U.S.  ENVIRONMENTAL  PROTECTION  AGENCY
                                  USER'S MANUAL




                                   FOR THE




                            DYNAMIC (POTOMAC) ESTUARY MODEL




                                TECHNICAL REPORT 63
MIDDLE ATLANTIC REGION-III  6th and Walnut Streets. Philadelphia, Pennsylvania 19106

-------
EPA 903/9-79-001
                                            USER'S MANUAL




                                              FOR TOE




                                   DYNAMIC (POTOMAC) ESTUARY MODEL




                                         TECHNICAL REPORT 63

-------
EPA 903/9-79-001
                         USER'S  MANUAL

                           FOR THE

                DYNAMIC  (POTOMAC)  ESTUARY  MODEL



                     TECHNICAL  REPORT 63




                         January 1979
                      Stephen  E.  Roesch
                         Leo  J.  Clark
                         Molly  M.  Bray
                   Annapolis  Field Office
                         Region  III
            U.S.  Environmental Protection Agency

-------
EPA 903/9-79-001

                                  ABSTRACT

            The Annapolis  Field  Office  (AFO) of the  Environmental
       Protection  Agency has  been  actively engaged in the mathematical
       modeling of the  Potomac  Estuary  since the  196Q's.  During the
       past several  years, the  Potomac  water quality model has  undergone
       considerable revision  and expansion.  This report is the first  in
       a series of reports documenting  the  Potomac modeling efforts at
       AFO.  While the  model  presented  in this  report has been  adapted
       to the Potomac Estuary,  it  is  by no means  unique to that body
       of water.
            This report discusses  the basic  principles and theories
       underlying the Dynamic Potomac Estuary Model. A description
       of the water quality interactions modeled  in  the Potomac are
       also presented.   Being a User's  Manual,  this  report also
       contains listings of the hydraulic and water  quality models, a
       detailed description of each program  and its  logical structure,
       variable definitions, data  deck  sequences, and sample  input/output,

-------
                     TABLE OF CONTENTS

                                                               Page
ABSTRACT	     i
TABLE Of  CONTENTS  	    i i
LIST OF FIGURES	     v
LIST OF TABLES 	    vi
CHAPTER 1   THEORY OF THE DYNAMIC ESTUARY MODEL 	     1
     1.1  Introduction	     1
     1.2  The Model Network ..	     3
          1.2.1  Overview 	     3
          1.2.2  Channel Parameters	     5
          1.2.3  Junction Parameters 	     6
          1.2.4  Network Configuration and Size	     8
     1.3  The Hydraulic Model  	  •   9
          1.3.1.  Theory	     9
          1.3.2  Solution Technique 		    14
     1.4  The Quality Model	    15
          1.4.1  Theory	    15
          1.4.2  Solution Technique 	    36
CHAPTER 2   IMPLEMENTATION OF  THE HYDRAULIC MODEL  	    38
     2.1  Regression Analysis  Program (REGAN) 	    38
          2.1.1  Program Description	    38
          2.1.2  REGAN Data  Deck Sequence 	    42
          2.1.3  REGAN Variable  Definitions	    43
     2.2  The Hydraulic Program  (DYNHYD)  	    45
          2.2.1  The MAIN Program 	    45
          2.2.2  Subroutine  HYDEX 	    48
          2.2.3  Subroutine  RESTRT 	    55
          2.2.4  DYNHYD Sign Conventions  	    57
          2.2.5  Input Requirements  	    59
          2.2.6  Output Options  	    63
          2.2.7  Potential  Implementation Difficulties  	    64

-------
                     TABLE OF CONTENTS
                        (continued)

                                                                Page
          2.2.8  DYNHYD Data Deck Sequence 	     67
          2.2.9  DYNHYD Variable Definitions	     70
     2.3  Computer Requirements 	,	     78
          2.3.1  IBM Job Control Langauge  (JCL) ,	     78
          2.3.2  UNIVAC Executive Control  Langauge (ECL) 	     79
          2.3.3  Execution Times 	     80
CHAPTER 3   IMPLEMENTATION OF THE WATER
            QUALITY MODEL - DYNQUAL 	     81
     3.1  The MAIN Program 	     81
     3.2  Subroutine MIXER 	     89
     3.3  Subroutine SUMARY 	     92
     3.4  Subroutine SWTABL	     94
     3.5  Subroutines SUMPLT and SWPLOT	     98
     3.6  Subroutine TPLOT 	    100
     3.7  Plotting Subroutines CURVE, PPLOT, and SCALE 	    102
     3.8  Constituent Linkages 	    103
     3.9  Considerations For Modeling Other Systems 	    105
    3.10  Input Requirements 	    109
    3.11  Output Options 	    112
    3.12  DYNQUAL Data Deck Sequence 	    116
    3.13  DYNQUAL Variable Definitions	    126
    3.14  Computer Requirements 	    148
          3.14.1  IBM Job Control Langauge (JCL) 	    148
          3.14.2  UNIVAC Executive Control Langauge (ECL) ...    149
          3.14.3  Execution Times 	    150
CHAPTER 4   SAMPLE INPUTS AND OUTPUTS 	    151
     4.1  The Model Network 	    151
     4.2  Sample REGAN Input/Output 	    158
     4.3  Sample DYNHYD Input/Output 	    163

-------
                          TABLE OF CONTENTS
                             (continued)

                                                               Page
     4.4  Sample DYNQUAL Input/Output  	   190
          4.4.1  3 Conservative Constituents 	   190
          4.4.2  2 Linked Constituents  	   209
          4.4.3  6 Constituent D.O. Budget -..-	   229
APPENDIX 	   261
     A.I  REGAN Listing 	   262
     A.2  DYNHYD Listing 	   264
     A.3  DYNQUAL Listing 	   275
BIBLIOGRAPHY 	   316
                              iv

-------
                        LIST OF FIGURES
Figure                         Title                            Page
 1.1      Representation of the Model  Network 	     4
 1.2      Branching and Looping in a Network 	     7
 1.3      Mass Transfer by Advection 	    17
 1.4      Effect of Numerical Mixing on Model  Accuracy 	    19
 1.5      Methods of Computing C* 	    20
 1.6      Lateral and Vertical Velocity Patterns  	    24
 2.1      Flowchart of REGAN 	    40
 2.2      Flowchart of the MAIN Program in DYNHYD 	    46
 2.3      Flowchart of Subroutine HYDEX 	    50
 2.4      Creation of the Hydraulic Extract Tape  	    52
 2.5      HYDEX Averaging Technique	   .54
 2.6      Flowchart of Subroutine RESTRT 	    56
 2.7      DYNHYD Sign Conventions 	    58
 3.1      Program and Subroutine Linkages  of the  DEM 	    82
 3.2      Flowchart of the MAIN Program in DYNQUAL 	    83
 3.3      Flowchart of the Main Quality Loop 	    84
 3.4      Flowchart of Subroutine MIXER 	    90
 3.5      Flowchart of Subroutine SUMARY	    93
 3.6      Location of High and Low Water Slack 	    95
 3.7      Flowchart of Subroutine SWTABL	    96
 3.8      Flowchart of Subroutines SUMPLT  and SWPLOT 	    99
 3.9      Flowchart of Subroutine TPLOT	   101
 3.10     Constituent Linkages 	   104
 3.11     Alternative Linkage: Example 1 	   106
 3.12     Alternative Linkage: Example 2 	   107
 3.13     Alternative Linkage: Example 3 	   108
 4.1      The Potomac Estuary 	   152
 4.2      Potomac Estuary Model  Network: Segment  1 	   153
 4.3      Potomac Estuary Model  Network: Segment  2 	   154
 4.4      Potomac Estuary Model  Network: Segment  3 	   155
 4.5      Potomac Estuary Model  Network: Segment  4 	   156
 4.6      Potomac Estuary Model  Network: Segment  5 	   157

-------
                       LIST OF TABLES

Table                         Title                            Page
 1.1     Comparison of Methods for Computing C* 	     21
 2.1     DYNHYD Execution Times 	     80
 3.1     DYNQUAL Execution Times 	    150
                             VI

-------
                            - 1 -


                          CHAPTER 1
             THEORY OF THE DYNAMIC ESTUARY MODEL
                      1.1  INTRODUCTION

     The Dynamic Estuary Model (DEM) was originally developed
during the mid 1960's by Water Resources Engineers, a consultant
engineering firm located in Walnut Creek, California, under
contract to the Division of Water Supply and Pollution Control,
U. S. Public Health Service [ 1 ].  The principal individuals
associated with the development of this model were Drs. Gerald
Orlob and Robert Shubinski.  Estuarine modelling was still in its
infancy at that point in time, and the DEM was innovative in
considering a "real time" computerized tidal solution of the
hydrodynamic behavior of estuaries, including the effects of
tides.  Prior to the development of the DEM, the few estuary
models already in existence relied on a net flow or plug flow
analysis and attempted to reproduce tidal effects through the
inclusion of an artificial dispersion coefficient.  Since these
models were non-tidal in nature, the time step for computations
was normally equal to the tidal period (12.5 hrs.) or, for
convenience, one day, and consequently they could not handle short
term pertubations in water quality.
     The DEM was initially applied to the Sacramento-San Joaquin
Delta area in California [ 1  ].  Other early applications were to
the Suisun, San Pablo and San Francisco Bays [ 2 ], [ 3 ].  The
DEM was first brought to the attention of the Annapolis Field
Office (AFO) by Mr. Kenneth Feigner in 1969.  Mr. Feigner was the
USPHS project officer during the early developmental and
application studies in California and was the'author of the basic
model documentation report [ 4 ].  Staff at AFO, with the
encouragement and assistance of Mr. Feigner, tested the model
rigorously and performed extensive modifications to the reaction
kinetics in the quality  program during its multi-year application

-------
                            -  2  -
to the Potomac Estuary [5], [6], [7]. .The Potomac study
was primarily directed towards refining the model's ability to
treat nutrient cycles (including uptake by phytoplankton) and
towards incorporating algal effects within the DO budget.  In
addition, the DEM was also applied to the upper Chesapeake Bay
during 1972-73 for the development of allowable nutrient loadings
from the Susquehanna Basin and the Baltimore Metropolitan
Area [ 8 ], and most recently to the Delaware Estuary [ 9 ].
     The DEM consists of two separate but interrelated components:
(1) a hydraulic program, dealing with water motion, and (2) a
quality program, dealing with mass transport and chemical and
biological reactions.  The hydraulic program predicts water
movement by solving the equations of momentum and continuity,
while the; quality program predicts the movement, build-up, and
decay of water-borne material by solving the conservation  of
mass equations.  The numerical solution of the hydraulic and mass
equations is accomplished on the same network, which represents
the geometrical configuration of the estuary.  The following
sections will discuss in detail  the network and the equations used
in the hydraulic and quality models.

-------
                            -  3 -
                   1.2  THE MODEL NETWORK
                       1.2.1  OVERVIEW
 '-'•
     The DEM represents the prototype by using a network
consisting of several interconnected "channels" and "junctions".
This channel-junction (often called "link-node") network is
extremely flexible in that it allows the prototype to be
segmented in a manner which considers the complex flow patterns
in the lateral plane as well as the effects of an irregular
shoreline.  A channel element (link) connects two junction
elements (nodes) and serves as the transport mechanism between
the junction at each end.  A junction is a volumetric unit which
acts as a receptacle for the fluid (and associated mass) trans-
ported through its connecting channels.  A channel can connect
only two junctions, but a junction can have several channels
entering it.  The concentration of the water quality parameters;
their addition, depletion, decay, and biological/chemical
transformations are defined within junctions.  Parameters
influencing the actual motion of water are assigned and treated
in the context of channels.
     The model network can be viewed as the overlapping of two
closely related subnetworks:  (1) the channel network, and (2) the
junction network.  Figures l.la and l.lb illustrate the configuration
of channels and junctions, respectively, for a hypothetical
estuary.  Since a channel must have a junction at each end, the
location, shape, and size of the junctions are dependent on the
channel configuration.  Figure l.lc illustrates how the channel
and junction  networks overlap to form the  final model network.
Figure l.ld illustrates a symbolic notation used  to define the
model network.

-------
                 channel
                 connecting
                 "junctions
                   i and j
                                          junction
                                            surface
                                            area
                                                center
                                                  of  ^
                                               junction
                                                                                                  .channel
                                                                                                    length
(a)  Channe1  Network
(b) Junction Network
(c)  Model  Network
(d)    Network
   Representation
                          FIGURE 1.1   REPRESENTATION OF THE MODEL  NETWORK

-------
                           - 5 -
                  1.2.2  CHANNEL PARAMETERS

     The parameters associated with channels are length, width,
cross-sectional area, frictional resistance coefficient
(Manning's "n"), velocity, arid hydraulic radius or depth.
     Length:  The length of a channel equals the distance between
the two junctions it connects.  Channels must be rectangular
and should be oriented so as to minimize the variation of depth
over their length as well as reflect the location and position
of the actual protytype channels.  The channel length is
generally dependent on a computational stability criteria given
by
                 !f  L  ( ^yi  ±  Lii ) At
where:
                 1^  =  length of channel i
                 y..  =  mean depth of channel i
                 u.  =  tidal velocity in channel i
                 At  =  computational time step
                  g  =  acceleration of gravity
     Width:  There is no apparent limit on the width of a channel.
However, if a channel is too wide  in relation to its length, the
mean velocity predicted may mask important velocity patterns
occurring on a more local scale.  For well defined channels, the
network channel widths are equated to the average bank to bank
width.
     Cross-sectional area:  The cross-sectional area of a channel
is equal to the product of the channel width and depth.  However,
depth is a channel parameter that must be defined with respect to
junction head or water surface elevation  (since both vary similarly
with time).  Channels are assigned initial values of width and depth
based on the initial junction heads and the initial cross-sectional

-------
                            -  6  -
areas are computed internally.  As the junction heads vary, the
channel cross-sectional areas are adjusted accordingly.
     Roughness:  Channels are assinged "typical" Manning Roughness
coefficients.  Since the actual  value of this coefficient is
virtually undefinable, it serves as a "knob" for the calibration
of the model.
     Velocity:  An initial estimate of the mean channel  velocity
is required for each hydraulic run.  Although any value  may be
assigned, the computational time required for convergence to a
steady state solution will depend upon its departure from the
true value.
     Hydraulic radius:  Previous applications of the DEM have
employed channels whose widths are greater than ten times the
channel depth.  Consequently, the hydraulic radius is usually
assumed to be equal to the mean channel depth.

                 1.2.3  JUNCTION PARAMETERS
     The parameters associated with junctions are surface area,
volume, head, and any accretion or depletion from the system.
     Surface area:  Except when branching or looping occurs
(i.e., when more than two channels enter a junction), the surface
area of a junction is equated to one-half of the sum of  the
surface areas of the two channels entering the junction.  When
branching or looping does occur, the junction surface areas can
be determined by laying out a polygon network using the  Thiessen
Polygon method, as in Figure 1.2.  Since the polygons are
normally irregular, a planimeter must be relied upon to  obtain
surface areas.
     Volume:  Junction volumes are computed by multiplying the
surface area of the junction by the mean depth of the channels
(weighted by cross-sectional area) entering the junction.
     Head:  Junction heads represent the elevation of the water
surface above or below an arbitrary horizontal datum. The datum
is usually taken to be or referenced to Mean Sea Level.

-------
                   -  7  -
                                           junction
                                         surface area
FIGURE 1.2  BRANCHING AND LOOPING IN A NETWORK

-------
                            -  8  -
     Accretion/Depletion:  Any accretion to or depletion from the
system is handled by the direct addition to or removal from the
junction volume or mass.
            1.2.4  NETWORK CONFIGURATION AND SIZE
     There is a great deal of flexibility allowed in laying out
the network of interconnected channels and  junctions  to represent
a particular system.  The choice of the boundary locations should
include considerations of both hydraulic and quality factors.  To
minimize difficulties with boundary conditions, the network should,
ideally., extend to the ocean at the downstream boundary and to or
beyond 1;he limits of tidal effects on inflowing streams, so that
the inf'ow can be considered steady.  Such a network eliminates
problems; associated with dynamic boundary conditions, such as
changing salinity, or other quality conditions which could be
present if an inland point is chosen for the seaward boundary.
Other considerations which could influence the location of the
network boundaries and the scale of network elements include the
location of specific points where quality predictions are required,
the location of existing or planned sampling stations and the
availability of data for verification, the degree of network detail
desired, and the computer time desired for solution.
     For computational procedures, it is necessary that the
junctions of the network be numbered consecutively beginning with
one.  The assignment of numbers to the network can be based on any
arbitrary consideration.  However, junctipn number one must be
located at the seaward boundary.  A separate but similar numbering
system for channels is also necessary.  Each junction may have
from ona to five channels entering it.  A channel must have a
junction at one end; thus, dead-end sloughs must end with a
junction.  Associated with each junction number are from one to
five channel  numbers, and associated with each channel number are
two junction numbers.

-------
                           - 9 -
                 1.3  THE HYDRAULIC MODEL
                       1.3.1   THEORY
     The primary task of the hydraulic model  is to solve the
equations describing the propagation of a long wave through a
shallow water system, while conserving both momentum and volume.
This is accomplished by (1) applying the one-dimensional
equation of motion to the network channels to predict velocities
and flows and (2) applying the continuity equation to the network
junctions to predict fluctuations in the water surface elevation
(head) and the corresponding changes in volume.  The assumptions
upon which this approach is based are:
       1) flow is predominantly one-dimensional
       2) acceleration normal to the x-axis is negligible
       3) coriolis and wind forces are negligible
       4) channels are rectangular with uniform cross-sectional
          area and a slope which can be considered negligible
       5) tidal conditions (amplitude and period) at the
          seaward boundary are known
       6) wave length is greater than or equal to twice the
          channel depth

The Equation of Motion - Conservation of Momentum
     The equation of motion is given by

          |jf  =  -u|tt   -    k|u|u    -    gf*          (l.la)

where:
          u = velocity along  the x-axis
          t = time
          x = distance along  the x-axis
          k = frictional resistance coefficient
          g = acceleration of gravity
          H = head  (height of the wave above  an arbitrary  datum)

-------
                           ^ 10 -
The terms in equation (l.la) represent the following:
     jHj.  „  the time rate of change of velocity; also defined
     9t  "  as the local inertia term
     9u  „  Bernoulli acceleration (the rate of momentum change
     3x  ~  by mass transfer); also defined as the convective
            inertia term as derived from Newton's 2nd Law
  k|u|u  ~  frictional resistance (the absolute value sign insures
            that resistance opposes the direction of flow)
     9H
   9 "^7  =  gravitational acceleration
     dX
     The relationship between frictional resistance and the
energy gradient is given by
                     k|u|u  =  g^j-                      (l.lb)
where

     ^  =  energy gradient

     For a tidally influenced estuary, few, if any, of the
channels experience steady flow.  However, over short time
intervals, the flow can be considered as steady uniform flow.
Consequently, the Manning equation, given by
                      u  =                               (l.lc)
                                                         (Lid)
                      s  -   -
                      s      2.208
where
        R  =  hydraulic radius of the channel
        s  =  dH/dx = energy gradient
        n  =  Manning's n
can be usnd to evaluate the frictional resistance coefficient in
equation (l.la).  Substitution of equation  (l.ld) into equation
(l.lb) defines "k" as

                      k  =   - SLQL -                (1.le)
                             2.208

-------
                           - 11 -

The Equation of Continuity - Conservation of Mass
     The equation of continuity is given by:

                9H  _     1    90                         n  ,x
                at  -  '  F  '  3?                         (K2)
where:
          H  = head
          b  =  mean channel  width
          Q  =  flow
The terms in equation (1.2) represent the following:
          3H
          TTT  =  time rate of change of water surface
                 elevation

     -r- • |^-  =  change in storage along the channel  length
          dx     per unit width
     As presented, equations (l.la) and (1.2) apply to channels.
To minimize computational requirements, equation (1.2) is applied
to junctions so that:
                  at     -  «                            (1'3)
where:
          A*  =  surface area of the junction

-------
                            -  12  -


For use in the model, both equations (l.la) and (1.3) must be
changed to their finite difference forms:

u-i + ~ u-i t i    ii       AUi                          AH
.lit -- IjtIi= -U.^ (  i) . K|u      ,„       _g  (AH^     (1 4)
     At                   Ai       1,1 i   i,t i         x
and
                Hj.t " Hj,t-1  _   - z Q                       (1.5)
                    At         -     A*.
where :
          U. <.    =  velocity in channel  i at time t
           I , L
          U.. t_-j  =  velocity in channel  i at time t-1
          At      =  computational  time step
          X.      =  length of channel  i
          AU.J/X.J  =  velocity gradient in channel  i
          AH./X.  =  water surface gradient in channel  i
          H. .     =  water surface elevation in junct.ion j
           J5T:       at time t
          H. t -,  =  water surface elevation in junction j
           J9t~'     at time t-1
          A*.     =  surface area of junction j
            J
          EQ      =  algebraic summation  of flows  into (accretions)
                     and out of (depletions) a junction
          K       =  frictional resistance coefficient (gn2/2.208R4/3)
          n       =  Manning's "n"
          R       =  hydraulic radius of  a channel
          g       =  acceleration of gravity
     The velocity gradient term  (AU^/X^) presents  some computational
problems because the computed velocity for a channel  is assumed  to
be constant throughout that channel, hence there is no predicted
velocity gradient within a given channel.  If branching does not
occur, a velocity gradient can be computed as the  difference of

-------
                            -  13  -
the velocities in the channels connected to the junctions at
each end of channel i.  If branching does occur, this approach
cannot be used, since there would be several channels connected
to the upstream and downstream junctions.  Equation (1.6) can
be used to solve this problem.
           3H  _   1   30  _    1  3(uA)                  ,, cx
           9?  " " F   3X  "  " b   3X                    U
-------
                           - 14 -                   .



                  1.3.2  SOLUTION TECHNIQUE

     The solution of the equations of motion and continuity as

described proceeds as follows:

          1)  The mean velocity for each channel is predicted
              for the middle of the next time interval
              (i.e., for time t + At/2) using the channel
              velocities and cross-sectional areas and the
              junction heads at the beginning of the time interval.

          2)  The flow in each  channel at the middle of the next
              time interval is  computed using the velocity obtained
              in step (1) and the cross-sectional area at the
              beginning of the  interval.

          3)  The head at each  junction at the middle of the next
              time interval is  computed using the flows derived
              in step (2).

          4)  The cross-sectional area of each channel at the
              middle of the next time interval is computed using
              the heads computed in step (3).

          5)  The mean velocity for each channel is predicted for
              the full time step ( t + At ) using the velocities,
              cross-sectional areas, and junction heads computed
              for the middle of the time step ( t + At/2 ) in
              steps (1), (3), and (4).

          6)  The flow in each  channel after a full time step is
              computed using the velocity for the full time step
              (computed in step 5) and the cross-sectional area
              computed for the  middle of the time step in step (4).

          7)  The head at each  junction after a full time step is
              computed using the full step flow computed in step (6),

          8)  The cross-sectional area of each channel after a full
              time step is computed using the full step heads from
              step (7).

          9)  Repeat steps (1)  through (8) for the specified
              number of time intervals.

-------
                           - 15 -


                   1.4  THE QUALITY MODEL
                        1.4.1  THEORY

     The task of the quality model  is to solve the equations
describing the movement, decay, and transformation(s) of a
material by performing a mass balance at each junction for each
time step.  The quality model is referenced to the same network
used in the hydraulic model, and uses the hydraulic solution
(heads, flows, and velocities for each time step) as input.
Since the time step for the quality program is usually much
larger than the time step for the hydraulic program, the
hydraulic parameters occurring within a quality time step are
averaged.  These averaged values cover a full tidal cycle and
are stored for use by the quality program. Consequently, the
quality time step must be a whole multiple of the hydraulic time
step and evenly divisible into the tidal period.
     Six constituents, either conservative or non-conservative,
can be handled simultaneously by the version of the DEM presented
in this report.  The concentration of a constituent at any point
is affected by mass transfers (advection, dispersion, diffusion),
decay, biological/chemical transformations, and the import or
export of mass.
Advection
     Advection is a hydraulic mechanism which moves a constituent
in the direction of flow at the same velocity at which the water
moves.  The basic transport equation for advection is:
where
                        T   =  u  •  c                      (1.8)
                         a
         T   =  advective transport of a given mass through a
                unit area in a unit time (mass/area/time)
          u  =  velocity
          c  =  concentration of the constituent in the water

-------
                           - 16 -

     If an infinitesimal volume of water is considered, the
one-dimensional equation describing concentration is:

                   If   •   "  H                           (1-9'
where
          3c/3x  =  concentration gradient along the x-axis
          3c/3t  =  time rate of change of concentration
     If both sides of equation (1.9) are multiplied by volume
(A- AX), then the following mass balance equation is obtained:

                   £   -   U  ||  •  (A- AX)               (1.10)
where
              A  =  cross-sectional area
              x  =  length along the x-axis
          3M/3t  =  time rate of change of mass
     This describes the instantaneous advection of mass at a
cross-section.  A general finite difference form of equation
(1.10) is:
       AM.
                  (u'A'c>in
where
              j  =  the junction being considered
              u  =  velocity of water in a channel
              A  =  cross-sectional  area of a channel
              c  =  concentration within a junction

     Figure (1.3) illustrates how equation (1.11) computes  the
change of mass within a junction due to advection.

-------
                   -  17 -
           =   I(u-A-c)
                             1n
                                              out
=  ui  A.
                                                 c.
where
                 indicates the direction of flow
                   =  velocity in channels  i-l,i,and i+1


                   =  cross-sectional  area  of channels
                      i-1 ,i ,and i
                      concentration in junctions j-2,
                      j-1, and j
      FIGURE  1.3  MASS TRANSFER  BY ADVECTION

-------
                            -  18  -
Numerical Mixing
     When solved by finite difference methods, the advection
equation  is subject to a problem known as  "numerical mixing",
During every quality time step, mass is  transferred between
adjacent junctions.  As shown in Figure  1.4  , a problem arises
because the model assumes that the mass  transferred from
junction A to junction B is completely mixed  within .junction  B
(i.e., that the mass from junction A is  transferred to the center
of junction B).  In reality, however, water velocities are
highly variable and will, at times, advance only to the boundary
between junctions A and B while the model must always move mass
in unit steps whose distance is dictated by the channel lengths
and junction sizes.  The greatest difficulty will arise when  there
is a high concentration gradient between two junctions.  If C.
(the concentration in junction A) is much greater than CB (the
concentration in junction B), then the error introduced by
advancing constituent mass from junction A to junction B ahead
of tha actual water mass will be numerically large.  In order to
insure that the discrepancy between model and river concentrations
will not be large and will not accumulate because of numerical
mixing problems, certain adjustments must be made.
     The solution is to choose a concentration (C*) in the
advected water which is between the "actual" values of C. and
Cg.  Feigner [ 4 ] examined several techniques for determining
C*.  His results are summarized in Figure 1.5 and Table 1.1.

Turbulent (eddy) Diffusion
     In a calm body of water, molecular diffusion will slowly
operate to bring constituents from regions of high concentrations
to ragions of low concentrations.  In turbulent bodies of water,
however-, this relatively slow process can be neglected, and only
the effects of turbulent diffusion need  to be considered.
Turbulent diffusion, the stirring or mixing of the water by eddy
current;; due to tidal  action or some other energy field (such as density

-------
                    -  19 -
c
o
to
01
o
c
o
u
                                            MODEL
junction A             junction B
(O
0)
O
c
o
u
                                            distance
                                            ESTUARY
                               \

                                  \
                                             distance
                    concentration  at time

                    concentration  at time
FIGURE 1.4  EFFECT OF NUMERICAL MIXING ON MODEL ACCURACY

-------
c*d)
         C*(5)
^^^
>>
J
c*(D •
C*(2) =
C*(3) =
C*(4) =
C*(5) =
v c*<4)
^^•-
-------
Method
Upstream
1/2 Point
1/3 Point
1/4 Point
Definition of
(See Figure 1
c* = ca
c* = (ca + cb
c* = (ca + cb
C* = (C + C.
c*
.5)

)/2
)/3
)/4
Numerical
Mixing
High
Low

Moderate
Accuracy
Poor
Good

Good
Stability
Excellent
Very Poor

Acceptable
                                                                                                     I

                                                                                                    ro
  2 - Way
Proportional
C* • '2
{C. - Cb)   Low
Good
Poor
                     TABLE 1.1   COMPARISON OF METHODS FOR COMPUTING C*

-------
                            - 22 -
gradients)., is essentially a complex form of advection, which
must at present be treated as a separate process, since the
velocities and directions of the eddy currents are not yet
predictable.  The transport equation for turbulent diffusion is:
                             3X
                                                            (1.12)
where
          T.  =  transport by turbulent diffusion through a
                 unit area in a unit time
          f
-------
                           - 23 -
       AMj               ACi+l              ACi
       AT"  =  Kd Ai+l    AX^  "  Kd Ai    AxT            (1J5)

where
          j  =  junction under consideration
     i, i+1  =  downstream and upstream channels,  respectively
 AC., AC.+,  =  concentration differenced along the downstream
                and upstream channels, respectively
This difference equation describes the net dispersion of mass
into or out of junction j during the interval  At.

     The DEM does not utilize K. directly but,  rather, computes
this rate based upon a simplification of the energy dissipation
relationship and a spatial approximation of the eddy size  [4],
The actual equation employed by the model is as follows:
                  Kd  =  C4| u I R                        (1.16)

where
          C4  =   dimensionless diffusion constant which can be
                 varied spatially
           u  =  mean channel velocity
           R  =  hydraulic radius of the channel

Longitudinal Dispersion
     The velocity of a river varies both laterally and vertically,
as shown in Figure 1.6.  These variations result in longitudinal
dispersion, the mechanism by which mass in the center of the
river moves forward faster than the mass at the sides or bottom.
Since the velocity used in equation (1.11) is assumed to be the
mean velocity in the channel (i.e. the model is one-dimensional
in form), this phenomenon cannot be directly accounted for by the
model.  However, the phenomenon of numerical mixing accidentally

-------
                    -  24 -
            Lateral variation of  velocity
            Vertical  variation of  velocity
F'lGURE 1 .6  LATERAL AND VERTICAL VELOCITY PATTERNS

-------
                           - 25 -
produces a somewhat similar effect, although it is only partially
controllable.  In fact, there are two procedures which can help
encompass the effects of longitudinal dispersion.
     1)  further adjustment of C* (the concentration used in
         equation (1.11) for advection)
     2)  adjustment of the turbulent (eddy) diffusion
         coefficient (C4)

Decay
     The quality model  is capable of describing the fate of both
conservative (e.g. salinity) and non-conservative (e.g. BOD or DO)
constituents.  For non-conservative constituents, the mechanism
of decay must be considered.

Zero-Order Decay
     For zero-order decay, the quantity of constituent decayed
is a function of the rate constant for the reaction being
considered.  Mathematically, a zero-order reaction is given by
where
          dc/dt  =  rate of change of c with respect to t
              c  =  concentration
              t  =  time
              K  =  rate constant (mass/volume/time)
The negative sign indicates that the process is one of decay
rather than growth.  Equation  (1.17) is easily integrated to
yield:
                    Ct  =  CQ  - K  (t - t0)               (1.18)
where
          Ct  =  concentration at time t
          C   =  concentration at time t

-------
                           - 26 -
This expression can be converted to a finite difference form
for a time step of At.
where
              Co " Ct  =  ACj  =  K ' At
          AC.  =  change (decrease) in concentration in junction j
            J     during a time interval of At
The corresponding mass equation is obtained by multiplying both
sides of equation (1.19) by volume.
               V.-AC,  =  AM.  =  K-V.-At                 (1.20)
                J   J       J        J
where
          V.  =  volume of junction j
         AM.  =  change (decrease) in mass in junction j during
           J     a time interval of At

Example _1 - Algal Respiration and Photosynthesis
     If algal respiration is assumed to be a zero-order reaction,
i.e. if the rate at which oxygen is consumed by algae is
independent of their concentration, then the rate at which oxygen
is removed from the system is given by:
                   AMr
                        =  KR'V'Calgae
where
          AMR  =  mass of dissolved oxygen consumed by algae
                  during a time interval of At
           1C  =  rate at which algae consume oxygen
                  (mass of Op/mass of algae/time)
       C ,     =  concentration of algae (mass/volume)
            V  =  volume
Algal photosynthesis is not a process of decay.  However, if it
is assumed to be a zero-order reaction, i.e. if the rate at which
algae produce oxygen is independent of their concentration, then
the rate at which oxygen is added to the system is given by:

-------
                           - 27 -
              AMn
              at*  '  Kp ' V ' Calgae
where
          AM   =  mass of dissolved oxygen produced by algae
            p     during a time interval At
           K   =  rate at which algae produce oxygen
            p     (mass of O^/mass of algae/time)
       C ,     =  concentration of algae
            V  =  volume
The mass of oxygen present in the system at time t is given by:
where
          Mt  =  mass of oxygen present at time t
        M._,  =  mass of oxygen present at time t-1

 Example  2   -  Sediment Oxygen  Demand
     If the rate at which oxygen is consumed by bottom sediments
is considered constant, i.e. independent of the amount of bottom
sediment present, then the change in dissolved oxygen mass due
to sediment oxygen demands is given by:
                   AMnn
                     DO
                   At       '\SOD   "
where
          AMDO  =  mass of oxy9en consumed by bottom sediments
                   during a time interval At
                =  rate at which bottom sediments consume oxygen
                   (mass 02/area/time)
             A  =  surface area of bottom

-------
                           - 28 -


First-Order Decay
     For first-order decay, the quantity of constituent decayed
is a function of (1) the amount of the constituent present and
(2) the rate constant for the reaction being considered.
Mathematically, a first-order reaction is given by:

                    {j|  =  -K • C                         (1.21)

where
          dc/dt  =  rate of change of c with respect to t
              K  =  rate constant (I/time)
              C  =  concentration
              t  =  time
Again, the negative sign indicates that the process is one of
decay ra1:her than growth.  Equation (1.21) can be easily
integrated to yield:

                 Ct  =  Co  e"K (t-^                    (]-22)
where
          Ct  =  concentration at time t
          C   =  concentration at time t

This expression can be converted to a finite difference form
for a time interval of At
    C, t 1  -  C. t  =  AC.  =  C. .  ,  (l-e"KAt)  -At   (1.23)
     J o !•" I      Jl1-       J      J > <'~ '
where
          AC.  =  change (decrease) in concentration in junction j
            J     during a time interval of At
 C. ,,. ••; C. .   =  concentration in junction j at time t-1 and
  J»*~l   J'      t, respectively
           At  =  computational time step

-------
                           - 29 -
The corresponding mass equation is obtained by multiplying both
sides of equation (1.23) by volume

     V. • AC.  =  AM.  =  V. • C. t 1 (l-e'KAt) • At
      j     j       j      j    j»*•"'
where
          V.  =  volume of junction j
           J
         AM. .=  .change in mass in junction j during a time
           J   o  interval of At

Example 1  -  Biochemical Oxygen Demand (BOD)
     The rate at which organic wastes are biochemically oxidized
or stabilized is directly proportional to the amount of
unstabilized material present.  The change in the amount of
unstabilized material present (BOD) is given by:

                  _  „   P           n  -KDAt>
                  -  V ' CBOD, t-1 • (1'e  *  )
where
          AMRnn  =  amount of BOD stabilized during a time
            BUU     interval of At
              V  =  volume
             At  =  time interval
       Cnnn * i  =  concentration of BOD at time t-1
        BUD,t-i
             K.  =  rate at which organic material is stabilized
              P

The amount of BOD present at time t is given by:

            MBOD,t  =  MBOD, t-1  '  AMBOD
where
          Mnnn t i > Mcnn +  =  raass of BOD present at time t-1
           BOD,t-1    BOD,t     and t> respect1vely

-------
                           - 30 -
Example 2  -  Reaeration
     The oxygen in water is naturally replenished through the
process of reaeration (mass transfer at the surface).   This
process is defined by:

                  dD  -   v    n
                  at  -  -Kd ' D
where
          D  =  dissolved oxygen deficit, i.e.  the saturation
                concentration minus the actual  concentration
         KJ  =  reaeration rate (I/time)

Reaeration is a process in which the dissolved  oxygen  deficit
is reduced (or, conversely, in which the dissolved oxygen
concentration is increased).  The change in mass of the DO deficit
due to reaeration is given by:
where
                             Dt_,
          AM   =  decrease in the mass of dissolved oxygen
                  deficit (or, the increase in DO mass during
                  a time interval of At)
            V  =  volume
               =  DO deficit at time t-1
Second-Order Decay
     For second-order decay, the quantity of constituent decayed
is a function of (1) the amount of constituent present and
(2) the rate constant of the reaction.  Mathematically, a second
order reaction is given by:

                   3T  '  -fe2                            f1
where
          dc/dt  =  rate of change of c with respect to t
              K  =  rate constant (volume/mass/time)
              c  =  concentration

-------
                           - 31 -


     Again, the negative sign indicates that the process is one of
decay.  Equation (1.24) can be integrated to yield

            C
             t      k(t-t0) +1          C0k(t-tQ)  + 1
                              Co

     This can be converted to a finite difference form  for a time
interval of At:
     4Cj  '  cd,t-i
where
                AC.   =  change (decrease) in concentration in
                  J      junction j during the time interval  At
       C. .  -,. C. .    =  concentration in junction j a times  t-1
        . .  -,
        J>t
                         and t, respectively
                 At   =  computational time step
     The corresponding mass equation is obtained by multiplying
equation (1.26) by the junction volume:

                AM,  =  V. -  AC,                            (1.27)
                  J      J     J
where
          AM.  =  change in mass in junction j during a time
            J     interval of At
           V.  =  volume of junction j
            J
Example 1  -  Sedimentation/ Deposition
     Many substances are removed from the water system through the
process of sedimentation (i.e. settling).  Quite often, the rate
at which material is removed by this process can be described by
first or second order reactions.  If the process is a second order
one,  then the  change  in mass  of a constituent  is given by

-------
                            -  32  -
AM
A
                   '
                           t-l
1  -
where
            AM   =  amount of mass removed by settling during
                    the time interval At
             At  =  time step
              V  =  volume
           C.T  =  concentration at time t-1
             k   =  rate at which the material settles

     If sedimentation were the only process affecting the material,
then the mass present at time t would be given by
where
               M.  ,, M.
                           -  tf
              mass of constituent present at times
              t-1 and t, respectively
Biological / Chemical Transformations
     Materials in the aquatic ecosystem often undergo some type
of trarisformation(s).  In many cases, these consecutive reactions
can be described by the kinetics discussed earlier.
Example 1  -  Nitrification
     Nitrification is the process by which ammonia (NH3) is
converted to nitrite (N02) and nitrate (1^)3), as shown in the
figure below.
NH3
K12

N02
K23

N03

-------
                           - 33 -



     Assuming first order kinetics, the change in mass of each

constituent during a time interval  of At is given by
         AMNH3   _  „  r
         "AT   -  V 'CNH3,t-l
.             .  n  .  -k  At
   V L        '  U  - e  23
                            .
           At         At          N02,t-l


         AMN03   _  » r
         "AT   -  V'CN02,t-l
where
          AMNH3  =  the amount of NH3 converted to N02 during At

          AMN02  =  the chan9e in mass of N^2 during At

                 =  the amount of N02 converted to NOg during At
      CNH3 t-1   =  the concentratl'on of NH3 at

      CN02 t_i   =  tne concentration of N02 at time t-1

      C»ino 4- i   =  the concentration of N00 at time t-1
       N03,t-l                             3

            k,2  =  the rate at which NH3 is converted to N02


            k23  =  the rate at which N02 is converted to N03
The mass of each constituent at time t is given by
         MNH3,t  "  MNH3,t-l  "  AMNH3

         MN02,t  =  MN02,t-1  +  AMNH3  '  AMN03

         MN03,t  =  MN03,t-l  +  AMN03

-------
                           - 34 -



Example 2  -  The Phosphorus Cycle

     A simplified representation of the phosphorus  cycle  is  shown

in the fiijure below.
           Total
        Phosphorous
    settling
      C
Sediment
     Assume that   (1)  the uptake of phosphorous by algae,  the
                        death of algae, and the regeneration of
                        phosphorous from detritus are all  first
                        order reactions

                   (2)  the settling of phosphorous is a  second
                        order reaction
     The change in mass of phosphorous and algae during At is
given by
          AM

                =  regeneration  -  uptake  -  settling
          AM.

          AT
  —   =  growth  -  death
                •  cp.t-rv-(1  -

-------
                           -  35 -
where      AM.  =  change in algae mass during At
           AM   =  change in phosphorous mass during At
           M  .  =  mass of phosphorous present in the detritus
        Cn j. i  =  concentration of phosphorous at time t-1
         P» t-1
             V  =  volume
        C. ._,  =  concentration of algae at time t-1

     The mass of phosphorous and algae present at time t is  given by

          Mp,t  •  Mp,t-l  +  4Mp  •  Mp,t-l + 4Mr - 4Mu - 4Hs

          MA,t  '  MA,t-l  +  4MA  '  MA,t-l + 4Mu - 4Md
where
          M  t , , M  .   =  mass of phosphorous present at times
           P,T>I    p,i     t.-|  and t> respectively
                   A +  =  mass °^ slgae present at times t-1  and
                   M)I     t, respectively
                   AM   =  mass of phosphorous regenerated from
                           the detritus during At
                   AM   =  mass of phosphorous taken up by algae
                           for growth during At
                   AM   =  mass of phosphorous removed from the
                           system through settling during At
                   AM.  =  mass of algae decayed into detritus
                           during At

-------
                           - 36 -
Import / Export
     Another process which will affect the mass of a constituent
in a junction is the import (e.g. tributary inflow or waste
discharge) and/or export (e.g. water supply withdrawal or
industrial use) of water from the system.   The mass of constituent
added (or subtracted) at a junction during each time interval  At
is given by
where
          AM.
            J
          "in

          Cfn
               AM.
               	i
               At
      =  E(VCin
(1.28)
=  the change in mass in junction j during At
=  flow into junction j
=  concentration of the constituent in the inflow
=  withdrawal from junction j
=  concentration of constituent in junction j
                   1.4.2  SOLUTION TECHNIQUE
     Conservation of mass is maintained within the network
junctions by combining the equations describing the following
processes:
                     - advection
                     - diffusion
                     - decay
                     - biological/chemical  transformations
                     - import/export
The solution of the quality program is a relatively straight-
forward and sequential process involving an explicit finite
difference technique.  The algorithm is as  follows.

-------
                              - 37 -
 1)  Initial junction volumes and concentrations are specified in
     order to determine the total mass of each constituent initially
     present in each junction.

 2)  Waste load data (e.g.imports and exports) is specified for
     each junction.

 3)  Hydraulic parameters are read.  Values for channel velocities
     and flows and junction heads for each time step are read from
     the "hydraulic extract tape" created by the hydraulic program.

 4)  Advection - mass is transferred between adjacent junctions in
     the direction of flow.  The amount of mass transferred is
     determined using a representative concentration (C*).

 5)  Diffusion - mass is transferred between adjacent junctions
     from the junction with the higher concentration to the junction
     with the lower concentration.  The amount of mass transferred
     is proportional to the concentration gradient.

 Steps 4 and 5 proceed from one channel to another, until every
 channel and junction has been examined.

 6)  Any non-conservative constituents are decayed.  If D.O. is a
     constituent, reaeration occurs here.

 7)  The wastewater loads and/or withdrawals specified in Step 2
     are applied to the appropriate junctions.

 8)  Hydraulic parameters (flows, velocities, and heads) for the
     next time step are read from the "hydraulic extract tape".

 9)  A new concentration for each junction is obtained by dividing
     the total  mass of constituent by the new junction volume.

10)  Steps 4 through 10 are repeated for every time step.

-------
                           -  38 -
                         CHAPTER 2
           IMPLEMENTATION OF THE HYDRAULIC MODEL
         2.1  REGRESSION ANALYSIS PROGRAM (REGAN)
                2.1.1  PROGRAM DESCRIPTION
     When applying the hydraulic model, a tidal input
characteristic of the conditions under consideration must
be imposed at the seaward boundary of the model.  For
simulation of an historic condition, the tidal wave chosen
should be representative of the tidal conditions which
existed at that time.  Since it is expensive to simulate
a transient condition having significantly varying flows
or tidal characteristics, the tide and flow for any historic
simulations should be relatively steady.  The tidal wave at
the seaward boundary is described by

               Y  =  AI + A2sin(uit) + A3sin(2u)t) + A4sin(3t»)t)
                                                                    (2.1)
                     + Agcos(o)t) + Agcos(2wt) + AyCos(3o)t)

where
               Y  =  head (elevation above or below a
                     horizontal datum)
               A.. =  regression coefficients
               ia  =  tidal period (hours)
     The coefficients A, through Ay are obtained through
the regression analysis program (REGAN) which requires
tidal heights at equally spaced intervals throughout a tidal
period as input.  Normally, 30 minute intervals will suffice.
This input can be obtained from prototype tidal stage
recorders (if available) at the boundary.  In the absence of

-------
                           - 39 -


such data, it may be necessary to use the predictions
presented in the Tide Tables  published by the U.S.  Coast
and Geodetic Survey.
     Figure 2.1 is a simplified flowchart depicting the
sequence of steps for REGAN.   A brief description of the
program logic is as follows:
STEP 1  -  READ AND PRINT CONTROL AND INPUT DATA
     Alphanumeric data is read which describes the run,
the number of observations (NDATA), the number of coefficients
(NCOEFF) , the maximum number  of iterations allowed in  the
computational loop (MAXIT) ,  the maximum residual allowed
for termination of calculations (MAXRES), the tidal period
(PERIOD), time shift parameter (TSHIFT) , phase angle
shift parameter (PSSIFT), the time of the i   observation
(T(D), and the value of the  ith observation (I(I)).
Tables displaying the inputs  are printed.
STEP 2  -  INITIALIZATION
     Variables and arrays used in the calculations of the
regression coefficients (A(l), J = l,NCOEFF) are initialized.
STEP 3  - SET UP NORMAL EQUATIONS
     The coefficients of the  normal equations (SXX(K,J)
and SXY(J), where J = I,NCOEFF and K = IJCOEFF) are
established.
STEP 4  - SOLVE NORMAL EQUATIONS
     The equations established in STEP 3 are used to determine
estimates of the regression  coefficients.  If the maximum
number of iterations allowed  have been completed, the
program precedes to STEP 5.   If the number of iterations is
less than the maximum number  allowed and the maximum
residual is greater than the  desired maximum residual  (MAXRES),

-------
                       - 40 -
    READ
  CONTROL
    DATA
   SET UP
   NORMAL
 EQUATIONS
    PRINT
    NORMAL
COEFFICIENTS
                                      C  STOP     J
                                          PRINT
                                         CURRENT
                                        SOLUTION
              FIGURE 2.1  FLOWCHART OF REGAN

-------
                           - 41 -

then another iteration is performed to obtain better
estimates of the regression coefficients.  If the number of
iterations is less than the maximum number allowed and the
maximum residual is less than or equal to the specified
maximum residual, the program proceeds to STEP 5.
STEP  5 - PRINT OBSERVED AND PREDICTED DATA
     Tables are printed containing (1) the computed regression
coefficients, (2) the observed and predicted data values, and
(3) the residual values.

-------
2.1.2  REGAN DATA DECK SEQUENCE
CARD
1
2






3





VARIABLE
ALPHA(I)
NDATA
NCOEFF
MAXIT
MAXRES
PERIOD
TSHIFT
PSHIFT
T(l)
• Y(l)
T(2)
Y(2)
•
•
T( NDATA)
Y (NDATA)
COLUMNS
1 - 80
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
1 - 8
9 - 16
17 - 24
25 - 82
•
•

FORMAT
20A4
110
110
110
F10.0
F10.0
F10.0
F10.0
F8.0
F8.0
F8.0
F8.0
•
F8.0
F8.0
COMMENTS
Read 2 cards







This card is repeated until
all NDATA values of T and Y
are read. Each card contains
8 values of T and Y.



-------
                           - 43 -
              2.1.3  REGAN VARIABLE DEFINITIONS
    The following section contains definitions for the major
variables in REGAN.  Variables are listed in alphabetical
order.  Variables in italics are read from the input
data deck.

-------
VARIABLE
A(J)

ALPHA
MAXIT
MAXRES


NCOEFF
NDATA
PERIOD
PSHIFT

T(I)
TSEIFT

id)

SUBROUTINE

















DEFINITION
Coefficients obtained by the program which describe the tidal
input at a specified junctions. (J = 1, NCOEFF)
Alphanumeric data which describes the run.
Maximum number of iterations desired in the run.
Maximum value of the residual allowed. Will not be exceeded
unless the number of iterations reaches MAXIT before the
residual reaches MAXRES (a value of .0001 is typically used).
Number of coefficients in the trigonometric equation.
Number of input data points over a tidal cycle.
The period of the tide.
Variable which allows the phase angle in the trigonometric
relationship to be shifted (usually set equal to zero).
Time of the Ith specified data point on the input tide (I = 1, NDATA)
Variable which allows the time scale for the inputs to be
shifted (usually set equal to zero).
Elevation of the I specified data point on the input data
(referenced to model datum).
TYPE
R

R
I
R


I
I
R
R

R
R

R

UNITS









hrs.


hrs.


ft.


-------
                           - 45 -
            2.2  THE HYDRAULIC PROGRAM (DYNHYD)
                 2.2.1  THE "MAIN" PROGRAM
     Figure 2.2 is a simplified flowchart depicting the
sequence of steps for the Main program of DYNHYD.  A brief
description of the program logic is as follows:
STEP 1  -  READ CONTROL DATA
     Alphanumeric data is read which identifies the network
size  (NC and NJ), the length of the run (NCIC), and output
control parameters (see Section 2.2.6).
STEP 2  - READ JUNCTION DATA
     A separate card is read for each junction.  Each card
contains the junction number, initial head at that junction,
surface area of the junction, the inflow (or outflow) to the
junction, and the numbers of the channels entering the
junction.  After all junction cards are read, a table
summarizing the data is printed.
STEP 3  -  READ CHANNEL DATA
     A separate card is read for each channel.  Each card
contains the channel number, physical characteristics  (length,
width, cross-sectional area, hydraulic radius, and Manning's n),
initial velocity, and the numbers of the two junctions at
the ends of the channel.  After all channel cards are read, a
table summarizing the data is printed.
STEP 4  -  INPUT TIDAL CONDITIONS AT SEAWARD BOUNDARY
     The period of the tide  (hours) and the coefficients
obtained by REGAN (see Section 2.1) to define  the tidal
wave at the seaward boundary are read and printed.  The version

-------
                         -  46 -



READ
CONTROL DATA
,
i

' READ 1
JUNCTION DATA]
, .
-
READ
CHANNEL DATA


TREAD SEAWARD
BOUNDARY
1 CONDITIONS

1
1


NETWORK
COMPATABILITY
CHECK


INITIALIZE




MAIN
COMPUTATIONAL
LOOP
L
~ T"
^XI»ES\
< HYDEXT=1 ^
^s. ? .X
TNO
(
SI

1
I
~T
, 	 .
	 I


YES/" 	 *v
>—•/ CALL HYDEX)

OP J
                                                   i
                                                   *
                                                COMPUTE
                                                V,Q,Y,A
                                              FOR 1/2  STEP
                                                COMPUTE
                                                V.Q.Y.A
                                              FOR FULL STEP
                                                    YES
FIGURE 2.2   FLOWCHART OF THE MAIN  PROGRAM  IN DYNHYD

-------
                           - 47 -
of the hydraulic model contained herein allows only one
seaward boundary.  However, the program can easily be altered
to accomodate several seaward boundary inputs.
STEP 5  -  CHECK COMPATIBILITY OF CHANNELS AND JUNCTIONS
     A check is made on the compatability of the junction
and channel numbering systems.  If a junction is listed as
being connected to a given channel, then that channel
should also be listed as being connected to the junction.
Execution will terminate if any discrepencies are found.
     The control parameters and the channel and junction data
are stored on Unit 10 (temporary magnetic tape or disk).
STEP 6  -  INITIALIZATION
     Initializes various computation parameters, converts
starting time and tidal period from hours to seconds, and
computes friction coefficient (AK(N)) for each channel.
Checks the junction numbers at each end of a channel and
insures that the junction number associated with NJUNC(Nfl)
is smaller than the junction jumber associated with NJUNC(NS2).
This is necessary for the sign convention used to specify
the direction of flow in a channel (see Section 2.2.4).
STEP 7  -  MAIN COMPUTATIONAL LOOP
     If the run is a continuation of a previous run, it
is desirable to record the initial conditions (junction
heads and channel velocities and flows) on Unit 10.  This
will be done if variable IWRTE = 0.  Normally, however,
these parameters need not be stored.
     The program follows the algorithm described in section
Section 1.3.2.  Channel  velocities,flows, and cross-sectional
areas and junction heads are computed for one-half of a time
step.  These half-step values are then used to compute the
full-step values.

-------
                           - 48 -
     The channel  velocities are then  checked for reasonableness.
If a channel  velocity exceeds 20 fps, computational
instability is indicated and execution is  terminated.
     The current cycle number (ICYC), junction heads  (Y(J))t
and channel velocities (V(N)) and flows (Q(N)) are stored
on Unit 10 if the current cycle is greater than or equal
to a specified value (ITAPE).
     A check is made to determine whether  the predictions
for the current cycle are to be printed,  If so, then the
next print cycle is set and printout  is obtained for  the
specified junctions.  Printout will always be obtained
for the last cycle of the run.
     A check is made to determine whether  or not Subroutine
RESTRT should be called (see Section  2.2.3 for a description
of RESTRT).  If the current cycle is  a specified restart
cycle (PWCyc) *  then Subroutine RESTRT is called.
STEP 8  «  EXIT MAIN LOOP AND CHECK FOR HYDEX
     Following the completion of the  specified number of
computation cycles, a check is made to determine whether  or
not Subroutine HYDEX is to be called  (see  Section 2.2.2 for
a description of HYDEX).  If HYDEXT = 1, Subroutine HYDEX
is called.
                  2.2.2  SUBROUTINE HYDEX

     As discussed earlier, the quality program time step
is usually much longer than a hydraulic time step.  The time
interval used by the quality program  must be a whole multiple
(NODYN) of the hydraulic time step and evenly divisible
into the tidal period.  For example,  given a tidal period of
12.5 hours, a hydraulic time step of 1.5 minutes, and a quality
time step of  30 minutes, NODYN would be specified as 20.
HYDEX is a subroutine which  summarizes  (averages) the output
stored on Unit 10 for NODIN  hydraulic cycles and permanently

-------
                            - 49 -
stores these values on Unit 4 (magnetic tape or disk)
for use as input to the quality model.
In addition to summarizing the inter - tidal values of channel
velocities and flows and junction heads, HYDEX also determines
(1) the minimum and maximum flows, velocities, and cross-sectional
areas of channels, '(2) minimum and maximum heads of junctions,
and the cycles at which they occur, (3) net flow in a  channel,
(4) average cross-sectional area of a channel, (5) average
head of a junction, and (6) range of heads for a junction
over an entire tidal cycle.
     Figure 2.3 is a simplified flow chart depicting the
sequence of steps for Subroutine HYDEX.  A brief description
of the program logic is as follows:
STEP 1  -  READ CONTROL DATA
     Reads alphanumeric data identifying the run (ALPHA(l),l = 41,80J
and the number of hydraulic time steps per quality time step
(NODYN).
STEP 2  -  READ AND ALIGN INPUT TAPE
     The hydraulic summary provided by HYDEX is for a complete
tidal cycle.  Therefore, it is necessary to determine the
hydraulic cycles at which the last full tidal cycle
begins (NSTART) and ends (NSTOP).  This is necessary
because, in some cases, the data stored on Unit 10 may exceed
a full tidal cycle.  Because the hydraulic solution converges
to a dynamic steady state solution, the predictions for the
last full tidal cycle are used because they are the most
representative of the steady state condition.  Unit 10 is
rewound.  The system data stored by the MAIN program is
read.  Unit 10 is then aligned over cycle NSTART and the
summary procedure begins.

-------
                     -  50  -
    READ
:ONTROL DATA
  READ AND
    ALIGN
   UNIT 10
 INITIALIZE
TIDAL SUMMARY
  VARIABLES
   PRINT
TIDAL-SUMMARY
    CHECK
  HYDRAULIC
 EXTRACT TAPE
c
    RETURN
                                                i
                                                »
                                            INITIALIZE
                                            INTER-TIDAL
                                            VARIABLES
                                            STORE
                                          CYCLE&HEAOS
                                          ON UNIT 4
                                         r     READ   I
                                           Y, V, Q   I
                                         ^FROM UNIT I0y
                                             (STORE
                                         iVERAGE V&Q
                                           ON UNIT 4
1

COMPUTE
INTER-TIDAL
PARAMETERS
                                            HAVE
                                            NODYN
                                          VALUES BEEN
                                            READ
0
 FIGURE 2.3  FLOWCHART OF SUBROUTINE  HYDEX

-------
                            -  51 -
STEP 3  -  INITIALIZE SUMMARY VARIABLES
     HYDEX computes  two types of summary  variables.  The
first group consists of parameters summarized over an entire
tidal cycle.  These  parameters are:  net flow in a channel
(QNET(N)); minimum and maximum velocity (VMINCN), VWX(N))
and flow (QMIN(N)> QMAX(N)) in a channel; minimum, maximum,
and average cross-sectional areas of channels (ARMIN(N),
APMAX(N), AMVG(N)), and minimum, maximum, and average junction
heads (YMIN(J)3 YMAX(J), YAVG(J)).  The second group
consists of parameters summarized for discrete intervals
within the tidal cycle  (i.e. inter-tidal cycle variables).
The parameters are the average flow (QEXT(N)) and velocity
(VEXT(N)) in a channel.  These are the values which are
obtained by averaging the  flows and velocities for NODIN
hydraulic time steps and are then stored permanently on the
"hydraulic extract tape" (Unit 4) for use by the quality
program.
     The tidal cycle summary variables are initialized only
once.  However, the  inter-tidal cycle variables must be
initialized before each inter-tidal summary  (i.e. after N0DYN
cycles of data are read and summarized, the  values of the
inter-tidal summary  variables must be re-set).  At the start
of every inter-tidal summary, the current hydraulic cycle
number and the junction heads are stored on  Unit 4.
STEP 4   -  COMPUTE SUMMARY PARAMETERS
     Inter-tidal  cycle  parameters:  The junction heads,
channel  flows, and channel velocities for NODYN  hydraulic
cycles are read from the record on Unit  10,  created by the
MAIN program.  The heads,  flows,  and  velocities  are accumulated,
averaged, and  stored on Unit 4  (the  "hydraulic extract tape").
This process  is depicted in  Figure  2.4. us EPA Headquarters Library
                                              Mail code 3404T
                                         1200 Pennsylvania Avenue NW
                                            Washington, DC 20460
                                               202-566-0556

-------

• •
1
»••

	 v.yv.ie iiuiuuer ui JUHCI
_- . _ rhnnnr*! vf Inriti PI
...jj rhannpl •flnw:

1 II 1 1 II 1
| 1 1 II II |
1 M M II 1
II 1 1 II ||
V
r 1 > i r
1
1 	 average
iuii ncaus
NODYN = 4
UNIT 10
i i i i ' i i
i i i i i M
i i i i i ii
i ii it ii
i j
\^
I
i
i
i
i i i i
1 1 II •••
II II
II II
_J
t UNIT 4
1
1 •••
1
1
channel velocities & flows
nn/'Unn hoarlc
                                                                                     en
                                                                                     ro
FIGURE 2.4  CREATION OF THE HYDRAULIC EXTRACT TAPE

-------
                           - 53 -
     To compute the average channel flows (QEXT(N)) and the
average channel velocities (VEXT(N)) for the inter-tidal
summary period (NODYN cycles), HYDEX does not simply
accumulate NODYN values and divide their sum by NODYN.
Instead, a more refined method of averaging is used.
Data from the last cycle of the previous summary period and
data from the next NODYN cycles are used, i.e. NODYN + 1
cycles of data are accumulated.  However, a weight of
one-half is assigned to the data from the last cycle of
the previous summary period and to the last cycle of the
current summary period.  The accumulated sum is then divided
by NODYN.  This technique is identical to using the
trapezoidal rule to determine the area under a curve over a
certain interval (NODYN) and then dividing the area by the
interval length (NODYN) to obtain the average height along
that interval.  This technique is shown in Figure 2.5.
     Tidal cycle parameters:  The net flow in a channel over
a tidal cycle is computed by averaging the accumulated
channel flows.  The averaging technique is similar to the
method used in STEP 4.  The channel cross-sectional area
for each cycle are computed and then accumulated over the
entire tidal cycle, and averaged.  Junction heads are
accumulated over the entire tidal cycle and averaged.
Checks are made to determine the minimum and maximum values
of the following parameters over the entire tidal cycle:
channel velocities, channel cross-sectional areas, and
junction heads.
STEP 5  -  COMPLETE WRITING HYDRAULIC EXTRACT TAPE
     After the inter-tidal cycle variables for an entire
tidal cycle have been  computed  and stored on Unit 4, various
channel and junction parameters are stored at the end of the
hydraulic extract tape.

-------
               -  54 -
last cycle of
/ period i
last cycle of
period i-1
/ * Y2
/
• Yi
4



1
period i
/
y
5 « last cycle of
Y period i+1
^ • /
• V * Y
:Y8 Y9
time
period i+1
                   NODYN = 4
Average during
   period i
                        * Y2 * Y3 + Y4 *
Average during
  period i+1
                          Y6 + Y7 + Y8
Average during
   period N
               a = NSTART + NODYN.(N-l)

               0 = a + NODYN

         NSTART  = cycle at which summaries begin
    FIGURE  2.5   HYDEX  AVERAGING TECHNIQUE

-------
                           - 55 -
STEP 6  -  OUTPUT TIDAL CYCLE SUMMARY TABLES
     Tables containing both the tidal and inter-tidal
summary variables are printed for the model  channels and
junctions.
STEP 7  -  CHECK HYDRAULIC EXTRACT TAPE
     Unit 4, the hydraulic extract tape, is  rewound and
read completely.  The hydraulic cycles which were stored
on Unit 4 are printed along with the heads at several  junctions
and the "extract" flows (i.e. the flows computed by HYDEX)
in several channels.  This provides a check  on the data
actually stored on Unit 4.
STEP 8  -  RETURN TO THE MAIN PROGRAM
                  2.2.3  SUBROUTINE RESTRT
     Subroutine RESTRT has two functions.  First, it stores
pertinent restart parameters on Unit 4 for use as a restart
device in the event of premature termination of execution.
Second, it outputs a punched card deck (after the last
computational cycle is completed) containing the channel
and junction parameters in a format which can be used as
an input deck.  This type of output is desirable if the
run is to be extended.  Figure 2.6 is a simplified flowchart
describing the  sequence of steps for RESTRT.
     If the current hydraulic cycle is the last computational
cycle, the final channel and junction parameters are punched
onto a card deck.  A printed summary of this data is also
given.
     Prior to the final computational cycle,    the current
channel and junction parameters are stored on Unit 4.   The
next restart cycle is specified by incrementing the current
cycle by HHTPUS (i.e. pmcic = PUNCYC + INTPUN). Unit 4
is rewound so that if computations proceed to the next
restart cycle, the data already stored will  be updated.

-------
                 -  56  -
           INCREMENT

          PUNCH CYCLE
              I
          STORE DATA]
              ON
            UNIT 3
            PRINT •
         RESTART DATA
(
            RETURN
                                YES

                                 PUNCH
                             RESTART DECK
,  FIGURE  2.6   FLOWCHART  OF  SUBROUTINE  RESTRT

-------
                           - 57 -
     Note that Unit 4 serves a dual  purpose in the hydraulic
program.  If premature termination of execution occurred,
subroutine HYDEX (which also uses Unit 4) would not be called
and Unit 4 would contain the data needed to restart the run
from the last restart cycle.  If execution is not terminated
prematurely, then the hydraulic conditions existing at the end
of the run would be punched onto a card deck before HYDEX
was called.  The rewind command in HYDEX will ready Unit 4
for storing the hydraulic parameters used by the quality
program.
               2.2.4  DYNHYD SIGN CONVENTIONS
     There are two different sign conventions used in the
hydraulic model.  The convention used in reference to junctions
describes flow into or out of a junction.  Specifically,
negative values are assigned to any flow entering a junction,
whila positive values indicate flow leaving a junction (see
Figure 2.7).  This convention applies regardless of the
source of the flow.  Inflow from a waste discharge and from
and adjacent junction are treated in the same manner.
     For channels, signs indicate the direction of flow and
velocity.  When the flow is from the end of the channel
having the lower of the two junction numbers (NJUNC(N,D)
toward the end with the higher (NJUNC(N,2)), it is assigned
a positive value.  Flow is considered negative when travelling
from the end of the channel with the higher of the two
junction numbers toward the end with the lower (see Figure 2.7),
     The channel flows are outputted using the junction sign
convention  so that the user can see if water flows into or
out of a particular junction.  The channel flow arid velocity
signs are converted to junction sign convention strictly
for convenience in interpreting the output.  To interpret

-------
         -  58  -
FIGURE 2.7  DYNHYD SIGN CONVENTIONS

-------
                            -  59  -
the direction of channel flow, it is necessary to know
the configuration of channels and junctions, i.e. which
junction is at each end of a channel.  This information can
be found in the Channel Data table at the beginning of the
DYNHYD output.
                  2.2.5  INPUT REQUIREMENTS
     The input requirements for the hydraulic program can
vary tremendously, depending on the uniqueness of the conditions
to be simulated.  In any case, the data requirements for the
initial application of the model to a system are considerable.
PHYSICAL PARAMETERS OF THE PROTOTYPE
     As discussed earlier, the channels and junctions of the
model network must be described by certain physical parameters.
     Channel Parameters:  Length, width, depth, surface area,
                          roughness, cross-sectional area
     Junction Parameters:  head, volume
     For all runs subsequent to the initial run, the input
data requirements are greatly reduced.  Many of the physical
parameters such as channel lengths and widths and the surface
area of each junction remain .constant during execution
and, therefore, do not vary between runs.  Similarly the
network layout and numbering systems generally remain constant.
Only if physical changes in the prototype (real or proposed)
are to be modeled is it necessary to change the model
network.
MANNING'S ROUGHNESS COEFFICIENT
     As mentioned earlier, the roughness coefficient
(Manning's n) acts as a "tuning knob" for the hydraulic
model.  Unfortunately, there is no exact method for defining
the value of n, and one must rely on literature values,
sound engineering judgement, and personal experience to
estimate its value.

-------
                            - 60 -
     The value of n is highly variable and depends on the
following factors:  surface roughness, vegetation, channel
irregularities in cross-section or shape, obstructions, silting
and scouring, stage, and discharge [10].  Before attempting
to estimate nt Chow [10] recommends that one attempts to
(1) understand the factors which affect the value of n so as
to narrow the range of guesswork, (2) consult the literature
for representative values, and (3) examine and become
acquainted with channels whose roughness coefficients are known.
     There are some methods which have been suggested  for
the computation of n.  Cowan [11] has proposed an empirical
procedure v/hich includes several of the factors that influence n,
Two other methods, based on the theoretical velocity distribution
in a rough channel, have also been proposed.  The first
method uses the observed vertical velocity distribution and is.
described by Boyer [12] and Langbien [13].  The second uses a
"roughness function" to determine n and is described by Einstein
and Barbarossa [14].  Davidson, et.al. [15] outline a numerical
technique which determines the best - distributed values of n
based on observed tidal heights.
     When calibrating the hydraulic model, changing the
value of n in one channel will affect the upstream channels in
one way and the downstream channels in another.  Increasing n
causes more energy to be dissipated in that channel.  As a result,
the height of the tidal wave will decrease and the time of travel
through the channel will increase.  Lowering n decreases the
resistance to flow, i.e. less energy is dissipated.  This results
in a higher tidal wave and a shorter time of travel.  In
generals the value of n will increase as one moves up the
estuary since channels become more constricted.

-------
                           - 61 -
INITIAL CONDITIONS
     The most demanding of these inputs are the channel
cross-sectional areas and the junction heads.  The specified
junction heads establish the water surface elevation throughout
the network and correspond to those areas.  The heads throughout
the system are referenced to a common, horizontal  datum, such
as mean sea level.  Channel depths can usually be obtained
with sufficient accuracy from the soundings printed on
navigation charts published by the Coast and Geodetic
Survey.  Unfortunately, however, these soundings are normally
representative of a mean low water condition at the point of
the sounding and are not referenced to a common datum.  It
is therefore necessary to establish the relationship selected
for the model. Such relationships may be available for
certain points in the system, such as at tidal stage recorders
or at other points where tidal predictions are made.  River
bed profiles may also be available from which such relationships
could be determined.  Once the relationships between the junction
heads and channel cross-sectional areas have been properly
established for a given (System, they should never have to be
reestablished because the model program maintains the proper
relationship at all times during execution.  It is usually
most expeditious to specify a constant value for each of the
junction heads (assumes a horizontal water surface) in preparing
the data for the first time and then adjust the channel  depths
(and cross-sectional areas) accordingly.  While it might be
desirable, in order to save computation time, to sepcify the
initial heads at each function in such a manner that the water
surface profile is more representative of one which acitually
occurs in the prototype, such an effort is probably not
warranted.  Unless extensive tide data is available to establish

-------
                            - 62 -
the water surface elevation at many points in the system
for a given instant in time, a great deal  of interpolation
between points will be required.  It is doubtful  whether the
execution time saved by such a procedure warrants the additional
effort involved.
     A similar argument holds for the specification of the
initial velocity in each channel.  Normally, data in sufficient
quantity will not be available to establish a detailed
velocity pattern for the entire system at a given instant
in time.  Therefore, a constant initial velocity (such as
zero) is assumed throughout the system.  Thus, for the initial
run on a new system, the total mass of water might initially
be assumed to be at rest with a horizontal water surface.
As the solution progresses it will converge to the appropriate
dynamic steady state condition wherein the head at each junction
and the velocity and flow in each channel  are repeated with a
frequency equal to the period of the specified tide.  Normally,
four complete tidal cycles will be sufficient to reach a
steady state condition.  If relatively accurate initial
conditions are specified, fewer tidal cycles are needed.
TIDAL CONDITIONS
     The tidal conditions at the seaward boundary are
described by a set of regression coefficients.  These
coefficiants are derived for any tidal condition by program
REGAN (see Section 2.1).
ACCRETIONS / DEPLETIONS
     The accretions or depletions at each junction in the
system must by specified for each run.  Although not
programmed for the version of the hydraulic model contained in
this report, it would be relatively simple to input accretions/
depletions which vary with time.

