EPA-600/2-76-098b
June 1976
Environmental Protection Technology Series
BURNER DESIGN CRITERIA FOR CONTROL OF
NOX FROM NATURAL GAS COMBUSTION
Volume I
Raw Data and Experimental Results
Industrial Environmental Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into five series. These five broad
categories were established to facilitate further development and application of
environmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The five series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
This report has been assigned to the ENVIRONMENTAL PROTECTION
TECHNOLOGY series. This series describes research performed to develop and
demonstrate instrumentation, equipment, and methodology to repair or prevent
environmental degradation from point and non-point sources of pollution. This
work provides the new or improved technology required for the control and
treatment of pollution sources to meet environmental quality standards.
EPA REVIEW NOTICE
This report has been reviewed by the U.S. Environmental
Protection Agency, and approved for publication. Approval
does not signify that the contents necessarily reflect the
views and policy of the Agency, nor does mention of trade
names or commercial products constitute endorsement or
recommendation for use.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
£PA-600/2-76^098b
June 1976
BURNER DESIGN CRITERIA
FOR CONTROL OF NOV
X
FROM NATURAL GAS COMBUSTION
VOLUME H. RAW DATA AND EXPERIMENTAL RESULTS
by
D.R. Shoffstall
Institute of Gas Technology
ITT Center, 3424 South State Street
Chicago, Illinois 60616
Contract No. 68-02-1360
ROAPNo. 21BCC-029
Program Element No. 1AB014
EPA Project Officer: David G. Lachapelle
Industrial Environmental Research Laboratory
Office of Energy, Minerals, and Industry
Research Triangle Park, NC 27711
Prepared for
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Research and Development
Washington, DC 20460
-------
This page was intentionally left blank.
11
-------
ABSTRACT
Volume II gives a complete discussion of the pro9edure used to select
the test burners. Jncluded also are detailed flame characterizations of
base-line operations assembled from in-the-flame temperature, gas species,
and flow direction data analysis. Similar in-the-flame studies were made
for cpritrol conditions which minimized emissions for each burner type. All
raw data collected from the input-output trials are also included.
A companion publication, Volume I of this final report,gives a detailed
presentation and analysis of trials conducted with natural gas to determine
the relationship between combustion aerodynamics and pollution emission
characteristics of industrial burners. Three types of burners were studied
(kiln, ported baffle, and movable-vane boiler) based on their relative gas
load and estimated total industrial emissions. Experimental measurements
carried out on a pilot-scale furnace included a baseline characterization of
each burne.r and variation of primary operating parameters ( air preheat,
air/fuel ratio, firing rate, heat-release rate, position of gas nozzle in
burner block, and air swirl intensity). Additional emissions data were
gathered for suspected control conditions (fuel injector design, flue gas
recirculation, fuel/air momentum ratio, and burner block angle) . This
volume also contains a detailed description of the experimental facility and
sampling probes used to collect the data.
111
-------
This page was intentionally left blank.
IV
-------
TABLE OF CONTENTS (Volume II)
Page
BURNER SELECTION 1
Methodology of Analysis 1
Discussion 2
Conclusion 7
IN-THE-FLAME ANALYSIS 9
Kiln Burner 16
Baffle Burner 115
Movable Vane Boiler Burner 217
APPENDIX Raw Input/Output Data 317
-------
This page was intentionally left blank.
VI
-------
LIST OF FIGURES
Figure No. Page
1 Combination kiln burner nozzle — radial profile of 17
NO at an axial position of 5. 1 cm
2 Combination kiln burner nozzle — radial profile of 18
NO2 at an axial position of 5. 1 cm
3 Combination kiln burner nozzle — radial profile of 19
O2 at an axial position of 5. 1 cm
4 Combination kiln burner nozzle — radial profile of 20
CH4 at an axial position of 5. 1 cm
5 Combination kiln burner nozzle — radial profile of 21
CO2 at an axial position of 5. 1 cm
6 Combination kiln burner nozzle — radial profile of 22
temperature at an axial position of 5. 1 cm
7 Combination kiln burner nozzle — radial profile of 23
all the gases at an axial position of 5. 1 cm
8 Combination kiln burner nozzle — radial profile of 24
NO at an axial position of 26. 0 cm
9 Combination kiln burner nozzle — radial profile of 25
NO2 at an axial position of 26. 0 cm
10 Combination kiln burner nozzle — radial profile of 26
O2 at an axial position of 26. 0 cm
11 Combination kiln burner nozzle — radial profile of 27
CH4 at an axial position of 26. 0 cm
12 Combination kiln burner nozzle — radial profile of 28
CO2 at an axial position of 26. 0 cm
13 Combination kiln burner nozzle — radial profile of 29
temperature at an axial position of 26. 0 cm
14 Combination kiln burner nozzle — radial profile of 30
all the gases at an axial position of 26. 0 cm
15 Combination kiln burner nozzle — radial profile of 31
NO at an axial position of 57. 2 cm
16 Combination kiln burner nozzle — radial profile of 32
NO2 at an axial position of 57. 2 cm
Vll
-------
LIST OF FIGURES, Cont.
Figure No. Page
17 Combination kiln burner nozzle — radial profile of 33
O2 at an axial position of 57. 2 cm
18 Combination kiln burner nozzle — radial profile of 34
CH4 at an axial position of 57. 2 cm
19 Combination kiln burner nozzle — radial profile of 35
CO2 at an axial position of 57. 2*cm
20 Combination kiln burner nozzle — radial profile of 36
temperature at an axial position of 57. 2 cm
21 Combination kiln burner nozzle — radial profile of 37
all the gases at an axial position of 57. 2 cm
22 Combination kiln burner nozzle — radial profile of 38
NO at an axial position of 146. 1 cm
23 Combination kiln burner nozzle — radial profile of 39
NO2 at an axial position of 146. 1 cm
24 Combination kiln burner nozzle — radial profile of 40
O2 at an axial position of 146. 1 cm
25 Combination kiln burner nozzle — radial profile of 41
CH4 at an axial position of 146. 1 cm
26 Combination kiln burner nozzle — radial profile of 42
CO2 at an axial position of 146. 1 cm
27 Combination kiln burner nozzle — radial profile of 43
temperature at an axial position of 146. 1 cm
28 Combination kiln burner nozzle — radial profile of 44
all the gases at an axial position of 146. 1 cm
29 Combination kiln burner nozzle — radial profile of 45
NO at an axial position of 385. 4 cm
30 Combination kiln burner nozzle — radial profile of 46
NO2 at an axial position of 385. 4 cm
31 Combination kiln burner nozzle — radial profile of 47
O2 at an axial position of 385. 4 cm
32 Combination kiln burner nozzle — radial profile of 48
CO2 at an axial position of 385. 4 cm
Vlll
-------
LIST OF FIGURES, Cont.
Figure No. Page
33 Combination kiln burner nozzle — radial profile of 49
temperature at an axial position of 385. 4 cm
34 Combination kiln burner nozzle — radial profile of 50
all the gases at an axial position of 385. 4 cm
35 Combination kiln burner nozzle — isothermal plot 51
of furnace temperature
36 Combination kiln btirner nozzle — isoconcentration 52
plot of NO
37 Combination kiln b\irner nozzle — isoconcentration 53
plot of NO2
38 Combination kiln burner nozzle — pollution control 59
conditions — radial profile of NO at an axial position
of 5. 1 cm
39 Combination kiln burner nozzle — pollution control 60
conditions — radial profile of NO2 at an axial position
of 5. 1 cm
40 Combination kiln b\irner nozzle — pollution control 61
conditions — radial profile of O2 at an axial position
of 5. 1 cm
41 Combination kiln burner nozzle — pollution control 62
conditions — radial profile of CH4 at an axial position
of 5. 1 cm
42 Combination kiln burner nozzle — pollution control 63
conditions — radial profile of CO2 at an axial position
of 5. 1 cm
43 Combination kiln burner nozzle — pollution control 64
conditions — radial profile of all the gases at an
axial position of 5. 1 cm
44 Combination kiln burner nozzle — pollution control 65
conditions — radial profile of temperature at an
axial position of 5. 1 cm
45 Combination kiln burner nozzle — pollution control 66
conditions — radial profile of flow direction at an
axial position of 5. 1 cm
IX
-------
LIST OF FIGURES, Cont.
Figure No. Page
46 Combination kiln burner nozzle — pollution control 68
conditions — radial profile of NO at an axial position
of 26. 0 cm
47 Combination kiln burner nozzle — pollution control 69
conditions — radial profile of NO2 at an axial position
of 26. 0 cm
48 Combination kiln burner nozzle — pollution control 70
conditions — radial profile of O2 at an axial position
of 26. 0 cm
49 Combination kiln burner nozzle — pollution control 71
conditions — radial profile of CH4 at an axial position
of 26. 0 cm
50 Combination kiln burner nozzle — pollution control 72
conditions — radial profile of CO2 at an axial position
of 26. 0 cm
51 Combination kiln burner nozzle — pollution control 73
conditions — radial profile of all the gases at an
axial position of 26. 0 cm
52 Combination kiln burner nozzle — pollution control 74
conditions — radial profile of temperature at an
axial position of 26. 0 cm
53 Combination kiln burner nozzle — pollution control 75
conditions — radial profile of flow direction at an
axial position of 26. 0 cm
54 Combination kiln burner nozzle — pollution control 80
conditions — radial profile of NO at an axial position
of 57. 2 cm
55 Combination kiln burner nozzle — pollution control 81
conditions — radial profile of NO2 at an axial position
of 57. 2 cm
56 Combination kiln burner nozzle — pollution control 82
conditions — radial profile of O2 at an axial position
of 57. 2 cm
57 Combination kiln burner nozzle — pollution control 83
conditions — radial profile of CH4 at an axial position
of 57. 2 cm
-------
LIST OF FIGURES, Cont.
Figure No. Page
58 Combination kiln burner nozzle — pollution control 84
conditions — radial profile of CO2 at an axial position
of 57. 2 cm
59 Combination kiln burner nozzle — pollution control 85
conditions — radial profile of all the gases at an
axial position of 57. 2 cm
60 Combination kiln burner nozzle — pollution control 86
conditions — radial profile of temperature at an
axial position of 57. 2 cm
61 Combination kiln burner nozzle — pollution control 87
conditions — radial profile of flow direction at an
axial position of 57. 2 cm
62 Combination kiln burner nozzle — pollution control 88
conditions — radial profile of NO at an axial position
of 146. 1 cm
63 Combination kiln burner nozzle — pollution control 89
conditions — radial profile of NO2 at an axial position
of 146. 1 cm
64 Combination kiln burner nozzle — pollution control 90
conditions — radial profile of O2 at an axial position
of 146. 1 cm
65 Combination kiln burner nozzle — pollution control 91
conditions — radial profile of CH4 at an axial position
of 146. 1 cm
66 Combination kiln burner nozzle — pollution control 92
conditions — radial profile of CO2 at an axial position
of 146. 1 cm
67 Combination kiln burner nozzle — pollution control 93
conditions — radial profile of all the gases at an
axial position of 146. 1 cm
68 Combination kiln burner nozzle — pollution control 94
conditions — radial profile of temperature at an
axial position of 146. 1 cm
69 Combination kiln burner nozzle — pollution control 95
conditions — radial profile of flow direction at an
axial position of 146. 1 cm
-------
LIST OF FIGURES, Cont.
Figure No. Page
70 Combination kiln burner nozzle — pollution control 96
conditions — radial profile of NO at an axial position
of 290. 2 cm
71 Combination kiln burner nozzle — pollution control 97
conditions — radial profile of NO2 at an axial position
of 290. 2 cm
72 Combination kiln burner nozzle — pollution control 98
conditions — radial profile of O2 at an axial position
of 290. 2 cm
73 Combination kiln burner nozzle — pollution control 99
conditions — radial profile of CO2 at an axial position
of 290. 2 cm
74 Combination kiln burner nozzle — pollution control 100
conditions — radial profile of all the gases at an
axial position of 290. 2 cm
75 Combination kiln burner nozzle — pollution control 101
conditions — radial profile of temperature at an
axial position of 290. 2 cm
76 Combination kiln burner nozzle — pollution control 102
conditions — radial profile of flow direction at an
axial position of 290. 2 cm
77 Combination kiln burner nozzle — pollution control 103
conditions — radial profile of NO at an axial position
of 395. 4 cm
78 Combination kiln burner nozzle — pollution control 104
conditions — radial profile of NO2 at an axial position
of 385. 4 cm
79 Combination kiln burner nozzle — pollution control 105
conditions — radial profile of O2 at an axial position
of 385. 4 cm
80 Combination kiln burner nozzle — pollution control 106
conditions — radial profile of CO2 at an axial position
of 385. 4 cm
81 Combination kiln burner nozzle — pollution control 107
conditions — radial profile of all the gases at an
axial position of 385. 4 cm
XII
-------
LIST OF FIGURES, Cont.
Figure No. Page
82 Combination kiln burner nozzle — pollution control 108
conditions — radial profile of temperature at an
axial position of 385. 4 cm
83 Combination kiln burner nozzle — pollution control 109
conditions — radial profile of flow direction at an.
axial position of 385. 4 cm
84 Combination kiln burner nozzle — pollution control 112
conditions — isothermal plot of furnace temperature
85 Combination kiln burner nozzle — pollution control 113
conditions — isoconcsntration plot of NO
86 Combination kiln burner nozzle — pollution control 114
conditions — isoconcentration plot of NO2
87 Radial profile of NO at an axial position of 5. 1 cm 118
(intermediate flame length baffle burner — standard
gas nozzle)
88 Radial profile of NO2 at an axial position of 5. 1 cm 119
(intermediate flame length baffle burner — standard
gas nozzle)
89 Radial profile of O2 at an axial position of 5. 1 cm 120
(intermediate flame length baffle burner — standard
gas nozzle)
90 Radial profile of CH4 at an axial position of 5, 1 cm 121
(intermediate flame length baffle burner — standard
gas nozzle)
91 Radial profile of CO2 at an axial position of 5. 1 cm 122
(intermediate flame length baffle burner — standard
gas nozzle)
92 Radial profile of all the gases at an axial position of 123
5. 1 cm (intermediate flame length baffle burner —
standard gas nozzle)
93 Radial profile of average temperature at an axial 124
position of 5. 1 cm (intermediate flame length baffle
burner — standard gas nozzle)
94 Radial profile of flow direction at an axial position of 125
5. 1 cm (intermediate flame length baffle burner —
standard gas nozzle)
Xlll
-------
LIST OF FIGURES, Cont.
Figure No.
95 Radial profile of NO at an axial position of 26. 0 cm 127
(intermediate flame length baffle burner — standard
gas nozzle)
96 Radial profile of NO2 at an axial position of 26. 0 cm 128
(intermediate flame length baffle burner— standard
gas nozzle)
97 Radial profile of O2 at an axial position of 26. 0 crn 129
(intermediate flame length baffle burner — standard
gas nozzle)
98 Radial profile of CH4 at an axial position of 26. 0 cm 130
(intermediate flame length baffle burner — standard
gas nozzle)
99 Radial profile of CO2 at an axial position of 26. 0 cm 131
(intermediate flame length baffle burner — standard
gas nozzle)
100 Radial profile of all the gases at an axial position of 132
26. 0 cm (intermediate flame length baffle burner —
standard gas nozzle)
101 Radial profile of average temperature at an axial 133
position of 26. 0 cm (intermediate flame length baffle
burner — standard gas nozzle)
102 Radial profile of flow direction at an axial position of 134
26. 0 cm (intermediate flame length baffle burner —
standard gas nozzle)
103 Radial profile of NO at an axial position of 57. 2 cm 138
(intermediate flame length baffle burner — standard
gas nozzle)
104 Radial profile of NO2 at an axial position of 57. 2 cm 139
(intermediate flame length baffle burner — standard
gas nozzle)
105 Radial profile of O2 at an axial position of 57. 2 cm 140
(intermediate flame length baffle burner — standard
gas nozzle)
106 Radial profile of CO2 at an axial position of 57. 2 cm 141
(intermediate flame length baffle burner — standard
gas nozzle)
XIV
-------
LIST OF FIGURES, Cont.
Figure No.
107 Radial profile of all the gases at an axial position of 142
57. 2 cm (intermediate flame length baffle burner —
standard gas nozzle)
108 Radial profile of average temperature at an axial 143
position of 57. 2 cm (intermediate flame length baffle
burner — standard gas nozzle)
109 Radial profile of flow direction at an axial position of 144
57. 2 cm (intermediate flame length baffle burner —
standard gas nozzle)
110 Radial profile of NO at an axial position of 146. 1 cm 145
(intermediate flame length baffle burner — standard
gas nozzle)
111 Radial profile of NO2 at an axial position of 146. 1 cm 146
(intermediate flame length baffle burner — standard
gas nozzle)
112 Radial profile of O2 at an axial position of 146. 1 cm 147
(intermediate flame length baffle burner — standard
gas nozzle)
113 Radial profile of CO2 at an axial position of 146. 1 cm 148
( intermediate flame length baffle burner — standard
gas nozzle)
114 Radial profile of all the gases at an axial position of 149
146. 1 cm (intermediate flame length baffle burner —
standard gas nozzle)
115 Radial profile of average temperature at an axial 150
position of 146. 1 cm (intermediate flame length baffle
burner — standard gas nozzle)
116 Radial profile of flow direction at an axial position of 151
146. 1 cm (intermediate flame length baffle burner —
standard gas nozzle)
117 Radial profile of NO at an axial position of 385. 4 cm 152
(intermediate flame length baffle burner — standard
gas nozzle)
118 Radial profile of NO2 at an axial position of 385. 4 cm 153
(intermediate flame length baffle burner — standard
gas nozzle)
xv
-------
LIST OF FIGURES, Cont.
Figure No.
119 Radial profile of O2 at an axial position of 385. 4 cm 154
( intermediate flame length baffle burner — standard
gas nozzle)
120 Radial profile of CO2 at an axial position of 385. 4 cm 155
(intermediate flame length baffle burner — standard
gas nozzle)
121 Radial profile of all the gases at an axial position of 156
385. 4 cm (intermediate flame length baffle burner —
standard gas nozzle)
122 Radial profile of average temperature at an axial 157
position of 385. 4 cm (intermediate flame length baffle
burner — standard gas nozzle)
123 Radial profile of flow direction at an axial position of 158
385. 4 cm (intermediate flame length baffle burner —
standard gas nozzle)
124 Radial profile of NO at an axial position of 5. 1 era 164
(intermediate flame length baffle burner —high-
momentum gas nozzle)
125 Radial profile of NO2 at an axial position of 5. 1 cm 171
(intermediate flame length baffle burner —high-
momentum gas nozzle)
126 Radial profile of O2 at an axial position of 5. 1 cm 172
( intermeidate flame length baffle burner —high-
momentum gas nozzle)
127 Radial profile of CH4 at an axial position of 5. 1 cm 173
(intermediate flame length baffle burner —high-
momentum gas nozzle)
128 Radial profile of CO2 at an axial position of 5. 1 cm 174
(intermediate flame length baffle burner —high-
momentum gas nozzle)
129 Radial profile of all the gases at an axial position of 175
5. 1 cm (intermediate flame length baffle burner —
high-momentum gas nozzle)
130 Radial profile of average temperature at an axial 176
position of 5. 1 cm (intermediate flame length baffle
burner — high-momentum gas nozzle)
xvi
-------
LIST OF FIGURES, Cont.
Figure No.
131 Radial profile of flow direction at an axial position of 177
5. 1 cm (intermediate flame length baffle burner —
high-momentum gas nozzle)
132 Radial profile of NO at an axial position of 26. 0 cm 178
(intermediate flame length baffle burner — high-
momentum gas nozzle)
133 Radial profile of NO2 at an axial position of 26. 0 cm 179
(intermediate flame length baffle burner —high-
momentum gas nozzle)
134 Radial profile of O2 at an axial position of 26. 0 crn 180
(intermediate flame length baffle burner —high-
momentum gas nozzle)
135 Radial profile of CH4 at an axial position of 26. 0 cm 181
(intermediate flame length baffle burner — high-
momentum gas nozzle)
136 Radial profile of CO2 at an axial position of 26. 0 cm 182
(intermediate flame length baffle burner —high-
momentum gas nozzle)
137 Radial profile of all the gases at an axial position of 183
26. 0 cm (intermediate flame length baffle burner —
high-momentum gas nozzle)
138 Radial profile of average temperature at an axial 184
position of 26. 0 cm (intermediate flame length baffle
burner — high-momentum gas nozzle)
139 Radial profile of flow direction at an axial position of 185
26. 0 cm (intermediate flame length baffle burner —
high-momentum gas nozzle)
140 Radial profile of NO at an axial position of 57. 2 cm 186
(intermediate flame length baffle burner —high-
momentum gas nozzle)
141 Radial profile of NO2 at an axial position of 57. 2 cm 187
(intermediate flame length baffle burner —high-
momentum gas nozzle)
142 Radial profile of O2 at an axial position of 57. 2 cm 188
( intermediate flame length baffle burner — high-
momentum gas nozzle)
xvn
-------
LIST OF FIGURES, Cont.
Figure No.
143 Radial profile of CH4 at an axial position of 57. 2 cm 189
(intermediate flame length baffle burner —high-
momentum gas nozzle)
144 Radial profile of CO2 at an axial position of 57. 2 cm 190
(intermediate flame length baffle burner —high-
momentum gas nozzle)
145 Radial profile of all the gases at an axial position of 191
57. 2 cm (intermediate flame length baffle burner —
high-momentum gas nozzle)
146 Radial profile of average temperature at an axial 192
position of 57. 2 cm (intermediate flame length
baffle burner — high-momentum gas nozzle)
147 Radial profile of flow direction at an axial position 193
of 57. 2 cm (intermediate flame length baffle burner —
high-momentum gas nozzle)
148 Radial profile of NO at an axial position of 146. 1 cm 194
(intermediate flame length baffle burner —high-
momentum gas nozzle)
149 Radial profile of NO2 at an axial position of 146. 1 cm 195
(intermediate flame length baffle burner —high-
momentum gas nozzle)
150 Radial profile of O2 at an axial position of 146. 1 cm 196
(intermediate flame length baffle burner — high-
momentum gas nozzle)
151 Radial profile of CO2 at an axial position of 146. 1 cm 197
(intermediate flame length baffle burner —high
momentum gas nozzle)
152 Radial profile of all the gases at an axial position of 198
146. 1 cm (intermediate flame length baffle burner —
high-momentum gas nozzle)
153 Radial profile of average temperature at an axial 199
position of 146. 1 cm (intermediate flame length
baffle burner —high-momentum gas nozzle)
154 Radial profile of flow direction at an axial position 200
of 146. 1 cm (intermediate flame length baffle
burner — high-momentum gas nozzle)
XVlll
-------
LIST OF FIGURES, Cont.
Figure No.
155 Radial profile of NO at an axial position of 385. 4 cm
(intermediate flame length baffle burner —high-
momentum gas nozzle)
156 Radial profile of NO2 at an axial position of 385. 4 cm 202
(intermediate flame length baffle burner —high-
momentum gas nozzle)
157 Radial profile of O2 at an axial position of 385. 4 cm 203
(intermediate flame length baffle burner —high-
momentum gas nozzle)
158 Radial profile of CO2 at an axial position of 385. 4 cm 204
(intermediate flame length baffle burner —high-
momentum gas nozzle)
159 Radial profile of all the gases at an axial position of 205
385. 4 cm (intermediate flame length baffle burner —
high-momentum gas nozzle)
160 Radial profile of average temperature at an axial 206
position of 385. 4 cm (intermediate flame length
baffle burner — high-momentum gas nozzle)
161 Radial profile of flow direction at an axial position 207
of 385. 4 cm (intermediate flame length baffle
burner — high-momentum gas nozzle)
162 Isothermal plot of furnace temperature (intermediate 211
flame length baffle burner — standard gas nozzle)
163 Isoconcentration plot of NO (intermediate flame 212
length baffle burner — standard gas nozzle)
164 Isoconcentration plot of NO2 (intermediate flame 213
length baffle burner — standard gas nozzle)
165 Isothermal plot of furnace temperature (intermediate 214
flame length baffle burner — high-momentum gas
nozzle)
166 Isoconcentration plot of NO (intermediate flame 215
length baffle burner — high-momentum gas nozzle)
167 Isoconcentration plot of NO2 (intermediate flame 216
length baffle burner — high-momentum gas nozzle)
xix
-------
LIST OF FIGURES, Cont.
Figure No. Page
168 Radial profile of NO at an axial position of 5. 1 cm 220
(movable-vane boiler burner; 30-degree vane angle)
169 Radial profile of NO2 at an axial position of 5. 1 cm 221
(movable-vane boiler burner; 30-degree vane angle)
170 Radial profile of O2 at an axial position of 5. 1 cm 222
(movable-vane boiler burner; 30-degree vane angle)
171 Radial profile of CH4 at an axial position of 5. 1 cm 223
(movable-vane boiler burner; 30-degree vane angle)
172 Radial profile of CO2 at an axial position of 5. 1 cm 224
(movable-vane boiler burner; 30-degree vane angle)
173 Radial profile of all the gases at an axial position of 225
5. 1 cm (movable-vane boiler burner; 30-degree vane
angle)
174 Radial profile of average temperature at an axial 226
position of 5. 1 cm (movable-vane boiler burner;
30-degree vane angle)
175 Radial profile of flow direction at an axial position 227
of 5. 1 cm (movable-vane boiler burner; 30-degree
vane angle)
176 Radial profile of NO at an axial position of 26. 0 cm 229
(movable-vane boiler burner; 30-degree vane angle)
177 Radial profile of NO2 at an axial position of 26. 0 cm 230
(movable-vane boiler burner; 30-degree vane angle)
178 Radial profile of O2 at an axial position of 26. 0 cm 231
(movable-vane boiler burner; 30-degree vane angle)
179 Radial profile of CO2 at an axial position of 26. 0 cm 232
(movable-vane boiler burner; 30-degree vane angle)
180 Radial profile of all the gases at an axial position of 233
26. 0 cm (movable-vane boiler burner; 30-degree
vane angle)
181 Radial profile of average temperature at an axial 234
position of 26. 0 cm (movable-vane boiler burner;
30-degree vane angle)
xx
-------
LIST OF FIGURES, Cont.
Figure No. Page
182 Radial profile of flow direction at an axial position of 235
26. 0 cm (movable-vane boiler burner; 30-degree
vane angle)
183 Radial profile of NO at an axial position of 46. 7 cm 240
(movable-vane boiler burner; 30-degree vane angle)
184 Radial profile of NO2 at an axial position of 46. 7 cm 241
(movable-vane boiler burner; 30-degree vane angle)
185 Radial profile of O2 at an axial position of 46. 7 cm 242
(movable-vane boiler burner; 30-degree vane angle)
186 Radial profile of CO2 at an axial position of 46. 7 cm 243
(movable-vane boiler burner; 30-degree vane angle)
187 Radial profile of all the gases at an axial position of 244
46. 7 cm (movable-vane boiler burner; 30-degree
vane angle)
188 Radial profile of temperature at an axial position of 245
46. 7 cm (movable-vane boiler burner; 30-degree
vane angle)
189 Radial profile of flow direction at an axial position 246
of 46. 7 cm (movable-vane boiler burner; 30-degree
vane angle)
190 Radial profile of NO at an axial position of 146. 1 cm 247
(movable-vane boilei* burner; 30-degree vane angle)
191 Radial profile of NO2 at an axial position of 146. 1 cm 248
(movable-vane boiler burner; 30-degree vane angle)
192 Radial profile of O2 at an axial position of 146. 1 cm 249
(movable-vane boiler burner; 30-degree vane angle)
193 Radial profile of CO2 at an axial position of 146. 1 cm 250
(movable-vane boiler burner; 30-degree vane angle)
194 Radial profile of all the gases at an axial position of 251
146. 1 cm (movable-vane boiler burner; 30-degree
vane angle)
195 Radial profile of temperature at an axial position of 252
146. 1 cm (movable-vane boiler burner; 30-degree
vane angle)
xxi
-------
LIST OF FIGURES, Cont.
Figure No.
196 Radial profile of flow direction at an axial position
of 146. 1 cm (movable-vane boiler burner; 30-deg;ree
vane angle)
197 Radial profile of NO at an axial position of 385. 4 cm 254
(movable-vane boiler burner; 30-degree vane angle)
198 Radial profile of NO2 at an axial position of 385. 4 cm 255
(movable-vane boiler burner; 30-degree vane angle)
199 Radial profile of O2 at an axial position of 385. 4 cm 256
(movable-vane boiler burner; 30-degree vane angle)
200 Radial profile of CO2 at an axial position of 385. 4 cm 257
(movable-vane boiler burner; 30-degree vane angle)
201 Radial profile of all the gases at an axial position of 258
385.4 cm (movable-vane boiler burner; 30-degree
vane angle)
202 Radial profile of temperature at an axial position of 259
385. 4 cm (movable-vane boiler burner; 30-degree
vane angle)
203 Radial profile of flow direction at an axial position 260
of 385. 4 cm (movable-vane boiler burner; 30-degree
vane angle)
204 Radial profile of NO at an axial position of 5. 1 cm 270
(movable-vane boiler burner; 15-degree vane angle)
205 Radial profile of NO2 at an axial position of 5. 1 cm 271
(movable -vane boiler burner; 15-degree vane angle)
206 Radial profile of O2 at an axial position of 5. 1 cm 272
(movable-vane boiler burner; 15-degree vane angle)
207 Radial profile of CH4 at an axial position of 5. 1 cm 273
(movable -vane boiler burner; 15-degree vane angle)
208 Radial profile of CO2 at an axial position of 5. 1 cm 274
(movable -vane boiler burner; 15-degree vane angle)
209 Radial profile of all the gases at an axial position of 275
5. 1 cm (movable-varie boiler burner; 15-degree
vane angle)
xxn
-------
LIST OF FIGURES, Cont.
Figure No. Page
210 Radial profile of temperature at an axial position of 276
5. 1 cm (movable-vane boiler burner; 15-degree
vane angle)
211 Radial profile of flow direction at an axial position 277
of 5. 1 cm (movable-vane boiler burner; 15-degree
vane angle)
212 Radial profile of NO at an axial position of 26. 0 cm 278
( movable-vane boiler burner; 15-degree vane angle)
213 Radial profile of NO2 at an axial position of 26. 0 cm 279
(movable-vane boiler burner; 15-degree vane angle)
214 Radial profile of O2 at an axial position of 26. 0 cm 280
(movable-vane boiler burner; 15-degree vane angle)
215 Radial profile of CH4 at an axial position of 26. 0 cm 281
(movable-vane boiler burner; 15-degree vane angle)
216 Radial profile of CO2 at an axial position of 26. 0 cm 282
(movable-vane boiler burner; 15-degree vane angle)
217 Radial profile of all the gases at an axial position of 283
26. 0 cm (movable-vane boiler burner; 15-degree
vane angle)
218 Radial profile of temperature at an axial position of 284
26. 0 cm (movable-vane boiler burner; 15-degree
vane angle)
219 Radial profile of flow direction at an axial position 285
of 26. 0 cm (movable-vane boiler burner; 15-degree
vane angle)
220 Radial profile of NO at an axial position of 46. 7 cm 286
(movable-vane boiler burner; 15-degree vane angle)
221 Radial profile of NO2 at an axial position of 46. 7 cm 287
(movable-vane boiler burner; 15-degree vane angle)
222 Radial profile of O2 at an axial position of 46. 7 cm 288
( movable-vane boiler burner; 15-degree vane angle)
223 Radial profile of CO2 at an axial position of 46. 7 cm 289
(movable-vane boiler burner; 15-degree vane angle)
XXlll
-------
LIST OF FIGURES, Cont.
Figure No.
Jage
224 Radial profile of all the gases at an axial position of 290
46. 7 cm (movable-vane boiler burner; 15-degree
vane angle)
225 Radial profile of temperature at an axial position of 291
46. 7 cm (movable-vane boiler burner; 15-degree
vane angle)
226 Radial profile of flow direction at an axial position 292
of 46. 7 cm (movable -vane boiler burner; 15-degree
vane angle)
227 Radial profile of NO at an axial position of 146. 1 cm 293
(movable -vane boiler burner; 15-degree vane angle)
228 Radial profile of NO2 at an axial position of 146. 1 cm 294
(movable-vane boiler burner; 15-degree vane angle)
229 Radial profile of O2 at an axial position of 146. 1 cm 295
(movable-vane boiler burner; 15-degree vane angle)
230 Radial profile of CO2 at an axial position of 146. 1 cm 296
(movable-vane boiler burner; 15-degree vane angle)
231 Radial profile of all the gases at an axial position of 297
146. 1 cm (movable-vane boiler burner; 15-degree
vane angle)
232 Radial profile of temperature at an axial position of 298
146. 1 cm (movable-vane boiler burner; 15-degree
vane angle)
233 Radial profile of flow direction at an axial position of 299
146. 1 cm (movable-vane boiler burner; 15-degree
vane angle)
234 Radial profile of NO at an axial position of 385. 4 cm 300
(movable-vane boiler burner; 15-degree vane angle)
235 Radial profile of NO2 at an axial position of 385. 4 cm 301
(movable-vane boiler burner; 15-degree vane angle)
236 Radial profile of O2 at an axial position of 385. 4 cm 302
(movable-vane boiler burner; 15-degree vane angle)
237 Radial profile of CO2 at an axial position of 385. 4 cm 303
(movable-vane boiler burner; 15-degree vane angle)
xxiv
-------
LIST OF FIGURES, Cont.
Figure No. Page
238 Radial profile of all the gases at an axial position of 304
385.4 cm (movable-vane boiler burner; 15-degree
vane angle)
239 Radial profile of temperature at an axial position of 305
385. 4 cm (movable-vane boiler burner; 15-degree
vane angle)
240 Radial profile of flow direction at an axial position 306
of 385. 4 cm (movable-vane boiler burner; 15-degree
vane angle)
241 Isothermal plot of furnace temperature (movable-vane 310
boiler burner; 30-degree vane angle)
242 Isoconcentration plot of NO ( movable-vane boiler 311
burner; 30-degree vane angle)
243 Isoconcentration plot of NO2 ( movable-vane boiler 312
burner; 30-degree vane angle)
244 Isothermal plot of furnace temperature (movable- 313
vane boiler burner; 15-degree vane angle)
245 Isoconcentration plot of NO ( movable-vane boiler 314
burner; 15-degree vane angle)
246 Isoconcentration plot of NO2 (movable-vane boiler 315
burner; 15-degree vane angle)
xxv
-------
This page was intentionally left blank.
xxvi
-------
LIST OF TABLES
Table No. Page
1 National Natural Gas Consumption and NO Data 5
By Process and Burner Type
2 Basic Burner Types and National NO Emission 8
Levels
3 Kiln Burner In-The-Flame Sampling Conditions 10
Without Flue Gas Recirculation
4 Kiln Burner In-The-Flame Sampling Data at an 11
Axial Position of 5. 1 cm
5 Kiln Burner In-The-Flame Sampling Data at an 12
Axial Position of 26. 0 cm
6 Kiln Burner In-The-Flame Sampling Data at an 13
Axial Position of 57. 2 cm
7 Kiln Burner In-The-Flame Sampling Data at an 14
Axial Position of 146. 1 cm.
8 Kiln Burner In-The-Flame Sampling Data at an 15
Axial Position of 385. 4 cm.
9 Combination Kiln Burner Nozzle — Pollution Control 56
Conditions — Furnace Conditions for In-The-Flame
Sampling With Flue-Gas Recirculation
10 Combination Kiln Burner Nozzle — Pollution Control 58
Conditions — In-The-Flame Sampling Data at an
Axial Position of 5. 1 cm
11 Combination Kiln Burner Nozzle — Pollution Control 67
Conditions — In-The-Flame Sampling Data at an
Axial Position of 26. 0 cm
12 Combination Kiln Burner Nozzle — Pollution Control 76
Conditions — In-The-Flame Sampling Data at an
Axial Position of 57. 2 cm
13 Combination Kiln Burner Nozzle — Pollution Control 77
Conditions — In-The-Flame Sampling Data at an
Axial Position of 146. 1 cm
14 Combination Kiln Burner Nozzle — Pollution Control 78
Conditions — In-The-Flame Sampling Data at an
Axial Position of 290. 2
xxvn
-------
LIST OF TABLES, Cont.
Table No. Page
15 Combination Kiln Burner Nozzle — Pollution Control 79
Conditions — In-The-Flame Sampling Data at an
Axial Position of 385. 4 cm
16 Furnace Conditions for In-The-Flame Sampling 116
(Intermediate Flame Length Baffle Burner —
Standard Gas Nozzle)
17 In-The-Flame Sampling Data at an Axial Position of 117
5. 1 cm (Intermediate Flame Length Baffle Burner —
Standard Gas Nozzle)
18 In-The-Flame Sampling Data at an Axial Position of 126
26. 0 cm (Intermediate Flame Lentgh Baffle
Burner — Standard Gas Nozzle)
19 In-The-Flame Sampling Data at an Axial Position of 135
57. 2 cm (Intermediate Flame Length Baffle
Burner — Standard Gas Nozzle)
20 In-The-Flame Sampling Data at an Axial Position of 136
146. 1 cm (Intermediate Flame Length Baffle
Burner — Standard Gas Nozzle)
21 In-The-Flame Sampling Data at an Axial Position of 137
385.4 cm (Intermediate Flame Length Baffle
Burner — Standard Gas Nozzle)
22 Furnace Conditions for In-The-Flame Sampling 165
(Intermediate Flame Length Baffle Burner —High-
Momentum Gas Nozzle)
23 In-The-Flame Sampling Data at an Axial Position of 166
5. 1 cm (Intermediate Flame Length Baffle Burner —
High-Momentum Gas Nozzle)
24 In-The-Flame Sampling Data at an Axial Position of 167
26. 0 cm (Intermediate Flame Length Baffle Burner —
High-Momentum Gas Nozzle)
25 In-The-Flame Sampling Data at an Axial Position of 168
57. 2 cm (Intermediate Flame Length Baffle Burner —
High-Momentum Gas Nozzle)
26 In-The-Flame Sampling Data at an Axial Position of 169
146. 1 cm (Intermediate Flame Length Baffle Burner —
High-Momentum Gas Nozzle)
XXVlll
-------
LIST OF TABLES, Cont.
Table No.
27 In-The-Flame Sampling Data at an Axial Position of
385.4 cm (Intermediate Flame Length Baffle Burner —
High-Momentum Gas Nozzle)
28 Furnace Conditions for In-The-Flame Sampling 218
(Movable-Vane Boiler Burner; 30-Degree Vane Angle)
29 In-The-Flame Sampling Data at an Axial Position of 219
5. 1 cm ( Movable-Vane Boiler Burner; 30-Degree
Vane Angle)
30 In-The-Flame Sampling Data at an Axial Position of 228
26. 0 cm (Movable-Vane Boiler Burner; 30-Degree
Vane Angle)
31 In-The-Flame Sampling Data at an Axial Position of 236
46. 7 cm (Movable-Vane Boiler Burner; 30-Degree
Vane Angle)
32 In-The-Flame Sampling Data at an Axial Position of 237
146. 1 cm (Movable-Vane Boiler Burner; 30-Degree
Vane Angle)
33 In-The-Flame Sampling Data at an Axial Position of 238
385.4 cm (Movable-Vane Boiler Burner; 30-Degree
Vane Angle)
34 Furnace Conditions for In-The-Flame Sampling 239
(Movable-Vane Boiler Burner; 15-Degree Vane Angle)
35 In-The-Flame Sampling Data at an Axial Position of 265
5. 1 cm ( Movable-Vane Boiler Burner; 15-Degree
Vane Angle)
36 In-The-Flame Sampling Data at an Axial Position of 266
26.0 cm (Movable-Vane Boiler Burner; 15-Degree
Vane Angle)
37 In-The-Flame Sampling Data at an Axial Position of 267
46. 7 cm (Movable-Vane Boiler Burner; 15-Degree
Vane Angle)
38 In-The-Flame Sampling Data at an Axial Position of 268
146. 1 cm (Movable-Vane Boiler Burner; 15-Degree
Vane Angle)
39 In-The-Flame Sampling Delta at an Axial Position of 269
385.4 cm (Movable-Vane Boiler Burner; 15-Degree
Vane Angle)
xxix
-------
LIST OF TABLES, Cont.
Table No. Page
40 Data for Combination Kiln Burner Nozzle (Gas Input 318
2700 SCFH - 810 SCFH Axial and 1890 SCFH Radial;
3. 2% Primary Air; 1330°C Wall Temperature)
41 Data for Combination Kiln Burner Nozzle (Gas Input 319
2700 SCFH - 810 SCFH Axial and 1890 SCFH Radial;
3. 5% Primary Air; 1150°C Wall Temperature; 12%
Flue Gas Re circulation)
42 Combination Nozzle Kiln Burner (Gas Input 320
2733 CFH- 879 CFH Axial and 1854 CFH Radial;
3. 2% Primary Air, Wall Temperature 1257°C (Air
Cooling) ; and 12% Flue Gas Recirculation)
43 Data for Combination Kiln Burner Nozzle (Gas Input 321
2700 SCFH - 810 SCFH Axial and 1890 SCFH Radial;
3. 5% Primary Air; 1130°C Wall Temperature)
44 Combination Nozzle Kiln Burner (Gas Input 322
2706 CFH- 876 CFH Axial and 1830 CFH Radial;
6. 0% Primary Air and a 1310°C Wall Temperature
[Air Cooling])
45 Combination Nozzle Kiln Burner (Gas Input 323
2700 SCFH; 30% Axial and 70% Radial; Water
Cooling of Furnace Sidewalls; 1150°C Wall
Temperature; 6. 2% Primary Air)
46 Combination Nozzle Kiln Burner (Gas Input 324
2733 CFH- 873 CFH Axial and 1900 CFH Radial;
3. 5% Primary Air; 1330°C Wall Temperature (Air
Cooling) ; and the Gas Nozzle in the Exit Position)
47 Combination Nozzle Kiln Burner (Gas Input 325
2691 CFH - 368 CFH Axial and 2323 CFH Radial;
3. 5% Primary Air, and 1345°C Wall Temperature
[Air Cooling])
48 Combination Nozzle Kiln Burner (Gas Input 326
2734 CFH- 411 CFH Axial and 2323 CFH Radial;
6. 6% Primary Air, and a 1345°C Wail Temperature
[Air Cooling])
49 Combination Nozzle Kiln Burner (Gas Input 327
2714 CFH- 411 CFH Axial and 2303 Radial; 3. 5%
Primary Air; 1320°C Wall Temperature, and the
Gas Nozzle in the Exit Position)
xxx
-------
LIST OF TABLES, Cont.
Table No. Page
50 Combination Nozzle Kiln Burner (Gas Input 328
2687 CFH - 0 CFH Axial and 2687 CFH Radial; 3. 2%
Primary Air and a 1305°C Wall Temperature)
51 Combination Nozzle Kiln Burner (Gas Input 329
2959 CFH - 0 CFH Axial and 2659 CFH Radial; 3. 5%
Primary Air; 1340°C Wall Temperature (Air
Cooling) ; and the Gas Nozzle is in the Exit Position)
52 Data for Combination Kiln Burner Nozzle (Gas Input 330
1900 SCFH - 570 SCFH Axial and 1330 SCFH Radial;
6. 2% Primary Air; 1023 °C Wall Temperature)
53 Combination Nozzle Kiln Burner (Gas Input 331
1800 CFH - 0 CFH Axial and 1800 CFH Radial;
4. 2% Primary Air and a 1250°C Wall Temperature
[Air Cooling])
54 Divergent Nozzle Kiln Burner (Gas Input 2700 SCFH; 332
3. 5% Primary Air; 1320°C Wall Temperature)
55 Data for Divergent Kiln Burner Nozzle (Gas Input 333
2700 SCFH; 3. 5% Primary Air; 1145°C Wall
Temperature)
56 Data for Divergent Kiln Burner Nozzle (Gas Input 334
2700 SCFH; 9. 5% Primary Air; 1150°C Wall
Temperature)
57 Normalized NO Concentration as a Function of Fhie 335
Oxygen for the Intermediate Flame Length Ported
Baffle Burner With a Standard Gas Nozzle (Gas Input
3070 SCFH; Baffle Gas Nozzle Position; 1435°C Wall
Temperature; 4-degree Burner-Block Angle)
58 Normalized NO Concentration as a Function of Flue 336
Oxygen for the Intermediate Flame Length Ported
Baffle Burner With a Standard Gas Nozzle (Gas
Input 2005 SCFH; Baffle Gas Nozzle Position; 1420°C
Wall Temperature; 4-degree Burner-Block Angle)
59 Normalized NO Concentration as a Function of Flue 337
Oxygen for the Intermediate Flame Length Ported
Baffle Burner With a Standard Gas Nozzle (Gas
Input 3070 SCFH; Baffle Gas Nozzle Position; 1390°C
Wall Temperature; 4-degree Burner-Block Angle;
15% and 30% Flue-Gas Re circulation)
xxxi
-------
LIST OF TABLES, Cont.
Table No.
60 Normalized NO Concentration as a Function of Flue 338
Oxygen for the Intermediate Flame Length Ported
Baffle Burner With a Standard Gas Nozzle (Gas Input
3070 SCFH; Baffle Gas Nozzle Position; 965°C Wall
Temperature; 4-degree Burner-Block Angle)
61 Normalized NO concentration as a Function of Flue 339
Oxygen for the Intermediate Flame Length Ported
Baffle Burner With a Combination Gas Nozzle (Ga.s
Input 2970 SCFH Radial; Baffle and Throat Gas Nozzle
Positions; 1370°C Wall Temperature; 4-degree
Burner-Block Angle)
62 Normalized NO Concentration as a Function of Flue 340
Oxygen for the Intermediate Flame Length Ported
Baffle Burner With a Combination Gas Nozzle (Gas
Input 3101 SCFH - 1511 SCFH Axial and 1590 SCFH
Radial; Baffle and Throat Gas Nozzle Positions;
1390°C Wall Temperature; 4-degree Burner-Block
Angle)
63 Normalized NO Concentration as a Function of Flue 341
Oxygen for the Intermediate Flame Length Ported
Baffle Burner with a Standard Gas Nozzle (Gas Input
3070 SCFH; Throat Gas Nozzle Position; 1455°C Wall
Temperature; 4-degree Burner-Block Angle)
64 Normalized NO Concentration as a Function of Flue 342
Oxygen for the Intermediate Flame Length Ported
Baffle Burner With a Divergent Gas Nozzle (Gas
Input 3052 SCFH; Baffle and Throat Gas Nozzle
Positions; 141 5°C Wall Temperature; 4-degree
Burner-Block Angle)
65 Normalized NO Concentration as a Function of Flue 343
Oxygen for the Intermediate Flame Length Ported
Baffle Burner with a Combination Gas Nozzle (Gas
Input 3006 SCFH Axial; Baffle Gas Nozzle Position;
1420°C Wall Temperature; 4-degree Burner-Block
Angle)
66 Normalized NO Concentration as a Function of Flue 344
Oxygen for the Intermediate Flame Length Ported
Baffle Burner With a Standard Gas Nozzle (Gas Input
3070 SCFH Axial; Baffle Gas Nozzle Position; 985°C
Wall Temperature; 4-degree Burner-Block Angle)
xxxii
-------
LIST OF TABLES, Cont.
Table No.
67 Normalized NO Concentration as a Function of Flue 345
Oxygen for the Intermediate Flame Length Ported
Baffle Burner With a Standard Gas Nozzle (Gas Input
2998 SCFH Axial; Baffle and Throat Gas Nozzle
Positions; 1430°C Wall Temperature; 8-degree
Burner-Block Angle)
68 Normalized NO Concentration as a Function of Flue 346
Oxygen for the Intermediate Flame Length Ported
Baffle Burner With a Divergent Gas Nozzle (Gas
Input 2998 SCFH Axial; Baffle Gas Nozzle Position;
1340°C Wall Temperature; 8-degree Burner-Block
Angle)
69 Normalized NO Concentration as a Function of Flue 347
Oxygen for the Intermediate Flame Length Ported
Baffle Burner With a Combination Gas Nozzle (Gas
Input 2998 SCFH Axial; Baffle Gas Nozzle Position;
1310°C Wall Temperature; 8-degree Burner-Block
Angle)
70 Normalized NO Concentration as a Function of Flue 348
Oxygen for the High-Momentum Short Flame Length
Ported Baffle Burner With a Standard Gas Nozzle (Gas
Input 2049 SCFH Axial; Baffle Gas Nozzle Position;
1260°C Wall Temperature; 8-degree Burner-Block
Angle)
71 Normalized NO Concentration as a Function of Flue 349
Oxygen for the Short Flame Length Ported Baffle
Burner with a Standard Gas Nozzle (Gas Input
1991 SCFH Axial; Baffle Gas Nozzle Position; 1330°C
Wall Temperature; 8-degree Burner-Block Angle)
72 Normalized NO Concentration as a Function of Flue 350
Oxygen for the Short Flame Length Ported Baffle
Burner With a Standard Gas Nozzle (Gas Input
3093 SCFH Axial; Baffle Gas Nozzle Position; 1450°C
Wall Temperature; 8-degree Burner-Block Angle)
73 Normalized NO Concentration as a Function of Flue 351
Oxygen for the Short Flame Length Ported Baffle
Burner With a Standard Gas Nozzle (Gas Input
3064 SCFH Axial; Baffle Gas Nozzle Position; 1050°C
Wall Temperature; 8-degree Burner-Block Angle)
XXXlll
-------
LIST OF TABLES, Cont.
Table No. Page
74 Normalized NO Concentration as a Function of Flue 352
Oxygen for the Short Flame Length Ported Baffle
Burner With a Standard Gas Nozzle (Gas Input
3070 SCFH Axial; Baffle Gas Nozzle Position; 1360°C
Wall Temperature; 8-degree Burner-Block Angle;
15% and 25% Flue-Gas Re circulation)
75 Normalized NO Concentration as a Function of Flue 353
Oxygen for the Short Flame Length Ported Baffle
Burner With a High-Velocity Radial Gas Nozzle (Gas
Input 2955 SCFH Radial; Baffle Gas Nozzle Position;
1408°C Wall Temperature; 8-degree Burner-Block
Angle)
76 Normalized NO Concentration as a Function of Flue 354
Oxygen for the Short Flame Length Ported Baffle
Burner With a Low-Velocity Radial Gas Nozzle (Gas
Input 2982 SCFH Radial; Baffle Gas Nozzle Position;
1413°C Wall Temperature; 8-degree Burner-Block
Angle)
77 Normalized NO Concentration as a Function of Flue 355
Oxygen for the Short Flame Length Ported Baffle
Burner With a Divergent Gas Nozzle (Gas Input
2992 SCFH; Baffle Gas Nozzle Position; 1420°C Wall
Temperature; 8-degree Burner-Block Angle)
78 Normalized NO Concentration as a Function of Flue 356
Oxygen for the Short Flame Length Ported Baffle
Burner With a Combination Gas Nozzle (Gas Input
3061 SCFH Axial; Baffle Gas Nozzle Position; 1425°C
Wall Temperature; 8-degree Burner-Block Angle)
79 Normalized NO Concentration as a Function of Flue 357
Oxygen for the Short Flame Length Ported Baffle
Burner With a Standard Gas Nozzle (Gas Input
3008 SCFH Axial; Baffle Gas Nozzle Position; 1470°C
Wall Temperature; 16-degree Burner-Block Angle)
80 Normalized NO Concentration as a Function of Flue 358
Oxygen for the Short Flame Length Ported Baffle
Burner With a Divergent Gas Nozzle (Gas Input
2863 SCFH; Baffle Gas Nozzle Position; 1440°C Wall
Temperature; 16-degree Burner-Block Angle)
xxxiv
-------
LIST OF TABLES, Cont.
Table No. Page
81 Normalized NO Concentration as a Function of Flue 359
Oxygen for the Short Flame Length Ported Baffle
Burner With a Combination Gas Nozzle (Gas Input
2953 SCFH Axial; Baffle Gas Nozzle Position; 1470°C
Wall Temperature; 16-degree Burner-Block Angle)
82 Flue Analysis for the Movable-Vane Boiler Burner 360
With a 60-Degree Gun Gas Nozzle (Gas Input 2969
SCFH; Exit Gas Nozzle Position; 30-degree Vane
Rotation; 1340°C Wall Temperature; 30-degree
Burner-Block Angle)
83 Flue Analysis for the Movable-Vane Boiler Burner 361
With a 60-Degree Gun Gas Nozzle (Gas Input 2969
SCFH; Exit Gas Nozzle Position; 30-degree Vane
Rotation; 1330°C Wall Temperature; 30-degree
Burner-Block Angle; 15% and 25% Flue-Gas
Recirculation)
84 Flue Analysis for the Movable-Vane Boiler Burner 362
With a 60-Degree Gun Gas Nozzle (Gas Input 3004
SCFH; Throat, Exit, and Deflector Gas Nozzle
Positions; 30-degree Vane Rotation; 1350°C Wall
Temperature; 30-degree Burner-Block Angle)
85 Flue Analysis for the Movable-Vane Boiler Burner 363
With a Composite List of Gas Nozzles (Gas Input
3000 SCFH; Throat Gas Nozzle Position; 30-degree
Vane Rotation; 1360°C Wall Temperature; 30-degree
Burner-Block Angle; 460°C Secondary Air Preheat
Temperature)
86 Flue Analysis for the Movable-Vane Boiler Burner 364
With a 60-Degree Gun Gas Nozzle (Gas Input 2994
SCFH; Exit, Throat, and Deflector Gas Nozzle
Positions; 15-degree Vane Rotation; 1355°C Wall
Temperature; 30-degree Burner-Block Angle; 457°C
Secondary Air Preheat Temperature)
87 Flue Analysis for the Movable-Vane Boiler Burner 365
With a 60-Degree Gun Gas Nozzle (Gas Input 2976
SCFH; Exit, Throat, and Deflector Gas Nozzle
Positions; 45-degree Vane Rotation; 1348°C Wall
Temperature; 30-degree Burner-Block Angle; 463°C
Secondary Air Preheat Temperature)
xxxv
-------
LIST OF TABLES, Cont.
Table No. Page
88 Flue Analysis for the Movable-Vane Boiler Burner 366
With a Composite Listing of Gas Nozzles (Gas Input
3011 SCFH; Throat Gas Nozzle Position; 45-degree
Vane Rotation; 1346°C Wall Temperature; 30-degree
Burner-Block Angle; 456°C Secondary Air Preheat
Temperature)
89 Flue Analysis for the Movable-Vane Boiler Burner 36?
With a 60-Degree Gun Gas Nozzle (Gas Input 2897
SCFH; Exit, Throat, and Deflector Gas Nozzle
Positions; 60-degree Vane Rotation; 1382°C Wall
Temperature; 30-degree Burner-Block Angle; 461 °C
Secondary Air Preheat Temperature)
90 Flue Analysis for the Movable-Vane Boiler Burner 368
With a Composite Listing of Gas Nozzles (Gas Input
2883 SCFH; Throat Gas Nozzle Position; 60-degree
Vane Rotation; 1376°C Wall Temperature; 30-degree
Burner-Block Angle; 456°C Secondary Air Preheat
Temperature)
91 Flue Analysis for the Movable-Vane Boiler Burner 369
With a 30-Degree Ring Gas Nozzle (Gas Input 2884
SCFH; Exit, Throat, and Deflector Nozzle Positions;
30-degree Vane Rotation; 1357°C Wall Temperature;
30-degree Burner-Block Angle)
92 Flue Analysis for the Movable-Vane Boiler Burner 370
With a 30-Degree Ring Gas Nozzle (Gas Input 2938
SCFH; Exit and Deflector Nozzle Positions; 15-degree
Vane Rotation; 1388°C Wall Temperature; 30-degree
Burner-Block Angle)
93 Flue Analysis for the Movable-Vane Boiler Burner 371
With a 30-Degree Ring Gas Nozzle (Gas Input 2909
SCFH; Exit and Deflector Nozzle Positions; 15-degree
Vane Rotation; 1359°C Wall Temperature; 30-degree
Burner-Block Angle)
94 Flue Analysis for the Movable-Vane Boiler Burner 372
With a 30-Degree Ring Gas Nozzle (Gas Input 2894
SCFH; Exit and Deflector Nozzle Positions; 60-degree
Vane Rotation; 1370°C Wall Temperature; 30-degree
Burner-Block Angle)
xxxvi
-------
LIST OF TABLES, Cont.
Table No. Page
95 Flue Analysis for the Movable-Vane Boiler Burner 373
With a 30-Degree Guri Gas Nozzle (Gas Input 3054
SCFH; Exit and Deflector Nozzle Positions;
30-degree Vane Rotation; 1390°C Wall Temperature;
30-degree Burner-Block Angle)
96 Flue Analysis for the Movable-Vane Boiler Burner 374
With 30-Degree Ring and 60-Degree Gun Gas Nozzles
(Gas Input 3044 SCFH; Exit and Deflector Nozzle
Positions; 30-degree Vane Rotation; 1347°C Wall
Temperature; 15-degree Burner-Block Angle)
97 Flue Analysis for the Movable-Vane Boiler Burner 375
With a 60-Degree Guri and 30-Degree Ring Gas
Nozzles (Gas Input 3029 SCFH; Exit and Deflector
Nozzle Positions; 15-degree Vane Rotation; 1390°C
Wall Temperature; 15-degree Burner-Block Angle)
98 Flue Analysis for the Movable-Vane Boiler Burner 376
With 30-Degree Ring and 60-Degree Gun Gas Nozzles
(Gas Input 2889 SCFH; Exit and Deflector Nozzle
Positions; 45-degree Vane Rotation; 1395°C Wall
Temperature; 15-degree Burner-Block Angle)
99 Flue Analysis for the Mova.ble-Vane Boiler Burner 377
With 30-Degree Ring and 60-Degree Gun Gas
Nozzles (Gas Input 2896 SCFH; Exit and Deflector
Nozzle Positions; 60-degree Vane Rotation; 1385°C
Wall Temperature; 15-degree Burner-Block Angle)
100 Flue Analysis for the Movable-Vane Boiler Burner 378
With a 30-Degree Ring Gas Nozzle (Gas Input 2895
SCFH; Exit Nozzle Position; 15, 30, 45, and
60-degree Vane Rotation; 1361 °C Wall Temperature;
45-degree Burner-Block Angle)
101 Flue Analysis for the Movable-Vane Boiler Burner 379
With a Composite List of Gas Nozzles (Gas Input 3041
SCFH; Exit Nozzle Position; 60-degree Vane Rotation;
1396°C Wall Temperature; 45-degree Burner-Block
Angle)
XXXV1.1
-------
This page was intentionally left blank.
xxxviu
-------
ACKNOWLEDGMENT
The author would like to acknowledge the help of Mike Kerna, Lloyd McHie,
David Orchowski and Mike Peer who all contributed to the successful comple-
tion of this research. Thanks also goes to David W. Pershing and
Dr. J. O. L. Wendt, of the University of Arizona, and David Lachapelle, the
EPA Project Officer, for their many helpful discussions and contributions
made in the data analyses. The assistance extended by Cheryl Zrna and
Dennis Larson in preparation of this report is also appreciated.
xxxix
-------
This page was intentionally left blank.
xl
-------
BURNER SELECTION
METHODOLOGY OF ANALYSIS
In order to select three distinctly different type of burners to be investi-
gated, a classification system was developed which would categorize a
burner type by its combustion and heat-release characteristics. The
relative gas loads for each of these burner types were determined from
gas consumption statistics by industrial process and by an assessment of
the dominant burner type used for each process. The assessment of the
predominant burner type by industrial process came from industrial burner
manufacturers. The gas load statistics by industrial process were available
in American Gas Association publications and from nonproprietary gas
supply and utilization studies conducted by IGT.
