>?A-600/2-77-Q11
January 1977
Environmental Protection Technology Series
PARTICIPATE COLLECTION EFFICIENCY
MEASUREMENTS ON AN ESP INSTALLED ON A
COAL-FIRED UTILITY BOILER
Industrial Environmental Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into five series. These five broad
categories were established to facilitate further development and application of
environmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The five series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
This report has been assigned to the ENVIRONMENTAL PROTECTION
TECHNOLOGY series. This series describes research performed to develop and
demonstrate instrumentation, equipment, and methodology to repair or prevent
environmental degradation from point and non-point sources of pollution. This
work provides the new or improved technology required for the control and
treatment of pollution sources to meet environmental quality standards.
EPA REVIEW NOTICE
This report has been reviewed by the U.S. Environmental
Protection Agency, and approved for publication. Approval
does not signify that the contents necessarily reflect the
views and policy of the Agency, nor does mention of trade
names or commercial products constitute endorsement or
recommendation for use.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-600/2-77-011
January 1977
PARTICULATE COLLECTION EFFICIENCY
MEASUREMENTS ON AN ESP INSTALLED
ON A COAL-FIRED UTILITY BOILER
by
John P. Gooch, G. H. Marchant, Jr. ,
and Larry G. Felix
Southern Research Institute
2000 Ninth Avenue South
Birmingham, Alabama 35205
Contract No. 68-02-2114, Task 1
ROAP No. 21ADL-027
Program Element No. 1AB012
EPA Project Officer: Leslie E. Sparks
Industrial Environmental Research Laboratory
Office of Energy, Minerals, and Industry
Research Triangle Park, NC 27711
Prepared for
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Research and Development
Washington, DC 20460
-------
Table of Contents
Section Page
I Summary and Conclusions 1
II Introduction 3
III Measurement Techniques 5
IV Results 9
References 16
Appendix 47
-------
List of Tables
Table No.
1 Daily Test Conditions 17
2 Mass Train Data from Colbert Steam Plant l8
3 Precipitator Performance 19
4 Comparison of Particulate Concentrations from
Impactors and Mass Trains 19
5 Daily Gas Analysis for Colbert 20
6 Average Electrical Operating Conditions During
Sampling Periods 21
7 Colbert Resistivity Data 22
8 Coal and Ash Analyses 23
9 Outlet Andersen Impactor Runs 24
10 Comparison of Computed and Measured Mass
Collection Efficiency 25
11
-------
List of Figures
Figure No. Page
1 Precipitator Layout 26
2 Discharge Electrode and Frame Geometry 27
3 Sample Extraction - Dilution System 28
4 Sampling Locations 29
5 Voltage vs. Current for Transformer Rectifier
No. 3A, January 21, 1976 30
6 Voltage vs. Current for Transformer Rectifier
No. 1A, January 21, 1976 31
7 Voltage vs. Current for Transformer Rectifier
No. 2A, January 21, 1976 32
8 Inlet Particle Size vs. Cumulative Mass Loading
for January 13, 1976 to January 20, 1976 33
9 Outlet Particle Size vs. Cumulative Mass Loading
for Test 2, 3, 10, and 11 34
10 Outlet Particle Size vs. Cumulative Mass Loading
for Test 6, 7, and 9 35
11 Inlet Size Distributions on Log-probability
Coordinates, January 13, 1976 - January 20,
1976 36
12 Outlet Size Distributions on Log-probability
Coordinates, Test 2, 3, 10, and 11 37
13 Outlet Size Distributions on Log-probability
Coordinates, Test 6, 7, and 9 38
14 Inlet Differential Mass Distributions
January 13, 1976 - January 20, 1976 39
15 Outlet Differential Mass Distributions, Test
2, 3, 10, and 11 40
ill
-------
List of Figures
(Continued)
Figures No .
16 Outlet Differential Mass Distributions,
Test 6, 7, and 9 ............................. 41
17 Inlet and Outlet Differential Number Dis-
tributions for Normal Current Density Test ... 42
18 Inlet and Outlet Differential Number Dis-
tributions for One Half Current Density
Test ......................................... 43
19 Measured and Theoretically Calculated
Fractional Efficiency for Normal Current
Density Test ................................. 44
20 Measured and Theoretically Calculated
Fractional Efficiency for One Half Current
Density Test ................................. 45
21 Gas Velocity Distribution .................... 46
IV
-------
ACKNOWLEDGMENTS
The particle size measurements given in this report were conducted
by members of the Environmental Physics Research Section. The assis-
tance of the Tennessee Valley Authority is gratefully acknowledged.
Submitted by:
John P. Gooch, Head
Control Device Research Section
G. H. Marchant, Jr., Supervisor
Control Device Evaluation
Larry G. Felix
Research Physicist
Approved:
Grady B. Nichols, Head
Environmental Engineering Division
v
-------
SECTION I
SUMMARY AND CONCLUSIONS
Overall mass and fractional collection efficiency measurements were
made on an electrostatic precipitator collecting fly ash resulting
from the combustion of a high-sulfur (3.1-5.6% S) coal at the
Tennessee Valley Authority's Colbert Steam Plant. The measurements
were conducted under the following two sets of electrical conditions:
(1) The power supplies were operated under automatic control, which
resulted in an average current density of 17 x 10~9 amps/cm2. (2)
The input power to the power supplies was intentionally reduced,
which resulted in an average current density of 8 x 10"9 amps/cm2.
Under both sets of electrical conditions, the specific collecting
area was maintained at approximately 47 m2/(m3/sec), and the average
flue gas temperature was 156°C. The maximum value of fly ash re-
sistivity recorded during the test series with a point-plane probe was
2,4 x 1010 ohm-cm. Average overall collection efficiencies of 99.55%
and 99=03% were obtained from mass train measurements under automatic
control and with the manually reduced power settings, respectively.
Cascade impactor measurements indicated that the mass median particle
diameter of the fly ash entering the collector was approximately 40 ym.
For the tests conducted under normal current densities, the impactor
measurements showed that the collection efficiency of 1.0 ym diameter
particles was 97.5%. Under the reduced power settings, the collection
efficiency of 1.0 ym diameter particles was 92.0%. The mass median
diameter of the particulate mass escaping the precipitator was between
3.0 and 4^0 ym for both the normal and reduced current density test
conditions.
A comparison of measured collection efficiencies with those obtained
from simulating the precipitator operating conditions with a .mathe-
matical model indicated that the theoretical model underpredicted
the fine particle collection efficiencies. However, the model pre-
dicted the relative effect of the change in electrical operating
-------
conditions on overall mass efficiency with reasonable accuracy-
The resistivity measurements obtained during the test period in-
dicated that ash resistivity was not limiting the electrical
operating conditions of the precipitator. The relatively low
values of allowable current density apparently result from
sparking due to dust build-ups or to the geometry of the electrode
system.
-2-
-------
SECTION II
INTRODUCTION
This report presents the information obtained from a performance
test conducted by Southern Research Institute on the electrostatic
precipitator installed on Unit #4 at the TVA's Colbert Steam Plant.
The data in this report were obtained with normal operation of the
rapping system. Additional data concerning rapping reentrainment
losses were obtained under the sponsorship of the Electric Power
Research Institute (EPRI). These data will be available in a
future EPRI report. Table 1 gives a description of the tasks
performed on each day of the test series. This report presents
results from test numbers 2, 3, 6, 7, 9, 10, and 11.
The objectives of the EPA-sponsored portion of the test were (1)
to determine the overall particulate collection efficiency of the
electrostatic precipitator, and (2) to compare the measured per-
formance of the precipitator with that projected from a mathematical
model.
DESCRIPTION OF ELECTROSTATIC PRECIPITATOR
The electrostatic precipitator installed on Unit #4 of the Colbert
Station consists of three fields in the direction of gas flow
(Figure 1). The precipitator is physically divided into two col-
lectors (A & B). The test program conducted at Colbert was conducted
on the "A" side of the #4 precipitator. The total collecting area
for the "A" side is 7,374.4 m2 (79,380 ft2), with 2,458.13 m2
(26,460 ft2) per field. This gives a specific collection area of
34.489 m2/(m3/sec)(175 ft2/1000 cfm) for the design volume of
213.82 m3/sec (453,000 ACFM) per collector. Each collector has
three double half-wave transformer rectifiers or one per field (see
Figure 1). The precipitator has a 27.94 cm (11 in) plate spacing and
operates at approximately 149°C (300°F). A drop hammer type of
-3-
-------
rapping system is employed in which two plates are rapped simul-
taneously with each hammer. The first field is rapped 10 times/
hour, the second field is rapped 6 times/hour, and the third
field is rapped 1 time/hour. The emitting electrodes are square
twisted wires with an approximate diameter of .419 cm (.165 in)
and are 10.0 m (32* 9 3/4") long. There are 12 wires per lane
per field for a total of 1512 wires. The discharge electrodes
are held in a rigid frame, each frame holds 4 wires (see Figure
2).
-4-
-------
SECTION III
MEASUREMENT TECHNIQUES
MASS CONCENTRATION MEASUREMENTS
Mass loading determinations were conducted at the inlet and outlet
sampling locations with in-stack filters. Glass fiber thimbles
were used at the inlet to collect the particulate mass and precon-
ditioned Gelman 47 mm glass fiber filters were used at the outlet and
as back up filters at the inlet. The sampling probes used at the in-
let and outlet were heated and contained pitot tubes to monitor the
velocities at each sampling location. An isokinetic traverse across
the duct was conducted to obtain the mass loading at the precipitator
inlet and outlet. The Gelman 47 mm filters were weighed before and
after each test in the field on a Cahn electrobalance, whereas the
inlet thimbles were weighed in Birmingham before and after the test
due to the absence of a suitable balance at the test site.
GAS ANALYSIS MEASUREMENTS
The concentrations of sulfur trioxide, sulfur dioxide, oxygen,
carbon dioxide, and the moisture content of the flue gas were
determined at the inlet of the precipitator. The sulfur trioxide
samples were collected by a condensation method1 while the sulfur
dioxide was collected in a hydrogen peroxide solution, which oxidized
the sulfur dioxide to sulfur trioxide. Each of the sampling tech-
niques for the oxides of sulfur produced a sample for analysis that
consisted of a dilute sulfuric acid. The concentrations of acid
(from which the SOx concentrations may be calculated) were determined
by barium perchlorate titration using thorin indicator2.
The percentage of oxygen and carbon dioxide were determined by the
use'of Fyrite gas analyzers. The moisture content of the flue gas
was determined by pulling a known volume of gas through a preweighed
packed drierite column. The drierite column was then weighed and the
moisture content calculated from the weight change.
-5-
-------
V-I MEASUREMENTS
Primary and secondary voltages and currents were recorded from the
transformer control cabinets during each test. At the end of the
test period, a voltage divider resistor assembly was attached to
the high voltage side of each transformer. The secondary voltages
were then calculated from the voltage drop across the measurement
resistor and the resistance values from the resistors in the voltage
divider assembly. These secondary voltages were used to establish a
correction factor for the panel meters. All transformers were
checked with the voltage divider assembly, and the secondary voltage
readings were corrected accordingly.
OPACITY MEASUREMENTS
A Lear Siegler RM41p portable optical transmissometer was placed
in the outlet duct to measure the in-stack plume opacity. The port-
able transmissometer has an optical path length of two meters and
compensation circuitry for determining opacity in terms of the stack
exit diameter. All opacity measurements in this report are given in
terms of a two meter optical path length.
PARTICLE SIZE MEASUREMENTS
Particle size and concentration measurements were conducted using the
following methods: (1) inertial techniques using cascade impactors
for determining concentrations and size distributions on a mass basis
for particles having diameters between approximately .2 ym and 10.0
ym, (2) electrical mobility analysis for size and concentration
measurements on a number basis in the diameter range of 0.015 to
0.3 ym.
Impactor and ultrafine particle sizing data were reduced according
to the procedures delineated in the Appendix following this report.
individual impactor calibrations were not yet available when these*
data were reduced. Andersen Model in impactors were used at the out-
let while SoRI modified Brink Impactors were used to sample at the
inlet. Glass fiber impaction substrates and back up filters, which
-6-
-------
were preconditioned by overnight exposure to the flue gas, were used.
Blank runs with the glass fiber substrates were conducted daily.
Nominal flow rates were 1.4 x 10~5 m3/sec (.03 CFM) for the Brink
Impactor, and 1.9 x 10"4 m3/sec (.4 CFM) for the Andersen Impactor.
A system based on the use of particle mobility analysis was used for
obtaining essentially real time data on concentration and size dis-
tribution on a number basis over the range of particle diameters from
0.015 ym to about 0.3 ym diameters. The data obtained with this
system are on a volume concentration by number rather than weight
basis. Two types of mobility analyses were considered for use in
this test: (1) diffusional methods and (2) electrical mobility
methods. Because of its compactness and short measurement time
(29.5 kg and 2 minutes) as compared with the diffusional method
(136 kg and 2 hours), the electrical mobility method was selected
for use on this test (a Thermosystems Model 3030 Electrical Aerosol
Analyzer). The electrical mobility method operates by placing a
known charge on the particles and precipitating the particles under
closely controlled conditions. Size selectivity is obtained by
varying the electric field in the precipitator section of the mobil-
ity analyzer. Charged particle mobility is monotonically related to
particle diameter in the operating regime of the instrument (0.015
to 0-3 ym particle diameter).
None of the instruments used for particle mobility analysis can
tolerate raw flue gases as sample streams nor can they cope with the
particle concentrations encountered in the flue gas. Thus, particle
mobility analyses are based on extractive sampling with a metered
sample being diluted with clean dry air, to both condition the sample
and reduce the particle concentrations to levels within the operating
limits of the instruments. The required dilution typically ranges
from 10:1 to 1000:1 depending on the particulate source and the
location of the sampling point (i.e., upstream or downstream of the
control device). A diagrammatic representation of the system is
shown in Figure 3.
— 7 —
-------
ELECTRICAL RESISTIVITY
In situ electrical resistivity measurements were made with a point-
to-plane3 electrostatic collection instrument. The device is in-
serted into the flue gas environment and allowed to reach near thermal
equilibrium with the gas stream. The dust thickness gage is set at
zero and the measurement cell positioned for collection. A clean
electrode voltage vs. current characteristic is recorded. The current
density for collection is selected and a dust layer is precipitated
electrostatically. After collection of the dust layer has occurred,
a second voltage vs. current characteristic is recorded. This pro-
vides one measure of electrical resistivity. The measurement elec-
trode is then lowered to contact the dust layer and the layer thickness
determined. The resistance of this known geometrical configuration
(right cylinder) is measured. The electrical resistivity is then
determined from the measured resistance of the dust layer.