-------
                           - 63 -
CONTROL DATA
     Control data is usually unique for each run and may
need to be respecified.
                    2.2.6  OUTPUT OPTIONS
     The hydraulic program can provide three types of output:
printed output, output stored on magnetic tape or disk, or
punched output in the form of a restart deck.
Printed output:  Printed output can occur in the MAIN
program, Subroutine HYDEX, and Subroutine RESTRT.
     In the MAIN program, printed output is controlled by
four parameters:  IPRINT, INTRVL, flOPRT, and JPRT(I) ,
where I * "\,NOPRT.  Printout begins at cycle IPRINT and
will occur every INTRVL cycles thereafter for NOPRT
specified junctions.  JPRT(I) identifies the numbers of the
junctions for which output is printed.  The output for a
junction consists of the head at that junction and the flow
and velocity for each channel entering that junction.
     In Subroutine HYDEX, tables summarizing the data used
to create the "hydraulic extract tape"  (i.e. tables which
summarize the last full tidal cycle of data) are printed.
The parameters printed are the (1) net flow in each channel,
(2) minimum and maximum junction heads and the cycle of
their occurence,  (3) the average junction head,  (4) the range
of junction heads, (5) minimum, maximum, and average
channel velocities, (6) minimum, maximum, and average channel
flows, and  (7) minimum, maximum, and average channel cross-
sectional areas.
     The printout from HYDEX can be very useful when the model
is being applied to a new prototype.  The net flow in a channel
is helpful  in determining whether or not a steady-state
solution has been reached.  When the solution has converged to
steady-state, the net  flow in a  channel should be equal to

-------
                           - 64 -
the algebraic sum of the flows specified above that channel.
The summaries of junction heads and channel  velocities are
useful when calibrating the hydraulic model  because they
can be compared to observed tidal elevations and velocities
in the prototype.
     In Subroutine RESTRT, tables indicating the restart
data are printed.  These tables contain the junction heads,
surface areas, inflows and the channel lengths, widths,
depths, cross-sectional areas, roughness coefficient, and
velocity existing at the restart cycle (PUNCYC).
Magnetic Tape/Disk Output:  Output on Tape or .Disk can be
obtained in either Subroutine RESTRT or HYDEX.
     If execution should terminate prematurely, Subroutine
RESTRT will retain a record of the system conditions at the
last restart cycle (PUNCYC) on Unit 4.
     If Subroutine HYDEX is called, a permanent record is
made on Unit 4 of the hydraulic parameters needed as input
for the quality program (heads, flows, and velocities).
Punched Output:  Punched output occurs in Subroutine RESTRT
     When Subroutine RESTRT is called, the channel and
junction parameters for the final hydraulic cycle can be
punched onto a card deck.  The format of the deck is such
that it can be used as input for a different hydraulic run.
        2.2.7  POTENTIAL IMPLEMENTATION DIFFICULTIES
PREMATURE TERMINATION
     Before the main computation loop is entered, the hydraulic
program checks the compatability of the channel and junction
numbering systems.  If any discrepancies are found, the
program will terminate.
UNSTABLE SOLUTION
     Execution of the hydraulic program is terminated if the
velocity in any channel exceeds 20 fps, indicating an

-------
                           - 65 -
unstable (diverging) solution.  This problem generally arises
most frequently during the initial applications of the model
to a new system.  It can arise, however, even after many successful
previous applications, particularly if the hydraulic conditions
are significantly different from any previously considered.
     An unstable solution usually results from one or more
of the following conditions:  (1) one or more inputs have
been improperly specified (keypunching error, etc.),
(2) the stability criterion is violated for a certain channel
(indicating the channel length should be increased or the
time step decreased), (3) a junction surface area is not
properly represented (occurs frequently at dead end channels),
or (4) a junction volume is not properly represented (occurs
either at dead end channels or in areas such as tidal flats
where the depth at low tide may be zero).  Under such
conditions, unrealistic hydraulic gradients can be created
which result in excessive velocities.
     The instability can usually be eliminated at dead end
channels by increasing the surface area of the end junction
somewhat above that indicated on published maps or charts.
This tends to eliminate wave reflection caused by the abrupt
channel ending.  There may be little, if any, wave reflections
in the prototype since a real channel rarely ends as abruptly
as represented by the model network.
     Similarly, in areas such as tidal fia-fe, where the
depth at low tide may reach zero, the instability can
normally be corrected by increasing the depths of the peripheral
channels slightly.,  As programmed, the model does not
adjust the water surface area of a junction as the water
rises and falls.  There is also no provision for allowing a
junction to "run dry" (reach zero depth).  However, the
model network parameters in these areas may by specified  to

-------
                            -  66  -
compensate for these shortcomings.  The channel  depths and
the surface area assigned to the junctions are representative
of the mean tide level such that the junction volumes
are slightly over-represented at low tide and under-represented
at high tide.
STORAGE
     For systems represented by a network with a large
number of junctions and channels, the length of the record
to be stored on Unit 10 may exceed the maximum limit for
a magnetic tape, i.e., the tape may be completely filled.
For such cases it may be necessary to reprogram the hydraulic
program and Subroutine HYDEX to accommodate two tapes rather
than one.  The reprogramming effort is largely tied to the
specification of the starting and stopping points on each
tape.'

-------
2.2.8.  DYNHYD DATA DECK SEQUENCE
CARD
1
2

3




4


5



6

7

8

VARIABLE
ALPHA(J)
HEADER

NO
NC
NCYC
DELT
TZERO
IPRINT
INTRVL
NOPRT
JPRT(l)
JPRT(2)
•
•
I TAPE
HYDEXT
PUNCYC
INTPUN
HEADER

COLUMNS
1-80
1-80

1-5
6-10
11-15
16-20
21-25
1-5
6-10
11-15
1-5
6-10
•
•
1-5
6-10
1-5
6-10
1-80

FORMAT
20A4
20A4

15
15
15
F5.0
F5.0
15
15
15
15
15
•
*
15
15
15
15
20A4

COMMENTS
2 cards - Identifies the run.
Indicates that Control Data
follows.







«.
Repeat until NOPRT values
are read (read NOPRT/ 16 of
these).





Indicates that Junction Date
follows.
             -  67  -

-------
- 68 -
CARD
9






10

11








12

13
VARIABLE
JJ
Y(J)
AREAS(J)
QIN(J)
NCHAN(J.l)
NCHAN(J,2)
•
•
•
NCHAN(-J,5)
HEADER

NN
CLEN(N)
B(N)
AREA(N)
R(N)
(N(N)
V(N)
NJUNC(N.l)
NJUNC(N,2)
HEADER

NK
COLUMNS '
1-5
6-15
16-25
26-35
36-40
41-45
•
•
56-60
1-80

1-5
6-13
14-21
22-30
31-37
38-45
46-53
54-58
59-63
1-80

1-5
FORMAT,
15
F10.0
F10.0
F10.0
15
15
•
•
•
15
20A4

15
F8.0
F8.0
F9.0
F7.0
F8.0
F8.0
15
15
20A4

15
'" , COMMENTS ' :', ;
Read NJ of these cards.






Indicates that Channel Data
follows.









Indicates that Seaward Boundary
data follows.
























-------
- 69 -
CARD
14



15*

16*
17*




VARIABLE
PERIOD
A1(D
Al(2)
Al(NK)
HEADER

ALPHA(I)
NODYN




COLUMNS
1-10
11-20
21-30
•
1-80

1-80
1-5




FORMAT
110
F10.0
F10.0
F10.0
20A4

20A4
15




COMMENTS




Indicates that HYDEX Data
follows.
2 cards - Identifies run.

* Cards 15, 16, and 17 are
read only if Subroutine
HYDEX is called (i.e.
HYDEXT » 1 ) .

-------
                           - 70 -
               2.2.9  DYNHYD VARIABLE DEFINITIONS
     The following pages contain definitions for the major
variables in DYNHYD.  Variables are listed in alphabetical
order.  Variables in italics are read from the input data
deck.

-------
VARIABLE
Aid)

AK(N)

AKT
AKT2
ALPHA (I)

ARAVG(N)
AREA(N)


AREAS(J)


AREAT(N)
ARMAX(N)
ARMIN(N)
B(N)


SUBROUTINE
MAIN

MAIN
HYDEX
MAIN
MAIN
MAIN
HYDEX
HYDEX
MAIN
HYDEX
RESTRT
MAIN
HYDEX
RESTRT
MAIN
HYDEX
HYDEX
MAIN
HYDEX
RESTRT
DEFINITION
Coefficients for tidal input (head) at seaward boundary obtained
from program REGAN. (I = 1,NK)
Frictional coefficient for channel N.

Frictional coefficient during full step computation.
Frictional coefficient during half step computation.
Alphanumeric identifier printed as part of output. (I = 1,80)

Mean cross sectional area of channel N over full tidal cycle.
Cross sectional area of channel N. Corresponds to the head
specified at junctions at ends of the channel.

Surface area of junction J


Cross sectional area of channel N during a half time step.
Maximum cross sectional area of channel N over full tidal cycle.
Minimum cross sectional area of channel N over full tidal cycle.
Width of channel N.


TYPE
R

R

R
R
R

R
R


R


R
R
R
R


UNITS








ft2
ft2


ft2


ft2
ft2
ft2
ft



-------
VARIABLE
CLEN(N)
CN(N)
DELT
DELTQ
DELT2
DVDX
FLOW
G
HEADER
HYDEXT
ICYC
SUBROUTINE
MAIN
HYDEX
RESTRT
MAIN
HYDEX
RESTRT
MAIN
HYDEX
HYDEX
MAIN
MAIN
MAIN
MAIN
MAIN
HYDEX
MAIN
MAIN
RESTRT
DEFINITION
Length of channel N.
Manning roughness coefficient for channel N.
Time interval used in solution.
Time step for the quality program (DELTQ = DELT * NODYN).
One half time step. (Equals DELT/2)
Defines velocity gradient (AU/AX) in a channel.
Discharge. Follows sign convention used for hydraulic printout.
Acceleration due to gravity (32.1739 ft/sec2).
Alphanumeric identifier for a subsection of the input card deck.
Control Option. If HYDEXT = 1, subroutine HYDEX is called to
create a summary hydraulic extract tape and summarize net flows.
If HYDEXT = 0, subroutine HYDEX is not called.
Cycle number (iteration) during execution of the quality program.
TYPE
R
R
R
R
R
R
R
R
R
I
I
UNITS
ft

sees
sees
sees

cfs
ft/sec2




-------
VARIABLE
ICYCTF
INTPUN
INTRVL
IPRINT
ITAPE
JPBT(I)
KTZERO
NC
NCHAN(J3K}
NCYC
NCYCC
NEXIT
SUBROUTINE
HYDEX
MAIN
RESTRT
MAIN
MAIN
MAIN
MAIN
RESTRT
MAIN
HYDEX
RESTRT
MAIN
HYDEX
RESTRT
MAIN
MAIN
HYDEX
MAIN
DEFINITION
Cycle number stored on unit 4.
Punch interval for restarting. Restart data is stored on Unit 4
at cycle PUNCYC, and at each INTPUN cycles thereafter.
Interval (in cycles) between printouts.
Printed output begins at this cycle, and each INTRVL cycles
thereafter.
Hydraulic parameters are stored on unit 10 beginning at this cycle.
Specified junctions for which printout is desired. (I = l.NOPRT).
Variable used temporarily to compute the appropriate value for
TZERO in case of restarting
Number of channels in model network.
Channel number of the K channel entering junction J. (K = 1,.5)
Total number of time steps (cycles to be executed).
Counter for the number of hydraulic cycles.
Counter to determine compatabi 1 i ty of channels and /junctions.
If NEXIT is greater than or equal to 1, execution is terminated.
TYPE
I
I
I
I
I
I
R
I
I
I
I
I
UNITS













-------
VARIABLE
NJ
NJUNC(NS1)
NJUNCCN, 2)
NK
NMAX(J)
NMIN(J)
NODYN
NOPRT
NS
NSTART
NSTOP
SUBROUTINE
MAIN
HYDEX
RESTRT
MAIN
HYDEX
RESTRT
MAIN
HYDEX
RESTRT
MAIN
HYDEX
HYDEX
HYDEX
MAIN
MAIN
HYDEX
HYDEX
DEFINITION
Number of junctions in the model network.
Lower of the two junction numbers at the ends of channel N.
Higher of the two junction numbers at the ends of channel N.
Number of coefficients used to specify tidal input. (NK usually
equals 7).
Hydraulic cycle number at which the maximum head at junction J
occurs.
Hydraulic cycle number at which the minimum head at junction J
occurs.
Number of hydraulic time steps per quality time step.
Number of junctions for which output is desired.
NK/2. Number of Sine (and Cosine) terms in relationship defining
tidal input.
Starting cycle on the hydraulic extract tape. (Unit 4).
Ending cycle on the hydraulic extract tape. (Unit 4).
TYPE
I
I
I
I
I
I
I
I
I
I

UNITS












-------
VARIABLE
PERIOD
PUNCYC
Q(N)
QEXT(N)
QIN(J)
QMAX(N)
QMIN(N)
QNET(N)
R(N)
RANGE(J)
SUMQ
T
SUBROUTINE
MAIN
HYDEX
RESTRT
MAIN
RESTRT
MAIN
HYDEX
HYDEX
MAIN
HYDEX
RESTRT
HYDEX
HYDEX
HYDEX
MAIN
HYDEX
RESTRT
HYDEX
MAIN
MAIN
DEFINITION
Period of the tidal input. PERIOD is read in as hours, but
transformed to seconds within the program.
RESTRT is called at cycle PUNCYC and every INTPUN cycles thereafter.
Flow in channel N.
Mean flow in channel N over each quality time step.
Inflow or withdraw! at junction J. Inflows must be specified as
negative numbers, while withdraw! s must be positive numbers
Maximum flow in channel N over full tidal cycle.
Minimum flow in channel N over full tidal cycle.
Net flow in channel N over full tidal cycle.
Hydraulic radius of channel N, taken as the channel depth.
The tidal range at junction J. RANGE(J) = YMAX(J) - YMIN(J).
Net flow into or out of a junction.
Total elapsed time. Initialized to equal TZERO and is incremented
by DELT at the start of each time step.
TYPE
R
I
R
R
R
R
R
R
R
R
R
R
UNITS


cfs
cfs
cfs
cfs
cfs
cfs
ft.
ft.



-------
VARIABLE
T2
TZERO
TZER02
V(N)
VEL
VEXT(N)
VMAX(N)
VMIN(N)
VT(N)
W
Y(J)
YAVG(N)
SUBROUTINE
MAIN
MAIN
RESTRT
MAIN
HYDEX
RESTRT
MAIN
HYDEX
HYDEX
HYDEX
MAIN
MAIN
MAIN
HYDEX
RESTRT
HYDEX
DEFINITION
Total elapsed time for one half step computations. T2 lags T
by DELT2.
Time at which computations begin, Allows starting point to be
anywhere on tidal cycle.
Variable used temporarily to compute the appropriate value for TZERO
in case of restarting.
Mean velocity in channel N.
Velocity. Follows sign convention used for hydraulic outputs.
Mean velocity in channel N over each quality time step.
Maximum velocity in channel N over tidal cycle. If flow reversal
occurs in channel N, VMAX(N) will be the maximum positive
velocity.
Minimum velocity in channel N over tidal cycle. If flow reversal
occurs in channel N, VMIN(N) will be the maximum negative velocity
Velocity in channel N during half time step.
2TT/PERIOD
Head at junction J.
Mean head at junction J over tidal cycle.
TYPE
R
R
R
R
R
R
R
R
R
R
R
R
UNITS




fps



fps

ft.
ft.

-------
VARIABLE
YMAX(N)
YMIN(N)
YNEW(N)

YT(J)
Unit 4


Unit 5

Unit 6


Unit 8
Unit 10


SUBROUTINE
HYDEX
HYDEX
HYDEX

MAIN
HYDEX
RESTRT

MAIN
HYDEX
MAIN
HYDEX
RESTRT
RESTRT
MAIN
HYDEX

DEFINITION
Maximum head at junction J over tidal cycle.
. Minimum head at junction J over tidal cycle.
New name for head at junction J to differentiate it from the head
at the same junction at another time step.
Head a junction J during one half time step.
Serves as restart device in case of premature termination of
execution. Otherwise, it is used as the hydraulic extract
tapes created to store data for input to the quality program.
Used for card input (card reader).

Used for printed output (printer).


Used for punched output (card punch).
Serves as a temporary record of the hydraulic solution. Pertinent
hydraulic parameters are stored for every channel and junction
for every cycle beyond ITAPE.
TYPE
R
R
R

R












UNITS
ft.
ft.
ft.

ft.



.








 I
•-J

-------
                             -  78 -


                 2.3  COMPUTER REQUIREMENTS
            2.3.1 IBM JOB CONTROL LAN6AUGE  (JCL)
The JCL used to execute program REGAN  is  as  follows

   //JOB CARD
   //EXEC FORTGCLG
   //FORT. SYS IN DD *
        program REGAN goes here
   //GO.FT06001 DD SYSOUT=A
   //GO. SYS IN DD *
        data deck goes here
   /*EOF

The JCL used to execute program DYNHYD is as follows

   //JOB CARD
   //STEP! EXEC PGM=DYNHYD
   //STEPLIB DD DISP=SHR,VOL=(PRIVATE, RETAIN, SER=REGNA3),
   //  UNIT=;5330-1,DSN=CNO_SO_M.LJC.CLARKLIB
//GO.FT0*»00] DD DCB=(RECFM=VS,LRECL=50A,BLKSIZE=50I»0,
II  DISP=(NEW, KEEP, KEEP) ,VOL=SER=USER99,UNIT=3330-1,
//  DSN=*CN.EPAXYZ.ACCT. DATA. SET. NAME
                             or
                                                              stores
                                                           stores
   //GO.FT04001 DD DCB=(RECFM=VS ,LRECL=50MLKSIZE=501»0) ,
   II  DISP=(NEW, KEEP, KEEP) ,VOL=SER=TAPE##,UNIT=2't00,
   //  DSN-LEOTAPE, LABEL- (##,SL,EXPDT-98000)
   //DD DSN=SYS2.FTG1LINK,DISP=SHR
   //GO . FT 1 0F00 1  DD DSN=SGHYDTA , DCB= (RECFM=VS , LRECL=501» , BLKS I ZE=501f0) ,
   //  DISP=(NEW,DELETE, DELETE), SPACE=(TRK, (40, *»0)) ,UNIT=SYSDA
   //GO.FT08F001  DD DUMMY
   //GO.FT06F001  DD SYSOUT=A
   //GO.FT05F001  DD *
        data deck here
  /*EOF

-------
                            - 79 -


        2.3.2  UNIVAC EXECUTIVE CONTROL LANGAUGE (ECL)
The ECL used to execute program REGAN is as follows
     @RUN CARD
     @PASSWORD
     @SYM
     @FTN,IS
        program REGAN goes here
     @MAP,I
     LIB FTN*RLIB
     @XQT
        data deck goes here
     @FIN

The ECL used to execute program DYNHYD is as follows
     @RUN CARD
     @PASSWORD
     @SYM
     @ASG,A  USERID*PGMFILE.
     @COPY,A  USERID*PGMFILE.DYNHYD
     @FREE  USERID*PGMFILE.
     §ASG,T  USERID*TEMPFILE
     @USE  10.,USERID*TEMPFILE
     @ASG,CP  USERID*1500CFS
     @USE  ^t.,USERID*1500CFS
     eXOJ  DYNHYD
        data deck goes here
     @FIN

-------
                             - 80 -
                    2.3.3  EXECUTION TIMES
     The time required to execute the hydraulic program is
dependent on the computer used, the network size, the computational
time step, and the length of the run.  Typical execution times
for DYNHYD are given in Table 2.1 below.  DYNHYD requires
approximately 130K of storage for execution.
Junctions
112
112
112
129
133
247
830
133
Channels
170
170
170
131
139
306
1050
139
Time
Step
(sees)
50
50
50
90
90
75
100
90
Length
of run
(hrs)
37.5
50.0
25.0
50.0
25
12.5
25
50
Execution
Time
(mins)
5
8
8
1.3
.8
4
12
2.4
Computer
CDC 6600
CDC 6600
IBM 360/65
IBM 370/168
IBM 370/168
CDC 6600
CDC 6600
UNIVAC 1100
                       TABLE 2.1  DYNHYD EXECUTION TIMES

-------
                           - 81 -


                          CHAPTER 3
     IMPLEMENTATION OF THE WATER QUALITY MODEL - DYNQUAL
                   3.1  THE "MAIN" PROGRAM

     As mentioned previously, the water quality program (DYNQUAL)
uses data created by the hydraulic program as input.  Figure 3.1
shows the relationships between the hydraulic and the quality
programs and subroutines.
     Figures 3.2 and 3.3 are flowcharts depicting the sequence
of steps for the MAIN program of DYNQUAL.  A brief description
of the program logic is as follows:
STEP 1 - READ SYSTEM INFORMATION FROM HYDRAULIC TAPE
     Alphanumeric data is read which identifies: the purpose
of the run (ALPHA (D), the network size (NJ and NO, the
starting (NSTART) and ending (NSTOP) cycles on the hydraulic
extract tape (Unit 4) created by the hydraulic program, and
the number of hydraulic time steps per quality time step (NODYN).
The hydraulic extract tape (Unit 4) is then read and copied
onto a scratch disk (Unit 3) for use by the quality program.
STEP 2 - READ INDEPENDENT CONTROL DATA
     Alphanumeric data is read which defines:  (1) control
parameters such as the hydraulic cycle at which the quality
program is to begin reading the hydraulic data (HYDCYC), length
of quality run (NQCYC), the number of quality cycles per
tidal period (NSPEC), the number of constituents to be modeled
(NUMCON), the temperature (TEMP), and other control options,
(2) tabular output control parameters specifying the types
of tables and the cycles at which they occur, and (3) plotting
output control parameters specifying the types of plots to be
printed.  A table summarizing many of these control parameters

-------
              - 82 -
             REGAN
RESTRT
             DYNHYD
             DYNQUAL
HYDEx)
MIXERJ
            (SUMARY)  (SWTABL}
            (SUMPLT)  (SWPLOTJ
            •(CURVED
            (SCALE)
FIGURE 3.1 PROGRAM AND SUBROUTINE LINKAGES OF THE DEM

-------
                          -  83  -
   'READ &
   STORE
  HYDRAULICS
f   READ
  INDEPENDENT
 CONTROL DATA
   PRINT
    RATE
 SUMMARY
PRINT
NUTRIENT
SUMMARY 	
^J^
T YES

\
                                        —  see  Figure  3.3
                             INITIALIZE
                             VOLUMES &
                              MASSES
                             SEAWARD
                             BOUNDARY
                            CONDITIONS
RATE
TRANSFORMS


•
READ
WASTEWATER
INPUTS
   FIGURE  3.2  FLOWCHART  OF THE MAIN  PROGRAM  IN  DYNQUAL

-------
                    -  84 -
                                  DOES -X^ YES ,
                                ICVONQCYC ->—*{ tin LOOP
FIGURE 3.3  FLOWCHART OF THE MAIN QUALITY LOOP

-------
                           - 85 -


will be printed in Step 6.  If any plots are to be outputted,
the maximum (YMAXC (K)) and minimum (YMINC (K)) values for
constituent K on the y-axis (ordinate) and the points along
the x-axis (abscissa) corresponding to the network junctions
(RMNODE (J))  are specified.
STEP 3 - INITIALIZE VARIABLES
     Initial  values required for certain variables (e.g. counters)
are set.  At this point, the junction numbers at each end
of a channel  are checked to insure that NJUNC (N3l) refers to
the lower junction number for channel N and that NJUNC (N32)
refers to the higher junction number (at the other end of
channel N).
     If slack water tables are desired. Subroutine SWTABL
(see Section 3.4) is called to initialize the parameters
internal to this subroutine.
STEP 4 - READ QUALITY COEFFICIENTS
     Alphanumeric data is read for each constituent which
describes the constituent name (CNAME), its minimum and
maximum  concentrations (BACKC and CLIMIT), and its temperature
correction coefficient (TEETA).
STEP 5 - READ DISSOLVED OXYGEN (CONSTITUENT 6) PARAMETERS
     Alphanumeric data is read which defines the time of sunrise
(TSRISE), time of sunset (TSSET), photosynthesis rates (PHOT),
respiration rates (RES),, photic depths (DEPTH), benthic
demand rates (BENT), and reaeration coefficients (A3  W,  X)
throughout the estuary.
STEP 6 - PRINT CONTROL DATA
     A table is printed listing  several of the parameters inputted
in steps 1 through 5.

-------
                           -  86  -


STEP 7 - COMPUTE DIFFUSION COEFFICIENTS
     The constant (CDIFFK) used to compute the diffusion
coefficients CDIFFK) throughout the estuary are read a.nd the
diffusion coefficients for each channel are determined.  (See
Section 3.2).
STEP 8 - PRINT NETWORK AND HYDRAULIC PARAMETERS
     A table summarizing the hydraulic parameters stored on
the hydraulic extract tape is printed.  The diffusion constants
(CDIFFK) -for each channel are also printed.
STEP 9 - READ REACTION RATES
     Alphanumeric data is read which defines the characteristics
and linkages of the quality constituents.  (A more detailed
discussion of constituent linkages is found in Section 3.8).
Tables summarizing these parameters are printed.
STEP 10 - RATE TRANSFORMATIONS
     The inputted rates are adjusted so that they (1) correspond
to a quality time step (2) correspond to the assumed temperature,
and (3) determine the amount of material decayed or regenerated
during a time step instead of the amount of material remaining
after a time step.
STEP 11 - WASTEWATER INPUTS
     Alphanumeric data is read which specifies (1) the number
of constant waste inputs (MASTC) , i.e. an input whose flow
rate and concentrations are constant, (2) the number of
variable waste inputs (NWASTV) , i.e. an input whose flow
rate and/or concentrations vary with time, and a description
of how the flows and concentrations vary, and (3) the number
of variable bank load inputs (NBANK) , i.e. a load from a
junction shoreline (e.g. runoff),  the length of each junction's

-------
                            -  87 -
shoreline, the junctions receiving the variable bank loads,
and a description of how the flows and concentrations
vary over time.  Tables summarizing the above inputs are
printed.
STEP 12 - UPPER BOUNDARY CONDITIONS
     Data is read which describes how the flows and constituent
concentrations at the upper boundary  of the model network
vary with time.  A table summarizing this data is printed.
STEP 13 - INITIAL CONDITIONS
     The initial concentration for every constituent in every
junction is specified.  A table summarizing this data is
printed.
STEP 14 - SEAWARD BOUNDARY CONDITIONS
     Data is read which describes how the concentration of
every constituent varies over a tidal cycle at the seaward
boundary.  A table summarizing this data is printed.
STEP 15 - INITIALIZE VOLUMES AND MASSES
     The mean volume of each junction (corresponding to zero
head) is computed based on the average depth computed in the
hydraulic run.  Unit 3 is aligned at the hydraulic cycle
at which the quality run begins (HYDCYC) and the junction heads
are read.  The mean junction volumes are then adjusted to the
new heads in order to establish the junction volumes at the
start of the quality run.
     The initial mass of every constituent in every junction
is computed.  The diffusion constant of every channel and the
volume of all inflows/outflows at each junction over a quality
time step are computed.

-------
                           - 88 -
STEP 16 - MAIN QUALITY LOOP
     This loop is executed for every cycle of the quality
program.  First the "clock time" (CTIME) is incremented by a
quality time step (DELTQl).  Next, the hydraulic parameters
(flows, velocities, and heads) for the current cycle are read
from Unit 3.  If the last hydraulic cycle read was the last
hydraulic cycle stored on Unit 3, then Unit 3 is rewound.
     Subroutine MIXER (Section 3.2) is called to determine
the mass of each constituent transferred between junctions by
advectiorc and diffusion.
     The reaction rates defined in Step 9 are applied to their
respective constituents in every junction.
     Constant waste, variable waste, variable bank, and upper
boundary loads are added to the appropriate junctions.
     Junction volumes are adjusted to the start of the next
time step and new constituent concentrations are computed
by dividing the mass of each constituent in a junction by the
junction volume.  If the predicted concentration of constituent
K is less than the minimum allowable concentration (BACKC(K)),
the constituent concentration is set equal to BAGKC(K) and
the corresponding mass is specified for the junction.  If
KDCOP=lt a statement that the adjustment was made will be
printed.  If the predicted concentration exceeds the maximum
allowable concentration (CLIMIT(K))^ execution is terminated.
     A special analysis is made of constituent 6 (dissolved
oxygen for the version herein).  The minimum (DOMIN(J)) and
maximum (DOMAX(J)) concentrations, as well as the cycles of
their occurrence (MINCYC(J) and MAXCYC(J))-, the average
concentrations(DOAVG(J}); and the numbed of cycles in which
the concentration is below 4.0 mg/1 (DOLT4[J))t between
4.0 mg/1 and 5.0 mg/1 (D04T05(J)), and above 5.0 mg/1
(DOGTS(J)) are computed for every junction.  This analysis

-------
                           -  89  -
starts at cycle NDOCYC and continues until the end of the
quality run.
     A check is made to determine if observed data (OBVATA(I,J3K)),
which will appear on certain plots, is to be read at the
present cycle.
     A check is made to determine if any time history plots
are to be printed.  If so, the constituent concentrations for
the appropriate junctions are stored on Unit 11.
     A check is made to determine if subroutine SUMARY
(Section 3.3) is to be called to compute a summary of the
predicted concentrations for a specified period.
     A check is made to determine if subroutine SWTABL     ,
(Section 3.4) is to be called to output the current concentrations
in a slack water table.
STEP 17 - EXIT LOOP
     After  NQCIC cycles have been completed, the Main Quality
Loop is left.  A table summarizing the constituent 6 analysis
is printed.  If WEAC = 3 (i.e. if both constituent 1 and
constituent 3 are considered in determining the growth of
constituent 4), a table summarizing the number of cycles for
which each constituent limited growth is printed.
     A check is made to determine if subroutine TPLOT (Section 3.6)
is to be called to output time plots
                    3.2  SUBROUTINE MIXER
     This subroutine computes the amount of mass transferred
between junctions due to the processes of advection and diffusion.
For every channel in the system, the advected and diffused
masses are computed and are transferred from the junction at
one end of the channel to the junction at the opposite end of
the channel.  A simplified flowchart depicting the sequence of
steps in MIXER is shown in Figure 3.4.  The logic of the subroutine
is as follows:

-------
                          -  90 -
  UPSTREAM
CONCENTRATION
         •  FIGURE 3.4   FLOWCHART OF  SUBROUTINE  MIXER

-------
                            - 91 -
STEP 1 - COMPUTE CHANNEL PARAMETERS
     The volume of fluid transported through a channel during
a time step (VOLFLW) is computed.  The channel diffusion
coefficient (DIFFC) is also calculated.
STEP 2 - COMPUTE CONSTITUENT PARAMETERS
     The variable CA is defined as the concentration in the
junction with the lov/er junction number (NJUNC(N31)).
Variable CB is defined as the concentration in the junction at
the opposite end of the channel (NJUNC(N}2).
STEP 3 - COMPUTE ADVECTED MASS
     The concentration of the constituent in the water being
advected (CONC) can be determined several ways.  The variable
MIX defines the method used to compute CQNC, where:
                  1  -  use upstream concentration
                  2  -  use 1/2 point method
         MIX  =   3  -  use 1/3 point method
                  4  -  use 1/4 point method
                  5  ~  use 2-way proportional method
     The mass of constituent transferred by advection is found
by multiplying the volume of fluid advected (VOLFLW) by the
concentration in the advected fliud (CONC)l
STEP 4 - COMPUTE DIFFUSED MASS
     The mass of constituent transferred by diffusion is
computed by multiplying the concentration gradient (CA - CB)
by the diffusion coefficient (DIFFK).
STEP 5 - TRANSFER ADVECTED AND DIFFUSED MASSES
     The direction of the transfer of mass  by advection is
dependent on the direction of flow in the  channel.   Flow in
a channel will usually be leaving one junction and entering
another.  The advected mass is subtracted  from the junction

-------
                            -  92  -
In which the flow is leaving and is added to the junction in
which the flow is entering.
     The transfer of mass by diffusion is dependent on the
concentration gradient.  Mass will move from the junction
with the higher concentration to the junction with the lower
concentration.  In other words, the diffused mass is subtracted
from the junction with the higher concentration and added
to .the junction with the lower concentration.
                  3.3  SUBROUTINE SUMARY
     This subroutine prints out the minimum, maximum and
average constituent concentrations predicted during specified
time intervals.  In order to allow summary periods which
overlap0 SUMARY can compute a "Type 1" summary and a "Type 2"
summary,,  Type 1 summaries can overlap Type 2 summaries
(and vice versa), otherwise, they are identical.  A flowchart
depicting the logic of SUMARY is shown in Figure 3.5.
A description of the program logic is as follows:
STEP 1 - DETERMINE TYPE OF SUMMARY
     A check is made to determine which type of summary (Type
1 or Type 2) is desired.  If NUM ="1, a Type 1 summary is
desired.  If NUM = 2, a Type 2 summary is desired.
STEP 2 - INITIALIZE
     If the current cycle is the first cycle of the summary
perfod (IP), the minimum, maximum, and average concentrations
for each junction are set equal to the current junction
concentrations.  If not, Step 3 is executed.
STEP 3 - DETERMINE MINIMUM, MAXIMUM, AND AVERAGE CONCENTRATIONS
     Fcr every cycle within the summary period, checks are
made to determine the minimum, maximum, and average concentrations
during the period.

-------
                  -  93 -
          TYPE 1
TYPE 2
        COMPUTE
      MIN MAX AVG
     CONCENTRATION
       FILL X & Y
      ARRAYS WITH
      PLOTTING DATA
     (CALL SUMPLT)
     C  RETURN   J
FIGURE 3.5   FLOWCHART  OF SUBROUTINE SUMARY

-------
                           - 94 -
STEP 4 - OUTPUT SUMMARY TABLE
     After the last cycle of the summary period (LP), .a table
containing the starting and ending cycle of the summary period
and the minimum, maximum, and average concentrations  for
each constituent in every junction is printed.
STEP 5 - CHECK FOR PLOT OF SUMMARY TABLE
     A check is made to determine whether or not a plot of
the current summary table is desired.  If a plot is desired
(PLT = V , arrays of the data (FGQXA(NPP) and FGQXO(NPP,LPP))
are set up for use by Subroutine SUMPLT (Section 3.5) to
create the plots.  Control then returns to the MAIN program. ,.
                                                             :\
                  3.4  SUBROUTINE "SWTABL"
     This subroutine sets up slack water output tables for
specified time periods and prints the corresponding
constituent concentrations.  Slack water at a particular
location -5s defined as the time at which the tidal velocity
equals zero (see Figure 3.6).  Slack water occurs twice
during a. tidal cycle, once following the flood tide (high
water slack) and once following the ebb tide (low water slack).
Slack water output consists of the predicted concentrations
at a junction when it is at slack water.  Slack water
occurs at different times along an estuary, beginning at
the seaward boundary and moving upstream in a manner similar
to the tidal wave itself.  Consequently, slack water predictions
for the upper boundary occur many quality cycles after slack
water predictions for the lower boundary.  A flowchart
depicting the logic of SWTABL is shown in Figure 3.7.  A
description of the program logic is as follows:

-------
                      - 95 -
                  High Water
                 Head  (elevation above a  datum)
                 Velocity
FIGURE 3.6  LOCATION OF HIGH & LOW WATER SLACKS

-------
                -  96 -
          I CYC
ICYC > 0
                                      FILL X & Y
                                     ARRAYS WITH
                                    PLOTTING DATA
FIGURE  3.7  FLOWCHART OF SUBROUTINE SWTABL

-------
                           - 97 -
STEP 1 - CHECK FOR SET-UP OR OUTPUT OF TABLES
     SWTABL is actually called at two points in the quality
program.  First, it is called during the initialization
portion of the MAIN program.  Here, it determines  the type of
tables (high water slack (HWS), low water slack (LWS), or snapshot)
and their corresponding parameters (the junctions  to be
printed and when).  To do this, the model  junctions are
divided into several groups, each of which is at slack
water at approximately the same time.  This grouping can
be accomplished by studying detailed hydraulic outputs and
determining when and where the velocities  in the estuary  are
zero.  If the junctions were divided into  ten groups, then
slack water would occur at the junctions in group  1 first,
say at cycle J.  Slack water would occur at the junctions
in group 2 one cycle later (i.e. at cycle  0 + 1),  at the
junctions in group 3 two cycles later (cycle J + 2), etc.
The junctions within the groups vary, depending on whether
a HWS, LWS, or snapshot table is desired.   This is due to
the differences between high and low water slack conditions.
The variables NSWCIC, NOPRTd), and. JPRT(I>N) describe
a slack water table.  NSWCYC is the difference in  time (in
cycles) between the occurence of slack water at the upper
and lower boundaries,  NOPRT(I) is the number of junctions
in the Ith group, and JPRT(IfN) is the number of the Nth
junction in group I.  A snapshot table is  not a slack water
table in the true sense of the term.  Rather, it divides
the junctions into only one group and outputs the concentrations
for all the junctions in the group at one specified cycle,
hence the term "snapshot".  SWTABL is called again during the
main computational loop in the MAIN program.  Here, it
outputs the tables as they were set up earlier.  The output
is obtained by sequentially printing the predicted
concentrations for the junctions within each group.  Hence,

-------
                           -  98  -
if group I was at slack water during cycle J, then the
concentrations for the junctions within group I are printed
at cycle J, the concentrations for the junctions within
group I + 1 are printed at cycle J + 1, and so on.
STEP 2 •• CHECK FOR PLOT
     A check is made to determine whether or not a plot of
the current slack water table is desired.  If KPLOT(M) = 0,
a plot is not desired, and control returns to the MAIN
program (See Section 3.10 for plotting options.).  If so,
the predicted concentrations are stored in arrays (FGSWA(NPP)
and FGSWO(NPP,LPP)) until the slack water table is completed,
at which point subroutine SWPLOT is called to produce the
plot.  Control then returns to the MAIN program.
             3.5  SUBROUTINES SUMPLT AND SWPLOT
     These subroutines link the tabular output subroutines
(SUMARY and SWTABL) to the generalized printer plot
routines (CURVE, PLOT, and SCALE).  A flowchart  depicting
the logic of SUMPLT and SWPLOT is shown in Figure 3.8.
Both subroutines follow the same sequence of steps:
STEP 1 - SET LABELS ON SIDE AND BOTTOM AXES
     The labels (e.g. "Miles Below Chain Bridge") on the
x-axis (BOTTOM(D) and the labels (e.g. "Constituent") on
the y-e.xis are set.
STEP 2 - THE X AND Y ARRAYS ARE CREATED
     These arrays are created using the arrays (of predicted
concentrations) set up in SUMPLT (or SWPLOT) and will be
used in the plotting routines to generate the plots.
STEP 3 - SET SIDE LABELS FOR CONSTITUENT
     The constituent number for each plot is added to the
y-axis label (e.g. "Constituent" becomes "Constituent 1"

-------
                      -  99  -
                    SET  LABELS
                        ON
                    X-Y  AXES
                     FILL  UP
                    X & Y  ARRAY
                     WITH  DATA
                   SET LABEL FOR
                    CONSTITUENT
                      NUMBER
                 j   CHECK FOR
                 I    OVERLAY
                     (SWPLOT)
                           ~
                        r
                     WRITE
                  •TITLE ON
                    UNIT 22
 (
                   CALL CURVE
                           YES
C
                      RETURN
                                      NO
FIGURE 3.8  FLOWCHART OF SUBROUTINES SUMPLT & SWPLOT

-------
                           - 100 -
or "Constituent 2", etc.)
STEP 4 •- WRITE OUT TITLE
     A title indicating the type of plot and the cycle(s)
to which it applies is written on Unit 22.
STEP 5 - CALL CURVE TO PRODUCE THE PLOT
     Subroutine CURVE is called and the plot is produced
on Unit ?2.  The printer plot will be outputted at the end
of the MAIN computational loop.
                    3.6  SUBROUTINE TPLOT
     This subroutine, called by the MAIN program, is linked
to the generalized printed - plot subroutines (CURVE, PPLOT,
and SCALE).  It is called at the end of the MAIN program
to produce time history plots at specified  junctions for
specified time periods.  A simplified flowchart depicting
the logic of TPLOT is shown in Figure 3.9.   The sequence
of steps is as follows:
STEP 1 - SET LABELS FOR X AND Y AXES
     The labels (e.g. "cycles") for the x-axis (BOTTOM(D) and
the labels (e.g. "Constituent") for the y-axis (SIDE(I))
are set.
STEP 2 - TIME PLOT LOOP
     This is a double loop which is executed for every constituent
for every time plot.  The following steps are executed
within the loop.
STEP 2A - SKIP TO STARTING CYCLE OF TIME PLOT
     Unit 11 is rewound and the data stored on it is read
until the starting cycle of the current time plot is reached.

-------
                   - 101 -
NO
SET LABELS
ON
X-Y AXES
i

        REWIND 11
      &  SKIP TO
          SKIP
         TO END
        OF CYCLE
          SKIP
         TO NEXT
        READ CYCLE
                             NO



,

READ DATA
FOR
PRESENT CYCLE

YES

i

WRITE
TITLE
i

COMPLETE
SIDE
LABELS
    FIGURE 3.9  FLOWCHART OF SUBROUTINE TPLOT

-------
                            - 102 -
 STEP  2B  -  READ PLOTTING DATA
      The data  for the present cycle  is  read  until  the
 predicted  concentration for the  desired junction  is  reached.
 The concentration is  used  to set up  the X  (cycle  number)
 and Y (concentrations) arrays to be  plotted.   The remainder
 of the data for the present cycle is then  rea'd.   Unit  11
 is then  read until  the next plotting cycle is  reached,  at
 which point, the data for  the desired constituent and  junction
 is read  again.  This  continues until  all of  the required
 concentrations for a  particular  constituent  at a  particular
 junction for the specified time  plot period  and interval
 have  been  read.
 STEP  2C  -  SET  UP SIDE LABELS
      The constituent  number for  each time  plot is added to
 the y-axis label (e.g. "Constituent" becomes  "Constituent 2").
 STEP  2D  -  WRITE OUT TITLE
      A title indicating the type of  plot,  the  cycles over
 which it applies, and the  interval between points is written
 on Unit  2?..
 STEP  2E  -  CALL CURVE  TO PRODUCE  THE  PLOT
      Subroutine CURVE is called  and  the plot is produced
 on Unit  22. The printer - plot  will  be outputted at the
 end of the quality program.
       1.7  PLOTTING SUBROUTINES  - CURVE. PPLOT,  SCALE
     CURVE  is the entry to  a generalized printer  - plot
routine.   It calls PPLOT and SCALE.   CURVE  plots  the •
sequentially paired values  in the X and  Y arrays  created

-------
                            -  103 -
in SUMPLT, SWPLOT, and TPLOT.  The scaling values for
both arrays are stored in the last two array locations
(in the same manner as CALCOMP scaling).
     Subroutine PPLOT produces the plots of the model
predictions and observed data points.
     Subroutine SCALE sets up convenient scales for the axes.
                  3.8  CONSTITUENT LINKAGES
     The version of the DEM contained in this report has
been applied to the Potomac Estuary.  When this version was
programmed, there were six quality constituents which were
of particular interest:
         Constituent 1  -  Ammonia (NH3)
         Constituent 2  -  Nitrate (N03)
         Constituent 3  -  Total Phosphorous (TP04)
         Constituent 4  -  Chlorophyll a. (CHLOR)
         Constituent 5  -  Ultimate CBOD (CBOD)
         Constituent 6  -  Dissolved Oxygen (DO)
Consequently, many portions of the program and the constituent
linkages are specific to those constituents.  Figure 3.10
depicts the six constituents and the reaction rates which
relate them in the quality program.  The variables in capital
letters are the reaction rates linking the constituents.
The variables in italics are the masses transferred between
constituents.  The arrows indicate the direction of the
transfer.  At first glance, it might seem that this version
of the model is very restrictive regarding the constituents
that can be accomodated.  However, closer examination reveals
that there is a considerable degree of flexibility in
assigning constituents to the constituent numbers utilized by
the program.  By manipulating the various rates associated
with the constituent linkages, a fairly wide range of

                                      U S EPA Headquarters Library
                                           Mail code 3404T
                                      1200 Pennsylvania Avenue NW
                                         Washington, DC 20460
                                             202-566-0556

-------
                                  DECAYK(5)
CT3
cz

m
o
o
m
CO
§
o
a
^
^DECAYK(6)

01
PHOT
(PHOTOM)
RES
-CRESPM)
1
£
^ DECAYK(2)
(YMASSU)
IU
^DECAYK(3)
"* (ZMASSD)
u
REGEPP ,
** (KMASSP) \
                                                                                                             73
                                                                                                             m

                                                                                                             O
                                                                                                                                     o
                                                                                                                                     -Pi

-------
                            - 105 -
parameters can be modeled.  (A linkage can be "shut off"
by setting the associated rate equal to zero).  Examples
of several alternative configurations are shown in Figures
3.11 to 3.13.
      3.9  CONSIDERATIONS FOR MODELING OTHER SYSTEMS
     There are several aspects of the model presented in
this report which are characteristic of the estuary to
which it was applied.  However, the application of the
DEM to other estuarine systems is a relatively straightforward
process.  The specific portions of the version contained
herein which must be altered are as follows:
1)  The Model Network - Obviously, the model network, i.e. the
configuration of channels and junctions used to represent
the prototype, will be different for every system.
2)  DIMENSION Statements - The Potomac Estuary network consists
of 133 junctions and 139 channels.  Junction and channel
parameters have been dimensioned to these values.  Any
expansion of the network size would necessitate a change
in these dimensions.  The Potomac model is programmed for
6 constituents.  Therefore, all constituent related variables
are dimensioned to that value.  If more than 6 constituents
are to be modeled, then those dimensions must be changed.
3)  Plotting Positions - The plotting subroutines plot the
predicted constituent concentrations for the model junctions.
Each model junction that is plotted is referenced to the upper
boundary of the network by variable RMNODE(J), which specifies
the number of miles between the upper boundary and junction
J.  Consequently, the values assigned  to RMNODE(J) will have
to be altered if a different network is used.

-------
                         - 106 -
        DECAYK(l) = 0
        DECAYK(2) = 0
        DECAYK(3) = 0
                              NUMCON = 3

                               KREAC = 3
                  Constituents 1, 2, and 3 are all
                  conservative, i.e. they do not decay
FIGURE 3.11  ALTERNATIVE LINKAGE EXAMPLE 1 - CONSERVATIVE CONSTITUENTS

-------
                              - 107 -
                                 DECAYK(l)
                                 DECAYK(3)
                                 DECAYK(5)
                                        NUMCON = 5

                                         KREAC = 4
         DECAYK(l)   =  the rate (1st order)  at which constituent 1
                       is converted to constituent 2

         DECAYK(3)   =  the rate (2nd order)  at which constituent 3
                       is removed from the system

         DECAYK(5)   =  the rate (1st order)  at which constituent 5
                       is removed from the system
'FIGURE 3.12  ALTERNATIVE LINKAGE EXAMPLE 2 - NON-CONSERVATIVE CONSTITUENTS

-------
                        - 108 -
          o
          LU
          Q
       NO2+N03
                          DECAYK(2)
Chlorophyll  a
                           NUMCON = 4

                            KREAC = 1
  DECAYK(l)   =   rate  (1st order) at which NH3 (constituent 1)
                is converted to N02+N03 (constituent  2)

  DECAYK(2)   =   rate  (1st order) at which N02+N03  is  taken up
                by algae (constituent 4) for growth

  DECAYK(4)   =   rate  (1st order) at which algae  are settled
                out of the system into the detrital pool

      AMUPP   =   rate  (1st order) at which NH3 is taken up
                by algae for growth

     REGENN   =   rate  (1st order) at which MH3 is regenerated
                by the detritus
FIGURE 3.13   ALTERNATIVE LINKAGE EXAMPLE 3 - THE  NITROGEN CYCLE

-------
                            -  109  -
4)  Subroutine SWTABL - As discussed in section 3.4,
this subroutine divides the network junctions into several
groups.  Each group is comprised of junctions which are at
slack water at approximately the same time.  These groups
are characteristic of the system being modelled and will
have to be changed for every different prototype.
                  3.10  INPUT REQUIREMENTS
     The input requirements for this version of the DEM can
be divided into five general categories: (1) input/output control
parameters, (2) water quality parameters, (3) waste load
inputs, (4) boundary conditions, and (5) initial conditions.
INPUT/OUTPUT CONTROL
     The input/output control parameters can be divided into
three groups:  independent control, tabular output control,
and graphical output control.
     Independent control data specifies the number of
quality constituents  (NUMCON), temperature (TEMP), length
of the run (NQCYC), quality time step (DELTQ), starting cycle
on the hudraulic extract tape (HWCYC), and other   parameters.
 A complete listing of these input  parameters'is given-in
Section 3.12.
     Tabular output control specifies the types of tables
to be outputted, the frequency of printout, and whether or
not a plot of a table is desired.  A complete listing of these
parameters is found in Section 3.12.
     Graphical output control specifies the number and type
of plots, the type of background grid to use, the  minimum
(YMINC(K)) and maximum((YMXC(K)) values which can be plotted,
information concerning any observed data to be plotted,
and which constituents to plot.,  A complete listing of these
parameters is found in Section 3.12.

-------
                           - 110 -
QUALITY PARAMETERS
     Several reaction rates and coefficients must be specified
for the quality constituents.  These parameters determine the
various linkages among the quality constituents.   A complete
listing of the parameters required for the version of the
DEM in this report is found in Section 3.12.
WASTE LOAD PARAMETERS
     For inflows to the system (e.g. wastewater discharges),
both the flow and concentration of each constituent must
be specified.  For withdrawals from the system, only the flows
need to be specified, since the concentration of each constituent
removed is equal to the predicted concentration in that
junction.  If a bank load (runoff) input is used, the
length of the junction shorelines CSLINE(J)), the flow,
and the concentration of each constituent must be specified.
     Normally, the hydraulic condition specified by the
quality program should agree with the conditions in the
hydraulic run.  The reason for this is that the hydraulic
behavior of the system for each quality time step is fixed
in the hydraulic program and is not affected by the inflows
or waste discharges specified in the quality program.
Consequently, if a withdrawal existed in the hydraulic program,
but was not specified in the quality program, then the quality
program would have water removed from the junction, but
not any constituent mass.  Similarly, if a waste discharge
is specified for a junction in the hydraulic program,
then it is necessary to specify the constituent concentrations
and the same flow rate in the quality program in order to
add the appropriate mass of constituent during each time
step.  This feature makes it convenient to simulate the
release of dye or some other tracer",  Since a very small

-------
                            -  Ill  -
amount of tracer (with high concentration) is usually
released into a junction, any convenient input flow rate and
dye concentration can be specified (for the quality program
alone) so that the appropriate mass of dye is added during
each time step.
BOUNDARY CONDITIONS
     Boundary conditions must be specified for the upper and
lower junctions of the network.  Frequently, one of the most
troublesome inputs is the specification of the constituent
concentrations at the sejaward boundary.  Ideally, the lower
boundary would be the ocean ( a source and sink with known
concentration).  The problem of specifying the boundary is
one of estimating the tidal cycle variation in concentration
of a constituent at a boundary for a given freshwater inflow
to the system.  For simulation of historic conditions,
sufficient data should be collected to establish the
boundary concentrations..  For predictive runs, one must
estimate the boundary conditions which would result for
the run, i.e. the final results must be known in order to
specify the boundary conditions.  This dilemma can sometimes
be circumvented by determining the sensitivity of upstream
predictions to the location of the lower boundary.  Since
the effect of the lower boundary conditions on the upstream
predictions decreases as the lower boundary is moved farther
downstream, the boundary should be located well downstream
from any areas of concern.  For constituents with little
or no concentration gradient, the boundary concentration can
be specified .as constant throughout the tidal cycle.  For
constituents with a significant gradient (e.g. salinity),
the boundary condition is defined by specifying a concentration
for each quality time step over a full tidal cycle.

-------
                           - 112 -
INITIAL CONDITIONS
     Initial concentrations must be specified for each
constituent in every junction.  For studies where steady state
conditions are desired, the initial concentrations are
relatively unimportant.  However, while the initial conditions
do not affect the final steady state concentrations, the
execution time required to achieve a steady state condition
can be extremely sensitive to the initial concentrations.  For
studies in which historical quality conditions are being
simulated, the initial conditions are extremely inportant and
adequate historical data should be available to define them.
                    3.11  OUTPUT OPTIONS
     Both tabular and graphical output options are available
in the version of the DEM presented in this report.
Tabular outputs include summary tables, slack water tables,
a dissolved oxygen summary9 and a summary of nutrients
limiting algal growth in each junction.  Graphical outputs
include plots of summary tables, plots of slack water tables,
(with or without observed data), and time history plots
at specified junctions.
TABULAR OUTPUTS
1)  Suirmary Tables:
     Summary tables are produced by subroutine SUMARY.
A summary -cable prints the minimum, maximum, and average
concentration for each constituent in every junction during
a specified interval.  In order to allow summaries which
overlap, there are two types of tables referred to in SUMARY:
a "Type 1" table and a "Type 2" table.  A Type 1 table can
overlap a 7ype 2 table (and vice versa).  For example, a
Type 1 tab^e may summarize from cycle 100 to 150 and a Type 2
could summarize from cycle 100 to 250.  There are NSUM1 Type 1

-------
                            -  113 -
tables and NSUM2 Type 2 tables.  The Nth Type 1 table
begins its summary at cycle XPRT1CN) and ends its summary
at cycle LPRT1CN). If IPLTI(N) = 1, the Nth table will  be
plotted.  Similarly, the N   Type 2 table summarizes
from cycle IPRT2(N) to cycle EPKCMN) and will be plotted
if IPLT2CN) = 1.
2)  Slack Water Table:
     Slack water tables are produced by subroutine SWTABL.
These tables yield predictions for a junction when it is at
slack water.  The number of slack water tables equals NSWTAB.
There are three types of slack water tables:  high water
slack (HWS), low water slack  (LWS), and snapshot.  (A
snapshot table is not actually a slack water table as defined,
rather, it gives the concentrations throughout the estuary
at a specified cycle).  The N   slack water table begins
at cycle NFPCCN)..  The type of table is defined by KSL(N),
where KSL(N) = 0,1,2 indicates a snapshot, HWS table, or
LWS table, respectively.
3)  Dissolved Oxygen Summary:
     A detailed summary of dissolved oxygen (constituent 6)
predictions is obtained from  cycle NDOCYC to the end of the
quality run.  The summary includes the minimum and maximum
predicted D.O. concentrations for each junction (DOMIN(J)>
DOMAX(J)) and the cycles at which they occur (MINC?C(J)3
MAXCYC(J)); the average predicted D.O. concentration for
each junction (AVBDO(J)); and the number of cycles for which
the predicted D.O. concentrations for each junctions were
below 4.0 mg/~\t(DOLT4(J)), between 4.0 mg/1 and 5.0 mg/1
(D04T05(.J))% and greater than 5.0 mg/1 (DOGTS(J)).
4)  Nutrient Limitation Summary:
     A summary of nutrient limitation is obtained from cycle
NUTCYC to the end of the quality run.  The summary identifies
the number of cycles in which nitrogen limited algal

-------
                           - 114 -
growth (MRL(J)) and the number of cycles in which phosphorous
limited algal growth (NPPL(J))  in each junction.
GRAPHICAL OUTPUTS
1)  Summary Plots:
     The number of Type 1 tables plotted equals NPLT1  and
the number of Type 2 tables plotted equals NPLT2.   If  IPLTMN)  =  1,
then the Nth Type 1 table will  be plotted.  If IPLT2(N)  = 1,
then the Nth Type 2 table will  be plotted.
     The plotting symbols are defined as follows:   "H",  "L",
and "A" correspond to the maximum, minimum, and average
concentrations, respectively.  Summary plots do not contain
observed data points.
2)  Slack Water Plots:
     The van able KPLOT(N) defines the type of slack water
plot, if anyB to be generated.  KPLOT(N) = 0,1,3,4 indicates
that the Nth slack water table will:  not be plotted,
be plotted, be prepared for an overlay of constituent 6
(i.e. prepare to plot constituent 6 from the next (N + 1  )
slack water table and N   slack water table together), or
perform the overlay of constituent 6.  If NCONSff(K) = 0,
then constituent K will not be plotted in any slack water
table.
     Observed data, read in through the card reader with the
data deck, can also be plotted on a slack water plot
(along with the model predictions).  Observed data is read
NOBDAT times. It is read in at specified quality cycles
(OBCYCCI), I = 1,NOBDAT).  Each block of observed data contains
NDATA points.  The location of each point is defined by
RMDATA(K)3 where K = 1,NDATA.  The plotting symbols are
defined as follows:  a "*" corresponds to a slackwater point;
an "X" corresponds to an overlayed slack water point;
and "H", I!L", and "A" correspond to the three observed data
points (either high, low, average or day 1, day 2, or day 3).

-------
                           - 115 -
3)  Time History Plots:
     There are NTP time  history plots.   The  N    time  history
plot is specified for junction JUNCTP(N).  It  begins  at
cycle NSCTPCN), ends at  cycle NECTP(N),  and  plots data at
intervals of NCITP(N) cycles.  If NCONTP(N,K)  =  0,  then
the N   time plot will not indued  constituent K.

-------
3.12  DYNQUAL DATA DECK SEQUENCE
CARD
1
2




3

4




5



6

7

VARIABLE
ALPHA(J)
NJ
NC
NSTART
NSTOP
NODYN
HEADER

HYDCYC
NQCYC
NUTCYC
NDOCYC
NSPEC
NUMCON
KDCOP
KREAC
MIX
TEMP
STIME
HEADER

COLUMNS
1-80
1-5
6-10
11-15
16-20
21-25
1-80

1-5
6-10
11-15
16-20
21-25
1-5
6-10
11-15
16-20
1-10
11-20
1-80

FORMAT
20A4
15
15
15
15
15
20A4

15
15
15
15
15
15
15
15
15
F10.0
F10.0
20A4

COMMENTS
2 cards. Identifies the run.





Indicates Control Data is to
be read.











Indicates Tabular Output
Control is to be read.
             -  116 -

-------
- 117 -
CARD
8

9


10

11


12
13


14

15


VARIABLE
NSUM1
NPLT1
IPRTl(N)
LPRTl(N)
IPLTl(N)
NSUM2
NPLT2
IPRT2(N)
LPRT2(N)
IPLT2(N)
NSWTAB
NFPC(N)
KSL(N)
KPLOT(N)
HEADER

NTP
NSWP
KPLOP
COLUMNS
1-5
6-10
1-5
6-10
11-15
1-5
6-10
1-5
6-10
11-15
1-5
1-5
6-10
11-15
1-80

1-5
6-10
11-15
FORMAT
15
15
15
15
15
15
15
15
15
15
15
15
15
15
20A4

15
15
15
COMMENTS


Read NSUM1 of these cards.




Read NSUM2 of these cards.



Read NSWTAB of these cards.


Indicates Plotting Output
Control is to be read.




-------
- 118 -
CARD
16

17*
18

19



VARIABLE
NDATA
NOBDA1
NOBCYC(l)
NOBCYC(2)
•
•
NCONSW(l)
NCONSW(2)
•
JUNCTP(N)
NSCTP(N)
NECTP(N)
NCITP(N)
NCONTP(N,1)
NCONTP(N,2)
•
•
COLUMNS
1-5
6-10
1-5
6-10
t
•
*
1-5
6-10
•
1-5
6-10
11-15
16-20
21-35
26-30
•
»
*
FORMAT
15
15
15
15
•
•
•
15
15
•
•
15
15
15
15
15
15
•
COMMENTS


* Read only if NOBDAT>0.
Read NOBDAT valves of
NOBCYC.
Read NUMCON values of NCONSW.

Read NTP of these cards.
Read NUMCON values of NCONTP
on each card.




-------
- 119 -
CARD
20



21
22



23



24

25

26
VARIABLE
YMAXC(l)
YMINC(l)
YMAXC(2)
YMINC(2)
•
•
HEADER
PERCD
CHLNIT
CHLPHO
CHLCAR
BACKC(K)
THETA(K)
CLIMIT(K)
CNAME(N)
HEADER

TSRISE
TSSET
NO
COLUMNS
1-5
6-10
11-15
16-20
•
»
•
1-80
1-10
11-20
21-30
21-40
1-10
11-20
21-30
31-39
1-80

1-10
11-20
1-5
FORMAT
F5.0
F5.0
F5.0
F5.0
•
•
•
2QA4
F10.0
F10.0
F10.0
F10.0
F10.0
F10.0
F10.0
2A4
20A4

F10.0
F10.0
15
COMMENTS
Read NUMCOM values of YMAXC
and YMINC.


Indicates Quality Coefficients
are to be read.




Read NUMCON of these cards.



Indicates D.O. Parameters are
to be read.























-------
- 120 -
CARD
27





28
*
29
30

31
32


33


34
VARIABLE
NF1(I)
NL1(I)
PHOT(I)
RES(I)
DEPTH (1)
BENT(I)
IREOXK
REOXK
HEADER

NK
NFC(l)
NLC(I)
CDIFFK(J)
HEADER


NR
COLUMNS
1-10
11-20
21-30
31-40
41-50
51-60
1-5
1-10
1-20

1-5
1-10
11-20
21-30
1-80


1-5
FORMAT
no
no
F10.0
F10.0
F10.0
F10.0
15
F10.0
20A4

15
no
no
F10.0
20A4


15
COMMENTS
Read NO of these cards.






*ftead only if IREOXK = 4
Indicates Diffusion Constants
are to be read.

Read NK of these cards.


Indicates Nutrient Uptake
and Regeneration rates are to
be read.


-------
- 121 -
CARD
35






36

37
38




39

40


41

VARIABLE
NF2!(!)
NL2(I)
AMUPP(I)
PHUPP(l)
REGENN(I)
REGEPP(I)
REBODD(I)
HEADER

ND
NF3(I)
NL3(I)
DECAYK(I,1)
DECAYK(I,2)
•
•
•
HEADER

NWASTC
NWASTV
NBANK
HEADER

COLUMNS
1-10
11-20
21-30
31-40
41-50
51-60
61-70
1-80

1-5
1-10
11-20
21-30
31-40
•
•
•
1-80

1-5
6-10
11-15
1-80

FORMAT
no
110
F10.0
F10.0
F10.0
F10.1
F10.0
20A4

15
no
no
F10.0
F10.0
•
•
*
20A4

15
15
15
20A4

COMMENTS
Read NR of these cards.






Indicates Decay Rates are to
be read.

Read ND of these cards.
Read NUMCON values of
DECAYK on each card.


Indicates Wastewater Inputs
are to be read.



Indicates Constant Inputs are
to be read.

-------
- 122 -
CARD
42



43
44a


44b



45
46

VARIABLE
JRCW(I)
QCW(I)
CWC(I.l)
CWC(I,2)
HEADEF!
JRVW(I)
NINC(I)

INCDUR(I.N)
FLO(I,N)
CCN(1,I,N)
CCN(2,I,N)
•
HF.ADER
SLINE(l)
SLINE(2)
•
COLUMNS
1-10
11-20
21-30
31-40
1-80
1-10
11-20

1-10
11-20
21-30
31-40
•
1-80
1-5
6-10
•
FORMAT
no
F10.0
F10.0
F10.0
20A4
no
no

no
F10.0
F10.0
F10.0
•
20A4
F5.0
•
COMMENTS
Read NWASTC of these cards.



Indicates Variable Inputs
are to be read.
Read NWASTV of the 44a cards.
Every 44a card is followed by
NINC(I) of the 44b cards.




Indicates Variable Bank
Inputs are to be read.
Repeat card 46 until NJ valves
of SLINE have been read.

-------
- 123 -
CARD
47a



47b



48
49
50



51
VARIABLE
JRBLl(I)
JRBL2(I)
ICYCl(I)
ICYC2(I)
BFLOW
BCON(I.l)
BCON(I,2)
•
HEADER
NINC(I)
INCDUR(I5N)
FLO(I.N)
CON(1,I,N)
CON(2,I,N)
*
HEADER
COLUMNS
1-5
6-10
11-15
16-20
1-10
11-20
21-30
*
1-80
1-5
1-10
11-20
21-30
31-40
1-80
FORMAT
15
15
15
15
F10.0
F10.0
F10.0
*
20A4
15
110
F10.0
F10.0
F10.0
20A4
COMMENTS
Read NBANK of the 47a
cards. Every 47a card is
followed by one 47b card.





Indicates Upper Boundary
Conditions to be read.
I = NWASTV + 1.
Read NINC(I) of these cards,
where I = NWASTV + 1.


Indicates Initial Conditions
are to be read.

-------
- 124 -
CARD
52



53
54

55a
55b


56
VARIABLE
JINT1
JINT2
CINT(l)
CINT(2)
•
HEADER
SEACON(l)
SEACON (2)
CIN(K,1)
CIN(K.l)
CIN(K,3)
•
HEADER
COLUMNS
1-10
11-20
21-30
31-40
•
1-80
1-5
6-10
*
1-5
1-5
6-10
11-15
•
1-80
FORMAT



*
20A4
15
15
F5.0
F5.0
F5.0
F5.0
*
20A4
COMMENTS
Read until JINT2 equals NJ.
Read NUMCON values for CINT
on each card.

Indicates Seaward Boundary
Conditions are to be read.
Read NUMCON values for SEACON.

Read this card if SEACON (K) = 1
Read this card if SEACON (K) = 2
Read NSPEC values of CIN on
each card.

Read if observed data is to be
read during the current cycle.

-------
- 125 -
CARD
57







VARIABLE
OBDATAd.l.K)
OBDATA(2,1,K)
OBDATA(3,1,K)
OBDATA(1,2,K)
OBDATA(2,2,K)
*
•
OBDATACZ.e.K)
DBDATA(3,6,K)
DBDATA(K)
COLUMNS
1-4
5-8
9-12
13-16
17-20
•
•
•
65-68
69-72
73-80
FORMAT
F4.0
F4.0
F4.0
F4.0
F4.0
•
•
F4.0
F4.0
F8.0
COMMENTS
Read if observed data is to be
read during the current cycle.
Read NDATA of these cards




-

-------
                           -  126 -
              3.13  DYNQUAL VARIABLE DEFINITIONS
     The following pages contain definitions of the major
variables in DYNQUAL.   Variables are listed in alphabetical
order.   Variables in italics are read from the input data
deck.

