Flask and Valve, ml
•-^^•^— —I..-.—.a .•^^^^•.^^^^•^•-.••^^••i^^^^,^,
Volume of Absorbing Reagent, ml
Volume of Flask minus Reagent, ml
Initial Barometric Fresure, in. Hg
Initial Flask Vacuum, in. Hg vac
Initial Absolute Pressure in Flask, in. Hg
Final Barometric Pressure, in.
Final Flask Vacuum in. Hg vac
Final Absolute Pressure in Flask, in. Hg
Initial Flask Temperature, °F
Initial Flask Temperature, R
Final Flask Temperature, *F
Final Flask Temperature, 'R
Volume of Sample at Dry Std. Cond., ml
Mass of N0« in Gas Sample, yg
Concentration of NO as N02> dry basis, Ib/scf
V - V- - V
n f, a
Pi=Pbi - Pfi
V » (17
sc
-71) CV ) f Pf " Pi 1
^ M
cbf
- P
ff
(6.2 X
M
^^^^^
V
sc
-171-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE
ROB NO
. C'-DJLt- l4[i i
X/cV^CLxko^ Z~ *C '.. IK c <: >• /It ' fj j\ Aw
| Time
Flask Number
w. Volume of Flask and Valve, ml
N Volume of Absorbing Reagent, ml
I "•
N Volume of Flask minus Reagent, ml
In °
pbi Initial Barometric Presure, in. Hg
pfi Initial Flask Vacuum, in. Hg vac
p. Initial Absolute Pressure in Flask, in. Hg
p, , Final Barometric Pressure, in. Hg
p Final Flask Vacuum in. Hg vac
p Final Absolute Pressure in Flask, in. Hg
b Initial Flask Temperature, *F
rT Initial Flask Temperature, °R
fT Final Flask Temperature, °F
rT Final Flask Temperature, *R
w Volume of Sample at Dry Std. Cond. , ml
(H Mass of N02 in Gas Sample, yg
C Concentration of NO as N09, dry basis, Ib/scf
l/V/3-3?
(12
!4
?U4
£g
ZOQ9
Zflt®
/(t (-D
3.0Q
29.5V
-Uo
2794
I O
O^ i^>
7£
$^
/m '%
n
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE
RUN NO. fULi-UlJ/3
f~lffl..C.^L&5 J-flJc. \K
t-x
/fg^
3f
/^T]
33 tf
2C,$>
3.05
2?p4fc
-G7J
2&7I
7&
536
7^
ss/
7 . y _ y
n f a
p - p
bi fi
(17.71) CVn)
- P.
fr
ir
cbf
- P
ff
(6.2 X 10"5)
M
sc.
-173-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE { ck fflAR /O
RUN NO. C^Uilvc.^ -(^ U - 13
/-/»« Ci/U>A TN»C_. ft^ c. 0 Ala. (1 n
I Time
Flask Number
Wf Volume of Flask and Valve, ml
N Volume of Absorbing Reagent, ml
1 —
N Volume of Flask minus Reagent, ml
pbi Initial Barometric Presure, in. Hg
p* Initial Flask Vacuum, in. Hg vac
p. Initial Absolute Pressure in Flask, in. Hg
p, f Final Barometric Pressure, in. Hg
bf f Final Flask Vacuum in. Hg vac
|P Final Absolute Pressure in Flask, in. Hg
b Initial Flask Temperature, °F
fT Initial Flask Temperature, °R
rCf Final Flask Temperature, °F
rT Final Flask Temperature, *R
\V Volume of Sample at Dry Std. Cond., ml
1 sc
|M Mass of N02 in Gas Sample, yg
C Concentration of NO as NO,, dry basis, Ib/scf
V = V - V V - (17.71) (V )
n fa sc n
P a P — P
*i ^bi fi
Pf - Pb£ - P£f C - (6.2 X 10 5) •
^
V
1
fO i<|
1 I
L|
I
U
4J_
!4%if
10
26
3030
£\ I , t^^j
^\ f' \ ^^~
vi/o
2],?
^33
/ f fi\
*"" i ' (o ^
£7.75
77
7^"
;=>x35
[ I
p - P
rf ri
T, T.
fr ir
M ]
V
sc J
-174-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE
RUN NO. /i I/ /3 ' C%Uc?f~
, / ., i -, — (T) ///
HCfiCi/L OS f fTflJc , H?N &'£<-* Me A //AXI
1 Tlme \)l>2o
Flask Number
[V,- Volume of Flask and Valve, ml
\H
*
w Volume of Absorbing Reagent, ml /?? ^"
[V Volume of Flask minus Reagent, ml
M?
[?,£ Initial Barometric Presure, in. Hg Ka / vD
(Pj. Initial Flask Vacuum, in. Hg vac
p. Initial Absolute Pressure in Flask, in. Hg
ft*, , Final Barometric Pressure, in. Hg
[Pff Final Flask Vacuum in. Hg vac
[Pf Final Absolute Pressure in Flask, in. Hg
ff Initial Flask Temperature, *F
[T. Initial Flask Temperature, °R
pf Final Flask Temperature, *F
rT Final Flask Temperature, 'R
mtir
3.05
n^
[/•OS
zs.30
\71
537
\7o
\ 530
[V Volume of Sample at Dry Std. Cond., ml
sc
[M Mass of NO- in Gas Sample, yg
C Concentration of NO as NO., dry basis, Ib/scf
\7So
((>
2o7/
SL^
ZW$
^ 8
ac.fr
^5.05
r«f.33
-O.Q5*
*£. 2Q
7C
53 4
70
S3O
Hi/13
&f
Vf -
Vgc = (17.71) (Vn)
F " P
- P
fi
- P
ff
(6.2 X 10~5)
M
M^^H
V
sc
-175-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
RUN NO. Ml// 3 OvUr f
/_/,-) or,-, 1 r-,f TA Irt i/A /) i * I* n L i li/tj i •->
/ /£?«Cu'^P&/ 1 ,fl/Q. \vV^.^c»/)*T.e« Hk/*,. v]0rJl\tfr Hvtt~4oi
Time
Flask Number
?f Volume of Flask and Valve, ml
V Volume of Absorbing Reagent, ml
3.
