>?A-600/2-77-Q11
January 1977
Environmental Protection Technology Series
               PARTICIPATE  COLLECTION  EFFICIENCY
      MEASUREMENTS  ON AN  ESP  INSTALLED ON  A
                            COAL-FIRED UTILITY BOILER
                                  Industrial Environmental Research Laboratory
                                       Office of Research and Development
                                       U.S. Environmental Protection Agency
                                 Research Triangle Park, North Carolina 27711

-------
               RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into five series. These five broad
categories were established to facilitate further development and application of
environmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The five series are:

     1.   Environmental Health Effects Research
     2.   Environmental Protection Technology
     3.   Ecological Research
     4.   Environmental Monitoring
     5.   Socioeconomic  Environmental Studies

This report has been  assigned  to the ENVIRONMENTAL PROTECTION
TECHNOLOGY series. This series describes research performed to develop and
demonstrate instrumentation, equipment, and methodology to repair or prevent
environmental degradation from point and non-point sources of pollution. This
work provides the new  or  improved technology required for the control and
treatment of pollution sources to meet environmental quality standards.
                    EPA REVIEW NOTICE

This report has been reviewed by  the U.S.  Environmental
Protection Agency, and approved for publication.  Approval
does not signify that the contents necessarily reflect the
views and policy of the Agency, nor does mention of trade
names or commercial products constitute endorsement or
recommendation for use.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.

-------
                                      EPA-600/2-77-011

                                      January 1977
PARTICULATE COLLECTION  EFFICIENCY

 MEASUREMENTS ON AN ESP  INSTALLED

   ON A COAL-FIRED UTILITY BOILER
                        by
        John P. Gooch, G. H. Marchant, Jr. ,
                 and Larry G. Felix

             Southern Research Institute
              2000 Ninth Avenue South
            Birmingham, Alabama 35205
           Contract No. 68-02-2114, Task 1
               ROAP No. 21ADL-027
            Program Element No. 1AB012
        EPA Project Officer: Leslie E. Sparks

     Industrial Environmental Research Laboratory
       Office of Energy, Minerals, and Industry
         Research Triangle Park, NC  27711

                   Prepared for

    U.S. ENVIRONMENTAL PROTECTION AGENCY
         Office of Research and Development
               Washington, DC  20460

-------
                        Table of Contents



Section                                                       Page



   I      Summary and Conclusions 	      1



  II      Introduction 	      3



 III      Measurement Techniques 	      5



  IV      Results 	      9



          References 	     16



          Appendix	     47

-------
                          List of Tables

Table No.

    1      Daily Test Conditions 	       17

    2      Mass Train Data from Colbert Steam Plant 	       l8

    3      Precipitator Performance 	       19

    4      Comparison of Particulate Concentrations from
           Impactors and Mass Trains 	       19

    5      Daily Gas Analysis for Colbert 	       20

    6      Average Electrical Operating Conditions During
           Sampling Periods 	       21

    7      Colbert Resistivity Data 	       22

    8      Coal and Ash Analyses 	       23

    9      Outlet Andersen Impactor Runs 	       24

   10      Comparison of Computed and Measured Mass
           Collection Efficiency 	       25
                                11

-------
                          List of Figures

Figure No.                                                    Page

    1      Precipitator Layout 	     26

    2      Discharge Electrode and Frame Geometry 	     27

    3      Sample Extraction - Dilution System 	     28

    4      Sampling Locations 	     29

    5      Voltage vs. Current for Transformer Rectifier
           No. 3A, January 21, 1976 	     30

    6      Voltage vs. Current for Transformer Rectifier
           No. 1A, January 21, 1976 	     31

    7      Voltage vs. Current for Transformer Rectifier
           No. 2A, January 21, 1976 	     32

    8      Inlet Particle Size vs. Cumulative Mass Loading
           for January 13, 1976 to January 20, 1976 	     33

    9      Outlet Particle Size vs. Cumulative Mass Loading
           for Test 2, 3, 10, and 11 	     34

   10      Outlet Particle Size vs. Cumulative Mass Loading
           for Test 6, 7, and 9 	     35

   11      Inlet Size Distributions on Log-probability
           Coordinates, January 13, 1976 - January 20,
           1976	     36

   12      Outlet Size Distributions on Log-probability
           Coordinates, Test 2, 3, 10, and 11 	     37

   13      Outlet Size Distributions on Log-probability
           Coordinates, Test 6, 7, and 9 	     38

   14      Inlet Differential Mass Distributions
           January 13, 1976 - January 20, 1976 	     39

   15      Outlet Differential Mass Distributions, Test
           2, 3, 10, and 11 	     40
                                ill

-------
                          List of Figures
                            (Continued)
Figures No .
   16       Outlet Differential Mass Distributions,
            Test 6, 7,  and 9 .............................     41

   17       Inlet and Outlet Differential Number Dis-
            tributions  for Normal Current Density Test ...     42

   18       Inlet and Outlet Differential Number Dis-
            tributions  for One Half Current Density
            Test .........................................     43

   19       Measured and Theoretically Calculated
            Fractional  Efficiency for Normal Current
            Density Test .................................     44

   20       Measured and Theoretically Calculated
            Fractional  Efficiency for One Half Current
            Density Test .................................     45

   21       Gas Velocity Distribution ....................     46
                               IV

-------
                          ACKNOWLEDGMENTS


The particle size measurements given in this report were conducted

by members of the Environmental Physics Research Section.  The assis-

tance of the Tennessee Valley Authority is gratefully acknowledged.



                                 Submitted by:
                                  John P. Gooch, Head
                                 Control Device Research Section
                                 G. H. Marchant, Jr., Supervisor
                                 Control Device Evaluation
                                 Larry G. Felix
                                 Research Physicist
Approved:
Grady B. Nichols, Head
Environmental Engineering Division
                                 v

-------
                              SECTION I
                       SUMMARY AND CONCLUSIONS

Overall mass and fractional collection efficiency measurements were
made on an electrostatic precipitator collecting fly ash resulting
from the combustion of a high-sulfur (3.1-5.6% S) coal at the
Tennessee Valley Authority's Colbert Steam Plant.  The measurements
were conducted under the following two sets of electrical conditions:
(1) The power supplies were operated under automatic control, which
resulted in an average current density of 17 x 10~9 amps/cm2.  (2)
The input power to the power supplies was intentionally reduced,
which resulted in an average current density of 8 x 10"9 amps/cm2.
Under both sets of electrical conditions, the specific collecting
area was maintained at approximately 47 m2/(m3/sec), and the average
flue gas temperature was 156°C.  The maximum value of fly ash re-
sistivity recorded during the test series with a point-plane probe was
2,4 x 1010 ohm-cm.  Average overall collection efficiencies of 99.55%
and 99=03% were obtained from mass train measurements under automatic
control and with the manually reduced power settings, respectively.

Cascade impactor measurements indicated that the mass median particle
diameter of the fly ash entering the collector was approximately 40 ym.
For the tests conducted under normal current densities, the impactor
measurements showed that the collection efficiency of 1.0 ym diameter
particles was 97.5%.  Under the reduced power settings, the collection
efficiency of 1.0 ym diameter particles was 92.0%.  The mass median
diameter of the particulate mass escaping the precipitator was between
3.0 and 4^0 ym for both the normal and reduced current density test
conditions.

A comparison of measured collection efficiencies with those obtained
from simulating the precipitator operating conditions with a .mathe-
matical model indicated that the theoretical model underpredicted
the fine particle collection efficiencies.  However, the model pre-
dicted the relative effect of the change in electrical operating

-------
conditions on overall mass efficiency with reasonable accuracy-
The resistivity measurements obtained during the test period in-
dicated that ash resistivity was not limiting the electrical
operating conditions of the precipitator.   The relatively low
values of allowable current density apparently result from
sparking due to dust build-ups or to the geometry of the electrode
system.
                               -2-

-------
                             SECTION II
                            INTRODUCTION

This report presents the information obtained from a performance
test conducted by Southern Research Institute on the electrostatic
precipitator installed on Unit #4 at the TVA's Colbert Steam Plant.
The data in this report were obtained with normal operation of the
rapping system.  Additional data concerning rapping reentrainment
losses were obtained under the sponsorship of the Electric Power
Research Institute  (EPRI).  These data will be available in a
future EPRI report.  Table 1 gives a description of the tasks
performed on each day of the test series.  This report presents
results from test numbers 2, 3, 6, 7, 9, 10, and 11.

The objectives of the EPA-sponsored portion of the test were (1)
to determine the overall particulate collection efficiency of the
electrostatic precipitator, and (2) to compare the measured per-
formance of the precipitator with that projected from a mathematical
model.

DESCRIPTION OF ELECTROSTATIC PRECIPITATOR
The electrostatic precipitator installed on Unit #4 of the Colbert
Station consists of three fields in the direction of gas flow
(Figure 1).  The precipitator is physically divided into two col-
lectors (A & B).  The test program conducted at Colbert was conducted
on the "A" side of the #4 precipitator.  The total collecting area
for the "A" side is 7,374.4 m2 (79,380 ft2), with 2,458.13 m2
(26,460 ft2) per field.  This gives a specific collection area of
34.489 m2/(m3/sec)(175 ft2/1000 cfm) for the design volume of
213.82 m3/sec (453,000 ACFM) per collector.  Each collector has
three double half-wave transformer rectifiers or one per field  (see
Figure 1).  The precipitator has a 27.94 cm (11 in) plate spacing and
operates at approximately 149°C (300°F).  A drop hammer type of
                                 -3-

-------
 rapping system is employed in which two plates are rapped simul-
 taneously with each hammer.  The first field is rapped 10 times/
 hour, the second field is rapped 6 times/hour, and the third
 field is rapped 1 time/hour.  The emitting electrodes are square
 twisted wires with an approximate diameter of .419 cm (.165 in)
 and are 10.0 m (32* 9 3/4") long.  There are 12 wires per lane
per field for a total of 1512 wires.  The discharge electrodes
are held in a rigid frame, each frame holds 4 wires (see Figure
2).
                               -4-

-------
                             SECTION III
                        MEASUREMENT TECHNIQUES

MASS CONCENTRATION MEASUREMENTS
Mass loading determinations were conducted at the inlet and outlet
sampling locations with in-stack filters.  Glass fiber thimbles
were used at the inlet to collect the particulate mass and precon-
ditioned Gelman 47 mm glass  fiber filters were  used  at the outlet and
as  back up  filters at the  inlet.  The sampling  probes used at  the in-
let and outlet were  heated and  contained pitot  tubes to monitor  the
velocities  at  each sampling  location.   An isokinetic traverse  across
the duct was conducted to obtain the mass loading at the precipitator
inlet and outlet.  The Gelman 47 mm filters were weighed before and
after each  test in the field on a Cahn  electrobalance, whereas the
inlet thimbles  were weighed in Birmingham before and after the test
due to  the  absence of a suitable balance at the test site.

GAS ANALYSIS MEASUREMENTS
The concentrations of sulfur trioxide,  sulfur dioxide, oxygen,
carbon  dioxide, and the moisture content of the flue gas were
determined  at the inlet of the precipitator.  The sulfur trioxide
samples were collected by a condensation method1 while the sulfur
dioxide was collected in a hydrogen peroxide solution, which oxidized
the sulfur  dioxide to sulfur trioxide.  Each of the  sampling tech-
niques  for  the  oxides of sulfur produced a sample for analysis that
consisted of a  dilute sulfuric acid.  The concentrations of acid
(from which the SOx concentrations may  be calculated) were determined
by barium perchlorate titration using thorin indicator2.

The percentage of oxygen and carbon dioxide were determined by the
use'of Fyrite gas analyzers.   The moisture content of the flue gas
was determined by pulling a known volume of gas through a preweighed
packed drierite column.  The drierite column was then weighed and the
moisture content calculated from the weight change.
                                 -5-

-------
V-I MEASUREMENTS
Primary and secondary voltages and currents were recorded from the
transformer control cabinets during each test.  At the end of the
test period, a voltage divider resistor assembly was attached to
the high voltage side of each transformer.  The secondary voltages
were then calculated from the voltage drop across the measurement
resistor and the resistance values from the resistors in the voltage
divider assembly.  These secondary voltages were used to establish a
correction factor for the panel meters.  All transformers were
checked with the voltage divider assembly, and the secondary voltage
readings were corrected accordingly.

OPACITY MEASUREMENTS
A Lear Siegler RM41p portable optical transmissometer was placed
in the outlet duct to measure the in-stack plume opacity.  The port-
able transmissometer has an optical path length of two meters and
compensation circuitry for determining opacity in terms of the stack
exit diameter.  All opacity measurements in this report are given in
terms of a two meter optical path length.

PARTICLE SIZE MEASUREMENTS
Particle size and concentration measurements were conducted using the
following methods:   (1) inertial techniques using cascade impactors
for determining concentrations and size distributions on a mass basis
for particles having diameters between approximately .2 ym and 10.0
ym,  (2) electrical mobility analysis for size and concentration
measurements on a number basis in the diameter range of 0.015 to
0.3 ym.

Impactor and ultrafine particle sizing data were reduced according
to the procedures delineated in the Appendix following this report.
individual impactor calibrations were not yet available when these*
data were reduced.  Andersen Model in impactors were used at the out-
let while SoRI modified Brink Impactors were used to sample at the
inlet.  Glass fiber impaction substrates and back up filters, which
                                 -6-

-------
were preconditioned by overnight exposure to the flue gas, were used.
Blank runs with the glass fiber substrates were conducted daily.
Nominal flow rates were 1.4 x 10~5 m3/sec  (.03 CFM) for the Brink
Impactor, and  1.9 x 10"4 m3/sec  (.4 CFM) for the Andersen Impactor.

A system based on the use of particle mobility analysis was used for
obtaining essentially real time data on concentration and size dis-
tribution on a number basis over the range of particle diameters from
0.015 ym to about 0.3 ym diameters.  The data obtained with this
system are on a volume concentration by number rather than weight
basis.  Two types of mobility analyses were considered for use in
this test:   (1) diffusional methods and (2) electrical mobility
methods.  Because of its compactness and short measurement time
(29.5 kg and 2 minutes) as compared with the diffusional method
(136 kg and 2 hours), the electrical mobility method was selected
for use on this test  (a Thermosystems Model 3030 Electrical Aerosol
Analyzer).  The electrical mobility method operates by placing a
known charge on the particles and precipitating the particles under
closely controlled conditions.  Size selectivity is obtained by
varying the electric field in the precipitator section of the mobil-
ity analyzer.  Charged particle mobility is monotonically related to
particle diameter in the operating regime of the instrument (0.015
to 0-3 ym particle diameter).

None of the instruments used for particle mobility analysis can
tolerate raw flue gases as sample streams nor can they cope with the
particle concentrations encountered in the flue gas.  Thus, particle
mobility analyses are based on extractive sampling with a metered
sample being diluted with clean dry air, to both condition the sample
and reduce the particle concentrations to levels within the operating
limits of the instruments.  The required dilution typically ranges
from 10:1 to 1000:1 depending on the particulate source and the
location of the sampling point (i.e., upstream or downstream of the
control device).   A diagrammatic representation of the system is
shown in Figure 3.
                                 — 7 —

-------
 ELECTRICAL RESISTIVITY
 In  situ electrical resistivity measurements were made with a point-
 to-plane3 electrostatic collection instrument.  The device is in-
 serted into the flue gas environment and allowed to reach near thermal
 equilibrium with the gas stream.  The dust thickness gage is set at
 zero and the measurement cell positioned for collection.  A clean
 electrode voltage vs. current characteristic is recorded.  The current
density for collection is selected and a dust layer is precipitated
electrostatically.   After collection of the dust layer has occurred,
a second voltage vs.  current characteristic is recorded.  This pro-
vides one measure of electrical resistivity.  The measurement elec-
trode is then lowered to contact the dust layer and the layer thickness
determined.   The resistance of this known geometrical configuration
 (right cylinder) is measured.  The electrical resistivity is then
determined from the measured resistance of the dust layer.

 GAS VELOCITY DISTRIBUTION
 The gas velocity distribution at the face of the first field of the
 precipitator was measured during a plant outage using a hot-wire
 thermal anemometer.  The precipitator was washed, prior to conducting
 the measurement, to remove residual fly ash layers.  Measurements
 were made at 150 points using every third lane and 0.9 m  (3 ft)
 vertical increments with the fans operating at current settings
 corresponding to full load.
                                 -8-

-------
                             SECTION IV
                               RESULTS

MASS CONCENTRATION AND GAS ANALYSES
Table 2 presents results obtained from the mass train measurements at
the upper inlet test plane and at the outlet "pants leg" sampling
locations (see Figure 4).  Table 3 gives the average mass collection
efficiency of the precipitator calculated from the mass train data.
Specific collection areas* for the individual tests were calculated
from the volumetric flow measurements at the precipitator inlet.

Table 4 gives a comparison of the mass loadings obtained with the mass
trains with those obtained from impactor measurements.  The inlet mass
train data exhibit considerable scatter, whereas the Brink data are
relatively consistent.  However, the mass train data should be a better
approximation of the true inlet mass loading since they were obtained
by means of a 48-point traverse with isokinetic sampling.  The inlet
Brink data are averages of several runs.  Each individual Brink im-
pactor was operated in one port with a two-point traverse per port.
Since the velocity profile at the sampling locations did not rapidly
vary, near isokinetic sampling was attained in each run.  Outlet
impactor data were taken with Andersen Model III cascade impactors.
Again, the mass train data should be a better approximation of the
outlet mass loadings because these data were obtained with 48-point
traverses and isokinetic sampling.  Outlet impactor data were obtained
with 24-point traverses and flowrates isokinetic at the average duct
velocities.   The coefficient of variation of the velocity distribution
at the outlet sampling locations was near 0.2.   Thus most of the out-
let Andersen sampling was done under conditions which differed from
isokinetic by about 20%.

Table 2 also presents calculated inlet mass loadings obtained from the
coal ash content (Table 8), the recorded coal feed rate to the boiler

*Specific collection area = ft'2 of collecting area/103 ACFM
                                 -9-

-------
 during the test  periods, the measured volume flows at the inlet test
 plane, and the assumptions that  (1) 20% of the ash entering the fur-
 nace leaves as bottom ash, and  (2) 5% of the ash leaving the furnace
 in the flue gas  is removed prior to the precipitator inlet.  Significant
 ash fallout reportedly occurs in hoppers which are upstream from the
 precipitator.  These hoppers were previously associated with a mech-
 anical collector which is no longer present in the system.  A com-
 parison of  the calculated and measured inlet mass loadings shows that
 the relatively low measured values of inlet mass loadings obtained for
 tests  9, 10, and 11 are not consistent with the coal analyses obtained
 for the same sampling period.  One possible explanation of this dis-
 crepancy is that the variation in ash content of the coal was such that
 the samples obtained for analysis were not representative of the fuel
 burned over the testing periods.

 The gas composition data are presented in Table 5.   The higher SO3
 concentrations on the afternoon of the 15th and 16th of January are
 due to inclusions of the probe wash in the total sample.  The SO3 con-
 centrations obtained prior to the three o'clock sample of January 15th
 are thought to be low as a result of an undetected failure in the heating
 tape which  is used to maintain the probe temperature above the acid
 dewpoint.

 VOLTAGE-CURRENT MEASUREMENTS
 The average daily operating voltages and currents during the sampling
 periods are given in Table 6.  Figure 5 shows the secondary voltage and
 current relationships obtained on the number 3A transformer rectifier
 with the voltage divider resistor attached.  Figures 6 and 7 show the
 corrected secondary voltage and current relationships for TR1s 1A and 2A.
 All current meters were assumed to function properly since it was reported
 that all meters had been zeroed and checked during a recent outage.
                                                                          i
 RESISTIVITY MEASUREMENTS
 The  resistivity measurements were conducted at the lower inlet sampling
 location.  The data obtained with the in situ point-to-plane probe are
 given  in Table 7.  The temperatures included in the table are those
which were recorded at the sampling location.
                                -10-

-------
COAL AND ASH ANALYSES
A coal sample was obtained during each test from the "B" mill of Unit
#4.  These samples were analyzed and Table 8 presents the "as received"
analysis of the individual samples.  The ash content of the samples of
the first week were relatively constant but those of the 19th and 20th
were somewhat higher than the other data.  As was discussed previously,
no correlation with the inlet grain loadings to the precipitator can
be made with respect to the differences in ash content.  Chemical
                   . -*"
analyses were obtained on two fly ash samples:  a proportionate blend
of hopper samples and an isokinetic sample collected with a high volume
sampler.  These data are also reported in Table 8.

OPACITY MEASUREMENTS
No opacity data were obtained during the first week of testing due to
instrument failure of the transmissometer.  Data obtained on January
19 and 20 were obtained with a portable RM41p transmissometer which was
on loan from the EPA.  The opacities recorded at the outlet on the 19th
and 20th were 26% and 25.5%, respectively.  These values are not useful,
however, because of the high probability that the retroflecter may be
contaminated with dust particles when the instrument is used in ducts
with high negative pressure.

PARTICLE SIZE MEASUREMENTS
Table 9 gives stage weights from Andersen blank and real runs using
preconditioned glass fiber substrates.  A blank impactor was run each
test day and is designated with the letter B in Table 9.  The runs des-
ignated RA are averages of two real impactor runs which were obtained
during each test (one impactor traversed each half of the outlet duct).
The corrected real average, which is designated as CRA, was obtained
by taking the average weight gain per stage of the blank run  (less the
initial and final filters) and subtracting that average gain from each
of the stage weights of the RA runs.  The weight gain of the final
filter on the CRA runs was obtained by subtracting the weight gain of
the blank final filter from the average of the two real runs per test.
                               -11-

-------
Figure 8 presents the average cumulative inlet size distribution ob-
tained with the Brink impactors at the inlet sampling location from
January 13, 1976 to January 20, 1976.  Outlet cumulative distributions
from the Andersen data are given in Figures 9 and 10.  Figure 9 pre-
sents the average outlet cumulative distribution for normal operation
of the precipitator while Figure 10 presents the average outlet
cumulative distribution with the precipitator operating at one-half
the normal current density.  These cumulative data are also presented
on log-probability coordinates in Figures 11, 12, and 13.  The inlet
size distribution data show that about 4% of the particulate mass
entering the precipitator consists of particles smaller than 2.0 ym
diameter, whereas between 25 and 35% of the particulate mass exiting
the collector is smaller than 2.0 ym diameter.

Quality of Measurements
Differential size distributions were computed on a mass basis from the
size data obtained with the cascade impactors.  These differential dis-
tributions have been plotted in Figures 14, 15, and 16.  Figures 17
and 18 present the differential size distributions which were computed
on a number basis from the concentration data obtained with the cascade
impactors and the electrical aerosol analyzer.  Ninety percent con-
fidence intervals are also shown for these differential distributions.

A comparison of the differential size distributions obtained with the
two measurement techniques (inertial and electrical mobility) indicates
whether agreement was obtained in the regions of overlap.  This method
of presenting the data also indicates the size regions containing the
greatest quantities of mass or number concentration.  The impactor data
presented in Figure 14 show that, at the inlet location, the greatest
quantity of mass is contained in the 10 to 100 ym diameter region.
Figures 15 and 16 show that the greatest quantity of mass at the out-
let occurs at about the 4 ym diameter region for both the normal and
one half current density test.  Figures 17 and 18 indicate fair agree-
ment between the impactor distribution and those obtained with the
electrical aerosol analyzer in the overlap regions.  Figures 17 and
18 also show the manner in which the number distributions are skewed
toward the smallest particle sizes.
                                -12-

-------
The large error bars on data obtained from the ultrafine particle
system are due more to the small number of data points averaged than
to the scatter in the data.  A relatively small fluctuation in the
source concentration can cause the electrical aerosol analyzer to in-
dicate a negative concentration or a concentration not commensurate
with other data.  In addition, condensation of sulfuric acid in the
dilution system for the electrical aerosol analyzer created an inter-
fering aerosol in the ultrafine size range.  This led to some erroneous
readings in the 0.01 ym to 0.05 ym size range.  The data were screened
and those results which were felt to be unrealistic or non-representa-
tive were discarded.  For these reasons there were often few con-
centrations in any one size band to average.

Figures 19 and 20 present fractional efficiency results obtained during
normal and one-half current density operation of the precipitator with
the electrical aerosol analyzer and the inertial impactors.  The large
confidence intervals in the 0.01 ym to 0.03 ym diameter particle size
range are due to the lack of a number of valid experimental measurements
for these small diameters.  Average values are shown for the data which
were obtained.  These results are compared with theoretical predictions
in a subsequent section.

GAS VELOCITY DISTRIBUTION
Figure 21 shows the gas velocity distribution obtained under air load
conditions using the procedure described in Section III.  The average
velocity and the square of the average velocity for all the passages
on which measurements were obtained are plotted as a function of
vertical position.  The average velocity and the average of the velocity
squared were obtained by planimetry.  The average velocity obtained was
1.74 m/sec, and the standard deviation was 0.955 m/sec, or 55% of the
average velocity.  This distribution is undesirable because of the
large standard deviation and the location of the highest velocities
in the region near the bottom of the precipitator.  However, at the
outlet sampling plane, the flow distribution was changed such that the
highest velocities occurred in the upper portion of the duct.  The flow
distribution plates at the precipitator outlet offer more flow re-
sistance at the bottom than at the top and thus are probably responsible
for the change in relative flow pattern.
                                -13-

-------
COMPARISON OF THEORETICAL AND MEASURED RESULTS
A mathematical model of electrostatic precipitation has been develop6
by Southern Research Institute under another contract for the Envi^"
onmental Protection Agencylf.  This model has been used to simulate
the operating conditions and geometry of the precipitator on which
this test series was conducted.   Average operating conditions for
test numbers 2, 3, 10, and 11 were used in the model to simulate the
operating current density allowed by the precipitator power supplies,
and the fractional efficiencies  predicted by the model are shown in
Figure 19.  Similarly, the reduced current density conditions for
test numbers 6, 7, and 9 were used to produce the theoretical frac-
tional efficiency curve shown in Figure 20.  Comparison between
measured and theoretically predicted values of overall mass collection
efficiency are shown in Table 10.

Figures 19 and 20 indicate that  the model underpredicts particle col-
lection efficiencies over the particle diameter range from about 0.05
ym to 5.0 ym.  Possible causes for the underprediction are (1) approxi-
mations necessary in modelling the electric field produced by the
electrode geometry, (2) approximations used in the current version
of the model for estimating the  effect of particulate space charge,
and (3) unmodelled effects such as particle concentration gradients.
The probable cause of the lower-than-theoretical efficiencies indicated
for the larger particles is the  reentrainment of particle agglomerates
from the collecting electrodes.   Research is currently in progress
under EPA and EPRI support which is expected to improve the model's
capabilities for predicting fractional efficiencies under field con-
ditions.

Although Table 10 indicates that the theoretically obtained overall
mass efficiencies are lower than the measured values, the ratio of
the measured to theoretical efficiencies for the two current den-
sities at which the tests were conducted shows that the model pre-
dicts the relative effects of the changes in electrical operating
conditions with reasonable accuracy.
                                -14-

-------
The voltage-current relationships shown in Figures 5, 6, and 7,
and the resistivity measurements reported in Table 7 indicate that
the electrical operating conditions at this installation are not
limited by dust resistivity.  Therefore, the relatively low current
densities apparently result from sparking due to the geometry of
the electrode system.  The nature of the voltage current curve for
the inlet set (Figure 6) suggests that a combination of space
charge effects and dust accumulation on the electrodes cause the
sparking at the relatively low values of current density at which
the inlet set operates.

ENERGY COSTS
A typical power consumption of the precipitator TR sets during the
normal current density tests was 74 kW, or 0.47 kW/(m3/sec).  If
power costs are $0-01/kWh, the energy costs for the TR sets would
be about $18.00/day.  Since the test program was conducted on one
half of the total plate area installed on the Unit 4 boiler, a
representative total energy requirement for the total precipitator
installation would be 148 kw, or 0.092% of the 160 MW output.
                               -15-

-------
                         REFERENCES


Lisle, E. S. and J. D. Sensenbaugh, "The Determination of Sulfur
Trioxide and Acid Dew Point in Flue Gases," Combustion, pp. 12-15,
January, 1965.

Fritz, J. S. and S. S. Yamamura, "Rapid Microtitration of Sulfate,"
Analytical Chemistry, Vol. 27, No. 9, pp. 1461-64, September, 1955.

Nichols, G. B., "Techniques for Measuring Fly Ash Resistivity,"
EPA Report No. EPA-650/2-74-079, prepared under Contract No.
68-02-1303 by Southern Research Institute, Birmingham, Alabama,
August, 1974.

Gooch, J. P., Jack R. McDonald and Sabert Oglesby, Jr., "A Mathe-
matical Model of Electrostatic Precipitation,"  EPA Report No.
EPA-650/2-75-037, prepared under Contract No. 68-02-0265 by
Southern Research Institute, Birmingham, Alabama, April, 1975.
                            -16-

-------
                           TABLE 1

                   DAILY TEST CONDITIONS
Date
Test No,
Operation Of Precipitator
1/12/76
1/13/76
1/14/76
1/15/76
1/16/76
1/19/76
1/20/76
i
1
2
3
4
5
6
7
8
9
10
11
Normal
Normal
Normal
Rappers on for 30 minutes,
for 40 minutes
Rappers on for 30 minutes,
for 40 minutes
{Rappers operating normally
Reduced current density


off
off

Rappers on/off, reduced current
density
Rappers normal, reduced current
density
Normal
Normal

1 All tests run with boiler operating at 160 MW except Test
 No. 1, during which boiler was operating at 112 MW.
                            -17-

-------
                                                 TABLE 2
oo
I
                                             MASS TRAIN DATA
                                        FROM COLBERT STEAM PLANT
Run Number
Date
Avg . Temp . ° C
Avg. Moisture3, %
Volumetric Flow1
Am3/sec
ACFM
SDm3/sec
Concentrations
Inlet:
gm/SDm3
gm/Am 3
gr/ACF
Outlet:
gm/SDm3
gm/Am3
gr/ACF
% Isokinetic"1
Variation :
Inlet
Outlet
2
1/13/76
152
7.3

159.84
338,637
97.32


7.387
4.499
1.966

.0238
.0149
.0065


103
96
3
1/13/76
156
6.9

149.94
317,671
91.90


7.648
4.689
2.049

.0151
.0094
.0041


106
96
6
1/16/76
155
7.4

159.14
337,157
99.59


9.275
5.806
2.537

.0929
.0556
.0243


106
108
7
1/16/76
155
7.1

158.35
335,489
97.97


8.385
5.188
2.267

.0654
.0400
.0175


107
100
9
1/19/76
158
6.4

153.85
325,950
97.09


6.545
4.131
1.805

.0739
.0458
.0200


104
101
10
1/20/76
159
5.6

157.71
334,129
100.41


5.792
3.689
1.612

.0336
.0208
.0091


104
107
11
1/20/76
160
5.2

153.22
324,610
97.98


3.435
2.197
.960

.0238
.0149
.0065


103
107
      Calculated inlet
      mass loadings2
      gr/ACF
1.81
2.17
1.90
2.41
3.32
                                                   3.09
3.32
      'Flows  calculated from inlet data.

      Calculated  from coal analyses in Table 8 and assumptions described  in  text.

      30btained from mass  train.
     ''48-point traverse  for all runs except run 7 (outlet) and run 9  (inlet
      and outlet) which  consisted of 24 points.