Obtaining relative NO emission rates by burner type was extremely
Jv
difficult because of the lack of published data over the broad range of indus-
tries covered. Therefore, each of the industrial processes was assigned
into one of three categories of NO emission levels. It was assumed that the
high emission processes emitted 0. 5 Ib/million Btu; intermediate emission
processes, 0. 251b/million Btu; and low emission processes, only 0. 05 Ib
of NO /million Btu of fuel consumed. Obviously, very few processes and
Jt.
burner types produce exactly the quantity of NO of the group into which
jC
they were placed. However, for the purposes of this program evaluation,
this method provides a sufficiently good relative measure of the contribution
of each burner type to the national NO emission problem.
2£
Each industrial processes and burner type was placed in the appropriate
category based on available literature data or based on our expertise in the
area of NO emissions developed by the field testing of burners and the
testing of scaled industrial burners in our laboratory. This latter method
was coupled with our knowledge of the firing rate, heat-release pattern,
percent excess air, and average temperature of the industrial process. We
therefore have data on the total gas load/yr and on the NO emission rate in
5£
Ib/million Btu for each type of burner.
-------
DISCUSSION
Burner Classification
The first step in this program was to classify burners by combustion
characteristics. Product information from several of the manufacturers was
consulted for the combustion-he at release characteristics. We determined
that all burners could be grouped into one of seven classifications: 1) nozzle
mix, nozzle premix, premix; 2) register; 3) flat flame (high intensity);
4) delayed mixing; 5) non-premix gas momentum controlled; 6) non-premix
swirl; and 7) other, which includes burners of very specialized applications,
such as those used in blast stoves.
Premix Burners —In the premixing type of gas burner, the primary air and
gas are mixed at some point upstream from the burner ports. The mixing
can be accomplished by use of an inspirator mixer, an aspirator mixer, or
a fan mixer. When premixers are used, the burner serves only as a flame
holder, maintaining the flame in the desired location. The cool burner port
is used to stabilize the flame.
Nozzle-Mixing Burners — The nozzle-mixing gas burner keeps the gas and
combustion air separated within the burner itself. The nozzle orifices are
designed so as to provide rapid mixing of the fluids as they leave the burner.
This burner type can supply gas through the center nozzle and air through
an annular orifice around it, or supply air through the center.
Delayed-Mixing Burners — The delayed-mixing burner, usually used for
radiant tube firing, injects low-velocity, nonturbulent parallel and adjacent
air and gas streams into the combustion chamber. This provides a low
mixing rate, which results in a long flame, because mixing occurs only
along the interface between the parallel gas and air streams. If the burner
is arranged so as to inject a central core of gas completely surrounded by
an annular air stream, the combustion which occurs at the air-gas interface
will radiate heat to the gas stream, causing it to crack (gaseous hydro-
carbons being reduced to free carbon and hydrogen) and produce luminous
carbon particles.
-------
Radiant tubes are made of expensive alloys or ceramic materials, so it
is important that no part of the tube is damaged by overheating; however, it
is also important that every inch of their length be utilized to fullest advan-
tage. This requires that the flame within the tube must release its heat at a
uniformly high rate throughout the tube length. A delayed mixing flame
accomplishes most of this requirement, except that it is rather slow in getting
started. To avoid a wasteful cool section at the burner end of the tube, a
partial premix is incorporated into the burner. This produces a flue flame
for about the first foot of the tube length, until the luminous flame develops.
Flat-Flame Burners — When penetration of the flame and hot combustion
gases is not desired, a flat-flame may be used. The radial-flame burner
is a nozzle mixing type which injects the gas at a very small axial velocity,
and the combustion air has a maximum tangential velocity component. The
air flow thus adheres stably to the divergent burner block. A radial flame
is produced which heats its own refractory tile and the refractory surface of
the surrounding furnace wall or roof by convection. These hot refractory
surfaces then radiate heat to the furnace load.
Swirl Burners — The non-premix swirl burner combustion characteristics
can be varied from that of a nozzle--mixing to a delayed-mixing type of
burner by varying the velocity components of the combustion air. The gas
is injected along the axis of the burner, with the combustion air introduced
through an annular orifice around, it. The velocity of the air is composed of
an axial and a tangential component.
Register Burners — The register burner is typically used in boilers, with
the air entering through a register of guide vanes, which allows a variation
in the magnitude of the axial and tangential velocity components. The gas is
introduced either through a gun or ring nozzle. In the gun nozzle, there is
a pipe which is concentric with the axis of the burner. The end of the pipe
is plugged, and radial holes are drilled near the end to allow the gas to have
a diverging velocity component. The ring nozzle is shaped like a donut with
holes drilled on the inside edge of the ring. Therefore, the gas will have a
converging radial velocity component.
-------
The relative gas loads of each burner type are determined from gas
consumption statistics (Table 1) by industrial process and by an assess-
ment of the predominant burner type used for each industrial process. In
some processes, more than one burner type may be used; in these cases,
an additional breakdown of burner types used in any one industrial process
was determined by rationing the number of each burner type sold for that
process. The number of burners, by type, for a particular application
was made available by the manufacturers. The gas load statistics by indus-
trial process, as presented in Table 1, were gathered from publications of
the American Gas Association and partly from non-proprietary gas supply
and utilization studies conducted by IGT.
NO Emissions Classification
'"'"' yi ' ------ i - -----'
The data relating NO emission rates to burner types or industrial
.X
processes are relatively sparse. Therefore, to evaluate NO emissions by
X-
burner type, a relative NO emission rate had to be developed. From
X.
literature and the experimental work completed under EPA Contract No.
68-02-0216, we are able to make accurate estimates of the emissions from
flat-flame, utility boilers and non-premix swirl burners. This, coupled
with our experience in field testing gas-momentum-controlled non-premix
burners, helped in making estimates for pollution emissions from industrial
processes for which no data had been published. Because of the difficulty in
obtaining absolute numbers, the NO emissions in Ib/million Btu have been
ji
ranked into three relative categories; low, — 0. 05 Ib/million Btu; inter -
mediate, - 0. 25 Ib/million Btu; and high, - 0. 5 Ib/million Btu.
Industrial Processes and Relative NO Emissions
• •" " " _<•!!•• I II ._ i^I ^—V^W* J^"^-^^—•—
The list of industrial processes included in Table 1 represents over 65%
of the total industrial gas consumption in 1971. The remaining 35% was
almost all used as feedstock. This listing also represents industries which
consumed over 63% of the total U. S. energy for the same year. Each of
the remaining industries consumed less than 1. 3% of the total U. S. energy,
with the exception of motor vehicles, which used 1. 96%; however, this latter
category is not applicable to our program.
4
-------
Table 1.
NATIONAL NATURAL GAS CONSUMPTION AND NO DATA BY PROCESS AND BURNER TYPE
Industrial Process
Ironmaking
Palletizing
Coke Oven
Blast Furnace (injection)
Blast Air Stoves
Direct Reduction
Sintering
Steelmaking
Basic Oxygen Furnace
Open Hearth
Electric Arc
Scrap Preheat
Ladle Heating
Soaking Pits
Slab, Bloom, and Billet Heaters
Annealing
Hardening
Carbon Control
Boilers
Foundries
Cupolas
Electric Melting
Ladle Heating
Mold Heating
Heat Treating
Space Heating
Forging
Forging and Annealing
Boilers
Space Heating
Finishing
Plating
Galvanizing
Glassmaking
Melting
Annealing Lehrs
Cement
Drying and Calcination
Lime
Calcination
Nozzle Premix
Premix Register
--
_ _ — —
--
3. 6
2.5
260.0
8. 1
121.5
5.9
21.0
Non-premix
Flat Flame Burner Type, Gas Momentum
(High Intensity) Delayed Mix Controlled Swirl Other.
Z0.3
18.0
3.1
47.6
49.2
150.0
17.0 17.0
2.5
2. 0
47.0
2. 7
40.5
4.0
225.0
NO .
lb/10* Btu^
0.25
High*
0.25
0. 05
0.05
0 50
0.50
6. 05
0.25
0. 50
0. 05
0. 25
0. 05
0. 50
0. 15
0. 20
0.20
0. 05
0. 5
0. 05
Total NO ,
1 06 Ib / y r
5. 1
4.5
1 0
0.2
7 9
23. 8
0.2
12. 3
75. 0
1.7
1. 3
0. 1
130. 0
11.8
2.2
32.4
0.4
112.5
1. 1
480. 0
33. 3
0. 5
0. 5
240. 0
16.7
-------
Table 1, Cont.
NATIONAL NATURAL GAS CONSUMPTION AND NO DATA BY PROCESS AND BURNER TYPE
Ji.
Induitrlal Procen
Ceramics
Bricks
Paper
Pulping and Papermaking
Aluminum
Drying
Reduction
Primary and Secondary Melting
Reheat
Copper and Brass
Roasting
Smelting
Refining
Melting Cathodes
Secondary Melting
Reheating
Lead
Sintering
Roasting
Blast Furnace
Refining
Zinc
Roasting
Sintering
Blast Furnace
Sme Iting
Refining
Food
Chemical
Boilers
Feedstock
Electrolysis
Process Heat
Petroleum
Process Heat
Boilers
Textiles
Rubber
Plastic
Total Gas Consumption
Total NO , 10' Ib/yr
Burner i ype
i ,,,, Non-premlx
Nozzle Premix Flat Flame Burner Type, Ga» Momentum
Premlx Register (High Inteniity) Delayed Mix Controlled Swirl
63.9
349.8
81.9
16. 8
12.0
1.5
27. 9*
0.6
6.1
2.0
1.5
1.1
0.6
3.7
0.7
0.3
14.4
2.4
34.6
487.0
tot app icablc
49.6 -- 16.4
225. 0 -- 75.0
439.0
60.0
23.1 -- -- -- '
8.9
564.2 1662.4 152.9 24. 2 896.3 219.5
84.3 831.2 7.6 1.4 441.0 92.4
Other NO .
— — ~ lb/106 Btu*
0.25
' -- 0. 5
0. 50
0.50
0.25
0.25
O. 25
0.25
•0.25
0.25
0.25
0.05
0.25
0.25
0. 05
0. 05
0.25
0.25
0. 5
0. 5
0. 05
0. 05
0. 50
0. 5
0. 5
0. 5
139.9
11.9
Total NO ,
10' Ib/yr
16. 0
174. 9
41.0
8.4
3.0
0.4
7.^
0.2
1. 5
0.5
0.4
0. 1
0.2
0.-9
_.
--
3. 6
0.6
17. 3
243. 5
3. 3
15.0
219.5
30. 0
11. 6
4.5
--
--
Older installations use an inspirated burner which is gas momentum controlled; however, newer facilities have
been installing large nozzle-mixing burners similar to those used in aluminum melters.
NOX Categories: Low, -0.05 lb/106 Btu; Intermediate, -0.25 lb/106 Btu; High, -0.5 lb/106 Btu.
Total process emissions are high. However, emissions are primarily caused by the injection of hot blast
air. The contribution from hydrocarbon injection is very small.
-------
CONCLUSIONS
The results of this evaluation are the identification of the predominate
burner type associated with each of the many fuel-consuming industrial
processes, a relative measure of the total national NO emissions by
X.
burner type, and the selection of three burners for study in this program
based on the highest national NO emission levels.
X,
There are eight burner types identified by combustion characteristics.
These are shown in Table 2, along with the total national ( estimated) NO
X.
emission levels established by this study. The three burners selected for
further experimental study are the 1) register burner, 2) the non-premix
gas-momentum-controlled burner, and 3) the non-premix swirl burner.
These burners contribute significantly more NO to the national environ-
.X
ment than any of the others shown. The nozzle mix, nozzle premix, and
fuel premix burners were grouped together because they are very often
used interchangeably by industry and therefore are difficult to evaluate
separately in terms of their NO emissions.
X.
The last category in Table 2, shown as "other, " is made up of many
burner types, usually of a very specialized design or application. Any one
of these burners contributes very little NO .
X,
The three burners selected for farther study may be more easily
recognized by their trade descriptions and applications. The register
burner is the typical design used on utility power boilers and large indus-
trial boilers. The non-premix gas-momentum-controlled burner is more
commonly called a kiln burner and is used in open hearth steel furnaces,
glass melting, cement kilns, lime kilns, aluminum ore drying, and non-
ferrous smelting furnaces. The non-premix swirl burner is sometimes
called a "baffle" burner or "large capacity" burner. It is the typical design
used in steel soaking pits, steel reheat furnaces, and other material heating
processes requiring temperatures up to about 2500°F.
-------
Table 2. BASIC BURNER TYPES AND
NATIONAL NO EMISSION LEVELS
x
NOX Emissions,
Burner Type 106 Ib/yr
1. Nozzle Mix 84. 3
Nozzle Premix
Full Premix
2. Register Burner 831.2*
3. Flat Flame 7. 6
4. Delayed Mixing 1. 4
5. Non-Premix Gas Momentum 441.0*
Controlled
6. Non-Premix Swirl 92.4*
7. Other 11.9
•M-
Burners selected for further study in this research
program.
-------
IN-THE-FLAME ANALYSIS
Detailed in-the-flame data were collected for baseline and NO control
operating conditions. These data are to aid in quantitative modeling of
large-scale turbulent diffusion flames and provide a qualitative guide in
understanding how control techniques reduce NO levels. The measurements
included gas species concentrations, temperature and flow direction.
Each data set is presented in a format similar to the baseline operating
conditions of the kiln burner. Table 3 lists the furnace conditions at which
in-the-flame probing data were collected. This table contains a data iden-
tification header, the gas input (SCFH) , the furnace wall temperature
(Deg. C) , the secondary combustion air preheat temperature (Deg. C) ,
the percentage of flue gas re circulation, and a gas sample analysis taken
in the flue for the listed furnace conditions. Listed next are concentration
limits to be used for the ordinates of each gas species to be mapped. Iso-
concentration plots of NO and NO2 and an isothermal plot are standard
printout items. The concentrations and temperatures for which these
profiles will be drawn are listed next.
The raw data collected as a. function of axial sampling position are listed
in Tables 4 through 8. The radial position (cm) where the data were
collected is listed first, followed by the gas species for which the sample
was analyzed. Because of the time involved in using the chromatograph to
analyze gas samples ( approximately 45 minutes) , only selected samples are
analyzed for all the chemical components listed in the tables. Samples which
have not been analyzed for a certain component have a question mark (?)
listed for the concentration of that component. The criterion for a chromato-
graphic analysis of a gas sample is based on the carbon monoxide concentration.
If the concentration measured by a nondispersive infrared analyzed is greater
than 0. 5%, then a chromato graphic analysis is made. If the concentration
is less than 0. 5%, the gas sample is only analyzed for oxygen, carbon
monoxide, carbon dioxide, methane, nitric oxide, and nitrogen dioxide.
-------
Table 3. KILN BURNER IN-THE-FLAME SAMPLING CONDITIONS
WITHOUT FLUE GAS RECIRCULATION
KILN BURNER - COMBINATION NOZZLE JULY 31.1974
NUMBER OF SETS OF DATA s 5.
MINIMUM GRID VALUE OF AVERAGE TEMPERATURE = 500. DEG.C
MAXIMUM GRID VALUE OF AVERAGE TEMPERATURE = 1700. DEG.C
POSITION OF OUTSIDE EOr,ES OF BURNER BLOCK
MINIMUM POSITION = -18. CM
MAXIMUM POSITION = 18. CM
GAS INPUT* AXIAL
WALL TEMPERATURE
PREHEAT TEMPERATURE
FLUE GAS RECIRCULATION
876. CF/HR
1362.
460.
0.0 *
RADIAL
DEG.C
DEG.C
1830. CF/HR
GAS SAMPLE ANALYSIS IN THE FLUE
NITROGEN OXIDE
NITROGEN DIOXIDE
OXYGEN
CARBON DIOXIDE
CARBON MONOXIDE
265.0 PPM
36.0 PPM
3.1 '*
10.0 <*
.0365 *
LIMITS FOR CONCENTRATION PLOTS
LOWER LIMIT OF NO = 0. PPM
LOWER LIMIT OF NO? = 0* PPM
LOWER LIMIT OF 02 = 0. *
LOWER LIMIT OF CH4 = 0. %
LOWER LIMIT OF C02 » 0. *
UPPER
UPPER
UPPER
UPPER
UPPER
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
300, PPM
50. PPM
21. *
29. *
11. *
ISOCONCENTRATION VALUES
OBTAIN VALUE OF RADIAL POSITION AT NO PPM
OBTAIN VALUE OF RADIAL POSITION AT N02 PPM
CONCENTRATION 100.
CONCENTRATION 10.
150. 200. 250. 275.
20. 30. 40.
-------
Table 4. KILN BURNER IN-THE-FLAME SAMPLING DATA AT
AN AXIAL POSITION OF 5. 1 cm
MLN HUHNfR - COMBINATION NOZZLF JULY 31.1974
AXIAL POSITION
HAOIAL 02
POSITION *
CM
-60.
-48.
-36.
-30.
-27.
-24.
-18.
-15.
•12.
-9.
-6.
-3.
0.
3.
6.
12.
18.
20.
24.
36.
5.5
5.7
6.4
6.8
8.2
II.B
19.9
19.7
20.2
19.2
12.2
11.1
12.8
11.9
10.8
18.9
19,5
20.4
19.9
4.1
N2
V *
?
7
?
7
7
?
?
?
7
7
78.6
60.2
55.3
56.7
60.4
7
7
7
7
?
NO
PPM
255.
245,
265.
245.
245.
ISO,
3.
2,
2,
5.
15.
10.
a.
6.
14.
7.
5.
7.
12.
225.
NO 2
PPM
34.
29.
22.
27.
24.
17,
0.
0.
0.
0.
26.
R,
2.
5.
29.
3.
0.
5.
8.
22.
C02
%
a. 5
8.6
8.4
8.1
7.8
5.3
.1
.1
0.0
.4
3.7
1.8
.8
1.1
3.7
.5
.3
.1
.4
10.2
CO
*
.0041
.0040
.0040
.0038
.0034
,0028
.0021
.002!
,0019
.0200
1.5000
2.3000
.5000
.9000
4.7000
.0056
.0020
.0016
.0010
.0040
H2
7
7
7
7
7
7
7
?
7
7
1.5
3.8
.4
1.2
5.3
7
7
7
7
?
CH4
7
7
7
7
7
' ?
. 7
?
7
7
2.0
18.1
28.4
20.8
11.3
?
7
7
7
?
C2H2
CcH**
*
7
7
?
7
7
?
7
?
7
7
.3
.6
.1
.3
1.1
7
7
?
7
7
C2H6
7
7
7
7
7
?
7
7
7
7
.1
.8
1.3
1.0
.5
7
7
7
7
7
C3H6
7
7
7
7
7
7
7
7
7
7
0.0
0.0
.4
0.0
2.1
7
7
7
7
7
C3H8
?
7
?
7
7
?
7
7
?
7
0.0
1.2
0.0
6.1
.1
7
7
7
?
7
TEMPERATURE
AVG.
1328.
1325.
1321.
1270.
1256.
1072.
605.
581.
576.
646.
1216.
1072.
825.
1084.
1437.
721.
664.
656.
778.
1364.
MAX.
133?.
1334.
1328,
1311.
1291.
!«09.
609.
59?.
600,
721.
1357.
1127.
834.
1 16f .
1484,
791.
709,
76R.
936.
1374.
OEG.C
TMAX-TAVG
4.
9.
7.
41.
35.
37,
4.
11.
24.
75.
141.
55.
9.
82.
47,
fO.
45.
112.
158,
10.
5.1 CM
-------
Table 5. KILN BURNER IN-THE-FLAME SAMPLING DATA AT
AN AXIAL POSITION OF 26. 0 cm
KILN BURNER - COMBINATION NOZZLE JULY 31.1974
AXIAL POSITION s 76.0 CM
RADIAL 02
one T T T nki
-------
Table 6. KILN BURNER IN-THE-FLAME SAMPLING DATA AT
AN AXIAL POSITION OF 57. 2 cm
KILN BURNER - COMBINATION NOZZLE JULY 31.1974
AXIAL POSITION • 57.2 CM
RADIAL 02
Of\C . T T fMkl Qt
POSITION *
CM
-60.
-56.
-48.
•36.
-24.
-18.
-12.
-11.
-10.
-9.
-6-
-3.
0.
3.
6*
9.
12.
15.
20.
24.
28*
31.
35.
38.
40.
9.5
9.1
9.6
11.2
13.4
11.8
4.7
3.4
3.7
2.2
2.0
3.4
4.0
3.1
1.9
2.4
5.9
8.8
9.8
10.4
10. Q
9.5
8.3
7.4
7.1
N2
7
7
84.1
7
7
81. 6
81.6
78.1
79.5
75.7
68.5
63.7
62.9
64.5
69.1
77.8
81.8
83.2
83.9
?
?
7
7
?
7
NO
ODU
rPM
235.
215.
195.
155.
160.
170.
180.
168.
157.
130.
60.
30.
20.
25.
70.
138.
155.
175.
160.
150.
143.
144.
160.
158.
153.
N02
24.
23.
20.
15.
12.
18.
33.
31.
29.
27.
27.
24.
24.
25.
22.
22.
2?.
18.
19.
18.
18.
20.
20.
19.
23.
C02
7.0
7.2
6.3
5.7
4.3
5.4
5.7
6.6
6.4
6.0
4.5
3.6
3.1
3.8
5.1
6.5
7.0
6.8
6.3
6.2
6.4
6.7
7.3
7.8
7.9
CO
.0022
.0027
.0043
.0051
.0098
.5000
2.6000
4.2000
4.1000
5.9000
7.6000
7.1000
6.6000
7.2000
7.0000
4.9000
2.1000
.7000
.0444
.0041
.0011
.0024
.0025
.0031
.0028
H2
7
7
0.0
?
7
.3
3.2
5.1
5.0
7.6
10.2
10.5
10.0
10.3
11.6
6.3
2.5
.1
0.0
7
7
7
?
?
7
CH4
7
7
0.0
7
7
.3
.3
1.2
1.0
2.0
5.2
9.0
10.4
8.1
4.1
1.6
.6
.4
0.0
7
7
?
7
7
?
C2H2
C2H4
7
7
0.0
7
7
C.O
.1
.3
.3
.6
1.3
1.7
1.7
1.6
1.1
.5
.1
0.0
0.0
7
7
7
7
7
7
C2H6
7
7
0.0
7
7
i
• 1
1.8
i.i
0.0
0.0
0.0
.2
.3
.2
,1
0.0
0.0
0.0
0.0
7
7
7
7
7
?
7
7
0.0
7
7
G.C
0.0
0.0
0.0
0.0
.7
.6
.7
.9
0*0
0.0
0.0
0.0
0.0
7
7
7
7
7
7
C3Mfl
7
7
Q*0
7
7
0.0
0.0
G.G
Q*0
0.0
0.0
.2
.3
.3
0*0
0.0
0.0
0.0
0.0
7
?
?
7
7
7
TFMPFRflTURE PEG.C
AVG.
1325.
1315.
12ZQ-.
1213.
1253.
1389.
1520.
1503.
14JJL.
1414.
^294.
4223.
1282.
1429.
1507^
1539.
1457.
1344.
1288*
1273.
J331 t
1328.
1325.
1361.
1331,
MAX.
1383.
1382.
1173.
1301.
1377.
1517.
1586.
1544.
1526.
1465.
1329.
1282.
13JL2^
148A.
1SB1.
1593.
1516.*
1433.
1386.
1370.
1197.
1382.
L391.
1393.
1371.
TMAX-TAVO
58.
67.
103.
88.
124.
128.
66.
41.
53.
51.
35*
59.
30.
59.
7_6-»
54.
59^,
89.
98*
97.
ftA,
54.
66.*
32.
46.
-------
Table 7. KILN BURNER IN-THE-FLAME SAMPLING DATA AT
AN AXIAL POSITION OF 146. 1 cm
KILN BURNER - COMBINATION N02ZLF JULY 31«197*
AXIAL POSITION
146.1
RADIAL 02
DnCTTTDKl %
r\J& 1 1 1 w>M m
CM
•60.
-55.
-50.
-45.
-35.
-25.
-20.
-15.
-10.
0.
5.
10.
15.
20.
23.
26.
30.
36.
4.8
5.1
4.5
4.9
4.6
2.2
1.6
.6
.5
.6
1.3
2.6
4.0
6.2
6.7
7.5
7.1
7.6
N2
7
7
7
7
7
84.7
7
80.3
75.5
75.7
78.5
80.6
84.3
84.7
?
?
?
7
NO
PPM
rr^~
220.
215.
233.
228.
240.
230.
255.
230.
180.
180.
210.
240.
200.
205.
202.
188.
180.
173.
N02
PDM
^r*~
49.
48.
47.
44.
44.
41.
34.
28.
24.
20.
28.
31.
29.
33.
34.
37.
39.
34.
C02
9.1
8.8
9.3
9.1
9.0
9.3
8.7
7.6
7.0
6.9
7.8
8.4
8.5
7.9
7.8
7.8
7.8
7.4
CO
.0191
.0311
.0488
.1000
.3000
2.3000
3.300C
5.6000
6.6000
7.0000
5.4000
3.6000
1.6000
.6000
.4000
.2000
.0576
.0280
H2
7
7
7
7
7
1.5
O
5.1
9.7
8.7
6.2
4.0
1.6
.6
7
7
7
7
CH4
7
7
?
?
7
0.0
->
• J
.7
.6
1.0
.7
.8
0.0
0.0
7
7
7
7
C2H2
fPM/i.
Irftn**
%
7
7
7
?
7
0.0
?
.1
.1
.1
.1
0.0
0.0
0.0
7
7
7
7
C2H6
7
?
7
7
7
0.0
7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
7
7
7
C3H6
7
7
7
7
7
0.0
7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
7
7
7
C3HB
^
?
7
7
?
7
0.0
•a
0.0
0.0
o.o
0.0
0.0
0.0
0.0
7
7
7
7
TEMPERATURE. DEGiC
AVG.
1481.
1477.
L477*
1498.
1539.
1577.
1592.
1572.
1S5JU
1572.
1597.
1591.
1562.
1520.
144fl»
1429.
1399.
1389.
MAX.
1506.
1508.
1514.
1531.
1578.
1641.
1635.
1629.
16.3ft*
1625.
1641.
1649.
1633.
1602.
15J>9_»
1500.
1456.
1433.
TMAX-TAVG
25.
31.
31*
33.
39.
64.
43.
57.
_fli.
53.
44.
58.
71.
82.
£d.
71.
57.
44.
-------
Table 8. KILN BURNER IN-THE-FLAME SAMPLING DATA AT
AN AXIAL POSITION OF 385. 4 cm
KILN BURNER - COMBINATION NOZZLE JULY 31»1974
RADIAL
POSITION
CM
•60.
-50.
-40,
•30.
-20.
-10.
0.
10.
2fl.
25.
30.
35.
40.
02
%
3.4
3.0
2.9
2.7
2.7
2.7
3.1
3.2
3.2
3.4
3.3
3.6
3.6
N2
*
7
7
7
7
7
7
7
?
7
7
7
7
7
NO
PPM
285.
267.
275.
276.
281.
283.
288.
276.
294.
276.
281.
253.
258.
N02
PPM
47.
46.
<»6.
48.
40.
40.
40.
33.
38.
36.
33.
37.
17.
C02
*
9.8
10.0
9.9
10.1
10.0
9.9
9.8
9.8
9.6
9.9
9.8
9.7
9.7
CO
«
.1000
.2000
.4000
e2POO
.4000
.3000
.3000
.1000
.4000
.0585
.0540
.0449
.0675
H2
«
7
7
7
7
7
7
7
7
7
7
CH4
*
7
7
7
7
7
7
7
7
7
7
7
7
C2H2 C2H6
% '
7
5
7
7
7
7
7
7
7
7
7
7
7
7
7
7
2
7
C3H6. C3M6
% «
7
7
2
7
7
7
7
7
1
7
7
7
7
7
7
7
7
?
7
7
7
TFMPFBATURF
AVG. MAX.
1567.
1572.
1602.
1587.
1597.
1587.
1571.
1557.
1SAE*
1534.
1516.
151ft*
1592*
1608.
1*0?.
1604.
1A12*
1602.
160 a.
1601.
isao.
1548.
1558.
1544.
15.45*
AXIAL POSITION • 385*4 CM
F6.C
TMAX-TAYG
25*
36.
17.
15.
15.
11*
44.
.22*
14.
2fl.
29_*
-------
Listed next in the tables are the measured temperature. We wanted to
use a fast-response thermocouple for temperature measurements, because
we believe that the key to determining the location of pollutant formation in
the flame may be directly related, not to the highest time-averaged tempera-
ture, but to the highest instantaneous temperature, which may have a
duration of only a few milliseconds. In order to decrease the response time
of our temperature probe to 1 millisecond, we must electronically compensate
our thermocouple. Although we have been experimenting with electronic
compensators, we have only been able to increase the response time by a
factor of 10. Further improvements have been difficult because of the
interference caused by stray high-frequency signals. This problem can be
overcome, but not without additional design work. We used subminiature
thermocouples during data collection on the kiln burner. The lifetime of
the couple was less than 3 minutes, making continuous data collection
impossible. Thus, we returned to using a shielded suction pyrometer
identical to the one used in EPA Contract No. 650/2-73-033a and described
in Volume I of this report.
Figures 1 through 34 present plots of nitric oxide, nitrogen dioxide,
oxygen, methane, carbon dioxide, composite gases, temperature, and flow
direction versus radial position. In these figures, the two dotted parallel
lines perpendicular to the abscissa represent space projections of the
burner-block edges into the furnace chamber.
Figures 35, 36, and 37 are isothermal and isoconcentration plots of the
data presented in the preceding tables. These figures were prepared as a
useful tool in visualizing flame development patterns and to permit a com-
parison of flame and emission profiles for different burner and flame types.
KILN BURNER
In-the-flame probings for the kiln burner were conducted with two
different operating conditions. The baseline flame data were collected with
a fuel/air momentum ratio similar to that found in industry. Control-case
data were gathered from a flame whose NO flue emission level had been re-
duced by 61% with a 12% by total volume addition of flue products to the
secondary combustion air. Both of these flames displayed a Type I directional
flow profile.
16
-------
RADIAL POSITION-CM
300.00
294.23
286.46
282.69
276.92
271.15
265.38
259.62
253.85-*
2*8.08
242.31
236.54
230.77
225.00
219.23
213.46
207.69
201.92
196.15
190.38
184.62
178.85
173.08
167.31
161.54
155.77
150.00
144.23
138.46
132.69
126.92
121.15
115.38
109.62
103.85
98.08
92.31
86.54
80.77
75.00
69.23
63.46
57.69
51.92
46.15
40.38
34 .'62
28.85
23.08
17.31
11.54
5.77
.00
VS. PPM NO
KILN BURNER - COMBINATION NOZZLE
IN GAS SAMPLE
JULY 31.1974
AXIAL POSITION
5.1 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 1. Combination kiln burner nozzle — radial profile of NO at an axial position of 5. 1 cm
-------
00
HADIAL POSITION-CM
SO.00
49.04
.08
.12
.15
.19
VS.
KILN BURNFR - COMBINATION NOZZLP
PPM N02 IN GAS SAMPLE
JULY 31.197*
AXIAL POSITION =
CM
-60.000 -SO.000 -40.000 -30.000 -20.000 -10.000
o.ono
10.000
20.000
30.000
40.000
Figure 2. Combination kiln burner nozzle — radial profile of NO2 at an axial position of 5. 1 cm
-------
RADIAL POSITION-CM
21.00
20.60
20.19
19.79
19.38
18.98
18.58
18.17
17.77
17.37
16.96
16.56
16.15
15.75
15.35
14.94
14.54
10.13
13.73
13.33
12.92
12.52
12.12
11.71
11.31
10.90
10.50
10.10
9.69
9.29
s.ss
8.48
8.08
7.67
7.27
6.87
6.46
6.06
5.65-*.
5.25
4.85
4.44
4.04
3.63
3.23
2.83
2.42
2.02
1.62
1.21
.81
.40
.00
VS. * 02 IN
KILN BURNER - COMBINATION NOZZLE
GAS SAMPLE
JULY 31,1974
AXIAL POSITION
5.1 CM
-60.000 -50.000 -'.0.000 -30.000 -?0.noO -10.000
0.000
10.000
20.000
30.000
-------
HADIAL POSITION-CM
29.00
28.44
£7.86
27.33
26.77
26.21
25.65
25.10
24.54
23.98
23.42
22.87
22.31
21.75
21.19
20.63
20.08
19.52
18.96
18.40
17.85
17.29
16.73
16.17
15.62
15.06
10.50
13.94
13.38
12.83
12.27
11.71
11.15
10.60
10.04
9.48
8.92
8.37
7.81
7.25
6.69
6.13
5.58
5.02
4.46
3.90
3.35
2.79
2.23
1.67
i.12
.56
.00
vs. *
KILN BURNER - COMBINATION NOZZLE
CH4 IN GAS SAMPLE
JULY 31.1974
AXIAL POSITIOM *
5.1 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000.
0.000
lo.noo
20.000
30.000
40.000
Figure 4. Combination kiln burner nozzle — radial profile of CH4 at an axial position of 5. 1 cm
-------
KILN BURNER
IN GAS SAMPLE
-COMBINATION NOZZLE JULY 31.1974
AXIAL POSITION
5.1 C«
-60.000 -50.000 -60.000 -30.000
-20,000 -10.000
0.000
10.000
20.000
30.000
Figure 5. Combination kiln burner nozzle — radial profile of CO2 at an axial position of 5. 1 cm
-------
tx)
is)
RADIAL POSITION-CM
1700.
1677.
1654.
1631.
1608.
1565.
1562.
1538.
1515.
1492.
1469.
1446.
1423.
1400.
1377.
1354.
1331. —•
1308.
1285.
1262.
1238.
1215.
1192.
1169.
1146.
1123.
1100.
1077.
1054.
1031.
1008.
985.
962.
938.
915.
892.
869.
846.
823.
BOO.
777.
754.
731.
708.
685.
662.
638.
615.
592.
569.
546.
523.
500.
VS. AVERAGE
KILN BURNER -
TEMPEKATUHE DEG.C
COMBINATION NOZZLf JULY 31.1974
AXIAL POSITION «
5.1 CM
-60.000 -50.000 -40.000 -30.000 -?0.000 -10.000
0.000
10.000
PO.OOO
10.000
40.000
Figure 6. Combination kiln burner nozzle — radial profile
of temperature at an axial position of 5. 1 cm
-------
MLN BURNER - COMBINATION NOZZLF JULY 31.1974
PLOT HAnlAL PnSITlUN-CM VS. AL0010(CONCENTRATION *)
N=NO« fl=N02. D=C02« C'CO. H=H2. M=CH4,
UO
U DO
0 00
COMPOSITE LOG
0=02.
100.0000
76.6682
SS.7802
45.0657
34.5511
26.4897
20.3092
15.5707
11.9378
9.1525 0
7.0170
5.3798 0
4.1246
3.1623
2.4245
1.8588
1.4251
1.0926
.8377
.6422
.4924
.3775
.2894
.2219
.1701
.1304
.1000
.0767
.0588
.0451
.0346
.0265 N.
.0203
.0156
.0119
.0092
.0070
.D054
.0041ȣ
.0032-6
.0024
.0019
.0014
.0011
.0008
.0006
.0005
.0004
.0003
.0002
.0002
.0001
.0001
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000 0.000 10.000 20.000
AXIAL POSITION =
5.1 CM
30.000 40.000
Figure 7. Combination kiln burner nozzle — radial profile of
all the gases at an axial position of 5. 1 cm
-------
RAlliAL POSITION-CM
iOQ.OO
294.23
288.46
282.69
276.92
271.15
265*38
2S9.62
253.85
225.00
219.23
213.46
207.69
201.92
-146»15
190.38
184.62
178.85
173.08
167.31
161.54
155.77
150.00
144.23
138.46
132.69
VS. PPM NO
KILN BURNER - COMBINATION NOZZLE
IN GAS SAMPLE
JULY 31.1974
AXIAL POSITION « 26.0 CM
121.15
115.38
109.62
103.85
98.08
92.31
86.54
80.77
75.00
69.23
63.46
37.69
51.92
46.15
40.38
34.62
28.85
23.08
17.31
11.54
5.77
.00
-60.000 -SO.000 -40.000 -30.000 -20.000
-10.000
0.000
10.000
20.000
30.(100
40.000
Figure 8. Combination kiln burner nozzle — radial profile of NO at an axial position of 26. 0 cm
-------
KH.N BURNF« - COMBINATION NOZZLf
GAS SAMPLE
JULY 31.1974
AXIAL POSITIOM =
tS)
VJl
CM
13.46
12.50
11.54
10.58
9.62
4.65
7.69
6.73
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
o.ono
10.000
20.000
30.000
40.000
Figure 9. Combination kiln burner nozzle — radial profile of NO2 at an axial position of 26. 0 cm
-------
KILN BURNFR -
GAS SAMPLE
COMBINATION NOZZLE JULY 31.1974
AXIAL POSITION = ?6.0 CM
IV
-60.000 -50.000 -40.000 -30.000 -?0.000 -10.000
0.000
lO.noo
PO.OOO
30.000
40.000
Figure 10. Combination kiln burner nozzle — radial profile of O2 at an axial position of 26. 0 cm
-------
tv
«ADIAL POSITION-CM
29.00
28.44
2/.8B
27.33
36.77
26.21
25.65
25.10
24.5«
23.98
23.42
22.87
22.31
21.75
21.19
20.63
20.08
19.52
16.96
18.40
17.85
17.29
16.73
16.17
15.62
15.06
14.50
13.94
13.38
12.83
12.27
11.71
11.15
10.60
10.04
9.48
8.92
8.37
7.81
7.25
6.69
6.13
^.58
5.02
4.46
3.90
3.35
2.79
2.23
1.67
1.12
.56
.00
vs. *
KILN RURNFR - COMBINATION NOZZLF
CH4 IN GAS SAMPLE
JULY 3U1974
AXIAL POSITION = ?6.0 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 11. Combination kiln burner nozzle — radial profile of CH4 at an axial position of 26. 0 cm
-------
KILN BURNER - COMBINATION NOZZLC
IN GAS SAMPLE
JULY 31,1974
°OSITION
IV
00
?6.0 CM
-60.000 -50.000 -40.000 -30.000 -30.000 -10.000
0.000
10.000
80.000
30.000
40.000
Figure 12. Combination kiln burner nozzle — radial profile of CO2 at an axial position of 26. 0 cm
-------
KILN BURNER - COMBINATION NOZZLE
TEMPERATURE OEG.C
JULY 31.197*
RADIAL POSITION-CM VS. AVERAGE
AXIAI POSITION « 26.0 CM
-60.000 -SO.000 -60.000 -30.000 -20.000 -10.000
0.000
lo.noo
ao.ooo
30.000
40.000
Figure 13. Combination kiln burner nozzle — radial profile of
temperature at an axial position of 26. 0 cm
-------
MLN RURNFR - COMBINATION NOZZLF JULY 31.197*
COMPOSITE LOG PLOT RADIAL PnSITION-CM VS. ALOG1 0 (CONCENTRAT ION *) AXIAL POSITIO'
0*02. N=NO. B=N02. U=COi?. C=CO. H=H2. M=CH4-
100.0000
5a!7802
34.5511
26.4897
2U.3092 0
lb.5707 0
11.937B 0
V.1525 0 00
7.0170 D 00
b.3798 D
4.1246
3.162J 0
2.4245
1.8588
1.4251
1.0926
.8377 0
.6422
.4924
.3775
.2894
.2219
.1701
.1304
.1000
.0767
.0588
CO .0451
O .0346
.0265 N
.0203 N N N
.0156 N
.0119
.0092
.0070
.0054
.0041
.0032 N
.0024 B C
.0019 B C
.0014 R B
.0011 C
.0008 B C
.0006
.0005
.0004
.0003
.0002 B
.0002
.0001
.0001
.
M
0 0
M MO
H H
C CO
n H n
0 C
C
H
0
M
C
H
M
N
N R
B R
R B
N M
N
0 0
0
0
D
0
o n
N
N
M
N
C fl
C B
B R
?ft.O C"
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 14. Combination kiln burner nozzle — radial profile of
all the gases at an axial position of 26. 0 cm
-------
RADIAL POSITION-CM VS. PPM NO
KILN BURNER - COMBINATION NOZZLE
IN GAS SAMPLE
JULY 31^1974
AXIAL POSITION
57.2 CM
294.23
288.46
282.69
276.92
271.15
259.62
253.85
248.08V
242.31\
236.54
230*12
225.00
219.23
213.46
207.69
201.92
.156.15
190.38
184.62
178.85
173.08
167.31
161.54
155.77
150.00
144.23
138.46
132.69
121.15
115.38
109.62
403.85
98.08
92.31
86.54
80.77
75.00
69.23
63.46
57.69
51.92
46.15
40.38
34.62
28.85
23.08
17.31
11.54
5.77
.00
t
J_
•60.000 -50.000 -40.000 -30.000 -20.000 .-10.000
,.000
10.000
20.000
30.000
40.000
Figure 15. Combination kiln burner nozzle — radial profile of NO at an axial position of 57. 2 cm
-------
MLN BURNER - COMBINATION NOZZLE
PPM HOd IN GAS SAMPLE
JULY 31.197<>
OO
N)
AXIAL POSITION = ST.2 CM
-60.000 -50.000 -40.000 -30.000 -30.000 -10.000
o.ono
lo.noo
20.000
30.000
40.000
Figure 16. Combination kiln burner nozzle — radial profile of NO2 at an axial position of 57. 2 cm
-------
VS. *
02
KILN BURNER - COMBINATION NOZZLF
IN GAS SAMPLE
JULY 31.1974
AXIAL POSITION = 57.2 CM
w
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 17. Combination kiln burner nozzle — radial profile of O2 at an axial position of 57. 2 cm
-------
WA01AL POSITION-CM
29.00
27.88
27.33
26.77
2sl&5
25.10
24.54
23.98
23.42
22.87
22.31
21.75
21.19
20.63
20.08
19.52
18.96
18.40
17.85
17.29
16.73
16.17
15.62
15.06
14.50
13.94
13.38
12.83
12.27
11.71
11.15
10.60
10.04
9.48
8.92
8.37
7.81
7.25
6.69
6.13
5.58
5.02
4.46
3.90
3.35
2.79
2.23
1.67
1.12
.56
.00
VS.
KILN BURNER - COMBINATION NOZZLF
CH4 IN GAS SAMPLE
JULY 31.1974
AXIAL POSITION = "57.2 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.one
Figure 18. Combination kiln burner nozzle — radial profile of CH4 at an axial position of 57. 2 cm
-------
KILN BURNER - COMBINATION NOZZLE
C02 IN GAS SAMPLE
JULY 31•1974
AXIAL POSITION
OJ
Ul
57.2 CM
-60.000 -50.000 -60.000 -30.000
-20.000 -10.000
o.ono 10.000 20.000
30.000
40.000
Figure 19. Combination kiln burner nozzle — radial profile of CO2 at an axial position of 57. 2 cm
-------
KILN BURNER - COMBINATION NOZZLE
TEMPERATURE DEG.C
JULY 31.1974
AXIAL POSITION
57.2 CM
-AO.OOO -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
40.^)00
Figure 20. Combination kiln burner nozzle — radial profile of
temperature at an axial position of 57. 2 cm
-------
COMPOSITE LOG PLOT
0=0?. N=NO«
100.0000
76.6682
58.7802
4b.0657
34.5511
26.4897
20.3042
15.5707
11.9378
9.1525 0 0
7.0170 D 0
S>.3798
ft.12*6
3.1623
2.42*5
1.8588
l.*251
1.0926
.8377
.6*22
.*92*
.3775
.289*
.2219
.1701
.130*
.1000
.0767
.0588
.0*51
.03*6
.0265 N
.0203 N
.0156
.0119
.0092
.0070
.005*
.00*1
.0032
.002* C B
.0019
.001*
.0011
.0008
.0006
.0005
.000*
.0003
.0002
.0002
.0001
.0001
KILN BURNER - COMBINATION NOZZLE
KAOIAL POSITION-CM vs. ALOGIO
-------
GO
RADIAL POSITION-CM VS. PPM NO
KILN BURNER - COMBINATION N02ZLE
IN CAS SAMPLE
JULY 31(1974
AXIAL POSITION « 146.1 CM
294.23
288.46
282.69
276.92
271.15
265 .38 .
259.62
253.85
248.08
242.31
236.54
225.00
219.23
213.46
207.69
201.92
190.38
184.62
178.85
173.08
167.31
161.54
155.77
150.00
144.23
138.46
132.69
121.15
115.38
109.62
103.85
98.08
92*31
86.54
80.7?
75.00
69.23
63.46
57.69
51.92
46.15
40.38
34*62
28.85
23*08
17.31
11.54
5.77
.00
-60.000 -50.000 -40.000
I «
-30.000 -20.000
-10.000
0.000
10.000
20.000
30.000
.._ 1-
40.000
Figure 22. Combination kiln burner nozzle — radial profile of NO at an axial position of 146. 1 cm
-------
U)
vO
KILN BURNER - COMBINATION NOZZLE
VS. PPM NO,? IN &AS SAMPLE
JULY 3i.l97«i
AXIAL POSITION = 146.1 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000 20.000
30.000
40.000
Figure 23. Combination kiln burner nozzle — radial profile of NO2 at an axial position of 146. 1 cm
-------
RADIAL POSITION-CM
21.00
20.60
20.19
19.79
19.36
18.96
18.58
16.17
17.77
17.37
16.96
16.56
16.15
15.75
15.35
14.94
14.54
14.13
13.73
13.33
12.92
12.52
12.12
11.71
11.31
10.90
10.SO
10.10
9.69
9.29
6.66
8.48
8.08
7,67
7.27
6. 87
6.46
6.06
5.65
5.25 »
4.85—•————
4.44
4.04
3.63
3.23
2.83
2.42
2.02
1.62
1.21
.81
.40
.00
vs. *
KILN BURNER - COMBINATION NOZZLE JULY 31.1974
02 IN GAS SAMPLE
AXIAL POSITION « 146.1 CM
./
y
-fiO.OOO -50.000 -40.000 -30.1)00 -20.000 -1.0.000
0.000
10.non 20.000
40.000
Figure 24. Combination kiln burner nozzle — radial profile of O2 at an axial position of 146. 1 cm
-------
XADIAL POSITION-CM
29.00
27. 88
27.33
26.77
26.21
25.65
25.10
24.54
23.98
23.42
22.87
22.31
21.75
21.19
20.63
20.08
19.52
18.96
18.40
17.85
17.29
16.73
16.17
15.62
15.06
14.50
13.94
13.38
12.83
12.27
11.71
11.IS
10.60
10.04
9.48
8.92
8.37
7.81
7.25
6.69
6.13
5. 58
5.02
4.46
3.90
3.35
2.79
2.23
1.67
1.12
.56
.00
VS. *
BURNER - COMBINATION NOZZLE
CH4 IN GAS SAMPLE
JULY 31.1974-
4XIAL POSITION =
CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.0.00 20.000
30.000
40.000
Figure 25. Combination kiln burner nozzle — radial profile of CH4 at an axial position of 146. 1 cm
-------
RADIAL POSITION-CM
11.00
10.79
10.58
10.37
10.15
9.94
9.73
9.52
9.31
9.10— <
a.as
8.67
8.46
8. 25
8.04
7.83
7.62
7.40
7.19
6.98
6.77
6.56
6.35
6.13
5.92
5.71
5.SC
5.29
5.08
4.87
4.65
4.44
4.23
4.02
3.81
3.60
3.38
3.17
2.96
£.75
2.54
2.33
2.12
1.90
1.69
1.48
1.27
1.06
.85
.63
.42
.21
.00
vs,
KILN BURNER - COMBINATION NOZZLE JULY 31.1974
C02 IN GAS SAMPLE
AXIAL POSITION . 146.1 CM
\
\ /
-60.000 -50.000 -40.000 -30.000 -20.000
-10.000
0.000
10.000
20.000
10.000
40.000
Figure 26. Combination kiln burner nozzle — radial profile of CO2 at an axial position of 146. 1 cm
-------
KILN BURNEB - COMBINATION NOZ2LE
RADIAL POSITION-CM VS. AVERAGE TEMPERATURE OE6.C
1700.
1677.
1654.
1631.
1608.
1585.
1562.
1538.
1515.
1492 .-»<•_ .
1469. ^"-• — • —
1446.
1423.
1400.
1377.
1354.
1331.
1308.
1285.
1262.
1238.
1215.
1192.
1169.
1146.
1123.
1100.
1077.
1054.
1031.
1008.
985.
962.
938.
915.
892.
869.
846.
823.
800.
777.
754.
731.
708.
685.
662.
638.
615.
592.
569.
546.
523.
500.
JULY 31,1974
AXIAL POSITION * 14ft.1 CM
-60.000 -BO.000 -fcO-.OOO -30.000 -20.000 -10.000
10.000
20.000
ao.noo
Figure 27. Combination kiln burner nozzle — radial profile of
temperature at an axial position of 146. 1 cm
-------
KILN BURNER - COMBINATION NOZZLE JULY 31.1974
COMPOSITE LOG PLOT KAOIAL PnSITION-CM VS. ALOG10(CONCENTRATION *)
0=02. N*NO. B=N02. U=C02. C*CO. H«H2. M»CH4,
AXIAL POSITION a 14f>.l CM
lou.oouo
76.6682
58.7802
45.0657
34.5511
26.4897
20.3092
15.5707
11.9378
9.1525 0 D 0 n 0 0 D
7.0170
5.3798 00 0
4.1246 0 0
3.1623 C
2.4245 0
1.8588
1.4251 H 0
1.0926
.8377
.6422
.4924
.3775
.2894 C M
.2219
.1701
.1304
.100C c
.0767
.0588
.0451 C
.0346 C
.0265 N N N
.0203 CNN N
.0156
.0119
.0092
.0070
.0054 B - B
.0041 B R B B
.0032 B
.0024
.0019
.0014
.0011
.0008
.0006
.0005
.0004
.0003
.0002
.0002
.0001
.0001
H H DO
DC OH
H C
H 0
c
0
0 H
M
M
0 M 0 M
0
N
N N N N N
B B . B
B R
B
oooo n
H
c
c
c
c
N N N N
N
B fl
B B 8
-60.000 -50.000 -40.000 -34.000 -20.000 -10.000
0.000
10.000 20.000 30.000 40.000
Figure 28. Combination kiln burner nozzle — radial profile of
all the gases at an axial position of 146. 1 cm
-------
en
RADIAL POSITION-CM vs. PPM NO
KILN BURNER
IN CAS SAMPLE
COMBINATION NOZZLE JULY 31.1974
AXIAL POSITION « 3B5.4 CM
394.23
288.46
282.69
276.92
271.15
265.38
259.62
253.85
2*8. 08
242.31
236. 5*
225.00
219.23
213.46
207.69
201.92
Ut&OS
190.38
184.62
178.85
173.08
167.31
155.77
150.00
1*4.23
138.46
132.69
121.15
115.38
109.62
103.85
98.08
-9Z.3I
46.54
80.77
75.00
69.23
63.46
- ST.. 69
51.92
46.15
40.38
34.62
28.85
23.08
17.31
11.54
5.77
.00
-60.000 -SO.000 -40.000 -30.000
i »
-20.OOO -10.000
0.000
10.000
20.000
30.000
40.000
Figure ?9. Combination kiln burner nozzle — radial profile of NO at an axial position of 385. 4 cm
-------
WAOIAL POSITION-CM
bo.oo
48.08
47.12-
46.15
4b.l9
44.23
43.27
43.31
41.35
40.38
39.43
38.46
37.50
36.54
35.58
34.62
33.65
32.69
31.73
30.77
29.81
28.85
27.88
26.92
25.96
25.00
24.04
23.08
22.12
21.15
20.19
19.23
18.27
17.31
16.35
15.38
14.42
13.46
12.50
11.54
10.58
9.62
8.65
7.69
6.73
5.77
4.81
3.85
2.88
1.92
.96
.00
MLN BURNER - COMBINATION NOZZLF
VS. PPM N02 IN GAS SAMPLE
JULY 31.1974
AXIAL POSITION * 3S5.4 C"
-60.000 -50.000
-40.000
-30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 30. Combination kiln burner nozzle — radial profile of NO2 at an axial position of 385. 4 cm
-------
21
20.
20.
19
19.
18
ie.
18
17
17
16
16.
16.
15
15
POSITION-CM
00
60
19
79
36
98
se
17
77
37
96
56
15
75
35
vs. *
02
KILN BURNER - COMBINATION NOZZLE
IN GAS SAMPLE
JULY 31t1974
AXIAL POSITION * 3«5.4 CM
14.54
14.13
13.73
13.33
12.92
12.52
12.12
11.71
11.31
10.90
10.50
10.10
9.69
9.29
8.88
8.48
8.08
7.67
7.27
6.87
6.46
6.06
5.65
5.25
4.85
4.44
4.04
3.63
3.23
2.83-
2.42
2.02
1.62
1.21
.81
.40
.00
-60.000 -50.000 -40.000 -30.000 -20.000 -10*000
0.000
10.no"
20.000
?o.noo
40.flOO
Figure 31. Combination kiln burner nozzle — radial profile of O2 at an axial position of 385. 4 cm
-------
00
WAOIAL POSITION-CM
11.00
10.79
10.58
10.
VS. * C02 IN
KILN HURNES - COMBINATION NOZZLE
GAS SAMPLE
JULY 31.1974
AXIAL POSITION - 3BS.4 CM
.37
10.15
9.94
9.73
9.5?
9.31
9.10
8.88
8.67
8.46
8.25
8.04
7.83
7.62
7.40
7.19
6.98
6.77
6.56
6.35
6.13
5.92
5.71
5.50
5.29
5.08
4.87
4.65
4.44
4.23
4.02
3.81
3.60
3.38
3.17
2.96
2.75
2.54
2.33
2.12
1.90
1.69
1.48
1.27
1.06
.85
.63
.42
.21
.00
-60.000 -50.000 -40.000 -30.000 -20.000
•10.000
o.ooo
10.000
20.000
30.000 40.000
Figure 32. Combination kiln burner nozzle — radial profile of CO2 at an axial position of 385. 4 cm
-------
WA01AL POSITION-CM VS.
1700.
1677.
1654.
1631.
lt>06.
lb«5. -- .
1563. • •
1538.
IblS.
1*92.
1*69.
MLN HUHNFR - COMBINATION NOZZLF
*VFRV,E TEMHfcKATUHt OEG.C
JULY 31.197*
AXIAL POSITION s 3BS.4 C"
1423.
1400.
1377.
1354.
1331.
1308.
1265.
1262.
1238.
1215.
1192.
1169.
1146.
1123.
1100.
1077.
1054.
1031.
1008.
985.
962.
938.
915.
892.
869.
846.
823.
800.
777.
754.
731.
708.
685.
662.
638.
615.
S92.
569.
546.
523.
SOO.
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
o.o no
10.000
20.000
30.noo
40.000
Figure 33. Combination kiln burner nozzle — radial profile of
temperature at an axial position of 385. 4 cm
-------
Ul
o
COMPOSITE LOG PLOT
o«02. NINO.
100.0000
76.6682
58.7802
45.0657
34.5511
26.4897
20.3092
15.5707
11.9378
9.1525 0 C
7.0170
5.3798
4.1246
3.1623 0 0
C»CO. HzH2i M*CH4.
JULY 31.1974
AXIAL POSITION « 3KS.4 CM
D fl 0 D 0
o n o o o
r c
N N N N N
-AO.OOO -5U.OOO -40.000 -30.000 -20.000 -10.000 0.000 10.000 20.000 TO.000 40.000
Figure ^4. Combination kiln burner nozzle — radial profile of
all the gases at an axial position of 385. 4 cm
-------
-3B.7
-40.7
J»5.4
3R5.4
1600
1600
KILN BURNER • COMBINATION NOZZLE JULY 31t197*
RADIAL POSITION-CM VS. AXIAL POSITION-CM
8*800 DER.C. C=ll)00 DEG.Ct D»1300 DEG.C. E'1300 OEG.Ci
ISOTHERMAL PLOT
A«6»0 DEG.C
400.00
392.31
384.63
376.92
369.23
361.54
353. 85
3*6.15
338.46
330.77
323.08
315.38
307.69
300.00
292.31
284.62
276.92
269.23
261.54
253.85
246.15
238.46
230.77
223.08
215.38
207.69
200.00
192.31
184.62
176.92
169.23
161.54
153.85
146.IS
138.46
130.77
123.08
115.38
107.69
100.00
92.31
84.62
76.92
69.23
61.54
53.85
46.15
38.46
30.77
23.08
15.38
7.69
.00
-60.000 -SO.000 -40.000 -30.000 -20.000 -10.000
F.140.0 DEQ.C, . G-1500. OEG.Ci M.lfcnn nrr.tc
rv
0.000
10.000
20.000
30.000
40.000
Figure 35. Combination kiln burner nozzle —isothermal plot of furnace temperature
-------
ISOCONC£NTRAriON PLOT
KILN BURNER - COMBINATION NOZZLE JULY 31tl97
-------
01
ISOCONCENTRATION PLOT OF N02
A« 10
400.00
392.31
384.62
376.92
369.23
461.54
353. 85
346.15
338.46
330.77
323.08
_ 31S.38
307.69
300.00
292.31
284.62
276.92
269.23
261.54
253.85
246.15
238.46
230.77
KILN BURNER - COMBINATION NOZZLE JULY 31*1974
RADIAL POSITION-CM VS. AXIAL POSITION-CM
PPM. B* 20. PPM. Cs 30. PPM. 0* 41U PPJJ
215.38
207.69
200.00
192.31
184.62
476.82
169.23
161.54
153.85
146.15
138.46
123.08
115.38
107.69
icuuoo
92.31
-40.000 -50.000 -40.000 -30.000
I f t
-20.000 -10.000 0.000
lo.oao
PO.OOQ -
Figure 37. Combination kiln burner nozzle — isoconcentration plot of NO2
-------
Kiln Burner-Baseline Conditions
Table 3 lists the operating conditions at which baseline in-the-flame
runs were made with the kiln burner ( described in Volume I). The data
obtained are shown in Table 4 and Figures 1 through 7 for an axial sampling
position of 5. 1 cm. Table 5 shows the results of radial sampling at an
axial position of 26. 0 cm. Figures 8 through 14 show plots of these data.
The radial profile data at axial positions of 57. 2 cm, 146. 1 cm, and
385. 4 cm are presented in Tables 6 to 8 and Figures 15 through 34.
The nitric oxide versus radial position plots show that the nitric oxide
concentrations in the secondary recirculation zone (—60 cm to —24 cm)
average about 250 ppm, as compared with a flue concentration of 265 ppm.
Comparing this with the average NO concentration of 7 ppm in the burner-
block region would indicate that 20. 1 cm downstream of the gas injection,
only a trace amount of the nitric oxide appears to be created through combustion.
The plots of nitrogen dioxide versus radial position show a pattern similar
to that of nitric oxide in the secondary recirculation zone. However, in the
burner-block area, there are two distinct peaks occurring at —6cm and +6 cm.