GAS VELOCITY DISTRIBUTION
The gas velocity distribution at the face of the first field of the
precipitator was measured during a plant outage using a hot-wire
thermal anemometer. The precipitator was washed, prior to conducting
the measurement, to remove residual fly ash layers. Measurements
were made at 150 points using every third lane and 0.9 m (3 ft)
vertical increments with the fans operating at current settings
corresponding to full load.
-8-
-------
SECTION IV
RESULTS
MASS CONCENTRATION AND GAS ANALYSES
Table 2 presents results obtained from the mass train measurements at
the upper inlet test plane and at the outlet "pants leg" sampling
locations (see Figure 4). Table 3 gives the average mass collection
efficiency of the precipitator calculated from the mass train data.
Specific collection areas* for the individual tests were calculated
from the volumetric flow measurements at the precipitator inlet.
Table 4 gives a comparison of the mass loadings obtained with the mass
trains with those obtained from impactor measurements. The inlet mass
train data exhibit considerable scatter, whereas the Brink data are
relatively consistent. However, the mass train data should be a better
approximation of the true inlet mass loading since they were obtained
by means of a 48-point traverse with isokinetic sampling. The inlet
Brink data are averages of several runs. Each individual Brink im-
pactor was operated in one port with a two-point traverse per port.
Since the velocity profile at the sampling locations did not rapidly
vary, near isokinetic sampling was attained in each run. Outlet
impactor data were taken with Andersen Model III cascade impactors.
Again, the mass train data should be a better approximation of the
outlet mass loadings because these data were obtained with 48-point
traverses and isokinetic sampling. Outlet impactor data were obtained
with 24-point traverses and flowrates isokinetic at the average duct
velocities. The coefficient of variation of the velocity distribution
at the outlet sampling locations was near 0.2. Thus most of the out-
let Andersen sampling was done under conditions which differed from
isokinetic by about 20%.
Table 2 also presents calculated inlet mass loadings obtained from the
coal ash content (Table 8), the recorded coal feed rate to the boiler
*Specific collection area = ft'2 of collecting area/103 ACFM
-9-
-------
during the test periods, the measured volume flows at the inlet test
plane, and the assumptions that (1) 20% of the ash entering the fur-
nace leaves as bottom ash, and (2) 5% of the ash leaving the furnace
in the flue gas is removed prior to the precipitator inlet. Significant
ash fallout reportedly occurs in hoppers which are upstream from the
precipitator. These hoppers were previously associated with a mech-
anical collector which is no longer present in the system. A com-
parison of the calculated and measured inlet mass loadings shows that
the relatively low measured values of inlet mass loadings obtained for
tests 9, 10, and 11 are not consistent with the coal analyses obtained
for the same sampling period. One possible explanation of this dis-
crepancy is that the variation in ash content of the coal was such that
the samples obtained for analysis were not representative of the fuel
burned over the testing periods.
The gas composition data are presented in Table 5. The higher SO3
concentrations on the afternoon of the 15th and 16th of January are
due to inclusions of the probe wash in the total sample. The SO3 con-
centrations obtained prior to the three o'clock sample of January 15th
are thought to be low as a result of an undetected failure in the heating
tape which is used to maintain the probe temperature above the acid
dewpoint.
VOLTAGE-CURRENT MEASUREMENTS
The average daily operating voltages and currents during the sampling
periods are given in Table 6. Figure 5 shows the secondary voltage and
current relationships obtained on the number 3A transformer rectifier
with the voltage divider resistor attached. Figures 6 and 7 show the
corrected secondary voltage and current relationships for TR1s 1A and 2A.
All current meters were assumed to function properly since it was reported
that all meters had been zeroed and checked during a recent outage.
i
RESISTIVITY MEASUREMENTS
The resistivity measurements were conducted at the lower inlet sampling
location. The data obtained with the in situ point-to-plane probe are
given in Table 7. The temperatures included in the table are those
which were recorded at the sampling location.
-10-
-------
COAL AND ASH ANALYSES
A coal sample was obtained during each test from the "B" mill of Unit
#4. These samples were analyzed and Table 8 presents the "as received"
analysis of the individual samples. The ash content of the samples of
the first week were relatively constant but those of the 19th and 20th
were somewhat higher than the other data. As was discussed previously,
no correlation with the inlet grain loadings to the precipitator can
be made with respect to the differences in ash content. Chemical
. -*"
analyses were obtained on two fly ash samples: a proportionate blend
of hopper samples and an isokinetic sample collected with a high volume
sampler. These data are also reported in Table 8.
OPACITY MEASUREMENTS
No opacity data were obtained during the first week of testing due to
instrument failure of the transmissometer. Data obtained on January
19 and 20 were obtained with a portable RM41p transmissometer which was
on loan from the EPA. The opacities recorded at the outlet on the 19th
and 20th were 26% and 25.5%, respectively. These values are not useful,
however, because of the high probability that the retroflecter may be
contaminated with dust particles when the instrument is used in ducts
with high negative pressure.
PARTICLE SIZE MEASUREMENTS
Table 9 gives stage weights from Andersen blank and real runs using
preconditioned glass fiber substrates. A blank impactor was run each
test day and is designated with the letter B in Table 9. The runs des-
ignated RA are averages of two real impactor runs which were obtained
during each test (one impactor traversed each half of the outlet duct).
The corrected real average, which is designated as CRA, was obtained
by taking the average weight gain per stage of the blank run (less the
initial and final filters) and subtracting that average gain from each
of the stage weights of the RA runs. The weight gain of the final
filter on the CRA runs was obtained by subtracting the weight gain of
the blank final filter from the average of the two real runs per test.
-11-
-------
Figure 8 presents the average cumulative inlet size distribution ob-
tained with the Brink impactors at the inlet sampling location from
January 13, 1976 to January 20, 1976. Outlet cumulative distributions
from the Andersen data are given in Figures 9 and 10. Figure 9 pre-
sents the average outlet cumulative distribution for normal operation
of the precipitator while Figure 10 presents the average outlet
cumulative distribution with the precipitator operating at one-half
the normal current density. These cumulative data are also presented
on log-probability coordinates in Figures 11, 12, and 13. The inlet
size distribution data show that about 4% of the particulate mass
entering the precipitator consists of particles smaller than 2.0 ym
diameter, whereas between 25 and 35% of the particulate mass exiting
the collector is smaller than 2.0 ym diameter.
Quality of Measurements
Differential size distributions were computed on a mass basis from the
size data obtained with the cascade impactors. These differential dis-
tributions have been plotted in Figures 14, 15, and 16. Figures 17
and 18 present the differential size distributions which were computed
on a number basis from the concentration data obtained with the cascade
impactors and the electrical aerosol analyzer. Ninety percent con-
fidence intervals are also shown for these differential distributions.
A comparison of the differential size distributions obtained with the
two measurement techniques (inertial and electrical mobility) indicates
whether agreement was obtained in the regions of overlap. This method
of presenting the data also indicates the size regions containing the
greatest quantities of mass or number concentration. The impactor data
presented in Figure 14 show that, at the inlet location, the greatest
quantity of mass is contained in the 10 to 100 ym diameter region.
Figures 15 and 16 show that the greatest quantity of mass at the out-
let occurs at about the 4 ym diameter region for both the normal and
one half current density test. Figures 17 and 18 indicate fair agree-
ment between the impactor distribution and those obtained with the
electrical aerosol analyzer in the overlap regions. Figures 17 and
18 also show the manner in which the number distributions are skewed
toward the smallest particle sizes.
-12-
-------
The large error bars on data obtained from the ultrafine particle
system are due more to the small number of data points averaged than
to the scatter in the data. A relatively small fluctuation in the
source concentration can cause the electrical aerosol analyzer to in-
dicate a negative concentration or a concentration not commensurate
with other data. In addition, condensation of sulfuric acid in the
dilution system for the electrical aerosol analyzer created an inter-
fering aerosol in the ultrafine size range. This led to some erroneous
readings in the 0.01 ym to 0.05 ym size range. The data were screened
and those results which were felt to be unrealistic or non-representa-
tive were discarded. For these reasons there were often few con-
centrations in any one size band to average.
Figures 19 and 20 present fractional efficiency results obtained during
normal and one-half current density operation of the precipitator with
the electrical aerosol analyzer and the inertial impactors. The large
confidence intervals in the 0.01 ym to 0.03 ym diameter particle size
range are due to the lack of a number of valid experimental measurements
for these small diameters. Average values are shown for the data which
were obtained. These results are compared with theoretical predictions
in a subsequent section.
GAS VELOCITY DISTRIBUTION
Figure 21 shows the gas velocity distribution obtained under air load
conditions using the procedure described in Section III. The average
velocity and the square of the average velocity for all the passages
on which measurements were obtained are plotted as a function of
vertical position. The average velocity and the average of the velocity
squared were obtained by planimetry. The average velocity obtained was
1.74 m/sec, and the standard deviation was 0.955 m/sec, or 55% of the
average velocity. This distribution is undesirable because of the
large standard deviation and the location of the highest velocities
in the region near the bottom of the precipitator. However, at the
outlet sampling plane, the flow distribution was changed such that the
highest velocities occurred in the upper portion of the duct. The flow
distribution plates at the precipitator outlet offer more flow re-
sistance at the bottom than at the top and thus are probably responsible
for the change in relative flow pattern.
-13-
-------
COMPARISON OF THEORETICAL AND MEASURED RESULTS
A mathematical model of electrostatic precipitation has been develop6
by Southern Research Institute under another contract for the Envi^"
onmental Protection Agencylf. This model has been used to simulate
the operating conditions and geometry of the precipitator on which
this test series was conducted. Average operating conditions for
test numbers 2, 3, 10, and 11 were used in the model to simulate the
operating current density allowed by the precipitator power supplies,
and the fractional efficiencies predicted by the model are shown in
Figure 19. Similarly, the reduced current density conditions for
test numbers 6, 7, and 9 were used to produce the theoretical frac-
tional efficiency curve shown in Figure 20. Comparison between
measured and theoretically predicted values of overall mass collection
efficiency are shown in Table 10.
Figures 19 and 20 indicate that the model underpredicts particle col-
lection efficiencies over the particle diameter range from about 0.05
ym to 5.0 ym. Possible causes for the underprediction are (1) approxi-
mations necessary in modelling the electric field produced by the
electrode geometry, (2) approximations used in the current version
of the model for estimating the effect of particulate space charge,
and (3) unmodelled effects such as particle concentration gradients.
The probable cause of the lower-than-theoretical efficiencies indicated
for the larger particles is the reentrainment of particle agglomerates
from the collecting electrodes. Research is currently in progress
under EPA and EPRI support which is expected to improve the model's
capabilities for predicting fractional efficiencies under field con-
ditions.
Although Table 10 indicates that the theoretically obtained overall
mass efficiencies are lower than the measured values, the ratio of
the measured to theoretical efficiencies for the two current den-
sities at which the tests were conducted shows that the model pre-
dicts the relative effects of the changes in electrical operating
conditions with reasonable accuracy.
-14-
-------
The voltage-current relationships shown in Figures 5, 6, and 7,
and the resistivity measurements reported in Table 7 indicate that
the electrical operating conditions at this installation are not
limited by dust resistivity. Therefore, the relatively low current
densities apparently result from sparking due to the geometry of
the electrode system. The nature of the voltage current curve for
the inlet set (Figure 6) suggests that a combination of space
charge effects and dust accumulation on the electrodes cause the
sparking at the relatively low values of current density at which
the inlet set operates.
ENERGY COSTS
A typical power consumption of the precipitator TR sets during the
normal current density tests was 74 kW, or 0.47 kW/(m3/sec). If
power costs are $0-01/kWh, the energy costs for the TR sets would
be about $18.00/day. Since the test program was conducted on one
half of the total plate area installed on the Unit 4 boiler, a
representative total energy requirement for the total precipitator
installation would be 148 kw, or 0.092% of the 160 MW output.
-15-
-------
REFERENCES
Lisle, E. S. and J. D. Sensenbaugh, "The Determination of Sulfur
Trioxide and Acid Dew Point in Flue Gases," Combustion, pp. 12-15,
January, 1965.
Fritz, J. S. and S. S. Yamamura, "Rapid Microtitration of Sulfate,"
Analytical Chemistry, Vol. 27, No. 9, pp. 1461-64, September, 1955.
Nichols, G. B., "Techniques for Measuring Fly Ash Resistivity,"
EPA Report No. EPA-650/2-74-079, prepared under Contract No.
68-02-1303 by Southern Research Institute, Birmingham, Alabama,
August, 1974.
Gooch, J. P., Jack R. McDonald and Sabert Oglesby, Jr., "A Mathe-
matical Model of Electrostatic Precipitation," EPA Report No.
EPA-650/2-75-037, prepared under Contract No. 68-02-0265 by
Southern Research Institute, Birmingham, Alabama, April, 1975.
-16-
-------
TABLE 1
DAILY TEST CONDITIONS
Date
Test No,
Operation Of Precipitator
1/12/76
1/13/76
1/14/76
1/15/76
1/16/76
1/19/76
1/20/76
i
1
2
3
4
5
6
7
8
9
10
11
Normal
Normal
Normal
Rappers on for 30 minutes,
for 40 minutes
Rappers on for 30 minutes,
for 40 minutes
{Rappers operating normally
Reduced current density
off
off
Rappers on/off, reduced current
density
Rappers normal, reduced current
density
Normal
Normal
1 All tests run with boiler operating at 160 MW except Test
No. 1, during which boiler was operating at 112 MW.
-17-
-------
TABLE 2
oo
I
MASS TRAIN DATA
FROM COLBERT STEAM PLANT
Run Number
Date
Avg . Temp . ° C
Avg. Moisture3, %
Volumetric Flow1
Am3/sec
ACFM
SDm3/sec
Concentrations
Inlet:
gm/SDm3
gm/Am 3
gr/ACF
Outlet:
gm/SDm3
gm/Am3
gr/ACF
% Isokinetic"1
Variation :
Inlet
Outlet
2
1/13/76
152
7.3
159.84
338,637
97.32
7.387
4.499
1.966
.0238
.0149
.0065
103
96
3
1/13/76
156
6.9
149.94
317,671
91.90
7.648
4.689
2.049
.0151
.0094
.0041
106
96
6
1/16/76
155
7.4
159.14
337,157
99.59
9.275
5.806
2.537
.0929
.0556
.0243
106
108
7
1/16/76
155
7.1
158.35
335,489
97.97
8.385
5.188
2.267
.0654
.0400
.0175
107
100
9
1/19/76
158
6.4
153.85
325,950
97.09
6.545
4.131
1.805
.0739
.0458
.0200
104
101
10
1/20/76
159
5.6
157.71
334,129
100.41
5.792
3.689
1.612
.0336
.0208
.0091
104
107
11
1/20/76
160
5.2
153.22
324,610
97.98
3.435
2.197
.960
.0238
.0149
.0065
103
107
Calculated inlet
mass loadings2
gr/ACF
1.81
2.17
1.90
2.41
3.32
3.09
3.32
'Flows calculated from inlet data.
