-------
20:15 HRS 113. CO H<*S «ET )
«i"15 HRS 121.00 HRS !=T)
_12:i5_hRS 129.CO HSSJET)
& v E R A'G e :
Z TCT S CN CVCLCKE DCS
2 TCT S CN CYC'-CNE CLS
?_TCT s CN CYCLCNE cus
""» TQT""S CK" CYCLCNE ccs
A: 15 KRS
U3.Cp_HRS_JET)_
_121.CO HRS lEU
_12:1S HRS 12S.CO HftS (ET)_
£ R
A V
AGE:
. __ ^
TOt_S_CN_"CCLLECTCR Cl.ST
TOT S CN_CCLLECTCR Cl.ST
TOT'S CN CCLLECTCR CLST
! 0-
l C-
! C-
< D-
r j c-
r { c-
r i D-
r 5 c-
ii)
ID
11 !
11)
12)
12)
121
12)
/
/
/
/
/
/
/
/
cut
cut
Cll t
1
1
4h
I
,T> =
,T! =
, T ) =
7.
7.
6.
V
160
ISO
940
AClli « 7.093
012!
C12J
012i
i-t
l,T) »
T
1
D
,T) =
.T) =
12* =
7.
7.
6.
7.
160
130
940
077
2*7
j
I
*
S
j
«i
*
£
?
74 PAGE 2
(HEIGHT)
(HEIGHT)
(V.cTGH.7)
(VictSHT)
{V.EIGHT)
t KEIGHT)
( VEI GHT)
(WEIGHT)
>
1
!
\
j
A
'.•
'-,
CO
L-J
p.
ia
k.
y_
it
I "~
-------
4/24/74
PAGE 3
U>
U»
-P-
i
1 • .
21: i s H5<; m,C->
1:15 HRS 113. CO
5:15 HRS 12Z.OO
. 9:1.5 hRS 126, .CO
i V C
6"
HSS t£T)
HRS :=T)
HRS_.LEI1
RAGE:
CIA CARBON PR
5 TOT S CN ir>0.£7 CARaCf.
S TCT S CN i.\LET CAREa.
X TOT S CN INLET CASECf>
% TOT S CN INL-cT CAP.BCN
? TCT S CN INLET CARECI.
E C 0 N D I T
/
•«cs-3ci: /
ICS-301! /
vlE_^
CC30HT) =
CC331CM =
WS3C1 =
"0301 =
D3C1(1,T) =
C30K1.T) =
AD301A =
5.900
6.93C
7.900
9. 100
• 450
C.O
C.O
0.0
0.0
0.0
C.O
0.0
? (WEIGHT)
S (WEIGHT)
J UEIGH'T]
X 1 W 1 1 un i l
LB CUST
L3 CUST
LB CUST
L8 CUST/HR
! (HEIGHT)
% (WEIGHT)
SS (WEIGHT)
•»•
1
f '
-t
• J
-J
4
9
••
-\
~»
z r:
X
ra
.' :.
-------
U)
La
01
n
U*
i '
;.;
»»
'>•>
*s
p
f*
-;•>
'.»
t •
t.
f.
ts-
9< .- '
'M'
51
^
J^
V
r"
^ • -
\f
•^
H
•*
.;
.-.
•J I
i:
^
•i
;.
SI
ITtJB H*S
2:26 HRS
8: 3 HRS
4S26 HRS
19:26 HRS
6:32 HRS
17:38 HRS
2:26 HRS
8: 8 HRS
4:26 HRS
19:2e HRS
6:32 HRS
17:36 H?.S
2:26 HRS
8: 8 HRS
4:26 HRS
19:26 HP.S
t:32 HSS
17:38 HRS
2:26 HRS
8: £ HRS
'
4:26 HRS
19:26 HRS i_
6:32 HRS
17:38 HRS
2:26 HRS
8: 8 HRS
18: 1 5 HRS. _
9:15 HRS
21115 HRS
ins HRS
StlS HRS
9:15 HRS
21:15 HRS
IslS hRS
11C. 40
HRS
IETJ
119.20 HRS SET)
124.90 HRS (ET)
AVERAGE :
97.20
_112.20
123. 30
A V E
110.40
119.20
124.90
A V e"
97.20
112.20
_123.30
A v' ~
115.20
124.50
a v_s.
97.20
112.70
123. iO
A.V E.
HC. 40
119.20
124.90
A V S
97.20
_112.2C
123.30
A V E
UC.40
119.20
124.90
A V E
111. CO
126. CO
A V £
114. CO
US. CO
122.00
126. CO
A V S
114.00
lie. co
HRS
HRS
H«S
R A
HSS
HRS
HRS
R A
HRS
HRS
R A
hSS
R A
:-*5
Si
-KRS.
HSS
R A
' v> i/> •<
• ft. x ef
: JL a.;*, it
HRS
HRS
HRS
R A
.KPS
IETI
(ET)
iETJ
5 £ :
(ETI
G E :
:ET>
• ET)
i ? T ',
-P...5. :
.5ET1_
•3 E :
;ETI
!ETJ
G^E :
-IET).
(ET1
S E :
JET.L-
. < £J.)
RAGE:
HSS
HSS
hRS
HRS
R A
HSS
HRS
(ET5
(ET)
JET!
(ET|
6.5..:
(ET)
(£T>
SULFUR 6E
, S02 CONC CUTLET GAS
$02 CCNC CUTLET GAS
S02 CCNC CUTLET GAS
SQ2 CCKC CUTLET GAS
H2S CCNC
H2S CCNC
H2S CCKC
H2S CCN'C
H2S CCNC
H2S CC.VC
H2S COX
H.2S CCKC
K2 CONC
H2 CCNC
H2 CCNC
>2 CCNC
r2 CCNC
S-2 CCNC
H2 CSNC
H2 COKC
H20 CCN'C
H2C CCNC
t-2C CC'.C
i-20 C.CNC
H2Q CCNC
INLET GAS
INLET GAS
INLET GAS
INLET GAS
CUTLET GAS
CUTLET GAS
CUTLET GAS
CUTLET GAS
IMET GAS
INLET GAS
INLET GAS
INLET GAS
CUTLET GiS
CUTLET GAS
CUTLET GAS
CUTLET GAS
INLET GiS
ISLET GAS
INLET GAS __ _.
CUTLET GAS
H20 CCNC CUTLET GAS
H20 CC.\C CUTLET GAS
H20 CCNC CUTLET GAS
N2 CCNC
M2 CCNC
_ M2 CCNC
\2 CCNC
N2 CCNC
K2 CCNC
•V2 CC?,C
N2 CCNC
N2 INLET
N2 INLET
K2 INLET
.
t TCT S
S TCT S
S TOT S
% TGT S
?_TCT .S.
* TOT S
S TOT S
IMET GAS
INLET GAS
INLET GAS
INLET GAS
CUTLET GAS
CUTLET GiS
CUTLET GAS
CUTLET GAS
VCL FLCb RfT£
VCL FLO'« F:/'"E
VCL FLC1. f./Vg
CN INLET c#r -:CN
CN INLET c*= :;c;-.
CN INLET CAf.«CN
CN INLET C/il.::CK
CN INLET C.!P ::;N
CN CU7L = T C.-:=C\
CN CUTLET C i:=CN
N E R A T C
(GS-206J
R
[GS-2CO
IGS-20C)
{GS-2CO
fGS-2CC)
JCS-2C6)
(GS-206)
(GS-206)
:GS-2CC
{OS-?. CO
SGS-2CC)
JGS-2C6)
JC-S-204 5
SSS-2C6)
fGS-2CO!
CGS-2CC)
:GS-2CO)
CGS-2CC)
SGS-2C6!
.-,
I (VCLUME) -,
,t
j ivcL'jys) .;
S IVCLUi-'i) --
? i VCLUME) -,
-e
? (VCLUME) .-,
? ( VCLUME i
% (VCLUM;) .,
? (VCLUVE)
? JVCLUXE:
? i VCLUME)
S (VCLUKEI ..
1 (VCLL'XE) e
1 (VCLUVE!
? 1 VCL •„••• = !
1. (VCLL.Vs! ,
CFH (7C CEG F)
CFH (7C CEG Fi
CFH !7C CEG F)
S (k EIGHT!
n < •« s : c •f T >
" I •« E I G H. T I
•' ( V. = J G !- 7 )
? ( ;•. E I G v 7 )
? ' s- S i G :- T )
? IkcICr.T)
-------
CO
Co
i.
3:
'.2' \
'•
*'
i
I'i
H
fv ,
*»
f
f
•s
y
;i
f-
r
j;
0-
3
iu
as
5*'
2»
U
b '
«
fl-t
1^
.r
5:15 HRS 122.00 '-RS (ET)
9: 15 HRS 126. CO r^S (£T)
AVERAGE:
2U15 HRS 114.00 HRS !£T)
1:15 HRS u s. eo HRS (FT)
5: 15 HRS 122. CO HRS (ET)
9:15 HRS 126. CO HRS 1ET)
AVERAGE:
21:15 HRS 114. CO HRS (ET)
1:15 HRS 113. CO HRS (ET)
5:15 HRS 122.00 HRS (ET)
9:15 HRS 126.00 HRS (ET)
AVERAGE:
21:15 HRS 114. CO HRS (ET)
1:15 HRS 118. CO HRS (ET)
5:15 HRS 122.00 HRS (ET)
9:15 HRS 126. CO HRS (ET)
AVERAGE:
% TOT S CS CUTLET C*U!CN
S T:T s CN CUTLET CA^CN
S TOT S CN CUTLET CA»;!CN
? H2C CN INLET CAR8C\
% H2C 'CS INLET CAR3C\
% H20 CN INLET- C'AROC\
* H2C .CN INLET CAREC.N
Z H2C CN INLET CAR5C\
2 H20 CN CUTLET CARSIN
? H2d CN CUTLET CAREZf.
Z H20 CN CUTLET CAR2C!.
S H20 CS CUTLET CAREt;,
% H20 CN CUTLET CARS:i,
Z ACIC CN CUTLET CAREEN
2 ACIC CN CUTLET CAR3.:N
* ACIC CN CUTLET CARECN
2 ACIC CK CUTLET CAR3CK
S ACIO CN CUTLET CAR2CIV
,
.
ICS-2CC) / 2200(1. T) =
•CS-2CC) / Z2COI1.T) =
(CS-iCO) / AZ200A =
(CS-302) / 2i:2!2-T! =
(CS-3C2I / Z2C2(2TTi =
JCS-3C2) / Z3C2(2,T) =
(CS-3C2) / AZ3C28 =
CCS-2CC) / Z200(2,T) =
ICS-2CC) / Z20C'.2,T) =
(CS-2CO) / Z2CC(2.T) =
SCS-2CC) / Z200'.2fT! =
JCS-2CC) / AZ20CE =
(CS-2CO) / Z200(3,T) =
(CS-2CC) / Z200O.T) =
(CS-2CO) / Z20C(3,T) =
ICS-2CC) / Z2CC(3,T) =
ICS-2CO) / AZ200C =
-
•
•
4/24/74 PAGE 5
19.640 5 (WEIGHT)
19.960 ? (WEIGHT)
19.640 % (WEIGHT)
5.900 ? (WEIGHT)
&.900 J (WEIGHT)
7.900 1 (WEIGHT)
9.100 ? (WEIGHT)
7.450 % (WEIGHT)
2.900 I (WEIGHT)
2.400 S (WEIGHT)
2.800 S (WEIGHT)
3.200 ? (WEIGHT)
2.825 S (WEIGHT)
3.040 S (WEIGHT)
2.400 * (WEIGHT)
2.350 * (WEIGHT)
2.450 ? (WEIGHT)
2.560 S (WEIGHT)
I
i
J
it
'',<
'.'
!;!
-.1
';.'
T-I
•J
' t
w
•-.•
1
n
. i
„
-i
'-i
-'
-j
'•*
^
i
..
ts
:•«
-
^
j
'
-------
4/24/74
PAGE
H 2 S
N E R A TOR /
tJL F U R
STRIPPER
U>
u>
l: 2 HRS
21:15 HPS
4:45 HRS
6:15 HftS
23: 2 HRS
3:50 HRS
9:26 HRS
1: 2 HRS
• 21: 15 HRS
4:45 HRS
6:15 HRS
23: 2 HRS
3:50 HRS
9:26 HSS
6:15 KRS
23: 2 HRS
3:50 HRS
9:26 HRS
6:15 HRS
23: 2 HRS
3:50 HRS
9:26 HRS
18:15 HRS
9:15 HRS
20:15 HRS
4:15 HRS
20:15 HRS .
4:15 HRS
21:15 HRS
1:15 HRS
5: 15 HRS
9:15 HRS
18:15 HRS
115 HRS
93.80 HSS
121.00 HSS (=T)
TOTAL:
RATE:
114. CO HRS (ET)
113. CO HRS !ET!
122. CO HSS !ET)
176. CO H5S !£T)
AVERAGE:
11 '..CO HRS tET)
** *?#• 0 "} ^ ^ ^ ' ^ ~ )
A V ERASE:
(-2 CCNC INLET CAS
H2 CCNC IKLET GAS
H2 CCNC SKLET GAS
HZ CC\C INLET GAS
K2 CCNC CUTLET GAS
H2 CONC CUTLET GAS
H2 CONC CUTLET GAS
>2 CCMC CUTLET GAS
H2 CCNC CUTLET GAS
N2 CCKC INLET GAS
N2 CCKC INLET GAS
M2 CCKC INLST GAS
N2 CCNC INLET GAS
N2 CCNC CUTLET GAS
N2 CONC CUTLET GAS
S'2 CCNC CUTLET GAS
N2 CGN'C CUTLET GAS
M2 CCNC CUTLET GAS
H2S CCNC CUTLET GAS
H2S CCNC CUTLET GAS
H2S CCNC CUTLET GAS
H2S CCNC CUTLET GAS
H2S CCNC CUTLET GAS
H20 CCN'C CUTLET GAS
H20 CCNC CUTLET GAS
H20 CCNC CUTLET GAS
H2Q CCN'C CUTLET GAS
i-20 CCNC CUTLET GAS
N2 IN-LET VCL FLOW RATE
N2 INLET VCL FLOS* RATE
N2 INLET VCL FLOW RATE
HEIGHT CYCLCNE DLST
hEIC-HT CYCLCNE CUST
HEIGHT CYCLCNE CUST
WEIGHT CYCLCNE OLST
WEIGHT FILTER CLST
WEIGHT FILTER CUST
fcrlGHT FILTER CUST
. W?!GHT FILTER OUST
% TOT S CN CYCLONE DUST
% TOT S CN CYCLCNE CLST
S 7DT S CN CYCLONE OUST
% TCT S CN CYCLCNE CtST
% TOT S CN CYCLCNE CLST
S TOT S CN FILTER OUST
* TCT S CN F'LTcR DL-S't
% TOT S CN FILTER CLST
(GS-1CO) / Y100(3,T) =
tGS-ICO) / Y1CC!3,T) =
1GS-1CO) / Y100(3,T) =
(GS-1CC) / AY1CCC =
«GS-108) / Y10B!3,T) «
IGS-iOS) / Y108t3,7> =
/ Y10S(4,T) =
JGS-106) / Y1C6(4,T> =
{GS-1C8J / Y1C6<4TT) =
JGS-103) / Y10S(4,T) =
5GS-108I / AYiCSO =•
( G-1CC) / G10CI5.1) =
t G-1CO! / G100(5,T) =
I G-100) / AG10CE =
< D-101 / C010KT! =
(0-101 / CD10KT) =
( C-1C1 / «0101 =
( C-101 / ftClOl =
« D-102 / C0102(T! =
( D-102 / CD1C2IT) =
( C-1C2 / v;ci02 =
? D-102 / RC102 =
( 0-1C1) / ClCl(lfT) -
! 0-101; / 0101(1, T) =
? D-lCi; / CiOiEltTi »
( D-1C1) / CICKi.T) =
1 D-1C1 ) / A0101A =
( 0-102) / CIO 2! 1,7) =
i 0-1C2 1 / C.102 i • ,7 ) =
{ 0-1C2) / AC102; =
50.600 t (VCLUKE)
51. COO J (VCLUME)
50.700 3 ! VCLUKE)
50.767 * (VCCUKE)
. 0.0 1 (VCLUME)
0.0 ? ( VCLUKE)
0.0 % (VCLU"=)
0.0 5 (VCLUME)
0.0 S ( VCLUME)
49.400 % ( VCLUME)
49.000 S (VCLUME)
49.300 J (VCLUME)
49.233 S (VCLUME)
52.200 ? (VCLU.XE!
52.200 S (VCL'JXE)
52.603 3 (VCLUME!
52. iOO % iVCLUMt!
52.425 S (VCLUME)
29.900 S t VCLUKE)
27.700 * (VCLUME!
26.300 3 (VCLUMJ)
26.500 Z (VCLUKE)
27.725 S (VCLUME)
17.600 ? (VCLUME)
19.700 % (VCLUME)
20.200 ? (VCLUME)
20.600 ? I VCLUME)
19.525 3 I VCLUKE)
1Z1.C03 CFK (7C CEG F)
121.000 CrH (7C CEG F)
121.000 CFH (7C DEC F)
0.0 LB CUST
O.COS LB CUST
O.C06 L6 CUST
O.C01 LB CUST/HR
0.0 LE CUST
0.0 LB CUST
C.O LB CUST
0.0 LS CUST/HR
2.440 3 (HEIGHT)
4.CCC 3 (HEIGHT)
'..640 ? ('.EirtHTl
3.960 ? !V. = 'GH7)
4.010 ? (SEIGHT)
0.0 S (UEIGHT)
0.0 5 l'*-IGrT)
0.0 J (WEIGHT)
"
^
;,
f
;-;
-»
-T
:.
.-j
-j
.-
"4
/»
'•3
TJ
"3
;j
•''
7a
-0
TO
--;
-'•-*
;*
r*
Ti
j»!
i
_
-'3
-i
**,
'4*
-t.1
3
]l1
a
,;
.
-------
PAGE
CARBON
INVENTORY
HOPPER
U>
CO
71:
1:
5:
9:
21:
1:
5:
9:
15
H<*S
114. CO
15 hRS 118. :0
15 HRS 12J.CO
1.5 hRS 126, CO
15
15
15
15
HRS
HRS
HRS
.HRS
A V E
" 114. CO
US. CO
12Z.CC
126. CO
A V E
HSS
HSS
H3S
R A
HPS
H5S
HSS
"R A
(ET)
I=T>
(ET)
J ET 1
G E :
(ET)
(ET)
!ET)
1ST)
G E :
^ RESIDUAL S ON CARBCN
S RESIDUAL S CH CAR3CN
s RESIDUAL s CM CARECN
t RESIDUAL S CN CA38CN
t RESIDUAL S CM CARBCN
% RESIDUAL H2C
S RESIDUAL H2C
t RESIDUAL H2C
* RESIDUAL H2C
% RESIDUAL H20
CM CARECN
CN'CASSCN
ON CAR6CN
ON CARECN
ON CARECN
?CS- 9C) /
T (WEIGHT) [i
I (WEIGHT) \'
— - I,
! (WEIGHT) 1.
? C«EIGHT)
? (ViEIGHT) '•
* ('.EIGHT) j.
S (WEIGHT) t>
iij
18:
9:
15
1.5
HRS
HRS
111.00
126. CO
A V E
HRS
HRS
R i
IET)
G E :
CARECN RECYCLE
CAP8CN RECYCLE
CAR3GN RECYCLE
RATE
RATE
RATE
1 C- 90) /
J C- 901 /
1 C- 901 /
C901I.T) =
C90(1,T> =
31.000
31.000
31. COO
L8 KAT'L/HR M
LB. PiT'L/HR --i
LE ^AT'L/HR ft
T«
S U L
FUR C C N
DENSER
•;?
'-^
22:
2:
6:
15
15
15
10:15
HRS
HRS
HRS
HRS
115.00
119. CO
123. GO
127.00
T
HRS
HSS
HSS
"HRS
0 T
R A
(ET)
(£T)
IET)
A L :
T E :
WEIGHT SULFUR
WEIGHT SULFUR
WHTGH.T SULFU3
HEIGHT SULFUR
WEIGHT SULFUR
WEIGHT SULFUR
COLLECTEC
COLLECTEC
CCLLECTEC
CCLLECTEE
CCLLECTEC
CCLLECTEC
S-401) /
S-401) /
S-401) /
S-401) /
S-401) /
S-401) /
S40KT) =
S401IT) »
S40K7) =
S40HT) =
. HS401 =
RS401 =
0.0
7.000
6.750
7.200
21.050
1.754
LB SULFUR j..
LB SULFUR *,
L6 SULFUR j,
LB SULFUR ij
L8 SULFUR ;V
L3 SULFUR/HR ~4
"*
a
sJ
-------
CO
Co
vo
f
I
4 •
•*• \
v
STATUS REPORT CF OPERATING CONDITIONS FC!
f'| OPERATING PERIOD:
>>'. CAT*: 4/24/74 TIME CF RPCCR£: 18:1? :
«'.
is!"
V
6
ni
\>L
CATE: 4/25/74 TIHE-DF RECCRC: 0: C :
PROCESS ELAPSED TIKE CF PERICO:
v
4/24/74 PiCE 8 '
: INTEGRATED OPERATION CF SC2 RECCVERY PROCESS i
i
•RS TC.
rRS TC
START lli.CC WRS
24
• 0 HRS
-.
9:15 HRS
END" 126.00 VRS LENGTH CF PERICO: 15.00 hRS
.
,
SUCVARY GF INTEGRATED PROCESS PERFGRKAMIE:
1.
S02 RSPQVAL
FRS02 >
•55. 3C
2
(ACTUAL) SO.C I (C-CAL)
-
?» - . -r
K
W
ft
N
s
w
2.
3.
4.
5.
6.
h2S UTP IZATICN
AC 1.0 CCXVERSICN (TO SULFUR)
H2 UTILIZftTICN (TO HZS )
SU.FLR RECOVERY
h2 UTILIZATION 4" UNIT
FVCS -
PH.CHS -
FRS '«=
FUH2 "
?9.B5
72.73
67.36
' 79.01
27.93
ICC. 00
X
2
X
?S.C % (GCAL)
JACTUiL) 50. C t CGCSLJ
,
(ACTUAL) 1CC.C * IGCAL) OF SGRBEC SC2
(AC'UAL) 25.0 S C GCAL ) OF STRIPPED SULFUR
"• »
,
•
,
23
;.
bj rj
y
*--
tr
y
•Q
£
L
1 ! '
35
H '
c:-
i ;
y-.
U
P
LJ
k-
U
7.
8.
RESIDUAL SULFUR ON CARBON
CASSCS RECYCLE RATE (CE)
9. ACIO LOADING INLET CiREC.N 6" UNIT
10.
11.
12.
13.
14.
15.
MOISTURE CONTENT IMLET CAR2CN 6" UNIT
ACIC LCACI.NG INLET CARSCti 8" UNIT
KBISTURE CONTENT INLET CARBCN 8" UNIT
TOTAL ACIC CONVERTED 6" UNIT
SULFLR CCM/ESSICS -TO HZS)
SULFUR CONDENSES EFFICIENCY
KAJOR EVENTS DURING OPERATING PERIOD:
PILCT PL^NT PLJCEC ON STAKC3Y AT
129.6 !-RS. TC CORRECT CARBON FE'EC
AT STG 6 CF THE 4" UNIT.
X90A »
RC90 »
X301C *
X301B "
X302C -
X302B -~
PVC
PSCI-S '
ERV400-
PR03LEM
C.C42S
2S.C44
C.2159
C.1C13
C.2I59
C.1C.13
84.36
£4.45
179.64
LB
LB
L3
LS
LB
LS
t
%
%
S/LE C
C!CB)/KS
ACiC/LB C
1-20/LE C
ACIC/L3 C
1-20/L8 C
I*
^1
-,
;,
X
•?'•
2^
'-4
..
.
..
-'
_..
.-
..
'r
'»•*
,
.;
.•
-------
i
1
Tii
»v —
i*
»*
iJ
N
i*
f*.
U
p
L
^ •
S.
C;-
?»
!*
it
STATUS REPORT CF OPERATING CCNCITIONS FCft INTEGRATED OPERATION CF SC2
OPERATING PERIOD:
CAT": 4/24/7* TIME C?"*£CCSC:
CATS: W2S/7* TIKE CF RCCCRC:
PRCCESS ELAPSED TIME CF PERICD:
18:15 !JSS
0: 0 HRS
START 111. CC
TC 24: 0 HSS
TC 9:15 KRS
HRS / END 126. CC fcRS
'i/2'./7<. PAGE
RECOVERY PROCESS
9
,
•;
LENGTH CF PcRICC: 15.00 HRS .,
SCLFUR K4TESI«U BALANCE (USING PRCCESS -H2S) :
! N
INLET GAS 4S S02
INLET C AS RES10U«L S
T C T A L IN:
CUT
OUTLET GAS AS SC2
OUTLET .CARBCN
CYCLCNE CUST
COLLECTOR OUST
C*RECh SEEPAGE
TCTAL OUT:
6" D 1 A C A
S 0 2 S C
( 6-' 13)
< C-- 11)
IRV-- 10)
I 6- 13)
1 C- 12)
C C- il)
t D- 12 >
CCfc- 12)
1RV- 1C)
R B 0 N P
R B E R
/ SGlOi =
/ BC11A =
/ SI10 =
/ BGI3A =
/ 3C12A =
/ SOU A *
1 8012A '
1 ECW12A =
/ SOIC =
R E C 0 N D I T
2.3257
1.2431
3.572E
0.1095
3.29C3
0.0133
O.C
O.CC04
3.^135
I C N
LE
LB
LB
LE
L3
LS
LS
LB
L6
E R
S'JLFUR/hR
SULFUR/HR
SULFUR/:-R
SULFUR/HR
SL'LFUR/l-R
SULFtS/l-R
SULFUR/FR
SULFUR/HR
SULFUR/HR
T
= 3
•1
('<
(J
--
"I
V
t<
^
_'
L, ~ • _,'
* IN - =
P
to
^
PS
i
S*
a* •
t '
to
r'
•- • •" • ••'
'**
1 ;• '
5 -
j..
Lr
Ui
U
•-
INLET CARSON
TCTAL IN:
CUT
OUTLET CARBON
CYCLCKE GUST
TCTAL OUT:
S U L
I N
ISLET GAS AS H2S (CYL)
INLET GAS AS S2S (PRCC)
INLET CARSON
TCTAL IN:
CUT
CUTLET GAS AS H2S
OUTLET GAS AS SC2
CUTLET CARBON
TCTAL OUT:
( C- 12)
• 1RV-3CC)
< C-2C1)
< C-301)
IRV-3CC)
FUR G E
1 G--2C1)
( G-2C1)
! C-2C1)
UV-2CC)
( G-2C5)
( G-3C5)
( C-2C2I
(U--2CO
/ BC12A =
/ SI300 =
/ EC 201* =
/ 80301A =
/ S0300 =
N E R A T C R
/ BG201S =
/ 3C203R =
/ BC201A =
/ SI200 =
/ 3G2055 =
/ 8G205A =
/ 8C202A =
/ S02CO =
3.2903
3.2903
3.2903
0.0
3.2903
0.0
5.2043
3.29C3
8.5952
O.C070
C.2491
7.7806
LE
LS
LE
LB
LS
LB
L8
LE
r- r- r*
m to n>
LE
SULFUR/HR
SL'LFUR/HR
SULFUR/HR
SULFUR/KR
SULFUR/HR
SULFUR /HR
SULF'JR/HR
SULFUR/hR
SULFUR /HR
SCLFUR/HR
SULFUR/HR
SULFUR/HR
-S
23
y
>
!o
U
U1
:'l
/U
-s
*,
:-'
H
fi
-------
4/24/74
PAGE 10
fi
H •
-4
':'
'.1
• 7;
?'
H
i,,
p
e
K
W
H
H
ij
r"
B
U
w
is
!
O -
H
U ,
u
H
34.
i .
i .
L
P
P=
U
i!".
L
i
H2S GENERA!
IN-
INLET CARBCN . -
T C T A L IN:
•
CUT
OUTLET CARBON
CUTLET GAS AS H2S
OUTLET GAS AS S
CYCLCNE CUST
FILTER CUST
TCTAL OUTt
OVERALL
I N
INLET GAS 18" UNIT AS SC2
INLST GAS B" UNIT AS CYL H2S
TOTAL
CUT
OUTLET GAS 18" LSIT AS S02
CYCLCf^E CUST 18" UNIT
COLLECTOR DUST IS" UffIT
CARBCN WEEPAGE 18" UNIT
CYCLCNE DUST 6" L'.NIT
CUTLET GAS 8" LNIT AS_H2S.._.
OUTLET GAS 3" UNIT AS SC2
CUTLET GAS 4" UNIT AS H2S
CUTLET GAS 4" U.'ilT AS S
CYCLCNE CUST 4" LMT
FILTER CUST 4" U.NIT
TOTAL S
r o R / s u i
i C--2C2) /
MRV-1CC) /
«
C--1C3) /
G--1C4) /
G- 1C4) /
D- 1C1) /
C-1C2) /
(RV-1CC) /
S L '. F U R
( G- 1C) /
( G--2C1) /
S U . F U R
J G- 13) /
Q- 11) /
3- 12) /
CVr- 12) /
0--3C1) /
G-2C5) /
3-:2C5.) /
G--IC4) /
G-1C4! /
C-iCl) /
C-1C2) /
U L r- U R
-
.FUR
8C202* =
SHOO =
BC103« =
BC-104B =
BG104S =
B010LA =
S0102A =
S0100 =
B A L J
8G10A =
EG 20 IE =
I N :
BG13A =
BD11A =
ECK12A =
E03C1* =
BG2053 =
8G205* =
EG104E =
3G1C4S =
BD101* =
60102* =
OUT:
STRIPPER
7.5244 L8 SULFUR/H.R
7.5244 LB SULFUR/HR
1.2431 LS SULFUR/HR
5.2248 LB SULFUR/HR
1.7542 Lfi SULFUR/HR
C.QOOO LE SULFUR/HR
C.O LB SULFUR/HR
8.2022 LB SULFUR/HR
> K C E
2.3297 LB SULFUR/HR
C.O L8 SULFUR/HR
2.2297 13 SULFUS/HR
0.1C95 LH SULFUR/HR
0.0133 LB SULFUR/HR
0.0 LB SULFUR/HR
O.C004 LB SULFUR/HR
O.C LB SULFUR/HR
O.C070 LE SL'LFUR/HR
C.2491 LS SULFUR/H.R
C.O LS SULFUR/HR
i.7542 L2 SULFUS/HR
G.CCCC L3 SULFUR/KR
C.O LB SL'LFUR/HR
2.1335 LS SULFUR/HR
_
1
y
: i
(4;
i-i
.*;
i •
i (
:»i
•-?
".
4
S1
. 1
•«!
I,'
jj
^
~i
'ci
f!.
-,
^
rS
i
-;
-fc
'"*
Us
1
.;
*<.
+f
•J
•"*
.-.
-------
PAGc 11
U>
i
j HYC3CGEN MATERIAL BALANCE:
i
!'•
Is1
:•
i'!
»»
•i
\*'
H
•a
r
r"1
»-
y
73
v<
t-i
y
w --
Cd
P'1
I N
IMLET
INiLET
I?iL£T
INLET
•: u T
OLTLcT
CUTLET
CUTLET
DLTLET
T
I N
s u
GAS AS H2
GAS AS H2S JCYL)
C-iS iS H2S (PRCC)
GiS AS H2C
CAP3CX
TOTAL IN
GAS AS H2
GAS AS K2S
GAS AS H20
CAR3C.N
C T A L CUT
H 2 S GENE
INLET GAS AS H2
INLET
CUT
OUTLET
OUTLET
OUTLET
T
CASSON
T C T A L IN
GAS AS H2
GAS AS H2S
GAS AS H20
C T A 1 OUT
L.f U R C E
. •
t G-2C3J
( G-2(31
( C— 2C3)
! C— 2C3)
: m ru
LE
LS
LS
LS
P
"L8
LE
LE
LB
LS
IB
LE
j
•' \
\
KYCRCGEN/HR
HYCRCGEN/HR -:
HYCRCGEN/rR
HYCRCGEN/HR t.
.1
HYCRCGEN/HR .>
KYCRCGEN/H-R -<
HYCRCC-E.V/HR •..;
KYCRCGEH/HR »•?
'.»
E R W
i_'
HYCRCGEN/HR al
HYCRCGEN/HR i.;
HYCRCGEN/HR '-,'
HYCRCGEN/HR '-j
HYERCGEM/HR ~i
HYCRCGSX/I-R k.
HYCRCGEN/HR ;,J
^ • 3S
-3
5-i S-'
BS
3-
1 ,
,
ZS
^
-'
U -=
M
-------
APPENDIX A-12-9
EXPERIMENTAL DATA AND RESULTS FOR INTEGRAL
RUN IR-2-8 (144 - 148 hours)
343
-------
PAGE 1
-C;
STATUS REFCRT CF CPERATING CCNCITICNS l:C-:-t INTEGRATED OPERATIC* CF SC2 RcCCVERY PROCESS
/; ~
i i
ii.
I4;
'j;
OPERATING PERIOD:
CAT=: 4/?t/74
PRCCESS
ELAPSEC TIfE
TtHE OF XECCRC: 3U '. HRS TC 7U5
CF PERIOD: START 14-V.CC hRS / ENO
HRS
I4S.CO HRS LENGTH CF PERtCC: 4.00 HRS
*•
if
PROCESS VARIABLES
FCR OPERATING PERICC:
v>
*•«
s?
)-;
i •
S-'
T*
!;
j2
a
LV
r1.
rs
S-
H
a
JS
"
t '
i/-'
;(,"
u
Ui
4:33
10:26
4:38
10:45
3:15
7:15
9:15
3:15
5:15
6:15
7:20
•4:15
12: 15
4:15
12:15
4:15
12:15
4:15
12:15
4:15
HRS
HRS
HRS
H.RS
HRS
HRS
HRS
HRS
HRS
HRS
HRS
HRS
HN»
HRS
HRS
HRS
HRS
HRS
H.RS
HRS
12: 15 HAS
145.40
151.20
A V 6
145.40
151.50
A V E
144.00
148.00
A V E
15C.CO
A V =
144.00
146. CO
147.00
148.10
A V E
145. CO
153. CO
T
145.00
153. CO
T
145.00
153. CO
T
145.00
153- CO
A V E
145. CC
.1.5 3. CO
HSS (ST)
HRS (ET)
RAGS:
HRS
HRS
=! A
"HRS
R A
HRS
R A
HRS
"HRS
HRS
"HRS
R A
..HRS
HSS
C T
R A
.HRS
HRS
0 T.
R A
HSS
HRS
G.T.
R A
H?.S
R A
HRS
HSS
JET)
(ET)
G E :
!ET>
(ET)
G E :
(ET)
G E :
(ET)
(ET)
(ET1
IET)
G E :
fET)
(ET)
A L :
T E :
(ET)
(ET)
i L :
T E : ..
(ET)
(ET)
A L :
T E :
(ET!
(ET)
G £ :
i£T)
(ET)
S C 2 SCR
502 CC'-.'C INLET r-Llt GJS
S02 CCNC iXLET FLLE G.SS
S02 CCNC INLET FLLE C aS
S02 CCNC CUTLET FLLE C-AS
S02 CCNC CUTLET FILE GAS
SC2 CCNC CUTLET FLLE C-AS
H20 CC-.'C INLET FLUE GtS
H20 CCK'C INLET FLUE G&S
1^20 CCNC INLET FLLL cos
CRIFICE-PRESSURE CfCP
CRIFICE PRESSURE 01 CP
CRIFICE TENFFRATU*!1
CRIFICE TEMPERATURE
CRIFICE TEfPERATLRi:
ORIFICE TEfFERATURi;
ORIFICE TEKPERATU*-:
WEIGHT CYCLCNE CUS f
WEIGHT CYCLC'NE CLSf
WEIGHT CYCLCNE CUSf
WEIGHT CYCLCNE DLST
WEIGHT CCLLECTCR DJST
WEIGHT COLLECTOR C'JST
WEIGHT CCLLECTCR CJ.ST
WEIGI-T CCLLECTCS CUST
HEIGHT C4RBCN WEEP«1E
hEIC-HT C*ReCN '.-rtEFA.'E
WEIGHT CARSCN WEEFA,;E
HEIGHT CARBCN KEEFAiJE
3 TOT S C.N CYCLC.1'E i^L'ST
1 TCT Z CN CYCLC.VE :-LST
S TCT S CN CYCLC^.£ '.'LET
S TOT S CN CCLLEC'Q-.l CLST
% TCT S CN CCLLEC'C.5 CUST
>» m* r r-v /" m i zr~ r-,"t r- 1 CT
B E R
!GS-
£GS-
(GS-
/
i: : /
li 1 /
12) /
12) /
•• '• •> \ I
Y1C11.T) =
Y10I1.TJ =
AY10A =
Yl&tl.T) =
Y16C1,T! =
AY16*
Y10I4.T1 =
AY10D =
CPIO(T) =
AOP10 =
TLIO(T) =
TL101T) =
T| 1 T f T 1 =
TL10(T) =
ATL10 =
CD1KT) =
CDH(T) =
•KD11 =
RD11 =
CD12IT) = ,
CC12!T) =
WC12 =
SO 12 =
CW 1 2 ( T ) =
CVJ 1 2 '. T ! = .
KCV-.12 =
RCK12 =
Cllli-T) =
D i i ; i , ~ : =
C1211.T) =
C12il,T) =
*•>'?£ =
2COO.OOO PPH (VCLUKE)
1975.000 PPf (VCLUC.E)
1987.500 PPV (VCLUKE)
95.000
92.500
93.750
10.000
10. COG
10.000
2.300
2.300
315.000
301.000
313.000
20B.OOO
209.250
0.0
2. COO
2. COO
0.250
0.0
C.O
0.0
0.0
0.0
C.630
• 0.630
C.079
7-640
7.700
7 . i 7 •',
7.640
7.700
PPP (VCLUKE)
Ppy (VCLLKE)
PP.V (VCLU.'-IE)
? (VCLUHS)
S (VCLUKE)
J (VCLUHE)
INCHES H20
INCHES H20
CcG F
CEG F
CEG F
CEG F
CEG F
LB CUST
L2 CUST
L2 CUST
L2 CUST/HR
LE CUST
LB CUST
LE CUST
LB CUST/HR
LG CUST
L3 CUST
LB CUST
LB CUST/HP,
1 thcIGHTJ
! !V.£IG'-T)
? (V.EICi-1)
'i (XEIGHT)
'! ( ., c r r ^ T 1
4 V =
-------
4/24/74
PAGE 2
Ol
C I A
CARSON
PRECOKCITIONER
I,
|;j
;i!
.
1 :
il-
w
f '
S*
K
H
-[••
L"!
F*
Q
M
6:15 HRS 147.
10:15 hRS 151-
A V
V
6:15 HSS 147.
A V
4:15 KRS 145.
12:15 HRS 153.
3:15 H.RS 144.
7:15 hRS 143.
A V
•
00
CO
c
GO
E
00
CO
T 0
R
03
00
E
HRS
HRS
R A
1-RS
R A
HRS
HRS
T
A
KRS
HRS
R A
!EI.)
(ET)
G E :
IET)
G £ :
(ET)
(ETI
A L :
T E :
t£T)
(ET)
G E :
* TOT S ON INLET CAP.ECI.
* TOT s ci« INLET CARECI.
* TOT S CK I-fcLET CARIC!.
S H20 ON INLET CARBCf
S H2C CN INLET CARBC^
WEIGHT CYCLCNE OUST
WEIGHT CYCLCNE CUST
HEIGHT CYCLCNfE OUST
HEIGHT CYCLCNE OLST
% TOT S CK CYCLCNE Dl.Sr
? TOT S CN CYCLONE Dt S "
Z TCT S ON CYCLCNE DLS"
.
(CS-301) ,
(CS-3G1) ,
• tCS-301) ,
JCS-301) ,
ICS-301) ,
I D-301) ,
( D-3C1) ,
! D-301) ,
{ 0-301) ,
t D-301) ,
( 0-301) ,
1 C-301) i
1 ZSOKltT) =
1 Z3CH1.T) =
1 AZ301A =
f Z30K2.T) =
< AZ301E =
f CC301ST) =
1 C030KT) =
f 1.0301 =
f R0301 »
f C301U.T) »
> C30KI.T) =
f A0301A -
7.860
9.030
8.470
7.000
7.000
0.0
0.0
0.0
0.0
0.0
0.0
0.0
91
?
«
J
LB
ce
LB
LB
3
J
J
CoEIGHT)
(•HEIGHT)
(WEIGHT)
(WEIGHT)
UEIGhT)
CUST
CUST
CUST
CUST/HR
IhEIGhT)
(WEIGHT) '
(WEIGHT)
j
4
.:
*
r
'9
'»
'-"
«i
-3
t
'.
-.-
-,
X
a
n
-,
3
f
ft-
-------
4/2(/74
PAGE 3
SULFUR
GENERATCR
Co
•P-
IS;
i1-
-
'S. -
f- , _. ,
k
ir-
w
H
cr
-s
:—
ST
i.
fc
i ;
br-
-
^
Jr
£
M
S*
C
to
1 !
JO
£•-'
**. *
i^ '
^
H-l
-•s.
17:38 HRS
2:26 H=.S
8: 8 HRS
4:26 HRS
i q- jf. fe9 c
6:32 HRS
17:38 HRS
2:26 HRS
8: 8 HRS
4:2fi HRS
19:26 HRS
6:32 HRS
17:38 HRS
2: 26" HRS
8: 8 HRS
4:26 HRS
19:26 hRS
6:32 HRS
17:33 HRS
2:26 HRS
8: 8 HRS
4:26 HRS
19:26 HRS
6:32 H?.S
17:38 HRS
2:26 HRS
8: 8 HRS
3:15 HRS
7:15 HRS
6:15 HRS
10:15 HRS
6:15 HRS
1C:15 HRS
HC.40
119.20
124.90
A V E
97.20
115 ">f\
123.33
A V E
11C. 40
119.20
124.90
A V E
97.20
112.20
123.30
A V £
HC.40
119.20
124.90
« V E
97.20
112.20
12.3 .30.
A V E
HC.40
119.20
124.90
A V E
97.20
112.20
123.30
A V £
HC.40
119.20
124.90
A V E
144.00
148.00
A V E
HRS
(-as
HRS
R t
HRS
HRS
HRS
R i.
HRS
HRS
HRS
R A
"HRS"
HXS
R A
HRS
H»S
?. A
HRS
i-RS
HRS
R A
HRS
"HRS
HRS
R A
(ET)
(ETI
(ET)
G E :
(EM
f £ T %
^ET)
G c :
(ETI
(ET) •
(ET)
G E :
— » ^ • t
!£T>
G E :
(E'i
!ET)
S E :
(ET)
(ET)
G E :
(ET)
!ET)
G £ t
HRS (ET)
HRS
HRS"
R A
HRS
HRS
HRS.
R A
HRS
HSS
R i
147.00 HSS
151. CO HRS
A V E R i
147. CO
151. CO
A V E
HRS
R A
JET)
!£T)
3 c •
(ET)
* (UTS
K2 INLET VCL FLCK R,U£
N2 INLET VCL FLCV> R.H£
S TOT S CM INLET CJRCCV
3 TOT S C.N INLET Ci.'.fC\
3 TCT S CK INLET C5 iftv
? TCT s CN CUTLET CI? = :N
% TCT S CN CUTLET O*S:t>
S TCT S CN CUTLcT CifETN
IGS-2C6) /
(GS-2C6) /
=
Y2C&',4,T) =
AY20£0 =
Y200(5,T) =
Y200i5,T) =
Y200(5,T) =
AY200E =
Y206(5,T) =
Y2C6(5,T> =
Y2C6!;,T) =
AY206E =
6200(5,1) =
G20015.T) =
AG200E =
Z3C2(1,T) =
Z302(i,TI =
AZ302A =
Z200(1,T) =
Z2QOU.T) =
AZ200A =
1.400
1.21C
0.830
1.147
26.800
21.400
24.400
0.0
0.025
0.072
0.032
0.0
O.C
0.0
0.0
0.0
c.o
0.0
0.0
20.000
22.300
24.100
22.133
52.600
51.600
53.200
52.467
52.800
52.100
54.200
53.033
45.700-
47.200
45.6CO
46.167
127.000
127.000
127. COO
7.360
9.0SO
8.470
20.200
21.600
20.900
* (VCLUME)
% (VCLUME! :-.
I 1VCLUME) ]:,
S (VCLU.VE) i:!
.,1
S ! VCLUME) !:
S CVCLUME) •
J (VCLUME) 'i
? (VCLL'KE) '-,
S (VCLUME) t>|
S IVCLUXE) >
S (VCLUME! ~>
* (VCLUME) H;
S (VCLUKE)
2 (VCLUME) -.i
5 (VCLUME) r,'
; (VCLUKE) v
\ ( VCLUKE) ;,'
* 1 VCLUKE) a
.^
% (VCLUKE) ~~
S t VCLUME) W
Z (VCLUKE) _•
? ( VCLUKE) -,
^,
S (VCLUXE) -^
? i VCLUME) „'
S (VCLUKE) y
? (VCLUKE) y
jj
% (VCLUKE) =j
S (VCLUHE) ^
Z (VCLUKE)
S (VCLUME) -.,'
. 1
j*.
* (VCLUHE) LJ
* (VCLUHE) LJ
? (VCLUKE) ,j
S (VCLUKE) „;
CFH !7C DEG F) Ls
CFH (70 CEG F) J
CFH (7C CES F) L-j
|^
S (ViEIGHT)
3 (ViEEGHT) '
1 (V.EIGHT) •-.[
•;
? (WEIGHT) -.j
S (V> EIGHT) -^
% UEIGHT! .-.
-------
4/2t/T,
PAGE
6515 HRS
10:15 HRS
147.00 FRS (ET)
151.CO rRS SET)
_AJ.'^E_R A_J5
6:15 HRS 147.00 HSS IET)
_1PA1JLJ5*S iSi.CO ^RS t£Ti
1A V 6 R A G E :
% t-20 CN INLET CARS^
% h20 CN INLET CARBCN
. H 2C ...C N__LNL ET_C A R 8 C ? _
S >-20 ON CUTLET CARECN
_S_1-2C ON CUTLET CaaeCK_
_« h20_CN_CUTLEJl CARECK_
1CS-302) / Z3C2!2,T) =
(CS-302) / Z302(2,T) =
CCS-302) / AI302S =
5CS-20Q) / Z20Si2fT) *
(CS-2CC) / Z200i2,T) =
JCS-2CO) / AZ2CCB =
7.COC ? (WEIGHT)
7.000 S (WEIGHT)
7.000 ? (WEIGHT) t
3.200 J (WEIGHT) V
3.300 ? (VEIGrT) .-.
3.250 S (WEIGHT)
'*!
•
*
6:15 HRS
10:15 HRS
147.00 HRS
151. CO HRS
A V S R «
JET)
?£T)
G E :
S ACID ON
S AC 10 CN
S AC 1C CN
CUTLET
CUTLET
CUTLET
CARE^.
c«ne^
CAFfCN
ICS-200)
JCS-2CC)
IC5-2CO)
/ Z200!3,T)
/ Z200J3.T)
/ AZ20CC
E
'
1.470
1.850
1.465
* (WEIGHT) ;
S (WEIGHT) ;
s
£-
-------
4/24/74
PAGE
CO
1
r:
|i
."_
.1
• t'
1*
j 1
1*
H
•4
ca
2'
is
!=:
=<•
P
l: 2
21:15
4:45
6:15
23: 2
3: 50
9:26
l: 2
21:15
4:45
6:15
23: 2
3:50
9:26
6:15
23: 2
3:50
9:26
HRS
HRS
hRS
hRS
HRS
hRS
HRS
HRS
hRS
HRS
HRS
has
hSS
HRS
hRS
hRS
HRS
hRS
ni 6:15 HRS
;.
;p
=
aJ
;J
ii.'
!4
23: 2
3:50
9:26
3:15
7:15
4:15
12=15
hRS
HRS
HRS
HRS
KRS
HRS
HRS
93.30
114. CO
121.50
99. CO
115.30
12C.60
126.20
A V E
93. BO
114. CO
121.50
a v E
99. CO
115.60
12C.60
126.20
A V E
99. C3
ii:.8o
12C.60
126.20
A V E
99. CO
115.80
12C.6C
12c.2C
A V E
144. CO
148.00
A_. V..E.
145. CO
153. CO
T 3
R
H
hRS (ET)
hRS (ET)
h^S (ET)
RAGE:
hRS IET)
hRS (ET)
h'RS IET)
hRS (ET)
R t G E :
hRS (ET)
hRS (ET)
hRS (ft)
SAGE:
HRS -:ET)
hRS
(GS-1CC)
IGS-1CC)
(GS-108)
(GS-1CE!
IGS-1C?)
IGS-10E)
(C-S-106!
'>
ff
',-
RIPPER
Y100(3,T! =
Y1CC:2:T! =
Y1C3(3»T) =
AY1COC =
YlC3(3tT) =
Y103!3tT) =
Y:C6'. 3,T) =
AY10EC =
Y10015.T) =
YlOOtS.T) =
AV1CCE =
Y108I5.T) =
Y1CS(5,7) =
Y108(5,T) =
Y10815.T) =
Y1CSI2.TI =
YICS J2.T1 = "
Y10S12.T) =
Y 1 <~, fi i ? , T ) -
AY 1C SB =
Yice1, -*T; -
Y1C8J4.T) =
Y10S<4»T! =
AY 10 JO =
G100(;-,T) =
GlCO(5iT) «
AG10CE =
C2101 (7! =
XOIOI =
RD1C1 =
5C.600
51. CCO
5C.7;"
50.767
0.0
0.0
c.o
c.o
c.o
69.400
49. CCO
49.2CC
49.233
52.200
52.300
52.600
52.600
52.425
39. SCO
27.700
26.600
26.500
27.725
17.600
19.700
20.200
2C.400
19.525
127.000
127.000
127.000
0.0
G • 0
0.0
0.0
? (VCLUKE)
s CVCLUX;)
S (VCLUKE)
S (VCLUME!
* < VCLUME)
% (VCLUHEi
S (VCLUVE)
S (VCLUME!
? IVCLUHE)
? (VCLUVEJ
? IVCLU.VE)
? (VCLU.'-'E)
t (VCLUHE)
S (VCLUME)
? (VCLU'IE!
? (VCLUME!
t tVCLUKE)
S iVCLU.^E!
? (VCLUXE)
Z (VCLUME)
S ! VCLUME)
? 1VCLUV.S!
? (VCLUKS)
% (VCLLH;)
S (VCLUME)
S (VCLUME)
CFH (7C DEG F!
CFH <7C DcG F)
CFH <7C CEG F)
IE CUST
LB CUST
L3 CUST
LB CUST/hR
.
.-
t
7
1
-J
~t
•I
7
;j
...
33
.:;
-^
-*
i-j
•l
_.
P;
i .
-s'
*"
.-
.1*
4:15
12:15
6:15
10:15
3:15
7:15
HRS
hRS
HRS
hRS
HRS
hRS...
145. CO
153.00
. T. 0
R
147. CO
151. CO
A V E
144. CO
14 3. CO
A V S
HRS ;ET;
hRS !ET)
T ?. ! "
ft T £ :
hRS !=T!
RAGE:
HRS (ET)
h :: S 1ST)
RASE:
WEIGHT FILTER CLST
V.5IGKT FILTER OLST
V-'SIGh-T FILTER CUST
>.= IGhT FILTER DUST
S TOT S CN CYCLCNE CLST
% TCT S CN CYCLCNE OLST
? TGT S CN CYCLCNc CLST
t TCT S CN FILTER DLST
% TCT S CN FILTER OLST
% TCT S CN FILTER DLST
( D-102!
: 0-102)
S C-102)
i 0-102!
I 0-lCl)
5 D-ICi!
i D-101!
( 0-1C2)
t D-102)
I 0-102)
'
-' -
',
/
1
CD102ITJ =
CC1C2IT) -
^C1C2 =
Cl~l ( 1 , T I =
ClOlil.T) =
C1C2 1 1 tT ! =
C102tl,T! =
AD102A =
0.0
c.o
c.o
0*0
3. 860
3.EOO
3.3 30
0.0
0.0
0.0
LS CUST
LE CUST
LS CUST
LB CUST/l-R
% (-EIGHT)
? ;KEIGHT>
; (XEIGhT)
S U EIGHT)
S Cn EIGHT)
? (HEIGHT)
— 1
^S
fa
*-
-1
J
-'
LA
-------
'•/26/7't
PACE
C * R 8 C N
1NVENTCRY
H C
£ R
V 6:15 HRS 1*7. r.O l-RS !=T1 J RESIDUAL S CN CARBC!> ICS- 90) / Z90<1.T) =
f. 10:15 HRS 151. CO HSS / Z90(2tT) =
!•! ic:i5 HRS 151-co HRS IFT» 2 RFsinuAi n?n nn c. is.tr*. TCS- 9O / Z90C2.T) =
'•: 18:15 HRS 159. CO rRS (ET) % RESIDUAL H2C CN CARfC.V (CS- SCI / Z90(2,T) =
AVERAGE:? RESICUAL H2C C.M C4!k!C;- SCS- 90) / AZ9CE -
;i'
3:15 HRS 144.00 r^S (£7! C4R3CN RECYCLE RATE •: C- 9C ) / C90 1 1 , T 1 =
> 7:15 HRS 1*3.00 h'KS IET1 CiSBCN RECYCLE SAT= 1 . C- 90) / C90il,T) =
Zi
-"
_.,
.
-J ' —
•
,
_^
I
.,
.,
.
•-•
3. 300 ! (KEIGHT)
3.860 2 UcICHT)
3.830 t IWcIGrT)
2.100 % (WEIGHT)
2.900 J (HEIGHT)
1.700 1 (SicIGHT)
2.233 S (HEIGHT)
31.000 LB MAT'L/HR
31.000 LB PAT'L/KR
31.000 LB yAT*L/HR
0.0 L6 SULFUR
6.500 LE S'JLFUS
6.50C LB SULFUR
1.625 LE SULFUR/HR
-
'
;
.:
,4
;-'i
' t
i
:a
'•<
^a
.:T
-«
f
;j
-2
:•*'
'*•
^
-,'
ai
.~-.
..
15
j*
-
_C
j
~!
^.
_^
*
,
..
•-
-------
CO
Ul
o
I
(
>••
1 *
*-
STATUS RC-PCRT CF OPERATING CCNCITICNS
OPERATING PERIOD:
CATE: .4/26/74 TIf'E OF RECCRC: 3:1
.... PRCCESS Ft APSFT TK«F T.F PrRICC*:
START
4/26/74 PAGE 7
FCR INTEGRATED OPERATION OF 502 RECOVERY PROCESS
<• rsS TC 7:15 KSS
1'4.CC HRS / END 148. CO »-RS LENGTH CF PERIOD: 4.00 HRS
* . ,
.1
i'"
SLMXiRY CF INTEGRATED PROCESS PERFORMANCE: ' =
1. SC2 RSfCVAL
PSS02
* 95.23 s (ACTUAL: 9c.o * (GCAD
.«'
••-
-
^
•a
2. V2S UT I LI I iT !C:j
3. ACID CC:.VE-3IC\ I TC S'JL.-UR)
4. H2 LTILIZATICN (TO H2S)
5. SULFUR RECOVERY
6. t-2 UTILI:;.T;C:; 4" US:T
7. RESIDUAL SULFUR ON CARBON
PUf-2S
?ucs
PHCHS
pas
PUH2
X90A
99.85 S {ACTUAL) 95. C 3 (GCAL)
77.23 % (' CTU.'-!.) 9-'^#Lb-/tei~'W
C.C956 L3 H2C/LB C :
-
C.2294 LB ACiC/LS C
C.0956 LB S-2C/LS C ;
-
9C.29 S
= 8C.C3 % -
116.97 % . •
__
,
'
.
fi:TER
KG CFH ACTUAL.
-------
9!
U1
1
i;i
!.;
V
!«.
:,l
STATUS REPCST CF OPERATING CCiVCITIONS
CPESATIfvO PERIOD:
CATE: 4/2*774 TIKE CF RECCRC: 3:
_
PRCCESS SLiPSEC TIME CP PERIOD: START
SULFUR MATERIAL BALANCE (USING PRCCESS H2S):
4/26/7^ PAGE 6
FtR INTEGRATED OPERATICN CF S02 RECCVERY PROCESS
15 hlS
1 4.CC
TC 7:15 HRS
HRS / END 148.
:
.
CO hRS LENGTH CF PEfUCD: A. 00 hRS :
t
i
i
r- : : -:
r
r~
K__
h' -
S 0 2
: N
INLET GAS AS £02
INLET C AS RESIDLAL S
TCTAL IN:
; c
! :- 13)
< r- ID
tRs- 1C)
R 3 E R
/ 3G10A =
/ ECU* =
/ sno =
2.3A02 LB SULFUR/hR
1.1873 13 SULFUR/hR
3.5275 LS SULFUR/hR
~!~ C U 7
s
•zt
y
B*1*"
_
-..•
w
1 1
u
y •
**!
k*
v.
S
CUTLET S.'.S AS SCE
C'-TLET Ci?3C\
CYC' C^5 DUST
CDLL5CTCS OUST
CARBCN KEEPAGE
TOTAL OUT:
6" 0 I i _C A__B S C
I N
INLET CAS8CN
TCTAL IKS
CUT
OUTLET CAR3CN
CYCLCNE DUST
TCTAL OUT:
S U L F C
; :- is;
( f- 12:
( f- 12)
(C'.- 121
(RV- 1C)
!> P
I C- 12)
(?V-3CC!
( C-2C1)
i r-sci)
(F.V-3CCI
R G E
1 BC12A =
/ ED12A =
.' 8CK'12* =
/ SD1C =
S E C G N ~ I T
/ 8C124 =
/ SI3CO =
/ SC20H =
/ BD3CI4 =
/ S03DO =
X E R A T C R
C.1IC4 IS SLLF'JS/HR
3.365C LS SULFUR/HR
C-v LE SLiLFUS/hR r
O.C091 LB SULFUR/hR r
3.5075 LB S'JLFUR/hR -
: c N E s -
_
-
3.3688 L3 SULFUR/hR -
3.3638 LS SULFUR/HR ' ;
3.3683 LS SULFUS/1-S
0.0 LB SULFUR/HR
3.3688 LE SULFUR/HR ..
-
U
L-L
:.j
P '
^:
. _ — .. — .
r--
I N
INLET GAS AS h2S (CYL)
INLET GAS AS H2S tPROC)
INLET CARSON
TOTAL IN':
CUT
OUTLET GAS AS h2S
CUTLET GAS AS S02
CUTLET CAS8CN
TCTAL CUT:
{ 0-2C1)
1 1.-2C1)
( C-2C1)
t-!"-ZCC)
{ G-2C5)
( G-2C5)
t C-2C2)
1 t'--2CC)
/ BC2013 =
/ BG2C3R =
/ 3C201* =
/ SI2CO =
/ 3C205E =
/ S02CO =
0.0 LE SULFUR/hR
5.5679 LE SULFUR/t-a
3.3638 LE SULFU^/HR
3. 9367 16 SULFUr/hR
_
C.C07A LE SULFUR/i-R
3.2615 LB SULFCR/hn
8.1A44 L2 SULFL.R/HR
6.4133 L3 SULFUR/i-R
I?
a .... — ...... . ... .
-------
Oi
f
i
T:
*
.i'
••
'i
,t
f'
S
'7
w
-li
/ J
a
w
H
F*
s*
e»'
3>
'«
'. ' f
b*
-^,
fc
1^
r':
, -.
lo
L-
1 1 .
1 r — •
r'
.
H2S GEKERA
I N
INLET CAR^C?C
TOTAL IN: '
CUT
CUTLET CARBON
CUTLET GAS AS H2S
CUTLET C-AS AS S
CYCLCNE CUST
?ILT£R CUST
TCTAL CUT:
OVERALL
t N
INLET GAS IS" UNIT AS SC2
INLET GAS 8" UNIT AS CVL H2S
TOTAL
CUT
CUTLET GAS 18" UNIT AS SC2
CYCLCI\E CUST 18" L'NIT
COLLECTOR CUST 16" UMT
CARSCN V.EEPAGE IS" UNIT
CYCLCNE C'JST 6" LMT
CUTLET GiS 8" UMT AS H2S
OUTLET GAS 8« UNIT AS sc2
CUTLET GAS A" UNIT AS H2S
CUTLET GAS 4" UNIT AS S
CYCLCNt CUST 4" UNIT
FKTER CUST 4" LMT
TCTAL S
TOR/ S U L
t C-2C2) /
(RV -ICC) . /
1 C-1C3) /
( G-1C4) /
r G-lCn) /
( C-iCI) /
( C-IC2) /
(R'i--lCC) /
S L .FUR
( C— 1C) /
( C— 2C1) /
S '- . ? U R
( C— 131 /
i t- 11 > /
{ r- 12} /
(CV- 12) /
( [ -3C1! /
t C-2C5) /
i C- C5) /
( G- C4) /
( (.- C4) /
< L'-- Cl) /
'. t:-!C2) /
U L r U ft
,
F L R
SC2026
SI1CC
SC103A
3G104B
EG10R
SUS.FUR/i-3
SULFUR/t-R
S^,L^l.'i^/^?.
SULFUR/1-R
SULFUR/l-R
SULFUR/HR
SULFUR/I-R
SULFUR/l-S
SULFUR/hR
SULFUR/hR
SULFUR/rR
SULFUR/HR
S'.LFL'R/l-a
SULFUR/i-R
SULFUR/i-R .
SCLFUR/rR
SULFUR/hR
SULFUR/HR . •
SULFUR/t-R
\
•
'.
.
-
. -
"1
•j,
••
'-,
«
72
-t
:4
-'
r.
3,
Zl
^
,
;,
-
•-T
f-
a
-E
-»
.-
-t
-------
u>
t
1 HYD*CG£N MATERIAL BALANCE:
> S U L F
»3_ _
'•; IN
• = ' iNLET GAS AS H2
INLET GAS AS 1-2S (CYL)
'"' INLET GAS AS H2S (PRCC) -
I'' INLET GAS AS H2C
':•: IN' £T CARSON
-.-. • T C T A L I N :
:;i
;r CUT
?* OUTLET GAS AS H2
\i. OUTLET GAS AS H2S
p OUTLET GAS AS >-2C
'•. OUTLET CAR3CN
TCTALOUT:
\\
t'-.
'••- H2S GENERA
U IN
p INLET GAS AS H2
'si INLET CARBON
U.
~ - CUT
-.-. CUTLET GAS AS H2
i. CUTLET GAS AS H2S
to1 CUTLET GAS AS 1-20
e-- TCTALOUT:
r I
S-.
;s
'fc:
U
f=
L; R G E
t (,-:>C3)
( c-;:c3)
( c;-;!C3)
( G-,!C3>
( >;jci)
{RV-:!CC>
I C-;!C5)
< G-.2C5)
( :-.?c2)
T 0 =. / S U
< G-IC3)
( C-JC2)
CRV-1CC)
< C-1C4)
J G-1C4)
1 C-1C4)
iP'-lCC)
N E R A T C R
/ BG203C =
/ 8G203B =
/ BG203 =
/ 8G203D =
/ BC201H =
/ *I200 =
/ SG205C -
/ EG205H =
/ EG205C =
/ BC202H =
/ H3200 =
L F t R S
/ BG103C =
/ BC202H »
/ HIiOO =
/ BG104C «
/ BG104H =
/ SG1040 =
/ i-OICO =
4/26/74 PAGE 10
0.0 LE HYCRCGEN/1-R
O.C LE HYCRCGEf
-------
APPENDIX A-12-10
EXPERIMENTAL DATA AND RESULTS FOR INTEGRAL
RUN IR-2-8 (148 - 156 hours)
354
-------
OJ
Ui
Ci
4/26/74
STATUS REPORT Cr OPERATING CONDITIONS F:!R INTEGRATED OPERATION CF SC2 RECOVERY PROCESS
PAGE
I
!«:
OPERATING PERIOD:
CiTE: 4/26/74
TTJ'5 OF RSCCRC: 7:15 HRS
TO 15:15 HRS
':
.
•••: PROCESS ELi?S=C TtVE OF PERIM: START K.S.CC HRS / END 156. CO HRS LENGTH CF PERIOD: 8.00 HRS ;.
ft .
jti
PROCESS
',
VARIABLES PCS OPERATING PERICC: . !•
fi . >
i'= SC2SC-RBER
'**; ••
P
W
••»
L,'
10:26 «tS
14:26 HRS
13:15 HRS
10:45 hRS
14:32 HRS
IS: 15 H.RS
151.20 HRS (ET)
155.20 HRS (ET)
159. CO HRS (ET)
AVERAGE:
151.50 HRS (£T)
155.30 HRS (ET!
159. CO HRS !ET)
AVERAGE:
S02 CC.NC INLET FLUE 'iS
S02 CCNC INLET FLUE i..*S
S02 CCNC I.NLET FLUE 3*3
S02 CCNC INLET FLU'E 5*S
S02 CONC CUTLET FLUE GJS
SC2 CCNC CUTLET FLUE GiS
502 CC.NC CUTLET FLUE GJS
S02 CCNC CUTLET FLUE CAS
(GS- 1C) /
tGS- 1C) /
(GS- 10) /
tGS- 1C) /
!GS- 16) /
TOTAL:
SATE:
(-20 CONC INLET FLUE 0-KS (sTJ
161. CO K-S ;£Ti
WEIGHT CCLLECTCR OUST
WEIGHT CCLLECTCR OUST
WEIGHT CCLLECTCR OUST
WEIGHT CCLLECTCR CUST
WEIGHT CiRSCN WEEPiCE
WSIGH.T C/..-.ECN V.SEPiCE
V.EICKT CiRSCN '.vEEPtCE
WEIGHT CARECN W'ErP;C =
* TCT S CN CYCLONE CUiiT
S TCT S C.N CYCLCNS CUI-T
I TCT S C.S CYCLCKE CU5.T
( 0- 12) /
1 D- 12) /
5 D- 12! /
< C- 12) /
!CW- 12) /
:cv.- 12: /
«.Cl.- 12) /
-------
f»
(r
I ;—
h«
-------
Ul
_I51.CO. .KS
4 V S S
6" OIA CARBON
?_JCT__S_.CN_ INL.ET
: S TCT S CN I'.'LET
_1C:15 Has 151.CO HRS 1ST)
_.1«:15 HRS 155.CO I-^S (6T>
_1S_:15 HRS 153.00
2C:15
7:15 HRS
15:15 hR5_
A V E S A G 6 :
__153.-0 !-.s!S..!cTi__
161.00 J-RSjl£TJ
" T_C T_Ali_:
R"A T £ ;
148.CO rSS (ET!
A~~ v" 'E~T'~A~G' e'T"
i H2o"oN"i\LEt"CARBON"
S H20 CN INLET CARBCN
V h20~CV INLET ""
_V.ZIGHT CYCLC.'JE DUST
J»EJGHT_CYCLCKE CUST_J__
_hEIGKT CYCLCN'E'DUST ' '
ME IGh77~C'Y'Cl"CN£ DUST "
s TOT s C.N CYCLCKE CLSV
_S_T07_S C^_C^CLCNS_OLS"
X TO'r S~CN CVCLCNE DUST"
4/26/7* PAGc 3
PRSCONCITICNER
iCS-iCl) / Z3GU1,7) = 9.080 3 (WEIGHT)
iCS-30;! / Z3CI;l,TS = 9.niO ? ttiEIGH.T)
(CS-3C1) / AliOIi » 9.470 ? (kEIG^T)
(CS-3C1) / Z3CH2.T! = 7.000 S («£IGt-T)
ICS-3C1) / i3CH2,T) = 7.000 Z (UEIGHi)
{CS-3~1) / £331(2. T) = 5.603 S (V.EIGHT)
(CS-3C1) / AJ301E = 6.533 5 !V.£;GI-T)
{ D-3CI5 / CD301iT: = 0.0 L3 CUST
S D-301) / CD3:i:T! » 0.0 LS CUST
I D-30U / K3301 = 0-0 LS CL'ST
( C-3C1J / RD3C1 = C.O LS CbST/hR
r C-3C'n / DSOltltT) = C.O S thEJGhT!
S 3-3CI) / CSQUl.t) = C.O % {hilGhTJ
1 C-301) / AD30Li = 0.0 S IhEIC-HT)
,
1
T
.
!
=
I
C
• i
•r
-5.
: fc
- T
a
^
12
S3
-^
•J
-S
^
»
--'
-^
3S
r*;
io
!
-J
-.3
A*
-S
*^
-7
41
fj
-------
4/26/7*
SULFUR
EMERATCR
^
:'f
,1
V
*
i^
i
r:-
M
i-i
*<
::
;=
Li3 '**
Ln **
co H
'^-.
y
?.-
r
p-
•:!
c*!
•a
^,
;-'
^
U-
u
H
13:32 HRS
.. 14:56 HRS
13:32 HRS
., 14:56 HRS
13:32 HRS
14:5fc HRS
13:32 HRS
14:56 HRS
13:32 HRS
7:15 HRS
15:15 HRS
1C: 15 H~S
14: 15 HRS
10:15 HRS
14:15 HRS
13:15 HSS
10:15 HRS
14: 15 HRS
18:15 HRS
10:15 HRS
14:15 HRS
18:15 HRS
10: 15 HRS
14:15 HRS
IS: 15 HRS
154.30
A v E
155.70
V e
" 154.30
A V E
15.5*70
A V E
154.30
A V E
155.70
A V 6
154.30
A V t
155.70.
A V =
154.30
A V E
IAS. 00
156. CO
A V E
155.00
i V E
151. CO
155. GO
159. jO
151. CO
155.00
15?. CO
A V £
151-00
155. CO
159. CO
A V £
151. DO
155. CO
159.00
A V E
HRS 1ST)
RAGE:
HRS !ET)
AGE:
HRS
HSS ;ET; . .
rRS (ET)
RAGE:
S02 CCNC CUTLET GAS
S02 CCNC CUTLET GiS
H2S CCNC INLET GAS
H2S CCi>C INLET GAS
H2S CCNC CUTLET GAS
H2S CCNC CUTLET C-iS
H2 CGNC INLET GAS
H2 CCNC INLET GAS
H2 CGNC CUTLET GAS
H2 CCN'C CUTLET GAS
H20 CC.NC INLET GAS
H20 CONC INLET GAS
H20 CONC CUTLET GAS
H20 CCriC CUTLET GiS
N2 CCNC INLET GAS
N2 CCNC INLET GAS
N2 CONC CUTLET GAS
N2 CCNC OUTLET GAS
M2 IN'.ET VCL FLO* RA" =
N2 INLET VCL FLC'rf RATE
N2 INLET VCL FLGH RJ"E
Z TGT S CN INLET OSKSCN
s: TOT s CN I::LET C^P-::CN
X TOT S CN INLET CiRHCN
? TOT S CN- CUTLET C^=, tC\
% TOT S CN CUTLET CJI'.cCv
S TCr S Ci\ CUTLET C^-.£C<
% TCT S C.\ CUTLET C^KEC>
% H20 CN INLET CARBCIi
% H2C ON INLET CARSC:.
S H20 CN INLET CARSC.\
% H20 CN INLET C.1RBC.-;
S H2u CN CUT'.cT CAR2CI
? H20 CN CUTLET C*R3::r
S J-20 ON CUTLET CARB^
? H2C ON CUTLET CAR3'^
S ACID ON' CUTLET CA3:LN
? AC!D CN CUTLET C*' :CN
* ACIC CN CUTLET CA?3llN
% ACIC ON CUTLET CARKN
(G?-2C6)
iGS-2Ci!
!GS-20C)
(GS-2CO)
SGS-2C6)
1C-S-206)
{6S-2C01
JGS-2CC)
(GS-2C6)
(GS-2CO)
(GS-2CC)
tGS-206 )
(VCLUHE)
(VCLU«E)
(VCLUHE)
(VCLUME)
FK !7C CEG F)
:
'.
1
4
-}
n
'.t
CFH !7C CEG r)
CFH (7C CEG F) -•
i
9
^
e*
4
3
i
%
s
?
I '« EIGHT)
! WEIGHT)
(V.EIGHT)
!WcIGHT)
(HEIGHT)
("EIGHT!
(WEIGHT)
IViEIGHT)
(-EIGHT)
(weiGHT;
(hEIGHT)
(HEIGHT)
(HEIGHT)
(HEIGHT)
(l-EIGHT)
(V.EIGHT)
(V.EIGHT)
..
Z*
-
a
'*s
«»
^
^.
-*
"-
iS
a
-------
Ol
VO
*
1
«
>
*
7
i
i
-:
*
7:15
8: 8
12: 8
14:32
7:15
3: 3
12: 8
14:32
8: E
12: c
14:32
HR.S
HRS
hRS
HRS
HRS
HRS
H^S
«?.s
hRS
H.RS
8: £ r"*S
-
-^
~
^
yf.
•si
=;
12: a
14:32
7:15
15:15
12:15
2C:15
hRS
H-;S
H.RS
HRS
HRS
HXS
143.00 HRS
A V E S A"
148.90 HRS
152.90 HRS
155.30 HRS
A V = R A
14S.CC i-P:S
A V E R A
148.90 HRS
152.90 HRS
155. 20 >-?s
A V E S i
I*.1:. SO *-^S
152.^0 rSS
155.30 HRS
A V E R A
152.50 'rSS
A '] = R A
i-'-3.CO HsS
156. CO HRS
A V ERA
153. CO HRS
iil.CO HRS
TOT
R A
K 2
tET)
G E :
SET)
(ET!
(ET!
G E :
(£T)
G £ :
«£T)
(2T)
C E :
; £- )
(ET)
(ET!
G E :
(£T)
?£T)
C, E :
C£T>
G E :
(ET)
iET)
A L :
T F. :
S GENERATOR /SUL
H2 CCNC- INLET GAS
\-Z CCNC INLET GAS
1-2 CCNC CUTLET EAS
H2 CCNC CUTLET GAS
H2 CCNC CUTLET GAS
F2 CCNC CUTLET GAS
N2 CCNC INLET GAS
N2 CCNC IKLET CAS
N2 CONC CUTLET GAS
N2 CCNC CUTLET GAS
.":2 CCVC CL7LET GiS
.'<2 C~-v" CUTL-T GJS
H2S CCNC CL'TLST GAS
H2S CCKC CUTLET CAS
F2S CCKC CUTLET GAS
H2S CCNC CUTLET GAS
r20 CCNC CUTLET G.'-S
5-20 CCKC CUTLET GiS
H20 CC.'-C CUTLET GAS
H2Q CCKC CUTLET GAS
N2 IN:LET VCL FLCH RATE
"2 INLET VCL FLCr. P.ATE
N2 INLET VCL FLC'« RATE
WEIGHT CYCLCNE CLST
V.rlGHT CYCLCNE CL-ST
V.EI3HT CYCLCNH ELST
WEIGHT CYCLCNE DLST
FUR S
?GS-1CC! /
iGS-ICO! /
(GS-1C6) /
{GS-108! /
«GS-10S) /
(GS-1GS) /
(GS-iCO) /
i
•^
--
^,
; •;
-------
C A
I \VENTORY
PAGE
HCPPER
U>
OS
o
;:
1C :is K.RS ]'. • ,,-n (.?<; ipT)
li:15 r'.S 159. 'JO >-?$ t")
• V c ? »- c -
" R E5IC
« :-.£S r.
UAL s CN CARS:?
•J.'L s c;-; c>?.=:f
UAL s c-i C"^;:
!CS- 9C / Z=C!1,T) =
scs- -"C / Z'.cii.r; =
•:cs- ?c / ;•:'.•::. ,T 5 =
CCS- 9C / A:-;:a =
3. SCO
4.iiO
4.c£v
« ! 'A E I G H T )
S 1 V> EIGHT)
"S (XSIGHT)
1 !V<3IGhT;
':'•
•'-
>•
.'•
i'i
| ii . i i—
^5
u.
r"
F*1 '
LJ
_... 10:;? H?.S isi.-f! HR« (-T)
14:15 HR5 15K.CC HRS (ET)
18: 15 H».S 15S.CO !-RS <£T)
t v S " i G t :
7:15 r-RS 14S.C.O t-%3 !37)
15:15 f~.S 156. CO !-».S i£7)
AVERAGE:
1C:!5 H?.S 151. CO H3S !ET!
14:15 V-RS 155. CO HRS (£T)
15:15 S^S 156. CO r=.S itT!
20:20 H.RS 161.10 HRS IcT)
0:15 HRS 165. CG HRS (ET)
3:15 MRS 168.00 HRS tET)
T n -r ^ i .
1 Si I A t. '
RATE:
•
™ R5SIC
Z RESIC
L'AL H2C CN CA^fCv
UAL H2C CN Ci5.;C«
S RESiDUiL H2C CN C4SfC:\
3 / LI <1 i ft 1 —
C S-4CU / RS4C1 =
2.230
2.230
2.230
2.2ZC
71 ' ' "-
31. COO
31.000
0.0
3.700
13.300
4.200
5.CCC
3. CCO
2.024
? HEIGHT)
? ISEIGHT)
t i. -EIGHT)
LE iv^T'L/HR
L3 J-'AT'u/HR
LS XAT'L/rR
L3 SULFUR
LE SLLFUS
L2 SULFUR
LS SULFUR
LS SL'L'UR
L3 SULFUR
1 Q ' ' i[ CMO
LS SULFUS/HR
:
•:
s
i
—
!
-
-.
r. :
b* i.
a4
ita' " :*
ET r-
c :
3*. * ~-
L-
\tf
1*2 - -:
D
1 :
-------
ON
j
STATUS REPORT CF OPERATING CCNCITICNS FCR
r-: OPERATING PERIOD:
>: CATE: */2c/7A TlCt CF RECCRC: 7:1= H!
.1
•- PRCCESS ELAPSEC TK'c CF PERIOD: START 14 =
r-.
'»' SUXyiRY CF INTEGRATED PRCCESS PERFCRKANCE:
* 1. S02 RHyCVIL P-RSG2 =
•
ir 2. H2S UTILIZATION Pl)h2S =
'=.; 3. ACID CGNVESSICri (TO SULFUR) PVCS =
':i 4. 1-2 UTILHATICN 1 TC H2S ) PhCi-S =
;•« 5. SULFUR RECOVERY PRS
'f.'
t-. 6. V-2 UTILIZATION A" UNIT PU'S-2 =
W 7. RESIDUAL SULFUR CN CARSON X90A =
!_ j '
fc- 8. CASECN RECYCLE RAT= (CE! RC90 =
1 .
t 9. ACIO LCACIK-- INLET CARSCN 6" U.MT xsoic =
y
i« 1C. MOISTURE CCKTEKT INLET CARBCN 6" UNIT X301B =
to'
H 11. ACID LCiDING ISLET CARECN 8" UNIT X302C =
U 12. KOISTURS CC'.TE\T INLET CA^aC?>: £" UMT X302B =.
I;
a 13. TOTAL AC'" CC\VFRTFD S» UMT • PVC
jc; 1«. SULFUR CCNVcSSICN (TO H2S) PSCt-S =
C 15. SULfUR CCNCENSER EFFICIENCY £RV4CO«
n
• ; MATS FV=\TS CURING" CFERATING PERIOC:
Li "
CUT CN C02 TD 40 CFH IN 4" UMT AND
'J REDUCED N2 TC 66 CFh AT 148.1 MRS.
U ATTEMPT TO TURN STEAM CN TO 4" UNI.I...AI ..
IXJ 150.3 !-*S. UNSUCCESSFUL DUb IU LKUlU.H^iO IN
\J STEAV LIME. ELEX SULFUR FRCV RfcCl^UULAI Ii-.^
4/26/7A PAG; 7
INTEGRATED OPERATION CF S02 RECCVERV PRCCESS ,
i
S TC 15:15 HRS
.r'-i VR<; / p\n i?&.co HRS LENGTH CF PERIOD: e.oo FRS .,
i
:t
56.03 ? (ACTUAL) 9C.O ? (GCAL) '>
57.80 Z (ACTUAL! "55. C 31 (GCAL)
il.99 % (ACTUAL) ??.C t (GCAL)
iC.90 ? (ACTUAL) 90.0 3 (GCAL)
-
33.34 * (ACTUAL) 1CC.O S (GCAL) OF SCRBED S02
3C.75 3 {ACTUAL 3 25. C S (GCAL) CF STRIPPED SULFUR
ICC. CO S
;;
C.C467 LB S/LB C ::
T.
2E.957 LS C:C£I/HR W
C.2637 LB ACID/US C
:,-
C.C916 LE H2C/LB C
W
C.2637 LB ACID/LE C
C.C926 L3 h2C/LS C :,
t-;
64.17 % -i
z*
72.87 % -.
113.32 2 ;
.,
;.,
<;
t ;
„
r
PCT TG CVERFLCV. ?Ct "' ^
-------
4/26/74
STATUS REPORT CF OPERATING CCNCIT1CNS FCP- INTEGRATED CPER4TICN CF S02 RECCVCRV PROCESS
PAGE S
r.
I •
ll
';
!«•
i1'
OPERATING PERIOD:
CATE: 4/26/74 TIME OF RECCRC: 7:
PRCCESS ELAPSEC TIPc CF PERIOD: START
15 fR5 TC
1'P
.:c HRS
15:15
/ END
HRS
15
6~.CC~
HRS
:
./
1.ENGTH CF PERICC: 8.00 t-RS
..i ~ • • " ,,
i.'
i ]
SULFUR MATERIAL BSLiNCE (USIN'G PROCESS H2S):
t
"> •>
•i
S 0 2
S C R B
E R
f •:
i/
i
•i
1»
LO T.
O"» si
10 U
- *
I N
INLET GAS AS S02
IMLET C AS RESIDUAL S
T C T A L IN:
CUT
CUTLET GAS AS SD2
CUTLET CARBCN '
CYCLCNE rUSI
COLLECTCR DUST
CiRBCX hEEPAGE
TCTAL CUT:
6" CIA C A R B 0
I (-
JRV-
£ C-
( [)-
(Ch-
(R'l-
l\
13) /
11) /
1C) /
13) /
12) /
ill /
12) /
12) /
1C) /
P R £
BG10A
SC11A
sue
BG13A
3C12*
BDlii
S012A
BCW12A
S010
C C N
3
=
=
•=
^
S
•=
t- I
2.
.1.
•3 ^
0.
3.
0.
0.
c.
3.
„ ,
3852
35 it
7363
CI20
0
C249
9740
C N
LE
LB
LS
L°
LB
LB
LB
LE
LB
<- 1.
SCLFUR/I-R <
SULFUR/hR
SULFUR/1-R
SULF'JR/KS
SLLFUR/HR -,-.
SULrUS/r-S -
SULFJR/HR -,-.
SULF'JR/l-R :,
SULFUR /!-.R ;,
W ;j
3» 7 N t'
i»
b
y
U
JS
3*'
rs
INLcT CARSON
T C T A C IN:
CUT
CUTLET CAR3CN
CYCLCVE CUST
TCTAL OUT:
S U L F U
( C-
(RV-
t C-
{ ;-
12) /
3:0 /
2 C ljL_/_
(RV-3CC) /
R
3 e N
BC12i
SI300
8C201A
BD30iA
S030C
e R A
=
=
=
=
=
T C
^ .
3.
3.
C.
3.
R
8444
3444
3444
0
8444
LB
LB
LE
LB
LS
SULFUR/hR -j
SULFUR/^R .
SULFUR/I-R ^
SULFUR/HR -.
SULFUR/hR :,
-
w •*•
!.-: IN
- -^ '.-•
1 - - . -. i . -
•».fc
„
',*
, ,
X
I'iLST GAS AS 1-2 S (CYL)
INLET GAS AS J-2S i?RCC)
'T C"T 4 L IN:
CUT
CUTLET GAS AS H2S
CUTLET GAS AS .S02
CUTLET CASF.CN
TCTAL OUT:
! G-
» »3"
! C-
1B\_
( G--
{ G-
! C
;nv-
2C1) /
2 C i ) /
2 C '' ; /
2CCi /
2C5) /
2C5) /
2C2) /
2 C C) /
EG201S
fc; = 03'',
GC201*
S;2CC
BG205B
"EG2Q5A
S02CQ
=
=
=
_
0.
** *
3.
0.
C.
7.
3.
C261
79 5S
6
-------
t_?_s_
E R A T C R _/ J_ U L F L R
STRIP
£ R
! M
INLET CARBON
T C T A
( C-2C<) / BC202A
IN: (RV-icCJ / SIIOCT
_7_.9331__LE__SULFU3/I-R_
7.~933i LB SULFUR/VR
CUT
1 CUTLET
' CUTLET
j CUTLET
». CYCLCNE
» FILTER
f T
CAR8CN
GAS AS
GAS AS
CUST
C'JST
C T A L
H2S
s
OUT:
C-l
•3-1
0-1
C-l
[Rv-1
c: ) i
:4 > y
:i> /
C2) y
:o y
6C103A
8C1C4B
' 8G1C4S
BD101A
' 60102A
SO 100
=
=
?s
=
1
4
2
0
C
8
•
*
«
w
*
•
3516
0235
0
C
me
LE
LS
t a
L =
LE
LB
SU'LFUS/HR :
SULFUR/HR l
SULFUR/1-R
SU'LFU'R/hR
OVERALL
- r U R
E A
C E
OJ
*,
IN
t INLET GAS 13"
UMT AS
SC2
( G-- 1C) /
' INLET GiS 8" UNIT AS CYL V2S I G-2:i) /
* T 0 T A L S U J. = U R
= CUT
-•>' CUTLET
>•' CYCLCNE
* CCLLECT
:•- CiRECN
r CYCLCNE
s CU'TLET
CUTLET
» CUTLET
.: CUTLET
!i CYCLCNE
FILTER
GAS IB" UNIT AS
CUST "l8" UNIT
CR C'J£
CUST
GAS 8"
GAS S"
GAS 4"
GiS 4«
CUST
C'JST 4
T
6
4
It
SC2
IS" UNIT
IS" UMT
» UNIT
UMT AS
UMT AS
UNIT AS
UMT AS
" U.MT
IKU
T 0 T A
H2S
SC2
H2S
S
L
( G-- 13) /
( C- 111 /
{ D-- 12) /
(Cu- 12) /
( 0-3 CD /
( G-2C5) /
( G-2C5) /
t G-l :4i /
s G-I:-. ) /
: c- 1 : i ) /
S U L F ij R
8G10A =
BG2018 =
I N :
SG13A =
3DUA =
30124 =
8CVJ12A =
ED301A =
EG20J3 =
6G205A =
6G1042 =
3D 1C 1 1 =
'JD102* =
OUT:
2.
C.
2.
0.
0.
0.
c.
0.
c.
c.
c.
2 •.
c.
c.
2.
3852
0261
4112
094t
01 20
C
C249
C
1C61
3606
0
C235
0
6217
LB
LB
L3
~L2
LS
LE
L2
L2
La
"_L =
L2
LZ
LB
L5
SULFuR/KR
SULFUR/hR
SULFUR/t-R
SULFU'/I-R
SULFU3/rR
SULFLS/S-R
SULFU-R/I-R
SULFU'S/i-R
SULF'JS/i-R
SULF'JS/HR
SU-LFUR/.--R
SULFjP/'rS
S--FUS.'rR
SULFUS.'f-S
SU'LFU'R/hS
-
-
.5
t*
^
-.
—
w
-^
-------
HYCRCGEN MATERIAL BALANCE:
PACE 10
i1;
j1.
M
I N
I
I
i
i
NLET.
•".'LET _
NLE7
:,LET
N.L.EJ
GAS AS
GAS AS
GAS AS
GAS AS
CASBGiV
.T C T
S U L f Li
•
H2
LJ 7 O f /* VI \
H2S (PRCC)
r2G
A L IN:
R .3
( <;-2:
I.- £. -
( r>2:
t c-2:
: c-2:
\ rv *" ' ^ 4
E N
3)../
3 ) y
u /
C) /
£ R A T C
BG2C3C =_
6G2C33 -
.BG203 =
BG203C =
8C201H =
J-I2CC =
S
C.
C.
0.
C.
C.
1
CO I 6
2997 "
3592
4505
mi
L ~
LE.
LS
LS
LE
.
HYCRCGEN/i-R
HYCRCGE\/!-R
HYCRCGEK/I-R
HVCRCG5K/HR
HYCsCGEN/SR 5
"CUT .
£«'
LJ
r
C
!.TL£T
•-•TLST
LTLET
OUTLET
T
GAS AJ j--2
GAS AS H2S
GAS AS I-2C
CAR5CN
C T A
,
L OUT:
( ; - 2 :
i (.-2j
! G- 2 :
( (.-2!
(RV-2-:
;} /
5 J /
5! /
2) /
Ci /
- f o '• = " —
EG205D =
SC202K =
HC20C =
C.
0.
0.
6 = 21
1632
3219
LE
LE
LE
LE
H^ciE^R ;
HYCRCGEN/l-R
HYCRCGEN/FR
J-!
r
73
-4
i»
w
t
rl
y
IN
I
CUT
C
C
C
NLEf "
UTLET
-TI-:T
LTLET
T
H 2 S
GAS AS
CA'RBCN"
T C T
CAS AS
GAS AS
GAS AS
CIA
G E N E R A T
l"2
ft L ! K :
H2
H2S
1-2C
L OUT:
n • r* '
v:- 1'.
{ C-2C
2997
2342
5339
?
L E
la
Lc
'?f
L 3
LS
E R -=
HYCRCGEM/KR -t
HYCRCGEN/HR rs
KVCRCGSM/t-R
HYCRCGE^/VR r>
HYCP.CGE;\'/i-R =
HYCRCGEN/1-R ••
» ^
-------
APPENDIX A-12-11
EXPERIMENTAL DATA AND RESULTS FOR INTEGRAL
RUN IR-2-8 (156 - 168 hours)
365
-------
PAGE
STATES REPCS.T CF OPERATING CCNCITIONS FC: INTEGRATED GPERATICN: CF SC2 RECCV'SY PROCESS
U)
'::
)3
\
•
,
y
;»'
-
>
F*
AT
'.j
'^
^
13
''--.
-
OPERATING PERICC:
CITE: 4/26/74
CATS: <./ 27/74
PRCCESS ELAPSE: TIME
*• . •
TTVZ re necCRC: 15:15 V'RS TC 24: C H^$ ;
TIME OF RECCRC: 'C: 0 >-R3 TC 3'-15 HRS
*
CF PERIOC: START 15i.CC HRS / ENC 16S.CO HRS LENGTH CF PERICC: 12.00 HRS
i
PROCESS VARIABLES FCR CPERATING PERICD:
•
18:15 HSS
22:15 HRS
2:15 HRS
IS: 15 HRS
22:15 HRS
2: 15 HRS
15: 15 HRS
3: 15 HRS
17:15 HRS
159. CO HRS (£T)
163. CO HRS !£T)
167.00 H?S SET)
AVERAGE:
15<3.CO HAS fET!
163.00 HIS (ET!
la 7. CO HRS
16C.CO HSS (ET)
161.00 HRS (ET)
164. CO HRS (ET)
158. CO HRS 1ST)
AVERAGE:
'.61.00 HRS !tT>
163. CO H«S SET)
TOTAL :
RATE:
161.00 HRS !ET)
163.00 HSS (5T>
. . .0 .'. A.i- •
R i T E :
151. CO HRS -ET!
162. CO HS.S (ET)
168. CO HRS !£T>
C t £ L -
RATE:
S C 2 SCR
SC2 CCNC INLET FLLS G '-S
S02 CCNC INLET FLLE G !S
S02 CCNC INLET FLUE G »S
S02 CCNC INLET FLUE G !S
S02 CCNC CUTLET ?LLE >2S
SC2 CCIVC CUTLET FLUE >t$
*Q2 CCNC CUTLET FLUE J^S
SC2 CCNC CUTLET FLLE .J'S
H20 CCNC INLET FLUE G SS
H20 CCNC INLET FLUE G =S •
H20 CCNC INLET FLUE C SS
ORIFICE PRESSURE DRCF
CRIFICE PRESSURE DRC?
CRIFiCE PRESSURE CRCF
CRIFICE TEMPERATURE
CRIFICE TEMPERATURE
CRIFICE TEMPERATURE
GRIP ICE TEMPERATURE
CRIFICE TEMPERATURE
CRIFICE TEMPERATURE
CRIFICE TEMPERATURE
ViCIGKT CYCLCNf CUST
hrlGHT CYCLCNE CUST
WEIGHT CYCLCNE CLST
V.SIGHT CYCLC.\c DUST
V.EIGHT CCLLECTCR DUSf
'.= IGHT CCLLECTC3 DUST
ucrrur rr; i PTTrR r^LSr
WEIGHT CCLLECTCS OUST
hEIGKT CARECN WEEPAG:
ii=IGHT C/.R8C.N KtEPAG:
wP'.'HT CAR3CN. KEEPAGr
vP'^-HT C*RSC\ KEcPASE.
3 E R
1GS- 1C! /
fGS- 1C) /
CGS- 1C) /
(GS- 1C) /
;GS- it) /
-------
20:15 t-".S
3:15 HRS
j-
=• 12:15 HRS
' 2C:15 HRS
3: 15 HRS
:
161. CO
168. CO
A V E
15 3. CO
1-61. CO
163.00
A V £
1-F.S
r'.S
a A
S--S
rSS
hP.S
S A
JET)
CETI
'o C 5
;ETI
t=Ti
tETl
G c :
S TCT
S TOT
S TCT
$ TCT
s TOT
? TCT
. s TCT
s
s
s
s
s
s
s
CN
CN
CN
CN
CVCLCN5 D-iT
CVCLCNE D'.V
CCLLECTCR
C.N CCLLSCTC3
CN
CN
CCLLECTCS
CCLLECTCR
I.ST
I:ST
UST
UST
{
{
!
{
{
(
{
D-
0-
D-
D-
C-
D-
0-
11)
11)
11)
12)
12!
12 J
12)
4/26/7*
PAGE
ClliltT)
DlilliT)
AD11A
C12<1,T!
C12!1,T>
D 1 2 ( 1 1 T )
AD12«
S
=
=
f
s.
7
7
7
7
7
7
7
.760
.700
.700
.760
.640
.703"
3
«
*
{'.•EIGHTS
(V.EIGHT)
JV.EIGHT) ,
tfecICt-T) ::
(\;E!GhT! '••-
( * EIGHT) .<
(WEIGHT! -.
-------
A/26/74
PAGE
Ci
U>
cr>
CO
1
V
I
••'
i*.
f- -
fcr
S
I *",—
. r
' i
=:'
3
-..
*::
t.
y
id
£
-,
.-•
5*' '
U
1
"^
•fj
h ••
'•*'*
s.'
1
' _,
6" DIA CARBON PRECONCITICNER
14:15 HRS 155. CO MRS f ET ) S TOT S CN INLET CARIC\ (CS-301) / Z3C1U.T) =
22:15 hRS 163. CO KR3 ! ET> ? TQT S CN INLET ORiC\ (CS-301! / Z301(1,T) =
2:15 i-RS 167. CO US (ET! S TOT S CN IMLET CA?,!C\ (CS-3CU / Z30M1.T) =
AVERAGE: S TOT S CN INLET C1RICN (CS-3C1) / AZ3014 =
1<.:15 HRS 155. CO HRS (ET) ? H20 C.N INLET CARBC! • (CS-3C1I / Z30H2.T) =
22:15 HR5 163.00 !-RS ( = T) % (-20 CN INLET CARECI. JCS-3C1) / Z3C1(2,T) =
2:15 HRS 167. CO HR5 (ET! % >-20 ON INLET CAREG!. ICS-3C1I / Z30K2.T) =
AVERAGE: t H20 CN INLET CASED! CCS-3C1) / AZ301E =
2C:15 H^S 161. CO f-RS (ET! WEIGHT CYCLCNE CLST ( C-3C:j / C03C1(T) =
3-»C L.3Q 1AQ r f1 t-*1"! (i^Tl LrCTPi-T ^VPIfS^C f* t • C T f P- ->^*\ / rr'TOTfTX
T C T A L : WEIGHT CYCLCNE DUST I C-3C1) / WD3C1 =
RATE: WEIGHT CYCLCNE DLST ! 0-301) / RC301 =
15:15 I-RS 156. CO l-RS !ET) S TOT S CN CYCLCNE D'ST f C-ICH / C3C111.T) =
3:15 HRS 168.00 HSS (ET) % TOT S CN CYCLCNE J.ST ( C-3C1) / C3CHI.T) »
AVERAGE: Z TOT S CN CYCLCf.E 3.ST E C-3C1 ) / AC301A »
•
.
•
•
"
_ _
9.860 S (WEIGHT)
8.300 1 (VEIOS-TJ
8.060 S UEIGkT}
3.740 ? (WEIGHT)
7.0CO t (HEIGHT)
7.600 S UEIC-FT)
6.000 ? (VEIGHT)
6.867 S (HEIGHT)
0.0 LE CUST
*\> Cw l*w^l
C.O LS CUST
0.0 L8 CUST/kR
0.0 ? (HEIGHT)
0.0 * (V.EIGS7)
C.O ? (WEIGHT)
-
v
'.
.
.
i;
•
„
•-
-
.
;
;
:
-
-
,
-
.
_
1
-
„
4
.
\
4
.
,
S
j
-------
4/24/74
PAGE 4
U>
, ,. 23' ? HRS
16:20 H.RS
'.'• '• • 19: IS HRS
>»
20:26
21:38
HRS
HRS
23: 2 HRS
:•;
:~
'••:
•i
.
".
—
^
;,
-,
-,
— *
16:20
19: 15
20:26
21:3«
'
23: 2
16:20
19:15
20:26
21:38
23: 2
16:20
19: 15
21:36
HRS
HRS
HRS
HRS
HRS
HRS
HRS
HRS
HRS
HRS
HRS
H"
* C 1 5 **
*O _ . i V
A V S
j.57. iO
16C.CO
161.20
162.40
A V E
' 163. SO
A V E
157.10
16:, cc
isi.io
162.40
A V £
163.60
A y £
157.10
I6C.CO
161.20
162.40
A V E
163.80
_ A v_E
157.10
iiC.:o
161.20
162.40
HRS
HRS"
HRS
I-RS
R i
HRS
S A
HRS
HRS
HRS
R A
I-RS
R. A
HRS
HRS
VRS
HRS
R A
•-RS
n «
HRS
rRS
HRS
HRS
s.' A V E R A
3^
;
Ci'
^,-
j.
J3
.13
1 .
w
^.
^
'
.,
.,
^.
,"•
23: 2
15:13
3: 15
14:li
22:1?
14:15
18: 15
22:15
. 2:15.
14: 15
18: Is
? 2 : 1 S
J5. s.
HRS
HRS
HRS
HR S
".HRS
H^S
""•-.S
HiRS
162.KC
rt V' ""
:5t.co
156. CO
A V E
155. CO
ii3.c:
167. CO
A V E
1 e c /•/>
IP...
i?;!::
i V E
i '> "i • T «•
1=3. CC
>-RS
I> *
Hi-.S
_HRS
~R A
;--s
ur c
R. .A
HRS
HRS
_ : c
.-'• S
r •* i
!ET)
_( cT i
"lET>
IET)
(ET)
i E :
~G E~:
SET)
!cT5
lit)
G E :
(ET)
G E :
1ET!
SET)
SET)
(ET)
G E :
!ET!
G E :
(£7 )
SET)
SET)
_JST_)
G E ;
!ET)
G E :
(ET)
G E :
<=T)
G c :
(ST )
!ET!
s> c :
! nT )
11'. I
SULFUR GENE
SC2 CCNC CUTLET GAS
S02 CCNC CUTLET GAS
H2S CCNC INLET GAS
H2S CCNC INLET .G.' S
H2S CCNC. INLET GAS
H2S CCNC INLET GAS
H2S CCNC INLET GAS
H25 CCNC CUTLET GAS
H2S CCNC CUTLET GAS
H2 CONC INLET GAS
H2 CCNC INLET GAS
H2 CCNC INLET GAS
H2 CCNC INLET GAS
H2 CCNC INLET GAS
H2 CCNC CUTLET GAS
H2 CCNC CUTLET GAS
H20 CCXC I^LET GAS
H20.CCNC INLET GAS
H20 CCNC INLET GAS
H2Q CCNC INLET GAS
H20 CCNC INLET GAS
H20 CCNC CUTLET GAS
H2C CCNC CUTLET GAS
N2 CCNC INLET GAS
N2 CCNC INLET GAS
N2 CCNC INLET GAS
"J2 CONC INLET GAS
N2 CONC INLET GAS
,N2 CONC CUTLET GAS
\2 CCNC CUTLET GiS
N2 INLET VCL FLC'.-. R.'<"£
Ni I;>iLcl VCL FLijV* RArc
N2 i'NLcT VCL FLC* Rii'-'E
I TCT S CN !\L£T CAsi'C-.
Z TCT S CN INLHT C-'.'. :C •.
i TCT S CN I.MtT C« "C.v
% TCT S Cr< INLET C*Ri'C.»
i5 TCT S CN CUTLET C.M e !N
% -7CT s c,\ CUTLET cA:.e:r.
Z 7^T S CN CUTLET C *> t :.\
'i TCT S CN CLT'.ET C .-::; :N
* TOT S CN CUTLET C'^e'.I.
i H2G C\ I '.LSi ^k?'!'~;
X, HiC CN :;-L£T CJr.d-
R A T C
IGS-2C6)
R
/ Y206\ltT) =
(GS-2CO! / Y2CCC2.T) =
SGS-2CC)
(GS-2CC)
(GS-2CO)
:2-T; ,
/ ZiSii^l! •
1.650
1.650
23.300
25.600
24.4CO
25.600
24.725
0.0
0.0
0.200
C.O
o.c
C.O
O.C50
0.0
0.0
22.400
24.100
23.400
23.300
23.300
49.600
49.600
56. COO
52.400
54.2CO
53.2CO
53.950
45.330
AS. 200
127.000
127.000
127. COC
9.S60
£.300
c.CiC
8.74?
20.500
IS. COO
Ic '.940
19.210
6. COC
!
1
S (VCLUME) )
? (VCLU«£) °j
? ! VCLUHE) J»:
1 (VCLUMEJ '•;
^
3
"s
2
3
?
?
?
•*
S
?
<
?
S
s
?
*'
,
(VCLUME) i;1
(VCLUME) .;
(VCLUME) .•!
(VCLUHE) :«i
(VCLUHE) • =
iVCLU.ME) -:
(VCLUKE) «
(VCLUVE)
(VCLUXE) '-i
! VCLUHE) ,1
:-y
(VCLUHE)
(VCLUME)
73
(VCLUWE) :•
(VCLUME) .-=
(VCLUME) ri
(VCLUME) _-;
(VCLUMEI ;,
(VCLUME) r
(VCLUHS)
_.
(VCLUME) ;,
(VCLUHE) :,
(VCLUKE) _•
(VCLUME) i,
(VCLUME) J
:s
(VCLUME) :.
S IVCLUKE) .-
CFH (70 DEG F) -.
CFH (7C CEG F) ^
CFH (70 DEG F)
5
•»
t.
t
rf.
(V.EIGHT)
(WEIGHT! .;
(XEICHT)
.
(HEIGHT! ^
ti.eiGH.ri j
(»5IOH7!
(WEIGHT)
'.'A SIGH 7)
(hEICHT)
-------
2:15
h'.S
22: 15 -RS
A V E S i 5 6 :
J55.CO I--.S (£Tj
155.CO rSS'i'ET)
153.:3 r3S 1ST)
_157.CO _(-?S_lST5
...X.'V .- s i G E ^-_
J55.CO HS"JET)~
15?.co i-=:s JET;
153.CG r^S IET}
~i V E~H~A~~5"'£ :
? f-ZC CN IN'LET C/SS6CN
_S_H2D_C\ CUTLET
S -r2C CN~CU7LET"CAR8t.\
* -1-2C CN CUTLET Cs3.SCv
_?_!-2C CN' CUTLET C.'-
JS_*C I P_CN_CUTl. = T_C A R E : N
S AC'i'C CN CUTLET '
iCS-302) / AZB025 =
JCS-200 )._/_:2CO ! 2, T 1 _=_
(CS-2CC! .
JCS-2CC>_ /_ iJ2CCE =
JCS-2CC!_/_Z2CO!3,T) =_
1C S-2C C 1" /" Z 2C 0 ! 3, T )" =
SCS-2CC) / I20Ci3,T) =
'CS-2CC? / ZiCCiB.T) =
6.867
3.100 ?
"3.2CC ?
2.7CC ?
(*>EICHT>
_ _ _
3.500 3 i ȣ!GrT)_
3.E2C ? IVEIGt-T)
ICS-2CC) /
AZ200C =
_
3.S70
_
(VvciG'rT)
OO
•>J
o
w
L,r
-------
4/26/74
PAGE
H 2 S
GENERATOR/!. JLFUR
STRIPPER
17:15 HR
H2 CCNC INLET GAS
CO
16:20 H9S
19: 15 H1RS
20:24 HRS
21:38 HRS
17:15 HRS
16:20 r-?S
19:15 HkS
2C:2t HRS
£ !.- 2. >i r"^ S
0:15 HRS
1:15 rR S
3:15 HRS
16:20 HRS
19:15 HRS
20:2i HRS
3 i * "3 ;> ijO C
3: 15 HRS _
16:23 HRS
15:15 rRS
20:26 HIS
21:3= HRS
•0:15 -RS
1:15 HRS
3:15 HRS
15:15 H.R3
3:15 HRS
20:15 hRS
3:15 HRS
20:15 HRS
3:15 HRS
14:15 HRS
15:15 HRS
22: 15 rRS
2:15 HRS
AVERAGE:'
157. 10 HRS (ET!