The nitrogen dioxide concentrations measured in these peaks are 26 ppm and
29 ppm, respectively, as compared with a flue value of 36 ppm. The
significance of these peaks will be discussed later.
The oxygen profile at the 5. 1-cm axial position shows peaks at —12 cm
and +20 cm, with concentrations of 20. 2% and 20. 4%, respectively, which
represent the secondary combustion air input. A third peak occurs on the
centerline of the burner with a 12. 8% concentration. This peak would mainly
represent the primary combustion air input.
The methane profile shows a 28. 4% maximum concentration on the
centerline of the burner and falls to zero at —9 cm and +6 cm in an
asymmetrical pattern.
The carbon dioxide versus radial position curve shows that, in the
secondary combustion air entrance zones ( + 12 cm to +24 cm and -9 cm to
—18 cm as determined from the oxygen profile) , the carbon dioxide concen-
trations vary from zero to 0. 5%, as compared with secondary recirculation
zone values of 8. 0-10%. The carbon dioxide curve exhibits two peaks
54
-------
within the burner block (—6 cm and +6 cm). These peaks enclose a
minimum which lies inside the methane core, along the centerline of the
burner. This profile shows that there is a minimal amount of entrainment
of secondary recirculation products into the burner-block region at the
5. 1-cm axial position.
Figures 7, 14, 21, 28, and 34 show composite log plots of concentration
versus radial position within the composition range of 0. 0001% ( 1 ppm) -
100%. In these plots the interrelationships between concentration variations
of oxygen, nitric oxide, nitrogen dioxide, carbon monoxide, carbon dioxide,
hydrogen, and methane can easily be visualized.
Figures 6, 13, 20, 27, and 33 are plots of the average temperatures
measured versus radial positions. In these profiles, the secondary recir-
culation zone shows a temperature in approximate equilibrium with the
furnace walls. There is a sharp decrease in temperature in the secondary
combustion air zones. Two peaks in temperature occur within the burner
block at —6cm and +6 cm, with temperatures of 1216°C and 1437°C,
respectively.
A correlation of the carbon dioxide, nitric oxide, temperature, and
nitrogen dioxide profiles indicate that nitrogen dioxide is formed before nitric
oxide in the flame ( so-called "instantaneous NO2") • The positions of the peaks
(—6cm and +6 cm) inside the burner block coincide for temperature, carbon
dioxide, and nitrogen dioxide. This agreement in the peak values for carbon
dioxide and the temperature would indicate where the combustion is occurring.
At these positions, the nitric oxide concentration is only 5% of its flue value,
while nitrogen dioxide has 77% of its final concentration.
Kiln Burner-NO Control Conditions
The furnace conditions at which the control case in-the-flame probing
was conducted are listed in Table 9. These conditions are identical to
baseline operation except for 12% flue gas recirculation. This percentage
of flue gas recirculation ( % FGR) is determined using the relationship —
o* pv-R _ FGR(SCFH) ,nn
/0 *°^ Fuel( SCFH) + Primary Air( SCFH) + Secondary Air( SCFH) u
55
-------
Table 9. COMBINATION KILN BURNER NOZZLE - POLLUTION CONTROL
CONDITIONS-FURNACE CONDITIONS FOR IN-THE-FLAME SAMPLING
WITH FLUE-GAS RE CIRCULATION
KILN BURNER-COMBINATION NOZZLE-POLLUTION CONTROL CONDITIONS
NUMBER OF SETS OF DATA = 6.
MINIMUM GRID VALUE OF AVERAGE TEMPERATURE = 5bG. DEG.C
MAXIMUM GRID VALUE OF AVERAGE TEMPERATURE = ]5bU. DEG.C
POSITION OF OUTSIDE EDGES OF BURNER bLOCK
MINIMUM POSITION = -23, CM
MAXIMUM POSITION = 23. CM
GAS INPUT* AXIAL
WALL TEMPERATURE
PREHEAT TEMPERATURE
FLUE GAS RECIHCULATION
CF/HR
1330.
460.
RADIAL
DEG.C
DEG.C
1830. CF/HR
12.0
GAS SAMPLE ANALYSIS IN THE FLUE
NITROGEN OXIDE
NITROGEN DIOXIDE
OXYGEN
CARBON DIOXIDE
CARBON MONOXIDE
120.0 PPM
22.0 PPM
3.1 *
10.1 *
.0281 *
LIMITS FOR CONCENTRATION PLOTS
LOWER LIMIT OF NO = 0, PPM
LOWER LIMIT OF N02 = 0. PPM
LOWER LIMIT OF 02 = 0. *
LOWER LIMIT OF CH4 = 0. *
LOWER LIMIT OF C02 a 0. %
ISOCONCENTRAT1UN VALUES
OBTAIN VALUE OF RADIAL POSITION AT NO
OBTAIN VALUE OF RADIAL POSITION AT NO?
UPPFP LIMIT =
UPPFR LIMIT =
UPPER LIMIT =
UPPFP LIMIT =
UPPFP LIMIT =
130. PPM
3S. PPM
21. *
20. *
11. *
PPM CONCENTRATION
PPM CONCENTRATION
18.
4.
43,
8,
75,
14,
90.
20.
10*.
-------
The data obtained for an axial sampling position of 5. 1 cm are listed
in Table 10 and plotted in Figures 38 through 45. Table 11 lists the results
of radial sampling at an axial position of 26. 0 cm. Figures 46 through 53
show plots of these data. The radial profile data at axial positions of
57. 2 cm, 146. 1 cm, 290. 2 cm, and 385. 4 cm are presented in Tables 12
to 1 5 and Figures 54 through 83.
Flow direction analysis at the 5. 1-cm axial position shows secondary
recirculation zones exist in the regions —60 cm to —30 cm and +30 cm to
the furnace wall. Inside the edges of the burner block, +23 cm to —23 cm,
there are three resolved peaks. The high-velocity central pea.k represents
the axially injected gas and primary air, while the two lower velocity
flanking peaks represent the secondary combustion air. These flow peaks
occur at radial positions of—3 cm, —18 cm, and +20 cm, respectively.
Correlating the 5. 1-cm axial position temperature profile to the above
flow analysis, a constant temperature of 1281 °C exists in the regions of
recirculation ( compared with a wall temperature of 1330°C). At the peak
secondary combustion air inlets, the temperature drops to 556°C and 637°C.
In the central forward flow region, the temperature is 1211°C. Inside the
burner block area two peaks occur in the temperature at —6 cm and +3 cm,
with values of 1331°C and 1318°C, respectively.
Figure 38, the nitric oxide versus radial position plot, shows that the
nitric oxide concentrations in the secondary recirculation zone (—60 cm to
—30 cm) average about 111 ppm, as compared with a flue concentration of
120 ppm. Comparing this with the average NO concentration of 15 ppm in
the burner-block region would indicate that at 20. 1-cm downstream of the
gas injection, only trace amounts of nitric oxide appear to be created through
combustion.
The plots of nitrogen dioxide versus radial position show a pattern similar
to that of nitric oxide in the secondary recirculation zone. However, in the
burner-block area, there are two distinct peaks occurring at—6 cm and
+ 3 cm. The nitrogen dioxide concentrations measured in these peaks are
24 ppm and 26 ppm, respectively, as compared with a flue value of 22 ppm.
57
-------
Table 10. COMBINATION KILN BURNER NOZZLE - POLLUTION CONTROL
CONDITIONS - IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 5. 1 cm
MLN bUWNER-COMblNATION NOZZLF-POLLUTION CONTHOL CONDITIONS
00
KADIAL
POSITION
CM
-60.
-48.
-39.
-36.
-33.
-30.
-27.
-?5.
-24.
-22.
-18.
-15.
-12.
-6.
-3.
0.
3.
6.
12.
18.
20.
24.
30.
36.
02
#
4.4
5.0
4.7
5.0
4.7
4.9
5.1
6.4
7.9
12.6
17.2
17.1
16.2
15.2
11.2
11.2
10.7
14.4
18.9
18.4
17.8
15.8
6.2
6.7
AXIAL POSITION =
N2
O>
?
?
?
7
?
7
?
?
7
7
7
?
7
78.3
64.3
63.5
71.5
80.0
?
7
?
7
?
7
NO
PPM
105.
110.
115.
114.
115.
110.
97.
85.
76.
24.
15.
14.
14.
10.
6.
7.
10.
22.
19.
18.
19.
43.
100.
98.
N02
PPM
20.
18.
19.
22.
18.
20.
16.
13.
12.
5.
2.
1.
2.
24.
10.
17.
26.
6.
4.
9.
6.
8.
25.
22.
C02
%
9.2
8.9
9.1
8.9
9.0
9.1
8.9
8.3
7.4
4.7
1.3
1.3
1.4
2.7
2.2
2.0
3.2
3.3
1.4
1.7
1.7
3.4
8.4
8.0
CO
rv
.0020
.0018
.0016
.0015
.0016
.0015
.0012
.0014
.0016
.0011
.0010
.0011
.0176
.5900
1.6900
I.b200
2.0300
.4500
.0019
.0026
.0027
.0028
.0038
.0035
M2
y.
7
7
7
i
'i
7
7
?
7
?
7
7
7
.5
2.0
1.8
2.2
.3
7
7
7
7
?
7
CH4
^.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
1.6
16.3
17.6
8.6
.5
0.0
0.0
0.0
0.0
0.0
0.0
C2H2
/*pij /.
%
7
7
7
7
7
7
7
7
?
7
7
7
?
.1
.5
.5
.4
.0
7
7
7
7
7
7
C2H6
7
7
7
7
7
7
7
?
?
~ 7
?
7
7
.1
.7
.8
.4
.0
7
7
7
7
7
7
C3H6
7
7
7
7
7
?
7
?
7
7
7
7
7
0.0
n.o
0.0
n.o
0.0
t
7
7
?
7
7
C3HR
SK
7
?
7
?
7
7
7
?
?
7
7
?
7
.0
.4
.4
.?
O.n
?
7
7
7
?
7
TFMf
AVG.
1287.
1291.
1286.
1277.
1277.
1258.
1191.
1090 =
959.
679.
553.
604.
643.
1331.
1 1 66.
1 1?6.
1318.
7??.
614.
611 .
61 1.
984.
1259.
1275.
MAX.
1293.
129?.
1 2 "A .
1281.
1279.
1271.
122?.
111°.
995.
737.
556.
65?.
72P.
1404.
1284.
1211.
138*.
770.
670.
*9P.
637.
1039.
1271.
128?.
DEG.C
TMAX-fAVG
*.
1.
0.
4.
;>.
11.
31.
4"..
3*.
5«.
1.
48.
85.
73.
11".
8"=.
68.
48.
56.
79.
2f .
55.
14.
7.
-------
NI)//l.F-PULLin ION CONTROL CONDITIONS
SAMPLE
Ul
POSITION =
S.I C.«
-60.000 -su.ooo -40.000 -jo.uou -£<).nnu -10.0011
pn.ono
<• o. o n o
Figure 38. Combination kiln burner nozzle — pollution control conditions —
radial profile of NO at an axial position of 5. 1 cm
-------
HA01AL
3S.
3(
31
63
96
2V
62
POSITION- =
->>o.ooo -su.ooo -40.00U -3U.UOU
-ui.non
u.O'in 10. no" ?o.ono
. non
Figure 39. Combination kiln burner nozzle —pollution control conditions
radial profile of NO2 at an axial position of 5. 1 cm
-------
KILN BUPNEH-CnMfcllNATIUN N02ZLF-POLLUTION CONTROL CONDITIONS
MAOIAL POSITION-CM VS. » 02 IN GAS SAMPLE
11.00
20.60
20.19
19.79
19.38
18.98
IB.SB
IB.17
17.77
17.37
16.96
16.56
16. 15
15.75
15.35
14.94
14.54
14.13
13.73
13.33
12.92
12.52
12.12
11.71
11.31
10.90
10.50
10.10
9.69
9.29
8.88
S.iS
8.08
7.67
7.27
6.87
6.46
6.06
5.65
5.25
4.85
4.44 '
4.04
3.63
3.23
2.83
2.42
2.02
1.62
1.21
.81
.40
.00
AXIAL POSITION
S.I C"
-60.000 -50.000 -40.000 -30.000 -PO.OOO -10.000
0.000
10.000
20.000
^o.noo
40.000
Figure 40. Combination kiln burner nozzle —pollution control conditions
radial profile of O2 at an axial position of 5. 1 cm
-------
to
KILN BUHNER-COMBINATION NO27LF-POLLUTION CONTHOL CONDITIONS
HADIAL PUSITION-CH VS. * CH4 IN GAS SAMPLE
20.00
19.62
19.23
JB.85
18.46
18.08
17.69
17.31
16.92
16.54
16.15
15.77
15.38
15.00
14.23
13.85
13.46
13. OB
12.69
12.31
11.92
11.54
10.77
10.38
10.00
9.62
9.23
8.85
8.46
8. OB
7.69
6.92
6.54
sl77
5.38
5.00
4.62
4.23
3.85
3.46
3.08
2.69
2.31
1.92
1.54
1.15
.77
.38
/*\
/ \
/ \
1 \
t
* 1
1
1
1
1
4
/
k
/ \
AXIAL POSITION =
5.1 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
lO.non
20.000
10.000
40.000
Figure 41. Combination kiln burner nozzle —pollution control conditions
radial profile of CH4 at an axial position of 5. 1 cm
-------
(JO
KILN BURNE«-COM«1NATH)N KOZZLF-^ULLUTION COMPOL COM!) IT IOMS
RADIAL POSITION-CH VS. * C02 IN GAS SAMPl t
11.00
10.79
10.58
10.37
10.15
9.94
9.73
9.52
9.31
8.8H • • X?
8.67 X
8.46 \
8.25 *.
8.04 1
7.83 1
7.62 1
7.40 •
7.19 1
6.96 1
6.77 1
6.56 1
6.35
6.13 V
5.92 I
5.71 I
5.50 1
5.29 4
5.08 A
••87 . 1
4.65
4.23
4.02
3.81
3.60
3.3B
3.17
2.96
2.75
2.54
2.33
2.12
1.90
1.69
.1.48
1.27
I.Ob
.85
.63
.42
.21
.00
»
!
I
1
I
1 '"*
1 /
1 /
\ /\ /
1 / \ 1
/ \ /
1 / v 7
\ /
\ /
V s
SX1AL POSIT IO1"
C"
-60.000 -SO.000 -40.000 -30.UOU -?O.OOU -10.000
O.onn
?n.nno
40.1100
Figure 42. Combination kiln burner nozzle — pollution control conditions
radial profile of CO2 at an axial position of 5. 1 cm
-------
KILN dOKNEW-COMtllNATlON N0271.F-POLLUT 1 ON CONTwOL CONOITTONb
COMPOSITE LOO PLO' KADIAL POSITION-CM VS. A| Ool0(CONCENTHATI ON *)
AXIAL POStTTOM
C»
ON
N=NOf
L)=CU2»
M=CH4.
10U.OOOU
70.6682
bB.7802
4b.0657
34.5511
26.4897
20.3092
lb.S7t>7
11.937H
9.1525 D 0 P U 0 U D U
7.0170 (ID
5.3798 U 00 U 0
0.1246 0 U
J.1623
2.4245
1.8SH8
1 .42bi
1.0926
.S377
.6422
.4924
.3775
• 2894
.2219
.1701
.1304
.1000
.0588
.0451
.0346
.0265
.0203
.0156
.0119 N N N N N N
.0092 N N
.0070 N
.0054
.0041
.0032
.0024 b
.0019 C C H H H
.0014 C C C C B HC
.0011 C H
.ooob
.0006
.0005
.0004
.OOOJ
.0002
.0002
.0001
.0001
0 00
o o n n M M o
n (i o n
M
O
n o
I) I) H
C H C H D
o D n M r. D
c
H C
H
r
*J H R W C C
« CNN
H N N
C C C N H N
H
N M il B
A
K
R H
M
fl
|i
0 D
T
M N,
M C
c r
H M
R
-60.000 -50.000 -40.00U -30.UOO -?0.000 . -ID.flOO
O.ono
Po.noo
?t).ono
Figure 43. Combination kiln burner nozzle — pollution control conditions
radial profile of all the gases at an axial position of 5. 1 cm
-------
Ul
KILN
RADIAL POSITION-CM VS.
1550.
1531.
1512.
1492.
1473.
1454.
1435.
1415.
1396.
1377.
1358.
1338.
1319.
"1300.
1281. «
1262.
1242.
1223.
1204.
1185.
1165.
1146.
1127.
1108.
1088.
1069.
1050.
1031.
1012.
992.
973,
954.
935.
915.
896.
877.
858.
838.
819.
800.
781.
762.
742.
723.
704.
685.
665.
646.
627.
608.
588.
569.
550.
BORNEO-COMBINATION NOZJLF-POLLUTION CONTROL CONDITIONS
AVERAGE TEMPEHATUHE OEG.r
AXIAL POSITION =
5.1 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.(100
0.000
lO.noo
20.000
30.000
40.000
Figure 44. Combination kiln burner nozzle — pollution control conditions
radial profile of temperature at an axial position of 5. 1 cm
-------
Kiln Ranter
Figure 45. Combination kiln burner nozzle — pollution control conditions
radial profile of flow direction at an axial position of 5. 1 cm
66
-------
Table 11. COMBINATION KILN BURNER NOZZLE - POLLUTION CONTROL CONDITIONS
IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 26. 0 cm
KILN BURNER-COMblNATION NOZZLF-POLLUTIGN CONTROL CONDITIONS
AXIAL POSITION a
CM
HAOIAL
p/)C T T f f
~\Jy I t i \
CM
-60.
-54.
-48.
-42.
-36.
-30.
0 -24.
-J -18.
-12.
-9.
-6.
-3.
0.
3.
6.
9.
12.
15.
18.
24.
30.
36.
02
t.9
5.1
5.0
5.4
7.2
10.0
15.2
16.8
14.2
8.3
5.3
6.9
7.0
5.8
8.4
14.3
15.3
16.0
14.2
12.2
8.5
5.2
N2
7
7
?
80.1
83.5
68.7
62.9
62.7
69.1
79.4
80.7
7
?
7
7
?
7
NO
PPM
r r ™
107.
102.
103.
101.
95.
80.
45.
28.
26.
24.
16.
15.
14.
18.
28.
37.
35.
41.
45.
74.
87.
93.
N02
PPM
r rl*l
19.
23.
21.
22.
20.
13.
10.
8.
16.
35.
28.
18.
16.
31.
17.
9.
5.
4.
7.
12.
18.
21.
C02
8.6
U.5
8.5
8.0
7.8
6.4
2.4
3.6
3.3
4.3
3.0
3.0
4.0
5.3
3.8
3.2
3.0
4.1
5.5
7.2
9.2
CO
.0027
.0025
.0026
.0025
.0024
.0020
.0018
.0037
.4700
1.4500
4.3300
3.6300
3.5100
4.0400
2.1600
.2200
.0265
.0010
.0012
.0013
.0017
.0023
H2
7
7
7
?
.4
1.4
7.8
7.1
7.6
4.7
2.0
0.0
V
7
V
•f
7
7
CH4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
.1
.8
7.6
13.8
13.5
9.8
1.5
.1
0.0
0.0
0.0
0.0
0.0
0.0
C2H2
f*Okj/.
\*
1
1
1
1
0
f. n«»
*
7
?
.1
.1
.0
.1
.1
. 1
.2
.0
?
?
7
7
?
7
C2H6
7
.0
.0
.3
.5
.5
.4
.0
0.0
7
7
7
7
7
7
C3H6
7
7
7
7
7
7
7
0.0
0.0
.0
.0
0.0
0.0
0.0
0.0
7
7
7
7
7
7
C3H8
?
0.0
o.o
.1
.?.
.4
.1
0.0
0.0
7
7
7
7
7
7
TEMPFkATUkt
AVG.
1237.
103?.
807.
864.
1175.
1364.
1211.
1143.
12HP.
133H.
10S7.
869.
787.
825.
891.
1096.
1242.
1264.
MAX.
1290.
129Q.
126P.
1287.
1 160.
86«.
^54.
1317.
1414.
12S4.
1 19P.
1357.
137P.
1229.
990.
HRO.
900.
1 107.
1211 .
1274.
12««.
OFG.C
TWAX-TAVfi
5.
11.
2.
31.
128.
61.
90.
14?.
50.
41.
47.
69.
40.
17?.
121.
93.
7^.
216.
11^.
3?.
24.
-------
CO
KILN BURNER-COMBINATION NOZZLF-PULLUTION CONTROL CONDITIONS
RADIAL POSITION-CM VS. PPM NO IN GAS SAMPLE
130.00
127.50
125.00
122.50
120.00
117.50
115.00
112.50
110.00
107.50
105.00
102.50
100.00
.50
.00
4XIAL POSITION
?A.O CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
o.ono
lo.non
20.000
30.000
40.000
Figure 46. Combination kiln burner nozzle — pollution control conditions
radial profile of NO at an axial position of 26. 0 cm
-------
BURNER-COMBINATION NOZZLF-PULLUTION CONTROL CONDITIONS
. PPM N02 IN GAS SAMPLE
AXIAL POSITION
?6.0 CM
-60.000 -50.000 ~ -feO.OOO -30.00U -20.000 -10.000
u.ooo
lo.noo
PO.OOO
30.000
*o.ooo
Figure 47. Combination kiln burner nozzle — pollution control conditions
radial profile of NO2 at an axial position of 26. 0 cm
-------
KILN BURNER-COMBINATION NOZZLF-POLLUTION CONTROL
HAD1AL POSITION-CM VS. * 02 IN GAS SAMPLE
21.00
20.60
20.19
19.79
19.36
18.98
18.
CONDITIONS
AXIAL POSITION « ?6.0 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
lo.non
20.000
30.000
<»o.noo
Figure 48. Combination kiln burner nozzle — pollution control conditions
radial profile of O2 at an axial position of 26. 0 cm
-------
KILN bURNEH-COMblNAUON NOZZLF-POLtUTION CONTROL CONDITIONS
HAOIAL POSITION-CK VS. « CH4 IN GAS SAMPLE
20.00
19.63
19.23
18. 85
18.46
18.OB
17.69
17.31
16.92
16.54
16.15
15.77
15.38
15.00
14.62
14.23
13.85
13.46
13.08
12.69
12.31
11.92
11.54
11.15
10.77
10.38
10.00
9.62
9.23
8.85
8.46
S.OB
7.69
7.31
6.92
6.54
6.1b
5.77
5.38
5.00
4.62
4.23
3.as
3.46
3.08
2.69
2.31
1.92
1.54
1.15
.77
.38
.00 —» • • » • •
AXIAL POSITION = ?6.0 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
O.OflO
10.000
20.000
30.000
40.000
Figure 49. Combination kiln burner nozzle — pollution control conditions
radial profile of CH4 at an axial position of 26. 0 cm
-------
KILN bUHNKB-COMblNoTlON
HAOIAL POSITION-CM VS. * CO* IN GAS SAMPLE
11.00
10.79
10. 58
10.37
10. Ib
9.94
9.73
9.52
9.31
9.10
8.88
a.67
8.46
8.25
8.04
7.83
7.62
7.40
?.19
6.98
6.77
6.56
6.3b
6.13
b.92
5.71
5.50
5.29
5.08
4.87
4.65
4.44
4.23
4.02
3.81
3.60
3.38
3.17
2.96
2.75
2.54
2.33
2.12
1.90
1.69
1.48
1.27
1.06
.85
.63
.42
.21
.00
CON1WOL CONUITIOMS
4XIAL POSITIOM
2ft.0 CM
-AO.OOO -5U.OOO -40.000 -30.UOU -20.000 -10.000
0.000
lo.ono
ao.ono
30.000
*o.noo
Figure 50. Combination kiln burner nozzle — pollution control conditions —
radial profile of CO2 at an axial position of 26. 0 cm
-------
KILN BURNER-COMBINATION NOZZLF-POLLUTION CONTROL CONDITIONS
COMPOSITE LOG PLOT HA01AL POSITION-CM VS. ALOG10 (CONCENTRAT ION »)
0*02. N>NO< B=N02« 0=C02. C=CO. H=H2. M*CH4,
100.0000
76.6682
bb.7802
4b.0657
34.5511
26.4897
20.3092
15.5707 0
11.9378
9.1525 OUO 0
7.0170 000
5.3798 0000
4.1246
3.1623 0
2.4245
1.8588
1.4251
1.0926
.8377
.6422
.4924
.3775
.2894
.2219
.1701
.1304
.1000
.0767
.0588
.0451
.0346
.0265
.0203
.0156
.0119 N
.0092 N N N N
.0070 N
.0054
.0041 N
.0032
.0024 C B C B C
.0019 8 B b C C
.0014 d
.0011 P
.0008
.0006
.0005
.0004
.0003
.0002
.0002
.0001
.0001
00 M 0000
M
0 "0
MOO
0 HO
o c c u o
oo oo on
o c
H
H M
M
C
H
C
M
M
C
f N N N
III KB B N N
N N
6 ..N H
R N N N
C C
« H
H
H
H
AXIAL POSITION * ?fi.O C»"
0
0 1)
.n
r> n
-
N N
N
C
C H
C
-60.000 -50.000 -40.000 -30.000 -20.000 • -10.000
o.ono
10.000
20.000
30.000
40.000
Figure 51. Combination kiln burner nozzle — pollution control conditions —
radial profile of all the gases at an axial position of 26. 0 cm
-------
KILN bURNER-COMblNATlON NOZ/LF-POLLUTION CONTROL CONDITIONS
RADIAL POSIT10N-CC VS. AVFRAGE TEMHEKAIUKt OEG.C
1550.
1531.
1512.
1492.
1473.
1454.
1435.
1415.
1396.
1377.
1358.
1338.
AXIAL POSITION
C«
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
o.ono
lo.nno
20.000
.TO.noo
40.000
Figure 52. Combination kiln burner nozzle — pollution control conditions
radial profile of temperature at an axial position of 26. 0 cm
-------
10'-
.3*
S.
d
1
1C1
O
(5
O
O
,O
o
Flow Directi&n fln
kjjle RikfiorMr
Recircakttoh
O
For weird
-to
-HO
-10
Railol
Figure 53. Combination kiln burner nozzle — pollution control conditions
radial profile of flow direction at an axial position of 26. 0 cm
75
-------
Table 12. COMBINATION KILN BURNER NOZZLE - POLLUTION CONTROL CONDITIONS -
IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 57. 2 cm
KILN BURNER-COMblNAMON NOZZLF-HOLLUTION CONTROL CONDITIONS
AXIAL POSITION = ^7.2
HADIAL
Hl/3 1 I I C
CM
-60.
-56.
-48.
-36.
-24.
-18.
-12.
-11.
-10.
-9.
-6.
-3.
0.
3.
6.
9.
12.
18.
24.
30.
40.
02
5.8
5.4
6.5
8.3
11.2
8.6
<*.3
3.7
3.6
2.6
2.7
3.1
2.9
4.1
6.2
10.4
11.8
11.9
10.4
9.2
5.1
N2
?
80.8
78.3
75.8
76.2
73.9
69.1
68.9
70.1
74.9
77.3
79.2
79.3
?
?
?
?
NO
PPM
r r Hi
93.
99.
94.
69.
59.
48.
33.
30.
27.
23.
20.
22.
24.
26.
35.
53.
55.
64.
73.
82.
84.
N02
19.
17.
15.
13.
10.
22.
17.
18.
17.
16.
18.
19.
25.
24.
19.
15.
7.
9.
11.
16.
20.
CU2
8.5
8.7
'8.1
7.0
5.5
5.7
6.1
5.9
5.9
5.4
4. 7
4.6
5.0
5.7
5.8
5.2
4.7
5.4
6.1
6.6
9.6
CO
.0012
.0015
.0011
.0013
.0445
2.4100
4.0600
4.7400
4.8900
5.6900
5.7800
5.4900
5.3800
4.1000
2.7800
.7500
.3700
.0065
.0035
.0027
.0035
7
V
7
1.3
4.4
6.2
5.5
6.5
9.6
9.3
9.0
7.1
5. to
3.3
3.0
V
7
7
7
CH4
0.0
0.0
0.0
0.0
0.0
.2
1.4
2.1
2.3
3.9
5.8
6.3
5.6
2.5
1.2
.2
0.0
0.0
0.0
0.0
0.0
C2H2
{* O1_J A
Cent
*
?
.1
.5
.6
.6
1.0
1.2
1.2
1.1
.6
.3
.3
.0
7
?
?
7
7
0.0
.0
.0
.0
.1
.1
.2
.1
.1
.0
0.0
0.0
•y
7
?
?
C3H6
7
7
7
0.0
0.0
0.0
0.0
0.0
.0
.0
.0
0.0
0.0
0.0
n.o
7
7
•f
?
C3H8
•P
•p
?
o.n
o.n
0.0
o.n
0.0
.1
.0
.0
0.0
0.0
0.0
0.0
?
?
?
?
AVG.
1254.
125^.
1231.
1092.
109*.
1392.
1372.
1351.
1344.
13?5.
1318.
1331.
1344.
1300.
1143.
1010.
971.
1024.
1138.
1 157.
I2on.
MAX .
129R.
1279.
125*.
144S.
140ft.
] ;}7?.
133] .
13ft*.
133P.
1364.
138T.
1184.
12040.
lion.
1050.
115*.
1225.
1251.
124P.
DFG.f
TMAX-1 AVf,
44.
37.
4P.
Itol .
160.
51.
34.
21.
37.
4],
12.
31.
39.
84.
10897.
90.
70.
131.
87.
96.
48.
-------
Table 13. COMBINATION KILN BURNER NOZZLE - POLLUTION CONTROL CONDITIONS -
IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 146. 1 cm
KILN BURNER-COMBINATION NOZZLE-POLLUTION CONTHOL CONDITIONS
AXIAL POSITION
HADIAL
pnci TIM
r \J3 1 I I U
CM
-60.
-54.
-48.
-42.
-36.
-30.
-24.
-18.
-12.
~-6.
0.
6.
12.
18.
24.
30.
40.
02
6.8
7.0
5.6
5.1
4.2
3.2
1.9
1.5
2.0
3.0
4.4
7.1
8.1
8.4
8.4
8.7
8.6
N2
84.2
84.0
84.5
84.3
84.0
82.7
80.9
79.5
80.9
81.1
82.6
84.0
82.9
?
?
7
?
NO
PPM
r r «"T
85.
86.
93.
92.
87e
88.
82.
76.
70.
70.
71.
80.
75.
74.
74.
70.
66.
N02
21.
25.
23.
20.
! 7.
16.
13.
10.
7.
9.
10.
12.
7.
6.
8.
11.
15.
C02
8.0
8.0
8.5
8.5
8.7
8.2
7.9
7.3
7.8
8.1
8.3
7.6
7.8
7.2
7.2
7.3
7.1
CO
.0180
.1200
.3500
.5800
1.0900
2.4300
3.9300
5.0000
3.9600
2.6500
1.5800
.3400
.1900
.0075
.U040
.0030
.0020
0.0
0.0
0.0
.4
,y
2.3
4.2
5.3
4.1
2.2
1.4
O.U
0.0
?
?
7
7
CH4
0.0
U.O
0.0
.0
.0
.1
.2
.3
.2
1.7
.8
0.0
0.0
0.0
0.0
0.0
o.o
C2H2
Cc
0.
0.
0.
0.
0.
•
•
•
•
*
0.
0.
0.
n"r
*
0
0
0
0
n
1
1
1
1
0
u
0
0
?
7
?
V
C2H6
0.0
0.0
O.U
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
?
7
?
7
0.0
0.0
0.0
0.0
0*1'
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
7
?
7
C3HR
0.0
O.n
0.0
O.n
n.o
0.0
0.0
n.o
0.0
o.n
o.n
o.n
0.0
?
7
7
?
TKMPFRATUKE OEfi.C
AVO.
1344.
1364.
1378.
1413.
1437.
1485.
1512.
1512.
1540.
1477.
1407.
1352.
1282.
124H.
1251.
12??.
1242.
M«X.
140-H.
1451.
1431.
1461 .
151?.
153P.
1535.
154?.
156n.
150P.
149?.
144Q.
1371.
130Q.
1296.
1286.
12HP.
TMAX-TAVfi
59.
87.
53.
48.
75.
5"».
23.
30,
20.
31.
8*.
97.
61 .
*»5.
f)U,
46.
146.1 CM
-------
Table 14. COMBINATION KILN BURNER NOZZLE - POLLUTION CONTROL CONDITIONS -
IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 290. 2 cm
KILN bUPNER-COMBINATIUN NOZ2LF-PULLUTION CONTROL CONDITIONS
00
AXIAL POSITION
290.2
RADIAL 02
UOCTTTMKJ QL
r W3 1 1 1 WrM W
CM
-60.
-54.
-48.
—42.
-36.
-30.
-24.
-18.
-12.
-6.
0.
6.
12.
18.
24.
30.
36.
40.
2.5
2.5
2.5
2.3
2.2
2.8
2.3
2.4
2.9
3.0
3.7
3.6
4.0
3.9
4.0
<*.!
3.6
3.7
N2
Of
n
86.1
85.7
as. 2
?
85.5
85.4
85.2
85.6
85.8
85.5
85.5
7
7
7
7
?
7
7
NO
PDM
r rn
118.
124.
121.
126.
130.
124.
1?1 .
117.
113.
106.
104.
99.
97.
97.
95.
88.
94.
97.
N02
OpM
ff* 1*1
20.
21.
22.
21.
22.
22.
20.
20.
20.
21.
27.
30.
24.
23.
21.
23.
20.
19.
CU2
10.0
10.2
10.2
10.3
10.2
9.5
10.2
10.1
9.9
10.2
9.6
9.7
9.5
9.9
9.8
9.6
10.0
9.9
CO
.3500
.4000
,t>700
.7400
.8200
.7700
.8200
.5500
.3700
.2900
.2000
.03«0
.0846
.0620
.0092
.0080
.0050
.0040
H2
\Jt
V
O.U
0.0
.4
7
.5
.4
.5
.3
O.u
0.0
0.0
7
7
7
7
7
7
7
CH4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.U
0.0
0.0
C2H2
c
0
0
0
0
0
0
0
0
n
0
c,ri*»
.0
.0
.0
7
.0
.0
.0
.0
.0
.0
.0
7
7
7
7
7
7
7
C2H6
0.0
0.0
0.0
7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
7
7
7
7
7
7
C3H6
n.o
n.o
0.0
7
n.o
n.o
0.0
n.o
n.o
n.o
P.O
7
?
7
7
7
7
7
C3HH TEHF
0
0
0
0
0
0
n
0
0
0
.0
.0
.0
•7
. "
.0
.n
.n
.n
.0
.n
?
7
-7
?
7
?
?
AVG.
1494.
1502.
1512.
151?.
1S20.
1503.
1494.
1494.
1477.
1461.
14??.
1414.
1385.
1370.
1351.
1 344 .
1331 .
1318.
>FPATliHP OEG.C
MAX.
153n.
1 56"*.
1549.
1546.
iS4>-.
1 644.
1S2^.
1537.
154n.
1S3P.
1S17.
l^l^.
145?.
14 IP..
1420.
1367.
1341 .
1326.
TMAX-TAVr,
3*.
61.
37.
34.
2^.
141.
31.
4T.
63.
77.
95.
101.
67.
68.
69.
23.
10.
P.
-------
Table 15. COMBINATION KILN BURNER NOZZLE - POLLUTION CONTROL CONDITIONS -
IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 385. 4 cm
KILN bUBNER-COMblNAt ION N02ZLF-PULLUT10N COMWUL COWOITIONS
-J
vO
RADIAL
POSITION
CM
-60.
-54.
-48.
-45.
-39.
-33.
-27.
-21.
-15.
-9.
-3.
0.
3.
9.
15.
21.
27.
33.
40.
02
%
2.4
2.2
2.3
2.4
2.4
2.5
2.8
2.9
2.9
3.0
3.1
3.2
3.6
3.6
3.6
3.5
3.4
3.3
3.2
N2
NO
PPM
? 122.
? 127.
? 121.
? 122.
? 120.
? 124.
? 118.
? 114.
? 121.
? 110.
? 113.
? 110.
? 110.
? 123.
? 117.
? 113.
? 115.
? 116.
? 114.
N02
PPM
20.
20.
25.
22,
22.
20.
26.
28.
26.
29.
30.
23.
23.
26.
27.
25.
23.
22.
22.
C02
*
10.5
10. b
10.6
10.5
10.4
10.4
10.3
10.3
1U.3
10.2
10.1
10. 1
10.0
10.0
9.9
10.1
10.1
1U.2
10.2
CO
*
.0230
.3000
.2700
.3100
.2200
.1800
.1500
.1200
.1100
.0560
.0055
.0030
.0026
.0015
.0017
.0022
.002.0
.0031
.0034
M2
*
.,
V
'{
f
•>
•f
V
•{
?
?
•f
•/
•f
?
'}
t
•f
"i
't
CH4
*
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
C2H2 C2H6 T3H6 C3H8
* *
*
V
AXIAL POSITION
TFMPFHATtiKE OF.G.T
= 3»5.4 CM
a*
?
?
?
7
•7
?
7
?
?
?
?
7
?
?
?
?
?
7
?
AVC-,.
154H.
153ft.
1548.
1538.
1546.
15^8«
1530.
1503.
1503.
1444.
1494.
1486.
1^69.
1469.
1465.
1461.
1448.
1445.
1440.
MAX.
1575.
1564.
1573.
156?.
1591.
1 UAD t
1556.
1526.
152°.
1SOH.
151^.
1509.
149Q.
1489.
149S.
1491.
1477.
1470.
1470.
TMAX-TAVT,
27.
26.
2^.
24.
45.
30.
26.
23.
26.
14.
21.
23.
30.
20.
30.
3?.
2°.
?.=;.
30.
-------
00
o
130
MLN BUHNEH-COMdiNATllIN NOJZLF-HULLUT ION CONTROL CONDITIONS
POSITION-tK VS. PPM NO IN GAS SAMPLE
00
4XIAL POSITION =
C"
-f>o.ooo -50.000 -iO.ooo -3o.uoo -ao.ouu -lo.noo
0.000
1 o. n n n
20.000
•>o.ono
<>o.ono
Figure 54. Combination kiln burner nozzle — pollution control conditions
radial profile of NO at an axial position of 57. 2 cm
-------
oo
«AD1AL
3S.
J4.
33.
32.
32.
31.
30.
3D
29
KILN BUHNEH-COMblNATlDN N(U7LF-POLLUT ION CIIN1HOL CONDITIONS
PUSITION-CK VS. PPM N02 IN GAS SAMPLE
00
33
65
98
31
63
96
29
62
AXIAL POSITIOM =
-60.000 -50.UOO -40.000 -3U.UOO -30.000 -10.000
o.ono
lo.tion
?0.000
•»o.nno
'•o.ino
Figure 55. Combination kiln burner nozzle — pollution control conditions
radial profile of NO2 at an axial position of 57. 2 cm
-------
oo
KILN BUHNER-COMBINATION NOZZLF-POLLUTION CONTROL CONDITIONS
RADIAL POSITION-CM VS. * 02 IN OAS SAMPLE
21.00
20.60
20.14
19.79
19.38
18.98
1U.S6
18.17
17.77
17.37
16.96
16.56
16.15
15.7S
15.35
14.94
14. 5*
14.13
13.73
13.33
12.92
12.52
12.12
11.71
11.31
10.90
10.50
10.10
9.69
9.29
8.88
8.48
8.08
7.67
7.27
6.87
6.46
6.06
AXIAL POSITION * 57.2 CM
-60.000 -50.000- -40.000 -30.000 -PO.OOO" -10.000
0.000
10.000
?o.ooo
?0.noO
40.000
Figure 56. Combination kiln burner nozzle —pollution control conditions —
radial profile of O2 at an axial position of 57. 2 cm
-------
oo
oo
KILN BURNER-COMBINATION ^OZZl F-MULLUT ION CONTROL CONDITIONS
RADIAL POSITION-CM vs. » CH4 IN GAS SAMPLE
20.00
19.62
19.23
16.85
16.46
16.06
17,69
17.31
16.92
16.5*
16.15
15.77
__15'38
14.62
14.23
13.85
13.46
13. Ot*
12.69
12.31
11.92
11.54
11.15
10.77
1U.38
10.00
9.*2
V.23
6.85
6.46
6.06
7.-69
7.31
6.92
6.54
6.15
S.77
5.36
5.00
4.62
4.23
3.85
3.46
3.08
2.69
. 2.31
1.92
1.54
1.15
.77
.38
/ |
/ ?
r \
f \
I \
/ \
/ \
y
4XIAL POSITION
57.2 CM
-AO.OOO -50.UOO -40.000 -30.000 -?0.000 -10.000
o.ono
lu.noo
?o.ano
10.000
4u.nno
Figure 57. Combination kiln burner nozzle — pollution control conditions —
radial profile of CH4 at an axial position of 57. Z cm
-------
CONDITIONS
(VX1AL POSITION -
00
KILN HUWNFW-COMBINA1ION NOZZLF-POLU11 I ON CON1HOL
C"
-50.000 -«o.noo -30.000 -an.ooo -lo.onn
0.000
10.000
<.0.000
Figure 58. Combination kiln burner nozzle — pollution control conditions
radial profile of CO2 at an axial position of 57. 2 cm
-------
MLN HUHNK«-C<)MBl^AI 1UN NO//LF
COMPOSITE LOG PLOT MAOIAL fosn ION-CM vs.
0=0?» N=NO« 8=N02. U=CO2. C=CU.
HOLLWII'1N CUM KOI. CCWDTTIONb
N'rHAm
M=r>i4,
AXIAL POSITION = S7.2
CO
0.0000
6.6682
B.7802
5.0657
4.5511
6.4897
0.3092
5.5707
1.9378 n
9.1525 n 0 U 0
7.0170 0 0
5.379U 00 P
4. 124b
3.1623
2.4245
1.85B6
1.4251
%377
.6422
.4924
.3775
.2894
ii.701
.1304
.1000
.om
.0451 r
. 0346
!o203
.0156
.0119
.0092 N N N
,0070 M
.0054 M
. 0041
.0032
.0024
.0049 R 8
.0014 C U C
.0011 C C B
. OODB
.0006
.0005
.0004
.0003
.0002
.0002
.0001
.0001
0 0
-0 H H M 0
H *-« M H 0
p occi) o c i) n H fi o
<;o M ii n n
o on r. H H
r. ^o o M
M
H M
r
C
M •.'
M
N n M
NN l>
H Ntv, tw N P
L,flH H H hi
M V
<
H
-SO. 000 -50.U00 -40.000 -30.UOO
-10.000
HJ.OOO
10.000
.ono
40.100
Figure 59. Combination kiln burner nozzle — pollution control conditions
radial profile of all the gases at an axial position of 57. 2 cm
-------
00
KILN BUHNER-COMB1NAT1UN NO£?I.F-PULLUT ION CONIKOL CONDITIONS
HAUIAL POSITION-CM VS. AVfWifiE TEMPtKAIUkt
1550.
1531.
1512.
1492.
1473.
1454.
1435.
1415.
1396.
1J77.
1JS8.
1338.
1319.
1300.
1281.
1262."
AXIAL POSITION = ^7.2 (»
-60.000 -50.000 -40.000 -30.000 -?O.OOU -10.000
o.ono
lo.noo
20.000
TO.nno
4o.nno
Figure 60. Combination kiln burner nozzle — pollution control conditions
radial profile of temperature at an axial position of 57. Z cm
-------
10'
Flow Directtoh
Position,
Figure 61. Combination kiln burner nozzle — pollution control conditions
radial profile of flow direction at an axial position of 57. 2 cm
87
-------
oo
oo
MLN HUHNEW-COMblNAIlUN NOZ/LT-HULL UT 1 UN CONTWOl CUNUTTIOOjS
RADIAL POSITION-L* VS. PPM NO IN 0«b bAMPLE
13U.OO
127.50
125.oo
122.50
120.00
117.50
115.0U
112.50
no.oo
107.50
105.00
102.50
100.00
97.50
95.00
92.50 • •
90.00 ^^
H7.SO ***>^»^* •
bb.OO « « ^~^w^
a/i.so ^XNN*
ao.oo ^N
?7.50
75.00
72.50
70.00
bt. 50
65.00
62.50
60.00
57.50
55.00
32. 50
bO.OO
4/.50
45.00
42.50
40.00
37.50
35.00
32.50
30.00
27.50
25.00
22.50
10.00
IV. 50
15.00
12.50
10.00
7.50
5.00
2.50
0.00
POSITION
-60.000 -50.000 -(.0.000
-?o.ooo -lo.noo
0.000
Hi. "00
20.000
.ono
Figure 62. Combination kiln burner nozzle — pollution control conditions
radial profile of NO at an axial position of 146. 1 cm
-------
oo
MLN bUWNEH-COHBlNAJlON NOZ7LF-POLLUT-IO ' COMMOL CONDITIONS
«AU1AL POSITION-O VS. PPM M02 Ilw GAS SAMPLE
3b.0«
34.33
33.6B
J2.9K
31.63
30.96
30.29
29.62
2H.94
2U.27
27.60
£6.92
26.2S
24.90 «
24.23
23^56 -
22. 88
22.21
21.S4
20.87 •
20.19
19.52
18.85
18.17
i 7 • 5C
16.83
16.lb
IS. 4B
14.81
14.13
13.46
12.79
12.1£
11.44
10.77
10.10
9.42
.B.7b
b.Ob
7.40
6.73
6.06
4.71
4.04
3.37
2.69
2.02
1.3b
.67
.00
4AIAL POSITION =
. 1 C"
-AO.OOO -50.000 -40.000 -30.00U -?n.OOU -10.000
u.ooo
lo.ono
20.000
40.000
Figure 63. Combination kiln burner nozzle — pollution control conditions
radial profile of NO2 at an axial position of 146. 1 cm
-------
KILN dURNFH-COMBlNATION NOZZl F
«AOIAL POSITION-O VS. * 02 IN GAS bAMPLt
21.00
20.60
20.19
19.79
19.30
18.58
18.17
17.77
17.37
16.96
16.56
16.15
15.7b
15.35
14.94
14.54
14.13
13.73
13.33
12.92
11.52
12.12
11.71
11.31
10.90
10.50
10.10
9.69
9.29
8.88
8.48
8.0d
f.67
7.27
6.87
6.46
6.06
5.65
5.25
roNiHOL coMniTiONS
AXIAL POSITION = I4f..l CM
-AO.OOO -SO.000 -40.000 -JO.UOO -PO.OOU -lO.ftOO
o.ono
io.nno
20.uno
ic.nno
4o.nno
Figure 64. Combination kiln burner nozzle — pollution control conditions —
radial profile of O2 at an axial position of 146. 1 cm
-------
IVILN HUHNEH-COHblNATlON NOZZLF-POLLHT ION CONTROL CONDITIONS
HAIHAL POSITION-CM VS. * CH4 IN TiftS SAMPLE
iO.OO
18.85
1H.46
IB. OH
If.69
17.3i
16.92
16.50
16. Jb
15.77
15.38
IS.00
14.62
10.23
13.8S
U.
-------
KILN BUHNF.H-COMBINUUUN NOZ/Lf -PULLIM IUN
HA01AL POSITION-l> VS. * C02 IN GAS SAMPLE
11.00
1U.79
10. 5H
10.37
10. lb
9.94
9.73
9.52
9.31
9.10
8.8H
8.67 ^^~- •• *~^^
8.46 »*^" « ^S^
8.25 ^^^ «
l'.93 \. *
7.62 \
7ll9
6.98
f>.77
6.56
6.35
b.13
5.92
5.71
b.50
5.29
5. OB
4.87
4.65
4^23
4.02
j.81
3.60
3.38
3.17
2.96
2.75
2.54
2.33
2.12
1.90
1.69
1.48
1.27
1.06
.US
.63
.42
.21
.00
y
^.-^
CONTWDL (WOT THINS
AXIAL POSITIOM
C"
-f>0.000 -«iO.OOO -40.000 -30.000 -20.000
o.ono
lO.noo
20.000
•» o. n n o
40.000
Figure 66. Combination kiln burner nozzle — pollution control conditions
radial profile of CO2 at an axial position of 146. 1 cm
-------
KILM BUWNEH-COMB1NA!ION NOZZLF-PtfLLUTION CONTROL COMOTTI-UNS
« H=H?« M=CH4«
100.0000
7ft. 6682
j'.issii
26.4897
20.3092
11.9378
9.1525 D 0 U U
7.01/0 0 D i)
5.379B 0 11
4.1246 .»! T
3.162J 0
2 . 42 45 H
l.f5H8 0
1.4251
1 . 0926 C
.B377 M
»6422 C
,49?4 H
.3775 C
.2894
* ?2 i V *^
.1701
.1304 C
. 1 CCO
.07f<7 f»
. 04bl M
.0346
.0203 C. »
.01S*
.D092 N Td Hi N N Hi *l
.1)0 74)
.0054
.0041
.0032
^0024 B h
.0019 B « b
.0014 tS h
.0011
. OOOB
.0006
.0004
.0003
.0002
.0002
.0001
.0001
n 11 i' o
o n o o n
c
r n
c
H
0 M
:0 M
M
M L
w
r
N N N N N M N
H ti H
H
-h H H
oo n
o a n
N -M \.
r
C
-C
^
^
H
-f.0.000 -so.ooo -40.000 -Jo.uou -2fl.ouo -lO.noo o.oon lo.noo ?n.ono
40.000
Figure 67. Combination kiln burner nozzle — pollution control conditions
radial profile of all the gases at an axial position of 146. 1 cm
-------
-POLLUTION CONTKUL CONDI TIUKiS
xO
AXIAL POSITIOM =
C"
-*0.000 -50.000 -40.000 -JO.UUO -PO.noU -10.000
0.000
10.0OD
<;o.ono
TO.POO
Figure 68. Combination kiln burner nozzle — pollution control conditions
radial profile of temperature at an axial position of 146. 1 cm
-------
Fjou> Direction
Cowblnatioh Moj3le Kil
/1% F/H* G«$ Recircct I «tio n
N 6.1 cm /Ixuxl PosLtioh
Figure 69. Combination kiln burner nozzle — pollution cpntrol conditions
radial profile of flow direction at an axial position of 146. 1 qm
95
-------
roMkui. <:tiNHTTioiviS
AX[AL POSITION
vO
-hO.OOO -50.000 -40.000 -30.000 -?0.000 -10.000
o.ono
20.000
10.000
Figure 70. Combination kiln burner nozzle — pollution control conditions
radial profile of NO at an axial position of 290. 2 cm
-------
NO
KILN bllWNER-CDMblNaTlUN NOZ.2L*-POLLUTION CONTROL CONDITIONS
RADIAL POS1T1ON-CK VS. PPM N02 IN I.AS SAMPLE
JS.OO
J4.33
J2.9H
J2.31
J1.63
JU.96
26.25
AXIAL POSITION = 290.? C"
^0.87
i«. !<<
19. 5*
18.85
It). 17
i7.5U
16.33
16. IS
lb.4H
lO.tll
11.44
10.77
ao.ic
B.OB
7.40
-6.73
6.06
4.04
J.3?
-------
00
' MLN HUBNtK-COMblNATION NO/21.F-POLLUT I ON CONTROL CONDITIONS
KAUIAL POSITION-CM VS. * 02 IN CjAS SAMPLE
21.00
20.60
20.19
19.79
19.38
18.98
18.58
18.17
1 f.77
17.37
16.96
16.56
le.lb
lb.7b
1S.3S
14.13
13.73
1J.33
12is2
11.71
11.31
10.90
10.50
10.10
9.69
9.29
8.88
8.48
H.OH
7.67
7.27
6.87
6.46
6.06
5.65
4.85
4.44
4.04
3.63
3.23
2.83
2.42.
2.02
1.62
1.21
.81
.40
.00
POSITION =
O
-*0.000 -SU.OOO -40.000 -JO.000 -pn.OOO -10.000
0.000
lO.oon
20.000
so.ono
4(1.000
Figure 72. Combination kiln burner nozzle — pollution control conditions
radial profile of O2 at an axial position of 290. 2 cm
-------
vO
KILN BUWNE«-CI!MbIN«noN NtWLF-^ULUJT ION CONIWOL TOMOITIONS
POblTlON-O VS. « C0<2 IN li»S
11.00
10.79
10. 5H
10.37 -«
9.73
9.10
H.8B
8.67
8.46
8.2b
H.0<»
7.83
7.63
7.40
7.19
6.98
h.77
6.56
6.3b
6.13
5.9,;
5.71
,5.50
i>.29
b.08
4.8'
4.65
4.44
4.23
4.0if
3.B1
J.60
«XIAL POSITION
C"
1 7
96
2.33
2.«
1.90
1.64
1.4H
1.27
1.06
.as
.63
.42
.21
.00
-hO.OOO -50.000 -40.OOU -30.000 -^O.OOi) -lO.flOO
o.ooo
?n.ooo
Figure 73. Combination kiln burner nozzle — pollution control conditions
radial profile of CO2 at an axial position of 290. 2 cm
-------
KILN BUHNt.H-COMblNAl ION NOZ/LF-POLLUTION CONTWOL CONDITIONS
COMPOSITE LOo PLUI
O=02. N=NOt
100.0000
/6.6682
5a.7802
45.0657
34.5511
26.4897
1515707
9J1525 0 b
/.017U
5.3798
4.1246
3.1623
2.4245 0 u
1.8588
1.0926
. 83 7 7.
.6422
.4924
.3775 C C
.2894
.2219
.1701
.1304
.1000
.076?
.0588
.0346
.0265
.0203
.0156
.0119 N N
.0092
.0070
.0054
.0041
.0024
.0019 R a
.0014
.0011
.0008
.0006
.0005
.0004
.0003
.0002
.0002
.0001
.0001
KAOIAL POSITION-CM VS. A|
B=N02. U=C02. C=CO.
u n u u o
0
000 0
c c c c
c
H H H H
N N N N N
H a ti
H f>
AXIAL POST ftON
/>00.? CM
H H H
n o
n o
I) M r>
-60.000 -SO.000 -40.000 -30.000 -?0.000 -10.000
o.ono
lo.ono ?(i.ooo lo.noo 40.100
Figure 74. Combination kiln burner nozzle — pollution control conditions
radial profile of all the gases at an axial position of 290. 2 cm
-------
MLN bUXNER-COMblNATlUN NCUZLF-POLLUT ION CONTROL CONOtTIONS
«AOIAL HOSIT.ION-CM VS. A\ff«AGE TEMPEKA.lUKt DEG.C
1550.
1531.
1512.
1*92..
1396.
1377.
AXIAL POSITION = 2TI.2 C"
1J3B.
1319.
1300.
1262.
1185.
1165.
1146.
1127.
1109.
1088.
1069.
1050.
1031.
10)2.
992.
«.'3.
95*.
877.
858.
83B.
H19.
HOO.
781.
7«2.
7*2.
723.
70*.
685.
665.
6*6.
627.
608.
588.
569.
550.
-AO.OOO -50.000 -uo.ooo -3o.uoo -?o.n»u • -lo.nno
lo.onn
?n.nno
Figure 75. Combination kiln burner nozzle — pollution control conditions
radial profile of temperature at an axial position of 290. 2 cm
-------
10*
Flow Direction
CombtrHitiofc fto^fe frfa
flu* S«s fcci
-bo
Figure 76. Combination kiln burner nozzle — pollution control conditions
radial profile of flow direction at an axial position of 290. 2 cm
102
-------
HAD1AL POblTION-CM
UO.OO
127.50 •
125.00
VS
BUPNiW-COMblNATlON NOi/tF-VULLl'T JON CONTROL COWITIOMS
HPM NO IN OAS SAMPt f
VOStTIOM = 3PS.4 C"
117.50
115.00
112.50
UO.OO
107.50
105.00
102.50
100.00
V7.50
SS.OO
SO.00
H7.50
«5.00
B2.50
MO.00
J7.5U
75.00
72.50
70.00
65.00
62.50
60.00
57.50
bS.OO
50. Ot)
47.50
42.50
40.00
37,50
35.00
30.00
2/.50
2V. Ot)
17.-50
15.00
12.50
10.00
7.>0
b.OO
2.Sit
O.OO
-*o.ooo -so.ofrO -40.000 -jo.uoo -^n.nou -10.000
o.o 011
Hi.noi)
Figure 77. Combination kiln burner nozzle — pollution control conditions —
radial profile of NO at an axial position of 385. 4 cm
-------
WAUIAL PC
J5.00
J".33
JJ.65
32.31
31.63
30.96
'30.29
29.62
2B.94
27.60
26.92
26.25
25; 50
24.90
24.23
23.56
dd.SH
22.21
21.54
20.8?
20.19
19.52
IB.85
IB.17
17.50
16.83
16.15
15.48
14.81
14.13
13.46
12.79
11.44
10.7/
10.10
9.42
8.75
B.08
7.40
6.73
6.06
5.38
4.71
4.04
3.37
2.69
2.02
1.35
.67
.00
MLN HUMNEH-CUMHlNAf 1UN NOZ/LF -l-'ULt IJT I ON CINTPOL CONDITIONS
CK vs. PPM N02 IN GAS SAMPI.L
AXIAL
'
-------
o
(Jt
KJLN BUHNER-COMBINATION NOZZLF-POLLUTION CONTROL CONDITIONS
HAOIAL POSITION-CM VS. » 02 IN OAS SAMPLE
21VOO
20.60
20.19
19.7V
19.3A
Id. 96
1B.5S
IB.17
17.77
17.37
16.96
16.56
16.15
15.75
15.35
14.94
14.54
14.13
13.73
13.33
12.92
12.52
12.12
11.71
U.31
10.90
10.50
10.10
9.69
9.29
8.8«
8.43
8.08
7.67
7.27
6.87
6.46
6.06
5.65
5.25
4.85
4.44
4.04
3.63
3.23
2.83
2.42 .
2.02
1.62
1.21
.81
.44
.00
AXIAL POSITION = 3«S.4 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
o.ono
lo.non
20.000 30.00B
Figure 79. Combination kiln burner nozzle — pollution control conditions
radial profile of O2 at an axial position of 385. 4 cm
-------
KILN BURNER-COMBINATION NOZZLF-PULLUTI ON CONTROL CONDITIONS
SAOIAL POSITION-CM VS. * C02 IN GAS SAMPLE
11.00
10.79
10.58—*
10.37
10.15
9.94
9.73
9.52
9.31
9.10
8. 88
8.67
8.06
8.25
8.04
7.83
7.62
7.40
7.19
6.96
6.77
fr.56
6. 35
6.13
5.92
5.71
5.50
5.29
5.OH
4.87
4.65
4.44
4.23
4.02
3.81
3.60
3.38
3.17
2.96
2.75
2.54
2.33
2.12
1.90
1.69
1.48
1.27
1.06
.85
.63
.42
.21
.00
»X1AL POSITION
3«5.4 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
lo.nno
?o.ono
.T.nou
40.000
Figure 80. Combination kiln burner nozzle — pollution control conditions
radial profile of CO2 at an axial position of 385. 4 cm
-------
O
-J
U 00
n o n
o oo v o
C C C
KILN 6UPN£R-COMbNATION NOZZLF-HOLLHTION CONTROL CONDITIONS
COMPOSITE LOG PLOI KAOIAL POSITION-CM VS. AI.OG10 (CONCENTRATION *)
O*0?t N»NO« B=N02< D»C02» C=COt M*H2. M=CH4«
100.0000
76.6682
5S.7S02
4S.0657
34.5511
26.4897
2U.3092
lb.5707
11.937B 0
9.1525
7.0170
5.3798
4.1246
3.1623
2.4245 0
1.8588
1.4251
1.0926
.8377
.6422
.4924
.3775
.2894
.2219
.1701
.1304
. iOOu
.07S7
.0588
.0451
.0346
.0265
.0203 C
.0156
.0119 -N
.0092
.0070
.0054
.0041
.0032
.0024
.0019 8
.0014
.0011
.0008
.0006
.0005
.0004
.0003
.0002
.0002
.0001
.0001
AXIAL POSITION s •JR'5.4 C"
c c
N N N N N
o o D ooo i) n r>
0
ooooooo n
£
c
c
N N N N N N N N N
C
H H b C
H 8 B H B C
r.