-------
VARIABLE
ADMASS
ALPHA (I)
AMUP(J)
AMUPP(I)
AREA(N)
ASUR(J)
AVGD
AVOL(J)
B(N)
BACKC(K)
BCON(I3K)
BENT(I)
BENTH(J)
BENTHM
BFLOW
SUBROUTINE
MIXER
MAIN
MAIN
MAIN
MAIN
MIXER
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
DEFINITION
Mass of constituent transferred by advection between the junctions
at each end of a channel .
Alphanumeric identifier, serves as heading for output.
Ammonia uptake rate by algae in junction J.
Uniform ammonia uptake rate by algae for junction group I.
(I = l.NR)
Cross sectional area of channel N. Must correspond to heads speci-
fied at ends of channel.
Surface area of junction J.
Average depth of junction.
Average volume of junction J.
Width of channel N.
Background concentration of constituent K.
Concentration of constituent K in bank load I.
Uniform benthic demand rate of junction group I. (I = 1 ,NO)
Benthic demand rate of junction J.
Mass of oxygen in a junction depleted by benthic demand during
a quality time step.
Bank flow.
TYPE















UNITS
Ibs



ft2
ft2
ft
ft3
ft





cfs

-------
VARIABLE
C(J,K)
CA
CARCHL
CAVGl(J.K)
CAVG2(J,K)
CB
CDIFFK(I)
CELCAR
CHLNIT
CHLPHO
CIN(K,I)
CINT(K)
CLEN(N)
SUBROUTINE
MAIN
MIXER
SUMARY
SwTABL
MIXER
MAIN
SUMARY
SUMARY
MIXER
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MIXER
DEFINITION
Concentration of constituent K in junction J.
Concentration in junction NJUNC(NL.K).
l./CHLCAR. Ratio of carbon to chlorophyll in algae.
Average concentration of constituent K in junction J for a
Type 1 summary.
Average concentration of constituent K in junction J for a
Type 2 summary.
Concentration in junction NJUNC(NH,K).
Diffusion constant for group I, used for computing channel
diffusion coefficients. (I = 1,NK).
Ratio of chlorophyll to carbon, in algae.
Ratio of chlorophyll to nitrogen in algae.
Ratio of chlorophyll to phosphorus in algae.
Seaward boundary concentration of constituent K for time step I
during a tidal cycle. (I = l.NSPEC).
Initial concentration of constituent K. (K = l.NUMCON)
Length of channel N.
TYPE













UNITS
mg/1
mg/1
mg/yg
mg/1
mg/1
mg/1

vg/mg
yg/mg
yg/mg


ft

-------
VARIABLE
CLIMIT(K)
CMASS(J.K)
CMAXl(J.K)
CMAX2(J,K)
CMINl(O.K)
CMIN2(J,K)
CN(N)
CNAME(N)
CON(K,I,N)
CONC
CONCW(J,K)
CSAT
SUBROUTINE
MAIN
MAIN
MIXER
SUMARY
SUMARY
SUMARY
SUMARY
MAIN
MAIN
MAIN
MIXER
MAIN
MAIN
DEFINITION
Concentration limit for constituent K. Execution is terminated
if the predicted concentration for constituent K exceeds
CLIMIT(K).
Mass of constituent K in junction J.
Maximum concentration of constituent K in junction J for a
Type 1 summary.
Maximum concentration of constituent K in junction J for a
Type 2 summary.
Minimum concentration of constituent K in junction J for a
Type 1 summary.
Minimum concentration of constituent K in junction J for a
Type 2 summary.
Manning roughness coefficient of channel N.
Alphanumeric variable indicating the constituent name.
Concentration of constituent K, from variable waste input I
(variable discharger or upper boundary) during time increment N.
Concentration in advected water.
Concentration of constituent K entering junction J from all constant
waste inputs into junction J. Computed by dividing the total
load entering the junction by the total input flow.
Dissolved oxygen saturation concentration.
TYPE












UNITS
mg/1
Ibs
mg/1
mg/1
mg/1
mg/1


mg/1
mg/1
mg/1

ro
10

-------
VARIABLE
CTIME
CWC(I,K)
CWLOAD
DECAY(J.K)
DECAYK(I,K)
DELT
DELTQ
DELTQ1
DEPTH (I)
DEPTHP(J)
DIFFC
DIFFK(N)
DIMASS
DIMASSD(J)
SUBROUTINE
MAIN
SWTABL
MAIN
MAIN
MAIN
MAIN
MAIN
MIXER
SWTABL
SUMARY
MAIN
MAIN
MAIN
MIXER
MAIN
MIXER
MIXER
MAIN
DEFINITION
Clock time of the run. Equals the time of day, taken with respect
to the time of day (STIME) that the run began.
Concentration of constituent K for constant waste input I.
Constant waste load of constituent K into junction J»
Decay rate of constituent K in junction J.
Decay rate of constituent K in group I. (I = 1 ,ND)
Time interval in the hydraulic program.
Time step for the quality program. (DELTQ = DELT * NODYN).
Quality time step (DELTQ1 = DELT * NODYN/3600. )
Uniform photic depth of junction group I. (I = 1,NO)
Photic depth of junction J.
Diffusion coefficient for a channel during a quality time step.
Equals DIFFK(N) * R(N) * Q(N)
Diffusion coefficient in channel N.
Mass of constituent transferred by diffusion between the junctions
at each end of a channel .
Amount of biodegradable material in detrital pool for junction J.
TYPE














UNITS





sec
sec
hrs
ft
ft


Ibs

GO
o

-------
VARIABLE
DMASSX

DOAVG(J)
DOLT4(J)

D04T05(J)

DOGT5(J)

DOMAX(J)
DOMIN(J)
DTD
FGQXA(NPP)

FGQXO(I,
LPP.NPP)









FGSWA(NPP)

SUBROUTINE
MAIN

MAIN
MAIN

MAIN

MAIN

MAIN
MAIN
MAIN
SUMARY
SUMPLT
SUMARY
SUMPLT









SWTABL
SWPLOT
DEFINITION
Amount of chlorophyll decayed into a junction's detrial pool
during a quality time step.
Average DO in junction J (beyond cycle NDOCYC).
Number of cycles (beyond cycle NDOCYC) in which the predicted DO in
junction J is less than 4 mg/1.
Number of cycles (beyond cycle NDOCYC) in which the predicted DO in
junction 0 is between 4mg/l and 5 mg/1.
Number of cycles (beyond cycle NDOCYC) in which the predicted DO in
junction J is greater than 5 mg/1.
Maximum DO for junction J (beyond cycle NDOCYC).
Minimum DO for junction J (beyond cycle NDOCYC).
Quality time step. (Equals DELTQ1/24.)
Array created to store the abscissa (x-axis) values of the points to
be plotted.
Array created to store the ordinate (y-axis) values of the points to
be plotted.
1=1 corresponds to the maximum concentration
1=2 corresponds to the average concentration
1=3 corresponds to the minimum concentration
LPP = 1 corresponds to constituent 1
LPP = 2 corresponds to constituent 2
LPP = 3 corresponds to constituent 3
LPP = 4 corresponds to constituent 4
LPP = 5 corresponds to constituent 5
LPP = 6 corresponds to constituent 6
Array created to store the abscissa (x-axis) alues of the points
to be plotted.
TYPE
R

R


R

R

R
R
R
R

R










R

UNITS


mg/1


mg/1

mg/1

mg/1
mg/1
days















 I

I—'
CO

-------
VARIABLE
FGSWO(NPP,
LPP)


FLO(I,N)

HEADER
HOURS

HOURS1

HOURS2

HYDCXC
ICYC


ICICI (I)
ICYC 2 CD
ICYCTF

I LARGE

INCDURd, N.

SUBROUTINE
SWTABL
SWPLOT


MAIN

MAIN
SWTABL

SUMARY

SUMARY

MAIN
MAIN
SWTABL
SUMARY
MAIN
MAIN
MAIN

MAIN

MAIN

DEFINITION
Array created to store the ordinate(y-axis) values of the points to
be plotted. NPP indicates which point. LPP indicates which
constituents i.e. LPP=1 for constituent I, LPP=? for constituent
2, etc.
Waste flow of variable discharge I (variable or upper boundary) durii
during time increment I.
Alphanumeric identifier for a subsection of the input card deck.
Clock time, i.e. the time of day, taken with respect to the time at
which the quality run began (STIME).
Number of hours between KDAYS1 and the first cycle (IP) of the
summary table.
Number of hours between KDAYS2 and the last cycle (LP) of the summary
summary table.
Hydraulic cycle number at which the quality run is to start.
Cycle number (iteration) during execution of the quality program.


Starting cycle for the I bank load input.
Ending cycle for the I bank load input.
Cycle number from the hydraulic (transient flow) program which is
stored on unit 4 (hydraulic extract tape).
Flag used in determining which of the channels entering a junction
has the highest flow.
Duration of the N time increment for variable waste discharge I.
(N=ININC(I)).
TYPE
R



g R

R


R

R

I
I


I
I
I



I

UNITS




cfs




















co
ro

-------
VARIABLE
IP
IPLT1 (N)
IPLT2(N)
IPRT1 (N)
IPRT2CN)
IREOXK
I TAB
JINT1
JINT2
JPRT(I,J)
JRBL 1 (I)
SUBROUTINE
SUMARY
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
SWATBL
MAIN
MAIN
SWTABL
MAIN
DEFINITION
First cycle of the summary table.
Type 1 Summary plotting control.
TPIT1/N\ _ 0 Nth Type 1 Summary Table is not plotted.
IM.HVH; l Nth Type l Summary Table is plotted>
Type 2 Summary plotting control.
TPiTPfN'i - ° tne Nth TyPe 2 summary table is not plotted.
irL1^' 1 the N™ Type 2 summary table is plotted.
Initial print cycle for the Nth Type 1 Summary table.
Initial print cycle for the Nth Type 2 Summary table.
Control option for choosing method of determining reoxygenation rate.
1 O'Connor-Dobbins equation used to compute
reoxygenation rate.
IREOXK = 2 Cnurcnl11 equation used to compute reoxygenation rate.
3 USGS equation used to compute reoxygenation rate.
4 Reoxygenation rate is constant and equal to REOXK.
Counter to determine which portion of a slack water table is to be
printed.
The first junction in an initial condition group.
The last junction in an initial condition group.
Junction number of the J junction in the Ith slack water group
(J = 1,NOPRT(I)).
First junction receiving bank load I.
TYPE
I
I
I
I
I
I
I
I
I
I
I
UNITS












-------
VARIABLE
JEBLS(I)
JRCW(I)
JEW (I)
JUNCTP(N)

KCYC(I)

KDAYS

KDAYS1

KDAYS2

KDCOP



KINC(I)

SUBROUTINE
MAIN
MAIN
MAIN
MAIN

MAIN'

SWTABL

SUMARY

SUMARY

MAIN



MAIN

DEFINITION
Last junction receiving bank load I.
Junction receiving the I constant waste input.
Junction receiving the I variable waste input.
Junction specified for the N time plot. Time plots can be
specified for any junction.
Counter used to determine when the end of a variable waste time
increment is reached.
Number of full days which have elapsed since the beginning (STIME)
of the quality run.
Number of full days from beginning of quality run to the first cycle
(IP) of the summary table.
Number of full days from beginning of quality run to the last cycle
(LP) of the summary table.
Control option. Determines whether or not depletion corrections
are printed.
KDCOP = ° dePlet10n corrections not printed.
1 depletion corrections printed.
Counter used to determine which variable waste increment is being
used.
TYPE
I
I
I
I

I

I

I



I



I

UNITS



















CO

-------
VARIABLE
KPLOP
KPLOT(N)
KREAC
KSL(N)
LP
LPRT1 (N)
LPRT2(N)
MAXCYC(J)
SUBROUTINE
MAIN
MAIN
SWTABL
MAIN
MAIN
SWTABL
SUMARY
MAIN
MAIN
MAIN
DEFINITION
Control option determining plotting background grids.
0 no background grid produced.
KPLOP - ^ l°w density background grid.
2 medium density background grid.
3 high density background grid.
Control parameter for plots of the N slack water table.
1 no plots will be printed.
KPlOTfN} - 2 Pl°ts W1"11 be printed.
^ ' 3 prepone overlay for constituent 6
4 overlay for consituent 6 performed.
Control option for consitutent linkages.
1 only nitrogen uptake be algae is considered (i.e.,
constituent 3 is not simulated).
2 only phosphorus uptake by algae is considered (i.e.,
KREAC = constituents 1 and 2 are not simulated).
3 both nitrogen and phosphorus uptake by algae are
considered.
4 algae (constituent 4) is not simulated.
Control option defining the N slack water table.
0 snapshot table is desired..
KSL(N) =1 high water slack table desired.
3 low water slack table desired.
Last cycle of the summary table.
Last print cycle for the N Type 1 Summary table.
Last print cycle for the N Type 2 Summary table.
Cycle at which the maximum DO for junction J occurs (beyond cycle
NDOCYC).
TYPE
I
I
I
I
I
I
I
I
UNITS



-





-------
VARIABLE
MCHLON


MCHLOP


MINCYC(J)

MIX
I'M*. A.





MTABL

NBANK
NC

ffCHANCJj K)
NCITP(N)


SUBROUTINE
MAIN


MAIN


MAIM

MAIM
i inj, 11
MIXFR
1 IX Aur\




MAIM
SWTABL
MAIN
MAIN
MIXER
MAIN
MAIN


DEFINITION
Maximum amount of constituent 4 (chlorophyll) which can be produced
from the total inorganic nitrogen (XMASSU + YMASSU) taken up
during a quality time step.
Maximum amount of constituent 4 (chlorophyll) which can be produced
from the phosphorus taken up (ZMASSU) during a quality time
step.
Cycle at which the minimum D.O. for junction J occurs (beyond cycle
NDOCYC).
Variable which defines the method used to compute the concentration
in advected water.
1 use upstream concentration.
2 use 1/2 point concentration.
MIX = 3 use 1/3 point concentration.
4 use 1/4 point concentration.
5 use 2-way proportional concentration.
Counter to determine which slack water table is to be printed.

Number of bank load inputs.
Number of channels in network.

Channel number of the K channel entering junction J (K = 1.5).
Interval between data points on the N time plot. (e.g. if NCITP(2)
= 25, then the 2 time plot will plot a data point every 25
cycles).
TYPE
R


R


I

I






I

I
I

I
I


UNITS
























 I

I—1
co


 i

-------
VARIABLE
NCONSW(K)


NCONTP(N3K

ND

NDA
NDATA


NDOCYC
NECTP(N)
NFC (I)

NF1 (I)

NF2(I)

NFS (I)

NFPC(M)

SUBROUTINE
MAIN
SWTABL

) MAIN
TPLOT
1 1 L-w 1
MAIN

MAIN
MAIN


MAIN
MAIN


MAIN

MAIN

MAIN

MAIN
SWTABL
DEFINITION
Control parameter for slack water plots.
NCONSW(K) = ® constituent K is not plotted on slack water plots.
1 ' 1 constituent K is plotted on slack water plots.
Control parameter for time plots.
NCONTP(N K) = ^ constituent K f°r time plot N is not plotted.
^ ' ' 1 constituent K for time plot N is plotted.
Number of groups of junctions having uniform constituent decay
rate (DECAYK(K)).
Counter to determine which group of observed data is being read.
Number of observed data points contained in each group of observed
data, i.e. the number of locations for which there is observed
data.
Cycle at which summary of constituent 6 (D.O.) begins.
Ending cycle for the N time plot.
Number of the first channel of the I group of channels with a
uniform diffusion constant (I = 1,NK).
Number of the first junction of the I group of junctions with
uniform D.O. (constituent 6) related coefficients (I = 1,NO).
Number of the first junction of the I group of junctions with
uniform Uptake and Reg
Number of the first junction of the I group of junctions with
uniform Decay Rates (I = 1,ND).
Number of the first printout cycle for the N slack water table.

TYPE
I


I

I

I
I


I
I


I

I

I

I

UNITS
























-------
VARIABLE
NINC(I)
NITCHL
NJ
NJUNC(N,1)
NJUNC(N3 S)
NK
titl (I)
NL2(I)
NL3(I)
NLC(I)
NLPC(M)
SUBROUTINE
MAIN
MAIM
MAIN
SUMARY
MAIN
MIXER
MAIN
MIXER
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
SWTABL
DEFINITION
Number of time intervals describing the varying flows and/or cone
concentrations for a time varying waste input (variable discharge
or upper boundary),,
l./CHLNIT. Ratio of nitrogen to chlorophyll in algae.
Number of junctions in model network.
Lower of the two junction numbers at the ends of channel N.
Higher of the two junction numbers at the ends of channel N.
Number of groups of channels having uniform diffusion constants
(CDIFFK(I)).
Number of the last junctions of the I group of junctions with
uniform D.O. (constituent 6) related coefficients.
Number of the last junction of the I group of junctions with
uniform uptake and regeneration rates (I = 1,NR).
Number of the last junction of the I group of junctions with
uniform decay rates (I = 1,ND).
Number of the last channel of the I group of channels with a
niform diffusion constant (I = 1,NK).
Last cycle of the Mth slack water table. Equals NFPC(M) + NSWCYC.
TYPE
I
R
I
I
I
I
I
I
I
I
I
UNITS











CO
oo

-------
VARIABLE
NNRL(J)
NO
NOBCYC(I)
NOBDAT
NODYN
NOPRT(I)
NPLT1
NPLT2
NPP
NPRL(J)
NQCYC
NX
NS1
NS2
SUBROUTINE
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
SUMARY
SWTABL
MAIN
MAIN
MAIN
MAIN
MAIN
DEFINITION
Number of cycles in which nitrogen limits the growth of algae in
junction J.
Number of groups of junctions having uniform D.O. related coefficient
coefficients (PHOT, RES, DEPTH, BENT).
Cycle at which the Ith group of observed data is read (I = 1, NOBDAT).
Number of groups of observed data.
Number of hydraulic time steps per quality time step.
Number of junctions in the I slack water group.
Number of plots of Type 1 Summary tables.
Number of plots of Type 2 Summary tables.
Number of points plotted.
Number of cycles where phosphorus limits the growth of algae in
junction J.
Number of quality time steps to be executed.
Number of groups of junctions having uniform nutrient uptake and
regneration rates. (AMUPP, PHUPP, REGENN, REGEPP, REBODD).
Counter to determine which Type 1 Summary table is being outputted.
Counter to determine which Type 2 Summary table is being outputted.
TYPE
I
I
I
I
I
I
I
I
I
I
I
I
I
I
UNITS















-------
VARIABLE
NSCTPCN)
NSPEC
NSTAMT
XTOTI^T?
i.ffk/-l. \s£
NSUM1
NSUM2
NSWCYC
NSWP
NSWTAB
NTAG
NTEMP
NTP
NUM

SUBROUTINE
MAIN
MAIN
MAIN
MATM
i in A n
MAIN
MAIN
MAIN
SWTABL
MAIN
SWTABL
MAIN
MAIN
MAIN
MAIN
SUMARY

DEFINITION
Starting cycle for the N- time plot.
Number of quality cycles per tidal period.
Starting cycle on the hydraulic extract tape (Unit 4)=
Ending cycle on the hydraulic extract tape (Unit 4).
Number of Type 1 Summary tables to be printed.
Number of Type 2 Summary tables to be printed.
Number of quality cycles required for slack water to reach the
upper boundary from the lower boundary.
Number of slack water plots.
Number of slack water tables.
Counter which is reset to zero at the completion of each full tidal
cycle. NTAG varies between zero and NSPEC, where NSPEC is the
number of quality cycles per tidal cycle.
Number which marks the end of the hydraulic record and signals a
rewind command.
Number of time plots.
Variable which determines if a Type 1 or a Type 2 summary is desired.
NUM = 1 indicates a Type 2 summary. NUM = 2 indicates a Type 2
summary.
TYPE
I
I
I
T
1
I
I
I
r
i
r
i
i
i

UNITS














o
 I

-------
VARIABLE
NUMCON
NUMPLT
NUTCYC
NWASTC
NWASTV
OAMUP(J)
OBT3ATA(I,
J,K)
ODECAY(J,
K)
OPHUP(J)
QREBOD(J)
OREGENT(J)
OREGEP(J)
PERCD
SUBROUTINE
MAIN
MIXER
SUMARY
SWTABL
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
DEFINITION
Number of constituents considered.
Total number of plots. (NUMPLT = NSWP+NTP+NPLT1+NPLT2).
Cycle at which the summary of nutrient limitations begins.
Number of constant waste dischargers.
Number of variable waste dischargers.
l-AMUP(J).
I observed data point for the J constituent at the K location.
J = 1, NUMCON, K = l.NDATA, and I = 1.3). (There are three data
points for constituent J at location K. These 3 points can
correspond to either high, average and low; or day 1, day 2,
and day 3, respectively).
Coefficient used to determine mass of constituent K which is lost
in junction J.
l-PHUP(J).
l-REBOD(J)
l-REGEN(J).
l-REGEP(J).
For each quality time step, the percent of the algae decayed
(DMASSX) which is biodegradable.
TYPE
I
I
I
I
I
R

R
R
R
R

R
UNITS














-------
VARIABLE
PHOCHL
PHOT (I)
PHOTO(J)
PHOTOM
PHUP(J)
PHUPP(J)
PIT
Q(N)
QCW.(I)
QIN(I)
QINWQ(J)
QINWQ(J)
QNET(N)
R(N)
SUBROUTINE
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
SUMARY
MAIN
MIXER
MAIN
MAIN
MAIN
MAIN

MAIN
MIXER
DEFINITION
l./CHLPHO. Ratio of phosphorus to chlorophyll in algae.
Uniform algal phosynthesis rate in junction group I.
Photosynthesis rate of algae in junction J
Amount of oxygen added to a junction by constituent 4 (algae)
through photosynthesis during one time step.
Phosphorus uptake rate by algae in junction J.
Uniform phosphorus uptake rate in junction group I. (I =1,NR).
Variable to determine if a summary table plot is desired. If
PIT f 0, a plot is obtained.
Flow in channel N.
Constant waste flow for the I constant waste discharger.
Inflow or withdrawl specified at junction J by the hydraulic
program. Used for output of hydraulic summary table.
Flow rate of constant waste discharge or diversion at junction J.
Discharges must be specified as negative, diversions must be
positive.
New flow in channel N over full tidal cycle.
Hydraulic radius of channel N. Taken as channel depth.
TYPE
R
R
R
R
R
R

R
R
R
R
R
R
UNITS













-------
VARIABLE
REBOD(J)
REBODD(I)
REGEN(J)
REGENN(I)
REGEP(J)
REGEPP(I)
REMASS
REOXK
RES (I)
RESP(J)
RESPM
RMASSC
RMASSN
SUBROUTINE
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
DEFINITION
Rate of BOD regeneration from drtrial pool in junction J.
Uniform BOD regeneration rate for junction group I. (I = 1,NR)
Rate of nitrogen regneration from detrital pool in junction J.
Uniform nitrogen regeneration rate for junction group I. (I = 1,NR)
Rate of phosphorus regeneration from detrital pool in junction J.
Uniform phosphorus regeneration rate for junction group I.
(I = l.NR).
Mass of oxygen (constituent 6) added to a junction through
reacration during a quality time step.
Constant reoxygenation coefficient.
Uniform algal respiration rate for junction group I. (I =1,NO).
Respiration rate of algae in junction J.
Mass of oxygen (constituent 6) depleted in a junction by
constituent 4 (algae) through respiration during a quality time
step.
Mass of constituent 5 (CBOD) regenerated through the detrital pool
in a junction during a quality time step.
Amount of constituent 1 (nitrogen) regenerated through the detrital
pool in a junction during a quality time step.
TYPE
R
R
R
R
R
R
R
R
R
R
R
R
R
UNITS














-------
VARIABLE
RMASSP

RMNODE(J)


RMDATA (K)
SAREA
SADUM

BEACON (K)





SLINE(J)
STIME

TBFLOW(I3
J)
TEMP
THETA(K)

SUBROUTINE
MAIN

MAIN
SUMARY
SWTABL
MAIN
MAIN
MAIN

MAIN




^
MAIN
MAIN
SWTABL
MAIN

MAIN
MAIN

DEFINITION
Amount of constituent 3 (phosphorus) regenerated through the
detrital pool in a junction during a quality time step.
Distance of junction J from the upper boundary.


Distance of the K data point from the upper boundary.
Surface area of a junction.
Sum of the surface area of adjacent junction. (Used for computing
the average depth of a channel . )
Control parameter describing the seaward boundary conditions for
each constituent.
1 concentration of constituent K at the seaward
SEACONflO = boundary is constant over the tidal cycle.
* ' 2 concentration of constituent K at the seaward
boundary is variable over the tidal cycle.
Length of the shore line for junction J.
Starting time for the quality program.

Total bank flow into junction J from the I bank load.

Temperature.
Temperature correction factor for decay rate (DECAY (K)) of
constituent K.
TYPE


R


R
R
R

I





R
R

R

R
R

UNITS


mi 1 es


mi 1 es
n2








mi 1 es


cfs

°C



-------
VARIABLE
TRISE
TSET
V(N)
VBLQAD(K)
VOL(J)
VOLFLW
VOLQIN(J)
VOLSUM
VWLOAD(K)
i »••-.*»
XLOAD(I.K)
XMASSN
XMASSU
XMBOD
SUBROUTINE
MAIN
MAIN
MAIN
MIXER
MAIN
MAIN
MIXER
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
MAIN
DEFINITION
Time of sunrise, with respect to CTIME.
Time of sunset, with respect to CTIME.
Velocity in channel N.
Loading constituent K from a variable bank input.
Volume of junction J.
Volume of water flowing in a channel, during a quality time step.
Volume of diversion or waste water discharge for junction J during
each time step. (VOLQIN(J) = QIN(J)*DELTQ).
Sum of the volumes of adjacent junctions. (Used for computing
average depth of a channel).
Variable waste load of constituent K. Computed for each junction
receiving a variable waste input and for each time increment.
Loading of constituent K for constant waste input I.
Amount of constituent K for constant waste input I.
Maximum amount of constituent 1 (NFL) which can be taken up by algae
during a quality time step.
Amount of constituent 5 (CBOD) decayed (oxidized) during a quality
time step. XMBOD is also equal to the amount of oxygen
required for that reaction to occur, e.g., for 1 pound of
constituent 5 to decay, 1 pound of constituent 6 must be
TYPE
R
R
R
R
R
R
R
R
R
R
R
R
R
UNITS
hours
hours


ft3
ft3
n3







-------
VARIABLE
XMNH3
XVOL
V(J)
YMASSU
YMAXC(K)
YMINC(K)
YNEW(J)
ZMASSD
ZMASSU
Unit 4
Unit 5
Unit 6
SUBROUTINE
MAIN
MAIN
MAIN
SWTABL
MAIN
MAIN
MAIN
MAIN
SWTABL
MAIN
MAIN
MAIN
MAIN
MAIN
DEFINITION
Amount of oxygen required for XMASSN pounds of constituent 1 to be
transformed to constituent 2 (i.e. oxygen required for
nitrification.
Volume of the photic zone within a junction.
Head at junction J.
Maximum aount of constituent 2 (N02 + N03) which can be utilized
by algae during a quality time step.
Maximum concentration of constituent K that can be plotted.
Minimum concentration of constituent K that can be plotted.
Head a junction J for the next time step.
Amount of constituent 3 (TP04) settled out of a junction during a
quality time step.
Maximum amount of constituent 3 (TP04) which can be taken up by
algae during a quality time step.
Hydraulic extract tape.
Card reader.
Printer.
TYPE
R
R
R
R
R
R
R
R
R



UNITS


ft









-p.
en

-------
VARIABLE
Unit 11

Unit 22



SUBROUTINE
MAIN
TPLOT
SUMPLT
SWPLOT
TPLOT
PPLOT
DEFINITION
Stores data for time plots until the end of execution, then
releases data for printing.
Stores slack water plots, summary plots, and time plots until
execution terminates, then releases plots for printing.


TYPE






UNITS







-------
                          -  148 -

                 3.14  COMPUTER REQUIREMENTS

            3.14.1  IBM JOB CONTROL LANGAUGE  (JCL)
The JCL used to execute program DYNQUAL is as follows

     //JOB CARD
     //STEP1 EXEC PGM-DYNQUAL
     //STEPLIB DD DISP=SHR,VOL=(PRIVATE, RETAIN, SER=REGNA3),
     //  UN I T=3330- 1 , DSN=CNXXXX . XXX . L I BRARY
     //DD DSN^SYS2.FTG1LINK,DISP=SHR
     //GO.FT03F001 DD DCB=(RECFM=VBS ,LRECL=50MLKS IZE=50A0) ,
     //  UNIT=SYSDA,SPACE=(I'RK, (^0,A0) ) ,DISP=(NEW, DELETE, DELETE) ,
     //  DSN=S£AB
                   DD DCB=(RECFM=VS,LRECL=50A,BLKS IZE=50A0) ,
     //  DISP=(OLD, KEEP, KEEP), VOL=SER=USER99,UNIT=3330-1,       from
     II  DSN=:N.F.PAXYZ.ACCT. DATA. SET. NAME
                             or
     //GO.FTjj^F0fl1 DD DCB=(RECFM=VS,LRECL=501»,BLKSIZE=501»0),
     //  DISP=(OI.D, KEEP, KEEP), VOL=SER=TAPE##,UNIT=2400,         fpom
     II  DSN=LEOTAPE,LABEL=(##,SL,EXPDT=98000)                  tape
     //GO.FT11F001 DD DCB=(RECFM=VBS ,LRECL=50MLKS IZE
     //  UNIT=3330-1 ,VOL=SER=WORK99,SPACE=(TRK, (10,5) ,RLSE) ,
     //  DISP^(NEW, DELETE, DELETE) ,DSN=CNO.SO.M.LJC.TIMEP
     //GO.FT22F001 DD SYSOUT=A,DCB=RECFM=FBA
     //GO.FT06F001 DD SYSOUT=A
     //GO.FT05F0fH DD *
        data deck goes here
     /*EOF

-------
                          - 149 -

        3.14.2  UNIVAC EXECUTIVE CONTROL LANGAUGE (ECL)
     There are two steps involved in the execution of DYNQUAL on
a UNIVAC system.  The ECL.  for each of these steps is as follows:
STEP 1 -  Compile and Map  DYNQUAL                     '
     ©RUN CARD
     ©PASSWORD
     @SYM
     @ASG,A  USERID*PGMFILE.
     @ASG,A  USERID*ABS.
     @USE  ASM$PF. ,FTN*RUB
     @ASM,l  F2FRT.F2FRT
          F$FRT  30
          PR      6
          PU      1
          CR      5
          APR    22
          END
     @FTN,IS
     @ADD  USER ID*PGMFILE.DYNQUAL
     @MAP,I   USER ID*ABS.DYNQUAL
        	  DYNQUAL source deck
     @FIN                                  goes here

STEP 2 -  Execute DYNQUAL
     @RUN CARD
     ©PASSWORD
     @SYM
     @ASG,A USERID*ABS.
     ©COPY,A  USERID*ABS.DYNQUAL
     @FREE   USERID*ABS.
     @ASG,A  USERID*1500CFS
     @USE   ^.,USERID*1500CFS
     @ASG,T  USERID*TEMPFILE.11
     @XQT   DYNQUAL
        data  deck goes here
     @FIN

-------
                         -  150 -
                   3.14.3  EXECUTION TIMES
     The time required to execute DYNQUAL is dependent on the
computer used* the network size, the computational time step,
the length of the run, and the number of constituents modeled.
Typical execution times (CPU) for DYNQUAL on an IBM 370/168
are given below in Table 3.1.  All of the runs in Table 3.1
were on a network with 133 junctions and 139 channels and used
a computational time step of 1/2 hour. DYNQUAL requires
approximately 275K of storage for execution.
Number of
Constituents
2
2
2
3
3
6
6
6
6
Length
of Run
(days)
2
11
105
11
42
1
11
21
42
CPU
(sec)
6.0
17.5
166.8
24.5
78.0
8.1
42.0
93.2
180.0
              TABLE 3.1  DYNQUAL EXECUTION TIMES

-------
                            - 151 -


                          CHAPTER 4
                  SAMPLE INPUTS AND OUTPUTS
                    4.1 THE MODEL NETWORK
     The Potomac Estuary model network is composed of 133 junctions
and 139 channels.  Figures 4.1 through 4.6 depict the Potomac
estuary and the configuration of channels and junctions used by
the Dynamic Potomac Estuary Model.

-------
                       - 152 -
                                 Maryland
Virginia
              FIGURE 4.1  THE POTOMAC ESTUARY

-------
                                                                                    Ul
                                                                                    w

                                                                                    I
FIGURE 4.2  POTOMAC ESTUARY MODEL NETWORK - SEGMENT 1

-------
                       - 154 -
                                      Piseltl»»
                                            Creek
FIGURE 4.3   POTOMAC ESTUARY MODEL NETWORK - SEGMENT  2

-------
                       -  155  -
         GmiUo Coti
, FIGURE 4.4   POTOMAC ESTUARY MODEL NETWORK - SEGMENT  3

-------
                      - 156 -
FIGURE 4.5  POTOMAC ESTUARY MODEL NETWORK - SEGMENT 4

-------
                         - 157 -
                                         P'»«J Poiit
'FIGURE  4.6  POTOMAC ESTUARY MODEL NETWORK  -  SEGMENT 5

-------
                       -  158 -
            4.2  SAMPLE  REGAN INPUT/OUTPUT
              —  data  deck listing  —
THIS  HUH  FINOS THE COEFFICIENTS  F0°  A "rAN TIOCL CONDITION  AT  PINE* POUT

       25
      .5    -.77
     2.5      .*?
     4.5    1.03
     6.5      .03
     8.5      .39
    10.5    -.17
    12.5    -.37

1.
3.
5.
7.
9.
11.
10
-.27
.57
1.03
.83
.27
-.27
00001
1.s
3.5
5.5
7.S
9.5
11.5
12.5
-.09
.75
LOT
.67
.H9
-.29

2.
&.
*.
3.
10.
12.
0.
.09
.93
.9-5
.57
-.01
-.37

-------
THIS r.U»' FJVQS THE COEFFICIENTS  FOR  A  H^AN TIDAL CONDITION AT PINEY POINT
                                                                                                              PROTECTION  AGENCY
                                                                                                  LEAST SOUAPES CUHVF  FITTING
         KHM3ER OF PAT* POINTS
                                       OF COEFFTCI^MTS
                                       (NCOTFF)
TT1AL PERIOD (HOURS)
      CPERTOD)

       1Z.C0
                                               <2»PI/PERIOO>
                                               (V)
                        OF
         ITTFATIOMS ALLOUEO

                 1"
                                MAXIMUM  RESIDUAL
                                    ALLOUEO

                                     0.0000
 O
 K

f
                                                                                                                            CO
        <£>
         TI"E
            S

            0.0
                                PHASE  AKGLF SHIFT
                                    (PSHIFT)

                                      O.U

-------
»XN*«*X* »»*» xxx*xx»«xxxxx*xxx«   SUMMA°Y  0F  INPUT 04TA   »»<•»« »»»•*»»« MHMK xx«*«»x« KXJ*« •

                    08STPVATION NO.             TIME
1
2
3
4
5
6
7
8
V
10
11
12
13
14
15
16
17
18
19
20
21
2?
23
24
25
0.50
1.00 '
1.50
2.00
2*50
TeOO
2.50
4.00
f .50
5.00
5.50
6.00
6.50
7.00
7.50
P. 00
9.50
9.00
9.50
in. oo
10.50
11. UO
11.50
I'.UO
12.50
-0.370
-0.270
-0.090
0.090
0.330
Oe*70
0.753
0.930
1.030
1.030
1.030
0.950
0.930
0.830
0.670
0.570
0.390
0.270
0.090
-n.010
-n.170
-0.270
-0.2VO
-0.37P
-0.370
                                                                                                                                  O
                                                                                                                                   I

-------
J
1
2
?
t
c
f,
•7
SJ"?MA XY(J>

e.?*W9i
2.75709?

-0.?67Z49
-8.435359
-0.6081 71
0=19*27?
K = 1 2
75.000000 -0.000011
-O.U00011 12.5000U3
-O.U00015 -0.000006
-0.000029 -0.000009
-0.00002" -O.OOOOOb
-3. 000034 0.000003
-0.000061 0.000015
,
-0.000015
-0.000006
12.500008
-0.000007
-0.000017
-O.OOU009
0.000024
& 1 bnfl A A \. R » J 1
A 5 6
-U.OOU029 -O.OOOOi:P -0.000034
-3.000009 -P.OOOUOfl O.OOQ003
-O.OOU007 -O.OOOJ17 -O.OOOOU9
12.500005 -0.000037 -0.000043
-0.000037 12.4™9975 -O.U00036
-0.000043 -O.OOOL36 12.499970
-O.OOU010 -0.000059 -0.000045
T
-0.000061
O.OOU015
O.OOU024
-O.OOU010
-0.000059
-0.000045
12.499974
h
c
* XXXKXK XKKX XXXXKVXKKK XKXXKKXXX *"
SOLUTION
**XK»XX»X»»KXHX»K»XKX*»*XXKKKK
DUMBER OF ITERATIONS
2
THE CURVE WHICH PEST
Y(T) = 0.320099 + 0.220567
» -0.678829

MAXIMUM RESIDUAL
.000002


FITS THE OBSFRVE!) DATA IS GIVEN BY
SINCWT> + -0.
COSCWT) + -U.
066968 SII»t2VT> + -0.121389 SIN(3UT)
04»655 COS12WT) » 0.015540 COSC3WT)



-------
Kxx«xx»x(xxxKK»x«x»xxxNxxxxx»x



   08SFPVATION          TI*F
         SUMMADT  Oc  OUTPUT DATA   *»*«*«*»*x««x*««»x«x*«*xx»»UKx



               0«SFRVEl           PRFTICTFD          RESI"UAL
1
2
3
4
3
c
t
;•.
">
10
11
12
13
U
15
If
17
1R
19
?0
21
2?
?3
24
2 Si
0.50
1.00
1.50
2.00
2.50
3.0Q
3.50
4.00
4.50
5«nj
5.50
6.00
6.50
7.00
7.50
8.00
3.50
9.00
9.50
10.03
10.50
11.00
11. "0
12.00
12.50

-O.??0
-0.090
0.090
0.^30
0.570
0.750
0.030
1.030
1.03(J
1.030
0.950
0.°3U
0.»3U
0.670
0.570
0.^90
O.?70
0.090
-0.010
-0.170
-0.'7U
-O.?90
-U.'7U
-0.'70
-0.3509
-0.2616
-0.1101
0.09A5
0,3300
0.5655
0.7701
0.9216
1.0109
1.0419
1.0268
0.978?
0.90*5
0.8114
0.6960
O.L600
0.40"6
0.2514
1.1CQO
-0.03f"
-0.1514
-0.24r<5
-0.31P'
-0.36^8
-0.3819
0.0191
n.ou8A
-0.0201
. 0.0045
-P.UOOO
-0.3045
P.U201
-O.UJ«4
-n.U191
0.0119
-o.om?
0.02S'?
-O.U245
-O.U186
0.0260
-0.0100
0.01R6
-0.0186
0.0100
-0.0250
O.L1S*
0.02«5
-O.U28?
0.003?
-O.U1 1«
                                                                                                                               
-------
           - 163 -.
4.3  SAMPLE DYNHYD INPUT/OUTPUT
       — data deck listing —
POTOMAC ESTUARY HYDRAULICS
SIMULATION OF « ME»N TIDAL
CONTROL DATA
1*3 139 2000 90. 0.
1500
114
1500
2001
40 10
9 25 34 78
1
2031
- 133 JUNCTION NETWORK
CONDITION FLOW = 11*030 CFS

42 51



54



59



1






AT CHAIN 9P10GE




JUNCTION 0*TA
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
13
19
20
21
?2
?3
24
?5
26
77
28
29
70
71
72
33
74
35
36
37
38
79
40
41
42
43
44
45
*6
47
48
49
50
51
-u. 75153 36154880.
2.0017 4332467.
1.9992 45*5773.
1.9982 4443556.
1.9945 4665737.
1.990& 8442756.
1.9815 88P7111.
1.°739 12806311.
1.9616 13219578.
1.046° 8664937.
1.9419 7109689.
1.9305 9442556.
1.919S 8Pf579l.
1.90 5940600.
1 .87 10561100.
1.85 11731203.
1.»259 19773808.
1.7958 22•>
3;
?4
25
26
27
?8
29
ro
31
*2
•«3
34
75
5*
37
78
'9
40
41
42
43
44
45
46
47
4*
4°
*Q
0
2
3
4
5'
6
7
o
9
10
11
12
13
134
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
76
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
0
0
0
0
0
0
0
0
66
0
0
77
0
136
78
79
0
0
81
0
0
0
82
0
0
0
83
84
0
0
0
0
0
85
86
89
91
92
0
0
0
93
94
0
0
0
95
96
0
0
0
0
0
0
0
0
0
0
9
0
0
0
0
0
0
0
an
0
P
0
0
0
0
!5
0
0
0
0
0
0
1
0
0
0
0
n
90
0
0
P
3
0
0
0
0
0
0
0
0
3
3
0
0
0
0
0
0
0
0
0
n
0
0
0
0
0
0
0
0
0
0
o
0
0
0
0
0
3
0
n
0
0
0
0
0
n
0
130
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

-------
                        - 164 -
 ^2   -0.7323235286256.
 53   -0.2609218945712.
 5
-------
- 165 -

112
113
114
115
11i
11 7
118
11?
170
171
122
173
124
125
126
127
128
129
130
171
112
173

2.006?
2.0211
2.1090
1.6995
1.7026
1.7045
1.7066
1.5242
1.526°
1.5309
1.5337
1.5364
1.5291
1.5316
1.5354
1.2017
1.229"
1.90
1.90
1.90
1 .90
1.90

250CJOO.
2400000.
•""6711. -1
11C?0000.
6400000.
4666657.
3777770.
11C*OCOO.
7200000.
6P50000.
3770000.
2160000.
8200000.
3SHOOOO.
1700000.
12333080.
10000000.
8030800.
4"405GO.

0.0
0.0
1000.
0.0
P.C>
0.0
0.0
O.o
0.0
O.o
O.u
0.0
0.0
0.0

0.0
0.0
J.O
o.a
2970300. -479.0
66P0700.
39*0400.
0.0
0.0

11? 114
114 115
1 0
116 117
117 116
11?- 119
11P 0
TO 121
171 122
177 123
173 124
124 0
125 126
126 177
177 0
173 129
129 0
17 131
171 133
172 133
1*5 136
1*7 0
1
0
0
0
0
0
0
0
0
125
0
0
0
0
0
0
130
0
132
134
135

n
0
0
0
0
0
p
3
0
0
0
0
0
0
0
0
0
o
0
0





















137 13«
0
0


0
n
n
0
0
0
0
0
0
0
0
0
0
0
3
0
0
n
0
0
0
0























CHANNEL DATA
1
2
3
/.
5
6
7
8
9
10
11
1?
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
73
31
72
73
34
35
'6
37
7b1* .
707'.
2351 .
436 S.
3749.
55?7.
3590.
5439.
40*5.
16°0.
36°6.
3010.
2270.
3600.
4180.
3355.
6177.
2640.
53*6.
3274.
52«P.
300".
5277.
5069.
501*.
4o05.
8765.
9081.
670*.
8342.
55°7.
5650.
40*5.
2'4. 4152.0
800. 26131.9
955. 33959.7
1181, 24567.9
1521. 26410.5
1945. 261«6.3
23C0. 26225.1
2912. 30441.9
2920. 35774.7
2V53. 43274.0
325P. 44847.0
3503. 44042.6
2475. 39785.5
2100. 331180.
2340. 79952.
3738. 50759.5
4671. 60286.4
5506. 60959.9
4117. 62670.0
3337. 60623.7
3052. 60130.6
3319. 76971.4
4221. "1408.6
5967. 82151.9
5355. 80322.6
43J»». 73405.8
54*9. 83224.1
6604. 101276.8
6223. 112189.0
7308. 118032.9
8873. 126069.4
756?. 134497.4
7908. 134688.9
6706. 1027T. 140505.3
8026. 13474. 172403.4
1050'. 10224. 190830.3
13464.
7824. 176749.1
18.54
32.67
35.56
23.77
17.36
13.47
11.16
10.45
12.25
14.66
13. 77
12.57
16*08
15.8
12.8
13.58
12.91
11.07
15.22
18.17
19.72
23.19
19.29
13.77
15.00
16.73
16.13
15.34
18.03
16.15
14.27
17.79
17.H3
13.68
12.80
16.67
22.59
0.020-1.90449
0.020
0.023
0.026
0.020
0.320
0.020
0.020
0.020
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.017
0.014
0.014
0.014
0.30452
0.23600
0. 32*48
0.3079.5
0.31513
0.32046
0.28387
0.23035
0.23616
0.231 '4
0.24744
0.27437
0.7
0.3
0.26816
0.23327
0.23897
0.24435
0.25840
0.26528
0.21068
0.21452
0.22040
0.23472
0.26567
0.23674
0.24705
0.23976
0.24301
0.24266
0.24380
0.25731
0.26183
0.27905
0.32559
0.39007




































2
2
3
4
5
6
7
8
9
13
11
12
13
14
15
16
17
13
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
114











7
4
e
6
7
8
9
10
11
12
13
129
























15
16
17
18
1°
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

-------
- 166  -
T'8
;;t»
LQ
41
1,2
t3
14
15
16
47
48
49
50
51
52
<3
54
55
*6
57
58
59
60
61
62
t 3
64
65

7<:
7V
7H
79
8 ii
8t
8<:
PS
H4
85
86
87
3d
89
90
91
"2
93
94
95
96
97
9715.
1214*.
10676.
11246.
124*0,
12310.
10o'4.
17529.
1J56H.
14256.
129*6.
12038.
9620.
6441 .
105*0.
9451 .
6611 .
106*5.
10117.
8712.
1220?.
10612.
11616.
670S.
8712.
8659.
8659.
161Q/ .
2600.
26*0.
2380.
2510.
26*0.
3035,
3430.
3300.
3035.
3430.
3565.
4830.
2100.
3450*
3405.
5550.
3700.
4320.
105*0.
6250.
10000.
7350.
T26^S.
8190.
16200.
6450.
12130.
26700.
22410.
24810.
70900.
17090.
893*.
12130.
16807.
16701.
14316.
13802.
11116.
8074.
10217.
12745.
11875.
105 °9.
10325.
17716.
25490.
21717.
241 f.
30417.
31129.
33034.
2701".
25500.
29075.
28258.
27676.
?5729.
24385.
2251H.
3200.
1500.
1250.
1250.
1150.
750.
750.
750.
5*0.
400.
350.
1311.
4500.
4200.
6231.
2922.
3412.
4140.
6214.
8000.
7250.
9930.
S401.
234'.
4601.
3531.
240P.
37P6.
3435.
5027.
5303.
42 TO.
181020.1
207392.6
236116.5
236963.9
220656.1
221357.3
198484.4
168169.3
137353.8
205985.9
215773.0
236331.4
246189.1
337303.5
444505.3
339187.9
418709.1
536040.6
604968.0
635735.4
549942.2
506362.3
553632.9
582908.5
587217.7
607281.9
663242.9
717908.3
66282.1
33752.8
29150.1
29153.5
26599.1
15672.3
9806.8
9875.7
4023.1
5450.2
3434.4
18159.5
26100.
36960.
30167.4
16513.6
18271.7
17364.6
31580.0
47361.8
64932.3
80807.3
30211.7
7945.5
43228.3
11486.8
9826.4
18352.9
12978.8
17449.5
33384.8
21240.5
20.26
17.10
14.05
14.19
15.42
16.04
17.36
20.83
18.34
16.16
16.17
22.30
23.35
19.04
17.44
17.92
17.32
17.63
19.44
19.25
20.36
19.86
19.04
tO.63
21.22
23.60
27.20
31 ."9
20.71
22.50
23.32
23.32
23.13
20.90
13.08
13.17
7.32
13.63
9.81
13.35
5.8
8. 8
4.34
5.65
5.36
4.20
5.08
5.92
8.96
8.14
5.60
3.39
V.40
3.26
4.08
4.85
3.78
3.47
6.*0
5.06
              0.014 0.421?1
              0.01* 0.40690
              0.014 0.4094o
              0.014 0.46581
              0.014 0.59212
              0.014 0.66534
              C.014 0.81313
              u.014 1.00756
              0.014 0.97969
              0.014 0.98872
              C.014 1.06056
              0.014 1.00881
              0.014 0.99265
              0.014 0.75213
              0.014 0.60939
              0.014 0.72553
              0.014 0.6V764
              0.014 0.58223
              0.014 0.54103
              0.014 0.59238
              0.014 0.713Q7
              0.014 0.79615
              0.014 0.77384
              0.014 0.75720
              0.014 0.76198
              0.014 0.75113
              0.014 0.69604
              0.014-0.64889
              0.024 0.01674
              0.024-0.02426
              0.074-0.02564
              0.024-0.02356
              0.024-0.02304
              0.024>0.03556
              0.024-0.04981
              0.024-0.04306
              0.026-0.06187
              0.026-0.03390
              O.O'6-O.05114
              0.022-0.00773
              0.0?0   -0.1
              0.020   -0.1
              0.072-0.01663
              0.022-0.U1924
              0.022-0.049*7
              0.022-0.02909
              0.022-0.08672
              0.022 0.01 OPS
              0.022-0.11236
              0.022 0.08218
              0.022-0.08503
              0.022-0.12455
              0.022-0.08654
              0.022-0.11530
              0.022-0.19095
              0.022-0.39106
              0.022-0.39595
              0.022-0.47*92
              0.022-0.42867
              0.022-0.20701
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
1
9
66
67
68
69
70
71
72
73
74
75
12
15
16
16
19
23
27
28
34
35
36
36
36
36
37
38
42
43
47
46
52
39
40
41
42
43
44
45
46
47
43
49
50
51
5?
53
54
55
56
57
58
59
60
61
62
63
64
65
65
66
67
68
69
70
71
72
73
74
75
76
78
79
80
81
82
63
o4
85
86
87
87
88
89
90
91
92
93
94
95
96
97

-------
                            -  167 T
98
99
103
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
1?2
123
124
125
126
127
128
129
1?0
171
132
133
134
135
136
137
138
139
19950.
36830.
24650.
72250.
73000.
26310.
16140.
3200.
316";.
2770.
2640.
2700.
3400.
3400.
3500.
3200.
4200.
2700.
3350.
2850.
1850.
14*0.
4300.
2500.
3CDO.
2200.
2000.
2750.
3000.
2600.
5300.
9000.
12500.
24"0.
2610.
UOO.
2490.
25«0.
2280.
2700.
3750.
4140.
4077.
8160.
8160.
4778.
4100.
4792.
5740.
300.
300.
250.
250.
200.
950.
930.
900.
°0.
FO.
70.
3000.
3iOP.
2200.
1200.
4000.
4050.
2000.
1600.
500.
3000.
1200.
400.
4500.
750.
2700.
1800.
900.
1650.
20PO.
1350.
2700.
1500.
1800.
2250.
18346.9
105807.1
26277.4
43217.3
36960.8
29G44.9
40281.6
3705.3
3511.3.
3456.2
2201.6
1116.1
19502.2
20951.6
22075.7'
1081.4
558. 5
312. 4
18881.4
19836.6
12319.1
4206.7
•51069.9
'1071.3
9543.6
5405.1
1991.6
17319.6
6564.2
1352.4
31461.4
2855.6
10405.1
28440.
9720.
14520.
75600.
9180.
15660.
8700*
15840.
19800.
4.55
12.97
3.22
9.05
9.02
6.06
7.02
12.35
11.71
13.83
8.81
5.58
20.53
22.53
24.53
12.02
11.17
4.46
6.29
6.20
5.60
3.51
7.77
7.67
4.77
3.38
3.08
5.77
5.47
3.38
6.99
3.81
3.86
15.8
10.8
8.8
17.8
6.8
5.8
5.8
8.8
8.8
0.022-0.29928
O.l}?2 -0.31 554
0. 022-0. S6«71
0.022-0.15873
0.022-0.15133
O.P?2-0. 24727
0.022-0. 07*58
0.02b-0. 02762
0.028-0.02109
0.028-0.01531
0.028-0,01746
0.028-0^.01193
0.024-0.00945
0.0?4-0. 00505
Of. 0? 4-0. 00 150
0.035-0.11903
0.035-0.06776
0.0*5-0.14475
0.03 5-0. Q32 74
0.035-0. 01 *84
0.035-0. 01 S92
0.075-0.03113
0.0"»5-0. 05357
0.035-0.04047
0.075-0. 04^81
0.075-0.04779
0.075-0.06342
0.0^5-0.03033
0.075-0.03509
0.0'<5-0.06«40
0.075 0.05842
O.O* 5-0. 12660
0.035-0.26420
0.017 00.2
0.020 0.15
0.0?0 -0.10
0.017 -0.25
0.0*0 0.1
0.0?U -0.1
0.0?2 -0.1
0.0?0 -0.1
0.020 0.1
55
57
99
60
61
60
63
76
77
105
1J6
107
66
109
110
73
112
76
83
115
116
117
as
119
120
121
122
120
124
125
67
127
36
129
129
130
14
131
14
132
79
79
98
99
100
101
102
103
104
77
105
106
107
108
109
110
111
112
113
11'
115
116
117
11*
119
120
121
122
123
124
125
126
127
123
127
130
131
131
130
132
132
133
132
40
SEAWARD 30UNDAPY
7

HY
-------
        FSTU»PY HYDRAULIC?
ST"UL»T1U" OF A I'FJN  TIDAL
                        13T JU'TTICH1
                                FLOW
11*000 CFS
           CHAIN  BRIDGE
   ENVIRONMENTAL  PPOTFCTIO* AGFNCY
DYNAMIC FLOU  !•»  * '-D fFNS ION*L
M'M3EP OF
JU"CT TO^S
HvrRAULlC
(••'CYC
"UH?CR OF
(MC>
139
OF uvOPAULlf TIMF
CYCLES ''TEP. lv SEC.
STlRTT'S TIME
CTZPROJ
                           90.0
                                                     0.0
PRINTOUT PFCI^S
   SI TYCLF
   ( IPPINT)
     AT CVCLE
     CPUFCVCJ

       2001
                              "0.  0^  CYCLES
                            SrTHbFN  PRINTOUT
                                 ( INTPVL)
NO. OP JUNCTIONS
    PPINTED
    (NOPRT)

       n
                               f
                                                                                                                  03
                                                                                                                  Ct-
                                 NO.  Or CYCLES BETWFEN
                                 UP^ATF OF  PtSTART PATA
                                        (INTPUN)

                                          ?OD1
                                                                                                                                  03

                                                                                                                                  I
IS
      CAI.I ri •>
("OFS ^YOFTT =  1 ')
                                          rOR HTOEX IS
                                 STORED BEGINNING AT CYCLE
                                           CITAPE>
                                    1500

-------
                                           SUrt*ARV OF  JUNCTION DAT*
                                                                         KXMK*ltX*«KKK««llo
'1
->?
->l
Ik
•? c;
?6
'7
*F
'9
•*0
T1
7?.
»3
*4
*j
•**
'7
»a
*y
'.(•
11
«?
43
44
45
*£
'.7
4S
4V
•50
r1
-3.7515
'.0017
1.999'
1.99??
1.9945
1.9904
1.9815
1.97*9
1.9616
1.9469
1.9419
1.9305
1.9193
1.9010
1.8700
1.8500
1.825?
1.79 S3
1.7818
1.751?
1.731?
T.6974
1.6320
1.6522
1.621"*
1.5331
1.5516
1.4V1*
1.4255
1.38n3
1.3222
1.2836
1.2456
1.217?
1.1705
1.11^4
1.C30/J
".931?-
0,8531
n.766?
1.6967
r.524"
P.53''4
0.44°.?
0.3657
).207*
n.120<»
0.009*
-o.ue¥6
-O.U'.?
-".'.J7'
j36154R?U.
4332457.
«*65?'3.
4243556.
4.5657?3.
8442756.
8*87111 .
1?506311.
13P19578.
R66A933.
710V6P9.
9442556.
8«85791.
5940600.
10561100.
11331200.
19773808.
22«S4304S
1°329456.
15552445.
1?108489i
19775622.
14441556.
26772416.
29216363.
23661920.
29327456.
42769216.
53878112.
49380768.
49723456.
53544832.
43324656.
59099780.
£1094890.
120531440.
926481?*.
B3983200.
119<»76nOJ.
17647409*.
190184175.
mc-62092.
1663U0064.
2o9735324.
12U20144.
ai
-------
 
                 '.010*
                 1.9323
 1,8501
 1,7878
 1.6979
 1.5S63
 1.517?
 1.t150
 1.2U1?
 1.1367
 1 .04^8
 •7,0814
 1.25^6
-1.571?
 ".021f
-P,42U
-0.431S
  ,VcM
                               349R1b880.
                               371925504.
                               32SCV0432.
                               225554°10.
                               2413561440
                               2794106P8.
                                 2C8000U,
                                 3?00000.
                                 2T6000U,
                  1^60000.
                  1"»20000.
                  1000000.
                  1040000.
 14061500.
 15071500.
 21218000.
 16219000.
 17920000.
 17884992.
 31?OOOTu.
 8055000U.
 55666544.
 60430992.
 1<3?ifc030.
 74540992.
 22772992.
101090902.
 76984992.
124Q74°92.
                                7173600U.
300699914.
2011|OUOOJ.
154080000.
1^5306010.
                V2648HO,
                  eooooo.
                 nouoou.
  "60000J.
  •«?oooou.
  UOOOOU.
 1.0
 0.0
 OolJ
 0.0
 n.o
 1.0
 1.0
 1.0
 1.0
 1oO
 1.0
 1.0
 1.0
 0.0
 1.U
 1.J
 1.0
 r.o
 0.0
 1.0
 0.0
 n.o
 c.o
 n.O
 1.0
 n.o
 1.0
 0.0
 1.0
 1.0
 n.o
 n.o
 n.o
 i.o
 o.o
 n.o
 o.o
 i.o
 0.0
 1.0
 1.0
 1.0
 0.0
 0.0
 r,o
 i.o
 i.o
 i.u
 r.o
 i.u
 I.U
 I.u
n.j
 n.o
53
54
55
56
57
58
59
60
61
62
63
64
*6
67
68
69
70
71
72
73
74
*5
76
115
77
78
79
*U
"1
82
•3
14
95
«6
«8
*9
90
91
02
03
94
95
°6
°7
og
09
100
101
102
113
int
1J6
107
10«
119
110
111
112
i f '
54
?5
56
C7
rP
50
60
M
6?
**?
ft
f 5
67
6S
f9
"'O
71
72
7'
7/
'5
76
105
10*
0
138
1*9
0
1
11*
n
1?0
P7
P7
1
n
0
1
1
r%
1
1
1
1
n
110
0
0
o
n
n
in->
irr
10"
n
111
11?
n
1"
0
5S
1
yo
1
1
1U1
102
1
10A
1
3
110
1
1
0
n
0
0
115
n
n
11*
1
ft
139
1
1
a
1
P
P
8*
12«
n
i
0
1
0
0
1
1
n
i
1
•3
1
n
n
T
1
0
n
T
1
n
n^--
n?crz
"
V
0
G
0
0
0
103
0
0
a
0
0
a
0
0
u
0
0
0
0
0 •
c
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
t;
0
0
0
0
L
0
u
u
t;
0
0
0
0
0
0
II

0
0
0
u
0
'J
0
a
0
0
0
n
3
0
0
0
0
a
0
0
0
0
u
0
0
0
u
0
0
3
J
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
J
0
1
0
0
J
0
0
0


                                                                                                                    -J
                                                                                                                    O

-------
115
116
117
113
1 '7
1.599S
1.7026
1.704?
1.7066
1.L-242
1.52*9
1.5309
1.5337
1.536/i
1.5291
1.1316
1.5354
1.2017
                1.9000
                '.9000
                1.VUOO
                1.90TD
                1.9UOO
11080000.
 6400000.
 4666657.
 3777770.
1156000U.
 7?OOOOJ.
 608UOOU.
 ^720000.
 2160000.
 S20UOOU.
                                120000U.
               inoouonu.
                P03U800.
                46405JO.
                2970300.
                6600700.
                '060400.
   1.U
   0.0
   n.a
   0.0
   n.o
   T.J
   P.O
   0.0
   o.u
   n.u
   T.U
   1.0
   n.o
   i.u
   n.o
   i.u
-479.0
   P.U
   0.0
116
117
118
119
1'0
1'1
1?2
123
1?4
1?5
126
1^7
123
1'9
13
1^1
172
115
1*7
117
11P
11"
0
121
1?2
123
1?*
n
1?f
127
n
12<-
n
171
1'7
173
136
n
T
0
n
n
•T
125
T
0
T
n
n
n
130
T
13?
134
1 J5
137
n
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
138
0
0
0
J
0
0
0
0
u
J
0
0
u
0
n
u
Q
3
0
0

-------
« ,( *«** «»< II«K«IIK«»*I(«»X «»* «K mtOKVK «>««><
                                                           Jlp CHAMN'EL  TATA
                                                                                           »* «**• tt»*« *»** KHHIIItHKKHMKKKKWMKII K K K M » K H K M K
           LENGTH
V'JITH
VELOCITY
HYD. RADIUS
JUVTIOK'S «T  ENDS
1
a
5
&
5
5
7
3
9
10
11
12
13
14
15
16
17
ie
19
20
21
^2
Zl
24
25
26
27
2*
20
JJ
31
3?
33
34
35
36
37
3S
3V
40
61
42
43
44
45
46
47
in
is
vj
'-.1
r"U.
7C76.
2°51.
4065.
"•749.
T597.
*59U.
11 /. iV.
4065.
1-690.
•» 596 .
•"•'1U.
??70.
3690.
1180.
3*55.
M77.
?«4d.
5386.
T274.
5?RO«
^109.
5?_27.
C069.
5016*
4*05.
«765.
C081.
47116.
"42.
•^597.
5650.
4065.
t-'oe.
°026.
10507.
13/64.
"715.
12144.
1T76.
11746.
12*60.
1'''30.
1UP24.
17529.
n^eo.
1«?56.
1"^T6.
I'uSfe.
°'?0.
' •'• '• 1 .
224.
B^O.
9S5.
11'?.
1571 9
19'*5.
2350*
2VT.
2920.
2953.
325««
3513.
2475.
2110.
2240.
3738.
4671.
5506.
4117.
3337.
.1052.
3319»
42'1.
5967.
5355.
43P8.
5469.
6604.
62?3*
73n«.
P.833.
7562.
7908.
1027T.
134-"4.
102?4.
78?4.
89^A»
12130.
15fc07.
16701.
14316.
13P02.
11116.
8374.
Uc17,
127'o.
-1K7-5.
H.-i1?".
1.-J3?-;.
17; 1'-.
4153.0
26136.0
33959.8
24570.0
2640406
26199.1
26226.0
3U470.4
35770.0
43291.0
44P62.7
/.4032.7
3V798.0
33180.0
29<552.0
50762.0
60302.6
6J9-:1.4
62660.7
606^3.3
60185.4
76967.6
61423.0
e216£.f
t0325.n
72411.2
oc214.°
1U1305.3
112200. f
118024.1
126046.9
134527.9
13*673.?
14U534.6
172467.2
1VOP32.3
176744.1
td1002.7
2U7423.1
?J6138.3
2it«'P7.1
'20752.7
?2l3°3.f
198531.7
16JS181.4
U7379.7
?U59S9.2
?157iS8.7
'3t357.7
?«.6?51.'
T .7^1 7 .r
0.020
0.020
0.020
O.U20
00G20
T.020
3.G20
0.020
0.020
0.017
H.017
1.017
0.017
0.017
P. 017
0.017
O.U17
0.017
0.017
O.U17
0.017
0.017
0.017
0.017
n.J17
0.017
0.017
O.U17
O.U17
0.017
0.017
0.017
O.U17
0.017
0.014
0.014
O.OU
0.014
0.014
0.01A
O.UU
O.OU
O.U1/
O.U14
O.J1A
0.01*
O.J14
O.G1*
O.U«
l.ul t,
n, ,11 '.
-1.90449
0.30452
0.2^600
0.32»4U
C931793
0.31513
Q.3?046
0.29387
0.2"035
0.23616
0.2^134
0.24344
0.27437
0.30000
0.300JO
0.26P16
0.23327
0.23P97
0. 24435
0.25840
0.26528
0.2106?
0.21452
0.2204U
0.23472
0.26567
0.23674
0.247Q5
0.23976
0.24301
0.24266
0.24360
0.25731
0.25183
0.27905
0.325S9
0.39007
0.4?121
0.40690
0.40"98
0.465K1
0.59212
0.66534
O.P.1513
1.00756
0.97969
0.98R7..
1.06056
1.U'lr.f.1
0.5??65
)<-r'-> i >
13.5
32.7
35.6
?OoP
77.4
1305
1!='
1U.*
12.'
14.7
13.8
12.6
16.1
15. f-
12."
13.6
12.9
11.1
15.?
18.7
19.7
23.?
19. J
13. P
15.0
16.^
16.1
15.3
18.0
16.1
14.3
17. *
17.1
13. r
12. f
18.7
?2.f
'0.'
17.1
14.1
14. '
15.4
1 j.O
17.0
73. °
18. T
16.?
IS.7
?2.<
">3.r
1 o . n
2
2
3
&
5
6
^
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
4 A
45
46
47
(.8
49
5U
r1
114
7
4
5
t
7
O
c
9
10
11
12
12
129
15
16
17
16
19
20
21
22
23
24
25
26
27
20
29
30
31
32
33
34
35
36
37
36
39
40
41
4<.
43
44
45
46
47
48
49
5J
51
S2
                                                                                                                                              I

                                                                                                                                              M
                                                                                                                                              •-J


                                                                                                                                              I

-------
54
55
56
57
5f
5-9
60
61
62
63
64
65
66
67
61'
6?
70
71
72
73
74
75
76
77
7?
7?
MJ
61
82
83
84
15
36
87
08
89
9C.
91
92
93
94
95
96
97
98
99
103
111
1'J2
103
134
105
106
107
US
1U9
11J
1 11
1 1?
*5>11 ,
10665.
10137.
?712.
1'702.
10612.
11616.
6705.
**71Z.
?6550.
3'"30.
24'50.
32250.
3 MOO.
2*^10.
1M4U.
3700.
7165.
'770.
2*40.
'700.
•<*OQ.
*«00.
":')';>.
241*7.
30413.
31129,
33034.
2 70 1 » .
'5s 00.
29075*
26253.
27676.
'1:72°.
2436*.
72510,
3213.
1500.
M 50.
1250.
1150.
750.
750.
750,
5*0*
4^0,
3SD.
1311*
4500*
4200.
5231.
2922,
2412,
4140*
6214.
8000.
7250.
99^0,
5401,
2347.
4601.
3531.
240".
3796.
343t>4
5027.
5303,
4200,
41)7.7,
8160.
EI60.
4778.
4 1 00 .
(.792,
t>740.
300,
300,
250,
250,
200,
V50,
V3),
ynn.
/•1B919.0
•=36181.3
605147.8
*35904. 5
550f86./:
50643U.O
553587.7
562963^.6
5872*4.7
6U7204.1;
663'9V.1
717343.9
66272.0
33750.0
29150.0
29150.0
c6S99.5
15675.0
9Mt 0.0
9"77.5
4026.0
545Z.O
3433.5-
1t157.3
26100.0
36960.0
30158.0
16509.3
16288. 3
17338. P
31567.1
^7360.0
64960.0
6U83U.'
30245.6
7956.3
4324V. 4
11511.1
9824.6
1CT62.1
12«?4.3
17443.7
33408.9
t1252.0
18766.3
1 US'T-S.?
26275.2
43240."
369"2.0
290*9.5
40294."
3705.0
3513.0
3457.5
2202.1;
1116.0
1V503.5
20952.9
r2'"7 . 1
0.014
0.014
0.014
0.01A
0.014
O.U14
o.oi/.
0.014
0.014
0.01&
O.U14
0,014
0.024
0.024
0.024
O.U2*
0.024
0.024
0.024
0 . U 2 '•
0.026
3.02*
0.02*
0.022
n.020
0.020
0.022
0,022
0.022
3.022
0.022
0.022
0.022
O.U22
0,022
0,022
0,022
0,022
0,022
O.U22
0.022
0.022
0,022
0.022
O.L22
O.U22
0.022
H.02'
0.022
0.022
0.022
0.02B
T.028
T.u2".
0.02P
O.J2"
0.02'.
0.02A
n. 02'
 0.69764
 0.58223
 0.54108
 0.59238
 0.71357
 0.79615
 0.77384
 0.75720
 0.76198
 Q.75113
 0.696J4
-n,64S39
 0.1,1674
-0.02426
-0.02564
-0.02356
-0.02304
-O.U3556
-0.04°81
-0.04306
-O.U6187
-0.05114
-O.U0773
-0.10000
-o.iooao
-0.01663
-0.01924
-0.04977
-0.02999
-0.08672
 0.01095
-0.11236
 0.08218
-0.08503
-0.12455
~
9V
1UU
101
102
103
104
77
105
106
107
10fc
10V
110
111
                                                             -J
                                                             00

-------
115
116
117
113
119
1 ?U
121
1Z2
123
1 ?4
125
1 29
1 JO
1 51
1 32
133
134
1 J5
136
137
•» 33
1 39
           1K50.
           14*3.
           4*00.
           ?500.
           "00
           2750.
            * 'ijw •
          1'5UO.
           '490.
           '610.
           1°00.
           '580.
           "80.
3^50.
A140.
7H.
3UOO.
3200.
2c^0.
120T.
4ono.
iJ5J.
2010.
1601.
:33.
3000.
*,zr,j.
400.
4bOn.
750.
a7m.
1bOO.
910*
1650.
2000.
1350.
2700.
1500*
18 OH.
2250.
T12.2
1687U.O
1V840.0
1t^20,n
^212.0
310«0.0
31063.5
9540.0
5408. n
1«90.0
173TO.O
e564.G
1T52.0
3U55.T
2P57.5
10422.0
co/40.0
972U.O
14520.0
35600.0
91PO.O
15660.0
8700.0
15»»4J.O
19800.0
O.U35
0.035
n.035
0.035
O.U35
0.035
O.U35
•0.035
0.025
0.035
O.u35
0.035
1.J35
0.035
0.03":
O.U35
O.OI''
O.U20
1.U20
0.017
0.020
0.020
o.oa?
O.U20
0.020
-0.14475
-0.0^274
-0.01884
-0.01892
-O.U5113
-0.05357
-O.U4047
-O.U4081
-0.04779
-0.06342
-O.UT033
-O.O'Suv
-O.U684U
 0.0*842
-0.13660
 0.2POJU
 0.15001)
-0.1QOJO
-0.250JJ
 0.10000
-O.IOOJil
-0.100JO
-o.nooo
                                                                    6.7
                                                                    6.?
                                                                    5.6
                                                                    3.1:
                                                                    7.P
                                                                    7.7
                                                                    4.R
                                                                    3. A
                                                                    4.0
                                                                    5.8
                                                                    5.5
                                                                    3.*
                                                                    7.0
                                                                    3.r
                                                                    3."
                                                                   15. P
                                                                   10. f
                                                                    8.8
                                                                   17.°
                                                                    6."
                                                                    5.P
                                                                               8.8
76
83
115
116
117
85
119
12U
121
122
120
124
125
87
127
36
129
129
130
14
131
14
132
79
79
113
115
11fc
117
118
119
120
121
122
123
124
i^5
12t
127
I2t
127
130
131
131
130
132
132
133
132
BO
                                                                                                                        -J
                                                                                                                        0^
                                                                                                                         I

-------
•i*MNMif«**Mit»«itit«K»«ii*«iiN*Hit    TTPAL  CONTITIOf'S  AT  THF SFAUA.PP BOUNDARY   « HKIIIHI immi *«»m* H» » *«»)!« Him H


          Tln«|_  PER'OD IS 12.50  HOU»S

                    IFVLL IS 0.370000 FFFT

                    »T TH«- SFAVAP^  BOUND»P> IS GIVEN  "Y
                    =  O.'SOOOO  +   U. 220557 SIS(WT>  + -0.066968 SIN('m> + -0.021589  SIK(?UT>
                                  +  -0.67««29 COS(tfT)  + -0. 04^655  COS +  Q. 015540 COS(3UT>

-------
SYSTF- STATUS »rTEr CYCLt




JUMCT ION
                                      37.50
                                                                  SY?TF* STATUS frTFc CYCLE  1560
                                                                                             3P.50  HOU"S
  tti
   A2
   51
    54
            0.7048
            0.">r71
-0.5191
            -0.5756
HfEL
f°EP
t
R
9
66
?5
«5
3?
0?
4?
O7
50
51
54
SP
VELOr I TY
(FPS)
2.6«719
-0.59606
0.71T4U
-0.8R093
0.94669
-0.9?R19
-1.06171
U07587
U04786
-0.32158
-1.20634
-0»81642
U. 77^55
-0.67216
FLOV

11116.0
-17567.4
25170.7
-5S76.6
-7T9R7.4
74677.0
-122943.3
124372.6
4259.6
-1R55»4.2
192578.9
-1679.5
-215521.6
228687.7
-5650.2
-296269.1
-3170p8.6
522250.4
-369470.6
374143.6
JUNCTION HE»0 ^HANfEL VELOrlTY
NUPBF" (rT> NUM°ER C^PS)
114 T.5A&D
1 ?.77931
9 1,2156
? -T.6<»200
9 0.8«733
*6 -0.1?396
?5 0.^590
'4 -1*10543
?4 3.55b8
?' -1.12353
?4 1.10^61
S5 0.0<>894
?8 O.C285
^7 -1.26316
78 1.2P*93
°2 -0.2''682
42 0.?794
41 -1.1T3U7
4? 1»2P?52
•51 -0.3356
50 -1.35«»72
51 0.99P11
54 -0.3774
57 -0*87738
54 0.81627
5* -0.6'3U2
59 0.666(6
FLOW
(C^S)
11 149.1
-1958?. 5
?9«n6.5
-7919.2
"9990.8
-145355.6
147634. V
41*3.4
-?17836.5
227375.1
-2391.6
-261691.9
276970.7
-429°.7
-332514.9
334424.3
-339565.3
340260.7
-342156.1
337447.1
                                                                             -0.2*16
                                                                                                                                 (Ti
                                   -0.5*705    -^92317.6
                                                                                                     -262775.1