16C.CO H'RS !£T)
161. 2C HSS (ET!
162.40 HRS 1£T)
AVERAGE :
153.00 H"
TOTAL:
RATE:
161.00 HRS iET)
153. CO HRS (ET)
TOTAL:
RATE;
155.00 HRS (5T>
15S.CO H:'.S (ET)
16!. CO HRS !JT)
167. CO HSS tET)
!-2 CCNC INLET GAS
H2 CC\C CUTLST G4S
H2 CCNC CUTLET GAS •
H2 CCNC CUTLET GAS •
H2 CCNC CUTLET GAS
H2 CCNC CUTLET GAS
N2 CCNC I.NLET GAS
N2 CCNC INLET GAS
N2 CCNC CUTLET GAS
NZ CCNC CUTLET GAS
N2 CCNC CUTLET CAS
M2 CCK.C CUTLHT GAS
\!2 CCNC CUTLET GAS
N2 CONC CUTLET GAS
N2 CONC CUTLET GAS
N2 CCNC CUTLET GAS
H2S CCNC CUTLET GAS
H2S CCNC CUTLET EAS
I-2S CCNC CUTLET GAS
t-?^ (" f* N: *~ f" ! ' T 1 P T f* fi %.
H2S CC.NC CUTLET CAS
H23 CCNC CUTLET GAS
H2S CCNC C'JTLET GAS
H2.S CCNC. CUTLET GAS _.
H2C CCNC CUTLET G&S
H2C CCNC CwTLET GAS
H2C CC.NC CUTLET GAS
H20 CCNC CUTLET GAS
H20 CCNC CUTLET GAS
H20 CCNC CUTLET GAS
H20 CCNC CUTLET GAS
H20 CCNC CL'TLET GAS
N2 INLET VCL FLCX RAT£
•;2 INILET VCL FLCV- RATE
iN2 INLST VCL FLCV. RATE
SvEIGHT CYCLCNE CLST
HEIGHT CYCI.CNE CLST
V.EIGHT CYCLCNE CLST
WEIGHT CYCLCNE CLST
WEIGHT FILTER CUST
WEIGHT FILTER CLST
WEIGHT FILTER CUST
HEIGHT FILTER CUST
3 TOT S CN CYCLCNc CLST
% TCT s CN CYCLCNS OLST
2 TC" S CN CYCLCNE CL£"
% TOT S CN CYCLCNE CLS'
«CS-iCOi /
tGS-lCE) /
iGS-icaj- /
SGS-1CS! /
C'G S"~ I G £ ) /
CGS-1CC! /
JGS-1CC) /
CGS-106! /
(GS-1CS! /
C'C-S-IOS) /
JGS-10S) /
(GS-103! /
(GS-10S) /
(GS-10E) /
(GS-10E! /
rGS-lOE) /
iGs-ioai /
fi^C 1^31 /
I3S-1CE) /
(GS-iO£! /
JGS-108! /
(GS-lCe! /
(GS-1021 /
iGS-lCE) /
JGS-iCc! /
•GS-ioa; /
(GS-10e) /
(GS-103) /
SGS-ioe: /
1SS-1C ! /
( G-1C ) /
! S-1C ) /
: c-ic ) /
< C-IC ) /
1 C-IC ) /
! 2-10 ! /
t C-1G ! /
5 D-1C2) /
{ 0-102) /
J 0-1C2! /
5 C-102) /
I C- 1 C 1 ) /
< C-ICi) /
c c-ioi ;• /
t o-io: ) /
YiC£!2." )
Y1C6(3,T !
YlGSJ2tT)
Y1CS!3,T !
AY10SC
Y10DI5.T!
AY1CCE
Y103(5,T)
YlC3(r, T)
V1CS ! 5,T;
Y i06 \ 5 1 i 1
Y108i5,Ti
Y1C3(5,T)
Y1GS(5,T)
AYlOcc
Y1C3;2,T!
Y1CS(2,T)
Y1C8(2,TJ
Vl^S*1? f * "
T i-.j O t £ s I /
Y10S!2,T)
Y108(2,T)
AY108B
YJ03 ( 4, T I
Y^I i^'I1
Y103 (4 , T )
YiC8x4,T)
Y1C3 ! 4, T )
AY10SC
Gioois.n
GiCO! 5,T}
AG100E
ccioi in
CClCIiT)
V.'DIOI
SE1G1
CDI021T)
CCi02(7)
RD1C2
C101 11 ,T)
C1C 1(1,7)
C1C1U.T •
= 4E.500 ' ;VCL'JVE)
C.2GC S SVCLUXE)
0.0 S t VCLUME)
= 0.0 J ! VCL-JKE)
C.O ? (VCLUME)
C.050 ? (VCLUME)
51.500 S (VCLUME)
51.500 S (VCL'J."£)
56. COO ! (VCLC^E)
52.400 ? (VCLUX.E!
= 54.200 S (VCLL'ME)
53.2CO ? (VCLUMS1 .
52.50C ? !VCLUHE)
= 54.100 ? t VCLUME)
52.600 t (VCLUME)
53.571 ? (VCLU.Vc)
23.300 (VCLUME)
•= 25.600 (VC4.lJC.EJ
24.4CO t VCLUME)
— 1 ^ i.^^ ' /\'f"ll!>^Cl
= 26.100 ;VCLU;-;E)
= 24.100 (VCLUKE)
. 26.100 (VCLUME1
*> 25.029 (VCLUCE)
22.400 (VCLUKEJ
24. ICO (VCLLJKEJ
23.4GC- S ! VCLUME)
= 23.300 % (VCLUME)
= 21.000 * (VCLUKE)
= 21-400 % (VCLUME!
21.000 ? (VCLUHE)
22.371 S (VCLUME)
127. OCO C?H (7C C=G F)
127.000 CFH (70 CEG F)
= 127.000 CFH (70 CEG F)
0.0 L8 CUST
0.0 12 CUST
C.O LS CUST
C.O IS CUST/HR
O.C LS CUST
= G.O LE CUST
= 0.0 LS CUST
O.C LE CUST/HR
» 4.t6C S (VcIGH.T)
4.t2C % (WEIGHT)
= 4.;~0 ? («=IGHT) ;
4.220 ? ('.EIGHT)
:
.
j
i
a
-:
-:
4
-J
-,
-7
-,
»
_
--
-t
~f
f 3
^'
it
•:«
S*'
-:>
_,
_.
.,
-
^
--
jj
3
.-
,-
._
;'
-------
PAGE
I TCT S CN CYCLCXE CLST ( D-lCl) / A315XA » A.490 S (hEIGHT)
JLJCT_JS_?1_?1»J5
-------
4/26/7*.
PAGE
U>
~J
CJ
14-.ll
13:15
22:15
2:15
14:15
13:15
: 22:15
2:15
H.RS
HRS
HRS
h?5_
HRS"
HRS
hRS
HRJ
155. CO
159. CO
16 2. CO
157. CO
t V E
" 155.00
159. CC
163. CO
167. CO
A V E
hRS
t-=!S
r-, S
R. -
f-RS
l-RS
..r * S
"* A
(ET)
(ET!
G £ :
"IET")
«ET1
IET!
S E :'
C A R 8 C N i ^ V
3 R=S!D'JAL s CN c*.'.ec:\
* >e$!Cu*'L s CN c^secs
S RESIDUAL S CN CAR3C;\
S RtSlCUAL H2C ON CARSC!-
* RESIDUAL H2C CN CJRHLM.
% RESI3U4L H2C CN CiRcUi
t S-SiCU'L H2C CN CiR2'>
E N' T C R Y
(CS- 90) /
CCS- 90) /
;cs- ^c:- /
!CS- 9C) /
15:15
3:15
HRS
HRS
156.CO
lfc3.CC
A V t
HRS
•r'r.*
R A
t JT )
G~S :
CA^ECN RECYCLE RATE
CA33CN RECYCLE RATE
CiRSC\ RECYCLE RATE
( C- 90; /
! C- 90) .'
i C- 90 > /
C9D 1 1 » t i
C90'. 1,T !
=
IT
=
31.000
31.000
31. COO
IS
LE
LE
MAT'L/i-R ^
t'AT'L/HR !«
•f
•»
.
SULFUR CO
N C E N S 2 ft
-•
i
1C:15
14:15
15: 15
2C:15
. C : 1 5
3-- 15
-
hRS
hRS
HRS
hRS
HRS
15;. CO
155. CO
156.00
161. CO
165. CO
163. CO
T
•-'•'S
I-'.S
h^S
i-P.S
G T
iET)
;ETI
SET)
!ET!
!ET»
i L :
T E :
•-.SIGi-T SULFUR CCLLECT;-.
*EIGriT SULFUR CCLLECT=":
V.HIGI-T SULFUR CCLLECTE:
V
-------
STATUS REPCRT OF OPERATING CONDITIONS FCR INTEGRATES OPERATION Cf SC2 RECOVERY PROCESS
CO
'
OPERATING PERIOD:
C6TE: 4/24/74 TIME CF RECCRC:
CATF: 4/27/74 TIX= 2F RFCCRC:
15:15 H
AS TC 24". 0 HRS
0: 0 h^S TO 3=15 HRS
.:
PROCESS ELAPSED TIKE CF PERIOD:
START 156
.CC hRS / END 166. CO rRS LENGTH CF PERICD: 12.00 hRS
SUHVARY CF INTEGRATED PROCESS PERFCRCANCE:
••,
1. S02 RE.-CVAL
PRSC2 «
95.14 ? (ACTUAL) 90. C 31 (GCAL)
..
t
•3
•- •:'
'':•
r.
--
•~
2. r2S UTILIZATION
3. AC 10 CCNVERSICN I TO SULFUR)
4. (-2 LTILIZATICN ( TC H2S)
5. SULFUR RECOVERY
6. (-2 UTILIZATION V U'HT
PU!-2S *
PVCS =
PHCl-S -
PRS
PU!-2 =
ICC. CO S (ACTUAL! 95. C ? (GOAL)
63.69 % ? ACTUAL! 99. C 5 (GCAL)
62.46 * (ACTUAL) SC.C S (GCAL)
88.08 % (ACTUAL) 1CC.C S (GOAL) CF SCR3EC SC2
33. 2C ?. (ACTUAL! 2S.C S (GCAL) OF STRIFPEC SULFUR
c c . g 3 5;
;
.»
•
«
70
~
.3 ~>
..
*,
-c
-
'^
1
i.
.-
i
7. RESICUAL SULFUS ON CAReCN
3. CAR5CN RECYCLE RATE (DB)
?. ACID LCACING I\L=T CARECN 6" UNIT
1C. XCMSTURE CONTENT INLET CAR3CN 6" UNIT
11. ACID LCACUiC- INLET C«ECN 81: Ur: I T
b2. ."Q! STL-RE CONTENT T.NLET CARBON 8" UNIT
13. TOTAL JCIC CONVERTED 8" UNIT
1*. SULFLR CC^VE?3iC^f 1 "C- *2S S
i?. iLiFLS CCN--ENSER EFFICIENCY
X9CA =
RC90 *>
X3C1C =
X301S =
X3C2C =
X3023 =
PVC =
PSCi-S =
ERViCG =
C.C431 LS S/LE C
Zfi.917 LB C«DE5/HS
C.2159 LB ACIC/L3 C
C.C932 L3 P2C/LE C
C .215S L3 iCI:/LE C
C.C932 LB H.2C/L3 C
.
75.96 S
SC.7C Z
172.04 S
•*
.,
-_-,
77
i,'
-
-
_..
fijCR EVENTS DURING OPERATING PERICC:
f'j- c"? cc2 TC •»•' u>;r~ :
-------
STATUS SzPCRT CF OPERATING CCNCITKNS PCS INTEGRATED GPER2TIC.X C? SC2 RECCVERY PROCESS
CO
OPERATING PERIOD:
futfi 4/2t/?4 TIVE QF RECCRC: 15:
CATE: 4/27/74 T;*E Of RECCRC: o-.
PRCteSS SLAPSEC TlYE CF PERICD: START
SULFUR MATERIAL BALANCE (USING PROCESS h2S):
S 0 2
I N
INLET GAS AS S32
INLET C AS PESIDUAL S
T C T A L IN:
CUT
CUTLET GAS AS SC2
CUTLET CiRSOi
CYCLCKE CUST
CCLLECTCR OUST
CtReCfv V,EE?AG£
TCTAL CUT:
6" OiA CAR30
I N
I.NLET CAR3CN
TCTAL IN:
CUT
OUTLET CAR6CN-
CYCLCNS CUST
TCTAL OUT:
S U L F U
I N
INLST GiS AS I-2S (CYL)
!.\LET GAS AS r2S (PftCC)
INLET CiR3CfJ
T C T A I IN:
CUT
CLTLET GiS i.5 H2S
CUTL3T US ii SC2
CUTLET C-3.-,CN
T C T i L OUT:
15 HRS
0 HRS
156. CC
-
S C :
( G- 13)
( C- 11)
IRV- 1C)
t G- 13)
( C- 12)
i c- in
( C- 12)
(CV,- 12)
!RV- 1C)
N P
I C- 12)
(RV-3CC)
< C-2C1)
< C-3C1)
(RV-3CC)
R G E
( G-2C1)
( G-2C1)
( C-2C1!
(RV-2CC)
! G-2C5!
i ** ~ r ^ i
! o — i C:> }
! C-2CZ)
IRV-2CC)
fC 24: 0
,'C 3U5
;RS / EN'S
( 8 E R
/ 3G1CA
/ sen*
/ s:io
/ SG13*
/ OCI2*
/ eon A
/ 3012A
/ 3CK12A
/ S010
J c C C N
/ 3C12A
/ SI3CC
/ .SC201 A
/ SC3G1A
/ SC30G
S = R a
/ EG 201=
/ KG2G3R
/ SC2C14
/ SI20C
/ 2G2C52
/ SC202.3
/ SOZOC
HR
i
*
=
S
X
=
—
=
=•
=
c
=
=
=
T C
:
=
S
S
-
S
68. CO
2.
1.
3.
0.
2 m
0.
C.
c.
3.
I T I
3.
3.
•5 ^
C.
3.
R
C.
3.
e.
c.
7.
7.
I-RS
,1.*
3919
£065
1173
cos;
0
0039
5543
C H
4301
4301
4301
C
4201
A
9 ise
3439
0
-6 .; 5
3703
L5
Lc
LE
Lc
IS
LE
LE
LE
E R
L2
LB
LS
LE
L6
te
L c
1 ^
LE
!_ C
1 C
I 2
LE
LENGTH CF PERICC: 12. CO HRS
SULFUR/H*
SL.'L.CUR/HR
SLLfUX/HR
SULFUR/hR
SL.LFUR/I-R
SULFUR/l-R
SULFUR/f-R
SULFUS/HP.
SULFUR/hR
SvLrUR/1-R
SULFUR/HR
SULFUR/t-R
S'uLFUR/hR
SULFUR/HS
SLLFUR/l-R
SLLFuR/i R
SULFCR/1-R
SULfUR/t-ft
SULF'J^/f-R
S^L?UR/tp
S^Lr-JR/r-K
^i i
.' j
';
-,:
'3
,-l
;;
•B-
T.
rj
73'
-2
M 5
^ i
.,
>,•
^
;j
TJ .
=-,
C^
1 1
is
^
.' 1
_^
i
' 1
.,
-'
'.,
-------
*3:
'•
•
i!
,
a:
K
s .
; j
•?
r;
ft
t:
-:-
pj
»
!,.•
! •
>" - i
; N
r:' ET cisscN
T C T 4 L IN:
CUT
CUTLET CiRBCN
OUTLET GAS AS 1-2S
CUTLET GAS iS S.
CYCLCNc uUST
FILTER CUST
TOTAL OUT:
OVERALL
I .N
INLET GAS IS" UNIT AS SC2
INLET GAS 8" UNIT AS CVL H2S
TOTAL
CUT,
CU'TLET GAS 18" LNIT AS SC2.
CYCLCNE CUST 18" LNIT
COLLECTOR CUST 13" UNIT
CARBCN XEEPAGE 13" UNIT
CYCLONE CUST 6" UNIT
CUTLET GAS 8" UNIT AS H2S
OUTLET GAS 8" UN.IT AS SC2
CUTLET GAS 4" UNIT AS H2S
CUTLET GAS 4" UNIT AS S
,C'YCLC\E CUST 4* UNIT
FILTER CUST 4" LNIT
T G T A L S
t C-2C2)
tp.\-:cc>
t C.-1C4!
I — iv 1 )
( 1-1C2)
!R>-1CC)
S L L F U
< G- I C J
t C-2C1)
S U L f U
( G- 13)
< !> ; 1 )
r C- 1.2)
fc;-.- J2>
1. G-2C5J
( G-2C5)
! G-1C4)
I G-1C4)
/ ,"_ 1 '• T J
( C-H2!
U_ L'F I! R
/ SI10C =
/ BC1C3A =
/ BGLO^S =
c 01 C i /i ~
/ b0102A =
/ SC100 =
R B A L A
/ SG10A =
/ 6G201E =
R IN:
/ BG13A =
/ B011A =
/ ED12A =
/ 8D3C1A =
/ BC-2058 =
/ EG2C5A =
/ BG1CAS =
/ EG1C4S =
/ 3D1C1A =
/ 3D102A =
GUT:
7.
7.
1.
2.
.
C.
3.
.N C
2.
C.
2.
C.
0.
C.
c.
c.
G »
c.
c.
2.
C.
c.
2 •
4569
4369
391?
C235
C
3342
^
4146
C
1173
CC55
0
CC39
0
C
3S35
n
0235
0
C
5337
* T?
L £
Lc
LS
L3
L c
IE
LE
LE
LS
LS
LS
LB
L2
LE
LE
LE
i a
LE
LE
IS
La
La
SULFU'R/rfi
SLLFuR/:-R
S^LFUR/hR
SULFUP./HR
SUL rUr\/!-K
SULFUR/f-R
SULrUR/HR
SULFUR/HR
SULFUR/HR
SULFUR/t-R
SULFUR/HR
SULFUR/HR
SULF'JR/i-R
SL'LFU'R/i-R
SULFuR/J-R
SU'LFUR/V-R
SULFUS/rR
SULFUR/l-R
SLL?ljR/t-R
SLLFUS/hR
S'-UFUR/f-R
SULFUR/I-R
•
.
:
•
r
•T
-r
>
-,.1
•
»
-
-<
-•;
-:
" :
-^
-------
<./26/74
PAGE 12
HYORCGE^ fATESIAL BALANCE:
SULFUR CEKERATCR
r N
!' TNI FT r,A<; i* H?
•' INLET (
;\LcT !
•' INLET :
•i •
i.
•- CUT
CUTLET
^' CUTLET
'-•' CUTLET
T
"*
r.
'- - IK __
K INLST
k- INLET
1
t CUT
':-. OUTLET
i- •—— • CUTLET
S>.' CUTLET
;ASJ
"• A c
&AS ,
T C
GA5
GAS
r AS
iS 1
iS I
S.S i
-2S (CYL)
K2S ;PRCC
r-20
T A L I
AS
AS
AS
HZ
H2S
1-20
CARS ON
r T
M 2
GAS"
A
S
AS"
L C U
GEN
h2
CAP-SCN
T C
GAS
GAS
GAS
T
AS
AS
AS
A L I
H2
H2S
i-2C
< G-SC:
:> < G-5
' ! G-2
< C-2
{ G-;
< G-2
( C-2
T : {RV-2
E R A T C R /
.;t
Ci
:
( G-1C
( C-2
N : 1RV-J
! G-i
« G-l
t G-;
r
/• |
u
if-
\f'
c-
1) / SC203C »
I) / BG'035 =
!> / EG203C =
:> / (-i2cc =
i) / B0225C =
i) / 2C205:- =
:} / 2C275C =
.') / BC202:- =
.-) / S-C20C =
; u L F u R
5) / EG103C =
21 / 8C2C2H »
:> / moo =
;•! / BG10AC =
t) / aciC4h_»
Vi / EG104C »
C.
0.
0.
c.
r*
i.
0»
0.
0.
o *
0.
S T S
0.
c.
0.
0.
c.
0.
coot
o..
2S41
4 2 ~ "
CI£9
7203
ISlV
I P
4921
IS 14
6735
C036
2074
2747 "
LE
LS
ii
L'S
L E
L c
1 c
L£
P
LE
L2
LE
LE
LE
LE
HYCRCGEN/HR
HYCRCGEN'/H^
hVCRCG£'!/i-R
HYC?,CGE\/rx
HYCRCGcM/Hft
i-YCRCicN'/rS
HVCSCG:.N/(-R
c R
HYCRCGEN/1-S
HYCRCGEN/fR
HYCSCGEX/l-R
HYC^CGEH/HR
HYC?.CGE\/rR
i-.YCSCGE.N'/S-R
,.
-
1
-
3
"I
»
-,
;;
r<
.H
.
^
i>
TCTAL
CUT:
/ t-cicc =
0.5S27 L£ HYCRCG=N/hR
-------
APPENDIX A-13
DATA FROM SOLVENT EXTRACTION EXPERIMENTS
378
-------
u>
I
>70_7-
i
033-71 J
i
j
F
•
|
r££9 212
t"-:ii)?S 20- ao
:r.e 1 5 "-'n. contact i
Water ".'."ash
' 1\
v J-/
(2)
Boiled.' EgO^ & Cried
1
20. ±5z
•
\
C ~V~
i
C'-activ:
i
i
14.01S
siurrv
3.72^-S
c.6
p, £ rlc
Ltv ret-a
i
i
•
;
•
i
--•'tat1
i
-ir.ed 26
:
t
t
I
lOOnl
.on
&
i
i
^0 Tiin
8.^S
.8.3
1-1 \
o. 4
'
1
. corrbad
;
]
I
t 60 ~-'r
'
i S.5-1S
; D -
I
i
j
!
1
1
j
,
!
;
i
;
__ 1
i
i
i
i
-
,4.
j
|
t
\
1
!
i
1
.
i
i
;
•
,
i
CTJfi ~"
~A
-------
to
00
O
i
306-3^6 C-TO^TfVirzir. carton 1 '
3C6:; : 31
3063 : ',1
306o:46
3065:^5
i
i
0.5-3
30g l
i - i
-.0?
j
4-0 g
j
'
iOg
t
i
I
1
!
i
: j
:
_
CSp
50rJL
1 extn
i
j
1
— "1
30 ITT'
fTJfi, )nQ]
4 "-
""OOrJ.
i. agitJ
Inert '. Degassed.
C-as •
i j
j
•
(air) !
CSlfOT"^
No
"
! I!
} :
1
10 aii. 'aeit.
|
>•-„-£
i
fair) ii So
1 extn lii!
i i
~6?ri
1. soak
~TOnl
30 nit. soakj_ t Heliu-' ;:o.
60 rai]
t
I i
! 1
i. soak
' S t & ?,TTl9 CL
<
:
1 No
IP ^-',1
1 !>
t
; i
i
; T7o i i • ^- C''~
' 1.5 ~^-
i
Ro
1300 CF
' 1}
60 mic
— .
-200° J
's^ow exhaust s
3
J £ far.
! S ^0 C"1
250-
T5°F
['
t
1 -L. « . C
tear
I
:
! 1 . : ";-3
1
1
! i !
i: ' : • '••
i
i
;
• • '
:
:
; i
ii
i M
i i '
;
I i • i
' j i i !
i :
> t;
:i i .
i ' ' • i
•\
I ,
: ' ' i i '
!
; ; j
]
i
' ' -~~*^-
'. i
i
1 :
;
j
j-
i
1
i
i
1
i
ii
i !i ; |i ;
1
1 1! ;l
: 1 ! t < i
*
; | .
1
i
i!
t ,
RiSEARCH C:
-------
--7Q-77
OJ
nr.
I-1
•
-
FEB9-212 i
Xyler.e
1 Sxtrn.
2
-3
1.
c;
Carbon used
*-i
7
Q
-
9
10
1
i
23s
ol-i'-UOt
0.6^5^
3.4^'.-
^ ' i '
j ! i !
i ' '
; i ; i !
' -• i
' \ i
) 1
t t
i : -;
' I
; i
1
; i
i ' 1
i
! ' t
! 1
; , |
1 ! ! i
'- \ \
I ; !
CHARLES ic:; ?iSD-\Rc:-:
-------
1-
3-70-77
ZZS:.' 312 21.4s
352
14.0-^3
j
{
1
( 5Ctol
{ i "Ro r> r*>-<-
;l
1 ictrn. : 3.~?.~ -^.?±
00
K •*
'
'
6
T
i 45ml
! i
0.97g
3.12
i
3 1
1
o
10
0.6le 2.56
15.62
3-2?iS
[Under
-
1
Sxtrn .
Air
slurrv
77CF
aeitat]
Decanted
Solvent
Solvent
re -freshed
45
45ral
45
45.0
45nl
.on. ~£0
i
i
evapd. 4 r^toe^ OD 105
i
!
041571
o . i6gS^
0.08lg
0.054gS
O.OSOg
O.O^e
O.OllgS
min.
°C o'ni
y
": -— - - ; | --
; •
!
1
; . 1
!
> \
| :
.
i
! 1 :
.
\ \
|
!
; i
i
: '
! i 1
' : 1
r i I i
I
!
i i
i i
i
i
|
i
t
1
i
i
j
J
i
!
1
:
i
! i
3' - . -i i '
:
i
•
'
! i
3068 3 45 ; •;
i
1
t
L !
!
!
,
j
I !
1
)
!
i
! i
i
I
CHARLESTON i^
-------
oo
U)
C-70-77
.
IES9-312
(!5T.iI)o5 15£aq
1 Sxtrn.
2
q
39 -2g
O.p5-g
l^.OfcS i^~65cc)
ti . ^OvSS
0.6-1
6.96
0 . ^?P
4 ' lC.5~D
q
5.33.
4.96
0.5--5 ~.l5
6 b. 556 ^.5o
7
R
0.536 3-^
0.51?
q .'•. 0.5c2
10
Wash & Steamed
0.7^5
27.226?
Under
Extrr..
^.16
2.80
2.72
2 . 08^5
Kp
100-1C
C"l rC'LL
HpOvas'd 100-1
Stea-ied
^ t---ss
5°F
ating
05C?
j
256-2E
c cr.
• 051171
' "-^ T~ C* • G **1
i -< ' 7> S o-9
0°P
(lOCtal
Reco
70nl
iO
35
75
80
dO
85
85
92
120ml
^5ccpir
60ccptr
70ccp:r.
1.012K1
vered
l-35gS
1.28
1.05
0.77
0.68
0.595
0.52=
0.510
^)
'
0.486
0-587
25rnin.
i
i
I
|
•
!
;
1
: i '
* 1
i !
..
i
i
i
1
1
i
s
i '
•
1
!
i
i
:
i
1 |
CKARLE3TC": .IE3EARCH OEMIi.
-------
CO
oo
•P-
CEARLESTOM 3SSEAHCE CE.TEE
-------
CO
OO
•^•HMB^HMm..!!!.!!!.
C-70-77
, • • ~ .
., " .-_\ '•••' ' '
. ' ' i '
5SS9 KL2
(EHk)oS 15%aa
1 Shcfcrn.
2
3 ;-.-.
k
5
-, ,, - .
Washed & Steamed
.
•
WOIMBVBIIVI»-lll«^H^H
tO-9s
1.099K
^VP^H^P^H^I^^^^^
l^O^S
io.6i*&
l-.l66c 17.48
l.Wws
1.29k?
_
^0.277s
Under
JJjctra. -
BfcsO wa
~ 3 t
Steased
8 hr
J^rbon
?.W3^
6.76*
_
U;08%
H«
circxala
h
E3S (~3
Act!
042971
^175 I 1-k
(~65cc'
K)5tF
tine
105° F
0 mln.e
25O-275
itv Re-
(100ml
Reco
75iaL
85ml
80
80
130ml
35ccpm
;-"
a)60ccp
"F
70ccpn
ained 4
3.4823:3
vered
l.tesS
1.26g
0.96g
O.Tle
0.92K3
30 mln
c
-
T.h%
»)
r
^,_
— -
3Q.7g
L.637K
1.6o6s
JL.696g
L-455R
_
?9-033
As P
temr:
it.o^a
10.00^;
8.^2
7-52^
6.2%
_
2.80^
brjj
L avay
i
i
3175 S
hot cv
Ct2371
(~6SCG
1
5
except
got t<
,le per:
1-2 i
Hecc
SOml
QCfel
90
80
135TTJ.
during
1000°3
od 1/2
vered
l.sfigS,,
1.33s
1.07s
0.935e
0.93gS
steamin
- 3/4 h
1
!
I
1
1
f
•
e l
i
t
•
1
CHARLESTON iSSSARCH CENTER
-------
oo
ON
CHARLESTCIT :S3SARCK CEi.TZ"-:
-------
00
C-70-77
j
—",-•,—. — — j~*
~ ~~-~^ *-* .""- t*_
CT-iOoS 204 ac |
1 Sirtrrs.
CL
•J
h
5
Lp.29a
2.03^
2.Coe
2.60s
2.35s
-
Washed Sc Dried i3C.5"'2
"
Under
Sxtract
Water v
.Decante
Car"bon
3,053 S
lii.o^c
10-O^S
5.284
5.14-
4.8^
-
k.k%
Air
jd slura
ished bi
1 and o
ictiviti
0319T1
32
y agits
• slum
ren drie
• retail
lOCfcl
,ted
:d 105° d
ied
15 min
ovei niJ
20. E$
.
zht
1
!
1 !
.
1 !
•
i
I
1
1
1
!
[
t
i
1
! 1 i
1
CHARLESTCII SESZAHC.I C7LIIT7
-------
APPENDIX A-14
LITERATURE SURVEY FOR RECOVERY OF SULFUR
BY SOLVENT EXTRACTION
I. SULFUR RECOVERY - REVIEW ITEMS
1. Berthelot, Ch. Recovery of sulfur in the coke plants in Germany.
Genie Civil 113, pp. ^01-6 (1938).
2. Berthelot, Ch. Recovery of sulfur in coal-carbonization plants
and petroleum refineries. Genie Civil 116, pp. 6-7 (19^0).
3. Brabant, M. Desulfurization of (town) gas and sulfur recovery
processes. J. usines Gaz 6k, pp. 33-^3, ^9-56, 69-75 (19*4-0).
k. Brabant, M. Desulfurization of gas and processes for recovery of
sulfur. Schweiz. Ver. Gas-u. Wasserfach. Monats-Bull. 21, pp
26-30, Ul-2, 96-100,
5- Bulian, W.; Dittmar, A., and Feher, F. Removing elementary sulfur
from natural gas. Erdoel Kohle, Erdgas, Petrochem. 20 (12),
pp. 849-52 (1967).
6. Evans, E. C. et al-Special study of sulfur removal and recovery
from fuels. J. Inst. Fuel 29, pp. 138-9 (1956) .
*7« Goar, B. G. Today s sulfur recovery processes. Hydrocarbon Process.
1968, U7(9), PP. 2^8-52.
8. Grosskinsky, 0. Recovery and utilization of nitrogen and sulfur pro-
duced in coal carbonization. Bergbau - Arch. 5/6, pp. 1^6-52
(19^7) .
*9. Kronacher, H. K. Modern Desulfurization Processes in Germany.
Gas-Age Record 68, (2), pp. 37-56 (1931)-
* Filed in Charleston Research Center
Translated into English
388
-------
10. Lissner, A. The importance of the sulfur of coal in the German
raw-material economy. Tech. Niederdonau 1, 197-9, 218-21
*11. Lorenzen, G. Purification of Gases with Special Attention to
Desulfurization and the Recovery of Sulfur. Chem. Fabrik
12(1,2) :6-23 (1939).
12. Muhlert, F. Recovery of by-product nitrogen and sulfur in the
coke-oven and gas industries. Brennstoff-Chem., 10, pp. 1*87-
90 (1929).
*13. Powell, Alfred R. Recovery of sulfur from fuel gases. Ind. Eng.
Chem. 31, PP- 789-96 (1939)-
14. Rosendahl, F. Recovery of coke-oven gas products. Oel u. Kohle
ver. Petroleum, 36, pp. 229-^3 (19^0).
15. Secchi, I. M. Recovery of sulfur from coke-oven gases. Chim.
e industria (Italy) 19, 187-91 (1937).
*l6. Sweeney, E. L. and Sands, A. E. The removal of free sulfur
from spent oxide. Gas Age - Record 779 pp. 657-62 (1936).
17. Thau A. Extraction and utilization of fuel-gas sulfur. Z. Ver.
deut. Ing., Beiheft Folge 1938, no. 3, pp. 8l-6.
18. Wagner, P. Utilization of spent oxide from gas works. Rev.
Prod. Ghim.,.2U, pp. 397-^ (1921).
389
-------
II. SOLVENTS FOR SULFUR EXTRACTION
A. Ammonium Compounds
1. Aoki, T.; Morikawa, M. and Akiyama, Y. to Sumitomo Chem.
Co. Recovery of sulfur from hydrogen sulfide. Japan
patent 582,626. April 12, 1958.
2. Collin, F. J. A-G. Extraction of sulfur from fumes con-
taining hydrogen sulfide. British patent 7^8,037-
April 18, 1956.
3. Gluud, W., Schonfelder, R. and Riese, ¥. Purification of
sulfur from gas plants. Brennstoff-Chem. 8, pp. 168-9
(1927).
^- I. G- Farbenind. A-G. Gas purification. British patent
320,190. Aug. 25, 1928.
5. Pieters, H. A. J. Removal of hydrogen sulfide from gases.
Brennstoff-Chem. 18, 373-6 (1937).
6. Wallis, E. Recovery of sulfur in a marketable form from
flue gases. Brit. Chem. Eng. 7, pp. 833-6 (1962).
7. Williams, P. E. Treatment of spent oxide. British patent
596. Jan. 9, 1909.
B. Aliphatic Hydrocarbons and Derivatives
1. Alexander Wacker Gesellschaft fur electrochemische Industrie
G.m.b.H. Recovering sulfur from used gas-purifying
masses. Brit, patent 508,966. July 7, 1939.
2. Bonner, L. C. Treating gas purifier. British patent 10,780.
May 1,
3. Every, R. L. and Grimsley, R. L. to Continental Oil Co. Pre
paring dispersable sulfur. U. S. patent 3,318,666.-
k. Genther et Franke. Extraction of sulfur. French patent
377,82*1. May 15, 1907-
390
-------
5. Muszkat, K. Production of free sulfur from hydrogen sul-
fide-absorbing materials in the Warsaw Gas Works. Gas i
Woda 17, pp. 235-8 (1937).
6. Roga, B. Gas purification masses as a source for the re-
covery of sulfur. Przeglad Gorniczo-Hutniczy 30, pp.
i+32-6 (1938).
7. Simpson, C. H. Extraction of sulfur from material contain-
ing elemental sulfur. U. S. patent 3,063,817. Nov. 13,
1962.
8. Stobe, R. Reclaiming sulfur from the mass used for gas
purification. German patent 708,031. June 5,
C. Aromatic Solvents
1. Anon. Recovery of the sulfur from spent oxide. Gas World
57, 197 (1912).
2. Becigneul, J. Obtaining sulfur from gas-purifying materials,
U. S. patent 833,573. (1907).
*3. Bradley, G. W. and Barritt, D. T. Sulfur. British patent
72^,119. Feb. 16, 1955.
k. Germogenova, E. V. Utilization of mixed solvents for the
extraction of sulfur from sulfur ores. Mineral. Syr'e
1937, no. 5, pp. 28-35.
5. Herold, P. to I. G. Farbenind. A.-G. Purifying coke-oven
gases, etc. German patent 570, M*8. Sept. 26, 1928,
6. Hunt, E. J. and Glidden, W. T. Recovering sulfur from
tarry spent oxide. U. S. patent 105,996- April 29,
1913.
7. Jaeger, A. Sulfur extraction from spent gas-purification
using tetralin (and low temp, tar oils). Brennstoff
Chem. 3, p. 356 (1922).
391
-------
8. Katewinkle, R. Recovery of sulfur from spent oxide by
means of tetralin. Brennstoff Chem. 3, PP« 310-1
(1922).
9. Kuster, 0. R. to Lummus Co. Continuous counter current
crystallization. U. S. patent 3,337,30?. Aug. 22,
1967.
*10. Prchlik, J. ; Hlinak, L. and Kartakova, C. D. Recovery of
sulfur from spent gas works purification mass. Paliva
3U, PP. 298-305 (195*0.
11. Rosen, R. to Standard Oil Dev. Co. Removal and recovery of
free sulfur from gas -purification materials, etc. U.
S. patent 2,195,870.
12. Soc. d Eclairage, Chauffage et Force Matrice. Removing
sulfur and nitrogen from exhausted gas-purifying mass-
es. French patent
13. Suru, J. The desulfurization of gases. Technikai Kurir 8,
pp. 31-2 (1937).
1^. Weil, J. A. to Imperial Industries Ltd. Sulfur. British
patent 561,370. May 17, 19^.
15. Wohlwill, M. to Metallgesellschaft Akt.-Ges. Reclaiming
sulfur from gases. German patent 707,132. May 15,
D. Organic Sulfur Compounds
1. Anderson, W. Cyanogen compounds; sulfur. British patent
127,128. June 15, 1918.
2. Capell, R. G.; Wright, J. H. and Cruse, Wm. A. to Gulf Re-
• search and Dev. Co. Recovery of elemental sulfur from
sulfur-bearing solid mineral matter, u. S. patent
2,897,065. July 28, 1959-
392
-------
3. Chemische Fabrik Phonix, Rohleder and Co. Recovery of
sulfur from extracts of gas-purifying masses. German
patent 182,820. Nov. 16, 1905.
k. Deal, Carl H. and Papadopoulos, M. N. to Shell Oil Co. Re-
moval of sulfur-containing gases from gaseous mixtures.
U. S. patent 3,363,989. Jan. 16, 1968.
*5. Potsdamer, L. S. Notes on sodium prussiate. J. Ind. Eng.
Chem., 11, pp. 769-70 (1919).
6. Strauss, F. to Gottfried Bischoff K.-G. Extraction of
sulfur-containing materials. German patent 1,1^7,566.
Apr. 25, 1963.
7. Strauss, F. to Gottfried Bischoff K.-G. Recovery of sulfur
from gas purification masses. German patent 1,131,192.
June lU, 1962.
E. Other Organic Solvents
1. Johnson, E. J. A theory of fluidization and its applica-
tion to sulfur recovery by solvent extraction. Inst.
Gas Engrs. Publication no. 378 (a), 39 pp. (1950).
2. Murphy, E. J. Removal of sulfur from spent oxide. J. Gas Lighting
136, pp. 396, pp. 396-7 (1916).
3. Sawa, M.. to Nittetsu Mining Co., Ltd. Crystallization of sulfur in
solvent refining. Japan patent 6318,207. Sept. lk, 1963.
393
-------
III. USE OF ACTIVE CARBON IN SULFUR RECOVERY FROM GASES
1. Bakes, W. E.; King, J. G. and Sinnat, F. S. Sulfur compounds in
water gas and their removal. Dept. Sci. Ind. Research, Fuel Re-
search, Tech. Paper 31, 35 pp. (1931).
2. Braeuer, H. ¥.; Rogge, K. Natural gas refining by desulfurization
with active charcoal. Erdoel, Erdgas Z. 1967, 83(5), PP- 170-8.
3. Brychta, M. Separation of sulfur from Lurgi generator gas. Paliva
36, pp. 391-9 (1956).
k. Carbonisation et charbons actifs. Desulfurizing gases. British
patent k79,klO. Feb. k, 1938.
5. Englehardt, A. Use of active materials at coke ovens and gasworks.
Glukauf 73, pp. 925-33 (1937).
* 6. Fischer, F. and Kloeckner, L. New method for the purification of
viscose exhaust air. Wasser, Luft Betr. 10(12), pp. 833-5 (1966).
* 7. Grantham, L. F.; Larsen, C. M. to N. American Rockwell Corp. Sulfur
production from flue gases. U. S. patent 3,^38,733.
8. Griffiths, H. Activated carbons-modern applications for adsorptive
processes. Chem. Trade J. 96, pp. 235-6 (1935).
9- Hoffman, Th. New methods and goals in desulfurizing illuminating gas.
Chem. App. l6, 6l-63, 120-1 (1929).
10. Rollings, H. and Evans, E. V. Report on removal of sulfur compounds
from town gas down to 10 grains per 100 cubic feet. Institute of
Gas Engrs. Pub. no. 1^6/^3, 21 pp. (1936).
11. Knauf, G. Application of activated carbon for sulfur removal in gas
purification. Energietechnik 1968, 17 (ll), pp. 14-85-8.
394
-------
*(T)12. Koenigstuhl, M. D. Extraction of sulfur from the hydrogen sulfide
of coke-oven and other gases by means of activated charcoal.
Coke and Chem. (U.S.S.R.) 1932, no. 7, pp. 32-7.
13- Kostrikov, V. I.; Keltsey, N. V., and Nivin, P. I, Use of one
sorbent to remove both hydrogen sulfide and carbon disulfide
from rayon-industry waste gases. Khim. Volokna 1968(2).
l4. Krczil, F. Catalytic oxidation of hydrogen sulfide in presence of
active carbon. Chem.-Ztg. 6l, pp. 2*4-7-8, 2^9, 267-8, 269-70
(1937).
15. Metallgesellschaft A-G. Removal of hydrogen sulfide from gas mix-
tures. French patent 1,388,^53. Feb. 5, 1965.
16. Weuwirth, F. Desulfurization of gas with Koflach lignite charcoal.
Berg-u. Huttenmann. Jahrb., 76, pp. 1-13(1928).
17. Stanisz, Z. Regeneration of sulfur from gases by means of activated
charcoal. Przeglad Chem. 2, pp. 530-1 (1938).
18. Thoma, M. Fine purification of gas. Schweiz, Ver. Gas-u. Wasserfach.,
Monats-Bull. 16, pp. 257-68(1936).
19. Todd, E. W. Removal of sulfur from illuminating gas by activated
carbon. Nova Scotian Inst. Sci., 17, Pt. 2, pp. 12-3 (1928).
20. Visconti, Y. S. Obtaining elementary sulfur. Rev. brasil. guim.
(Sao Paulo) 22, pp. ^15-18(19^6).
*(T)21. Waeser, B. Desulfurizing gases. Chem.-Ztg. 52, pp.. 617-8, 638-Uo,
658-9 (1928).
395
-------
IV. SOLVENT EXTRACTION OF SULFUR FROM CARBON
A. Ammonium Sulfide
*1. Comm. on Gas Mfg. of the Assoc. Technique. Gas purification
by activated carbon and recovery of sulfur in the solid
form. Gas Journal, 184, pp. 526-7 (1928).
*(T)2. Egorov, N. N., et al. Purification of gases with activated
carbon. Chapter IV, pp. 37-47 of "Removal of Sulfur
from Coke-Oven and Other Fuel Gases," Moscow, 1950.
*(T)3. Engelhardt, A. The use of active charcoal in the gas in-
dustry. Gas-u. Wasserfach 71, pp. 290-7 (1928).
4. Evans, K.; Pearson, H. P., and Reisemann, E. Industrial
Applications of Active Carbon. Trans. Inst. Chem. Eng.,
Dec. 6, 1929, pp. 62-83.
5. Gouthiere and Co., and Ducanel, P. Recovery of sulfur from
used gas-purifying masses. Ger. Patent 245,570. July 14,
1910.
6. Kazarnovskii, S. and Pisarev, K. The purification of gases
from hydrogen sulfide by oxidation on activated charcoal.
J. Chem. Ind. (Moscow) 12, pp. 913-21 (1931).
7. Prchlik, J. Removal of active carbon of sulfur from waste
gases obtained during production of town gas in the Lurgi
generator. Prace Ustavu Vyzkum Paliv 1963(6), pp. 138-50.
8. Reichert, 0. and Stemmler, H. to Spinnfaser Akt.-Ges. Recovery
of sulfur from activated filter charcoal. Ger. patent
1,054,655. April 9, 1959-
*(T)9. Spechal, W. Sulfur removal from synthesis blue gas by active
charcoal. Gas-u-Wasserfach 94, pp. 679-8U (1953).
10. Szilagyi, I. Method to purify and to remove sulfur from the
raw gases produced.from lignite. Magyar Kern. Lapja 4,
pp. 24-5 (19^9)-
396
-------
11. Tyulyukov, A. and Khronova, M. The purification ol' gasen con-
taining hydrogen sulfide by active charcoal. J. Chem.
Ind. (u.S.S.R.) 12, pp. 2^7-5^ (1935).
12. Zel'venskii, Ya. D. and Volkov, A. E. Gas purification from
hydrogen sulfide by oxidation on active carbon. Trudy
Gosudarst. Nauch.-Issledovatel. i Proekt. Inst. Azot.
Prom. 1952, no. 1, pp. 131-8 (1953).
B. Organic Solvents
1. Becigneul, J. J. M. Extracting sulfur from spent gas-
purifying materials. Brit, patent 9»800.
*2. Braeuer, H. W. and Fischer, F. Recovery of carbon disulfide
with simultaneous removal of hydrogen sulfide. DECHEMA
monograph 1968, 59(10^5-1069), 173-89.
3. Brychta, M. Desulfurizing coke-oven gas by activated carbon.
Prace Ustavu Vyzkum Palio 1962(U), pp. 169-232.
U. Cornillaux. Extracting and purifying sulfur. French patent
353,932, March 25, 1905.
*5. Fischer, F. and Kloecker, L. to Pintsch Bamag A.-G. Process
of regenerating activated carbon saturated with hydrogen
sulfide and an organic solvent present in exhaust air or
oxygen-containing gases. German patent 1,259»8U5,
Feb. 1, 1968.
*6. Riedl, R.; Brychta, M., and Praskova, D. Regeneration of spent
activated charcoal used for the adsorption of hydrogen
sulfide from pressure gas by toluene and xylene. Sv.
Vyspke Skoly Chem.-Technol. Praze, Oddil Fak. Technol.
Paliv Vody 3, no. 1, 5-3^ (1959).
*7. Schreiber, F. Use of tetralin in sulfur recovery from active
charcoal used for gas purification. Brennstoff-Ohem., 3,
PP. 355-6 (1922).
397
-------
APPENDIX A-15
S02 ACTIVITY AND PORE VOLUME DETERMINATION
OF SOLVENT EXTRACTED CARBON
Page
1. S02 Activity of Solvent Extracted Carbon 399
2. Surface Area and Pore Volume Distribution of 420
Solvent Extracted Carbon
398
-------
APPENDIX A-15-1
S02 ACTIVITY OF SOLVENT EXTRACTED CARBON
399
-------
GRAVIMETRIC PLOW EXPERIMENTS
RUJI:
Dry Weight:
Dol'lnction:
Carbon :
3 2' Mi
<>'j. 'i2 me.
2t
• > ' "',: -
2000 ppm
EXV-1
NO:
02:
H20:
t:
0 pt>m
6p
200° F
FL:
3500 c-c/min.
76.66
Correction: 0.5007
Date: March 23, 1971
Time
minutes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
32
•A
:tf
•!H
40
42
44
46
liff
r>0
52
54
56
58
(,0
>'<'>
70
Load
nig. HaSOl|/g. C
6.57
8.86
10.63
11-99
13-34
14.80
16.26
17.83
19 . 50
21.37
23.04
24.92
26.64
28.67
30.65
32.74
34.82
• 36.80
38.99
41.18
43.27
45.45
47.96
50.25
52.65
54.94
57.44
60.05
f.2.55
65.05
f.9.85
75.06
79.86
Ml). 97
»')-VV
<)4.'*7
]00.t>8
10'l.lM
110.51
115.1-2
120 . 52
125. 7 S
JSO.M4
lv'..05
l4l.2»
15^.2'-
]..',. 24
Mean Load
tng. HgSOii/g. C
if
6
8
10
12
lit
16
18
20
25
30
35
4o
45
50
55
60
65
70
75
80
85
90
95
100
110
120.
130
i4o
150
160
170
180
190
200
220
21+0
260
280
300
320
3!tO
360
380
Rate
mg. %30^/g. C/min.
4.3520
3-5446
2.4395
1.6681
1.3553
1.4283
1.5325
1.6264
1.7098
1.8766
1.9912 '
2.0955
2.1789
2.2623
2.3249
2.387^
2.4291
2.4708
2.5021
2.5334
2.5542
2.5751
2.5959 '
2.6063
2.6063
2.6063
2.6063
2.5959
2.5646
2 . 5229
2.4917
2.4500
2,'WK
2.335-1
2.2621
2.1268
1.9808
1.8140
1.6785
1.5221
1.3866
1.2198
1.0530
0.8862
400
-------
GRAVIMETRIC FLOW EXPERIMENTS
(CONTINUED FROM PREVIOUS PAGE)
Run:
Dry Weight:
Deflection:
S02:
Carbon:
129- G
95-92 nig.
-2.53 rag.
2000 ppni
EXV-1
NO:
02:
H20:
t:
0 ppm
3-5$
ft
200° F
Ft: 1500 cc/min.
$ HgSO^: 76.66
Correction: 0.5007
Date: March 23, 1971
Time
minutes
75
80
85
90
95
100
io(;
110
115
120
125
130
135
ikO
11*5
150
155
160
165
170
175
180
185
190
195
200
205
2.10
215
220
Load
nig. HgSOij/g. C
177.33
188.70
200.17
211.53
222 . 58
21'«.11
2k 1 . 12
252.92
26.1.78
270.5l|
278.77
286.80
291*. in
301.1*0
308.38
315.16
321.52
327.88
33^.2U
3'*0.60
3't6.61t
352.90
35«.53
361). 16
369.58
37^.90
VfH.W
.VM.W
Wf.'jl
391-37
401
-------
GRAVIMETRIC FLOW EXPERIMENTS
Run:
Dry Weight:
Deflection:
S02:
Carbon:
130-0
101.7U mg.
-2.55 mg.
2000 ppm
EXB-1
HO: 0 ppm
02: 3-5*
HgO: 6%
t: 200°F
1500 cc/min.
76.66
Correction: 0.5019
Date: March 2k, 1971
Time
minutes
1
2
3
It
5
6
7
8
9
30
12
ll)
16
18
20
22
2U
26
28
30
35
l»o
1*5
50
55
60
65
70
75
80
85
90
9';
300
110
120
330
3 >(0
350
160
170
180
390
KOO
. 210
220
2'jO
«l|0
,"'.>0
i'M
."70
280
'f III
•iuo
110
:«o
H'J
Ixsad
m«. H2SOl,/g. C
5.11
5.90
6.39
6.88
7-37
7.76
8.16
8.li5
8.85
9.2't
9-93
10.52
11.21
11.89
32.68
13.37
llt.3.5
Il4.8lt
15-73
16.51
18.58
20.71*
22.90
25.3.6
27.1*2
29-98
32. Ok
35-29
37.81*
110.59
1*3. Mt
'16.29
1*9.31*
52.29
58.1*8
6k. yr
71-95
79-12
86.30
93-28
100.65
108.12
115.1*9
122.76
129. 61|
136.52
I'l.-i.llO
]50.(M
.156.67
11,2.77
I6((.'i,,
17li.5t,
lllu. ',i,
J»5.77
J'M .17
Tlh.2!)
20.1 . 30
Mean Load
mg. H2SOl4/g. C
1|
6
8
10
32
3.1*
3.6
18
20
25
30
35
1*0
'•5
50
55
60
65
70 ,
75
80
85
90
9'J
100
110
120
130
l'*0
150
3.60
170
180
190
200
Rate
rag. HgSOlj/fi. C/min.
. 3.M'><>3
0.5» 17
0.31(1)0
0.32!i'i
0.33'(2
O.Vi'tO
0.3M7
0.38.-M
o. 1*128
o. n5.2i
O.liyl'*
0.5 '308
0.5701
0.5<>9n
0.6291.
0.6'ib7
0.66?U
0.6t3o
O.i>,'7>)
0.7077
0.7175
0.7175
0.7273
0.7273
0.7273
0.7175
0.7077
0.^979
0. 66S.lt
0.6W?
0.6291
o.wv;
0.5/01
O.^liO'i
0.5011
402
-------
GRAVIMETRIC
Run:
Dry Weight :
Deflection :
S02:
Carton :
131- G
102.52 mg.
-2.1*5 rag.
2000 ppm
EXV-2B
NO:
02:
t:
0 ppm
3.5*
200* F
FLOW EXPERIMENTS
*v
1500 oc/min.
Correction: 0.1*851
Date: March 25, 1971
Time
minutes
1
2 •
3
1*
5
6
7
8
9
10
12
ll*
16
18
20
22
21*
26
28
30
35
1*0
1*5
50
55
60
65
70
75
80
85
90
95
100
110
120
330
Jl|0
150 •
.160
370
180
1^0
2
l.Y'l.70
183.38
.191.. 57
l<)<>.',7
207.76
;M',.57
2J2.98
230.10
2.16.H3
21*3.27
2l(9.)(l
255-56
261.1*1
266.68
Mean Load
mg. HgSOl^/i;. C
1*
6
8
10
12
ll*
16
18
20
25
30
35
1*0
1)5
50
55
60
65
70
75
80
85
90
95
100
110
120
130
ll*0
150
160
170
180
190
200
220
21*0
260
Rate
mi-. H2SOl|/r- C/rain.
7.5595
U.8771
1.7070
0.5365
0.5365
0.51162
0.5560
0.5657
0.5755
0.61U5
0,61*38
0.6730
0.7121
0.71*13
0.7603
0.8096
0.8369
0.;V,6l
p. «97l*
O.yi69
0.9H61*
0.9559 •
0.9-'5'7
0.9852
0.991*9
l.OlWt
1.02l(2
1.021*2
1.021(2
1.001*7
0.9751*
0.91*62
0.9071
0.668:
0.81911
0.7316
0.61(38
0.5'»62
'
403
-------
Run:
Dr.y W.'ir.ht.
C-it-l on:
101 .'/O mi1;.
-3.74 u\i'..
li'KX) ppm
KXB-2
NO:
II20:
0 ppm
V//,
r/
200°F
1500 cc/niln.
72,06
Corroi-tlon: 0.4706
Date: March 30, 1971
Time
minutes
]
2
3
4
5
6
7
8
9
10
12
14
16
18
20
22
24
26
28
30
35
40
45
50
55
60
65
70
75
80
85
90
9'J
100
110
J20
no
I'lO
.1^0
JnO
.170
1 :•'.<>
I'KI
2OO
21'.)
220
230
240
2'jU
2'.0
2/0
i'.".0
Lofid
mg. IlgSO^A;. C
8.44
9-13
9.r>2
9.81
10.40
10.79
11.09
11.38
11.68
11-97
12.56
13-25
13.94
14.62
15.21
15.90
If.. 68
17-27
18.06
18.84
20.71
22.67
24.63
26.59
28.56
30.52
32.58
34.74
36.80
38.96
41.22
43-57
45.83
4;-i.i8
'-•!.. I')
',.'..-<>)
M.Y',1
f.('.2B
74 .'iM
:•;().:/,
'-<..'!'>
".;.i.'i
'i.'.'M
j ( <•* . •>;>
IC". "1
31',.U
IL'O.'K'
12... SO
i-'.j. •;•-••
ny.'>°.
J.4 -i . .J,^
r4.(.;'7
Mean Load
mg. H2SOj+/g. C
It
6
8
10
12
Ik
16
18
20
25
30
35
4o
45
50
55
60
65
70
75
80
85
90
95
100
110
120
130
lltO
Rate
mg. HgSO^/g. C/isin.
8.6850
5-6919
2.3553
0.3925
0.3435
0.3435
0.3435
0.3533
0.3631
0.3925
0.4220
o.44i6
0.1*612
0.4809
0.5005
0.5201
0.5299
0.5397
0.5^96
0.5594
0.5692
0.5790
0.5888
0.5888
0.5888
0.5888
0.5888
0.5790
0.5692
404
-------
Run:
Dry Weight:
Deflection:
S02:
Carbon:
GRAVIMETRIC FLOW EXPERIMENTS
NO:
33't-G
99.98 mt;.
-2.83 my.
2000 ppm
EXV-2C
0 ppm
3.5?,
200° F
Ft:
1500 cc/min.
7!*.77
Correction: 0.1*883
Date: April 12, 1971
Time
minutes
1
2
3
l*
5
6
7
8
9
10
12
lit
16
18
20
25
30
35
1*0
U5 l
50
55
60
65
70
75
80
85
90
95
100
110
120
130
lUO
150
.160
170
JBO
190
200
2K)
2HO
230
2'tO
250
?/<0
270
280
200
300
Load
mr,. HgSO^/g. C
32.I|0
13. yo
l't.90
15.90
16.90
17.90
18.80
19.80
20.80
21.90
23.90
25.91
27-91
29.91
31-91
37.11
te.31
^7.71
53.01
58.61
61*. 31
70.11
76.02
81.92
88.02
93-92
99.82
105.92
111.92.
118.12
12l*.12
135-93
I't7.53
158.83
169.93
iHo.yi*
i<):i..6i*
20.1. 9'*
,2.11.9'*
221.5')
2 -|i ).8';,
2-tO.tf';
2'iM.lO
2'..(..'i')
Ht'Ji.lfi
272.05
27').jr,
2H5.06
2',«.66
209. l/,
30'). 26
405
Mean Load
mg. HgSOtj/g. C
6
8
10
12
11*
16
18
20
25
30
35
1*0
i*5
50
55
60
65
70
75
80 '
85
90
95
100
. 110
120
130
ll*0
150
160
170
180
190
200
220
2l*0
260
280
300
'
Rate
mg. HgSO^/g. C/min.
12.2525
9.5019
6.7511)
3-1*507
1.1002
1.0002
0.9902
0.9902
1.0102
1.01*02
1.0602
1.0802
1.1002
1.3202
1.1302
1.1502
1.1602
1.1802
1.1902
1.2002
1.2002
1.2102
1.2102
1.2102
1.2102
1.2102
1.2002
1.1902
1.1602
1.11*02
1.1102
1.0902
1.0502
1.0202
0-9502
0.8702
0.8002
0.7101
0.6201
-------
i; li A V I M K T li I C !•' 1 0 W K X I' M R J M K N T !5
Hun:
Dry Weight:
Deflection:
S02:
Carbon:
lOO.H* mg.
-5-53 mg.
2000 ppm
EXV-3B
NO: 0 ppm
HgO: 6%
t: 200°F
Ft:
Correction:
Date:
1500 cc/min.
77. OU
0.5031
May 1*, 1971
Time
minutes
1
2
3
li
5
C
7
H
9
.10
\?
Ill
16
18
20
25
30
35
140
U5
50
55
60
65
70
75
80
B5
no
."10
;>?o
:• -;o
;-'iO
Load
:r:G. llgSO^/g. C
6.09
7-39
8.29
9.. 19
10.19
:n .08
K',08
.13.08
Hi. OH
J5.08
17. ?8
19. W
. 21.77
2^.07
26Ji6
32.75
39. 7U
^7-23
55-12
63-i+l
71.50
79.79
88.18
96.56
105.25
313.7li
122.1.3
.130. IIP
.138.51
.1)16.60
15)1.38
169.66.
lH)i . Di
.197.82
2.10.80
223.19
235.17
2)16.^5
257. OH
^if.7.0?,
27''». 21
?;>i.yo
292 . w
>3VY
.1 . (",038
1 . 55?8
1 . 5029
l.kk&O
1.3980
1.31 (31
1.2283
l.l]8)i.
1.0036
0.8838
0.7639
406
-------
C, K A V I M K T R I C FLOW EXPERIMENTS
Run:
Dry Weight:
Deflection:
S02:
Carbon:
H47-G
103.3 nig.
-5.26 mg.
2000 ppm
EXB-2
NO:
02:
HgO:
t:
0 ppm
200°
Correction:
Date:
1500 cc/min.
76.11
0.14970
May 6, 1970
Time
minutes
1
2
3
It
5
6
7
8
9
10
12
l!|
16
18
20
25
30
35
40
't5
50
55
60
65
70
75
80
85
90
95
100
3 10
320
.130
:iiio
150
.160
170
J8o
i_yo.
poo
210
?20
230
PUO
Load
ing. H2S01|/g. C
li.26
5.52
6.29
6.97
7-65
8.23
8.81
9.ii9
10.07
10.711
.12.00
13.36
l)i. 81
16.16
17 -.62
.21.20
2)4.97
28.9't
32.81
37.07
l»l.62
k6.U6
51.78
57-10
62.62
68.23
7h. ll)
.80.33
86.53
9?. 82
99.?1
:n?.?7
:ip:..f«:
!;•!«. 99
35J -86
l6li.)|)i
r/A.)|)i
•i ' ' '. ) -pi
!<:•>, •) )
1 ' )<).>'/>
PI 1.1 9
;>:•;'. 13
>",:?. 68
^ij.ox
253.. 19
r6P.it 9
Mean Load
mg. HgSOj^/g. C
2 n
k
6
8
10
... 12
Ik
16
18
20
25
30
35
1)0
)i5
50
55
60
65
70
75
80
85
90
95
100
110
120
130
l!|0
.150
160
.170
180
190
P.OO
??Q
P)|0
:-'6o
Rate
mg. li^SO^/s. C/:ain.
k. 355^
2.14.003
0.77^3
0.6775
0.6581
0.658.1
0.6630
0.6727
0.6872
0.7065
0.7598
0.8227
0.8808
0.9388
0.9872
i.0308
1.07^3
1.1130
1.1518.
1.1905
1.2292
1. 2W5
1.2679
1.2873
1.2969
1 . 3066
1.3163
1.3163
l . 3066
1.2969
1.2776
1.2582
1.2389
1.2098
1.1808
.1 .1518
.1.0889
] .()!(>•{
Q.<)WV,
407
-------
GRAVIMETRIC FLOW EXPERIMENTS
Run:
Dry Weight:
Deflection:
S02:
Carbon :
154-G
117.04 mg.
-5-53 mg.
2000 ppm
EXA-1
NO:
02:
HjO:
t:
0 ppm
200 °F
!t!
Correction:
Date:
1500 cc/min.
71.24
0.4652
May 26, 1971
Time
minutes
1
2
3
)|
5
6
•(
0
9
JO
.1?
14
16
18
20
25
30
35
40
45
50
60
70
80
90
:ioo
.110
.IPO
J'J,0
I'lO
11)0
160
.170
180
190
?00
?10
220
?30
?l|0
250
tf>0
270
r.".o
?' )0
"<00 j
Load
r,ie. H2S01(/g. C
0..17
0.34
0.60
0.77
0.94
.1 . .1 1
1.37
.1 . 5'i
1.79
1.97
2.31
2.73
3-08
3.42
3-67
4.53
5-30
6.07
6.75
7-43
8.03
9.31
10.li2
11.53
12.65
13.67
.Hi. 70
_Lk- 5>
1 6 . V
l/.oy
jy.f")
18.37
39.22
20. ?'j
21 . 36
22.73
2)|..l8
25-72
27-17
28.96
30. y>
3?.3U'
3'i.l»
3«i. 'V.
:;7.M.'i
;'».fl,"
Mean Load
mg. H^SOj/g. C
2
It
6
8
10
-, 12
:4
16
18
20
22
24
26
28
30
3?
34
36
38
40
Rate
mg. HgSOjj/g. C/min.
0.2153
0.1692
0.1393
0.1?56
0.1128
0..1008
0.0897
0.0705
0.0880
0.109)1
0.1282
0.1427
0.1521
0.1623
0.1692
0.1777
. .0.1837
0.1897
0.1931
0.1965
^
408
-------
0 R A V 1 M !•; T K I C F 1, 0 W EXPERIMENTS
Run: J5'j-G
Dry Weight: 108.52 mg.
Dofleetlon: -5-85 mg-
2000 ppm
D02:
Carbon:
NO: 0 pprj
02= 3-5V
200°?
Ft:
Correction:
Date:
1500 cc/rain.
76.99
0.5028
May 27, 1971
EXB-3
Time
minutes
1
2
3
It
5
6
7
8
9
10
.12
lit
16
18
20
25
30
35
itO .
1*5
50
55
60
65
70
75
80
85
90
95
100
110
.120
J30
DK>
J',0
1 60
JYO
JfiO
1 <>0
,'•00
;MO
;-20
:?_;0
piio
250
260
270
p8o
?90
300
Load
ing. H2SO),/g. C
3.87
14.88
5.62
6.36
7.10
7-83
8.57
9-31
10.014
10.78
12.35
13-91
15.57
17-23
18.89
23. Ill
28.20
33-27
38.89
U5.06
51-33
57.96
61*.. in
70.77
77.22
83.76
91.23
98.51
105-79
113. .16
120.53
135-09
lfi9-37
: 6:^.38
177.29
iyi.9!>
;;o6.oii
;?io.f,«
;>•<•. 58
:'Mi.66
;">:.;. oo
r>< />.('.«
PYY . oo
;>«.•,. <>:,
P<'6.17
•j,o'i . or1
^i3.f.i
:;;o.05
;::'3.05
.Tj'i-9'S
3)12.06
Mean Load.
mg. H2SOi+/g. C
2
1*
6
8
10
12
lit
16
-- 18
20
25
30
35
1*0
»I5
50
55
60
65
70
75
80
85
90
95
100
110
120
130
ll)0
150
160
170
180
.190
200
220
2liO
?60
;-ao
••jOQ
320
3liO
Rate
mg. H2SO^/g. C/min.
3-8703
1.9812
0.7925
0.7l)-6^
0.76148
0.7833
0.8109
0.8386
0.8662
0.8938
0.9583
.1.0229
1.0781
1.12142
. 1.1703
1.2072
1. 2l4l40
1.2809
1.3085
1.3362
1.3638
1 . 3822
1.1(007
1.14191
1.^375
DA67
1.14652
1.1471414
l.VfWk
1.1)652
1.U560
1.^375
1 . li099
J . 391)1
J • 3638
l .330?
l.?
O.'W^l
O.R017
0.6'OJ
409
-------
i; H A V I M K T H 1 C !•' I. <> W K X 1' K K I M !•! N T !'.
Hun: 3 >(>-(";
Dry Weigh' : 103.60 ing.
Deflection: -5-90 i::g.
2000 ppra
EXC-1
NO: 0 pp:n
02: 3-5"
H20:
S02:
Carbon:
Time
minutes
3
2
3
)i
5
6
y
8
9
10
12
Hi
16
18
?0
25
30
35
1*0
145
50
55
60
65
70
75
80
t'j
90
0';
.1.CX)
no
.12(1
1 -if)
l'in
!'.)<)
ViO
jyo
IMO
1Q( >
20d
2.10
220
2<0
2UO
2'/>
P-.0
270
,'^••0
L>'»U
•iOO
Load
me- H2::o)(/g. c
9.27
10.1(2
31.29
12.16
32.93
33.80
Di.67
15.1('i
16.33
37.30
18. H2
20.66
22.39
2U.33
25-97
30.60
35-52
1+0. 61*
l*6.ll*
51. 7!*
57-53
63.51
69.50
75.68
81.76
88.03
oH.2l
100. ^9
106 . r>G
132. 8'i
3.:i-).i3
13.1. 1 H
1 1(2. <.>5
iVl.'l'i
,lf.',.r,l|
jyi'..'1'.j
.!(''.. '17
]<>Y.10
2i • .1,1')
23.i.,.>'i
22-\. Ij
2 -U.' . ;i J,
2lfO.S-l
2lj';.,,S
2'ii', . 3..S
• 1, , . '")
27>\,'7
jy--."-;
^•i.-':fi
^•••'.'is
;M'i.]y
t:
200 CF
Ft:
% HgSOj,.:
Correction:
Date:
1500 ce/min.
75-15
0.1*908
May 28, 1971
Mean Load
mg. HgSO^/g. C
6
8
10
12
Hi
16
38
-, 2.0
25
30
35
l|0
1)5
50
55
60
65
70
75
80
85
90
95
100
110
120
130
l'*0
350
160
iyo
.180
190
?_oo
220
ii'lO
2/,0
280
.
Rate
mg. H2SO^/g. C/min.
7.1i*29
1+.1988
1.1390
0.8687
0.8301
0.8398
0.8591
0.878)f
0.9266
0.97^9
.1.0232
1 . 0?lU
1.100)i
1.1293
1.1583
1.1873
1.1969
1.2162
1.2259
1.2355
1-2355
1.2355
1.2355
1-2355
1.2259
1.2162
1.3-969
1.1680
l.lif«6
1..U97
1.0907
. 1.0610
1.02 =52
().
-------
GRAVIMETRIC FLOW EXPERIMENTS
Run:
Dry Weight:
Deflection:
SO :
Carbon :
159-G
102.26 mg.
-5-93 mg.
2000 ppm
EXA-2
NO:
V
HO:
tf
0 ppm
3-5*
%
200° F
'.V
1500 cc/mln.
79- 44
Correction: 0.5188
Date: June 7, 1971
Time
minutes
1
2
3
>t
5
6
7
. 8
9
10
12
14
16
18
20
25
30
35
ho
45
50
60
70
Ro
VO
100
11,0
120
1.30
I'lO
150
160
170
180
190
200
2.10
' ??0
230
2'c.)
no
260
','/0
?.",o
;>• m
300
Load
ng. H2SOl,/g. C
2.64
3-52
3.91
4.20
li.'jO
k.(f)
II.B-J
5.0^
5.28
5.38
5.67
5./r
6.26
6.55
6.75
7-53
• 8.31
9-00
9.68
10.37
11.05
12 . 52
13.89
.15-45
Jfi.'tf
I,",J|H
19-95
21.51
P3.0H
24.64
26.31
i'7-07
29-73
31 • 39
33.15
31' • 91
36.77
3>"-63
ii0.5»
ii;;.54
hh.'j-*
46//4
4't.H'i
51..24
'>V'>
56.13
Mean Load
ing. HaSOlj./g. C
4
6
8
. 10
••' ie
1)1
16
18
20
25
30
35
40
45
50
55
Rate
nig. HgSO^/g. C/min.
0.3071
0.1604
0.1408
0.1418
0.1438
0.1457
0.1486
0.1516
0.1555
0.1633
0.1741
0.1868
0.2005
0.2151
0.2318.
0.2494
•
411
-------
GRAVIMETRIC FLOW EXPERIMENTS
Run:
Dry Weight:
Deflection:
S02:
Carbon:
165-G
106.92 mg.
-5-97 mg.
2000 ppm
EXA-3
NO:
02:
HgO:
t:
0 ppm
3-5$
656
200° F
t
1500 cc/min.
2h: 77-85
Correction: 0.5084
Date: June 16, 1971
Time
r.inutes
1
2
3
4
5
6
7
8
9
10
12
14
16
10
20
25
30
35
40
45
50
60
70
80
90
100
110
120
130
140
150
1 60
170
180
190
POO
?10
2PO
'30
shn
'50
•('/>
'(<>
;'r>
> .-)8
^'i?.70
',"j\ . »'.
;'u).4'(
;'i»i'.".o
'.''(<'••'/>
:''-'J.v'"
P "l.l.-',
P >{. I'l
•^05.40
•jo i.'iM
:. 03
•]..Y'l
Mean Load
mg. HpSOjj/g. C
• • ' — ' ' "
2
4
6
• 8
-'10
12
Ik
16
18
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
110
120
130
3.40
150
160
170
180
190
POO
220
2l)0
260
?;*o
300
3?o
Rate
ing. HpSOk/g. C/rain.
4.2088
2.5907
1.6835
1.1785
0.9727
0.8605
0.7669
0-7202
0.7108
0.7295
. 0.7856
0.8230
0.8698
0.9166
0.9540
J. . 0007
1.0382
1.0156
1 • 1130
1.1504
1.1785
1.2065
1.2252
1.2439
1-2533
1.2626
.1.2813
1.283.3
• 1.2720
1.2626
1.2439
1.2252
1.1972
1.1691
1.1504
1.1130
1.0382
0.95)10
0.8605
0.766)
0.6640
0 . 563 f>
412
-------
GRAVIMETRIC PLOW EXPERIMENTS
Run:
Dry Weight:
Deflection:
S02:
Carbon:
166-0
101.36 mg.
-6.09 mg.
2000 ppm
EXA-4
NO:
02:
HgO:
t:
0 ppm
3-5$
6$
200° F
Ft:
Correction:
Date:
1500 co/tnin.
77.20
0.5042
June 21, 1971
Time
minutes
1
2
3
It
5
6
7
8
9
10
12
It
16
18
20
25
30
35
40
45
50
60
70
80
90
100
110
120
130
I'lO
.100
.1.60
J.YO
.1 HO
1 'X>.
;?oo
21.0
;vo
;>30
P'lO
250
260
270
2MO
2-)0
'•(00
Load
ing. H2SO^/g, C
4.o4
5.82
7.20
8.29
9.27
10.26
11.25
12.33
.1,3.32
lit. 31
16.18
18.15
19.93
21.80
23.78
28.12
• 32.66
37.19
iH. 83
46.47
51.30
61.76
73-01
84.55
96.98
110.00
12P.93
135.06
l4Y.'lO
1 V.i. 83
172.36 . . . .
LS'l . 19
.1 >J'j . Y'l
;K>6.3v
P,l/).'j'3 . ..
226. >'!
23S.Y9
P'i4.0Y
2V-;.B'j
Pfr'.Oli-
069. »3
2YY.'t3
2811.63
291.5'!
2->H.L5
30'i . 66 . ... ...
Mean Load
mg. H2SOij/g. c
2
.4
6
8
' 10
12
14
16
18
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
1.10
120
130
140
150
160
170
180
190
POO
220
240
260
280
300
Rate
mg. HgSO^/g. C/min.
4.0450
2.4862
1.6180
1.1346
1.0359
0.9767
0.9471
0.9373
0.9274
0.9175
0.9077
0.9126
0'.9175
0.9422
0.9570
1.0014
1.0359
1.0754
1.1099
1.1444
1.1691
1.1938
1.2135
1.2332
1.2480
1.2579
1.2727
1.2727
1.262H
1.2579
1.2382
J .2184
1.1938
I.l6)i2
i.J3'i6
1.0951
1 .0162
0.0274
0.828Y
0.7202
0.6215
413
-------
GRAVIMETRIC FLOW EXPERIMENTS
Run:
Dry Weight:
Deflection:
S02:
Carbon:
167-G
107-14 mg.
-5-99 mg.
2000 ppm
EXA-5
NO:
02:
H20:
t:
0 ppm
3-5$
6$
200°F
t
Correction :
Date:
1500 cc/min.
77-51
0 . 5062
June 23, 1971
Time
ninuteo
1
2
3
4
5
6
7
8
9
10
12
14
16
18
20
25
30
35
40
45
50
60
70
80
90
.100
no
IP'O
1.30
UlO
1^0
160
170
180
1^)0
?00
210
?J.'0
•30
J'|0
•"jO
'l:i)
'(()
': '•< )
'•)•}
•sou
Load
inc. HgSOjj/g. C
3-17
4.67
5-69
6.53
7-37
8.12
8.87
9.52
10.17
10.83
12.13
13.44
14.75
16.15
17-55
21.09
24.64 .
28.19
31-83
35-56
39.39
47.23
W-44
64.60
74.30
84.66
95-30
106. 4 o
117.51
128.62
139.54
I.b0.64
161.56
172.58
J83.22
193. 2 L
202.91
212. 'j 3
22L.95
231.10
2S'.'.';/1
PW.iM
P'jY.'jl
f'(,fi.".j
L'lV.OY
;>Y;i.:(...
Mean Load
ing. HgSOjj/g. C
2
4
(>
8
' 10
12
14
16
18
20
25
30
35
ho
45
50
55
60
65
70
75
80
85
90
95
100
110
120
130
i4o
150
160
170
180
190
200
220
240
260
2MO
Rate
mg. l^SO^/g. C/min.
2.7067
1.6054
0.9_520
0.7467
0 . 7000
0.6814
0.6720
0.6814
0.6860
0.6907
• 0.709^-
0.7280
0.7560
0.7840
0.8167
0.8494
0.8867
6.9240
0.9614
0.9894
1.0080
1.0360
1.0500
l.o64o
1.0780
l . 0420
l . 1060
1 . .1 107
1.1107
.1.3014
1 . 0920
1.0780
1.0594
1.0407
1 . 0174
0.9894
0.9334
0.8yi7
0.7840
0.70^4
414
-------
GRAVIMETRIC
FLOW
EXPERIMENTS
Run:
Dry Weight:
Deflection :
S02:
Carbon:
if, 9- a
100.50 ing.
-5.91 n«-
2uOO ppm
]•:>:••;- 4
NO:
02:
H20:
t:
0 ppm
3f~ ^
• )"!'
6%
200° F
Ft:
Correction:
Date:
1500 cc/inin.
78.24
0.51105
June 25, 1971
Time
minutes
1
2
3
l)
5
6
7
8
9
10
12
lit
16
18
20
25
30
35
ho
45
50
60
70
80
90
100
110
120
I'-JO
.11)0
150
IhO
.170
IMG
J'lO
2UO
2.1 n
220
2-iO
2-'.0
2''0
;>r,o
270
,''',(}
','.'l<>
':< )0
Load
m.";. H230i|/(;. C
1+.73
6.17
7.06
ti.or,
8.96
9.95
10.95
11. 9'J-
12.9U
13-93
16.02
18.31
20.50
22.89
25.17
30.95
37. lH
Mt.68
52. Mi
60.80
69.65
88.36
107.96
128.26
11*9.25
169.75
189.75
20H.96
226.97
2l)3.(.rt
2!>Q.oO
275-02
|_ 290.05
30.5 . 08
l.Tt.'H
•J,20.''7
j, j,<,. ','.:>.
Vin. 17
V..'.. :2
V l-'l .'..')
W.2'i
•;7< I . ' in
••.-.7.1"
-.••••I.IM
)|E 1 ] t\>> t
h>>{.'/t.
Moan Load
rng. HaSOl^/R. C
1)
6
8
10
-' 12
14
3.6
1.8
20
25
30
35
Uo
45
50
55
60
65
.70 .
75
80
85
90
95
100
110
120
130
1.40
150
160
170
180
190
200
2.?0
2'lO
2f,0
2MO
HOO
•;HO
••;'iO
•li .0
VH>
lino
Rate
mg. HjjSO^/g. C/min.
3-l«4l
1. 2'I38
0.9254
0.9552
0.9751
1.0149
1.0348
1.0647
1.0945
1.1741
1.2637
1.3433
1.4229
1.4975
1.5672
1.6418
1.7015
1.7612
1.8109
1.8607
1.8905
1.9204
1.9602
1.9900
2.0100
2.0498
2.0697
2 . 0796
2.0796
2.0697
2.059V
2 . 0398
2.0000
1.9'".C2
l.Ol.Oli
1.7"' 0
l.
-------
G R A V I M K T H I C ]•' L 0 W K X P K H I M E NTS
I'uri:
Dr.y WeM'L:
D< •riwt.jon:
C02:
Carbon:
1.7"-'!
.Kv'.'.'i nit'.
-5. 'i.l me,.
2000 ppm
EXB-5
NO:
HgO:
C) ppm
3.5$
6*
200° F
]?t: 3-500 I'
$ HgSOj,: 78.4?
Correction: 0.532)4
Date: June 28, 1971
Time
minutes
1
2
3
It
5
6
7
8
9
10
32
3.1)
36
3.8
20
25
30
35
Uo
>45
50
60
70
80
90
100
110
120
HO
1'jO
ISO
'li.U
170
i.'-;o
3 ' '0
2oo
23.0
2.-i '
2 -;(.'
.-.'llO
2M>
i.'i i)
270
2.''d
2' 40
J,t «.)
J, It)
j- );^
•> -ll '
Load
mr.. T!?SOb/«. C
U.19
6.33
7.79
8.87
9-9'*
11.01
32.08
3.3.06
13-93
1)4.71
16.56
3.8.61
20.65
22 .<>0
25-23
31.18
37.61
14)4.72
52.51
60.80
69.66
88.56
108.73
329.87
150.lt|
170.01
188.91
206.55
223-79
2'i0.55
2y>.M
27.1.. 0)+
2M . 3 0
2'i',.8i,i
307. f»
-11'".. 00
•:2».5i
', ;.-f.O^
•;'ii,.(.S
-;•-']. is
','•1 .in,
-;.,".. |.-i
'.Y'«.< !
'.-'. 1 .»'li
-•,--;y.2,;>.
•;• i -i . .12
••.•i.".. 87
)K''I .o-j
llU'^.UO
Mean Load
mg. H2SO^/g. C
2
If
•6
8
10
12
14
16
18
20
25
30
35
1)0
'45
50
55
60
65
70
75
80
85
90
95
100
1J.O
320
130
lUO
.1.50
160
370
180
wo
200
220
2*10
A ,0
2H<>
',00
^20
.)l|0
-:f'.o
--i»o
InOO
Rate
mg. HgSO^/g. C/min.
^. 38)43
2.7280
1.5680
1.^322
1.0035
0.9353
•0.9256
0.9^99
0.98^0
1.0279
I.l¥t8
1.2U22
1.3396
3..U322
1.5101
1.5881
1.6660
1.73^2
1.7927
1.8)463
1.8950
1.9339
1.9729
1-9973
2.0216
2.0)460
2.0703
2.0752
2.0703
2.0557
2.02.16
.V.9B75
1.9)186
l . 90uf>
3.H706
1.8.1YO
3..7050
l-'/C-'V-i
i.'i m.
3 .271--!
1..I2())J
D.')7'H
o.^v/o
0.7210
o.r.oaq
0.52bl
416
-------
r, K A V I M K T li T C V T, 0 W V X I' K R T M K N T I',
Run:
Dry Weight:
Deflection:
S02:
Carton:
171-C!
101.80 nig.
-6.22 mg.
2000 ppm
EXA-4
Time
minutes
1
2
3
14
5
6
•I
8
9
.10
X?
3.4
16
18
20
25
30
35
1+0
U5
50
60
70
80
90
100
330
120
1 '.()
1.4 0
I'/'
K.d
:iY''>
.U'f'
]nO
21 >'')
2JO
22"
2-:o
24 o
2',...
2.'0
270
2.' 0
2' -C>
•inn
Load
mg. HgSO^/g. C
5-50
7-56
9.014
30.32
11.. 20
12. 2H
13-26
lH.35
1^-93
l'j.82
37-°'.)
3.8.76
20.04
21.U1
22.99
26.82
31.04
• 35-66
1*0.37
U5.28
50.29
60.81
71.51
82.91
9'i-79
.106.88
31 9- 35
131.93
l.'i'i.Ol
.V/-.80
l(>7.r;<'i
17H . * .rt
380.30
.v>',).:i2
2i'.'i.Wi
23.8. liy
227.70
236.7!)
24S.68
2[.;'i . .«
2i..-!.'-!7
270.02
2V.J.2M
2J-.4.7.7
?•>').{•'('
;?»...*>•;
J2'
U2C
t:
H20:
0 ppm
3.536
e*
200° F
*t:
1500 cc/niJn.
77.04
Correction: 0.5031
Date: June 29, 1971
Mean Ixsad
mg. HgSO^/g. C
2
It
6
8
10
"' 32
lit
16
18
20
25
30
35
ItO
it5
50
55
60
65
70
75
80
85
90
95
100
110
120
130
140
150
3/.0
170
18'0
190
200
220
240
260
280
300
Rate
mg. HgSO^/g. C/min.
6.5815
3-6337
2.4558
1.5226
1.2083
0.9921
0.874.3
0.7«59
0.7466
0.7367
0.7957
0.8^46
0.9037
0.9627
0.9921
1.0314
1.0609
1.0904
1.1198
1.1395
1.1591
1.1788
1.3886
1.2083
.1.23.81
3.. 2279
1.2377
1.2475
.1.2 ',77
.1.21 H.I
J.lHHi,
1 ..l'/)l
3 . 1297
3 .1002
1.0609
.1.02.16
0.9528
0.8743
0.7859
0.6876
0 . 5094
417
-------
r; R A v :i M !•; 'i1 K i c
LOW K X ]' K K 1 M E N T !i
Him:
Pry Welch t:
Deflection :
S02:
Carbon:
172- G
100. ll* m;'..
-6.13 mg.
2000 ppm
EXC-2
NO:
02:
H20
t:
0 ppm
200° F
Ft: 1500 cc'/rain.
% H2SOi+: 76.89
Correction: 0.5021
Date: July 8, 1971
Time
minutes
\
2
>>
1(
5
(',
7.
B
9
1.0
.12
111
16
18
20
25
30
35
1(0
'45
50
60
70
HO
90
100
110
.120
.1 «)
ll|()
ISO
-|.'.Q
17U
I.'"-)
I'/O
;_'-.o
..' 10
.'.w
?.'-.<•>
•^«
.?'.o
' 'i "
,-yo
':'• '-ll
.' "'
',()!)
Load
me.. H2SOj,/c;. C
i JlO
5 • 19
(>. -iO
7.S')
H . vy
•).2'i
K). 19
1i).')M
11. HM
' 12. (',8
I'l-.'iH
16 . 1.7
17-97
19.87 .
21.77
26.86
32.15
37.85
1*3.714
50.33
57-02
71 . 10
«fj.f,8
.10^.26
.ll'i.'M
l',f,.K.I.
J5',.7'
170. ','•
j. '-;,,. N'I
2ul .22
<-'!'.. 1.0
iNo. •;•:
2Mi.)|,,
2'>-.2i4
271.52
2 U..-M
2- "1. 7s.'
-iill .'•.-.
•i.'.ir.
^ . i -.
•MI .«.';
•''- '.'>.?
•.' '.11
•'.....' u
.1 •; . ' .' i
V(".i .'>
418
Moan Load
me- l^SO^/g. C
2
l|
6
.•- 8
10
12
111
ir,
18
20
25
30
35
ko
1+5
50
55
60
65
70
75
80
85
90
.95
.100
.1JO
.120
1 J,0
1'40
150
160
170
.1.80
190
200
220
2UO
2.'0
280
WO
#0
•s'.o
Vfl
Rate
mg. HgSOjj./g. C/min.
2.9^59
]..877'i
1.2l|«3
0.9087
0.8238
0.0.1H9
O.H'MH
0.87.-S8
0.9*7
0.9J87
1.0136
1.0/85
l.lUSlf
1.2033
1.2582
1.3132
1.3581 •
1.1*030
1.14-1*30
1.1*779
1.5179
1.5W
1.5728
1.5978
.1 .6177
:i .6 <77
.1 .u;a
•l.''77Y
)..^Hr!d
l.C>777
l.f.f.77
I.c,'i77
1.6227
1.5978
1.5678
1.5279
l.'*530
1. 368.1.
1.2682
J . 1.68'i
J .oi>8s
0.
-------
GRAVIMETRIC FLOW EXPERIMENTS
Run:
Dry Weight:
Deflection :
S02:
Carbon:
175-G
102. 56 ing.
-6.16 ing.
2000 ppra
EXC-3
NO:
02:
H20:
t:
0 ppm
3.5%
6.0$
200° F
t
1500 cc/min.
73-58
Correction: 0.1+980
Date: July 16, 1971
Time
inj nutos
1
2
3
k
5
6
7
8-
9
10
12
lit
16
18
20
25
30
35
1+0
U5
50
60
70
80
90
100
110
120
130
l!|0
150
160
170
180
300
200
230
<«(>
2 '•',()
2'iO
2'.<0
?V>0
270
2.<<>
2')0
3(10
Load
ing. HgSOli/K. C
6.3^
8.29
9-5<>
10.l|\
11.31 -
12.09
12.77
13.W
1H.1.1+
1.1+.72
16.19
17.55
19.01
20. 1*8
22.01+
26.23
30.91
. 36.08
lU.Mt '
1*7.19
53-33
66.50
80. 5'+
95- H6
1.10.18 .
125-39
lit 1.38
157.37
172.87
.188.09
201.93
21.lt. 90
228 . 16
21(1.22
253- Jil
265. Ill
276. <0
.2H7.(i'i
2', ,'7. 00
'.U) . IK'I
.', I'l .'i)|
32 x.('.r;
^1.71.
•i -i'-).ii.i
',iir,.;,;!
Hr< '<.')'(
Mean Load
mg. HgSOl^/g. C
2
1+
6
8
10
-, :i2
ii*
16
18
20
25
30
35
1+0
't5
50
55
60
65
70
75
80
85
90
95
1.00
110
120
130
1^0
150
160
170
180
190
200
220
21+0
260
280
300
320
i'K)
Rate
mg. HgSOij/g. C/min.
8.239],
5 • 1677
3.120.1
1.7'i53-
0.8970
0.7110
0.6533
0.6728
0.7215
0.7605
0.8678
0.9555
1.0238
1.1018
1.1603
1.21.88
1.2676
1.3066
1-3358
1.37W
i.i+oin
1A333
1.1(528
lA?23
I.li91.8
1.5113
.1.5308
1.5503
1.5601
1.5601
1-5503
1.5308
1.5113
1.U821
l.Ul+31
l.l+oUi
1 . 3066
1.2188
1.1.1|08
1.0628
0.0653
0.8678
0.760',",
419
-------
APPENDIX A-15-2
SURFACE AREA AND PORE VOLUME DISTRIBUTION
OF SOLVENT EXTRACTED CARBON
Surface area and pore volume distribution measurements were
made by means of nitrogen isotherms on the Englehard Isorpta,
Englehard Industries, Inc., Newark, New Jersey. The surface
area was calculated from the BET equation12* and the pore
volume distribution with a computer program we have using the
Roberts13 method of pore determination. In the tables given
in this section, REL P is relative pressure and VOLUME is
volume adsorbed of nitrogen in cc./g. C. Other designations
are S = surface area in m2/g. C; C = the BET constant, and
R = the correlation coefficient. PORE RADIUS is the range
of pore size in A; VOL is the volume in cc./g. C in that
range; and CUMV is the cumulative volume to that point.
*References are listed in Bibliography, Section 8, in
Volume I.
420
-------
SAMPLE: EXA-1
RFL P
v/OLUME
U. 1423
o. i 7a2
0.2141
0. 3219
0.4296
0.5374
0.6452
0. 7529
O.t,607
0.9685
S 193.
C -34
R 0.9980
0.09.13
0.0990
0.1015
0.1078
0.1135
0. 1182
0.1226
0.1260
0.1318
0.1389
7
.257
PORE RADIUS
VOL
CUMy/
1000.
500.
400.
300.
200.
150.
100.
90.
dO.
70.
60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
U.
12.
500.
400.
300.
200.
150.
100.
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
10.
0.0012
0.0006
O.OOC9
0.0016
0.00 I1* "
0.0027
0.0009
0.0011
O.OC13
0.0017
0.0021
0.0015
0.0018
0.0022
0.0029
0.0043
0.0063
0.0041
0.0055
0.0070
0.0076
A. 0.0114
0.0012
0.0018
0.0026
0.0042
U.OObY
O.OOt'4
0.0093
0.0103
0.0116
0.0133
0 . 0 lt> 7
0.0172
0.0191
0.0213
0.0242
0.0285
0.0353
0.0394
0.0449
0.0519
0.05vl>
0.0700
421
-------
SAMPLE: EXA-2
REL P
VOLUME
PORE
1000.
500.
400.
300.
200.
150.
100.
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
0.1488
0.1865
0.2243
0.3375
0.4508
0.5641
0.6773
0.7906
0.9039
0.9869
S 167.7
C -28.
R 0.9991
RADIUS
500.
400.
300.
200.
150.
100. - -
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
10.
0.0856-—
0.0878
0.0900
0.0966
0.1028
0.1003
0.1133
0.1180
0.1234
0.1287 .-
132
VOL
0.0009
0.0004
0.0007
0.0013
0.0012
0.0023 —
0.0008
0.0010
0.0012
0.0016
0.0023
--0.0015
0.0019
0.0024
... .. . 0.003i
0.0048
0.0078
0.0047
0.0059
0.0070
0.0077
0.0077
CUMV
0.0009
0.0013
0.-0020
0.0032
0.0045
0.0068 -
0.0076
0.0085
0.0097
0.0113
0.0136
0.0151
0.0170
0.0195
0.0227
0.0275
0.0353
0.0400
0.0459
0.0529
0.0606 " ' '
0.0683
422
-------
SAMPLE: EXA-3
REL P
VOLUME
PORE
1000.
500.
400.
300.
200.
150.
100.
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
lb.
16.
14.
12.
0.1488
0. 1865
0.2243
0*3375
0.4508
0.5641
0.6773
0.7906
0.9039
0.9869
S 650.9
C -20.
R 0.9983
RADIUS
500.
400.
300.
200.
150.
— 100. -
90.
80.
70.-
60.
50.
_._-_... 45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
10.
0.3620
0.3684
0.3731
0.3850
0 . 3 94 8
O.'»027
0.4096
0.4161
0.4231
0.4296-- •
•
340
VOL
0.0010
0.0005
0.0008
0.0016
0.0015
0.0029 -
0.0010
0.0012
- 0.0016 - -
0.0021
0.0030
— 0.0021
0.0026
0.0034
0.0045 -
0.0066
O.Olll
-- 0.0071
0.0094
0.0120
0.0151
0.0210
CUMV
0.0010
0.0015
0.0023
0.0039
0.0054
0.0084-
0.0093
0.0106
0.0121
0.0142
0.0173
-0.0194
0.0220
0.0254
-0.0299
0.0365
0.0476
0.0547
0.0641
0.0761 "
-0.0912
0. 1122
423
-------
REL P
SAMPLE: EXA- 5
VOLUME
0. 1428
0.1791
C.2153
0.3241
0.4328
0.5416
0.6504
0.7591
0.8679
0.9766
0.3382
0.3430
0.3478
0.3588
0.3683
0.3759
0.3831
0.3898
0.3975
0.4093
S 620.8
C -22.416
R 0.9985
PORE RADIUS
VOL
CUMV
1000.
500.
400.
300.
200.
150.
100.
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
500.
400.
300.
200.
150.
100.
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
10.
0.0026
O.OG10
0.0015
0.0026
0.0023.
0.0041
0.0013
0.0015
0.0019
0.0025
0.0035
0.0024
0.0029
0.0036
0.0048
0.0069
o.oion
0.0066
0.0092
0.0117
0.0133 -
0.0201
0.0026
0.0037
0.0052
0.0079
0.0102
0.0143
0.0155
0.0171
0.0190
0.0215
0.0250
0.0274
0.030H
0.0339
0.0387
0.0456
0.0564
0.0630
0.0722
0.0840
0.09'M
0. 1174
424
-------
SAMPLE: EXB-3
REL P
VOLUME
0.1426
0. 1788
0.2151
0.3237
0.4323
0.5409
0.6495
0.7581
0.8667
0.9753
S 667.
C -22
R 0.9986
0.3636
0.3690
0.3734
0.3855
0.3956
0.4039
0.4115
0.4184
0.4257
0.4350
5
.456
PORE RADIUS
VOL
CUMV
1000.
500.
400.
300.
200.
150.
100.
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
500.
400.
300.
200.
150.
100.
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
10.
0.0015
0.0007
0.0010
0.0019
0.0018
0.0034-
0.0011
0.0014
0.0018
0.0024
0.0034
0.0023
0.0029
0.0038
0.0051
0.0074
0.0119
0.0073
0.0097
0.0125
0.0156
0.0187 -
0.0015
0.0022
0.0032
0.0051
0.0069
0.0104
0.0115
0.0129
0.0146
0.0 1 70
0.0204
0.0227
0.0256
0.0294
0.0345
0.0419
0.0538
0.0611
0.0708
0.0833
0.0990
0.1176
425
-------
SAMPLE: EXB-4
REL P
0.9741
VOLUME
0.1425
0.1786
0.21^8
0.3232
0.4317
0.5402
0.6487
0.7571
0.8656
0.3720
0.3772
0.3816
0.3931
0.4023
0.4100
0.4167
0.4237
0.4309
0.4407
S 680.1
C -22.182
R 0.9986
PORE RADIUS
VCL
CUMV
1000.
500.
400.
30U.
200.
150.
100.
90.
80.
70.
60.
50.
45.
40. .
35.
30.
25.
20.
18.
16.
14.
12.
500.
400.
300.
200.
150.
100.
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
10.
0.0021
0.0008
0.0013
0.0022"
0.0020 '
O.OC35
O.OOll'
0.0014
0.0013
0.0024
0.0034
0.0023
0.0030
0.0039
0.00.49
0.0063
0.0106
0.0068
0.0089
0.0115
0.0148
--•0.0189
0.0021
0.0030
0.0042
0.0064
0.0084
0.0119
0.0130
0.0144
0.0162
0 . 0 1 b 5
0.0219
0.0242
0.0272
0.0310
0.0360
0.0423
0.0529
0.0597
0.06U6
0.0800
0.0948
0.1137
426
-------
SAMPLE: EXB-5
REL P
VOLUME
.. -
PORE
1000.
500.
400,
300.
200,
150*
100.
90.
80.
-- - - \f *^ w
70.
60.
50»
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
0.1484 ...
0.1860
0.2237
0.3366
0.4496
0.5626
0.6755
0.7885
0.9015
0.9994 ....
S -73K4
C -19.
R 0.9983
RADIUS
500.
400.
300.
200.
150.
100*
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
10.
o.4ioa
0.4169
0.4213
0.4334_ __,_.
0.4439
0.4530
0.4 60! ,_.
0.4679
0.4756
0.4842
859
VOL
0.0011
0.0005
0.0009_.^...
0.0017
0.0017
... 0.0032... ..
0.0011
0.0013
0.0017 .
0.0023
0.0034
u O.OQ24
0.0030
0.0038
0.0051 . ..
0.00/3
0.0128
0.0080 .
0.0102
0.0125
0.0148
0.0188
CUMV
0.0011
0.0017
fl.0026
0.0043
0.0059
._ 0.0091
0.0102
0.0115
0.01 H
0.0156
0.0190
o.opn
0.0243
0.0282
_ 0.0332
0.0405
0.0533
_ . 0.0613
0.0714
0.0839
0.0988
0.1175
427
-------
SAMPLE: EXC-1
REL P
VOLUME
0. 1426
0. 1788
0.2151
0.3237
0.4323
0.5409
0.6495
0.7581
0.8667
0.9753
S 628.
C -22
R 0.9985
0.3442
0.3489
0.3531
0.3634
0.3722
0.3805
0.3873
0.3937
0.4007
0.4132
0
.024
PORE RADIUS
VOL
CUMV
1000.
500.
400.
300.
200.
150.
100.
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
500.
400.
300.
200.
150.
100.
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
10.
0.0040
0.0014
0.0020
0.0031
0.0025
0.0041 •
0.0012
0.0015
0.0018.
0.0023
0.0032
0.0021
0.0027
0.0034
0.0045
0.0065
0.0115
0.0073
0.0086
0.0104
0.0127
0.0174 '
0.0040
0.0054
0.0074
0.0105
0.0130
0.0171
0.0 l»3
0.0197
0.021r>
0.0238
0.0270
0.0291
0.0318
0.0353
0.0398
0.0463
0.0578
0.0651
0.0737
0.0841
0.0963
O.U41
428
-------
SAMPLE: EXC-2
REL P
VOLUME
R
736.8
-20
0.9982
PORE RADIUS
1000.
500.
400.
300.
200.
150.
.100.
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
500.
400.
300.
200*.
150.
100.
-90.
80.
70.
60 »
50.
45.
- 40.
35.
30.
25.
20.
18.
16.
14.
12.
10.
0.4102
0.4172
0.4232
0.4348
0.4459 ._
0.4553
0.4624
0.4688
0.4768
0.4838
t
• 304 ..
VOL
0.0003
0.0004
0.0007
0.0016-
0.0017 '
0.0035
0.0012-
_ ,. — ._— - -^0 ^ ^f %^*«r ^ff^-f-m^,
0.0015
0.0019
0.0024
0.0034
0.0021
0*0026—
0.0033
0.0044
. .-0.0068.-.-
0.0132
0.0086
0.0109 ..
0.0125
0.0133
- 0.0262 .-
CUMV
„.„_.._ 0.0003
0.0007
0.0014
0.0030
0.0047
0.0082
0.0094
0.0109
0.0127
0.0151
0.0185
0.0206
— 0.0232
0.0266
0.0310
0.0378
0.0510
0.0596
_. 0.0705
0.0831
0.0964
0.1226
429
-------
SAMPLE: EXC-3
REL P
0.1478
0.1853
0.2228
0.3353
0.4478
0.5604
0.6729
0.7854
0.8979
0.9880
VOLUME
0.4228
0.4291
0.4338
0.4453
0.4553
0.4634
0.4707
0.4780
0.4857
0.4925
S 752.8
C -19.881
R 0.9983
PORE RADIUS
VOL
1000..
500.
400.
300.
200.
150.
100.
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
. 500.
400.
300.
-—200*.
150.
100.
-. .... . 90.
80.
70.
... 60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
--•- 10.
. ... -0.0006
0.0004
0.0007
0.0015
0.0016
0.0032
0.0011
0.0014
0.0018
0.0024
0.0034
0.0024
- ~~ 0.0030-
0.0039
0.0050
, 0.0070
0.0113
0.0071
- 0.0096
0.0119
0.0142
-.._ 0.0202-
CUMV
0.0006..
0.0010
0.0017
-O..0032-
0.0048
0.0079
0.0090
0.0104
0.0121
0.0145.
0.0179
0.0203
-0.0233-
0.0272
0.0322
0.0391
0.0504
0.0575
0.0671
0.0790
0.0933
0.1135
430
-------
SAMPLE: EXD-1
REL- P
0.1860
0.2237
0.3366
0.4496
0.5626
0.6755
0.7885
0.9015
0.9919
VOLUME.
0.0769
0.0792
0.0818
0.0896
0.0964
0.1019
0.1072
0.1121
0.1176
0.1236
S 158.4
C—-. -37.043
R 0.9995
PORF RADIUS
VOL
CUMV
* v >^ v* »
500.
400.
300.
200.
150.
100.
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
400.
300.
200.
150.
100.
90.
80.
70.
60. -.-..
50.
45.
40.
35.
30.
25. .,
20.
18.
16.
14.
12.
10.
0.0009
0.0004
0.0007
0.0013
0.0012
0.0024
0.0008
0.0010
0.0012
0.0017
0.0024
0.0016
o_no ?o
\J % \J \J *-~ v
0.0026
0.0035
0.005 1
Vr
-------
SAMPLE EXH-1
REL P
VOLUME-
PORE
1000.
500.
400.
300.
200.
150.
100.
90.
BO.
70.
60.
50.
45.
40.
35.
30.
25.
20.
IB.
16.
14.
12.
0.1484
0. 1860
0.2237
0.3366
0.4496
0.5626
0.6755
0.7H85
0.9015
0.9919
S 721.
C -19
R 0.9984
RADIUS
500.--
400.
300.
..... 200.
150.
100.
- 90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
10.
0.4065
0.4106
0.4156
0.4278
0.4383 -
0.4471
0.4544
0.4619
0.4696
0.4781
7
.848 - -~- -----
vot
-0.0014
0.0006
0.0010
0.0018
0.0017
0.0032
O.OOU
0.0013
0.0017
0.0023
0.0034
0.0025
0.0031
0.0040
0.0049
0.0069
0.0121
0.0078
0.0102
0.0127
0.0150
0.0192
CUMV
0.0014
0.0021
0.0030
0*0048
0.0065
0.0097
0.0108
0.0121
0.0138
0162
0196
0220
0.0251-
0.0291
0.0340
0.0409
0.0531
0.0608
0.0711
0.0837
0.0987
0.1179
432
-------
SAMPLE: EXN-1
REL P VOLUME
0. 1426
0.1788
0.2151
0.3237
0.4321
0.5409
0.6495
0.7581
0.8667
0.9753
0.1570
0.1603
0.1638
0.1721
0.1791
0.1850
0.1900
0.1944
0.1996
0.2074
S 302.4
C -26.573
R. 0.9988
PORE RADIUS
VOL
CUMV
1000.
500.
400.
300.
200.
150.
100.
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
500.
400.
300.
200.
150.
100.
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
10.
0.0015
0.0007
0.00 10
0.0017
0.0016 .
0.0028
0.0009
0.0011
0.0013
0.0017
0.0024
0.0016
0.0018
0.0023
0.0031
0.0049
0.0083
0.0052
0.0068
0.00 86
0.0103 -
0.0148
0.0015
0.0022
0.0032
0.0049
0.0065
0.0093
0.0102
0.0112
0.0126
0.0143
0.0167
0.0182
0.0201
0.0224
0.0255
0.0304
0.0388
0.0440
0.0508
0.0594
0.0697
0.0844
433
-------
SAMPLE: EXV-1
REL P
VOLUME
0.1428
0.1769
0.2149
0.3231
.0.4313
0.5395
0.5477
0.7559
0.&641
0.9722
S 667.4
C- -22.
R 0.9985
0.3628
0.3636 .
0.3733
0.3851
0.3950
0.4031
0.4103
0 . 4 1 6.8
0.4242
0.4350
«
544
•
PORE RADIUS
VOL
CUMV
1000.
500.
400.
300.
200.
150.
100.
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
500. '
400.
300.
200.
150.
100.
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
Id.
16.
14.
12.
10.
0.0022 .