C
n n i)
o n n
N N N
f C
H R H
C
-60.000 -su.ooo -40.000 -JO.ooo -20.000 -10.000 o.ooo 10.non ?o.nno to.nno 4u.noo
Figure 81. Combination kiln burner nozzle — pollution control conditions
radial profile of all the gases at an axial position of 385. 4 cm
-------
o
00
KILN BURNER-COMBINATION NOZZLF-POLLUTION CONTPOL CONDITIONS
RADIAL POSITION-C* VS. AVpHAGE TEMPtKATUWt MEG.C
15SO.
1531.
1512.
1492.
1473.
1454.
1435.
1415.
1396.
1377.
1358.
1338.
1319.
1300.
1281.
1262.
1242.
1223.
1204.
1185.
1165.
1146.
1127.
1108.
1088.
1069.
1050.
1U31.
1012.
992.
973.
954.
935.
915.
896.
B77.
858.
838.
819.
800.
781.
762.
742.
723.
704.
685.
665.
646.
627.
608.
S88.
569.
550.
AXIAL POSITION
3R5.4 CM
-60.000 -51).000 -i.0.000 -30.UOO -?0.000 -10.000
u.ono
10.000
PO.OOU
40.0(10
Figure 82. Combination kiln burner nozzle — pollution control conditions —
radial profile of temperature at an axial position of 385. 4 cm
-------
J!
c:
£ I63_
Direct tort
*»0 .H» -10 % ^0 Ho
R«o!t*j Position,cm
Figure 83. Combination kiln burner nozzle — pollution control conditions
radial profile of flow direction at an axial position of 385. 4 cm
109
-------
The oxygen profile at the 5. 1-cm axial position shows peaks at —18 cm
and +12 cm, with concentrations of 17. 2% and 18. 9%, respectively, which
respresent the primary combustion air input.
The methane profile shows a 17. 6% maximum concentration on the
centerline of the burner and falls to zero at —12 cm and +1.2 cm, in an.
asymmetrical pattern.
The carbon dioxide versus radial position curve shows a variation in
the level of concentration from 1. 3% to 1. 1% in the central region of the
secondary combustion air entrance zones ( +20 cm to +12 cm and —12 cm to
—18 cm, as determined from the oxygen profile). Although these concen-
trations are considerably lower than the secondary recirculation zone values
of approximately 9%» they are higher than the measured concentration of
carbon dioxide in the secondary combustion air entrance zones, for the kiln
burner operating without flue-gas recirculation. This occurs because of
the difference in composition of the secondary combustion air with and
without flue-gas products. Without flue-gas recirculation, the air contains
no detectable levels of carbon dioxide, while for 12% recirculation, it
contains approximately 1. 2% carbon dioxide. Other concentrations in the
combustion air plus flue gas included 18. 9% O2, 10 ppm NO, and 1 ppm NO2.
Comparing these concentrations for the fluid entering through the secondary
combustion air zones with the analyzed component concentrations shows that
there is a minimal amount of entrainment of secondary recirculation products
into the burner-block region at the 5. 1-cm axial position.
A correlation of the carbon dioxide, nitric dioxide, temperature, and
nitrogen dioxide profiles indicates that nitrogen dioxide is formed before
nitric oxide in the flame ( so-called "instantaneous NOz"). This same con-
clusion was reached for similar operating conditions of the kiln burner
without flue-gas recirculation. The positions of the peaks (—6 cm and +3 cm)
inside the burner block coincide for temperature, carbon dioxide, and nitrogen
dioxide. This agreement in the peak values for carbon dioxide and the tem-
perature would indicate where the combustion is occurring. At these positions,
the nitric oxide concentration is only 8% of its flue value, while nitrogen
dioxide has 113% of its final concentration.
110
-------
Figures 43, 51, 59, 67, 74, a:id 81 show composite log plots of concen-
tration versus radial position within the composition range of 0. 0001%
( 1 ppm) -100%. In these plots the interrelationships between concentration
variations of oxygen, nitric oxide, nitrogen dioxide, carbon monoxide,
carbon dioxide, hydrogen, and methane can easily be visualized.
Figures 45, 53, 61, 69, 76, and 83 show flow direction versus radial
position. These profiles show the positions of primary and secondary
forward flow, of recirculation zones ( reverse flow), and of shear and
boundary layers.
Figures 44, 52, 60, 68, 75, and 82 are plots of the average temperatures
measured versus radial positions.
Data Correlation of Isoplots for the Kiln Burner
Figures 35, 36, and 37 are isothermal and isoconcentration plots of the
data presented for the kiln burner operating under standard industrial con-
ditions. Similar profiles are presented in Figures 84, 85, and 86 under
pollution-control operating conditions.
A comparison of the isothermal plots ( Figures 35 and 84) reveals the
baseline flame has a higher initial combustion intensity than the control
conditions. At the 57. 2-cm axial position, baseline operation produces a
1500°C temperature at the burner block projections compared with a 1300°C
temperature for pollution-control operation.
The isoconcentration NO plots reveal that the secondary recirculation
zones at the burner wall contain concentration levels similar to those found
in the flue. Comparing Figures 36 and 85 substantiates the slower rate of
NO formation for the pollution-control operating conditions than for standard
operating conditions. The NO2 concentration has a larger value relative to
the flue concentration for the lower temperature fuel rich region of the
pollution control case than that for standard operating conditions. This may
aid in determining the kinetic formation scheme of NO and NO2.
Ill
-------
ISOTHERMAL PLOT
KILN dURNtH-COMblNATION NOZZLF-POLLUTION CONTROL CONDITIONS
RADIAL PusiriON-CM vs. AXIAL POSITION-CM
-60.000 -50.000 -ftO.ooo -3u.ooo -?n.ooo -lo.noo
o.oou
lo.ono
ao.ono
ic.nno
40.000
Figure 84. Combination kiln burner nozzle — pollution control conditions
isothermal plot of furnace temperature
-------
KILN BUHNER-COMBINATION NOZZLE-POLLUTION CONTROL CONDITIONS
ISOCONCFNTRATION PLOT OF NO HAU1AL POSITION-CM VS. AXIAL POSITION-CM
As 18. PPM. H= '3. PPM, C= 7S. PPM, n= "JO. PPM.Fs 101.
400.00
392.31
384.62
376.92
369.23
361.5*
353.85
346.15
338.46
330.77
323.OR
315.38
307.69
300.00
292.31
284.62
276.92
269.23
261.54
253.85
246.15
2J8.46
230.77
223,OB
215.36
207.69
200.00
192.31
184.62
176.92
169.23
161.54
153.85
146.15
138.46
130.77
123.08
U5.38
107.69
100.00
92.31
84.62
76.92
69.23
61.54
53.85
46.15
38.46
30.77
23.08
15.38
7.69
.00
-60.000 -5U.OOO -40.000 -30.000 -2.0.000 -10.000
0.000
10.000
20.000
?o.noo
4U.OOO
Figure 85. Combination kiln burner nozzle — pollution control conditions —
isoconcentration plot of NO
-------
KILN bUWNEP-COMBlNATION NOZZLE-POLLUTION CONTWOL CONDITIONS
ISOCONCEN1RATION PLOT OF N02 HADIAL POSITION-CM VS. AXIAL POSITION-CM
A= 4. PPM. b= H. PPM. C= 14. PPM. 0= 20. HPM
400.00
-60.000 -BO.000 -40.000 -30.000 -20.000 -10.000
o.ooo lo.oon 20.000 lo.noo 4o.nnn
Figure 86. Combination kiln burner nozzle — pollution control conditions
isoconcentration plot of NO2
-------
BAFFLE BURNER
All in-the-flame experimental work conducted on the intermediate flame
length baffle burner was done with a 4-degree quarl angle burner block. In-
the-flame probings of two flames were made; base-line data were collected
with the operating conditions of the burner identical to those used in industry.
Control-case data were gathered from a flame in which the NO emission
level had been reduced by a factor of two as a result of increasing the gas
velocity by a factor of 16. For the base-line operating conditions, the gas
velocity was 38 ft/s, compared with a control case gas velocity of 611 ft/s.
The secondary combustion air velocity at the baffle in both cases was
251 ft/s. The difference in flame length was 165 cm, with the base-line
flame being 146 cm long and the control-case flame having a length of 311 cm.
Both flames displayed a directional flow profile typical of Type I flames.
Considering that the air ports in the baffles were rotated 15 degrees relative
to the centerline of the burner, resulting in a combustion-air velocity
component in the tangential direction, coupled with the fuel-to-air velocity
ratio, a Type II flow profile was expected. Flow profiles were examined
for the control-case operating conditions using 8- and 1 5-degree quarl
angle burner blocks. A type II flow profile was measured only for the
15-degree quarl angle burner block, which is the same angle as the baffle
ports.
Table 16 lists the furnace conditions at which the base-line, in-the -
flame probing data were collected. The data obtained for an axial sampling
position of 5. 1 cm are listed in Table 17 and plotted in Figures 87 through
94. Table 18 lists the results of radial sampling at an axial position of
26 cm. Figures 95 through 102 show plots of the data. The radial-profile
data at axial positions of 57. 2 cm, 146. 1 cm, and 385. 4 cm are presented
in Tables 19 through 21 and Figures 103 through 123.
Intermediate Flame Length Baffle Burner - Standard Gas Nozzile
The first group of in-the-flame profiles, presented in Figures 87 through
123 were collected under burner operating conditions recommended by the
manufacturer. The visual flame length was 146 cm with a 38 ft/s gas velocity.
115
-------
Table 16. FURNACE CONDITIONS FOR IN-THE-FLAME SAMPLING
(Intermediate Flame Length Baffle Burner — Standard Gas Nozzle)
INTERMEDIATE BAFFLE BURNER - STANDARD NOZZLE
NUMBER OF SETS OF DATA » 5,
MINIMUM GRID VALUE OF AVERAGE TEMPERATURE
MAXIMUM GRID VALUE OF AVERAGE TEMPERATURE
POSITION OF OUTSIDE EDGES OF BURNER BLOCK
MINIMUM POSITION » -14. CM
MAXIMUM POSITION = 14. CM
GAS INPUTt AXIAL 3012. CF/HR RADIAL
WALL TEMPERATURE 1430. DEG.C
PREHEAT TEMPERATURE 460. DEG.C
FLUE GAS RECIRCULATION 0.0 3>
GAS SAMPLE ANALYSIS IN THE FLUE
1300. DEG.C
1800. DEG.C
0. CF/HR
NITROGEN OXIDE
NITROGEN DIOXIDE
OXYGEN
CARBON DIOXIDE
CARBON MONOXIDE
493.0 PPM
53.0 PPM
3.9 %
9.4 %
.0093 *
LIMITS FOR CONCENTRATION PLOTS
LOWER LIMIT OF NO
LOWER LIMIT OF NO?
LOWER LIMIT OF 02
LOWER LIMIT OF CH4
LOWER LIMIT OF C02
0. PPM UPPER LIMIT = 650.
0. PPM UPPER LIMIT » 70.
0. * UPPER LIMIT • 21.
0. * UPPER LIMIT s 2.
0* * UPPER LIMIT * 10.
PPM
PPM
%
*
*
ISOCONCENTRATION VALUES
OBTAIN VALUE OF RADIAL POSITION AT NO PPM CONCENTRATION
OBTAIN VALUE OF RADIAL POSITION AT N02 PPM CONCENTRATION
600.
50.
550.
40.
500.
30.
450.
20.
350.
-------
Table 17. IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 5. 1 cm
(Intermediate Flame Length Baffle Burner — Standard Gas Nozzle)
INTERMEDIATt BAFFLE BURNER - STANDARD NOZZLE
AXIAL POSITION =
HAOJAL
pnc T T T t
~\jj iii*.
CM
-60.
-54.
-48.
-36.
-24.
-21.
-18.
-15.
-12.
-9.
-6.
-3.
0.
3.
6.
9.
12.
15.
18.
21.
24.
36.
02
4.4
4.3
4.3
4.3
4. j
4.4
3.9
4.0
7.9
1.6
• b
.5
.5
.5
1.2
6.1
11.4
14.2
13.1
4.1
3.3
3.3
N2
?
7
?
7
?
?
7
7
80.4
75.5
72.?
71.5
70.?
72.?
75.5
82.5
82.3
7
7
7
7
7
NO
PPM
r r ~
560.
570.
600.
595.
600.
590.
610.
630.
70.
105.
118.
125.
118.
130.
153.
105.
80.
43.
180.
485.
550.
530.
N02
PPM
r r ~
44.
65.
53.
55.
55.
55.
45.
49.
51.
18.
1.
0.
0.
0.
0.
12.
9.
2.
8.
25.
28.
29.
C02
9.3
9.3
9.4
9.4
9.4
9.3
9.6
9.5
5.9
6.4
b.3
4.7
4.4
b.O
6.1
6.7
5.0
3.8
4.3
9.4
9.8
9.8
CO
.0083
.0085
.0082
.0077
.0075
.0073
.0078
.0452
1.3000
5.3000
7.6000
9.0000
9.3000
8. 7000
6.3000
1.0000
.4000
.0478
.0146
.0088
.0093
.0089
H2
7
7
7
7
?
7
7
7
3.1
9.2
12.3
12.2
13.4
11.9
9.7
1.6
0.0
?
7
7
7
7
CH4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
.2
.9
1.1
1.2
1.3
.9
.5
.1
0.0
0.0
0.0
0.0
0.0
0.0
C2H2
%
?
7
?
?
7
?
?
?
.1
.3
.4
.5
.5
.3
.1
0.0
0.0
?
?
7
7
7
C2H6
7
7
7
?
7
7
7
7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
?
7
7
7
7
C3H6
7
7
7
7
r
7
7
7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
7
7
7
7
C3Hfl
?
?
?
7
V
7
?
7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
?
?
?
?
7
TEMPFRATURE DEG.C
AVG.
1476.
1482.
1484.
1470.
1455.
1380.
1370.
1351.
1688.
1712.
1656.
1636.
1613.
1649.
1669.
1652.
1555.
1459.
1470.
1489.
1489.
1475.
MAX.
1476.
148?.
1484.
1470.
1455.
1380.
1370.
1351.
168R.
171?.
1656.
1636.
1613.
1649.
1669.
165?.
155^.
1459.
1470.
1489.
1489.
1475.
TMAX-TAVG
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
5.1 CM
-------
HAUIAL POSITION-CM
bbO.
638.
625.
613.
600.
bH8.
b75. ___ .
b63.-— * ---
S50.
b38.
b?5.
b!3.
bOO.
488.
«75.
«63.
<»50.
438.
<»?5.
013.
too.
J«8.
37b.
363.
3bO.
338.
J?5.
313.
300.
INTEHMEOlATt riAFFLt BUHNER - STANDAKO NOZZLE
VS. PPM NO IN GAS SAMPLE
OXIAL
00
£00.
1HH.
175.
163.
150.
138.
1?5.
113.
100.
88.
75.
63.
SO.
38.
?5.
13.
0.
-fro.uoo -50.000 -40.000 -3U.UOO -pn.ooo -10.000 o.ono lo.onn
.in.nnu
-------
INTEHMEOIAFt bAFFLt HUHNF.P - STANDAHO
VS. PPM N02 IN GAS SAMPLE
AXIAL POSITION =
S.I
-f.0.000 -SU.OOO -40.000 -JU.UOO -PO.OOO -10.000
o.ono
lo.onn
?o.nno
TO.nno
fc o. o o o
Figure 88. Radial profile of NO2 at an axial position of 5. 1 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
INTFRMEOIATt bAH-LE HUHNFR - STANOAKO NOZZLF
VS. fit 02 IN GAS SAMPLE
4XIAI. POSITtUN
S.I
-AO.OOO -50.000 -40.000 -JO.000 -20.000 -10.000
0.000
10.000
20.000
-------
1NTFHMED1ATE BAFfLE HUHNFH - STANDARD
VS. » CH<» IN GAS SAMPLE
AXIAL POSIT ID"' =
S.I (
-fiO.OOO -5U.UOO -00.000 -JO.000 -?0.000 -10.000
o.ono
lo.noo
ao.nno
jo.nno
Figure 90. Radial profile of CH4 at an axial position of 5. 1 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
KAUIAL POSITION-LI-
It).00
V.81
INTFHMEDIATE BAKI-Lt 3UKNFR - STANUAHO NOZ7U'
VS. » C02 IN OAS bAMPLE
««IAL POSITION
S.I
IS)
¥.42
9.23-
V.04
8.85
8.46
B.Ob
V.8H
l.btl
7.31
b.92
6. 73
b.54
b.lb
b!77
b.bM
b.38
b.19
i.OO
4.81
4.6£
4.23
4.04
3.6b
3.46
3.27
3.Of
2.69
2.SU
2.31
2.12
1.92
1.73
1.54
1.3b
1.15
.77
.brt
.3H
.00
->>O.OUO -50.000 -40.000 -30.00U -PO.OOO -10.000
o.ono
lu.noO
?o.noo
40.nno
Figure 91. Radial profile of CO2 at an axial position of 5. 1 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
INTERMEDIATE BAFFLE BURNER - STANDARD NOZZLE
COMPOSITE LOG PLOT RADIAL POSITION-CM VS. ALOG10 (CONCENTRATION *»
0=02 t N=NO. B.NOZt 0«COa, C-CO, N*H2t M»CH4,
100.0000
76.6682
58.7802
45.0657
34.5511
26.4697
20.3092
15.5707
11.9378
9.1525 000 0 DDDD
7.0170
5.3798
4.1246 000 0 0000
3.1623
2.4245
1.8588
1.42S1
1.0926
.8377
.6422
.4924
.3775
.2894
.2219
.1701
.1304
.1000
._ .0767
... .0588 NNN N NNNN
Co .0451 C
.0346
.0265
.0203
.0156
.0119
.0092 C C C
.0070 6 C C C C
.0054 B B BBS
.0041 B B
.0032
.0024
.0019
.0014
.0011
.0008
.0006
.0005
.0004
.0003
.0002
.0002
.0001
.0001
H H M H 0
H C C C H
0 0 C CO
0 C 0 D 0 0 0
D D
M
C
CO M H
MM 0
M M
0
DOOM
£
M
j*
N
N N N N N N
N N
8
B
fl
B
B
0
0
n D
D D 0
0
N
C N
N
C
C C
N
B
R
B
B
AXIAL POSITION =
-60.000
t i t
-SO.000 -40.000 -30.000
5.1 CM
-20.000
•10.000
0.000
10.000
20.000
30.000
40.000
Figure 92. Radial profile of all the gases at an axial position of 5. 1 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
INTERMEDIATE BAFFLE BURNER - STANDARD NOZZLE
RADIAL POSITION-CM VS. AVERAGE TEMPERATURE DEG.C
18UO.OO
1790.38
1780.77
1771.15
1761.5*
1761.92
1742.31
1732.6V
1723.08
1713.46
1703.85
16V*.23
1680.62
1675.00
1665.38
1655.77
1646.15
1636.54
1626.92
1617.31
16U7.69
1598.08
1588.46
1578.85
1569.23
1559.62
1550.00
1540.38
1530.77
1521.15
1511.54
1501.92
1492.31
1482.69 ...
1473.0B-"*'
1463.46
1453.85
1444.23
1434.62
1425.00
1415.38
1405.77
1396.15
1386.54
1376.92
1367.31
1357.69
1348.08
1338.46
1328.85
1319.23
1309.62
1300.00
AXIAL POSITION
5.1
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 93. Radial profile of average temperature at an axial position of 5. 1 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
10*
s.
O
a
Cf
O
>o-o'
-O,
\
o-o—.
-HO
-ao
Figure 94. Radial profile of flow direction at an axial position of 5. 1 cm
(intermediate flame length baffle burner — standard gas nozzle)
125
-------
Table 18. IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 26.0 cm
(Intermediate Flame Length Baffle Burner - Standard Gas Nozzle)
INTERMEDIATE BAFf-LE BURNER - STANDARD NOZZLE
NJ
AXIAL POSITION
36.0 CM
KADIAL U3
POQ T T T (INI *
~w^l I l wl» w
CM
-60.
-48.
-36.
-24.
-21.
-18.
-15.
-12.
-9.
-6.
-3.
0.
3.
6.
9.
12.
15.
18.
21.
24.
36.
4.4
4,b
4.4
4.4
4.4
4.4
4.3
4.0
2.9
1.6
.8
.8
.9
2.0
5.5
9.6
11.8
11.5
8.7
6.1
J.8
N2
at
w
7
7
7
7
?
?
85.4
84.3
83.4
81.4
78.7
76.9
77.3
79.3
82.1
82. S
82.1
82.3
7
7
?
NO
PDM
rr ™
542.
565.
565.
530.
525.
420.
395.
340.
330.
312.
295.
245.
2?5.
198.
150.
125.
145.
195.
270.
397.
468.
N02
PPM
54.
57.
55.
50.
48.
5<».
51.
42.
31.
13.
0.
0.
0.
0.
28.
20.
7.
12.
33.
30.
32.
C02
«•
9.2
9.1
9.3
9.3
9.3
9.3
9.2
8.9
8.8
8.2
7.0
6.4
6.2
6.7
6.7
5.7
4.9
5.3
6.8
8.2
9.5
CO
.0070
.0075
.0074
.0086
.0478
.0940
.3300
1.0000
2.4000
4.1000
6.0000
7.1000
6.8000
5.3000
2.5000
.7000
.1000
0.0000
.0078
.0067
.0076
H2
7
7
7
7
7
7
0.0
.7
3.1
4.0
6.5
8.0
8.0
6.0
2.3
.4
0.0
0.0
7
7
7
CH4
0.0
0.0
0.0
0.0
0.0
O.G
0.0
0.0
0.0
0.0
.1
.1
.1
.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
C2H2
POUA.
L.C n*»
%
i
7
7
7
7
7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
7
7
C2H6
7
7
7
7
7
7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
7
7
C3H6
7
7
7
7
7
7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
7
7
C3HB
?
7
7
7
7
7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
?
7
TEMPERATURE DEG.C
AVG.
1455.
1460.
1440.
1393.
1500.
1605.
1632.
1703.
1753.
1740.
1710.
1679.
1701.
1688.
1640.
1538.
1481.
1461.
1430.
1434.
1444.
MAX.
1455.
1460.
1440.
1393.
1500.
IfeOS;
1632.
1703.
1753.
1740.
1710.
1679.
1701.
1688.
1640.
1538.
1481.
1461.
1430.
1434.
1444.
TMAX-TAVG
0.
0.
0.
0.
0.
o.
0^
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-------
INTEKMEDIATt bAFI-LE BUHNER - STANOftHU NOZ7Lt
VS. PPM NO IN GAS SAMPLE
CO
4XIAL
••
\
\
* M
vy
»
-60.000 -SU.UOU -40.000 -3D.000 -?O.OOU -10.000
o.ono
lo.noo
ao.nno
ItO.DIX)
Figure 95. Radial profile of NO at an axial position of 26. 0 cm.
(intermediate flame length baffle burner — standard gas nozzle)
-------
oo
KAU1AL
70.00
68.6b
" ' . 3)
6b.9b
64.62
63.27
61.92
6U.58
b9.23
b7.88
bb.
bb.
53.85
JNTFRMEDlATt BAFH.L HURNfR,- STANOAHL) NO^ZLK
VS. PPM N02 IN (jAS SAMPLE
AXIAL P'ISI MON =
bl.lb
49.81
4B
47.12
4b.77
44.42
43.08
41.73
40.38
39.04
36. 3b
33.6b
32.31
30.96
29.62
28.27
26.92
2b.58
24.^3
il.54
18.8b
17.50
16.15
14.81
13. 4*
12.12
10.77
9.42
8.08
6.73
b.38
4.04
K35
.00
-ftO.OOO -5U.OOO -40.000 -30.000 -?n.0()0 -10.000
0.000
lo.onn
20.000
10.000
4 o. n n o
Figure 96* Radial profile of NO2 at an axial position of 26. 0 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
CM
NO
rtAOIAl.
21.
20.
20.
19.
19
18.
Id.
18.
ir.
It.
POSITION-!,*
00
6U
19
79
3«
98
5B
17
n
37
VS. *
02
HAfl-Lt BIIHNFH - STANDAHn MOZZUF
IN GAS SAMPLE
4»IAL POSITH)^' =
ib.35
14.94
14.54
14.13
U.73
13.33
12.9?
12.52
12.12
11.71
11.31
10.90
-10.50
10. 1U
9.69
9.29
K.8B
B,fe8
H.OH
/.67
7.27
6.87
6.46
6.06
J.63
3.23
2.83
2.42
2.0*
1.62
1.21
.81
.40
.00
\
\
-AO.UOO -5U.OOO -40.000 -3U.UOU -PO.OOU -10.000
o.ono
Hi. 000
20.000
?o.ono
Figure 97. Radial profile of O2 at an axial position of 26. 0 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
HAIJIAL POblTlON-CM
l.bQOU
1.4712
1.4423
1.4135
1 . 384t>
1.355W
1.3269
INTEWMEOIATt HAFhLt rtlPWNFP - STANUAHO NOZ/LE
VS. « CM4 IN (iAS SAMPLE
AXIAL
C"
1.2f>92
1.2404
1.1827
1.1538
1.1250
1.0962
1.0873
1.038b
1.0096
.98 0«
.9?J1
.8942
.8077
.7788
.7SOO
.7?1^
.6923
.J750
.3173
.2S8b
.2019
.1731
.1442
.1154
.OS6&
.0577
.'J2SJ'
.0000
-feO.OUO -SU.OOO -40.000 -3U.OOO -?O.OOU -10.000
o.ooo
111.100
20.000
id. ono
40.000
Figure 98. Radial profile of CH4 at an axial position of 26. 0 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
KAOIAL HOSITION-CM
1U.OO
9.81
9.62
9.42
9,
9.04
b.8b
B.6b
8.46
8.27
B.08
7.88
7.69
7.SO
'.31
7.12
6.92
6.73
6.54
6.3b
b.96
b.77
b.SB
b,3«
S.iv
b.OO
4.81
4.62
•».*?
*.23
4.04
J.8S
3.6S
J.46
3.27
3.08
2.69
2.!>0
2.31
2.1?
1.92
1.73
l.b<.
.96
•77
.5«
.38
.19
.00
INTFWMEOI&Tt
VS. * C02 IN
BtltMFK - STANUAHD NUZ7LF
AXIAl. POSITION = ?h.U C"
-60.000 -SU.OOO -40.000 -3U.UUO -?0.000 • -10.000
0.0/10
lo.oon
po.ono
40.000
Figure 99. Radial profile of CO2 at an axial position of 26. 0 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
INTERMEDIATE BAFFLE BURNER - STANDARD NOZZLE
00
COMPOSITE LOG
0«02,
100.0000
76.6682
58.7802
45.0657
34.5511
26.4897
20.3092
15.5707
11.9378
9.1525 D
7.0170
5.3798
4.1246 0
3.1623
2.4245
1.8588
1.4251
1.0926
.8377
.6422
.4924
.3775
.2894
.2219
.1701
.1304
.1000
.0767
.0588 N
.0451
.0346
.0265
.0203
.0156
.0119
.0092
.0070 C
.0054 B
.0041
.0032
.0024
.0019
.0014
.0011
.0008
.0006
.0005
.0004
.0003
.0002
.0002
.0001
.0001
i
-60.000
PLOT RADIAL POSITION-CM VS. ALOG10 (CONCENTRATION *) AXIAL POS1
NzNOt 8«N02. D*C02t C»CO> H«H2» M»CH4.
0 D D 0 D D
0 0 0000
C
c
N N N N
CNN
c
C C
B B 8 B B B
ODD 0
H 0 0 D D
C COO
0 H
0
C H
0
0
c
000
H C
H
M M M M
N N N
N N
N N
N
N
B
B B
B
B
0 0
00 D
0
D D 0
0
C
N N
N
N
N
C C C
B a B
8
B
t t i f i i t » t
-50.000 -40.000 -30.000 -20.000 .-10.000 0.000 10.000 20.000 30.000 40
26.0 Cf
Figure 100. Radial profile of all the gases at an axial position of 26. 0 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
OJ
INTERMEDIATE BAFFLE BURNER - STANDARD NOZZCE
HAOIAU POSITION-CM VS. AVERAGE TEMPEHATuHt DEG.JC
1800.00 >
1790.3» •
1786.77 . •
177U1S
1761.5*
1751.92
17*2.31
1732.69
1723.08
1713.46
1703.BS
1694.23
1684.62
1675.00
1665.38
1655.77
1646.15
16J6.54
1626.92
1617.31
1607.69
-1598.08
1588.46
1578.85
1569.23
15*9.62
1550.00
1540.38
1530.77
1521.15
1511,5*
1501.92
1492.31
1482.69
14/3.08
1463.46
1453.85
1444.23'
1434*62
1*25.00
1415.38
1405.77
1396.15
1306.54
1376.92
1367.31
13S7.69
1348.08
1338.46
1328.85
1319.23
1309.62
1300.00
AXIAU POSITION
26.0 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
-0.000
10.000
20.000
30.000
40.000
Figure 101. Radial profile of average temperature at an axial position of 26. 0 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
a.
o
~d
i<>:
-60
o
•O
ForcOari
-MO
-10
Ho
Figure 102. Radial profile of flow direction at an axial position of 26. 0 cm
(intermediate flame length baffle burner — standard gas nozzle)
134
-------
Table 19. IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 57.2 cm
(Intermediate Flame Length Baffle Burner — Standard Gas Nozzle)
INTERMEDIATE BAFKLE BURNER - STANDARD NOZZLE
to
AXIAL POSITION = 57.2 O
RADIAL 02
POSITION *
CM
-60.
-48.
-36.
-24.
-18.
-12.
-6.
0.
6.
12.
18.
24.
36.
4.7
4.4
4.5
4.3
4.0
3.4
3.2
2.4
1.8
4.5
7.4
7.1
4.4
-N2
«
?
?
7
?
85.6
64.6
82.7
82.5
79.4
83.6
83.8
7
7
NO
PPM
soo.
512.
510.
475.
430.
405.
415.
375.
315.
280.
289.
340.
458.
N02
PPM
60.
58.
61.
57.
56.
51.
52.
35.
24.
43.
47.
50.
57.
C02
*
9.0
9.2
9.1
9.2
9.2
9.6
8.8
8.1
7.2
7.9
7.2
8.3
9.2
CO
*
.0066
.0080
.0079
.0445
.2000
.5000
1.3000
3.4000
4.6000
1.8000
.2000
.0351
.0080
H2
*
7
7
?
7
0.0
.7
3.3
3.2
6.6
1.5
0.0
7
7
CM4
«
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
C2H2
C2H4
*
7
7
7
7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
7
C2H6
«
?
?
?
?
O.G
0.0
0.0
0.0
0.0
0.0
0.0
7
7
C3H6
%
7
?
7
7
0«
* V
0.0
0.0
0.0
0.0
0.0
0.0
7
7
C3H8
«
7
7
7
?
Cfk
• **
0.0
0.0
0.0
0.0
0.0
0.0
7
?
TEMPERATURE DEG.C
AVG.
1494.
1471.
1451.
1552.
1&C7.
1667.
1724.
1745.
1728.
1629.
1605.
1558.
1470.
MAX.
1494.
1471.
1451.
155?.
1607.
1667.
1724.
1745.
1720.
1629.
160«5.
155B.
1470.
TMAX-TAVG
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-------
Table 20. IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 146.1 cm
(Intermediate Flame Length Baffle Burner — Standard Gas Nozzle)
INTERMEDIATE BAFFLE BURNER - STANDARD NOZZLE
RADIAL
one T T I n
r v J 3 1 1 1 w
CM
-60.
-54.
-48.
-36.
-30.
-24.
-18.
-12.
-6.
0.
6.
12.
18.
24 :
30.
36.
02
Not
*c
4.3
4.4
4.5
4,7
4.8
4.9
4.8
4.9
4.4
4.1
3.9
J.I
3.0
3.2
3.4
J.7
N2
7
7
?
7
7
7
7
?
7
U5.5
86.0
86.3
86.4
86.2
7
7
NO
POM
r r~
467.
475.
470.
475.
470.
450.
430.
430.
438.
448.
455.
459.
463.
455.
448.
446.
N02
PPM
r*p*pi
65.
66.
65.
60.
61.
60.
56.
55.
53.
54.
44.
48.
52.
56.
54.
52.
C02
9.3
9.2
9.1
9.0
9.0
8.9
9.0
8.9
9.2
9.1
9.2
9.7
9.8
9.6
9.8
9.6
CO
.0084
.U087
.0085
.0089
.0095
.0138
.0213
.0417
.0746
.3000
.3000
.2000
.2000
.2000
.0813
.0512
H2
?
7
?
7
7
7
7
7
7
0.0
0.0
0.0
0.0
0.0
7
7
CH4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
C2H2
f OLJ /.
Cct14
*
7
7
7
7
7
7
7
7
7
0.0
0.0
0.0
0.0
0.0
7
7
C2H6
7
?
?
?
?
?
7
?
7
0.0
0.0
0.0
0.0
0.0
7
?
C3H6
7
7
?
7
7
7
7
7
7
0.0
0.0
0.0
0.0
0.0
7
7
C3H8
^
i^
?
?
7
?
?
?
7
?
7
0.0
0.0
0.0
0.0
0.0
?
7
TEMPERATURE DEG.C
AVG.
1487.
1480.
1485.
1508.
1513.
1559.
1621.
1645.
1673.
1679.
1663.
1603.
1570.
1542.
1496.
1485.
MAX.
1487.
1480.
1485.
1508.
1513.
1559.
1621.
1645.
1673.
1679.
1663.
1603.
1570.
1542.
149*.
1485.
TMAX-TAVG
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
AXIAL POSITION B 146.1 CM
-------
Table 21. IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 385.4 cm
(Intermediate Flame Length Baffle Burner — Standard Gas Nozzle)
INTERMEDIATE. bAFHE BURNER - STANDARD NOZZLE
02
POSIT ION
CM
-60.
-48.
-36.
-12.
0.
12.
?4»
36.
*
3.7
3.8
3.7
3.8
4.2
4.1
4.2
4.2
N2
*
7
?
?
?
?
7
7
?
?
NO
PPM
4H5.
490.
500.
512.
504.
496,
492.
490.
487.
N02
PPM
53.
56.
52,
51.
53.
53.
52.
54.
52.
C02
*
*.6
y.5
y.*
9.5
9.5
9.3
9.4
9.3
9.3
CO
*
,0092
.0096
.UQQ4
.0103
.0088
.0105
.0100
.U098
.0090
H2
*
CH4
*
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
C2H2 C2H6 C3H6 C3HB
* %
*
7
7
7
7
7
7
7
7
7
7
7
7
AXIAL POSITION * 3B5.4 CM
TEMPERATURE DEG.C
*
?
7
7
7
7
7
7
?
7
AVG.
1443.
1463.
1482.
1483.
1496.
1501.
1484.
1465.
1447.
MAX.
1443.
1463.
148?.
1483.
149*.
1501.
1484.
1465.
1447.
TMAX-TAVG
0.
0.
0.
0.
0.
0.
0.
0.
0.
-------
BAFt-Lt BUHNER - STANDANO NU/7LE
IN liAS SAMPLE
00
AXIAL POSITION =
-*0.000 -SU.UOO -40.00U -30.0(10 -PO.OOO .-10.000
0.000
lo.nno
?0.000
?0.ono
"tO.IDO
Figure 103. Radial profile of NO at an axial position of 57. 2 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
1NTFKMF.U1ATK
VS. PPM N02 IN
BAFFLE BUHNF.R - STANUAKO NOZZLE
OAS
AXI«L POSITIO"' =
NO
-so. uoo
-JO.DOU -?o.ooo -10.000
o.ono
?n.ono
u n, n n a
Figure 104. Radial profile of NO2 at an axial position of 57. 2 cm
{intermediate flame length baffle burner — standard gas nozzle)
-------
INUHMEUlATt HAFM.E HUWNFP -'STANDARD
VS. * (I? IN GAS bAMPLE
«XIAL POSITIO"' =
-AO.UOO -SO.000 -40.000 -3U.UOO -?0.000 . -1U.OOO
o.ono
lu.nnn
?o.ooo
* 0 . 0 0 0
Figure 105. Radial profile of O2 at an axial position of 57. 2 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
INFFRMEDIATt bAfH_t HUHNFP - STANUAHO N07ZLH
VS. » CO^ IN GAS SAMPLK
«XIAL POSITION =
-T.f C"
-frO.OOO -50.000 -40.000 -JO.UOO -?O.OOU -10.000
O^OOO
ao.nno ic.noo <.o.nno
Figure 106. Radial profile of CO2 at an axial position of 57. 2 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
COMPOSITE LOO PLOT
0«02, N*NO.
100.0000
76.6662
58.7802
45.0657
34.5511
26.4897
20.3092
15.5707
11.9376
9.1525 D
7.0170
5.3798
4.1246 0
3.1623
2.4245
1.8568
1.4251
1.0926
^ .8377
.6422
.4924
.3775
.2894
.2219
.1701
.1304
.1000
.0767
.0588
.0451 N
.0346
.0265
.0203
.0156
.0119
.0092
.0070 C
.0054 B
.0041
.0032
.0024
.0019
.0014
.0011
.0008
.0006
.0005
.0004
.0003
.0002
.0002
.0001
.0001
INTERMEDIATE BAFFLE BURNER - STANDARD NOZ2LE
RADIAL POSITION-CM VS. ALOG10(CONCENTRATION »)
B'N02< D'C02> C«CO, H»H2t M«CM4,
AXIAL POSITION * 57.2 CM
C
D
D 0
-60.000 -50.000 -40.000 -30.000 -20.000 . -10.000
0.000
10.000
20.000
30.000
40.000
Figure 107. Radial profile of all the gases at an axial position of 57. 2 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
OJ
MADIAL
1BUO.
17*0.
17BO.
1771.
1761.
1751
17*2.
1732
1723
1713.
1703.
1694.
1684.
1675.
1665.
1655.
1646.
1636.
1626.
1617.
1607.
1598.
1588.
15/8.
1569.
1559.
1550.
1540.
1530.
1521.
1511.
1501.
1492.
1482.
14/3.
1463.
1453.
1444.
1434.
1425.
1415.
1405.
1396.
1386.
1376.
1367.
1357.
1348.
1338.
1328.
1319.
13U9.
1300.
INTERMEDIATE BAFFLE BURNER
POSITION-CM VS. AVERAGE TEMPERATURE OEG.C
00
38
77
15
54
92
31
69
06
46
85
23
62
00
STANDARD NOZZLE
AXJAL POSITION e "57.2 CM
-ftO.OOO -50.000 -40.000 -30.000
-20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 108. Radial profile of average temperature at an axial position of 57. 2 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
-40
Figure 109. Radial profile of flow direction at an axial position of 57. 2 cm
(intermediate flame length baffle burner — standard gas nozzle)
144
-------
INTERMEDIATE riAH-lt HUHNfP - qTANDAWD NO/7LE
VS. PPM NO IN OAS SAMP4.E
Ul
-su.ooo -40.000 -30.UOO -?n.noo -lo.nno
o.ono
in.oon
pn.ooo
30.nno
Figure 110. Radial profile of NO at an axial position of 146. 1 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
dAFH_t BIWNFR - STANOAHD
VS. PPM HQd IN GAS SAMPLE
AXIAL POSTTION. =
0s
-AO.ODO -50.000 -40.000 -JO.000 -?0.000 -10.000
0.000
lo.ono
ao.ono
•<0.nno
o. OMO
Figure 111. Radial profile of NO2 at an axial position of 146. 1 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
- STANDAHI) NOZ7Lf
«XIA|_
-ftO.OOO -50.000 -40.000 -30.UOO -?O.OOU -10.000
0.000
Id.nnn
?o.ono
lO.noo
40.100
Figure 112. Radial profile of O2 at an axial position of 146. 1 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
00
1NTFHMEDIATE HAFFLE HUWNFO - STANOAKD NOZ7LK
VS. * C02 IN b»S SAMPLE
AXIAL POSITION
-hO.OOO -SU.OOO -40.00U -30.UOU -PO.OUO -10.000
U.OOO
10.000 PO.OOO TO.000 <>U.Onfl
Figure 113. Radial profile of CO2 at an axial position of 146. 1 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
INTERMEDIATE BAFFLE BURNER - STANDARD NOZZLE
COMPOSITE LOO PLOT RADIAL POSITION-CM vs. ALOGIO(CONCENTRATION *>
0=02, N»NO. B=N02t D*C02> C«COt M«H2. M=CH4,
AXIAL POSITION • 146.1 CM
0.0000
6.6682
8.7802
5.0657
4.5511
6.4897
0.3092
5.5707
1.9378
9.1525 ODD DODO
7.0170
5.3798 000
4.1246 000 0
3.1623
2.4245
1.8588
1.4251
1.0926
.8377
.6422
.4924
.3775
.2894
.2219
.1701
.1304
.1000
.0767
.0588
.0451 N N N N N N N
.0346
.0265
.0203 C
.0156 C
.0119
.0092 C C C C C
.0070 B B B
.0054 B B B B
.0041
.0032
.0024
.0019
.0014
.0011
.0008
.0006
.0005
.0004
.0003
.0002
.0002
.0001
.0001
D D 0 D D
0
000
0
C C
C
C
C N N N N
B B B B
B
DODO
0
000
C C
C
N N N N
B B B B
-60.000 -50.000 -40.000 -30.000 -20.000
•10.000
0.000
10.000 20.000 30.000 4Q.OOO
Figure 114. Radial profile of all the gases at an axial position of 146. 1 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
INTERMEDIATE BAFFLE BURNER - STANDARD NOZZLE
WAD1AL POSITION-CM VS. AVERAGE TEMPEKATUKE OEG.C
1800.00
1790.38
1780.77
1771.15
1761.54
1751.92
1742.31
1732.69
1723.08
1713.46
1703.85
1694.23
1684.62
1675.00
1665.38
1655.77
1646.15
1636.54
1626.92'
1617.31
1607.69
1598.08
1588.46
157B.85
1569.23
1559.62
1550.00
1540.38
1530.77
1521.15
1511.54
1501.92
1492.31
1482.69—* »
1473.08
1463.46
1453.85
1444.23
1434.62
1425.00
1415.38
1405.77
1396.15
1386.54
1376.92
1367.31
1357.69
1348.08
1338.46
1328.85
1319.23
1309.62
1300.00
AXIAL POSITION = 14ft.1 CM
-60.000 -50.000 -40.000 -30.000 -20.000 . -10.000
0.000
10.000
20.000
30.000
40.000
Figure 115. Radial profile of average temperature at an axial position of 146. 1 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
P<>sctien,ctri
Figure 116. Radial profile of flow direction at an axial position of 146. 1 cm
(intermediate flame length baffle burner — standard gas nozzle)
151
-------
Ul
IV
RADIAL POSITION-CM
eSO.
018.
ft?5.
613.
'sOO.
baa.
b75.
bA3.
550.
b38.
b?5.
b!3.
bOO.
«H8.
475.
-.63.
4SO.
438.
4?5.
413.
4flo.
JH8.
J75.
J63.
350.
338.
J?5.
J13.
300.
250.
38.
188.
175.
163.
150.
138.
ias.
113.
100.
«8.
7S.
63.
so.
38.
?s.
13.
0.
iNTtRMEOlATt B«f->LE
VS. PPM NO IN GAS SAMPLE
- STANOAHH NOZ7LL
AXIAL POSITION =
-60.000 -SU.OOO -40.000 -3U.OOO -?O.OOU -10.000
o.ono
lo.nno
Figure 117. Radial profile of NO at an axial position of 385. 4 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
01
oo
KAU1 Al
70.
OS.
07.
ob.
64.
63.
bl.
00,
b9.
b7,
bb,
bb.
bj.
52,
bl,
49,
4B,
4/,
45,
HOSITlON-tM
00
bb
31
96
62
27
92
58
23
8H
5*
INTFUMEfliATK BAFKtt HURNEB - STANOAHO NOZ/LE
VS. PPM N02 IN G«S SAMflE
4*IAL POSITION' =
fib
.50 J"
\y
81
46
12
77
4 J.O^
41. 73
40 . 3H
J9.04
J7.69
Jb.3b
Jb.OO
JJ.65
J2.31
JO.96
29.62
2B.2V
26.92
2b.5H
24.23
22.8«
21.54
Id.8S
17.bO
16.15
14.81
13.46
12. U
10.77
9.42
8.OH
6.73
5.3*
4.04
2.69
1.35
.00
-60.000 -50.000 -40.000 -JO.000 -20.000 -10.000
o.onu
lo.noo
20.000
.^o.noo
Figure 118. Radial profile of NO2 at an axial position of 385. 4 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
Ul
INTKHMEUIAlE bAFFLt MUWNFR - STANUAKD
KAUIAL PUSITION-O VS. * 02 IN UAS SAMPLt
21.00
20.60
20.14
19.79
19.3H
1B.9M
1B.5H
18.17
17. II
17.37
16.96
16.56
16.Ib
lb.7S
lb.3b
14.94
14.54
14.13
13.73
13.33
12.92
12.12
11.71
U.31
10.90
lu.bu
10.10
•V.69
9.29
H.uU
a.OH
7.67
^.27
6.87
b.4b
6.06
S.6b
S.2b
4.8b
4.44
4.04
3.63—•-
3.23
2.83
2.42
2.02
1.62
1.21
.til
.40
.00
4XIAL POSITION =
-ftO.OOO -SO.000 -40.000 -30.000 -20.000 -10.000
o.ono
lO.oon
?n.ooo
lo.nno
4u.nno
Figure 119. Radial profile of O2 at an axial position of 385. 4 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
H«fH_E HUKNFR - STANDARD NOZZLfc
C02 IN OAS bAMPl.E
(Jl
POSTTIOM
b.3b
e.lb
b.9fc
b.77
b.SW
b.3K
b.lV
b.OO
o.Bl
ft. 62
<*.<»2
ft.23
ft . Oft
3.8b
3.6b
3.ftb
J.2/
J.OB
2.6V
2.5U
2.31
2.12
1.73
1.5ft
1.3b
1.1S
.77
.IV
.00
-f-0.000 -SU.UOO -40.000 -30.000 -?0.0()U -10.000
o.ono
lo.noo
20.000
"•u.nno
Figure 120. Radial profile of CO2 at an axial position of 385. 4 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
(Jl
COMPOSITE LOG PLOT
0»02» N«NO»
100.0000
76.6682
58.7802
45.0657
34.5511
26.4897
20.3092
15.5707
11.9378
9.1525 0
7.0170
5.3798
4.1246 0
3.1623
2.4245
1.8588
1.4251
1.0926
.8377
.6422
.4924
.3775
.2894
.2219
.1701
.1304
.1000
.0767
.0588
.0451 N
.0346
.0265
.0203
.0156
.0119
.0092 C
.0070
.0054 B
.0041
.0032
.0024
.0019
.0014
.0011
.0008
.0006
.0005
.0004
.0003
.0002
.0002
.0001
.0001
INTERMEDIATE BAFFLE BURNER - STANDARD NOZZLE
RADIAL POSITION-CM vs. ALOGIO(CONCENTRATION »>
B»N02. 0«C02> C«CO. H«H2. M«CH4,
AXIAL POSITION « 3B5.4 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 121. Radial profile of all the gases at an axial position of 385. 4 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
Ul
INTERMEOIATt BAFFLE BURNER - STANDARD NOZZLE
RADIAL POSITION-CM VS. AVERAGE TEMPEKATUHE OEG.C
1800.00
1790.38
1780.77
1771.15
1761.5*
1751.92
1742.31
17J2.69
1723.OB
1713.46
1703.85
1644.23
1684.62
1675.00
1665.38
1655.77
1646.15
1636.54
1626.92
1617.31
1607.69
1598.08
1588.46
1578.85
1569.23
1559.62
1550.00
1540.38
1530.77
1521.15
1511.54
1501.92
1492.31
1482.69
1473.08
1463.46
1453.85
1444.23^
1434.62
1425.00
1415.38
1405.77
1396.15
1386.54
13/6.92
1367.31
1357.69
1348.08
1338.46
1328.85
1319.23
1309.62
1300.00
AXIAL POSITION = 305.4 CM
-AO.ODO -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 122. Radial profile of average temperature at an axial position of 385. 4 cm
(intermediate flame length baffle burner — standard gas nozzle)
-------
o
_r ItflJ
2
o
Forward
•60
-MO
-20
Figure 123. Radial profile of flow direction at an axial position of 385. 4 cm
(intermediate flame length baffle burner — standard gas nozzle)
158
-------
Flow direction analysis at the 5. 1-cm axial position depicts a Type I
flame. Secondary recirculation zones exist in the regions —60 cm to —18 cm
and +21 cm to +60 cm. Inside the edges of the burner block, —14 cm to
+14 cm, there are only two resolve peaks, compared with three peaks which
are normally observed in a Type I flame. Because the gas velocity is lower
than that of the secondary air, the central methane core appears as a
depression between the two air peaks. These flow peaks occur at—9 cm and
+12 cm.
Correlating the 5. 1-cm axial position temperature profile with the above
flow analysis, a constant temperature of 1480°C exists in the recirculation
regions ( compared with a wall temperature of 1430°C). Minimum tempera-
tures of 1351 °C and 1459°C occur at —1 5 cm and +15 cm, respectively. Peak
temperatures of 1712°C and 1669°C occur inside the burner-block area at
—9 cm and +6 cm, respectively.
Figure 87, the plot of nitric oxide versus radial position, shows that the
nitric oxide concentration in the secondary recirculation zone (—60 cm to
—18 cm) averaged about 589 ppm, as compared with a flue concentration of
493 ppm. Comparing this with the average NO concentration of 112 ppm in
the burner-block region indicates that at 20. 1-cm downstream of the gas
injection, only 25% of the flue concentration nitric oxide appears within the
combustion zone.
The plot of nitrogen dioxide versus radial position ( Figure 88) shows a
strong asymmetry about the center line of the burner. Peaks occur within
the burner-block region at—12 cm and +9 cm, with concentrations of 51 ppm
and 12 ppm, respectively. The nitrogen dioxide concentration measured
in the flue was 53 ppm.
The oxygen profile at the 5. 1-cm axial position ( Figure 89) shows peaks
at—12 cm and +15 cm, with concentrations of 7. 9% and 14. 2%, respectively,
which represent the secondary combustion air input. The large difference
in oxygen concentration arises because of the discrete orifices in the baffle
for the combustion air. Thus, the air enters the combustion chamber as
six independent jets. Because each of the air ports is rotated relative to
the centerline of the burner, each of thesse jets will rotate in a clockwise
direction from the front to the rear of the furnace. It is possible to
159
-------
investigate along a plan at a fixed axial position and measure a large air
concentration on one side of the burner centerline, while detecting almost a
void of oxygen on the other side. This asymmetry will gradually disappear
as the air moves down the furnace, expanding and losing velocity until, at
approximately ten equivalent nozzle diameters, the flow profile becomes
symmetrical.
The methane profile ( Figure 90) shows a 1. 3% maximum concentration
on the burner centerline and falls to zero at —15 cm and +12 cm with a
larger volume of methane on the left side of the burner centerline. The
major combustibles present are hydrogen and carbon monoxide ( Figure 92) ,
both having their maximum concentrations on the centerline of the burner
with hydrogen at a peak concentration of 13. 4% and carbon monoxide at 9. 3%.
The curve of carbon dioxide versus radial position ( Figure 91) shows a
variation in the level of concentration from 50 9% to 3. 8% in the region of the
secondary combustion air entrance zones (—12 cm and +12 cm to +18 cm, as
determined from the oxygen profile). The average carbon dioxide concen-
tration in the secondary recirculation zone is 9. 5%. The asymmetry
illustrated by this profile indicates that at the 5. 1-cm axial position, a
larger mass exchange has occurred between the secondary jet and secondary
recirculation zone to the left of the burner centerline than to the right. Peak
concentrations within the burner-block area of 6. 4% and 6. 1% appear at
radial positions of—9 cm and +9 cm, respectively. This should give an
indication as to where combustion is occurring. The maximum temperatures
were measured at —9cm and +6 cm ( Figure 93). However, there was only
a 17CC temperature difference between the +6 cm and +9 cm radial positions.
The stoichiometric ratios of fuel and air are estimated to occur at —10. 4 cm
and 7. 5 cm.
The in-the-flame data collected at the 26-cm axial position are listed in
Table 18 and illustrated in Figures 95 through 102.
Figure 95 shows the NO radial profile. The high degree of asymmetry
due to the baffle still persists. Within the area of the burner block, the
nitric oxide concentration averages 242 ppm, compared with 112 ppm at a
5. 1-cm axial position.
160
-------
The difficulty involved •with trying to determine whether the NO has been
formed within the burner-block area or appears there through entrainment
from the secondary recirculation zone, becomes more difficult when viewing
the oxygen radial profile ( Figure 97) and the carbon dioxide profile ( Figure 99).
The oxygen profile shows a smooth transition from the secondary recir-
culation zone to the fuel jet region, with no inflections due to a secondary
air jet on the left side of the burner centerline. An oxygen peak of 11. 8%
does appear at the 15-cm radial position. At the 26-cm axial position, a
4. 4% oxygen concentration in the secondary recirculation zone is typical.
A minimum oxygen concentration of 0. 8% is measured on the centerline of
the burner. This is a slight increase over the 0. 5% concentration measured
at the 5. 1-cm axial position.
The plot of carbon dioxide versus radial position also shows a smooth
transition from the average 9. 3% concentration of the secondary recircula-
tion zone to 6. 2% at 3 cm. The minimum CO2 concentration, 4. 9%, occurred
at 1 5 cm — the position corresponding to the maximum oxygen reading. These
minimums are split by a peak with a 6. 7% concentration occurring between
6 cm and 9 cm.
The temperature profile (Figure 101) shows peaks of 1753° and 1701°C
at —9 cm and +3 cm, respectively, with stoichiometric ratios of fuel and air
occurring at —8. 6 cm and +7. 3 cm.
There is only a trace of meths.ne detected, with hydrogen and carbon
monoxide occurring in approximately equal concentrations at a measured
maximum of 8% ( Figure 100). Both concentrations are grouped about the
centerline of the burner.
In-the-flame data for a 57. 2-cm axial position are listed in Table 19 and
presented in Figures 103 through 109. The average NO concentration within
the burner-block area is 354 ppm, compared with 485 ppm outside this area.
This resolves into a concentration gradient of 4. 6 ppm/cm within the burner -
block area from the 5. 1-cm axial position to the 57. 2-cm position. Conversely,
the concentration gradient outside the burner-block area is —2. 0 ppm/cm.
161
-------
There is no longer a measurable concentration of methane. The locations of
stoichiometric fuel-to-air ratios are at — 28 cm and +8. 9 cm.
The in-the-flame data collected for the 146. 1-cm axial position shows a
general smoothing of the concentration. This data is listed in Table 20
with graphical representations in Figures 10 through 116. Combustion has
been completed, with hydrogen dec reasing from its maximum value of 6. 6%
at the 57. 2-cm axial position to zero, and the carbon monoxide: has decreased
from 4. 6% to 0. 3%. The maximum measured temperature is 1679°C, with
the temperature distribution being uniform about the burner centerline. The
NO concentration in the burner-block area has increased to 446 ppm — only
47 ppm less than the concentration measured in the flue. The NO concen-
tration outside the burner-block area is 467 ppm, or 26 ppm less than the
flue concentration.
Figures 92, 100, 107, 114, and 121 show composite log plots of concen-
tration versus radial position within the composition range of 0. 0001% ( 1 ppm)
to 100%. In these plots the interrelationships between concentration variations
of oxygen, nitric oxide, nitrogen dioxide, carbon monoxide, carbon dioxide,
hydrogen, and methane can easily be visualized.
Figures 94, 102, 109, 116, and 123 show flow direction versus radial
position. These profiles show the positions of primary and secondary forward
flow, of recirculation zones ( reverse flow) , and of shear and boundary layers.
Figures 93, 101, 108, 115, and 122 are plots of the average temperatures
measured versus radial positions.
Intermediate Flame Length Baffle Burner - High-Momentum Gas Nozzle
From data collected during the input/output tests, we discovered that an
effective and economic way to reduce NO emissions from the baffle burner
was to increase the gas (primary jet) velocity. For these tests, the gas
nozzle was changed from a 2-inch-diameter stainless steel tube to a 1/2-inch-
diameter tube. The visual flame length was 311 cm, or an increase of 146 cm
over the flame length observed with the standard nozzle. The furnace operating
conditions for which these in-the-flame data were collected are listed in
162
-------
Table 22. A complete listing of the pollution control test data in given in
Tables 23 through 27 with full graphic illustrations of these data, presented
in Figures 124 through 161.
The profile data collected at the 5. 1-cm axial position are graphically
presented in Figures 124 through 131 with a detailed data listing in Table 23.
The flow profile shows that the flow regions are similar to those observed
for normal operating conditions. The only difference is due to the greater
gas velocity. The primary jet now peaks above the maximum forward
momentum air peaks. Thus, the go.s jet will now be a momentum source,
instead of being the momentum sink it was using the standard nozzle.
The average NO concentration in the secondary recirculation zone is
237 ppm, compared with the 254 ppm detected in the flue. The average
concentration within the burner-block area is 13 ppm, with two small
inflections occurring at —6 cm and+3 cm.
The profile of NO2 versus radial position presented in Figure 125 shows
two very small well resolved peaks within the burner-block area. These
peaks occur at radial positions of—9 cm and +6 cm, with respective con-
centrations of 28 ppm and 34 ppm. At both positions, the NO2 has a greater
concentration than the NO.
The oxygen profile at the 5. 1-cm axial position ( Figure 126) displays
peaks at —12 cm and +15 cm, with concentrations of 18. 0% and 17. 5%,
respectively, which represent the secondary jet (combustion air) input.
The methane profile has a maximum concentration of 15% on the burner
centerline and falls to zero at —12 cm and +9 cm in an asymmetrical pattern.
Other combustibles present include carbon monoxide, with a maximum con-
centration of 5. 8% at —3 cm; hydrogen, with a maximum concentration of
9. 4% at —3 cm; acetylene and ethylene, with a combined maximum of 2. 1%
at —3 cm; and ethane at 0. 3% on the centerline of the burner. The
stoichiometric fuel/air ratio occurs at radial positions of—5. 1 cm and
+6. 2 cm.
