U.S. ENVIRONMENTAL PROTECTION AGENCY
USER'S MANUAL
FOR THE
DYNAMIC (POTOMAC) ESTUARY MODEL
TECHNICAL REPORT 63
MIDDLE ATLANTIC REGION-III 6th and Walnut Streets. Philadelphia, Pennsylvania 19106
-------
EPA 903/9-79-001
USER'S MANUAL
FOR TOE
DYNAMIC (POTOMAC) ESTUARY MODEL
TECHNICAL REPORT 63
-------
EPA 903/9-79-001
USER'S MANUAL
FOR THE
DYNAMIC (POTOMAC) ESTUARY MODEL
TECHNICAL REPORT 63
January 1979
Stephen E. Roesch
Leo J. Clark
Molly M. Bray
Annapolis Field Office
Region III
U.S. Environmental Protection Agency
-------
EPA 903/9-79-001
ABSTRACT
The Annapolis Field Office (AFO) of the Environmental
Protection Agency has been actively engaged in the mathematical
modeling of the Potomac Estuary since the 196Q's. During the
past several years, the Potomac water quality model has undergone
considerable revision and expansion. This report is the first in
a series of reports documenting the Potomac modeling efforts at
AFO. While the model presented in this report has been adapted
to the Potomac Estuary, it is by no means unique to that body
of water.
This report discusses the basic principles and theories
underlying the Dynamic Potomac Estuary Model. A description
of the water quality interactions modeled in the Potomac are
also presented. Being a User's Manual, this report also
contains listings of the hydraulic and water quality models, a
detailed description of each program and its logical structure,
variable definitions, data deck sequences, and sample input/output,
-------
TABLE OF CONTENTS
Page
ABSTRACT i
TABLE Of CONTENTS i i
LIST OF FIGURES v
LIST OF TABLES vi
CHAPTER 1 THEORY OF THE DYNAMIC ESTUARY MODEL 1
1.1 Introduction 1
1.2 The Model Network .. 3
1.2.1 Overview 3
1.2.2 Channel Parameters 5
1.2.3 Junction Parameters 6
1.2.4 Network Configuration and Size 8
1.3 The Hydraulic Model • 9
1.3.1. Theory 9
1.3.2 Solution Technique 14
1.4 The Quality Model 15
1.4.1 Theory 15
1.4.2 Solution Technique 36
CHAPTER 2 IMPLEMENTATION OF THE HYDRAULIC MODEL 38
2.1 Regression Analysis Program (REGAN) 38
2.1.1 Program Description 38
2.1.2 REGAN Data Deck Sequence 42
2.1.3 REGAN Variable Definitions 43
2.2 The Hydraulic Program (DYNHYD) 45
2.2.1 The MAIN Program 45
2.2.2 Subroutine HYDEX 48
2.2.3 Subroutine RESTRT 55
2.2.4 DYNHYD Sign Conventions 57
2.2.5 Input Requirements 59
2.2.6 Output Options 63
2.2.7 Potential Implementation Difficulties 64
-------
TABLE OF CONTENTS
(continued)
Page
2.2.8 DYNHYD Data Deck Sequence 67
2.2.9 DYNHYD Variable Definitions 70
2.3 Computer Requirements , 78
2.3.1 IBM Job Control Langauge (JCL) , 78
2.3.2 UNIVAC Executive Control Langauge (ECL) 79
2.3.3 Execution Times 80
CHAPTER 3 IMPLEMENTATION OF THE WATER
QUALITY MODEL - DYNQUAL 81
3.1 The MAIN Program 81
3.2 Subroutine MIXER 89
3.3 Subroutine SUMARY 92
3.4 Subroutine SWTABL 94
3.5 Subroutines SUMPLT and SWPLOT 98
3.6 Subroutine TPLOT 100
3.7 Plotting Subroutines CURVE, PPLOT, and SCALE 102
3.8 Constituent Linkages 103
3.9 Considerations For Modeling Other Systems 105
3.10 Input Requirements 109
3.11 Output Options 112
3.12 DYNQUAL Data Deck Sequence 116
3.13 DYNQUAL Variable Definitions 126
3.14 Computer Requirements 148
3.14.1 IBM Job Control Langauge (JCL) 148
3.14.2 UNIVAC Executive Control Langauge (ECL) ... 149
3.14.3 Execution Times 150
CHAPTER 4 SAMPLE INPUTS AND OUTPUTS 151
4.1 The Model Network 151
4.2 Sample REGAN Input/Output 158
4.3 Sample DYNHYD Input/Output 163
-------
TABLE OF CONTENTS
(continued)
Page
4.4 Sample DYNQUAL Input/Output 190
4.4.1 3 Conservative Constituents 190
4.4.2 2 Linked Constituents 209
4.4.3 6 Constituent D.O. Budget -..- 229
APPENDIX 261
A.I REGAN Listing 262
A.2 DYNHYD Listing 264
A.3 DYNQUAL Listing 275
BIBLIOGRAPHY 316
iv
-------
LIST OF FIGURES
Figure Title Page
1.1 Representation of the Model Network 4
1.2 Branching and Looping in a Network 7
1.3 Mass Transfer by Advection 17
1.4 Effect of Numerical Mixing on Model Accuracy 19
1.5 Methods of Computing C* 20
1.6 Lateral and Vertical Velocity Patterns 24
2.1 Flowchart of REGAN 40
2.2 Flowchart of the MAIN Program in DYNHYD 46
2.3 Flowchart of Subroutine HYDEX 50
2.4 Creation of the Hydraulic Extract Tape 52
2.5 HYDEX Averaging Technique .54
2.6 Flowchart of Subroutine RESTRT 56
2.7 DYNHYD Sign Conventions 58
3.1 Program and Subroutine Linkages of the DEM 82
3.2 Flowchart of the MAIN Program in DYNQUAL 83
3.3 Flowchart of the Main Quality Loop 84
3.4 Flowchart of Subroutine MIXER 90
3.5 Flowchart of Subroutine SUMARY 93
3.6 Location of High and Low Water Slack 95
3.7 Flowchart of Subroutine SWTABL 96
3.8 Flowchart of Subroutines SUMPLT and SWPLOT 99
3.9 Flowchart of Subroutine TPLOT 101
3.10 Constituent Linkages 104
3.11 Alternative Linkage: Example 1 106
3.12 Alternative Linkage: Example 2 107
3.13 Alternative Linkage: Example 3 108
4.1 The Potomac Estuary 152
4.2 Potomac Estuary Model Network: Segment 1 153
4.3 Potomac Estuary Model Network: Segment 2 154
4.4 Potomac Estuary Model Network: Segment 3 155
4.5 Potomac Estuary Model Network: Segment 4 156
4.6 Potomac Estuary Model Network: Segment 5 157
-------
LIST OF TABLES
Table Title Page
1.1 Comparison of Methods for Computing C* 21
2.1 DYNHYD Execution Times 80
3.1 DYNQUAL Execution Times 150
VI
-------
- 1 -
CHAPTER 1
THEORY OF THE DYNAMIC ESTUARY MODEL
1.1 INTRODUCTION
The Dynamic Estuary Model (DEM) was originally developed
during the mid 1960's by Water Resources Engineers, a consultant
engineering firm located in Walnut Creek, California, under
contract to the Division of Water Supply and Pollution Control,
U. S. Public Health Service [ 1 ]. The principal individuals
associated with the development of this model were Drs. Gerald
Orlob and Robert Shubinski. Estuarine modelling was still in its
infancy at that point in time, and the DEM was innovative in
considering a "real time" computerized tidal solution of the
hydrodynamic behavior of estuaries, including the effects of
tides. Prior to the development of the DEM, the few estuary
models already in existence relied on a net flow or plug flow
analysis and attempted to reproduce tidal effects through the
inclusion of an artificial dispersion coefficient. Since these
models were non-tidal in nature, the time step for computations
was normally equal to the tidal period (12.5 hrs.) or, for
convenience, one day, and consequently they could not handle short
term pertubations in water quality.
The DEM was initially applied to the Sacramento-San Joaquin
Delta area in California [ 1 ]. Other early applications were to
the Suisun, San Pablo and San Francisco Bays [ 2 ], [ 3 ]. The
DEM was first brought to the attention of the Annapolis Field
Office (AFO) by Mr. Kenneth Feigner in 1969. Mr. Feigner was the
USPHS project officer during the early developmental and
application studies in California and was the'author of the basic
model documentation report [ 4 ]. Staff at AFO, with the
encouragement and assistance of Mr. Feigner, tested the model
rigorously and performed extensive modifications to the reaction
kinetics in the quality program during its multi-year application
-------
- 2 -
to the Potomac Estuary [5], [6], [7]. .The Potomac study
was primarily directed towards refining the model's ability to
treat nutrient cycles (including uptake by phytoplankton) and
towards incorporating algal effects within the DO budget. In
addition, the DEM was also applied to the upper Chesapeake Bay
during 1972-73 for the development of allowable nutrient loadings
from the Susquehanna Basin and the Baltimore Metropolitan
Area [ 8 ], and most recently to the Delaware Estuary [ 9 ].
The DEM consists of two separate but interrelated components:
(1) a hydraulic program, dealing with water motion, and (2) a
quality program, dealing with mass transport and chemical and
biological reactions. The hydraulic program predicts water
movement by solving the equations of momentum and continuity,
while the; quality program predicts the movement, build-up, and
decay of water-borne material by solving the conservation of
mass equations. The numerical solution of the hydraulic and mass
equations is accomplished on the same network, which represents
the geometrical configuration of the estuary. The following
sections will discuss in detail the network and the equations used
in the hydraulic and quality models.
-------
- 3 -
1.2 THE MODEL NETWORK
1.2.1 OVERVIEW
'-'•
The DEM represents the prototype by using a network
consisting of several interconnected "channels" and "junctions".
This channel-junction (often called "link-node") network is
extremely flexible in that it allows the prototype to be
segmented in a manner which considers the complex flow patterns
in the lateral plane as well as the effects of an irregular
shoreline. A channel element (link) connects two junction
elements (nodes) and serves as the transport mechanism between
the junction at each end. A junction is a volumetric unit which
acts as a receptacle for the fluid (and associated mass) trans-
ported through its connecting channels. A channel can connect
only two junctions, but a junction can have several channels
entering it. The concentration of the water quality parameters;
their addition, depletion, decay, and biological/chemical
transformations are defined within junctions. Parameters
influencing the actual motion of water are assigned and treated
in the context of channels.
The model network can be viewed as the overlapping of two
closely related subnetworks: (1) the channel network, and (2) the
junction network. Figures l.la and l.lb illustrate the configuration
of channels and junctions, respectively, for a hypothetical
estuary. Since a channel must have a junction at each end, the
location, shape, and size of the junctions are dependent on the
channel configuration. Figure l.lc illustrates how the channel
and junction networks overlap to form the final model network.
Figure l.ld illustrates a symbolic notation used to define the
model network.
-------
channel
connecting
"junctions
i and j
junction
surface
area
center
of ^
junction
.channel
length
(a) Channe1 Network
(b) Junction Network
(c) Model Network
(d) Network
Representation
FIGURE 1.1 REPRESENTATION OF THE MODEL NETWORK
-------
- 5 -
1.2.2 CHANNEL PARAMETERS
The parameters associated with channels are length, width,
cross-sectional area, frictional resistance coefficient
(Manning's "n"), velocity, arid hydraulic radius or depth.
Length: The length of a channel equals the distance between
the two junctions it connects. Channels must be rectangular
and should be oriented so as to minimize the variation of depth
over their length as well as reflect the location and position
of the actual protytype channels. The channel length is
generally dependent on a computational stability criteria given
by
!f L ( ^yi ± Lii ) At
where:
1^ = length of channel i
y.. = mean depth of channel i
u. = tidal velocity in channel i
At = computational time step
g = acceleration of gravity
Width: There is no apparent limit on the width of a channel.
However, if a channel is too wide in relation to its length, the
mean velocity predicted may mask important velocity patterns
occurring on a more local scale. For well defined channels, the
network channel widths are equated to the average bank to bank
width.
Cross-sectional area: The cross-sectional area of a channel
is equal to the product of the channel width and depth. However,
depth is a channel parameter that must be defined with respect to
junction head or water surface elevation (since both vary similarly
with time). Channels are assigned initial values of width and depth
based on the initial junction heads and the initial cross-sectional
-------
- 6 -
areas are computed internally. As the junction heads vary, the
channel cross-sectional areas are adjusted accordingly.
Roughness: Channels are assinged "typical" Manning Roughness
coefficients. Since the actual value of this coefficient is
virtually undefinable, it serves as a "knob" for the calibration
of the model.
Velocity: An initial estimate of the mean channel velocity
is required for each hydraulic run. Although any value may be
assigned, the computational time required for convergence to a
steady state solution will depend upon its departure from the
true value.
Hydraulic radius: Previous applications of the DEM have
employed channels whose widths are greater than ten times the
channel depth. Consequently, the hydraulic radius is usually
assumed to be equal to the mean channel depth.
1.2.3 JUNCTION PARAMETERS
The parameters associated with junctions are surface area,
volume, head, and any accretion or depletion from the system.
Surface area: Except when branching or looping occurs
(i.e., when more than two channels enter a junction), the surface
area of a junction is equated to one-half of the sum of the
surface areas of the two channels entering the junction. When
branching or looping does occur, the junction surface areas can
be determined by laying out a polygon network using the Thiessen
Polygon method, as in Figure 1.2. Since the polygons are
normally irregular, a planimeter must be relied upon to obtain
surface areas.
Volume: Junction volumes are computed by multiplying the
surface area of the junction by the mean depth of the channels
(weighted by cross-sectional area) entering the junction.
Head: Junction heads represent the elevation of the water
surface above or below an arbitrary horizontal datum. The datum
is usually taken to be or referenced to Mean Sea Level.
-------
- 7 -
junction
surface area
FIGURE 1.2 BRANCHING AND LOOPING IN A NETWORK
-------
- 8 -
Accretion/Depletion: Any accretion to or depletion from the
system is handled by the direct addition to or removal from the
junction volume or mass.
1.2.4 NETWORK CONFIGURATION AND SIZE
There is a great deal of flexibility allowed in laying out
the network of interconnected channels and junctions to represent
a particular system. The choice of the boundary locations should
include considerations of both hydraulic and quality factors. To
minimize difficulties with boundary conditions, the network should,
ideally., extend to the ocean at the downstream boundary and to or
beyond 1;he limits of tidal effects on inflowing streams, so that
the inf'ow can be considered steady. Such a network eliminates
problems; associated with dynamic boundary conditions, such as
changing salinity, or other quality conditions which could be
present if an inland point is chosen for the seaward boundary.
Other considerations which could influence the location of the
network boundaries and the scale of network elements include the
location of specific points where quality predictions are required,
the location of existing or planned sampling stations and the
availability of data for verification, the degree of network detail
desired, and the computer time desired for solution.
For computational procedures, it is necessary that the
junctions of the network be numbered consecutively beginning with
one. The assignment of numbers to the network can be based on any
arbitrary consideration. However, junctipn number one must be
located at the seaward boundary. A separate but similar numbering
system for channels is also necessary. Each junction may have
from ona to five channels entering it. A channel must have a
junction at one end; thus, dead-end sloughs must end with a
junction. Associated with each junction number are from one to
five channel numbers, and associated with each channel number are
two junction numbers.
-------
- 9 -
1.3 THE HYDRAULIC MODEL
1.3.1 THEORY
The primary task of the hydraulic model is to solve the
equations describing the propagation of a long wave through a
shallow water system, while conserving both momentum and volume.
This is accomplished by (1) applying the one-dimensional
equation of motion to the network channels to predict velocities
and flows and (2) applying the continuity equation to the network
junctions to predict fluctuations in the water surface elevation
(head) and the corresponding changes in volume. The assumptions
upon which this approach is based are:
1) flow is predominantly one-dimensional
2) acceleration normal to the x-axis is negligible
3) coriolis and wind forces are negligible
4) channels are rectangular with uniform cross-sectional
area and a slope which can be considered negligible
5) tidal conditions (amplitude and period) at the
seaward boundary are known
6) wave length is greater than or equal to twice the
channel depth
The Equation of Motion - Conservation of Momentum
The equation of motion is given by
|jf = -u|tt - k|u|u - gf* (l.la)
where:
u = velocity along the x-axis
t = time
x = distance along the x-axis
k = frictional resistance coefficient
g = acceleration of gravity
H = head (height of the wave above an arbitrary datum)
-------
^ 10 -
The terms in equation (l.la) represent the following:
jHj. „ the time rate of change of velocity; also defined
9t " as the local inertia term
9u „ Bernoulli acceleration (the rate of momentum change
3x ~ by mass transfer); also defined as the convective
inertia term as derived from Newton's 2nd Law
k|u|u ~ frictional resistance (the absolute value sign insures
that resistance opposes the direction of flow)
9H
9 "^7 = gravitational acceleration
dX
The relationship between frictional resistance and the
energy gradient is given by
k|u|u = g^j- (l.lb)
where
^ = energy gradient
For a tidally influenced estuary, few, if any, of the
channels experience steady flow. However, over short time
intervals, the flow can be considered as steady uniform flow.
Consequently, the Manning equation, given by
u = (l.lc)
(Lid)
s - -
s 2.208
where
R = hydraulic radius of the channel
s = dH/dx = energy gradient
n = Manning's n
can be usnd to evaluate the frictional resistance coefficient in
equation (l.la). Substitution of equation (l.ld) into equation
(l.lb) defines "k" as
k = - SLQL - (1.le)
2.208
-------
- 11 -
The Equation of Continuity - Conservation of Mass
The equation of continuity is given by:
9H _ 1 90 n ,x
at - ' F ' 3? (K2)
where:
H = head
b = mean channel width
Q = flow
The terms in equation (1.2) represent the following:
3H
TTT = time rate of change of water surface
elevation
-r- • |^- = change in storage along the channel length
dx per unit width
As presented, equations (l.la) and (1.2) apply to channels.
To minimize computational requirements, equation (1.2) is applied
to junctions so that:
at - « (1'3)
where:
A* = surface area of the junction
-------
- 12 -
For use in the model, both equations (l.la) and (1.3) must be
changed to their finite difference forms:
u-i + ~ u-i t i ii AUi AH
.lit -- IjtIi= -U.^ ( i) . K|u ,„ _g (AH^ (1 4)
At Ai 1,1 i i,t i x
and
Hj.t " Hj,t-1 _ - z Q (1.5)
At - A*.
where :
U. <. = velocity in channel i at time t
I , L
U.. t_-j = velocity in channel i at time t-1
At = computational time step
X. = length of channel i
AU.J/X.J = velocity gradient in channel i
AH./X. = water surface gradient in channel i
H. . = water surface elevation in junct.ion j
J5T: at time t
H. t -, = water surface elevation in junction j
J9t~' at time t-1
A*. = surface area of junction j
J
EQ = algebraic summation of flows into (accretions)
and out of (depletions) a junction
K = frictional resistance coefficient (gn2/2.208R4/3)
n = Manning's "n"
R = hydraulic radius of a channel
g = acceleration of gravity
The velocity gradient term (AU^/X^) presents some computational
problems because the computed velocity for a channel is assumed to
be constant throughout that channel, hence there is no predicted
velocity gradient within a given channel. If branching does not
occur, a velocity gradient can be computed as the difference of
-------
- 13 -
the velocities in the channels connected to the junctions at
each end of channel i. If branching does occur, this approach
cannot be used, since there would be several channels connected
to the upstream and downstream junctions. Equation (1.6) can
be used to solve this problem.
3H _ 1 30 _ 1 3(uA) ,, cx
9? " " F 3X " " b 3X U
-------
- 14 - .
1.3.2 SOLUTION TECHNIQUE
The solution of the equations of motion and continuity as
described proceeds as follows:
1) The mean velocity for each channel is predicted
for the middle of the next time interval
(i.e., for time t + At/2) using the channel
velocities and cross-sectional areas and the
junction heads at the beginning of the time interval.
2) The flow in each channel at the middle of the next
time interval is computed using the velocity obtained
in step (1) and the cross-sectional area at the
beginning of the interval.
3) The head at each junction at the middle of the next
time interval is computed using the flows derived
in step (2).
4) The cross-sectional area of each channel at the
middle of the next time interval is computed using
the heads computed in step (3).
5) The mean velocity for each channel is predicted for
the full time step ( t + At ) using the velocities,
cross-sectional areas, and junction heads computed
for the middle of the time step ( t + At/2 ) in
steps (1), (3), and (4).
6) The flow in each channel after a full time step is
computed using the velocity for the full time step
(computed in step 5) and the cross-sectional area
computed for the middle of the time step in step (4).
7) The head at each junction after a full time step is
computed using the full step flow computed in step (6),
8) The cross-sectional area of each channel after a full
time step is computed using the full step heads from
step (7).
9) Repeat steps (1) through (8) for the specified
number of time intervals.
-------
- 15 -
1.4 THE QUALITY MODEL
1.4.1 THEORY
The task of the quality model is to solve the equations
describing the movement, decay, and transformation(s) of a
material by performing a mass balance at each junction for each
time step. The quality model is referenced to the same network
used in the hydraulic model, and uses the hydraulic solution
(heads, flows, and velocities for each time step) as input.
Since the time step for the quality program is usually much
larger than the time step for the hydraulic program, the
hydraulic parameters occurring within a quality time step are
averaged. These averaged values cover a full tidal cycle and
are stored for use by the quality program. Consequently, the
quality time step must be a whole multiple of the hydraulic time
step and evenly divisible into the tidal period.
Six constituents, either conservative or non-conservative,
can be handled simultaneously by the version of the DEM presented
in this report. The concentration of a constituent at any point
is affected by mass transfers (advection, dispersion, diffusion),
decay, biological/chemical transformations, and the import or
export of mass.
Advection
Advection is a hydraulic mechanism which moves a constituent
in the direction of flow at the same velocity at which the water
moves. The basic transport equation for advection is:
where
T = u • c (1.8)
a
T = advective transport of a given mass through a
unit area in a unit time (mass/area/time)
u = velocity
c = concentration of the constituent in the water
-------
- 16 -
If an infinitesimal volume of water is considered, the
one-dimensional equation describing concentration is:
If • " H (1-9'
where
3c/3x = concentration gradient along the x-axis
3c/3t = time rate of change of concentration
If both sides of equation (1.9) are multiplied by volume
(A- AX), then the following mass balance equation is obtained:
£ - U || • (A- AX) (1.10)
where
A = cross-sectional area
x = length along the x-axis
3M/3t = time rate of change of mass
This describes the instantaneous advection of mass at a
cross-section. A general finite difference form of equation
(1.10) is:
AM.
(u'A'c>in
where
j = the junction being considered
u = velocity of water in a channel
A = cross-sectional area of a channel
c = concentration within a junction
Figure (1.3) illustrates how equation (1.11) computes the
change of mass within a junction due to advection.
-------
- 17 -
= I(u-A-c)
1n
out
= ui A.
c.
where
indicates the direction of flow
= velocity in channels i-l,i,and i+1
= cross-sectional area of channels
i-1 ,i ,and i
concentration in junctions j-2,
j-1, and j
FIGURE 1.3 MASS TRANSFER BY ADVECTION
-------
- 18 -
Numerical Mixing
When solved by finite difference methods, the advection
equation is subject to a problem known as "numerical mixing",
During every quality time step, mass is transferred between
adjacent junctions. As shown in Figure 1.4 , a problem arises
because the model assumes that the mass transferred from
junction A to junction B is completely mixed within .junction B
(i.e., that the mass from junction A is transferred to the center
of junction B). In reality, however, water velocities are
highly variable and will, at times, advance only to the boundary
between junctions A and B while the model must always move mass
in unit steps whose distance is dictated by the channel lengths
and junction sizes. The greatest difficulty will arise when there
is a high concentration gradient between two junctions. If C.
(the concentration in junction A) is much greater than CB (the
concentration in junction B), then the error introduced by
advancing constituent mass from junction A to junction B ahead
of tha actual water mass will be numerically large. In order to
insure that the discrepancy between model and river concentrations
will not be large and will not accumulate because of numerical
mixing problems, certain adjustments must be made.
The solution is to choose a concentration (C*) in the
advected water which is between the "actual" values of C. and
Cg. Feigner [ 4 ] examined several techniques for determining
C*. His results are summarized in Figure 1.5 and Table 1.1.
Turbulent (eddy) Diffusion
In a calm body of water, molecular diffusion will slowly
operate to bring constituents from regions of high concentrations
to ragions of low concentrations. In turbulent bodies of water,
however-, this relatively slow process can be neglected, and only
the effects of turbulent diffusion need to be considered.
Turbulent diffusion, the stirring or mixing of the water by eddy
current;; due to tidal action or some other energy field (such as density
-------
- 19 -
c
o
to
01
o
c
o
u
MODEL
junction A junction B
(O
0)
O
c
o
u
distance
ESTUARY
\
\
distance
concentration at time
concentration at time
FIGURE 1.4 EFFECT OF NUMERICAL MIXING ON MODEL ACCURACY
-------
c*d)
C*(5)
^^^
>>
J
c*(D •
C*(2) =
C*(3) =
C*(4) =
C*(5) =
v c*<4)
^^•-
-------
Method
Upstream
1/2 Point
1/3 Point
1/4 Point
Definition of
(See Figure 1
c* = ca
c* = (ca + cb
c* = (ca + cb
C* = (C + C.
c*
.5)
)/2
)/3
)/4
Numerical
Mixing
High
Low
Moderate
Accuracy
Poor
Good
Good
Stability
Excellent
Very Poor
Acceptable
I
ro
2 - Way
Proportional
C* • '2
{C. - Cb) Low
Good
Poor
TABLE 1.1 COMPARISON OF METHODS FOR COMPUTING C*
-------
- 22 -
gradients)., is essentially a complex form of advection, which
must at present be treated as a separate process, since the
velocities and directions of the eddy currents are not yet
predictable. The transport equation for turbulent diffusion is:
3X
(1.12)
where
T. = transport by turbulent diffusion through a
unit area in a unit time
f
-------
- 23 -
AMj ACi+l ACi
AT" = Kd Ai+l AX^ " Kd Ai AxT (1J5)
where
j = junction under consideration
i, i+1 = downstream and upstream channels, respectively
AC., AC.+, = concentration differenced along the downstream
and upstream channels, respectively
This difference equation describes the net dispersion of mass
into or out of junction j during the interval At.
The DEM does not utilize K. directly but, rather, computes
this rate based upon a simplification of the energy dissipation
relationship and a spatial approximation of the eddy size [4],
The actual equation employed by the model is as follows:
Kd = C4| u I R (1.16)
where
C4 = dimensionless diffusion constant which can be
varied spatially
u = mean channel velocity
R = hydraulic radius of the channel
Longitudinal Dispersion
The velocity of a river varies both laterally and vertically,
as shown in Figure 1.6. These variations result in longitudinal
dispersion, the mechanism by which mass in the center of the
river moves forward faster than the mass at the sides or bottom.
Since the velocity used in equation (1.11) is assumed to be the
mean velocity in the channel (i.e. the model is one-dimensional
in form), this phenomenon cannot be directly accounted for by the
model. However, the phenomenon of numerical mixing accidentally
-------
- 24 -
Lateral variation of velocity
Vertical variation of velocity
F'lGURE 1 .6 LATERAL AND VERTICAL VELOCITY PATTERNS
-------
- 25 -
produces a somewhat similar effect, although it is only partially
controllable. In fact, there are two procedures which can help
encompass the effects of longitudinal dispersion.
1) further adjustment of C* (the concentration used in
equation (1.11) for advection)
2) adjustment of the turbulent (eddy) diffusion
coefficient (C4)
Decay
The quality model is capable of describing the fate of both
conservative (e.g. salinity) and non-conservative (e.g. BOD or DO)
constituents. For non-conservative constituents, the mechanism
of decay must be considered.
Zero-Order Decay
For zero-order decay, the quantity of constituent decayed
is a function of the rate constant for the reaction being
considered. Mathematically, a zero-order reaction is given by
where
dc/dt = rate of change of c with respect to t
c = concentration
t = time
K = rate constant (mass/volume/time)
The negative sign indicates that the process is one of decay
rather than growth. Equation (1.17) is easily integrated to
yield:
Ct = CQ - K (t - t0) (1.18)
where
Ct = concentration at time t
C = concentration at time t
-------
- 26 -
This expression can be converted to a finite difference form
for a time step of At.
where
Co " Ct = ACj = K ' At
AC. = change (decrease) in concentration in junction j
J during a time interval of At
The corresponding mass equation is obtained by multiplying both
sides of equation (1.19) by volume.
V.-AC, = AM. = K-V.-At (1.20)
J J J J
where
V. = volume of junction j
AM. = change (decrease) in mass in junction j during
J a time interval of At
Example _1 - Algal Respiration and Photosynthesis
If algal respiration is assumed to be a zero-order reaction,
i.e. if the rate at which oxygen is consumed by algae is
independent of their concentration, then the rate at which oxygen
is removed from the system is given by:
AMr
= KR'V'Calgae
where
AMR = mass of dissolved oxygen consumed by algae
during a time interval of At
1C = rate at which algae consume oxygen
(mass of Op/mass of algae/time)
C , = concentration of algae (mass/volume)
V = volume
Algal photosynthesis is not a process of decay. However, if it
is assumed to be a zero-order reaction, i.e. if the rate at which
algae produce oxygen is independent of their concentration, then
the rate at which oxygen is added to the system is given by:
-------
- 27 -
AMn
at* ' Kp ' V ' Calgae
where
AM = mass of dissolved oxygen produced by algae
p during a time interval At
K = rate at which algae produce oxygen
p (mass of O^/mass of algae/time)
C , = concentration of algae
V = volume
The mass of oxygen present in the system at time t is given by:
where
Mt = mass of oxygen present at time t
M._, = mass of oxygen present at time t-1
Example 2 - Sediment Oxygen Demand
If the rate at which oxygen is consumed by bottom sediments
is considered constant, i.e. independent of the amount of bottom
sediment present, then the change in dissolved oxygen mass due
to sediment oxygen demands is given by:
AMnn
DO
At '\SOD "
where
AMDO = mass of oxy9en consumed by bottom sediments
during a time interval At
= rate at which bottom sediments consume oxygen
(mass 02/area/time)
A = surface area of bottom
-------
- 28 -
First-Order Decay
For first-order decay, the quantity of constituent decayed
is a function of (1) the amount of the constituent present and
(2) the rate constant for the reaction being considered.
Mathematically, a first-order reaction is given by:
{j| = -K • C (1.21)
where
dc/dt = rate of change of c with respect to t
K = rate constant (I/time)
C = concentration
t = time
Again, the negative sign indicates that the process is one of
decay ra1:her than growth. Equation (1.21) can be easily
integrated to yield:
Ct = Co e"K (t-^ (]-22)
where
Ct = concentration at time t
C = concentration at time t
This expression can be converted to a finite difference form
for a time interval of At
C, t 1 - C. t = AC. = C. . , (l-e"KAt) -At (1.23)
J o !•" I Jl1- J J > <'~ '
where
AC. = change (decrease) in concentration in junction j
J during a time interval of At
C. ,,. ••; C. . = concentration in junction j at time t-1 and
J»*~l J' t, respectively
At = computational time step
-------
- 29 -
The corresponding mass equation is obtained by multiplying both
sides of equation (1.23) by volume
V. • AC. = AM. = V. • C. t 1 (l-e'KAt) • At
j j j j j»*•"'
where
V. = volume of junction j
J
AM. .= .change in mass in junction j during a time
J o interval of At
Example 1 - Biochemical Oxygen Demand (BOD)
The rate at which organic wastes are biochemically oxidized
or stabilized is directly proportional to the amount of
unstabilized material present. The change in the amount of
unstabilized material present (BOD) is given by:
_ „ P n -KDAt>
- V ' CBOD, t-1 • (1'e * )
where
AMRnn = amount of BOD stabilized during a time
BUU interval of At
V = volume
At = time interval
Cnnn * i = concentration of BOD at time t-1
BUD,t-i
K. = rate at which organic material is stabilized
P
The amount of BOD present at time t is given by:
MBOD,t = MBOD, t-1 ' AMBOD
where
Mnnn t i > Mcnn + = raass of BOD present at time t-1
BOD,t-1 BOD,t and t> respect1vely
-------
- 30 -
Example 2 - Reaeration
The oxygen in water is naturally replenished through the
process of reaeration (mass transfer at the surface). This
process is defined by:
dD - v n
at - -Kd ' D
where
D = dissolved oxygen deficit, i.e. the saturation
concentration minus the actual concentration
KJ = reaeration rate (I/time)
Reaeration is a process in which the dissolved oxygen deficit
is reduced (or, conversely, in which the dissolved oxygen
concentration is increased). The change in mass of the DO deficit
due to reaeration is given by:
where
Dt_,
AM = decrease in the mass of dissolved oxygen
deficit (or, the increase in DO mass during
a time interval of At)
V = volume
= DO deficit at time t-1
Second-Order Decay
For second-order decay, the quantity of constituent decayed
is a function of (1) the amount of constituent present and
(2) the rate constant of the reaction. Mathematically, a second
order reaction is given by:
3T ' -fe2 f1
where
dc/dt = rate of change of c with respect to t
K = rate constant (volume/mass/time)
c = concentration
-------
- 31 -
Again, the negative sign indicates that the process is one of
decay. Equation (1.24) can be integrated to yield
C
t k(t-t0) +1 C0k(t-tQ) + 1
Co
This can be converted to a finite difference form for a time
interval of At:
4Cj ' cd,t-i
where
AC. = change (decrease) in concentration in
J junction j during the time interval At
C. . -,. C. . = concentration in junction j a times t-1
. . -,
J>t
and t, respectively
At = computational time step
The corresponding mass equation is obtained by multiplying
equation (1.26) by the junction volume:
AM, = V. - AC, (1.27)
J J J
where
AM. = change in mass in junction j during a time
J interval of At
V. = volume of junction j
J
Example 1 - Sedimentation/ Deposition
Many substances are removed from the water system through the
process of sedimentation (i.e. settling). Quite often, the rate
at which material is removed by this process can be described by
first or second order reactions. If the process is a second order
one, then the change in mass of a constituent is given by
-------
- 32 -
AM
A
'
t-l
1 -
where
AM = amount of mass removed by settling during
the time interval At
At = time step
V = volume
C.T = concentration at time t-1
k = rate at which the material settles
If sedimentation were the only process affecting the material,
then the mass present at time t would be given by
where
M. ,, M.
- tf
mass of constituent present at times
t-1 and t, respectively
Biological / Chemical Transformations
Materials in the aquatic ecosystem often undergo some type
of trarisformation(s). In many cases, these consecutive reactions
can be described by the kinetics discussed earlier.
Example 1 - Nitrification
Nitrification is the process by which ammonia (NH3) is
converted to nitrite (N02) and nitrate (1^)3), as shown in the
figure below.
NH3
K12
N02
K23
N03
-------
- 33 -
Assuming first order kinetics, the change in mass of each
constituent during a time interval of At is given by
AMNH3 _ „ r
"AT - V 'CNH3,t-l
. . n . -k At
V L ' U - e 23
.
At At N02,t-l
AMN03 _ » r
"AT - V'CN02,t-l
where
AMNH3 = the amount of NH3 converted to N02 during At
AMN02 = the chan9e in mass of N^2 during At
= the amount of N02 converted to NOg during At
CNH3 t-1 = the concentratl'on of NH3 at
CN02 t_i = tne concentration of N02 at time t-1
C»ino 4- i = the concentration of N00 at time t-1
N03,t-l 3
k,2 = the rate at which NH3 is converted to N02
k23 = the rate at which N02 is converted to N03
The mass of each constituent at time t is given by
MNH3,t " MNH3,t-l " AMNH3
MN02,t = MN02,t-1 + AMNH3 ' AMN03
MN03,t = MN03,t-l + AMN03
-------
- 34 -
Example 2 - The Phosphorus Cycle
A simplified representation of the phosphorus cycle is shown
in the fiijure below.
Total
Phosphorous
settling
C
Sediment
Assume that (1) the uptake of phosphorous by algae, the
death of algae, and the regeneration of
phosphorous from detritus are all first
order reactions
(2) the settling of phosphorous is a second
order reaction
The change in mass of phosphorous and algae during At is
given by
AM
= regeneration - uptake - settling
AM.
AT
— = growth - death
• cp.t-rv-(1 -
-------
- 35 -
where AM. = change in algae mass during At
AM = change in phosphorous mass during At
M . = mass of phosphorous present in the detritus
Cn j. i = concentration of phosphorous at time t-1
P» t-1
V = volume
C. ._, = concentration of algae at time t-1
The mass of phosphorous and algae present at time t is given by
Mp,t • Mp,t-l + 4Mp • Mp,t-l + 4Mr - 4Mu - 4Hs
MA,t ' MA,t-l + 4MA ' MA,t-l + 4Mu - 4Md
where
M t , , M . = mass of phosphorous present at times
P,T>I p,i t.-| and t> respectively
A + = mass °^ slgae present at times t-1 and
M)I t, respectively
AM = mass of phosphorous regenerated from
the detritus during At
AM = mass of phosphorous taken up by algae
for growth during At
AM = mass of phosphorous removed from the
system through settling during At
AM. = mass of algae decayed into detritus
during At
-------
- 36 -
Import / Export
Another process which will affect the mass of a constituent
in a junction is the import (e.g. tributary inflow or waste
discharge) and/or export (e.g. water supply withdrawal or
industrial use) of water from the system. The mass of constituent
added (or subtracted) at a junction during each time interval At
is given by
where
AM.
J
"in
Cfn
AM.
i
At
= E(VCin
(1.28)
= the change in mass in junction j during At
= flow into junction j
= concentration of the constituent in the inflow
= withdrawal from junction j
= concentration of constituent in junction j
1.4.2 SOLUTION TECHNIQUE
Conservation of mass is maintained within the network
junctions by combining the equations describing the following
processes:
- advection
- diffusion
- decay
- biological/chemical transformations
- import/export
The solution of the quality program is a relatively straight-
forward and sequential process involving an explicit finite
difference technique. The algorithm is as follows.
-------
- 37 -
1) Initial junction volumes and concentrations are specified in
order to determine the total mass of each constituent initially
present in each junction.
2) Waste load data (e.g.imports and exports) is specified for
each junction.
3) Hydraulic parameters are read. Values for channel velocities
and flows and junction heads for each time step are read from
the "hydraulic extract tape" created by the hydraulic program.
4) Advection - mass is transferred between adjacent junctions in
the direction of flow. The amount of mass transferred is
determined using a representative concentration (C*).
5) Diffusion - mass is transferred between adjacent junctions
from the junction with the higher concentration to the junction
with the lower concentration. The amount of mass transferred
is proportional to the concentration gradient.
Steps 4 and 5 proceed from one channel to another, until every
channel and junction has been examined.
6) Any non-conservative constituents are decayed. If D.O. is a
constituent, reaeration occurs here.
7) The wastewater loads and/or withdrawals specified in Step 2
are applied to the appropriate junctions.
8) Hydraulic parameters (flows, velocities, and heads) for the
next time step are read from the "hydraulic extract tape".
9) A new concentration for each junction is obtained by dividing
the total mass of constituent by the new junction volume.
10) Steps 4 through 10 are repeated for every time step.
-------
- 38 -
CHAPTER 2
IMPLEMENTATION OF THE HYDRAULIC MODEL
2.1 REGRESSION ANALYSIS PROGRAM (REGAN)
2.1.1 PROGRAM DESCRIPTION
When applying the hydraulic model, a tidal input
characteristic of the conditions under consideration must
be imposed at the seaward boundary of the model. For
simulation of an historic condition, the tidal wave chosen
should be representative of the tidal conditions which
existed at that time. Since it is expensive to simulate
a transient condition having significantly varying flows
or tidal characteristics, the tide and flow for any historic
simulations should be relatively steady. The tidal wave at
the seaward boundary is described by
Y = AI + A2sin(uit) + A3sin(2u)t) + A4sin(3t»)t)
(2.1)
+ Agcos(o)t) + Agcos(2wt) + AyCos(3o)t)
where
Y = head (elevation above or below a
horizontal datum)
A.. = regression coefficients
ia = tidal period (hours)
The coefficients A, through Ay are obtained through
the regression analysis program (REGAN) which requires
tidal heights at equally spaced intervals throughout a tidal
period as input. Normally, 30 minute intervals will suffice.
This input can be obtained from prototype tidal stage
recorders (if available) at the boundary. In the absence of
-------
- 39 -
such data, it may be necessary to use the predictions
presented in the Tide Tables published by the U.S. Coast
and Geodetic Survey.
Figure 2.1 is a simplified flowchart depicting the
sequence of steps for REGAN. A brief description of the
program logic is as follows:
STEP 1 - READ AND PRINT CONTROL AND INPUT DATA
Alphanumeric data is read which describes the run,
the number of observations (NDATA), the number of coefficients
(NCOEFF) , the maximum number of iterations allowed in the
computational loop (MAXIT) , the maximum residual allowed
for termination of calculations (MAXRES), the tidal period
(PERIOD), time shift parameter (TSHIFT) , phase angle
shift parameter (PSSIFT), the time of the i observation
(T(D), and the value of the ith observation (I(I)).
Tables displaying the inputs are printed.
STEP 2 - INITIALIZATION
Variables and arrays used in the calculations of the
regression coefficients (A(l), J = l,NCOEFF) are initialized.
STEP 3 - SET UP NORMAL EQUATIONS
The coefficients of the normal equations (SXX(K,J)
and SXY(J), where J = I,NCOEFF and K = IJCOEFF) are
established.
STEP 4 - SOLVE NORMAL EQUATIONS
The equations established in STEP 3 are used to determine
estimates of the regression coefficients. If the maximum
number of iterations allowed have been completed, the
program precedes to STEP 5. If the number of iterations is
less than the maximum number allowed and the maximum
residual is greater than the desired maximum residual (MAXRES),
-------
- 40 -
READ
CONTROL
DATA
SET UP
NORMAL
EQUATIONS
PRINT
NORMAL
COEFFICIENTS
C STOP J
PRINT
CURRENT
SOLUTION
FIGURE 2.1 FLOWCHART OF REGAN
-------
- 41 -
then another iteration is performed to obtain better
estimates of the regression coefficients. If the number of
iterations is less than the maximum number allowed and the
maximum residual is less than or equal to the specified
maximum residual, the program proceeds to STEP 5.
STEP 5 - PRINT OBSERVED AND PREDICTED DATA
Tables are printed containing (1) the computed regression
coefficients, (2) the observed and predicted data values, and
(3) the residual values.
-------
2.1.2 REGAN DATA DECK SEQUENCE
CARD
1
2
3
VARIABLE
ALPHA(I)
NDATA
NCOEFF
MAXIT
MAXRES
PERIOD
TSHIFT
PSHIFT
T(l)
• Y(l)
T(2)
Y(2)
•
•
T( NDATA)
Y (NDATA)
COLUMNS
1 - 80
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
1 - 8
9 - 16
17 - 24
25 - 82
•
•
FORMAT
20A4
110
110
110
F10.0
F10.0
F10.0
F10.0
F8.0
F8.0
F8.0
F8.0
•
F8.0
F8.0
COMMENTS
Read 2 cards
This card is repeated until
all NDATA values of T and Y
are read. Each card contains
8 values of T and Y.
-------
- 43 -
2.1.3 REGAN VARIABLE DEFINITIONS
The following section contains definitions for the major
variables in REGAN. Variables are listed in alphabetical
order. Variables in italics are read from the input
data deck.
-------
VARIABLE
A(J)
ALPHA
MAXIT
MAXRES
NCOEFF
NDATA
PERIOD
PSHIFT
T(I)
TSEIFT
id)
SUBROUTINE
DEFINITION
Coefficients obtained by the program which describe the tidal
input at a specified junctions. (J = 1, NCOEFF)
Alphanumeric data which describes the run.
Maximum number of iterations desired in the run.
Maximum value of the residual allowed. Will not be exceeded
unless the number of iterations reaches MAXIT before the
residual reaches MAXRES (a value of .0001 is typically used).
Number of coefficients in the trigonometric equation.
Number of input data points over a tidal cycle.
The period of the tide.
Variable which allows the phase angle in the trigonometric
relationship to be shifted (usually set equal to zero).
Time of the Ith specified data point on the input tide (I = 1, NDATA)
Variable which allows the time scale for the inputs to be
shifted (usually set equal to zero).
Elevation of the I specified data point on the input data
(referenced to model datum).
TYPE
R
R
I
R
I
I
R
R
R
R
R
UNITS
hrs.
hrs.
ft.
-------
- 45 -
2.2 THE HYDRAULIC PROGRAM (DYNHYD)
2.2.1 THE "MAIN" PROGRAM
Figure 2.2 is a simplified flowchart depicting the
sequence of steps for the Main program of DYNHYD. A brief
description of the program logic is as follows:
STEP 1 - READ CONTROL DATA
Alphanumeric data is read which identifies the network
size (NC and NJ), the length of the run (NCIC), and output
control parameters (see Section 2.2.6).
STEP 2 - READ JUNCTION DATA
A separate card is read for each junction. Each card
contains the junction number, initial head at that junction,
surface area of the junction, the inflow (or outflow) to the
junction, and the numbers of the channels entering the
junction. After all junction cards are read, a table
summarizing the data is printed.
STEP 3 - READ CHANNEL DATA
A separate card is read for each channel. Each card
contains the channel number, physical characteristics (length,
width, cross-sectional area, hydraulic radius, and Manning's n),
initial velocity, and the numbers of the two junctions at
the ends of the channel. After all channel cards are read, a
table summarizing the data is printed.
STEP 4 - INPUT TIDAL CONDITIONS AT SEAWARD BOUNDARY
The period of the tide (hours) and the coefficients
obtained by REGAN (see Section 2.1) to define the tidal
wave at the seaward boundary are read and printed. The version
-------
- 46 -
READ
CONTROL DATA
,
i
' READ 1
JUNCTION DATA]
, .
-
READ
CHANNEL DATA
TREAD SEAWARD
BOUNDARY
1 CONDITIONS
1
1
NETWORK
COMPATABILITY
CHECK
INITIALIZE
MAIN
COMPUTATIONAL
LOOP
L
~ T"
^XI»ES\
< HYDEXT=1 ^
^s. ? .X
TNO
(
SI
1
I
~T
, .
I
YES/" *v
>—•/ CALL HYDEX)
OP J
i
*
COMPUTE
V,Q,Y,A
FOR 1/2 STEP
COMPUTE
V.Q.Y.A
FOR FULL STEP
YES
FIGURE 2.2 FLOWCHART OF THE MAIN PROGRAM IN DYNHYD
-------
- 47 -
of the hydraulic model contained herein allows only one
seaward boundary. However, the program can easily be altered
to accomodate several seaward boundary inputs.
STEP 5 - CHECK COMPATIBILITY OF CHANNELS AND JUNCTIONS
A check is made on the compatability of the junction
and channel numbering systems. If a junction is listed as
being connected to a given channel, then that channel
should also be listed as being connected to the junction.
Execution will terminate if any discrepencies are found.
The control parameters and the channel and junction data
are stored on Unit 10 (temporary magnetic tape or disk).
STEP 6 - INITIALIZATION
Initializes various computation parameters, converts
starting time and tidal period from hours to seconds, and
computes friction coefficient (AK(N)) for each channel.
Checks the junction numbers at each end of a channel and
insures that the junction number associated with NJUNC(Nfl)
is smaller than the junction jumber associated with NJUNC(NS2).
This is necessary for the sign convention used to specify
the direction of flow in a channel (see Section 2.2.4).
STEP 7 - MAIN COMPUTATIONAL LOOP
If the run is a continuation of a previous run, it
is desirable to record the initial conditions (junction
heads and channel velocities and flows) on Unit 10. This
will be done if variable IWRTE = 0. Normally, however,
these parameters need not be stored.
The program follows the algorithm described in section
Section 1.3.2. Channel velocities,flows, and cross-sectional
areas and junction heads are computed for one-half of a time
step. These half-step values are then used to compute the
full-step values.
-------
- 48 -
The channel velocities are then checked for reasonableness.
If a channel velocity exceeds 20 fps, computational
instability is indicated and execution is terminated.
The current cycle number (ICYC), junction heads (Y(J))t
and channel velocities (V(N)) and flows (Q(N)) are stored
on Unit 10 if the current cycle is greater than or equal
to a specified value (ITAPE).
A check is made to determine whether the predictions
for the current cycle are to be printed, If so, then the
next print cycle is set and printout is obtained for the
specified junctions. Printout will always be obtained
for the last cycle of the run.
A check is made to determine whether or not Subroutine
RESTRT should be called (see Section 2.2.3 for a description
of RESTRT). If the current cycle is a specified restart
cycle (PWCyc) * then Subroutine RESTRT is called.
STEP 8 « EXIT MAIN LOOP AND CHECK FOR HYDEX
Following the completion of the specified number of
computation cycles, a check is made to determine whether or
not Subroutine HYDEX is to be called (see Section 2.2.2 for
a description of HYDEX). If HYDEXT = 1, Subroutine HYDEX
is called.
2.2.2 SUBROUTINE HYDEX
As discussed earlier, the quality program time step
is usually much longer than a hydraulic time step. The time
interval used by the quality program must be a whole multiple
(NODYN) of the hydraulic time step and evenly divisible
into the tidal period. For example, given a tidal period of
12.5 hours, a hydraulic time step of 1.5 minutes, and a quality
time step of 30 minutes, NODYN would be specified as 20.
HYDEX is a subroutine which summarizes (averages) the output
stored on Unit 10 for NODIN hydraulic cycles and permanently
-------
- 49 -
stores these values on Unit 4 (magnetic tape or disk)
for use as input to the quality model.
In addition to summarizing the inter - tidal values of channel
velocities and flows and junction heads, HYDEX also determines
(1) the minimum and maximum flows, velocities, and cross-sectional
areas of channels, '(2) minimum and maximum heads of junctions,
and the cycles at which they occur, (3) net flow in a channel,
(4) average cross-sectional area of a channel, (5) average
head of a junction, and (6) range of heads for a junction
over an entire tidal cycle.
Figure 2.3 is a simplified flow chart depicting the
sequence of steps for Subroutine HYDEX. A brief description
of the program logic is as follows:
STEP 1 - READ CONTROL DATA
Reads alphanumeric data identifying the run (ALPHA(l),l = 41,80J
and the number of hydraulic time steps per quality time step
(NODYN).
STEP 2 - READ AND ALIGN INPUT TAPE
The hydraulic summary provided by HYDEX is for a complete
tidal cycle. Therefore, it is necessary to determine the
hydraulic cycles at which the last full tidal cycle
begins (NSTART) and ends (NSTOP). This is necessary
because, in some cases, the data stored on Unit 10 may exceed
a full tidal cycle. Because the hydraulic solution converges
to a dynamic steady state solution, the predictions for the
last full tidal cycle are used because they are the most
representative of the steady state condition. Unit 10 is
rewound. The system data stored by the MAIN program is
read. Unit 10 is then aligned over cycle NSTART and the
summary procedure begins.
-------
- 50 -
READ
:ONTROL DATA
READ AND
ALIGN
UNIT 10
INITIALIZE
TIDAL SUMMARY
VARIABLES
PRINT
TIDAL-SUMMARY
CHECK
HYDRAULIC
EXTRACT TAPE
c
RETURN
i
»
INITIALIZE
INTER-TIDAL
VARIABLES
STORE
CYCLE&HEAOS
ON UNIT 4
r READ I
Y, V, Q I
^FROM UNIT I0y
(STORE
iVERAGE V&Q
ON UNIT 4
1
COMPUTE
INTER-TIDAL
PARAMETERS
HAVE
NODYN
VALUES BEEN
READ
0
FIGURE 2.3 FLOWCHART OF SUBROUTINE HYDEX
-------
- 51 -
STEP 3 - INITIALIZE SUMMARY VARIABLES
HYDEX computes two types of summary variables. The
first group consists of parameters summarized over an entire
tidal cycle. These parameters are: net flow in a channel
(QNET(N)); minimum and maximum velocity (VMINCN), VWX(N))
and flow (QMIN(N)> QMAX(N)) in a channel; minimum, maximum,
and average cross-sectional areas of channels (ARMIN(N),
APMAX(N), AMVG(N)), and minimum, maximum, and average junction
heads (YMIN(J)3 YMAX(J), YAVG(J)). The second group
consists of parameters summarized for discrete intervals
within the tidal cycle (i.e. inter-tidal cycle variables).
The parameters are the average flow (QEXT(N)) and velocity
(VEXT(N)) in a channel. These are the values which are
obtained by averaging the flows and velocities for NODIN
hydraulic time steps and are then stored permanently on the
"hydraulic extract tape" (Unit 4) for use by the quality
program.
The tidal cycle summary variables are initialized only
once. However, the inter-tidal cycle variables must be
initialized before each inter-tidal summary (i.e. after N0DYN
cycles of data are read and summarized, the values of the
inter-tidal summary variables must be re-set). At the start
of every inter-tidal summary, the current hydraulic cycle
number and the junction heads are stored on Unit 4.
STEP 4 - COMPUTE SUMMARY PARAMETERS
Inter-tidal cycle parameters: The junction heads,
channel flows, and channel velocities for NODYN hydraulic
cycles are read from the record on Unit 10, created by the
MAIN program. The heads, flows, and velocities are accumulated,
averaged, and stored on Unit 4 (the "hydraulic extract tape").
This process is depicted in Figure 2.4. us EPA Headquarters Library
Mail code 3404T
1200 Pennsylvania Avenue NW
Washington, DC 20460
202-566-0556
-------
• •
1
»••
v.yv.ie iiuiuuer ui JUHCI
_- . _ rhnnnr*! vf Inriti PI
...jj rhannpl •flnw:
1 II 1 1 II 1
| 1 1 II II |
1 M M II 1
II 1 1 II ||
V
r 1 > i r
1
1 average
iuii ncaus
NODYN = 4
UNIT 10
i i i i ' i i
i i i i i M
i i i i i ii
i ii it ii
i j
\^
I
i
i
i
i i i i
1 1 II •••
II II
II II
_J
t UNIT 4
1
1 •••
1
1
channel velocities & flows
nn/'Unn hoarlc
en
ro
FIGURE 2.4 CREATION OF THE HYDRAULIC EXTRACT TAPE
-------
- 53 -
To compute the average channel flows (QEXT(N)) and the
average channel velocities (VEXT(N)) for the inter-tidal
summary period (NODYN cycles), HYDEX does not simply
accumulate NODYN values and divide their sum by NODYN.
Instead, a more refined method of averaging is used.
Data from the last cycle of the previous summary period and
data from the next NODYN cycles are used, i.e. NODYN + 1
cycles of data are accumulated. However, a weight of
one-half is assigned to the data from the last cycle of
the previous summary period and to the last cycle of the
current summary period. The accumulated sum is then divided
by NODYN. This technique is identical to using the
trapezoidal rule to determine the area under a curve over a
certain interval (NODYN) and then dividing the area by the
interval length (NODYN) to obtain the average height along
that interval. This technique is shown in Figure 2.5.
Tidal cycle parameters: The net flow in a channel over
a tidal cycle is computed by averaging the accumulated
channel flows. The averaging technique is similar to the
method used in STEP 4. The channel cross-sectional area
for each cycle are computed and then accumulated over the
entire tidal cycle, and averaged. Junction heads are
accumulated over the entire tidal cycle and averaged.
Checks are made to determine the minimum and maximum values
of the following parameters over the entire tidal cycle:
channel velocities, channel cross-sectional areas, and
junction heads.
STEP 5 - COMPLETE WRITING HYDRAULIC EXTRACT TAPE
After the inter-tidal cycle variables for an entire
tidal cycle have been computed and stored on Unit 4, various
channel and junction parameters are stored at the end of the
hydraulic extract tape.
-------
- 54 -
last cycle of
/ period i
last cycle of
period i-1
/ * Y2
/
• Yi
4
1
period i
/
y
5 « last cycle of
Y period i+1
^ • /
• V * Y
:Y8 Y9
time
period i+1
NODYN = 4
Average during
period i
* Y2 * Y3 + Y4 *
Average during
period i+1
Y6 + Y7 + Y8
Average during
period N
a = NSTART + NODYN.(N-l)
0 = a + NODYN
NSTART = cycle at which summaries begin
FIGURE 2.5 HYDEX AVERAGING TECHNIQUE
-------
- 55 -
STEP 6 - OUTPUT TIDAL CYCLE SUMMARY TABLES
Tables containing both the tidal and inter-tidal
summary variables are printed for the model channels and
junctions.
STEP 7 - CHECK HYDRAULIC EXTRACT TAPE
Unit 4, the hydraulic extract tape, is rewound and
read completely. The hydraulic cycles which were stored
on Unit 4 are printed along with the heads at several junctions
and the "extract" flows (i.e. the flows computed by HYDEX)
in several channels. This provides a check on the data
actually stored on Unit 4.
STEP 8 - RETURN TO THE MAIN PROGRAM
2.2.3 SUBROUTINE RESTRT
Subroutine RESTRT has two functions. First, it stores
pertinent restart parameters on Unit 4 for use as a restart
device in the event of premature termination of execution.
Second, it outputs a punched card deck (after the last
computational cycle is completed) containing the channel
and junction parameters in a format which can be used as
an input deck. This type of output is desirable if the
run is to be extended. Figure 2.6 is a simplified flowchart
describing the sequence of steps for RESTRT.
If the current hydraulic cycle is the last computational
cycle, the final channel and junction parameters are punched
onto a card deck. A printed summary of this data is also
given.
Prior to the final computational cycle, the current
channel and junction parameters are stored on Unit 4. The
next restart cycle is specified by incrementing the current
cycle by HHTPUS (i.e. pmcic = PUNCYC + INTPUN). Unit 4
is rewound so that if computations proceed to the next
restart cycle, the data already stored will be updated.
-------
- 56 -
INCREMENT
PUNCH CYCLE
I
STORE DATA]
ON
UNIT 3
PRINT •
RESTART DATA
(
RETURN
YES
PUNCH
RESTART DECK
, FIGURE 2.6 FLOWCHART OF SUBROUTINE RESTRT
-------
- 57 -
Note that Unit 4 serves a dual purpose in the hydraulic
program. If premature termination of execution occurred,
subroutine HYDEX (which also uses Unit 4) would not be called
and Unit 4 would contain the data needed to restart the run
from the last restart cycle. If execution is not terminated
prematurely, then the hydraulic conditions existing at the end
of the run would be punched onto a card deck before HYDEX
was called. The rewind command in HYDEX will ready Unit 4
for storing the hydraulic parameters used by the quality
program.
2.2.4 DYNHYD SIGN CONVENTIONS
There are two different sign conventions used in the
hydraulic model. The convention used in reference to junctions
describes flow into or out of a junction. Specifically,
negative values are assigned to any flow entering a junction,
whila positive values indicate flow leaving a junction (see
Figure 2.7). This convention applies regardless of the
source of the flow. Inflow from a waste discharge and from
and adjacent junction are treated in the same manner.
For channels, signs indicate the direction of flow and
velocity. When the flow is from the end of the channel
having the lower of the two junction numbers (NJUNC(N,D)
toward the end with the higher (NJUNC(N,2)), it is assigned
a positive value. Flow is considered negative when travelling
from the end of the channel with the higher of the two
junction numbers toward the end with the lower (see Figure 2.7),
The channel flows are outputted using the junction sign
convention so that the user can see if water flows into or
out of a particular junction. The channel flow arid velocity
signs are converted to junction sign convention strictly
for convenience in interpreting the output. To interpret
-------
- 58 -
FIGURE 2.7 DYNHYD SIGN CONVENTIONS
-------
- 59 -
the direction of channel flow, it is necessary to know
the configuration of channels and junctions, i.e. which
junction is at each end of a channel. This information can
be found in the Channel Data table at the beginning of the
DYNHYD output.
2.2.5 INPUT REQUIREMENTS
The input requirements for the hydraulic program can
vary tremendously, depending on the uniqueness of the conditions
to be simulated. In any case, the data requirements for the
initial application of the model to a system are considerable.
PHYSICAL PARAMETERS OF THE PROTOTYPE
As discussed earlier, the channels and junctions of the
model network must be described by certain physical parameters.
Channel Parameters: Length, width, depth, surface area,
roughness, cross-sectional area
Junction Parameters: head, volume
For all runs subsequent to the initial run, the input
data requirements are greatly reduced. Many of the physical
parameters such as channel lengths and widths and the surface
area of each junction remain .constant during execution
and, therefore, do not vary between runs. Similarly the
network layout and numbering systems generally remain constant.
Only if physical changes in the prototype (real or proposed)
are to be modeled is it necessary to change the model
network.
MANNING'S ROUGHNESS COEFFICIENT
As mentioned earlier, the roughness coefficient
(Manning's n) acts as a "tuning knob" for the hydraulic
model. Unfortunately, there is no exact method for defining
the value of n, and one must rely on literature values,
sound engineering judgement, and personal experience to
estimate its value.
-------
- 60 -
The value of n is highly variable and depends on the
following factors: surface roughness, vegetation, channel
irregularities in cross-section or shape, obstructions, silting
and scouring, stage, and discharge [10]. Before attempting
to estimate nt Chow [10] recommends that one attempts to
(1) understand the factors which affect the value of n so as
to narrow the range of guesswork, (2) consult the literature
for representative values, and (3) examine and become
acquainted with channels whose roughness coefficients are known.
There are some methods which have been suggested for
the computation of n. Cowan [11] has proposed an empirical
procedure v/hich includes several of the factors that influence n,
Two other methods, based on the theoretical velocity distribution
in a rough channel, have also been proposed. The first
method uses the observed vertical velocity distribution and is.
described by Boyer [12] and Langbien [13]. The second uses a
"roughness function" to determine n and is described by Einstein
and Barbarossa [14]. Davidson, et.al. [15] outline a numerical
technique which determines the best - distributed values of n
based on observed tidal heights.
When calibrating the hydraulic model, changing the
value of n in one channel will affect the upstream channels in
one way and the downstream channels in another. Increasing n
causes more energy to be dissipated in that channel. As a result,
the height of the tidal wave will decrease and the time of travel
through the channel will increase. Lowering n decreases the
resistance to flow, i.e. less energy is dissipated. This results
in a higher tidal wave and a shorter time of travel. In
generals the value of n will increase as one moves up the
estuary since channels become more constricted.
-------
- 61 -
INITIAL CONDITIONS
The most demanding of these inputs are the channel
cross-sectional areas and the junction heads. The specified
junction heads establish the water surface elevation throughout
the network and correspond to those areas. The heads throughout
the system are referenced to a common, horizontal datum, such
as mean sea level. Channel depths can usually be obtained
with sufficient accuracy from the soundings printed on
navigation charts published by the Coast and Geodetic
Survey. Unfortunately, however, these soundings are normally
representative of a mean low water condition at the point of
the sounding and are not referenced to a common datum. It
is therefore necessary to establish the relationship selected
for the model. Such relationships may be available for
certain points in the system, such as at tidal stage recorders
or at other points where tidal predictions are made. River
bed profiles may also be available from which such relationships
could be determined. Once the relationships between the junction
heads and channel cross-sectional areas have been properly
established for a given (System, they should never have to be
reestablished because the model program maintains the proper
relationship at all times during execution. It is usually
most expeditious to specify a constant value for each of the
junction heads (assumes a horizontal water surface) in preparing
the data for the first time and then adjust the channel depths
(and cross-sectional areas) accordingly. While it might be
desirable, in order to save computation time, to sepcify the
initial heads at each function in such a manner that the water
surface profile is more representative of one which acitually
occurs in the prototype, such an effort is probably not
warranted. Unless extensive tide data is available to establish
-------
- 62 -
the water surface elevation at many points in the system
for a given instant in time, a great deal of interpolation
between points will be required. It is doubtful whether the
execution time saved by such a procedure warrants the additional
effort involved.
A similar argument holds for the specification of the
initial velocity in each channel. Normally, data in sufficient
quantity will not be available to establish a detailed
velocity pattern for the entire system at a given instant
in time. Therefore, a constant initial velocity (such as
zero) is assumed throughout the system. Thus, for the initial
run on a new system, the total mass of water might initially
be assumed to be at rest with a horizontal water surface.
As the solution progresses it will converge to the appropriate
dynamic steady state condition wherein the head at each junction
and the velocity and flow in each channel are repeated with a
frequency equal to the period of the specified tide. Normally,
four complete tidal cycles will be sufficient to reach a
steady state condition. If relatively accurate initial
conditions are specified, fewer tidal cycles are needed.
TIDAL CONDITIONS
The tidal conditions at the seaward boundary are
described by a set of regression coefficients. These
coefficiants are derived for any tidal condition by program
REGAN (see Section 2.1).
ACCRETIONS / DEPLETIONS
The accretions or depletions at each junction in the
system must by specified for each run. Although not
programmed for the version of the hydraulic model contained in
this report, it would be relatively simple to input accretions/
depletions which vary with time.
-------
- 63 -
CONTROL DATA
Control data is usually unique for each run and may
need to be respecified.
2.2.6 OUTPUT OPTIONS
The hydraulic program can provide three types of output:
printed output, output stored on magnetic tape or disk, or
punched output in the form of a restart deck.
Printed output: Printed output can occur in the MAIN
program, Subroutine HYDEX, and Subroutine RESTRT.
In the MAIN program, printed output is controlled by
four parameters: IPRINT, INTRVL, flOPRT, and JPRT(I) ,
where I * "\,NOPRT. Printout begins at cycle IPRINT and
will occur every INTRVL cycles thereafter for NOPRT
specified junctions. JPRT(I) identifies the numbers of the
junctions for which output is printed. The output for a
junction consists of the head at that junction and the flow
and velocity for each channel entering that junction.