Calculated from coal analyses in Table 8 and assumptions described in text.
30btained from mass train.
''48-point traverse for all runs except run 7 (outlet) and run 9 (inlet
and outlet) which consisted of 24 points.
-------
TABLE 3
Test Number
Date
PRECIPITATOR PERFORMANCE
(MASS TRAIN DATA)
2 3 6 7 9 10 11
1/13/76 1/13/76 1/16/76 1/16/76 1/19/76 1/20/76 1/20/76
Efficiency % 99.68 99.80 99.00 99.22 98.87 99.42 99.31
SCA m2/(mVsec) 46.10 49.25 46.30 46.69 48.07 46.89 48.27
FtVlOOO CFM 234 250 235 237 244 238 245
Average Current
Density nA/cm2
17.1
17.1
8.2
8.2
7.9
17.
17,
TABLE 4
COMPARISON OF PARTICULATE CONCENTRATIONS
FROM IMPACTORS AND MASS TRAINS
Particulate Concentration, mg/SDm3
INLET
OUTLET
Test No.
2 7,387
3 7,648
6 9,275
7 8,385
9 6,545
10 5,792
11 l 3,435
Average for 2, 3, 10, and 11
Average for 6, 7, and 9
Impactor L
5,747
5,747
5,360
5,360
5,327
5,928
5,928
Mass Train Andersen Impactor
23.8
15.1
92.9
65.4
73.9
33.6
23.8
24.1
77.4
12.9
19.0
36.7
41.6
51.6
17.8
10.9
15.2
43.3
1Impactor Data Obtained From Daily Averages
-19-
-------
TABLE 5
DAILY GAS ANALYSIS FOR COLBERT
Date
1/13
1/14
1/15
1/16
Time Temp.°C
10:00
4:00
10:00
3:00
11:00
3:00
11:00
2:00
154
157
150
154
146
152
154
155
%C02 %02 %H2O S02ppm
12. O2 7.03 8.1 2962
3078
12. 52 7.0 3436
3540
11. O2 7.0 6.8 3346
3168
11. 52 6.5 3335
15. O2 6.5 8.3 2973
15.0 4.0 3081
15.0 4.0 7.2 3204
3198
S03ppm
4.6
4.2
4.3
6.4
5.4
7.2
8.3
6.1
11. 91
12. 11
16. 7 l
Dewpoint1*
°C
127
126
129
133
1 Probe washed, wash added to condenser wash.
2High negative pressure may have caused leak in sampling probe.
3Sanples for 002 and 02 analyzed sequentially.
^Obtained from Figure 6.3 of "An Electrostatic Precipitator Performance
Model", by G. B. Nichols and J. P. Gooch. Final report to the Environ-
mental Protection Agency, Contract No. CPA 70-166. (Southern Research
Institute, July, 1972).
-20-
-------
TABLE 6
AVERAGE ELECTRICAL OPERATING
CONDITIONS DURING SAMPLING PERIODS
I
to
Date
1/12/76
1/13/76
1/14/76
1/15/76
1/16/76
1/19/76
1/20/76
TR
Primary
Amps Volts
Secondary
1A
2A
3A
1A
2A
3A
1A
2A
3A
1A
2A
3A
1A
2A
3A
1A
2A
3A
1A
2A
3A
37.5
82.5
97
29.7
78.2
92.5
32.8
82
94
32.8
80
93.8
_— —
37.4
42.6
_w_
35.4
41.2
31.5
76.5
88.8
360
377.5
390
312.5
370.8
385.8
326
401
401
331.3
389.2
400.1
238
338
350
243
344
350
331. 3
383.3
398.3
Bushing
Amps
.155
.23
.30
.133
.223
.283
.116
.23
.30
.14
.222
.297
.05
.10
.14
.05
.10
.14
.14
.21
.283
#A
KV
44.8
42.5
42.2
41.1
42.4
42.3
41.9
47.0
44.3
41.8
45.2
44.2
31.7
42.9
41.1
32.9
43.5
42
42.5
44.5
44.6
Bushing
Amps
.145
.21
.295
.14
.2
.275
.138
.218
.3
.148
.204
.294
.08
.094
.137
.064
.092
.136
.15
.198
.268
#B
KV
41.5
42.6
42.4
40.1
41.8
42.6
43
45.8
44.7
42.4
44.2
45.8
31.1
41.2
41.7
32.3
44.3
41.5
42
43.7
44.6
Current
Density
nA/cm2
12.2
18
24.3
11.1
17.3
22.8
10.4
18.3
24.5
11.8
17.4
24.1
5.3
7.9
11.3
4.7
7.8
11.3
11.8
16.7
22.5
-------
TABLE 7
COLBERT RESISTIVITY DATA
Test No.
2A
2B
3
4A
4B
4C
5A
5B
5C
6A
6B
7
8A
8B
9
10A
10B
11
Temperature °
152.7
153.3
153.8
147.7
147.7
151.6
152.2
153.3
158.3
158.3
158.3
157.2
151.6
152.2
151.1
157.7
157.2
154.4
C Date
1/13/76
1/13/76
1/13/76
1/14/76
1/14/76
1/14/76
1/15/76
1/15/76
1/15/76
1/16/76
1/16/76
1/16/76
1/19/76
1/19/76
1/19/76
1/20/76
1/20/76
1/20/76
Time
0900
1115
1530
0800
1200
1430
0845
1045
1300
0835
1045
1300
0845
1100
1345
0845
1030
1300
Resistivity, fi-cm
2.4 x 101 °
1.9 x 1010
2.1 x 1010
1.7 x 1010
1.4 x 1010
1.6 x 1010
1.5 x 1010
1.5 x 1010
9.6 x 109
9.8 x 109
1.1 x 1010
1.2 x 1010
1.3 x 1010
1.1 x 1010
1.1 x 1010
1.2 x 1010
1.1 x 1010
1.3 x 1010
-22-
-------
TABLE 8
COLBERT COAL ANALYSES
(AS RECEIVED)
Date
Time
Moisture
Volatile
Matter
Fixed
Carbon
Ash
Sulfur
BTU
1/12/76
16:30
2.09
34.91
42.41
20.59
3.12
10,836
1/13/76
12:10
2.02
39.41
48.11
10.46
3.09
12,260
1/13/76
17:15
2.07
38.25
46.99
12.69
3.90
12,098
1/14/76
12:50
1.96
38.64
47.91
11.49
3.75
12,254
1/15/76
2.04
39.05
47.91
11.00
3.28
12,421
1/16/76
11:30
1.50
38.94
48.42
11.14
3.28
12,861
1/16/76
15:00
1.49
36.72
47.49
14.30
3.76
12,327
1/19/76
10:00
8.72
33.50
40.85
16.93
3.01
10,603
1/19/76
16:30
8.22
33.67
41.34
16.77
5.59
10,687
1/20/76
11:30
1.76
38.27
45.02
14.95
4.01
12,152
1/20/76
15:00
1.74
36.22
44.42
17.62
4.14
11,693
Proportionate
Hopper Sample
High Volume
Sample
FLY ASH CHEMICAL ANALYSES
Li20 Na20 K2O MgO CaO Fe203 A1203 SiQ2 TiQ2 P205 SO 3 LOI Total1
0.02 0.55 2.49 0.95 5.64 24.38 18.30 45.08 1.31 0.30 1-86 3.97 100.88
0.02 0.54 2.49 0.95 4.73 22.72 18.52 45.69 1.45 0.30 2.77 5.72 100.18
'Total based on ignited sample (750°C ignition temperature)
-23-
-------
TABLE 9
OUTLET ANDERSEN IMPACTOR RUNS
BLANK (B), REAL AVERAGED (RA), CORRECTED REAL AVERAGED (CRA)
Test *
Date
10
1/13/76 1/13/76 1/13/76 1/16/76 1/16/76 1/16/76 1/19/76 1/19/76 1/20/76 1/20/76
11
1/20/76
Type of
Run
Run Time
Minutes
Weight
Gains
(nig)
SO
SI
S2
S3
S4
S5
S6
S7
S8
SF
X
a
B
120
1.21
0.54
0.46
0.52
0.37
0.46
0.37
0.47
0.45
1.03
0.46
0.06
RA CRA
120
1.86 1.40
1.32 0.86
2.59 2.13
1.78 1.32
1.85 1.39
1.83 1.37
1.90 1.44
1.02 0.56
1.31 0.28
(No SO and SF)
(No SO and SF)
RA
120
4.44
2.92
2.85
2.18
1.96
2.82
1.95
0.93
1.31
CRA
3.98
2.46
2.39
1.72
1.50
2.36
1.49
0.47
0.28
B
120
0.50
0.45
0.61
0.44
0.45
0.69
0.92
0.62
0.44
0.59
0.16
RA
80
4.51
2.51
3.18
3.03
3.61
5.43
2.99
1.39
1.40
(No SF)
(No SF)
CRA
3.92
1.92
2.59
2.44
3.02
4.84
2.40
0.80
0.96
RA
90
4.30
3.31
4.70
4.10
4.50
5.69
3.15
1.34
2.00
CRA
3.71
2.72
4.11
3.51
3.91
5.10
2.56
0.75
1.56
B
84
0.29
0.16
0.37
0.31
0.38
0.25
0.24
0.21
0.19
0.28
0.08
RA
84
4.75
2.83
4.19
3.91
4.32
6.14
4.16
1.88
1.31
(No SF)
(No SF)
CRA
4.47
2.55
3.91
3.63
4.04
5.86
3.88
1.60
1.12
B
120
0.57
0.14
0.76
0.55
0.68
0.34
0.72
0.55
0.82
0.54
0.21
RA
120
3.32
2.24
2.47
2.74
2.66
3.31
2.25
0.94
0.87
(No SF)
(No SF)
CRA
2.78
1.70
1.93
2.20
2.12
2.77
1.71
0.40
0.05
RA CRA
120
2.37 1.83
1.49 0.95
2.32 1.78
1.65 1.11
1.74 1.20
2.13 1.59
1.31 0.77
0.99 0.45
1.09 0.27
-24-
-------
Table 10
Comparison of Computed and Measured
Mass Collection Efficiency
Average
Specific
Collecting
Ar.ea
m /(m /sec)
Test
Numbers
Collection Efficiency
Theoretical
From
Model
Measured
From Mass
Train
Ratio of
Measured to
Theoretical
Efficiency
47.6 2,3,10,& 11
47.0 6, 7,& 9
99.32
98.66
99.55
99.03
1.0023
1.0034
-25-
-------
t
I
CO
LEARSIEGLER
-------
0.038m DIA
1
1.5
1
2m
JT
„ n on_
01 OA m
«— 0.0042m DIA
i
Figure 2. Discharge Electrode and Frame Geometry
-27-
-------
I
to
CO
I
PROCESS EXHAUST LINE
CYCLONE
ORIFICE WITH BALL AND SOCKET
JOINTS FOR QUICK RELEASE
SOX ABSORBERS (OPTIONAL)
HEATED INSULATED BOX
REC'IRCULATED CLEAN. DRY, DILUTION AIR
£••• /^/%^%l IV
FILTER BLEED NO. 2
COOLING COIL
PRESSURE
BALANCING
LINE
BLEED NO. 1
M) MANOMETER
Figure 3. Sample Extraction-Dilution System
-------
ELECTROSTATIC FLY-ASH
COLLECTOR
LARGE PARTICLE
PORT
LEARSIEGLER
LOCATION
PANTS LEG
TEST PLANE
TOP-INLET
TEST PLANE
I.D. FAN
BOTTOM C
INLET
TEST PLANE
Figure 4. Sampling Locations
-29-
-------
0.3 —
0.2
<
0.1
TR
#3A
20
A Bushing
B Bushing
30
40
kV
4.5
6.3
CM
i.16
50
Figure 5. Voltage vs. Current for Transformer Rectifier
#3A, January 21, 1976
-30-
-------
0.2,
i r
TR *1A
0.151
IA Bushing
1 B Bushing
oo
0.051
II II
16.3
8.16
CM
O
25 30 35
40
kV
45 50
Figure 6
Voltage vs. Current for Transformer Rectifier
#1A/ January 21, 1976
-31-
-------
0.2
0.15
0.05
i r
16.3
A
TR 2A
• A Bushing
• B Bushing
CM
8.16
25 30 35 40 45 50
kV
Figure 7. Voltage vs. Current for Transformer Rectifier
#2A, January 21, 1976
-32-
-------
COLBERT STEAM PLANT
INLET IMPACTOR DATA
ASSUMED PARTICLE DENSITY =2.40 gin/cm3
Figure 8.
PARTICLE DIAMETER
(micrometers)
Inlet Particle Size vs. Cumulative Mass Loading
for January 13, 1976 to January 20, 1976
-33-
-------
COLBERT STEAM PLANT
OUTLET IMPACTOR DATA
ASSUMED PARTICLE DENSITY =2.40 gm/cm3
Test 2, 3. 10, 11
10
10
PARTICLE DIAMETER
(micrometers)
Figure 9. Outlet Particle Size vs. Cumulative Mass Loading
for Tests 2, 3, 10, and 11
-34-
-------
COLBERT STEAM PLANT
OUTLET IMPACTOR DATA
ASSUMED PARTICLE DENSITY =2.40 gm/cm3
TEST 6, 7, 9
10'1 •
10"1
10
PARTICLE DIAMETER
(micrometers)
Figure 10. Outlet Particle Size vs. Cumulative Mass Loading
for Test 6, 7, and 9
-35-
-------
Colbert Steam Plant, January 13-20, 1976
Inlet Impactor Data
Assumed Particle Density =2.40 gm/cm3
Cumulative Percent Distribution
Grand Average
10
0.01 0.05 0.1 0.2 0,6 I 2 5 ID ID 30 40 SO tO JO 10
95 9B 99 ».( 99.9 99.W
Percent Less Than Indicated Size
Figure 11.
Inlet Size Distributions on Log-probability
Coordinates, January 13, 1976 - January 20, 1976
-36-
-------
Colbert Steam Plant, January 1976
Outlet Impactor Data
Assumed Particle Density =2.40 gm/cm3
Cumulative Percent Distribution
Tests #2, 3, 10, 11
i 0-5 ts o.l o.re o.»i.