163
-------
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
RADIAL POSITION-CM VS. PPM NO IN GAS SAMPLE
260.00
255.00
250.00
245.00
240.00 •_ -» '»~~«
235.00. ~ ^»
230.00 • \
225.00 \
220.00
215.00
210.00
205.00
200.00
195.00
190.00
185.00
180.00
175.00
170.00
165.00
160.00
155.00 <
150.00
145.00
140.00
135.00
130.00
125.00
120.00
115.00
110.00
105.00
100.00
95.00
90.00
85.00
80.00
75.00
70.00
65.00
60.00
55.00
50.00
45.00
40.00
35.00
30.00
25.00
20.00
15.00
/•-x
^
10.00 1 ,•
5.00 ^*^
0.00
i i i • i i
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000 0
AXIAL POSITION
5.1 CM
-A.
0.000
10.000
20.000
30.000
40.000
Figure 1 24. Radial profile of NO at an axial position of 5. 1 cm
(intermediate flame length baffle burner — high -momentum gas nozzle)
-------
Table 22. FURNACE CONDITIONS FOR IN-THE-FLAME SAMPLING
(Intermediate Flame Length Baffle Burner — High-Momentum Gas Nozzle)
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
NUMBER OF SETS OF DATA « 5.
MINIMUM GRID VALUE OF AVERAGE TEMPERATURE • 750. DEG.C
MAXIMUM GRID VALUE OF AVERAGE TEMPERATURE * 1700. DEG.C
POSITION OF OUTSIDE EDGES OF BURNER BLOCK
MINIMUM POSITION « -14. CM
MAXIMUM POSITION * 14. CM
GAS INPUTt AXIAL 3017. CF/HR
WALL TEMPERATURE 1380.
PREHEAT TEMPERATURE 450.
FLUE GAS RECIRCULATION 0,0 %
GAS SAMPLE ANALYSIS IN THE FLUE
RADIAL
DEG.C
DEG.C
0. CF/HR
(Jl
NITROGEN OXIDE
NITROGEN DIOXIDE
OXYGEN
CARBON DIOXIDE
CARBON MONOXIDE
254.0 PPM
39.0 PPM
4.1 %
9.4 %
.0101 %
LIMITS FOR CONCENTRATION PLOTS
LOWER LIMIT OF NO * 0. PPM
LOWER LIMIT OF N02 * 0. PPM
LOWER LIMIT OF 02 = 0. *
LOWER LIMIT OF CH4 * 0. *
LOWER LIMIT OF C02 = 1. *
UPPER
UPPER
UPPER
UPPER
UPPER
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
260. PPM
55. PPM
21. %
15. %
10. *
ISOCONCENTRATION VALUES
OBTAIN VALUE OF RADIAL POSITION AT NO PPM
OBTAIN VALUE OF RADIAL POSITION AT N02 PPM
CONCENTRATION 230. 210. 190. 140. 70,
CONCENTRATION 40. 30. 20. 10.
-------
Table 23. IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 5. 1 cm
(Intermediate Flame Length Baffle Burner — High-Momentum Gas Nozzle)
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
AXIAL POSITION =
5.1 CM
RADIAL
Of 1C f T f f
"UbJ 1 1^
CM
-60.
-48.
-36.
-24.
-21.
-18.
-15.
-12.
-9.
-6.
-3.
0.
3.
6.
9.
12.
15.
18.
21*
24.
36.
02
4.7
4.7
4.4
4.2
4.2
4.7
9.0
18.0
10.7
2.5
2.4
2.9
3.1
8.1
13.1
15.8
17.5
12.9
5.2
5.2
5.4
N2
7
7
7
7
7
7
7
79.4
77.9
66*1
61.1
61.2
68.1
76.9
?
7
7
7
7
7
7
NO
231.
238.
238.
239.
241.
234.
156.
6.
10.
24.
22.
22.
24.
9.
7.
4.
4.
146.
214.
219.
227.
N02
48.
45.
47.
46.
46.
45.
35.
7.
28.
17.
7.
13.
20.
34.
9.
1.
1.
25.
39.
37.
36.
C02
9.1
9.1
9.2
9.3
9.3
9.0
6.6
1.3
3.4
3.9
3.5
3.4
4.2
3.9
4.5
2.9
1.1
6.6
8.8
8.8
8.6
CO
.0049
.0050
.0051
.0049
.0046
.0070
.0226
.2000
2.2000
5.8000
5.8000
5.7000
5.5000
3.1000
.3500
.0228
.0121
.0072
.0046
.0045
.0038
H2
7
1
7
7
7
7
7
0.0
2.8
9.1
9.4
8.9
7.9
3.9
7
7
7
7
7
7
7
CH4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.7
10.0
14.7
15.0
9.1
2.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
C2H2
CT
7
7
7
7
7
7
7
0.0
.3
1.8
2.1
2.0
1.3
.7
7
7
7
7
7
7
7
C2H6
7
7
7
7
T
7
7
0.0
.0
.2
.3
.3
.2
0.0
7
7
7
7
7
7
7
C3H6
7
7
7
7
~
7
7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
7
7
7
7
7
7
C3H8
7
7
7
?
7
?
7
0.0
0.0
0.0
.0
.0
0.0
0.0
7
7
7
7
7
7
7
TEMPERATURE DEG.C
AVG.
1448.
1340.
1336.
1313.
1307.
1269.
1126.
780.
1205.
1506.
1345.
1286.
1482.
1462.
1108.
767.
820.
1143.
1253.
1343.
1355.
MAX.
1448.
1340.
1336.
1313.
i 30T .
1269.
1126.
780.
1205.
1506.
1345.
1286.
1482.
1462.
1108.
767.
820.
1143.
1253.
1343.
1355.
TMAX-TAVG
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-------
Table 24. IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 26 cm
(Intermediate Flame Length Baffle Burner — High-Momentum Gas Nozzle)
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
AXIAL POSITION
?6.0 CM
RADIAL 02
PfiClTTOIJ 91
~U3 | 1 1 wW *Q
CM
•60.
•48.
•36.
-24.
•21.
• IB.
•15.
-12.
•9.
-6.
-3.
0.
3.
6.
9.
12.
IS*
18.
21.
24.
36.
5.4
5.6
5.7
7.4
9.7
10.5
10.1
6*6
2.1
1.2
1.3
3.1
9.0
15.3
16.5
16.2
14.9
13.4
10.7
7.6
5.1
N2
7
?
?
7
7
82.4
81.0
76.6
68.2
64.2
66.1
71.6
78.8
79,4
79.5
79.9
80.7
81.4
82.6
?
?
NO
PDM
r*r*Fi
230.
229.
232.
184.
156.
102.
59.
30.
26.
25.
26.
25.
19.
24.
37.
45.
68.
95.
132.
173.
201.
N02
ODM
rr PI
38.
39.
41.
43.
27.
28.
47.
51.
19.
10.
10.
28.
42.
28.
14.
11.
14.
16.
19.
24.
28.
C02
U.6
8.5
8.5
7.5
6.1
5.4
5.0
4.8
4.4
4.1
4.3
4.8
4.3
3.1
2.4
2.6
3.5
4.2
5.6
7.4
8.8
CO
.0050
.0046
.0040
.0395
.1300
.4600
1.3400
3.7200
6.8600
7.2200
7.3400
6.1800
2.5700
1.0100
.3900
.0194
.0085
.0073
.0048
.0045
.0056
H2
7
7
7
7
?
.2
1.4
5.3
10.8
13,4
11.4
8.9
3.5
.5
0.0
0.0
0.0
0.0
0.0
7
7
CH4
0.0
0.0
0.0
0.0
0.0
.1
.3
1.8
5.6
7.3
7.0
3.9
.9
.1
.0
0.0
0.0
0.0
0.0
0.0
0.0
C2H2
f-pUA.
\-cn*»
%
?
?
7
7
7
0.0
0.0
.4
1.5
1.9
2.0
.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
?
7
C2H6
7
7
?
7
7
0.0
0.0
0.0
.0
.0
.0
.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
7
C3H6
7
7
7
7
7
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
7
C3H8
?
7
?
?
?
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
?
7
TEMPERATURE DEG.C
AVG.
1368.
1351.
1348.
1348.
1349.
1278.
1333.
1595.
1606.
1561.
1606.
1643.
1569.
1372.
1142.
1086.
1191.
1258.
1327.
1350.
1352.
MAX.
1368.
1351.
1348.
134ft.
1349.
127fl.
1333.
1595.
1606.
1561.
1606.
1643.
1569.
1372.
1142.
1086.
1191.
125B.
1327.
1350.
1352.
TMAX-TAVG
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-------
00
Table 25. IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 57.2 cm
(Intermediate Flame Length Baffle Burner — High-Momentum Gas Nozzle)
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
AXIAL POSITION
57.2 CM
KA01AL 02
DHC T T T OKI QC
rUaJ 1 1 UN »
CM
•60.
-48.
-42.
-36.
-30.
-24.
-18.
-12.
-6.
0.
6.
12.
18.
21.
24.
30.
36.
5.2
5.6
5.9
6.1
6.3
6.3
3.5
2.0
4.4
9,3
10.6
11.4
11.3
10.7
9.6
7.7
6.1
N2
7
7
?
7
84.4
83*0
79.8
75.4
76.2
80.5
82.4
82.5
7
7
?
7
7
NO
DDM
frr\
248.
241.
241.
231.
199.
151.
102.
66.
64.
83.
118.
116.
113.
128.
145.
156.
166.
N02
DDM
"r*n
50.
50.
49.
47.
39.
41.
41.
25.
36.
47.
21.
15.
6.
28.
28.
36.
47.
C02
8.8
8.5
8.4
8.2
7.9
6.6
6.5
5.4
5.1
5.1
5.3
5.0
5.2
5.6
6.2
7.2
8.2
CO
.0075
.0070
.0129
.0486
.5000
1.7100
4.0800
6.5000
5.6200
2.2300
.6200
.1300
.0234
.0095
.0080
.0076
.0071
H2
7
7
7
7
.2
1.5
5.1
8.7
7.1
1.9
0.0
0.0
7
7
7
7
7
CH4
0.0
0.0
0.0
0.0
0.0
.1
.5
1.2
.9
.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
C2H2
f»OLJA
LCrlH
%
7
7
7
7
0.0
0.0
0.0
.2
0.0
0.0
0.0
0.0
7
7
7
7
7
C2H6
7
7
7
7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
7
7
7
7
C3H6
7
7
7
7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
7
7
7
7
C3H8
7
?
7
7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
7
7
?
7
TEMPERATURE OEG.C
AVG.
1381.
1365.
1382.
1389.
1473.
1546.
1692.
1614.
1619.
1542.
1469.
1371.
1194.
1249.
1312.
1344.
1346.
MAX.
1381.
1365.
1382.
1389.
1473.
1546.
1692.
1614.
1619.
154?.
1469.
1371.
1194.
1249.
1312.
1344.
134ft.
TMAX-TAVG
0.
0.
0.
0.
n.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-------
Table 26. IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 146. 1 cm
(Intermediate Flame Length Baffle Burner — High-Momentum Gas Nozzle)
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
AXIAL POSITION = 146.1 CM
RADIAL 02
QDCTTTfllU ft
rUSlTION *
CM
•60.
-48.
-36.
-30.
-24.
-18.
-12.
-6.
0.
6.
12.
18.
24.
30.
36.
5.7
5.1
5.0
4,7
4.6
4.8
5.5
5.8
6.5
6.5
6.4
6.7
7.1
6.9
6.6
N2
7
7
85.0
85.1
85.2
85.2
84.8
7
7
7
7
?
7
7
7
NO
DDU
rKM
229.
222.
212.
212.
204.
194.
196.
188.
179.
175.
181.
162.
158,
159.
158.
N02
DDU
KrM
50.
44.
42.
39.
37.
39.
41.
42.
31.
41.
33.
33*
30.
29.
31.
C02
8.5
8.9
8.7
8.7
8.8
8.7
8.3
8.5
8.1
8.2
8.1
8.0
7.6
7.9
7.9
CO
.0229
.1000
.3000
.4400
.5800
.5600
.3400
.1000
.1300
.1300
.0800
.0400
.0427
.0140
.0093
H2
7
7
0.0
0.0
0.0
0.0
0.0
7
7
7
7
7
7
7
7
CH4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
C2H2
^OLJ A
CcrlH
%
7
7
0.0
0.0
0.0
0.0
0.0
7
7
7
7
7
7
7
7
C2H6
7
7
0.0
0.0
0.0
0.0
0.0
7
7
7
7
7
7
7
7
C3H6
7
7
0.0
0.0
0.0
0.0
0.0
7
7
7
7
7
7
7
7
C3H8
7
7
A n
»* • v
0.0
0.0
0.0
0.0
7
?
7
7
7
7
7
7
TEMPERATURE OEG.C
AVG.
1481.
1520.
159C.
1600.
159g.
1576.
1526.
1522.
1514.
1494.
1493.
1476.
1443.
1426.
1410.
MAX.
1481.
1520.
159C.
1600.
159fl.
1576.
1526.
1522.
1514.
1494.
1493.
1476.
1443.
1426.
1410.
TMAX-TAVG
0.
0.
0,
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-------
Table 27. IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 385.4 cm
(Intermediate Flame Length Baffle Burner — High-Momentum Gas Nozzle)
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
AXIAL POSITION « 3R5.4 CM
RADIAL
POSITION
CM
-60.
-48 .
-36.
-24.
-12.
0.
12.
24.
36.
02
%
4.4
4.3
4.2
4.3
4.3
4.4
4.2
4.1
4.0
N2
*
7
?
7
7
?
7
7
7
7
NO
PPM
253.
255.
263.
258.
258.
251.
249.
248.
246.
N02
PPM
42.
39.
41.
42.
46.
33.
30.
33.
37.
C02
*
9.3
9.3
9.4
9.3
9.2
9.2
9.4
9.4
9.4
CO
*
.0101
.0125
.0104
.0105
.0094
.0091
.0093
.0095
.0088
H2
%
0.0
7
7
7
7
7
7
7
7
CH4
*
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
'H2
ILJA
."•r
*
7
7
7
7
7
7
7
7
7
C2H6
7
7
7
7
7
7
7
7
7
C3H6
Qt
JO
7
7
7
7
7
7
7
7
7
C3H8
7
7
7
?
7
7
7
?
7
TEMPERATURE DEG.C
AVG.
1480.
1460.
1440.
142C.
1396.
1377.
1380.
1398.
1402.
MAX.
1480.
1460.
1440.
t J 1 A
*«»«-»• •
1396.
1377.
1380.
1396.
1402.
TMAX-TAVG
0.
0.
0.
n
V *
0.
0.
0.
0.
0.
-------
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
RADIAL POSITION-CM VS. PPM N02 IN GAS SAMPLE
55.00 t
53.94 •
52.88 *
51.83 t
50.77
49.71
40.65
47.60--««
46.54
45.48
44.42
43.37
42.31
41.25
40.19
39.13
38.08
37.02
35.96
34.90
33.85
32.79
J1.73
30.67
29.62
28.56
27.50
26.44
25.38
24.33
23.27
22.21
21.15
20.10
19.04
17.98
16.92
15.87
14.81
13.75
12.69
11.63
10.58
9.52
8.46
7.40
6.35
5.29
4.23
3.17
2.12
1.06
.00
AXIAL POSITION
5.1 CM
f\
-60.000 -50.000 -40.000 -30.000 -30.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 125. Radial profile of NO2 at an axial position of 5. 1 cm
(intermediate flame length baffle burner - high-momentum gas nozzle)
-------
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
RADIAL POSITION-CM VS. * 02 IN GAS SAMPLE
21.00
20.60
20.19
19.79
19.38
18.98
18.58
18.17
17.77
17.37
16.96
16.56
16.15
15.75
15.35
14.94
14.54
14.13
13.73
13.33
12.92
12.52
12.12
11.71
11.31
10.90
10.50
10.10
9.69
9.29
8.88
8.48
8.08
7.67
7.27
6.87
AXIAL POSITION =
5.1 CM
6.46
6.06
.65
.25
5.
5.
4.85 —•-
4.44
4.04
.63
.23
.83
.42
.02
.62
.21
.81
.40
.00
-60.000 -50.000 -40.000 -30.000
-20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 126. Radial profile of O2 at an axial position of 5. 1 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
UO
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
HADIAL POSITION-CM VS. * CH4 IN GAS SAMPLE
15.00 x^«
14.71
14.42
14.13
13.8S
13.56
13.27
12.96
12.69
12.40
12.12
11.83
11.54
11.25
10.96
10.67
10.38
10.10
9.81
9.52
9.23
8.94
8.65
8.37
8.08
7.79
7.50
7.21
6.92
6.63
6.35
6.06
5.77
5.48
5.19
4.90
4.62
4.33
4.04
3.75
3.46
3.17
2.88
2.60
2.31
2.02
1.73
1.44
1.15
.87
.58
.29
.00 * » *—»-
AXIAL POSITION =
5.1 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 127. Radial profile of CH4 at an axial position of 5. 1 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
AXIAL POSITION
5.1 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000 20.000
30.000
40.000
Figure 128. Radial profile of CO2 at an axial position of 5. 1 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
COMPOSITE LOG PLOT RADIAL POSITION-CM VS. ALOG10 (CONCENTRATION «S> AXIAL POS
0=02. NzNO< B»N02< 0*C02i C«CO. H«H2t M«CH4,
100.0000
76.6682
58.7802
45.0657
34.5511
26.4897
20.3092
15.5707
11.9376
9.1525 0 0 D DODO
7.0170 0
5.3796
4.1246 0 0 0000
3.1623
2.4245
1.8586
1.4251
1.0926
.8377
.6422
.4924
.3775
.2894
.2219
.1701
.1304
.1000
.0767
.0588
.0451
.0346
.0265 N N N N N
.0203 N C
.0156 N
.0119
.0092
.0070 C
.0054 B C C C
.0041 B B B C B
.0032 B
.0024
.0019
.0014
.0011
.0008
.0006
.0005
.0004
.0003
.0002
.0002
.0001
.0001
0
MM 0
0 0
H H H M 0
H
C C C C
0 0 H D
H 0 0 0 C 0
COO M
M
0
Q
C
'
C
8 B
N N N N
B B
8
N
N B
N B N
N
B
0
0
no o
0
oo o
D
N N N
N
C
C
R B C
B
B
N
B
5.1 CM
•60.000 -50.000
-40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 129. Radial profile of all the gases at an axial position of 5. 1 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
INTERMEDIATE BAFFLE BUHNER - HIGH MOMENTUM NOZZLE
RADIAL POSITION-CM VS. AVERAGE TEMPEKATURt DEG.C
1700.
1682.
1663.
1645.
1627.
1609.
1590.
1573.
1554.
1536.
1517.
1*99.
1081.
1463.
1<><>4. *
1426.
1408.
13R9.
1371.
1353.
1335. *—' —
1J16.
1298. -v
12RO. \
1262.
1243.
1225.
1207.
1188.
1170.
1152.
1134.
1115.
1097.
1079.
1061.
1U42.
1024.
1006.
988.
9ft9.
951.
933.
914.
896.
H78.
860.
841.
823.
805.
787.
768.
750.
AXIAL POSITION
5.1 CM
-60.000 -50.000 -40.000 -30.000 -PO.OOO -10.000
0.000
10.000
20.000
30.000
40.000
Figure 130. Radial profile of average temperature at an axial position of 5. 1 cm
(intermediate flame length baffle burner — high -momentum gas nozzle)
-------
10*
r
Q.
6
1
§
M)
Forward
\*s
V
-HO
•10 t a
Radio) Po
-------
-J
oo
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
RADIAL POSITION-CM VS. PPM NO IN GAS SAMPLE
260.00
255.00
250.00
245.00
240.00
235.00
230.00—*— !
225.00
220.00
215.00
210.00
205.00
200.00
195.00
190.00
165.00
180.00
175.00
170.00
165.00
160.00
155.00
150.00
145.00
140.00
135.00
130.00
125.00
120.00
115.00
110.00
105.00
100.00
95.00
90.00
85.00
80.00
75.00
70.00
65.00
60.00
55.00
50.00
45.00
40.00
35.00
30.00
25.00
20.00
15.00
10.00
5.00
0.00
AXIAL POSITION = ?6.0 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 132. Radial profile of NO at an axial position of 26. 0 cm
( intermeidate flame length baffle burner — high-momentum gas nozzle)
-------
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM N02ZLE
RADIAL POSITION-CM VS. PPM N02 IN GAS SAMPLE
55.00
53.94
52.88
51.83
50.77
49.71
48.65
47.60
46.54
45.48
44.42
43.37
42.31
41.25
40.49
39.13
38.08
37.02
35.96
34.90
33.85
32.79
31.73
30.67
29.62
28.56
27.50
26.44
25.38
24.33
23.27
22.21
21. IS
20 no
19.04
17.98
16.92
15.B7
14.81
13.75
12.69
11.63
10.58
9.52
8.46
7.40
6.35
5.29
4.23
3.17
2.12
1.06
.00
AXIAL POSITION
?6.0 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 133. Radial profile of NOE at an axial position of 26. 0 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
00
o
INTERMEDIATE BAFFLE BURNER
RADIAL POSITION-CM VS. * 02 IN GAS SAMPLE
21.00
20.60
20.19
19.79
19.38
18.98
18.58
18.17
17.77
17.37
16.96
16.56
16.15
15.75
15.35
14.94
14.54
14.13
13.73
13.33
12.92
12.52
12.12
11.71
11.31
10.90
10.50
10.10
9.69
9.29
8.88
8.48
8.08
HIGH MOMENTUM NOZZLE
AXIAL POSITION a 26.0 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 134. Radial profile of O2 at an axial position of 26. 0 cm
( intermeidate flame length baffle burner — high-momentum gas nozzle)
-------
00
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
RADIAL POSITION-CM VS. » CH4 IN GAS SAMPLE
15.00
14.71
14.13
13.85
13.56
13.27
12.98
12.69
12.40
12.12
11.83
11.54
11.25
10.96
10.67
10.38
10.10
9.81
9.52
9.23
8.94
8.65
8.37
8.08
7.79
7.50
7.21
6.92
6.63
6.35
6.06
5.77
5.48
5,19
4.90
4.62
4.33
4.04
3.75
3.46
3.17
2.88
2.60
2.31
2.02
1.73
1.44
1.15
.87
.58
.29
.00 -» » —• •—•
AXIAL POSITION
26.0 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
•
0.000
10.000
20.000
30.000
40.000
Figure 135. Radial profile of CH4 at an axial position of 26. 0 cm
(intermediate flame length baffle burner — high -momentum gas nozzle)
-------
CO
tv
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
RADIAL POSITION-CM VS. « C02 IN GAS SAMPLE
9.50
9.34
9.17
9.01
8.85
8.68
8.36 ^\
8.19 X
8.03 \
7.87 \
7.70 \
7.54 •
7.38 \
7.21 I
7.05 \
6.88 \
6.72 \
6.56 \
6.39 \
6.23 \
6.07 •
5.90 \
5.74 \
5.58 \
5.41 V
5.25 \
5.09 \
4.92 •
4.76
4.60
4.43
4.27
4.11
3.94
3.78
3.62
3.45
3.29
3.13
2.96
2.80
2.63
2.47
2.31
2.14
1.98
1.82
1.65
1.49
1.33
1.16
1.00
k.
\
^k
• ^
AXIAL POSITION « 26.0 CM
A
\J
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 136. Radial profile of CO2 at an axial position of 26. 0 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
COMPOSITE LOG PLOT RADIAL POSITION-CM VS. ALOG10 (CONCENTRATION ») AXIAL POS
0=02, N=NO. 8»N02. D'COZt C«CO. H*H2» M*CH4.
100.0000
76.6682
58.7802
45.0657
34.5511
26.4897
20.3092
15,5707
11.9378 0
9. 1525 D D 0 00
7.0170 0
5.3798 0 0 0 ODD
4.1246
3.1623
2.4245
1 .8588
1.4251 C
1.0926
.8377
.6422
.4924 C
.3775
.2894 M
.2219 M
.1701
.1304 C
.1000
.0767
,0588 M
• .0451 C
. 0346
.0265 N
.0203 N N N
.0156 N
.0119
.0092 H
.0070
.0054 C N
.00*1 B B C B B
.0032 B
.0024 B
.11019
.0014
.0011
.0008
.0006
.0005
.0004
.0003
.0002
.0002
.0001
.0001
000
H H M
H 0
0 C -C M C
OH 0
C 0 D D M 0
0 H D
C -O D
M 0
0
0 C
M
H
C
M
C
M
B
B N N
N B 8
N N N N N
B N
B
B 8 B
0
0 0
O
0
0 0
D
D
N
N
N
C N
N C
C C
C
n
B
B
8 B
26.0 CM
-60.000 -50.000 -40.000 -30.000 -20.000
-10.000
0.000
10.000 20.000 30.000 40.000
Figure 137. Radial profile of all the gases at an axial position of 26. 0 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
CO
INTEKMEfllATE BAKFLt bUKNER - HIGH MOMENTUM NOZZLE
HAUIAI POblTION-tM VS. AVFHAGE TEMPEKATUHt DEG.C
1/00.
16S3.
1663.
1645.
1637.
le>09.
1590.
1573.
1554.
1536.
1517.
1499.
14H1.
AXIAL POSITION * ?6.0 CM
1426.
1408.
13H9.
1371.'
1353.
1335.
1316.
1363.
1243.
1235.
1307.
1IB8.
1170.
1153.
1134.
1115.
1097.
1079.
1U61.
1043.
1034.
1006.
B96.
B78.
B33.
BOS.
787.
?50.
-60.000 -50.000 -40.000 -30.000 -30,000 -10.000
0.000
10.000
30.000
.10.000
40.000
Figure 138. Radial profile of average temperature at an axial position of 26. 0 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
10*
-------
oo
INTERMEDIATE BAFTLt BURNER - HIGH MOMENTUM NOZZLE
RADIAL POSITION-CM VS. PPM NO IN GAS SAMPLE
260.00
255.00
250.00
245.00
240.00
235.00
230.00
225.00
220.00
215.00
210.00
205.00
200.00
195.00
190.00
185.00
180.00
175.00
170.00
165.00
160.00
155.00
150.00
145.00
140.00
135.00
130.00
125.00
120.00
115.00
110.00
105.00
100.00
95.00
90.00
85.00
bO.OO
75.00
70.00
65.00
60.00
55.00
50.00
45.00
40.00
35.00
30.00
25.00
20.00
15.00
10.00
5.00
0.00
AXIAL POSITION * 57.2 CM
-60.000 -SO.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 140 Radial profile of NO at an axial position of 57. 2 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
00
-0
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZCE
HADiAC POSITION-CM vs. PPM N02 IN GAS SAMPLE
ss.oo
53.9*
52.86
51. 83
50.77
49.71-
48.65
47.60
46.5*
45.48
44.42
43.37
42.31
41.25
40.19
39.13
38.08
37.02
35.96
J4.90
33. SS
32.79
31.73
30.67
29,62
28.56
27.50
26.44
25.38
24.33
23.27
22.2!
21.15
20.10
19.04
17.98
16.92
15.37
14.81
13.75
12.69
11.63
10.58
9.52
8.46
7.40
6.35
5.29
4.23
3.17
2.12
1.06
.00
AXIAL POSITION
57.2 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 141. Radial profile of NO2 at an axial position of 57. 2 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
oo
oo
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
KAOIAL POSITION-CM VS. « 02 IN GAS SAMPLE
21.00
20.60
20.19
19.79
19.38'
18.98
18.58
18.17
17.77
17.37
16.96
16.56
16.15
15.75
15.35
14.94
14.54
14.13
13.73
13.33
12.92
12.52
12.12
11.71
11.31
10.90
10.50
10.10
9.69
9.29
8.88
8.48
8.08
7.67
7.27
6.87
6.46
6.06
5.65
5.25—•
4.85
4.44
4.04
3.63
3.23
2.83
2.42
2.02
1.62
1.21
.81
.40
.00
AXIAL POSITION = 57.2 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 142. Radial profile of Oz at an axial position of 57. 2 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
00
vD
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
AXIAL POSITION
57.2 CM
-ftO.OOO -50.000 -i.0.000 -30.000 -20.000 -10.000
i
0.000
10.000 20.000
30.000
40.000
Figure 143,. Radial profile of CH4 at an axial position of 57. 2 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
RADIAL POSITION-CM VS. » C02 IN GAS SAMPLE
9.50
9.3*
9.17
9.01
8.85 "•
8.6B
8.52
8.36
8.19
8.03
7.87
7.70
7.54
7.38
7.21
7.05
6.88
6.72
6.56
6.39
6.23
6.07
5.90
5.7*
5.58
5.41
5.25
5.09
4.92
4.76
4.60
4.43
4.27
4.11
3.94
3.78
3.62
3.45
3.29
3.13
2.96
2.80
2.63
2.47
2.31
2.14
.98
.82
.65
.49
.33
.16
.00
AXIAL POSITION « 57.2 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 144. Radial profile of CO2 at an axial position of 57. 2 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
COMPOSITE LOG PLOT RADIAL-POSITION-CM vs. ALOGIO(CONCENTRATION *>
0=02t N=NO« B=N02t D=C02. C'COt H=H2. M*CH4,
AXIAL POSITION
57.2 CM
0.0000
6.6662
B.7802
5.0657
4.5511
6.4897
0.3092
b.5707
1.9378
9.1525 0 ODD
7.0170 000
5.3798 0 000 H
4.1246 C
3.1623 0
2.4245
1.8588 C
1.4251 H
1.0926
.8377
.6422
.4924 C M
.3775
.2894
.2219 H
.1701
.1304
.1000 M
.0767
.0588
.0451 C
.0346
.0265 N N N
.0203 N N
.0156 N
.0119 C
.0092 N
.0070 C C
.0054 B B 8
.0041 B B B B
.0032
.0024
.0019
.0014
.0011
.0008
.0006
.0005
.0004
.0003
.0002
.0002
.0001
.0001
0 0
H 0
C H
0 0 0 D D
0
C
0 H
M
M
£
M C
N N
N
N N
B
B
B
B
B
0 0
0 D
0 D
00 0
C
N N N
N N
C
C C C
B
B B B
B
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000 20.000 30.000 40.000
Figure 145. Radial profile of all the gases at an axial position of 57. 2 cm
(intermediate flame length baffle burner —high-momentum gas nozzle)
-------
NO
IV
INTERMEDIATE BAFFLE bUHNER - HIGH MOMENTUM NOZZLE
HAOIAl POblTION-CM VS. AVERAGE TEMPEKATUHt DEG.C
1700.
1682.
•'1663.
1645.
1627.
1609.
Ib90.
AXIAL POSITION « S7.2 CM
Ib54.
Ib36.
Ibl7.
1499.
1481.
1463.
!<>4i«.
1026.
1408.
13R9.
1J71.
1353.
1335.
1316.
1243.
1207.
11H8.
1170.
1152.
1134.
1115.
1097.
1079.
1061.
1042.
1024.
1006.
933.
914.
896.
S78.
860.
H4J.
823.
80S.
787.
768.
-60.000 -50.000 -40.000 -30.000 -?0.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 146. Radial profile of average temperature at an axial position of 57. 2 cm
(intermediate flame length baffle burner — high -momentum gas nozzle)
-------
10
Figure 147. Radial profile of flow direction at an axial position of 57. 2 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
193
-------
INTERMEDIATE BAFFLE BUHNER - HIGH MOMENTUM NOZZLE
RADIAL POSITION-CM VS, PPM NO IN GAS SAMPLE
260.00
ass.oo
250.00
205.00
240.00
235.00
230.00-
225.00
220.00
215.00
210.00
205.00
200.00
195.00
190.00
185.00
180.00
175.00
HO.00
165.00
160.00
155.00
150.00
145.00
140.00
135.00
130.00
125.00
120.00
115.00
110.00
105.00
100.00
95.00
90.00
85.00
80.00
75.00
70.00
65.00
60.00
55.00
50.00
45.00
40.00
35.00
30.00
25.00
20.00
15.00
10.00
5.00
0.00
AXIAL POSITION r lfcf.,1 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 148. Radial profile of NO at an axial position of 146. 1 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
Ul
INTERMEDIATE BAFFLE BUHNER - HIGH MOMENTUM NOZZLE
RADIAL POSITION-CM VS. PPM N02 IN GAS SAMPLE
55.00
53.94
52.88
51.83
50.77v
49.71 <
4B.65
47.60
46. 54
45.48
44.42
43.37
42.31
41.25
40.19
39.13
38.08
37.02
35.96
34.90
33.85
32.79
31.73
30.67
29.62
28.56
27,50
26.44
25.38
24.33
23.27
22.21
21.15
20.10
19.04
17.98
16.92
15.87
14.81
13.75
12.69
11.63
10.58
9.52
8.46
7.40
6.35
5.29
4.23
3.17
2.12
1.06
.00
AXIAL POSITION = 148,1 CM
-60.000
•50.000
•40.000 -30.000 -ao.ooo -10.000
0.000
10.000
20.000
30.000
40.000
Figure 149. Radial profile of NO2 at an axial position of 146. 1 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
RADIAL POSITION-CM VS. * 02 IN GAS SAMPLE
21.00
20.60
20.19
19. 79
19.38
IB. 98
IB. 58
18.17
17.77
17.37
16.96
16.56
16. IS
15.75
15.35
14.94
14.5*
14.13
13.73
13.33
12.92
12.52
12.12
11.71
11.31
10.90
10.50
10.10
9.69
9.29
8.88
8.48
8.08
7.67
7.27
6.67
6.46
6.06
5.65 •
5.25 * ^^i^*
4.44 •
4.04
3.63
3.23
2.83
2.42
2.02
1.62
1.21
.81
.40
.00
.X*
* ^^^%
*~*^ .
AXIAL POSITION * 146.1 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 150. Radial profile of O2 at an axial position of 146. 1 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
INTEHMEOIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
KADIAL POSITION-CM VS. * C02 IN GAS SAMPLE
9.50
9.34
9.17
9.01
8.85 — •— ^^x*""™^
8.68 ^ •"" — ~»*^ •
8.52X" X.
8.36^ ^
8.19
8.03
7.87
7.70
7.54
7.38
7.21
7.05
6.88
6.72
6.56
6.39
6.23
6.07
5.90
5.74
5.58
5.41
5.25
5.09
4.92
4.76
4.60
4.43
4.27
4.11
3.94
3.78
3.62
3.45
3.29
3.13
2.96
2.80
2.63
2.47
2.31
2.14
.98
.82
.65
.49
.33
.16
.00
^.^"^
AXIAL POSITION = 146.1 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 151. Radial profile of CO2 at an axial position of 146. 1 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
00
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
COMPOSITE LOG PLOT RADIAL POSITION-CM VS. ALOG10 (CONCENTRATION ft)
0=03, N=NOt B*N02i D=C02t C'COi H»H2« M*CH4.
100.0000
76.6682
58.7802
45.0657
3*. 5511
26.4897
20.3092
IS. 5707
AXIAL POSITION . 146.1 CM
11.9378
9.1525 0
7.0170
b.3798 0
4.1246
3.1623
2.4245
1.8588
1.4251
1.0926
.8377
.6422
.4924
.3775
.2894
.2219
.1701
.1304
.1000
.0767
.0588
.0451
.0346
.0265
.0203 C
.0156
.0119
.0092
.0070
.0054 B
.0041
.0032
.0024
.0019
.0014
.0011
.0008
.0006
.0005
.0004
.0003
.0002
.0002
.0001
.0001
D
N N C N
C
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000 20.000 30.000 40.000
Figure 152. Radial profile of all the gases at an axial position of 146. 1 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
RADIAL POSITION-CM VS. AVERAGE TEMPERATURE OEG.C
1700.
1682.
1663.
1645.
1627.
1609. ^ • ^
1590.
1572.
1554.
1536.
1517.
1499.
1*81.
1463.
1444.
1426.
1408.
1389.
1371.
1353.
1335.
1316.
1298.
1280.
1262.
1243.
1225.
1207.
1188.
mo.
1152.
1134.
1115.
1097.
1079.
1061.
1042.
1024.
1006.
988.
969.
951.
933.
914.
896.
878.
860.
841.
823.
80S.
787.
768.
750.
AXIAL POSITION = 146.1 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 153. Radial profile of average temperature at an axial position of 146. 1 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
10*
•I
b.
<£
io
o-o
\)
\
forward
Reverie
1
-Mo
1
-10
Radial
Figure 154. Radial profile of flow direction at an axial position of 146. 1 cm
( intermediate flame length baffle burner — high-momentum gas nozzle)
ZOO
-------
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
RADIAL POSITION-CM VS. PPM NO IN GAS SAMPLE
263.00
257.94
252.88-
247.83
242.77
237.71
232.65
227.60
222.54
217.46
212.42
207.37
202.31
197.25
192.19
187.13
182.08
177.02
171.96
166.90
161.85
156.79
151.73
146.67
141.62
136.56
131.50
12i.4*
121.38
116.33
111,27
106.21
101.15
96.10
91.04
85.98
60.92
75.87
70.61
65.75
60.69
55.63
50.56
45.52
40.46
35.40
30.35
25.29
20.23
15.17
10.12
5.06
.00
AXIAL POSITION = 385.4 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 155. Radial profile of NO at an axial position of 385. 4 cm
(intermediate flame length baffle burner —high-momentum gas nozzle)
-------
tSJ
O
ro
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
RADIAL POSITION-CM VS. PPM N02 IN GAS SAMPLE
55.00
53.94
52.88
51.83
50.77
49.71
46.65
47.60
46.54
45.48 ^J
44.42 ^^
43.37 S^
42.31 ~>*~"~"-«^^ -•
41.25 ^^>**^^^ ^J.""
40.19 ^~*"~ ""^
39.13 •
38.06
37.02
35.96
34.90
33.85
32.79
31.73
30.67
29.62
28.56
27.50
26.4^
25.38
24.33
23.27
22.21
21.15
20.10
19.04
17.98
16.92
15.87
14.81
13.75
12.69
11.63
10.58
9.52
8.46
7.40
6.35
5.29
4.23
3.17
2.12
1.06
.00
fc-\
>w
^^
\
\
\
\
\
>
AXIAL POSITION = 3B5.4 CM
•60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 156. Radial profile of NO2 at an axial position of 385. 4 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
INTEKMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
RADIAL POSITION-CM VS. * 02 IN GAS SAMPLE
21.00
20.60
20.19
19.79
19.38
18.98
18. 58
18.17
17.77
17.37
16.96
16.56
16.15
15.75
lb.35
14.9*
14. 5*
14.13
13.73
13.33
12.92
12.52
12.12
11.71
11.31
10.90
10.50
10.10
9.69
9.29
8.38
8.48
8.08
7.67
7.27
6.87
6.46
6.06
5.65
5.25
4.85
4.44—•
4.04
3.63
3.23
2.83
2.42
2.02
1.62
1.21
.81
.40
.00
AXIAL POSITION = 3RS.4 CM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 157. Radial profile of O2 at an axial position of 385. 4 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
tS)
O
INTERMEDIATE BAFFLE bURNER - HIGH MOMENTUM NOZZLE
AXIAL POSITION « 3«5.4 CM
-60.000 -50*000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 158. Radial profile of CO2 at an axial position of 385. 4 cm
[intermediate flame length baffle burner — high-momentum gas nozzle)
-------
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
COMPOSITE LOG PLOT RADIAL POSITION-CM VS. ALOG10 (CONCENTRATION »>
o
(Jl
o
100.0000
76.6682
58.7802
45.0657
34.5511
26.4897
20.3092
15.5707
11.9378
9.1525 D
7.0170
5.3798
4.1246 0
3.1623
2.4245
1.8588
1.4251
1.0926
.8377
.6422
.4924
.3775
.2894
.2219
.1701
.1304
.1000
.0767
.0588
.0451
.0346
.0265 N
.0203
.0156
.0119
.0092 C
.0070
.0054
.0041
.0032
.0024
.0019
.0014
.0011
.0008
.0006
.0005
.0004
.0003
.0002
.0002
.0001
.0001
02<
o=co2»
AXIAL POSITION * 385.4 CM
B
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000 20.000 30.000 40.000
Figure 159. Radial profile of all the gases at an axial position of 385. 4 cm
(intermediate flame length baffle burner — high -momentum gas nozzle)
-------
INTERMEDIATE BAFFLE BUHNER - HIGH MOMENTUM NOZZLE
HADIAl POSITION-CM VS. AVERAGE TEMPEHATUHE DEG.C
1700.
1682.
1663.
1645.
1627.
1609.
1590.
1572.
AXIAL POSITION * 3B5.4 CM
1536.
1517.
1499.
1481.•
1463.
1444.
1426.
1408.
1389.
1371.
1353.
1335.
1316.
1298.
1280.
1262.
1243.
1225.
1207.
1188.
1170.
1152.
1134.
1115.
1097.
1079.
1061.
1042.
1U24.
1006.
988.
969.
951.
933.
914.
896.
878.
860.
841.
823.
805.
787.
768.
750.
-60.000 -5U.OOO -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000
30.000
40.000
Figure 160. Radial profile of average temperature at an axial position of 385. 4 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
10*
a.
1
tf
*
J IO-J
10-1
—i—
10
—I—
Ho
-60
—i—
-HO
Fta4ia\
Figure 161. Radial profile of flow direction at an axial position of 385. 4 cm
(intermediate flame length baffle burner — high-momentum gas nozzle)
207
-------
The curve of carbon dioxide versus radial position ( Figure 128) shows a
variation in the level of concentration from 1.3% to 1.1% in the central
region of the secondary combustion air entrance zones (—12 cm and +15 cm,
which correspond to the positions of maximum oxygen concentrations) . Two
peaks do occur within the burner-block area at —6 cm and +3 cm. Correlating
the 5. 1 -cm axial position temperature profile ( Figure 130) with the above
chemical species and flow analysis reveals that a constant temperature of
1340°C exists in the region of recirculation ( compared with a wall tempera-
ture of 1380°C) . Minimum temperatures of 780°C and ?67°C occur at
—12 cm and 12 cm, respectively, which correspond to the regions of maxi-
mum oxygen concentration or the positions of peak secondary combustion
air input. Inside the burner-block area, two peaks occur, at —6 cm and
3 cm, with values of 1506°C and 1482°C, respectively. These maximum
temperatures correspond favorably with the positions of the stoichiometric
fuel/air ratios. The largest discrepancy is to the right of the burner
centerline, on the positive position side of the furnace. The temperature
peak to this side of the burner may not be a narrow width profile, owing to
a temperature difference of only 20 °C between 3 cm and 6 cm. The reason
that the region of combustion could be larger to the right of the burner
centerline than to the left is that the combustion air on the right side is
spinning ( swirling) into the gas jet, while on the left side, it is spinning
away. Thus, the increased turbulence could result in a broader region of
combustion. These two temperature peaks enclosed a depression that
reaches 1286°C on the centerline of the burner and corresponds to the
position of maximum fuel concentration.
As was the case with the kiln burner at the burner-block exit, we
measured larger concentrations of NO2 than NO within the burner-block area.
Although the peaks of temperature and CO2 coincide (—6 cm and 3 cm) inside
the burner block (which are the same positions as for the kiln burner) , un-
like the kiln burner, the NO2 peaks do not coincide, but lie outside these
positions at —9 cm and +6 cm. Both of these peaks occur at approximately
full width half maximum of the oxygen peak. Thus, the conversion of NO to
NO2 through a reaction with either atomic oxygen or an oxygen radical is
208
-------
highly probable. Whether this reaction occurs within the combustion chamber
or the probe is not clear. However, in all cases where we have observed
this phenomenon, the fuel velocity has been greater than the air velocity.
This may not be a necessary condition. When the fuel velocity is less than
the air velocity (for the case we investigated) , a large portion of the com-
bustion occurred within the burner-block, and the conditions necessary for
the NO-.NO2 conversion may have occurred within this region that we are not
able to probe.
The data collected for the high-momentum gas nozzle baffle burner at a
26-cm axial position are listed in Table 24 and illustrated in Figures 132
through 139. The NO profile averages 19 ppm within the burner-block region.
This is an average increase of only 6 ppm over the 5. 1-cm axial position.
The NO2 profile still displays two maximums in the burner-block area at
—12 cm and +3 cm, with concentrations of 51 ppm and 42 ppm, respectively.
Three minimums occur at —20 cm, —4. 5 cm, and +12 cm.
The curve for oxygen versus radial position shows maximums at 18 cm
and 10 cm with respective concentrations of 100 5% and 16. 5%. A minimum
of 1. 2% occurs at —6 cm.
The methane concentration has a maximum of 7. 3% at 6 cm, with hydrogen
having a 13. 4% maximum at —6 cm, carbon monoxide a maximum of 7. 3% at
—3 cm, and acetylene-ethylene a 2% maximum at —3 cm. The stoichiometric
fuel/air ratios occur at radial positions of—12. 4 cm and 1. 8 cm.
The temperature profile shows three minimums at —18 cm, —6 cm, and
12 cm. This correlates very well with the maximum air and fuel positions.
The peak temperatures of 1606°C and 1643°C correspond to radial positions
of —9 cm and 0 cm.
Data collected for the 57. 2-cm axial position is tabulated in Table 25 and
shown by Figures 140 through 147. The curves have become so asymmetrical
that a detailed analysis is next to impossible. The flame is moving to the left
side of the furnace. This is concluded from the flow-direction profile
( Figure 147) , and the stoichiometric fuel/air ratios which are positioned at
—18. 9 cm and —4. 7 cm.
209
-------
Figures 129, 137, 145, 152, and 159 show composite log plots of con-
centration versus radial position within the composition range of 0. 0001%
( 1 ppm) to 100%. In these plots, the interrelationships between concentra-
tion variations of oxygen, nitric oxide, nitrogen dioxide, carbon monoxide,
carbon dioxide, hydrogen, and methane can easily be visualized.
Figures 131, 139, 147, 154, and 161 show flow direction versus radial
position. These profiles show the position of primary and secondary forward
flow, of recirculation zones (reverse flow) , and of sheared boundary layers.
Figures 130, 138, 146, 153, and 160 are plots of the average temperature
measured versus radial position.
Data Correlation of Isoplots for Intermediate Flame Length
Baffle Burner
Figures 162, 163, and 164 are isothermal and isoconcentration plots of
the data presented earlier in this report for the intermediate flame length
baffle burner operating under standard ( recommended) conditions. Similar
profiles are presented in Figures 165, 166, and 167 under pollution-control
operating conditions.
A comparison of the isothermal plots ( Figures 162 and 165) reveals
that the standard nozzle produced a hotter flame than the high-momentum
gas nozzle. The highest temperature isothermal line plotted is 1600°C. For
the standard gas nozzle, this isotherm starts at the mouth of the burner
block and extends down the furnace. The gases at the flue exit still are at a
temperature above 1500°C.
For the high-momentum gas nozzle, the 1600°C isotherm does not begin
until a 26-cm axial position is reaches. At the flue exit, the gases have
cooled by 200 °C, showing a final isotherm of 1400°C.
The graphs for NO isoconcentration versus radial position are presented
in Figures 163 and 166. For both operating conditions the maximum isoconcen-
tration curve occurs in the secondary recirculation zone by the burner wall.
The central region of the burner-block area enclosed by the first isoconcen-
tration plot (labeled E) , for both operating conditions, discloses the slower
development of NO using a high-momentum gas nozzle. Under normal
210
-------
ISOTHFRMAL
A =
400.00
392.31
3B*.62
3/6.9?
369.23
361.5*
353.85
3*6.15
338.46
330.77
323.08
315.38
307.69
300.00
INTERMEOIATt BAFFLE BUHNER - STANDARD NOZZLE
PLOT RADIAL POSITION-CM VS. AXIAL POSITION-CM
600 OEG.C, B=800 DEG.C. C=1000 DEG.C. 0=1200 DEG.Ct E=1300 DfG.C.
F«l*00 OEG.C, G«1500 OEG.C. H-1AOO nFG.C
H
-------
1NIEP.MEUIATL BAFH_E HUHNFR - STANDAHfl N027LE
ISOCOMCt NTP.AMON PLOT OF NO KA01AL PuSITION-CM VS. AXIAL P05ITTUN-rM
A= hOO. PPM, n= S50. PPM, C= bOO. PPM, n= 450. PPM.F= 350. PPu
tv
I—*
IN)
-50.000 -40.000 -30.000 -?0.000 -10.000
0.000
10.000
20.000 ""o.nno 411.000
Figure 163. Isoconcentration plot of NO (intermediate flame
length baffle burner — standard gas nozzle)
-------
IV
INTERMEDIATE BAFFLE BURNER - STANDARD NOZZLE
ISOCONCENTRATION PLOT OF N02 RADIAL POSITION-CM VS. AXIAL POSITION-CM
A> 50. PPM. B* 40. PPMi C» 30. PPM, D« 20.
400.00
392.31
384.62
376.92
369.23
361.54
353.85
346.15
338.46
330.77
323.08
315.38
307.69
300.00
292.31
284.62
276.92
269.23
261.54
253.85
246.15
238.46
230.77
223.08
215.38
207.69
200.00
192.31
184.62
176.92
169.23
161.54
153.85
146.15
138.46
130.77
123.08
115.38
107.69
100.00
92.31
84.62
76.92
69.23
61.54
PPM
-60.000 -50.000 -40.000
BAKGNDi AST 02 f 405372
••5. 750. 1700.
-30.000 -20.000
-14.3 14.3
-10.000
0.000
10.000
20.000
30.000
40.000
Figure 164. Isoconcentration plot of NO2 (intermediate flame
length baffle burner — standard gas nozzle)
-------
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
ISOTHFRMAL PLOT RADIAL POSITION-CM VS. AXIAL POSITION-CM
A=600 DEb.C, B=800 DEG.C, C-1000 DEG.Ct 0*1200 DEG.C, E«1300 OEG.C,
400.00
392.31
F»1400 OEG.C. 0*1500 DEG.C, H=lf,00 r>Ef..C
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000 20.000
30.000
40.000
Figure 165. Isothermal plot of furnace temperature
(intermediate flame length baffle burner — high-momentum gas nozzle)
-------
Ul
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
ISOCONCENTRATION HLOT OF NO RADIAL POSITION-CM VS. AXIAL POSITION-CM
A* 230. PPM, b» 210. PPM, C* 190. PPM, D* 140.
400.00
392.31
384.62
376.92
369.23
361.54
353.85
346.15
338.46
330.77
323.08
315.38
307.69
300.00
292.31
284.62
276.92
269.23
261.54
253.85
246.15
238.46
230.77
223.08
215.38
207.69
200.00
192.31
184.62
176.92
169.23
161.54
153.85
146.15
138.46
130.77
123.08
115.38
107.69
100.00
92.31
84.62
76.92
69.23
61.54
53.85
46.15
38.46
30.77
23.08'
15.38
7.69
.00
PPM.E» 70, PPM
-60.000 -50.000 -40.000 -30.000 -20.000 -10.000
0.000
10.000
20.000 30.000
Figure 166. Isoconcentration plot of NO (intermediate flame
length baffle burner — high-momentum gas nozzle)
40.000
-------
IV
INTERMEDIATE BAFFLE BURNER - HIGH MOMENTUM NOZZLE
ISOCONCF.NTRATION PLOT OF N02 KAOIAL POSITION-CM VS. AXIAL POSITION-CM
A« 40. PPM, B» 30. PPM, C« 20. PPH, D= 10. PPM
400.00
392.31
384.62 J*. —"• A
376.92
369.23
361.54
353.85
346.15
338.46
330.77
323.08
315.38
307.69
300,00
292.31
284.62
276.92
269.23
261.54
253.85
246.15
238.46
230.77
223.08
215.38
207.69
200.00
192.31
184.62
176.92
169.23
161.54
153.85
146.15
138.46
130.77
123.08
115.38
107.69
100.00
92.31
84.62
76.92
69.23
61.54
53.85
46.15
38.46
30.77
23.08
15.38
7.69
.00
-60.000 -50.000 -40.000 -30.000
-20.000 -10.000
0.000
10.000
i t t
20.000 30.000 40.000
Figure 167. Isoconcentration plot of NO2 (intermediate flame
length baffle burner — high-momentum gas nozzle)
-------
operating conditions, this curve represents 71% of the flue concentration,
while under control conditions it represents only 28% of the flue NO.
Isoconcentrations profiles of NO2 are plotted in Figures 164 and 167.
These NO2 profiles tend to follow the flow direction profiles when comparing
the NO2 isoconcentrations with pressure differentials. The flue value of NO
is produced in a shorter furnace length for the standard gas nozzle than for
the high-momentum nozzle.
MOVABLE VANE BOILER BURNER
In-the-flame data for the utility boiler burner was collected with the
60-degree gun fuel injector and a 30-degree quarl angle burner block. In-
the-flarne probings of two flames were made; base-line data were collected
with the operating conditions of the burner identical to those used in older
industrial boiler burners (60-degree fun nozzle, 30-degree burner-block
angle, and 30-degree vane angle). Control-case data were collected from a
flame in which the NO emission level had been reduced by a factor of one
and three-quarters as a result of decreasing the movable-vane angle of the
burner by 1 5 degrees. For the base-line operating conditions, the secondary
air velocity was 41 ft/s (with an axial component of 32 ft/s and a 26 ft/s
tangential component) compared with a control case secondary air velocity
of 36 ft/s (having a 34 ft/s axial component and a 12 ft/s tangential component).
The gas velocity at the nozzle in bo'di cases was sonic. Because of wall
radiation and flame transparency, it was not possible to determine flame
length.
Each operating condition exhibited a distinctive directional flow profile.
The base-line conditions gave rise 1:o a Type III flow profile, while the
control conditions displayed a Type II profile.
Table 28 lists the furnace conditions at which the base-line, in-the-flame
data were collected. The data obtained for an axial sampling position of
5. 1 cm are listed in Table 29 and are plotted in Figures 168 through 175.
Table 30 lists the results of radial sampling at an axial position of 26 cm.
Figures 176 through 182 show plots of the data. The radial profile data at
axial positions of 46. 7 cm, 146. 1 cm, and 385. 4 cm are presented in Tables 31
through 33 and Figures 183 through 203.
217
-------
Table 28. . FURNACE CONDITIONS FOR IN-THE-FLAME SAMPLING
(Movable-Vane Boiler Burner; 30-Degree Vane Angle)
BOILER BURNER 60 DEGREE GUN NOZZLE 30 DEGREE VANE ANGLE
NUMBER OF SETS OF DATA = 5.
MINIMUM GRID VALUE OF AVERAGE TEMPERATURE
MAXIMUM GRID VALUE OF AVERAGE TEMPERATURE
POSITION OF OUTSIDE EDGES OF BURNER BLOCK
MINIMUM POSITION = *25. CM
MAXIMUM POSITION = 25. CM
1200. DEG.C
180U. DEG.C
00
GAS INPUT» AXIAL 0. CF/HR
WALL TEMPERATURE 1387.
PREHEAT TEMPERATURE 455.
FLUE GAS RECIRCULATION 0.0 *
GAS SAMPLE ANALYSIS IN THE FLUE
RADIAL
DEG.C
UEG.C
2982. CF/HR
NITROGEN OAIQE
NITROGEN DIOXIDE
OXYGEN
CARBON DIOXIDE
CARBON MONOXIDE
340.0 PPM
57.0 PPM
2.6 %
10.3 *
.0054 %
LIMITS FOR CONCENTRATION PLOTS
LOWER
LOWER
LOWER
LOWER
LOWER
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
OF
OF
OF
OF
OF
NO
N02
02
CH4
C02
s
=
=
s
s
70.
5.
0.
0.
0.
PPM
PPM
*
*
*
UPPFR
UPPER
UPPER
UPPER
UPPFR
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
s
400.
60.
21.
1.
12.
PPM
PPM
%
%
%
iSOCONCENTRATION VALUES
OBTAIN VALUE OF RADIAL POSITION AT NO PPM
OBTAIN VALUE OF RADIAL POSITION AT N02 PPM
CONCENTRATION 300. 250. 200. 150.
CONCENTRATION 50. 40. 30. 20,
100,
-------
Table 29. IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 5. 1 cm
(Movable-Vane Boiler Burner; 30-Degree Vane Angle)
M
i—"
vO
KADIAL 02
Pi 1C T T T OKI ^
BOILER BURNER
N2 NO N02
Qc UOLJ L3DU
rUoi i iv*n ^ *j
CM
-60. 2,1 ?
-48. 2.1 7
-36.
-24.
-21.
-18.
-15.
-12.
-6.
0.
6.
12.
15.
18.
21.
24.
36.
48.
60.
2.1
1.9
3.4
2.9
1.4
1.0
.6
1,2
6.3
13.3
13.5
13.7
8.4
2.3
1.4
1.9
2.1
7
80.8
81.3
80.9
80.1
79.1
77.2
80,4
82.5
80.7
80.fi
80.1
80. ft
81.8
86.4
?
7
r r i*i
357.
355.
345.
196.
207.
215.
217.
225.
192.
187.
144.
80.
78.
75.
89.
100.
250.
285.
324.
r r n
60.
54.
4S».
25.
28.
35.
36.
3?.
43.
47.
52.
35.
33.
31.
3<*.
37.
45.
52.
53.
60
C02
if.
fa
10.7
10.7
10.7
7.6
8.0
8.8
8.4
7.9
I.I
7.6
7.1
4.7
4.7
4.6
6.8
f.b
11.2
1U.8
10.7
DEGREE GUN NOZZLE
CO H2 CH4
%JC CM
.0097
.0089
.0086
4.6000
3.0000
3.0000
4.9000
b.1000
1.0000
b.9000
2.3000
.4000
.2000
O.UOOO
2.1000
4.4000
.1000
.U15?
.0140
*Q
'{
1.3
2.4
3.7
4.2
6.2
4.6
4.1
1,3
0.0
0.0
0.0
1.2
2.8
0.0
7
7
*n
0.0
0.0
0.0
.2
0.0
0.0
0.0
0.0
.1
0.0
0.0
0.0
0.0
0.0
0.0
.1
0.0
0.0
0.0
30 DEGREE VANF ANGLE
C2H2 C2H6 C3H6 C3H8
f*2M£t ut Qt Oe
1
7
7
.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
7
^i
7
7
?
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
7
-------
ts)
o
HADIAL
tuo.oo
J9J.6b
Jd7.Jl
jau.9b
J/4.62
368. <>7
301.92
Jbb.SB
J49.2J
J4<;,80
JJb.S4
JJU.lv
J«:J.8b
J1/.50
Jll.lb
J0b
U7.12
U0.77
li^.fci
lUtt.OH
101.73
*b.3B
09.04
'0.00
I
-60.000
B01LEH HUHNtH
VS. HMM NO IN
bU UtOKtt GUN NOZZLt
IjAb bAMPLt
30 UfOWtt VANE ANGLF
AXIAL POSITION
s.i
-4U.OOO -36.000
-12.000
-.000
12.000
24.000
36.000
48.nno
60.000
Figure 168. Radial profile of NO at an axial position of 5. 1 cm
(movable-vane boiler burner; 30-degree vane angle)
-------
ts)
IV
RADIAL PObITlON-0
60.00 *
58.94
57.88
56.83
55.77
54.71
53.65
52.60
51.54
BOlLtH BURNtH 60 UEoREE f,UN NOZZLt.
VS. PPM N02 IN 1>AS SAMPLE
30 OFGHEE VANF ANOLE
AXIAL POSITION
S.I CM
-60.000 -4S.UOO -36.000 -
-------
ts)
21.
10
to.
19.
19.
18.
18
18
17
17
16.
16.
16.
15.
15.