In Subroutine HYDEX, tables summarizing the data used
to create the "hydraulic extract tape" (i.e. tables which
summarize the last full tidal cycle of data) are printed.
The parameters printed are the (1) net flow in each channel,
(2) minimum and maximum junction heads and the cycle of
their occurence, (3) the average junction head, (4) the range
of junction heads, (5) minimum, maximum, and average
channel velocities, (6) minimum, maximum, and average channel
flows, and (7) minimum, maximum, and average channel cross-
sectional areas.
The printout from HYDEX can be very useful when the model
is being applied to a new prototype. The net flow in a channel
is helpful in determining whether or not a steady-state
solution has been reached. When the solution has converged to
steady-state, the net flow in a channel should be equal to
-------
- 64 -
the algebraic sum of the flows specified above that channel.
The summaries of junction heads and channel velocities are
useful when calibrating the hydraulic model because they
can be compared to observed tidal elevations and velocities
in the prototype.
In Subroutine RESTRT, tables indicating the restart
data are printed. These tables contain the junction heads,
surface areas, inflows and the channel lengths, widths,
depths, cross-sectional areas, roughness coefficient, and
velocity existing at the restart cycle (PUNCYC).
Magnetic Tape/Disk Output: Output on Tape or .Disk can be
obtained in either Subroutine RESTRT or HYDEX.
If execution should terminate prematurely, Subroutine
RESTRT will retain a record of the system conditions at the
last restart cycle (PUNCYC) on Unit 4.
If Subroutine HYDEX is called, a permanent record is
made on Unit 4 of the hydraulic parameters needed as input
for the quality program (heads, flows, and velocities).
Punched Output: Punched output occurs in Subroutine RESTRT
When Subroutine RESTRT is called, the channel and
junction parameters for the final hydraulic cycle can be
punched onto a card deck. The format of the deck is such
that it can be used as input for a different hydraulic run.
2.2.7 POTENTIAL IMPLEMENTATION DIFFICULTIES
PREMATURE TERMINATION
Before the main computation loop is entered, the hydraulic
program checks the compatability of the channel and junction
numbering systems. If any discrepancies are found, the
program will terminate.
UNSTABLE SOLUTION
Execution of the hydraulic program is terminated if the
velocity in any channel exceeds 20 fps, indicating an
-------
- 65 -
unstable (diverging) solution. This problem generally arises
most frequently during the initial applications of the model
to a new system. It can arise, however, even after many successful
previous applications, particularly if the hydraulic conditions
are significantly different from any previously considered.
An unstable solution usually results from one or more
of the following conditions: (1) one or more inputs have
been improperly specified (keypunching error, etc.),
(2) the stability criterion is violated for a certain channel
(indicating the channel length should be increased or the
time step decreased), (3) a junction surface area is not
properly represented (occurs frequently at dead end channels),
or (4) a junction volume is not properly represented (occurs
either at dead end channels or in areas such as tidal flats
where the depth at low tide may be zero). Under such
conditions, unrealistic hydraulic gradients can be created
which result in excessive velocities.
The instability can usually be eliminated at dead end
channels by increasing the surface area of the end junction
somewhat above that indicated on published maps or charts.
This tends to eliminate wave reflection caused by the abrupt
channel ending. There may be little, if any, wave reflections
in the prototype since a real channel rarely ends as abruptly
as represented by the model network.
Similarly, in areas such as tidal fia-fe, where the
depth at low tide may reach zero, the instability can
normally be corrected by increasing the depths of the peripheral
channels slightly., As programmed, the model does not
adjust the water surface area of a junction as the water
rises and falls. There is also no provision for allowing a
junction to "run dry" (reach zero depth). However, the
model network parameters in these areas may by specified to
-------
- 66 -
compensate for these shortcomings. The channel depths and
the surface area assigned to the junctions are representative
of the mean tide level such that the junction volumes
are slightly over-represented at low tide and under-represented
at high tide.
STORAGE
For systems represented by a network with a large
number of junctions and channels, the length of the record
to be stored on Unit 10 may exceed the maximum limit for
a magnetic tape, i.e., the tape may be completely filled.
For such cases it may be necessary to reprogram the hydraulic
program and Subroutine HYDEX to accommodate two tapes rather
than one. The reprogramming effort is largely tied to the
specification of the starting and stopping points on each
tape.'
-------
2.2.8. DYNHYD DATA DECK SEQUENCE
CARD
1
2
3
4
5
6
7
8
VARIABLE
ALPHA(J)
HEADER
NO
NC
NCYC
DELT
TZERO
IPRINT
INTRVL
NOPRT
JPRT(l)
JPRT(2)
•
•
I TAPE
HYDEXT
PUNCYC
INTPUN
HEADER
COLUMNS
1-80
1-80
1-5
6-10
11-15
16-20
21-25
1-5
6-10
11-15
1-5
6-10
•
•
1-5
6-10
1-5
6-10
1-80
FORMAT
20A4
20A4
15
15
15
F5.0
F5.0
15
15
15
15
15
•
*
15
15
15
15
20A4
COMMENTS
2 cards - Identifies the run.
Indicates that Control Data
follows.
«.
Repeat until NOPRT values
are read (read NOPRT/ 16 of
these).
Indicates that Junction Date
follows.
- 67 -
-------
- 68 -
CARD
9
10
11
12
13
VARIABLE
JJ
Y(J)
AREAS(J)
QIN(J)
NCHAN(J.l)
NCHAN(J,2)
•
•
•
NCHAN(-J,5)
HEADER
NN
CLEN(N)
B(N)
AREA(N)
R(N)
(N(N)
V(N)
NJUNC(N.l)
NJUNC(N,2)
HEADER
NK
COLUMNS '
1-5
6-15
16-25
26-35
36-40
41-45
•
•
56-60
1-80
1-5
6-13
14-21
22-30
31-37
38-45
46-53
54-58
59-63
1-80
1-5
FORMAT,
15
F10.0
F10.0
F10.0
15
15
•
•
•
15
20A4
15
F8.0
F8.0
F9.0
F7.0
F8.0
F8.0
15
15
20A4
15
'" , COMMENTS ' :', ;
Read NJ of these cards.
Indicates that Channel Data
follows.
Indicates that Seaward Boundary
data follows.
-------
- 69 -
CARD
14
15*
16*
17*
VARIABLE
PERIOD
A1(D
Al(2)
Al(NK)
HEADER
ALPHA(I)
NODYN
COLUMNS
1-10
11-20
21-30
•
1-80
1-80
1-5
FORMAT
110
F10.0
F10.0
F10.0
20A4
20A4
15
COMMENTS
Indicates that HYDEX Data
follows.
2 cards - Identifies run.
* Cards 15, 16, and 17 are
read only if Subroutine
HYDEX is called (i.e.
HYDEXT » 1 ) .
-------
- 70 -
2.2.9 DYNHYD VARIABLE DEFINITIONS
The following pages contain definitions for the major
variables in DYNHYD. Variables are listed in alphabetical
order. Variables in italics are read from the input data
deck.
-------
VARIABLE
Aid)
AK(N)
AKT
AKT2
ALPHA (I)
ARAVG(N)
AREA(N)
AREAS(J)
AREAT(N)
ARMAX(N)
ARMIN(N)
B(N)
SUBROUTINE
MAIN
MAIN
HYDEX
MAIN
MAIN
MAIN
HYDEX
HYDEX
MAIN
HYDEX
RESTRT
MAIN
HYDEX
RESTRT
MAIN
HYDEX
HYDEX
MAIN
HYDEX
RESTRT
DEFINITION
Coefficients for tidal input (head) at seaward boundary obtained
from program REGAN. (I = 1,NK)
Frictional coefficient for channel N.
Frictional coefficient during full step computation.
Frictional coefficient during half step computation.
Alphanumeric identifier printed as part of output. (I = 1,80)
Mean cross sectional area of channel N over full tidal cycle.
Cross sectional area of channel N. Corresponds to the head
specified at junctions at ends of the channel.
Surface area of junction J
Cross sectional area of channel N during a half time step.
Maximum cross sectional area of channel N over full tidal cycle.
Minimum cross sectional area of channel N over full tidal cycle.
Width of channel N.
TYPE
R
R
R
R
R
R
R
R
R
R
R
R
UNITS
ft2
ft2
ft2
ft2
ft2
ft2
ft
-------
VARIABLE
CLEN(N)
CN(N)
DELT
DELTQ
DELT2
DVDX
FLOW
G
HEADER
HYDEXT
ICYC
SUBROUTINE
MAIN
HYDEX
RESTRT
MAIN
HYDEX
RESTRT
MAIN
HYDEX
HYDEX
MAIN
MAIN
MAIN
MAIN
MAIN
HYDEX
MAIN
MAIN
RESTRT
DEFINITION
Length of channel N.
Manning roughness coefficient for channel N.
Time interval used in solution.
Time step for the quality program (DELTQ = DELT * NODYN).
One half time step. (Equals DELT/2)
Defines velocity gradient (AU/AX) in a channel.
Discharge. Follows sign convention used for hydraulic printout.
Acceleration due to gravity (32.1739 ft/sec2).
Alphanumeric identifier for a subsection of the input card deck.
Control Option. If HYDEXT = 1, subroutine HYDEX is called to
create a summary hydraulic extract tape and summarize net flows.
If HYDEXT = 0, subroutine HYDEX is not called.
Cycle number (iteration) during execution of the quality program.
TYPE
R
R
R
R
R
R
R
R
R
I
I
UNITS
ft
sees
sees
sees
cfs
ft/sec2
-------
VARIABLE
ICYCTF
INTPUN
INTRVL
IPRINT
ITAPE
JPBT(I)
KTZERO
NC
NCHAN(J3K}
NCYC
NCYCC
NEXIT
SUBROUTINE
HYDEX
MAIN
RESTRT
MAIN
MAIN
MAIN
MAIN
RESTRT
MAIN
HYDEX
RESTRT
MAIN
HYDEX
RESTRT
MAIN
MAIN
HYDEX
MAIN
DEFINITION
Cycle number stored on unit 4.
Punch interval for restarting. Restart data is stored on Unit 4
at cycle PUNCYC, and at each INTPUN cycles thereafter.
Interval (in cycles) between printouts.
Printed output begins at this cycle, and each INTRVL cycles
thereafter.
Hydraulic parameters are stored on unit 10 beginning at this cycle.
Specified junctions for which printout is desired. (I = l.NOPRT).
Variable used temporarily to compute the appropriate value for
TZERO in case of restarting
Number of channels in model network.
Channel number of the K channel entering junction J. (K = 1,.5)
Total number of time steps (cycles to be executed).
Counter for the number of hydraulic cycles.
Counter to determine compatabi 1 i ty of channels and /junctions.
If NEXIT is greater than or equal to 1, execution is terminated.
TYPE
I
I
I
I
I
I
R
I
I
I
I
I
UNITS
-------
VARIABLE
NJ
NJUNC(NS1)
NJUNCCN, 2)
NK
NMAX(J)
NMIN(J)
NODYN
NOPRT
NS
NSTART
NSTOP
SUBROUTINE
MAIN
HYDEX
RESTRT
MAIN
HYDEX
RESTRT
MAIN
HYDEX
RESTRT
MAIN
HYDEX
HYDEX
HYDEX
MAIN
MAIN
HYDEX
HYDEX
DEFINITION
Number of junctions in the model network.
Lower of the two junction numbers at the ends of channel N.
Higher of the two junction numbers at the ends of channel N.
Number of coefficients used to specify tidal input. (NK usually
equals 7).
Hydraulic cycle number at which the maximum head at junction J
occurs.
Hydraulic cycle number at which the minimum head at junction J
occurs.
Number of hydraulic time steps per quality time step.
Number of junctions for which output is desired.
NK/2. Number of Sine (and Cosine) terms in relationship defining
tidal input.
Starting cycle on the hydraulic extract tape. (Unit 4).
Ending cycle on the hydraulic extract tape. (Unit 4).
TYPE
I
I
I
I
I
I
I
I
I
I
UNITS
-------
VARIABLE
PERIOD
PUNCYC
Q(N)
QEXT(N)
QIN(J)
QMAX(N)
QMIN(N)
QNET(N)
R(N)
RANGE(J)
SUMQ
T
SUBROUTINE
MAIN
HYDEX
RESTRT
MAIN
RESTRT
MAIN
HYDEX
HYDEX
MAIN
HYDEX
RESTRT
HYDEX
HYDEX
HYDEX
MAIN
HYDEX
RESTRT
HYDEX
MAIN
MAIN
DEFINITION
Period of the tidal input. PERIOD is read in as hours, but
transformed to seconds within the program.
RESTRT is called at cycle PUNCYC and every INTPUN cycles thereafter.
Flow in channel N.
Mean flow in channel N over each quality time step.
Inflow or withdraw! at junction J. Inflows must be specified as
negative numbers, while withdraw! s must be positive numbers
Maximum flow in channel N over full tidal cycle.
Minimum flow in channel N over full tidal cycle.
Net flow in channel N over full tidal cycle.
Hydraulic radius of channel N, taken as the channel depth.
The tidal range at junction J. RANGE(J) = YMAX(J) - YMIN(J).
Net flow into or out of a junction.
Total elapsed time. Initialized to equal TZERO and is incremented
by DELT at the start of each time step.
TYPE
R
I
R
R
R
R
R
R
R
R
R
R
UNITS
cfs
cfs
cfs
cfs
cfs
cfs
ft.
ft.
-------
VARIABLE
T2
TZERO
TZER02
V(N)
VEL
VEXT(N)
VMAX(N)
VMIN(N)
VT(N)
W
Y(J)
YAVG(N)
SUBROUTINE
MAIN
MAIN
RESTRT
MAIN
HYDEX
RESTRT
MAIN
HYDEX
HYDEX
HYDEX
MAIN
MAIN
MAIN
HYDEX
RESTRT
HYDEX
DEFINITION
Total elapsed time for one half step computations. T2 lags T
by DELT2.
Time at which computations begin, Allows starting point to be
anywhere on tidal cycle.
Variable used temporarily to compute the appropriate value for TZERO
in case of restarting.
Mean velocity in channel N.
Velocity. Follows sign convention used for hydraulic outputs.
Mean velocity in channel N over each quality time step.
Maximum velocity in channel N over tidal cycle. If flow reversal
occurs in channel N, VMAX(N) will be the maximum positive
velocity.
Minimum velocity in channel N over tidal cycle. If flow reversal
occurs in channel N, VMIN(N) will be the maximum negative velocity
Velocity in channel N during half time step.
2TT/PERIOD
Head at junction J.
Mean head at junction J over tidal cycle.
TYPE
R
R
R
R
R
R
R
R
R
R
R
R
UNITS
fps
fps
ft.
ft.
-------
VARIABLE
YMAX(N)
YMIN(N)
YNEW(N)
YT(J)
Unit 4
Unit 5
Unit 6
Unit 8
Unit 10
SUBROUTINE
HYDEX
HYDEX
HYDEX
MAIN
HYDEX
RESTRT
MAIN
HYDEX
MAIN
HYDEX
RESTRT
RESTRT
MAIN
HYDEX
DEFINITION
Maximum head at junction J over tidal cycle.
. Minimum head at junction J over tidal cycle.
New name for head at junction J to differentiate it from the head
at the same junction at another time step.
Head a junction J during one half time step.
Serves as restart device in case of premature termination of
execution. Otherwise, it is used as the hydraulic extract
tapes created to store data for input to the quality program.
Used for card input (card reader).
Used for printed output (printer).
Used for punched output (card punch).
Serves as a temporary record of the hydraulic solution. Pertinent
hydraulic parameters are stored for every channel and junction
for every cycle beyond ITAPE.
TYPE
R
R
R
R
UNITS
ft.
ft.
ft.
ft.
.
I
•-J
-------
- 78 -
2.3 COMPUTER REQUIREMENTS
2.3.1 IBM JOB CONTROL LAN6AUGE (JCL)
The JCL used to execute program REGAN is as follows
//JOB CARD
//EXEC FORTGCLG
//FORT. SYS IN DD *
program REGAN goes here
//GO.FT06001 DD SYSOUT=A
//GO. SYS IN DD *
data deck goes here
/*EOF
The JCL used to execute program DYNHYD is as follows
//JOB CARD
//STEP! EXEC PGM=DYNHYD
//STEPLIB DD DISP=SHR,VOL=(PRIVATE, RETAIN, SER=REGNA3),
// UNIT=;5330-1,DSN=CNO_SO_M.LJC.CLARKLIB
//GO.FT0*»00] DD DCB=(RECFM=VS,LRECL=50A,BLKSIZE=50I»0,
II DISP=(NEW, KEEP, KEEP) ,VOL=SER=USER99,UNIT=3330-1,
// DSN=*CN.EPAXYZ.ACCT. DATA. SET. NAME
or
stores
stores
//GO.FT04001 DD DCB=(RECFM=VS ,LRECL=50MLKSIZE=501»0) ,
II DISP=(NEW, KEEP, KEEP) ,VOL=SER=TAPE##,UNIT=2't00,
// DSN-LEOTAPE, LABEL- (##,SL,EXPDT-98000)
//DD DSN=SYS2.FTG1LINK,DISP=SHR
//GO . FT 1 0F00 1 DD DSN=SGHYDTA , DCB= (RECFM=VS , LRECL=501» , BLKS I ZE=501f0) ,
// DISP=(NEW,DELETE, DELETE), SPACE=(TRK, (40, *»0)) ,UNIT=SYSDA
//GO.FT08F001 DD DUMMY
//GO.FT06F001 DD SYSOUT=A
//GO.FT05F001 DD *
data deck here
/*EOF
-------
- 79 -
2.3.2 UNIVAC EXECUTIVE CONTROL LANGAUGE (ECL)
The ECL used to execute program REGAN is as follows
@RUN CARD
@PASSWORD
@SYM
@FTN,IS
program REGAN goes here
@MAP,I
LIB FTN*RLIB
@XQT
data deck goes here
@FIN
The ECL used to execute program DYNHYD is as follows
@RUN CARD
@PASSWORD
@SYM
@ASG,A USERID*PGMFILE.
@COPY,A USERID*PGMFILE.DYNHYD
@FREE USERID*PGMFILE.
§ASG,T USERID*TEMPFILE
@USE 10.,USERID*TEMPFILE
@ASG,CP USERID*1500CFS
@USE ^t.,USERID*1500CFS
eXOJ DYNHYD
data deck goes here
@FIN
-------
- 80 -
2.3.3 EXECUTION TIMES
The time required to execute the hydraulic program is
dependent on the computer used, the network size, the computational
time step, and the length of the run. Typical execution times
for DYNHYD are given in Table 2.1 below. DYNHYD requires
approximately 130K of storage for execution.
Junctions
112
112
112
129
133
247
830
133
Channels
170
170
170
131
139
306
1050
139
Time
Step
(sees)
50
50
50
90
90
75
100
90
Length
of run
(hrs)
37.5
50.0
25.0
50.0
25
12.5
25
50
Execution
Time
(mins)
5
8
8
1.3
.8
4
12
2.4
Computer
CDC 6600
CDC 6600
IBM 360/65
IBM 370/168
IBM 370/168
CDC 6600
CDC 6600
UNIVAC 1100
TABLE 2.1 DYNHYD EXECUTION TIMES
-------
- 81 -
CHAPTER 3
IMPLEMENTATION OF THE WATER QUALITY MODEL - DYNQUAL
3.1 THE "MAIN" PROGRAM
As mentioned previously, the water quality program (DYNQUAL)
uses data created by the hydraulic program as input. Figure 3.1
shows the relationships between the hydraulic and the quality
programs and subroutines.
Figures 3.2 and 3.3 are flowcharts depicting the sequence
of steps for the MAIN program of DYNQUAL. A brief description
of the program logic is as follows:
STEP 1 - READ SYSTEM INFORMATION FROM HYDRAULIC TAPE
Alphanumeric data is read which identifies: the purpose
of the run (ALPHA (D), the network size (NJ and NO, the
starting (NSTART) and ending (NSTOP) cycles on the hydraulic
extract tape (Unit 4) created by the hydraulic program, and
the number of hydraulic time steps per quality time step (NODYN).
The hydraulic extract tape (Unit 4) is then read and copied
onto a scratch disk (Unit 3) for use by the quality program.
STEP 2 - READ INDEPENDENT CONTROL DATA
Alphanumeric data is read which defines: (1) control
parameters such as the hydraulic cycle at which the quality
program is to begin reading the hydraulic data (HYDCYC), length
of quality run (NQCYC), the number of quality cycles per
tidal period (NSPEC), the number of constituents to be modeled
(NUMCON), the temperature (TEMP), and other control options,
(2) tabular output control parameters specifying the types
of tables and the cycles at which they occur, and (3) plotting
output control parameters specifying the types of plots to be
printed. A table summarizing many of these control parameters
-------
- 82 -
REGAN
RESTRT
DYNHYD
DYNQUAL
HYDEx)
MIXERJ
(SUMARY) (SWTABL}
(SUMPLT) (SWPLOTJ
•(CURVED
(SCALE)
FIGURE 3.1 PROGRAM AND SUBROUTINE LINKAGES OF THE DEM
-------
- 83 -
'READ &
STORE
HYDRAULICS
f READ
INDEPENDENT
CONTROL DATA
PRINT
RATE
SUMMARY
PRINT
NUTRIENT
SUMMARY
^J^
T YES
\
— see Figure 3.3
INITIALIZE
VOLUMES &
MASSES
SEAWARD
BOUNDARY
CONDITIONS
RATE
TRANSFORMS
•
READ
WASTEWATER
INPUTS
FIGURE 3.2 FLOWCHART OF THE MAIN PROGRAM IN DYNQUAL
-------
- 84 -
DOES -X^ YES ,
ICVONQCYC ->—*{ tin LOOP
FIGURE 3.3 FLOWCHART OF THE MAIN QUALITY LOOP
-------
- 85 -
will be printed in Step 6. If any plots are to be outputted,
the maximum (YMAXC (K)) and minimum (YMINC (K)) values for
constituent K on the y-axis (ordinate) and the points along
the x-axis (abscissa) corresponding to the network junctions
(RMNODE (J)) are specified.
STEP 3 - INITIALIZE VARIABLES
Initial values required for certain variables (e.g. counters)
are set. At this point, the junction numbers at each end
of a channel are checked to insure that NJUNC (N3l) refers to
the lower junction number for channel N and that NJUNC (N32)
refers to the higher junction number (at the other end of
channel N).
If slack water tables are desired. Subroutine SWTABL
(see Section 3.4) is called to initialize the parameters
internal to this subroutine.
STEP 4 - READ QUALITY COEFFICIENTS
Alphanumeric data is read for each constituent which
describes the constituent name (CNAME), its minimum and
maximum concentrations (BACKC and CLIMIT), and its temperature
correction coefficient (TEETA).
STEP 5 - READ DISSOLVED OXYGEN (CONSTITUENT 6) PARAMETERS
Alphanumeric data is read which defines the time of sunrise
(TSRISE), time of sunset (TSSET), photosynthesis rates (PHOT),
respiration rates (RES),, photic depths (DEPTH), benthic
demand rates (BENT), and reaeration coefficients (A3 W, X)
throughout the estuary.
STEP 6 - PRINT CONTROL DATA
A table is printed listing several of the parameters inputted
in steps 1 through 5.
-------
- 86 -
STEP 7 - COMPUTE DIFFUSION COEFFICIENTS
The constant (CDIFFK) used to compute the diffusion
coefficients CDIFFK) throughout the estuary are read a.nd the
diffusion coefficients for each channel are determined. (See
Section 3.2).
STEP 8 - PRINT NETWORK AND HYDRAULIC PARAMETERS
A table summarizing the hydraulic parameters stored on
the hydraulic extract tape is printed. The diffusion constants
(CDIFFK) -for each channel are also printed.
STEP 9 - READ REACTION RATES
Alphanumeric data is read which defines the characteristics
and linkages of the quality constituents. (A more detailed
discussion of constituent linkages is found in Section 3.8).
Tables summarizing these parameters are printed.
STEP 10 - RATE TRANSFORMATIONS
The inputted rates are adjusted so that they (1) correspond
to a quality time step (2) correspond to the assumed temperature,
and (3) determine the amount of material decayed or regenerated
during a time step instead of the amount of material remaining
after a time step.
STEP 11 - WASTEWATER INPUTS
Alphanumeric data is read which specifies (1) the number
of constant waste inputs (MASTC) , i.e. an input whose flow
rate and concentrations are constant, (2) the number of
variable waste inputs (NWASTV) , i.e. an input whose flow
rate and/or concentrations vary with time, and a description
of how the flows and concentrations vary, and (3) the number
of variable bank load inputs (NBANK) , i.e. a load from a
junction shoreline (e.g. runoff), the length of each junction's
-------
- 87 -
shoreline, the junctions receiving the variable bank loads,
and a description of how the flows and concentrations
vary over time. Tables summarizing the above inputs are
printed.
STEP 12 - UPPER BOUNDARY CONDITIONS
Data is read which describes how the flows and constituent
concentrations at the upper boundary of the model network
vary with time. A table summarizing this data is printed.
STEP 13 - INITIAL CONDITIONS
The initial concentration for every constituent in every
junction is specified. A table summarizing this data is
printed.
STEP 14 - SEAWARD BOUNDARY CONDITIONS
Data is read which describes how the concentration of
every constituent varies over a tidal cycle at the seaward
boundary. A table summarizing this data is printed.
STEP 15 - INITIALIZE VOLUMES AND MASSES
The mean volume of each junction (corresponding to zero
head) is computed based on the average depth computed in the
hydraulic run. Unit 3 is aligned at the hydraulic cycle
at which the quality run begins (HYDCYC) and the junction heads
are read. The mean junction volumes are then adjusted to the
new heads in order to establish the junction volumes at the
start of the quality run.
The initial mass of every constituent in every junction
is computed. The diffusion constant of every channel and the
volume of all inflows/outflows at each junction over a quality
time step are computed.
-------
- 88 -
STEP 16 - MAIN QUALITY LOOP
This loop is executed for every cycle of the quality
program. First the "clock time" (CTIME) is incremented by a
quality time step (DELTQl). Next, the hydraulic parameters
(flows, velocities, and heads) for the current cycle are read
from Unit 3. If the last hydraulic cycle read was the last
hydraulic cycle stored on Unit 3, then Unit 3 is rewound.
Subroutine MIXER (Section 3.2) is called to determine
the mass of each constituent transferred between junctions by
advectiorc and diffusion.
The reaction rates defined in Step 9 are applied to their
respective constituents in every junction.
Constant waste, variable waste, variable bank, and upper
boundary loads are added to the appropriate junctions.
Junction volumes are adjusted to the start of the next
time step and new constituent concentrations are computed
by dividing the mass of each constituent in a junction by the
junction volume. If the predicted concentration of constituent
K is less than the minimum allowable concentration (BACKC(K)),
the constituent concentration is set equal to BAGKC(K) and
the corresponding mass is specified for the junction. If
KDCOP=lt a statement that the adjustment was made will be
printed. If the predicted concentration exceeds the maximum
allowable concentration (CLIMIT(K))^ execution is terminated.
A special analysis is made of constituent 6 (dissolved
oxygen for the version herein). The minimum (DOMIN(J)) and
maximum (DOMAX(J)) concentrations, as well as the cycles of
their occurrence (MINCYC(J) and MAXCYC(J))-, the average
concentrations(DOAVG(J}); and the numbed of cycles in which
the concentration is below 4.0 mg/1 (DOLT4[J))t between
4.0 mg/1 and 5.0 mg/1 (D04T05(J)), and above 5.0 mg/1
(DOGTS(J)) are computed for every junction. This analysis
-------
- 89 -
starts at cycle NDOCYC and continues until the end of the
quality run.
A check is made to determine if observed data (OBVATA(I,J3K)),
which will appear on certain plots, is to be read at the
present cycle.
A check is made to determine if any time history plots
are to be printed. If so, the constituent concentrations for
the appropriate junctions are stored on Unit 11.
A check is made to determine if subroutine SUMARY
(Section 3.3) is to be called to compute a summary of the
predicted concentrations for a specified period.
A check is made to determine if subroutine SWTABL ,
(Section 3.4) is to be called to output the current concentrations
in a slack water table.
STEP 17 - EXIT LOOP
After NQCIC cycles have been completed, the Main Quality
Loop is left. A table summarizing the constituent 6 analysis
is printed. If WEAC = 3 (i.e. if both constituent 1 and
constituent 3 are considered in determining the growth of
constituent 4), a table summarizing the number of cycles for
which each constituent limited growth is printed.
A check is made to determine if subroutine TPLOT (Section 3.6)
is to be called to output time plots
3.2 SUBROUTINE MIXER
This subroutine computes the amount of mass transferred
between junctions due to the processes of advection and diffusion.
For every channel in the system, the advected and diffused
masses are computed and are transferred from the junction at
one end of the channel to the junction at the opposite end of
the channel. A simplified flowchart depicting the sequence of
steps in MIXER is shown in Figure 3.4. The logic of the subroutine
is as follows:
-------
- 90 -
UPSTREAM
CONCENTRATION
• FIGURE 3.4 FLOWCHART OF SUBROUTINE MIXER
-------
- 91 -
STEP 1 - COMPUTE CHANNEL PARAMETERS
The volume of fluid transported through a channel during
a time step (VOLFLW) is computed. The channel diffusion
coefficient (DIFFC) is also calculated.
STEP 2 - COMPUTE CONSTITUENT PARAMETERS
The variable CA is defined as the concentration in the
junction with the lov/er junction number (NJUNC(N31)).
Variable CB is defined as the concentration in the junction at
the opposite end of the channel (NJUNC(N}2).
STEP 3 - COMPUTE ADVECTED MASS
The concentration of the constituent in the water being
advected (CONC) can be determined several ways. The variable
MIX defines the method used to compute CQNC, where:
1 - use upstream concentration
2 - use 1/2 point method
MIX = 3 - use 1/3 point method
4 - use 1/4 point method
5 ~ use 2-way proportional method
The mass of constituent transferred by advection is found
by multiplying the volume of fluid advected (VOLFLW) by the
concentration in the advected fliud (CONC)l
STEP 4 - COMPUTE DIFFUSED MASS
The mass of constituent transferred by diffusion is
computed by multiplying the concentration gradient (CA - CB)
by the diffusion coefficient (DIFFK).
STEP 5 - TRANSFER ADVECTED AND DIFFUSED MASSES
The direction of the transfer of mass by advection is
dependent on the direction of flow in the channel. Flow in
a channel will usually be leaving one junction and entering
another. The advected mass is subtracted from the junction
-------
- 92 -
In which the flow is leaving and is added to the junction in
which the flow is entering.
The transfer of mass by diffusion is dependent on the
concentration gradient. Mass will move from the junction
with the higher concentration to the junction with the lower
concentration. In other words, the diffused mass is subtracted
from the junction with the higher concentration and added
to .the junction with the lower concentration.
3.3 SUBROUTINE SUMARY
This subroutine prints out the minimum, maximum and
average constituent concentrations predicted during specified
time intervals. In order to allow summary periods which
overlap0 SUMARY can compute a "Type 1" summary and a "Type 2"
summary,, Type 1 summaries can overlap Type 2 summaries
(and vice versa), otherwise, they are identical. A flowchart
depicting the logic of SUMARY is shown in Figure 3.5.
A description of the program logic is as follows:
STEP 1 - DETERMINE TYPE OF SUMMARY
A check is made to determine which type of summary (Type
1 or Type 2) is desired. If NUM ="1, a Type 1 summary is
desired. If NUM = 2, a Type 2 summary is desired.
STEP 2 - INITIALIZE
If the current cycle is the first cycle of the summary
perfod (IP), the minimum, maximum, and average concentrations
for each junction are set equal to the current junction
concentrations. If not, Step 3 is executed.
STEP 3 - DETERMINE MINIMUM, MAXIMUM, AND AVERAGE CONCENTRATIONS
Fcr every cycle within the summary period, checks are
made to determine the minimum, maximum, and average concentrations
during the period.
-------
- 93 -
TYPE 1
TYPE 2
COMPUTE
MIN MAX AVG
CONCENTRATION
FILL X & Y
ARRAYS WITH
PLOTTING DATA
(CALL SUMPLT)
C RETURN J
FIGURE 3.5 FLOWCHART OF SUBROUTINE SUMARY
-------
- 94 -
STEP 4 - OUTPUT SUMMARY TABLE
After the last cycle of the summary period (LP), .a table
containing the starting and ending cycle of the summary period
and the minimum, maximum, and average concentrations for
each constituent in every junction is printed.
STEP 5 - CHECK FOR PLOT OF SUMMARY TABLE
A check is made to determine whether or not a plot of
the current summary table is desired. If a plot is desired
(PLT = V , arrays of the data (FGQXA(NPP) and FGQXO(NPP,LPP))
are set up for use by Subroutine SUMPLT (Section 3.5) to
create the plots. Control then returns to the MAIN program. ,.
:\
3.4 SUBROUTINE "SWTABL"
This subroutine sets up slack water output tables for
specified time periods and prints the corresponding
constituent concentrations. Slack water at a particular
location -5s defined as the time at which the tidal velocity
equals zero (see Figure 3.6). Slack water occurs twice
during a. tidal cycle, once following the flood tide (high
water slack) and once following the ebb tide (low water slack).
Slack water output consists of the predicted concentrations
at a junction when it is at slack water. Slack water
occurs at different times along an estuary, beginning at
the seaward boundary and moving upstream in a manner similar
to the tidal wave itself. Consequently, slack water predictions
for the upper boundary occur many quality cycles after slack
water predictions for the lower boundary. A flowchart
depicting the logic of SWTABL is shown in Figure 3.7. A
description of the program logic is as follows:
-------
- 95 -
High Water
Head (elevation above a datum)
Velocity
FIGURE 3.6 LOCATION OF HIGH & LOW WATER SLACKS
-------
- 96 -
I CYC
ICYC > 0
FILL X & Y
ARRAYS WITH
PLOTTING DATA
FIGURE 3.7 FLOWCHART OF SUBROUTINE SWTABL
-------
- 97 -
STEP 1 - CHECK FOR SET-UP OR OUTPUT OF TABLES
SWTABL is actually called at two points in the quality
program. First, it is called during the initialization
portion of the MAIN program. Here, it determines the type of
tables (high water slack (HWS), low water slack (LWS), or snapshot)
and their corresponding parameters (the junctions to be
printed and when). To do this, the model junctions are
divided into several groups, each of which is at slack
water at approximately the same time. This grouping can
be accomplished by studying detailed hydraulic outputs and
determining when and where the velocities in the estuary are
zero. If the junctions were divided into ten groups, then
slack water would occur at the junctions in group 1 first,
say at cycle J. Slack water would occur at the junctions
in group 2 one cycle later (i.e. at cycle 0 + 1), at the
junctions in group 3 two cycles later (cycle J + 2), etc.
The junctions within the groups vary, depending on whether
a HWS, LWS, or snapshot table is desired. This is due to
the differences between high and low water slack conditions.
The variables NSWCIC, NOPRTd), and. JPRT(I>N) describe
a slack water table. NSWCYC is the difference in time (in
cycles) between the occurence of slack water at the upper
and lower boundaries, NOPRT(I) is the number of junctions
in the Ith group, and JPRT(IfN) is the number of the Nth
junction in group I. A snapshot table is not a slack water
table in the true sense of the term. Rather, it divides
the junctions into only one group and outputs the concentrations
for all the junctions in the group at one specified cycle,
hence the term "snapshot". SWTABL is called again during the
main computational loop in the MAIN program. Here, it
outputs the tables as they were set up earlier. The output
is obtained by sequentially printing the predicted
concentrations for the junctions within each group. Hence,
-------
- 98 -
if group I was at slack water during cycle J, then the
concentrations for the junctions within group I are printed
at cycle J, the concentrations for the junctions within
group I + 1 are printed at cycle J + 1, and so on.
STEP 2 •• CHECK FOR PLOT
A check is made to determine whether or not a plot of
the current slack water table is desired. If KPLOT(M) = 0,
a plot is not desired, and control returns to the MAIN
program (See Section 3.10 for plotting options.). If so,
the predicted concentrations are stored in arrays (FGSWA(NPP)
and FGSWO(NPP,LPP)) until the slack water table is completed,
at which point subroutine SWPLOT is called to produce the
plot. Control then returns to the MAIN program.
3.5 SUBROUTINES SUMPLT AND SWPLOT
These subroutines link the tabular output subroutines
(SUMARY and SWTABL) to the generalized printer plot
routines (CURVE, PLOT, and SCALE). A flowchart depicting
the logic of SUMPLT and SWPLOT is shown in Figure 3.8.
Both subroutines follow the same sequence of steps:
STEP 1 - SET LABELS ON SIDE AND BOTTOM AXES
The labels (e.g. "Miles Below Chain Bridge") on the
x-axis (BOTTOM(D) and the labels (e.g. "Constituent") on
the y-e.xis are set.
STEP 2 - THE X AND Y ARRAYS ARE CREATED
These arrays are created using the arrays (of predicted
concentrations) set up in SUMPLT (or SWPLOT) and will be
used in the plotting routines to generate the plots.
STEP 3 - SET SIDE LABELS FOR CONSTITUENT
The constituent number for each plot is added to the
y-axis label (e.g. "Constituent" becomes "Constituent 1"
-------
- 99 -
SET LABELS
ON
X-Y AXES
FILL UP
X & Y ARRAY
WITH DATA
SET LABEL FOR
CONSTITUENT
NUMBER
j CHECK FOR
I OVERLAY
(SWPLOT)
~
r
WRITE
•TITLE ON
UNIT 22
(
CALL CURVE
YES
C
RETURN
NO
FIGURE 3.8 FLOWCHART OF SUBROUTINES SUMPLT & SWPLOT
-------
- 100 -
or "Constituent 2", etc.)
STEP 4 •- WRITE OUT TITLE
A title indicating the type of plot and the cycle(s)
to which it applies is written on Unit 22.
STEP 5 - CALL CURVE TO PRODUCE THE PLOT
Subroutine CURVE is called and the plot is produced
on Unit ?2. The printer plot will be outputted at the end
of the MAIN computational loop.
3.6 SUBROUTINE TPLOT
This subroutine, called by the MAIN program, is linked
to the generalized printed - plot subroutines (CURVE, PPLOT,
and SCALE). It is called at the end of the MAIN program
to produce time history plots at specified junctions for
specified time periods. A simplified flowchart depicting
the logic of TPLOT is shown in Figure 3.9. The sequence
of steps is as follows:
STEP 1 - SET LABELS FOR X AND Y AXES
The labels (e.g. "cycles") for the x-axis (BOTTOM(D) and
the labels (e.g. "Constituent") for the y-axis (SIDE(I))
are set.
STEP 2 - TIME PLOT LOOP
This is a double loop which is executed for every constituent
for every time plot. The following steps are executed
within the loop.
STEP 2A - SKIP TO STARTING CYCLE OF TIME PLOT
Unit 11 is rewound and the data stored on it is read
until the starting cycle of the current time plot is reached.
-------
- 101 -
NO
SET LABELS
ON
X-Y AXES
i
REWIND 11
& SKIP TO
SKIP
TO END
OF CYCLE
SKIP
TO NEXT
READ CYCLE
NO
,
READ DATA
FOR
PRESENT CYCLE
YES
i
WRITE
TITLE
i
COMPLETE
SIDE
LABELS
FIGURE 3.9 FLOWCHART OF SUBROUTINE TPLOT
-------
- 102 -
STEP 2B - READ PLOTTING DATA
The data for the present cycle is read until the
predicted concentration for the desired junction is reached.
The concentration is used to set up the X (cycle number)
and Y (concentrations) arrays to be plotted. The remainder
of the data for the present cycle is then rea'd. Unit 11
is then read until the next plotting cycle is reached, at
which point, the data for the desired constituent and junction
is read again. This continues until all of the required
concentrations for a particular constituent at a particular
junction for the specified time plot period and interval
have been read.
STEP 2C - SET UP SIDE LABELS
The constituent number for each time plot is added to
the y-axis label (e.g. "Constituent" becomes "Constituent 2").
STEP 2D - WRITE OUT TITLE
A title indicating the type of plot, the cycles over
which it applies, and the interval between points is written
on Unit 2?..
STEP 2E - CALL CURVE TO PRODUCE THE PLOT
Subroutine CURVE is called and the plot is produced
on Unit 22. The printer - plot will be outputted at the
end of the quality program.
1.7 PLOTTING SUBROUTINES - CURVE. PPLOT, SCALE
CURVE is the entry to a generalized printer - plot
routine. It calls PPLOT and SCALE. CURVE plots the •
sequentially paired values in the X and Y arrays created
-------
- 103 -
in SUMPLT, SWPLOT, and TPLOT. The scaling values for
both arrays are stored in the last two array locations
(in the same manner as CALCOMP scaling).
Subroutine PPLOT produces the plots of the model
predictions and observed data points.
Subroutine SCALE sets up convenient scales for the axes.
3.8 CONSTITUENT LINKAGES
The version of the DEM contained in this report has
been applied to the Potomac Estuary. When this version was
programmed, there were six quality constituents which were
of particular interest:
Constituent 1 - Ammonia (NH3)
Constituent 2 - Nitrate (N03)
Constituent 3 - Total Phosphorous (TP04)
Constituent 4 - Chlorophyll a. (CHLOR)
Constituent 5 - Ultimate CBOD (CBOD)
Constituent 6 - Dissolved Oxygen (DO)
Consequently, many portions of the program and the constituent
linkages are specific to those constituents. Figure 3.10
depicts the six constituents and the reaction rates which
relate them in the quality program. The variables in capital
letters are the reaction rates linking the constituents.
The variables in italics are the masses transferred between
constituents. The arrows indicate the direction of the
transfer. At first glance, it might seem that this version
of the model is very restrictive regarding the constituents
that can be accomodated. However, closer examination reveals
that there is a considerable degree of flexibility in
assigning constituents to the constituent numbers utilized by
the program. By manipulating the various rates associated
with the constituent linkages, a fairly wide range of
U S EPA Headquarters Library
Mail code 3404T
1200 Pennsylvania Avenue NW
Washington, DC 20460
202-566-0556
-------
DECAYK(5)
CT3
cz
m
o
o
m
CO
§
o
a
^
^DECAYK(6)
01
PHOT
(PHOTOM)
RES
-CRESPM)
1
£
^ DECAYK(2)
(YMASSU)
IU
^DECAYK(3)
"* (ZMASSD)
u
REGEPP ,
** (KMASSP) \
73
m
O
o
-Pi
-------
- 105 -
parameters can be modeled. (A linkage can be "shut off"
by setting the associated rate equal to zero). Examples
of several alternative configurations are shown in Figures
3.11 to 3.13.
3.9 CONSIDERATIONS FOR MODELING OTHER SYSTEMS
There are several aspects of the model presented in
this report which are characteristic of the estuary to
which it was applied. However, the application of the
DEM to other estuarine systems is a relatively straightforward
process. The specific portions of the version contained
herein which must be altered are as follows:
1) The Model Network - Obviously, the model network, i.e. the
configuration of channels and junctions used to represent
the prototype, will be different for every system.
2) DIMENSION Statements - The Potomac Estuary network consists
of 133 junctions and 139 channels. Junction and channel
parameters have been dimensioned to these values. Any
expansion of the network size would necessitate a change
in these dimensions. The Potomac model is programmed for
6 constituents. Therefore, all constituent related variables
are dimensioned to that value. If more than 6 constituents
are to be modeled, then those dimensions must be changed.
3) Plotting Positions - The plotting subroutines plot the
predicted constituent concentrations for the model junctions.
Each model junction that is plotted is referenced to the upper
boundary of the network by variable RMNODE(J), which specifies
the number of miles between the upper boundary and junction
J. Consequently, the values assigned to RMNODE(J) will have
to be altered if a different network is used.
-------
- 106 -
DECAYK(l) = 0
DECAYK(2) = 0
DECAYK(3) = 0
NUMCON = 3
KREAC = 3
Constituents 1, 2, and 3 are all
conservative, i.e. they do not decay
FIGURE 3.11 ALTERNATIVE LINKAGE EXAMPLE 1 - CONSERVATIVE CONSTITUENTS
-------
- 107 -
DECAYK(l)
DECAYK(3)
DECAYK(5)
NUMCON = 5
KREAC = 4
DECAYK(l) = the rate (1st order) at which constituent 1
is converted to constituent 2
DECAYK(3) = the rate (2nd order) at which constituent 3
is removed from the system
DECAYK(5) = the rate (1st order) at which constituent 5
is removed from the system
'FIGURE 3.12 ALTERNATIVE LINKAGE EXAMPLE 2 - NON-CONSERVATIVE CONSTITUENTS
-------
- 108 -
o
LU
Q
NO2+N03
DECAYK(2)
Chlorophyll a
NUMCON = 4
KREAC = 1
DECAYK(l) = rate (1st order) at which NH3 (constituent 1)
is converted to N02+N03 (constituent 2)
DECAYK(2) = rate (1st order) at which N02+N03 is taken up
by algae (constituent 4) for growth
DECAYK(4) = rate (1st order) at which algae are settled
out of the system into the detrital pool
AMUPP = rate (1st order) at which NH3 is taken up
by algae for growth
REGENN = rate (1st order) at which MH3 is regenerated
by the detritus
FIGURE 3.13 ALTERNATIVE LINKAGE EXAMPLE 3 - THE NITROGEN CYCLE
-------
- 109 -
4) Subroutine SWTABL - As discussed in section 3.4,
this subroutine divides the network junctions into several
groups. Each group is comprised of junctions which are at
slack water at approximately the same time. These groups
are characteristic of the system being modelled and will
have to be changed for every different prototype.
3.10 INPUT REQUIREMENTS
The input requirements for this version of the DEM can
be divided into five general categories: (1) input/output control
parameters, (2) water quality parameters, (3) waste load
inputs, (4) boundary conditions, and (5) initial conditions.
INPUT/OUTPUT CONTROL
The input/output control parameters can be divided into
three groups: independent control, tabular output control,
and graphical output control.
Independent control data specifies the number of
quality constituents (NUMCON), temperature (TEMP), length
of the run (NQCYC), quality time step (DELTQ), starting cycle
on the hudraulic extract tape (HWCYC), and other parameters.
A complete listing of these input parameters'is given-in
Section 3.12.
Tabular output control specifies the types of tables
to be outputted, the frequency of printout, and whether or
not a plot of a table is desired. A complete listing of these
parameters is found in Section 3.12.
Graphical output control specifies the number and type
of plots, the type of background grid to use, the minimum
(YMINC(K)) and maximum((YMXC(K)) values which can be plotted,
information concerning any observed data to be plotted,
and which constituents to plot., A complete listing of these
parameters is found in Section 3.12.
-------
- 110 -
QUALITY PARAMETERS
Several reaction rates and coefficients must be specified
for the quality constituents. These parameters determine the
various linkages among the quality constituents. A complete
listing of the parameters required for the version of the
DEM in this report is found in Section 3.12.
WASTE LOAD PARAMETERS
For inflows to the system (e.g. wastewater discharges),
both the flow and concentration of each constituent must
be specified. For withdrawals from the system, only the flows
need to be specified, since the concentration of each constituent
removed is equal to the predicted concentration in that
junction. If a bank load (runoff) input is used, the
length of the junction shorelines CSLINE(J)), the flow,
and the concentration of each constituent must be specified.
Normally, the hydraulic condition specified by the
quality program should agree with the conditions in the
hydraulic run. The reason for this is that the hydraulic
behavior of the system for each quality time step is fixed
in the hydraulic program and is not affected by the inflows
or waste discharges specified in the quality program.
Consequently, if a withdrawal existed in the hydraulic program,
but was not specified in the quality program, then the quality
program would have water removed from the junction, but
not any constituent mass. Similarly, if a waste discharge
is specified for a junction in the hydraulic program,
then it is necessary to specify the constituent concentrations
and the same flow rate in the quality program in order to
add the appropriate mass of constituent during each time
step. This feature makes it convenient to simulate the
release of dye or some other tracer", Since a very small
-------
- Ill -
amount of tracer (with high concentration) is usually
released into a junction, any convenient input flow rate and
dye concentration can be specified (for the quality program
alone) so that the appropriate mass of dye is added during
each time step.
BOUNDARY CONDITIONS
Boundary conditions must be specified for the upper and
lower junctions of the network. Frequently, one of the most
troublesome inputs is the specification of the constituent
concentrations at the sejaward boundary. Ideally, the lower
boundary would be the ocean ( a source and sink with known
concentration). The problem of specifying the boundary is
one of estimating the tidal cycle variation in concentration
of a constituent at a boundary for a given freshwater inflow
to the system. For simulation of historic conditions,
sufficient data should be collected to establish the
boundary concentrations.. For predictive runs, one must
estimate the boundary conditions which would result for
the run, i.e. the final results must be known in order to
specify the boundary conditions. This dilemma can sometimes
be circumvented by determining the sensitivity of upstream
predictions to the location of the lower boundary. Since
the effect of the lower boundary conditions on the upstream
predictions decreases as the lower boundary is moved farther
downstream, the boundary should be located well downstream
from any areas of concern. For constituents with little
or no concentration gradient, the boundary concentration can
be specified .as constant throughout the tidal cycle. For
constituents with a significant gradient (e.g. salinity),
the boundary condition is defined by specifying a concentration
for each quality time step over a full tidal cycle.
-------
- 112 -
INITIAL CONDITIONS
Initial concentrations must be specified for each
constituent in every junction. For studies where steady state
conditions are desired, the initial concentrations are
relatively unimportant. However, while the initial conditions
do not affect the final steady state concentrations, the
execution time required to achieve a steady state condition
can be extremely sensitive to the initial concentrations. For
studies in which historical quality conditions are being
simulated, the initial conditions are extremely inportant and
adequate historical data should be available to define them.
3.11 OUTPUT OPTIONS
Both tabular and graphical output options are available
in the version of the DEM presented in this report.
Tabular outputs include summary tables, slack water tables,
a dissolved oxygen summary9 and a summary of nutrients
limiting algal growth in each junction. Graphical outputs
include plots of summary tables, plots of slack water tables,
(with or without observed data), and time history plots
at specified junctions.
TABULAR OUTPUTS
1) Suirmary Tables:
Summary tables are produced by subroutine SUMARY.
A summary -cable prints the minimum, maximum, and average
concentration for each constituent in every junction during
a specified interval. In order to allow summaries which
overlap, there are two types of tables referred to in SUMARY:
a "Type 1" table and a "Type 2" table. A Type 1 table can
overlap a 7ype 2 table (and vice versa). For example, a
Type 1 tab^e may summarize from cycle 100 to 150 and a Type 2
could summarize from cycle 100 to 250. There are NSUM1 Type 1
-------
- 113 -
tables and NSUM2 Type 2 tables. The Nth Type 1 table
begins its summary at cycle XPRT1CN) and ends its summary
at cycle LPRT1CN). If IPLTI(N) = 1, the Nth table will be
plotted. Similarly, the N Type 2 table summarizes
from cycle IPRT2(N) to cycle EPKCMN) and will be plotted
if IPLT2CN) = 1.
2) Slack Water Table:
Slack water tables are produced by subroutine SWTABL.
These tables yield predictions for a junction when it is at
slack water. The number of slack water tables equals NSWTAB.
There are three types of slack water tables: high water
slack (HWS), low water slack (LWS), and snapshot. (A
snapshot table is not actually a slack water table as defined,
rather, it gives the concentrations throughout the estuary
at a specified cycle). The N slack water table begins
at cycle NFPCCN).. The type of table is defined by KSL(N),
where KSL(N) = 0,1,2 indicates a snapshot, HWS table, or
LWS table, respectively.
3) Dissolved Oxygen Summary:
A detailed summary of dissolved oxygen (constituent 6)
predictions is obtained from cycle NDOCYC to the end of the
quality run. The summary includes the minimum and maximum
predicted D.O. concentrations for each junction (DOMIN(J)>
DOMAX(J)) and the cycles at which they occur (MINC?C(J)3
MAXCYC(J)); the average predicted D.O. concentration for
each junction (AVBDO(J)); and the number of cycles for which
the predicted D.O. concentrations for each junctions were
below 4.0 mg/~\t(DOLT4(J)), between 4.0 mg/1 and 5.0 mg/1
(D04T05(.J))% and greater than 5.0 mg/1 (DOGTS(J)).
4) Nutrient Limitation Summary:
A summary of nutrient limitation is obtained from cycle
NUTCYC to the end of the quality run. The summary identifies
the number of cycles in which nitrogen limited algal
-------
- 114 -
growth (MRL(J)) and the number of cycles in which phosphorous
limited algal growth (NPPL(J)) in each junction.
GRAPHICAL OUTPUTS
1) Summary Plots:
The number of Type 1 tables plotted equals NPLT1 and
the number of Type 2 tables plotted equals NPLT2. If IPLTMN) = 1,
then the Nth Type 1 table will be plotted. If IPLT2(N) = 1,
then the Nth Type 2 table will be plotted.
The plotting symbols are defined as follows: "H", "L",
and "A" correspond to the maximum, minimum, and average
concentrations, respectively. Summary plots do not contain
observed data points.
2) Slack Water Plots:
The van able KPLOT(N) defines the type of slack water
plot, if anyB to be generated. KPLOT(N) = 0,1,3,4 indicates
that the Nth slack water table will: not be plotted,
be plotted, be prepared for an overlay of constituent 6
(i.e. prepare to plot constituent 6 from the next (N + 1 )
slack water table and N slack water table together), or
perform the overlay of constituent 6. If NCONSff(K) = 0,
then constituent K will not be plotted in any slack water
table.
Observed data, read in through the card reader with the
data deck, can also be plotted on a slack water plot
(along with the model predictions). Observed data is read
NOBDAT times. It is read in at specified quality cycles
(OBCYCCI), I = 1,NOBDAT). Each block of observed data contains
NDATA points. The location of each point is defined by
RMDATA(K)3 where K = 1,NDATA. The plotting symbols are
defined as follows: a "*" corresponds to a slackwater point;
an "X" corresponds to an overlayed slack water point;
and "H", I!L", and "A" correspond to the three observed data
points (either high, low, average or day 1, day 2, or day 3).
-------
- 115 -
3) Time History Plots:
There are NTP time history plots. The N time history
plot is specified for junction JUNCTP(N). It begins at
cycle NSCTPCN), ends at cycle NECTP(N), and plots data at
intervals of NCITP(N) cycles. If NCONTP(N,K) = 0, then
the N time plot will not indued constituent K.
-------
3.12 DYNQUAL DATA DECK SEQUENCE
CARD
1
2
3
4
5
6
7
VARIABLE
ALPHA(J)
NJ
NC
NSTART
NSTOP
NODYN
HEADER
HYDCYC
NQCYC
NUTCYC
NDOCYC
NSPEC
NUMCON
KDCOP
KREAC
MIX
TEMP
STIME
HEADER
COLUMNS
1-80
1-5
6-10
11-15
16-20
21-25
1-80
1-5
6-10
11-15
16-20
21-25
1-5
6-10
11-15
16-20
1-10
11-20
1-80
FORMAT
20A4
15
15
15
15
15
20A4
15
15
15
15
15
15
15
15
15
F10.0
F10.0
20A4
COMMENTS
2 cards. Identifies the run.
Indicates Control Data is to
be read.
Indicates Tabular Output
Control is to be read.
- 116 -
-------
- 117 -
CARD
8
9
10
11
12
13
14
15
VARIABLE
NSUM1
NPLT1
IPRTl(N)
LPRTl(N)
IPLTl(N)
NSUM2
NPLT2
IPRT2(N)
LPRT2(N)
IPLT2(N)
NSWTAB
NFPC(N)
KSL(N)
KPLOT(N)
HEADER
NTP
NSWP
KPLOP
COLUMNS
1-5
6-10
1-5
6-10
11-15
1-5
6-10
1-5
6-10
11-15
1-5
1-5
6-10
11-15
1-80
1-5
6-10
11-15
FORMAT
15
15
15
15
15
15
15
15
15
15
15
15
15
15
20A4
15
15
15
COMMENTS
Read NSUM1 of these cards.
Read NSUM2 of these cards.
Read NSWTAB of these cards.
Indicates Plotting Output
Control is to be read.
-------
- 118 -
CARD
16
17*
18
19
VARIABLE
NDATA
NOBDA1
NOBCYC(l)
NOBCYC(2)
•
•
NCONSW(l)
NCONSW(2)
•
JUNCTP(N)
NSCTP(N)
NECTP(N)
NCITP(N)
NCONTP(N,1)
NCONTP(N,2)
•
•
COLUMNS
1-5
6-10
1-5
6-10
t
•
*
1-5
6-10
•
1-5
6-10
11-15
16-20
21-35
26-30
•
»
*
FORMAT
15
15
15
15
•
•
•
15
15
•
•
15
15
15
15
15
15
•
COMMENTS
* Read only if NOBDAT>0.
Read NOBDAT valves of
NOBCYC.
Read NUMCON values of NCONSW.
Read NTP of these cards.
Read NUMCON values of NCONTP
on each card.
-------
- 119 -
CARD
20
21
22
23
24
25
26
VARIABLE
YMAXC(l)
YMINC(l)
YMAXC(2)
YMINC(2)
•
•
HEADER
PERCD
CHLNIT
CHLPHO
CHLCAR
BACKC(K)
THETA(K)
CLIMIT(K)
CNAME(N)
HEADER
TSRISE
TSSET
NO
COLUMNS
1-5
6-10
11-15
16-20
•
»
•
1-80
1-10
11-20
21-30
21-40
1-10
11-20
21-30
31-39
1-80
1-10
11-20
1-5
FORMAT
F5.0
F5.0
F5.0
F5.0
•
•
•
2QA4
F10.0
F10.0
F10.0
F10.0
F10.0
F10.0
F10.0
2A4
20A4
F10.0
F10.0
15
COMMENTS
Read NUMCOM values of YMAXC
and YMINC.
Indicates Quality Coefficients
are to be read.
Read NUMCON of these cards.
Indicates D.O. Parameters are
to be read.
-------
- 120 -
CARD
27
28
*
29
30
31
32
33
34
VARIABLE
NF1(I)
NL1(I)
PHOT(I)
RES(I)
DEPTH (1)
BENT(I)
IREOXK
REOXK
HEADER
NK
NFC(l)
NLC(I)
CDIFFK(J)
HEADER
NR
COLUMNS
1-10
11-20
21-30
31-40
41-50
51-60
1-5
1-10
1-20
1-5
1-10
11-20
21-30
1-80
1-5
FORMAT
no
no
F10.0
F10.0
F10.0
F10.0
15
F10.0
20A4
15
no
no
F10.0
20A4
15
COMMENTS
Read NO of these cards.
*ftead only if IREOXK = 4
Indicates Diffusion Constants
are to be read.
Read NK of these cards.
Indicates Nutrient Uptake
and Regeneration rates are to
be read.
-------
- 121 -
CARD
35
36
37
38
39
40
41
VARIABLE
NF2!(!)
NL2(I)
AMUPP(I)
PHUPP(l)
REGENN(I)
REGEPP(I)
REBODD(I)
HEADER
ND
NF3(I)
NL3(I)
DECAYK(I,1)
DECAYK(I,2)
•
•
•
HEADER
NWASTC
NWASTV
NBANK
HEADER
COLUMNS
1-10
11-20
21-30
31-40
41-50
51-60
61-70
1-80
1-5
1-10
11-20
21-30
31-40
•
•
•
1-80
1-5
6-10
11-15
1-80
FORMAT
no
110
F10.0
F10.0
F10.0
F10.1
F10.0
20A4
15
no
no
F10.0
F10.0
•
•
*
20A4
15
15
15
20A4
COMMENTS
Read NR of these cards.
Indicates Decay Rates are to
be read.
Read ND of these cards.
Read NUMCON values of
DECAYK on each card.
Indicates Wastewater Inputs
are to be read.
Indicates Constant Inputs are
to be read.
-------
- 122 -
CARD
42
43
44a
44b
45
46
VARIABLE
JRCW(I)
QCW(I)
CWC(I.l)
CWC(I,2)
HEADEF!
JRVW(I)
NINC(I)
INCDUR(I.N)
FLO(I,N)
CCN(1,I,N)
CCN(2,I,N)
•
HF.ADER
SLINE(l)
SLINE(2)
•
COLUMNS
1-10
11-20
21-30
31-40
1-80
1-10
11-20
1-10
11-20
21-30
31-40
•
1-80
1-5
6-10
•
FORMAT
no
F10.0
F10.0
F10.0
20A4
no
no
no
F10.0
F10.0
F10.0
•
20A4
F5.0
•
COMMENTS
Read NWASTC of these cards.
Indicates Variable Inputs
are to be read.
Read NWASTV of the 44a cards.
Every 44a card is followed by
NINC(I) of the 44b cards.
Indicates Variable Bank
Inputs are to be read.
Repeat card 46 until NJ valves
of SLINE have been read.
-------
- 123 -
CARD
47a
47b
48
49
50
51
VARIABLE
JRBLl(I)
JRBL2(I)
ICYCl(I)
ICYC2(I)
BFLOW
BCON(I.l)
BCON(I,2)
•
HEADER
NINC(I)
INCDUR(I5N)
FLO(I.N)
CON(1,I,N)
CON(2,I,N)
*
HEADER
COLUMNS
1-5
6-10
11-15
16-20
1-10
11-20
21-30
*
1-80
1-5
1-10
11-20
21-30
31-40
1-80
FORMAT
15
15
15
15
F10.0
F10.0
F10.0
*
20A4
15
110
F10.0
F10.0
F10.0
20A4
COMMENTS
Read NBANK of the 47a
cards. Every 47a card is
followed by one 47b card.
Indicates Upper Boundary
Conditions to be read.
I = NWASTV + 1.
Read NINC(I) of these cards,
where I = NWASTV + 1.
Indicates Initial Conditions
are to be read.
-------
- 124 -
CARD
52
53
54
55a
55b
56
VARIABLE
JINT1
JINT2
CINT(l)
CINT(2)
•
HEADER
SEACON(l)
SEACON (2)
CIN(K,1)
CIN(K.l)
CIN(K,3)
•
HEADER
COLUMNS
1-10
11-20
21-30
31-40
•
1-80
1-5
6-10
*
1-5
1-5
6-10
11-15
•
1-80
FORMAT
*
20A4
15
15
F5.0
F5.0
F5.0
F5.0
*
20A4
COMMENTS
Read until JINT2 equals NJ.
Read NUMCON values for CINT
on each card.
Indicates Seaward Boundary
Conditions are to be read.
Read NUMCON values for SEACON.
Read this card if SEACON (K) = 1
Read this card if SEACON (K) = 2
Read NSPEC values of CIN on
each card.
Read if observed data is to be
read during the current cycle.
-------
- 125 -
CARD
57
VARIABLE
OBDATAd.l.K)
OBDATA(2,1,K)
OBDATA(3,1,K)
OBDATA(1,2,K)
OBDATA(2,2,K)
*
•
OBDATACZ.e.K)
DBDATA(3,6,K)
DBDATA(K)
COLUMNS
1-4
5-8
9-12
13-16
17-20
•
•
•
65-68
69-72
73-80
FORMAT
F4.0
F4.0
F4.0
F4.0
F4.0
•
•
F4.0
F4.0
F8.0
COMMENTS
Read if observed data is to be
read during the current cycle.
Read NDATA of these cards
-
-------
- 126 -
3.13 DYNQUAL VARIABLE DEFINITIONS
The following pages contain definitions of the major
variables in DYNQUAL. Variables are listed in alphabetical
order. Variables in italics are read from the input data
deck.
-------
VARIABLE
ADMASS
ALPHA (I)
AMUP(J)
AMUPP(I)
AREA(N)
ASUR(J)
AVGD
AVOL(J)
B(N)
BACKC(K)
BCON(I3K)
BENT(I)
BENTH(J)
BENTHM
BFLOW
SUBROUTINE
MIXER
MAIN
MAIN
MAIN
MAIN
MIXER
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
DEFINITION
Mass of constituent transferred by advection between the junctions
at each end of a channel .
Alphanumeric identifier, serves as heading for output.
Ammonia uptake rate by algae in junction J.
Uniform ammonia uptake rate by algae for junction group I.
(I = l.NR)
Cross sectional area of channel N. Must correspond to heads speci-
fied at ends of channel.
Surface area of junction J.
Average depth of junction.
Average volume of junction J.
Width of channel N.
Background concentration of constituent K.
Concentration of constituent K in bank load I.
Uniform benthic demand rate of junction group I. (I = 1 ,NO)
Benthic demand rate of junction J.
Mass of oxygen in a junction depleted by benthic demand during
a quality time step.
Bank flow.
TYPE
UNITS
Ibs
ft2
ft2
ft
ft3
ft
cfs
-------
VARIABLE
C(J,K)
CA
CARCHL
CAVGl(J.K)
CAVG2(J,K)
CB
CDIFFK(I)
CELCAR
CHLNIT
CHLPHO
CIN(K,I)
CINT(K)
CLEN(N)
SUBROUTINE
MAIN
MIXER
SUMARY
SwTABL
MIXER
MAIN
SUMARY
SUMARY
MIXER
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MIXER
DEFINITION
Concentration of constituent K in junction J.
Concentration in junction NJUNC(NL.K).
l./CHLCAR. Ratio of carbon to chlorophyll in algae.
Average concentration of constituent K in junction J for a
Type 1 summary.
Average concentration of constituent K in junction J for a
Type 2 summary.
Concentration in junction NJUNC(NH,K).
Diffusion constant for group I, used for computing channel
diffusion coefficients. (I = 1,NK).
Ratio of chlorophyll to carbon, in algae.
Ratio of chlorophyll to nitrogen in algae.
Ratio of chlorophyll to phosphorus in algae.
Seaward boundary concentration of constituent K for time step I
during a tidal cycle. (I = l.NSPEC).