-------
                                  TABLE 3
Test Number
Date
          PRECIPITATOR PERFORMANCE
             (MASS TRAIN DATA)

   2        3        6        7        9       10       11
1/13/76  1/13/76  1/16/76  1/16/76  1/19/76  1/20/76  1/20/76
Efficiency %     99.68    99.80    99.00    99.22    98.87    99.42    99.31
SCA m2/(mVsec)  46.10    49.25    46.30    46.69    48.07    46.89    48.27
   FtVlOOO CFM    234      250      235      237      244      238      245
Average Current
 Density nA/cm2
  17.1
17.1
8.2
8.2
7.9
17.
17,
                                  TABLE 4

                  COMPARISON OF PARTICULATE CONCENTRATIONS
                       FROM IMPACTORS AND MASS TRAINS

                      Particulate Concentration, mg/SDm3
                             INLET
                                            OUTLET
  Test No.
     2               7,387

     3               7,648

     6               9,275

     7               8,385

     9               6,545

    10               5,792

    11    l           3,435

   Average for 2, 3, 10, and 11

   Average for 6, 7, and 9
Impactor L
5,747
5,747
5,360
5,360
5,327
5,928
5,928


Mass Train Andersen Impactor
23.8
15.1
92.9
65.4
73.9
33.6
23.8
24.1
77.4
12.9
19.0
36.7
41.6
51.6
17.8
10.9
15.2
43.3
   1Impactor Data Obtained From Daily Averages
                                    -19-

-------
                                    TABLE  5

                         DAILY  GAS ANALYSIS FOR  COLBERT
Date
1/13

1/14

1/15

1/16

Time Temp.°C
10:00
4:00
10:00
3:00
11:00
3:00
11:00
2:00
154
157
150
154
146
152
154
155
%C02 %02 %H2O S02ppm
12. O2 7.03 8.1 2962
3078
12. 52 7.0 3436
3540
11. O2 7.0 6.8 3346
3168
11. 52 6.5 3335
15. O2 6.5 8.3 2973
15.0 4.0 3081
15.0 4.0 7.2 3204
3198
S03ppm
4.6
4.2
4.3
6.4
5.4
7.2
8.3
6.1
11. 91
12. 11
16. 7 l
Dewpoint1*
°C
127

126

129

133

1 Probe washed, wash added to condenser wash.
2High negative pressure may have caused leak in sampling probe.
3Sanples for 002  and 02 analyzed sequentially.
^Obtained from Figure  6.3 of "An Electrostatic Precipitator Performance
 Model", by G. B. Nichols and J. P. Gooch.  Final report to the Environ-
 mental Protection  Agency, Contract No. CPA 70-166.  (Southern Research
 Institute,  July, 1972).
                                      -20-

-------
                                              TABLE 6

                                    AVERAGE ELECTRICAL OPERATING
                                 CONDITIONS DURING SAMPLING PERIODS
I
to
      Date
      1/12/76
      1/13/76
      1/14/76
      1/15/76
      1/16/76
      1/19/76
      1/20/76
TR
   Primary
Amps    Volts
                                                         Secondary
1A
2A
3A
1A
2A
3A
1A
2A
3A
1A
2A
3A
1A
2A
3A
1A
2A
3A
1A
2A
3A
37.5
82.5
97
29.7
78.2
92.5
32.8
82
94
32.8
80
93.8
_— —
37.4
42.6
_w_
35.4
41.2
31.5
76.5
88.8
360
377.5
390
312.5
370.8
385.8
326
401
401
331.3
389.2
400.1
238
338
350
243
344
350
331. 3
383.3
398.3
Bushing
Amps
.155
.23
.30
.133
.223
.283
.116
.23
.30
.14
.222
.297
.05
.10
.14
.05
.10
.14
.14
.21
.283
#A
KV
44.8
42.5
42.2
41.1
42.4
42.3
41.9
47.0
44.3
41.8
45.2
44.2
31.7
42.9
41.1
32.9
43.5
42
42.5
44.5
44.6
Bushing
Amps
.145
.21
.295
.14
.2
.275
.138
.218
.3
.148
.204
.294
.08
.094
.137
.064
.092
.136
.15
.198
.268
#B
KV
41.5
42.6
42.4
40.1
41.8
42.6
43
45.8
44.7
42.4
44.2
45.8
31.1
41.2
41.7
32.3
44.3
41.5
42
43.7
44.6
Current
Density
nA/cm2

 12.2
 18
 24.3

 11.1
 17.3
 22.8

 10.4
 18.3
 24.5

 11.8
 17.4
 24.1

  5.3
  7.9
 11.3

  4.7
  7.8
 11.3

 11.8
 16.7
 22.5

-------
        TABLE 7




COLBERT RESISTIVITY DATA
Test No.
2A
2B
3
4A
4B
4C
5A
5B
5C
6A
6B
7
8A
8B
9
10A
10B
11
Temperature °
152.7
153.3
153.8
147.7
147.7
151.6
152.2
153.3
158.3
158.3
158.3
157.2
151.6
152.2
151.1
157.7
157.2
154.4
C Date
1/13/76
1/13/76
1/13/76
1/14/76
1/14/76
1/14/76
1/15/76
1/15/76
1/15/76
1/16/76
1/16/76
1/16/76
1/19/76
1/19/76
1/19/76
1/20/76
1/20/76
1/20/76
Time
0900
1115
1530
0800
1200
1430
0845
1045
1300
0835
1045
1300
0845
1100
1345
0845
1030
1300
Resistivity, fi-cm
2.4 x 101 °
1.9 x 1010
2.1 x 1010
1.7 x 1010
1.4 x 1010
1.6 x 1010
1.5 x 1010
1.5 x 1010
9.6 x 109
9.8 x 109
1.1 x 1010
1.2 x 1010
1.3 x 1010
1.1 x 1010
1.1 x 1010
1.2 x 1010
1.1 x 1010
1.3 x 1010
          -22-

-------
                                                TABLE 8

                                        COLBERT COAL  ANALYSES
                                             (AS RECEIVED)
Date
Time
Moisture
Volatile
Matter
Fixed
Carbon
Ash
Sulfur
BTU
1/12/76
16:30
2.09
34.91
42.41
20.59
3.12
10,836
1/13/76
12:10
2.02
39.41
48.11
10.46
3.09
12,260
1/13/76
17:15
2.07
38.25
46.99
12.69
3.90
12,098
1/14/76
12:50
1.96
38.64
47.91
11.49
3.75
12,254
1/15/76

2.04
39.05
47.91
11.00
3.28
12,421
1/16/76
11:30
1.50
38.94
48.42
11.14
3.28
12,861
1/16/76
15:00
1.49
36.72
47.49
14.30
3.76
12,327
1/19/76
10:00
8.72
33.50
40.85
16.93
3.01
10,603
1/19/76
16:30
8.22
33.67
41.34
16.77
5.59
10,687
1/20/76
11:30
1.76
38.27
45.02
14.95
4.01
12,152
1/20/76
15:00
1.74
36.22
44.42
17.62
4.14
11,693
Proportionate
 Hopper Sample

High Volume
 Sample
                    FLY ASH CHEMICAL ANALYSES

Li20   Na20   K2O   MgO   CaO   Fe203   A1203   SiQ2    TiQ2    P205    SO 3    LOI  Total1


0.02   0.55   2.49  0.95  5.64  24.38   18.30   45.08  1.31    0.30    1-86   3.97 100.88


0.02   0.54   2.49  0.95  4.73  22.72   18.52   45.69  1.45    0.30    2.77   5.72 100.18
'Total based on ignited sample  (750°C ignition temperature)
                                                 -23-

-------
                                                                TABLE 9
                                                     OUTLET ANDERSEN IMPACTOR RUNS
                                       BLANK  (B),  REAL AVERAGED (RA), CORRECTED REAL AVERAGED (CRA)
Test *

Date
                                                                                          10
1/13/76  1/13/76     1/13/76    1/16/76  1/16/76    1/16/76    1/19/76  1/19/76    1/20/76  1/20/76
   11

1/20/76
Type of
Run
Run Time
Minutes
Weight
Gains
(nig)
SO
SI
S2
S3
S4
S5
S6
S7
S8
SF
X
a

B
120



1.21
0.54
0.46
0.52
0.37
0.46
0.37
0.47
0.45
1.03
0.46
0.06

RA CRA
120




1.86 1.40
1.32 0.86
2.59 2.13
1.78 1.32
1.85 1.39
1.83 1.37
1.90 1.44
1.02 0.56
1.31 0.28
(No SO and SF)
(No SO and SF)

RA
120




4.44
2.92
2.85
2.18
1.96
2.82
1.95
0.93
1.31



CRA





3.98
2.46
2.39
1.72
1.50
2.36
1.49
0.47
0.28



B
120




0.50
0.45
0.61
0.44
0.45
0.69
0.92
0.62
0.44
0.59
0.16

RA
80




4.51
2.51
3.18
3.03
3.61
5.43
2.99
1.39
1.40
(No SF)
(No SF)

CRA





3.92
1.92
2.59
2.44
3.02
4.84
2.40
0.80
0.96



RA
90




4.30
3.31
4.70
4.10
4.50
5.69
3.15
1.34
2.00



CRA





3.71
2.72
4.11
3.51
3.91
5.10
2.56
0.75
1.56



B
84




0.29
0.16
0.37
0.31
0.38
0.25
0.24
0.21
0.19
0.28
0.08

RA
84




4.75
2.83
4.19
3.91
4.32
6.14
4.16
1.88
1.31
(No SF)
(No SF)

CRA





4.47
2.55
3.91
3.63
4.04
5.86
3.88
1.60
1.12



B
120




0.57
0.14
0.76
0.55
0.68
0.34
0.72
0.55
0.82
0.54
0.21

RA
120




3.32
2.24
2.47
2.74
2.66
3.31
2.25
0.94
0.87
(No SF)
(No SF)

CRA





2.78
1.70
1.93
2.20
2.12
2.77
1.71
0.40
0.05



RA CRA
120




2.37 1.83
1.49 0.95
2.32 1.78
1.65 1.11
1.74 1.20
2.13 1.59
1.31 0.77
0.99 0.45
1.09 0.27


                                                                 -24-

-------
                                 Table 10
                     Comparison of Computed and Measured
                        Mass Collection Efficiency
Average
Specific
Collecting
Ar.ea
m /(m /sec)
  Test
Numbers
                Collection Efficiency
Theoretical
   From
  Model
Measured
From Mass
  Train
Ratio of
Measured to
Theoretical
Efficiency
   47.6    2,3,10,& 11

   47.0      6, 7,& 9
               99.32

               98.66
                   99.55

                   99.03
                1.0023

                1.0034
                                  -25-

-------
t
I
CO
                                             LEARSIEGLER
                                                
-------
                      0.038m DIA


1

1.5


1


2m




















JT
„ n on_


















01 OA m


«— 0.0042m DIA


























i








Figure 2.   Discharge Electrode and Frame  Geometry
                           -27-

-------
 I
to
CO
 I
                       PROCESS EXHAUST LINE
                                  CYCLONE


                 ORIFICE WITH BALL AND SOCKET

                    JOINTS FOR QUICK RELEASE
                                           SOX ABSORBERS (OPTIONAL)
                                                 HEATED INSULATED BOX


                                       REC'IRCULATED CLEAN. DRY, DILUTION AIR
                                                                                      £•••      /^/%^%l IV
                                                                           FILTER   BLEED NO. 2
                                                                                              COOLING COIL
                                                                                                              PRESSURE
                                                                                                              BALANCING
                                                                                                              LINE
                                                                                                                  BLEED NO. 1
                            M)  MANOMETER
                                       Figure  3.   Sample  Extraction-Dilution  System

-------
                                ELECTROSTATIC FLY-ASH
                                COLLECTOR
         LARGE PARTICLE
         PORT
       LEARSIEGLER
       LOCATION
                         PANTS LEG
                         TEST PLANE
                                                             TOP-INLET
                                                             TEST PLANE
               I.D. FAN
BOTTOM C
INLET
TEST PLANE
Figure 4.   Sampling Locations
                           -29-

-------
   0.3 —
   0.2
  <
   0.1
           TR
#3A
     20
                    A Bushing

                    B Bushing
       30
40
                             kV
                                                        4.5
                                                        6.3
                                                            CM
                                                        i.16
50
Figure  5.  Voltage vs. Current for  Transformer Rectifier
            #3A,  January  21,  1976
                               -30-

-------
   0.2,
                              i        r
            TR *1A
  0.151
       IA Bushing
       1 B Bushing
 oo
  0.051
              II        II
                                                         16.3
                                                         8.16
                                                 CM
                                                  O
25       30       35
                              40
                              kV
                          45       50
Figure 6
Voltage vs.  Current  for Transformer Rectifier
#1A/  January 21, 1976
                                -31-

-------
      0.2
      0.15
      0.05
i        r
                  16.3
                  A
                TR 2A
                     • A Bushing

                     • B Bushing
                                                       CM
                                                   8.16
        25       30       35       40      45       50

                             kV
Figure 7.   Voltage vs. Current for  Transformer Rectifier
            #2A,  January 21,  1976
                            -32-

-------
  COLBERT STEAM PLANT
  INLET IMPACTOR DATA
  ASSUMED PARTICLE DENSITY =2.40 gin/cm3
Figure 8.
       PARTICLE  DIAMETER
          (micrometers)


Inlet Particle Size vs. Cumulative Mass Loading
for January 13, 1976 to January 20, 1976
               -33-

-------
          COLBERT STEAM PLANT
          OUTLET IMPACTOR DATA
          ASSUMED PARTICLE DENSITY =2.40 gm/cm3
                    Test 2,  3.  10,  11
10
10
                            PARTICLE DIAMETER
                              (micrometers)

        Figure 9.   Outlet Particle Size vs. Cumulative Mass Loading
                   for Tests 2,  3, 10,  and 11

                                  -34-

-------
             COLBERT STEAM PLANT
             OUTLET IMPACTOR DATA
             ASSUMED PARTICLE DENSITY =2.40 gm/cm3
                     TEST 6, 7, 9
10'1 •
    10"1
10
                               PARTICLE DIAMETER
                                 (micrometers)

            Figure 10.  Outlet Particle Size vs. Cumulative Mass Loading
                        for Test 6, 7, and 9

                                      -35-

-------
       Colbert Steam Plant, January 13-20,  1976
       Inlet Impactor Data
       Assumed Particle Density =2.40 gm/cm3
       Cumulative Percent Distribution
                                       Grand  Average
10
      0.01 0.05 0.1 0.2  0,6 I  2   5   ID  ID  30  40  SO  tO  JO  10
                                              95  9B  99    ».( 99.9   99.W
              Percent Less Than Indicated  Size
   Figure 11.
Inlet Size Distributions on Log-probability
Coordinates, January  13, 1976 - January 20,  1976

              -36-

-------
   Colbert Steam Plant, January  1976
   Outlet Impactor Data
   Assumed Particle Density  =2.40  gm/cm3
   Cumulative Percent Distribution
                                Tests #2, 3, 10, 11
                                                   i  0-5 ts o.l o.re  o.»i.
                        10  20  30  40  50  60  70  «0  90  95  98 99
10
  -1
              Percent  Less  Than Indicated Size
     Figure 12.
Outlet Size Distributions on  Log-probability
Coordinates, Test 2,  3,  10, and 11
                             -37-

-------
        Colbert Steam Plant, January 1976

        Outlet Impactor  Data
        Assumed Particle Density = 2.40 gm/cm3
        Cumulative Percent Distribution
Tests 16,  7,  9
                                                      2  1 0.8  0.2 0.1 0.05  0.01
to
S-l
0)
4-1
o
•H
s
4J


1
•H
Q

OJ
H
O
•H
-P
   10J
   10
   10
     -1
        Dill 0.05 0.1 0.2  O.S 1  2   5  u   20  30 U 51 iO 70  U   90  »   t  »
     o   	
                                                            M.8 99.V    S9.99
                 Percent Less Than Indicated  Size
        Figure  13.   Outlet Size  Distributions on  Log-probability
                     Coordinates,  Test 6, 7, and 9
                                 -38-

-------
10*
  a
Colbert Steam Plant
Inlet Impactor Data
Assumed Particle Density =2.40 gm/cm3
Bars Indicate 90% Confidence Interval
           Average of Tests on days January 13-20, 1976
                             Geometric Mean Diameter
                                  (micrometers)
               Fiqure 14.  Inlet Differential Mass Distributions
                           January 13, 1976 - January 20, 1976
                                     -39-

-------
Colbert Steam Plant
Outlet Impactor Data
Assumed Particle Density =2.40 gm/cm3
Bars Indicate 90% Confidence Interval
Test (2, 3, 10, ID
                          Geometric Mean Diameter
                              (mic r ome ter s)
          Figure 15.  Outlet Differential Mass Distributions,
                      Test 2, 3, 10, and 11
                               -40-

-------
     Colbert Steam Plant
     Outlet Impactor Data
     Assumed Particle Density = 2
     Bars  indicate 90% confidence
                                 Test  (6,  7,  9)
        .40  gm/cm3
         interval
10-1
                           Geometric Mean Diameter
                                (micrometers)
             Figure 16.
Outlet Differential Mass Distributions,
Test 6, 7, and 9
                                   -41-

-------
o
01
•p
n
8
Cu
       ,15
                 COLBERT  STEAM  PLANT,  January,  1976
                 ASSUMED  PARTICLE  DENSITY  =2.40  am/cm
                 BARS  INDICATE  90% CONFIDENCE INTERVAL
NORMAL CURRENT DENSITY
NORMAL RAP INTERVAL
                                                                                                         O   INLET, ULTRAFINE

                                                                                                         •   INLET, IMPACTORS

                                                                                                         D   OUTLET, ULTRAFINE

                                                                                                         •   OUTLET, IMPACTORS
         Figure 17.   Inlet and Outlet Differential Number Distributions
                      for Normal Current Density Test
                                    GEOMETRIC MEAN DIAMETER  (micrometers)
         .01

-------
                COLBERT  STEAM PLANT,  January, 1976
                ASSUMED  PARTICLE DENSITY =2.40 gm/cm3
                BARS  INDICATE 90% CONFIDENCE INTERVAL
                                                                                REDUCED CURRENT DENSITY
                                                                                NORMAL RAP INTERVAL
10
  15
                                                                                                    O  INLET, ULTRAFINE

                                                                                                    *  INLET, IMPACTORS

                                                                                                    O  OUTLET, ULTRAFINE

                                                                                                    •  OUTLET, IMPACTORS   =
         Figure  18.   Inlet and Outlet Differential Number Distributions
                     for One Half Current Density Test                     .  .-,^.^-^.1 -j i ..•

                             GEOMETRIC MEAN DIAMETER  (micrometers) ^L__ ^ -JJ V^tt jr^-j I  i'Jj
 10
 10
8 ^
    .01
                                  .1
                                                                1.0
                                                                   -43-

-------
        Colbert Steam Plant, January 1976
        Tests  (2,  3, 10, 11)
        Assume Particle Density =2.40 gm/cm3
        Bars Indicate 90% Confidence Interval
Figure 19.
                                                         10J
   Geometric Mean Diameter
         (micrometers)
Measured and Theoretically Calculated Fractional
Efficiency for Normal Current Density Test

-------
                              Colbert Steam Plant, January 1976
                              Tests (6, 7, 9)
                              Assume Particle Density = 2.40 gm/cm3
                              Bars Indiate 90% Confidence Interval
Ul
i
          10
            mm 2.
                                   -1
Figure 20,
                10
                                   Geometric Mean Diameter
                                       (micrometers)
                             Measured and Theoretically Calculated Fractional
                             Efficiency for One Half Current Density Test

-------
u
0)
w
•H
O
O
t-H
      3.556
      3.048   —
      2.540   —
      2.032    —
1.524   —
      1.016
       ,508    —
                                                                          <
                                                                          (D
                                                              — 12.90    P
                                                                     O
                                                                     0
                                                                     H-
                                                                     (1-
                                                            10.32    $

                                                                    o>
                                                         —   7.74
        a

        <
        01
                           34567
                              Sample Point Location
                                                         —   5.16
        CO

        o
         M



2.58




 From Bottom

0

 From Top
                    Figure 21.  Gas Velocity Distribution
                                    -46-

-------
                             APPENDIX A

SAMPLE DATA REDUCTION CALCULATIONS FOR IMPACTOR AND ELECTRICAL
MOBILITY  (ULTRAFINE) SIZING DATA
In this appendix we include information on how individual impactor
stage weights and run data are used to obtain the cumulative mass
distribution, AN/ALogD, AN/ALogD, and fractional efficiency in-
formation cited in this report.  Next the data reduction scheme
used for obtaining ultrafine particle size distribution data is
explained.  In a third section the ultrafine particle size dis-
tribution data recorded for this test are included.  Finally, the
computer printouts for each impactor run are given.  In this test
ultrafine particle sizing data were obtained by electrical mobility
analysis.

The organization of the section describing the ultrafine data re-
duction has been revised since the last report under this contract
(EPA-600/2-76-141).  Although the basic data reduction scheme has
not been changed, data are now taken with a strip chart recorder
and not recorded by hand.  In addition, a specially designed heated
box which contains the sample dilution system was first used on
this field test.

At the end of the section explaining how the impactor data reduction
is accomplished, we show the relationship between the Stokes1 or
Physical particle diameter (density = 2.40 gm/cm3) and aerodynamic
diameter  (density = 1.00 gm/cm3).  In order to compare measurements
made on other control devices it is useful to normalize the particle
density to unity and use the aerodynamic particle diameter.  The
graph on page 70 facilitates this comparison.  We recognize that
some of the data reduction procedures are not statistically rigorous,
Work is currently underway to improve data reduction techniques.
These improved techniques will be used in future work.
                               -47-

-------
SAMPLE CALCULATION FOR DATA REDUCTION OF IMPACTOR SIZE MEASUREMENTS

After an impactor run, it is necessary to obtain a particle size
distribution from the mass loading on each stage.   The conditions
at which the impactor was run determine stage D5o  cut points.  These
are calculated by an iterative solution of the following two equations:
 (El)           Dso = 1-43 x 10'
                                  yDc 3PS
                                  pQlPoC472.0
                                                                   •1]
 (E2)     C = 1 + 0  2L .,-•»    1.23 + 0-41 Exp   (-0.44DSO/L) x 10"
                 DSO X 1U      I                  |_
where  Dso = the stage cut point (ym),
         y = gas viscosity (poise),
        D  = stage jet diameter (cm),
         C
        p  = local pressure at stage jet  (atm),
         s
        p  = particle density  (gm/cm3),
        Q  = impactor flow rate (cfm) ,
        P  = ambient pressure at impactor inlet  (atm) ,
         C = Cunningham Correction factor,
         L = gas mean free path (cm), and
      X(I) = number of holes per stage.

The easiest way to calculate these cut points is to write a  computer
program.  Otherwise, it is a tedious process.  The size parameter
reported is either aerodynamic equivalent diameter, that is,'diameter
based on the settling velocity of unit density particles, or approx-
imate physical diameter, based on a measurement of the true  particle
density.  In either case, the particles are assumed to be "spherical.

Certain of the values in equations El and E2 are calculated  separately.
A brief discussion of each of these calculations follows.

To find the viscosity of the flue gas, y, the viscosity of the  pure
gas components of the flue gas must  first be  found.   Viscosity  is  a
                                -48-

-------
function of temperature, and the temperature difference  in
different flue gases can be quite significant.  The following
equations (derived from curves fitted to viscosity data  from the
Handbook of Chemistry and Physics, Chemical Rubber Company Pub-
lisher, 54 Edition, 1973-1974, pp. F52-55), are used to  find the
viscosities of C02(yj), C0(y2), N2(ys), 02(yi») and H20(y5).

(E3)  Vi = 138.494 + 0.499T - 0.267 x 10~3T2  + 0.972 x  10~7T3
(E4)  y2 = 165.763 + 0.442T - 0.213 x 10~3T2
(E5)  y3 = 167.086 + 0.417T - 0.139 x 10~3T2
(E6)  y., = 190.187 + 0.558T - 0.336 x 10~3T2  + 0.139 x  10~6T3
(E7)  y5 =  87.800 + 0.374T + 0.238 x 10~"T2

where T is the temperature of the flue gas in degrees Celsius.  The
units of y are 10  6 g/cm-sec.  Next, these values of yi  through ys
are used in a general viscosity equation for a mixture of any number
of components (See "A Viscosity Equation for Gas Mixtures" by C. R.
Wilke, Journal of  Chemical Physics, Volume 8, Number 4,  April 1950,
page 517) used to  find the viscosity of the flue gas:
(E8)                  ^^  ,        1=n
                                    L,  x-jOij

where (j>.  . is given by the equation:
                  ,    _   II  +
(E9)
(4//2) [
                                  l  +
                              -49-

-------
 and
 M = molecular weight of a component in the mixture,
 X = mole  fraction of a component in the mixture,
 y = viscosity,  g/cm-sec; yi, ya t etc. refer to the pure com-
     ponents  at  the temperature  and pressure of the mixture,
     y  is  the viscosity of the mixture, and
  = dimensionless constant defined above.

 To find the  pressure PS.  (in atmospheres) at each impactor stage
 i, the following equation is used:
 (E10)             PS  = POA -  (PI  (DP)
 where  POA is  the  gas pressure at the impactor inlet in atmospheres,
 PI .  is the fraction of impactor pressure drop at each stage i , and
 DP  is  the pressure drop across the impactor in atmospheres.

 To  find the gas mean free path L.  (in centimeters) for each impactor
 stage  i,  the  following equation is used:
 (Ell)    Li =  	2y	 x J873117 x 107 Tk
                1.01325 x 106 PSi   f      3 MM

where    y is the gas viscosity,
       PS^ is the pressure at each impactor stage i,
        T^ is the gas temperature at the impactor stage in degrees
              Kelvin, and
        MM is the average molecular weight of the flue gas.

Procedures for presenting the particle size distribution in  graphical
and tabular form are outlined below.  A sample computer printout  is
shown on page 65 which includes reduced data from a hypothetical  test,
It is assumed for this sample calculation that an Andersen Stack
Sampler was used to collect the particulate.
                               -50-

-------
Information obtained from the data log sheets for each test is
printed at the top of the sheet.  The maximum particle diameter
is measured by examining the particles collected on the first
stage  (or first cyclone) through an optical microscope.  Gas
analysis samples are taken at the same time the impactor is run.
The mass loading is calculated  from the total mass of the partic-
culate collected by the impactor and listed in four different
units after the heading CALC. MASS LOADING.  The units are de-
fined as:
GR/ACF - grains per actual cubic foot of gas at stack conditions
of temperature, pressure, and water content.
GR/DSCF - grains per dry standard cubic foot of gas at engineering
standard conditions of the gas.  Engineering standard conditions are
defined as 0% water content, 70°F, and 29-92 inches of Hg.
MG/ACM - milligrams per actual  cubic meter of gas at stack conditions
of temperature, pressure, and water content.
MG/DSCM - milligrams per dry standard cubic meter of gas at engineering
standard conditions of the gas.  Engineering standard conditions are
defined as 0% water content, 21°C and 760 mm of Hg (Torr).

Below these data the information pertinent to each stage is summar-
ized in columnar form in order  of decreasing particle size from
left to right.  Thus SI is the  first stage, S8 is the last stage,
and FILTER is the back-up filter.  If a cyclone was used,  then to
the left of SI a column labelled CYC will appear and information
relevant to the cyclone will be listed in this column.  Beneath
each impactor stage number is listed the corresponding stage
index members, which also serve as identification for the stages.
Directly beneath these listings is the stage cut point calculated
from Equations El and E2 for the actual test conditions.  It is
labelled D5o and is given in micrometer units. • The stage weights
are likewise listed for the respective stages, labelled MASS and
are in milligram units.
                              -51-

-------
 The  mass  loadings per unit volume of gas  sampled  indicated by
 the  stage weights are labelled MG/DSCM/STAGE and  are written in
 milligrams per dry standard cubic meter.  The /STAGE indicates
 that it is not a cumulative.  It is calculated  for  a particular
 stage j by the formula
                             MASS .
 MG/DSCM/STAGE  .. = SAMPLING DURATION  (minutes)

   35.314667  cubic feet/cubic meter    Absolute  Stack Temperature
 x        FLOWRATE  (ACFM)              Absolute  Standard Temperature
   Absolute Standard Pressure  ..         1
 2C
   Absolute  Stack Pressure        (1-Fraction of H20)
 where absolute  means  the temperature and pressure  are  in absolute
 units-degrees Rankin  or degrees  Kelvin  for temperature,  and atmos-
 pheres,  inches  or  millimeters of mercury for pressure.
 For  SI,

 Mr/ncrM/crnar-p   - •72  mg  v  35.314667 cubic feet/cubic  meter
 MG/DSCM/STAGE j  - 2Q mi^ X            0.500 ACFM -
 x  (400  +  460) °R    29.92  in. Eg          1        _  4  71
 X   (70  +  460) "R X  26.50  in. Hg  X  (1.0  -  0.01)  ~  4>/X
 The  subscripts  indicate stage index numbers.

 The  percent of  the  mass of particles with  diameters  smaller than
 the  corresponding D5 0  is  called the CUMULATIVE PERCENT  OF MASS
 SMALLER THAN  D50-   It  is  the cumulative  mass at  stage j divided
 by the  toal mass collected on all the  stages, and  converted to a
 percentage:
CUM % . =
                         100
          Total Mass
For example, for S6, the cumulative percent  is  given by
COM S  .
                              -52-

-------
For S8, the mass of  the particulate collected on the  filter
is used,
CUM %8 = Total Mass x  100

       = c ' 0/)	— X 100
         5.24 mg
       = 7.44%

Note that  the apparent error in the least significant figures
of the calculated  percentages is due to using masses from  the
computer printout  which have been rounded off to two decimal
places before printing.

The cumulative mass loading of particles smaller in diameter than
the corresponding D5 0  in milligrams per actual cubic meter  (CUM.
(MG/ACM) SMALLER THAN  D50) for a particular stage j is given by
the formula
                  9
CUM  (MG/ACM) • - i=3+1	,     x 35-314667 cubic feet/cubic meter
     u x    ;3  SAMPLING DURATION(min)          FLOWRATE (ACFM)
From the information at the top of the computer print-out sheet,
the flowrate is 0.500 actual cubic feet per minute  (ACFM) and the
sampling duration is 20.00 minutes.  Therefore, for S4,

PHM /Mr/arMl  - MASS5 + MASS6 + MASS7 + MASS8 + MASS9
CUM. (MG/ACM)„	20 minutes	
  35.314667 cubic feet/cubic meter _ , 0 ., mri/Ar,M
x 	0.500 ACFM	12'3 m9/ACM
For S8, the mass of the particulate collected on the filter is
again used,
PTTM ^MP/ZVPM^  -   MASS9    v 35.314667 cubic feet/cubic meter
CUM.(MG/ACM)8 - 20 minutes X           0.500 ACFM
                              -53-

-------
                  0  39 mg       35.314667 cubic  feet/cubic meter
               = 20 'minutes  X           0.500  ACFM           "~
               = 1.38 mg/ACM

 The cumulative mass loading of particles smaller  in diameter than
 the corresponding D50 in  grains per actual cubic  foot  (CUM.  (GR/ACF)
 SMALLER THAN D50)  for a particular stage j is  given by the  formula
                 CUM. (MG/ACM) .
 CUM. (GR/ACF) .  -
             .    2.2883519  grams/cubic meter    ]nnn    /
                           grains/cubic  foot
 For S7,
 OTTM //- /   x   -           1.52 mg/ACM _ _____
 CUM. (GR/ACF) 7  - 2.2883519  grams/cubic meter        mg/g-.-n.
                           grains/cubic  foot          *' *
               = 6.64  x  10" **  grains/ACF

 The cumulative mass loading  of particles  smaller  in  diameter than
 the corresponding Dso in grains per dry standard  cubic  foot (CUM.
 (GR/DSCF)  SMALLER THAN  D50)  is calculated to  show what  the above
 cumulative would be for one  cubic  foot  of dry gas at 70°F and at
 a pressure of  29.92 inches of mercury.  For a particular stage j,
 CUM. (GR/DSCF) .  = CUM. (GR/ACF) .