0.00.09
C.0014
0.0024
0.0022-
0.0040
0.0012
0.0015
0.0019
0.0025
0.0034
0.0023
0.002H
0.0035
O.C047
O.OOfO
0.0115
0.0071
0.0096
0.0123
0.0149 '
. 0.0204
. 0.0022
0.0031
0.0045
0.0070
0.0092
0.0131
- 0.0144
0.0159
0.0178
0.0203
C.0237
0.0260
0.0238
0.0323
0.0369
0.0439
0.0554
0.0625
0.0721
0.0844
0.0994
0.1198
434
-------
APPENDIX A-16
EXPERIMENTAL RESULTS OF BENCH SCALE RECYCLE
TESTS - SOLVENT EXTRACTION VERSUS HYDROGEN TREATMENT
1. S02 Sorption Results from 1" Diameter Fixed Bed 436
for (NH4)2S Extracted and H2S Generation
Carbon Samples
2. S02 Sorption Results from Differential Rate 448
Apparatus for (NH4)2S Extracted and H2S
Generation Carbon Samples
3. Sulfur Generation from 1" Diameter Fixed Bed for 453
(NH4>2S Extracted and H2S Generation Carbon
Samples
4. (NH4>2S Extraction Experimental Results 462
5. Pore Volume Distribution Runs for (NH4>2S 468
Extracted and H2S Generation Samples after
Sixth Cycle
435
-------
APPENDIX A-16-1
S02 SORPTION RESULTS FROM 1" DIAMETER FIXED BED
FOR (NH4)oS EXTRACTED AND H2S GENERATION
CARBON SAMPLES
S02 SORPTION RATE
8 31 71
RXT-6-1A
JENPFRATURE =_ 2p8.00QOOO_F
SPACC VELOCITY « 0.299939E 0~4
INLET S02 MOLE FRACTION (DRY) =
/HR
0.002760
INLET H20 MOLE FRACTION «__ _.Q.0.9997.8._ .
INLET OXYGEN HOLE FRACTION = 0.035403
INLET C02 MOLE FRACTION = 0.0
INLET NO KOLE FRAt.II.ON = „__ 0.000149
INLET INERT GAS MOLE FRACTION = 6.861992
INLET CARBON WEIGHT = 40.000000 GMS
J.OTAL..GAS. J.COW _= ._7.0.61549_5.CFH
(WET) =
0.0024H4
TIME
MOLE FRACTION.S02.
H2S04 LOADING
CMS ACID/GM C
RATE OF H2S04 SORPTION
GMS ACID/GM C-MIN
0. .
30.
60.
90.
120.
150.
. 180. _ .
210.
240.
_..260. . ._
0. M!>000t-0.*
0.315000E-03
0.396000E-03
._ 0..450000E.-03.
0.660000E-03
0.660000E-03
0.600000E-03 _
0.750QOOE-03
0.920000E-03
0.900000E-03
O.u
0.241539E-01
0.478977E-01
0.709748E-01
0.927576E-01
0.113503E 00
0.134545E 00
0.155143E 00
0.174160E 00
...0.186343E. 00
O.U
0.805129E-03
0.777798E-03
0.760674E-03
0.691522t-03
o.egisi'ZE-oj
0.711279E-OJ
0.661885E-03
0.605905E-03
0.612491E-03
AVERAGE RATE OF S02 SORPTION
0.705465E-03
436
-------
S02 SORPTION RATE
8 31 71
RXT-6-2A
TEMPERATURE = 209.000000 F _
"SPACE VELOCITY = 0.299961E 04"/HR ~
INLET S02 MULE FRACTION (DRY) = 0.002760
INLET H20 MOLE FRACTION * 0.100021
INLET OXYGtN MOLE TRACTION = 0.035045
INLET C02 MOLF FRACTION = 0.0
INLET NO HOLE FRACTICN = 0.000)50
INLET INEK1 GAS MOLE FRACTION = 0.862302
INLET CARPON WEIGHT = 29.899994 GMS
TOTAL GAS FLOW = 5.278689 SCFH
(W6T) =
0.002484
TIME
0
30
60
?.P
120
150.
MOLE FRACTION S02
H2S04 LOADING
GMS ACID/GM C
RATE OF II2S04 SORPTIC.N
GMS ACID/GM C-I-'1N
0.150000E-03
0.150000E--03
0.510000E-03
0.690000E-03
"0.102000E-0?""
0.100500E-02
0.108000E-02
0.120000E-02
0.0
0.257a'tf»E-01
0.497908E-01
0.711296E-01
0.699^030-01
0. 107213E 00
0.124180E 00
0.140185E 00
0.0
0.859484E-03
0.740934E-03
0.681660E-03.
f\ K i "\f\ n i™» i~ ^ "»
Wft^i£.'^"w V_*
0.57/929E-03
0.55J231t-03
0.513715E-03
210
AVERAGE,RATE OF S02 SORPTION =
0.642B48E-03
437
-------
S02 SORPTtON RATE
8 31 71
RXT-6-3A
TEMPERATURE = 199.000000 F _
SPACE Vl:i.OCitY * 0.299982E O'l /HR
INLET S02 HOLE FRACTION (DRY) = 0.002780
iiJNLCT H20 MOLE FRACTIQM =. . 0.100036
INLET OXYGEN MOLE FRACTION = 0.034975
INLCT C02 MOLE FRACTION = 0.0
INLIT NO fOLE FRACTIUN = 0.000150
INLET INERl GAS MOLE FRACTION = 0.862338
INLUT CARBON WEIGHT = 30. 11999!> CMS
TUTAL GAS FLOW = 5.3180.99 SCFH _ _
(WET)
0.002502
TIME
MOLE FRACTIOM S02
H2S04 LOADING
GMS ACID/GM C
RATE OF H2SO't SORPTIO^
CMS AC10/GM C-I-'.IN
_ -. 0. ...,.
30.
60.
90.
, 120.
150.
. .lap, ..
210.
240.
0.270000E-03
0.270000E-03
0.420000E-03
0.585000E-03
«,. 780nnoe-0*
0.1035006-02
0.102000E-02
0.916000E-03
0.885000E-03
0.0
0. 2^79796-01
O.A88546E-01
0.7U557E-01
0.920782E-01
0..110576E 00
0.127892E 00
0.145794E 00
0.164363E PO
0.0
0.82659BC-03
0.777199E-03
0.722862E 03
0.65B644e-03
&.574667E-03
0.579607E-03
0.613856E--03
0.624065t-03
AVERAGE RATE OF S02 SORPTION =
0.672186E-03
438
-------
S02 SORPTtON RATE
8 31 71
RXT-6-4A
TEMPERATURE =_ 204.000000 F _
SPACE VELOCITY = 0.299933E 04 "/MR
INLET S02 MOLE FRACTION (DRY) = 0.002780
INLET H20 MOLE FRACTION = 0.100043
INLET OXYGEN MOLE FRACTION = 0.034948
INLET C02 MOLE FRACTION = 0.0
INLET NO fOLE FRACTION = 0.000150
INLET INERT GAS MOLE FRACTION ' =" 0.862364
INLET CARBON WEIGHT = 29.500000 GMS
TOTAL GAS FLOW = 5.207779 SCFH
(WET)
0.002502
TIME MOLE FRACTION S02
0. _ 0.120000E-03
30. 0.120000E-03
60. 0.570000E-03
90. _ 0.750000E-03
120. 0.764000F-03
150. 0.930000E-03
180. 0.1Q3500E-02
• 210. 0.120800E-02
240. 0.120800E-02
270. 0.1275006-02
290. 0.135000E-02
AVERAGE RATE OF S02 SORPTION =
H2S04 LOADING
GMS ACIO/GM C
0.0
0.262754E-01
0.503282E-01
_0.712694E-P1
0.912524E-01
0.110346E 00
0.128102E 00
0.144485E 00
0.160013E 00
0.175210E 00
0.184874E 00
0.616974E-03
RATE OF H2S04 SORP1ION
GMS ACIO/GM C-MIN
0.0
0.875846E-03
0.727676E-03
C.668408t-03
0.663799E-03
0.517605E-03
0.517605E-03
C.495544E-03
0.470849E-03
439
-------
S02 SORPTION RATE
8 31 71
RXT-6-5A
TEMPERATURE = 206.000000 F
SPACE VELOCITY = 0.299917E 04 /HR
INLET S02 MOLE FRACTION (DRY) « 0.002780
INLET 1120. MOLE FRACTION. = Q.*_LQ.0.0.26_.
INLET OXYGEN MOLE FRACTION = 0.035019
INLET C02 MOLE FRACTION = 0.0
1NLLT NO MOLE FRACTION =. O.OOOIVJ.
INLET INERT GAS MOLE FRACTION = 0.862311
INLET CARBON WEIGHT - 29.279999 CMS
.TOTAL GA.S . FLOW = 5..168670_._$.CJH _
0.002502
TIME . __ MOLF FRACTION S02
H2SO't LOADING
CMS ACIO/GM C
RATE OF H2SOA
GMS AC1U/GM C-HI'N
0.
30.
60.
90,
120.
IbO.
210.
240.
270.
300.
320.
0.270000E-03
0.270000E-03
0.720000E-03
D.87.0000E.-Q3-
0.107000E-02
0.105000E-02
Q..1.0.3.5 0.0 E-Q2_
0.117000E-02
0.135000E-02
0..1A2500E-02.
0.150000E-02
0.150000E-02
0.0
0.247928E-01
O.A73632E-01
0.669702E-01
0.0
0.82642BH-03
0.678264E-03
0.102332E 00
.0_«JL19A94E_P.O..
0.136064E 00
0.151078E 00
00
00
0.186275E 00
0*^7'>'»CCH C3»
0.569610E-03
...0 ..5_7.ft,549E.-_0_3_..
0.530099E-03
.Q,44614_OE-03..
6.42l445t-03
0.421445E-03
AVERAGE RATE OF 502 SORPTION
0.563127E-03
440
-------
S02 SORPTION RATE
8 31 71
RXT-6-6A
_TGMPERATURE_ = 199.000000 F __
SPACE VELOC ITY "~= 6729862 1 FT 04 ~/ll~R
INLET S02 MOLE FRACTION (DRY) = 0.002700
INLET H20 MOLE FRACTION = 0.100015
"INLET OXYGEN MOLE FRACTION = 0.034935
INLET C02 MOLE FRACTION = 0.0
INLET NO MOLE FRACTION = 0.000150
"INLET INERT GAS MOLE FRACTION" =" 0'. 862405
INLET CARBON WEIGHT = 28.500000 GMS
TOTAL GAS FLUW = 5.009249 SCFH
UET) =
0.00243U
TIME
MOLE FRACTION S02
H2S04 LOADING
GMS ACID/GM C
RATE OF H2S04
CMS ACID/GM C-MIN
0.
30.
60.
90.
120.
150.
180-
210.
240.
270.
280.
0.0
0.0
0.390000E-03
0.780000E-03
0.855000E-03
0.930000E-03
0.108000E-02
0.121500E-02
0.118500E-02
0.12'4500E-02
0.129000E-02
0.0
0.265547E-01
0.5H916E-01
0.719927E-01
0.905072E-01
0.108284E 00
0.124954E 00
0.1'i0223E 00
0.154976E 00
0.169581E 00
0.174277E 00
U.O
0.88&157I>03
0.757301E-03
0.629445E-03
0.604857E-03
0.580270E-03
0.531094C-03
0.4K6tt3ot-ui
0.496671E-03
0.477001c-03
0.462248E-03
AVERAGE RATE OF S02 SORPTION =
0.600290E-03
441
-------
S02 SORPTION RATE
8 31 71
RXT-7-1A
^TEMPERATURE = 20.6.000000 £ ..
SPACE VELOCITY = 0.299977E 04 /HR
: INLET S02 MOLE FRACTION (DRY) = 0.002740
L INLET H20 MOLE FRACTION ~ 0.099965_
INLET OXYGEN MOLE FRACTION = 6.035398
INLtT C02 MOLE FRACTION a 0.0
.. INLtT NO MOLE FRACTION = 0.000149
INLET INERT GAS MOLE FRACTION = 0.862024
: INLET CARBON WEIGHT = 40.000000 GMS
,_ryiAL GAS_rLOw = 7.062449 S.CFH :_
(WET>
0.002466
TIME
MOLE FRACTION S02
H2S04 LOADING
GMS ACID/GM C
RATE OF H2S04 SORPTION
GXS ACIO/GN C-MIN'
.0.150000C— 03
0.150000E-03
0.210000E-03
0.300000E-03
0.330000E-03
0.345000fc-03
0.570000E-03
0.600000E-03
0.750000C-03
0.0
0.255899E-01
0.508834E-01
0.754359E-01
0.993956C-01
0.123133!: 00
0.145685E 00
0.166977E 00
0.183979E 00
0.0
0.852998E-03
0.8:j3237E-03
0.803596E-03
0.79Jl7l6t-03 """
U. /bH/Yt-t-03
0.714674E-03
0.704793E-03
0.655392E-03
:!: AVERAGE RATE OF S02 SORPTION =
0.770802E-03
442
-------
S02 SORPTION RATE
8 31 71
RXT-7-2A
.TEMPERATURE = 203.000000 F
SPACE VELOCITY" = ~r~ b.299962'E~ "oV/HR ~
INLET SU2 MOLE FRACTION (DRY) = 0.002760
.INLET H20 HOLE FRACTION = 0.099964
INLtT OXYGLN MOLE FRACTION = 0.034952
INLET C02 MOLE FRACTION = 0.0
INLET NO KOLE FRACTION = 0.000150
INLET INER1 GAS MOLE FRACTION = 0.862't!>2
INLET CARBON WEIGHT = 32.409988 GMS
TOTAL GAS FLOW = 5.722059 SCFH
(WET) =
O.C02't84
J I ME
0.
30.
60.
90.
120.
150.
180.
210.
240.
••270.
300.
330.
360.
390.
420.
A 50.
480.
4B5.
'ERAG
MOLE FRACTION S02
0.138000E-02
0.138000E-02
0.158500E-02
'.'. 0.163500E-02
0.174000E-02
0.186000E-02
0. 180000E-02
0.16650QE-02
0.162000E-02
0.166000E-02
0.177000E-02
0.166500E-02
0.165000E-02
0.180000E-02
0.186000E-02
0.198000E-02
0.204000E-02
0.202000E-02
E~R ATF"OF '1'02~ SORPT fON
H2SOA LOADING RATE OF H2SOA SORPTION
GMS AC1D/GM C GKS AC ID/ CM C-M1N
0.0 0.0
0.136341E-01 0.454471E-03
0.2625b6E-01 0. 3869!>9t-03
0.376173E-01 _ 0. 370492E-03
0.482134E-01 0. 33591 3t-03
0.576980E-01 0. 296394F-03
0.660062E-OI 0. 31ol54E-03
0.770376E-01
0.880783E-01
0.991436E-01
0.109468E 00
0.119768E 00
0.130660E.OQ
C.140886E 00
0-150074E 00
0.158373E 00
"""O. 165783'E 00
0.166985E 00
0.337610E-03
0.360613t-03
0.375432E-03
0.362259E-03.
0.326033E-03
0.360613E-03
0.365552E-03
0.316154E-03
0.29639AE-03
C.25687tjE-03 .
0.237115C-03
0.243702E-03
443
-------
S02 SORPTION RATE
8 31 71
RXT-7-3A
TEMPERATURE_= _ 20.^.000000. F „
SPACE VELOCITY = 0.299944E 0'* /MR
INLET S02 MULE FRACTION (URY) * 0.002780
INLCT H20 MOLE FRACTION = __Q_._lOOpfi5 :
INLET OXYGF.N MOLE FRACTION = 0.035078
INLET co2 MOLE FRACTION = o.o
INLET NC MOLE FRACTION = 0.000149
INLET INERT GAS MOLE FRACTION * 0.862216
INLET CARBON WEIGHT = 27.289993 GMS
TOTAL GAS FLOW = 4.8 17.819__SC,FH.
(WET) -
0.002502
TIME
0. . _
30.
60.
90. _
120.
150.
1 HO - _
210.""
240.
..27Q._
300.
330.
-360.
390.
420.
__450.
480.
510.
.^520.
MOLE FRACTION S02
0.117000E-02
6.117000E-02
O.l'tlOOOE-02
0.144000E-02
0.153000E-02
0.168000E-02
h, l is?OOr>F-0?
0.180000E-02
0.177000E-02
0.186000E-02
0.194000E-02
0.188500E-02
.0.187000E.T02_
0.195000E-02
0.196500E-02
0.189000E-02.
0.196500E-02
0.208000E-02
0.2100.0QE-02,
H2S04 LOADING
GMS ACIO/GM C
RATE OF H2S04 SORPTICN
GMS 'ACID/GM C-KIN
0.0
0.159041E-01
0.306227E-01
0.440078E-01
0.568002E-01
0.684072E-01
0.795696E-01
0.901394E-01
0.999683E-01
0.109501E 00
0.118194E 00
0.126763E 00
, .0... 135.6.7.8 E. .00..
0.144272E 00
0.152397E 00
0.160818E 00
0.169240E 00
0.176722E 00
- _. 0.,. 1.7 3 9 9.4 E. 00
0.0
0.530136E-03
0.451109t-Q3
0.441231E-03
0.411596E-03
0.362205E-03
0.381961E-03
0.3226911: -03
0.332569E-03
0.302935E-03
C.276593E-03
0.294703E-03
672 7 3 300 E - 0 3
0.268361E-03
C.293056E-03
0.268361E-03
0.230494E-03
0.223908E-03
AVERAGE RATE OF S02 SORPTION
0.335513E-03
444
-------
$02 SORPTION RATE
8 31 71
RXT-7-4A
TEMPERATURE = 202.000000 F
SPACE VELOCITY = 0. 299954E~"~04 /HR "
INLL-T 502 MOLE FRACTION (URYJ = 0.002780
INLET H20 MOLE FRACTION = 0.100010
INLET OXYGEN MOLE FRACTION = 0.034786
INLET C02 MOLE FRACTION = 0.0
INLET NO MOLE FRACTION = 0.000149
INLET INERT GAS MOLE FRACTION = 0.862560
INLET CAKUUN WEIGHT = 24.750000 GMS
TOTAL GAS FLOW = A.369549 SCFH
(WET) =
0.002^02
TIME
MOLE FRACTION S02
H2S04 LOADING
GMS ACIO/GM C
RATE OF II2S04 SORPTION
GMS ACID/GM C-I'.IN
:".. 0 .
30.
60.
90.
1 120.
'• iyO.
. 180.
210.
240.
270.
; 300.
330.
360.
390.
420.
450.
480.
510.
540.
570.
0.135000E-02
0.135000E-02
0.167000E-02
0.180000F:-02
0. 186000E-02
0* i*' >OvV^u"" O" C.
0.186000E-02
0.195000E-02
0.192000E-02
0.201000E-02
O.183000E-02
0.171000E-02
0.165000E-02
0.165000E-02
0.156000E-02
0.162000E-02
0.162000E-02
0.192000E-02
0.200000E-02
0.200000E-02
0.0
0.141270E-01
0.266733E-01
0.369969E-01
0.463819E-01
0.5502COC-C1
0.636702E-01
0.723143E-01
0.806620E-01
0.887133E-01
0.972093E-01
0.107187E 00
0.1180'34E 00
0.129217E 00
0.140825E 00
0.152581E 00
0.164041E 00
0.174018K 00
0.182119E 00
0.189825E 00
0.0
0.470900t:-03
0.365524E-03
0.322714E-03
0«3029t)6E-03
n •> 7 J 7 I o c — r> i
0.302956E-03
0.273319E-03
0.283198E-03
0.253561E-03
0.312835E-03
0.352351E-03
0.372110E-03
0.372HCE-03
0.401747E-03
0.38L989E-03
0.381989E-03
0.2H3198E-03
0.2b6n54e-03
0.2')6b54fc-03
AVERAGE RATE OF S02 SORPTION
0.327393E-03
445
-------
S02 SORPTIQN RATE
8 31 71
RXT-7-5A
TEMPERATURE =__?03.000QQp_JF ,_
SPACE VELOCITY = 0.299947E 04 /HR
INLET S02 MOLE FRACTION IUE_-JQ1...
0.9A8716E-01
0.103639E 00
0.1102>9E 00
0.116335E 00
0.121744L 00
.__0.126.700F 00
0.131228E 00
0.135452E 00
0.139602E 00
0.144047F 00
0.148493E 00
0_.J..52.7.9IE 00
0.157015E 00
0.206751t-03
RATL-
: H2S04
ACID/OK C-NIN
0..0
0.263462E-03
0.24b995E-03
0.276635E-03
0.246995E-03
0.2272.36^-03
0.256875E-03
0.227236E-03
0.204183E-03
0.246995E-03
0.246995E-03
0.263462.t-03
0.2272.36E-03
0.223942E-03
0.217356E-03
0.1fi7717E-03
0. 172097E-03
0. l^^07tE-0^_
0.143257L-03
0. 13U317L-03
0.13BJ17L-03
0. 15 HO 7 71: -03
0.138317C-03
0_. 14U197C-03
0. 133378F-03
446
-------
S02 SORPT10N RATE
8 31 71
RXT-7-6A
TEMPERATURE = 203.000000 F
SPACE VELOCITY *" 0. 299986E
INL1IT 5112 MOLE FRACTION (DRY)
INLET H?0 MOLE FRACTION =
INLET OXYGEN MOLE FRACTION =
IMLET C02 MOLE FRACTION =
INLET NO MOLE FRACTION = 0
INLET INERT GAS MOLE FRACTION
04 /HR
- 0.002760
0.099932
0.014928
0.0
.000150
0.862bl7
(WET) = 0.0024K-'.
INLET CARBON WEIGHT = 23.349991 CMS
TOTAL GAS FLOW = 4.122819
TIME _.MOLE FRACTION .502
0. 0. 163500E-02
30. 0.163500E-02
60. 0.171000E-02
90. 0.192000E-02
,-j. 120. 0.198000E-02
? 150. 0.204000E-02
ISO. 0. 1950CCE- 02
210. 0.198000E-02
240. 0.201000E-02
270. 0.213000E-02
i: 300. 0.207000E-02
: 330. 0.211000E-02
345. 0.210500E-02
360. 0.210000E-02
390. 0.216000E-02
420. 0.1.95000E-02
! 450. 0.205000C-02
* 480. 0.207000E-02
__ 510. .0..2.15QOOE-02
540. 0.19500QE-02
570. 0.195000E-02
600. 0.206000E-02
630. 0.204000E-02
660. 0.210000E--0.?
690. 0.207000E-02
710. 0.207000E-02
SCFH
H2S04 LOADING
CMS ACID/CM C
0.0
O.lll 160E-01 '
0.218615E-01
0.311990E-01
0.392026E-01
0.466133E-01
0.5*,1722E-01
0.620275E-01
0.695064E-01
0.764042E-01
0.829256E-01
0.695458E-01
0.927694E-01
0.96017BE-01
0.102243E 00
0.109209E 00
0.116718E 00
0.123635E 00
0.130057E 00
6.137073C 00
0.145076E 00
0. 152-5366 00
0.159552E 00
0.166370E 00
0.173039E 00.
0.177584E 00
RATE OF H2SO'( SOKPTION
CMS AC1U/GK C-J'IN
0.0
0.370535E-63
0.345832E-03
0.2/6666E-03
0.2'.>6904E-03
0.237142F-03
0.26t7S5i'-03
0.256904E-03
0.247023E-03
0.207'50CE-03
G.22/26H--03
0.214087E-03
0.215734E-03
0.217381E-03
0.197619E-03
0.266785E-03
0.233849E-03
0.227261E-03
_0.200912E-03
0.26f>785t--OJ
0.266785L-03
0.2305'55E-03
0.237142E-03
0.217381E-03
0.227261E-03
0.227261E-03
AVERAGE RATE OF 502 SORPT10N
0.24705/E-03
447
-------
APPENDIX A-16-2
SOo SORPTION RESULTS FROM DIFFERENTIAL RATE
APPARATUS FOR (NH4)2S EXTRACTED AND H2S
GENERATION CARBON SAMPLES
GRAVIMETRIC FLOW EXPERIMENTS
Run: 180-G SO?.:
Dry Weight: 95.10 mg NO:
Deflection: -6.18 mg. 02=
Carbon: Virgin, HgO:
C-70-7T
2000 ppm
150 ppm
3.5#
6.055
200°F
1500 cc/min.
75.11*
Correction: 0.1(907
Date: August 3, 1971
Time
minutes
1
2
3
It
5
6
7
8
9
10
12
1>)
16
18
20
?5
30
35
1)0
1)5
50
60
70
80
90
100
330
120
330
11)0
150
360
170
180
190
200
230
2?P
230
2')0
250
260
270
280
290
300
Load
mg. HpSOlj/g. C
ll).72
37.35
39.35
20.93
22.08
23.fl)
2l) . 1(0
25.55
26.71
27.87
29-97
32.07
3l).17
36.38
38 . 1)9
Itl4.36
iio.aii
55.1)2
61.20
66.88
72.55
83.70
95-06
106.1)1
33.7.67
128 . 39
130.80
31)9.21
159-52
]6o.liO
379.18
380.06
198.32
207.36
215.77
223.76
231.1)1)
239.32
?1)6.27
253. 1(2
260.36
266.93
273-50
279.81
285.91
291.90
Mean Load
mg. HgSOlt/g. C
6
8
10
12
ll)
16
18
20
25
30
35
1)0
1)5
50
55
60
65
70
75
80
85
90
95
100
110
120
130
ll)0
350
160
170
180
190
200
220
2l)0
260
280
300
Rate
HIR. H2S01t/g. C/min.
36.21)63
13.9327
11. 63 93
9.1(637
6.5720
3.2597
1.8822
1.5563
1.1672
1.0726
1.0726
1.1251
1.1356
1.1356
1.11)62
1.1567
.1 . 1 567
1.1567
1.1567
1.1567
1.1567
1.1567
. l.ii)62
1.11)62
1.1251
1.1 oia
1.0936
3.0726
1.0515
1.0305
1.0095
0_.9881)
0.9569
0.9253
0.8623
0.7886
0.7150
0.6309
0.51)68
448
-------
GRAV1MKTK1C FLOW
Run: 185-G
Dry Weight: 97.2U mg.
Deflection: -5-9^ me-
Carbon: RXT-6-3C
S02:
NO:
02:.
"20:
2000 ppm
150 ppm
6.07,
t:
Ft:
% IIpl.'Ol.:
Correction :
Date :
200°F
1500 en /win.
77-72
0.5076
August 20, 1971
Time
minute's
1
V
3
)i
c;
(>
7
8
9
10
12
Hi
16
18
20
25
OA
35
1(0
'(5
50
60
70
80
90
100
1.10
120
a 30
]1|0
350
160
170
100
190
POO
210
220
230
2'iO
250
260
2?0
?80
290
300
Load
mf,. }If>t:oj,/p:. C
5.55
8.6)-i
11 .00
1.3.27
J 5 . 3?
17. OY
18.9;'
20.57
22.21
23.76
26.1i3
29.21
31.78
3l*. 25
36.71
1)2.37
':7 . 72
52.55
57.28
61.81
66.23
7^.56
82.68
90.60
98.72
106. 6li
1 Hi. 66
12?. it 8
130.19
:i 37 • 70
I'i5.?.l
152. 'it
159-30
166. :i 9
173.08
179.86
186.65
193. '»li
199-9?
206 . 50
212.67
218.63
22'i.6o
230. !) 6
236.3''
21(1.88
Moiui Load
mg. Up;:/)],/,";. C
2
1|
6
8
'1 0
1?
Ill"
16
1H
20
25
30
35
)|0
'*5
50
rr
s s
60
65
70
75
80
85
90
95
100
110
120
130
ihO
150
360
170
l8o
190
200
220
2*40
•
Rate
rn.'-. Hp:/i)|/r:. 0/min.
5.01(12
it. 7306
3.77>42
3.":',37
2.1..V)P
2. fill)
2. 00 '".3
1.851-1
1.7277
] .621(8
1.1(500
1.3318
1.2230
1.1261
1.01490
0.9821
0.9255 ~"
0.8896
0.8536
0.8381
0.8227
0.812)4
0.8073
0 . 8021
0.7970
0.7970
0.7919
0.776*1
0.7610
0.7*156
0.7302
0.71)17
0.69)1?
0.6736
0.6582 •
0.61(27
0.5965
0.5502
449
-------
GRAVIMETRIC FLOW EXPERIMENTS
Run: 1B6-G
Dry Weipht: 101-70 mg.
Deflection: -6.35 mg.
Carbon: RXT-7-3C
NO:
H20:
2000 ppm
150 ppm
3.5%
6.0%
t:
Ft:
200°F
1500 cc/min.
75-56
Correction: O.li93li
Date: August 23, 1971
Time
minutes
]
2
3
lj
5
6
7
8
9
10
12
• 111
.16
.18
20
25
'.•r>
35
1*0
1*5
50
60
70
80
90
HOG
110
120
330
.1.1)0
150
l6o
170
180
390
200
210
220
230
?1|0
2^0
260
270
280
290
300
Load
mg. H2SOl|/K. C
6.78
8.95
10.ll2
11.50
12.29
12.90
13.67
11*. 36
15 . Ok
15-73
16 .21
18.19
19.'i7
20.55
21.73
2l*.39
27.l'i
29.60
31.96
3l*. 32
36.68
1*0.90
1*5-23
1*9.16
52.90
56.M
60.28
61*. 01
67.1*5
71.1*8
75.22
79.35
83.1*8
87.1)1
91 .05
9k . 59
98.03
101.57
105.53
1 09.W)
113 .27
lif.ll
120 .9'i
121* . 78
128.1)2
131.86
Mean Load
ing. E2SOk/E- C
It
6
8
10
12
1>*
16
18
20
25
30
35
1*0
1(5
50
55
f$n
65
70
75
80
8=5
90
95
100
110
120
130
.
Bate
rag. HgSOli/fl. C/nrin.
5.5261
3.6185
2.26.16
1 . 37^6
0.8505
0.7030
0.6391
0.591*9
0.5605
0.5015
0.1(720
0.1)523
O.Ul25
0.1*277
0.1)228
0 . 1*179
O . 1(1 7Q
0.1)179
0.1*179
0.1*179
0.1)130
O.liOSl
0.1*031
0.3982
0.3933
0.3736
0 . 3589
0.3392
450
-------
GRAVIMETRIC FLOW CALCULATIONS
Run: 187-G
Dry Weight: 91.92 ing.
Deflection: -5-98 mg.
Carbon: RXT-7-5C
S02:
NO:
02:
HgO:
2000 ppm
150 pj)m
3.5#
6.0?
t: 200°F
Ft: 1500 cc/min.
% H2S01(: 75.83
Correction: 0.1)952
Date: August 2l), 1971
Time
minutes
1
2
3
1*
5
6
7
8
9
10
12
Ik
16
18
20
25
3n
35
1)0
1*5
50
60
70
80
90
100
110
120
130
ll)0
150
160
170
180
190
200
210
220
230
2)|0
250
260
270
280
290
300
Load
mp. UjjEOij/f-. C
7.29
1.0.K'
ia.97
13.27
in . 1*7
15. >*5
J6.l)3
17-30
18.06
18.71
19-9-1
21.00
22.19
23.39
21*. 1*8
27.09
90. ^0
31.98
33.9'+
36.01
37-86
1)1 .78
!)5.1»7
J)9 - ] 7
52.65
55- 92
59-10
62.66
65.93
68.97
7-1.91
75.17
78.1)1)
81.59
81*. 75
87-79
91.06
9't.-10
97.69
101.07
I0l).33
107.27
109.99
112.92
].15.5lt
117.93
Mean Load
mg. H2BOi,/g. C
1*
6
8
10
12
Hi
.1.6
18
20
25
30
35
1*0
1*5
50
55
60
65
70
75
80
85
90
95
100
110
120
,
Rate
mg. HpSOjj/g. C/trdn.
6.1)730
lt.7868
3.3616
2.T'08)|
1. Ii687
1.1151
0.8975
0.7398
0.636li
0.1*896"
0.1*569
0.')297
0.1*080
0.3916
0.3808
0.3753
0.3699
0.3590
0.3536
0 . 3l*8l
0 . 3372
0.3261)
0.3209
0.301)6
0.29^7
0.2665
0.2393
451
-------
GRAVIMETRIC FLOW EXPERIMENTS
Bun: 188-G S02:
Dry Weight: 100.66 mg. NO:
Deflection: -5-96 mg. 02:
Carton: RXT-6-5C HoO:
2000 ppra
150 ppm
3.555
6.0%
t: 200°F
Ff. 1500 cc/min.
% H2SOi,:' 76.97
Correction: 0.5027
Date: August 25, 1971
Time-
minutes
1
'•i
t
3
!j
S
.. . £ . .
7
8
9
.10
12
111
16
18
20
25
on
35
1.0
U 5
50
60
70
80
90
100
:I.LO
120
130
I'lO
150
160
.170
180
J90
200
210
220
230
2lib "
2^0
260
270
2CO
290
300
Load
mg. Il2S01)/R. C
7.15
.10.53
13.31
15-50
37.6(1
19. 5Y
21 . 36
23.15
2>i.7)4
26 . 33
29 . 31
32.39 •
3'i.«7
37-55
liO.Oli
JJ5.90
n:n o£
J.IL. . ..^-
56.'i3
61.10
65.67
70 .Oil
78.1)8
86.83
9'i.87
102.52
109-97
117.23
12l).li8
131.53
138.1)9
I'i5.3l)
1 52 . 39
159.15
365.71
172 . 36
170. ft;1
iSli.ftB
390.611
136.70
202.56
20C.52
?l'i.39
220 . 1 S
225.91
23-1 .27
vtiM
Mean Load
m;-;. HoSOIj/g. C
If
6"
B ~
10
If?
Ill
. 16
18
20
25
30
35
1)0
'15
50
55
f,r\
65
70
75
80
85
90
95
100
110
120
130
lliO
150
160
170
180
190
200
220
?1|0
Rate
mg. HgSOli/g. C/iriiii .
6.3332
li.6U93
3.6956
3.0995
2.6376
2.37^3
2.1111
1.9'i22
.1.8180
1.5895
I.)i355
1.3:i63
1.2170
1.1276
1.01)81
0.993li
0 . 9li3ft
0.9090
O.G7l)2
0.81»9l*
0.8295
0.8lU6
0.79W '
0.7799
0.7699
0.7^51
0.7252
0.7053
0.690i|
0.6706
0.6557
0.6)i57
0.6259
0.61.10
0.591.1
0.5563
0.5166
452
-------
APPENDIX A-16-3
SULFUR GENERATION FROM 1 INCH DIAMETER FIXED BED
FOR (NH4)2S EXTRACTED AND H£S GENERATION CARBON SAMPLES
453
-------
RATF OF SULFUR GENERATION
BtNCH SCALE
RXT-6-IB
SPACE VELOCITY = 0.100125E 04 /HR
INFRT GAS FLOW RATE = 623.00 SCC/MIN
i^EIGHT OF CARBON, UNLOADED * 32.000 GHS
LOADED
INLET PERCENT H2S ~ 38.000
INLET MOLAR H2S CONCENTRATION -
INLET SULFURIC ACID LOADING =
0. 612903 MOLES H2S/MO_Lt
0. 1137600 CMS H2S04/GM CARBON,
l.68
_*P_-JLP.GMS
GAS
FINAL OUTLET PERCENT SULFUR LOADING ON CARBON =
4S FINAL OUTLET SULFUR LOADING ON CARBON = " 0.248~GMS S/GM CARBON
Ui INITIAL TEMPERATURE = 270.00 F
-!>• MAXIMUM TEMPERATURE = 315.00 F
"FINAL TEMPERATURE = 310.00 'f
8 31 71
PERCENT S02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
PERCENT CO2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
MOLAR CONC H2S
0.0
0.214505E-01
0.219512E 00
0.199041E 00
0.319261E 00
0.562500E 00
0.612903E 00
0.612903E 00
H2S04 LOADING
GMS ACIO/GM C
0.187600E 00
0. 102135E 00
0. 322466E-01
-0.250390E-01
-0.752A60E-01
-0.996606E-01
-0.103237E 00
-0*!03237E 00
RATE ACID DECOMP.
GM ACIO/GM C-KIN.
0.0
-0.167B86E-01
-0.111666E-01
-0.1174776-01
-0.833515E-02
-0.143072E-02
0.0
0.0
TIME PERCENT H2S
0.0 0.0
5.0 0.2100006 Oi
10.0 0.180000E 02
15.0 0.166000E 02
20.0 0.242000E 02
_25.0 0.360000E 02
30.0 " 0.380000E 02
35.0 0.380000E 02
ACID LOADING - 0.1876bOE»01 AT0.111771E 02 MINUTES
RATE OF ACID DECOMPOSITION » -0.113034E-01 AT 0.111771E 02. MINUTES
AVERAGE RATE OF ACID DECOMPOSITION UP TO 90_PERC_ENT ACID UTILIZATION =
-O.I5696CE-01
-------
Ul
Ul
RATK OF SULFUK GENEKAHUN
BENCH SCALE
ri 31 71
RXT-6-2B
SPACE VELOCITY = 0.500870E 03 /HR
INERT GAS FLOW RATE » 291.00 SCC/NLN
_ME|GHT._QF. CARBON, UNL QA.D JE D_2 29.900 CMS
LUADEO
33.61 GMS
INLET PERCENT H2S ^ 32.000
LNLE_T_MOLAR_ H2S CONCENTRATION =
INLET SULFURIC *CID LOADING »
Q.47058B HOLES H2S/MOLE INERT GAS
0.139600 GMS H2SQ4/GM CARBON,
FJNAL Oj^f).EX.I^RGEN.T'SULFUR LQA01NG ON CARBON
FINAL OUHET, SULFUR LOADING ON CARBON -
INITIAL TiHP€RATURE * 280.00 F
JLAXIMUM TEMPERATURE.; 300.00 F
FINAL TEHPERATURE = 298.00 F
15.420
0.184 GMS S/GM CARBON
TIME
PERCENT H2S
PERCENT S02 PERCENT C02
0.0 .
0.0
0.0
0.0
0*0
O.O
0.0
0.0
0*0
0.0
0.0
0.0
MOLAR CONC H2S
0.0
0.140251E
0.216545E
0:2903236
0.470588E
0.470588E
00
00
00
00
00
H2S04 LOADING RATE ACID DECOMP.
GMS ACID/GM C GM ACID/GM C-MIN.
0.139600E 00 .
0.827747E-01
, 0.4131326-01
0.104992E-01
-0.229061E-02
-0.229061E-02
0.0
-0.468745E-02
-0.360485E-02
-0.255795E-02
0.0
0.0
0.0
0.123000E 02
__0. 178000E__02
0.225000E 02
0.3200OOE 02
_._.0.320000E 02
ACID LOADING = 0.139600E-01 AT 0.288769E 02 MINUTES ^ ?
RATE OF ACID DECQMPQSLI JON j? -0_.2J>mM-0_2_ AJL.. a»_28,8769E _Ql_H.LNUTeS
AVERAGE RATE OF ACID DECOMPOSITION UP TO 90 PERCENT ACID UTILISATION
-0.369408E-02
-------
Ul
RATE OF SULFUR GENERATION
BENCH SCALE
8 31 71
RXT-6-3B
SPACE VELOCITY = 0.^996025 03 /HR
INERT GAS FLOW RATE = = 293.00 SCC/MIN
WEIGHT OP CAHBONt UNLOADED = 30.120 CMS
LOADED
35.95 CMS
INLET PERCENT H2S = 32.500
INLET MOLAR H2S CONCENTRATION^
INLET SULFUR 1C AClD LOADING =
0.481481 MOLES H2S/MOUE INERT £&S
0.167100 GMS H2S04/GM CARBON*
FINAL Ot/TLET PERCENT SULFUR LOADING ON CARBON
FINAL OUTLET SULFUR LOADING ON CARBON -
INITIAL TEMPERATURE = 270.00 F
MAXIMUM 'TEMPERATURE^* HP_.00_F
'FINAL TEMPERATURE'- 298.od" r
17.910
GMS S/GM CARBON
TIME
PERCENT H2S
0.0
10.0
20.0
30.0
40.0
50.0
60.0
0.0
0.0
0.250000E 01
0.263000E 02
0.2750006 02
0.310000E 02
0.325000E 02
PERCENT S02 PERCENT C02 KOLAR
0.
0.
0.
0.
O.
0.
0
0
0
0
0
0
0.0
7100E-01 AT 0,,
0
0
0
0
0
0
0
oO
.0
.0
.0
.0
.0
.0
2 MINUJE.S_
0
0
0
0
0
0
0
CONC H2S
.0
.0
.256410E-01
.356852E
.379310E
.449275E
.481481E
00
00
00
00
H2S04 LOADING RATE ACID DECOMP.
GMS ACID/GM C GM AC1D/GM C-MIN.
0
0
0
-0
-0
-0
-C
. 167100E 00
.9881UE-01
.323407E-01
.882351E-02
.249071E-01
— •;•- - -. - - ^ ,^_L-^ — r ------ :
0.0
-0.682888E-02
-0.6465216-02
-0.
-0.
-0.
0.
176763E-02
144910E-02
456781E-03
0
ACID LOADING = 0
RATE OF ACID DECOMPOSITION = -0.468147E-02 AT 0.237971E 02 MINUTES
AVERAGE RATE OF ACID DECOMPOSITION UP TO 90 PERCENT ACID UTILIZATION = -0.633341E-02
-------
RATE Of SULFUR GENERATION
BtNCH SCALE
RXT-6-4B
SPACE VELOCITY = 0.500339E 03 /HR
INERT GAS FLOW RATE = 287.00 SCC/MIN
Jrf.EIGHT.pF CARBON, UNLOADED_• 29.500 CMS
LOADED
36.69 QMS
INIET PERCENT H2S = 30.000
INLET MOLAR H2S CONCENTRATION =
INLET SUtFURIC AC 10 LOADING =
0.428571 MOLES_ H2S/MOLE_LNERJ_GAS_
0.185300 GMS H2S04/GM CARBON,
_F INAL_OUTLET PERCENT,SULFUR LOADING ON CARBON =
Ui FINAL OUTLET SULFUR LOADING ON CARBON
^J INITIAL TEMPERATURE » 305.00 f
_HAXIWUM TEMPERATURE * 311.00__f_ ___
FINAL tEMPERATURE » 297.00 F
1V.48Q
a 31 71
0.2<»2 CMS S/GH CARBON
TIME PERCENT H2S
-1 M ' '
0.0
15.0
30.0
45.0
60.0
0.0 , , .
0.8500QOE 01
0.223000E 02
0.262000E 02
0.300000E 02
PERCENT S02
0.0
0.0
0.0
0.0
0.0
PERCENT C02
0.0
OeO
0.0
0.0
0.0
MOLAR CONC H2S
0.0
0.928962E-01
0.287001E 00
0.355013E 00
0.428571E 00
H2S04 LOADING RATE ACID DECOMP.
GMS ACID/GM C CM ACID/GM C-MIN.
0.185300E 00 i
0. 103996E 00
0.532245E-01
0.303382E-01
0.225I27E-01
0.0
-0.476142E-02
-0.200812E-02
-0.104339E-02
0.0
-------
RATF DP SULFUR f.FNFRATION
BENCH SCALE
8 31 71
-P-
Ul
oo
RXT-6-5B
SPACE VELOCITY = 0.500410E 03 /HR
INERT GAS .FLOW RATE * 285.00 SCC/MIN
NEIGHf'OF'CARBON, UNLOADED = 29.280 QMS
LOADED,.?. 35._80 GM_S_
INLET PERCENT H2S = 34.200
INLET MOLAR H2S CONCENTRATION -
INLET SULFUR 1C ACID LCiADlNG~~=
OOE-Ol AT
S02 PERCENT CO2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.237^58E 02 MINUTES
MOLAR CONC H2S
0.0
0.204082E-01
0.695187E-01
0.43B849E 00
C.497006E 00
0.519757E 00
0.519757E 00
H2S04 LOADING
CMS ACID/GH C
0.186000E 00
0.775295E-01
-0.235415E-01
-0.800750E-01
-0.837527E-01
-0.8^5599E-Oi
-0.8^5599E-01
RATE ACID OECOMP.
GW ACID/GM C-MIN.
0.0
-0.708655E-02
-0.63896CE-02
-0. 114821E-02
-0.322871E-03
0.0
0.0
ACID LOADING = 0.1
RATE OF ACID DECOMPOSITION = -0.668019E-02 AT 0.237458E 02 MINUTES
AVERAGE RATE OF ACID DECOMPOSITION UP TO 90 PERCENT ACID UTILIZATION = -0.693688E-02
-------
RATE OF SULFUR GENERATION
BENCH SCALE
8 3i 71
RXT-7-IB
SPACE VELOCITY = 0.494292E 03 /HR
INERT GAS FLOW RATE » 312.00 SCC/MiN
HEIGHT Of CARBONt UNLOADED ...... 32.410 GMS
LOADED
38.60 GMS
INLET PERCENT H2S * 26.800
1NLET MOLAR H2S CONCENTRATiON =
INLET SUIFURIC ACID~ LOADING "»
0.366120 MOLES H2J7 MOIE_ INERT GAS
0.167400 GMS H2S04/GM CARBON*
LlJS!AL.OUTLET PERCENT SULFUR LOADING ON CARBON
FINAL OUTLET SULFUR LOADING ON CARBON =
INITIAL TEMPERATURE = 273.00 F
MA_XIMUM TEMPERATURE _• 303.00 F
FINAL TEMPERATURE * 302.00 F ;
17,970
0.214 GMS S/GM CARBON
TIME PERCENT H2S
0.0 0.0
30.0 0.6500006 01
_60_. Q Q . 252 OQQ.E_fl2
90.0 0.256000E 02
105.0 0.268000E 02
ACID LOADING - 0
RATE OF ACID DECOMPOSITION
PERCENT S02
o.o . : •:. .. .•;••••,..•.
L 0.0 :-' .- •:,:-s''-:. :
> 0.0
> 0.0
I 0.0
PERCENT C02 MOLAR CONC H2S
0.0 0*0
0.0 0.695187E-01
0.0 . 0.33689SE 00
0.0 0»?44086E 00
0.0 0.366120E 00
H2S04 LOADING
GMS ACID/GM C
0.167400E 00
0.278739E-01
-0.407232E-01
-0.5151-V3E-01
-0.538338E-01
RATE ACID OECOMP.
GM ACIO/GM C-MIN.
0.0
-0.416300E-02
-0.410U5E-03
-0.30926*E-03
0.0
L67400E-01 AT 0.3A8693E 02 MINUTES
5ITION = -0.355388E-02 AT 0.3^8693E 02 MINUTES
DECOMPOSITION UP TO 90 PERCENT ACID UTILIZATION = -O.A07793E-02
-------
-p-
ON
O
RATE OF SULFUR GENERATION
BENCH SCALE
B 31 71
RXT-7-2B
~SPACE VELOCITY - 0.615268E 03 /KR ~
INERT GAS FLOW RATE = 315.00 SCC/MIN
WEIGHT OF CARBON, UNLOADED = 26.330 CMS
LOADED
32.41 CMS
INLET PERCENT H2S = 26.300
INLET MOLAR H2S CONCENTRATION =
INLET SULFURIC ACID LOADING «
0.356852 MOLES H2S/MpLE__INERJ_GAS
6.168900 GMS H2S04/GM CARBON,
_FINAL OUTLET PERCENT SULFUR LOADING ON CAK80N
FINAL OUTLET SULFUR LOADING"ON CARBON =
INITIAL TEMPERATURE * 270.00 F
MAXIMUM TEMPERATURE = 315.00 F
FINAL TEMPERATURE * ~300JOO F
18.070
0.222 GMS S/GM CARBON
TIME
PERCENT H2S
0.0
0.0
0.0
0.400000E 01
0.230000E 02
0.245000E 02
0.260000E 02
0.255000E 02
0.260000E 02
PERCENT S02
0.0
0.0
0.320000E
0.300000E
0.0
0.0
0.0
0.0
0.0
0.263000E 02 0.0
ING = 0.168900E-01 AT 0
01
00
PERCENT C02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o - •,
0.0 :
0.0
.295749E 02 MINUTES
MOLAR CONC H2S
0.0
0.0
0.0
0.417973E-01
0.298701E 00
0.324503E 00
0.351351E 00
0.342282E 00
0.351351E 00
0.356852E 00
H2S04 LOADING
GMS ACID/GM C
0.168900E 00
0.137777E 00
0.106655E 00
0.480550E-01
0.155062E-01
0.115598E-01
0.990935E-02
0.903412E-02
0.728368E-02
0.704382E-02
RATE ACID OECOMP.
GM ACID/GM C-MIN.
O.O
-0.622
-------
RATE OF SUI FIIK GENERATION
BENCH SCALE
8 31 71
RXT-7-5B
"SPACE VELOCITY = 0.500329E 03 /HR "~ ~'~
INERT GAS FLOW RATE = 237.00 SCC/MIN
__MilGH.L OF...CARBON»_ UNLOADED = 2*.320 CMS
;J LOADED
30.90 CMS
INLET PERCENT HZS = 28.000
INLET MOLAR H2S CONCENTRATION =_
INLET SULFURIC ACID LOADING -
0.388889 MOLES H2S/MOLE INERT GAS
0.18*000 CHS H2S04/GM CARBON*
_JF INAI._.OUTLET _PEJU:ENT SULJUR LOADING ON CARBON
FINAL OUTLET SULFUR LOADING ON CARBON
INITIAL TEMPERATURE = 270.00 F
MAXIMUM TEMPERATURE = 310.00 j
FINAL TEMPERATURE = 300.00 F
19*350
0.246 CMS S/GM CARBON
TIME
0.0
15.0
_30.0.
60.0
75.0
90.0
105.0
120.0
PERCENT H2S
0.0
0.1000QOE 01
0.800000E 00
0. 175000E 02
0.175000E 02
0.183000E 02
0.185000E 02
0.157000E 02
PERCENT S02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
PERCENT C02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
MOLAR CONC H2S
0.0
O.IOIOIOE-OI
0»806452E-02
0.212121E 00
0.212121E 00
0.223990E 00
0.226994E 00
0.1862AOE 00
0««28571£ 00
H2S04 LOADING
CMS ACID/GM C
: O.ie^OOOE 00
: 0.102195E 00
0.212486E-01
-0.975879E-01
-0.135261E 00
-0.171670E 00
-0.206<>9<»E 00
-0.2*5341E 00 :i
-0.256918E 00 ;
RATE ACID DECOMP.
GM ACID/GM C-M1N.
0.0
-0.538193E-02
-0.5*1086E-02
-0.251157E-02
-0.251157E-02
-0.234293E-02
-0.230025E-02
: -0.287930E-02
0.563822E-03
ACID LOADING = 0.184000E-01 AT 0.307191E 02 MINUTES
RATE_OF_ JVC. ID _DECOMPOS IT I ON. .= -0.53^137E-02 AT 0. 30 7191E 02 MINUTES
AVERAGE RATE OF ACID DECOMPOS'lTION UP TO 90 PERCENT ACIOUTILIZATION = -0.539510E-02
-------
APPENDIX A-16-4
(NH4)2S EXTRACTION EXPERIMENTAL RESULTS
RIM: RXT-T-1C
CARBON USED: RXT-T-1B
SOLVENT USED: 15?
Solution
Waiih Number
1
2
3
b
5
6
' T
6
9
10
i
2
3"
Time,
minutes
0
2
5
8
11
15
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
0
>
10
15
0
5
10
15
0
5
10
15
0 •
5
10
15
0
5 -•
10 -
15
0
5
10
0
5
10
0
5
10
Temperature ,
°F
100
102
105
105
105
120
111
110
103
105
102
105
108
110
107
107
105
102
101
102
100
115
ICO
100
103
120
105
105
105
105
107
100
100
110
100
105
100
115
108
105
105
95
100
110
110
105
110
305
105
105
Circulation Rate, ml./mln.
(NHIiJaS
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
91-
->^
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
H20
60
60
60
60
60
60
60
60
60
ml. (HE It) 28
Added
~50
-50
~50
—50
-50
-50
^50
,-50
~50
-50
ml. (NHltJj: +
Sulfur Dralr.ed
19-5
36
37
36
3li.5
32
32
32.5
33
30
l46«
37*
39*
••1. HjO Dr«in«4
••After mtcr vmehlng, Bteamed for 2 hours at 1,000 cc/min.
462
-------
CA'UOIl I '.Ml: R»
Vftcli Kvjalwr
2
3
*
5
6
7
0
9
10
11
12
13
111
15
1
2
3"
T-7-2»
Time,
0
5
10
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
0
: J
10
15
0
5
10
15
0
5
10
3;
0
5
10
15
0
5
10
15
0
5
10
15
0
10
15
0
5
10
15
0
5
10
15
0
J
10
15
0
5
10
15
0
5
10
15
POLUTIOII arm: i^J (i.',:i,).,:! :;cjutlon
'!''•.', iviiture ,
102
106
105
111
110
100
106
115
109
109
111 .
103
110
10k
109
115
105
105
J09
1X0
)00
110
103
117
100
109
105
120
100
102
123
100
110
98
112
110
105
111
110
110
69
106
110
100
110
102
111
111
112
103
110
110
90
100
112
90
110
110
310
327
105
110
110
120
111
111
111
i'"r ]~'^~ r '^j
35 '
35
35
Vi
35
.35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
60
60
60
60
60
60
60
60
60
60
60
60
p.!, (KIU,);;:
—50
-50
-50
-50
-50
-50
-•50
-50
~50
-50
-50
-50
-50
-50
~50
nl . (!i!l|,Nf! *
t'ul f'lf rr:»!no1
25
«2
25
llO
29.6
U6.2
53
51.5
1.2
1.8
1.8
lib
82.5
36.5'
!2.5«
66.3"
"After vater vn
it«nm«d for 2 hour* n,t 1,000 cc/mln.
463
-------
RXT-7-3C
CWKSI U1ED: BXT-7-3H SOLVENT USED! 151 (HIH^S Solution
V&Blt Itiunlitr
1
I
3
H
5
6
7
6
9
10
11
12
13
it
15
1
P
f"
Tlr,e,
rtltvit'e
0
5
10
15
0
5
10
15
0
5
ID
15
0
5
10
15
0
5
10
15
0
5
10
15
0
•>
10
15
0
5
10
15
0
•5
in
15
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
0
5
100
15
0
5
10
15
0
5
10
Ttfovcrriture,
•T
105
102
105
105
112
100
106
100
110
100
IOC
10?
102
100
101
101
101
95
101
101
105
100
101
101
101
101
101
101
100
98
101
100
100
101
100
102
101
101
101
100
101
100
101
100
98
100
101
102
105
101
101
100
101
95
102
10?
110
100
lOli
102
103
101
101
101
100
101
101
100
100
105
101
Clrculitlon fljtlt.-, ri)./«.ln.
fuiiii)?;'
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
KiO
60
60
60
60
60
60
60
60
60
60
60
"''/JuM1*5
50
50
50
50
50
50
50
50
50
50
50
50
50
70"
50«
50-
Sulfur PrnlnM
16
1.5
51
U
1.8
U7
>*
50
VI
37
10
17
55
1,6
111."
•U. IlpO A t>iuln-d
•"After water vuolilng, ntnuw-il for 2 houra fit 1,000 cc/mln»
464
-------
RXT-T-liC
CARBON
BOIVHIT USEDi 15?
Solution
Vni.li llu«l«T
1
2
3
k
>
6
7
8
9
10
I
11
12
13
111
15
1
2
3"»
Time.
ml mi I* it
0
5
10
15
•K .
•10
»....
: o -
i 5 .0
10 •
W '...
0
5
19
15
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
Q
5
10
i;
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
0
J
10
15
Ttimjif ruture ,
Op
100
95
J101
101
105
101
102
102
110
102
103
103
100
103
103
103
110
10?
102
102
lOll
10?
105
105
95
100
100
100
106
100
101
IIS
91
95
1CI>
100
91
99
101
100
108
100
ICE
103
99
105
101
98
90
99
100
100
91
100
100
101
91
100
K'l
103
95
96
100
103
90
106
112
1H
190
126
J25
118
Circulation Fta
.. («!II,)?S
35
35
35
35
35
35
35
35
35
3?
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
te, nl./nln.
H?n
•
60
60
60
60
60
CO
60
Co
60
£0
ft) '
CO
Bl. (BnO?s
Aisled
100
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50"
50"
50"'
«ll. (KI!,,S .!•: »
Sulfur I'rH, -1
52
n
i
1.9
1.7
1.9
51
51
1.8 •
U
53.5
S3
55
51
1.8
eo
Ii5«
59"
tg»
»1. ll?0 Added
•1. II.-O llrtlnod
AftKr water wnahlnKi •tpwned for t houra fti 1(000 cc/lnil).
465
-------
KSl! MT-1-5C
CARBON UGO>! RICT-7-5B
SOLVENT VSED: 15* (HH|,)zB Solution
V»h Kumber
1
2
3
14
b
6
7
8
9
10
31
ia
13
lit
15
1
2
Tln.e,
alni!t>>n
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
0
5
10
15
0
5"
10
i;
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
.15
0
5
10
15
0
5
10
15
0
10
15
0
5
10
15
0
5
10
15
Teir.s*ruture,
'f
100
es
90
103
100
100
109
10?
ICO
100
100
100
100
100
100
100
100
100
100
ICO
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
ICO
100
100
100
ICO
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
Cliviil.alon lii
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
as
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
li-io "
65
«5
65
65
65
65
65
65
65
65
«5
6;
ml. (»i!i.):?s
AdiV>!
100
50
50
50
50
JO
50
50
50
50
50
50
50
50
50
100*
50"
50*
ml. (hMI.)?:'>
Rul fur IH-Rlnpd
1.9
1.6
111
50
59
50
19
60
1.8
1.2
50
1.3
*
50
56"
50"
1.6"
•nl. ll.iO Added
•*nl. H.,0 Druliioil
•«»ft»r untcr vinli
utenmed for 2 Hour» »t 1,000 tc/«ln.
466
-------
KUHt RXT-7-6C
C/UIBOK USKD: SXT-T-6B
SOtVm USEDl 15*
Wash Humtwr
1
2
3
14
5
c
T
8
9
10
11
1?
13
ll>
15
1
i
3...
Time,
mlmiteg
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
0
5
JO
15
0
5
10
.ly
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
35
0
5
10
35
0
5
10
15
0
5
10
15
0
5
10
15
0
»
10
15
T> mpc r ttture ,
°F
100
120
100
100
100
100
100
100
95
100
100
100
100
100
100
105
105
105
105
105
110
105
100
100
95
100
100
100
105
100
100
100
95
100
100
110
95
100
100
100
95
100
100
100
105
100
100
100
105
100
100
100
95
100
100
100
105
100
100
ICO
100
10*,
105
105
105
105
111
110
110
110
..CJrcul.tlnn Rut
dim)-:!
35
35
55
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
e. »l.Mn.
M
60
Co
Co
60
to
£o
60
60
Co
CO
Co
60
nl. (NUl);S
91
50
50
50
50
50
50
50
50
50
50
50
50
50
50
100"
50"
*'
ml. (HI! ) S «
1>5
19
1.6
16
5k
53
fc2
lift
57
H
50
51
k3
72
5P"
75"
•ml. >l?0 AcMrd
"ml. lljO Umliied
•"Aftrr vnur m>nlilnr,< lt««m"l fur ? houri
1,000 cc/Rln.
467
-------
APPENDIX A-16-5
PORE VOLUME DISTRIBUTION RUNS FOR (NH4)2S EXTRACTED
AND H2S GENERATION SAMPLES AFTER SIXTH CYCLE
SAMPLE: EXV-1
REL P
VOLUME
0. 1428
0. 1789
0.2149
0.3251
0.4313
0.5395
0.6477
0.7559
O.C641
0.9722
0.3628
0.3606
0.3733
0.3851
0.3950
0.4031
0.4103
0.41 6.8
0.4242
0.4350
S 667.4
C -22.544
R 0.9985
PORE RAUIU!
VOL
CUMV
1000.
500.
400.
300.
200.
150.
10U.
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
500.
400.
300.
200.
150.
100.
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
13.
16.
14.
12.
10.
0.0022
0.0009
0.0014
0.0024
0.0022-
0.0040
0.0012
0.0015
0.0019
0.0025
0.0034
0.0023
0.002H
0.0035
0.0047
O.OOfO
0.0115
0.0071
0.0096
0.0123
0.0149 '
0.0204
0.0022
0.0031
0.0045
0.0070
0.0092
0.0131
0.0144
0.0159
0.0178
0.0203
0.0237
0.0260
0.0238
0.0323
0.0369
0.0439
0.0554
0.0625
0.0721
0.0044
0.0994
0.1198
468
-------
SAMPLE: RXT-6-6C
REL P
VOLUME
0.1487
0.1863
6.2238
0.3365
0.4492
0.5619
0.6745
0.7872
0.8924
0.9900
S
C
R 0.
0.4417
0.4461
6.4532
0.4688
0.4794
6.4838
0.4922
0.4995-
0.5075
0.5156
794.2
-20.632
9986
PORE RADIUS
VOL
CUMV
1000.
500.
400.
300.
200.
150.
100.
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
500.
400.
300.
200.
150.
100.
90.
80.
70.
60.
50.
45.
40.
35.
30.
25.
20.
18.
16.
14.
12.
10.
„ 0.0006 ..
0.0004
0.0008
0.0017
0.0018
0.0037
0.00i2_
0.0015
0.0020
0.0026
0.0037
0.0024
0.0030
0.0039
0.0059
0.0081
0.0058
0.0043
0.0100
0.0153
0.0215
0.0301
0.0006
0.0010
0.0018
0.0034
0.0053
,- '0.0090
. ._.. 0.01 0.2...
:o.oii7
0..0137
0.0163
0.0199
0.0223
0.0253
0.0292
0.0350
0.0431
0.0489
0.0532
0.0632
0.0785
0.1000
0.1301
469
-------
SAMPLE: RXT-7-6C
REL P
VOLUME
0.1487
0.1863
0.2238
0.3365
0.4492
0.5619
0.6745
__0.7872
0.8999
0.9900
0.3417
0.3490
0.3530
0.3646
0.3742
0.3823
0.3895
0.3959
0.4031
0.4099
S 617.8
C -20.604 _
R 0.9983
PORE RADIUS
VOL
CUMV
1000.
500.
400.
_ .300.
200.
150.
IOQ*_
90.
80.
70.
60.
50.
45.
40.
35.
_ . 30.......
25.
20.
18.
16.
14.
12.
_ 500.
400.
300.
._200.
150.
100.
9.0,
80.
70.
60.
50.
45.
.40.,
35.
30.
25.
20.
18.
16,
14.
12.
10.
0.0008
0.0004
0.0007
0.0015
0.0016
0.0031
,.Q,OQIO _
0.0013
0.0016
0.0022
0.0031
0.0021
. 0,0026..
0.0034
0.0047
0.0070
0.0112
0.0071
— 0.0093 _
0.0119
0.0147
0.0185
0.0008
0.0012
0.0020
0.0034
0.0050
0.0081
0,009}
0.0104
Oo0120
0.0142
0.0173
0.0194
__.0.,0220_
0.0254
0.0301
.___0..0371
0.0483
0.0554
, 0^0647:
0.0766
0.0914
0.1099
470
-------
APPENDIX A-17
POST-TREATMENT RESULTS OF AMMONIUM SULFIDE SOLVENT
EXTRACTED CARBON
1. Experimental Conditions for Isothermal and 472
Thermal Post-Treatments of (NH4)£S Extracted
Carbon
2. Experimental Results for Determination of the 475
S02 Activity of Post-Treated (NH4)2S Extracted
Carbon Samples Using Differential Rate
Apparatus
3. S02 Sorption Rates for Determination of the 486
S02 Activity of Post-Treated (NH4)2S Extracted
Carbon Samples Using Differential Rate
Apparatus
471
-------
APPENDIX A-17-1
EXPERIMENTAL CONDITIONS FOR ISOTHERMAL AND
THERMAL POST-TREATMENTS OF (NH4>28 EXTRACTED CARBON
RUN NO.:
TYPE CARBON:
DESCRIPTION OF RUN:
EXPERIMENTAL CONDITIONS:
RXT-T-6C-1
RXT-7-6C
Run at 1000°F for 2 hrs. with 30% H2
Weight of Carbon: 0.5 gms
Bed Temperature: 1000°F
Inlet H2 Concentration: 30%
Gas Flows: N2 - 19A cc/min.; H2 - 8.3 cc/min.
RUN NO.: RXT-7-6C-U
TYPE CARBON: RXT-T-6C
DESCRIPTION OF RUN: Run at 800°F for U hrs. with H2; 2 hrs . preheat time
EXPERIMENTAL CONDITIONS: Weight of Carbon: 0.5 gms
Bed Temperature: 800°F
Inlet -H2 Concentration: 305?
Gas Flows: N2 - 19-U cc/min.; H2 - 8.3 cc/min.
RUN NO.:
TYPE CARBON:
DESCRIPTION OF RUN:
EXPERIMENTAL CONDITIONS:
RXT-T-6C-5
RXT-7-6C
Run at 1200°F for k hrs. with H2; 2 hrs. preheat time
Weight of Carbon: 0.5 gms
Bed Temperature: 1200°F
Inlet H2 Concentration: 30%
Gas Flows: N2 - 19.!+ cc/min.; H2 - 8.3 cc/min.
472
-------
RUN NO.: RXT-7-6C-6
TYPE CARBON: RXT-7-6C
DESCRIPTION OF RUN: Run at 1000°F for U hrs. with H2
EXPERIMENTAL CONDITIONS: Weight of Carbon: 0.5 gms
Bed Temperature : 1000°F
Inlet H2 Concentration: 30$
Gas Flows: N2 - 19.^ cc/min.;
H2 - 8.3 cc/min.
RUN NO.:
TYPE CARBON:
DESCRIPTION OF RUN:
EXPERIMENTAL CONDITIONS:
RXT-7-6C-7
RXT-7-6C
Run at 1000°F for U hrs. with N
Weight of Carbon: 0=5 gms
Bed Temperature: 1000°F
Inlet H2 Concentration: 0
Gas Flows: N2 - 27-7 cc/min.;
2 hrs. preheat period
H - 0
RUN NO.:
TYPE CARBON:
DESCRIPTION OF RUN:
EXPERIMENTAL CONDITIONS:
RXT-7-6C-8
RXT-7-6C
Run at 1000°F for
Weight of Carbon:
hrs. with CO; 2 hrs. preheat period
0.5 gms
Bed Temperature: 1000°F
Inlet CO Concentration:
Gas Flows: N2 - 19-^ cc/min.;
CO - 8.3 cc/min.
473
-------
RUN NO.:
TYPE CARBON:
WEIGHT OF CARBON:
DESCRIPTION OF RUN:
RXT-7-6C-9
RXT-T-6C
0.5 gms
(1) Washed for 15 minutes with 50 ml. of a 2% NH^OH solution
at 77°F
(2) Three distilled H20 washings of 50 ml for 15 minutes
each at 77°F
(3) Heat the sample in a 1,000 scc/min. purge of N2 for
1 hour at UOO°F
RUN NO.:
TYPE CARBON:
WEIGHT OF CARBON:
DESCRIPTION OF RUN:
Virgin Washing with
Virgin, C-70-77
0.5 gms
Same as RXT-7-6C-9
474
-------
APPENDIX A-17-2
EXPERIMENTAL RESULTS FOR DETERMINATION OF THE S02
ACTIVITY OF POST-TREATED (NH4>2S EXTRACTED CARBON
SAMPLES USING DIFFERENTIAL RATE APPARATUS
475
-------
CAICULATIIINS fUK &KAVIHIIHIl flllM l«l'lH|MlNli
MUM NO. •
UMl •
UKV Hl.>
COKRtUION-
Tint
(MINI
1.00
^ 2.00
3.00
4.00
5.00
6.00
7.00
6.00
9.00
10.00
11.00
12.00
13.00
14.00
15.00
16.00
1 7. 00
18.00
19.00
20.0(1
21.00
22.00
. . 23.00
24.00
25.00
... . 26.00..
27.00
28.00
29.00
30.00
33.00
36.00
, 39.00
42.00
. 45.00
48.00
51.00
. . .5-4.. 00
57.00
60.00
63.00
66.00
69.00
72.00
' 75.00
78.00
. - ...Bl.OO.
84.00
87.00
.'.^. ..90.00 „
93.00
96.00
99.00
102.00
105.00
108.00
111.00
114.00
117.00
120.00
126.00
132.00
138.00
144.00
150.00
156.00
162.00
168.00
174.00
180.00
IH6.00
142.00
198.00
204.00
210.00
216.00
222.00
22K.OO
2J4.00
240. 00
246. DO
252 . f'U
25H.OO
264.00
270.00
276.00
tH/.PO
2rlil.n(i
244 .5200
0.5200
0.5200
0 5200
0.5200
0.5200
0.5200
0.5200
0.5200
. ......0..5200.
0.5200
0.5200
0.5200
0.5200
0.5200
g.5200
0.5200
0.5200
_. 0,5.200.
0.5200
0.5200
0.5290
0.5200
0.5200
0.5200
0.5200
0.5200
0.5200
0.5200
0.5200
0.5200
0.5200
0.5200
0.5206
0.5200
0.5200
0.5650
0.5650
0.5650
0.5650
0.5650
0.5650
0.5650
0.5650'
0.5650
0.5650.
0.5&50
0.5650
0.5650
0.5650
0.5650
.0.565J
0.5650
0.5650
0.5650
0.6050
0.6050
0.6050
O.fcO'-O
0.605D
P.W50
0.6'J^l)
0.6.150
0.6.1MI
O.M'M)
C.fcC'M
O.CPIO
11.KI50
0.<*>>SO
. _ D.6050
O.hOSO
P.C..1SO
0. 6^50
O.M'SO
2000. PPM HUP •
150. PPK Fl 'I "
J.5 < M2iU4 *
6.0 I
CHART
INCHES
7.40
8.0A
8.16
B.27
8.36
8.49
8.60
8.70
8.80
B.91
9.0.2...
9.14
9.22
. . . . ... ..9-31 .
9.42
0.52
0.62
0.71
0.81
0.91
1.02
1.14
.25
.36
.47
*58
.69
.79
J.90
2.00
2.32
2.66
2.98
3. JO
j ,63
).9~6 '
4.28
4.60
4.91
5.23
5. 56
5.89
6.21
6.52
6.86
7.19
7.51
7.83
8.16
B.47
8.79
9.10
0.34
0.66
0.97
1.27
1.57
1.87
2,11
2.47
3.05
3.62
4.19
4.77
5.32..
5.88
6.41
. _ .._ 6.95 .
/.49
8.00
8.59
0.45
1.41
1.85
2.24
2.72
3.15
4.56
1.97
4.J8
4.77
5.16
5.54
5.42
6.24
6.66
7.0U
1. 11
1. 11}
8.04
2OU. DIG. r.
15CO. CC/MIN
75.14 S
PICKUP
IMG H2SO4I
1.61998
. 1.75998.
1.87997
1.9N947
2.09996
2.20998
2.3149U
2.4199B
2. 51997
2.62997
Z. 73997
2.B5999
2.93997
3.0299U
" 3.I399S
3.2.3997
i. 13998
3.42998
3.52998
J. 62997
3.7S9V7
3.80999
3.96999
4.07997
4.U997
r 4., 2999.1.
4.40197
4 ,,5099 8
. 4.61998
4.71999
5.03998
5,37997
5.69998
6.01997
6B3'*990
6. 67990
6.99998
7.31998
7.62997
7.94^40
8.27998
0. 60999
8.92998
9.23997
9.57997
9.90997
10.22998
10.54997
10.87997
11.1H997
11.50998
11.81998
12.05998
12.37997
12.68997
12.98997
13.28998
13.5B998
. J 3. 88998
14.18997
14.76997
. _ 15.3)998
15.90997
16.48997
17.03998
17.59998
18.12997
_. . 16.66998
14.20908
19.71999
20.21494
20.66448
21.12497
2 1.56-148
22.00448
22.41497
22.8649ft
23.27998
21.6H44T
."•4.09498
24.40941
24.67497
25.2549S
2"1 . 6 J44H
20.00146
2I>. 71944
27.0H'I'IU
21.419'iH
2 7. 7*i *'IU
476
-------
tALUIlAIIIUll II.K u
Ull. rili
RUN NM. »
DA 11 «
DRY WT..
COKREC HUN-
TINE
l.CO
z.oo
3.00
4.00
5.(/0
6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
.14.00 ..
15.00
16.00
17.00
18.00
19.00
.20.00
21.00
22.00
J3.00
24.00
2'*. 00
26.00.-
27.00
28.00
... 27.00 .
30.00
33.00
_.. J6.DO
39.00
42.00
45.00
48.00
91.00
.. -SA.OO .
57.00
60.00
63.00
66.00
69.00
72.00
75.00
78.00
SI. 00
84.00
87.00
90.00
93.00
96.00
99.00
102.00
105.00
108.00
111.00
114.00
117.00
120.00
126.00
132.00
138.00
144.00
150.00
156.00
162.00
168.00
174.00
1HO.OO
lUh 00
192.00
1 9ll. 00
204.00
210.00
216.00
222.00
22(1.00
234. PO
240.00
246.00
252.00
2SH.OO
2*4.00
270.00
2 H«. UO
2H2.00
2HH.OO
2V4.1'0
300.00
189 ',11,- .
8 31 U 1411 *
1H.KI, MG , 02 *
-6.22 HG 1120 »
HASS DIM
0.4'JOO
. _ O.'t'JOO
0.4900
'J.1,'100
O.VIOO
0. VJOO
0.5.300
. 0.5300
0.5100
0.5300
_ 0.5100
0. 5JOO
0.5300
. .. . ...0..5300
D.4300
0.5300
0.5300
0.5300
0.5300
0,5300
0.5300
0.5300
0..5300..
0.5300
0.5300
_. 0. 5300..
0.5300
0.5300
. 3.5300
0.5300
0.5300
, a, 5300.
0.5300
0.5300
0.5300.
0.5300
0.5300
0.5300
0.5300
O.'iJOO
0.5300
0.5300
0.5300
0.5300
0.5300
0.5300
0-5300
0.5750
0.5750
0.5750
0.5750
0.5750
0.5750
0.5750
0.5750
0.5750
0.5750
0.5750
0.5750
0.5750
0.5900
. 0.5400
0.5900
0. 5900
0.5900
0.5900
0.5900
0.5900
J.4900
0.5900
d . 5900
0 . 5900
0.5VOO
0.4900 .
0. V'OO
J.VIOO
c.vioo
0.5'JOO
C.VIOO
(.'.d^CO
0.6400
0.6400
O.b'.OO
0 . 1.4 0 0
0 .6400
.d.htri)
O.hiPO
0,6400
O.'i'itiJ
i'.6lPt)
2'IOU. I'M* l| HP • 200.
150. IM'H ||!| • 1500.
3.4 T II21IJ4 = 75.55
6.0 X
i it AH r
7.60
.._ 7.9} :
8.18
8.311
H. 56
B.72
0.86
. 1.03
1.21
1.37
1.53
1.69
1.85
?,00
2.17
2.32
2.47
2.6f
2.77
_ -. -2..9.Q ..
J.02
3.16
... _. 3,20 _ .
3.40
3.50
... ._ .3,60 i
3.70
3.80
_ .. 3i90. „
3.99
4.34
... ._ 4.65 .
5.00
5.31
5,61
5.92
6.21
6n51
6.81
7.10
7.39
7.68
7.97
8.25
8.52
8.81
9..09
0.30
0.59
0.87
1.16
1.43
1.71
1.99
2.26
2.54
2.81
3.09
... 3.35
3.61
1.09
.1.63
2.17
2.69
3.20
3.71
4.22
4.73
5.21
5.64
6.17
6.66
7.16
.f.64 . ..
11.13
H.61
4.08
9.44
10.00
0.40
O.K3
1.26
l.6t>
2.09
2.49
2.lt9
3.27
3.65
4.U2
4.^0
!)«,. f.
Ct/hIN
I
PICKUP
(KG M2504)
0.51999
0.829 ft
.09999
.4BOOO
.6'J9<*8
.77998
.95000
2.1299V
2.45000
2.60-199
2,76999
2.92000
3.09000
3.23999
3.3H998 _
3.52998
1.60999
3,81999
3,93')99
4.01999
. . .. ,«•.«. 20000
' 4. 3 1999
4.42000
A.51S.9S
4. (2000
4i71999
...*.ei'J9»
4,90999
5.25999
. 5,59999.
5.92000
6.23000
6,52993
6.84000
7.12999
7,42997
7.7300C
n. 01999
8,31000
8,59999
8.8H998
5,17000
9,43999
9.73000
10., Q099?
10.21999
10.50999
'10.78999
11.07999
11.34999
11.62999
11.90994
12.17999
12.45999
12.73000
13,00999
13.26999
13.52998
14.00999
14.54999
15.09000
15.60999
16.12000
16,62999
17.13998
17.64999
18.12-J94
18.60999
1 9. 09000
19.57999
20.0f999
20,56000
21.04999
21.52998
21. 90998
22.4S999
22.92000
23.31999
23.74-)')B
24.17999
24.59999
24.009*»9
2">.409'»9
5.111000
6. l(l'»99
6.46'»99
|..'M-I'I9
7. .1 1 V9
477
-------
rc..< I,H/WH'[ i
RUH Nil. • 191
(Mil • 1 2 It .
ORY WT.- 100.56 PC
CURRCCTIUN* -6.43 Ht
HUE
(MINI... ...
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
11-00 . .
12.00
11.00
.. .. 14.00 ._ . .
15.00
16.00
17.00
18.00
19.00
20.00
21.00
22.00
. .23.00
24.00
25.00
26. OQ
27.00
26.00
29.00
30.00
33.00
36.00
39.00
42.00
45.00
46.00
51.00
. . 54.0O
57.00
60.00
63.no
66.00
69.00
. .72.00 _
75.00
78.00
... 61.00
84.00
87.00
90. on
93.00
96.00
99.00
102.00
105.00
108.00
111.00
114.00
117.00
120.00
126.00
132.00
138.00
144.00
150.00
156.00
162.00
168.00
174.00
180.00
1H6.00
19?. 00
I9H.KO
204.00
210.00
216.00
222.00
228.00
234.00
240.00
24r>.00
252.00
25H. Ou
264.00
270.00
2 II-. DO
2C2.00
2H".00
294.UO
Ji>;».oc
S02 -
•W • .
02
1120 -
MASS DIAL
0.5000
0.5000
0.5000
0»5000
0.5000
0.5009
0.5000
... 0.5000
0.5000
0.5000
0.5000
0.5450
0.5450
0,J>450
0.5450
0.5450
_ - 0.5450
0.5450
0.5450
-0.5*50
0.5*50
0.5450
. .0.5*50
0^5450
0.5450
0.5.45.0
0.5450
U.545CI
0.5450
0.5450
0.5450
D.,5.4.50.
0.5450
0.5450
0.5450
0.5450
0.5450
0.5450
0.5450
0.5450
0.5450
0.5450
0.5450
0.5450
0.5450
0.5450
0.5450
0.5450
0.5*50
0.5450
0.5450
0,5*50
0.5450
0.5450
0.5450
0.5*50
0,5*50
0.5450
O.f.450
0.5*50
0.5*50
0.5850
0.5850
0.5650
0.5850
0.5850
0.5850
0.5850
0.5H50
0.5850
O.SB',0
0.5950
0.5850
0.58*0
0.5H50
0.5850
rl. '>t'50
0.5150
0.5ll5i.>
0.11)50
0.5H50
U.-nl'il)
O.'.t!50
0.5H>>u
O.V150
U.«,"K>
0, 6/'»0
0.6/50
O.t..".u
O.l.(".»l
2IIOU. PPM UHC «
|5C. VVH .....HII ..'.
}.5 1 M2S04 -
6.0 (
CHAKI
JNC MIS ..
7.59
7.8)
8.05
8.2*
B. 41
U.58
8.73
8 • (IB
9.01
9.15
9.28
O.J2
0.45
.P..57_ . ._
U.-67
0.78
0,81) w_
0.98
1.07
1.16...
.25
.35
.44
.52
.61
J.70
.78
.85
.92.
2.00"
2.27
. J?,5tt_..._
2.74
2.97
3..2J
3.44
3.66
3.87
4.09
4.30
?.* I
4.72
4,93
5.1*
5.34
5.55
.... ... . 5.75
5.95
6.15
6.35
6.5*
6.73
6.91
7.10
7.29
7.46
7.66
7.8*
8.02
8.20
8.56
0.93
1.30
1.68
2.04
2.40
2.75
3.09
1.42
t.77
4.10
*.*)
4.76
5.07
5. 19
5.72
ft. 05
6.37'
6.69
7.01
7.32
7.61
.94
.24
.••4
.H2
.12
.42
• 11
.99
2ou. tiro. F.
I5UO. CC/MIN
76.20 t
PICKUP
(MC M2S04I
0.59999
0.83998
.05998
.24998
.41948
.511991)
.73999
.88998
' 2.01999
2.15999
2.2B999
2.329'H
2.45998
^,.57997
2.6799U
2.78998
_. 2,811997. .. _._
2.98997
3.07997
3,16997
3.25990
3. 35997
3.44997
3.52997
3.61996
3.70998
3. 78998
3.85997
._ 3.92998
4.00998
'.,27*97
4.50993
4.7*997
*.'J7997
5.21997 . .
5.44997
5.66997
5.87997
6.09998
6.30997
7.4i997
t. 72997
6.93997
7.1499B
7.34998
7.55997
7.75998
7.95998
8.15997
B, 55997
8.54997
8.73997
8.91997
9.10997
9.29997
9.48997
9.66997
9.84998
1.0.02997
10.20998
10.56998
10.93997
11.30997
11.68997
12.04997
12.40997
12.75998
13.09998
13.*2-)9B
13. 77997
14.10997
14.43-197
14.76997
15.07997
15. 39998
15.72997
1»>.OS<>97
Ib. 37997
16.69997
17.01997
17.32'l«)(
I 7.6 V">7
17.9400)
lB.54-197
It). 1)29 >9
19. 12999
I'l. * 2-199
I'l.ll-fit
l'l.9'»9'IM
478
-------
LALIULMUIUS Illh blUvlHi IHIL MUM Ln-tklM Nl :•
RUN 'III. •
- . llAtt •
UkV hi..
C&mCT IUN.
TIKf
(MINI
1.00
2.00.
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
... ._ 14.00.
15.00
16.00
17.00
Id. 00
1 1.»0
20.00
21.00
22.00
21.00
24.00
25.00
11,. 00
27.00
28.00
29.00
30.00
' 33.00
36.00
39.00
42.00
. . .45.00.
48.00
51.00
-54.00
57.00
60.00
. . 63.00
66.00
69.00
.._.._ 72.00-
75.00
78.00
81.00
84.00
87.00
90.00
93.00
96.00
99.00
102.00
105.00
1011.00
111.00
114.00
1 17.00
1/0.00
1 26 . 00
132.00
1 18.00
144.00
150.00
1 56.00
162.00
168.00
1 K.OO
mo. oo
Iff. 00
192.00
198.00
204.00
210.00
216.00
222.00
2/8.00
234.00
210.00
2li'. 00
2V. 00
25" .00
! 1-4 . (10
2 1(1. 00
2f>.00
/u.'.ou
lan.Oii
2-K..00
iun.no
l'J2 SII2 •
9 3 71 Nil •
100.90 MG 02 *
-6.13 Mb H21) «
MASS UIAL
0.5000
.. _„. ..o.vjoo
0.5000
0.5900
O.Vi50
0.5450
0.5450
0.5450
0.5450
0.5450
0.5450
0.5400
0.5450
0.5450
0.5-.50
0.5450
0.5',5J
0 . 54 50
0.5450
...O.i'.^O
0 . S'.'jO
0.54 SO
_ . 0.5'iVO
0. ?>'i 'jfj
0.5450
.- .... 0.5450 .
0.5450
0.5450
.0.5450
0.5450
0-5450
. 0.5150.
0.5450
0.5450
. .. 0.5450..
0.5900
0.5900
.0.5900
0.5900
0.5900
.. .0.5900
0.5400
0.5900
0.5900.
0.5900
0.5900
0.59CO
0.5900
0.5400
_O^ 620 fl
0.6/00
0.62(10
0.6.H10
0.6/00
0.6200
0.6200
0.6200
0.6200
0.6200
0.6200
0.6200
0.6200
0.6200
0.6200
0.6200
0.6200
O.e.'OO
o.e^cy
O.<>700
0.6700
0.6/00
0.6700
O.i>700
0.6700
0.6700
0.6/OO
0.6700
0. t> /fiO
O.M'IC
O.e/00
o.<> roo
0.6700
0.0 1'lO
o.i. mu
u. tt/i>D
0.6/UO
0 . ' 1 *«U
o. /1 5r
n./l-'O
O./l'.ll
2000. PI'M II «!• •
150. PPM fill •
3.5 ( H2SIH •
6.0 <
CHAKT
INLHCS
8.29
_ 8,73
9.14
9.52
0.73
1.08
1.39
_. 1.69
1.95
2.21
2.46
2.71
2.94
3.16
3.37
3.60
3.60
4.00
4.20
4,40. -
4.59
4.76
4.94
5,11
5.29
5 ^4__5
5.61
5.79
5.96
6.13
6.66
7.14
7.62
8.10
B..5.9... .
0.01
0.50
0.99
1.47
1.92
? - *9
2.83
. 3.29
. .. .. J.91 ._
4.19
4.63
5.Q8
5.51
5.95
0.41
0./7
1.19
1.60
2.00
2.40
2.80
3.2U
3.59
3.98
4.37
5.13
5.U9
6.60
7. JO
7.99
8.67
9.34
. . 9.V9
0.-.7
1.10
1 .t>9
2.26
2.H/
3.39
3.91
4.44
4.95
•>,44
5.'>
-------
CAICUIAIIONS FlIX ORAVIMlIRIC tLdtl LKPlklMI MlS
BUN NO. * 193
UAU . 9 t 71
DRV WT.- 102. 02 MC
CMKtCMON- -6.18 HG
Tine
(UNI ...
1. 00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12.00
n.oo
14.00
15.00
16.00
17.00
18.00
19.00
20.00 . . ._
/1. 00
2?. 00
23.00
24.00
25.00
26.00.
27.00
28.00
.29.00 „..
30.00
33.00
36.00
39.00
42.00
45.00
48.00
51.00
5.4.00. . ..
57.00
to. oo
63.00
66.00
69.00
72.00
75.00
78.00
81.00
84.00
87.00
90.0"
93.00
96.00
99.00
102.00
105.00
108.00
111.00
114.00
117.00
120.00
126.00
132.00
138.00
144.00
150.00
15t..t)0
162.00
I Ml. 00
174.00
180.00
186.00
142.00
148.00
204.00
210. 00
2|h.OO
222.00
/28.00
2 14.00
24U. UO
24/i. 110
25/.00
25M.IIU
.'(.4.00
27U.UO
2/h.OU
2H/.DO
/HH.I10
.' '14 . HO
inn. oo
i02 •
'10 •
02 •
H20 •
MASS DIAL
0.5100
-0,51PO_
0.5100
0.5100
0.5100
0.5100
0.5100
0.5550
0.5550
0.5550
0.5550
0.5550
0.5550
0.5550
0.5550
0.5550
.0.5550
0.5550
0.5550
. -0^5550
0.5550
O.CtiO
.. 0.5550.
0.5530
0.5550
...0,5550.
0.5550
0.5550
. 0.5i50
0.5550
0.5550
0.5550
0.5550
0.5550
0.5550
0.5550
0%. 5550
0.5550
0.5550
0.5550
0.5550
0.5550
0.5550
0.5550
0.555G
0.6000
...0.6000
0.6000
0.6000
.0.6000
O.cOOO
0.6000
0.6000
0.6000
0.6000
0.6000
0.6000
0.6000
0.6000
0.6000
0.6000
0.6000
0.6350
0.6350
0.6350
0.6»50
0.6150
0.6150
0.6350
0.6)50
O.l.JSC
0.6 150
0.6350
0.6J50
U.M50
' O.MSO
' O.MSU
" O.dt'iO
' O.MVI
' O.bM'C
o. «.tmj
0.6HOO
U.bl'OO
0. Ml 00
O.l.M'O
J.I.!' JO
O.hHIH)
I). Ml I'D
O.I HIM)
O.MM'lt
2000. PPM TI.KP «
150. PPM F(l| •
3.5 Z H2Sl'4 *
6.0 t
CHART
... . __ IHCHtS
7.63
7, B't
""8.16""
8.40
8.65
tt.to
9.13
0.27
0.49
0.70
0.91
.11
.30
.45
.67"
.Hi
2,00
2.17
2.34
2,4.9 _.
2.64
2.80
... ._ .2.94
3.09
3.22
3..3J
3.5I~
3.63
3..77__
3.90
4.30
4.68
5.05
.41
• 79
.17
.52
,E9
7.26
7.61
7*58
8.32
8.68
9.P2.
9.36
0.87
I * 2.2.
1.59
1 .94
2.30
2.66
3.00
3.36
3.70
4.04
4.37
4,70
5.02
5.34
5.66
6.29
6.91
0.44
1.02
1.60
' 2.16
2.71
...... ' 3.26
3.80
4. 35
4.89
5.. 41
5.41
' 6.44
(..46
7.45
7.44
H.V2
H.90
0.3H
0.82
1 .26
1.70
2.12
1. -.5
Z.'J'j
3.3H
1. 74
4.14
4.5H
200. DEC. ).
15UO. CC/M|^
76.19 t
PICKUP
IMG H2SD4I
0.62997
O.B8998
1.15447
1.39998
1.649VB
1 ,89998
2. 12947
2.26997
2 . 4 (1 9 4 7
2.69998
2.90997
3.10997
3. 29497
3.40997 _
3.66448
3.82997
3.9999B
4. 169VU
4.33998
_ ^__ 4.40997
4.639'JB
4. 79997
4.93447
5.08998
5.21997
_ J>i3'»998
" 5.50998
5.62997
.._ : _._ 5,76997
5.89998
6,29997
b. 67996
7.04997
7.40947
7.7899U
8.16998
8.51997
8,8899(1
9,25t.'9B
9.60')97
9.97998
10.31996
10,67998
^ .._ll,01997
11.37997
J 1.86998
12* 21997
12.58998
12.93997
13. 29497
13.65997
13.99998
14.35997
14.69998
15.03998
15.36998
15.69998
r 16.01997
..I- . 16.33998
16.65997
17.28998
17.90997
18.43997
19.01997
19.59998
?0. 15997
20.70498
21.25998
21.79997
22.34093
22.88948
23.4094J
23.92448
24.43497
24.9S94B
25.44496
25. 'M49 7
."•6.414'IU
2(i.H444l)
27.37997
2 /. 01 9'ia
21* . 2'»49tt
28.64448
29.| 1498
29. 54497
24.94998
30.37447
3C.7H44H
3t.KI44f
tl. 57491
480
-------
CAICUIA!IDNi H>K GKAVlMUKIt I I im [(PtHIKtntS
RUN NO. •
DATt -
UK* *l."
CCMRFCIION-
Tlflt
IMIN)
1.00
2.00..
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
. 14.00
15.00
16.00
.. . 17.00
18.00
19.00
20.00 .
21.00
22.00
. . _ . 23.00
24.00
25.00
..26.00
27.00
28.00
_ 29.00
30.00
31.00
.. 36,00
39.00
< 42.00
45.00
44.00
51.00
14 > 00
57.00
60.00
61.00
66.00
69.00
72.00
15.00
78.00
81.00
84.00
87.00
90.00
93.00
96.00
99.00
102.00
105.00
108.00
111.00
114.00
117.00
120.00 •
126.00
132.00
U8.00
144.00
150.00
156.00
162.00
168.00
174.00
180.00
186.00
197.00
198.00
204.00
210.00
216.00
727.00
228.00
2)4.00
740. (10
740.00
257.00
258.1)0
264.00
770.00
210.00
787.00
7UH.OO
7-14.00
300.011
194 SO/ * 2000.
9 1 71 NO > ISO.
103.30 MG 02 » 3.5
-5.98 MG M2O • 6.0
MASS DIM
0.5150
.. ... __ . . Q,5150
0.5150
0.5150
O.M50
0.5150
0.5150
0.5150
0.5150
0.5150
0.5I5C,
0.5150
0.5150
0.5150
0.5150
0.5600
. .0.5600
0-5600
0.5600
0,5600 ... ..
0.->600
0.5600
0.5600
0.5600
0.5600
0,5600
0.5600
0.5600
0,5600
0.5600
0.5600
. .... ... 0,5600
0.5600
0.5600
0.5600
0.5600
0.5600
0.5500
0.5600
0* S6CG
0.5600
0.5600
0.5600
0.5600
0.5600
0.5600
0.5600
0.5600
0.5600
0.5600
0.5600
0.5600
0.5600
0. 5600
0.5600
U.560U
0.5600
0.5600
0.5600
0.5600
O.SeOO
0.5600
0.560J
0.5600
0.5900
0. 5WO
0.5900
0.5)00
0.5900
0.!>->00
0.5900
U.590J
0.5^00
0.5900
0.5900
11.5900
O.VIOO
0.5"tlO
O.VIOQ
0. V'OO
O.VOO
o.'> too
3,'i'XIO
O.ViOO
O.'.'IOO
O.yiOO
U.V100
U.V100
0. ••">('
U.4'100
Pl'« tlW • 20U.
PPM HI) • 11(10.
< H2SU4 * 75.6V
*
CHART
IMCMFS
/.78
7.87
7.9t
8.06
. 8.16
(1.26
8.37
8.47
8.5*
8.67
B.74
8.82
8.90
8.99
9.06"
0.12
.,0.20
0.29
0.37
_. .0,45.
0.53
0.61
.0.69
0.7£.
0.83
0.8.9
0.96
1.01
.09
.15
.32
. .50
.66
.65
2.01 _
2.18
2.34
2.50
2.67
2.62
2.96
3.10
3.25 '
3.39
3.53
3.67
3. 80
3.94
4.08
4,21
4.34
4.47
4.59
4.12
4.87
5.00 .
5.14
S.27
5.40 .
5.54
5.8C
6.0!. . .
6.30
6.55
O.R2
1.09
1.35
1.60 .
l.t>5
7. ID
2.36
2.61
2.86
.3.10
3.34
*.->r
l.HO
4.C7
4.24
4.45
4.65
4.1)5
5.04
5. .'4
'» . 4 It
-J.fc'l
*>.9C
I..I 1
6. Ik
1. .Ml
UL(». F.
Lt/MIN
PICKUP
(MG H2S04)
.49998
.58998
.67998
.77998
.87997
.97998
i 2.08998
2.18997
2.29997
2.38998
2.45998
2.53998
2.61998
2.70998
2.79997
2.83998
2.9199H
1.0099U
3.0S19B
3.16*98
3.24998
3.32997
3.40997
3.47998
3.54997
1.6099J}
3.67998
3.72998
3.8099U
3.86998
4.03998
_ 4_. 21999
4.39998
4.56998
4.72998
4.89996
5.05998
5.21999
5.38998
5.53796
5.67998
5.81998
5.96999
6. 10999
6.24998
6.38998
6.51997_._
6.65997
6.79997
6.9J998. _
7.05998
7.18997
7.30998
7.43997
7.58998
7.71999
7.85999
7.9B99T
». 11998
B.2599H
8.51997
8.7699?
9.01997
9.26997
9.53998
9.8099B
10.06998
10.31998
10.56998
1C.B19)U
1 1 .07^97
11.32997
11.57997
11.81998
12.059VU
12.289'I8
12.51997
17.73997
17.959'»B
1.1. 16998
11. 164'IU
I.I.56')'Hi
14.40'M/
I4.61'l')tl
I4.lt4'l'll(
1 '< . 0 7 't 't /
ls.,-'rr»i
481
-------
C»tCUL»riONl FIIK GHAvmiKIt FlUw
RUN HO. •
UAH •
(IKT »!.•
CORRECT KiM-
HUE
(HI'll
1.00
2.00
J.OO
4.00
5.00
6.0(1
7.00
8.00
9.00
10.00
11.00
12.00
13.00
14.00
15.00
16.00
17,00
18.00
19.00
20.00
21.00
22.00
.. 23.00
24.00
25.00
26.00.
27.00
28.00
29.00
30.00
33.00
36.00
39.00
42.00
.. 45.00
48.00
51.00
_...54...00
57.00
60.00
63.00
66.00
69.00
.._ 72.00
75.00
78.00
ai.oo
84.00
87.00
90.0k
93. CO
96.00
99.00
102.00
105.00
108.00
111.00
114.00
117.00
120.00
126.00
132.00
138.00
144. PO
190.00
156.00
162.00
168.00
174.00
180. PO
180.00
192. PC
198.00
204.00
210.00
216.00
22. '.00
22H.OO
234. PO
240. PO
246.00
252.00
2V..PO
264.00
270.00
27o.l'0
2H.'.OJ
2HH.HP
,"i4 . ro
ll/l'.OO
195 SU2 • 2000. PCM
•1 10 71 (in • l',0. PPK
104.70 HG U2 • 3.5 1
-5.87 MO H20 « 6.0 (
MASS DIAL
.
0.5200
0.5200
0.5/00
0.5200
0.5200
0.5200
0.5200
0.5200
0.5200
0.5200
0.5205
c.5200
0.5200
. 0.5650 ..
0.5650
0.5650
0,5650
0.5650
0.5650
. 0.5650.
0.5650
0.5650
0.5650
C.5600
0.5650
. . 0,5650
0.5650
0.5650
, 0.565D _
0.5650
0.5650
jO. 5650
0.5650
0.5650
.. 0,5650. . .
0.5650
0.5650
0.5650
0.5650
0.5650
0.5650
0.5650
0.5650
0.5650
0.5650
0.5650
0^5650
0.5650
0.5650
O.'ih'iO
0.5650
0.5650
0.5650
0.5650
0.5650
0.5650
0.5650
0.5650
0.565P
0.5650
0.5650
0.6100
0.6100
0.6100
O.blOO
0.6100
0.6100
0.6100
0.6210
0.6250
0.62SO
0.6250
0.6250
0. 62V
0.(i25P
0.6250
O.h/SO
0. h2')t1
0.6.">0
0.1.250
<).02'.i>
o.*»2-)0
0.6/'>e
0. t>2'>0
il.(,.".0
O.h2'»0
ll.l/Sl)
O.f. 2'tO
II. (•.">('
U.I.,' '.0
I EMP '
Mil -
M2SU4 •
CHART
IMCMFS
7.49
7.69
7.88
8.04
8.20
«. 35
8.50
8.63
8.76
8.b9
9.01
9.12
9.23
....0.2'. .
0.35
0.46
0.56 .
0.66
0.76
.0.87.
0.97
1.06
-1.14
1.24
1.34
1.43
1.51
1.59
i.«.69._.
1.78
2.04
4,29,
2.54
2.79
3,04
3.29
i.53
JU 78
4.0l"
4.25
4.49
4.72
4.96
5.19
5.43
5.66
5.9.0
6.13
6.36
6 so
a. 82
7. Ob
7.30
7.54
7.77
8.00
8.23
8.46
S.69
3.91
4.36
C.tll
1.27
1.7)
2.18
2.62
3.06
. I.4B
0.40
l.il
1. /O
2. I'l
.' . t.O
I.UI
1.44
I.H6
• . / '1
4. 10
*•.! 1
•••••I
'..'11
^. 1U
t. . l> -1
i.PI
1.44
7 »ll 2
t . 1 li
C.1)*
I'.ni
'i . .' 3
• 200. ore. F.
1M.O. CC/MIN
76.92 I
PICKUP
(Mb H2SII4I
0.91997
1.11996
1.30447
1.46947
1.62997
1. 77947
1.4249S
2.05997
2.18947
2.3194*
2.43497
2.54497
2.65997
2.66497.
2. 77997
2.88997
2, 989') 1
3.08997
3. 18997
3.29997
3.34496
3.48997
3.56948
3.66-197
3.76997
, .3. 5)5947. . .
3.43997
4.01997
. ...4 ,11 9-9 6
4.20998
4.46997
4.71997
4.9690.7
5.21997
5.46997
5.71997
5.95998
...... 6, 2099B... __
6.43997
6.67998
6.91997
7.14996
7.38997
7,61996
7.85997
8.06997
8.32997
t. 55997
8.78996
9.01997
4.24997
9.50996
9.72997
4.46447
10.19997
10.42998
. ' 10.65997
10.88997
11.11996
11.33947
11.78996
12.23997
12.69997
13. 15997
U.60'197
14.04'I9;
ll.4H')9(
14.9099/
1 '< . 3/'l94
15. 759-IB
lo. IB'l I'l
16.619 IB
1 7.079'IB
If. 4 »•>•(•»
17. Hf.'llIH
If .2H44H
If. /1'1'W
14. 1,"|.| 1
I'l .5 I'HH
l'l.9 ).|'I4
2f. ll'l'ld
20. /24'lrt
21. 1 1'1'IH
21. 4'lrl'IB
21.H(,'M,1
22. '4'l9il
/,'
-------
IALCUIAI IDNS ru« GKAVIMHRIC HUW
HUN NO. • 196 502 • 2000. PPM
DATE • 9 14 71 (W » lr>q. PPH
DRY HI.- 100.42 HC O2 • 3.5 »l
COKRECtlON' -6.22 MO H20 • 6.0 I
TIME
. .IMINI
i.oo
..2.00..
3.00
4.00
...5,00
6.00
7.00
8.00 _
9.00
10.00
. . 11.00 . . .
12.00
13.00
._.14.00
15.00
16.00
. . _..17.00
18.00
19.00
20.00
21.00
22.00
.. _ 23.00
24.00
25.00
_ ..26.00
27.00
28.00
29.00
30.00
33.'00
36.00
39.00
42.00
4 5.. 00
48.00
51.00
54.00
57.00
00.00
63. .00 .. _
66.00
69.00
17.00
75.00
78.00
81.00
84.00
87.00
90. nn
93.00
96.00
99.00
102.00
105.00
108.00
111.00
114.00
120.00
126.00
132.00 . .
1 Jfl.OO
144.00
150.00
156.00
162.00
168.00
174.00
IbO.OO
186.00
192.00
198.00
204.00
210.00
216.00
222.00
228.00 •
234.00
240.00
246.00
2*2.00
264.00
270.00
? IA nn
2B2.00
288.00
294.00
300.00
MASS DIAL
0.5000
O.SOOO
0.5000
0.5000
,0.5000..._
0.5000
0.5000
.. . 0.5000
0.5000
0.5000
. . 0.5000
0.5000
0.5000
..... ... . _0,5000 . .
0.5000
0.5000
0.5.00D
0.5000
0.5000
0.5000
0.5000
0.5000
. 0.5000
0.5000
0.5000
p. 5000
0.5000
0.5000
o.r,ooo
0.5000
0.5400
0.5400
0.5400
0.5400
0.5400
0.5400
0.5400
0.5400
0.5400
0.5400
0.5400
0.5400
0.5-400
0.5400
0.5400
0.5400
0.5400
0.5400
0.5400 .
0.5400
0.5400
0.5400
0.5400
0.5400
0.5400
0.5400
0.5400
0.5400
9,5400..
0.5400
0.5400
0,5400
0.5400
0.5400
0.5400
0.5400
0.5400
0.540Q
0.5400
0.5400
0.6400
0.5400
0.5400
0.5400 _ ...
0.5400
0.5400
_ 0.5400 _ ...
0.5400
0.5400
0.5400
0.5400
0.5400
0.540D
0.5400
0.5400
0.5.400 . _
0.5400
0.5400
0*5400
0.5400
n»f > 200. ore,. F.
f 1 [| • 1500. CQ/MIN
t«S04 • 75.78 I
CHART 1
HIGHER (M!
7
7
7
7
7
7
7
f
7
7
a
8
8
8
8
8
8
8
8
8
8
8
8
8
8
a
8
8
8
8
0
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
.44 (
.54 (
.60 !
.65
.71
.77
.82
.88
.93
.98
.04
.10
.16
,2_1.
.26
.31
.36
.40
.44
• 19
.54
.59
.63
MCKUP
;_ii2S04)
). 79999
1.89999
). 95999
.00999
.06999
.12999
.17999
.23999
.28999
.34000
.39999
.45999
.51999
.56999
.62000
.67000
.71999 ___
.75999
.79999
.84999
.89999
.95000
.98999
.68 2.03999
.72 2.07999
.76 2.120DO
.so ;
.85 i
'.•}} ";
.93 i
,0.3 <
.14 i
.26 i
.37 i
.48 ;
.59 i
.6? 3
.79 :
.69 :
'!'09 3
.19 :
.29 5
'.15999
'.20999
'.25000 .
'.28999
'.28998
'.38998
.49998
.61998
.72998
'.83998
'.94993
1.04997
1.14998"
.3499B
1.44998
1.54997
.64998
.39 3.74998
.49 3.84998
.59 3.94998
2.69 4.04997
2.78 4.13998
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
5
5
5
5
5
6
. 6
6
J»
6
6
7
7
7
7
.7
7
8
,.. 8
a
8
. 8
.97 4.32997
.06 4.41998
.15 4.50998
.24 4.59998
.32 4.67998
.40 4.75998
.49 4.84998
.57 4.92998
.66 5.01997
.74™ " 5.09990
.90 5.25998
,08 . . 5.43997
.26 5.61998
.44 5.79997
.61 5.96997
.80 6.15997
.98 6.33998
,16 , 6;51997
.34 6.69998
.51 6.86998
.70 7.05998
.87 7.22998
.05 7.40997
.72 7.57997
.40 7.75998
.58 7.93997
.75 8.10999
.93 ~ 8.28998
.10 8.45998
.27 ....... ..8.62997
.43 8.789V8
.60 8.95998
-77 9.12997
.94 9.29997
.10 9.45998
.27 9.62997
.44 9.79997
.60 9.95998
.77 10.12997
B.91 10.28998
483
-------
CALCULATIONS FUR GKAVIMUHIC HI,.! CXI'CHlMbNTS
RUN NO. •
DMt •
DRV Hi.-
COHRfCT ION"
TIME
I«!NI
1.00
2.00
3.00
4.00
5.00
6.00
7.00
. 8.00
9.00
10.00
1KOO
12.00
13.00
14.00 .
15.00
16.00
17.00
18.00
19.00
20.00
21.00
22.00
23.00
24.00
25.00
__26.00_. .
27.00
28.00
29.00
30.00
33.00
36.00
39.00
42.00
45.00
48.00
51.00
S4.00
57.00
60.00
63. 00
66.00
69.00
J2.0.0 _
, 75.00
78.00
fll.nn
84.00
87,00
on. on
93.00
96.00
99.00
102.00
105.00
100.00
111.00
114.00
117.00
120.00
126.00
132.00 .