POSITION-CM
00
60
I*
79
38
98
58
17
77
37
96
56
15
75
35
BOILEK HURNEK
VS. * 02 IN
bO UtOREE GUN NO^ZLt
>«S SAMPLE
30 DEGREE VAKJE ANGLF
AXIAL POSITION r
5.1 CM
14.54
14.13
13.73
13.33
12.92
12.52
12.12
11.71
11.31
10.90
10.50
10.10
9.69
9.29
8.88
t>.48
8.08
7.67
7.27
6.87
6.46
6.06
5.65
5.25
4.85
4.44
4.04
3.63
3.23
2.83
2.42
2.02 —••
1.62
1.21
.81
.40
.00
-60.000 -4B.OOO -16.000 -2t.uuU -1P.OOO
-.000
12.000
i?4.noo
36.000
48.000
hO.OOO
Figure 170. Radial profile of O2 at an axial position of 5. 1 cm
( movable -vane boiler burner; 30-degree vane angle)
-------
BOlLtW HUKNE.M t>u DtoWft GUN NOZZLE 30 OtOWtt VANF AN(,LF
*AUIAL HUSITION-CM VS. * CM"* IN bAS SAMPLE
.5000
.«904
.480b
.4712
AXIAL POSITION =
. 1 CM
.4423
.432/
.0231
.4135
.403(3
.3942
,384b
.3750
.3654
.3558
.3462
.336b
.3269
.3173
.3077
.2981
.2885
.2788
.2692
.2596
.2500
.240*
.2308
.2212
.2019
.1923
.1827
.1731
.1635
.1538
.1346
.1250
.1154
.1058
.U962
.086b
.0769
.0673
.0577
.0481
.0385
.0288
.0192
.0096
.0000
-60.000 -4b.OOO -36.000 -24.UOO -1?.000
-.000
la.ooo
?4.000
36.000
48.000
60.000
Figure 171. Radial profile of CH4 at an axial position of 5. 1 cm
( movable -vane boiler burner; 30-degree vane angle)
-------
tv
HADIAL POSITION-O
12.00
11.77
11.54
11.31
.Ob
BOILEk
VS. *
HUHNEH
C02 IN
60
(j«S
UtoHEE
SAMPLE
GUN NOZZLE
30 DtGKtt VAMF ANGLE
AXIAL POSITION =
CM
11.
10
10
10
10
9
,85
,62 —•-
,38
,15
,92
,69
,46
,23
,00
.77
31
08
85
62
38
1b
6.92
6.69
6.46
6.23
00
77
54
31
08
4.85
4.62
38
15
92
69
46
23
00
77
2.54
2.31
08
85
62
JB
15
92
69
46
23
00
r\
\
-60.000 -40.000 -16.000 -«?•».OuO -1P.OOU
-.000
12.000
?4.000
36.000
48.000
60.000
Figure 172. Radial profile of CO2 at an axial position of 5. 1 cm
( movable-vane boiler burner; 30-degree vane angle)
-------
CUM>-GMTt LOG PLUI
HOILtK MUKNt* bll UtoKK.t OIIN NO/7U Jl> UtGKht VANf AM.U
KALllAL POSI I lUN-(.M VS. «l UO10 (CONCtNTHAT ION »>
POS1 I |()K. = S. 1 f.i
Ln
100.000U
76.6682
5B.7802
45.0657
34.5511
26.489V
15.5707
11.9378 n U 0
9. 1525
/.0170
5.3798
4.1246
J.16
-------
IN)
1600.
1 777.
1 765.
1754.
17J1.
1/19.
1696.
1685.
1673.
1662.
1650.
1638.
1627.
1615.
1604.
1592.
1581.
1569.
1558.
HOlLtK HUKNtH OO LUjHtt OUN NO/A.t
^blTlON-LK VS. «VtHA(it Tk.MHt.KA I URt
^
UKOKtt VANf AMGLF
IfiL MUSI I I
1535.
1523.
1500.
1488.
1477.
1465.
1454.-
1442.
1431.
1419.
1408.
1396.
1385.
1373.
1362.
1350.
1338.
1327.
1315.
1304.
1292.
1281.
U69.
1258.
1246.
1235.
1223.
1212.
1200.
S.I (.<•
-60.000 -48.000 -36.000 -^4.UOU -12.000
-.000
li?.000
24.000
36.000
48.000
60.000
Figure 174.
Radial profile of average temperature at an axial position of 5. 1 cm
(movable-vane boiler burner; 30-degree vane angle)
-------
10°
•r
o
_J- I
.«
•3
I
__0 -O <
Row Direction
PoiJer Burner-
30° Vane
5.1 cm AxuJ
'or Ward
•O—Reverse
o
I
-to
-MO
10
RadliA\ Position,
Figure 175. Radial profile of flow direction at an axial position of 5. 1 cm
(movable-vane boiler burner; 30-degree vane angle)
227
-------
ts)
00
Table 30. IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 26.0 cm
(Movable-Vane Boiler Burner; 30-Degree Vane Angle)
BOILER HUHNtK &0 UtfcKFt MJN NOZZLt 30 UEGKEE VANF ANGLF
AXIAL POSITION =
?*.0
KADIAL 02
y nc T 7 T flM *
™w3l 1 1 wiN *0
CM
-60. 1.9
-48.
-36.
-24.
-18.
-12.
-6.
0.
6.
12.
18.
24.
36.
48.
60.
1.5
.9
.4
.2
.2
.2
.6
1.0
2.5
3.2
4.3
1.0
1.3
1.6
N2
?
86.8
83. ft
81.2
79.2
78.6
78.8
82.4
85.2
85.3
85. ft
84.6
?
?
NO
397.
385.
370.
264.
252.
210.
255.
253.
245.
290.
240.
205.
228.
250.
284.
N02
55.
45.
47.
40.
38.
39.
43.
38.
35.
20.
10.
7.
18.
24.
32.
10.7
11.0
10.7
9.5
8.4
8.6
b.2
U.3
9.7
9.8
9.4
».a
9.U
10.8
10.8
CO
.0223
.0371
.6300
3.5000
4.6000
5.5000
5.bOOO
5.0000
1.1000
1.1000
.9000
.7000
d.4000
.4000
.0311
H2
I
7
0.0
2.0
3.f
6.6
6. to
6.8
4.2
.5
.3
O.o
1.0
?
V
CH4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
C2H2
/*> O tJA
\* cn*r
*
?
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
?
?
C2H6
?
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
?
?
C3H6
?
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
?
?
C3H8
?
O.n
0.0
o.o
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
?
?
TEMPFHATUKE OEG.C
AWGr
1422.
1431.
1461.
1560.
1580.
1554.
1551.
1612.
1622.
1583.
1534.
1483.
1613.
1558.
1404.
MAX;
142?.
1431 .
1461 .
1560.
1580.
1554.
1551.
1612.
162?.
1583.
1534.
1483.
1613.
155ft.
1404.
TMAX-T A'.'G
0.
n.
n.
0.
n.
o.
n.
n.
n.
0.
0.
0.
n.
0.
0.
-------
bll utuWtt '-UN
IN l>Ab bAMPL t
30 UK3WKI
POSITION = ?f-.0 CM
2*7.69
21S.96
209.68
203.27
196.92
190. SB
1«<».23
177.86
171.50
16b.l9
IbS.BS
Ib2.50
146.15
UV.Bl
133.46
127.12
120.77
114.42
108. OB
1U1.73
95. 3b
B9.04
82.69
76.35
70.00
•\ r
u
-60.000 -4B.OOO -36.000 -24.0UO -1?.000
-.000
12.000
24.000
36.000
48.000
60.000
Figure 176. Radial profile of NO at an axial position of 26. 0 cm
(movable-vane boiler burner; 30-degree vane angle)
-------
UJ
o
HAU14L
bO,
b/,
bb,
b4,
bj,
si.
bU,
PUbITJON-LC
00
94
88
83
71
71 «
6b
60
54
4« ^__^___
.42
VS. PPM N02 IN
t>0 ULLiXFL 'SUN
b«b S«MPLt
30
VANF
AXIAL POSITION = ?f..O CM
16
45
44
4J
42
4U.
J9
J8
J/.
J6.
Jb.
J4.
J3
JO.
27
31
2b
19
1J
08
02
96
90
8b
79
73
67
62
56
50
4'
38
33
27
21
25.10
24.04
22.9b
21.92
20.87
19.81
18.7b
17.69
16.63
15.58
14.52
13.46
12.40
11.3b
10.29
9.23
8.17
7.12
6.06
b.OO
V..
o
-60.000 -48.000 -36.000 -
-------
CNJ
HAU1AL POSITION-CM
21.00
20.60
19J79
19.38
18.98
18.58
18.17
17.77
17.37
16.96
16.56
16.15
15.75
15.35
14.94
14.54
14.13
13.73
13.33
12.92
12.52
12.12
11.71
11.31
10.90
10.50
10.10
9.69
9.29
8.88
8.48
8.OB
7.67
6.87
6.46
6.06
5.65
5.25
4.85
4.44
4.04
3.63
3.23
2.83
2.42
2.02-
1.62
1.21
.81
.40
.00
BOILtR BURNER bU ULGHEE GUN NOZZLE
VS. * 02 IN GAS SAMPLE
30 UEGRtE VANF ANGLE
AXIAL POSITION
?6.0 CM
-60.000 -4b.UOO -J6.000 -24.000 -12.000
-.000
12.000
^4.000
36.000
4S.OOO
iso.noo
Figure 178. Radial profile of O2 at an axial position of 26. 0 cm
( movable-vane boiler burner; 30-degree vane angle)
-------
Cs)
WADIAL PUSITION-CK
12.00
11.77
11.50
11.31
11.08
10.8b ————
10.62 *
10.36
10.15
9.92
9.69
9.46
9.23
9.00
8.77
8.5*
8.31
8.08
7.85
7.62
7.38
7.15
6.92
6.69
6.46
6.23
6.00
b.77
5.54
5.31
5.08
4.85
4.62
4.38
4.15
3.92
3.69
3.46
3.23
3.00
2.77
2.54
2.31
2.08
1.85
1.62
1.38
l.lb
.92
.69
.46
.23
.00
BOILER HUKNEK
VS. * C02 IN
60 UtbREE
bAS SAMPLE
GUN NOZZLE
30 UEGKEt VAMF ANGLE
AXIAL POSITION = ?h.O CM
-60.000 -'to.UUO -36.000 -24.UOU -12.000
-.000
12.000
?<» . 0 0 0
36.000
48.000
60.000
Figure 179. Radial profile of CO2 at an axial position of 26. 0 cm
(movable-vane boiler burner; 30-degree vane angle)
-------
COMPOSITE LOG PLOt KAOIAL POSniON-LM
0=02. N=NO. baNOZi U=CU2>
100.0000
76.6682
5b.7802
45.065?
34.5511
26.4897
20.3092
15.5707
11.9378 000
9.1525
7.0170
5.3798
4.1246
3.1623
2.4245
1.858U 0
1.4251 0
1.0926
.8377 0
.6422 C
.4924
.3775
.2894
.2219
.1781
.1304
.1000
!o588
.0451 N
.0346 C N
.0265
.0203 C
.0156
.0119
.0092
.0070
.0054 B
.0041 B b
.0032
.0024
.0019
.0014
.0011
.OOOb
.0006
.0005
.0004
.0003
.0002
.0002
.0001
.0001
VS. ALOG10 (CONCENTRATION «)
C=CO. H=H2» M=CH4.
0 L> D D D D L)
H H H
C C C
H H
0
0
0 C
C
0
H
H
000
N N N N N N
N
H b B B
H
b
H
AXIAL POSITIOr
0 D
D
C
0
0
H
C
r.
N N
N
ti
8
B
CM
-60.000 -4b.OOO -36.000 -24.000 -12.000
-.000
12.000
?4.oon
36.000
48.000
60.000
Figure 180. Radial profile of all the gases at an axial position of 26. 0 cm
(movable-vaneboiler burner; 30-degree vane angle)
-------
ULGWft GUN N02/lt JO I'tGHtt VAMF
DtG.f
IN)
OJ
-60.000 -40.000 -36.000 -24.UOO -1P.OOO
-.000
la.ono
36.000
48.nnu
60.000
Figure 181.
Radial profile of average temperature at an axial position of 26. 0 cm
(movable-vane boiler burner; 30-degree vane angle)
-------
o
°~tf
'c
<->,
»-«-
• -*
a
w
.61
-60
-So
—i
-IP
Flou) Direct Itm
Boiler Burner-60W
30°
O O
ForoJard
Figure 182. Radial profile of flow direction at an axial position of 26. 0 cm
(movable-vane boiler burner; 30-degree vane angle)
235
-------
U)
Table 31. IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 46. 7 cm
(Movable-Vane Boiler Burner; 30-Degree Vane Angle)
BOlLtW HUHNEH t>0 UtoWEE GUN NOZZLE 30 LJEGKEE VANF ANGLF
AXIAL POSITION! = 46.7 CM
HADIAL 02
o 1 1 c T T r ( i K.I (Jt
KUa 1 1 1 w(M w
CM
-60.
-48.
-36.
-24.
-18.
-12.
-6.
0.
6.
12.
18.
24.
36.
48.
60.
2.7
3.0
2.8
1.7
1.5
.9
1.1
.8
1 .2
1.7
2.5
3.6
3.3
2.2
2.1
N2
7
?
?
86.4
85.8
85.5
85.7
85.7
86.2
86.2
86.1
7
7
?
?
NO
ODM
r*K™
330.
324.
339.
346.
320.
318.
285.
267.
276.
285.
248.
213.
218.
233.
249.
N02
UCJM
"r^fn
38.
41.
36.
34.
28.
24.
21.
18.
20.
28.
31.
30.
33.
36.
40.
C02
^6
10.3
10.1
10.2
10.8
10.9
10.8
10.8
10. 6
10.8
10. b
10.3
9.8
9.9
10.6
1U.7
CO
.0172
.0221
.0560
.2100
1.0000
1.6000
1.3000
1.0000
1.0000
.6000
.3000
.0585
.0861
.0643
.0482
H2
i
7
•f
0.0
.4
.7
.b
.8
.3
0.0
0.0
7
7
?
V
CH4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
C2H2
f" y t-J/1
L c. n**
*
7
7
7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
7
7
?
C2H*
7
7
7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
7
?
7
C3H6
^fc
7
?
?
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
?
?
?
9*
?
?
?
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
7
?
?
TEMPFRATUHE DEd.r
AVG.
1420.
1431.
1442.
1451.
1459.
1437.
1459.
1466.
1478.
1500.
1508.
1505.
1507.
1556.
1501.
MAX.
1420.
1431.
144?.
1451.
1459.
1437.
1459.
1466.
147P.
1500.
150P.
1505.
1507.
1556.
1501.
TMAX-TAVG
0.
0.
o.
0.
n.
0.
0.
0.
0.
0.
n.
0.
0.
0.
0.
-------
Table 32. IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 146. 1 cm
(Movable-Vane Boiler Burner; 30-Degree Vane Angle)
OO
KADIAL
POSITION
CM
-60.
-48.
-36.
-24.
-18.
-12.
-6.
0.
6.
12.
18.
24.
36.
48.
60.
02
%
4.1
2.6
1.9
1.5
1.4
.9
1.3
1.1
1.3
1.3
1.1
.3
l.B
2.0
2.4
BOlLtH BURNEH 60 DEbHEE GUN NOZZLE 30 OEGHEE VANE ANGLE
C2H2 C2H6 C3H6 C3H8
* *
N2
*
7
7
7
7
?
7
7
7
7
7
?
?
?
?
?
NO
PPM
270.
3?4.
352.
346.
350.
327.
324.
305.
317.
330.
322.
2B7.
305.
2B5.
294.
N02
PPM
4ti.
57.
CT *
42.
40.
44.
36.
2B.
35.
42.
39.
34.
3/.
35.
40.
C02
*
9.5
10.3
In [i
* V • l_i
11.0
il.l
11.4
11.1
11.2
11.1
11.1
11.2
11.6
10. a
10.7
10. b
CO
%
.0100
.0190
.0182
.0350
.0274
.0620
.0461
.b840
.0710
.0784
.0846
.0640
.0730
.0862
.0744
H2
*
7
7
'j
y
y
y
y
y
y
7
y
y
y
y
y
CH4
*
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
AXIAL POSITION
TEMPERATURE OEG.C
146.1 CM
7
7
7
7
7
7
7
7
7
7
7
7
y
7
7
y
7
7
7
7
7
TT
7
•y
?
7
7
7
?
7
7
7
7
7
7
7
7
AVG.
1414.
1416.
1420.
1428.
1431.
1432.
1437.
1442.
1440.
1439.
1442.
1444.
1456.
1467.
1472.
MAX.
1414.
1416.
1420,
1428.
1431.
1432.
1437.
144?.
1440.
1439.
144?.
1444.
I45f..
1467.
147?.
TMAX-TAVG
0.
0.
ot
0.
0.
0.
0.
0.
n.
0.
0.
0.
0.
0.
0.
-------
UJ
00
Table 33. IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 385.4 cm
(Movable-Vane Boiler Burner; 30-Degree Vane Angle)
RADIAL
POSITION
CM
-60.
-48.
-36.
-24.
-1Z.
0.
12.
24.
36.
48.
60.
02
*
2.4
2.3
2.4
2.5
2.6
2.8
3.1
3.3
3.0
2.8
2.6
BOILER HUHNEH 60 UtOHEt GUN NOZZLE. 30 UEGKEE VANF ANGLE
AXIAL POSITION = 385.4 CM
N2
*
7
7
7
7
7
7
7
?
7
?
?
NO
PPM
342.
347.
344.
356.
348.
340.
337.
334.
331.
330.
236.
NU2
PPM
4).
34.
37.
3b.
34.
31.
32.
34.
36.
38.
39.
CU2
*
lU.b
1U.5
10.5
1U.4
10.3
10.2
10.1
V.9
10.2
10.3
10.4
CO
%
.0097
.0104
.0111
.0117
.0128
.0120
.U116
.0122
.0118
.0113
.0111
H2
*
7
?
't
7
7
•f
7
?
7
7
7
CH4
%
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
C2H2 C2H6
C2H4 *
*
? 7
7 ?
7 ?
7 7
7 ?
V 7
7 7
7 7
7 7
7 7
7 7
Hfc
7
7
7
7
7
7
?
7
7
7
7
C3HB
7
?
•y
?
?
7
?
?
7
7
?
TEMPFRATUWfc.
AVG.
1386.
1390.
1390.
1391.
1394.
1396.
1395.
1400.
1393.
1391.
1387.
MAX.
1386.
1390.
1390.
1391.
1394.
139ft.
1395.
1400.
1393.
1391.
1387.
DEG.C
TMAX-TAVG
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
-------
Table 34. FURNACE CONDITIONS FOR IN-THE-FLA ME SAMPLING
(Movable-Vane Boiler Burner; 15-Degree Vane Angle)
BOILER BURNER 60 DEGREE GUN NOZZLE 15 DEGREE VANE ANGLE
NUMBER OF SETS UF DAlA = b.
MINIMUM GRID VALUE OF AVERAGE lEMHEKATURE = 1200. DEfa.C
MAXIMUM GRID VALUE OF AVERAGE TtMHERATuRE = ItiOO. DEG.C
POSITION OF OUTSIDE LUGES OF BURNER
MINIMUM POSITION = -25. CM
MAXIMUM POSITION = 25. CM
GAS iNPUTf AXIAL 0. CFVHR
WALL TEMPERATUKt
PREHEAT TEMPERATURE
FLUE GAS RECIRCULATION 0.0
452.
RADIAL
UEG.C
DEb.C
2994. CF/HR
fO
OJ
sO
GAS SAMPLE ANALYSIS IN THE FLUE
NITROGEN OXIDE
NITROGEN D1UXIDE
OXYGEN
CARBON DIOXIDE.
CARBON MONOXIDE
196.0 PPM
28.0 PPM
2.7 *
10.3 *
.0094 *
LIMITS FOR CONCENTRATION PLOTS
LOWER
LOWER
LOWER
LOWER
LOWER
LIMIT
LIMIT
LIMiT
LIMIT
LIMIT
OF
OF
OF
OF
OF
NO =
NO? =
02 =
CH4 =
C02 =
0, PPM
0. PPM
0, *
0. *
0. 4>
UPPER
UPPER
UPPER
UPPER
UPPER
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
=
200.
30.
21.
4.
12.
PPM
PPM
*
%
*
ISOCONCENTRATION VALUES
OBTAIN VALUE OF RADIAL POSITION Al NO PPM
OBTAIN VALUE OF RADIAL POSITION AT N02 PPM
CONCENTRATION 150. 125. 100. 75,
CUNCFNTRATION 10. 15. 20. 25,
50,
-------
HAU1AI
4UO.
393.
387.
joo.
3/4.
368.
361
3b5
349
HOblTlUN-LC
OU
65
31
96
b'f
il
92
5b
23
HOlLtK
VS. H^M NO
GUN NCWLL
30 DfOPtf VANf ANOUf
IN bub bAMt-'Lt
A»tAL POSITION = <.f,.7 C"
3Jb.5
-------
HOILtW HUHNtK
VS. PPM N0
-------
tVJ
KAD1AL POSITION-O
21.00
10.60
20.19
19.79
19.38
18.98
16.SB
16.17
17.77
17.37
16.96
16.56
16.15
15.75
15.35
14.94
14.54
14.13
13.73
13.33
12.92
12.52
12.12
11.71
11.31
10.90
10.50
10.10
9.69
9.29
8. 88
8.46
6.08
7.67
7.27
6.87
6.46
6.06
5.65
5.25
4.85
4.44
4.04
3.63
3.23
2.83—*-
2.42
2.02
1.62
1.21
.81
.40
.00
BOILEK
VS. »
60 UtOHEE GUN NOZZLE
02 IN GAS SAMPLE
30 LltGKEE VANF ANGLF
AXIAL POSITION
46.7 CM
-60.000 -40.000 -36.000 -4,OOU -12.000
-.000
12.000
?4.noo
36.000
60.000
Figure 185. Radial profile of O2 at an axial position of 46. 7 cm
( movable-vane boiler burner; 30-degree vane angle)
-------
BOlLEft HUKNEH 60 DECREE GUN NOZZLE
VS. * C0 IN GAS SAMPLE
30 DEGHEE VANF ANGLF
AXIAL POSITION
66.7 CM
-60.000 -<»d.OOO -36.000
-IP.000
-.000
12.000
36.000
hO.OOO
Figure 186. Radial profile of CO2 at an axial position of 46. 7 cm
( movable -vane boiler burner; 30-degree vane angle)
-------
LOG
HOJLEH MUKNtW hi) DLGHht CHIN NO^ZLt JO UhGKtt VANf ANlil F.
KAPIAL t'OSIMUN-l.M VS. AL UOi 0 (CONCE.NTHA1 1 UN *)
= CO. H = H?« MsCH4,
AXIAL POSIIJIJM =
100.0000
bb.7802
la. 5707
11.9378
9.152s D D U
7.0170
S.379b
3^1623 0 U
2.4245 0
1.8588
1.4251
1.0926
.8377
.6422
.4924
.3775
.2894
.2219
.1701
.1304
• * 0 \f v
.0767
.0588 C
.0451
.0346 N N N
.0265
.0203 C
.0156 C
.0119
.0092
.0070
.0054
.0041 R B
.0032 b
.0024
.0019
.0014
.0011
.OOOb
.0006
.OOOb
.0004
.0003
.0002
.occa
.0001
.0001
U U U D U I)
1,
0
C 0
etc
C 0 C
0 H
H C
H
H
H r
N N
N N N N N
H H ti f
H
b B H
f> 0
O
0
0
()
C
C
f-
N N
IM
rt
1 H H
-60.000 -4B.OOO -36.000 -24.UOO -12.000
-.000
12.000
?<».noo
36.000 48.000
60.000
Figure 187. Radial profile of all the gases at an axial position of 46. 7 cm
( movable-vane boiler burner; 30-degree vane angle)
-------
Ul
BOILER BUHNtH 60 UtOHEE GUN NOZZLE
RADIAL POSITION-CM VS. AVERAGE TEMHEHAIUKt DEG.C
1000.
1768.
J777.
1765.
1754.
17*3.
1731.
1719.
1708.
1696.
1685.
1673.
1662.
1650.
1638.
1627.
1615.
1604.
1592.
1581.
1569.
1558.
1546.
1535.
1523.
1512.
1500.
148t).
1477.
1465.
1454.
1442.
1431.
1419.— ••
1408.
1396.
1385.
1373.
1362.
1350.
1338.
1327.
1J15.
1304.
1292.
1281.
1269.
1258.
1246.
1235.
1223.
1212.
1200.
30 OtGHEE VANE ANGLE
AXIAL POSITION = 4f>.7 CM
-60.000 -4H.UOU -16.000 -24.000 -12.0UU
-.000
12.000
24.000
36.000
48.000
60.000
Figure 188. Radial profile of temperature at an axial position of 46. 7 cm
(movable-vane boiler burner; 30-degree vane angle)
-------
10*
Flou> Direct ton Anal
Boiler Burner- 6o°6u
3o° V^ne flhle
Poii.tt.oh
Figure 189. Radial profile of flow direction at an axial position of 46. 1 cm
(movable-vane boiler burner; 30-degree vane angle)
246
-------
•VAUlttl.
*UU,
3-V3,
3BO,
3/4.
Job,
361,
3bb,
HOlLtW HllKNhH 00 HLOWtt <»i iN Nl)Z/Lt 30 UfGWtL «»^ ANdLK
HUSITlON-Cf VS. ^PM NO IN tiAb bAMFLt
OU
6b
31
96
62
27
92
SB
«XIAL HOSHION =
-60.000 -48.000 -36.000 -24.UOO -12.000
-.000
12.000
P4.000
36.000
48.000
60.000
Figure 190. Radial profile of NO at an axial position of 146. 1 cm
(movable-vane boiler burner; 30-degree vane angle)
-------
ro
^
oo
BOILEH HUKNEk 60 UtbREt
WAU1AL PUSITION-CM VS. PPM N02 IN CiAS SAMPLE
60.00
58.90
57.88
56.83 /•* — «>^
55.77 / ^S.
bo. 71 / >j
53.65 / •
52.60 / \
51.50 / \
50. 08 / \
08.37 — *' \
07.31 \
06.25 \
05.19 \
00.13 \
03.08 \
02.02
O0.96
39.90
38.85
3/.79
36.73
35.67
30.62
33.56
32.50
31.00
30.38
29.33
28.27
26.15
25.10
20.00
22.98
21.92
20.87
19.81
IB. 75
17.69
lb.63
15.58
10.52
13.06
12.00
11.35
10.29
9.23
B.17
7.12
b.06
5.00
V
GUN NO^ZLt 30 UfcOWEt VANF AN(,LF
AXIAL POSITION
106.1 CM
-oe.ooo
-IP.Ouo
12.010
,-"..00(1
.liS.OOO
OH.OOO
Figure 191. Radial profile of NO2 at an axial position of 146. 1 cm
(movable-vane boiler burner; 30-degree vane angle)
-------
ts)
HUbII10N-l>
21.00
2U.60
20.19
19.79
19. 3B
lB.9b
IB. SB
1U.1/
1 7.77
17.37
16.96
16.56
16. lb
15. 7b
14.13
13.73
13.33
11.71
11.31
10.90
10.50
10.10
9.64
9.29
H.S8
6.48
8.08
7.67
7.27
6.87
6.46
6.06
5.65
b.25
4.8b
4.44
4.04 »,
3.63
3.23
2.83
2.42
2.02
1.62
1.21
.81
.40
.00
HOILEH tfUHNtH oU ULGrtEE GUN NOZZLt
VS. » 02 IN G«b SAMPLE
30 DtGHtE VANF ANGLf
AXIAL POSITION =
-60.000 -4b.OOO -36.000 -24.UOO -12.000
12.000
24.00"
36.000
48.000
60.000
Figure 192. Radial profile of O2 at an axial position of 146. 1 cm
(movable-vane boiler burner; 30-degree vane angle)
-------
Ul
o
HAOIAL PUSITION-O
It. 00
11.77
11. 5*
11.31
11. OB
10.85
10.62
10.36
10.15
9.92
9.69
9.46
9.3J
9.00
8.77
8.54
8.31
8.Ob
7.8b
7.62
7.38
7.15
6.92
fc.69
6.46
b.23
6.00
b.77
b.54
5.31
b.Ob
4.85
4.62
4.38
4.15
3.92
j.69
J.46
3.23
J.OO
2.77
2.54
2.31
2.08
1.8b
1.62
1.38
l.lb
.92
.6*
.46
.23
.00
BOILEK HUHNKK 60 UtoHEE GUN
VS. * C02 IN GAb bAMPLE
30 OEGWEE VANE ANGLF
AXIAL POSITION = 14IS.1 CM
-hO.UOO
-•>b.OOO
-1?.OUU
l?.onu
^4.0(10
.IIS. 000
ho.noo
Figure 193. Radial profile of CO2 at an axial position of 146. 1 cm
(movable-vane boiler burner; 30-degree vane angle)
-------
COMPOSITE LOG PLOI
BOlLtk 8UHNEK 00 UtoWEt GUN NOZZLE 30 UEGHEE VANE ANGLE
HADIAL POSITION-CM VS. ALOG10 (CONCENTRA1 I ON *)
0=02. N=NU. B=N02» 0-CU2*
100.0000
76.6682
5B.7802
45.0657
34.5511
26.4897
20.3092
lb.5707
11.9378 U t
9.152b 0 D
7.0170
b.3798
4.1246 0
3.1623
2.424>, o
1.858B 0
1.4251
1.0926
.8377
.6422
.4924
.2219
.1701
.1304
.1000
tsj .0767
(jl .05BB
l— .04bl
.0346 N N
,026b N
.0203 C C
.Olb&
.0119
.0092 C
.0070
.00b4 B 8 n
.0041 t
.0032
.0024
.0014
.0014
.0011
.OOOB
.0006
.000-3
.0004
.0003
.0002
.0002
.0001
.0001
C=CO. M=H?, M=CH4.
> D U D 0 [1 U 0
.
0 0 00
0 0
0
C
C C C
C
(
N N N K N N N
C •
h B h H
b B B
AXIAL POSITION = 146.1 CM
-hO.OOO -4B.UOO -36.000 -24.UOU -1?.OOU
-.000
12.000
3ft,ono 48.npo ho.nno
Figure 194. Radial profile of all the gases at an axial position of 146. 1 cm
(movable-vane boiler burner; 30-degree vane angle)
-------
Ul
XAU1AI l-UblUON-Cf VS.
IttOO.
1 /»«.
1 /77.
rtUKNf-W
AVfHAGE 1 EM
bO UtfcHEt GUN HO/7LI
tKA I u«t nEf>.C
JO UK3Khb VAMF ANOLF
AXIAL POSITION
1/31.
1 M9.
1 /08.
1696.
1673.
1662.
1650.
1638.
1687.
1615.
1604.
Ib92.
Ib69.
Ib58.
1546.
1535.
1523.
1512.
ibOO.
1488.
14V7.
1465.
1454.
1442.
1431.
1419.
1408.
1396.
1385.
1373.
1362.
1350.
1338.
1327.
1315.
1304.
1292.
1281.
1269.
1258.
1246.
123S.
1223.
1212.
1200.
-ISO.000 -4U.OOO -36.000 -24.UOO -12.000
-.000
12.000
24.000
36.000
68.000
60.000
Figure 195. Radial profile of temperature at an axial position of 146. 1 cm
(movable-vane boiler burner; 30-degree vane angle)
-------
ioL
o
.0-
o-
Flow Direction AnAlu
Q
Boiler Burner-60°6ci
30° Vane flnjk
cm ^AIA! Postttoh
"T~
-feo
T r~
-Mo
T r—
-a.o
1 1
i
Reverse
T r
Figure 196. Radial profile of flow direction at an axial position of 146. 1 cm
(movable-vane boiler burner; 30-degree vane angle)
253
-------
tv
HOlLtH tfUKNtH 00 utGWEt GUN NOZZLt
MAUIAL KUblTlON-L* VS. HPM NO IN GAS SAMPLE
4UO.OO
JVJ.fob
J8/.31
300.96
3/4.62
368.27
361.92
JJ6.5'*
JJ0.19
Jc:3.85
J1/.50
311. 15
3U4.81
2/3.08
266.73
260.38
241.35
iJb.OC
228.65
222.31
215.96
209.62
203.27
196.92
190.58
184.23
177.88
171.54
165.19
158.85
152.50
146.15
139.81
133.46
127.12
120.77
114.42
108.08
101.73
95.38
89.04
62.69
76.35
70.00
30 UEGKtfc VAWF ANCjLF
AXIAL POSITION r 3*5.4
-60.000 -49.200 -38.400 -27.600 -16.800
-6.000
4.800
26.400
37.?00
48.000
Figure 197. Radial profile of NO at an axial position of 385. 4 cm
(movable-vane boiler burner; 30-degree vane angle)
-------
60.00
5H.94
S7.88
bb.BJ
bb.77
b4.71
53.65
52.60
51.54
5U.48
49.42
48.37
47.31
46.25
45.19
44.13
43.08
42.02
40.96
39.90
38.8b
37.79.
36.73
35.67
33.56
"4 J cn
30.38
29.33
28.27
27.21
26.15
22.98
21.92
20.87
14.81
18.75
17.69
16.63
15.58
14.52
13.46
12.40
11.35
10.29
9.23
8.17
7.12
6.06
5.00
HOILtk HUKNbH bU UtbKEt GUN NOZ/LK
VS. PPM N02 IN Oflb bAMPLt
30 DtGHEF. VANF ANIiLF
AXIAL POSITION = 3SS.<. CM
-60.000 -49.200 -38.400 -27.600 -16.800
-6.000
4.800
15.600
26.400
37.POO
48.000
Figure 198. Radial profile of NOE at an axial position of 385. 4 cm
(movable-vane boiler burner; 30-degree vane angle)
-------
30 OK,REE VANF ANOLE
Ul
KAUIAL fUbITION-LK VS. * 02 IN O»S bAMPLE
21.00
20.60
20.19
19.79
19. 38
la.se
ia.58
ia.17
17.77
17.37
16.96
16.56
16. Ib
lb.75
lb.3S
lolso
10.13
13.73
13.33
12.92
12.52
12.12
11.71
11.31
10.90
1U.50
10.10
9.6V
9.2V
«.88
a. 08
7.67
7.27
6.87
6.06
6.06
bJ2b
o.oo
3.63
3.23
2.83
2.02
1.62
1.21
.HI
.00
.00
'
AXIAL POSITION * 3R5.0 CM
-60.000 -OB.000 -16.000 -2O.OOO -1P.OUO
-.000
12.000
.000
36.000
OH.OOO
60.000
Figure 199. Radial profile of O2 at an axial position of 385. 4
(movable-vane boiler burner; 30-degree vane angle)
cm
-------
HOlLEk HUKNEH
e()
Ul
-J
VS. » C0<; IN OAS SAMPLE
GUN NO/7LE 30 DEGHEE VANF ANGLF
AXIAL
CM
-60.000 -49.200 -38.uO -16.SOU
-6.000
<>.80U
IS.600
26.400
37.?00
48.000
Figure 200. Radial profile of CO2 at an axial position of 385. 4 cm
(movable-vane boiler burner; 30-degree vane angle)
-------
tSJ
0 UEGHEE GUN NOZZLE 30 DEGHEE VANE ANGLE
KAOIAL HOSI T ION-CM VS. ALO(,1 0 (CONCENTHAT ION *)
N=NO, B=N02, U=C02. C=CO. H=H2. M=CH4,
AXIAL POSITION x 3R5.4 CM
-hO.OUO
-18.400 -27.0UU
-1ft.800
-IS.000
?6.400 37.PI10 -.H.OOO
Figure 201. Radial profile of all the gases at an axial position of 385. 4 cm
(movable-vane boiler burner; 30-degree vane angle)
-------
(Jl
BOlLtH BUrtNEK faU uEGHEE GUN NOZZLE
RAUIAL HOb!T10N-O VS. AV^ WAGE TEMPEKAIUKt DEG.C
moo.
1 /88.
i m.
I 765.
JO UEGKEt VAMF ANGLE
AXlflL POSITION = 3PS.4 C"
1731.
1719.
1708.
1696.
1685.
1673.
1662.
1650.
1638.
1627.
1615.
1604.
1592.
Ib81.
1569.
Ib58.
1546.
1535.
1523.
1512.
1500.
1488.
1477.
1465.
1454.
1442.
1431.
1419.
1408.
1396.
1385.—••
1373.
1362.
1JSO.
1338.
1327.
1315.
1304.
1292.
1281.
1269.
1258.
1246.
1235.
1223.
1212.
1200.
-60.000 -49.200 -38.40U -27.OUO -16.800
-6.000
4.800
15.600
26.400
37.200
48.000
Figure 202. Radial profile of temperature at an axial position of 385. 4 cm
(movable-vane boiler burner; 30-degree vane angle)
-------
IO-LJ
a.
d
^
<-*-
. «*
o
w
Flow Dv.rectton fl
Boiler Banker- fe
30° Va*»e /V^k
385,Hem AxuJ ftsttion
Forward
Reverse
-60
—I—
-Mo
-2.0
i
't&l Position,
Figure 203. Radial profile of flow direction at an axial position of 385. 4 cm
(movable-vane boiler burner; 30-degree vane angle)
260
-------
Movable-Vane Boiler Burner With 30-Degree Vane Angle
The first group of in-the-flame profiles, presented in Figures 168
through 203 were collected under burner operating conditions recommended
by a utility boiler manufacturer. The gas input was 2982 SCFH with a sonic
velocity.
Flow direction analyses at the 5. 1-cm axial position depicts a Type III
flame. Secondary recirculation zones exist in the regions —60 cm to —32 cm
and 34 cm to 60 cm. Inside the edge of the burner block, two peaks occur
at —24 cm and +24 cm. The primary recirculation zone occurs between
~12 cm and 4 cm with its minimum at —6 cm.
Correlating the 5. 1-cm axial position temperature profile with the above
flow analysis, a constant temperature of 1454°C exists in the secondary re-
circulation zone between—60 cm and —32 cm ( compared with a wall tempera-
ture of 1387°C) . A peak temperature of 1796°C was measured at the —21 cm
radial position, just inside the edge of the burner block (—25 cm). This
position contains a gas composition whose time-averaged value is only 1%
above the fuel/air stoichiometric ratio. The stoichiometric ratios of fuel
and air are estimated to occur at —21 cm and —3. 7 cm.
Figure 168, the plot of nitric oxide versus radial position, shows that
the nitric oxide concentration in the secondary recirculation zone (—60 cm to
—32 cm) averaged about 352 ppm, as compared with the flue concentration of
340 ppm. Comparing this with the average NO concentration of 140 ppm in
the forward flow regions within the burner block indicates that, at 20. 1 cm
downstream of the gas injector, 41% of the flue concentration of nitric oxide
appears within the combustion zone. The minimum concentrations of NO
measured between 12 cm and 24 cm occur within the region where a large
jet of secondary combustion air was detected.
The plot of nitrogen dioxide versus radial position ( Figure 169) shows
symmetry about the centerline of the burner. The secondary recirculation
zones have concentrations on the order of 52 ppm, as compared with the
flue value of 57 ppm. Minimum concentrations of nitrogen dioxide were
measured at —24 cm and +18 cm, with respective levels of 25 ppm and 31 ppm.
A peak occurs within the burner-block region at 6 cm, with a concentration
of 52 ppm.
261
-------
The oxygen profile at the 5. l-c:m axial position ( Figure 170) shows
peaks at—21 cm and +18 cm, with concentrations of 3. 4% and 13. 7%, respec-
tively, which represent the secondary combustion air input. This large
difference in oxygen concentration may arise from 1) packing of the secondary
combustion air to the right side of the burner; and/or 2) since the fuel is
injected through small discrete orifices, the probing plane may have inter-
sected a fuel jet to the left of the burner's centerline. Comparing the
average concentrations of unburned fuels within the burner block with the
left and right of the burner centerline shows 4. 7% versus 1. 6% CO,
respectively, and 4. 2% versus 0. 9% hydrogen, respectively. Thus, there
is experimental proof that we did intersect a fuel jet to the left of the
centerline of the burner; however, this does not exclude the possibility of
combustion air packing within the burner plenum.
The methane profile ( Figure 171) shows peaks at —24 cm and +24 cm, with
concentrations of 0. 2% and 0. 1%, respectively. These positions correspond
with the outside edge of the burner block. The major combustibles present are
hydrogen and carbon monoxide ( Figure 173) , both having their maximum
concentrations at —6 cm, with hydrogen at a peak concentration of 7. 6% and
carbon monoxide at 7. 0%.
The curve of carbon dioxide versus radial position ( Figure 172) shows
an average concentration of 10. 6% in the secondary recirculation zones
compared with a flue value of 10. 3%. Within the burner block region, a
maximum concentration of 8. 8% is measured at a —18 cm radial position.
The temperature measured at —18 cm was 1700°C, 96°C below the maximum
temperature level at —21 cm. The minimum carbon dioxide concentration of
4. 6% was detected at the 18 cm radial position. The measured temperature
at this position was 1378°C, or 28°C above the minimum temperature that
was detected at the 21 cm radial possition.
The in-the-flame data collected at the 26-cm axial position are listed
in Tables 30 and illustrated in Figures 176 through 182.
Flow direction analyses at the 26-cm axial position ( Figure 182) indicates
tnat the primary recirculation pattern still exists. The zone boundaries are
'. 3 cm and 20 cm. The secondary recirculation zone occurs between —60 cm
262
-------
and —55 cm. Since we are probing £. rotating flame, while our sampling plane
is fixed,, we are not analyzing the same volume of gas that was investigated
at the ol;her axial positions.
Figure 175 presents the NO concentrations versus radial position at the
26-cm axial position. The average concentration in the reverse flow region
is 249 ppm, which is 73% of the lev^l measured in the flue. The average
concentration in the forward flow regions is 298 ppm.
The radial profile of NO2 at the 26-cm axial position is shown in Figure 177.
There is a distinctive minimum at the 24-cm radial position. This corresponds
to the position where the peak oxygen concentration was measured. The
minimum occurs just inside the forward flow zone.
Figure 178 illustrates the oxygen versus radial position for the 26-cm
axial position. A slight minimum occurs at —12 cm, with a maximum at
+24 cm. The minimum occurs with:in the primary recirculation zone and
is compared with large concentrations of carbon monoxide ( 5. 5%) and
hydrogen ( 6. 6%) . The maximum appears at 24 cm, which is just inside the
forward flow region. Again, the asymmetry of the fuel-air distributions,
similar to the observations made from Table 29 and Figure 170 suggests a
packing of the combustion air.
The carbon dioxide-versus-radial position profile is given in Figure 179.
In the forward flow regions, a rather constant concentration of 10. 3% has
been reached. The primary recircxilation zone shows a much lower average
concentration of 8. 9%.
The temperature profile (Figure 181) shows maximums of 1613°C and
1622°C at 36 cm and 6 cm, respectively., These locations correlate rather
well with positions where the fuel/air ratio is stoichiometric. A minimum
of 1483 °C occurs at 24 cm, the point where the maximum air was measured.
In-the-flame data for the 46. 7-cm axial position are listed in Table 31
and presented in Figures 183 through 189. The primary recirculation zone
extends from —18 cm to +18 cm.
The concentrations of carbon monoxide and hydrogen have been reduced
from their respective maximum of 5. 6% and 6. 8% at the 26-cm axial
position to 1. 8% and 0. 8% at the 46, 7-cm axial position. The maximum
263
-------
concentration of oxygen still occurs at the 24-cm radial position, with a
percentage of 3. 6. The NO concentration has an average concentration of
285 ppm in the primary recirculation zone and 281 ppm in the forward flow
region.
The in-the-flame data collected for the 146. 1-cm axial position show a
general smoothing of the oxygen, carbon dioxide, and temperature profiles.
This data is listed in Table 32 with graphic representations in Figures 190
through 196. The flow profile no longer displays a primary recirculation
zone. All measured flow is in the forward direction. Combustion is com-
pleted, with only trace amounts of carbon monoxide being detected. The
average concentration of NO is 316 ppm, or 24 ppm less than the flue
concentration.
Figures 173, 180, 187, 194, and 201 show composite log plots of con-
centration versus radial position within the composition range of 0. 0001%
( 1 ppm) to 100%. In these plots, the interrelationships between concentration
variations of oxygen, nitric oxide, nitrogen dioxide, carbon monoxide, carbon
dioxide, hydrogen, and methane can easily be visualized.
Figures 175, 182, 189, 196, and 203 show flow direction versus radial
position. These profiles show the positions of the primary and secondary
forward flow zones, recirculation zones ( reverse flow) , and of the shear
and boundary layers.
Figures 174, 181, 188, 195, and 202 are plots of the average temperatures
measured versus radial positions.
Movable-Vane Boiler Burner With 15-Degree Vane Angle
From data collected during the input/output tests, we discovered that an
effective and economic way to reduce NO emissions from the boiler burner
} x
was to decrease the tangential velocity component ( swirl) of the combustion
air. For this trial series, the vane angle was changed from 30 degrees to
15 degrees. Because of the absence of flame luminosity, it was impossible
to determine visual flame length. The furnace operating conditions for which
these in-the-flame data were collected are listed in Table 34. A complete
listing of the pollution-control test data is given in Tables 35 through 39, and
full graphic illustrations of these data are presented in Figures 204 through
240.
264
-------
(J\
Table 35. IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 5. 1 cm
(Movable-Vane Boiler Burner; 15-Degree Vane Angle)
BOILER HUHNeK t>0 OtOHEE. GUN NOZZUt 15 UtGHEt VANE ANGLE
AXIAL POSITION =
KADIAL
pi>C T T I (
' U3 I ' 1 V.
CM
-60.
-54.
-48.
-42.
-36.
-30.
-24.
-21.
-18.
-15.
-9.
-6.
-3.
0.
3.
6.
9.
15.
18.
21.
24.
30.
36.
42.
48.
60.
02
3.4
2.3
2.1
1.8
1.7
.4
2.3
3.8
5.2
8.1
14.6
15.4
16.9
16.3
14.8
15.0
12.4
3.9
.9
.7
.1
.8
2.1
2.0
2.1
2.1
N2
7
7
7
7
7
79.1
79.6
61.9
82.0
82.0
80.7
7
7
60.1
80.4
79.1
81.2
83.4
78. B
78.7
71.2
64.8
7
7
7
7
NO
POM
" r ~
144.
147.
156.
163.
156.
82.
74.
66.
61.
57.
25.
20.
14.
18.
?3.
27.
30.
47.
50.
52.
36.
88.
157.
142.
140.
141.
N02
puM
r*r ™
15.
19.
23.
21.
17.
11.
5.
4.
7.
10.
5.
7.
6.
13.
17.
15.
16.
15.
15.
13.
5.
9.
13.
19.
15.
14.
CU2
9.9
10.6
10.5
10.8
10.9
7.0
6.8
7.1
6.9
6.1
3.7
3.5
1.2
2.3
3.0
3.8
4.0
6.6
6.5
6.5
5.1
10.9
10.6
10.8
10.7
10.7
CO
.0061
.0120
.0132
.0233
.0476
5.1000
5.0000
3. 7000
2.9000
1.7000
.
-------
tv
O
O
Table 36. IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 26.0 cm
(Movable-Vane Boiler Burner; 15-Degree Vane Angle)
BOILER BURNER 60 UEGREE GUN NOZZLE 15 DEGREE VANE ANGLE
AXIAL POSITION = ?6.0 CM
RADIAL 02
One t T TflKI tt
rUb I 1 AUN w
CM
-60.
-54.
-48.
-42.
-36.
-30.
-24.
-21.
-18.
-15.
-12.
-9.
-6.
-3.
0.
3.
6.
9.
12.
15.
18.
24.
30.
36.
42.
48.
54.
60.
1.1
1.2
.8
.3
.2
.<:
.1
1.0
1.7
1.9
5.2
5.9
7.0
5.8
4.9
6.1
5.5
4.1
3.3
1.8
1.2
.3
.1
.3
.7
1.1
1.2
1.3
N2
86.9
86.3
85.1
84.3
81.5
au.b
82.5
82.7
82.6
82.8
82.1
82.6
82.0
81.1
82.6
82.5
81.6
79.3
80.7
81.6
80.1
82.3
82.3
8b.2
8n.O
?
?
?
NO
ODIul
HrM
140.
143.
131.
126.
106.
7e.
110.
119.
106.
102.
69.
74.
70.
72.
76.
61.
64.
68.
72.
58.
70.
76.
84.
91.
94.
110.
125.
134.
N02
LJOkJl
rHM
19.
17.
10.
12.
7.
J.
2.
1.
2.
9.
5.
3.
2.
S.
10.
9.
1U.
11.
12.
13.
15.
17.
10.
14.
19.
21.
18.
20.
C02
10.4
10.5
9.8
9.3
7.6
7.1
8.0
8.0
7.8
7.8
7.3
8.2
8.0
6,7
6.9
6.3
6.4
6.4
7.0
tt.O
8.3
9.1
9.7
10.3
11.2
11.2
11.2
11.1
CO
.5000
.7000
2.1000
3.<:ooo
b.6000
b.4000
4.SOOO
4.2000
3. '000
3.6000
1.6000
l.bOOO
1.3000
l.BOOO
2.6000
2.bOOO
2.8000
b.9000
3.0000
4.1000
3.9000
3.tK>00
3.3000
1 .6000
.4600
.07feO
.0481
.0460
H2
Mb
0.0
.2
1.3
2.U
4.0
4.8
3.b
2.8
2.6
2.4
2.9
.8
.7
3.7
2.1
1.7
2.8
4.3
3.2
3.0
5.0
3.1
2.1
1.7
0.0
?
't
?
CH4
(W
MS
0.0
0.0
0.0
0.0
.1
.1
.5
.4
.6
.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
.1
1.1
.6
.5
.4
.1
.1
0.0
0.0
0.0
0.0
C2H2
f* ?MA
CcHH
*
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
?
?
?
C2H6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
?
?
?
C3H6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
n.o
0.0
0.0
0.0
n.o
0.0
n.o
0.0
o.u
0.0
0.0
0.0
0.0
0.0
?
?
?
C3H8
0.0
0.0
0.0
0.0
o.n
0.0
0.0
o.n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
?
?
?
TEMPfRATURt DEG.C
AVG.
1527.
1542.
1567.
1609.
1678.
1695.
1626.
1598.
1564.
1553.
1548.
1555.
1565.
1573.
1568.
1564.
1562.
1554.
1550.
1540.
1543.
1558.
1577.
1562.
1541.
1528.
1520.
1513.
MAX.
1527.
154?.
1567.
1609.
167*.
16?^.
1626.
159*.
1564.
1553.
1548.
1555.
156^.
1573.
1568.
1564.
156?.
1554.
1550.
154n.
1543.
155P.
1577.
156?.
154] .
152fl.
1520.
1513.
TMAX-TAVG
0.
0.
0.
0.
n.
o .
n.
n.
n.
n.
0.
n.
n.
0.
n.
n.
n.
n.
n.
n.
n.
n.
n.
n.
n.
0.
n.
0.
-------
Table 37. IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 46. 7 cm
(Movable-Vane Boiler Burner; 15-Degree Vane Angle)
BOILER BORNE* 60 UEGKEE GUN NOZZLE 15 DEGREE VANE ANGLE
AXIAL POSITION = 46.7 CM
RADIAL
uric T T i { \
rUb 1 1 1U
CM
-60.
-54.
-48.
-42.
-36.
-30.
-24.
-18.
-12.
-6.
0.
6.
12.
18.
24.
30.
36,
42,
48,
54.
60.
02
.6
.5
.5
.2
.2
.6
.8
1.2
1.8
2.1
2.5
3.8
4.3
4.2
3,7
2.8
2.9
2.8
3.1
3.7
4.3
N2
85.1
83.7
81.8
80. i
79.9
80.1
81.6
82.1
83.5
84.6
83.6
83.0
82.9
82.7
84.2
85.4
7
7
7
7
7
NO
QOU
rH"
135.
131.
115.
90.
94.
96.
98.
101.
104.
107.
122.
102.
84.
106.
115.
119.
123.
126.
124.
123.
119.
N02
OQU
HHn
20.
19.
19.
in.
9.
14.
19.
15.
13.
9.
11.
12.
13.
14.
15.
14.
15.
16.
17.
21.
18.
C02
10.1
9.4
0.5
7.6
7.5
7.7
8.3
8.5
9.1
9.3
9.4
8.9
8.9
9.2
9.8
9.9
10.1
1U.3
10.1
9.8
9.3
CO
2.UOOO
3.5000
5.1000
6.2000
6.8000
6.2000
5.1000
4.6000
2.9000
1.9000
2.2000
2.1000
2.0000
1.9000
1.7000
.5000
.1000
.U584
.0462
.U260
.0207
H2
1.1
1.8
3.1
4.2
4.6
4.4
3.2
2.6
1.7
1.2
1.1
1.1
1.1
1.0
.6
0.0
7
7
7
7
?
CH4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
C2H2
*
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
?
7
7
7
7
C2M6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
7
7
7
7
C3H6
n.o
n.o
0.0
0.0
0.0
0.0
0.0
n.o
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
7
7
7
7
7
C3H8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7
?
7
?
?
TEMPERATURE DEG.C
AVG,
1493.
1517.
1538.
1564.
1553.
1535.
1517.
1503.
1484.
1477.
1471.
1472.
1470.
1465.
1471.
1468.
1459,
1457.
1452.
1449.
1444,
MAX.
1493.
1517.
1538.
156-,,
1553.
1535.
1517.
1503.
1484.
1477.
1471.
1472.
1470.
1465.
1471.
1466.
1459.
1457.
145?.
144Q.
1444.
TMAX-TAVG
n.
0.
0.
0.
n.
n.
n.
n.
n.
n.
0.
0.
fl.
0.
n.
0.
n.
n.
n.
n.
0.
-------
Table 38. IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 146. 1 cm
(Movable-Vane Boiler Burner; 15-Degree Vane Angle)
BOILER 8URNEH 60 UEGKEE GUN NOZ7LE 15 DEGKEE VANF ANGLE
tv)
o^
oo
HAOIAL
POSITION
CM
-60.
-54.
-48.
-42.
-36.
-30.
-24.
-18.
-12.
-6.
0.
6.
12.
18.
24.
30.
36.
42.
48.
54.
60.
02
*
1.7
1.7
1.8
2.0
2.1
2.6
3.0
3.1
2.8
3.0
2.6
2.3
2.2
2.4
2.4
2.6
2.S
2.4
2.8
3.0
3.0
N2
(
s
7
7
7
7
7
7
7
7
7
7
7
?
7
7
7
7
7
7
7
7
7
NO
PPM
188.
1H4.
180,
156.
164.
172.
156.
164.
156.
156.
127.
138.
135.
142.
135.
133.
137.
135.
145.
139.
135.
N02
PPM
20.
22.
21 1
18.
22.
19.
17.
15.
18.
20.
25.
24.
20.
23.
26.
30.
32.
31.
28.
24.
26.
CU2
*
10. tt
10.8
10c»
10.7
10.6
10.3
10.1
10.1
10.2
10.1
10.4
10.5
10.6
10.5
10.5
10.4
10.4
10.4
10.2
10.1
10.1
CO
*
.U324
.0341
c 0305
.0296
.0282
.0247
.0220
.0158
.0201
.0149
.0094
.0095
.0094
.0080
.0086
.0080
.0077
.0078
.0076
.0068
.0093
H2
*
7
7
?
7
7
7
7
7
7
?
7
7
7
7
7
7
7
7
7
7
7
CH4
*
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
C2H2 C2H6 C3H6 C3H8
* *
*
AXIAL POSITION = 146.1 CM
TEMPERATURE DEG.C
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
»
?
?
?
?
7
7
7
7
?
7
?
?
7
7
7
7
7
?
7
7
?
AVG.
1538.
1527.
J52S.
1517.
1504.
1502.
1496.
1494.
1487.
1491.
1482.
1469.
1459.
1461.
1468.
1464.
1469.
1463.
1465.
1470.
1468.
MAX.
153*.
1527.
IScii.
1517.
1504.
1502.
1496.
1494.
1487.
1491.
148?.
1469.
1459.
1461.
1468.
1464.
1469.
1463.
1465.
1470.
146R.
TMAX-TAVG
0.
0.
C .
0.
n.
0.
o.
0.
n.
o.
n.
0.
0.
n.
0.
n.
0.
0.
0.
0.
n.
-------
tv
Table 39. IN-THE-FLAME SAMPLING DATA AT AN AXIAL POSITION OF 385.4 cm
(Movable-Vane Boiler Burner; 15-Degree Vane Angle)
15 UEGHtE VANE ANGLE
AXIAL POSITION = 385.4 CM
RADIAL 02
unc T T T HM *
i W3X 1 iwi'i W
TM
\+r\
-60.
-48.
-36.
-24.
-12.
0.
12.
24.
36.
48.
60.
2.7
2.B
2.6
2.8
2.8
2.8
2.7
2.5
2.5
2.7
2.9
N2
7
7
?
7
?
7
7
7
?
7
7
NO
188.
192.
194.
201.
196.
192.
194.
196.
192.
198.
195.
N02
UDM
r r l"l
24.
27!
25.
25.
26.
25.
24.
25.
28.
24.
27.
C02
10.3
10.2
10.3
10.2
10.2
10.2
10.2
10.4
10.4
10.3
10.2
CO
.0103
.0092
.0095
.0122
.0099
.0084
.0087
.0094
.0089
.0081
.0076
M2
?
V
7
7
7
?
7
7
7
7
7
CH4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
C2H2
.
7
7
7
7
7
7
7
7
7
7
7
C2H6
7
7
7
7
?
7
7
7
7
7
7
C3M6
7
7
7
7
7
7
7
7
7
7
7
C3H8
7
?
7
7
7
7
7
7
7
7
7
TEMPERATURE DEG.C
1438.
1443.
1444.
1448.
1446.
1447.
1448.
1449.
1447.
1443.
1438.
143B.
1443.
1444.
144R.
144ft.
1447.
144B.
1449.
1447.
1443.
1438.
-... - - . .,-
0.
n.
ft.
0.
0.
ft.
0.
n.
n.
n.
0.
-------
ro
^j
o
H01LLK BUHNEK 60 UtfcHF.t GUN NOZZLE.