7 Volume of Flask minus Reagent, ml
Pfei Initial Barometric Presure, in. Hg
Pfi Initial Flask Vacuum, in. Hg vac
P^^ Initial Absolute Pressure in Flask, in. Hg
P, f Final Barometric Pressure, in. Hg
Pff Final Flask Vacuum in. Hg vac
P Final Absolute Pressure in Flask, in. Hg
I Initial Flask Temperature, °F
I. Initial Flask Temperature, °R
Tf Final Flask Temperature, °F
I. Final Flask Temperature, *R
V Volume of Sample at Dry Std. Cond., ml
M Mass of N02 in Gas Sample, yg
C Concentration of NO as N0«, dry basis, Ib/scf
Mf
&
?03^
/?,<
^^/9
^^M
?t-V(9
3.o4
-??^7
-/to
2/ga
7^)
5sSO
/-• o
519
/9^/3-ys
•\\5S
y-
xfo//
£g
O/^)//
0*^~ / b
£\ 1^7 \s
2t$o
3-/3
525"?
-3.00
Zd 5 Q
66
S2Q
$1
$'9
^4
ISoo
G
ft$4
n ^
ffl^J
O-/ u 1
^If/l
£C,«lt
3.16
C^li (?oC
-IBS
Z7.77
-------
DATE
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
13
RUN NO.
/-/erux/es &<- - fW^rner A/A /?un NO ><"
Time
Flask Number
V, Volume of Flask and Valve, ml "jTjS'lV
V Volume of Absorbing Reagent, ml
3
V Volume of Flask minus Reagent, ml
P, . Initial Barometric Presure, in. Hg
P£. Initial Flask Vacuum, in. Hg vac
P. Initial Absolute Pressure in Flask, in. Hg
P, , Final Barometric Pressure, in. Hg
P Final Flask Vacuum in. Hg vac
P Final Absolute Pressure in Flask, in. Hg
I Initial Flask Temperature, °F
I Initial Flask Temperature, °R
If Final Flask Temperature, °F
I Final Flask Temperature, *R
V Volume of Sample at Dry Std. Cond. , ml
sc r *
M Mass of NO- in Gas Sample, yg
C Concentration of NO as NO-, dry basis, Ib/scf
3&
[hffife
ULU ^
IV
^ahr
o$ UQ
gOlit
^fls^
/ I
1
i
7^!
1
V
Mb 4A M,j
l3Z£\ig<3s
Cf~f'ti*\ -^\
®j (0
;?O7.3
Q£
M48
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE
RUN NO.
A/erCufcs Inc. - .R^s^mer, Air?. T?an jlfn
Time
Flask Number
Vf Volume of Flask and Valve, ml
7 Volume of Absorbing Reagent, ml
V Volume of Flask minus Reagent, ml
Pfei Initial Barometric Fresure, in. Hg
Pfi Initial Flask Vacuum, in. Hg vac
PA Initial Absolute Pressure in Flask, in. Hg
P,f Final Barometric Pressure, in. Hg J?9(rC}
P Final Flask Vacuum in. Hg vac ,- ^t/ C~)
P Final Absolute Pressure in Flask, in. Hg
I Initial Flask Temperature, °F £ 9
T. Initial Flask Temperature, °R
Tf Final Flask Temperature, °F fo 1
Tf Final Flask Temperature, 'R
V Volume of Sample at Dry Std. Cond., ml
M Mass of N02 in Gas Sample, yg
C Concentration of N0x as N02, dry basis, Ib/scf
4i
P
/u
SQS^ 1
2foj
3L3t>
3.0Z
— J\4J fCt
ff\ f 1 \J I
) / jr\
1 >ht>
&>.ZO
43
,529
*&_\
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE HlfttA 75"
RUN NO. O°rM2-vr //I/"/ 3
/ / "7~~ 1 *""""^ /^ -*^*^ _^-
Hertjuk^.lnt. te^xmer ALsi. ton Mo- SO 3 / S"2
Time
Flask Number
rf
I a
1 n
Fbi
Pfi
Pi
Fbf
Pff
Pf
Fi
Fir
Ff
Ffr
sc
Volume of Flask and Valve, ml
Volume of Absorbing Reagent, ml
Volume of Flask minus Reagent, ml
Initial Barometric Presure, in. Rg
Initial Flask Vacuum, in. Hg vac
Initial Absolute Pressure in Flask, in. Hg
Final Barometric Pressure, in. Hg
Final Flask Vacuum in. Hg vac
Final Absolute Pressure in Flask, in. Hg
Initial Flask Temperature, °F
Initial Flask Temperature, °R
Final Flask Temperature, *F
Final Flask Temperature, *R
Volume of Sample at Dry Std. Cond., ml
M Mass of NO. in Gas Sample, yg
C Concentration of NO as NO,, dry basis, Ib/scf
3C £
Ol^o
5
%O3f
9S
2n/o
£7,tf
%£.&?
3-09
^^77
-ART
Z7.Q4
fa®
$20
SI
vT//
O9£0
^
%o*/f
^/
G
sA ^
2clr^
/95"9
?^J
O /" X^^T <~\ P -i*
Jl \ \ 1 It "7/h
A(fl/v->O bCw, /U
S.07
$1,7?
-^10
25:^9
£0
520
jT/
iS//
Z.Q^
/?9./7
r?O^"
^
.520
jX ^
^/4
- V
sc
(17.71)
- p.
bi
(6.2 X 10~5)
fr
M 1
"V~
scj
ir
-179-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE
RUN NO.
Time
Flask Number
k
k
Pn
L
ki
Volume of Flask and Valve, ml
Volume of Absorbing Reagent, ml
Volume of Flask minus Reagent, ml
Initial Barometric Presure, in. Hg
Initial Flask Vacuum, in. Hg vac
p. Initial Absolute Pressure in Flask, in. Hg
L
L
k
L
Final Barometric Pressure, in. Hg
Final Flask Vacuum in. Hg vac
Final Absolute Pressure in Flask, in. Hg
Initial Flask Temperature, °F
rT. Initial Flask Temperature, °R
k
Ffr
sc
Final Flask Temperature, "F
Final Flask Temperature, °R
Volume of Sample at Dry Std. Cond., ml
fi Mass of N02 in Gas Sample, yg
C
Concentration of NO as N07, dry basis, Ib/scf
b®
S077)
2J
204&
fatt
1L&
3.16
£9-7?
-0JO
2Q ^"O
^" Cf
5/9
£\ ^/
C*^ /
5>4
Vgc = (17.71) CVn)
- p
T
X
Pf"Pbf
(6.2 X 10~5)
M
m^^^mau
V
sc
-180-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
•fi
DATE
Initial Flask Vacuum, in. Hg vac
- 3
Flask Number
Volume of Flask and Valve, ml
Volume of Absorbing Reagent, ml
Volume of Flask minus Reagent, ml
Initial Barometric Fresure, in. Hg
Initial Absolute Pressure in Flask, in.