\iU.UO
144.00
_. 150.00
I5(..<>0
162.00
168.00
174.00
180.00
106.00
192.00
198.00
204.00
210.00
216.00
222.00
228.00
234.00
240.00
246.00
757.00
„ 2b.a.co..
264.00
270.00
216.00 .
282.00
200-00
294.00
300.00
197 S02 • 2000. PPM
9 15 71 _ HI) » j 50. PP«
Vfl.30 MC 02 • "" 3.5 X
-6.09 MC H20 • 6.0 »
MASS DIAL
0.4900
0.4900
0.4900
0.4900
0. 4VOO
0.4900
0.4900
.. 0,4900 .
0.4<)00
0.4900
0.4900
0.4900
0.4900
0.4900
0.4'!00
> 0.4900
O.',900
0.4900
0.4900
0.4900
0.4900
0.4900
0-4-(00
0.4900
0.4900
0.. 4.90.0
0.4900
0.4900
0.4900
0.4900
0.5350
0.5J50
0.5300
0.5350
0.5350
0.5?50
0.5350
0.5*50
0.5350
0.5353
0.5300
0.5350
0.5350
0.5350 , ,
0.5350
0.5350
0.5350
0.5350
0.5)50
0.5350
0.5350
0.5350
0.5350
0.5350
0.5350
0.5350
0.5350
0.5350
0.5350
0.5350
0.5350
. . . 0.5359 _
0.5350
0.5350
0.5}',0 _.„ .
0.5350
0.5350
0.5350
0.5350
0.5350
_0.535Q
0.5350
0.5350
0,5350
0.5350
0.5350
0.5)50
0.5350
0.5350
0.5350
0.5350
0.5350
0.5350
0.5350
0.5350
0.5350
0.5350
0.5J50
O.S1SO
O.SJSO
IfHf • 200
FID « ...151.0.
112 SO* " /4.73
CHART
INCHC-S
7.52
7.63
7.70
7.77
7.83
7.89
7.96
_...8,P2
8.09
8.15
8.21
8.28
8.34
8.40
8.45
8.50
8.54
8.59
8.64
8,69
8.74
8.78
8.8? .
8.116
8.90
..J1..94
B.9B
9.02
9.07
9.11
0.08
0.19
0.30
0.41
0.52
0.62
0.73
0.83
0.93
!.04
1.1 'i
1.25
1.36
1.47
1.57
1.67
1.77
'..86
1.96
2.06
2.15
2.25
2.35
2.45
2.55
2.65
2.74
2.84
7.93
3.01
3.20
_.- ».»«.. _ .._
3.57
3.75
,.3.93.
4. 10
4.30
4_,48
4.65
4.02
5.00
5.18
5.35
5.52
5.70
5.88
6.06
6.24
6.42
6.60
6. BO
6.98
'•*•*,
7.35
7. S3
7.70
7.89
8.07
6.23
8.39
. OEG. F.
CC/MIN
I
PICKUP
(Hb H2SU4I
1.12997
J.2399.7_ _
1.30998
1.37997
1.43997
1.49998
1.56998
1.62997
1.6999!)'
1.75998
1.B1998
1.88998
1.94998
2.00998
2.05998
2.10999
2. 14998
2. 19990
2.24998
2.29997
2.34998
2.30998
2.42998
2.46997
2.5099B
2.54997
2.58998
2.62997
2.67998
2.71997
2.68997
2.79997
2.90997
3.01997
3.12997
3.22998
3.33998
3.43997
3.5399B
3.64998
3.7*998
3.85999
3.96997
4.07997
4.17998
4.27998
4.37997
4.46997
4.56998
4.66998
4.75996
4.85999
4.95998
5.05998
5.15997
5.25998
5.34998
5.44998
5.53998
5.61998
5.80998
5.99998
6.17998
6.35999
6.53998
6.70998
t. 90997
7.08998
7.25998
7.42998
7.60999
7.78998
7.95998
8.1299T
8.30998
8.48997
8.66998
8.84948
9.02998
9.20998
9.40997
«. 56998
9.77998
9.95998
10.13998
10.30998
10.49998
10.67998
10.83978
10.99998
484
-------
CM.CULA1ION& F(lK GRAVIMETRIC FIOH
P.IIN NO. > 198
UAIC •_ .9 Ib
DRV WT." 103.10
CORRECTION* -5.10
...
—
—
-
-
TIME
(MINI
1.00
._ 2.00 _
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
..14.00 _ „
15.00
16.00
17.00
18.00
19.00
.. 20,00.. .. ... _
21.00
22.00
. 23.00 _
24.00
25.00
. 26.00
27.00
28.00
29..00
30.00
33.00
36.00
39.00
42.00
45.00
48.00
51.00
54.00
57.00
60.00
63.00
66.00
69.00
7J.OO
. 75.00
78.00
ni.no
84.00
87.00
90.00
93.00
96.00
99.00
102.00
105.00
108.00
111.00
114.00
117.00
120.00
126.00
J32.00
138.00
144.00
150.00
156.00
162.00
Ib8.00
174.00
180.00
la(>, oo
192.00
198.00
204.00
210.00
71b.OO
222.00
228.00
734.00
24,0.00
246.00
25?. 00
256*00
204.00
270.00
27b»00
782.00
2 1)1). 00
294 .00
300.00
SII2 • 2000. PPM
71 HO « (50. PPM
KG 02 • 3.% *
MB H2U ' 6.0 *
MASS DIAL
0.5100
0.5100
0.5100
0.5100
0.5100
0.5100
0.5100
J>.5100 ..
0.5100
0.5100
0.5100
0.5100
0.5100
0, 55.50 .
0.5550
0.5550
.. . __..0, 5550
0.5550
0.5550
0.55SO
0.5550
0.5550
.0.5550
0.5550
0.5550
0.5550
0.5550
0.5550
O.SI'.O
0.5550
0.5550
0.55'jO
0.5550
0.5550
0.5550
0.5550
0.5550
0.5550
0.5550
0.5050
0.5550 _
0.5550
0.5550
0.5550
0.5550
0.5550
O.5550
0.5550
0.5550
O.S550
0.5550
0.5550
0.5550
0.5550
0.5550
0.5550
0.5550
0.5550
0.5550
0.5550
0.4550
0.5550
0.5550
0.5550
0.5550
0.5550
0.6000
0-6000
O.bOOO
0.6000
O.bOOO
0.6000
0.6000
0.6000
O.bOOO
0.6000
O.hOOO
0.6000
0.6000
0.6000
0.6000
0.6000
p.6000
0.6000
0.6000
0. 61)00
O.hOOO
0.6400
0.6400
T6MP .
Fit) •
H2SD4 >
CHART
INCHES
8.11
8.19
8.27
8.34
8.42
8.50
8.58
8.67
8.74
8.81
ft. 89
8.98
9.06
0.07
0.13
0.19
9,21
0.34
0.41
0.46
0.55
0.62
0.69
0.76
0.82
O.flS
0.97
1.03
J.JQ
1.08
1.37
-L.57
1.76
1.95
2.14
2.32
2.51
2.70
2.89
3.08
3,27._
3.46
3 '.64
. — 3.82
4.01
4.20
4,40
4.59
4.79
4.99
5.18
5.38
5.58
5.77
5.97
6.18
6.39
6.69
6.80
7.01
7.47
7.84
8.25
8.67
9.06
9.49
0.89
-J.2,9
l.bB
2.08
2.48
2.89
3.30
J.71
4.11
4. SI
_ .t'1*'
5.36
5.74
*.U
6.S7
6.41
1, it
7.69
B.07
a. 45 _
8.8)
0.94
l.iO_.
1.46
200. UCC. f.
1500. CC/KIN
77.32 %
PICKUP
IMG H2S04I
1.90997
1.9B997
2.06998
2.13998
2.21999
2.29999
2.37997
2.46999
2.51998
2.60999
2.68999
2.77998
2.85999
2.86906
2.92998
2.98997
3.06998
3.13998
3.20998
3.27998
3.34998
3.41998
3.48997
3.55998
3.61998
3.68999
3.76997
3.82999
3.89998
3.87997
4.16998
4.36998
4.55998
4.74998
4.93999
5.11998
5.30998
5.49998
5.68999
•5.R7997
6.06998
6.25998
6. 43999
6.61998
6.80998
6.99998
7. 19998
7.38998
7.58998
7.7B998
7.979V8
6.17998
B. 37997
8.56998
8.76997
8.97998
9.18999
9.48997
9.59998
9.80998
10.21999
10.63998
11.04999
11.46999
11.87997
12.28998 ""
12.68999
13.08998
13.47998
13.87997
14.27998
14.68999
15.09998
15.50998
15.90997
16. 10998
16.74998
17.15997
17.53998
17.9299B
I8.3199U
18.70998
19.00998
I9.4H997
19.8699*
20.24998
20.62997
20.73997
' 20.99
-------
APPENDIX A-17-3
S02 SORPTION RATES FOR DETERMINATION OF THE S02
ACTIVITY OF POST-TREATED (NH4>2S EXTRACTED CARBON
SAMPLES USING DIFFERENTIAL RATE APPARATUS
486
-------
CAICUIATIONS fllh GkAVIHtlHIL film
C-70-77 (VIRGIN)
.. .RUN NO, • 180
IMH « 9 "»
tut m.. 95.10
.COSKElUllN' -6.18
. MEAN LUAU
CMS S02/100 GKS C
0.87202 ...
0.4)410
0.99B43
1.05519
1.11195
1.16871
1.22189
1.27449
1.32867
1.38543
1.44477
1.49637
1.54023.:
1.59105
1.64601
1.69761
1.74663
I. 79565
.. ...1.84725 . .
1.90142
1.96076
2. U2011. -
2.07686
2.13»M
.- 2.19030 .._.
2.24714
2.30132
2.35550
2.40968
2.51604
2.68831
, 2.85859
3.02371
3.19141
3.36168
3.52939
.. .3.69450
3.B5704
4.01958
4.18728
• 4.35756
4.52525
4.6B779
' 4.B5549
5. 02834
. 1 . 5.19604 . _
5.36116
5.52886
._ 5.69398 ..
5.05651
6.01905
6.16095
6.30543
6.46797
6.62534
6.78014
6.93494
7.0H974
7.24454
7.47157
7.76827
8.06239
6. 15908
8.65062
t. 93700
.9.211)21
9.4')427
9.77291
10.04331
10. 30431
10.54040
10. /K426
11.01645
11.24149
11.467'It
1 I.6H9H2
11.906S4
12.111110
12. 3/91,5
11. •> 16U5
I2.7I//9
I?.')!1)'!'.
1 1.1 I/UI
I3.3/5M
I J.MI.H4
1 \.i:'llr./
1 1. MH.'HO
|4.0' )'. i
14.,' I'*.1',
71 NO • 150.
Cf. 02 « 3.5
MC. . .IliD." 6.0.
D1FFMENUAL RATE
HOM S02/GM C-M1N
. _ 0.72239 .
0.61917
0.56760
0.56760
0.56760
0.56760
. .0.516O2
0.51595
0.56760
0.56760
0.61925
0.41273
0.46445
0.56760
0.51595
0.51602 ..
0.46438
0.51602
. 0.5159i_,
0.56760
0.61925
0..56760
0,56752
0.56760
..- _ 0.56760 .
0.56760
0.51602
0.56760 . ..
0.51602
0.55038
_ 0.584J9.
0.55041
0.55038
0.56760
0.56760
0.55041
0.55036
0.53319
0.55U41
0.56760
0.56760
0.55038
0.53319
0.58479
0.56760
.. ...... 0.55041
0.55038
0.56760
0. 53119
0.55041
0.53319
0.41280
0.5503B
0.53319
0.51600
0.51600
0.51600
0.51600
0.51597
0.49Bt>0
0.49020
0.49019
0.49B60
0.47300
0.4B159
0.45579
0.46440
0.46439
0.43U60
0.429V9
0.3U699
0. »95'>9
0.37H40
O.I7U40
0. I6-JM
0. I6^H()
0. «'-260
0.3'i2'j'l
0.)'>2I>0
0. 13540
O.llViU
0. l^itllO
0. I26HU
O.llHl'
O.Jlal-
U.."'/41
o . 1 1 n r
O.»'r ini
0.? l.'l>
?fn F(T1 • 1SOO.
t H2UI4 * 75.14
-' -
MEAN LOAD
CMS ACID/100 &MS I
l.J35?B '
1.4)799
I. 52885
1.61577
1.70260
1. 71)959
1.87256
1.V5157
2.03452
. ... 2.12144 ._._
2.21231
2.29132
. _. ..2.J5B4T
2.4374'V
2.52045
2.59946
2.67452
2.74959
2.82860.
2.91155
3.00242
. ..3.0?329_. _
3.1B020
3.26710
.. . Jj 35402 _
3.44093
3.52369
3,60666
3.63982
3.B5575
4,11640.
4.3T722
4.63006
4.04684
5.14758
5.40437
5.65721
5.90609
6.1549U
6.41177 ...
6.67251
6.92930
7,17818
7.43496
7.69965
7.95644
8.20928
8.46606
B. 71890
8.9677H
9.21667
9.43396
9.65519
9.90407
10.14506
10. 38209
10.61913
10.85617
11.CV320
11.44085
11.89517
12.'34553
12.74985
13.^4626
13.69470
14.11539
14.5I8IU
14.')t>477
15.37950
15.7785'!
16.15388
16.51 tin
l6.8hU9)
17.2lt5H
17.1oO?9
17.9UU04
III./ JIH-I
111.5-iSlll
III. I1797H
l').l'!5H2
I9.5019/
I'l.lU'lll/
/0.10K4I
2U.4C471
2C.((''/05
,'0.'if/'>4
<•!.;• '>Mill
21.->t'.'/o
tl.H'iSt.
CC/MIN
t
.
DIFFtKI-NTIAL R4Tt
MOM ACID/CM C-MIN
1.10616
0.94810
O.B6913
0.06913
O.B6913
0.8691 1
0.79016
0.79004
0.86913
0.86913
0.94822
0.63199
0.7112C
0.86913
0.79004
O.J9016
0.71107
0.79016
0.79004
0. 869 13
0.94822
. .0..86913 ..:
0.86901
0.86913
_ _._0.«.8t9l 3 _...
0.86913
0. 79016
0..86913.
0.79016
0.84277
0*89545
0.84281
0.84277
0.86913
0.86913
0.84261
0.34277
0.81645
0> C*t2t> 1
.0.86913
0.86913
0.84277
C. 81645
0.89545
O.B6913
_ 0.84281 ._.
0.84277
0.86913
0.81645
0.84281
0.81645
0.63211
0.84277
0.81645
0.79012
C. 79012
0.79012
0.79012
0.79008
0.76378
0.75062
0. 75060
0.76370
0.72428
0.7)744
0.69793
0.71112
0.71109
0.67161
0.65R4 »
0.59258
O.o0'i74
0. 5/942
0.5/042
a. 56624
0.56626
0.5»'"*2
0.5 i9'fl)
0.53'l'»2
U.51 157
0.->l 1S7
-------
C»ltUl»l IDNi MIR bkAVIMtIkIL ILIIW I I l>l ft I Ml Nl !>
RUN NO. • l»9
UAIt • 8 31 71
MY NT.- 98.86 MG
CUKKECIIUN- -6.27. MO
MEAN LOAD
GKS~S02/100 GKS C
0.31687
0.48160
(j. 5988V
0. 69371
0.77856
0.85341
0.93077
1.01811
1.10296
1.16201
1.26266
1.34251
1..419B1
1.49971
1.57958
1.65443 . .
1.72680
1.B0166
. 1.67403.
1.9)641
2.00129
2.06617
2.12607
2.18096
2.230J7
2.28078
' 2.31068
2.38059
2.42801
2.53780
.2.70998 .
2.87468
3.03189
j. 18410
3.336)2
3.48605
?-*'*;>;»''
i. TU 300
1.93023
4.07496
4.21969
4.36442
4.50666 . .
, ' 4.64391
4.78365
4.925S9
5.04816
5.1729}
.5.31517
5.45740
i. 59714
5.73439
5.B74I3
6.011)6
6.14B62
6.28587
6.42312
6.55787
6.68763
6.87229
/ 7. 12682
7.39632
7.66083
7.91785
8.17238
8.42691
8.68144
8.92849
9.16804
9.40760
9.64965
9.89669
10.14)74
10. in 1,29
10.625)4
I0.867*>0
Il.0'l4t8
11. 1/406
l|.M8f>6
11.74577
11.91.0 IB
12. 11/49
U.lMoO
li.s-UM
I.'. /Ill 16
I/.976UO
1 1. l«,5f.5
1 1. 3Vi««)
| i. *> \'t'tt>
5I>2 • 2000. fl'H
NO • 150. PPM
02 - 3.i J
M2.D •.... 6.0 <
DIFFERENTIAL RATfr
MGK S02/GM 0-HIN tMS
1,54713
1.34751
0.99U14
O.R983H
0.798',7
0.69870
0.84650 ..
O.B9U30
0.79B54
0.79854
0.79H47
0.79854
0.74U66 _
0.84(i76/
0. IS7<,«
0. 14') JS
0. 14IU4
0. 11/71
. . O.JI271
0. llhU7
0. Ul.U'l
0. «>' "'
0. II Ml 1
7CHP • 700.
Fill T.C/C.
H2S04 " 75.55
HttH ICIAU
At ID/ 100 CMS C
0.51581
0.7174t.
0.91705
.06225
.19216
.30679
.42525
.55899
.6889U
.81118
.93345
2.00572
2,17418
2.29645
2.41873
2.53335
2.64416
2.75879
.2 ..869,6]
2.96513
3.06448
3.16383
3.25554
3.3)960
_ . 3.4160.2.
3.49244
3.568H6
3. 64528
3.7178b
3.86601
4.14966
4.40186
4.64258
4.87566
5.10875
5.33801
5.56345
5.79272
6.01116
6.23978
6.46140
6.68302
6.9008?
7.11098
7.32496
7.54276
7.72999
7.92104
' ,8...UOa5
' 8.35665
8.'57063
" 8°". 7807B
" '8.99476
9.20492
9.41506
9.62524
9.83540
10.04173
10.24043
10.52119
10.91294
11.32561
11.71064
12.12421
12.51196
12.90370
11.29345
13.67174
14.01856
14.40539
14. 77603
15.154H
15.52876
15.89942
16.27005
16.61)04
l6.V.1t>47
I7.JJVJV
17.(.6H'>&
1/.')')0
0.5094/
0.54761)
P. 54770
O.M49S
0.577/7
P.su*).. 7
0. S094'*
0.4H1'I'»
0.4H4U1
0.47U6
U.4U4UI
488
-------
CALCULATION'.. FIIK GKAVlMttKIC film
IUT-7-6C-4
.RUN NO. • 191
U»U « 9 2 71
(IHV nl.- 100.56 HC
CCHKEUlUN* -6.43 HC
S02 • 2000. PPM ICMP
HO * ISO. PPM Fit) »
01 * 3.5 t II2S04 •
1120.- 6.Q.I
200. DEC. F.
1500. CC/KIH
76.20 (
..HE AH LOAD
CMS SU2/100 (.MS C
PIFFCHENUAU RATE
M(iM !>02/GM C-HIN
MEAN LOAD
CMS ACID/100 CMS C
DIFFtRCNTlAl PATE
MOM ACID/CM C-MIN
3.35629
0. 47011
0.57156
0.66063
0.74476
IJ.B2394
0.89B17
0.96745
1.03425
;.-. 1.10106
1.14312
1.U51B
_ . .. 1.24704
1.30147
1.35143
- .-. 1.40539
1.454BH
1.50189
1.54643
1.59097
1.6)796
1.6H499
1.72705
1.76911
. .- . 1.81366
1.65572
1.69283
1.92747
1.96459
2.05119
?r 17490
2.29119
2.40748
2.52378
2.64007
2.75141
2.R57B1
2.96421
3.G7U6U
3.39720
3.38216
3.46628
. . 3.58773
3.68917
3.79062
3.BB960
3.96857
4.0B754
4.27006
4.36961
4.46116
4.55518
4.64921
4.74076
4.82963
1.91690
5.C0796
5.14159
S.690H9
S. 117 199
6.05214
6.227H1
6. 564 12
6.71217
7.0b41 1
7.22741
7.3H579
7.54167
7.H64HO
f. 14 1 14
P.H0604
1.18762
1.0BB70
0. 94025
. O.B4126
O.B4126
0.74234
0.74226 _
0.64334
0.69200
0.64334
0.19764
0.64334
0.5918)
0.49489
0.54435
. 0.494B2
0.49439
0.44536
O.44S16
0.44543
0.49402
fl. 44536
0.39590
0.44536
0.44543 _..
0.39590
0.34636
0.34644
0.39590
0.44536
0.37941
0.39587
0.37939
0.39590
0.37939
0.36290
0.34641
0.36290
0.34039
1.63099
0.34641
0.34641
... 0.32990 ... ..
0.34639
0.32993
0.32990
0.32990
0.32990
0-JI 14.?
0.31342
0.'29690
0. '3 1 342
0.31342
0.31342
0.29690
0.29693
0.29690
0.29691
0.29692
0.10516
0.30516
O.U 142
0.296V2
0.29692
0.^(1867
0.2H04?
0./6B66
0./I21II
0.2/2U
0.27218
0.25S6B
0.26393
0.27216
0.27218
0./63'*J
0.2619?
0.26 I'll
0.2556B
0.^.4557
0.719B5
0.87520
1.01159
1.14041
1.26165
1.37532
1.48140
1.58370
1.68600
1.75040
l.dl4BO
1.99288
2.07244
2.15201
2.22778
?. J6796
2.43616
2.50815
2.58013
2.64454
2.70695
2.77715
2.64157
2.8984G
2.95144.1..
3. (0628
3.14088
3O3032
3.50834
3.68646
3.b6453
4.C4260
4.21310
4.37602
4.53894
4.70185
5.20197
S. 17924
5.33837
5. -.9371
5.04905
5.60439
5.95594
6.10749
6.25904
6.55078
6.69096
&. 83115
6.97512
7.119.10
7.25"92B
7.3^567
7.53207
7.66647
7.67307
8.14965
8.4'iOOl
8'.71417
*'.99454
9.26713
9.53634
9;797/7
10, (5162
10ilJ925
10.'>b(.8ti
lO.tl'694
11.06701
11.30'9'.9
11.54H1U
12.C-.4Sl
12. SI 326
12.77574
1J.U1444
13. .'4914
1.B1854
.66707
.43975
.28817
.26617
.13670
.13659
0.96512
1.06085
0.96S12
0.30294
0.98512
0.90927
0.75780
0.83354
0.757W
0.75780
0.68195
0.68195
0.68207
0.75769
0.68195
0.60622
0.68195
._ 0.66ZQ7
0.60622
0.53037
.. C.S3048._
0.60622
0.68195
Q. 56097
0.60618
0.58094
0.60622
0.58C94
0.55569
0.53045
0.55569
0.53041 .
2.60370
0.53045
0.53045
0.50516
0.53041
0.50520
0.50516
0.50516
0.50516
0.47992
0.47992
0.45464
0.47992
0.47992
0.47992
0.45464
0.45467
0.45464
0.45467
0.4546'.
0.46726
0.46728
0.47992
0.45465
0.45465
0.44203
0.-.2939
0.41677
0.44201
0.41677
P. 4 167V
0.41677
0.391SO
0.40416
0.41675
0. 416/7
0.4041'j
0.40413
0.4041S
0.39150
0. I11"i0
0. 19150
1. lU'.ll
4.24H94
'l.i'ljlt.
: III
0.24 (41
0.24(41
0./101S
0.^4 1-1
U./t 1- I
U.I t'MII
U..MOO
U./I1)'*
14.16245
14. JU2.'U
0.3(811(1
lt.-.-4'tU.*
0. IS 164
0.3/HUU
(>. IMIUH
0. 1
0. 1
489
-------
C«lLlll»I KINS till- I.MAVIHI tUIL Him I
mr- /-M.-5
•UN NO. • 1<>2
UAH • '1 )
0»» 1,1.- 100.90
CUK«f.<.I| UN- -6.U
MEAN 1040
OKS SU2/100 i,HS C
O.TJSOS
0.94471
1. 14060
I.2II6BH
1. 42574
I.5U939
1.74064
1.B7950
2.00B4)
2.1 J489
2.25dB7
2.3/789
2.48947 ...
2.59609
2.7U5I9
2.81181
?. 910<)V
3.01010
3. 1G936
3.20606
3.3002H
3.38707
3 . 4 6 « 8 9
3.5556B
J. 63993 _..
3.71933
3.80J6J
- . J. 69042
3.97472
4.I4S29
'..19073
4.63677
4.97480
5.11532
4.34096
5.56660
i.B096J
6.05011
6.2B071
6.50e3'i
6.73440
6.95763
7.23039
T. 45355
7.62711
.. . f. 64780
6.06000
It. 28172
8.')
ll.fJ.??!
IP.i'OdSA
12. S*^?
L'.bH 11
13.2.IHM
1 l.".ti:lilu
1 1. 7r.',J I
l<>*> t
1'.. JS>.|I.
l<..6U)^
l't.91 4S'»
I4*. lt^f(.'
l'i.*.4 If, 'Ml
llt.f.// .',
I r>. N'htl<>
II. II Oil/
17. ) 1 IV.
I I. •>•,.' MI"
I 7. / lii/s
1 1.10'IB'.
ll ,(l'..l'..,
l-,./-.'l 1
| I..IM,.-.
sn? « 2000. n>x
71 NO ' 140. PI'M
HO 02 • 3.4 \
ft> H20 «. 6.0 t
DIFFERENTIAL RATE
RjM yj2/f.M C-H1N CMS
„ 2.18202 _..
2.03326
1.H84U
1. 04 13 7
1.73S6>
1.53139
1.48768
1.2U942
1.28934
1. 23978
1.23'J7S
I.140i«
1.09101
l.U4l4'>
1.140S8
0.99161
0.991BS
0.99161
0.-)9161
0.94225
0.94225
0.79340
0.84304
0.8926B
0.79348
0.79340
0.8926U
0.64304
0.84304
0.87611
0. 19348 _
0.79345
0.79345
0.61000
0.69427
0.81000
0. <1C9'<7
0.79345
0.7' 389
0. 17693
0.72732
0.76041
1.057V4
0.429 It
0.727)4
_ 0.7.43S6
0.71002
0.7273*.
O.S9510
0. (6038
3.69427
0.67775
0.66123
0.66121
0.66121
0.66123
0.64468
0.64468
0.6446(1
0.62815
0.62816
0.5H082
0.57U56
O.i/OJO
n.->6204
0.n->377
0.5)721
0. 1967 t
J.'>2l)/l
0.*.H 7o4
O.I, III.'
0.462«'>
11.471 12
0.4.-97H
J.'* tHtl1*
3.*/lll
0.4D4T*
0.4 1 !.'<.
:1. IHu4 /
0. VHi/o
0. IVi'i>)
i>. tf.[l«"l
ll. I1.'.'. 1
0. *.'.' t-.
0. t H'OI*
0. / \'tt,-t
ll.,1!!'*/ 1
!>. ,'t. I.1 /
0. .' r'l,' t
rrup • 200.
Fill * 15CO.
H2SU4 • 76.62
MEAN 1010
AC1U/100 GHS C
I.J23.86
1. 44659
1. 14654
1.97054
2.18316
2.43375
2.66536
2.b779d
3.07541
3.26905
J.45U89
3.64114
3.81199
"3.975JO
4.14232
4.30558
4.45746
4.60934
4.76121
4.90928
5.05356
5.18645
5.31174
5.44463
._ J. 57373
S. 69522
5.02431
5.95720
6.08629
6.352C7
. 6./J556
7.10005
7.46454
... 7.832U4 .
8. 17835
8.52386
B.a9>95
9.26424
9.61734
9.96660
10.31216
10.65388
11.07154
11.41324
11.679C2
12.U1694
12.35106
12.68139
12.96514
13.29647
13.63059
13.94572
14.25327
14.55702
14.86076
15.16451
15.46446
15.76061
16.05676
16.49339
17.07051
17.62865
18.16400
10.69176
19.21191
19. F2450
20.2251-8
20. 61.471
21.1/616
2l.'»19U
21 ,'i;tiHO
22.406h6
22.KWB9
23. .517-.
,' (.(-'.041
.'4.1.4S2'!
24. '4/4.11,
4>4.l',0i/l^4
2*>.lii'HI
."•.VI.-D
2-1. III1)!1)
/I...-1 ».'i.
21, .•>'. 1 111
.'(•.rl,<">2
.'I.I(.2'.6
2l.'t.'44'.
.' / . 1, 1. / , •»
27. iM.M
211. 1 r».-l
[Jf&. F.
tC/MIN
t
OlFFfRfNTIAl RATE
K0« AUD/&K C-M1N
3t>4123
3.11343
2.B8551
1.59460
2.65771
2.35413
2.27800
1.97442
1.97431
1.89841
1.B984I
1.74651
U67061
1.59472
1.74651
J. 5187.1
1.51882
1.51871
1.51871
1.44281
1.44281
1.21490
1.29091
1.36692
>. 21501 _
1.21490
1.36692
1-.29Q91..
1.29091
1.34154
1.21501
1.21497
I.21A97
1.24031
1.06311
1.24031
_l. 24027 _._
1.21497
1.1390D
L.169>t
1.11370
1.16438
l.._61?9B
0.65810
1.U374
1.13904
1.08844
1.11374
0.91124
1.16434
1.66311
.03781
.01251
.01247
.01247
.01251
0.98717
0.98717
0.98717
0.961B6
0.96187
O.H9857
O.H8592
O.H7327
O.B6062
O.B4796
0.82264
0.6U7*9
0. 79734
0.74670
0./2I41
0./CU/4
0.72141
0.65810
O.blOl/
0.64547
0.62014
O.M2HO
O.S94D4
0.60T5I
O.H4420
0.-.8219
0.54420
0.4'J>'>9
0.50625
0. 16/02
0.-.429I
0.4429S
(l.442'<7
490
-------
CALCULATIONS FOR GfUVlHtfHIC FLOW
R«f-7-6C-6
RUN NO. - 193
DATE • 9 7 71
I>RY 1.1. • 10?. 82 MG
CLRKECIION- -6.lt) MC
HtAN IUAD
CMS S02/100 CMS C
0.36777
0.49601
O.blVil
0.7)797
0.85895
0.9(509
I. 06461
1.15172
1.22)76
1.3*719
1.45659
1.55095
1.64290
1.73242
1.81464
1.89454
1. 97661
i. 05907
2.13650
2.20909
2.26409
2.35668
2.426B5
2.49460
2. 56235
2.63252
2.69543
2.7SB33 . .
2.82366
2.95190
i. 14063
3.32210
3. 49673
3.67778
3.66168
4.03831
4.21252 ..
4.39157
4.56578
4.73999
4.91178
5.08115
5.25052
5. 41990
5.62556
S.B2B81
6.00302
6.17723
6.34902
6. 52124
6.69261
6.86198
7.0313S
7.19589
7.35000
7.51770
7.67497
7.82982
7.9H46H
6.21444
8.51699 .__
8.79524
9.06382
9.34449 _
9.6?0i)
9.6X690
10.15506
1 (>.4IBdO
IC.6H25I
10.94627
ll.2U2r5
1 I.4S1 19
11.70361
II.9S2B2
12. ll'Jl
12.4143)
12.6«'I01
12.901 H
u.um
1 >.3*>6I9
l).V.'M2
1 !.7(VO'>
1 l.'I'IOl 1
14. I'IMIll
14. 196*1
|4.S'I74'.
I4.nl>ll(u
14. -Mlifc'l
I'..!'. 'H 1
SCI2 • 2000. ffH
NO • 150. PPM
02 • 1.5 *
H211 • 6.0 I
liIFFFRFNIIAl KATC
UGH S02/GH C-MIN CHS
1.25824
1.30653
1.16144
1.20980
1.20980
1.11300
0.67749
1.06463
1.01626
1,01619
0.967B.)
0.91946
0.91446
0.87110 "
0.77422
0.82273
0.82266
0.82266
0.725B5
0.725V3
0.77422
0.67749 . .
0.72593
0.62905
0.72593
0.67749
0.5B068
0.67749
0.62912
0.64522
0.61297
0.5968)
0.58071
.. . 0.61297 _
0.61297
0.56456
0.59685
0.59663
0.56456
-. 0.59685
0.54844
0.56071
0.54844 ....
0.58071
0.79041
0.56456
0.596*5
0.56456
0.5B071
'0.58071
0.54646
0. 58068
0.54846
0.54U44
0.53232
0.53232
0.51617
0.51619
0.51617
0.50812
p. 50005
0.42746
0.46779
0.46779
0.45166
0.44360
0.44 )60
n.*)')^?
0.443M)
6.4»55i
0.419J')
0.41940
0.41133
0.4194U
O.J9521
0.395 14
0. Jtt71*>
0. IH711
0.38713
0. I-.4IID
0.3'>40ll
0.3VHIU
0. Jill 74
0. 14(>l.O
0.12262
0. *4bHO
n. i ii'Mi
0. l.'/til
0. t|4'l'i
TtHP =
FID •
M2SU4 •
MCA^ LOAU
ACID/100
0.5631)
0.75951
0.94847
1.13001
1.31526
1.49310
.1.63019
1.76357
1.92289
2.07850
2.23040
2.37489
2.51569
2.65277
2.77874
2.90101
3.02699
3.15296
. .3.27151
3.3e266
3.49752
3.60866
3.71611
3.81985
3.92359.
4.03104
4.12737
. 4.22370
4.32374
4.52010
4.80909
5.08697
5.35743
5.63160
5.91319
6.18365
6.45042
6.72459
6.49134
. 7.25811
7.52116
7.78052
8.03987
8.29922
8.61415
8.92536
9.19213
9.45889
9.72194
9.98670
10.24806
10.50741
10.76676
11.01870
11.26694
11.51147
11.7522V
U.98942
12.22653
12.57851
. 13., 04164
13.46772
13.87897
14. JOB76
14.73113
15.14238
15.5444*
15.95370
16.35,762
16.76147
17.154?!
17.53902
17.42114
lt>.302'*>
I8.6f69»
1t<
20.77771
21.10.»H
21.422 H<
2 1 . I il \a
^;. 04483
2.'. t'u' 14
2,'.6M'-[.
2..VI. Jl.f
i l.,">ti ll.
200. UfG. F.
1500. CC/H1N
76.19 t
UIFFEKENTUL RATE
CMS C "OH AC10/GM C-MIN
. . .. 1.92668
2.00063
1. 77845
1.85251
1.65251
1.7042B
.. 1.03740 .
1.63021
1.55616
1.55604
1.48198
1.40792
1.40792
1.33386
1.18552
1.25980
1.25969
1.25969
1.11146
1.11157
1.18552
1.03740
1.11157
0.96323
1.11157
1.03740
0.88917
1.03740
0.96334
0.98799
. . 0.93862
0.91389
0.88921
0.93662 . ..
0.93862
0.86448
.._.. . 0.91393
0.91389
0.06440
... 0.91393
0.8397S)
0.86921
... 0.83979
0.88921
1.21032
. 0.86448
0.91393
0.1)6446
._ . O.B8921 . ....
0.88921
0.63983
0.88917
0.83983
0.83979
0.81511
0.81511
0.7903B
0.7904?
0.79036
0.77B06
0.76570
0.65455
0.71631
0.71631
0.69160
0.679/6
0.67926
0.6bf>89
0.67926
0.66691
0.64219
0.64221
0.629H5
0.04221
0.60516
0.60514
0.19?B.'
O.VI2HO
0.542BO
0.-.4 141
0.44141
0.54341
O.MH70
o.'.jio'.
0.49401
0 . '» 1 1 U4
P.'.OI', Ih
0,4'( »/•)
O.irtll '•
491
-------
C4lCUl»IIONi Ft)« GKAVIHllKIt
IHI'tRIMtNl!,
R«T-7-lt-7
RUN Ml. • 194
DAM • 'I 1 71
DRY Hi." 10). JO HG
COHftfU ION* -5. 911 KG
MEAN tO/10
CMS SU2/100 CMS C
0.7)929
0.782)6
0.82781
0.87567
(<.v2)52
0.97)76
1,02400
I. 07*2',
1.12210
1.160)8
1.19627
1.23455
_. 1.27522 .
1.3I82U
l.)49)9
1.37810
1.41876
1.45945
1.49773
1.5)601
1. 57479
1.61257
1.64846
1.68195
1.71)06 ._. .
I. 74416
1.77287
1.60398 ...
1.8)747
1.89250
1.97624
2.06237
2.14611
2.22507
2.30402
2.38298
2.45954
2.5)849
2.615C5
2.68444
2.75143
2.82081
2.89020
; 2.94719
3.02418
_, J. 08878
3.15337
3.22037
3. 28497 . .
3.34717
3.409)8
1.46919
3.52901
). 50600
3.66299
). 72159
3.79219
). 854)9
1.91899
4.01469
4.13671 _
4.256)-<
4.37597
. .4.50039
4.62958
4.756)9
4.B7B4]
4.99804
5. 11766
5.2)968
5.36170
5.4UI »
5.59857
-,.71341
5.825H6
5.93VU
6.04 I5H
6. |4llO->
6.2517J
6. 14 'III j
(I.445S3
6.5)11 114
f,.l,)?|->
6. 7U4?
0. IK. 001
i..'f4Ssn
It (,Mli'i
f.lM>-'0
r./i-isr
so? • 2000.
NO « ISO.
02 - 3.5
K20 * 6.0
DtFfeRfNIIftl RATE
«GM S02/GM C-M1N
0.43064
0.43064
0.47854
0.47U47
0.47054
0.52636
0.47847
0.526)6
0.43G72
0.13492
0.362U2
0.3S2S2
_ 0.4)064
0.43064
0.19145
0.38282
0.43064
0.38282
_.. .O.JB282. _. .
0.3828?
0.38274
0.38282
0.3)499
0.33492
0.2871/
0.33492
0.23927
0.38282 _
0.28709
0.27M5
0.21)712
0.28709
0.27115
0.25521
0.27115
0.25521
0.25521
0.27115
0.239^5
. 0.22JJO ....
0.22330
0.23927
. . 0.22)30 '
0.22330
0.223)0
- 0.207)4. _..
0.22330
0.223)0
.0.20736 .„_
0.207)6
0.207)4
0.19142
0.20734
0.2)927
0.207)6
0.22330
0.207)4
. 0.20736
0.2D30
0.20O5
0.19936 .._.
O.IV938
0.199)8
_. 0.21S))
0.2153)
0.20735
0.19938
0.199)8
0.19v)U
0.207)5
0.199)8
0.199)8
0.19141
0.19141
0.111 14)
0.18)4)
0.17545
0.17545
0.16740
0.15950
0.1VI50
0.1515)
0.15'l-jU
d.l'll4l
O.lbNr
0. IhHtl
O.I HI-. I
O.IH)-,)
0.1 7-J4S
PPM IfMP • 200
PHH Mil • IV-iO.
< H2&L4 • 75.64
(
MEAN LOAD
CMS AC1U/100 GMS C
1.1320S
1.1979U
.26759
.)40U6
.4141)
.49107
.. .56800
.6449)
.71821
.7768)
.81178
.69040
.95268 .. .. .
2.01862
2.06675
2.11022
2.17250
2.2)476
2.29340
2.35202
2.4106)
2.46925
2. 52420
2.575»9
2.62312. . ...
2.67075
2. /1471
2.76234 .
2.8136)
2.89789
3.C2612
3.15801
3.2862)
3.4071) ......
3.52803
3.6489)
3.76617
3.B117C7
4.004)0
4.U054
4. 21312
4.319)7
4.42562
4.52820
4. 6307 H
4.72969
4.82860
4.9)118
- 5.0)010 .
5.12536
5.22061
5.31220
5.40)79
5.50637
5.60896
5. 70768
5.60679
.... _. 5.90J04
6.0009A
6.14750
... 6.))43.4__
6.51752
6.70070
6.89171
7.08905
7.2t>322
7.47006
7.05)24
7.tf)642
8.C2326
8. /lull
».)-»J29
8.57280
8.74866
8.-J20HS
V.Ob'IU
<).2IJ42)
9.4154)
9,1/2'((
4
IU.6IS41
10. Mix, I
10. "1. '.I)
1 1.1 HUH.
. DEC. F.
LC/HIN
i
D1FFERCNT1AL RAT6
MC.M HCIU/uH C-HIN
0.65942
0.65942
0.7)276
0.7)265
0.7)276
0.80600
0.7)265
O.U0600
0.6595)
0.51285
0.58619
0.58619
0.65942
0.65942
0.29315
0.58619
0.6594?
0.58619
0.58619
0.58619
0.58608
0.58619
0.51296
G. 51285
0.4)973 ..
0.51285
0.366)8
0..58619
0.43961
0.41520
_ 0.4)965
0.4)961
0.41520
. . O.)9079 .. _ .
0.41520
O.)9079
O.)9079
0.41520
0.366)S
0.34193 .. _
O.)4193
0.36638
0.34193
O.)419i
0.34193
O.)1749
0.34193
0.34193
O.)l752 .
O.)l752
0.31749
0.29311
0.3174S
0.366)8
O.)1752
0. 34193
O.)l749
O.)175?
0.34193
O.M751
0.30530
0.30530
0.)O5)0
0.32973
0.)2973
0.31751
O.)05)3
0.30530
0.305)0
0.31751
0.305)0
0. 105)0
O.?9)0<)
0.29)09
0.28087
0.280S7
O.26H67
0..'6D67
0.25646
0.24424
0..'4424
O..')20)
0./4424
0. ."*)»')
O.J'i64'.
(<..">646
o..'iiiiur
o./iii'iir
C. .'tiHt*/
492
-------
CALCULATION!! rim (.RJVIHICRIC HUH KPCRIMINIi
KT-7-6C-8
RUN Nl). > 19i
U»H • 9 10 71
DRY HT.» 104.70 MC
CURRECIIUN' -5.87 HO
MEAN LUAD
CMS SO// 100 CMS C
0.489 16
0.5H292
0.66689
C. 74165
0.81802
O.BH999
0.9'.,716
1.019%)
1.00190
1. 14187
1.19705
1.24983
1,27861
1. 10740
1.36017
1.41051
I. 4585)
1.50651
1.55681
1.00726
I. 65284
1.6936)
1.7)6111
1. 78478
1.830)7
1.0711%
1.90953
1.95271
1.49829
2.06225
2.20460
2.J2454
2.44449
'2.56444
2.684)8
2. 8019)
2.91948 ..
3.034ft}
3.147)7
3.26252 . ..
3.37527
). 48802
3.60077
3.71352
3.82627
3.93902
4.05176
4.16211
4.27247
4.38262
4.50036
4. 61551
4.725R&
4.83861
4.9489h
5.0593?
5.16966
5.28001
5.38797
5.54869
5.76460
5.9H290
6.20360
6.42190 . ;._ .
6.6)041
6.84651
7.0'-2H2
7.2S43)
7.45B24
7.hf>451>
7.U/OKI.
8.072)7
II.26-JOI)
8.4W
0.6?4*>0
tl.K 71140
•i.nos:
V.//IX, I
9.4/C"»4
v.M..'tlfi
9.7
10.0I'<4«
ll<./>/Wll
10.41141.'
lU.5l>4Ci
l|i.7M'>r>
ll'.'M4,">
11. 1 .".'.. I
II.//OI*
S02 • 2000. t>t>H
NO » 150. PPM
02 • 3.5 %
H2tl - 6.0 X
01FF[ftf:NTIAL RATE
KCH S02/CH C-MIN CMS
0.95955
0.91160
0.76767
0./6767
0.71965
0.71972
0.62367
0.62374
0.62374
0.57572
0.52777
0.52777
0.04795
0.52777
0.52777
0.47981
0.47974
0.47981
0,52.117.
0.47974
0.4)106
0.38)84
0.47974
0.47981
0.43179
0.3&.)»4
0.}8)b4
0.47974 _..
0.4)186
0.41580
0.399U2
0.39982
0.39982
0.39982 _ . . .
0.39962
O.J8)64
0.39982..
0.36783
0.38384
0.38381 - .
0.36783
0.38)84 .
0.3678)
0.38)84
0.36783
0.)8384
0.36783
0.367(f3
0.36785
0.3678)
'0.41500
0.35164
0.3D3H4
0.3678)
0.36765
0.367B3
0.36783
. 0.16783
0.351B4
0.359H4
. 0.35VU5. _
0. 16781
0.367D4
0.359B4
0. 15184
0. 151114
0.335115
0.3)5i>6
0. I4J84
O..I4 3HS
0. I41U4
0. )2 tan
0.3^7U6
0.343H4
0. )15l)'>
0. 14 *ri5
0. 127(16
0. *2'H4
O.J1906
0.11 'HIS
0. U 1M,
0. U1U6
0. I0)x;
P.."<'jll(>
a.)otvt
Q..'HIHl
0. ,'lt /I) /
O.^'/'/l'M
{l..''l«ll
TEMP • 200.
Fill • 1500.
H2S04 • 76.92
MEAN LOAD
ACIU/100 &Ki C
.' 0.74.9)4
0.89260
.02117
.13872
.25259
.36279
.46565
.56115
.65666
.74B49
.8)298
.91379
.95787
2. 00195
2.08217
2.15991
2.23)37
2.3U6B4
-2.3»39fl . .
2.46112
2.53092
2.593)7
2. 6594(1
2.73295
2.80275
2.86519
2.92397
2.99008.
3.05988
3.18845
3.37579
3.55945
3.74312
). 92679
4.11046
4.29045
4.47045
4.64677
4.61941
. .4.99574
5.1663d
!>.)4103
..5.51)67
5.68632
5.85697
6.03162
6.20426
6.37324
-6.54221
6.71119
6.89118
7.06750
7.23648
7.40912
7.57BIO
7.74708
7.91605
6.08502
8.25032
8.4964)
8.82704
9.16111
9.49926
9.H3)'>4
10. 16047
10.4S372
10.79963
11. Kit A:
11.42044
11.71614
12.05225
12.360K)
l2,t>b2U3
l2.'i(OVI
1 .).<•«, 3 J
13.59506
1 1. /OJl'J
14.204h4
U.502IH
14. Ml.25
15.0Bli44
l'>.SI/-lt,
IS.dS1)!!!
|5.»ll II
t6./y6nj
t6.4 ttU'1
II../4 >!.'
l/.i'vl)1'.'
I/.2'. />•(
Dtr,. F.
CC/KIN
I
UlfftRENTIAL RATE
KC.K ACiu/cp C-MIN
- _L. 46932
.395119
.1/550
.17550
.10196
.10207
0. 95499
0.^5511
0.95511
O.tol-,7
0.80814
0.80814
0.07343
0.80814
0.80814
0.7)472
0.73460
0.73472
0.8U814
0.73460
0.66129
0.58775 . ._..
0. 7)460
0.73472
0.66118
0.58775
0.58775
0.. 7 3460
O.D6129
0.63670
0.61223
0.6122)
0.61223
.__ 0.61223
0.61223
O.D6775
0.61223
0.56324
0.56775
.0.58771 ...
0.56324
0.58775
0.56324
0.58775
0.56)24
0.5S775
0.56324
0.56324
. 0.56327
0.56324
0.6)670
0.53676
0.58775
0.56324
0.56327
0.56324
0.56324
0.56324
0.53876
0.55100
0.55102
0.56)24
0.56)26
0.55100
0. 5)876
0.51876
0.51427
0.5142'!
0.5/650
0.526'.2
0.52650
0.5020)
0.50201
0.52650
0.51427
0.52hS2
0.50?C)
O.S020I
0.4H9/9
0.4n'l7f
0.417'.)
0.4/751
C.46MO
0.45104
0.46S30
0.440110
P. 4411 III'
C.4.'H'>7
U.4I611
493
-------
CALCUUUONS FUR GRAVIMtrHIC FLOM
a«r-7-6C-»
BUN NO. • l">6 SU2 •_ 2000, PPM TfMP «_ 200. PEO. f.
OAlf • 9 14 71 140 « 150. PPH Fill * 1500. CC/MIN
OdY WT.- 100.42 HC 02 • 3.5 * H2S(K ' 75.78 *
*EAN LOAD OlFf EfUNTIAL RATS H6AH LOAD . .. DIFFERENTIAL RATE
iKS S02/100 SHS C KGM S02/GM C-MIN CMS ACID/100 CHS C MfcH ACIU/GM C-MIN
n.4tftAq O.49?R590
1.20363
1.24136
1,2790?
1.31305
1.34324
1.J7719 _..
1.41493
1.45266
1.4«662
1.52057
1.55453
1.58472
1.61490
1.64836
1.68262
1.71301
1.76582
1.84506
1.93184
2.01862
2.10163
2.18464
2.26387
2.33933
2.414UO
2.49026
._ Z..5657.3
2.64119
2.71665
2.79212
2.86758
2.94304
3.01850
3.09019
3.16188
3.23357
3.30149
3.36941
3.43732
3.50147
3.56184
3.62590
3.69012
3.75427
3.61841
3.90897
4.03725
4.17309
4^30892
4.44098
4.576BI
4.71642
4.85225
4.98809
5. 12015
5.25598
5.39182
5.92387
5.65593
5.78799
•i.9238)
6.05589
6.18795
6.32001
6.44630
6.57281
t.6'1732
6.82561
6.95)89
7.07841
7.20292
— .. 7.J31Z1.
7.4557?
7.50024
7.f04,T6
0.402/6
0.37734
0.45276
0.45276
0.37/34
0.45276
0.37/34
0.37734
0.45276
0.45276
0.45276
0.37734
0.37V34
0.37734
0,37722
0.30192
0.301110
0,37/34 _.
0.37734
0.37/34
0.301(10
0.37734
0.30180
0.30192
0.30189
0.37734
0.30192
0.30180
0.25156
0.27670
0.30184
0.27670
0,27670
0.27670
0.25152
0.25156
O..O156
0.25152
0.25156 _
0.25152
0.25156
0.25156
0.25152
0.25156
0.25152
0.22643
0.25152
0.22&38
0.22642
0.22638
0.22638
0.20124
0.20124
0.2263B
0.20124
0.22638
0.20124
0.20124
0.22638
0.22640
6.22638
0.21381
0.23B97
0.22640
0.72638
0.22640
0.21381
0.23897
0.21381
0.22638
0.21381
0.22640
0. 22638
0.21383
0.226)8
0.21381
0.21381
0.20U4
0.213HI
0.213HI
0.21381
0.20124
0.21381
0.21381
0.20124
0.21381
O..2012i
494
-------
CALCULATIONS FOR GRAVIMETRIC FLOW EXPERIMENTS
R»T-7-6C
RUN NO. •
DATE •
DRY UT.»
197 __W>2_' 200p._PPH TEMP » 200. DEC. f_.
91571 NO- 150.>PM"" Tin*1500. CC/HIN
98.30 MG 02 • 3.5 X H2S04 > 74.7) X
-.JltQ
MEAN LOAD
'CMS S02/100 CHS C
_PIFFERENTIALJUTE_
MGH S02/GK C-MIN
_ _M£AN LOAD
CMS ACID/100 CM$"C~
DIFFERENTIAL RATE
"MGM ACIO/CM C-MIN"
0.58831
0.61299
0.66774
0.70001
0.72980
0.76208
0.79*34
O.B2662
O.B5BB9
. ._0. 88867 .
0.92095
0.95322
. .... 0. 9830.1. _
1.01031
1.03514
.. .... 1.05748-..
1.07982
1.10464
1.15429
1.17663
1.19641.
1.21634
1.2)620
1.25606 .
1.27592
1.29578
.--1.31812
1.34046
1.36280
, .1.41742
1.47203
1.52664
— .. .1.57811...
1.63090
1.68303
1.73268
1.78481
1.83694
... .- -1.88.90J _
1.94368
1.99829
2.10007
2.14972
2.24404
2.29369
2.38802
2.4)767
2.48732
2.53696
2.5B661
2.6)37B
2.68094
2. 72811
2.77031
2.83733
2.93166
).02351_
3.11287
3.20224
3.28912
3.38097
3.475)0
3.56218
3.64658
3.733'.,
).822S)
3.90971
3.99411
4.08099
4.170)6
4.25972
4.34909
4.4)845
4.5770?
4.62215
4.71648
4.80833
4.90017
4.9H954
5.0764Z
5.16579
5.25763
5.3*203
i.*Z147 ...
0.54612 0.90085 0.83625
0.34757
0.3*7*9
0.29787
0.29795
0.3*7*9
0.29787
0.34757
0.29787
0.297B7
0.34757
0.29787
p. 29787
0.24825
0.24825
0.19B56
0.24825
0.24825
_ 0.24818
0.24825
0.19B<>)
0.19846
0.19856
0.19863
3.96927 0.
t.022*B 0.
.07189 0.
.11751 0.
.16693 0.
.2163* 0.
.26575 0.
.31517 0.
.36078 0.
.41020 0.
.45962 0.
.50523 0.
.54704 0.
.58505 0.
.61926 0.
53221
53210
45612
45623
53210
45612
5)221
45612
45612
5)221
45612
45612
)801)
38013
30404
.653*7 0.38013
.69148 0.38013
.72949 0.38002
.76750 0.
.80171 0.
1.8)212 0.
38013
30*15
30404
1.8625) 0.30404
1.89294 0.30415
L. 92)35 - 0.30404
0.19863 1.95376 0.30*15
0.19856 1.98417 0.30*04
O.J4B25 2.01B37 0.38013
0.19856 • 2.05258 0.
0.18204 2.08679 0.
Or|R?G4 2.170*2 0.
30404
27875
27875
0.18204 2.2540* 0.27875
0.18204 2.33767 0.27875
O.16r>5Q 2.41749 0.25342
0.1B204 2.49732 0.
0.16548 2.5771* 0.
0.165SO 2.65316 0.
27875
25338
25342
O.lBiO* 2.7)299 O.iloty
0.16550 2.81281 0.25342
0.18704 2.B9264 0.27875
0.1B202 2.97626 0.
0.18204 ' 3.05988 0.
0.16550 3.13970 0.
0.16550 3.21573 0.
0.16548 3.29175 0.
0.14894 3.36397 0.
0.16550. 3.4)619 0.
0.16550 3.51222 0.
n.l<.R94 3.58444 0.
0.16550 .65666 0.
0.16548 .73268 0.
0.16550 .80870 0.
0.16548 .88472 0.
0.16550 .96075 0.
0.1489* *. 03297 0.
0.16550 4.10519 0.
0.1*B9* 4.17741 0.
0.13240 4.24203 0.
0.15722 4.34466 0.
0.15722 4.48911 0.
0.14894 4.62975 0.
0.1*895 *. 76659 0.
0.1*89* 4.90)42 0.
0.14067 5.03646 0.
0.16549 5.17710 0.
0.14895 5.32154 0.
0-14.067 5.45458 0.
0.14067 5.58383 0.
0.14895 5.71687 0.
0.14894 5.85370 0.
0.14067 5.98674 0.
0.14067 6.1I59B 0.
0.14895 6.24902 0.
0.14894 6.)8Srtft 0.
0.14895 6.52270 0.
0.14U9* 6.65954 0.
0.141195 6.79638 0.
0.14894 6.9)322 0.
0.16549 7.07766 0.
0.141195 7.22210 0.
0.15722 7.36275 0.
0,1*894. 7.50)39 0.
27871
27875
25342
25342
25338
22806
25342
25342
2J58.P.6
25342
25338
253*2
25338
253*2
22806
25)42
22B06
20273
2407*
2407*
22806
22808
22806
21539
25)40
22808
2153?
215)9
22808
22806
215)9
21539
22808
22806
22808
22806
22808
22806
25340
22808
24074
22806
0.14895 7.6*02) 0.22808
0.1*067 7.77)27 0.21539
0.15722 7.91011 0.2407*
0.14BV4 8.05075 0.
0.132*0 8.17999 0.
.__ 0.1)i40. _ 8. 30163 0.
22806
2027)
2027)
495
-------
CALCULATIONS f(JK ORAVIMETRIC FLOW EUPtRIMtNTS
C-70-77 TBfATCO HUH 2« NH4UM
HUN NO. • 198 S02 • 2000. PPM TFMP • 200. DEC. F. r
OAII: . ~9 16 'll~ NO • 150. "»M FITI '• '" 1500. tC/HIN ~
DRY MT.- 103.10 MC O2 * 3.5 X H2S04 • 77.32 *
CO?R£CTlyN« -5.|0 KG H20 « 6.0 *
K£AN LOAp
GUI S02/100 CMS C
0.95503
<
-----
"*
-•
0.99421
1.0)094
1.06763
1.10686
1.14604
1.18767
1.22665
1.2611)
1.29787 ..
1.33950
1.38113
. ..1.40316 ....
1.42031
1.44969
1.48397
1.52071
1.55499
I.5H977
1.62356
1.65784
1.692J2
1.72641
1.75824
1. 79QOB
1.82681
1.86109
-1.H9Z93.
1.97129
2.09128
2*. 1B6Z9
2.27984
2.37290
2.46350..
2.55411
2.64717
2.74022
2.83328
2.92633
3.01918..
3.10999
3.19815
•• 3.38181
3.47731
1.57787
3.66832
3.76628
a. 86 178
3.95728
4.05523
4.15074
4.24624
4.34664
4.44950
4.57438
4.67479
4.75315
4.90498
5.10823
$.31148
5.51473
5.71790
... 5.91879
6.11714
6.31)05
. 6.50651
6.69996
6.89587
7.0942,
7.29502
7.49583
.. 1.69416 _..
7.89009
8.09579
. B. 30)94
8.49739
8.68595
_ B. 87696... _
9.06797
9.2565)
9.44754
9.63854
9.62466
J0.0107I_ _
10.11076
10.221)1
10.J4070
DIFFERENTIAL RATE
MGH S02/CH C-HIN
0.39182
0.39182
0.34287
~~ 0.39182
0.39175
0.44084
0.34280
0.34287
0.39182
0.44077
0.39182
Q..04895
0.29305
0.29)85
0.39162
0.)42B7
0.34280
0.34280
0.342B7
0. 14780
0.34287
0.29)85
0.391 /•>
0.29)92
0.47345
0.32650
0.31019
0.31019
0.31019
0.79185
0.31019
0.31019
0.51019
0.31016
0.31019
0.11019
0.29387
0.29385
0.11019
0.31019
0.32650
O.V1019
0.32650
0.32650.
0.31019
0.32650
0.32650
0.31019
0.32650
0.34285
0.34285
0.48974
0.17958
0.34285
0.3)468
0.3428)
0.33468
0.3428)
0.33466
0... J34.de
0.32652
0.32650
. £.3.10.15 . .
0.32650
0.32652
. . 0.33468 . ..
0.31466
0.3)468
0.32650.
0.32652
0.35416
... 0.33466
0.31019
0.31835
0.31835 , ,
0.31815
0.31019
0.31019
0.31019
0.11018
0.08979
0.21224
. „ .D.llZil ..
MEAN LOAD
CMS AC ID/ 100 CMS C
1.46239
1.52238
1.57863
1 .63488
1.69488
1.75487
1.81862
1.87861
1.93111
1.98736
2.05110
2.11485
2.14860
2.17484
2.21984
2. 27233. _
2.32858
2.38108
2.4)358
2.48607
2.53857
2.59107
2.64356
2.692)1
2.74106
2.797)0
2.84980
2.89855
3.01854
3.20228
3.49101
3.63350
3.77224
3.91098
4.05347
4.19597
4.33845
4.48094
4.62343
4.76218
4.89716
5.03590
5.17840
5.32464
5.47088
5.61712
5.76711
5.91334
6.05959
6.20957
6.35581
6.50206
6.65580
6.81329
7.00453
7.15827
7.27826
7.51075
7.82198
8.13321
8.44444
8.75566
9.06314
9.36688
9.66686
9.96309
10.259)1
10.55929
10.6630)
11.17050
11.47798
.11.78171
12.08170
12.39666
.12.71541
13.0116)
13.300)7
13.5928*
13.8853)
14.1 7406
. 14.46654
14.74902
15.04401
15.12899
15.51272
15.65147
15.84645
DIFFERENTIAL RATE
MCH AC10/CM C-MIN
0.59997
0.59997
0.52502
0.59997
0.59997"
0.59986
0.67504
0.52491
O. 52502
0.59997
0.67493
0.59997
0.07495
0.44995
0.44995
0.59997
0.52502
0.52491
Q. 52502
0.52491
0.52502
0.52491
0.52502
0.44995
0.52502
0.59986
0.45007
0.52491
0.72497
0.49996
Q.47497
0.47497
0.47497
0.44995
0.47497
0.47497
0.47497
0.47494
0.47497
0.47497
0.44999
0.44995
0.47497
0.47497
0.49996
0.47497
0.49996
0.49996
0.47497
0.49996
0.49996
0.47497
0.49996
0.52498
0.52498
0.74992
0.27498
0.52498
0.51247
0.52496
0.51247
O. 52496
0.51245
0.51247
0.49998
0.49996
0.48747
0.49996
0.49998
0.5124?
0.51245
0.51247
0-49996 __
0.49498
O.S4997
0.51245
0.47497
0.48747
0.46747
0.48747
0.47497
0.44996
0.47497
0.4749T
0.47496
0.1)749
0.32499
0.324*1
496
-------
APPENDIX A-18
LITERATURE STUDY ON SOLVENT EXTRACTION
A literature survey on the removal of sulfur from carbon" by
extraction was made.
The paper by Prchlik, et al.14 was of particular interest.
The paper discussed a detailed study based on both literature
and experimental work of sulfur extraction from spent gas
works purification mass (iron oxide). Literature references
on 10 solvent systems for sulfur extraction from spent purifi-
cation mass were given. Solubility data for sulfur in various
solvents were given. These data are shown in the following
section. Diagrams of bench scale extraction apparatus and
proposed commercial equipment are given. In reviewing various
solvents and running bench scale tests, Prchlik, et al. reached
the following conclusions:
1) Carbon disulfide, while an excellent solvent, is
discounted due to the-health and explosion hazards
inherent in its handling.
2) Chlorinated solvents, trichloroethylene and dichloro-
benzene, were discounted primarily due to cost
although it was also mentioned that trichloroethylene
will not remove the pitch or naphthalene present in
the gas being treated.
3) Tetralin was considered an excellent solvent but was
discounted because of expense and difficulty in
removing it from the purification mass.
4) A toluene-xylene mixture was considered the best
solvent in view of the requirement to remove pitch
and naphthalene as well as sulfur to regenerate the
purification mass.
Ammonium sulfide was not considered by the authors, presumably
because of its reactivity with the iron oxide.
Equilibrium Data - Sulfur-Solvent Systems
Solubility of Sulfur in Ammonium Sulfide
No extensive data on the solubility of sulfur in ammonium
sulfide was found. Previous extraction processes operated
near room temperature and under these conditions the solubility
was reported to be 18-2470 by weight of sulfur in solution14'15.
Since the pressure of H2S and NH3 were important for extraction
studies at higher temperatures these data are shown in
Tables A-1B-1 and A-18-2 and Figure A-18-1.
497
-------
Table A-18-1.
VAPOR PRESSURES OF H2S, NH3, AND H20
OVER AQUEOUS (NH4)2S SOLUTIONS
Temp . ,
°C
20
20
20
20
20
40
40
40
40
60
60
60
60
NH3,
% by Wt.
1.38
2.68
6.77
8.05
9.41
2.31
5.88
7.21
9.34
3.22
5.54
6.80
9.00
H2S,
% by Wt.
1.40
2.68
6.81
8.03
9.40
2.33
5.86
7.26
9.36
3.25
5.56
6.81
9.05
Vapor Pressure, mm. Hg
H2S
53.3
65.6
130.1
154 . 8
190.0
92.0
183.4
220.5
293.2
134.1
205.0
250 . 9
365.0
NH3
0
0
0
5.6
13.0
8.2
22.2
26.9
30.4
25.5
48.5
76.1
145.0
H20
16.3
16.2
15.8
15.1
14.3
49.1
44.7
48.4
47.9
125.1
127.3
113.5
105.0
Table A-18-2.
VAPOR PRESSURES OF H2S, NH3, AND H20
OVER AQUEOUS (NH4)2HS SOLUTIONS
Temp . ,
°C
20
20
NH3,
% by Wt.
0.80
2.14
2.97
H2S,
% by Wt.
1.58
4.23
5.93
Vapor Pressure, mm. Hg
H2S
115.7
163.0
197.6
NH3
0
0
0
H20
13.9
15.2
16.1
498
-------
Figure A-18-1.
1000
Equilibrium vapor pressures of hydrogen
sulfide and ammonia over aqueous
ammonia solutions at 20°C
Hydrogen Sumde
2.On
l.On
0.5
0
0.2 0.4 0.6 0.8
Mole H7S/Mole NH (R)
£ O
499
-------
Solubility of Sulfur in Carbon Disulfide
The solubility of sulfur in carbon disulfide is strongly
dependent upon temperature, reaching 9070 at 98°C. Data from
the literature on solubility are contained in Table A-18-3 .
Table A-18-3.
SOLUBILITY OF SULFUR IN
CARBON DISULFIDE
Temp. ,
°F
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
% Sulfur
in Solution
1.0
1.5
2.0
2.5
3.2
4.2
5.5
7.1
9.5
12.0
15.0
Temp . ,
°F
0
10
20
30
40
50
60
70
80
90
98
7o Sulfur
in Solution
19.0
23.5
30.0
38.5
50.0
60.0
66.0
71.0
78.5
86.0
90.1
Solubility of Sulfur in Xylene
The solubility of sulfur in meta and para-xylene is up to
21.8% in solution is shown in Table A-18-416. There is no
solid phase of sulfur in equilibrium with the solution above
21.8% and a liquid-liquid separation occurred. There was
500
-------
Table A-18-4. SOLUBILITY OF SULFUR IN XYLENE
m-Xylene
Temp.. °C % Sulfur in Solution
25 1.969
45 3.604
80 10.29
Rhombic Sulfur-p-Xylene
% Sulfur in Solution Equilibrium Temp. , °C
11.0 85.0
13.95 92.5
17.85 100.5
Monoclinic Sulfur-p-Xylene
% Sulfur in Solution Equilibrium Temp., °C
16.25 98.2
16.3 98.0
17.85 103.3
20.38 106.0
21.8 107.0
apparently the formation of amorphous sulfur. Table A-18-5
gives the solubility results before measurable amounts of
amorphous sulfur were formed.
These data indicate that sulfur and p-xylene are initially
mixcible in all proportions above about 190°C. However, if
the equilibrium temperature is maintained, reseparation of
liquid phases occurs, probably due to the formation of
501
-------
Table A-18-5.
SOLUBILITY OF SULFUR IN p-XYLENE ABOVE
21% CONCENTRATIONS BEFORE PHASE
SEPARATION
% Sulfur
in Solution
20.38
21.8
25.9
27.95
28.04
30.22
31.95
34.6
34.9
39.9
44.0
Equilibrium
Temp . , °C
94.0
101.0
117.7
124.5
124.2
130.0
137.3
144.5
149.0
158.5
167.0
% Sulfur
in Solution
44.1
45.7
46.3
48.3
61.7
71.2
81.0
85.6
87.9 .
90.0
91.0
Equilibrium
Temp . , °C
167.5
171.0
175.0
175.0
190.0
190.0
184.0
176.0
162.5
150.0
143.0
amorphous sulfur, resulting in a rise in the temperature
of complete miscibility. The equilibrium temperatures
finally obtained are contained in Table A-18-6.
Table A-18-6.
SOLUBILITY OF SULFUR IN p-XYLENE
AT ELEVATED TEMPERATURES
70 Sulfur
in Solution
16.25
21.8
25.9
27.8
27.95
29.1
30.22
31.95
34.6
34.9
36.0
Equilibrium
Temp . , °C
80
109.0
121.7
127.0
129.0
132.0
133.7
141.5
148.25
150.0
154.0
70 Sulfur
in Solution
39.9
44.0
44.1
45.7
46.3
48.3
87.9
90.0
91.0
96.2
Equilibrium
Temp. ,°C
165.0
174.5
174.5
179.5
183.5
196.0
177.0
155.0
147.5
84.0
502
-------
The equilibrium temperature rises with sulfur concentration
below 48.3/o and decreases with sulfur concentration above
87.9/0. There does not appear to be a maximum, however. Rather
the low and high concentration curves appear to be entirely
separate. The temperatures above which two phases exist and
below which one phase exists are:
S in Solution, Equilibrium Temp.,
44.0
46.3
48.3
87.9
90.0
91.0
235.0
220.0
206.0
187.0
203.0
205.0
Smisek and Cerney17 also present data on the solubility of
sulfur in xylene as shown in Table A-18-7. These data agree
rather well with the literature information in previous tables
Table A-18-7.
SOLUBILITY OF SULFUR
IN XYLENE
Temperature,
°C
25
45
85
100
107
Concentration ,
Wt. %
1.73
3.24
10.78
18.8
24.1
503
-------
The following equilibrium data as presented in Prchlik's
article!^ are referenced to the original author:
System: Sulfur-Benzene18
Temp . , °
25
54
84
C g. S/100 g. Sat
2.074
5.165
13.02
. Soln.
System: Sulfur -Toluene
Soln.
Temp . ,
OF
-10
0
0
13
15.5
20
23
25
35
40
50
54
60
70
80
83.5
90
100
Dissolved g. of S
in 100 g. of
Sat. Solns .
0.576
0.923
0.897
1.545
1.649
1.827
1.889
2.018
2.722
2.35
3.68
4.85
5.27
7.83
11.1
11.64
15.3
20.9
Determined By
Jacek19
Jacek19
Hildebrand-Jenks 18
Delaplace20
Jacek19
Delaplace20
Delaplace20
Hildebrand-Jenks 18
Hildebrand-Jenks L 8
Burden-Newling 2 !
Burden-Newling
Hildebrand-Jenks 18
Bur den - Newl ing 2 ^
Bur den - Newl ing
Bur den- Newl ing2 ^
Hildebrand-Jenks l 8
Bur den-Newl ing •"•
Bur den - Newl ing 2 1
System: Sulfur-p-Xylene22
Temp . , °
85
92.5
98.0
100.5
107.0
117-121
124-129
C g. S/100 g. Sat.
11.9
13.95
16.3
17.85
21.8
25.9
27.95
Soln.
504
-------
Bituminous
Pitch Oil Fraction
Temp . B . P .
°C S.G.
15
30
50
80
100
110
120
130
, °C: 80-100
: .87
2.1
3.0
5.2
11.8
15.2
85-120
.88
2.3
4.0
6.1
13.7
18.7
23.0
27.0
120-220
.882
2.5
5.3
8.3
15.2
23.0
26.2
32.0
38.7
i i
Coal)zz
by Boiling Point
150-200
.885
2.6
5.8
8.7
21.0
26.4
31.0
38.0
43.8
210-300
1.01
6.0
8.5
10.0
37.0
52.5
105.0
Range
220-300
1.02
7.0
8.5
12.0
41.0
54.0
115.0
505
-------
APPENDIX A-19
DETAILED DATA FROM COMBINED SULFUR STRIPPING/H2S
GENERATION STUDIES
Page
1. Run SHG-1 507
2. Run SHG-2 512
3. Run SHG-3 517
4. Run SHG-5 522
5. Run SHG-7 527
6. Run SHG-8 532
7. Run SHG-9 537
8. Run SHG-10 542
9. Run SHG-11 548
506
-------
RUN SHG-1
A. EXPERIMENTAL DATA - IJ2.S GENERATION/S STRIPPING
1. Virgin Carbon
a. % Sulfur (Combustion Anal.), Psc
2. Inlet Carbon -
a. %, Sulfur (Combustion Anal.), Psi
b. Acid Titration, Pvi
c. Material Rate, RI
7.
= 0.65%
= 20.70%
= 40.6 Ibs./hr.
Intermediate
a. Stage 8,
b. Stage 7,
Stage 6,
Stage 5,
Stage 4,
Stage 3,
Stage'2,
Stage 1,
c
d
e
f
g
h
Stage Carbon
% Sulfur, PS8
% Sulfur, PS7
% Sulfur, Ps6
% Sulfur, PS5
% Sulfur, PS4
% Sulfur, Ps3
% Sulfur, PS2
% Sulfur,
Outlet Carbon
a. %, Sulfur (Combustion Anal.), Pso
b. Material Rate, R0
/
Inlet Gas
a. % H2 (26.0% by Rota)
b. H2 Gas Rate (55% @ 4.3 PSI)
c. N2 Gas Rate (25.8% of 640 @ 4.3 PSI)
Intermediate Stage Gas Analysis
H2S % N2 % SO2 % H20
15.79%
37.3 Ibs./hr.
26.8 Chrom. %
66 CFH @ 70°F
188 CFH @ 70°F
% CO % CO2
1
2
3
*j
4
^r
5
«/
6
\*'
7
Outle
a.
b.
c .
d.
e.
f .
g-
h.
7°
10
01
lo
7
10
7
to
7
lo
7
10
21.4
4.1
21.8
1.3
18.1
16.0
15.8
0
0
2
0
6
6
8
t Gas Analys
H2
H?S
N2
SO?
H20
CO
CO?
Sulfur
(as
.88
.96
.0
.2
.4
is
si)
72
70
71
91
71
71
71
.0
.4
.7
.1
.9
.4
.0
i
0
0.3
0
0
0
0
0
0.08
0.56
0
0
0.14
0.49
0.90
=
—
=
=
0
0
0
0
0
0
0
1 ^
16
4
68
6
1
f^ nt
.27o
1%
.3%
f\ Of
.2/0
.3%
f\m
n i
* \J fo
S7
. ~> lo
0.04
0.05
0.04
0.04
0.04
0.05
0.10
507
-------
8.
Temperature
Stage Carbon/Gas, °F
1
2
3
4
Stage Carbon/Gas,°F
768/800
111/
781/800
778/
5
6
7
8
801/806
799/
---/801
734/
9.
Cyclone Product
a. Sulfur =
b. Material Rate =
c. 7o Material +40 Mesh
d. % Material -40 Mesh
B. SULFUR MATERIAL BALANCE, SULFUR REMOVAL, AND H2S CONVERSION
1. Run Start
3
4,
5.
6.
7.
8.
9.
10.
11.
12.
13.
Run Times
Run Time
Steady State Period
Inlet Carbon Analysis
Outlet Carbon Analysis
Inlet Sulfur Loading,
Outlet Sulfur Loading, PSQ
Inlet Material Rale, Rsi
Outlet Material Rate, RSo
Cyclone Sulfur Loading, P
-1680-1690
1680-1890
1720-1890
1647-1817 (-73 tnin)
1776-1946 (+56 rain)
20.70%
15.79%
40.6 Ibs./hr.
37.3 Ibs./hr.
scy
Cyclone Material Rate, RSCy = 0.0055 Ibs./hr.
Gas Rate In, qT = 254 CFH @ 70°F
N2 Rate In, q^2 = 188 CFH @ 70°F
H2 Cone. In, 100
112 Cone. Out, 100
H2S Cone. Out, 100
S02 Cone. Out, 100 ygo
1120 Cone. Out., 100 (yH2o)o
CO Cone. Out, 100 YcOo
C02 Cone. Out, 100 (vr)
" ^
Sulfur Vapor Out, RSVO
O
negligible
in balance
508
-------
GAS AND CftRBON rLOW RATES
j g- - r.?
^—f- -
p _
r
•«=:,-•>, NOTTS'
' ^'°0^' — |
GAS PLOW RAT^^
C, 3£a'_ L^ 3
c-6
»?. --
— | (•
SO'A
P=cs
N2
" "
— fcf
^C
iS,
* * . - iT ' ' > ' .J 3 ' »' f r • ~ ' fti '<'4~
•%•:
HiGH H2S
fiR
e c r,
' ; ' !
-; t 1 i
^ :L2 ! ^2 ,:_"! !
- • ^
— -J . —
! i
15 > i J J 3 •*••*• i"f J
.-.-'i c>c»e*t os-3-y j
(
i
;
rE?y ~? *-^""t '
i
1
f-c 4«j Ft-£r:*t*.
1 1 -••
j i i ( ; j
1
i
i
i
! ! • I
rru
t
i
1
1
i i
1 .
1
1
1
r
1
ro^« pcpcRFwrfv
•sc*:
i i
I
t >
i
i
: 1
>r««sure at' 6u
1.'2 r lev fcr 1
CFH
LOW H2S
Rfl
'FK
CO").
CFH
[
I
. r£00^ wuri~ArmtKt
TYPE
SKiO NO
SAMPLE N
ever Carbcn Ce&l 1*
f>
HZ
RR
•.S
~5
APR
01 R.
COZ
HR
iS.
COR.
, CFH
STEfi^
*R
l
OCR-
CC
R*
A-"p
CO.T-
) ;
i i
i
1
i
'
i
1
i
i
1
; j
t
l
!
EX WJ.'ST
°^r"vr
S'-n
•O^-'C
C-;, :-K r^ri =i---«;
: v L fc "
]
-a/
- • i"
LXCj-lo
i
i -=•: <„: 5 p -.-
- ., " - s ff M - - '
«.C-
I
— *".„-•
i
1
j
i
i
2 C ~ • ' » ! 1 - '„
'';.- •" "• ''-'*. '• ~. f *. _ ^. . i
i ^
1
/"
;• r ' -; r
':.'.'-(„?'* ;
I i
V |*""S ~^ r"1 ' • " '
/-,;. -.-v fc t " rt > t
i ' I I
( i ' i i
1
i
' ' J
1
i
! *
i
i
1 !
1
l '
1 '
i i
i
1
i
|
1
;
f
'
DATE SH-"| OPERATOR _.
Head at N*2 Hotaceter Outlet; ^gp_. - Gai 'low Rr.te, No Correction;
eg; LTA-iOl - N2 Flow for Upper Carbon S ai Leg,
£.. i"5
^ O
C^r
• Gas /lew r.at« Ccrrc
1
1
1
!
1
RF*D AND CN^r-Pt-7^^^ j
/t/ ^, ^xixy 7
•
-j^J
Ln
O
-------
GAS AN/LYSIS
_.
RJJs so. ;
DATE i/J'.'f
Tisr
f;:*,s.»
OPERATOR NOTES
_» ! T lj
i ^ - -'.___.
•<•«-
- - *'
1 •;-
""it
fc"*"F,
j/T^Sj
' ?'iJ 5- ^**y fa r • « *
i
r —
•15I1
_i£
!/}*«'
i
i
i
1 i
i
i
1
; i
CROSS jr
V
o
0
INLET «AS ANALYSIS
so2 coz co
H20
1 C '« TV i? £3 i I/.O
A^
?r.s
i
f
5 0 C-li. 0 i 0 ' ?*.% ll.t i u
* ! O <>;i2 4 ' a i 2? I 7(.| |
0 C s^j" 0 • o :3?.7 -;f. f i>
.
! ' '
j.-^fr
>--i K' vu*J*T' ^*f
1
1 ;
i
i
!
• i
{
j ;
i
i
i
I
!
i
•
) i
i
j
i t ;
j
SEFER'NCES:
vw — — •
i
CARBON SPECIFICATIONS;
^w
TYPE
' SKiO NO.
SAMPLE 1
^0.
EXIT «AS At ALYSIS
H2S
S02
, J.
r%t. <> ' '
CO,
CO
1 . ... .>
3.?f a.ist 0140 | o
f-0% MW >\ 0
t.tb
0-111 O^lt-
OILS > 1
1
I
1
.
rt. 0
*, '
*" t 7
', f?
iS-'a.
i
^
A/.
**.
INTERMEDIATE 9AS
STAGE
x i i «
i
3.1
— ~
J.
' *7
;_5
f ?-0
t9-^ (,
t.a/UI.7. '
4-5 ' tli
| ;
1
i
j ;
1
1
1
]
L I ,
' i '
1
£
3
V
5
Q>
7
HS
* ~
? .'
-7
^ ?
^ — _<
^
n
& c
v x
j
! i 1
so2 ,co2 ; co
! , i
i
' ' \
o 5?- 3 0 '
(.}<> v-.;rr o i
C ' 5=3' 0 ,
O C SIZ Q '
o 9c-S' o :
£> i O ! 0.{gO' 0 -
' O.;3
ANALYSIS '
>9j
0*^
O
—f
_£_/£
(JT"'
0<-,0
i 1
i !
i
i !
1 |
: i
i
31 p. 7^. r
••- r -. v
i I.A :«'./
'•Z3-1 7.'.?
::^.i."Ti i
';;.;> .-(.o
1 i , •' i ;
i i
i
!
i
•
i
i . ^- i
" • ' •
i ;
j i
i . i ' :
1
: (
1 :
i
j. . . . . i
j (
, '
! 1
! ;
1
I !
i
i
i t
j
)
i '• ' •
'•!',:•
: i
I j : •''••'•: ' :
\ j ; 1 i j
! ! 1 : 1 I'll
': \
\ j
! i
i 1 1 '
! :
1
I J
1
t
i
i
• •
i
i
; i i : i : !
i : !
! ' i
DATE \5~
CT
i S-4
j ^_ y
! 12-8
OPERATOR
1 :
,
! j
1
i ;
- -. —
p^^n aND UNCCSSTOOD
4/X. fa
/^/ / k/xiy?}
-------
4"D!A REGENERATOR
~~
i~>ie> ' fj^o
TIME
^-^
C*E»ATCR NOTES
COLUMN TEMPERATURES. PRESSURES, AND PRESSURE
COLUMN PRCSSL'RES A«0 PRESSURE DROPS. IN. H_O 1 COLUMN
PI
2
id,: 5 c«t£»» pfti OH
i < -.-^ OH
" -5 '-K^ 1 - X-
r~-j \Z'^-.:e>
•
3
STA
i i
i
• 1
'3 Sis-
/ C '- --i
3
! i
3i
« i
i
A\C
3 i
;
!_;_
6
j
M
M3c
7 JB
|
1
R
9 i
t
; ' ' ' : ' !
/ 7'
i
- / /
ITT — 5"^[^6£ " \tt ' 10 l — — nr*
1
1
i
i
i
f
\ '
l
i
i
i
t
i
I }
;
i i
i
<
3 2, - y 5 j
• jj < C
1
1
1
'
^ /i
:
iO
Jc-
3 e ,
i 3
* *
_- < .
:
^y^
1
- 6- 1
5-4!
/° ;
f 7
/?
* i • j
i
!
l
j ; i ,
t
i
1
i
i
I
1
I
i
1
/Q
/O
to
t .
h;
Tl
42
1
S-'J
7--.'
?,<
.2
_Z
.2
43
44 -35
!
*J5'
l '
DROPS
RUN NO _•? .1 C. . 1
FEED so. - as
DATE 1/31/73
TENPE3ATUSES. -F "T -*^-
49
•37
FFY-VA[ rnNT^O1. i rps T£ *• -^~- F?
T-C WTA <-r= s.£T
•45]<3i «( i-C.O 1:01 -^7. £•.&•*••*'• -•*•
| i ! ; : :
;??i-
i ]
•
j
1
. 1
i
I
i
i
t
r
i
(
t
! i
i
i
i
1
! i
i
i I !
i
j
1
1 i
i
; t
1
1
i
!
L ^ 1 .
i
i
i
'
*
i
C=^SS R^FEPFNCES: CARBON SPECIFICATIONS.'
TYPE
SK;DNO
1 SAMPLE
JTA...1 - 1 - **^ TT>'.a^ M OiiLUt if C4li^; IT* J^ - T^c-
NO
r»ltf* *l Cwkce C«.*r Lt
.t.
t are?
.,_.„.
>*7 7^_ f- . ,if A
£/O
SVC
"rcT
SI
tv
i :ll:!
! ! i 1 I
2c-''?2££73 fi5£& ??:? 72 5"
.'.-.ir^;'^ i ur/>i_..^---" -r:--s_j
; i ! ' ' i
j i
j ,
1
! l ' , i . ! •
i : ' i
1 i !
iii;
: • i i !
! ' • i
]
: ' i
1 i ! ' ;
! ' 1 i
1
!
1 i i I
I 1 ' t
i ; i i i
1 I '
ill'
1 '• \
1 1 j
i l ! •;! i
i [ ! i 1 l
i
i i
! ! !
,
1
i i
I
i
I |
i |
i '
• i ! i
: ! i !
! 1 i i
i
i
ii i :
i ' i
i • i i
i i * : . ;
; i i i
! : | >
• l .
i !
' 1
; : |
I '
1
! ' 1 !
(
1
' i
^ __ — j.
; ; i
i i i i ;
i
il 1
l
.
l
! 1 i
: 'li- i
1 1
DATE
SHiFTl CPERATCR
8 ~ *t '
4-!2 •
\2-6 1
1
i 1 '
1 ! • ;
t
i i
i 1 . j . -
i -j
RTAD AND l:N~|—'~TCOD f
— f- ,~f — -£ i
i I
-------
RUN SHG-2
A• EXPERIMENTAL DATA - H2S GENERATION/S STRIPPING
1. Virgin Carbon
a. % Sulfur (Combustion Anal.), PSC =
2. Inlet Carbon - Precursor C-72-108 - Act. (0.598)(10~3)
a. % Sulfur (Combustion Anal.), Psi = 20.31%
b. Acid Titration, Pv£ -
c. Material Rate, Ri =35.1 Ibs./hr
3. Intermediate Stage Carbon
a. Stage 8, % Sulfur, Ps3
b.
c .
d.
e .
f.
g-
h.
Stage
Stage-
Stage
Stage
Stage
Stage
Stage
7,
6,
5,
4,
3,
2,
1,
7
/o
7
/o
7
/o
7
/o
7
/o
7
/o
7
/o
Sulfur,
Sulfur,
Sulfur,
Sulfur,
Sulfur,
Sulfur,
Sulfur,
PS7
PS 6
PS 5
PS4
PS3
PS2
PSI
4. Outlet Carbon
a. % Sulfur (Combustion Anal.), Pso = 4.85%
b. Material Rate, Ro =29.1 Ibs./hr.
5. Inlet Gas
a. % H2 (29.3% by Rotameter) = 32.0 Chrom. %
b. H2 Gas Rate (57 RRx1.1 FF = 3 PSI) = 67 CFH @ 70°F
c. N2 Gas Rate (41% of 360 @ 3 PSI) - 162 CFH @ 70°F
6. Intermediate Stage Gas Analysis
Stage % H2 %Jt2_S % N2 % SO2 % H20 % CO % CQ2
0.1 0.52 0 0
00 00
0 0.25 0 0
00 00
0 0.41 0 0.05
0 0.61 0 0.1
7.
10.0%
6S'.570
8.5%
0
1.25%
5.5%
512
1
2
3
4
5
6
7
Outle
a .
b.
c .
d.
e .
f .
g-
h.
/o
%
%
to
7
/o
%
%
%
t Ga
"2
H?.S
N2
SOy
H20
CO
C02
7.
24.
24.
21.
13.
10.
8
7
2
5
0
3
s Analy
Sulfur
(as
0
0
1.
4.
6.
16.
sis
-
0
4
1
9
73.3
72.8
74.3
74.6
71.2
73.3
SD
-------
8. Temperature
Stage Carbon/Gas, OF
1 942/997
2 970/
3 982/997
4 967/
9. Cyclone Product
a. Sulfur
b. Material Rate
c. % Material +40 Mesh
d. % Material -40 Mesh
Stage Carbon/Gas,°F
5
6
7
8
1001/997
970/
—7970
840/
= 3131 (Start
B • SULFUR MATERIAL BALANCE, SULFUR REMOVAL, AND H2S CONVERSION
1
3
4
5
6
7
8
9
10
11
12
13
Run Start
Run Times
a. Run Time
b. Steady State Period
c. Inlet Carbon Analysis
d. Outlet Carbon Analysis
Inlet Sulfur Loading, Psi
Outlet Sulfur Loading, PSo
Inlet Material Rate, Rsi
Outlet Material Rate, RSO
Cyclone Sulfur Loading, P
3131 (Started C at
Feeder +95 min)
3226-3408
3262-3408
3167-3313
3326-3472
20 . 31%
4.85%
35.1 Ibs./hr.
29.1 Ibs./hr.
(+36)
(-95)+36
(+64)+36
scy
%
°
;./hrj
Cyclone Material Rate, Rscy = 0.0033 Ibs
= 162 CFH @ 70°F
= 32.0 vol. %
negligible
Gas Rate In,
N2 Rate In,
H2 Cone. In, 100
H2 Cone. Out, 100
100
Out,
Out, 100 yso
Out, 100
Out, 100
Out, 100
H2S Cone
S02 Cone
1120 Cone
CO Cone.
C02 Cone
Sulfur Vapor Out, RSvo
513
-------
Ss
33 ai-
GAS AND CARBON FLOW RATES
TYP£
NO.
H',tt. Pr^ss.
De.-jsit;/; 3-5
- Prccsure at Outlet, cf ?.ol&=eter Read at N2 Hotaacter Outlet; App. - Ga.-. F.'ov
6 - K2 Ficv for Lever Carton Seal Leg; LTA-101 - Ng Flow for Upper Carbon Se> 1 :
C4TE |c
!
> FP? 7? I
it-e, l«o Correction;
*?-Pi£N3..;8?.,fVN
Cor^ - Gas Flow Pate Correct*
RSAD AND UN7r^STOO'D !
^ x. A4J / ii/vb !
i i
-------
GAS ANALYSIS
4" OIA. REGENERATOR
RUN NO. S^g- 2.
PEED
DATE
T!-
AN")
-------
4" ;:A RE"EN'-°A'OR
Ul
RUN NO .THJSL-Z.-
T'ME O^ERiTGX MOTES
r.-.;--.
V-UI_UIVIIN i trvirtrcA i UKC.O. rK:a
CO'USN Purs?!jR
PI ! ST;G;L
z
L*-'?v. STA?T ^Ar//^
! '=c .M
'*-- C-JL !' £•• »J
"««t ' :\ S
""• '; S
s
•TO
• 7
',
| ,
2 1 3
4
/ccO c^
ES AND PRESS'JP
ANO D^l ri^Vb!
5
! "-' =i II. S ji-u \.S
S
7
I0j2.i
a
E DROPS. IN. H-O
:R
9
11
"•"-,•. \-S II.T f \ ? -10 ^ s i s -q
.* ' ^ \ : ' '.5 \-^ .1.9 -i o!: ia-u
(•-iw. • o f\ ' ' i '
t^j, | i ,
£c'^ -"5rC.~ J -^f- -_tJ f ^-y-
!> = ?' <; 7
'.;•• '/.5
1- ^
?2-
-pr-
*v»*-i-!?.t- uc«^tj
i / i
' ' * ( C
^yl ->-.' ,^m°..x £ ,,£ «-*£.
yj*i- f .-f^£Z —t1- cr.-mu. *£•«»••*_ "*• t
7-*^ / * /'«
/ j^gp ^J/
"X
r^ ' c-~ • !
?. « :< • i ; \
i'?
' '
*. & — -
t r p
i-T 1-8
1 &it-O
!
Ut>J 3-' 1^.
i
v/'TH
...
fc*7vfcj?5i,t.'^> VCC'
I'M'?
i ;/o~'/.^
1 I-*
I S J/-7
/ Tit^
2,^,-r' -.-^BJ- ».F*7v/i/5 'ct-.r> ^^(r-3 i
* u*c*
i
i
!
i
.
!
1 i
1
r.9055 REFERENCES;
•1BD
II^HtllVilVi^i'^*-1
1 ftZ - C,:**?:•„'•* a* •-••e --c f.'.'-i: •-:: c":.-<-~.l ' i
;
i
kn qp
1 ! : ! • ! i • i ill 1
1 • • i i i 1 i i
0 aog.rn',To:~p<: 1i« 'i5« cii |»i» rc"C> -!«•—•- ;?•>! "rf ire' 1 «>•»»' 'to i ' ' <"»a
J 1
s icftrr
V.
t.o| | ^'^
S-4!
5
^,
^
. —
i
l»:-.
'.:
1
at(j/j
— ^
r
1 ! i ! • ! - 1 !i i i
I : i . • • i iii • i '
?Jo I'll ;?'"! »7"'/r'- 7' -J5" .^tr '?>: ''~o ••»:'?:'-' «•<•.-. ' «-"^"c7^i ! '/j?7
y^-^rn i rj— V— ! 77-^ J7-U- i j ^ 1 ! i
J ! .
'ft-. i??o We •?/•!.'
~7
(
F*-"
^
i
1
•raturvi.
L'zjf.a.j&i
•V7o ni5 :*y1o
1 • • . • 1 ! ! i :
1 i 1 1 , i . - 1 jli';!
fcf&'iTf £Vc'f7o ff> {c-s/se*1;?* •&'-,-: '.r- T/:'- ' HV i--" ' ' ' "VJo
?9"'?A2J S5J /a,-r'-H- .r~J./c«>";«j !f.o "•."•?•:- 'W1 1 ?5>' ^^ '' ' i •=• ^^ I
(iiitaMi ISSP-IcSJ'?'!-''^ ^c 'Sw :?r Emit.
-------
RUN SHG-3
A. EXPERIMENTAL DATA - H2S GENERATION/S STRIPPING
1. Virgin Carbon
a. 7o Sulfur (Combustion Anal.), PSC
2. Inlet Carbon -
a. 7. Sulfur (Combustion Anal.), Psi = 20.35%
b. Acid Titration, Pv± =
c. Material Rate, R± =30.9 Ibs./hr.
3. Intermediate Stage Carbon
a. Stage 8, 7. Sulfur, Ps8
b. Stage 7, 70 Sulfur, PS 7
c. Stage 6, 7o Sulfur, P$6
d. Stage 5, 7» Sulfur, PSS
e. Stage 4, 7. Sulfur, PS4
f. Stage 3, 7> Sulfur, Ps3 =
g. Stage 2, 7o Sulfur, Ps2
h. Stage 1, 7. Sulfur, PSI
4. Outlet Carbon
a. 7o Sulfur (Combustion Anal.), Pso = 2.8270
b. Material Rate, Ro =23.85 Ibs./hr.
5. Inlet Gas
a 70 H2 (27.2% by Rotameter) = 29.870
b H2 Gas Rate (4570 Scale, Assume 1.1 PSI) = 52 CFH @ 70°F
c. N2 Gas Rate - = 139 CFH <§ 70°F
6. Intermediate Stage Gas Analysis
Staee % H? 70 H?S 7. N? 7. SO? 7» H?0 70 CO 7o C02
1
2
A
H
e:
3
ft
D
7
7. Outlet
a.
b.
c.
d.
e .
f.
g.
h.
7
10
7
10
7
10
7»
7
10
7
/O
7
10
21
3
22
21
19
^^ ^
13
5
Gas
H2
H2S
N2
S02
H20
CO
.2
.6
.6
.2
.7
.8
.7
Analys
C02
Sulfur (as
0 73.3 0
0 72.4 0.27
0 75.0 0
2.9 74.0 0
2.4 76.0 0
4.0 74.8 0
16.1 76.1 0
is
si)
0 0
0.63 0
0.002 0
0.16 0
0.22 0.2
0.48 0.04
0.48 0
3
15
70
0
— 1
8
0
0
0
0
0
0
0.08
.17.
.270
.77o
no/
.9/0
y\ frt
.8/0
,070
517
-------
8. Temperature
Stage Carbon/Gas, °F
1
2
3
4
Stage Carbon/Gas,°F
1130/1203
1168/
1178/1200
1147/
5
6
7
8
1147.1205
1115 /
— /1192
914
9. Cyclone Product
a. Sulfur —
b. Material Rate =
c. % Material +40 Mesh
d. % Material -40 Mesh
B. SULFUR MATERIAL BALANCE, SULFUR REMOVAL, AND H2S CONVERSION
= 3442
- 3442-3670
= 3483-3670 (+41)
= 3375-3562 (-108)+41
= 3555-3742 (+72)+41
= 20.35%
= 2.82%
= 30.9 Ibs./hr.
= 23.85 Ibs./hr.
= 0.0066 Ib./hr.
= 203 CFH @ 70°F
= 148 CFH @ 70°F
= 29.8 vol. %
= 3.08 vol. %
= 15.22 vol. %
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Run Start
Run Times
a . Run Time
b. Steady State Period
c. Inlet Carbon Analysis
d. Outlet Carbon Analysis
Inlet Sulfur Loading, Psi
Outlet Sulfur Loading, PSO
Inlet Material Rate, Rsi
Outlet Material Rate, RSo
Cyclone Sulfur Loading, Pscy
Cyclone Material Rate, Rscy
Gas Rate In, qT
N2 Rate In, q^2
H2 Cone. In, 100 (yHo)i
H2 Cone. Out, 100 (yp^'
H2S Cone. Out, 100 (yH2S)o
S02 Cone. Out, 100 yso
H90 Cone. Out, 100 (yj-^O^o
CO Cone. Out, 100 YCOO
C02 Cone. Out, 100 (yrno)
" \*\J 2. o
Sulfur Vapor Out, RSVO
= 0
5.89 vol. %
0
1.85 vol. %
518
-------
t_n
GAS AND CARBON FLOW RATES
;_-- 1 r ;
— rf~L~
~™
£*-V-l J '"''*
Ic^Caj
P--'-'
f
i
!
a. 5
DP I'C-
/i.r; "-A
*„•*'*
1 ;
i
93
-, ' y*
r> \
i
I
I
; i
: i
t
ro^e<. pc.ppp_sirF<..
•5072: ?--.t. ?r-E«
- Pressure
>ts:t;r; B-6 -
r.-£ Fiov
SOTA
•hi i"14S
RR
^
^P
1
£
Hl<
,H 1
a-v
'25
COR.
CFH
roppnN «;pFr.)nrjlTIONS!
TYPE
SKID NO
SAMPLE N
at Outlet of Rotaoeter
for Lever Carbon Seal L
0
L
OH
^
H2S
CO1/.
rJH
HH
R.&
•IS
(TfP
H2
AI-V
>
GC R.
HH
i
coz
AH5
CCR.
CFH
t
1
<
RR
STEAM
AFP | COR.
"/^=h/MS
HH
— 1
1
CO
CM.
E*>
i
i 1
i
;
*t
.
FFfn S&-93
PA
CAR:
INI
re
*CN fi
£T
2 P
o* R;
12--P
1 M. u
1' ?,
I' "^
'" ^
t
*£.S
M-0
27- .'
> «-.--.:
^
I
i
i
;
i {
!
; t
; ,
i
1
I
j
t
i
j i
DATE <
;HIPT
p-4
»// /•) i
^ead at N2 Rotaaeter Outlet; Agp. - Gaa Flo" Rote, No Correction;
eg; LTA-101 - Kg Flew for Upper Carton Beil Leg.
QpjrQ^-rc;
A-M 1
f2-8 1 Al/-' •^6,.'SA;S
Cor.
- Gas ?lcv p.ate Ccrra
i
i
!
i
i
; RHAD AND UNrrRSTCCD 1
I/V- fa. Ifi/fJ^i/ f\ )*^/A^7J '
'
' ' 1
:teti i"cr Pressure &r.d
-------
4" SIA. RE*
GAS ANAi.YSlS
^ NO. j'rffr-3
DATE
iC' E'.P
!±
_j"-•?> ^S-X
1
| ;
1 '
i
! i
i
! ' |
I
! ' ; i
i i
'IS;} /•>..{. W firm -fs ts-7'A o)
IX '^
fji.'iJ
E
A-s-f
iy t^i
.^-;;
i i
i
i
, i
1
:
• : i < i
t
;
i
!
j
'. t
i
i
t
j t
i
CROSS pFP*FENr*s:
!
CAPB^N SP
- TYPE
SKID NO.
gDIFICATiONS:
H2S
soe
. , t»l.
T OA5
CO
1
/S5J.I O 1.72.
'^ 00 O
IS-Z'» o
/S. 2^ ! O
/^T'7 *» '
rt.vc.
lf.7fc
J.«o
y.iifo
f {?
A-C5
o
a
.^N; t_
T3I3
H2
i
•'V ' 2
'..1; i
o ,.-:.St i;
*» i' Oj * ' "
0 II-&O
0 jl.VU
1
o
0
^
I
i
I
k-^- ?».•¥ '"]
1.3. 7i* ! {
}-l
7,'. 3 '• f
L? 71. J ! \
c 3> 3.1
i
1*- i- \
^
1
i
i'.¥» j
<;.a.i
i
!
i ;
».£-' ^ O
; j
,
i
o
0-i
3'-3.
3!3fe
»-• Ji.fe
»"a a
' -" ' ...
,
: i
i '•
i
i !
t i
75.0'
o o. ,•£ ! ju . i. TV £ ,
JJAJi. O.ll- /?.? '
74.»!
:
1
j
,
i
i
i
i
i
!
i
1 i i i
i
i |
i L_J
D4TE 5HIFTI OPERATOR
8-4
4-12
5-/I/73 12-8 fiiGr, AfA'. CrA'B
i
i
1
i
, j
,
i
t i
1 i
1 i •
1
1
• •l.l ' ' llfr3HIM»ll»»»»»*»^^»»^^
READ AND UN
/Lo &
j
i
1 i
i
L_J L- i
I3ERSTCOO
?- fajLS /
^
4^Zk
Ul
N>
O
-------
4" PI A. REGENERATOR
COLUMN TEMPERATURES. PRESSURES. AND PRESSURE DROPS
RUN NO'
DATE
2. FEB 7J
TIMS
t." f f 1
G^ERATO1* NOTES
2- Ml
COLUMN PRES
P
2
5
I
•' i/r
\ 1 i 1 T
I.I n
i-i-c : t-i ^
STA
1
z
i-vi.a
3
5URES AN3 PRESS'J fl
GE ANj DPI NUM5E
4
1
s |T
<-rur|i9
s
1.1
£ DROPS. IN. H.O
R
9
fM'
! 1 Y 1 l.ll 1 -L ' ' > l.>* K. i 1 I 1 K.-S l<\
Ib lA it.? 1-i.lm i \* l. 4 : l.«i 'l\ \<\
i
i
J
t
!
i t
i
;
i
j
t
;
1
1 i
l
1 ;
I ;
i
i
|
t
1
i
.
s
I
1
„.,', orrFBFMftFS:
«C
1
CARBON SPEC
TYPE
SKID NO
SAMPLE NO
i
I^CATIONS:
»u« t
OPIft
I
?-r
f ft
1
~
••
*"£"!
t \a 13 v«* « T ( \u.
'I','-
I/'-11
|
l
2J • Celwi Cfcrtoe f*^«ntw«it
42
OS"
1170
1
1
•
43
Ilg7
44
45
liasjiJi?.
(7> n>w nil
in?.' iyv ins
)'!<.
46
ca
.«— E COLUMN TEVPERATUB
\» IT J.V1 FES
48
o
413
ES. T
WA' CONTRPIIE-??
TIC
4i: 1 49 '47 ]45
43
U-^~- n.l,.-'.rr,-',~r'~rr~~z~!~*
lov! i"po
^t
II VS ic>!'iig •V.^\l*1-'
;
,2.y5lr?T: !IZr_l'£Cj
~»^_
41 j-410 j
ia--iiar 7!^
MTA
101 i'02.
*— "'^o
Vr»;&/5
!(«!• to!
Si^'tOO 'l?? 'lico iisCi'v.co ttrO'l^C!
1 ' i
j ;
i ! i i ! i
| 1
1 i
l ,
. j
I
|
111 5? 'iO
l
1 1
1111 • • ( i
i ! i t
f ' i
I ' '
;
i
1
1
1
t
! j
j
' i i
j '
]
- ! ! J
. i !
i ' 1
1 !
[
1
1 '
< j
!
!
I
— — — — — — — ,
DATE
2. PP8 73
SH.FT
8-4
4-12
12-8
l
'
.
OPERATOR
frl"
&, 3S&, SMM
t
«*zi
lr. rr*«- r»
tNLET
, 1 ~:2
i £-1
13^
1 >
i |
(
i ; .
1
I i
j
i
i
1
!
j
;
.
i
.
i ;
i
1
I
1
i i
1
1
READ AND L'N^ET^TroD
/A / M hjLt^/ / 1 "\s/f\^/~t t '
-------
RUN SHG-5
A. EXPERIMENTAL DATA - H2S GENERATION/ S STRIPPING
1 . Virgin Carbon
a. % Sulfur (Combustion Anal.), PSC =
2. Inlet Carbon -
a. % Sulfur (Combustion Anal.), Psi = 19.78%
b. Acid Titration, Pvj_ =
c. Material Rate, RI =30.9 Ibs./hr.
3. Intermediate Stage Carbon
a. Stage 8, % Sulfur, PS8
b.
c .
d.
e.
f.
g-
h.
Stage
Stage
Stage
Stage
Stage
Stage
Stage
7,
6,
5,
4,
3,
2,
1,
7
/o
7
to
7
/o
7
/o
7
/o
7
/o
7
/o
Sulfur,
Sulfur,
Sulfur,
Sulfur,
Sulfur,
Sulfur,
Sulfur,
PS7
PS 6
?S5
PS4
PS3
PS2
PSI
Outlet Carbon
a. % Sulfur (Combustion Anal.), Pso = 4.91%
b. Material Rate, Ro =25.1 'Ibs./hr.