   Absolute Stack Temperature      Absolute Standard  Pressure
   Absolute Standard Temperature    Absolute Stack  Pressure
   (1-Fraction  of H20)
where  absolute means the temperature and pressure  are in absolute
units-degrees  Rankin or degrees Kelvin  for  temperature,  and atmos-
pheres,  inches or millimeters of mercury for  pressure.
For SI,
CUM.(GR/DSCF)i = 6.96 x 10~3 gr/ACF
v  (400 + 460)°R  v 29.92 in. Hg         1         ,  on   ,. ,
X   (70 + 460)UR  X 26.50 in. Hg  X  (1.00-0.01)  =  1'29 x 10   9*/DSC

The particle size distribution may be presented on a differential
basis which is the slope of the cumulative  curve.   If we define the
                               -54-

-------
       terms:
       AM. = MG/DSCM/STAGE.    and
        (AlogD). =  logic(D50._1)  - logi0(D50.)     then
               j             -J                _J
          AM  i          MG/DSCM/STAGE.
                   logio(D50.  x)  - log10(D50.)
       Because  the  computer printer does not contain Greek letters, the
       computer print-out sheet reads DM/DLOG D instead of AM/ALOG D.
       For  S6,
(
           AM    _  _ 9.35 mg/DSCM          ,Q _
               e -  Iog10(2.22-)  - Iog10(1.29)  = 39 • 7
       Note  that  AM/ALOGD has the dimensions of the numerator since the
       denominator  is  dimensionless.   In the calculation for SI, a
       maximum particle  diameter is used.   For this example, MAX. PARTICLE
       DIAMETER = 100.0  microns.
           AM_\ _       4.71 mg/DSCM _ _ . R
                ~ logic (100)  - Iog10(10.74)  ~ 4'86

       For the filter  stage,  the D50 is arbitrarily chosen to be one-half
       of  the  Dso for  stage eight (S8) .  For this example, it is chosen
       to  be 0.33 micrometers/2 = 0.165 micrometers.   Thus,
        /_AM_\  =
        lALOGDJg
      2.55 mg/DSCM    	 - a AI m^/ncr.M
•=	T-Z—=-=-r—*£_	__—     = 8.47 mg/DSCM
logio(0.33) - logio(0.165)         ^'
       The geometric mean diameter in micrometers (GEO.  MEAN DIA.
       (MICROMETERS) )  for a particular stage j  is given  by the -formula
       GEO. MEAN DIA.. =  /D50.  X D50._1
                      J        J       J
       For S8,
       GEO. MEAN DIA.8 =  /0.33  x 0.69 micrometers
                       =  0.477  micrometers
                                      -55-

-------
As  in the ALOGD calculation, we again use the maximum particle
diameter for the stage one calculation and one-half the D50 f°r
stage eight for the filter stage calculation.
For SI,
GEO. MEAN DIA.i = /10.74 x 100.0 micrometers
                = 32.8 micrometers
For the filter,
GEO. MEAN DIA.9 = /0.165 x 0.33 micrometers
                = 0.23 micrometers

A differential number distribution can also be derived.  Since
AM. = MG/DSCM/STAGE. is the mass per unit volume for stage j
then we can define AN. as AN. = NUMBER OF PARTICLES/DSCM/STAGE..
or  the number of particles per unit volume for stage j.  Now
AM. and AN. are related by the equation AM. = AN. x m_, where m
is  the average mass of the particles collected on one stage.  Dividing
both sides of the equation by m  x ALOGD yields
                 (AM/ALOGD).
                          1  = /  AN  \
                               IALOG D /
Now m  = p V  where p  is the assumed particle density and V   is
the average volume of one particle on one stage.  To obtain m  in
milligram units when p  is in grams per cubic centimeter and  V  is
in cubic micrometers, certain conversion factors must be used.   The
complete formula, using the correct conversion factors and the ex-
pression (4/3) (rr) (d/2) 3 for V  where d is the geometric mean
diameter in micrometers, is:
                                                   =  5.23599  x 10-10 p d3.
Therefore,
                (AM/ALOGD)
/  AN \   = 	
IALOGD/ .    5.2
               3599 x lO-'O p d3
                                -56-

-------
where AM/ALOGD  is  in  units of mg/DSCM,  p   is  in gm/cc, d is  in
microns, and AN/ALOGD is  in  number of particles/DSCM.
For S3,
   (AN \   _ 	        17.9 mg/DSCM	.
 ALOGD J3     (5.23599  x l(r10) x  (1.35 gm/cc)  x  (7.96 microns)3
          = 5.02 x 107 particles/DSCM.
For the  filter  stage

   (AN \   _ 	    8.47 mg/DSCM	
 ALOGD/g     (5.23599  x lO"1") x  (1.35 gm/cc)  x  (0.231 microns)3
          = 9.72 x 10:1 particles/DSCM

The  test data  are  usually classified  according  to sampling location
 (outlet  or  inlet), sampling  time (day,  week,  etc.)  and combustion
chamber  or  pollution control device conditions  (high or  low  sulfur
coal  for coal  plants, normal or  below normal  fuel consumption,
normal or below normal current density  for electrostatic precipi-
tators,  etc.).   When classified, all  of the data  taken in  a  single
classification are usually averaged and plotted on appropriate
graph paper.   For  example, the AM/ALOGD at a  given geometric mean
diameter or within a small range of geometric mean diameters might
be averaged over all the  tests performed in a day and plotted as
ordinate and abscissa, respectively on  log-log  graph paper.

Error bars  indicating standard deviation or confidence limits are
normally included  on the  graph.   A Hewlett-Packard HP-25 calculator pro-
gram  is  included which will  calculate the average (X), the standard
deviation (S), the  relative standard deviation (S/X) , a 90% or 95%
confidence interval  (CI),  the lower confidence limit (X -  CI or LCL),
and the  upper confidence  limit (X + CI  or  UCL).   Also included is
some hypothetical  data typical of Brink impactor  samples giving the
AM/ALOGD and geometric mean  diameter values for one day.   The average
and other programmed  calculations have  been listed  underneath the
data in  this table and on page 66 a graph  of  the  average AM/ALOGD
values with 90% confidence limits versus the  average of the  geometric
                              -57-

-------
 mean diameters  is plotted on  log-log graph paper.  A smooth line
 was drawn through the AM/ALOGD data points and the upper and lower
 standard deviations.  These curves are used to calculate the
 fractional efficiency.

 On  page  68  is a AM/ALOGD plot of hypothetical data from an Andersen
 impactor,  which is normally used by SRI at the outlets of emission
 control  devices while the Brink impactor is typically used at the
 inlets of those devices.  It was assumed that the Andersen AM/ALOGD
 plot represented values obtained the same day as that of the Brink.
 Thus it  was valid to find the efficiency of the control device by
 comparing the two plots.  A set of particle sizes was chosen which
 would be used in deriving an average cumulative mass loading and
 the efficiency of the control device from the AM/ALOGD plots.  The
 maximum  and minimum particle sizes are chosen for which AM/ALOGD
 values are  available in both the inlet and outlet AM/ALOGD distri-
 butions.   These particle sizes are listed under the heading
 Geometric Mean Diameter on page 64.

 Notice that by beginning the set with the particle size 0.500 micro-
 meters,  the data from the filter stages is not utilized.  The reason
 the  filter  stage data is not included is that during the operation
 of  a cascade impactor there is frequently a certain amount of particle
 bounce and  reentrainment into the gas stream, and subsequent de-
 position  on a lower stage.  These particles are larger than most of
 the  particles collected on the stage and thus in the lower stages,
 their mass  can be a significant percentage of the total mass for that
 stage.   The errors tend to be more significant for the fine particle
 end  of the  distribution and most significant of all for the filter.
 In addition, many filter media contain components which react chem-
ically with constituents of flue gases (S02, for example).  This
gaseous reaction with the filter substrate can result in a change
                                -58-

-------
in the weight of the substrate even though the subst-rate was pre-
conditioned.  Again, substrate weight changes would usually be much
more serious for the lower stages and back-up filter, whose par-
ticulate mass loadings are generally small.  Also, the filter has a
larger surface area than the substrates and is more thoroughly
permeated by the gas going through it.

The filter stage weight, then, is likely to contain a larger error
and may not be an accurate record of the concentration of small
particles in the gas stream sampled.  For this reason, the derived
AM/ALOGD value for the filter stage weights is often ignored
especially if it exhibits any unusual characteristics.  For more
information on particle bounce and reentrainment see Particulate
Sizing Techniques for Control Device Evaluation by Gushing, Lacey,
McCain, and Smith, Final Report of EPA Contract No. 68-02-0273, to
be published.  For more information on substrate weight changes due
to reactions with the components in a gas stream see Particulate
Sizing Techniques for Control Device Evaluation by Gushing, Lacey,
McCain, and Smith, August, 1975, Publication Number EPA-650/2-74-102a.

The percent penetration for a particular size particle is found by
dividing the AM/ALOGD for the outlet at that size by the AM/ALOGD
for the inlet at that same size, and multiplying the quotient by
100.  The same is done using the upper curve (in which the 90% con-
fidence interval is added) for the outlet and the lower curve (in
which the 90% confidence interval is subtracted) for the inlet and
vice versa from the AM/ALOGD plots to obtain a set of penetration
values which may be roughly interpreted as "upper and lower 90% con-
fidence limits for the percent penetration".  The collection efficiency
of the emission control device is 100% minus the percent penetration.
The collection efficiency corresponding to various particle sizes is
plotted on log-log probability graph paper on page 69.

Although cumulative mass loading data for each impactor test is pre-
                               -59-

-------
sented in tabular form on the computer print-out sheet, a more
accurate average cumulative mass loading is found by integrating
the average AM/ALOGD curve.  The equation below yields AM.^ corres-
ponding to a particular size interval (Geometric Mean Diameter) d.^
to d.   from the values of AM/ALOGD at those particle sizes.  These
values are taken from the AM/ALOGD plots on pages 66 and 68 and
listed opposite the corresponding geometric mean diameters and
identification numbers i on the table on page 64.
       (AM/ALOGD). + (AM/ALOGD). ,        / d.  \
AM. = 	±-*	^- x logiol  o	.1
Next the AM.'s are progressively summed to obtain the cumulative
mass loading.  Upper and lower 90% confidence limits are found by
similar integrations of the upper and lower 90% confidence limits
of the AM/ALOGD plots.  A table listing AM/ALOGD, percent penetration,
and cumulative mass loading values and their corresponding standard
deviations for each size d. is found on page 64.  There is no value
of the cumulative for di because there is no valid (AM/ALOGD) 0 value
due to particle bounce, etc.  Thus the cumulative mass loadings
plotted are cumulatives for particles larger than the DSO of the
last impactor stage.  Plots of cumulative mass loading for the inlet
and percent efficiency of the emissions control device are found on
pages 67 and 69.
                                -60-

-------
                   HP-25 Program Form
    Mean> Standard Deviation, 90/95% Confidence Inter-
Switch to PRGM mode, press [7| [ msnT] , then key in the program.
                                                 val
                                                      Page.
DISPLAY
LINE
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
! 17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
CODE
KEY
ENTRY
s ^V-^V'.V
14 21 f x
23 04STO 4
74 R/S
14 2i fs
23 09STO 5
74 R/S
24 04RCL 4
71 lv
74 I R/S
24 ORRCL 5
74 n^RCT. 1
14 02f/x
71 1 .
24 03 .RCL 3
01
41
24 02
,14 03
24 01
61
24 00
51
61
23 05
74
24 04
2-4 05
41
74
24 04
24 05
51
74
00
23 03
23 04
23 05
23 06
23 07
1 ->. nn









1
-
RCL 2
f_^x
RCL 1
X
RCL 0
+
X
STO 5
I— £/S-
RCL 4
RfT. 5

R/S
RfL 4
RCL 5
+
R/S
0
STO 3
STO 4
STO 5
STO 6
STO 7
flTO n









X








	






























h









Y








. 	








































Z








	








































T


















































COMMENTS


















































REGISTERS
R n


R -
n 1 	
-
Q .
n 2

"-. n
"3

»4 X


R , .Cfl
"5 ' J.
f ,T.

w« Ix2
" 0 *-^

R. XX



                            -&1-

-------
                  HP-25 Program Form

Mean,  Standard Deviation, 90/95% Confidence Interval
pag(:.
                                                           of
Programmer _JQ.seph D. McCain
STEP
1
2a


2b



3



4a
b

c

d

e

f

5



6 '


7 ]
i
INSTRUCTIONS
In"Li"i alizp
For 90% C.I.


For 95% C.I.



Enter values x-j
for i = 1, N:
if error in x^:

Calculate mean
Cal. standard devia
tion
Cal. relative std.
deviation
-al. confidence
interval
-al. lower confiden<
limit
:al. upper confiden<
limit
?o determine effect
)f omitting a point
£m, from data set:
ind go to step 4.
'o abandon calculate
during step 4:
and go to step 3.
or new data set
fter step 4f (UCL) :
INPUT
DATA/UNITS

1.645
2.60481
1.18553
1.96
5,5495
1.34635


xi



.





:e

:e



xm

on




KEYS
f pRn4
STO n
f REfJI _ll

STO ]JI
i CHS 1
STO 0
STO 1
CfTfi


E +
fLASTxj
STO 2




1 H



1

II
STO ? II II

II
II

f Z-





II 1! II
R/S 1! |( II
R/S ||

1 R/S
1 1
II

" 1
1 II 11
H
I R/s

li.
R/S ||
II


||
II
II II 1!
R/S II II II

II II
II

fZ-


ITO 34


II
||
STO OOH II


R/S



_||


II
II II II
R/S

H
OUTPUT
DATA/UNITS









i 	


X
s

s/x

C.I.

LCL

UCL










  and go to step 3.
                             -62-

-------
                    Hypothetical Data - Brink Impactor
Test
 CYC
SO
                               SI
52
S3
S4
S5
S6
SF
1 AM/ALOGD*
2 AM/ALOGD
3 AM/ALOGD
4 AM/ALOGD
5 AM/ALOGD
6 AM/ALOGD
AM/ALOGD
Average
Standard
Deviation
Relative
Std . Dev .
90% Confidence
Interval
Lower Confi-
dence Limit
Upper Condi-
dence Limit
1 Geo.
Mean Dia.
2 Geo.
Mean Dia.
3 Geo.
Mean Dia .
4 Geo.
Mean Dia.
5 Geo.
Mean Dia.
6 Geo.
Mean Dia.
Geo. Mean Dia.
3770
3960
3540
3410
3260
3830

3630

269

0.074

223

3410

3850

43.0

43.0

42.2

42.1

41.0

41.0

2630
1500
1720
2680
2910
3050

2420

646

0.267

536

1880

2950

9.25

9.26

8.92

8.87

8.42

8.41

1010
866
1080
1130
1180
1160

1070

118

0.110

97.5

973

1170

5.86

5.87

5.65

5.62

5.33

5.33

1190
991
1080
1200
1310
1380

1190

143

0.120

119

1070

1310

3.40

3.40

3.28

3.25

3.09

3.09

1060
1410
913
907
1560
1180

1170

267

0.228

222

950

1390

2.18

2.18

2.10

2.08

1.97

1.97

503
398
452
347
321
326

391

74.0

0.189

61.4

330

453

1.31

1.31

1.27

1.25

1.19

1.19

279
300
163
236
165
142

214

66.8

0.312

55.4

159

270

0.804

0.806

0.770

0.766

0.726

0.725

75.1
28.3
41.5
41.9
21.5
40.5

41.5

18.5

0.445

15.3

26.2

56.8

0.506

0.504

0.480

0.476

0.451

0.451

92.8
77.7
104
111
99.4
68.0

92.2

16.4

0.178

13.6

78.6

106

0.270

0.260

0.250

0.246

0.233

0.233

     Average
42.1   8.86   5.61   3.25   2.08    1.25   0.766  0.478   0.249
*NOTE:  AM/ALOGD in units of mg/DSCM.
        Geometric Mean Diameter in units of micrometers.
                                 -63-

-------
                         Hypothetical Data
       Geometric
i    Mean Diameter
     (Micrometers)

1    0.500
2    0.800
3    1.28
     2.05
     3.28
     5.24
     3.39
    13.4
    21.5



X
UCL
LCL
X
UCL
LCL
X
UCL
LCL
X
UCL
LCL
X
UCL
LCL
X
UCL
LCL
X
UCL
LCL
X
UCL
LCL
X
UCL
LCL

Outlet
AM/ALOGD
(mg/DSCM)
2.95
5.27
0.635
6.40
8.70
4.05
7.40
10.2
4.99
9.30
13.0
6.00
13.2
19.0
7.20
12.8
18.8
6.90
10.7
15.3
5.80
7.60
10.6
4.00
4.50
6.00
2.55

Inlet
AM/ALOGD
(mg/DSCM)
41.8
57.0
27.3
225
281
170
410
498
341
1140
1390
930
1190
1310
1070
1050
1150
960
- 2280
2790
1730
3290
3800
2700
3800
4180
3430

Percent
Penetration
%
7.06
19.3
1.11
2.84
5.12
1.44
1.80
2.99
1.00
0.82
1.40
0.43
1.11
1.78
0.55
1.22
1.96
0.60
0.47
0.88
0.21
0.23
0.39
0.11
0.12
0.17
0.061
Inlet
Cumulative
Mass Loading
(mg/DSCM)



27.2
34.5
20.1
92.0
114
72.3
250
307
202
488
582
406
717
833
613
1057
1235
888
1625
1908
1340
2349
2722
1966
                               -64-

-------
 HYPOTHETICAL ANDERSEN
 IMPACTOR FLOWRATF  e  o.soo  ACFM                IMPACTOR  TEMPERATURE »   400,0  F  =  204,4 c               SAMPLING  DURATION *   20,00  MIN
 IMPACTOR PRESSURE  DROP  »  i.s  IN,  or  HG        STACK  TEMPERATURE  »   «oo,o  F * 20*1,4 c
 ASSUMED PARTICLE DENSITY  » 1.35  GM/CU.CM.      STACK PRESSURE  c  26.50  IN,  OF HG      MAX.  PARTICLE  DIAMETER «  100,0  MICROMETERS
 GAS COMPOSITION  (PERCENT)            COS  »   o'.9S           CD a  0,00           Hi  • 76.53          02 «  20,93           H20  «  1.00
 CALC, MASS LOADING » 8.0711E-03  GR/ACF              1.4948E-02 Gft/DSCF             1,6470E+01  MG/ACM              3.4207E*01  MG/DSC*
 IMPACTOR STAGE                             si         sa       si         sa         ss       S6        ST         SB     FILTER
 STAGE INDEX  NUMBER                        12S4S6789
 050  (MICROMETERS)                       10,74       9,93     6.36       4.19      2,22      1.29       0,69       0,33
 MASS  (MILLIGRAMS)                        0,72       0,40     0.51       0.09      0,36      1.43       1,25       0,04      0.39
 MG/DSCM/STAGE                            U.TIE+OO  2,62E+oo  J.UTE+OO   S.SPE-OI  ?,a9E+oo  9.35E«oo   s.sse+oo   2,62E«oi  a.ssEtoo
 CUM,  PERCENT OF  MASS SMALLER  THAN DSO  8<>,24      78,59    68.46      66,74      59,47     32.11       8,?3       7,46
 CUM.  (MG/ACM)  SMALLER  THAN 050           1.59E+01  1,45E*01  1.26E+01   t,23EfOt  t.tOEtOl   5.91E400   1.52E+00   1.38E+00
 CUM.  (GR/ACF)  SMALLER  THAN 050           6,96E>03  6,34E>03  5.53E-03   5.39E-03  4,80E»03  2.59E.03   6,64E*04   6,02E»04
 CUM,  (GR/OSCF)  SMALLER THAN DSO          1.29E-02  1.17E-02  1.02E-02   9.98E-03  8.89E-03  4.80E-03   1,23E*03   1.12E-03
 GEO,  MEAN  OIA,  (MICROMETERS)             3.28E+01  l.OSE+Ot  7.96E+00   5.17E+00  3.05E+00   1.69E+00   9.43E-01   4.74E-01  2.31E-01
 DM/DLOGD (MG/DSCM)                      S.96E+00  7.94E+01  1.79E*01' 3,252*00  8.99E+00   3.99E*01   2.98E+01   8.09E-01  8,47E«00
 ON/DLOGD (NO,  PARTICLES/DSCM)           1.95E+OS  i,02E+06  5.01E+07   3.3JE+07  4,«8E+Oa   l.t6E*10   5,03E*10   1.08E+10  9,7«E+11


NORMAL OR STANDARD CONDITIONS ARE  21 DEC C AND  760MM HG

-------
o
<
s
     10
       10
                                        HYOPTHETICAL DATA - BRINK IMPACTOR

                                        ASSUMED PARTICLE DENSITY =     1.35gm/cm3

                                        ERROR BARS INDICATE 90% CONFIDENCE INTERVAL
                           GEOMETRIC  MEAN  DIAMETER  ( micrometers  )
                                                -66-

-------
C3
Z
5
01
D
5

o
     10
        ID"1
                                          HYPOTHETICAL DATA - BRINK IMPACTOR

                                          ASSUMED  PARTICLE  DENSITY =     1.35 gm/ cm3

                                          ERROR  BARS INDICATE 90% CONFIDENCE  INTERVAL
                                    UPPER SIZE LIMIT   (  micrometers  )
                                                  -67-

-------
                                      HYPOTHETICAL  DATA - ANDERSEN IMPACTOR


                                      ASSUMED  PARTICLE  DENSITY  =     1.35 gm / cm3



                                      ERROR  BARS INDICATE 90%  CONFIDENCE   INTERVAL
io-
                    !;^
3

-------
                                                                                        ERROR BARS  DERIVED  FROM 90% CONFIDENCE INTERVALS

                                                                                        INDICATED ON INLET AND OUTLET &M/&LOG D CURVES
   0.01
                                                                                                                                            99.99
O
tr
1-
LU


1


*
                                                                                                                                                   U.
                                                                                                                                                   Li.

                                                                                                                                                   Ul
                                                                                                                                           0.01
                                                                                                                               90.   80. 100.0
                                                  GEOMETRIC  MEAN DIAMETER   (  MICROMETERS )

-------
Relationship between Stokes' or Physical diameter (Density = 2.40 gm/cm3) and Aerodynamic Diameter (Density - 1.00 gm/cm3).
   100.0
     0.1
                                                                   10.0
                                                                                                  100.0
                      STOKES' (PHYSICAL)  DIAMETER   (Mm)   DENSITY =  2.40 gm/cm3
                                                     -70-

-------
SAMPLE CALCULATION FOR DATA REDUCTION OF ULTRAFINE PARTICLE
SIZE MEASUREMENTS

INSTRUMENTATION
A Thermo-Systerns Inc. Model 3030 Electrical Aerosol Size Analyzer
(EAA) with a 0.0032 ym to  0.360 ym range at the operating conditions
used  (N0t = 7 x 10s at 4.0 x  10~9 amperes ionizer current and 50
volts ionizer voltage) was used to determine concentration vs_ size
information in the ultrafine  size range.

PROCEDURES
Once the equipment has been set up as shown schematically in Figure
1, the flows were adjusted through the sample orifice and the dilution
air orifice, to obtain the desired dilution factor.  The EAA was
placed in a manual scan mode  and the current readings for each channel
were recorded with a strip chart recorder.  Manual control allowed
run times of from two to five minutes in each of the nine channels.
This allows one to average out rapid source fluctuations.  At the
beginning of each day the  internal calibration points and flows
through the EAA were checked, as described in the instrument manual.
These were also periodically  rechecked throughout the day.  The
optional SOX absorbers shown  in Figure 1 were not used in this test.

The theory of operation and basic equations for the EAA have been
given by Liu e_t al1 and calibration of the Model 3030 EAA has been
done by Liu and Pui2 which revises the previous calibration.  Table
1 shows these revised calibration constants in a data reduction
format.  The calibration by Liu suggested the use of a calibration
matrix; however typical source fluctuations in industrial processes
generally negate any potential advantage of such refinements.  Table
1 is essentially self-explanatory.  The heading "Dp,ym"  (column 3)
is the particle diameter in microns.  A value of 0.0100 means that
the center rod voltage is such that all particles of 0.0100 ym
diameter and smaller are collected in the analyzer tube while larger
                               -71-

-------
 particles penetrate to the current collecting filter where an
 electrometer measures the total current carried by the unpre-
 cipitated particles.  This current represents the charges on all
 particles larger than 0.0100 ynu  This measured current is the
 basic  output of the Model 3030.

 The  fourth  column  (Dpi,ym) is the geometric mean diameter of the
 particles represented by the current difference of two successive
 steps  (Channel No.'s).  For example, the difference in current for
 the  0.0100  ym cut-off and the current for the 0.0178 ym cut-off
 is the total current collected from particles between these sizes,
 or rather for a mean diameter of 0.0133 ym.  The current differences
 are  entered in column 8 headed "Al,pA"  (picoAmps).

 The  fifth column gives the revised calibration factor  (based on
 the  calibration by Liu and Pui2) for each of the eight size bands.
 These  factors are  in units of particles per cm3 per picoAmpere.
 Multiplying this size specific current sensitivity, AN/AI,  (column
 5) by  the current  difference, AI,  (column 8) gives the total number
 of particles, AN,  (column 9) in units of particles per cm3, within
 this size band  (column 4) for the diluted aerosol.  To correct for
 dilution and find  in-stack concentrations, multiply column  9 by
 the  dilution factor  (DF) and enter the result, ANS, in column 10,
 Columns 6 and 12 are used for ANs/ALogD information calculated from
 the  number  distribution in column 10.  Column 11 is used for cumulative
 concentrations, corrected for dilution to engineering standard  (normal)
 conditions  by a dilution factor (i.e. column 10).  Engineering stan-
 dard or normal conditions are defined as 21°C and 760mm Hg  pressure.

 The basic data from the EAA is cumulative current for each  of nine
 channels (column 7).  One must then take the differences of the
 current readings for successive channels  (column 8) in order to
 find AN, etc.   These AI values are multiplied by a series of con-
stants  (AN/Ali,  DFj) to arrive at ANS  (concentration in stack
corrected to dry, standard conditions).  While a single scan should
                               -72-

-------
be made at a constant dilution, different  scans may be made at
different dilutions.  To  simplify the arithmetic for each test
condition, we form the product c^ =  AIj.,j  x DFj and average all
such inlet  (outlet) products  for the same  size band.  This average
is used in Table  2 to calculate ANS, cumulative concentration, and
ANs/ALogD for each size band.  When  Table  2 is used the data
reduction is as follows:

SUMMARY OF THE CALCULATION FORMAT
STEP 1
A.  Calculate the average instrument reading  (I) for each channel as
obtained from the strip chart recording of channel current vs. time.
B.  Calculate all dilution factors  (DFj).
STEP 2
Calculate current differences  (Alj_ j) from adjacent channels and
average the a. products  (a. = AIj_ j  x DF^) for the same size band
for all scans taken for the same test conditions.  Calculate 90%
confidence intervals for  each a^.  Note:   the i subscript denotes
size and the j subscript  denotes dilution  setting.
STEP 3
Using a. and Table 2 calculate "number concentration"  (AN), "average
       X                                                 o
cumulative concentration  of all particles  having diameter greater
than the indicated size"  (ZANS), and "ANs/ALogD" for each size band
for each test condition.
STEP 4
Plot "Cumulative  Concentration vs. Size" for each test condition.
STEP 5
Plot AN /ALogD (with upper and lower 90% confidence limits) vs. size
       s
for each test condition.
STEP 6
Calculate and plot efficiency vs. size with upper and lower 90%
confidence limits.

SAMPLE CALCULATION FOLLOWING THE CALCULATION FORMAT
                               -73-

-------
 STEP 1
 A.   Calculate the  average  instrument  reading  (I)  for  each channel
 as  obtained from the strip chart  recording  of  channel current  vs.
 time.   Each complete size  scan  (Table 1)  consists of  nine instrument
 readings (I,  column 7 of Table  1).  These instrument  readings  are
 the average current outputs as  taken  from the  strip chart recordings,
 for each of the nine channels.  Run times were manually  controlled
 and varied from two to ten minutes per channel as the instrument
 operator sequentially stepped through channels 3, 4,  5,  ..., 11.
 Table  four gives the instrument readings  used  as  data for the
 sample calculation (10 scans, 90  average  current  readings).
 B.   Calculate all  dilution factors  (DFj;  corrected to engineering
 standard (normal)  conditions:   70°F  (21°C)  and 29.92  inches of
 mercury pressure (760 mmHg)).   The flow through a calibrated orifice
 is  given by:
                          Q=k     TXAP
 where Q is  the  actual  flow  through the orifice
       T is  the  orifice temperature
       P is  the  pressure at  the high pressure  side of  the  orifice
      AP is  the  pressure drop  across the orifice
 and    k is  a  constant  of proportionality  for  a limited  range  of AP  values.

 The  flow rate,  QN,  corrected  to engineering standard, or  normal con-
 ditions of  temperature,  T , and pressure, P   is given by:
                                          T
                                          1N
The constant of proportionality, k, is  found  from  the  calibration
data thusly:
                          k = Q    -'    PC
                               c   ^f  Tc x APc
Where the subscript c refers to calibration conditions  of flow,
pressure, pressure drop, and temperature.      ~~
                               -74-

-------
By collecting constants one can tabulate a  single constant  (C  )
for each orifice so that:
                                    P x  AP
                      WN ~ "-N   ^ 	T	
where
                                V
                                        r
                                        if ~T
                                              x AP
                                            c     c
For example:
             ••
If for the  .029 orifice, an actual flow rate  (Q  ) of 1.526 liters
                                               O
per minute were measured for a pressure drop  (AP ) of 10 inches

H2O at temperature  (TC) 537°R and pressure  (PC)  29.40 inches mercury,
CN is given by:
                         (   530°R  \
                         \29.92"Hg/
                                                        29.40"Hg
CN  (for  .029 orifice) =    29.92"Hg/   (1'526  ^-P™)     (537°R)  (10"H20)

                      =  2.00  (for Q  in  1pm)

By definition the dilution factor  (DF) is the ratio of the total  flow
(QD + QS) divided by the sample flow  (Qg) thus:
or
                                    TD
              DF =	   +  1
                        f/S  J
                      r         (p)   (AP}
                      CN
                                -75-

-------
where the subscripts D and S denote dilution air orifice and sample
air orifice respectively.

The diagram in Figure 2 will help illustrate how the pressures PD
and Pq are determined.
P  then is:
and PS is:
where
                  p  = P    + AP  + AP
                  FD    AMB   A±7     D

                  P  = P    + AP   — AP
                  PS   FAMB   AiDU   n CY

                P    = ambient absolute pressure
                 AP_ = differential pressure between the internal
                       diluter pressure and ambient  (negative when
                       the diluter is negative to ambient)
                 AP  = pressure drop across the dilution air orifice
                AP   = differential pressure, duct to ambient  (negative
                       when duct is negative to ambient)
                AP_,Y = pressure drop across the cyclone

The calculation of DF is done using a programmable calculator  (HP-25)
and the following format is used to collectively restate the data
values for direct input to the calculator each time a different  DF
is calculated.
                APS            TDI              PA
                APD            TDU              CS
                AP-            PS               DF =
Note:  AP0, AP_, and AP- are in inches H20, T^-, and T_TT are  in  °R
         o    JJ        /                     U_L       DU
(TDU = Tg), Pg and PA are in inches Hg, Cg = CN g and is for  Q in
1pm (CN D = 590 is programmed in the calculator).

Typical data may be recorded as follows  (for Q in SLPM):
                               -76-

-------
       Inlet, Friday  (13 May,  1976), Dilution air orifice DA*
      26.34       329        45        -25.0        48
       PA         TDU        TDI       APDU         TA
                      TIME        OR        CAL
                    3:15 pm       .029
                         (6.7,  3.2, -30)  .5
where
          PA = ambient pressure  (P^vm) in  "Hg
         TDU = temperature of  the flue gas  (Note: T  = TDU)  in  °F
         TDI = temperature of  the dilution air orifice  (TD)  in  °F
        AP   = differential pressure, duct to ambient  (negative when
               duct is negative to ambient)
          T  = ambient temperature in °F
        TIME = time at which these variables were recorded
          OR = sample air orifice identification number
         CAL = reminder  to check  the calibration adjustments on
               all instruments

The following format is  also used in conjunction with the data  logging
stamp:
                           (APS/ APD, AP7)  APcy
where all pressure drops are in "HaO-

From calibration tables  for our orifices,  Table 3, we have:

                           .029 orifice;  CM 0 = 2.00
                                         N,S
and
                      • * *
dilution air orifice, DA; CN D =  590  (in program) thus:
          AP    6.7       TnT  505         P   26.34
            ^^              *J Ju              **
            D   3'2       TDU  ?89        CS   2'°
            ^   -30       Pa   24.5       DF = 255
            7              o
or
                                -77-

-------
590
2.00
v
f

V
(24.4
"Hg)
(
( 505

(2

4,5

"Hg)

3
o

(6
.2
R)

.7
11 TT
H2


11 H
H2
0)


0)
       DF    =                    '                      +  1  =  255
                                (789°R)
 for

                            '-30"H,0 + 3.2"H-0
            =   26.34"Hg  +  I	    \=  24.4"Hg
                             13.6 "H20/"Hg
            =   26.34"Hg
                             13.6 "H20/lfHg
While a single scan should be made at a constant dilution ratio, this
is not always practical.  When different dilution ratios are used, one
can obtain a corrected instrument reading that gives what the instru-
ment reading would have been if the dilution factor had remained
constant.  This allows the calculation of the a- products as described
in Step 2 for use with Table 2.  This corrected instrument reading is
given by:
                           I' = I (DF'/DF)
For example, if during a scan at DF = 255, the parameters shifted and
the recalculated dilution was 280, for a true channel current of
0.749 picoAmps, the corrected reading would be 0.749 picoAmps x 255/280
0.682 picoAmps.