-------
SlSTt,1 STATUS «rTE? C1CLE 1C80
JUrCTION HF»P '-HA"HEL
NUMBEP 
-------
SYSTFtf SUTUS
 NlJHPrP
  114
   54
"US 4TEr CYCLE 1*60
'Hf'D CHA*"EL
(TT> NUMPER
Uo11f-9
1
-QS?7G5
9
66
25
74
-0.41V4
7.7
9?
-O.T42
41
4?
OT
50
•=1
O.SHt ^
3.6S99
41.50 '
83
-0.73*16
0.80539
-0. 2^774
P. 76690
-0.3*233
0.01580
3.2D251
-0.25332
0.6?976
-1.82544
•tOu^S
FLOW
(C^S)
11U/6.6
-15461.7
20751.3
-4097.4
-505t:5.3
52917.3
-85620.4
P9703.1
96.8
-130531.7
176319.9
-1803.2
-151475.9
159002.0
-5277.1
-73396.5
5496.3
"2079.1
-113270.3
4040^1.1
-4«05"0.!>
SYSTC* STATUS «CTEP CYCLE 1700
JU^^TlOw H^-^D CHANNEL
NUMBtR (rT) NUMPEP
114 -0.1471
•J
8
9
66
75 -0.67Q3
24
?5
74 -0.5997
34
P5
78 -0.4710
77
42 -0.2?43
41
62
97,
50
51
54 1.0060
57
54
59 1.0R55
5°
47. SO MOURS
VELTC1TV

S.051S4
-0.61904
0.64191
-0.0t;?25
-0.5B?99
0.61504
-0.4"9b2
0.05^60
-0.47032
0.39°11
-0.15°60
-0.02953
0.811&2
-0.64312
0. 7^764
-0.69601
-0.99002
FlOV
CCCS>
110C6.7
-14320.3
18254.5
-3041.7
-403?3.1
419«6.9
-60019.1
59427.2
1758.5
-69358. V
67252.0
-252.6
-35335.7
17251.1
-430.7
209292.4
-229744.9
292993.5
-3135°2.7
517771.6
-53S009.V





H4
-J
00
1




                                     0.91739    63451P.U
                                                                              1o0419
                                                                                                        .85959    644331.5

-------
SYSTEH STATUS «rTE" CYCLE 1740
                                      4^.50  HOU°S
                                                              SYSTEM STATUS »rTEp CYCLE  1780
  44.50 HOU"S
fTioc HF*D TKANNFL
"SFP 
3.0-86,
-0.59*15
-0.37930
0.37839
-0. U?680
C. 24087
0.46377
-0.5*550
0.51637
0.71750
-0.92080
1.35*81
-0.98812
0.8" 016
-0.62155
0.71135
-0.76870
FLOW
11042.2
-13426.7
1624S.U
-21°7.7
-25743.6
25625.2
-4085. b
-107?4.9
8122.9
77694.9
-94045.3
3636.0
164661.4
-199571.3
10727.8
352723.3
-3578"4.0
7710"«.2
-374534.1
421345.0
-419722.4
JUMCT10!» 4'AD CHJN^EL
114 -0.4679
1
9 -0."526
p
?5 -0.4215
24
75
34 0.1193
34
85
38 0.75<»4
02
«2 0.6116
A?
97
51 1.1 48C
50
51
54 1.1405
53
S4
59 1.0547
59
tFPS>
3.10469
-P. 51180
0.41492
-J. 00225
D.2^528
-0.37188
0.8?761
-0. 96898
0.22929
1.30481
-1.35181
0.5*440
1.19140
-1.37576
0.71436
1.40?97
-0.98936
0.7S918
-0.70«:52
0.371^0
-0.36»44
FLOW
(C^S)
1101?. 5
-11374.5
11440.9
20548.1
-25832.0
103941.2
-122992.4
8876.3
223660.4
-238390.7
4401.2
280533.7
-304876.4
12417.9
364555.3
-357649.8
331398.9
-320053.6
21851S.6
-199782.3




1
t-1
-J
VO




                                                                          O.'IU
                                    a.49160    368126.5
0.07250     539^3.7

-------
SYSrr" STATUS *FTEn CYCLE 1820




JUNCTION
                                   4r.5G
                                                                   STATUS  «CTEP  CYCLE  1360
46.50
114
 51
          0.6*63
          0.7537
          O.«*31
          0.75U
          0.5*00
iNNEL
1
D
O
;;
*4
85
»7
op
41
42
9*.
50
51
51:
56
i!
AK
vEj?pjr
3.0'511
-l:^l
1.1*873
-1. 21-546
1.21072
-1 .1^676
1 .35658
-1,3"031
0.36190
1.18897
0.54*64
1.04532
-0.71411
-0.4*255
P.0'701
0»01r62
-0.2M68
FLOW
CCFS)
10,53.6
-55.4
-13021.6
99*4.7
43663.9
-8865?. 1
1559*4.9
-161604.1
-1681.7
2*8781.1
-249826.2
33f7.9
284677.0
-304940.3
10182.6
'.69317.6
-255158.9
2104?n.1
-103281.5
15642.2
b349.5
-1«74'»4.9
JUNCTION Hr»c CHANNEL VELOrlTV
NUMPEP C^T> NUMBER (fp?)
114 3.P<78?
8 0.14071
66 0.24*66
?5 O.ro«7
'4 1.25986
?" -1.3*271
*4 1.0071
** 1.1*646
34 -1.05796
«5 -0.1°632
*8 1.nn38
*7 1.11509
*.«« -1.11377
9? O.V-531
42 0.°":23
41 0.89574
12 -0.99742
"7 0.31192
50 0.5*421)
51 -9.37851
54 0.5126
5* 0.20H35
54 -0.14122
59 0.4189
f? 0.3200P
1 O.?514
*•: -0.49«'?6
FLOW
10752. l»
39S8.V
-236^5.8
15271.1
07011.7
-101274.8
150565.9
-1A65R6.2
-85H9.3
1971»^.2
-202507.5
1447.6
216639.1
-225201.8
6040.5
148520.5
-132954.4
"1448.2
-61904.3
-141541,9
168420.3
-365444.1




I
00
o
I






-------
SYSTE* STATUS »rTtr CYCLE i«oo





 NUHEEP       

2.6*364

-0.02*44
-0.32733
0. 14*70

0.8°2J4
-T. 95953

0.70353
-0.71275
— P.1 7e20


0»6R525
-0.66645
-0.01156

0.47339
-0.47740
-0.0°315

O.OP»51
0.0' 7ij

-0.1«:(Ji9
0.17999

-0.4 4423
0.5""<14
FLOW
(CFS)

10815.2

-740.8
-112*0.6
9314.0

71472.1
-75407.4

106566. b
-100037.1
-8266.2


121667.9
-121551.8
-117.3

114339.9
-107503.1
-1814.8

2135.9
12803.6

-59937.7
77388.0

-749556. 7
273125.6
JUNCTION HFAD CHAWEL
NUMBEF (TT> DUMBER
114 2.2713
1
9 2.0?13
3
Q
*>6
25 1.**43
24
25
?4 1.2364
•XT
?4
85

'8 1.^040
•*7
•»R
at
tZ 0.7497
41
42
0?
51 -0.0?08
50
51
54 -0.1054
5'
54
59 -0.1900
5"
59
(CPS>

2.61'73

-0.24787
0.0°4V8
0.04965

0.1 *401
-0.20214

0.1«532
-0.15400
-3.05898


0.07213
-0.04*21
-0.09340

-0*06039
0.17187
-0.3*229

-0.60879
0.47375

-P. 49274
0.48423

-0.58174
0.64067
FLOW

10934.0

-758?. 9
3412.2
3298.4

15111.4
-16226.3

24965.0
-21661.5
-2800.2


12776.2
-8392.2
-981.9

-19206.9
38247.1
-6814.4

-151037.9
161336.1

-193709.9
204990.1

-322737.2
337415.6














1
M
00
(— '

1













                                                                        -0.2455
                               -1.62»7*   -456010.1
                                                                                                  -0.62844   -452727.6

-------
   ?5
   42
SYSTDH STATUS »rTEr  CYCLE  1"SQ


JUT T ION      HF»0      CHANNEL




            2.2724
            1.SS6J
            U.5?>?9
           -0.195^
           -D.366S
  49.50 MUU"S


VELOriTv      FLO«
8
9
6*
21
25
3?
PS
92
41
42
50
51
-;:£$
-0.59182
0.6?568
0.61265
0.07647
-1.71701
0.7*671
-0.19616
-1. 69006
0.81128
-0.363P3
-1.01*03
0.79*86
-1445S.3
1V3S4.2
-3R42.1
-48361.2
5077^.3
-84818.2
P52f5.3
3543.0
-131238.0
137909.6
-1867.3
-162341.7
17795S.4
-65??. 3
-?62509.2
268951.6
                                                                                                                                 CO
                                                                                                                                 to
                           5?       -1.75P76   -?87826.4
                           54        0.7H203    294401.2
                                   -0.6C?69
                                               369741.4
                           *5       -P.5°645   -470811.6


    OF TWO-"I«r>
-------
POTOMAC ESTUARY HYDRAULICS  -   13?  JUNCTIO"  NETWORK
SI"ULAT!ON OF A HEO' TI1AL CONDITION    ciOW  = 11,000 CrS AT CHM* BRIDGE
POTOMAC TSTIMRY HY^AULJCS  -   133  JUKfTlO^S   -  1?9 ^HANNFLS
     TIDAL CONniTIOK  FLOW = 11»OUO CFS 3  CHAIN BRIDGE, 47" CFS 3 SLUE PLAINS
                                                            CUJLITY ADMINISTRATION
                                              WET FLOWS AND HYDRAULIC  SUMMARY
X«K*K*** F?(
START CYCL^

   1500
                         PROGRAM
              STOP CYCLF     TI*C  INTERVAL
                              90,
HVORAULIC CYCLES PER
   QUALITY CYCLE

         20
TI1F
QUALITY
   0.50  HOURS
n"*"lL
1

3
4
S
6
7
8
9
10
11
1 ;
17,
14
15
16
17
1 6
19
? 0
21
22
23
24
25
26
?7
-> *
'9
?0
T J
72
T^
'4
T I,
NET FLO''
CCFS)
-10°99."
10^94 . **
1J°99.48
10°9V.*C
1U999, 39
1099?. n
1J909.P1
10999. OF
11018.38
1101H.27
11018. IP
11017. °6
11017.86
9149. '6
9487.20
11495.42
1 14"5. 14
1 1 4°4.P/>
11494.3?
11494.11

114°3.72
11492. P9
11*92.43
11471. ^6
114^1 .5*
11H9.99

j 1 405,7^
11* 3 <. • 71
1 1 4S3 . 1 "*
11482. P5

1Uct2.fr.
1l1r7.°n
HIV. K*5f.
(CCS) (CrS>
-11149. «0
9089.59
7T«b.1?
57"74.31
4T00.1'
1108. C4
-1954. 8«
-6?62.71
-25269.95
-27392.56
-30^04.6^
-34493. ?6
-369?0.93
-34"T2. 64
-372?6.02
-6J9-56.71;
-6511 7.85
-69597.81
-76"*'t3.r)0
-79164.44
-814C7.06
-33TU.44
-92C72.6?
-96371.'.'.
-101'8P.37
-104905.56
-111i* "=5. 50
-129437.56
-13595% 56
-141 S52.25
— 147? >4. "1
-153550. OJ
-1586/.9.S1
-160623.62
-logrp-!. JA
-10679.30
11913.12
12733.67
13514.25
14331.63
15806.57
17352.27
19«:75.52
29768.81
312T9.22
32477.77
35161.66
36664.15
33493.24
J4264.31
54473.60
57658.80
61291.40
66922.50
69380.69
71*21.87
73P55.75
80947.94
84860.69
85062.17
92403.10
9 (SO. FT)
5546.1
23871.8
312eS«8
212?8.3
22110.8
20713.4
19600.2
222?4.5
27569.7
3503^.2
35790.5
343V. 6
329P9.8
274«1.8
23675.9
40847. V
48086.1
4671'. 3
521T6.0
52216.3
5259«.6
687'^. 5
71110.7
6787?. 2
67716.7
63291.9
75941.0
*7047.0
9921B.8
1032°P.6
108d26.2
1?J1r?.2
119997.6
122J1P.1
i4«nec.9
41^9.1
26227.2
340*9,4
24707.7
265*0.5
26422.9
26492.8
30755.°
360S7.7
43605.7
45204.5
44392.1
40057.0
33357.5
30153.0
51068.7
60664.4
61347.0
62°71.F
60829. *
60342.7
77012.5
81491.4
82279.6
803°5.5
73462.9
88241.0
1U1^?0.0
1121P8.6
118017.1
126069.7
134546.0
134722.7
140710.4
172<"»5.4
3*39.6
2495U.?
32545.?
22821.5
24157.1
23325.7
22750.6
26116.7
314*7.7
3*932. ?
40072.5
36908.9
362P6.2
30164.2
26636. "?
45527.7
53865.3
53460.0
571?2.5
562^4."
56226. B
72643.2
76041.2
74765. T
7532JS.7
6H217.7
82HOLI.1
94?03.0
105'*2y.6
11U918.0
1 1 78*1 . 1
127794.*
127888.3
132110.1
1621'Jt»7



1
I— *
00
u>
i




























-------
         114S7.««
M
l:<
t- ?

/. 5
*c
'7
'•3
(•*
52
r ^
Si
c ^
«" A
C7

•59
6U
*1
62
f 7

69
70
71
72

7A
•75

77
78
79
"0
"1
"7
°0
91
         11447.ro
         1 1 4 ',3 . 1 ?
         114*7. 62
11427.6C

lU^AI

114?4l60
11423."*
1 U?3.<"?
11*24.07
1 14?3.93
         114?1.50
         11*21.67
         11*21.3"
        •11/?2.™
           -19.'1
           -IV.42
           -1C.. AX
           -1V.69
           -1V.77
           -19.74
           -1C.75
           -n.82
           -19.1*
           -1V. 16
           -19.18
             Q.1P

         -3005.27
             0.T1
               T
               AC
             u
             1
           9T7.71
          -417.05
             1.5
             1.
             1 .'
•?53930. 04
•?6491 7.71
•?791 35.81
•292519.69
•31478£. 25
-33098*. 94
•738375.06
-741<=90.62
•744417. ST
•359296.06
773«V4.SO
•773'<9d.06
•372*4V.OO
•36o2? V". 25
369?71.00
•769195.37
•772114.06
•388577.06
•400542.06
•484°15.31
5097»7.81
•535427. ?•!
•595695.31
626234.^1
640630.36
660574.25
683079.75
*57915,?7
-7°04.20
-558b.77
-5022.44
-4r55. 28
-3996. op
-3C82.54
-3089.46
-2656.40
-1537.77
-1?93.31
-1054. 10
-1 085.89
-1166.83
-15*07.95
-35'1.00
-2617. '8
-5743.80
-2460.59
-9°T5. 40
-d«"'7."?o
-26°19.77
-21 743.S1
-7543.8?
-1900.81
-7""»1.?1
-2122. f
-2502.73
-6r"':>'4.7n
-4«?6.04
-0s f J.H
2^5.0^2.06
'34717.25
2*7453.94
?6U831. 19
277349.75
'S0443.62
701*10.77
^J771 8.75
314P90.06
•^24759. 50
331741.56
73*192.50
335?11.00
736066.00
337359.87
7J7567.25
33*678.25
3*3278.37
345115.50
763445.44
369470.81
^7*143.62
384092.56
3V7281.°7
407642.94
42*573.71
4*0608.00
701877.62
1*770.57
1U*55.00
9406.6?
8535.27
7490.16
6746.57
5E98.50
5139.41
2919.16
2456.51
2000.19
1805.56
2020.02
16456.82
5174.79
3411.17
7926.46
3674."6
152«3.9
                                                                       0.326
                                                                       0.315
                                                                       0.463
                                                                       0.698
                                                                       0.597
                                                                       0.966
                                                                       0.524
                                                                       0.716
                                                                       0.117
                                                                       0.152
                                                                       0.544
                                                                       0.284
                                                                       0.335
                                                                       0.659
                                                                       0.377
                                                                       J.672
                                                                       0.316
                                                                       0.547
                                                                       0.277
                                                                       U.395
                                                                       O.A84
                                                        -'.I./.' 7
                                                                       U.741
                                                                       0.704
                                                                       U.7i3
                                                                       . . 7 «, |j
1687*7.6
192206.6
?1690?.8
219506.9
207324.6
? 1U06? .9
190647.3
1636'T.*
182975.8
2T1651.7
2126P7.6
274221.9
2445<)4 .5
33*y20.v
441557.5
316989.2
416370.*
533977.2
6032*»6.1
6^4251.*
548987. 2
505627.9
552356.6
SH2313.9
5866C8.2
6065P*.5
462654.1
71 71 ?1 . 1
57235.8
29513.0
25612.8
'5607.6
23335.3
135?9.7
7667.9
77?7.5
24*7.2
42°3.5
2421 .4
14511 .2
13977.4
257*5.8
13525.3
8955.9
99?0.0
7972.7
17315.0
32729.3
52011.8
62677.9
20171 .5
3976.4
354"0.3
5908.1
437
-------
 99
1 10
101
102
107
IDS
110
111
112
11?
114
V 5
m
11 7
119
i7u
1-1
1?2
17?
17&
177
171
1 v2
17?
1*4
1*3
1*6
1'7
1*8
    1.7.1
   -0.1?
   -0.1'
   -3.06
    3.0?
   19. 91
   19. 9f
   15.9?
   19. 9«
  -19.99
    O.I''
    O.O^
    e.oa
   -o . - .c
    0 . 1 c
    0.07
    f).B9
    Q.«"S
    0.'*
    I!. 15
    o.c/
    0.-»8
    a. 11
    n.o*
  316.17
    U.?'
  315.6-
     . 9 A
 16'9.9f>
-2*.46.4?
59°96.10
iO''«5.71
15/^7.50
                          12281. W
                          -92-^4.15
-1458. ?3
 -"3.4?.
 -."04.00
-219C.B4
-1?4%97
 -ST4.16
-4?18.37
-15C0.15
 --•^7.40
 -?.77.49
-17?7.19
 -6S3.20
 -1^5. "0
 -"11.47
-2725.36
31914.15
-71*7.11
-2°96.61
35077.11
                -2/79.03
75739.94
31004.06
24»14.46
21496.69
19452.09
1301 4.53
 1465.77
  781.66
  C70.5/'.
  189.27
 2719. 1P
 1CS5.51
  513.76
 1661.5*
  674.73
  347.00
 5*90. 1*
 3140.91
 1P25.40
  P57.46
 V112S27
 6778.6?
 2677.15
 1409.04
 2760.45
 1072.54
  278.96
 1*90.12
 1558.30
 197Q.29
31371.16
 6995.57
 2*42.67
3i«?2l.55
                         -13T10.98
                 2605.64
                 1061.78
                 S798.0?
                 1279V. 94
-U.5?3
-0.638
-0.3(14
-0.346
-0.395
-0.175
-0.1?9
-0.15f,
-0.131
-0.078
-0.042
-C.013
-O.°16
-0.613
-U.47V
-0.27V
-0.13U
-0.122
-0.1P7
-0.207
-0.153
-0.198
                                                           C.l7b
                                                           0.117
                                                           0.118
 0.047
 0. 406
 0.276
 1.264
 0.90U
 U.'A3
-1.045
 0.803
 0.2?4
 0.091
-0.670
-O.P19
0.66b
0.902
U.534
0.539
0.5S4
0.298
0.476
0.377
0.270
0.346
0.263
0.155
0.082
0.026
1.744
1.406
1.054
0.407
0.228
0.224
0.451
0.363
0.272
0.396
0.453
0.432
0.218
0.228
0.339
O.OoJ
0.677
0.269
1.176
0.764
U.233
1.118
0.69*
0.196
G.1S9
0.^85
0.705
P5J55.6
'437E.1
432U.9
75966.0
23887.0
40161.8
2874.7
26/1.0
272". a
1474.0
577.5
16318.5
13322.4
195*0.3
872.4
417.8
l^f.4
1145».9
119Pf .6
6851 .6
1275.3
72079.4
21911 .0
5002.0
17f-7.9
8' 8. 3
10512.1
3835.0
4«0.6
23304.7
1540.8
5709.3
23517.1
7252.7
10U05.2
^013*. 2
54*7.2
8286.3
450P.9
13957.1
13750.1
1 1V056.4
3b160.1
51023.5
435*6.6
36769.4
48979.5
3746.5
3555.?
3'-93.1
2238. S
1145.0
19604.4
21052.0
22172.3
1093.2
565.1
321.?
18980.4
19952.2
12793.7
4253.5
31204.*
31196.6
9606.6
5466.6
2009.5
1741*. 0
6602.9
1766.7
315*8.6
2872.4
10516.0
28620.6
9P07.7
14674.2
35772.9
9294.1
15874.0
8815.1
15938.9
20003.9
111326.0
30367.6
46701.0
39983.0
52426.?
44*°1.0
3243. 7
30co.*
3071.*
1816.5
806."
18087.6
1V56S.7
20733.8
044.0
4PU.7
?03.3
15019.1
15713.6
9475.0
ii6^7.7
26569.6
26475.6
7261.5
3575.0
1414.4
13901.5
5194.2
894. "5
2776V. 1
2227.3
8720.6
25878.3
8416.4
121*2.5
32704.4
7223.1
1174&.7
6-??3.5
13253.0
16613.6
                                                                      00
                                                                      ui

-------
SUMHA»Y
JUNCTION HP*DS
JlifVCT TOW
1
•>
7
4
C.
f
7
P
r
10
11
1'
1'
1'.
1r
1?
1~
1C
T"
^o
Z1
2'
2^
?'•
2C
2^
27
?'
2°
3C
? 1
* ->
3^
.?/
T r
T .<,
T 7
3"
50
M
41
<.'
4^
4'
t «•
4'
«,7
«,c
/ <~
WfNI^UM MSMD
(^T)
-o.*»
-0.8?
-008^
-0.°?
-0."??
-C.S"'
-0.?^
-a. »4
-O.1!?
-0."5
-0.8S
-0.3«
-0."5
-O.T
-U.3?
-0.
-0,^^
-O.'t
-U.T1
-J.?«
-O.'f
-O.""-
-U."
-O.^O
CYCLF OF
OCCURENCE
1998
1786
1 7S&
178^
t785
1784
1782
1783
1777
177«
1774
1772
1770
1766
1764
1760
1V57
175*
175?
1748
1747
1744
174^
1741
1738
1735
173?
172?
1727
1720
1716
171^
1711
1709
1705
1701
1695
1689
166T
1677
167?
1666
1657
1t49
164T
1624
161^
15"7
1?1??
H#XJHUH Hc*0
(FT)
1.0'-
?.1T
2oH?
?.12
2.12
2.11
?.1Q
?.U9
?.07
?.06
?.05
2.U«
?.o?
1.9"
1.96
1.94
1.91
1.67-
1.85
1.61
1.79
1.75
1.7*
1.6°
1.66
1.6?
1.5f
1.51
1.4'.
1.40
1.3&
1.30
1.26
1.2'-
1.21
1.17
1.1T
1.J°
1.U4
1.J1
0.9P
0.9f
0.91
0.91
i.yo
O.S7
LU^
1.0^
1.1T
rrc.Lc OF
OrCURFNCE
1703
1956
•!95S
1°5b
1<»5fc
1958
1«53
1C58
1958
1958
1957
1957
1957
1956
1956
1955
1955
1954
1954
1954
19*4
1954
1°54
1954
1954
1951
1°52
19*0
19'7
1945
19*2
1"9
19*6
19*3
1p25
1916
1°09
1900
1P93
1"85
1<»79
1P73
1PY-3
1P/.7
H '0
17^6
17^-2
1^34
17*S
*VER
-------
57
5°
r C
6f
6t
C.'
65
6*
69
70
71
7?
7*
74
75
7*
77
7P
79
80
«1
8?
 86
 87
 8P
 89
 90
 91
 9?
 93
 9*
 97
100
ir.i
102
1
177°
1780
1781
1781
1783
1784
1785
1786
177'
1764
1761
1761
1753
1746
1734
1737
1711
1709
1718
1715
1704
170?
1703
1701
1695
1648
1619
155°
1E53
 1546
158«
1515
 1509
1519
1503
 1766
 1787
 1787
 1788
 177"?
 177"
1.21
1.23
1.2',
1.2*
1.2<
1.2*
1.2'
1.20
1.1"
1.16
1.14
1.1'
1.10
1.0?
•>.o*
7. OS
7.U"
2.10
2.11
?.1?
2.1*
2.1*
Z.1^
2.1C
7.04
1.96
1.V4
1.94
1.66
1.73
1.58
1.55
1.23
1.22
1.24
1.18
1.19
1.1'
1.09
1.05
1.00
1.U6
1.24
1.2*
1.3&
1.3'
1.3*
1.2°
1.2*
1.2°
1.1*
 7.1*
 7.1*
1751
1749
1747
17A6
1744
1742
1740
17*6
1732
17?7
1774
1720
1^16
1712
1"58
19*8
19r8
1°Tb
153
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0.33
0,?3
0.33
0.33
0.33
0.33
0.53
0.48
O.t8
0.48
0.48
0.46
0.48
0.46
0.48
0.48
0.47
0.47
0.47
0.47
0.45
0.44
0.44
0.43
0.42
0.41
0.43
0.36
0.38
0.38
0.37
0.38
0.37
0.37
0.34
0.34
0.32
0.32
0.33
0.32
0.33
0.33
0.33
0.33
0.32
0.33
0.47
0.47
0.47
1.47
0.48
 0.48
1.57
1.59
1.61
1.63
1.63
1.63
1.61
1.6U
1.b3
1.56
1.54
1.52
1.49
1.47
2.93
?.94
2.94
2.95
?.95
2.96
2.98
2.99
3.01
3.02
*.03
3.04
2.88
2.79
2.77
2.76
?.66
2.5J
?.31
7.27
1.35
1.83
1.89
1.77
1.78
1.69
1.61
1.44
1.32
1.33
1.54
1.63
1.74
1.74
1.8U
1.69
 1.67
1.72
1.55
3.05
*.06
3.06
3.06
7.93
7.94
I

M
00
~J

I

-------
11
117
11°
11C
120
121
12?
12-*
127
12*
12°
130
131
132
13T
-0.90
-U.47
-a.7?
-0,78
-G.""5
-0.78
-0.73
-0.7',
-0.74
-0.75
-0.11
-0.5?
-0.3"'
178°
1788
1747
174"
1748
1751
173°
1740
174?
1747
1750
t 743
1741
1746
1710
1743
176°
1767
1767
1766
1766
1.7*
1.74
1.74
1.7*
1.5*
1.56
1.57
1.57
1.5"
1.57
1.57
1.57
1.2?
1.25
?.ai
?.oo
2.00
1.9*
1.9P
                                              1960
                                              19C»
                                              1958
                                              1959
                                              1959
                                              1959
                                              1953
                                              19C3
                                              1n53
                                              19*3
                                              19C3
                                              195 '»
                                              1929
                                              1978
                                              1C57
                                              1P57
                                              1
-------
       X*»X»KI
-------
                             -  190 -

               4.4  SAMPLE DYNQUAL INPUT/OUTPUT


              4.4.1   3  CONSERVATIVE CONSTITUENTS



                        — data deok list-ing —


DYt-'"UAL - ?AHPLE RUN ^  -  JHIS  RUN SnULATcS  THE «OVEUENT  OF  ?  CONSERVATIVE
                           PARAMETERS (HYES)  THROUGHOUT  THF. POTOMAC  ESTUARY
  133  139 1500 2000   20
IhPFPEf'CENT CONTROL DATA - RUN  1
 1500  500  999  999   25
    3    04    4
      30.U      6,00
TA?ULA» OUTPUT CONTROL - RUN  1
    0    0
    1    1
  1?5  200    1
    J
PLOTTING OUTPUT CONTROL  - RUN  1
5
0
5
15
1T0
1*0
130
2.5
3UALIT




0
0
1
1
1
450
120
0.
1

500
500
son
500
175
,"i


?5
?5
25
1
1
0.
Y COEFFICIENTS -
0.
0.
u.
3.




1.
1.00
1.00
1.00


1
0
0
0
0
• A
RUN






0
1
1
1
0
0.
1
1.
100.
100.
100.


T
0
0
0
1



PYE1
PYE2
PYE3
                                      1.
DIFFUSION-TOtfSTANTS - PUN  1
    1
         1        1*9       25.
UPTAKE / 3FSENERATTON FATES  -  RUN  1
    1
         1        17*        0.         0.         0.         0.        Oo
DECAY FOTfS - °UN 1
    1
         1        133        0.         0.         0.         0.        Oo        0.
WA$TE«ATEP  INPUTS - RUN 1
    1    1     0
CONSTANT INPUTS
       131      -450.        0.         1.         0.
VARIABLE INPUTS
  1*1    3
       125         H.        0.         n.         0.
        25      -450.        0.         0.         2.
       3SJ         0.        0.         0.         0.
UPPFR BOUNDARY CONDITIONS  - RUN 1
    1
       ?00     -1500.        2.         O.         0.
INITIAL CQ»"MTIONS  - RUN 1
         I        1?3        .1         .1         .1
SEAVA-JP BOUNDARY  CONDITIONS  -  PUN  1
    1    I     1
   0.
   0.
   0.

-------
POTOMAC FSTI./APY HYrtpAuiics   -  133 JUNCTJO'' NETWORK
FLOW =• 1500 CFS AT  CHAU1  BPTOGC» t^fl CF«? AT BLUE  PLAINS* 0 AT OTHER  STP'S
        - fAMPLF RU"  1  -  THIS RUN SIMULATES  THE ^OVE'^TNT OF "* C01SER V»T 1VF
                            PARAMETERS (nYFS) THROUGHOUT TH*" POTOMAC  ESTUARY
                                                                                         ENVIRONMENTAL PPOTrTTJO*>  A
                                                                                               DYNAMIC ESTUAR* MO?EL
  «x»xx««».x*«»in»xxi«x»«)tx»x
                              HYDRAULIC CONT"OL  "ATA
                                                        XXXKXXV.XXXKKXXXXXXKKXXXX
  FIRST CYCLE ON
  HYDRAULIC
     (f'STAPT )
LAST CYCLE  OH
HYDRAULIC T»PE
   fNSTOP)

     ZPOO
                                   KEAOINC  TAPE
                                  IT CYCLF
                                               1500
       HVQRAULic
       I«F  STEP  (SEC.)
           ("FLO

            90,uO
  H>« »»»>l»* K» «»»»»* DVXKWMIIK**** KKKK »*MX KKKKKNKX*    OUALTTY CONTROL P'TA    XXXXXXX XX XXXX XXXXXX XXIOXX »X XX XX XXXX XX XX XX XX XX
       :P OF
OUAl ITY
   (N"CYC)

     500
   NUM"Fh OF
                      30.00
          "UTRIENT  LIMITATION
               '  BEGINS  AT CYCLE
                (NUTCYO

                  799
                        STARTING TIME
                        FOR THIS PUN
 0.0. SUMMARY
3E6INS *T CYCLE
   (NOOCYC)

      900
                               TIME OF
                               SONRTSE
                               (TSR'SE)

                                 0.0
       TIMF  OF
       SUNSFT
       (TSSET)

         0.0
     OUAL ITY
 TIME STEP IHRS)
     (HELT01)

       o.sn
0.0. SATURATION
 AT JP.uO  C
     (CSAT)

    0.0
                                                                                                   QUALITY STFPS
                                                                                                 PFR  TIDAL PF°IOO
                                                                                                       (NSPFC)
 I

 o

f
 Tf

 CO*
 ^.
TUCNT
1
I
3
CONSTITUENT
"AME
(C1AMF)
°Hj
CONCENTRATION
(B1CKC)
o.u
n.u
T.O
Tr"PER»TI
COR"ECTIOH
tTH^TA
1.00U
1.000
1.000
       (CKl "IT)

           1.0"
                 CMLOPOPHVLL/PHCSPHOROUS
                       (CHLPHO)

                           1.01
                                 CHLOROPHYLL/CARBON
                                      (CHLCAP)

                                        1.00
                            OF DECAYFP  Al-JA
                          IS BIO-DE6rADA"LE
                            CPERCO)

                               0.0
   rOf STITi'ENT COrrE»TPATIOf'S If AnvECT^O "ATto  AprcO^PUTFO USING  THE  1/4  POI*T C ONCE NTR ATt OK'   (MI»=4)

-------
    mi)<»»»«i»«t>i
                         ' »»i>«)(iia«!!TA  X X X X XX X X X X X X » X X X X X II X X X X XX X X X X X X »
                                                                                              XXKKXXXXXXXKKXK  JUNCTION  DATA  XXXXXXXKXXXXXX
CH/SM
!
?
-
/.
c
f.
7
F
9
10
1
?
t
i,
rj
(•
7
o.
1 r
20
21
2'
iJ
24
Z5
Z6
27
~t,p
29
3n
31
37
37
?4
35
?*>
37
3P
39
40
41
4?
47
46
45
y /.
«t r
47
LFNGTH
7c ! k. 0
7ufS.
2tM .
40** .
774V.
5iS7.
T 5 V 0 .
541'.
4U65 .
1 /• f) 1
' 6* ^ U •
7o 1 n f
?^70.
7.69H.
41*1.
3c5l:.
6177.
?*.4'0.
53c*.
727'.
52 eo.
3UO?.
5£t7.
5069.
•=01*.
4oU5.
P76*.
C(Jg1 .
f 7U6.
"34?.
5597.
5650.
6J65.
*7U*-.
pij?f. 9
1 oi>L>7 .
17164.
C715 .
17164.
1Po7iS.
1124*.
12^60,
1?3 50.
10c'2'».
17529.
1 4 i: 5 * ,
WIDTH
2240
«JOO.
95«.
11tf*.
1521.
1V4*.
2350.
291?.
7920,
?9!>3,
3258.
35U7.
'47*!.
?100.
234P.
773P.
6671.
550*.
6117.
7337.
7U5?«
131 ?•
4221.
5967.
5355.
438 o.
566^.
*604.
62i.T.
73US.
8o33.
756?.
790?.
1027^.
13474.
10226.
7t;2* .
PV3 / .
1 71 ?f.
1 *6 0 7 .
16701.
14316.
1 1fc J7.-
111U-.
«07/-.
1 '•> 7 (- * I
C5-ARFA
37P3o
24853.
72631.
226*1 .
239??.
23115.
22516.
?5b*>3.
•»1228.
38725.
39852.
•*8684.
76055.
'005S.
2652°.
45378.
53702.
53294.
570?6.
56167.
56163.
72579.
7596P.
76674.
73761.
ۥ8192 .
81964.
°41 85.
115827.
1 109*4.
117923.
12787*.
12797S.
1321S8.
162228.
1*3741.
17195?.
17635°.
202134.
230127.
2-<2151.
'17678.
719580.
1^7979.
16*639,
0,|Cr,T.
"AIMING
Oc-J'O
O.J?0
;).0?0
n.u?o
•T.U'O
0. J?0
n.o?0
0.020
D.u?0
T.017
0.017
O.U17
n.U17
n.oi7
O.U17
0.017
O.J17
O.U17
O.U17
T.J17
0.017
1.017
0.017
1.017
O.G17
0.1)17
0.017
Q.U17
i.l>17
0.017
1.U17
1. J17
1.L.17
P.J17
J.U14
0 . 0 1 /,
0. J1A
0.014
O.U14
0.014
'). J14
0.016
O.J14
n.oi A
O.L16
1.V.-1A
01Fr
5.7*
6.3*
15. 7S
11.07
1?.00
8.U4
12.53
°.27
11. U7
2*. 63
12. 1»
14.9*
19. K2
12.20
10.77
11.67
7.2"
17. Oc
8.35
13.74
8.5?
14.9'
P. 61
S.fca
8.V
o.i"'
5.13
4.9*
6.71
S.39
8.04
7.
1 r-. . /.
JUNC.
2
2
•*.
6
5
6
7
b
s
10
11
Ii!
13
16
15
16
17
18
19
2U
21
22
25
26
2i
26
27
21.
2V
30
31
32
33
36
55
36
37
3t>
3V
40
«1
Iti
A3
66
«-
66
AT
#T ENDS
774
3
4
5
6
7
8
9
10
11
12
13
129
15
16
17
18
19
?'J
21
22
23
24
?5
?6
27
?3
'9
30
•»1
32
33
74
35
36
77
78
19
40
41
42
43
44
45
45
/ \
JU*C
9
2
^
6
5
6
7
8
o
10
11
\2
IT
16
15
16
17
IS
19
20
21
22
27
26
25
2*
27
28
29
33
31
3?
3'
34
3S
36
37
3 P.
3"
4)
61
61
4*
6'-
6"
/ X
u *
/, 7
1MFLOV
0.0
OcO
0=0
0.0
0.0
o.o
o.o
o.o
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.3
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.3
o.o
0.3
o.o
0.3
0.0
0.3
0.0
o.o
(J.'J
0,0
0.0
o.o
0.0
O.L»
u.u
u.o
0. 1
• U
HEAD
0.33
Oe 40
0; £0
0.60
0.40
0.60
n.60
0.40
0.60
P. 40
n.6o
n.60
•3.40
0.60
0.40
0.40
'3.40
0.40
0.40
0.60
0.60
0.60
0.40
1.40
0.40
0.40
1.40
0.40
1.40
0.40
0.40
0.3V
0.39
0.39
0.39
0.39
0.39
0.39
0.38
0.38
0.38
U.3P
n, 37
0.37
J. 57
Di t
. 3c
1, 36
CHANNELS
65
1
2
3
4
5
6
7
8
9
10
11
12
14
14
15
16
17
18
1V
20
21
22
23
24
25
?6
27
28
29
10
11
'2
73
T6
75
76
37
7fi
3V
40
41
42
/3
/4
/ c
J
'&
0
2
7
6
5
6
7
6
9
10
11
12
13
134
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3U
31
32
33
14
35
36
37
33
39
4U
41
42
43
44
/ A
60
47
INTO
Cl
1
n
0
0
0
0
0
6*.
1
n
77
n
136
78
79
0
0
81
0
0
0
82
?
1
0
13
84
T
0
0
0
0
85
P6
t°
S 1
9?
n
0
0
93
V4
0
0

JUVCTIO*'
1 0
T L!
•~s r.
1 0
n 0
0 0
1 0
1 0
0 0
0 0
0 0
n o
n u
n o
n o
•"3 0
0 0
0 0
0 0
0 O
1 0
1 0
n u
r j
0 0
n u
i (j
1 0
0 0
n o
0 0
1 0
0 0
1 0
0 0
90 17U
1 0
n o
i 0
1 0
n o
0 0
1 0
o t
0 0
Oft
u
1 0

-------
iO
51
5?
b*
54
5C
56
5~
5 °
5°
60
£1
62
63
64
6?
66
67
6F
69
70
71
7?
7?
7'.
75
76
77
7"
7°
80
81
8'
3^
8/
85
fc6
f.7
go
3r-
90
91
97
V
9*
95
9C
97
V?
9°
100
1J1
10?
103
10*
1U5
105
1U7
1(jP
9c20.
6441 .
10560.
r4M .
6b11.
10665.
lO!?".
?71'.
12JC7.
10CU.
1U16.
67JC.
871'.
815-9.
P65^.
16104.
?601.
2641.
?1feT.
251".
2641.
H..i5.
•»4jiJ.
T3U1.
7U3".
7430.
7565.
/.O.M,
?10Q.
7450.
?4U^.
55il.
'701.
4321.
105*1.
££51.
10JJO.
735?.
12855.
P191.
1f^UO.
6450.
121SO.
?67UO.
27410.
?4n11.
709JO.
I7i.eo.
19y51.
?6b3".
2 A* SO.
722S1.
7'fJ.?.
P6510.
16141.
7101.
7165.
277°.
?' !,">.
1U32r.
1V1? .
?C491.
21717.
2'*167.
30417.
31129.
73034.
27013.
2^uO.
2°075.
?»«.5e.
27C-76.
?r72c.
?/.3e*.
?251P.
^200.
isun.
U50.
12421 .
474251.
556047.
6?5V6'5.
658347.
568689*
524251.
5?41?8.
*129S7.
60686S.
6'5313.
6«>0297.
733238.
61256.
T139«.
271S5.
?71«2.
?47R6.
14488.
8618.
8681.
3149.
480T .
2b70.
16144.
19478.
'0863.
'1119.
12456.
13886.
12593.
24678.
40765.
59191.
72642.
25708.
62?9.
39860.
9184.
8465.
17167.
1215A.
17909.
74955.
23655.
?0912.
11 13R7.
'J444.
467?P.
40JO'.
72453.
A4404.
3221.
302. £3
7.26
1.22
1.P7
1.40
1.36
1.71
?.7°
1%64
14.27
i*./;1
1^.0^
1943. *a
1943.13
1942.93
1942.44
1941.63
1P42.11
1942.17
1940.47
1940.15
1940.20
1939.67
1039.23
1929.51
1939. 1,1
1939.70
-1939.18
-19.91
-20.04
-20.04
-20.03
-20.03
-20.02
-20.02
-20.01
-19.*V
-19. 6?
-19.69
0.01
-710.55
-586.20
0.03
0.04
0.12
0.0*
0.56
-314.21
552. «0
-315.33
0.54
0.15
0.57
0.17
U.74
0.92
O.'o
0.81
0.6ti
O.'d
0.17
1 .70
0.72
0.10
O.UO
0.10
-0.07
-19.0V
-20.00
-20.0-J
-20. UJ
24.4
19.6
18.0
1P.5
18.0
13.3
20.1
19.9
21. J
20.6
19.7
21.3
21.9
24.3
27.9
37.6
19.1
20.9
21.7
21.7
21.6
19.3
11. i
11.6
5.7
!?.!J
3.2
12.3
4.3
7.3
3.4
4.3
4.1
7.0
4.0
5.1
*.Z
7.3
4.8
2.7
8.7
2.0
3.5
4.5
3.5
7.6
6.6
5.6
5.2
1'.7
1*1
°.a
9.8
6. a
7.7
10.7
10.1
12.2
7.e
50
51
52
53
54
iS
56
57
56
59
60
61
62
63
64
1
9
66
67
63
ev
70
71
72
73
74
75
12
15
16
16
1V
23
27
2b
34
35
86
86
36
36
37
36
42
43
47
41
52
55
57
99
60
61
60
63
76
77
105
1'.16
51
52
53
54
55
56
57
S8
59
MJ
61
62
63
*4
65
65
66
67
6b
6V
7C
71
72
73
74
75
76
78
7y
80
81
82
<*3
84
85
R6
"7
87
88
«V
*Q
91
92
93
94
95
9t
"7

-------
111
11?
11?
11*
1 1 r
116
11 7
11"
1 1 °
1 2H
1 30.
?2«o.
?70'J.
?710.
4140.
9i3.
V'JO.
S '!•
50.
7P.
730C,
T20C.
?.£00.
12JO.
'•DUC.
4050.
?UJC.
u .j n .
500.
30UCI,
120-'.
40 n.
'.5 111.
750.
?7un.
160P.
VUG.
1650.
?0uf.
135P.
?70n.
150n.
1f 00.
2i5D.
19491 •
2066?.
937.
477.
198.
14969.
15663.
9440.
2640.
?6574.
264"?.
7266.
35*2.
1417.
139"7.
5197.
6°6.
'7E06.
c241.
8344.
?5734.
8364.
12039.
52594.
7149.
11604.
6444.
13160.
1450P.
O.U"'4
l.U?4
O.U'5
0 . U T 5
0.0'S
n.u^r
0 • U "* ^
T • (j ^ S
3.UTS
G.UT j
n.u^S
O.U35
P.J35
0.035
P.u?5
n.u^s
0.0^5
0.035
Q.u^S
a.U'5
n.ui?
0.070
0.0 '3
0.017
n.u?n
n.u20
0.022
o.O?!
n.ij?,0
13.24
12. bf
14.06
10.71
1^.67
1 7.45
15.7°
?4« 3?
30.41
1H.47
1 p.03
1 5»m
^0.45
•5 2 . so
16.36
15.03
1^,31
P. 49
5. on
3.60
13.1(7
17.24
?r.OO
1S.O"7
1^.44
19.74
16.67
12. OT
10. i7
n.ui
-O.OJ
-0.3J
-O.?1
U.31
U.Ofc
0.06
0.04
0.02
U.?4
0.17
O.Ot
0.04
3.01
0.08
0.04
0.01
237.15
U.1U
-?36.97
1106.75
413.13
-49.^1
-1156.37
S13.30
-16.83
0.01
-796.86
586.23
21. U
2T.0
10.4
9.5
2.fc
S.O
4.9
4.3
2.2
6.6
6.5
7.6
?. 2
?.a
4.6
4.3
2.2
6.2
?.'J
*• 1
14.3
9.3
7.3
16.3
5.3
4.3
4.3
7.3
7.3
1U9
110
73
112
76
13
115
116
117
65
119
UU
121
122
121)
m
125
87
127
36
12V
129
130
14
131
14
132
79
7V
11U
111
112
113
113
115
116
117
1 1a
119
12J
121
122
123
124
125
126
127
128
1 ?7
130
131
131
\ 111
•>
3
4
5
•5
7
113
119
120
121
122
1 2T
124
125
126
127
128
129
130
131
132
13'
U.O
0.0
Q,n
-1 C00.0
G.O
U.O
U.O
0.0
0.0
O.T
0.3
0.0
0.0
U.O
0.0
0.0
0.0
0.0
0.0
u.o
-450.0
0.0
0.0
3.40
0.39
0.38
n.4i
1.40
0.40
0.40
P.4J
T.40
0.40
0.39
0.39
0.39
0.40
3.40
0.39
0,39
0.40
0.40
0.40
0.40
1.40
0.40
112
113
114
1
116
T17
118
119
1?0
121
1 ?2
1?3
1 ?4
125
126
127
1?8
129
13
1 J*1
1T2
1?5
157
3
114
115
U
117
1 13
119
Q
121
122
123
124
0
126
1*7
U
129
0
131
133
133
136
0
n
•3
0
3
3
n
n
n
0
12S
T
0
T
0
rj
T
130
n
13?
134
135
137
0
0
n
1
n
0
r)
n
0
0
0
1
3
T
rj
n
0
0
n
0
0
n
13"

-------
»K«miitii»«»M»K«           ("FNT)
                      JUNC       JUNC            (MG/HR/UG CHLORO)               (FFET)
                                            O.U
                                       0.0
                                                                                  1.J
                                                                                                  l.u
»««»»»KII»««»X««»«»K««»«»«»«»»«M»K«*      SUMMARY OF NUTRIENT  UPTAKE AND REGENERATION RATF.S      «««»*»•.««* •,«•,«««««»»»»»*««»»»«««»»«
          F OIIIKIX «»<< «<•«««» «« «H KK
F°OH
JUNC
TO
JUNC
COMST 1
(DECAYK 1)
(PER OA*)
CONST 2
(DECAYK 2)
(PER PAY)
CONST 3 »
(DECAY* 3)
(PER DAY)
CONST 4
OECAYK 4)
(PER ->AY)
CONST 5
(DECAYK 5)
(PF«> DAV)
CONST 6
C>FCAYK6)
(PER "AY)
                    133
         O.U
                                               0.0
                                                             O.u
         MVX«**ltMKKll*MM«*ft«*XftK*lf«*Nlt*»
                                              SUMMARY OF CONSTANT  UASTEUATER  LOADS
JUNC.
          TOTAL  FLO'/
            (CFS)
 CONSTITUENT  1
 CONf.    LOAn
(P«G/L) (L?/DAY)
 CONSTITUENT i
 CONCm    LOAD
(MG/L) (LB/OAY)
 CONSTITUENT 3
 CONC.    LOAO
(«G/L) (LP/OAY)
 CONSTITUENT 4
 COMC.    LOAD
(U6/L) (LB/DAY)
 rONSTITUENT  5
 CJNC.    LOAD
(Mli/L) (L3/CAY)
 CO^STTTUtNT  t
 CONC.    LOAD
(M'VL) (LB/OAY)
           -450.
  0.0
                                    1.
                                            1.J
                             2427.
                                                              0.0
                                0.

-------
 N«Xlllt1l*X«K  CLB/PAY) (H6/L)  CLB/PAY) (U6/L)  (LB/nAY) (PIG/L)  CLE/OAVJ  CMG/l)
«,:: , ,
2
3
if~: 0 . U
?e -45P.
350 3.
I.U
1.U
o.u
0.
G.
0.
0.0
o.u
0.0
0.
0.
0.
0.0
2.U
0.0
0.
4?55o
0.
                                SUH^»RY  OF UPPER BOUNDARY  CONDITIONS   O'ODE 114'
f«tCPrt
TUENT 1
LOAD
(LP/OAY)
CONSTITUEMT ?
CONC. LOAD
(MG/L> (LB/D*V)
CONSTITUENT 3
CONC. LOAD
(MC/L) (LB/OAY)
CONSTITUENT 4
CONC. LOAP

CO"STITUENT 5
CONC. LOAD
(MG/L) (LB/DAY)
TQffg TJ
CONC.
CHG/L )
TUENT 6
LOAn
(L3/0«r>
500
               -15JO.
2.00
16132*
                                   0.0
                                                         0.
                                                      0.0
                                                   0.
 KK«X«*KXXX«XKXKIIRKNIIX**KKMKXKKKMXXX
                                          SUMMA"Y OF IMITI/L CONCENTRATFONS
              JUNC
                         TO
                        JUHT
                                           (""/L5
                                                      CO"ST  ?
                                                      CO-'ST  ',
                                                        
                                                           CO"PT 5
                                                            ("G/D
                                                                                                         CONST 6
                        133
                                            r.10
                                                1.10

-------
*««« »*««»XK«*X«»»X »XXII><*K«»KK«*KKX »   TIDAL C\ClE  VARIATION OF SEAWARD  BOUNDARY CONDITIONS    «*«*« »« »»»« «»»xxxxx »<< xxxx «x»x »









                                             SPFCIF1EO CONCENTRATIONS  AT
"•TE-VAL
1
?
^
I,
c
6
7
3
c
10
11
1'
17
1 '.
1 5
1*
17
1"
19
20
21
22
2'
24
25
CONSTITUENT 1
.
(MG/L)
n.u
n.u
o.u
1.U
n.u
n.u
T.U
n.u
n.u
n.u
n.u
n.u
O.J
n.u
°.u
n.u
n.u
o.u
T.O
n.u
n.U
-7.0
n.u
n.u
n.J
CONSTITUENT 3 CONSTITUENT 4 CONSTITUENT 5 CONSTITUENT 6
(H6/L) (U5/L) (MG/L) (MG/L)
0.0
0.0
0.0
0.0
u.o
0.0
0.0
u.o
0.0
0.0
0.0
0.0 1
0.0 H
0.0 <£
0.0
0.0 1
u.o
0.0
0.0
0.0
0.0
u.o
0.0
0.0
0.0

-------
    VG
1
">
"7
f,
C
6
7
*
n
10
1 1
1 ?
1 J.
1 ft
15
1*
17
1P
1 c
20
21
37
2'
2*
25
i'
27
2°
2°
3P
31
3?
3?
3'
3s
3?
37
i p
3^
43
41
/, "»
4?
LI'
45
A*
n0u
1 .9fe
1 .ii:
O.vc:
P»5f»
o.:<3
0.1V
0.1J5
n.ib
0.1L,
O.JV
O.u>
O.J9
O.oV
O.J9
O.J9
0.09
r.ov
o.uv
o.ia
0.10
0.10
P. 10
OolU
0.10
n.iii
0.10
0. 10
0.10
0.10
0.10
0.10
0.10
0.10
0.1U
0.10
0 . 1 0
0.1U
0.10
P.1u
0.1!)
0.1U
0.11
0 . 1 •_>
P. 10
p . 1 ,J
OoO
2 »tit-
1.7?
L^Y
1 o?5
1.07
0 . 7r,
0. ^i
0. 26
0.21
0.19
0.15
0.13
0.13
0.10
0.10
0.10
0.10
0.10
0.1(1
0.10
0.1"
U.10
0.10
0.10
0.10
0.10
0.10
0.1"
a. 10
0.10
U.10
0.10
0.10
0.10
U.10
0.10
0.10
0.10
0.10
0.10
0.10
Oo10
0. 1 P
O.^T
n. n
0
2.03
1.60
1 o.51
1o02
0.69
n.45
0.23
0.16
n.13
0.12
0.11
n.io
o.ov
n.09
n.09
0,09
0.10
n.u
0.10
P. 10
0.10
0,10
0.10
0.10
0.10
n.io
n. 1 3
0.10
n.io
P. 10
0.10
P. 10
n.13
0.10
P. 10
n.u
n.10
R.I D
n.u
0.10
0.10
P. 10
n.iu
n.io
°. 10
n0u
0.0
O.U2
n.u3
Oo J4
0.06
0.07
0.03
0.09
0.1Q
0.10
0.11
n.12
0.14
n.13
0.12
0.12
0.11
0.10
0.10
P. 10
0.10
0.10
0.13
0.10
0.10
0.10
0.10
0.10
n.io
0.10
0.10
0.13
0.10
0.10
Oo10
0.10
0.10
n.13
0.10
0.10
0.10
0.10
0.10
0.10
n.io
Oo
0.
u.
u.
Oo
u.
u.
Do
b.
0.
0.
u.
Oo
Oo
0.
0.
(j.
u.
Oo
0.
0.
u.
Co
Oe
0.
0.
u.
J.
0.
u.
Oe
J.
0.
0.
J.
Oo
n.
J.
0.
u.
J.
u.
0.
J.
u.
ll.
f)
01
Qi
06
08
39
n
13
11
14
17
1 )
in
10
13
13
10
1 1
10
in
13
n
PoU
n.uu
O.U2
n.04
0.05
3.07
0.08
n.ov
0,10
0.11
0.13
0.15
0.17
0.17
0.17
0.16
0.15
0.13
0012
0.12
0.11
0.11
0.10
0.10
0.10
0.1J
n.io
0.10
0.10
0.10
1.10
0.10
0.10
n.io
O.H)
0.10
n.io
0.10
n.u
0.10
0.10
P. 10
n.10
n.io
n.iu
n.10
0 "
n.u
0.02
0.03
1.04
0.06
0.07
0.03
0.09
O.U9
0.09
0.09
a. 09
0.09
0.10
0.09
n.09
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
C.10
0.10
0.10
0.10
0.10
n.10
n.10
0.10
0.10
P. 10
0.10
0.10
0.10
0.10
0.10
P.1J
0 n
0.01
0.04
O.J*
0.03
U.09
0.11
o. n
U. IT
0.11
0.14
0.1*
0.17
o.l*
o. u
0.14
0.12
0.1 1
0.11
0,10
0.10
0.10
0.10
0.10
J.10
0.10
0.10
J.tO
0.10
0.10
0.10
a. 10
0.1 J
U.10
J.10
0.13
0.10
J.10
0.13
a. in
J.10
0.13
0.10
o.n
u.n
u. 11
n
0
n
0
0
0
0
0
0
0
0
n
0
0
0
0
0
0
T
0
n
0
0
n
0
0
n
0
n
0
n
0
0
0
3
n
0
3
n
n
•3
0
a
0
n
o
Q
.00
.02
.04
.05
oU7
. Utt
. J<5
.10
.10
.11
• 11
.12
.12
.11 .
.11
.11 5
o10 00
.10
.13
.10
.10
.10
.10
.10
010
.10
.10
.10
.10
.1U
.10
.10
.10
.10
.10
.10
.10
.10
.10
.10
.1U
.10
.10
.10
. 10

-------
4V
5n
51
e 7
57
54
55
5?
57
5*
5°
60
61
6'
6T
6'.
65
0*
67
6^
6C
70
71
7'
71
74
7C
T
77
7?
7C
en
81
8'
83
et
85
8*
67
d*
%c
vo
91
9?
S3
VA

-------
110
11 1
11?
111
1U
11?
11*
117
11?
11"
120
1£1
12?
127
12/.
125
126
127
12P
129
13n
121
132
133
0.10
0.13
0.10
0.1U
1.99
0.10
0.1L-
0.1U
0.10
n.u>
0.10
0.10
0.1CJ
0.10
0.1U
0.10
0.10
0.1(1
0.10
O.J9
O.U9
0.07
O.U»>
n.u9
0.10
0.10
u.m
O.in
2. 01
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.1"
0.10
u.n
0.10
o.m
0.10
o.m
0.12
0.11
U.08
0.09
0.09
0.10
n.iu
n.U
0.1U
?.un
n.10
0.10
0.10
r>.10
n.iu
0.1J
n.io
n.iu
0.10
0.10
0.1U
0.10
r.1U
0.10
0.10
n.u9
O.U8
P. 03
O.U9
0.10
0.10
0.10
0.10
0.0
0.10
0.10
0.10
0.10
0.10
0,10
n.io
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.13
0.14
0.27
0.20
0.15
LI. 10
U.n
u.n
J.I J
(j.O
0.10
J.10
U.10
0.10
j.n
a, 10
iJ.10
J.10
0.10
U.10
J.10
u.n
U.10
J.10
0.21
a.?o
O.AO
i).?7
0.20
0.10
0.10
0.10
0.10
o.u
0.10
O.lu
0.10
0.10
0.1C
0,10
0,10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.17
0.17
0.31
0.26
0.17
0.10
0.1U
D.10
0.10
o.u
0.10
0.10
0.10
0,10
0.10
0,10
0,10
0.10
0.10
0.1U
0.10
0.10
0.10
0.10
0.09
0.09
0.08
0.08
n.ug
u.n
u.n
0.10
J.10
0,0
U.10
J.10
0.10
o.n
J.10
u.n
o^n
0. TO
u.n
u.n
0.10
u.n
0.10
0.10
0.13
o.u
3.5f>
0.?.A
0.1?
0.10
n.io
0.10
O.iu
o.u
o.n
O.IU
0.10
0.10
1.10
0,1 a
0,10
0.10
0.10
n.io
0.10
0.10
0.10
0.10
0.12
0.12
0.21
0.15
o.n
                                                                                                           NJ
       OF QUALITY CYCLES  =   500                                                                           O
WYDR*ULT TJPF L»ST FE*P  AT TYCLF

-------
c
0
N
5
T
1
T
U
E
N
T
2.51
2.P
1.5
1.0
0.5
U.OL--
  0.0
         LA
           AM
             *  H
               I
         »OTO'1»C rSTUAPY  CENTER
               STARTS  »T  CYCLT
                ENOS   AT  CYCLF
                                                            175
                                                            ?io
                                                             - OUALITY  SU1MIRY
                                                              2 DOTS  14.5  HOURS
                                                              < DAYS  t.o  HOURS
                       M    +          +         +
                         H
                       f A HH
                       L L LLLL L  U.   LL tL LL L L L L
                                                    LlLLlLLLL
                                                                                                      M
                                                                                                      o
                                                                                        LL
                -- I —
                 5.0
— I —
 10.0
	T —
 15.0
	I —
 ?0.0
--_!_.
 25. n
.-_J_.
 30.u
---!--
 35.0
.— 1	T_-
 40.U       41.P
— 1
 50.U
                                                    CH'IK PR)OGC

-------
U.M
   I
   I
                             POTO^C FSTUARY CENTER CHANNEL - PUJLITY
                           SUW?*ART STARTS *T CYCLE   ??5     ' Of »S  U.5 HOURS
                                    EMOS  »T CYCLr   ?00     6 DAYS   6.0 HOURS
                                 +         +         +         «•         +
O.i
0.3
U.2
0.1
             HH
             +MH+
            H    H   H
                    H  AA« A
                              A  +
                                    H
tl.OL— L
  P.J
   +        » +
          H     L
          ALL     »   H
             L      LL   '  A  H
        HAL           L   « AH H
   + HH *  L   *          +L  LL LL L*L L L  L *L  L  L L+L L L  L + L
   "  t L
 H   »L
   « L
"  I
 A+         +          »         •*         +         +         +
                                                                         -I-
                                                                     L  +L     L    L   L    L +
b.n
             1 --------- T
           in.u      15.
                                            1
                                         20. u
                                                           35.0
63.0      45.T
                                                                                                                          KJ
                                                                                                                          O
                                                                                                                          to
                                                 ^  CHAIN  ?5IP

-------
U.il
J.7
0.?
G.I
                               POTOMAC rSW?Y CEMTC?  CHANNFL - QUALITY  SUMMARY
                                     STARTS »T TYCLC    1?5     2 DA Y«?  1A.5 HOURS
                                      E.,ps  ,,T CYCLr    'PO     4 DAY'   4.0 HOURS
                                             +          +         +          t
                     H
                            H H
            H  +
              A
           u
            *  I

         H'L  +
        AAA     H  +         +          +         +          +
     HA     A  A    MM
   "A          A  »  H"         HHHMHH      HHA
HHAL    LLLL  LLLLLLLLLL   L  L  L  LLLLL   L
 A L   LLLL
AL      +          +         +          +         +          +
L
      u
O.OL —l-
  O.o
                                                                                     A   A
                                                                                     L   L
                     - —I —
                      10.0
	T —
 15.n
-—i--
?0.0
---!-•
 31.0
.—1_-
35.P
	1 —
 40.U
         H   H    A
         I   L    L
                                                                                                  .n
                                                                                          — I
                                                                                          50.0
                                                                                                                              to
                                                                                                                              o
                                                                                                                              U)

-------
                                          TIME PLOTS FOR  NOD*-     s  »T AN IMTCPV»L OF    25   CVCLFS
       ,51         *          +          +         *          +          *         *•          *•
         I
         I
         I
         I
        I

     2.0-         +         +          »         +         +          +          +          4          +
        !                                                                                  »     *     *
        i                                                                       «    *
        1                                     -                             *
        1
        1
        I
        1
        1
     1.5-
C       I
0       I
N       I
S       I
T       1
I       I
T       '
U       I
E       1
M    1,0-
I       I
        1
1       I
        1
to
o
•fx
         1
         1
         I                         «
         I
      0.5-          *          *          *         +          *         *         +          *         *          +
         1
         1                    *                                                                i
         I
         1

         1               »
         1          «
         N     K
         I
      J.OI	T	1	r	1	1	1	1	1	T	1
       O.u      50.0      100.0     150.')     ano.U      ?50.0     3GO.O     350.0      410.0     450.0      5^0.0

                                                          CYCLES

-------
0.51
                                     T'ME PLOTS FOR NOn*"    15 »T AN 1HTFRV»L OF    ?5  CVCLFS
                                  »»»»*•«•»
O.A
0.?
).?
0.1     »
O.CI —
  n.o
— T —
 50.0
                                                                                           K    *     R
                                                                            t     »     «
                                                            »    *
	1--
 100.U
                                            •I-
                               150.0     ^OT.O
250.0

 CYCLES
                                                                        3bO.O
                              	1 —
                               4T1.J
	j_.
 4SJ.O
	1
 500.0
                                                                                                                           to
                                                                                                                           O
                                                                                                                           tn

-------
PLOTS FOR NOQF   1TU  fT  AN INTrF,vn OF    ?F





















c
0
M
S
T
I
T
U
r
K
T

'i

















0.51
I
I
J
i
I
I
1
I
1
u./.-
1
I
I
1
I
I
1
I
I
J.?-
I
1
I
1
1
1
J
1
I
a.?- '
i •
i
i
i
i
i
i
i
i
j. i»
i
i
i
i
i
i
i
i
i
p.'j
* + + »«. + + .».».+.




» + + + + + + + *.(.




»* + + + 4 + * + +




» + + + + + + •»»«•




* + + + + + + »»»




+ + + + + + + + «•«•

It * it
* * H
* It
•» *• + + **+ + •» » *
M K
K
»
It
* 4-V-f + + + + 4 + »
If

-------
                                           TI"E PLOT*  FOR  N0n(r  TO *T AN  INTERVAL  OF    1  CYCLFS
     0«5I          +         +          »         +          +         +          +          +          *          +
         1
         I
         I
         I

         I
         I
         I
         I
     0.4-          »         +          +         +          +         +          «.*          +          +
         1
         I
         I
         I
         I          »*.»         +          +         +          »          +          «.«.
         I
         I
         I
         I
     0.3-          +         +          *         +          +         +          +          +          »          +
C        I
0        I
N        i
S        I                                                                                                                           I
TI          +         +          +         +          +         +          +          ***                  ^
1        I                                                                                                                           O
T        I  KKftK  ft                     «»«ft Mftftft K«                    KDK Kft*                                                       ~~"
U        I        ft                  «              «                  •                                                               I
E        1          »              »                «               ft
N    0,2-          •»»»+          »         +»+         +          +          +          +          +
T        I              »         »                     »           »
         I               »                              »«
21                KKftK                          »      K
         I                   »V                             Mftft ft

         I
         I
         1
         1
     0.1-          +         »*         +          +         +          +          +          +          »
         I
         I
         I
         I

         I
         I
         1
         I
     0.01	T	1	T	1	1	1	-i	I —	i	j
          1     456.0      4^4.0     '.72.0     480.U     486.0     49A.U     504.0      512.0     5ZO.O      523.0

                                                          CYCLES

-------
                                            TT1E PLOTS FOR NOPT   HO »T AN  INTFRV*L OF     1  CVCLPS
      U«* I          *          *          *          +          4          *.          4-          +•          +          +
         j
         I
         1
         I

         I
         1
         I
         I
      U.3-          -,»          +          «.*«.          +          *          +          +
         1
         I
         I
         I

         1
         I
         I
         1

C        1
0        1
N        I
S        I                                                                                                                              I

1        i	                 8
T        1                                                                                                                              °°
U        J                                                                                                                              I
E        I
N     J.?-          +          *.4.          +          +          +          »t          +          «.
T        I
         I                                               X»« *            K
31                                              K     «**       «» «
         I                          UK                 K             *•»**       II
         I          4-          »» «   »    *          +          +          +    K      +          +          -f          *
         I                   UK                      K                           «* *N
         1              »•««*            K
         MX ««»»»»»*                   »          K
         ]                                *K »*»» *
      0.1-          +          »          +          +          +          +          +          +          •»          *
         I
         I
         I
         I
         !*          +          »          +          *          +          +          *          +          «
         I
         I
         I
         I
      U.OI	T	I	T	I	I	1	T	I	T	1
      12P.J     las.T      1^6.0      144. n      15Z.O      160.0      16*.0      1/6.0      1««.U      192.0      2nn.i)

                                                            CYCLES

-------
                              - 209 -
               4.4.2   2  LINKED  CONSTITUENTS
                           — data deok  listing  —
 IW'OUAl - SAMPLE RUN  2  -  THIS RUN  SIMULATES THE  NITRIFICATION  PROCESS
                           IN THE POTOMAC ESTUAPY
   1*3  139 1500 20PO   20
 INr,cPENQENT CONTROL DATA - RUN ?
  130U  500  999  999   ?5
     2    0     1.5
       JO..      6.00
        OUTPUT CONTROL - RUN 2
    0
    0
    7
  100    0    1
  300    1    1
  400    2    1
PLOTTI«C OUTPUT CONTROL
                         •- RUN *
    032
    5    1
  209
    1    1
   .5   0.  2.s   0.
2UALITY COEFFICIENTS - ?UM 2
        0.        1.        1.        1
        0.     1.19P      100.  NH3
        0.      1.0?      100. N02»«»03
DIFFUSION CONSTANTS - PUN 2
    2
         1        65       25,
        66       1"       10.
                        iTES - RUN 2
                            0.
                           .03       0.0
                           '.07       0.0
                           .03       0.0
                           .07       0.0
                           .03       0.0
                           .07       0.0
                           .03       0.0
HASTEWATER INPUTS - RUN 2
    1    0    P
CONSTANT INPUTS
       131     -450.        4.        .•!
UPPFR P.OUN7ARY CONDITIONS - RUN 2
    1
       500    -1500.        .2        .?
INITIAL CONnITIOMS - RUN 2
         1        1P        .1        .1
        11        ?0        1.        1.
        21       12«        .1        .1
       129       -H3        1.        1.
SEAVARD BOUNDARY CONDITIONS - PUN 2
    1    1
   .1
   .1
OBSFRVFD DATA S?T V 1
 .06 .07 .05   .4  .?  .2
  .? .17 .14  1.4 1.3  1.
 .07 .05 .02   .5  *3  .1
 .06 .04 .03  .35 .25  .1  •
 .04 .03 .02  .35 .25  .1
UPTAKE
1

DECAY
7







/ RCC

1
RATES

1
2
21
114
115
129
131
IENEPATTO!

133
- »UN ?

1
?0
113
1U
1?8
170
17?
                                                0.
0.
                                                                              5.
                                                                             35.
                                                                             45.