10 20 30 40 50 60 70 «0 90 95 98 99
10
-1
Percent Less Than Indicated Size
Figure 12.
Outlet Size Distributions on Log-probability
Coordinates, Test 2, 3, 10, and 11
-37-
-------
Colbert Steam Plant, January 1976
Outlet Impactor Data
Assumed Particle Density = 2.40 gm/cm3
Cumulative Percent Distribution
Tests 16, 7, 9
2 1 0.8 0.2 0.1 0.05 0.01
to
S-l
0)
4-1
o
•H
s
4J
1
•H
Q
OJ
H
O
•H
-P
10J
10
10
-1
Dill 0.05 0.1 0.2 O.S 1 2 5 u 20 30 U 51 iO 70 U 90 » t »
o
M.8 99.V S9.99
Percent Less Than Indicated Size
Figure 13. Outlet Size Distributions on Log-probability
Coordinates, Test 6, 7, and 9
-38-
-------
10*
a
Colbert Steam Plant
Inlet Impactor Data
Assumed Particle Density =2.40 gm/cm3
Bars Indicate 90% Confidence Interval
Average of Tests on days January 13-20, 1976
Geometric Mean Diameter
(micrometers)
Fiqure 14. Inlet Differential Mass Distributions
January 13, 1976 - January 20, 1976
-39-
-------
Colbert Steam Plant
Outlet Impactor Data
Assumed Particle Density =2.40 gm/cm3
Bars Indicate 90% Confidence Interval
Test (2, 3, 10, ID
Geometric Mean Diameter
(mic r ome ter s)
Figure 15. Outlet Differential Mass Distributions,
Test 2, 3, 10, and 11
-40-
-------
Colbert Steam Plant
Outlet Impactor Data
Assumed Particle Density = 2
Bars indicate 90% confidence
Test (6, 7, 9)
.40 gm/cm3
interval
10-1
Geometric Mean Diameter
(micrometers)
Figure 16.
Outlet Differential Mass Distributions,
Test 6, 7, and 9
-41-
-------
o
01
•p
n
8
Cu
,15
COLBERT STEAM PLANT, January, 1976
ASSUMED PARTICLE DENSITY =2.40 am/cm
BARS INDICATE 90% CONFIDENCE INTERVAL
NORMAL CURRENT DENSITY
NORMAL RAP INTERVAL
O INLET, ULTRAFINE
• INLET, IMPACTORS
D OUTLET, ULTRAFINE
• OUTLET, IMPACTORS
Figure 17. Inlet and Outlet Differential Number Distributions
for Normal Current Density Test
GEOMETRIC MEAN DIAMETER (micrometers)
.01
-------
COLBERT STEAM PLANT, January, 1976
ASSUMED PARTICLE DENSITY =2.40 gm/cm3
BARS INDICATE 90% CONFIDENCE INTERVAL
REDUCED CURRENT DENSITY
NORMAL RAP INTERVAL
10
15
O INLET, ULTRAFINE
* INLET, IMPACTORS
O OUTLET, ULTRAFINE
• OUTLET, IMPACTORS =
Figure 18. Inlet and Outlet Differential Number Distributions
for One Half Current Density Test . .-,^.^-^.1 -j i ..•
GEOMETRIC MEAN DIAMETER (micrometers) ^L__ ^ -JJ V^tt jr^-j I i'Jj
10
10
8 ^
.01
.1
1.0
-43-
-------
Colbert Steam Plant, January 1976
Tests (2, 3, 10, 11)
Assume Particle Density =2.40 gm/cm3
Bars Indicate 90% Confidence Interval
Figure 19.
10J
Geometric Mean Diameter
(micrometers)
Measured and Theoretically Calculated Fractional
Efficiency for Normal Current Density Test
-------
Colbert Steam Plant, January 1976
Tests (6, 7, 9)
Assume Particle Density = 2.40 gm/cm3
Bars Indiate 90% Confidence Interval
Ul
i
10
mm 2.
-1
Figure 20,
10
Geometric Mean Diameter
(micrometers)
Measured and Theoretically Calculated Fractional
Efficiency for One Half Current Density Test
-------
u
0)
w
•H
O
O
t-H
3.556
3.048 —
2.540 —
2.032 —
1.524 —
1.016
,508 —
<
(D
— 12.90 P
O
0
H-
(1-
10.32 $
o>
— 7.74
a
<
01
34567
Sample Point Location
— 5.16
CO
o
M
2.58
From Bottom
0
From Top
Figure 21. Gas Velocity Distribution
-46-
-------
APPENDIX A
SAMPLE DATA REDUCTION CALCULATIONS FOR IMPACTOR AND ELECTRICAL
MOBILITY (ULTRAFINE) SIZING DATA
In this appendix we include information on how individual impactor
stage weights and run data are used to obtain the cumulative mass
distribution, AN/ALogD, AN/ALogD, and fractional efficiency in-
formation cited in this report. Next the data reduction scheme
used for obtaining ultrafine particle size distribution data is
explained. In a third section the ultrafine particle size dis-
tribution data recorded for this test are included. Finally, the
computer printouts for each impactor run are given. In this test
ultrafine particle sizing data were obtained by electrical mobility
analysis.
The organization of the section describing the ultrafine data re-
duction has been revised since the last report under this contract
(EPA-600/2-76-141). Although the basic data reduction scheme has
not been changed, data are now taken with a strip chart recorder
and not recorded by hand. In addition, a specially designed heated
box which contains the sample dilution system was first used on
this field test.
At the end of the section explaining how the impactor data reduction
is accomplished, we show the relationship between the Stokes1 or
Physical particle diameter (density = 2.40 gm/cm3) and aerodynamic
diameter (density = 1.00 gm/cm3). In order to compare measurements
made on other control devices it is useful to normalize the particle
density to unity and use the aerodynamic particle diameter. The
graph on page 70 facilitates this comparison. We recognize that
some of the data reduction procedures are not statistically rigorous,
Work is currently underway to improve data reduction techniques.
These improved techniques will be used in future work.
-47-
-------
SAMPLE CALCULATION FOR DATA REDUCTION OF IMPACTOR SIZE MEASUREMENTS
After an impactor run, it is necessary to obtain a particle size
distribution from the mass loading on each stage. The conditions
at which the impactor was run determine stage D5o cut points. These
are calculated by an iterative solution of the following two equations:
(El) Dso = 1-43 x 10'
yDc 3PS
pQlPoC472.0
•1]
(E2) C = 1 + 0 2L .,-•» 1.23 + 0-41 Exp (-0.44DSO/L) x 10"
DSO X 1U I |_
where Dso = the stage cut point (ym),
y = gas viscosity (poise),
D = stage jet diameter (cm),
C
p = local pressure at stage jet (atm),
s
p = particle density (gm/cm3),
Q = impactor flow rate (cfm) ,
P = ambient pressure at impactor inlet (atm) ,
C = Cunningham Correction factor,
L = gas mean free path (cm), and
X(I) = number of holes per stage.
The easiest way to calculate these cut points is to write a computer
program. Otherwise, it is a tedious process. The size parameter
reported is either aerodynamic equivalent diameter, that is,'diameter
based on the settling velocity of unit density particles, or approx-
imate physical diameter, based on a measurement of the true particle
density. In either case, the particles are assumed to be "spherical.
Certain of the values in equations El and E2 are calculated separately.
A brief discussion of each of these calculations follows.
To find the viscosity of the flue gas, y, the viscosity of the pure
gas components of the flue gas must first be found. Viscosity is a
-48-
-------
function of temperature, and the temperature difference in
different flue gases can be quite significant. The following
equations (derived from curves fitted to viscosity data from the
Handbook of Chemistry and Physics, Chemical Rubber Company Pub-
lisher, 54 Edition, 1973-1974, pp. F52-55), are used to find the
viscosities of C02(yj), C0(y2), N2(ys), 02(yi») and H20(y5).
(E3) Vi = 138.494 + 0.499T - 0.267 x 10~3T2 + 0.972 x 10~7T3
(E4) y2 = 165.763 + 0.442T - 0.213 x 10~3T2
(E5) y3 = 167.086 + 0.417T - 0.139 x 10~3T2
(E6) y., = 190.187 + 0.558T - 0.336 x 10~3T2 + 0.139 x 10~6T3
(E7) y5 = 87.800 + 0.374T + 0.238 x 10~"T2
where T is the temperature of the flue gas in degrees Celsius. The
units of y are 10 6 g/cm-sec. Next, these values of yi through ys
are used in a general viscosity equation for a mixture of any number
of components (See "A Viscosity Equation for Gas Mixtures" by C. R.
Wilke, Journal of Chemical Physics, Volume 8, Number 4, April 1950,
page 517) used to find the viscosity of the flue gas:
(E8) ^^ , 1=n
L, x-jOij
where (j>. . is given by the equation:
, _ II +
(E9)
(4//2) [
l +
-49-
-------
and
M = molecular weight of a component in the mixture,
X = mole fraction of a component in the mixture,
y = viscosity, g/cm-sec; yi, ya t etc. refer to the pure com-
ponents at the temperature and pressure of the mixture,
y is the viscosity of the mixture, and
= dimensionless constant defined above.
To find the pressure PS. (in atmospheres) at each impactor stage
i, the following equation is used:
(E10) PS = POA - (PI (DP)
where POA is the gas pressure at the impactor inlet in atmospheres,
PI . is the fraction of impactor pressure drop at each stage i , and
DP is the pressure drop across the impactor in atmospheres.
To find the gas mean free path L. (in centimeters) for each impactor
stage i, the following equation is used:
(Ell) Li = 2y x J873117 x 107 Tk
1.01325 x 106 PSi f 3 MM
where y is the gas viscosity,
PS^ is the pressure at each impactor stage i,
T^ is the gas temperature at the impactor stage in degrees
Kelvin, and
MM is the average molecular weight of the flue gas.
Procedures for presenting the particle size distribution in graphical
and tabular form are outlined below. A sample computer printout is
shown on page 65 which includes reduced data from a hypothetical test,
It is assumed for this sample calculation that an Andersen Stack
Sampler was used to collect the particulate.
-50-
-------
Information obtained from the data log sheets for each test is
printed at the top of the sheet. The maximum particle diameter
is measured by examining the particles collected on the first
stage (or first cyclone) through an optical microscope. Gas
analysis samples are taken at the same time the impactor is run.
The mass loading is calculated from the total mass of the partic-
culate collected by the impactor and listed in four different
units after the heading CALC. MASS LOADING. The units are de-
fined as:
GR/ACF - grains per actual cubic foot of gas at stack conditions
of temperature, pressure, and water content.
GR/DSCF - grains per dry standard cubic foot of gas at engineering
standard conditions of the gas. Engineering standard conditions are
defined as 0% water content, 70°F, and 29-92 inches of Hg.
MG/ACM - milligrams per actual cubic meter of gas at stack conditions
of temperature, pressure, and water content.
MG/DSCM - milligrams per dry standard cubic meter of gas at engineering
standard conditions of the gas. Engineering standard conditions are
defined as 0% water content, 21°C and 760 mm of Hg (Torr).
Below these data the information pertinent to each stage is summar-
ized in columnar form in order of decreasing particle size from
left to right. Thus SI is the first stage, S8 is the last stage,
and FILTER is the back-up filter. If a cyclone was used, then to
the left of SI a column labelled CYC will appear and information
relevant to the cyclone will be listed in this column. Beneath
each impactor stage number is listed the corresponding stage
index members, which also serve as identification for the stages.
Directly beneath these listings is the stage cut point calculated
from Equations El and E2 for the actual test conditions. It is
labelled D5o and is given in micrometer units. • The stage weights
are likewise listed for the respective stages, labelled MASS and
are in milligram units.
-51-
-------
The mass loadings per unit volume of gas sampled indicated by
the stage weights are labelled MG/DSCM/STAGE and are written in
milligrams per dry standard cubic meter. The /STAGE indicates
that it is not a cumulative. It is calculated for a particular
stage j by the formula
MASS .
MG/DSCM/STAGE .. = SAMPLING DURATION (minutes)
35.314667 cubic feet/cubic meter Absolute Stack Temperature
x FLOWRATE (ACFM) Absolute Standard Temperature
Absolute Standard Pressure .. 1
2C
Absolute Stack Pressure (1-Fraction of H20)
where absolute means the temperature and pressure are in absolute
units-degrees Rankin or degrees Kelvin for temperature, and atmos-
pheres, inches or millimeters of mercury for pressure.
For SI,
Mr/ncrM/crnar-p - •72 mg v 35.314667 cubic feet/cubic meter
MG/DSCM/STAGE j - 2Q mi^ X 0.500 ACFM -
x (400 + 460) °R 29.92 in. Eg 1 _ 4 71
X (70 + 460) "R X 26.50 in. Hg X (1.0 - 0.01) ~ 4>/X
The subscripts indicate stage index numbers.
The percent of the mass of particles with diameters smaller than
the corresponding D5 0 is called the CUMULATIVE PERCENT OF MASS
SMALLER THAN D50- It is the cumulative mass at stage j divided
by the toal mass collected on all the stages, and converted to a
percentage:
CUM % . =
100
Total Mass
For example, for S6, the cumulative percent is given by
COM S .
-52-
-------
For S8, the mass of the particulate collected on the filter
is used,
CUM %8 = Total Mass x 100
= c ' 0/) — X 100
5.24 mg
= 7.44%
Note that the apparent error in the least significant figures
of the calculated percentages is due to using masses from the
computer printout which have been rounded off to two decimal
places before printing.
The cumulative mass loading of particles smaller in diameter than
the corresponding D5 0 in milligrams per actual cubic meter (CUM.
(MG/ACM) SMALLER THAN D50) for a particular stage j is given by
the formula
9
CUM (MG/ACM) • - i=3+1 , x 35-314667 cubic feet/cubic meter
u x ;3 SAMPLING DURATION(min) FLOWRATE (ACFM)
From the information at the top of the computer print-out sheet,
the flowrate is 0.500 actual cubic feet per minute (ACFM) and the
sampling duration is 20.00 minutes. Therefore, for S4,
PHM /Mr/arMl - MASS5 + MASS6 + MASS7 + MASS8 + MASS9
CUM. (MG/ACM)„ 20 minutes
35.314667 cubic feet/cubic meter _ , 0 ., mri/Ar,M
x 0.500 ACFM 12'3 m9/ACM
For S8, the mass of the particulate collected on the filter is
again used,
PTTM ^MP/ZVPM^ - MASS9 v 35.314667 cubic feet/cubic meter
CUM.(MG/ACM)8 - 20 minutes X 0.500 ACFM
-53-
-------
0 39 mg 35.314667 cubic feet/cubic meter
= 20 'minutes X 0.500 ACFM "~
= 1.38 mg/ACM
The cumulative mass loading of particles smaller in diameter than
the corresponding D50 in grains per actual cubic foot (CUM. (GR/ACF)
SMALLER THAN D50) for a particular stage j is given by the formula
CUM. (MG/ACM) .