Initial concentration of constituent K. (K = l.NUMCON)
Length of channel N.
TYPE
UNITS
mg/1
mg/1
mg/yg
mg/1
mg/1
mg/1
vg/mg
yg/mg
yg/mg
ft
-------
VARIABLE
CLIMIT(K)
CMASS(J.K)
CMAXl(J.K)
CMAX2(J,K)
CMINl(O.K)
CMIN2(J,K)
CN(N)
CNAME(N)
CON(K,I,N)
CONC
CONCW(J,K)
CSAT
SUBROUTINE
MAIN
MAIN
MIXER
SUMARY
SUMARY
SUMARY
SUMARY
MAIN
MAIN
MAIN
MIXER
MAIN
MAIN
DEFINITION
Concentration limit for constituent K. Execution is terminated
if the predicted concentration for constituent K exceeds
CLIMIT(K).
Mass of constituent K in junction J.
Maximum concentration of constituent K in junction J for a
Type 1 summary.
Maximum concentration of constituent K in junction J for a
Type 2 summary.
Minimum concentration of constituent K in junction J for a
Type 1 summary.
Minimum concentration of constituent K in junction J for a
Type 2 summary.
Manning roughness coefficient of channel N.
Alphanumeric variable indicating the constituent name.
Concentration of constituent K, from variable waste input I
(variable discharger or upper boundary) during time increment N.
Concentration in advected water.
Concentration of constituent K entering junction J from all constant
waste inputs into junction J. Computed by dividing the total
load entering the junction by the total input flow.
Dissolved oxygen saturation concentration.
TYPE
UNITS
mg/1
Ibs
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
ro
10
-------
VARIABLE
CTIME
CWC(I,K)
CWLOAD
DECAY(J.K)
DECAYK(I,K)
DELT
DELTQ
DELTQ1
DEPTH (I)
DEPTHP(J)
DIFFC
DIFFK(N)
DIMASS
DIMASSD(J)
SUBROUTINE
MAIN
SWTABL
MAIN
MAIN
MAIN
MAIN
MAIN
MIXER
SWTABL
SUMARY
MAIN
MAIN
MAIN
MIXER
MAIN
MIXER
MIXER
MAIN
DEFINITION
Clock time of the run. Equals the time of day, taken with respect
to the time of day (STIME) that the run began.
Concentration of constituent K for constant waste input I.
Constant waste load of constituent K into junction J»
Decay rate of constituent K in junction J.
Decay rate of constituent K in group I. (I = 1 ,ND)
Time interval in the hydraulic program.
Time step for the quality program. (DELTQ = DELT * NODYN).
Quality time step (DELTQ1 = DELT * NODYN/3600. )
Uniform photic depth of junction group I. (I = 1,NO)
Photic depth of junction J.
Diffusion coefficient for a channel during a quality time step.
Equals DIFFK(N) * R(N) * Q(N)
Diffusion coefficient in channel N.
Mass of constituent transferred by diffusion between the junctions
at each end of a channel .
Amount of biodegradable material in detrital pool for junction J.
TYPE
UNITS
sec
sec
hrs
ft
ft
Ibs
GO
o
-------
VARIABLE
DMASSX
DOAVG(J)
DOLT4(J)
D04T05(J)
DOGT5(J)
DOMAX(J)
DOMIN(J)
DTD
FGQXA(NPP)
FGQXO(I,
LPP.NPP)
FGSWA(NPP)
SUBROUTINE
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
SUMARY
SUMPLT
SUMARY
SUMPLT
SWTABL
SWPLOT
DEFINITION
Amount of chlorophyll decayed into a junction's detrial pool
during a quality time step.
Average DO in junction J (beyond cycle NDOCYC).
Number of cycles (beyond cycle NDOCYC) in which the predicted DO in
junction J is less than 4 mg/1.
Number of cycles (beyond cycle NDOCYC) in which the predicted DO in
junction 0 is between 4mg/l and 5 mg/1.
Number of cycles (beyond cycle NDOCYC) in which the predicted DO in
junction J is greater than 5 mg/1.
Maximum DO for junction J (beyond cycle NDOCYC).
Minimum DO for junction J (beyond cycle NDOCYC).
Quality time step. (Equals DELTQ1/24.)
Array created to store the abscissa (x-axis) values of the points to
be plotted.
Array created to store the ordinate (y-axis) values of the points to
be plotted.
1=1 corresponds to the maximum concentration
1=2 corresponds to the average concentration
1=3 corresponds to the minimum concentration
LPP = 1 corresponds to constituent 1
LPP = 2 corresponds to constituent 2
LPP = 3 corresponds to constituent 3
LPP = 4 corresponds to constituent 4
LPP = 5 corresponds to constituent 5
LPP = 6 corresponds to constituent 6
Array created to store the abscissa (x-axis) alues of the points
to be plotted.
TYPE
R
R
R
R
R
R
R
R
R
R
UNITS
mg/1
mg/1
mg/1
mg/1
mg/1
days
I
I—'
CO
-------
VARIABLE
FGSWO(NPP,
LPP)
FLO(I,N)
HEADER
HOURS
HOURS1
HOURS2
HYDCXC
ICYC
ICICI (I)
ICYC 2 CD
ICYCTF
I LARGE
INCDURd, N.
SUBROUTINE
SWTABL
SWPLOT
MAIN
MAIN
SWTABL
SUMARY
SUMARY
MAIN
MAIN
SWTABL
SUMARY
MAIN
MAIN
MAIN
MAIN
MAIN
DEFINITION
Array created to store the ordinate(y-axis) values of the points to
be plotted. NPP indicates which point. LPP indicates which
constituents i.e. LPP=1 for constituent I, LPP=? for constituent
2, etc.
Waste flow of variable discharge I (variable or upper boundary) durii
during time increment I.
Alphanumeric identifier for a subsection of the input card deck.
Clock time, i.e. the time of day, taken with respect to the time at
which the quality run began (STIME).
Number of hours between KDAYS1 and the first cycle (IP) of the
summary table.
Number of hours between KDAYS2 and the last cycle (LP) of the summary
summary table.
Hydraulic cycle number at which the quality run is to start.
Cycle number (iteration) during execution of the quality program.
Starting cycle for the I bank load input.
Ending cycle for the I bank load input.
Cycle number from the hydraulic (transient flow) program which is
stored on unit 4 (hydraulic extract tape).
Flag used in determining which of the channels entering a junction
has the highest flow.
Duration of the N time increment for variable waste discharge I.
(N=ININC(I)).
TYPE
R
g R
R
R
R
I
I
I
I
I
I
UNITS
cfs
co
ro
-------
VARIABLE
IP
IPLT1 (N)
IPLT2(N)
IPRT1 (N)
IPRT2CN)
IREOXK
I TAB
JINT1
JINT2
JPRT(I,J)
JRBL 1 (I)
SUBROUTINE
SUMARY
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
SWATBL
MAIN
MAIN
SWTABL
MAIN
DEFINITION
First cycle of the summary table.
Type 1 Summary plotting control.
TPIT1/N\ _ 0 Nth Type 1 Summary Table is not plotted.
IM.HVH; l Nth Type l Summary Table is plotted>
Type 2 Summary plotting control.
TPiTPfN'i - ° tne Nth TyPe 2 summary table is not plotted.
irL1^' 1 the N™ Type 2 summary table is plotted.
Initial print cycle for the Nth Type 1 Summary table.
Initial print cycle for the Nth Type 2 Summary table.
Control option for choosing method of determining reoxygenation rate.
1 O'Connor-Dobbins equation used to compute
reoxygenation rate.
IREOXK = 2 Cnurcnl11 equation used to compute reoxygenation rate.
3 USGS equation used to compute reoxygenation rate.
4 Reoxygenation rate is constant and equal to REOXK.
Counter to determine which portion of a slack water table is to be
printed.
The first junction in an initial condition group.
The last junction in an initial condition group.
Junction number of the J junction in the Ith slack water group
(J = 1,NOPRT(I)).
First junction receiving bank load I.
TYPE
I
I
I
I
I
I
I
I
I
I
I
UNITS
-------
VARIABLE
JEBLS(I)
JRCW(I)
JEW (I)
JUNCTP(N)
KCYC(I)
KDAYS
KDAYS1
KDAYS2
KDCOP
KINC(I)
SUBROUTINE
MAIN
MAIN
MAIN
MAIN
MAIN'
SWTABL
SUMARY
SUMARY
MAIN
MAIN
DEFINITION
Last junction receiving bank load I.
Junction receiving the I constant waste input.
Junction receiving the I variable waste input.
Junction specified for the N time plot. Time plots can be
specified for any junction.
Counter used to determine when the end of a variable waste time
increment is reached.
Number of full days which have elapsed since the beginning (STIME)
of the quality run.
Number of full days from beginning of quality run to the first cycle
(IP) of the summary table.
Number of full days from beginning of quality run to the last cycle
(LP) of the summary table.
Control option. Determines whether or not depletion corrections
are printed.
KDCOP = ° dePlet10n corrections not printed.
1 depletion corrections printed.
Counter used to determine which variable waste increment is being
used.
TYPE
I
I
I
I
I
I
I
I
I
UNITS
CO
-------
VARIABLE
KPLOP
KPLOT(N)
KREAC
KSL(N)
LP
LPRT1 (N)
LPRT2(N)
MAXCYC(J)
SUBROUTINE
MAIN
MAIN
SWTABL
MAIN
MAIN
SWTABL
SUMARY
MAIN
MAIN
MAIN
DEFINITION
Control option determining plotting background grids.
0 no background grid produced.
KPLOP - ^ l°w density background grid.
2 medium density background grid.
3 high density background grid.
Control parameter for plots of the N slack water table.
1 no plots will be printed.
KPlOTfN} - 2 Pl°ts W1"11 be printed.
^ ' 3 prepone overlay for constituent 6
4 overlay for consituent 6 performed.
Control option for consitutent linkages.
1 only nitrogen uptake be algae is considered (i.e.,
constituent 3 is not simulated).
2 only phosphorus uptake by algae is considered (i.e.,
KREAC = constituents 1 and 2 are not simulated).
3 both nitrogen and phosphorus uptake by algae are
considered.
4 algae (constituent 4) is not simulated.
Control option defining the N slack water table.
0 snapshot table is desired..
KSL(N) =1 high water slack table desired.
3 low water slack table desired.
Last cycle of the summary table.
Last print cycle for the N Type 1 Summary table.
Last print cycle for the N Type 2 Summary table.
Cycle at which the maximum DO for junction J occurs (beyond cycle
NDOCYC).
TYPE
I
I
I
I
I
I
I
I
UNITS
-
-------
VARIABLE
MCHLON
MCHLOP
MINCYC(J)
MIX
I'M*. A.
MTABL
NBANK
NC
ffCHANCJj K)
NCITP(N)
SUBROUTINE
MAIN
MAIN
MAIM
MAIM
i inj, 11
MIXFR
1 IX Aur\
MAIM
SWTABL
MAIN
MAIN
MIXER
MAIN
MAIN
DEFINITION
Maximum amount of constituent 4 (chlorophyll) which can be produced
from the total inorganic nitrogen (XMASSU + YMASSU) taken up
during a quality time step.
Maximum amount of constituent 4 (chlorophyll) which can be produced
from the phosphorus taken up (ZMASSU) during a quality time
step.
Cycle at which the minimum D.O. for junction J occurs (beyond cycle
NDOCYC).
Variable which defines the method used to compute the concentration
in advected water.
1 use upstream concentration.
2 use 1/2 point concentration.
MIX = 3 use 1/3 point concentration.
4 use 1/4 point concentration.
5 use 2-way proportional concentration.
Counter to determine which slack water table is to be printed.
Number of bank load inputs.
Number of channels in network.
Channel number of the K channel entering junction J (K = 1.5).
Interval between data points on the N time plot. (e.g. if NCITP(2)
= 25, then the 2 time plot will plot a data point every 25
cycles).
TYPE
R
R
I
I
I
I
I
I
I
UNITS
I
I—1
co
i
-------
VARIABLE
NCONSW(K)
NCONTP(N3K
ND
NDA
NDATA
NDOCYC
NECTP(N)
NFC (I)
NF1 (I)
NF2(I)
NFS (I)
NFPC(M)
SUBROUTINE
MAIN
SWTABL
) MAIN
TPLOT
1 1 L-w 1
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
SWTABL
DEFINITION
Control parameter for slack water plots.
NCONSW(K) = ® constituent K is not plotted on slack water plots.
1 ' 1 constituent K is plotted on slack water plots.
Control parameter for time plots.
NCONTP(N K) = ^ constituent K f°r time plot N is not plotted.
^ ' ' 1 constituent K for time plot N is plotted.
Number of groups of junctions having uniform constituent decay
rate (DECAYK(K)).
Counter to determine which group of observed data is being read.
Number of observed data points contained in each group of observed
data, i.e. the number of locations for which there is observed
data.
Cycle at which summary of constituent 6 (D.O.) begins.
Ending cycle for the N time plot.
Number of the first channel of the I group of channels with a
uniform diffusion constant (I = 1,NK).
Number of the first junction of the I group of junctions with
uniform D.O. (constituent 6) related coefficients (I = 1,NO).
Number of the first junction of the I group of junctions with
uniform Uptake and Reg
Number of the first junction of the I group of junctions with
uniform Decay Rates (I = 1,ND).
Number of the first printout cycle for the N slack water table.
TYPE
I
I
I
I
I
I
I
I
I
I
I
UNITS
-------
VARIABLE
NINC(I)
NITCHL
NJ
NJUNC(N,1)
NJUNC(N3 S)
NK
titl (I)
NL2(I)
NL3(I)
NLC(I)
NLPC(M)
SUBROUTINE
MAIN
MAIM
MAIN
SUMARY
MAIN
MIXER
MAIN
MIXER
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
SWTABL
DEFINITION
Number of time intervals describing the varying flows and/or cone
concentrations for a time varying waste input (variable discharge
or upper boundary),,
l./CHLNIT. Ratio of nitrogen to chlorophyll in algae.
Number of junctions in model network.
Lower of the two junction numbers at the ends of channel N.
Higher of the two junction numbers at the ends of channel N.
Number of groups of channels having uniform diffusion constants
(CDIFFK(I)).
Number of the last junctions of the I group of junctions with
uniform D.O. (constituent 6) related coefficients.
Number of the last junction of the I group of junctions with
uniform uptake and regeneration rates (I = 1,NR).
Number of the last junction of the I group of junctions with
uniform decay rates (I = 1,ND).
Number of the last channel of the I group of channels with a
niform diffusion constant (I = 1,NK).
Last cycle of the Mth slack water table. Equals NFPC(M) + NSWCYC.
TYPE
I
R
I
I
I
I
I
I
I
I
I
UNITS
CO
oo
-------
VARIABLE
NNRL(J)
NO
NOBCYC(I)
NOBDAT
NODYN
NOPRT(I)
NPLT1
NPLT2
NPP
NPRL(J)
NQCYC
NX
NS1
NS2
SUBROUTINE
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
SUMARY
SWTABL
MAIN
MAIN
MAIN
MAIN
MAIN
DEFINITION
Number of cycles in which nitrogen limits the growth of algae in
junction J.
Number of groups of junctions having uniform D.O. related coefficient
coefficients (PHOT, RES, DEPTH, BENT).
Cycle at which the Ith group of observed data is read (I = 1, NOBDAT).
Number of groups of observed data.
Number of hydraulic time steps per quality time step.
Number of junctions in the I slack water group.
Number of plots of Type 1 Summary tables.
Number of plots of Type 2 Summary tables.
Number of points plotted.
Number of cycles where phosphorus limits the growth of algae in
junction J.
Number of quality time steps to be executed.
Number of groups of junctions having uniform nutrient uptake and
regneration rates. (AMUPP, PHUPP, REGENN, REGEPP, REBODD).
Counter to determine which Type 1 Summary table is being outputted.
Counter to determine which Type 2 Summary table is being outputted.
TYPE
I
I
I
I
I
I
I
I
I
I
I
I
I
I
UNITS
-------
VARIABLE
NSCTPCN)
NSPEC
NSTAMT
XTOTI^T?
i.ffk/-l. \s£
NSUM1
NSUM2
NSWCYC
NSWP
NSWTAB
NTAG
NTEMP
NTP
NUM
SUBROUTINE
MAIN
MAIN
MAIN
MATM
i in A n
MAIN
MAIN
MAIN
SWTABL
MAIN
SWTABL
MAIN
MAIN
MAIN
MAIN
SUMARY
DEFINITION
Starting cycle for the N- time plot.
Number of quality cycles per tidal period.
Starting cycle on the hydraulic extract tape (Unit 4)=
Ending cycle on the hydraulic extract tape (Unit 4).
Number of Type 1 Summary tables to be printed.
Number of Type 2 Summary tables to be printed.
Number of quality cycles required for slack water to reach the
upper boundary from the lower boundary.
Number of slack water plots.
Number of slack water tables.
Counter which is reset to zero at the completion of each full tidal
cycle. NTAG varies between zero and NSPEC, where NSPEC is the
number of quality cycles per tidal cycle.
Number which marks the end of the hydraulic record and signals a
rewind command.
Number of time plots.
Variable which determines if a Type 1 or a Type 2 summary is desired.
NUM = 1 indicates a Type 2 summary. NUM = 2 indicates a Type 2
summary.
TYPE
I
I
I
T
1
I
I
I
r
i
r
i
i
i
UNITS
o
I
-------
VARIABLE
NUMCON
NUMPLT
NUTCYC
NWASTC
NWASTV
OAMUP(J)
OBT3ATA(I,
J,K)
ODECAY(J,
K)
OPHUP(J)
QREBOD(J)
OREGENT(J)
OREGEP(J)
PERCD
SUBROUTINE
MAIN
MIXER
SUMARY
SWTABL
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
DEFINITION
Number of constituents considered.
Total number of plots. (NUMPLT = NSWP+NTP+NPLT1+NPLT2).
Cycle at which the summary of nutrient limitations begins.
Number of constant waste dischargers.
Number of variable waste dischargers.
l-AMUP(J).
I observed data point for the J constituent at the K location.
J = 1, NUMCON, K = l.NDATA, and I = 1.3). (There are three data
points for constituent J at location K. These 3 points can
correspond to either high, average and low; or day 1, day 2,
and day 3, respectively).
Coefficient used to determine mass of constituent K which is lost
in junction J.
l-PHUP(J).
l-REBOD(J)
l-REGEN(J).
l-REGEP(J).
For each quality time step, the percent of the algae decayed
(DMASSX) which is biodegradable.
TYPE
I
I
I
I
I
R
R
R
R
R
R
UNITS
-------
VARIABLE
PHOCHL
PHOT (I)
PHOTO(J)
PHOTOM
PHUP(J)
PHUPP(J)
PIT
Q(N)
QCW.(I)
QIN(I)
QINWQ(J)
QINWQ(J)
QNET(N)
R(N)
SUBROUTINE
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
SUMARY
MAIN
MIXER
MAIN
MAIN
MAIN
MAIN
MAIN
MIXER
DEFINITION
l./CHLPHO. Ratio of phosphorus to chlorophyll in algae.
Uniform algal phosynthesis rate in junction group I.
Photosynthesis rate of algae in junction J
Amount of oxygen added to a junction by constituent 4 (algae)
through photosynthesis during one time step.
Phosphorus uptake rate by algae in junction J.
Uniform phosphorus uptake rate in junction group I. (I =1,NR).
Variable to determine if a summary table plot is desired. If
PIT f 0, a plot is obtained.
Flow in channel N.
Constant waste flow for the I constant waste discharger.
Inflow or withdrawl specified at junction J by the hydraulic
program. Used for output of hydraulic summary table.
Flow rate of constant waste discharge or diversion at junction J.
Discharges must be specified as negative, diversions must be
positive.
New flow in channel N over full tidal cycle.
Hydraulic radius of channel N. Taken as channel depth.
TYPE
R
R
R
R
R
R
R
R
R
R
R
R
UNITS
-------
VARIABLE
REBOD(J)
REBODD(I)
REGEN(J)
REGENN(I)
REGEP(J)
REGEPP(I)
REMASS
REOXK
RES (I)
RESP(J)
RESPM
RMASSC
RMASSN
SUBROUTINE
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
DEFINITION
Rate of BOD regeneration from drtrial pool in junction J.
Uniform BOD regeneration rate for junction group I. (I = 1,NR)
Rate of nitrogen regneration from detrital pool in junction J.
Uniform nitrogen regeneration rate for junction group I. (I = 1,NR)
Rate of phosphorus regeneration from detrital pool in junction J.
Uniform phosphorus regeneration rate for junction group I.
(I = l.NR).
Mass of oxygen (constituent 6) added to a junction through
reacration during a quality time step.
Constant reoxygenation coefficient.
Uniform algal respiration rate for junction group I. (I =1,NO).
Respiration rate of algae in junction J.
Mass of oxygen (constituent 6) depleted in a junction by
constituent 4 (algae) through respiration during a quality time
step.
Mass of constituent 5 (CBOD) regenerated through the detrital pool
in a junction during a quality time step.
Amount of constituent 1 (nitrogen) regenerated through the detrital
pool in a junction during a quality time step.
TYPE
R
R
R
R
R
R
R
R
R
R
R
R
R
UNITS
-------
VARIABLE
RMASSP
RMNODE(J)
RMDATA (K)
SAREA
SADUM
BEACON (K)
SLINE(J)
STIME
TBFLOW(I3
J)
TEMP
THETA(K)
SUBROUTINE
MAIN
MAIN
SUMARY
SWTABL
MAIN
MAIN
MAIN
MAIN
^
MAIN
MAIN
SWTABL
MAIN
MAIN
MAIN
DEFINITION
Amount of constituent 3 (phosphorus) regenerated through the
detrital pool in a junction during a quality time step.
Distance of junction J from the upper boundary.
Distance of the K data point from the upper boundary.
Surface area of a junction.
Sum of the surface area of adjacent junction. (Used for computing
the average depth of a channel . )
Control parameter describing the seaward boundary conditions for
each constituent.
1 concentration of constituent K at the seaward
SEACONflO = boundary is constant over the tidal cycle.
* ' 2 concentration of constituent K at the seaward
boundary is variable over the tidal cycle.
Length of the shore line for junction J.
Starting time for the quality program.
Total bank flow into junction J from the I bank load.
Temperature.
Temperature correction factor for decay rate (DECAY (K)) of
constituent K.
TYPE
R
R
R
R
I
R
R
R
R
R
UNITS
mi 1 es
mi 1 es
n2
mi 1 es
cfs
°C
-------
VARIABLE
TRISE
TSET
V(N)
VBLQAD(K)
VOL(J)
VOLFLW
VOLQIN(J)
VOLSUM
VWLOAD(K)
i »••-.*»
XLOAD(I.K)
XMASSN
XMASSU
XMBOD
SUBROUTINE
MAIN
MAIN
MAIN
MIXER
MAIN
MAIN
MIXER
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
DEFINITION
Time of sunrise, with respect to CTIME.
Time of sunset, with respect to CTIME.
Velocity in channel N.
Loading constituent K from a variable bank input.
Volume of junction J.
Volume of water flowing in a channel, during a quality time step.
Volume of diversion or waste water discharge for junction J during
each time step. (VOLQIN(J) = QIN(J)*DELTQ).
Sum of the volumes of adjacent junctions. (Used for computing
average depth of a channel).
Variable waste load of constituent K. Computed for each junction
receiving a variable waste input and for each time increment.
Loading of constituent K for constant waste input I.
Amount of constituent K for constant waste input I.
Maximum amount of constituent 1 (NFL) which can be taken up by algae
during a quality time step.
Amount of constituent 5 (CBOD) decayed (oxidized) during a quality
time step. XMBOD is also equal to the amount of oxygen
required for that reaction to occur, e.g., for 1 pound of
constituent 5 to decay, 1 pound of constituent 6 must be
TYPE
R
R
R
R
R
R
R
R
R
R
R
R
R
UNITS
hours
hours
ft3
ft3
n3
-------
VARIABLE
XMNH3
XVOL
V(J)
YMASSU
YMAXC(K)
YMINC(K)
YNEW(J)
ZMASSD
ZMASSU
Unit 4
Unit 5
Unit 6
SUBROUTINE
MAIN
MAIN
MAIN
SWTABL
MAIN
MAIN
MAIN
MAIN
SWTABL
MAIN
MAIN
MAIN
MAIN
MAIN
DEFINITION
Amount of oxygen required for XMASSN pounds of constituent 1 to be
transformed to constituent 2 (i.e. oxygen required for
nitrification.
Volume of the photic zone within a junction.
Head at junction J.
Maximum aount of constituent 2 (N02 + N03) which can be utilized
by algae during a quality time step.
Maximum concentration of constituent K that can be plotted.
Minimum concentration of constituent K that can be plotted.
Head a junction J for the next time step.
Amount of constituent 3 (TP04) settled out of a junction during a
quality time step.
Maximum amount of constituent 3 (TP04) which can be taken up by
algae during a quality time step.
Hydraulic extract tape.
Card reader.
Printer.
TYPE
R
R
R
R
R
R
R
R
R
UNITS
ft
-p.
en
-------
VARIABLE
Unit 11
Unit 22
SUBROUTINE
MAIN
TPLOT
SUMPLT
SWPLOT
TPLOT
PPLOT
DEFINITION
Stores data for time plots until the end of execution, then
releases data for printing.
Stores slack water plots, summary plots, and time plots until
execution terminates, then releases plots for printing.
TYPE
UNITS
-------
- 148 -
3.14 COMPUTER REQUIREMENTS
3.14.1 IBM JOB CONTROL LANGAUGE (JCL)
The JCL used to execute program DYNQUAL is as follows
//JOB CARD
//STEP1 EXEC PGM-DYNQUAL
//STEPLIB DD DISP=SHR,VOL=(PRIVATE, RETAIN, SER=REGNA3),
// UN I T=3330- 1 , DSN=CNXXXX . XXX . L I BRARY
//DD DSN^SYS2.FTG1LINK,DISP=SHR
//GO.FT03F001 DD DCB=(RECFM=VBS ,LRECL=50MLKS IZE=50A0) ,
// UNIT=SYSDA,SPACE=(I'RK, (^0,A0) ) ,DISP=(NEW, DELETE, DELETE) ,
// DSN=S£AB
DD DCB=(RECFM=VS,LRECL=50A,BLKS IZE=50A0) ,
// DISP=(OLD, KEEP, KEEP), VOL=SER=USER99,UNIT=3330-1, from
II DSN=:N.F.PAXYZ.ACCT. DATA. SET. NAME
or
//GO.FTjj^F0fl1 DD DCB=(RECFM=VS,LRECL=501»,BLKSIZE=501»0),
// DISP=(OI.D, KEEP, KEEP), VOL=SER=TAPE##,UNIT=2400, fpom
II DSN=LEOTAPE,LABEL=(##,SL,EXPDT=98000) tape
//GO.FT11F001 DD DCB=(RECFM=VBS ,LRECL=50MLKS IZE
// UNIT=3330-1 ,VOL=SER=WORK99,SPACE=(TRK, (10,5) ,RLSE) ,
// DISP^(NEW, DELETE, DELETE) ,DSN=CNO.SO.M.LJC.TIMEP
//GO.FT22F001 DD SYSOUT=A,DCB=RECFM=FBA
//GO.FT06F001 DD SYSOUT=A
//GO.FT05F0fH DD *
data deck goes here
/*EOF
-------
- 149 -
3.14.2 UNIVAC EXECUTIVE CONTROL LANGAUGE (ECL)
There are two steps involved in the execution of DYNQUAL on
a UNIVAC system. The ECL. for each of these steps is as follows:
STEP 1 - Compile and Map DYNQUAL '
©RUN CARD
©PASSWORD
@SYM
@ASG,A USERID*PGMFILE.
@ASG,A USERID*ABS.
@USE ASM$PF. ,FTN*RUB
@ASM,l F2FRT.F2FRT
F$FRT 30
PR 6
PU 1
CR 5
APR 22
END
@FTN,IS
@ADD USER ID*PGMFILE.DYNQUAL
@MAP,I USER ID*ABS.DYNQUAL
DYNQUAL source deck
@FIN goes here
STEP 2 - Execute DYNQUAL
@RUN CARD
©PASSWORD
@SYM
@ASG,A USERID*ABS.
©COPY,A USERID*ABS.DYNQUAL
@FREE USERID*ABS.
@ASG,A USERID*1500CFS
@USE ^.,USERID*1500CFS
@ASG,T USERID*TEMPFILE.11
@XQT DYNQUAL
data deck goes here
@FIN
-------
- 150 -
3.14.3 EXECUTION TIMES
The time required to execute DYNQUAL is dependent on the
computer used* the network size, the computational time step,
the length of the run, and the number of constituents modeled.
Typical execution times (CPU) for DYNQUAL on an IBM 370/168
are given below in Table 3.1. All of the runs in Table 3.1
were on a network with 133 junctions and 139 channels and used
a computational time step of 1/2 hour. DYNQUAL requires
approximately 275K of storage for execution.
Number of
Constituents
2
2
2
3
3
6
6
6
6
Length
of Run
(days)
2
11
105
11
42
1
11
21
42
CPU
(sec)
6.0
17.5
166.8
24.5
78.0
8.1
42.0
93.2
180.0
TABLE 3.1 DYNQUAL EXECUTION TIMES
-------
- 151 -
CHAPTER 4
SAMPLE INPUTS AND OUTPUTS
4.1 THE MODEL NETWORK
The Potomac Estuary model network is composed of 133 junctions
and 139 channels. Figures 4.1 through 4.6 depict the Potomac
estuary and the configuration of channels and junctions used by
the Dynamic Potomac Estuary Model.
-------
- 152 -
Maryland
Virginia
FIGURE 4.1 THE POTOMAC ESTUARY
-------
Ul
w
I
FIGURE 4.2 POTOMAC ESTUARY MODEL NETWORK - SEGMENT 1
-------
- 154 -
Piseltl»»
Creek
FIGURE 4.3 POTOMAC ESTUARY MODEL NETWORK - SEGMENT 2
-------
- 155 -
GmiUo Coti
, FIGURE 4.4 POTOMAC ESTUARY MODEL NETWORK - SEGMENT 3
-------
- 156 -
FIGURE 4.5 POTOMAC ESTUARY MODEL NETWORK - SEGMENT 4
-------
- 157 -
P'»«J Poiit
'FIGURE 4.6 POTOMAC ESTUARY MODEL NETWORK - SEGMENT 5
-------
- 158 -
4.2 SAMPLE REGAN INPUT/OUTPUT
— data deck listing —
THIS HUH FINOS THE COEFFICIENTS F0° A "rAN TIOCL CONDITION AT PINE* POUT
25
.5 -.77
2.5 .*?
4.5 1.03
6.5 .03
8.5 .39
10.5 -.17
12.5 -.37
1.
3.
5.
7.
9.
11.
10
-.27
.57
1.03
.83
.27
-.27
00001
1.s
3.5
5.5
7.S
9.5
11.5
12.5
-.09
.75
LOT
.67
.H9
-.29
2.
&.
*.
3.
10.
12.
0.
.09
.93
.9-5
.57
-.01
-.37
-------
THIS r.U»' FJVQS THE COEFFICIENTS FOR A H^AN TIDAL CONDITION AT PINEY POINT
PROTECTION AGENCY
LEAST SOUAPES CUHVF FITTING
KHM3ER OF PAT* POINTS
OF COEFFTCI^MTS
(NCOTFF)
TT1AL PERIOD (HOURS)
CPERTOD)
1Z.C0
<2»PI/PERIOO>
(V)
OF
ITTFATIOMS ALLOUEO
1"
MAXIMUM RESIDUAL
ALLOUEO
0.0000
O
K
f
CO
<£>
TI"E
S
0.0
PHASE AKGLF SHIFT
(PSHIFT)
O.U
-------
»XN*«*X* »»*» xxx*xx»«xxxxx*xxx« SUMMA°Y 0F INPUT 04TA »»<•»« »»»•*»»« MHMK xx«*«»x« KXJ*« •
08STPVATION NO. TIME
1
2
3
4
5
6
7
8
V
10
11
12
13
14
15
16
17
18
19
20
21
2?
23
24
25
0.50
1.00 '
1.50
2.00
2*50
TeOO
2.50
4.00
f .50
5.00
5.50
6.00
6.50
7.00
7.50
P. 00
9.50
9.00
9.50
in. oo
10.50
11. UO
11.50
I'.UO
12.50
-0.370
-0.270
-0.090
0.090
0.330
Oe*70
0.753
0.930
1.030
1.030
1.030
0.950
0.930
0.830
0.670
0.570
0.390
0.270
0.090
-n.010
-n.170
-0.270
-0.2VO
-0.37P
-0.370
O
I
-------
J
1
2
?
t
c
f,
•7
SJ"?MA XY(J>
e.?*W9i
2.75709?
-0.?67Z49
-8.435359
-0.6081 71
0=19*27?
K = 1 2
75.000000 -0.000011
-O.U00011 12.5000U3
-O.U00015 -0.000006
-0.000029 -0.000009
-0.00002" -O.OOOOOb
-3. 000034 0.000003
-0.000061 0.000015
,
-0.000015
-0.000006
12.500008
-0.000007
-0.000017
-O.OOU009
0.000024
& 1 bnfl A A \. R » J 1
A 5 6
-U.OOU029 -O.OOOOi:P -0.000034
-3.000009 -P.OOOUOfl O.OOQ003
-O.OOU007 -O.OOOJ17 -O.OOOOU9
12.500005 -0.000037 -0.000043
-0.000037 12.4™9975 -O.U00036
-0.000043 -O.OOOL36 12.499970
-O.OOU010 -0.000059 -0.000045
T
-0.000061
O.OOU015
O.OOU024
-O.OOU010
-0.000059
-0.000045
12.499974
h
c
* XXXKXK XKKX XXXXKVXKKK XKXXKKXXX *"
SOLUTION
**XK»XX»X»»KXHX»K»XKX*»*XXKKKK
DUMBER OF ITERATIONS
2
THE CURVE WHICH PEST
Y(T) = 0.320099 + 0.220567
» -0.678829
MAXIMUM RESIDUAL
.000002
FITS THE OBSFRVE!) DATA IS GIVEN BY
SINCWT> + -0.
COSCWT) + -U.
066968 SII»t2VT> + -0.121389 SIN(3UT)
04»655 COS12WT) » 0.015540 COSC3WT)
-------
Kxx«xx»x(xxxKK»x«x»xxxNxxxxx»x
08SFPVATION TI*F
SUMMADT Oc OUTPUT DATA *»*«*«*»*x««x*««»x«x*«*xx»»UKx
0«SFRVEl PRFTICTFD RESI"UAL
1
2
3
4
3
c
t
;•.
">
10
11
12
13
U
15
If
17
1R
19
?0
21
2?
?3
24
2 Si
0.50
1.00
1.50
2.00
2.50
3.0Q
3.50
4.00
4.50
5«nj
5.50
6.00
6.50
7.00
7.50
8.00
3.50
9.00
9.50
10.03
10.50
11.00
11. "0
12.00
12.50
-O.??0
-0.090
0.090
0.^30
0.570
0.750
0.030
1.030
1.03(J
1.030
0.950
0.°3U
0.»3U
0.670
0.570
0.^90
O.?70
0.090
-0.010
-0.170
-0.'7U
-O.?90
-U.'7U
-0.'70
-0.3509
-0.2616
-0.1101
0.09A5
0,3300
0.5655
0.7701
0.9216
1.0109
1.0419
1.0268
0.978?
0.90*5
0.8114
0.6960
O.L600
0.40"6
0.2514
1.1CQO
-0.03f"
-0.1514
-0.24r<5
-0.31P'
-0.36^8
-0.3819
0.0191
n.ou8A
-0.0201
. 0.0045
-P.UOOO
-0.3045
P.U201
-O.UJ«4
-n.U191
0.0119
-o.om?
0.02S'?
-O.U245
-O.U186
0.0260
-0.0100
0.01R6
-0.0186
0.0100
-0.0250
O.L1S*
0.02«5
-O.U28?
0.003?
-O.U1 1«
-------
- 163 -.
4.3 SAMPLE DYNHYD INPUT/OUTPUT
— data deck listing —
POTOMAC ESTUARY HYDRAULICS
SIMULATION OF « ME»N TIDAL
CONTROL DATA
1*3 139 2000 90. 0.
1500
114
1500
2001
40 10
9 25 34 78
1
2031
- 133 JUNCTION NETWORK
CONDITION FLOW = 11*030 CFS
42 51
54
59
1
AT CHAIN 9P10GE
JUNCTION 0*TA
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
13
19
20
21
?2
?3
24
?5
26
77
28
29
70
71
72
33
74
35
36
37
38
79
40
41
42
43
44
45
*6
47
48
49
50
51
-u. 75153 36154880.
2.0017 4332467.
1.9992 45*5773.
1.9982 4443556.
1.9945 4665737.
1.990& 8442756.
1.9815 88P7111.
1.°739 12806311.
1.9616 13219578.
1.046° 8664937.
1.9419 7109689.
1.9305 9442556.
1.919S 8Pf579l.
1.90 5940600.
1 .87 10561100.
1.85 11731203.
1.»259 19773808.
1.7958 22•>
3;
?4
25
26
27
?8
29
ro
31
*2
•«3
34
75
5*
37
78
'9
40
41
42
43
44
45
46
47
4*
4°
*Q
0
2
3
4
5'
6
7
o
9
10
11
12
13
134
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
76
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
0
0
0
0
0
0
0
0
66
0
0
77
0
136
78
79
0
0
81
0
0
0
82
0
0
0
83
84
0
0
0
0
0
85
86
89
91
92
0
0
0
93
94
0
0
0
95
96
0
0
0
0
0
0
0
0
0
0
9
0
0
0
0
0
0
0
an
0
P
0
0
0
0
!5
0
0
0
0
0
0
1
0
0
0
0
n
90
0
0
P
3
0
0
0
0
0
0
0
0
3
3
0
0
0
0
0
0
0
0
0
n
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
3
0
n
0
0
0
0
0
n
0
130
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-------
- 164 -
^2 -0.7323235286256.
53 -0.2609218945712.
5
-------
- 165 -
112
113
114
115
11i
11 7
118
11?
170
171
122
173
124
125
126
127
128
129
130
171
112
173
2.006?
2.0211
2.1090
1.6995
1.7026
1.7045
1.7066
1.5242
1.526°
1.5309
1.5337
1.5364
1.5291
1.5316
1.5354
1.2017
1.229"
1.90
1.90
1.90
1 .90
1.90
250CJOO.
2400000.
•""6711. -1
11C?0000.
6400000.
4666657.
3777770.
11C*OCOO.
7200000.
6P50000.
3770000.
2160000.
8200000.
3SHOOOO.
1700000.
12333080.
10000000.
8030800.
4"405GO.
0.0
0.0
1000.
0.0
P.C>
0.0
0.0
O.o
0.0
O.o
O.u
0.0
0.0
0.0
0.0
0.0
J.O
o.a
2970300. -479.0
66P0700.
39*0400.
0.0
0.0
11? 114
114 115
1 0
116 117
117 116
11?- 119
11P 0
TO 121
171 122
177 123
173 124
124 0
125 126
126 177
177 0
173 129
129 0
17 131
171 133
172 133
1*5 136
1*7 0
1
0
0
0
0
0
0
0
0
125
0
0
0
0
0
0
130
0
132
134
135
n
0
0
0
0
0
p
3
0
0
0
0
0
0
0
0
0
o
0
0
137 13«
0
0
0
n
n
0
0
0
0
0
0
0
0
0
0
0
3
0
0
n
0
0
0
0
CHANNEL DATA
1
2
3
/.
5
6
7
8
9
10
11
1?
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
73
31
72
73
34
35
'6
37
7b1* .
707'.
2351 .
436 S.
3749.
55?7.
3590.
5439.
40*5.
16°0.
36°6.
3010.
2270.
3600.
4180.
3355.
6177.
2640.
53*6.
3274.
52«P.
300".
5277.
5069.
501*.
4o05.
8765.
9081.
670*.
8342.
55°7.
5650.
40*5.
2'4. 4152.0
800. 26131.9
955. 33959.7
1181, 24567.9
1521. 26410.5
1945. 261«6.3
23C0. 26225.1
2912. 30441.9
2920. 35774.7
2V53. 43274.0
325P. 44847.0
3503. 44042.6
2475. 39785.5
2100. 331180.
2340. 79952.
3738. 50759.5
4671. 60286.4
5506. 60959.9
4117. 62670.0
3337. 60623.7
3052. 60130.6
3319. 76971.4
4221. "1408.6
5967. 82151.9
5355. 80322.6
43J»». 73405.8
54*9. 83224.1
6604. 101276.8
6223. 112189.0
7308. 118032.9
8873. 126069.4
756?. 134497.4
7908. 134688.9
6706. 1027T. 140505.3
8026. 13474. 172403.4
1050'. 10224. 190830.3
13464.
7824. 176749.1
18.54
32.67
35.56
23.77
17.36
13.47
11.16
10.45
12.25
14.66
13. 77
12.57
16*08
15.8
12.8
13.58
12.91
11.07
15.22
18.17
19.72
23.19
19.29
13.77
15.00
16.73
16.13
15.34
18.03
16.15
14.27
17.79
17.H3
13.68
12.80
16.67
22.59
0.020-1.90449
0.020
0.023
0.026
0.020
0.320
0.020
0.020
0.020
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.014
0.014
0.014
0.30452
0.23600
0. 32*48
0.3079.5
0.31513
0.32046
0.28387
0.23035
0.23616
0.231 '4
0.24744
0.27437
0.7
0.3
0.26816
0.23327
0.23897
0.24435
0.25840
0.26528
0.21068
0.21452
0.22040
0.23472
0.26567
0.23674
0.24705
0.23976
0.24301
0.24266
0.24380
0.25731
0.26183
0.27905
0.32559
0.39007
2
2
3
4
5
6
7
8
9
13
11
12
13
14
15
16
17
13
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
114
7
4
e
6
7
8
9
10
11
12
13
129
15
16
17
18
1°
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
-------
- 166 -
T'8
;;t»
LQ
41
1,2
t3
14
15
16
47
48
49
50
51
52
<3
54
55
*6
57
58
59
60
61
62
t 3
64
65
7<:
7V
7H
79
8 ii
8t
8<:
PS
H4
85
86
87
3d
89
90
91
"2
93
94
95
96
97
9715.
1214*.
10676.
11246.
124*0,
12310.
10o'4.
17529.
1J56H.
14256.
129*6.
12038.
9620.
6441 .
105*0.
9451 .
6611 .
106*5.
10117.
8712.
1220?.
10612.
11616.
670S.
8712.
8659.
8659.
161Q/ .
2600.
26*0.
2380.
2510.
26*0.
3035,
3430.
3300.
3035.
3430.
3565.
4830.
2100.
3450*
3405.
5550.
3700.
4320.
105*0.
6250.
10000.
7350.
T26^S.
8190.
16200.
6450.
12130.
26700.
22410.
24810.
70900.
17090.
893*.
12130.
16807.
16701.
14316.
13802.
11116.
8074.
10217.
12745.
11875.
105 °9.
10325.
17716.
25490.
21717.
241 f.
30417.
31129.
33034.
2701".
25500.
29075.
28258.
27676.
?5729.
24385.
2251H.
3200.
1500.
1250.
1250.
1150.
750.
750.
750.
5*0.
400.
350.
1311.
4500.
4200.
6231.
2922.
3412.
4140.
6214.
8000.
7250.
9930.
S401.
234'.
4601.
3531.
240P.
37P6.
3435.
5027.
5303.
42 TO.
181020.1
207392.6
236116.5
236963.9
220656.1
221357.3
198484.4
168169.3
137353.8
205985.9
215773.0
236331.4
246189.1
337303.5
444505.3
339187.9
418709.1
536040.6
604968.0
635735.4
549942.2
506362.3
553632.9
582908.5
587217.7
607281.9
663242.9
717908.3
66282.1
33752.8
29150.1
29153.5
26599.1
15672.3
9806.8
9875.7
4023.1
5450.2
3434.4
18159.5
26100.
36960.
30167.4
16513.6
18271.7
17364.6
31580.0
47361.8
64932.3
80807.3
30211.7
7945.5
43228.3
11486.8
9826.4
18352.9
12978.8
17449.5
33384.8
21240.5
20.26
17.10
14.05
14.19
15.42
16.04
17.36
20.83
18.34
16.16
16.17
22.30
23.35
19.04
17.44
17.92
17.32
17.63
19.44
19.25
20.36
19.86
19.04
tO.63
21.22
23.60
27.20
31 ."9
20.71
22.50
23.32
23.32
23.13
20.90
13.08
13.17
7.32
13.63
9.81
13.35
5.8
8. 8
4.34
5.65
5.36
4.20
5.08
5.92
8.96
8.14
5.60
3.39
V.40
3.26
4.08
4.85
3.78
3.47
6.*0
5.06
0.014 0.421?1
0.01* 0.40690
0.014 0.4094o
0.014 0.46581
0.014 0.59212
0.014 0.66534
C.014 0.81313
u.014 1.00756
0.014 0.97969
0.014 0.98872
C.014 1.06056
0.014 1.00881
0.014 0.99265
0.014 0.75213
0.014 0.60939
0.014 0.72553
0.014 0.6V764
0.014 0.58223
0.014 0.54103
0.014 0.59238
0.014 0.713Q7
0.014 0.79615
0.014 0.77384
0.014 0.75720
0.014 0.76198
0.014 0.75113
0.014 0.69604
0.014-0.64889
0.024 0.01674
0.024-0.02426
0.074-0.02564
0.024-0.02356
0.024-0.02304
0.024>0.03556
0.024-0.04981
0.024-0.04306
0.026-0.06187
0.026-0.03390
O.O'6-O.05114
0.022-0.00773
0.0?0 -0.1
0.020 -0.1
0.072-0.01663
0.022-0.U1924
0.022-0.049*7
0.022-0.02909
0.022-0.08672
0.022 0.01 OPS
0.022-0.11236
0.022 0.08218
0.022-0.08503
0.022-0.12455
0.022-0.08654
0.022-0.11530
0.022-0.19095
0.022-0.39106
0.022-0.39595
0.022-0.47*92
0.022-0.42867
0.022-0.20701
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
1
9
66
67
68
69
70
71
72
73
74
75
12
15
16
16
19
23
27
28
34
35
36
36
36
36
37
38
42
43
47
46
52
39
40
41
42
43
44
45
46
47
43
49
50
51
5?
53
54
55
56
57
58
59
60
61
62
63
64
65
65
66
67
68
69
70
71
72
73
74
75
76
78
79
80
81
82
63
o4
85
86
87
87
88
89
90
91
92
93
94
95
96
97
-------
- 167 T
98
99
103
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
1?2
123
124
125
126
127
128
129
1?0
171
132
133
134
135
136
137
138
139
19950.
36830.
24650.
72250.
73000.
26310.
16140.
3200.
316";.
2770.
2640.
2700.
3400.
3400.
3500.
3200.
4200.
2700.
3350.
2850.
1850.
14*0.
4300.
2500.
3CDO.
2200.
2000.
2750.
3000.
2600.
5300.
9000.
12500.
24"0.
2610.
UOO.
2490.
25«0.
2280.
2700.
3750.
4140.
4077.
8160.
8160.
4778.
4100.
4792.
5740.
300.
300.
250.
250.
200.
950.
930.
900.
°0.
FO.
70.
3000.
3iOP.
2200.
1200.
4000.
4050.
2000.
1600.
500.
3000.
1200.
400.
4500.
750.
2700.
1800.
900.
1650.
20PO.
1350.
2700.
1500.
1800.
2250.
18346.9
105807.1
26277.4
43217.3
36960.8
29G44.9
40281.6
3705.3
3511.3.
3456.2
2201.6
1116.1
19502.2
20951.6
22075.7'
1081.4
558. 5
312. 4
18881.4
19836.6
12319.1
4206.7
•51069.9
'1071.3
9543.6
5405.1
1991.6
17319.6
6564.2
1352.4
31461.4
2855.6
10405.1
28440.
9720.
14520.
75600.
9180.
15660.
8700*
15840.
19800.
4.55
12.97
3.22
9.05
9.02
6.06
7.02
12.35
11.71
13.83
8.81
5.58
20.53
22.53
24.53
12.02
11.17
4.46
6.29
6.20
5.60
3.51
7.77
7.67
4.77
3.38
3.08
5.77
5.47
3.38
6.99
3.81
3.86
15.8
10.8
8.8
17.8
6.8
5.8
5.8
8.8
8.8
0.022-0.29928
O.l}?2 -0.31 554
0. 022-0. S6«71
0.022-0.15873
0.022-0.15133
O.P?2-0. 24727
0.022-0. 07*58
0.02b-0. 02762
0.028-0.02109
0.028-0.01531
0.028-0,01746
0.028-0^.01193
0.024-0.00945
0.0?4-0. 00505
Of. 0? 4-0. 00 150
0.035-0.11903
0.035-0.06776
0.0*5-0.14475
0.03 5-0. Q32 74
0.035-0. 01 *84
0.035-0. 01 S92
0.075-0.03113
0.0"»5-0. 05357
0.035-0.04047
0.075-0. 04^81
0.075-0.04779
0.075-0.06342
0.0^5-0.03033
0.075-0.03509
0.0'<5-0.06«40
0.075 0.05842
O.O* 5-0. 12660
0.035-0.26420
0.017 00.2
0.020 0.15
0.0?0 -0.10
0.017 -0.25
0.0*0 0.1
0.0?U -0.1
0.0?2 -0.1
0.0?0 -0.1
0.020 0.1
55
57
99
60
61
60
63
76
77
105
1J6
107
66
109
110
73
112
76
83
115
116
117
as
119
120
121
122
120
124
125
67
127
36
129
129
130
14
131
14
132
79
79
98
99
100
101
102
103
104
77
105
106
107
108
109
110
111
112
113
11'
115
116
117
11*
119
120
121
122
123
124
125
126
127
123
127
130
131
131
130
132
132
133
132
40
SEAWARD 30UNDAPY
7
HY
-------
FSTU»PY HYDRAULIC?
ST"UL»T1U" OF A I'FJN TIDAL
13T JU'TTICH1
FLOW
11*000 CFS
CHAIN BRIDGE
ENVIRONMENTAL PPOTFCTIO* AGFNCY
DYNAMIC FLOU !•» * '-D fFNS ION*L
M'M3EP OF
JU"CT TO^S
HvrRAULlC
(••'CYC
"UH?CR OF
(MC>
139
OF uvOPAULlf TIMF
CYCLES ''TEP. lv SEC.
STlRTT'S TIME
CTZPROJ
90.0
0.0
PRINTOUT PFCI^S
SI TYCLF
( IPPINT)
AT CVCLE
CPUFCVCJ
2001
"0. 0^ CYCLES
SrTHbFN PRINTOUT
( INTPVL)
NO. OP JUNCTIONS
PPINTED
(NOPRT)
n
f
03
Ct-
NO. Or CYCLES BETWFEN
UP^ATF OF PtSTART PATA
(INTPUN)
?OD1
03
I
IS
CAI.I ri •>
("OFS ^YOFTT = 1 ')
rOR HTOEX IS
STORED BEGINNING AT CYCLE
CITAPE>
1500
-------
SUrt*ARV OF JUNCTION DAT*
KXMK*ltX*«KKK««llo
'1
->?
->l
Ik
•? c;
?6
'7
*F
'9
•*0
T1
7?.
»3
*4
*j
•**
'7
»a
*y
'.(•
11
«?
43
44
45
*£
'.7
4S
4V
•50
r1
-3.7515
'.0017
1.999'
1.99??
1.9945
1.9904
1.9815
1.97*9
1.9616
1.9469
1.9419
1.9305
1.9193
1.9010
1.8700
1.8500
1.825?
1.79 S3
1.7818
1.751?
1.731?
T.6974
1.6320
1.6522
1.621"*
1.5331
1.5516
1.4V1*
1.4255
1.38n3
1.3222
1.2836
1.2456
1.217?
1.1705
1.11^4
1.C30/J
".931?-
0,8531
n.766?
1.6967
r.524"
P.53''4
0.44°.?
0.3657
).207*
n.120<»
0.009*
-o.ue¥6
-O.U'.?
-".'.J7'
j36154R?U.
4332457.
«*65?'3.
4243556.
4.5657?3.
8442756.
8*87111 .
1?506311.
13P19578.
R66A933.
710V6P9.
9442556.
8«85791.
5940600.
10561100.
11331200.
19773808.
22«S4304S
1°329456.
15552445.
1?108489i
19775622.
14441556.
26772416.
29216363.
23661920.
29327456.
42769216.
53878112.
49380768.
49723456.
53544832.
43324656.
59099780.
£1094890.
120531440.
926481?*.
B3983200.
119<»76nOJ.
17647409*.
190184175.
mc-62092.
1663U0064.
2o9735324.
12U20144.
ai
-------
'.010*
1.9323
1,8501
1,7878
1.6979
1.5S63
1.517?
1.t150
1.2U1?
1.1367
1 .04^8
•7,0814
1.25^6
-1.571?
".021f
-P,42U
-0.431S
,VcM
349R1b880.
371925504.
32SCV0432.
225554°10.
2413561440
2794106P8.
2C8000U,
3?00000.
2T6000U,
1^60000.
1"»20000.
1000000.
1040000.
14061500.
15071500.
21218000.
16219000.
17920000.
17884992.
31?OOOTu.
8055000U.
55666544.
60430992.
1<3?ifc030.
74540992.
22772992.
101090902.
76984992.
124Q74°92.
7173600U.
300699914.
2011|OUOOJ.
154080000.
1^5306010.
V2648HO,
eooooo.
nouoou.
"60000J.
•«?oooou.
UOOOOU.
1.0
0.0
OolJ
0.0
n.o
1.0
1.0
1.0
1.0
1oO
1.0
1.0
1.0
0.0
1.U
1.J
1.0
r.o
0.0
1.0
0.0
n.o
c.o
n.O
1.0
n.o
1.0
0.0
1.0
1.0
n.o
n.o
n.o
i.o
o.o
n.o
o.o
i.o
0.0
1.0
1.0
1.0
0.0
0.0
r,o
i.o
i.o
i.u
r.o
i.u
I.U
I.u
n.j
n.o
53
54
55
56
57
58
59
60
61
62
63
64
*6
67
68
69
70
71
72
73
74
*5
76
115
77
78
79
*U
"1
82
•3
14
95
«6
«8
*9
90
91
02
03
94
95
°6
°7
og
09
100
101
102
113
int
1J6
107
10«
119
110
111
112
i f '
54
?5
56
C7
rP
50
60
M
6?
**?
ft
f 5
67
6S
f9
"'O
71
72
7'
7/
'5
76
105
10*
0
138
1*9
0
1
11*
n
1?0
P7
P7
1
n
0
1
1
r%
1
1
1
1
n
110
0
0
o
n
n
in->
irr
10"
n
111
11?
n
1"
0
5S
1
yo
1
1
1U1
102
1
10A
1
3
110
1
1
0
n
0
0
115
n
n
11*
1
ft
139
1
1
a
1
P
P
8*
12«
n
i
0
1
0
0
1
1
n
i
1
•3
1
n
n
T
1
0
n
T
1
n
n^--
n?crz
"
V
0
G
0
0
0
103
0
0
a
0
0
a
0
0
u
0
0
0
0
0 •
c
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
t;
0
0
0
0
L
0
u
u
t;
0
0
0
0
0
0
II
0
0
0
u
0
'J
0
a
0
0
0
n
3
0
0
0
0
a
0
0
0
0
u
0
0
0
u
0
0
3
J
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
J
0
1
0
0
J
0
0
0
-J
O
-------
115
116
117
113
1 '7
1.599S
1.7026
1.704?
1.7066
1.L-242
1.52*9
1.5309
1.5337
1.536/i
1.5291
1.1316
1.5354
1.2017
1.9000
'.9000
1.VUOO
1.90TD
1.9UOO
11080000.
6400000.
4666657.
3777770.
1156000U.
7?OOOOJ.
608UOOU.
^720000.
2160000.
S20UOOU.
120000U.
inoouonu.
P03U800.
46405JO.
2970300.
6600700.
'060400.
1.U
0.0
n.a
0.0
n.o
T.J
P.O
0.0
o.u
n.u
T.U
1.0
n.o
i.u
n.o
i.u
-479.0
P.U
0.0
116
117
118
119
1'0
1'1
1?2
123
1?4
1?5
126
1^7
123
1'9
13
1^1
172
115
1*7
117
11P
11"
0
121
1?2
123
1?*
n
1?f
127
n
12<-
n
171
1'7
173
136
n
T
0
n
n
•T
125
T
0
T
n
n
n
130
T
13?
134
1 J5
137
n
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
138
0
0
0
J
0
0
0
0
u
J
0
0
u
0
n
u
Q
3
0
0
-------
« ,( *«** «»< II«K«IIK«»*I(«»X «»* «K mtOKVK «>««><
Jlp CHAMN'EL TATA
»* «**• tt»*« *»** KHHIIItHKKHMKKKKWMKII K K K M » K H K M K
LENGTH
V'JITH
VELOCITY
HYD. RADIUS
JUVTIOK'S «T ENDS
1
a
5
&
5
5
7
3
9
10
11
12
13
14
15
16
17
ie
19
20
21
^2
Zl
24
25
26
27
2*
20
JJ
31
3?
33
34
35
36
37
3S
3V
40
61
42
43
44
45
46
47
in
is
vj
'-.1
r"U.
7C76.
2°51.
4065.
"•749.
T597.
*59U.
11 /. iV.
4065.
1-690.
•» 596 .
•"•'1U.
??70.
3690.
1180.
3*55.
M77.
?«4d.
5386.
T274.
5?RO«
^109.
5?_27.
C069.
5016*
4*05.
«765.
C081.
47116.
"42.
•^597.
5650.
4065.
t-'oe.
°026.
10507.
13/64.
"715.
12144.
1T76.
11746.
12*60.
1'''30.
1UP24.
17529.
n^eo.
1«?56.
1"^T6.
I'uSfe.
°'?0.
' •'• '• 1 .
224.
B^O.
9S5.
11'?.
1571 9
19'*5.
2350*
2VT.
2920.
2953.
325««
3513.
2475.
2110.
2240.
3738.
4671.
5506.
4117.
3337.
.1052.
3319»
42'1.
5967.
5355.
43P8.
5469.
6604.
62?3*
73n«.
P.833.
7562.
7908.
1027T.
134-"4.
102?4.
78?4.
89^A»
12130.
15fc07.
16701.
14316.
13P02.
11116.
8374.
Uc17,
127'o.
-1K7-5.
H.-i1?".
1.-J3?-;.
17; 1'-.
4153.0
26136.0
33959.8
24570.0
2640406
26199.1
26226.0
3U470.4
35770.0
43291.0
44P62.7
/.4032.7
3V798.0
33180.0
29<552.0
50762.0
60302.6
6J9-:1.4
62660.7
606^3.3
60185.4
76967.6
61423.0
e216£.f
t0325.n
72411.2
oc214.°
1U1305.3
112200. f
118024.1
126046.9
134527.9
13*673.?
14U534.6
172467.2
1VOP32.3
176744.1
td1002.7
2U7423.1
?J6138.3
2it«'P7.1
'20752.7
?2l3°3.f
198531.7
16JS181.4
U7379.7
?U59S9.2
?157iS8.7
'3t357.7
?«.6?51.'
T .7^1 7 .r
0.020
0.020
0.020
O.U20
00G20
T.020
3.G20
0.020
0.020
0.017
H.017
1.017
0.017
0.017
P. 017
0.017
O.U17
0.017
0.017
O.U17
0.017
0.017
0.017
0.017
n.J17
0.017
0.017
O.U17
O.U17
0.017
0.017
0.017
O.U17
0.017
0.014
0.014
O.OU
0.014
0.014
0.01A
O.UU
O.OU
O.U1/
O.U14
O.J1A
0.01*
O.J14
O.G1*
O.U«
l.ul t,
n, ,11 '.
-1.90449
0.30452
0.2^600
0.32»4U
C931793
0.31513
Q.3?046
0.29387
0.2"035
0.23616
0.2^134
0.24344
0.27437
0.30000
0.300JO
0.26P16
0.23327
0.23P97
0. 24435
0.25840
0.26528
0.2106?
0.21452
0.2204U
0.23472
0.26567
0.23674
0.247Q5
0.23976
0.24301
0.24266
0.24360
0.25731
0.25183
0.27905
0.325S9
0.39007
0.4?121
0.40690
0.40"98
0.465K1
0.59212
0.66534
O.P.1513
1.00756
0.97969
0.98R7..
1.06056
1.U'lr.f.1
0.5??65
)<-r'-> i >
13.5
32.7
35.6
?OoP
77.4
1305
1!='
1U.*
12.'
14.7
13.8
12.6
16.1
15. f-
12."
13.6
12.9
11.1
15.?
18.7
19.7
23.?
19. J
13. P
15.0
16.^
16.1
15.3
18.0
16.1
14.3
17. *
17.1
13. r
12. f
18.7
?2.f
'0.'
17.1
14.1
14. '
15.4
1 j.O
17.0
73. °
18. T
16.?
IS.7
?2.<
">3.r
1 o . n
2
2
3
&
5
6
^
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
4 A
45
46
47
(.8
49
5U
r1
114
7
4
5
t
7
O
c
9
10
11
12
12
129
15
16
17
16
19
20
21
22
23
24
25
26
27
20
29
30
31
32
33
34
35
36
37
36
39
40
41
4<.
43
44
45
46
47
48
49
5J
51
S2
I
M
•-J
I
-------
54
55
56
57
5f
5-9
60
61
62
63
64
65
66
67
61'
6?
70
71
72
73
74
75
76
77
7?
7?
MJ
61
82
83
84
15
36
87
08
89
9C.
91
92
93
94
95
96
97
98
99
103
111
1'J2
103
134
105
106
107
US
1U9
11J
1 11
1 1?
*5>11 ,
10665.
10137.
?712.
1'702.
10612.
11616.
6705.
**71Z.
?6550.
3'"30.
24'50.
32250.
3 MOO.
2*^10.
1M4U.
3700.
7165.
'770.
2*40.
'700.
•<*OQ.
*«00.
":')';>.
241*7.
30413.
31129,
33034.
2 70 1 » .
'5s 00.
29075*
26253.
27676.
'1:72°.
2436*.
72510,
3213.
1500.
M 50.
1250.
1150.
750.
750.
750,
5*0*
4^0,
3SD.
1311*
4500*
4200.
5231.
2922,
2412,
4140*
6214.
8000.
7250.
99^0,
5401,
2347.
4601.
3531.
240".
3796.
343t>4
5027.
5303,
4200,
41)7.7,
8160.
EI60.
4778.
4 1 00 .
(.792,
t>740.
300,
300,
250,
250,
200,
V50,
V3),
ynn.
/•1B919.0
•=36181.3
605147.8
*35904. 5
550f86./:
50643U.O
553587.7
562963^.6
5872*4.7
6U7204.1;
663'9V.1
717343.9
66272.0
33750.0
29150.0
29150.0
c6S99.5
15675.0
9Mt 0.0
9"77.5
4026.0
545Z.O
3433.5-
1t157.3
26100.0
36960.0
30158.0
16509.3
16288. 3
17338. P
31567.1
^7360.0
64960.0
6U83U.'
30245.6
7956.3
4324V. 4
11511.1
9824.6
1CT62.1
12«?4.3
17443.7
33408.9
t1252.0
18766.3
1 US'T-S.?
26275.2
43240."
369"2.0
290*9.5
40294."
3705.0
3513.0
3457.5
2202.1;
1116.0
1V503.5
20952.9
r2'"7 . 1
0.014
0.014
0.014
0.01A
0.014
O.U14
o.oi/.
0.014
0.014
0.01&
O.U14
0,014
0.024
0.024
0.024
O.U2*
0.024
0.024
0.024
0 . U 2 '•
0.026
3.02*
0.02*
0.022
n.020
0.020
0.022
0,022
0.022
3.022
0.022
0.022
0.022
O.U22
0,022
0,022
0,022
0,022
0,022
O.U22
0.022
0.022
0,022
0.022
O.L22
O.U22
0.022
H.02'
0.022
0.022
0.022
0.02B
T.028
T.u2".
0.02P
O.J2"
0.02'.
0.02A
n. 02'
0.69764
0.58223
0.54108
0.59238
0.71357
0.79615
0.77384
0.75720
0.76198
Q.75113
0.696J4
-n,64S39
0.1,1674
-0.02426
-0.02564
-0.02356
-0.02304
-O.U3556
-0.04°81
-0.04306
-O.U6187
-0.05114
-O.U0773
-0.10000
-o.iooao
-0.01663
-0.01924
-0.04977
-0.02999
-0.08672
0.01095
-0.11236
0.08218
-0.08503
-0.12455
~
9V
1UU
101
102
103
104
77
105
106
107
10fc
10V
110
111
-J
00
-------
115
116
117
113
119
1 ?U
121
1Z2
123
1 ?4
125
1 29
1 JO
1 51
1 32
133
134
1 J5
136
137
•» 33
1 39
1K50.
14*3.
4*00.
?500.
"00
2750.
* 'ijw •
1'5UO.
'490.
'610.
1°00.
'580.
"80.
3^50.
A140.
7H.
3UOO.
3200.
2c^0.
120T.
4ono.
iJ5J.
2010.
1601.
:33.
3000.
*,zr,j.
400.
4bOn.
750.
a7m.
1bOO.
910*
1650.
2000.
1350.
2700.
1500*
18 OH.
2250.