-------
POTOM.'C CSTUARY KYTAULICS  -  133 JUNrTIO»
FLOW = 11,00 CFS AT  (HAT*1  BPIDG£> A5T  CFS  AT BLUE PLMNS» 0  AT  OTHER STP'S
DU'PUAt - c«HPi.r fiU"  2  -  THIS RU" SI*'JJ.*TES  THE NITS TF 1C« T !ON  PROCESS
                            IN THF POTOM«C
                                                                                  ENVIRUM11tNTAL P?OTrCTION
                                                                                               FSTU»CY  HOPFL
  M»III««M*NMNXKMI<«XK*)(N««XK

  FIRST CYCir  ON
        1500
  LAST CVCLE
  HYDRAULIC
     (NSTOP)

       200U
           HT.RAULIC  CONTPOL

              ON     f
                                                        »**** * ****** xnxit
                                   RE'PINC TAPE
                                   »T C^CLF
                                   (»»»*»» «» )»«l»)H«)H(»)Hf IIXKKIWXK
         OF
DUALITY CYCLES
   (NPCYC)

     500
  NUTRIENT  LIMITATION
SU1"ARY  BEFINS AT
        (NUTCYC)

          979
                                                           0.0.  SU"HAPY
                                                         BEGINS «T C^CLE
                                                             (NPOCYC)
    QUALITY
TIME STtP  CHRS)
    CTELT01)

      •J.50
                                                                                  DUALITY STCPS
                                                                               PER  TIDAL PERIOD
  CONSTITUf TS
                      3T.UO
               STARTING TIME
               FOR  THIS KUN
                   (STIHE)

                     6,00
                                          TINE OF     TIME  OF     D.O. SHUPATIO"
                                          SU"!RTSE     SUNSFT       AT in.00  C
                                          (TSRISE)    (TSSFT)          CCSAT)

                                            0.0         0.0          J.O
                                                                                                                                    fa
                                                                                                             to
                                                                                                             t-1
                                                                                                             o
                                                                                                             i
   TONFTITUFHT
CONSTITUENT

   (THAMF)

    1H3
   MO?»N03
                        CONCENTRATION
                           

                           1.0"
                                                     CORRFCTION  fACTOR
                                                          (THFTA)
                                                           i.onu
                         CHLO^OPHUL/CARPON
                              CCHLCAP)

                                1.00
                                                           PcRCrNT OF DFCAYFD  ALGAE
                                                                 IS BI
                                                                                         0.0
         NITROGFM UPTAKF BY ALSAF  IS  COf'SIOF^fcO  (KRFAC  =-  U
         ITIIENT  COHrCKTRATIONS  IT  AOVECTFO 1/AIEP ARC CO«PUTF.f) USING THE 2-WAY PROPORTIONAL METHOD  (1IX=S)

-------
    KX x*x«K«xxM*xx»i(XxXKXxx»KxxxNxxxxxKx«N*xXxx««   SUGARY  OF  HYDRAULIC INPUTS   x»x»»»x«xx xx*»*» XK««KX xx*»xx x»ttx*xx x »x xx xxxxx
                              A»U  AND HYDp*ULir RADIUS OF  CHANNELS ANT JUNCTION HEADS  ARE  AT MEAN T10F
XX XX XX»»»X*X XKK»XX XKXKXKKXXXIIXX   CHANNEL  DMA  XXX»X»X**XXX»XXXXXXXXXX»X»*»X*X»
xxxxxxxxxxxxxxx   JUNCTION D'TA  x» xxx* xxxmnxx
CH»H
1
2
7
I,
5
A
7
P
O
10
11
1?
17
1*
•j 5
1f
17
1"
1C
20
21
2?
27
21
25
26
27
2P
29
*1
31
3'
37
34
35
36
37
3f
T3
40
41
4?
47
44
4-=
46
/, -•
LF^GTH
7fc14.
7C76.
?<,M ,
4U65.
*74V.
5i>97.
*si n.
547°.
4'J65.
1690.
3696.
3olO.
2770.
7690.
11*0.
?t55.
6177.
2641.
53^1* ,
*26.
105o7.
17464.
°71' .
12U/-.
1Pi7" .
112.'.1.
1'460.
1237.0.
10&74.
1752".
1P5f 1.
14?' ' .
WIDTH
224.
800.
V5S.
118*.
1 5i 1 •
1S4C.
2350.
291?.
?92i.
^53.
325P.
35U7.
?475.
2103.
2340.
'736.
4<71.
55o6.
4117.
3337.
3052.
*319.
4221.
5967.
5355.
4368.
54t 9,
6604.
"22*.
7308.
8o37.
7562.
790H.
1027*.
17474.
1P224.
7624.
P934.
1?13fl .
166U7.
1*701 .
1431 *.
neu?.
111U.
S074 .
10t 1 7,
1 ^ 7 ' c
C^-ARFA
37P7.
24853.
724*1.
22681.
239 32.
23115.
22518.
25663.
7122*.
38725.
79852.
38684.
76055.
70055.
265?*'.
45378.
53702.
53294.
570?4.
•=6147.
56167.
72579.
75968.
74674.
73761.
681"2.
fi1V64.
94185.
105827.
110934.
117920.
127836.
127978.
132188.
162228.
1?3741.
171952.
176359.
?0£1 74.
?30127.
2*2151.
'17678.
?195BO.
1C7V79.
166680.
1 * V 2 5 '• .
•>,''G* ?7 .
«»NN TNG
0.0?0
P.0?0
0,0 '0
0.020
i.u?0
0.070
'LO^O
0.020
0.020
0.017
P. 017
0.017
3.017
O.u17
O.U17
0.017
0.017
0.017
0.017
3.017
O.U1"7
3.017
Q.Q1"7
0.017
P.O 1 7
0.017
0.017
0.017
O.U17
0.017
0.017
0.017
0.017
P. 017
O.U14
1.014
1.01A
0.014
0.014
O.OU
O.U14
0.014
0.014
!1 . Vi 1 4
1 . (J 1 '•
1.014
"".I.. 11
DIFC
5.76
"«3^
15.79
11. U7
T?.00
".04
12.5*
".27
11.07
if- .63
12.1"
14. 9e
19.82
1?.20
10.7?
11.67
7.29
17.0''
3.3C
17.74
8.5'
14. V*
8.61
3.6^
^.9''
9.3'
5.13
4.9"
6.71
5.3V
8.04
7. V£
11.07
6.71
5.61
4.2"
3.7.1
4.6.7
3.71
4.14
4. on
7.61
3.51
1.1 "
2.57
1.2"
T.1 '
KFT FLOW
-1499.97
1499.94
1499.99
1500.01
1500.02
1499.91
1499.87
1499.93
1519.87
1519.89
1519.86
1 5 1 9 . 92
1519.87
1172.86
1383.42
1969.95
1969.84
1969. P3
1969.79
1969.76
1969.73
1969.72
1P69.59
1969.51
1969.40
1969.73
1969.14
1967.33
1966.81
1°66.23
1965.73
1965.26
1965.07
2276.61
1725.22
1960.65
1959.69
1059.33
1958.73
1956. 3J
1954.86
1953.03
1951. *5
1^4V .32
194V. 0V
1°47 .5*:
1"45 . "M
HYD. RAP.
16.9
31.1
34.0
19.2
15.8
11.9
9.6
8.9
10.7
17.1
12.2
11. U
14.6
14.3
11.3
1H.1
11.5
9.7
1*.9
16.6
13.4
21.9
1*.0
12.5
13.8
15.5
15.0
14.3
17.0
15.2
13.3
16. 9
16. i
12. V
1?.U
1*.0
2?.0
19.7
16.7
1 *.7
T*.V
15.2
15.9
17.8
21. V
1 f'. 5
1 *.. /,
JUNC.
2
2
3
4
5
6
7
o
9
10
11
12
13
14
15
16
17
18
19
20
21
22
27,
24
25
26
27
2b
29
30
31
32
33
34
35
36
37
38
3V
40
41
42
43
44
45
46
.'. 7
AT ENDS
114
3
4
5
6
7
6
9
10
11
12
13
129
1 5>
16
17
18
19
20
21
22
23
24
?5
26
?7
28
'9
70
*1
32
73
74
35
36
77
78
»V
40
/, 1
',2
43
44
45
46
47
.'• •:
JUNC
1
2
3
A
5
6
7
8
o
10
11
1?
13
1 4
15
16
17
18
19
21
21
22
2*
24
25
26
27
28
29
30
31
3'
3*
34
35
36
37
5°
3°
4')
41
4?
4T
44
4*
4"
',.7
INFLOW
0.3
0.0
0.0
0.0
0.3
0.0
0.0
0.0
o.a
0.0
0.0
0.0
0.0
OsO
0.3
o.a
0.0
0.0
0*3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.3
0.0
0.0
0.0
0.0
0.3
0.3
0.0
0.0
c.o
0.0
o.a
u.o
0.0
u.o
0.0
o.a
J.I
HFAO
0.33
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
n.40
0.40
n.40
0.40
0*40
0.40
0.40
0.40
1.40
0.40
0.40
0.40
0.40
0.40
1.40
0.40
0.40
0.40
0.40
1.40
0.40
0.40
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.38
0.38
0.36
G.38
0.37
0.37
0.37
0.36
1,36
CHANNFLS
65
1
2
3
4
5
6
7
8
V
10
11
12
14
14
15
16
17
18
1V
20
21
22
?3
24
25
26
27
28
29
70
*1
72
*3
74
*5
76
77
'E
79
'•G
41
42
A3
44
45
46
0
2
3
it
5
6
7
8
9
10
11
12
13
134
15
16
17
16
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
33
39
40
41
42
ttl
".4
45
4c
47
INTO
0
0
0
0
0
0
p
0
66
0
0
77
0
136
78
79
0
p
81
1
0
0
82
0
0
0
£3
t4
0
0
0
0
0
85
86
89
S 1
92
n
0
n
V7
54
T
1
r>
<. *
Jdtrt
0
0
0
0
0
0
0
3
0
o
0
0
0
0
0
HO
0
0
0
0
0
0
0
n
n
0
0
0
0
0
0
0
0
0
0
90
0
0
0
o
0
0
n
n
n
n
T
ION
0
u
u
0
0
0
0
u
0
0
0
u
0
u
0
0
u
0
0
0
0
0
0
0
0
0
0
0
0
0
0
11
0
0
0
170
0
0
0
0
0
0
u
u
0
0
n
















1
to
H1

1




























-------
J
1
?
7
>4
5S
5<*
57
5"
5°
60
£1
6?
6 3
64
65
66
67
6«
6°
7P
71
7'
77
74
75
7*
77
7?
7C
80
M
3?
37-
84
85
86
6~
6 1
69
90
91
V?
93
9 A
95
9A
9r
9?
9r>
1JO
1J1
1 U'
10T
104
105
1U*


Cb2n«
f 441 .
105t'l.
?45 1.
t i. 1 1 .
10665.
10137.
871'.
1 ? > 0 2 .
IPiHT.
itei'j.
67uS,


16iOis
26 Of.
26*1.
2381.
?511»
2^/,1.
'UJ*.
343T.
^301.
7J35.
••450,
?5*5«
<63;).
'100.
3451,
'ACI*.
*'50.
'Tt'O.
'•321.
1053°.
6250.
100UO.
7351.
1 ?855.
8190.
1f2b1.
^450.
1 21S1.
?*7'_|1,
2?411.
? t o 1 1 ,
709 J".
1 7D?0.
1°9ST.
761,31.
246CO,
722 11,
3'OU.J.
?f310.
16141.
7 5>j"*«
*1 £ 5 ,
'77".

1032C«
I7?!*.
25490.
21717.
241S7.
70413,,
J11 i ^ ,
3?0i* .
2701?.
255UO.
2C07^«
?625>-,
?767*.

?251 Oe
1200.
150P,
1*50.
1250.
1150.
750.
750,
750,
550.
400.
350.
1211.
4500.
/. i: 0 0 .
523 1.
'92?.
741?.
4140,
<• 2 1 ' .
FOJO.
7250»
0930.
5401.
2347.
4£Q1»
3531.
2408.
778? .
3435.
5027,
5307.
.'«:uo.
403-7.
IM6P.
"160.
4/78.
41UC,
',792,
574 J.
300.
ion.
25 J,
'" n_
251552.
767154.
459412.
402421,
474251,
556047,
6 ? 5 9 6 5 .
658347,
568689.
5P4251 .
574128.
<"il298?»
60665?.
6SG297.
77323".
61256.
31398.
271P5.
271P2.
?47?6.
14488.
9618.
8681.
31*9,
4605.
2b70.
16144.
19473.
"0863.
21119.
12456,
13886.
12598.
?4678.
i0765.
59191.
72642.
25708,
622<5.
*9860.
91 8/..
8465.
17167.
12156.
17999.
74955.
23655.
?0912.
HIS"?.
'0444.
467 ?P.
40002.
12457.
44404.
3221.
30?«.
3057.
1707.
n.u14
O.U14
O.U14
0.014
O.U14
0»u14
0.014
0.014
n.U1 '»
0.014
0.014
0.01'.
0.014
0.014
Oem4
0.0'4
O.U'.'.
O.li?4
O.U?'.
0,U?4
0.0'4
O.U?4
•3,y24
n«Q?*
0.026
1»G?6
P«0'2
o.o?o
0.020
1.U22
0,U?2
O.U??
0.02?
0,U?2
0.022
P.O'?
O.U??
O.U2?
O.U??
O.u?2
0*0?2
O.U??
O.U??
0,b?2
O.U?2
O.U?'
0.0??
O.u2?
r,0??
0.022
rt.U??
O.U??
O.c??
O.U2?
1.0 »R
•1 . b ? "
n * u ? °
•"••u'"
4,5^
6,99
4.26
4,7*
6,61
4,22
'4,/,/i
5,1?
1.6*
fe.24
3.o7
6.71
5.1'
5.2"
2.79
6.9?
6.b2
7.5*
7,1^
6.8?
5.9*
5.25
5.45
5,93
s,25
5,05
?,73
".S7
5.2?
5.2°
5.2'
/i. 8*
4,1'
1.71
?,81'
i.eo
?.4S
1 .4°
2.20
1.11
2.79
1.4?
0ȣ7
P. 80
0.73
0.5"
1.05
O.VO
1.4°
0.7'
0.5*
0.55
0,6"
1.1?
5.45
5.69
?',5'1
'•.o'1
1943. 60
1943.13
1942.93
1942.44
1941, *3
1942,11
1942.17
1940.47
1940.13
1940. ?0
1939.67
1939.?3
1=39.51
1959. "«0
-1939s1b
-19.91
-20.04
-20.04
-20.03
-20.03
-20.02
-20.02
-20,01
-19.69
-19,69
-19.69
0,01
-210,55
-5&6,?0
0.03
0.04
0.12
0.38
0.56
-114.21
552.50
-715.73
0.54
0.15
0.57
0.17
0,?4
0.95
0.*5
o.sa
0.63
0,28
0.17
1.70
0.72
0.10
O.OJ
0.10
-0.07
-1V, °V
-20. OU
-20.0G
-2U«;1 J
24.4
19.6
1p.O
1"»5
18.0
I1?, 3
2O, 1
19, V
21 .0
20,6
19.7
21.3
2 T . V
2* -»
•* * ->
27,9
3?.C
1°.1
23. V
21.7
21.7
21.6
19.3
11. i
11. t
5.7
1?.0
".2
12.3
4.3
7,3
1.4
4.3
4,1
1.0
4*0
5.1
8.2
•".3
4.t
2.7
?,?
?«6
?,5
4.5
3.5
7*6
6.6
5,6
5.2
1^.7
3,7
o.b
o.o
6»P
7.7
10.7
10.1
12.2
~?»<:
50
51
52
S3
54
55
56
57
5t
59
60
61
€2
6?
.;
64
1
9
66
67
66
6V
70
71
72
73
74
75
12
15
16
16
1V
23
27
2B
24
?5
86
b6
3fc
36
3V
?8
42
43
47
48
52
i5
i7
9V
oO
61
6('
63
76
77
10'
10f-
51
52
S3
54
5 j
56
57
58
C9
*0
61
f Z
e f
r 4
65
65
66
67
*b
69
70
71
72
73
74
75
76
7&
79
80
PI
82
83
84
8!>
R6
*7
87
88
8V
90
01
92
93
94
95
<36
9?
"b
99
100
101
102
103
104
77
135>
IOC-
1"?
50
51
5?
51
5*
5"=
5*.
57
5°
59
60
61
6?
67
6*
6'
66
67
6"
69
70
71
7'
77
74
7 «:
76
77
78
7"
80
81
8?
87
8'.
85
36
87
89
89
90
91
9?
9*
V4
9C
y*
97
9"
9°
1JO
101
1U?
107
104
10*
106
1JT
1U'
O.'J
u.o
0.0
O.J
O.J
O.U
OcO
o.a
0.3
0.0
3.3
O.U
Cfl
. J
o.a
0.3
o.a
o.a
0.0
o.a
0.0
0.0
O.T
0.3
o.a
0.0
0.0
0.0
a.]
0.0
o.a
0,0
a. a
a.o
O.U
a.o
OeO
0*0
0.0
O.U
0,0
u.o
Q.O
0.0
a.o
O.J
u.o
0.0
0.0
OoO
0.0
u.o
0.0
u.o
u.o
0.0
0.0
u.n
-2IJ.1
' ' * — .
0,34
0,34
0, J4
0.34
0.34
0.34
0.34
0.14
0.54
0.33
r*.33
0.33
n i '<
Js 55
0.33
0.33
T.40
0.40
0.40
0.40
0.40
0.40
0.4U
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.39
0,39
0,39
0*39
0.39
0.39
0.38
0.37
0.37
0.35
0.34
0*34
0.33
Po34
P. 34
0,33
0.33
0.33
0,33
1.40
0.40
0.40
H.40

Sij
«:i
52
53
54
55
56
57
•58
59
*0
<1
^3
64
*6
67
68
69
70
71
72
73
74
75
~>t
105
77
78
79
"0
31
P2
?3
"4
85
?6
S8
"«9
90
91
92
93
94
"5
°6
^7
OR
09
100
101
102
1P3
114
ne
m?
108
1f9


52
i3
54
55
5-5
57
5t
5V
60
ei
62
^ -j
64
65
67
6fc
69
70
71
72
73
74
75
76
105
106
U
I3a
13V
0
0
116
0
120
87
87
U
a
•3
0
i
0
0
0
0
0
U
100
IJ
U
0
0
J
1U7
10*5
1-J9
U


97
P
n
9?
f
99
0
0
1U1
1U2
0
•% t' t.
n
0
110
r>
0
0
0
0
0
111
0
0
115
n
n
139
0
0
T
0
0
0
b9
12*<
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n



0
T
T
n
0
T
0
103
• (
0
n
0
0
n
0
T
0
T
0
0
0
ri
0
n
0
1
0
0
fl
n
T
i
0
0
n
T
0
0
0
1
0
T
fl
0
0
T
T
0
0
P
1
0
0
0
0



0
0
t-
a
0
0
U
0
0
0
U
0
0
0
0
0
0
U
0
0
0
U
U
0
0
0
U
0
0
0
0
U
0
0
0
U
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
to

-------
111
11?
11?
114
115
116
1 1 7
1 1 a
11T
12P
121
12?
1 1 ?
1 24
1 25
126
127
12".
12°
130
131
132
13?
13'
135
13*
137
131
139
_ t\ (j 1 |
. j (j 0 •
3200.
42Un.
?70n.
5350.
2i,51.
1850.
14 >rj.
43'jT.
?5u'1.
31 jO ,
?cOi1,
?JOQ.
7751,
70J3.
?'OJ.
5JJ-J.
CUOO.
1P1-U1.
?4
                    65
25.00
10.00

-------
    » »»KK    (MG/L>   (LE/D*Y)
         rOt
              (      CONSTITUENT 5
 rONC.     LOAf*     CONC.     LO/0
(UG/l_>   CL5/0«YJ  (HC/L)   CLB/PAY)
                                                                                                                          rONC
        1UO
-1500.
                         0.2T
1516.
                                            0.20
                                        161°.
         «*««K»«M»KK«*KX»X«KXKK*»NKXX«K»MN«>
                                                            OF  INITIAL  CONCENTRATTONS
                                                                                                                            I

                                                                                                                            to
                                                                                                                            I-1
                                                                                                                            £>•
                                                                                                                            I
JUNC
•\
11
21
1?9
TO
JUNC
10
20
128
133
CO^ST 1
(M6/LJ
P. 10
1.00
0.10
1.00
CONST 2 CQMST 3 CONST 4 CONST 5 CONST t
(MC/L) ("G/D CU6/L) (MC/L) <1G/L>
0.10
1.UO
a. 10
1.UO

-------
«N**KKM«K*«NKX«K«ltKV«M«XXK*KMK*XK«MK*X*X
                                              SUMMARY Oc CONSTITUENT  DtCAY  RATES
F"OM TO
ju»'C June
1 1
' 21)
'1 11?
1V 114
11e 128
1?° 130
1*1 133
CO"ST 1
(OECAYK 1>
(PEP PAY)
O.U*0
1.U70
O.U*0
0.070
0.0*0
P. 070
0.(J*0
COHST 2 CONST * II CONST 4 CO«ST 5 CONST 6
("F.CAYK 2) (DECAYK ^) (HEC*YK 4) (OECAYK ?) C"rCAvK6)
(PtF riAY) (PE1? DAY) (PtF *?AY) (PEP 0^v) (PER HAY)
0.0
U.O
0.0
3.0
0,0
0.0
0.0
                 U"OEF^OES  2ND ORDFP DFCAY
                                             SU*»1*RY  OF  CONSTANT WASTEUATfeR  LOAr>S
  JUNC.
            (CFS)
 rONSTITUFNT 1
 CONC.    LO»P
(MG/L) (L?/0«Y)
CONSTITUENT I
COVC.    LOAD
CONSTITUTE 3     CONSTITUENT 4
CONC.    L0»n     COWC.     LOAD
      (LB/0«Y)    (UG/L)  (LB/DAY)
 CONSTITUENT 5
 COHT.    L0»0
(M6/L) (L9/D*Y)
COWSTITUtMT 6
CONC.    LOAD
           -45D.U
                         4.0
          9709.
                                           Q.5
         1214,

-------
n«v« »»«*«»'<« «i»i«»«
                                  *» *     SU"*f*R* OF  DISSOLVC" OXYGEN  (C OMST I TUE'.'T 6)   RATES     * ** ** «» «* ** *RKH*«I:K *» »* SJIKX
JUMC
    TO
   JUNC
                                              CPHOT)             
                                            O.U
                                  0.0
                                                                                   n.u
                                                                             T.O
««»»»)«»«)().*»i.«*««»»««»««»«»*)««»).»).)«     SUM!U*RY OF  NUTRIENT UPT»KE *KO  REGENERATION  RATFS     »»«««mi»«ii«»««ii»ii««mn»««ii»ii«»»»»»m»
                                                                                                                                           CT>
         jure
                     TO
                    JUNr
C01ST  1  l)PT»KE
    (A1UPP)
                          CONST  3  UPTAKF
                               (PHUPPJ
CONST 1 RFGEN
  CREGENN)
CONST 3 RPGE«*
  (R^GEPP)
                                                                                                        CONST 5 RE6EN
                    133
    0.0
                               0.0
   0.0
                                                                                         0.0
                                                                              n.u

-------
xxxiixxxxxxxxuxxxxx x»KX»»xftMKMiixxxK x   TIDAL CYCLE VIR1AT10" OF SEAWARD  BOUNHARY  CONDITIONS   *»»»* *x xxxx KKKKXXXX xx xxxx x»xx x



                                            SPECIFIED CONCENTRATIONS  AT JUNCTIOV 1

                      CONSTITUC"T 1    rONSTlTUENT 2    CONSTITUENT 3     CONSTITUtNT 4     rONSTITUF"! 5    rONSTITUFNT *
                         (HG/L)            (HG/L)           (MG/L)            tU^/L)            (HG/L)           (MG/L)
1
•>
T
'.
s
6
7
p
9
in
11
1 •»
1T
u-
1 e
1 *
17
1"
19
2n-
21
2?
21
2 A
25
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.1U
0.10
0.10
0.10
0.10
0.10 -
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
o.n
1.10
n.10
n.in
".10
n.n
o.m
o.n
0.10
n.ir
o.n
1.11 i

n'n H
0.10 ^
n.10 I
0.10
n.io
0.10
o.m
0.10
1.1"
n.io
1.10
0.10

-------
SYSTEM STATUS  *rTE° OU'LITT  CTCLE   1UP
Jl'^CTIO
114
2
•»
/,
«
6
1
f
c
10
11
1?
13
12°
130
14
15
16
17
1P
19
iC
21
22
?*
24
25
26
27
2«
29
30
31
32
?3
S/.
7 C
71".
?P
4P
4?
44
<,*
4»>
bn
52
5/
56
iP
6P
«,?
r H^AD

1.80
1.7V
1.T9
1.79
L^V
1 .TV
1.7?
1.'*
1.77
1 .76
1.75
1.74
1 .74
1.73
1.72
1.71
i.*s>
1.67
1.65
1.**
1.61
1.59
1 .57
1.54
1.5?
1.50
1.47
1.44
1.41
1.^6
1 .3l!
1.?6
1.?1
1 .18
1.15
1.12
1.P8
1 .02
O.P5
0.70
0.^7
O.'-L
0.16
-Q.3/.
-O.'l
-J.'S
-0.'6
-0.40
-0 . ' •?
-0 . '; 5
-0. '•£
CONSTITUEKT 1
(HC/L)
0.21
C.1S
O.O'
0.0^
P.OC
O.U1:
f» t". •
V • M '•
0.04
0.0*
0.17
0.2"
0.45
0.49
0.44
0.29
0.4?
0.3°
0.3*
0.40
0.4*
0.44
0.41
0.37
0.29
0.25
0.1"
0.11
0.03
0.07
0.06
O.U7
0.07
P.U7
O.Q7
0.07
O.U7
0.0"
0.07
0.07
O.O7
O.J7
0.07
0.07
n.o7
O.J7
O.J7
0.07
O.J7
O.U^
n.ijT
n.j7
fONSTITU^NT ? CONSTITUENT 3 COMSTITUE«*T 4 CONSTITUFNT 5 CONSTITUFNT 6
 tuc/D (i?;/L) CMC/L>
0.18
0.?6
0.2?
0.19
0.17
U.16
i>.'-5
0.15
0.1?
0.35
o.en
0.7'
0.^9
l.on
1.12
1.14
1.17
1 .?6
1 .?'
1.?8
1,19
1 .no
o.»?
O.c:9
0.49
0.37
O.?0
0.15
0.12
0.11
U.13
0.1'
0.13
0.1'
0.13
U.1*
0.13
0.13
tl.13
0.13
0.1*
0.13
0.1*
0.13
(J.1*
0.1*
0.1*
Ci.1*
0.1*
J.I*
i. .•»*




















1

NJ
|_J
CO





























-------
HICH SLACK PREDICTIONS
jurCTicr

1

6/
6?
6?
61

60
59
58

57

56
5?
54

57
5?
51
50

45
44
' HMD

-0.41
-0.46

-0.4?
-0./.4
-O.A5
-0.46

-0.43
-0.45
-0.47

-O.A?

-0.^3
-0.76

-0.'9

->J.?3
-0.'5
-J.rj
(MF/L)

P. 19
0.0°

O.U5
o.o/
0.0'

O.U'
0.0'

0.0*

0.0?
0.0'
O.OT

0.0^
P.O'
0.0'

n.oT
0.0'
n.oT
n.o7
T 1 roKSTITUFNT ? CONSTITUENT 3 CONSTITUENT 6, rONSTITUE»T 5 <~ONST I TUEKT 6
<*G/L> (HG/l) (US/L) <^o/L) (MG/L)
CYCLE 300 6 DAYSj 1?.(jO HOU»S
0.1(1
0.1?
CYCLE 301 6 DAYS* 1P.5H HOU>»S
0.15
0.16
0.16
CYCLE 30? * OAYS* 1^.00 HOU7S
0.17
0.17
0.17
NJ
CYCLE 303 * DAYS* 13.50 HOURS £
0.17 '
CYCLE 30* 6 DAYS* 14.00 HOURS
0.17
0.17
0.17
CYCLE 30C f- 0»YP, 1/..50 HOURS
0.17
0.17
0.17
0.17
0.17
CYCLE 50C '• D«Y«:, 1K,00 HOU«?S
0.17
0.17
U.17
0.17
0.17

-------
4?
i.?.
41
in
.'•?
3P
57
it

4r
5*
3?
?2
il
30
2°

2f
27
26
2-=
?/•
?3
2?
21
20
1?
1*
17
!<"•
1?
14
130
12°
17
12
11
10
c
f
7

*
5
4
?
?
-0.?7
-O.'B
-J.?7
-J .?7
-U°?6
-J.'6
-0.'7
-i).?6

-u.&u
-0.*9
-O.^f
-0.*6
-0.17
-0.*7
-0.?6

-0.51
-0.51
-0.50
-0.50
-O.iV
-0.49
-0.50
-0.50
-0.49
-0.49
-0.49
-0.46
-0.47
-0.47
-0«4C
-0.46
-0.46
-0.46
-0.4C
-0.46
-0.46
-O.'.S
-0.45
-0.45

-0.^2
-0.^2
-0.*?
-U.*2
- a . '. 3
0.0*
0.0*
o.u*
n.u"*
0 O iJ
0 • LJ"'
1.0*
o.u*
CYCLE
o.u?
0.0*
n.o?
o.u?
o.o/
n.u^
a. 0^
CYCLE
0.1?
0.1?
0.1*
0.14
0.14
0.1?
0.1?
0.1 '
0.16
0.1°
0.2*
0*31
0.3?
0.24
0.31
0.2°
P. 15
0.1 *
O.UA
0.01
n.o'
0.01
0.0*
0.0*
CVCLE
O.O"
0.06
0.07
1.10
0.1"
0.17
0.17
U.17
U.17
0017
0.17
U.17
U.17
30? * DiY«; 1«000 HOUPS
0.16
U.16
0.16
0.16
0.18
U.73
U.34
30^ 6 DAYS* 16.50 HOD'S
0.7*
0.89
0.58
1.11
1 •?.*
1 .?<
1o*5
1.*8
1.34
1 «?6
1.22
1.01
0.81
0.66
U.A8
U.50
U.4?
O.*/,
U.?5
0.'?
U.?4
U.?*
0.'?
0.*4
310 6 CAY?* 17.00 HOWS
u.**
U.*A
o.T1
0.71
u.?£




















I
to

O
i























-------
LOW SLACK PREDICT TONS
JUNCTION

1
fc?
61
(.n

59
3P

57


56
55
54

53
52
51
50

49
47

45
4'<
CCT>

-0.41
-O.'-i
-0.45
-0./S&
-0.46

-0.'7
-0.47

-0.48


-0.'.4
-0.45
-0.45

-O.'V

-J.?7

-0.?5
CONSTITUTE 1
CYCLE
o!o'
0.0T
CYCLE
0.0?
0.0?
CYCLE
O.J'

CYCLE
0.0?
0.03
0.0?
CYCLE
n.o'
0.0'
0.0?
CYCLE
0.0?
0.0?
CYCLE
T.O'
0.0'
n.o'
COH9TITUFNT ? CONSTITUENT 3 CONSTITUENT 4 TONSTITURIT 5 «-0NST ITUENT f
(MG/L) CHG/L) (U^/L) C<"/L> (MG/L)
400 6 OAY«j 1/,,00 HOURS
O.m
o.f ?
0.1-;
0.17
U.17
0.17
C.17
401 ">. DAYS* 1/-.50 HOUPS
0.13
0.18
402 8 DAYS* 1r.OO HOU"S
0.18

403 8 DAY?* 15.50 HOU7S
0.18
0.18
0.18
404 ! DAYS, 16.00 HOURS
0.18
0.18
0.18
0.18
405 * DAYS* 1*.50 HOUPS
0.18
0.1?
0.18
4C6 * UAY?* 17, on HOURS
0.18
0.18
0.1P
U.1R






1
to
1








-------
CVCUE  AIP
                              17.JO  hOU°S
41
40
3°
5?
37

; c
?'•
.3?
32
31
30
2<-

- O
C i.1
27
2t
>5
24
2?
2.7
21
20
19
1?
17

16
1 ?
H
13P
1 29
1?
1'
11
10
c
f.
1

(.
r.
I
-U.'T
-J.'T
-J.".
-U.'6
-U.77

-0.40
-U.'V
-O.^fl
-0.'*
-0.*7
-0."'7
-0.56
•
c

-D.51
-J.5U
-0.50
-0.49
-0.49
-0.50
-U.50
-0.49
-0.49
-0.49
-0.48

-Q.*4
-J.^4
-0./-3
-0.63
-0.63
-titf-Z
-U. *5
-0.^3
-0.'3
-0.'T
-0. *3
-0.^7

-o.7e
-0.76
-<1. "i.
0.0'
O.U'
O.J?
n.u'
o'.U'
crciE
0.0'
n.o?
o.u?
n.t;T
n.!)^
0. 04
0.05
CYCLE
10

0.0°
o.uv
0.09
O.U"
n.o<»
n.19
0.1 1
0.1^
0.17
0.21
0.2°
crCLE
0.3'
0.24
0.31
0.2S
0.1'
P. 11
n.o'*
0.01
0.0?
0.01
n.u*
n.O'.
C^CLE
Q.0r
O.U'-
n. j7
U.18
J.18
U.1S
0.1P
0.18
40S S DAYS. 18.00 HOU9S
0,17
U.1"
c.rt
u.?o
U.'4
U."'"'
J./.8
409 « DAYS* 18.50 HOURS


1.06
1.1?
1.??
1 .'P-
1.3-?
1.??.
1 .'4
1 .29
1.20
1.15
0.94
410 8 DAYS* 19.0" HOU7S
0.71
Q.fg
U.47
U./.9
Li.'.?
J.36
J.-JQ
U.?9
0.70
U.?9
U.™
U.?7
411 " 0»YSi 19.50 KOl'"S
J.-r^
u.'/.
J."


















1
NJ
to
10
1






















-------
POTOMAC ESTUARY CENTER




 P"OFILC PLOT  FOP  CYCLF    1HU


















c
0
N
S
T
I
T
U
tl
T

1














J.'l * +
I
1
I
1
J
i
I
1
I
I
1
1
I
i
1
r
i
i
J
1
t
j
I
I
1
I
X
I
I
J
I
I »
I
I
I
I
I
I
1
1
I
I
I
7
1
J
I.TL 	
x 4 4
4- 4 +
4 + 4
4 4 4
»4 4 4
4X * + +
4 * 4 4
4- X + 4
4X4 4

4 X X 4- 4
4 X 4- 4
444
4 4 4-
+ + +
» + +
* + +
* * *
+ X X + 4-
* -f + +
4 * 4
» 4- +
+ H 4- +
+ 4- *
4- 4- +
4- 4- +
«• + +
4- »* +
4- * +
X 4- 4- -4
+ 4-4-
4- + +
4-4-4-
4-4-4-
+ + -f
4- -f X +
444
X + 4- * +
•f X 4- 4- X 4
X X + + 4-
XX 4- 4- 4
+ 4- *
4-4-4-
	 T 	 ¥ 	 T 	 | 	 I 	 I 	 T.
* +
» +
4 +
4- 4-
» 4-
4 4-
+ -f
+ 4-
+ 4-
+ +
4- 4-
+ 4
4 4-
4- 4-
4 4
4 •»
+ 4
+ 4-
+ +
4 +
4 + 1
* * NJ
* 4 to
4- +00.
4- 4- 1
+ 4-
+ 4-
4. +
4 4
4- 4-
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
X 4 X X 4
4 4
4 4
4 4
4 +
4 4
4 4
MJLFS

-------
                                      POTOMAC ESTUARY CtNTER CHANNEL




























1
















r»

I
1
I
I
1
I
I
I

i
i
i
i
i
i
i
i
i
i
i
i
i
T
I
]
1
1

I
I
I
J
I
1
I
1
1
I
I
1
1 *
X
1

-------
                                             POTOMAC ESTUARY CENTER  CHANNEL

                                        HIGH WATFR SLACK PLOT  FROM CYCLC  300 TO CYCLE  31U
C
0
N
S
T
1
1
U
r
N
T
0













































J
1
1
I
I
1
1
I
I
I
I
I
I
1
1
I
I
1
I
]
I
I
I
I
1
*
1
1
]
I «
I
I
1
I
I

1
1
I
I
1
I
1
I
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 »
4 <•
4
4 *
4
4
4
4 tt
4 *
4


4
4 It
4K N
4
4 L *
*
4
4
4
4
* f 4
» H 4
I 4
• 4
XX 4
» 4
It * 4
+
4
4
4
4
4
4
4
*
+
4
4
4
4
4
4
4
*
+
4
4
4
4
4
4
4
*
4
4
4
4
4
* + N »
K» 4 M
4
*
+
4
4
4
4
4
4
4
4
+
4
4
4
4
4
4
4
*
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
*
4
• 4
4
4
4
H 4
9 4 H
• H 4
* 4 t
*4« * X K L *
I 4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
*
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4-
4
4
4
4
4
+
4
4
4 M
K 4ft « « »
4 L
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
+
4
+
4
4
4
4
*
4
4
*
4
4
4
4
*
4
4
4
4
4
4
4
V4
4
•4
to
to
in
     c;.oi	'	1	r	1	T	1	r	1	T	1
       P.J       S.P       tn.O       15.0      20.U      ^5.0      30.0       35.0      4T.U      45.0       50,0
                                                   nrLO" CH»TN PRlDGr

-------
     POTOMAC ESTUARY CENTER O




H1C1-1 VATFR  oMCK  PLOT FROM CYCLE   300 TO CYCLE   MU
- •








m








•








1 »








•







M * 4 H
1
1
1
I
I
1
1
I
J
7
]
1
I
]
I
1
1
I
1
I
1
I
I
J
1
I
1
I
I
I
I
I
I
1
I
I
I
I
I
!
I i
»

J
4 4
4 4
4 4
4 4
4 4
4 4
4 ^
4 4
4 4
* 4
+ 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 H " 4
4 H K* 4
4 1 4
4 X 114
4 It 4
4 4
4 4«
4 4
4 4
4 4 K
4 4
4 K 4
4 4 K
4 4
4 X 4
4 4

4M 4
H 4 4
<( * *4 4 *
14 4 1
4 4 I
4- 4-
+
4
4
4
4.
4
V
4-
*
4
4
4
4
4
4
4
4
+
+
4
4
4
4
4
4
4
*
+
4
4
4
4
+
4
4
4
4
4
4
•f
*
If 4
4
4
4
4.
4
4
4
4
«.
4
*•
4
4
4
4
4
4
4
4
4
4
4
+
4
4
4
4
4
4
4
4
4
4
4
4
•f
4
4
4
-»
H 4
4
A 4
4
I 4
4
4
4
4
4
4
4
4
4
<
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
M 4
4
6 »
4
V tt if M 4
L 4
4
                                                                                            K)
J
Jl 	
n.j

4- 4
	 1 	 ' 	 I 	 1 	
s.n in.u 15. n ?o.o 25. T
MJLCS DrLO'' CHMN p
4
	 I
30.0 15.0
PICG^
4 4
	 1 	 ' 	 1
&O.U 45. 0 50,0


-------
                                            POTOMAC ESTUARY CENTER CHANNEL

                                       tow  WATER SLACK PLOT FROM CYCLF  40n  TO CYCLE   4n
C
0
N
s
T
I
T
U
E
N
T
0.








•







0_
•







1 1
' J •

















I
I
1
1
I
I
I
1
I
I
I
I
1
1
I
I
1
I
.. 1
J
I
I
I
1
I
I
K
I
I
1
1 *
I
1
J
I
I
1
1
I
T
I
1
1
I
I
444
444
444
444
44 +
4.4 4
444
444
444
444
444
444
444
444
444
444
4 * 4 4
444
4 K 4 4
444
444
444
4 * 4 4
4 * 4 4
444
444
4 f 4 4
444
444
4 A* 4 4
444
444
+ L + 4
4K K 4 4
444
* » 4 4
4 K *4« K * II 4
444
» A 4 4 H 4
* H 4 4 4 H
L 4 4/14
» 4 4 K 4 «
* »4 4 X «4 (.
114 4 t +»»«»»
* * 4 4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 H 4
4 A 4
H 4« * | * M4
4 4
to
NJ
     U.OI	i	I	!	1	J	1	?	1	
       n.u       5 .n       10.0       15.0      21.0       25.0      Jo.o      33.0      4j.j      41,

                                            HIL^S  "FLO"

-------
     POTOMAC  FSU'ASY  Ct^TER CHAMNtL




LOV  WATER SLACK  PLOT FRO* CYCLF  400  10  CYCLF  411


















c
0
K
s
1
i
T
u
E
N
T

i.
















i
i
i
I
i
I
t
I
i
2r i
t U — *" 4
1
I
r
i
i
i
i
j
I
I
I
I
T
I
I
1
1
I
I
1
1
I
1
I
I
I
1
1
1
I
]
1 *
K
|
ft


+
*
4
4
4
4
4
4
4
4
4-
4
»
4
4
4
4
4
+
4 H
4 *
4 t U
4
4 «
4 *
4
4
4- »
4
4
4
4
4- II
4
4 K
4
+ „
H » 4*
XK « K *
» * » X »4
4
1 4
4.
4

5.n n.i) 15. fi
4 «.
4 4
4 4
4 4
4 4
4 4
4 4
4 *
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
»« 4 4
* 4 4
4 4
4* 4
4 4
+ » 4
4 K 4
+ » 4
4 4
4- 4
4 4
» 4
* 4
4 4
4 4
+ 4
4 4
4 4
4 » 4 H
4 K 4
4 II 4 t
4 K4« » H
4 -4 II K
4 L + L
4 4
20.0 23. f 30.0 3i.O
4
4
4
4
4
4
*
4
4
4
4
4
4
4
4
4
4
4
•*
4
4
4
4
4
+
4
*
4
+
4
4
4
4
4
4
4
4
4-
4
4
4
II 4«
4
4
4
40.0
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4-
4
4
4
4
*
»
»
4
»
»
4-
*
4-
4-
+
4
4-
4-
4-
4
4
4
4
H 4
4
A 4
» * 1 «4
4
L +
4
4b.R 5C.O
                                                                                          tO




                                                                                          00
     M1LFS  "ELO" CHMN

-------
                            -  229 -
                 4.4.3  6-CONSTITUENT  D.O.  BUDGET
                      — data deck listing —
OYWUAL -
133
                        .THIS  RUV  SI^ULATFS THE  0.0. EUDGFT  (INCLUDING
                        ALGAL  EJECTS)  IV THE POTOMac ESTUAR*
       139 1500 ZOOCr1 20
            CONTROL OA'TA - RUN
 1500 1000  500  500s   ?5
    6    0    *    4
       70.      6.01 '
TACULAF OUTPUT COHTF.OL - RUN 3
    1
500 1000 0
1 1
1 1000 1
2
*.PJ 1 7
402 2 4
PLOTTING OUTPUT
3 2 0
0 Q
OOP
4 . • j . 3 .






CONTROL


0
0.
dUALITY COEFFICIENTS -
.25
.001
.OOT
.001
1 .00
.001 1
.001 1
DISSOLVED OXYGEN
9P.
1.0P
1.00
i.on
1.00
.047
.021






- RUN


0 1
4. 0.
RUN ?
200.
100.
100.
100.
500.
100.
100.






T



150. 0.

.2".
"H3
•*02N03
TP04
CHLOPO
CBO^
"•0
COEFFICIENTS
<*.OC 18. OC
9
1
2
5
18
28
114
115
129
131

1
4
17
27
113
114
128
170
1T3

.012
.012
.012
.012
.012
.012
.012
.012
.012

.0008
,OOC«
.000"
.0009
.000*
.0008
.0008
.0008
.0008
DIFFUSION CONSTANTS - RUN  ?
    1
UPTAKE / Rc
1
DECAY RATES
5
1
2
9
114
GENERATTO
^
- PUN '

1
8
117
114
                           25.
                            0.
                 13"*
           INPUTS - RUN  3
              1
       115
WASTFWATEP
    1    0
CONSTANT INPUTS
       121     -450.
BANK INPUTS
 16.1  T.3  1.8  1.7.
                                              2.0
                                              3.5
                                              2.0
                                              2.0
                                              2.0
                                              3.5
                                              2.0
                                              2.0
                                              2.0
                                             0.
                      1.3
«.15
.05
:, 15
-.05
.15
20.
1.6
.09
.09
.09
.09
.09
0.
3.2 1.6 1.6
.03
.03
.03
.03
.03
25.
.8
                                                    10.
                                                      1.0
                                                      1.0
                                                      2.0
                                                      1.5
                                                      1.0
                                                      1.0
                                                      1.0
                                                      2.0
                                                      1.0
0.
                                                        .02
                                                        .02
                                                        .02
                                                        .02
0.
                                                                .17
                                                                .10
                                                                .17
                                                                .10
                                                                .17
                                                                  35.
                                                  .9  1.2
     .9
     >5  0.0

-------
 -  230 -
<>6
1 o9
7o6
^ j
2'!U
3o 5
?oO
ofc
10
1.6
2.2
*.6


V.9
'.0
.5
20
.9
2.0
.6

1.6
?5.3
1.6
.(
100
1.6
1.8
2.2
.0
2.R
12.6
.9
.4
106
T.4
•».8
11 .4

•>.1
21.5
.6
1.2

.9
3.5
4.1

1.9
19.9
.6


,°
4.4
2.7
1.3
2.7
21,5
1.1


1 .'
5.4
3.8
1 .1
6.6
12.6
.5


1.9
.'..1
2,9
.9
2.5
1.2
.9


1 .9
3.5
4.7
1 .6
12,6
1.U
.8


1.5
3.5
5.7
2.3
4.3
1.0
.3


2.3
5.7
4.9
.9
5.4
1 .3
.9


4.4
5.1
1.1
2.2
13.3
1.5
.9


2.7
5.1
2.1
?. 1
15.8
1.3
1.3


2.4
4.4
2.5
0 S
15.5
.9
1.9


2.2
4.4
4.1
2.5
13.7
1.6
1.6


     -100.       10.
UPP^R FOUNDRY CONTITIOVS
    2
.
        15
;>oo -1500.
HJG -150^.
INITIAL

















SE*VASO
1
.05
.10
.20
10.0
1.0
".0
.10
.05
.30
.20
CONniTIONS - RW 3
1
2
6
10
16
21
26
31
36
41
46
66
7S
S3
66
129
131
EOUNDAPT
1 1






1
5
9
15 1
20 1
'5
30
75 •
40
45
65
7-7 1
S? 1
P5
1 ' P
1 ?0 ' 1
1 ?3 1'
CO^OITIOMS
1 1






.31
.05
.40
.85
.30
'.70
.10
.04
.02
.01
.01
.40
.50
.40
.30
.>0
'.50
- PUN :
1






• 10
.20
.25.
.50
1.60
1.50
1.00
.30
.60
.30
.10
.45
1.00
1.40
• ?0
t5c
1.00
i







0.
                  .20
                  .10

                  .10
                  .10
                  .70
                 2.50
                 1.60
                 1.20
                  .70
                  .40
                  .40
                  .60
                  .60
                 2.10
                 2.50
                 2.00
                 1.00
                 2.50
        25.0
        20.0

        10.0
        30.0
        30.0
        35.0
        •70.0
        35.0
        70.0
        65.0
        65.0
        30.0
        10.0
        30.0
        65.0
        75.0
        30.0
        30.0
        65.3
 0.
4.0
3.0

1.0
1.5
1.7
5.0
7.0
6.5
5.0
3.0
1.5
1.0
1.0
2.5
5.0
6.0
1.5
4.5
5.0
                                                                             6.0
                                                                             7.1

                                                                             3.0
                                                                             6.P
                                                                             6.8
                                                                             1.0
                                                                             2.5
                                                                             3,5
                                                                             5«5
                                                                             608
                                                                             6,8
                                                                             d»0
                                                                             UO
                                                                             SoO
                                                                             6.0

                                                                             UO

-------
FLOU =
rsTUAPY hy«>lULlCS   -   13? JUNCTION NETWORK
 jn CFS AT CHAt»' 3RIDGC*  /.SO CFS AT BLUE PLAINS.  0 AT OTHtR STP'S
- SA*Plr RUN 3  -   THIS  RU* SI'tULATFS THE  ^.0.  3UDGFT (INCLUDING
                    ALG»L  EFFECTS) If THE POTOM«C  ESTUARY
                                                                                                 EN VI R0»"« ENTAL FROTFCTION  A
                                                                                                       DYNAMTC FSTUA^Y MODEL
* ii**i'**x*«*«*ifii«*KMii**ii*    HYDRAULIC CONTROL  OATA    «*«* x1nFR OF
CONSTITUr''TS
T^HP^PATURE
   (TrMP>

   30.00
     STARTING  TIMh
     FOP  THIS  RUN
         (STIME)

          6.0U
                                                  TIME OF
                                                  SUNRISE
                                                  (TSRTSE)

                                                    6.0?
                                                                TIME OF
                                                                SUNSFT
                                                                (TSSFT>
                                                                   0.0. SATURtTIO*
                                                                     AT iO.UQ   C
                                                                        (TSAT)

                                                                       7.A37
                                                                                                                                      \~>
                                                                                                                                CO
                                                                                                                                £
 CONSTIIUTNT
                   CONSTITUFNT
                       ''AME
                      NH'
                      TP04
                      CHLORO
                      CPOO
                      DO
                           PACKrROUf'P
                          COWCENTRATION
                             (P«CKC)

                               0.001
                               H.U01
                               0.001
                               1.000
                               1. 1.01
                               0.001
                                                     T r>1PE DA TURE
                                                   CORRECTION FACTOP
                                                       (THrTA)

                                                        1.000
                                                        1.000
                                                        1.000
                                                        1.000
                                                        1.067
                                                        1.071
rMLOPOPI'VGE>'«TIOW  CONSTANT FOR o.o.  is COMPUTED USING
          ANO PHOSPHOROUS  OPTJKF. 9Y ALCAF  IS  CONSIOE°FJ  tKREAC = 3)
             corrrNTP«TiO"S TN A^VECTCO VATE:''  ARF coMPJTFn USING THC  1/4  Poira  CONCENTRATION

-------
50
S1
57
i 7
Si
5 p
Si
57
5"
«. o
60
6f
62
i7
64
6?
66
67
6"
6°
70
71
7?
7*
7t
75
7f
77
7?
7C
80
ft
t?
g«
84
fl5
fcft
87
6P
8°
VO
91
9?
VJ
94
V5
V5
9?
9°
9c
1 JO
1 1)1
102
1 0*
104
10^
10*
10?
1 U^
°t2'l.
«',41 .
10561.
c 4 M .
< >. 1 1 .
106t? .
1 PI 3"1.
?71 7.
17SIJ?.
in*. ;2.
1 1 ;' 1 6 .
'•7'Li'-" .
87;?.
ft:1?.
m°.
1ft J4 .
?600.
2640.
?SljO.
?510.
2640.
T035.
*450.
TloO.
3J35.
?43~).
3565.
AbS'"1.
?1JO.
T4bO.
T401".
555?.
37U"I.
A 320.
1 0530.
6<-SO.
100'J1.
7i50.
1 7P5S.
?190.
Ifi'OO,
64bO.
1 ?1tO.
76700.
2?410.
?4*
4.24
3.87
6.71
.- . 1 :
5. 2*1
5.20
2.79
17.31
17.05
IS. 91
17.93
17.05
14.83
13.1?
13.64
14.63
13.12
12.62
9.32
21.43
13.04
13.2?
".11
12. 1f
10.42
4.2^
7,20
4.50
6.1?
3.50
5.49
2.7"
6.9?
*..69
1.6"
2.01
1,fc1
1.46
.?.63
2.26
1.2'
1.8*
1.4T
1.36
1.71
?.7°
1*.6':
14.22
1*.25
17. (-5
1
?.7
8.7
2.6
3.5
4.5
3.5
*.6
6.6
5.6
5.2
1 7.7
3.7
9.8
9.6
6.t
7.7
10.7
10.1
1 ?.2
7.
0
r»
n
103
T
r;
™
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
n
0
0
n
0
0
0
0
^
0
0
0
0
0
0
0
0
n
0
T
0
0
n
0
0
0
L
L
0
J
0
0
(1
I;
0
a
e.
0
o
0
0
U
u
0
0
0
0
u
0
0 I
0 to
0 W
0 W
C I
0
0
0
0
c
0
0
0
u
u
c
u
0
u
0
0
0
0
0
u
u
0
0
0
0
u
0
0

-------
111
112
11?
1 1 *
1 1 5
11?
117
11 *
11?
12P
121
122
12?
124
125
126
127
12"
12°
13P
131
132
1??
13*
13?
13*
137
1 3r
13°
34(-).
3500.
3i Jr ,
A2JP.
27'Jn.
735".
?d5i.
1650.
1480.
A j ' JO •
7 ^ u^l •
7000 .
22jn.
2UUO.
?750.
71-00 .
7600.
5.5 JO.
9UJO.
12ru1.
2490.
2611.
1t.uO.
2490.
25fr(.
22f r.
2700.
T75n«
<1oO.
<«3n.
9un.
9".
50.
7P.
3000.
?£OP.
2200.
1iUP.
4000.
4050.
200C.
UO".
5UO.
'000.
1200.
4ur.
'.son.
75P.
2700.
1800.
900.
1650,
?oon.
1350.
2700.
1500.
1800.
'250.
19491.
20642.
937.
477.
198.
14969.
1566*.
9440.
i.640.
26574.
264*2.
7266.
35°2.
1417.
13907.
5197.
896.
27806.
22 >. 1 .
8344.
?57?4.
8364.
12039,
325^4.
7149.
11604.
6444.
13160.
16508.
O.U?4
P. 024
O.u"*5
0.0*5
O.u'5
P.. 0^5
1.U35
n.o"*1;
T • L) "^ S
^ • 0 "^ S
0 • (J "^ 5
0 • Lf "^ ^
PtU^S
f ; . 0 3 S
0.035
O.UT5
O.UT5
n.u?5
0.035
D.0^5
O.U17
0 • U ^0
1 • Cl '0
0.017
O.J20
1.U20
O.u?2
0.020
O.U20
1 ? . 2 A
1?»66
14.06
11.71
16. 67
12.43
15.7"
24.3^
30.41
10.47
1P.OT
15.00
20.45
??.sn
16.36
15.00
17.31
3.49
*.oo
7.60
1".U7
17.24
25,0'J
n.o
O.U
O.U
0.0
o.o
O.U
0.01
-O.OJ
-0.30
-0.31
0.31
0.04
U.06
0.04
0.02
0.24
0.17
0.08
0.04
0.01
0.08
0.04
O.P1
237.15
0.10
-?36.97
1106.75
413.13
-49.31
-1156.07
P13.80
-16.P3
0.01
-796.86
586.23
21.0
23.0
10.4
9.5
2.8
5.0
4.V
4.3
2.2
6.6
6.5
3.6
2.2
?.8
4.6
4.3
2.2
6.2
3.0
?. 1
14.3
9.3
7.3
16.3
5.3
4.3
A. 3
7.3
7»3
10V
110
73
112
76
83
115
116
117
85
119
120
121
122
120
124
12S
87
ti.7
36
129
129
130
14
131
14
132
79
79
110
111
112
113
113
115
116
117
118
119
120
121
122
123
124
1 '5
126
127
12d
127
130
131
131
130
132
1?2
133
1T2
«o
111
11'
113
114
115
116
117
11"
119
120
121
12?
123
124
125
126
127
12R
129
130
131
132
133






J.O
0.0
U.O
-1^00.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
u.o
0.0
0.0
O.J
0.0
u.o
-450.0
0.0
0.0






0.40
0.39
0.38
0.41
1.40
0.40
0.40
0.40
0.40
0.40
0.39
0.39
0.39
0.40
0.40
0.39
0.39
C.40
0.40
n.40
0.40
0.4U
0.4U






112
1 13
114
1
1 16
117
118
119
1 20
121
122
123
1?4
125
126
1 ?7
12E
129
13
I'M
132
1 T5
137
0
114
115
0
117
1 1d
119
0
121
122
123
124
0
126
127
U
129
0
131
133
133
136
0
0
n
0
0
0
T
0
0
0
125
0
0
n
0
0
n
IbO
0
132
134
135
137
0
0
0
n
n
0
0
0
0
n
0
0
0
0
0
0
0
0
1
0
n
n
1 1"
0
D
U
0
U
0
0
0
0
0
11
0
0
0
0
U
0
0
0
U
0
0
0
0
                                                                                                NJ
                                                                                                LO
                                                                                                OJ
*K«xx*M«it««if «KM    DTFFUSTON CONSTANTS   *»»»»«» »« »»*« K«

                CHANNEL           CONSTANT cc4>
                                    25.UU

-------
*K««*Xft«N«lf«K«MK««l'«X««X«K*K*lt<«i» x» K»«K KHXMXXK KKKKXRH **x *H*K«N «x
          FROM
          JUNC
 TO
JUNT
                              CONST 1 UPT«KF
CONST 3  UPTAKfT
    (PHUPP)
                                                 COK'ST  1  RrGEM
CONST 3  RFGFV
  CRFCEPP)
                                                                                                          CONST
                                                                                              REGFN
                    133
              O.J
                                                     0.010
                       0.0
                                                                                           0.0
                                                                                         Q.U

-------
XXKXNKKX»XXXKKKXKXXX»XKXKXKKXHKXKNK«KKffK
                                              SU«HARY Or  CONSTITUENT DECAY PATES
                                                                                       »KNX»KNKXK
0.150
0.050
0.150
O.J50
0.150
fONFT 2
(n^CAYK 2)
(PtP PAY)
0.090
0.09U
J.090
0.090
0.090
CO^ST 7 *
(OErAYK ?)
(PEP DAY)
n.O-'O
0.030
1.030
M.U30
o.uSO
CONST 4
OFCAYK 4)
(PER -1AY)
0.02U
0.020
0.020
0.020
0.02U
COVST 5
(DEC»YK r)
(PER 0'^)
n.170
T.1HO
0.170
P. 100
0.170
CONST 6
(PER PAY)
0.0
0.0
0.0
0.0
0.0
                            ?NO
                                                                                                                                     to
                                                                                                                                     U)
                                                                                                                                     on
          KK»K|>KN«X*VK*KXXKXKKltK»XXXXXXX
                                                      OF  TOHSTANT VASTEUATER
                                                                                         xxx»xxx»xxx»xxxxxxxxx»xxx»xxx»
JU»'C.
         TOTAL  rLO"
 rONSTITUFNT 1
 TONC.    LOAD
ftG/L) 
                                    COWSTITUE^T 4
                                    COVC.     LOAD
                                   (UG/LJ
                                     CONSTITUFHT 5
                                     CONC.     LOAD
                                            (tB/D*Y>
                                                                                                                    COISTFTUtNT  6
                                                                                                                             LOAD
           -450.U
 'U.O
4&S46.
n.o
25.0
                                                                    6068"«.
O.L
.0

-------
                           OF  BANK  LOAU?
                                                 NXItXXItKftXXVI'XItXXKItKXKItllXKItltMMX
SHOSF
JUNf. I IMF
CM)
in o.b
11 0.9
1' 1o2
1^ 0.9
1 1< n , <,
1!: n.s
H o.u
17 0.0
1 •» 1 ,t
19 P. 9
20 1.4
FLOW
 '.L5/Ctf) CKC/L) (L?/"OY)
10.0 431f.
10.0 48*?.
111.0 6473.
10.0 4t-;5-;.
. 1d.U 323*..
1C.O 2697.
10.0 C.
10.0 523f.
10.0 86TT.
10.0 4b5S.
Hi.O 66^n.
^.J
slj
5.J
5.0
5.0
5.0
5.0
5.0
5.0
S,0
5.0
215c.
24270
3236.
2427.
161C.
134V.
J.
161 f .
4 T 1 5 .
2427.
4115.
CONSTITUENT 3 CO«JS T ITUE"'T 4
CO^C. LO/iU CONC. LOAD
(MG/L> (LB/HAY) (UG/L) (IP/DAY)
15.0
15,0
1C .'J
15.0
15.0
15. U
1^.0
15.0
15.0
15.0
15.0
6A7i.
7282.
9709.
7282 o
'.855.
4046.
U.
4835.
12946.
728 (Mt/LJ fia/p;v>
30oO
30.0
30.0
30.0
30. 0
30.0
30.0
3u.O
30.0
30.0
30.0
12946.
14564.
19411.
14564.
9710.
fc091.
0.
9709.
25891.
14564.
25891.
T.J
OoO
o.u
O.I.
O.u
T.J
O.u
O.u
O.U
O.t
0.0
0.
Llo
0.
t.
L.
3.
0.
U.
0.
U.
u.
                                                                                                               to
                                                                                                               U)
                                                                                                               CTt
SUM"*RY OF  UPPER BOUNDARY  CONDITIONS   (NODE  114)
                                                               K««XM**KNHKKKKffNX**l»tl<«KMi
IHCPFMtNT
NO, IFSCTH FLO v
CCVClTS) fCF«)
1 t.)n -liur.
"" OJT -i^jn.
COVSTITUENT 1
COMC* L0»0
 fLE/DAY)
0,10
a. 05
Z'
TONC.
O.?ii
0.20
UFfT ? CONSTI
LO*1? CO»CB
(LB/U;*) (MG/D
7427. l).?P
161". U.10
TUETT 3
LO»J
(LB/DAY)
1618.
?i 1.1 T •
CONS
CCNC
(UG/L
i r . nu
TITUr"T '•
) CLP/OA")
1618^0.
CONS
CMS/I
4. no
3.rn
TITUfNT 5
10*0
> (ta/0/.Y)
;::::•
roNSTUU?NT 6
CONC. LOA"
("P/D (L9/DAY)
6. JO
7,10
4"t54i?.

-------
**x»x«xxxxxxxxx»XXKXx*x»xx»x»»x»xx     SUMM*DY  OF  IHITI^l. CONCENTRATIONS      »««» *» x» i* »»* Kim* KMKKKX »x x*xxxx xxx»
CPOM TO
JUNC JUHr
1 1
2 £
6 9
10 15
16 20
?1 25
?6 30
T1 35
76 40
'•1 45
46 65
*6 77
78 82
33 85
£6 128
1?9 130
1*1 133
CO^ST 1
°.U1
'1.U5
O.iu
1.35
1.30
0.70
i.lli
O.J4
P.U2
r.U1
n.U1
1.40
1 .5u
C.4U
0.30
1.VO
1.5U
CO^ST ?
n.io
3.2u
T.25
0.5J
1.6J
1.50
1.0U
C.3U
0.6J
0.3J
1.10
0.45
1 .00
1.4J
0.20
0.55
1.00
CO"ST •<
("G/L )
o.u;
0.10
0.70
2.50
1.60
1.20
1.70
0.4U
0.4U
n.60
1.60
?.10
2.50
?.ou
1.00
'.80
2.5J
CO^'ST 4
(UG/L )
n.uo
30 . UU
30. JO
35.00
70. UO
35.00
70.00
65.00
65.00
30.00
10. JJ
30. UO
65.00
75.00
30. UO
30. UO
65.00
CO»'ST 5
1.00
1.50
1.70
5.00
7.00
*.50
5.00
3.00
1.50
1 .00
1.00
?.50
5.00
^.00
1.50
4.50
r.OO
CO^ST «.
«.0(,
6.60
6.60
1.UO
?.50
3.50
S.50
6.80 '
to
6.80 w
".00 I
H.OO
2.80
1.00
5.00
6.00
0.50
1.00

-------
TIDAL CYCLE  VARMTIO^ OF SEAWARD  BOUNDARY  C010IT10NS    «<»*»( »TIONS  AT JUNCTION  1
TVTr?V»L
1
7
~*
t.
•=
A
7
n
o
10
11
1'
1 "*
16
1r
1 *
1'
1 f
19
2r-
21
2?
2*
2 A
2"
C"G/L)
0.05
3.U5
n.os
0.05
0.05
O.J5
0.05
n.os
n.us
0.05
0.05
0.05
O.U5
1.05
n.os
0.05
O.U5
0.05
O.U5
O.U5
O.U5
1.05
n.us
n. 05
n.os
rONSTITUFNT ~>.
(KG/L)
T.1P
i.n
n.n
1.10
1.10
o.in
n.n
n.n
1.10
i.n
0.10
n.n
".10
n.n
0.10
n.n
n.n
1.10
n.n
0.10
1.11
n.in
n.io
0.10
o.in
CUVSTITUtNT 3
o.?n
0)20
0. ?0
li. ?0
0.?')
0.20
o.'n
0.20
0.20
o.?n
u.?o
0.20
O.'O
U.'O
u.?o
G.?0
U.?n
Li. 20
O.'O
0.20
0.2P
U.'O
0.2n
o,?n
j.'n
CONSTITUENT 4
CJG/L5
10. OU
10.00
10. ou
10.00
10. OU
10. OJ
10. OU
10. OJ
10. OU
10. OU
10. CU
10. OJ
10.00
10.00
10.00
10. OU
10.00
10.00
10. OU
10.00
10. OU
10.00
10.00
10. OU
10. OJ
rONSTlTUFMT 5
1 ,UO
1 .uO
1 .LIU
1 .UO
1 .1)0
1 . JU
1.UO
1.00
1 .00
1.00
1. JO
1,1)0
1.UI3
1.00
1.uO
1 . CIO
1.00
1.UJ
1.UJ
1.UO
1.00
1.00
1 . Jl)
1.0J
1. JO
(HG/L5
».L)P
H.ilO
8.UT
" .00
*.on
*?.oo
8. on
8.UQ
".00
R.OO
a.un
8. on
«.oo
R.on
8.U1
8.00
5.01
''.on
8 .on
8.UT
8. on
».oo
".on
3.UC1
s. on
                                                                                                10
                                                                                                U)
                                                                                                00

-------
                                     HIGH SLACK  PPEPICT IONS
JUf.'CT ION-
CrT)
CONSTITUENT  2
   (*G/L>
CONSTITUENT  3
   CM6/L)
                                                                COMSTITUEMT  4
                                                                                                        (HG/L)

1
It:

6'
67
61

60
59
5P

S7

5'
5 A

5?
5?
51
50
49

46
45
44

J.22

0.?6
U.3J
0.T0

0.44
J.40
0.17

Q.SS

0.7?
0.69

3.F2
0.79
0.~'7
0.'1
0.64

0.69
0.4V
CYCLE
n.'ol
CYCLE
0.0'
O.U'
0.0'
1.01
CYCLE
0.01
0.0'
0.01
CYCLE
O.U1
CYCLE
0.01
0.01
CYCLE
0.01
0.01
O.U1
O.U1
O.U1
CYCLE
O.U1
0.01
P. 01
o.ui
P.J1
480
0.10
0.09
481
0.09
0.06
0.01
0.07
48?
0.07
0.07
0.0'
483
0.06
4o4
0.06
0.06
C.06
485
U.07
0.07
0.08
0.09
u.n
4*6
U.17
0.14
0.1"
0.19
J.'?
11 DAYSj 6. 00 HOUPS
O.?0
U.74
10 DA»S* 6.51 HOURS
0.'9
O.A2
13 DAYS* 7.00 HOUfS
0^49
10 DAYSj 7.5H HOUPS
U.5U
10 DAYSj P. 00 HOU7S
ul'S
11 DAYSj «.5f) HOUPS
u.5a
U./-V
J.4V
10 DAYS* °.QO HOI)i>S
J.40
U.47
U./6
J./5

10. UU
11.61

14^32
1^.14
15.67

15.86
15.99
16.15

16.16

16.06
16.42
1^.12

1«.00
1".42
21.30
24.03
26.37

2°. 51
3?. 10
3f !69
41. V9

i.m

0.4'
0.27
0.14

0.11
0.09

I.LiB

1.07
P. 07
1.07

l.u'
n.O'
1.07
1.U7

O.J7
1.U7
1.J"
l.u'
O.J<>

8.00
7.1'

6.?'
6.06
5.°5

5. "7
5.P?

5.P'

5.RT
5.P7
5.P9

5.91
6^01
6.10

6.15
6.0"
6.15
                                                                                                                                10
                                                                                                                                CO

-------
4?
42
41
40
39
3°
37
S6

35
1 1,
i ?
32
31
3P
29

2fi
27
26
25
24
23
22
21
20
1Q
|P
17
16
15
14
130
1?c'
17
\?
11
10
c
p
7

6
5
4
•5
7
11*
J.?8
J.?0
0.13
U.36
-0.03
-0.12
-0 o ?4
-0.*3

-0.16
~ o • ^n
-U.?5
-U.29
-(J.T4
-0.41
-O.S7

-U.'9
-0.T7
-0.42
-0.47
-0.52
-0.57
-0.5V
-0,64
-0.68
-0.7.5
-0.75
-0.91
-0.84
-0 a*b
-0.90
-0.92
-0.93
-J.95
-0.^6
-0.98
-J.9P
-1.0U
-1.01
-1.02

-0.94
-0.94
-0.95
-U.95
-J.9C
-fl.rJ6
O.J1
0.01
o.ui
o.oi
0.0'
0.0'
ruo"1
n.04
c VCLE
o.o-
Q.Q7
0.0°
Oo10
0.1'
0.1C
Oo20
C"CLE
0.2?
0.37
0. 4C
0. 5*-
0.7"
n« 8°
1.04
1.2*
1.4*
1.66
1.86
2.14
2.2'
1 «9r
1.69
1.58
0.96
0.6S
0.3"
0.24
0.21
0.1*;
O.U7
0.05
CYCLE
r,.0r
a. or
0.0^
n.oc.
o.or
1.0r
U.'6
u.^o
U.T4
Ua"*9
u . '4 4
U 9 * 0
O.f;6
0.6A
43?
U.7-
0.~4
U.44
U.44
0.44
0.45
Do46
(j . '• 8
O.T1
10 D*T3» in000 HO UPS
0.55
u.5 V
0.62
U067
0.73
0.79
O.PV
10 DAYS* 10.50 HOURS
1.04
1.18
1 •*!
1.45
1.65
1.8V
2.07
2»?9
2.C1
2.76
2.97
J.25
3.30
2.94
2.6Q
2.44
1.65
1.26
0.85
0.62
0.56
U.r-5
0.1V
C.14
111 DAYS* 11.00 HOIJ"S
0.11
0.10
U.10
0.10
Oo10
O.lLi
44,68
47.34
49. b3
52.47
55.26
57o81
59.93
62.1S5

6?. 92
6°. 1i
710 Id
73.71
76.26
7P.29
80.66

8T.V4
86.26
b7.8'J
89.03
90.02
90.30
S9.94
t«.87
87.04
84.05
60.55
7*.U2
62.46
5T.71
4°. 4V
47.53
46.1V
4?.3b
39.13
35.96
34.96
3*. 22
2'. .27
21.96

2n.7d
20.21
2n.J1
1°.9iJ
1°oisi
2^.1)^
^.09
0.10
0.11
no 1 '
0,1*
Ool f.
0.16
0.10

0.21
()*tit
0025
0.2«
0.30
Oe3?.
0.35

0.40
0.46
0.5'
0.59
0.7'
0.91
1.U*
1.31
1.57
1.V?
?,2S
?.79
*•« 1 ft
?.9?
2.66
? .56
1.5°
1.29
0.96
0.87
0.86
1.87
1.29
1.47

1 .6?
1.8 1
1.95
'.16
'.6T-
*.u3
6, *4
6,"
6.?n
6c 0°
6.01
6.03
6 i ?1
6.4*

6.';6
3«6"^
3.75
4.7"
4.°1

4.
-------
LOW SUCK PhEPTCTTONS
JUNCTION Hr*U rONSTITDE"T 1
C VCLE
1 O.r* 0.0*
65 0.60 O.U/
64 0.62 O.ti'v
6* i).'>5 0.0T
(•?. 0.*.° O.U7
61 0.7J O.U?
'jP 0.72 O.U7
CYCLE
5C 0.62 n.U1
'3P 0.65 O.U1
CYCLE
S7 J.50 n.01
CYCLE
56 U."*4 0.01
f b.T7 0.01
54 0.4U 0.01
CYCLF
'j2 J.?b 0.01
31 U.^1 O.lM
50 0.?6 0.01
CYCLE
40 o.'? o.ui
4P 0.T6 O.U1
C VCLE
i>f o.T^ n.ji
45 U.5b n.ji
44 U.*4 O.u1
i' H.TM n.ui
CONSTITUENT
(MG/L>
49?
U.10
0.10
J.09
o.oe
0.08
0.07
493
0.07
0.07
494
0.05
49*
0.06
0.06
0.06
496
3.06
0.07
0.07
0.07
497
O.OP
0.09
U.1P
49»
0.1T
0.14
0.17
U.1"
? CONSTITUENT 5 CONSTITUENT 4
10 OAYSj 12. DC HOU^S
O.?0
0.25
U.'o
OJ41
10 0»Y«:, 12.50 HOUPS
U.64
U.47
10 O*YS* 13. on HOU"»S
0./.9
10 D»Y?, 13.50 HOURS
O.AV
o.co
0.50
10 OfYc* 14.00 HOU>?S
o.co
0.50
u.so
0.49
10 DAYS* U.Sr HOUPS
U.49
U.4V
0.46
1J D*Y?* 15.00 HOUPS
0.47
U.45
•J . /• '.