3.03
3.06
bf
Final Barometric Pressure, in.
ff
Final Flask Vacuum in. Hg vac
-0.16
Final Absolute Pressure in Flask, in.
23.81
2743
Initial Flask Temperature, °F
7/9
ir
Initial Flask Temperature, °R
530
S2&
530
Final Flask Temperature, "F
fr
Final Flask Temperature, *R
5/9
5/9
sc
Volume of Sample at Dry Std. Cond., ml
Mass of NO2 in Gas Sample, ug
Concentration of NO as N02» dry basis, Ib/scf
P
f
y -
P
r
sc
(17
.71) (V) [Pf " Pi
T. T.
L fr ir
rbf
- P,
- (6.2 X 10~5)
M
^^>flaHBI
V
sc.
-181-
-------
DATE
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
.L2.
RUN NO.
tfercu/tx £>4
/Y 7 *?T
G/A/ | - 3 /
#£.33"
:3*a#
A9&
-/,!0
28.53
73
S>33
^T
5/9
/^30
/O
%0$0
£7{tx£A 0
^O T
Z-97
AW
-a?o
2.3.30
7,7
5^5
f\
5/9
sc
(17.71)
- p.
- P
fi
Pf=Pbf
(6.2 X 10~5)
fr
M
^••V^BI^
V
ir
sc
-182-
-------
DATE
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
£1
RUN NO.
t
Time
Flask Number
V. Volume of Flask and Valve, ml
V Volume of Absorbing Reagent, ml
3.
V Volume of Flask minus Reagent, ml
P.. Initial Barometric Presure, in. Hg
Pf. Initial Flask Vacuum, in. Hg vac
P. Initial Absolute Pressure in Flask, in. Hg
P.f Final Barometric Pressure, in. Hg
P.. Final Flask Vacuum in. Hg vac
P. Final Absolute Pressure in Flask, in. Hg
I. Initial Flask Temperature, °F
T. Initial Flask Temperature, "R
T, Final Flask Temperature, "F
T Final Flask Temperature, *R
V Volume of Sample at Dry Std. Cond., ml
M Mass of NO 2 in Gas Sample, yg
C Concentration of NO as N07, dry basis, Ib/scf
fc
to-1
f7.3s>
ISL
3061
Zf-
-------
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
DATE l4 M*?r75
RUN NO.
Hercules ITVL, Hesrs-emer /J/4 ^,n fvA ^ \O 1 ]
| Time
Flask Number
r
Pa
n
ki
ki
k
kf
Volume of Flask and Valve, ml
Volume of Absorbing Reagent, ml
Volume of Flask minus Reagent, ml
Initial Barometric Presure, in. Hg
Initial Flask Vacuum, in. Hg vac
Initial Absolute Pressure in Flask, in. Hg
Final Barometric Pressure, in. Hg
p Final Flask Vacuum in. Hg vac
k
r
Fir
L
Ffr
sc
Final Absolute Pressure in Flask, in. Hg
Initial Flask Temperature, °F
Initial Flask Temperature, °R
Final Flask Temperature, °F
Final Flask Temperature, *R
Volume of Sample at Dry Std. Cond., ml
[M Mass of N02 in Gas Sample, yg
|c
Concentration of NO as N0», dry basis, Ib/scf
07V/
l&
£0%
2r
7/Y ~7
XXxo/
£9.51
Z(o4S
3.14
33-7}
-0.
25.79
520
_^/
5/4
V = y, - V
n f a
P — p
Fbi fi
Pf=Pbf * Pff
V - (17.71) (V )
sc n
(6.2 X 10~5)
fr
M
^^^^^H
V
ir
sc
-184-
-------
DATE
NITROGEN DIOXIDE SAMPLING DATA AND CALCULATIONS
14
RUN NO.
i ferou/eti ln<-- r^^spm^r r*L3. •fan No 1 oL
Time
Flask Number
y Volume of Flask and Valve, ml
V Volume of Absorbing Reagent, ml
V Volume of Flask minus Reagent, ml
P.. Initial Barometric Presure, in. Hg
Pf. Initial Flask Vacuum, in. Hg vac
P. Initial Absolute Pressure in Flask, in. Hg
P, f Final Barometric Pressure, in. Hg
P.. Final Flask Vacuum in. Hg vac
P. Final Absolute Pressure in Flask, in. Hg
T Initial Flask Temperature, °F
T. Initial Flask Temperature, °R
T, Final Flask Temperature, "F
I. Final Flask Temperature, *R
V Volume of Sample at Dry Std. Cond., ml
M Mass of NO- in Gas Sample, ug
C Concentration of NO as N02> dry basis, Ib/scf
bte
"~7^^
Q.r>(f6f
£s
$74
23.66
0 (n &T)
ao6
/K?7?
-o.vo
29.39
^
5/9
^g
5/5
V • V- - V
n f a
P • P - P
*i bi r
Vsc * C17'71)
- p.
fr
ir
P = P
Ff rt
- P
ff
(6.2 X 10"5)
sc
-185-
-------
APPENDIX F
LABORATORY REPORT FOR EPA METHOD NO. 7 TESTS AND
ANALYTICAL REPORT FOR N02 CALIBRATION GASES
-186-
-------
COMMONWEALTH LABORATORY
INCORPORATED P. 0.00x8025
AREA CODE 804
CHEMISTS BUILDING. 2209 EAST BROAD STREET TELEPHONE: 648-8358
RICHMOND, VIRGINIA 23223
AIR AND WATER
S.-PUN6. ANALYSIS
No. 75-102-04
CERTIFICATE OF ANALYSIS
One hundred and twenty-nine (129) samples taken at Hercules, Inc.; Bessemer,
Alabama; received March 18, 1975.
Attn: Mr. J. T. Chehaske
Job No. 1850, Task Order No. 2
Method: Federal Register, Vol. 36, No. 159, August 17, 1971, Method 7.