T12.2
1687U.O
1V840.0
1t^20,n
^212.0
310«0.0
31063.5
9540.0
5408. n
1«90.0
173TO.O
e564.G
1T52.0
3U55.T
2P57.5
10422.0
co/40.0
972U.O
14520.0
35600.0
91PO.O
15660.0
8700.0
15»»4J.O
19800.0
O.U35
0.035
n.035
0.035
O.U35
0.035
O.U35
•0.035
0.025
0.035
O.u35
0.035
1.J35
0.035
0.03":
O.U35
O.OI''
O.U20
1.U20
0.017
0.020
0.020
o.oa?
O.U20
0.020
-0.14475
-0.0^274
-0.01884
-0.01892
-O.U5113
-0.05357
-O.U4047
-O.U4081
-0.04779
-0.06342
-O.UT033
-O.O'Suv
-O.U684U
0.0*842
-0.13660
0.2POJU
0.15001)
-0.1QOJO
-0.250JJ
0.10000
-O.IOOJil
-0.100JO
-o.nooo
6.7
6.?
5.6
3.1:
7.P
7.7
4.R
3. A
4.0
5.8
5.5
3.*
7.0
3.r
3."
15. P
10. f
8.8
17.°
6."
5.P
8.8
76
83
115
116
117
85
119
12U
121
122
120
124
125
87
127
36
129
129
130
14
131
14
132
79
79
113
115
11fc
117
118
119
120
121
122
123
124
i^5
12t
127
I2t
127
130
131
131
130
132
132
133
132
BO
-J
0^
I
-------
•i*MNMif«**Mit»«itit«K»«ii*«iiN*Hit TTPAL CONTITIOf'S AT THF SFAUA.PP BOUNDARY « HKIIIHI immi *«»m* H» » *«»)!« Him H
Tln«|_ PER'OD IS 12.50 HOU»S
IFVLL IS 0.370000 FFFT
»T TH«- SFAVAP^ BOUND»P> IS GIVEN "Y
= O.'SOOOO + U. 220557 SIS(WT> + -0.066968 SIN('m> + -0.021589 SIK(?UT>
+ -0.67««29 COS(tfT) + -0. 04^655 COS + Q. 015540 COS(3UT>
-------
SYSTF- STATUS »rTEr CYCLt
JUMCT ION
37.50
SY?TF* STATUS frTFc CYCLE 1560
3P.50 HOU"S
tti
A2
51
54
0.7048
0.">r71
-0.5191
-0.5756
HfEL
f°EP
t
R
9
66
?5
«5
3?
0?
4?
O7
50
51
54
SP
VELOr I TY
(FPS)
2.6«719
-0.59606
0.71T4U
-0.8R093
0.94669
-0.9?R19
-1.06171
U07587
U04786
-0.32158
-1.20634
-0»81642
U. 77^55
-0.67216
FLOV
11116.0
-17567.4
25170.7
-5S76.6
-7T9R7.4
74677.0
-122943.3
124372.6
4259.6
-1R55»4.2
192578.9
-1679.5
-215521.6
228687.7
-5650.2
-296269.1
-3170p8.6
522250.4
-369470.6
374143.6
JUNCTION HE»0 ^HANfEL VELOrlTY
NUPBF" (rT> NUM°ER C^PS)
114 T.5A&D
1 ?.77931
9 1,2156
? -T.6<»200
9 0.8«733
*6 -0.1?396
?5 0.^590
'4 -1*10543
?4 3.55b8
?' -1.12353
?4 1.10^61
S5 0.0<>894
?8 O.C285
^7 -1.26316
78 1.2P*93
°2 -0.2''682
42 0.?794
41 -1.1T3U7
4? 1»2P?52
•51 -0.3356
50 -1.35«»72
51 0.99P11
54 -0.3774
57 -0*87738
54 0.81627
5* -0.6'3U2
59 0.666(6
FLOW
(C^S)
11 149.1
-1958?. 5
?9«n6.5
-7919.2
"9990.8
-145355.6
147634. V
41*3.4
-?17836.5
227375.1
-2391.6
-261691.9
276970.7
-429°.7
-332514.9
334424.3
-339565.3
340260.7
-342156.1
337447.1
-0.2*16
(Ti
-0.5*705 -^92317.6
-262775.1
-------
SlSTt,1 STATUS «rTE? C1CLE 1C80
JUrCTION HF»P '-HA"HEL
NUMBEP
-------
SYSTFtf SUTUS
NlJHPrP
114
54
"US 4TEr CYCLE 1*60
'Hf'D CHA*"EL
(TT> NUMPER
Uo11f-9
1
-QS?7G5
9
66
25
74
-0.41V4
7.7
9?
-O.T42
41
4?
OT
50
•=1
O.SHt ^
3.6S99
41.50 '
83
-0.73*16
0.80539
-0. 2^774
P. 76690
-0.3*233
0.01580
3.2D251
-0.25332
0.6?976
-1.82544
•tOu^S
FLOW
(C^S)
11U/6.6
-15461.7
20751.3
-4097.4
-505t:5.3
52917.3
-85620.4
P9703.1
96.8
-130531.7
176319.9
-1803.2
-151475.9
159002.0
-5277.1
-73396.5
5496.3
"2079.1
-113270.3
4040^1.1
-4«05"0.!>
SYSTC* STATUS «CTEP CYCLE 1700
JU^^TlOw H^-^D CHANNEL
NUMBtR (rT) NUMPEP
114 -0.1471
•J
8
9
66
75 -0.67Q3
24
?5
74 -0.5997
34
P5
78 -0.4710
77
42 -0.2?43
41
62
97,
50
51
54 1.0060
57
54
59 1.0R55
5°
47. SO MOURS
VELTC1TV
S.051S4
-0.61904
0.64191
-0.0t;?25
-0.5B?99
0.61504
-0.4"9b2
0.05^60
-0.47032
0.39°11
-0.15°60
-0.02953
0.811&2
-0.64312
0. 7^764
-0.69601
-0.99002
FlOV
CCCS>
110C6.7
-14320.3
18254.5
-3041.7
-403?3.1
419«6.9
-60019.1
59427.2
1758.5
-69358. V
67252.0
-252.6
-35335.7
17251.1
-430.7
209292.4
-229744.9
292993.5
-3135°2.7
517771.6
-53S009.V
H4
-J
00
1
0.91739 63451P.U
1o0419
.85959 644331.5
-------
SYSTEH STATUS «rTE" CYCLE 1740
4^.50 HOU°S
SYSTEM STATUS »rTEp CYCLE 1780
44.50 HOU"S
fTioc HF*D TKANNFL
"SFP
3.0-86,
-0.59*15
-0.37930
0.37839
-0. U?680
C. 24087
0.46377
-0.5*550
0.51637
0.71750
-0.92080
1.35*81
-0.98812
0.8" 016
-0.62155
0.71135
-0.76870
FLOW
11042.2
-13426.7
1624S.U
-21°7.7
-25743.6
25625.2
-4085. b
-107?4.9
8122.9
77694.9
-94045.3
3636.0
164661.4
-199571.3
10727.8
352723.3
-3578"4.0
7710"«.2
-374534.1
421345.0
-419722.4
JUMCT10!» 4'AD CHJN^EL
114 -0.4679
1
9 -0."526
p
?5 -0.4215
24
75
34 0.1193
34
85
38 0.75<»4
02
«2 0.6116
A?
97
51 1.1 48C
50
51
54 1.1405
53
S4
59 1.0547
59
tFPS>
3.10469
-P. 51180
0.41492
-J. 00225
D.2^528
-0.37188
0.8?761
-0. 96898
0.22929
1.30481
-1.35181
0.5*440
1.19140
-1.37576
0.71436
1.40?97
-0.98936
0.7S918
-0.70«:52
0.371^0
-0.36»44
FLOW
(C^S)
1101?. 5
-11374.5
11440.9
20548.1
-25832.0
103941.2
-122992.4
8876.3
223660.4
-238390.7
4401.2
280533.7
-304876.4
12417.9
364555.3
-357649.8
331398.9
-320053.6
21851S.6
-199782.3
1
t-1
-J
VO
O.'IU
a.49160 368126.5
0.07250 539^3.7
-------
SYSrr" STATUS *FTEn CYCLE 1820
JUNCTION
4r.5G
STATUS «CTEP CYCLE 1360
46.50
114
51
0.6*63
0.7537
O.«*31
0.75U
0.5*00
iNNEL
1
D
O
;;
*4
85
»7
op
41
42
9*.
50
51
51:
56
i!
AK
vEj?pjr
3.0'511
-l:^l
1.1*873
-1. 21-546
1.21072
-1 .1^676
1 .35658
-1,3"031
0.36190
1.18897
0.54*64
1.04532
-0.71411
-0.4*255
P.0'701
0»01r62
-0.2M68
FLOW
CCFS)
10,53.6
-55.4
-13021.6
99*4.7
43663.9
-8865?. 1
1559*4.9
-161604.1
-1681.7
2*8781.1
-249826.2
33f7.9
284677.0
-304940.3
10182.6
'.69317.6
-255158.9
2104?n.1
-103281.5
15642.2
b349.5
-1«74'»4.9
JUNCTION Hr»c CHANNEL VELOrlTV
NUMPEP C^T> NUMBER (fp?)
114 3.P<78?
8 0.14071
66 0.24*66
?5 O.ro«7
'4 1.25986
?" -1.3*271
*4 1.0071
** 1.1*646
34 -1.05796
«5 -0.1°632
*8 1.nn38
*7 1.11509
*.«« -1.11377
9? O.V-531
42 0.°":23
41 0.89574
12 -0.99742
"7 0.31192
50 0.5*421)
51 -9.37851
54 0.5126
5* 0.20H35
54 -0.14122
59 0.4189
f? 0.3200P
1 O.?514
*•: -0.49«'?6
FLOW
10752. l»
39S8.V
-236^5.8
15271.1
07011.7
-101274.8
150565.9
-1A65R6.2
-85H9.3
1971»^.2
-202507.5
1447.6
216639.1
-225201.8
6040.5
148520.5
-132954.4
"1448.2
-61904.3
-141541,9
168420.3
-365444.1
I
00
o
I
-------
SYSTE* STATUS »rTtr CYCLE i«oo
NUHEEP
2.6*364
-0.02*44
-0.32733
0. 14*70
0.8°2J4
-T. 95953
0.70353
-0.71275
— P.1 7e20
0»6R525
-0.66645
-0.01156
0.47339
-0.47740
-0.0°315
O.OP»51
0.0' 7ij
-0.1«:(Ji9
0.17999
-0.4 4423
0.5""<14
FLOW
(CFS)
10815.2
-740.8
-112*0.6
9314.0
71472.1
-75407.4
106566. b
-100037.1
-8266.2
121667.9
-121551.8
-117.3
114339.9
-107503.1
-1814.8
2135.9
12803.6
-59937.7
77388.0
-749556. 7
273125.6
JUNCTION HFAD CHAWEL
NUMBEF (TT> DUMBER
114 2.2713
1
9 2.0?13
3
Q
*>6
25 1.**43
24
25
?4 1.2364
•XT
?4
85
'8 1.^040
•*7
•»R
at
tZ 0.7497
41
42
0?
51 -0.0?08
50
51
54 -0.1054
5'
54
59 -0.1900
5"
59
(CPS>
2.61'73
-0.24787
0.0°4V8
0.04965
0.1 *401
-0.20214
0.1«532
-0.15400
-3.05898
0.07213
-0.04*21
-0.09340
-0*06039
0.17187
-0.3*229
-0.60879
0.47375
-P. 49274
0.48423
-0.58174
0.64067
FLOW
10934.0
-758?. 9
3412.2
3298.4
15111.4
-16226.3
24965.0
-21661.5
-2800.2
12776.2
-8392.2
-981.9
-19206.9
38247.1
-6814.4
-151037.9
161336.1
-193709.9
204990.1
-322737.2
337415.6
1
M
00
(— '
1
-0.2455
-1.62»7* -456010.1
-0.62844 -452727.6
-------
?5
42
SYSTDH STATUS »rTEr CYCLE 1"SQ
JUT T ION HF»0 CHANNEL
2.2724
1.SS6J
U.5?>?9
-0.195^
-D.366S
49.50 MUU"S
VELOriTv FLO«
8
9
6*
21
25
3?
PS
92
41
42
50
51
-;:£$
-0.59182
0.6?568
0.61265
0.07647
-1.71701
0.7*671
-0.19616
-1. 69006
0.81128
-0.363P3
-1.01*03
0.79*86
-1445S.3
1V3S4.2
-3R42.1
-48361.2
5077^.3
-84818.2
P52f5.3
3543.0
-131238.0
137909.6
-1867.3
-162341.7
17795S.4
-65??. 3
-?62509.2
268951.6
CO
to
5? -1.75P76 -?87826.4
54 0.7H203 294401.2
-0.6C?69
369741.4
*5 -P.5°645 -470811.6
OF TWO-"I«r>
-------
POTOMAC ESTUARY HYDRAULICS - 13? JUNCTIO" NETWORK
SI"ULAT!ON OF A HEO' TI1AL CONDITION ciOW = 11,000 CrS AT CHM* BRIDGE
POTOMAC TSTIMRY HY^AULJCS - 133 JUKfTlO^S - 1?9 ^HANNFLS
TIDAL CONniTIOK FLOW = 11»OUO CFS 3 CHAIN BRIDGE, 47" CFS 3 SLUE PLAINS
CUJLITY ADMINISTRATION
WET FLOWS AND HYDRAULIC SUMMARY
X«K*K*** F?(
START CYCL^
1500
PROGRAM
STOP CYCLF TI*C INTERVAL
90,
HVORAULIC CYCLES PER
QUALITY CYCLE
20
TI1F
QUALITY
0.50 HOURS
n"*"lL
1
3
4
S
6
7
8
9
10
11
1 ;
17,
14
15
16
17
1 6
19
? 0
21
22
23
24
25
26
?7
-> *
'9
?0
T J
72
T^
'4
T I,
NET FLO''
CCFS)
-10°99."
10^94 . **
1J°99.48
10°9V.*C
1U999, 39
1099?. n
1J909.P1
10999. OF
11018.38
1101H.27
11018. IP
11017. °6
11017.86
9149. '6
9487.20
11495.42
1 14"5. 14
1 1 4°4.P/>
11494.3?
11494.11
114°3.72
11492. P9
11*92.43
11471. ^6
114^1 .5*
11H9.99
j 1 405,7^
11* 3 <. • 71
1 1 4S3 . 1 "*
11482. P5
1Uct2.fr.
1l1r7.°n
HIV. K*5f.
(CCS) (CrS>
-11149. «0
9089.59
7T«b.1?
57"74.31
4T00.1'
1108. C4
-1954. 8«
-6?62.71
-25269.95
-27392.56
-30^04.6^
-34493. ?6
-369?0.93
-34"T2. 64
-372?6.02
-6J9-56.71;
-6511 7.85
-69597.81
-76"*'t3.r)0
-79164.44
-814C7.06
-33TU.44
-92C72.6?
-96371.'.'.
-101'8P.37
-104905.56
-111i* "=5. 50
-129437.56
-13595% 56
-141 S52.25
— 147? >4. "1
-153550. OJ
-1586/.9.S1
-160623.62
-logrp-!. JA
-10679.30
11913.12
12733.67
13514.25
14331.63
15806.57
17352.27
19«:75.52
29768.81
312T9.22
32477.77
35161.66
36664.15
33493.24
J4264.31
54473.60
57658.80
61291.40
66922.50
69380.69
71*21.87
73P55.75
80947.94
84860.69
85062.17
92403.10
9 (SO. FT)
5546.1
23871.8
312eS«8
212?8.3
22110.8
20713.4
19600.2
222?4.5
27569.7
3503^.2
35790.5
343V. 6
329P9.8
274«1.8
23675.9
40847. V
48086.1
4671'. 3
521T6.0
52216.3
5259«.6
687'^. 5
71110.7
6787?. 2
67716.7
63291.9
75941.0
*7047.0
9921B.8
1032°P.6
108d26.2
1?J1r?.2
119997.6
122J1P.1
i4«nec.9
41^9.1
26227.2
340*9,4
24707.7
265*0.5
26422.9
26492.8
30755.°
360S7.7
43605.7
45204.5
44392.1
40057.0
33357.5
30153.0
51068.7
60664.4
61347.0
62°71.F
60829. *
60342.7
77012.5
81491.4
82279.6
803°5.5
73462.9
88241.0
1U1^?0.0
1121P8.6
118017.1
126069.7
134546.0
134722.7
140710.4
172<"»5.4
3*39.6
2495U.?
32545.?
22821.5
24157.1
23325.7
22750.6
26116.7
314*7.7
3*932. ?
40072.5
36908.9
362P6.2
30164.2
26636. "?
45527.7
53865.3
53460.0
571?2.5
562^4."
56226. B
72643.2
76041.2
74765. T
7532JS.7
6H217.7
82HOLI.1
94?03.0
105'*2y.6
11U918.0
1 1 78*1 . 1
127794.*
127888.3
132110.1
1621'Jt»7
1
I— *
00
u>
i
-------
114S7.««
M
l:<
t- ?
/. 5
*c
'7
'•3
(•*
52
r ^
Si
c ^
«" A
C7
•59
6U
*1
62
f 7
69
70
71
72
7A
•75
77
78
79
"0
"1
"7
°0
91
11447.ro
1 1 4 ',3 . 1 ?
114*7. 62
11427.6C
lU^AI
114?4l60
11423."*
1 U?3.<"?
11*24.07
1 14?3.93
114?1.50
11*21.67
11*21.3"
•11/?2.™
-19.'1
-IV.42
-1C.. AX
-1V.69
-1V.77
-19.74
-1C.75
-n.82
-19.1*
-1V. 16
-19.18
Q.1P
-3005.27
0.T1
T
AC
u
1
9T7.71
-417.05
1.5
1.
1 .'
•?53930. 04
•?6491 7.71
•?791 35.81
•292519.69
•31478£. 25
-33098*. 94
•738375.06
-741<=90.62
•744417. ST
•359296.06
773«V4.SO
•773'<9d.06
•372*4V.OO
•36o2? V". 25
369?71.00
•769195.37
•772114.06
•388577.06
•400542.06
•484°15.31
5097»7.81
•535427. ?•!
•595695.31
626234.^1
640630.36
660574.25
683079.75
*57915,?7
-7°04.20
-558b.77
-5022.44
-4r55. 28
-3996. op
-3C82.54
-3089.46
-2656.40
-1537.77
-1?93.31
-1054. 10
-1 085.89
-1166.83
-15*07.95
-35'1.00
-2617. '8
-5743.80
-2460.59
-9°T5. 40
-d«"'7."?o
-26°19.77
-21 743.S1
-7543.8?
-1900.81
-7""»1.?1
-2122. f
-2502.73
-6r"':>'4.7n
-4«?6.04
-0s f J.H
2^5.0^2.06
'34717.25
2*7453.94
?6U831. 19
277349.75
'S0443.62
701*10.77
^J771 8.75
314P90.06
•^24759. 50
331741.56
73*192.50
335?11.00
736066.00
337359.87
7J7567.25
33*678.25
3*3278.37
345115.50
763445.44
369470.81
^7*143.62
384092.56
3V7281.°7
407642.94
42*573.71
4*0608.00
701877.62
1*770.57
1U*55.00
9406.6?
8535.27
7490.16
6746.57
5E98.50
5139.41
2919.16
2456.51
2000.19
1805.56
2020.02
16456.82
5174.79
3411.17
7926.46
3674."6
152«3.9
0.326
0.315
0.463
0.698
0.597
0.966
0.524
0.716
0.117
0.152
0.544
0.284
0.335
0.659
0.377
J.672
0.316
0.547
0.277
U.395
O.A84
-'.I./.' 7
U.741
0.704
U.7i3
. . 7 «, |j
1687*7.6
192206.6
?1690?.8
219506.9
207324.6
? 1U06? .9
190647.3
1636'T.*
182975.8
2T1651.7
2126P7.6
274221.9
2445<)4 .5
33*y20.v
441557.5
316989.2
416370.*
533977.2
6032*»6.1
6^4251.*
548987. 2
505627.9
552356.6
SH2313.9
5866C8.2
6065P*.5
462654.1
71 71 ?1 . 1
57235.8
29513.0
25612.8
'5607.6
23335.3
135?9.7
7667.9
77?7.5
24*7.2
42°3.5
2421 .4
14511 .2
13977.4
257*5.8
13525.3
8955.9
99?0.0
7972.7
17315.0
32729.3
52011.8
62677.9
20171 .5
3976.4
354"0.3
5908.1
437
-------
99
1 10
101
102
107
IDS
110
111
112
11?
114
V 5
m
11 7
119
i7u
1-1
1?2
17?
17&
177
171
1 v2
17?
1*4
1*3
1*6
1'7
1*8
1.7.1
-0.1?
-0.1'
-3.06
3.0?
19. 91
19. 9f
15.9?
19. 9«
-19.99
O.I''
O.O^
e.oa
-o . - .c
0 . 1 c
0.07
f).B9
Q.«"S
0.'*
I!. 15
o.c/
0.-»8
a. 11
n.o*
316.17
U.?'
315.6-
. 9 A
16'9.9f>
-2*.46.4?
59°96.10
iO''«5.71
15/^7.50
12281. W
-92-^4.15
-1458. ?3
-"3.4?.
-."04.00
-219C.B4
-1?4%97
-ST4.16
-4?18.37
-15C0.15
--•^7.40
-?.77.49
-17?7.19
-6S3.20
-1^5. "0
-"11.47
-2725.36
31914.15
-71*7.11
-2°96.61
35077.11
-2/79.03
75739.94
31004.06
24»14.46
21496.69
19452.09
1301 4.53
1465.77
781.66
C70.5/'.
189.27
2719. 1P
1CS5.51
513.76
1661.5*
674.73
347.00
5*90. 1*
3140.91
1P25.40
P57.46
V112S27
6778.6?
2677.15
1409.04
2760.45
1072.54
278.96
1*90.12
1558.30
197Q.29
31371.16
6995.57
2*42.67
3i«?2l.55
-13T10.98
2605.64
1061.78
S798.0?
1279V. 94
-U.5?3
-0.638
-0.3(14
-0.346
-0.395
-0.175
-0.1?9
-0.15f,
-0.131
-0.078
-0.042
-C.013
-O.°16
-0.613
-U.47V
-0.27V
-0.13U
-0.122
-0.1P7
-0.207
-0.153
-0.198
C.l7b
0.117
0.118
0.047
0. 406
0.276
1.264
0.90U
U.'A3
-1.045
0.803
0.2?4
0.091
-0.670
-O.P19
0.66b
0.902
U.534
0.539
0.5S4
0.298
0.476
0.377
0.270
0.346
0.263
0.155
0.082
0.026
1.744
1.406
1.054
0.407
0.228
0.224
0.451
0.363
0.272
0.396
0.453
0.432
0.218
0.228
0.339
O.OoJ
0.677
0.269
1.176
0.764
U.233
1.118
0.69*
0.196
G.1S9
0.^85
0.705
P5J55.6
'437E.1
432U.9
75966.0
23887.0
40161.8
2874.7
26/1.0
272". a
1474.0
577.5
16318.5
13322.4
195*0.3
872.4
417.8
l^f.4
1145».9
119Pf .6
6851 .6
1275.3
72079.4
21911 .0
5002.0
17f-7.9
8' 8. 3
10512.1
3835.0
4«0.6
23304.7
1540.8
5709.3
23517.1
7252.7
10U05.2
^013*. 2
54*7.2
8286.3
450P.9
13957.1
13750.1
1 1V056.4
3b160.1
51023.5
435*6.6
36769.4
48979.5
3746.5
3555.?
3'-93.1
2238. S
1145.0
19604.4
21052.0
22172.3
1093.2
565.1
321.?
18980.4
19952.2
12793.7
4253.5
31204.*
31196.6
9606.6
5466.6
2009.5
1741*. 0
6602.9
1766.7
315*8.6
2872.4
10516.0
28620.6
9P07.7
14674.2
35772.9
9294.1
15874.0
8815.1
15938.9
20003.9
111326.0
30367.6
46701.0
39983.0
52426.?
44*°1.0
3243. 7
30co.*
3071.*
1816.5
806."
18087.6
1V56S.7
20733.8
044.0
4PU.7
?03.3
15019.1
15713.6
9475.0
ii6^7.7
26569.6
26475.6
7261.5
3575.0
1414.4
13901.5
5194.2
894. "5
2776V. 1
2227.3
8720.6
25878.3
8416.4
121*2.5
32704.4
7223.1
1174&.7
6-??3.5
13253.0
16613.6
00
ui
-------
SUMHA»Y
JUNCTION HP*DS
JlifVCT TOW
1
•>
7
4
C.
f
7
P
r
10
11
1'
1'
1'.
1r
1?
1~
1C
T"
^o
Z1
2'
2^
?'•
2C
2^
27
?'
2°
3C
? 1
* ->
3^
.?/
T r
T .<,
T 7
3"
50
M
41
<.'
4^
4'
t «•
4'
«,7
«,c
/ <~
WfNI^UM MSMD
(^T)
-o.*»
-0.8?
-008^
-0.°?
-0."??
-C.S"'
-0.?^
-a. »4
-O.1!?
-0."5
-0.8S
-0.3«
-0."5
-O.T
-U.3?
-0.
-0,^^
-O.'t
-U.T1
-J.?«
-O.'f
-O.""-
-U."
-O.^O
CYCLF OF
OCCURENCE
1998
1786
1 7S&
178^
t785
1784
1782
1783
1777
177«
1774
1772
1770
1766
1764
1760
1V57
175*
175?
1748
1747
1744
174^
1741
1738
1735
173?
172?
1727
1720
1716
171^
1711
1709
1705
1701
1695
1689
166T
1677
167?
1666
1657
1t49
164T
1624
161^
15"7
1?1??
H#XJHUH Hc*0
(FT)
1.0'-
?.1T
2oH?
?.12
2.12
2.11
?.1Q
?.U9
?.07
?.06
?.05
2.U«
?.o?
1.9"
1.96
1.94
1.91
1.67-
1.85
1.61
1.79
1.75
1.7*
1.6°
1.66
1.6?
1.5f
1.51
1.4'.
1.40
1.3&
1.30
1.26
1.2'-
1.21
1.17
1.1T
1.J°
1.U4
1.J1
0.9P
0.9f
0.91
0.91
i.yo
O.S7
LU^
1.0^
1.1T
rrc.Lc OF
OrCURFNCE
1703
1956
•!95S
1°5b
1<»5fc
1958
1«53
1C58
1958
1958
1957
1957
1957
1956
1956
1955
1955
1954
1954
1954
19*4
1954
1°54
1954
1954
1951
1°52
19*0
19'7
1945
19*2
1"9
19*6
19*3
1p25
1916
1°09
1900
1P93
1"85
1<»79
1P73
1PY-3
1P/.7
H '0
17^6
17^-2
1^34
17*S
*VER
-------
57
5°
r C
6f
6t
C.'
65
6*
69
70
71
7?
7*
74
75
7*
77
7P
79
80
«1
8?
86
87
8P
89
90
91
9?
93
9*
97
100
ir.i
102
1
177°
1780
1781
1781
1783
1784
1785
1786
177'
1764
1761
1761
1753
1746
1734
1737
1711
1709
1718
1715
1704
170?
1703
1701
1695
1648
1619
155°
1E53
1546
158«
1515
1509
1519
1503
1766
1787
1787
1788
177"?
177"
1.21
1.23
1.2',
1.2*
1.2<
1.2*
1.2'
1.20
1.1"
1.16
1.14
1.1'
1.10
1.0?
•>.o*
7. OS
7.U"
2.10
2.11
?.1?
2.1*
2.1*
Z.1^
2.1C
7.04
1.96
1.V4
1.94
1.66
1.73
1.58
1.55
1.23
1.22
1.24
1.18
1.19
1.1'
1.09
1.05
1.00
1.U6
1.24
1.2*
1.3&
1.3'
1.3*
1.2°
1.2*
1.2°
1.1*
7.1*
7.1*
1751
1749
1747
17A6
1744
1742
1740
17*6
1732
17?7
1774
1720
1^16
1712
1"58
19*8
19r8
1°Tb
153
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0,?3
0.33
0.33
0.33
0.33
0.53
0.48
O.t8
0.48
0.48
0.46
0.48
0.46
0.48
0.48
0.47
0.47
0.47
0.47
0.45
0.44
0.44
0.43
0.42
0.41
0.43
0.36
0.38
0.38
0.37
0.38
0.37
0.37
0.34
0.34
0.32
0.32
0.33
0.32
0.33
0.33
0.33
0.33
0.32
0.33
0.47
0.47
0.47
1.47
0.48
0.48
1.57
1.59
1.61
1.63
1.63
1.63
1.61
1.6U
1.b3
1.56
1.54
1.52
1.49
1.47
2.93
?.94
2.94
2.95
?.95
2.96
2.98
2.99
3.01
3.02
*.03
3.04
2.88
2.79
2.77
2.76
?.66
2.5J
?.31
7.27
1.35
1.83
1.89
1.77
1.78
1.69
1.61
1.44
1.32
1.33
1.54
1.63
1.74
1.74
1.8U
1.69
1.67
1.72
1.55
3.05
*.06
3.06
3.06
7.93
7.94
I
M
00
~J
I
-------
11
117
11°
11C
120
121
12?
12-*
127
12*
12°
130
131
132
13T
-0.90
-U.47
-a.7?
-0,78
-G.""5
-0.78
-0.73
-0.7',
-0.74
-0.75
-0.11
-0.5?
-0.3"'
178°
1788
1747
174"
1748
1751
173°
1740
174?
1747
1750
t 743
1741
1746
1710
1743
176°
1767
1767
1766
1766
1.7*
1.74
1.74
1.7*
1.5*
1.56
1.57
1.57
1.5"
1.57
1.57
1.57
1.2?
1.25
?.ai
?.oo
2.00
1.9*
1.9P
1960
19C»
1958
1959
1959
1959
1953
19C3
1n53
19*3
19C3
195 '»
1929
1978
1C57
1P57
1
-------
X*»X»KI
-------
- 190 -
4.4 SAMPLE DYNQUAL INPUT/OUTPUT
4.4.1 3 CONSERVATIVE CONSTITUENTS
— data deok list-ing —
DYt-'"UAL - ?AHPLE RUN ^ - JHIS RUN SnULATcS THE «OVEUENT OF ? CONSERVATIVE
PARAMETERS (HYES) THROUGHOUT THF. POTOMAC ESTUARY
133 139 1500 2000 20
IhPFPEf'CENT CONTROL DATA - RUN 1
1500 500 999 999 25
3 04 4
30.U 6,00
TA?ULA» OUTPUT CONTROL - RUN 1
0 0
1 1
1?5 200 1
J
PLOTTING OUTPUT CONTROL - RUN 1
5
0
5
15
1T0
1*0
130
2.5
3UALIT
0
0
1
1
1
450
120
0.
1
500
500
son
500
175
,"i
?5
?5
25
1
1
0.
Y COEFFICIENTS -
0.
0.
u.
3.
1.
1.00
1.00
1.00
1
0
0
0
0
• A
RUN
0
1
1
1
0
0.
1
1.
100.
100.
100.
T
0
0
0
1
PYE1
PYE2
PYE3
1.
DIFFUSION-TOtfSTANTS - PUN 1
1
1 1*9 25.
UPTAKE / 3FSENERATTON FATES - RUN 1
1
1 17* 0. 0. 0. 0. Oo
DECAY FOTfS - °UN 1
1
1 133 0. 0. 0. 0. Oo 0.
WA$TE«ATEP INPUTS - RUN 1
1 1 0
CONSTANT INPUTS
131 -450. 0. 1. 0.
VARIABLE INPUTS
1*1 3
125 H. 0. n. 0.
25 -450. 0. 0. 2.
3SJ 0. 0. 0. 0.
UPPFR BOUNDARY CONDITIONS - RUN 1
1
?00 -1500. 2. O. 0.
INITIAL CQ»"MTIONS - RUN 1
I 1?3 .1 .1 .1
SEAVA-JP BOUNDARY CONDITIONS - PUN 1
1 I 1
0.
0.
0.
-------
POTOMAC FSTI./APY HYrtpAuiics - 133 JUNCTJO'' NETWORK
FLOW =• 1500 CFS AT CHAU1 BPTOGC» t^fl CF«? AT BLUE PLAINS* 0 AT OTHER STP'S
- fAMPLF RU" 1 - THIS RUN SIMULATES THE ^OVE'^TNT OF "* C01SER V»T 1VF
PARAMETERS (nYFS) THROUGHOUT TH*" POTOMAC ESTUARY
ENVIRONMENTAL PPOTrTTJO*> A
DYNAMIC ESTUAR* MO?EL
«x»xx««».x*«»in»xxi«x»«)tx»x
HYDRAULIC CONT"OL "ATA
XXXKXXV.XXXKKXXXXXXKKXXXX
FIRST CYCLE ON
HYDRAULIC
(f'STAPT )
LAST CYCLE OH
HYDRAULIC T»PE
fNSTOP)
ZPOO
KEAOINC TAPE
IT CYCLF
1500
HVQRAULic
I«F STEP (SEC.)
("FLO
90,uO
H>« »»»>l»* K» «»»»»* DVXKWMIIK**** KKKK »*MX KKKKKNKX* OUALTTY CONTROL P'TA XXXXXXX XX XXXX XXXXXX XXIOXX »X XX XX XXXX XX XX XX XX XX
:P OF
OUAl ITY
(N"CYC)
500
NUM"Fh OF
30.00
"UTRIENT LIMITATION
' BEGINS AT CYCLE
(NUTCYO
799
STARTING TIME
FOR THIS PUN
0.0. SUMMARY
3E6INS *T CYCLE
(NOOCYC)
900
TIME OF
SONRTSE
(TSR'SE)
0.0
TIMF OF
SUNSFT
(TSSET)
0.0
OUAL ITY
TIME STEP IHRS)
(HELT01)
o.sn
0.0. SATURATION
AT JP.uO C
(CSAT)
0.0
QUALITY STFPS
PFR TIDAL PF°IOO
(NSPFC)
I
o
f
Tf
CO*
^.
TUCNT
1
I
3
CONSTITUENT
"AME
(C1AMF)
°Hj
CONCENTRATION
(B1CKC)
o.u
n.u
T.O
Tr"PER»TI
COR"ECTIOH
tTH^TA
1.00U
1.000
1.000
(CKl "IT)
1.0"
CMLOPOPHVLL/PHCSPHOROUS
(CHLPHO)
1.01
CHLOROPHYLL/CARBON
(CHLCAP)
1.00
OF DECAYFP Al-JA
IS BIO-DE6rADA"LE
CPERCO)
0.0
rOf STITi'ENT COrrE»TPATIOf'S If AnvECT^O "ATto AprcO^PUTFO USING THE 1/4 POI*T C ONCE NTR ATt OK' (MI»=4)
-------
mi)<»»»«i»«t>i
' »»i>«)(iia«!!TA X X X X XX X X X X X X » X X X X X II X X X X XX X X X X X X »
XXKKXXXXXXXKKXK JUNCTION DATA XXXXXXXKXXXXXX
CH/SM
!
?
-
/.
c
f.
7
F
9
10
1
?
t
i,
rj
(•
7
o.
1 r
20
21
2'
iJ
24
Z5
Z6
27
~t,p
29
3n
31
37
37
?4
35
?*>
37
3P
39
40
41
4?
47
46
45
y /.
«t r
47
LFNGTH
7c ! k. 0
7ufS.
2tM .
40** .
774V.
5iS7.
T 5 V 0 .
541'.
4U65 .
1 /• f) 1
' 6* ^ U •
7o 1 n f
?^70.
7.69H.
41*1.
3c5l:.
6177.
?*.4'0.
53c*.
727'.
52 eo.
3UO?.
5£t7.
5069.
•=01*.
4oU5.
P76*.
C(Jg1 .
f 7U6.
"34?.
5597.
5650.
6J65.
*7U*-.
pij?f. 9
1 oi>L>7 .
17164.
C715 .
17164.
1Po7iS.
1124*.
12^60,
1?3 50.
10c'2'».
17529.
1 4 i: 5 * ,
WIDTH
2240
«JOO.
95«.
11tf*.
1521.
1V4*.
2350.
291?.
7920,
?9!>3,
3258.
35U7.
'47*!.
?100.
234P.
773P.
6671.
550*.
6117.
7337.
7U5?«
131 ?•
4221.
5967.
5355.
438 o.
566^.
*604.
62i.T.
73US.
8o33.
756?.
790?.
1027^.
13474.
10226.
7t;2* .
PV3 / .
1 71 ?f.
1 *6 0 7 .
16701.
14316.
1 1fc J7.-
111U-.
«07/-.
1 '•> 7 (- * I
C5-ARFA
37P3o
24853.
72631.
226*1 .
239??.
23115.
22516.
?5b*>3.
•»1228.
38725.
39852.
•*8684.
76055.
'005S.
2652°.
45378.
53702.
53294.
570?6.
56167.
56163.
72579.
7596P.
76674.
73761.
ۥ8192 .
81964.
°41 85.
115827.
1 109*4.
117923.
12787*.
12797S.
1321S8.
162228.
1*3741.
17195?.
17635°.
202134.
230127.
2-<2151.
'17678.
719580.
1^7979.
16*639,
0,|Cr,T.
"AIMING
Oc-J'O
O.J?0
;).0?0
n.u?o
•T.U'O
0. J?0
n.o?0
0.020
D.u?0
T.017
0.017
O.U17
n.U17
n.oi7
O.U17
0.017
O.J17
O.U17
O.U17
T.J17
0.017
1.017
0.017
1.017
O.G17
0.1)17
0.017
Q.U17
i.l>17
0.017
1.U17
1. J17
1.L.17
P.J17
J.U14
0 . 0 1 /,
0. J1A
0.014
O.U14
0.014
'). J14
0.016
O.J14
n.oi A
O.L16
1.V.-1A
01Fr
5.7*
6.3*
15. 7S
11.07
1?.00
8.U4
12.53
°.27
11. U7
2*. 63
12. 1»
14.9*
19. K2
12.20
10.77
11.67
7.2"
17. Oc
8.35
13.74
8.5?
14.9'
P. 61
S.fca
8.V
o.i"'
5.13
4.9*
6.71
S.39
8.04
7.
1 r-. . /.
JUNC.
2
2
•*.
6
5
6
7
b
s
10
11
Ii!
13
16
15
16
17
18
19
2U
21
22
25
26
2i
26
27
21.
2V
30
31
32
33
36
55
36
37
3t>
3V
40
«1
Iti
A3
66
«-
66
AT
#T ENDS
774
3
4
5
6
7
8
9
10
11
12
13
129
15
16
17
18
19
?'J
21
22
23
24
?5
?6
27
?3
'9
30
•»1
32
33
74
35
36
77
78
19
40
41
42
43
44
45
45
/ \
JU*C
9
2
^
6
5
6
7
8
o
10
11
\2
IT
16
15
16
17
IS
19
20
21
22
27
26
25
2*
27
28
29
33
31
3?
3'
34
3S
36
37
3 P.
3"
4)
61
61
4*
6'-
6"
/ X
u *
/, 7
1MFLOV
0.0
OcO
0=0
0.0
0.0
o.o
o.o
o.o
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.3
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.3
o.o
0.3
o.o
0.3
0.0
0.3
0.0
o.o
(J.'J
0,0
0.0
o.o
0.0
O.L»
u.u
u.o
0. 1
• U
HEAD
0.33
Oe 40
0; £0
0.60
0.40
0.60
n.60
0.40
0.60
P. 40
n.6o
n.60
•3.40
0.60
0.40
0.40
'3.40
0.40
0.40
0.60
0.60
0.60
0.40
1.40
0.40
0.40
1.40
0.40
1.40
0.40
0.40
0.3V
0.39
0.39
0.39
0.39
0.39
0.39
0.38
0.38
0.38
U.3P
n, 37
0.37
J. 57
Di t
. 3c
1, 36
CHANNELS
65
1
2
3
4
5
6
7
8
9
10
11
12
14
14
15
16
17
18
1V
20
21
22
23
24
25
?6
27
28
29
10
11
'2
73
T6
75
76
37
7fi
3V
40
41
42
/3
/4
/ c
J
'&
0
2
7
6
5
6
7
6
9
10
11
12
13
134
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3U
31
32
33
14
35
36
37
33
39
4U
41
42
43
44
/ A
60
47
INTO
Cl
1
n
0
0
0
0
0
6*.
1
n
77
n
136
78
79
0
0
81
0
0
0
82
?
1
0
13
84
T
0
0
0
0
85
P6
t°
S 1
9?
n
0
0
93
V4
0
0
JUVCTIO*'
1 0
T L!
•~s r.
1 0
n 0
0 0
1 0
1 0
0 0
0 0
0 0
n o
n u
n o
n o
•"3 0
0 0
0 0
0 0
0 O
1 0
1 0
n u
r j
0 0
n u
i (j
1 0
0 0
n o
0 0
1 0
0 0
1 0
0 0
90 17U
1 0
n o
i 0
1 0
n o
0 0
1 0
o t
0 0
Oft
u
1 0
-------
iO
51
5?
b*
54
5C
56
5~
5 °
5°
60
£1
62
63
64
6?
66
67
6F
69
70
71
7?
7?
7'.
75
76
77
7"
7°
80
81
8'
3^
8/
85
fc6
f.7
go
3r-
90
91
97
V
9*
95
9C
97
V?
9°
100
1J1
10?
103
10*
1U5
105
1U7
1(jP
9c20.
6441 .
10560.
r4M .
6b11.
10665.
lO!?".
?71'.
12JC7.
10CU.
1U16.
67JC.
871'.
815-9.
P65^.
16104.
?601.
2641.
?1feT.
251".
2641.
H..i5.
•»4jiJ.
T3U1.
7U3".
7430.
7565.
/.O.M,
?10Q.
7450.
?4U^.
55il.
'701.
4321.
105*1.
££51.
10JJO.
735?.
12855.
P191.
1f^UO.
6450.
121SO.
?67UO.
27410.
?4n11.
709JO.
I7i.eo.
19y51.
?6b3".
2 A* SO.
722S1.
7'fJ.?.
P6510.
16141.
7101.
7165.
277°.
?' !,">.
1U32r.
1V1? .
?C491.
21717.
2'*167.
30417.
31129.
73034.
27013.
2^uO.
2°075.
?»«.5e.
27C-76.
?r72c.
?/.3e*.
?251P.
^200.
isun.
U50.
12421 .
474251.
556047.
6?5V6'5.
658347.
568689*
524251.
5?41?8.
*129S7.
60686S.
6'5313.
6«>0297.
733238.
61256.
T139«.
271S5.
?71«2.
?47R6.
14488.
8618.
8681.
3149.
480T .
2b70.
16144.
19478.
'0863.
'1119.
12456.
13886.
12593.
24678.
40765.
59191.
72642.
25708.
62?9.
39860.
9184.
8465.
17167.
1215A.
17909.
74955.
23655.
?0912.
11 13R7.
'J444.
467?P.
40JO'.
72453.
A4404.
3221.
302. £3
7.26
1.22
1.P7
1.40
1.36
1.71
?.7°
1%64
14.27
i*./;1
1^.0^
1943. *a
1943.13
1942.93
1942.44
1941.63
1P42.11
1942.17
1940.47
1940.15
1940.20
1939.67
1039.23
1929.51
1939. 1,1
1939.70
-1939.18
-19.91
-20.04
-20.04
-20.03
-20.03
-20.02
-20.02
-20.01
-19.*V
-19. 6?
-19.69
0.01
-710.55
-586.20
0.03
0.04
0.12
0.0*
0.56
-314.21
552. «0
-315.33
0.54
0.15
0.57
0.17
U.74
0.92
O.'o
0.81
0.6ti
O.'d
0.17
1 .70
0.72
0.10
O.UO
0.10
-0.07
-19.0V
-20.00
-20.0-J
-20. UJ
24.4
19.6
18.0
1P.5
18.0
13.3
20.1
19.9
21. J
20.6
19.7
21.3
21.9
24.3
27.9
37.6
19.1
20.9
21.7
21.7
21.6
19.3
11. i
11.6
5.7
!?.!J
3.2
12.3
4.3
7.3
3.4
4.3
4.1
7.0
4.0
5.1
*.Z
7.3
4.8
2.7
8.7
2.0
3.5
4.5
3.5
7.6
6.6
5.6
5.2
1'.7
1*1
°.a
9.8
6. a
7.7
10.7
10.1
12.2
7.e
50
51
52
53
54
iS
56
57
56
59
60
61
62
63
64
1
9
66
67
63
ev
70
71
72
73
74
75
12
15
16
16
1V
23
27
2b
34
35
86
86
36
36
37
36
42
43
47
41
52
55
57
99
60
61
60
63
76
77
105
1'.16
51
52
53
54
55
56
57
S8
59
MJ
61
62
63
*4
65
65
66
67
6b
6V
7C
71
72
73
74
75
76
78
7y
80
81
82
<*3
84
85
R6
"7
87
88
«V
*Q
91
92
93
94
95
9t
"7
-------
111
11?
11?
11*
1 1 r
116
11 7
11"
1 1 °
1 2H
1 30.
?2«o.
?70'J.
?710.
4140.
9i3.
V'JO.
S '!•
50.
7P.
730C,
T20C.
?.£00.
12JO.
'•DUC.
4050.
?UJC.
u .j n .
500.
30UCI,
120-'.
40 n.
'.5 111.
750.
?7un.
160P.
VUG.
1650.
?0uf.
135P.
?70n.
150n.
1f 00.
2i5D.
19491 •
2066?.
937.
477.
198.
14969.
15663.
9440.
2640.
?6574.
264"?.
7266.
35*2.
1417.
139"7.
5197.
6°6.
'7E06.
c241.
8344.
?5734.
8364.
12039.
52594.
7149.
11604.
6444.
13160.
1450P.
O.U"'4
l.U?4
O.U'5
0 . U T 5
0.0'S
n.u^r
0 • U "* ^
T • (j ^ S
3.UTS
G.UT j
n.u^S
O.U35
P.J35
0.035
P.u?5
n.u^s
0.0^5
0.035
Q.u^S
a.U'5
n.ui?
0.070
0.0 '3
0.017
n.u?n
n.u20
0.022
o.O?!
n.ij?,0
13.24
12. bf
14.06
10.71
1^.67
1 7.45
15.7°
?4« 3?
30.41
1H.47
1 p.03
1 5»m
^0.45
•5 2 . so
16.36
15.03
1^,31
P. 49
5. on
3.60
13.1(7
17.24
?r.OO
1S.O"7
1^.44
19.74
16.67
12. OT
10. i7
n.ui
-O.OJ
-0.3J
-O.?1
U.31
U.Ofc
0.06
0.04
0.02
U.?4
0.17
O.Ot
0.04
3.01
0.08
0.04
0.01
237.15
U.1U
-?36.97
1106.75
413.13
-49.^1
-1156.37
S13.30
-16.83
0.01
-796.86
586.23
21. U
2T.0
10.4
9.5
2.fc
S.O
4.9
4.3
2.2
6.6
6.5
7.6
?. 2
?.a
4.6
4.3
2.2
6.2
?.'J
*• 1
14.3
9.3
7.3
16.3
5.3
4.3
4.3
7.3
7.3
1U9
110
73
112
76
13
115
116
117
65
119
UU
121
122
121)
m
125
87
127
36
12V
129
130
14
131
14
132
79
7V
11U
111
112
113
113
115
116
117
1 1a
119
12J
121
122
123
124
125
126
127
128
1 ?7
130
131
131
\ 111
•>
3
4
5
•5
7
113
119
120
121
122
1 2T
124
125
126
127
128
129
130
131
132
13'
U.O
0.0
Q,n
-1 C00.0
G.O
U.O
U.O
0.0
0.0
O.T
0.3
0.0
0.0
U.O
0.0
0.0
0.0
0.0
0.0
u.o
-450.0
0.0
0.0
3.40
0.39
0.38
n.4i
1.40
0.40
0.40
P.4J
T.40
0.40
0.39
0.39
0.39
0.40
3.40
0.39
0,39
0.40
0.40
0.40
0.40
1.40
0.40
112
113
114
1
116
T17
118
119
1?0
121
1 ?2
1?3
1 ?4
125
126
127
1?8
129
13
1 J*1
1T2
1?5
157
3
114
115
U
117
1 13
119
Q
121
122
123
124
0
126
1*7
U
129
0
131
133
133
136
0
n
•3
0
3
3
n
n
n
0
12S
T
0
T
0
rj
T
130
n
13?
134
135
137
0
0
n
1
n
0
r)
n
0
0
0
1
3
T
rj
n
0
0
n
0
0
n
13"
-------
»K«miitii»«»M»K« ("FNT)
JUNC JUNC (MG/HR/UG CHLORO) (FFET)
O.U
0.0
1.J
l.u
»««»»»KII»««»X««»«»K««»«»«»«»»«M»K«* SUMMARY OF NUTRIENT UPTAKE AND REGENERATION RATF.S «««»*»•.««* •,«•,«««««»»»»»*««»»»«««»»«
F OIIIKIX «»<< «<•«««» «« «H KK
F°OH
JUNC
TO
JUNC
COMST 1
(DECAYK 1)
(PER OA*)
CONST 2
(DECAYK 2)
(PER PAY)
CONST 3 »
(DECAY* 3)
(PER DAY)
CONST 4
OECAYK 4)
(PER ->AY)
CONST 5
(DECAYK 5)
(PF«> DAV)
CONST 6
C>FCAYK6)
(PER "AY)
133
O.U
0.0
O.u
MVX«**ltMKKll*MM«*ft«*XftK*lf«*Nlt*»
SUMMARY OF CONSTANT UASTEUATER LOADS
JUNC.
TOTAL FLO'/
(CFS)
CONSTITUENT 1
CONf. LOAn
(P«G/L) (L?/DAY)
CONSTITUENT i
CONCm LOAD
(MG/L) (LB/OAY)
CONSTITUENT 3
CONC. LOAO
(«G/L) (LP/OAY)
CONSTITUENT 4
COMC. LOAD
(U6/L) (LB/DAY)
rONSTITUENT 5
CJNC. LOAD
(Mli/L) (L3/CAY)
CO^STTTUtNT t
CONC. LOAD
(M'VL) (LB/OAY)
-450.
0.0
1.
1.J
2427.
0.0
0.
-------
N«Xlllt1l*X«K CLB/PAY) (H6/L) CLB/PAY) (U6/L) (LB/nAY) (PIG/L) CLE/OAVJ CMG/l)
«,:: , ,
2
3
if~: 0 . U
?e -45P.
350 3.
I.U
1.U
o.u
0.
G.
0.
0.0
o.u
0.0
0.
0.
0.
0.0
2.U
0.0
0.
4?55o
0.
SUH^»RY OF UPPER BOUNDARY CONDITIONS O'ODE 114'
f«tCPrt
TUENT 1
LOAD
(LP/OAY)
CONSTITUEMT ?
CONC. LOAD
(MG/L> (LB/D*V)
CONSTITUENT 3
CONC. LOAD
(MC/L) (LB/OAY)
CONSTITUENT 4
CONC. LOAP
CO"STITUENT 5
CONC. LOAD
(MG/L) (LB/DAY)
TQffg TJ
CONC.
CHG/L )
TUENT 6
LOAn
(L3/0«r>
500
-15JO.
2.00
16132*
0.0
0.
0.0
0.
KK«X«*KXXX«XKXKIIRKNIIX**KKMKXKKKMXXX
SUMMA"Y OF IMITI/L CONCENTRATFONS
JUNC
TO
JUHT
(""/L5
CO"ST ?
CO-'ST ',
CO"PT 5
("G/D
CONST 6
133
r.10
1.10
-------
*««« »*««»XK«*X«»»X »XXII><*K«»KK«*KKX » TIDAL C\ClE VARIATION OF SEAWARD BOUNDARY CONDITIONS «*«*« »« »»»« «»»xxxxx »<< xxxx «x»x »
SPFCIF1EO CONCENTRATIONS AT
"•TE-VAL
1
?
^
I,
c
6
7
3
c
10
11
1'
17
1 '.
1 5
1*
17
1"
19
20
21
22
2'
24
25
CONSTITUENT 1
.
(MG/L)
n.u
n.u
o.u
1.U
n.u
n.u
T.U
n.u
n.u
n.u
n.u
n.u
O.J
n.u
°.u
n.u
n.u
o.u
T.O
n.u
n.U
-7.0
n.u
n.u
n.J
CONSTITUENT 3 CONSTITUENT 4 CONSTITUENT 5 CONSTITUENT 6
(H6/L) (U5/L) (MG/L) (MG/L)
0.0
0.0
0.0
0.0
u.o
0.0
0.0
u.o
0.0
0.0
0.0
0.0 1
0.0 H
0.0 <£
0.0
0.0 1
u.o
0.0
0.0
0.0
0.0
u.o
0.0
0.0
0.0
-------
VG
1
">
"7
f,
C
6
7
*
n
10
1 1
1 ?
1 J.
1 ft
15
1*
17
1P
1 c
20
21
37
2'
2*
25
i'
27
2°
2°
3P
31
3?
3?
3'
3s
3?
37
i p
3^
43
41
/, "»
4?
LI'
45
A*
n0u
1 .9fe
1 .ii:
O.vc:
P»5f»
o.:<3
0.1V
0.1J5
n.ib
0.1L,
O.JV
O.u>
O.J9
O.oV
O.J9
O.J9
0.09
r.ov
o.uv
o.ia
0.10
0.10
P. 10
OolU
0.10
n.iii
0.10
0. 10
0.10
0.10
0.10
0.10
0.10
0.10
0.1U
0.10
0 . 1 0
0.1U
0.10
P.1u
0.1!)
0.1U
0.11
0 . 1 •_>
P. 10
p . 1 ,J
OoO
2 »tit-
1.7?
L^Y
1 o?5
1.07
0 . 7r,
0. ^i
0. 26
0.21
0.19
0.15
0.13
0.13
0.10
0.10
0.10
0.10
0.10
0.1(1
0.10
0.1"
U.10
0.10
0.10
0.10
0.10
0.10
0.1"
a. 10
0.10
U.10
0.10
0.10
0.10
U.10
0.10
0.10
0.10
0.10
0.10
0.10
Oo10
0. 1 P
O.^T
n. n
0
2.03
1.60
1 o.51
1o02
0.69
n.45
0.23
0.16
n.13
0.12
0.11
n.io
o.ov
n.09
n.09
0,09
0.10
n.u
0.10
P. 10
0.10
0,10
0.10
0.10
0.10
n.io
n. 1 3
0.10
n.io
P. 10
0.10
P. 10
n.13
0.10
P. 10
n.u
n.10
R.I D
n.u
0.10
0.10
P. 10
n.iu
n.io
°. 10
n0u
0.0
O.U2
n.u3
Oo J4
0.06
0.07
0.03
0.09
0.1Q
0.10
0.11
n.12
0.14
n.13
0.12
0.12
0.11
0.10
0.10
P. 10
0.10
0.10
0.13
0.10
0.10
0.10
0.10
0.10
n.io
0.10
0.10
0.13
0.10
0.10
Oo10
0.10
0.10
n.13
0.10
0.10
0.10
0.10
0.10
0.10
n.io
Oo
0.
u.
u.
Oo
u.
u.
Do
b.
0.
0.
u.
Oo
Oo
0.
0.
(j.
u.
Oo
0.
0.
u.
Co
Oe
0.
0.
u.
J.
0.
u.
Oe
J.
0.
0.
J.
Oo
n.
J.
0.
u.
J.
u.
0.
J.
u.
ll.
f)
01
Qi
06
08
39
n
13
11
14
17
1 )
in
10
13
13
10
1 1
10
in
13
n
PoU
n.uu
O.U2
n.04
0.05
3.07
0.08
n.ov
0,10
0.11
0.13
0.15
0.17
0.17
0.17
0.16
0.15
0.13
0012
0.12
0.11
0.11
0.10
0.10
0.10
0.1J
n.io
0.10
0.10
0.10
1.10
0.10
0.10
n.io
O.H)
0.10
n.io
0.10
n.u
0.10
0.10
P. 10
n.10
n.io
n.iu
n.10
0 "
n.u
0.02
0.03
1.04
0.06
0.07
0.03
0.09
O.U9
0.09
0.09
a. 09
0.09
0.10
0.09
n.09
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
C.10
0.10
0.10
0.10
0.10
n.10
n.10
0.10
0.10
P. 10
0.10
0.10
0.10
0.10
0.10
P.1J
0 n
0.01
0.04
O.J*
0.03
U.09
0.11
o. n
U. IT
0.11
0.14
0.1*
0.17
o.l*
o. u
0.14
0.12
0.1 1
0.11
0,10
0.10
0.10
0.10
0.10
J.10
0.10
0.10
J.tO
0.10
0.10
0.10
a. 10
0.1 J
U.10
J.10
0.13
0.10
J.10
0.13
a. in
J.10
0.13
0.10
o.n
u.n
u. 11
n
0
n
0
0
0
0
0
0
0
0
n
0
0
0
0
0
0
T
0
n
0
0
n
0
0
n
0
n
0
n
0
0
0
3
n
0
3
n
n
•3
0
a
0
n
o
Q
.00
.02
.04
.05
oU7
. Utt
. J<5
.10
.10
.11
• 11
.12
.12
.11 .
.11
.11 5
o10 00
.10
.13
.10
.10
.10
.10
.10
010
.10
.10
.10
.10
.1U
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.1U
.10
.10
.10
. 10
-------
4V
5n
51
e 7
57
54
55
5?
57
5*
5°
60
61
6'
6T
6'.
65
0*
67
6^
6C
70
71
7'
71
74
7C
T
77
7?
7C
en
81
8'
83
et
85
8*
67
d*
%c
vo
91
9?
S3
VA
-------
110
11 1
11?
111
1U
11?
11*
117
11?
11"
120
1£1
12?
127
12/.
125
126
127
12P
129
13n
121
132
133
0.10
0.13
0.10
0.1U
1.99
0.10
0.1L-
0.1U
0.10
n.u>
0.10
0.10
0.1CJ
0.10
0.1U
0.10
0.10
0.1(1
0.10
O.J9
O.U9
0.07
O.U»>
n.u9
0.10
0.10
u.m
O.in
2. 01
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.1"
0.10
u.n
0.10
o.m
0.10
o.m
0.12
0.11
U.08
0.09
0.09
0.10
n.iu
n.U
0.1U
?.un
n.10
0.10
0.10
r>.10
n.iu
0.1J
n.io
n.iu
0.10
0.10
0.1U
0.10
r.1U
0.10
0.10
n.u9
O.U8
P. 03
O.U9
0.10
0.10
0.10
0.10
0.0
0.10
0.10
0.10
0.10
0.10
0,10
n.io
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.13
0.14
0.27
0.20
0.15
LI. 10
U.n
u.n
J.I J
(j.O
0.10
J.10
U.10
0.10
j.n
a, 10
iJ.10
J.10
0.10
U.10
J.10
u.n
U.10
J.10
0.21
a.?o
O.AO
i).?7
0.20
0.10
0.10
0.10
0.10
o.u
0.10
O.lu
0.10
0.10
0.1C
0,10
0,10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.17
0.17
0.31
0.26
0.17
0.10
0.1U
D.10
0.10
o.u
0.10
0.10
0.10
0,10
0.10
0,10
0,10
0.10
0.10
0.1U
0.10
0.10
0.10
0.10
0.09
0.09
0.08
0.08
n.ug
u.n
u.n
0.10
J.10
0,0
U.10
J.10
0.10
o.n
J.10
u.n
o^n
0. TO
u.n
u.n
0.10
u.n
0.10
0.10
0.13
o.u
3.5f>
0.?.A
0.1?
0.10
n.io
0.10
O.iu
o.u
o.n
O.IU
0.10
0.10
1.10
0,1 a
0,10
0.10
0.10
n.io
0.10
0.10
0.10
0.10
0.12
0.12
0.21
0.15
o.n
NJ
OF QUALITY CYCLES = 500 O
WYDR*ULT TJPF L»ST FE*P AT TYCLF
-------
c
0
N
5
T
1
T
U
E
N
T
2.51
2.P
1.5
1.0
0.5
U.OL--
0.0
LA
AM
* H
I
»OTO'1»C rSTUAPY CENTER
STARTS »T CYCLT
ENOS AT CYCLF
175
?io
- OUALITY SU1MIRY
2 DOTS 14.5 HOURS
< DAYS t.o HOURS
M + + +
H
f A HH
L L LLLL L U. LL tL LL L L L L
LlLLlLLLL
M
o
LL
-- I —
5.0
— I —
10.0
T —
15.0
I —
?0.0
--_!_.
25. n
.-_J_.
30.u
---!--
35.0
.— 1 T_-
40.U 41.P
— 1
50.U
CH'IK PR)OGC
-------
U.M
I
I
POTO^C FSTUARY CENTER CHANNEL - PUJLITY
SUW?*ART STARTS *T CYCLE ??5 ' Of »S U.5 HOURS
EMOS »T CYCLr ?00 6 DAYS 6.0 HOURS
+ + + «• +
O.i
0.3
U.2
0.1
HH
+MH+
H H H
H AA« A
A +
H
tl.OL— L
P.J
+ » +
H L
ALL » H
L LL ' A H
HAL L « AH H
+ HH * L * +L LL LL L*L L L L *L L L L+L L L L + L
" t L
H »L
« L
" I
A+ + » •* + + +
-I-
L +L L L L L +
b.n
1 --------- T
in.u 15.
1
20. u
35.0
63.0 45.T
KJ
O
to
^ CHAIN ?5IP
-------
U.il
J.7
0.?
G.I
POTOMAC rSW?Y CEMTC? CHANNFL - QUALITY SUMMARY
STARTS »T TYCLC 1?5 2 DA Y«? 1A.5 HOURS
E.,ps ,,T CYCLr 'PO 4 DAY' 4.0 HOURS
+ + + t
H
H H
H +
A
u
* I
H'L +
AAA H + + + + +
HA A A MM
"A A » H" HHHMHH HHA
HHAL LLLL LLLLLLLLLL L L L LLLLL L
A L LLLL
AL + + + + + +
L
u
O.OL —l-
O.o
A A
L L
- —I —
10.0
T —
15.n
-—i--
?0.0
---!-•
31.0
.—1_-
35.P
1 —
40.U
H H A
I L L
.n
— I
50.0
to
o
U)
-------
TIME PLOTS FOR NOD*- s »T AN IMTCPV»L OF 25 CVCLFS
,51 * + + * + * *• *•
I
I
I
I
I
2.0- + + » + + + + 4 +
! » * *
i « *
1 - *
1
1
I
1
1
1.5-
C I
0 I
N I
S I
T 1
I I
T '
U I
E 1
M 1,0-
I I
1
1 I
1
to
o
•fx
1
1
I «
I
0.5- * * * + * * + * * +
1
1 * i
I
1
1 »
1 «
N K
I
J.OI T 1 r 1 1 1 1 1 T 1
O.u 50.0 100.0 150.') ano.U ?50.0 3GO.O 350.0 410.0 450.0 5^0.0
CYCLES
-------
0.51
T'ME PLOTS FOR NOn*" 15 »T AN 1HTFRV»L OF ?5 CVCLFS
»»»»*•«•»
O.A
0.?
).?
0.1 »
O.CI —
n.o
— T —
50.0
K * R
t » «
» *
1--
100.U
•I-
150.0 ^OT.O
250.0
CYCLES
3bO.O
1 —
4T1.J
j_.
4SJ.O
1
500.0
to
O
tn
-------
PLOTS FOR NOQF 1TU fT AN INTrF,vn OF ?F
c
0
M
S
T
I
T
U
r
K
T
'i
0.51
I
I
J
i
I
I
1
I
1
u./.-
1
I
I
1
I
I
1
I
I
J.?-
I
1
I
1
1
1
J
1
I
a.?- '
i •
i
i
i
i
i
i
i
i
j. i»
i
i
i
i
i
i
i
i
i
p.'j
* + + »«. + + .».».+.
» + + + + + + + *.(.
»* + + + 4 + * + +
» + + + + + + •»»«•
* + + + + + + »»»
+ + + + + + + + «•«•
It * it
* * H
* It
•» *• + + **+ + •» » *
M K
K
»
It
* 4-V-f + + + + 4 + »
If
-------
TI"E PLOT* FOR N0n(r TO *T AN INTERVAL OF 1 CYCLFS
0«5I + + » + + + + + * +
1
I
I
I
I
I
I
I
0.4- » + + + + + «.* + +
1
I
I
I
I »*.» + + + » + «.«.
I
I
I
I
0.3- + + * + + + + + » +
C I
0 I
N i
S I I
TI + + + + + + + *** ^
1 I O
T I KKftK ft «»«ft Mftftft K« KDK Kft* ~~"
U I ft « « • I
E 1 » » « ft
N 0,2- •»»»+ » +»+ + + + + +
T I » » » »
I » »«
21 KKftK » K
I »V Mftft ft
I
I
1
1
0.1- + »* + + + + + + »
I
I
I
I
I
I
1
I
0.01 T 1 T 1 1 1 -i I — i j
1 456.0 4^4.0 '.72.0 480.U 486.0 49A.U 504.0 512.0 5ZO.O 523.0
CYCLES
-------
TT1E PLOTS FOR NOPT HO »T AN INTFRV*L OF 1 CVCLPS
U«* I * * * + 4 *. 4- +• + +
j
I
1
I
I
1
I
I
U.3- -,» + «.*«. + * + +
1
I
I
I
1
I
I
1
C 1
0 1
N I
S I I
1 i 8
T 1 °°
U J I
E I
N J.?- + *.4. + + + »t + «.