10. uO
10. 5o
11.92
1'.97
14.J3
1< .its
1T.33

15.63
16.09

1*.25

1*.13
16.24
16.47

17.08
1?.07
19.3.:
20.20

22.64
^4.75
27. oa

31.24
37. DJ
/.••Ij;
rONSTTTUE^T 5

LOT
o.tc
0.3T
T.2'

0.11
0.09

0.08

0.07
0.07

0.07
O.U6-
0.07

O.U?

n.07
O.U7
O.U7
n.US
fONSTITUFNT 5
(MG/L)

3.00
7.6^
7.05
6.6P
6.V
t.17

5.86

5.S7

5. °f-
5.90

5. "A
5.96
5.°7

6.04
6.18
6.?7

6.'?
6i?7






I
M
I








-------
                                            10  U*Yr?j 15.3D  HOURS
41
uO
3?
5P
37
36

T r
34
33
j?
31
±0
?f

2P
27
26
2C
*•/•
2?
??
21
?r
1"
1°
17

16
15
14
1 JO
12°
1 *.
1?
11
10
c
p
7

6
5
4
0.75
)s«2
•J . rU
G.°7
1 .07
1 .14

1 ,03
1.12
1.15
1.1*
1 «?1
1 .'f
1 . '0

1.19
1 ,'5
1 . ?fe
1 .'1
1 « T4
1 .T7
1.*-'
1.41
1 .43
1 .46
1.4(5
1.51

.31
• ?3
.35
• '6
.'7
.38
.^9
1 .4tj
1.41
1.42
1 .43
1.44

1.17
1.17
1 .1 i'
n.Ul
O.J1
n.ui
O.U?
P.J"'
P.U^
C*CLE
O.U''
P.UT
0.04
1.J*
0.07
n.o«
P.T
CYCLE
0.14
0.1 7
0.21
0.2"
0.37
0.44
0.50
0.61
0.7?
0.9T
1.10
1.37
CYCLE
1.6°
1.73
1.U7
2.1?
?.24
?.21
1.78
1.15
0.74
0.?'
0.14
1.0^
CVCLE
O.ur
O.L)^
1.U'-
U.?S
1>.T7
u.37
a. 40
U.4C
o.^n
son
0.55
J.6H
U.6*
0.76
0.86
0,°6
1.07
501
1.14
1.21
1 .T0
I./?
1 .r4
1.62
1 .67
1.75
1.31
1 •*• 7
1 .°1
1.19
50'
1.«4
1.13
1.78
1.58
1 .'4
1.10
O.S9
U.7?
O.A?
0.45
o.T?
J."=
50'
0.2?
J.''1
o.?0
U.A4
U.44
L. 44
0.46
U./.5
0.46
IT 0»Y<:, 1A.QO HOUPS
U.ib
0.4V
U.C2
t,.c6
L.60
U.f>5
0,72
10 0*Y«:» 16.50 HOURS
0.77
0.83
U.«M
1.03
1.19
1.'0
1.TV
1.53
1.5V
1.90
2.14
2.44
10 D*YS» 17.00 HOURS
2.7V
2.8V
2.9fc
3.25
2.34
J.26

T.1P
0.20
0.21!
0.2"!
0.2"

0.29
0.51
0.34
0.3^
0.4*
0.49
0.5'
0.6'
n. 7'
P.9T
1.1'
1.4"

1.Ve
'.10
'.2*
2.7"
'.15
? .30
?.79
1.9'.
1 .3"
1.9'
1 .U'
1.2-?

1.5'
1 .7?
1.9-T
6.55
6.*7
6 . ' '
6.2-'
6.?n
6.41

6.5?
6.81
6.67
6.41
6.17
5.9?
S.74

5. P«?
5.7S
5.5P
5.29
4.»C?
4.43
4.06
3.7'
3.4r
5.3 =
3.?'
3.0"

3.3»
2.P'
2 . « B
I."?
1.5"
1.56
1 .97
2.61
3.09
i.67
4.4-1
/..pn

4 , OR
5. ?T
5. 7?
                                                                                                                                    I
                                                                                                                                   NJ
1.17
               n.'Jr
                                                     1.1-1

-------
          X«<<*XKin.fj HOU»S>
JU'T .
         CONSTITUENT  1
                     *VG
 COVSTITUENT 2
"IN   M0r   "VC
CONSTITUENT 3
     MAX
CONSTITUCNT 4
 CONSTITUENT 5
M!N    MA*     HVt
                                                                                                                                   "AX
                                                                                                                                           »V6
1
f
'•
I
c
/•
-7
s
c
1"
1 1
1 ->
1 7
I/.
1 r
1 '•
17
1 c
1°
20
21
2'
27
2«
^ f-
2£
t~
?*
2r
30
31
•7 •>
•J T
34
3?
36
37
3P
3°
40
41
4?
t,r
i«
4S
(. <
1..J5
O.U5
n.ui
0.04
n.ui
P.ud
fl.Oi
P.ol-
0.1 J
o.u-
P. IV
n.33
n.cz
i .6*.
1 .65
1.7V
1 .j*?
1 .03
0.*2
n.f-c
O.V6
O.^c
0.41
n. .05
0.09
0,21
0.45
n. 70
1.13
1.58
1.96
1.91
1.88
1.72
1 .43
1.23
1.04
n.67
0.72
0.63
0,51
0.39
0.31
0.25
0.19
0.14
0.11
o.ue
0.07
0.05
0. J4
0.03
n.u>
1.02
0.01
O.u1
P.ul
n.oi
°»O1
P. 01
".00
P.O j
^ . -iii
0.10
0.20
0.2J
0.20
0.20
0.20
0.20
O.?1
0. SO
P.. 34
0.36
0.43
0.53
O.oi
0.96
1.27
1.59
1.77
1.85
1.30
1.73
1.66
1.60
1.53
1.39
1.27
1.19
1.12
1.07
0.95
1.85
0.76
0.64
0.56
0.5J
0.45
0.3V
0.33
0.2V
r.25
0.20
P. 16
0.13
n.12
P. 09
". M
0.10
O.?0
0. ?0
O.M
0. ?1
0.??
0. ?6
0.3"=
0.51
0.67
'J.79
0.94
1.20
I."'
1 . 9C
2.05
2.14
2.12
2.1?
2.11
£.11
2.11
t. 11
2.05
1.97
1.38
1 . 7"»
1.65
1.47
1.?"
1.1"
1 .PC;-
J.95
0. "7
0.75
0.6&
0. 5C
0.50
0.44
(j* T9
0.3'.
0.30
0.26
0.21
u. 1 °
i;. 1 S
n.10
0.2L!
0.20
0.20
0.20
0.20
O.t.2
P. 27
0.39
0,46
0,55
0.6t
0.85
1.39
1.55
1.74
1.86
1.97
2.00
2.00
1.98
1.93
1.89
1.61
1 mtti
1.56
1.45
1.34
1.22
1.10
1.00
O.i>9
0.79
0.7'J
1.62
0,54
0.47
1.41
0.36
P. 31
0.27
0.^2
0.1V
0,16
n.13
".11
0.20
0.10
P. 10
0.10
P. 1 0
0.09
0.11
0.14
n.32
0.42
0.48
0.71
1.12
2.48
2.75
?.48
2.41
7..09
1.83
1.66
1.49
1.35
1.27
1.17
1.UO
o.ea
0.81
3.76
0.72
0.65
0.59
0.54
0.49
0.46
n.44
0.42
0.41
0.39
0.39
0.38
0.33
0.37
0.37
0.3b
0.38
n . ? ".
o.?o
0.1 )
U.10
0.10
0.11
0.1*
0.21
0.41
a. s 5
1.59
*• 51
3.07
3.43
5.A4
3.29
3.39
3.26
2.97
2.77
2.5?
2.3?
2.10
1.94
1 .70
1.51
1.37
1.2S
1.11
0.9?
0.*?
0.75
T.67
0.67
0.60
0.55
U.M
O.'-H
0.46
0. 4C
0.44
U . '. 4
0.4',
0.4^
J.45
O.'-S
.!.'. 7
0.2U
0.1C
0.10
0.10
0.10
0.10
1.14
0.24
n, i>i
P.8B
1.23
1.P1
2.41
3.00
2.Vb
2.9f
2.t2
2.52
2,30
'.08
1.89
1.71
1.59
1.43
1.25
1.12
1.01
O.V1
0.81
0.73
O.t>7
0.61
O.id
O.i <
0.4V
0.46
0.44
0.43
0.42
0.41
0.41
0.40
1.41
0.41
0.41
''.it
10. U
19.9
1°.7
1°.7
19,6
19,5
20.0
21.3
23.7
30.2
31.0
3'. 9
37.2
45.1
50.0
41.1
73.4
31.1
p«,7
37.8
89,8
8R.9
87.9
86.5
?7.7
81.1
79.2
77.6
74.0
7'.U
69.9
67.1
63.7
61.5
^9.5
?7.V
55.6
'-7.2
r1.5
49.0
'.5.V
42.5
TP.7
37.3
??. 5
7 1 . -
10.0
1 ''. 9
1°.9
20.0
20.4
21.5
24.7
30.6
33.4
43.6
46.o
51.3
5°.U
t>7.7
39.7
95.6
96.7
10?. 1
104.0
1U4.6
104.5
104.5
104.5
104.4
107.9
11/2.6
100.6
97. 8
9?. 2
6*. 1
85.1
81.3
77.7
75.0
71 .0
66.5
6?. 6
60.0
57.0
54.0
51 .4
49.3
47.2
43.7
u1 .9
.••" . 1
1G.O
19.9
1V. 8
19.7
19.7
19.9
21 .5
25.?
32.7
36.0
33.4
42.4
47.6
66."
73.?
40,6
C6.0
92.0
94.9
V6,9
97. 9
98.1
*7«p
96,?
94.5
91 .8
69,*
o6.5
 . 7
1.0P
2.4?
2.11
1.87
1,66
1.44
1.17
0.9?
U.75
0.76
0.77
O.f 7
1 .?0
2.10
1.P5
1.4?
1.'4
0.9?
0.67
J.5?
0,T9
J."«0
0.'6
O.?1
0.1'
0,09
0.07
•J.06
O.P5
0.0'
0.0'
l.Or
3.0?
0.01
0.01
J.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
o.ro
.I.CP
1.00
2,6'
2.16
1.94
1 .& 1
1 .61
1 .45
'.27
0.98
1 .64
2.41
T.22
3.59
'.41
3.14
7 • 1 B
2,eo
2.2C
1.93
1.57
1.31
1.07
0.91
0.70
0.57
0.49
0.47
0.3"
0.3?
T.29
0,27
O.i*
0.2?
0.21
0. °
n. 6
n. 4
0. *
T. 2
(1.11
0.1C
0.09
O.O1'
T.o''
n.j7
">.-i~"
1.00
?.63
2, 13
1.91
1.72
1.51
1.30
1.06
0.82
1 .06
i.3e
1.93
2.49
2.68
2.49
?.32
?«01
1.53
1.24
0. Vb
0.79
1.62
0.52
0,40
0.30
0.24
0.2CJ
O.It
0.13
0.11
0.10
0,o9
O.L8
0.07
o.uc
0.05
0.05
0.04
O.U4
O.U4
0 . ( 3
0.03
0,03
O.L3
0.03
r|. l.-<:
8 13^
6l57
5.86
5.54
5.11
4.79
4.57
4.04
3.2?
2.50
1 .9'.
1.31
0.89
0.79
0.97
1.4?
1.77
2.25
2.56
2.69
?.7C
2.81
'.17
*•!•*
3.8^
4.10
4.4°
5.22
5.25
•=.34
r.4"
5.63
5 .7"'
5.V4
6.19
6.11
5.9C
5 . V?
5 , 9 *
6.04
6.17
6.1"
6.14
6.0"7
6.00
'•.•;'i
8.00
A, ffc
*.OV
5.37
'•. 55
5.2o
5.U
5.1V
4.31,
4.25
4.19
7.92
7.47
'.23
7.i5
3.64
7.71
7.92
4.1V
4.21
4.54
4.91
c.21
5.57
f. . 1L
5.41
*.5d
4.97
5.9fc
6.67
6. 65
6.96
7.23
7.39
7.5S
7.67
7.31
7.00
6.75
6.7«
6.cO
6.90
6.92
*.6?
6. S2
'• . .< 3
ci.OO
6.68
5.°7
5.72
5. '6
5.0t
4.94
4.4V
3. 90
3.54
3.?3
2.71
2.19
1.57
Z »no
2.62
ci."4
3.14
3.36
3. '.9
3.63
3.?6
4.20
4.55
4.99
5. '6
5.66
6.P6
6.11
6.15
6.2S
6./0
6.58
6.74
6.R6
6.8U
d.55
(. ,4£
6.76
6.42
t.A9
t .'-2
S./.6
6.72
c.?1
(...1C

-------

,
i1
c 7
5?
5'.
5C
5*
57
53
5C
6r
61
fr?
{•'
6'
f
6'
67
6°
69
70
71
7'
7'
7*
7-=
7'
77
7r
75
i,0
ei
8'
8*
C,l-
8*
M6
87
t"
£ 0
90
VI
V?
97
S 4
V5
V<
97
yr
?o
0
1
7
'





n.oU
O.Uo
0,0"
O.oJ
P.iaj
O.oO
P. 00
n.uj
P.uO
0.01
O.u1
O.UI
O.ui
P.U-;
P.i-'1!
n.uA
P.I i
O.U*
p.ur
O.J7
0.06
P.uS
fl.wi
P.U4
O.u4
n.u?
P.ui
O.U3
0.59
?.55
1 »-qV
1 .44
1 .01
O.SU
0.23
0.1 3
0,0?
O.U2
P.J2
n,{j>
P.ul
O.ui
P.u1
P.U'1
n.uc
0.00
r.uo
O.JO
P.-jf!
O.oU
P.oO
0,1/3
O.o.)
p.uu
n.oi
O.U2
O.ui
P.U1
. ./ 1
0.01
0.01
0.01
0.01
U.01
0.01
0.01
U.01
0.01
0.01
O.°1
U.02
0.0'
0.0?
!«.0<6
U.O'.
U.22
0.1?
0. 1p
u.ie
0.18
0.1?
0.1?
U.19
0.1°
»J. 1 ^
0.17
0.15
U.7?
3. ?9
2. ''I
1.66
1.13
J.f7
U. ?">
0.21
0.04
0.04
J.OA
0.0?
0.03
0.0?
0.0?
J.01
3.01
0.01
O.U1
0.01
0. )1
U.01
0.0?
0.02
0.02
0.01
3.02
o.n
0.11
o.n"
f.UO
P.UO
p. JJ
P.UO
0.00
r.uo
O.JU
0,00
O.U1
0.01
0.01
P. 01
O.U1
P,0?
P.O?
O.U3
0.04
0.1S
0.12
0,11
n. 1 1
0.1U
n.to
0,09
P. 09
O.U9
r.os
P.Oo
O.U7
0.65
'.01
2.34
1.57
1.08
0.59
0.25
0.18
n.03
0.03
1.03
0.02
0,02
P. 02
0 .01
O.J1
0.01
0.00
P.OO
^.00
O.JO
O.ui
P.01
0 . 01
*"* . ol
O.U1
n.J1
•o.u^
P.US
1 . U *
P.U 5
0.05
0.04
0.04
0.04
n.(J4
0.04
0.04
0.04
0.04
O.U4
P. 04
0.05
O.U6
P.U6
o.u*
o.ov
0.34
0.36
0.37
0.39
0.40
0.41
0.4?
0.42
0.39
0.38
0.34
0.30
0.73
1.53
1.66
1.74
1.93
1.7J
1.42
1.24
0.64
0.62
0.5V
0.56
0,53
0.48
0.41
0.20
0.16
O.U8
0.07
0.04
0.03
0.03
O.U3
O.U4
P. 04
0.04
0.05
0.25
0.19
n. 1"?
0.10
J.OO
0.0"
0.37
U. U7
0.06
0.36
0.06
0.05
0.06
C.37
0.0'
0.03
0.08
U.OO
U. 39
0.10
0.48
•3. 5?
0, 56
0, 5*
0.61
U.63
U. 67
0.64
0.6?
0.61
0.58
0.51
0. 9?
1.7?
1.R7
1.95
2.?0
<:«0f
1.6^
1.48
0.63
U. 56
0. 64
0.60
U."5
3.53
U.«7
0. ?3
0.?4
0.1?
U.I 2
0,37
0.06
0.3"
0.0°
0.0°
l).0<5
0.3'
O.OT
O.*"
•J.2*
j. ?c
o. 07
0.07
3.06
0.05
0.05
f.05
O.05
0.05
°.05
0.05
P.U5
O.U6
n.u6
0.07
P. 08
0.08
•0.09
0.4U
3.43
0.45
0.4»
0.50
0.51
0.52
0.53
P. 51
0,49
0.45
0.40
o.as
1.64
1.78
1.86
2.09
1.V1
1.53
1.36
0.66
3.64
0.63
0.56
O.S4
0.50
0.44
0.23
O.£0
0.10
O.u9
0.05
O.J5
0.05
O.U5
P. 06
r.06
0.05
0.06
O.it
n.2?
^.i ~
0.39
0.40
3.40
0.40
3.40
0.4U
0.39
0.29
0.38
0.36
0.34
0.31
O.EV
0.26
0.24
0.22
0.20
0.40
0.42
0.43
0.45
0.46
0.48
0.49
P. 50
0.50
0.49
0.46
0.42
1.29
3.72
3.00
?.S2
2.08
1.42
0.99
0.86
0.46
0.48
0.46
0.45
0.43
0.43
0.40
0.37
0.37
0.38
0.39
0.41
0.41
0.40
0.41
0.37
0.35
0.36
•J.29
0.35
0.23
0.20
U.49
3.49
3. '.9
0.53
0.50
U.C0
0.53
3.49
u.s°
0.4b
0.46
U.U
0.4?
U.38
0.3A
U.'1*
0.2',
0.64
0.6<5
J.7?
0.77
U.31
0."5
0."8
0.3C
0. Bn
0.8 '
4.70
4,0?
2.75
2.?0
1.66
1.08
0.95
O.*'
J.5?
3.5'
0. A°
1'. SO
0.46
J.-U
0.4'.
0.44
0.47
u.5-0
3,e1
'3.51
0.5'
U.54
0.5'
u.51
J.50
i),/,*
J.71
'J. '»
.1.' -
0.44
0.44
0.44
0.45
0, 45
0.45
0.44
0.44
0.45
0.42
0.39
0.37
0.34
0.31
0.2b
0.24
0.22
0.51
0.52
0.55
0.56
0.61
0.63
O.t6
0.67
0.67
0.66
0.63
0.56
1.40
4.24
3.50
?.65
2.15
1.55
1.04
0.9U
0.50
3.50
0.49
0.47
0.46
0.44
0.42
0.40
P. 40
0.42
0.43
0.45
0.45
0.46
0.47
0.43
0.4*
0.«2
0.35
0. jl
0./2
°.i'J
2^.0
20.7
1C .6
1P.4
17.4
16.7
16.3
16.2
1S.3
16.2
15.9
1C.6
14. a
1 ?.?
1 ?.V
11.6
10. t
3?,0
?4.5
37.4
40.7
'•2.9
45.1
47. U
A8.1
4P.6
47,3
4?»8
39.7
50.5
6?. 2
74.7
CO. 6
91. U
BO, 3
8/,.3
80.3
61«6
( ?. 1
61.9
61.6
60.2
59.2
57.2
47.4
4A.5
?2.5
31.1
19.6
16.7
17.7
17. a
17.3
17.2
16.7
15.o
22.5
?5.V
1 <*•!
31.1
c9.Q
25.2
24.2
2?. 5
21,1
19.7
1^.5
17.6
17.2
16,7
16.4
16.0
15.4
14.6
n.i
11.7
41.1
4?. 9
46.7
4P.6
50.9
52.4
53.6
54.1
53.5
52.9
51.1
46.9
58.3
77.8
85.3
89,7
103.9
10f .4
V7.V
9?. 9
68.8
63.1
67. V
64.6
6/-.1
61.6
53.7
48.7
46.4
36.4
34.6
23.4
1°.1
19.0
20.8
2P.4
20.5
1 ",0
1«.5
41 .1
35.3
25.7
27."
2'j .0
23.1
21. S
20.0
18.9
1d.1
17.'.
1 7.1
16. «
16.4
16.0
15.4
14.7
15.7
12.5
11.0
36.0
39.0
42.2
45.1
47.5
49.*'
51.3
52.3
51."
50.7
48*1
43.0
54.4
73.4
80.5
85.9
98.7
9
3.fc'6
O."
0.1?
0.07
0.0?
0.01
0.01
0.01
0.01
,3.01
3.01
3. PI
u.01
0.00
j.on
J.t'O
3.01
0.01
0.01
3«r">
J.OT
U.O?
0.07
0.01
J.C1
).')"
0.0^
O,U6
O.J6
3.06
0.06
O.u6
0.07
0,07
0,07
o.os
0,1 1
0.15
0.21
0.31
0,44
0.60
o.s1;
0.75
O.S"
0.45
0,34
O.t7
0.23
0.20
0.1 *
0.1 1
0.1?
0.12
0.10
1.00
4.8"
3.77
1.9?
1.1?
0.66
O.i7
0.33
0.1P
0,1"
0.1 7
0.16
0, 1 c
0.1 c
0.1 ?
0.0°
0.0"
O.J7
0.07
O.U6
0.06
0. J7
O.J""
o.u-
0.0"
0.0'
'1.1?
0.09
fl,u°
C .."'
0.02
0.02
0.02
0. 1,2
0.02
0.02
0.03
0.03
0.03
0.04
O.U7
0. 1U
0.15
0.22
0.23
0.50
0.75
0.56
0.44
0.32
0.24
0.1V
0.15
0.11
o.ov
0.07
0.06
0.05
O.C4
O.R9
4.1fc
3.00
1.74
0.9E
0.46
0.20
0.15
0.06
0.06
0.06
O.O6
0.05.
O.U5
0.05
0.03
0.03
0.02
0.02
0.02
0.02
0.03
n.02
0.1/4
0.04
0.04
O.U?
O.U3
fl.L2

5.87
5.77
5.74
5.71
5.70
5 .6^
5.65
5.62
5.6?
5.64
5.67
5.75
5 «fc t
5. V"
6.15
6.52
7.10
2.47
2.18
1.97
1.85
1.9'
?.25
2. 9"
3.5?
4.71
5.50
5.K7
5.7°
1.00
1.49
1.73
4.37
5.36
4.40
6.81
6.20
7.8?
6.90
".43
7.1 7
7. IP
7.20
7.45
7.49
7.35
7.1?
7.11
6.61?
6.61
6.2"'
6.f»s
6.2T
6.2''
6.50
6.?°
5, 6.'


6.2V
6.16
6.1 3
6.J3
6.U1
S.Vo
I.Vt
•1.92
e .55
5.91
<;. vo
6.0c
f .1i
6.35
6.68
7.07
7. €7
"<.b3
?.3
'.46
?.6»
10.51
lO.oi:
1 1.6»
1*.37
11.12
10.37
°«52
1 1.01
11.33
6.97
1 l.tft
10. 4C
9.33
9.54
P. 60
7.VV
7. -if
7.i t
6.78
7.VU
6.5S
6.c2
7.J3
6.50
f- - ~"~


6.05
5.92
5.^6
5.P5
5.B2
5.^0
5.76
5.74
5.76
5.75
5.7S
5.93
6.02
6.17
6./3
6.91
7.42
3.'K
2.95
2.72
2«*5
2.97
J.'iV
4.62
5.4V
t «?1
6.5t |
6.75
6.57 £
I.'V ui
t.50 ,
2.*V
6. "9
7.71
7.?0
V.49
o.'fc
8.99
8.P5
v.ro
8.03
6. 10
£.94
6.7V
6.34
6.37
7.°0
7.51
7.01
6.93
6.49
7.^3
6./.0
t .44
f.75
6.^7




-------
in
111
1!?
1 1 *
1 1 I:
1 1 r
11 '
117
1 1 P
1 1"
1 20
121
12?
12*
12.'.
12r
12*
127
12°
12°
110
131
132
1 33
O.U'
0 .UM
P.Ui.
n.ju
n.oj
0.47
P.J?
0.33
o.?u
n»i.7
n.1 1
O.U
P.u»
0.07
P.u<-
P. US
n.i>7
0.02
O.U2
P. 90
1 .- L.
4 .1 i
? ,7b
L.'Jo
U.13
o. n
0.1"
0. 19
L..OS
O.f7
0.47
0. ^°
0.T'*
'J.I Q
0.15
0.1'.
0.1?
0.1 1
0.1?
0.11
0.10
0.04
0.0*
2.41
2.41
6.67
3.94
2.27
0. JH
0.06
3. 09
P. 09
O.J5
P. 52
0.43
r.36
0.32
p. 16
0.13
0.11
0.1U
P. 03
0.11
O.U9
0.08
O.U3
r.02
1.32
1.90
4.V6
'.37
?.09
0.35
0.^2
0.43
0.43
0.20
1.66
1.57
1.50
1.44
1.17
1 .03
1.03
0.95
0.91
1.03
Oi94
o.ba
0.60
0.58
0.66
0.73
0.68
1.23
1.31
0.41
U. 3-=
0.65
U.64
J.?Q
2.05
t. 3*.
2. 00
1.96
1.44
1.41
1.34
1 . ?°
1.22
1.3?
1.26
1.21
0. 5T
0.61
1.4"
1 .84
1.37
1 . S~*
1.99
P. .58
1.34
~>.5i
O.i4
0.2b
1.90
1.84
1.79
1 .74
1.32
1,26
1,21
1.14
1 ,oe
1.19
1.12
1 .07
1.62
n,59
1.04
1.23
1 ,ue
1.48
1.90
0.45
0.48
0.53
P. 54
P,10
1.38
1.25
1.17
1.12
O.S3
"e 78
n.7f
0.72
0.70
P. 76
0.72
0.69
0.46
0.45
1.52
7.28
5,60
?.92
?.90
J.70
J.72
(J»'->?
u.9*
u.10
1.54
1.43
1.33
1 . ?5
u.90
J«87
O.T1
0.7P
0.75
0.80
u.77
J.7r
J.50
0. *°
3.53
3.5*
8.63
5.30
i.30
T.56
0.59
0.70
0.71
n.10
1.4J
1.36
1.27
1.20
0.67
0,82
0,79
0.75
0.72
0.78
0.74
0.72
0.48
0.47
'.75
2.90
6.59
4.68
% 1b
A'.l
46.3
M.7
c^.O
20.0
r s.2
"5.9
S'.V
«2.0
78.4
75e9
7'- :5
71.9
70.4
74.7
7?. 1
69.8
62.6
61.6
41 .3
4 3.U
35.0
57.0
78.7
46.2
49.3
55.9
56.6
20. J
106.8
107.1
107.^
1 Jf.6
y^.1
V2.4
yOab
8?.1
t.6.9
V0.3
dS.o
«7.1
66.7
6^.6
70.1
44.2
61.4
74. b
66.7
45.2
48.5
54.6
55.4
20.0
V9.0
yg, 7
V7.2
95, P
86. •*
at •?.
o3 S3
31 .4
79.4
03.0
»1 .1
79.4
64.7
63.8
54.3
61.2
51.2
66.9
62.7
0.13
0.06
0.04
O.T
3.1?
U.^C.'
O.?1
0.17
0.14
0.06
r>.0c
0 ' 0—
J.O^
0.03
J.O*
J.C?
J.O?
0.01
0.01
1.5T
2.1f
6.7n
3.71
1 .°9
0.22
0.14
'1.14
0.13
3.1)3
0.5°
1.40
1.42
fi. j?
17.3?
0,31
Os29
l.^7
Q.25
0.2«
0.2*
0.25
a. i7
O.I7
3.67
J .5^
11 .23
5.93
2.79
0.16
0.06
n.07
O.U5
3.02
0.4U
0.31
0.25
0.22
n.14
3.13
T* * 2
".11
0.10
r.11
0.10
0.10
0.(J6
O.U6
?,71
?.70
8.06
4.95
?.44
1.31
0.00
5.<.5
6.65
7. 06
6.56
P.*.V2
7.22
1 ?.14
1 A . 1 1
15.44
15. U4
11.77
13.63
1 ' .27
1 *.C4
1 3.63
1?.96
14. 9i
14.31
10.68
10.97
?.V6
7.85
?.S3
3.55
S.24
0.57
O.Oi
t.53
7.i?6
7.1
-------
  XKXNIfKKX*> T
0.10
0.22
0.22
0.22
0.22
0.22
0.24
1.29
0.41
0.45
0.56
1.6d
1.82
1.27
1.40
1.56
1.66
1.76
1.80
1.81
1.80
1.77
1.73
1.68
1.56
1.46
1.39
1.29
1.17
1.07
o.ve
0.88
0.7V
1.71
0.64
1.^7
0.51
J.46
1.42
O.i7
P. 32
0.27
1.23
0.20
n.17
T. 1 /
0.20
0.10
0.10
0,10
0.05
O.U9
0.11
0.14
0.32
0.42
0.48
0.71
1.12
2.34
?.20
1.86
1.60
1.60
1.51
1.43
1.27
1.20
1.18
1.10
0.96
0.78
0.71
0.72
0.70
0.60
0.44
0.40
0.40
0.39
0.42
0.41
0.40
0.39
1.39
0.38
0.38
0.37
0.37
0.38
I).3c
o. 7>
0.20
J.22
0.19
J.19
U.18
U.68
0.7C
J.90
1.34
2.27
2.57
3.24
3.58
3.51
3.34
3.47
3. ?3
2.9<»
2.77
2.5?
2.7?
2.10
1.°4
1 . "'O
1.51
1.37
1.25
1.19
0.95
Li. 92
0.75
0.69
'J.6*
J.6Q
0.57
U.53
0.50
J.4R
0.46
U.47
0.53
J.60
0.60
0.60
U.60
I. «.n
0.20
0.12
0.12
0.12
0.12
0.15
0.21
0.35
0.6o
1.02
1.37
1.V3
2.50
7.00
2.95
?.92
2.75
?.43
?• 21
1.9V
1.81
1.63
1.52
1.37
1.22
1.09
0.9V
0.90
0.80
0.72
0.66
0.61
3.56
0.53
1.50
0.4fi
0.45
1.44
3.43
0.43
0.44
1.44
1.45
0.46
0.47
1. / 7
10. U
19. b
19.7
19.7
1C.6
19.5
20. U
21.3
28.7
70.2
'0.3
3?. 8
34.5
70. b
?9.4
40.1
42.0
48.7
5C.1
. 6?. 3
66.1
6°. 7
68.9
74.5
7", 2
72.5
70.1
70.1
70. u
6°. 4
65.6
63.5
60.5
*Q.5
55,0
57.6
55.5
57.2
51.4
4r.7
77.2
30.0
?". . 5
ltit,7
41 .A
37.9
J/..6
~1 .1
1.00
1.5C
.45
.7*
.70
.'1
.17
0.°'
0.75
J.76
0.77
O.K7
1.20
2.10
1.85
1.43
1 .T4
0.9'
0.67
0.5?
0.39
u.-«o
J.?6
O.?1
0.13
0.0?
3.07
SJ.O''
0.05
0.07
0.0?
1.0?
J.02
3.01
3.01
0,01
0.01
1.01
0.01
0.01
0.01
0.01
J.01
U.01
0.00
•I.!."1
I.JO
7.53
2.79
2.46
2.2'
1.92
1.69
1.6"
?« 16
4.56
4.97
5.04
5.40
4.93
4.91
6.33
6.96
6.96
6.94
6.V7
6.7"
6.67
6.45
'.46
6.57
6.32
6.16
5.69
5.05
5.09
4. 8*
4.31
3.6'«
'.26
"*.
-------
r
A
r
.A
;. 7
>»
5"
(%r.
c i
6?
x •>
64
Ar
6'-
67
0"
6C
7P
71
7'
-f
7'
T,
7'
7 ~*
7r
7°
81
S1
8'
37
ot
j.*
6*
57
8°
Sc
so
91
97
9*
94
95
Vf
77
VP
V
100
1-J1
1u?
10'
10/.
10r
• - ,

V *JU
P.uO
O.u-J
O.UL'
Oct.,
n.uo
O.vid
P.U1
Oo'-l
U.U'I
Haul
n f . »
n.ui
O.U1
n,ii
0.JV
n.o7
O.J7
n.ofc
o.to
O.J/
O.ui
P.Ut
O.u *
n.u 3
P. i) 3
0. 3V
1.4V
1.46
1.31
0,79
0.1c
C.23
0.15
n.oi
n.u<
o.u2
0.02
P.U1
n.ui
n.ui
f.'.UU
O.ob
o.cio
n.uo
o.-io
O.Ul
o.Ou
n.uu
n.uu
n.ju
n. jo
O.o1
n.u?
n.ui

u.ur
0.02
0.01
o.tn
0.01
D.P1
•J.C1
0.0*
U.02
U.02
C>.U3
0.0^
J»!)3
0*0'
U.OA
n.05
t.39
1.41
1.'"
1.41
1 ,«1
1.AO
l.Afl
1.3?
1 . «-1
i./=n
1.39
1.37
1.4°
3.4?
?.°?
1.57
1 «5n
0.77
J.6*
0.'. 1
0.31
0.37
J.31
O.?"1
u.?o
0.?3
0.32
0.31
U.31
0.31
0.30
a. 3o
J.31
0.30
U. 31
U.30
U.3P
0.31
J.sn
l>!>57
i J . '. n
•»T
1.01
0.01
P. 01
O.U1
1.01
n.'J1
O.J1
P.01
r.ot
r.ui
).U2
0.32
O.'JZ
1.03
H.U4
0.29
0.30
n.32
n.33
n.34
0.34
0.33
n03i
0.31
0.29
3.27
0.23
1.79
?.9i
?,29
1.55
1 .50
1.60
0.29
0.22
1.0?
0.06
1.07
P. US
0.06
!),04
n.04
n.04
O.U4
n.03
°.04
1.04
P.U?
n.;j4
r.os
n.U5
f* ,U3
O.U4
",Ui
n.,1 7
n. 1 3
"..!<-'
P. US
O.U5
O.U4
O.uA
0.04
P.U4
O.U4
0.04
0.04
0.04
P. 04
O.U5
U.U&
f\ 1 1 *
• ' • *j >J
3.U3
o»U9
0.34
0.36
0.37
0.3V
0.40
0.41
0.42
0.39
0.39
0,38
0.34
0.30
0.78
0.81
0.36
0.96
0.96
0.44
1.38
0.80
0.20
0.11
0.20
0.12
n.18
0.14
0.16
0.20
0.16
0.08
0.07
0,04
1.03
0,03
O.OJ
0,04
0.04
D.U4
O.uS
1.13
n.19
n . i '
L'.l?
0. 11
0. 10
0.10
o.n
o. in
o,m
o.n
0. 13
u. 10
u.to
U. * '"
o« tr»
o. n
u. 1 •"»
0, 10
0=10
0.5?
U.59
0. ^^
O.ftS
0.71
0.71
a. 71
a. 71
0.63
0.6*
0.61
0»5T
U06
1.73
1.87
1.95
.2V
">,; i
0.39 t
0.40 t
0.40 i
0.40 (.
1.40 '
0.40 I
P=39 .
0.59 Q
0.38 U
0,36 U
0.34 L
H n 3 1 ti
0.29 0
0.26 U
0. 2 ft L
0,22 U
0.20 t
0.40 2
0.42 i
0.43 i
0.45 2
0.46 i.
O,*8 2
0.49 i.
0.50 <
0.50 i
0.49 I
0.46 2
0.42 <
1.29 £
2.49 i
?..34 /
?»^0 2
1.86 i
1.20 1
0.97 *
0.86 1
0.48 1
0.48 1
0.46 \
0.45
0.43 '
0.43
0.40
0.37
0.37
0.38
0.39
0.41
0.41
0.40
0.41
0.37
1.35
n. 3 !
J.6Q
J.60
1.60
.63
,60
.60
.6ri
.61
, 60
.60
<,6'l
.61
.6')
. O'J
o60
.60
.09
.10
.10
.10
elO
.10
.10
.07
..11
MO
:.09
..07
!.50
>.72
i.04
1.75
^•=6
,C7
.016
.99
.00
o09
oOO
.09
.n?
.09
.05
.0?
.0?
.11
.11
.00
.10
• in
.00
.10
.0.1
. 1f.)
.01
1.3.)
. 1 •»
. i 1
0.49
0.49
1.50
0.50
0, jij
O.!,0
D.4V
n.4v
0.48
0.46
iokt.
0.42
O.id
•l.Jb
Oo ?9
0.24
0.73
0.7V
0.66
0.91
O.V5
O.V&
0. V9
o.ve
o.v»
O.V6
a.vi
0.14
1.60
A. 16
^.<«2
?..60
2.11
1.48
I.Ub
0.94
O.i7
0.54
0.6U
fl.52
0.56
0.3
1i .1
t A _Q
U.6
13.9
13.1
12o1
10.9
36.9
39.?
41,7
43,9
45.6
47,0
48.1
4fe,6
47.9
ob. 9
44.8
41.5
57. *•
67.4
73.4
78 B1
38Q*.
67.5
86.3
60.6
60.4
ti .3
57 o2
59.7
56.5
57.9
55.6
45.6
42.9
3200
30.9
21.2
1<*.5
19.3
22.0
21 .0
c1 ,0
19.0
19.4
56.7
30. °
>~ . *
J.O"
UcQO
Go OH
0.01
0.01
U.G'i
J.01
O.O"1
OoO'
'J.O A
3 _ '.*
J.U°
0.15
U.?3
Us,?1*
Oo*?
0.4*
U.33
U.?4
Q018
0.1*
J.09
0.0*
0.04
a.c*
0.0?
0.0?
a. ut
0.81
3.37
2.2ft
1.50
06^6
0.^?
0,1?
U.07
J.O?
J.01
u.oi
0.01
0.01
0.01
0.01
0.01
0.01
o.co
o.on
0.00
0.01
0.01
0.01
0.0?
•}.l*3
0.0?
0.07
J.01
J.l-1
1 .''1
0,99
0.99
1,00
3.9"
1.00
°09°
1.V?
•"„'_"?
0.99
O.V 9
0.99
0.9°
1.99
?.« i
?.<.9
2.49
2.49
?.49
> _ ^ o
|> A o
2.46
>.4°
2.49
?.*3
?.«•«.
4.97
c.96
i .V4
4.9*
4.V6
5.7*
S.V«<
5 ebc
1.5*
1 .oO
1.49
1 .ft*
1 .49
1.53
1 .&c
1.4.°
1 .4°
U50
1 .49
1.4"
1 .40
1 .49
1.49
1 .49
1 ,it°
1 ./.°
1.4"
1 » 5*>
1 . 4°
1 . •; °
0.18
0.1t.
0.18
n. 16
0.1S
Oo 2d
3.21
" - >
0.27
0.33
0.42
0.55
0,77
0.78
0.67
0.60
0. 5t
0.51
0.48
0.44
0.42
0.41
0.39
0.37
0.34
1.35
4.42
^.22
?. 16
1.58
1.15
1 ,ue
0.8V
0.41
0.42
0,35
0.40
0,35
0.36
0.32
0.25
0.24
0,22
0.23
0.22
0,«2
0.23
0.24
0.24
0.2i
0.23
0,27
0.2V
0,2!:
1. ? 1
5.71
5.70
•J.6«
5.6<-
5.6'
5.0*
c o64
5 . ( • •*
- 07"
*= ,86
5.9J*
6.15
6.5?
7e11
?. 1 9
1.51
O.V5
0.6°
0.7?
0.85
1.4'
1.90
2.3?
?.7"
2 »t*3
2.3"
0.00
0.3*
O.S7
1.1?
1 ,m
2.61
Sol"*
4.7?
6.03
6.00
6.05
6.!0
5.8r
*.10
6.U7
6.U5
6.0"
6.0C
6.U*
6. J4
6.05
6.UO
6.1*
6.01
6.U1
6. 07
6.U?
4.36
1 .4"
/, . ^.c
7.VV
7^9V
7.5V
7.9i
7o9V
'.vs
• C W i1
7»f»
7. VV
7o VV
7. V9
7<,99
6.58
*.49
*.. 2V
7.4c
3.V7
',,ti«
(^.18
7.12
7.29
7o33
7.45
^o09
? 8iU
*,4t
*.69
tO. 51
1O.C2
11, £4
1*.37
11. It
10.37
p.52
•81.01
11.33
3.V7
1 i.i i,
10.46
0.33
9.54
S.fc6
7.9V
'.58
7.4V
6.7V
7.V6
6.SS
6.62
7.16
6.b4
"-.77
6.41
5. •><•
ti. :~
6. 1 v
6.17
6.12
6.13
6.12
f c-»5
jo?2
f. 0*1
•S,/,'
to63
C.95
7o* o
3.16
2.*3
2.?3
2.05
2.21
2.74
3.75
4.M
5.^3
5.62 '
5 .86 NJ
5. "5 *•
1.18 °°
2 . 1 /i '
2.?6
t.?3
6.74
6.^5
t .7V
7.53
o.'9
7.51
J .95
fc.*4
7.43
e.'-e
8.53
8.13
8.19
7.77
7.31
7.<">Q
6.°&
6.54
7.*7
t . '<5
6.41
C.7^
6.5V
5. *8
5.e1
'. . ' i>

-------
110
111
11?
1 1 ?
11'-
115
11*
117
11?
11^
120
121
1??
127
12'
1 25
126
127
12P
1 Jc
130
131
1.5?
1 '.'< 3
P.U5
0.04
O.u4
P.J/.
n,u4
P. 28
0.27
0.25
0 .?:'
o . i r
0.1 1
0.1U
O.Ue
O.o7
P.U9
n.u;;
0. J?
O.U2
0.02
0.9i)
1.50
?.2 i
1 ,«.6
1 .10
0.30
o.3n
U.*7
0.44
0.27
0.'!?
J.<7
0.3"
0. ''
'J.34
0.31
0.30
0.70
0.71
0.30
1.71
0.3i?
0.7?
0.31
2.51
2.48
o.7/
3.0*
2.28
0.1S.
P. 12
0.25
0.21
P.U6
0.52
0.42
P. 35
1.31
r. 1 o
p.17
0.13
0.14
0.13
P. 13
C.13
0.12
0.06
1.U6
1.87
1.V3
4.9b
'.34
?.01
0.20
0.20
0.19
0.20
0.18
9.06
n.19
0.2J
0.20
O.J2
n.18
0.7.0
0.20
0.20
0.20
0.20
0.2J
0.16
0,20
0.38
0.35
0.44
0.58
0.99
3.41
0.3S
0. i°
0.65
0.3?
2.15
£.07
2.01
1 . ? if
1.U
1 .41
1.".
1.29
1 . ?2
1.5?
1 .7^
1.21
0.53
J.60
1.47
1.84
1 .j"*
1.67
1.9Q
1.36
0.31
0.56
0.53
0.22
1.57
1.46
1.36
1 ,2i
••.15
1.36
1.97
n.89
O.S1
0.94
O.t5
1.79
1.^8
0.53
^.99
1.14
7.01
1.36
1.49
0.45 1.00
0.4% 1.TJ
0.53 1.3"
0.54 1.21
0.06 0.90
O.o4 1.c/
0.97 1.43
0.96 1.3'
P. 94 1.25
0.61
0.78
0.76
0.72
0.70
0.76
0.72
1.69
0.46
. ?••
.17
.04
.01
.01
.11
.no
.01
.OS
0.45 1.10
1.52 3.60
2.28 3. *i
7.. 32 0.77
?.41 5.40
?.05 3.3"
0.7Z
0.73
P. 94
0.90
1.12
1.39
1.27
1.18
1.12
1.90
0.87
0.64
0.81
0.79
0.64
O.b1
0.79
0.54
0.55
?.81
7.92
6.5V
4.62
7.U8
30.0
70.0
30.0
30.0
1P.2
74.3
?9.7
30. U
30.0
"«U
29.2
'P.O
30.0
70.0
30.0
30.0
30.0
?6.7
30.0
30.6
29.7
'.5.7
'6.7
5°. 3
46.2
4". 3
5* .9
56.6
t°,2
106.1'.
107.1
107.2
106.6
97.1
92.4
90.8
o9.1
86.9
90.3
88. j
87.1
65.7
65.6
70.1
o4.2
61.4
74.0
86.7
41 .9
43.3
49.4
49.3
e-\ .0
t>4.7.
0
10.52
10.01
b.36
9.54
10.73
(j O V
O _ Q 1
1 0 . ' 1
10. >»5
10.06
o.'1
6.91
1 . A7
1.61
1 - 4(J
1 .89
5.19
NJ

-------
»*»NKX««*MH***KI)X*NK
                         SU,1«»OY OF  DISSOLVED  OXYGFN «?FYUN"
                                                                      50H
                                                                             *»*i»ii »*««** **** tr »KK
j't'^CT ION
i
2
3
4
5
5
7
8
o
10
11
12
1?
14
15
16
17
1(5
19
'0
r i
12
23
24
7 1.
26
27
21,
29
<0
31
32
33
34
35
36
37
38
3V
40
41
42
43
44
45
46
47
A3
A<:
MINIMUM
Q.oo
6.57
T-.8*
S.54
5.11
i*7"
4.5"*
4.U4
*.2?
2.50
1.94
1.31
1.89
a. 79
n.S7
1.42
1.77
2.25-
7.56
'.69
?•?*>
2.80
7.17
7.45
^.87
4.10
4.4°
c« 22
5.2-=
5.34
5.4P
5.67
5.77
e.96
^.19
".11
s.99
F.93
5.9«
*.04
'.!"*
6.19
6.14
5.07
*,i)Q
f . UO
4.01
5.97
c .H"7
CYCLE
1300
t 7'
5 r?
5?5
525
^"?-?
5?5
5 '4
5 ?5
125
5 ?5
i'5
5?6
5*1
574
654
ti 64
864
t 64
5 ?9
5T'
i 35
574
5T6
5 '6
537
577
5 ?8
5?8
578
5^0
573
5T 5
5*5
5? 5
5?A
b?7
5'S
5 21
5 ">?
b'«
57°
6 'A
6?4
6?4
6M
7?')
77 1
7" )
,1*»IHU1
(HG/L>
0.0
6.78
6.09
b.^7
5.55
5.?8
5.13
5.19
4.35
4.?5
4.19
3.92
3.47
3.?3
3.35
3.^4
3.71
3.92
4.19
4.21
4.54
4.91
5.21
5.57
6.10
6.41
6.56
6.97
6.98
6. "7
6.R5
6.96
7.23
7.79
7.59
7.67
7.70
7.00
6.75
6.74
6.90
6.90
6.92
6.6b
6.52
6.73
'..77
5o4i
(• • 7 9
CONC.
CYCLE
0
••14
936
?S8
S86
660
?33
388
"36
888
888
SinJ
"80
697
648
696
696
744
"34
°84
798
748
975
975
975
796
977
°82
984
984
984
975
746
793
934
'84
985
935
984
954
792
°84
984
934
°84
984
888
°84
VS/.
(MG/L)
8.00
6.6S
5 r>°7
5.72
5.76
5.06
4.94
4.6<»
3.90
3.54
3.23
2.71
2.19
1.97
2. Ob
2 tf-2
2. "4
3.14
3.36
3.49
3.65
3 .*6
4.20
4.55
4.9V
5.36
5.68
6.06
6.11
6.15
6.?5
6.40
6.58
6.74
6.86
6.80
6.55
6.42
6 .T6
6.42
6.49
6 .5^
6.46
0.72
6.21
6.16
6.19
5.17
( • '1 '-
NO. CYCU;S
00<4
0
J
J
J
0
u
J
3
*31
441
'•65
501
501
501
501
531
531
501
«35
428
764
701
197
112
16
U
a
0
0
0
0
J
0
0
0
0
a
0
u
a
0
0
0
0
J
0
0
0
0
MO. CYCIES
n
0
3
n
0
74
36?
447
170
60
*f-
1
T
n
r)
0
0
n
16
7*
1"*7
200
25R
2*2
278
157
75
0
0
n
i
•7
0
n
0
0
0
n
n
n
0
n
n
D
r)
0
P
0
T
NO. TYCICS
5L1
5U1
5b1
501
501
427
133
5A
G
0
0
0
0
u
u
0
0
0
0
L
0
0
46
1 27
747
744
426
501
501
501
501
5C1
501
501
5U1
501
501
5G1
T01
501
501
501
501
501
501
501
501
501
501
                                                                                                                      (SI
                                                                                                                      O

-------
s<-
53

55
56
57
5S
59
6 a
61
62
63
64
65
66
67
SS
69
7U
71
72
7*
74
75

77
73

80

02
83
54
 87
 88
 39
 9>J
 91
 92
 9?
 V4
 95
 96
 97
 9!"
 V9
            5.71
91?
960
101
1 )2
103
1 )4
105
106
1U9
1 10
5.6P
r».65
5.62
5.63
5.64
5.67
5.75
5.85
5.9<<
6.15
5.52
7.10
2.47
?.1 *
1.9"7
1.85
1.92
?.25
?•<><*
3.52
4.71
5.50
5.8^
58?o
1.00
1.49
1.73
4.37
5.36
4.40
6.81
7.82
6.90
8.4^
7.17
7.18
7.20
7.4"=
7.4?
7.35
7.12
7.11
*«68
*.61
5.27
6.80
6.23
6«?"
6.50
6.3"
5.62
5.35
4.96
'.07
1,5*
3.31
c x ri
Q 1 ?
V60
960
960
V57
V 5^
95":
955
954
V54
954
514
515
515
i"
5 "4
5?5
5'5
5?4
5?4
525
5 ?7
5'S
52"
5?3
5?3
576
576
5 '4
576
5'*
525
5??
6^4
5?a
316
84A
054
t6A
VI?
960
91?
9*>T
5 ?3
; "^^
515
? I11
615
71-:
6.03
6.m
5.08
S.°8
S.°2
5. 95
5.91
5. OQ
6.02
6.16
6.35
6.68
/.07
7.67
i.83
3.49
3.29
5.42
3.97
4.94
6.18
7.12
7.29
7.33
7.45
7.09
2. 20
3.46
3.69
10.51
10. *2
11.64
13.37
11. lie
10.37
^ .52
11.01
11.^3
8.97
11.28
10.46
9.33
9.54
8.66
7.09
7.T3
7.?6
6.78
7.90
6.59
6.62
7.05
6.PO
6.77
6.41
5.91
4.08
2.35
C04
"34
*04
504
S04
504
5J4
504
*44
?92
792
791
791
«40
073
074
084
087
988
989
889
»38
888
984
984
978
°84
744
888
888
S88
888
936
036
036
936
036
936
984
"84
£36
036
936
983
°83
980
552
f 34
504
C52
Cb2
"o2
504
977
976
076
696
°7»
 5.SO
 5.73
 5.74
 5.76
 5.75
 5.'9
 5.90
 6.02
 6.17
 6.43
 6.°1
 7.42
 3.?8
 2.95
 2.72
 2.69
 2.97
 3.59
 4.63
 5.49
 6.21
 6.56
 6.75
 6.57
 1.69
 2.50
 2.69
 6.89
 7.71
 7.*0
 9.4V
 8.?fe
 b.99
 8.05
 9.70
 8.93
 8.10
 6.94
 8.79
 8.34
 8.37
 7.90
 7.51
 7.01
 6.93
 6.49
 7.33
 6.40
 6.44
 6.75
6.57
6.28
 5.92
 5.46
3.ct
  U
  Q
  0
  J
  0
  0
  3
  3
  0
  0
  0
  3
  0
  0
531
501
501
501
501
                                   n
                                   n
 99
 >a
  o
  o
  0
  0
501
501
501
  0
  0
  0
  0
  0
  3
  0
  Q
  U
  0
  3
  0
  0
  U
  0
  0
  0
  0
  0
  3
  0
  0
  0
  3
  0
  a
  u
476
501
                                                                                              0
                                                                                              n
                                                                                              o
                                                                                              n
                                                                                              o
                                                                                              a
                                                                                              o
                                                                       o
                                                                       0
                                                                     117
                                                                     240
                                                                     141
                                                                      15
                                                                       0
                                                                       n
                                                                       0
                                                                       0
                                                                       0
                                                                       r»
                                                                      41
                                                                       1
                                                                      34
                                                                       0
                                                                       n
                                                                       o
                                                                       o
                                                                       n
                                                                       o
                                                                       o
                                                                       n
                                                                       o
                                                                       o
                                                                       o
                                                                       n
                                                                       o
                                                                       o
                                                                       o
                                                                       o
                                                                       o
                                                                       T
                                                                       0
                                                                       0
                                                                       0
                                                                       5
501
5U1
501
501
501
501
501
501
501
501
501
501
501
5U1
  0
  0
  0
  0
  0
  0
162
486
501
501
501
  0
  0
  0
4tO
501
467
501
501
501
5U1
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
                                                                                                                        10
                                                                                                                        en

-------
1 13
1 14
115
1 16
117
1 13
1 19
12J
121
122
123
1 24
125
126
127
128
129
13J
131
132
133
 6.65
 7.06
 6.56
 '.6T
 ».5?
 °.73
10.21
 9.6T
 7.4?
 ^.72
 0.83
 0.77
 0.87
           864
91?
           b?*
           5?3
gt02
7,32
12. 16
U.12
15.66
15.16
11.77
13.63
U.37
13.66
13. *3
13.06
14.02
14.31
10. fit
10.97
2.96
2.«5
2. S3
3.55
b.?6
C4.3
f 83
"98
«88
<>36
983
936
936
P88
993
934
984
934
9S3
936
988
flsa
693
744
696
"98
 7.96
 7.14
 9.15
11 .OU
12.08
11 .16
 9.55
1U.74
11. «3
10.33
10.87
11 .75
12.46
1 1 .19
 6.75
 V.'O
 1 .65
 2.26
 5. "3
  J
  0
  0
  0
  0
  0
  0
  0
  J
  (J
  0
  0
  0
  •J
501
501
e 01
eQ1
 14
 0
 T
 0
 1
 0
 T
 n
 n
 o
 n
 o
 n
 T
 o
 n
 p
 Q
99
301
501
501
5i;1
501
5U1
5U1
F01
501
501
501
5U1
501
501
501
501
  0
  0
  0
  0
                                                                                                                           NJ
                                                                                                                           (J1

-------
x» » *KNH*K x KM «»«XKX«X»K«M««X*K«    SUI?M»"Y Or NUTRIr»»T LIMITATION 3fYUNP CYCLE   500   »** *« **x*vx xx** ****** ** *» **>«**
JUNC.
1
2
3
4
5
6
7
q
9
10
11
12
1 3
14
1 5
i 6
1 7
10
1 O
7J
'1
72
7 J
.74
75
76
77
"»
79
*0
•»1
72
•<3
*4
•»S
*6
*7
73
•"9
'.0
'•1
42
'.3
f 4

•0. OP
r LIMITS
0
0
0
0
0
0
U
0
0
0
179
??4
310
77Q
1 ?0
0
0
0
0
0
0
u
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
u
0
0
0
0
19
193

CYCLFS
P LIMITS
n
5-01
501
501
501
501
501
501
501
501
37?
277
191
2*1
3^1
5n1
501
501
501
501
501
5P1
501
501
511
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
511
501
U"?
jr°

JUNC.
45
46
47
43
19
53
51
52
53
54
55
*6
57
C8
59
60
61
62
63
64
*5
66
67
63
69
71)
71
7?
73
74
75
76
77
73
79
30
"1
3?
3}
"4
35
"6
P7
"8

»'0. OF
v LIMITS
417
S01
501
501
C01
50]
501
5P1
501
501
501
501
SP1
501
e01
501
501
501
501
3*9
U
0
0
0
0
0
3
0
0
0
0
0
0
0
27ft
0
0
0
0
J
0
0
0
0

CYCLES
P LIMITS
84
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
147
501
501
501
501
501
501
501
501
501
501
501
501
5P1
501
277
501
501
511
501
501
501
501
501
511

JU.'JC.
R9-
"0
91
°2
°3
94
95
"6
"7
98
99
1PO
101
102
103
104
1 r>5
106
107
108
109
110
111
112
113
114
115
116
117
118
119
17U
171
1 72
1 ?3
124
1?5
1 ?6
1 ?7
1?8
1 '9
1TU
1*1
1*2
1*3
NO. 0^
N L'*ITS
0
U
0
0
0
0
501
501
501
"01
501
501
501
501
501
501
0
0
0
0
0
0
0
0
u
0
0
0
0
0
0
0
0
0
0
0
0
LI
c
0
159
7R(J
501
34b
0
CYCLES
P L11ITS
501
5P1
501
501
501
501
0
0
0
0
n
n
n
0
0
0
501
501
501
5P1
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
501
34?
2?1
0
1 **
511
                                                                                                                                10
                                                                                                                                Ul
                                                                                                                                U)
                  OF C
                                     -  1.JUCI

-------
                                               POTOHAC ESTUARY  CENTER

                                         LOV   WATER SLACK PLOT FROH CYCLF   ««?2 10 CYCLE

                                         HIGH  UATER SUCK PLOT FPOrt C^CLT   i=n TO CYCl^   490
     10.01
        I
        I
        1
        !
        1
        I
        1
        t
        I
     £.n*
        I
        I
        L
        y
        (
        t  *                                                                r
        I  »                                                             XX                           y    X
        ?                                                              x      «   x              x    y        »
        1                                                            X               X      X             *
     6.0-      r                                                   X                          »   *    «
C       I       »                                        X  X   X             »
o       i       «                                      y                * *
MI.                                                    •
SIX                                   xxt"
T       1          v
i       i            r«                           x
T       i
u       t             x                         x        *
E       I
M    4.0-                                      X       »
T       I               <                   X
        I               X x                         K
61                                y x
        I                   w       X   X         1
        J .                 X          X          «
        1                    »    X
        I                 X              » «*  *
        I
        t
     3.0-
        i                            »
        i                    yx«   »
        i
        T
        I                         «
        I
        I
        1
        I
     o.oi --------- 1 --------- 1 --------- 1 --------- 1 --------- T --------- 1 --------- r --------- 1
        O.J        5.0       in.fj       15. T       20. u      25. T       50. U       3i.O       <5Q.J

                                               MlLrS f»cLn'» CH/IN  "RlfiRf

-------
                                           rSTU*RY  CFST^" CHAMNri - QUALITY  SUMM"RY
                                 SUMMAR" STARTS  «T  CrCLr     1     0 DAYS  0.5  HOURS
                                 SU*MARV  ENTS   «T  TYCLF  ioou    ^n DAYS  20.0  HOURS
     4.01
         i
         i
         i
         i
         i
         i
         i
         i
         i

         i
         i

         i
         i
         i
         i
         i
         I                    HHH
     2.6-                      H
C        I                          u
01                   H    H
V        I                           H                                                                                             I
SI                                                                                                                         to
T        1                      •                                                                                                  Cn
1        1                      t A                                                                                                ^
T        I                 H    A    A   M                                                                                          I
U        I
El                 H   A      «   M
H    1.f-
T        I                      L
         I                        L     '  H
1        I                                  M
         1                          LL         H
         I                   A           «     H

         1                              LA
         I                                        H
         I                     L            "
     U.r-               MA              L         H
         I                                 LAKH
         I                    L                A
         I             HA                 I     A         H
         I                                     L
         I         M  H                         LA
         I               •    I                     LAM
        H                                         L    A   A     M
         I             A    L                           L        A  A  H H
        L  I.  LLA L  LL  L                               LLLLLAAAAHK      H
     0.01	L- !	I	T	I	T	LIL-L-L--L-I-L	L-IL	L	L	L	LI
       T.J       i.O      10.J      15. fi      2T.O       25.T      30.0      35.0       40.J       45.0      50.0

                                                   3FLOW CHAIN  PRIOP17

-------
c
0
N
S
T
I
T
U
r
N
T
         K
         A
         L
         L
      o.ni-
        o. u
                    '»  H
                    M
                  H     «
                      A
                 H


                H A

              H  A

              H »
            M A          I
              A  L      L
          H «   L LI  L
M  H     HI   L     I
«  HA A > At L
L  LLL I  L
                              STARTS «T CYCf      1
                               EMCS  AT CYCLr  1000
                                                                              SUHM.1RY
                                                                    U DAYS   0«i HOURS
                                                                    " DATS  20. u HOURS
                            H
                             M H«  HH H
   M  4 AA
*            H

          L
         L  L
                                                                   H
                  L  L      AM
                         L   t   A   H

                               L   A   H
                                 L   A     H
                                   L   A
                                     L     A
                                       L   L
                                                                                         H   H

                                                                                         A
                                                                                             /
                                                                                         1.   L
        I-
               —1--
                11.U
	1 —
 15.1
	1--
   20.0

 «!LrS
25.0

CHUH
	]--
 10.0
                                         . — T_.
                                          45.1
— I
 50.0

-------
4.01
3.?
1.6
O.P
                               POTO-AC f^STUAPY CCNTSP  CM«NK'rt.  -  DUALITY SUMM'RY
                            SU^MAR* STARTS «T CYCf      1     0 OATS  0.5 HOURS
                            S'J"1»RV  C"OS  *T CYCLr   1000     20 DAYS 20.0 HOURS
                        HHH
                          «. A
                          A    A
                   H A
 H

H  A
                 A  L
   A  •  »Af  t   L
   L  L  LLL  L  L
•J.01--
  O.u
                          A    H

                             X    M

                         LL    A
                             L    «
                   A      H
                      A
                         A  H
                   L   L  L  A   H  H
                                A  A  H  H
                            I       A  A H  H
                                        A  A   A
                                L  L  L  L L  L   L
                                                                      u  H
                                                                      L  L
                                                                                              H
                                                                                              L
     ---!--
      10.U
-—r —
 15.0
	1_.
 40.0
            5.0
                                                                30. U
                                                           35. P
                                                      CH1TN

-------
?GU.OI
     I
     1
* • I ~
 ' ou • u
1 iU.P
 bo.o
 40.0
     H
     I
     L
     I
     L
     I
     I
  U.OI —
    n.o
                                POTO'VC FSTUARl  CENTER CHAK'NFL -  QUALtlY SI
                              SU^IAR* ST*i?TS  *T  CYCLF     1     0 DJ YS  O.i  HOURS
                              SU^M/IRY  HMDS   »T  CYCLF  1000    iO DAYS 2Q.U  "OURS
                            H H
                            H
              H  «
                 e
             H A
           H  «
           H *
         H A
       H * A  L
    H H    L I LL
HMh    A L       L  L
 M 0 »
LLL I LL
                                    "H HH HH  H  H  H
                            M  *A » 4 A
                         '»              A
                                    L
                                  L
                                      L L
                             I  LL
                            L
                                                                     H  H
                                                                A  A      H
                                                                     t
                                                                L  L    A *
                                                                     LLL
                                                                                                                               Ul
                                                                                                                               CD
                                                               H   H
              •I-
   ! .0
m.o
                      -— r--
                       15,0
. n
•--!--
 JO.O
35.P
iO.U
                                                                                      45.P
---I
 sn.u
                                           •ULFS "FLOV CH'.IN

-------
                                   POTO"'C CSTUAOT CEKTEP  CHANNFL  - OUALITY SUMMARY
                                 SU1MAP* STARTS AT rvCLF      1      P OA*S  0.5 HOURS
                                 Sli1MAPv  fMOS  AT TYCLP   1000     20 DAYS 20.U "OURS
     10.HI
         I
         I
         I
         I
         I
         I
         I
         I
         f
     8.0-
         I
         1
         1
         I
         f                           4  HH H
         I                                  »
         1                                    H    H
         1                          H          H H   H
         I                                             H
     6.0-
C        !
01                     H                           H
•*        I                    H                                                                                                   '
S        1                                                                                                                        KJ
TI                 H  H H  h                          H   H                                                                 Jg
I        I                                                          H
T        1                 H                                                                                                       '
UK                                                            H
£        1
N    4.0-
T        I

5        I
         A                                                                M
         1                     A<                                            K
         I  A   H              A   A A
         I                                                                     H
         I      H                    «
         I      A H       H    f  L                                                   H
     2.PL      AM                    »
         I       A                L      •                                               H
         I          A  HH    A                AA                                                    u
         I  L   LLL    A         L     LL        AA                                            H         H
         t          L  LA    A   L                  >  A A                                                    M
         L            L  •               L              A  A  A                                                 M
         I               LLL                                   •   A
         I                               L L                          f  A  A
         1                                  L L                             A   A    A     *
         I                                     LLL                                        A    *    A    A    4
     0.01	t	I	1	I—L-L--L-TL--1—L-LIL-L-L--L-I-L	L-IL	1 ---L	L	-LI
       O.o       5.0      10.U       15.T      '0.0      2b.O       ?0.0       Jb.O      40.0      45.0       "50.0

                                             MILFS ^r\.nv CHMC"'  PRID£C

-------
1 u. 01
    I
    I
    I
    I
    I
    I
    I
    I
    1
 s.m
    I
    i
    H
    I
    A
    I
    I
    I
    1
 6.0-
    L
    »
    1
    1
    a
    I
    I
    I
    I
 4.0-
    [
    1
    I
    I
    I
    I
    1
    1
    1
 2.0-
    I
    I
    1
    I
    I
    1
    I
 O.OI--
   r.j
                               POTOM«C  ""STUART ^E^TER CHANNFL  - OUALITY
                             SU-'IARY STARTS  »T CYCLT      1      p n^rs  0,5  MOURS
                             SU"MARY  F.VDS   HT CYCLC  1000     20 0*Y
-------
    -  261 -
APPENDIX

-------
                                   - 262  -
                          A.I   REGAN LISTING
C                                 P°OGRAH
C                         E"VIROMMENTAL PROTCCTTON AGENCY
C                              4WNAPOLI? FITLD OFFICE

C        T'-nS PROGP.'H  PERFORMS  t  LEAST SQUARES rIT OF  AN  EQUATION OF

C           Y(T> =  A1  +  A2»SIN(VT)  + A?»SI"«2VT>
C                      +  ASxCOSCYT)  + Af*COS(2«T)
C     TO OBJERV^O DATA BY  SOLVING THE "ORMAL EQUATIONS.
C
 IX»»««m»»»»»X»*»»X»««UH»»»»»XXI(»Xin
                                    DIMFMSIONS
                                   (»*X*X»*»X«»
      DIMENSION  ALPHAUO),  AC'), SXXC7,?), SXYC7), T(nO),  X(7), YMOO)
      RFJL "AXPFS
C»*»«x»x(M»»x»»)«i«)mi«»it*«»»**)»»i««  READ CONTROL OATA an** »»«»**)<«mmx**-** »»«*»»»»»>«
      PFAD (5,500)  (ALPMA(I).  1=1,40)
      PF^U (5,501)  MDATA,  vcoErF, IAXIT,  KAXRES, PERIOD,  TSHIFT,  PSHIFT
C»*«»»»)»*Mi»« »«*«»»)»»)»»)•*»»»)•  PFAO  TIDAL  INPUT OATA  »»**K»»)»»t(«»»)»»Htt»»»«»»»«»»
      RFAO (SjSHZ)  (TCI),  Y(I),  I=1,NDATA)
      V = '. » 3.14159 /  PERIOD
Cx**»«*«»«*« »***«««»*«*«»•**««   PRINT INPUT OA.TA  » ««***)i)H«* »»»»*»* KM**** »«»*»*«
      WPITF (6,6UO)  (ALPHA(I),  1=1,40), NOATA, wCOFFF, PERIOD,  W,
     »               MAXIT,  "AXPES,  TSHTFT* PShlFT
      WPITP (6,602)
      DO 100 I=1,NOATA
        WRITE C*»6Q4>  I,  T(I),  vci)
        TCI) = TCI)  *  TSHIFT
  100 rCf'TINUE
C*** ******** K*KK**M*KH»» »*»»»*)»*»»
      "0 104 K=1,NCOEFP
        CO 102 J=1,NCQFrF
          ACJ)      = 0.
          SXYCJ)    = 0.
          SXX(K,J)  = 0.
  102   COVTINUT
  104 CO^TTKUE
C»*»»»»»»»»» »»*»»»*»»«»»«»*  SET  UP  MOR1AL cflUATIONS »»**»»»»**i»»*»»**)« *»*»»»«»«*
      NC2 a NCOEFF/? + 1
      DC 11? I=1,«OATA
        00 106 J=1tlCO^fF
          CJ1 = FLOATCJ-1)
          CJ2 = FLO»TCJ-HC?>
          Ic CJ.LE.NC2)  X(r'J)  =  SIN(rJl»v*TCI) * PSHIFT)
          If (J.E0.1)    XC'J)  =  1.
          IF (J.GT.NC2)  X(J)  =  rOS(cJ2»W»T(I) + PSHIFT)
          •5TYCJ) s  «XY(J)  *  (XCJ) » Y(T))
  106   CO''TINUC
            00 110  J=-1,NC06FF
              "0 10« K=1,NCOEFF
                SX»(K,J)  -  SXX + (XCK) * »'(J»
  108         CONTINUE
  110       CO^TINUF
  112 CONTINUE
C**««»«MH*KNNXNMII««K»«»K«*   PRI«T NORMAL  CO^FF IC I EM TS  »«*»»»**)H»)()»»»*«»ttl«*l<»»»»
      WRITE (6,606)
      TO 11< J=1,NCQEFr
        WRITE (6,608)  J,  SXYCJ),  (SXX(K,J), K=1,NCOEFF)
  114 CONTINUE

-------
                                   -  263 -
C»**«N»M«XWM«K»K»XN«»KK«*X«  SOLVE  1 0 R (1 * L  ""CUATICNS  » »* ************** ****»**»»»
      IT = "
  115 I T = T T + 1
      PFSI" = Oi
        PO 118 K=1,MCO"F
          Pl.'l = 0.
            DO 116 J=1»NCOFFF
              If (JtEO.K) GO TO  11*
              SUM * SUf - ES) GO  TO  115
  12J VFITF (6.61J)  ITt RESID*  (A(K>.  K=1*NCOECF}
C*»*K»»*K»K»««X»  P^INT OBSFRVcD.i  PREDICTED*  AND  RESIDUAL i*TA  *»*»**»*»***»*»*
      VPITr (6*612)
      TPES » 0.
        TO 124 1=1 t»0*TA
          P"EC = 0.
            DO 122 J=2*NCOFFF
              CJ1 =  FLO*T(.'J-1)
              CJ2 =  FLO»TCJ-««C2>
              IF (J.LE.NC2) PREn =  PREC1  +  A(J)  »  SINCF J1 *W*T( I )+ PSHIFT)
              IF (J.6T.NC2) PRE^1 =  PRE3  +  *(J)  »  COS(F J2»V»T< I>* PSHIFT)
  1?2       CO^TINUF
          PPED = PPEO + »<1)
          DIFF = PRFD - Y(I)
          TOES » T"FS + ABS(OIfr)
          VRITE (6»6U) 1* T(I)» YCI)j PREO»  OTFF
  126   COWTINUC
      WRITC (6»616)  TRFS
C»»«»»««»x»»«»i<)n» *x»*»«»x»»»)t»  FORMAT STATEMENTS   «**«»«****»*«»*»<(*«**»»**««**
500   FORM»T
501   FOR«1«T {7I10/4F10.0)
502   FORMAT («Fb.O)
600   FORMAT <1H1////1X,20A4»UX*'ENVlffONMC«(TAL  PROTECTTON ACE"CY'i/1X i
     »2CA4*16X*tLEAST SQUARFS CURVE  FITTINC' >/////  »1 OX* "NUMEE" OF DATA
     • POINTS '*1 OX* «VU«?ER OF COEFFICIEVTS'»/17X*'C*DAT«) '»24X*'(NCOFFF)'
     »//*1°XjI1t»28X,I3*///// *10X*'TIDAL  PF"IOO  (HOURS) '* 1 1X* •O'-EGA (2>«P
     nl/PE" 100) '*/16X*' CPERIOO)'*2TX*'(W)'*//*17X*F5.2  »23X*F7t4,///// *
     »10X*'"»XTMUM NUM9FR OF ' ,1 4X* ' MA XI"UM  RESIDUAL '»/ 1 OX* ' I TEPA TIOVS AL
     *lO«Er',l-'X*«*LLOWrD»*//*16X*I4*26r*F6.4*///// *10X*'TI«E SHIFT'*?1
     »X,'PHASE/ ANCLF SHIFT « »/1 1 X* • (TSH TFT) ' * 26X* • ( PSHICT) ' * //* 1 2X*F5.2 i
6CI2   FORMAT (1H1//1X»30I1H«), i    SUMMAPY  OF  IWPUT ?ATA    '»30(1h«)*// *
     »20X*'OaSFRVATION NO.'flZXf'TT^E'^iaXf 'VALUEi«/ * 15X* 60 (1U-)/   )
604   FO?*AT (1M ,2?X*T3*18X*F6.2*1,TXjF?,3)
606   FORMAT (1«1/// *75X*13(1M-),/6X*» I    -----------    I •* SOX* ' SIGMA X
     «r(K*J)'*/6X* ' I   SIG*«  XY(J)    l',50X.13C1H-)»/3X*'J   I    ------ --
     * ---   I '»/6r»« I '»17X»' I  K  =      1 >*14X*'2' »14»*«5»»1«X*'4'*UX*' 5'
     «»UX:»'6I*UX*'7«»/6X*1 I' t17(1«-)*'l'*105(1H-)»/6X* M «*17X*'I « )
608   COR««T (1H , 1X»I2,2X*' I " *4X* F1 0.**3X* ' I ' *7(5X*F1 0.6) »/6X* ' I '*17X*
     » ' 1 1 )
610   FORMAT (////50X»70(1H*)*/*1X*'SOLUTIO'<' */5uX*30(1H»)*/// *43X*'NUM
     »PER OF ITCRATIONS'»lOXj.>«'AXI>«UH 7ESIOU AL ' » //»51 X * 13* 24X*F7.6*/// /*
     «35X*'THE CURVE «MICH «EST  FITS  THF  OBSERVFD DATA  IS GIVEN BY    •
               v(T)  =   i,MO.£»<   •••   '»F10t6»'  SIN(WT)   +   '»C13.6»' SI
                 '.FID.**' SINOWT)' *//»4ix*'+   I*C10.6»I  cos(VT)   +  '»
              COS(?VT)   +  '»F10.6*'  CPS(3VT)»>
612   FORMAT (1H1//  »1X,30( 1 H» ) * '    SU»1ARY  OF  OUTPUT DATA    '*?0(1H«)//
     **4X*lOBSE°VATTON>,-tOX.«TI1«E' *10X* 'OBSERV FO ' * 1 OX * 'PREPIC TED ' » 10X* •"
     •FSIOUAL1 »/2X  »66(1H-)//  >
614   FORMAT (1H ,7X*n»t4X»F5.?*1 1X*F6.3*11X»F7.4*13X*C7.4)
616   FORMAT (1H *//5X*'TOTAL  "FSIOUAL =  '.F1Q.5  )
      STOP

-------
                                  - 264  -
                          A.2  DYNHYD LISTING
C                                 PSOGR'" DVNHYD
C                         ENVIRONMENTAL PROTECTION AGE'-IC"
C                             ANNAPOLIS rIEir O
C         n'NH*n  C?«CRl3ES  THE DYMKIC FLOW OF I 2-OIf!rVSIONAL
C     SYSve* Bv 03TMNIN6  AN  EXPLICIT SOLUTION TO THE EQUATIONS  OF
C     COnT-JUlTr  AVP  MOMENTUM.  THIS VF7SIO" CAN HAMDL= &  K*l\iO!>K  OF UP
C     TO  l3-"> CHM'NFLS AND  133 JUNCTIONS.