Inlet Gas
a. % H2 (10.3% by Rotameter) = 5.4 Chrom. %
b. H2 Gas Rate (20 CFH x 1.1) =22 CFH @ 70°F
c. N2 Gas Rate (48.5% x 360 x 1.1) = 192 CFH @ 70°F
Intermediate Stage Gas Analysis
Stage % H2 % H2S % N2 % S02 % H20 % CO % CO 2
1
2
3
4
5
6
7
4.0
0.5
0.5
0
0
0
1.6
1.6
91
79
—
94
—
92
--
0
>1
0
0.06
0
4.0
0.5
_ _ _
0
0
0.05
_ _ _. _
0.01
__
0
— _
0
0.05
— — .— —
0
—
0.01
Outlet Gas Analysis
a. % H2 0
b. % H2S = 3.0%
c. % N2 = 88.0%
d. % S02 = 0.07
e. % H20 = 5.4%
f. % CO =0
g. % C02 = 1.4%
h. % Sulfur (as Si)
522
'o
ro
-------
8
Temperature
Stage Carbon/Gas, °F
Stage Carbon/Gas,°F
1
2
3
4
1144/1212
1169/
1179/1204
1140
5
6
7
8
1170/1208
1139/
---/1201
951/
9. Cyclone Product
a. Sulfur =
b. Material Rate =
c. % Material +40 Mesh
d. % Material -40 Mesh
B. SULFUR MATERIAL BALANCE, SULFUR REMOVAL, AND H2S CONVERSION
1
2
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Run Start
Run Times
a . Run Time
b. Steady State Period
c. Inlet Carbon Analysis
d. Outlet Carbon Analysis
Inlet Sulfur Loading, Psi
Outlet Sulfur Loading, PSO
Inlet Material Rate, Rsi
Outlet Material Rate, RSO
Cyclone Sulfur Loading, Pscy
Cyclone Material Rate, Rscy
Gas Rate In, qj
N2 Rate In,
H2 Cone. In, 100
Ha Cone. Out, 100 (yH2;o
1I2S Cone. Out, 100 (yH2s)o
S02 Cone. Out, 100 yso
H20 Cone. Out, 100 (yH20)o
CO Cone. Out, 100 YCOO
C02 Cone. Out, 100 (yc02>o
Sulfur Vapor Out, RSVO
3784
3784
3865-4135 (+41)
3760-4027 (-108)+41
3940-4207 (+72)+41
19.787o
4.91%
30.9 Ibs./hr.
25.1 Ibs./hr.
201 CFH @ 70°F
190 CFH @ 70°F
5.4 vol. %
0
3.0 vol. %
0.08 vol. %
5.40 vol. %
0
1.40 vol. %
523
-------
GAS AND CARBON FLOW RATES
4" P'A
Ui
NJ
!
' *
r:-:j-- -
aV*
Gjf*'9 c *+^\S * ^ff
=.s
*»'•—• ,1
f- 4 ^
T- ' 1
n"r"^
if - "• \
u--.'4
>:»'
r***3!
t* *•*'
»T> i'-»
— <^
—
f*fi
" "^ *•<:.* Cufe .f->T-,.
ki - V f: /V :>
!
*
1; f"
1
1
|
t 1
1
"" "~
(
^ee
I: Seta. Press.
5
f.~L
"-
"1
N2
rni
j^—
14* -,'
C>,fl j7}
INi.
i
j ^j^ »jvv rx,^
• --- !.' ^,Z. ^
i ^ z 3 2, • »T
j
.
I
1
1
; j
!
DATE (SHIFT
I
~
^ L/
,N
~^~4
I/
!l
i
QPTP^-QO
j R.4
- Pressure at Outlet of Rotaneter Read at K2 flotaneter Outlet; App. - Gas F-ov Rate, No Correction;
i-i' i
rs-e
Cor.
\^
/
^k.
/^ *^ ^^. C
LZ^l
~f. t-
O .
a
i/j;| i/j'r ' !
i /j c- r^ (• ;
Sn.e '/I S 2f,r', - • ,
t><-. •? ' .^ -> . t ^ :
j _>.^. y , ^ ^ _ - 'i. • - .- • , ^
:^n c 1-2 £_ ii" ' ; t '
'» 7 !/;.i ff.i- - -
i' « .-7 J 'jf .', * : '
-*/• T
- K
1
1
1
1
- 5.v; '""^T —
i
1
(
i
•
i
t
;
t
,
Kt
AD AND
! i
UNDERST
COD
A/^ A/ay / \>/,^/?3
' V '
_i .
- Gas Flow Rfctc Corrected for Pressure »r.d
BeniltTt ?.-6 - 52 Flow for Lower Carbon Seal Leg; UA-101 - H? Flow for Cpper Carbon lea Leg.
-------
GAS ANALYSIS
4" DIA. REGENERATOR
RUN NO.
EL£J_
DATE
-6-r.r
Ln
K>
Ui
CROSS REFERENCES:
CARSON SPECIFICATIONS;
TYPE
SKID NO.
SAMPLE NOT
DATE
ISHIFTj
8-4 '
! 4-12 !
OPERATOR
112-5 !
READ AND UNDERSTOOD \-
-------
4 D'A.
Ui
ho
, COLUMN TEMPERATURES. PRt .SSURES. AND PRESSURE DROPS
CARBON SPECIFICATIONS:
~~~ TYPE
~ SKiDNO
SAMPLE NO
DATE
SHIFT
8-4
4-12
12-8
OPERATOR \
**- . j
B*o»; TI
ReAD AND UNDERSTOOD
IfIA 1-g .
» «t Cariut C«al*r but.
-------
RUN SHG-7
A. EXPERIMENTAL DATA - H2S GENERATION/ S STRIPPING
1. Virgin Carbon
a. % Sulfur (Combustion Anal.), PSC =
Precursor C-72-108 0
2. Inlet Carbon - Act. 0.701(10-3); stg. 5 Act. 0.576(10-3)
a. 7, Sulfur (Combustion Anal.), Psi = 20.16%
b. Acid Titration, Pvi
c. Material Rate, Ri =30.9 Ibs./hr.
3. Intermediate Stage Carbon
a. Stage 8, 7, Sulfur, Ps8 = 17.727,
b. Stage 7, % Sulfur, PS7 = 6.5670
c. Stage 6, °/0 Sulfur, PSG = 4.847,
d. Stage 5, 7, Sulfur, Ps5 = 4.447o
e. Stage 4, °L Sulfur, PS4 = 3.327o
f. Stage 3, 7» Sulfur, Ps3 = 3.207,
g. Stage 2, 7, Sulfur, PS2 = 3.207,
h. Stage 1, 7o Sulfur, PS1 = 2.327,
4. Outlet Carbon
a. 70 Sulfur (Combustion Anal.), PSo = 2.87,
b. Material Rate, R0 = 25.0 Ibs./hr.
5. Inlet Gas
a. 7o H2 (35.87, by Rotameter) = 37.77o
b. H9 Gas Rate (5.7 CFH x 1.1) =63 CFH @ 70°F
c. N2 Gas Rate (307, x 360 x 1.05) = 113 CFH @ 70°F
6. Intermediate Stage Gas Analysis
Stage % H2 7, H2S 7, N2 7, S02 7, H20 7, CO % C02
1
2
3
4
5
6
7
7 Outlet Gas Analysis
a. 7, H2 = 5.2%
b. 7, H2S = 18-6,4
c. % N2 = 6^-7/0
d. % S02 - 0
e. 7, H-20 = °-4/0
. o „.
g. 7, C02 = 1'7/0
h. % Sulfur (as Si)
527
-------
8.
Temperature
Stage Carbon/Gas, °F
1 1135/1210
2 H75/
3 1180/1207
4 1192
Stage Carbon/Gas,°F
5 1198/1222
6 1025/
7 — /1192
8
910/
9.
Cyclone Product
a. Sulfur =
b. Material Rate =
c. 7o Material +40 Mesh
d. 70 Material -40 Mesh
B. SULFUR MATERIAL BALANCE, SULFUR REMOVAL, AND H2S CONVERSION
1. Run Start
2. Run Times
a . Run Time
b. Steady State Period
c. Inlet Carbon Analysis
d. Outlet Carbon Analysis
3
4,
5.
6.
7.
8.
9.
10.
11.
12.
13.
Inlet Sulfur Loading, Psi
Outlet Sulfur Loading, PSO
Inlet Material Rate, Rsi
Outlet Material Rate, RSO
Cyclone Sulfur Loading, Pscy
Cyclone Material Rate, Rscy
Gas Rate In, qT
N2 Rate In,
H2 Cone. In, 100
H£ Cone. Out, 100
H2S Cone. Out, 100 (yH2S>o
S02 Cone. Out, 100 yso
H20 Cone. Out, 100 (yH2o)o
CO Cone. Out, 100 ycOo
C02 Cone. Out, 100 (yc02)o
Sulfur Vapor Out, RSVO
3673
3673-3784
3714-3784 (+41)
3606-3676 (-108)+41
3786-3856 (+72)+41
20.16%
2.80%
30.9 Ibs./hr.
25.0 Ibs./hr.
201 CFH @ 70°F
133 CFH @ 70°F
37.7 vol. 7o
5.20 vol. 70
18.65 vol. 7o
0
6.55 vol. 70
0
1.66 vol. 7o
528
-------
GAS AND CARBON "LOW RATES
PUN NO 5
PATc
TV =
:.-•*_ jr 5^
X*
TT^-T^^
i
j
f
i
GAS FLOW RATES
S3
':'••
".
1 I
ROTA
\
1
1 j
i i
[
«
i
;
N2
pfi
70
-*2-
I
! j
1
1
1
1
!
rr
CW
HIGH H2S
RR
COS.
LOW H2S
fiH
A"P
COP..
H2
RK
^SL
APP
[CC P.
'
i
!
i_
1
coz
RR
CFH
COS-
CFH
STEAM
R"R
"'•«
1
^COR.
CO
RR
**""
I
con-
EXHAUST
py/ccr
FT'STS
C^^-^N f"LC* ?AT^^
!** t £ T
' a
!
C.*.£"
2r.ro
V.?
y*<- i-7. -•>
i
i
i i |
1
!
f
i
t
!
1
1
-Y- -S"e -^ •>
I
1 " =
•
1 j
1
f
1
,
. ; i
1
i
!
)
|
: I ' 1
1 ! 1 :
i
I
i
1
; i
1
1
i
i i
;
t
I
j
| f
j
•
1
ill:
1
;
i
TYPE
SKID NO
SAMPLE NO.
DATE
ste. Ho Correctic.T:
SH'FT
"-T
Cor.
CPERftTCR
- Gan ?Iow ?&t*> Pm-r/
i - - — .
j l^-A.t^Lsj.
r
•JfJ??-
\
F.-D - N2 ?lov for Lover Carbon Seal leg; UA-101 - £2 Flov for Upper Carton ie.il IiG
-------
GAS ANALYSIS
PATE
Oi
U)
o
CROSS'REFERENCES:
TYPE
SK!D NO.
SAMPLE NO.
DATE SHIFT
8-4
4-12
12-8
OPERATOR
-------
4 PIA REGENERATOR
COLUMN TEMPERATURES. PRESSURES. AND PRESSURE DROPS
RUN NO.
FEED
DATE
Fg3 75
TIME
f-'.- «••_»
OPERATOR KOTES
P
2
ili'J't^&^M 5t*G-7
3
COLUMN PRC3
STA
"**:cl ~\-Z '••* '
5-; y
! 1 !
/*'/<-
j
I
2
3
|l-711.(>i>^
! 1.1 I.Li .^
5'JFtES A*0 PRES
OE AND DPI NU
4
3
6
\-<> \'S ^-5*
l.2 !
I i
<»,i,' -ic-r r-pc rrr'-zji"1-"!^ T:1^' i'T^c-' 6-C?' '
""(CuTJi^^T'M:
1
._.£•._- -
i 1 i : :
i
J 'I
I
1
i '
c ee^i r«!
1 K L E T
Ti -i 2
i-C^7 J
.n/fl " rv 3 ! ^.r r-? ^ 3 i «« o
i
I i
1 I i
: i
i •
)
t
j i '
t
i i
: I 1 ! j ill
• i * t
!
j ' i
i : : ! i
i
1
!
1
i
I '
j
i
s
i
j
1
1
;
| i
1
i 1
!
i
! f
i !
!
!
i i i •
i * i J'
i ; i
I
I
j
|
.
1
!
1 i ;
1
1
{ 1
1
DATE
SH'FTi OPERATOR
8-4 [
4-12
12-8
i ' <
1
• i
,
1
i
i
j
j
i
i
i READ AND I'NrFPr-TOCD
_tri£.*^s/ 1^
v — -«-/
^k
v..
Ui
. U.- friiibr* ^^05j IJ . CoUvn C
fmtlft ir.llHt*! b* CvtUH, tel lM<*
-------
RUN SHG-8
A. EXPERIMENTAL DATA - H2S GENERATION/S STRIPPING
1. Virgin Carbon
a. 70 Sulfur (Combustion Anal.), Psc -
2. Inlet Carbon -
a. % Sulfur (Combustion Anal.), Psi = 50.8%
b. Acid Titration, Pvi
c. Material Rate, RI =25.2 Ibs./hr.
3. Intermediate Stage Carbon
a. Stage 8, % Sulfur, Ps8 = 4.76%
b. Stage 7, % Sulfur, PS7 = 4.88%
c. Stage 6, % Sulfur, Ps6 = 3.72%
d. Stage 5, % Sulfur, PSS =
e. Stage 4, % Sulfur, PS4 = 3.40%
f. Stage 3, % Sulfur, Ps3 = 3.12%
g. Stage 2, % Sulfur, PS2 = 3.04%
h. Stage 1, % Sulfur, PSI = 3.56%
4. Outlet Carbon
a. % Sulfur (Combustion Anal.), Pso = 2,90%
b. Material Rate, Ro =24.9 Ibs./hr.
5. Inlet Gas
a. % H2 (35.8% by Rotameter) = 36.7%
b. H2 Gas Rate (57 CFH @ 54 x 1.1 FF) = 63 CFH @ 70°F
c. N2 Gas Rate (30% x 360 x 1.05) = 113 CFH @ 70°F
6. Intermediate Stage Gas Analysis
Stage % H2 % H2S % N2 % 502 % H?0 % CO % C02
1
2
3
4
5
6
7 23.1 2.6 69.4 0 0.42 0.01 0
7. Outlet Gas Analysis
a- % H2 = 27.7%
b. % H2S = 2.64%
c. % N2 = 69.4%
d. % S02 = 0
e. % H20 = 0.41%
f. % CO = 0.017.
g. % C02 =0
h. % Sulfur (as Si)
532
-------
8. Temperature
Stage Carbon/Gas, °F
1
2
3
4
1132/1210
1168/
1178/1200
1150/
Stage Carbon/Gas,°F
5 1178/1210
6 1178/
7 /1208
8
9.
Cyclone Product
a. Sulfur
b. Material Rate
c. % Material +40 Mesh
d. % Material -40 Mesh
B. SULFUR MATERIAL BALANCE, SULFUR REMOVAL, AND H2S CONVERSION
1. Run Start
2. Run Times
a. Run Time
b. Steady State Period
c. Inlet Carbon Analysis
d. Outlet Carbon Analysis
3. Inlet Sulfur Loading, Psi
Outlet Sulfur Loading, Pso
4
5
6
8.
9.
10.
11.
12.
Inlet Material Rate, Rsi
Outlet Material Rate, RSo
Cyclone Sulfur Loading, PScy
Cyclone Material Rate, Rscy
Gas Rate In, QT
N2 Rate In, QN2
H2 Cone. In, 100
H2 Cone. Out, 100
H2S Cone. Out, 100 (yH2s)o
S02 Cone. Out, 100 ySo
H20 Cone. Out, 100
CO Cone. Out, 100
C02 Cone. Out, 100
4172 (Started Feed from
SHG-5)
4172+108 = 4280+40 = 4320
4280-4457
4320-4457 (+41)
4212-4349 (-108)+41
4392-4529 (+72)+41
25.2 Ibs./hr.
24.9 Ibs./hr.
176 CFH @ 70°F
113 CFH @ 70°F
13. Sulfur Vapor Out, RSvo
533
-------
GAS AND CARBON FLOW RATES
RLA NC 5."!? - -3_
;.-*[" -
-"-c" > '•-' -^
X
~/ &A5 FL&W tJATE-i
•!. •;«*!_ LE
- '^--^ '-^:-.'c£3 IT ?rn= IT£
Py
— i -j
— .-'•
1 ^~* i*-^"
**— ''3 *r -- i jL^T
;_<-r 5~~*T -.1,-5'i jr p-r^D c
t~ • T^ ^ 7^fr^"'~'f*~ F:5"^ ^/l""^* T
1 .
1
l
1
I
(
t i
i
i , ;
i
3
J* t.'
ROTA
CJ^
'5- 1-1 '
/.?
\*\
vT
tJ — wa.
'. T !•»<;
— 7~> —
;.«
Tp
50
\ 1 £ -3i,
^AiC
p V
-j i
^ <5 JJiJ •> F*"7
1
I
I
I
I
f !
; 1
i t
1 __,
1
„„„ orf-rcr^rec;.
N2
1 /
TM
I/O
-LJ1
/f?
7^7
HP
//-,
-??
H!
PR
jH
AJ'P
COfi.
CFH
L
HR
1
r.iPRON ^PFOiFir-ariONS;
TYPE
SKID NO
SAMPLE N
n
OVV
H2S
COH.
fJH
sf"
H?,'
^r^
?4r5
s^
K^r
">*f
i:-f
S- z!/=;-1':.- J
-5 -, r?-**;j ?;
£ * ^ "^ '/ ' i T-- ^1
1C- 2. ! '3 o
,: * A ! / J A '•»
,
'
DATE :
.2.-
^Hif^T
0DCc;ATC0
fl.12 p, /P ,C/K -V" /f.?^ /^t/
f2-8l
,•
'
^_'
/
!
-^ =
*• » C' \
,T- *• •
! i
i
|
j
J
1 i
< > •
i
i
l *
i i
\
\
i
i
l l
i j
!
READ AND UN.^FRSTOQn f
; i ' "I
Ul
u>
Press-ore at G-utl«t of Rotwueter Head at Ng Rotameter Outlet; App. - Gas Flov Rate, No Correction; Cor. - Cos Flow Rate Corrected for Pressure a^J
i - X2 Flow for Lover Carbon Seal Leg; LFA-101 - Ng Elow for l^tper Carbon I ee L Leg.
-------
GAS ANQLYSIS
4" DIA. REGENERATOR
RUN NO. a.- y
FEED SH&-S FP.c3uc.-r
PATE
TIME
OPERATOR HOTES
0771
•
>-c$!
fc-- ••;
-*;,
-*;!
—4
— ;
— ^*
«*-.5
"•"il
CROSS
IMLCT SA3 ANALYSIS
V
so2
C02
co |MZO
H2
lo. oS !s.7.1S
i 1 *
? 1
^
j£.o
1 i
! ' i
0.
i 1
'. •
6 P i 0 0
o | o o oto
9
1.7.50 it./
iJ-40 ! £&-0
O O 0 O 2^-to i t^-O
,
REFERENCES:
i
I i
i
i
i
!
1
!
i
!
i
i
.
1
i
i
i
i
j
1
CAR90N 5P£CIF!.C4TIONS;
TYPE
SK:D NO.
SAMPLE
Na
EXIT OA9 ANALYSIS
S02
C02
^frwfrfa/ fr
CO
«*M
•
Kj0 ,
t,
™.«» -.S-o
/k
i
. i
I
1
1
1
Ou*«j
!
INTEHNEDIATi: 6A» ANA-Y31S
STAGE
H2S
SO,
coe
CO H.O
i *
I i
! ;
7 a.so
AT 1 3 S^
) 1 &$*
»«
i
^
i
O O 'OCXS Q.S3 \Z£.{, •.'.«.!
.o i o !scn
/.j
LO a.i^l 0
0 'OpfO
6fH 'J3-1- '-*?•'
o.V9 a^-o •&*}.?
O 00tf» 0.35
.
j .
l i
;
as-X'f •'A
i
i i • !
i '
! i
i
I
•
i
!
1
!
i
i
i
;
i
)
j
!
!
,
i
DATE (SHIFT!
8-4 i
i
! i
i
i
1
: i
'
1
i
1
i
i
i
1 i
OPERATOR
4-12 !
12-8 I
READ AND Uf
•J. :: RS uOOL
/z//f. Miyjl
3 !
^j
Ul
U)
-------
4"D!A. REGENERATOR
u>
COLUMN TEMPERATURES. PRESSURES. AND PRESSURE DROPS
RUN NO,_S//S.- 8
DATE "S/3//3
RfFERENSES?
CARBON SPECIFICATIO_NS
ra , :-si>*. e
TYPE
SAMPLE NO"
DATE
SHIFT! OPERATOR
8-4
4- 12
12-8
3EAD AND
ipi TI -
-------
RUN SHG-9
A. EXPERIMENTAL DATA - H2S GENERATION/S STRIPPING
1. Virgin Carbon
a. % Sulfur (Combustion Anal.), Psc
2. Inlet Carbon -
a. % Sulfur (Combustion Anal.), Psi = 20.12%
b. Acid Titration, Pvi
c. Material Rate, RI =30.9 Ibs./hr
Intermediate
a .
b.
c .
d.
e.
f .
g-
h.
Stage
Stage
Stage
Stage
Stage
Stage
Stage
Stage
8,
7,
6,
5,
4,
3,
2,
1,
Stage Carbon
7
/o
7
/o
7
/D
7
to
7
/o
7
/o
7
/o
7
/o
Sulfur,
Sulfur,
Sulfur,
Sulfur,
Sulfur,
Sulfur,
Sulfur,
Sulfur ,
PS8
PS?
PS6
PS5
PS4
PS3
PS2
PSI
4. Outlet Carbon
a. J0 Sulfur (Combustion Anal.), PSo = 2.64%
b. Material Rate, Ro =24.6 Ibs./hr.
5. Inlet Gas
a. % H2 (26.2% by Rotameter) = 27.3%
b. H2 Gas Rate (48 CFH x 1.1) =5.3 CFH @ 70°F
c. N£ Gas Rate (37.6 x 360 x 1.1) = 149 CFH (§ 70°F
6. Intermediate Stage Gas Analysis
% H2 % H2S % N2 % SO2 % H20 % CO % CO2
1
2
3
4
5
6
7 5.9 14.2 76.4 0 0.5
0
0.1
Outlet Gas Analysis
a. % H2 - 3.
b°l UiC = J.J . U/o
/o H2^ 71 7<»
r "/ No = /I. //o
S' 7 qn-> = 0 • °°77o
O. /o C)U^ c -no/
e. % H20 = ^
f. % CO "
g. % C02
h. % Sulfur (as Si)
537
-------
8,
Temperature
Stage Carbon/Gas, °F
1
2
3
4
1140/1210
1173/
1186/1195
1165/
Stage Carbon/Gas,°F
5 1187/1202
6 1164/
7 /1197
8 918/
Cyclone Product
a. Sulfur
b. Material Rate
c. % Material +40 Mesh
d. % Material -40 Mesh
B. SULFUR MATERIAL BALANCE, SULFUR REMOVAL, AND H2S CONVERSION
1. Run Start
2. Run Times
a. Run Time
b. Steady State Period
c. Inlet Carbon Analysis
d. Outlet Carbon Analysis
3
4
5
6
7
8.
9.
10.
11.
12.
13.
Inlet Sulfur Loading, Psi
Outlet Sulfur Loading, PSo
Inlet Material Rate, Rsi
Outlet Material Rate, RSo
Cyclone Sulfur Loading, Pscy
Cyclone Material Rate, Rscy
Gas Rate In, qT
N2 Rate In,
H2 Cone. In, 100
H2 Cone. Out, 100
H2S Cone. Out, 100 (yH2s)o
S02 Cone. Out, 100 yso
H20 Cone. Out, 100
CO Cone. Out, 100
C02 Cone. Out, 100
Sulfur Vapor Out, RSvo
4469 (Started SG-85C)
4577-4718
4618-4718 (+41)
4510-4610 (-108H41
4690-4790 (+72)+41
20.12%
30.9 Ibs./hr.
24.6 Ibs./hr.
201 CFH @ 70°F
149 CFH @ 70°F
538
-------
* Vi l-.f- :.i-> NOIL1
_l
I^VMiT^. ;•*-
IC'^y
•* "T^
vn GAS AND CARBON 7LOW RATES ao,cO
/ AA*. *!.<.•>* /Afe'S "
C
f T
f i
*
V- >-..• • " <" i
,L'E3
= =. ( r£-
°=ES
ti
;;:
IHK
RR
P^.C C.OX'i.fT !J74 .'i-
= 1 Soil! &5i IT*
- " iiPV/J..T "?,- ~~* \fu-y
• I
;- .-'a ff.',:f 3 AX 7 ^.Fr SuLrZ'jl* Tf'K-fi iT:-'TO 4_i
— H^ p-i — ! —
— !Z^>-"^ '^ *" f^'-
•>•'"* <>"*-?-' C*'t»«. *rJ
f
_L£/_L
i
\
i
ACJ2.g/3-y.-^-j J2L
lAg^ f.ATK ri:
1
\
j
..
j
1 , I
T" '
j
I 1
j
t
1 r
\
OFFFPCwrPC-
Z: R'.'.a, Press
i
{
:_ic^&
i
!
z^:
i
1 '
i
• 1
>H ^
if'
fJ!
'^\
fZ'S
COK.
- &•/•••
^/f-
HR
OW
O"^
-c<
i>£
//
1
ri2S
COR.
r
RR
'Z '-,"
•£—
.H
~ O/^- i'-* "/^
<.'
«*
i;.
i 5_
• < /i
'tft —
fSSJUE
•
:iR
C02
APP
1
^C/'7
H-
t
COR.
CFH
i
RK
^7^.^
itEAM
Acf> I COr*.
T//- •{^-/-
"IK — *"
1
1
[
_^-
RR
CO
CO,
tv
^
i j ' i
i i i <
i 1 1
I i i
j
l
I
1 i
i
i
j
\ \
|
|
i
i
4" r»a pr^c^CD^TC3
p'JN NO 3r/ 5-- *
pc rn i _r- 3TSC
DATE &ZW3
CARrl'-N f L OW K-lTtS v" > v\ *N- -^ "
IN ^
t I
->--••?
|^C 9
'•\-\ V
3-. o
MTF (guif-l OPFC)^Tf.Q
! R-C i
area. -7.7
- Preasxa-e at Outlet of Bc'taatier Bead at «2 Hotfiaeter Outlet; App. - Gas I':.ow Rate, No Correction;
ZteosItTi K-6 -
K2 Flow
for Lower Carton Seal Leg; U"A-101 - S2
4..f k"?"-3, P,'C( r^Vr ?*/. P.^1
r?-s| [
Cer.
- Gas Flow riaLe Corrects
3-5- ?
IHi
T^T
^\=
.1 5 !-i^-»-
i
t — i — i
."5 jr.: ^^ Cj j
.<*/ -^ -V ^t---'^
.'30 L"*I -f '
'J- "?JT i -^ - 5 "^1 *
/j.f\ ;— •* .'£.•-*.-•> -
TzT"
'i T-'C' ^"" i ~ ' ' i
— " i
i
t
i -
1
i i
) t '
i (
•'
I t
I
1
•
!
!
j
i i
i
RT/10'ANO L'NJTRSTOOD J
frSrf.M*// \*/2*
/ 1
^
d for Pressure anJ
Flow for Upper Carbon 3c il Leg.
-------
T3AS AN/ LYSIS
4" DIA. REGENERATOR,
PUN NO. .5 h 4--*?
f.EEDS6-SS -C
DATE a/3/73
TI-«Z
:-'.' ;f.p
OPERATOR NOTES
•TSi
[•"vj*1
>T'3j
... 4^7
'TSrii
till
7;5iy
'•J551
HH71.
'VfM1
7"Sif '
'•^jj
^of^
wen
"Vffl1
"-S f '
i*iT>
-7«S|
IT"!)?!
T? i?
EHLE
H2,
e>
SO,
o
' SAS ANALYSIS
co2 ! co
o
o : o o
o ! o «
C ; 0 o
H20
"2
I |
O
O
o
o
J.17
*«L
14.4
15.-? 7^.3
e ! o «,? 7^.^
D ! 0 ,3.}.= ,l¥.l
O 0 JJ3.1 7f.|
1 1 ' 1 ;
t
1 i
!
!
h<
('
. )
r. ^
f~
s
V
i J^- " /
/ .^
1 i '
1
J
1
/ I 1
^-^ :^VJSW6
t ' J
t !
!
1
CROSS R£c£aENCES:
•
,
CARBON SP
TYPE
SKIO NO.
. SAMPLE
ECIFICATIONS;
sa
EXIT SA3 A1 ALY5IS
H2S
SOj
i
U.oc
12-YS
I3.li
/i?6_
jJ.IJJ
0.'J5
*>otf
o
tijf
0
la.tOj *•»!(
iJ.O ;o.oo7
co2
J.Sfl
//fY
;.3o
i'fr
i.yo
i.it
t.f-O
CO
Q
0
o
~f~
o
0
o
H-3
1
s; Y
5, •• j.
•'• 2S
&\ •},.
^.w
S-'.f
£-5
At
3
•t 11.3
^'1
3-0
i
. J
,0
3, 5L
S.oi
''Z,"
73.1
11.0
7d. t
T/-?
I/' ^
71-7
1
i
!
1
INTERMEDIATE GAS ANALYSIS
STAGE
co£
CO
H2{
•I-
1
^
; i j
; *
1 i
1
i ;
7 tl of i 0
7
i
i •
ff.ttf o ^-56
6.3 I7fe.>
i
1
[
1 i
!
i
i
; ;
,
i
j
'f'l$! 0 !».f -5"0 l^.1? Ta, > '
7 /V-3L o jo.13. O 1C. So ,5.? I7C.CI
6 | i.to o.a?£ O A12
1
!
i
[
O^/ 7. o 173.5
i
!
5 : :
I !
1
i - ,
j
|
!
i
i 5
i
1
1 ! '
i i 1
: | i . . . |
1
I
i ' ! ! ;
I i :
i
DATE iSHiFTl OPERATOR
! 8-4 i
a/> i--'2 ir.w6.#& ^A.CJ ;
; 12-3 i - ' - i
1 ! I
KETAD AND UNDERSTOOD j!
/t/X. A/W/ li/v/h ;
— / y
t
-------
•a" D:A. RECENERATQR
COLUMN TEMPERATURES. PRESSURES. AND PRESSURE DROPS
NO.
- 3>j^ - •
_
DJ.TE
TIME
OPERATOR NOTES
PI
STAG
c^R
PROPS. IN
H.O
42J43J44 451 461?
MN TEMPERATURES.
FENWaL
TIC
MTA
| 49 I47|''5 |
J i L
_lLIi/L>_
!<£!'•'7 !J.|| /?
W
Til
sa
-5 :i
_J-i- e ' •_- ,«.—.,'• . _ |U i—•
>', i Vji.ej2.yl |3J I g-u.
^.'••i T3iilES4*I5JlI5SSS
f£^d£i£J^4-
x^jj'V; r>jC c*;f;
i
-t-
H 1-
Ln
J b
t
i
J L
J f
\ I
JL.
REFERENCES:
SPECIFICATIONS:
TYf
SAMPLE NO
DATE
OPERATOR
S. Fes. 7 3 4-12
I-j»*r >a)e»t»» b* C*li^( 9nd It*** lmb>ri
j R^AO AND
-------
RUN SHG-10
A. EXPERIMENTAL DATA - H?,S GENERATION/ S STRIPPING
1 . Virgin Carbon
a. 7o Sulfur (Combustion Anal .), Psc = 0.65%
2. Inlet Carbon -
a. % Sulfur (Combustion Anal .), Psi = 19.81%
b. Acid Titration, Pvi
c. Material Rate, Ri = 35 Ibs./hr.
3. Intermediate Stage Carbon
a. Stage 8, 7? Sulfur, PS8 = ---
= 8.0%
= 7.8%
= 7.9%
5.0
4. Outlet Carbon
a. % Sulfur (Combustion Anal.), Pso = 4.21%
b. Material Rate, R0 =28.9 Ibs./hr.
5. Inlet Gas
a. % H2 = 36.1%
b. H2 Gas Rate = 79 CFH @ 70°F
c. N2 Gas Rate = 127 CFH @ 70°F
6. Intermediate Stage Gas Analysis
Stage % H2 % H2S % N2 % SO 2 % H20 % CO
b.
c.
d.
e .
f .
g-
h.
Stage
Stage
Stage
Stage
Stage
Stage
Stage
7,
6,
5,
4,
3,
2,
1,
7
la
7
10
°l
la
7
/o
7
/o
7
la
7
to
Sulfur,
Sulfur ,
Sulfur,
Sulfur,
Sulfur,
Sulfur,
Sulfur,
PS7
PS 6
PS5
PS4
PS3
PS2
PSI
1
2
3
4
5
6
7
34.3
28.8
15.8
5.2
- - — —
0
4.0
18.5
23.9
64.8
66.6
65.1
59.9
0
0
0
0
0
0
0.24
9.40
0
0.012
0.052
0
0
0
0.05
1.60
Outlet Gas Analysis
a. % H2 = 2.0%
b. % H2S = 27.3% 60.0%
c. % N2 = 60.0%
d. % S02 =0
e. % H20 = 9.04%
f. % CO =0
g. % C02 = 1.8%
h. % Sulfur (as Si) = 6.2% (on Dry
: Basis)
542
-------
8.
Temperature
Stage Carbon/Gas, op
1
2
3
4
1132/1215
1135/1182
1072/1198
899/992
Cyclone Product
a. Sulfur
b. Material Rate
c. % Material +40 Mesh
d. % Material -40 Mesh
Stage Carbon/Gas,°F
5 1120/1204
6 1219/1234
7 1024/1200
8 /1248
25.4%
0.015 Ib./hr.
8.5%
91.5%
B. SULFUR MATERIAL BALANCE, SULFUR REMOVAL, AND H2S CONVERSION
1. Run Start
8.
9.
10.
11.
12.
13.
Run Times
a. Run Time
b. Steady State Period
c. Inlet Carbon Analysis
d. Outlet Carbon Analysis
Inlet Sulfur Loading, Psi
Outlet Sulfur Loading, PSo
Inlet Material Rate, Rsi
Outlet Material Rate, RSO
Cyclone Sulfur Loading, Pscy
Cyclone Material Rate, Rscy
Gas Rate In, qT
N2 Rate In,
H2 Cone. In, 100
H Cone. Out, 100
H2S Cone
S02 Cone,
1120 Cone
Out, 100 (yH2s)0
Out, 100 ySo
Out, 100 .(yH20)0
CO Cone. Out, 100 YCOO
C02 Cone. Out, 100 (
Sulfur Vapor Out, RSVO
2463-2818
2574-2818 +90+21 = +111
2481-2725 (-93)+lll
2636-2880 (-62)+lll
19.81%
4.21%
35 Ibs./hr.
28.9 Ibs./hr.
25.4%
0.015 Ib./hr.
206 CFH @ 70°F
127 CFH @ 70°F
36.1 vol. %
2.0 vol. %
27.3 vol. %
0
9.04 vol. % (by difference)
0
1.80 vol. %
0.421 Ib./hr.
543
-------
SAMPLE CALCULATION
Sulfur in Off-Gas
Measured Quantities
Ws = Weight of Sulfur Recovered =4.73 gms . = 0.0104 Ibs.
Twt = Temperature of Wet Test Meter = 99°F = PH20 = 6.2% H20
Q = Cubic Feet of Gas = 3.35 ft.3 (less Sulfur)
t = Elapsed Time of Sample = 128 minutes
Calculations
,T - Dry Gas Flow Rate - (M|m, (0^, (1 -
= (3.35) (60) (530) (1 - 0.062)
(128) (554)
=1.40 CFH @ 70°F
(|f) (386) (^) (100)
% S (Dry Basis) = -32 - 128
_ [ (0.014) (386) (60) (100)]/[(32) (128)]
. ,0.0104^ ,10~^ ~
qT + ( — 3^ — ) (386)
= 5 . 8805
1.459
= 4.03% Si
RSVO = Ibs. S/hr. = ^ ^' (qN2)
/ 60
= 0.443 Ibs. S/hr.
Found leak in analysis system and measured it to be:
= 0.516 CFH @ 70°F
Corrected above sulfur gas results:
,0. 0104N /qofix / 60 W1 nf)N
( T5 MJOOMTT5TJ-M-LOO) c RR
70- 3± 128 _ J .00 _ g 047
10 D ~ 7^—A1 A A Tf\ 7^ Q/. 1 u • *•"«>
0.0104 N/60N/-,0^N _ (0.0104) (60) (127)
p *
RSVO = t >. - i>40_o.516T:Z8~' (0.884) (128)
= 0.700 Ibs./hr.
544
-------
GAS ANALYSIS
4* DIA. REGENERATOR
RUM NO. JH-d-iff
FE£0 J
DATE J1
O=»tBATOR HOTES!
so
11LEY_«AS ANALYSIS
CO
H0
so2
€XIT 9A3 AM: LYSIS
CO
STASE
INTERMEDIATE SAS ANALYSIS
SO
CO i H20
t> CkJ, Q.l
UL
lA
^ -3% i if/it! tv3o
37.0|g6-0
rmf?v
-I L
Tb
fL-^A
/K
'?-
3S.5 f>.
JiM
SV*
i^L
(l.t
j^ Uh»
/.te
t.if
I. la
l-fi
*r9-
ifcz.
^•'-4-
1.1 •
n.g
11-
Jt.o
fi.C.
Ul
e£j
*£.
i22. JA
ft.""
J^^L
Z.lt>
37.6 I O
JU4
2^0.
IiliA&A'J/-fe
! ftfftrHU
HAIUftMU -
_?2i°
s^
S5.11
0.150
135-UJk.
«(.£•
U5
io-OOll^
17. a.
iiJ
1.51
0
. rcKcV
Us_aj
~ /W O £f. UTIx/
ZUU.1
S..P
iC
T"
Gl.o
115JO
00
i'^I
o,no 11.31 ^.iro
o.st
Q I-CV
<»— R^.» - Jj-il fay all'
o 0.17 !
t.»3l -y.g i^tTyyv
i o
_Q_
U/./I9V.
^t
•Itf.avJ g.Jf'
&£•
CBOSS REFERENCES:
CARBON SPECIFICATIONS;
TYPE
SKID NO. .
SAMPLE NOl
DATE
V>l/73
SHIFT
8-4
4-12
12-8
OPERATOR
&fC,CR. 6A V fj
-------
GAS ANALYSIS
4" 0!A. REGENERATOR
RyN NO, _ .f "6 -f g
FEED
f q-
DATE
iCT'EL"
£?<*
r;-i
-in
So2
»**»
CO
1 t
t
i
1
i
!
1 !
i
H23
So2
EXI
co2
r GAS
CO
AN 4 1.
"2'
fSIS
1
L
.STASC
a-
IN
H2S
!O
* lo
1
-TSIS
"*
z
if? ijc.S'1}?*
5.1 !59. S
S.3. iSJ.o
|
i
1
I
1
i
1 1
i
"'
i
1
^ —
H- 0 ~ t Ij" ^ *r •' •?
o — j K e s f. J"f i, V »• .
j '
i ]
> 1
i
1
1
1
; . j
:
i
i !
i
j
Ui
-p-
CROSS REFERENCES:,
CARBON
TYPE
SKID NO.
SAMPLE NO.
DATE
ISHIFT
t 8-4 .
! *-12
! !2-3
OPERATOR
-------
COLUMN TEMPERATURES. PRESSURES. AND PRESSURE
Tm£
£.*- r- pi
OPERATOR NOTES
I Ii-rl Cr/s-e/fo Sr.
-~*\Ztt~ ft,
•J *•; - d 1 7 **e»* Tl t»-7 MX"
•----'' ;
• " * +. -
J~,f "
!
1
i
i
;
- 1
1
i
i
i
i
!
*
<
COL'JSI PRESSURES «K3 PRESSURE DROPS IN H n r-
Fl
Z
' 1
?*" rcrd
'
1,0
' **
/>!>
1
rr
^ri
*-
"1
— —
I.L IS
j—
•I,
12,
/*"
STAGc AKD D-1 tsU^SfcR
1
2
3
1
i
t-f i
7C ' ^
•^
/. Tl
I//, i/. r
4
3
i
' 1
i
/. 7 !2 c
ii.
/• 1
2.1.
£.«• !«-•>
6 | 7
i
S 9
i
iii_
i.~>
JL.12-
'•*'*:*'
— i77 '/.rTT'^rL f i/.j
1/t U ?'/.?)? 3 ;,-••/ /.J
j
~i~c
^
C.9 /?
?.!> 0.9
/?
\
' ' i
1 1 1 i ' >
1
r
|
52. feff HPSCFS:
%BB
" S "J±'li!;.i;.""^. S ,J;
i
1
! ' '
1 i
,., i i.
1 !
j
l
j
"^CflRBON SPEC
TYPE
SKI? NO
SAMPLE NO
IFICATIONS:
11. iMt lMM.
'P
f,-. :
/$•
DROPS
RUN NO. i'A'rf- /o
FEED SC - ST-V
. ^ DATE ^- 2.2-- -73
/
/>
— , JV-1^- ^ CCL!
.» _T i !,s,
HZ
tir*
!iii
43
44
^r^i
^5
^
!MN
TEV
egUr !48|49 ;7i4,. | -)S,'
1
I
,,-ff
//*<
"T" "
•IV!»^
i ! '
/U^'/rrt
s
'-
•
^c.
&*~
jr"-:
,,*!-
/ -ft f^^'^^uif rcr.
P£"ATU^ES. *F /' V V ~"\
re s\v.-.i -' r ^N""TI' ' FR«? ^ If r^"*' rs
TP
T-Si ' l ^ V-
•»3 i 41 i-i,'J vi i vv
i
.2*r- -/» ^--
1
-
HTA
'Cl life.
---; :*.ET
1
:!-• .-I"j_-
5^' 1 i'.-,-i^
-^c^y^i^^d^^ •:>•; -,-r
>?f,//.. ,K>.j/.3.i//>.| - |:V:^ '^ ; '^^^,_^_
P9D
r '.- iii
i
• i
/tiS^fj/ilC
7;T '/ '•; '•"'.
'•is
575
*»"*,
2i5j
'^^."iKfr
I I ! i 1
•^j|«x— — | — i — -f-f — i
liio 3S5"'//y?' ??Pvj5ffi^^1
'? 'L 1? '•'."- '"'
1
!
I ' !
-
! i i i
i
i
i
1 ! i
i '•
!
i L i
i
. |
t
|
j
,
!
I
i
1
, ,
i
1
!
1
1 .
J
1
|
! I
i
j
I
i
DATE
2-2.2. • 7 •?
SHIFT
8-4
4-12
12-6
OPERATOR
£AJ£ f+f? r' s> si*f
>?<•.':
1
1
STT^: —
.•• •; ( 4 ; "
!
I t
!
j
!
i
!
:
f
i
;
i
1
•* 5rop; TI - Colon Cutoa Ti^vrmtur**,
»l*j 4" Colwc, ted IU4* •w**r;
• ??* '"^
-------
RUN SHG-11
A. EXPERIMENTAL DATA - H2S GENERATION/S STRIPPING
1. Virgin Carbon
a. % Sulfur (Combustion Anal.), Psc = 0.65%
2. Inlet Carbon -
a. % Sulfur (Combustion Anal.), Psi = 19.81%
b. Acid Titration, Pvi
c. Material Rate, RI =35.0 Ibs./hr.
3. Intermediate Stage Carbon
a. Stage 8, % Sulfur, PS8
b. Stage 7, % Sulfur, PS?
c. Stage 6, % Sulfur, Ps6
d. Stage 5, % Sulfur, PS5
e. Stage 4, % Sulfur, PS4
f . Stage 3, % Sulfur, Ps3
g. Stage 2, % Sulfur, PS2
h. Stage 1, % Sulfur,
4. Outlet Carbon
a. % Sulfur (Combustion Anal.) , Pso = 8.27%
b. Material Rate, R0 , = (27.7) Ibs. C/hr.
30.2
5. Inlet Gas
a. % H£ = 0%
b. H2 Gas Rate = ---
c. N2 Gas Rate = 202 CFH @ 70°F
6. Intermediate Stage Gas Analysis
Stage % H2 % H2S % N2 % SC-2 % H20 % CO % CO 2
1
2
3
4
5
6
7
7. Outlet Gas Analysis
a. % H2 =0
b. % H2S a, 1.32%
c. % N2 = 88.0%
d. % S02 - 0.82%
e. % H20 = 9.0%
f . % CO =0
g. % C02 - 2.0%
h. % Sulfur (as Si)
540
ro
-------
8
Temperature
Stage Carbon/Gas , °F
1
2
3
4
1070/1200
1035/1150
1040/1150
925/1020
Cyclone Product
a. Sulfur
b. Material Rate
c. % Material +40 Mesh
d. % Material -40 Mesh
Stage Carbon/Gas,°F
5 1085/1135
6 1207/1290
7 1170/1215
8 —/1130
31.2%
0.021 Ib./hr.
17.2%
82.8%
B• SULFUR MATERIAL BALANCE. SULFUR REMOVAL, AND H2.S CONVERSION
1. Run Start
3,
4,
5.
6.
8.
9.
10.
11.
12.
13.
Run Times
a.. Run Time
b. Steady State Period
c. Inlet Carbon Analysis
d. Outlet Carbon Analysis
Inlet Sulfur Loading,
Outlet Sulfur Loading, PSo
Inlet Material Rate, Rsi
Outlet Material Rate, RSO
Cyclone Sulfur Loading, Pscy
Cyclone Material Rate, Rscy
Gas Rate In, qT
N2 Rate In,
H2 Cone. In, 100
H2 Cone. Out, 100
H2S Cone. Out, 100 (yH2s)o
S02 Cone. Out, 100 yso
H20 Cone. Out, 100
CO Coric. Out, 100
C02 Cone. Out, 100
Sulfur Vapor Out, RSVO
2820
2931-2954 +90+121 = 111
2838-2861 (-93)+lll
2992-3016 (+62)+lll
19.08%
8.27%
35.0 Ibs./hr.
30.85 Ibs./hr.
31.2%
0.021 lb./hr.
202 CFH @ 70°F
202 CFH @ 70°F
0
0
1.32 vol. %
0.82 vol. %
9.0 vol. %
0
2.0 vol. %
549
-------
GAS AND CARBON :LOW RATES
T-^1
-.—
, '
- ~* C, ^ ? ^
-V-* — f • '.t'J^"--
|
.''•-•?
, "-*.
•5
• r -•
/ i'.
t
tT-T
--o
•C-T-1
i 1
*• T»-
•-'£-6
.
| sou 1
1-.M-
^- ?
JV
^
J5
"«•
ir^-
f^:
tTo
X-T-
Is-v
?c3.
~Tr
^.<
t&f -*«
^s
—
FP
r-. -
1
! )'.V
. ff
H2S
COR.
PjTf
1 — 7-
RR
(70
H?
APR
£0i
A^J
OC ).
-L£i_
1
LEK 2_
—
v™^
RR
-£Zli
my
c^
"
COR.
-COi_
«
T= a
---
M
g%
!
"fT=~
i-'r
1
CO-".
TM
— nr
r"ST.
'
1
Tj^r
r- T . r.p'*
•
"^.r
3<
•Q ^
C.
^r<-
•^
/5.5
>
L3,
. .-.i
fi/,f.
fc"-=
i
i
i
!
t_n
Ui
O
ro/-<;^ prFCBF>'/~
•SOTS: Rota. Pre
Eettlty;
rc. raooohj SPrfiiF'
TYPE
«K:D NO
SAMPLE NO
ss. - Presaure at Outlet of Rotaseter Head
E-6 - K2 Tlov for Lover Carbon Seal Leg;
"ATJC.NS:
at N2 Rotar
LFA-101 -
f
•ster Outlet; App. - Gas How Re
Ng Flow for Upper Carbon S*-c i Le(
DATE S^'cTt C-^Pi^^^
^-M !
-f/*sU~'?2> A,'-1 *>rifJrti&etj'*.£-T /:.*/,*
\ !2-&!
ite, No Correction; Cor. - Gas Fiov Ka.^e Corr*
I-
for Pressure and
-------
e>.r-p
GAS ANALYSIS
DIA. REGENERATOR
DATE
i 6-//
Ui
CROSS REFERENCES:
CARBON SPECIFICATIONS?
TYPE
SKID NO.
SAMPLE NO.
DATE
ISHIFT
i 8-4
OPERATOR 1
i
; 4-12 ; i
I 12-3
-------
K)
COLUMN
. IWE
OPEBBTOR NOTES
^t-'EL"
•271*
\ "rC" •
i
[ i i
m
—
1
i
*
i
TEMPERATURES. PF I33URES. AND PRESSURE DROPS
COLUMN PR?SSL!RFS i-ifl PRC^,;,B
PI
2
f*
»
/ :
!
i
I
: ;
, i
i
j
:
i
i
i
i
J
1
1 / -7
Z
' f
? >
01..*,
, .
STAGE
3
/•'
,'.7
I
1
4
A\"J C1-- *.!.
5 • S
t- '/ *
-'fi I/ ",
7
J /
.'.'BE
a
/ .0
i
i
1
'• '
.1
i j
1
I
i i
i i
; i
j
'
i
i
i
i
i
i
rR^cs (vrPepeNCCs:
1. /* /* /Si 1 /L rt
42 43
'°4f|«JO
ItJf'tlS
Ajf'tMo
i
1
i
i
T
1 — i
r«
^
— —
45
rtT?
M00
46 47 '
Itg<&S
I
1 1
j
i
— T
1
t
1
t
I
/r
I
Crt' U
itxJ^-.
WS'
^^*'tfW
I
1
!
; •
i i
; i •
:
'
; : i
1
|
i
yc.j
^-_
//r?
— __
i
4 D'ft. RECENEPATOR
RON NO 5HG-H
FEC D
DATE 2-3-i-rS
TL'P.ES •?
-<-\v-.v roNTnp"pR* r c" -y
•47 4^
'?^O \/ffC '
1
1
i
'Si
i ;
/Tr'j1 ?°-.."t'H(-^ (•'.' '//;••}
-------
APPENDIX A-20
DERIVATIONS
Page
1. Derivation of Response Parameters Used for 554
Integral Run
2. Derivation of Mathematical Expressions for 572
Calculation of Rate of Reaction To Form
Sulfur - Differential Rate Studies in
Batch Fluid Bed Reactor
3. Derivation of Reaction Rate Equations for 588
Sulfur Generation - For Continuous Acid
Conversion Runs in 8 Stage, 4 Inch
Diameter Fluid Bed Reactor
*
4. Derivation of Space Velocity Design Equation 597
for S02 Sorber
5. Derivation of Design Equations for Sizing of 602
S02 Sorber
553
-------
APPENDIX A-20-1
DERIVATION OF RESPONSE PARAMETERS USED FOR INTEGRAL RUN
This section contains the equations used to calculate process
performance during integral testing of the Westvaco S02
Recovery Process. Most are equations used throughout the
process development so the derivations are not necessarily
repeated in the other sections of Appendix A-20 which contain
other equations used in data analysis in pre-integral
operation.
A. S02 SORBER
1. S02 Removal Efficiency
Let PSR = per cent S02 removal, %
Then
Inlet S02 Cone. - Outlet S02 Cone.-,
-
inn r
PSA = 100 [ Inlet S02 Cone.
Outlet S02 Cone..,
J
2. Carbon Attrition Rate
Let RCD = carbon attrition rate, Ibs. C/hr.
R18D = total material collected from S02 sorber
outlet gas , Ibs . /hr .
XeSc = residual sulfur loading of regenerated carbon
to S02 sorber, Ibs. S/lb. C
PH20 = Per cent moisture of dust collected from S02
sorber outlet gas , 7o
PS = total sulfur content of dust collected from
S02 sorber outlet gas, %.
Then
[1] # Mat'l/hr. - #C/hr. + # Residual S/hr. + # H2S04/hr. + # H20/hr.
and from above
554
-------
= RGB + xeSc RCD + —-^^ + ^ RISD
but also the per cent sulfur is:
ro-i Ibs. Residual S/hr. + Ibs. H2S04/hr. (32/98) = PS
L J Ibs. Material/hr. 100
or
r/,1 XeSc RCD + Ibs. H2S04/hr. (32/98) PS
L J RISD = 100
therefore solving for Ibs. H2S04/hr.
_98
[5] Ibs. H2S04/hr. = t^gr (R18D) - XeSc RQDJ32
Substituting [5] into [2]
[6] R18DU - ^f> = *™ + XeSc "CD + 3'0625(^) R18D ' 3'°625
RlSDf1 ~ ^j- ~ 3'0625^)] = RCDtl + XeSc - 3.0625 XeSc]
- -
L/J
[1 - 2.0625
3. Residual Sulfur Loading on Regenerated Carbon to Sorber
Let PeSc = P®r cent sulfur on inlet carbon, "L
= Per cent moisture on inlet carbon, %
= material rate into sorber, Ibs./hr.
x = Ibs. G/hr.
y = Ibs. residual sulfur/hr.
z = Ibs. moisture/hr.
XeSc = Ibs. sulfur/lb. C.
then
555
-------
[1] x + y-t-z =
100
[3] y/RTi - PeSc/100
[4] y/x = XeSc
PH20
[2] z - oo
[3] y =
From [1], [2], [3]
x = (1 - 0 _ Z£SfiL
V 100 100
substituting [3] and [5] into [4]
XeSc = (PeSc/100)(RTj)
[6] XeSc =
PeSc
100 - P0 - peSc
4. Outlet Sulfuric Acid Loading of Carbon from S02 Sorber
Let Xv = acid loading, Ibs. H2S04/lb. C
XeSc = residual sulfur loading of carbon, Ibs. S/
Ib. C
PH20 = per cent moisture of carbon from S02 sorber, °/0
PS = per cent sulfur of carbon from S02 sorber, 70
WT = Ibs. material out of sorber, Ibs./hr.
Wc = Ibs. C/hr.
WeSc = Ibs. residual sulfur/hr.
Wv = Ibs. acid/hr.
WH20 = Ibs. moisture/hr.
556
-------
[1] Wc + WeSc + Wv + WH20 - WT
Wv
WH20 = pH20
wT 100
100
[4] *** = XeSc
[5] ^ = XV
Wc
[5] Wv = XVWC
[4] Wesc = XeSc Wc
and [5] and [4] into [2]
XeScWc + 0.3265 XVWC ?S
WT 100
(XeSc + 0.3265 XV)WC =
u 100 vX6Sc + 0.3265 Xv
and [6] into [4] and [5]
wv =
100 sc + 0.3265
W GO = pr (
WeSc 100 4esc + 0.3265
557
-------
and from [3]
p
[3] WH2o = 3o^wT
Substituting [6], [7], [8], and [3] into [1]
. ec + V) ( _ ) + =
100 100 100 'Vxesc + 0.3265 Xv 100 x i
(1 + XeSc + Xv) = (1 - )(XeSc + 0.3265 Xv)
= XeSc + 0.3265 Xv - XeSc - 0.3265 Xv
. 0.3265 + 0.3265 ) - - (l + XeSc)
PH20,
1QQ*1 + XeSc) - XeScd - -fg)
[9] Xv =
O.oo*c/, *H20X PS
558
-------
B. SULFURIC ACID CONVERTER
:JL""™^^^^^^"™^^~ "" " : ""' ••"• • •••' /
1• Outlet Sulfurlc Acid Loading on Carbon
Let PVO = per cent acid on carbon from unit, wt. 70
PS = per cent sulfur on carbon from unit, wt. 70
PH20 = per cent water on carbon from unit, wt. %
WT = total material from unit, Ibs.
WVQ = sulfuric acid on carbon from unit, Ibs.
Ws = elemental sulfur on carbon from unit, Ibs.
Wc = weight of carbon on carbon from unit, Ibs.
Xvo = H2S04 loading on carbon from unit, Ibs./lb
WH20 ~ weight of water on carbon from unit, Ibs.
[1] ws + wc + wvo + wH2o = WT
WS + 0.3265 Wyo PS
WT 100
r,-, Wvo = Pjffi.
L •» J WT 100
W ~ 100
[5]
from [3] and [4]
[3] wvo =
[4] WH20 =
559
-------
from [5]
wc =
Avo
and substituting [3] into [5]
Pv
Wc 100 XVO
and [3] into [2]
[7] WS +
and [3], [4], [6], and [7] into [1]
[P_S_ - o.3265(pJL_)]wT + (—Is — )wT + (5m) WT + (320) WT = WT
100 100 1 100 Xvo 100 100
multiplied by Xvo
Xvo rP_ . 0.3265(fp
[8] X
vo
100 - PS - PH20 ~ 0.6735 Pvo
2. Outlet Elemental Sulfur Loading on Carbon (from Acid
Converter
Let PS = per cent sulfur on carbon from acid conversion, 70
PVO = per cent H2S04 on carbon from acid conversion, 7o
PH20 = Per cent H20 on carbon from acid conversion, %
Xes = elemental sulfur loading from acid conversion
in acid converter, Ibs . S/lb. C
Xesc ~ residual sulfur loading from acid conversion
in acid converter, Ibs. S/lb. C
560
-------
WT = total material from acid conversion, Ibs. ,
Wvo = total H2S04 from acid conversion, Ibs.
Wes = total elemental sulfur from acid conversion,
Ibs.
Wc = total carbon from acid conversion, Ibs.
Wesc = total residual sulfur from acid conversion,
Ibs.
WH20 = total H20 on carbon from acid conversion, Ibs
Wvo + Wes + Wc + WH20 + Wesc = WT
Wes + WeSc + 0.3265 Wvo PS
WT " 100
WT " 100
WH20 _ PH20
WT ~ 100
Wesc _
We
[5]
[6] wT = Xes
from [3] and [4]
[3] Wvo
C4] WH2o
from [5] and [6]
[5] Wesc = Xesc Wc
[6] Wes - Xes Wc
[7] Z - Wesc + Wes - (Xesc + Xes)Wc
561
-------
[8]
[9]
[10]
[11]
and [3] into [2], and [1]; also [7] and [4] into [2] and
[1] give [8] and [9], respectively
(Xesc + Xes)Wc + Wc
(Xesc + XeS)Wc
100
WT
from [8]
Wc (1+ Xesc + Xes) = WT[1 -
1122
100 ioo
]
j
wc = WT
PH20
100 100
_ Pvo
1 +
and [10] into [9] gives
W-r(Xesc + Xes)
Pvo PH20
1 " 100 " 100
1 "*" Xesc "^ Xes
+ 0.3265
multiply , both sides by (1 -f Xesc + Xes) (100)
(Xesc + Xes) (100 - Pvo -
0 . 3265 Pvo (1 + XeSc + Xes) - PS (1 + Xesc + Xes)
Xesc (100 - Pvo - PH20) + Xes (100 - PVO - PR20) + 0 . 3265 Pvo (1 + Xesc)
+ 0.3265 PVO Xes - PS(! + Xesc) + PS Xes
[12]
or
Xes [100 - PVO - PR20 + 0.3265 Pvo - PS! -
-Xesc(100 - Pvo -PH20 + 0.3265 Pvo - PS) + PS - 0.3265 Pvo
then
Xes
- 0.3265 Pvo
100 - PS - PH20 - 0.6735 Pvo
562
-------
3- Hydrogen Sulfide Utilization in Acid Converter
Let ?H2S = Per cent H2S utilization, %
Til p-a c = /Inlet H2S Cone. - Outlet H2S Conc.x n nnx
L j rH2S <.Inlet H2S Cone.}UUU'
but 4 moles H20 replace 3 moles H2S; therefore, H2S con-
centration has to be put on an inert free basis,
therefore
r?l PHO
-------
5. S02 Breakthrough from Acid Converter
Let ZS02 = S02 evolved from acid converter,
moles S02/mole H2S04
Xvi = H2S04 on carbon from S02 sorber,
Ibs. H2S04/lb. C
= material rate measured into S02 sorber,
Ibs./hr.
cent sulfur on carbon into S02 sorber,
= Per cent H20 on carbon into S02 sorber, 70
Rc = carbon rate into S02 sorber, Ibs. C/hr.
= nitrogen flow rate into acid converter,
CFH @ 70°F
YS02 = S02 concentration in gas from acid con-
verter, volume fraction
YN2 = N2 concentration in gas from acid converter,
volume fraction
RT
- (PS)KF -
100 100
r~-i ZQ _ Moles S02 Evolved in Acid Converter/Hr .
L J S02 ~ Moles Acid Sorbed in S02 Sorber/Hr.
ron Moles S02 Evolved ,f t? N2V JS02s /ft.3 S02/ft.3 Gas. , mole acid N
C3] = q»2<-)()( ft.3 N2/ft.3 Gas> (386 ft.3 S02>
(386 YR2)
[4] Moles Acid/Hr. = xvi( {b ^ ) RC
= Xv Re/98
Substituting [1] into [4], then [4] and [3] into [2]
0.2539
[5] ZS02 •
(PS)KF ^20)0-,
564
-------
6. H2S Breakthrough from Acid Converter
Let ZH2S = H2S breakthrough from acid converter,
moles H2S/mole H2S04
Other variables likewise as tinder B.5 except
YH2S = H2S concentration in gas from acid converter,
volume 70.
Therefore by a derivation the same as in B.5, except H2S
replaces S02 leads to
[I] 0-2539
C. H2S GENERATOR/ SULFUR STRIPPER
1. Inlet S Loading on Carbon
See Section B.2.
2. Inlet Acid Loading on Carbon
See Section B.I.
3. Outlet Sulfur Loading on Carbon
See Section A. 3.
4. Hydrogen Utilization
Let PR2 = Per cent H2 utilization,
of Bnlt
i(ioo)
-
TOT » n e TT 4* H2 Cone. Out
[3] H2 Out of Unit = r—r - ^-—
u J * N2 Cone. Out
565
-------
Substituting [2] and [3] into [1] and rearranging
Hydrogen Conversion to Hydrogen Sulfide
Let (PR2S)U = per cent hydrogen to hydrogen sulfide, %
(qN2)i - inlet N2 flow rate, CFH @ 70°F
(qN2)o = outlet N2 flow rate, CFH @ 70°F
(YH2)i = ^2 concentration in gas to regenerator,
volume fraction
OfN2)i = N2 concentration in gas to regenerator,
volume fraction
(YH2S)_ - H2S concentration out gas to regenerator,
volume fraction
= ^2 concentration out gas to regenerator,
volume fraction.
[1] (PHOO) = ioo(H2 in Outlet Gas as H2S/Hr
L J ^rHS^ J-vuv Gas/Hr>
[2] H2 as H2S in Outlet Gas/Hr. » (H2S Conc.)(N Flow Rafce In)
N2 Cone.
[3] H2 In Inlet Gas = ( ')(N2 Flow Rate In)
Substituting [2] and [3] into [1]
[4] (PH?S) - 100 [(YH2S) n/(YN2> oi
L J ™2S)u L(YH2)i/(YN2)i J
566
-------
6. Hydrogen Requirement for Acid Conversion
Let aH2 = H2 requirement for H2S04 conversion to e
elemental sulfur, moles H2/mole S02
recovered from flue gas
r,-i Moles S02 Recovered _ Moles H2S04 Sorbed
*• from Flue Gas ~ on Activated Carbon
a _ Moles H2 Fed to S Stripper-H2S Generator/Hr .
[2] HZ Moles H2S04 Sorbed on Activated Carbon/Hr.
[31 Moles H2 Fed/Hr. - *'l *2/ft'l Gas ( mole,H2 )
N2 * hr. VYN2' ft.3 N2/ft.3 Gas 386 ft .3 H2
1 (YN2>i
= 386" "
mw^i^o uocn/ /u* - ('v ^ Ibs. acid p ^Ib. C^ / mole acid N
Moles H2S04/Hr. - (Xv)o lb> c RC (-^7-) (g8 lbg< acid>
= (XV)0 Rc/98
n - niT^ n (PHZO)KF
RC - (RT)KF [i -- IQQ 100
Substituting [5] into [4], then [3] and [4] into [2]
98
386 (YH2>
100 - 10
where (vH2)i *" H2 concentration into S
stripper/H2S gen., vol. frac.
(vN2)i = ^2 concentration into S
stripper/H2S gen., vol. frac.
= N2 flow rate into S stripper/
H2S gen., CFH @ 70°F
567
-------
(Xv)0 " H2S04 loading in C from S02
sorber, Ib. -H2S04/lb. C
(Re) - carbon rate from S02 sorber,
Ibs. C/hr.
(RT)VF* = material rate at Kane feeder,
Ibs./hr.
(PR20)KF = H20 cone, on carbon at Kane
feeder, %
(PS) = S cone, on carbon at Kane
feeder, %
Carbon Burn-off
Let (Re)BO :
Ib. carbon evolved as CO or C02/hr.,
Ibs. C/hr.
[1]
Carbon Meas. as CO in Gas from S Stripper/H2S Gen.
+ Carbon Meas. as CO in Gas from Acid Converter
+ Carbon Meas. as C02 in Gas from S Stripper/H2S Gen.
+ Carbon Meas. as C02 in Gas from Acid Converter
[2]
(Rc)BO
S Strip .-H2S :Gen. Outlet Gas
AcidConv. Outlet Gas
As it turned out there was no CO detected and the C02 from
the S stripper/H2S generator was equal to the C02 from the
acid converter implying that all carbon burn-off occurred
in the S stripper/H2S generator and Equation [2] reduces to
(RC)BO
YN2 386
S Strip.-H2S Gen. Outlet Gas
*In calculating the carbon rate from this material rate
the attrition rate is neglected, but the attrition rate was '
less than one per cent of the total material rate.
568
-------
where YC02 * C02 cone.;in S stripper/H2S gen.
outlet gas, volume fraction
YN2 = N2 cone, in S stripper/H2S gen.
outlet gas, volume fraction
= N2 flow rate from S stripper/H2S
gen., CFH @ 70°F
D. SULFUR CONDENSER
1. Sulfur Recovery
C4]
Let (PSR)s ~ Per cent S recovery, % stripper
S * Per cent S recovery, % of S02 recovered
from flue gas based on elemental S
recovered
s * Per cent S recovery, % of S02 recovered
from flue gas based on gas analysis of
gas from acid converter
a. Sulfur Recovery - % Sulfur Stripper
(p ) = TOO f _ Sulfur Recovered _ ,
Vi'SR-'S ±uu ls in on Carbon - S Out on CarbonJ
S into S Stripper-
[2] H2S Generator on = S in as S + S in as Acid
Carbon
= [Xes + Xesc + -no
98 "VOJ c hr.
S Out S Stripper-
JLD • w
[3] H2S Generator on = Xesc RC -^—
Carbon
S Recovered = Res> a measured value, Ibs. S/hr,
[2], [3] and [4], into [1]
100
[Xes "*" Xesc "*" qg ^vo ~ XescJ
569
-------
[4] PSR = 100
[Xes+%^(RT)KF Il-'-ife-
where Xes = S loading on C, see Section B.2
Xesc = residual S loading on C, see
Section A.3
XVQ = inlet acid loading on C to S
strip.-H2S gen., see Section
B.I
b. Sulfur Recovery, % of S02 Recovered Based on S Collected
n 1 CP ~\ i nn r ^ S Recovered in S Condenser/Hr. n
LU ^SR-'SS ~ LVV L sorber/Hr.J
[2] Lbs. S/Hr. = Res (measured quantity)
Lbs. S Recovered 32 (Xv)
as S02/Hr. 98 WT)RF t1 ~ 100 100
Substituting [2] and [3] into [1]
KF " material rate measured at
Kane feeder, Ibs./hr.
(^20)]^ = % H20 on C measured at Kane
feeder, %
(PS)KF = % S on C measured at Kane
feeder, 7<>.
570
-------
c.
[1]
Sulfur Recovery, % of S02 Recovered Based on S Values
in Outlet Gas of Acid Converter
1QO L# S Recov. as S02 iru £ S as H2S + S02 in Outlet.)
i __ L: Sorber/Hr. J ~ C Gas of Acid Conv./Hr. U
SR'SS # S Recov. as S02 in S02 Sorber/Hr.
[2]
# S Recov. as S02 32,
in S02 Sorber/Hr . = 98(Xv)° (RT>KF
[3]
# S as H2S
+ S02/Hr.
32
386
01 ft.3
J h77
(YH2S)° ~ (YS02)01 ft.3 moles/ft.3. .32 *
386 ~
(YH2S)0 - (YS02)
Substituting [2] and [3] into [1]
[4]
(PSR)SS =100 1 -
98 [(YH2S)
Q
386 (YN2)0
(PS)KF CPn2o)KF
100
]
where (YH2S)O
(YS02)0
(YN2)0
(^2)0
(Xv)0
(RT)KF
(PS)KF
(PH20)KF
H2S cone, in outlet gas from
acid converter, vol. frac.
S02 cone, in outlet gas from
acid converter, vol. frac.
N2 cone, in'outlet gas from
acid converter, vol. frac.
N2 flow rate £rom acid con-
verter, CFH @ 70°F
acid loading on C from S02
sorber, see Section A.4
material rate measured at Kane
feeder, Ibs./hr.
% S on C at Kane Feeder, %
% H20 on C at Kane Feeder, %.
571
-------
APPENDIX A-20-2
DERIVATION OF MATHEMATICAL EXPRESSIONS FOR
CALCULATION OF RATE OF REACTION TO FORM SULFUR - DIFFERENTIAL
RATE STUDIES IN BATCH FLUID BED REACTOR
It is assumed that the overall rate of reaction is
3 H2S + H2SOi|
S + U H20
= Vol. Frac. H20 Out
= -Vol. Frac. S02 Out
= Vol. Frac. H2S Out
= Flow Rate of Inert Gas, SCFH
PS
Xv
Xy
Volume of Carbon (Settled Bed, ft.3)
lb. Residual Sulfur/lb. C
Initial % Sulfur
% Sulfur at Any Time t
Initial lb. H2SOU/lb. C
lb. H2S01*/lb. C at Time t
Ql
Flow Rate of Inert Gas
Vol. Frac. H2S In
Vol. Frac. HgO In
Vol. Frac. S02 In
It will be assumed that the reactor is differential with respect to the gas.
With this assumption the sulfur analysis of the carbon will be used as a basis
of following the reaction of H2S with H2S01^ to form elemental sulfur which
remains sorbed on the carbon.
572
-------
If the reactor can be taken to be a single ideal batch reactor if follows that
[Cl]
(Rate of Loss of A
Due to Chenu Rxn)
(Rate of Decrease of
Reactant A within Reactor)
[C2]
CC3]
(_rv).V =
H-
Vo
'o dt
(-rv) dt
FC
dFc
(-rA)
t
*J
dt
and then if the time period is sufficiently small the average rate, (-
F(J 1+1 + YQ t
can be taken at the average conversion (—" •"-).
LC5]
V
NAO
£06]
(FQ.J
+1
where V = Volume of reactor» ft.3
NV = Initial charge of H2S01*, Ib. mole
tj = Time at j**1 minute
Fc i = Fraction conversion of HpSOk at j^*1 min.
but
Bases: 1 Ib. C
[C7]
573
-------
at t« Fn - Xvi - (XV}J
at *J» FcJ x^~
Cc8]
and
LC9]
and at tj+i,
(Xy)^ - (Xy)J+1
'.- (Xy)J+1
(xy)j -
y XVi
LClOj
Ky0 =
= XVi V
Cdl]
_
<
/
, Ib. mole acid/ft.3 C/hr.
where = density of carbon, Ibs./ft.
or
[C12]
(xv}.i -
. C/min.
where the rate is assigned the average acid loading over the time period
* to
CC13]
and the average elemental sulfur loading XeS over the time period t^ to t
J
574
-------
A similar derication holds for the rate of sulfur formation and assigned the
same average properties of sulfur loading and acid loadings.
(rs) are =
The unknowns Xy and Xg are calculated from the measured experimental values
depending on whether it is assumed that no S02 is evolved or some quantity of
S02 is evolved. The derivation of the resulting relationships for each assump-
tion is given below.
Assuming Ho S02 Evolved
If this assumption is made then only one unknown needs to be determined with
time. In this case the total per cent sulfur is measured as a function of
time.
Let X = Ib. C = 1
Xy = Ib. HgSOlj.
xeSc = ll3' residual sulfur
XQC, = Ib. elemental sulfur,
G S
Then Equations [Cl6] and [C17] need to be solved for Xy and Xes
[C16] XV(^Q) + XeSc + XeS
Xesc + Xy + Xgs 100
Xy = Xyid - PC)'
since Fyo = 1
P| = P-./100
o o
Cci8]
XVi (1 - PC) + Xes 100
575
-------
Cci9] X = PS + ^sc^s •10°) + Xvi(ps - 32.65) + FcXvi(32.65 - Ps)
'"" ' ' "'"' IH Nil" • -•"• ••• • I Ill I ••.
es
100 - P
s
[C20] X s esc ) [32. 6$ - P]
es 100 - P
[C21]
psi(i + x_J -
32.65 -
esc
•si
also
[C22] X - MP)Xvl() = 1-306 X F
, , ,
LC23] 1.306 Xvi
Ps + Xesc(Ps - 100) + Xvi(Ps - 32.65)
[97-95 - -306 P ]
Therefore equations [C20] and LC21] provide the relationship between linknowns
and measurements needed to calculate the rate of reaction by Equation Cci2].
576
-------
Assuming S02 Evolved - 1000°F H2S04 Analysis
If S02 is evolved the two unkowns need to be determined, in this case
the total per cent sulfur and sulfuric acid content on the carbon as
a function of tiem. The SOp being evolved also suggests a two step
mechanism for sulfur generation
[C25] He30* + HsS S + SCfe + 2HgO
[C26] 2HsS + SOfe 35 + 2HsO
to give the overall reaction
[C2?] HaS04 + 3H3S kS
Let W = Ib C = 1 as a basis
C« "
Wv = Ib H^S04 on carbon
wSCb = lb S08 formed ^y reaction CC25]
W = Ib residual sulfur on carbon
esc
¥g = Ib elemental sulfur
F = fraction of S03 formed in reaction LC25]
that reacts by reaction [C26]
Then
[C28] Moles of S03 evolved = Moles SQg formed by reaction [C25]
not reacting by reaction LC26]
- t1 - F) ^
64
[029] Moles of Elemental Sulfur formed = Moles formed by reaction [025]
+ moles formed by reaction [C26]
6k 64
[C30] Moles HeS04 left on carbon =/ Initial moles ) ..Moles HSS04 .
H3S04 on carbon converted to S02
X J Wnn in rxn. [025]
__ vi S0a
" 98 " 6k
577
-------
The two experimental measurements are the total sulfur analysis and
the S02 analysis as mentioned above. The total sulfur analysis involves
burning of a known weight of sample of carbon containing sulfur in 03
at 2600°F to form SQg which is sorbed in a H20g solution. The solution
is titrated with a known normality of MaOH using methyl red as an
indicator. The total sulfur content of the carbon can then be calculated.
By definition the weight fraction of sulfur, Ps/100, is given as
Ib sulfur as
r«-vn ., ^ ^ *.* . „ , -,_* + ll3 sulfur as HgS04 + Ib sulfur elemental S
1C 313 weight fraction _ residual sulfur ^ *
of sulfur Ib C + Ibs S as + Ibs HSS04 + Ib sulfur as elemental S
residual
sulfur
The SQg analysis of. the carbon involves purging a known weight of carbon
with He at 1000°F. If there is only sulfuric acid on the carbon then
is formed by reaction [C32]
[C32] HsSO* + C SCfe + CO + HgO
If, however, there is HgS04 and elemental sulfur on the carbon then
SOj, is formed by reaction [C32] or [033] or both.
[C33] 2H2S04 + S 3SOfe + 2HeO
For the present derivation it will be assumed that the IkS04 will react
with all elemental sulfur preferentially. This now means that there are
two distinct regions one for when
Moles of acid Moles of elemental
on carbon sulfur on carbon
578
-------
the other for
[C35] Moles of acid Moles of Elemental
^ 2 x
on carbon sulfur on carbon
For the conditions given by Equation [034] then
M°les °f
LC36] Moles He S04 reacted by reaction LC33] = 2 x
sulfur formed
[C3T] Moles BeSO* reacted by reaction LC32] = M°leS *SO« - m°les H*S04 reacted
left by reaction [033]
*vi _ %0^ 2^
1 98 6h ' ^ 6k' )(
Then the S02 evolved by reactions [C32] and [G33] is collected in a
solution and titrated with a known normality of NaOH using methyl red
as an indicator. Then the S02 analysis is given as
Ib SQs evolved Ib SOfe evolved
[038] LB. 303/lb 0 = C ^ reaction [C32] + by reaction Lc333 .,
«LD L/ "~ J-
Then solving Equations [C3l] and [C38] for W and F yields
CC39]
and
W
808
579
-------
Then acid left at time t. + 1 is
J
n Pesc
y an100 98 2
= Xvi-981
p
66
and the Ibs of sulfur formed at that time is
P
x = 98 2 ioo ioo-P ioo
68 "
.
;
0.66 P
s
. .
(32)
For the conditions given by Equation LC35] then all the H2S04 reacts
with the sulfur as assumed and the S02 analysis is given as
Ib SOg evolved by
[043] Ib SOkAb C - (Action [033] , . (|)(64)[M .
Then solving Equations [C31] and Cc43] for W and P yields
SOg
^ v
and
32
XSQ3+ Xvi] "
p
s p 66 32 32
98
LC45J F -
-i L 1 - ... ]
where X
98 96 J u -1" ' 100
D
'esc
esc 100 - P
esc
580
-------
Then sulfuric acid left on carbon at t + 1 is
j
(x) _98
UvVi " 96
and Xbs of elemental sulfur formed at that time is
[048]
= 32
X
v:_
] +
66 32
g 3J6Q, -^ g
32
32
Therefore Equations [cUl] and [c42] or [c46] and [CU8] provide the
relationship between unknown and measured quantities needed to calculate
the rate of reaction by Equation [C12].
581
-------
Assuming SQS Evolved - Acid Leaching Analysis
If S02 is evolved during the differential sulfur generation experiments
then two unknowns need to be determined, the total HfiS04 and total
elemental sulfur on the carbon.
Instead of the carbon analyses used in the previous sections the acid on
the carbon is leached in boiling water and the solution is titrated with
a known normality of NaOH using methyl red as an indicator. The remaining
sample of carbon plus elemental sulfur is dried, weighed, and analyzed
at 2600°F in 03 for sulfur content as described previously. The data then
allow the amount of acid, amount of elemental sulfur, and amount of carbon
to be determined, that is X and X are given directly.
v s
Beside the rate of acid decomposition, Equation [ci2], the rate of elemental
sulfur formation can also be determined as given by Equation
(r ) = _J^ ^LL± lbg g/lb g . min
s ave t - t.
J
Equation [C12] is the reaction rate of reaction [C25] and Equation [c&9]
is the overall reaction LC2T] rate. The reaction rate of reaction [C26]
can thus be also determined.
Based on the above nomenclature the following derivation is made relating
the unknowns to experimentally measured quantities:
582
-------
Let W = gms acid
v
W = gms elemental sulfur
es
W = gms residual sulfur
esc
W = gms carbon
c
\o
and total sample weight = W
[C50] W = ¥+W +W + ¥ + ¥
v es esc c HaO
By acid leaching and NaOH titration get, ¥ ,
l~ne;iT,, (v i i 4.j y/0.1 moles MaOH v/2 moles acids/98 gms acid.
LC51J W = (xml solution)( - •• - )( - )(- — a - )
v 'V1000 ml of soln'Vole WaOH Mmole acid '
= 0.0196 x; gms acid
By drying of sample get. W +W +W=y = weight of sample less
es esc c . ,
acxd and
[C52] y = W + W + ¥
es esc c
By total sulfur analysis of this sample will get, P
s
P ¥ + ¥
By separate analysis earlier of the virgin carton the residual
sulfur has been determined, P
esc
P ¥ P
esc esc Ib residual S esc
100 = w + w ~ esc' Ib carbon ~ 100 - P
esc c esc
P
, esc
or X = ¥ /¥ =
esc esc' c 100 - P
esc
583
-------
Therefore have W in terms of measured a quantity, x, the ml of solution
of 0.1N NaOH in lerms of measured quantities. This involved solving
Equations [C52], [C53], and
[C52] y = W + W + W
es esc c
[C53]
P W + W
s es esc
100 ~ W +'W + W
es esc c
W
esc
esc
esc
100- P esc 100-P
c esc esc
Equation [C52] into [C53] gives
W + W
[C55]
[C56] Wes * "esc '
and [C52] into [C54] gives
c
esc
"
esc
esc
esc
"
esc
esc
[C59] W
100 -
esc
esc
esc
y
(
esc
esc
esc
584
-------
p
. esc . .
IT 10° - P WSB /w
W = _ esc = ( - )(y _ w
esc - — - - ^ 100Ay es
100 - P
esc
Equation [c6l] into [C56] gives
P
[C62] W + -S£ (y - W ) = -i-
es 100 w esy 100
p p p
T » Pi SSC-i /S ©SC
wes [ x -
100 - P
[C66] w
es 100 - P 100
esc
"as
esc
and
P P - P
i ^o-i esc r , s esc
LC68] Wesc = 155 L y - (100-P
esc
(P )(y) 100 - P - P + P
LC69] = esc
'J
100 100 - P
esc
585
-------
100 - P P
/ s \, esc,
LCTO] Wesc = (100-P )(
esc
and
LCTI] W = y - W - W
c es esc
P - P 100 - P P
/ s eSC-\ ' - S • \f
y - (100 . p ) y - (100 . p )( 100
esc esc
P - P 100 - P P
r , s escx , _ §_\/_eJic.\ i
C x - (ioo - p ) - (ioo - P )(~I5o") ] y
esc esc r
100(100 - P ) - 100(P - P ) - (100 - P )(P )
P x _ esc _ s esc _ s esc -.
100(100 - P )
esc
10* - 100 P - 100 P + 100 P - 100 P + P P
P esc s esc esc _ s esc -,
100(100 - P )
esc
100(100 - P ) - P (100 - P )
r _ s _ esc _ s
100(100 - P )
esc
(100 - P )(100 - P )
r esc s
100(100- p
esc
100 - P
LC73] "c - t
But want X , and X
v es
X = W /W
V V C
586
-------
and
X = W /W
es es c
from Equations [C51] and [CT3] gives
0.0196 x
? .
es) y
100
\ '
and Equations [067] and _[C73] give
P - P
, s esc y
^100 - P '
CC78] W = _ esc
es 100 - p
(P - P )(10Q)
|-G7oi Y
LC79J X -
_ 1QO _ p
s esc
where P . P , x and y are measured quantities :
s esc
P = Total sulfur analysis of residual + elemental sulfur, %
s
P = Residual sulfur, %
esc
x = ml of o.l NaOH, ml
y = weight of carbon + elemental sulfur + residual sulfur after
acid leaching and drying, gms
587
-------
APPENDIX A-20-3
DERIVATION OF REACTION RATE EQUATIONS FOR SULFUR
GENERATION - FOR CONTINUOUS ACID CONVERSION
RUNS IN 8 STAGE, 4 INCH DIAMETER FLUID BED REACTOR
Calculation of Overall Rate of Reaction Using Carbon Analyses
Rvi=# mole
Rc, Ib. C/hr.
, lb./hr.
fo S In
(yH2s) > Vol. Frac. H2S Out
100
, CFH @ ?0°F
SULFUR
GENERATOR
., CFH & 70°F
i
RVO = mole
Rc, Ib. C/hr.
(RT)o, lb./hr.
% S Out
(yH2s).j Vol. Fraction H2S In
peSo> 100
Writing a material balance over the differential element of volume, dV
input of acid = Rv
output of acid = Rv + dRv
disappearance by reaction = rv dV
RV = RV + dRy + (-FV) dV
= d[Rvi (1 - F)] = -Rvi dF
where Fc = fraction of acid converted.
Therefore Rvi dF = (-rv) dV
sV XFo
f -®L [ dF
Jo Rvl " Jo ^
V
R
•vi
-r-,
(-rv) = „ ,c
V
588
-------
TTD2 h
V -
Y • ll3' acidN/ lb. mole
Xvi
hr. /V98 Ibs. acid'
the total material rate is
T> r, Rvi
«Ti = «ci + ~Z~ '* Rci XeSc
= Rci + °p .V;L + Rci XeSc = Rci [l + ^f + XeSc]
.•R . _ • RTi
Rvi -
TrD23iN
v
V avg - Xyj p ft.-' carbon-hr.
70.5 RTJ Xyj FC lb. mole acid
Xyj
x _ _- ^ "~™dU^ / " " ™~ O
£ VI
since pc = 36 Ibs./ft.3
RTi Xyj FC lb. acid
(-rv)avg = 3*2 Yl , Xvi , v w ~ w , lb. C-min.
[A-l] 3 H2S + H2S01| - * 4 S + 4 H20
In order to relate the acid loading to per cent sulfur take a basis of 100 lb,
of carbon and '
let Fv = fraction of sorbed material that is H2SOi| (i.e. rest H20)
Fc = fraction of acid converted
WeS = weight elemental sulfur as adsorbed acid
XeS = weight ratio of elemental sulfur, lb. S/lb. C
589
-------
= weight non-acid sulfur on initial carbon (in matrix or
adsorbed)
XeSc = weight ratio non-acid sulfur on initial carbon (in
matrix or adsorbed^ Ibs. S/lb. C.
Ps = % sulfur/100
Total Weight of Material = WT = Wt. Carbon + Wt. Non-Acid Initial Sulfur
-f Wt. Acid + Wt. Water + Wt. Sulfur Formed
wt. Acid = 3.06 Ssai . FC3.o6 3>o6 Wesi
Wt. Sulfur Formed = h Fc Wegi (by Reaction lA-l])
Wt. Non-Acid Initial S = 100 Xesc
WT = 100 -f- 100 XeSc + 3.06 f2 + FCO Wesi - 3.06
FVO
Wt. Acid Related S at Fc = WeSi + 3 Fc Wesi
= weSi [1+3 Fcl
' _ Total Sulfur _ WeSi [l + 3 Fc] + 100
•c Total Weight ^ + ^ ^ + j.^^tt, t F<=[u Mesi . 3^
[Also WeSi = 100 J
Fvo' ^ "BDi J— Fvo-
p. = _ 100 XeSJ [l + 3 Fc] + 100 XSG
s° 10° x
100 + 100 Xsc + 3.06 ( ==»*) + i^OO X-«n Fr> - 306
*^ Tji ^"^d ^L ^*
V O
98
and since Xv^ = — X and rearranging
32 eSi
100 XeSc •«- '1 3-32.6 X - 100
326 X [300 + P' (- -
590
-------
Talcing a basis of 100 g. of carbon then the total weight of carbon and
sorbed acid is
Total ¥t. = Wt. Carbon + ¥t. Sulfur in Carbon Matrix + ¥t. Acid
+ ¥t. Water Associated with Acid
if FV
W.
= 100 * ¥eSc
= Fraction Acid in Solution
w
= 3.o6W
eSa
v
Also
= 100 XeSc
¥T - 100 + 100 XSc + 3.06 ¥eSa + 3.06 ¥eSa (X " ?V)
Jc-tr
if Pc
= 100 + 100 XSc + 3.06
Ps _ jo Sulfur
100 = 100
F.
v
100 XSc
100 + 100 Xsc + 3.06
Also XeSa =
¥eSa
100
Subst. 100 Xesa = weSa int° ps
100 XeSa + 100 XflC
ioo+-iooxflc + 3.06 (100FXeSa)
PS [100 + 100 Xgc] - 100 Xgc
100 [1 - 3-06
F
v
and since the adsorbed sulfur is present as sulfuric acid
Ps [100 -f 100 XeSc] - 100 Xec
100 [1 - 3.06 —]
F,r
591
-------
The three equations derived. and- shown in bp&oketsnaJreatfaafcoU&ed
to calculate the conversion of acid to sulfur and the overall rate of
reaction. These axe general expressions. For the reactor used in these
experiments
D = U inches
h =2.45 inches
Ns =8 stages
xeSc = °-28 (measured)
Fvi = 0.73
(-r)
Sample Calculation
For run SG-38 the experimentally measured values for the calculation are
HT1 = 53 Ib./hr.
= .183
o
= 0.73
Lv
xg = .003
c
r .06^ (100 + 0-3) - 100 (.003) -. lb. acid
v 100 [i - 3.06 (-—-) lb' c
0.183 [100 + .3 + ] ' 32<6 ('253) - °'
.326 (.253) [300 + .183 (•— -
F - o.6l
c
, . .0032 .. .
'
(n- ^ + .003) hr.-lb.
• 73
592
-------
Calculation of Overall Rate of Reaction.Using Gas Analyses
Re, #C/Hr.
(xv)IN,
Psi, % elem. S
, CFH @ 70°F
i' vo1' frac' H2S
1
SULFUR
GENER-
ATOR
, CFH @ 70°F
Rc, #C/Hr.
P_0, % elemental S
QW
By the same derivation as for conversion based on carbon analyses
-L- r
RHSi Jo
dF
(-'A)
V
[ Fc ]
ave
- N
Fraction H0S converted = F =
d 1MHSi
HSf
" N
HSo
N-
'HSi
r Jio-L " %SQ -I
v %si
593
-------
HSi
Basis : 1 hr.
RHSi = NHSi = C
w - f
WHSo - L 359
F
(q.T) = (qij + (^BS^ [By Reaction
(*r>0 = C * + f
-------
therefore (-r )
A
ave
(359)(T)(D2)(h)(N)
,
^
(359)(3)(qT)1(YH2S)i
For all runs in present glass unit
D = U inches
Ng = 8 stages
h = 2.V? inches
let Y =
(qr}i
(16)
but (-r. ) = rate ELS disapp.
A 'ave 2
= 3 ^"
ave
# moles H2SOi,.
ft. 3 c - Hr.
595
-------
.# moles Acid,. .98$ acid
ft.3 C - Hr.'l# mole
ft-3 cw 1 hr> \
s # 0^60 min/
For SG-38
(qT)i = 381
Y! = .320
YQ = .088
= °'9851
= 0.025^
- 0.264 - 0.0282 + 0.00??] (38l)
596
-------
APPENDIX A-20-4
DERIVATION OF SPACE VELOCITY DESIGN EQUATION FOR S02 SORBER
Design of an SOU Sorber"
Rc, #/C/hr.
qj, CFH % 70°F
D
Temperature = t, °P; T = t + 1*60
(Xv)0UT» # H2SCV# C
(yH2o)
The fluidized bed is neither a conventional plug flow or back-mix reactor,
however, for the following analysis a basis will be taken that the solid
phase is well-mixed and the reaction is plug flow with respect to the gas
phase. The plug flow design equation is
[Fl]
V
F
dF
F
-r.
vi
v
where F = (l - ~ >
v NYO
Taken from 0. Levenspiel, Chemical Reaction Engineering, John Wiley and
Sons, Inc.; pg. 10? - 109, (1962)
597
-------
The differential rate studies led to an analytical expression. Therefore
the variables in Equation Fl are
5520 O.kO 0.63 0.73
[F2J (-rv) = Q (1.59X10^)6 T (1 - |^g) 7^ YQ2
for NO concentration 100 ppm
# moles _ -#
where Q = conversion factor to — - — — o irom ,»
HP • •" I w • Tf-
H2S% ir 60 min. ,f # mole ..,. 36 #C -,
C-min.JL Hr. JL 9^ HSO JL ft. 3
# C-min. Hr.
(6Q)(36)
= (98)
[F3] Ran
LF3J s°2
Basis: 1 hour
IK
[F7]
[F8] F
CF9] 'v - (i - 77— r- )
^S02;IN
598
-------
[no]
The acid loading, X > will be taken as the loading leaving a stage since
back mix of the solid phase was a basis taken for design. Therefore
Equation Fl becomes after making a transformation from F to y
using Equations F9 and F10.
S02
[Fll]
R
SO.
- P
"vf'
-d y,
so.
0.40
so2
0.63 0.73
= (6Q)(36)(l.^)(lO^)e _ _Xv_
98 k 0.38' y02 y"
If the acid loading,
° concentration, and temperature are assumed
independent of SO concentration the Equation (Fll) can be integrated to give
[P12]
V
K.
SOr
-1
0.6
^ -
0.6 '
[P13]
V
Eso
0.6
r -i _
L J-
0-6
0.6
but F = 1 -
(ysog)f
599
-------
(yso2}f
therefore (1 ~ F
and F . = 1 -
therefore (l - F
0.6
[FlU]
V
Rso.
'IN
'IN
)°'6 ] C (yso2)f
0.6 , .0.6-
[F15]
0.6 P (y ) V
S°2IN .. .0.6 .0.6
[F16]
.0.60 , .0.60
(yS02 f = (yS02 i
V
(y,
qn
SO
[FIT]
0.6
IN
98 (12)
0
•(386
2. 2
DESIGN EQUATION
[F18]
,0.6 , .0.6
Xv . 0.63 0-73, 2
3.38^ yo^ yHrtO *
2 2
600
-------
Amount of SO removal/stage H SO, Material Balance:
In = Out + Accumulation
but Accumulation = 0, since steady state is assumed
= (3B6)(jr» V98)
want to solve for (X ).
v i
J20] ('
F21] (Xy)f
- K
('
ao
F22]
MATERIAL BAIANCE
601
-------
APPENDIX A- 20 -5
DERIVATION OF DESIGN EQUATION FOR SIZING OF S02 SORBER
The 18" diameter S02 sorber was designed on the following
basis :
Linear Gas Velocity: 4 ft. /sec.
Temperature : 200°F
Inlet S02 Cone . : 2 , 000 PPM
Outlet S02 Cone.: 200 PPM
Carbon Rate: 60 Ibs./hr.
Acid Loading: 18.4 Ibs. H2S04/lb. C
Rate Model:
5520
59x10^4 e T (1 Xv ) v °-40 v 0.63 v 0.73 lb- H2S04
.59X1U •» e U ^y yQ2 yH20 lb. C-min.
for NO concentration above 100 PPM.
Reactor diameter was calculated based on material balance and
linear gas velocity restraints. Linear gas velocity is bounded
above by the entrainment velocity, Ut, and below by the minimum
fluidizing velocity, Umf . The following equations from Kunii
and Levelspiel9 were used to estimate Uf and Umf:
- 3-37
Ut, spherical = [3.1 g (ps - Pg)dP]l/2 fpr 500000
Pg
where Reo = dP PS
P y
dp = particle diameter, cm
g = 980 cm/sec. 2, acceleration of gravity
y = viscosity of gas, gm/ cm-sec.
Pg = gas density, gm/cm^
602
-------
ps = solid density, gm/cm^
Umf - minimum fluidizing velocity, cm/sec.
Ut = entrained velocity, cm/sec.
The calculated Umf in air for granular carbon with a mean
particle diameter of 0.1 cm and density of 1.0 gm/cc is 0.87
ft./sec. at 70°F and 0.81 ft./sec. at 200°F. In flue gas at .
200°F it is essentially the same at 0.82 ft./sec. Experimental
measurement resulted in a Umf of 0.5 in air at 70°F, which is
more than 407» below the estimated value. This is not far out-
side Kunii and Levenspiel's +3470 predicted accuracy range.
Shape effects are considered the main reason for the 40%
difference. The calculated entrainment velocity in air for a
particle diameter of 0.042 cm is 10.7 ft./sec. at 70°F and 11.9
ft./sec. at 200°F.
After allowance for a possible 4070 over prediction, conserva-
tive estimates of 6 ft./sec. at 70°F and 7 ft./sec. at 200°F
are obtained. Based on these estimates of Umf and Ut a linear
velocity operating range of 0.5 to 6 ft./sec. is indicated.
Because a high linear velocity is desirable in order to mini-
mize the required cross-section area, a value of 8 times the
Umf which is 4 ft./sec. was chosen for the sorber design.
Having specified the linear velocity, the reactor diameter was
calculated from a material balance on sulfur.
*Umf is based on mean particle diameter, whereas Ut is
based on the smallest particle of significant percentage in the
sample.
603
-------
Active C Rate, Rc> Ibs./hr.
100 Ibs. C
Inlet Acid Loading = XVj.n = 0
Rc = Ibs. C/hr.
Outlet H2S04 Loading =
18.4 Ibs. H2S04/100 Ibs. C
Column
Diameter
—D, in.—
U, ft./sec.
"Vso = Outlet s°2, mole
frac
IN-OUT = Accumulation = 0
Temperature = 200°F
Linear Gas Velocity =
U, ft./sec.
= Inlet S02, mole
frac.
Steady State Assumed
Sulfur Rate In = (Rc) (XVln) (||) + (U) (3600) (
- 1.304 U(YSin)(D2)
(YSln) (|f|)
Sulfur Rate Out = (Rc)(XVout) (|f) + 1.304 U(YSout)(D2)
98'
D
F 0.046
[u(YSln -
Rc
11/2
YSout)
Using the formula and the design basis presented earlier, a
diameter of 19.6 inches was obtained. Practical engineering
restraints led to the choice of 18 inches for the sorber
diameter. The design conditions were intended as a rough
guide only, and 18 inches was chosen as the most convenient
diameter from an engineering standpoint.
604
-------
APPENDIX A-21
SAMPLE CALCULATIONS FOR INTEGRAL TESTING
The sample calculations for the pre-integral operation are
given in most cases in Appendix A-20 when the derivation of
the equation is presented. In this section the calculations
for integral operation only are given, but they are also true
for pre-integral operation.
A. S02 SORBER
1. S02 Removal Efficiency
For Task IV-A integral run, period 2, at elapsed time
124 hours:
Inlet S02 + SOs Cone. = 2,000 PPM
Outlet S02 + S03 Cone. = 800 PPM
PSA = 100 [1 -
= 96%
2. Carbon Attrition Rate
For Task IV-A, period 2, 124 hours:
Rl8D = 0.188 Ibs. mat'l/hr. (dust rate collected
by cyclone)
Xesc = 0.0487 Ib. S/lb. C
„ Composition
PH20 = 6.3% of Dust
PS = 7.2%
RCD =
[1 - g - 3. 0625 () ] (0.188)
- [1 - 2. 0625(0. 048/)j -
0.716(0.188)
0.900
= 0.149 Ib. C/hr.
605
-------
but dust collector collected 0.12 Ib . C/hr
RCD (Total) = 0.149+0.12
RGB = 0.27 Ib. C/hr.
3. Residual Sulfur Loading on Regenerated Carbon
Recycled to S02 Sorber [
For Task IV -A, period 2, Avg. 111-126 Hrs .
Pesc = 4.03%
- 1-8%
Y _ 4.03 _ 4.03
Aesc -
100 - 1.8 - 4.03 94.17
XeSc = 0.0428 Ib . S/lb. C
4. Outlet Sulfuric Acid Loading of Carbon from S02 Sorber
For Task IV -A, period 2, 125 Hrs.
PS = 8 . 28%
Xesc - 0.0428 Ib. S/lb. C
PH20 = 8%
0.0487) - 0.0428(1 - _ ^8*
0.3265(1 -
0.0474
0.2176
0.218 Ib. H2S04/lb. C
606
-------
B. SULFURIC ACID CONVERTER
1. Outlet Sulfuric Acid Loading on Carbon
PV = 2.56% Composition of Carbon
PS = 19.64% for Task IV -A,
PH20 = 2.82% period 2, 124 Hrs .
, • 2.56 2.56
100 - 19.64 - 2.82 - 0.6735(2.56) 75.82
- 0.034 Ib. acid/lb. C
2. Outlet Elemental Sulfur Loading on Carbon
For Task IV -A, period 2, Avg. 111-126 Hrs.
PS = 19.64%
PVO = 2.56%
PH20 = 2.82%
Xesc = 0.0428 Ib. S/lb. C
19.64 - 0.3265(2.56)
X
esc - 100 - 19.64 - 2.82 - 0.6735(2.56)
= ^!'!?^ - 0.0487 = 0.2480 - 0.0428
75.olo
= 0.205 Ib. S/lb. C
3. Hydrogen Sulfide Utilization in Acid Converter
Task IV-A, period 2, Avg. 115-124 Hrs.
Outlet H2S = 0.048%
Outlet N2 = 46.4%
Inlet H2S = 27.2%
Inlet N2 = 27.2%
pH2s - ioo[i-^04-8-^i
= 99.8%
607
-------
4. Acid Conversion to Elemental Sulfur in Acid Converter
Task IV-A, period 2, Avg. 111-126 Hrs.
= XPS from sample calculation, B.2 =
0.205 Ib. S/lb. C
= Xv from sample calculation, A.4 =
0.218 Ib. acid/lb. C
P = 1QO(98H°-205)
PVC 10tH132M0.218'
= 70%
5. S02 Breakthrough from Acid Converter
qN2 = 121 CFH @ 70°F
YS02 = 0.0115
YN2 = 0.464
Xvi - Xv from sample calc., A.4 =
For Task IV-A, 0.218 Ib. acid/lb. C
6 RT - 31 lbs' -t'l/hr.
Hrs. (PS)KF = pesc from sample calc., A.3
4.03%
(PH20)KF = PH?0 from sample calc., A. 3
1.8%
7ort _ 0.2539(121)(0.0115)
ZS02 - __ _
(0.464)(0.218)(31) [ 1 -
1
100 100J
= 0.12 moles S02/mole acid sorbed on C in S02 sorber
6. H2S Breakthrough from Acid Converter
For same task and time period all numbers same but addi-
tionally
yH2S = 0.00048
Z»oc = 0.2539(121)(0.00048)
H2b 0.464(0.218)(31)(0.9417)
= 0.005 moles H2S/mole acid sorbed in S02 sorber
608
-------
C. SULFUR STRIPPER/ H2S GENERATOR
1. Inlet Sulfur Loading on Carbon
From sample calc. B.2 = 0.205 Ib. S/lb. C
2. Inlet Acid Loading on Carbon
From sample calc. B.I = 0.034 Ib . acid/lb. C
3 . Outlet Sulfur Loading on Carbon
From sample calc. A. 3 = 0.0428 Ib. S/lb. C
4. Hydrogen Utilization
Task IV-A, period 2, Avg. 111-126 Hrs .
(YH2)0 - 0-0
(YN2)0 - 0.524
(YH2>i - °-508
= °-492
= 100 F 1 - <°)/°-524 1
- 100 LI (o.508)/0. 492J
= 100%
5. Hydrogen Conversion to Hydrogen Sulfide
Task IV-A, period 2, Avg. 111-126 Hrs.
(YH2S)0 = °-277
(YN2)0 - °-524
(YH2>i = 0.508
(YN2)i - °-492
(o = 121
(qN2)i = 100
/„ N
(PH2S)U =
- 62%
609
-------
6. Hydrogen Requirement for Acid Conversion
Task IV-A, period 2, Avg. 111-126 Hrs .
(YH2)i = °-508
(YN2)i
(qN2)i
(Xv)0
(RT)KF
(pS)KF
= 0.492
= Xv from sample calc. A. 4 =
0.218 Ib. acid/lb. C
= RT from sample calc. B.5 =
31 Ibs./hr.
= PH20 from sample calc. A. 3
= pesc fr°m sample calc. A. 3
1.87o
4.03%
a
98 0.508 100
_ _
H2 386 0.492 0.218 777^ ITS 4.03i
31[1 ' Too ~ Torn
= 4.1 moles H2/mole S02 removed in S02 sorber
7 . Carbon Burn-off
Task IV-A, period 2, Avg. 111-126 Hrs.
YC02 = 0.0035
YN2 = 0 . 492
0.492386
0.027 Ib. C/hr.
610
-------
D. SULFUR CONDENSER
la. Sulfur Recovery - % Sulfur Stripped
Task IV -A, period 2, Avg. 111-126 Hrs.
Xes = Xes from sample calc. B.2 = 0.205 Ib. S/
Ib. C
- (PH20)KF (FS>KF-|-3iri 1.8 4. 03-, _
— 100 J 3Ui roll TolTJ
29.2 Ibs. C/hr. from previous calc.
Xvo = Xvo from sample calc. B.I = 0.034 Ib. S/
Ib. C
Res - 1.75 Ibs. S/hr.
r
L
[0.205 + 32(0.034)/98](29.2)J 6,31
= 28%
Ib. Sulfur Recovery - "k of S02 Recovered Based on S Collected
Task IV-A, period 2, Avg. 111-126 Hrs.
Res = 1-75 Ibs. S/hr.
(Xv)o • Xv from sample calc. A.4 = 0.218 Ib.
H2S04/lb. C
(RT)KF - RT from sample calc. B.5 = 31 Ibs./hr.
PH20 from sample calc. A.3 = 1.870
Pesc from sample calc. A.3 = 4.037o
611
-------
Ic. Sulfur Recovery, % of S02 Recovery Based on S Values
in Outlet Gas of Acid Converter
Task IV-A, period 2, Avg. 111-126 Hrs.
(YH2S)0
(YS02)0
(YN2)0
(o
(Xv)0
(RT)KF
(PS)KF
(pH20>KF
YH2S from sample calc. B.5 = 0.00048
YS02 from sample calc. B.5 = 0.0115
YN2 from sample calc. B.5 = 0.464
from sample cal. B.5 = 121 CFH @ 70°F
A.4 = 0.218 Ib. acid/
B.5 = 31 Ibs./hr.