CUM. (GR/ACF) . -
. 2.2883519 grams/cubic meter ]nnn /
grains/cubic foot
For S7,
OTTM //- / x - 1.52 mg/ACM _ _____
CUM. (GR/ACF) 7 - 2.2883519 grams/cubic meter mg/g-.-n.
grains/cubic foot *' *
= 6.64 x 10" ** grains/ACF
The cumulative mass loading of particles smaller in diameter than
the corresponding Dso in grains per dry standard cubic foot (CUM.
(GR/DSCF) SMALLER THAN D50) is calculated to show what the above
cumulative would be for one cubic foot of dry gas at 70°F and at
a pressure of 29.92 inches of mercury. For a particular stage j,
CUM. (GR/DSCF) . = CUM. (GR/ACF) .
Absolute Stack Temperature Absolute Standard Pressure
Absolute Standard Temperature Absolute Stack Pressure
(1-Fraction of H20)
where absolute means the temperature and pressure are in absolute
units-degrees Rankin or degrees Kelvin for temperature, and atmos-
pheres, inches or millimeters of mercury for pressure.
For SI,
CUM.(GR/DSCF)i = 6.96 x 10~3 gr/ACF
v (400 + 460)°R v 29.92 in. Hg 1 , on ,. ,
X (70 + 460)UR X 26.50 in. Hg X (1.00-0.01) = 1'29 x 10 9*/DSC
The particle size distribution may be presented on a differential
basis which is the slope of the cumulative curve. If we define the
-54-
-------
terms:
AM. = MG/DSCM/STAGE. and
(AlogD). = logic(D50._1) - logi0(D50.) then
j -J _J
AM i MG/DSCM/STAGE.
logio(D50. x) - log10(D50.)
Because the computer printer does not contain Greek letters, the
computer print-out sheet reads DM/DLOG D instead of AM/ALOG D.
For S6,
(
AM _ _ 9.35 mg/DSCM ,Q _
e - Iog10(2.22-) - Iog10(1.29) = 39 • 7
Note that AM/ALOGD has the dimensions of the numerator since the
denominator is dimensionless. In the calculation for SI, a
maximum particle diameter is used. For this example, MAX. PARTICLE
DIAMETER = 100.0 microns.
AM_\ _ 4.71 mg/DSCM _ _ . R
~ logic (100) - Iog10(10.74) ~ 4'86
For the filter stage, the D50 is arbitrarily chosen to be one-half
of the Dso for stage eight (S8) . For this example, it is chosen
to be 0.33 micrometers/2 = 0.165 micrometers. Thus,
/_AM_\ =
lALOGDJg
2.55 mg/DSCM - a AI m^/ncr.M
•= T-Z—=-=-r—*£_ __— = 8.47 mg/DSCM
logio(0.33) - logio(0.165) ^'
The geometric mean diameter in micrometers (GEO. MEAN DIA.
(MICROMETERS) ) for a particular stage j is given by the -formula
GEO. MEAN DIA.. = /D50. X D50._1
J J J
For S8,
GEO. MEAN DIA.8 = /0.33 x 0.69 micrometers
= 0.477 micrometers
-55-
-------
As in the ALOGD calculation, we again use the maximum particle
diameter for the stage one calculation and one-half the D50 f°r
stage eight for the filter stage calculation.
For SI,
GEO. MEAN DIA.i = /10.74 x 100.0 micrometers
= 32.8 micrometers
For the filter,
GEO. MEAN DIA.9 = /0.165 x 0.33 micrometers
= 0.23 micrometers
A differential number distribution can also be derived. Since
AM. = MG/DSCM/STAGE. is the mass per unit volume for stage j
then we can define AN. as AN. = NUMBER OF PARTICLES/DSCM/STAGE..
or the number of particles per unit volume for stage j. Now
AM. and AN. are related by the equation AM. = AN. x m_, where m
is the average mass of the particles collected on one stage. Dividing
both sides of the equation by m x ALOGD yields
(AM/ALOGD).
1 = / AN \
IALOG D /
Now m = p V where p is the assumed particle density and V is
the average volume of one particle on one stage. To obtain m in
milligram units when p is in grams per cubic centimeter and V is
in cubic micrometers, certain conversion factors must be used. The
complete formula, using the correct conversion factors and the ex-
pression (4/3) (rr) (d/2) 3 for V where d is the geometric mean
diameter in micrometers, is:
= 5.23599 x 10-10 p d3.
Therefore,
(AM/ALOGD)
/ AN \ =
IALOGD/ . 5.2
3599 x lO-'O p d3
-56-
-------
where AM/ALOGD is in units of mg/DSCM, p is in gm/cc, d is in
microns, and AN/ALOGD is in number of particles/DSCM.
For S3,
(AN \ _ 17.9 mg/DSCM .
ALOGD J3 (5.23599 x l(r10) x (1.35 gm/cc) x (7.96 microns)3
= 5.02 x 107 particles/DSCM.
For the filter stage
(AN \ _ 8.47 mg/DSCM
ALOGD/g (5.23599 x lO"1") x (1.35 gm/cc) x (0.231 microns)3
= 9.72 x 10:1 particles/DSCM
The test data are usually classified according to sampling location
(outlet or inlet), sampling time (day, week, etc.) and combustion
chamber or pollution control device conditions (high or low sulfur
coal for coal plants, normal or below normal fuel consumption,
normal or below normal current density for electrostatic precipi-
tators, etc.). When classified, all of the data taken in a single
classification are usually averaged and plotted on appropriate
graph paper. For example, the AM/ALOGD at a given geometric mean
diameter or within a small range of geometric mean diameters might
be averaged over all the tests performed in a day and plotted as
ordinate and abscissa, respectively on log-log graph paper.
Error bars indicating standard deviation or confidence limits are
normally included on the graph. A Hewlett-Packard HP-25 calculator pro-
gram is included which will calculate the average (X), the standard
deviation (S), the relative standard deviation (S/X) , a 90% or 95%
confidence interval (CI), the lower confidence limit (X - CI or LCL),
and the upper confidence limit (X + CI or UCL). Also included is
some hypothetical data typical of Brink impactor samples giving the
AM/ALOGD and geometric mean diameter values for one day. The average
and other programmed calculations have been listed underneath the
data in this table and on page 66 a graph of the average AM/ALOGD
values with 90% confidence limits versus the average of the geometric
-57-
-------
mean diameters is plotted on log-log graph paper. A smooth line
was drawn through the AM/ALOGD data points and the upper and lower
standard deviations. These curves are used to calculate the
fractional efficiency.
On page 68 is a AM/ALOGD plot of hypothetical data from an Andersen
impactor, which is normally used by SRI at the outlets of emission
control devices while the Brink impactor is typically used at the
inlets of those devices. It was assumed that the Andersen AM/ALOGD
plot represented values obtained the same day as that of the Brink.
Thus it was valid to find the efficiency of the control device by
comparing the two plots. A set of particle sizes was chosen which
would be used in deriving an average cumulative mass loading and
the efficiency of the control device from the AM/ALOGD plots. The
maximum and minimum particle sizes are chosen for which AM/ALOGD
values are available in both the inlet and outlet AM/ALOGD distri-
butions. These particle sizes are listed under the heading
Geometric Mean Diameter on page 64.
Notice that by beginning the set with the particle size 0.500 micro-
meters, the data from the filter stages is not utilized. The reason
the filter stage data is not included is that during the operation
of a cascade impactor there is frequently a certain amount of particle
bounce and reentrainment into the gas stream, and subsequent de-
position on a lower stage. These particles are larger than most of
the particles collected on the stage and thus in the lower stages,
their mass can be a significant percentage of the total mass for that
stage. The errors tend to be more significant for the fine particle
end of the distribution and most significant of all for the filter.
In addition, many filter media contain components which react chem-
ically with constituents of flue gases (S02, for example). This
gaseous reaction with the filter substrate can result in a change
-58-
-------
in the weight of the substrate even though the subst-rate was pre-
conditioned. Again, substrate weight changes would usually be much
more serious for the lower stages and back-up filter, whose par-
ticulate mass loadings are generally small. Also, the filter has a
larger surface area than the substrates and is more thoroughly
permeated by the gas going through it.
The filter stage weight, then, is likely to contain a larger error
and may not be an accurate record of the concentration of small
particles in the gas stream sampled. For this reason, the derived
AM/ALOGD value for the filter stage weights is often ignored
especially if it exhibits any unusual characteristics. For more
information on particle bounce and reentrainment see Particulate
Sizing Techniques for Control Device Evaluation by Gushing, Lacey,
McCain, and Smith, Final Report of EPA Contract No. 68-02-0273, to
be published. For more information on substrate weight changes due
to reactions with the components in a gas stream see Particulate
Sizing Techniques for Control Device Evaluation by Gushing, Lacey,
McCain, and Smith, August, 1975, Publication Number EPA-650/2-74-102a.
The percent penetration for a particular size particle is found by
dividing the AM/ALOGD for the outlet at that size by the AM/ALOGD
for the inlet at that same size, and multiplying the quotient by
100. The same is done using the upper curve (in which the 90% con-
fidence interval is added) for the outlet and the lower curve (in
which the 90% confidence interval is subtracted) for the inlet and
vice versa from the AM/ALOGD plots to obtain a set of penetration
values which may be roughly interpreted as "upper and lower 90% con-
fidence limits for the percent penetration". The collection efficiency
of the emission control device is 100% minus the percent penetration.
The collection efficiency corresponding to various particle sizes is
plotted on log-log probability graph paper on page 69.
Although cumulative mass loading data for each impactor test is pre-
-59-
-------
sented in tabular form on the computer print-out sheet, a more
accurate average cumulative mass loading is found by integrating
the average AM/ALOGD curve. The equation below yields AM.^ corres-
ponding to a particular size interval (Geometric Mean Diameter) d.^
to d. from the values of AM/ALOGD at those particle sizes. These
values are taken from the AM/ALOGD plots on pages 66 and 68 and
listed opposite the corresponding geometric mean diameters and
identification numbers i on the table on page 64.
(AM/ALOGD). + (AM/ALOGD). , / d. \
AM. = ±-* ^- x logiol o .1
Next the AM.'s are progressively summed to obtain the cumulative
mass loading. Upper and lower 90% confidence limits are found by
similar integrations of the upper and lower 90% confidence limits
of the AM/ALOGD plots. A table listing AM/ALOGD, percent penetration,
and cumulative mass loading values and their corresponding standard
deviations for each size d. is found on page 64. There is no value
of the cumulative for di because there is no valid (AM/ALOGD) 0 value
due to particle bounce, etc. Thus the cumulative mass loadings
plotted are cumulatives for particles larger than the DSO of the
last impactor stage. Plots of cumulative mass loading for the inlet
and percent efficiency of the emissions control device are found on
pages 67 and 69.
-60-
-------
HP-25 Program Form
Mean> Standard Deviation, 90/95% Confidence Inter-
Switch to PRGM mode, press [7| [ msnT] , then key in the program.
val
Page.
DISPLAY
LINE
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
! 17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
CODE
KEY
ENTRY
s ^V-^V'.V
14 21 f x
23 04STO 4
74 R/S
14 2i fs
23 09STO 5
74 R/S
24 04RCL 4
71 lv
74 I R/S
24 ORRCL 5
74 n^RCT. 1
14 02f/x
71 1 .
24 03 .RCL 3
01
41
24 02
,14 03
24 01
61
24 00
51
61
23 05
74
24 04
2-4 05
41
74
24 04
24 05
51
74
00
23 03
23 04
23 05
23 06
23 07
1 ->. nn
1
-
RCL 2
f_^x
RCL 1
X
RCL 0
+
X
STO 5
I— £/S-
RCL 4
RfT. 5
R/S
RfL 4
RCL 5
+
R/S
0
STO 3
STO 4
STO 5
STO 6
STO 7
flTO n
X
h
Y
.
Z
T
COMMENTS
REGISTERS
R n
R -
n 1
-
Q .
n 2
"-. n
"3
»4 X
R , .Cfl
"5 ' J.
f ,T.
w« Ix2
" 0 *-^
R. XX
-&1-
-------
HP-25 Program Form
Mean, Standard Deviation, 90/95% Confidence Interval
pag(:.
of
Programmer _JQ.seph D. McCain
STEP
1
2a
2b
3
4a
b
c
d
e
f
5
6 '
7 ]
i
INSTRUCTIONS
In"Li"i alizp
For 90% C.I.
For 95% C.I.
Enter values x-j
for i = 1, N:
if error in x^:
Calculate mean
Cal. standard devia
tion
Cal. relative std.
deviation
-al. confidence
interval
-al. lower confiden<
limit
:al. upper confiden<
limit
?o determine effect
)f omitting a point
£m, from data set:
ind go to step 4.
'o abandon calculate
during step 4:
and go to step 3.
or new data set
fter step 4f (UCL) :
INPUT
DATA/UNITS
1.645
2.60481
1.18553
1.96
5,5495
1.34635
xi
.
:e
:e
xm
on
KEYS
f pRn4
STO n
f REfJI _ll
STO ]JI
i CHS 1
STO 0
STO 1
CfTfi
E +
fLASTxj
STO 2
1 H
1
II
STO ? II II
II
II
f Z-
II 1! II
R/S 1! |( II
R/S ||
1 R/S
1 1
II
" 1
1 II 11
H
I R/s
li.
R/S ||
II
||
II
II II 1!
R/S II II II
II II
II
fZ-
ITO 34
II
||
STO OOH II
R/S
_||
II
II II II
R/S
H
OUTPUT
DATA/UNITS
i
X
s
s/x
C.I.
LCL
UCL
and go to step 3.
-62-
-------
Hypothetical Data - Brink Impactor
Test
CYC
SO
SI
52
S3
S4
S5
S6
SF
1 AM/ALOGD*
2 AM/ALOGD
3 AM/ALOGD
4 AM/ALOGD
5 AM/ALOGD
6 AM/ALOGD
AM/ALOGD
Average
Standard
Deviation
Relative
Std . Dev .
90% Confidence
Interval
Lower Confi-
dence Limit
Upper Condi-
dence Limit
1 Geo.
Mean Dia.
2 Geo.
Mean Dia.