STEP 2
Calculate current differences  (AIi .) from adjacent channels and
average the a^ products for the same size band for all scans taken at
the same test condition.  Calculate 90% confidence intervals for  each
o7s
                                -78-

-------
The cu product is given  by  the following:
                          a.  =  AI.  .  x DF.
                          1     i»D      D
where i denotes the  size band  and j  denotes the dilution value.

SAMPLE CALCULATION  (FOR  ILLUSTRATION ONLY)
Find a.^ for the ten  scans given in Table 4  made at two different
dilutions.
For channels  3-4 we  have:
                          Scan  #1:   ct3_4  i = (.135)  (255)  pA
                               #2:   <*3_4ti = (.124)  (255)  pA
                               #3:   a_' = (.132)  (255)  pA
                              #9:  a3_4 2 =  (.290)  (113) pA
                             #10:  a,  '  =  (.296)  (113) pA
                                    J 4 / £•
thus a_  = 33.179 pA; n = 10 and CI = .579.
                                                  in-ll*
In a similar manner we  can find ®»c>  <*5_g'  •••'  a
A Hewlett-Packard  HP-25  calculator  program (included in the  discussion
of the impactor data  reduction)  has been  written to  calculate  the
error estimates given on graphs  of  the data points.   Given a set of
data, this program calculates  the average (X) ,  the standard  deviation
(S) , the relative  standard  deviation (S/X) , a 90% or 95% confidence
interval (CI) , the lower confidence limit (X-CI or LCL) , and the upper
confidence limit  (X+CI or UCL) .
Thus the mean, with upper  and  lower  90%  confidence  limits  for «3_4 is
given by:
                             "3-4  =  (33'179  ± °-
or
                             a
                               3-4
                                                  pA
                                 -79-

-------
STEP  3
Using a",  and Table 2 calculate "number concentration"  (AN ) ,  "aver-
age cumulative concentration  —"  (EANg), and "ANg/ALogD" for each
size  band for each test condition.

Table 5  shows these calculations for the sample data of Table 4.
Column 7 is ex as  shown in Step 2.  Column 8 is the product  of columns
7  and 5.   Column  9 is the summation of 8 for all sizes "equal to or
greater  than the  indicated  size".  Column 10 is column 5 times column
7  divided by column 6.

STEP  4
Plot  cumulative concentration vs.  size for each test condition.  For
the sample data set of Table  4 this would be the concentrations in
Table 5  column 9  plotted against the sizes in column 4.  No error
bars  are used.
 STEP  5
 Plot  A
 test  condition.
Plot AN /ALogD with upper and lower 90% confidence limits for each
       s
For  the  sample data set of Table 4 this would be the concentrations  in
Table  5,  column 10 plotted against the sizes in column 4.  The  upper
error  bar is the value plus the 90% confidence interval.  The lower
error  bar is the value minus the 90% confidence interval.  For  ou_,  in
Table  4  we would have a__4 = 33.2 + 0.6
thus:

            A,,  /AT  ^   33.2 x  4.76 x 105    .   0.6  x  4.76  x  105
            ANs/ALogD = 	-	
                     =  (63.2 +  1.1) x 106

STEP 6
Calculate and plot efficiency vs. size with upper and  lower  90%
confidence limits:
The efficiency of the control device is given by the following:
                                -80-

-------
     (Outlet AN /ALogD  \
1 ~  inlet ANs/ALogD   j  x 100%
Sample Calculation:
If, for 0.0133 ym particles,  the  inlet  ANg/ALogD =  (63.2  +  1.1)  x 10'
and outlet ANg/ALogD =  (8.85  +  .23)  x 10s,  then:
                                          (5\
                            1 - 6382 x  106JX  10° =  98'6%
the upper limit  (ULg) and  lower limit  (LL£) are  given  by:

                      UL   =(-(   Outlet  -  CI\   , nn
                        E   y    Inlet + CI /     u*
                           = /l - 8.62 x  105\
                            \x  64.3 x  1fte |x  ±uu%
                           = 98.7%

                      TT    M   Outlet  T  v-x i   nnott
                      LLE  =^ - ITOt	^-)X 100%
                           _/    9.08 x  105\
                           -\f-  62.1 x  106/X  100%
                           = 98.5%

Efficiencies with upper and lower limits  are  calculated for each of
the eight sizes  in column  4 from  the ANg/ALogD values  in  column  10
for each test condition.
         + CI\
          CI )
  -81-

-------
The following data were taken with the ultrafine sampling system
described previously.  These data were taken during January 1976
on an electrostatic precipitator collecting fly ash resulting from
the combustion of a high-sulfur (3.1 - 5.6%S)  coal at the Tennessee
Valley Authority's Colbert Steam Plant.
                               -82-

-------
                             REFERENCES


1.   Liu, B. Y. H., Whitby, K. T. and Pui, D. Y. H.,  "A Portable
    Electric Aerosol Analyzer for Size Distribution Measurement
    of Submicron Aerosols", presented at the 66th Annual Meeting
    of the Air Pollution Control Association, Paper No. 73-283
    (June 1973).

2.   Liu, B. Y. H., and Pui, D. Y. H., "On the Performance of the
    Electrical Aerosol Analyzer," J. Aerosol Science, 6_, pp. 249-
    64, (1975).
                                 -83-

-------
GO
*»
I
                PROCESS EXHAUST LINE
                          CYCLONE
ORIFICE WITH BALL AND SOCKET
   JOINTS FOR QUICK RELEASE
                                                   DUMP
                                                  BLEED
                                                              DILUTION DEVICE
                                                   CHARGE NEUTRALIZER


f
SIZING
INSTRUMENT

                                      ™^'i^:|
                                                   j iTI    L
                                                   Tl  I
                                              LJ	1=-=
                                   SOX ABSORBERS (OPTIONAL)
                                        HEATED INSULATED BOX


                               RECIRCULATED CLEAN, DRY. DILUTION AIR '

                                                                FILTER   BLEED NO. 2
                                                                                 COOLING COIL
                                                                                      PRESSURE
                                                                                      BALANCING
                                                                                      LINE
                                                                                                   BLEED NO. 1
                         MANOMETER
                              Figure  1.   Sample Extraction-Dilution  System

-------
     DUCT
p   "  p    > p
 amb'   amb    DiL
I APC


Increasing
Pressure

Pq P /
:y b D x
\ '
I4ps }APD /
PDiL fDiluter \
internal N
pressure) \
s
\_


*^
^
^*
^^
*•• . ~
AP7 = P , - P .
^^ ' arab DiL
<^
pamb; Pamb < PDIL

Figure 2.  Diagrammatic representation of pressure drops in the

           ultrafine particle sizing system.
                            -85-

-------
                                Table 1

                 EAA  (Model  3030)  Data Reduction Form
Concentration, Cumulative  Concentration,  and AN /ALogD from Scan No
1
Channel
No.
3
4
5
7
8
9
10
11
2
Collector
Voltage
196
593
1220
2183
3515
5387
7152
8642
9647
3
D , urn
0.0100
0.0178
0.026
0.036
0.070
0.120
0.185
0.260
0.360
4
Dpi, ym
0.0133
0.0215
0.0306
0.0502
0.0917
0.149
0.219
0.306
for DF =
5
AN/A I
4. 76x10 5
2.33xl05
1.47xl05
8.33x10"
4.26x10"
2.47x10"
1.56x10"
1.10x10"

6
AlogD
0.250
0.165
0.141
0.289
0.234
0.188
0.148
0.141
s
7 8 9 10 11 12
I,pA Al,pA AN AN EN AN /AlogD
S 5 S
















	

-------
                       Table 2
         EAA (Model 3030) Data Reduction Form
Concentration, Cumulative Concentration, and AN /ALogD
     From Average a for Condition              s
1
Channel
No.
3

4

, 5
oo •
V 6

7

8

9

10

11
2
Collector
Voltage
196

593

1220

2183

3515

5387

7152

8642

9647
3
D
P
0.

0.

0.

0.

0.

0.

0.

0.

0.
, pm
0100

0178

026

036

070

120

185

260

360
4
P

0.

0.

0.

0.

0.

0.

0.

0.

5
. , ym AN/A I

0133

0215

0306

0502

0917

149

219

306


4

2

1

8

4

2

1

1


.76xl05

.3 3x10 5

. 47x10 5

.33x10"

.26x10*

.47x10*

.56x10"

.10x10*

6789 10
AlogD a AN ZAN AN /AlogD
*p s s s

0

0

0

0

0

0

0

0


.250

.165

.141

.289

.234

.188

.148

.141



















-------
                     Table 3





             ORIFICE CONSTANTS  (CN)








#                       2 Dot Set              3 Dot  Set






.120                       45                      52




.082                       14                      16




.059                       5.9                     5.9




.042                       3.7                     3.3




.029                       2.0                     1.5




-021K                      .96                     .78




.021L                      .82                     	




•014K                      .37                     .45



.014L                      .48                     	




DA                                                 590
                   -88-

-------
                                                   Table 41

                           EAA Current Readings (I,  in picoamps  and Dilution Factors)
                              for this Sample Calculation:  Hypothetical Inlet Data
SCAN



i
1
00 2
ID
1 3
4
5
6
7
8
9
10
1.
2.







Time
Friday
12/4/75

l:30p

1:32

1:34
1:36
1:38
1:40
1:45
1:47
1:49
1:51
.*029 Orifice
For Runs 1 -



For Runs 7 -



CH 3



2.869

2.835

2.841
2.859
2.866
2.866
6.477
6.580
6.377
6.390
'• APDUCT
6, APs
AP
D
AP7
10, APg
AP
D
AP7
CH 4



2.734

2.711

2.709
2.722
2.740
2.736
6.188
6.288
6.087
6.094
=25.5 "Hg,
=6.7 "H20
=3.2 "H,0
2
= -30 "H20
=9.7 "H20
=3.2 "H-0
2
= - 41 "H20
CH 5



2.519

2.495

2.500
2.522
2.530
2.531
5.716
5.818
5.620
5.614
AP =0.5
cy
T0I = 505
T™, = 789
DU
PS = 24.
TDI = 505
T™, = 789
DU
Ps = 24.
CH 6



2.227

2.205

2.200
2.235
2.251
2.238
5.056
5.153
4.960
4.956
"H20
°R Pft = 26.34
°R C0 = 2.00
S
5 "Hg
"R PA = 26.34
"R C_ = 3.70
S
5 "Hg
CH 7



1.362

1.344

1.340
1.368
1.381
1.378
3.111
3.233
3.021
3.006

"Hg



"Hg



CH 8


3
.682

.669

.655
.676
.714
.698
1.575
1.613
1.526
1.467









CH 9


3
.242

.220

.218
.226
.279
.255
.565
.510
.537
.492









CH 10


3
.102

.075

.081
.096
.137
.115
.243
.195
.227
.187









CH 11


3
.020

- .010

.001
.010
.052
.033
.053
.010
.032
.005









Dilution Factor2



255

255

255
255
255
255
113
113
113
113









3.   Corrected  Instrument  Reading

-------
                       Table 5


         EAA  (Model 3030) Data Reduction Form
Concentration, Cumulative Concentration, and AN /ALogD
         From Average AI for Condition Inlet
                  (Sample Calculation)
                                                                      10





1
V£>
O
1











Channel
No.

3

4

5

6

7

8

9

10

11
Collector
Voltage

196

593

1220

2183

3515

5387

7152

8642

9647
D , um
P

0.0100

0.0178

0.026

0.036

0.070

0.120

0.185

0.260

0.360
D . , ym
Pi


0.0133

0.0215

0.0306

0.0502

0.0917

0.149

0.219

0.306

AN/AI


4. 76x10 5

2. 33x10 5

1.47xl05

8.33x10"

4.26x10"

2.47x10"

1.56x10"

1.10x10"

A log D a


0.250

0.165

0.141

0.289

0.234

0.188

0.148

0.141



33.2+. 6

53.3+. 7

74.3+. 8

219. 8+. 8

174+2

114+2

35.4+. 6

21.2+.3

ANs
xlO6

15.8+.3

12.4+.2
~
10.9+.1

18.3+.1

7. 41+. 09

2. 82+. 05

.552+. 009

.233+. 003

ZAN
s
xlO6

68.4

52.6

40.2

29.3

11.0

3.61

.785

.233

AN /ALogD
S .
xlO6

63.2+1.1

75.3+1.0

77.5+. 8

63.4+. 2

31.7+.4

15.0+.3

3. 73+. 06

1.65+.02


-------
                            Table  6
              Ultrafine Particle System:  Data Log
 DATE
1/12/76

1/13/76
1/15/76
1/19/76


1/20/76
TIME
6:02
6:42
8:42
9:30
10:15
12:10
1:00
3:15
4:00
4:50
9:32
9:59
10:22
11:53
1:21
1:43
2:05
3:32
4:05
4:38
9:32
10:05
10:48
3:17
- 6:42
- 7:50
- 9:27
- 10:15
- 11:13
- 12:37
- 3:10
- 3:53
- 4:50
- 5:10
- 9:58
- 10:22
- 10:52
- 12:14
- 1:42
- 2:00
- 2:26
- 3:54
- 4:34
- 5:08
- 10:05
- 10:40
- 11:12
- 3:42
TEST
NO.
             INLET

              1

              2
             OUTLET

              6
              9


             10


             11
SCAN
NO.
            1
            2
            3
            4
            5
            6
            7
            8
            9
           10
           33
           34
           35
           36
           37
           38
           39
           47
           48
           49
           50
           51
           52
           53
TEST CONDITION,
CURRENT DENSITY:
NORMAL  REDUCED
      NOTE:  Scans ll-*32 and 40-^46 involve different test
             conditions connected with the EPRI portion of
             the test.
                              -91-

-------
                                                             Table 7

                     Ultrafine Particle  System:   Instrument Current Readings (I)  And Dilution Factors  (DF)
VD
N)
Scan
No.
CH 3
CH 4
CH 5
CH 6 CH
7 CH
8 CH
9
CH 10
CH 11 Dilution Factor
INLET
1
2
3
4
5
6
7
8
9
10

33
34
35
36
37
38
39
47
48
49
.8002
.365*
1.3822*
.6562
.5202
.230
4.0152*
3.4002*
3.6102
5.2002

.2502
3.7502
20.7501'2
21. ISO1'2
.0842
.1212*
38.0001/2
.238
.145
.1182
.8252
.297*
1.411*
.660
.5002
.228
4.188*
3.2742*
3.6502
5.210

.2502
.3652
2.4101'2
3.3501'2
.090
.135*
11.1001,2
.220
.120
.119
.825
.271*
1.360
.650
.520
.222
3.775
3.350*
3.650
5.180

.2302
.300
.3152
.4052
.089
.121*
.8551 i
.213
.119
.092
.800
.255*
1.290
.550
.460
.200
3.000 1.
2.700 1.
3.150 1.
4.450 2.
OUTLET - REDUCED
.230
.290
.250
.230
.085
.107*
2 .2801
.198
.107
.085
500
195
880
320
290
112
800
625
850
750 1.
CURRENT
175
200
185
167
061
086
1951
128
075
041
193
088
238
143
133
052
600
615
708
020
DENSITY
069
085
074
063
017
028
0951
049
026
016
117*
071
078
056
052
019
235
217*
265
356

025
020
Oil
022
006
006
0481
015
008
005
.051*
.024
.052
.028
.023
.006
.106
.085*
.128
.171

-.2012
.002
-.013
-.006
-.0062
.001
.0241
-.005
-.002
-.003
.035*
.016
.033
.016
.003
.004
.056
.044*
.063
.097

-.0302
-.022
-.039
-.021
-.0032
-.008
+.0091
-.3352
-.011
-.0422
814
1240
333
624
689
1500
134
136
135
135

47.0
30.0
30.0
35.2
106
77.6
27.2
46.2
74.7
123

-------
                                    Table 7  (Continued)
Scan
No.
CH 3
CH 4
CH 5
CH 6
CH 7
CH 8
CH 9
CH 10
CH 11 Dilution Factor
OUTLET - NORMAL CURRENT DENSITY
50
51
52
53
.030
.Oil2
.044
.065
.030
.0122
.040
.060
.0272
.012
.0322
.055
.028
.009
.036
.050
.014
.005
.021
.042
-.001
-.004
-.006
.017
-.004
-.005
-.010
.005
-2.47S2
-.005
-.012
-.005
-.006
-.005
-.012
-.009
82.8
140
44.1
46.5
1  Indicates that this data was taken in the X10 mode.  Readings shown have been corrected to true.
2  Indicates data elements that have been rejected.
*  Indicates corrected instrument reading: I1 = I (DF'/DF),  see Table 8 for uncorrected values.

-------
                            Table 8
  Ultrafine Particle System:  Instrument Current Readings  (I)
          Corrected For Small Shifts In Dilution  (I1)
                        I' = I  (DF'/DF)
Scan
No.
  3

  7

  8
 38
Channel
  No.

   9
  10
  11
   3
   3
   4
   5
   6
   3
   4
   3
   4
   3
   4
   5
   9
  10
  11
   3
   4
   5
   6

Current
I
0.115
0.050
0.034
0.950
0.350
0.285
0.260
0.245
1.440
1.470
4.075
4.250
3.375
3.250
3.325
0.215
0.084
0.044
0.120
0.133
0.120
0.106
TRUE:
Dilution
DF
798
798
798
686
1190
1190
1190
1190
347
347
136
136
135
135
135
135
135
135
76.7
76.7
76.7
76.7
CORRECTED :
Current
I1
0.117
0.051
0.035
Rejected
0.365
0.297
0.271
0.255
1.382
1.411
4.015
4.188
3.400
3.274
3.350
0.217
0.085
0.044
0.121
0.135
0.121
0.107
Dilution
DF1
814
814
814
1240
1240
1240
1240
1240
333
333
134
134
136
136
136
136
136
136
77.6
77.6
77.6
77.6
                              -94-

-------
                               Table 9
                Ultrafine Particle Sizing System Data
Dilution Factor Parameters, Colbert Steam Plant EPA Test,  January 1976
Parameters
Scan
No.

1
1
2
2
i 2
vo
Ul
1
3
3
4
5
6
7
7
7, 8
8
9, 10
Time

6:02 -
6:32 -
7:03 -
7:06 -
7:23 -
8:42 -
8:49 -
9:28 -
10:15 -
12:10 -
1:50 -
2:10 -
2:52 -
3:24 -
4:04 -

6:31
7:02
7:05
7:22
7:50
8:48
9:27
10:14
11:13
12:37
2:09
2:51
3:23
3:53
5:12
Aps
("H20)

4.0
4.0
5.9
1.8
1.7
6.0
6.5
2.0
4.0
5.6
6.0
6.0
5.9
5.8
2.6
APD
("H20)

2.5
2.4
2.6
2.4
2.4
2.9
2.9
3.1
3.1
3.1
2.9
2.9
3.0
3.0
3.0
AP,
("H20)

-15.0
-14.0
-12.4
-12.5
-12.5
-21.2
-21.0
-16.5
-17.5
-20.5
-22.2
-22.2
-23.0
-22.9
-23.1
T .
Di
(°R)
1/12/76
518
518
518
518
518
1/13/76
525
525
525
525
525
530
531
532
532
530
T
iDU
(°R)

960
960
960
960
980
855
855
855
855
855
800
780
760
760
840
PS
( -Hg)

28.87
28.87
28.87
28.87
28.87
28.70
28.70
28.70
28.70
28.70
28.70
28.70
28.70
28.70
28.70
PA
("Hg)

29.68
29.68
29.68
29.68
29.68
29.50
29.50
29.50
29.50
29.50
29.50
29.50
29.50
29.50
29.50
CS

.78
.78
.78
.78
.78
1.5
1.5
1.5
.96
.37
3.7
3.7
3.7
3.7
5.9
DP

814
798
686
1190
1240
347
333
624
689
1500
136
134
135
136
135

-------
Table 9   (Continued)
Parameters
Scan
No.

33
34, 35
36
37
38
vi, 38
? 39

47
48
49

50
51
52
53
Time

9:32 -
9:59 -
11:53 -
1:15 -
1:43 -
1:52 -
2:05 -

3:32 -
4:05 -
4:38 -

9:32 -
10:05 -
10:48 -
3:17 -


9:58
10:52
12:14
1:42
1:52
2:00
2:26

3:54
4:34
5:08

10:05
10:40
11:12
3:42
Aps
("H20)

3.3
8.3
5.5
4.9
9.3
9.3
9.6

3.3
9.1
3.4

8.2
2.7
3.7
3.3
APD
("H20)

3.3
3.3
3.3
3.3
3.3
3.3
3.3

3.4
3.4
3.3

3.4
3.3
3.4
3.4
AP?
("H20)

-31.2
-42.1
-38.0
-27.2
-32.6
-32.6
-42.1

-53.0
-44.8
-36.7

-35.3
-28.5
-50.3
-53.0
T
DI
1/16/76
523
510
519
513
514
514
511
1/19/76
528
523
526
1/20/76
519
522
522
522
T

840
840
780
860
860
880
800

840
810
840

870
840
840
840
PS
(»Hg)

28.28
28.28
28.28
28.28
28.28
28.28
28.28

28.67
28.67
28.67

28.70
28.70
28.70
28.70
PA

29
29
29
29
29
29
29

29
29
29

30
30
30
30
H )

.48
.48
.48
.48
.48
.48
.48

.97
.97
.97

.00
.00
.00
.00
CS

16
16
16
5.9
5.9
5.9
16

16
5.9
5.9

5.9
5.9
16
16
°F

47.0
30.0
35.2
106
76.7
77.6
27.2

46.2
74.7
123

82.8
140
44.1
46.5

-------
INLET IMPACTOR DATA
        -97-

-------
     COLI-1   1-12-76  1809  N,A,
   IMPACTOR  FLOWRATE s o.oso ACFM               IMPACTOR TEMPERATURE  *   310.0  f  e  isa,« c              SAMPLING DURATION =  13,00 MIN
   IMPACTOR  PRESSURE DROP «  2,0 IN, OF HG      STACK TEMPERATURE  «   3io,o  F » 15*1,4 c
   ASSUMED PARTICLE DENSITY B 2,no GM/CU.CM.     STACK PRESSURE  «  29,67  IN, of HG     MAX, PARTICLE DIAMETER * I&B.O MICROMETERS
   GAS  COMPOSITION (PERCENT)           C02 s 12,68          CO s  0,00           N2 s 73,60          02 a  5,52           H20 »  8,00
   CALC,  MASS LOADING • 3.5215E+00 6R/ACF             5.2222E+00 GR/DNCF             7.6008E+03 MO/ACM             1.1950E+04 MG/DNCM
   IMPACTOR  STAGE                           CYC        SO       SI         82        S3        Sfl        35        36     FILTER
   STAGE  INDEX NUMBER                         123056789
   D50  (MICROMETERS)                      li.07      7,85     Q.Ub       2,6«      1,83      0,96      0,69      0.38
   MASS  (MILLIGRAMS)                      72,12      3,21     2,95       2,11      1,63      l.fll      0,27      0,10      0.14
   MG/DNCM/STAGE                            1,03E+0«  «,57E*02 a.20E*02   3.00E+02  2.32E+02  2,01E»02  3,8«f*01  t.^ZE+Oi  1.99E*01
   CUM, PERCENT OF MASS SMALLER THAN oso  i«,o9     io,26     6,75       «,23      2,29      o,6i      0,29      0,1?
   CUM,  (MG/ACM)  SMALLER THAN D50          1,07E+03  7,801+02 5,1SE*02   3.22E+02  l,7aE+02  a,66E+01  2.21E+01  1,31E*01
   CUM,  (MG/DNCM)  SMALLER THAN OSO         1,68E+03  1.23E+03 8,06E+02   5,06E+Oa  2,74E*02  7,32E«01  3,48E+01  2.0SE+01
   CUM,  (GR/ACF)  SMALLER THAN 050          «,68E«01  3,«1E-01 2,2flE»01   1,«1E«01  7,6ie«02  2,03E»02  9.66E-03  5.71E-03
  CUM, (GR/DNCF)  SMALLER THAN D50         7,36E«01  5,36E«01 3.52E-01   2.21E-01  1.20E-01  3.20E-02  1.52E-02  8.97E-03
  ceo, MEAN  DIA,  (MICROMETERS)            «,SIE*OI  9,32E+oo 5.9iE+oo   3,«3E+oo  2,i9E+oo  i,33E*oo  B.ISE-OI  S.ISE-OI  2,72E-oi
  DM/DLOGD  (MG/DNCM)                       8.69E+03  3.06E+03 1.71E+03   1.J2E+03  1,06E»03  7,?3E+02  2.63E+02  5,«i3E*01  6.62E+01
  DN/DLOGD  (NO,  PARTICLES/DNCM)            8.62E+07  3.01E+09 6.58E+09   2,60E*10  l.JOE+H  2,a6E+ll  3.87E+11  3,29E*11  2.62E+12


NORMAL (ENGINEERING  STANDARD)  CONDITIONS ARE  21  DEC  C AND  760MM HG,

                                                           -98-

-------
   COLU2   1.J2-76  1825   N,A,
 IMPACTOR FLOWRATE  «  o.o'io  ACFM                IMPACTOR  TEMPERATURE  =   310,0  F  *  i5«,«  c               SAMPLING  DURATION *  u,oo KIN
 IMPACTOR PRESSURE  DROP  =  2,0  IN.  OF  MS       STACK  TEMPERATURE  *   3io,o  f  » 15«,«  c
 ASSUMED PARTICLF DENSITY * 2.UO  CM/CU.CM,      STACK PRESSURE  o  29.67  IN, OF HG     MAX.  PARTICLE  DIAMETER  «  168,0  MICROMETERS
 GAS COMPOSITION  (PERCENT)            CO?  *  12.88           CO *  0,00           N2 B 71.60           02  *   5,52            H20 «  6.00
 CALC, MASS  LOADING » 5.J516E+00  GR/ACF              5.2695E*00 GR/DNCF              7.6696E+03  M6/ACM              1.2058E+04 MG/DNCM
 IMPACTOR STAGE                            CYC         so       si         $2         83        s«        s*>        s&     FILTER
 STAGE INDEX NUMBER                         125056789
 050  (MICROMETERS)                       11,07       7,85     «,«6       2,6«      1,83      0,96       0,69      0,38
 MASS  (MILLIGRAMS)                       65,95       3,58     5.09       5,91      1,96      1,21      0,61       0,15      0,i<*
 MG/DNCM/STAGE                            9,S9E+03  5,10E+02  7.25E*02   «9«SE+02  2.79E+02  1.72E*02  8.68E+01   2.UE+01   3,«2Et01
 CUM,  PERCENT OF  MASS SMALLER THAN  DSO  22,i«      17,92     11,91       a,93      2,61      1,19      o,«7       0,29
 CUM,  (MG/ACM)  SMALLER THAN 050          1,70E*03  1,37E*03  9.13E+02   3.78E+02  2,OOE*02  9,fl9E*01  3.57E+01   2.21E+01
 CUM,  (MG/DNCM)  SMALLER  THAN DSO          2.67E+03  2.16E+03  1.44E+03   5,9«E+02  3.15E+02  i,13E*02  5.61E+01   3,«8E«01
 CUM,  (GR/ACF)  SMALLER THAN D50          7,a2E-01  6,OOE*01  3,99E»01   1,65^*01  8,76E«02  3,97E»02  i,56F»02   9.66E-03
 CUM,  (GR/DNCF)  SMALLER THAN DSO          1,17E+00  9,a«E-01  6,27F«01   2,60E»01  1,38E«01  6,25E«02  2,«5E«02   1.52E-02
 GCO,  MEAN  DIA,  (MICROMETERS)            U,11E*01  9,32E*00  S,91E*00   3.U3E+00  2.19E*00  1,33E*00  8.15E-0|   5,1SE-01  2.72E-01
  DM/DLOGD (MG/DNCM)                      7.95E+03  3,«1E+03  2,95E*OS   5.69E+03  1.75E+03  6.20E+02  5,9«E+02   8,t5E+01  l,11E*Og
  ON/OLOGD (NO.  PARTICLES/DNCM)           7.89E+07  3.35E+09  1,13E*10   7,29E*10  1,32E*H  2.11E+11  8,7«E*11   
-------
     COLI«S  1-13-76  1320  6UAI
   IMPACTOR FLOWRATE « 0,031 ACFM               IMPACTOR TEMPERATURE «  320,0  F  e  160,0  C              SAMPLING DURATION •  15,00
   IMPACTOR PRESSURE DROP •  1,6 IN. OF HG      STACK TEMPERATURE »  320,0 F  « 160.0  C
   ASSUMED PARTICLE DENSITY s 2,«0 GM/CU.CM,     STACK PRESSURE = 29,37 IN, OF HG     MAX, PARTICLE DIAMETER s 168,0 MICROMETERS
   6A8  COMPOSITION (PERCENT)           C02 * 12.88          CO *  0,00          N2 B 73,60          02 «  5,52           H20 «  8,00
   CALC,  MASS LOADING * 2.2438E+00 GR/ACF             5.6102E+00 GR/ONCF             5,13U7E*03 MG/ACM             8,261«E+03 M5/ONCM
   IMPACTOR STAGE                           CVC        SO        81        82         83        84        85        86     FILTER
   STAGE  INDEX NUMBER                         123
-------
   COII-U  1-13.76   IflSO   flUAI
 IMPACTOR FLOWRATE  «  o.osi  ACFM                IMPACTOR TEMPERATURE *  330,0 r *> 165.6 c              SAMPLING DURATION e  15,00 MIN
 IMPACTOR PRESSURE  DROP «   2,0  IN,  OF  HG      STACK TEMPERATURE »  330,0 F « 1*5,6 c
 ASSUMED PARTICLE DENSITY  s 2,lit)  GM/CU.CM,      STACK PRESSURE « 89,50 IN, OF HG     MAX,  PARTICLE  DIAMETER • 168,0 MICROMETERS
 CAS COMPOSITION  (PERCENT)            CO? *  12,68          CO »  0,00           N2 » 73,60          02 »   5,52           H20 "  8,00
 CALC, MASS LOADING • 1.79086*00  GR/ACF             2.9054E+00 GR/DNCF             4,0980E*03  MG/ACM              6,6486E*03 MG/DNCM
 IMPACTOR STAGE                            CYC        SO        SI        82        85       S«        85        86     FILTER
 STAGE INDEX  NUMBER                         !23
-------
     COLU5   1.13-76  1715  2UAI
   IMPACTOR  FLOWRATE s o.osi ACFM               IMPACTOR  TEMPERATURE  s   330,0 r *  165.6 c              SAMPLING DURATION s   15,00  MIN
   IMPACTOR  PRESSURE pRflP »  2,0 IN, OF HG      STACK  TEMPERATURE  «   330,0 f « 165,6 C
   ASSUMED PARTICLE  DENSITY e Z,«Q GM/CU.CM,      STACK PRESSURE  s  ?9,50  IN, OF HG     MAX, PARTICLE DIAM|TER * 166,0 MICROMETERS
   BAS  COMPOSITION (PERCENT)           C02 •  12.68          CO  «  0,00           N2 * 73,60          02 a  5,52           H20 •   8.00
   CALC,  MASS LOADING B 1,9876E*00 GR/ACF             3.2247E+00 GR/DNCF            4,548«E*03 MG/ACM             7.3793E+03 MG/DNCM
   IMPACTOR  STAGE                           CVC        80       81        82        SJ        S4        85        36     FILTER
   STAGE  INDEX NUMBER                         123456769
   050  (MICROMETERS)                      11.00      7,79      4.82       2,61       1,81      0,95      0,68      0,38
   MASS  (MILLIGRAMS)                      «9,15      2,37      1.97       2,83       1,16      1,«5      0,43      0,30      0,23
   MC/ONCM/STAGE                            6,06E+QS  2,92E+02   2,U$E+02   5,«OE+8a   1,«3E*02  1.79E+02  5,JOE*01  3.70E+01  2.63E+01
   CUM, PERCENT OF MASS SMALLER THAN DSO  17,94     13,98     io,69       5,97       4,03      i«6i      o,89      0,39
   CUM, (MG/ACM)  SMALLER THAN 050          8,16E+02  6,36E*02   S.86E+02   2.71E+02   1.83E+02  7,31E*Ot  4.05E+01  1.77E+01
   CUM, (MG/DNCM)  SMALLER THAN D50         1,32E+OS  1.03E*03   7,89E*02   a,«OE+02   2,97E+02  1.19E+02  6,57E»01  ?,87E*01
   CUM, (GR/ACF)  SMALLER THAN DSO          3.57E-01  2,78E-01   2,13E»Ol   1.19E-01   8,01E»02  3.20E-02  1.77E-02  7.73E-03
   CUM. (GR/ONCF)  SMALLER THAN DSO         5,78E«Ol  a,51E-01   3,45E«01   1,9?E«01   1.30E-01  5.19E-02  2,87E»02  1,25E*02
  6fO, MEAN  DIA.  (MICROMETERS)             4,306+01  9,a6E+oo   5,87E*oo   3,«oE*oo   2,i8E»oo  I.SIE+OO  s.ose-oi  5,06E-oi  2,67E«oi
  DM/DLOGO  (MG/DNCM)                       5.11E+03  1,95E*03   9.87E+02   1.53E+03   8.97E+02  6.41E+02  J,60E»02  1.45E+02  9,41E*01
  DN/DLOGO  (NO,  PARTICIES/DNCM)            5.13E+07  1.96E+09   3.89E+09   3.09E+10   6,93E*tO  2,25E*11  5,50E»11  8,87E*H  3,95E*12


NORMAL (ENGINEERING  STANDARD)  CONDITIONS ARE  21  DEG  C AND  760MM HG,

                                                             -102-

-------
    CQLI-6   1*13.76  12UA1
  IMPACTOR  FLOWRATE « o.osi ACFM               IMPACTOR TEMPERATURE «  330.0 r • 165,t> e-              SAMPLING DURATION =  is.oo MIN
  IMPACTOR  PRESSURE DROP «  2,0 IN, OF HG      STACK TEMPERATURE »  33o,o r * 165,6 c
  ASSUMED PARTICLE  DENSITY s 2.«o GM/CU.CM,     STACK PRESSURE « 29,50 IN, OF HC     MAX',  PARTICLE  DIAMETER  «  j68,o  MICROMETERS
  GAS COMPOSITION  (PERCENT)           C02 * 12,86          CO s  0,00           N2 * 73,60          02 *   5,52           H20 *  8,00
  CALC,  MASS  LOADING « 6,2692E«01 GR/ACF             1.0171E+00 GR/DNCF             1,«3«6E+03  MG/ACM              2.3275E+03 MG/DNCM
  IMPACTOR  STAGE                            cvc        so        si        sz        ss       s«        ss        86      FILTER
  STAGE  INDEX NUMBER                         125U56789
  050  (MICROMETERS)                      11,00      7,79      fl.K?      2,61      l,8l      0,93       0,68      0.38
  MASS  (MILLIGRAMS)                      12.70      1,76      0.91      1,16      1,06      0,73       0,22      0,10       0,25
  MG/DNCM/STAGE                            1.56E+03  3,17E+02  1,12E+02  l,a3E+02  1,31E+02  8,99E*Ol   2,71E+01   1.2JE+01   3.08E*01
  CUM,  PERCENT OF  MASS SMALLER THAN 050  12,77     23,46     18,61     12,so      6,89      3.02       1,86      1,33
  CUM,  (MG/ACM)  SMALLER THAN 050          U.70E+Q2  3,37E«02  2.67E+02  1,79E*02  9,68E*01  «,34Et01   2.67E+01   1.91E+01
  CUM,  (MG/DNCM)  SMALLER THAN 050         7.63E+02  5,tf6E*02  «,3flE+02  2.9}E»02  1,60E*02  7,03E*01   «,32E*01   3.09E+01
  CUM,  CGR/ACF)  SMALLER THAN D50          2.05E-01  1.17E-01  1.17E-01  7.84E-02  4.32E-02  1.89E-02   1,16E«02   6.33E-03
  CUM,  (GR/DNCF)  SMALLER THAN 050         3.33E-01  2,396-01  1,90E»01  1.27E-01  7.00E-02  '5.07F.02   1.89E-02   1.35E-02
  GEO.  MEAN DIA,  (MICROMETERS)            «.50E*01  9.26E+00  5,87E*00  S.flOEtOO  2.18E+00  J.31E+00   8.05E-01   5.06E-01  2.67E-01
  DM/DLOGD (MG/DNCM)                      1.32E+03  l,tt5E«03  4.56E«02  6,25E*02  8,I9f+02  3.23E+02   1.84E+02   «,8?E+01  1.02E+02
  DN/DLOGD (NO, PARTICLES/DNCM)           1.32E+07  1,«5E+09  1.79E+Q9  1.27E+10  6,3aE*10  l,l3E*ll   2,82E*ll   2.96E+11  «,29E*12

NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 OES C AND 760MM HG.