SAMPLE IDENTIFICATION TOTAL tig N0a
Cal Gas Blank 0
Cal Gas No. 1 6,250
Cal Gas No. 2 13,350
Gal Gas No. 3 12,750
Cal Gas No. 4 142
Cal Gas No. 5 138
Cal Gas No. 6 142
HV-12 Inlet
Blank, March 05 0
1 7,550
2 6,550
3 8,900
4 7,650
5 10,500
6 10,500
7 10,650
8 7,200
9 6,850
10 7,250
11 9.900
12 11,850
13 8,350
14 10,150
15 9,100
16 6,900
17 6,850
18 5,900
19 11,200
20 14,000
21 8,600
(cont.) -187-
-------
COMMONWEALTH LABORATORY
EPA Job #1850 April 3, 1975
Page 2
HV-12 Inlet (continued)
SAMPLE I.D.
22 8,200
23 9,000
24 6,850
25 9,800
26 - 3,650
27 2,300
28 3,650
29 4,600
30 2,800
31 3,450
32 5,150
33 4,750
34 4,750
35 9,000
35 8,550
37 9,500
38 8,150
39 9,550
40 9,600
41 8,150
42 3,750
43 5,500
44 9,750
45 11,000
46 7,200
47 5,550
48 3,350
40 10,450
SQ 11,000
51 9,500
5? 13,150
53
Blank March 11
Blank March 15
Blank March 13
-188-
-------
COMMONWEALTH LABORATORY
INCORPORATED
RICHMOND, VIRGINIA
EPA Job #1850
Page 3
April 3, 1975
Outlet HV-13
1
2
3
4
5
5
7
8
9
10
11
12
13
14
15
16
TOTAL ng N03
355
380
450
237
265
244
295
470
506
336
167
280
354
540
235
330
Blank March 06
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
38
39
40
41
42
43
0
118
103
466
522
200
265
208
420
290
135
30
38
340
122
68
78
90
180
165
210
158
159
295
351
140
114
-189-
-------
COMMONWEALTH LABORATORY
INCORPORATED
RICHMOND, VIRGINIA
EPA Job #1850
Page 4
April 3, 1975
Outlet HV-13 (continued)
Blank March 12
44
45
45
47
48
49
50
51
52
53
HV-23 Demister Inlet
1
2
3
4
5
6
7
8
9
10
11
12
TOTAL
NO 2
Q
206
354
197
316
158
308
225
281
634
820
7,150
5,150
10,250
13,150
8,250
10,150
12,000
11,650
11,000
11,500
7,750
10,250
Respectfully submitted,
JU A.
John A. Blngham
Chemist
s-l
-190-
-------
IRCD Industrial Gases
P.O. DRAWER NO. 272, UNION LANDING & RIVER ROADS, RIVERTON, NEW JERSEY 08077
TELEPHONE: 609-829-7878
Rare & Specialty Gases Department
Engineering Sciences, Inc.
7903 West Park Drive
McClear, Virginia 22101
Attention: Mr. John Greenberg
April 16, 1975
RSG-75-36
Dear Mr. Grecr
-------
APPENDIX G
PROCESS DATA
-192-
-------
£?/?
Pi.*
F«i
TIME
0930
/03O
II3O
1230
I33O
I43O
IS- 30
1730
/^^S/iX-A' PXOCZS*; JD/9TA
TF ^ A-/7L-T
* /
OA/r , /£v*v//rc Jf>e. J3&ssvnc/'t /? /a-
F£eo 64$
(PI - /-> /)
so
.8*3
S"/
/ #*»<'.
"F
ENGINEERirJG-SCIErJCE.INC.
INi£7 6/I.S
•Scfru
6OOO
S7OO
S7OO
PROJ
DET#
X / "V*** /^
42.
3?
40
4Z
42.
7J /'a. *T J3OO.
t/tnrr •«**
%?
7<&
7S-
7S1
78
77
79
77
(rr-iod
Ri?G ZfJ/ZK.'Q 7t c.'A/ £S
fac-l'v
)O3O
J03O
1030
IOZS"
JOZ£f
1O2- ^"
JOZ.^?
rrr Pf.fi - ASf
in _/J/: tZCtt'S.f-'X //A>/)-j T
TfAims;/? Tel t'f K,'f
/AS
430
1 S'O
370
47,
TCP Of
-
JOB No. ) fiifdl
Clt f
IN
124
IZ.4-
JZZ.
tzz
izz
ScO
ifi- t'SC,
4,4
4.4.
3t
°:^
lv/ti£C
~
/.;-T,V.:
30
3O
30
29
29
29
SO
3.0
SHT. /
OF ^
-193-
-------
ZZr
TIMS
1430
I3T30
1 73O
.
A / / T jC^ / /""* A s* f D /~i '~y ^> r—
^^
• i
Hcrcn/e.s Ax-..
AlR F4.0W
_ 7? .
_ ..?£• .
-
—
- •• -
ENGINEERING-SCIENCE, INC.
3T
116
fit,
II&
116
../AT
...
—
- •• - — •
PROJECT
PK't'SS
.-->>* -
112.
112.
Ill
*z£Js
7#
7?
7?
78
74,
- -
•*: o. /?,
I7O
17 O
no
no
I7O
*
_^_-
—
.._. . . —
f? f/> • A ?>*' 7"' *
"ZZZZ?
— —
- - —
A CIO
- - -
x, #. a.
. ..
— •
-
PKCOUCT
• - -
1 f?ftt DATE •S/S'/ 75" SKT. 2.
V
-194-
-------
D/)T/>
Dare -3^6/73~
P4.AMT /Jrsc.s.'/fZ )»t •
. /7 /a
TIME
CSOO
0900
IZOO
I4OO
ISOO
I6OO
1700
Zooo
ZIOO
Z.306
M.tJ.
FECQ G4
"F
•jcfnt
7&
•76
.76.
S"/
iHi ET G/t S
S7SO
^70O
•41
47 _
4S
(W&K7
7?
79
.17.
74
77
7?
7.7
rr •
_Z3_
73
17
7-3
44
43 Z.
lolS
los-c
//V
&-/S
("•-to)
-363"
442,
/•?2.
37^?
ear
TK-IZS)
i.0.7
^-r
no
IN
'24
S6.0
I2S
'ITS
-32
2
Jwv,
32
32
ENGINEEniNR-fCIEiJCE, INC.
PROJECT
Jon No.
DETAIL
Sur. -3
OF
-195-
-------
DftT£
P^/9/V7
TtMS
GS'OO
o loo
1 OOO
1100
IZOO
)3OO
1 4f)O
1 -S"OO
/ &OO
I7CG
J&0<0
NtTKtC ' ACtD
^h<
HarfaJf.^ /^f
•
^//? F4.0W
&2.
S 1
& 1
#1
s-o
77
77
77
-7O
EMGINEERirJG-SCIEWCE, If.'C.