A.3 = 4.03%
Xv from sample calc
Ib. C
RT from sample calc
PS from sample calc
- PH20 from sample calc. A.3 = 1.8%
(PSR)
ss
100 [ 1 -
98[0.00048 + 0.01151(121)
386(0.464)(0.218)(31)
100[1 - 0.125]
88%
612
-------
APPENDIX A-22
COMPUTER PROGRAMS
1. Stepwise Multiple Regression Program 614
2. Program To Make Statistical Calculations on S02 621
Data
3. S02 Sorber Design 623
4. S02 Sorption Rate Computer Program - Bench Scale 625
5. Sulfur Generation Rate Computer Program - Bench 627
Scale
6. Computer Program for Gravimetric Flow Experiment 629
Calculations
7. Computer Program for Calculation of Differential 631
Sorption Rate and Model Evaluation
8. Computer Program for Material Balance Rate 633
Calculations and Space Velocity for 6" S02
Sorber
9. Computer Program for Calculation of Integrated 636
Pilot Plant Results of Westvaco S02 Recovery
Process from Steady State Data
613
-------
c
c
0
JL_
APPENDIX A-22-1
STEPWISE MULTIPLE REGRESSION PROGRAM
DISK OPERATING SYSltM/3t>0 FLIKTKAN 360M-FQ-l CL 3-d
PROGRAM NUMBER C9(H<»-IBM 0005
1130 STEPWISE MULTIPLE REGRESSION PROGRAM, 3/14/66 0010
REVISED FOR MULTIPLE RUNS FROM ONE SET OF DATA BY SAM THOMPSON 3/5/1969
DIMENSIONS
DIMENSION ftATM301.CD^Sril3l.lTRANIt3;3).JTRftNl(33)rKTRAN(33).LT^AN(3
13),RSPNS(8)
DIMENSION RIJ(30,30),XBAS(30), SIGMAI30)
DIMENSIN IGBIQVnB(.3Q) t IplPIt DATYL20>
C
C
r
oeFiNE : oATAi ^:*"*:**::'*;';;:^:i;?;v*:•• >•;?»• -:i•• s
DEFINE FILE 51 <.00, 100,L , I FA )
DEFINE FILE 6(^00,100,L,IFB)
c
c
r,
c
c
c
r,
c
:, c
c
c
I N J T 1 AL I 2 E D ATA ,.f J t£ £-lfe-/ .£, i; k^^ii^
- -- ?-:••'• -;;'•< :-;.?•'•• , I :.-;•.>; -v^M^fVi:*!^
M1N = 1
MOUT = 3
READ CONTROL CARD
READtMlN.Sli ..MX.IAt,.NQBS«.<».8.UN..Ny.lNiMQBS2...
;.: ;«i .: ".'•>;:'.;, s: >f ft;/ ;-;-j'ii?:s^:^?5:J^:?.-" •S'f:S>i:S?5*'K%>:S? -;; .': V: KSsSS* •&". SXi?':K J
: :S'-;-^s'---.rf:S%its;.is:;i*ss?ftSS SsSsSfftiX ?KK:.&K:. -s>;-a> :ts:ss;* ••.•-is;s;iKs;; :' ••.?:%*:%*? jwi1
•
0300
5 FORMAT(5I -
0104
'
614
-------
08/13/71
FORTMAIN
UOD2
C
c
c
c
c
•c
c
c
c
c
c
c
c
c
NY = NUMBER OF SUBSCRIPT OF Y USED,
FIN= F-VALUE MIN TO BE INCLUDED IN REGRESSION, MUST* NOT BE LESS
THAN FOUT
FOUT= F-VALUE MIN TO BE OUTPUT DM PRINTOUT
IORGN * 1 TO SUPPRESS CONSTANT
« 0 OTHERWISE
"...- I.RES* BLANK ...3d ZERC TO 3M1T RESmiJALS ANALYSIS
= 1 TO GET RESIDUALS AND ANALYSIS
NL= NUMBER OF HEADER CARDS TO FOLLOW.
ICOM = ALPHAMERIC COMMA
LGANT = 1 TO PRINTOUT A\|Tl-L03 OF ACTUAL Y VALUES IN RESIDUALS
^ANO PREDICTIONS:, .BLANK OTHERWISE.
LAHQV ..*. L^IF R£SiUUALS;:Af<6::SC5xB€; PUNCHED FDR COVARIANCE RUM.
« 0 OR BLANK OTHERWISE.
WRITE1MOUT.54}
0108
0109
0110
RF AD
:Uaoi!&>i>
DO 1000 1=1, NL
WRITEIMOUT,
1001 .FO«NAT1;:80.H.;y.::j^
1000 CONTINUE
IF(NTRAN)641,730,700
C •«.;:-
70Q
- >'.:".:.:.'::.:.>;v;V;:.' •:;:•' :'-;-.
71 FORMAT<^OI2)
IF{NCONS)b41,730,720
C
£
...„ 7^
C
c
r.
READ CONSTANT CAUD
>a ttPAOlMlM. 051 ICflMST M } * I sl*MCGM>
INITIALIZE.
0390
0420
730 OBS»N08S
.no on t»f
XBARI 11=0.0
DO 90 J-1,MVAR
3<»60
0480
C
JL
l?B * I
ftFAft RAIri UATA
mSK FILE NUMBER k.
DO 110 I*1,NOBS2
'tFni(P^TX'-"yJ3
OATX(NVIN>
IFI NT R AN) M1 * 8 W» 750
615
-------
UH/13/7 1
HlRTMAlN
c
c
c
c
c
c
c
,c
c
.r.
'•.'--,
c
A
c
c
r
750
760
770
780
790
800
810
820
830
840
845
R47
850
860
870
883
TRANSFORMATION OF RAH DATA
CONTINUE
DO 850 M= lfNTR«t^.*.-&>::^
IltlTRAMM, ,-
JJ=JTRAN•:>.•'.;.•: •'•:•-.••'' •;.•• >•:;-••-' - • "
z*t^i^B?i*iliifi^^
X(J1=-XIK»
DATXI JJ)=-OATXIKK)
GO TD 850
X ( J ) =LOG X 1 K 1 :';t«.% :-V ;^i:::;;:;;?;;:J>::Wf:v;::4^ ^V.;;" : ,\. '< i^ ;, :-',i':'-
0 AT X 1 J J 1 = AL'QG ( 0 4TX f KK| l^i;:;!!^^^ i;l'::« ::;i; ::::i
GO TO 850 :..
X(J)«1/X(K>
DATX(JJ)=l.O/DATX(KKI
GO TO 85Q
*ij>*xi<^x(Li^y
DATXI JJ)=DATX IKK) *OATX(tL)
GO TD 850
XU)sX(K)/XlU
.GO :. TO...S.5Q ,. x • x
XIJ)=X(K)+C(L) ^_^
DATXI JJ)=OATXIKK)+CONSTILL> '^
r,n TO S5Q
DATXI JJ)*UATX{KKJ*CaNSTtltl ' ^ - ' - ",
. r,n in HSO , ,
DATXIJJ) = DATXIKK)**CONSTILL) / 0
GO TO 850
r>4TX(,i,M = <~riN5TIKK1>i"*r-RNST(M ) , i
CONTINUE:;.. • .^iii;*:;|^
WRITE TRANSFORMED DATA IN DISK FILE 5.
CdNTINUg-'v^^;--:-^^^.,: •::'-::;i.:-;^-rW'-:V^i::^
COMTTMIIP.,>4fe:';j:^.^:l:.«:-'tyi;::^?^
IFINOBS-I )110, 883,883
DO 100 J = 1,NVAR
0540
0545
:';0560"/-:--V::i^:;:.^::;
, -: • :. •;•.;; , .;.•;• •:-..
•:. OS W.:i-.;,i»?%.^. -:•.:.
0580
0590
:S.-:^::..^S.SI:v:i'-
S06'3Q:;::'4:Slf-*T:
0640
0660
i^^il^jyi
0700
0720
'i^-.?''.^*:^^.;!-!:
0760
0780
0790':Kj.::i:-^:.*:'w;:--
iVSIIill^lslii
Ofi.i'S-WK-::'8K SK™'*
0820
0840
0850
||||M
•0 895'- r • • '•
: ... . .: . .,-. •:. - r: • .. •- •• -.
0920
IF!IORGM)U90fS90,fl85
885 X6ARI J) = 0. 000,OP;;; J||
..:''•;&.'.'.A.-':....'.: :•:• -.' .' -:.-'.: -S:lljS:iiijijl:
616
-------
08/11/71
FOIUMAIN
OOJ't
890 DO 100 K=1,NVAR
100 RU(J,K)=RIJU,K)+DATX( J)*DATX(K>
c
c
c
c
c
L
C
C
c
c
c
c
.!;•:*-;.>•
t jv
C
C
r
c
110 CONTINUE
COMPUTE STANDARD QEVIATIQN$*SQR ROUTE 4S AND STANDARD DEVIATIONS
DO HO 1 = 1, NVA*
XBAR(I)=XBAR •:• -.-. u K-'-A:-?:: ••>•.•.:;:?- . ?;• :•• •'•wmx
TRANSFORM SIGMA VECTOR FRQVI STANDARD DEVIATIONS TO SQUARE
ROOTS OF SUMS OF SQUARES.
• » ' * I - DO ; -:3 1 0 '"• 1 *-i V..N V A *i * s;;>:y :;#>'•: ^ ^> ^ *i :•: »Pi; Ji;i4? :;!s^ I '«;' V. if >-.;I::- riij s ^ .; .£s • ^i?^ . &. >; :;.:O-,:; . : :.':; ;. : :.- :^
BEGIN STEP NUMBER NSTEP.
200 NSTEP*NSTEP+1
riF=nP-i fl- •:•..-,'.: .';'.'''•>'•; <..- ./:.7:i;:;i.:: ':.•••••': p:£« X *&%« A ^'xifa ^•.^^•SSfr^fr?;* i----:'\,"\.-^;, ,.•• .'. '.
0950
0960
0970
0980
0990
1000
1010
1020
1030
1050
1060
1100
1110
1130
1150
1160
1170
1180
1190
1200
1210
IllliSilll:
1270
1280
1290
1300 :•-..; ..-••?'•••• •'.'"..
i/310' ''-''-•: -5 *' '••'--.• •'."-'
;.:.'.:>^:x;|;:fh::;;:-Jv:- -••:•'-.; .
1320
1330
W4SSS
1360
1370
1380
1390
617
-------
08/13/fI
KUKlhAl.'-j
0035
c
c.
c
c
c
c
c
-: C
:" C
C
W[:: ••••:
c
c
q
.;>:'"::-V:.'
VMAX=0.0
MIN=0
FIND MINIMUM VARIANCE C3NTUBUTION OF VARIABLES IN REGRESSION
EQUATION. FIND MAXIMUM VARIANCE CONTRIBUTION OF VARIABLES
NOT IN REGRESSION: EQUATION.
DO 300 I=l,MINOV
IFIRIJI I, 11-. 03 1) 300, 300, 210
210 VI = RIJ(I,NVAR)*RIJ!NVAR,I)/RUUfI)
I F J V M 240 , 300 , ZZOy^- ^.\;- - ;: ,- . ytf f ''. •':.•: T^- ; :^'^^?^^'^^::- '' • 'Mv
230 VMAX=VI* •••• .,:;;';-:.:i:^
NMAX=1
GO TO 300
240 \IIN = NIN+1
1D(NIN)=I
COMPUTE REGRESSION COEFFICIENT AND ITS STANDARD DEVIATION.
B(NIN)-RIJ( I,NVAR)*SIGMA(NVAR)/SIGMA.-':-mii-^^ fW^;<
NMIN=I
300 CONTINUE
JFININ) 641,460,400
«' COMPUTE : CONST 'MT^:X£R%$<-*;&:M$Syt%s
....;.•'•.'..• ••••.:. •.,;•;:.: : ?•'. ;••?:•, i ; JS&&.7 'i:l*lx :^SC^S^:SI^^Sl?^;;^:fi:SSSi&SI: J ' 'sQt : :?«•. • ?i >f M& SI
400 BSUBO=XBAR(NVAR)
DO 410 1=1, MIN
410 8SUBD=BSU80-B{n*XBAR,<^>
: BANT I « EXPIBSU80J
-: K1FINFNTI 64L.AfiO.00 1..'...' ^
OUTPUT FOR VARIABLE ADDED
57 FORMATCOSTEP MUH&ER * , I2» 10X» «£NTER VftRlABLg S12I'
58 FORMAT!1 STANDARD ERROR OF ESTIMATE"' , E 15.7 )
R-( l.-RIJ(NVAR,NVAR) )
IDFN=OBS-DF-2.3
1420
1430
1440
1450
1460 : :
-— . . : .. .:'. ViV.:-" •' •
1470
1480
1490
1500
1510
k 1520 . ...
1530
1540
1550
1560
1580
1590
"^V:••;-::;^i620•;^l;F•:?.:;:^I
1630
1640
"«&: ^V^" .V^';: '' ''• i-P }
'^Xiti 60" .K j ;•;;; .:.;;: j: .; •;. 1;
1673
1680
1690
1700
1720
1730
1740
1750
1760
iDFD=OF«-1.0
F»{SIGMA(NVAR)**2-(SfOF,e**2)
MBfTFIMOUT.gqt R.1QFN.IDFO.F.8SUBO.
59 FORMAT!' R SOUARED =',E15.7,/f
l« GOODNESS OF FIT,F!',14,',',14,')=',E15.7t/t
?' CONSTANT TERM « « . E 15. 7 . 7X . ' ANTILDG CONSTANT TERK ='fF.15.7t^,
3'
4* '
VAX
C06FF
STQ OEV
T VALUE
BETA CDEFF' ,/,23X,-
618
-------
08/13/71
FURTMAIN
03J6
430
63
C
- C
C
c
c
c
c
450
J^t;'J:
c
c
c
460
c
C
C
470
77"ife£i\'
c
c
48.Q
••v:S, . $•*
c
c
500
: 5,1ft
, „ 120.
530
550
"'
DO 430 I=iiNlN
J=ID(I)
T=B(I)/SIGB(I)
WRITE(3,63)ID(I).Bm,SI&BIM,T,UJU.NVARI
FORMAT!' '.I3,lX,£l3.5,lX,Ei;>.6tFll.4, IX.E13.5J
.COMPUTE F LEVEL FOR MINIMUM VARIANCE CONTRIBUTION VARIABLE
IN REGRESSION EQUATION.
FLEVL=VMIN*DF/RIJ(NVAR,NVAR)
IF(FOUT+FL£VL)460, 460,450
miTiALlM FOR HHOVAL OF VARIA&LE * FROM EQUATION.
K=NMIN
NENT=0
GOiTO.500
COMPUTE F LEVEL FOR KAXIMIM VARIANCE CONTRIBUTION VARIABLE
NOT IN EQUATION.
IF(FLEVL-FIN)65D,600t470
INITIALIZE FOR ENTRY OF VARIABLE K INTO EQUATION.
OUTPUT FOR VARIABLE DELETED
.FORMAT i « 0 $ T EP '. ^U;MttEM*ri,2 » lOX i rOEtETE V ARI A'B"L::6::;;:;:;«> mK^lMSik
UPDATE MATRIX
D D 540 J * 1 , NV Aft
I F ( 1 -K ) 5 10, 540 , 510 ^:£&&
r nwr i MII C ^g^^.^>*»«^^€:^^ g^A.^.- -^|-^./
DO 530 J = l.NVAR
IF(J-K)520,530,520
CONTINUe
CONTINUE ,
Dfl 560 J»1.NVAR ' '
IF(J-K)550,560,550
RtJ(K,J)=RIJ(K,J)/RUlK,K»
-CDNTINUE
DO 580 I*J.fNVA«'" \;:':\l ••^r+u-f^f/'/^^^.^lA^
1910
1920
1930
1940
1950
i960
1970
1980
1990
2000
2010
2020
2040
2050
2060
2070
2080 ;
2090
2100
;.:;^|:::i;^'- : ^2110 :• :y :i
2130
2140
j||||||||P
2170
2175
iiisy K iZly y \:- :•:<;. ':•:.• X ;:$V:' if. ''( :. ••: :';/' fxf
•;ll':P::::-i:*; ';•> -:y Hty ?<<$?^
2210
2220
2230
2240
2250
2260
2270
2280
2290
•^;.-'«i,.- :—'••'- 2300 :;,.:••<> •
ifijaiSS;::
619
-------
JB/13/71
FOK1MAIN
0007
570 RIJ(I,K)--RIJ([,K)/RlJ(KfK)
5EO CONTINUE
R I J(K,K) = 1.0/RIJ(K,K)
GO TO 200
600 I f i I RE S ) 6 1 0 , 640, 610 ^v.v ,o: ; fesil^^ < A.fc:':M:'.
•• " c •? . •' :. •••:; ;•. • I* f ':< -.5 -: :;;;v;:;;;; ^i^;:> :^Mll?®^&li;v
' C '- MUNT RESIDUALS :-;.-o-:^'-:y:';'.;::»:S;V^^
C
610 IFA=1
WRITE(MOUT.67>
67 FORMATCO 06$ ACTUAL ESTIMATE
:i C
C READ TRANSFORMED VARIABLES FROM F1L6.5
C
NMBER = 0
KPUNT = 0
SUMR2S0. 000000 ' >« *'.^;li :•; •:;::>.: !3f*',i;M ;j. •
DO 630 K=liNQ8S2 '!? S W Ji1v"y;:i -:'\ ' v; : % •
READI 5« I FA ) ( DATX 1 11 , I * 1 ^NVi«WlH^I&V-:wS-;
EST=DSUBO
DO 620 I=ltNIN
J=IDI I )
620 E ST=E ST+ B ( I ) *OAT X ( ji^s:-?: /:;:-:'s;.;iii;:::vX:'':::; vj;>-;.;.;:.:.:j ;:-;;?.s;. :;.;:
•< IF I LGANT ) 624t62*V 622.:!fel£ "^ •;:X:'^;^»tlrf
622 E.ST * EXPIESTJ : : •, ^'f3&?£'^^;-Mi&i&£.
2310
2320
2330
2340
2370
2380
RESIDUAL*) 2390
2*30
2440
• >i;;;iy |l|Sillli:. • ?2I
624
DATX(NVAR) = EXP ( DATX( NVAR) >
RESID=DATX(NVAS)-EST
6B
WRI T£ { MOUT, 68 )
FORMAT 1..'. ...» , lA^fel2.fe'Xi
IFCLANOV)630,630,625
PUNr.H RESIDUALS FDR ANALYSIS OF CQVAR1ANCE RUN.
625
KOUNT * KOUNT * I
MMflFH ...at... MMBPi-t. .». .t
RSPNS(KOUNT) = RESID
IF(NMBER-N08S2)626t627»626
627 WR t TE121VM RSPMS (>» > *;
4 FORMAT(
, xnuMT ^
630
CONTINUE
WRITEI3t69)SUMR2
FHRMAT ( / , 7Xf
2490
640
Ml CAI I FXI.T;
END
2620
620
-------
APPENDIX A-22-2
PROGRAM TO MAKE STATISTICAL CALCULATIONS ON S02 DATA
360N-FO-451 CL 3-8
C PROGRAM TO MAKE STATISTICAL CALCULATIONS ON S02 DATA
C
C DESIGNED BY G.N. BROWN
C m....WRJ.lTEJJ__t^Y_SA['1 THGMP_SO_N_ HAY 12, 1971
C FIRST 2 CARDS CCNT A IN 'AI..PHAMEP. IC:" IOENT { RCAT i (J-'-J OF ' L-QUAT fON USED. •
C _coo- =_ cor;Fi:|r.iF._Nj__p_Rr:Viour,i.Y JIALCUI.ATIZD FUR USE IN EQUATION.
C POWER = EXPONENT USED 1 iSTu'oUAT fON '' ' :—~~~
C DMEA.N = MEAN DEVIATION
C R_M S = _R p0 T_ M F. A N S U UA R E_D If V I A T I 0IM
C ., ::R~ATL-C"UT~= CALCULATTD" RA I E """'^ ~—— ~ ™- ,_-,,„__
C. .. ;: .SUM2 = RESIDUAL SUM OF SQUARES
DIMENSION RATf:( 100),X(100! ,RAT6C( 100) ,DIFF( 100) , ID! 160) , I DATE (3)
DUUIJLE PRECISION ARUN
2 FORMAT!10F8.0)
_iJL_Fl^J:!^! l^f ip_vO]
A FORMAT! IH1,' RUN NUMBER" = ',IX,A5i5X7313,/T
5 FORMAT(80A1)
6 FORMAT!' RESIDUAL SUM OF SQUARES =',E12.5,/,' MEAN PERCENT DEVIATI
'••• FORMAT!1 Xfl ) ,GMS H2S04/G«:C>;:> ^ArE,^:GMS H2S04/GM C-MIN : CALCULAm
1TEDRATE, GMS .H2S04/GM" C - MIN.: -:::: .'s:' :-i ^ >K D IF F. t
8F^MATsXiFlO. 5, 1 3X ,F 10. 7 , 22X FlO . 7, IVX, F10. 7}
9 FORMAT!/,' MEAN DEVIATION =',F12.7,' RUDT MEAN SQUARE DEVIATION
1=',F12.7>
10 FORMAT!/,5X,'::::T=I»F8.0,5X,' XS= ' , F8.2, 5X,'. YS02 = ' , F8.5, 5X f '
, :, 1Y02=' ,F8.3,!>X,« YH20= ' , FB. 3, / , 5X, ' -E/R = ', F8.0, 5X, ' , A= ' , F8 . 3 , 5X : :
3677F " "" — • •— -* — — —
11 FORMAT!I5)
M1N
MOUT =
READil
READ(MINf3)RK,ER»A,B,CiD
20 READ!WIN,1)ARUN,1 DATE,XS,TFR,PC02,PPMSO.PPMNO,P02, PH20, PH2SO, T
^1 F ( T ) 100, lOOjr.25
'"vTRY'f E"( M'bln,A );::.AP.U'N ,: 11
•r-iS; >•<£? ' WK 1 I t t fiUU ) it I l\*.\jn I I U «;»,..&: ;:.:•,,;.;.•. .;.;:i>.:.vS:: :;;>*:•:!..; ...> ]f - *fA ••KS:v.;:f :^:?:;\;:x?S '•;Xy:?-.!^&?y-i^y?\:'.
W&-: REAOtMINtMi'—f^^S^
Svt:'-:.:' WR1 TE (MOUT, 5') h D!"[')", I ±r''°**'&™^ w;'s<*-?:^y.sfw:ww:*%KW?V»?*W#~;-» -.-^•
WRITf(MOUT,5)(ID(I I,1 = 81,160J
YS02 * PPMSO * 0.000001
Y02 =• P02 * .01
YH20.= PH20 * .0V<>t/3• jlyp
WRITE(MOUT
^QUT ,\i'0) T, XS, YSq2;»'Y02vyH2pV£R t A,:0CV^^
READ(MIN,2)(X!I),1=1,Nl)
READI MIN,2)1 RATE(I),1 = 1,Nl)
||pfKIRt^:«{-NCl^
621
-------
08/18/71 FORTMAIN
IF(KTRL)30,'»0,30
30 NCUS = NCOS + 1
40 NCUS = NCDS + NCOS
1)0 45 I = It NCUS
~"READ(MIN,~2T~ .......... ' "
45 CONTINUE
_SUM1 =_0.00_
SUM"? '= oToo " '
SUM3 = 0.000000
__ _ _ _______ __
DO" 5o"~r=f,Nr ~ " ~ ..... ~~" ..........
X(I) = V
__
= SU"M2 +" OJ=Fl
SUM3 = SUM.'* * D1FF( 1)/RATE( 1)*100.
50 CONTINUE
= SUkT(SUM2/Mll
APD =- SUMS / t,ii
WRUE(MOUT,8) (X( I), RAT Ft I ),RATEC( I ),OIFF( I ) , 1=1, Ml)
fr'-OUT ,6) '.SitAPU
GU Tn 20 ...• . ;. 4- •-
. c AL L F x i T . ' ;'.'." , ;; , : ;:-;'
END
622
-------
APPENDIX A-22-3
S02 SORBER DESIGN
DISK OPERATING SYSTEM/350 FORTRAN 360N-FO-451 CL 3-8
REAL NCU
C
C PROGRAM NUMBER C4762
JC _______ , ___
DESIGNED bY G.N. BROWN . ..... ••.":. ,.•"%.,: ;..;..•. . -*• .7 :..,
::'::
S02 SOLDER DESIGN
: DIMENSION ll)( 10) , 1DATE(3),X\MSO),YS02(U50),P'SG2(0!)0)
:1 FORMAT ( 10A1 ,^X, 312, 6f: 10.0)
_2JEMMI.( SF1Q.01 :-\_^ll' , _ ... ...
3 FORMAT! 1H1,/, ' . S02 S(Rfl£* DESIGN!',/,/,
1' RUM NUMBER1 ,IOA-1, ' BATE ' . 3 I 3,/, /
^.S^.J-BS.../!!!..1
3' OUTLET CARBUM LOADING = ',Ft>.5,' LflS ACIO/LU :
. 2...' I N:;UE_S_.CJU_B ON/ S T A T. E > ' , ,
1 F5.2)
' 8 FORMAT!' OJTLET S02 CONCENTRATION =',FIO.O,' PPM')
_.9.JlQRilAl.JL/_,J
MX:,- ..3,;
MY' - 1 ;
ID READ IKY, 11 ID,IOATE,NCJ,OT,YS02l,YS020,XV()ur,YU2
11 FORMAT!/,' SPA:E VELOCITY =',FIO.O,'
13 FORMAT!/,' PRESSURE DROP ACROSS CARBON =',F9.2,' INCHES H23',
,1 ., . /,' PRESSURE DROP ACRDSS PLATES . = ',F9.2,' INCHES H23', :: :
• ••': 7 "/._' TOTAL PRESSURE DROP ACROSS STAGES ='.F9.2.«' INCHES H20'
3)
1« FORMAT!/,5X,' T=',FO.0,5X,' XS=',F6.2,5X,' YS02=•,F9.5,5X,•
, F. 8. li3XJ.l_yjJ7.Q£l1__tLX.,/,5X, ' , z.E7_izij.F_ 8 . .Qxf.X.i .1 A=1,.F 8. ...3.,_5J(_
2,' 0=' .FB.3.5X, ' C=l,Fa.3,5X,« ,, 0=' , Fy . 3, / , ^X, < K=',F8.
• .: . - - '••••';.'.• -:--- ' • ••:^v;:;;'^;-i.r ;•'.-•' '" •'•••"•
' RATE EXPRL-SSION^ USED 1 NJ)ES1G:SL_C A.LC.JLAT H'JS '././.
1' RATEC(I>=COEFF ^ ( 1-X I I) /XS ) ** A « (¥502**^) * (YiJ2**C)
2D)',/,« WHE^E COEFF=K * EXPI -E/R* ( I/ I Tt460 ) ) ) ' )
LJ5
CF • 0.9000000 ... .. : " : V. .',.• J .?':;:; i^'VVi'— "'•-•j'^ ' '^'- ':'";
I F « 1 0 AT E ( 1 ) ) SOD , 500 , 20 A-; ; : " / -S"^; i^JlA^^^ '; :-'^' ^
623
-------
00/19/71 rtl'UMAIN
20 «U-AniMY,2)YH?0,l>N3,Hrl),T,RC
XVOUI = XV3JI * (98./A'i.)
OTS = OF * C,92./!>30. )
_PS021 = YS321/3..0QPPQI
7 PSL)20~= 'YSC120 / 0.000001
_^._ YSiJZM ) = Y.SQ2I
PS02I i )-YS;)?( n/o.uooooi
XV(I)=XVOUT
FA .= QT_J1_YSP21._/_386.0
..;: V = H/12. * (3.1^159*0*1) /..K.<
:;:,-. ; 00 100 M .= 1,1 Hj^QA.:.j::.;r^.-r.
TF"= oF~T"bTi o'ooooo
P = 6P.*36.*RKf-PXP(ER/(T-KSO) )
p = p if .CF
30;AB = YS02(I >**(!. -fl)
,_.AC_.= ..J.L«j:fL! *J'-* .tS-Q-iU" V- ( 1 . -_X_\Lt U /.X V5J <_*
"AD "=~ AH - AC
IF (AO) 65.65.3S
31_Y.SP? JI 1 1 ) _5. ( A.B.r AC ) ** (J . iJ>.\ ,jiM.)
" "
IFIXVI
50 PSU2I l + l)=YSri2( I U)/0. 000001
IF(YS02(H-1)-YS020)65,55,55
5JL_!..7_.LJLJ_
:; .. GO TO 30. •.,'•.. :'••:. •'"' :'W:.. :.;:;' i&.-;:::. '' -^ >: -;.;,: i' v:,;or/-x-r-.' :•• ;.-,,v.--:J-
;v;>. 65 M = 1 " ,f ;iV.x'C:.:^^-^s-^Il^:^.^Vt^W^ -ivlif i*.:;i '/;i^i;if:
—r~x ^ = x v, | , _ (Q T / afabTll'TTs'T/ T: )"*J Y7oi2(I J-YS02D)
1F(XVIN)67,68,.68
67.xyjN^=..o...P.ooDaa
;.'. 68 HT =
-.-.• HT = HT* ( YS02 ( I) ** (t. -B) - YS020* *
.- HT =
FRAC = HT/H
STAGE - I + FRA:
sv = OTS / .,.. ., ,
DPAC = TCR * p.5 ••: '-•iv::.;;•>^:••:;•-:V^:;v•V:;••f4¥s••»f::»l^
GRAP_^-jrCR_*..J[).25 ; ' '..•:--"':' ' '
TOP = OPAC * UPAP
WRITE(MX,3I1D,IDATE,RC.XVOJT,H,D
lMX./<)'JCLJ.3
WRITE(MX,8)PS020
WRI TE ( MX, 5) T
3.CL.70_X?.lJ.N.
WRITE(MX,6)K,PS02(K)iXV(K»
70 COMT1NUE
IEJyX..lZJi..RA:.,J'.S.02.0.,
- WRITE(MX,7)TCR,H,STAGE
. •:• ; WRITECMX, 11) SV
WRIT(:(MX,13IOP.\:,I)PAP,TOP
t(MX,15)
KCn, 1<.)T,XVS,Y02,YII21),ER,A,B,C,D1,RK
.. i.oo_: ON J IMS
GO TO 10 -::•,- .. ,; -
CALL EXIT '••':;..;-::^;K'^.s'..V''lW
c \t:\ ' ''. ",'., '•.'•;•••'• • '•'•';.","..*.'
624
-------
APPENDIX A-22-4
S02 SORPTION RATE COMPUTER PROGRAM - BENCH SCALE
DISK OPERATING SYSTEM/360 FORTRAN 360N-FO-451 CL 3-8
C
C CALCULATION OF S02 SORPTION RATE
C
JL__^ J BlIIEjNLJJ_^AM^HgjM£S.OIi,_F £6^26, 1971 ___„ _„
C"•.;.. -^:M 5;;::&:<:'rV*^^
C. .-.'•. ; D E S IG-N E D B Y:; G . N. B R0WN ;• '*£$|:;?:*;$£] f S-£ I*.|jp^|;:::: SsHl'JsS;&,;>::. i':;!::.^i|;;i!:'f f JWSs•• i;1 ?%:;!:': •-;"•*;
"c "AR"EA(J) = AREA UNDER CURVE FROM TIME = i TO^IME = ^F^;' : :'"::;^~i^^^
C X(J) * S02 LOADINGS
C SUMX(J) = CUMULATIVE TOTAL OF SO? J HAni NC^ __
C DXDT(J) = RATE OF S02 SORPflON ~ " " ~~~
.REAL NOF,NOM
_i^__^_J>_IMENS LQN_I_PMS_( jJ_jJT( 30j , Y ( 50 ) ,X ( 30 ), SUMX ( 50 ) , AREA< 30 ) , DXDT < 50) .
DIMENSION L(80) ' "~"
_ r_ _^ ___
2 FORMAT (1H1) " " ~~~ ~"
3 FQRMAT(18X,V $02 SORPTION RATE • , 10X, 31 3i />
_F QRMAT L/jJL_T EMP E_RAT U.R E_ =_'_.£I2_-Ai * FS/,« SPACE VELOCITY =' ,£16. 6 , •_
1 /HR«,/,» INLET S02 MOLE FRACTION (DRY) =» , F12 .6, 5X, • (WET) =',F12
2.6,/t' INLET H20 MOLE FRACTION =',F12.6,/,' INLET OXYGEN MOLE FRAC
_3I I ON =' ,F12.6 ,_/ , JLJ_N L_ET_CQ2_MO L E_F R ACJ_I_QH f_'_L£]L?_« 6 » / » ' I NLET NO MO
4LE FRACTION =' ,F12.6,7,' INLET INERT GAS MOLE FRACT ION~= ' , F12.6, / ,
5« INLET CARBON; WEIGHT =• TF12.6, «,J;.GMS» >
RMAT ( / , * ' tj ME; KOL E FRACT ION S02 __ H2S_Q4_LOAOI_NG _RATE_ 0_
IF HZSO't SORPTIO.N" ,/,33X, • CMS ACID/GM. C GMS ACII.VGM C-MIN',/)
6 FORMAT(FIO.O.EIO.O)
._
a FORMAT c i or-a. o j : .
9 FORMAT? ' TOTAL" GAS "FLOW "='.i'F '12.6, ^•
JLQ__EQRMAJ (/.' •-AV
11 FORMAT180A1)
15 READ< INP, 1)( IDATEd ),! = !,3) ,NOBS
C' IDATE(I) * NUMERIC CODE FOR MONTH, DAY, AND YEAR OF RUN.
LR_DiL.OJlS.EaVAUflN_.£pJJ!JT_SJU . ' _.._
IF(NOBS)20c500*20
20 WRITE(3,2)
^Eftpj;NP»aiWCJ£OMC.fJ.EM.P.rC2£j.aOiF.iJMQFilt2yP^^
C WC '» INLET WEIGHT OF CARBON, CMS. '^.-^M^.M^
C, ,.. CONC"= INLET 502 HOLE FRACTION WV^m^mm*
C 02F = INLET OXYGEN FLOW RATE, SCFH
C C02F « INLET C02 FLOW RATE, SCFH
c NQF_=_INLET NO FLOW RATE., S.Q.FH»_S_£FH
C H20F = INLET H20 FLOW RATE, SCFH :
C 1; S02F = INLET 502 FLOW RATE, SCFH :;:
•_!NLE_T JLNERT_£_A_S..R.J3W
WRITE(J.3)( IDATEU),I =
READlINP,11)(L(I),I=lt80)
_M.81I£(3.f.UJJU.U.iJ-XiflAl
TGFR « 02F * C02F + NOF + H20F..,+.
..'TGFR v« . TOTAL .GAS, FLOW ..RATEy/^T-^y
625
-------
09/08/71 FORTMAIN
SPCVL = TGFR /WC * 0.1699E05
C SPCVL = SPACE VELOCITY
H20C = H20F / TGFR
C _H20C = INLET_WATER MOLE FRACTION
~ CONCW~"= CONG * {1~.-H20C) ',.-':-" :::A-x:5:"
C ':. CONC.W = INLET S02 MOLE FRACTION ON A!WET
_02M_= 02F_/_TGFR -' - jM^^^J%M£i
C 02M = INLET 02 MOLE FRACTION
C02M = C02F / TGFR
C _C02M= INLET QP.2_MOL E_FR ACT ION
' NOM = NO? / TGFR .""".-. •••• •••••'. ' -.. ••,'
C NOM = INLET NO MOLE FRACTION:;
G_AS_M_ = GASF_/_TGFR
C GASM = INERT GAS MOLE FRACTION
WRlTE<3,4)TEMP,SPCVL,CONC,CONCWiH20Cf02M,C02M,NOM,GASM,WC
WRITE (3,9)TGFR ,
/. SPCVL = SPCVL/60.!'-^V'S--x:'-:%;:H»:v:y-;'-::l':*'I&::-v-C:;1V::;^
_._."__„ RE AD ( INP.6) ( Tl I) «Y( I ), l^j',HOB^^Q^A
AREA(l) = .00000
X(l) = 0.00000
SUMX(l) = 0.00000
DXDTl 1) = 0.00000 :::
•...•:••-.:•• N = NOBS. •-•m^ifiMt^m
"' "'.'• DO 50 j=2i\*'\\^^:'^'.::^£i\:&'^ :^':-M"
l - J-l
AREA(J) =<{T«J)-T(I))/2.) * '(Y(J)+Y(I)>
X ( J )__£7 . 3JL? E_r 3 __*. SPCVL * (CONC * m^M;x::;t::;g;!:::::||::;idi::-:i?;;;.:,,-,-,::,:-:: :
GO TO 15 ... ::: :'^;:''\-:^.^^ mf^^ • •".^^^^^^^M^^^M^M^.^^
_ 500. STQP ..._,
END
626
-------
APPENDIX A-22-5
SULFUR GENERATION RATE COMPUTER PROGRAM - BENCH SCALE
DISK OPERATING SYSTEM/360 FORTRAN 360N-FD-451 CL 3-8
C
C CALCULATION OF RATE OF SULFUR GENERATION, BENCH SCALE.
C
_C HMJ!EJNL_BY_ SAM JQiQMPSO_N_t_F_EB. 25, 1971
"" '' T ' ' "
C •. •;•/•;. - ••'*,-<- •' .X.: v':H-s.:::;:vV::-^:.^yVy.H V^^:*.:^^^
c .,.\.DEsiGNEDVBY;iGV;Nv;BRowti^
c
C Yd) = MOLAR CONCENTRATION OF H2S ~^~^ ———
C AREA(J) = AREA UNDER CURVE FROM TIME = I TO TIME = 1*1
_C JCUJ. = SULFURIC, ACIJ)_LpAOING
C DXDT(J) = RATE OF~
v DIMENSION IDATE(3),T(50J,YH2S(50),YS02(50),YC02(50),Y(50),AREA(50>
PI M E_N S 10 N_X L50J jLD,XD_T { 5_OJ_,J.J_8 0 >
I-NP = i ' """ ' ' u "" ' '
15 READ!INP,1)(IDATE(I),1=1,3),NOBS
I FORMAT(312,14)_ _ .
C iDATEtl) * NUMER CODES "FOR "MONTH,'" DAY AND "YEAR"'." ^yVy ~TT" • '",..""
C NOBS = NUMBER. OF OBSERVATIONS ^S:. Vy.'; "yxy.^;,-.-.:.:-.t
. __JEXIJT .» i , . tj tiWf£i'^%-ti$::-:*^::.'-'
IF(NOBS)20,500,20
20 WRITE<3,2)
2 FORMATClHl)
8 F 0R M A T ( 10 F 8 . 0 ) ; i -V•'': .0 i'.:. .•:,; <:i:;.,:. ;i•,<&*; fA. • sx •;
?;:READ( INPtS) QI'VWC , WL, YI ,SAL,TJ ,TM,Tf
C
c
c
•c ::,
C V:
c
c
c
r.
c
c
.. ;: .-:•. Q !,.=•-
we =•
WL -
YI -
SAL =
:"•"".. 1 1;-; =
••,a\TM^ =
TF =
FH2S
H2SF
FL =
PL' '"-"
SPCVL
SPCVL
CONC
INERT GAS FLOW RATE
WEIGHT OF CARBON
r i N M i_ iV E 1 1? 1 1 1 0 1 i_ o M u/ L
INLET PERCENT H2S
INLET SULFURIC ACID
INITIAL TEMPERATURE,
MAXIMUM TEMPERATURE,
!'- :? .:• ; •':••'•: :>:^S:':*;'-???:::r: y.:'jySx?:?5 y^^i'f: -'&%ii$$ii$i?<'x :.?.? '.'' j_8_Q)
WR^fE(3,4)SPCVL,OI,WC,wL,YI ,CONC,SAL,FH2Sy: -o; i. ,^: •: :^i\ •::•:••:. y : y
FORMAT(/,' SPACE VELOCITY =• ,E16.6, • /HR't'/t1 INERT GAS FLOW RATE
^'^12,2,' SCC/MIN',/L« WEIGHT Of jCARDONj__UN.LQADE D "' ' F1L»_3-L!-CMS1.
t,Tx,'LOAbFD^"'TFT2T2%'"G¥s •;/,/,"• INLET PERCENT H2S =',F12.3,/,'
3INLET MOLAR H2S CONCENTRATION =',F12.6,« MOLES H2S/MOLE INERT GAS'
4._/,« INLET SULFURJC _AC 10 LOAD i NG_»I . F 12 .j& tj_G.Hs: jjzso^/G.M .CARBON »»/
"5,7,«"TiNAL"OUTLET PERCENT SULFUR LOADING ON CARBON =',Fi2.3)
5»
' ITE(3,-9:).F^,;iI,TMfT;Fj;:;:::|::;j;;^^;,i:i;:::;:;:
627
-------
09/08/71 FORTMAIN
9 FORMAT*• FINAL OUTLET SULFUR LOADING ON CARBON =ltF12.3tl CMS S/GM
1 CARBON',/,' INITIAL TEMPERATURE =',F12.2,« F1,/.' MAXIMUM TEMPERA
2TURE =',F12.2,' F',/»' FINAL TEMPERATURE =»,Fl2.2f' F'»/)
DO 30 1=1,NOBS
RE AD ( INP, 5 ) T ( 1} , YH2S-I I ), YS02 ( I), YC02 (I) V: l;^«S;£
5 F0RMAT(4F10 .0)i;:.:• »y :.P.':•;V:-'.; :- ^^M^iil^i^^l^^^r''"'""
. _xm = SAL ••;:.../..it • :5;;;:>::;:^^^^MM^^^^W^'-
30 CONTINUE
DO 40 1=1,NOBS
__Xi-I ! ~ YH2S(I) / ( 10_Q;_.- < YH2S ( I) +YC02 ( I ) + YS02 ( I JJJ.
40 CONTINUE" . ,
DO 60 J* 2,NOBS*
_l=_ J-l , :.
) =i(t(j)-T(i»/2.>* mn+Yun
XIJ)= X(I)-(1.458E-3 *(Q1/WC) * ( CONC* ( T { J )-T ( I ) ) - AREA(JM)
PX.OT ( J ) ^rJ_«A58E-3_* (Q I /WC) MCONC-Yl J ) > _
60 "CONTINUE "
OXDT(II = 0.00000
__AREA(1) = P.QOQOO. „ ,
DO 65 J=2,NOBS
I = J - 1
_I FUi.J> ^S1L_^.0_._U_6_3 t^liiS _____™
63 TS = TU)MT(J)-Tm) * ( (0. 1*SAL-X(I) ) / ( X( J)-X( li) ) : ; A
• DXDTS = DXDTCI) + (TS-T(IU/(T{Jl-TJI)) * tDXDT(J)-DXDT(I))
&•*• XS JL o. 1. *..:SAL '?:1.:'"-".^:Y.:L .:.......:..-.......:,:. .:V-^:£.t/:-^^:.^^.^^:•
K = I
GO TO 68
6.5 _CONTI_NUE ._' ,
IEXIT = 2Vi^^:P "
GO TO
_ 68 AVER =
DO 70 J=2,K
I = J - 1
_AVER = AVER -t- IDXDT(J) » (T(J> - T(D))
70 CONTINUE
'; , AVER = AVER' + (DXDTS * (TS •^'•T^^l^^^^^i^i^^i^^iM;:
AvEE. = _AvjR._/ TS . :.:.l:.v.: .•::;:;;:':.'•^':^:-2^X'%%%£^:-??$''$?*'"••;•**
75 WRITE(3,6)
6 FORMAT(/,» TIME PERCENT H2SS7X,' PERCENT S02S7X,' PERCENT CO
_ 12 _ MQLAg_C.O.NC H^S H2S04 LOADJNG RATE
WRlTE(3tll>
11 FORMAT183X,' CMS ACID/GM C GM ACID/GM C-MIN.1,/)
DO 80 J = 1,NOBS „,__ _^
""WRITE (3,7) T(I) ,YH2S(I»,YS02( l)tYC02(I»,Y(l),X(n,DXDT(n
7 FORMAT(F5.1,E16.6,5(3X,E16.6))
80 C ON TI NU E ,
GO TO (85,15), IEXIT AA /• '^-/••>^^^^-^M^^^jf^M^^^.-:-f\:^
85WRITE(3,10)XS,TS,UXDTS,TStAVER-: '-•--"•""::^:^K^:^^-A-^W"^^^^:^y
.. J.O_EQRHA T ( / , i.. AC I D.,LOA.DJ.NG_ .= ^,.E1.6_. 6j-L_AJT_«_,JEl6.6,_'__«INUT ESI, /1_' RA
IF ACID DECOMPOSITION =',£16.6,' AT',E16.6,« MINUTES'*/, • AVERAGE R
2ATE OF ACID DECOMPOSITION UP TO 90 PERCENT ACID UTILIZATION =',E16
. 3 . 61 . ™^^_______
GO TO 15
500 STOP ..:^ <
628
-------
APPENDIX A-22-6
COMPUTER PROGRAM FOR GRAVIMETRIC FLOW EXPERIMENT CALCULATIONS
DISK OPERATING SYSTbM/360 FORTRAN 360N-FO-451 CL 3-8
C
C
C
JL,
C
C
PROGRAM NUMBER C4769
DESIGNED BY JAN K. EVANS AND G.N. BROWN
WRITTEN" BY S.R. THOMPSON, 9/9/71
DOUBLE PRECISION ARUN
DJJMJ£M51QN__DR A ( 2QO Lt.AJL.DA QJ 2.0.Q > j A t, t) AU A ( 200 > , P I C KUP ( 200 1 __ __
DIMENSION IOAT£(3),T[ME(200),AMASS(20d),CHARf(200>,DR(20"0>
1 FORMAT(1H1,/,10X,' CALCULATIONS FOR GRAVIMHTRIC FLOW EXPERIMENTS',
2 FORMAT(A5,1X,3I2)
3 FORMAT180H
4 FO'RMATX,J._
DRV-
40. = Lt-EIiSLtl
r5X,'
_PJ?M'
02
3*'t6X,' H2S04- *',F7.2,' *',/,' CORRECTION=',F7.2,' MGS4X,' H20 -•
6 FORMAT(4(3X,F5.0,2F6.0)>
7 FORMAT(F15.5,iX,F16.5,4X,F16.5,AX,F16.5)
fl-JORMATftXt' MEAN. IDA O'_t lit' DIFFERENT I AL
1' DIFFERENTIAL RATE',/,' GMS SU2/100 GMS C
2 GMS ACID/100 GMS C MGM ACIO/GM C-MIN',/)
9._FJQRMAU&* .' TIME'. LAX,' MASS _D IAL '., 13X,'_ CHART '.L5X.' PI
MGM S02/GM C-MIN
15X»« (MINI1,37X,'
10 FORMAT2)ARUN,IUATE
WRITEIMX..U
READ(MY»3>
_.W RI.IE LM X.» 3 L
WRITE(MX,5JARUN,S02, T, IDATE,CNO,FR»DW,02,H2SOA,DF,H20
J*.
c
c
f-
c
c
_c_
c;
c
*•
,u
C
c
'.-.,- I DATE
DW
S02~~"
CNO
01
H20
T
HzVoV
N
DATE Of RUN
DRY WEIGHT
D£FLECU DN._.
S.02 CONCENTRATION,
NO CONCENTRATION,
02 .-CDNCENTRATIQN,
H20 CONCENTRATION,
PPM
PPM
PE1,
PPM
TEMPERATURE, DEGREES F.
FLOW KAJJEL^ >; ^—•< ~ »
* H2SO*
NUMBER OF DATA POINTS
READ(MY,6l(TIME.tI >iAMASS(.UtCHAR,T( IJ.»!
HK » (H2S04/100.>*(6^,/98.J
DO 50 I»ltN
PICKUP!I) « AMASS(I)*200.0 * CHART(I) + OF - DW
629
-------
50 CONTINUE
WRITE(MX,8)
Nl - N-l _ _ ___
00 60 J « UNI
DRUI - (PICKUPI J+1I-PICKUP1 J)|/mMEU + l)-TIME( Jl)
DR(J) - pR*HK __
ALOAD(J) * (PICKUP{J+i)+PICkuP(J) l/(2.*6w)**(9B ,/64. )
ALOADA(J)_- ALQAp(J)*{?8./64.) _ ______ „
IF(DR(J»60t55,55
55 WRITE(MX,7> ALOAD1 J ) t OR ( J ) i ALQADA( J ) » DRA( J J
>0 CONTINUE _ _ ______ , _________
WRITEtMX.ii
WRITF (MX,5) ARUN,SU2t T, 1DATE ,CNO , FR,OW ,02 ,H2SC)4 , OF.H20
DO 70 I * 1 ,N
WRITE (MX, 10) TIME (I I, AMASS I I ) tCHART ( I ) , PICKUP ( 1 I
70 CONTINUE _ _ _ ____________ ____________________
GO TO "20
100 CALL EXIT
END ... .
630
-------
APPENDIX A-22-7
COMPUTER PROGRAM FOR CALCULATION OF DIFFERENTIAL
SORPTION RATE AND MODEL EVALUATION
CALCULATION OF DIFFERENTIAL SORPTION RATE AND MODEL EVALUATION
DISK OPERATING SYSTEM/360 FORTRAN 360N-FO-451 CL 3-8
-.— -,- DIMENSION. IDATE<3),XC50)tRATE(50),AMSON«50),AVCOY{50),AVCOX(50).
1TRACY(50),TRACX(50),WVACO(50),WMOO(50) :
i: DIMENSION AJOST(70),XPRIM(70),TIMb(70) i ^.'H :. •' , i-:
"" MOUT = 3 "" "—.•_:--.- —.:•...• -•-•_-i:
20 RtADJMlN.DNRUN, I DATE,XS,TFR.PC02,PPMSO,PPMNO,P02,PH20,PH2SO,T
I FORMAT(I5,lX,3I2,OF_7.p)
IF(NRUN) 100, 100,2* '"".""' -• ::~ .-:"••'T^J-T^T; ~" ; —--;——-- —-
C" NRUN = RUN NUMBER •• \.';>:':•-:'••: 'f^v".^%'^^':. iy ^''vrVv - ;-:-"!-^v'..--: :• -:v
C _ I DATE = DATE OF RUN' ;' •'- i":': •'•; ; :V"<'i^^';:~ •^'>'^'.t'.'•: '•
C XS = CONSTANT, GMS H2S6V>GMC~~
C TFR - TOTAL FLOW RATE, CC/MIN
C PC02 = PERCENT C02
C PPMSO = CONCEiMTRATIciN"Of:""s02",
C PPMNO = CONCENTRATION OF NO, PPM
C__ P02 = PERCENT 02 __ .,..I..-,.• :. ;,•;:'.;.
C PH20 = PERCENT H2o"
C T = TEMPERATURE, F
$,_ PH2SO = PERCENT H2_SQ4_
25 WRITE (MOUT, 2) "v
2 FORMAT ( IH1) ;•:-',.:"';'::^:'&
REAO(M[N,3) ^vU'liiiliilii;
3 FORMAT(80H
1
WRITE(MOUT,3)
READ (MI Nil) Nl ; , '
RFADIM1N,4)(XI I),t I'liNl)
READ(MlN,4)IRATE!I),I=l,Nl)
READ(MINil) N2
' " RKAD(MIN,4>(XPRIM(I),I=1,N2) '"-: : ;.":"^.,^,-^
C XII) * MEAN LOAD (MG H2SOWGM C) :• :
C ' RATeill » UNCORRE.CTE.D._RATE.J_M.G.J.i2.SJJ.4/GJL.C/l!lLfU_
C TIME(I) » TIM(i(MIN.)
C XPRIM(I) = MEAN LOAD PRIME (MG H2SOWGM C/MIN)
WVACX=ALO.G( PPMSO .*_...OP.QO.Q.l.l_,
""" " DO AO 1 = 1 iNl ••"•:
X(I) * (X(I)/1000.) * (PH2SO/100.)
C__ X(I) NOW EQUALS LOAD AS H2S04, GMS_.H2.SOWGM_C
RATEU) = (RATEIII/1000.) * (PH2SO/100.)
C RATE(I) NOW EQUALS RATE CORRECTED, GMS H2SOWGM C-MIN
_ AMSONII
AVCOYJI
AVCOXd
TRACYJI
TRACXd
WVACOU
RATE {i»/ ( PPMSO*. OPQQQ.IJL
1. / AMSON(I)
L.- (X(I)/XS))**.3333333
_ = ALOG(AMSON(.U.I ~—-
ALUG(l.-Xm/XS»
ALOG(RATEd) / ( 1 .-X ( I )/XS))
WMOD( I). =_ALOG.IKATE.(JJ./-<.l».rX.d.l/XSI.**2.L
AO CONTINUE . ; : ;
DO 50 I * liN2
XPKIM.IJJ _" JXPRIMI Ll/lOOOU-JL-LPHZSO/lOOjiJ-.
"XPRI'MM f NOW EQUALS" LOAD AS H2SO* PRIME, GMS H2SO<./GM
AJOST(I) - (PPMSO * T1MEU) *.00000l) / XPRIM(I)
631
-------
05/11/71 FDRTMAIN
50 CONTINUE
5 FCXXATI/,' KU\ NUM8CR = • , 1 !>, 5X, 3 13 , / , ' TFXPER AKIRC = '^.0,' DEG F1
li/./t* TCIM FLIJK RATfc =',F7.l,' CC/f IN ' , / , I , ' PERCENT C02 . - ' , F 1 . I
2,/,' PERCI.-NT 02 =l,F7.l,/,' PERCENT 1120 = ' , F7. 1 , / , / • ' COMCENTRAT I
30M S02 = «, F7.lt1 PP.V't/,' CDNCtrNTKATlC^I NO =',F7.1i' PPMS/t/i' P
PERCENT H2S04 ='tF7.2,/,' SATURATED LOADING =',F7.2,' GMS H2S04/GM
5C'./t/f' X, GMS H2S06/GM C RAIE, GMS M2SD4/GK C-MIN1)
VM ITCt POUT, 6) (X( I ) ,i.5)
W«|TE(MOUT,/) rjRUI'i.lDATE ..... .... ........ . ....... _ _______
WRITE IMOUT, 10)
10 FOKHATI' AVCOX AVCOY')
WRITE(KUUTil6MAVCgx(l ) , AVCOY ( I ) f 1 = 1 tNl )
WIUTEIMOUT, 7) NRUN,lOAft
wkiTEiMour, ID
11 FOKMATI1 TRACORX .................. TRACORYM
WK1TEIMOUT, 16) (TRACXd ) , TRACY ( I ) , 1=1 »N1 )
WXIT£(KOUT,7) NRUN.IOATE
12 FO">r-'AT( '" LNIPPXS02) =',F10.5>
WRITE (MOUT, 13)
13 FORMAT! • . WESTVACO ... MOOWESTVACO?.)
WRITC(MOUr,U) (WVACOd ),WMOO«I)iI =
14 FCRKATIF15.5.F15.5)
GO TO 20 ..... . .........
100 CALL EXIT
END
632
-------
APPENDIX A-22-8
COMPUTER PROGRAM FOR MATERIAL BALANCE RATE CALCULATIONS AND
bPACE VELOCITY FOR 6" S02 SORBER
DISK OPERATING SYSTlfM/360 FORTRAN 360N-FD-A51 CL 3-8
c
C PROGRAM NUMBER CA765
C
C , MATERIAL BALANCE, RATE CALCULATIONS, AND SPACE VELOCITY FOR
?- .~.;.:. :,T~ sr|T"5TT?~"5rrp.T?'Fnv"T~'~'r~:-~——,,,_....-.,_,„,„.,„.., ,—. „——
:t~~~™~6»-
C
.A^iJiljJ^M.?^^^ JUNt 1971.
C NTYPE = 1 TO DETERMINE TOTAL SULFUR
C = 2 TO DETERMINE S02 AS ACID
"C
c
c
c
c
c
C ' ... .
C -V--.;..
,C. •-,::"•'
C
c
c — "
c
c
c
c
c
-F$~C"~T
XS1N
xsnui
*turjr-
RTOUT
SIN2
;;'OT:::V::':"
:T • ':'."; ,
D
W
H
PCU2
PCH20
CONO
PCC02
-..-.-. ...AJ.
S02 LOAD I NG ON CARBON I N
.''.' :•.-•.' '..-... •->'' •/• ...'.'- :.ou;r.
i? S^TJiT itUTLET .^ATERTAi"
TOTAL OUTLET MATERIAL RATE
INLET S02 CONCENTRATION
= .OUTLET «.! . '.' — ---:T -
;-. TOTAL INLET GAS RATE : 'I ••• ": •'•',:
: = TF.MPSRATUkG'- :/.v :::::!.;;';. •'•;: '/>'•. •
rr
£
\?7VPTfR PiTFSSU'RF Cr^"Rl:CTIOf\i~
DIAMETER OF COLUMN
REACTION RATE CONSTANT
HI IGJIT OF C4ftfJ()N PER STAGE
PEK~CENT~
Tl:KCE7>iT
»/HR
PPM
.i-^-X SCFH',;: :;^,V
.•::,V FARENHEIGHT
PST'"""1"^""
INCHES
INCHES1
PCKCCNT
PERCENT ~
PPM
PERCENT
OF.
n i MEN'S ION ip (10), i dAre (31, YS02 (i d), AR AF < i o), APKUP 11 o), AL E AV 11 o i,
l (JNCU-O l.VCTI 10), SPACE j 10), ACTUL( 10)
i FUR^ATdOAl
.2 FORMAT! IOF8
3 FORMAT!
1
2
- 3
A
3 I 2 , 1 A , F 1 0 . 0 )
01
RUN NUMBER '.10A1,' CARBO^
DATE ',313, /,/,
INLET it 5ULF.UR ON CARBON
OUTLET. {t SULFUR ON CARBON
1NLEI S02 LUADIfiG ON CARBON
4 '.F10.0,/,
-' ,1-10.2,' %',/,
= 'F1C.A, ' LBS S02/LB C1 )
A FORMAT! « OUTLET S02 LOADING ON CARBON^'F10.A, • LBS S02/LB C1/,/,
I « S02_ CCVCEHTRATJON IN IMLJJ GAS jJ/lOj.0, ' ^fflS / f ^
3 ' VOLUME.* H20 ='F05.1,' S',/,
A • VOLUME -JS_02 -_^F Op_._l, ' ^' ) .,_.._
~5~FOR~M~ATff CliNCc.jfRAT IO"N"UF" ijO=~rnoTi,' 'PPK1",/"/rrToTAL'~G"A'S"FLT5W R"ATE~~
I-'FIO 1,' SCFH'/' IINEAR GAS VELOCITY ='F10.1,' FT/SEC'/,/,
2 ' TFHPERATURE ='F10.1,' DEC F',/,/,/,' TOTAL SPACE V
; 6 FORMAT(• POUNDS SULFUR INTO KEAGTtW ='F10.A,« LBS/HR'/,
JL.P_OU-''^S _S_y_LFU1l UUI °JJt^JJ^^l/)^L^LB?/JHRA^!'-/-'-
2 .
7 FORMATUHl,' MATERIAL BALANCE FOR S02 SORPT ION', /,/)
8 FORMAT! IH1,' CALCULATION OF RATE OF S02 SORPT ION FROM'/,
>; 9 euRKATTiH^
633
-------
07/12/71 FORTMAIN
1
2
10 FORMAT!
I
.P;:-;-:' 3( ,'/>
; v'll FORKATI
12 FORMAT!
I',/,
13 FORMAT!
KY = 3
NSTGE =
PI = 3.
NSTG1 =
1 DIFFERENTIAL BED RATE DATA VERSUS THAT'/,
• CALCULATED FROM FLUIDIZED BED REACTOR'/,/)
' AVG ACID LOADING AVERAGE S02 AVERAGE RATE OF'/
' LBS H2S04/LO C CONCENTRATION ACID FORMATION1/
' 3TAGF PPK IKS 1I2S04/LB C-rliN
I4,F15.4,F17.0,F17.5)
• ACJUAL StMlt VtLUillY ""CAi-CUl. ATE0 SPACE VELOCITY
' STAGE l/HR l/HR1/)
I4,4X,F14.0,13X,F14.0)
ft
riTTTiTrTTj'RTTT^iTTrBATFTTfyrj^rrjrVTTrYpri-r'ARii-N •
14159265
NS1GH + .1
, .25 P,E AD t MX , 2 )FV , WSC • XSIN, XSDUT , SOUT , FUOUT ,.SIN2 i SOUT2 iQT , T
' .WtZtHi PC02tPf.H20.CUNO
***** MATERIAL BALANCE *****
.FAC1 : = I (1-(PCH20/100 )•)'/ I 1- (VPT/14. 7 ) ) )
GO TO(30,401,MTYPE
r^ !. 0 o *~srjnr~ - i w s"C'5TnjT:rs n 11 r n
XSUUT= XSOUT/I(100-1(3.06 * SOUT)/FV))*50)
FCOUT = 100 / I 100 + WSC+t153*XSOUT/FV))
i'SOUT2*.OC0001'*3?*FACl+RTOUT*l SOUT/ 100)
FCOU t ' ='"l66" / "( lo'o"
SLUT = XSCUT * .5 * 100 / (1 + XSOUT *
SF1N=QT/359»SIN2*0.000001«32*FAC1+RTOUT«FCOUT*I 1WSC/ 100) •»• ( XS 1M/2 ) )
IN •:
;• SFQUT=QT/ i5q*s
-- ' SFOUt=SFnUT ,<• RTOUT*FCOUT*( I iv'SC/ 100 1 •*•( XSDU7/2 ) >
..... STOlJf = SUCFl/K OUT
50 PCMAF= SFCUT/SFIIM*100
PCMAF = PERCEIjT MATER I AL ACCOUNTED FOR
™-T. . . . ™__^ " ..... : ....... "™ ~-™^™
C ***** RATE CALCULATIONS *****
c '
SUMAf = 0.00000
DO 100 1*1,NSTGE
_ARAF (
ARAFI
ARAFI
ARAFI
APKUP
APKUP
C APKUP
. 000001*9e)/l35')*PI*36*60)
" = "ARAFrn*"(iiyso"2"fr+T)-YSo2nTTt£,Ty7"fo<-*2~* "HIT:
= ARAFI I ) .* FAC1 :
= AVEftAGE RATE OF ACID FORMATION
T~£—or*oToT)o5oT* (YS02Tr+n-YTrJ2VnT~*^Y "
) = APKUPII) / (359 * RTOUT * FCOUT)
) = ACIO PICKUP
SAVE = SUMAP
634
-------
07/12/71 FORIMA1N
ALEAV(I) = 98*XSlN/64+SUMAP
C ALEAVd) = TOTAL ACID LEAVING PARTICULAR STAGE
ALOAO(I) = 98* XSIN / 64 + SAVE +• (APKUP(I)J
C ' ALOAUH) = AVERAGE LOADING ON STAGE I
^~" '--
C CCWCU)-= AVERAGE: S02. CONCENTRATION
ICQ:CCNTjNUE ,_;_ __
~U ^"""(oT^VMA'VTVTHrfO^^^loOOT *~7T. —-™, - ...
VCT( I )-SlN2*98*.0006oi*FAC17(.36*90*359*W*( l-{ AUQAD( I )/. 38) 1 *U-Z ) )
V QT ( 1 ) = VOTJ I } * {_(l~ Y S(J2 (I ! /£IjJ2 ) **_U ._-_/. >j( l^YSO 2 ( I+ 1 )/SlN2) **( 1-Z) )
C SPACE(I) = SPACE VELOCITY
ACTUL(I) = 4*l't't*l2*OT / (PI*U**2*H)
"^C ' 'A'CT'ULT n^s^CTOTfUTTrAirr^EUaCTT? " ' ~ —— - -
130 CONTINUE
TACTL = ACTUL(l) X NSTGF
"NPAGE = "0~
HO NPAGE = NPAGE
GO TO mi, 1A2, 143, 20), NPAGE
143
WRITE(HY,3) 1 D.CARBN. 1DATE ,WSC , SOUT , XSI N
W RIT E (K V. 5 ) CO;\iO i .Q.T. j U, T , T ACT L
^^» 9JLJ ntl5p)160'tl:80').'i NPAGE u ^
150 "WKlfE IKY,6) SFINf SFOUT,f»CMAF
GO TO HO
160 WRITE (MY, 10) _____
-"-fi fy-f7b*~T=ltNSTG(f" """
WRITE(MY, 11) I ,ALOAOU),CONC(1),ARAF( I )
170 CONTINUE
OVERL = QVERL * ( ( ( S IN2-SOUT2 ) *QT )/ ( D**2*HJ )
OVTRL = OVFRL * FAC1 / 8.0
-WRITE (MY, IV) y
14 FORMAT (/,/,>,/,/./> /i /,/,/,/./.' OVERALL RATE OF ACID FORMAT ION
""—TmT.TT
GO TO HO
180 WRITE1MY.12)
WR1TF (t"Y, 13) I .ACrOLI I ),SPACE( 1 )
190 CONTINUE
GO TO 20
300 CALL EXIT
ENO
635
-------
APPENDIX A-22-9
COMPUTER PROGRAM FOR CALCULATION OF INTEGRATED PILOT PLANT
RESULTS OF WESTVACO S02 RECOVERY PROCESS
FROM STEADY STATE DATA
DISK OPERATING SYSTEM/360 FORTRAN 360N-FO-451 CL 3-8
INTEGER _____ ____ _ ____ __ ___
P i MEN'S ION" T i 12 ) , HOLD cTz ) ,o i 26 r, AVI AS! , ti ( 26T70NiTf].3 f 4T7RL AB f 7. 377
1R<7)
JLCy.1 V*LENCE_(_AV ( .1 )_, AY10AJ , (.AVJ2 ) t AY16A_)_, I AVCJJj AV10D )_»J_AV.H> > »_ADPIO
i ) ,YAV« 5 r."AT"LioT» ("AV ( feVrwoFi > , ( AvT? r.woizTt < AV ( e ) r^cWi2 ) , < A v< 9 > , AD i
21A),(AV(10),AD12A),(AV(11) tAZ301A),(AV(12)tAZ301R)f ( AV (13 )
3 ( AVJ 14 1 , A030 1 A 1 1* ( AV < 1 5 ) t AY200B ) , ( AV < 16 > , AY2_06e ) t ( AV I 1 7 ) t AY2COC ) »
~* I AV ( 18 ) ', AY~20~6C )V( AVT19T ,"AY2000T.~ ( AV ( 20 ) rAY2iD6CT,TAV ( 2 1 i't AY200E >VTA~
5V<22)tAY2066),(AVI23),AG200E)t < AV ( 24) , AZ302 A ) , (AVI 25) ,AZ200A), (AV(
^i*.'. • A P°?3. L» I *X ' ?1 ! •. A.?20PJ ) t LA.y I ?.? ) t A2200C KJ AV ( 29 )_t A YJOOC ) t < AV (_30_
7 ) t A Y 108C )T< A Vl3 1 ) t AY IOOE") ','( AV ( '32Tt"AY 100 E > ."( AVT33 Ft A Y 1088 ) t"( AV (
SAY 1080) , (AV(35),AGIOCC) , ( AV ( 36 > i WC101 ) f ( AV (37 ) , hC 102) , (AV(38)t
9A0101A] it 1 AV( 39) » AC102A) , IAVC4C ), AZ90A) t ( AV Ul ) , A£90B ) t ( AV< 42 )» AC90
IA) , (AVI 43) tWSVOl ) t'fR'l 1 )"t RCil )V tR"(2")'f R012Ti "(R f3" ) 'i RCW12) i (R(4),R03Ci
21 t(R<5) ,^UIOI),(R(6) ,RD102)» (R ( 7 I , RS40 1 > t ( D ( 1 ) , BG 10A ,BG203C ) , '(BJ16.)»BC2d2AtHOi6b),Tlii'l7),SC206)t 16(18) ,"BC
81C3A), (51 19),BGl04B),(B(20),BG104S)t IB ( 21 ) f B0101A) , I B ( 22 ) , BD102A ) ,
9(8(23) tSOlOO )i (P(24) t STBINlf
-------
03/07/74 FCRTMAIN
CC02
c XARJAB.Lf-.._A.N]?,..c.0MESPONDING_VALUJ_gF JHE_J>ROCESS ELAPSED TIME. EACH DATA
C SET CONSISTS OF A MAX OF 12 CAT A CARDS" W FTlT"TTNrfrrrS~PlT"C""ARO; AN~ORANGF
C DATA CARD WITH A 1 IN COL. 5 IS AT THE END OF PACH DATA SET.
_WRI TE (_3 , 30_OpJ
3000 FCR>ATr/T56,'S 0 2 S" 0 R"TT"E~R«T)
LINE- 18
DC 20 KL=1,44
"CALL iNPUtTTVH'OLD,NOB)"
GC TC (3,4,5,6,7,8),MODE
* _N.P_G.1_NJ?P'1'1
hRiTE"(3Y40~6or MO,CAY,YR","NPG"
4COO FC3K4TUHl,T105,I2,«/',I2,'/M2,TU8,«PAGE • , I2//T39, ' 6" D I A
1 C_A R B ON P RECONOITIONER1/)
GC TC 3
VTR" I" f E ( 3 , 5000'j MO",TAY";"YR7NP5
5000 FORMAT(1HJ.,T105,I2,'/1,I2,I/',I2,T118,'PAGE • , I2//T51,' S U L F U R
I GENERATC R'/>
LINE* 4
GC TC 3
6 NPG= NPG + 1
r(3,"6000") KO.CAY.YR.'NPG
6COO FCRMATI1H1,T105,I 2,*/',I 2,'/ •,I2,T118,'PAGE SI2//T37,' H 2 S
1EISERATCR/SULFUR STR1PPE R1/)
GC TC 3
7NPG* NPG*1
WRITE(3,7000) PO,DAY,YR,NPG
7000 FORMAT! 1H1.T105,12,•/',12, «/S12,TH8,'PAGE SI2//T48,' C A R B 0
IN INVENTORY HCPP E R'/)
GC TC 3
8WR I E ( 3 ,800_OJ
'
8CdO FOR'VATT/Tsb, ' SULFUR CONDENSER'/)
LINE= LINE+2
3 IF(N C B) 21,2 U3 0
2T"IT-"( N- 3) ~2~2" ,22 , 20"
22 KTO= KTO+1
GC TC 20
30 SUM= 0.0
DC 1 L=1,NOB
ET= TIL)
CALL TIME(ET,NH,NI")
_Q^LL_LfC (L I_NE, NPGj^Oj-JAYjjrR^
_
NH.NM.ET, (0( I), I"l,13> ,HOLO(L), (UNIT^N ,M
2500 FOKMATITU, 12,':',I2,' HRS ',F8.2,« HRS tET)',
l.3,4A4)
1 CONTINUE
MMN-3) 10,10,9
10 AV(KT)= SUM
' CALL L PC I L liM'E", NPG JMO, UAY, YR)
HRITE(3.2601>(D(I)tI-l»10)'i(0(J)tJ-l*fl6),AV(KT)t(UNITtN,M),K«l,«)
637
-------
03/07/74 FCRTPAIN 0003
2601 FCRMAT(T26.' TOTAL :•»T43,7A4t2X«6A4,2X,F9.3f4A4>
IF(NOfl-l) 51t5l,52
51 RIKTC)* AV(KT)
GO TC 53
52 R(KTC)* AVtKT)/ (TtN08>-TU) )
53 NK= N»3
C ALL L PC ( L I NEtNPGt^Ot DAY tYRJ ____
WRI~TE"l'3V2fc"62) IOJ I), I = l,10)t tRLABt KTO.MM) ,MM-1, 3 ) ,R< KTO) .
l(UNIT(NK,M),M=l,4l
-1602_F 0£MA TJ J 2 B , 'RATE: ' rT43, 7A4, 2Xt6A4, 2X,F9.3t4A4/)
LINE = LINE"*I
KTO= KTO+1
GC TC 20
9 AVIKTI* SUM/NOB
CrtLL LPCtLINE.NPG,l*0,CAY,YR>
__ KR 11 E ( 3 , 2 600 M 0 ( N t I = I f 1 0 ) ,J D U ) t Jf 14 f.1 61t_AV ( KTJ , ( UNn(N,M )
'2"6bO'FORKAf(T"23t"'"A"~V f~S" A""G E : ' •', f A3 ,7AT, 2X t6AAT2X, F1?".
LINE= LINE+l
_ 20 CONTINUE ___ _ _____
">RSC'2"» 100".d*(l.C-(AY16A/AYT6A))'
PUH2S = ^00.0*(l.C-«AY206B/AY206E)/(AY^OOB/AY2COE)))
.0* (t . C MAY 108C/AY 1C8E )
P'HCHS
X9CA = AZ90A/(ICC.C-AZ9CA-AZ90B)
RC9C f_AC.90AJ'(l.C-AZ90B/lpO.O)/i_lip+_X90A) _ _
X 30 1C" = TAZ 30 1 A"*T17C + X9 0 A ) -~X~90~A~* < 1 00". O"- AZ 30 1 B J ) / ( 0 -T26 5* <
IAZ301B)-AZ301A)
X301B = AZ30lB*(l.O+X90A+X301C)/(100.0-AZ301B)
X3C2C * (AZ302A*! l.d»X90A )-X90A"*( i 10"676-A'Z302B"fT7( 0. 3265* ( 100.0-
IAZ302BI-AZ302A)
_AZ302B*(l.q + X9qA + X302CJ/( iqp.O-AZ_302BJ __
AZ20bc7< l'dO".0-AZ200A-0^67*TZ2"OOC")
X2CCA - UZ200A-32.65*X200C)/I100.0-AZ200A-0.67*AZ200C)-X90A
» 76.5*X200A/X302C
_ __ ___
PVC = 10.0*(.O-X20DCX302C)
SGI 088= AG100E*AY108B*0.0829/AY108E
PSCHS = 100 . 0*SG 1 C8B/ I[X200 A*RC90J ___
PRS • 100Vd*"R"s4Cl/(X200A*RC90')
BGIOA » 23340. 0*SCRT!AOP10/(ATL10+460.0) )* ( 1-0-A Y10D/1CO .0 )* ( AY 1CA
1/0. IE 07)/(1.0-VP10D/1 4 .J ) ______
BG13A « 2 3340. 0*S CRT IAD"P10"/"( AT L 10+460.0) )* ( 1 .0-AY10D/1CO.O )* ( AY16A"
1/C.1E 07)/(l.O-VP10C/14.7J
_ PRSl = 100.0*RS401/(BGIOA-DGI3A) ___ __
"ERV400- fOO.O*R~S401/'ABS"(X200A*Rl£9"0-SGl61FJ
NPG= NPG+1
HRITE(3i2000> M0t CAY. YR ,NPG
WRITE<3,2001)
CALL CATE(MO.DAY,YR,T1,T2)
WRITE (3,90^0) _
"9000 F"CRf"AT'(T16,'"SUMKA»V OF INTEGRATED PROCESS PERFORMANCE:'/)
WRITE(3t9001) PRSC2
900l_ FORMATtT8,• !._ S02 REMOVAL'tT56»«PRS02 «'.T65.F7.21' % (ACTUAL)1,
" "" fr9f, • 9C.'0"~«"(GOA"L)I/J ' ""
WRITE(3»9C02) PUH2S
638
-------
"/07/74 FORTKAIN
cco,<
..-U-"--2-'—.12XJI/T IjLIZATjON«,T96 •' PUH2S -• ,T65, F7. 2,' t !,' 95.0 * (GCALP71
WRITE(3,9003) PVCS
_9003_7_J . __.
"" TG"o"ATrr/T
FCR.MATI IT8 , l_3.__ACI_g_CONV§RS ION (TO SULFUR >',T56 , ' PVC S = • , T65 , FT . _
12,' % ( ACTUAL >',T91,« 99.0 :TTG~G~ATfr/y ----- ----------------------
PHCHS
- ?P.9^"R.';*[I.T8».L*r_.H2_.UTlLIZATrON (TO H2S)',T56, 'PHCHS *' ,T65, F7.2. '
I* (ACTUAL) ST91, • 90.0 SSTGOALT1?'")' ------------------
KKITE(3,9005) PRS1.PRS
-- ?00!L FCRJ/ A T ( T 8j • _5_. __ SUL FU R_ REC fW |R YS T 56 , • P R S _ =• , T 65 1 F7 . 2 , • « (ACTUA
R)»,T91, '100.0 ? (GOAL) 0> S ORBED S 0 2VT 6 5 , F 7 . 2 , T TTTC'TU 'ATTST 9TT
' 25.0 * (GOAL) OF STRIPPED SULFUR'/)
WRITE I 3»9006)JH)H2
9006" ' F C R MA T ( T 8 V ' " 6 . H 2~lJT"l !
_WR IT F. (3,9007) X90A
" 90157 'f- CRN A r n"6-,'f~r.
1' LB S/LR C'/)
WRIT6(3,9008) _
C! Aft T8","«~9~. "ACID LOADING TN LET C/TR BONMiJ N7T 'Tf 5 6 , ' X 3 0 1 C
165FF7.4,' LB ACIC/LB C'/)
_ _ __ ___ ____ _
9010 FCRNAf (T8V'f67~ PCI sTURE'~CONfE~N~T INLET CARBON 6" UNIT*",' f56", 'X3C1B
l=--'fT65,F7.4, ' LB H20/LB C'/)
KRITE(3,9011) X302C
9011 FORMAT(T8f«u. ACID LOADING INLET CARBON 8" uNiT',T56t»X302C =',T
165,F7.4,' LB ACID/LB C'/)
HRITE(3,9012) X302B
9012 FORMAT(T8,'12. ^CISTURE CONTENT INLET CARBON 8" UNIT',T56,'X302B"
1=',T65,F7.4,' LB H2C/L8 C'/)
WRITF.(3,9013) PVC
9013 FCRKAT(T8»' 13. TCTAL ACID CONVERTED 8" UN I T ' , T56 t 'PVC =',T65,F7
___ __ _______ __ ___
9014 FORMAT fT.8, «"l4. "SULFUR CONVERSiON (TO H2S) • ,T56, • P~SC"HS =',T65tF7.2
It1 ?'/)
____ W. R! TE ,J«1,20>
1001 FORMATI20A4)
WRITE(3,2006) (0( J ) , J= 1 , 20 )
FCRCAT J T2J_»20_A4J
23 "
GC TO (666, 6651, NTCPT
665 NPG= ^JPG-fl ___
W«Tf E(3,2~6"00 ) MO,CAY,YR,NPG
WRITE(3,2001)
639
-------
03/07/74 FORTCAIN 0005
CATEtMOtOAY,YR,TltT2)
. .
N="6
NENC= 1
" BG10A = 23340.0*SORTfAOPiO/(ATL10+460.0))*(1.O-AYlOD/100.0)* * t AY 16A
1/0.IE 07)/(1.0-VP1CD/14.7)
BC12A » (0.3265*X302C+X90A)»RC90
BOiiA = Ruri*AbTiA7ibo".o '
BC12A = R012*AD12A/100.0
??w l 2 A!__.'P • *?.I5*x302C + X9_0_AJ »RCV<12
"PC2CiA"~BCf2A~"
!= 0.0329*ftG100E*AYl08B/AY108E
BG201B= O.OBj9'»AG200E*AY200B/AY2pOE
BG2C3R="0."0" "
GC TC (7l,72>tNPRH2S
72_AG2COE- AC100E _
BG2ClB-"('oTO"829*AC2FOE*AY20dB/AY20'OTr - "BG104B
IFIBG201BI 172il72,l71
BG2plB»__OiO . ,
BG2C3RS BG104B
BG2C5A* 0.0829*AG200E*AY206A/AY206£
BG?05B» p.0829*AG20pE*AY2p6B/A_Y2p_6E
BC2C2A= (X2bdAVX9CA)*RC90
BC1C3A= X90A*RC90
RS401
. ___
BCldlA* RD101*AD101A/100.0
BC1C2A= RU102*AD1C2A/1CO.O
BC3C1A= Rp30l*AC30lA/l.CO.p
"SI10 = ...............
SC10 = BG13A+eC12A+BDllA4B012A+BCW12A
S03CO= BC201A+803C1A _
SI2CO= BG201B+BC2C1A+BG203R
SC200= BG205B+BG205A+BC202A
BCl03AtBGlC4B*BGlQAS*e0101A4-BD102A
STBIN
STBCUT« BC13A + BDUA+BD12A+BCW12A + BG205B+BG2C5A 4- BG104B+BG104S*
Bplp_lAL*Bp_102J. + BD301A _ . ___
~GG f C ( 60 f 61 1 1 NPRH2S
61 STBCUT- STBOUT-BG104B
h.RITE.(3»?t01>_
9101">CRMA'ffti6f« SULFUR" MA'TERTAL
GO TO 62
60 JkR I T E t 3It 9100 )
"9100"FORMATTfl6,tSULfrUR MATERIAL BALANCE
62 DC 660 L = UMKT
REAOIItlOlO) NSKIP.KT.LOCf(D(I),1=It 131
ibio'FORMAT(sx",2lit 12fibx,i3A4r'
GC TO (100,200,300f400t500t600»700,800)fKT
200_WRlT.(3f 3000J
GC'TO 700" "
300
640
-------
03/07/74 FCRTKAIN OC06
*" _ 1 I * CARBON PRECONDITION
-"J-L "^"' * " • — — **^ " *•• • ........ i — LI Hi ... . ..... _____________ - . ___ _ _ .. _ __ _ _ _ - ____ .
ic o t y i
A c f\ / I
GC TC 700
400 WRITE I 3,5100) ___
5100 F OH PAT t//fi,iT'S U L F TTS G" E N E""R ~A~T~0"in7~}
GC TC 7CO
_50C GC TC (501, 502), NEND
~"
CAUL LPC(LINE,NPG»PC,CAY,YR)
502_WR I T E < 3 , 6 100 ) __ _
' F'CRM'AT(/7f37T' H 2 S GENERATOR/SULFUR - S T R I
1 P P E R«/)
- _GO TO 7CO
600 V««"ltE'('3,9300l
9300 FCRfAT(//T^2, ' OVERALL SULFUR BALANC EV)
___ GC^_TO _7CO
"700 WRU'F'J 3 ."9BOO") "
9500 FORN4T(T23, 'IN')
_GC TC 100 __ __
"800 W R'i T E I 3", 9 600 !
9600 FOK^ATt /T22, ' 0 U T«)
_ ICO GC_TC (101, 102 )t NPRH2S
102"GC "TO" (101 , 1 OlTTiNTK IP
103 BGlO^b" 0.0
_ 1 0 I V.R U E < 3 1 9 700 ) ( n ( I ) ,1 = 1 , 1 3 » BLCC ) ,UN I TN, M ), M« 1 ,
97CO FC'KKATUSOtlSA'VfF'J.'
660 CCNTIMUE
GC TC (63, 666), NEND
63 NPG= NPG+1
WRITEI3.9400) MO, DAY, YR ,NPG
° 5 » 1 2 , • / ' , 1 2 1'/'« I2>T118,'PAGE ',
N= 13
NENC 2
NKT = 18
BG10AH= 0.00518*AG100E*AY108B/AY108.E
BG 2 C 3 C =_0 ._q 0 51 8 * A G 2 0 0 E* A Y 2_0OC/ AY 20 OJ
B G 2036 = 0". 0:6"518* A GT6'6 E * A Y 2 00 B7 A Y 200 E"
GC TC <75,76),NPRH2S
76 BG2C3R= BG104H
BG'20T8= (0.0"0518*AG2COE*AY200B/AY2CCE) -BG104H
75 BG203C= 0.0051 8*AG200E*AY200D/ AY20CE
_ BC201H=
-------
03/07/74
FCRTMAIN
COOS
N>
SY.VBCL
MAX
I*ODE
SYVBCL
KTG
NTCPT
T2
L
J
AY10A
AY2CCE
AY1CCE
AZ906
AZ301B
X3C2B
PVCS
PRS
AY1CD
NKT
A011A
RCwl2
BG2C3R
tC103A
EDIC2A
A~3C1A
SC2CC
LCC
E32030
EG2C5H
HI2CO
AY1QSD
•*C«12
SYMBOL
AV
RLAB
! JTAAFR
LA8EL
CC998
C2COO ""
C'»CCC
LOCATION
0000
00 14
LOCATION
03FC
0410
0424
0438
044C
02C4
0314
033C
0364
C2FO
047C
0488
0498
02CC
04A8
02 E4
0380
03F8
03CB
03E8
02F8
0304
0484
039C
03AC
03A4
0348
02EO
LOCATION
02C4
0518
IJTACOM
LOCATION
011C
~ 02!,8
041C
SYMBOL
MET
C
SYMBOL
VP100
KO
LINE
ET
NK
PUH2S
PUH2
PHCHS
RC90
X301B
X200C
PVC
RS401
BG13A
BCUA
6012A
BC201A
BG205A
6G104S
R0102
SI10
SQ100
BG104H
AY20CO
BG2050
H0200
HIIOC
W0301
SYMBOL
B
UNIT
DATE
LABEL
00049
02001
COO 05
LOCATION
0004
0018
LOCATION
C400
0414
C428
043C
0450
C45C
0460
0464
C46C
0474
0480
C48C
0390
03AO
C398
03AC
04AC
C3C8
C3EO
038C
039C
03EC
C3C8
C30C
03BO
0388
C3CO
02F4
LOCATION
0394
C56C
INPUT
LOCATION
0128
02EC
048C
COMMON
SYMBOL
THC
KT
SCALARS
SYMBOL
NPG
CAY
KL
NH
MM
AY2068
AY108C
AY108B
AC9CA
X302C
AZ20CC
SG108B
BG10A
PRSi
3C12A
R012
BG104B
AY206A
B0101A
AD102A
S01C
STBIN
BG203C
BC201H
AY206D
BG103C
H0100
WD101
ARRAYS
SYMBOL
R
CALLED
TIME
LABEL
C0999
02C04
05.000
LOCATION
C006
0068
LOCATION
C4C4
C418
C42C
C44C
0454
C3CC
• 0336
C344
C368
C478
C33C
C4<5C
G3S4
C49C
03A4
C37C
C3CC
C37C
C3E4
C35C
C3B4
G3FC
0354
C3AC
031C
03BC
C3CC
035C
LOCATION
0378
SUBROUTINES
LPC
LOCATION
019C
CJ28
C4CC
SYK3CI.
TKO
LINET
SYMBOL
M
YR
NOB
NK
PRSC2
AY2C6E
AY1C85
X9CA
X301C
AZ302A
AZ2CCA
AG100E
ADP10
ERV4CC
BD11A
AD12A
BG201B
8G205B
R0101
BD3C1A
SC300
STBCUT
AY2COC
BG205C
BC202H
BG104C
won
ViD102
SYMBOL
T
IJTSSQT
LABEL
C0050
030GC
OOC06
LOCATION
OOOC
006C
LOCATION
0408
041C
0430
0444
0458
0318
0340
0468
0470
0320
0324
034C
0200
04AO
03A8
0258
03CO
03CC
0388
0388
03BC
03F4
0304
03A8
03R4
03C4
0208
0354
LOCATION
04B8
SORT
LOCATION
01AA
036C
0526
SYMBOL
N
SYMBOL
NPRH2S
Tl
SUM
I
AY16A
AY200B
' AY100C'
AZ9CA
AZ3CIA
AZ302B
X2COA
PSCHS
ATL10
NEP^D
ROil
BCV.12A
AG2COE
BC202A
A0101A
R0301
SI 200
NSKIP
BG2C3B
AY206C
AZ20C8
BG1040
H012
WS401
SYMBOL
HOLD
IJTFXIT
LABEL
01000
OC004
C6CCC
LOCATION
C010
LOCATION
O'tOC
0420
0434
0448
C2C8
C2FC
" 0"3 34
0360
CtEC
0328
0484
0494
02 C4 ""
04 A 4
C378
cjec
C31C
C3DO
0356
0384
03C4
04tC
0398
03CS
032C
C3CC
02CC
036C
LOCATION
04E8
EXIT
LOCATION
0203
OJCA
C568
-------
03/07/74
FGRTKAIN
000009
CO
COC07
C0021
CC01C
C2602
09CC1
C9C06
C9011
C2CG5
CCC72
09101
CC2CO
CC50C
C930C
C01CO
CC660
C0666
050E
06E8
0864
CAD4
OFFC
1264
1458
163C
1914
1A38
18FC
1CC2
1080
1E14
1FIA
218E
0700C
COC22
02601
00009
09002
090C7
09012
C1001
00172
00060
C03CC
C0501
00700
00102
00063
0620
C6FC
C958
CB1E
1060
12BC
14C4
16CO
1940
1AF8
1C16
1CE8
1DBE
1E3A
1F54
CCCC8
0003C
CC051
C26CO
09003
C9C08
09013
02006
00171
C9100
C4100
C0502
C9500
00103
09400
C68A
07CE
CSS6
OC30
10CB
131C
1534
171C
1948
1BCC
1C2C
ICC2
1CC4
1E60
1F94
08000
02500
00052
OCC20
09004
09C09
09C14
00023
00071
00062
OC4CO
06100
00 800
001C1
OOC76
06AO
0804
0988
OC6E
113C
137C
1590
171E
1950
IB46
1C78
1018
IDEA
1E68
2058
C0003
COCOl
00053
0900C
09C05
09C10
09015
C0665
00061
C101C
05 100
00600
C9600
C9700
C0075
.—.ny,,, -_ -__^ T&L"7
C6DC
0840
C
OFAC
11B4
13E8
15E8
1758
1A96
1BB4
1C8C
1D6A
1ECO
1F04
2073
COMPILATION COMPLETE
AMOUNT OF COPKON OC0112
AMOUNT OF CORE C10304
ADDRESS
-------
DISK OPERATING SYSTEM/360 FORTRAN
_SUEPCUT_INE jNPUT(ETIME,C6Tft,NCf»)
INTEGER T'HoYtMo "
C:»FNSION ETIKE(12),CATAU2),C(20>
36CN-FO-451 CL 3-8
R£AD<1,1002) Kf,N,MCOE,(D(I1,1=1,17)
1002 FCRMATUXTI2,2X,12,M,4X,17A4)
cc i 1 = 1,VAX
REACt 1,1000 I K, ETIMEd ) ,0"ATA(T)
10CO FCRMATJ 15, 5X,F-10.4,5X,F10. 4)
IF(K) 1,1,2
_
2 NCE= f-1
GC TC 3
1 CCNTINUE
NCB
RfcAC(l,lCCl) K
1CC1 F-CSI"AT( I2
3 RETURN
E.NC
03/07/74
INPUT
OC02
SYM8CL
MAX
fCCE
SYM8GL
I
IJTAAFR
LABEL
C1C02
LOCATION
0000
0014
LOCATION
0074
IJTACOM
LOCATION
OOFC
SYMBOL
MET
0
SYM3CL
K
LABEL
01000
LOCATION
0004
0018
LOCATION
0078
LOCATION
0170
COMMON
SYMBOL
THC
KT
SCALARS
SYMBOL
NOB
CALLED
LABEL
00002
LOCATION
COC3
0063
LOCATION
CC70
SUBROUTINES
LOCATION
CISC
SYMBOL
TMO
LI NET
SYMBOL
LABEL
OOCC1
LOCATION SYMBOL LOCATION
OOOC N C010
006C
LOCATION SYMBOL LOCATION
LOCATION LABEL LOCATION
01A2 01C01 01EO i
CCCC3
01EA
COMPILATICM COMPLETE
AMOUNT OF COMMON 000112
AKCUNT CF CORE C00624
ADDRESS BASE TABLE
0108
-------
DISK OPERATING SYSTEM/360 FORTRAN 360N-FO-451 Ct 3-8
SUBROUTINE DATE(MC,DAY,YRtTi,T2)
INTEGER DAY,Y«,THC,TMO
D1PFNSION 0(20)
COE'fCN MAX, MET, THC,TMO,N, MODE, 0,KT,L1NET
NfO= MO
NCAY= CAY
T=T2
_
CALL TiMeif I,NHI,NM"D
CALL TIME(T2,NH2,NM2)
IF(NH2-NH1) 3t2,l
2 IF(NM2-NM1) 3,1
3 NCAY= NDAY+l
1 IF(T-U-24.0)
5 T= T-24.0
GC TC 3
* !F(.^CAY."P*Y-1 6,6,7 __
~6"~WiTET3720"02T MO, UAY, YR,"NHl,NMI, NH2,NM2
2002 FCRPATIT20,' DATE: ' , 12 , '/•, 12,•/',I 2,T41,'TIME CF RECORD:
11? ,12,' H R_S TO IfJAtlll' L?' ' HRS> >
GCTTO "T5"""
7 GC TC (8,9,8,10,8,10,8,8,10,8,10,8),MO
8 IF(MOAY-31) 11,11,12
12 NCAY= NOA"Y-
NfC= MO+1
GO TO H
9"! FTNoTY-28") 11,11 ,lT
13 NOAY= NOAY-28
GO TO 11
10 IF1NCAY-30) 11,11,14
14 NOAY= NOAY-30
11 IH= 24
lf= 0
WRITE I 3,2002) ^0,DAY,YR.NH1,NKliIH,IM
IH= 0
WRITE(3,2002) NNO,NCAY,YR,IH,If,NH2,NM2
15 T= T2-T1
WR1TEI3.2003) T1,T2,T
2003 F C R I" A T (/T20,« PR PC E S S _|L APS ED TIME OF PERIOD: START 'tF6.2.' HR
IS" 7" E'ND ',F6.2,' MRS" LENGTH OF PERIOJ1 "TFlcZ,1 HRS'7/5
RETURN
END
645
-------
03/07/74
DATE
CC02
SYF3CL
K4X
VCCE
SYFBCL
N*G
72
NP2
UTtCCf
L63EL
CCC02
CCCC6
CCOC9
CC013
LOCATION
COOO
0014
LOCATION
C068
OC84
OODO
TIME
LOCATION
OOEO
0132
0242
C344
COKPILATICN
SYMBOL
MET
0
SYMBOL
MO
Tl
YR
LA8EL
00003
02002
00013
02003
CCHPLETE
LOCATION
0004
00 1 8
LOCATION
COA4
COBO
OOAC
LOCATION
OOFO
0180
0252
037C
AMOUNT OF
COMMON
SYM30L
THC
KT
SCALARS
SYMBOL
NCAY
NH1
IH
CALLED
LABEL
00001
OC007
CCC10
COffCN 000112
LOCATICN
ccoe
C06E
LOCATICN
CCBC
OOC4
CCC4
SUBRCUTINES
^
LOCATICN
COFC
01CA
027C
AVOUNT
SYMBOL
T*G
LINET
SYMBOL
DAY
NM
IP
LABEL
COC05
00008
LOCATION
OOOC
00 6C
LOCATION
OOA8
OOC8
0008
LOCATION
0110
0214
00014 0280
OF CORE 001296 ADDRESS
SYMBOL
N
SYMBOL
T
NH2
LABEL
00004
00012
C0011
BASE TA3
LOCATION
0010
LOCATION
COCO
COCC
LOCATION
0122
0224
LE 0408
-------
DISK OPERATING SYSTEM/360 FORTRAN 360N-FO-451 CL 3-8
SUBROUTINE TIPE(ET,NH,NM)
INTEGER THO.TPO
DIMENSION Dt2C)
REQUIRED FOR VALUES MET.THOtTMO
C ™ >£t= T WHEN"ELAPSED~"f iWf'TN HRS; THIS VALUE NORMALLY"
C MET = 2 WHEN ELAPSED TIME IN MINUTtS
_c __ THO, TMC «__TIME CN_2A:qo J:LOCK_WHEJ\I_JET=_O^J_N_HR_S AND MIN, RESPECTIVELY
CANNON" MAX, PET, f HCt f Mfi,N",NODE,"C, Kf ,L INET ' ..... "
NM= 0
___ NH=_ q ________ . __
GC TO I It 2), MET
2 ET= ET/60.0
___ 1_ I F ( E T - 1 . 0 I 3 fj^^ _______
3 IFTEt-0"."65T 5,6,6 ~
5 NH= THG
___ Nf= THO ___ ______ _
~ G o " f o is ;
6 T= ET
__ GO_Tq K) ___________
4 T='er" " "
9 I FIT-24.0 )7t7,8
_ 8 J= T-24.0 ______ , ___
'GC~TC""'9~ "
7 IF(T-l.O) 10,10,11
11 T» T-1.0 ____ ______
NH= IMH*1
GC TO 7
1 A I F ( N K-6 O 1 2 ,3 ,13
13 Nf= NK-60
NH= NH*1
GC'TO'l'i"
12 NH= NH*THO
1 7 I FJUNH- 2
-------
03/07/74
TIME
0002
OO
SYMSCL
^AX
MOCE
SYMBOL
NP
LOCATION
0000
0014
LOCATION
0094
SYMBOL
MET
0
SYMBOL
NH
LOCATION
0004
0018
LOCATION
0090
COMMON
SYM3QL
THO
KT.
SCALARS
SYMBOL
ET
CALLED.
LOCATION
ccoe
0068
LOCATION
ccec
SUBROUTINES
SYFBCL
T*C
LI NET
SYKBOL
T
LOCATION
COCC
006C
LOCATION
0098
SYMBOL
N
SYMBOL
LOCATION
C010
LOCATION
IJTACCM
L4BEL
CCC02
OCC04
CCCIC
CCC16
LOCATION
OOC4
0118
0170
0204
LABEL
00001
00009
00014
00015
LOCATION
OODO
0120
C1B6
0216
\
LABEL
00003
CC008
00013
LOCATION
CCEC
C130
01C6
LABEL
OOC05
OCOC7
00012
LOCATION
OOFO
0142
01E4
LABEL
C0006
coon
00017
LOCATION
01CA
C152
01F4
COMPILATION COMPLETE
AMOUNT OF COMMON 000112
AMUUN1
CORE
-------
DISK OPERATING SYSTSM/360 FORTRAN
I^E_ LPC(LINE,NPG,MO,DAY,YR)
360N-FC-451 CL 3-8
INTEGER OAY,YR
DIMENSION 0(20)
__CCV MC \_ M_AX , MET,THC,TM.C,N,MOPE. C,KT.LINET
I<=:LINE-LlNETt 1,1,2
1 LINE= LINP+1
_5G TC 3
2 I
:= t.
;= J.PG+l
W? I T _EJ_3,1000) MQtCAY,YR,NPG
10CO FCS.WAT(1H1,T105,I2,'/' , 12, '/ ', 12,T 118, • PAGE ',l2Tr
3 RETURN
ENC
VO
03/07/7A
LPC
OC02
SYV3CL
KiX
SYV5CL
LIVE
LOCATION
0000
0014
LOCATION
CC58
SYMBOL
MET
0
SYMBOL
NPG
LOCATION
0004
0018
LOCATION
C05C
COMMON
SYMBOL
THO
KT
SCALARS
SYMBOL
MO
CALLED
LOCATION
coce
ccfce
LOCATION
CC6C
SUBROUTINES
SYKSOL
IfC
LINET
SYMBOL
DAY
LOCATION
OOOC
006C
LOCATION
0064
SYMBOL LOCATION
N 0010
SYMBOL LOCATION
YR C068
IJTACCM
CCCC1
LOCATION
0062
LABEL
LOCATION
LABEL
01COO
f t~nt tj r^K- r>/%r>i 1 **
%
LOCATION
01CC
A U m ihl T t
LABEL
-ic cnoe rir*~rf
LOCATION
0132
LABEL LOCATION
f*~y-~t* — "ft "'i ff-f ^-i~n i ~^« fc,-^ — i— K —
-------
APPENDIX A-23
DETAILED S02 SORBER DATA ANALYSIS
Page
1. Evaluation of Rate Models for S0£ Sorption 651
2. Effect of Fly Ash on Carbon Activity 659
650
-------
APPENDIX A-23-1
EVALUATION OF RATE MODELS FOR S02 SORPTION
Amundson Equation
The Amundson equation
(1)
is most conveniently rearranged to the form
(2)
1 dXy _
k
Xvs
in order to allow the determination of k and XVs• Figure
A-23-1 shows that the equation does not represent the
data unless the rate constant, k, and Xvs are S02 concen-
tration dependent. The Amundsom parameters extracted
from the SO? sorption rate data are given in Table
A-23-1.
Table A-23-1. PARAMETERS FOR AMUNDSON EQUATION FOR
S0£ SORPTION DATA AT 200°F WITH
NITRIC OXIDE
S02 Cone. ,
PPM
2500
2000
1500
1000
500
Rate Constant,
k
0.33
0.38
0.51
0.66
0.97
Saturated Loading,
Xvs
0.499
0.559
0.360
0.390
0.417
Since there was an apparent effect of S02 concentration on
the rate constant as shown in Table A-23-1, the Amundson
equation was not considered to be suitable to represent the
data. It is interesting to note that the constant, XVs,
extracted from the Amundson equation does not disagree
appreciably with 0.38 which was determined by extrapolation
of the experimental data to a zero rate.
651
-------
Figure A-23-1. Amundson approximation to sorption data at 200°F with nitric oxide
Ul
X +•>
0.04
0.08 • 0,12
Sulfuric Acid Loading on Carbon, gnts Acid/gms Carbon
O 2500 PPM S02
A 2000 PPM S02
e 1500 PPM S02
A 1000 PPM S02
O 500 PPM S02
0.16
0.20
-------
Jost Equation
The Jost equation
(3)
~3t
2 aX
is most conveniently arranged in the integrated form
(4)
to determine a and b, second and first order impedances
(reciprocal rate constants). The data are presented in
Figure A-23-2. The impedances that were subsequently
extracted are given in Table A-23-2. Again there was no
Table A-23-2.
REACTION IMPEDANCES FOR JOST
EQUATION FOR 302 SORPTICw
DATA AT 200°F WITH NITRIC
OXIDE
S02 Concentration,
PPM
2500
2000
1500
1000
500
a
5.844
4.797
5.414
3.261
2.548
b
2.53
2.14
1.71
1.33
0.88
justification for forcing an apparent dependence of the
rate constant on S02 concentration. Therefore the Jost
equation was not considered as a suitable function to
represent the S02 sorption rate data.
AVCO Equation
The AVCO equation
(5)
dXv
AXvsy
B
1 +
1 -
Xv »
Xvs'
T77
1/3
vs
653
-------
Figure A-23-2. Jost approximation to sorption data at 200°F with nitric oxide
Ul
-P*
O 2500 PPM S02
2000 PPM S02
• 1500 PPM S02
A 1000 PPM S02
D 500 PPM S02
0.004
0.08 0.12
Sulfuric Acid Loading on Carbon, gms Acid/gm Carbon
0.16
0.20
-------
can be arranged in the form
(6)
dXv/dt
B
AXvs (1 -
X
1/3
to the data is given in Figure A-23-3 and the reaction
parameters extracted from the experimental data are given in
Table A-23-3.
Table A-23-3.
REACTION RATE CONSTANTS FOR THE AVCO
EQUATION FOR S02 SORPTION DATA AT
200°F WITH NITRIC OXIDE
S02 Concentration,
PPM
2500
2000
1500
1000
500
A
-0.75
-1.07
-0.67
-1.63
-1.55
B
2.42
2.70
2.00
2.89
2.14
It is expected that if the rate model represented the rate
data one straight line would be obtained through the data
which would necessarily scatter about the curve. It can be
seen that a definite trend is present with decreasing S02
concentration. Therefore, the rate expression does not
represent the data; and there is considerable scatter in
both of the rate parameters.. Based on this the equation
was not considered as a suitable function to represent the
S02 sorption rate data.
Tracor Equation
The Tracor equation
(7)
- ky
Xv
can be evaluated by rearranging to the form
655
-------
Figure A-23-3. AVCO approximation to sorption data at
200°F with nitric oxide
O 2500 PPM S02
A 2000 PPM S02
1500 PPM S02
A 1000 PPM S02
D 500 PPM SO?
0.75
0.85
0.95
1.05
656
-------
(8)
Ln
- Ln[k] + n Ln [1 -
to allow the determination of k and n from experimental
data. Figure A-2.3-4 shows that the equation does not
represent the data unless the rate constant is made concen-
tration dependent. The rate parameters for the Tracer
equation are given in Table A-23-4.
Table A-23-4.
PARAMETERS FOR TRACOR EQUATION
FOR S02 SORPTION DATA AT 200°F
WITH NITRIC OXIDE
S02 Concentration,
PPM
2500
2000
1500
1000
500
k
0.341
0.383
0.497
0.654
0.777
n
' 0.724
0.563
0.955
0.959
0.951
Again there is no reason to make the rate constant a function
of concentration; therefore the Tracer equation will not be
considered any further.
657
-------
Figure A-23-4. Tracer approximation to sorption data at 200°F with nitric oxide
OO
O 2500 PPM SO?
2000 PPM S02
• 1500 PPM S02
A 1000 PPM S02
O 500 PPH S0»
-0.7
[(1 -
-------
APPENDIX A-23-2
EFFECT OF FLY ASH ON CARBON ACTIVITY
In the application of the Westvaco Process to flue gas
desulfurization, many of the applications are expected to
be on coal fired boilers. The current pilot plant operates
on an oil-fired boiler; however, the boiler is equipped to
fire coal and the probability exists that in the event of
severe oil shortages the boiler could be fired with coal.
In order to obtain a preliminary assessment of any effects
carbon was exposed to fly ash laden air for 5 days. This
is comparable to the time the carbon will be exposed to flue
gas during the integral runs.
The equipment used in the tests is shown schematically in
Figure A-23-5. Fly ash was metered into an air stream
which fluidized the batches of carbon in a Plexiglass
column. The unit was set up so that carbon samples could
be taken periodically for ash analysis and S02 activity
measurement.
Conditions
1) Gas:
2) C Bed Weight
3) Fly Ash:
a) Air at room temperature
b) Rate of 3 ft./sec. @ 70°F, 15.7 CFM
@ 70°F
About 325 grams
a) Source
b) Rate
- From boiler combusting
Southwestern Virginia
coal
- 15 gms./hr., 0.24 grains/
SCF
c) Part. Size - 9570 <50y (see Figure
A-23-6 for
distribution)
The fly ash grain loading was chosen to be what was typical
of that from a boiler with a 75% efficient cyclone and no
precipitator. This is many times the expected loading after
the gas passes through a precipitator. Chemical composition
of the ash was not determined; however, the particle size
distribution is shown in Figure A-23-6. Ninety-five
percent of the ash was smaller than 50 microns and over 50%
smaller than 20 microns.
659
-------
Figure A-23-5. Fluid bed set-up for fly-ash exposure tests
-*• To Exhaust
A1r
Roots-Connarsvilie
Blower
lyclone
Pressure
Gauges /^v.
-
4"0 Plexiglass Unit
(3 Stages and Plates
with No Downcomers)
Plates: 8% Open Area, 1/8" Holes
on 0.42 Centers
Gas Rate = 3 ft./sec. = 15.7 CFM (Air)
Fly Ash Rate = 15 gms./hr.