T I
I X»« * K
31 K «** «» «
I UK K *•»** II
I 4- »» « » * + + + K + + -f *
I UK K «* *N
1 »•««* K
MX ««»»»»»* » K
] *K »*»» *
0.1- + » + + + + + + •» *
I
I
I
I
!* + » + * + + * + «
I
I
I
I
U.OI T I T I I 1 T I T 1
12P.J las.T 1^6.0 144. n 15Z.O 160.0 16*.0 1/6.0 1««.U 192.0 2nn.i)
CYCLES
-------
- 209 -
4.4.2 2 LINKED CONSTITUENTS
— data deok listing —
IW'OUAl - SAMPLE RUN 2 - THIS RUN SIMULATES THE NITRIFICATION PROCESS
IN THE POTOMAC ESTUAPY
1*3 139 1500 20PO 20
INr,cPENQENT CONTROL DATA - RUN ?
130U 500 999 999 ?5
2 0 1.5
JO.. 6.00
OUTPUT CONTROL - RUN 2
0
0
7
100 0 1
300 1 1
400 2 1
PLOTTI«C OUTPUT CONTROL
•- RUN *
032
5 1
209
1 1
.5 0. 2.s 0.
2UALITY COEFFICIENTS - ?UM 2
0. 1. 1. 1
0. 1.19P 100. NH3
0. 1.0? 100. N02»«»03
DIFFUSION CONSTANTS - PUN 2
2
1 65 25,
66 1" 10.
iTES - RUN 2
0.
.03 0.0
'.07 0.0
.03 0.0
.07 0.0
.03 0.0
.07 0.0
.03 0.0
HASTEWATER INPUTS - RUN 2
1 0 P
CONSTANT INPUTS
131 -450. 4. .•!
UPPFR P.OUN7ARY CONDITIONS - RUN 2
1
500 -1500. .2 .?
INITIAL CONnITIOMS - RUN 2
1 1P .1 .1
11 ?0 1. 1.
21 12« .1 .1
129 -H3 1. 1.
SEAVARD BOUNDARY CONDITIONS - PUN 2
1 1
.1
.1
OBSFRVFD DATA S?T V 1
.06 .07 .05 .4 .? .2
.? .17 .14 1.4 1.3 1.
.07 .05 .02 .5 *3 .1
.06 .04 .03 .35 .25 .1 •
.04 .03 .02 .35 .25 .1
UPTAKE
1
DECAY
7
/ RCC
1
RATES
1
2
21
114
115
129
131
IENEPATTO!
133
- »UN ?
1
?0
113
1U
1?8
170
17?
0.
0.
5.
35.
45.
-------
POTOM.'C CSTUARY KYTAULICS - 133 JUNrTIO»
FLOW = 11,00 CFS AT (HAT*1 BPIDG£> A5T CFS AT BLUE PLMNS» 0 AT OTHER STP'S
DU'PUAt - c«HPi.r fiU" 2 - THIS RU" SI*'JJ.*TES THE NITS TF 1C« T !ON PROCESS
IN THF POTOM«C
ENVIRUM11tNTAL P?OTrCTION
FSTU»CY HOPFL
M»III««M*NMNXKMI<«XK*)(N««XK
FIRST CYCir ON
1500
LAST CVCLE
HYDRAULIC
(NSTOP)
200U
HT.RAULIC CONTPOL
ON f
»**** * ****** xnxit
RE'PINC TAPE
»T C^CLF
(»»»*»» «» )»«l»)H«)H(»)Hf IIXKKIWXK
OF
DUALITY CYCLES
(NPCYC)
500
NUTRIENT LIMITATION
SU1"ARY BEFINS AT
(NUTCYC)
979
0.0. SU"HAPY
BEGINS «T C^CLE
(NPOCYC)
QUALITY
TIME STtP CHRS)
CTELT01)
•J.50
DUALITY STCPS
PER TIDAL PERIOD
CONSTITUf TS
3T.UO
STARTING TIME
FOR THIS KUN
(STIHE)
6,00
TINE OF TIME OF D.O. SHUPATIO"
SU"!RTSE SUNSFT AT in.00 C
(TSRISE) (TSSFT) CCSAT)
0.0 0.0 J.O
fa
to
t-1
o
i
TONFTITUFHT
CONSTITUENT
(THAMF)
1H3
MO?»N03
CONCENTRATION
1.0"
CORRFCTION fACTOR
(THFTA)
i.onu
CHLO^OPHUL/CARPON
CCHLCAP)
1.00
PcRCrNT OF DFCAYFD ALGAE
IS BI
0.0
NITROGFM UPTAKF BY ALSAF IS COf'SIOF^fcO (KRFAC =- U
ITIIENT COHrCKTRATIONS IT AOVECTFO 1/AIEP ARC CO«PUTF.f) USING THE 2-WAY PROPORTIONAL METHOD (1IX=S)
-------
KX x*x«K«xxM*xx»i(XxXKXxx»KxxxNxxxxxKx«N*xXxx«« SUGARY OF HYDRAULIC INPUTS x»x»»»x«xx xx*»*» XK««KX xx*»xx x»ttx*xx x »x xx xxxxx
A»U AND HYDp*ULir RADIUS OF CHANNELS ANT JUNCTION HEADS ARE AT MEAN T10F
XX XX XX»»»X*X XKK»XX XKXKXKKXXXIIXX CHANNEL DMA XXX»X»X**XXX»XXXXXXXXXX»X»*»X*X»
xxxxxxxxxxxxxxx JUNCTION D'TA x» xxx* xxxmnxx
CH»H
1
2
7
I,
5
A
7
P
O
10
11
1?
17
1*
•j 5
1f
17
1"
1C
20
21
2?
27
21
25
26
27
2P
29
*1
31
3'
37
34
35
36
37
3f
T3
40
41
4?
47
44
4-=
46
/, -•
LF^GTH
7fc14.
7C76.
?<,M ,
4U65.
*74V.
5i>97.
*si n.
547°.
4'J65.
1690.
3696.
3olO.
2770.
7690.
11*0.
?t55.
6177.
2641.
53^1* ,
*26.
105o7.
17464.
°71' .
12U/-.
1Pi7" .
112.'.1.
1'460.
1237.0.
10&74.
1752".
1P5f 1.
14?' ' .
WIDTH
224.
800.
V5S.
118*.
1 5i 1 •
1S4C.
2350.
291?.
?92i.
^53.
325P.
35U7.
?475.
2103.
2340.
'736.
4<71.
55o6.
4117.
3337.
3052.
*319.
4221.
5967.
5355.
4368.
54t 9,
6604.
"22*.
7308.
8o37.
7562.
790H.
1027*.
17474.
1P224.
7624.
P934.
1?13fl .
166U7.
1*701 .
1431 *.
neu?.
111U.
S074 .
10t 1 7,
1 ^ 7 ' c
C^-ARFA
37P7.
24853.
724*1.
22681.
239 32.
23115.
22518.
25663.
7122*.
38725.
79852.
38684.
76055.
70055.
265?*'.
45378.
53702.
53294.
570?4.
•=6147.
56167.
72579.
75968.
74674.
73761.
681"2.
fi1V64.
94185.
105827.
110934.
117920.
127836.
127978.
132188.
162228.
1?3741.
171952.
176359.
?0£1 74.
?30127.
2*2151.
'17678.
?195BO.
1C7V79.
166680.
1 * V 2 5 '• .
•>,''G* ?7 .
«»NN TNG
0.0?0
P.0?0
0,0 '0
0.020
i.u?0
0.070
'LO^O
0.020
0.020
0.017
P. 017
0.017
3.017
O.u17
O.U17
0.017
0.017
0.017
0.017
3.017
O.U1"7
3.017
Q.Q1"7
0.017
P.O 1 7
0.017
0.017
0.017
O.U17
0.017
0.017
0.017
0.017
P. 017
O.U14
1.014
1.01A
0.014
0.014
O.OU
O.U14
0.014
0.014
!1 . Vi 1 4
1 . (J 1 '•
1.014
"".I.. 11
DIFC
5.76
"«3^
15.79
11. U7
T?.00
".04
12.5*
".27
11.07
if- .63
12.1"
14. 9e
19.82
1?.20
10.7?
11.67
7.29
17.0''
3.3C
17.74
8.5'
14. V*
8.61
3.6^
^.9''
9.3'
5.13
4.9"
6.71
5.3V
8.04
7. V£
11.07
6.71
5.61
4.2"
3.7.1
4.6.7
3.71
4.14
4. on
7.61
3.51
1.1 "
2.57
1.2"
T.1 '
KFT FLOW
-1499.97
1499.94
1499.99
1500.01
1500.02
1499.91
1499.87
1499.93
1519.87
1519.89
1519.86
1 5 1 9 . 92
1519.87
1172.86
1383.42
1969.95
1969.84
1969. P3
1969.79
1969.76
1969.73
1969.72
1P69.59
1969.51
1969.40
1969.73
1969.14
1967.33
1966.81
1°66.23
1965.73
1965.26
1965.07
2276.61
1725.22
1960.65
1959.69
1059.33
1958.73
1956. 3J
1954.86
1953.03
1951. *5
1^4V .32
194V. 0V
1°47 .5*:
1"45 . "M
HYD. RAP.
16.9
31.1
34.0
19.2
15.8
11.9
9.6
8.9
10.7
17.1
12.2
11. U
14.6
14.3
11.3
1H.1
11.5
9.7
1*.9
16.6
13.4
21.9
1*.0
12.5
13.8
15.5
15.0
14.3
17.0
15.2
13.3
16. 9
16. i
12. V
1?.U
1*.0
2?.0
19.7
16.7
1 *.7
T*.V
15.2
15.9
17.8
21. V
1 f'. 5
1 *.. /,
JUNC.
2
2
3
4
5
6
7
o
9
10
11
12
13
14
15
16
17
18
19
20
21
22
27,
24
25
26
27
2b
29
30
31
32
33
34
35
36
37
38
3V
40
41
42
43
44
45
46
.'. 7
AT ENDS
114
3
4
5
6
7
6
9
10
11
12
13
129
1 5>
16
17
18
19
20
21
22
23
24
?5
26
?7
28
'9
70
*1
32
73
74
35
36
77
78
»V
40
/, 1
',2
43
44
45
46
47
.'• •:
JUNC
1
2
3
A
5
6
7
8
o
10
11
1?
13
1 4
15
16
17
18
19
21
21
22
2*
24
25
26
27
28
29
30
31
3'
3*
34
35
36
37
5°
3°
4')
41
4?
4T
44
4*
4"
',.7
INFLOW
0.3
0.0
0.0
0.0
0.3
0.0
0.0
0.0
o.a
0.0
0.0
0.0
0.0
OsO
0.3
o.a
0.0
0.0
0*3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.3
0.0
0.0
0.0
0.0
0.3
0.3
0.0
0.0
c.o
0.0
o.a
u.o
0.0
u.o
0.0
o.a
J.I
HFAO
0.33
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
n.40
0.40
n.40
0.40
0*40
0.40
0.40
0.40
1.40
0.40
0.40
0.40
0.40
0.40
1.40
0.40
0.40
0.40
0.40
1.40
0.40
0.40
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.38
0.38
0.36
G.38
0.37
0.37
0.37
0.36
1,36
CHANNFLS
65
1
2
3
4
5
6
7
8
V
10
11
12
14
14
15
16
17
18
1V
20
21
22
?3
24
25
26
27
28
29
70
*1
72
*3
74
*5
76
77
'E
79
'•G
41
42
A3
44
45
46
0
2
3
it
5
6
7
8
9
10
11
12
13
134
15
16
17
16
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
33
39
40
41
42
ttl
".4
45
4c
47
INTO
0
0
0
0
0
0
p
0
66
0
0
77
0
136
78
79
0
p
81
1
0
0
82
0
0
0
£3
t4
0
0
0
0
0
85
86
89
S 1
92
n
0
n
V7
54
T
1
r>
<. *
Jdtrt
0
0
0
0
0
0
0
3
0
o
0
0
0
0
0
HO
0
0
0
0
0
0
0
n
n
0
0
0
0
0
0
0
0
0
0
90
0
0
0
o
0
0
n
n
n
n
T
ION
0
u
u
0
0
0
0
u
0
0
0
u
0
u
0
0
u
0
0
0
0
0
0
0
0
0
0
0
0
0
0
11
0
0
0
170
0
0
0
0
0
0
u
u
0
0
n
1
to
H1
1
-------
J
1
?
7
>4
5S
5<*
57
5"
5°
60
£1
6?
6 3
64
65
66
67
6«
6°
7P
71
7'
77
74
75
7*
77
7?
7C
80
M
3?
37-
84
85
86
6~
6 1
69
90
91
V?
93
9 A
95
9A
9r
9?
9r>
1JO
1J1
1 U'
10T
104
105
1U*
Cb2n«
f 441 .
105t'l.
?45 1.
t i. 1 1 .
10665.
10137.
871'.
1 ? > 0 2 .
IPiHT.
itei'j.
67uS,
16iOis
26 Of.
26*1.
2381.
?511»
2^/,1.
'UJ*.
343T.
^301.
7J35.
••450,
?5*5«
<63;).
'100.
3451,
'ACI*.
*'50.
'Tt'O.
'•321.
1053°.
6250.
100UO.
7351.
1 ?855.
8190.
1f2b1.
^450.
1 21S1.
?*7'_|1,
2?411.
? t o 1 1 ,
709 J".
1 7D?0.
1°9ST.
761,31.
246CO,
722 11,
3'OU.J.
?f310.
16141.
7 5>j"*«
*1 £ 5 ,
'77".
1032C«
I7?!*.
25490.
21717.
241S7.
70413,,
J11 i ^ ,
3?0i* .
2701?.
255UO.
2C07^«
?625>-,
?767*.
?251 Oe
1200.
150P,
1*50.
1250.
1150.
750.
750,
750,
550.
400.
350.
1211.
4500.
/. i: 0 0 .
523 1.
'92?.
741?.
4140,
<• 2 1 ' .
FOJO.
7250»
0930.
5401.
2347.
4£Q1»
3531.
2408.
778? .
3435.
5027,
5307.
.'«:uo.
403-7.
IM6P.
"160.
4/78.
41UC,
',792,
574 J.
300.
ion.
25 J,
'" n_
251552.
767154.
459412.
402421,
474251,
556047,
6 ? 5 9 6 5 .
658347,
568689.
5P4251 .
574128.
<"il298?»
60665?.
6SG297.
77323".
61256.
31398.
271P5.
271P2.
?47?6.
14488.
9618.
8681.
31*9,
4605.
2b70.
16144.
19473.
"0863.
21119.
12456,
13886.
12598.
?4678.
i0765.
59191.
72642.
25708,
622<5.
*9860.
91 8/..
8465.
17167.
12156.
17999.
74955.
23655.
?0912.
HIS"?.
'0444.
467 ?P.
40002.
12457.
44404.
3221.
30?«.
3057.
1707.
n.u14
O.U14
O.U14
0.014
O.U14
0»u14
0.014
0.014
n.U1 '»
0.014
0.014
0.01'.
0.014
0.014
Oem4
0.0'4
O.U'.'.
O.li?4
O.U?'.
0,U?4
0.0'4
O.U?4
•3,y24
n«Q?*
0.026
1»G?6
P«0'2
o.o?o
0.020
1.U22
0,U?2
O.U??
0.02?
0,U?2
0.022
P.O'?
O.U??
O.U2?
O.U??
O.u?2
0*0?2
O.U??
O.U??
0,b?2
O.U?2
O.U?'
0.0??
O.u2?
r,0??
0.022
rt.U??
O.U??
O.c??
O.U2?
1.0 »R
•1 . b ? "
n * u ? °
•"••u'"
4,5^
6,99
4.26
4,7*
6,61
4,22
'4,/,/i
5,1?
1.6*
fe.24
3.o7
6.71
5.1'
5.2"
2.79
6.9?
6.b2
7.5*
7,1^
6.8?
5.9*
5.25
5.45
5,93
s,25
5,05
?,73
".S7
5.2?
5.2°
5.2'
/i. 8*
4,1'
1.71
?,81'
i.eo
?.4S
1 .4°
2.20
1.11
2.79
1.4?
0ȣ7
P. 80
0.73
0.5"
1.05
O.VO
1.4°
0.7'
0.5*
0.55
0,6"
1.1?
5.45
5.69
?',5'1
'•.o'1
1943. 60
1943.13
1942.93
1942.44
1941, *3
1942,11
1942.17
1940.47
1940.13
1940. ?0
1939.67
1939.?3
1=39.51
1959. "«0
-1939s1b
-19.91
-20.04
-20.04
-20.03
-20.03
-20.02
-20.02
-20,01
-19.69
-19,69
-19.69
0,01
-210,55
-5&6,?0
0.03
0.04
0.12
0.38
0.56
-114.21
552.50
-715.73
0.54
0.15
0.57
0.17
0,?4
0.95
0.*5
o.sa
0.63
0,28
0.17
1.70
0.72
0.10
O.OJ
0.10
-0.07
-1V, °V
-20. OU
-20.0G
-2U«;1 J
24.4
19.6
1p.O
1"»5
18.0
I1?, 3
2O, 1
19, V
21 .0
20,6
19.7
21.3
2 T . V
2* -»
•* * ->
27,9
3?.C
1°.1
23. V
21.7
21.7
21.6
19.3
11. i
11. t
5.7
1?.0
".2
12.3
4.3
7,3
1.4
4.3
4,1
1.0
4*0
5.1
8.2
•".3
4.t
2.7
?,?
?«6
?,5
4.5
3.5
7*6
6.6
5,6
5.2
1^.7
3,7
o.b
o.o
6»P
7.7
10.7
10.1
12.2
~?»<:
50
51
52
S3
54
55
56
57
5t
59
60
61
€2
6?
.;
64
1
9
66
67
66
6V
70
71
72
73
74
75
12
15
16
16
1V
23
27
2B
24
?5
86
b6
3fc
36
3V
?8
42
43
47
48
52
i5
i7
9V
oO
61
6('
63
76
77
10'
10f-
51
52
S3
54
5 j
56
57
58
C9
*0
61
f Z
e f
r 4
65
65
66
67
*b
69
70
71
72
73
74
75
76
7&
79
80
PI
82
83
84
8!>
R6
*7
87
88
8V
90
01
92
93
94
95
<36
9?
"b
99
100
101
102
103
104
77
135>
IOC-
1"?
50
51
5?
51
5*
5"=
5*.
57
5°
59
60
61
6?
67
6*
6'
66
67
6"
69
70
71
7'
77
74
7 «:
76
77
78
7"
80
81
8?
87
8'.
85
36
87
89
89
90
91
9?
9*
V4
9C
y*
97
9"
9°
1JO
101
1U?
107
104
10*
106
1JT
1U'
O.'J
u.o
0.0
O.J
O.J
O.U
OcO
o.a
0.3
0.0
3.3
O.U
Cfl
. J
o.a
0.3
o.a
o.a
0.0
o.a
0.0
0.0
O.T
0.3
o.a
0.0
0.0
0.0
a.]
0.0
o.a
0,0
a. a
a.o
O.U
a.o
OeO
0*0
0.0
O.U
0,0
u.o
Q.O
0.0
a.o
O.J
u.o
0.0
0.0
OoO
0.0
u.o
0.0
u.o
u.o
0.0
0.0
u.n
-2IJ.1
' ' * — .
0,34
0,34
0, J4
0.34
0.34
0.34
0.34
0.14
0.54
0.33
r*.33
0.33
n i '<
Js 55
0.33
0.33
T.40
0.40
0.40
0.40
0.40
0.40
0.4U
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.39
0,39
0,39
0*39
0.39
0.39
0.38
0.37
0.37
0.35
0.34
0*34
0.33
Po34
P. 34
0,33
0.33
0.33
0,33
1.40
0.40
0.40
H.40
Sij
«:i
52
53
54
55
56
57
•58
59
*0
<1
^3
64
*6
67
68
69
70
71
72
73
74
75
~>t
105
77
78
79
"0
31
P2
?3
"4
85
?6
S8
"«9
90
91
92
93
94
"5
°6
^7
OR
09
100
101
102
1P3
114
ne
m?
108
1f9
52
i3
54
55
5-5
57
5t
5V
60
ei
62
^ -j
64
65
67
6fc
69
70
71
72
73
74
75
76
105
106
U
I3a
13V
0
0
116
0
120
87
87
U
a
•3
0
i
0
0
0
0
0
U
100
IJ
U
0
0
J
1U7
10*5
1-J9
U
97
P
n
9?
f
99
0
0
1U1
1U2
0
•% t' t.
n
0
110
r>
0
0
0
0
0
111
0
0
115
n
n
139
0
0
T
0
0
0
b9
12*<
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n
0
T
T
n
0
T
0
103
• (
0
n
0
0
n
0
T
0
T
0
0
0
ri
0
n
0
1
0
0
fl
n
T
i
0
0
n
T
0
0
0
1
0
T
fl
0
0
T
T
0
0
P
1
0
0
0
0
0
0
t-
a
0
0
U
0
0
0
U
0
0
0
0
0
0
U
0
0
0
U
U
0
0
0
U
0
0
0
0
U
0
0
0
U
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
to
-------
111
11?
11?
114
115
116
1 1 7
1 1 a
11T
12P
121
12?
1 1 ?
1 24
1 25
126
127
12".
12°
130
131
132
13?
13'
135
13*
137
131
139
_ t\ (j 1 |
. j (j 0 •
3200.
42Un.
?70n.
5350.
2i,51.
1850.
14 >rj.
43'jT.
?5u'1.
31 jO ,
?cOi1,
?JOQ.
7751,
70J3.
?'OJ.
5JJ-J.
CUOO.
1P1-U1.
?4
65
25.00
10.00
-------
» »»KK (MG/L> (LE/D*Y)
rOt
( CONSTITUENT 5
rONC. LOAf* CONC. LO/0
(UG/l_> CL5/0«YJ (HC/L) CLB/PAY)
rONC
1UO
-1500.
0.2T
1516.
0.20
161°.
«*««K»«M»KK«*KX»X«KXKK*»NKXX«K»MN«>
OF INITIAL CONCENTRATTONS
I
to
I-1
£>•
I
JUNC
•\
11
21
1?9
TO
JUNC
10
20
128
133
CO^ST 1
(M6/LJ
P. 10
1.00
0.10
1.00
CONST 2 CQMST 3 CONST 4 CONST 5 CONST t
(MC/L) ("G/D CU6/L) (MC/L) <1G/L>
0.10
1.UO
a. 10
1.UO
-------
«N**KKM«K*«NKX«K«ltKV«M«XXK*KMK*XK«MK*X*X
SUMMARY Oc CONSTITUENT DtCAY RATES
F"OM TO
ju»'C June
1 1
' 21)
'1 11?
1V 114
11e 128
1?° 130
1*1 133
CO"ST 1
(OECAYK 1>
(PEP PAY)
O.U*0
1.U70
O.U*0
0.070
0.0*0
P. 070
0.(J*0
COHST 2 CONST * II CONST 4 CO«ST 5 CONST 6
("F.CAYK 2) (DECAYK ^) (HEC*YK 4) (OECAYK ?) C"rCAvK6)
(PtF riAY) (PE1? DAY) (PtF *?AY) (PEP 0^v) (PER HAY)
0.0
U.O
0.0
3.0
0,0
0.0
0.0
U"OEF^OES 2ND ORDFP DFCAY
SU*»1*RY OF CONSTANT WASTEUATfeR LOAr>S
JUNC.
(CFS)
rONSTITUFNT 1
CONC. LO»P
(MG/L) (L?/0«Y)
CONSTITUENT I
COVC. LOAD
CONSTITUTE 3 CONSTITUENT 4
CONC. L0»n COWC. LOAD
(LB/0«Y) (UG/L) (LB/DAY)
CONSTITUENT 5
COHT. L0»0
(M6/L) (L9/D*Y)
COWSTITUtMT 6
CONC. LOAD
-45D.U
4.0
9709.
Q.5
1214,
-------
n«v« »»«*«»'<« «i»i«»«
*» * SU"*f*R* OF DISSOLVC" OXYGEN (C OMST I TUE'.'T 6) RATES * ** ** «» «* ** *RKH*«I:K *» »* SJIKX
JUMC
TO
JUNC
CPHOT)
O.U
0.0
n.u
T.O
««»»»)«»«)().*»i.«*««»»««»««»«»*)««»).»).)« SUM!U*RY OF NUTRIENT UPT»KE *KO REGENERATION RATFS »»«««mi»«ii«»««ii»ii««mn»««ii»ii«»»»»»m»
CT>
jure
TO
JUNr
C01ST 1 l)PT»KE
(A1UPP)
CONST 3 UPTAKF
(PHUPPJ
CONST 1 RFGEN
CREGENN)
CONST 3 RPGE«*
(R^GEPP)
CONST 5 RE6EN
133
0.0
0.0
0.0
0.0
n.u
-------
xxxiixxxxxxxxuxxxxx x»KX»»xftMKMiixxxK x TIDAL CYCLE VIR1AT10" OF SEAWARD BOUNHARY CONDITIONS *»»»* *x xxxx KKKKXXXX xx xxxx x»xx x
SPECIFIED CONCENTRATIONS AT JUNCTIOV 1
CONSTITUC"T 1 rONSTlTUENT 2 CONSTITUENT 3 CONSTITUtNT 4 rONSTITUF"! 5 rONSTITUFNT *
(HG/L) (HG/L) (MG/L) tU^/L) (HG/L) (MG/L)
1
•>
T
'.
s
6
7
p
9
in
11
1 •»
1T
u-
1 e
1 *
17
1"
19
2n-
21
2?
21
2 A
25
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.1U
0.10
0.10
0.10
0.10
0.10 -
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
o.n
1.10
n.10
n.in
".10
n.n
o.m
o.n
0.10
n.ir
o.n
1.11 i
n'n H
0.10 ^
n.10 I
0.10
n.io
0.10
o.m
0.10
1.1"
n.io
1.10
0.10
-------
SYSTEM STATUS *rTE° OU'LITT CTCLE 1UP
Jl'^CTIO
114
2
•»
/,
«
6
1
f
c
10
11
1?
13
12°
130
14
15
16
17
1P
19
iC
21
22
?*
24
25
26
27
2«
29
30
31
32
?3
S/.
7 C
71".
?P
4P
4?
44
<,*
4»>
bn
52
5/
56
iP
6P
«,?
r H^AD
-------
HICH SLACK PREDICTIONS
jurCTicr
1
6/
6?
6?
61
60
59
58
57
56
5?
54
57
5?
51
50
45
44
' HMD
-0.41
-0.46
-0.4?
-0./.4
-O.A5
-0.46
-0.43
-0.45
-0.47
-O.A?
-0.^3
-0.76
-0.'9
->J.?3
-0.'5
-J.rj
(MF/L)
P. 19
0.0°
O.U5
o.o/
0.0'
O.U'
0.0'
0.0*
0.0?
0.0'
O.OT
0.0^
P.O'
0.0'
n.oT
0.0'
n.oT
n.o7
T 1 roKSTITUFNT ? CONSTITUENT 3 CONSTITUENT 6, rONSTITUE»T 5 <~ONST I TUEKT 6
<*G/L> (HG/l) (US/L) <^o/L) (MG/L)
CYCLE 300 6 DAYSj 1?.(jO HOU»S
0.1(1
0.1?
CYCLE 301 6 DAYS* 1P.5H HOU>»S
0.15
0.16
0.16
CYCLE 30? * OAYS* 1^.00 HOU7S
0.17
0.17
0.17
NJ
CYCLE 303 * DAYS* 13.50 HOURS £
0.17 '
CYCLE 30* 6 DAYS* 14.00 HOURS
0.17
0.17
0.17
CYCLE 30C f- 0»YP, 1/..50 HOURS
0.17
0.17
0.17
0.17
0.17
CYCLE 50C '• D«Y«:, 1K,00 HOU«?S
0.17
0.17
U.17
0.17
0.17
-------
4?
i.?.
41
in
.'•?
3P
57
it
4r
5*
3?
?2
il
30
2°
2f
27
26
2-=
?/•
?3
2?
21
20
1?
1*
17
!<"•
1?
14
130
12°
17
12
11
10
c
f
7
*
5
4
?
?
-0.?7
-O.'B
-J.?7
-J .?7
-U°?6
-J.'6
-0.'7
-i).?6
-u.&u
-0.*9
-O.^f
-0.*6
-0.17
-0.*7
-0.?6
-0.51
-0.51
-0.50
-0.50
-O.iV
-0.49
-0.50
-0.50
-0.49
-0.49
-0.49
-0.46
-0.47
-0.47
-0«4C
-0.46
-0.46
-0.46
-0.4C
-0.46
-0.46
-O.'.S
-0.45
-0.45
-0.^2
-0.^2
-0.*?
-U.*2
- a . '. 3
0.0*
0.0*
o.u*
n.u"*
0 O iJ
0 • LJ"'
1.0*
o.u*
CYCLE
o.u?
0.0*
n.o?
o.u?
o.o/
n.u^
a. 0^
CYCLE
0.1?
0.1?
0.1*
0.14
0.14
0.1?
0.1?
0.1 '
0.16
0.1°
0.2*
0*31
0.3?
0.24
0.31
0.2°
P. 15
0.1 *
O.UA
0.01
n.o'
0.01
0.0*
0.0*
CVCLE
O.O"
0.06
0.07
1.10
0.1"
0.17
0.17
U.17
U.17
0017
0.17
U.17
U.17
30? * DiY«; 1«000 HOUPS
0.16
U.16
0.16
0.16
0.18
U.73
U.34
30^ 6 DAYS* 16.50 HOD'S
0.7*
0.89
0.58
1.11
1 •?.*
1 .?<
1o*5
1.*8
1.34
1 «?6
1.22
1.01
0.81
0.66
U.A8
U.50
U.4?
O.*/,
U.?5
0.'?
U.?4
U.?*
0.'?
0.*4
310 6 CAY?* 17.00 HOWS
u.**
U.*A
o.T1
0.71
u.?£
I
to
O
i
-------
LOW SLACK PREDICT TONS
JUNCTION
1
fc?
61
(.n
59
3P
57
56
55
54
53
52
51
50
49
47
45
4'<
CCT>
-0.41
-O.'-i
-0.45
-0./S&
-0.46
-0.'7
-0.47
-0.48
-0.'.4
-0.45
-0.45
-O.'V
-J.?7
-0.?5
CONSTITUTE 1
CYCLE
o!o'
0.0T
CYCLE
0.0?
0.0?
CYCLE
O.J'
CYCLE
0.0?
0.03
0.0?
CYCLE
n.o'
0.0'
0.0?
CYCLE
0.0?
0.0?
CYCLE
T.O'
0.0'
n.o'
COH9TITUFNT ? CONSTITUENT 3 CONSTITUENT 4 TONSTITURIT 5 «-0NST ITUENT f
(MG/L) CHG/L) (U^/L) C<"/L> (MG/L)
400 6 OAY«j 1/,,00 HOURS
O.m
o.f ?
0.1-;
0.17
U.17
0.17
C.17
401 ">. DAYS* 1/-.50 HOUPS
0.13
0.18
402 8 DAYS* 1r.OO HOU"S
0.18
403 8 DAY?* 15.50 HOU7S
0.18
0.18
0.18
404 ! DAYS, 16.00 HOURS
0.18
0.18
0.18
0.18
405 * DAYS* 1*.50 HOUPS
0.18
0.1?
0.18
4C6 * UAY?* 17, on HOURS
0.18
0.18
0.1P
U.1R
1
to
1
-------
CVCUE AIP
17.JO hOU°S
41
40
3°
5?
37
; c
?'•
.3?
32
31
30
2<-
- O
C i.1
27
2t
>5
24
2?
2.7
21
20
19
1?
17
16
1 ?
H
13P
1 29
1?
1'
11
10
c
f.
1
(.
r.
I
-U.'T
-J.'T
-J.".
-U.'6
-U.77
-0.40
-U.'V
-O.^fl
-0.'*
-0.*7
-0."'7
-0.56
•
c
-D.51
-J.5U
-0.50
-0.49
-0.49
-0.50
-U.50
-0.49
-0.49
-0.49
-0.48
-Q.*4
-J.^4
-0./-3
-0.63
-0.63
-titf-Z
-U. *5
-0.^3
-0.'3
-0.'T
-0. *3
-0.^7
-o.7e
-0.76
-<1. "i.
0.0'
O.U'
O.J?
n.u'
o'.U'
crciE
0.0'
n.o?
o.u?
n.t;T
n.!)^
0. 04
0.05
CYCLE
10
0.0°
o.uv
0.09
O.U"
n.o<»
n.19
0.1 1
0.1^
0.17
0.21
0.2°
crCLE
0.3'
0.24
0.31
0.2S
0.1'
P. 11
n.o'*
0.01
0.0?
0.01
n.u*
n.O'.
C^CLE
Q.0r
O.U'-
n. j7
U.18
J.18
U.1S
0.1P
0.18
40S S DAYS. 18.00 HOU9S
0,17
U.1"
c.rt
u.?o
U.'4
U."'"'
J./.8
409 « DAYS* 18.50 HOURS
1.06
1.1?
1.??
1 .'P-
1.3-?
1.??.
1 .'4
1 .29
1.20
1.15
0.94
410 8 DAYS* 19.0" HOU7S
0.71
Q.fg
U.47
U./.9
Li.'.?
J.36
J.-JQ
U.?9
0.70
U.?9
U.™
U.?7
411 " 0»YSi 19.50 KOl'"S
J.-r^
u.'/.
J."
1
NJ
to
10
1
-------
POTOMAC ESTUARY CENTER
P"OFILC PLOT FOP CYCLF 1HU
c
0
N
S
T
I
T
U
tl
T
1
J.'l * +
I
1
I
1
J
i
I
1
I
I
1
1
I
i
1
r
i
i
J
1
t
j
I
I
1
I
X
I
I
J
I
I »
I
I
I
I
I
I
1
1
I
I
I
7
1
J
I.TL
x 4 4
4- 4 +
4 + 4
4 4 4
»4 4 4
4X * + +
4 * 4 4
4- X + 4
4X4 4
4 X X 4- 4
4 X 4- 4
444
4 4 4-
+ + +
» + +
* + +
* * *
+ X X + 4-
* -f + +
4 * 4
» 4- +
+ H 4- +
+ 4- *
4- 4- +
4- 4- +
«• + +
4- »* +
4- * +
X 4- 4- -4
+ 4-4-
4- + +
4-4-4-
4-4-4-
+ + -f
4- -f X +
444
X + 4- * +
•f X 4- 4- X 4
X X + + 4-
XX 4- 4- 4
+ 4- *
4-4-4-
T ¥ T | I I T.
* +
» +
4 +
4- 4-
» 4-
4 4-
+ -f
+ 4-
+ 4-
+ +
4- 4-
+ 4
4 4-
4- 4-
4 4
4 •»
+ 4
+ 4-
+ +
4 +
4 + 1
* * NJ
* 4 to
4- +00.
4- 4- 1
+ 4-
+ 4-
4. +
4 4
4- 4-
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
X 4 X X 4
4 4
4 4
4 4
4 +
4 4
4 4
MJLFS
-------
POTOMAC ESTUARY CtNTER CHANNEL
1
r»
I
1
I
I
1
I
I
I
i
i
i
i
i
i
i
i
i
i
i
i
i
T
I
]
1
1
I
I
I
J
I
1
I
1
1
I
I
1
1 *
X
1
-------
POTOMAC ESTUARY CENTER CHANNEL
HIGH WATFR SLACK PLOT FROM CYCLC 300 TO CYCLE 31U
C
0
N
S
T
1
1
U
r
N
T
0
J
1
1
I
I
1
1
I
I
I
I
I
I
1
1
I
I
1
I
]
I
I
I
I
1
*
1
1
]
I «
I
I
1
I
I
1
1
I
I
1
I
1
I
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 »
4 <•
4
4 *
4
4
4
4 tt
4 *
4
4
4 It
4K N
4
4 L *
*
4
4
4
4
* f 4
» H 4
I 4
• 4
XX 4
» 4
It * 4
+
4
4
4
4
4
4
4
*
+
4
4
4
4
4
4
4
*
+
4
4
4
4
4
4
4
*
4
4
4
4
4
* + N »
K» 4 M
4
*
+
4
4
4
4
4
4
4
4
+
4
4
4
4
4
4
4
*
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
*
4
• 4
4
4
4
H 4
9 4 H
• H 4
* 4 t
*4« * X K L *
I 4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
*
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4-
4
4
4
4
4
+
4
4
4 M
K 4ft « « »
4 L
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
+
4
+
4
4
4
4
*
4
4
*
4
4
4
4
*
4
4
4
4
4
4
4
V4
4
•4
to
to
in
c;.oi ' 1 r 1 T 1 r 1 T 1
P.J S.P tn.O 15.0 20.U ^5.0 30.0 35.0 4T.U 45.0 50,0
nrLO" CH»TN PRlDGr
-------
POTOMAC ESTUARY CENTER O
H1C1-1 VATFR oMCK PLOT FROM CYCLE 300 TO CYCLE MU
- •
m
•
1 »
•
M * 4 H
1
1
1
I
I
1
1
I
J
7
]
1
I
]
I
1
1
I
1
I
1
I
I
J
1
I
1
I
I
I
I
I
I
1
I
I
I
I
I
!
I i
»
J
4 4
4 4
4 4
4 4
4 4
4 4
4 ^
4 4
4 4
* 4
+ 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 H " 4
4 H K* 4
4 1 4
4 X 114
4 It 4
4 4
4 4«
4 4
4 4
4 4 K
4 4
4 K 4
4 4 K
4 4
4 X 4
4 4
4M 4
H 4 4
<( * *4 4 *
14 4 1
4 4 I
4- 4-
+
4
4
4
4.
4
V
4-
*
4
4
4
4
4
4
4
4
+
+
4
4
4
4
4
4
4
*
+
4
4
4
4
+
4
4
4
4
4
4
•f
*
If 4
4
4
4
4.
4
4
4
4
«.
4
*•
4
4
4
4
4
4
4
4
4
4
4
+
4
4
4
4
4
4
4
4
4
4
4
4
•f
4
4
4
-»
H 4
4
A 4
4
I 4
4
4
4
4
4
4
4
4
4
<
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
M 4
4
6 »
4
V tt if M 4
L 4
4
K)
J
Jl
n.j
4- 4
1 ' I 1
s.n in.u 15. n ?o.o 25. T
MJLCS DrLO'' CHMN p
4
I
30.0 15.0
PICG^
4 4
1 ' 1
&O.U 45. 0 50,0
-------
POTOMAC ESTUARY CENTER CHANNEL
tow WATER SLACK PLOT FROM CYCLF 40n TO CYCLE 4n
C
0
N
s
T
I
T
U
E
N
T
0.
•
0_
•
1 1
' J •
I
I
1
1
I
I
I
1
I
I
I
I
1
1
I
I
1
I
.. 1
J
I
I
I
1
I
I
K
I
I
1
1 *
I
1
J
I
I
1
1
I
T
I
1
1
I
I
444
444
444
444
44 +
4.4 4
444
444
444
444
444
444
444
444
444
444
4 * 4 4
444
4 K 4 4
444
444
444
4 * 4 4
4 * 4 4
444
444
4 f 4 4
444
444
4 A* 4 4
444
444
+ L + 4
4K K 4 4
444
* » 4 4
4 K *4« K * II 4
444
» A 4 4 H 4
* H 4 4 4 H
L 4 4/14
» 4 4 K 4 «
* »4 4 X «4 (.
114 4 t +»»«»»
* * 4 4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 H 4
4 A 4
H 4« * | * M4
4 4
to
NJ
U.OI i I ! 1 J 1 ? 1
n.u 5 .n 10.0 15.0 21.0 25.0 Jo.o 33.0 4j.j 41,
HIL^S "FLO"
-------
POTOMAC FSU'ASY Ct^TER CHAMNtL
LOV WATER SLACK PLOT FRO* CYCLF 400 10 CYCLF 411
c
0
K
s
1
i
T
u
E
N
T
i.
i
i
i
I
i
I
t
I
i
2r i
t U — *" 4
1
I
r
i
i
i
i
j
I
I
I
I
T
I
I
1
1
I
I
1
1
I
1
I
I
I
1
1
1
I
]
1 *
K
|
ft
+
*
4
4
4
4
4
4
4
4
4-
4
»
4
4
4
4
4
+
4 H
4 *
4 t U
4
4 «
4 *
4
4
4- »
4
4
4
4
4- II
4
4 K
4
+ „
H » 4*
XK « K *
» * » X »4
4
1 4
4.
4
5.n n.i) 15. fi
4 «.
4 4
4 4
4 4
4 4
4 4
4 4
4 *
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
»« 4 4
* 4 4
4 4
4* 4
4 4
+ » 4
4 K 4
+ » 4
4 4
4- 4
4 4
» 4
* 4
4 4
4 4
+ 4
4 4
4 4
4 » 4 H
4 K 4
4 II 4 t
4 K4« » H
4 -4 II K
4 L + L
4 4
20.0 23. f 30.0 3i.O
4
4
4
4
4
4
*
4
4
4
4
4
4
4
4
4
4
4
•*
4
4
4
4
4
+
4
*
4
+
4
4
4
4
4
4
4
4
4-
4
4
4
II 4«
4
4
4
40.0
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4-
4
4
4
4
*
»
»
4
»
»
4-
*
4-
4-
+
4
4-
4-
4-
4
4
4
4
H 4
4
A 4
» * 1 «4
4
L +
4
4b.R 5C.O
tO
00
M1LFS "ELO" CHMN
-------
- 229 -
4.4.3 6-CONSTITUENT D.O. BUDGET
— data deck listing —
OYWUAL -
133
.THIS RUV SI^ULATFS THE 0.0. EUDGFT (INCLUDING
ALGAL EJECTS) IV THE POTOMac ESTUAR*
139 1500 ZOOCr1 20
CONTROL OA'TA - RUN
1500 1000 500 500s ?5
6 0 * 4
70. 6.01 '
TACULAF OUTPUT COHTF.OL - RUN 3
1
500 1000 0
1 1
1 1000 1
2
*.PJ 1 7
402 2 4
PLOTTING OUTPUT
3 2 0
0 Q
OOP
4 . • j . 3 .
CONTROL
0
0.
dUALITY COEFFICIENTS -
.25
.001
.OOT
.001
1 .00
.001 1
.001 1
DISSOLVED OXYGEN
9P.
1.0P
1.00
i.on
1.00
.047
.021
- RUN
0 1
4. 0.
RUN ?
200.
100.
100.
100.
500.
100.
100.
T
150. 0.
.2".
"H3
•*02N03
TP04
CHLOPO
CBO^
"•0
COEFFICIENTS
<*.OC 18. OC
9
1
2
5
18
28
114
115
129
131
1
4
17
27
113
114
128
170
1T3
.012
.012
.012
.012
.012
.012
.012
.012
.012
.0008
,OOC«
.000"
.0009
.000*
.0008
.0008
.0008
.0008
DIFFUSION CONSTANTS - RUN ?
1
UPTAKE / Rc
1
DECAY RATES
5
1
2
9
114
GENERATTO
^
- PUN '
1
8
117
114
25.
0.
13"*
INPUTS - RUN 3
1
115
WASTFWATEP
1 0
CONSTANT INPUTS
121 -450.
BANK INPUTS
16.1 T.3 1.8 1.7.
2.0
3.5
2.0
2.0
2.0
3.5
2.0
2.0
2.0
0.
1.3
«.15
.05
:, 15
-.05
.15
20.
1.6
.09
.09
.09
.09
.09
0.
3.2 1.6 1.6
.03
.03
.03
.03
.03
25.
.8
10.
1.0
1.0
2.0
1.5
1.0
1.0
1.0
2.0
1.0
0.
.02
.02
.02
.02
0.
.17
.10
.17
.10
.17
35.
.9 1.2
.9
>5 0.0
-------
- 230 -
<>6
1 o9
7o6
^ j
2'!U
3o 5
?oO
ofc
10
1.6
2.2
*.6
V.9
'.0
.5
20
.9
2.0
.6
1.6
?5.3
1.6
.(
100
1.6
1.8
2.2
.0
2.R
12.6
.9
.4
106
T.4
•».8
11 .4
•>.1
21.5
.6
1.2
.9
3.5
4.1
1.9
19.9
.6
,°
4.4
2.7
1.3
2.7
21,5
1.1
1 .'
5.4
3.8
1 .1
6.6
12.6
.5
1.9
.'..1
2,9
.9
2.5
1.2
.9
1 .9
3.5
4.7
1 .6
12,6
1.U
.8
1.5
3.5
5.7
2.3
4.3
1.0
.3
2.3
5.7
4.9
.9
5.4
1 .3
.9
4.4
5.1
1.1
2.2
13.3
1.5
.9
2.7
5.1
2.1
?. 1
15.8
1.3
1.3
2.4
4.4
2.5
0 S
15.5
.9
1.9
2.2
4.4
4.1
2.5
13.7
1.6
1.6
-100. 10.
UPP^R FOUNDRY CONTITIOVS
2
.
15
;>oo -1500.
HJG -150^.
INITIAL
SE*VASO
1
.05
.10
.20
10.0
1.0
".0
.10
.05
.30
.20
CONniTIONS - RW 3
1
2
6
10
16
21
26
31
36
41
46
66
7S
S3
66
129
131
EOUNDAPT
1 1
1
5
9
15 1
20 1
'5
30
75 •
40
45
65
7-7 1
S? 1
P5
1 ' P
1 ?0 ' 1
1 ?3 1'
CO^OITIOMS
1 1
.31
.05
.40
.85
.30
'.70
.10
.04
.02
.01
.01
.40
.50
.40
.30
.>0
'.50
- PUN :
1
• 10
.20
.25.
.50
1.60
1.50
1.00
.30
.60
.30
.10
.45
1.00
1.40
• ?0
t5c
1.00
i
0.
.20
.10
.10
.10
.70
2.50
1.60
1.20
.70
.40
.40
.60
.60
2.10
2.50
2.00
1.00
2.50
25.0
20.0
10.0
30.0
30.0
35.0
•70.0
35.0
70.0
65.0
65.0
30.0
10.0
30.0
65.0
75.0
30.0
30.0
65.3
0.
4.0
3.0
1.0
1.5
1.7
5.0
7.0
6.5
5.0
3.0
1.5
1.0
1.0
2.5
5.0
6.0
1.5
4.5
5.0
6.0
7.1
3.0
6.P
6.8
1.0
2.5
3,5
5«5
608
6,8
d»0
UO
SoO
6.0
UO
-------
FLOU =
rsTUAPY hy«>lULlCS - 13? JUNCTION NETWORK
jn CFS AT CHAt»' 3RIDGC* /.SO CFS AT BLUE PLAINS. 0 AT OTHtR STP'S
- SA*Plr RUN 3 - THIS RU* SI'tULATFS THE ^.0. 3UDGFT (INCLUDING
ALG»L EFFECTS) If THE POTOM«C ESTUARY
EN VI R0»"« ENTAL FROTFCTION A
DYNAMTC FSTUA^Y MODEL
* ii**i'**x*«*«*ifii«*KMii**ii* HYDRAULIC CONTROL OATA «*«* x1nFR OF
CONSTITUr''TS
T^HP^PATURE
(TrMP>
30.00
STARTING TIMh
FOP THIS RUN
(STIME)
6.0U
TIME OF
SUNRISE
(TSRTSE)
6.0?
TIME OF
SUNSFT
(TSSFT>
0.0. SATURtTIO*
AT iO.UQ C
(TSAT)
7.A37
\~>
CO
£
CONSTIIUTNT
CONSTITUFNT
''AME
NH'
TP04
CHLORO
CPOO
DO
PACKrROUf'P
COWCENTRATION
(P«CKC)
0.001
H.U01
0.001
1.000
1. 1.01
0.001
T r>1PE DA TURE
CORRECTION FACTOP
(THrTA)
1.000
1.000
1.000
1.000
1.067
1.071
rMLOPOPI'VGE>'«TIOW CONSTANT FOR o.o. is COMPUTED USING
ANO PHOSPHOROUS OPTJKF. 9Y ALCAF IS CONSIOE°FJ tKREAC = 3)
corrrNTP«TiO"S TN A^VECTCO VATE:'' ARF coMPJTFn USING THC 1/4 Poira CONCENTRATION
-------
50
S1
57
i 7
Si
5 p
Si
57
5"
«. o
60
6f
62
i7
64
6?
66
67
6"
6°
70
71
7?
7*
7t
75
7f
77
7?
7C
80
ft
t?
g«
84
fl5
fcft
87
6P
8°
VO
91
9?
VJ
94
V5
V5
9?
9°
9c
1 JO
1 1)1
102
1 0*
104
10^
10*
10?
1 U^
°t2'l.
«',41 .
10561.
c 4 M .
< >. 1 1 .
106t? .
1 PI 3"1.
?71 7.
17SIJ?.
in*. ;2.
1 1 ;' 1 6 .
'•7'Li'-" .
87;?.
ft:1?.
m°.
1ft J4 .
?600.
2640.
?SljO.
?510.
2640.
T035.
*450.
TloO.
3J35.
?43~).
3565.
AbS'"1.
?1JO.
T4bO.
T401".
555?.
37U"I.
A 320.
1 0530.
6<-SO.
100'J1.
7i50.
1 7P5S.
?190.
Ifi'OO,
64bO.
1 ?1tO.
76700.
2?410.
?4*
4.24
3.87
6.71
.- . 1 :
5. 2*1
5.20
2.79
17.31
17.05
IS. 91
17.93
17.05
14.83
13.1?
13.64
14.63
13.12
12.62
9.32
21.43
13.04
13.2?
".11
12. 1f
10.42
4.2^
7,20
4.50
6.1?
3.50
5.49
2.7"
6.9?
*..69
1.6"
2.01
1,fc1
1.46
.?.63
2.26
1.2'
1.8*
1.4T
1.36
1.71
?.7°
1*.6':
14.22
1*.25
17. (-5
1
?.7
8.7
2.6
3.5
4.5
3.5
*.6
6.6
5.6
5.2
1 7.7
3.7
9.8
9.6
6.t
7.7
10.7
10.1
1 ?.2
7.
0
r»
n
103
T
r;
™
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
n
0
0
n
0
0
0
0
^
0
0
0
0
0
0
0
0
n
0
T
0
0
n
0
0
0
L
L
0
J
0
0
(1
I;
0
a
e.
0
o
0
0
U
u
0
0
0
0
u
0
0 I
0 to
0 W
0 W
C I
0
0
0
0
c
0
0
0
u
u
c
u
0
u
0
0
0
0
0
u
u
0
0
0
0
u
0
0
-------
111
112
11?
1 1 *
1 1 5
11?
117
11 *
11?
12P
121
122
12?
124
125
126
127
12"
12°
13P
131
132
1??
13*
13?
13*
137
1 3r
13°
34(-).
3500.
3i Jr ,
A2JP.
27'Jn.
735".
?d5i.
1650.
1480.
A j ' JO •
7 ^ u^l •
7000 .
22jn.
2UUO.
?750.
71-00 .
7600.
5.5 JO.
9UJO.
12ru1.
2490.
2611.
1t.uO.
2490.
25fr(.
22f r.
2700.
T75n«
<1oO.
<«3n.
9un.
9".
50.
7P.
3000.
?£OP.
2200.
1iUP.
4000.
4050.
200C.
UO".
5UO.
'000.
1200.
4ur.
'.son.
75P.
2700.
1800.
900.
1650,
?oon.
1350.
2700.
1500.
1800.
'250.
19491.
20642.
937.
477.
198.
14969.
1566*.
9440.
i.640.
26574.
264*2.
7266.
35°2.
1417.
13907.
5197.
896.
27806.
22 >. 1 .
8344.
?57?4.
8364.
12039,
325^4.
7149.
11604.
6444.
13160.
16508.
O.U?4
P. 024
O.u"*5
0.0*5
O.u'5
P.. 0^5
1.U35
n.o"*1;
T • L) "^ S
^ • 0 "^ S
0 • (J "^ 5
0 • Lf "^ ^
PtU^S
f ; . 0 3 S
0.035
O.UT5
O.UT5
n.u?5
0.035
D.0^5
O.U17
0 • U ^0
1 • Cl '0
0.017
O.J20
1.U20
O.u?2
0.020
O.U20
1 ? . 2 A
1?»66
14.06
11.71
16. 67
12.43
15.7"
24.3^
30.41
10.47
1P.OT
15.00
20.45
??.sn
16.36
15.00
17.31
3.49
*.oo
7.60
1".U7
17.24
25,0'J
n.o
O.U
O.U
0.0
o.o
O.U
0.01
-O.OJ
-0.30
-0.31
0.31
0.04
U.06
0.04
0.02
0.24
0.17
0.08
0.04
0.01
0.08
0.04
O.P1
237.15
0.10
-?36.97
1106.75
413.13
-49.31
-1156.07
P13.80
-16.P3
0.01
-796.86
586.23
21.0
23.0
10.4
9.5
2.8
5.0
4.V
4.3
2.2
6.6
6.5
3.6
2.2
?.8
4.6
4.3
2.2
6.2
3.0
?. 1
14.3
9.3
7.3
16.3
5.3
4.3
A. 3
7.3
7»3
10V
110
73
112
76
83
115
116
117
85
119
120
121
122
120
124
12S
87
ti.7
36
129
129
130
14
131
14
132
79
79
110
111
112
113
113
115
116
117
118
119
120
121
122
123
124
1 '5
126
127
12d
127
130
131
131
130
132
1?2
133
1T2
«o
111
11'
113
114
115
116
117
11"
119
120
121
12?
123
124
125
126
127
12R
129
130
131
132
133
J.O
0.0
U.O
-1^00.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
u.o
0.0
0.0
O.J
0.0
u.o
-450.0
0.0
0.0
0.40
0.39
0.38
0.41
1.40
0.40
0.40
0.40
0.40
0.40
0.39
0.39
0.39
0.40
0.40
0.39
0.39
C.40
0.40
n.40
0.40
0.4U
0.4U
112
1 13
114
1
1 16
117
118
119
1 20
121
122
123
1?4
125
126
1 ?7
12E
129
13
I'M
132
1 T5
137
0
114
115
0
117
1 1d
119
0
121
122
123
124
0
126
127
U
129
0
131
133
133
136
0
0
n
0
0
0
T
0
0
0
125
0
0
n
0
0
n
IbO
0
132
134
135
137
0
0
0
n
n
0
0
0
0
n
0
0
0
0
0
0
0
0
1
0
n
n
1 1"
0
D
U
0
U
0
0
0
0
0
11
0
0
0
0
U
0
0
0
U
0
0
0
0
NJ
LO
OJ
*K«xx*M«it««if «KM DTFFUSTON CONSTANTS *»»»»«» »« »»*« K«
CHANNEL CONSTANT cc4>
25.UU
-------
*K««*Xft«N«lf«K«MK««l'«X««X«K*K*lt<«i» x» K»«K KHXMXXK KKKKXRH **x *H*K«N «x
FROM
JUNC
TO
JUNT
CONST 1 UPT«KF
CONST 3 UPTAKfT
(PHUPP)
COK'ST 1 RrGEM
CONST 3 RFGFV
CRFCEPP)
CONST
REGFN
133
O.J
0.010
0.0
0.0
Q.U
-------
XXKXNKKX»XXXKKKXKXXX»XKXKXKKXHKXKNK«KKffK
SU«HARY Or CONSTITUENT DECAY PATES
»KNX»KNKXK
0.150
0.050
0.150
O.J50
0.150
fONFT 2
(n^CAYK 2)
(PtP PAY)
0.090
0.09U
J.090
0.090
0.090
CO^ST 7 *
(OErAYK ?)
(PEP DAY)
n.O-'O
0.030
1.030
M.U30
o.uSO
CONST 4
OFCAYK 4)
(PER -1AY)
0.02U
0.020
0.020
0.020
0.02U
COVST 5
(DEC»YK r)
(PER 0'^)
n.170
T.1HO
0.170
P. 100
0.170
CONST 6
(PER PAY)
0.0
0.0
0.0
0.0
0.0
?NO
to
U)
on
KK»K|>KN«X*VK*KXXKXKKltK»XXXXXXX
OF TOHSTANT VASTEUATER
xxx»xxx»xxx»xxxxxxxxx»xxx»xxx»
JU»'C.
TOTAL rLO"
rONSTITUFNT 1
TONC. LOAD
ftG/L)
COWSTITUE^T 4
COVC. LOAD
(UG/LJ
CONSTITUFHT 5
CONC. LOAD
(tB/D*Y>
COISTFTUtNT 6
LOAD
-450.U
'U.O
4&S46.
n.o
25.0
6068"«.
O.L
.0
-------
OF BANK LOAU?
NXItXXItKftXXVI'XItXXKItKXKItllXKItltMMX
SHOSF
JUNf. I IMF
CM)
in o.b
11 0.9
1' 1o2
1^ 0.9
1 1< n , <,
1!: n.s
H o.u
17 0.0
1 •» 1 ,t
19 P. 9
20 1.4
FLOW
'.L5/Ctf) CKC/L) (L?/"OY)
10.0 431f.
10.0 48*?.
111.0 6473.
10.0 4t-;5-;.
. 1d.U 323*..
1C.O 2697.
10.0 C.
10.0 523f.
10.0 86TT.
10.0 4b5S.
Hi.O 66^n.
^.J
slj
5.J
5.0
5.0
5.0
5.0
5.0
5.0
S,0
5.0
215c.
24270
3236.
2427.
161C.
134V.
J.
161 f .
4 T 1 5 .
2427.
4115.
CONSTITUENT 3 CO«JS T ITUE"'T 4
CO^C. LO/iU CONC. LOAD
(MG/L> (LB/HAY) (UG/L) (IP/DAY)
15.0
15,0
1C .'J
15.0
15.0
15. U
1^.0
15.0
15.0
15.0
15.0
6A7i.
7282.
9709.
7282 o
'.855.
4046.
U.
4835.
12946.
728 (Mt/LJ fia/p;v>
30oO
30.0
30.0
30.0
30. 0
30.0
30.0
3u.O
30.0
30.0
30.0
12946.
14564.
19411.
14564.
9710.
fc091.
0.
9709.
25891.
14564.
25891.
T.J
OoO
o.u
O.I.
O.u
T.J
O.u
O.u
O.U
O.t
0.0
0.
Llo
0.
t.
L.
3.
0.
U.
0.
U.
u.
to
U)
CTt
SUM"*RY OF UPPER BOUNDARY CONDITIONS (NODE 114)
K««XM**KNHKKKKffNX**l»tl<«KMi
IHCPFMtNT
NO, IFSCTH FLO v
CCVClTS) fCF«)
1 t.)n -liur.
"" OJT -i^jn.
COVSTITUENT 1
COMC* L0»0
fLE/DAY)
0,10
a. 05
Z'
TONC.
O.?ii
0.20
UFfT ? CONSTI
LO*1? CO»CB
(LB/U;*) (MG/D
7427. l).?P
161". U.10
TUETT 3
LO»J
(LB/DAY)
1618.
?i 1.1 T •
CONS
CCNC
(UG/L
i r . nu
TITUr"T '•
) CLP/OA")
1618^0.
CONS
CMS/I
4. no
3.rn
TITUfNT 5
10*0
> (ta/0/.Y)
;::::•
roNSTUU?NT 6
CONC. LOA"
("P/D (L9/DAY)
6. JO
7,10
4"t54i?.
-------
**x»x«xxxxxxxxx»XXKXx*x»xx»x»»x»xx SUMM*DY OF IHITI^l. CONCENTRATIONS »««» *» x» i* »»* Kim* KMKKKX »x x*xxxx xxx»
CPOM TO
JUNC JUHr
1 1
2 £
6 9
10 15
16 20
?1 25
?6 30
T1 35
76 40
'•1 45
46 65
*6 77
78 82
33 85
£6 128
1?9 130
1*1 133
CO^ST 1
°.U1
'1.U5
O.iu
1.35
1.30
0.70
i.lli
O.J4
P.U2
r.U1
n.U1
1.40
1 .5u
C.4U
0.30
1.VO
1.5U
CO^ST ?
n.io
3.2u
T.25
0.5J
1.6J
1.50
1.0U
C.3U
0.6J
0.3J
1.10
0.45
1 .00
1.4J
0.20
0.55
1.00
CO"ST •<
("G/L )
o.u;
0.10
0.70
2.50
1.60
1.20
1.70
0.4U
0.4U
n.60
1.60
?.10
2.50
?.ou
1.00
'.80
2.5J
CO^'ST 4
(UG/L )
n.uo
30 . UU
30. JO
35.00
70. UO
35.00
70.00
65.00
65.00
30.00
10. JJ
30. UO
65.00
75.00
30. UO
30. UO
65.00
CO»'ST 5
1.00
1.50
1.70
5.00
7.00
*.50
5.00
3.00
1.50
1 .00
1.00
?.50
5.00
^.00
1.50
4.50
r.OO
CO^ST «.
«.0(,
6.60
6.60
1.UO
?.50
3.50
S.50
6.80 '
to
6.80 w
".00 I
H.OO
2.80
1.00
5.00
6.00
0.50
1.00
-------
TIDAL CYCLE VARMTIO^ OF SEAWARD BOUNDARY C010IT10NS «<»*»( »TIONS AT JUNCTION 1
TVTr?V»L
1
7
~*
t.
•=
A
7
n
o
10
11
1'
1 "*
16
1r
1 *
1'
1 f
19
2r-
21
2?
2*
2 A
2"
C"G/L)
0.05
3.U5
n.os
0.05
0.05
O.J5
0.05
n.os
n.us
0.05
0.05
0.05
O.U5
1.05
n.os
0.05
O.U5
0.05
O.U5
O.U5
O.U5
1.05
n.us
n. 05
n.os
rONSTITUFNT ~>.
(KG/L)
T.1P
i.n
n.n
1.10
1.10
o.in
n.n
n.n
1.10
i.n
0.10
n.n
".10
n.n
0.10
n.n
n.n
1.10
n.n
0.10
1.11
n.in
n.io
0.10
o.in
CUVSTITUtNT 3
o.?n
0)20
0. ?0
li. ?0
0.?')
0.20
o.'n
0.20
0.20
o.?n
u.?o
0.20
O.'O
U.'O
u.?o
G.?0
U.?n
Li. 20
O.'O
0.20
0.2P
U.'O
0.2n
o,?n
j.'n
CONSTITUENT 4
CJG/L5
10. OU
10.00
10. ou
10.00
10. OU
10. OJ
10. OU
10. OJ
10. OU
10. OU
10. CU
10. OJ
10.00
10.00
10.00
10. OU
10.00
10.00
10. OU
10.00
10. OU
10.00
10.00
10. OU
10. OJ
rONSTlTUFMT 5
1 ,UO
1 .uO
1 .LIU
1 .UO
1 .1)0
1 . JU
1.UO
1.00
1 .00
1.00
1. JO
1,1)0
1.UI3
1.00
1.uO
1 . CIO
1.00
1.UJ
1.UJ
1.UO
1.00
1.00
1 . Jl)
1.0J
1. JO
(HG/L5
».L)P
H.ilO
8.UT
" .00
*.on
*?.oo
8. on
8.UQ
".00
R.OO
a.un
8. on
«.oo
R.on
8.U1
8.00
5.01
''.on
8 .on
8.UT
8. on
».oo
".on
3.UC1
s. on
10
U)
00
-------
HIGH SLACK PPEPICT IONS
JUf.'CT ION-
CrT)
CONSTITUENT 2
(*G/L>
CONSTITUENT 3
CM6/L)
COMSTITUEMT 4
(HG/L)
1
It:
6'
67
61
60
59
5P
S7
5'
5 A
5?
5?
51
50
49
46
45
44
J.22
0.?6
U.3J
0.T0
0.44
J.40
0.17
Q.SS
0.7?
0.69
3.F2
0.79
0.~'7
0.'1
0.64
0.69
0.4V
CYCLE
n.'ol
CYCLE
0.0'
O.U'
0.0'
1.01
CYCLE
0.01
0.0'
0.01
CYCLE
O.U1
CYCLE
0.01
0.01
CYCLE
0.01
0.01
O.U1
O.U1
O.U1
CYCLE
O.U1
0.01
P. 01
o.ui
P.J1
480
0.10
0.09
481
0.09
0.06
0.01
0.07
48?
0.07
0.07
0.0'
483
0.06
4o4
0.06
0.06
C.06
485
U.07
0.07
0.08
0.09
u.n
4*6
U.17
0.14
0.1"
0.19
J.'?
11 DAYSj 6. 00 HOUPS
O.?0
U.74
10 DA»S* 6.51 HOURS
0.'9
O.A2
13 DAYS* 7.00 HOUfS
0^49
10 DAYSj 7.5H HOUPS
U.5U
10 DAYSj P. 00 HOU7S
ul'S
11 DAYSj «.5f) HOUPS
u.5a
U./-V
J.4V
10 DAYS* °.QO HOI)i>S
J.40
U.47
U./6
J./5
10. UU
11.61
14^32
1^.14
15.67
15.86
15.99
16.15
16.16
16.06
16.42
1^.12
1«.00
1".42
21.30
24.03
26.37
2°. 51
3?. 10
3f !69
41. V9
i.m
0.4'
0.27
0.14
0.11
0.09
I.LiB
1.07
P. 07
1.07
l.u'
n.O'
1.07
1.U7
O.J7
1.U7
1.J"
l.u'
O.J<>
8.00
7.1'
6.?'
6.06
5.°5
5. "7
5.P?
5.P'
5.RT
5.P7
5.P9
5.91
6^01
6.10
6.15
6.0"
6.15
10
CO
-------
4?
42
41
40
39
3°
37
S6
35
1 1,
i ?
32
31
3P
29
2fi
27
26
25
24
23
22
21
20
1Q
|P
17
16
15
14
130
1?c'
17
\?