C                                 CONTROL OPTIONS

C     HVD^XT   =  1*0     CALL "-UtROUTlVE Hvr>EX TO CREATE A  SUMMARY
C                        HroftAULIC EXTR»CT TAPE* OR NOT.

                     M(7)
                     AK(139>»  APcA(1'9)j ARFAT(139)» B(139)>
      »               CN(139)j>  NJUNC (139*2)* » I=1*NOPRT)
      PFAO (5*504)  ITAPP* HYOEXT
      PFAO (5*504)  PUNCYC* INTPUN
      HfITc (6/600) (ALPHA(I)*I=1*4^)*  MJ* NC* NCYC* DELT*
     »              IPRINT*  IMTRVL*  NOPRT* PUNCYC* INTPUN
      IF (KVOEXT.EO.O) WRITE
      IF (HYOETT.EO.I) WRITE
Cx««*»B*M»***ati8«******if ********   JUNCTION DATA  »!»i»»nn»i»m»)m»)» K=1»5>
        YT(J) = Y(J)
        IF (JJoEC.J) GO TO 100

          STOP
  100 CONTINUE
      URITF (6*606)

        WRITE (6*60P) Jj Y(J)* AREAS(J>r QIN(J)*  (NCHAN (Jj>K) * K = 1*5)
  102 CONTINUE

-------
                                 - 265  -
C**X*«**»K**NK*K«***«**N«M»K«»*K   7HANVCL 'DATA  ** *'«»» ** **•» »» »**» <» *»* »« 0 * »» If tt » *
      (?F»J r5*500)  MEAOFR
      "0 104 N=1,NC
        3c»? (5j33?)  NN* CLFN(N),  d(N)» AREMN)* R(»O*
     *                CN(N),  V(K),  (NJU«l'-(N
        AF.r6(N> = ?(M)  * R(N)
        If CNN.CO."*)  60 TO  104
          W7ITE (6f610) NN,  N
          «TOP
  104 CONTINUE
      WRITE C6*612)
      TO 10* N=1»NC
        WRITE (^*6H) M» CLFN(N)*  B(N)» AREA(N)* CN(N>*
     »                VCN)»  RiCN),  (NJUvr(N,KJ* K = 1*2)
  106 CONT!«UE
C»**)«i«t>nt»)<»*»«)H()t)(»»   SEAHARO  BOUNDARY TIP'L CONOTTIOMS  »»»»«»«»»»«»««nm««»ii»5
          IF (NCHANCJ,K).EO.O>  SO  TO  113
          N = NCHAN(J,K)
            00 114  I=1»?
              IF (J.EO.NJUNC  NJ» NC* CELT*
     «           (CN(N)j RCN),  "(N)*  CLFN(N)* «» = 1*NC)
      VPIT? (1T) (Y(J)* AREAS(J)*  OIN(J)* ("CHAN(J*K)* K=1»5)* J=1*NJ)*
                            V(N)»  (MJUNC(N*T), 1 = 1*2)* N=1*NC)

-------
                                     - 266 -
C
          '1  =  PELT  /  •>..
      T7t~n  =  TZtRO  » '6JO.
      PFRUOO =  PET TOD  » 3600.
        ii    =  ?.  «  3.1416  /  P
        C    =  32.1739
      po  -,:-'n N"ij^r
        AKC'I) == G  *  CC"(N)«»£ / £.2081°*)
        If;  CNJIINC(M»1 >.LT.^JUNPCN>;>)) 70 TO 120
                   1)  =
                   ')  = KEEP
C                                    MAIN LOOP

       IF UVRTH.GT.n)  ^0  TO  124
        DO 122 V=1 ,WC
          PtN) =  V(f»)  » *RFA(N)
        WRITE (10)  I«RT?j  (Y(J>*  J=1jNJ)j. (WCN)p OCN)j N = 1»MC)
  1?i T = TZERC
      rO 1*6 IrYC = nNCYC
        MTVCC = icrc
        T2    =• T » OELT2
        T     = T * OELT
C» K» »»»««)»«» »  ro»«PUTE CHANNEL  VELOCITY AND FLOW FOR 1/2 TIME  STE.P   »» »» »»*>»»«»»
          "0 126 H=1*NC
            ML   = NJUNC(N»1)
            NH   = lJUNC(Nj2)
            R(N) = flRE«(H)  / B(^)
            AKT  = «K(N) /  (R(N)»»1.33*333>
            OVDX =  (1./R(»» «  (((Y(NH> - YTvNH) + V(NL) - YT( M > J/^E
     »             *  (VCN)  / CLCN(N» » (Y(NH) - Y(NL)»
            VT(")= VCN) +  OFLT2 »  ((VC<) « HVOX) - AKT « V(f')
     »             «  «3S(V(N»  - (G / CLENCO) « (W(NH) -
            OCN) = VT(N) »  AREKN)
  1?6     CONT'NUE
C»»»»»»»»»>it}*ini»*B  COMPUTE JUNCTION HFADS COR 1/2 TIM^ STFP   »»»»»»»« »»»»»»*«»»
          WT(1 ) = »1(1)
C             r*ttct
-------
                              -  267 -
              *x« «««**« XK*«)()H<»  JU"CTIO" HF'OS »»**»*»»»»»*»**»»»
             1*« J=2,NJ
            SUM0 = QIN(J)
              "0 1T? K=1*5
                 IF fSCHANC J»K) .cC.n>  60 TO 134
                  w = NCHAN(J,!O
                  IF CJ.NE.N'JUNC» ?!JHQ
  136     CONTINUE
C»*«»»«*«*X»N*»«  COMPUTE C'UrtVTL  C.S.  AREA  FOR !/">. TIHC ST£P  «»),»»«.(
          ?0 1'9 N=1»NC
            NL = NJUNCC«»,1)
            NH = NJUNC(N,2>
            ARC«T(N)  = »REA(N) * . ?»B< N )»(»T (N")-Y (NH) <• YT C «L )-Y ( SL) )
            P(MJ
            »KT?      = AK(N>
C»««**««»ii»*»  fOfPOTE CHA»WEL VcLOTITT AND  FLOW FOR FULL TIME STEP   »»»»»»»»»»»
            OVDX = (1./R(N» * (((VT(NH1-Y(NH) + Y T(NL )- YC VL»/"ELT )  +
     »                CVT(N)  /  CLEN(N))  i (»T(NH) - rT('IL»)
            V(M) = V(N) + OFLT » (CVT(H) »  PVCX) -
     »                    AKT2 <• VT(N)  » *?S(VT(N»
     »                  - (G / CLEN(N» » CVT(NH) - YT(VL)))
            3(N) = VCN) » AREAT(K)
  138     CONTINUE
C»«««»»*«M«»«*»*»*  COMPUTE  JU"CTIO>I  Hr*DS FOR CULL TIM= STFP
          Yd) = A 1C1)
          "0 UO I=1»NS
            H = FLOAT(T)
            YC1) = v(1) + AKI+1)  *  SIM(FI»W»T)
     »                  + AUNS+1 + 1)  »  COS(F1»W«T)
  160     CONTINUE
          "0 148 J=2*NJ
            SU^O = OIN(J)
              PO 1*4  K=1*5
                IF CNCmN(JjK).FG.T)  60 TO 1 »6
                  » = NCHA«f(J,K)
                  IF  (J.NE»NJUVC(N*1))  
            MH a NJUNC(N*2J
            ARFA(N) = AREAT(N) *  C . C»B( *»)» ( v (NH)-YT(Nri ) + Y( NL)-YT CNL) ) )
  150     CONTINUE

-------
                                   -  268 -
C» •»» »»»»»»»»»»»»«* »«»«»»«»»»»»   C4CCIC VELOCITIES   *•()»» »* K*** «»»»»» f«»i< »•»»**««»»»
          nO 1 5? N = 1,NC
             IF  CASSCVCnKLT.aiJ SO TO U2
                     (6*620)  ICYC, «
                     <6»622)  * VT(J)» ARF.A(J)*  l(J)j  J=1>NJ)
              L =  f-J + 1
              W°ITF  (6*624)  (J.  Y(J)j XT(J)f APF»(J>*  0(J>»  J=L»NC)
              STOP
  152     TO'JTIMUE
C*»»im»»»»»»»i«»»»«»*»  STO'F DATA FOR MrQRAULIC EXTRACTS   »««)i)»»»*««»« »»»»«<»»»»»
          1^ (IrYC.LT.rTAPF) SO  TO 154
             WRITE  (10)  ICYC* (Y(J), J=tjNJ)» 
-------
                                      -  269 -
 500    FORMAT  <20Ai>
 50?    FOKi«T
 504    FORM»T
 506    FORMAT  (I5»3r10. 0,515)
 50?    FORMAT  ( 15, 2F«. 0,F9.0,F7. Q,2C8.0,?15>
 510    FORMAT  C?MO.O>
 60P    FORMAT  (1H1,///  ,2X»20A4,1l X, IE»'V1RGVMCNTAL PROTECTION AGENCY1,/,
      »2x.»20A4,3y, ' HYVAMIC FLOW IN A Z-DIMETSIONIL SYST=M|,////   »inx,«NU
      UPPER  OF      »'UM3F9  OF ' ,/>10X , > JUNTT IOVS     CHANNELS ' »/,1 ?X, ' 
63?   FORMAT (18X,'NO')
604   FORMAT(40MCJUNCTION  DATA CART OUT OF  SEOUFNCC. JJ= Ii,4H,J= IA)
606   FORMAT (1H1//2X*4?(1H»), '    SU«M«)
624   FORMATU5,26X,F15.1,F14.?)
626   FORMATdH!///
     »       27H SYSTE" STATUS AFTE»  CYCLE  I4,F12.2,6H  HOURS//
     »       54M JUNCTION      HEAD     CHANNEL     VELOCITY      FLOW/
     »       S4M  NUNBFO       (FT)      NUMBER      CFPS)       (TFS) )
629   FOR*ATC1HOI5,F13.4)
630   FORMAT (1H I 2»,F14.5»F12. 1 )
63?   FORMATC42HOE»T 0F T«0-DI"CNS TONAL  EXPLICIT  PROGRAM.  U,8H CYCLES.)
      STOP
      c»D

-------
   - 270  -
  J> A^Ad^S)*  AR EC
      »              CN(139)< NJUNC(139»2)j>  "
      B              VTM39)
       CC.1MON  /JUNC/ ARrj> OcLT»  ITYC*  IMPUN. NJj
      >»              NQPt!T* NCYCC. PERIOrtj  PUNCYC
       CIKEN^IOM  AKAVCC139)s AP"AX C1 39)
      a    «"IN(139)» QrXT(139)j
      «    PON6F(13?)» VfXT(139)i
      a    Y«nx
            n  4
                        3(159)*
                               MCYC » IMTRVL»
INQEPENOEUT CONTROL  DATA   »»»»»«»»»»«»i<»ti »»•«»»»»»»
C«ii»«o«a«»«tj»»»»** a»*»
       Pc»0  (5*500)  HEADER
       PFAO  (5*500)  (ALPH*(T-)» !=41s80)
       RFAD  (5*502)  HOO^N
C»*»»u»i«»»i})i»it»»i»)<»»n  READ DATA rPOH HYCstULlC  PPOGRA1
       PFftO  (10)  (ALPHA(I)j I = 1i?/.0)» NJj> MC »  DELT*
      »           (CH(N)»  R(N)ji "(N)* CLEN(N)* M=1*NC)
       RFSO  (10>  (Y(J)* ARE«S(J)j SIN(J>.* (»
      »           («PPA(N)* V(W>*  (NJUNCiF.NSTART)  GO TO 100
Ca«««o*a*ii*t>«»«»«««*««  INITIALIZE TIDAL
      00  10? N=1*Nr
        ONCT(N)  a  .5 »  Qd)
                 -  VC»)
                 =  V(N)
              tV(!«)* 0(M)* N=1»hC>
            CYCLE VARTABLCS   »»»«*»»»»»»»»»»»»»»»»»
        OMI^(N)   =  OCM)
                  »  0
                  »  n
                  •  1000000(
  102 COhTIKlUE
      PO  104 Jo1*NJ
        YMIP(J)  = Y^EVCJ)
        Y-AX(J)  = YHEW(J>
                 = TCYCTC
                 o ICYCT^
        YAV<=  o .5 » TNEW(J)
  104 CONTINUE
r»»ti«::*i!*:«i»»)t
-------
                                -  271 -
C»*»«»*««*»»»«*»»«*»**«   COMPUTE  IVTER-TIO'L P*PAMCTLRS  »»» »»»»«KIJVODYN
        SEAO  (10)  ICYCTF.  (VNEVCJ)* J=1»NJ), (V(N)t at")* N=1,N'C>
           no  11* N=i»Nr
C               **«*»»««*«•**»*»*  SUMMATIONS *«»»*« »»»»»« «««**tt*M*
             VEXTCN )  = VCXT(V>  » V(»')
             QN.ET(N)  = Q«(ET(N)  * G(N>
                »»»»«»«»»«»»»»  CPOSS-SECTIOMAL APE* »<*»»»» «»»«»»»
             IF  CV(").N«:.0.)  60  TO  110
              -NH =  MJUNCCN»2)
              A9EA (N) =  IREA(N)
     »                   +  .5  »  !JCN)  » (»NEV(NH)-Y(NH) + Y»FW(NL)-Y (NL) )
              FO TO 11?
  110       ARFA(N)  = Q(N)  /  V(l'!)
  112       ARAVG(M>= ARAVG(N>  + APFA(««)
C               *MM*KNM**«II*»  HIV ANH HAT  VELOCITIES **»»»»«»»*«»«
            IF  (V(f').6T.VMIM(N)) 60  TO 113
              VINfN) »  ¥(N)
              GO TO  114
  113       IF  CV(N).CT.VMAXCN» VMAX ARMAX(N) =  ARFA(N)
  116       CO«»TIMUF
  118     CONTINUE
C               «»*»«»*»•«•**«« KIN AND MAX  HEADS *»***•*««»**«»»•
          r>0 124 J = 1*HJ
            IF  (YMEW(J).CT.YHINCJ))  GO TO 1^0
              Y"IN(J> » YNPWCJ)
              NMINU) =  ICYCTF
  120       IF  CYNEW(J).LT.YMAX(J»  GO TO 122
              YMAXfJ) »  YNFW(J>
              NHAX(J) =  ICYCTF
  122       CONTIHUF
            YAVG(J)  = YAVGCJ) + \NFV(JJ
              *(J>   - VNEW(J)
  124     CONTINUE
  126 CONTINUE
C     **»«»«•«»*«»«*»«»* INTER-TIDAL FLOU ANQ VELOCITY »«»«»»»«»«»»««» »«
      DO 13? N=1,NC
        OEXT(N) = OFXT(N) - .5 » 0(N)
        OEtT(N) = OEXT(N) / FLO«T (NODYI«>
        VEXT(N) m VFXT(N) - .5 « V(»l)
        VE»T
C               *«»»••••*•»»»«* «IN AND MAX  FLOW  »»•»»»»*»»»«»»»»»
        IF (OEYT(N).GT.OHIN(N)) GO TO 1?8
          Q»IN(N) m QEXT(N)
          GO TO 130
  1?8   IF (QEXT(N).GT.OHAX(N)) QNAX(N) » OFXT(H)
  130   CONTINUE
  122 CONTTNUF
      WRIT? (4)  (OFXT(N), VPXT(N),  N=1iNO
      IF (ICYCTF.N'r.^STOP)  GO TO 106

-------
                                     - 272 -
  COMPUTE
                                             SUMMIRY  »»»»mn»im«»i«i»«tni««*«»«»«i»*«
        QNETCH)   = CNET(N) - . •; * T(N)
        GNFTCN)   » QNET(H) / FLO«1(NSTO»-NSTART)
                  = ARAVP(N) / CLOAT(NSTOP-*ST*RT>
                  = JIRAVe(N) /
        YAVGU)
        YAVGCJ)
  136 dD^TfUE
- YMIN(J)
- .? » YMEy(J)
/ FLOAT(NSTOP-NSTAKT)
                     COMPLETE «OTTING HYHRAULIC  FXTD«CT TAPE «««««»«»*»«<•»«»»»*««
      WRITf:  UJ  (AtPHACD* f=1 »40) J NJ» NC '  OELTj
     »           * CLEN(N)»  N»1
      »"»ITt:  C4)  (Y»VC(J)»  AREAS(J), OIN(j),  (KCHAN( J>K ) *K = 1 * S ) » J=1»NJ),
     »           («R/)V6(K)j (NjU«*C(NjI>J I = 1j2>*  N = 1*NC)
C»»»»)t»«:3ii«:» «»«»•**»•»»»»»  PRINT TIDAL CYCLE  SUMMIRY   K»IO»I»*)(»*»I»* *»««»»»»»)( »B»
      WRITr  C6»604)   VMIN(N)* V,1*X,
                               ^t1IX(N>> ARAVG(N),  N=1,N'S)
                         Y«IN(J). NPINCJ)j Y^AX ICYCTFt  (YWEM(J)i J = 1»««J)
        RE*D (*) (OSXT(N)j  VEXT(N)* H=1jNC)
            !: (6»610)  ICYCT^,  YNE«<1>, YNEV(EO>»
                                                                 OEXTC10)»
                      OEXTd)
  138

-------
                                  -  273 -
                               rOR1AT  STATCMENTS
                    f«»K»**KN**<
500   FORMAT (?OA4>
SO?   FORM«T (1515)
600   FORMAT d°i///
     *  1H ?OA4j10v»37H FEDERAL WATFR  DUALITY AOMIN IST7A TIO*/
     «  1ri ?OA4,10X*32U NET FLOWS AND  HYDR»ULIC SUM^AR"/
     »       1H 2D«*/1H 2CA4////)
602   FORMAT(8?H »»»««»»« FROM «YD°«ULICS PROGRM  *»»**»*«      HYDRAULIC
     i CYCLES PER     TIME INTERVAL  IN/
     »87H START CYCLE   STOP CTLE     TIME  INTfVAL         DUALITY  CYCLE
     »         OUALTTY PROSPAM//
604   FQRMATC119H                           » *  »  »  «   e-LO«   »  »  *  »  «
     »    » *   VELOCIT"   * *      *  * *  CROSS-SFCTIONAL AREA   »  »  »/
     »       11«H CHANNFL     NPT FLOW         NIN.             M»X.
     »      MIV.         MAX.          MIhJ,          MAX.          AVE./
     *       119H "UMBFP       (CFS)          (TFS)            
-------
                                           - 274 -
 C                                    3ESTRT
 CK 11 »»»»»«» it :i* ii i».«»»ii<»(t»**»«»)H<»«»i«K»)«»»»«»*i(»)(*»«*»«»»»»»)«)<»»»ii**)»«»»»*»
      »               CN(139)»  NJUNC<139»2)j  0(n«»)j -U130), V<1^9),
      «               VTC139)
       CCMMO" /JDNC/  ASC*SCT;3)» JP«T(1'?)j  ''CHAN ( 1 33 j 5 ) > 3IN(13?)»
      «               Y(1"*3)»  YT(133)
       COrtMOFJ /MISC/  ALPHA(80>*  DtLT» ITrCj  INTPUNi NJi NCj NCYCj  INTPVL^
      »               ^NOPPTj NCYCCi PERIOOi PUNCTC
       If (KTC.KQ.rCYC) 50 TO 10
C»n***ft«a«n!}»*»it«»*it»ft»*ii»»»«  VRITF RCSTAPT  TAPE   »m»»im»»»»»»)i»«»»»»i»»»»»»i»»ii«
                - PUKCYC »  INTPU"
               C't) ICYCi (Y(J),  yT(J)* J=1*NJ>,  (VC«)j A->EA(»')j N=1,NC>
         GO YO ")
C»»»t*in»»tiinimn«»»*f »»• »»»»n)«i«)»m»i»   PUNTH RESTART  D?CK   »m»»» »»»«»•»»« »»»ii»m» »»mnn»»*)i»
    10  VP1TI:  (6*60) CJ» Y(J>* ARFAStJ)^ ?U( J ) ^
       WPITr  (8*61) (N* CLEN(N),  3(M>D «REA(N)« R(N>*
     »              CN(")/ V(N>,  (N JUNC(V«*K),K = 1*2>»N=1 ,NC)
    ?0  TZERO?  =  T / PERIOD
       KTZE°C  -  7ZEP02
       T7EFO'  =  CT/J'SOO.) - PLOAT(KTZERO) » (PERIOD/^GI. )
       VRIT^  (6*62) TCYC* T7ER01
    '0  CCNTIVUE
r» fo»»)()«««j(»)3»«»r *» »t!tt««*»»»»»  PP. IMT RfSTA°T 0»TA
C                   tit>a«it«ii«M*ii*ii   JUNCTIONS
      WPITr-  C6»t3>
      «RIT-  (6*64) (J. Y(J)» ARCASCJJ*  "IN( J) *(MCH«N( J >K ) tK=1 * e ) • J=1 »N J)
C                   *<>«*»««*«»*««»«   CHANNELS  »»»»««»»*«»»««»
       WPITC  (6*t5)
       WRITE  (6»66) (Nj CLE"(N),  B(«!)j APfcAf)* CH(N)»  V(N)»
     «              R(N)» (NJUNC(N»K)j K=1*?>*  N=1,NC>
CK»»«»»»»»»«»i»*t.»»»»»««»»in««««.   FORMAT  STATFMcNTS   »**<•»*«»« «»»««»!HHi«»»)i»»»»«»»
    #0  r<5f«*T  (IS.  fio.4, F10.0.  FIO.Zj  515)
    51  FORMAT  (H*  2F3.0* F9.1* ^7.?, F?.3* fB.So 2T5>
    ii  FORMAT  
-------
                              -  275 -
                       A.3   HYNQUAL  LISTING
C»X*«****»*»»*«K****«ttNtt»*»»»»«*«»««X»*»»««»»tt»*»«»»*KK*»»»M«»*««»»K«*K«*«»*KN«*
C                          P90CPAM "YN1UAL
C                 =>VIF»ftX»»»lt*««
C      THIS 100EL PREDICTS CHLOROPHYLL YIELD EASED UPON EITHER NITROGEN
C   OR PHOSPHORUS UTILIZATION. IN ADDITION. IT CAN CONSIDER BOTH
C   NUTRIENTS SIMULTANPQUSLY IW TH r PRODUCTION OF CHLOROPHYLL «NO THEN
C   DETERMINE WHIC" IS R*T^ LIMITING B" COMPARING INDIVIDUAL THFORFTIC«L
C   CHLCROPHYLL YIrLO ACCORDING TO F lRST-0«nCR KINETICS.
C      50LUPLE FRACTIONS OF NITROGCN ANO PHOSPHORUS ARF CONSIDERED  IN
C   THE "OTFL. REGENERATION OF PARTICULATE NITROGEN ANO/OR PHOSPHORUS  IN
C   THE DECAYING AISAE TO SOLUBLE ^ORMS MAY ALSO BE INCLUDED. ALGAL CBOO
C   MAV ALSO BF RECENERATED BY ^IKST-ORDER KINETICS. ALL REACTION RATES
C   MA" 9E VARIED SPATI«LLV. THTS VERSION ALSO INCLUDES THT EFFECTS OF
C   THIS CHLOROPHYLL PRODUCTION. AS WELL AS OTHFR 1«JOR COMPONENTS  OF
C   THE O.n. BUDGET. A REAL TIHE CLOCK IS 'NCLUPED FOR THE PHOTO-PERIOO.
C      WASTTWATER INPUTS. "ON-POINT SOUPCES (B»«»K LOAUS). AND UPPER
C   BOUNDAP" INPUTS CAN ALL BE VARIED WITH TiM^. LOADINGS ORE READ  IN
C   FOP EAC" JUNCTION AS NECESSIRY.
C      OUTPUT OPTIONS INCLUPE PRINTOUT OF SNAPSHOT TABLCS. SLACK WATER
C   TABLES CFI'ST C^CLE MUST 3E SPECIFIED). TIDAL CYCLE SUMMARIES.  AND
C   PLOTS OP TH? A°OVE TABLES CAS WELL AS TIME PLOTS FOR ANY JUNCTION).
C      TVQ PHOSPHORUS LOSS RA.TCS ARE INCLUDED l» THF HOOEL. PHY5IC«L
C   DEPOSITION  1.2.'      NITROSFN UPTAKE ONLY* PHOSPHORUS UPTAKF ONLY,
C                        OR' UPTAKE OF NITROGEN ANO PHOSPHORUS
C K?L       = 0.1,2      PRINT SNAPSHOT TABLE. HIGH WAT^R SLACf TABLE.
C                        OP LOV UATFR SLACK TA9LE
C '•TX       = 1*2*1*4*5  AOVECTFD CONCENTRATIONS CO-PUTEO USING TH?
C          •             "UPSTRC»M, 1/2 POINT, 1/3 POINT* 1/4 POINT. OR
C                        2 - KA* PROPORTIONAL 1ETHOD

-------
                             -  276 -
                                STATEMFNTS + COHNO« 3LOTKS
C
c -- .. ---  _- -----  HTSCs QUALITY PARAMETERS
                AHUPd'T)*  AMUPPd3'!Ojl OECA Yd3?*6> > OECAYK (10*6) ,
                                     OPHUPd33>» 0«"='BO'>C133)*
                                    PHUPd33>j>  PHUPPdO)* RPBOO(133)»
                                              RFGEP<133>,
                 ftLPHA(8Q)!>  BAr«fC(«.5* CIhf  NL2C1G}J
                 -  - -  DISSOLVED

                ooivecmj*  BE'nHd'SSJ*  eEVTdcn*  OFPTHCIO)*

                                                PHOTO(133)»  PHOTdO).
                                     U/iSTE  INPUTS
                                         VOLQIMC133)*  XLOAD(20f6)

                                     t)fl?TE  TMPUTS	 - -
      DIMENSION   C0f(6»20f 20)* FLOC20«20)j  IMCr>UR( 20»20) >  JRVU(?0)>
     *    KCYC(2J)»  KI«C(20)»  NTtsC(20>»  VMLOAOC6)
                               3A1K  LOiO  INPUTS
                          Jj'  ICYCK20)*  ICVC2(20)c. JR8LT(2H),
          JPBL?(20>»  SLINE(133)j>  T»FLOUf20.133J*  V9LOAP(6>
                            IWPUT/OU-TPUT  PSRAMFTERS
      DIMENSION   IPPT1(?OJ»  IPRT2C20J*  LPRT1(20)j  LPRT?(2Q)»
     »    !PLTU20>,  IPtT2(20)
      TOMTOM /CHAN/    OREAd39>» 3d39>f  CLENd19J* CN(139)»  DlFFK(139>j.
     «                •qjUK'Cd39fj:>f  QdT9>»  ONETd39><  Rd39>,  Vd?9>
      COMMON /JUNC/    ^su«id33)ji Avotcn3)j  NCHANCISS^S)*  voLd33>*
     »                YC133>J Y-EWd33>
      rottW! /DUAL/    C(133»6>J C«»SS( 1V3*6)
      CDHPION /niSC/    rTlME* OFLTQj  ICYC* NCJI MJ*
     COMMON /SCALES/ XMAX* XMT"** T1AX* YHAXC<6>* YMIH* YMINC(6)
     COMHO-* /SLACK/  JPftT(150*c5>* KSL(20>> KPLOT(20>* NFPC(20>*
                     NLPC(20>» NOPRTdSO). NCOHSy(5>» "SUP
            /09SDCT/ OPDATA<3»6»21> » ""CATA <20J* MOATA* HO?CYCdO)
            /6RI3/   KPLOP
            /TIHEPL/ JUNCTP<2">» NCITP<20>» MCONTP(20,6I» N£CTP<20),
    K                MSCTP<20>» NTP
     R?AL    "CHLO^. "CHUOP. WITCHL
                            OOGT5»

-------
                               - 277  -
 CX»X»X»X»XXX»X»«*XX»XXXX)tXX1IX»XXX»X»XXXXXi»»XXXXXXXXXXXXXX»l<»XX»XX»XXXXX 4XKMXKXKXK
 C                  PTAD SYSTEM INFORMATION TRQM  HYDRAULIC  TAPE
              «I

       PEVI""  3
       PFVIMO  4
       READ  (5*5^8)  (fLPHAd),
       PEAD  C5>500)  MJ, NC* NSTAP.T* NSTOP* NODY*
       K  = CM STOP  -  NSTAPT) / NO"YN
         DO  100 I = 1*K
          READ (4)   ICYCTF, (Y^EIKJ)
          >?E*0 C4)   COOOi'VCN); N = 1
                 (3) ICYCTF* CYNFlicJ), J=1j»*J)
               E (3) J IPLT2(N)
  104   CONTINUE
      READ  (5,500)  KSBTAB
      IF (VSWTAB.EO.O) GO  TO  19^
        00  106  N=1 *NSWTA8
          CFAD  (5,500) NFPCCN),  KSL(N), KPLOTC")
  10&   CO"«TINUF

Cxxxxxxxxx«xxx»x»x»»xxxxx   PLOTTING OUTPUT COMTROL   »»»x»»»»ii»»»«»«»»x»««xx«»«

      PFAD  (5*503). HEADPR
      PFAD  (5,500)  NTP, NSVP, KPLOP
      RFAD  (5*500)  NDATA,  VOBDAT
      IF (»f030AT.6T.O)  READ (5»500)  (NO°CYC(I),  I = 1,N03nAT)
      IF (N5WP.RT.C) READ  (5,500)  (NCO^syCK), K=1*NUMCO!O
      IF (ITP.EO.O) GO TO  110
        DO  108  N=1 *NTP

-------
                            - 278  -
                  "'O) JUNCTPCV). NSCTP(N)J  NECTP(M)j  NCITP(N)j
   *•                (NCONTP(NjK)»K = 1 JiVUMCON)
108   CONTINUC
110 CONTINUE
    NUMPLT = NSWP + IIP + NPLT1 * NPLT2
    IF f'UMPLT.EOeO) GO TO 11'<
                  :YWAJtC(K).» YHI»C(K>J  K=1jNUlrON)
              K=1jNUMrON

112    CO»'TI"M5
    IP (VUMPLT.EP.NTP) 60 TO 1U
                  (114) =  0»0
           RMMOOT
           RMNOPF
   4)
   5)
(  6)

C •«)
(  9)
< n >
(11)
c 1?)
(13)
           RMHODr
           pMNOOr
           RMNOCC

           RNVODF

           RMNOD""
           RHNODF
           RMtlOOF
                  (1TO)
(17)
C 1")
(19)
C 20)
(
                    24)
                    25)
           RMNODF
           RMNODF
           R1WOOF {
           RMNODF (
           RHNOD"7 (
           RM«OOF (
           R1NODF (
           RMNODF {
           RKNOD.F (
           RMNOCF
114 CONTINUE
                    73)
                    34)
  '3)
  TO)
  40)
  41)
  42)
  43)
                           2."
                           3o3
    5o9
    606
    7,6
    8o4
 =   9o9
 =  10o?

 =  11 .?

 =  12^9
 =  13.6
 =  14.8
 =  15.'
 =  16.3
 =  16.9
 =  17.9
 =  18.5
 =  19,5
 =  20.4
'=  21.4

 =  24.0
 =  25.7
'-  27.0
 =  28.f
 =  29.6
 =  30«7
 =  31.4
 =  32.7
 =  34.2
 =  36.'
 =  38.S
 =  40.6
 =  42.9
 =  45.n

 =  49^4

-------
                             -  279 -
                               INITI/H.ITT VARIABLES
      TCIfC   = T
      !TA3   = 0
      HTA5L  = 1
      MPA    = 1
      K'S1    = 1
      NS2    = 1
      NO     =0
      *'TAG   = 0
      TSPISC = 0
      TSSET  = T
      CSAT   = 0
      PFLT01 = r-ELT  *  FLOATXNOOVH)
      PFLT!?  = nELT  *  FLO*TCNOpivN)
      VTEfP  = NSTOP-- NOCrrP
        CO 116 N=1»MC
          If (NJUNC
          «>JUMr(H»1) = NJir«»C(H»?)
          NJUHCCN,-?) = KEEP
  11 6   CONTINUE
        DO 120 J=-1.»»J
          OI<*«0(J>   =  T.
                    =0
          "NRLf J)   = 3
          "OLTKJ)  = 0
          POiTO^CJ) = 0
          DOGT5«J>  B 0
          ^OflNCJ)  = 20.
          •?OMAX(J)  = Ot
          HINCYC(J) = n
          "AXCrCCJJ = 0
          OOAVG(J)  = 0.
            DO 118 K=ljNUHrON
              CWLOAP(J.K) = 0.
              CONCU(JjK)  • 0.
              C(J»KJ      " 0.
  116       COMTINUF
  120   COf'TIMUP

C»«»«**H«»«*«II««*««   SET PARANFTEPS  FO' SLACK-WATER TABLES   »»*»««*»*»»»»•»»»»
      IF (NSWTAB.EO.O) 60 TO
       1 = 1
         00 122 W=1iNSVTAB
           CALL SUT»BL(I*H>)
           IF(M.EQ.NSWTAB) 60 TO  1?2
           1 = 1 + 1
  122    CONTINUE
  123 CONTINUE

-------
                               -  280  -
      PFAO  <5>5')8)  HEADSR
      PFAD  (5.504)  PERC"* CHLNIT* CHLPHO*  THLCAR
      C/1RCHL  »  lo/CHLCAR
      PHOCHl  a  U/CMLPHO
      NITCHl  a  lo/CHLMIT
         DO  126 K=1.NUHCON
            V» = 2»K-1
            NB a 2»K
            READ (5»512>  BACKC(K) ,THETA (K)j  CLIPIT(K),
  126
      IF   GO  TO 147

C »»«**« »«»»«»»i«» »» »»»»»»»»i«)m»»»»»)nnMnm»» it »»«»»»» »»»»»)« ••*»II«*M «» »« »»»» »» »••»««
C                           READ DO RELATED COEFFICIENTS
  132
       PFAD  (5f508) HEA05R
       READ  (5*504) TSRISEj TSSET
        READ (5i500) NO
         DO  132 1=1 >NQ
          °?AD (5j514> NFKDjNLK
          «1  =• MFKI)
          «I2  a NL1 CD
             00 130 J=N1.N2
               DFPTMP(J) = !)FPTH*a *•*«*«» •••»*x«»»»»   o1 CONNER-DOBBINS
  134   A <*  12o9
        « a   O.f
        K •-»  -1o5
        A «  <  » THFT/U6) «» (TEtP -  20.)
        SO  TO  142
                                    CHU'CHILL
             11 .6
        U ••'•   .97
        r a  -5/3
        fl n  A  » THFTA(6) »» CTEMP -  20.)
        50 TO  142
C»»»«»• »a»«)» »»»»»»»«»«»»»»»»»»»»»»»   USCS
  138   A =>  7.57
        H "  1.0
        8 " -4/3
                                                     *««*»«««« KM *«««»« ••«««««NititM«
                                                • «•*««*»»»«•«»»» •••««»«»IIK***»«*«
  136
        A u A
        SO TO 142
C«»K*»H«n«K»u *«•«»« «»««»•«« «»***«
  140   llEf'D (5»50/)  REOXK
        KE3TIC »  REO^K «  THE.TAC6)
        ttEOXK o  EXP(-RPOXK  » OTO)
        REOTK -  1.0  - P?OXK
                                              »«•••»»••*«•««»«»«»»•*«*«••««*••»•*
                                     CONSTANT
                                                «»»ti»i»»in»i«i(»»tn»i«)
-------
                              -  281 -
C»V««*«»*K**«*»*«*«*«««*K*«   COMPUTE  DO  S'TURATION   »***«»»*»»»»*»»»**»»»»»«»«

  1«2   CSAT =  14.652 - (.4102? «  TEMP>+(.P07991  »  TEMP  » TFNP)
     »                  -(.000077779 »  TEMP  »  T^HP  »
  143
                        PRINT SUMMARY  OF  CONTROL  DATA
      WRITE <6»600)  (ALPHA(I)*  1 = 1*80)* NSTART*  NSTOP*  HYDCYC* PELT*
     »               NQCYC* NUKYC* NOOCYCj  "ELT01*  NSPEC*  TFMP*
     «               NUHCONj TE«P ,STIME»  TSRISf*  TSSET* CS*T
      VPIT? (6*602)
        00 U4 K=1»NUMCON
          w* = 2 « K - 1
          N* CDIFFKU)
    N1  a NFC(T)
    H2  » NLC(T)
    00  14S N=N1*>»2
        DIFFK(N) » COIFFK(I) * OFLTO / CLEN(N)
    CONTINUE
  CONTINUE
C»»» »»»»»»»* »• »»»»»»»»»•»» *«»»»i»»»»»»» *»»»»» »»»• «»»!•»» »«»»«»»«»»•••»»»»»»»« KI»«II»I»
C                     PRINT NETWORK AHH HYDRAULIC PARAMETERS
C»«» »»*»»)«* »»»»»i»iH»» »»»»«**)«»•»»»» »*»»*»»»»i»**»i< »»«»»»»»««»«*»«•»«»»»«»»» »»»»»»»

      f1 = MJ
      N2 e NC
      UPITE (6*630) (N* CLEN(N)* 8(N)» ARE«CN)» CN(N)*  OIFFK(N)*
     »              QN5T(M), R(N)* (NJUNC(N.K)* K=1,2)»  N*  QIN(N)*
     »              Y(N)* (NCHAN(N*D* 1=1,5)* N»1*N1)

-------
                            -  282 -
     F11  a  N1  *  1
     tJRlTU  (6,632)  CN,  CLEN(N),  3(1), IR£A(N), CN(N), DIFrK(N),
    u               ONET(N),  R(")j,  (NJUNCC",*), K=>1>2>, N=N1,N?)
     UPITf;  (6>622)
     ^0  U7  1=1,NK
      tfR'TE  (6,62^)  MFC(I),  NLC(I), COIFFKCD
147 COMTTNUE
                     "UTRIFMT  UPTAKE « HEGENE»ATION ilATES
    PEAO (5ji508)  HEADER
    pPAD (5,5PO)  »-'R
      CO 149  1 = 1,«»R
        C = AD  (5*51&) »IF2(I)ji  NL2(I>j>  flMUPP(I>» PHUPP(I)f RE6ENN(T)j
   n                 °Eeepp(i)j)  RESocod)
        V1 =  NF2CT)
                      =  KEBODCfl)
                      =  REGEPP(I)
             PHUPfJJ  =  PHUPP(I)
             OHUP(J)  =  AHUPP(I)
148       CONTINUr
149   CONTINUE
                              CONSTITUENT  PECAY PATES
         (5fl508) HEADER
    RF»D (51)500) MO
      DO 156 I=ljNO
        FcftO (5j5l&) NF3CI)ji «L3(D«  COEr*YK(;
        "1
        H?
          DO 152
            no 1:
              DETATCJjK) = OECATK(IfK)
150         CONTINUE
152       CONTINUE
154   CONTINUF

               ifii
                 PRINT JUNCTION RATES AMO  COEFFICIENTS
                ><

    V3IT? (6,624)

      WRITE (6,62?J NF1(I),NL1(I), PMQT(I), RES(T),  OEPTM(I),  BENT(I)
1«!5 CONTIftUE
    «3IT? (6,626.)

      WRIfE (6,627) NF2(I)f NL2(I)j! AHUPP(I), PHUP(I),
   *                PE6E*>P(I)» REBODO(I)
156 CONTINUE
    VltlTF (6/628)
    DID 157 Io1,NP

-------
                              -  283 -
        URITE (6»6?°> «F3CI)j> wL3(I)j>  C^ECA VKC
  1C7 CONTINUE
      WPIT? (6/627)
                               RATE  TRANSFORMATIONS
      PTD = OELT01  /  24.
      PO 160 J=1*NJ
        OPF30CKJ) = 1.0 - EXPC-^EBODtJ)  «  !?TD)
        ORPSEPCJ) = 1.0 - EXP<-»EGEP  »  9Tp>
        ORECEN(J) = 1.0 - EXP(-9EGENU>  »  DTO)
         OPVUP(J) = 1.0 - EXP( -PHUP(J)  »  TIP)
         0*1UP(J) = UO - E»P( -AMUP«J)  »  DTO)
           nO 153 K=1j)NUMCOF)
             DEC*Y(Jj>K) = DECA^fJjKJ  «J  THETflCK)  BB
             Ic (KeFQa'') DFCavtJiJ)  = DCCflV(js?>  «  DTO
             Ql?CAT(JjK) = 1Q0 - EtP<-«FC/4Y(J*K>  *  OTDI
  153      COMTINUF
  t60 CO^TIVUE
      PFAD (5,508) HEflO=R
      P?AO (5*500) M««STC* WtlflSTVr

C»»*»«*»*««««9*ff««a«aHafiasan   CONSTANT • INPUTS    HBBa»»»»»»»»B»»»»»»»»»»»»»»»»ii»

      IF («IV*STC.EC.O> GO TO 17"
      RPAO (5.508) HEADER
      DO 174 I=1fMtf»STC
        REID (5>516) JRCU(I>.> QCU(I)«  (CUCU'K)*  K=1>NUfCON)
        J = JRrW(I)
        IF U.GT.1) BO TO 166
  162   OINWQ(J) » OCW(I>
          00 146 K=>1*NUHCON
            XLOHO(IfK)  * -QCH(I)  »  CHC(I,K)  n  5.3Q&
            CWLOADCJ/K) = XLOAO(I>K)
  164     CONTINUE
        GO TO 170
  166   IF ( JRCVd >.ME.JRCV(I-m  60 TO  162
        OINUQ(J) = CINWO(J) * 1CU(I)
          00 168 K=1jNUMCON
            XLOAO(I,K>  » -QCU(I)  a  CUCU*K)  •  5.394
            CWLOAO(J»K) ° CVLOAO(J'K)  +  XLO«0(I»K>
  163     CONTINUE
  170     00 172 K=1*KUWCO»'
            CONCy(J.K) a CVtOAO(JjK) / C-CINUQCJ) » 5.394)
  172     CONTINUE
  174 CONTINUE
  176 CONTINUE

C»«»*«i»»»»»*»»»«iii»»«»i»i»»   WRITF CONSTANT  INPUT  TABLE    «»«»••»*»<>»«*•«»»»»•*•»*
      VRITE
      00 178 J=1fNJ
        IF (OINUO(J).EO.O) GO TO 1 78

-------
                              -  284  -
        URITE  (5*640)  J,  QINHOfJ), 
        J - JRVV(I)
        iWI - NINC(D
        UCYC(I) = 0
        t(!?'CU) = 1
                 (5»516>  INCDimijjN) , FLOdjhi)* (COM(K^rjM)*  K = 1*MUMCON)
              no IPO K=itKuncon
                VU1.0AOCK) = -FIO(I»N) a CON(Kj.I*M)  u 5.794
  180         CONTINUE

 KxaaBxanaHci'maHXHoomiaa   HRITF  VARIABLE IWPUT TABLE    »»»«»»»«»» *»»*»»»(»»)»»)»»»

            IF (K.'iF.a) GO TO  182
            HPITF (fji644)
            IflTE (6j>646) JRVH(I)*  Ij No INCDUfU I »N), FLO(I»N)*
     a                    (COfXKjIjNJj- VWLOCD(K)j K=1j>NUMCOM)
            ISO TO 1°4
  182       1IRITE (6i6A8)              H» INCDUR(IjiM)*
     n                    (COKltK^liNJj, VWLOflD(K>ji K=1
  184     COMTI'tUE
  1»6 COflTINUF
  188 CONTINUE
                              VARIABLE 9ANK INPUTS
      IF (»rABK.EO.P) GO TO 196
      READ (.''..SOS) HEADER
      RCCO
        bRITH
        REAP (5»500) JRBLKI)* JRBL2U)» ICYCUDj ICYC2CI)
        F-EJO C5j>506) BFLOa* CBCONC T «tC) « K = 1pNUTON)
        ^1  = JR5L1 (I)
        -2  = JR°L2CI)
         HO 192 J=J1j>J?
            TBFLO« J^ SLINE(J>«  TBFLO«(I*J)* 1CYCKI)*  ICYC2(I)i
     »                     (BCON(I>K)» V9LOAP*  K = 1»HOHCO>«)
 1°2      CONTINUE
 194 CONTINUE
 196 CONTINUE

-------
                               - 285  -
                           UPP!:R BOUNDARY CONDITIONS
      PFAO (5.508) WEAOFR
      KFITP (6.654)
      I = NVASTV + 1
      JPVW(I) « 114
      READ (5.SCO) NINC(I)
      UN = NINC(I)
      KCYCCT) = 0
      KINC(I) = 1
      TO 200 Nsl.N"
        READ (5.516) INCDUPd.H). FLO(I*N)» (CON(K.I.N). K=1,NUMCON)
          00 19" K=1.NUMCON
            VWLOAD(K) * -FLO(I.N) * CON(KjT.d) « 5.394
  198     CONTINUE

CM***************"**"*"*   VRITP UPPER ?OUNOARY TABLE

        WRITE (6.656) N, INCOUP(I,N), FLO(I.N).
     *                (CON(K.I.N). VWLO'P(K), K=1,NUMCON)
  200 CONTTVUE

              l«««K»»ltltlt« »*»)(••
                               INITIAL CONDITIONS
                         i »•»»»•

      PFAO (5.503) HEADER
      WPITr (6.658)
      TO 206 I=1.NJ
        READ (5.514) JINT1, J1NT2, (CINT(K), K=1.NUMCON)
        WRITE (6*660) JINT1* JINT2* (CINT(K)*
          00 204 J=JINT1*JINT2
            DO 202 K»1.NUMCON
              C(J.K) = CINT(K>
  ?02       CONTINUF
  204     CONTINUE
        IF (JINT2.FO.NJ) GO TO 208
  206 CONTINUE
  208 CONTINUE

              IM»**«*»*«*»I
                           SEAWARD BOUNDARY CONDITIONS
                         H

           (5.508) HEADER
      PFAD (5.500) (SEACON(K), K=1,NUMCON)
      00 214 K=1»NU*CON
        IF (SE«CON(K).PQ,1) READ (5,506) CIN(K»1)
        IF (SEACON(K).EQ.2) READ (5.506) (CIN(K,I), I=«1,NSPrC)
        IF (SEACON(K).Fn.2) GO TO 214
          no 212 I-2.NSPEC
            CIN(K,I) = CIN(K,1)
  212     CONTINUE
  214 CONTINUE

(;«••«*««»»««»»«»*»«*••*   VRITF SEAWARD BOUNDAPY TABLE   »««»»««»»•*•»»«•»•»»)»»»

        WRITE (6,642)

-------
                              - 286 -
           6  I=1»N«PEC
        WRITE (6*6*4) If  (CINCKjI),  K=
                         INITIALIZE  VOLUMES  AN3  MASSES
C
C*H»«tm»»fc«»«u»«it«M»   CALCULATE MEAN  JUNCTION  VOLUMES    »m»«»«»»»in»«im««««««»»»

      PO ?22 J=1>NJ
        »VOL(J) " PQ
         VOLSU9 = 0.
          "0 21* K=1»5
            IF (NCH*N(J,K).EQ.O) GO  TO ?2G
            N ~ NCHAN(JiK)
            SftRE»  o CLEN(N) « B(N)
            SASU<1  = SASUH + SAPEA
            VOLSUM = tfOLSUM + SARE9  » RfM)
  ?18     CONTINUE
  220   »V?n    a VOLSUH / SASU"
        AVOL(J) - ASUR(J) <* AVRn
  2?2 CONTINUE

C»*»«»»isa»iiao   COPRECT VOLUMES FOR  INITIAL STARTING CONDITIONS    »»»»»»»»»»«»•»

  224 PFAC (3> ICYCTF* (YNEW(J)j J=1*NJ)
      IF * *=1*VC>
        SO TO 224
  226 00 229 N=1,NC
        NL = NJUNC(*,1>
        NH = NJUNC(M,2>
        R(N) = RCN) * (YNEW(NH) - Y + VN£U(NL) - Y(NL»  »  .5
  228 CONTINUE
      TO 2*0 J=1»NJ
        VOL(J) » AVOL(J) » (SURCJ) » CYMEWfJ) - Y
        Y(J)   o YNrwtJ)
  230 CONTINUE

C»M*«»a»i»«*»»**»»»***»*««*   CALCULATE INITIAL MASS   »»»»»»»»»«ii»»»»» «««»«»»»*«

      DO 234 K=1»NUHCON
        .CO ?32 J=1*NJ
          C"fiSS(J»K) => C(J^K) » VOL(J>
  272   CONTINUE
      CONTINUE
              COHPUTE TNFLOV/OUTFLOV VOLUHES AT HASTEVATER  MASSES    »C»»»»»»»IK

      00 240 J=1>NJ
                             * "ELTO
                 K-1*NUNCOK
            CULOAD(J.K)  - CULO^O(JiK) » OELTO / 5.394
  ?38     CONTINUE
  240 CONTINUE
      JJ = "HASTV + 1
      PO 2/U I»1*JJ
        NNN » NTNC(I)

-------
                              -  287 -
          CO  242  N=1,MNN
            FLO(I**>  = FLOCIjN)  « TFLTQ
  242     CONTINUE
  244  CONTP'UE
       IF   GO  TO  250
       TO  243  I=1,N°»NK
        J1 =  JB°L1 (I)
        J2 =  JR3U2(I)
          "0  24*  J=J1,J2
            T3rLOVCTtJ> = T9FLOV * OELTO
  ?46     CONTINUE
  248  CONTINUE
  2*0  CONTINUE

  >«•«»>»««»»«»«
c                              HAIN QUALITY LOOP
C »»«»«««»»« »»»»1»M»)«» »»«)l«* M«lllll)»l(«»l>«KII«l)«lfl(IIK»«»*K)(ltlt KM •«»*»»«* »**»*» «**»»*»»»»

       PO  366  ICYC=1iNQCYC
        CTI«E = CTI»«E * DELTG'1
        IF (CTI^E.CT.24)  CTIME = CTIME - 24.

C»*«i(»»*#»»)ii<«»»»)i »»»»*»»»»   RF*0 SYSTEM CONDITIONS  »«**N**«**»»»«»«»*»***K««»N

        READ  (^)  (0(N)» VC«»)J N=1,NC)
        IF (ICYCTF.GE.NTEMP)  60  TO  252
          P?AD (3)  ICYCTF* (YMPtfCJ). J=1jNJ)
          GO  TO 254
  252   REMIND 3
        READ  O>  ICYCTF.  (YN[-U*  J
  254   COWTINUF
                               •OVECTIO*' * DIFFUSION  »«»i«i«»»»»»»»»»»»» »»»»»»»m»»
                            »«

        CALL HIXER  CHI»)
C
C««**K**«»WN*«»**N»***«««««*   0CCAY + NASS TRANSFER  »»»«»»*»N»*«N«»«»*«»«««M««N
C                           »»»«»»»mi»»»»»«i»im«»)i)n»m»»»

          00 302  J=2jNJ
            DO 300  K=1jWUHCO'll
              CO  TO  C264,266*2$«*270j280*252>, ic

C»»»»»»«m»)(»ii»»»«»«ti»*«»)»»»«»»«    CONSTITUENT 1   **«»»*«•***•*•«•«*»»»«»*««»«««

  264         IF  (KPEAC.EQ.?)  SO TO 300
                       =  CC  » WOL(J) » ODEC*Y(J,1)
                       -  4.57  »  XHH5SN
                XM«SSU »  C(J*D  » VOL(J) » OA«UP(J»
                CM»?S(J»D  a CMASS(J»t) - XHASSN
                60  TO
C*»»«»»»«»»« »»«*»* »»»»»»»» »»»»»    CONSTITUENT 2   »*K««*««M«*»**««***»it«*»«K

  266         IF  (K»EAC.E0.2)  60  TO 300
                Y1ASSU »  C(J*2) •  VOL(J) » ODECIY(J»2)
                CN»5S(J>2)  « CPASS(J>2> * XMASSN

-------
                              -  288 -
                GO T0 '00
  268
                                    CONSTITUFNT
 IF <*P£AC.E0.1> SO  TO  30°
  ZM/ISSD = (OECA^(Jj^)  »  C(J*3)  »  C(J»3)
           UDECf^Uf ^)  » C(J*3))  t 1  )
  ZMASSU = C(J»3) »  VOL(J)  »  OPHUP(J)
  CMASS(J»3> = CHASS(J*3) - 7MASSO
  GO TO *00
                                                          VOL(J))/
C»»«««()I»«IH«« «***«*«* *•»»«« KM OK*
                                  CONSTITUENT
                                                   *****««* **N*ft»»*K*EAC.EQ.4> SO TO  300
              C(J<4> *  VOL(J)
              OMASSD(J)  *  DMASSX
              OMASSOfJ)  «  NITCHL
              OM'SSOCJ)  »  PHOCHL  «
              DMASSDU)  *  CABCHL  »
              DMJSSD(J)  -  RMASSN  -  RM»SSP  - RMASSC
  GO TO H72/274*276)»  K*rAC
*«{}««Mt»«it«H«»«*M  NITROCFN UPTAKE ONLY
  MCHLON « CXMASSU + YMA«?SU> « CHLNIT
  CMASS(Jj4) = CMASSCJ*4>  * MCHLON  - DMASSX

  CMASS(J>2) = CMASSCJ.2)  - YNASSU
  GO TO ""JO
* * RMASSP  - ZHASSU
  GO TO *00
**»»*****»»»»  NITROGEN  A PHOSPHORUS UPTAKE
  *CHLON = fTMASSU * YMASSU) » CHLNIT
  MCHOP = ZMASSU » CHLPHO
  IF (NCHLON.LE.MCHLOP)  SO TO 27»
«•«***»»**»«*-*»**»»  PHOSPHO"US LIMITS
    CMASS(Jj4) a CMASS(J»4) + MCHLOP - DMASSX
                 TMASS(J»') * RNASSP - ZMASSU
                 CHA?S(J'1> + RMASSN
               - XMASSU  «  
                 CMASS(J»?) - YMASSU « tMCHLOP/MCHLON)
    TF 3) * RMASSP
               - 7KASSU  « (MCHLOW/MCHLOP)
               » CMASS(Jf?) - YHISSU
    T«- (ICYC.LT.MOTCTCJ  50 TO 300
      NNRL(J) » NVRL(J)  * 1
  90  TO TOO

                    CONSTTTUENT 5
XMBOO
 MASS
 0 TO 300
                  r««ASSCJj3>
                  r«Ass(j»r>

                  C»«ASS(J,2)
                                                     •«««««««K»*««««««
                  C«ASS(J»D
                 VOL
-------
                               - 289  -
C»«»****«««*«N*«*ft«»*»»««M««««*   CONSTITUENT 6    **«»*K «n»»»***«««*MNft SO  TO 286
                PHOTOH = XVOL » PHOTO(J) » C(J»4)  * DELTQ1
                GO TO 290
  ?«6         PHOTO" = VOLf'J) » PHOTO(J) * C
                  IF(QA.LT.03) ILAP5E = NCH«N(J*M)
  792           CO^TIHUf
  294         »• » THRCC
  ?06         COMTIHUE
              "FOXK = A » A3S»».T
              REOXK • 1.0 r EXP(-REOXK » DTD)
  298         C01TTKUE
              RFWASS = VOL(J) * (CSAT - C(J*6)>  »  ffEOXK
              C"ASS(J,6) =' CMASSUJ6X + PHOT0.1 - BFNTHM -
     «...••            * Re1ASS - XMBOD - XHHH3
  700       COtTINOF
  302
C»»»»«««»»»I»»»»***-IH»-««»»»   ADr> CONSTANT HASTE LOADS    »«»»»»)»«»»ii)i)i»»«i«»»«»ii««»

          IP (NWASTC.EO.O) 60 TO 312
          "0 312 J=2*NJ
            IF (VOLnm(J)J 304*312*308
  ?04         ''O 306 K=1*NUMCOW
                CW»SS + C«LOAO(J»K)
  306         CONTINUE
             . GO TO 312
  308         "0 310 K=1*NUHCO"
                CMASS(J»K) » C»ASS(J*K) - C(J*K) «  VOLOIN(J)
  710         CONTINUE
  312     CONTINUE

C»*«»*««»H»«iiv«   APD VARIABLE WASTE AND UPPER BOUNDARY LOADS    *ft»«««»««**i>*»Mii
          JJ » MWASTV » 1
          00 31P I»1*JJ
            J = JRV¥(I)
            N = KINCCI)
            KCTC(I) • KCYC(I) * 1
            IF CKC^C(I).LE.INCPUR(r»N)) GO TO 314
            KCYCCI) - 1

-------
                               - 290 -
             N a
             IF (N.LF.NINCCI>> CO TO  31A
             KINi-U) = 1
             N = KI«»C(I)
                 CN»SS(J«K) a C1flSS -  FLO(I*N)
   ?i6         CONTINUE
   318
 C»«»»»«»o»nc)»«i»n»»»»»Mii«   ADO VARIABLE BANK LOADS    «  " VOL(J)  » ASU8CJJ n  - YCJ»
               on  3?n KaijNuncow
                CCJ»K> o CKASS(J«K> / VOL(J)
  ?50          CIIHTIWUE
  3?2     CONTTMUE
             Ml.  » NJUNC(N»15

                                                        - Y«ML»
          COHTIUOE

C»*«;»im«o««JCiH««ii»»*«»»   PREVENT NEGATIVE CONCENTRATIONS   »«»**«•«*«•••»•••«••*

          00  33H  J«-1,HJ
               "0  37*
                IF  (CCJjKKGE.P/ICKCCK)) GO TO 396
                IF  CKDCOPtEO.1)  WRITE C6.666) Js ICYC*K* CCJ.K)
                C(J^K) = B*CKCflt>
                CH«?S(JfK)  n  C(J.K)  » VOL(J)
  33fc          CCNTINUE
  3'3     CONTINUE                u

CKNiiii«*«»ii
-------
                              -  291 -
               IF  (C(J,K).LE.CLINIT(IO) SO TO 340
                KPITE (6»66* J* fCYC
                WRITE (5*670)  ((C(L*M>* * = 1 » NU^CON) , L
                STOP
  ?40        CO«TINUC
  342     CONTINUE

Ctt*«Hii»N«ft*»KKKM«ii»**  COMPUTE RANGES OF CONSTITUENT 4   »»«*»»»«*»»» «*««»««««*

          Tr (ICTC.LT.WDOCYC)  CO  TO 350
          "=• CMUMCO^.LT.6)  GO  TO  3SO
             00 348  J=1»NJ
               Ir  (C(J,6).LT.4)           OOLT4(J)   = OOLT4(J) * 1
               IF             D06T5(J)   = DOGTS(J) * 1
               Ir  (CCJ,^).GB.4.AND»C( Jj6).LE.5) 004TOSCJ) a 004T05CJ) + 1
               IF  C"{Jj6).6T.DO>'IN(J))  GO TO 344
                  00"IN   = C
                  MINCTC(J)  = ICTC
                  GO TO  346
  744          IF  (C(J,6).LTtOOM«X( J))  GO TO 346
                             icrc
  34t       COVTINl'P
              OOAVCJ) • 00*V6(J)  *  C(J»6)
  348       CO-»TINUP
  350     CONTINUE

Cmn»»»*»»**»»i«»»* •»»»»»»»»«   RFAO OBSFRVED  DATA    »»»»«)i»»tt»»*»»«»»»i»»«»)(imi»)»»i»

          IF (NOAT^.EQ.O) GO TO 354
          TF (VOA.GT.NOBOAT) 60 TO 354
          ff (ICTC.NE.NOBCrC(NDA)) CO  TO  3e4
            REID (5*509) HEADER
            30 352 K=1»NOAT*
              "EAO (5*510) ((Oi3fATA(I*J*K)*  1=1*3)* J=1»6)» RHPATA(K)
  3e2       CONTINUE
            NO* = NO* + 1
  354     CONTINUE

C*MK««»««««»**H««X ••   STORE CONCENTRATIONS  FOR  TlHE PLOTS   *«*«M»M««»«»»»»««»*

          IF (KTP.FP.O) 60 TO 358
            CO 356 T=1*NTP
              J = JUMCTP<1)
              V?ITP (11) 1CYC* (C(J*K)* K=1,NUHrQN)
  356       COXTINUF
  358     CONTINUE

C»«*»«»»««»»****«»*»»»»»»»   CHFCK FOR SUMRT1  OUTPUT   »»»»»»»»»»••»»• »»«»i»«»«im

          IF (VS1.GT.NSUH1J CO TO  360
          IF (ICYC.LT.IPRTKNSD)  SO TO 360
            IP1  « !PRTUNS1)
            LP1  - LPRTHNS1)
            IPL1 = IPLTKHS1)
          CALL suH/tpy(iPi*LPi*?PLi»i)
          Ic (ICYC.FOtLPRTKNSD)  NS1 = MS1  *  1
  360     CONTINUE

C»«»««*»»m
-------
                               - 292  -
           TF (NS2)
             I?L* = !PLT2(NS2)
                SUMA«»Y  GO TO
             IT«9 = TT*5 * 1
             C\LL S»T«BLCIT»B»NT»SL)
             IP CICvC.HPtNLPC(MT»EL» GO TO 764
             IF   60  TO 364
           CONTISUE
       CONfTVU:

C»««*K»»c*a*««'>*»M«**iiii**«»   EXIT  M* IM  QUALITY LOOP   »»«««»«»»««»«»«• »*M««»«II««

       IF  C-HIFICON.lLTte) 60 TO S'O

C«n»«»»tj)t!itni»sii»»i(i»H»i(»*i»KH»   PRINT D»0»  SUMMARY   MNMIIIINIIIINIIIIIIII«M«NNKII»«IIIIHMK«W
               <«>67?>
           •>C  36P J«1»NJ
             OOAWG(J) =« OOAVC(J> / FLOAT(NOCVC-NDOCYC*D
             UnlTE (6*674) J, 00MIN(J)*  MINCYC(J), OOM*X(J)j NAXCYC(J)*
      »                     aOAVP(J>»  DOLT4(J)>  504T05CJ), DOCTStJ)
  368     rOMTI««UE
  370 coi«'rr»iu2
      IF  tKPEAC.NE .*) GO TO 374

Cn«»«»»«i»a«i}»t«»»»«*   PRINT NUTRIENT  LIMITATION SUHM.AR?   »»»»»»»)««»*»•»«»)»«»»»

                     NUTCYC
         03  '7.Z J=T»L
          JJaJ*C!«J/'*)
               P (6*678) Jt
      »                   Mi NNRL(JK)«  <«P|)L(JK)
  372   CONTI'tU?
        00  ?75  J
          HPIT? C6f679) Jt <«4RL(J)» NPRL(J)
  373   CONTINUE
  374 COKTrwUE
      BPI7P  (ft*<60)  ICYC*  ICYCTf
      IF CNTPnCT.O)  CALL TPLOT
500   PORtlAT  :C16I5)

-------
                              - 293  -
502
50*
506
50?
510
512
514
51f
600
602
60?
604
606

607
609

610

611

61?

614

61?