3 Geo.
Mean Dia .
4 Geo.
Mean Dia.
5 Geo.
Mean Dia.
6 Geo.
Mean Dia.
Geo. Mean Dia.
3770
3960
3540
3410
3260
3830
3630
269
0.074
223
3410
3850
43.0
43.0
42.2
42.1
41.0
41.0
2630
1500
1720
2680
2910
3050
2420
646
0.267
536
1880
2950
9.25
9.26
8.92
8.87
8.42
8.41
1010
866
1080
1130
1180
1160
1070
118
0.110
97.5
973
1170
5.86
5.87
5.65
5.62
5.33
5.33
1190
991
1080
1200
1310
1380
1190
143
0.120
119
1070
1310
3.40
3.40
3.28
3.25
3.09
3.09
1060
1410
913
907
1560
1180
1170
267
0.228
222
950
1390
2.18
2.18
2.10
2.08
1.97
1.97
503
398
452
347
321
326
391
74.0
0.189
61.4
330
453
1.31
1.31
1.27
1.25
1.19
1.19
279
300
163
236
165
142
214
66.8
0.312
55.4
159
270
0.804
0.806
0.770
0.766
0.726
0.725
75.1
28.3
41.5
41.9
21.5
40.5
41.5
18.5
0.445
15.3
26.2
56.8
0.506
0.504
0.480
0.476
0.451
0.451
92.8
77.7
104
111
99.4
68.0
92.2
16.4
0.178
13.6
78.6
106
0.270
0.260
0.250
0.246
0.233
0.233
Average
42.1 8.86 5.61 3.25 2.08 1.25 0.766 0.478 0.249
*NOTE: AM/ALOGD in units of mg/DSCM.
Geometric Mean Diameter in units of micrometers.
-63-
-------
Hypothetical Data
Geometric
i Mean Diameter
(Micrometers)
1 0.500
2 0.800
3 1.28
2.05
3.28
5.24
3.39
13.4
21.5
X
UCL
LCL
X
UCL
LCL
X
UCL
LCL
X
UCL
LCL
X
UCL
LCL
X
UCL
LCL
X
UCL
LCL
X
UCL
LCL
X
UCL
LCL
Outlet
AM/ALOGD
(mg/DSCM)
2.95
5.27
0.635
6.40
8.70
4.05
7.40
10.2
4.99
9.30
13.0
6.00
13.2
19.0
7.20
12.8
18.8
6.90
10.7
15.3
5.80
7.60
10.6
4.00
4.50
6.00
2.55
Inlet
AM/ALOGD
(mg/DSCM)
41.8
57.0
27.3
225
281
170
410
498
341
1140
1390
930
1190
1310
1070
1050
1150
960
- 2280
2790
1730
3290
3800
2700
3800
4180
3430
Percent
Penetration
%
7.06
19.3
1.11
2.84
5.12
1.44
1.80
2.99
1.00
0.82
1.40
0.43
1.11
1.78
0.55
1.22
1.96
0.60
0.47
0.88
0.21
0.23
0.39
0.11
0.12
0.17
0.061
Inlet
Cumulative
Mass Loading
(mg/DSCM)
27.2
34.5
20.1
92.0
114
72.3
250
307
202
488
582
406
717
833
613
1057
1235
888
1625
1908
1340
2349
2722
1966
-64-
-------
HYPOTHETICAL ANDERSEN
IMPACTOR FLOWRATF e o.soo ACFM IMPACTOR TEMPERATURE » 400,0 F = 204,4 c SAMPLING DURATION * 20,00 MIN
IMPACTOR PRESSURE DROP » i.s IN, or HG STACK TEMPERATURE » «oo,o F * 20*1,4 c
ASSUMED PARTICLE DENSITY » 1.35 GM/CU.CM. STACK PRESSURE c 26.50 IN, OF HG MAX. PARTICLE DIAMETER « 100,0 MICROMETERS
GAS COMPOSITION (PERCENT) COS » o'.9S CD a 0,00 Hi • 76.53 02 « 20,93 H20 « 1.00
CALC, MASS LOADING » 8.0711E-03 GR/ACF 1.4948E-02 Gft/DSCF 1,6470E+01 MG/ACM 3.4207E*01 MG/DSC*
IMPACTOR STAGE si sa si sa ss S6 ST SB FILTER
STAGE INDEX NUMBER 12S4S6789
050 (MICROMETERS) 10,74 9,93 6.36 4.19 2,22 1.29 0,69 0,33
MASS (MILLIGRAMS) 0,72 0,40 0.51 0.09 0,36 1.43 1,25 0,04 0.39
MG/DSCM/STAGE U.TIE+OO 2,62E+oo J.UTE+OO S.SPE-OI ?,a9E+oo 9.35E«oo s.sse+oo 2,62E«oi a.ssEtoo
CUM, PERCENT OF MASS SMALLER THAN DSO 8<>,24 78,59 68.46 66,74 59,47 32.11 8,?3 7,46
CUM. (MG/ACM) SMALLER THAN 050 1.59E+01 1,45E*01 1.26E+01 t,23EfOt t.tOEtOl 5.91E400 1.52E+00 1.38E+00
CUM. (GR/ACF) SMALLER THAN 050 6,96E>03 6,34E>03 5.53E-03 5.39E-03 4,80E»03 2.59E.03 6,64E*04 6,02E»04
CUM, (GR/OSCF) SMALLER THAN DSO 1.29E-02 1.17E-02 1.02E-02 9.98E-03 8.89E-03 4.80E-03 1,23E*03 1.12E-03
GEO, MEAN OIA, (MICROMETERS) 3.28E+01 l.OSE+Ot 7.96E+00 5.17E+00 3.05E+00 1.69E+00 9.43E-01 4.74E-01 2.31E-01
DM/DLOGD (MG/DSCM) S.96E+00 7.94E+01 1.79E*01' 3,252*00 8.99E+00 3.99E*01 2.98E+01 8.09E-01 8,47E«00
ON/DLOGD (NO, PARTICLES/DSCM) 1.95E+OS i,02E+06 5.01E+07 3.3JE+07 4,«8E+Oa l.t6E*10 5,03E*10 1.08E+10 9,7«E+11
NORMAL OR STANDARD CONDITIONS ARE 21 DEC C AND 760MM HG
-------
o
<
s
10
10
HYOPTHETICAL DATA - BRINK IMPACTOR
ASSUMED PARTICLE DENSITY = 1.35gm/cm3
ERROR BARS INDICATE 90% CONFIDENCE INTERVAL
GEOMETRIC MEAN DIAMETER ( micrometers )
-66-
-------
C3
Z
5
01
D
5
o
10
ID"1
HYPOTHETICAL DATA - BRINK IMPACTOR
ASSUMED PARTICLE DENSITY = 1.35 gm/ cm3
ERROR BARS INDICATE 90% CONFIDENCE INTERVAL
UPPER SIZE LIMIT ( micrometers )
-67-
-------
HYPOTHETICAL DATA - ANDERSEN IMPACTOR
ASSUMED PARTICLE DENSITY = 1.35 gm / cm3
ERROR BARS INDICATE 90% CONFIDENCE INTERVAL
io-
!;^
3
-------
ERROR BARS DERIVED FROM 90% CONFIDENCE INTERVALS
INDICATED ON INLET AND OUTLET &M/&LOG D CURVES
0.01
99.99
O
tr
1-
LU
1
*
U.
Li.
Ul
0.01
90. 80. 100.0
GEOMETRIC MEAN DIAMETER ( MICROMETERS )
-------
Relationship between Stokes' or Physical diameter (Density = 2.40 gm/cm3) and Aerodynamic Diameter (Density - 1.00 gm/cm3).
100.0
0.1
10.0
100.0
STOKES' (PHYSICAL) DIAMETER (Mm) DENSITY = 2.40 gm/cm3
-70-
-------
SAMPLE CALCULATION FOR DATA REDUCTION OF ULTRAFINE PARTICLE
SIZE MEASUREMENTS
INSTRUMENTATION
A Thermo-Systerns Inc. Model 3030 Electrical Aerosol Size Analyzer
(EAA) with a 0.0032 ym to 0.360 ym range at the operating conditions
used (N0t = 7 x 10s at 4.0 x 10~9 amperes ionizer current and 50
volts ionizer voltage) was used to determine concentration vs_ size
information in the ultrafine size range.
PROCEDURES
Once the equipment has been set up as shown schematically in Figure
1, the flows were adjusted through the sample orifice and the dilution
air orifice, to obtain the desired dilution factor. The EAA was
placed in a manual scan mode and the current readings for each channel
were recorded with a strip chart recorder. Manual control allowed
run times of from two to five minutes in each of the nine channels.
This allows one to average out rapid source fluctuations. At the
beginning of each day the internal calibration points and flows
through the EAA were checked, as described in the instrument manual.
These were also periodically rechecked throughout the day. The
optional SOX absorbers shown in Figure 1 were not used in this test.
The theory of operation and basic equations for the EAA have been
given by Liu e_t al1 and calibration of the Model 3030 EAA has been
done by Liu and Pui2 which revises the previous calibration. Table
1 shows these revised calibration constants in a data reduction
format. The calibration by Liu suggested the use of a calibration
matrix; however typical source fluctuations in industrial processes
generally negate any potential advantage of such refinements. Table
1 is essentially self-explanatory. The heading "Dp,ym" (column 3)
is the particle diameter in microns. A value of 0.0100 means that
the center rod voltage is such that all particles of 0.0100 ym
diameter and smaller are collected in the analyzer tube while larger
-71-
-------
particles penetrate to the current collecting filter where an
electrometer measures the total current carried by the unpre-
cipitated particles. This current represents the charges on all
particles larger than 0.0100 ynu This measured current is the
basic output of the Model 3030.
The fourth column (Dpi,ym) is the geometric mean diameter of the
particles represented by the current difference of two successive
steps (Channel No.'s). For example, the difference in current for
the 0.0100 ym cut-off and the current for the 0.0178 ym cut-off
is the total current collected from particles between these sizes,
or rather for a mean diameter of 0.0133 ym. The current differences
are entered in column 8 headed "Al,pA" (picoAmps).
The fifth column gives the revised calibration factor (based on
the calibration by Liu and Pui2) for each of the eight size bands.
These factors are in units of particles per cm3 per picoAmpere.
Multiplying this size specific current sensitivity, AN/AI, (column
5) by the current difference, AI, (column 8) gives the total number
of particles, AN, (column 9) in units of particles per cm3, within
this size band (column 4) for the diluted aerosol. To correct for
dilution and find in-stack concentrations, multiply column 9 by
the dilution factor (DF) and enter the result, ANS, in column 10,
Columns 6 and 12 are used for ANs/ALogD information calculated from
the number distribution in column 10. Column 11 is used for cumulative
concentrations, corrected for dilution to engineering standard (normal)
conditions by a dilution factor (i.e. column 10). Engineering stan-
dard or normal conditions are defined as 21°C and 760mm Hg pressure.
The basic data from the EAA is cumulative current for each of nine
channels (column 7). One must then take the differences of the
current readings for successive channels (column 8) in order to
find AN, etc. These AI values are multiplied by a series of con-
stants (AN/Ali, DFj) to arrive at ANS (concentration in stack
corrected to dry, standard conditions). While a single scan should
-72-
-------
be made at a constant dilution, different scans may be made at
different dilutions. To simplify the arithmetic for each test
condition, we form the product c^ = AIj.,j x DFj and average all
such inlet (outlet) products for the same size band. This average
is used in Table 2 to calculate ANS, cumulative concentration, and
ANs/ALogD for each size band. When Table 2 is used the data
reduction is as follows:
SUMMARY OF THE CALCULATION FORMAT
STEP 1
A. Calculate the average instrument reading (I) for each channel as
obtained from the strip chart recording of channel current vs. time.
B. Calculate all dilution factors (DFj).
STEP 2
Calculate current differences (Alj_ j) from adjacent channels and
average the a. products (a. = AIj_ j x DF^) for the same size band
for all scans taken for the same test conditions. Calculate 90%
confidence intervals for each a^. Note: the i subscript denotes
size and the j subscript denotes dilution setting.
STEP 3
Using a. and Table 2 calculate "number concentration" (AN), "average
X o
cumulative concentration of all particles having diameter greater
than the indicated size" (ZANS), and "ANs/ALogD" for each size band
for each test condition.
STEP 4
Plot "Cumulative Concentration vs. Size" for each test condition.
STEP 5
Plot AN /ALogD (with upper and lower 90% confidence limits) vs. size
s
for each test condition.
STEP 6
Calculate and plot efficiency vs. size with upper and lower 90%
confidence limits.
SAMPLE CALCULATION FOLLOWING THE CALCULATION FORMAT
-73-
-------
STEP 1
A. Calculate the average instrument reading (I) for each channel
as obtained from the strip chart recording of channel current vs.
time. Each complete size scan (Table 1) consists of nine instrument
readings (I, column 7 of Table 1). These instrument readings are
the average current outputs as taken from the strip chart recordings,
for each of the nine channels. Run times were manually controlled
and varied from two to ten minutes per channel as the instrument
operator sequentially stepped through channels 3, 4, 5, ..., 11.
Table four gives the instrument readings used as data for the
sample calculation (10 scans, 90 average current readings).
B. Calculate all dilution factors (DFj; corrected to engineering
standard (normal) conditions: 70°F (21°C) and 29.92 inches of
mercury pressure (760 mmHg)). The flow through a calibrated orifice
is given by:
Q=k TXAP
where Q is the actual flow through the orifice
T is the orifice temperature
P is the pressure at the high pressure side of the orifice
AP is the pressure drop across the orifice
and k is a constant of proportionality for a limited range of AP values.
The flow rate, QN, corrected to engineering standard, or normal con-
ditions of temperature, T , and pressure, P is given by:
T
1N
The constant of proportionality, k, is found from the calibration
data thusly:
k = Q -' PC
c ^f Tc x APc
Where the subscript c refers to calibration conditions of flow,
pressure, pressure drop, and temperature. ~~
-74-
-------
By collecting constants one can tabulate a single constant (C )
for each orifice so that:
P x AP
WN ~ "-N ^ T
where
V
r
if ~T
x AP
c c
For example:
••
If for the .029 orifice, an actual flow rate (Q ) of 1.526 liters
O
per minute were measured for a pressure drop (AP ) of 10 inches
H2O at temperature (TC) 537°R and pressure (PC) 29.40 inches mercury,
CN is given by:
( 530°R \
\29.92"Hg/
29.40"Hg
CN (for .029 orifice) = 29.92"Hg/ (1'526 ^-P™) (537°R) (10"H20)
= 2.00 (for Q in 1pm)
By definition the dilution factor (DF) is the ratio of the total flow
(QD + QS) divided by the sample flow (Qg) thus:
or
TD
DF = + 1
f/S J
r (p) (AP}
CN
-75-
-------
where the subscripts D and S denote dilution air orifice and sample
air orifice respectively.