' ' 7 ' " ' ' '
fllR XECfitfX
»&
tig
US'
in
t/3-
117.
J 17
"J— -
- -
, —
PROJECT
r\r"rn 1 1
*PR£$S
114
1 14
U4
J / 1
no
113
uz.
'/'£"
££
78"
7S-
79
78
7&
-f'
f^T
-•-. —
—
* . O. K,
170
no
1 70
17 1
170
/^r
A3 <& "
/="f'/l - ' rt ~ lr>p Nr>, J
u if r.-'-/ /.--•"; -'/V'^r T,r^rsA
/AiT^TC TtOfJ
WATER
•
Z.7O
-li
. _
— ,...
Tray */%>
29/«*-S
I6/ 4i.5~
4/5'1.*~l
(ZV/ic^, 24/14.
K>/4
Zl/lf.4, Z4-/2I.
—
- — -
---
__
XX.D.
FEgo 6*5
/ Z-~Z-
2.1
3-./.
Pfonucr
r«
• \
tVtt DATe3/S/7cT SHT. 4
(£> BY^-^ or I4>
-196-
-------
TIME
Mti
OIOO
OZOO
osoo
0400
OSOO
O60O
O70O
OSoo
IOOO
1100
I30O
/7/D
FCEO
30
SO
(PR -it,)
•Scfr*
S"3c?
70
-iO..-
o
Q
$700
SS'S'O
/Coo
42
4Z.
4-8
7S-
76
77
77
7?
SO
/
BO
73
1C 4O
I03O
I03C
1010
O
O
toiS"
10 If}
IOIO
JOlO
tozo
1300
11 40
/-v
440
300
no
zio
3?^
^>0
143-
77
IBS
IZI
30
35-
3V
ENGINEERING-SCIENCE, INC.
PROJECT
DETAIL .
JOB No.
DATE 3/7/7 S~
SHT. -5"
-197-
-------
rr.
TIMS
M.tf.
. ,
/?//? f^otv
c FH.)
.60
4>O
60
0
0
o
3-0
46
^O
73 ~> O-*
3 5" in ft"
7-3
-73
•74-
~l^
11
14
73
• *
:E, IHC.
ft,f> ZCCciteR
i"^£-5-i.
I2.O
) 2.£>
I £.£>
/<2
»7
li&
//
//<&
113
in
i
PROJECT
DETAIL
PK£S<,
i*6>..
t/6
// ^>
/ / <^
//<^
//J
///
///
HZ-
HO
I/I
m
in
_ — •• —
s^c^
PZ£SS.
w-tt
£>
^0
0
vo
77
77
7S"
7?
8Z
••••-^ i i "
? ••*
Jf. -O. /?,
/3c?
J?o
}30
J3&
J3<3
IX*
itl
>4
'*•?
160
«M^i^BMIHBMllHB*BMIIIHV
JOR N". ^
y/xr/vv/z^-V iV/.YV r/-"vry/
itifec. nofj
2.0
2.0
2.O
e.o
2.0
2.7
2.43"
2.43"
2.S-0
z.s-o
%t4^
1 ml •.[••••^•a
(L^az i
'(•'. 1
rrax -/^
6/4 $"J '$/'&¥-
. z ;tf/
^7.^^
, ^ /^
K/«.3t4/&*
x.>?.o.
a 3,7
v X7
W
0 .9
-^
<,>•>-> o
4.3S-
S3ja
4-9.7
(S^.S
^r*-/<
-3~7, 7
SATE 3/7/73" SMT. <£
-198-
-------
PROCESS DAT/)
Hare
»c..
/Y la
TIME.
retro sis
(r-3)
af
t-,' G/1S
'fit- H7)
(PI --ci)
(Tf-,Cfi)
op
Is
0
,x
tfj
tap fi
860
/N
ENGINEERING-SCIENCE, INC.
PROJECT
DETAIL .
Joa No.
DATE
Bv
SHT. 7
OF
-199-
-------
TtMS
?/*
To*
2o
3fe
JL Cbiv
hsiv
(x
c «=•//_)
IIU
14
//o
io.
80
<30
3o
67
3..6T
/•a
(\-~\-l
ENGINEERING-SCIENCE, INC.
PROJECT ,
DETAIL __tJ*W-m—^jZi^L;
DATE
Bv
SHT. 3
OF
-200-
-------
•V
B
Da
P±,
re 3/n JlfT
J^&K/JS/ v - A/ process D/?T/>
S m */ (f^ t f) * O ^\
TIME.
I4oc
1445
/530
«/?
floo
.2/00
22&Q
%3&Q
Z-^QQ
reeo ^3
(PI-IS!)
91
81
85
"F
74-
11
r\ ci
n cy
8/
14
m
ENGINEERING-SCIENCE, INC.
tfi/icr <5x75
-scfjw
• A
44 oo
52oo
540 o
j
/y
3'
•SlOQ
PROJ
DET/
(r/?-/,7^
<*js5
F
40
?4o
Mo
40
40
50
5o
45"
OWKT 6*3
«:i-.«.
(PZ*tet)
7jr
80
90
80
Crr -/«;)
S'?
. Rece*t£KATietJ GAS
>*c-"X>'
/<350
/040
/030
'03Q
/03o
/O3o
IOT.O
FrT /V'-V? - Z/>Xf
vii itKrrv/.sTX (•f,'Jfi-> T
reMrffK/frttKE.'*
/v
4/8
no
G> 0
280
50
^a/> ^,=-
I'V ^V)
42
40
41
45-
48
5U
JOB No. * ^ -•s'V?
oar
50
78
24 Z
90
^^?ctS5
?*2T * tQ'lj
130
130
12. If
IS*
121
in, tv'.f.
b'7/>
7o//o
70
T 0
DATE 3//i/?S~
Bv
SS
' t iCt
IS O~
(•j'O^
3^50
'V-
3D
30
3o
30
30
30
30
32.
SHT. 9
OF / V*
-201-
-------
A
8
i
W7K/C /)C/D PKof./?^ ^ r>s>-T4
DATE 3/II/1S-
PJ.AH1
TIM£
/Soo
Moo
1445
/S"30
Iblf
noo
I&OO
1100
2"V?i"5'i.
f>S,tj
'OFF
ff%
//8
/2o
III,
IH,
ilk
//«
)u
l/u
//t.
la
l/^
PROJECT
DETAII —
iS'r 1^<' M<~f /)/-r
"""-T — "^ '<
aysrfM
f>R£S$
rs"j-
f5f«d
^t
//a
//4
//e.