-------
Figure A-23-6. Size distribution of fly ash
used in carbon exposure tests
O)
N
GO
•O
CO
ra
I_
0)
e
n)
L.
0)
QJ
O)
id
O)
OJ
OL.
20
10
20 30 40
Average Particle Size,
50
661
-------
The ash content of the activated carbon is plotted versus
time in Figure A-23-7. The results show no noticeable
increase in the ash content of the carbon over the exposure
time of 120 hours. The evaluation of the S02 activity of
the initial and fly ash treated carbon is shown in Table
A-23-5.
Table A-23-5. EFFECT OF FLY ASH EXPOSURE ON S02
SORPTION BY ACTIVATED CARBON
Sample
Virgin Carbon
Virgin Carbon after 120
Hrs . Fly Ash Exposure
S02 Activity*,
Ib. S02/lb. C-min.
0.83x10-3
0. 78xlO"3
.There is very little difference between the activity of the
virgin and fly ash exposed carbon; and for practical
purposes, within the experimental error of these tests, the
activities are the same.
Although long term exposure to flue gas under actual condi-
tions is necessary to assure that there are no effects
-------
Figure A-23-7. Effect of fly ash exposure on activated carbon ash content
CO
M
+»
o
t
«t»
o
4
J=
Run No. FAET-1
-I-
10 20 30 40 50 60 70
Exposure, hours
80
90
TOO
no
120
-------
APPENDIX
SECTION B
DETAILED PILOT PLANT INFORMATION
664
-------
APPENDIX B-l
ANALYTICAL TECHNIQUES
INTRODUCTION
The various analytical test procedures which were used to
evaluate carbon samples are described in this section of the
Appendix. Many of the analyses were used for characterizing a
carbon sample in terms of various properties which are import-
ant to the economic utility of the carbon in the fluidized bed
S02 removal process. Included in this group of tests are
apparent density, particle size distribution, attrition rate,
S02 activity, and pore size distribution. Other analyses such
as total sulfur content, moisture, and acid titration were used
primarily to calculate process performance parameters. A list
of the various tests which are described in this Appendix is
given below:
Page
1. Apparent Density 666
2. Particle Size Distribution 670
3. Attrition Rate 672
4. S02 Activity 675
5. Pore Size Distribution and Surface Area 676
6. Total Ash Content 679
7. Total Sulfur Content 680
8. Moisture Content 682
9. Acid Titration 683
10. Gas Phase Sulfur Vapor Concentration 684
11. S02 Activity 686
665
-------
APPARENT DENSITY
Scope
This method covers a procedure for determining the apparent
density of granular activated carbon. For purposes of «^s
test, granular activated carbon is defined as a minimum of 90/0
being larger than 80 mesh.
Apparatus
1. Vibrator Feeder - See Figures B-l-1, -2, and -3.
2. Cylinder, Graduated, Capacity 100 ml.
3. Balance having a sensitivy of 0.1 g-
Procedure
1 An adequate sample of the carbon to be tested should be
dried to constant weight at 150±59°C (for 1 hour).
2. A representative sample of this dried activated carbon is
carefully placed into the reservoir funnel so that the
material does not prematurely flow into the graduated
cylinder. If this occurs, return the material to the
reservoir funnel.
3. The sample is added to the cylinder by the vibrator feeder,
through the feed funnel having a 15/16 inch inside diameter
stem.
4. Fill the cylinder, at a uniform rate not less than 0.75 or
to exceed 1.0 milliliter per second, up to the 100 ml. mark
The rate can be adjusted by changing the slope of the metal
vibrator and/or raising or lowering the reservoir funnel.
5. Transfer the contents to a balance pan and weigh to the
nearest tenth of a gram (0.1 g.).
Calculations
Calculate the apparent density as follows:
, Weight of Activated Carbon
Apparent Density, g./cc. = D
666
-------
FIGURE B-l-1. Apparent density vibrator feeder
•Reservoir Funnel
Clamped to ring stand.
Ring stand.
•• Metal vibrator-
Door bell "buzzer
"" peed Funnel clamped
to ring stand
100-ml. ASTM graduated
cylinder
Switch
• Transformer
No Scale
667
-------
Figure B-l-2. Metal vibrator
Actual Size
668
-------
Figure B-l-3
Reservoir Funnel
Feed- Funnel
[-< 1-5/8"-
Conditions: - Glass or Metal - Actual Size
-------
PARTICLE SIZE DISTRIBUTION
The distribution of particle sizes in a given sample is
obtained by mechanically shaking a weighed amount of material
through a series of test sieves, and determining the quantity
retained by or passing given sieves.
Procedure
1. Reduce the sample to be tested to 100 grams by means of a
riffle.*
2. Assemble the nest of five selected sieves in order of
decreasing size of opening, the sieve having the largest
openings mounted on top. A receiving pan is placed at the
bottom under the finest sieve.
3. Place the 100.0-gram sample in the top sieve, install iron
cover on top of the assembly and shake on the Ro-Tap
Machine for 3 minutes with the tapper in operation.**
4. Weigh and report the per cent of material retained on each
sieve.****
*The sample is carefully reduced by repeated passes
through the riffle until the amount collected in one of the
riffle pans is close to 100 grams. The entire contents of
that pan are then emptied onto a balance accurate to 0.1 gram
and weighed. No more than 5 grams should be added to or taken
from the balance without additional riffling. For example,
if the entire contents from the riffle pan weighed only 90
grams, the additional 10 grams should be obtained by riffling
another sample down to an approximate 10-gram portion, after
which the entire contents of that riffle pan are emptied onto
the balance. Removing large quantities from the balance or
adding large quantities from the sample stock without riffling
will lead to erroneous results.
When sieving samples which are finer than 100 mesh the
shaking time must be increased. Use 10 minute intervals until
less than 2 grams are collected in the receiving pan in a 10-
minute interval. For very light density and unusual shape
particles, time should be extended to 10 minutes.
***rhe sieve should be lightly brushed with a brass wire
bristle brush to free particles held in the screen.
****The analysis should be rejected if the sum of the
individual fractions is less than 98 grams or more than 102 grams
670
-------
Equipment
1. Riffle, Jones Sampler - Fisher Scientific Catalog No. 4-941
2. Sieves - U.S. Standard Sieve Series, 8" Diameter, Full-
Height Sieves
3. Ro-Tap - Sieve Shaker, Fisher Scientific Catalog No. 4-906
4. Brush - For Metal Surfaces, Brass Wire Bristle - Fisher
Scientific Catalog No. 3-685
671
-------
ATTRITION RATE
Carbon attrition rate was measured under a specific set of
conditions in the apparatus shown in the schematic drawing.
The basic method was to fluidize a 400 gram carbon sample at
4 ft./sec. linear velocity, and to measure the elutriation
losses from the sample at 10 minute intervals. An average
steady state rate of attrition was obtained from this data.
The experimental procedure was as follows.
Procedure
1. Prior to the attrition study, analyze feed material for
moisture content, apparent density, and particle size
distribution.
2. Run a minimum fluidization test on feed sample prior to
the attrition study unless the fluidization test has been
run on a sample of the same material.
3. Load a 400 gram sample of the carbon to be tested through
the side port of the attrition column.
4. Fluidize the bed and quickly shut gas flow off and allow
the bed to settle. Record bed height.
5- Start gas flow and timer simultaneously. Set large
rotameter at 7070 (superficial velocity, 4 ft./sec.). Make
sure small rotameter is off.
6. Determine elutriation losses every 10 minutes. Record.
Save material from the first and last 30 minutes of the
run.
7. Record the elapsed time, rotameter reading, rotameter exit
pressure, column pressure, bed pressure drop, plate
pressure drop, and the bed depth every 10 minutes.
8. Run for a minimum time of 2 hours and a maximum time of
3.5 hours. After 1.5 hours, if ,3 successive dust loadings
are within 0.05 gram of one another, terminate the run.
9. Weigh final bed and record.
*10. Run particle size distributions on the dust samples
collected during the run. Use 80, 100, 150, 200, and 325
mesh sieves if there is sufficient material, otherwise
use small sieves--100, 200, and 325.
*0ptional analysis.
672
-------
*11. Run a particle size distribution, apparent density, and
moisture content on the final bed. Use appropriate sieves
12. Calculate bed expansion and attrition rate.
^Optional analysis.
673
-------
Figure B-l-4. Schematic diagram of apparatus used
in room temperature fluidization
experiments
3Q"
4" P
Plexiglass-
Column
Distributor Plate
Air ) r-,
Supply / V/
Rotorcetcr
I
El
Scale
Across
Plate
Cyclone
Dust Hopper
Column Pressure
.'.P Across
Bed
•—-- ^^—-
A /
Manometers
674
-------
SO2 ACTIVITY
The analytical procedure for the S02 activity determination is
basically the same as the procedure used in the S02 sorption
differential rate studies, which is described in detail in
Section 5.1.1. The 862 activity analysis simply represents a
special case where a specific set of conditions was used.
Basically, the method involved a determination of the 5 hour
average rate of S02 adsorption on a carbon sample in a differ-
ential reactor apparatus, under the following standard set of
conditions:
Sample Size: 0.1 gm
Gas Flow Rate: 1,000 cc/min.
Temperature: 200°F
Gas Composition, S02: 2,000 PPM
NO: 150 PPM
H20: 10%
02: 2%
C02: 11.3%
N2: Balance
Adsorption Time: 5 Hours
675
-------
PORE SIZE DISTRIBUTION AND SURFACE AREA
Measurement of the pore size distribution and surface area of
carbon samples was made using two instruments : 1) Aminco
porosimeter and 2) Engelhard Industries isorpta analyzer,
Model 2A. The Aminco porosimeter was used in determining
pore volumes in the 100 to 0.012 micron diameter range,
while the Isorpta analyzer was used for smaller pores in the
10-1,000 Angstrom range, and for surface area determinations.
Porosimeter
The Aminco porosimeter measures pore sizes from 100 microns
to 0.012 microns diameter and pore volumes as small as 0.0001
ml. Readout is digital and automatic above atmospheric
pressure and visual below atmospheric pressure.
Pressure is generated by a motor-driven hydraulic pump. This
pump operates a reciprocating, double-ended pressure intensi-
fier generating pressures up to 15,000 psi in the pressure
vessel.
A vacuum system is provided (less pump) for measurements below
atmospheric pressure.
Procedure
1. A sample of appropriate size and porosity is placed in a
penetrometer (glass tube with graduated capillary stem) .
The penetrometer, in turn, is placed in a filling device.
A vacuum pump, available as an accessory, evacuates the
filling device and permits the penetrometer to be filled
with mercury. Pore sizes from 100 to 16 microns are
determined with the penetrometer in this position.
2. The penetrometer is then transferred to the pressure
chamber, where pressures from 0 to 15,000 psi can be
applied to the mercury and where pore sizes down to 0.012
microns can be measured. As pressure is increased mercury
is forced into smaller and smaller pores, the volumes of
which are continuously being indicated by the digital
readout as the mercury is displaced in the stem of the
penetrometer. The smallest pore diameter entered by the
mercury under pressure is stated in the relationship:
where D = the diameter of the pore in microns
(1 micron = 10~4 Cm. or 3.94xlO~5 in.)
P - absolute pressure in pounds per square
inch .
676
-------
Pore diameters are determined from the absolute pressure
on the sample. For example, if the pressure P at the
sample is 1750 psi, by substitution in the formula D
equals 0.1 micron. Generally the head pressure of mercury
must be included in calculating absolute pressure when
the diameters of large pores are being measured.
3. Pore volumes are read directly from digital readout in
tenths of a microliter. The Porosimeter indicates only
those pores which open to the outside surface of the sample
and which the mercury is able to enter. If large openings
within the sample are connected to the surface by narrow
pores, their volumes will be indicated at the diameter of
the narrow pore.
Isorpta Analyzer
The Englehard Industries isorpta analyzer permits low tempera-
ture nitrogen adsorption measurements to be made in a continu-
ous flow system, at predetermined and/or uniformly spaced
relative nitrogen pressure values. Using the adsorption data
obtained from the Isorpta, the BET surface area and pore
volume distribution of the carbon sample are determined by
Roberts' Method . The calculations are made by a computer
program. Two options are available in the choice of pore
models — the cylindrical pore and the parallel plate. The
computer program is given in Appendix A-22.
Theory of Operation
In principle, the Isorpta is designed to permit variation of
the total pressure of a fixed adsorbate-diluent mixture in
contact with the sample so the adsorbate relative pressure
can be adjusted.
In practice, a dilute mixture of nitrogen in helium is used.
As an example of how the nitrogen relative pressure over the
sample is determined, the nitrogen partial pressure in a 10%
nitrogen in helium mixture at a total pressure of 8 atmo-
spheres is 0.8 atmospheres, equivalent to a relative pressure
of about 0.8, depending on the vapor pressure of the liquid
nitrogen used to cool the sample. Consequently, to determine
the adsorption at relative pressure 0.8, the pressure in the
sample tube is adjusted to about 8 atmospheres. When adsorp-
tion is complete, the adsorption at relative pressure 0.3 may
be determined by adjusting the pressure in the sample tube to
3 atmospheres.
677
-------
To develop a complete isotherm, pressure in the sample tube is
first set to some low value and adsorption measured. The
pressure is increased in a stepwise manner allowing adsorption
equilibration at each step. The size of the step is left to
the discretion of the operator. If it is desirable, adsorp-
tion at a relative pressure over 0.9 can be determined in the
first adsorption measurement. However, it is customary to
develop the lower portion of the isotherm below relative pres-
sure 0.6 before approach saturation. When the sample is
saturated, pressure can be decreased in the same manner to
determine points on the desorption branch of the isotherm.
While pressure in the sample tube is varied, pressure in the
balance of the system is automatically controlled at some low
value near atmospheric pressure, particularly in the thermal
conductivity cell section. Gas composition changes measured
by the thermal conductivity cell are well within the linear
range of cell response, so no corrections are needed.
With the nitrogen-helium mixture over the sample, the sample
is cooled to liquid nitrogen temperature causing adsorption,
which is indicated by a deficiency of nitrogen measured by the
thermal conductivity cell and correspondingly traced as a peak
on a recorder. When, at a given relative pressure, adsorption
equilibrium is established, the peak area can be measured and
converted to the volume of gas adsorbed per unit weight of
sample. Total adsorption at a subsequent point is equivalent
to the algebraci sum of the peaks as defined by increasing or
decreasing pressure.
The range of relative pressures that can be investigated is
limited only by the gas composition and the saturation point.
Further, other adsorbates besides nitrogen can be used in
mixture with other diluents.
678
-------
TOTAL ASH CONTENT
Ash is defined as the mineral oxide constituents of the carbon
Heating a sample to a temperature of 600°C in an oxidizing
atmosphere will completely oxidize all carbon and convert the
mineral constituents to their respective oxides.
Procedure
1. Weigh 1.00 gram of the sample into a weighed Vycor glass
crucible without cover.*
2. Place crucible.and contents into a muffle furnace; set at
600°C for at least 4 hours. (For high volatile materials
such as coal or pitch, devolatilize first over flame
burner before placing in furnace.)**
3. Remove from furnace, cool in dessicator and weigh. (Save
crucible and ash for iron analysis, if desired.)
4. Per cent ash is calculated'as follows:
7 Ash = 100 x rFinal Wt- of Crucible -Prig. Wt. of Empty Crucible
0 Wt. of Dry Sample
*Although Vycor glass crucibles (30-ml. capacity) are
indicated in this test, platinum or porcelain crucibles may
also be used.
**For black ash samples use a minimum of 16 hours.
679
-------
TOTAL SULFUR CONTENT OF CARBON
Description
Weighed amount of sample is heated to 2600°F and exposed to
flow of oxygen. Sample is combusted to C02, HaO and SOg gas
which is all passed through hydrogen peroxide solution in which
S02 reacts to form sulfuric acid. Amount of H2S04 is determined
by titrating with caustic solution.
Materials
1. Dietert Combustion Analyzer (heated to 2600°F)
2. Dietert Combustion Boats
3. 0.06 N NaOH Solution
4. 0.9% H202 Solution
5. Methyl Red Indicator Solution
6. Cylinder Oxygen
Procedure
1. Prepare 0.06N NaOH as follows:
a. Accurately pipette 60.0 ml. 1.0 N NaOH into a 1,000 ml.
volumetric flask and bring to volume with distilled
H20.
b. Pour into reagent jar at analyzer marked NaOH.
2. Prepare 0.9% H202 as follows:
a. Bring 30 ml. of 30% H202 solution to volume in a 1,000
ml. graduated cylinder with distilled H20.
b. Pour into reagent jar at analyzer marked H202.
NOTE: THIS SOLUTION MUST BE MADE FRESH EVERYDAY.
3. Prepare a standard for analysis as follows:
a. Weigh 0.0250 gms. of sulfur and evenly distribute in
the bottom of a combustion boat.
b. Weigh 0.2500 gms. of virgin carbon, and distribute
evenly over the sulfur in the combustion boat.
4. Analysis of Standard
a. Combustion analyzer temperature should be 2600°F, ±100°F.
b. Fill the reaction vessel to the first hash mark (50 ml >'
with the H202 solution; add 1 drop of NaOH from the
burette and 2 drops of methyl red indicator.
c. Place the combustion boat containing the sample into
the combustion tube. Insert ramrod assembly until the
rubber stopper fits snugly and turn on the 02 to a
flow rate of ^ 1.5 l./m. DO NOT SHOVE THE BOAT INTO TUBE
d. Place the gas dispersion tuFe coming from the analyzer
into the H202 solution.
680
-------
e. Shove the boat 1/2 way into the combustion tube using
the ramrod. Wait ~-»15 seconds and then shove the boat
fully into the hot zone of the tube and withdraw the
ramrod.
NOTE: IF THE BOAT WERE SHOVED IMMEDIATELY INTO THE
HOT ZONE, THE TUBE MAY CRACK, NECESSITATING
REPLACEMENT.
f. Titrate the solution until there is no longer a yellow
to pink color change, indicating the end point has been
reached and all of the sulfur has been oxidized.
g. Record the total volume of NaOH used.
h. Drain the reaction vessel and rinse with distilled H20.
Turn off the 02, remove ramrod assembly from the tube,
and remove the boat from the tube, utilizing the sample
retreiver. Place the hot boat in the stainless steel
receptacle under the table.
i. The total volume of NaOH used for the titration should
be 26.2*1.2 ml. If there is a deviation from this,
check the following:
1) Normality of NaOH solution
2) Weight of sulfur used in the standard
3) For a cracked combustion tube
4) Any other gas leaks in the system.
5) DO NOT PROCEED until the situation is remedied.
5. Analysis of Carbon Sample
a. Weigh 0.2500 gins. of sample and place in a combustion
boat.
b. Analyze the same as for a standard sample, Steps 4a-4h.
6. Calculation of Sulfur Content, in %
a. Multiply the total volume of NaOH used by 0.4.
(ml. 0.06 N NaOH Used x 0.4)
681
-------
MOISTURE CONTENT*
Procedure
Weigh carefully about 5.0 grams of carbon into a tared low form
weighing bottle. Place in an oven and allow to dry 3 hours at
110°C or 1 hour at 140°C. Cool in a desiccator and weigh with
cover on.**
% Moist = (Wt. of Dish & Sample) - (.Wt. of Dish & Dried Sample) x 1QO
*This test is intended only for determining the moisture
content of a sample of carbon. If a larger sample is to be
dried, a longer time will be required depending on the size of
sample and type of container.
**For a coal sample use a vacuum oven at 100°C for 3 hours
682
-------
DIRECT TITRATION OF H2S04 CONTENT OF CARBON
Description
The amount of sorbed acid is determined by direct acid-base
titration using caustic. A weighed amount of sample is boiled
in water and the amount of acid leached off is determined by
direct titration.
Materials
1. Hot Plate
2. Magnetic Stirrer
3. 50 ml. Burette
4. 250 ml. Beaker
5. 0.1 N NaOH and 0.03N NaOH
6. Watch Glass
7. Methyl Red Indicator
Procedure
1. Prepare 0.1 N NaOH and 0.03 N NaOH as follows:
a. Accurately pipette 100.0 ml. of 1.0 N NaOH into a 1,000
ml. volumetric flask and bring to volume with distilled
H£0. Use 30 ml. for 0.03 N NaOH.
b. Rinse burette with this solution, empty, and refill to
0 ml. mark.
2. Analysis of Sample
a. Weigh 1.0000 gms. of sample to be analyzed and transfer
to a 250 ml. beaker containing 50 ml. of distilled
H20.
b. Cover beaker with a watch glass and bring to a slow boil
on the hot plate. Boil for 5 minutes.
1) After sample has boiled for 5 minutes, remove from
hot plate, place on magnetic stirrer and add 7-15
drops of methyl red solution.
2) Titrate to end point with 0.1 N NaOH.
c. Repeat this procedure for two more boiling-titration
series.
d. Record total volume of NaOH used.
3. Calculation of H2S04 Content
% H2S04 = (ml. 0.1 N NaOH)(0.49)
% H2S04 = (ml. 0.03 N NaOH)(0.147)
683
-------
DETERMINATION OF SULFUR CONTENT IN GAS PHASE
A method was set up to measure the sulfur content in the gas
phase for operation of the sulfur recovery step during periods
other than during integral operation or before the sulfur
condenser was installed.
A sulfur trap similar to those for the gas chromatograph was
utilized for this purpose. The complete system (Figure
B-l-5) consists of the trap, a H2S adsorber, a sample pump
and a wet test meter. The pump continuously pulls a sample of
vapor through the trap where sulfur condenses and through a
bubbler system containing NaOH which reacts with H£S to form
Na£S and H20, thus preventing carry-over of H2S into the sample
pump and wet test meter. The latter records the total volume
of nitrogen and hydrogen passing through the system. Sulfur
is extracted from the condenser by carbon disulfide and
recovered. Comparison of the gas volume corrected for H2S
measured by the gas chromatograph) and the weighed sulfur
yields the sulfur vapor concentration.
684
-------
Figure B-l-5. Sulfur sampling system
oo
Ul
Glass
Wool
A A
tiaOH
D
Mash Bottles
Stainless Steel
Sulfur Trap
1" HPS x ~2'
• o
/
t '
r
a
c
-1-1.5
CFK
Positive
Displacement
Sample Pump
Liquid Trap
Wet Test
Meter
-------
S02 ACTIVITY ANALYTICAL PROCEDURE
Procedure
Sample Preparation
1. Remove oven from around the sample envelope. This part of the opera-
tion involves two people, one to hold the top half of the oven while
the other removes the bottom half.
CAUTION: WHEN LOWERING THE LAB JACK TO ALLOW THE OVEN TO BE
REMOVED, DO NOT LOWER BELOW THE LEVEL OF THE STOP-
COCK ON THE ADJACENT McLEON GAUGE.
Move the lab jack from under the sample enveloper.
2. Remove the sample envelope. Before the sample envelope can be
removed the preheat coil of 1/16" stainless steel tubing must be
removed and the Swagelok unions disconnected.
a. Remove heating tape from around the Swagelok union on the inlet
manifold and open union with the two wrenches (9/16" and 1/2").
With the two 7/16" wrenches open the union leading into the
nozzle (see Item K in Figure B-l-6) . Remove the preheat
coil. Next, open the Swagelok union leading from the purge
rotameter and unplug the thermocouple.
b. Very carefully loosen the ball joint clamp (Item B in Fig. B-l-6)
but do not remove the clamp. This will enable the dispersion
nozzle to be carefully rotated out of the bucket and to the
side of the bucket. When the nozzle is positioned so that the
bucket will pass freely by it when the envelope is lowered,
retighten the clamp.
CAUTION: THE QUARTZ BUCKET IS VERY FRAGILE AND SHOULD NOT
BE SUBJECTED TO ANY BUMPS OF THE NOZZLE OR
CRUSHED BETWEEN THE NOZZLE AND THE SAMPLE
ENVELOPE.
c. With the nozzle out of the bucket it is now possible to remove
the sample envelope. While holding the envelope in place with
one hand, loosen the larger ball joint clamp (Item A in Fig. B-l-6)
with the other hand and remove. Use the second hand to hold the
nozzle away from the bucket while the envelope is slowly lowered
away from the bucket.
686
-------
Figure B-l-6. Detail of sorption apparatus sample bucket envelope
SJ 35/25 Pyrex Ball Joint
SJ 18/9 Pyrex Ball Joint
Swagelok Fittinqs and Thermocouple
Gas Injection Tube
Purge Gas Line
Sample Bucket
Dispersion Nozzle
Thermocouple
Suspension Fiber
Swagelok Connection to Preheat Coil
Gland
687
-------
CAUTION: WHEN LOWER INC THE ENVELOPE, BRING THE ENVELOP!';
STRAIGHT DOWN SO AS NOT TO TOUCH THE BUCKET OR
THE FIBER THE BUCKET IS SUSPENDED FROM WITH ANY
PART OF THE ENVELOPE.
3. Replace the sample. The bucket is lifted off the balance by bringing
a sample pan under the bucket and slowly raising until the bucket
lifts off the fiber. Forceps are used in handling the bucket while
off the balance. The forceps are for lifting the bucket by the bail.
Do not squeeze the forceps on the bail or it will break. To empty
the bucket, place the bucket on a clean sheet of paper and using a
cotton swab turn the bucket over onto its side. Now, insert the swab
in the bucket so it can be burned upside down and the carbon poured
out. Now, reright the bucket with the forceps and return to the
sample pan. On the Mettler balance, weigh out approximately 100 mg of
new sample into the bucket. Return the bucket to the sample pan and
tap the sample pan gently to spread the carbon sample over the bottom
of the bucket. Return the bucket to the balance and reverse the
procedure previously outlined to replace the sample envelope. When
replacing the nozzle in the bucket, be sure to center the bucket in
the envelope and center the nozzle in the bucket.
4. Replace the oven. When the sample envelope has been replaced and
the ball joint clamps tightened, replace the preheat coil and tighten
the Swagelok unions. Reconnect the purge line and tighten the Swagelok
union. Plug in the thermocouple and rewrap the heating tape around
the inlet manifold leading to the preheat coil. Now the oven may be
replaced.
CAUTION; DO NOT BUMP THE SAMPLE ENVELOPE WITH THE OVEN.
ALSO BE CAREFUL OF ADJACENT EQUIPMENT.
When raising the lab jack, raise the oven until it is just under the
bottom of the sample envelope but not touching it. Replace the top of
the oven and carefully fill in the cracks and open space with glass
wool for insulation.
5. Outgas the carbon sample. Plug in the fan motor on the oven and turn
on the regulator (Item G on Figure B-l-7). Plug in the heating
tape on the inlet manifold and start a low flow of nitrogen on the
purge rotameter (stainless steel float should be set at 9.0 cm). Open
the inlet manifold to the sample and close the exit by means of the
two toggle valves (Items L and M on Fig. B-l-7). Turn on the Cahn
balance and start a flow of nitrogen to the sample by opening the
rotameter all the way. Turn on the recorder at a slow chart speed.
Turn the recorder range dial on the Cahn balance control box to 10
and center pen on the chart with the Mass Dial. For calibration and
operation of the balance refer to the instruction manual.
While the temperature in the oven is equilibrating to 200°F the
nitrogen will be purging the water off the sample.
688
-------
oo
,
oo
^
1
A - Magnehelic Pressure Gauge E
B - Humidifier Thermostat - F
C - Sample Thermostat • G
0 - Bucket Envelope H
Fiber Envelope
Electrobalance
Oven Temperature Regulator
Vacuum Pump
J - Thermocouple
K - Vent
L - Inlet Toggle Valve
M - Exit Toggle Valve
Figure B-l-7. Sorption rate apparatus
-------
Sorption Runs
While the sample is being outgassed and the temperature is equilibrating,
the flows for the mixture gas can be calculated.
Flow Calculation
A sample work sheet has been included (Fig. B-l-8) for illustration. The
concentrations of S02, NO, 02, and H2<> must be decided first in addition
to the total flow rate of the gas and the temperature of the run- The
majority of the runs have been made with nitrogen as the diluent gas and
the total flow gas should be 1,000 cc/rain. or less. A higher flow rate
could cause too much turbulence around the sample and actually blow the
sample out of the bucket.
The S02 and NO tanks will have been previously calibrated so their tank
concentrations are known.
Current experiments have involved a 10% concentration of water. For this
concentration the temperature of the humidifier bath has been maintained
at 60°C. It is important that the flow of gas through the humidifier
should not exceed about 450 cc/min. For higher water concentrations the
humidifier temperature would have to be raised. For calculating the gas
flow through the humidifier refer to (^ in the sample calculation. Pm
Is the manifold pressure and is used in correcting the flows for daily
changes in barometric pressure. Pbar is the barometric pressure and must
be corrected for expansion of the brass scale due to temperature changes
(see the HANDBOOK OF CHEMISTRY AND PHYSICS, pp. E-21 - E-22 for
corrections). PR20 is the saturated vapor pressure of the water at the
temperature of the humidifier bath. This information can be found in the
HANDBOOK OF CHEMISTRY AND PHYSICS, pp. E-6 - E-ll.
After the Pm and the flow of nitrogen through the humidifier (FN2/H20)
have been calculated, PH, the pressure in the humidifier must be calcu-
lated in order to correct the flow on the N2/H20 rotameter, (|) on the
sample calculation sheet. This rotameter setting and the subsequent
rotameter settings can be found in a notebook labeled "Rotameter
Calibrations".
In (3) the concentrations of the other gases are calculated and the
rotameter settings corrected. And finally in (§), the amount of dry
nitrogen required to bring the total flow up to the amount desired is
determined by subtracting the sum of all other gases from the total flow
and correcting for the rotameter setting. The nitrogen, S02, and NO
rotameters have dual floats for a wider range of flows and it is better
to use the float that is closer to the midrange of the rotameter rather
than the one closer to one end or the other of the scale. On the sample
calculation sheet, the (S) or (G) after a rotameter setting indicates
a stainless steel float (silver) or a glass float (black).
690
-------
Figure B-l-8. Sample calculations.
HUH
DATK
CARBON
TEMI'KKATURK
FOU KIIN
Work
' /f)00
t HgO
100
>0°/3
I 0 0 O
)(?., ^ HjO
PB " 1-87 ('.022U FT » O.'i2) *
" 1.87 (.0167 FHno * 32.2) + tm "
* l'«2/H20
P»ct
FS02
*ji
Pn/760
a of.
CMQ
Hunk
NO
"02
o o
. 02
c* -
02
Pm/760
Rota. -
X CO? JJ.3 /.
f T " n X
'
C0?
- (rH2o
FSr - FH2yV
1
* Fso2 * FHO + fo2 * FcOg) " I
J
£7,7 N.
Hoi..
691
-------
Starting the Run
Alter the sample has reached the experimental temperature and the flows
have been calculated, the run can be started.
1. Determining Dry Sample Weight: Bypass the nitrogen flow to the
sample by opening the vent toggle valve (Item M in Figure B-l-7)and
closing the sample inlet valve (Item L in Fig. B-l-7). Turn off the
purge rotameter. Zero the recorder with the Mass Dial and record
the Mass Dial reading as four digits after the decimal (e.g.,
0.5328). The weight of the sample will correspond to the Mass Dial
reading times the Mass Dial Range (far left knob). For example, if
the Mass Dial Range is set at 200 and the Mass Dial reads 0.5328,
the sample weight is 200 x 0.5328 or 106.56 mg. After determining
the dry sample weight, turn the purge rotameter back on to 9.0 cm
to keep air out of the sample envelope.
2. With the sample still bypassed (toggle valve M open, L closed),
start mixing the gases. The rotameter for the Q£ is highly stable
but difficult to set and for this reason a toggle valve at the tank
is used to control the flow of 02 to the system. Little if any
adjustment will need to be done to this rotameter. The C02 rotameter
is at the tank and has only the single float. After the 02 toggle
valve is opened, the C02 rotameter set, and the NO, S02, and N2
rotameters set, open the line from the humidifier and set the N2/H20
rotameter. To open the humidifier line, close the Vent toggle valve
and open the Run toggle valve. After the water is added the flows
will probably all need to be readjusted. Allow the flows to equili-
brate for 4-5 minutes before starting the run. Meanwhile, set the
timer to 00000.0, put the chart speed on 1 inch per minute (the
recorder has the D gear set in place) and line up the recorder on a
heavy line and turn to standby. With the recorder turned to standby,
set the Mass Dial approximately 6 mg heavier (e.g., if the dry weight
is 0.5328 set the Mass Dial at 0.5600) and record this Mass Dial
reading on the chart at time zero. Plug in the vacuum pump and the
run is ready to be started.
3. Starting the run will involve a second person to open and close the
toggle valves L and M, respectively. In general, the practice has
been to start a run when the second hand on the wall clock hits 12.
Fifteen seconds before starting, the vacuum pump rotameter is set
at 15.0 cm. When the second hand hits 12, one person opens toggle
valve L and closes toggle valve M and the other person starts the
timer and turns the recorder from standby to on. The recorder pen
will immediately jump up scale which is the result of the sudden
force of the mixture gas on the bucket. If, however, the pen does
not remain on scale, turn the Mass Dial to a higher number (perhaps
0.5800) and record this new Mass Dial reading on the chart. At the
end of the first twelve minutes, turn the chart speed down to 10
inches per hour. This is accomplished most efficiently if the
in./min. to in./hr. inner switch is changed first and the outer
switch is changed from 1 to 10 (on the D gear set). For more
692
-------
complete instructions on operating the recorder, including refill-
ing the chart or pen, refer to the instruction manual.
At this point, the run needs only to be periodically monitored,
that is, if the pen goes off scale reset the Mass Dial so the
recorder pen is close to zero, and record the new Mass Dial reading
on the chart and also check the rotameter settings frequently and
readjust if necessary. For convenience in later calculations, the
Mass Dial should be set at a round number except when determining
dry weight and final weights (e.g., set the Mass Dial at 0.6400
rather than 0.6387).
Ending the Run
When the run has been completed (usually 300 minutes), close valve L
and open valve M. Turn off the purge rotameter and the vacuum pump
rotameter and re-zero the recorder with the Mass Dial as quickly as
possible. Record this weight on the chart and turn the vacuum pump
rotameter back to 15.0 cm. Turn off the timer switch. Reduce the chart
speed and turn the purge rotameter back to 9.0 cm. With the mixture gas
bypassed from the sample, turn off the C02, S02, NO and N2/H20 rotameters.
Turn off the 02 toggle valve and loosen the Swagelok connection just
below the toggle valve to vent the 02 line. Retighten this Swagelok
connection when the 02 rotameter reads 0 and turn off the humidifier line
by opening the Vent valve and closing the Run valve. Open the nitrogen
rotameter completely and reopen toggle valve L and close valve M. This
will purge the water off the sample that is dissolved in the acid on the
carbon. When the recorder trace has leveled off indicating a constant
weight, turn off the purge rotameter and the vacuum pump rotameter and
open valve M and close valve L. Turn off the nitrogen rotameter and
rezero the recorder with the Mass Dial and record the dry weight. Turn
the recorder to standby, the recorder range switch on the balance control
box to Z, the Cahn balance to off, and the oven temperature regulator off.
Unplug the vacuum pump and unplug the fan motor to the oven. Unplug
the heating tape on the inlet manifold and on Friday evening turn the
humidifier temperature bath off. (Be sure to turn this on again first
thing Monday morning). Turning off the humidifier bath over the weekend
slows down the evaporation of water from the humidifier and requires less
frequent filling of the humidifier bubblers.
693
-------
Calculations at End of Run
At the end of the run the total amount of sulfuric acid is measured on a
dry basis. The information is used in calculating an integral rate of
reaction. The sample calculation and typical strip chart from a run is
given below.
Integral Rate Calculations
Sample Calculation Run No. 301
Rat. - ( »• * C, , ,„„,
1 Starting Dry Wt. of C - Dry Wt. (Mass Dial Reading) x 200 (Dial Range)
- .5327 x 200 - 106.54 mg.
2 Final Dry Wt. - Dry Wt. x 200
- .6294 x 200 - 125.88 mg.
Integral Rate - (125.88 - 106.54) t 30Q
106 . 54
- .0006051
or
.6051 x 10~3
694
-------
vo
l-n
<
I !
i :
I I
'• TO
i
i
i
i ..„ .j4J.iij_ij.i.i4.:-UlJ-lii.iLU^-L;ii]J:
: : i 1 J i !;. r l j ; ; i • i i ; pi • •[ > i ! ; \ >:\
; j ; so j. ! ! | 40 \ •! ; so i !! i ; GO ; ^ | ; 70 • | j • i i
so ;.: ;:! go • ; |.:
I i : , ! • J . • I _-, <
100
I
-------
WL7 MAD( IN U.f A.
",-, ',
CHART
ft—
•vs-n 'svxai
'ED. HOUSTON, '
— — — i .
rs INCORPORAI
r — 1
\3 INSTRUMCN1
-o-~
e
S-
•
•
1 ;
i
t ;
i
i
; i
; ; i
:|i
"*•
i'l
_J.
i
1
•
i
G>2
- - - 4
*?"^
i
ili
1 !
; i ;
;_U.
: I '
I i
~i
!=:
c
r
, t
it
- 1
i
I
. .
1
Hi
0
I
--
I
t .
i
•
j
*
:
i
i
i
i
!
L
i
h
;
s*.
\
:-
i
i
,
^~~
2O
14"
"""T". ! *J-iw— .
^?
1
|
i
j
'f
-
i
i_
i
i
j
1
- — t-
i
' I
<
i ,
_ .
>
1
!
i
» 1
i
t
1
t
•:
|
i
z:
l
j
•
t
•MM
i
1
1
r«
i
i
Iji
I
i ''
~
t
.|j
^
U
T~
j
'•''•
^•~
•
"CJJ^LL
... ^J_._
-r
|
j
hfa
i
! i •'
i
1
, !
; i
..j.—,i
i
! j
,
i
j
'
i !:
1
i
> i
i
i
\
i
i
i
•' •
i
i :
\ \
• i •
i
!
t .
i"i '
.. ! . _
— nan
! j
... .
1 :
i. ;
i i
'. ,
i
!
1
l •
j"
!
L
i
1
1
•
!
i
' t * -.
\
iji
; 1
3
i
>
»•
i
i
i
"
i
t
-- »
_1_
1
~"~ i
. t
t
I
L.
A
^
——
-r
•-
\ \
i -<
* .—> - *» . -.w*^l. . «... .- •-.. -*^ - .
! . • ! i ' I • -• :•• f-' ' ' i
1 '
^•-r:
' [ - •• •
~ t- 1 i •, } i . ; ; . i
3 ! ' 2JC i i > 60 : ; 70 ! ;,;80. | ,
M: L J M i i-lii,!- - '^H.
r | i !1 ' ! M L[__: '"i:;
: i ' i ! • ! : ' _ . '
; ; ' ' ;i i \'.i \ '•'• ii f.i i'^
™"'^^^'^"^^^^»" - ' 1 1 : J " ! ' * 1 *
1 I ' ' • :j 'J \ 1 ;- 1 • ! , r . 1
1 : ! i I : ] * ! **. 1 '• ' ! !ST"f~: i ; 1 : . ' i
i ! ! pUi:!' :..:-f: ; i-i ! jii ii
.: ,1 _! .^. Ui.liJ.j -f4ii-i- -: : J- -4--
[i! • ^ ;• \'~ \ -J,\ , !;i { j . i:,: i ii
! i : r !- «j- •" " ' j ! ' i • '• '
• -L.-J-* U-^' ! •:''•' 1 1 : i ' ' • ! '
• «• •• ; ' • : i 1 s '. i
iV ^ "i" J : = i I ' • S : II:
" ' • . * • : I :
' IT u- :" ! : : ; ; ; ! I . : ,'p
ft !
--.;.. :
4C
_ i
i- '•' i ": i'l:! ' ' •
'. • ' i : : , ; ; ' ' : ' i
j.;i.-' . :.| !., i • : ; i .-i-
> i.T j ' ' so i • ; - : eo • ' TO ' ; ; is
' ! ! ' • •
-rj-r .
- *.
i .
' i
ff-
i 1
• i -
; i
t i
i
i
i! 9
i
•^^w^b— ^»
' 1
.LL
,,;IT
u . t —
i
i • i
>\
| i
: i
>M !• 'f
1
•; i ;
i
; j
i
:
:
rtt^
*£%
• ' ' 1
\ i ' ' r *
1 v ': "" T
1 -" o c/ -r>
i ;
i
i-
:
'
I
0 ! :
'• ' \'-] i-i : ! :' :'( .i:i :'i i
'ihliilli Li: ! ; - i h i ;|;' 1
• • ' • -i - • ' •. • i : : - : , • | | = . r f
f !
. i 2
i
i . >
-2-3A-
i -
i
b ' / >o
j {
; i ;
i
• — ? • *
-------
APPENDIX B-2
INTEGRAL PILOT PLANT OPERATION
Introduction
The initial integral run, representing the first operation of
the pilot plant after mechanical integration of the equipment
was completed, is described in this section of the Appendix.
Preparatory work such as drawing up procedures for start-up,
shutdown, and data acquisition is presented, as well as the
initial process performance goals. Run conditions are given,
and the results of the run are discussed, including material
balances. To summarize the run results, process performance
goals generally were met or exceeded, and the equipment
operated for about 28 hours, which was equivalent to two full
carbon cycles, or inventory turnovers.
Run Preparation
Preparation was made for an extended integrated run. This
preparation included, besides that of mechanical and instrumen-
tation, that of setting of run conditions, of start-up and
shutdown procedures, and of data acquisition and preliminary
trend analysis. The run conditions are basically those as
given in Table B-2-1. In line with those conditions, target
goals were set as follows:
1) S02 Removal - 90%
2) H2S Utilization - 95%
3) Acid Conversion to S - 99%
4) H2 Utilization - 90%
5) Sulfur Recovery - 25% of Stripper/H2S Gen. Feed
The start-up and shutdown procedures were written to incorporate
the modified operating procedures caused by integration of all
of the pilot equipment. The major differences from past proce-
dures relate to carbon recirculation control from one unit to
the next. As mentioned in the mechanical section, all of the
carbon flow loop has been checked out satisfactorily. The
operating procedures were, therefore, developed from the tests.
The data acquisition covers what variables to be monitored and
recorded and at what frequency. Also, log sheets were prepared
for the variable responses to be recorded. There were seven
log sheets prepared which included three for gas analyses, one
for carbon analyses, one for carbon material balances, one for
697
-------
Table B-2-1. RUN CONDITIONS
RKCYCLt: CAHKON RATE:
30 Lbs./Hr.
S02 .SOiUlKR
Inlet Flue G;is Race:
Inlet Adsorber Gas Comp.
Reactor Temperature:
22,650 ACFH @ 300°F
S02 - 1600
S03 - 40
NO - 150 ppm
02 - 3.47.
1120 - 137.
C02 - 117.
ho - 72.47.
Nominal stack concli iion;3;
no adjustments will be
made except inlet S(>2
to maintain 1600 ppm.
Stage 1 - 300°F
Stage 2 - 160°F (Water Spray Stage)
Stages 3 - 5 - 170-180°F (No Control - Seek Own Level)
InlcC N2 Rale:
Inlet 112S Rate:
175.6 CFH @ 70°F
71.6 CFH @ 70°F
Inlet Gas Composition: l^S - 28.17.
N2 - 71.97.
Reactor Tempcrnture: 275°F (Average)
255-285°F (Range Reactor Bottom to Top)
SULFUR STR1PPER/I12S GENERATOR
Inlet Gas Rate:
Inlet Gas Rate:
H2 - 75. A CFH @ 70°F
N2 - 175.6 CPU 0 70°F
H2 - 30Z
N2 - 707.
Reactor Temperature: 1200°F (Average Gas)
1000-1250°F (Range in Gas)
Carbon Flow Split:
157. to Top Stage (4.5 Lbs./Hr.)
857. to Stage 4 (26.5 Lbs./Hr.)
CARBON' CONDITIONER
Inlet Gas Rate:
Gas Composition:
Temperature:
Air - 430 CFH @ 70°F
Steam - 802 CFH @ 70°F
Air - 357, (Volume)
Steam - 657. (Volume)
300°F
CARBON 1'RKIir.ATF.R 'll'.Ml'ERAT
600°F
698
-------
gas flow rates and pressure drops and temperature, and one for
critical process response variables. One gas analysis log
sheet is for routine determination every 4 hours of the flue
gas concentrations of S02, 02, and H20 at the inlet and outlet
of the S02 sorber. The other two gas analysis log sheets are
for routine determination of the gas concentrations of H20, C02,
H2S, H2, N2, CO and S02 at the inlet and outlet of the sulfur
generator and H2S generator/sulfur stripper every 4 hours.
The carbon analysis log sheet is for the routine determination
every 4 hours of the total sulfur, acid and moisture content
of carbon samples from the S02 sorber, carbon preconditioner,
sulfur generator, and H2S generator/sulfur stripper. The same
analyses would be made for the intermediate stages but on a
less frequent basis of every one to two days. The carbon
material balance log sheet is for routine tabulation of carbon
added or removed from the integral pilot plant as dust or
granular carbon. The carbon samples are taken on an 8 hour
or daily basis and the dust collection is on a similar sheet
for recording these variables every 8 hours for all of the
units.
The primary log sheet is for the critical process variables.
To run the pilot plant on an extended run basis following all
of the variables constantly would require a sizeable effort
in itself. For this reason 32 process variables were picked
as-primary indicators of the smooth operation of the integral
pilot plant. This does not mean the other variables are
ignored, but rather are recorded on a less frequent basis.
This log sheet is shown in Figure B-2-1 because of the
importance in pilot plant control and operation. These 32
points are indicated in Dwg. No. 2528A in Appendix B-3 and
include 10 temperatures, 8 pressures or pressure drops, 7 gas
flow rates, 5 indications of carbon flow, and 2 indicators of
stable sulfur condenser operation.
To allow preliminary trend analysis during the run, prepara-
tion was made to calculate and plot several responses during
the course of the run. At the end of the run a more detailed
data analysis would be made. The responses which are calcu-
lated several times each day are S02 removal efficiency, H2S
utilization efficiency, H2 utilization and conversion to H2S
efficiency, sulfuric acid conversion to H2S, and carbon attri-
tion rate. A running plot will be made of these responses to
allow a quick effect evaluation of carbon cycling on the
variable. Besides these efficiencies, material balances will
be made daily for sulfur, H2, H2S, and carbon to lend credence
to the results being obtained. The material balance will be
particularly important in assessing possible needs of recali-
bration of gas analysis equipment.
699
-------
FIGURE B-2-1
OPERATING LOG 1
DATC
o
o
-------
The advance preparation made should insure a more meaningful
set of results in line with attaining the target goals
mentioned above. Particularly it should make us more aware of
process changes that might be necessary to meet the goals.
Integral Run
In preparation for a 15 day run in the S02 pilot plant, a
shorter run was made to evaluate the system under extended
operation. During the run all equipment was operated at antici-
pated process conditions and cylinder H2S was used. The initial
goal was to attain at least 3 cycles. Equipment operation was
stable at the end of 2 cycles when an emergency shutdown of the
boiler, estimated to last several days, resulted in the shutdown
of the S02 removal equipment. In general, the goals of S02
removal, regeneration gas utilization, and conversions were
approached or exceeded.
Operating Conditions
The average operating conditions and carbon and gas analyses
are given in Table B-2-2. The carbon was circulated through
the pilot plant at a carbon rate of 28.9 Ibs. C/hr. The S02
sorber was run at 3 ft./sec. with an inlet S02 concentration of
1600 ppm. The temperature of the bottom stage was held at
about 300°F, the temperature on the second stage was controlled
at about 160°F with a water srpay, and the temperature of the
subsequent stages averaged about 180°F. The S02 removal effici-
ency was such that an acid loading of 0.216 Ib. acid/lb. C was
obtained compared to the goal of at least 0.18 Ib. acid/lb. C
loading. The sulfur generator was run at about 0.3 ft./sec.
with an inlet H2S concentration of about 30 volume 70. The
temperature was controlled by the moisture content and carbon
temperature set in the carbon preconditioner. The conditions
in that unit were about 310°F at a steam concentration of about
65% to maintain an acid solution on the carbon of about 0.72
Ib. acid/(lb. acid + Ib. H20). This was estimated to be suffi-
cient to minimize the premature evolution of H2S04 as S02•
The H2S generator/sulfur stripper was run at 2.5 ft./sec. at
1200°F with an inlet H2 concentration of about 30 volume 7o.
The average temperature of the unit was about 1200°F with
temperatures ranging from about 850 to 1500°F. The lowest
temperature of 850°F was on the fourth stage where the pre-
heated carbon of about 600°F was fed. The higher temperature,
near 1500°F, occurred on Stages 5 and 6. The cause of this
high temperature is being rectified.
701
-------
TABLE B-2-2. AVERAGE OPERATING CONDITIONS AND CARBON AND GAS ANALYSES
UNIT
S02 SORBER:
BOnOM STAGE
TOP STAGES
CARBON PRECOND.
S GENERATOR
H2S GEN./S STRP.
TEHP..
°F
AVG. RANGE
« 2io-
"• 'ft
310 3°V
™ Uf
nm M5 -
1185 149Q
PRES.
DROP
IN.
HpO
21
6
9
21
GAS FLOW RATE,
CFH 3 70°F
FLUE
GAS
15,100
—
AIR
410
STEAM
780
H2S
75
H2
82
N2
176
187
TOTAL S
ANALYSIS
ON C, %
IN
3.4
8.1
8.1
23.0
OUT
8.1
8.1
23.0
3.4
H2S04 AND S CONTENTS
ON CARBON
IN
iWCID/fC
0
0.216
0.216
0.007
#s/*c
0.035
0.035
0.035
0.297
OUT
JACID/IC
0.216
0.216
0.007
0
*S/*C
0.035
0.035
0.297
0.035
GAS
CONCENTRATION
INLET*, S
S02
0.162
—
H2S
--
30.5
H2
—
29.8
«2
«
69.3
72.0
GAS CONCENTRATION
OUTLET*, I
S02
0.0115
0.7
0.28
H?S
2.0
23.4
H2
1.3
H20
*
36.5
**
4.5
•*
CO
0.07
0
C02 ,N2
0.02
0.35
60.9
70.6
o
K>
*As determined by a gas chromatograph.
**Br difference.
-------
During the run the carbon was circulated through the equipment
as mentioned at a carbon rate of 28.9 Ibs. C/hr. The estimated
carbon inventory was roughly 430 Ibs. C so a carbon cycle is
taken as the time required for the complete carbon inventory to
be turned over. The time for a cycle is about 14 hours.
Steady state is taken as the time required to get carbon from
theinlet of the S02 sorber to the H2S generator/sulfur stripper,
about 10 hours. It is then assumed steady state is from this
time on. The stability of the run is measured by the responses
of all carbon and gas analyses for the run, but the gas analyses
of S0£, H2S, and H2 are the major indicators of stability during
the run.
Main Results
Gas and Carbon Analyses
The gas and carbon into and out the process units were analyzed
routinely for assessment of the process stability, efficiency,
and for material balances. The gas and carbon analyses from
the units were effectively constant for the duration of the
integral run. Therefore, the average results of the analyses
given in Table B-2-2 are indicative of the results obtained.
Typically the regenerated carbon from the H2S generator/sulfur
stripper to the S02 sorber contained about 0.035 Ib. S/lb. C.
The carbon from the sorber averaged an acid loading of about
0.216 Ib. acid/lb. C. The carbon from the sulfur generator
averaged a sulfur loading of about 0.30 Ib. S/lb. C and an
acid loading of about 0.007 Ib. acid/lb. C. This means the
sulfuric acid conversion to sulfur was about 93%. The gas
analysis from the S02 sorber indicated an inlet S02 concentra-
tion of about 1600 ppm and an outlet of about 115 ppm for an
average S02 removal efficiency of 93%. The gas analysis from
the sulfur generator gave an inlet H2S concentration of about
30 volume % and an outlet concentration of about 2% for a H2S
utilization of about 93%. The outlet SC>2 concentration ran
about 0.7 volume % for a premature evolution of H£S04 of about
8% of the sorbed acid. The gas analysis from the H2S generator/
sulfur stripper was an inlet concentration of about 30 volume °/0
and an outlet concentration of 1.3% for an overall H2 utiliza-
tion of about 967o. The outlet H2S concentration was about
23 volume % for a H2 conversion to H2S of about 82% and sulfur
conversion to H2S of about 68% (want 75%).
Material Balances
The gas and carbon analyses were used to obtain material
balances for sulfur , hydrogen, and carbon. These balances are
given in Table B-2-3 on an individual unit basis and an overall
pilot plant basis. The stream identifications are given on
Dwg. 2529 in Appendix B-3 for the integral pilot plant. The
703
-------
TABLE B-2-3.
MATERIAL BALANCE SHEET FOR INTEGRAL
OPERATION OF S02 PILOT PLANT
Stream
NuRber
G-ll & -12 •
C-ll
6-13
C-12
D-ll
D-12
C-13
G-301 I -302
C-12
6-303
C-201
0-301
0-302 '
•
G-204
C-201
G-205
G-205
C-^C*
D-201
'
G-103
C-101
C-102
G-104
G-104
G-104
C-103
D-101
Stream Identity
SQ2 Sorber - Gas In
- Carbon In
- Gas Out
- Carbon Out
- Cyclone
- Dust Collector
- C Weepage
TOTAL
C Precond. - Gas In
- Carbon In
- Gas Out
- Carbon Out
' - Cyclone
- C Filter
TOTAL
S Generator - Gas In
- Carbon In
- Gas Out H;S
- Gas Out S02
- Carbon Out
- C Filter
TOTAL
HgS Gen./S Str. - Gas In
- Carbon In
- Carbon In
- Gas Out HZ*
- Gas Out S
• Gas Out HZ
- Carbon Out
- Cyclone
TOTAL
Overall Balance
Sulfur Balance,
Ibs. S/hr.
In
2.03
1.02
.-
..
..
„
"
3.05
0
3.06
._
»„
—
3.06
6.22
3.06
.-
„
»
_"r-
9.28
0
.1.29
7.30
__
..
mm
Out
..
0.14
3.06
0.02
0.03
0.00
3.25
„
0
3.06
0
—
3.06
...
0.48
o.iv
6.59
9.24
*•«
•>«
5.05
2.52
1.02
0.01
8.59 8.60
8.25 8.42
— i
Hydrogen Balance,
Ib. ?/hr.
In
..
--
..
..
._
..
*"
—
__
__
__
„.
._
--
•••>
— M
imm.
>*
—
~
0.40
0
o
__
••
0.40
0.40
«^«-^MW«
Out
..
—
. —
—
—
~
"
—
__
._
..
_.
..
—
- —
__
- —
__
—
—
0.32
Q
0 02
v * V(*
n
V
0
0.34
0.34
•
Carbon. Balance
Ib./hr.
In
540
•»«H>MM«IM
Out
,
483
•H^*l^^IM^^^^^HB
704
-------
sulfur balances across the S02 sorber, sulfur generator, and
the H£S generator/sulfur stripper gave an in/out ratio of
3.05/3.25, 9.28/9.24, and 8.59/8.60, respectively. The overall
sulfur balance was 8.25 Ibs. S/hr. into the system and 8.42
Ibs. S/hr. out of the system. These material balances give
good reliability in the results of the run.
The hydrogen balance indicated 0.4 Ib. H2/hr. into the H2S
generator/sulfur stripper and 0.34 out as H2S and H2. The
unaccounted for H2 amounts to about 15% of that fed to the
unit. This is similar to the results of past runs on a one
carbon cycle basis.
A more extended run that the two cycles of the present run is
needed to assess the effect of cycling on the additional H2
usage. The last H2 and H2S analysis at the outlet was made
near the start of the second carbon cycle, so that the
hydrogen material balance is basically an indication of the
results of the first carbon cycle.
Prior to and during the run a total 540 pounds of carbon were
introduced into the system and 650 pounds of material were
recovered. The pounds C depends on the values taken for the
amount of sorbed sulfur, moisture, and acid content. In the
reactors containing the most carbon, also having the most
effect on the balance (S02 sorber and sulfur generator),
these constituents vary from the reactor inlet to outlet, so
for the present material balances an average value across the
column was taken. Using this method the carbon balance indi-
cated 540 pounds in and 438 pounds out, a difference of 10%.
After the next cyclic run all of the carbon will be regenerated
so a more accurate balance can be obtained.
705
-------
APPENDIX B-3
BLUEPRINTS
Dwg. No. Title
INTEGRAL
2507 Mechanical Integration - 20,000 CFH S02 708
Pilot Plant - Process Flowsheet
2511 Mechanical Integration - 20,000 CFH S02 709
Pilot Plant - Equipment Modifications
and Relocation
2528A Instrumentation for Integrated S02 710
Recovery Process
2529 Material and Flow Streams and Sample 711
Ports
S02 ADSORBER
S-M-11709 Fabrication Details - 18" S02 Adsorber 712
2401 18" Diameter High-Capacity Fluid Bed 713
S02 Adsorber at No. 6 Boiler
6"0 PRE-CONDITIONER
2488 Carbon Pre-heater - 8"0 Moving Bed 714
Sulfur Generator
8"0 ACID CONVERTER
2484 Fabrication Details - Moving Bed Reactor 715
2485 Process Flowsheet (Preliminary Drawing) 716
4"0 UNIT
2376 4" Diameter Stainless Steel Fluid Bed 7l7
Reactor (Fabrication)
2399 4" Diameter Fluidized Bed Regenerator 718
Located at No. 6 Power Boiler
706
-------
Dwg. No. Title Page
2385 Distributor Plate Template - 4" Diameter 719
Stainless Steel Reactor
2487 Gas Heater for 8"0 Moving Bed Sulfur 720
Generator and 4"0 H2S Generator/Sulfur
Stripper
SULFUR CONDENSER
2537 Sulfur Condensing System for S02 721
Recovery Pilot Plant
2532 Assembly Drawing - Sulfur Condensing 722
System
GAS CHROMATOGRAPH
30460-B Schematic of Analyzer 723
30460-Z Schematic Flow for Gas Sampling 724
30461-F Gas Sample Handling System Schematic 725
707
-------
708-A
-------
Mechanical Integration - 20,000 CFH
S02 Pilot Plant - Process Flowsheet
Dwg. 2507
a
b
Xv -;•.%.
i... V-•;•••"•'
\ / ft!*ff-"i;Ffie*- i
V lf**»«V** _
/ • r7,^-^
^•v AW«,*l j(-» . i ^^r i
(,,.
T jf / /: vv? r^>
"~"
Westvaco
CHARLESTON RESEARCH CENTER
P. O. BOX S207 NORTH CHARLESTON. S. C. 29486
HAWNEir c /?e»» MTUJ. ?•; ZJCMCD
SOUS 1 JMIW. I W.
DWG. No. 2507
708-B
-------
\
gf'ZZ
ttrg **?T£>n (¥>vet (
C, VfS JpCXCTtb
r- L t
RK#'B) i
£-* »T I MM
1
S tat t MI*
#7 "/9-
709-A
-------
Mechanical Integration - 20,000 CFH
S02 Pilot Plant - Equipment
Modifications and Relocation
Dwg. 2511
A" i.i« At* HOSK.
Westvaco
CHARLESTON RESEARCH CENTER
P. 0. BOX SX07 NORTH CHARLESTON, S. C.
ijc:*k.
SCAU - 1 JO. NO I W.
O. Ml. I p. - jTjj
21 J DWG. Na
709-B
-------
710-A
-------
Instrumentation for Integrated SC>2
Recovery Process
Dwg. 2528A
Westvaco
CHARLESTON RESEARCH CENTER
r. 0. IOX 9107 MOUTH CHAKIHTQN. I. c. IMM
a—pssnzTTirETETjr—-^rf
n 1.,..'..- LI.- I DWG. No.
710-B
-------
711-A
-------
Material and Flow Streams and
Sample Ports
Dwg. 2529
CHARLESTON RESEARCH CENTER
f, 8. BOH 5?07 NORTH CmRLESTOM. s. C 21406
711-B
-------
Vt'tt MIL* VHt loMsTft.0.
ID. T« MATCH 1,0, of t, KM lam m
A5 MOWN . M'ANktT
: lOTH Wl« V KH.4O »* W f*IS DO
MOT AFTIMt IU MX SECT lOUt-VWHH
wn ONLY m CLWTT
[-2* CPU*. WITH PUM
DLT. ' 2"
/liiUaV
BOTTOM DETAIL
Jlffclti. OHt
GENERAL HQTEfr
I. HL IMTMtM.1 fU«M. K WltTVACO WifM YHf •KClVTldU Of tltW*
t AIL ttlUFtN* TO M W ACCOM. WHtt i*T[V 5*(t!> Of AWS.
I, IACH ttCtlOM «M*U 81 fUl OF MKBIH6 U*& 4 6IOVHO SMOftTH ON tn*
4. CHT1II AttUftl* *°T" W^'Pt I <>UT, tHALL M THOlAMM(.f CtlitIO A 01
$ UH»IM» Mil W A«r < M.L FOtttfcM WWTI«|4L ,
I. MO MtMTIMb at9VlK.I04AurMI«tCAtlOM«Ml.t. H MNI Ui4NIAT4vi«llitiMttlMeI
«. KU1IM COLUMU TO 61 Ptf *«tM»tlP %1 «MiCAT« AnO CHICKtD To H
3TIAIUT 4 TIU& WITH * MAI MiSAUbUMtUT Of*** Wll tMTIU i-IW&IH
HAY II OlVAttlMftuo WB Ti*y\PoiiAliou w jat «>n.
712-A
-------
Fabrication Details - 18" S02
Adsorber
Dwg, S-M-11709
la
BILL OF MATERIAL
6 BOLTS >M/WVTi,W
@
mumciroK on
PET. 'V*
»'M«iimMft 'taHMMf
jfeU) 4 f OH. r
REVISIONS
Westvaco
FABEICATIOW DETAILS
18" SOi ADSORBER
712-B
-------
^J
t->
I
•*»•;
-------
CO
I
Cd
I6
y
r
3 a
-
1*1
3 I
W
M
3 I
y
- to* ^€JUT.^ «-•. p
031-'
(D 00
0. 3
WO
OK-
ro g
> n>
CLrt
crsc
n> H-
HOP
ft O
to
o
H-
rt
O
H-
M
(D
OQ
S3
o
-------
pge.ngfl.Tar> UMIT
-S.B-C.-rtgai>j A-A"
OKIENTATliBN
•/," • i"
714-A
-------
Carbon Pre-heater - 8"0 Moving
Bed Sulfur Generator
Dwg. 2488
. . .
..U,"
MOLE. P»ATT&RJ4
.. FiH.1
TO MATC-N
I|"D « '''ft" THICK.
ALUN1IMUM
PETAJ L V
M
Tt>
-SEE I«U
SEE
MOTE
ALL Pip
STE.BL
cpU;
* - »4"
5*
K £
Svj
CHARLESTON RESEARCH CENTER
P. 0. BOX 3207 NORTH CHARLESTON. S. C. 2*406
CARB(9jMu
__.__
• <[ 8E.D 1
OKAWN n...c.i.Re.wi wnt .L,i4 -.7.1 euro ............ MTE
p» » i
UWG. No.
714-B
-------
Jt Mil T-1Ifc *»
Utl^OM t*k-4
-"^
YI.6W
' It"
715-A
-------
Fabrication Details - Moving
Bed Reactor
Dwg. 2484
4fc"<^ PIP* iCM |O
's
L
UOTE- 4lL
A*
All Deill u»Uno Be MAMCD Ftee or MCT»I
veto srL»TTe«, AMD ewptm UMIJ CBKIDUCD c^t
u
c
>
^-^
^/^
\'^
it*
u u
JS
as
a
jl
Jn
• !
SJ
K
|
!
Westvaco
CHARLESTON RESEARCH CENTER •
P. O. MX »07 NORTH CHARLESTON, 8. C. IMOI
FA£U?1CATION OC-^AlLS,
.M=>y,N.S....»»B!. KftA^TOt _
njMNvrCL..{3aiiVJLiuiE Jr.li-13 cure , DAH.
.*??:.'"J —I^JDwo. No. A4»4
715-B
-------
VTKAM fr-—— -'"'-
Ik l*At* C*«»T»«** »*»•* i*« «f
,(« ?~
\K
f
ft
J
> »/, JAW V. <0 A
()
^__. r%
*4 firs. » ie' OSS
BWP tso" - -»ir* r
T-lit ts leu ie pice
!t+ «,*«.
MMM ••(•MM «pr«M«r**
«MW**<* »» 4** IMttf R«.
'4"» T-JlttlPIP«
«*t-f, ^-2-
~®
I:
©
• «
»>»•*«,
/** /*.«)
716-A
-------
Process Flowsheet (Preliminary
Drawing)
Dwg. 2485
716-B
-------
-J
t->
I
TOP FLANGE £>ET#fL
«Of-»"
-------
^J
M
I
TrP/CAL SECTION ELEVATION
Ci) neo'o
seme- '/*"*e'-i-
H-O
m n>
(i rt
(D
03 CO
O rt
rt fto
O H-
K 3
(-*
/-s (D
»rj 00
P CO
cr
t-S CO
H- rt
o ro
to ro
rt i-1
N3
CO
^J
ON
-------
«»J
I-1
00
WHEM CVMJUCT »U><*e« S OF*.
-------
00
^^ ^
*'* x *•*»« Y ta*i*e Y *»i»es
i »»^. •-•-^ »** «. »-i»A n^-t-t
O (D :
51 OQ
fD (D O
H D H-
ro o>
WH 3
o » m
H- rt rt
MO ro
(D H H
o M
o C
(to p.
rr D.
n> H-
a N
(D
oj a
2; n>
o a.
K)
-------
719-A
-------
Distributor Plate Template - 4"
Diameter Stainless Steel Reactor
Dwg, 2385
M0I.BS TO MATCH 4 WP* FU! 4
o.o. « T* r-3io s,.*.
Westvaco
CHARLESTON RESEARCH CENTER
P. 0. BOX 5107 MOUTH CHARLESTON, i. C. M40«
FUL.I-
TE ,A.-.S1:7.!. CMTP DMt.
w. a Na
DWG. No.23as
.. ~* 719-B
-------
A
_. n rrt
PSB|x^x^^^\Kvvv^vry^vv^\x'^\ts^^
f//t* 8eT**w'K"S .icweeu \
e.
i~Le * r
t«io' oven FWD OF pipe «MO HELD
INJ PLACE ar T>~u fl) weto.^jt, eons vvcLot-o ro
OF p t f-e .
TWO
720-A
-------
Gas Heater for 8"0 Moving Bed
Sulfur Generator and 4"0
Generator/Sulfur Stripper
Dwg. 2487
SCH 4O T- JK3 SS
"A"
1
SIZE
DIMO4S1OM A"
4' •«• .
1" MPS
4"
Westvaco
CHARLESTON RESEARCH CENTER
P. 0. BOX 3207 NORTH CHARLESTON, 8. C. 29406
DRAWN BY.
-------
PRIMARY 4 (MCJc-u* suLPUC PUMP*
MOUWYKD tUWt HBATM C**"«T
WITH M*YONt AUTklOK
VIKlU« »» HO ROTAItY PuMP*
IKlU« "A Jl Q ROTAItY
CPM/^HP. no v, TEFC.
LIQUID
PUMP CABIKICT
TB»-1P TO !»»'»»
MIL W/P*MI
721-A
-------
Sulfur Condensing System for
S02 Recovery Pilot Plant
Dwg. 2537
T6 A * A"lcvtt4t, OC&
i©'
STEAM TRAC1M*;
TO M*IWY*'M J.TB - 1*& * P. TM*,«****W M»»T T
-------
72 2-A
-------
Assembly Drawing - Sulfur
Condensing System
Dwg. 2532
\?'
r-i
IH . HI
ft,.
BBTAlt.
- Weatvaco
CHARLESTON RESEARCH CENTER
r. o. »o« aior NOHTH CHA»LE«TO>I. s. c.
L F y
•SMCET 2.' Of A
• MO, I W, ft NO.
- jDwc. No. .2 53 2
722-B
-------
T»4I
It* MR
NCUT
[>*
-------
Schematic of Analyzer
Dwg. 30460-B
REVISIONS
ZONEJLTR
M
DESCRIPTION
C.tt 97S5 • OS £
DATE
t-SJ-lt
APPROVfl
•f
6 Ant* iAttilt HKt S*>t. ""W~»"~" -
-e
w
©
fri
(KEF owe
TEMKRATUNE
CONTROLLER
MATER
OVIRTE-P
P*"T NUMBER ITEM
DESCRIPTION
LIST Of MATERIAL
UNUfSS OTHERWISE SPECIFIED
DIMENSIONS ARE IN INCHES.
TQUERANCES:
MA ERIAL
CONtMCT NO
C •• i, 7,
Tha Bandix CorporaMon
Pvocaa* Inolrumanta O^/loion
noncavai la< Wavt Virginia
SCHOKTIC, OOt ANALY7EIT
j SlZf
CODE IDENTMC
-5"
723-B
-------
724-A
-------
Schematic Flow for Gas Sampling
Dwg. 30460-Z
REVISIONS
ZONE|LTR[
DESCRIPTION
I DATE IAPPROVEI
.ORIFICE
'AIR (0-W
, T
IM
> — % 550118*1 | ,— % 5801134-
.L VALVE
[ NO 3
1
-c — h r-agx
"C_ — g *
PLBO < 5 PLUG
L— '**"*£$*'
4
PLUG 1 5 PLUG
REFERENCE
FLOW
ADJUST
»«D I MOO I MOD 1 _.,
MI* I|DA«H- 1 1 OAIH 1 1 rrj
THERWISTOR FOR PROBC */ — • '
l\BTWf^ Vrftn •< W wO 1 C 2O
DETECTOR A^ "."pnu. m*Z>« •
IT NUMBER ITEM DESCRIPTION | OCIION*T>C««
LIST OF MATERIAL
[0 CONTMCT NO Th« B«ndlx Corporation
ProcMi |n«trum*nt* Division
ii.. SCHEMATIC. FLOW
"> 4-22-70 ««-»l-7«
RE5 c*l> 1 GAS SAMPLE , 3 COLUMN SWITCHIN6
A A
SIZE CODEIOENTNC
r " 3O4G.O-Z.
8C»Lf IWT *• '" ISMtET
NV^
c
•-
1
A
724-B
-------
-TEMP CONTROL HOUSING
-LO MASS HEATER
• AIR
QFAC
4ICAC
STEAM
7*AT ~.
(BY CUSTOMS*)
MOUNT VCWTICAL W» WTMW
•O* OF VERTICAL
DO NOT KOULAT!
(8V
L
i
NOTES
© I MINIMIZE T« LfNCTH OF SAM. LmE AT THESE
POINTS
t. WRAP WITKI fTEAM TUtNO £ O.D.
1 1 COVER WIT*, THERMOW HEAT CONDUCTING
COMPC'WD
4. INSULATE
© I S- I TO *frU> ; TO H*Vt GLASS WOOL FILTER
IN PLACE Or rERTOBATIC SCREEN
725-A
-------
Gas Sample Handling System
Schematic
Dwg. 30461-F
AfAUYZER TO MOUNT 01
SAMPLE SYSTEM
1" F1MROMSS INSULATED SHEET MCTAL
HousMo •»xr.«xit o.o NOTE:
LINE TO^ INC1NERATOJI OK
INCMERATOM STACK
CLOSE MWtE (WMOOZS09-1J
•«•»
• .,•.-. .A-...
(»T«AM ««£•!•'»»• - •"•:
X V 1 A'V1
STCAM JET EXHAUSTIII - DETAIL "fc"
PLI«D t IMSTALLU) »Y
cttwaD ram
THIS IS A TYPICAL. 3 STREAM
SYSTf M WESTVACQ
ATOH,
TUK • FLOAT O-IOO'eCMM
725-B
-------
APPENDIX B-4
PILOT PLANT OPERATING MANUAL
Introduction
1. S02 Pilot Plant Location and Layout Drawings 727
2. Block Flowsheets 732
3. Equipment Schematics 743
4. Process Control 761
5. Process Control - 8" Diameter Moving Bed Sulfur 766
Generator and 6" Diameter Pre-conditioner
6. Process Control - 4" Diameter S Stripper/H2S 775
Generator
7. Pilot Plant Electrical System 781
8. Start-up and Shutdown Procedures 784
726
-------
Introduction
The purpose of the operating and instruction manual is to pro-
vide appropriate information on equipment and operating
procedures. The manual should facilitate the efficient opera-
tion of the equipment as well as provide the necessary informa-
tion to effectively troubleshoot and correct operating problems
which might be encountered.
The operating manual is given in three volumes. The first
volume contains process description information. The second
volume contains complete vendor's information on the maintenance
and operation of the equipment. The third volume contains
mechanical, electrical, instrumentation, and structural drawings
for the S02 recovery equipment at No. 6 boiler at Westvaco's
Charleston Mill.
The abbreviated manual given here is a condensed version of the
first volume covering the information directly needed to operate
the pilot plant. This includes block flowsheets, schematic
diagrams, start-up and shutdown procedures, and process control
information which consists mainly of calibration curves for con-
trol of flow rates. The section of process control has been
shortened by omitting the numerous calibration curves for
rotameters and other flow measuring devices.
727
-------
APPENDIX B-4-1
S02 PILOT PLANT LOCATION AND LAYOUT DRAWINGS
728
-------
WESTVACO S02 RECOVERY PROCESS
NO. 6 BOILER INSTALLATION
PLOT PLAN
729
-------
ELEVATION VIEW OF WESTVACO S02 RECOVERY PROCESS
AT NO. 6 BOILER - EAST VIEW FROM COOPER RIVER
Level 8
Level 7
Level 6
Level 5
Level 4
Level 3
Level 2
66'
Carbon
Blender
Bucket Elevators
for Carbon
8"0
Unit
?T
Carbon Heater
4"0 Unit
Unit
Carbon Cooler
4"0 Unit
Panel Board
Level 1
\ \Door
730
-------
HESTVACO S02 PILOT PLANT
LOCATIONS OF MANUAL ALARMS AND EMERGENCY EQUIPMENT
MECHANICAL
SHOPS BLDG.
FIRST AID
TATION
POWER
HOUSE OFFICE
POWER
BOILER HOUSE
7
SAFETY
EQUIPMENT (OPERATING FLOOR)
iWESTVACO PROCESS
! PILOT EQUIPMENT
[AREA
PROCESS
UNITS
OVERHEAD
I GAS
*
RE TRUCK
AMBULANCE
SAFETY EQUIPMENT
(GROUND FLOOR)
GAS
STORAGE AREA
MANUAL ALARM SIGNALS
• MANUAL ALARM ACTUATORS
-------
APPENDIX B-4-2
BLOCK FLOWSHEETS
732
-------
(This page intentionally blank.)
733
-------
733-A
-------
Mechanical Integration, 20,000 CFH
S02 Pilot Plant Process Flowsheet
Dwg, 2507
a
b
(**-•».)
r
r i»pa c*f*
14- mf
if W/*
4t* S".» «.,**//><•'> __
ZtOV «•** S '" *** O"*'/**
l"l 'Hi". - 4»'1#~*
**' // . ^
i /-uv
V'+O'f
3Q0iC*M.»-l»»'«
}* llfMCIMt
pf -IfiCM/M
1 !
"Jl
/.<••••
/ i
i V / «' ^
/
OUST
C/5/ L&C.
f- *
TVfir fff
tlf> *• rl Cl
1*r. u *a *
C&TTPH »*,
*t*Mi*t SA
'jsr slave"-
L^
-»~* * i / ' I
f: tit, I('H * j
Westvaco
CHARLESTON RESEARCH CENTER
P. 0. »0» 1207 NORTH CHARLESTON. S. C. MW>
iAiate..c.f.n i
^-i / .'
n fi /icwc-o MTI
jariH-TirsTis-t=; -- i"
,
IDwG. No.
733-B
-------
73A-A
-------
Material Flow Streams and Sample
Ports
Dwg. 2529
Westvaco
CHARLESTON RESEARCH CENTER
P. 0. BOX 5207 NORTH CHARLESTON. S. C. 29406
ssra I JOB NO. wo HO |r> jTj
**?»*... ]-.- I.....T. JPwc. No. 2529
734-B
-------
. * \ m* 1 *>n*a«m* t
I V / (w**. »*-* UM)
7 35-A
-------
Instrumentation for Integrated
S02 Recovery Process
Dwg, 2528A
„..? . *L . „ 'IL ?' °^ ....^-P*!! ... ...,,.. .
g^mmJL,,.^,- .„,.,.....i...,..^.m..] t^WC. I^O. .^f.^.ftR^
PUG**, «*»*•
£n**wri 4* UMI i
me*-un
735-B
-------
18" 0 S02 SORBER
18" 0
S02 and
Sorber
-» 2
STREAM
1
IDENTIFICATION
Flue Gas
Flue Gas
Sulfur Free
Activated Carbon
COMPOSITION
1100 ppm S02*
4 vol. % 02
15 vol. % H20
150 ppm NO
11 vol. % C02
Bal. N2
110 ppm S02**
[Balance Same
as Above]
2% Elem. S
*Normal Stack Conditions
**Minimum S02 Outlet Composition
FLOW RATE
160-300 CFM e 70°F
180-320 CFM @ 70°F
TEMPERATURE. °F
300 - 350
150 - 220
13 - 25 Ibs./hr. Room Temperature
736
-------
STREAM IDENTIFICATION COMPOSITION FLOW RATE TEMPERATURE, °F
(J) Sulfuric Acid 0.181* # HgSO^ C 16-30 Total #/hr. ?0 - 100
Loaded Carton h Wt. % HgO
Balance Carbon
(5) Hot Water 100^ E^> 60 #/hr. 150
737
-------
WATER SPRAY SYSTEM FOR 18"0 S02 SORBER
To
Sump
Insulated from H20
Heater to Column
H-l
11-2?
ffi 22 120V
H20
Heater
Thermostat
Temp.
Controller
Electric-
Pneumatic
Transducer
Water
Brooks Rotameter
Tube R-6-15-B
Carboloy Float
Air
Operated
Valve
anual
Bypass
Thermocouple
Stage # 2
18"0
Unit
Air
Brooks Rotameter
Tube R-6-15A
S.S. Float
Knock-out
TraT
•Air
Filter
Regulator
/
"4
Booster
Pumo
City Water
Supply
738
-------
SCHEMATIC OF HgO SPRAY SYSTEM
Mill
Air t-
Supply
—Mxt
H20
and Oil
Trap
To Spray
Noz'/J.e on
Stage 2 of
Brook s
Rotameter
ilator
^VioTT anrl Tulip Hpnt
Exchanger - Insulated
_fcr k-
r
A
HgO
Filter
1 Brooks Ro
J 0-129 c
J 0-74.5 #/
IsX fc
4 '
^H
I
^^J^HM
/^\ Pressure
^*"^ Gauge
•••
nsulated X
,
6
Dial
Thermometer
To Suinp
v
!
Brooks
Rotameter
2lf #/Hr. Full Scale
Steam
Strainer
and Trap
50 psig
Steam Supply
739
-------
. i|" REGENERATOR
©©©©©©
Rogene
rator
Carbon Heater
Carbon -Cooler
CTKKAM
1
2
Nitrof.cn
)i.vilvogcn .Sit'U'J
Pure
Pure
o-6iio CFU e 70° F* Roora Tcmp< _ 1000
O-llOO CFH G 70° F Room
*At QlBMsplicric prccsurc. As the proRjuu-o Jjicrouncs at tlui roLaiiK.-tcr outlet
the flow incvear.i-s by u i';it-tor of l'~t j}( Y
'
740
-------
STRKAM
IDMrnFICATlGN
COMPOSITION
FLOW RATE
TEMPERATURE, °F
Steam
*«*
s)
I)
6)
T)
8)
Hydrogen
Carbon Monoxide
Carbon Dioxide
Inlet Gas
Lower Carbon Seal
Pure
Pure
Pure
Note*
Pure
Leg Nitrogen
Upper Carbon Seal
Leg Nitrogen
Off Gas
Inlet Carbon
Outlet Carbon
Pure
3 70° F
0-300 cm © 70'F
0-100 CFH © 70*F
0-100 CFH © 70°F
0-61fO CFH © 70°F
35 CFH @ 70"F
25 CFH @ 70°F
230-1000
800-1000
Room Temp.-1000
Room Temp,-1000
Room Temp.-1000
Roon Temp.
Roon Temp.
Note** 0-?lK> CFH© 70°F Room Temp.-.1000
Note*** 0-50 Ibs./hr. Room Temp.-1000
Note****. 0-50 Ibs./hr. Room Temp.-1000
•^Contains HgS + Inerts for Sulfur Generation
Contains Inerts for Sulfur Stripping
Contain (3 112 + Inerts for HgS Generation
*«Cont:iins Steam (HgS, SOg Possible); S; HgS (Hg, S Possible) for each
of the abovfc operations, respectively..
«*tCo»tains
or S.
****Contalns S (from Sulfur Generation) or Very Low SSlfur (HgS Generation or
Sulfur Stripping)
741
-------
-j^l^ ,_. aBF a*/*, _ISJI.-»M»JUJL
742-A
-------
Sulfur Condensing System for
S02 Recovery Pilot Plant
Dwg, 2537
1
^
1
i 1C
f. \ ,
:^>
'
L
c -404 Liauto sut<=^
J mrt.». - I»-L, K«*» T i
i ee.p- ow«i ,1111. _'
1
T* • * MCVIMC, Be»
L,«. (J)
STEAM TRACIMH MOJIFOit
<30UB*MI« «F CACN LlM • It >M*!r*Y
Westvaco
CHARLESTON RESEARCH CENTER
T 0. »O» S10T HO«TM CH*»LE»TOM. S. C. IMM
SULFUR.
-.^.^.mnii a.-.7i
JMttO. I Vo.HO. I
742-
-------
APPENDIX B-4-3
EQUIPMENT SCHEMATICS
743
-------
SCHEMATIC OF EXHAUST LINES FOR SD0 REMDVAL EQUIPM3KT AT KO. 6 BOILER
I.D.
Fan Blower
K>
\
Blender
-------
PRESSURE DROP GAUGE READING FOR 18" 0 UNIT
(PJ-
•1«tf
On fjC
-Brt
0-8 (^
0-8 (q
00 /St
~8Vj
00 /Si
-8 r
X5-0-5 .
2
9>k
y
DPI-15)
3
J)
WI-14)
4
b
1DPI-13)
5
g\
fDPI-12)
6
g^
riDpi
7
••
18" 0 S02 SORBER
/^
-------
PRESSURE DROP GAUGE READING THROUGH 18" 0 UNIT
2-0-2
0-8
3
3
0-8
0-8
D
5
0-8
i
i
• fi
0-8
Stage 4
Staged
Stage 2
->Gas Exit
Blank Plate
Bypass
Stage 1
X * 6as Inlet
Orifice
IT—
0-5 L(J5)—I ^ 0.5n
APor1flce porificc
746
-------
THERMOCOUPLE ARRANGEMENT FOR 18" 0 S02 SORBER
(TL-16) 9
*••
/TI ir^ '
UL-luJ
/ TI 1 Jl \
(TL-14)
/TI
-------
THERMOCOUPLE ARRANGEMENT FOR 18" 0 S02 SORBER
Tl-9
TI-4
TI-3
TI-2
TI-8
TI-1
TI-5
Gas Exit
Stage 4
Stage 3
Stage 2
TI-7
Blank Plate
Bypass
Stage 1
TI-6
Heat Exchanger
Ori fi ce
Gas Inlet
TI-10
Butterfly Valve
748
-------
GAS SAMPLE LINE ARRANGEMENT FOR 18" 0 S02 SORBER
Dekron-Steam Traced & Insulated
To Gas
Chromatograph
(GS-15).
(GS-14)-
(GS-13)-
(GS-12)-
(GS-11)-
(GS-10)-
•*• Gas Exit
18" 0 S02 SORBER
* - Gas Inlet
Dekron-Steam Traced & Insulated
To Gas Chromatograph
7A9
-------
GAS SAMPLE LINE ARRANGEMENT FOR 18" 0 S02 SORBER
SL-4*,
SL-3
Si-2
SL-8
SL-1
SL-5
-> Gas Exi t
Stage 4
Stage 3
Stage 2
Blank Plate
Bypass
Stage 1
Heat Exchanger
Gas Inlet
Butterfly Valve
750
-------
DUST COLLECTION SCHEMATIC - 18" 0 UNIT
7th_LEVEL _
• i
18" 0
Off-
6th_ LEVEL
5thJLEVEL
4th LEVEL (I.D
—
TEV 6-2
Unit
Sas m- ' iTi
, .,_. ,flftrnCycl one '
'I"! I c_-| EV 6-
r
Fan Floor)
3rd LEVEL
E
V 2-2
IfEV 2-3
Carbon
Blender
«
(
»
1
EV 6-7 -
:v 6-3-|j- £=
DUST
COLLECTOR
F-l
4-w
^L
EV 6-51
EV 6-8— t|i —
EV 6-9 -ijl —
EV 5-4
EV 4-6 — f
HT-
••I
mm
EV 3-1 H||
EV
H- +4
EV 6-6
El
2-'*T
No J
Valve l
Exhaust
J~*to Roof
^
Exhaust Blower
'- E-2
EV 6-16
f + Shroud
6-7
— ||i-
-$-
5
EV 3-
-4-
LV
• r^ 4 "p unit
Carbon
Preheater
EV 5-1
± Shroud
'l'~4"0 Unit
EV 5-3
r 4'ij Unit FU c ?
^ C * -3~*C
EV 4-5
EV 4-4
^Shroud £y ^_2
EV 4-1
3
- Shroud 4"0 Unit
Preheater
Carbon
Blender Discharge
751
-------
INSTRUMENTATION CONTROL SCHEMATIC FOR 8" 0 SULFUR GENERATOR
>6" 0 Preconditioner
*• Gas Out
Cyclone
(CY-301)
Variable Rheostats
-205 ERS-206
8" 0 Moving Bed
Sulfur Generator
R-8 (Manual Control)
R-9
(Manual
Control)
T r
H2S N2
I
Carbon Bypass
Carbon Out
752
-------
PRESSURE DROP GAUGE READINGS FOR 8" 0 SULFUR GENERATOR
Carbon In
P. DP
Orif. Orif.
PI-301 DPI-301
(0 - 50) (0 - 2)
Cyclone
(CY-301)
Gas Out
n
H2S N2
Gas
Heater
N2
11
1
-f
22
8" 0 MOVING
BED SULFUR
GENERATOR
(RV-200)
•\ ..r
\
^ udb
31
P Ou
11
P 1
221
Out
-201
-200
DP L.S.L.
DPI-208
Carbon Bypass
N?
Vibrating Feeder
Carbon Out
753
-------
THERMOCOUPLE ARRANGEMENT FOR 8" 0 SULFUR GENERATOR
Carbor
Gas
Heater
x~^a Tn f"\
Air-Q ° Iff
tf "- 1 i
Steam .1...
(
T
i In
\
12
TI,
L-2
<
TR
101)
9
>
*
,
k
.,6" 0 Preconditioner
s JT^ — "dj> ^u
r ^_pj
1 I Cyclone
13 (TIC-301) V (CY"301)
(Iron-Const.) *
\
(TIC-302)
(Iron-Const.)
rr
H2S N2
(TI, TR,
TL-203)
(TL-202)
(TL-201)
Gas
Heater
(TL-200)
TIC-201
(Iron-Const.)
(TL-207)
N2
8" 0 MOVING BED
SULFUR GENERATOR
Gas Out
Carbon Bypass
Vibrating Feeder
-'] (CV-2)
Carbon Out
754
-------
GAS SAMPLE LINE ARRANGEMENT FOR 8" 0 SULFUR GENERATOR
Air-£ J
Blower
Carbon I
Gas Out
To Gas Chromatograph
rr
*0ekron - Steam Traced and
Dekron*
-N--
-N--
-iX--
HXh-
60"
48"
36"
24"
12"
^Dekron
To Gas
Chromatograph
Cyclone
To Gas
Chromatograph
N2
N2
8" 0 MOVING BED
SULFUR GENERATOR
N?
' Vibrating Feeder
I
Carbon Bypass
Carbon Out
755
-------
DUST COLLECTION SCHEMATIC - 4" 0 UNIT
6th LEVEL
Flare
4" 0 Unit
Off-Gas
5th LEVEL
8" 0 Unit
Off-Gas
r H e\ H- ^ 4-
v v \*ti t *,
Off-Gas
CQW qno
4th LEVEL (I.D. Fan teveTJ
Cyclone
CY-101
•Carbon
Filter
I.D. Fan Exhaust Blower
E-3
3rd LEVEL
From Power
House 3oiler
756
-------
DUST COLLECTION SCHEMATIC - INVENTORY HOPPER
4" 0 Unit
Bucket Elevator
Exhaust
(To Roof)
7th LEVEL
EV 6-10
7
EV 6-11 •=•
6th LEVEL
Jrf EV 6-12
DUST COLLECTOR
F-4
Air Bleed
Carbon Inventory Hopper
on 2nd Level
(Operating Level)
757
-------
AIR SUPPLY SYSTEM SCHEMATIC FOR SYSTEM
ON SOUTH WALL OF BOILER HOUSE
18" 0 H£0 Cooling^,
Spray System
To Pres. Reg. of
Pneumatic Valve
at Orifice
Pressure Supply for
Pneumatic Actu-
ator of Butterfly Valve
on Inlet Flue Gas to 18" 9
Main Air Supply
Kane Feeder
Open (On 2nd Level)
Air Purge
Kane Feeder
Boiler House Air Supply
Vent
758
-------
PRESSURE READING SPECIFICATIONS FOR 4 INCH DIAMETER REGENERATOR
Carbon Inlet -\Q
Gas Exhaust 4 ...
•
'
Gas Heatpr _,__
4
Staae 8
Stage 7
Stage 6
Stage 5
Stage 4
Stage 3
Stage 2
Stage 1
_J <
\
V A LIC 102
1 9 T
_i_
Carbon Heater
Q DPI -109
/ \
/
O pi-ioi
y
/i npi-ios
A DPI -107
6 V
f\ DPI-106
**rS
A DPI-105
4 Y
A DPI-104
3 S^
A DPI -103
2 Y
A DPI-102
1 ^f
I | »%n T 1 Al
Vy* DPI-IOI
0
A 1
\Pl-103fj
A
Q DPI-100
11 Y
Carbon
Cooler*
T
DPI - Pressure Drop
PI - Absolute
Pressure
759
-------
THERMOCOWIJS SPECIFICATIONS FOR k INCH DIAMBTKR R15GK
Carbon Inlet
1
Carbon
Heater
c-Uii
j |nc-io5
'
CJt "\ r
<
Stage 8
Starve 7
Stage 6
Stage '5
Stage U
Stage 3
Stage 2
Stage 1
t 1
P JiA
U8
rt li T
C-'LY
__!T
It 1 /*
C-'»6
|<6
r \\ c;
c."i?
_Ji5
!|!4
-43
U3
C-i)2
J*2
C)l 1
— 41
»»1
19
(TI, TR, TL-108G) ! »
—[ 1 HTA-101
(TL-108)
(TL-107G) | 1 TIC_ioU
(TL-107)
(TL-106G)
(TL-106)
j | TIC-103
(TL-105)
(TL-10UG)
(TI, TR, TL-10U)
(TL-103G)
^ j TIC-102
(TL-102G)
(TL-102)
(TL-101)
-j j TIC-101
C-U9| j
TIC-100
1(12
TIC-106
(TI-113)
Carbon
Cooler
[ I
HTA-102
TI-C
(Fenwal Temperature
Controller and Controlling
Thermocouple No.)
760
-------
APPENDIX B-4-4
PROCESS CONTROL
761
-------
-"J
CT>
N)
12
15
16
O
O
O
o
%>
18
o
19
O
O
O20
*" DIA. UNIT PANELBOARD
25
27
28
-------
1 NO Rota.
2 S02 Rota.
3 02 Anal.
k Sample Rota.
5 Sample Pump Bypass
6 Sample Pump ON-OFF
7 Orifice Mag. Ga.
8 Inlet Gas Map,. Ga.
9 18" (Zl Press Mag. Ga.
10 Press Drop Mag. Ga.
11 Inlet Valve OPEN-CLOSE
12 Steam 6" 0 Unit
13 Steam 18" 0 Unit
Ik 1/10 Hr. Timer
15 1 Hi-. Timer
16 S02 Rota. 18" 0 R-6-15-B, SS, B1K.
17 02 Anal.
18 SOg Anal.
19 S02 Recorder
20 Carbon Level Controller
21 Stage 1 Mag. Gauge
22 Stage 2 Mag. Gauge
23 Stage 3 Mag. Gauge
2k Stage k Mag. Gauge
ITS Heat Exchanger Mag. Gauge
OP Outlet Press Mag. Gauge
OG Outlet Gaa Mag. Gauge
25 Column Heaters
P.6 Pprny Water
27 Inlet Gas Temperature Recorder
28 Bailey Bottom Stage A P Recorder
763
-------
AUXILIARY CONTROL EQUIPMENT AND MEASUREMENT
1. HgO Spray System (Schematic of System is attached.)
2. Analyzers
A. S02 Analyzer and Recorder
B. NO Analyzer - I0R.
C. 02 Analyzer
D. Moisture Analysis with Packed Tubes of Drierite
3. Temperature - Multipoint Recorder
764
-------
Gas Flow Rate Control
Control of the gas flow rate through the 18" diameter sorber
is achieved by adjusting the pressure drop across an orifice.
Curves were plotted using the orifice equation, which permitted
the correct pressure drop setting to be determined quickly. In
order to conserve space the curves are not included here.
However, the orifice equation from which the curves were
generated is:
AP
= 143.4(T0 + 460)[
where APO
TO
Tc
U
orifice pressure drop, inches W.G.
orifice temperature, °F
average column temperature, °F
linear gas velocity in 18" sorber,
ft./sec.
765
-------
APPENDIX B-4-5
PROCESS CONTROL - 8" DIAMETER MOVING BED SULFUR GENERATOR
AND 6" DIAMETER PRE-CONDITIONER
766
-------
7— T——7
f i r.
-------
AIR FLOW RATE ORIFICE - 6"0 UNIT CARBON PRECONDITIONER
OO
-------
_ j
F|n Scale StAani FW ilfotA In 6"0 Unit, CFH
3E
h*»
JU>-
-€)-
1CX
i i i f
:c>
:0
C>
C3
t/>
-m-
:s
*:
~o~
-rK
»«&-
ts
"0~
TT
-w»-
™0»_
H T-+-
"TS~
TO"
-n-
CD
^
m
J>_
_C3_
ro.
-&
m
—f*T-
-------
—-PROCESS-H 2S-GAS "FLOV
:' ' INLETTO '
150 200 250 300 400 500 600 800 1000
Gas Flow Rate, CFH 0 70°F
770
-------
10.0
o
CM
CX
e
o
3
11
-------
TIME REQUIRED TO PURGE 8"0 MOVING BED AND RELATED CARBON
HANDLING EQUIPMENT AS A FUNCTION OF THE CARBON RATE
10.000
9,000
C.OOO 1--
7,000 i
6,000 -j
5,000
•o
i
o
•o
41
4->
10
01
Cf
•g
-------
Ir0:_su2- SQRBER: ;5s~& IHJNCIIQN: :.:_:
SO? REMQVftttfRQR-TtiT-FtUf"^ftS-
u>
!terininecr"wftTi S02- AnaTyzer, -PPH
at ;Rpo|rT;Temperature Basisj :'_']:_.__
-------
RELATIONSHIP BtlHEhN
.ATIONSRT? BhlHEl
; --1" -I —--H-^
It COBVERSIfN TO SULFUR!TN WVWl
-------
APPENDIX B-4-6
PROCESS CONTROL - 4" DIAMETER S STRIPPER/H£S GENERATOR
775
-------
ON
TIC4U
HC45
nc4i
HC4IO
TIC47
FIC43
o o
QLFA 101
.1C
1102
HTA
102
TIC 49
HTA
IOI
O
O
o
o
o
o
PI 101
0
1
2
3
4
5
6
7
8
9
(2)
LFAIOI
R6
R2
R5 R4 R3 Rl
a
(3)
4*DIA UNIT PANELBOARD
-------
TI CUll
TI CUlO
TI CU5
TI C^7
TI Ckl.
TI
LIC 102
HTA 102
TI
HTA 101
LFA 101
DPI-1
DPl-2
•
DPI-3
«
PPI-1* <
DPI-5
DPI-6
DPI-,7
»
DPI-8 ,
4
DPI-9
DPIA'-l
PI-2
LIC 101
LFA 101
Fl-101
R-l
R-2
R-3
R-k
R-5
H-6
Carbon Heater Temperature Controller
Gas Heater Temperature Controller
Stages 5 and 6 Temperature Controller
Stages 7 and 8 Temperature Controller
Stages 1 and 2 Temperature Controller
Stages 3 and h Temperature Controller
Carbon Heater Level
Temperature Controller
Temperature Controller
Temperature Controller
LO Plow
Magnehelic Pressure Gauge
Magnehelic Pressure Gauge
Magnehelic Pressure Gauge
Magnehelic Pressure Gauge
Magnehelic Pressure Gauge
Magnehelic Pressure Gauge
Magnehelic Pressure Gauge
Magnehelic Pressure Gauge
Magnehelic Pressure Gauge
Magnehelic Pressure Gauge
Magnehelic Pressure Gauge
Man. Auto level Alarm
Upper Seal Leg
Steam
Flex-Tube Man.
HgSRota. Tube: R-6-15B, SS, BIK.
H2 Rota. Tube: R-6-15B, SS
H2S Rota. Tube: R-8M-25-U BR 1/2 35 G10
C02 Rota. Tube: R-8M-25-U BR 1/2 35 G10
N2 Rota. Tube: R-8M-25-4 BR 1/2 35 G10
N2 Lower Seal Leg: R-6-15A, SS, BIK.
Purge Rotas.
Panic Button
777
-------
AUXILIARY CONTROL EQUIPMENT AND MEASUREMENT
1. Inlet and Outlet Gas Sample Line
A. Both are tied into a gas chromatograph.
B. The outlet line is heated and insulated. (Heater controlled by
thermostat.)
778
-------
CONSTANT VELOCITY CURVES FOR 4"0 REGENERATOR
Column Temp
TOO 200 300 400 500 600 700 800 900 1000 1100 1200
qT, CFH * 70°F
-------
Gas Flow Rate Control
In the integrated pilot plant, direct reading rotameters were
used so that the need for calibration curves was eliminated.
In earlier work before integration, different rotameters were
used which did require the use of calibration curves.
780
-------
APPENDIX B-4-7
PILOT PLANT ELECTRICAL SYSTEM
781
-------
Breaker Box No. 3
1 Inlet Gas Line Heater (18"0 Unit) Orifice to Column
2 Inlet Gas Line Heater (18"0 Unit) Orifice to Column
3 Lights and Plug Mold, 18"0 Unit
4
5
6
7
8
9 Level Controllers for 18"0 Unit
10 Heaters, Steam Line, 18"0 Unit
11
12 Heaters, Steam Line, 18"0 Unit
782
-------
Breaker"Box No. 2
1
2 Two Heaters - 4"0 Unit Off-Gas Line and Cyclone
3
4 Sulfur Condenser Pump Heater Box Fan Motor + 2
Heaters (1500 Watt)
5
6 Two Heaters; 1 to Carbon Filter, Other to Heater
Filters to S Condenser
7 Chromatograph Module Control (Main Breaker)
8 Two Heaters; 1 to Carbon Filter, Other to Heater
Cyclone to Filters
9 Receptacles at Chromatograph
10 157o Carbon Flow to Top Stage of 4"0 Unit (CFC-3)
11
12
13 Pre-Heater Blower
14, 16 Heater (Inlet Gas 8"0 Unit)
15, 17 Power Stat 204 (Heater 8"0 Unit)
18, 20
19, 21 Power Stat 205 (Heater 8"0 Unit)
22, 24 Column Heater (6"0 Unit)
23, 25 Power Stat 206 (Heater 8"0 Unit)
26, 28
/
27, 29
30, 32 S Condenser H20 Pump
31
33 Vibrating Feeder CV-2 (8"0 Unit C Discharge)
34 Standby Screw Feeder
783
-------
APPENDIX B-4-8
START-UP AND SHUTDOWN PROCEDURES
Start-up Procedure for Integral S02 Pilot Plant
1. Cut on 6"0 unit blower.
a) Cut on Breaker 13, Breaker Box # 2.
b) Cut on switch on 8"0 unit panel board.
c) Set velocity as-determined by orifice AP for Gauge
DPI-301.
2. Set nitrogen flow rate into 4"0 unit and the upper and
lower seal legs.
a) Set pressure at N£ regulator, R-5.
b) Set air pressure for inlet gas pneumatic valve at 20
psig (behind panel board).
c) Set flow rates at rotameters.
3. Cut on automatic slide valve carbon feeder (CFC-4) to
4th stage of 4"0 unit.
a) Set air pressure for Foxboro DP controller at 20 psig.
b) Set air pressure for cylinder valve operator at 60 psig.
4. Cut on vibrating feeder (CV-4) for 4"0 unit carbon discharge.
a) Cut on Breaker 12, Breaker Box # 1.
b) Set variac at 10070 (115 volts) .
c) Cut on DPDT switch on 4"0 unit panel board to AUTO
position.
5. Cut on vibrating feeder (CV-2) for carbon discharge from
8"0 unit.
a) Cut on Breaker 33, Breaker Box # 2.
b) Set air pressure for Bailey DP controller at 20 psig.
c) Cut on at vibrator control box.
6. Set nitrogen flow rate into 8"0 unit and the upper and lower
carbon seal legs.
a) Set pressure at N2 regulator.
b. Set flow rate at rotameters.
7. Cut on main breaker for starting switches.
8. Cut on 4"0 unit bucket elevator at starter box.
9. Cut on flue gas blower (FGB-1).
a) Drain possible condensate from blower.
b) Open valves near blower.
c) Close flue gas vaive at stack (should have been closed)
784
-------
d) Cut on blower at starter box.
e) Set air pressure for trunnion valve at 30 psig (manual
sta. rd. f+J 9.1) .
f) Set air pressure for manual station at 20 psig.
g) Set gas flow rate by adjusting inlet gas valve at manual
station.
10. Cut on exhaust blowers E-l and E-2 for 18"0 unit.
11. Adjust pressure at gas outlet of 18"0 unit.
a) Close Valves EV-6-2 and open EV-6-1 and EV-6-3.
b) Adjust Valves EV-6-4 as necessary for -0.2 to 0.0 DP
reading.
12. Cut on vibrating feeder (CV-5) for 18"0 unit carbon
discharge.
a) Cut on DPDT switch to probe control for CV-5.
b) Cut on at vibrator control box.
13. Cut on automatic carbon ball valve feeder (CFC-3) to top
stage of 4"0 unit with appropriate switch at panel
board.
14. Cut on cooling H20 to 4"0 unit carbon cooler.
15. Cut on Kane gravimetric carbon feeder.
a) Cut on Breaker 4, Breaker Box # 1 (should be on).
b) Set air pressure at 40 psig at regulator.
c) Cut off air pressure at 35 psig at Kane unit.
d) Set carbon feed rate.
16. Cut on vibrating feeder (CV-7) between Kane feeder and 18"0
unit bucket elevator.
17. Cut on 18"0 unit bucket elevator at starter box.
18. When carbon flow at steady state, start system heat-up.
19. S02 Sorber (18"0 Unit) Heat-up Procedure
a) Air Preheater Start-up
1) Cut on propane tanks to line pressure of about 35 psi
2) Open Valve 1.
3) Open Valve 2.
4) Cut on igniter.
5) Open Valve 3 (crack).
6) Open Valve 4 to desired pressure (*>^20 psig at
3 ft./sec. should be sufficient for 300°F).
785
-------
b) Cut on inlet gas line heaters.
1) Cut on Breakers 20 and 21, Breaker Box # 1; and
Breakers 1 and 2, Breaker Box # 3.
2) Set three Chromalox temperature controllers on I.D,
fan floor at 310°F.
c) Cut on water spray to standby.
1) Close H20 valve near column (Valve H-l) .
2) Open air valve near column (Valve H-2).
3) Cut on air on operating floor.
a) Set air pressure at regulator at 45 psig.
b) Set air flow rate at rotameter.
4) Open H20 bypass valve to sump (Valve H-3 on I.D.
fan floor near turborod heater).
5) Set thermostat at 150°F (on I.D. fan floor).
6) Cut on H20 on operating floor.
a) Open H20 Valve H-4.
b) Cut on H20 pump.
c) Adjust manual bypass to the indicated flow
rate.
7) Cut on Breaker 22, Breaker Box # 1.
d) Cut on steam tracing to gas sample lines.
20. Carbon Preconditioner (6"0 Unit Heat-up)
a) Cut on inlet gas heater.
1) Cut on starter box.
2) Set TIC-302 temperature controller at indicated
temperature.
b) Cut on column heater.
1) Cut on Breakers 22 and 24, Breaker Box # 2.
2) Set TIC-303 temperature controller at indicated
temperature.
c) Cut on steam tracing to off-gas line, cyclone, and
carbon filter.
21. Sulfur Generator (8"0 Unit Heat-up)
a) Cut on inlet gas heater.
1) Cut on Breakers 14 and 16, Breaker Box # 2.
2) Set TIC-201 controller at indicated temperature.
b) Cut on column heaters.
1) Cut on Breakers 15, 17, 19, 21, 23 and 25, Breaker
Box # 2.
2) Set Powerstats 204, 205 and 206 at indicated
settings indicated by AM 204, 205 and 206.
c) Cut on steam tracing to gas sample lines.
786
-------
22. H2S Generator/Sulfur Stripper (4"0 Unit Heat-up)
a) Cut on power to controllers.
1) Cut on Breakers 7, 9, Breaker Box # 1.