11
10
c
p
7
6
5
4
•5
7
11*
J.?8
J.?0
0.13
U.36
-0.03
-0.12
-0 o ?4
-0.*3
-0.16
~ o • ^n
-U.?5
-U.29
-(J.T4
-0.41
-O.S7
-U.'9
-0.T7
-0.42
-0.47
-0.52
-0.57
-0.5V
-0,64
-0.68
-0.7.5
-0.75
-0.91
-0.84
-0 a*b
-0.90
-0.92
-0.93
-J.95
-0.^6
-0.98
-J.9P
-1.0U
-1.01
-1.02
-0.94
-0.94
-0.95
-U.95
-J.9C
-fl.rJ6
O.J1
0.01
o.ui
o.oi
0.0'
0.0'
ruo"1
n.04
c VCLE
o.o-
Q.Q7
0.0°
Oo10
0.1'
0.1C
Oo20
C"CLE
0.2?
0.37
0. 4C
0. 5*-
0.7"
n« 8°
1.04
1.2*
1.4*
1.66
1.86
2.14
2.2'
1 «9r
1.69
1.58
0.96
0.6S
0.3"
0.24
0.21
0.1*;
O.U7
0.05
CYCLE
r,.0r
a. or
0.0^
n.oc.
o.or
1.0r
U.'6
u.^o
U.T4
Ua"*9
u . '4 4
U 9 * 0
O.f;6
0.6A
43?
U.7-
0.~4
U.44
U.44
0.44
0.45
Do46
(j . '• 8
O.T1
10 D*T3» in000 HO UPS
0.55
u.5 V
0.62
U067
0.73
0.79
O.PV
10 DAYS* 10.50 HOURS
1.04
1.18
1 •*!
1.45
1.65
1.8V
2.07
2»?9
2.C1
2.76
2.97
J.25
3.30
2.94
2.6Q
2.44
1.65
1.26
0.85
0.62
0.56
U.r-5
0.1V
C.14
111 DAYS* 11.00 HOIJ"S
0.11
0.10
U.10
0.10
Oo10
O.lLi
44,68
47.34
49. b3
52.47
55.26
57o81
59.93
62.1S5
6?. 92
6°. 1i
710 Id
73.71
76.26
7P.29
80.66
8T.V4
86.26
b7.8'J
89.03
90.02
90.30
S9.94
t«.87
87.04
84.05
60.55
7*.U2
62.46
5T.71
4°. 4V
47.53
46.1V
4?.3b
39.13
35.96
34.96
3*. 22
2'. .27
21.96
2n.7d
20.21
2n.J1
1°.9iJ
1°oisi
2^.1)^
^.09
0.10
0.11
no 1 '
0,1*
Ool f.
0.16
0.10
0.21
()*tit
0025
0.2«
0.30
Oe3?.
0.35
0.40
0.46
0.5'
0.59
0.7'
0.91
1.U*
1.31
1.57
1.V?
?,2S
?.79
*•« 1 ft
?.9?
2.66
? .56
1.5°
1.29
0.96
0.87
0.86
1.87
1.29
1.47
1 .6?
1.8 1
1.95
'.16
'.6T-
*.u3
6, *4
6,"
6.?n
6c 0°
6.01
6.03
6 i ?1
6.4*
6.';6
3«6"^
3.75
4.7"
4.°1
4.
-------
LOW SUCK PhEPTCTTONS
JUNCTION Hr*U rONSTITDE"T 1
C VCLE
1 O.r* 0.0*
65 0.60 O.U/
64 0.62 O.ti'v
6* i).'>5 0.0T
(•?. 0.*.° O.U7
61 0.7J O.U?
'jP 0.72 O.U7
CYCLE
5C 0.62 n.U1
'3P 0.65 O.U1
CYCLE
S7 J.50 n.01
CYCLE
56 U."*4 0.01
f b.T7 0.01
54 0.4U 0.01
CYCLF
'j2 J.?b 0.01
31 U.^1 O.lM
50 0.?6 0.01
CYCLE
40 o.'? o.ui
4P 0.T6 O.U1
C VCLE
i>f o.T^ n.ji
45 U.5b n.ji
44 U.*4 O.u1
i' H.TM n.ui
CONSTITUENT
(MG/L>
49?
U.10
0.10
J.09
o.oe
0.08
0.07
493
0.07
0.07
494
0.05
49*
0.06
0.06
0.06
496
3.06
0.07
0.07
0.07
497
O.OP
0.09
U.1P
49»
0.1T
0.14
0.17
U.1"
? CONSTITUENT 5 CONSTITUENT 4
10 OAYSj 12. DC HOU^S
O.?0
0.25
U.'o
OJ41
10 0»Y«:, 12.50 HOUPS
U.64
U.47
10 O*YS* 13. on HOU"»S
0./.9
10 D»Y?, 13.50 HOURS
O.AV
o.co
0.50
10 OfYc* 14.00 HOU>?S
o.co
0.50
u.so
0.49
10 DAYS* U.Sr HOUPS
U.49
U.4V
0.46
1J D*Y?* 15.00 HOUPS
0.47
U.45
•J . /• '.
10. uO
10. 5o
11.92
1'.97
14.J3
1< .its
1T.33
15.63
16.09
1*.25
1*.13
16.24
16.47
17.08
1?.07
19.3.:
20.20
22.64
^4.75
27. oa
31.24
37. DJ
/.••Ij;
rONSTTTUE^T 5
LOT
o.tc
0.3T
T.2'
0.11
0.09
0.08
0.07
0.07
0.07
O.U6-
0.07
O.U?
n.07
O.U7
O.U7
n.US
fONSTITUFNT 5
(MG/L)
3.00
7.6^
7.05
6.6P
6.V
t.17
5.86
5.S7
5. °f-
5.90
5. "A
5.96
5.°7
6.04
6.18
6.?7
6.'?
6i?7
I
M
I
-------
10 U*Yr?j 15.3D HOURS
41
uO
3?
5P
37
36
T r
34
33
j?
31
±0
?f
2P
27
26
2C
*•/•
2?
??
21
?r
1"
1°
17
16
15
14
1 JO
12°
1 *.
1?
11
10
c
p
7
6
5
4
0.75
)s«2
•J . rU
G.°7
1 .07
1 .14
1 ,03
1.12
1.15
1.1*
1 «?1
1 .'f
1 . '0
1.19
1 ,'5
1 . ?fe
1 .'1
1 « T4
1 .T7
1.*-'
1.41
1 .43
1 .46
1.4(5
1.51
.31
• ?3
.35
• '6
.'7
.38
.^9
1 .4tj
1.41
1.42
1 .43
1.44
1.17
1.17
1 .1 i'
n.Ul
O.J1
n.ui
O.U?
P.J"'
P.U^
C*CLE
O.U''
P.UT
0.04
1.J*
0.07
n.o«
P.T
CYCLE
0.14
0.1 7
0.21
0.2"
0.37
0.44
0.50
0.61
0.7?
0.9T
1.10
1.37
CYCLE
1.6°
1.73
1.U7
2.1?
?.24
?.21
1.78
1.15
0.74
0.?'
0.14
1.0^
CVCLE
O.ur
O.L)^
1.U'-
U.?S
1>.T7
u.37
a. 40
U.4C
o.^n
son
0.55
J.6H
U.6*
0.76
0.86
0,°6
1.07
501
1.14
1.21
1 .T0
I./?
1 .r4
1.62
1 .67
1.75
1.31
1 •*• 7
1 .°1
1.19
50'
1.«4
1.13
1.78
1.58
1 .'4
1.10
O.S9
U.7?
O.A?
0.45
o.T?
J."=
50'
0.2?
J.''1
o.?0
U.A4
U.44
L. 44
0.46
U./.5
0.46
IT 0»Y<:, 1A.QO HOUPS
U.ib
0.4V
U.C2
t,.c6
L.60
U.f>5
0,72
10 0*Y«:» 16.50 HOURS
0.77
0.83
U.«M
1.03
1.19
1.'0
1.TV
1.53
1.5V
1.90
2.14
2.44
10 D*YS» 17.00 HOURS
2.7V
2.8V
2.9fc
3.25
2.34
J.26
T.1P
0.20
0.21!
0.2"!
0.2"
0.29
0.51
0.34
0.3^
0.4*
0.49
0.5'
0.6'
n. 7'
P.9T
1.1'
1.4"
1.Ve
'.10
'.2*
2.7"
'.15
? .30
?.79
1.9'.
1 .3"
1.9'
1 .U'
1.2-?
1.5'
1 .7?
1.9-T
6.55
6.*7
6 . ' '
6.2-'
6.?n
6.41
6.5?
6.81
6.67
6.41
6.17
5.9?
S.74
5. P«?
5.7S
5.5P
5.29
4.»C?
4.43
4.06
3.7'
3.4r
5.3 =
3.?'
3.0"
3.3»
2.P'
2 . « B
I."?
1.5"
1.56
1 .97
2.61
3.09
i.67
4.4-1
/..pn
4 , OR
5. ?T
5. 7?
I
NJ
1.17
n.'Jr
1.1-1
-------
X«<<*XKin.fj HOU»S>
JU'T .
CONSTITUENT 1
*VG
COVSTITUENT 2
"IN M0r "VC
CONSTITUENT 3
MAX
CONSTITUCNT 4
CONSTITUENT 5
M!N MA* HVt
"AX
»V6
1
f
'•
I
c
/•
-7
s
c
1"
1 1
1 ->
1 7
I/.
1 r
1 '•
17
1 c
1°
20
21
2'
27
2«
^ f-
2£
t~
?*
2r
30
31
•7 •>
•J T
34
3?
36
37
3P
3°
40
41
4?
t,r
i«
4S
(. <
1..J5
O.U5
n.ui
0.04
n.ui
P.ud
fl.Oi
P.ol-
0.1 J
o.u-
P. IV
n.33
n.cz
i .6*.
1 .65
1.7V
1 .j*?
1 .03
0.*2
n.f-c
O.V6
O.^c
0.41
n. .05
0.09
0,21
0.45
n. 70
1.13
1.58
1.96
1.91
1.88
1.72
1 .43
1.23
1.04
n.67
0.72
0.63
0,51
0.39
0.31
0.25
0.19
0.14
0.11
o.ue
0.07
0.05
0. J4
0.03
n.u>
1.02
0.01
O.u1
P.ul
n.oi
°»O1
P. 01
".00
P.O j
^ . -iii
0.10
0.20
0.2J
0.20
0.20
0.20
0.20
O.?1
0. SO
P.. 34
0.36
0.43
0.53
O.oi
0.96
1.27
1.59
1.77
1.85
1.30
1.73
1.66
1.60
1.53
1.39
1.27
1.19
1.12
1.07
0.95
1.85
0.76
0.64
0.56
0.5J
0.45
0.3V
0.33
0.2V
r.25
0.20
P. 16
0.13
n.12
P. 09
". M
0.10
O.?0
0. ?0
O.M
0. ?1
0.??
0. ?6
0.3"=
0.51
0.67
'J.79
0.94
1.20
I."'
1 . 9C
2.05
2.14
2.12
2.1?
2.11
£.11
2.11
t. 11
2.05
1.97
1.38
1 . 7"»
1.65
1.47
1.?"
1.1"
1 .PC;-
J.95
0. "7
0.75
0.6&
0. 5C
0.50
0.44
(j* T9
0.3'.
0.30
0.26
0.21
u. 1 °
i;. 1 S
n.10
0.2L!
0.20
0.20
0.20
0.20
O.t.2
P. 27
0.39
0,46
0,55
0.6t
0.85
1.39
1.55
1.74
1.86
1.97
2.00
2.00
1.98
1.93
1.89
1.61
1 mtti
1.56
1.45
1.34
1.22
1.10
1.00
O.i>9
0.79
0.7'J
1.62
0,54
0.47
1.41
0.36
P. 31
0.27
0.^2
0.1V
0,16
n.13
".11
0.20
0.10
P. 10
0.10
P. 1 0
0.09
0.11
0.14
n.32
0.42
0.48
0.71
1.12
2.48
2.75
?.48
2.41
7..09
1.83
1.66
1.49
1.35
1.27
1.17
1.UO
o.ea
0.81
3.76
0.72
0.65
0.59
0.54
0.49
0.46
n.44
0.42
0.41
0.39
0.39
0.38
0.33
0.37
0.37
0.3b
0.38
n . ? ".
o.?o
0.1 )
U.10
0.10
0.11
0.1*
0.21
0.41
a. s 5
1.59
*• 51
3.07
3.43
5.A4
3.29
3.39
3.26
2.97
2.77
2.5?
2.3?
2.10
1.94
1 .70
1.51
1.37
1.2S
1.11
0.9?
0.*?
0.75
T.67
0.67
0.60
0.55
U.M
O.'-H
0.46
0. 4C
0.44
U . '. 4
0.4',
0.4^
J.45
O.'-S
.!.'. 7
0.2U
0.1C
0.10
0.10
0.10
0.10
1.14
0.24
n, i>i
P.8B
1.23
1.P1
2.41
3.00
2.Vb
2.9f
2.t2
2.52
2,30
'.08
1.89
1.71
1.59
1.43
1.25
1.12
1.01
O.V1
0.81
0.73
O.t>7
0.61
O.id
O.i <
0.4V
0.46
0.44
0.43
0.42
0.41
0.41
0.40
1.41
0.41
0.41
''.it
10. U
19.9
1°.7
1°.7
19,6
19,5
20.0
21.3
23.7
30.2
31.0
3'. 9
37.2
45.1
50.0
41.1
73.4
31.1
p«,7
37.8
89,8
8R.9
87.9
86.5
?7.7
81.1
79.2
77.6
74.0
7'.U
69.9
67.1
63.7
61.5
^9.5
?7.V
55.6
'-7.2
r1.5
49.0
'.5.V
42.5
TP.7
37.3
??. 5
7 1 . -
10.0
1 ''. 9
1°.9
20.0
20.4
21.5
24.7
30.6
33.4
43.6
46.o
51.3
5°.U
t>7.7
39.7
95.6
96.7
10?. 1
104.0
1U4.6
104.5
104.5
104.5
104.4
107.9
11/2.6
100.6
97. 8
9?. 2
6*. 1
85.1
81.3
77.7
75.0
71 .0
66.5
6?. 6
60.0
57.0
54.0
51 .4
49.3
47.2
43.7
u1 .9
.••" . 1
1G.O
19.9
1V. 8
19.7
19.7
19.9
21 .5
25.?
32.7
36.0
33.4
42.4
47.6
66."
73.?
40,6
C6.0
92.0
94.9
V6,9
97. 9
98.1
*7«p
96,?
94.5
91 .8
69,*
o6.5
. 7
1.0P
2.4?
2.11
1.87
1,66
1.44
1.17
0.9?
U.75
0.76
0.77
O.f 7
1 .?0
2.10
1.P5
1.4?
1.'4
0.9?
0.67
J.5?
0,T9
J."«0
0.'6
O.?1
0.1'
0,09
0.07
•J.06
O.P5
0.0'
0.0'
l.Or
3.0?
0.01
0.01
J.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
o.ro
.I.CP
1.00
2,6'
2.16
1.94
1 .& 1
1 .61
1 .45
'.27
0.98
1 .64
2.41
T.22
3.59
'.41
3.14
7 • 1 B
2,eo
2.2C
1.93
1.57
1.31
1.07
0.91
0.70
0.57
0.49
0.47
0.3"
0.3?
T.29
0,27
O.i*
0.2?
0.21
0. °
n. 6
n. 4
0. *
T. 2
(1.11
0.1C
0.09
O.O1'
T.o''
n.j7
">.-i~"
1.00
?.63
2, 13
1.91
1.72
1.51
1.30
1.06
0.82
1 .06
i.3e
1.93
2.49
2.68
2.49
?.32
?«01
1.53
1.24
0. Vb
0.79
1.62
0.52
0,40
0.30
0.24
0.2CJ
O.It
0.13
0.11
0.10
0,o9
O.L8
0.07
o.uc
0.05
0.05
0.04
O.U4
O.U4
0 . ( 3
0.03
0,03
O.L3
0.03
r|. l.-<:
8 13^
6l57
5.86
5.54
5.11
4.79
4.57
4.04
3.2?
2.50
1 .9'.
1.31
0.89
0.79
0.97
1.4?
1.77
2.25
2.56
2.69
?.7C
2.81
'.17
*•!•*
3.8^
4.10
4.4°
5.22
5.25
•=.34
r.4"
5.63
5 .7"'
5.V4
6.19
6.11
5.9C
5 . V?
5 , 9 *
6.04
6.17
6.1"
6.14
6.0"7
6.00
'•.•;'i
8.00
A, ffc
*.OV
5.37
'•. 55
5.2o
5.U
5.1V
4.31,
4.25
4.19
7.92
7.47
'.23
7.i5
3.64
7.71
7.92
4.1V
4.21
4.54
4.91
c.21
5.57
f. . 1L
5.41
*.5d
4.97
5.9fc
6.67
6. 65
6.96
7.23
7.39
7.5S
7.67
7.31
7.00
6.75
6.7«
6.cO
6.90
6.92
*.6?
6. S2
'• . .< 3
ci.OO
6.68
5.°7
5.72
5. '6
5.0t
4.94
4.4V
3. 90
3.54
3.?3
2.71
2.19
1.57
Z »no
2.62
ci."4
3.14
3.36
3. '.9
3.63
3.?6
4.20
4.55
4.99
5. '6
5.66
6.P6
6.11
6.15
6.2S
6./0
6.58
6.74
6.R6
6.8U
d.55
(. ,4£
6.76
6.42
t.A9
t .'-2
S./.6
6.72
c.?1
(...1C
-------
,
i1
c 7
5?
5'.
5C
5*
57
53
5C
6r
61
fr?
{•'
6'
f
6'
67
6°
69
70
71
7'
7'
7*
7-=
7'
77
7r
75
i,0
ei
8'
8*
C,l-
8*
M6
87
t"
£ 0
90
VI
V?
97
S 4
V5
V<
97
yr
?o
0
1
7
'
n.oU
O.Uo
0,0"
O.oJ
P.iaj
O.oO
P. 00
n.uj
P.uO
0.01
O.u1
O.UI
O.ui
P.U-;
P.i-'1!
n.uA
P.I i
O.U*
p.ur
O.J7
0.06
P.uS
fl.wi
P.U4
O.u4
n.u?
P.ui
O.U3
0.59
?.55
1 »-qV
1 .44
1 .01
O.SU
0.23
0.1 3
0,0?
O.U2
P.J2
n,{j>
P.ul
O.ui
P.u1
P.U'1
n.uc
0.00
r.uo
O.JO
P.-jf!
O.oU
P.oO
0,1/3
O.o.)
p.uu
n.oi
O.U2
O.ui
P.U1
. ./ 1
0.01
0.01
0.01
0.01
U.01
0.01
0.01
U.01
0.01
0.01
O.°1
U.02
0.0'
0.0?
!«.0<6
U.O'.
U.22
0.1?
0. 1p
u.ie
0.18
0.1?
0.1?
U.19
0.1°
»J. 1 ^
0.17
0.15
U.7?
3. ?9
2. ''I
1.66
1.13
J.f7
U. ?">
0.21
0.04
0.04
J.OA
0.0?
0.03
0.0?
0.0?
J.01
3.01
0.01
O.U1
0.01
0. )1
U.01
0.0?
0.02
0.02
0.01
3.02
o.n
0.11
o.n"
f.UO
P.UO
p. JJ
P.UO
0.00
r.uo
O.JU
0,00
O.U1
0.01
0.01
P. 01
O.U1
P,0?
P.O?
O.U3
0.04
0.1S
0.12
0,11
n. 1 1
0.1U
n.to
0,09
P. 09
O.U9
r.os
P.Oo
O.U7
0.65
'.01
2.34
1.57
1.08
0.59
0.25
0.18
n.03
0.03
1.03
0.02
0,02
P. 02
0 .01
O.J1
0.01
0.00
P.OO
^.00
O.JO
O.ui
P.01
0 . 01
*"* . ol
O.U1
n.J1
•o.u^
P.US
1 . U *
P.U 5
0.05
0.04
0.04
0.04
n.(J4
0.04
0.04
0.04
0.04
O.U4
P. 04
0.05
O.U6
P.U6
o.u*
o.ov
0.34
0.36
0.37
0.39
0.40
0.41
0.4?
0.42
0.39
0.38
0.34
0.30
0.73
1.53
1.66
1.74
1.93
1.7J
1.42
1.24
0.64
0.62
0.5V
0.56
0,53
0.48
0.41
0.20
0.16
O.U8
0.07
0.04
0.03
0.03
O.U3
O.U4
P. 04
0.04
0.05
0.25
0.19
n. 1"?
0.10
J.OO
0.0"
0.37
U. U7
0.06
0.36
0.06
0.05
0.06
C.37
0.0'
0.03
0.08
U.OO
U. 39
0.10
0.48
•3. 5?
0, 56
0, 5*
0.61
U.63
U. 67
0.64
0.6?
0.61
0.58
0.51
0. 9?
1.7?
1.R7
1.95
2.?0
<:«0f
1.6^
1.48
0.63
U. 56
0. 64
0.60
U."5
3.53
U.«7
0. ?3
0.?4
0.1?
U.I 2
0,37
0.06
0.3"
0.0°
0.0°
l).0<5
0.3'
O.OT
O.*"
•J.2*
j. ?c
o. 07
0.07
3.06
0.05
0.05
f.05
O.05
0.05
°.05
0.05
P.U5
O.U6
n.u6
0.07
P. 08
0.08
•0.09
0.4U
3.43
0.45
0.4»
0.50
0.51
0.52
0.53
P. 51
0,49
0.45
0.40
o.as
1.64
1.78
1.86
2.09
1.V1
1.53
1.36
0.66
3.64
0.63
0.56
O.S4
0.50
0.44
0.23
O.£0
0.10
O.u9
0.05
O.J5
0.05
O.U5
P. 06
r.06
0.05
0.06
O.it
n.2?
^.i ~
0.39
0.40
3.40
0.40
3.40
0.4U
0.39
0.29
0.38
0.36
0.34
0.31
O.EV
0.26
0.24
0.22
0.20
0.40
0.42
0.43
0.45
0.46
0.48
0.49
P. 50
0.50
0.49
0.46
0.42
1.29
3.72
3.00
?.S2
2.08
1.42
0.99
0.86
0.46
0.48
0.46
0.45
0.43
0.43
0.40
0.37
0.37
0.38
0.39
0.41
0.41
0.40
0.41
0.37
0.35
0.36
•J.29
0.35
0.23
0.20
U.49
3.49
3. '.9
0.53
0.50
U.C0
0.53
3.49
u.s°
0.4b
0.46
U.U
0.4?
U.38
0.3A
U.'1*
0.2',
0.64
0.6<5
J.7?
0.77
U.31
0."5
0."8
0.3C
0. Bn
0.8 '
4.70
4,0?
2.75
2.?0
1.66
1.08
0.95
O.*'
J.5?
3.5'
0. A°
1'. SO
0.46
J.-U
0.4'.
0.44
0.47
u.5-0
3,e1
'3.51
0.5'
U.54
0.5'
u.51
J.50
i),/,*
J.71
'J. '»
.1.' -
0.44
0.44
0.44
0.45
0, 45
0.45
0.44
0.44
0.45
0.42
0.39
0.37
0.34
0.31
0.2b
0.24
0.22
0.51
0.52
0.55
0.56
0.61
0.63
O.t6
0.67
0.67
0.66
0.63
0.56
1.40
4.24
3.50
?.65
2.15
1.55
1.04
0.9U
0.50
3.50
0.49
0.47
0.46
0.44
0.42
0.40
P. 40
0.42
0.43
0.45
0.45
0.46
0.47
0.43
0.4*
0.«2
0.35
0. jl
0./2
°.i'J
2^.0
20.7
1C .6
1P.4
17.4
16.7
16.3
16.2
1S.3
16.2
15.9
1C.6
14. a
1 ?.?
1 ?.V
11.6
10. t
3?,0
?4.5
37.4
40.7
'•2.9
45.1
47. U
A8.1
4P.6
47,3
4?»8
39.7
50.5
6?. 2
74.7
CO. 6
91. U
BO, 3
8/,.3
80.3
61«6
( ?. 1
61.9
61.6
60.2
59.2
57.2
47.4
4A.5
?2.5
31.1
19.6
16.7
17.7
17. a
17.3
17.2
16.7
15.o
22.5
?5.V
1 <*•!
31.1
c9.Q
25.2
24.2
2?. 5
21,1
19.7
1^.5
17.6
17.2
16,7
16.4
16.0
15.4
14.6
n.i
11.7
41.1
4?. 9
46.7
4P.6
50.9
52.4
53.6
54.1
53.5
52.9
51.1
46.9
58.3
77.8
85.3
89,7
103.9
10f .4
V7.V
9?. 9
68.8
63.1
67. V
64.6
6/-.1
61.6
53.7
48.7
46.4
36.4
34.6
23.4
1°.1
19.0
20.8
2P.4
20.5
1 ",0
1«.5
41 .1
35.3
25.7
27."
2'j .0
23.1
21. S
20.0
18.9
1d.1
17.'.
1 7.1
16. «
16.4
16.0
15.4
14.7
15.7
12.5
11.0
36.0
39.0
42.2
45.1
47.5
49.*'
51.3
52.3
51."
50.7
48*1
43.0
54.4
73.4
80.5
85.9
98.7
9
3.fc'6
O."
0.1?
0.07
0.0?
0.01
0.01
0.01
0.01
,3.01
3.01
3. PI
u.01
0.00
j.on
J.t'O
3.01
0.01
0.01
3«r">
J.OT
U.O?
0.07
0.01
J.C1
).')"
0.0^
O,U6
O.J6
3.06
0.06
O.u6
0.07
0,07
0,07
o.os
0,1 1
0.15
0.21
0.31
0,44
0.60
o.s1;
0.75
O.S"
0.45
0,34
O.t7
0.23
0.20
0.1 *
0.1 1
0.1?
0.12
0.10
1.00
4.8"
3.77
1.9?
1.1?
0.66
O.i7
0.33
0.1P
0,1"
0.1 7
0.16
0, 1 c
0.1 c
0.1 ?
0.0°
0.0"
O.J7
0.07
O.U6
0.06
0. J7
O.J""
o.u-
0.0"
0.0'
'1.1?
0.09
fl,u°
C .."'
0.02
0.02
0.02
0. 1,2
0.02
0.02
0.03
0.03
0.03
0.04
O.U7
0. 1U
0.15
0.22
0.23
0.50
0.75
0.56
0.44
0.32
0.24
0.1V
0.15
0.11
o.ov
0.07
0.06
0.05
O.C4
O.R9
4.1fc
3.00
1.74
0.9E
0.46
0.20
0.15
0.06
0.06
0.06
O.O6
0.05.
O.U5
0.05
0.03
0.03
0.02
0.02
0.02
0.02
0.03
n.02
0.1/4
0.04
0.04
O.U?
O.U3
fl.L2
5.87
5.77
5.74
5.71
5.70
5 .6^
5.65
5.62
5.6?
5.64
5.67
5.75
5 «fc t
5. V"
6.15
6.52
7.10
2.47
2.18
1.97
1.85
1.9'
?.25
2. 9"
3.5?
4.71
5.50
5.K7
5.7°
1.00
1.49
1.73
4.37
5.36
4.40
6.81
6.20
7.8?
6.90
".43
7.1 7
7. IP
7.20
7.45
7.49
7.35
7.1?
7.11
6.61?
6.61
6.2"'
6.f»s
6.2T
6.2''
6.50
6.?°
5, 6.'
6.2V
6.16
6.1 3
6.J3
6.U1
S.Vo
I.Vt
•1.92
e .55
5.91
<;. vo
6.0c
f .1i
6.35
6.68
7.07
7. €7
"<.b3
?.3
'.46
?.6»
10.51
lO.oi:
1 1.6»
1*.37
11.12
10.37
°«52
1 1.01
11.33
6.97
1 l.tft
10. 4C
9.33
9.54
P. 60
7.VV
7. -if
7.i t
6.78
7.VU
6.5S
6.c2
7.J3
6.50
f- - ~"~
6.05
5.92
5.^6
5.P5
5.B2
5.^0
5.76
5.74
5.76
5.75
5.7S
5.93
6.02
6.17
6./3
6.91
7.42
3.'K
2.95
2.72
2«*5
2.97
J.'iV
4.62
5.4V
t «?1
6.5t |
6.75
6.57 £
I.'V ui
t.50 ,
2.*V
6. "9
7.71
7.?0
V.49
o.'fc
8.99
8.P5
v.ro
8.03
6. 10
£.94
6.7V
6.34
6.37
7.°0
7.51
7.01
6.93
6.49
7.^3
6./.0
t .44
f.75
6.^7
-------
in
111
1!?
1 1 *
1 1 I:
1 1 r
11 '
117
1 1 P
1 1"
1 20
121
12?
12*
12.'.
12r
12*
127
12°
12°
110
131
132
1 33
O.U'
0 .UM
P.Ui.
n.ju
n.oj
0.47
P.J?
0.33
o.?u
n»i.7
n.1 1
O.U
P.u»
0.07
P.u<-
P. US
n.i>7
0.02
O.U2
P. 90
1 .- L.
4 .1 i
? ,7b
L.'Jo
U.13
o. n
0.1"
0. 19
L..OS
O.f7
0.47
0. ^°
0.T'*
'J.I Q
0.15
0.1'.
0.1?
0.1 1
0.1?
0.11
0.10
0.04
0.0*
2.41
2.41
6.67
3.94
2.27
0. JH
0.06
3. 09
P. 09
O.J5
P. 52
0.43
r.36
0.32
p. 16
0.13
0.11
0.1U
P. 03
0.11
O.U9
0.08
O.U3
r.02
1.32
1.90
4.V6
'.37
?.09
0.35
0.^2
0.43
0.43
0.20
1.66
1.57
1.50
1.44
1.17
1 .03
1.03
0.95
0.91
1.03
Oi94
o.ba
0.60
0.58
0.66
0.73
0.68
1.23
1.31
0.41
U. 3-=
0.65
U.64
J.?Q
2.05
t. 3*.
2. 00
1.96
1.44
1.41
1.34
1 . ?°
1.22
1.3?
1.26
1.21
0. 5T
0.61
1.4"
1 .84
1.37
1 . S~*
1.99
P. .58
1.34
~>.5i
O.i4
0.2b
1.90
1.84
1.79
1 .74
1.32
1,26
1,21
1.14
1 ,oe
1.19
1.12
1 .07
1.62
n,59
1.04
1.23
1 ,ue
1.48
1.90
0.45
0.48
0.53
P. 54
P,10
1.38
1.25
1.17
1.12
O.S3
"e 78
n.7f
0.72
0.70
P. 76
0.72
0.69
0.46
0.45
1.52
7.28
5,60
?.92
?.90
J.70
J.72
(J»'->?
u.9*
u.10
1.54
1.43
1.33
1 . ?5
u.90
J«87
O.T1
0.7P
0.75
0.80
u.77
J.7r
J.50
0. *°
3.53
3.5*
8.63
5.30
i.30
T.56
0.59
0.70
0.71
n.10
1.4J
1.36
1.27
1.20
0.67
0,82
0,79
0.75
0.72
0.78
0.74
0.72
0.48
0.47
'.75
2.90
6.59
4.68
% 1b
A'.l
46.3
M.7
c^.O
20.0
r s.2
"5.9
S'.V
«2.0
78.4
75e9
7'- :5
71.9
70.4
74.7
7?. 1
69.8
62.6
61.6
41 .3
4 3.U
35.0
57.0
78.7
46.2
49.3
55.9
56.6
20. J
106.8
107.1
107.^
1 Jf.6
y^.1
V2.4
yOab
8?.1
t.6.9
V0.3
dS.o
«7.1
66.7
6^.6
70.1
44.2
61.4
74. b
66.7
45.2
48.5
54.6
55.4
20.0
V9.0
yg, 7
V7.2
95, P
86. •*
at •?.
o3 S3
31 .4
79.4
03.0
»1 .1
79.4
64.7
63.8
54.3
61.2
51.2
66.9
62.7
0.13
0.06
0.04
O.T
3.1?
U.^C.'
O.?1
0.17
0.14
0.06
r>.0c
0 ' 0—
J.O^
0.03
J.O*
J.C?
J.O?
0.01
0.01
1.5T
2.1f
6.7n
3.71
1 .°9
0.22
0.14
'1.14
0.13
3.1)3
0.5°
1.40
1.42
fi. j?
17.3?
0,31
Os29
l.^7
Q.25
0.2«
0.2*
0.25
a. i7
O.I7
3.67
J .5^
11 .23
5.93
2.79
0.16
0.06
n.07
O.U5
3.02
0.4U
0.31
0.25
0.22
n.14
3.13
T* * 2
".11
0.10
r.11
0.10
0.10
0.(J6
O.U6
?,71
?.70
8.06
4.95
?.44
1.31
0.00
5.<.5
6.65
7. 06
6.56
P.*.V2
7.22
1 ?.14
1 A . 1 1
15.44
15. U4
11.77
13.63
1 ' .27
1 *.C4
1 3.63
1?.96
14. 9i
14.31
10.68
10.97
?.V6
7.85
?.S3
3.55
S.24
0.57
O.Oi
t.53
7.i?6
7.1
-------
XKXNIfKKX*> T
0.10
0.22
0.22
0.22
0.22
0.22
0.24
1.29
0.41
0.45
0.56
1.6d
1.82
1.27
1.40
1.56
1.66
1.76
1.80
1.81
1.80
1.77
1.73
1.68
1.56
1.46
1.39
1.29
1.17
1.07
o.ve
0.88
0.7V
1.71
0.64
1.^7
0.51
J.46
1.42
O.i7
P. 32
0.27
1.23
0.20
n.17
T. 1 /
0.20
0.10
0.10
0,10
0.05
O.U9
0.11
0.14
0.32
0.42
0.48
0.71
1.12
2.34
?.20
1.86
1.60
1.60
1.51
1.43
1.27
1.20
1.18
1.10
0.96
0.78
0.71
0.72
0.70
0.60
0.44
0.40
0.40
0.39
0.42
0.41
0.40
0.39
1.39
0.38
0.38
0.37
0.37
0.38
I).3c
o. 7>
0.20
J.22
0.19
J.19
U.18
U.68
0.7C
J.90
1.34
2.27
2.57
3.24
3.58
3.51
3.34
3.47
3. ?3
2.9<»
2.77
2.5?
2.7?
2.10
1.°4
1 . "'O
1.51
1.37
1.25
1.19
0.95
Li. 92
0.75
0.69
'J.6*
J.6Q
0.57
U.53
0.50
J.4R
0.46
U.47
0.53
J.60
0.60
0.60
U.60
I. «.n
0.20
0.12
0.12
0.12
0.12
0.15
0.21
0.35
0.6o
1.02
1.37
1.V3
2.50
7.00
2.95
?.92
2.75
?.43
?• 21
1.9V
1.81
1.63
1.52
1.37
1.22
1.09
0.9V
0.90
0.80
0.72
0.66
0.61
3.56
0.53
1.50
0.4fi
0.45
1.44
3.43
0.43
0.44
1.44
1.45
0.46
0.47
1. / 7
10. U
19. b
19.7
19.7
1C.6
19.5
20. U
21.3
28.7
70.2
'0.3
3?. 8
34.5
70. b
?9.4
40.1
42.0
48.7
5C.1
. 6?. 3
66.1
6°. 7
68.9
74.5
7", 2
72.5
70.1
70.1
70. u
6°. 4
65.6
63.5
60.5
*Q.5
55,0
57.6
55.5
57.2
51.4
4r.7
77.2
30.0
?". . 5
ltit,7
41 .A
37.9
J/..6
~1 .1
1.00
1.5C
.45
.7*
.70
.'1
.17
0.°'
0.75
J.76
0.77
O.K7
1.20
2.10
1.85
1.43
1 .T4
0.9'
0.67
0.5?
0.39
u.-«o
J.?6
O.?1
0.13
0.0?
3.07
SJ.O''
0.05
0.07
0.0?
1.0?
J.02
3.01
3.01
0,01
0.01
1.01
0.01
0.01
0.01
0.01
J.01
U.01
0.00
•I.!."1
I.JO
7.53
2.79
2.46
2.2'
1.92
1.69
1.6"
?« 16
4.56
4.97
5.04
5.40
4.93
4.91
6.33
6.96
6.96
6.94
6.V7
6.7"
6.67
6.45
'.46
6.57
6.32
6.16
5.69
5.05
5.09
4. 8*
4.31
3.6'«
'.26
"*.
-------
r
A
r
.A
;. 7
>»
5"
(%r.
c i
6?
x •>
64
Ar
6'-
67
0"
6C
7P
71
7'
-f
7'
T,
7'
7 ~*
7r
7°
81
S1
8'
37
ot
j.*
6*
57
8°
Sc
so
91
97
9*
94
95
Vf
77
VP
V
100
1-J1
1u?
10'
10/.
10r
• - ,
V *JU
P.uO
O.u-J
O.UL'
Oct.,
n.uo
O.vid
P.U1
Oo'-l
U.U'I
Haul
n f . »
n.ui
O.U1
n,ii
0.JV
n.o7
O.J7
n.ofc
o.to
O.J/
O.ui
P.Ut
O.u *
n.u 3
P. i) 3
0. 3V
1.4V
1.46
1.31
0,79
0.1c
C.23
0.15
n.oi
n.u<
o.u2
0.02
P.U1
n.ui
n.ui
f.'.UU
O.ob
o.cio
n.uo
o.-io
O.Ul
o.Ou
n.uu
n.uu
n.ju
n. jo
O.o1
n.u?
n.ui
u.ur
0.02
0.01
o.tn
0.01
D.P1
•J.C1
0.0*
U.02
U.02
C>.U3
0.0^
J»!)3
0*0'
U.OA
n.05
t.39
1.41
1.'"
1.41
1 ,«1
1.AO
l.Afl
1.3?
1 . «-1
i./=n
1.39
1.37
1.4°
3.4?
?.°?
1.57
1 «5n
0.77
J.6*
0.'. 1
0.31
0.37
J.31
O.?"1
u.?o
0.?3
0.32
0.31
U.31
0.31
0.30
a. 3o
J.31
0.30
U. 31
U.30
U.3P
0.31
J.sn
l>!>57
i J . '. n
•»T
1.01
0.01
P. 01
O.U1
1.01
n.'J1
O.J1
P.01
r.ot
r.ui
).U2
0.32
O.'JZ
1.03
H.U4
0.29
0.30
n.32
n.33
n.34
0.34
0.33
n03i
0.31
0.29
3.27
0.23
1.79
?.9i
?,29
1.55
1 .50
1.60
0.29
0.22
1.0?
0.06
1.07
P. US
0.06
!),04
n.04
n.04
O.U4
n.03
°.04
1.04
P.U?
n.;j4
r.os
n.U5
f* ,U3
O.U4
",Ui
n.,1 7
n. 1 3
"..!<-'
P. US
O.U5
O.U4
O.uA
0.04
P.U4
O.U4
0.04
0.04
0.04
P. 04
O.U5
U.U&
f\ 1 1 *
• ' • *j >J
3.U3
o»U9
0.34
0.36
0.37
0.3V
0.40
0.41
0.42
0.39
0.39
0,38
0.34
0.30
0.78
0.81
0.36
0.96
0.96
0.44
1.38
0.80
0.20
0.11
0.20
0.12
n.18
0.14
0.16
0.20
0.16
0.08
0.07
0,04
1.03
0,03
O.OJ
0,04
0.04
D.U4
O.uS
1.13
n.19
n . i '
L'.l?
0. 11
0. 10
0.10
o.n
o. in
o,m
o.n
0. 13
u. 10
u.to
U. * '"
o« tr»
o. n
u. 1 •"»
0, 10
0=10
0.5?
U.59
0. ^^
O.ftS
0.71
0.71
a. 71
a. 71
0.63
0.6*
0.61
0»5T
U06
1.73
1.87
1.95
.2V
">,; i
0.39 t
0.40 t
0.40 i
0.40 (.
1.40 '
0.40 I
P=39 .
0.59 Q
0.38 U
0,36 U
0.34 L
H n 3 1 ti
0.29 0
0.26 U
0. 2 ft L
0,22 U
0.20 t
0.40 2
0.42 i
0.43 i
0.45 2
0.46 i.
O,*8 2
0.49 i.
0.50 <
0.50 i
0.49 I
0.46 2
0.42 <
1.29 £
2.49 i
?..34 /
?»^0 2
1.86 i
1.20 1
0.97 *
0.86 1
0.48 1
0.48 1
0.46 \
0.45
0.43 '
0.43
0.40
0.37
0.37
0.38
0.39
0.41
0.41
0.40
0.41
0.37
1.35
n. 3 !
J.6Q
J.60
1.60
.63
,60
.60
.6ri
.61
, 60
.60
<,6'l
.61
.6')
. O'J
o60
.60
.09
.10
.10
.10
elO
.10
.10
.07
..11
MO
:.09
..07
!.50
>.72
i.04
1.75
^•=6
,C7
.016
.99
.00
o09
oOO
.09
.n?
.09
.05
.0?
.0?
.11
.11
.00
.10
• in
.00
.10
.0.1
. 1f.)
.01
1.3.)
. 1 •»
. i 1
0.49
0.49
1.50
0.50
0, jij
O.!,0
D.4V
n.4v
0.48
0.46
iokt.
0.42
O.id
•l.Jb
Oo ?9
0.24
0.73
0.7V
0.66
0.91
O.V5
O.V&
0. V9
o.ve
o.v»
O.V6
a.vi
0.14
1.60
A. 16
^.<«2
?..60
2.11
1.48
I.Ub
0.94
O.i7
0.54
0.6U
fl.52
0.56
0.3
1i .1
t A _Q
U.6
13.9
13.1
12o1
10.9
36.9
39.?
41,7
43,9
45.6
47,0
48.1
4fe,6
47.9
ob. 9
44.8
41.5
57. *•
67.4
73.4
78 B1
38Q*.
67.5
86.3
60.6
60.4
ti .3
57 o2
59.7
56.5
57.9
55.6
45.6
42.9
3200
30.9
21.2
1<*.5
19.3
22.0
21 .0
c1 ,0
19.0
19.4
56.7
30. °
>~ . *
J.O"
UcQO
Go OH
0.01
0.01
U.G'i
J.01
O.O"1
OoO'
'J.O A
3 _ '.*
J.U°
0.15
U.?3
Us,?1*
Oo*?
0.4*
U.33
U.?4
Q018
0.1*
J.09
0.0*
0.04
a.c*
0.0?
0.0?
a. ut
0.81
3.37
2.2ft
1.50
06^6
0.^?
0,1?
U.07
J.O?
J.01
u.oi
0.01
0.01
0.01
0.01
0.01
0.01
o.co
o.on
0.00
0.01
0.01
0.01
0.0?
•}.l*3
0.0?
0.07
J.01
J.l-1
1 .''1
0,99
0.99
1,00
3.9"
1.00
°09°
1.V?
•"„'_"?
0.99
O.V 9
0.99
0.9°
1.99
?.« i
?.<.9
2.49
2.49
?.49
> _ ^ o
|> A o
2.46
>.4°
2.49
?.*3
?.«•«.
4.97
c.96
i .V4
4.9*
4.V6
5.7*
S.V«<
5 ebc
1.5*
1 .oO
1.49
1 .ft*
1 .49
1.53
1 .&c
1.4.°
1 .4°
U50
1 .49
1.4"
1 .40
1 .49
1.49
1 .49
1 ,it°
1 ./.°
1.4"
1 » 5*>
1 . 4°
1 . •; °
0.18
0.1t.
0.18
n. 16
0.1S
Oo 2d
3.21
" - >
0.27
0.33
0.42
0.55
0,77
0.78
0.67
0.60
0. 5t
0.51
0.48
0.44
0.42
0.41
0.39
0.37
0.34
1.35
4.42
^.22
?. 16
1.58
1.15
1 ,ue
0.8V
0.41
0.42
0,35
0.40
0,35
0.36
0.32
0.25
0.24
0,22
0.23
0.22
0,«2
0.23
0.24
0.24
0.2i
0.23
0,27
0.2V
0,2!:
1. ? 1
5.71
5.70
•J.6«
5.6<-
5.6'
5.0*
c o64
5 . ( • •*
- 07"
*= ,86
5.9J*
6.15
6.5?
7e11
?. 1 9
1.51
O.V5
0.6°
0.7?
0.85
1.4'
1.90
2.3?
?.7"
2 »t*3
2.3"
0.00
0.3*
O.S7
1.1?
1 ,m
2.61
Sol"*
4.7?
6.03
6.00
6.05
6.!0
5.8r
*.10
6.U7
6.U5
6.0"
6.0C
6.U*
6. J4
6.05
6.UO
6.1*
6.01
6.U1
6. 07
6.U?
4.36
1 .4"
/, . ^.c
7.VV
7^9V
7.5V
7.9i
7o9V
'.vs
• C W i1
7»f»
7. VV
7o VV
7. V9
7<,99
6.58
*.49
*.. 2V
7.4c
3.V7
',,ti«
(^.18
7.12
7.29
7o33
7.45
^o09
? 8iU
*,4t
*.69
tO. 51
1O.C2
11, £4
1*.37
11. It
10.37
p.52
•81.01
11.33
3.V7
1 i.i i,
10.46
0.33
9.54
S.fc6
7.9V
'.58
7.4V
6.7V
7.V6
6.SS
6.62
7.16
6.b4
"-.77
6.41
5. •><•
ti. :~
6. 1 v
6.17
6.12
6.13
6.12
f c-»5
jo?2
f. 0*1
•S,/,'
to63
C.95
7o* o
3.16
2.*3
2.?3
2.05
2.21
2.74
3.75
4.M
5.^3
5.62 '
5 .86 NJ
5. "5 *•
1.18 °°
2 . 1 /i '
2.?6
t.?3
6.74
6.^5
t .7V
7.53
o.'9
7.51
J .95
fc.*4
7.43
e.'-e
8.53
8.13
8.19
7.77
7.31
7.<">Q
6.°&
6.54
7.*7
t . '<5
6.41
C.7^
6.5V
5. *8
5.e1
'. . ' i>
-------
110
111
11?
1 1 ?
11'-
115
11*
117
11?
11^
120
121
1??
127
12'
1 25
126
127
12P
1 Jc
130
131
1.5?
1 '.'< 3
P.U5
0.04
O.u4
P.J/.
n,u4
P. 28
0.27
0.25
0 .?:'
o . i r
0.1 1
0.1U
O.Ue
O.o7
P.U9
n.u;;
0. J?
O.U2
0.02
0.9i)
1.50
?.2 i
1 ,«.6
1 .10
0.30
o.3n
U.*7
0.44
0.27
0.'!?
J.<7
0.3"
0. ''
'J.34
0.31
0.30
0.70
0.71
0.30
1.71
0.3i?
0.7?
0.31
2.51
2.48
o.7/
3.0*
2.28
0.1S.
P. 12
0.25
0.21
P.U6
0.52
0.42
P. 35
1.31
r. 1 o
p.17
0.13
0.14
0.13
P. 13
C.13
0.12
0.06
1.U6
1.87
1.V3
4.9b
'.34
?.01
0.20
0.20
0.19
0.20
0.18
9.06
n.19
0.2J
0.20
O.J2
n.18
0.7.0
0.20
0.20
0.20
0.20
0.2J
0.16
0,20
0.38
0.35
0.44
0.58
0.99
3.41
0.3S
0. i°
0.65
0.3?
2.15
£.07
2.01
1 . ? if
1.U
1 .41
1.".
1.29
1 . ?2
1.5?
1 .7^
1.21
0.53
J.60
1.47
1.84
1 .j"*
1.67
1.9Q
1.36
0.31
0.56
0.53
0.22
1.57
1.46
1.36
1 ,2i
••.15
1.36
1.97
n.89
O.S1
0.94
O.t5
1.79
1.^8
0.53
^.99
1.14
7.01
1.36
1.49
0.45 1.00
0.4% 1.TJ
0.53 1.3"
0.54 1.21
0.06 0.90
O.o4 1.c/
0.97 1.43
0.96 1.3'
P. 94 1.25
0.61
0.78
0.76
0.72
0.70
0.76
0.72
1.69
0.46
. ?••
.17
.04
.01
.01
.11
.no
.01
.OS
0.45 1.10
1.52 3.60
2.28 3. *i
7.. 32 0.77
?.41 5.40
?.05 3.3"
0.7Z
0.73
P. 94
0.90
1.12
1.39
1.27
1.18
1.12
1.90
0.87
0.64
0.81
0.79
0.64
O.b1
0.79
0.54
0.55
?.81
7.92
6.5V
4.62
7.U8
30.0
70.0
30.0
30.0
1P.2
74.3
?9.7
30. U
30.0
"«U
29.2
'P.O
30.0
70.0
30.0
30.0
30.0
?6.7
30.0
30.6
29.7
'.5.7
'6.7
5°. 3
46.2
4". 3
5* .9
56.6
t°,2
106.1'.
107.1
107.2
106.6
97.1
92.4
90.8
o9.1
86.9
90.3
88. j
87.1
65.7
65.6
70.1
o4.2
61.4
74.0
86.7
41 .9
43.3
49.4
49.3
e-\ .0
t>4.7.
0
10.52
10.01
b.36
9.54
10.73
(j O V
O _ Q 1
1 0 . ' 1
10. >»5
10.06
o.'1
6.91
1 . A7
1.61
1 - 4(J
1 .89
5.19
NJ
-------
»*»NKX««*MH***KI)X*NK
SU,1«»OY OF DISSOLVED OXYGFN «?FYUN"
50H
*»*i»ii »*««** **** tr »KK
j't'^CT ION
i
2
3
4
5
5
7
8
o
10
11
12
1?
14
15
16
17
1(5
19
'0
r i
12
23
24
7 1.
26
27
21,
29
<0
31
32
33
34
35
36
37
38
3V
40
41
42
43
44
45
46
47
A3
A<:
MINIMUM
Q.oo
6.57
T-.8*
S.54
5.11
i*7"
4.5"*
4.U4
*.2?
2.50
1.94
1.31
1.89
a. 79
n.S7
1.42
1.77
2.25-
7.56
'.69
?•?*>
2.80
7.17
7.45
^.87
4.10
4.4°
c« 22
5.2-=
5.34
5.4P
5.67
5.77
e.96
^.19
".11
s.99
F.93
5.9«
*.04
'.!"*
6.19
6.14
5.07
*,i)Q
f . UO
4.01
5.97
c .H"7
CYCLE
1300
t 7'
5 r?
5?5
525
^"?-?
5?5
5 '4
5 ?5
125
5 ?5
i'5
5?6
5*1
574
654
ti 64
864
t 64
5 ?9
5T'
i 35
574
5T6
5 '6
537
577
5 ?8
5?8
578
5^0
573
5T 5
5*5
5? 5
5?A
b?7
5'S
5 21
5 ">?
b'«
57°
6 'A
6?4
6?4
6M
7?')
77 1
7" )
,1*»IHU1
(HG/L>
0.0
6.78
6.09
b.^7
5.55
5.?8
5.13
5.19
4.35
4.?5
4.19
3.92
3.47
3.?3
3.35
3.^4
3.71
3.92
4.19
4.21
4.54
4.91
5.21
5.57
6.10
6.41
6.56
6.97
6.98
6. "7
6.R5
6.96
7.23
7.79
7.59
7.67
7.70
7.00
6.75
6.74
6.90
6.90
6.92
6.6b
6.52
6.73
'..77
5o4i
(• • 7 9
CONC.
CYCLE
0
••14
936
?S8
S86
660
?33
388
"36
888
888
SinJ
"80
697
648
696
696
744
"34
°84
798
748
975
975
975
796
977
°82
984
984
984
975
746
793
934
'84
985
935
984
954
792
°84
984
934
°84
984
888
°84
VS/.
(MG/L)
8.00
6.6S
5 r>°7
5.72
5.76
5.06
4.94
4.6<»
3.90
3.54
3.23
2.71
2.19
1.97
2. Ob
2 tf-2
2. "4
3.14
3.36
3.49
3.65
3 .*6
4.20
4.55
4.9V
5.36
5.68
6.06
6.11
6.15
6.?5
6.40
6.58
6.74
6.86
6.80
6.55
6.42
6 .T6
6.42
6.49
6 .5^
6.46
0.72
6.21
6.16
6.19
5.17
( • '1 '-
NO. CYCU;S
00<4
0
J
J
J
0
u
J
3
*31
441
'•65
501
501
501
501
531
531
501
«35
428
764
701
197
112
16
U
a
0
0
0
0
J
0
0
0
0
a
0
u
a
0
0
0
0
J
0
0
0
0
MO. CYCIES
n
0
3
n
0
74
36?
447
170
60
*f-
1
T
n
r)
0
0
n
16
7*
1"*7
200
25R
2*2
278
157
75
0
0
n
i
•7
0
n
0
0
0
n
n
n
0
n
n
D
r)
0
P
0
T
NO. TYCICS
5L1
5U1
5b1
501
501
427
133
5A
G
0
0
0
0
u
u
0
0
0
0
L
0
0
46
1 27
747
744
426
501
501
501
501
5C1
501
501
5U1
501
501
5G1
T01
501
501
501
501
501
501
501
501
501
501
(SI
O
-------
s<-
53
55
56
57
5S
59
6 a
61
62
63
64
65
66
67
SS
69
7U
71
72
7*
74
75
77
73
80
02
83
54
87
88
39
9>J
91
92
9?
V4
95
96
97
9!"
V9
5.71
91?
960
101
1 )2
103
1 )4
105
106
1U9
1 10
5.6P
r».65
5.62
5.63
5.64
5.67
5.75
5.85
5.9<<
6.15
5.52
7.10
2.47
?.1 *
1.9"7
1.85
1.92
?.25
?•<><*
3.52
4.71
5.50
5.8^
58?o
1.00
1.49
1.73
4.37
5.36
4.40
6.81
7.82
6.90
8.4^
7.17
7.18
7.20
7.4"=
7.4?
7.35
7.12
7.11
*«68
*.61
5.27
6.80
6.23
6«?"
6.50
6.3"
5.62
5.35
4.96
'.07
1,5*
3.31
c x ri
Q 1 ?
V60
960
960
V57
V 5^
95":
955
954
V54
954
514
515
515
i"
5 "4
5?5
5'5
5?4
5?4
525
5 ?7
5'S
52"
5?3
5?3
576
576
5 '4
576
5'*
525
5??
6^4
5?a
316
84A
054
t6A
VI?
960
91?
9*>T
5 ?3
; "^^
515
? I11
615
71-:
6.03
6.m
5.08
S.°8
S.°2
5. 95
5.91
5. OQ
6.02
6.16
6.35
6.68
/.07
7.67
i.83
3.49
3.29
5.42
3.97
4.94
6.18
7.12
7.29
7.33
7.45
7.09
2. 20
3.46
3.69
10.51
10. *2
11.64
13.37
11. lie
10.37
^ .52
11.01
11.^3
8.97
11.28
10.46
9.33
9.54
8.66
7.09
7.T3
7.?6
6.78
7.90
6.59
6.62
7.05
6.PO
6.77
6.41
5.91
4.08
2.35
C04
"34
*04
504
S04
504
5J4
504
*44
?92
792
791
791
«40
073
074
084
087
988
989
889
»38
888
984
984
978
°84
744
888
888
S88
888
936
036
036
936
036
936
984
"84
£36
036
936
983
°83
980
552
f 34
504
C52
Cb2
"o2
504
977
976
076
696
°7»
5.SO
5.73
5.74
5.76
5.75
5.'9
5.90
6.02
6.17
6.43
6.°1
7.42
3.?8
2.95
2.72
2.69
2.97
3.59
4.63
5.49
6.21
6.56
6.75
6.57
1.69
2.50
2.69
6.89
7.71
7.*0
9.4V
8.?fe
b.99
8.05
9.70
8.93
8.10
6.94
8.79
8.34
8.37
7.90
7.51
7.01
6.93
6.49
7.33
6.40
6.44
6.75
6.57
6.28
5.92
5.46
3.ct
U
Q
0
J
0
0
3
3
0
0
0
3
0
0
531
501
501
501
501
n
n
99
>a
o
o
0
0
501
501
501
0
0
0
0
0
3
0
Q
U
0
3
0
0
U
0
0
0
0
0
3
0
0
0
3
0
a
u
476
501
0
n
o
n
o
a
o
o
0
117
240
141
15
0
n
0
0
0
r»
41
1
34
0
n
o
o
n
o
o
n
o
o
o
n
o
o
o
o
o
T
0
0
0
5
501
5U1
501
501
501
501
501
501
501
501
501
501
501
5U1
0
0
0
0
0
0
162
486
501
501
501
0
0
0
4tO
501
467
501
501
501
5U1
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
10
en
-------
1 13
1 14
115
1 16
117
1 13
1 19
12J
121
122
123
1 24
125
126
127
128
129
13J
131
132
133
6.65
7.06
6.56
'.6T
».5?
°.73
10.21
9.6T
7.4?
^.72
0.83
0.77
0.87
864
91?
b?*
5?3
gt02
7,32
12. 16
U.12
15.66
15.16
11.77
13.63
U.37
13.66
13. *3
13.06
14.02
14.31
10. fit
10.97
2.96
2.«5
2. S3
3.55
b.?6
C4.3
f 83
"98
«88
<>36
983
936
936
P88
993
934
984
934
9S3
936
988
flsa
693
744
696
"98
7.96
7.14
9.15
11 .OU
12.08
11 .16
9.55
1U.74
11. «3
10.33
10.87
11 .75
12.46
1 1 .19
6.75
V.'O
1 .65
2.26
5. "3
J
0
0
0
0
0
0
0
J
(J
0
0
0
•J
501
501
e 01
eQ1
14
0
T
0
1
0
T
n
n
o
n
o
n
T
o
n
p
Q
99
301
501
501
5i;1
501
5U1
5U1
F01
501
501
501
5U1
501
501
501
501
0
0
0
0
NJ
(J1
-------
x» » *KNH*K x KM «»«XKX«X»K«M««X*K« SUI?M»"Y Or NUTRIr»»T LIMITATION 3fYUNP CYCLE 500 »** *« **x*vx xx** ****** ** *» **>«**
JUNC.
1
2
3
4
5
6
7
q
9
10
11
12
1 3
14
1 5
i 6
1 7
10
1 O
7J
'1
72
7 J
.74
75
76
77
"»
79
*0
•»1
72
•<3
*4
•»S
*6
*7
73
•"9
'.0
'•1
42
'.3
f 4
•0. OP
r LIMITS
0
0
0
0
0
0
U
0
0
0
179
??4
310
77Q
1 ?0
0
0
0
0
0
0
u
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
u
0
0
0
0
19
193
CYCLFS
P LIMITS
n
5-01
501
501
501
501
501
501
501
501
37?
277
191
2*1
3^1
5n1
501
501
501
501
501
5P1
501
501
511
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
511
501
U"?
jr°
JUNC.
45
46
47
43
19
53
51
52
53
54
55
*6
57
C8
59
60
61
62
63
64
*5
66
67
63
69
71)
71
7?
73
74
75
76
77
73
79
30
"1
3?
3}
"4
35
"6
P7
"8
»'0. OF
v LIMITS
417
S01
501
501
C01
50]
501
5P1
501
501
501
501
SP1
501
e01
501
501
501
501
3*9
U
0
0
0
0
0
3
0
0
0
0
0
0
0
27ft
0
0
0
0
J
0
0
0
0
CYCLES
P LIMITS
84
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
147
501
501
501
501
501
501
501
501
501
501
501
501
5P1
501
277
501
501
511
501
501
501
501
501
511
JU.'JC.
R9-
"0
91
°2
°3
94
95
"6
"7
98
99
1PO
101
102
103
104
1 r>5
106
107
108
109
110
111
112
113
114
115
116
117
118
119
17U
171
1 72
1 ?3
124
1?5
1 ?6
1 ?7
1?8
1 '9
1TU
1*1
1*2
1*3
NO. 0^
N L'*ITS
0
U
0
0
0
0
501
501
501
"01
501
501
501
501
501
501
0
0
0
0
0
0
0
0
u
0
0
0
0
0
0
0
0
0
0
0
0
LI
c
0
159
7R(J
501
34b
0
CYCLES
P L11ITS
501
5P1
501
501
501
501
0
0
0
0
n
n
n
0
0
0
501
501
501
5P1
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
34?
2?1
0
1 **
511
10
Ul
U)
OF C
- 1.JUCI
-------
POTOHAC ESTUARY CENTER
LOV WATER SLACK PLOT FROH CYCLF ««?2 10 CYCLE
HIGH UATER SUCK PLOT FPOrt C^CLT i=n TO CYCl^ 490
10.01
I
I
1
!
1
I
1
t
I
£.n*
I
I
L
y
(
t * r
I » XX y X
? x « x x y »
1 X X X *
6.0- r X » * «
C I » X X X »
o i « y * *
MI. •
SIX xxt"
T 1 v
i i r« x
T i
u t x x *
E I
M 4.0- X »
T I < X
I X x K
61 y x
I w X X 1
J . X X «
1 » X
I X » «* *
I
t
3.0-
i »
i yx« »
i
T
I «
I
I
1
I
o.oi --------- 1 --------- 1 --------- 1 --------- 1 --------- T --------- 1 --------- r --------- 1
O.J 5.0 in.fj 15. T 20. u 25. T 50. U 3i.O <5Q.J
MlLrS f»cLn'» CH/IN "RlfiRf
-------
rSTU*RY CFST^" CHAMNri - QUALITY SUMM"RY
SUMMAR" STARTS «T CrCLr 1 0 DAYS 0.5 HOURS
SU*MARV ENTS «T TYCLF ioou ^n DAYS 20.0 HOURS
4.01
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
I HHH
2.6- H
C I u
01 H H
V I H I
SI to
T 1 • Cn
1 1 t A ^
T I H A A M I
U I
El H A « M
H 1.f-
T I L
I L ' H
1 I M
1 LL H
I A « H
1 LA
I H
I L "
U.r- MA L H
I LAKH
I L A
I HA I A H
I L
I M H LA
I • I LAM
H L A A M
I A L L A A H H
L I. LLA L LL L LLLLLAAAAHK H
0.01 L- ! I T I T LIL-L-L--L-I-L L-IL L L L LI
T.J i.O 10.J 15. fi 2T.O 25.T 30.0 35.0 40.J 45.0 50.0
3FLOW CHAIN PRIOP17
-------
c
0
N
S
T
I
T
U
r
N
T
K
A
L
L
o.ni-
o. u
'» H
M
H «
A
H
H A
H A
H »
M A I
A L L
H « L LI L
M H HI L I
« HA A > At L
L LLL I L
STARTS «T CYCf 1
EMCS AT CYCLr 1000
SUHM.1RY
U DAYS 0«i HOURS
" DATS 20. u HOURS
H
M H« HH H
M 4 AA
* H
L
L L
H
L L AM
L t A H
L A H
L A H
L A
L A
L L
H H
A
/
1. L
I-
—1--
11.U
1 —
15.1
1--
20.0
«!LrS
25.0
CHUH
]--
10.0
. — T_.
45.1
— I
50.0
-------
4.01
3.?
1.6
O.P
POTO-AC f^STUAPY CCNTSP CM«NK'rt. - DUALITY SUMM'RY
SU^MAR* STARTS «T CYCf 1 0 OATS 0.5 HOURS
S'J"1»RV C"OS *T CYCLr 1000 20 DAYS 20.0 HOURS
HHH
«. A
A A
H A
H
H A
A L
A • »Af t L
L L LLL L L
•J.01--
O.u
A H
X M
LL A
L «
A H
A
A H
L L L A H H
A A H H
I A A H H
A A A
L L L L L L L
u H
L L
H
L
---!--
10.U
-—r —
15.0
1_.
40.0
5.0
30. U
35. P
CH1TN
-------
?GU.OI
I
1
* • I ~
' ou • u
1 iU.P
bo.o
40.0
H
I
L
I
L
I
I
U.OI —
n.o
POTO'VC FSTUARl CENTER CHAK'NFL - QUALtlY SI
SU^IAR* ST*i?TS *T CYCLF 1 0 DJ YS O.i HOURS
SU^M/IRY HMDS »T CYCLF 1000 iO DAYS 2Q.U "OURS
H H
H
H «
e
H A
H «
H *
H A
H * A L
H H L I LL
HMh A L L L
M 0 »
LLL I LL
"H HH HH H H H
M *A » 4 A
'» A
L
L
L L
I LL
L
H H
A A H
t
L L A *
LLL
Ul
CD
H H
•I-
! .0
m.o
-— r--
15,0
. n
•--!--
JO.O
35.P
iO.U
45.P
---I
sn.u
•ULFS "FLOV CH'.IN
-------
POTO"'C CSTUAOT CEKTEP CHANNFL - OUALITY SUMMARY
SU1MAP* STARTS AT rvCLF 1 P OA*S 0.5 HOURS
Sli1MAPv fMOS AT TYCLP 1000 20 DAYS 20.U "OURS
10.HI
I
I
I
I
I
I
I
I
f
8.0-
I
1
1
I
f 4 HH H
I »
1 H H
1 H H H H
I H
6.0-
C !