//z.
"Z
114
HZ
M2
'12
DZ
M2
SAC ft
pzess.
r*'S
- o/5 J
7fc
^4
*s-
84
%4
Si
•34
84
84
84
44
$4
f^f/) - ,"?''
///•--/?/-//./£-.?, //v^
A". £». /?,
/?>^A^
- ?S
82.
734-
/34
/34
/34-
'34
/34
/34
/3«)
134
I3 IV* * «^
ilPi^,
o.B
1.3
/.86-
/.«
^./
2.. »
?.z
-?-0
-?.o
^.0
^0
P.o
JOB No / ^^"G 0
7>.;->V77,V,'- ,_ B
Ac. 4
Sft-^tA
Trvi* /.
*_/J££-
_ /
2.1/4.2.
*<-h. i
«-/ZU
4/«fca»
2«/7./
=yq.i
Ifc/ 35 7
41 yi.TS
•7Q / 9.7
?«/ 14.7
16? 40.4
f/ if-s;
X.K'.b.
Ff«l frv>
%0?
2.ffff
3.4 Z
4.0
3.r
X7
3.U
:
1 fwlot't-
Str>-,.^|\
%
\-\o3 /
4t>j
S3. *
£8.1 8
i'8.^8
ATE 5//I/7JT SMT. /O
V OF / <£
-202-
-------
e
A^
&
A
B
PMRAS/V-M process £)/?TV? n-u-Ufc
f Ti n\ -t, K t * J
/?/?
i r\l cj
' 01 loo qgoao
. -| y |
. 1 x5
A-^yrv ^,x TA**> ^ ^l/^ IT • « « 1 ?CJ ' O * ,"
TY/nii
/.'oo
2:oo
3: OQ
.4.'0to
.S.'oo
.fcoo
.7^00
.8:00
.9/00
.;o:oo
.iiioo
.'2: *o
{Sboo
14; oo
/600
Woo
lisoo
/AW
11 oo
2ooo
22'w
Zfoo
fir-TO S>«
AWT.M,
("r*?
^%
«a
•
88
98
9®
q«}
qs
Tg
78
90
qo
«IO
90
38
1«
1«
r^Mf.
"f
82.
9Z
•ae
it
T?
9t>
81
0?
95
36,
8/
S3
S5
34
<32
82
IS*
ENGIKEGRIfJC-SCIEKCE, INC.
IMffT CAS
•i~4.G'
PROJ
DET/I
//>-'/'
(r/i-i,7)
(*-<)
°F
fO."
-fo
45
4s-
4Z
4I
'42
4|
'fZ
43
47
4^
44
4:5"
45"
**
4*
&tnxr.6*s
F«e.<*.
(*•£;*()
Ps'3
* ^
84-
w-
84-
94-
•34
84
So
go
3o
9/
^0
-^/.P..
"o'^
67
68
6> 2
6.8
68
67
64
72.
Ta
12.
13
xeesf*/£**rn>*f *s
rtc*
2IT
/oao
/0?0
;020
tozo
lozo
1020
yozo
102 0
1020
loio
1030
?030
/03o
lozo
/020
/020
/030
;o?o
IOZC,
lOZo
cr-r Kr/1 - £flf~
LII Jl /•/?%/{{ F^ tf.Vfl-* T
7*Mf>£K#™KK
3o o
40
so
48
f%
14 o
42%
65"
5o
50
438
68
5-0
41
5$
*0
7o
/£)/» <5/=-
C^yVJ
• •
,
50
50
50
35~
3s-
35*
S"»
48
48
5~a
SO
JOB No. /iy.-S'r?
far
'(" n~)
\<\r]
Z40
QO
fcZ
/OS
250
78
t2.
/OS
2ffQ
12.2.
^£35
IN
PS-S'
1 3o
130
/32
132
/3Z
132.
/2f
/2fc>
/26
/26
IZ4
Sfp
7o/.
7o/
70/
70/
70/
7o/
52/
52//
fit/)
BO/t
8
*
6
50/1$
5<>/l
52/1
tfl/'
8
8
8
7f)//S
^0/8
70//6
lo/
44-
44
DATE 3/'e/7S"
BY #//?
ia
V.S7EK
-&u»*
.
-
-
.
/««•
"
••'/=
3Z
34-
_
34
„
32.
3Z
32
J2.
34-
34-
30.
•3^
3i
34
3-1
?;.
3?
34
SHT. //
OF /<^
-203-
-------
V/7/?/C AC/D PROCFX^ r>/)-r/)
/XOTVT 3//2/I5
P^AfJT ftcrca/e^ t^c.. fir??*" ~"~- A>~
TtMS
/: oo
. 2-"oo
3 'oo
_4.'00
.S.'oo
fe: oo
.1-00
_8'-°o
.1:00
10:00
Jl'-oo
jz:a*>
./3-oo
H.-OO
I&OQ
l(>:oo
n: oo
IB- '00
H.'OO
2.o .'oo
2/:oo
2.2' oo
23:00
24.'oo
/?//? FtoW
(X 4$~00 -
CFH)
6,0
6O
£0<»
6 o
60
60,
40
3fe>
3fr
•3 (o
3b
36,
3r
tffr:,-:///. r 5' tJ'-T-.
X . Z>. ^',
f\ps/l
/3U
'3fe
>3fc
/3fc
/3fc
' »3b
8^
%tf
8®
X«
86
91
SS
|4o
»4o
1 10
/38
/28
/3C.
1^
'3Z
/sa
'3-z
(Z^
.rw^<^» 10/0
\
uoH*R
Qpr^
2.0
2.O
20
2.0
2.0
2,0
2.0
i.q
i*
/. 8
/. 8
A3
/. e
2.2
2. a
2,3
2.3
2.3
^.0
2.0
2.o
2.0
2.0
2.o
JOD No. / -r>"T<2 C
TiTxTiUe. _' n
IW.id_
^,-j f »fjtf i V\
TV A., «/7,
(. /^
20/1* , 'V
2l/'76 V
JV'*-2 zt/"-
/k/^'7 V*7-
1 *
IA/ 1 7O ifc^i7r-
'./«.t ^512'
^«' ^SH
,/5?.2 yfcn.1
t*/fj*i *}*A*jt
jafta.ii xylfq
t/5/'y -0P'/
/ '
5(1 /i 4 1 StJga 1
«-*yi*-i ^rxfrk
/rt«&' ^
/T
&>.9t
zyiM ^t///
b/11 4/>'/.