                                                             -103-

-------
     COLI-7   1.13-76  1822  10UAI




   IMPACTOP  FLOWRATE s 0,031 ACFM               IMPACTOR TEMPERATURE  s   550,0 F s 165.6 C              SAMPLING DURATION  s   15,00  HIM



   IMPACTOR  PRESSURE DROP «  2,0 IN, OF HO      STACK TEMPERATURE  »   330,0 F « 165,6 C



   ASSUMED PARTICLE DENSITY « 2,ltd GM/CU.CM.     STACK PRESSURE  s  29,50  IN, OF HG     MAX, PARTICLE DIAMETER « 16B.O  MICROMETERS



   GAS  COMPOSITION (PERCENT)           C02 * 12,88          CO »  0,00           N2 • 73,60          02 e  5,5?          H20  »  8,00



   CALC,  MASS  LOADING s l,1168E*00 GR/ACF             1.8119E+00 GR/DNCF             2,5S56E*03 MG/ACM             O.IU62E+03  MG/ONCM



   IMPACTOR  STAGE                            CYC        SO       Si        82        S3        S«        35        86    FILTER



   STAGE  INDEX NUMBER                         t23«56T89



   050  (MICROMETfRS)                      11,00      7,79     «,«2       2,61      1,81      0,95      0,68      0,36



   MASS (MILLIGRAMS)                      25,2«      1,78     8,25       1,77      1.0«      1,20      0,28      0.07      0,02



   MC/ONCM/STAGE                            3,11E+OS  2,19E+02  2,77Et02   2,18Et02  1.28Ef02  1,
-------
   COLI.8   l-lfl-76   1250   12UAI   86,85,  HAD MINUS MASSES
 IMPACTOR FLOWRATF  s  0,03!  ACFM                IMPACTOR TEMPERATURE s  300,0 F B 1«8,9 C              SAMPLING DURATION «  15,00 MIN
 IMPACTOR PRESSURE  DROP  =   2,5 IN, or MG      STACK TEMPERATURE *  300,0 r » t«8,9 c
 ASSUMED PARTICLE  DENSITY  « 2,«o GM/CU.CM,     STACK PRESSURE B 30,00 JN, OF HG     MAX,  PARTICLE DIAMETER « i68.o MICROMETERS
 GAS COMPOSITION  (PERCENT)            COS t 12.88          CO •  0,00           N2 • 73,60          02 *  5,5?           H20 *  8,00
 CAtC, MASS LOADING « 2.6fll8E«01 GR/ACF             «,05««E»01 GR/ONCF             6,0«52E+02 MG/ACM             9.27T9E+02 M6/DNCM
 IMPACTOR STAGE                            CYC        SO        SI        82        83        Sfl        S5        86     FIL.TER
 STAGE INDEX NUMBER                         123456789
 050  (MICROMETERS)                       |0,8fl      7,68      4,36      2,58      1,79      0,9«      0,67      0,37
 MASS  (MILLIGRAMS)                        0,00      1,68      2.11      1,«0      0,00      2.«a      0,00      0,00      0,33
 M6/DNCM/STAGE                           0,OOE»01  1,96E^02  2.46E+02  1.63E+03  0,OOE»01   2.84E+02   O.OOF-01   O.OOE-01   3.85E+01
 CUM,  PERCENT or  MASS SMALLER THAN oso 100,00     78,90     52,39     30,80     301  2.12E-01  1,«1E-01  l,«iE-01   1.68E-02   t,68E-02   1.68E-02
  6EO,  MEAN DIA,  (M-ICROMETERS)            «,27E*01  9.12E+00  5.79E+00  3,36E»00  2.15E+00   1.30E+00   7.97E-01   5,OOF«01  2.63E-01
  DM/DLOCD  (MG/DNCM)                      O.OOE-01  1.31E+03  l.OOE+03  T.15E+03  fl.OOE.Ol   1.02E+03   O.OOE-01   O.OOC-Ol  1,2BE»02
  ON/DLOGD  (NO. PARTICLES/DNCM)           O.OOE-01  1,37E*09  fl,HE*09  l,51f*10  O.OOE-01   3.71E+11   O.OOE-01   O.OOE-01  5.62E+12


NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG C AND 760MM HG.

                                                             -105-

-------
     COLI-9  l-lfl»76  15E+03 MG/QNCM
   IMPACTOR STAGE                            CYC        SO       SI        S2        S3        S«        SS        S6     FILTER
   STAGE  INDEX NUMBER                         12SU56789
   050  (MICROMETERS)                      11,00      7,7<5      a.ag      2,61       1,81      0,95      0,68      0,37
   MASS (MILLIGRAMS)                      08,22      1,91      2,29      2,21      2,2fc      0,00      0,07      0,00      O.lb
   MG/ONCM/STAGE                            5,8aE+03  2.31E+02  2.77E+02   2,68E*02  2,7«E*02  O.OOE-01  8,«8E*00  O.OOE-01  1.82E+01
   CUM, PERCENT OF MASS SMALLER THAN oso  15,57     12,23      8.22      «,35      0,39      0,39      0,27      0,27
   CUM, (MG/ACM) SMALLER THAN D50          6,756+02  5,30Ef02  3.56F+02   1,89E*02   1.69C+01  1.69E+01  1,16F*01  1.16E+01
   CUM, (MG/ONCM)  SMALLER THAN 050         1,08E*03  8,«6E*02  5.69Ef02   3,01E*02  2,70E*Ol  2,70E*01  1,85E*01  1,85E*01
   CUM, (GP/ACn SMALLER THAN 050          2.95E-01  2.32E-01  1.56E-01   8.2UE-02   7,aoF-03  7,«OE-03  5.07E-03  5.07E-03
  CUM, (GR/ONCF)  SMALLER THAN 050         «,71E-01  3,70E"01  2,«8E-01   1.31E-01   1.18E-02  1.18E-02  8.09E-OJ  8.09E-03
  GEO, MEAN DIA,  (MICROMETERS)            fl,30E4-01  9,26E*00  5.87E+00   3,«OE+00  2,16E*00  1.31E+00  8.06E-01  5,0«E-01  2,fcfle-01
  OM/DLOGO  (MG/ONCM)                       a,93E*03  1.55E+03  1,13E*05   1,17E»OS   1.72E+03  O.OOE-01  5.76E+01  O.OOE-01  6,0«E*01
  ON/DLOGD  (NO. PARTICLES/ONCM)           
-------
   COLt-10   1-1U.76   1520   1UAI
 IMPACTOR FLOWRATE «  0.031  ACFM                IMPACTOR  TEMPERATURE  •   340,0  F  =  171,1  C               SAMPLING DURATION  »   15,00  MIN
 IMPACTOR PRESSURE DROP  «   8,5  IN.  OF  HG       STACK  TEMPERATURE  «   340,0  F • 171,1  C
 ASSUMED PARTICLE DENSITY * 2,40  GM/CU.CM.      STACK PRESSURE  m  30,00  IN, OF HG     MAX, PARTICLE DIAMETER  »  i68,o  MICROMETERS
 GAS COMPOSITION  (PERCENT)            COS  e  12.88          CO •  0,00           N2 B 73,40          02 «  5,52           H20  «  8,00
 CAIC. MASS  LOADING * 3.9892E.01  GR/ACF              6,4449E*Ot GR/DNCF             9.1286E+02 MG/ACM              1,4748E«03  MG/DNCM
 XMPACTOR STAGE                            CYC        SO       SI         82         85        SO        35         36     FILTER
 STAGE INDEX NUMBER                          123«S*78»
 050  (MICROMETERS)                       11.05      7,83     4.00       2,63      1,82      0,96       0,68      0,37
 MASS  (MILLIGRAMS)                        8,21      0,75     0,86       0,48      0,84      0,58       0,16      0,00      0,14
 MG/DNCM/STAGE                            1.01E+03  9.20E+01  1.06E+02   5,89E*01  S.OSE*02  7,12F+fll   1.96E+01  O.OOE-01  l,7aE»01
 CUM,  PERCENT  OF  MASS SMALLER THAN D50  31,70     25,46     18,31      14,31      7,33      2,50       1,17      1,17
 CUM,  (MG/ACM)  SMALLER THAN D50          2.69E+02  2,32E*02  1.67E+02   1,31E+02  6.69E+01  2,28E«01   1.07E+01  1.07E+01
 CUM,  (MG/DNCM)  SMALLER THAN DSO          fl,68E+02  3.76E+02  2.70E+02   2.UE+02  1.08E+02  3,69E*01   1.75E+01  l,73E*Oi
 CUM,  (GR/ACF)  SMALLER THAN 050          1.26E-01  1.02E-01  7.30E-02   5.71E-02  2.92C-02  9.98E-03  4.67E-03  «,67E-03
 CUM,  (6R/DNCF)  SMALLER THAN 050          2.04E-01  1.64E-01  l.tBE-Ol   9.23E-02  4.72E-02  1.61E-02  7.54E-03  7.54E-03
 GEO, MEAN  DIA,  (MICROMETERS)            4,3ie*oi  <>,30E*oo  5.9oE*oo   j,u2E*oo  2,j«»E+oo  i.32E*oo  S.OSE-OI  5,05E«oi  a,*aE-oi
  DM/DLOGD (MG/DNCM)                       B.52E+03  6.15E+02  «.29E+02   2.58E+02  6,«7E+02  2.5SE+02  1.33E+02  O.OOE-01  5,7]E*01
  ON/OLOGD (NO, PARTICLES/DNCM)           8.48E+06  6.08E+08  1.66E*09   5,14E*09  4.93E+10  8,84E»10  2,01E*H  O.OOE-01  2,46E*12


NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG,

                                                            -107-

-------
     COLI-11   1-14.76  1545  3UA!
   IMPACTOR FLOWRATF s o,03l ACFM               IHPACTOR TEMPERATURE s  340,0  F  a  m.i c              SAMPLING DURATION =  15,00 MIN
   IMPACTOR PRESSURE DROP *  2,5 IN, OP HG      STACK TEMPERATURE «  540,0  f  « 171,1  C
   ASSUMED  PARTICLE DENSITY a 2.40 GM/CU.CM,     STACK PRESSURE B 30,00  IN, OF H6     MAX, PARTICLE DIAMETER * 168,0 MICROMETERS
   GA«  COMPOSITION (PERCENT)           C02 tt 12,68          CO »  0.00          N2 s 73,60          02 B  5,52           H20 *  8,00
   CALC,  MASS LOADING • 5.1057E+00 GR/ACF             5.0175E+00 GR/DNCF              7.1070E+03 MGXACM             1.1482E+04 MG/ONC*
   IMPACTOR STAGE                           cvc        so        si        ss         83        s«        ss        86     FILTER
   STAGE  INDEX NUMBER                         123456789
   050  (MICROMETERS)                      It, 05      7,83      
-------
   COLI-12   1*14  76   1600   5UAI
  IMPACTOR FLO*RATE  • o.ost ACFM               IMPACTOR TEMPERATURE «  345,0 r « 173.9 c              SAMPLING DURATION •  15,00 MIN
  IMPACTOR PRESSURE  DROP »   2,5 IN, OF HG      STACK TEMPERATURE «  345.0 f * 173,9 C
  ASSUMED PARTICLE DENSITY  f 2,40 GM/CU.CM.     STACK PRESSURE s 30,00 IN, Of HG     MAX,  PARTICLE  DIAMETER  *  168,0  MICROMETERS
  GAS COMPOSITION  (PERCENT)           C02 • 12.88          CO »  0,00           N2 • 73,60          02 «   5,5?           H20 •  «,00
  CALC,  MASS  LOADING  B 8.1609E-01 GRXACF             1.3267E+00 GR/DNCF             1.8675E+OJ  MG/ACM              3.0360E+03 MG/DNCM
  IMPACTOR STAGE                            CYC        so        si        82        S3       s«        ss        86     FILTIR
  STAGE  INDEX NUMBER                         123056709
  050  (MICROMETERS)                       11,08      7,85      «,«5      2,63      1,82      0,96       0,68      0,37
  MASS  (MILLIGRAMS)                       19,96      1,11      1,06      0,80      0,63      0,44       0,19      0,06     0,14
  MG/DNCM/STAGE                            2.46E+03  1.37E+02  1.31E+02  9,88E*01   1.02E+02  5,431*01   2.35E+01   7,fllE+00  1.73E+01
  CUM,  PERCENT OF  MASS SMALLER THAN 050  18,83     14,38     10,01      6,76      3,38      1,59       0,82       0,57
  CUM,  (MG/ACM)  SMALLER THAN D50          3.52E+02  2.67E+02  1,«7E+02  1,26E*02   6,3lE*01  2,97Ef01   1.53E+01   1,07E*01
  CUM,  (MG/DNCM)  SMALLER THAN D50         5.72E+02  U.35E+02  3,0«Et02  2,05E*02   1,03E*02  4.83E+01   2,«8E*01   1,7«E*01
  CUM.  (GR/ACF)  SMALLER THAN D50          1.54Ev01  1.17E-01  8.17E-02  5.51E-02   2.76E-02  1.50E-02   6.68E-03   4.69E-03
  CUM,  (GR/PNCF)  SMALLER THAN 050         2.50E-01  1.90E-01  1,33E»01  8,96E«02   4.4BE-02  2.11E-02   1.09E-02   7,62E»03
  GEO,  MEAN  DIA,  (MICROMETERS)            4.31E+01  9,32E*00  5,91E*00  3.4?E*00   2.19E+00  1.32E+00   8.10E-01   5.05E-01  2.64E-01
  DM/DLOGD (MG/DNCM)                      2.09E+03  9,15E*02  5,32E*02  4,32E*02   6,43E*02  1.95E+02   1,59E*02   2,83E*01  5,74E»01
  ON/DLOGD (NO,  PARTICLES/DNCM)           2.07E+07  8,99E*08  2.05E+09  8.57E+09   4.67E+10  6,70E*10   2.38C*!!   1.74EM1  2,47E*12


NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG,

                                                             -109-

-------
     COLI-13   I«15w76  U35  8UAI
   IMPACTOR FLOWRATE • o,033 ACFM               IMPACTOR TEMPERATURE  «   315,0 f s  157,2 c              SAMPLING DURATION s   is.oo  MIN
   IMPACTOR PRESSURE D"OP «  2,5 IN, OF HC      STACK TEMPERATURE  •   315,0  F »  1ST,2 C
   ASSUMED PARTICLE  DENSITY a 2,40 GM/CU.CM,     STACK PRESSURE  =  29,91  IN, OF  HS     MAX, PARTICLE DIAMETER s 166,0 MICROMETERS
   GAS COMPOSITION  (PERCENT)           C02 s 12.88          CO »  0,00           N2 • 73,60          02 «  5,52           H20 • 8,00
   CALC. MASS  LOADING * 1.9«32E*00 GR/ACF             3,050at+00 GR/DNCF             «.««68E+03 MC/ACM             6.9804E+03 MG/DNCH
   IMPACTOR STAGE                            cvc         so       st         52        sj        s«        ss        s&     FILTER
   STAGE INDEX  NUMBER                         123456769
   050 (MICROMETERS)                      10,58       7,50     a,26       2,51      1,7U      0,92      0,65      0,36
   MASS (MILLIGRAMS)                      52,28       2,39     2,52       2,20      1,29      1.15      0,21      0,08      0,21
  MG/DNCM/STAGE                            5,85E*03  2,66E+02  2.62E+02   2.U6E+02  i.««E*02  1.29E*02  2.35E*01  8,96E«00  2,35E*01
  CUM, PERCENT op MASS SMALLER  THAN DSO  16,13      12,29     8,25       «,72      2,65      O.BI      o,«7      o,3«
  CUM, (MG/ACM) SMALLER THAN D50          7.17E+02  5.47E+02  3.67E+02   2,10E»02  1,18E+02  3,59E»01  2,09E»01  1.52E+01
  CUM, (HG/DNCM) SMALLER THAN D50         1.13E+03  8.58E+02  3,76E*02   3.30E+02  1.B5E+02  5,63E*01  3.28E+01  2,39E*01
  CUM, (GR/ACF) SMALLER THAN D50          3.13E-01  2.39E-01  1.60E-01   9.18E-02  5.15E-02  1,57E"02  9,1«E»03  6.6UE-03
  CUM, (6R/DNCF) SMALLER THAN D50         
-------
   CQll»14  1-15..76   1155   OUAI




 IMPACTOR FLOWHATE s  0,033  ACFM                IMPACTOR TEMPERATURE s  3SO.O F * 154,4 C              SAMPLING DURATION e   8,00



 IMPACTOR PRESSURE DROP  B   3,5  IN,  OF  HG       STACK TEMPERATURE «  310,0 F » 154,4 C



 ASSUMED PARTICU DFNSITY s a,40  GM/CU.CM.      STACK PRESSURE e 29,91  IN,  OF HG     MAX,  PARTICLE  DIAMETER  s  168,0 MICROMETERS



 GAS COMPOSITION  (PERCENT)            COS  =  12,BB          CO a  0,00           N2 o 73,60          02 9  5.52           H20 B  8,00



 CALC, MASS LOADING a i.0154E»00  GR/ACF             l,5836t+00 SR/DNCF             2.3235E+03  MG/ACM              3,6239E*03 MG/DNCM



 IMPACTOR STA5C                            CYC        SO        31        32        S3       S4         85        86     FILTER



 STAGE INDEX  NUMBER                          123456789



 050  (MICROMETERS)                       10,56      7,49      4,35      2,51      1,74      0,91       0,65      0,36



 MASS  (MILLIGRAMS)                       12,44      1,32      1,09      1,13      0,41      0,56       0,04      0,30      0,08



 MG/DNCM/STA6E                            8,60E*03  2,75E*OH  2.2.7E+02   2,36E*02  8,55E*01   1.17E+02   8,35E*00   6,2&E*01   1,67E*01



 CUM,  PERCENT OF  MASS SMALLER THAN oso  as,39     20,79     i«.3i      a.oi      5,65      2.42       2,19      0,47



 CUM,  (MG/ACM)  SMALLER THAN OSO          6,60E+02  «,83E*02  3.37E+02   1,66F*02  1.31E+02   5,63E*01   5,000   1.26E+02   7,72E»01   U.82E-01  2,52E»01



 OM/DLOGD (MG/DNCM)                       2,16E*03  1,6«E*03  9.25E+02   1.03E+03  5,37E*02   4.19E+02   5,66E*Ol   2.39E+02  5.54E+01



  DN/DLOGD (NO. PARTICLES/ONCM)            2,30E*07  2,09E*09  4,11E*09   2.36E+10  4.69E+10   1.66E+11   9.79E+10   1,70E*12  2,75E*12










NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG C AND 760MM HG,







                                                             -111-

-------
     COU.15  1-15-75  1212 6UUAI
   IMPACTOR FLOWRATE B 0,033 ACFM               IMPACTOR TEMPERATURE  =   310,0  f  »  154,4 C              SAMPLING DURATION e    8,00  MIN
   IMPACTOR PRESSURE DROP «  2,5 IN, Of HG      STACK TEMPERATURE *  3VO.O  F • 154.« C
   ASSUMED PARTICLE DENSITY » 2,40 GM/CU.CM.     STACK PRESSURE B 29,91  IN, OF HG     MAX, PARTICLE DIAMETER = 168,0 MICROMETERS
   GAS  COMPOSITION (PERCENT)           C02 « 12.88          CO B  o.OO           N2 s 73,60          02 »  5,52           H2D «   8,00
   CALC,  MASS  LOADING s 3,«355E*On GR/ACF             5.3580E+00 6R/DNCF            7.B615E+03 MG/ACM             l,2261f+04 MG/DNCM
   IMPACTOR STAGE                            cvc        so        st        82        33        s«        ss        86     FILTER
   STAGE  INDEX NUMBER                         123456789
   D50  (MICROMETERS)                       10,56      7.US      4,25      2,51      1,74      0,91      0,65      0.36
   MASS (MILLIGRAMS)                       50,95      1,34      1,44      2,38      1,23      0.83      0,28      0.07      0,2%
   MG/DNCM/STAGE                            1.06E+04  2.80E+02  S.OOE+02   4,97E*02  2.57E+02  1,73E*02  5.84F+01  1.46E+01  5.22E+01
   CUM, PERCENT OF MASS SMALLER THAN 050  13,31     11.03      8.58      4.53      2,44      1,03      0,55      0,43
   CUM, (MG/ACM) SMALLER THAN D50          J.05E+03  8.67E+02  6.75E+02   3.56E+02  1.92E+02  8,07Et01  «,32E*01  3,38E*01
  CUM, (MG/ONCM)  SMALLER THAN 050         1.63E+03  1.35E+03  1.05E+03   5,56E*02  2,99C*02  1,26E*02  6.74E+01  5.28E+01
  CUM, (GR/ACF) SMALLER THAN 050          4.57E-01  3.79E-01  2.95E-01   l,56E«Ol  8.38E-02  3.52E»02  1.89E-02  1.48E-02
  CUM, (GR/DNCF)  SMALLER THAN DSO         7,13C-01  5.91E.01  4.60E-01   2.43E-01  1.31E-01  5.50E-02  2.94E-02  2.31E-02
  GEO, MEAN DIA,  (MICROMETERS)            4.21E*01  8.88E+00  5.63EtOO   3,26E»00  2.09E4-00  1.26E+00  7.72E-01  4,ft2E-01  2.52E-01
  OM/DLOGO  (MG/ONCM)                       8,84E*03  l,87f*03  1.22E»03   2.17E+03  1.61E*03  6,21E*02  3,966*02  5.59E+01  1.73E+02
  ON/DLOGD  (NO, PARTICLES/DNCM)            9.43E*07  2.12E+09  5.44E+09   4,97E*10  1,41E*11  2,47E*U  6.85E+11  3,97E*H  8.58E+12


NORMAL (ENGINEERING  STANDARD)  CONDITIONS ARE 21  DEG C AND 760MM HG.

                                                              -112-

-------
   COLI-16  i»is»76   1458   IOUAI   ss  MAO  A  MINUS  MASS
 IMPACTOR FLOWRATF =  0,033  ACFM                IMPACTOR  TEMPERATURE  »   325.0  F  =  i62,e  c               SAMPLING  DURATION  *    s.oo
 IMPACTOR PRESSURE DROP *   2,5 IN,  OF HG       STACK  TEMPERATURE  »   325,0  F » 162,8  c
 ASSUMED PARTICLE DENSITY « 2,01  1.06E+01  2,77E*01
 cuMi  PERCENT OF  MASS SMALLER THAN oso  48,28     37,94     24,44      i«,59      9,07      1,78      i,78      1,29
 CUM,  (MG/ACM)  SMALLER THAN D50           6.56E+02  5,15E>02  3.32E+02   1,98E*02   1.23E+02  2,4ir+01  2,«SE*Ol  1,75E*01
 CUM,  (MG/DNCM)  SMALLER THAN 050         1,04E*03  8.19E+02  5.28E+02   3.19E+02   1,96E*02  3.84E+01  3,84E*01  2.78E+01
 CUM,  (GR/ACF)  SMALLER THAN 050           2.86E-01  2.25E-01  1.45E-01   8,65E«02  5.38E-02  1.06E-02  1,06E»02  7.63E-03
 CUM.  (GR/DNCF)  SMALLER THAN D50         4,55E«01  3.58E-01  263lE-01   1.3BE-01  8.56E-02  J,68F«02  1.68E-02  1.21E-02
 GEO,  MEAN DIA,  (MICROMETERS)            4,23E*01  e,95E+00  5.67E*00   3,29E+00  2,10E+00  1,27E+00  7,76E-01  4.84E-01   2.53E-01
 DM/DLOGD (MG/DNCM)                      9,32E*02  1.49E+03  1,19E*03   9.30E+02  7.47E+02  5,fc4E+02  O.OOE-01  «,05E»01   9,19E*01
  DN/DLOGD (NO, PAHTICLES/DNCM)           9.82E+06  1.66E+09  5.16E+09   2.09E+10  6.40E+10  2.20E+11  O.OOE-01  2.85E+11   U,526*12


NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG,

                                                             -113-

-------
     COL1-17  1-15-76  1506  JUA1
   IMPACTOR FLOWRATE « 0.033 ACFM               IMPACTOR TEMPERATURE  e   325.0 f « 162,8 C              SAMPLING DURATION  *    8,30
   IMPACTOR PRESSURE DROP »  2.5 IN, OF HG      STACK TEMPERATURE  »   325,0 F « 1*2,s c
   ASSUMED  PARTICLE DENSITY « a,«o GM/CU.CM,     STACK PRESSURE  •  29,91  IN, OF HG     MAX, PARTICLE DIAMETER * us.o  MICROMETERS
   SAS  COMPOSITION (PERCENT)           C02 « 12,88          CO =  0,00           N2 a 73,60          02 m  5,52           M20 "  8,00
   CALC.  MASS  LOADING a 9.6798E-01 CR/ACF             1.5391E+00 GR/DNCF             2.21SlE*03 MG/ACM             3.5220E+03 MG/ONCM
   IMPACTOR STAGE                            cvc        so       st        82        ss        s«        ss        36     FILTER
   STAGE  INDEX NUMBER                         123456789
   D50  (MICROMETERS)                       10,63      7,53      1.28       2,53      1,75      0,92      0,65      0,36
   MASS  (MILLIGRAMS)                       12.43      1,20      1,09       0,92      0,76      0,52      0,07      0,05      0,t4
   MG/DNCM/STACE                            8.55E+03  2.46E+02   2,a3C*02   1,89E*02  1.S6E+02  1.07E+02  1,««E»01  1.03E+01  2,87E*01
   CUM, PERCENT OF  MASS SMALLER THAN oso  27,65     20,6?     m.sa       8,97      4,55      1,52      i.u      o,sa
   CUM, (MG/ACM) SMALLER  THAN D50          6,13E+02  4,58E*02   3.17E+02   1.99E+02  1.01E+02  3,36E«01  2,46E«Ol  1.82E+01
   CUM, (MG/DNCM)  SMALLER THAN 050         9.7UE+02  7,28E*02   5.04E+02   3,161+02  1,60E*02  5.35E+01  3,91E«01  2.89E+01
  CUM, (GR/ACF) SMALLER  THAN 050          2.68E-01  2.00E-01   1.39E-01   8.68E-02  4.40E-02  1.47F-02  1.08E-02  7,94E-03
  CUM, (GR/DNCF)  SMALLER THAN D50         4,26E>01  3.18E-01   2.30E-01   1.38E-01  7.00E-02  2.34E-02  1.71E-02  1.26E-02
  GEO, MEAN DIA,  (MICROMETERS)            4,23E*01  8,95E+00   5.67E+00   3.29E+00  2.10E+00  1,27E*00  7,76E«Ol  4.84E-01  2.53E-01
  DM/DLOGD  (MG/DNCM)                       2.13E+03  1.64E+03   9.09E+02   8.25E+02  9,77E*02  3.82C+02  9.71E+01  3.91E*01  9,53E*01
  DN/DLOGO  (NO, PARTICLES/ONCM)            ?,24E*07  1.82E+09   3.96C*09   J.85E+10  8,376*10  1.49E+U  1,65E*H  2,74E*11  4,69E*12