01 H H
•* I H '
S 1 KJ
TI H H H h H H Jg
I I H
T 1 H '
UK H
£ 1
N 4.0-
T I
5 I
A M
1 A< K
I A H A A A
I H
I H «
I A H H f L H
2.PL AM »
I A L • H
I A HH A AA u
I L LLL A L LL AA H H
t L LA A L > A A M
L L • L A A A M
I LLL • A
I L L f A A
1 L L A A A *
I LLL A * A A 4
0.01 t I 1 I—L-L--L-TL--1—L-LIL-L-L--L-I-L L-IL 1 ---L L -LI
O.o 5.0 10.U 15.T '0.0 2b.O ?0.0 Jb.O 40.0 45.0 "50.0
MILFS ^r\.nv CHMC"' PRID£C
-------
1 u. 01
I
I
I
I
I
I
I
I
1
s.m
I
i
H
I
A
I
I
I
1
6.0-
L
»
1
1
a
I
I
I
I
4.0-
[
1
I
I
I
I
1
1
1
2.0-
I
I
1
I
I
1
I
O.OI--
r.j
POTOM«C ""STUART ^E^TER CHANNFL - OUALITY
SU-'IARY STARTS »T CYCLT 1 p n^rs 0,5 MOURS
SU"MARY F.VDS HT CYCLC 1000 20 0*Y
-------
- 261 -
APPENDIX
-------
- 262 -
A.I REGAN LISTING
C P°OGRAH
C E"VIROMMENTAL PROTCCTTON AGENCY
C 4WNAPOLI? FITLD OFFICE
C T'-nS PROGP.'H PERFORMS t LEAST SQUARES rIT OF AN EQUATION OF
C Y(T> = A1 + A2»SIN(VT) + A?»SI"«2VT>
C + ASxCOSCYT) + Af*COS(2«T)
C TO OBJERV^O DATA BY SOLVING THE "ORMAL EQUATIONS.
C
IX»»««m»»»»»X»*»»X»««UH»»»»»XXI(»Xin
DIMFMSIONS
(»*X*X»*»X«»
DIMENSION ALPHAUO), AC'), SXXC7,?), SXYC7), T(nO), X(7), YMOO)
RFJL "AXPFS
C»*»«x»x(M»»x»»)«i«)mi«»it*«»»**)»»i«« READ CONTROL OATA an** »»«»**)<«mmx**-** »»«*»»»»»>«
PFAD (5,500) (ALPMA(I). 1=1,40)
PF^U (5,501) MDATA, vcoErF, IAXIT, KAXRES, PERIOD, TSHIFT, PSHIFT
C»*«»»»)»*Mi»« »«*«»»)»»)»»)•*»»»)• PFAO TIDAL INPUT OATA »»**K»»)»»t(«»»)»»Htt»»»«»»»«»»
RFAO (SjSHZ) (TCI), Y(I), I=1,NDATA)
V = '. » 3.14159 / PERIOD
Cx**»«*«»«*« »***«««»*«*«»•**«« PRINT INPUT OA.TA » ««***)i)H«* »»»»*»* KM**** »«»*»*«
WPITF (6,6UO) (ALPHA(I), 1=1,40), NOATA, wCOFFF, PERIOD, W,
» MAXIT, "AXPES, TSHTFT* PShlFT
WPITP (6,602)
DO 100 I=1,NOATA
WRITE C*»6Q4> I, T(I), vci)
TCI) = TCI) * TSHIFT
100 rCf'TINUE
C*** ******** K*KK**M*KH»» »*»»»*)»*»»
"0 104 K=1,NCOEFP
CO 102 J=1,NCQFrF
ACJ) = 0.
SXYCJ) = 0.
SXX(K,J) = 0.
102 COVTINUT
104 CO^TTKUE
C»*»»»»»»»»» »»*»»»*»»«»»«»* SET UP MOR1AL cflUATIONS »»**»»»»**i»»*»»**)« *»*»»»«»«*
NC2 a NCOEFF/? + 1
DC 11? I=1,«OATA
00 106 J=1tlCO^fF
CJ1 = FLOATCJ-1)
CJ2 = FLO»TCJ-HC?>
Ic CJ.LE.NC2) X(r'J) = SIN(rJl»v*TCI) * PSHIFT)
If (J.E0.1) XC'J) = 1.
IF (J.GT.NC2) X(J) = rOS(cJ2»W»T(I) + PSHIFT)
•5TYCJ) s «XY(J) * (XCJ) » Y(T))
106 CO''TINUC
00 110 J=-1,NC06FF
"0 10« K=1,NCOEFF
SX»(K,J) - SXX + (XCK) * »'(J»
108 CONTINUE
110 CO^TINUF
112 CONTINUE
C**««»«MH*KNNXNMII««K»«»K«* PRI«T NORMAL CO^FF IC I EM TS »«*»»»**)H»)()»»»*«»ttl«*l<»»»»
WRITE (6,606)
TO 11< J=1,NCQEFr
WRITE (6,608) J, SXYCJ), (SXX(K,J), K=1,NCOEFF)
114 CONTINUE
-------
- 263 -
C»**«N»M«XWM«K»K»XN«»KK«*X« SOLVE 1 0 R (1 * L ""CUATICNS » »* ************** ****»**»»»
IT = "
115 I T = T T + 1
PFSI" = Oi
PO 118 K=1,MCO"F
Pl.'l = 0.
DO 116 J=1»NCOFFF
If (JtEO.K) GO TO 11*
SUM * SUf - ES) GO TO 115
12J VFITF (6.61J) ITt RESID* (A(K>. K=1*NCOECF}
C*»*K»»*K»K»««X» P^INT OBSFRVcD.i PREDICTED* AND RESIDUAL i*TA *»*»**»*»***»*»*
VPITr (6*612)
TPES » 0.
TO 124 1=1 t»0*TA
P"EC = 0.
DO 122 J=2*NCOFFF
CJ1 = FLO*T(.'J-1)
CJ2 = FLO»TCJ-««C2>
IF (J.LE.NC2) PREn = PREC1 + A(J) » SINCF J1 *W*T( I )+ PSHIFT)
IF (J.6T.NC2) PRE^1 = PRE3 + *(J) » COS(F J2»V»T< I>* PSHIFT)
1?2 CO^TINUF
PPED = PPEO + »<1)
DIFF = PRFD - Y(I)
TOES » T"FS + ABS(OIfr)
VRITE (6»6U) 1* T(I)» YCI)j PREO» OTFF
126 COWTINUC
WRITC (6»616) TRFS
C»»«»»««»x»»«»i<)n» *x»*»«»x»»»)t» FORMAT STATEMENTS «**«»«****»*«»*»<(*«**»»**««**
500 FORM»T
501 FOR«1«T {7I10/4F10.0)
502 FORMAT («Fb.O)
600 FORMAT <1H1////1X,20A4»UX*'ENVlffONMC«(TAL PROTECTTON ACE"CY'i/1X i
»2CA4*16X*tLEAST SQUARFS CURVE FITTINC' >///// »1 OX* "NUMEE" OF DATA
• POINTS '*1 OX* «VU«?ER OF COEFFICIEVTS'»/17X*'C*DAT«) '»24X*'(NCOFFF)'
»//*1°XjI1t»28X,I3*///// *10X*'TIDAL PF"IOO (HOURS) '* 1 1X* •O'-EGA (2>«P
nl/PE" 100) '*/16X*' CPERIOO)'*2TX*'(W)'*//*17X*F5.2 »23X*F7t4,///// *
»10X*'"»XTMUM NUM9FR OF ' ,1 4X* ' MA XI"UM RESIDUAL '»/ 1 OX* ' I TEPA TIOVS AL
*lO«Er',l-'X*«*LLOWrD»*//*16X*I4*26r*F6.4*///// *10X*'TI«E SHIFT'*?1
»X,'PHASE/ ANCLF SHIFT « »/1 1 X* • (TSH TFT) ' * 26X* • ( PSHICT) ' * //* 1 2X*F5.2 i
6CI2 FORMAT (1H1//1X»30I1H«), i SUMMAPY OF IWPUT ?ATA '»30(1h«)*// *
»20X*'OaSFRVATION NO.'flZXf'TT^E'^iaXf 'VALUEi«/ * 15X* 60 (1U-)/ )
604 FO?*AT (1M ,2?X*T3*18X*F6.2*1,TXjF?,3)
606 FORMAT (1«1/// *75X*13(1M-),/6X*» I ----------- I •* SOX* ' SIGMA X
«r(K*J)'*/6X* ' I SIG*« XY(J) l',50X.13C1H-)»/3X*'J I ------ --
* --- I '»/6r»« I '»17X»' I K = 1 >*14X*'2' »14»*«5»»1«X*'4'*UX*' 5'
«»UX:»'6I*UX*'7«»/6X*1 I' t17(1«-)*'l'*105(1H-)»/6X* M «*17X*'I « )
608 COR««T (1H , 1X»I2,2X*' I " *4X* F1 0.**3X* ' I ' *7(5X*F1 0.6) »/6X* ' I '*17X*
» ' 1 1 )
610 FORMAT (////50X»70(1H*)*/*1X*'SOLUTIO'<' */5uX*30(1H»)*/// *43X*'NUM
»PER OF ITCRATIONS'»lOXj.>«'AXI>«UH 7ESIOU AL ' » //»51 X * 13* 24X*F7.6*/// /*
«35X*'THE CURVE «MICH «EST FITS THF OBSERVFD DATA IS GIVEN BY •
v(T) = i,MO.£»< ••• '»F10t6»' SIN(WT) + '»C13.6»' SI
'.FID.**' SINOWT)' *//»4ix*'+ I*C10.6»I cos(VT) + '»
COS(?VT) + '»F10.6*' CPS(3VT)»>
612 FORMAT (1H1// »1X,30( 1 H» ) * ' SU»1ARY OF OUTPUT DATA '*?0(1H«)//
**4X*lOBSE°VATTON>,-tOX.«TI1«E' *10X* 'OBSERV FO ' * 1 OX * 'PREPIC TED ' » 10X* •"
•FSIOUAL1 »/2X »66(1H-)// >
614 FORMAT (1H ,7X*n»t4X»F5.?*1 1X*F6.3*11X»F7.4*13X*C7.4)
616 FORMAT (1H *//5X*'TOTAL "FSIOUAL = '.F1Q.5 )
STOP
-------
- 264 -
A.2 DYNHYD LISTING
C PSOGR'" DVNHYD
C ENVIRONMENTAL PROTECTION AGE'-IC"
C ANNAPOLIS rIEir O
C n'NH*n C?«CRl3ES THE DYMKIC FLOW OF I 2-OIf!rVSIONAL
C SYSve* Bv 03TMNIN6 AN EXPLICIT SOLUTION TO THE EQUATIONS OF
C COnT-JUlTr AVP MOMENTUM. THIS VF7SIO" CAN HAMDL= & K*l\iO!>K OF UP
C TO l3-"> CHM'NFLS AND 133 JUNCTIONS.
C CONTROL OPTIONS
C HVD^XT = 1*0 CALL "-UtROUTlVE Hvr>EX TO CREATE A SUMMARY
C HroftAULIC EXTR»CT TAPE* OR NOT.
M(7)
AK(139>» APcA(1'9)j ARFAT(139)» B(139)>
» CN(139)j> NJUNC (139*2)* » I=1*NOPRT)
PFAO (5*504) ITAPP* HYOEXT
PFAO (5*504) PUNCYC* INTPUN
HfITc (6/600) (ALPHA(I)*I=1*4^)* MJ* NC* NCYC* DELT*
» IPRINT* IMTRVL* NOPRT* PUNCYC* INTPUN
IF (KVOEXT.EO.O) WRITE
IF (HYOETT.EO.I) WRITE
Cx««*»B*M»***ati8«******if ******** JUNCTION DATA »!»i»»nn»i»m»)m»)» K=1»5>
YT(J) = Y(J)
IF (JJoEC.J) GO TO 100
STOP
100 CONTINUE
URITF (6*606)
WRITE (6*60P) Jj Y(J)* AREAS(J>r QIN(J)* (NCHAN (Jj>K) * K = 1*5)
102 CONTINUE
-------
- 265 -
C**X*«**»K**NK*K«***«**N«M»K«»*K 7HANVCL 'DATA ** *'«»» ** **•» »» »**» <» *»* »« 0 * »» If tt » *
(?F»J r5*500) MEAOFR
"0 104 N=1,NC
3c»? (5j33?) NN* CLFN(N), d(N)» AREMN)* R(»O*
* CN(N), V(K), (NJU«l'-(N
AF.r6(N> = ?(M) * R(N)
If CNN.CO."*) 60 TO 104
W7ITE (6f610) NN, N
«TOP
104 CONTINUE
WRITE C6*612)
TO 10* N=1»NC
WRITE (^*6H) M» CLFN(N)* B(N)» AREA(N)* CN(N>*
» VCN)» RiCN), (NJUvr(N,KJ* K = 1*2)
106 CONT!«UE
C»**)«i«t>nt»)<»*»«)H()t)(»» SEAHARO BOUNDARY TIP'L CONOTTIOMS »»»»«»«»»»«»««nm««»ii»5
IF (NCHANCJ,K).EO.O> SO TO 113
N = NCHAN(J,K)
00 114 I=1»?
IF (J.EO.NJUNC NJ» NC* CELT*
« (CN(N)j RCN), "(N)* CLFN(N)* «» = 1*NC)
VPIT? (1T) (Y(J)* AREAS(J)* OIN(J)* ("CHAN(J*K)* K=1»5)* J=1*NJ)*
V(N)» (MJUNC(N*T), 1 = 1*2)* N=1*NC)
-------
- 266 -
C
'1 = PELT / •>..
T7t~n = TZtRO » '6JO.
PFRUOO = PET TOD » 3600.
ii = ?. « 3.1416 / P
C = 32.1739
po -,:-'n N"ij^r
AKC'I) == G * CC"(N)«»£ / £.2081°*)
If; CNJIINC(M»1 >.LT.^JUNPCN>;>)) 70 TO 120
1) =
') = KEEP
C MAIN LOOP
IF UVRTH.GT.n) ^0 TO 124
DO 122 V=1 ,WC
PtN) = V(f») » *RFA(N)
WRITE (10) I«RT?j (Y(J>* J=1jNJ)j. (WCN)p OCN)j N = 1»MC)
1?i T = TZERC
rO 1*6 IrYC = nNCYC
MTVCC = icrc
T2 =• T » OELT2
T = T * OELT
C» K» »»»««)»«» » ro»«PUTE CHANNEL VELOCITY AND FLOW FOR 1/2 TIME STE.P »» »» »»*>»»«»»
"0 126 H=1*NC
ML = NJUNC(N»1)
NH = lJUNC(Nj2)
R(N) = flRE«(H) / B(^)
AKT = «K(N) / (R(N)»»1.33*333>
OVDX = (1./R(»» « (((Y(NH> - YTvNH) + V(NL) - YT( M > J/^E
» * (VCN) / CLCN(N» » (Y(NH) - Y(NL)»
VT(")= VCN) + OFLT2 » ((VC<) « HVOX) - AKT « V(f')
» « «3S(V(N» - (G / CLENCO) « (W(NH) -
OCN) = VT(N) » AREKN)
1?6 CONT'NUE
C»»»»»»»»»>it}*ini»*B COMPUTE JUNCTION HFADS COR 1/2 TIM^ STFP »»»»»»»« »»»»»»*«»»
WT(1 ) = »1(1)
C r*ttct
-------
- 267 -
*x« «««**« XK*«)()H<» JU"CTIO" HF'OS »»**»*»»»»»*»**»»»
1*« J=2,NJ
SUM0 = QIN(J)
"0 1T? K=1*5
IF fSCHANC J»K) .cC.n> 60 TO 134
w = NCHAN(J,!O
IF CJ.NE.N'JUNC» ?!JHQ
136 CONTINUE
C»*«»»«*«*X»N*»« COMPUTE C'UrtVTL C.S. AREA FOR !/">. TIHC ST£P «»),»»«.(
?0 1'9 N=1»NC
NL = NJUNCC«»,1)
NH = NJUNC(N,2>
ARC«T(N) = »REA(N) * . ?»B< N )»(»T (N")-Y (NH) <• YT C «L )-Y ( SL) )
P(MJ
»KT? = AK(N>
C»««**««»ii»*» fOfPOTE CHA»WEL VcLOTITT AND FLOW FOR FULL TIME STEP »»»»»»»»»»»
OVDX = (1./R(N» * (((VT(NH1-Y(NH) + Y T(NL )- YC VL»/"ELT ) +
» CVT(N) / CLEN(N)) i (»T(NH) - rT('IL»)
V(M) = V(N) + OFLT » (CVT(H) » PVCX) -
» AKT2 <• VT(N) » *?S(VT(N»
» - (G / CLEN(N» » CVT(NH) - YT(VL)))
3(N) = VCN) » AREAT(K)
138 CONTINUE
C»«««»»*«M«»«*»*»* COMPUTE JU"CTIO>I Hr*DS FOR CULL TIM= STFP
Yd) = A 1C1)
"0 UO I=1»NS
H = FLOAT(T)
YC1) = v(1) + AKI+1) * SIM(FI»W»T)
» + AUNS+1 + 1) » COS(F1»W«T)
160 CONTINUE
"0 148 J=2*NJ
SU^O = OIN(J)
PO 1*4 K=1*5
IF CNCmN(JjK).FG.T) 60 TO 1 »6
» = NCHA«f(J,K)
IF (J.NE»NJUVC(N*1))
MH a NJUNC(N*2J
ARFA(N) = AREAT(N) * C . C»B( *»)» ( v (NH)-YT(Nri ) + Y( NL)-YT CNL) ) )
150 CONTINUE
-------
- 268 -
C» •»» »»»»»»»»»»»»«* »«»«»»«»»»»» C4CCIC VELOCITIES *•()»» »* K*** «»»»»» f«»i< »•»»**««»»»
nO 1 5? N = 1,NC
IF CASSCVCnKLT.aiJ SO TO U2
(6*620) ICYC, «
<6»622) * VT(J)» ARF.A(J)* l(J)j J=1>NJ)
L = f-J + 1
W°ITF (6*624) (J. Y(J)j XT(J)f APF»(J>* 0(J>» J=L»NC)
STOP
152 TO'JTIMUE
C*»»im»»»»»»»i«»»»«»*» STO'F DATA FOR MrQRAULIC EXTRACTS »««)i)»»»*««»« »»»»«<»»»»»
1^ (IrYC.LT.rTAPF) SO TO 154
WRITE (10) ICYC* (Y(J), J=tjNJ)»
-------
- 269 -
500 FORMAT <20Ai>
50? FOKi«T
504 FORM»T
506 FORMAT (I5»3r10. 0,515)
50? FORMAT ( 15, 2F«. 0,F9.0,F7. Q,2C8.0,?15>
510 FORMAT C?MO.O>
60P FORMAT (1H1,/// ,2X»20A4,1l X, IE»'V1RGVMCNTAL PROTECTION AGENCY1,/,
»2x.»20A4,3y, ' HYVAMIC FLOW IN A Z-DIMETSIONIL SYST=M|,//// »inx,«NU
UPPER OF »'UM3F9 OF ' ,/>10X , > JUNTT IOVS CHANNELS ' »/,1 ?X, '
63? FORMAT (18X,'NO')
604 FORMAT(40MCJUNCTION DATA CART OUT OF SEOUFNCC. JJ= Ii,4H,J= IA)
606 FORMAT (1H1//2X*4?(1H»), ' SU«M«)
624 FORMATU5,26X,F15.1,F14.?)
626 FORMATdH!///
» 27H SYSTE" STATUS AFTE» CYCLE I4,F12.2,6H HOURS//
» 54M JUNCTION HEAD CHANNEL VELOCITY FLOW/
» S4M NUNBFO (FT) NUMBER CFPS) (TFS) )
629 FOR*ATC1HOI5,F13.4)
630 FORMAT (1H I 2»,F14.5»F12. 1 )
63? FORMATC42HOE»T 0F T«0-DI"CNS TONAL EXPLICIT PROGRAM. U,8H CYCLES.)
STOP
c»D
-------
- 270 -
J> A^Ad^S)* AR EC
» CN(139)< NJUNC(139»2)j> "
B VTM39)
CC.1MON /JUNC/ ARrj> OcLT» ITYC* IMPUN. NJj
>» NQPt!T* NCYCC. PERIOrtj PUNCYC
CIKEN^IOM AKAVCC139)s AP"AX C1 39)
a «"IN(139)» QrXT(139)j
« PON6F(13?)» VfXT(139)i
a Y«nx
n 4
3(159)*
MCYC » IMTRVL»
INQEPENOEUT CONTROL DATA »»»»»«»»»»«»i<»ti »»•«»»»»»»
C«ii»«o«a«»«tj»»»»** a»*»
Pc»0 (5*500) HEADER
PFAO (5*500) (ALPH*(T-)» !=41s80)
RFAD (5*502) HOO^N
C»*»»u»i«»»i})i»it»»i»)<»»n READ DATA rPOH HYCstULlC PPOGRA1
PFftO (10) (ALPHA(I)j I = 1i?/.0)» NJj> MC » DELT*
» (CH(N)» R(N)ji "(N)* CLEN(N)* M=1*NC)
RFSO (10> (Y(J)* ARE«S(J)j SIN(J>.* (»
» («PPA(N)* V(W>* (NJUNCiF.NSTART) GO TO 100
Ca«««o*a*ii*t>«»«»«««*«« INITIALIZE TIDAL
00 10? N=1*Nr
ONCT(N) a .5 » Qd)
- VC»)
= V(N)
tV(!«)* 0(M)* N=1»hC>
CYCLE VARTABLCS »»»«*»»»»»»»»»»»»»»»»»
OMI^(N) = OCM)
» 0
» n
• 1000000(
102 COhTIKlUE
PO 104 Jo1*NJ
YMIP(J) = Y^EVCJ)
Y-AX(J) = YHEW(J>
= TCYCTC
o ICYCT^
YAV<= o .5 » TNEW(J)
104 CONTINUE
r»»ti«::*i!*:«i»»)t
-------
- 271 -
C»*»«»*««*»»»«*»»«*»**« COMPUTE IVTER-TIO'L P*PAMCTLRS »»» »»»»«KIJVODYN
SEAO (10) ICYCTF. (VNEVCJ)* J=1»NJ), (V(N)t at")* N=1,N'C>
no 11* N=i»Nr
C **«*»»««*«•**»*»* SUMMATIONS *«»»*« »»»»»« «««**tt*M*
VEXTCN ) = VCXT(V> » V(»')
QN.ET(N) = Q«(ET(N) * G(N>
»»»»«»«»»«»»»» CPOSS-SECTIOMAL APE* »<*»»»» «»»«»»»
IF CV(").N«:.0.) 60 TO 110
-NH = MJUNCCN»2)
A9EA (N) = IREA(N)
» + .5 » !JCN) » (»NEV(NH)-Y(NH) + Y»FW(NL)-Y (NL) )
FO TO 11?
110 ARFA(N) = Q(N) / V(l'!)
112 ARAVG(M>= ARAVG(N> + APFA(««)
C *MM*KNM**«II*» HIV ANH HAT VELOCITIES **»»»»«»»*«»«
IF (V(f').6T.VMIM(N)) 60 TO 113
VINfN) » ¥(N)
GO TO 114
113 IF CV(N).CT.VMAXCN» VMAX ARMAX(N) = ARFA(N)
116 CO«»TIMUF
118 CONTINUE
C «»*»«»*»•«•**«« KIN AND MAX HEADS *»***•*««»**«»»•
r>0 124 J = 1*HJ
IF (YMEW(J).CT.YHINCJ)) GO TO 1^0
Y"IN(J> » YNPWCJ)
NMINU) = ICYCTF
120 IF CYNEW(J).LT.YMAX(J» GO TO 122
YMAXfJ) » YNFW(J>
NHAX(J) = ICYCTF
122 CONTIHUF
YAVG(J) = YAVGCJ) + \NFV(JJ
*(J> - VNEW(J)
124 CONTINUE
126 CONTINUE
C **»«»«•«»*«»«*»«»* INTER-TIDAL FLOU ANQ VELOCITY »«»«»»»«»«»»««» »«
DO 13? N=1,NC
OEXT(N) = OFXT(N) - .5 » 0(N)
OEtT(N) = OEXT(N) / FLO«T (NODYI«>
VEXT(N) m VFXT(N) - .5 « V(»l)
VE»T
C *«»»••••*•»»»«* «IN AND MAX FLOW »»•»»»»*»»»«»»»»»
IF (OEYT(N).GT.OHIN(N)) GO TO 1?8
Q»IN(N) m QEXT(N)
GO TO 130
1?8 IF (QEXT(N).GT.OHAX(N)) QNAX(N) » OFXT(H)
130 CONTINUE
122 CONTTNUF
WRIT? (4) (OFXT(N), VPXT(N), N=1iNO
IF (ICYCTF.N'r.^STOP) GO TO 106
-------
- 272 -
COMPUTE
SUMMIRY »»»»mn»im«»i«i»«tni««*«»«»«i»*«
QNETCH) = CNET(N) - . •; * T(N)
GNFTCN) » QNET(H) / FLO«1(NSTO»-NSTART)
= ARAVP(N) / CLOAT(NSTOP-*ST*RT>
= JIRAVe(N) /
YAVGU)
YAVGCJ)
136 dD^TfUE
- YMIN(J)
- .? » YMEy(J)
/ FLOAT(NSTOP-NSTAKT)
COMPLETE «OTTING HYHRAULIC FXTD«CT TAPE «««««»«»*»«<•»«»»»*««
WRITf: UJ (AtPHACD* f=1 »40) J NJ» NC ' OELTj
» * CLEN(N)» N»1
»"»ITt: C4) (Y»VC(J)» AREAS(J), OIN(j), (KCHAN( J>K ) *K = 1 * S ) » J=1»NJ),
» («R/)V6(K)j (NjU«*C(NjI>J I = 1j2>* N = 1*NC)
C»»»»)t»«:3ii«:» «»«»•**»•»»»»» PRINT TIDAL CYCLE SUMMIRY K»IO»I»*)(»*»I»* *»««»»»»»)( »B»
WRITr C6»604) VMIN(N)* V,1*X,
^t1IX(N>> ARAVG(N), N=1,N'S)
Y«IN(J). NPINCJ)j Y^AX ICYCTFt (YWEM(J)i J = 1»««J)
RE*D (*) (OSXT(N)j VEXT(N)* H=1jNC)
!: (6»610) ICYCT^, YNE«<1>, YNEV(EO>»
OEXTC10)»
OEXTd)
138
-------
- 273 -
rOR1AT STATCMENTS
f«»K»**KN**<
500 FORMAT (?OA4>
SO? FORM«T (1515)
600 FORMAT d°i///
* 1H ?OA4j10v»37H FEDERAL WATFR DUALITY AOMIN IST7A TIO*/
« 1ri ?OA4,10X*32U NET FLOWS AND HYDR»ULIC SUM^AR"/
» 1H 2D«*/1H 2CA4////)
602 FORMAT(8?H »»»««»»« FROM «YD°«ULICS PROGRM *»»**»*« HYDRAULIC
i CYCLES PER TIME INTERVAL IN/
»87H START CYCLE STOP CTLE TIME INTfVAL DUALITY CYCLE
» OUALTTY PROSPAM//
604 FQRMATC119H » * » » « e-LO« » » * » «
» » * VELOCIT" * * * * * CROSS-SFCTIONAL AREA » » »/
» 11«H CHANNFL NPT FLOW NIN. M»X.
» MIV. MAX. MIhJ, MAX. AVE./
* 119H "UMBFP (CFS) (TFS)
-------
- 274 -
C 3ESTRT
CK 11 »»»»»«» it :i* ii i».«»»ii<»(t»**»«»)H<»«»i«K»)«»»»«»*i(»)(*»«*»«»»»»»)«)<»»»ii**)»«»»»*»
» CN(139)» NJUNC<139»2)j 0(n«»)j -U130), V<1^9),
« VTC139)
CCMMO" /JDNC/ ASC*SCT;3)» JP«T(1'?)j ''CHAN ( 1 33 j 5 ) > 3IN(13?)»
« Y(1"*3)» YT(133)
COrtMOFJ /MISC/ ALPHA(80>* DtLT» ITrCj INTPUNi NJi NCj NCYCj INTPVL^
» ^NOPPTj NCYCCi PERIOOi PUNCTC
If (KTC.KQ.rCYC) 50 TO 10
C»n***ft«a«n!}»*»it«»*it»ft»*ii»»»« VRITF RCSTAPT TAPE »m»»im»»»»»»)i»«»»»»i»»»»»»i»»ii«
- PUKCYC » INTPU"
C't) ICYCi (Y(J), yT(J)* J=1*NJ>, (VC«)j A->EA(»')j N=1,NC>
GO YO ")
C»»»t*in»»tiinimn«»»*f »»• »»»»n)«i«)»m»i» PUNTH RESTART D?CK »m»»» »»»«»•»»« »»»ii»m» »»mnn»»*)i»
10 VP1TI: (6*60) CJ» Y(J>* ARFAStJ)^ ?U( J ) ^
WPITr (8*61) (N* CLEN(N), 3(M>D «REA(N)« R(N>*
» CN(")/ V(N>, (N JUNC(V«*K),K = 1*2>»N=1 ,NC)
?0 TZERO? = T / PERIOD
KTZE°C - 7ZEP02
T7EFO' = CT/J'SOO.) - PLOAT(KTZERO) » (PERIOD/^GI. )
VRIT^ (6*62) TCYC* T7ER01
'0 CCNTIVUE
r» fo»»)()«««j(»)3»«»r *» »t!tt««*»»»»» PP. IMT RfSTA°T 0»TA
C tit>a«it«ii«M*ii*ii JUNCTIONS
WPITr- C6»t3>
«RIT- (6*64) (J. Y(J)» ARCASCJJ* "IN( J) *(MCH«N( J >K ) tK=1 * e ) • J=1 »N J)
C *<>«*»««*«»*««»« CHANNELS »»»»««»»*«»»««»
WPITC (6*t5)
WRITE (6»66) (Nj CLE"(N), B(«!)j APfcAf)* CH(N)» V(N)»
« R(N)» (NJUNC(N»K)j K=1*?>* N=1,NC>
CK»»«»»»»»»«»i»*t.»»»»»««»»in««««. FORMAT STATFMcNTS »**<•»*«»« «»»««»!HHi«»»)i»»»»«»»
#0 r<5f«*T (IS. fio.4, F10.0. FIO.Zj 515)
51 FORMAT (H* 2F3.0* F9.1* ^7.?, F?.3* fB.So 2T5>
ii FORMAT
-------
- 275 -
A.3 HYNQUAL LISTING
C»X*«****»*»»*«K****«ttNtt»*»»»»«*«»««X»*»»««»»tt»*»«»»*KK*»»»M«»*««»»K«*K«*«»*KN«*
C P90CPAM "YN1UAL
C =>VIF»ftX»»»lt*««
C THIS 100EL PREDICTS CHLOROPHYLL YIELD EASED UPON EITHER NITROGEN
C OR PHOSPHORUS UTILIZATION. IN ADDITION. IT CAN CONSIDER BOTH
C NUTRIENTS SIMULTANPQUSLY IW TH r PRODUCTION OF CHLOROPHYLL «NO THEN
C DETERMINE WHIC" IS R*T^ LIMITING B" COMPARING INDIVIDUAL THFORFTIC«L
C CHLCROPHYLL YIrLO ACCORDING TO F lRST-0«nCR KINETICS.
C 50LUPLE FRACTIONS OF NITROGCN ANO PHOSPHORUS ARF CONSIDERED IN
C THE "OTFL. REGENERATION OF PARTICULATE NITROGEN ANO/OR PHOSPHORUS IN
C THE DECAYING AISAE TO SOLUBLE ^ORMS MAY ALSO BE INCLUDED. ALGAL CBOO
C MAV ALSO BF RECENERATED BY ^IKST-ORDER KINETICS. ALL REACTION RATES
C MA" 9E VARIED SPATI«LLV. THTS VERSION ALSO INCLUDES THT EFFECTS OF
C THIS CHLOROPHYLL PRODUCTION. AS WELL AS OTHFR 1«JOR COMPONENTS OF
C THE O.n. BUDGET. A REAL TIHE CLOCK IS 'NCLUPED FOR THE PHOTO-PERIOO.
C WASTTWATER INPUTS. "ON-POINT SOUPCES (B»«»K LOAUS). AND UPPER
C BOUNDAP" INPUTS CAN ALL BE VARIED WITH TiM^. LOADINGS ORE READ IN
C FOP EAC" JUNCTION AS NECESSIRY.
C OUTPUT OPTIONS INCLUPE PRINTOUT OF SNAPSHOT TABLCS. SLACK WATER
C TABLES CFI'ST C^CLE MUST 3E SPECIFIED). TIDAL CYCLE SUMMARIES. AND
C PLOTS OP TH? A°OVE TABLES CAS WELL AS TIME PLOTS FOR ANY JUNCTION).
C TVQ PHOSPHORUS LOSS RA.TCS ARE INCLUDED l» THF HOOEL. PHY5IC«L
C DEPOSITION 1.2.' NITROSFN UPTAKE ONLY* PHOSPHORUS UPTAKF ONLY,
C OR' UPTAKE OF NITROGEN ANO PHOSPHORUS
C K?L = 0.1,2 PRINT SNAPSHOT TABLE. HIGH WAT^R SLACf TABLE.
C OP LOV UATFR SLACK TA9LE
C '•TX = 1*2*1*4*5 AOVECTFD CONCENTRATIONS CO-PUTEO USING TH?
C • "UPSTRC»M, 1/2 POINT, 1/3 POINT* 1/4 POINT. OR
C 2 - KA* PROPORTIONAL 1ETHOD
-------
- 276 -
STATEMFNTS + COHNO« 3LOTKS
C
c -- .. --- _- ----- HTSCs QUALITY PARAMETERS
AHUPd'T)* AMUPPd3'!Ojl OECA Yd3?*6> > OECAYK (10*6) ,
OPHUPd33>» 0«"='BO'>C133)*
PHUPd33>j> PHUPPdO)* RPBOO(133)»
RFGEP<133>,
ftLPHA(8Q)!> BAr«fC(«.5* CIhf NL2C1G}J
- - - DISSOLVED
ooivecmj* BE'nHd'SSJ* eEVTdcn* OFPTHCIO)*
PHOTO(133)» PHOTdO).
U/iSTE INPUTS
VOLQIMC133)* XLOAD(20f6)
t)fl?TE TMPUTS - -
DIMENSION C0f(6»20f 20)* FLOC20«20)j IMCr>UR( 20»20) > JRVU(?0)>
* KCYC(2J)» KI«C(20)» NTtsC(20>» VMLOAOC6)
3A1K LOiO INPUTS
Jj' ICYCK20)* ICVC2(20)c. JR8LT(2H),
JPBL?(20>» SLINE(133)j> T»FLOUf20.133J* V9LOAP(6>
IWPUT/OU-TPUT PSRAMFTERS
DIMENSION IPPT1(?OJ» IPRT2C20J* LPRT1(20)j LPRT?(2Q)»
» !PLTU20>, IPtT2(20)
TOMTOM /CHAN/ OREAd39>» 3d39>f CLENd19J* CN(139)» DlFFK(139>j.
« •qjUK'Cd39fj:>f QdT9>» ONETd39>< Rd39>, Vd?9>
COMMON /JUNC/ ^su«id33)ji Avotcn3)j NCHANCISS^S)* voLd33>*
» YC133>J Y-EWd33>
rottW! /DUAL/ C(133»6>J C«»SS( 1V3*6)
CDHPION /niSC/ rTlME* OFLTQj ICYC* NCJI MJ*
COMMON /SCALES/ XMAX* XMT"** T1AX* YHAXC<6>* YMIH* YMINC(6)
COMHO-* /SLACK/ JPftT(150*c5>* KSL(20>> KPLOT(20>* NFPC(20>*
NLPC(20>» NOPRTdSO). NCOHSy(5>» "SUP
/09SDCT/ OPDATA<3»6»21> » ""CATA <20J* MOATA* HO?CYCdO)
/6RI3/ KPLOP
/TIHEPL/ JUNCTP<2">» NCITP<20>» MCONTP(20,6I» N£CTP<20),
K MSCTP<20>» NTP
R?AL "CHLO^. "CHUOP. WITCHL
OOGT5»
-------
- 277 -
CX»X»X»X»XXX»X»«*XX»XXXX)tXX1IX»XXX»X»XXXXXi»»XXXXXXXXXXXXXX»l<»XX»XX»XXXXX 4XKMXKXKXK
C PTAD SYSTEM INFORMATION TRQM HYDRAULIC TAPE
«I
PEVI"" 3
PFVIMO 4
READ (5*5^8) (fLPHAd),
PEAD C5>500) MJ, NC* NSTAP.T* NSTOP* NODY*
K = CM STOP - NSTAPT) / NO"YN
DO 100 I = 1*K
READ (4) ICYCTF, (Y^EIKJ)
>?E*0 C4) COOOi'VCN); N = 1
(3) ICYCTF* CYNFlicJ), J=1j»*J)
E (3) J IPLT2(N)
104 CONTINUE
READ (5,500) KSBTAB
IF (VSWTAB.EO.O) GO TO 19^
00 106 N=1 *NSWTA8
CFAD (5,500) NFPCCN), KSL(N), KPLOTC")
10& CO"«TINUF
Cxxxxxxxxx«xxx»x»x»»xxxxx PLOTTING OUTPUT COMTROL »»»x»»»»ii»»»«»«»»x»««xx«»«
PFAD (5*503). HEADPR
PFAD (5,500) NTP, NSVP, KPLOP
RFAD (5*500) NDATA, VOBDAT
IF (»f030AT.6T.O) READ (5»500) (NO°CYC(I), I = 1,N03nAT)
IF (N5WP.RT.C) READ (5,500) (NCO^syCK), K=1*NUMCO!O
IF (ITP.EO.O) GO TO 110
DO 108 N=1 *NTP
-------
- 278 -
"'O) JUNCTPCV). NSCTP(N)J NECTP(M)j NCITP(N)j
*• (NCONTP(NjK)»K = 1 JiVUMCON)
108 CONTINUC
110 CONTINUE
NUMPLT = NSWP + IIP + NPLT1 * NPLT2
IF f'UMPLT.EOeO) GO TO 11'<
:YWAJtC(K).» YHI»C(K>J K=1jNUlrON)
K=1jNUMrON
112 CO»'TI"M5
IP (VUMPLT.EP.NTP) 60 TO 1U
(114) = 0»0
RMMOOT
RMNOPF
4)
5)
( 6)
C •«)
( 9)
< n >
(11)
c 1?)
(13)
RMHODr
pMNOOr
RMNOCC
RNVODF
RMNOD""
RHNODF
RMtlOOF
(1TO)
(17)
C 1")
(19)
C 20)
(
24)
25)
RMNODF
RMNODF
R1WOOF {
RMNODF (
RHNOD"7 (
RM«OOF (
R1NODF (
RMNODF {
RKNOD.F (
RMNOCF
114 CONTINUE
73)
34)
'3)
TO)
40)
41)
42)
43)
2."
3o3
5o9
606
7,6
8o4
= 9o9
= 10o?
= 11 .?
= 12^9
= 13.6
= 14.8
= 15.'
= 16.3
= 16.9
= 17.9
= 18.5
= 19,5
= 20.4
'= 21.4
= 24.0
= 25.7
'- 27.0
= 28.f
= 29.6
= 30«7
= 31.4
= 32.7
= 34.2
= 36.'
= 38.S
= 40.6
= 42.9
= 45.n
= 49^4
-------
- 279 -
INITI/H.ITT VARIABLES
TCIfC = T
!TA3 = 0
HTA5L = 1
MPA = 1
K'S1 = 1
NS2 = 1
NO =0
*'TAG = 0
TSPISC = 0
TSSET = T
CSAT = 0
PFLT01 = r-ELT * FLOATXNOOVH)
PFLT!? = nELT * FLO*TCNOpivN)
VTEfP = NSTOP-- NOCrrP
CO 116 N=1»MC
If (NJUNC
«>JUMr(H»1) = NJir«»C(H»?)
NJUHCCN,-?) = KEEP
11 6 CONTINUE
DO 120 J=-1.»»J
OI<*«0(J> = T.
=0
"NRLf J) = 3
"OLTKJ) = 0
POiTO^CJ) = 0
DOGT5«J> B 0
^OflNCJ) = 20.
•?OMAX(J) = Ot
HINCYC(J) = n
"AXCrCCJJ = 0
OOAVG(J) = 0.
DO 118 K=ljNUHrON
CWLOAP(J.K) = 0.
CONCU(JjK) • 0.
C(J»KJ " 0.
116 COMTINUF
120 COf'TIMUP
C»«»«**H«»«*«II««*«« SET PARANFTEPS FO' SLACK-WATER TABLES »»*»««*»*»»»»•»»»»
IF (NSWTAB.EO.O) 60 TO
1 = 1
00 122 W=1iNSVTAB
CALL SUT»BL(I*H>)
IF(M.EQ.NSWTAB) 60 TO 1?2
1 = 1 + 1
122 CONTINUE
123 CONTINUE
-------
- 280 -
PFAO <5>5')8) HEADSR
PFAD (5.504) PERC"* CHLNIT* CHLPHO* THLCAR
C/1RCHL » lo/CHLCAR
PHOCHl a U/CMLPHO
NITCHl a lo/CHLMIT
DO 126 K=1.NUHCON
V» = 2»K-1
NB a 2»K
READ (5»512> BACKC(K) ,THETA (K)j CLIPIT(K),
126
IF GO TO 147
C »»«**« »«»»«»»i«» »» »»»»»»»»i«)m»»»»»)nnMnm»» it »»«»»»» »»»»»)« ••*»II«*M «» »« »»»» »» »••»««
C READ DO RELATED COEFFICIENTS
132
PFAD (5f508) HEA05R
READ (5*504) TSRISEj TSSET
READ (5i500) NO
DO 132 1=1 >NQ
°?AD (5j514> NFKDjNLK
«1 =• MFKI)
«I2 a NL1 CD
00 130 J=N1.N2
DFPTMP(J) = !)FPTH*a *•*«*«» •••»*x«»»»» o1 CONNER-DOBBINS
134 A <* 12o9
« a O.f
K •-» -1o5
A « < » THFT/U6) «» (TEtP - 20.)
SO TO 142
CHU'CHILL
11 .6
U ••'• .97
r a -5/3
fl n A » THFTA(6) »» CTEMP - 20.)
50 TO 142
C»»»«»• »a»«)» »»»»»»»«»«»»»»»»»»»»»»» USCS
138 A => 7.57
H " 1.0
8 " -4/3
*««*»«««« KM *«««»« ••«««««NititM«
• «•*««*»»»«•«»»» •••««»«»IIK***»«*«
136
A u A
SO TO 142
C«»K*»H«n«K»u *«•«»« «»««»•«« «»***«
140 llEf'D (5»50/) REOXK
KE3TIC » REO^K « THE.TAC6)
ttEOXK o EXP(-RPOXK » OTO)
REOTK - 1.0 - P?OXK
»«•••»»••*«•««»«»«»»•*«*«••««*••»•*
CONSTANT
«»»ti»i»»in»i«i(»»tn»i«)
-------
- 281 -
C»V««*«»*K**«*»*«*«*«««*K*« COMPUTE DO S'TURATION »***«»»*»»»»*»»»**»»»»»«»«
1«2 CSAT = 14.652 - (.4102? « TEMP>+(.P07991 » TEMP » TFNP)
» -(.000077779 » TEMP » T^HP »
143
PRINT SUMMARY OF CONTROL DATA
WRITE <6»600) (ALPHA(I)* 1 = 1*80)* NSTART* NSTOP* HYDCYC* PELT*
» NQCYC* NUKYC* NOOCYCj "ELT01* NSPEC* TFMP*
« NUHCONj TE«P ,STIME» TSRISf* TSSET* CS*T
VPIT? (6*602)
00 U4 K=1»NUMCON
w* = 2 « K - 1
N* CDIFFKU)
N1 a NFC(T)
H2 » NLC(T)
00 14S N=N1*>»2
DIFFK(N) » COIFFK(I) * OFLTO / CLEN(N)
CONTINUE
CONTINUE
C»»» »»»»»»»* »• »»»»»»»»»•»» *«»»»i»»»»»»» *»»»»» »»»• «»»!•»» »«»»«»»«»»•••»»»»»»»« KI»«II»I»
C PRINT NETWORK AHH HYDRAULIC PARAMETERS
C»«» »»*»»)«* »»»»»i»iH»» »»»»«**)«»•»»»» »*»»*»»»»i»**»i< »»«»»»»»««»«*»«•»«»»»«»»» »»»»»»»
f1 = MJ
N2 e NC
UPITE (6*630) (N* CLEN(N)* 8(N)» ARE«CN)» CN(N)* OIFFK(N)*
» QN5T(M), R(N)* (NJUNC(N.K)* K=1,2)» N* QIN(N)*
» Y(N)* (NCHAN(N*D* 1=1,5)* N»1*N1)
-------
- 282 -
F11 a N1 * 1
tJRlTU (6,632) CN, CLEN(N), 3(1), IR£A(N), CN(N), DIFrK(N),
u ONET(N), R(")j, (NJUNCC",*), K=>1>2>, N=N1,N?)
UPITf; (6>622)
^0 U7 1=1,NK
tfR'TE (6,62^) MFC(I), NLC(I), COIFFKCD
147 COMTTNUE
"UTRIFMT UPTAKE « HEGENE»ATION ilATES
PEAO (5ji508) HEADER
pPAD (5,5PO) »-'R
CO 149 1 = 1,«»R
C = AD (5*51&) »IF2(I)ji NL2(I>j> flMUPP(I>» PHUPP(I)f RE6ENN(T)j
n °Eeepp(i)j) RESocod)
V1 = NF2CT)
= KEBODCfl)
= REGEPP(I)
PHUPfJJ = PHUPP(I)
OHUP(J) = AHUPP(I)
148 CONTINUr
149 CONTINUE
CONSTITUENT PECAY PATES
(5fl508) HEADER
RF»D (51)500) MO
DO 156 I=ljNO
FcftO (5j5l&) NF3CI)ji «L3(D« COEr*YK(;
"1
H?
DO 152
no 1:
DETATCJjK) = OECATK(IfK)
150 CONTINUE
152 CONTINUE
154 CONTINUF
ifii
PRINT JUNCTION RATES AMO COEFFICIENTS
><
V3IT? (6,624)
WRITE (6,62?J NF1(I),NL1(I), PMQT(I), RES(T), OEPTM(I), BENT(I)
1«!5 CONTIftUE
«3IT? (6,626.)
WRIfE (6,627) NF2(I)f NL2(I)j! AHUPP(I), PHUP(I),
* PE6E*>P(I)» REBODO(I)
156 CONTINUE
VltlTF (6/628)
DID 157 Io1,NP
-------
- 283 -
URITE (6»6?°> «F3CI)j> wL3(I)j> C^ECA VKC
1C7 CONTINUE
WPIT? (6/627)
RATE TRANSFORMATIONS
PTD = OELT01 / 24.
PO 160 J=1*NJ
OPF30CKJ) = 1.0 - EXPC-^EBODtJ) « !?TD)
ORPSEPCJ) = 1.0 - EXP<-»EGEP » 9Tp>
ORECEN(J) = 1.0 - EXP(-9EGENU> » DTO)
OPVUP(J) = 1.0 - EXP( -PHUP(J) » TIP)
0*1UP(J) = UO - E»P( -AMUP«J) » DTO)
nO 153 K=1j)NUMCOF)
DEC*Y(Jj>K) = DECA^fJjKJ «J THETflCK) BB
Ic (KeFQa'') DFCavtJiJ) = DCCflV(js?> « DTO
Ql?CAT(JjK) = 1Q0 - EtP<-«FC/4Y(J*K> * OTDI
153 COMTINUF
t60 CO^TIVUE
PFAD (5,508) HEflO=R
P?AO (5*500) M««STC* WtlflSTVr
C»»*»«*»*««««9*ff««a«aHafiasan CONSTANT • INPUTS HBBa»»»»»»»»B»»»»»»»»»»»»»»»»ii»
IF («IV*STC.EC.O> GO TO 17"
RPAO (5.508) HEADER
DO 174 I=1fMtf»STC
REID (5>516) JRCU(I>.> QCU(I)« (CUCU'K)* K=1>NUfCON)
J = JRrW(I)
IF U.GT.1) BO TO 166
162 OINWQ(J) » OCW(I>
00 146 K=>1*NUHCON
XLOHO(IfK) * -QCH(I) » CHC(I,K) n 5.3Q&
CWLOADCJ/K) = XLOAO(I>K)
164 CONTINUE
GO TO 170
166 IF ( JRCVd >.ME.JRCV(I-m 60 TO 162
OINUQ(J) = CINWO(J) * 1CU(I)
00 168 K=1jNUMCON
XLOAO(I,K> » -QCU(I) a CUCU*K) • 5.394
CWLOAO(J»K) ° CVLOAO(J'K) + XLO«0(I»K>
163 CONTINUE
170 00 172 K=1*KUWCO»'
CONCy(J.K) a CVtOAO(JjK) / C-CINUQCJ) » 5.394)
172 CONTINUE
174 CONTINUE
176 CONTINUE
C»«»*«i»»»»»*»»»«iii»»«»i»i»» WRITF CONSTANT INPUT TABLE «»«»••»*»<>»«*•«»»»»•*•»*
VRITE
00 178 J=1fNJ
IF (OINUO(J).EO.O) GO TO 1 78
-------
- 284 -
URITE (5*640) J, QINHOfJ),
J - JRVV(I)
iWI - NINC(D
UCYC(I) = 0
t(!?'CU) = 1
(5»516> INCDimijjN) , FLOdjhi)* (COM(K^rjM)* K = 1*MUMCON)
no IPO K=itKuncon
VU1.0AOCK) = -FIO(I»N) a CON(Kj.I*M) u 5.794
180 CONTINUE
KxaaBxanaHci'maHXHoomiaa HRITF VARIABLE IWPUT TABLE »»»«»»»«»» *»»*»»»(»»)»»)»»»
IF (K.'iF.a) GO TO 182
HPITF (fji644)
IflTE (6j>646) JRVH(I)* Ij No INCDUfU I »N), FLO(I»N)*
a (COfXKjIjNJj- VWLOCD(K)j K=1j>NUMCOM)
ISO TO 1°4
182 1IRITE (6i6A8) H» INCDUR(IjiM)*
n (COKltK^liNJj, VWLOflD(K>ji K=1
184 COMTI'tUE
1»6 COflTINUF
188 CONTINUE
VARIABLE 9ANK INPUTS
IF (»rABK.EO.P) GO TO 196
READ (.''..SOS) HEADER
RCCO
bRITH
REAP (5»500) JRBLKI)* JRBL2U)» ICYCUDj ICYC2CI)
F-EJO C5j>506) BFLOa* CBCONC T «tC) « K = 1pNUTON)
^1 = JR5L1 (I)
-2 = JR°L2CI)
HO 192 J=J1j>J?
TBFLO« J^ SLINE(J>« TBFLO«(I*J)* 1CYCKI)* ICYC2(I)i
» (BCON(I>K)» V9LOAP* K = 1»HOHCO>«)
1°2 CONTINUE
194 CONTINUE
196 CONTINUE
-------
- 285 -
UPP!:R BOUNDARY CONDITIONS
PFAO (5.508) WEAOFR
KFITP (6.654)
I = NVASTV + 1
JPVW(I) « 114
READ (5.SCO) NINC(I)
UN = NINC(I)
KCYCCT) = 0
KINC(I) = 1
TO 200 Nsl.N"
READ (5.516) INCDUPd.H). FLO(I*N)» (CON(K.I.N). K=1,NUMCON)
00 19" K=1.NUMCON
VWLOAD(K) * -FLO(I.N) * CON(KjT.d) « 5.394
198 CONTINUE
CM***************"**"*"* VRITP UPPER ?OUNOARY TABLE
WRITE (6.656) N, INCOUP(I,N), FLO(I.N).
* (CON(K.I.N). VWLO'P(K), K=1,NUMCON)
200 CONTTVUE
l«««K»»ltltlt« »*»)(••
INITIAL CONDITIONS
i »•»»»•
PFAO (5.503) HEADER
WPITr (6.658)
TO 206 I=1.NJ
READ (5.514) JINT1, J1NT2, (CINT(K), K=1.NUMCON)
WRITE (6*660) JINT1* JINT2* (CINT(K)*
00 204 J=JINT1*JINT2
DO 202 K»1.NUMCON
C(J.K) = CINT(K>
?02 CONTINUF
204 CONTINUE
IF (JINT2.FO.NJ) GO TO 208
206 CONTINUE
208 CONTINUE
IM»**«*»*«*»I
SEAWARD BOUNDARY CONDITIONS
H
(5.508) HEADER
PFAD (5.500) (SEACON(K), K=1,NUMCON)
00 214 K=1»NU*CON
IF (SE«CON(K).PQ,1) READ (5,506) CIN(K»1)
IF (SEACON(K).EQ.2) READ (5.506) (CIN(K,I), I=«1,NSPrC)
IF (SEACON(K).Fn.2) GO TO 214
no 212 I-2.NSPEC
CIN(K,I) = CIN(K,1)
212 CONTINUE
214 CONTINUE
(;«••«*««»»««»»«»*»«*••* VRITF SEAWARD BOUNDAPY TABLE »««»»««»»•*•»»«•»•»»)»»»
WRITE (6,642)
-------
- 286 -
6 I=1»N«PEC
WRITE (6*6*4) If (CINCKjI), K=
INITIALIZE VOLUMES AN3 MASSES
C
C*H»«tm»»fc«»«u»«it«M» CALCULATE MEAN JUNCTION VOLUMES »m»«»«»»»in»«im««««««»»»
PO ?22 J=1>NJ
»VOL(J) " PQ
VOLSU9 = 0.
"0 21* K=1»5
IF (NCH*N(J,K).EQ.O) GO TO ?2G
N ~ NCHAN(JiK)
SftRE» o CLEN(N) « B(N)
SASU<1 = SASUH + SAPEA
VOLSUM = tfOLSUM + SARE9 » RfM)
?18 CONTINUE
220 »V?n a VOLSUH / SASU"
AVOL(J) - ASUR(J) <* AVRn
2?2 CONTINUE
C»*»«»»isa»iiao COPRECT VOLUMES FOR INITIAL STARTING CONDITIONS »»»»»»»»»»«»•»
224 PFAC (3> ICYCTF* (YNEW(J)j J=1*NJ)
IF * *=1*VC>
SO TO 224
226 00 229 N=1,NC
NL = NJUNC(*,1>
NH = NJUNC(M,2>
R(N) = RCN) * (YNEW(NH) - Y + VN£U(NL) - Y(NL» » .5
228 CONTINUE
TO 2*0 J=1»NJ
VOL(J) » AVOL(J) » (SURCJ) » CYMEWfJ) - Y
Y(J) o YNrwtJ)
230 CONTINUE
C»M*«»a»i»«*»»**»»»***»*««* CALCULATE INITIAL MASS »»»»»»»»»«ii»»»»» «««»«»»»*«
DO 234 K=1»NUHCON
.CO ?32 J=1*NJ
C"fiSS(J»K) => C(J^K) » VOL(J>
272 CONTINUE
CONTINUE
COHPUTE TNFLOV/OUTFLOV VOLUHES AT HASTEVATER MASSES »C»»»»»»»IK
00 240 J=1>NJ
* "ELTO
K-1*NUNCOK
CULOAD(J.K) - CULO^O(JiK) » OELTO / 5.394
?38 CONTINUE
240 CONTINUE
JJ = "HASTV + 1
PO 2/U I»1*JJ
NNN » NTNC(I)
-------
- 287 -
CO 242 N=1,MNN
FLO(I**> = FLOCIjN) « TFLTQ
242 CONTINUE
244 CONTP'UE
IF GO TO 250
TO 243 I=1,N°»NK
J1 = JB°L1 (I)
J2 = JR3U2(I)
"0 24* J=J1,J2
T3rLOVCTtJ> = T9FLOV * OELTO
?46 CONTINUE
248 CONTINUE
2*0 CONTINUE
>«•«»>»««»»«»«
c HAIN QUALITY LOOP
C »»«»«««»»« »»»»1»M»)«» »»«)l«* M«lllll)»l(«»l>«KII«l)«lfl(IIK»«»*K)(ltlt KM •«»*»»«* »**»*» «**»»*»»»»
PO 366 ICYC=1iNQCYC
CTI«E = CTI»«E * DELTG'1
IF (CTI^E.CT.24) CTIME = CTIME - 24.
C»*«i(»»*#»»)ii<«»»»)i »»»»*»»»» RF*0 SYSTEM CONDITIONS »«**N**«**»»»«»«»*»***K««»N
READ (^) (0(N)» VC«»)J N=1,NC)
IF (ICYCTF.GE.NTEMP) 60 TO 252
P?AD (3) ICYCTF* (YMPtfCJ). J=1jNJ)
GO TO 254
252 REMIND 3
READ O> ICYCTF. (YN[-U* J
254 COWTINUF
•OVECTIO*' * DIFFUSION »«»i«i«»»»»»»»»»»»» »»»»»»»m»»
»«
CALL HIXER CHI»)
C
C««**K**«»WN*«»**N»***«««««* 0CCAY + NASS TRANSFER »»»«»»*»N»*«N«»«»*«»«««M««N
C »»»«»»»mi»»»»»«i»im«»)i)n»m»»»
00 302 J=2jNJ
DO 300 K=1jWUHCO'll
CO TO C264,266*2$«*270j280*252>, ic
C»»»»»»«m»)(»ii»»»«»«ti»*«»)»»»«»»« CONSTITUENT 1 **«»»*«•***•*•«•«*»»»«»*««»«««
264 IF (KPEAC.EQ.?) SO TO 300
= CC » WOL(J) » ODEC*Y(J,1)
- 4.57 » XHH5SN
XM«SSU » C(J*D » VOL(J) » OA«UP(J»
CM»?S(J»D a CMASS(J»t) - XHASSN
60 TO
C*»»«»»»«»»« »»«*»* »»»»»»»» »»»»» CONSTITUENT 2 »*K««*««M«*»**««***»it«*»«K
266 IF (K»EAC.E0.2) 60 TO 300
Y1ASSU » C(J*2) • VOL(J) » ODECIY(J»2)
CN»5S(J>2) « CPASS(J>2> * XMASSN
-------
- 288 -
GO T0 '00
268
CONSTITUFNT
IF <*P£AC.E0.1> SO TO 30°
ZM/ISSD = (OECA^(Jj^) » C(J*3) » C(J»3)
UDECf^Uf ^) » C(J*3)) t 1 )
ZMASSU = C(J»3) » VOL(J) » OPHUP(J)
CMASS(J»3> = CHASS(J*3) - 7MASSO
GO TO *00
VOL(J))/
C»»«««()I»«IH«« «***«*«* *•»»«« KM OK*
CONSTITUENT
*****««* **N*ft»»*K*EAC.EQ.4> SO TO 300
C(J<4> * VOL(J)
OMASSD(J) * DMASSX
OMASSOfJ) « NITCHL
OM'SSOCJ) » PHOCHL «
DMASSDU) * CABCHL »
DMJSSD(J) - RMASSN - RM»SSP - RMASSC
GO TO H72/274*276)» K*rAC
*«{}««Mt»«it«H«»«*M NITROCFN UPTAKE ONLY
MCHLON « CXMASSU + YMA«?SU> « CHLNIT
CMASS(Jj4) = CMASSCJ*4> * MCHLON - DMASSX
CMASS(J>2) = CMASSCJ.2) - YNASSU
GO TO ""JO
* * RMASSP - ZHASSU
GO TO *00
**»»*****»»»» NITROGEN A PHOSPHORUS UPTAKE
*CHLON = fTMASSU * YMASSU) » CHLNIT
MCHOP = ZMASSU » CHLPHO
IF (NCHLON.LE.MCHLOP) SO TO 27»
«•«***»»**»«*-*»**»» PHOSPHO"US LIMITS
CMASS(Jj4) a CMASS(J»4) + MCHLOP - DMASSX
TMASS(J»') * RNASSP - ZMASSU
CHA?S(J'1> + RMASSN
- XMASSU «
CMASS(J»?) - YMASSU « tMCHLOP/MCHLON)
TF 3) * RMASSP
- 7KASSU « (MCHLOW/MCHLOP)
» CMASS(Jf?) - YHISSU
T«- (ICYC.LT.MOTCTCJ 50 TO 300
NNRL(J) » NVRL(J) * 1
90 TO TOO
CONSTTTUENT 5
XMBOO
MASS
0 TO 300
r««ASSCJj3>
r«Ass(j»r>
C»«ASS(J,2)
•«««««««K»*««««««
C«ASS(J»D
VOL
-------
- 289 -
C»«»****«««*«N*«*ft«»*»»««M««««* CONSTITUENT 6 **«»*K «n»»»***«««*MNft SO TO 286
PHOTOH = XVOL » PHOTO(J) » C(J»4) * DELTQ1
GO TO 290
?«6 PHOTO" = VOLf'J) » PHOTO(J) * C
IF(QA.LT.03) ILAP5E = NCH«N(J*M)
792 CO^TIHUf
294 »• » THRCC
?06 COMTIHUE
"FOXK = A » A3S»».T
REOXK • 1.0 r EXP(-REOXK » DTD)
298 C01TTKUE
RFWASS = VOL(J) * (CSAT - C(J*6)> » ffEOXK
C"ASS(J,6) =' CMASSUJ6X + PHOT0.1 - BFNTHM -
«...•• * Re1ASS - XMBOD - XHHH3
700 COtTINOF
302
C»»»»«««»»»I»»»»***-IH»-««»»» ADr> CONSTANT HASTE LOADS »«»»»»)»«»»ii)i)i»»«i«»»«»ii««»
IP (NWASTC.EO.O) 60 TO 312
"0 312 J=2*NJ
IF (VOLnm(J)J 304*312*308
?04 ''O 306 K=1*NUMCOW
CW»SS + C«LOAO(J»K)
306 CONTINUE
. GO TO 312
308 "0 310 K=1*NUHCO"
CMASS(J»K) » C»ASS(J*K) - C(J*K) « VOLOIN(J)
710 CONTINUE
312 CONTINUE
C»*«»*««»H»«iiv« APD VARIABLE WASTE AND UPPER BOUNDARY LOADS *ft»«««»««**i>*»Mii
JJ » MWASTV » 1
00 31P I»1*JJ
J = JRV¥(I)
N = KINCCI)
KCTC(I) • KCYC(I) * 1
IF CKC^C(I).LE.INCPUR(r»N)) GO TO 314
KCYCCI) - 1
-------
- 290 -
N a
IF (N.LF.NINCCI>> CO TO 31A
KINi-U) = 1
N = KI«»C(I)
CN»SS(J«K) a C1flSS - FLO(I*N)
?i6 CONTINUE
318
C»«»»»«»o»nc)»«i»n»»»»»Mii« ADO VARIABLE BANK LOADS « " VOL(J) » ASU8CJJ n - YCJ»
on 3?n KaijNuncow
CCJ»K> o CKASS(J«K> / VOL(J)
?50 CIIHTIWUE
3?2 CONTTMUE
Ml. » NJUNC(N»15
- Y«ML»
COHTIUOE
C»*«;»im«o««JCiH««ii»»*«»» PREVENT NEGATIVE CONCENTRATIONS »«»**«•«*«•••»•••«••*
00 33H J«-1,HJ
"0 37*
IF (CCJjKKGE.P/ICKCCK)) GO TO 396
IF CKDCOPtEO.1) WRITE C6.666) Js ICYC*K* CCJ.K)
C(J^K) = B*CKCflt>
CH«?S(JfK) n C(J.K) » VOL(J)
33fc CCNTINUE
3'3 CONTINUE u
CKNiiii«*«»ii
-------
- 291 -
IF (C(J,K).LE.CLINIT(IO) SO TO 340
KPITE (6»66* J* fCYC
WRITE (5*670) ((C(L*M>* * = 1 » NU^CON) , L
STOP
?40 CO«TINUC
342 CONTINUE
Ctt*«Hii»N«ft*»KKKM«ii»** COMPUTE RANGES OF CONSTITUENT 4 »»«*»»»«*»»» «*««»««««*
Tr (ICTC.LT.WDOCYC) CO TO 350
"=• CMUMCO^.LT.6) GO TO 3SO
00 348 J=1»NJ
Ir (C(J,6).LT.4) OOLT4(J) = OOLT4(J) * 1
IF D06T5(J) = DOGTS(J) * 1
Ir (CCJ,^).GB.4.AND»C( Jj6).LE.5) 004TOSCJ) a 004T05CJ) + 1
IF C"{Jj6).6T.DO>'IN(J)) GO TO 344
00"IN = C
MINCTC(J) = ICTC
GO TO 346
744 IF (C(J,6).LTtOOM«X( J)) GO TO 346
icrc
34t COVTINl'P
OOAVCJ) • 00*V6(J) * C(J»6)
348 CO-»TINUP
350 CONTINUE
Cmn»»»*»»**»»i«»»* •»»»»»»»»« RFAO OBSFRVED DATA »»»»«)i»»tt»»*»»«»»»i»»«»)(imi»)»»i»
IF (NOAT^.EQ.O) GO TO 354
TF (VOA.GT.NOBOAT) 60 TO 354
ff (ICTC.NE.NOBCrC(NDA)) CO TO 3e4
REID (5*509) HEADER
30 352 K=1»NOAT*
"EAO (5*510) ((Oi3fATA(I*J*K)* 1=1*3)* J=1»6)» RHPATA(K)
3e2 CONTINUE
NO* = NO* + 1
354 CONTINUE
C*MK««»««««»**H««X •• STORE CONCENTRATIONS FOR TlHE PLOTS *«*«M»M««»«»»»»««»*
IF (KTP.FP.O) 60 TO 358
CO 356 T=1*NTP
J = JUMCTP<1)
V?ITP (11) 1CYC* (C(J*K)* K=1,NUHrQN)
356 COXTINUF
358 CONTINUE
C»«*»«»»««»»****«»*»»»»»»» CHFCK FOR SUMRT1 OUTPUT »»»»»»»»»»••»»• »»«»i»«»«im
IF (VS1.GT.NSUH1J CO TO 360
IF (ICYC.LT.IPRTKNSD) SO TO 360
IP1 « !PRTUNS1)
LP1 - LPRTHNS1)
IPL1 = IPLTKHS1)
CALL suH/tpy(iPi*LPi*?PLi»i)
Ic (ICYC.FOtLPRTKNSD) NS1 = MS1 * 1
360 CONTINUE
C»«»««*»»m
-------
- 292 -
TF (NS2)
I?L* = !PLT2(NS2)
SUMA«»Y GO TO
IT«9 = TT*5 * 1
C\LL S»T«BLCIT»B»NT»SL)
IP CICvC.HPtNLPC(MT»EL» GO TO 764
IF
-------
- 293 -
502
50*
506
50?