KADIAL PObITION-CP VS. PPM NO IN IJAS SAMPLE
2UO.OO
196.Ib
lUb.46
164.62
Iti0.77
1/6.92
173.OB
169.23
16b.38
161.54
Ib7.69
Ib3.85
IbO.OO
146.15
142.31
138.46 /
134.62
1J0.77
15 l)fr,Htt VANE AN(.LF
AXIAL POSITION x
5.1 CM
123.08
119.23
llb.3H
111.54
1U7.69
lU3.8b
100.00
96.Ib
92.31
B4.62
au.77
76.92
7J.OB
69.23
bb.38
bl.54
S/.69
bj.8b
bO.OU
46.1b
42.31
Jtf.46
34.62
JU.77
26.92
23.06
19.23
lb.3b
11.54
7.69
3.Hb
.00
%_
X
\
'
-hU.OOO -40.UIJO
-2-..UOU
-.noo
IP.onu
I6.nnn
60.000
Figure 204. Radial profile of NO at an axial position of 5. 1 cm
(movable-vane boiler burner; 15-degree vane angle)
-------
UlJKNtH bU UtOKFt GUN NOZ/Lk
PHM N0
-------
BOlLtW HUHNhK bU UtUKEt f.UN NOZ7LE IS UEGHEE VANE AN(,l>
VS. * 02 IN OAb
ts)
AXIAL POSITION =
S.I CM
-ftO.OOO -4b.OOO -36.000 -«!'•.UOO -1P.OOU
-.000
12.000
?<>.000
36.000
48.000
60.000
Figure 206. Radial profile of O2 at an axial position of 5. 1 cm
(movable-vane boiler burner; 15-degree vane angle)
-------
tv)
-vl
u>
POblTION-CK
4.0000
3.9231
3.U462
3.7692
3.6923
3.615*
3.5385
3.4615
3.3846
3.3077
3.230K
3. 1538
3.0769
3.0000
HOlLtH
VS, *
60 utOWEE GUN NOZZLE
CH4 IN UAS SAMPLE
15 DFGKEE VANF ANGLE
AXIAL POSITION =
5.1 CM
2.8462
2.7692
2.6923
2.6154
2.5385
2.4615
2.3846
2.3077
2.230B
2.1538
2.0769
2.0000
1.9231
1.8462
1.7692
1.6923
1.6154
1.5385
1.4615
1.3846
1.3077
1.2308
1.153B
1.U769
1.0000
.9231
.0462
.6923
.6154
.5385
.4615
. J«46
.3077
.230B
.153H
.0769
.0000
-60.000
- 'h.OOO
-1P.OUO
-.noo
36.000
4M.OOO
Figure 207. Radial profile of CH4 at an axial position of 5. 1 cm
(movable-vane boiler burner; 15-degree vane angle)
-------
KAUIAL
HOlLtk HUHNtrt bO UtoHEt GUN
VS. * C02 IN OttS bAMPLK
15 UFGKtt VANF ANGLF
««IAL POSITION =
CM
4.3B
3!92
3.69
3.46
3.23
J.OO
2.77
2.54
2.31
2.08
l.Bb
1.62
1.38
1.15
.92
.69
.46
.23
.00
-60.000 -4B.OOO -36.000 -24.000 -12.00U
-.000
12.000
24.000
36.000
48.000
60.000
Figure 208. Radial profile of CO2 at an axial position of 5. 1 cm
(movable -vane boiler burner; 15-degree vane angle)
-------
BOILEK BUHNE* 60 OEGWEE GUN NOZ7LE 15 OEGKEE VANF ANGLE
COMPOSITE LOU PLUI KADIAL POSIUUN-CM VS. ALOG10(CONCENTHATION *)
0=02» N=NO. b=N02. 0=C02« C=CO. M=H?, M=CH4.
AXIAL POSITION = 5.1 CM
.0000
.6682
.7802
.0657
.5511
.4897
.3092
.5707
.937B DODO
.1525 0
.0170 U
.3798 M
.1246
.1623 0
.4245 0
.8588 DOOM
.4251
.0926
.8377
.6422
.4924
.3775 0
.2894
.2219
.1701
.1304
.1000
.0588
.0451 C
.0346
.0265 C
.0203
.0156 N N N N N
.0119 C C
.0092 IN
.00/0
.0054 C
.0041
.0032
.0024 H
.0019 b H H
.0014 H
.0011 n
.0008
.0006
.0005
• 0004
.0003
.ooo<:
.0002
.0001
- nnn 1
0
00 000
0
0
00 DOC
00 C H
C D 0 0 0 K
C 0 D
H D
H . C
n
H CO
C MM
CM M
C H
H M
r MM
" ::
C C
N
N N N N
M
N
N N N
N N H
MR H H B h H
B
H B B
M
H
0 0 D 0 n
ooo o
c
0
c
M N N N
C
N C
H
HUH
H
-f>o. ouo --.e.uoo -16.000
-i;?.ooo
-.000 I2.nnu i>4.noo jft.ono 4H.nno MI. ooo
Figure 209. Radial profile of all the gases at an axial position of 5. 1 cm
( movable -vane boiler burner; 15-degree vane angle)
-------
O
NADIAL POSITION-CM
1000.
1/88.
1777.
1765.
1754.
1742.
1731.
1719.
1708.
1696.
1685.
1673.
1662.
l&SO.
1638.
1627.
161S.
1604.
1592.
1581.
1569.
1558.
1546. * -
1535. --•'
1523.
1512.
1500.
1488.
1477.
1465.
1454.
1442.
1431.
1419.
1408.
1396.
1385.
1373.
1362.
IJ50.
1338.
1327.
1315.
1304.
BOILER HUKNE.K 60 DtOWEE GUN NOZZLE
VS. AVEHAGE TEM^tKAIUHt DEG.C
15 Dtr,kEt VANF ANGLe
AXIAL POSITION =
5.1 CM
1146.
l«-35.
1223.
-4B.OOO -16.000 -2H. OOU -1?.OOU -.000 l?.0n()
36.000 48.000 60.000
Figure 210. Radial profile of temperature at an axial position of 5. 1 cm
(movable-vane boiler burner; 1 5-degree vane angle)
-------
10"
I*1-
Q
to
loa_
fCX
O
O
Flow Direction
Botler Burner- 60° Sun Mottle
15
cm
o
-<,o
-so
PoStttOftjCry^
fo
Figure 211. Radial profile of flow direction at an axial position of 5. 1 cm
(movable-vane boiler burner; 15-degree vane angle)
277
-------
~J
oo
BOILtK HURNEH 61) utuHEE GUN NOZ7LL
KADIAL POSITION-C^ VS. HPM NO IN OAS bAwPLE
2UO.OO
196. lb
192.31
188.46
184.62
180.77
176.92
173.08
169.23
16b.38
161.54
Ib7.69
Ib3.8b
IbU.OO
146.15
142.31 ^-~ *v
138.46 s
-------
UFGHE.E VANF ftNOLt
IV
-4
vD
AXIAL POSITION
?6.0 CM
-60.000 -4B.OOO -J6.000 -«;•».UUO -12.000
-.000
12.000
36.000
AB.OOO
60.000
Figure 213. Radial profile of NO2 at an axial position of 26. 0 cm
(movable-vane boiler burner; 15-degree vane angle)
-------
tvi
00
o
HA01AL
21.
20.
2U.
19.
It).
18
18.
17.
II.
lb
lb.
16.
lb.
POSITION-CM
00
bU
19
79
38
98
b8
17
77
37
96
5b
lb
7b
BOILtH BUHNEK 60 DEGREE GUN NOZZLE
VS. » 02 IN GAS SAMPLE
15 OE&HEE VANE ANGLE
AXIAL POSITION
CM
10.13
13.73
13.33
12.12
11.71
11.31
10.90
10. bO
10.10
9.29
8.88
8.48
«.08
7.bf
7.27
6.87
6.46
6.06
b.bb
3.63
J.23
2.83
2.02
1.62
1.21— •-
.81
.00
.00
-hO.OUO -<»B.UOO
-<:<». Ol'O -li>.OUU
-.000
12.000 24.000
48.000
60.000
Figure Z14. Radial profile of O2 at an axial position of 26. 0 cm
(movable-vane boiler burner; 15-degree vane angle)
-------
INJ
00
HAU1AL POSITION-CM
4.0000
3.9231
3.8462
3.7692
3.6923
3.6154
3.5385
3.4615
J.3846
3.3077
3.2308
3.1538
3.0769
3.000U
2.9231
2.8462
2.7692
2.6923
2.615*
2.5385
2.4615
2.3846
2.3077
2.230b
2.1538
2.0769
2.00QO
1.9231
1.U462
1.7692
1.692J
1.6154
1.5385
1.4615
1.3846
1.3077
1.2308
1.1538
1.0769
1.0000
.9231
.8462
. 7692
.6923
.0154
.5385
.4615
.3846
.3077
.230B
.153b
.0769
.OOOU ~* * —
B01LEK bURNEH oO Ut
VS. * CMH IN GAS SA
^. .-^
OHEE
MPLE
/
/
/
GUN NOZZLE
15 DEGWEt VANE ANGLE
AXIAL POSITION = ?6.0 CM
\
-hfl.OOO -40.000 -16.000 -do.OUU -1P.OUU
-.000
12.000
?4.(>00
36.000
48.000
60.00U
Figure 215. Radial profile of CH4 at an axial position of 26. 0 cm
(movable-vane boiler burner; 15-degree vane angle)
-------
ro
oo
KAIHAL
12.OH
11.77
11.54
11.31
11.OH
1U.85
1U.3H-
10.lb
9.69
9.46
9.23
9.00
8.77
8.31
b.08
7.38
7.15
6.69
6.46
6.23
6.00
5.77
5.54
5.31
5.08
4.85
4.62
4.38
4.15
3.92
3.69
3.46
3.23
3.00
2.77
2.54
2.31
2.08
1.85
1.62
1.38
1.15
.92
.69
.46
.23
.00
BOlLtW HUWNt K bO UEGKEE GUN NOZ?Lt 15 UEGHEE VANt ANOLt
VS. * CO
-------
BOILER bUWNEK 60 UEGHEE GUN NOZZLt IS DEGREE VANE ANGLE
COMPOSITE LOG PL01 KAOIAL POSIHUN-CM VS. ALOG1 0 < CONCENTRAT ION *)
0=02. N*NO» B=N02i U=C02. C=CO. H=H2. M=CH4.
100.0000
f6.6682
58.7802
45.0657
34.5511
26.4897
20.3092
15.5707
11.9378 0
9.1525 0 00
/.0170 0 L
5.3798 C H
4.1246 H
3.1623 r
2.4245 C
1.B5BB H
1.4251 H
1.0926 0 0
.8377 0
.6422 C
.4924 C
.3775
.2894 o
.2219 M 00
.1701
.1304
.1000 M M
.0767
.058B
.0451
.0346
.0203
.0156 N N
.0119 NNN
.0092
.0070 N
.0054
.0041
.0032
.0024
.0019 H b
.0014
.0011 H H
.OOOS
.0006 b
.OOOb
.0004
.OOOJ a
.0002
.0002
.0001
.0001
n u
DODD on ODD 000
00 OOOOC M
CC H OCCCC
H C M H H H
H H C C
oo r M M o
c c c
0 MO
H
M h M
M M
M
M
N N
N
NNNNN NNN N
N N
H B
B H rt H
H H
a H
p
H h<
H
n
0 0
c
H H
C
0
r.
n
M M
N N M
ft
H
H
AXIAL POSITION =
CM
n 0 0 D
C C
NNN
K H B H
-hO.000
-.46.000 -2-..OOU -1?.000
-.000
12.000
36.000 48.000 60.000
Figure 217. Radial profile of all the gases at an axial position of 26. 0 cm
(movable -vane boiler burner; 15-degree vane angle)
-------
ro
oo
HOILEK HUKNtH bu LJtbWEt C>UN NOZZLt
rtAUlAL HUilT10N-LM VS. AVtHAGE ItMPtKAluHt DEO.C
1800.
1788.
1/77.
17bb.
15 UFGWEE VANF ANGLE
4XIAL POSITION =
CM
-60.000 -46.000 -36.000 -<;«..QUO -1?.000
-.000
12.000
24.000
36.000
48.000
60.000
Figure 218. Radial profile of temperature at an axial position of 26. 0 cm
(movable-vane boiler burner; 15-degree vane angle)
-------
QL.
§
Q
8?
£
10
-3
Flotf Direction
Boiler Burner- 6o°6un
15° Van« Aiyj
lt.0 cm AxuJ
i or Ward
,o
Reverse
I
-60
i
-HO
i
-lo
7.0
Figure 219. Radial profile of flow direction at an axial position of 26. 0 cm
(movable-vane boiler burner; 15-degree vane angle)
285
-------
BOILEK BUKNEH bU UEUHEE GUN NOZZLE
POSITION-CM VS. PPM NO IN UAS SAMPLE
200.00
is UEGHtt VANF ANGLE
AXIAL POSITION
oo
-hO.OOO -48.000
-i?.noo
-.000
12.000
P4.000
36.000
Figure 220. Radial profile of NO at an axial position of 46. 7 cm
(movable -vane boiler burner; 15-degree vane angle)
-------
HOlLtH BUHlMtK t>U UtoHEf GUN NOZZLk
VS. HPM NOe! IN u«b bAMPLE.
is DLGKEt VANE ANGLF
oo
-vl
AXIAL POSITION = 46.7
-60.000 - UOO
-12.000
-.000
i.ono
36.000
48.000
60.000
Figure 221. Radial profile of NO2 at an axial position of 46. 7 cm
(movable-vane boiler burner; 15-degree vane angle)
-------
oo
00
HADIAL
21.
2U.
20.
19.
1SI.
18
IB
18.
17.
17.
16
lb
16.
lb.
lb.
COSITION-CM
00
60
19
79
3H
98
SB
17
77
37
96
56
IS
7b
35
HOlLtH
VS. «
02
60 UE.GHEE GUN NOZZLE
IN OAS bAMPLE
15 UEGHEt VANF ANGLE
AXIAL POSITION = 46.7 CM
14.13
13.73
13.33
11.92
12. 52
12.12
11.71
11.31
10.90
10.50
10.10
9.6V
9.29
s.ae
b.4b
8.08
7.67
7.27
6.8/
6.46
6.06
b.6S
b.2b
4.85
4.44
4.04
J.63
3.23
2.83
2.42
2.02
1.62
1.21
.Ml
.40.
.OU
-so.oou
-2-4.UUU -I?.QUO
-.000
12.00(1
36.000
48.000
60.000
Figure 222. Radial profile of Oz at an axial position of 46. 7 cm
(movable-vane boiler burner; 15-degree vane angle)
-------
tv
c»
sO
HAD1AL POS1T10N-O
12.00
11.77
11.5ft
11.31
11. OB
10.85
10.62
10.38
10.15~*»
9.92 \
9.69 \
9.ft6 «
9.23 \
9.00 \
8.77
B • 5^
8.31
8.08
7.85
7.62
7.38
7.15
6.92
6.69
b.ftb
6.23
b.OO
b.77
5.5*
5.31
b.08
ft. 85
ft. 38
ft. 15
3.92
3.69
3.4b
3.23
3.00
2.77
2.5*
2.31
2.08
1.85
1.62
1.38
1.15
.92
.69
.46
.23
.00
HOlLtW
VS. *
\
»
\
bll DtbHEL r,UN NOZ7Lt
V«NE AN(,Lf
C02 IN
AXIAL POSITION = <«h.7 CM
•\
B
-60.000 -4B.OOO -36.000 -2ft.UOO -1P.OOU
-.000
12.000
2ft.000
36.000
48.000
60.000
Figure 223. Radial profile of CO2 at an axial position of 46. 7 cm
(movable-vane boiler burner; 15-degree vane angle)
-------
B01LE.K HURNtW 6U IJt&HEE GUN NOZZLE 15 UEOHEE VANF ANGLE
COMPOSITE LOO PLOT KAOIAL POSIUON-CI>
0=02. M=NO. B=N02. L)=C02.
1UO.OOOU
76.6682
58.7802
45.0657
34.5511
26.4897
2U.3092
15.5707
11.93/8
9.1525 DUO
7.01/0 C C C
5.3798 C
4.1246 HUH
J.1623 C H
2.4245
1.8588 C H
1.4251
1.0926 H
.8377
.6422 0 0
.4924 0 0
.3775
.2894
.2219 0 U
.1701
.1304
.1000
• OJbl
*? .0588
§ .0451
.0346
.0265
.020J
.0156
.0119 N N N
.0092 N N N
.0070
.0054
.0041
.0032
.0024
.0019 RUB
.0014 h b
.0011
.0008 ti
.OOU6
.0005
.0004
.OOOJ
.OOOe:
.OOU2
.0001
.0001
< VS. ALOolOICONCENTPATJON »)
C*CO. H=H2. M=CM4.
0 U U 0 I) U 0
C 000
(.
H C
M C C C C
0 H M M H H
N N N
N N N N
Mb H H
H H
tt
AXIAL POSITIO
0 D n 0 U 0
0 0
o o n o
c
;
r
c
C
C
N N M N N N
B 8 R
B H P
*.7 O
-60.000 -40.000 --\f>. (100 -24.000 -I?.000 -.000 12.000 24.000 Jh.OOO tM.OOO ISO.000
Figure 224. Radial profile of all the gases at an axial position of 46. 7 cm
( movable-vane boiler burner; 15-degree vane angle)
-------
POblTION-C*
1BOO.
1/88.
1777.
1765.
1754.
11*2.
1731.
1719.
1708.
1696.
1685.
Ib73.
BOILt* HUHNkK bO UEGWEE GUN NOZZLE
VS. AVKKAGE rEMftKA I UKE OtG.C
15 Of GHEE VANF ANGLK
AXIAI POSITION =
O
1650.
1636.
1627.
1615.
1604.
1592.
Ib81.
1569.
1558.
1546.
Ib35.
1533.
1512. -•
1500. S
1488.—*
1477.
1465.
X
/
\.
1442.
1431.
1419.
1408.
1396.
1385.
1373.
1362.
1350.
1338.
1327.
1315.
1304.
1292.
1281.
1269.
1258.
1246.
1235.
1223.
1212.
IciOO.
-60.000 -4U.OOO -36.000 -<;4.UOU -12.000
-.000
12.000
?4.000
36.000
48.000
60.000
Figure 225. Radial profile of temperature at an axial position of 46. 7 cm
(movable-vane boiler burner; 15-degree vane angle)
-------
10°
RoU Direction
Boiler Bu.rf»er-60°Gw\rtoH/«
JS°
i
-60
-HO
l Pesitior\,c»v»
Figure 226. Radial profile of flow direction at an axial position of 46. 7 cm
(movable-vane boiler burner; 15-degree vane angle)
292
-------
00
^
w
\
HOlLtK UUHNtK bO DtO^EE GUN
KAUIAL POSIT10N-LW VS. PPM NO IN GAb SAMPLE
200.00
196.15
192.31
lBb.46~"*-^^^
IBt.62 "^
160.77
i?b.9<;
1/J.OU
169.23
lbb.38
161.54
lb7.6V
153.85
130.00
146.15
142.31
1JB.46
1J4.62
1J0.77
lib.92
123.08
119.23
115.30
111.54
1U7.69
103.85
100.00
96.15
92.31
Ut).46
U4.62
80.77
76.92
73.08
69.23
65.38
61.54
57.69
53.85
50.00
46.15
42.31
38.46
34.62
30.77
£6.92
23.08
19.23
15.38
11.54
7.69
3.85
.00
15 Ot.GHEt VANF ANGlt
AXIAL POSITION
CM
-60.QUO -4B.UOO -36.000 -^t.OUU -17.000
-.000
12.00U
?4.000
36.000 48.000
60.000
Figure 2Z7. Radial profile of NO at an axial position of 146. 1 cm
(movable-vane boiler burner; 15-degree vane angle)
-------
CSJ
WAUIAL POSITION-CM
32.00
31.38
30.77
30.lb
28.92
28.31
27.69
27.08
2b.46
25.8S
2S.23
24.62
24.00
23.38
22.77
22.15
21.54
20.92
20.31
19.69
19.08
18.46
17.8S
it. 23
16.62
16.00
IS.38
14.77
14.lb
13.54
12.92
12.31
11.69
11.08
10.46
9.8b
9.23
8.62
8.00
7.38
6.77
b.lb
5.54
4.92
4.31
J.69
3.08
2.4b
1.8S
1.23
.62
.00
HOlLtH HUKNF-.H 60 UtOWEE f'UN NOZZLE
VS. PPM N02 IN UAS SAMPLE
15 UEGKEE VANF ANGLE
AXIAL POSITION = 146.1 CM
-hO.OOO -OO.UOO -3b.OOU
-1?.OOU
-.000
i
-------
\o
IJ1
BOlLtk HUWNEK 00 UtoHtt GUN NO77Lt
VS. * 02 IN O«S bAM^Lt
Ib UEGHtt VANF' ANOLF
KAU1AL PUblTION-LF
t'l.OO
19. 3B
IB. 98
10.58
iti.ir
1/.77
17.37
16.96
16.56
16. Ib
lb.7b
lb.35
14.13
13.73
13.33
12.52
12.12
11.71
11.31
10.90
iu.50
10.10
9.69
9.29
8.88
B.48
8.OB
7.67
7.27
6.87
6.46
6.06
5.65
5.25
4.85
4.44
4.04
3.63
3.23
2.83
2.42 .
2.02 ^^« • —
1.62—• •• •
1.21
.81
.40
.00
ittii
-60.000 -4B.OOO -36.000 -24.UOO -12.000
AXIAL POSIT1OM
146.1 C"
-.000
12.000
24.000
36.000
4B.OOO
60.000
Figure 2Z9. Radial profile of O2 at an axial position of 146. 1 cm
(movable-vane boiler burner; 15-degree vane angle)
-------
HOILLK HUHNKW bi) utuKEt GUN NO/ZLt
VS. » C02 IN OAS SAMPLE
lb DtfikEt VANF
AXIAL POSITION = !<•>>.1
IV
vO
11.77
H.b4
11.31
11. OH
lU.Bb — ••
10. 6*
10. 3B
10. lb
9.92
9.69
9.4b
9.23
9.0U
8.77
8.54
a. 31
a. 08
7.85
7.62
7.38
7.1b
6.92
6.69
b.46
6.23
6.QO
b.77
b.54
S.31
b.OB
4.38
4.1b
J.92
3.69
3.46
3.Z3
3.00
2.77
2.54
2.31
2.0U
1.8b
1.62
1.38
l.lb
.92
.69
.46
.23
.00
-60.000 -40.000 -36.000 -24.UOO -1P.OOO
-.000
12.000
24.000
36.000
48.000
60.000
Figure 230. Radial profile of CO2 at an axial position of 146. 1 cm
(movable-vane boiler burner; 15-degree vane angle)
-------
BOlLtW bUHNEH bO UEGHEE GUN NOZZLE 15 DEGREE VANE ANGLE
VS. ALOGlO(CONCENTRATION *)
C=CO. H=M2. M=CH4.
coMPosnt LOG HLOI
U=02. N=
100.0000
76.6682
be. 7802
45.0657
34.5511
26.4897
2U.3092
15.5707
11.9378 D D
9.1525
7.0170
5.3798
4.1246
J.162J
t. .4245
1.8588 0 0
1.4251
1.0926
.8377
.6422
.4924
.3775
.2894
.2219
.1701
.1304
.0767
.0588
.0451
.0346 C C
.0265
.020J N N
.0156
.011V
.0092
.0070
.0054
.0041
.0032
.0024 H
.0019 H
.0014
.0011
.0008
.0006
.0005
.0004
.OOOJ
.0002
.0002
.0001
.0001
KADIAL POSI HUN-CM
N0> B=N02> U=CU2>
DUO
u
0
000
C
c c c
N
N N N
H
H H b
C N C N
N N
C C C
b H
H fc<
AXIAL POSITION
I) D 0 D 0 D
000
000
146.1 CM
-fifl.OUO -00.000 -16.000
-1P.OOU
-.000
12.000
3h.OOO 4H.OOO 60.000
Figure 231. Radial profile of all the gases at an axial position of 146. 1 cm
(movable -vane boiler burner; 15-degree vane angle)
-------
00
HOILEH HUHNKH 60 UtoWFt GUN NOZZLt
HUblUON-CM VS. AVERAGt 1 tf^tKA I OHt DE.G.C
1HOU.
1788.
1 777.
1765.
Ib UtGKtt VANF AN(,Lt
AXIAl POSITION
146.1 O
17*2.
1731.
1719.
1/08.
Ib96.
1665.
1673.
Ib62.
16SO.
1638.
1627.
1615.
1604.
1592.
Ib69.
1558.
Ibl2.
1500-
14B8.
1*77.
1408.
1396.
1J85.
1373.
1362.
1350.
1338.
1327.
1315.
1304.
1292.
1281.
1269.
1258.
1246.
1235.
1223.
1212.
1200.
-ftO.OOO -4b.OOO -36.000 -24.UUO -12.000
-.000
12.000
24.000
36.000
48.000
60.000
Figure 232. Radial profile of temperature at an axial position of 146. 1 cm
(movable-vane boiler burner; 15-degree vane angle)
-------
i
.3-itfij
«
J|6LJ
|63_
Direction Ai
Boiler Burner- 6o0£nn Noa)«
15° Vane Atylt.
146.1 cr*\ /k*l Position
\
o
o
/
I
°\
o
o/
Forward
i
-60
i i r
-10 -ao
¥o
Figure 233. Radial profile of flow direction at an axial position of 146. 1 cm
(movable -vane boiler burner; 15-degree vane angle)
299
-------
o
o
201.
197.
193.
189.
185.
181.
177.
1/3.
1/0.
166.
162.
Ib8.
Ib4.
150.
146
143.
139.
135.
Ul.
127.
123.
119.
115
112.
106.
104.
100.
96
9<;
88.
85.
81.
77.
73
b9.
6b.
01.
b7.
POSITION-CM
00
13
27
40 '
54
67
81
94
OB
21
35
4U
62
75
88
02
Ib
39
42
56
69
83
96
10
23
37
50
63
77
90
04
17
31
44
58
71
8b
98
B01LKH HUHNEH
VS. HPM NO IN
6U uEoKEE GUN NOZZLE
OAS SAMPLE
UEGHEt VANE ANGLE
AXIAL POSITION = 3R5.4 CM
S0.25
4b.38
42.52
38.6b
34.79
30.92
27.06
23. 19
19.33
lb.46
11.60
/.73
3.87
.00
-fiO.OOO -<«O.U(lO -Ib.dOU
-1?.000
-.000
3f>.000
bO.noo
Figure 234. Radial profile of NO at an axial position of 385. 4 cm
(movable-vane boiler burner; 15-degree vane angle)
-------
(JO
O
KAUIAL POMTION-CK
JO. 00
28. 8b
2/.12
26.54
2b.96
25.38
24.81
24.23
13.65
<;3.0B
22.50
21.92
21. 3b
20.77
20.19
19.62
19.00
18.46
17.88
17.31
16.73
16.15
15.58
15.00
14.42
13.85
13.27
12.69
12.12
11.54
10.96
10.38
9.81
9.23
8.65
8.08
7. SO
6.92
6.35
5.77
5.19
4.62
4.04
3.46
2.88
2.31
1.73
1.15
.58
.00
HOILtW BUHNtK 60 llEGHEt GUN N07ZLE
VS. PPM M02 IN GAS SAMPLE
15 UtljHEt VAMF ANGLE
AXIAL POSITIOM
3P5.4 CM
-60.000 -48.000 -36.000 -24.000 -12.000
-.000
12.000
?4.000
36.000
48.000
60.000
Figure Z35. Radial profile of NO2 at an axial position of 385. 4 cm
(movable -vane boiler burner; 15-degree vane angle)
-------
b01LE« BUHNtW 60 UtoHEt GUN NOZ?L^
VS. « 02 IN (jAS bAMPLE
15 OfGHEt VANE ANGLF
OJ
o
IV
AXIAL POSITION = 385.<. CM
-hO.UOO
-I2.nuo
l^.ooo
36.ono
U . OtlO
Figure 236. Radial profile of O2 at an axial position of 385. 4 cm
(movable-vane boiler burner; 15-degree vane angle)
-------
POS1TIUN-LM
HOlLtK HUMNthf t.0 UtGHEt GUN NOZ7Lt
VS. * C02 IN GAS iBMHLt
15 OKGHtt VANF ANI.LE
AXIAL POSITION = JflS.4 C"
OO
O
oo
11.77
11.50
11.31
11.08
10. Sb
10.62
10.38-
10. lb
9.92
9.69
9.46
9.33
9.00
8.77
a. 54
8.31
8.08
7.85
7.62
7.38
7.15
6.92
6.69
6.46
6.23
b. 0 w
b.77
5.54
b.31
5.08
4.85
4.62
4.38
4.15
3.92
3.69
3.46
J.23
3.00
2.77
2.54
2.31
2.08
1.85
1.62
1.38
1.15
.92
.69
.46
.23
.00
-60.000 -48.000 -36.000 -24.000 -12.000
12.000 24.000
36.000
48.000
60.000
Figure 237. Radial profile of CO2 at an axial position of 385. 4 cm
(movable-vane boiler burner; 15-degree vane angle)
-------
BOlLtW BURNtH t>U utoKEL GUN NOZ/Lk 15 Ut CjREt VANK
COMHOSITt LOG PLOI RADIAL POSIUON-CM VS. AL0010(CONLtNTRATION «)
0=02. N«NO. H=N02. U=CO2, C=CO. MiH2. M=CH4.
1UO.OOOO
76.66U2
56.7802
45.0657
34.5511
AXIAL POSITION = 3HS.4 CM
20.3092
15.570?
11.9378
9.1525 0
7.0170
5.3798
4.1246
3.1623
2.4245 0
1.8588
1.4251
1.0926
.8377
.6422
.4924
.3775
.2894
.2219
.1701
.1304
,1001)
.0767
.0580
.0451
.0346
.0265
.0203 N
.0156
.0119
.0092 C
.0070
.0054
.0041
.0032
.0024 B
.0019
.0014
.0011
.0008
.0006
.0005
.0004
.0003
.0002
.0002
.0001
.0001
-ISO.000 -46.000 -36.000 -24.0UO -1P.OOO
-.000
P4.0UO
36.000 48.000 60.000
Figure 238. Radial profile of all the gases at an axial position of 385. 4 cm
(movable-vane boiler burner; 15-degree vane angle)
-------
BOILEN BUKNEH 60 UtGHEE GUN N07ZLE
HA01AL POSITION-CM VS. AVERAGE TEfHLHAluHL OEG.C
IBOO.
1788.
1777.
1765.
1754.
1742.
1731.
1719.
1708.
1696.
1685.
1673.
1662.
1650.
1638.
1627.
1615.
1604.
1592.
Ib81.
1569.
1558.
1546.
1535.
1523.
1512.
IbOO.
1488.
1477.
1465.
1454.
1443.*
1431.
1419.
1408.
1J96.
1385.
1373.
1362.
1350.
1338.
1327.
1315.
1304.
1292.
1281.
1269.
1258.
1246.
1235.
1223.
1212.
1200.
15 OEGHEE VANE ANGLE
AXIAL POSITION = 3B5.4 O
-60.000 -40.000 -16.00U
-1P.OOO
-.000
12.000
36.000 4h.OOO 60.000
Figure 239. Radial profile of temperature at an axial position of 385. 4 cm
(movable-vane boiler burner; 15-degree vane angle)
-------
10°
a
a?
161
•o.
-O-
-60
-HO
-20
Dir«ctu>n
15°
•o-
'Ov
ForoJard
Reverse
10
R«.dc
c*
Figure 240. Radial profile of flow direction at an axial position of 385. 4 cm
( movable-vane boiler burner; 1 5-degree vane angle)
306
-------
The profile data collected at the 5. 1 -cm axial position are graphically
presented in Figures 204 through 211, with detailed data listings given in
Table 35. The flow profile data show a flame Type II. The primary jet,
however, is composed mainly of oxygen, indicating that the combustion does
not have a large enough tangential velocity component for adherance to the
burner block. The secondary jets, which appear to follow the contour of the
burner block, contain large quantities of fuel.
The average NO concentration in the secondary recirculation zone is
150 pprn, compared with the 196 ppm detected in the flue. The average
concentration within the burner-block area is 40 ppm with the minimum
concentration of 14 ppm occurring at the same radial position (—3 cm) as
the maximum oxygen concentration (18. 9%).
The profile of NOE versus radial position is presented in Figure 205.
Unlike profiles from slower mixing burners (kiln and intermediate flame
length baffle) the NO2 concentration is never larger than the NO.
The oxygen profile at the 5. 1-cm position ( Figure 206) shows a peak
concentration of 18. 9% at a —3 cm radial position. Minimum levels of
oxygen were measured at —30 cm and +24 cm with respective concentrations
of 0. 4% and 0. 1%. These minimum concentrations correspond to the
location of the fuel jets, while the maximum concentration indicates a
centrally located jet of combustion air, which has not attached to the burner
block. Other combustibles present include carbon monoxide, with maximum
concentrations of 5. 1% and 8. 7% at—30 cm and 24 cm, respectively;
hydrogen, with maximum concentrations of 5. 0% and 9. 0% at —30 cm and
—24 cm, respectively; and acetylene and ethylene with combined maximums
of 0. 4% and 1. 5% at—30 cm and —24 cm, respectively. Because of the
unusual arrangement of fuel and air jets, there are four radial positions at
which stoichiometric fuel/air ratios occur; these are —34. 8 cm, —21. 4 cm,
+15. 4 cm, and +31.2 cm.
The curve of carbon dioxide versus radial position ( Figure 208) shows
the minimum concentration of 1. 2% at —3 cm. The CO2 concentration in-
creases on both sides of this minimum until it reaches the primary
recirculation zone. The carbon dioxide concentration remains rather constant
at approximately 6. 7% on both sides of the burner, in the regions occupied
307
-------
by the primary recirculation zone and the fuel jets. The concentration
increases sharply to 10. 6% on the boundary between the fuel jet and the
secondary recirculation zone. This concentration is held rather constant
throughout the secondary recirculation zone. Correlating the 5. 1-cm axial
position temperature profile ( Figure 210) with the above chemical species
and flow analyses reveals that a constant temperature of 1520°C exists in
the secondary recirculation zone ( compared with a wall temperature of
1426°C) . A minimum temperature of 1287°C was measured at —3 cm,
which corresponded to the location of the maximum oxygen concentration.
There is only one highly resolved temperature peak, which occurs at —21 cm
and has a magnitude of 1703 °C. This maximum temperature position agrees
with the location of a stoichiometric fuel/air ratio concentration.
The data collected for the movable-vane boiler burner with a 15-degree
vane angle at a 26-cm axial position are listed in Table 36 and illustrated in
Figures 212 through 219. The flow profile shows that the primary recircula-
tion zones have disappeared. The forward flow region extends from —46 cm
to +39 cm. This region is bounded on both sides by a secondary recirculation
zone.
The NO profile at the 26-cm position ( Figure 212) has an average con-
centration in the secondary recirculation zone of 125 ppm compared with
150 ppm in the secondary recirculation zone at the 5. 1-cm axial position
and 176 ppm detected in the flue. The average concentration within the
forward flow zone is 79 ppm compared with 40 ppm at the 5. 1-cm axial position.
The NO2 profile ( Figure 213) shows two peaks in the burner block area
at —15 cm and +24 cm, with respective concentrations of 9 ppm and 17 ppm.
The curve for oxygen versus radial position ( Figure 214) shows two
peaks occurring at—6 cm and+3 cm, with concentrations of 7% and 6. 1%,
respectively. A minimum oxygen concentration of 0. 1% was detected at
—24 cm and +30 cm, while the locations of the maximum unburned fuel are
at —30 cm and +18 cm.
The temperature profile ( Figure 218) shows only one highly resolved
peak, which occurs at—30 cm and corresponds to a temperature of 1695°C.
308
-------
Data collected for the 46. 7-cm axial position are tabulated in Table 37
and graphically presented in Figures 220 through 226. The number of
locations at which stoichiometric fuel/air ratios occur has decreased from
four to one. This ratio occurs at —9. 1 cm for the 46. 7-cm axial position.
The large concentrations of the combustibles all occur to the left of the
burner. Thus, although the flow profile shows only a slight asymmetry to
the left side of the furnace, the gas analyses indicate that nearly all the
remaining combustion will occur on the left side of the furnace.
Figures 209, 217, 224, 231, and 238 show composite log plots of con-
centration versus radial position within the composition range of 0. 0001%
( 1 ppm) to 100%. In these plots, the interrelationships between concentra-
tion variations of oxygen, nitric oxide, nitrogen dioxide, carbon monoxide,
carbon dioxide, hydrogen, and methane can easily be visualized.
Figures 210, 218, 225, 232, and 239 are plots of the average temperature
measured versus radial position.
Figures 211, 219, 220, 223, and 240 show flow direction versus radial
position. These profiles show the positions of the primary and secondary
forward flows, of the recirculation zones ( reverse flow) , and of the sheared
boundary layers.
Data Correlation of Isoplots for the Movable-Vane Boiler Burner
Figures 241, 242, and 243 are isothermal and isoconcentration plots of
the data presented earlier in this report for the movable-vane boiler burner
operating under standard ( recommended) conditions. Similar profiles are
presented in Figures 244, 245, and 246 under pollution-control operating
conditions.
A comparison of the isothermal plots ( Figures 241 and 244) reveals
that the 30-degree vane angle produces a hotter flame than the 15-degree
vane angle. These plots indicate that the 15-degree vane angle produces
a larger flame than the 30-degree vane angle.
The graphs for NO isoconcentration versus radial position are presented
in Figures 242 and 245. In both operating conditions, the maximum
309
-------
IjO
I—I
O
isJTHiKMAL PLOT
A=600 Lit
-.uo.oo
3*2.31
3B4.62
3/6.92
361.54
3bj.Bb
346.lb
338.46
33U.7/
3
-------
BOlLth HUHNt H t)ll UtoKEt GUN NO/ZLt 30 UtCiHtf- VANE ANGLt
ISOLUNCt.NlHATION PLOT UF NO KAUlAL POSITION-CM VS. AXIAL POSITION-CM
A= JOO. PPM» b= 250. PPM.
400.00
392.31
376.92
369.23
361.54
353.8b
33H.46
330.77
323.08
Jib.38
307.69
300.00
276.92
269.23
261.54
253.85
238.46
230.77
223.08
215.38
207.69
200.00
192.31
184.62
1/6.92
169.23
161.54
153.85
146.15
138.46
130.77
123.08
115.38
107.69
100.00
92.31
B4.62
76.92
69.23
61.54
53.85
46.15
38.46
30.77
23.08
15.38
7.69
.00
0= ISO. PPM,t= 100. PPM
-60.000 -40.738 -37.47f -26.215 -14.954
-3.692
7.569
lb.S31
30.092
41.354
52.615
Figure 242. Isoconcentration plot of NO
(movable-vane boiler burner; 30-degree vane angle)
-------
HOJLLk rtllKNl-.K oO utl.HFt GUN NCWLt 30 UH,Mh> VAMf AN(,U
IbUCONCtNTRAUON PLOT Uh NU2 KAUlAL PuSIlIOM-CM VS. AAlAL POSIHOM-TM
4- 50. pt>M, y= i,u, PPM. C= 10. PPM. 0= 20. PPM
-»UO.OO y
392.31 \
384.62 H
230.77
323. Ob
ilb.38
207.69
200.00
192.31
17b.92
Ib9.23
161.
Ib3.8b
138.
-------
UO
ISOTHERMAL
A
400.00
392.31
384.62
3/6.92
369.23
361.5*
353.85
346.15
338.46
330.77
323.08
315.38
307.69
300.00
292.31
284.62
276.92
£69.23
261.54
253.85
246.15
238.46
230.77
223.08
215.38
207.69
20C.OC
192.31
184.62
1/6.92
169.23
161.54
153.85
146.15
138.46
130.77
123.08
115.38
107.69
100.00
92.31
84.62
/6.92
69.23
61.54
53.85
BOILER BURNEH 60 UEGHEt GUN NOZ7LE 15 OEGHEE VANF ANGLt
PLOT HAUIAL PUSIIION-CM VS. AXIAL POSITION-CM
600 OEG.C. b=800 OEG.C. C=1000 UEG.C, D=1200 OEG.C. E=1300 UFG.C.
F«1400 DEG.C.
G=15nO
-EG.C
-60.000 -49.<,25 -38.850
-17.700
3.4SO
14.025
24.ftOO
35.175
4S.750
Figure 244. Isothermal plot of furnace temperature
(movable-vane boiler burner; 15-degree vane angle)
-------
BOILEK HUHNEH 60 DEGREE GUN NOZZLE 15 DEGREE VANE ANGLF
ISOCONCENTRATION t-LOT 0^ NO KAU1AL POSITION-CM VS. AXIAL POSITION-CM
A= 150. PPM, b= 125. PPM, C= 100. PPM, n= 75. PPM,F=
400.00
392.31
369.23
361.54
353.85
338.46
330.77
323.08
315.38
307.69
300.00
292.31
284.62
2/6.92
269.23
261.54
253.85
246.15
238.46
230.77
223.08
215.38
207.69
200.Cn
192.31
184.62
1/6,92
169.23
161.54
153.85
146.15
138.46
130.77
123.08
llb.3B
107,69
100.00
92.31
84.62
'6.92
69.23
61.54
5j.8b
46. lb
J8.46
JO.77
23.Ob
lb.3e
Lbt
.00
50. PPM
->>0.000
-rfb.ouO -14.40U
- J.OOO
Jl.200
4?. M)0
54.noo
Figure 245. Isoconcentration plot of NO
(movable-vane boiler burner; 15-degree vane angle)
-------
BOILEK HUHNm on UtOWEt fttJN NOZZLt IS DKiHEE VANE ANGLE
IbUCUNCtNTKAriUN I-LOT Up N02 HAU1AL PUSITION-CM VS. AXIAL POSH ION-CM
«= 10. PFM. b= Ib. PPM, C= 20. PPM. 0= ?b, PP>
4UU.OO
t—t
Ul
n nv
-60.000 -<.B.OOO -36.000
bAKONDt AbT 02 *> '•05372
•«b. 1200. 1BUO.
-<;*>• uuo -12.000
-.000
12.010
2*.000
36.000 4B.OOO 60.000
Figure 246. Isoconcentration plot of NO2
(movable-vane boiler burner; 15-degree vane angle)
-------
isoconcentration curve occurs in the secondary recirculation zone by the
burner wall and in the forward flow zone beyond 70 cm of the burner wall.
A comparison of the figures indicates that the NO developes slower when a
15-degree vane angle is used.
Isoconcentration profiles of NO2 are plotted in Figures 243 and 246. The
NO2 profile for the 15-degree vane angle setting shows an increase in the
concentration level from the burner wall to the furnace flue. In contrast,
for the 30-degree vane angle, the NO2 concentration at the exit of the
burner block is equal to the level in the flue. Within the burner-block
region, NO2 concentration decreaises as a function of axial position, up to
40 cm, and then the NO2 level increases until it reaches the flue value.
316
-------
APPENDIX. RAW INPUT/OUTPUT DATA
The following is a tabular listing of the raw input/output data collected
during this program. Graphs of normalized NO versus excess oxygen for
the test conditions listed in the table heading can be found in Volume I of
this report.
317
-------
Table 40. DATA FOR COMBINATION KILN BURNER NOZZLE
(Gas Input, 2700 SCFH - 810 SCFH Axial and 1890 SCFH Radial;
3. 2% Primary Air; 1330°C Wall Temperature)
Combustion Air Flue Analysis Normalized
Temperature, °C NO,ppm NO2,ppm O2> % CO2, % CO, ppm NO,ppm
22 66 11 1.4 ll.O 425 70
22 73 13 2.4 10.4 57 81
22 80 20 3.9 9-5 21 96
22 81 22 4.9 9.0 15 102
NO , ppm
66
73
80
81
96
112
130
145
250
235
350
290
NO2 , ppm
11
13
20
22
6
9
14
19
25
23
33
29
02,%
1. 4
2.4
3.9
4.9
1.4
2.2
3.2
4.4
3.3
2.6
5.9
4. 1
CO2, %
11. 0
10. 4
9-5
9.0
10.5
10.3
10. 0
9.4
9.9
10. 4
8. 5
9.5
CO, ppm
425
57
21
15
(o.
(0.
(o.
500
314
588
215
380
9%)
4%)
2%)
252 96 6 1.4 10.5 (0.9%) 102
£ 252 112 9 2.2 10.3 (0.4%) 123
00 252 130 14 3.2 10.0 (0.2%) 150
252 145 19 4.4 9.4 500 178
460 250 25 3.3 9-9 314 289
460 235 23 2.6 10.4 588 263
460 350 33 5.9 8.5 215 467
460 290 29 4.1 9.5 380 351
-------
Table 41. DATA FOR COMBINATION KILN BURNER NOZZLE
(Gas Input 2700 SCFH - 810 SCFH Axial and 1890 SCFH Radial;
3. 5% Primary Air; 1150°C Wall Temperature; 12% Flue Gas Re circulation)
Combustion Air Flue Analysis Normalized
Temperature, °C NO, ppm"NO2,ppm~Q, % CO2, % CO,ppm~ NO, ppm
460 78 18 2.45 10.4 36 87
460 72 10 1.31 11.1 183 76
460 68 7 0.9 11.4 222 71
460 80 15 2.76 10.2 13 90
NO, ppm
78
72
68
80
39
41
38
16
20
18
20
NO2 , ppm
18
10
7
15
7 (9)
8(9)
9(11)
4
4
4
6
Oz, %
2.45
1.31
0.9
2. 76
2.7
4. 0
1.4
1.8
4. 7
3.9
5. 7
C02, %
10.4
11. 1
11.4
10.2
10. 1
9.4
10.9
10. 6
8.9
9.4
8.3
CO, ppm
36
183
222
13
11
10
76
253
9
20
2
242 39 7 (9) 2.7 10. 1 11 44
242 41 8(9) 4.0 9.4 10 49
242 38 9 (11) 1.4 10.9 76 40
22 16 4 1.8 10.6 253 17
22 20 4 4. 7 8.9 9 25
22 18 4 3.9 9.4 20 22
22 20 6 5. 7 8. 3 2 27
-------
Table 42. COMBINATION NOZZLE KILN BURNER (Gas Input 2733 CFH - 879 CFH Axial
and 1854 CFH Radial; 3. 2% Primary Air, Wall Temperature 1257°C (Air Cooling) ;
and 12% Flue Gas Recirculation)
Combustion Air Flue Analysis Normalized
Temperature, °C NO, ppm NOZ) ppm O2> % CQ2> % CO, ppm NO, ppm
463 110 12 2.13 10.4 516 120
463 90 7 0.9 10.9 (0.5%) 94
463 140 20 4. 1 9-2 103 169
235 45 20 5.1 8.6 51 57
235 37 9 2.6 10.2 320 41
235 40 4 3.0 9.8 177 46
235 40 10 4. 2 9. 2 86 49
u>
o 22 25 73.2 9. 7 203 29
22 21 7 2. 1 10. 5 453 23
22 25 8 4.7 8.9 78 31
22 30 7 5. 1 8. 7 69 38
-------
Table 43. DATA FOR COMBINATION KILN BURNER NOZZLE
(Gas Input, 2700 SCFH - 810 SCFH Axial and 1890 SCFH Radial;
3. 5% Primary Air; 1130°C Wall Temperature)
Combustion Air Flue Analysis Normalized
Temperature, °C NO,ppm" NO2.ppm~ O2> % CQ2, °Jo CO,ppm NO,ppm
465 156 28 1.63 10.9 64 168
465 168 11 2.76 10.2 45 190
465 197 23 4.42 9.4 6 242
465 215 34 5.30 8.8 3 277
254 100 15 6.00 8.4 18 134
254 95 15 4.8 9.1 41 119
254 79 6 2.9 10.3 62 89
254 79 9 2.7 10.3 63 89
254 73 8 1.9 10.9 74 79
254 64 5 1.0 11.4 (0.6%) 68
22 39 2 0.9 11.4 (0.62%) 42
22 41 5 3.0 10.2 74 47
22 39 3 1.8 10.9 565 43
22 41 7 4.0 9.6 29 49
22 41 8 5.3 8.9 15 53
-------
T..ble 44. COMBINATION NOZZLE KILN BURNER (Gas Input 2706 CFH - 876 CFH Axial
and 1830 CFH Radial; 6. 0% Primary Air and a 1310 °C Wall Temperature [Air Cooling])
Combustion Air : Flue Analysis Normalized
Temperature, °C NO, ppm NOZ> ppm O2, % CO2, % CO, ppm NO, ppm
22 58 14 3.7 9.8 68 68
22 64 16 4.8 9.1 44 80
22 50 7 1.4 10.4 (1-0%) 55
22 52 3 0.45 10.3 (1.6%) 53
22 60 11 2. 5 10. 4 29 67
220 105 18 4.33 9-3 59 129
220 115 22 5.25 8.9 37 148
220 92 18 3.28 10.0 112 106
220 80 15 2.29 10.5 612 88
oo 220 73 10 1.42 10.9 (0.18%) 78
ro
^ 438 145 8 1.24 11.2 220 154
438 185 28 2.57 10.4 291 206
438 275 33 4.89 9.1 96 348
438 280 37 5.64 8.7 86 368
438 210 28 3.45 9.8 ' 190 245
-------
Table 45. COMBINATION NOZZLE KILN BURNER (Gas Input 2700 SCFH; 30% Axial
and 70% Radial; Water Cooling of Furnace Sidewalls; 1150°C Wall Temperature;
6. 2% Primary Air)
U)
Combustion Air
Temperature, °C
466
466
466
466
466
272
272
272
272
272
22
22
22
22
22
Flue Analysis
NO, ppm
190
220
130
170
190
140
130
110
80
75
43
56
58
67
70
NO 2, ppm
24
25
10
18
21
IQ
18
17
8
3
7
9
15
17
16
O2, %
3. 2
4. 7
0. 5
2.0
2.6
5. 2
4.4
3. 1
1. 5
0. 8
1. 4
2.9
3.4
4.6
5. 2
CO2, %
10. 0
9. 1
11. 4
10. 7
10. 3
0 0
*-* • /
9.3
10. 0
11.0
11.4
11. 0
10. 2
9.9
9.2
8. 8
CO, ppm
17
10
2000
64
30
2
13
26
72
(0. 15%)
168
31
25
18
12
Normalized
NO, ppm
219
275
133
185
213
i on
160
126
86
78
46
64
68
83
90
-------
Table 46. COMBINATION NOZZLE KILN BURNER (Gas Input 2773 CFH - 873 CFH Axial
and 1900 CFH Radial; 3. 5% Primary Air; 1330°C Wall Temperature (Air Cooling);
and the Gas Nozzle in the Exit Position)
Combustion Air Flue Analysis Normalized
Temperature, °C NO, ppm NQ2> ppm O2> % CO2, % CO, ppm NO, ppm
22 60 14 4.34 9.4 171 73
22 62 10 5.1 8.9 91 79
22 45 4 1.3 10.6 (0.55%) 48
22 50 8 2.5 10.2 (0.2%) 56
22 55 10 3.1 10.0 (0.17%) 63
220 100 15 2.1 10.6 489 HO
NO, ppm
60
62
45
50
55
100
90
143
120
143
370
330
310
290
245
NO 2, ppm
14
10
4
8
10
15
11
23
21
29
50
47
35
31
22
Ozf %
4. 34
5. 1
1. 3
2. 5
3. 1
2. 1
1 . 3
4. 7
3.4
5. 75
5. 18
4.0
3. 26
2. 62
1. 86
CO2, %
9.4
8.9
10. 6
10. 2
10. 0
10. 6
11.0
9. 2
9.9
8. 7
8.9
9. 5
10. 0
10. 1
10. 1
CO, ppm
171
91
(0.55%)
(0.2%)
(0.17%)
489
(0. 25%)
115
445
76
111
196
331
(0.6%)
(1.2%)
2?.n 90 11 1.3 11.0 (0.25%) 9-
220 143 23 4.7 9.2 115 179
220 120 21 3.4 9-9 445 140
220 143 29 5.75 8.7 76 189
445 370 50 5.18 8.9 HI 474
445 330 47 4.0 9.5 196 396
445 310 35 3.26 10.0 331 358
445 290 31 2.62 10.1 (0.6%) 325
445 245 22 1.86 10.1 (1.2%) 266
-------
Table 47. COMBINATION NOZZLE KILN BURNER (Gas Input 2691 CFH - 368 CFH Axial
and 2323 CFH Radial; 3. 5% Primary Air, and
1345°C Wall Temperature [Air Cooling])
_. , .. .. Flue Analysis ,.T ,. .,
Combustion Air * Normalized
Temperature, °C NO, ppm NOZ, ppm O2, % CO2> % CO, ppm NO, ppm
457 360 47 5.8 8.6 89 483
457 250 27 2.6 10.3 472 280
457 330 36 4.6 9.2 215 411
457 170 11 1.3 10.9 (0.35%) 181
247 165 30 5.6 8.7 94 259
247 128 21 2.1 10.7 212 140
247 158 25 3. 5 9. 9 118 188
247 115 14 1.3 11.0 (0.15%) 121
22 85 18 3.4 10.0 49 99
22 95 22 4.6 9.3 31 117
22 90 20 5.8 8.5 25 122
22 88 18 2.5 10.4 114 96
22 82 17 1.7 10.9 230 88
-------
lable 48. COMBINATION NOZZLE KILN BURNER (Gas Input 2734 CFH - 411 CFH Axial
and 2323 CFH Radial; 6. 6% Primary Air, and
a 1345°C Wall Temperature [Air Cooling])
Combustion Air Flue Analysis Normalized
Temperature, °C NO, ppm NO2, ppm Q2, % CO2, % CO, ppm NO, ppm
22 65 14 3.2 10.0 64 75
22 55 6 2.5 10.4 179 63
22 70 15 4.4 9.3 40 85
22 49 4 0.7 11.3 (0.15%) 50
22 54 8 1. 5 11. 1 321 58
238 95 11 2. 1 10. 7 167 1GS
238 107 16 3.2 9.9 H2 123
238 127 21 4.2 9-4 73 154
238 132 20 5.8 8.5 46 178
238 75 2 0.7 11.1 (0.35%) 77
466 100 3 0.2 10.6 (1-4%) 103
466 250 32 3.0 10.1 285
466 320 38 5.1 9.0 408
466 270 31 3.4 9-9 315
466 190 23 1.9 10.8 206
-------
Table 49. COMBINATION NOZZLE KILN BURNER (Gas Input 2714 CFH - 411 CFH Axial
and 2303 Radial; 3. 5% Primary Air; 1320°C Wall Temperature,
and the Gas Nozzle in the Exit Position)
~, , ,. A. Flue Analysis -T ,. ,
Combustion Air l Normalized
Temperature, °C NO, ppm NO2, ppm O2> % CO2> % CO, ppm NO, ppm
22 70 14 5.5 8.8 51 91
22 52 2 0.6 10.8 (0.8%) 53
22 58 9 1.85 10.9 365 63
22 65 11 2.7 10.3 190 71
22 70 16 4.7 9.1 98 88
NO, ppm
70
52
58
65
70
127
80
105
165
350
295
280
260
NO 2, ppm
14
2
9
11
16
2U
10
18
30
45
41
37
28
02, %
5. 5
0.6
1. 85
2. 7
4. 7
3. 9
1. 5
2. 32
5. 18
5. 26
3. 85
2.63
1. 53
CO2, %
8. 8
10.8
10. 9
10. 3
9.1
V. 6
10.7
10.6
8. 5
8.9
9.6
10.4
10. 8
CO , ppm
51
(0. 8%)
365
190
98
65
(0.4%)
407
68
95
165
410
(0.5%)
237
237 80 10 1.5 10.7 (0.4%) 86
237 105 18 2.32 10.6 407 116
237 165 30 5.18 8.5 68 212
457 350 45 5.26 8.9 95 452
457 295 41 3.85 9.6 165 351
457 280 37 2.63 10.4 410 313
457 260 28 1.53 10.8 (0.5%) 278
-------
T ible 50. COMBINATION NOZZLE KILN BURNER (Gas Input 2687 CFH - 0 CFH Axial
and 2687 CFH Radial; 3. 2% Primary Air and a
1305°C Wall Temperature)
Combustion Air Flue Analysis Normalized
Temperature, °C NO, ppm NO2, ppm Q2, % CO2, % CO, ppm NO, ppm
22 95 13 3.1 10.0 115
22 75 6 1.4 11.2 (0.25%) 80
22 85 12 2.2 10.6 94
22 103 15 4.2 9.4 125
22 108 17 5.2 8.9 138
oo 220 125 19 3.9 9.6 58 149
£ 220 115 20 2.54 10.3 153 117
NO, ppm
95
75
85
103
108
125
115
98
145
155
270
300
290
220
240
190
NO2, ppm
13
6
12
15
17
19
20
17
23
26
33
37
36
18
26
8
O2, %
3. 1
1.4
2. 2
4. 2
5. 2
3. 9
2. 54
1. 74
4. 8
5. 8
3.62
5. 5
4. 44
1. 89
2. 3
0.6
CO2, %
10.0
11. 2
10.6
9.4
8.9
9.6
10. 3
10. 8
9.1
8. 5
9.8
8. 7
9.3
10. 9
10. 2
10. 8
CO, ppm
(0. 25%)
58
153
(0.15%)
76
51
103
90
119
(0. 26%)
(0. 28%)
(0. 82%)
220 98 17 1.74 10.8 (0.15%) 106
220 145 23 4.8 9.1 76 182
220 155 26 5.8 8.5 51 205
447 270 33 3.62 9.8 103 317
447 300 37 5.5 8.7 90 392
447 290 36 4.44 9.3 119 357
447 220 18 1.89 10.9 (0.26%) 239
447 240 26 2.3 10.2 (0.28%) 265
447 190 8 0.6 10.8 (0.82%) 195
-------
Table 51. COMBINATION NOZZLE KILN BURNER (Gas Input 2659 CFH - 0 CFH Axial
and 2659 CFH Radial; 3. 5% Primary Air; 1340°C Wall Temperature (Air Cooling) ;
and the Gas Nozzle is in the Exit Position)
Combustion Air Flue Analysis Normalized
Temperature, °C NO, ppm NO2> ppm O2, % CO2, % CO, ppm NO, ppm
459 365 55 4.5 9.3 75 460
459 390 60 5.15 9.0 64 499
459 275 50 2.53 10.4 192 316
459 320 50 3.25 10.1 132 370
459 260 40 1.9 10.8 281 282
459 165 -- 0.4 11.0 (0.75%) 168
u>
o 249 125 26 3.71 9.8 145 148
NO, ppm
365
390
275
320
260
165
125
98
115
80
143
70
85
90
60
50
NO 2, ppm
55
60
50
50
40
--
26
20
22
11
37
16
25
25
11
0?, %
4. 5
5. 15
2. 53
3. 25
1.9
0. 4
3.71
1. 52
2. 28
0.9
5.0
2.4
5. 0
5.6
1. 3
0. 5
CO2, %
9.3
9.0
10.4
10. 1
10. 8
11.0
9.8
10. 9
10. 6
11.0
9.0
10.4
9.0
8. 7
11.0
10. 8
CO, ppm
75
64
192
132
281
(0.75%)
145
(0. 12%)
311
(0.41%)
19
298
38
19
(0. 12%)
(0.91%)
249 98 20 1.52 10.9 (0.12%) 104
249 H5 22 2.28 10.6 311 127
249 80 11 0.9 11.0 (0.41%) 83
249 143 37 5.0 9.0 19 182
22 70 16 2.4 10.4 298 79
22 85 25 5.0 9.0 38 108
22 90 25 5.6 8.7 19 118
22 60 11 1.3 11.0 (0.12%) 64
22 50 -- 0.5 10.8 (0.91%) 51
-------
Table 52. DATA FOR COMBINATION KILN BURNER NOZZLE
(Gas Input 1900 SCFH - 570 SCFH Axial and 1330 SCFH Radial;
6. 2% Primary Air; 1023°C Wall Temperature)
Combustion Air Flue Analysis Normalized
Temperature, °C
22
22
22
22
22
248
248
248
OJ
° 248
248
456
456
456
456
456
NO,ppm
21
14
19
32
39
43
48
38
36
30
62
50
55
78
95
NO2 , pprn
5
1
3
5
6
4
7
5
5
1
8
11
9
15
14
O2, %
2.8
0. 6
1.6
4.8
6.0
4.9
5.9
3.6
2. 7
0.9
2. 0
0.53
1.6
3. 1
4.5
C O2 , %
10.2
11. 5
11. 0
9. 1
8.4
9.0
8.4
9. 7
10.3
11.2
10. 8
11.4
11. 1
10. 1
9.2
CO,ppm
88
(1.2%)
314
10
8
2
7
57
67
(0.61%)
80
378
158
18
7
NO.ppm
24
15
20
40
52
55
64
44
41
31
68
51
59
89
117
-------
Table 53. COMBINATION NOZZLE KILN BURNER (Gas Input 1800 CFH - 0 CHF Axial
and 1800 CFH Radial; 4. 2% Primary Air and a
1250°C Wall Temperature [Air Cooling])
/- v *•' A- Flue Analysis -, ,. ,
Combustion Air l Normalized
Temperature, °C NO, ppm NO2> ppm O2, % CO2> % CO, ppm NO, ppm
460 120 16 4.0 9.6 278 144
460 72 9 1.1 10.9 (0.4%) 76
460 65 4 0.6 10.5 (1-0%) 67
460 105 15 2.9 10.2 497 119
242 80 10 4. 5 9. 2 3b 99
w 242 92 13 5.15 8.9 10 117
NO, ppm
120
72
65
105
80
92
47
62
58
52
45
42
48
60
NO 2, ppm
16
9
4
15
10
13
6
6
11
7
6
12
14
O2, %
4.0
1.1
0.6
2.9
4. 5
5. 15
0. 2
2.96
2. 1
3. 0
1.9
0.9
2. 5
4. 1
CO2, %
9.6
10. 9
10. 5
10. 2
9. 2
8.9
11. 2
10. 2
10. 7
10. 1
10. 8
10. 9
10.4
9.5
CO, ppm
278
(0.4%)
(1.0%)
497
!3b
10
(0.6%)
48
52
241
463
(0.62%)
371
42
242 47 -- 0.2 11.2 (0.6%) 47
242 62 6 2.96 10.2 48 85
242 58 6 2. 1 10. 7 52 64
22 52 11 3.0 10.1 241 59
22 45 7 1.9 10.8 463 49
22 42 6 0.9 10.9 (0.62%) 44
22 48 12 2.5 10.4 371 55
22 60 14 4.1 9.5 42 73
-------
Table 54. DIVERGENT NOZZLE KILN BURNER (Gas Input 2700 SCFH;
3. 5% Primary Air; 1320°C Wall Temperature)
to
_ , ,. .. Flue Analysis -T ,. ,
Combustion Air l Normalized
Temperature, °C NO, ppm NOZ, ppm O2, % CO2, % CO, ppm NO, ppm
22 72 6 1.0 11.3 370 76
22 105 20 4.9 9.3 -- 133
22 95 20 4.4 9.4 4 117
22 95 10 3.1 10.2 32 109
22 8C 15 2.1 10.7 10 88
22 82 8 1.1 11.4 215 87
NO, ppm
72
105
95
95
8C
82
205
190
190
210
210
370
350
340
320
NO 2, ppm
6
20
20
10
15
8
45
25
40
40
35
30
20
10
20
O0/«
2 9 I®
1.0
4.9
4.4
3. 1
2. 1
1. 1
3. 0
1.4
2.0
4.0
5. 1
4. 8
3. 0
2. 3
1.0
(~*C\ fff
v^ 'vx^j /o
11.3
9.3
9.4
10. 2
10.7
11.4
10. 1
11.2
10.6
10. 2
8.9
9.3
10.2
10. 5
11.3
CO, ppm
370
--
4
32
10
215
75
240
50
15
11
_ _
12
79
5500
243 205 45 3.0 10.1 75 234
243 190 25 1.4 11.2 240 202
243 190 40 2.0 10.6 50 207
243 210 40 4.0 10.2 15 252
243 210 35 5.1 8.9 11 268
477 370 30 4.8 9.3 -- 464
477 350 20 3.0 10.2 12 399
477 340 10 2.3 10.5 79 374
477 320 20 1.0 11.3 5500 334
-------
Table 55. DATA FOR DIVERGENT KILN BURNER NOZZLE
(Gas Input 2700 SCFH; 3. 5% Primary Air; 1145°C Wall Temperature)
(JO
OO
uo
Combustion Air
Temperature, °C
22
22
22
22
22
250
250
250
250
250
250
456
456
456
456
456
Flue Analysis
NO, ppm
65
70
52
63
45
98
115
12b
90
106
75
113
135
133
90
144
NO2 , ppm
10
12
10
15
7
10
20
20
13
9
8
20
22
14
12
21
02, %
3. 7
5. 7
2.5
4. 8
0.8
2.9
4.4
5.2
2.4
3. 7
1.0
3. 1
4.6
3.9
1.5
5. 1
C02,%
9.7
8.4
10.4
8.9
11.2
10.2
9.2
8.8
10.3
9.7
11.2
9.9
9.1
9.6
10. 8
8.9
CO, ppm
15
5
10
7
105
14
2
0
17
4
169
16
5
6
53
2
Normalized
NO, ppm
77
92
58
79
47
111
141
161
100
125
78
129
167
159
96
184
-------
Table 56. DATA FOR DIVERGENT KILN BURNER NOZZLE
(Gas Input 2700 SCFH; 9. 5% Primary Air; 1150°C Wall Temperature)
Combustion Air Flue Analysis Normalized
Temperature, °C NO,ppm" NQ2,ppm Q2, % CO2, % CO,ppm~ NO,ppm
452 78 12 1.6 10.9 60 83
452 73 7 0.8 11.3 103 76
452 98 13 3.6 9.8 13 115
452 85 13 2.2 10.3 23 94
452 105 15 4.4 9.4 10 129
452 120 22 5.4 8.6 6 156
w 244 76 11 1.0 11.1 65 79
NO , ppm
78
73
98
85
105
120
76
85
90
89
94
65
62
62
60
56
NQ2 , ppm
12
7
13
13
15
22
11
7
13
16
21
17
16
15
10
8
02,%
1.6
0. 8
3. 6
2.2
4.4
5.4
1. 0
2.4
3. 0
4. 0
5. 8
5. 7
4.8
3.4
2.2
1.3
C02, %
10. 9
11. 3
9.8
10.3
9.4
8.6
11. 1
10.4
10. 0
9.4
8.5
8.5
9.0
9.8
10.4
11. 0
CO, ppm
60
103
13
23
10
L
65
18
12
8
4
7
9
13
15
25
£ 244 85 7 2.4 10.4 18 94
244 90 13 3.0 10.0 12 103
244 89 16 4.0 9.4 8 107
244 94 21 5.8 8.5 4 127
22 65 17 5.7 8.5 7 87
22 62 16 4.8 9.0 9 78
22 62 15 3.4 9.8 13 72
22 60 10 2.2 10.4 15 66
22 56 8 1.3 11.0 25 59
-------
Table 57. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN
FOR THE INTERMEDIATE FLAME LENGTH PORTED BAFFLE BURNER WITH A STANDARD
GAS NOZZLE (Gas Input 3070 SCFH; Baffle Gas Nozzle Position;
143 5° C-Wall Temperature; 4-degree Burner-Block Angle)
Combustion Air
Temperature, °C
22
22
22
22
22
22
229
229
229
229
229
229
229
462
462
462
462
462
462
Flue Analysis
NO, ppm
110
108
103
107
104
99
168
201
205
222
. 193
192
190
450
398
335
498
505
415
NO2 f ppm
19
15
10
18
20
16
35
° G
32
32
34
23
5
61
41
23
64
66
64
02, %
1.9
3.7
0.5
2.3
4. 0
5.2
5.9
A *7
~3L • 1
2. 7
3.6
5.2
1.5
0.5
4.4
1.3
0. 6
2.5
3.2
5.5
CO2, %
10. 8
9.8
11.3
10.3
9.4
9.0
8.5
n 1
10. 3
9.7
8. 8
11. 0
11.3
9.4
10. 9
11.4
10. 3
9.8
8. 6
CO, ppm
114
54
2, 000
85
48
32
21
01
78
63
38
118
14, 000
92
265
1,700
173
142
77
Normalized
NO, ppm
120
127
105
118
124
127
225
*> C f\
!_• _> v
231
261
247
205
194
549
422
344
556
581
540
-------
Table 58. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN
FOR THE INTERMEDIATE FLAME LENGTH PORTED BAFFLE BURNER WITH A
STANDARD GAS NOZZLE (Gas Input 2005 SCFH; Baffle Gas Nozzle Position;
1420°C Wall Temperature; 4-degree Burner-Block Angle)
Combustion Air Flue Analysis Normalized
Temperature, C NO, ppmNC>2 , ppmO2 > %COg . % CO, ppm NO, ppm
22 78 22 3.7 9.8 20 92
22 71 18 5. 7 8. 6 9 94
22 68 11 2.0 10.6 22 74
22 48 3 0.5 10.6 16,000 50
22 73 20 4.4 9.3 20 89
22 70 15 2.5 10.3 29 78
232 140 25 4.3 9.2 19 170
232 135 20 5.1 8.9 13 171
232 105 2 0.7 11.4 635 108
232 117 16 2.7 10.3 35 132
232 110 10 1.5 10.9 52 118
454 297 32 4.3 9.4 33 361
454 295 50 5.2 8.9 26 377
454 233 2 0.4 11.3 5,000 238
454 255 25 2.0 10.7 51 278
454 290 37 3.8 9.6 39 344
-------
Table 59- NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN
FOR THE INTERMEDIATE FLAME LENGTH PORTED BAFFLE BURNER WITH A
STANDARD GAS NOZZLE (Gas Input 3070 SCFH; Baffle Gas Nozzle Position;
1390°C Wall Temperature; 4-degree Burner-Block Angle; 15% and 30% Flue-Gas Re circulation)
oo
oo
-v)
Combustion Air
Temperature, C
NO, ppm
Flue Analysis
NO2 , ppm O2 , % CO2 , %
CO, ppm
Normalized
NO, ppm
457
454
452
452
452
449
460
460
460
463
463
463
143
128
116
132
144
91
48
39
33
40
40
40
25
34
2
28
29
29
12
12
2
10
10
11
3. 7
4. 7
0. 3
1.4
2.4
6. 0
.