The diagram in Figure 2 will help illustrate how the pressures PD
and Pq are determined.
P then is:
and PS is:
where
p = P + AP + AP
FD AMB A±7 D
P = P + AP — AP
PS FAMB AiDU n CY
P = ambient absolute pressure
AP_ = differential pressure between the internal
diluter pressure and ambient (negative when
the diluter is negative to ambient)
AP = pressure drop across the dilution air orifice
AP = differential pressure, duct to ambient (negative
when duct is negative to ambient)
AP_,Y = pressure drop across the cyclone
The calculation of DF is done using a programmable calculator (HP-25)
and the following format is used to collectively restate the data
values for direct input to the calculator each time a different DF
is calculated.
APS TDI PA
APD TDU CS
AP- PS DF =
Note: AP0, AP_, and AP- are in inches H20, T^-, and T_TT are in °R
o JJ / U_L DU
(TDU = Tg), Pg and PA are in inches Hg, Cg = CN g and is for Q in
1pm (CN D = 590 is programmed in the calculator).
Typical data may be recorded as follows (for Q in SLPM):
-76-
-------
Inlet, Friday (13 May, 1976), Dilution air orifice DA*
26.34 329 45 -25.0 48
PA TDU TDI APDU TA
TIME OR CAL
3:15 pm .029
(6.7, 3.2, -30) .5
where
PA = ambient pressure (P^vm) in "Hg
TDU = temperature of the flue gas (Note: T = TDU) in °F
TDI = temperature of the dilution air orifice (TD) in °F
AP = differential pressure, duct to ambient (negative when
duct is negative to ambient)
T = ambient temperature in °F
TIME = time at which these variables were recorded
OR = sample air orifice identification number
CAL = reminder to check the calibration adjustments on
all instruments
The following format is also used in conjunction with the data logging
stamp:
(APS/ APD, AP7) APcy
where all pressure drops are in "HaO-
From calibration tables for our orifices, Table 3, we have:
.029 orifice; CM 0 = 2.00
N,S
and
• * *
dilution air orifice, DA; CN D = 590 (in program) thus:
AP 6.7 TnT 505 P 26.34
^^ *J Ju **
D 3'2 TDU ?89 CS 2'°
^ -30 Pa 24.5 DF = 255
7 o
or
-77-
-------
590
2.00
v
f
V
(24.4
"Hg)
(
( 505
(2
4,5
"Hg)
3
o
(6
.2
R)
.7
11 TT
H2
11 H
H2
0)
0)
DF = ' + 1 = 255
(789°R)
for
'-30"H,0 + 3.2"H-0
= 26.34"Hg + I \= 24.4"Hg
13.6 "H20/"Hg
= 26.34"Hg
13.6 "H20/lfHg
While a single scan should be made at a constant dilution ratio, this
is not always practical. When different dilution ratios are used, one
can obtain a corrected instrument reading that gives what the instru-
ment reading would have been if the dilution factor had remained
constant. This allows the calculation of the a- products as described
in Step 2 for use with Table 2. This corrected instrument reading is
given by:
I' = I (DF'/DF)
For example, if during a scan at DF = 255, the parameters shifted and
the recalculated dilution was 280, for a true channel current of
0.749 picoAmps, the corrected reading would be 0.749 picoAmps x 255/280
0.682 picoAmps.
STEP 2
Calculate current differences (AIi .) from adjacent channels and
average the a^ products for the same size band for all scans taken at
the same test condition. Calculate 90% confidence intervals for each
o7s
-78-
-------
The cu product is given by the following:
a. = AI. . x DF.
1 i»D D
where i denotes the size band and j denotes the dilution value.
SAMPLE CALCULATION (FOR ILLUSTRATION ONLY)
Find a.^ for the ten scans given in Table 4 made at two different
dilutions.
For channels 3-4 we have:
Scan #1: ct3_4 i = (.135) (255) pA
#2: <*3_4ti = (.124) (255) pA
#3: a_' = (.132) (255) pA
#9: a3_4 2 = (.290) (113) pA
#10: a, ' = (.296) (113) pA
J 4 / £•
thus a_ = 33.179 pA; n = 10 and CI = .579.
in-ll*
In a similar manner we can find ®»c> <*5_g' •••' a
A Hewlett-Packard HP-25 calculator program (included in the discussion
of the impactor data reduction) has been written to calculate the
error estimates given on graphs of the data points. Given a set of
data, this program calculates the average (X) , the standard deviation
(S) , the relative standard deviation (S/X) , a 90% or 95% confidence
interval (CI) , the lower confidence limit (X-CI or LCL) , and the upper
confidence limit (X+CI or UCL) .
Thus the mean, with upper and lower 90% confidence limits for «3_4 is
given by:
"3-4 = (33'179 ± °-
or
a
3-4
pA
-79-
-------
STEP 3
Using a", and Table 2 calculate "number concentration" (AN ) , "aver-
age cumulative concentration —" (EANg), and "ANg/ALogD" for each
size band for each test condition.
Table 5 shows these calculations for the sample data of Table 4.
Column 7 is ex as shown in Step 2. Column 8 is the product of columns
7 and 5. Column 9 is the summation of 8 for all sizes "equal to or
greater than the indicated size". Column 10 is column 5 times column
7 divided by column 6.
STEP 4
Plot cumulative concentration vs. size for each test condition. For
the sample data set of Table 4 this would be the concentrations in
Table 5 column 9 plotted against the sizes in column 4. No error
bars are used.
STEP 5
Plot A
test condition.
Plot AN /ALogD with upper and lower 90% confidence limits for each
s
For the sample data set of Table 4 this would be the concentrations in
Table 5, column 10 plotted against the sizes in column 4. The upper
error bar is the value plus the 90% confidence interval. The lower
error bar is the value minus the 90% confidence interval. For ou_, in
Table 4 we would have a__4 = 33.2 + 0.6
thus:
A,, /AT ^ 33.2 x 4.76 x 105 . 0.6 x 4.76 x 105
ANs/ALogD = -
= (63.2 + 1.1) x 106
STEP 6
Calculate and plot efficiency vs. size with upper and lower 90%
confidence limits:
The efficiency of the control device is given by the following:
-80-
-------
(Outlet AN /ALogD \
1 ~ inlet ANs/ALogD j x 100%
Sample Calculation:
If, for 0.0133 ym particles, the inlet ANg/ALogD = (63.2 + 1.1) x 10'
and outlet ANg/ALogD = (8.85 + .23) x 10s, then:
(5\
1 - 6382 x 106JX 10° = 98'6%
the upper limit (ULg) and lower limit (LL£) are given by:
UL =(-( Outlet - CI\ , nn
E y Inlet + CI / u*
= /l - 8.62 x 105\
\x 64.3 x 1fte |x ±uu%
= 98.7%
TT M Outlet T v-x i nnott
LLE =^ - ITOt ^-)X 100%
_/ 9.08 x 105\
-\f- 62.1 x 106/X 100%
= 98.5%
Efficiencies with upper and lower limits are calculated for each of
the eight sizes in column 4 from the ANg/ALogD values in column 10
for each test condition.
+ CI\
CI )
-81-
-------
The following data were taken with the ultrafine sampling system
described previously. These data were taken during January 1976
on an electrostatic precipitator collecting fly ash resulting from
the combustion of a high-sulfur (3.1 - 5.6%S) coal at the Tennessee
Valley Authority's Colbert Steam Plant.
-82-
-------
REFERENCES
1. Liu, B. Y. H., Whitby, K. T. and Pui, D. Y. H., "A Portable
Electric Aerosol Analyzer for Size Distribution Measurement
of Submicron Aerosols", presented at the 66th Annual Meeting
of the Air Pollution Control Association, Paper No. 73-283
(June 1973).
2. Liu, B. Y. H., and Pui, D. Y. H., "On the Performance of the
Electrical Aerosol Analyzer," J. Aerosol Science, 6_, pp. 249-
64, (1975).
-83-
-------
GO
*»
I
PROCESS EXHAUST LINE
CYCLONE
ORIFICE WITH BALL AND SOCKET
JOINTS FOR QUICK RELEASE
DUMP
BLEED
DILUTION DEVICE
CHARGE NEUTRALIZER
f
SIZING
INSTRUMENT
™^'i^:|
j iTI L
Tl I
LJ 1=-=
SOX ABSORBERS (OPTIONAL)
HEATED INSULATED BOX
RECIRCULATED CLEAN, DRY. DILUTION AIR '
FILTER BLEED NO. 2
COOLING COIL
PRESSURE
BALANCING
LINE
BLEED NO. 1
MANOMETER
Figure 1. Sample Extraction-Dilution System
-------
DUCT
p " p > p
amb' amb DiL
I APC
Increasing
Pressure
Pq P /
:y b D x
\ '
I4ps }APD /
PDiL fDiluter \
internal N
pressure) \
s
\_
*^
^
^*
^^
*•• . ~
AP7 = P , - P .
^^ ' arab DiL
<^
pamb; Pamb < PDIL
Figure 2. Diagrammatic representation of pressure drops in the
ultrafine particle sizing system.
-85-
-------
Table 1
EAA (Model 3030) Data Reduction Form
Concentration, Cumulative Concentration, and AN /ALogD from Scan No
1
Channel
No.
3
4
5
7
8
9
10
11
2
Collector
Voltage
196
593
1220
2183
3515
5387
7152
8642
9647
3
D , urn
0.0100
0.0178
0.026
0.036
0.070
0.120
0.185
0.260
0.360
4
Dpi, ym
0.0133
0.0215
0.0306
0.0502
0.0917
0.149
0.219
0.306
for DF =
5
AN/A I
4. 76x10 5
2.33xl05
1.47xl05
8.33x10"
4.26x10"
2.47x10"
1.56x10"
1.10x10"
6
AlogD
0.250
0.165
0.141
0.289
0.234
0.188
0.148
0.141
s
7 8 9 10 11 12
I,pA Al,pA AN AN EN AN /AlogD
S 5 S
-------
Table 2
EAA (Model 3030) Data Reduction Form
Concentration, Cumulative Concentration, and AN /ALogD
From Average a for Condition s
1
Channel
No.
3
4
, 5
oo •
V 6
7
8
9
10
11
2
Collector
Voltage
196
593
1220
2183
3515
5387
7152
8642
9647
3
D
P
0.
0.
0.
0.
0.
0.
0.
0.
0.
, pm
0100
0178
026
036
070
120
185
260
360
4
P
0.
0.
0.
0.
0.
0.
0.
0.
5
. , ym AN/A I
0133
0215
0306
0502
0917
149
219
306
4
2
1
8
4
2
1
1
.76xl05
.3 3x10 5
. 47x10 5
.33x10"
.26x10*
.47x10*
.56x10"
.10x10*
6789 10
AlogD a AN ZAN AN /AlogD
*p s s s
0
0
0
0
0
0
0
0
.250
.165
.141
.289
.234
.188
.148
.141
-------
Table 3
ORIFICE CONSTANTS (CN)
# 2 Dot Set 3 Dot Set
.120 45 52
.082 14 16
.059 5.9 5.9
.042 3.7 3.3
.029 2.0 1.5
-021K .96 .78
.021L .82
•014K .37 .45
.014L .48
DA 590
-88-
-------
Table 41
EAA Current Readings (I, in picoamps and Dilution Factors)
for this Sample Calculation: Hypothetical Inlet Data
SCAN
i
1
00 2
ID
1 3
4
5
6
7
8
9
10
1.
2.
Time
Friday
12/4/75
l:30p
1:32
1:34
1:36
1:38
1:40
1:45
1:47
1:49
1:51
.*029 Orifice
For Runs 1 -
For Runs 7 -
CH 3
2.869
2.835
2.841
2.859
2.866
2.866
6.477
6.580
6.377
6.390
'• APDUCT
6, APs
AP
D
AP7
10, APg
AP
D
AP7
CH 4
2.734
2.711
2.709
2.722
2.740
2.736
6.188
6.288
6.087
6.094
=25.5 "Hg,
=6.7 "H20
=3.2 "H,0
2
= -30 "H20
=9.7 "H20
=3.2 "H-0
2
= - 41 "H20
CH 5
2.519
2.495
2.500
2.522
2.530
2.531
5.716
5.818
5.620
5.614
AP =0.5
cy
T0I = 505
T™, = 789
DU
PS = 24.
TDI = 505
T™, = 789
DU
Ps = 24.
CH 6
2.227
2.205
2.200
2.235
2.251
2.238
5.056
5.153
4.960
4.956
"H20
°R Pft = 26.34
°R C0 = 2.00
S
5 "Hg
"R PA = 26.34
"R C_ = 3.70
S
5 "Hg
CH 7
1.362
1.344
1.340
1.368
1.381
1.378
3.111
3.233
3.021
3.006
"Hg
"Hg
CH 8
3
.682
.669
.655
.676
.714
.698
1.575
1.613
1.526
1.467
CH 9
3
.242
.220
.218
.226
.279
.255
.565
.510
.537
.492
CH 10
3
.102
.075
.081
.096
.137
.115
.243
.195
.227
.187
CH 11
3
.020
- .010
.001
.010
.052
.033
.053
.010
.032
.005
Dilution Factor2
255
255
255
255
255
255
113
113
113
113
3. Corrected Instrument Reading
-------
Table 5
EAA (Model 3030) Data Reduction Form
Concentration, Cumulative Concentration, and AN /ALogD
From Average AI for Condition Inlet
(Sample Calculation)
10
1
V£>
O
1
Channel
No.