/
2.yi!.2 2t.//7
V^-8 V5''
X- '?. o
• I . •
f>p| i-'C>
?, Oo
5.* 2
«OJ
^d
S.!^
3. /
c'.S
2. a
2./
2./
2.8 :
2.1
2.9
J-5"
3.2
'.4
33
o
^
?r*lo< t
S^'«is)^J tx
<7,
fi^l.OT,
&•?&
59,^8
60.2,?
5T.7?
w.ll
59.^0
5'8.98
ATE 3/'V'S SHT. / ^
V
-------
B
3
^
K
6-
^
pUKfiSftf.fit Process DATA
Par* 3A1/TS
P*.,
Fat
LOO
2.'do
3:00
•f;oo
5:09
tioo
7'OO
B.-OO
q.oo
/QSO
//»o
«;<*>
/3:*o
l*:oo
;
22:»«
23 K>
•ttJT M-sr.,,/r<; Jne.. Bem-ws. /?/<*.
FfKO «>»J
fiy*,*}
as
v^«
63
64
G3
GO
5"8
T 2.
Flu--
68
68
65"
iS,
63
•
,
^fffi-V^Wr/iW 6-/JJP
££?**
lozo
JOZo
1020
Jo^o
^»
/OJO
7030
7030
yo^o
'03o
/rf-iK«
/OJO
/330
/05o
IO3O
I03o
lozo
7020
/020
F r'/> -'/>/--
ueKr.u,#s #*•/•* r
•r**IPf.K#T'lRK*f
'rx-iz?
<*><:>
5~o
44o
TO
50
44
4i
11
4 '5
6.0
-X-
/3o
4os
60
46
SO
4-40
JO
430
Tl6eof
faSt)
45"
48
42
^6
38
4-4-
jt-
fcO
4'?
1-?
52,
50
*
Jos No. /&^Tx2
ou;r
'<»if)
112
2/8
102,
2.^
if 8
/oz
>e
so
4>(>
/02
Rf
ioa
M
r*>$ ''
130
132.
132.
/3£
I2S~
/2.4-
/*-
/2G
/2C-
125"
124
/£2
.a/3
/'/• ^i'*
•70
te
£<3
S2//9
52 //a
»V/8
.?«//
7^/;«
It/I 4
6c/
-------
7*
I-WO rM«^
NtJKIC ACID PRO £/?<;.*> n/)7-A
DfiTE
Z/i-Afir
T,A^ R^J
oq.'oo 2^2,«
lAJQ
SO
PA/)/JT __ Herctitr* Inc.. tfr.-,- s <*. Mf. ,- />/,. *3.' CO 2-H.&OO
TIMS
l;.oo
2:.00
3'_0^
4100
51 PO
t:.oo
7:00
&• o o
51*
3b
3r
33
35"
Jo"
Tt
13
Prod
^•a
80
80
80
§2.
32
62
8? '
ez
g'Z
EHGIfJEERIKG-SCIErJCE, IHC.
J?:oo 2tn/ 5«»o
/?//? grcvtvcK.
p/raw.
/?i-/c.
' */
l\4-
» K
US'
M5
US'
114
l|4
nr
/2.0
//(.
/>
1/8
/2I
/zo
lie
118
//9
^/s
//8
/'9
>2o
PROJECT
DETAIL .
s-r^riSM
pzess
pity.
1 10
110
II 1
HI
Ml
110
iio
"2.
/'9
//e
MS"
// z
/ie
R«v\t
M4
//8
It0>
I '4
"3
/ ;4-
/H
M4-
II4
HU
s/>c/<
PI? 1? c<
' ^ io O
?*"5
%3
S3
83
83
83
$3
S3
T3
/oo
^
TS
80
So
CVyvf.mv-'
«o
80
T8
17
T7
Ifc
1(*
HP
Ife
9o
Jf . O. XT.
r? i?ivj
A f*/Yi
13*.
132.
130
/JO
/30
' 130
8^
82.
92.
ez
s^
/5S
/5«
} ^
l(,|
IU4-
ffc4
10,4
IU4-
tb4
Ib4
Ib4-
/fc«
U8
f~ P/l - •'••>:•' IrvnWn j
//y-/7,-v/'rJ
OJtv^tj
a_
Fn^>
2o
2.0
2.0
2.0
2.0
2.0
2.0
48
'•7
/. 8
M
2.(,
2.r
-V^
2.1
2.b
£.7
2..1
2.U
3.0
3.0
3.0
3.0
2.8
Ac,c<
&^ri«*uo4 k.
O * * "S I ^V
T,~l
re e»l
C .»\«
?, Oi
'/
/.9
3.e
3.5
3J
3.;
2.-5
f-?
£.<§'
3. /
3.0
3.0
*9
42S
P ""o-!v;< "t
Sf~ »u
*f net^l r\
%
^.77
6O-53
60.20
^
6622
-
51.4£
5&-H
5?. /4
5-?. 95"
/^L£>2 DATE 3/'3 SHT. /4
/r- Bv &*R or /^
-206-
-------
P*/)A>7
TfM£
21PO
/o:op
A//7/vV. /?,
IbB
Ibd
/=-f>/>~£Of>
y _ , .
IVo ix 4»r><
WrsVci^
3 PfY\
2,8
2.8
2.8
2.^
2. a
O t*i
2.3
Str^/Hy
I
51. e 3
57-83
)ATE 3//4/75" SHT. ^
IV C?J?
-------
fc
£k
•••—•—»-—»— «™«l
?7V!f 3/KJ1
" —
./^y^A^/i/-// ^^05^-^ r>A7-j
5"
1 " i II-M
Vv ^4e
1 I rvs t/
P2./>*/T T^VYV//^ /W. Knsrnrf /?/* O'JJI'S
raei OH. TAHX i.ev£j. 63'/^" Si ./„.-„,, ^ 1 lioo
3/)4Y Vi-
7VA?£
|;oo
2: oo
3:00
4;oo
6-00
i .'oo
7.-00
S'.oo
T.oo
/O.'oo
//iOO
Feeo <5^s
&.'
fr7
68
•
ENGINEERING-SCIENCE, INC.
/A/t £T <5x? S
^f.£'M
(fR~mi)
JcfM
6/00
fcSoo
C2ao
51<50
5"i'00
5bOo
5^50
55bo
PROJI
DETA
7<'w>/'
(fft'ii?)