NORMAL (ENGINEERING  STANDARD)  CONDITIONS ARE  21  DEC  C AND  760MM HG,

                                                              -114-

-------
   COLI.18   1«15«76   14«5   8UAI
 IMPACTOR FLOWRATE •  0,033  ACFM                IMPACTOR TEMPERATURE s  325,0 F a i62,e c              SAMPLING DURATION *   e,5o WIN
 IMPACTOR PRESSURE DROP  »   2,5 IN,  OF MG      STACK TEMPERATURE »  325,0 F * J62,s c
 ASSUMED PARTICLE DENSITY  = s.ao GM/CU.CM,     STACK PRESSURE * 29,91 IN,  OF HG     MAX,  PARTICLE  DIAMETER « 168,0  MICROMETERS
 GAS COMPOSITION  fPERCENT)            C02 B 12.88          CO B  0,00           N2 « 73,60          02 "   5,52           H20 •  8,00
 CAU, MASS  LOADING  = 1.1031E*00 GR/ACF             1,75UOE*00 GR/DNCF             2.52U3E+03  M6/ACM              0.0137E+03 MG/DNCM
 IMPACTOR STAGE                            cvc        so        si        sa        93       s«        ss         s&      FILTER
 STAGE INDEX NUMBER                          123456789
 050  (MICROMETERS!                       10,63      7,53      «,28      2,53      1,75      0.92       0,65      0,36
 MASS  (MILLIGRAMS)                       15,71      1,26      1,34      0.48      0,56      0,37       0,08      0,05      0,20
 MG/ONCM/STAGE                            3,iaE+03  2.52E+02  2,68Et02  9,61E+01   i,12E402   7.41E+01   1,60E+01  l.OOE+01  4,OOE,*<>      3,so      i,65       1,25      1,00
 CUM,  (MG/ACM)  SMALLER THAN 050          5,«7E*02  3,88E*02  2.19E+02  I.59E+02   8.83E+01   a,17E*01   3816E*01  2,5«+0!
 CUM,  (MG/DNCM)  SMALLER THAN D50         B.69E+02  6.17E+02  3.89E+02  2.52E+02   10«OE+02   6a63E+01   5.02E+01  «,02E*Ol
 CUM,  (GR/ACF)  SMALLER THAN D50          2,39E«01  1,70E-01  9,58E"02  6.94E-02   3.86E-02   1.82E-02   1,38E«>0?  1.11E-02
 CUM,  (GR/DNCF)  SMALLER THAN OSO         3.80E-01  2,70E-01  1.52E»01  !,10E»01   6,13E"02   2.90E-02   2,20E<«0?  1.76E-02
 GEO.  MfAN OIA,  (MICROMETERS)            fl,23E+01  B.95E+00  5,67E*00  3,29E*00   2,10E+no   t,27E*00   7D76E"01  a,8«E-Ol  2.53E-01
 DM/DLOGD (MG/ONCM)                       2,62E*03  i,fe6P+03  1,09E*03  4.20E+02   7.03E+02   2.65E+02   1.08E+02  3.81E+0)  1,33E*02
 DN/DLOGD (NO, PARTICLES/ONCM)           2,77E*07  1.87E+09  4.75E+09  9,«SE+09   6.02E+10   l,01E*ll   t,85E»H  2,68E*ll  6,5flE+12

NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG C AND 760MM HG,

                                                            -115-

-------
  COLI.20   t-U.76  09fl3   11UA!
 IMPACTOR FLOWRATE « 0,033  ACFM
 IMPACTOR PRESSURE DROP «   2,5 IN, OF HG
 ASSUMED PARTICLE DENSITY B 2,«0 GH/CU.CM,
 GAS COMPOSITION  (PERCENT)           €0
 CALC, MASS  LO*OING x  J,55ft9E*00 GR/ACF
 JMPACTOP STAGE
 STAGE INDEX NUMBER
 050 (MICROMETERS)
 MASS (MILLIGRAMS)
 MG/DNCM/STAGE
 CUM, PERCENT OF MASS  SMALLER THAN D50  26,88
CUM, (MG/ACM) SMALLER THAN 050
CUM, (MG/DNCM) SMALLER THAN 050
CUM, (GR/ACF) SMALLER THAN 050
CUM, (GR/DNCF) SMALLER THAN 050
 GEO, MEAN DIA, (MICROMETERS)
DM/DLOGD (MG/DNCM)
DN/DLOGD (NO, PARTICLES/ONCM)
SAMPLING DURATION
IMPACTOR TEMPERATURE  •  320,0 f * 160,0 C
STACK TEMPERATURE  •   320,0 f • I6o,o c
 STACK PRESSURE  •  29, «5 IN, OF HG     MAX, PARTICLE  DIAMETER  =  U8,0 MICROMETERS
                                                                                                                          10,00 MIN
* 12,66

CO
a
2.4950E+00
CYC
1
0.61
«,98
fl,29E*03
6,88
8,856+02
1.42E+03
3,87E*01
6.21E-01
8.22E+01
3,56E*03
3.78E+07


7
2
«
16
5
9
2
a
8
3
3
SO
2
.51
,80
.81E+02
,«*
,66E*02
.40E+02
,566-01
,11E*01
.93E+00
,21E*03
,59E+09


a
l
2
11
it
6
1
2
%
1
n
0,00
GR/DNCF
SI
3
,26
,M
,76E*02
.61
.13E+02
.63E+02
.61E.01
.90E-01
.66E+00
,12E*03
.93E+09
N2
• 73,60
02
» 5,52

3,5562E*03 MG/ACH
32
a
2,52
1,6«
2,aee*o2
6,68
2,38E»02
3,81E*02
l.OOE'Oi
1,67E»01
3,28E*00
1,23E*03
2.79E+10
S3
9
1,7«
1,25
Z.15E*02
2,92
1,002
1.26E+OQ
3.63F+02
!,a3E*ll
85
7
0,65
0,10
i,72E*01
0,65
3.01E+01
«86«e*oi
1,32E>02
2,11E-02
7.73E-01
1.16E+02
2.00E+11


0
0
1
0
2
3
9
\
H
a
3

H20 • 8,<
5.709UE+03 MG/ONI
86
8
.36
.07
,206+01
,6«
,276+01
,636*01
.9QE-03
,59002
,81E-01
.56E+01
,266+11
FILTER
9

0.21
3.61E+01





2.51E-01
1,20E+02
6.01E+12
NORMAL (BNGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG,
                                                             -116-

-------
    COII.21   1-16.76   0952  7UA1




  IMPACTOR  FLOWRATE « 0,033 ACFM               JMPACTOR TEMPERATURE s  320.0 F * 160,0 C              SAMPLING DURATION =  10,00 MIN



  IMPACTOR  PRESSURE DROP *  2,5 IN, OF HG      STACK TEMPERATURE «  320,0 F * 160,0 C



  ASSUMED PARTICLE  DENSITY s 2,40 GM/CU.CM.     STACK PRESSURE • 29,85 IN, OF HG     MAX,  PARTICLE DIAMETER = 168,0 MICROMETERS



  GAS  COMPOSITION  (PERCENT)           COS * 12,88          CO *  0,00           N2 « 73,60          02 *  5,52           M20 «  8.00



  CALC,  MASS  LOADING  a l,750«t+00 GR/ACF             2,e087E+00 GR/DNCF             4.0055E+03 MG/ACM             6.4272E+03 MG/DNCM



  IMPACTOR  STAGE                           CYC        SO        81        82        S3        SO         S3        86     FILTER



  STAGE  INDEX NUMBER                         1Z3«56789



  D50  (MICROMETERS)                      10,61      7,51      a.26      2,52      1.7JI      0,92       0.65      0,36



  MASS (MILLIGRAMS)                      29,69      2,09      1,90      1,61      0,71      0.69       0,53      0,04       0,17



  MG/DNCM/STAGE                           5.10E+03  3.S9E+02  3.26E+02  2.76E+02  1,221+02  1.18E+02   9.10E+01   6.87E+00   2,92E*01



  CUM, PERCENT OF  MASS SMALLER THAN oso  20,68     is.io     10,0?      5,72      s.es      i,98       0,57      n.«6



  CUM, (MGXACM) SMALLER THAN 050          6,28E+02  6.05E+02  «.02E*02  2,29f+02  1.53E+02  7,9aE+01   2,27E*01   1.84E+01



  CUM, (MG/DNCM) SMALLER THAN 050         1,33E*03  9.70E+02  6,OflE+02  3.68E+02  2.46E+02  1.27E+02   3.64E+01   2.95E+01



  CUM, (GR/ACF) SMALLER THAN 050          3.62E-01  2,6«E«01  1,75E«01  1,OOE»01  6.70E-02  3,a7E«02   9.91E-OJ   8.04E-03



  CUM, (GR/DNCF) SMALLER THAN OSO         5,81E"01  «.2«E»01  2.82E-01  1.61E-01  1.07E-01   5.57E»02   1.59E-02   1.29E-02



  GEO, MEAN DIA, (MICROMETERS)            a,22E+01  8,93F+00  S,66EtOO  3,28E*00  2,10EtOO   1,26E*00   7.73E-01   4.81E-OJ  2.51E-01



  DM/DLOGD (MG/DNCM)                      a,25E+03  2.39E+03  1,33E*OS  1,21E*03  7.64E+02  «.2flEf02   6,15E*02   2.61E+01  9.70E+01



  DN/OLOGD (Nn, PARTICLES/ONCM)           4.50E+07  2,68E*09  5,82E*09  2.73E+10  6,61EtlO   1.67E+11   1,06E»12   1.86E+11  4.87E+12










NORMAL (ENGINEERING  STANDARD) CONDITIONS ARE 21 DEG C AND 760MM HG,







                                                             -117-

-------
     COLI-22  1-16.76  1008  9UAI



   IMPACTOR FLOWRATE « 0,033 ACFM               IMPACTOR TEMPERATURE  s   520.0  F «  160.0 C              SAMPLING DURATION s  10,00



   IMPACTOR PRESSURE DROP =  2,5 IN, op HG      STACK TEMPERATURF *   320,0  F » 160,0 c



   ASSUMED  PARTICLE DENSITY s 2.40 GM/CU.CM,     STACK PRESSUHF  B 29,fl5  IN, OF HG     MAX, PARTICLE DIAMETER s U8,o MICROMETERS



   GAS  COMPOSITION (PERCENT)           C02 B 12,88          CO «  0,00           N2 » 73,60          02 B  5,52           M20 a  8.00



   CALC,  MASS  LOADING « 6.6780E.01 GR/ACF             1,0715E*00 GR/ONCF             1.5282E+03 MG/ACM             2.4520F+03 MG/DNCM



   IMPACTOR STAGE                            CVC        SO        31         32        33        S«        85        86     FILTER



   STAGE  INDEX NUMBER                         1234567B9



   050  (MICROMETERS)                      10,61      7,51      «,26       2,52      1,78      0,92      0,65      0,36



   MASS  (MILLIGRAMS)                       9,96      1,33      0,82       1,04      0,««      0,35      0,11      0,06      0,17



   MG/DNCM/STAGE                            1.71E+03  2,28E+02  l,41Et02   1.79E+02  7.56E+01  6.01E+01  1,B9E+01  ta03E*01  2.92E»01



   CUM, PERCENT OF MASS SMALLER THAN 050  50,26     20,94     15,20       7,92      4,80      2,39      1,62      1.20



   CUM,  (MG/ACM) SMALLER  THAN D50          4.62E+02  3.20P.+02  2.32E*02   1.21E+02  7.39E+01  3.65E+01  2.47E+01  1.83E+01



   CUM,  (MG/ONCM)  SMALLER THAN D50         7,42E*02  5,14E*02  3.73E+02   1.94E+02  l,19Ef02  5,B5E*01  3.96E+01  2.93E+01



   CUM,  (GR/ACF) SMALLER  THAN 050          2,02E»01  1.40E-01  1.02E-01   5.29E-02  3.23E-02  1.59F-02  1.08F..02  7.9BE-03



   CUM,  (GR/ONCF)  SMALLER THAN D50         3.24E-01  2.24E-01  1.63E-01   8.48E-02  5,18E«02  2.56E-02  1,73E"0?  1,28F«02



   GEO, MEAN DIA,  (MICROMETERS)            4,22E*01  8,93E*00  5.66E+00   3.28E+00  2.10E+00  1,26E*00  7.73E-01  4.81E-01  2.51E-01



   DM/DLOGD  (MG/DNCM)                       l,fl3E+03  1.52E+03  5.73E+02   7.81E+02  4.73E+02  2.15E+02  1.28E+02  3,91E*01  9.70E+01



  DN/OLOGO  (NO, PARTICLES/DNCM)            1,51E*07  J.71E+09  2.51E+09   1.77E+10  4.09E+10  8.48E+10  2,20F*11  2,79E*11  4,87E*12










NORMAL (ENGINEERING STANDARD)  CONDITIONS ARE  21  OEG C AND  760MM HG,







                                                              -118-

-------
   COLI.23  1-16.76   14J3   3UAI



 IMPACTOR FLOWRATE "  0,033  ACFM                IMPACTOR  TEMPERATURE  s   330.0  F  *  165,6  C               SAMPLING DURATION a  10,00



 IMPACTOR PRESSURE DROP  *   2,5  IN,  OF  HS      STACK TEMPERATURE  a  330,0  F  * 165,6 C



 ASSUMED PARTICLE DENSITY e 2.40  GM/CU.CM.      STACK PRESSURE  s  29,44  IN,  OF HG     MAX.  PARTTCLE  DIAM£Tf.R  a  168.0 MICROMETERS



 GAS COMPOSITION  (PERCENT)            C02 a  12,8S          CO a  0,00           N2  • 73,60          02 «   5,52           H20 «  8,00



 CAUC, MASS LOADING  s 2.4682E+00  GRXACF             4.0127E+00 GR/DNCF              5.6482E*03  MQ/ACM              9,1823E*03 MG/ONCH



 IMPACTOR STAGE                            CYC        so       si        sa         53        st        ss        86     FILTER



 STAGE INDEX  NUMBF.R                          123«56789



 D50  (MICROMETERS)                       10,66      7,55      fl.26      2,53      1,75       0.92       0,65      0,36



 MASS  (MILLIGRAMS)                       «2,a6      3,75      2,3«      2,26      1,02       0,55       0,18      0,04      0,18



 MG/DNCM/STAGE                            7,3
-------
     COLI-24  1*16-76  1425  1UAI
   IMPACTOR FLOWRATE x 0,033 ACFM               IMPACTOR TEMPERATURE  *   3?o,o  F  a  165,6 c              SAMPLING DURATION s  10,00 MIN
   IMPACTOR PRESSURE DROP s  2,5 IN. OF HG      STACK TEMPERATURE  »   sso.o  F « 165,6 c
   ASSUMED  PARTICLE DENSITY a 2.40 GM/CU.CM,     STACK PRESSURE  s  29,44  IN, OF HG     MAX, PARTICLE DIAM&TER » i68,o MICROMETERS
   GAS  COMPOSITION (PERCENT)           C02 • 12.68          CO »  0,00           N2 » 73,60          02 »  5,52           HZO »  8,00
   CAlC,  MASS LOADING s 8.7591E-01 GR/ACF             1.4240E+00 GR/DNCF             2,0044E«03 MG/ACM             3.2585E+03 M6/DNCM
   IMPACTOR STAGE                           cvc        so       si         sa        sj        84        ss        86     FILTER
   STAGE  INDEX NUMBER                         123456789
   DSO  (MICROMETERS)                      10,66      7,55      a.38       2.53      1,75      0,92      0,65      0,36
   MASS  (MILLIGRAMS)                      U,45      1,74      1,52       1,07      0,64      0,78      0,19      0,13      0,21
   MG/ONCM/STAGE                            2.17E+03  3,03E+02  2.64E+02   1.86E+02  l.UE+02  1.36E+02  3,31E+01  ?,2bE+01  3,65E^Oi
   CUM. PERCENT OF MASS SMALLER THAN 050  33.53     24,24     16.13      10.42      7.00      2,83      1,62      1,13
   CUM,  (MG/ACM)  SMALLER THAN D50          6.72E+02  4.86E+02  3.23E+02   2609E*02  1.40E+02  5,68E+01  3,65E+01  J.26E+01
   CUM,  (MG/DNCM)  SMALLER THAN DSO         1,09£*03  7890Et02  5.26E+02   3.39E+02  2.28E+02  9,24E«>01  5,93E«01  3.67E+01
   CUM,  (GR/ACF)  SMALLER THAN 050          ?,94E«01  2.12E-.01  1.41E-01   9.12E-02  6,13E"02  2.48E-02  1.59E.02  9.86E-03
   CUM, (GR/ONCF)  SMALLER THAN DSO         4,78E«>01  3.4SE-01  2.30E-01   1,48E"01  9.97E-02  4.04E-02  2.59E.02  1.60E-02
   GEO. MEAN  DIA,  (MICROMETERS)            4.23E+01  B.97E+00  5.69E+00   3.29E+00  2,10E*00  1.27E+00  7.76E-01  4.82E-01  2,52E^01
  DM/DLOGO  (MG/DNCM)                       1.B1E+03  2.02E+03  1,07E*03   8,14E*02  6.97E»02  4,85E*02  2.23E+02  8.56E+01  1.21E+02
  ON/DLOGD  (NO.  PARTICLES/DNCM)            1.90E+07  2,23E*09  «.65E*09   1,82E*10  5.95E+10  1.89E+11  3.80E+11  6.07F+11  6.07E+12


NORMAL (ENGINEERING  STANDARD)  CONDITIONS ARE  21  OEG C AND  760MM HG,

                                                              -120-

-------
    COLI-25   1-16-76  1108



  IMPACTOH FLOWRATE a 0,057 ACFM               IMPACTOR TEMPERATURE s  330,0 F a 165,6 C              SAMPLING DURATION »   10,00 WIN



  IMPACTOR PRESSURE DROP *  2,5 IN, OF HE      STACK TEMPERATURE *  330,0 F » us.6 c



  ASSUMED PARTICLE DENSITY a 2.40 GM/CU.CM.     STACK PRESSURE * 29,44 IN, OF HG     MAX, PARTICLE DIAMETER » 168,0 MICROMETERS



  GAS  COMPOSITION (PERCENT)           C02 B 12,88          CO a  0,00           N2 a 73,60          02 =  5,52           H20 "  8,00



  CALC,  MASS LOADING a l,3993E*OQ GR/ACF             2,274<»E*00 GR/DNCF             3.2022E+03 MG/ACM             5,20586*03 NG/ONCM



  IMPACTOR  STAGE                           CVC        SO        81        82        33        S4        SB        S6     FILTER



  STAGE  INDEX NUMBER                         123456769



.  050  (MICROMETERS)                      10,07      7,12      4,0*1      2,38      1,65      0,86      0,61      0,33



  MASS (MILLIGRAMS)                      25,40      2,49      1,60      2,10      1,09      0,46      0,12      0,05      0,24



  MG/DNCM/STA6E                           3.94E+03  S.86E+02  2.4BE+02  3,26E*02  1,6lE"02  2,7'»E«'02   1B98E-02   1.6aE»02



  GEO, MEAN DIA,  (MICROMETERS)            4,iiE+oi  e,47E+oo  5.36E+oo  3,ioE»oo  t.<»8E*oo  I,I<»E*OO   7,27E-ot   4,49e-oi  2,3je-oi



  OM/OLOGD  (MQ/DNCM)                      3.22E+03  2,57E*03  l,01E*03  1.42E+03  1.06E+03  2,54E*02   1,25E*0?   2,89E*01  1.24E+0?



  ON/OLOGD  (NO, PARTICLES/ONCM)           3.69E+07  3.37E+09  5.20E*09  3.79E*10  1.08E+11  t.l^E+ll   2,59F*11   2,5aE*ll  7.75E*12









NORMAL  (FNGINEERING  STANDARD) CONDITIONS A"E 21 OEG C AND 760MM HG,







                                                             -121-

-------
     COLI-26  1M9-76  1113  12UA! CYCLONE CATCH WAS DESTROYED



   IMPACTOR FLOWRATE a 0,037 ACFM               1MPACTOR TEMPERATURE  a   310,0 f a  154,4 C              SAMPLING DURATION a  10,00



   IMPACTOR PRESSURE DROP "  2,5 IN, OF H6      STACK TEMPERATURE  «  310,0  f *  154,4 C



   ASSUMED PARTICLE DENSITY B 2,40 GM/CU.CM.     STACK PRESSURE a  30,06  IN, OF  HG     MAX, PARTICLE DIAMETER » 166,0 MICROMETERS



   GAS  COMPOSITION (PERCENT)           C02 « 12,88          CO *  0,00           N2 a 73,60          02 «  5,52           H20 «  8,00



   CALC,  MASS LOADING s 2.7111E»01 OR/ACF             4,2072E«01 GR/DNCF            6.2039E+02 MG/ACM             9,6275E*02 MG/DNCM



   IMPACTOR STAGE                           CYC        so       si        92        ss        so        ss        s&     FILTER



   STAGE  INDEX NUMBER                         123456789



   050  (MICROMETERS)                       9,97      7,06      4.00      2,36      1,64      0,86      0,61      0,33



   MASS  (MILLIGRAMS)                       0,00      1,92      1,45      1,27      1,26      0,24      0,16      0,02      0,18



   MG/ONCM/STAGE                            0,OOE«Oi   2.S4E402  2.15E+02   1,88E*02  1,87E+02  3,S5E»01  2.37E+01  2.96E+00  E.67E+01



   CUM, PERCENT OF MASS SMALLER THAN D50 100,00     70,47     48,16     28,62      9,24      5,54      3,08      2,77



   CUM, (MG/ACM)  SMALLER THAN 050          6.20E+02   4037E*02  2,99E»02   1.78E+02  5.7SE+01  3.44E+01  1,91E*01  1,72E*01



   CUM, (MG/DNCM)  SMALLER THAN 050         9.63E+02   6878E+02  4,64E*02   2.76E+02  8,89E*01  5.34E+01  2,97E*01  2,67E+01



   CUM, (GR/ACF)  SMALLER THAN D50          2,71E«01   1.91E-01  1,31E*01   7.76E-02  2,50E»02  1.50E-02  8,36E-03  7.52E-03



  CUM, (GR/DNCF)  SMALLER THAN 050         «,21E<»01   2096E"01  2,03E«01   1.20E-01  3,89E»02  2.33E-02  1,30E«02  1,17E«>02



   GEO, MEAN  OIA,  (MICROMETERS)            4.09E+01   8,39E*00  5,S2E»00   3,08E*00  l,97E*00  1.19E+00  7.24E-01  a,50E-01  2.35E-01



  DM/OLOGD  (MG/DNCM)                       0,OOE»01   1,90E*03  8,73E*02   8,22E*02  1.17E+03  1,?7E+02  1.60E+02  1,12E*01  8.B6E+01



  DN/DLOGD  (NO,  PARTICLES/DNCM)            0,OOE«01   2,56E*09  4.62E+09   2.25E+10  1.22E+11  6.07E+10  3.35E+11  9.77E+10  5.45E+12










NORMAL (ENGINEERING  STANDARD)  CONDITIONS ARE  21  DEG C AND  760MM HG,







                                                              -122-

-------
    COLI-27   1-J9«76   1108  10UAI   Sf, HAD A MINUS MASS
  IMPACTOR FLOWRATE s  0,037  ACFM               IMPACTOR TEMPERATURE s  310,0 F « 151,0 C              SAMPLING DURATION s  10,00 MIN
  IMPACTOR PRESSURE DROP =  2,5 IN, OF HG      STACK TEMPERATURE s  310.0 F  a 150,a C
  ASSUMED PARTICLE  DENSITY = 2.40  GM/CU.CM,     STACK PRESSURE E 30,06 IN, OF HG     MAX,  PARTICLE DIAMETER = 168,0 MICKOMETtRS
  GAS COMPOSITION  (PERCENT)            C02 ».12,88          CO »  0,00           N2  a 73,60          02 a  5,52           H20 «  8,00
  CALC, MASS  LOADING  a 1.9291E+00  GR/ACF             2.9936E+00 GR/DNCF             4,4143E*03  MG/ACM              fe,8503E + 03 MG/ONCM
  IMPACTOR STAGE                            CYC        so        si        s?        33       31         35        s&     FILTER
  STAGE INDEX NUMBER                          123*1         '5         6789
  D50  (MICROMETERS)                        9,97      7,06      a.oo      2,36      i,6«      0,66       o,6i       0,33
  MASS  (MILLIGRAMS)                       35,83      3,74      1,95      1,75      1,78      0,83       0,14       0,00      0,23
  MG/DNCM/STAGE                            5.31E+03  5.54E+02  2.89E+02  2.59E+02 2.64E+02  l,23Ef02   2.07F+01   O.OOE-01   3.41E+01
  CUM,  PERCENT OF  MASS SMALLER THAN oso  22,53     14,45     10,23      6,45     2,60      o.eo       0,50       o.so
  CUM,  (MG/ACM)  SMALLER THAN 050          9.95E+02  6.38E+02  4.52E+02  2.85E+02  1.15E+02  3.55E+01   2.22F+01   2.22E+01
  CUM,  (MG/DNCM)  SMALLER THAN 050         1.54E+03  9.90E+02  7.01E+02  4,42E*02  1.78Et02  5,51E*01   3.44E+01   3.44E+01
  CUM,  (GR/ACF)  SMALLER THAN D50          4.35E-01  2.79E-01  1.97E-01  1.24E-01  5.01E-02  1,55E»02   9.69E-03   9.69E-03
  CUM,  (GR/DNCF)  SMALLER  THAN D50         6.75E-01  4.33E-01  3.06E-01  1.93E-01  7.78E-02  2.41E-02   1.50E-02   1.50E-02
  GEO,  MEAN  DIA,  (MICROMETERS)            4.09E+01  8.39E+00  5.32E+00  3.08E+00   1.97E+00   1.19E+00   7.24E-01  4,50E»>01  2.35E-01
  DM/OLOGO (MG/DNCM)                       4.33E+03  3.69E+03  1.17E+03  1,13E*03  1.6SEt03  4.39E+02   1.40E+0?  O.OOE-01  1.13E+0?
  ON/OLOGO (NO, PARTICLES/DNCM)           5,02E*07  4.98E+09  6,22E*09  3.09E+10   1.73E+11   2.10E+11   2,93E*11  O.OOE-01  6.97F+12


NORMAL (ENGINEERING STANDARD) CONDITIONS APE 21 DEC C AND 760MM HG,

                                                             -123-

-------
     COLI-28  1.19176  1050  BUAI
   IMPACTOR FLOWRATF s 0,037 ACFM               IMPACTOR TEMPERATURE e  3JO,0  F  «  154,4 C              SAMPLING DURATION s  10,00
   IMPACTOR PRESSURE DROP =  2,5 IN. OF HG      STACK TEMPERATURE »  310,0  F « 154,4 c
   ASSUMED PARTICLE DENSITY s 2.4Q GM/CU.CM.     STACK PRESSURE a 30,Ob IN, OF HG     MAX, PARTICLE DIAMETER « 168.0 MICROMETERS
   GAS COMPOSITION (PERCENT)           C02 r 12.88          CO •  0,00          N2 e 73,60          02 B  5,52           H20 *  8,00
   CALC,  MASS LOADING s 1.7981E+00 GR/ACF             2.7903E+00 OR/DNCF            4.H46E + 03 MG/ACM             6,3853E*03 MG/DNCM
   IMPACTOR STAGE                           CYC        80        81        82        S3        84        85        86     FILTER
   STAGE  INDEX NUMBER                         123056789
   DSO (MICROMETERS)                        9,97      7,06      4,00      2,36      1,64      0.86      0,61      0,33
   MASS  (MILLIGRAMS)                       33,79      1,95      2,15      2,08      2,03      0.66      0,16      O.OS      0,24
   MG/DNCM/STAGE                            s,ooE+Q3  a,89E*o2  3,ieE+o2  S.OBE+OZ  3,oiE+oa  <5,78E+oi  a,37E*oi  7,«iE*oo  3,S5E«oi
   CUM, PERCENT  OF MASS SMALLER THAN DSO  21,62     17,10     12,11      7,29      2,5e      i.os      0,68      o,56
   CUM, (MG/ACM)  SMALLER  THAN DSO          8.90E+02  7,04E+02  4,9BE«02  3,OOEf02  1.06E+OZ  4.32E+01  2.79E+01  2,3lE*01
   CUM, (MG/DNCM)  SMALLER THAN DSO         1.38E+03  1,09E*03  7.73E+02  4,65E*02  1.65E+02  6,70E*01  4.33E+01  3,59E*01
   CUM, (GR/ACF)  SMALLER  THAN DSO          3,89E«01  3,07E«01  2,18E-01  1,31E-01  4,64Et»02  1.89E.02  1,22E»02  1.01E-02
   CUM, (GR/DNCF)  SMALLER THAN DSO         6,03E"01  4,77E-01  3.38E-01  2,03E-01  7,20E-02  2,9JE»02  1.89E-02  1.S7E-02
   GEO, MEAN  DIA,  (MICROMETERS)            4,09E*fll  8,39E*00  5,32E*00  3,08E+00  1,97E+00  1,19F+00  7,24E«01  4,SOE«01  2,35E«01
   DM/DLOGD  (MG/DNCM)                       4,06E*03  1.93E+03  1.29E+03  1.35E+03  1.88E+03  3.49E+02  1.60E+0?  2.80E+01  1.18E+02
   ON/DLOGD  (NO,  PARTICLES/DNCM)           4.74E+07  2,60E*09  6.86E+09  3,68EtlO  1.97E+11  1.67F+11  3.35E+1I  2.44E+11  7,27E»12


NORMAL (ENGINEERING  STANDARD)  CONDITIONS ARE  21  DEC C AND 760MM HG,

                                                              -124-

-------
  COLI-29  1-19176  1553  2UAI
IMPACTOR FLOWRATE » 0,037 ACFM
IMPACTOR PRESSURE DROP »  2,5 IN, OF HC
ASSUMED PARTICLE DENSITY r 2,40 GM/CU.CM.
                                               IMPACTQR TEMPERATURE «  335,0 F • i62,e c              SAMPLING DURATION  *   10,00  MIN
                                               STACK TEMPERATURE «  325,0 f * 162,8 c
                                               STACK PRESSURE a 29,96 IN, OF HS     MAX, PARTICLE DIAMETER » 16fl,0 MICROMETERS
GAS COMPOSITION  {PERCENT)            C02 *  12.88
CALC, MASS LOADING s 9.0968e«01 GR/ACF
IMPACTOR STAGE                           CYC
STAGE INDEX NUMBER                          1
DSC  (MICROMETERS)                       10,01
MASS  (MILLIGRAMS)                       12.69
MG/DNCM/STAGE
CUM,  PERCENT OF  MASS SMALLER  THAN  050     3.26E+10  1.20E+11  2,36E*11  2,52E*11  l,97E*Il  4,94E*12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21  HEG  C  AND  760MM HG,
                                                            -125-

-------
  COLI.30  1-19-76  1530  6UAI
IMPACTOR FLOWRATE • 0,037 ACFM
IMPACTOR PRESSURE DROP «  2,5 IN, OF HG
ASSUMED PARTICLE DENSITY = 2,40 GM/CU.CM,
                                                  SAMPLING DURATION
                                                  10,00
                                                IMPACTOR TEMPERATURE •  335,0  F  »  i62.e  c
                                                STACK TEMPERATURE *  325,0 F  » i62,e  c
                                                 STACK PRESSURE • 29,98 IN, OF HG     MAX,  PARTICLE DIAMETER s 168,0 MICROMETERS
GAS  COMPOSITION (PERCENT)           C02 s 12,88
CALC,  MASS  LOADING n 1.7710E+00 GR/ACF
IMPACTOR  STAGE                            cvc
STAGE  INDEX  NUMBER                         1
D50  (MICROMETERS)                       10, 0«
MASS (MILLIGRAMS)                       27,97
MG/DNCM/STAGE
CUM, PERCENT OF  MASS SMALLER  THAN D50  3«,13
CUM, (MG/ACM) SMALLER  THAN  050
CUM, (MG/DNCM)  SMALLE"  THAN D50
CUM, (GR/ACF) SMALLER  THAN  D50
CUM, (GR/ONCF)  SMALLER  THAN D50
GEO, MEAN DIA,  (MICROMETERS)
DM/OLOGO  (MG/DNCM)
DN/OLOGD  (NO. PARTICLES/ONCM)
        CO a  0,00
  2.8093E+00 GR/DNCF
   so        si
                                                     2
                                                  7,11
                                                  «,66
              3
           4.03
           2.72
        N2 » 73,60          02  *   5,52
            «,0526E*03  MG/ACM
  82        33
   «5
2,38      1,65
3,22      2,71
 7a06E+02
23, it>     16,75
9,17      2,78
S4
6
0,86
0,80
1.21E+02
0,90
85
7
0,61
0,12
1,82
0,62
                                                                                                                         H20 t  8.00
                                                                                                                  6,«287E»03 MG/DNCM
                                                                                                                  se     FILTER
                                                                                                                   fl9
                                                                                                                0,33
                                                                                                                O.Ofl      0,22
                                                                                                                6S06E*00
                                                                                                                0,52
                                           1.3BE+03  9.38E+02  6.79E+02  3.71E+02   l,13Et02   3,65E*01  2,50E»01  2,i2E*01
                                           2.19E+03  l,«9g+03  1.08E+03  5.B9E+02   1,79E*02   5,7"JE*01  3,97E*Ol  3,3fcE*01
                                           6.00E-01  «,10E«-01  2.97E-01  1.62E-01   «,93E"02   S.59E-02  1.09E-02  9.26E-03
                                           9.59E-01  6,51E»01  4,71E»01  2.56E-01   7,B2E->02   2,53E»02  1.73E-02  1.47E-02
                                           a.HE+Ol  8,«5E+00  5,35E*00  3,10E*00   1,9RE+00   1,19E+00  7,27E»01  U,51E-01  2,35Ei.01
                                           3.46E+03  «,70E*03  1.67E+03  2,13E*03   2.56E+03   fl,32f+02  1,22E*02  2,28E*01  1.11E+02
                                           3,98E*07  6,20E*09  8.6BE+09  5.70E+SO   2.63E+H   2.03E+11  2.52E+11  1.97E+11  6.79E+U
NORMAL (ENGINEERING STANDARD)  CONDITIONS  ARE  21  OE6 C  AND 760MM  HG
                                                             -126-