e— Gas i\ecir culation —
3.4
4. 8
0.5
1.6
1.6
2.3
9.6
9.0
10. 9
10. 6
9.9
8. 6
10.2
9.4
10.6
10. 8
10. 8
10.5
63
51
12, 000
169
94
16
42
25
14, 000
108
108
80
169
159
118
141
160
123
55
49
34
43
43
44
-------
Table 60. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN
FOR THE INTERMEDIATE FLAME LENGTH PORTED BAFFLE BURNER WITH A
STANDARD GAS NOZZLE (Gas Input 3070 SCFH; Baffle Gas Nozzle Position;
965°C Wall Temperature; 4-degree Burner-Block Angle)
Combustion Air Flue Analysis Normalized
Temperature, °C NO, ppm NO2 , ppmOa , % COz , % CO, ppm NO, ppm
22 71 6 3. 6 9. 7 27 84
22 71 10 5.5 8.6 16 92
22 75 6 2.5 10.3 44 84
22 72 8 4.5 9.2 20 89
22 69 5 1.1 11.1 202 72
22 66 1 0.5 11.2 14,000 67
232 107 10 1.4 11.0 173 114
232 84 5 0.7 11.1 20,000 87
232 132 10 6.0 8.3 9 178
232 107 15 2.2 10.5 49 118
232 123 10 4.5 9.3 17 151
232 113 15 3.4 9.8 32 132
457 207 0 0.4 11.4 18,000 211
457 210 5 2.5 10.3 41 244
457 232 15 3.1 10.0 33 265
457 240 12 4.5 9.2 14 295
457 240 8 5.0 8.8 10 304
457 220 6 1.6 10.8 146 237
-------
Table 61. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN
FOR THE INTERMEDIATE FLAME LENGTH PORTED BAFFLE BURNER WITH A
COMBINATION GAS NOZZLE (Gas Input 2970 SCFH Radial; Baffle and Throat
Gas Nozzle Positions; 1370°C Wall Temperature; 4-degree Burner-Block Angle)
Combustion Air
Temperature, C
454
457
457
460
460
w 460
sQ
460
460
463
463
463
Flue Analysis
NO , ppm
383
465
554
605
594
503
211
233
229
216
162
NO 2 , ppm
60
70
68
60
55
8
20
40
22
28
0
02, %
5.7
4.9
3.1
1.6
2. 5
0.4
1.4
5.6
3. 3
2.9
0.4
C02, %
8. 6
9.0
10. 0
10. 8
10.4
11.0
10. 9
8. 6
9.8
10. 0
11.1
CO , ppm
35
45
72
J33
101
6, 000
74
21
28
34
16, 900
Normalized
NO, ppm
506
585
634
A/1 0
662
512
225
306
265
245
165
-------
Table 62. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN
FOR THE INTERMEDIATE FLAME LENGTH PORTED BAFFLE BURNER WITH A
COMBINATION GAS NOZZLE (Gas Input 3101 SCFH - 1511 SCFH Axial and 1590 SCFH Radial;
Baffle and Throat Gas Nozzle Positions; 1390°C Wall Temperature; 4-degree Burner-Block Angle)
Combustion Air
Temperature , C
454
457
460
466
463
460
460
460
463
463
Flue Analysis
NO, ppm
402
424
422
363
427
185
180
140
95
173
NO2 , ppm
p -, rr\ n
75
77
77
24
35
30
29
23
2
28
Oj, %
5.3
3. 7
4.2
1. 1
2. 2
5.5
4. 1
2. 0
0. 8
3. 6
CO2, %
8. 8
9.6
9.3
11 ->
10. 6
8. 6
9.4
10.4
11.4
9.7
CO, ppm
77
110
95
348
192
30
45
182
473
47
Normalized
NO, ppm
517
500
511
381
472
241
216
153
99
203
-------
Table 63. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN
FOR THE INTERMEDIATE FLAME LENGTH PORTED BAFFLE BURNER WITH A
STANDARD GAS NOZZLE (Gas Input 3070 SCFH; Throat Gas Nozzle Position;
1455°C Wall Temperature; 4-degree Burner-Block Angle)
Combustion Air Flue Analysis Normalized
Temperature, °C NO, ppm NO2 , ppm O2 , % CO2 . % CO, pjpm NO, ppm
460 360 35 4.0 9.6 71 431
460 375 40 3.7 9.7 103 443
460 346 29 2.4 10.6 145 384
w 463 303 35 1.8 10.8 193 328
*> 463 329 37 5.2 9.0 54 421
463 252 7 0.6 11.4 1000 259
-------
Table 64. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN
FOR THE INTERMEDIATE FLAME LENGTH PORTED BAFFLE BURNER WITH A
DIVERGENT GAS NOZZLE (Gas Input 3052 SCFH; Baffle and Throat Gas Nozzle Positions;
141 5°C Wall Temperature; 4-degree Burner-Block Angle)
oo
Combustion Air
Temperature, C
471
471
471
468
466
463
463
463
463
466
466
466
463
NO, ppm
278
283
298
266
160
205
246
294
266
347
201
328
323
NO2 , ppm
p _ f ri r
29
39
39
23
4
15
,
31
42
32
45
6
43
46
Flue Analysis
Oz , %
3.9
4.9
5. 7
2. 5
0. 5
1.1
1.9
3.1
2.1
5.9
0.4
5. 1
4.5
CO2, %
9. 6
9.0
8. 5
10.4
10. 6
11.0
10.7
10.1
10.6
8. 6
10.7
10. 1
9.3
CO, ppm
71
60
51
110
1 6, 000
685
123
91
127
44
10, 000
52
55
Normalized
NO, ppm
331
356
393
297
164
215
266
337
292
465
205
417
397
-------
Table 65. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN
FOR THE INTERMEDIATE FLAME LENGTH PORTED BAFFLE BURNER WITH A
COMBINATION GAS NOZZLE (Gas Input 3006 SCFH Axial; Baffle Gas Nozzle Position;
1420°C Wall Temperature; 4-degree Burner-Block Angle)
Combustion Air
Temperature, °C
454
454
460
460
460
Flue Analysis
NO, ppm
243
•>•»<->
<-J7
238
250
215
NC-2 , ppm
37
43
39
40
21
02, %
4.3
5.7
2. 8
3. 6
1.1
C02, %
9.3
« /
o. o
10.2
9.7
11.2
CO, ppm
65
45
104
84
480
Normalized
NO, ppm
295
315
269
294
226
-------
Table 66. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN
FOR THE INTERMEDIATE FLAME LENGTH PORTED BAFFLE BURNER WITH A
STANDARD GAS NOZZLE (Gas Input 3070 SCFH Axial; Baffle Gas Nozzle Position;
985°C Wall Temperature; 4-degree Burner-Block Angle)
Combustion Air Flue Analysis Normalized
Temperature, °C NO, ppm NO2, ppm O2> % CO2, % CO, ppm NO, ppm
460 207 0 0.4 11.6 16,000 211
454 216 15 2.5 10.4 20 241
458 232 15 3.1 10.2 17 266
467 247 12 4.5 9.2 16 304
465 245 9 5.2 8.8 15 314
459 220 8 1.7 10.8 23 237
OJ
£ 218 91 10 1.4 11.2 54 97
223 83 5 0.7 10.1 21,000 86
227 108 10 5.7 8.6 8 143
224 105 15 2.2 10.7 31 116
220 117 10 4.5 9.2 14 144
224 110 15 3.4 9.8 19 128
22 77 6 3.6 9.7 26 90
22 65 10 5.5 8.7 11 85
22 75 6 2.5 10.5 34 84
22 72 5 4.5 9.2 18 89
22 69 6 1.1 11.3 44 72
22 66 3 0.5 11.2 14,000 68
-------
Table 67. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN
FOR THE INTERMEDIATE FLAME LENGTH PORTED BAFFLE BURNER WITH A
STANDARD GAS NOZZLE (Gas Input 2998 SCFH Axial; Baffle and Throat
Gas Nozzle Positions; 1430°C Wall Temperature; 8-degree Burner-Block Angle)
Flue Analysis
oo
^
Ul
V_JWI11UU.» HUil fi.il
Temperature, °C
NO, ppm
NO2, ppm
O<#,
2> /"
CO2, %
CO, ppm
IN <-> X 1 1 let 1 L Zi e U
NO, ppm
443
455
450
445
440
444
449
458
450
443
448
450
492
510
510
465
410
352
510
408
460
497
505
305
45
42
43
38
34
2
57
33
48
44
56
3
5.3
3.8
4.4
2.3
1.2
0.5
4.3
1.5
2.9
3.6
5.2
0.4
8.6
9.5
9.2
10.4
11. 1
11.0
9.2
10.9
10.2
9.7
8.8
11.0
29
31
21
64
157
6000
75
136
97
82
58
8500
632
604
624
515
433
361
620
439
522
584
646
312
-------
Table 68. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN
FOR THE INTERMEDIATE FLAME LENGTH PORTED BAFFLE BURNER WITH A
DIVERGENT GAS NOZZLE (Gas Input 2998 SCFH Axial; Baffle Gas Nozzle Position;
1340°C Wall Temperature; 8-degree Burner-Block Angle)
Flue Analysis
00
Temperature, °C
471
475
470
465
469
474
NO, ppm
193
273
242
362
377
305
NO2, ppm
2
29
16
39
41
34
02, %
0.4
2.4
1.9
4. 5
5.1
3.2
PO o/
V> V-/2 9 /O
10. 5
10.3
10.7
9.2
8.8
9.9
CO, ppm
44
133
346
56
44
97
INormaiized
NO, ppm
197
303
263
462
480
351
-------
Table 69. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN
FOR THE INTERMEDIATE FLAME LENGTH PORTED BAFFLE BURNER WITH A
COMBINATION GAS NOZZLE (Gas Input Z998 SCFH Axial; Baffle Gas Nozzle Position;
1310°C Wall Temperature; 8-degree Burner-Block Angle)
Flue Analysis
ou.stj.un Air
irature, °C
460
454
463
465
460
460
NO, ppm
166
193
212
243
250
170
NO2, ppm
17
28
32
37
37
_ _
02, %
1.3
2.4
3. 1
4.8
5.5
0.5
C* O °7
v^ v^2 f /°
11.0
10.3
10.0
9.1
8.6
11. 1
CO, ppm
152
89
83
65
56
4000
iNurmanzea
NO, ppm
176
215
243
304
325
174
-------
Tab: e 70. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN FOR THE
HIGH-MOMENTUM SHORT FLAME LENGTH PORTED BAFFLE BURNER WITH A STANDARD
GAS NOZZLE (Gas Input 2049 SCFH Axial; Baffle Gas Nozzle Position; 1260°C Wall
Temperature; 8-degree Burner-Block Angle)
Combustion Air Flue Analysis Normalized
Temperature, °C NO, ppm NO2, ppm O2> % CO2, % CO, ppm NO, ppm
22 81 18 3.3 9.9 12 94
22 82 18 4.5 9.3 8 101
22 78 14 5.3 8.6 6 100
22 80 7 1.2 11.1 25 84
22 68 3 0.5 10.5 9,500 70
2? 76 Q 2.0 10.7 13 83
oo
» 225 113 -- 0.5 10.9 16,200 116
230 122 16 2.1 10.6 68 134
228 128 22 4.0 9.5 39 154
224 124 21 5.1 8.9 33 157
230 121 19 2.9 10.2 37 137
225 110 3 1.2 11.2 362 116
460 215 22 1.4 11.0 69 230
455 213 8 1.0 H.3 94 223
453 228 29 2.4 10.3 65 253
459 238 29 3.4 9.8 53 277
465 243 28 4.3 9.3 49 295
462 234 29 5.4 8.6 45 303
-------
Table 71. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN FOR THE
SHORT FLAME LENGTH PORTED BAFFLE BURNER WITH A STANDARD GAS NOZZLE
(Gas Input 1991 SCFH Axial; Baffle Gas Nozzle Position;
1330°C Wall Temperature; 8-degree Burner-Block Angle)
Combustion Air Flue Analysis Normalized
Temperature, °C NO, ppm NO2> ppm O2, % CO2> % CO, ppm NO, ppm
22 78 17 1.53 11.1 115 85
22 105 25 5.43 8.8 25 137
22 60 0 0.5 10.6 130,000 63
2? 100 15 2.77 10.3 60 113
22 100 25 4.20 9.5 30 122
22 95 20 3.50 10.0 30 111
224 215 40 5.87 8.5 30 290
224 210 40 4.25 9.5 40 256
224 150 35 1.35 11.2 75 160
224 185 30 3.15 10.1 100 213
224 110 0 0.34 10.2 150,000 114
454 241 10 0.32 11.6 35,000 245
454 276 15 1.02 11.4 155 290
454 388 24 2.92 10.2 55 440
454 344 18 2.0 10.7 84 373
454 401 34 4.5 9.2 28 493
454 388 37 5.5 8.7 27 505
-------
Tab:e 72. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN FOR THE
SHORT FLAME LENGTH PORTED BAFFLE BURNER WITH A STANDARD GAS NOZZLE
(Gas Input, 3093 SCFH Axial; Baffle Gas Nozzle Position; 1450°C Wall Temperature;
8-degree Burner-Block Angle)
Ul
o
Combustion Air
Temperature, °C
452
452
452
452
452
453
210
210
210
210
210
210
22
22
22
22
22
22
Flue Analysis
NO, ppm
550
610
580
610
520
435
240
255
240
225
185
155
155
150
145
130
105
85
NO2, ppm
18
48
56
50
10
0
40
45
40
45
30
0
35
40
30
30
20
0
°?,»
2.
3.
5.
4.
1.
0.
2.
3.
4.
5.
1.
0.
5.
4.
3.
2.
1.
0.
%
305
33
73
11
59
7
90
70
90
26
95
46
78
54
35
61
17
48
c* c\ tf
\-t V- '2 9 /O
10. 5
10. 0
8.7
9.6
11. 1
11.2
10.3
9.8
9.1
8.8
10.7
11.5
8.6
9.3
10.0
10.4
11.2
11.1
CO, ppm
145
115
65
100
240
30, 000
90
60
20
40
100
40,000
25
30
40
55
10,000
78,000
Normalized
NO, ppm
608
705
757
738
559
455
272
304
305
294
202
161
205
186
168
146
111
89
-------
Table 73. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN FOR THE
SHORT FLAME LENGTH PORTED BAFFLE BURNER WITH A STANDARD GAS NOZZLE
(Gas Input 3064 SCFH Axial; Baffle Gas Nozzle Position; 1050°C Wall Temperature;
8-degree Burner-Block Angle)
uo
Combustion Air
Temperature, °C
420
420
420
420
420
420
212
212
212
212
212
212
22
22
22
22
22
Flue Analysis
NO, ppm
294
295
293
272
270
247
112
123
130
142
142
140
82
91
92
78
59
NO2, ppm
23
26
20
20
16
0
23
18
30
22
22
22
5
5
7
5
0
Oal
2» 1°
2.82
3.31
4.90
5.93
1.28
0. 64
0.92
1.67
2.43
3.42
4. 15
5.64
2.7
3.9
5.2
1.8
0.4
C02, %
10.3
9.9
9.1
8 . 5
11. 1
ii. 4
11.4
10.9
10.6
10.0
9.5
8.7
10.3
9.6
8.8
10.9
10.8
CO, ppm
20
15
15
10
25
20,000
75
20
20
20
20
19
14
12
9
19
11,000
Normalized
NO, ppm
332
341
368
364
286
25b
118
133
144
165
172
183
92
108
118
84
60
-------
Tab.e 74. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN FOR THE
^HORT FLAME LENGTH PORTED BAFFLE BURNER WITH A STANDARD GAS NOZZLE
(Gas Input 3070 SCFH Axial; Baffle Gas Nozzle Position; 1360°C Wall Temperature;
8-degree Burner-Block Angle; 15% and 25% Flue-Gas Recirculation)
f^"* f^i TVlT^I 1 G 4" 1 f^ K"l A 1 1*
\~s*~f 111 U Llo t lull .rt.ll
Temperature, °C
460
455
467
463
460
465
454
460
467
462
458
465
Flue Analysis AT .. ,
NO, ppm
129
137
127
111
122
108
66
69
66
59
56
59
NO2, ppm
27
28
26
22
24
7
24
20
25
12
13
31
Ool
2f 1°
5.4
4.0
3.2
1.9
2.5
0. 5
~> c erf T7*p*T>
2.3
3.3
4.0
1.3
1.0
6.0
/"* c\ ol
*— ' ^-^2 * /"
8. 7
9.6
10.0
10.8
10.4
11.2
10. 6
9.9
9.3
10.9
11.3
8. 5
CO, ppm
38
52
70
137
86
6000
61
46
37
122
134
11
J.NV-* J- iAia-JLJ.^J%^\-t
NO, ppm
167
164
146
121
136
110
73
80
79
63
59
80
-------
Table 75. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN FOR THE
SHORT FLAME LENGTH PORTED BAFFLE BURNER WITH A HIGH-VELOCITY RADIAL
GAS NOZZLE (Gas Input 2955 SCFH Radial; Baffle Gas Nozzle Position;
1408°C Wall Temperature; 8-tiegree Burner-Block Angle)
Combustion Air *• Normalized
Temperature, °C NO, ppm NO2, ppm O2, % CO2, % CO, ppm NO, ppm
475 895 20 0.88 11.4 250 940
471 910 50 1.65 11.0 170 978
S 468 850 40 2.41 10.6 120 944
465 675 60 3.35 10.0 105 789
465 550 55 4.21 9.5 80 668
465 360 50 5.97 8.5 60 482
-------
Table 76. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN FOR THE
SHORT FLAME LENGTH PORTED BAFFLE BURNER WITH A LOW-VELOCITY RADIAL
GAS NOZZLE (Gas Input 2982 SCFH Radial; Baffle Gas Nozzle Position;
141 3°C Wall Temperature; 8-degree Burner-Block Angle)
Flue Analysis
OO
Ul
uu.si-j.un .tt.ir
irature, °C
443
443
443
445
445
443
NO, ppm
595
725
700
465
690
643
NO2, ppm
205
185
175
275
205
135
0,, %
4.39
2. 58
3.05
5.59
1.59
0.82
/•* f~\ al
v_> ^-^2. f I®
9.4
10.4
10. 1
8.7
11. 1
11.5
CO, ppm
50
105
90
50
160
380
iNuriiia.ij.z,eci
NO, ppm
732
612
802
609
728
675
-------
Table 77. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN FOR THE
SHORT FLAME LENGTH PORTED BAFFLE BURNER WITH A DIVERGENT GAS NOZZLE
(Gas Input 2992 SCFH; Baffle Gas Nozzle Position; 1420°C Wall Temperature;
'8-degree Burner-Block Angle)
Flue Analysis
VjUlllULia I.JHJ 11 fiLl
Temperature, °C
471
471
471
471
471
471
NO, ppm
505
530
520
520
500
390
NO2, ppm
55
601
70
50
40
25
O2, %
5.52
3.88
4.87
2.86
1.92
0.33
C* C~\
-------
Tabls 78. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN FOR THE
SHORT FLAME LENGTH PORTED BAFFLE BURNER WITH A COMBINATION GAS NOZZLE
(Gas Input 3061 SCFH Axial; Baffle Gas Nozzle Position; 1425°C Wall Temperature;
8-degree Burner-Block Angle)
Combustion Air J x"c ~ii*iybt» Normalized
Temperature, °C NO, ppm NO2, ppm O2, % CO2> % CO, ppm NO, ppm
465 171 0 0.4 11.2 600 175
465 243 24 1. 1 11.3 96 255
465 300 32 2.2 10.6 83 330
465 358 39 3.1 10.0 56 410
465 420 44 4.4 9.2 37 515
465 410 46 5.5 8.6 28 532
-------
Table 79. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN FOR THE
SHORT FLAME LENGTH PORTED BAFFLE BURNER WITH A STANDARD GAS NOZZLE
(Gas Input 3008 SCFH Axial; Baffle Gas Nozzle Position; 1470°C Wall Temperature;
16-degree Burner-Block Angle)
Flue Analysis
V^V->111L»U.C>I,J.<_H.I .Tin
Temperature, °C
450
w 450
Ul
^ 450
450
450
450
NO, ppm
395
355
310
270
195
420
NO2 , ppm
105
110
50
60
15
125
02, %
4.49
3.23
2.35
1.37
0.49
5.86
c* c\ tf
V-* v-/2 9 /o
9.3
10. 1
10. 5
11. 1
11.2
8.6
CO, ppm
85
105
150
305
35,000
75
iNormanzea
NO, ppm
488
396
343
287
204
559
-------
Tabl > 80. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN FOR THE
SHORT FLAME LENGTH PORTED BAFFLE BURNER WITH A DIVERGENT GAS NOZZLE
(Gas Input 2863 SCFH; Baffle Gas Nozzle Position: 1440 °C Wall Temperature;
16-degree Burner-Block Angle)
Combustion Air %• Normalized
Temperature, °C NO, ppm NO2, ppm O2, % CO2, % CO, ppm NO, ppm
460 165 0 0.45 10.6 75,000 172
w 460 364 45 2.55 10.5 ' 110 400
-------
Table 81. NORMALIZED NO CONCENTRATION AS A FUNCTION OF FLUE OXYGEN FOR THE
SHORT FLAME LENGTH PORTED BAFFLE BURNER WITH A COMBINATION GAS NOZZLE
(Gas Input 2953 SCFH Axial; Baffle Gas Nozzle Position; 1470 °C Wall Temperature;
16-degree Burner-Block Angle)
_ , ,. . . r lue .tt.naj.ysis ,., i- j
Combustion Air * Normalized
Temperature, °C NO, ppm NO2> ppm O2) % CO2, % CO, ppm NO, ppm
450 395 70 5.47 8.8 80 515
450 360 105 3.05 10.1 135 410
450 370 110 4.27 9.5 100 451
450 345 40 2.52 10.5 170 385
450 310 60 1.20 11.2 10,000 329
450 290 30 0.82 11.3 25,000 305
-------
Table 82. FLUE ANALYSIS FOR THE MOVABLE-VANE BOILER BURNER WITH A
60-DEGREE GUN GAS NOZZLE (Gas Input 2969 SCFH; Exit Gas Nozzle Position;
30-degree Vane Rotation; 1340°C Wall Temperature; 30-degree Burner-Block Angle)
uo
o^
O
Combustion Air
Temperature, °C
22
22
22
22
22
244
244
244
244
244
457
457
457
457
457
457
Flue Analysis
NO, ppm
65
68
64
78
83
145
140
130
125
155
345
275
370
365
335
395
NO2, ppm
36
25
27
22
25
26
37
42
36
21
40
12
44
44
36
42
O2, %
3.9
4.6
4.9
1.8
2.5
2.4
3.2
5.1
4.2
1.4
2. 8
0. 8
3.5
5.9
2. 0
4. 8
CO2, %
9. 7
9.3
9.1
10. 9
10. 5
10 *
10. 1
9.0
9.6
11. 1
10.2
11.3
9.8
8.4
10. 7
9.0
CO, ppm
45
27
23
62
47
)6*
83
45
55
438
41
6000
25
20
57
26
Normalized
NO, ppm
78
84
80
84
93
162
161
166
151
165
390
289
433
484
365
496
-------
Table 83. FLUE ANALYSIS FOR THE MOVABLE-VANE BOILER BURNER WITH A
60-DEGREE GUN GAS NOZZLE (Gas Input 2969 SCFH; Exit Gas Nozzle Position;
30-degree Vane Rotation; 1330°C Wall Temperature; 30-degree Burner-Block Angle;
15% and 25% Flue-Gas Re circulation)
Flue Analysis
\_/uinuuatiwn .Mir
Temperature, °C
465
465
465
465
465
465
465
465
465
465
NO, ppm
118
121
105
97
89
31
28
28
26
24
NO2, ppm O2t %
-15% Flue-Gas Recir<
22 3. 3
21 2. 6
16 1.5
1 0.3
20 5.2
-25% Flue-Gas Recirc
10 4.4
11 3.4
10 2. 3
8 1.4
7 0.7
CO2, %
10. 0
10. 6
11.1
12. 0
9. 0
9.5
10.2
10.8
11.2
11. 8
CO, ppm
40
47
83
5000
21
20
25
34
39
364
J.NU 1 11 let ii z, c u
NO, ppm
137
135
112
98
114
38
33
31
28
25
-------
Table 84. FLUE ANALYSIS FOR THE MOVABLE-VANE BOILER BURNER WITH A
60-DEGREE GUN GAS NOZZLE (Gas Input 3004 SCFH; Throat, Exit, and Deflector
Gas Nozzle Positions; 30-degree Vane Rotation; 1350°C Wall Temperature;
30-degree Burner-Block Angle)
Combustion Air
Temperature, °C
Flue Analysis
NO, ppm
NQ2> ppm 02>
C02t
Normalized
CO, ppm NO, ppm
UO
458
458
458
458
458
458
475
475
475
475
475
475
280
260
225
200
160
320
335
354
345
380
400
270
44
41
33
32
n
47
24
38
29
29
36
- -
r fusiLiuri-
4. 8
3. 5
2.5
2. 0
0. 8
6. 2
1.4
5.8
2. 7
3. 3
4. 7
0. 8
9.1
9.8
10.4
10. 8
11.5
8.2
11. 0
8. 5
10. 3
9.9
9.1
11.3
45
72
115
170
12, 500
40
55
20
23
21
19
7000
354
306
252
218
1 69
429
390
389
433
484
365
496
-------
Table 85. FLUE ANALYSIS FOR THE MOVABLE-VANE BOILER BURNER WITH A
A COMPOSITE LIST OF GAS NOZZLES (Gas Input 3000 SCFH; Throat Gas Nozzle Position;
30-degree Vane Rotation; 1360°C Wall Temperature; 30-degree Burner-Block Angle;
460°C Secondary Air Preheat Temperature)
Flue Analysis
u>
v-'UHiuua i-iuii fLii
Temperature, °C
457
457
457
457
457
NO, ppm
470
455
415
410
335
NO2, ppm 62, %
-Low-Momentum Axial
39 4.2
42 5. 6
28 2.2
26 1. 8
4 0. 8
CO2, %
9.3
8. 5
10. 6
10. 8
11.4
CO, ppm
26
23
31
36
6100
INUl IilCtJ.lZ,CU
NO, ppm
569
569
457
444
347
TN- A. *.T 1
465
465
465
465
465
453
453
453
453
453
453
370
410
420
400
215
340
280
260
270
195
215
34 2.2
50 5.8
47 4.4
38 3.2
5 0. 9
•High-Momentum Axial
40 5. 7
36 4.2
34 2.7
34 3. 0
2 0. 9
28 1.4
10. 6
8.4
9.2
9.9
11.1
^T A _ _ 1 A
8.5
9.3
10. 2
10. 0
11.4
11.0
150
83
107
126
7400
43
73
112
99
5800
326
407
547
515
460
224
449
339
293
308
203
229
-------
Table 86. FLUE ANALYSIS FOR THE MOVABLE-VANE BOILER BURNER WITH A
60-DEGREE GUN GAS NOZZLE (Gas Input 2994 SCFH; Exit, Throat, and Deflector
Gas Nozzle Positions; 15-degree Vane Rotation; 1355°C Wall Temperature;
30-degree Burner-Block Angle; 457°C Secondary Air Preheat Temperature)
uo
Combustion Air
Temperature, °C
NO, ppm
Flue
NO2, ppm
Analysis
O2, % CO2, %
CO, ppm
Normalized
NO, ppm
453
453
453
453
453
453
240
245
173
215
158
177
40 6. 0
35
30
33
20
15
5. 0
2. 8
4. 0
2. 0
i . 5
8.4
9. 0
10.2
9.5
10.7
ii.O
49
59
84
75
130
3 1 G
324
310
195
257
173
189
462
462
462
462
462
456
456
456
456
456
~ 250
155
170
180
285
170
180
192
187
184
30 4. 9
35
3,0
25
45
T^ ft J.
25
30
35
40
30
2.5
3. 1
1. 6
5.7
1.1
2.4
3. 7
5. 8
3. 0
9.0
10.4
10.1
10. 9
8. 6
11.3
10.4
9.8
8.5
10.1
50
77
70
145
43
376
194
105
62
155
314
173
195
194
376
179
200
227
250
210
-------
Table 87. FLUE ANALYSIS FOR THE MOVABLE-VANE BOILER BURNER WITH A
60-DEGREE GUN GAS NOZZLE (Gas Input 2976 SCFH; Exit, Throat, and Deflector
Gas Nozzle Positions; 45-degree Vane Rotation; 1348°C Wall Temperature;
30-degree Burner-Block Angle; 463°C Secondary Air Preheat Temperature)
Temperature, °C
469
469
469
469
469
456
456
456
456
456
463
463
463
463
463
NO, ppm
335
395
435
450
400
320
350
350
320
275
205
235
275
290
295
Flue Analysis
NO2, ppm O2, % CO2, %
34 1. 5
46 2. 6
51 3. 7
50 4. 3
55 5. 7
rr--L i. T-> -A.'
50 6. 0
51 3.8
46 4.1
42 2. 5
10 1.4
30 1. 8
35 2.4
40 3. 6
36 4. 3
44 5.2
10. 9
10. 3
9.7
9.3
8.4
8. 3
9.7
9.4
10. 3
11.1
10.8
10. 3
9.8
9.3
8.8
CO, ppm
257
189
95
74
60
4
233
195
325
3000
217
126
98
78
64
NO, ppm
358
442
515
549
526
427
415
424
355
293
222
260
323
354
379
-------
Table 88. FLUE ANALYSIS FOR THE MOVABLE-VANE BOILER BURNER WITH A
A COMPOSITE LISTING OF GAS NOZZLES (Gas Input 3011 SCFH; Throat Gas Nozzle Position;
45-degree Vane Rotation; 1346°C Wall Temperature; 30-degree Burner-Block Angle;
456°C Secondary Air Preheat Temperature)
{"" fiTYlVm Q^"! OT1 A 1 I*
\-* VJIilLJ LIB UJLvJ XI z^. J.X
Temperature, °C
454
454
454
454
454
454
456
456
456
456
456
456
453
453
453
453
453
Flue Analysis
NO, ppm
370
300
440
435
405
410
510
440
480
520
420
360
600
515
565
525
445
NO2, ppm 6
-Low-Momentum
40
40
60
55
50
60
^ A
45
50
50
55
35
30
-High-Momentum
55
45
50
60
40
2, % C02, %
1.6 11.0
0.9 11.4
4.5 9.2
3. 8 9. 6
2.5 10.4
5. 8 8. 5
AT_ 1-
2.7 10.3
5. 8 8. 5
4. 8 9. 0
3.5 9.8
1.8 10.8
0.9 H.4
•
3. 5 9. 8
1.6 10.9
2.2 10.6
5.9 8.4
0.9 11.3
CO, ppm
97
152
43
50
55
40
58
36
40
52
63
195
45
87
66
29
368
^^fl T*TY^ 311 *7 f* f^
iNo niidiizc a
NO, ppm
398
312
541
515
452
547
575
585
602
607
454
375
701
554
624
704
463
-------
Table 89. FLUE ANALYSIS FOR THE MOVABLE-VANE BOILER BURNER WITH A
60-DEGREE GUN GAS NOZZLE (Gas Input 2897 SCFH; Exit, Throat, and Deflector
Gas Nozzle Positions; 60-degree Vane Rotation; 1382°C Wall Temperature;
70-degree Burner-Block Angle; 461 °C Secondary Air Preheat Temperature)
Flue Analysis
Temperature, °C NO, ppm
N02, ppm O2, % C02, %
CO, ppm
itu i nio.j.i.z,cu
NO, ppm
457
457
457
457
457
212
295
265
229
220
29 2. 0
40
36
31
18
5.2
3.7
2.5
0.9
10. 7
8.9
9.7
10. 3
11.4
220
43
69
91
2500
231
376
305
256
231
460
460
460
460
460
464
464
464
464
464
464
240
275
290
270
280
175
225
265
290
310
120
30 1.4
38
39
36
37
22
34
38
42
41
3
6.4
5.0
3. 3
4. 0
1.3
2.4
3. 3
4.4
5. 8
0. 8
11.0
8.1
9.0
9.9
9.5
11.1
10.4
9.9
9.3
8.5
11.4
324
33
39
65
59
145
67
55
43
34
12,000
257
425
390
316
344
193
250
306
357
412
126
-------
Table 90. FLUE ANALYSIS FOR THE MOVABLE-VANE BOILER BURNER WITH A
COMPOSITE LISTING OF GAS NOZZLES (Gas Input 2883 SCFH; Throat Gas Nozzle Position;
60-degree Vane Rotation; 1376°C Wall Temperature; 30-degree Burner-Block Angle;
456°C Secondary Air Preheat Temperature)
oo
f"* f\ YYI V»T i Q ^4 O Tl All*
V-* V-> 1 1 1 U U. G lrJ.Uli XA.XX
Temperature, °C
452
452
452
452
452
458
458
458
458
458
452
452
452
452
452
Flue Analysis
NO, ppm
305
310
300
280
240
390
460
480
455
390
170
205
225
24Z
270
NO2, ppm O2, % CO2, %
-Low - M ome ntum
43
46
35
31
27
TN*
40
43
44
38
34
•High-Momentum
12
34
35
42
44
5. 0 8. 9
4. 0 9. 5
3.1 10.1
2.2 10.5
1.1 11.3
TVT 1
6.0 8.4
4. 7 9. 1
2.9 10.3
1.5 11.0
0.6 11.6
1.5 11.0
2.7 10.3
3. 7 9. 7
4. 3 9. 3
5. 8 8. 5
CO, ppm
17
25
29
36
157
30
39
51
70
445
396
218
140
112
85
"^J/"% T*TY^ 31 1 1 T ^ fl
IN \J L 1 1 1CL J.X^jC U.
NO, ppm
386
371
344
308
252
527
572
545
487
401
182
231
249
294
359
-------
Table 91. FLUE ANALYSIS FOR THE MOVABLE-VANE BOILER BURNER WITH A
30-DEGREE RING GAS NOZZLE (Gas Input 2884 SCFH; Exit, Throat and Deflector
Nozzle Positions; 30-degree Vane Rotation; 1357°C Wall Temperature;
30-degree Burner-Block Angle)
V^UIIlUUSHUIl S\LL
Temperature, °C
NO, ppm
N02,
ppm O2, •;
Z, C02, %
CO, ppm
x^i v/ i iiiaii&cu
NO, ppm
T-.-l.T-l '.!_•
470
470
470
470
470
110
175
195
180
90
18
50
50
50
15
1.9
3.9
5.4
4.4
1.0
10.8
9.5
8.7
9.3
11.4
185
97
62
76
10,000
119
209
254
221
95
454
454
454
454
454
466
466
466
466
466
175
197
212
233
240
142
125
95
70
35
70
63
85
67
65
28
45
22
22
0
1.8 10.9
2.4
3.5
4.6
5.1
— Deflector
4.7
3.4
2.6
1.6
0.6
10.4
9.9
9.2
8.9
T->_ „:*:_
9.1
9.9
10.4
11.0
11.5
135
89
76
54
46
80
122
239
500
6500
189
219
247
289
306
177
146
106
75
37
-------
Table 92. FLUE ANALYSIS FOR THE MOVABLE-VANE BOILER BURNER WITH A
30-DEGREE RING GAS NOZZLE (Gas Input 2938 SCFH; Exit and Deflector Nozzle Positions;
15-degree Vane Rotation; 1388°C Wall Temperature; 30-degree Burner-Block Angle)
Combustion Air Flue Analysis Normalized
Temperature, °C NO, ppm NO2, ppm O2, % CO2> % CO, ppm NO, ppm
466
466
466
466
466
460
460
460
460
460
460
110
72
143
200
230
130
155
175
185
120
110
35
10
52
45
50
30
30
35
30
20
20
- Deflectc
1.9
0.8
3.0
4.6
5. 4
T?--'t
.tiXii;
2.7
3.9
4.6
5.8
1. 7
0.8
10.9
11.5
10. 1
9.1
8 . 7
T-, .^._
10.3
9.6
9.2
8.5
10.9
11.4
254
1000
124
84
6i
87
70
58
45
138
279
119
75
163
247
2w
145
181
214
244
130
115
-------
Table 93. FLUE ANALYSIS FOR THE MOVABLE-VANE BOILER BURNER WITH A
30-DEGREE RING GAS NOZZLE (Gas Input 2909 SCFH: Exit and Deflector Nozzle Positions;
15-degree Vane Rotation; 1359°C Wall Temperature; 30-degree Burner-Block Angle)
Flue Analysis
U)
Temperature, °C
446
446
446
446
446
453
453
453
453
453
NO, ppm
70
65
95
90
125
204
150
114
90
132
N02,
10
5
30
20
25
40
35
15
0
25
ppm O2> %
1.1
0.9
3.3
2.6
4.7
^_ri _^
5.7
4. 1
1.8
0.7
3.0
C02, %
11.3
11.4
10.0
10.4
9. 1
Position -
8.6
9.5
11.0
11.6
10. 1
CO, ppm
1000
2500
63
91
46
62
104
1000
19,000
215
NO, ppm
74
68
109
100
154
270
180
123
92
150
-------
Table 94. FLUE ANALYSIS FOR THE MOVABLE-VANE BOILER BURNER WITH A
-DEGREE RING GAS NOZZLE (Gas Input 2894 SCFH; Exit and Deflector Nozzle Positions;
60-degree Vane Rotation; 1370°C Wall Temperature; 30-degree Burner-Block Angle)
Combustion Air
Temperature, °C
Flue Analysis
NO, ppm NO2> ppm O2, % CO2> %
Normalized
CO, ppm NO, ppm
^ .t „__.,..__
459
459
459
459
459
459
463
463
463
463
463
463
65
90
104
121
154
57
115
160
181
255
101
81
10
18
21
29
34
7
24
30
34
40
19
17
1.8 10.9
2.9
3.6
4.2
5. 1
0.8
2.5
3.5
4.6
5.7
1.5
0.7
10.2
9.8
9.5
8.9
11.2
10.4
9.8
9.2
8.5
11.0
11.4
238
102
72
54
44
3000
90
70
50
39
403
4000
70
102
123
148
196
60
128
187
237
335
108
84
-------
Table 95. FLUE ANALYSIS FOR THE MOV ABLE-VANE BOILER BURNER WITH A
30-DEGREE GUN GAS NOZZLE (Gas Input 3054 SCFH; Exit and Deflector Nozzle Positions;
30-degree Vane Rotation; 1390°C Wall Temperature; 30-degree Burner-Block Angle)
Combustion Air
Temperature, °C
Flue Analysis
NO, ppm
N02,
ppm O2, '
% C02, %
CO, ppm
NO, ppm
455
455
455
455
455
455
465
465
465
465
465
250
210
290
310
310
160
185
240
255
85
135
30
35
60
55
60
10
30
35
40
10
20
2.8
2.0
4.0
4.9
6.0
0.4
4.0
4.9
5.4
0.9
2.7
10.2
10.7
9.5
9.0
8.4
11.5
T-> •!.•
9.5
9.0
8.7
10.8
10.3
91
121
75
60
51
5600
144
95
70
7100
406
281
227
345
383
414
166
222
304
330
91
152
-------
Table 96. FLUE ANALYSIS FOR THE MOVABLE-VANE BOILER BURNER WITH 30-DEGREE RING
AND 60-DEGREE GUN GAS NOZZLES (Gas Input 3044 SCFH; Exit and Deflector Nozzle Positions;
30-degree Vane Rotation; 1347°C Wall Temperature; 1 5-degree Burner-Block Angle)
Combustion Air
Temperature, °C
462
462
462
462
462
456
456
456
456
456
463
463
463
463
463
NO, ppm
180
200
215
210
215
FW
350
355
345
330
335
30
85
95
90
60
Flue Analysis
NO2, ppm O2, % CO2, %
T7^ v i 4* "t~-*f^ c i 4" i /™\ M r\f\ T~\^. ff «* A A ^"ln M 1
JL«Xj.T, JrOSlLlOn^ OLJ — JL/CgiCG VJlZn
5 1.0 11.4
20 2.0 10.7
30 3.0 10.1
35 4.1 9.5
40 5.4 8.7
jflector Position, 60-Degree Gun -
40 5.2 8.9
20 4.6 9.2
20 3.5 9.8
15 2.0 10.7
20 2.3 10.5
^ . ^ . . _ D .
— Exit Position, 30 — Degree Ring
2 0.3 11.6
7 3.2 10.0
17 4.2 9.5
19 5.2 8.9
5 2.0 10.7
CO, ppm
27500
99
58
55
31
51
70
144
7500
176
17000
86
57
70
274
N 1'
NO, ppm
196
218
245
254
280
443
440
404
360
369
32
98
115
115
65
-------
Table 97. FLUE ANALYSIS FOR THE MOVABLE-VANE BOILER BURNER WITH 60-DEGREE GUN
AND 30-DEGREE RING GAS NOZZLES (Gas Input 3029 SCFH; Exit and Deflector Nozzle Positions;
15-degree Vane Rotation; 1390°C Wall Temperature-, 15-degree Burner-Block Angle)
Combustion Air
Temperature, °C
Flue Analysis
U)
-J
Ul
T-»-
465
465
465
465
465
459
459
459
459
459
470
470
470
470
470
470
480
510
530
520
485
395
395
385
375
350
85
139
185
200
225
235
NO, ppm NO2> ppm O2> % CO^, % CO, ppm
Deflector Position, 60-Degree Gun
15 0.5 11.6
50 1.5 H.O
65 2.2 10.6
65 3.3 9.9
65 4.9 9.0
Exit Position, 60-Degree Gun
Normalized
NO, ppm
35
50
55
50
45
0.9
2.5
3.7
4.5
5.8
11.4
10.4
9.8
9.3
8.5
Exit Position, 30-Degree Ring
8
22
36
35
45
50
0.8
1.9
3.0
3.4
4. 5
5.2
11.5
10.8
10. 1
9.9
9.2
8.8
486
330
210
152
Q6
320
152
112
92
68
384
241
143
126
81
75
481
546
591
601
611
38^
439
454
463
468
90
151
211
232
277
301
-------
Table 98. FLUE ANALYSIS FOR THE MOVABLE-VANE BOILER BURNER WITH 30-DEGREE RING
AND 60-DEGREE GUN GAS NOZZLES (Gas Input 2889 SCFH; Exit and Deflector Nozzle Positions;
45-degree Vane Rotation; 1395°C Wall Temperature; 15-degree Burner-Block Angle)
„ , . . A .
Combustion Air
Temperature, °C NO, ppm NO2, ppm O2
Flue Analysis
CO2, % CO, ppm
Normalized
NO, ppm
470
470
470
470
470
453
453
453
453
453
455
455
455
455
455
315
300
245
275
175
520
540
570
520
455
460
450
385
350
485
CjJiiL JTUS1.L1
40
35
35
35
15
.UIl, JU-
5.5
4.6
3.0
3.5
1.4
Exit Position, 60-
60
60
55
40
20
Deflector
60
50
45
30
65
5.1
4.6
3.9
1.5
0.4
regret; rv.iiig —
8.7
9.2
10. 1
9.8
11. 1
-Degree Gun -
9.0
9.2
9.6
11.0
11.5
Position, 60-Degree
4.7
3.6
2.4
1.7
5.1
9.1
9.8
10. 5
11.0
9.0
73
96
165
135
500
94
96
108
367
5000
^
106
138
215
385
105
411
372
279
322
187
663
664
670
550
472
566
527
424
389
609
-------
Table 99. FLUE ANALYSIS FOR THE MOVABLE-VANE BOILER BURNER WITH 30-DEGREE RING
AND 60-DEGREE GUN GAS NOZZLES (Gas Input 2896 SCFH; Exit and Deflector Nozzle Positions;
60-degree Vane Rotation; 1385°C Wall Temperature; 15-degree Burner-Block Angle)
Flue Analysis
U)
-J
-vl
V> ^/JkAXl^VLM k-LWAA. JT1, JL J.
Temperature, °C
455
455
455
455
455
461
461
461
461
461
450
450
450
450
450
NO, ppm
620
695
630
660
C in
560
610
640
620
595
495
465
355
450
450
NO 2, ppm
Exit Position,
70
40
70
65
50
90
90
90
90
60
Exit Position,
35
45
25
50
30
02, %
60-Degree
1.0
2.4
4.0
3.4
5.3
CO2, $
oun.
11.3
10.5
9.5
9.9
5. 5
'osition, 60-Degree
4.8
1.7
3.2
2. 1
1.0
30-Degree
4.0
2.7
1.3
4.9
5.6
9.0
10.9
10.0
10. 6
11.4
xv. ing
9.5
10.3
11.1
9.0
8.6
> CO, ppm
2500
352
243
389
18 Y
82
161
116
151
12,000
192
205
301
135
108
iNormauzea
NO, ppm
654
771
756
766
735
703
659
736
679
628
576
523
367
567
592
-------
Table 100. FLUE ANALYSIS FOR THE MOVABLE-VANE BOILER BURNER WITH A
30-DEGREE RING GAS NOZZLE (Gas Input 2895 SCFH; Exit Nozzle Position;
15, 30, 45, and 60-degree Vane Rotation; 1361°C Wall Temperature;
45-degree Burner-Block Angle)
oo
f* rtm Vni fl^"i on AIT*
\+j U111UU.9 LIU 11 *V J. 1.
Temperature, °C
465
465
465
465
465
465
456
456
456
456
456
463
463
463
463
463
463
452
452
452
452
452
452
Flue Analysis XT t._^j
NO, ppm
142
145
165
185
210
200
132
124
114
165
175
255
305
380
400
365
275
185
220
280
265
240
165
NO 2, ppm
8
13
23
35
40
40
23
21
1
25
25
25
45
40
55
50
40
25
30
40
45
50
15
O2, % CO2, %
30-Degree Vane Angle
0.4 11.6
1.2 11.2
2.2 10.6
3.4 9.9
4.5 9.2
5 «^8 8.5
15-Degree Vane Angle
2., 4 10.5
1.4 11.0
0.9- 11.3
3.0 10.1
4.3 9.4
_^1 C T *i o
-------
Table 101. FLUE ANALYSIS FOR THE MOV ABLE-VANE BOILER BURNER WITH A
COMPOSITE LIST OF GAS NOZZLES (Gas Input 3041 SCFH; Exit Nozzle Position;
60-degree Vane Rotation: 1396°C Wall Temperature; 45-degree Burner-Block Angle)
Flue Analysis
vO
Temperature, °C NO, ppm
462
462
462
462
462
462
470
470
470
470
470
280
340
395
465
465
445
310
285
255
220
185
N02,
15
30
50
50
50
55
35
30
30
15
10
ppm O2, % CO2, % CO, ppm
0. 7
1.3
2.1
3.2
4.5
5.0
T
5.4
4.4
3.2
1.8
0.9
L Nozz!
11.4
11. 1
10.6
10.0
9.2
9.0
8.7
9.3
10.0
10.8
11.3
\ f~
408
267
183
120
106
81
37
46
59
128
200
1^1 u Finalize a
NO, ppm
293
359
432
535
574
565
403
351
295
237
194
-------
TECHNICAL REPORT DATA
(Please read IiiUnicliun; on the reverse before completing)
1. REPORT NO.
2.
EPA-600/2-76-098b
4. TITLE AND SUBTITLE Burner Design Criteria for Control of
NOx from Natural Gas Combustion; Volume II. Raw
Data and Experimental Results
3. RECIPIENT'S ACCESSIOr^NO.
5. REPORT DATE
June 1976
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
8. PERFORMING ORGANIZATION REPORT NO
D.R. Shoffstall
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Institute of Gas Technology
IIT Center, 3424 South State Street
Chicago, Illinois 60616
10. PROGRAM ELEMENT NO.
1AB014; 21BCC-029
11. CONTRACT/GRANT NO.
68-02-1360
12. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND
Final; 6/73-9/75
PERIOD COVERED
14. SPONSORING AGENCY CODE
EPA-ORD
is. SUPPLEMENTARY NOTES jjERL-RTP project officer for this report is D. G. Lachapelle,
Mail Drop 65, Ext 2236.
I of the report gives derails of, and analyzes, trials conducted with
natural gas to determine the relationship between combustion aerodynamics and pol-
lution emission characteristics of industrial burners. Three burner types were stu-
died (kiln, ported baffle, and movable vane boiler), based on relative gas load and
estimated total industrial emissions. Experimental measurements on a pilot-scale
furnace included baseline characterization of each burner and variation of primary
operating parameters (air preheat, air/fuel ratio, firing rate, heat release rate,
position of gas nozzle in burner block, and air swirl intensity). Additional emissions
data were gathered for suspected control conditions (fuel injector design, flue gas
recirculation, fuel/air momentum ratio, and burner block angle). It also describes
in detail the experimental facility and sampling probes used to collect the data.
Volume II discusses completely the procedure used to select the test burners. It
includes detailed flame characterizations of baseline operations assembled from in-
the-flame temperature, gas species, and flow direction data analysis. Similar in-the-
flame studies were made for control conditions which minimized emissions for each
burner type. It also includes all raw da
:a collected from the input/output trials.
7.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
Air Pollution
Nitrogen Oxides
Aerodynamics
.Natural Gas
Combustion Control
Burners
Flames
Swirling
b.IDENTIFIERS/OPEN ENDED TERMS C. COSATI Field/Group
Air Pollution Control
Stationary Sources
Axial Injection
Radial Injection
Swirl
Industrial Burners
13B
07B
20D
21D
2 IB
13A
13H,07A
13. DISTRIBUTION STATEMENT
Uuamited
19. SECURITY CLASS (This Report)
Unclassified
21. NO. OF PAGES
420
20. SECURITY CLASS (This page)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
380
------- |