510
512
514
51f
600
602
60?
604
606
607
609
610
611
61?
614
61?
616
617
61S
620
621
FORMAT
FORHAT
FOR1»T
(3110)
(16F5eO)
(20A4>
FORHAT
FORMAT
oOj2fli)
FOFI'T l6Xj>'FNVIPOMf«?NTAL PROTECTION A6E1C Y ' >/ 1 X*ZO A 4
iu21Xi' DYNAMIC ESTUARY MO^FL' »/1X»?OA't/1 X*20A4*/// 3Xj24(1H«)» ' HY
»OPAULIC CONT°OL ''ATA • «24( 1H«O s>//i,3z> ' FIRST CYCLE ON LAST CYC
MLE ON PE^IM READING Tflpg HYnDAULIC ' J/*3X> 'HYDRA UL1C TAPE
» M»nRAULIC TAP? n CYCtc TI«"E STEP (SEC. ) ' »/*6X,
«'fNST«RT>'*1Ti » ' COELT) • J//8X* Uf 14X« I
• 6»16Xj 14* 16Xfr6«2f///*3Ki>65C1H»>p' QUALITY CONTROL DATA "»45(1
«H«)j//i13T*"11OM3F<» OF
»Y«j10X>«OU»L JTY»,1UJ>'OUHITY
»APY 5FGI1S AT CYCLE 3FGINS
»TI?AL PE"PODDP/i14Kj)'
nOFLTTD' »12X*' (NSPEO
*
»X, 'STARTING TIME TIME OF
BCOMSTYTUPVTS TcMPFRaTURE
» AT 'j
• •(TS"TSE)
ST
AT
PS' */
CYCLF
LIH ITATIO"' ,7X» '0.0.
*1 1X* ' QUAL ITY CYCLES
TI«E ST€«> (HftS)
SUHMAR
SU1M
PER
1 4* 19X* H *'\ 9Xj 14*1 k » »F6 . * > 1 5X t
»*X»"*UM0FK OF«,21
TIME OF 0.0. S* TURATION ' i / j3X t '
FOP THIS RUN SUNRISE SUHSFT
(TFMP) '
COPM»T (1H , SXj'CO'YSTITUENT COMSTITUFHT ?ACK6ROUND
» TF«PERATURCI j /s?X j " MUH?FR ^^AM? CONCENTRATION
•CORRECTION F ACTOP ' s>/si2ZXt ' CC^ANE > ' J.6X . ' <9A CK C)' , 1 1X, « ( THETA ) ' •/ )
FORHAT (1M , PX,I2,10X,2A4,9X jF6.3f 13X>F5.3 )
FORMAT (1HO/74X»'PERCFNT OF OEC*»ED /ILGAE' ///?X* 'CHLO"OPHYLL/wiTRO
*GPH CHLOPOPHYLL/PHOSPHOROUS CHLOROPHYLL/CARBON WHICH IS 81
»0-DECRADABLE>»/>BXj«(CHLHIT)'jl7Xj'(CHLPHO)',1dX*l(CHLCAR)'j18X*'(
FORHAT
• USUC
»USIN0 IS
FORMAT
•EAC =
FORH«T
*KPEAC
FORHAT
(1H t 3X»'THF REOXY6ENATION CONSTANT FOR 0.0. IS COMPUTED
TH? 0-CONNOR-D09BINS EQUATION : K2 = 12.9 » V»».S / H««1.5'>
(1H , SXj'TH* REOTYGFNATION CONSTANT FOR 0.0. IS COMPUTED
TH? CHURCHILL EQUATION » K? « 11.6 « V*«.97 / H»«1.67 ' )
(1H , SX.'THF REOnGENATION CONSTANT FOR C.O. IS COMPUTED
THE U&GS E3UATION J K2 = 7.57 » V / H»»1.33 ' )
(1H , 3X*'TH* REOXYGF.MATION CONSTANT COR D.O. IS CONSTANT
EQUAL TO '*F7.3 )
(•"» t 3X»'0«ILY NITRO'JFII UPTAKE BY AL5AE IS CONSIPFREO (KR
1) ' >
(1w * 3X»'ONLY PHOSPHOROUS UPTAK? 8Y ALG.'E IS CONSIOfoEO (
= 2) ' )
(1H , 3X»'NITP06F«( AND PHOSPHOROUS UPTAKC BY ALGAE IS CONS
(1H > 3X»'CONSTI.TUENT CO^rEHTRATIONS TN »DVECTEO WATER APF
» FOU'L TO THF UPSTREA" CDNCENTRA TIOH (>1IX=1 ) ' )
FORMAT CIH , 3x*'CONSTITUENT CONCENTRATIONS IN APVECTED WATER A9?
• COMPUTE" USlf'S THE 1/2 POINT CQWENTRATION (MIX=2)' )
FORMAT (1H , 3X»'CONST][TUENT CONCENTRATIONS IN ADVECTED WATFR A"?
» COMPUTED USING THE 1/3 POINT COHCENTRATION (MIX«3)' )
FORMAT (1H t 3X»'CONSTITUENT COVCENTPATIONS IN AOVECTEO WAT€P AR?
« COMPUTED USH6 THE 1/4 POI««T CONCENTRATION « >
FORMAT (1H t 3X»'CONSTITUENT CONCENTRATIONS IN AOVECTED WATFR A"?
• COMPUTED USING THE 2-WAY PROPORTIONAL METHOD (MIX=5)» )
FORMAT <1H • 3X*'DEPLETION CORRECTIONS APE P9INTEO (KOCOP=1)' )
FORMAT MH , 3x»'DEPLETION CORRECTIONS NOT PRINTED
-------
- 294 -
622 FORP«T OH *////»40x>i5f « DIFFUSION CONST»"TS
»/ >4'>X»' CHANEL CHANNEL ''ONSTiINT (CA> ' »/i4CX» 5G( 1H-) i
624 FORMAT OM1,///»1X*35<1H»)/' SUGARY OF DISSOLVED OXYGEN (CO"S
"TITUFMT A) PATES < , 35 (1 H»)f////'8X* ' PHOTOSYNTHESIS RESP
«IRAT):ON PHOTIC DEPTH 3ENTHTC DELANO' »/»?2X* ' FRO* TO
» (PHOT)'»12XJ' (RES)'*9Xj '(DEPTH) ',1 3X* ' (3ENT) i »/22X» ' JUNC
» JUNC 'j?Xj'("G/HR/US CHLORO)'>HX*' (FEET>'»/ *1 c»*90(1H-> */ )
615 FORMAT (/23X*T3j7X,l3j7X*F7.S,11>»F6.4,12X*F5.2j10XjF6.3)
626 FORMAT (?«n,///j1X»35C1H»)»' SUMMARY OF MUTRIFNT UPTAKE AND RF
nGENEPMIOM RATES ' >i c( 1 H«O »////lOX » • CROM TO CONST 1
» UPTAKE CONST ^ UPTAKF COWST 1 REGFN CONST 3 RFGEN CO
»NST 5 RECEN" j/jlOX*'JUNC JU«»C ( «MUP"> ' j 11 X, ' (PHUPP)
» (REGFNN)'»9X* '(RECEPP) • »9r» • (REBOCO) • */ »5Xj HOC 1H-) i /)
627 FOF«AT ( /10X* I3*7Xj 13* 10X *F5 .3 *13T*F5 .3 j1 X«3 (12X »F5 ,T) )
628 FORN«T ( 1 H1 , X//j1Xj40(1H»)» ' SUH«ARY OF CONSTITUENT OECAY 8A TF
*5 'jfrO(1H«)»////26X»' CONST 1 CONST 2 CONST 3 »
» COM^T 4 CONST f rONST 6' */*10X t ICROM TO
» (CECAYK 1) CPFCAYK 2) (DECAYK 7) C9ECAYK 4) (DECAYK S
•») (DEI AYK6)' »/*10X»»jUNC' »6Xj «JUVC (PER PAY) CPE? OAY)
» (PEP 0*") (PER 1AY) (PE7 DAY) (PFR n*Y)'j/ j5Xj11
FOR1AT
630 FOR1AT (1H1,// ,5X*A5(1H»)j' SUMNAPV OF HY09AULIC INPUTS '*45(
«1H«),///i15X»'CROSS-SECTTON»L ARCA A«0 HTDRAUUIC "ADIUS OF CHANN5L
«? AN-> JU"CTIOr HCADS ARE AT 1PAN TIO='^/// *1K*31 (1 H») t ' CHANI"CL
» ^ATA '»'2(1H)«),5X*15(1Hi»)j • JUNCTION DATA ' 1 14( 1 H» )>//> 1 X* ' C HA
»N LENGTH MITTH CS-AREA MANNING 01 FF NET FLOW HYD. * 1X*3( 2X»F5.2) /2X>6(-3X»F5 .3)»2X tZl2Kt f*s
637 FORMAT <10X*/////»» » CONSTITUEMT 3 UNDERGOES 2NO ORDER DECAY' )
63? FOFM«T(1Ht//10XjTa<1H*>>5X*lSUMMAtlY OF CONSTANT WASTCMATFR LOADS'
«*5Xj70(lH«)////j2AX* 'CONSTITUENT 1 CONSTITUENT 2 COVSTITU
»FNT T CONSTITUENT 4 COMST TTUE1T 5 CONSTITUENT 6'*/*2X*
•'JUNC. TOTAL FLOW CO*C» LOAD CONC. LOAD CONC.
» L3AP CONC. LOAD CONC. LOAD CONC* LOAD'»/>12
•X»'(CrS) (HC/L) (LB/DAY) (HG/L) (tB/OAY) (HC/L) (L3/PAY)
» (UG/L) (LB/DAY) (HG/L) (LB/DAY) (MC/L) (LB/OAY) • j/»1 X, 130( 1H
»-))
640 FORMAT C/2X* I3*6X»F7*1*2X»6C3Xf F5.1 »1T,F9.0) )
642 FOPM»T(1H1//10X,30(1H»),5Xi'SUMMi"Y OF VARIABLE VASTEVATEP LOADS'*
»5X*30nH»)//// 17X^ 'INC»EMENT CONSTITUENT 1 CONST1TUE
»NT 2 CONSTITUENT 3 CONSTITUENT 4 CONSTITUENT 5 CONSTITUENT
«6'j/>1X,'JUMC. DTSCH. NO, LENGTH FLOW CONC, LOAD CONC*
» LOAD COPC. LOAD CONC* LOAD CONC. LOAD CONC.
» LOA?S/.»20»» '(CYCLES) (TFS) <1G/L> (LB/OAY) (16/L) (LB/DAY) ( H6
»/L) (L3/n,4Y) (UG/L) CLB/PAY) (MG/L) (LB/OAY) (HG/L) (LB/DAY)')
644 FORMAT cm»i?0(iH-)/)
646 fORMAT C/'IXjT3j5XjI2»5XjI2j3X»I4*1XjF8.1*1Xj6(2X*c-5.1»1X»Fo.O))
64!) FORMAT (/ I6X » I2*4X t I3>3X»P6.0. 1 X.«(2X,F5.1 j 1X.F8.0))
650 FQRH»T (1M1//?OX*30(1H*)i5X< 'SUHMARY OF SANK LOADS ' ,5X*30<1H« )////
•^r^'^HORF B«NK CYCLE? CONSTITUENT 1 CONSTITUENT 2 CON
• STITUENT '.1 CONSTITUENT 4 CONSTITUENT 5 CONSTITUENT
-------
- 295 -
LINT FLOY STAT STOP COT. LOAD CONC. LOAD
COT. LOAT CONC. LOAD CONC. LOAD CONC. LOAD'
I) (CFS)'jUXj«(?1G/LJ (LB/DAY) (M6/L) (Lfl/"AY) (*C/L)
»CLB/"AY) (UG/L) (LB/PAY) («G/L) (L3/CAY) (MG/L) (LB/OAY)')
65? FORM»T (1 X»I3,2X,F4.1»1X,'-6.0,2(2X, I4)*6(7XjF5.1>1X>F8>G))
65? FORMAT (1»*/1X*130(1H-)j/)
654 FOPMfT (1H1//5X»30(1H»)»5XjiSUMHARY 0^ UPPER BOUNDARY CONDITIONS
»(NOCF 1H)"»5X*30C1H»}/////3»*' I»CFE"ENT • J 1 3X»' CONSTITU E*T 1 C
•OWSTTTUENT 2 CONSTITUENT i CONSTITUENT 4 CONSTITUENT 5
» CONSTITUENT 6'»/,ZX,'NO. LEVCT^ FLO*' CONC. LO^O
» COMr. LOAD CONC. LOAD COHC. LOAT CONC. LO
«AP CONC. LOAD»///6X/«(CYCLES) (CCS) (HS/L) (LB/DAY) (H
«C/L) (L9/DAY) (HG/L) (LB/OAY) (UG/L) (LB/DAV) (HG/t) (LB/OA
«Y) (MG/L) fLB/OAY) ' */»1 Xj1 70 ( 1 H-)/ )
656 FORH»T(/2Xjl3f3X»I4*3XjF6.Qj3(3X»F5,?»3X»F7.0)»2X»F6.2j3X»F7.0*2(3
65" FORMAT ciHi*///ji3x»35(iH»)» • SUMMARY OF INITIAL CONCENTRATION
»S «,?S(1M»),/// ,23X*«FROM TO CONST 1 CONST 2
» CCVST » COSST 4 CO*ST f CONST 6'»/ »23X»»JUNC JU
«NC (««6/l) (M6/L) ("S/D (UG/L) (PG/L)
» )
66? FORMAT C1H1///1X*35(1H«)*' TIDAL C^CLE VARIATION OF SEAWARD BOON
»nm CONDITIONS '*30(1H»)////45T»«SPECiriEO CONCENTP ATIOKS AT JU
»NCTION 1«//1 1* ^'INTERVAL CONSTITUENT 1 CONSTITUENT 2 CONS
»TITUF')T 3 CONSTITUENT 4 CONSTITUENT 5 CONSTTTUENT 6'»/*?6
1 1X
664 FORMT (UX,n*10X*F5.2»Ii(l2X*FS.2))
666 FORHAT(3!»« OFPLETION CORRPCTIOH XADE AT JUNCTION I3/7H CYCLE Jin
« ?1K rOR CONSTITUENT NO. I1»1?H. CONC. HAS F10.2)
668 FORMAT(34MOCONCEP«TRATION OF CONSTITUENT NO. I1*8H EXCFEDS»F7.1 1
* 13H IN JUNCTION I3*14H DURING CYCLE I5*25H. EXECUTION TEPMNAT?
»0.)
670 FORHATC1H 8E16.8)
672 FORMAT (1H1///20»»20(1H»)»3X*ISU»'HARY OF DISSOLVED OXYGEN 3EYONO C
• YCLE ' »I4*3X»?0(1H«)///10X»' JUNCTION MIMIMUH CO«*C. MA
nXIMUN CONC. AVEPAGP CONC. NO. CYCLES NO. CYCLES '•O
». CYCLES'»/»2?X*'(MG/O CYCLE ' »6X/ ' (MG/L> CYCLE1 *9X/ • (HG/L )•
674 FORMAT ( 12X i U,2C«X,F5.2j>5X* 1 4>*10X,F5.2»3X,3(1UX* U) )
676 FOPHAT (tHT///10X*30(1H»>,' SUKNARY OF NUTRIENT LIMITATIOW BEY ON
»P CYCLE '*H»JX*1?0(1H*)*////J?3X*INO. OF CYCLES' »27X<» NO. OF CYCLE
»S«*2?X»'»IO* OF CYCLES'»/»11X*'JUNC. N LIMITS P LINITS'*12X,
»«JUNC. N LIMITS P LirMITS«*1?X*'JUNC. M LIMITS P LIMITS'.
«/*8X»1 14C1H-)/ )
678 FORMAT (4Xr 1(7X»T3j8X»M»7XjI4j7T) )
679 FORMAT (91X* f?»8X,I4*7X*U)
680 FORMAT dH //?ox, "NUMBER OF QUALITY CYCLES = |»is*/,2nxj'HYD»AULic
» TAP? LAST READ AT CYCLE '/I5 )
STOP
-------
- 296 -
UTTER
HTXER (MIX)
THIS SuElfUTH? DETERMINES THF CONCENTRATION USED IN THE
flOVECTION ANC DTSPEPSIO* EQUATIONS AND THEN COMPUTES THF
fflS? OF F*CH CONSTITUENT TR«NSPOPTEr 3ETVEE* JUNCTIONS^ THE
USED TO
MIX = 1
3
4
5
l= CO^CENTPATIONS IS OFFH'EO 3Y...
USF. THE UPSTRTM CONCENTRATION
USE T"e 1/2 p.OINT CONCENTRATION
USF THF 1/3 P.OINT CONCENTRATION
USF THE 1M POINT CONCENTRATION
USE TME 2-WAY PROPORTIONAL CONCENTRATION
COMMON /«ISC/ CTIMF, OELTO* ICYC. »Ct NJ* Npp,
COMMON /CHAN/
I
C03HGN /DUAL/
AREAO39)/ B(139>» CLEN(139)» CNM39)/ DIFFKO39>»
"JUNC(139»2)j Q(1?9)j ONETC13"). R(139>» V(13«>}
C(133>6>«
» DELTO
00 700
VOI.PLM =
Olpr-C = DIFFK(V) » R(N) • «BStO(N»
^L = NJUNCCW.1)
^H = NJUNC<»»,2>
DO 6f»2 K=1jf'UMCON
CA = CCNL*K)
CB = CCNH.If)
IF (*.EQ(6?> GO TO 100
SO TO (100 »?00»300j400»5UO)> MIX
C*«»***«8«n**M«»*ii<>**««)l««i« UPSTREAM CONCENTRATION
100 TF C°(N).eEiO) CONC " CA
ff CO(N)tlT.O) CONC = CB
GO TO 600
C*«K**«iia»uxK»K*«»»*«M*MMM 1/? POINT CONCENTRATION
?00 CONC * CONC = <2.»CA + CS) / 3.
IP («(N),LT.O) CONC - (CA * ?.«C9) / 3.
50 TO 600
C»»«»n«»a«ci« •»<>«*« «««ii«««» 1/4 POINT CONCCNTRAT 10 V
401} ir (O(M).GE.O) CONC a (3.»CA *• CB) / 4.
IF (0(«). LT.O) CONC = (CA * 1,»C9) / 4.
SO TO 60P
2-UAT PROPORTIONAL CONCENTRATION »««» »»»»)•»«« N*«M «««««•
(CA * CB)/2. + ((CA-C9)/2. » V(N) » DFLTO / CLFN(N))
COMPUTE AOVECTFO A MO DIFFUSED MASSES
»»»»»»»»»»»»» «•»•*«Mil »»*»*II
500 CONC
C««»K«»c»«««««Hie«»»
600 CC(»WUE
«DHA?S
"THASS
CONC » VOLFLH
DIFFC » (CA - C9>
CMA?S(NH»K>
A«MASS » OIMASS
CHASS(NLiK)
602 CO!"TINUF
700 COWTTWUE
RFTURN
FNO
CN«SS(VL»K) - AOHASS - OIMASS
-------
- 297 -
£»»»»*»*•»*»»»»»*»»»»»*»*»»*»* H*»*****»»********»»*«»***»»»»»***«*»«»**»»»*»»»ll«*
C SU°ROUTINC SUMARt
SUB ROUT I VF
PIME'JSIO" C/>VG1(133i6)»
C"IN1 C133J6)i
COMMON /MISC/ rrrwE* OCLTQ» ICYCJ
TMNOPFn*'')* STIVC
/SUMSU*1/ r(?QX«(4
KOAY?1i
CM/»SS< 1
CM* X1 C 133 *6)> CM*X?(U3i6)»
NPP, ^junrON»
HOU9S1 » HOUPS2j
GO TO nOO*1?i>,
100 IF cirrc.cT.if>) GO TO 10*
DO 104 K=r1^'UM'-ON
"0 11? J=1»HJ
CMI«*KJ»K) = CCJ.K)
CMIX1(J,K) = C(J»K)
C*V51(J*K)
102
1"4
106
RETURN
COHPUTE
«VG
ro 110
CO 138 J=1»WJ
I*1 CCCJ»K).LT.CMIN1tJ*K)) C^TNUJ*K) = CCJ»K)
IF (C(J»K),GT.CH»X1C J*K» C"<»X1(J*K> = CCJ»K)
r*V61CJ*K) « CAVGKJiK) * C(J»K>
108 CONTINUE
110 CONTI1UE
IF (ICYC.NE.IP) ffFTURN
00 114 K-1.NUMCOV
00 112 J=1 »WJ
C»V61U*K) = CAVGKJ^K) / FLO«T(LP - IP + 1)
112 CO"TIMUF
114 CONTTNUE
C»*»»**»*»*»»**»»»****»9*»* WRITE SU""ARY TABLE 1
KOURS1 = "ELTO » FLO»t(IP) / 3600.
HOURS? = ?ELTfT • FLOAT(LP) /. ?600.
KOAYS1 » HOUPS1 / 24.
KTAY!?? • VOURS2 / 24.
HOURS1 = HOURS1 - FLOAH2A » KOATJS1)
HOURS? = HOUPS2 - FLOAT(?< » KOAYS2)
VPITP (6/600) IP, KO»YS1* HOURS1' LP» KDAYS2* HOUPS2
WPITr (6f602)
00 116 J»1»NJ
WRITE (6,6C/)J, (C"IN1(J>K)> CM«X1(J>K)« C«VG1CJ,K)» K=1jNUMCO")
116
CHECK FOR PLOTTING OF SUMMARY 1
»»»»»i»««»)«» •«»«»«)»»*»
-------
- 298 -
IF (PLf.F^.O) 60 TO 122
CO 1?0 J=1»NJ
3F <.I.GT«43.ANO.J.NF.1U.AND«J»!»E.129.ANO.J.NE.13a> GO TO 120
NPP ~ NPP » 1
,7F (IIPP.GT.<'9) «RITF C*»606>
T 11S LPP=1»NUHCON
l-6^XO(1*LPPiNPP} = CM»XKJ»LPP>
FG1XO(?*LPP»NPP) = CAVCKJiLPP)
KGOXO<7»LPP»NPJ>> = CHINK J»LPP>
116 rOi'T!*UE
K60»A(NPP) » RHNOOF(J)
120 COWTI'IUE
CM.L «IJWPLT( TPiLP)
1?2 CONTINUE
r»»*»a«(ii!»»»n»»«i»a»«»»B»»«n( I"ITI*LIZF SUMMARY 2
1?A IP (IC"C.GT.IP) GO TO 130
PO 123 K=1 .MUMCON
"0 1?* J=1 jNJ
CH*X2(J»K) = CCJj»K>
C*VC2(JjK) a CCJjK)
1?6 COffTIVUE
128 COVT^MUC
PETUHN
1T0 COfJTIVIIE
C:»»««t3)«iiti«)ii»!m»»»»in«)»»i»i»»» COMPUTE Mil* *^*X* »¥G »»»»»»»»»»»»»»»»»»»»»»»*»»«
00 n* K=1*NI.'HCOM
BO 132 J=1*MJ
IF CHIN2(J»K) = C(JiK)
Ir .GT.CMAX2 C"*X2(J*K) ° CCJ.K)
CAV6?(J»K) ' CAVG2(J*K) * C / *600.
KDflYSI o HOUPS1 / 24.
KOAYS' a HOUSS2 / 24.
HOURS1 a HOUOS1 - FLO»T(?4 * KDAYS1)
HOURS' a HOUPS2 - FLO*T(24 * KDAYS2)
VPITe (6»600) IP> KDAYSIf HOURS1» UP' KOAYS2< HOU?S2
WrSTP 46*602)
00 140 J=1»f*J
b'RITK (6i>60t)J» CCHIN2(JfK>> C"*X2(J»K), C
-------
- 299 -
C»***«««*««««««*««>««* CHECK FOR PLOTTING OF SUHM*ftY 2 »»»«»»»«««» *»*•*•»«•*
IF .0> 60 TO 146
NPP a 0
PO Hi J=1*NJ
IF CO TO 144
NPP = NPP * 1
IF (NPP.GT.99) WRIT? C'S»606>
10 142 UPP-1»NUNCON
FGnXO(1*LPPjNpP) a CMAX2(J»LPP>
FSOXO(?*LPP*NPP-) = r*V;2(J*LPP)
FenXOt?»LPP»NPJ>) a CHIN2{J»LPP>
142 rONTr«*L'E
F60»*(NPP) a
U-4 CONTINUE
C*LL SUMPLT< IP.LP)
146 CONTTMUE
I***VM*«KK«»««
c PORM.«T ST*TEHENTS
C»«*»**ll»«l>»«ll»itK«**Mli»**»KII«««illl« ••*«*•«•<
600 F,' V*TE» QUALITY SUMMARY «/45(1H»
»>/ *1?X,'STAPTS *T CYCLE «jl4»" <•*!?*• n*YS «»F4.1»' HOURS)'»31X*
n'FNDS *T CYCLE 'j!4*' («»i3>' OATS «tF4.1*' HOURS)1// )
602 FORMAT (1H //TX>»JUNC. CONSTITUENT 1 CONSTITUENT 2 C
»0«ISTTTUENT 3 CO«*STITUE»"T 4 CONSTITUENT 5 CO
• NSTITUEWT 6' */>8X/«NI»l 1AX AVP HI" MAX AVB HIM «
»AX AVC "IN M^X AV5 MI» MAX *»6 MI" M
604 FORM >T (1 X,i;,1X,3<1X,F5.?>*2X,3<1X,F5.2>»2X*?C1X»F5.2>»1X>3<2X»F5
606 FORr**T("1 NUM9E1? OF PLOTTER PTS ^XC^EDS ARRAY DIMENSIONS')
PFTURf
FMO
-------
- 300 -
C»)«»»»)m»»»« »«»»»»»»»»»««»»»»»»»»«<•«»»»»» »»»»»»» »*»*»« »»»*»»»» »«»»»*»«»«
C SUMPLT
£****»» »»»***»**»*»*»»***»*»*»*****X*»*»*II***»********»****9**»***»****1I
SUBROUTIMc SU1PLKIP,LP)
DIMENSION SOT1C12), NPTC3), SIDPH51)* SIDE2<6), X(99j3>, Y<99*3>
COMMON /1ISC/ CTIME* OELTQ, ICYC, "C* «U, NPP, NUMCON,
» RMNODe<1*3>, STI"f
COMMDN /SUMSU"/ PGQXAU9), FGOXO(3»6»49) » HOU°S1 » HOUi»S2f
» 1OAYS1* K»)AYS2
COMMON /SCALES/ XMAX. XHIN* YMAX> YMAXCC6)* YHIN» YHINC(«)
COMMON /AXES/ ?OTTO*C1?)* SIOEC51)
PATA BOT1/6«4H »4H«ILE*4HS BE»4hLO« j«HCHAI,4HN 3°»4KIOGE
DJTA SIDF1/21»1H »»HC*1HO» 1HV/ 1HS/1HT/1H I/1HT»1HU»1HF/
1 19«1H /
DATA SIOF?/1H1»1H2j1H3j1H4>1H5j1H5/
X*AX=49.9
C««*»K««*«««M«»«« SET LAPFLS ON SIDE AND BOTTOM AXES »«»««•«»•«««««•»«««»«»«
co nn 1=1,51
SI "SCI) = SIOE1CI)
100 CONTINUE
DO 10? 1=1,12
GOTTOMCI) =» 80TKI)
1P2 CONTINUE
DO Iff II=1,>'UMCO»
C«II»»»IIII«K*»K*»K FILL UP X « Y ARRAY' HITH DATA TO BF PLOTTED »«»»»*•»»•«»»»
CO 134 1=1,MPP
FGOXOM,II,I>
^60X0(2,II,I)
c60XOt3»II,I)
XC 1,1)
104 CO"T1HUF
NPTC1) - NPP
NPT(2) - NPP
NPT(l) = NPP
O«*«x«**«*«*tt**N*« SET SIDE LABELS FOR CONSTITUENT NO. IIII*K«II**II«««««*M«ti«»*««»«*»*»**it»» WRITE OUT TITLF »•»»»«»«*««»)(««««<(»««»«ii««»«««
WRIT?
-------
- 301 -
SUBROUTINE SVTABLU*H>
COMMON /MISC/ CTIME* DELTO» ICYCj "C» NJ* NPP, NUHCONj
COMMON /SLACK/ JPRT C1 50*55) » KSLC20)' KPLOT<20>* NFPCC20)*
» MLPCC?0>» NOPRTC150). NCO«SU<6>» NStfP
COMMON /SUTSVP/ FGSUA(99J *F6SyO<<>0*6) t. IMPOSE*INFPC»INLPCjKSLACK
COMMN /JUNC/ *SUR<133)/ AtfOL<153)» NCHAN( 133*5) * VOL<133)t
» Y(133)» YNE1K133)
COMMOV /DUAL/ C(133*6).» CH*SS(1?3>6^
IF (ICYC.RT.O) 60 TO 15Z
IF CK = 1
JPRTCIi?) * 65
00 1" IT=1»»?UCYC
1 = 1 + 1
GOTO C1G2j1G4*106«10Sj110>112*1U>116*118'120>«
IT
102
104
106
108
110
NOPST(I) = 4
JPRTd/1)
JP«T(I»2)
JPRTdj?)
JPRTCI»*>
GO TO 1?2
NOPRT(I) « 3
JPKT
JPRTCIf?)
JPRTd*?)
60 TO 1?2
^OPRT(I) » 1
JPRT(I\»1)
60 TO 122
MOPRTtD - 3
JPRTCI*1>
JP*T
JPRT(I*3)
60 TO 1 '2
HOPRfCl) - 5
JPRT(I»1)
JPRT(I*?>
112
JPRT(I*4)
JPRT(I»5)
60 TO 1?2
NOPRT(I) = 5
JPRT(I*1)
JPRT 46
-------
- 302 -
JPRTCI.4) = 45
JPRTCI»e) - 44
SO TO 1'2
11 4 MOPRT(l) y 3
JPRTCI»1) = 4?
JPRTC1*?) = 42
JPRTCI»?> = 41
JPRTC I*/-) = 40
JPRTd »5) = 39
JPRTCI*6) = 33
JPRTC1»7) s 37
JPRTd*'') = 26
'50 TO 1?2
116 NOPRTCI) = 7
JPRTC!*t) = 35
JPRTCI*') = 31
JPRTCI**) = 3?
JPRTd *4) = 32
JPRTd*?) = 31
JPRTCI»f) = 30
JPRTd *7) = 2"
CO TO 1'2
118 NOPRT(I) = 24
JP 12) = 17
JPRTCI*13) = 16
JP»TCI*14) = 15
JPRT(I»15) = 14
JP»Td*16) =130
JPPTCI*17) -129
JPBTCI*18) = 1?
JPPTC1*19) » 12
JPRTCI*20) = 11
JPBTd*?1) => 10
JPUTCI^'2) * 9
JP"?rd*?3) 3 3
JPTTM*«ii SET LOW SLACK TABLP PARAMETERS »»m»»««i«»»»ii «»«i«»»»«»»
-------
- 303 -
NSUCYC = 11
NLPCCW) = NFPCCM) + 1SWC»C
NOPRTd) = 7
JPRTCI»1) = 1
JPPTCI*2) =• 65
JPRTd*') =64
JPRTd*4) = 63
JPRTd*?) = (>?
JPRTd*') = 61
JPRTd»7) = 60
DO 148 11^1 .KSMCYC
I = 1*1
CO TO (1?6»12»»130»132*134*1?6*13P*140*142*144*146)* II
126 NOPRTd) = 2
JPRT(I*1) = S°
JPRTCI»2) = 5*
GO TO 148
128 NOPRT(I) = 1
JPRTCI*1) = 57
GO TO 148
133 NOPRTd) = 3
JPRTC1*1) = 56
JPRTd*?) = 55
JPRTd**) = 54
60 TO 1/:8
1?2 NOPRTd) = 4
JPPTd.1) =5?
JPRTd*?) =52
JPPTd»4) =50
GO TO 148
174 NOPRTd) = 3
JPRTd*?) = 48
JPRTd*?) = 47
GO TO 1*8
136 NOPRTd) - 5
JPRTd *1) =46
JPRTd*?) = 45
JPRTCI**) = 44
JPRTCI*4) = 43
JPRT(I»5) =• 42
GO TO 148
178 NOPRTd) = 6
JPRTd »1) = 41
JPRTd»2) =40
JPRTd*?) = 3°
JPRTd**) = 38
JPRTCI»5.) = 37
JPRTd**) = 36
CO TO 143
140 NOPRTd) ^ 7
JPRTCI»1) - 35
JPRTd*?) = 34
JPPTCI»7) = 33
JPRTd**) = 3?
JPRT(I»5) = 31
JPRTCI»7) = 2"
-------
- 304 -
GO TO 148
142 NOPRTfl) = 12
JPRTU.»1> = 28
JPRTCI*?) = 2?
144
Jf"tTd»"*> =
JpPT(IiA) »
JP»Td*f> e
JPRTd*6) =
JF- =
JFRTd>8> =
JPRT(I»9) =
JP"T{ 1*10)' *>
JPPT(I,11) =
JPRT =
GO TO 148
NOPRT(I) =r 12
JPRT
JPRT(1>') =
JPRTd.') =
JPRTCI**) =
JPRT(I»5) =
JPRTd*7) =
JPRT( It*) =»
JPSTCU9) »
JPRT(I»10) »
JP"Tdj11) =»
JPfTdfl2) a
60 TO 148
NOPRf(I) = 6
JPffT(I»1) a
JPRT(I»?» »
JPPTd*/) »
.JPRT(I»5) =
26
25
24
2?
2?
21
20
19
18
17
16
15
14
1?0
129
1?
11
10
o
8
7
6
5
3
?
146
ff) = 114
148 CONTTMUf
PFTUP"
150 CONTINUE
C« *»»»*««(«»«*»»i«««»«»« SCT SNAPSHOT T»8LC PARAMETERS «i««)ni)H()»««*«»««*«iH(«»»*
NLPC(tt) .«
NOPRTfl) » 5T
JPRTCI»1> a 114
JPRTCI*?> a e
JPRT(I»7> » 3
JPRTC.IJ*> = 4
JPimij»5> " 5
JPRT(I»6) » 6
JPRTCI»9) - o
JP"TCI*10> - 10
JPPT(I»11) » 11
JPRT(I*12) » 12
JP"TCI*U) » 13
JPPTU^U) »129
JPBT -130
JPRT(I.U) « 14
-------
- 305 -
JP»T<
JP°T(
JP"T(
JPRT(
JPPTC
JP"T(
JPRT
JP»TC
JPPT(
JPRT(
JP9T
JP*T
JPRT(
JP"TC
JP»T
JP«?T(
JPRT(
JP"T(
JP?T<
JP»T(
I*17)
I»18)
I »19)
I*?0)
I.'D
I*?2)
'?3)
If?4)
I,?5)
I»?6)
»?7>
»28>
I.j?9>
I»"<0)
*?1)
I*'2>
I*33)
I*'4)
I»'5)
JP°T(I*?8)
JPRT(.I»T9)
JPRT(I»<0)
JPRT(I^I)
JP«»T(lfA2)
JPRT(I»44) =
JPRT(I>*6>
JPPTCI.47)
JP«»T(It*8)
JPRT(I*49>
JP«>T(I*50)
.152.
JP2)
JPRT( 1*53)
RFTURN
CONTINUE
15
16
17
1%
19
20
'21
22
23
24
25
26
30
31
32
33
• 34
35
• 36
-3"
40
42
44
46
48
50
52
54
56
58
60
62
64
1
P»INT SLACK WATER TABLE **K««»*»«»*»»«II»«*««««II«»
HOURS =- "ELTO « FLOATClCrC) / 3600. * STIKE
KOAYS = I-IOURS / 24.
HOURS » CTIME
IF (KSL(M).EO.O) 60 TO 1*0
IF 600)
WRITE (6*e"?> rcrc. Kom» HOU»S
GO TO 162
154
BEGIN NEW SLACK VATEP TA°LE »»»»»«»»»»»»»»»»)i»»»«»»»
NPP = o
IF (KSL(M).E0.2) GO TO 156
-------
- 306 -
GO Tl) 1?8
1«6 CONTINUE
WPJTF <6»606)
1=3 CONTINUE
VRlT? C6J608) ICYC* KDAYS, HOURS
PO TO ""a?
160 CONTU'UE
C«»*»»»*»»»*tt«»»»*»**»»»**» ?CSIM SNAPSHOT T'BLE »»»»» »»»»»)» »»»*»» »»»»»»»*»»
N pp = {(
UPIT1* (6*610) ICYCf KDAYS, HOURS
1*2 CONTINUE
c»»»»««»»»»»*»»w»ii»»««ii PRINT DATA FROM PRESENT CYCL? **»*»»»*»***»*»*»*»*»*
WOP = NOPRTCH
DO 166 L=1»NOP
J = JPRTfT/L>
VPITE (6»*12> J» YtJ)» {CCJ»K>* K=1,NUHCON>
Ci»«i»»«»»)«»»»»«»»»»»«»»i«*i< P'TPARE TO PLOT DATA »»M»*»N**»»**»»it»H**«»*«Hit«N
TC (isyp.FO.O) CO TO 166
!c CKPLOT(M).F.O.O) GO TO 166
I'" (J.6T.43.AWD^J.NE.1U.ANO.J.Nf.139.ANO.J.NF.150) 60 TO 164
*PP = NPP * 1
le (NPP.GT.99) URITE <*»6U)
r>o 1 6< LPP=1»NUMCON
F65WOCNPP,LPP) = C(J*LPP>
164 <-OWTTNUE
RMNOOF(J>
T« KICYC.^E.NLPCCH)) RETURN
\f /)
602 FORMAT (1«« j.3?Xj' CYCLE' » 15 j 1 12* ' DAYS* ' »F6.2*' HOURS'*/ >
604 FOR»»AT(1H1//68X,33H HIGH SLACK P9COICT IO«S/>
606 FOPHATC1H1/ t?T,?3H LOU SLACK PREDICTIONS/)
608 FORMAT (1H / 3X»'JUMCTIOM MEAD CONSTITUENT 1 CONSTITUENT
» ? CONSTITUENT 3 CONSTtTUENT 4 CONSTITUENT 5 rQNSTITUE
• NT 6'.*/*14X-j-t(FT)'*83r*''{»l5/L) (M6/LJ CMG/L)
» (M6/L) (NS/L) 'i/ 1X»130(1H-)*//
»?JX,« CYCLE' »!5*I1Z*'DAYSj' *F6.2»» HOURS'/ )
610 rORHAT (1"1/// 25X»'SYSTCM STATUS AFTER QUALITY CYCLE • 1 16t II 0» ' nj»
*YS* '»F6.2*' HOU'»Sti//*3X»l JUNCTION HEAD CONSTITUENT 1 CO
»f'STITUENT 2 COMSTITUEiT 3 CONSTITUENT 4 CONSTITUENT 5
• CONSTITUENT " */»14X» • (FT) ' , 8X»' C1G/L) (MS/L)
-------
- 307 -
C »»*»««»»«» »»»»»» »»»»*»»•*»»«»**»«»« »«»«•««» »««*»« *«!*«*«•«**»«•«««•«««»•»»*•»»««
C SWPLOT
i *«N •**••**»• «»•»»>
SUBROUTINE SWPtOT
DIMENSION 80T1(1?)j HPT(3)j SIOFK51)* SIDE2<6>» X<09,3), Y(99»3>
COMMON /iisc/ CTIME* OC;LTO* ICYCJ vc* NJ» NPP, NUHCON*
COHMfl /SLACK/ JPRT(150»55)> KSL(20)» KPLOT(20)» NFPC(20)*
» «ll.PC<20>Ji NOPfT<150)» NCO«IS«<6>* NSUP
C0««0»» /SVTSWP/ FGSW*(99)»FGSWOC09*6)» IMPOSE, IMFPC j INLPC*KSL»CK
COMMON /OBSO*T/ 0»OAT*(3r6*20)» "»«0«TAC20)« NO»TA» NOBCYCdU)
COMMON /SC*LrS/ XMAX* XMIN» TMAX* YMAXC<6)» Y»(IN» YMIMC(f)
COHMOV /AXES/ POTTOM<1?>* SIOEC51J
PATA 30Tl/6*«" *4HMILE*4HS BEf4HLOV
DATA SIOE1/21»1H ,1HC*1HOjlH»ilHSf1HT»1HItlHTj1HU*1HE»1H»'»lHT»
1 15«TH /
PAT A SIDF?/1H1 j1H2j1H3*1H4j1H5j1H6/
Xf»*X=49.9
CII*IIN»KII*»»»II«*«« SET LA9ELS. ON SIDE AND BOTTOM AXES »«»«»»»«««iii»» ««»»»»«•«»
"0 100 1=1/51
Sinpd) = SIOE1CI)
100 CONTINUE
no if? t=f»12
BOTTO"1(T> = BOTKJ)
102 CONTINUE
00 1?? IT=1*MUMCOH
IF 60 TO 132'
IF (IMPOSE. LT. 4) 60 TO 104
IF (II.LT.6) GO TO 132
104 CONTINUE
- II * IMPOSE
C»»»»»««K»*«»«»» FILL UP x s Y ARRAYS WITH DATA TO BF PLOTTED »•««»«••«*»«»»
INITIALIZE COUNTERS UK*************** *««**>*«**
IF CIMPOSE.FQ.4) CO TO 106
1C «= 0
106 COKTINU^
ICP = 0
00 110' I=1jMPP
IF (IMPOSE. LT. 4) 60 TO 108
ICP « ICP * 1
X
GO TO 110
108 CO»TINUr
1C = If + 1
X(TC»1) « CGSIMU>
Y(IC,1) » FGS«OCI*II>
110 CONTINUE
KPT(1) » 1C
NPT(Z) = ICP
-------
- 308 -
Ctt*K»M**»x*»it»»*«»» SET SIOE LABELS FOR COMSTITU?VT NO* »**»»*»**»*•»*»*»«*»
CXKK»«K*M*N«»»*N»«K*«* CHECK FOR OVERLAY FOR CONSTITUENT 6 ««»»«»»»»»»»»«»»i»
Ic C IH'THK.LT,'') 60 TO 114
IF 60 TO 112
ISAVE = INFPC
ISAVK1 = INLPC
ISAVCt = KSLACK
KT'TLE = 0
RETURN '
112 CO*'TI1H?
114. COVTINOF
C»«««»»im«tt«t»« »i(»«***»«»»)»)<»»« WRITE OUT TTTLP »«»»»»«»»»»»i«»»»«»m»«»»»i<»«»»«
WRITE f»2ffOO)
K e KSLACK * 1
116 GO TO C118/122*120)» K
11fc WRITE C?E*(fn2) INFPC
GO TO T?4
I'O WRITE r22*6P4) INFPC* INLPC
GO TO 174
122 VKITE (22**n6) INFPC* INLPC
IF < IflPChK.LT.10> GO TO 126
IF (KT1TLE.E0.1) GO TO 126
K » ISAVE2 * 1
JNrPC - ISAVE
INLPC - ISAVE1
KTITLE = 1
60 TO 116
126 YHTN = YMTNC(TI)
- Y«AXC(II)
ISI"E » 1
IF (NOATA.EO. Q) ISTAN
CALL CUPVE TO PPOOUCF THE PLOT »«»»»»»»»)( »*»««»«••*
IF (IHPOSE.IT.4) 60 TO 128
CALL CURVE (X jY*NPT*2»1 tOt 2, ISTAN, IS IQF.)
SO TO- I'O '
128 CONTINUE
CALL CUPVE (X*Y*NPTf 1j1iOj2* IST»N»ISIOE)
170 CO«»TINUF
172 CONTINUE
PFTURN
C»HI»»»«»II«)I»»I»»H«»«»II«I(»«»«» CORHAT STATEMENTS »)«i»ii»i»»i«»»»i»»«»»ii»»»«»«»«»»«»«»
600 FORMAT(1H1j44Tj'POTOHAC FSTUARY CENTE9 CHANNFL')
602 FORMATdHOjA^r/ipROFILE PLOT FOR CYCLE'>I6)
604 FORMAT(1H()»36lf,' LOW WATER SLACK PLOT FROH CYCLF«*I5*« TO CYCLE'
606 FORMAT (1 HDjS^JTj "HI6H HATEP SLACK PLOT FROK CYCLE'»I5»« TO CYCLE1*
»I5)
END
-------
- 309 -
TPLOT
SUBROUTINE TPIOT
DIMENSION C(6)» 90TU12)* NPTC3>» SIDE1(51)»
» X(99»3>j YC99*3)
COMMON /"ISC/ CTTM?, 0CLTO» 1CYC, MCj NJ» NPP, NUHCON,
COMMON /TIMEPt/ JU«iCTP<20>j NCITP(20>» NCONTP(20*6) j 1ECTP(20)*
» NSCTP(20>» NTP
COMMON /SCALPS/ XM»X* XMIV, YMAX* YM«XC(*)i YMINj YN!NC(6)
COMMO" /"XES/ ?OTTOM(1?)» S10E(31)
DATA SIDF1/21»1H
1 19»1H /
0.«TA SIOE2/1H1
DATA BOT1/V«4M
1HO»1HN* 1HS*1HT» 1HI » 1HT/1HU j 1HFf 1 HN»1HT*
,4HCYCL jiHES »AH /
SET LABELS
***»»**»***************»*»*»**»
PO no 1=1 i51
SI1P(I) = SIDEKI)
100 CONTINUE
TO 10? I=1»12
80TTOMCI) » 80TUI)
1C2 CONTINUE
C* »*»»»»»»»»»»»»»»**»»»»*»•« SET UP TTME PLOTS
00 170 1 1=1 » NTP
DO 118 JJa1»NU1CON
IF (NCONTP(IIjJJ).NE.D ^0 TO 11«
T^IN = Y^INC(JJ)
V«AX =
CK»»««*H**XK«««*»»*»«* SKIP TO STARTTK6 ryCLf »»******»»*it*»*»» » NTP
IF (L1.EQ.O) GO TO 106
DO 104 L=1iL1
»FAD (ID ICTC* (C(K),Ka1*MUMCOH)
104 CONTINUE
106 CONTIKIUE
111 * II
NECTPCIl!)
TTIM1
ITIM2
ITIM3
C««»«»»«»«*<««K««*«»K«» LOOP TOR SPECIFIED PLOTTING CYCLES »»»»»»»»»»»»»»»»»«
"0 116 I=ITI*1jITIM2»ITIM3
KK » KK + 1
CM«*«««««»»«»» SKIP TO THEN READ PLOTTINC JUNCTION IN PRESENT CYCLE
-------
- 310 -
(11) ICYC*
CONT'NUE
YCXK.1) = r(JJ)
112 = NTP * (HCITP(II) - 1>
L2 a NTP - II
C»tiKX*«K»NtiK4«»»p»K SKIP TO FNO OF PSESfT CYCLE ««»«ii««»ii«««»inm»»»»»i»»»»»»
IF CL2.CO.T) GO TO 112
"0 1 10 L=1»L2
RE»D (11) TCYC*«•«*«««»«««»
IF (II7.EO.O) GO TO 116
IK = I + ITIH3
IF (III,CT.ITMI2> 60 TO 116
"0 114 LL=1*II2
REPP C11) ICtC*(C(K)JK=1*HUMCOM)
114 CONT'BUE
116 CONTINUE
C»ffB**»»»i»»^«rni»«ia»tiin«)« SFT UP SIDE LABELS «iiH»NKitiiii*iiK*»ii»*»**«««*««ii*nMKi>M
SID(:(!4) = SIOE2WJ)
Cmi«3 «*»»»»!>»»»(»!»»»)»»»«» UPITP OUT TITLE **«««»NNM*»iiN»*»*»***«*ii«ii
JUNCTPVAL OF'*15*
1 ' C7CLF.1?1)
-------
- 311 -
C CURVE
C»«»»»««••*««•****«*«»«*••••*•«*««••••«K««MK«*«*«•*•••«««••«««**»««•*•»•»«•••**
C CURVE IS THE ENTRY TO A GENERALIZED PRINTER PLOT ROUTINE, THE
C ROUTINE PLOTS SEQUENTIALLY PAIRED VALUES TAKEN FROM THE X AND Y
C ARRAYS. THE SCALING VALUES FOR BOTH ARRAYS ARE STORED IN THE LAST
C TWO ARRAY LOCATIONS IN THE SAME MANNER AS CALCOMP SCALING* THE
C ARGUEHENTS IN THE SCALING SEQUENCE ARE DEFINED AS.*.
C X - THE ARRAY CONTAINING THE X-AXTS COORDINATES OF THE POINTS
C TO BF PLOTTED
C Y > THE ARRAY CONTAINING THE Y-AXIS COORDINATES OF THE POINTS
C TO BF PLOTTED
C NPT » THE NUMBER OF POINTS TO »F PLOTTED
C NCV » THE NUMBF* OF CURVES TO "?E PLOTTED
C NPLOT = USED FOR PLOT IDENTIFICATION* THIS VALUE IS PRINTED ABOVE
C FACH PLOT FOR EACH CALL TO CURVE
C IJOIN • FLAG FOR JOINING OR NO JOINING OF POINTS
C ITEL » FLAG FOR GRID SIZE
C ISTAN • CONSTITUENT NUMBER
C ISIDE - 1 FOR CENTER CHANNEL
C»«•»««*••*•«*•*•••••*•»**•*•*«*•**»**•««*»*«•••»«•••«»**«*••••»*»»•••*»*»««*»i
SUBROUTINE CURVE(X*Y*NPT»NCV»NPLOT*IJO IN*ITEL»ISTAN»ISIDE)
COMMON /OBSDAT/ OBDATA (3*6*20)* DMDATA(20)* NDATA* NOBCYCdO)
COMMON /SCALES/ XHAX* XMIN* YMAX* YMAXCC6)* YMIN* YMINC<6)
COMMON /CURPLT/ JSTAN* XLAE(1D* XAXIS* YAXIS* YLAB(6>* YSTAN
DIMENSION NPT(3)« X(99*3)* YC99*3)
CMM*««K«»*K«***««»«».«* SET SPECIAL GRID SIZE IF DESIRED ***»*»»»»»********>
JSTAN=0 1063-
IFdTF.L-1) 1000*1010*1020 1089.
1090.
1091.
1092.
1093.
1094.
1095.
1010 XAXIS-60.
YAXIS»AO.
GO TO 1000
10?0 X«XIS=100.
YAXIS-50.
100U NPTS=NPT(1)
C«»« »« nun***»« »»** ••«•
IXAXaXAXre/10.
IYAX=YAXIS/10.
SET UP X AND Y SCALES
•«*«ft*H»K»*KM»K*««»»tt«**KK««MI
1098.
1099.
1100.
IYAX1-IYAX+1 1101.
C********************* FIND MAX AND **IN FOR X AND Y ARRAY *******»»*******,
2001 CONTINUE 1117=
C**************************** SET UP SCALES ««»»««»«»«»»«»»*»»»»»«»*»««*i»m
AXLEN=IXAX 1121.
OLL SCALF(X*XMAX*XKIN*AXLEN*NPTS*1) 1122.
AXLE"=IYAX 1127.
CALL SCALE(Y*YMAX*YMIN*AXLEN*NPTS*1> 1124.
Cm******************** FORM X LABELS AND FACTORS »»»«»*»iiiH(»Ki»»»»«i»»«»»»«in
XMIN=X(NPTS*1*1) 1128.
PFLTX-X(NPTS+?*1) 1129.
XLAB(1)*XM1N 1170.
DO 260 J=1*IXAX 1171.
?60 XLAB(I + 1) = XLAB(D+DELTX 1132.
=XAXIS/(XLA°(IXAX1)-XMIN) 1133.
-------
- 312 -
C»«*«»«* 1137.
DELYY«YCNPTS*2*1> 1138.
YLfiBCIYAXDuYKIN 1139.
DO 270 E«1*IYAX 11*0.
270 VLABCmX1-I>«YLABUYAX1 + 1-I>+DELTY 1U1.
YSCALaYAXIS/tYLAB<1>-YHIK> 1142.
C«N»««HR»***«r»*t»c 1149.
K"1 1150.
IF(IJOIN.EQ.O) 60 TO 500 1151*
Ci«»» THE (OPTION TO PER«IT JOINING OF POINTS HAS BEEN DELETED
Ct»«»«»**«»:»»n*»B<>««*«« PLOT WITHOUT JOINING POINTS •••*««««*N»«»»»«*»»it»«*»«
500 CONTINUE 1178.
00 520 L«1*NCV 1179.
JJ«L 11PO.
NPOinT^NPTCJJ) 1181.
IFCNPOKNT.EO.O) 60 TO S1S 1182*
DO 510 N^1»NPOINT 1187.
1194.
1185.
1186-
nY"YT+On5 11B7.
IF(MeV.E«.3) 60 TO 517
CALL PPLOT(IXT»IXY*K»1> 1188.
60 TC 510
517 L1«L«9
CALL PPLOT(IKT»IXY»L1»D
510 CONTINUE 1189.
515 K»K+1 1190.
520 CONTINUE 1191.
C»N»«*«»««*ft*«***a«iBH»f»ii«»* PLOT OBSFRVED DATA »»»«»««»»»«m»«»*»»i»«i(»»»»»»«
550 IF(ISTA.M.LTo1> 60 TO 565
DO 563 L-1.3
TO 570 W=1»NPATA
XT«XSCAL«(RMD»TA(N)-XMIN)
YT«YSCAL»COBOATA(L»ISTAN»N)-YMIN>
IXT=XT+0.5
IXY»YT*Oi5
CALL PPl,OT(iyTjIXY,L1*1>
570 CONTINUE
560 CONTtWUE
565 CONTINUE
C»»t ••••««NC«««O«VN«»M«N««* OUTPUT rIN*L PLOT «H»*»»»»*II«»»MMM •»»»•*••••
555 NC"99
CALL PPLOT(0»0*NC»NPLOT> 1196.
PFTUSW 1197.
END 1198.
-------
- 313 -
P.PLOT
M
SUBROUTINE PPLOTCIX*IY»K»*CT>
riMENSION A<51*101)» SYMd4!»
COHMON /CURPLT/ JSTAN* XLABCI1)* XAXIS» TAXIS* YLAB(6>« YSTAN
COMMON /AXES/ BOTTOM(12)> SIOEtSD
COHMON /GRID/ KPLOP
DATA SYM/4H««im*4HXXXX»4HOOOIJ»4HXXXX»4H+*-»"»*4H2222* 1
1 4H *4HIIII»4H *4HHHHH.»4HAAAA»4HLLLL»4Hm«»4H????/
IXAX1-XAXIS+1. 1270.
IYAX1-YAXIS+1. 1271.
JXAX1«XAXIS/10.*1. 1272.
JYAX1-YAXIS/10.+1. 1273.
IFCK-99) 200*220*230 1274.
?00 CONTINUE
c«»»»»»«»««»»*«««•»«« CHECK FOR OFF-SCALE VALUES •••••••••••••••••••••••»»*i
IFdY.GE.lYAXD 60 TO 10
IFCI'.LT.O) 60 TO 20
A m SYHC1C)
RETURN
10 CONTINUE
Ad*IX + 1> • SYM(13)
RETURN
20 CONTINUE
A(IYAX1*IX*1) « SYHC14)
RETURN
220 CONTINUE 1277.
1=0 1278.
DO 225 II«1*JYAX1 1281.
I-I+1 1282.
VRITE(22*310) SIDECI>»YLAPUI).(A(I.J>*J-1*IXAX1> 1283.
310 FORHATdH * A 1*F7»1» 101A1 ) 1284.
IFCII.EO.JYAX1) CO TO 228 1285.
DO 224 JJ»1>9 . . 1286.
I»I»1 1287.
IFCI.6T.50) CO TO 500 . 1288.
223 VRITE<22»320> SIOE(I)*(A(I*J)»J-1*IXAX1) 1289.
320 FORMATdH *A 1.7X.101 A1) 1290.
60 TO 224 1291.
500 VRITF(22*510) (A 1293.
224 CONTINUE 1294.
225 CONTINUE 1295.
226 CONTINUE 1296.
VRITE(22*102> CXLABd>»1-1 *JXAX1> 1297.
VRITE(22>330> BOTTOM 1298.
•??0 FORMATC/1H *20X*12A4)
102 FORMATdH /11F1D.1) 1300.
RETURN 1301.
?^0 IYAX»YAXIS 1302.
PO 250 I=1*IYAX 1303.
DO 240 J=1*IXAX1 1304.
240 A(I»J)=SY«(7) 1305.
CONTINUE 1307.
-------
- 314 -
DO 260 J-1jIXAX1
260 ACIYAX1 «J)-SY"(9)
00 270 I-1*IXAX1»10
270 A-SYMl8>
IYJ-IYAX1-10
00 290 I«11jIYJ*10
290 CONTINUI-
IF (JSTAN.EO.O) 60 TO 1000
IY«YSTAN
PO 1000 J-2,IXAX1
A(IYAX1-IY*J>-SYM(9>
1000 CONTINUE
IF (KPLOP.EO.O) RETURN -
C«»»M»«K»*ft«»«v«*« HMM«M FILL IN BACKGROUND GRID ON PLOTS MMMMMMMMMMM
GO TO C1»2j3)» KPLOP
C«MMMMMMM»MMM«M»« BACKGROUND OPTION 1 - LOU DENSITY MKM»M»MM»MMMMMM«
1 00 2700 I
PO 2800 J
A(JjI) « SYM(5)
2POO CONTINUE
2700 CONTINUE
RETURN
CMM*MMMNMMMMMM«M«
CNMMMMMMMMNMMM* VERTICAL
1308
1309
1310
1311
1312
1313
13H
1315
1317
1318
1319
1320
BACKGROUND OPTION 2 - MEDIUM DENSITY WMMMMMMMMMMMM
• *MMItMMItM«*««
I«21*IXAX1»20
J=1»IY*X
SY«(5)
MM»««M«»«MMM«
2 DO 2300
CO 2600
»(J»!) *
2400 CONTINUE .
2300 CONTINUE
C«««K«*««N»«««M HORIZONTAL
IYJ - IYAX1 - 5
00 2500 J»1*IYJ*10
PO 2600 I-3*IXAX1*2
MJ>I> = SYM(S)
2tOC CONTINUE
2SOO CONTINUE
RFTURM
C««*««M«*«M«iKi»iiMMii BACKGROUND OPTION 3 - HIGH DENSITY
C*«*«MM»MNIIM««N VERTICAL MMMM»M»MM»MM«M«
3 00 2000 I«11»IXAX1»10
J=1*IYAX
SYM(5)
MMMMMMMMMMMMMM
PO 1900
A(J*I> »
1900 CONTINUE
2000 CONTINUE
CNNKNNWMMMMMMttM
IYJ " IYM1
DO 2200 J=
no 2100
A(J,I) =
2100 CONTINUE
2200 CONTINUE
RFTUR*1
END
HORIZONTAL
- 5
,J=O »IYJ»5
f=3»IXAX1*2
8YMC5I
«MMNMMMMMM«*M
-------
- 315 -
SUBROUTINE SCALE(ARRAY»AMAX*»MIN»AXLEN»NPTS*INO
DIMENSION ARRAY<103»4>* INKS)
DATA INT/2*4*5*8*10/ 1326.
INCTMABSUNC) 1327.
IFUNAX-AMIN) 275*255*275 1328.
C»«««»«««»*»»«n«« RESET MAX ANf) HIM FOR ZERO RANGE •«•«•*•*••«*««*«*•••*«•
??5 IF(A««IN) 265*400*260 1332.
?60 AMIN-0.0 1333.
AMAX»=2.0»AMA X 1334.
60 TO 275 1335.
2<5 A"AX»0.0 1316.
AM1N=2.0»AMIN 1337.
275 CONTINUE 1338.
CN««*»*«*M««»*««««*N*«««K«»« COMPUTE UNITS/INCH •••••••••••••••••••••••••a
RATE*CAMAX-AMIN)/AXLEN 1342.
C«»KK«»N««*«««« SCALE INTERVAL TO LESS THAN 10 MftM«*»**ft«N*M«*«««»MBitiiK««
A-ALOGIO(RATE) 1347.
N=A 1348.
IF(A.LT.O) N=*-0.9999 1349.
RATc»RATE/<10.««N> 1350.
L«RATE*1.00 1351.
C»»*»«»»»«»»«»»«»*»*»« FIND NEXT HIGHER INTERVAL «•««•«»•»»«••««•««««»«««•
280 DO 300 1=1*5 1355.
IFCL-INTU)) 320*320.300 1356.
700 CONTINUE ' 1357.
C«»««« L IS VEXT HI6HER INTERVAL - RAK6E IS SCALTD BACK TO FULL SET ««••«*
320 L-INT(I) 1362.
RAN6E«FLOAT(L)«10.«iiN 1363.
IF(INC.LT.O) CO TO 350 1364.
C«*K*K*«»M«KttH«»«K«*«««H« SET UP POSITIVE STEPS »»»»»»»»»«»«»i(»«»i(»»»»»»»»
K=AMIN/R»NG£ 1368.
IFCAMIN.LT.O.) K=K-1 1369.
CM««*K««»«*Nit«««««*»«« CHECK FOR HAL VALU€ IN RANGE »*«»«««»i(i(«i(«»»«»i(««»»i
IF(AMAX.6T.(K*AXLEN)*RAN6E) GO TO 330 1373.
I=NPTS«INCT*1 1374.
ARRAY(I*1)=K«RAN6E 1375.
I=I+INCT 1376.
ARRAY(I,1)»RAN6E 1377.
PFTURN 1378.
CH««*K«»»K«N««««*«**«II« IF OUTSIDE RANGE RESET L AND N »»»«»«iiit»«i««««»»»»»
330 L=L+1 1382.
IF(L.LT.11> GO TO 280 1383.
L«2 1384.
N«N+1 1385.
J40 GO TO 280 1386.
C*««««*«*«**»««««*«*«** SET UP NEGATIVE STEPS ••••••M»»K««M«»»»*»MNttHM****!
350 K-AMAX/RANGE 1390.
IF(AMAX.GT.O) K=K+1 1391.
IF(AMIN.LT.(K+AXLEN)«RANGP) GO TO 330 . 1392.
I«INCT»NPTS+1 1393.
APRAY(I*1)=K»RANGE 1394.
I=I+INCT 1395.
ARR/Y=-PANCE 1396.
RETURN 1397.
400 WPITE(22*100) 1398.
100 FORMATC//1H *10X»'RANGE AND SCALE ARE ZERO ON PLOT ATTEMPT') 1399
END 1401.
-------
- 316 -
BIBLIOGRAPHY
1. Hater Resources Engineers, Inc., "A Water Quality "lode! of
the Sacramento - San Joaquin Delta," Report to the
U.S. Public Health Service, Region IX, -June 1965.
2. Water Resources Engineers, Inc., "A Hydraulic Water Quality
Model of Suisun and San Pablo Bays," Report to the
FWPCA, Southeast Region, March 1966.
3. Federal Water Pollution Control Administration, "San Joaquin
Master Drain - Effects on Water Quality of San
Francisco Bay and Delta," January 1967.
4. Feigner, K. and H.S. Harris, "Documentation Report - FWQA
Dynamic Estuary Model," U.S. Department of Interior,
FWQA, July 1970.
5. Clark, L.J. and K.D. Feigner, "Mathematical Model Studies
of Water Quality in the Potomac Fstuary," Technical
Report No. 33, Annapolis Field Office, EPA Region III,
March 1972.
6. Jaworski, N.A., L.J. Clark, and K.D. Feigner, "A Water
Resource - Water Supply Study of the Potomac Estuary,"
Technical Report No. 35, Annapolis Field Office,
EPA Region III, April 1971.
7. Clark, L.J. and N.A. Jaworski, "Nutrient Transport and
Dissolved Oxygen Budget Studies in the Potomac Estuary,"
Technical Report No. 37, Annapolis Field Office,
EPA Region III, October 1972.
8. Clark, L.J., O.K. Donnelly, and 0. Villa, Jr., "Summary
Conclusions from the forthcoming Technical Report
No. 56, Nutrient Enrichment and Control Requirements
in the Upper Chesapeake Bay," Annapolis Field Office,
EPA Region III, August 1973.
9. Clark, L.J., R.B. Ambrose, Jr., and R.C. Grain, "A Water
Quality Modeling Study of the Delaware Estuary,"
Technical Report No. 62, Annapolis Field Office,
£PA Region III, January 1978.
10. Chow, V.T., "Open Channel Hydraulics," John Wiley & Sons,
New York, New York.
-------
- 317 -
11. Cowan, W.L., "Estimating Hydraulic Roughness Coefficients,"
Agricultural Engineering3 v.37, n.7, July 1956.
12. Boyer, M.C., "Estimating the Manning Coefficient from an
Average Bed Roughness in Open Channels," Transactions,
AGU, v.35, n.6, December 1954.
13. Langbein, W.E., "Determination of Manning's n from Vertical-
Velocity Curves," Transactions, AGU, part II, July 1940.
14. Einstein, H.A. and H.L. Barbarossa, "River Channel Roughness,'
Transactions, ASCE, v.117, 1952.
15. Davidson, B., R. Vichnevetsky, and H.T. Wang, "Numerical
Techniques for Estimating Best - Distributed Manning
Roughness Coefficients for Open Estuarial River
Systems," Water Res our. Res., v.15, n.5, October 1978.
------- |