-------
   COLI-3!  1-19.76   1SUO  4UAI
 IMPACTOR FLOWRATE B  0,037 ACFM                IMPACTOR  TEMPERATURE  e   320.0 F  *  160,0  c               SAMPLING  DURATION  z   10,00  MIN
 IMPACTOR PRESSURE DROP  »  2,5 IN,  OF  HE       STACK  TEMPERATURE  »   320,0  F »  160,0  c
 ASSUMED PARTICLE DENSITY a  2,«0  GM/CU.CM,      STACK  PRESSURE *  29,98  IN, OF  H6     MAX,  PARTICLE  DIAMETER  *  168.0  MICROMETERS
 GAS COMPOSITION  (PERCENT)           C02  *  12,68           CO »   0.00           N2 • 73,60           02 •   5.52            H20 *  8,00
 CALC, MASS LOADING  » 1.3017E+00  GR/ACF              2.0518E+00 GR/DNCF              2.9788E+03  MG/ACM              
-------
     COLI*32  1«20*76
   IMPACTOR FLQWRATE • 0,037 ACFM               IMPACTOR TEMPERATURE »  320,0 F « I60.o  c              SAMPLING DURATION B  10,00 MIN
   IMPACTOR PRESSURE DROP »  2.5 IN, OF HG      STACK TEMPERATURE »  320,0 F * uo.o  c
   ASSUMED PARTICLE DENSITY s 2,«o GM/CU.CM,     STACK PRESSURE a ?9,9B IN, OF HG    MAX,  PARTICLE DIAMETER = i6e,o MICROMETERS
   GAS COMPOSITION (PERCENT)           C02 a 12,88          CO s  0,00           N2 * 75,60         02 «  5,52           H20 *  8,00
   CALC,  MASS LOADING x l,7097E»00 GR/ACF             2,69«8E*00 GR/ONCF             3.9123E+03 MG/ACM             fe,1666E+03 MG/DNCM
   IMPACTOR STAGE                           CYC        SO        SI        82        S3        S«        S5        S6     FILTER
   STAGE  INDEX NUMBER                         123056789
   D50 (MICROMETERS)                      10,02      7,09      fl.02      2.37      1,64       0,66      0.61      0,33
   MASS  (MILLIGRAMS)                      32.63      2,50      1,63      1,35      1,40       0,91      0,17      0.05      0,15
   MG/ONCM/STAGE                           «,<>tE*03  3,76E*02  2.75E+02  2,03E+02  2.UE+02  1,376*02  2,56E*01  7,52E»00  2,26E»01
   CUM, PERCENT  OF MASS SMALLER THAN oso  20,«o     i«,30      9,ea      6,5
-------
   COLI-33  1-20.76  0953  9UAI
 IMPACTOR FLOWRATE • 0,037 ACFM                IMPACTOR TEMPERATURE «  320,0 F • j60,o c              SAMPLING DURATION =   10,00 MIN
 IMPACTOR PRESSURE DROP •  a,s IN, OF HG       STACK  TEMPERATURE =  320,0 F « i6o,o c
 ASSUMED PARTICLE DENSITY s  2.40 GM/CU.CM.      STACK  PRESSURE s 29,98 IN, Of HG     MAX, PARTICLE DIAMETER «  168,0  MICROMETERS
 GAS COMPOSITION  (PERCENT)           COS  e  12,88          CO «  0.00           N2 B 73,60          02 s  5,52           H20  «   8,00
 CALC, MASS LOADING s  2.7611E+00 GR/ACF              «,3521E+00 GR/DNCF             6.3184F. + P3 MG/ACM             9.9592E*03  MG/DNC*
 IMPACTOR STAGE                            cvc         so        si        82        ss        s«        ss        s&    FILTER
 STAGE INDEX  NUMBER                          123456769
 DSO  (MICROMETERS)                       10,02       7,09      4,02      2.37      1,64      0.86      0,61      0,33
 MASS  (MILLIGRAMS)                       53,94       3,37      2,35      3,86      1,80      0,58      0,09      0,07       0,m
 MG/DNCM/STAGE                            8.11E+03   5.07E+02  3.54E+02  5.81E+02  2,7lE*02  8.73E+01  1.35E+01  1.05E+01   2,11E*01
 CUM,  PERCENT OF  MASS  SMALLER THAN  050   16,52      13,43      9,88      4,05      1.33      0,46      0,32      0.22
 CUM,  (MG/ACM)  SMALLER THAN  050           1,17E+03   6.49E+02  6.25E+02  2.56E+02  8.U3E+01  2,89Ef01  2.04E+01  1.37E+01
 CUM,  (MG/DNCM)  SMALLER THAN 050          1.84E + 03   1.34E4-03  9.84E + 02  4,04E*02  1.33E + 02  4.56E + 01  3.21F- + 01  2.16E + 01
 CUM,  (GR/ACF)  SMALLER THAN  050           5.11E-01   3.71E-01  2.73E-01  1.12E-01  3.68E-02  1.27E-02  8.90E-03  5.98E-03
 CUM,  (GR/DNCF)  SMALLER THAN 050          8.06E-01   5,85E"01  4.30E-01  1.76E-01  5.81E-02  1.99E-02  1.40E-02  9.42E-03
 GEO,  MEAN  OIA,  (MICROMETERS)            4.10E+01   8.43E+00  5.S4E+00  3.09E+00  1.97E+00  1.19E+00  7.26E-01  4.51E-01  2.35E-01
 DM/DLOGD (MG/ONCM)                       6,63E*03   3.38E+03  1.44E+03  2,54E*03  1,69E*03  3.11E+02  9.10E+01  3,97E*01  7,OOE*01
 DN/DLOGD (NO. PARTKLES/DNCM)           7.64E+07   4.49E+09  7,50Et09  6.84E+10  1.75E+11  1.47E+11  1.89E+11  3.45E+11  4.30E+12


NORMAL (ENGINEERING STANDARD) CONDITIONS  ARE 21 DEC C AND  760MM HG.

                                                            -129-

-------
    COLI-34   l-20«T6   0036  7UAI



   IMPACTOR FLOWRATE  » 0,037 ACFM                IMPACTOR  TEMPERATURE  •   320,0 F a i6o,o c              SAMPLING DURATION «  10,00  HIN



   IMPACTOR PRESSURE  DROP «  2,5 IN,  OF HG      STACK  TEMPERATURE  *   320.0 f e 160,0 C



   ASSUMED PARTICLE DENSITY a 2,40 GM/CU.CM,      STACK  PRESSURE  •  29,98  IN, OF HG     MAX, PARTICLE DIAMETER f 168,0 MICROMETERS



   6AS COMPOSITION  {PERCENT)           C02 «  12,88          CO  «  0,00           N2 e 73,60          02 »  5,52           H20 «   fl.OO



   CALC,  MASS  LOADING  e l.7384E*00 GR/ACF             2,rfl01E*00 GR/DNCF             3,978lE*03 MG/ACM             6,270«E+03 MG/DNCM



   IMPACTOR STAGE                            CYC        SO       81        S2        S3        34        S5        86     FILTER



   STAGE  INDEX NUMBER                          123456789



   DSO (MICROMETERS)                       10,02      7.09      tt,02       2.37      1,60      0.86      0,61      0.33



   MASS  (MILLIGRAMS)                       32,42      3,15      2,17       1,75      1,30      0.55      0,07      0,14      0,13



   MG/DNCM/STAGE                            
-------
   COLI»35  1-20-7ft  1U54  1UAI
, IMPACTOR FIOWRATE a 0,037 ACFM                IMPACTOR  TEMPERATURE  s   310,0 F  «  15«,01  1.8JE-01   9,75E*02  «,23E-02  l,fc3E»02   1,2«E*02   7.21E«03
 GEO.  MEAN DIA, (MICROMETERS)             «,09£+01   8.39E+00  5.32E+00   3,08E*00  1,97E*00  1,19E*00   7.24E-01   fl,50E»01  2,3ttE=01
 OM/DLOGD (MG/ONCM)                       1.50E+OS   3,61E*03  l,l«E*03   8.37E+02  7.90E+02  2.12E+02   6,OOE*01   a,«9E*01  5,«3E*01
 DN/OL060 (NO,  PARTICLES/DNCM)           1.75E+07   a,86E+09  6,05E*09   2.29E+10  8,27E*10  1.02E+H   1.26E+H   3.93E+JI  3,36E*12

NORMAL.. (ENGINEERING STANDARD)  CONDITIONS ARE 21 DEG C AND 760MM HG,

                                                            -131-

-------
    COL 1.56   1-30.76   1«U2  JUAI
   IMPACTOR FLOWRATE  •  0,037  ACFM                IMPACTOR  TEMPERATURE  a  310,0 F »  isa.u c              SAMPLING DURATION s   10,00
   IMPACTOR PRESSURE  DROP  «  2,5 IN,  OF  HG      STACK  TEMPERATURE  «   310.0 r * isa.a c
   ASSUMED PARTICLE  DENSITY s 2,40  GM/CU.CM,      STACK PRESSURE  e  29,96 IN, OF HG     MAX. PARTICLE DIAMETER * ifcS.O MICROMETERS
   GAS COMPOSITION  (PERCENT)            C02 *  12,88          CO *  0,00           N2 « 73,60          02 »  5,52          H20  •  8,00
   CALC, MASS  LOADING s 1.2759EtOO  GR/ACF             1.9866E+00 GR/DNCF             2.9197E+OS MG/ACM             4.S460E+03  MG/ONCM
   IMPACTOR STAGE                           CYC         so       si        82        ss        s«        ss        86    FILTER
   STAGE INDEX  NUMBER                          123*56789
   DSO (MICROMETERS)                        9,97      7,06     4,00      2,36      1,64      0,86      0,61      0,33
   MASS  (MILLIGRAMS)                       22,15      3,07     1,63      1,45      0,98      0,63      0,11      0.02      0,15
   MG/DNCM/STAGE                            3,29E+03  S.16E+02  2.42E+02  2.1SE+02  1.46E+02  9.36E+01  1.63C+01  2.97E+00  2,23E*01
   CUM, PERCENT OF MASS SMALLER  THAN  DSO  27,60      16,25     10.92      6,ia      2,96      0,92      o,36      o.so
   CUM, (MG/ACM) SMALLER THAN DSO           a,06E+02  «,75E*02  3.19E+02  1.61E+02  8.TOE+01  2.69E+01  1.64E+01  S.U5E+01
   CUM. (MG/DNCM) SMALLER  THAN DSO          1,?5E+03  7,39£*02  <».97E+02  2.81E+02  1.35E+02  «,18E»01  2,55E»Ol  2,25Et01
   CUM, (GR/ACF) SMALLER THAN 050           5.52E-01  8.07E-01  1.39E-01  7.89E-02  3.80E-02  1.17E-02  7.15E-03  6.32E-03
   CUM, (GR/DNCF) SMALLER  THAN 050          5.48E-01  3.23E-01  2.17E-01  J.23E-01  5.92E-02  1.83E-02  1.11E-02  9,8flE-03
   GEO, MEAN DIA, (MICROMETERS)             «,o9E+oi  8,39t+oo  s,32E+oo  S.OSE+OO  i,97E+oo  i,i9E+oo  7,2«E-oi  O.SOE-OI  a,34E»oi
   DM/DLOGD (MC/DNCM)                       2.68E+03  3.44E+03  9,8«E+02  9,41E*02  9.11E+02  3.34E+02  1.10E+02  1.12E+01  7,«1E*01
   DN/DLOGD (NO. PARTICLES/DNCM)            3.12E+07  H.64E+09  5.22E+09  8,57EtlO  9.54E+10  1.60E+11  2.31E+H  9.82E+10  4,58E*12


NORMAL (ENGINEERING STANDARD) CONDITIONS A»E  21  OEG C ANO  760MM HG,

                                                             -132-

-------
    COLI-37   l«20-76   1430   5UAI



  IMPACTOR FLOWRATE «  0.037  ACFM                IMPACTOR TEMPERATURE e  312,0 F = 155,6 C              SAMPLING DURATION z   io,00



  1MPACTOR PRESSURE DROP  «   2,5 IN.  OF HG      STACK TEMPERATURE «  51?,0 F « 155,6 C



  ASSUMED PARTICLE DENSITY  = 2,10  GM/CU.CM.      STACK PRESSURE B 29,96 IN, OF HG     MAX,  PARTICLE  DIAMETER e 168,0 MICROMETERS



  GAS  COMPOSITION  (PERCENT)            C02 «  12,88          CO a  0,00           N2 « 73,60          02 »  5,52           M20 »  8,00



  CALC,  MASS  LOADING  « 1,77B9E*00  GR/ACF             2.7770E+00 GR/DNCF             4.0707E+03 MG/ACM             6,354TF*03 MG/DMCM




  IMPACTOR STAGE                            CVC        SO        SI        82        83        84        85        86     FILTER



  STAGE  INDEX NUMBER                          123056789



  D50  (MICROMETERS)                        9.98      7,06      11.01      2,37      1.64      0,86      0,61      0,33



  MASS (MILLIGRAMS)                       34,39      2,21      1,50      2,16      1,20      0,59      0,35      0,07      0,1«



  MG/DNCM/STAGE                            5,12E+03  3.29E+02  2.29E+02  3,22E*02  1.79E+02  8.79E+01   5.21E+01   l.OOE+01   2.09E+01



  CUM, PERCENT OF  MASS SMALLER THAN oso  19,37     i«,i9     io.se      5,51      2,70      1,32      o.so      0,33



  CUM, (MG/ACM)  SMALLER THAN 050          7.89E+02  5.78E+02  0.31E+02  2,2«Et02  1,10E*02  5,37E*01   2.02E+01   1.36E+01



  CUM, (MG/DNCM)  SMALLER THAN 050         1,23E*03  9.02E+02  6.72E+02  3.50E+02  1.7?E»02  fl,38E*01   3,16E»Ol   2.12E+01



  CUM, (GR/ACF)  SMALLER THAN 050          3.15E-01  2.52E-01  l,e8E»01  9.B1E-02  4.81E.02  2.34E-02   8.85E-03   5.93E-03



  CUM, (GR/DNCF)  SMALLER THAN 050         5.3SE-01  3.94E-01  2.94E-01  1.53E-01  7.50E-02  3.66E-02   1,3R|»02   9,25E«03



  GEO, MEAN  OIA,  (MICROMETERS)            fl,09E+01  8.40E+00  5,32E*00  S.OBEtOO  1.97E+00  1.J9E+00   7.21E-01   a,50E"01   2.3«E»01



  DM/OLOGD  (MG/DNCM)                       4.18E+03  2,19E*03  9.32E+02  1,«1E+03  1,12E*03  3,1«E+02   3,51E»02   3,9«E*0»   6.93F+OJ



  DN/DLOGD  (No, PARTICLES/DNCM)           4.84E + 07  2.95E + 09  «.93E»09  3.83E+1Q  1.17E + 11   1.50E*tl   7,35E*11   3,«
-------
OUTLET IMPACTOR DATA
      -134-

-------
1COLO-12 l»12-76 1705
 IMPACTOR FLOWRATE * 0,500 ACFM
 IMPACTOR PRESSURE DROP a 0,7 IN, OF HG
 ASSUMff) PARTICLE DENSITY s 2,40 GM/CU.CM,
     IMPACTOR  TEMPERATURE  =   270,0  F  »  132.2 c
     STACK  TEMPERATURE  «   270,0  F = 132,2  C
      STACK PRESSURE  =  29,68  IN, OF HG     MAX,  PARTKU  DIAMETER =
                                                                                                      SAMPLING  DURATION 3  90,00
GAS COMPOSITION (PERCENT)           C02 = 12,68
CALC, MASS LOADING s 1.4952E-03 GR/ACF
IMPACTOR STAGE                            SI
STAGE INDEX NUMBER                        1
050  (MICROMETERS)                       9,35
MASS  (MILLIGRAMS)                       1,68
                                                         CO a  0,00
                                                   2.2582E-03 GR/DNCF
                                                    82        S3
                                                    23
                                                  6,56      «,0«
                                                  0,11      0.18
                                        1,99E+00  1,30E-01  2,13E«01
CUM, PERCENT OF MASS SMALLER THAN 050  61,47     58,95     54,82     48,17
                                34
                                4
                              2,84
                              0,29
                                                                               N2 » 75,60          02
                                                                                   3.4216E+00 MG/ACM
                                                                                   S5
                                                                                   5
                                                                                 l,8fl
                                                                                 fl.08
                                                                                 9,«8E«02
                                                                                46.34
                                                                5,52
S6
6
0.85
0,46
5.45E.C
5.78


0
0
)1 3
29
87
7
,50
.27
.20E-01
.59
 CUM,  (MG/ACM)  SMALLER  THAN 050
 CUM,  (MG/DNCM) SMALLER THAN 050
 CUM,  (GR/ACF)  SMALLER  THAN D50
 CUM,  (GR/DNCF) SMALLER THAN D50
 GEO,  MEAN  DIA, (MICROMETERS)
 OM/OLOGD  (MG/DNCM)
 DN/DLOGO  (NO,  PARTICLES/ONCM)
2.10E+00  2.02E+00  1,88E*00  1,65E*00   1.59E+00   1.22E+00   1.01C+00
3.18E+00  3.05E+00  2.83E+OQ  2.49E+00   2.39E+00   1,956+00   1.53E+OQ
9,19E»04  8,81E-04  6,20E»04  7.20E-04   6.93E-04   5.35E-04   4.42E-04
1.39E-03  1,33E"03  1.24E-03  1,09E«03   1.05E-03   8.08E-04   6.68F-04
2.16E+01  7.83E+00  5.15E+00  3.38E+00   2.29E+00   1.25E+00   6.53E-01
2.73E+00  8.47E-Q1  1.01E+00  2.24E*00   5.07E-01   1.62E+00   1,41E*00
2.15E+05  1.40E+06  5.91E+06  4.60E+07   3.37E+07   6.57E+08   4.02E+09
                                                                                                               50,0  MICROMETERS
                                                                                                                         H20  a   8,00
                                                                                                                  5.1675E+00  MG/ONCM
                                                                                                                  Sfl     FILTER
                                                                                                                  89
                                                                                                                0,37
                                                                                                                0,21      1.08
                                                                                                                2.49E-01   1.28E+00
                                                                                                               24,78
                                                                                                                8.48E-01
                                                                                                                1.28E+00
                                                                                                                3.70E-04
                                                                                                                5.59E-04
                                                                                                                4.JOE-01  2.60E-OJ
                                                                                                                1.84E+00  4.2SE+00
                                                                                                                1.84E+10  1.93E+H
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21  DEG  C  AND  760MM
                                                            -135-

-------
  !COUO-t3  l-l?-76  1711
   IMPACTOR  FLOWRATE  *  O.SSB ACFM               IMPACTOR  TEMPERATURE  e  370.0 F » 132,2 c              SAMPLING DURATION •  <»o,oo  MIN
   IMPACTOR  PRESSURE  DROP  * 0,7 IN,  OF HG       STACK  TEMPERATURE  »   27o,o F » 132,2 c
   ASSUMED  PARTICLE DENSITY s 2,40 GM/CU.CM,      STACK PRESSURE  «  29,68 IN, OF HG     MAX, PARTICLE DIAMETER "  50,0 MICROMETERS
   GAS COMPOSITION  (PERCENT)           C02 B  12,88          CO a  0,00           N2 e 73,60          02 «  5,52           H20 «  8.00
   CAlC. MASS  LOADING «  7.2349E-04 GR/ACF             1.0927E-03 GR/DNCF             1.6556E+00 MG/ACM             2.50Q4E+00 MG/DNCM
   IMPACTOR  STAGE                             si         82       ss        s«        ss        s*        37        se     FILTER
   STAGE INDEX  NUMBER                        1          23056789
   oso (MICROMETERS)                        9,01      6,32     3,99      2,73      1,77      o.ei      o,«e      0,35
   MASS (MILLIGRAMS)                        0,98      0,20     0,27      0,24      0,08      0,09      0,02      0,00      0,00
   HG/DNCM/STAGE                            1.08E+00  2.20E-01  2.97E«01  2,64CpQl  8.81E-02  5.29E-01  2.20E-02  0,OOE«01  O.OOE.01
   CUM, PERCENT OF MASS  SMALLER THAN 050   56,83      48,02    36.15     25,56     22.03      0,89      0,01      0.01
   CUM, (MG/ACM) SMALLER THAN D50          9,41E*01  7,95£»01  5.98E«01  4,23E*01  3.65E-01  1,47E»02  8.28E-05  6.28E-05
  CUM, (MG/DNCM) SMALL?"  THAN 050         1,42E*00  1.20E+00  9.031-01  6.39E-OJ  5,5tE«01  2.22E-02  1.25E-04  1.25E-04
  CUM, (GR/ACF) SMALLER THAN 050          
-------
 1COLO-15 1-13-76 1218 PORTS  1,2,3




 IMPACTOR FLOWRATE s 0,396 ACFM                IMPACTOR  TEMPERATURE  B   280,0  f  *  137.8  C               SAMPLING DURATION = 120,00  MJN



 IMPACTOR PRESSURE DROP » 0,5  IN,  OF  HG        STACK  TEMPERATURE  •   280,0  F » 137,e  c



 ASSUMED PARTICLE DENSITY s  2.40 GM/CU.CM,      STACK PRESSURE  3  29,50  IN, OF HG     MAX,  PARTICLE  DIAMETER  «  50,0 MICROMETERS



 GAS COMPOSITION (PERCENT)            C02  *  12,88           CO »  0,00           N2 « 73,60           02 «   5,52           H20 «  8,00



 CALC, MASS LOADING  * 2.9437E«03 GR/ACF              4.5342E-03 GR/DNCF              6.7361E+OQ  MG/ACM              1.0376Et01 MG/ONCM



 IMPACTOR STAGE                             SI         82       S3         54         85        86        57        38     FILTER



 STAGE INDEX  NUMBER                         123456789



 D50 (MICROMETERS)                       10,55       7,40     4.56       3,21      2,09      0,97       0,58      0,«3



 MASS  (MILLIGRAMS)                        0,82       0,50     1,12       1,00      1,23      1,70       1,61      0,68      0,45



 MG/DNCM/STAGE                            9,346-01   5.69E-01  1.2BE+00   1.14E+00  1.40E+QO  i,94E»00   1,63E»00  7.74E-01   5,13E«-01



 CUM,  PERCENT OF MASS  SMALLER  THAN D50  91,00      85,52     73,22      62,24      48,74     30,08     12,41      a.9<|



 CUM,  (MG/ACM5  SMALLER  THAN  050           6.13E+00   5.76E+00  4.93E+00   4.19E+00  3.28E+00  2.03E+00   8,36E«01   3.33E-01



 CUM,  (MG/DNcM)  SMALLER THAN 050          9.44E+00   8.87E+00  7',60E+00   6,46E*00  5.06E+00  3.12E+00   1.29E+00   5,13E«01



 CUM,  (GR/ACF5  SMALLER  THAN  050           2,68E«03   2.52E-03  2.16E-03   1,83C»03  1.43E-03  8.B6E-04   3,65E-Oa   t,46E-04



 CUM,  (GR/DNCF)  SMALLER THAN D50          4.13E-03   3,88E-03  3,32E»03   2,82E«03  2.21E-03  1.36E-03   5,63E*0«   2.24E-04



 GEO,  MEAN  DIA,  (MICROMETERS)             2.30E+01   8,84E+00  5,81E*00   3.82E+00  2.59E+00  1,42E*00   7,fl5E»01   4.9SE-01  3,OIE»01



 DM/DLOGD (MG/DNCM)                       1.3J3E+00   3,70E*00  6.06E+00   7.45E+90  7.52E+00  5.78E+00   8,16r*00   5.94E+00  1,70E*00



 DN/DLOGD (NO, PARTICLE8/DNCM)           9.08E+04   «,27E+06  2.46E+07   1.06E+08  3.45E+08  1,61E*09   1.57E+10   3.89E+10  4,95E*10










NORMAL  (ENGINpfRING STANDARD) CONDITIONS APE 21 DEG C AND 760MM HG,







                                                             -137-

-------
 1COLO-16  l«13-76  1224  PORTS  4,5,6
  IMPACTOR FLOWRATE  =  o,«o3  ACFM               IMPACTOR  TEMPERATURE  «   280,0 r »  137.e c              SAMPLING DURATION a 120.00 MIN
  IMPACTOR PRESSURE  DROP  * 0,5  IN.  OF HC       STACK  TEMPERATURE  •   280,0 F » 137,8 C
  ASSUMED PARTICLE DENSITY •  2,40 GM/CU.CM.      STACK PRESSURE  s  29,50  IN, OF H6     MAX, PARTICLE DIAMETER «  50,0 MICROMETERS
  GAS COMPOSITION  (PERCENT)            COS  a  12,88           CO a   0,00           N2 « 73,60          02 s  5,52           M20 »  8,00
  CALC, MASS  LOADING s  4.3678E-03 GR/ACF             6.7587E-03 GR/ONCF             1,00«1E+01 MG/ACM             1,5«66E»01 MG/ONCM
  IMPACTOR STAGE                             si         S2       33        s«        ss        86        57        SB     FILTER
  STAGE INDEX NUMBER                        t23«56789
  050 (MICROMETERS)                       10,
-------
1COLO-1S 1-13-76 1634 PORTS' «.5,6
 IMPACTOR FLOWRATE « 0,394 ACFM                IMPACTOR  TEMPERATURE »  2so.o F «  137.8 c               SAMPLING  DURATION  a  120,00 MIN
 IMPACTOR PRESSURE DROP = 0,5 IN, OF HG        STACK TEMPERATURE s  380,0 F » 137,8 C
 ASSUMED PARTICLE DENSITY e 3.40 GM/CU.CM,     STACK PRESSURE » 39,42 IN, OF HC     MAX, PARTICLE DIAMETER  «   50,0  MICROMETERS
 GAS COMPOSITION (PERCENT)           C02  «  12,88          CO a  0,00           N2 * 75,60          02 •   5,52           H20  a   8,00
 CAU, MASS LOADING 9 4.2922E-03 GR/ACF             6.6294E-03 GR/DNCF             9.8221E+00 MG/ACM              1,5170E»01  MG/ONCM
 IMPACTOR STAGE                             81        82        S3        8«        85        86        87         88     FILTER
 STAGE INDEX NUMBER                         123456789
 050. (MICROMETERS)                       to,6o      7,«4      «,SB      3,22      2,10      0,97      o.sa      0,43
 MASS  (MILLIGRAMS)                        2.45      2,0«      2.21      1.75      1,39      1.58      1,16      0,57       0,00
 MG/DNCM/STAGE                            2.83E+00  2,S5E*00  2.55E*00  2,OaE+00  1,60E*00  1,82E+00  1,34E*00  6,53E«01   0,OOE«Ot
 CUM,  PERCENT OF MASS SMALLER THAN  050   Rt.37      65,66     49,05     35,75     25,IB     13,16      4,34      0,01
 CUM,  (MG/ACM)  SMALLER  THAN  050           7.99E+00  6,47E*00  4.82E+00  3,51E*.QO  2,47E*00  1,29E*00  4.26E-OJ  «,9lE«0«
 CUM,  (MG/ONCM)  SMALLER THAN  050          1.23E+01  9.99E+03  7.44E+00  5,«2E+00  3.82E+00  2,00r*00  6.58E-01  7.S9E-04
 CUM,  (GR/ACF)  SMALLER  THAN  050           3.49E-03  2,83E-03  2,ilE-03  1.53E-03  1.08E-03  5.6SE-04  1,86E»04  2.15E-07
 CUM,  (GR/DNCF)  SMALLER THAN 050          5.39E-03  4.37E-03  3.25E-03  2.37E-03  1.67E-03  8.72E-04  2.88E-04  3.31E-07
 GEO,  MEAN DIA,  (MICROMETERS)             2.30E+01  6.88E+00  5,84E*00  3,84E*00  2.60E+00  1,43£*00  7,U9E»OJ  «,98E"01  3,03E»01
 DM/OLOGO  (MG/ONCM)                       4,2-OE+OO  1.53E+01  1.21E+01  1.32E+01  8,61E*00  5.44E+00  5,96e+00  5.05E+00  O.OOE-61
 ON/DLOGO  (NO,  PARTICLES/DNCM)            2.74E+05  1.74E+07  4.84E+07  1.85E+08  3,89E*Ofi  1.49E+09  1.13E+10  3.25E+10  O.OOF-01


NORMAL (FNGINEERING STANDARD) CONDITIONS ARE 21 DEC C  AND  760MM HG,

                                                            -139-

-------
  1COLO»19  1-15-76  1650  PORTS  1,2.3
  IMPACTOR FLOWRATE  a 0,«01  ACFM                IMPACTOR  TEMPERATURE  »  280,0 F a 137,8 C              SAMPLING DURATION = 120,00
  IMPACTOR PRESSURE  DROP  =  o.s  IN,  OF  HG        STACK  TEMPERATURE  *   200,0 F * 137,6 c
  ASSUMED  PARTICLE DENSITY  *  2.40 GM/CU.CM.      STACK PRESSURE  s  29,42 IN, OF HG     MAX, PARTICLE DIAMETER a  50,0 MICROMETERS
  CAS COMPOSITION  (PERCENT)            CO?  «  12,88           CO *  0,00           N2 » 73,60          02 B  5,52           H20 *  8.00
  CALC, MASS LOADING «  6.455BE-03 GR/ACF              9.9711E-03 GR/DNCF             1.4773E+01 MG/ACM             2,8B|7E*01 MG/DNCM
  IMPACTOR STAGE                             SI         82       S3        84        85        S6        87        88     FILTER
  STAGE INDEX NUMBER                        123456789
  050 (MICROMETERS)                       10,51       7,37     «,5«       3,19      2,08      0,96      0,57      0,«2
  MASS  (MILLIGRAMS)                        5,50       2,87     2.57       i,6«      1,60      3.13      1,82      0,37      0,58
  MS/DNCM/STAGE                            6,23E+00   3,2St+00  2,91E*00   1,92E*00  1.8lEtOO  3,55E+00  2,06E+00  «,19e»0l  6,57Ei.01
  CUM, PERCENT OF MASS  SMALLER  THAN 050   72,68      SB,as    «5,66     37,26     29,31     13,77      
-------
1COLO*28 1»16»76 0917 PORTS 4,6



 IMPACTOR FLOWRATE « 0,415 ACFH                IMPACTOR TEMPERATURE «  300.0 F *  148,9 C               SAMPLING  DURATION  >   80,00 MIN



 IMPACTOR PRESSURE DROP * 0,5 IN, OF H6        STACK  TEMPERATURE  «  300,0 F «  148.9 C



 ASSUMED PARTICLE DENSITY > 2.40 CM/CU.CM.     STACK PRESSURE «  29.45 IN, OF  HG     MAX, PARTICLE DIAMETER *   50.0  MICROMETERS



 GAS COMPOSITION (PERCENT)           COS  «  12.68          CO «   0.00           N2 . T3.60          02 «  5,52           H20 •  8.00



 CALC, MASS LOADING a 1.1374E.02 GR/ACF              1.8025E.02 GR/DNCF             2.6029E+01 MG/ACM              «.12«7E*01 MG/DNCM



 IMPACTOR STAGE                             SI        82        83        Sfl        SS        S6        87         88    FILTER



 8TASE INDEX NUMBER                         123156789



 050 (MICROMETERS)                       10.03       7,32      fl,5l      3,17      2.06      0,95      0.56      0.42