2) Cut on heater power switch at panel board.
b) Cut on inlet gas heater.
1) Cut on Breaker 13, Breaker Box # 1.
2. Set TIC-106 controller at indicated temperature.
c) Cut on inlet gas plenum heater.
1) Cut on Breaker 14, Breaker Box # 1.
2) Set TIC-100 controller.
d) Cut on column heater.
1) Cut on Breakers 15, 16, 17, and 18, Breaker Box # 1
2) Set TIC-101, -102, -103 and -104 controllers.
e) Cut on carbon preheater.
1) Cut on Breaker 19, Breaker Box # 1.
2) Set TIC-105 controller.
f) Cut on off-gas line and cyclone heater.
1) Cut on Breaker 2, Breaker Box # 2.
2) Set powerstat to get indicated temperature.
Shutdown Procedure
1. Shut off propane; readjust orifice AP for 18"0 unit as neces-
sary to maintain indicated velocity.
2. Cut off Breakers 13, 14, 15, 16, 17, 18 and 19, Breaker
Box # 1; and cut off Breaker 2, Breaker Box # 2.
3. Adjust rotameter R-5 as necessary to maintain gas velocity
in 4"0 unit.
4. Cut off'Breakers 22 and 24, Breaker Box 2; adjust orifice
AP for 6"0 unit as necessary to maintain gas velocity. Cut
off starter box for inlet gas heater for 6"0 unit.
5. Cut off breakers 14, 15, 16, 17, 19, 21, 23 and 25, Breaker
Box # 2.
787
-------
6. After all temperatures steady, near 100 F, cut off carbon
flow.
a) Cut off Kane feeder.
b) Cut off bucket elevator.
c) Cut off CV-7.
d) Cut off FC-102 (15% flow to 4"0 unit).
7. Cut off Breakers 7 and 9, Breaker Box # 1; cut off heater
power switch on panel board for 4"0 unit.
8. Cut off gas flow to 8"0 unit.
a) USL
b) LSL
c) column
9. Cut off 18"0 unit blowers.
a) Exhaust blower
b) Dust collector exhaust blower
c) Flue gas blower
10. Cut off blower for 6"0 unit (preconditioner) .
11. Cut off gas flow to 4"0 unit.
a) USL
b) LSL
c) Column
12. Cut off main N£ supply.
13. Cut off Breaker 12, Breaker Box # 1; cut off Breaker 33,
Breaker Box # 2.
788
-------
APPENDIX B-5
SAFETY PROGRAM FOR PILOT PLANT
OPERATION OF THE WESTVACO PROCESS
789
-------
SUMMARY
EMERGENCY PROCEDURES
HYDROGEN SULFIDE OR HYDROGEN RELEASE
HYDROGEN SULFIDE RELEASE
CATEGORY I - LEAK IN EQUIPMENT OR GAS SUPPLY
AT THE INDICATION THAT H2S IS REACHING DANGEROUS CONCENTRATIONS:
1. DON AN ESCAPE MASK, PROCEED TO THE SAFETY EQUIPMENT AREAS AND DON A CANISTER MASK.
2. SHUT OFF THE H2S AT THE PANEL BOARD AND IN THE GAS HANDLING AREA.
3. IF THERE IS A LARGE LEAK IN THE GAS HANDLING AREA, DON A SCOTT AIR-PAK BEFORE
ENTERING TO SHUT IT OFF. ,
4. NOTIFY THE SUPERVISOR.(NAMES AND PHONE NUMBERS POSTED AT PANEL BOARD).
5. CHECK H2S LEVELS IN THE GENERAL AREA. IF THE H2S CONCENTRATION IS BETWEEN 170 -
300 PPM AND DOES NOT BEGIN TO DECREASE IN 10 - 15 MINUTES, SOUND THE H2S ALARM.
IF THE CONCENTRATION IS ABOVE 300 PPM SOUND THE ALARM IMMEDIATELY AND FOLLOW
STEPS 4 AND 5 IN CATEGORY II.
CATEGORY II - PERSONNEL OVERCOME OR UNCONTROLLABLE LEAK
1. SOUND THE HaS ALARM.
2. DON ESCAPE MASK, GO TO SAFETY'CABINET AND DON CANISTER MASK AND EVACUATE TO UPWIND
POINT FROM GAS RELEASE.
3. IF PERSON IS OVERCOME AFTER PUTTING ON CANISTER MASK, REMOVE THE VICTIM TO AN
UPWIND POINT AND APPLY FIRST AID.
4. CALL FIRST AID tEXT. 200) AND REPORT EMERGENCY.
5. SUPPLY INFORMATION TO THE FIRST AID SQUAD UPON ARRIVAL.
HYDROGEN RELEASE
CATEGORY I - EQUIPMENT OR GAS AREA LEAK. .FIRE
1. SHUT OFF THE H2 (ALSO H2S IF FIRE) IN PANEL BOARD AND GAS HANDLING AREA.
2. IF THERE IS A FIRE, EXTINGUISH WITH A DRY CHEMICAL EXTINGUISHER.
3. NOTIFY THE SUPERVISOR.
4. TEST FOR FLAMMABLE LEVELS OF HZ AND IF THEY EXIST SOUND THE ALARM AND FOLLOW THE
STEPS IN CATEGORY II, BELOW.
5. NOTIFY THE FIRE MARSHALL OF ANY FIRES THAT OCCUR AND ARE EXTINGUISHED.
CATEGORY II - EXPLOSION, UNCONTROLLABLE LEAK OR FIRE
1. SOUND THE H2 ALARM.
2. EVACUATE THE BUILDING TO UPWIND POINT.
3. IF FIRE OR EXPLOSION IS IN THE BUILDING, SHUT OFF THE HYDROGEN AND HYDROGEN
SULFIDE IN THE GAS HANDLING AREA.
4. NOTIFY FIRST AID (EXT. 200) AND THE FIRE BRIGADE (EXT. 277).
•5. PROVIDE INFORMATION TO THE FIRST AID SQUAD AND FIRE BRIGADE UPON ARRIVAL.
790
-------
TABLE OF CONTENTS
Page
SUMMARY - EMERGENCY PROCEDURES 790
INTRODUCTION 792
Description of Equipment and Location 792
HYDROGEN SULFIDE 797
Physical Properties 797
Physiological Effects of Hydrogen Sulfide 797
Responses to Various Concentrations of Hydrogen 798
Sulfide
Location and Operation of Regenerator Equipment 799
Protective Measures for Operating Personnel 799
Safety Procedures 800
Precautions in Handling and Storage 800
Emergency Procedures 801
HYDROGEN 803
Physical Properties 803
Location and Operation of Equipment 803
Protective Measures 803
Safety Procedures 804
Emergency Procedures 805
First Aid - 806
SULFUR DIOXIDE 807
Physical Properties 807
Location and Operation of Equipment 807
Protective Measures 808
Precautions in Handling and Storage 808
Leak Detection 809
First Aid Suggestions 809
NITRIC OXIDE 811
Physical Properties 811
Location and Operation of Equipment 811
Precautions in Handling and Storage 812
Leak Detection 813
First Aid Suggestions 813
791
-------
INTRODUCTION
Pilot plant equipment is located in the area of No. 6 boiler to evaluate
the Westvaco Process for removal of S02 from flue gas with activated
carbon and for regeneration of the carbon. Three reactors, an 18 inch
diameter SOg sorber, a 4 inch diameter regenerator, and a 8 inch diameter
regenerator, along with associated feed and handling equipment, will be
used. Instrumentation is located on a central panel board on the
operating floor level of No. 6 boiler. Gases to be used in the study are
stored in the gas handling area between the cooling tower and coal
storage hopper at the east end of the power plant.
At various times hydrogen sulfide, hydrogen, sulfur dioxide and nitric
oxide will be stored in the gas handling area and used in the reactors.
Hydrogen sulfide, sulfur dioxide and nitric oxide are toxic gases and
hydrogen is highly flammable, as is hydrogen sulfide.
Equipment, exhaust systems, and storage areas are designed to minimize
gas leakage into the air. There always exists, however, the possibility
that gases will escape and the following program is designed to prepare
operators in case of accidental gas release.
All operators will participate in a training program. Practice in the
program will continue until the operators respond automatically. This
program will include:
A. Information on the Location and Operation of Equipment
B. Information on the Location and Practice in the Use of Gas
Masks
C. Instructions Concerning the Alarm Systems, Various Hazardous
Gas Detectors
D. Instruction on the Proper Evacuation Routes
E. Location(s) of Telephone(s) To Use in Case of Accidents
F. Instruction on First Aid Procedures
G. Instructions on the Proper Handling of Cylinders.
Description of Equipment and Location
The pilot plant used to study the development of the Westvaco Process is
located in the northeast corner of the boiler house near No. 6 boiler as
shown on the plot plan on the following page. The pilot plant treats a
slipstream of the stack gas from No. 6 boiler. Regeneration equipment in
the same location is supplied by gases from a storage area located between
792
-------
LO
HESTVACO SO-, PILOT PLANT
. L.
LOCATIONS OF MANUAL ALAR I! S AND EMERGENCY EQUIP I-'t NT
1
MECHANICAL
SHOPS 3LDG.
FIRST AID
"STATION
POWER
HOUSE OFFICE
SAFETY
EQUIPMENT (OPERATING FLOOR)
POWER
BOILER HOUSE
^WESTVACO PROCESS
3 ! PILOT EQUIPMENT
FIRE TRUCK
#
^PROCESS
J UNITS
OVERHEAD
GAS LINES'
SAFETY EQUIPMENT
(GROUND FLOOR)
'/jtfAvyGAs
^•KAii-STORAGE AREA
XANUAL ALARX SIGNALS
o KAN'j/.L ALARV- ACTUATORS
-------
vO
UE*. - W
A
11- r ri.ii*' — - — , / 1
EOT", nr. ^^ T-J — *- — r
CLElf- - 7V }
, AIM
ECON. 'LAT. I !
£L£V. - «t* |
LJ
FLUE us
FftW STatf. J .._._„ _____[
SO?, » t f
€U». - 42' \ RCACTOR ' ™
Li-;
\
--
^ i
i
! ]|( LOU PURGE GAS FIW
CARSOfl
L M ' QV FLOU K.APEC
T— j -T1 * OFF-SB
S * t X,. 1 EWKST TO
iW
ALAW
TO Sl'ROUD
EXHAUST
Jp'i i* liAi RtAllK
_„ 1 ' ^«- LOW PURGt STEAM „ -
__ r-^OSFLO. ;<^ .
jawj M i
3 , C^ s« S
_ — i ^ y ». — ?T.,(^] , __
HI-TEW. >**» j^—£T
BUCKET ]> f> Y^
ELEVATORS I
OPE WT JUG FLOW J 1 1 L
ELEU. - M'S' ^^ V-'
GROUNO FLOW ELEtf.
T ) SHflOUD ^
•ZXKAUST M
PWEL BOARD I
tREM) „ tn*Trl T HIGH «ZS FLOM (IN
, ^ HZ 3AS HJWDLlltG AREA)
— STEAJ"
' i £ Westvaco
! K CHARLESTON RESEARCH CENTER
1 S P. O. BOX 5207 NORTH CHARLESTON. S. C. 29406
ELEVATION l. F S02 PILOT PLAHT
AT NO. 6 S01LEK
"^ ATO ACigATESBASTE«°wo S AUTOMATIC :rFETY ALARH SYSTEfi
INDIVIDUAL ALARK S
LIGHTS. « "
\ ' DRAWN BY -._b-: DATE- .Ji'.'^CHK'O DATE
MtST ELEVAT'Or. ( , j -,.,- Tr, _r6U L/WG NO
-------
the coal storage hopper and the cooling tower as shown. The equipment
consists of an 18 inch SC>2 sorber and k inch diameter and 6 inch
diameter regenerators. The equipment extends from the operating floor
to approximately the 105 ft. level. A panel board located on the
operating floor is used to monitor and control the equipment.
Associated materials handling equipment is also in the area.
The following safety items are associated with the equipment:
1. General Alarm
Alarm horns and flashing lights are located at the S02 panel
board, in the gas storage area and near the panel board for No.
6 boiler as indicated in the plot plan drawing. The alarms can
be activated by push buttons on the panel board or in the gas
storage area. The horns can be silenced by buttons at each
location, but the flashing lights can only be deactivated by a
button at the S02 panel board.
2. Automatic Alarms
Several automatic alarms are incorporated into the system. When
actuated a horn sounds and a master alarm light comes on. In
addition a labeled pilot light is actuated.
a) Exhaust Gas Flow
If the exhaust flow rate drops below a pre-set value all
gases except nitrogen are shut off and an alarm is sounded.
All gases can also be turned off manually by a switch on
the panel board. A steam purge can be put into the equipment
by turning a switch on the panel board. If the shroud
exhaust flow drops below a pre-set value the alarm system is
actuated.
b) High Temperature
In case of high temperature in the regenerator or carbon
cooler, an alarm is sounded and a light comes on at the
panel board. All heaters can be turned off by a switch on
the panel board.
c) Low Seal Leg Flow
If there is low purge gas flow in the upper or lower seaj.
legs which could allow hydrogen leakage, an alarm sounds
and a light comes on at the panel board.
d) High H2S Flow
If there is high flow in the H2S line the alarm system is
actuated.
795
-------
3. Safety Equipment
Canister gas masks, oxygen cylinders, and manual resuscitators
are located in cabinets on the operating floor near the power
plant office and on the ground floor adjacent to the southeast
entry door. A Scott Air-Pak is located in the ground floor
cabinet.
1*. Various Detectors for Hazardous Gases
Portable leak, combustibles, H2S, SC>2 and NO detectors are
centrally located in the panel board area. The detectors are
discussed later as they relate to particular gases and the
operation of these instruments are described in Appendix II.
5. 18 Inch S02 Sorber
The 18 inch SC>2 sorber treats flue gas from Ho. 6 boiler stack.
The unit is equipped with an exhaust system to dilute and expel
to the outside the off gases from the unit.
6. 8" 0 Sulfur Generator
The 8 inch sulfur generator will use hydrogen sulfide laden
reactant gas. It is equipped with an exhaust system tied to
the suction side of No. 6 boiler I.D. fan.
7. U Inch Regenevator
The four inch regenerator will use both hydrogen and hydrogen
sulfide laden reactant gas. It is equipped with an exhaust
system tied to the suction side of No. 6 boiler I.D. fan. It
is equipped with an exhaust hood to pick up, dilute and expel
to the outside any gases leaking from the equipment.
8. Gas Storage Area
The gas storage area has a concrete area for gas storage and
handling. The hydrogen sulfide and hydrogen lines cannot be
used until lock valves are opened with keys kept at the panel
board for No. 6 boiler when not in use. The H2S line has a
flow switch which shuts the gas off in case of excess flow and
a 75 psig rupture disc and vent line which exhausts into the
cooling tower.
796
-------
HYDROGEN SULFIDE
Physical Properties
The major hazards in the using of hydrogen sulfide arise from its
toxicity and flammability. Therefore, the gas should be used in a well-
ventilated area. Oxygen, flames, sparks, and sources of excessive heat
should be kept out of the area in which H2S is stored and used.
Toxicity
Hydrogen sulfide is a gas that is extremely toxic at low concentrations.
The gas is colorless and has a characteristic rotten-egg odor at rela-
tively low concentrations (l - 500 ppm). At higher concentrations the
odor is sickening-sweet. Although the odor of hydrogen sulfide can be
detected at very small amounts, the sense of smell is reduced by con-
tinued exposure. Above 100 ppm H2S rapidly paralyzes the olfactory
nerve so that the gas is no longer smelled.
Flammability
H2S is flammable for the concentration range of U.3 to ^5%. A mixture
of two volumes H2S and 3 volumes oxygen will explode violently when
ignited.
Physiological Effects of Hydrogen Sulfide
The principal mode of entry of H2S into the body is through the lungs.
Skin contact even to high concentrations is not considered significant.
There are three principal effects from exposure to H2S:
l) The irritant action of relatively high concentrations on lung
tissue
2) An irritant effect on the eyes which may result from repeated
exposures to low concentrations, as well as short exposures to
high concentrations
3) The most significant effect—respiratory paralysis from expo-
sure to high concentrations.
797
-------
Symptoms
Symptoms that occur because of exposure to hydrogen slalfide include:
l) headache, 2) dizziness, 3) nausea, k) dryness and sensation of pain
of the nose and throat, and 5) coughing. These symptoms occur with expo-
sure at low (500 ppm) concentrations. At higher concentrations, expo-
sure rapidly produces unconsciousness, cessation of respiration, and
death. It should be noted that the majority of accidents from H2S expo-
sure resulted when the victim failed to follow recommended rules and
procedures. Also, H2S and prior consumption of alcohol are a dangerous
combination. Cases of exposure have shown that it took very little
exposure to the gas to overcome a person who had consumed alcohol l6 -
2U hours before exposure.
Responses to Various Concentrations of Hydrogen Sulfide
The responses to various concentrations of H2S in the atmosphere are as
follows:
1. The maximum allowable concentration for prolonged exposure (8
hours) is 10 ppm . Slight irritation of the eyes may
occur at concentrations as low as 10 ppm.
2. The minimum concentration for lung irritation is greater than
20 ppm.
3. The maximum concentration for 1 hour without serious conse-
quences is 170 - 300 ppm.
U. A concentration of 300 - 500 ppm is dangerous after 1/2 to 1
hour exposure, and
5. Concentrations greater than 500 ppm rapidly produce unconscious-
ness, cessation of respiration and death.
Present information indicates that hydrogen sulfide is non-cumulative in
the body.
798
-------
Location and Operation of Regenerator Equipment
Regenerator Unit
The pilot equipment is located in the northeast corner of the building
housing No. 6 boiler and extends from the operating floor (291 level)
to the 115 ft. level. The area is shaded on the attached plot plan
drawing on page 2.
Hydrogen Sulfide Cylinders
Hydrogen sulfide cylinders are located in the gas handling area adjacent
to the cooling tower and coal storage hopper. The area is shaded on the
plot plan on page 2. Hydrogen sulfide in amounts up to 1500 - 2,000
Ibs. will be stored in this area.
Operation of Equipment
The equipment will be operated both on a 16 hrs./day and on an around-the-
clock basis. At least two operators will be on duty during each shift.
In addition, a supervisor will be in the general area during operation.
Protective Measures for Operating Personnel
Because of the possibility of H2S release and the resulting hazards,
several safety precautions and devices will be used for personnel
protection.
Safety Devices
1. Warning Signs: Signs will be placed at the following locations when
H2S is being used or produced: a) at entrance points to the pilot
area, b) gas handling area, c) on hazardous gas lines outside the
building.
2. Portable Detectors: Portable detectors for H2S, explosive gases and
point leak testing will be located in the panel board area. In addi-
tion, there will be a permanent H2S detector and alarm in the panel
board area.
3. Personal Safety Equipment: Each person working in the area will have
on his person: a) a belt clipped escape mask, b) a H2_S detector kit.
One person per shift working in the area will have a lead acetate
badge which will change color upon exposure to H2S.
k. General Safety Equipment: There will be general safety equipment
cabinets located in marked areas on the operating floor near the
office and on the ground floor near the liquid nitrogen cylinders.
799
-------
These will contain: a) 5 Universal gas masks, b) a Scott Air-Pak
self-contained breathing apparatus, c) 2 oxygen masks and It oxygen
cylinders, d) a hand resuscitator.
5. Exhaust Systems; All equipment is equipped with exhaust systems to
dilute and expel toxic gases. Exhaust lines which carry H2S have
alarms to warn of low gas flows. In addition, the 1* inch unit and
flanged points on the carbon and gas heaters are equipped with hoods
to pick up and exhaust any gas which might escape.
6. Ventilation; Ventilation is provided in the building by air movement
to the combustion air inlet for the boiler which is inside the
building. Leak tight equipment and exhaust systems are being used
to prevent H2S buildup rather than ventilation.
Safety Procedures
A. "Buddy System" - One person is never to work alone when H2S is
being used or produced in equipment. Also, the two operators are not
to work side by side on equipment containing HgS unless a third
person is present. This system will be used so that if one man is
overcome, he can be removed from the contaminated area by his buddy.
B, One man on each shift will be responsible for placing the warning
signs on equipment, in entrances, etc. before beginning operation. At
the end of operation, one man on that shift will be responsible for
removing and storing the warning signs. If the signs were in position
at all times, whether the equipment was operating or not, other
personnel in the area would soon begin to disregard the signs.
C. All operators are to read and understand all aspects of the safety
program.
D. If any type of accident or equipment failure occurs, the operator
should report this to his supervisor. Even if the incident is an
equipment failure which the operator can correct, this should be
reported to the supervisor.
Precautions in Handling and Storage of Hydrogen Sulfide
The following general rules should be followed in the handling and
storage of hydrogen sulfide:
800
-------
1. Never drop cylinders or permit them to strike each other
violently.
2. Cylinders should be assigned a definite area for storage. The
area should be dry, cool, well-ventilated, and preferably fire
resistant.
3. The valve protection cap should be left in place until the
cylinder has been secured against a wall or bench, and is ready
to be used.
H. Avoid dragging, rolling, or sliding cylinders, even for a short
distance. They should be moved by using a suitable hand truck.
5. Never tamper with safety devices in valves or cylinders.
6. No part of a cylinder should be subjected to a temperature
higher than 125°F.
7. All cylinders should be secured with chains when being used or
stored.
Emergency Procedures
Equipment or Gas Supply Leakage
1. At the indication (detector checking or lead acetate paper turns
black) that H2S has reached a dangerous level, put on the escape
mask, EVACUATE the area and DO NOT RE-ENTER without a canister type
gas mask.
2. . Put on a canister type gas mask and shut off the H2S and H2 supply
in the gas handling area.
3. Call supervisor. Use the telephone located in the power plant office.
U. Before re-entering contaminated area, put on a MSA Universal gas mask.
5. Check concentration with MSA Universal detector in the following
areas: a) panel board area, b) other platform levels of equipment.
If concentrations of 150 - 300 ppm exist and do not decrease in 10 -
15 minutes or if concentrations greater than 300 ppm exist, follow
Steps 1 - 6 on the following page.
801
-------
Overexposure or Uncontrollable Leak
If one person is over-exposed or there is uncontrollable leakage:
1. Sound the HgS alarm.
2. Don the escape mask and EVACUATE the area IMMEDIATELY.
3. Put on gas mask in the safety cabinets located near the office
on the operating floor or near the liquid nitrogen tanks on the
ground floor.
h. Remove victim upwind of H£S leak and apply first aid.
5. If breathing has stopped, artificial respiration should be
applied.
6. Call the First Aid Squad (Ext. 200) and/or Fire Brigade (Ext. 277)
and provide information upon arrival.
802
-------
HYDROGEN
Physical Properties
Hydrogen is colorless and odorless and the lightest gas known. It is
non-toxic but can act as an asphyxiant by displacing the necessary
amounts of air required to support life.
Flammability
The major hazard associated with the use of hydrogen is its flammability.
Hydrogen is flammable over the range of U.O - 75 volume % in air. The
auto-ignition temperature is 1085°F. Hydrogen is particularly subject
to leakage and will leak at about twice the rate of nitrogen and oxygen.
Hydrogen diffuses very rapidly to non-explosive mixtures. For example,
if 300 Ibs. of liquid hydrogen were spilled in an unconfined area the
50,000 cubic feet of gaseous hydrogen produced would diffuse to a non-
explosive mixture in about one minute. Hydrogen flames are invisible
except in near darkness. Only the impurities in the flame are visible.
Dirt or the dry powder from fire extinguishers have been used to estab-
lish the presence of hydrogen flames. The material will glow in the
flame.
Location and Operation of Equipment
Hydrogen will be used in the k inch diameter regenerator to study H2S
.generation with sulfur loaded carbon. The equipment will be operated
on both an around-the-clock and 16 hrs./day basis. Hydrogen is
supplied from the gas handling area where up to about 5,000 - 6,000 cu.
ft. of hydrogen will be stored.
Protective Measures
The following are provided to minimize the possibility for or warn of
fires:
1. Exhaust Hood and Lines
An exhaust hood draws air across the reactor proper and flanged
points of the gas and carbon heater to dilute any hydrogen
which may leak below the explosive limit and exhaust it. Off
gases from the unit are diluted below the explosive limit and
expelled to the outside.
803
-------
2. Explosion Proof Fittings
Electrical fitting within a five foot radius of heated parts
of the U inch diameter regenerator are explosion proof.
3. Combustible Gas Detector
A portable combustible gas detector is supplied to test for
suspected leakage of hydrogen that may be forming combustible
mixtures.
U. Leak Detector
A portable thermal conductivity leak detector can be used to
locate leakage of hydrogen that may be at levels below the
lover combustible level.
Safety Procedures
The following specific rules apply when handling hydrogen:
1. Never use cylinders of hydrogen in areas where flames, exces-
sive heat, or sparks may occur.
2. Utilize only explosion-proof equipment and spark proof tools
in areas where hydrogen is handled.
3. Ground all equipment and lines used with hydrogen.
k. Never use a flame to detect hydrogen leaks—use soapy water.
5. Do not store reserve stocks of hydrogen with cylinders contain-
ing oxygen, other highly oxidizing or combustible materials.
The following general rules should also be followed in the handling and
storage of hydrogen:
1. Never drop cylinders or permit them to strike each other
violently.
2. Cylinders should be assigned a definite area for storage. The
area should be dry, cool, well-ventilated, and preferabl^ fire-
resistant. Keep cylinders protected from excessive temperature
rise by storing them away from radiators or other sources of
heat. Storage conditions should comply with local and state
regulations.
804
-------
3. Cylinders may be stored in the open, but in such cases should be
protected against the extremes of weather and from the dampness
of the ground to prevent rusting.
U. The valve protection cap should be left in place until the
cylinder has been secured against a wall or bench, or placed in
a cylinder stand, and is ready to be used.
5. Avoid dragging, rolling, or sliding cylinders, even for a short
distance. They should be moved by using a suitable hand truck.
6. Never tamper with safety devices in valves or cylinders.
7. When returning empty cylinders, close the valve before shipment,
leaving some positive pressure in the cylinder. Replace any
valve outlet and protective caps originally shipped with the
cylinder. Mark or label the cylinder EMPTY. Never store full
and empty cylinders together.
8. Wo part of a cylinder should be subjected to a temperature
higher than 125°F. A flame should never be permitted to come
in contact with any part of a compressed gas cylinder.
9. Do not place cylinders where they may become part of an electric
circuit. When electric welding, precautions must be taken to
prevent striking an arc against a cylinder.
Emergency Procedures
1. At the indication that hydrogen is leaking into the building or that
a fire has started, a) shut off the hydrogen, b) turn off the heaters,
c) leave the nitrogen purge on the equipment, d) if the fire is in the
equipment turn on the steam purge, e) extinguish any fires with a dr£
chemical fire extinguisher. If the fire cannot be extinguished notify
the Fire Brigade. After a fire is extinguished the Fire Marshall
•should be notified. Notify the supervisor in charge.
2. After any fire or leak detection do not turn the hydrogen back on
until cleared with the supervising engineer.
3. In case of an explosion, uncontrollable fire, or ruptured cylinders,
a) Sound the manual alarm.
b) Evacuate the area immediately.
c) Call the Fire Brigade (Ext. 277).
805
-------
d) Shut off all gases in the gas handling area if the explosion or
fire is in the building. Leave the nitrogen purge on.
e) Provide information and assistance to the Fire Brigade upon
fl.T'T*'! TTftT
f) When it'is safe to enter the area, shut off the heaters and carbon
flow.
I*. If a person is injured apply first aid to prevent shock and control
bleeding.
First Aid
In case of an accident and injury:
1. Call for First Aid Squad - Phone 200.
2. Control the bleeding. Apply in order as necessary:
a) Direct pressure over wound
b) Pressure point
l) inner side of upper arm
2) heel of hand against groin
c) Tourniquet just above wound. Apply an information note to the
victim stating nature of wound (laceration, fracture, puncture
wound, etc.), time applied, and your name. Tourniquet should
only be removed by a Medical Dept. representative.
3. Start the breathing. Apply mouth-to-mouth resuscitation:
a) Move injured to clean-air atmosphere.
b) Remove obstructions in mouth. Clear airway.
c) Tilt head back and jut chin.
d) Seal the nose.
e) Cover mouth with tight seal and breathe.
f) Rate of breathing is determined by rate of ability of injured
to expel air.
g) Continue mouth-to-mouth resuscitation until help arrives.
Do not stop until relieved by another first aider or a Medical
Department representative.
**. Treat for -possible shock.
a) Keep injured lying down and calm.
b) Keep from losing body heat*—not too hot or too cool.
c) Possibly elevate to aid circulation.
806
-------
SULFUR DIOXIDE
Physical Properties
Sulfur dioxide is a highly irritating, non-flammable, colorless at room
temperature and atmospheric pressure. It is a little more than twice
as heavy as air. It is soluble in water to form a weak solution of
sulfurous acid. It is readily liquefied and is shipped in steel
cylinders as a liquefied gas under its own vapor pressure of about 35
psig at 70°F.
Toxicity
Sulfur dioxide is a highly irritating gas in the vapor form, readily
detectable in concentrations of 3-5 ppm and providing ample warning of
its presence. In higher concentrations, the severely irritating effect
of the gas makes it unlikely that any person would be able to remain in
such a contaminated atmosphere unless he were unconscious or trapped.
Liquid sulfur dioxide may cause skin and eye burns upon contact with
these tissues which results from the freezing effect of the liquid on
the skin or eyes.
Acute exposure to sulfur dioxide has the following effects: 8-12 ppm
causes throat irritation, coughing, constriction of the chest, tearing,
and smarting of the eyes; 150 ppm causes extreme irritation and can be
tolerated only for a few minutes; 500 ppm is so acutely irritating that
it causes a sense of suffocation. There are no known systematic effects
of acute exposure to sulfur dioxide. The generally accepted maximum
allowable concentration of sulfur dioxide for an 8 hour daily exposure
is 10 ppm.
No chronic systematic effects have been observed in workers exposed
daily to allowable concentrations of sulfur dioxide.
Location and Operation of Equipment
The 18 inch adsorber is used to study S02 sorption with active carbon.
Flue gas from the stack of No. 6 boiler which normally contains 1,000 -
2,000 ppm S02 is used. In addition S02 may be added from cylinders in
the gas handling area. The adsorber is equipped with afl exhaust system
to dilute and expel off gases outside the building.
807
-------
Protective Measures
The irritating effect of sulfur dioxide is readily detectable and pro-
vides ample warning of its presence. In addition a Universal type
portable detector is provided to test for possible leakage or buildup of
sulfur dioxide.
Precautions in Handling and Storage
The following general rules should be observed in the handling and
storage of sulfur dioxide:
1. Never drop cylinders or permit them to strike each other
violently.
2. Cylinders should be assigned a definite area for storage. The
area should be dry, cool, well-ventilated, and preferably
fire-resistant. Keep cylinders protected from excessive tempera-
ture rise by storing them away from radiators or other sources
of heat. Storage conditions should comply with local and state
regulations.
3. Cylinders may be stored in the open, but in such cases should
be protected against extremes of weather and from the dampness
of the ground to prevent rusting. During the summer, cylinders
stored in the open should be shaded against the continuous
direct rays of the sun in those localities where extreme
temperatures prevail.
U. The valve protection cap should be left in place until the
cylinder has been secured against a wall or bench, or placed in
a cylinder stand, and is ready to be used.
5. Avoid dragging, rolling, or sliding cylinders, even for a short
distance. They should be moved by means of a suitable hand
truck.
6. Never tamper with safety devices in valves or cylinders.
7. When returning empty cylinders, close the valve before shipment,
leaving some positive pressure in the cylinder. Replace any
valve outlet and protective caps originally shipped with the
cylinder. Mark or label the cylinder EMPTY. Do not store
full and empty cylinders together.
808
-------
8. No part of a cylinder should be subjected to a temperature
higher than 125°P. Temperatures in excess of 125°F may cause
a cylinder to become liquid full resulting in excessive hydro-
static pressure buildup. Never permit a flame to come in con-
tact with any part of a compressed gas cylinder.
9. Before using, read all label information and data sheets
associated with the use of sulfur dioxide.
10. Suckback may cause a violent reaction within the cylinder, and
may leak to the formation of extremely corrosive conditions;
therefore, to prevent suckback, a check valve, vacuum break,
or trap should be employed when using sulfur dioxide.
11. Contents should be determined by weight, since the cylinder
pressure will remain constant as long as liquid sulfur dioxide
remains in the cylinder.
Leak Detection
Leaks of sulfur dioxide in lines or equipment may be located by passing
a squeeze bottle of aqueous ammonia over sites of suspected leaks; dense
white fumes will be formed near the leak. Leaks may be less easily
located by appling oil or soapy water solution to joints; leaks will be
evident by bubble formation.
First Aid Suggestions
Call First Aid (Ext. 200) immediately for anyone who has had contact with
liquid sulfur dioxide or has been exposed to excessive concentrations of
the gas. Prior to the physician's arrival, first aid should be started
at once. The first aid suggestions presented below are believed to be
common practice in industry. Their adoption in any specific case should
be subject to the prior endorsement of a competent medical advisor.
Skin Contact
On skin contact with liquid sulfur dioxide, use an emergency safety shower
at once. Clothing and shoes contaminated with sulfur dioxide should be
removed under the shower. Sulfur dioxide should be washed off with very
large quantities of water. Wash skin areas with large quantities of soap
and water. Do not apply salves or ointments to chemical burns for 2k
hours.
809
-------
Eye Contact
If liquid sulfur has entered the eye, they should be washed promptly
with copius quantities of water for at least 15 minutes. Chemical neu-
tralizers are not advisable. It is advisable to irrigate the eyes
gently with water at room temperature in order to minimize additional
pain and discomfort. Refer at once to a physician, preferably an eye
specialist.
Inhalation
On exposure to excessive concentrations of gaseous sulfur dioxide, the
victim must be carried at once to an uncontaminated atmosphere and
effective artificial respiration started immediately if breathing has
ceased. Oxygen (100$) should be administered (by trained personnel
only) as soon as possible after a severe exposure, preferably against a
positive exhalation pressure of 1.25 inches of water. Oxygen inhala-
tion must be continued as long as necessary to maintain the normal color
of the skin and mucous membranes. In cases of severe exposure, the
patient should breathe 100$ oxygen under positive exhalation pressures
for 0.5 hour periods every hour for at least 3 hours. If there are no
signs of lung congestion at the end of this period, and if the breathing
is easy and the color is good, oxygen inhalation may be discontinued.
Throughout this time, the patient should be kept comfortably warm, but
not hot.
810
-------
NITRIC OXIDE
Physical Properties
Nitric oxide is a colorless, toxic, non-flammable gas, rapidly oxidized
by the oxygen of the air to nitrogen dioxide. It is shipped in
cylinders as a non-liquefied gas at a pressure of 500 psig at 70°F.
Toxicity
Nitric oxide is an extremely toxic gas. It is rapidly converted by the
oxygen of the air to nitrogen dioxide (N02). Thus, in most cases of
exposure to nitric oxide, the individual is being actually exposed to
N02. The recommended (American Conference of Governmental Industrial
Hygienists) maximum acceptable concentration of N02 in air is 5 ppm.
The greatest hazard of exposure to N02 comes from the fact that its
serious effects are not felt until several hours after the exposure in
spite of the fact that dangerous amounts may be breathed before any
real discomfort occurs. Edema may develop within 6 - 2U hours after
such exposure. Concentrations of 100 - 150 ppm are dangerous for expo-
sures of 30 - 60 minutes and concentrations of 200 - TOO ppm may be
fatal after even very short exposures.
Chronic exposure to low concentrations may cause chronic irritation of
the respiratory tract, with cough, headache, loss of weight, loss of
appetite, dypepsia, corrosion of the teeth, and gradual loss of strength.
Location and Operation of Equipment
Nitric oxide is present at concentrations of about 150 ppm in the flue
gas from No. 6 boiler used in the 18 inch S02 sorber. Occasionally a
cylinder of nitric oxide may be used in the building and will be marked.
Detectors
The Universal type portable gas detector can be used to test for
suspected concentrations of nitric oxide.
811
-------
Precautions in Handling and Storage
1. Nitric oxide should be handled only in a well-ventilated area, pre-
ferably a hood with forced ventilation.
2. Self-contained breathing apparatus should be available in convenient
locations in emergencies.
3. Areas in which nitric oxide is being handled should be provided with
enough exits to permit personnel to leave quickly in case of trouble.
U. Personnel should have available for immediate use gas masks with
Universal canisters (Type N, colored red) for emergencies. These
canisters are satisfactory only for short exposures (about 5 minutes
for 2% concentration of N02» 26 minutes for concentrations of 0.5$)
and should be changed on an exact time schedule.
5. Air contamination should be avoided in high pressure reactions of
nitric oxide with organic compounds. Air contamination would lead to
the formation of nitrogen dioxide which could cause an ignition or
detonation.
The following general rules should apply in the handling and storage of
nitric oxide:
1. Never drop cylinders or permit them to strike each other
violently.
2. Cylinders should be assigned a, definite area for storage. The
area should be dry, cool, well-ventilated, and preferably
fire-resistant. Keep cylinders protected from excessive
temperature rise by storing them away from radiators and other
sources of heat. Storage conditions should comply with local
and state regulations.
3. Cylinders may be stored in the open but in such cases should be
protected against extremes of weather and from the dampness of
the ground to prevent rusting. During the summer, cylinders
stored in the open should be shaded against the continuous
direct rays of the sun in those localities where extreme
temperatures prevail.
k. The valve protection cap should be left in place until the
cylinder has been secured against a wan or bench, or placed
in a cylinder stand, and is ready to be used.
812
-------
5. Avoid dragging, rolling, or sliding cylinders, even for a
short distance. They should be moved by means of a suitable
hand truck.
6. When returning empty cylinders, close the valve before ship-
ment, leaving some positive pressure in the cylinder. Mark or
label the cylinder EMPTY. Do not store full and empty cylinders
together.
Leak Detection
Small leaks of nitric oxide in lines or equipment may be detected by
means of wet blue litmus paper. Sites of large leaks of nitric oxide
are also detectable by the formation of reddish-brown W02 where nitric
oxide contacts the atmosphere.
First Aid Suggestions
Anyone exposed to dangerous concentrations of nitric oxide (rapidly con-
verted to NC>2 by the oxygen of the air) or overcome by gas should be
placed immediately in the care of a physician. Prior to the physician's
arrival, first aid should be started. Those presented below are
believed to be common practice in industry. Their adoption in any
specific case should be subject to the prior endorsement of a competent
medical advisor.
1. Persons suspected of exposure to dangerous concentrations of the
gas should be given bed rest for 2k hours and kept under
observation during this period because of the dangers of develop-
ing edema.
2. Anyone suffering from nitric oxide poisoning should be given
100$ oxygen if breathing has not stopped or 100$ oxygen with
artificial respiration, manual or otherwise, if breathing has
stopped. No one who has been exposed to nitric oxide should be
allowed to move until permitted to do so by the attending
physician.
3. If the person collapses after exposure, he should be moved to
fresh air and kept warm. The victim should.be laid face down
with his head and chest lower than his hips to improve drainage
of fluid from the lungs. The body can be inclined to about a
15 or 20 degree angle. Artificial respiration should be started
right away. If possible, oxygen should be administered simul-
taneously with an inhalator or resuscitator.
813
-------
4. The chances of developing edema will be considerably reduced
if oxygen is administered with an exhalation back-pressure of
2-2.5 inches of water. If the oxygen is bubbled through
ethyl alcohol as it is administered, any frothing likely in
the lungs will be lessened.
5- If a person exposed to nitric oxide commences to cough, has
difficulty breathing, or feels slightly fatigued, he should
be given oxygen immediately. A physician should be called.
If it is necessary to move the victim, he should be carried on
a stretcher. In no case should he be allowed activity.
814
-------
APPENDIX
SECTION C
DETAILS OF PROCESS COMMERCIALIZATION
815
-------
APPENDIX C-l
1,000 MW UTILITY BOILER FLUE GAS CLEAN-UP - DETAILED
ECONOMIC EVALUATION
816
-------
MAIN PLANT ITEMS FOR FACTOR ESTIMATE
(MPI)
Designation
Adsorber
Regenerator (S Generator)
Regenerator (H2S Gen./S Stripper)
Carbon Cooler
Blowers
Electric Motors
Heat Exchangers
Fired Healers
Carbon Storage
Sulfur Storage
Cyclone Collectors
Bucket Elevators
Belt Conveyors
Shift Reactor
MPI
MPI
Unit Cost
$505,000
$ 94,800
$181,000
$ 29.80C
$109,500
$ 47,000
$ 4,000
$ 96,000
$ 9,600
$ 350
$ 14,000
$ 11,200
$ 11,200
$ 11,200
$ 19,000
$ 24,400
$ 50,000
$111,000
$ 16,000
$ 8,200
$ 21,600
$ 8,230
$ 14,500
$ 15,700
$ 14,900
$ 14,000
$ 5,000
$ 12,300
$ 11,800
$ 2,300 .
$ 4,700
$ 36,500
; in 1974 =
; in 1958 =
No. Req'd.
4
4
4
4
4
4
12
4
4
12
4
4
4
4
4
4
4
4
4
4
8
4
2
4
4
2
2
2
2
4
4
_A
138
$43,950
$27,800
Total Cost
$2,020,000
379,200
724,000
119,200
438,000
188,000
48,000
384,000
38,400
4,200
56,000
44,800
44,800
44,800
76,CCC
97,600
200,000
444,000
64,000
32,800
172,800
32,900
29,000
62,800
59,600
28,000
10,000
24,600
23,600
9,200
18,800
146,000
$6,065,100
817
-------
BATTERY LIMIT FACTOR ESTIMATE
TITLE: WESTVACO S02 RECOVERY "PROCESS -"
BOILER FLUE GAS CLEAN-UP.
MW UTILITY
Number of MPI's
134
Average Cost of MPI's
191)8
229
1974
362
in 1958 -""$27,^00
MPI (Main Plant Items) - See Separate List
MUr (Miscellaneous Unlisted Equipment)
DATE: August 20, 1974
Factor
Est. 20%
Estimated
Cost
$ 6,065,100
1,213.000 |
7,278,100
Basic Equipment (MPI + MUE)
Field Erection of
Basic Equipment
Equipment Foundations
& Structural Supports
Piping
Insulation - Equipment
- Piping
Electrical
Instrumentation
Miscellaneous
Buildings
Architectural
Structural
Building Services
(% of Arch'l ft Struct.)
Compressed Air
Electrical Lighting
Sprinklers
Plumbing
Heating
Vent & Air Cond.
Total Services
High - Large Pet. of Equip.
Involving Field Labor, Large
_Equij>ment
High Predominance of Mild Steel
Equip., Large Fans, Large _F.gujp_._
14
High - Gas Handling Significant
Aint. of Large Ductwork
34
High - Significant Lagging
Regen. & Shift Reaction at High
Temperature
High - Significant Piping, High
Temperature
Mild Steel
Solids
Equip., Heavy Drives,
Avq. Instrumentation Required,
12
Large Process, Top of Range
Open A1 r ~P~1 ant wi th Mi nor
Buildings - Use of Middle of
-Range
Low Amount of Building
Services - Open Air
5
9
1
2
0
IT
1.4
TOTAL FACTORED ITEMS
101
Direct Cost of Adsorber-Regenerator
BatteryLimit (F.xcl. Taxes and jat.)
Addn'l Battery Limit Items
Carbon Feeder, Inert fifl<; Gpnerator Gasifier, Gasifier
Scrubber, Fired Gas Heaters & Flue Gas Ductwork
TOTAL DIRECT COST - BATTERY LIMIT
7,350,900
14,629,000
5,611,800
$20,240,800
818
-------
SUMMARY SHEET FOR FACTOR ESTIMATING
TITLE: WESTVACO S02 RECOVERY PROCESS
1.000 MW UTTLfTY BOILER FLUE GAS CLEAN-UP
DATE: August 20, 1974
Factor
, Estimated Cost
Direct Cost of Battery Limit
Storage and Handling (Included in B/L,
but Added Min. Add.)
Utilities
Battery Limit Add'n, Steam and Elec.
Available from Existing Power
Station - Use Low B/L
Servi ces
Battery Limit Add'n, Minimal
Services Required
TOTAL BATTERY LIMIT + AUXILIARIES
Catalyst
Activated Carbon: [Adsorber +
Regenerator + 6 Hr. Inventory]
(12 hrs.)(172 TPHH800/T)
Shift: (2,000 ft.3)($26/ft.3)
TOTAL DIRECT COST
Indirect Costs
Engineering & Supervision Factor
Construction Expense Of Direct
Contractor's Fee Costs
Contingency
14
10
4
20
$20,240,800
404,800
607,200
607,200
$21,860,000
1,651,200
52,000
$23,563,200
TOTAL DIRECT & INDIRECT INSTALLED COST
11,310,300
$34.873,500
819
-------
COST ESTIMATE
Item
No.
FB-101
A.B.C.D
r t) h^ 9 V J •*
FB-102
A R r n
n,Q,l« , u
FB-103
& 104
A.B.C.D
f
FB-105
A.B.C.D
., 1 Number
Name Req'd.
SO? Adsorber
b
•
S Generator
H2S Gen. /Sulfur
Stripper
Carbon Cooler
';"-
• 4
4
4
.
4
•
Description
CLASS FB
55'0x61' High,
l/2"-l/8" Thick
Carbon Steel;
5 Trays, 1/4" •
Thick, 410 SS
11.3'0x56' High,
1/4" Thick
Alonized 304 SS;
11 Trays, 1/8"
Thick Alonized
304 SS
20. 5 '0x38' w/Top
Section 18.6'0
x!2', 1/4" Thick
Alonized 304 SS;
8 Trays, 1/8"
Thick Alonized
304 SS
14.5-0x12' High,
1/4" Thick 502
SS with one 1/8"
Thick 304 SS
Tray
Comments
- TOWERS
Factored from
Chat. Tank Co.
Quote
Factored from '
Chat. Tank Co.
Quote w/Alonizing
Used Based on
Cost from Alon
Proc., Inc.
Factored from
Chat. Tank Co.
Quote with
Alonizing Used
Based on Quote
from Alon Proc. ,
Inc.
Factored from
Chat. Tank Co.
Quote
CLASS S - DRUMS
S-102
A&B
S-101
A&B
SP-101
A.B.C.D
II "•• 1 •••__!_•
Fresh & Regen.
Carbon Storage
•
Acid Ladened
Carbon Storage
Molten Sulfur
Storage
2
2
4
• • i • •
28 '0x60' Verti-
cal Cone Bottom
Tank
'
28'0x60' Verti-
cal Cone Bottom
Tank
39 '0x35' Verti-
cal Carbon
Steel Tank,
Steam Traced
— ——.^ ^ _
i —
Carbon Steel;
Factored from
Chat. Tank Co.
Quote
Carbon Steel ;
Factored from
Chat. Tank Co.
Quote
Literature
, ,i
Purchased
Unit Cost
$505,000
'
$ 94,800
$181,000
$ 29,800
Total Cost
$2,020,000
$ 379,200
$ 724,000
fr 1 1 A nr\r>
V 1 1 3 »OOO
'
$ 24,400
.
$ 24,400
$ 50,000
———_____
$ 48,800
$ 48,800
$ 200,000
^" — — __
(Cont'd)
820
-------
COST ESTIMATE (CONTINUED)
Item
No.
Name
Number
Rec^d.
Description
Comments
Purchased
Unit Cost
Total Cost
CLASS U - MATERIAL HANDLING .
CR-101
& 102
A.B.C.D
U-101
A.B.C.D
U-102
A&B
U-103
A,B,C,C
U-104
A,B,C,D
U-105
A.B.C.D
U-106
A&B
U-107
A&B
Carbon Feed
Rate Control! e
Bucket
Elevator
.
Bucket
Elevator
Bucket
Elevator
Bucket
Elevator
Bucket
Elevator
Belt Conveyor
Belt Conveyor
8
4
2
4
4
.
2
2
2
42 T/Hr.
Gravimetric
Digital Control
Belt Feeder
42' High Bucket
Elev. To Trans-
port C from
Hopper to SOg
Sorber
88' High Bucket
Elev. To Trans-
port C from SO?
Sorber to Hopper
100' High Bucket
Elev. To Trans-
port C from.
Hopper to S
Generator
92' High Bucket
Elev. To Trans-
port C to S
Generator
83' High Bucket
Elev. To Trans-
port Regen. C to
Hopper"
2' Wide x 48'
Long Belt Conv.
To Transport
Make-up C to
Storage Hopper
2' Widex9T+4T
Long Belt Conv.
To Transport C
from Hopper to
S02 Sprber
Factored from
K-TRON Corp. Quote
Literature
t
'
Literature
Literature
Literature
Literature
Literature
Literature
,
$ 18,100
$"8,230
$ 14,500
$ 15,700
$ 14,900
$ 14,000
$ 5 ,000
$ 12,300
$ 144,800 B/L
$ 32,900
$ 29,000
$ 62,800
$ 59,600
$ 28,000
$ 10,000
$ 24,600
-
(Cont'd)
821
-------
COST ESTIMATE (CONTINUED)
Item
No.
Name
Number
Req'd.
Description
Comments
Purchased
Unit Cost
Total Cost
CLASS U - MATERIAL HANDLING (CONT'D)
U-108
A&B
U-109
A.B.C.D
u-no
A.B.C.D
*
CV-101
A,B,C,D
X-101
A.B.C.D
X-102
A.B.C.D
X-104
A.B.C.D
X-103
A.B.C.D
•MM^HHIHMHMIMM
Belt Conveyor
Belt Conveyor
Belt Conveyor
Shift
Converter
Steam Heater
for Sulfur
Generator
Inlet Gas
HgO Condenser
for Inlet Gas
to S Generator
S Condenser
V
HgO Condenser
for C Cooler
Gas Recycle
•«^— •— »^— •— — «^™» ^ B.P
2
4
4
4
2' Wide x 66'+
18' +22' Long Belt
Conv. To Trans-
port C from
Hopper to S02
Sorber
2' Wide x 14'
Long Belt Conv.
To Transport
Spent C to S
Generator
2' Wide x 18'
Long Belt Conv.
To Transport
Regen. C to
Hopper
Literature
1 *
Literature
Literature
CLASS C - CONVERTERS
Shift 1600 1
moles/hr. of
Producer Gas
Based on Infor-
mation from
Girdler Catalysts
CLASS X - -EXCHANGERS
4
4
4
4
WVOpmiHllBBv^M
3.6 MM BTU/hr.,
Steam Heated
27.9 MM BTU/hr.,
Air Cooled
Alonized Shell
& Tube
25.7 MM BTU/hr.,
Alonized Shell
& Tube
24 MM BTU/hr.,
Shell & Tube
...
750 ft.2
2500 ft.2
2500 ft.2
2500 ft.2
••'
$ 11,800
$ 2,300
$ 4,700
$ 36,500
$ 14,000
"$ 11,200
$ 11,200
$ 11,200
1
$ 23,600
$ 9,200
$ 18,800
•
$ 146,000
•
$ 56,000
$ 44,800
$ 44,800
$ 44,800
"
(Cont'd)
822
-------
COST ESTIMATE (CONTINUED)
Item
No.
Name
Number
Req'd.
Description
Comments
Purchased.
Unit Cost
Total Cost
CLASS F - BLOWERS AND PUMPS
F-101
A.B.C.D
F-105
A.B.C.D
F-103,
104 & 105
A,B,C,D
f
M-101
AJB.C.D
M-102
A.B.C.D
M-103
A,B,C,D
M-104
A.B.C.D
M-105
A,B,C,D
Flue Gas
Blower
Regeneration
Gas Blower
Air Blower for
Gas Heaters
4
4
12
438,000 SCFM,
6,837 Hp To Boost
Press, to 45"W.G.
Heavy Duty
19,984 CFM0152"
W.G. G> 150°F
Inlet Temp. ;
Heavy Duty, Rotary
Gas Pump, 684Hp
1 ,000 CFM
-------
COST ESTIMATE (CONTINUED)
Item
No.
G-102
A,B,C,D
G-103
A.B.C.D
GH-103
A.B.C.D
GH-102
A.B.C.D
GH-101
A3.C.D
G-101
AAC.D
Name
Gas Producer
Start-up
Heater for $02
Sorber
Gas Heater for
Shift Converter
Gas Heater for
C Preheater
Gas Heater for
H2$ Generator/
S 'Stripper
Inert Gas
Generator
Number
Req'd.
4
4
4
4
4
4
Description
Comments
CLASS G - FIRED HEATERS
9,581 SCFM,
8,844 # Coal/hr.
with Capabilities
up to 9900 #CoaV
hr. Bituminous
Coal
6.8 MM BTU/hr.,
No. 2 Oil Fired
13.1 MM BTU/hr.,
No. 2 Oil Fired
17.6 MM BTU/hr.,
No. 2 Oil Fired
15.1 MM BTU/hr.,
No. 2 Oil Fired
60,000 SCFH
Capacity Kemp
Inert Gas Gen.
McDowell -Well man
Quote
.
North American
Burner, Double
Pipe Heater,
Factored Up
Process Plant
Construction
Estimating &
Engineering
Process Plant
Construction
Estimating &
Engineering
Process Plant
Construction
Estimating &
Engineering
Process Plant
Construction
Estimating &
Engineering
Purchased
Unit Cost
$260,000
'
•.V.
$ 19,000
$ 97,900
$105,600
$ 97,900
•
$ 24,860
Total Cost
$ 1,040,000 B/L
r
$ 76,000
$ 391,600 B/L
$ 422,400 B/L
$ 391 ,600 B/L
$ 99,440 B/L
MISCELLANEOUS
•
Ductwork for
Flue Gas
1
12x'23' Duct
Factored from
Duct Cost for a.
550 MW Install.
with Bypass
$2,862,000
•
$ 2,862,000 B/L
824
-------
APPENDIX C-2
15 MW DETAILED EQUIPMENT DESIGN AND COST
825
-------
GENERAL DESIGN BASES FOR PROTOTYPE INSTALLATION
A. POWER PLANT
1. Equivalent Size - 15 MW
2. Fuel
a. Coal
b. Composition (Wt. %)
1) Carbon - 55.7%
2) Oxygen - 6.1%
3) Hydrogen - 3.9%
4) Nitrogen - 1.4%
5) Sulfur - 3.5%
6) Moisture - 9.4%
7) Ash - 20%
c. Heating Value - 11,100 BTU/lb.
3. Combustion Conditions
a. Excess Air - 22 vol. %
b. Air-Moisture Content - 60% R.H. @ 80°F
c. Sulfur Combustion
1) 98% to S02
2) 2% to S03
d. Sulfur Generator Off-gas Recycle to Boiler - 16% of SO? Originating
from Coal
e. Equivalent Coal Firing Rate - 12,714 Ibs./hr.
4. Other
a. Air Heater Inleakage - 7 vol. %
b. Precipitator Efficiency - 99.5%
i
B. GENERAL
1. Carbon Properties
a. Mesh Size - 8x30 (Nominal)
b. Bulk Density - 40-43 lhs./ft.3
c. S02 Activity - 6JO (Minimum}
d. Attrition.No. - *30 (Maximum)
X
2. Carbon Storage
a. Make-up - 1 Month's Supply
T°tal 9
826
-------
3. Utilities
a. Boiler Feed H20 - 250°F, Saturated
b. Service H20
1) Temperature - 80°F
2) Max. Temp. Rise - 40°F
c. Air
Temperature - 80°F
Moisture - 60% R.H. @ 80°F
rti i
l\
C. S02 SORBER
1. Inlet Flue Gas Composition
a. S02 - 3,230 ppm
1) 2,760 ppm from coal
2) 470 ppm from sulfur generator off-gas recycle
b. $03 - 55 ppm
c. NO - 280 ppm
d. 02 - 4.46 vol. %
e. H20 - 10.3 vol. %
f. C02 - 12.6 vol. %
g. N2 - 13 vol. %
2. Total Inlet Gas Flow Rate - 29,484 scfm
3. Linear Gas Velocity - 3 FPS @ 170°F
4. Inlet Gas Temperature - 330°F
5. Outlet Gas Temperature - 200°F
6. Column Temperature
a. SOa Removal Stage - 330°F
b. Avg. S02 Stages - 170°F
7. Inlet Carbon Temperature - 77°F
8. Outlet Carbon Temperature - 300°F
9. Inlet Carbon Loading, Residual Sulfur - 0.04 Ib. S/lb. C
10. Outlet Carbon Loading, Sulfuric Acid - 0.22 Ib. H2S04/lb. C
Residual Sulfur - 0.04 Ib. S/lb. C
Associated Water - In Equilibrium with
H2S04 8 330°F
11. S02 Removal Efficiency - 90% S from Coal
12. Gas Distributor Plate - 8% O.A. with 1/8" Dia. Pucnhed Orifices on
0.42" k Centers
827
-------
D. SULFUR GENERATOR
*
1. Linear Gas Velocity - 3.0 fps & 300°F
2. Inlet Gas Temperature - 265T
3. Inlet Carbon Temperature - 300° F
4. Outlet Carbon Temperature - 300°F
5. Carbon Residence Time - 40 min.
7. No. of Stages/Unit - 11
8. Gas Distributor Plate - 5% O.A. with 1/8" Dia. Punched Orifices on
0.53" A Centers
9. Chemistry: 70% Conversion H2S04 — » Sulfur
15% SOg Evolution Recycled to Sorber
15% Unconverted Acid to H2S Genera to r7S Stripper
E. H2$ GENERATOR
1. Linear Gas Velocity - 3.0 fps @ 500°F
!
2. Inlet Gas Temperature - 1300°F
3. Gas Temp, to S Condenser - 900° F
4. Inlet Carbon Temperature - 300°F
5. Outlet Carbon Temperature - 300°F
6. Carbon Residence Time - 30 Minutes
7. No. of Stages/Unit, for Carbon Regeneration - 6
for HS Formation - 2
8. (ias Distributor Plate - b% u.A. with i/«i; uia. Punched Orifices on
0,53" A Centers
9. Chemistry: Sulfur to H?S by Reaction with H?
Acid to Sulfur by Reaction with f^S and/or H
828
-------
F. SULFUR RECOVERY
1. Operating Temperature Range - 260 to 300°F (Lower Temp. Preferred)
2. Sulfur Purity (Bright) - 99.9 wt. % (Minimum)"
829
-------
Major Equipment Design
Integral pilot plant data was used as a basis for major equipment design.
The major vessels to be designed are the S02 sorber, sulfur generator, and
H2S generator/S stripper. The design procedures used and the results found
are given below.
$02 Sorber
Diameter
From the power plant a certain flue gas is to be treated. In this case
a gas flow rate typical from a base load boiler of 15 MW was taken. The flue
gas flow rate was 29,484 SCFM. The diagram of the S02 sorber is:
Temperature = T, °F
q, Gas Flow Rate
v, Linear Gas Velocity
and, in general:
or solving for the diameter, D:
[2]
It is seen from Equation [2] that the diameter of the vessel is a function
of the gas flow rate, q; the linear gas velocity, v; and the temperature, T.
The flue gas flow rate is 29,484 SCFM and if a velocity of 3 ft,/sec. is
830
-------
D =
16.3
ft.
specified at the average temperature 170°F then Equation [2] leads to a SC>2
sorber diameter of:
[3]
The linear gas velocity was taken as 3 ft./sec. to afford capability of
variation from 2 to 4 ft./sec. The temperature was taken as 170°F because
this is the average temperature expected during actual operation of the S02
sorber.
Space Velocity
The procedure used to design a 502 sorber is given in detail in Appendix
A-20-5. The highlights of the design procedure are repeated below. The
plug flow design equation given by Equation [4] is given
[4]
/-Fv.
= A,
"'-'- where: V = volume of carbon
RS02 = mo1ar flow rate
Fv = fractional conversion
/v = rate of reaction, acid formation
by Levenspiel23. The rate expression was determined from experimental
results as given by Equation [5]. The molar flow rate of sulfur
831
-------
GX \ »/•»"
' " "0.3V /50>-
for NO Cone. > 100 ppm
where: rv = Ibs. acid/1b. C/min.
T = temperature, °R
Xv = acid loading, Ib. acid/1b. C
V = volume fraction
dioxide, R$02» is given by Equation [6] and the fraction conversion, Fv, is
[6]
where: qj = inlet gas flow rate
N = inlet S02 concentration, vol. fraction
defined in terms of volume fraction as given by Equation [7]. The volume of
carbon is given as the height of carbon times the cross -sectional area of the
reactor. Making the substitution into Equation [4] and integrating the design,
Equation [8] is obtained for any stage j. In making the integration
: P
D = reactor diameter, inches
hj = settled bed height carbon for j^ stage,
832
-------
plug flow of the gas and backmix of the solid was assumed. A material balance
for acid across the jth stage leads to Equation [9]. Then by stage
where: Rc = carbon rate, Ib. C/hr.
by stage calculations Equations [8] and [9] can be used to design a S02
sorber. By taking the conditions given for the S02 sorber:
Inlet Flow Rate = 1 ,909,000 CFH @ 70°F
Inlet Gas Concentration, S02 (+ $03) = 3,285 PPM
NO = 280 PPM
02 = 4.46%
H20 = 10.3%
Inerts (N2, 002) = Balance
Outlet S02 Concentration = 280 PPM
Average Temperature = 170°F
Outlet Acid Loading on Carbon = 0.22 Ib. H2S04/lb. C
Carbon Rate = 6,605 Ibs. C/hr.
Diameter = 196 inches (16.3 ft.)
For various assumed bed heights per stage (6, 12 and 18 inches) S02 sorber
designs were obtained as given in Fig. C-2-1 and Tables C-2-1 to -3. For four
stages then the carbon bed depth is 11 inches at a space velocity of 2,350
ft.3 gas/ft.3 C/hr.
833
-------
Figure C-2-1.
Effect of carbon bed/stage on S02
sorber design at 3 ft./sec.
CO
in
M
(U
2 - -
0
Design Taken
@ 4 Stages
O Number of Stages
A Total C Bed Depth
D Space Velocity
0
--60
10
15
• 40
CO
0)
J3
O
C
JS
(1)
Q
CU
PQ
20
Carbon Bed Depth/Stage, inches
- -3000
--2500
- -20 o •-1500
cd
.u
o
H
-.2000
O
O
i-4
(U
0)
o
(0
834
-------
S02 SCRBER DESIGN
RUN NLKBDR GCPD-5 DATE 7 23 74
TOTAL c0 LBS A(,in/LB CARGON
HE.l.GH,T..OF_j;ARBON/.ST AG6__= ___ 1 2 ..0.0. .INCHES _
"DIAMETER ot: VESSEL =196.6 INCHES ...... ""
CARBON USED = 0.
TOTAL.. GAS _.FL.C\>'_RATr-..= _...! 7J.2:1.2.8, .JSCFII
"INLET SG2 CCNCI:-NTRAT'ION =~ "328'5."~ppM "
INLET NO CONCENTRATION = 280. Pf'f
INLET. .pZ.VCLyME . F.R ACT I .CN ..-?.... .0..0/.46
INLET H20 VOLUME FRACTICK = 0.1030
OUTLET S02 CCNCENTRATION = 2SO. PPM
TEMPERATURE = 170.0 DEC. F
S02 CONCPNTRATICN ACID LOADING
.STAGE _ PPM LBS ACID/LB CARBON
~"l "3285"'. ~" """6'."2205
2" 2274. ""_ 0.1'(63
3 __I__1_ .'JL077. Q..058!>
0.71 279.9998 . 0.0
TOTAL CARDDK REQUIRED = 44.54 INCHES
___ ^
SPACE VELOCITY = 2279. 1/HR
PRESSURE DRCP ACROSS CARBCN = 22.27 INCHES 1-20
PRESSURE DRCP ACROSS PLATES = 11.13 INCHES H20
RATE EXPRESSION USED IN CESIGN CALCULATIONS
.8 A TEC. II L=COEF.F * J i~.X. (.1, }./:.X.S ) *.*A_*...^YSp2.<^*B.^_^j Y0.2.*Jt\QI_*_.(.y!12.0**ip.L_
WHERE "C'O'EF"F-K * EXP(-E/R*( i/(T+460j ) )
.3.8 _________ _ ____ JLO?.:: ...... _Q..04.5. __________ Yh.2.Q.=... ........ C...1C?>.
-E/R- 5520. ....... A= 1»000 ... B=^ 0.400 C= 0.630
K=O.C00159 ...... ....... ._ ............ ___ .......... .. ................ .......
835
-------
Table C-2-2
S02 SOMBER DESIGN
HUN NU'BCK
GCPD-6 CATC 7 23 74
TOTAI CARBI;N RATE = 6&05.coo LBS/HR
CUTLET CARBCN LOADING = 0.22050 IBS ACID/LB CAROON
HE! GKT CH ..CAR(3CN/ST.AG.E_.= _____ 6.00..INCHES ______________
OIAC.ETER OF VESSEL =196.0 IMCMES ........ _ ..... ------- ...........
CARBON USED = 0. .......... ___ ..... ......
T.OT.AL. ..G./-S. .F. L CW _RA.T E.. = _____ L7.Z2 1 ZB.,._SC£t! _________
INLET S02 CONCENTRATION =
JIJLET NO CONCENTRATION =
INmT...02..VCLUM6..rRACTION_=_ ...<
INLET H20 VELUHE FRACTION =
OUTLET S02 CONCENTRATION =
TElTpERTYuRE =" 170.0* DEC. ~F
S02 CONCENTRATION
SLAG E. £P.M
3285. PPI"
280. PPI"
0.1030
280. PPK
1
2
3.
3285.
2761 .
21 6.3 ,_
1513.
063.
303_._
2V9-999J?
ACID LOADING
LB.S... AC.ID/.L8_..CARIVON..
0.2205
0. 1821
!„ aU 382
0.0905
0.0'*28
OA.P.Q.I.I
0.0
TOTAL CARDCN REQUIRED
SPACE VELCCITY -
36.28 INCHES
2797. 1/HR
PRESSURE DRCP ACROSS CARBCN = 18.1^ INCHES H20
PRESSURE DRCP ACROSS PLATES = 9.07 INCHES H20
.10.1 A.L..P.R.ES.S.UB EJ3JlQ£L_AC.B.QS5_iLA.P.E.S_r 27.21_I N.C HE S ±12.5
RATE EXPRESSION USED IN DESIGN CALCULATIONS
.(\AT.CC(.I.J.r.C.n.Er.F...*_J_l.r.X(l.)/_XS)**A * (Y.S02.**I?L± (YQ?*_*C» * (YH20**OI
WHERE COEFF = K » EXC (-E/R* I 1 / ( T + /i 60 J ) ) ""
1= 1.7.0.,.
5520.
K-O.CC0159
1.000
3tna=.... 0.0/+5
B= . O.'/iOO ""
0 . ) 0 3
C.630
836
-------
Table C-2-3
S02 SORBER DESIGN
RUN NUMBER GCPD-M DATE 7 23 74
TOTAL CARBON RATE = 6605.COO LBS/HR
CUTLET CARBCN LOADING = 0.22050 LBS ACID/LB CARBON
HEIGHT. CF CARBCN/STAGE = 18.00 INCHES
'DIAMETER or- VESSEL =196.6 IN CHE'S
CARBON USED = 0.
TOTAL GAS FLCW RATE_= 1772128. SCFH
INLET S02 CONCENT RATION = ' 3285."pP>"
INLET NO CONCENTRATION = 280. PPM
INI E I. .02.,_VCL U f-i.E. F fi AC T 1,0 N. .=....._0.f 0 'i /• 6.
"INLET 1120 VCLUCC FRACIION -' 0.1030"""
OUTLET S02 CCNCENTRAT1 OK = 280. PPK
"r EM'P¥R A "f'ijRT ="T7o""."o" DEC T"F
S02 CONCENTRATICN. ACID LOADING
STAGE £PM LBS ACID/LB CARBQN
1 3205. 0.2205'
2 1826. C.I135
?. 9996 : .,:','-'J.H"H-. _Q.O
TOTAL CAR130N RtGUIIikU = 53.23 iNCHhS .
TOTAL STAGES REQUIRED ASSUMING18.00 INCHES CARBON/STAGE = 2.96
S.PACE VELOCITY = 1907. 1/HR
PRESSURE CACP. .ACRP.S.S...CARB.C.N_= i.2.6,.61_.I.KCHES.. H20^ ...
PRESSURE D'KC'P ACROSS PLATES = 13.31 INCHES H20
TOTAL PRESSURE DROP ACRCSS STAGES = 39.92 INCHES H20
_____ R.AJ.E... E XP.R.C.S.S I.O.N_.US.[?.P_,..I N_,C.E.S..l.GN.. _CALC.UL.ALLQN.S ____________________________ .....
RATECU > = CQEFF * { 1-X ( I J/XS ) **A * [ YS02**B ) " * (Y02**C> * (-YH20**DJ
T= 170. XS= 0.38 Y02= 0.045 YH20= C. 3.03
r£/.R.r: ____ 5.5.20.. ____________ A.^ _____ UO.QQ ______ j^= ___ O..AQO ___________ _C= _____ £.6.3.0
' K=O.C00159 ..... . ... .................... ..............
837
-------
Sulfur Generator
Diameter
The rate of acid from the S(>2 sorber determines the H2S required for conversion
to sulfur by Equation [10].
Since the acid loading from the sorber was 0.22 Ib. acid/lb. C and the carbon
rate was 6,605 Ibs. C/hr., then the molar flow rate of acid is 14.8 moles/hr.
Based on integral pilot runs to get high H2S utilization, lower acid conversions
were obtained. Seventy per cent of the acid was converted to elemental sulfur
in the sulfur generator and 15% was evolved as S02"> therefore, the molar H2S
requirement is about 31.1 moles/hr. plus the breakthrough of less than 0.1
mole/hr. (99.9% H2S utilization). The S02 is recycled to the sorber, while
the remaining acid is converted in the H2S generator/S stripper. Based on
the producer gas an inlet H2S concentration of 22 volume % is obtainable;
therefore, the total inlet gas flow rate into the sulfur generation is given by
Equation [11], to yield 50,800 SCFH (847 SCFM). As for the S02 sorber,
Equation [12] evolves relating the reactor diameter to the gas flow rate,
linear gas velocity, and column temperature. For a gas flow of 847 SCFM, a
gas velocity of 3 ft. /sec., and an average temperature of 300°F, the sulfur
generator reactor diameter of:
838
-------
[12]
D = 3.0 ft.
The velocity was taken as 3 ft./sec. to allow variability of operation and
300°F is the expected average operating temperature.
Space Velocity
A procedure similar to the one used for desining the S02 sorber was used to
design the sulfur generator. The plug flow design Equation [4] provided a
basis with the same assumptions of plug flow of the gas and backmix of the solid
to obtain the design relationship. The rate expression from differential
reactor measurements is given by Equation [13]. Then the
where: rH2S = rate H2S used, moles H2S/ft.3 C/hr.
T = temperature, °R
Xv = acid loading, Ib. acid/lb. C
/H?S = H2S concentration, volume fraction
molar flow rate Equation [14] and the fraction conversion, Equation [15]
run
[14]
839
-------
substituted into Equation [4] leads to the design Equation [16]. This
i. D 11^1 (y V V
where P = — r- U J>
D = reactor diameter, inches
hj = settled bed height for jtn stage, inches
combined with the material balance, Equation [17]
where: Rc = carbon rate, Ibs. C/hr.
are used to make stage-by-stage calculations. By taking the conditions below:
Inlet Gas Flow Rate = 54,619 ft.3/hr. @ 70°F
Inlet H2S Concentration = 22.04 vol. %
Outlet H2S concentration = 0.04 vol. %
Outlet S02 Concentration = 1.46 vol. %
Inlet Acid Loading on Carbon = 0.220 Ib. acid/lb. C
Outlet Acid Loading on Carbon = 0.033 Ib. acid/lb. C
Carbon Rate = 6,605 Ibs. C/hr.
Average Column Temperature = 300°F
Column Diameter = 36 inches (3 ft.)
840
-------
The design procedure was used for various bed heights (5, 10, 15,
17, 20 and 25 inches). The design results are given in Figure C-2-2
and Tables C-2-4 - C-2-9. For 11 stages the settled carbon bed depth/
stage was 17 inches at a space velocity of 460 sft.^ gas/ft.^ C/hr.
841
-------
Figure C-2-2. Prototype sulfur generator design - effect of
carbon bed depth/stage
o 470- -
SP 25- -
0
4-
I Design Taken
'jr"at 11 Stages
5 10 15 20
Carbon Bed Depth Per Stage, inches
•-105
103
25
842
-------
Table C-2-4
sui.rtn GI.NGKAMON MATERIAL BALANCE
rOUC»$ CF SULFUR IN
POUNDS CF SULFUR OUT
1472.4521
1470.7224
J5G..60JJ.
CONTRCL VARIAOLE, Z « I.
HEIGH! CF CARIJON/STAGE_BASnO ON SJ T T LIP JBCDJ) FTTH, 1 NCHES
bi A>f:'TfR~cir""cciui''Ni "INCH"!:*"' ' 36~."6o " "
TOTAL IKLfT GAS FLOW RATE, CFH AT 7CF. = 54619.00
RATH CONSTANT•= 3.8000
~KI Nl/i' AC'ffvATTb'N ENC'RCV/CAS LAH~~CONSTANT" = -26'i'iT'oO
lF.ITI:RATURt OF REACTOR = 760.00
ORDER CF K F.AC T I ON HIJII^ES^ECT TO H2S ^ _ 0.5000 '
"o«bcR""cF"i*'E>.c'T'ro'N" ii'iiM R.Esi't:cf"fo""Ac"Fb LOAD']'NG"=
CAKUON RATH.LBS/UR = 6605.00
HUM 111: R CF STAr.fS WHEN KNOWN FOR 7. =2 = it.
'~"' ' '"~~"" "
s.occo
YH7SIK -
Yll2:'»OUT B
X'v IN =
XVOUT "
YS02IN =
YS020U1 »
X S 1 N «
0.2204
0.0004
0.2200
0.0326
0.0
0.0146
0.0
STAGE
H2S CONC.i VOL. FRACT.
AC10 LOADING, i LB H2SO'i/LO C
0.0
1
2
3
4
5
6
7
0,
9
to
11
12
13
11
15
16
17
18
" f<>
20
21
"Y2
23
2',
' ?.!•
26
27
- 23-
29
30
31
-3'2"" "
33
34
35
35.77
" 0.220'iOO
0. 214560
0.208356
0,201799
0.1-J4906
0.187696
0.1BOJ93
0.172^23
0.164'rl7
0.156208
0.147833
0.139331
0.130743
6.122113
O.H3',05
0.104906
0.096422
0.088079
0.079923
b".071999
0.0643'tO
0.057013
0.050030
0.0'i3'.34
0.037256
~ "" 0.031522
0.026255
0.021472
6.017105
/ 0.013401
0.01C120
0.007340
0'.00504B
O.OC32Z7
0.001054
0.000097
0.000417
0.033551
0.037627
- 0.041958
0.046535
0.051346
0.056379
0.061616
0.067039
0.072628.
0.078357
0.084203
0.090138
0.096132
0.102156
0.108178
0.114167
0. 120089
0.125912
0.131605
0.137136
0.142476
0.147596
" 0". 1524/0"
0.157075
0. H.13B7
0. 165389
0. 1690.66
0. 172404
0. IV 5i'>7
0.178038
0. 100 128
0.182269
7J. 183868
0.185U9
0.186097
0.1U6766
0.187100
6l: STACKS
I'CICMT CF CARBON/STAGE
TOTAL lltir.MT OF CAKI'ON
"TbTAL"VCI.UI'r"ci:~CAKUON""
SPACE VELOCITY
35.7685
5.0000
I7fl.n424
'
_ ____
cunic iet:T"
. 1982 SCF GAS/CF CARflOM/IIOUR
843
-------
Table C-2-5
SULFim GENERATION MATERIAL BALANCE
POUNDS OF SULFUR IN =
POUNDS CF SULFUR OUT =
I472. 4 52 I
1470.7224
SG 610
CONTROL VARIABLE, Z ='1.
HEIGHT C F C A R BON/SJ AG E BASED.ON__SF:T TL_EJD_fii E0.JDE_PTI1«..LNCHES__=;_ LP-i-Qfi.?.Q_
"DIAMETER' o"r:~"c'6i.uKiVi "INCHES' = 36.bo
TOTAL INLET GAS FLOW RATE, CFI- AT 70F. = 54619.00
RATE _CONSTANT =_ _ 3.8COO_
"MNU'S "ACTiVAiToN ENERGY/GAS LAW CONSTANT = -2644.00
TEMPERATURE OF REACTOR = 760.00
ORDER OF REACT ION KITH RESPECT TO H2S._=. _ .0 ..5.800.
"OR'DGR"~OF' ¥EAc'T~lbN"wTfH''R"ES'p'il'CT'""f6'~ACib L"bA'6fNG = 0.6700
CAR13CN RATEiLBS/HR = 6605.00
NUI'IJCR OP STAGES bllF.N KNOWN FOR Z =?_= 11.'
~FRACT"iCN"oF""iNLET ACID LOST" AS S02= 0.1495
YH2SIN = 0.2204
YI i? soyj_-- Q..,o_Q.p.4 H_!_I L" J' , .
"XVIV" = 0.2200 ..
XVCUT = 0.0326
YS021 N_ _f 0 ...0 ;
"YS020UT =0.0146 _
XS1N = " 0.0 " '": "" -
. X.SO,UT.... = _o^2 oio
STAGE _' H2S_CONC.t VOL. TRACT. , ACID LOAD ING,, LB H2S04/LB C
0. 0 •••••-- -JQ .220 4_0 Q_ 'O. 0 3 3 5 51 '""" "''"''
1 6.208811 0.041641
2 . 0.195867 0.050676
3 P...1.8 16.86 0 ..060.574
4~' ~ " 6.166446 "" 6.671216
5 " 0.150354 ^ 0.082444
6 '"". ' 0 .1 3 3 7 0 Q "'"'" ' ' ' '0.09 4 060 ""''"
7 ~ 67116790" " ' " o.ibTisv?.
8 0.099963 ' 0.117617
9 0.003573 0.129058
10 ~ " "d".06"797"2"" " " "6"7i39948~'
11 0.053'»92 0.150055
_J2 _ '_'; P_. 04 04 3 2 J 0.159)7).
13 0.029039 " '-..bTr67'ri!3
14 0.019496 0*17378',
_..l.|> P.!jP.Vl.?19_.; 0.179080
16 0.666300 " ~ 6.182995
17 ~ 0.002594 0.185582
10 " 0 . 000609 p_. 186968
18'V)7 " " 6".'0004")f9 0.To"? 100 !
NUMOER CF STAGES
HEIGHT CF CARBON/STAGE =
"
TOTAL VCLUME OF CARBON •-
SPACE VELOCITY
18.1729
10.0000
"1UT.7296~
107.0474
473.5549
CUBIC FEET
SCF GAS/CF CARBON/HOUR
844
-------
Table C-2-6
SULFUR CENllRATTCJN "MATERIAL BALANCE
POUNDS CF SULFlfR IN = 1472.4521
POUNDS CF SULFUR OUT = 1470.7224
SULFUR GENERATOR DESIGN SG 615
CONTROL VARIABLE, I = 1.
_.tl!f !I'HT CF CA_RljqN/ST_AGE BASEJDJ3N SETTLED BED; DEPTH, INCHES - 15.00CO
DI Ai'EI ER ~Cfr COLUMN, """i'NCHES" = "3"6". 00 " " "" 7
TOTAL INLET GAS FLOV, RATE, CFH AT 70F. = 54619.00
R.AT.E cpfSSTANJ - _ _3«8pop
"~|7,lN"Us""AC"Tl'VAfTO>7 E"NERG~Y/GXs"Ow"^ONsTANT~^ -2644Td6"'
TEMPERATURE OF REACTOR =' 760.00
ORDER OF REACTION. WITH RESPECT TO M2S « P»5,8pp _ _ "
~~'bTD^"cTnrEAl:TfON'lm7r^^0.6700""-
CARDON RAT[:,L8S/HR = 6605.00
_ _N.y.MPJB..n(L..sIAG!is M'.ENJS^nwN FOR z -?. =_ii«
FRACTl C'K "6l': fNLET ACrc"LOSf~AS~Sp2=" " 07T495" * " ""
YH2SIN = 0.2204 '~ "
YH2Sf)UT_=J ' 0.0004 "'" _ H '"' . ' J. " 7 --••-.---..--.— .-- - -
~XV"i"N = "672200"
XVOUT = 0.0326 " '
~Yso2"ouT"= pToT^lT
" XSIN = 0.0 ~ r " " - '_ '•
— ---*—•" *•" * ^, ' ^ ^. . ^ '" ' •"•"' »—-•• —•- • • ~ --^-... . --— •• - -- •"..•- .-- - - - - • _,.— -...-.. — -—.-_-..
.•
STAG! H2~s~cli~Nc77~"voL". T\\ACt~ TcjD"ToATn74GT»'LB""Yr2SOwTB^c"
0.0 '" "" '~Q . 2 20400 --••—-••• •— — •—• p.'o^ggg 1 " " '"-'
1 6.TO 3 152 ' 0."045 591
2 0.183076 0.059604
^ 3 0_.J6_0629 P.075272
"4 * b.i'36Ti5 ' " "O7o"92f04
5 """0.111661 ..." .0.109452
6 "• •"•••••• 0.007 14_9 '_ "_ _^L1TJ_"J' Oj 126562^__ "'.'... "'""""'
7 * 67664""i"20~" ~ ~O.T42637
0 0.043664 0.156915
9 •__ P.-P.'L6-6.^ P.I..1.6.8..? 5.2
11 0.005359 0.183652
12 "" '._!_'TJ1J'- P • °Qlo;?-t? L M-P'!?66.77 !'"_
"'12.Tf" " " "o'76bbVi9 " " oVioVioo" "" " ."
NUMBER OF STAGES = 12.3091
HEIGHT OF CAJlflON/STAGni jf 15.0000 ' __ .^ __ _'_"J
TOTArTiF.i'Gtit OF"CA'KLI'ON' = 'i84".636i
TOTAL VCLUMf: OF CARBON = 100.7598 CUBIC FEET
SPACE VELOCITY » 466.0989 SCF GAS/CF CARBON/HOUR
845
-------
Table C-2-7
SULFUR GENERATION MATERIAL BALANCE
POUNDS CF SULFUR IN = 1472.'.521
POUNDS OF SULFUR OUT = 1470.7224
CON'TRCL VARIABLE. Z = 1.
HE IGHT CF CARBON/STAGE i3AjS.ED_ON_SJjTj;iL.EIOl{LO_J?.^JlL^.JMJ!i£L^. LL'.OpCO_
iiVA»
-------
Table C-2-8
SULFUR GENERATION MATERIAL NALANCE
POUNDS OF SULFUR IN •-- 1472.4521
POUNDS CF SULFUR OUT = 1470-7224
CONTROL VARIABLEt Z = 1. "
OF CAKBON/STAGI-: BASED _ON _SETTLtO RED DEPTH, INCHES = 20.00CO
fr"tfrTToTuMNT""rNc'i:rL-s"~= ' "36~."ob~ "" "". ""
TOTAL INLET GAS FLOV, RATE, CFH AT 70F. = 54619.00
RATE CONSTANT = 3.0000 _ ___
""HiV\^U^""AC"TIVAf^6i^TNV:kC^Y/GAYT'AV^1cO^T>VTmV^'= "~26T'tTb'b
TE/'PERATUKE 0!" REACTOR = 760,00 '
BORDER OF REACTION unit RESPCCT 10 H2S ~ ~_ 0.5000 ___~^ "
"bRneR""OF "Ri-A ct"i"ON Vifii"RESI''i;cT"Yo""Ac"ib""t.o'/u)ING""="" o."676~6~
CARBON RATE.LOS/HR = 6605.00
_NUI''BF.R_ CF STAGES WI-ICN_ KNOWN FOR I =2_f 1_1.
""" r:RA"CTT6N~CF" "I'NLEt AC 1 '" "'""
"'YH2SIK = 0.2204
YH2SOUT =.^1^'Q'.QQOV.,"
XVTN"' "~= "o'.22b"o
XVOUT = 0.0326
_ YS02JK = 0_.0_
~~Y"S~0~2UU I "= 0 TO 1 "46
"XSIN " ""= "0.0
xsgyil~~
STAGl
Q.p;^ _"""" 0. 2 204 OQ—--"••--••-•••- -•••-•••• ^
\ 67T9YS83 0.049470
2 - 0.170114 0.0686rJl
_3 0.139191 0.090236
_.. ^-^^.-^ „- oTl"l2905
5 •" "" 0.073104 " '.'.".". 0.134970 '"'
6 '"'" "il"IZllP-P'16..?.3/t__L 1"_1_I"IH'1~._P.-l'^t6?3. -1
"7 " oTb"24''485 ~ " 0.1.70302 '
8 O.OC9260 0.180929
__9 0.00_1571 0.186296
9"."38 ' ' 6Tbo~o"'iT9 "" " ".. "bTioVIbb"
"JW "***"' ' 'l-" *"^*^**^""'*rTl*—m^M uril^ll -• ^
NUMBER CF STAGES = 9.3774
HEIGHT CF CARKON/ST/VCF. = 20.0000 _ . .
"f01~Al"HL'll;"liT''OF"''cTR(HJN" = "~"i'ir7.5"4"76'
TOT/U. VCLUME OF CARBON --- 110.4749 CUBIC FEC-T
SPACE VELOCITY = 458.0630 SCF GAS/CF CARBUN/HCUR
847
-------
Table C-2-9
SULFUR GENERATION MATERIAL BALANCE
POUNDS CF SULFUR IN = 1472.'.521
POUNDS CI-- SULFUR OUT = 1470.7224
SUI.FUR .G.EKC.RAT_p_B_.p.l:.S.LC'IL SG__62_5_
CONTROL VARIABLE, 7. = 1 .
HEIGHT CF CARBON/ S T AGJ_ I5AS.ED ON SHTTLEp BED.DE.PTH, J_NCHES.._^ ____ 2_5....00_CO
bTAl'ElT:R"dF CbLL;'KN,"""lNCHL:S""="" ..... '"'3 67/00 ""
TOTAL INLET GAS FLOW RATE, CFH AT 70F. ~ 54619.00
RATH CONSTANT = 3.0000 " ____ _____ u __ ___ . ______ ___
"MiNUS" ACT I'VATTbN ENERGY/GAS LAW CONSTANT = -2644.00
TEMPERATURE OF REACTOR = 760.00
OROCR CF REACTION KITH RESPECT TO II2S =_ 0.5000 _ _ _ _
dRDlER""OF"REAlCfl6"fT W I f tl" RE SPEC T~"f 0 ' AC fo" LOADING = 0.6706"
CARBON RATt'tLBS/HR - 6605.00
NUMBER CF STAGES U-IEN KNOWN FOR 7. =2 •=_ 1 1 . _ __ ____
F'RACYl'cK"o'F 'jNlET ACIc"'LbST'~AS S~02= 0.14"95
•YH2SIN ~- 0.2204
YH2Sqyj_= __ 0.0004 "' '" ''' '' ' " " " " ~
XVI'N" "" =" 672200
XVOUT = 0.0326
y..sp.2n\i_- _ o.o
"Y"SO£OUT =~" ~6'.6i46
XSIN = 0.0
x_sjiu
Js
ST~AGE
0.0 " ...... " ...'.. .0..2204QC I '" ' .._''_'_...,.'Z. 1" Ll"ll 0-033551
1 0.192103" ~ ' ~6".'05'330~3
2 0.157099 0.077736
.3 _____ ^ ______ P^_l 17 9 19 _______ __ 0 . 1 0 5004
4 6.078585 ~ ~ 67Y32546
5 0.043000 0.156765
6 _____ __ ___ ™111_.0_' P.I P !!?•}_ __ Z __ """"__ "j?« 17<<7^.7
7 6.003751 ' ..... ..... 67104775
V.62 0.000420 0.187100
..NM^.RG.R_CF_STAGF.S. ' '"_=
IUUGHT ci:~"cAR[inN7sf'AGl: =
TOTAL HEIGHT OF CAflflOK =
._
SPACE VELCCITY
_ 7. 61 .81
"TsToobo
190.4514
1.12.1053
'45Yr0669'
cunic FEE_T
S CF" "GAS/CF "C'AKbGN/HUUR"
848
-------
H2$ Generator/Sulfur Stripper
The HgS generator/S stripper is a multi-functional reactor, which removes the
sulfur from the carbon and converts part of the sulfur to H2S used in the
sulfur generator to convert sulfuric acid to sulfur. The reactor can be
separated into three phases: 1) a carbon preheater, 2) a sulfur stripper,
and 3) a H2S generator, although the function of each phase overlaps. In
this reactor any additional sulfuric acid is converted to sulfur.
Diameter
The hydrogen requirement was determined in the integral pilot runs to be
about 3.4 moles H2/mole S02 sorbed. In addition the total inlet gas flow
rate is determined by the inlet H2 concentration. With the gasifier and water
gas shift reactor used presently an inlet H2 concentration of about
19.4% volume %, therefore the total gas flow rate is given by Equation [18],
^ ^-"H.,6^,
to yield 94,000 SCFH (1,565 SCFM). Then, as for the S02 sorber, Equation [19],
PS] j> = vwrwi^r
for a linear gas velocity of 3 ft./sec., and an average temperature of 1000°F,
the diameter of the H2S generator/sulfur stripper is:
D = 5.8 ft.
The velocity was taken as 3 ft./sec. to allow variability in operation and
1000°F is the expected temperature. In the top stage (carbon preheater section)
849
-------
the temperature expected is somewhat lower, about 700°F, therefore the
diameter of that section was set at 5.2 ft. to maintain a gas velocity of 3
ft./sec.
Space Velocity
Kinetic studies have been conducted on sulfur stripping from carbon and for
H2S formation. The data are not yet complete enough to allow a rigorous
equipment design as for the $62 sorber and sulfur generator. For this
reason equipment is sized by the space velocity concept. As given by
23
Levenspeil , if a reactor is run under expected operating conditions,
then design of a similar vessel can be made based on equivalent space
velocities. This assumes no changes in system flow or thermal characteristics.
For the integral pilot runs sufficient sulfur removal from the carbon
as well as H2S formation were obtained in an 8 stage,4 inch diameter fluidized
bed reactor. The bed, which operated at an average temperature of 1200°F,
had two stages for H2S formation and 6 stages for carbon preheat and sulfur
removal. The space velocity at which the H2S formation section was operated
was about 5700 sft.3 gas/ft.3 C/hr. The carbon preheat and sulfur stripping
section was operated at a space velocity of .about 1900 hr."^.
In addition to the integral runs a process variable study was done
of the effect of temperature on sulfur removal, on space velocity and
inlet \\2 concentration on sulfur removal, and on temperature on H2S
formation. This data is shown in Figures C-2-3 - C-2-6. The data
indicates that lowering the temperature to 1000°F (Figure C-2-3) decreases
the sulfur removal by about 10%, but Figure C-2-5 indicates that
at 1200°F most of the sulfur is removed in about 5 stages (space
850
-------
velocity - 1900 hr.'l) as in the integral pilot run. Therefore for the H2S
generator for sulfur stripping and carbon preheat sections, the space velocity
was decreased by about 15% to 1600 hr."1 to allow for the decrease in
temperature. This increases the carbon residence time from about 8 minutes
to 21 minutes, so there is an increase of over 2.5 times. The reason the
space velocity doesn't change by this much is the inlet H2 concentration is
lower in the prototype, 19.5% versus about 30% in the runs shown in Fig. C-2-3 •
-6. As shown in Fig. C-2-4 the decrease in concentration from 30 to 20% has
little effect on the sulfur removal, but rather the effect on space velocity
is on the increase in gas flow rate to maintain the same molar flow rate of
H£ needed for reaction.
The effect of temperature on H2S formation is shown in Fig. C-2-6. Decreas-
ing the temperature from 1200 to 1000°F decreases the conversion from about
72 to about 56%. This decrease implies a decreased space velocity from about
5700 hr.-1 to about 4400 hr."1, however, in the prototype a space velocity of
3800 hr.""1 was used to assure additional conversion capability if needed.
851
-------
Figure C-2-3. Effect of temperature on sulfur stripping with
H2 present
C
O
XJ
o
•o
OJ
o.
Q.
to
100-
90
80-
70-
60-
50-
40-
30-
20-
10-
0
700
Equipment:
Linear Gas Veloc.
Inlet H2 Cone.:
Inlet S Loading:
Carbon Residence
Time:
8 Stage, 4" 0 Fluidized
Bed Reactor
2 ft./sec.
27 - 32 Volume %
0.26 Ib. S/lb. C
10-13 minutes
800
900 1000 1100 1200
Average Temperature, °F
1300
1400
852
-------
Figure €-2-^4. Effect of HZ concentration and gas/solid contact
time on sulfur stripping at 1200°F
OJ
Equipment:
Linear Gas Veloc:
Avg. Temperature:
Inlet S Loading:
Space Velocity for S
Stripping & 1300 hr.'1
(C Res. Time = 13 min.)
o—
-1
Space Velocity for S
Stripping x 3,000 hr.
(C Res. Time = 6 min.)
8 Stage, 4" 0 Fluidized
Bed Reactor
2 ft./sec.
1200°F
0.26 Ib. S/lb. C
__! 1 i ! 1—
10 20 30 40-
I,nlet Hg Concentration, Volume %
T~
50
853
-------
00
Ln
o
•
-O
3
CO
0.28
Figure C-2-5. Sulfur removal from activated carbon in an 8 stage, 4"0 regenerator
0.26-
0.24-
0.22-
0.20-
0.18-
0.16 -
0.14-
0.12-
0.10-
0.08-
0.06-
0.04-
0.02-
0.
Outlet
Run: SHG-7
Avg. Temperature: 1200°F
Linear Gas Veloc.: 1.8 ft./sec.
Inlet H?: 38.0 Volume %
• 4 5
Stage Number
i
7
8
Inlet
-------
Figure C-2-6.
Effect of temperature on the conversion of
sulfur to hydrogen sulfide
100
I
r—
3
CO
O.
Q.
CO
M-
O
fc*
CO
CM
X
o
•p
c
o
c
o
o
co
60 H
40 -\
20 H
0
700
800
900
1000 1100
Average Temperature, eF
1200
1300
855
-------
MANPOWER REQUIREMENTS
The R&D, plant and maintenance manpower requirements were estimated
from the program schedule use past experience in pilot plant operation
as a guide.
Engineering design costs were estimated separately as 10% of the
equipment costs based on Peters & Timmerhaus11.
856
-------
MANPOWER DISTRIBUTION
'''___ ' "•!-.-•_ .— "—. - '• ' ' -•• '" "' """ -iiim-ii mill iiiiiiiiii IN MI.I..I •.
A. PILOT PLANT PROGRAM
1. Process Control (Existing
Pilot Unit)
2. Full Scale Fluid Bed Tests
B. PROTOTYPE PROGRAM
1. Prepare Detailed Test Program
2. Prepare Process Design Specs.
3. Detailed Engng. Design & Bids
4. Procurement & Construction
5. Definition of Boiler Opr.
Characteristics
6. Operation
a. Operator Training
b. Start-up
c. Test Program
d. Demonstration Run
7. Data Evaluation & Process
Assessment
TOTALS BY JOB
"• R&D PERSONNEL
Supr .
83
83
55
55
138
388
83
55
166
125
83
249
1,563
.Engr._
1 , 044
1,044
696
695
1,740
4,872
1,044
696
2,088
1,566
1,044
3,132
19,662
Anal.
522
696
696
522
522
522
1,044
4,524
Tech.
3,132
1,044
1,392
2,088
2,088
1,044
PLANT PERSONNEL
Supr .
522
522
1,044
10,788 j 2,088
Qp_r_._
2,088
2,088
8,352
12,528
Supr .
300
300
600
1,200
Maint.
2,088
2,088
4,176
8,352
TOTAL
4,781
2,171
1,447
1,447
1,878
5,260
1,649
2,143
7,774
9,290
12,167
4,423
54,440
00
Ln
-------
LABOR COST
(See Manpower Distribution)
Supervisor 1,563 @ $12/hr. = $18,756
Engineer & Sci. 19,662 @ $10/hr. = 196,620
Analyst 4,524 @ $7.50/hr. = 53,940
Technician 10,788 @ $5.00/hr. = 33,930
Plant Operator 12,528 @ $5.00/hr. = 62,640
Plant Supervisor 2,088 @ $7.50/hr. = 15,660
Maintenance 8,352 @ $6.50/hr. = 54,288
Maintenance Supervisor 1,200 @ $7.50/hr. = 9,000
TOTAL $444,834
Overhead 422,600
TOTAL D.L. & Overhead $867,426
Maintenance Material (100% of Maintenance Labor) 54,288
Consultants (1/Month @ $400/Day) 14,400
Travel (2 Trips/Month @ $200/Trip) 14,400
858
-------
PROTOTYPE PROGRAM
DIRECT RAM MATERIAL & UTILITIES COST
Coal (.358 T/hr.)($20/T) = $7.16
Activated Carbon (25 lbs./hr.)($.40/lb.) = 10.00
Power (900 Hp)(.746 KW/hr.)($.0075/KWH) = 5.03
No. 2 Fuel Oil (63 GPH)($.20/Gal.} = 12.60
Water, BFW (12,000 lbs./hr.)($0.18/1,000 Ibs.) = .22
C.W. (250,000 Ibs./hr.)($.012/1,000 Ibs.) = 3.0
TOTAL UTILITIES & RAW MATERIAL $38.00/Hour
START-UP: (3 Mo. )(l/2 Time)(720 Hr./Mo.)($38/hr.) = $41,040
TEST PROGRAM: (3 Mo.)(3/4 Time)720 Hr./Mo.)($38/hr.) '= 61,560
DEMONSTRATION RUN: (6 Mo.)(Full Time)(720 Hrs./Mo.)($38/hr.) = 164.160
TOTAL PROGRAM UTIL. & R.M. $266,760
859
-------
MAIN PLANT ITEMS FOR ESTIMATE
(MPI)
Designation
Adsorber
Regenerator (S Generator)
Regenerator (H^S Gen./S Stripper)
Carbon Cooler
Blowers and Motors
Electric Motors
Heat Exchangers
Urt a 4-ov»r
'Carbon Storage
Cyclone Collectors
Dust Collector
Bucket Elevators
Belt Conveyors
Shift Reactor
Gas Producer
Unit Cost
$65,700
18,100
24,600
3,700
15,330
6,600
8,610
500
14,500
7,600
1,800
500
3 300
24 ,'300
28,200
26,970
5,040
'15,850
1,470 Avg.
22,000
4,366 Avg.
2,753 Avg.
7,800
87,000
No. Req'd.
1
1
1
1
1
2
1
2
1
1
1
1
1
1
1
2
1
3
1
5
1
_L
32
Total Cost
$ 65,700
18,100
24,600
3,700
15,330
13,200
8,610
1,000
14,500
7,600
1,800
500
24,300
28,200
26,970
10,080
15,850
4,405
22,000
21,830
16,520
7,800
87.000
$442,895
MPI - Average Cost in 1974 = $13,840
MPI - Average Cost in 1958 = $ 3,820
860
-------
BATTERY LIMIT ESTIMATE
TITLE: Westvaco S0£ Removal Process - 15 MW PROTOTYPE UNIT
Number of MPI's —. j-
tost indexes
958 . 1974
32 100 362
Average Cost of MPI's in 1958 = $3,820
MPI (Main Plant Items) - See Separate List
HUE (Miscellaneous Unlisted Equipment}
Basic Equipment (MPI + MUSI)
Field Erection of
Basic Equipment
Equipment Foundations
& Structural Supports
Piping
Insulation - Equipment
- Piping
Electrical
j i fiS i.VUmcn uu L. i CM
Miscellaneous
Bui 1 dings
Architectural
Structural
Building Serv.ices
(% of Arch'1! & Struct.)
Compressed Air
Electrical Lighting
Sprinklers
Plumbing
Heating
Vent 6 Air Cond.
To till Services
High - Large Pet. of Equip.
Involving Field Labor, Large
Equipment
High Predoiirina
_ J9.uJ.P_'_i. J-Ar9P_
~ Hig'h ~- Cfas"lfa7i
Amt. of La roe
nee of Mi Id Steel
Fans, 1. an'c Equip.
dling Significant
Duct'.'ork"
High - Significant Lagging
Regen. & Shift Reaction at High
Temperature
High - Significant Piping, High
Temperature
Mild Steel Equ
Solids
ip. , Heavy Drives,
Hiqh Instrumentation Required.
Solids K;:r:Jlincj
Large Process,
Top of Range
Open Air Plant with Minor
Buildings - Use of Middle of
Range
Low Amount of Building
Services - Open Air
5
9
1
2
0
"17
17*
Sub-Total Factored Items
Total Factored Items Adjusted
Direct Cost of Adsorber-Regenerator
Battery l.imvt jExcl . Taxes and Cat.)
Addn'l flattery Limit Items
Carbon Feeder, Sulfur Flaker ft Inert Gas Generator
TOTAL DIRECT COST - BATTERY LIMIT
DATE: August 6, 197-1
Factor
Est'd.
15%
19
6
82
7.8
14.5
18.5
44.5
5
22.5
3.8
224
224 '
Estimated
Cost
$ 442,900
509,300
1
1,140,800
1 ,650,000
22, /1 00
$1,672,400
861
-------
SUMMARY SHEET FOR EQUIPMENT COST ESTIMATION
TITLE: Westvaco S02 Removal Process
DATE: August 6, 1974
15 MW PROTOTYPE UNIT
Factor
Estimated Cost
DIRECT COST OF BATTERY LIMIT
STORAGE AND HANDLING
UTILITIES
Battery Limit Add'n, Steam and
Elec. Available from Existing
Power Station - Use Low B/L
SERVICES
Battery Limit Add'n, Minimal
Services Req'd.
TOTAL BATTERY LIMIT PLUS AUXILIARIES
CATALYST
Activated carbon: \ZU% ("Adsorber
+ Regenerator]
(1.20)(5.7 hrs.H3.3 TPH)(800/T)
Shift: (200 ft.3)($26/ft.3)
TOTAL DIRECT COST
INDIRECT COSTS
Construction Expense Factor of/
Contractor's Fee Direct
Contingency Costs
TOTAL DIRECT AND INDIRECT INSTALLED
COST
10
4
20
$1,672,400
50,200
53,400
$1,776,000
iR.nnn
5,200
$1,799,200
611.700
$2,410,900
862
-------
TECHNICAL REPORT DATA
(Please rrod Instructions on the reverie before completing)
REPORT NO. ~~
j EPA-600/2-76-135b
J4. TITLE AND SUBTITLE
Development of the Westvaco Activated Carbon
Process for SOx Recovery as Elemental Sulfur,
Volume II—Appendix
7.AUTHOR(s»G.N. Brown, C.M. Reed, A.J. Repik,
R. L. Stallings, andS.L. Torrence
8. PERFORMING ORGANIZATION REPORT NO
3. RECIPIENT'S ACCESSION-NO.
5. REPORT DATE
May 1976
6. PERFORMING ORGANIZATION CODE
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Westvaco
Charleston Research Center
Box 5207, North Charleston, SC 29406
10. PROGRAM ELEMENT NO.
1AB013; ROAP 21ACX-085
11. CONTRACT/GRANT NO.
68-02-0003
12. SPONSORING AGENCY NAME AND ADDRESS
13. TYPE OF REPORT AND PERIOD COVERED
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
13. TYPE OF REPORT ANt
Final; 1/71-6/74
14. SPONSORING AGENCY CODE
EPA-ORD
is.SUPPLEMENTARY NOTES Project officer for this repOrt is D. A. Kemnitz, Mail Drop 62,
Ext 2557.
16. ABSTRACT -phc report gives results of a demonstration (in a 20,000-cfh integral pilot
plant) of an all-dry, fluidized-bed process, using activated carbon for recovering
SO2 as elemental sulfur. Granular carbon was recycled continuously more than 20
times between contact with flue gas from an oil-fired boiler and carbon regeneration
to recover sulfur. During the 315-hour run, carbon performance remained high with
essentially no chemical and low mechanical losses. Over 90% of the 2000 ppm SOx
was removed from the flue gas as sulfuric acid by catalytic oxidation and subsequent
hydrolysis within the carbon granule. In the two-step regeneration: (1) the acid was
converted to elemental sulfur at 300F with internally produced H2S, and (2) an exter-
nal source of hydrogen at 1000F was used to thermally strip the by-product sulfur
from the carbon and produce the required H2S by reaction with the remaining sulfur
on carbon. Sufficient process and design information was developed from data ob-
tained in the integral run and prior stepwise pilot equipment operation to permit
scale-up to a 15-MW prototype for a coal-fired boiler. In the preliminary design,
reducing gas is produced in a coal gasifier. An economic assessment of a 1000-MW
conceptual design for the process indicates capital and operating costs competitive
with those of other regenerable systems.
U —
17..
KEY WORDS AND DOCUMENT ANALYSIS
a. DESCRIPTORS
[ Air Pollution
Flue Gases
Activated Carbon
Sulfur Oxides
Fluidized Bed
Processing
18. DISTRIBUTION STATEMENT
Unlimited
EPA Form 2220-1 (9-73)
Regeneration
(Engineering)
Fuel Oil
Sulfuric Acid
Catalysis
Oxidation
b. IDENTJFIERS/OPEN ENDED TERMS
Air Pollution Control
Stationary Sources
Elemental Sulfur
Westvaco Process
Catalytic Oxidation
19. SECURITY CLASS (This Report)
Unclassified
20. SECURITY CLASS (This page)
Unclassified
c. COSATI Field/Gioup
13B
2 IB
11G 2 ID
07B
07D
13H,07A 07C
21. NO. OF PAGES
889*
22. PRICE
863
-------