<*f)
aF
45-
4o
•45-
44
44
45
44
4-4
O^'i~2/Tr <£*.S
Kte**.
fS.'9
15
•78
go
So
78
/^•>V7'P.
°f=
55"
6?
11
4^
67
R££ £ 'V,rf '??*QT t '£' .'\S Td*;
Pto*/
'rxc~ie?
Scf>»
lozo
(020
i03v
/Q3o
'030
)030
'o3o
/<5^0
,CT /f/7X3-^/>Xr I
it HF'W-'*'* ""-"i ~s.
7£MrXK/) Tt;;? /-„ -,
/V
!"7-,?-/2.i
^/a)
5o
40 O
So
4b-
4o?,
4 ||
4^
41
'«/» f'r
&£O
(•'44'i~)
4e
4*
4<*
51
W
OB No. MvTf?.
-j-r/.t/fS
^i//-
f/-,'-/,?^
(*>/)
14
55-
102.
1 (.0
114
^.';i:fc
v.; >'/•->;
XfAllii.
::i
i
'V-
3Z.
30
3o
•3 i
o2.
-i .->
3/
3^
!
i
I
5
SMT. / (,)
OF /i^1
-208-
-------
. * . '_.„£._
^<-&*kl**l' ^<-i—<6ov-vy etiT
ENGINEERING-SCIENCE, INC.
OF
-209-
-------
ENGINEERING-SCIENCE, INC.
-210-
-------
3/io/is - DA'< I M i-o a
- ' R. L .
k \
//•'OO
t fit
KAS
*4
'• T K»_ i\i
•fKe.
15
It-'
-"-I
-------
07-VO
.' /6-
08:30
.4o
\ t.
lo +0 remove 'we, ^,+H.. le*k.
Co^A
14: oo PoRASiV Cud<
q
'iHt. 4 ,
16
i CO^pf€i&oR. UJiK f\ I^OO
c
be
. Ab th\i>
of
Os /OU»e»t
f'M
is. U/i i / I'
A
Otot'll 4
C/CuC
ADSORPTlorO
-212-
ENGINEERING-SCIENCE, INC.
LJ
?PA-UO£ lr,oN~ '85"0
t^tul-ea HMO, T*tti
DATt 3/Jl/"75"
BY ^?4"
SHT. 4
OF J?
-------
3-/2-7JT
O^ :QO "t H» t\ux»lii\r
•4 u°4
Bet
u
//We.
tot j
* «i pA«"t »*
be, «t
IQ'-OZ. \fes*e\ B
'fhuh
f\)oo»>J 3//3
XJ^SSPL
.'.-u
ENGINEERING-SCIENCE, INC.
PROJECT
DETAIL
. JOB No..
re
-------
10:40
H'-IS"
H ". JO
dropped
Sfi/}
Compre&soR. fOo- (e
rowwioJfl. The.
jR -ffoiu >j
a
-
ie\j o
-fo
tee/o
o'»^
HA- (<4sroo ") C-f V\
-i o
.>osirx/(j
•fn/ttf\
tf\>
IT4s
/ S 6
Corv) N «c.f Itf'-^ O
c di
EERING-SCIENCE, INC.
PnOfFfT js"'? "" ^~ *- Jna No "5 °
PFTi-MI fttrtljl'Sj HMO-, 7fi
OF O^
-214-
-------
lf."Tir
to
iV-rO SJ«V« 6*00
/V/wf
(V)o". 3
i o B.A/bi-:^X-t »•«, wof
i to
g-.03
(\t:2A
NO
^0 «.
/9.-05-
<• 1 1 '• 3O
. Thi
u ,
-K«.
(,00 — /3JTt> Sc.-fr*\
JJ ^""M
(\
TV.
.
I4--OO .
' VE^ifL B ADSORB;
ENGINEERING-SCIENCE, INC.
PROJET
DETAIL
JOB No.
DATE 3//3/1S"
BY
SHT. 7
OF §*
-215-
-------
. REPORT NO.
EPA-600/2-76-048b
at**.. .TECHNICAL REPORT DATA
(Please read luaruciions on the reverse before completing)
|3. RECIPIENT'S ACCESSION NO.
Molecular Sieve Tests for Control of NOx Emissions
!rom a Nitric Acid Plant; Volume H—Appendices
5. REPORT DATE
March 1976
6. PERFORMING ORGANIZATION CODE
8. PERFORMING ORGANIZATION REPORT NO.
John T. Chehaske and Jonathan S. Greenberg
i. PERFORMING ORGANIZATION NAME AND ADORES
Engineering-Science, Inc.
7903 Westpark Drive
McLean, Virginia 22101
10. PROGRAM ELEMENT NO.
1AB015; ROAP 21AFA-106
11. CONTRACT/GRANT NO.
68-02-1406, Task 2
12. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
Task Final; 11/74-12/75
14. SPONSORING AGENCY CODE
EPA-ORD
15. SUPPLEMENTARY NOTES
Project officer for this report is E. J. Wooldridge, Ext 2547.
16. ABSTRACT
The report gives results of performance testing for NOx emission control
on Union Carbide's PuraSiv N unit, now controlling emissions from the tail gas
stream of the ammonia oxidation nitric acid production facility of Hercules. Inc. in
Bessemer, Alabama. Simultaneous measurements of NO2/NOx concentrations were
performed in the PuraSiv N inlet and outlet streams during 11 individual 4-hour
adsorption cycles, using continuous photometric analyzers. NOx concentrations were
also measured at the test sites, using the EPA Method 7 reference procedure, to
provide comparative data. Total NCx mass loading to the sieve was variable from
cycle to cycle, ranging from 63,370 to 251,800 grams, reported as NO2. Average
efficiency of the control unit for the cycles tested ranged from 98.68 to 95.92%. The
integrated average concentrations of NOx emitted over the complete cycles ranged
from 17 to 154 ppm.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
c. COSATi Field/Group
Air Pollution
Nitric Acid
Chemical Plants
Absorbers (Materials)
Nitrogen Oxides
Adsorption
Air Pollution Control
Stationary Sources
Molecular Sieves
Ammonia Oxidation
Tail Gas
PuraSiv N
13 B
07B
07A
11G
13. DISTRIBUTION STATEMENT
Unlimited
»—______
EPA Form 2220-1 (9-73)
19. SECURITY CLASS (This Kep.
Unclassified
20. SF-CIJRITY CLASS IThis navel
Unclassified
J22. PRIGS
-216-
------- |