 MASS  (MILLIGRAMS)                        5,38       2,51      3.02      2,01      2,8
-------
  1COLO-29  1-16-76  0914  PORTS  1,?
   IMPACTOR  FLOWRATE  s  0,39a ACFM               IHPACTOR TEMPERATURE  a   300,0  F  *  108,9 C              SAMPLING DURATION «  80,00
   IMPACTOR  PRESSURE  DROP « 0,5 IN. OF HG       STACK TEMPERATURE  »   300,0  F * I4fl,9 C
   ASSUMED  PARTICLE DENSITY =  2.40 GM/CU.CM.      STACK PRESSURE  •  29,45  IN. OF HG     MAX. PARTICLE DIAMETER »  50,0 MICROMETERS
   GAS  COMPOSITION  (PERCENTJ           C02 B  12,88          CO «  0,00           N2 • 73,60          02 «  5,52           H20 m  8,00
   CALC,  MASS  LOADING a  8.8570E.03 GR/ACF             1,4035E«02 GR/DNCF             2.0268E+01 MS/ACM             3.2U6E + 01 MG/DNCM
   IMPACTOR  STAGE                             SI         52       S3         84        35        86        87        88     FILTER
   STAGE  INDEX NUMBER                        123*156789
   D50  (MICROMETERS)                       10,71       7,51      4.63       3,25      2,12      0,98      0,58      0,«3
   MASS (MILLIGRAMS)                        0,00       2,46      1,33       2,16      2,«7      5,19      2,39      0,67      !,««
   MG/DNCM/STAGE                            O.OOE-Ol   4,37E*00   2.36E+00   3,83E*00  4.39E+00  9,2tE+00  4.24E+00  1.19E+00  2.52E+00
   CUM, PERCENT OF  MASS  SMALLER THAN  oso   **,**      86,«i     79,05      67,11      ss,«6     24,77     ii,56      7,85
   CUM, (MG/ACM) SMALLER THAN  050          2.03E+01   1.75E+01   1.60E+01   1.J6E+01  1.08E+OI  5.02E+00  2.34F+00  l,59EtOO
   CUM, (MG/DNCM) SMALLER THAN 050         3,21E*Oi   2,78E+01   2,54Et01   2,16C>»Oi  i,72C4>Oi  7,96EfOO  39riE*00  2,52E+00
   CUM, (GR/ACF) SMALLER THAN  050          8,86E»03   7,65E"03   7,OOE>03   5,94E*03  4.73E-03  2.19E-03  i,02E«03  6,96E-04
   CUM, (GR/DNCF) SMALLER THAN D50         1.40E-02   1.21E-02   1,11E»02   9.42E-03  7.50E-03  3,«8E-03  1.62E-03  1.10E-03
   GEO, MEAN DIA, (MICROMETERS)            ?,3iE+oi   s,97E+oo   s,90E*oo   s.see+oo  2,63C+oo  i,a«E*oo  7,55E-oi  S.OIE-OI  S.OSE-OI
   DM/DLOGD  (MG/ONCM)                       O.OOE-01   2,84E*01   1,12E*01   2,51E*Ol  2.35E+01  2.75E+01  t,88E*01  9,096*00  8,38E*00
   DN/DLOGO  (NO, PARTICLES/DNCM)            O.OOE-Ot   3,13E*07   «,35E+07   3,421+08  J.03E+09  7.33E+09  3.49E+10  5.76E+10  2.36E+U


NORMAL (ENGINEERING  STANDARD)  CONDITIONS ARE  ?1  DEC C AND  760MM HG,

                                                              -142-

-------
 1COLO-30 1-16-76 13«2 PORTS 1,2,3
  IMPACTOR FLOWRATE • o.aie ACFM               IMPACTOR TEMPERATURE =  300,0 F « i«e,9 c              SAMPLING DURATION *  90,00
  IMPACTOR PRESSURE DROP = 0,5 IN, OF HG       STACK TEMPERATURE =  300,0 F » 148,9 C
  ASSUMED PARTICLE DENSITY s 2,40 GM/CU.CM.     STACK PRESSURE e 29,US IN, OF HG     MAX, PARTICLE DIAMETER =  50,0 MICROMETERS
  GAS COMPOSITION (PERCENT)           C02 * 12.88          CO =  0,00           N2 B T3.60          02 *  5,52           H20 =  fi.OO
  CALC,  MASS LOADING = 1.1367E.02 6R/ACF             1.8013E-02 GR/DNCF             2.6012E+01  MG/ACM             4.1220E+01 MG/DNCM
  IMPACTOR STAGE                            SI        82        S3        34        S5        S6        S7        Sfl     FILTER
  STAGE  INDEX NUMBER                        123«5678»
  D50 (MICROMETERS)                      10,39      7,29      4,49      3,16      2,05      0,95      0,56      0.42
  MASS  (MILLIGRAMS)                       3,29      2,60      5,02      3,14      4,64      5,47      2,30      0.25      0,80
  MG/DNCM/STAGE                           4,69E+00  3,87E+00  7,47E*00  4.&7E+00  7,2oe+00  e,14E*00   3,42E+00   3,72E"Ol   1,19E»00
  CUM,  PERCENT OF MASS SMALLER THAN 050  ee.is     79,75     60,63     49,30     31,83     12,09      3,79      2,69
  CUM,  (MG/ACM) SMALLER THAN 050          2.29E+01  2.05E+01  1.58E+01  1.28E+01  8,2BE*00  3.15E+00   9.87E-01   7.52E-01
  CUM,  (MG/ONCM) SMALLER THAN D50         3.63E+01  3,25E*01  2.50E*01  2.03E+01  1,31E*01   4.99E+00   1.56E+00   1.19E+00
  CUM,  CGR/ACF) SMALLER THAN D50          l.OOE-02  8.95E-03  6.89E-03  5.60E-.03  3.62E-03   1.37E-03   4.31E-04  3.29E-04
  CUM,  (GR/DNCF) SMALLE" ™AN 050         1.59E-02  1.42E-02  1.09E-02  8.88E-03  S.73E-03   2.18E-03   6,83E-04  5.21E-04
  GEO,  MEAN DIA. (MICROMETERS)            2.28E+01  8,70E+00  5,72E*00  3.76E+00  2,55E*00   1.39E+00   7.30E-01  4,83E»01  2,9«E-01
  DM/OLOGD  (MG/DNCM)                      7.17E+00  2.51E+01  3.55E+01  3.0SE+01   3.B6E+01   2.42E+01   1.51E+OJ  2,82E*00  3.95E+00
  DN/DLOGD  (NO, PARTICLES/DNCM)           4.82E+05  3.03E+07  1.51E+08  4.56E+08  1.86E+09   7.10E+09   3.10E+10  1.99E+10  l,24E*ll
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 OEG C AND 760MM HG,
                                                             -143-

-------
 1COLO-31  1-16-76  1336  PORTS  a,5,6
  IMPACTOR FLOWRATF  a  0,115  ACFM                IMPACTOR  TEMPERATURE  «   300,0 F «  108,9 C              SAMPLING DURATION =  90,00 MIN
  IMPACTOR PRESSURE  DROP  = 0,5 IN,  OF HG       STACK  TEMPERATURE  «   300,0  F =  iue.9 c
  ASSUMED  PARTICLE DENSITY e  2,40 GM/CU.CM.      STACK PRESSURE  a  29,45  IN, OF  HG     MAX, PARTICLE DIAMETER *  50,0 MICROMETERS
  GAS COMPOSITION  (PERCENT)            COS s  12,88          CO  s  0,00           N2 " 73,60          02 »  5,52           H20 «  8,00
  CALC, MASS  LOADING •  1,15696.02 GR/ACP             1.8333E-02 GR/DNCF            2,6«7flE+01 MG/ACM             «,1953E+01 MG/DNCM
  IMPACTOR STAGE                             si         82       S3         s«        ss        86        s?        SB     FILTER
  STAGE INDEX NUMBER                        123«S6769
  050 (MICROMETERS)                       lO.flS       7,32      «.51       3,17      2,06      0,95      0,56      0,82
  MASS  (MILLIGRAMS)                        fl,13       2,83      3,19       3,79      2,97      «,73      2,81      1,2«      2,31
  MG/DNCM/STAGE                            6,19E*00  «,2«E+00   «.78E+00   5,68E+00  «,«5E+00  7.09£+00  «,21E+00  1.86E+00  3,46EtOO
  CUM, PERCENT OF  MASS  SMALLER THAN oso  85,25      75,15    63.75      50,22      39,6i     22,72     12,68      8,25
  CUM,  (MG/ACM) SMALLER THAN  050           2,26E+01  1.99E+01   1,69E*01   1.33E+01  1.05E+81  6.01E+00  3.36E+00  2,19EtOO
  CUM,  (MG/ONCM) SMALLER  THAN 050         3.58E+Q1  3.15E+01   2.67E+01   2,116+01  1.66E+01  9,53E«00  5.32E+00  3,00  1,«OE»00  7.33E-01  «.85E»01  2,95E«01
  OM/OLOGO  (MG/DNCM)                       9.09E+00  2.76E+01   2.27E+01   3,71E*01  2.38E+01  2.11E+01  l,86C*Ol  1,«1E+01  1.15E*01
  ON/DLOGD  (NO, PARTKLESXDNCM)            6.08E+05  3.29E+07   9,5«E+07   5,«8E+08  1,1UE»09  6.12C+09  3.77C+10  9.63E+10  3.57E+11


NORMAL (ENGINEERING  STANDARD)  CONDITIONS ARE  21  DEC C AND  760MM HG,

                                                             -144-

-------
 1COLO-36 1-19.76  1541 PORTS  1,2,3
 IMPACTOR FLOWRATE s  0,399 ACFM                IMPACTOR  TEMPERATURE  *   285,0  F  =  140,6  C               SAMPLING DURATION  =   64,00
 IMPACTOR PRESSURE DROP  = 0,5  IN,  OF  HG       STACK  TEMPERATURE  *   285,0  F =  140,6  C
 ASSUMED PARTICLE DFNSITY s  2.40  GM/CU.CM,      STACK PRESSURE  e  30,06  IN, OF HG     MAX,  PARTICLE  DIAMETER  «   50,0  MICROMETERS
 GAS COMPOSITION  (PERCENT)            C02  *  12.8«           CO =  0,00           N2 = 73,60           02  a   5,52           H20 e  8,00
 CALC, MASS  LOADING  = 1,6203E«02  GR/ACF             2.4659E»02 GR/DNCF              3.7078E+01 MG/ACM              5.6428E+01 MG/DNCM
 IMPACTOR STAGE                             SI         82       S3         S4         85        S6        87         S6     FILTER
 STAGE INDEX NUMBER                         123456789
 050  (MICROMETERS)                       10,56       7,41     4,57      3,21      2,09      0,97      0,58       0,43
 MASS  (MILLIGRAMS)                        3,53       3,78     4,87      4,65      4,80      6,99      4,23       1,18      1,16
 MG/DNCM/STAGI                            5.66E+00   6.06E+00  7.81E+00  7.46E+00  7.70E+00  1.12E+01  6.78E+00   1.89E+00   1.86E+00
 CUM,  PERCENT OF  MASS SMALLER  THAN oso  39,97      79,23    65,39      52,18     38,54     is,66      6,65       3,30
 CUM,  (MG/ACM)  SMALLER THAN  050           3.34E+01   2,945+01  2.42E+01  1.93E+01  1.43E+01  6.92E+00  2.47E+00   1.22E+00
 CUM,  (MG/DNCM)  SMALLER  THAN D50          5.08E+01   4.47E+01  3.69E+01  2.94E+01  2.17E+01  1.05E+01  3.76E+00   1.86E+00
 CUM,  (GR/ACF)  SMALLER THAN  OSO           1,46E»02   1,28E"02  1,06E»02  8.45E-03  6.24E-03  3.03E-03  1.08E-03  5.35E-04
 CUM,  (GR/DNCF)  SMALLER  THAN 050          2.22E-02   1.9SE-02  1.61E-02  1.29E-02  9.50E-03  4.61E-03  1.64E-03  8.14E-04
  GEO,  MEAN  DIA,  (MICROMETERS)             2.30E+01   8.85E+00  5.82E+00  3.83E+00  2.59E+00  1.42E+00  7,47E«0]   4.97E-01   3.03E.01
  DM/DLOGO (MG/DNCM)                       8.36E+00   3.94E+01  3.71E+01  4.88E+01  4.13E+01  3,35E*01  3.02E+01   1.46E+01   6.18E+00
  ON/DLOGD (NO, P4RTICLES/ONCM)           5.50E+05   4.53E+07  1.50E+08  6.91E+08  1.89E+09  9.25E+09  S.76E+10   9.44E+10   1 77E+H


NORMAL (ENGINEERING  STANDARD) CONDITIONS ARE 21  DEC  C AND  760MM HG.

                                                            -145-

-------
 ICOLO-37  1-19-76  1544  PORTS  a,5,6
  IMPACTOR FLOWRATE  «  0,396  ACFM                IMPACTOR  TEMPERATURE  si  285,0 F * 140,6 C              SAMPLING DURATION a  64,00
  IMPACTOR PRESSURE  DROP  •  o.s IN,  OF  HO       STACK  TEMPERATURE  •   285,0 F » MO,6 c
  ASSUMED  PARTICLE DENSITY  x  2,40 GM/CU.CM,      STACK  PRESSURE «  30,06 IN, OF HG     MAX, PARTICLE DIAMETER *  50.0 MICROMETERS
  GAS COMPOSITION  (PERCENT)            C02 e  12,68           CO «   0.00           N2 a 73,60          02 «  5,52           H20  «  8,00
  CALC, MASS  LOADING «  1.340SE.02 GR/ACF             2.0398E-02 GR/DNCF             3,0671E*Ol MG/ACM             4,6677Ef01  MC/DNCM
  IMPACTOR STAGE                             si         82       ss        s«        s?        86        57        SB     FILTER
  STAGE INDEX NUMBER                        123456769
  DSO (MICROMETERS)                       10,60      7,a«     4.S6      3,23      2,10      0,97      0,58      0,43
  MASS  (MILLIGRAMS)                        5,40      2,32     2,95      2,61      3,27      5,73      3,52      2,01      1,06
  MG/ONCM/STAGE                            e,72E«oo  S.TSE+OO  «,77E*oo  O.ZEE+OO  5,2SE*oo  9,26E40o  s,69E*oo  j,25E+oo  i,7«E*oo
  CUM, PERCENT OF  MASS  SMALLER THAN DSO   91,31      73,28    63,07     54,04     42,72     22,68     10,70      3.74
  CUM,  (MG/ACM) SMALLER THAN  050           2.49E+0!  2,25E+01  l,93E+Oi  1,66E+01  l,3tE+Oi  7.02E+00  3.2BE+00  1.15E+00
  CUM,  (MG/DNCM) SMALLER  THAN 050          3.80E+01  3,»2E*01  2,94E*01  2.S2C+01  1,99E*01  1,07E»01  4.99E+00  1,75E*00
  CUM,  (GR/ACF) SMALLER THAN  050           1,09E«02  9.82E-03  6.45E-03  7,24E«03  5.73E-03  3,07E«03  1.43E.03  5,02E»Ofl
  CUM,  (GR/DNCF) SMALLER  THAN DSO          1,66E«02  1.49E-02  1.29E-02  1.10E-02  6,7lE«03  4.67E-03  2.18E-03  7.64E-04
  GEO, MEAN DIA, (MICROMETERS)             2.30E+01  8,88E*00  5.84E+00  3.65E+00  2.60E+00  1.43E+00  7.SOE-01  4.99E-01  3.04E-01
  OM/DLOGD (MG/DNCM)                       1,30E*01  2.44E+01  2.27E+01  2.76E+01  2.84E+01  2.77E+01  2.54E+01  2.50E+01  5,80E»00
  DN/OLOGD (NO, PARTICLES/ONCM)            8,45E*05  2.77E+07  9,05E*07  3.87E+08  1.28E+09  7.55E+09  4,77E»10  1.60E+11  1,64E*11


NORMAL (ENGINEERING  STANDARD)  CONDITIONS ARE  21  OEG C  AND  760MM HG,

                                                             -146-

-------
1COLO-39 l-20-76> 0943 PORTS 1,2,5
 IMPACTOR FLOWRATE = o.aio ACFM               IMPACTOR TEMPERATURE =  280,0 F »  137.8 c               SAMPLING DURATION =  120.00
 IMPACTOR PRESSURE DROP « o.s IN, OF HG       STACK TEMPERATURE B  seo.o P * 137,8 c
 ASSUMED PARTICLE DENSITY = 2,40 GM/CU.CM,     STACK PRESSURE s 30,00 IN, OF HG     MAX, PARTICLE  DlAMETfR  •  50,0 MICROMETERS
 SAS COMPOSITION  (PERCENT)           co2 *  ifc.se          co •  o.oo           N2 » 75,60           02 *   5,52           H2o •  e,oo
 CALC, M»SS LOADING • u,6b7UE*03 6R/ACF             7,069«E««03 GR/DNCF             1.0681E+01 MG/ACM              1.6177E+01 MG/DNCM
 IMPACTOR STAGE                             81        52        S3        3i      2,62       t,B9      0,73      0,22
 MG/DNCM/STAGE                           2,70E*00   1,3«E*00  1,83E*00  2,09E*00  2,08E*00  3,07E*00   2,05E*00  7,9«E*Oi  2,39E«OJ
 CUM,  PERCENT  OF  MASS  SMALLER THAN  oso   B3,3«      75,07     6J.78     50,88      38,o«      19,09       6,39      i,«e
 CUM,  (MG/ACM)  SMALLER THAN D50         8.90E+00   6.02E+00  6.81E+00  5,U3E*00  fl,06E*00  2.04E+00   6.82C-01  1.58E-01
 CUM,  (MG/DNCM) SMALLER THAN 050         1.35E+01   1.21E+01  1,03E*01  8,23E»00  6.15E+00  3.09EtOO   1,03E*00  2,«OE-01
  CUM, (GR/ACF)  SMALLER THAN 050          3,fl9E«03   3.50E-03  2.98E-03  2,37E«03  1.78E-03  8,91E»0«   2,98E-Oa  6.92E-05
  CUM.  (GR/D^CF) SMALLER THAN 050         5,89E«.03   5.31E-03  «.51E«03  3.60E-03  2.69E-03  1.35P.03   «,52E-0«  1.05E-04
  GEO, MEAN DIA, (MICROMETERS)            2.28E+01   8,71E*00  5.72E*00  3.77E*00  2.55E+00  1,40E»00   7.30E.01   «t,86E-01  2.97E-01
  DM/OLOCD (MG/DNCM)                      3,95E*00   8.70E + 00  8.68E*00  1.S7E + 01  l.HE + 01  9.15F + 00   9,1/lE + OO   6.10E + 00  7.95E-01
  ON/DL06D (NO. PARTICLES/DNCM)           2.66E*05   1.05E+07  3,68E»07  2,03E*08  5,35E*08  2.66E+09   1.8SE+10   fl,17E*10  2.41E+JO


NORMAL  (ENGINEERING STANDARD) CONDITIONS ARE 21  DEC C  AND 760MM HG,

                                                             -147-

-------
 1COL0.40  1»20»76  0945  PORTS  4,5,6
  IMPACTOR FLOWRATE  e  0,581  ACFM                1MPACTOR  TEMPERATURE  a   280,0 F x  137,8 C              SAMPLING DURATION « 120,CO
  IMPACTOR PRESSURE  DROP  *  0,5  IN,  OF  HG        STACK  TEMPERATURE  =   280,0  F «  137.8 C
  ASSUMED PARTICLE DENSITY  •  2,40 GM/CU.CM.      STACK PRESSURE  •  30,00  IN, OF HG     MAX, PARTICLE DIAMETER »  50,0 MICROMETERS
  GAS COMPOSITION  (PERCENT)            C02  «  12,68           CO «  0.00           N2 « 73,60          02 "  5,52           H20 «  8,00
  CALC, MASS LOADING »  5,S796E«03 SR/ACF              B.4511E-03 GR/DNCF             1,27686*01 MG/ACM             t,9339E*01 MG/DNCM
  IMPACTOR STAGE                             si         32        33         s«        ss        86        37        SB     FILTER
  STAGE INDEX  NUMBER                        123056789
  050 (MICROMETERS)                       10,78      7,57      4.66      3,28      2,14      0.99      0,59      0,44
  MASS  (MILLIGRAMS)                        3,08      2,16      2,18      2,48      2,33      2,71      1,52      0,07      0,00
  MG/DNCM/STAGE                            3.60E+QO  2.53E+00  2.55E+00  2.90E+00  £,73E*00  3.17E+00  i,78E«00  8.19E-02  O.OOE-Oi
  CUM,  PERCENT OF  MASS  SMALLER  THAN 050   si,37      68,31     55,12      «o,n      26,02      9,62      0,43      o.oi
  CUM,  (MG/ACM)  SMALLER THAN  D50           1.04E+01  8.72E+00  7,04E*00  5,12E*00  3,32E*00  1,23E»00  5.47E-02  6.38E-04
  CUM,  (MG/DNCM) SMALLER  THAN D50          1.57E+01  1.32E+01  1,07£*01  7.76E+00  5.03E+00  1.86E+00  8.29E-02  9,67E*04
  CUM,  (GR/ACF)  SMALLER THAN  OSO           4.54E-03  3,81E«03  3.08E»03  2.24E-03  1.45E-03  5,S7E"0«  2,39E»05  2,79C«07
  CUM,  (GRXDNCF) SMALLER  THAN D50          6,88E*03  5.77E-03  4.66E-03  3.39E-03  2,20E«03  8.13E-04  3.62E-05  4.23E-07
  OEO,  MEAN DIA, (MICROMETERS)             2,32E*Oi  9,03E+00  5,94E+00  3,91E*00  2,65E+00  1,46E+00  7,65E«01  5S10E»01  3.11E-01
  DM/DLOGD (MG/DNCM)                       5,41£+00  1.64E+01  1.21E+01  1.90E+01  1.46E+01  9,48E*00  7,95E*00  6,34E«Ol  0,OOE«01
  DN/DLOGD (NO,  PARTICLES/DNCM)            3.44E*05  t,77E*07  4.60E+07  2.53E+08  6.27E+08  2,«5E*09  1.41E+10  S,80E*09  O.OOE-01


NORMAL  (ENGINEERING  STANDARD) CONDITIONS  A»E 21  DEC C AND  760MM HG,

                                                             -148-

-------
ICOLO-41  1-20-76 IU17 PORTS 4,5,6
 IMPACTOR FLOwRATE » 0.598 ACFM               IMPACTOR TEMPERATURE »  276.0 f e 135,6 C              SAMPLING DURATION r  120,00 WIN
 IMPACTOR PRESSURE D«OP * 0,5 IN, OF HG       STACK TEMPERATURE »  376,0 F = 135,6 C
 ASSUMED  PARTICLE DENSITY * 2.40 GM/CU.CM,     STACK PRESSURE » 30,00 IN. OF HC     MAX, PARTICLE DIAMETER a  50,0  MICROMETERS
 GAS COMPOSITION  (PERCENT)           C02 3  12.88          CO a  0,00           N2 • 73,60          02 •  5,52            H20  «   8,00
 CALC, MASS LOADING m 4.58S1E.03 GR/ACF             6.9073E-03 GR/DNCP             1.0492E+01 MG/ACM              1,5806E*01  MG/ONCM
 IMPACTOR STAGE                             31        32        S3        S4        85        86        87         Sfl      FILTER
 STAGE INDEX NUMBER                         123456709
 050  (MICROMETERS)                       10,53       7,39      4.55      3,20      2,09      0,97      0,58      0,43
 MASS (MILLIGRAMS)                       2,53       1,26      3.05      1,83      1,72      2,20      0,98      0,33       0,29
 MG/ONCM/STAGE                           2,82E+00   l,«oe+00  3,40E*00  2,04E+00  1,92E*00  2,45E*00  1,09€*00  3.68E-01   3,23E»01
 CUM, PERCENT OF  MASS  SMALLER  THAN  050   82,18      73,30     51.80     38,91     26,78     11,28      4,37      2,05
 CUM,  (MG/ACM)  SMALLER  THAN  D50          8.62E+00   7.69E+00  5.44E+00  4.08E+00  2.81E+00  1,18E»00  4.59E-01  2.15E-01
 CUM,  (MG/DNCM)  SMALLER THAN 050         1.30E+01   1.16E+01  6.19E+00  6.15E+00  4.23E+00  1,78E*00  6,91E«Ol  3.24E-01
 CUM,  (GR/ACF)  SMALLER  THAN  050          3,77E-03   3.36E-03  2.38E«'03  1.78E-03  1.2JE-03  5,17E«04  2.01E-04  9.39E-05
 CUM, (GR/ONCF) SMALLER THAN OSO         5.68E-03   5.06E-Q3  3.58E-03  2.69E-03  1.B5E-03  7.79E-04  3.Q2E-04  1.42E-04
 GEO, MEAN CIA, (MICROMETERS)            2.29E+01   8,82E+00  5.eoE+00  3,82E+00  2,b8E*00  1.42EfOO  7.46E-01  4.96E-01  3.02E-01
 DM/DLOGO (MG/DNCM)                     4.1.6E+00   9.13E*00  1.62E+01  1.33E+01  1.03E+01  7.32E*00  4,87E*00  2.83E+00  1.07E+00
 DN/DLOGO (NO.  PARTlCLES/ONCM)           2,74E*05   1.06E+07  6,59E*07  1.91E+08  4.74E+08  2.04E+09  9,35E*09  t.SSEtlO  3,09E»10


NORMAL (ENGINEERING STANDARD)  CONDITIONS  ARE 21 DEG C AND  760MM HG,

                                                            -149-

-------
 icoLO-42  1-20.76  i
-------
                            APPENDIX  B

Figures 1 and 2 show penetration-efficiency  curves for half-normal
and normal current density operation.   In  these figures data are
plotted for measurements made with  calibrated and uncalibrated
impactors and ultrafine measurements  made  with the ultrafine par-
ticle sizing system.

Since these data were first reduced,  the impactors used in field
test measurements have been calibrated  according to the procedures
given in EPA reports 600/2-76-118 *  and  600/2-77-0042.  In addition
the upper stages of each type of  impactor  used were calibrated with
ammonium fluorescein aerosols in  the  size  range from 2 urn to 8 ym.
Typical impactor calibrations were  reported  in EPA report 600/2-76-2803
"Particulate Sizing Techniques for  Control Device Evaluation:  Cascade
Impactor Calibrations".

The effect of these calibrations  is shown  in the figures.   Data
recalculated for calibrated impactors are  shown as solid circles with
50% confidence intervals.  Data for uncalibrated impactors are shown
with solid triangles with no confidence intervals drawn.   Ultrafine
data are plotted with open circles  and  50% confidence intervals.  In
general calibrated and uncalibrated impactor data follow approximately
the same shape curve with the notable difference of uncalibrated
impactor data at 0.45 ym.
                                -151-

-------
a
M
h-
UJ
bJ
U
QL
hi
a.
                    PESETRATION-EFFICieCY

           03L8ERT - EFFIOaCT - HWAL 1-1S-76.1-13-7G
       101-:
       10°,:
     lO'H
      10'
                                                    ::30.0
                     5 5
                                       •  «
                                    »*».
               •  Calibrated Impactor  Data
                  Uncalibrated Impactor Data
               o  Ultrafine Data
*!
                                                             & <
M U

M y
u. i
11_
111 r

h- y
2: u
bJ K
U bl

bJ
CL
                         i i  i Mini—i  i i mn|—i  i i uin|-_gg.33
                              10°
Figure 1.
          PARTICLE DIAMETER  (MICROMET


          Half normal current density penetration-efficiency
          graph with calibrated and uncalibrated cascade impactor
          and ultrafine data shown.  The uncalibrated  impactor
          data is shown without confidence intervals.   50%
          confidence intervals are  shown for all other data.
                         -152-

-------
                 PE1SETRATIDN-EFFICIENCY
        COLBERT - EFFIOOO - HQOAL M3-7E.1-20-7G
-l_l_; -

m*

IDS
-7-
5 :
M
h-
<
DC
h-
U
z
£ 10°,
•
«
h-
z
LJ
U
e
Q_
ICT1-
•
*
*
4
M
M
4i
-i o-2_


; • Calibrated Impactor Data
A Uncalibrated Impactor Data
•
o Ultrafine Data


•
•


™ (
: J
: ll 1.
»
»

to
•
•
•
— i iiium — v-
A


I» A.
, *,' '**
1 *' ,
A

i 4




[ -*si
".•4" :
*
V •

I
M

I -
•
f :
•
•
4k
i i HUH — i i i mill — i i i inn
f U«U
»
»
V
»
•

:30.0
• >-
U
-j?
LJ
M
U
J— 1
• I
b_
-39oOJij
h-
z
LJ
U
Q£
LJ
DL
3S.9

RR.RR
        v-2
1O"C      10"1      10°       101       1O2"

PARTICLE DIAMETER  (MICROMETERS)
Figure 2,
    Normal current density penetration-efficiency graph
    with calibrated and uncalibrated cascade impactor
    and ultrafine data shown.  The uncalibrated impactor
    data is shown without confidence intervals.  50%
    confidence intervals are shown for all other data.
                         -153-

-------
                            REFERENCES


1.   Calvert, S., Lake, C.,  and Parker, R.,  "Cascade Impactor
    Calibration Guidelines", Air Pollution Technology,  Inc.
    EPA Contract No. 68-02-1869, U.S.  Environmental Protection
    Agency, Industrial Environmental Research Laboratory,  Report
    EPA-600/2-76-118.  Research Triangle Park, N.C., April,  1976.

2.   Harris, D. B.,  "Procedures for Cascade Impactor Calibration
    and Operation in Process Streams", U.S. Environmental Pro-
    tection Agency, Industrial Environmental Research Laboratory,
    Report EPA-600/2-77-004.  Research Triangle Park, N.C.,
    January, 1977.

3.   Gushing, K., Lacey, G.,  McCain, J., and Smith,  W.,  "Particulate
    Sizing Techniques for Control Device Evaluation: Cascade
    Impactor Calibrations",  Southern Research Institute,  EPA
    Contract No. 68-02-0273.  U.S. Environmental Protection  Agency,
    Industrial Environmental Research Laboratory, Report  EPA-600/
    2-76-280, Research Triangle Park,  N.C., October, 1976.
                               -154-

-------
                                 TECHNICAL REPORT DATA
                          (Please read Instructions on the reverse before completing)
 . REPORT NO.
EPA-600/2-77-011
                                                       3. RECIPIENT'S ACCESSION-NO.
4. TITLE AND SUBTITLE
Particulate Collection Efficiency Measurements on an
ESP Installed on a Coal-fired Utility Boiler
                                  5. REPORT DATE
                                   January 1977
                                  6. PERFORMING ORGANIZATION CODE
7. AUTHORS John P. Gooch, G.H. Marchant, Jr. , and
         Larry G. Felix
                                  8. PERFORMING ORGANIZATION REPORT NO.
                                  SORI-EAS-76-471
                                  3540-1
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Southern Research Institute
2000 Ninth Avenue South
Birmingham, Alabama 35205
                                  10. PROGRAM ELEMENT NO.
                                  1AB012; ROAP 21ADL-027
                                  11. CONTRACT/GRANT NO.
                                  68-02-2114, Task 1
12. SPONSORING AGENCY NAME AND ADDRESS
 EPA, Office of Research and Development
 Industrial Environmental Research Laboratory
 Research Triangle Park, NC 27711
                                  13. TYPE OF REPORT AND PERIOD COVERED
                                  Task Final; 1-9/76	
                                  14. SPONSORING AGENCY CODE
                                   EPA-ORD
is. SUPPLEMENTARY NOTES JJERL-RTP project officer for this report is L.E. Sparks, Mail
Drop 61, 919/549-8411 Ext 2925.
is. ABSTRACT The reporj. gjves results of fractional and overall collection efficiency mea-
surements  of an electrostatic precipitator collecting fly ash from a coal-fired boiler
burning high-sulfur coal.  The mass median diameter of the particulate entering the
collector was  approximately 40 micrometers; that leaving the collector was between
3 and 4  micrometers.  Measurements were conducted at two  levels of precipitator
operating current density.  Measured efficiencies were compared with those predicted
from a computer model of electrostatic precipitation.  Measured efficiencies are
higher than predicted.
17.
                              KEY WORDS AND DOCUMENT ANALYSIS
                 DESCRIPTORS
Air Pollution
Measurement
Dust
Electrostatic
  precipitation
Boilers
Coal
Fly Ash
Mathematical Models
13. DISTRIBUTION STATEMENT

 Unlimited

           •
EPA Form 2220-1 (9-73)
                                           b.lDENTIFIERS/OPEN ENDED TERMS
Air Pollution Control
Stationary Sources
Particulate
Collection Efficiency
                      19. SECURITY CLASS (This Report)
                       Unclassified
                      20. SECURITY CLASS (This pane)
                       Unclassified
                                                 COSATI Field/Croup
13B      21D
14B      21B
11G      12A

13H
13A
                             161
                                               22. PRICE
                   -155-

-------