616

617

61S

620
621
FORMAT
FORHAT
FOR1»T
        (3110)
        (16F5eO)
        (20A4>
FORHAT
FORMAT
             oOj2fli)
 FOFI'T l6Xj>'FNVIPOMf«?NTAL PROTECTION  A6E1C Y ' >/ 1 X*ZO A 4
iu21Xi' DYNAMIC ESTUARY MO^FL' »/1X»?OA't/1 X*20A4*/// 3Xj24(1H«)» '    HY
»OPAULIC CONT°OL ''ATA   • «24( 1H«O s>//i,3z> ' FIRST  CYCLE  ON     LAST CYC
MLE  ON    PE^IM READING Tflpg      HYnDAULIC ' J/*3X> 'HYDRA UL1C TAPE
»   M»nRAULIC TAP?         n CYCtc          TI«"E  STEP (SEC. ) ' »/*6X,
«'fNST«RT>'*1Ti » ' COELT) • J//8X* Uf 14X« I
• 6»16Xj 14* 16Xfr6«2f///*3Ki>65C1H»>p'   QUALITY  CONTROL DATA    "»45(1
«H«)j//i13T*"11OM3F<» OF
»Y«j10X>«OU»L JTY»,1UJ>'OUHITY
»APY 5FGI1S AT CYCLE    3FGINS
»TI?AL PE"PODDP/i14Kj)'
nOFLTTD' »12X*' (NSPEO
*
»X, 'STARTING TIME    TIME OF
BCOMSTYTUPVTS    TcMPFRaTURE
»      AT 'j
• •(TS"TSE)
ST
AT
                                 PS' */
                                 CYCLF
                                         LIH ITATIO"' ,7X» '0.0.
                                        *1 1X* ' QUAL ITY  CYCLES
                                            TI«E  ST€«>  (HftS)
                                                                   SUHMAR
                                                                     SU1M
                                                                     PER
                                     1 4* 19X* H *'\ 9Xj 14*1 k » »F6 . * > 1 5X t
                                                       »*X»"*UM0FK OF«,21
                                       TIME  OF    0.0. S* TURATION ' i / j3X t '
                                      FOP THIS RUN     SUNRISE     SUHSFT
                                                 (TFMP) '
 COPM»T (1H ,  SXj'CO'YSTITUENT     COMSTITUFHT      ?ACK6ROUND
»  TF«PERATURCI j /s?X j " MUH?FR          ^^AM?        CONCENTRATION
•CORRECTION F ACTOP ' s>/si2ZXt ' CC^ANE > ' J.6X . ' <9A CK C)' , 1 1X, « ( THETA ) ' •/  )
 FORHAT (1M , PX,I2,10X,2A4,9X jF6.3f 13X>F5.3  )
 FORMAT (1HO/74X»'PERCFNT OF OEC*»ED /ILGAE' ///?X* 'CHLO"OPHYLL/wiTRO
*GPH    CHLOPOPHYLL/PHOSPHOROUS    CHLOROPHYLL/CARBON     WHICH IS 81
»0-DECRADABLE>»/>BXj«(CHLHIT)'jl7Xj'(CHLPHO)',1dX*l(CHLCAR)'j18X*'(
 FORHAT
• USUC
»USIN0 IS
 FORMAT
•EAC =
 FORH«T
*KPEAC
 FORHAT
       (1H t  3X»'THF REOXY6ENATION CONSTANT  FOR  0.0.  IS  COMPUTED
      TH? 0-CONNOR-D09BINS EQUATION : K2 =  12.9  » V»».S  / H««1.5'>
       (1H ,  SXj'TH* REOTYGFNATION CONSTANT  FOR  0.0.  IS  COMPUTED
      TH? CHURCHILL EQUATION » K? « 11.6 «  V*«.97 /  H»«1.67 '  )
       (1H ,  SX.'THF REOnGENATION CONSTANT  FOR  C.O.  IS  COMPUTED
      THE U&GS E3UATION J K2 = 7.57 » V / H»»1.33 '  )
       (1H ,  3X*'TH* REOXYGF.MATION CONSTANT  COR  D.O.  IS  CONSTANT
       EQUAL TO '*F7.3 )
       (•"» t  3X»'0«ILY NITRO'JFII UPTAKE BY AL5AE  IS CONSIPFREO   (KR
      1)  '  >
       (1w *  3X»'ONLY PHOSPHOROUS UPTAK? 8Y  ALG.'E IS  CONSIOfoEO  (
      = 2) ' )
       (1H ,  3X»'NITP06F«( AND PHOSPHOROUS  UPTAKC BY ALGAE IS  CONS
        (1H >  3X»'CONSTI.TUENT CO^rEHTRATIONS  TN  »DVECTEO WATER APF
» FOU'L TO THF UPSTREA" CDNCENTRA TIOH  (>1IX=1 )  '  )
 FORMAT CIH ,  3x*'CONSTITUENT CONCENTRATIONS  IN  APVECTED WATER A9?
• COMPUTE" USlf'S THE 1/2 POINT CQWENTRATION   (MIX=2)'  )
 FORMAT (1H ,  3X»'CONST][TUENT CONCENTRATIONS  IN  ADVECTED WATFR A"?
» COMPUTED USING THE 1/3 POINT COHCENTRATION   (MIX«3)'  )
 FORMAT (1H t  3X»'CONSTITUENT COVCENTPATIONS  IN  AOVECTEO WAT€P AR?
« COMPUTED USH6 THE 1/4 POI««T CONCENTRATION   «  >
 FORMAT (1H t  3X»'CONSTITUENT CONCENTRATIONS  IN  AOVECTED WATFR A"?
• COMPUTED USING THE 2-WAY PROPORTIONAL METHOD  (MIX=5)»  )
 FORMAT <1H •  3X*'DEPLETION CORRECTIONS APE P9INTEO   (KOCOP=1)'  )
 FORMAT MH ,  3x»'DEPLETION CORRECTIONS NOT PRINTED   
-------
                              -  294 -
 622    FORP«T  OH  *////»40x>i5f «    DIFFUSION CONST»"TS
      »/  >4'>X»' CHANEL    CHANNEL           ''ONSTiINT (CA> ' »/i4CX» 5G( 1H-) i
 624    FORMAT  OM1,///»1X*35<1H»)/'      SUGARY OF DISSOLVED OXYGEN  (CO"S
      "TITUFMT  A)   PATES      < , 35 (1 H»)f////'8X* '    PHOTOSYNTHESIS    RESP
      «IRAT):ON     PHOTIC  DEPTH     3ENTHTC DELANO' »/»?2X* ' FRO*        TO
      »       (PHOT)'»12XJ' (RES)'*9Xj '(DEPTH) ',1 3X* ' (3ENT) i »/22X» ' JUNC
      »   JUNC    'j?Xj'("G/HR/US  CHLORO)'>HX*' (FEET>'»/ *1 c»*90(1H-> */ )
 615    FORMAT  (/23X*T3j7X,l3j7X*F7.S,11>»F6.4,12X*F5.2j10XjF6.3)
 626    FORMAT  (?«n,///j1X»35C1H»)»'      SUMMARY OF MUTRIFNT  UPTAKE AND  RF
      nGENEPMIOM  RATES      ' >i c( 1 H«O »////lOX » • CROM       TO      CONST 1
      » UPTAKE     CONST ^  UPTAKF      COWST 1  REGFN    CONST  3 RFGEN     CO
      »NST  5 RECEN" j/jlOX*'JUNC       JU«»C         ( «MUP"> ' j 11 X, ' (PHUPP)
      »        (REGFNN)'»9X* '(RECEPP) • »9r» • (REBOCO) • */ »5Xj HOC 1H-) i /)
 627    FOF«AT  ( /10X* I3*7Xj 13* 10X *F5 .3 *13T*F5 .3 j1 X«3 (12X »F5 ,T) )
 628    FORN«T  ( 1 H1 , X//j1Xj40(1H»)» '      SUH«ARY OF CONSTITUENT OECAY 8A TF
      *5     'jfrO(1H«)»////26X»'     CONST 1        CONST 2        CONST 3 »
      »    COM^T  4        CONST  f        rONST 6' */*10X t ICROM       TO
      » (CECAYK  1)     CPFCAYK 2)     (DECAYK  7)     C9ECAYK  4)    (DECAYK S
      •»)    (DEI AYK6)' »/*10X»»jUNC' »6Xj «JUVC     (PER PAY)      CPE? OAY)
      »    (PEP 0*")      (PER  1AY)      (PE7  DAY)     (PFR n*Y)'j/ j5Xj11
       FOR1AT
630    FOR1AT  (1H1,//  ,5X*A5(1H»)j'    SUMNAPV  OF  HY09AULIC INPUTS   '*45(
      «1H«),///i15X»'CROSS-SECTTON»L  ARCA  A«0  HTDRAUUIC  "ADIUS OF CHANN5L
      «? AN-> JU"CTIOr  HCADS ARE AT  1PAN  TIO='^///  *1K*31 (1 H») t '   CHANI"CL
      » ^ATA   '»'2(1H)«),5X*15(1Hi»)j •   JUNCTION DATA   ' 1 14( 1 H» )>//> 1 X* ' C HA
      »N  LENGTH  MITTH  CS-AREA  MANNING   01 FF  NET FLOW   HYD.  * 1X*3( 2X»F5.2) /2X>6(-3X»F5 .3)»2X tZl2Kt f*s
637   FORMAT  <10X*/////»» »  CONSTITUEMT  3  UNDERGOES 2NO ORDER DECAY' )
63?   FOFM«T(1Ht//10XjTa<1H*>>5X*lSUMMAtlY OF  CONSTANT WASTCMATFR  LOADS'
      «*5Xj70(lH«)////j2AX*  'CONSTITUENT  1     CONSTITUENT 2     COVSTITU
      »FNT T     CONSTITUENT  4      COMST TTUE1T 5      CONSTITUENT 6'*/*2X*
      •'JUNC.    TOTAL  FLOW    CO*C»     LOAD     CONC.    LOAD     CONC.
      »  L3AP     CONC.    LOAD      CONC.    LOAD      CONC*    LOAD'»/>12
      •X»'(CrS)      (HC/L)  (LB/DAY)    (HG/L)  (tB/OAY)   (HC/L) (L3/PAY)
      »  (UG/L)  (LB/DAY)   (HG/L)  (LB/DAY)  (MC/L)  (LB/OAY) • j/»1 X, 130( 1H
      »-))
640   FORMAT  C/2X* I3*6X»F7*1*2X»6C3Xf F5.1 »1T,F9.0) )
642   FOPM»T(1H1//10X,30(1H»),5Xi'SUMMi"Y OF  VARIABLE VASTEVATEP LOADS'*
      »5X*30nH»)////  17X^ 'INC»EMENT           CONSTITUENT 1   CONST1TUE
      »NT 2   CONSTITUENT 3   CONSTITUENT  4    CONSTITUENT 5   CONSTITUENT
      «6'j/>1X,'JUMC.  DTSCH.  NO,   LENGTH  FLOW   CONC,   LOAD    CONC*
      »    LOAD   COPC.    LOAD   CONC*    LOAD    CONC.     LOAD   CONC.
      »  LOA?S/.»20»» '(CYCLES) (TFS)  <1G/L> (LB/OAY)  (16/L) (LB/DAY)  ( H6
      »/L) (L3/n,4Y) (UG/L) CLB/PAY)  (MG/L) (LB/OAY) (HG/L)  (LB/DAY)')
644   FORMAT  cm»i?0(iH-)/)
646   fORMAT  C/'IXjT3j5XjI2»5XjI2j3X»I4*1XjF8.1*1Xj6(2X*c-5.1»1X»Fo.O))
64!)   FORMAT (/ I6X » I2*4X t I3>3X»P6.0. 1 X.«(2X,F5.1 j 1X.F8.0))
650   FQRH»T (1M1//?OX*30(1H*)i5X< 'SUHMARY OF SANK LOADS ' ,5X*30<1H« )////
      •^r^'^HORF  B«NK    CYCLE?     CONSTITUENT 1     CONSTITUENT 2    CON
      • STITUENT '.1    CONSTITUENT 4    CONSTITUENT  5     CONSTITUENT

-------
                               -  295 -
               LINT  FLOY  STAT STOP   COT.   LOAD      CONC.    LOAD
        COT.   LOAT     CONC.   LOAD     CONC.   LOAD      CONC.    LOAD'
               I)  (CFS)'jUXj«(?1G/LJ  (LB/DAY)  (M6/L)  (Lfl/"AY)   (*C/L)
     »CLB/"AY)  (UG/L) (LB/PAY)  («G/L) (L3/CAY)  (MG/L)  (LB/OAY)')
65?   FORM»T (1 X»I3,2X,F4.1»1X,'-6.0,2(2X, I4)*6(7XjF5.1>1X>F8>G))
65?   FORMAT (1»*/1X*130(1H-)j/)
654   FOPMfT (1H1//5X»30(1H»)»5XjiSUMHARY 0^ UPPER BOUNDARY  CONDITIONS
     »(NOCF 1H)"»5X*30C1H»}/////3»*' I»CFE"ENT • J 1 3X»' CONSTITU E*T  1      C
     •OWSTTTUENT 2     CONSTITUENT i      CONSTITUENT 4      CONSTITUENT  5
     »     CONSTITUENT 6'»/,ZX,'NO.  LEVCT^     FLO*'     CONC.    LO^O
     » COMr.    LOAD     CONC.    LOAD     COHC.    LOAT      CONC.     LO
     «AP     CONC.    LOAD»///6X/«(CYCLES)  (CCS)   (HS/L)   (LB/DAY)   (H
     «C/L)  (L9/DAY)  (HG/L)  (LB/OAY)  (UG/L)  (LB/DAV)  (HG/t)   (LB/OA
     «Y)  (MG/L)  fLB/OAY) ' */»1 Xj1 70 ( 1 H-)/ )
656   FORH»T(/2Xjl3f3X»I4*3XjF6.Qj3(3X»F5,?»3X»F7.0)»2X»F6.2j3X»F7.0*2(3
65"   FORMAT ciHi*///ji3x»35(iH»)» •     SUMMARY OF  INITIAL CONCENTRATION
     »S     «,?S(1M»),/// ,23X*«FROM      TO      CONST  1      CONST  2
     »  CCVST »     COSST 4     CO*ST f     CONST 6'»/ »23X»»JUNC      JU
     «NC      (««6/l)      (M6/L)      ("S/D      (UG/L)       (PG/L)
     »  )
66?   FORMAT C1H1///1X*35(1H«)*'   TIDAL C^CLE VARIATION OF  SEAWARD  BOON
     »nm CONDITIONS   '*30(1H»)////45T»«SPECiriEO CONCENTP ATIOKS AT  JU
     »NCTION 1«//1 1* ^'INTERVAL    CONSTITUENT 1     CONSTITUENT 2     CONS
     »TITUF')T 3    CONSTITUENT 4    CONSTITUENT 5    CONSTTTUENT  6'»/*?6
                                                                      1 1X
664   FORMT (UX,n*10X*F5.2»Ii(l2X*FS.2))
666   FORHAT(3!»« OFPLETION CORRPCTIOH XADE AT JUNCTION  I3/7H CYCLE  Jin
     « ?1K rOR CONSTITUENT NO. I1»1?H. CONC. HAS F10.2)
668   FORMAT(34MOCONCEP«TRATION OF CONSTITUENT NO.  I1*8H EXCFEDS»F7.1 1
     * 13H IN JUNCTION I3*14H DURING CYCLE I5*25H.   EXECUTION  TEPMNAT?
     »0.)
670   FORHATC1H 8E16.8)
672   FORMAT (1H1///20»»20(1H»)»3X*ISU»'HARY OF DISSOLVED OXYGEN  3EYONO  C
     • YCLE ' »I4*3X»?0(1H«)///10X»' JUNCTION      MIMIMUH CO«*C.          MA
     nXIMUN CONC.       AVEPAGP CONC.     NO. CYCLES    NO. CYCLES     '•O
     ». CYCLES'»/»2?X*'(MG/O    CYCLE ' »6X/ ' (MG/L>    CYCLE1 *9X/ • (HG/L )•
674   FORMAT ( 12X i U,2C«X,F5.2j>5X* 1 4>*10X,F5.2»3X,3(1UX* U)   )
676   FOPHAT (tHT///10X*30(1H»>,'   SUKNARY OF NUTRIENT  LIMITATIOW  BEY ON
     »P CYCLE '*H»JX*1?0(1H*)*////J?3X*INO. OF CYCLES' »27X<» NO.  OF  CYCLE
     »S«*2?X»'»IO* OF CYCLES'»/»11X*'JUNC.    N LIMITS    P LINITS'*12X,
     »«JUNC.    N LIMITS   P LirMITS«*1?X*'JUNC.    M LIMITS   P  LIMITS'.
     «/*8X»1 14C1H-)/  )
678   FORMAT (4Xr 1(7X»T3j8X»M»7XjI4j7T)  )
679   FORMAT (91X* f?»8X,I4*7X*U)
680   FORMAT dH //?ox, "NUMBER OF QUALITY CYCLES = |»is*/,2nxj'HYD»AULic
     » TAP? LAST READ AT CYCLE '/I5 )
      STOP

-------
                              - 296  -
                                     UTTER
                 HTXER (MIX)
         THIS SuElfUTH? DETERMINES THF CONCENTRATION  USED  IN  THE
       flOVECTION ANC DTSPEPSIO* EQUATIONS AND  THEN  COMPUTES  THF
       fflS? OF F*CH CONSTITUENT TR«NSPOPTEr 3ETVEE* JUNCTIONS^  THE
              USED TO
              MIX = 1

                    3
                    4
                    5
                                  l= CO^CENTPATIONS  IS  OFFH'EO  3Y...
                         USF. THE UPSTRTM CONCENTRATION
                         USE T"e 1/2 p.OINT CONCENTRATION
                         USF THF 1/3 P.OINT CONCENTRATION
                         USF THE 1M POINT CONCENTRATION
                         USE TME 2-WAY PROPORTIONAL CONCENTRATION
      COMMON /«ISC/   CTIMF, OELTO*  ICYC. »Ct NJ*  Npp,
      COMMON /CHAN/
     I
      C03HGN /DUAL/
                      AREAO39)/ B(139>»  CLEN(139)»  CNM39)/  DIFFKO39>»
                      "JUNC(139»2)j Q(1?9)j  ONETC13").  R(139>»  V(13«>}
                      C(133>6>«
                      » DELTO
      00 700
        VOI.PLM =
        Olpr-C  = DIFFK(V) » R(N) •  «BStO(N»
        ^L = NJUNCCW.1)
        ^H = NJUNC<»»,2>
      DO 6f»2 K=1jf'UMCON
        CA = CCNL*K)
        CB = CCNH.If)
        IF (*.EQ(6?> GO TO 100
        SO TO (100 »?00»300j400»5UO)> MIX
C*«»***«8«n**M«»*ii<>**««)l««i«  UPSTREAM CONCENTRATION
  100     TF C°(N).eEiO) CONC " CA
          ff CO(N)tlT.O) CONC = CB
          GO TO 600
C*«K**«iia»uxK»K*«»»*«M*MMM  1/? POINT CONCENTRATION
  ?00     CONC *  CONC = <2.»CA + CS) / 3.
          IP («(N),LT.O) CONC - (CA * ?.«C9) / 3.
          50 TO 600
C»»«»n«»a«ci« •»<>«*« «««ii«««»  1/4 POINT CONCCNTRAT 10 V
  401}     ir (O(M).GE.O) CONC a (3.»CA *• CB) / 4.
          IF (0(«). LT.O) CONC = (CA * 1,»C9) / 4.
          SO TO 60P
                        2-UAT PROPORTIONAL CONCENTRATION   »««» »»»»)•»«« N*«M «««««•
                 (CA * CB)/2. + ((CA-C9)/2. » V(N) »  DFLTO  /  CLFN(N))
                     COMPUTE AOVECTFO A MO DIFFUSED MASSES
                                                     »»»»»»»»»»»»» «•»•*«Mil »»*»*II
  500     CONC
C««»K«»c»«««««Hie«»»
  600 CC(»WUE
              «DHA?S
              "THASS
                       CONC » VOLFLH
                       DIFFC » (CA - C9>
                            CMA?S(NH»K>
                                          A«MASS » OIMASS
              CHASS(NLiK)
  602       CO!"TINUF
  700 COWTTWUE
      RFTURN
      FNO
                            CN«SS(VL»K) - AOHASS -  OIMASS

-------
                              - 297 -
£»»»»*»*•»*»»»»»*»»»»»*»*»»*»* H*»*****»»********»»*«»***»»»»»***«*»«»**»»»*»»»ll«*
C                             SU°ROUTINC SUMARt
       SUB ROUT I VF
    PIME'JSIO"  C/>VG1(133i6)»
               C"IN1 C133J6)i
    COMMON /MISC/    rrrwE*  OCLTQ»  ICYCJ
                     TMNOPFn*'')*  STIVC
           /SUMSU*1/  r(?QX«(4
                     KOAY?1i
                               CM/»SS< 1
                                              CM* X1 C 133 *6)> CM*X?(U3i6)»

                                                   NPP, ^junrON»

                                                 HOU9S1 » HOUPS2j
      GO TO  nOO*1?i>,
100 IF cirrc.cT.if>) GO TO 10*
      DO 104 K=r1^'UM'-ON
        "0 11? J=1»HJ
          CMI«*KJ»K) = CCJ.K)
          CMIX1(J,K) = C(J»K)
          C*V51(J*K)
102
1"4

106
        RETURN
                           COHPUTE
                                                «VG
      ro 110
        CO 138 J=1»WJ
          I*1 CCCJ»K).LT.CMIN1tJ*K))   C^TNUJ*K)  = CCJ»K)
          IF (C(J»K),GT.CH»X1C J*K»   C"<»X1(J*K>  = CCJ»K)
          r*V61CJ*K) « CAVGKJiK)  *  C(J»K>
  108   CONTINUE
  110 CONTI1UE
      IF (ICYC.NE.IP) ffFTURN
      00 114 K-1.NUMCOV
        00 112 J=1 »WJ
          C»V61U*K) = CAVGKJ^K)  /  FLO«T(LP  - IP + 1)
  112   CO"TIMUF
  114 CONTTNUE

C»*»»**»*»*»»**»»»****»9*»*    WRITE  SU""ARY TABLE 1

      KOURS1 = "ELTO » FLO»t(IP) / 3600.
      HOURS? = ?ELTfT • FLOAT(LP) /. ?600.
      KOAYS1 » HOUPS1 / 24.
      KTAY!?? • VOURS2 / 24.
      HOURS1 = HOURS1 - FLOAH2A » KOATJS1)
      HOURS? = HOUPS2 - FLOAT(?< » KOAYS2)
      VPITP (6/600) IP, KO»YS1* HOURS1' LP» KDAYS2* HOUPS2
      WPITr (6f602)
      00 116 J»1»NJ
        WRITE (6,6C/)J, (C"IN1(J>K)>  CM«X1(J>K)«  C«VG1CJ,K)»  K=1jNUMCO")
  116
                         CHECK FOR PLOTTING OF SUMMARY  1
                                                            »»»»»i»««»)«» •«»«»«)»»*»

-------
                              -  298 -
      IF (PLf.F^.O) 60  TO  122
      CO 1?0 J=1»NJ
        3F <.I.GT«43.ANO.J.NF.1U.AND«J»!»E.129.ANO.J.NE.13a> GO  TO  120
        NPP ~ NPP »  1
        ,7F (IIPP.GT.<'9) «RITF  C*»606>
          T 11S LPP=1»NUHCON
            l-6^XO(1*LPPiNPP}  =  CM»XKJ»LPP>
            FG1XO(?*LPP»NPP)  =  CAVCKJiLPP)
            KGOXO<7»LPP»NPJ>>  =  CHINK J»LPP>
  116     rOi'T!*UE
        K60»A(NPP) » RHNOOF(J)
  120 COWTI'IUE
      CM.L «IJWPLT( TPiLP)
  1?2 CONTINUE
r»»*»a«(ii!»»»n»»«i»a»«»»B»»«n(    I"ITI*LIZF SUMMARY 2

  1?A IP (IC"C.GT.IP) GO  TO  130
        PO 123 K=1 .MUMCON
          "0 1?* J=1 jNJ
            CH*X2(J»K) = CCJj»K>
            C*VC2(JjK) a CCJjK)
  1?6     COffTIVUE
  128   COVT^MUC
        PETUHN
  1T0 COfJTIVIIE

C:»»««t3)«iiti«)ii»!m»»»»in«)»»i»i»»»    COMPUTE Mil* *^*X* »¥G   »»»»»»»»»»»»»»»»»»»»»»»*»»«

      00 n* K=1*NI.'HCOM
        BO 132 J=1*MJ
          IF    CHIN2(J»K) = C(JiK)
          Ir .GT.CMAX2   C"*X2(J*K) ° CCJ.K)
          CAV6?(J»K) ' CAVG2(J*K)  *  C  /  *600.
      KDflYSI o HOUPS1 / 24.
      KOAYS' a HOUSS2 / 24.
      HOURS1 a HOUOS1 - FLO»T(?4  *  KDAYS1)
      HOURS' a HOUPS2 - FLO*T(24  *  KDAYS2)
      VPITe (6»600) IP> KDAYSIf HOURS1» UP' KOAYS2< HOU?S2
      WrSTP 46*602)
      00 140 J=1»f*J
        b'RITK (6i>60t)J» CCHIN2(JfK>>  C"*X2(J»K), C
-------
                               - 299  -
C»***«««*««««««*««>««*   CHECK FOR PLOTTING OF SUHM*ftY  2    »»»«»»»«««» *»*•*•»«•*

       IF  .0>  60 TO 146
       NPP  a  0
       PO  Hi J=1*NJ
         IF   CO TO 144
        NPP  =  NPP  *  1
         IF (NPP.GT.99) WRIT? C'S»606>
           10 142 UPP-1»NUNCON
             FGnXO(1*LPPjNpP) a CMAX2(J»LPP>
             FSOXO(?*LPP*NPP-) = r*V;2(J*LPP)
             FenXOt?»LPP»NPJ>) a CHIN2{J»LPP>
  142     rONTr«*L'E
        F60»*(NPP) a
  U-4  CONTINUE
       C*LL SUMPLT< IP.LP)

  146  CONTTMUE
  I***VM*«KK«»««
c                              PORM.«T ST*TEHENTS
C»«*»**ll»«l>»«ll»itK«**Mli»**»KII«««illl« ••*«*•«•<

600    F,'      V*TE» QUALITY SUMMARY      «/45(1H»
     »>/ *1?X,'STAPTS  *T  CYCLE «jl4»"  <•*!?*•  n*YS «»F4.1»'  HOURS)'»31X*
     n'FNDS  *T CYCLE  'j!4*'  («»i3>'  OATS «tF4.1*' HOURS)1//  )
602    FORMAT (1H //TX>»JUNC.   CONSTITUENT 1       CONSTITUENT  2        C
     »0«ISTTTUENT 3        CO«*STITUE»"T  4         CONSTITUENT 5           CO
     • NSTITUEWT 6' */>8X/«NI»l   1AX    AVP     HI"    MAX   AVB      HIM    «
     »AX    AVC    "IN   M^X   AV5       MI»    MAX    *»6      MI"     M
604   FORM >T (1 X,i;,1X,3<1X,F5.?>*2X,3<1X,F5.2>»2X*?C1X»F5.2>»1X>3<2X»F5
606   FORr**T("1  NUM9E1? OF PLOTTER  PTS ^XC^EDS ARRAY DIMENSIONS')
      PFTURf
      FMO

-------
                               - 300 -
C»)«»»»)m»»»« »«»»»»»»»»»««»»»»»»»»«<•«»»»»» »»»»»»» »*»*»« »»»*»»»» »«»»»*»«»«
C                           SUMPLT
£****»» »»»***»**»*»*»»***»*»*»*****X*»*»*II***»********»****9**»***»****1I

      SUBROUTIMc SU1PLKIP,LP)

      DIMENSION  SOT1C12), NPTC3),  SIDPH51)*  SIDE2<6), X(99j3>, Y<99*3>
      COMMON /1ISC/   CTIME* OELTQ,  ICYC,  "C*  «U,  NPP, NUMCON,
     »                RMNODe<1*3>,  STI"f
      COMMDN /SUMSU"/ PGQXAU9), FGOXO(3»6»49) »  HOU°S1 » HOUi»S2f
     »                1OAYS1* K»)AYS2
      COMMON /SCALES/ XMAX. XHIN* YMAX>  YMAXCC6)*  YHIN» YHINC(«)
      COMMON /AXES/   ?OTTO*C1?)* SIOEC51)
      PATA BOT1/6«4H    »4H«ILE*4HS  BE»4hLO«  j«HCHAI,4HN 3°»4KIOGE
      DJTA SIDF1/21»1H »»HC*1HO» 1HV/ 1HS/1HT/1H I/1HT»1HU»1HF/
     1  19«1H /
      DATA SIOF?/1H1»1H2j1H3j1H4>1H5j1H5/
      X*AX=49.9
C««*»K««*«««M«»««   SET LAPFLS ON  SIDE  AND  BOTTOM AXES   »«»««•«»•«««««•»«««»«»«
      co nn 1=1,51
        SI "SCI) = SIOE1CI)
  100 CONTINUE
      DO 10? 1=1,12
        GOTTOMCI) =» 80TKI)
  1P2 CONTINUE
      DO Iff II=1,>'UMCO»
C«II»»»IIII«K*»K*»K   FILL UP X « Y ARRAY' HITH  DATA TO BF PLOTTED   »«»»»*•»»•«»»»
        CO 134 1=1,MPP
                   FGOXOM,II,I>
                   ^60X0(2,II,I)
                   c60XOt3»II,I)
          XC 1,1)
  104   CO"T1HUF
        NPTC1) - NPP
        NPT(2) - NPP
        NPT(l) = NPP
O«*«x«**«*«*tt**N*«   SET SIDE LABELS  FOR  CONSTITUENT NO.   IIII*K«II**II«««««*M«ti«»*««»«*»*»**it»»   WRITE  OUT  TITLF    »•»»»«»«*««»)(««««<(»««»«ii««»«««
        WRIT? 
-------
                              -  301 -
      SUBROUTINE SVTABLU*H>

      COMMON /MISC/   CTIME* DELTO» ICYCj "C» NJ* NPP, NUHCONj
      COMMON /SLACK/  JPRT C1 50*55) » KSLC20)' KPLOT<20>* NFPCC20)*
     »                MLPCC?0>» NOPRTC150). NCO«SU<6>» NStfP
      COMMON /SUTSVP/ FGSUA(99J *F6SyO<<>0*6) t. IMPOSE*INFPC»INLPCjKSLACK
      COMMN /JUNC/   *SUR<133)/ AtfOL<153)» NCHAN( 133*5) * VOL<133)t
     »                Y(133)» YNE1K133)
      COMMOV /DUAL/   C(133*6).» CH*SS(1?3>6^

      IF (ICYC.RT.O) 60 TO 15Z
      IF CK =  1
      JPRTCIi?) * 65
00 1" IT=1»»?UCYC
  1 = 1 + 1
  GOTO C1G2j1G4*106«10Sj110>112*1U>116*118'120>«
                                                         IT
  102
  104
  106
  108
  110
    NOPST(I) = 4
      JPRTd/1)
      JP«T(I»2)
      JPRTdj?)
      JPRTCI»*>
      GO TO 1?2
    NOPRT(I) « 3
      JPKT
      JPRTCIf?)
      JPRTd*?)
      60 TO 1?2
    ^OPRT(I) » 1
      JPRT(I\»1)
      60 TO 122
    MOPRTtD - 3
      JPRTCI*1>
      JP*T
      JPRT(I*3)
      60 TO 1 '2
    HOPRfCl) - 5
      JPRT(I»1)
      JPRT(I*?>
  112
      JPRT(I*4)
      JPRT(I»5)
      60 TO 1?2
    NOPRT(I) = 5
      JPRT(I*1)
      JPRT 46

-------
                               - 302  -
             JPRTCI.4)  = 45
             JPRTCI»e)  - 44
             SO  TO  1'2
   11 4     MOPRT(l)  y 3
             JPRTCI»1)  = 4?
             JPRTC1*?)  = 42
             JPRTCI»?>  = 41
             JPRTC I*/-)  = 40
             JPRTd »5)  = 39
             JPRTCI*6)  = 33
             JPRTC1»7)  s 37
             JPRTd*'')  = 26
             '50  TO  1?2
   116     NOPRTCI)  = 7
             JPRTC!*t)  = 35
             JPRTCI*')  = 31
             JPRTCI**)  = 3?
             JPRTd *4)  = 32
             JPRTd*?)  = 31
             JPRTCI»f)  = 30
             JPRTd *7)  = 2"
             CO  TO  1'2
   118     NOPRT(I)  = 24
             JP 12)  = 17
             JPRTCI*13)  = 16
             JP»TCI*14)  = 15
             JPRT(I»15)  = 14
             JP»Td*16)  =130
             JPPTCI*17)  -129
             JPBTCI*18)  = 1?
             JPPTC1*19)  » 12
             JPRTCI*20)  = 11
             JPBTd*?1)  => 10
             JPUTCI^'2)  * 9
             JP"?rd*?3)  3 3
             JPTTM*«ii   SET LOW SLACK  TABLP  PARAMETERS    »»m»»««i«»»»ii «»«i«»»»«»»

-------
                            - 303  -
    NSUCYC = 11
    NLPCCW) = NFPCCM) + 1SWC»C
        NOPRTd) = 7
          JPRTCI»1)  =  1
          JPPTCI*2)  =• 65
          JPRTd*')  =64
          JPRTd*4)  = 63
          JPRTd*?)  = (>?
          JPRTd*')  = 61
          JPRTd»7)  = 60
     DO 148 11^1 .KSMCYC
        I = 1*1
        CO TO (1?6»12»»130»132*134*1?6*13P*140*142*144*146)*  II
126     NOPRTd) = 2
          JPRT(I*1)  = S°
          JPRTCI»2)  = 5*
          GO TO 148
128     NOPRT(I) = 1
          JPRTCI*1)  = 57
          GO TO 148
133     NOPRTd) = 3
          JPRTC1*1)  = 56
          JPRTd*?)  = 55
          JPRTd**)  = 54
          60 TO 1/:8
1?2     NOPRTd) = 4
          JPPTd.1)  =5?
          JPRTd*?)  =52

          JPPTd»4)  =50
          GO TO 148
174     NOPRTd) = 3

          JPRTd*?)  = 48
          JPRTd*?)  = 47
          GO TO 1*8
136     NOPRTd) - 5
          JPRTd *1)  =46
          JPRTd*?)  = 45
          JPRTCI**)  = 44
          JPRTCI*4)  = 43
          JPRT(I»5)  =• 42
          GO TO 148
178     NOPRTd) = 6
          JPRTd »1)  = 41
          JPRTd»2)  =40
          JPRTd*?)  = 3°
          JPRTd**)  = 38
          JPRTCI»5.)  = 37
          JPRTd**)  = 36
          CO TO 143
140     NOPRTd) ^ 7
          JPRTCI»1)  - 35
          JPRTd*?)  = 34
          JPPTCI»7)  = 33
          JPRTd**)  = 3?
          JPRT(I»5)  = 31

          JPRTCI»7)  = 2"

-------
                               - 304  -
             GO  TO  148
   142      NOPRTfl)  = 12
             JPRTU.»1>  = 28
             JPRTCI*?)  = 2?
  144
Jf"tTd»"*> =
JpPT(IiA) »
JP»Td*f> e
JPRTd*6) =
JF- =
JFRTd>8> =
JPRT(I»9) =
JP"T{ 1*10)' *>
JPPT(I,11) =
JPRT =
GO TO 148
NOPRT(I) =r 12
JPRT
JPRT(1>') =
JPRTd.') =
JPRTCI**) =
JPRT(I»5) =
JPRTd*7) =
JPRT( It*) =»
JPSTCU9) »
JPRT(I»10) »
JP"Tdj11) =»
JPfTdfl2) a
60 TO 148
NOPRf(I) = 6
JPffT(I»1) a
JPRT(I»?» »
JPPTd*/) »
.JPRT(I»5) =
26
25
24
2?
2?
21
20
19
18
17


16
15
14
1?0
129
1?
11
10
o
8
7


6
5
3
?
  146
                   ff) =  114
  148 CONTTMUf
      PFTUP"
  150 CONTINUE

C« *»»»*««(«»«*»»i«««»«»«   SCT SNAPSHOT T»8LC PARAMETERS   «i««)ni)H()»««*«»««*«iH(«»»*
      NLPC(tt) .«
          NOPRTfl)  »  5T
            JPRTCI»1> a  114
            JPRTCI*?>  a e
            JPRT(I»7>  » 3
            JPRTC.IJ*>  = 4
            JPimij»5>  " 5
            JPRT(I»6)  » 6
            JPRTCI»9)  -  o
            JP"TCI*10> - 10
            JPPT(I»11) » 11
            JPRT(I*12) » 12
            JP"TCI*U) » 13
            JPPTU^U) »129
            JPBT -130
            JPRT(I.U) « 14

-------
                               - 305  -
JP»T<
JP°T(
JP"T(
JPRT(
JPPTC
JP"T(
JPRT
JP»TC
JPPT(
JPRT(
JP9T
JP*T
JPRT(
JP"TC
JP»T
JP«?T(
JPRT(
JP"T(
JP?T<
JP»T(
           I*17)
           I»18)
           I »19)
           I*?0)
           I.'D
           I*?2)
             '?3)
           If?4)
           I,?5)
           I»?6)
             »?7>
             »28>
           I.j?9>
           I»"<0)
             *?1)
           I*'2>
           I*33)
           I*'4)
           I»'5)
      JP°T(I*?8)
      JPRT(.I»T9)
      JPRT(I»<0)
      JPRT(I^I)
      JP«»T(lfA2)
      JPRT(I»44) =
      JPRT(I>*6>
      JPPTCI.47)
      JP«»T(It*8)
      JPRT(I*49>
      JP«>T(I*50)
  .152.
      JP2)
      JPRT( 1*53)
RFTURN
CONTINUE
                          15
                          16
                          17
                          1%
                          19
                          20
                         '21
                          22
                          23
                          24
                          25
                          26
                         30
                         31
                         32
                         33
                         • 34
                         35
                         • 36
                         -3"
                         40
                         42
                         44
                         46
                         48
                         50
                         52
                         54
                         56
                         58
                         60
                         62
                         64
                          1
                             P»INT SLACK  WATER  TABLE    **K««»*»«»*»»«II»«*««««II«»

      HOURS =- "ELTO « FLOATClCrC) /  3600.  *  STIKE
      KOAYS = I-IOURS / 24.
      HOURS » CTIME
      IF (KSL(M).EO.O) 60 TO 1*0
      IF 600)
        WRITE (6*e"?> rcrc. Kom» HOU»S
        GO TO 162
  154
                          BEGIN NEW SLACK  VATEP  TA°LE    »»»»»«»»»»»»»»»»)i»»»«»»»
      NPP = o
      IF (KSL(M).E0.2) GO TO 156

-------
                              -  306 -
         GO Tl) 1?8
   1«6 CONTINUE
       WPJTF <6»606)
   1=3 CONTINUE
       VRlT? C6J608) ICYC* KDAYS, HOURS
       PO TO ""a?
   160 CONTU'UE

 C«»*»»»*»»»*tt«»»»*»**»»»**»   ?CSIM SNAPSHOT  T'BLE    »»»»» »»»»»)» »»»*»» »»»»»»»*»»

       N pp  = {(
       UPIT1* (6*610) ICYCf KDAYS, HOURS
   1*2 CONTINUE

 c»»»»««»»»»»*»»w»ii»»««ii   PRINT DATA FROM PRESENT CYCL?    **»*»»»*»***»*»*»*»*»*

       WOP  = NOPRTCH
         DO 166 L=1»NOP
           J = JPRTfT/L>
           VPITE (6»*12> J» YtJ)» {CCJ»K>* K=1,NUHCON>

 Ci»«i»»«»»)«»»»»«»»»»»«»»i«*i<   P'TPARE TO PLOT DATA   »»M»*»N**»»**»»it»H**«»*«Hit«N

           TC  (isyp.FO.O)  CO TO 166
           !c  CKPLOT(M).F.O.O) GO TO 166
           I'"  (J.6T.43.AWD^J.NE.1U.ANO.J.Nf.139.ANO.J.NF.150)  60  TO  164
             *PP = NPP  * 1
             le (NPP.GT.99) URITE <*»6U)
               r>o 1 6< LPP=1»NUMCON
                 F65WOCNPP,LPP)  = C(J*LPP>
   164         <-OWTTNUE
                          RMNOOF(J>
           T«  KICYC.^E.NLPCCH))  RETURN
           \f    /)
602   FORMAT  (1«« j.3?Xj'  CYCLE' » 15 j 1 12* '  DAYS* ' »F6.2*' HOURS'*/  >
604   FOR»»AT(1H1//68X,33H  HIGH  SLACK P9COICT IO«S/>
606   FOPHATC1H1/ t?T,?3H  LOU  SLACK PREDICTIONS/)
608   FORMAT  (1H  / 3X»'JUMCTIOM    MEAD      CONSTITUENT 1    CONSTITUENT
     » ?     CONSTITUENT  3    CONSTtTUENT 4    CONSTITUENT 5     rQNSTITUE
     • NT 6'.*/*14X-j-t(FT)'*83r*''{»l5/L)            (M6/LJ            CMG/L)
     »                     (M6/L)           (NS/L) 'i/ 1X»130(1H-)*//
     »?JX,« CYCLE' »!5*I1Z*'DAYSj' *F6.2»»  HOURS'/ )
610   rORHAT  (1"1///  25X»'SYSTCM STATUS  AFTER QUALITY CYCLE • 1 16t II 0» '  nj»
     *YS*  '»F6.2*'  HOU'»Sti//*3X»l JUNCTION    HEAD     CONSTITUENT 1     CO
     »f'STITUENT 2     COMSTITUEiT 3     CONSTITUENT 4    CONSTITUENT 5
     • CONSTITUENT " */»14X» • (FT) ' , 8X»' C1G/L)           (MS/L)
                       
-------
                               - 307  -
C »»*»««»»«» »»»»»» »»»»*»»•*»»«»**»«»« »«»«•««» »««*»« *«!*«*«•«**»«•«««•«««»•»»*•»»««
C                              SWPLOT
      i *«N •**••**»• «»•»»>

      SUBROUTINE SWPtOT

      DIMENSION  80T1(1?)j  HPT(3)j  SIOFK51)* SIDE2<6>» X<09,3), Y(99»3>
      COMMON  /iisc/    CTIME*  OC;LTO* ICYCJ  vc* NJ» NPP, NUHCON*
       COHMfl  /SLACK/   JPRT(150»55)>  KSL(20)» KPLOT(20)» NFPC(20)*
     »                 «ll.PC<20>Ji  NOPfT<150)»  NCO«IS«<6>* NSUP
       C0««0»»  /SVTSWP/  FGSW*(99)»FGSWOC09*6)» IMPOSE, IMFPC j INLPC*KSL»CK
       COMMON  /OBSO*T/  0»OAT*(3r6*20)»  "»«0«TAC20)« NO»TA» NOBCYCdU)
       COMMON  /SC*LrS/  XMAX*  XMIN»  TMAX*  YMAXC<6)» Y»(IN» YMIMC(f)
       COHMOV  /AXES/    POTTOM<1?>*  SIOEC51J
      PATA 30Tl/6*«"    *4HMILE*4HS  BEf4HLOV
      DATA SIOE1/21»1H ,1HC*1HOjlH»ilHSf1HT»1HItlHTj1HU*1HE»1H»'»lHT»
     1  15«TH /
      PAT A SIDF?/1H1 j1H2j1H3*1H4j1H5j1H6/
      Xf»*X=49.9

CII*IIN»KII*»»»II«*««   SET LA9ELS. ON SIDE  AND BOTTOM  AXES    »«»«»»»«««iii»» ««»»»»«•«»

      "0 100 1=1/51
        Sinpd) = SIOE1CI)
  100 CONTINUE
      no if? t=f»12
        BOTTO"1(T> = BOTKJ)
  102 CONTINUE
      00 1?? IT=1*MUMCOH
        IF  60 TO 132'
        IF (IMPOSE. LT. 4) 60 TO 104
        IF (II.LT.6) GO TO 132
  104   CONTINUE
               - II * IMPOSE
C»»»»»««K»*«»«»»   FILL UP x s Y ARRAYS WITH  DATA  TO  BF  PLOTTED   »•««»«••«*»«»»
                               INITIALIZE COUNTERS    UK*************** *««**>*«**
        IF CIMPOSE.FQ.4) CO TO 106
        1C «= 0
  106   COKTINU^
        ICP = 0
          00 110' I=1jMPP
            IF (IMPOSE. LT. 4) 60 TO 108
            ICP « ICP * 1
            X
            GO TO 110
  108       CO»TINUr
            1C = If + 1
            X(TC»1) « CGSIMU>
            Y(IC,1) » FGS«OCI*II>
  110     CONTINUE
        KPT(1) » 1C
        NPT(Z) = ICP

-------
                                -  308  -
Ctt*K»M**»x*»it»»*«»»    SET  SIOE LABELS FOR COMSTITU?VT NO*    »**»»*»**»*•»*»*»«*»
CXKK»«K*M*N«»»*N»«K*«*    CHECK  FOR OVERLAY FOR CONSTITUENT  6    ««»»«»»»»»»»»«»»i»

         Ic C IH'THK.LT,'')  60  TO  114
         IF   60  TO  112
         ISAVE  =  INFPC
         ISAVK1 =  INLPC
         ISAVCt =  KSLACK
         KT'TLE =  0
         RETURN                                    '
  112    CO*'TI1H?
  114.    COVTINOF

C»«««»»im«tt«t»« »i(»«***»«»»)»)<»»«    WRITE OUT TTTLP    »«»»»»«»»»»»i«»»»«»m»«»»»i<»«»»«

         WRITE f»2ffOO)
         K e  KSLACK  *  1
  116    GO TO C118/122*120)» K
  11fc    WRITE C?E*(fn2)  INFPC
         GO TO T?4
  I'O    WRITE r22*6P4)  INFPC*  INLPC
         GO TO 174
  122    VKITE (22**n6)  INFPC*  INLPC
        IF < IflPChK.LT.10>  GO  TO 126
        IF (KT1TLE.E0.1)  GO  TO  126
        K »  ISAVE2  *  1
        JNrPC  -  ISAVE
        INLPC  -  ISAVE1
        KTITLE  =  1
        60 TO 116
  126   YHTN  = YMTNC(TI)
               -  Y«AXC(II)
         ISI"E »  1
         IF (NOATA.EO. Q)  ISTAN
                            CALL  CUPVE TO PPOOUCF THE PLOT    »«»»»»»»»)( »*»««»«••*

        IF (IHPOSE.IT.4)  60 TO  128
        CALL CURVE  (X jY*NPT*2»1 tOt 2, ISTAN, IS IQF.)
        SO TO- I'O '
  128   CONTINUE
        CALL CUPVE  (X*Y*NPTf 1j1iOj2* IST»N»ISIOE)
  170   CO«»TINUF
  172 CONTINUE
      PFTURN

C»HI»»»«»II«)I»»I»»H«»«»II«I(»«»«»  CORHAT STATEMENTS  »)«i»ii»i»»i«»»»i»»«»»ii»»»«»«»«»»«»«»

  600 FORMAT(1H1j44Tj'POTOHAC FSTUARY CENTE9 CHANNFL')
  602 FORMATdHOjA^r/ipROFILE PLOT FOR CYCLE'>I6)
  604 FORMAT(1H()»36lf,'   LOW WATER SLACK PLOT FROH CYCLF«*I5*«  TO  CYCLE'
  606 FORMAT (1 HDjS^JTj "HI6H  HATEP  SLACK PLOT FROK CYCLE'»I5»«  TO  CYCLE1*
     »I5)
      END

-------
                               - 309  -
                                      TPLOT
       SUBROUTINE  TPIOT

       DIMENSION   C(6)» 90TU12)*  NPTC3>»  SIDE1(51)»
      »    X(99»3>j  YC99*3)
       COMMON /"ISC/   CTTM?, 0CLTO»  1CYC,  MCj  NJ»  NPP,  NUHCON,
      COMMON /TIMEPt/ JU«iCTP<20>j  NCITP(20>»  NCONTP(20*6) j  1ECTP(20)*
     »                NSCTP(20>» NTP
      COMMON /SCALPS/ XM»X* XMIV,  YMAX*  YM«XC(*)i  YMINj  YN!NC(6)
      COMMO" /"XES/   ?OTTOM(1?)»  S10E(31)
 DATA  SIDF1/21»1H
1   19»1H /
 0.«TA  SIOE2/1H1
 DATA  BOT1/V«4M
                            1HO»1HN* 1HS*1HT» 1HI » 1HT/1HU j 1HFf 1 HN»1HT*
                        ,4HCYCL jiHES   »AH     /

                                    SET  LABELS
                                                  ***»»**»***************»*»*»**»
      PO no  1=1 i51
        SI1P(I) =  SIDEKI)
  100 CONTINUE
      TO 10?  I=1»12
        80TTOMCI)  » 80TUI)
  1C2 CONTINUE

C* »*»»»»»»»»»»»»»»**»»»»*»•«   SET UP  TTME PLOTS

      00 170  1 1=1 » NTP
        DO 118 JJa1»NU1CON
          IF (NCONTP(IIjJJ).NE.D ^0  TO 11«
          T^IN = Y^INC(JJ)
          V«AX =
CK»»««*H**XK«««*»»*»«*   SKIP TO STARTTK6 ryCLf    »»******»»*it*»*»» » NTP
          IF (L1.EQ.O) GO TO 106
            DO 104 L=1iL1
              »FAD (ID ICTC* (C(K),Ka1*MUMCOH)
  104       CONTINUE
  106     CONTIKIUE
          111 * II
             NECTPCIl!)
          TTIM1
          ITIM2
          ITIM3

C««»«»»«»«*<««K««*«»K«»   LOOP TOR SPECIFIED PLOTTING CYCLES   »»»»»»»»»»»»»»»»»«

          "0 116 I=ITI*1jITIM2»ITIM3
            KK » KK + 1

CM«*«««««»»«»»   SKIP TO THEN READ PLOTTINC JUNCTION IN PRESENT CYCLE

-------
                               - 310 -
                      (11) ICYC*
               CONT'NUE
             YCXK.1) = r(JJ)
             112 = NTP * (HCITP(II)  - 1>
             L2   a NTP - II

C»tiKX*«K»NtiK4«»»p»K   SKIP TO FNO  OF PSESfT CYCLE   ««»«ii««»ii«««»inm»»»»»i»»»»»»

             IF  CL2.CO.T) GO TO 112
               "0 1 10 L=1»L2
                 RE»D (11)  TCYC*«•«*«««»«««»

             IF  (II7.EO.O)  GO TO 116
             IK = I + ITIH3
             IF  (III,CT.ITMI2> 60 TO 116
               "0 114 LL=1*II2
                 REPP C11)  ICtC*(C(K)JK=1*HUMCOM)
  114          CONT'BUE
  116     CONTINUE

C»ffB**»»»i»»^«rni»«ia»tiin«)«   SFT UP SIDE LABELS   «iiH»NKitiiii*iiK*»ii»*»**«««*««ii*nMKi>M

          SID(:(!4)  = SIOE2WJ)

Cmi«3 «*»»»»!>»»»(»!»»»)»»»«»   UPITP OUT TITLE   **«««»NNM*»iiN»*»*»***«*ii«ii

                          JUNCTPVAL  OF'*15*
     1  '  C7CLF.1?1)

-------
                                          - 311 -
C                             CURVE
C»«»»»««••*««•****«*«»«*••••*•«*««••••«K««MK«*«*«•*•••«««••«««**»««•*•»•»«•••**
C      CURVE IS THE ENTRY TO A GENERALIZED PRINTER PLOT ROUTINE,  THE
C   ROUTINE PLOTS SEQUENTIALLY PAIRED VALUES TAKEN FROM THE  X AND  Y
C   ARRAYS. THE SCALING VALUES FOR BOTH ARRAYS ARE STORED  IN THE  LAST
C   TWO ARRAY LOCATIONS IN THE SAME MANNER AS CALCOMP SCALING* THE
C   ARGUEHENTS IN THE SCALING SEQUENCE ARE DEFINED AS.*.
C         X - THE ARRAY CONTAINING THE X-AXTS COORDINATES  OF THE  POINTS
C             TO BF PLOTTED
C         Y > THE ARRAY CONTAINING THE Y-AXIS COORDINATES  OF THE  POINTS
C             TO BF PLOTTED
C       NPT » THE NUMBER OF POINTS TO »F PLOTTED
C       NCV » THE NUMBF* OF CURVES TO "?E PLOTTED
C     NPLOT = USED FOR PLOT IDENTIFICATION* THIS VALUE IS  PRINTED ABOVE
C             FACH PLOT FOR EACH CALL TO CURVE
C     IJOIN • FLAG FOR JOINING OR NO JOINING OF POINTS
C      ITEL » FLAG FOR GRID SIZE
C     ISTAN • CONSTITUENT NUMBER
C     ISIDE - 1 FOR CENTER CHANNEL
C»«•»««*••*•«*•*•••••*•»**•*•*«*•**»**•««*»*«•••»«•••«»**«*••••»*»»•••*»*»««*»i
      SUBROUTINE CURVE(X*Y*NPT»NCV»NPLOT*IJO IN*ITEL»ISTAN»ISIDE)
      COMMON /OBSDAT/ OBDATA (3*6*20)* DMDATA(20)* NDATA* NOBCYCdO)
      COMMON /SCALES/ XHAX* XMIN* YMAX* YMAXCC6)* YMIN* YMINC<6)
      COMMON /CURPLT/ JSTAN* XLAE(1D* XAXIS* YAXIS* YLAB(6>* YSTAN
      DIMENSION  NPT(3)« X(99*3)* YC99*3)
CMM*««K«»*K«***««»«».«*   SET SPECIAL GRID SIZE IF DESIRED   ***»*»»»»»********>
      JSTAN=0                                                           1063-
      IFdTF.L-1)  1000*1010*1020                                         1089.
                                                                        1090.
                                                                        1091.
                                                                        1092.
                                                                        1093.
                                                                        1094.
                                                                        1095.
 1010 XAXIS-60.
      YAXIS»AO.
      GO TO 1000
 10?0 X«XIS=100.
      YAXIS-50.
 100U NPTS=NPT(1)
C«»« »« nun***»« »»** ••«•
      IXAXaXAXre/10.
      IYAX=YAXIS/10.
                         SET UP X AND Y SCALES
                                                 •«*«ft*H»K»*KM»K*««»»tt«**KK««MI
                                                                         1098.
                                                                         1099.
                                                                         1100.
      IYAX1-IYAX+1                                                       1101.
C*********************   FIND MAX AND **IN FOR X AND Y ARRAY   *******»»*******,
 2001 CONTINUE                                                           1117=
C****************************   SET UP SCALES   ««»»««»«»«»»«»»*»»»»»«»*»««*i»m
      AXLEN=IXAX                                                         1121.
      OLL SCALF(X*XMAX*XKIN*AXLEN*NPTS*1)                               1122.
      AXLE"=IYAX                                                         1127.
      CALL SCALE(Y*YMAX*YMIN*AXLEN*NPTS*1>                               1124.
Cm********************   FORM X LABELS AND FACTORS   »»»«»*»iiiH(»Ki»»»»«i»»«»»»«in
      XMIN=X(NPTS*1*1)                                                   1128.
      PFLTX-X(NPTS+?*1)                                                  1129.
      XLAB(1)*XM1N                                                       1170.
      DO 260 J=1*IXAX                                                    1171.
  ?60 XLAB(I + 1) = XLAB(D+DELTX                                            1132.
            =XAXIS/(XLA°(IXAX1)-XMIN)                                     1133.

-------
                                       - 312  -
C»«*«»«*                                                   1137.
      DELYY«YCNPTS*2*1>                                                  1138.
      YLfiBCIYAXDuYKIN                                                   1139.
      DO 270 E«1*IYAX                                                    11*0.
  270 VLABCmX1-I>«YLABUYAX1 + 1-I>+DELTY                                1U1.
      YSCALaYAXIS/tYLAB<1>-YHIK>                                         1142.
C«N»««HR»***«r»*t»c                                          1149.
       K"1                                                               1150.
      IF(IJOIN.EQ.O) 60 TO 500                                           1151*
Ci«»»  THE (OPTION TO PER«IT JOINING OF POINTS HAS BEEN DELETED
Ct»«»«»**«»:»»n*»B<>««*««   PLOT WITHOUT JOINING POINTS   •••*««««*N»«»»»«*»»it»«*»«
  500 CONTINUE                                                           1178.
      00 520 L«1*NCV                                                     1179.
      JJ«L                                                               11PO.
      NPOinT^NPTCJJ)                                                     1181.
      IFCNPOKNT.EO.O) 60 TO S1S                                          1182*
      DO 510 N^1»NPOINT                                                  1187.
                                                                         1194.
                                                                         1185.
                                                                         1186-
      nY"YT+On5                                                         11B7.
      IF(MeV.E«.3) 60 TO 517
      CALL PPLOT(IXT»IXY*K»1>                                            1188.
      60 TC 510
  517 L1«L«9
      CALL PPLOT(IKT»IXY»L1»D
  510 CONTINUE                                                           1189.
  515 K»K+1                                                              1190.
  520 CONTINUE                                                           1191.
C»N»«*«»««*ft*«***a«iBH»f»ii«»*   PLOT OBSFRVED DATA   »»»«»««»»»«m»«»*»»i»«i(»»»»»»«
550   IF(ISTA.M.LTo1> 60 TO 565
      DO 563 L-1.3
      TO 570 W=1»NPATA
      XT«XSCAL«(RMD»TA(N)-XMIN)
      YT«YSCAL»COBOATA(L»ISTAN»N)-YMIN>
      IXT=XT+0.5
      IXY»YT*Oi5
      CALL PPl,OT(iyTjIXY,L1*1>
  570 CONTINUE
  560 CONTtWUE
565   CONTINUE
C»»t ••••««NC«««O«VN«»M«N««*    OUTPUT rIN*L PLOT   «H»*»»»»*II«»»MMM •»»»•*••••
  555 NC"99
      CALL PPLOT(0»0*NC»NPLOT>                                           1196.
      PFTUSW                                                             1197.
      END                                                                1198.

-------
                                       - 313  -
                                     P.PLOT
                                    M
      SUBROUTINE PPLOTCIX*IY»K»*CT>
      riMENSION  A<51*101)» SYMd4!»
      COHMON /CURPLT/ JSTAN* XLABCI1)* XAXIS» TAXIS* YLAB(6>« YSTAN
      COMMON /AXES/   BOTTOM(12)> SIOEtSD
      COHMON /GRID/   KPLOP
      DATA SYM/4H««im*4HXXXX»4HOOOIJ»4HXXXX»4H+*-»"»*4H2222*               1
     1 4H    *4HIIII»4H	*4HHHHH.»4HAAAA»4HLLLL»4Hm«»4H????/
      IXAX1-XAXIS+1.                                                    1270.
      IYAX1-YAXIS+1.                                                    1271.
      JXAX1«XAXIS/10.*1.                                                1272.
      JYAX1-YAXIS/10.+1.                                                1273.
      IFCK-99) 200*220*230                                              1274.
  ?00 CONTINUE
c«»»»»»«»««»»*«««•»««   CHECK FOR OFF-SCALE VALUES   •••••••••••••••••••••••»»*i
      IFdY.GE.lYAXD 60 TO 10
      IFCI'.LT.O) 60 TO 20
      A m SYHC1C)
      RETURN
   10 CONTINUE
      Ad*IX + 1> • SYM(13)
      RETURN
   20 CONTINUE
      A(IYAX1*IX*1) « SYHC14)
      RETURN
  220 CONTINUE                                                          1277.
      1=0                                                               1278.
      DO 225 II«1*JYAX1                                                 1281.
      I-I+1                                                              1282.
      VRITE(22*310) SIDECI>»YLAPUI).(A(I.J>*J-1*IXAX1>                 1283.
  310 FORHATdH * A 1*F7»1» 101A1 )                                         1284.
      IFCII.EO.JYAX1) CO TO 228                                         1285.
      DO 224 JJ»1>9                             .  .                     1286.
      I»I»1                                                              1287.
      IFCI.6T.50) CO TO 500                .                             1288.
  223 VRITE<22»320> SIOE(I)*(A(I*J)»J-1*IXAX1)                          1289.
  320 FORMATdH *A 1.7X.101 A1)                                           1290.
      60 TO  224                                                         1291.
  500 VRITF(22*510) (A                                              1293.
  224 CONTINUE                                                          1294.
  225 CONTINUE                                                          1295.
  226 CONTINUE                                                          1296.
      VRITE(22*102> CXLABd>»1-1 *JXAX1>                                 1297.
      VRITE(22>330> BOTTOM                                              1298.
  •??0 FORMATC/1H *20X*12A4)
  102 FORMATdH /11F1D.1)                                               1300.
      RETURN                                                            1301.
  ?^0 IYAX»YAXIS                                                        1302.
      PO 250 I=1*IYAX                                                   1303.
      DO 240 J=1*IXAX1                                                  1304.
  240 A(I»J)=SY«(7)                                                     1305.
      CONTINUE                                                          1307.

-------
                        - 314  -
      DO 260 J-1jIXAX1
  260 ACIYAX1 «J)-SY"(9)
      00 270 I-1*IXAX1»10
  270 A-SYMl8>
      IYJ-IYAX1-10
      00 290 I«11jIYJ*10
  290 CONTINUI-
      IF (JSTAN.EO.O) 60 TO 1000
      IY«YSTAN
      PO 1000 J-2,IXAX1
      A(IYAX1-IY*J>-SYM(9>
 1000 CONTINUE
      IF (KPLOP.EO.O) RETURN  -
C«»»M»«K»*ft«»«v«*« HMM«M   FILL IN BACKGROUND GRID ON PLOTS   MMMMMMMMMMM
      GO TO C1»2j3)» KPLOP
C«MMMMMMM»MMM«M»«   BACKGROUND OPTION 1 - LOU DENSITY   MKM»M»MM»MMMMMM«
    1 00 2700  I
      PO 2800  J
      A(JjI) « SYM(5)
 2POO CONTINUE
 2700 CONTINUE
      RETURN
CMM*MMMNMMMMMM«M«
CNMMMMMMMMNMMM*   VERTICAL
                                                          1308
                                                          1309
                                                          1310
                                                          1311
                                                          1312
                                                          1313
                                                          13H
                                                          1315

                                                          1317
                                                          1318
                                                          1319
                                                          1320
     BACKGROUND OPTION 2 - MEDIUM DENSITY   WMMMMMMMMMMMM
                • *MMItMMItM«*««
I«21*IXAX1»20
J=1»IY*X
SY«(5)
                MM»««M«»«MMM«
    2 DO 2300
      CO 2600
      »(J»!) *
 2400 CONTINUE .
 2300 CONTINUE
C«««K«*««N»«««M   HORIZONTAL
      IYJ - IYAX1 - 5
      00 2500  J»1*IYJ*10
      PO 2600  I-3*IXAX1*2
      MJ>I> = SYM(S)
 2tOC CONTINUE
 2SOO CONTINUE
      RFTURM
C««*««M«*«M«iKi»iiMMii   BACKGROUND OPTION 3 - HIGH DENSITY
C*«*«MM»MNIIM««N   VERTICAL   MMMM»M»MM»MM«M«
    3 00 2000  I«11»IXAX1»10
               J=1*IYAX
               SYM(5)
                                           MMMMMMMMMMMMMM
      PO 1900
      A(J*I> »
 1900 CONTINUE
 2000 CONTINUE
CNNKNNWMMMMMMttM
      IYJ " IYM1
      DO 2200  J=
      no 2100
      A(J,I) =
 2100 CONTINUE
 2200 CONTINUE
      RFTUR*1
      END
   HORIZONTAL
   - 5
,J=O »IYJ»5
f=3»IXAX1*2
8YMC5I
                «MMNMMMMMM«*M

-------
                                       - 315  -
      SUBROUTINE SCALE(ARRAY»AMAX*»MIN»AXLEN»NPTS*INO
      DIMENSION  ARRAY<103»4>*  INKS)
      DATA INT/2*4*5*8*10/                                               1326.
      INCTMABSUNC)                                                     1327.
      IFUNAX-AMIN)  275*255*275                                          1328.
C»«««»«««»*»»«n««    RESET MAX ANf)  HIM  FOR  ZERO  RANGE    •«•«•*•*••«*««*«*•••*«•
  ??5 IF(A««IN) 265*400*260                                               1332.
  ?60 AMIN-0.0                                                           1333.
      AMAX»=2.0»AMA X                                                      1334.
      60 TO 275                                                          1335.
  2<5 A"AX»0.0                                                           1316.
      AM1N=2.0»AMIN                                                      1337.
  275 CONTINUE                                                           1338.
CN««*»*«*M««»*««««*N*«««K«»«   COMPUTE UNITS/INCH   •••••••••••••••••••••••••a
      RATE*CAMAX-AMIN)/AXLEN                                             1342.
C«»KK«»N««*««««    SCALE INTERVAL TO LESS THAN 10    MftM«*»**ft«N*M«*«««»MBitiiK««
      A-ALOGIO(RATE)                                                     1347.
      N=A                                                                1348.
      IF(A.LT.O) N=*-0.9999                                              1349.
      RATc»RATE/<10.««N>                                                 1350.
      L«RATE*1.00                                                        1351.
C»»*»«»»»«»»«»»«»*»*»«   FIND NEXT HIGHER  INTERVAL   «•««•«»•»»«••««•««««»«««•
  280 DO 300 1=1*5                                                       1355.
      IFCL-INTU)) 320*320.300                                           1356.
  700 CONTINUE                                                        '   1357.
C«»«««   L IS VEXT HI6HER INTERVAL - RAK6E IS SCALTD BACK  TO  FULL  SET    ««••«*
  320 L-INT(I)                                                           1362.
      RAN6E«FLOAT(L)«10.«iiN                                              1363.
      IF(INC.LT.O) CO TO 350                                             1364.
C«*K*K*«»M«KttH«»«K«*«««H«   SET UP POSITIVE STEPS   »»»»»»»»»«»«»i(»«»i(»»»»»»»»
      K=AMIN/R»NG£                                                       1368.
      IFCAMIN.LT.O.) K=K-1                                               1369.
CM««*K««»«*Nit«««««*»««   CHECK FOR HAL VALU€ IN RANGE   »*«»«««»i(i(«i(«»»«»i(««»»i
      IF(AMAX.6T.(K*AXLEN)*RAN6E) GO TO 330                              1373.
      I=NPTS«INCT*1                                                      1374.
      ARRAY(I*1)=K«RAN6E                                                 1375.
      I=I+INCT                                                           1376.
      ARRAY(I,1)»RAN6E                                                   1377.
      PFTURN                                                             1378.
CH««*K«»»K«N««««*«**«II«   IF OUTSIDE RANGE RESET L  AND  N   »»»«»«iiit»«i««««»»»»»
  330 L=L+1                                                              1382.
      IF(L.LT.11>  GO TO 280                                              1383.
      L«2                                                                1384.
      N«N+1                                                              1385.
  J40 GO TO 280                                                          1386.
C*««««*«*«**»««««*«*«**   SET UP NEGATIVE STEPS   ••••••M»»K««M«»»»*»MNttHM****!
  350 K-AMAX/RANGE                                                       1390.
      IF(AMAX.GT.O) K=K+1                                                 1391.
      IF(AMIN.LT.(K+AXLEN)«RANGP) GO TO 330   .                           1392.
      I«INCT»NPTS+1                                                      1393.
      APRAY(I*1)=K»RANGE                                                 1394.
      I=I+INCT                                                           1395.
      ARR/Y=-PANCE                                                  1396.
      RETURN                                                              1397.
  400 WPITE(22*100)                                                      1398.
  100 FORMATC//1H *10X»'RANGE AND SCALE ARE ZERO ON PLOT ATTEMPT')       1399
      END                                                                1401.

-------
                            - 316 -
                         BIBLIOGRAPHY
 1.   Hater Resources  Engineers,  Inc.,  "A Water Quality "lode!  of
          the Sacramento  -  San  Joaquin Delta," Report  to  the
          U.S.  Public Health  Service,  Region  IX,  -June  1965.

 2.   Water Resources  Engineers,  Inc.,  "A Hydraulic  Water  Quality
          Model  of Suisun and San  Pablo Bays," Report  to  the
          FWPCA, Southeast  Region, March 1966.

 3.   Federal  Water Pollution  Control Administration,  "San Joaquin
          Master Drain -  Effects on Water Quality of  San
          Francisco Bay and Delta," January 1967.

 4.   Feigner, K. and  H.S. Harris,  "Documentation  Report - FWQA
          Dynamic Estuary Model,"  U.S. Department of  Interior,
          FWQA,  July  1970.

 5.   Clark, L.J. and  K.D. Feigner, "Mathematical  Model  Studies
          of Water Quality  in the  Potomac Fstuary," Technical
          Report No.  33,  Annapolis Field Office,  EPA  Region  III,
          March  1972.

 6.   Jaworski,  N.A.,  L.J. Clark, and K.D. Feigner,  "A  Water
          Resource -  Water  Supply  Study of the Potomac Estuary,"
          Technical Report  No.  35, Annapolis  Field  Office,
          EPA Region  III, April  1971.

 7.   Clark, L.J. and  N.A. Jaworski, "Nutrient Transport and
          Dissolved Oxygen  Budget  Studies in  the  Potomac  Estuary,"
          Technical Report  No.  37, Annapolis  Field  Office,
          EPA Region  III, October  1972.

 8.   Clark, L.J., O.K. Donnelly, and 0. Villa, Jr., "Summary
          Conclusions from  the  forthcoming Technical  Report
          No. 56, Nutrient  Enrichment  and Control Requirements
          in the Upper Chesapeake  Bay," Annapolis Field Office,
          EPA Region  III, August 1973.

 9.   Clark, L.J., R.B. Ambrose,  Jr., and R.C. Grain,  "A Water
          Quality Modeling  Study of the Delaware  Estuary,"
          Technical Report  No.  62, Annapolis  Field  Office,
          £PA Region  III, January  1978.

10.   Chow, V.T., "Open Channel  Hydraulics," John  Wiley &  Sons,
          New York, New York.

-------
                            -  317 -
11.   Cowan, W.L., "Estimating Hydraulic Roughness  Coefficients,"
          Agricultural Engineering3  v.37,  n.7,  July 1956.

12.   Boyer, M.C., "Estimating the Manning  Coefficient  from an
          Average Bed Roughness  in Open Channels," Transactions,
          AGU,  v.35, n.6, December 1954.

13.   Langbein,  W.E., "Determination  of Manning's n from  Vertical-
          Velocity Curves,"  Transactions,  AGU,  part II,  July  1940.

14.   Einstein,  H.A.  and H.L. Barbarossa,  "River Channel  Roughness,'
          Transactions,  ASCE,  v.117, 1952.

15.   Davidson,  B., R. Vichnevetsky,  and H.T.  Wang, "Numerical
          Techniques for Estimating  Best -  Distributed Manning
          Roughness  Coefficients  for Open  Estuarial  River
          Systems,"  Water Res our.  Res.,  v.15, n.5, October 1978.

-------