3
4
5
6
7
8
9
10
11
Collector
Voltage
196
593
1220
2183
3515
5387
7152
8642
9647
D , um
P
0.0100
0.0178
0.026
0.036
0.070
0.120
0.185
0.260
0.360
D . , ym
Pi
0.0133
0.0215
0.0306
0.0502
0.0917
0.149
0.219
0.306
AN/AI
4. 76x10 5
2. 33x10 5
1.47xl05
8.33x10"
4.26x10"
2.47x10"
1.56x10"
1.10x10"
A log D a
0.250
0.165
0.141
0.289
0.234
0.188
0.148
0.141
33.2+. 6
53.3+. 7
74.3+. 8
219. 8+. 8
174+2
114+2
35.4+. 6
21.2+.3
ANs
xlO6
15.8+.3
12.4+.2
~
10.9+.1
18.3+.1
7. 41+. 09
2. 82+. 05
.552+. 009
.233+. 003
ZAN
s
xlO6
68.4
52.6
40.2
29.3
11.0
3.61
.785
.233
AN /ALogD
S .
xlO6
63.2+1.1
75.3+1.0
77.5+. 8
63.4+. 2
31.7+.4
15.0+.3
3. 73+. 06
1.65+.02
-------
Table 6
Ultrafine Particle System: Data Log
DATE
1/12/76
1/13/76
1/15/76
1/19/76
1/20/76
TIME
6:02
6:42
8:42
9:30
10:15
12:10
1:00
3:15
4:00
4:50
9:32
9:59
10:22
11:53
1:21
1:43
2:05
3:32
4:05
4:38
9:32
10:05
10:48
3:17
- 6:42
- 7:50
- 9:27
- 10:15
- 11:13
- 12:37
- 3:10
- 3:53
- 4:50
- 5:10
- 9:58
- 10:22
- 10:52
- 12:14
- 1:42
- 2:00
- 2:26
- 3:54
- 4:34
- 5:08
- 10:05
- 10:40
- 11:12
- 3:42
TEST
NO.
INLET
1
2
OUTLET
6
9
10
11
SCAN
NO.
1
2
3
4
5
6
7
8
9
10
33
34
35
36
37
38
39
47
48
49
50
51
52
53
TEST CONDITION,
CURRENT DENSITY:
NORMAL REDUCED
NOTE: Scans ll-*32 and 40-^46 involve different test
conditions connected with the EPRI portion of
the test.
-91-
-------
Table 7
Ultrafine Particle System: Instrument Current Readings (I) And Dilution Factors (DF)
VD
N)
Scan
No.
CH 3
CH 4
CH 5
CH 6 CH
7 CH
8 CH
9
CH 10
CH 11 Dilution Factor
INLET
1
2
3
4
5
6
7
8
9
10
33
34
35
36
37
38
39
47
48
49
.8002
.365*
1.3822*
.6562
.5202
.230
4.0152*
3.4002*
3.6102
5.2002
.2502
3.7502
20.7501'2
21. ISO1'2
.0842
.1212*
38.0001/2
.238
.145
.1182
.8252
.297*
1.411*
.660
.5002
.228
4.188*
3.2742*
3.6502
5.210
.2502
.3652
2.4101'2
3.3501'2
.090
.135*
11.1001,2
.220
.120
.119
.825
.271*
1.360
.650
.520
.222
3.775
3.350*
3.650
5.180
.2302
.300
.3152
.4052
.089
.121*
.8551 i
.213
.119
.092
.800
.255*
1.290
.550
.460
.200
3.000 1.
2.700 1.
3.150 1.
4.450 2.
OUTLET - REDUCED
.230
.290
.250
.230
.085
.107*
2 .2801
.198
.107
.085
500
195
880
320
290
112
800
625
850
750 1.
CURRENT
175
200
185
167
061
086
1951
128
075
041
193
088
238
143
133
052
600
615
708
020
DENSITY
069
085
074
063
017
028
0951
049
026
016
117*
071
078
056
052
019
235
217*
265
356
025
020
Oil
022
006
006
0481
015
008
005
.051*
.024
.052
.028
.023
.006
.106
.085*
.128
.171
-.2012
.002
-.013
-.006
-.0062
.001
.0241
-.005
-.002
-.003
.035*
.016
.033
.016
.003
.004
.056
.044*
.063
.097
-.0302
-.022
-.039
-.021
-.0032
-.008
+.0091
-.3352
-.011
-.0422
814
1240
333
624
689
1500
134
136
135
135
47.0
30.0
30.0
35.2
106
77.6
27.2
46.2
74.7
123
-------
Table 7 (Continued)
Scan
No.
CH 3
CH 4
CH 5
CH 6
CH 7
CH 8
CH 9
CH 10
CH 11 Dilution Factor
OUTLET - NORMAL CURRENT DENSITY
50
51
52
53
.030
.Oil2
.044
.065
.030
.0122
.040
.060
.0272
.012
.0322
.055
.028
.009
.036
.050
.014
.005
.021
.042
-.001
-.004
-.006
.017
-.004
-.005
-.010
.005
-2.47S2
-.005
-.012
-.005
-.006
-.005
-.012
-.009
82.8
140
44.1
46.5
1 Indicates that this data was taken in the X10 mode. Readings shown have been corrected to true.
2 Indicates data elements that have been rejected.
* Indicates corrected instrument reading: I1 = I (DF'/DF), see Table 8 for uncorrected values.
-------
Table 8
Ultrafine Particle System: Instrument Current Readings (I)
Corrected For Small Shifts In Dilution (I1)
I' = I (DF'/DF)
Scan
No.
3
7
8
38
Channel
No.
9
10
11
3
3
4
5
6
3
4
3
4
3
4
5
9
10
11
3
4
5
6
Current
I
0.115
0.050
0.034
0.950
0.350
0.285
0.260
0.245
1.440
1.470
4.075
4.250
3.375
3.250
3.325
0.215
0.084
0.044
0.120
0.133
0.120
0.106
TRUE:
Dilution
DF
798
798
798
686
1190
1190
1190
1190
347
347
136
136
135
135
135
135
135
135
76.7
76.7
76.7
76.7
CORRECTED :
Current
I1
0.117
0.051
0.035
Rejected
0.365
0.297
0.271
0.255
1.382
1.411
4.015
4.188
3.400
3.274
3.350
0.217
0.085
0.044
0.121
0.135
0.121
0.107
Dilution
DF1
814
814
814
1240
1240
1240
1240
1240
333
333
134
134
136
136
136
136
136
136
77.6
77.6
77.6
77.6
-94-
-------
Table 9
Ultrafine Particle Sizing System Data
Dilution Factor Parameters, Colbert Steam Plant EPA Test, January 1976
Parameters
Scan
No.
1
1
2
2
i 2
vo
Ul
1
3
3
4
5
6
7
7
7, 8
8
9, 10
Time
6:02 -
6:32 -
7:03 -
7:06 -
7:23 -
8:42 -
8:49 -
9:28 -
10:15 -
12:10 -
1:50 -
2:10 -
2:52 -
3:24 -
4:04 -
6:31
7:02
7:05
7:22
7:50
8:48
9:27
10:14
11:13
12:37
2:09
2:51
3:23
3:53
5:12
Aps
("H20)
4.0
4.0
5.9
1.8
1.7
6.0
6.5
2.0
4.0
5.6
6.0
6.0
5.9
5.8
2.6
APD
("H20)
2.5
2.4
2.6
2.4
2.4
2.9
2.9
3.1
3.1
3.1
2.9
2.9
3.0
3.0
3.0
AP,
("H20)
-15.0
-14.0
-12.4
-12.5
-12.5
-21.2
-21.0
-16.5
-17.5
-20.5
-22.2
-22.2
-23.0
-22.9
-23.1
T .
Di
(°R)
1/12/76
518
518
518
518
518
1/13/76
525
525
525
525
525
530
531
532
532
530
T
iDU
(°R)
960
960
960
960
980
855
855
855
855
855
800
780
760
760
840
PS
( -Hg)
28.87
28.87
28.87
28.87
28.87
28.70
28.70
28.70
28.70
28.70
28.70
28.70
28.70
28.70
28.70
PA
("Hg)
29.68
29.68
29.68
29.68
29.68
29.50
29.50
29.50
29.50
29.50
29.50
29.50
29.50
29.50
29.50
CS
.78
.78
.78
.78
.78
1.5
1.5
1.5
.96
.37
3.7
3.7
3.7
3.7
5.9
DP
814
798
686
1190
1240
347
333
624
689
1500
136
134
135
136
135
-------
Table 9 (Continued)
Parameters
Scan
No.
33
34, 35
36
37
38
vi, 38
? 39
47
48
49
50
51
52
53
Time
9:32 -
9:59 -
11:53 -
1:15 -
1:43 -
1:52 -
2:05 -
3:32 -
4:05 -
4:38 -
9:32 -
10:05 -
10:48 -
3:17 -
9:58
10:52
12:14
1:42
1:52
2:00
2:26
3:54
4:34
5:08
10:05
10:40
11:12
3:42
Aps
("H20)
3.3
8.3
5.5
4.9
9.3
9.3
9.6
3.3
9.1
3.4
8.2
2.7
3.7
3.3
APD
("H20)
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.4
3.4
3.3
3.4
3.3
3.4
3.4
AP?
("H20)
-31.2
-42.1
-38.0
-27.2
-32.6
-32.6
-42.1
-53.0
-44.8
-36.7
-35.3
-28.5
-50.3
-53.0
T
DI
1/16/76
523
510
519
513
514
514
511
1/19/76
528
523
526
1/20/76
519
522
522
522
T
840
840
780
860
860
880
800
840
810
840
870
840
840
840
PS
(»Hg)
28.28
28.28
28.28
28.28
28.28
28.28
28.28
28.67
28.67
28.67
28.70
28.70
28.70
28.70
PA
29
29
29
29
29
29
29
29
29
29
30
30
30
30
H )
.48
.48
.48
.48
.48
.48
.48
.97
.97
.97
.00
.00
.00
.00
CS
16
16
16
5.9
5.9
5.9
16
16
5.9
5.9
5.9
5.9
16
16
°F
47.0
30.0
35.2
106
76.7
77.6
27.2
46.2
74.7
123
82.8
140
44.1
46.5
-------
INLET IMPACTOR DATA
-97-
-------
COLI-1 1-12-76 1809 N,A,
IMPACTOR FLOWRATE s o.oso ACFM IMPACTOR TEMPERATURE * 310.0 f e isa,« c SAMPLING DURATION = 13,00 MIN
IMPACTOR PRESSURE DROP « 2,0 IN, OF HG STACK TEMPERATURE « 3io,o F » 15*1,4 c
ASSUMED PARTICLE DENSITY B 2,no GM/CU.CM. STACK PRESSURE « 29,67 IN, of HG MAX, PARTICLE DIAMETER * I&B.O MICROMETERS
GAS COMPOSITION (PERCENT) C02 s 12,68 CO s 0,00 N2 s 73,60 02 a 5,52 H20 » 8,00
CALC, MASS LOADING • 3.5215E+00 6R/ACF 5.2222E+00 GR/DNCF 7.6008E+03 MO/ACM 1.1950E+04 MG/DNCM
IMPACTOR STAGE CYC SO SI 82 S3 Sfl 35 36 FILTER
STAGE INDEX NUMBER 123056789
D50 (MICROMETERS) li.07 7,85 Q.Ub 2,6« 1,83 0,96 0,69 0.38
MASS (MILLIGRAMS) 72,12 3,21 2,95 2,11 1,63 l.fll 0,27 0,10 0.14
MG/DNCM/STAGE 1,03E+0« «,57E*02 a.20E*02 3.00E+02 2.32E+02 2,01E»02 3,8«f*01 t.^ZE+Oi 1.99E*01
CUM, PERCENT OF MASS SMALLER THAN oso i«,o9 io,26 6,75 «,23 2,29 o,6i 0,29 0,1?
CUM, (MG/ACM) SMALLER THAN D50 1,07E+03 7,801+02 5,1SE*02 3.22E+02 l,7aE+02 a,66E+01 2.21E+01 1,31E*01
CUM, (MG/DNCM) SMALLER THAN OSO 1,68E+03 1.23E+03 8,06E+02 5,06E+Oa 2,74E*02 7,32E«01 3,48E+01 2.0SE+01
CUM, (GR/ACF) SMALLER THAN 050 «,68E«01 3,«1E-01 2,2flE»01 1,«1E«01 7,6ie«02 2,03E»02 9.66E-03 5.71E-03
CUM, (GR/DNCF) SMALLER THAN D50 7,36E«01 5,36E«01 3.52E-01 2.21E-01 1.20E-01 3.20E-02 1.52E-02 8.97E-03
ceo, MEAN DIA, (MICROMETERS) «,SIE*OI 9,32E+oo 5.9iE+oo 3,«3E+oo 2,i9E+oo i,33E*oo B.ISE-OI S.ISE-OI 2,72E-oi
DM/DLOGD (MG/DNCM) 8.69E+03 3.06E+03 1.71E+03 1.J2E+03 1,06E»03 7,?3E+02 2.63E+02 5,«i3E*01 6.62E+01
DN/DLOGD (NO, PARTICLES/DNCM) 8.62E+07 3.01E+09 6.58E+09 2,60E*10 l.JOE+H 2,a6E+ll 3.87E+11 3,29E*11 2.62E+12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG,
-98-
-------
COLU2 1.J2-76 1825 N,A,
IMPACTOR FLOWRATE « o.o'io ACFM IMPACTOR TEMPERATURE = 310,0 F * i5«,« c SAMPLING DURATION * u,oo KIN
IMPACTOR PRESSURE DROP = 2,0 IN. OF MS STACK TEMPERATURE * 3io,o f » 15«,« c
ASSUMED PARTICLF DENSITY * 2.UO CM/CU.CM, STACK PRESSURE o 29.67 IN, OF HG MAX. PARTICLE DIAMETER « 168,0 MICROMETERS
GAS COMPOSITION (PERCENT) CO? * 12.88 CO * 0,00 N2 B 71.60 02 * 5,52 H20 « 6.00
CALC, MASS LOADING » 5.J516E+00 GR/ACF 5.2695E*00 GR/DNCF 7.6696E+03 M6/ACM 1.2058E+04 MG/DNCM
IMPACTOR STAGE CYC so si $2 83 s« s*> s& FILTER
STAGE INDEX NUMBER 125056789
050 (MICROMETERS) 11,07 7,85 «,«6 2,6« 1,83 0,96 0,69 0,38
MASS (MILLIGRAMS) 65,95 3,58 5.09 5,91 1,96 1,21 0,61 0,15 0,i<*
MG/DNCM/STAGE 9,S9E+03 5,10E+02 7.25E*02 «9«SE+02 2.79E+02 1.72E*02 8.68E+01 2.UE+01 3,«2Et01
CUM, PERCENT OF MASS SMALLER THAN DSO 22,i« 17,92 11,91 a,93 2,61 1,19 o,«7 0,29
CUM, (MG/ACM) SMALLER THAN 050 1,70E*03 1,37E*03 9.13E+02 3.78E+02 2,OOE*02 9,fl9E*01 3.57E+01 2.21E+01
CUM, (MG/DNCM) SMALLER THAN DSO 2.67E+03 2.16E+03 1.44E+03 5,9«E+02 3.15E+02 i,13E*02 5.61E+01 3,«8E«01
CUM, (GR/ACF) SMALLER THAN D50 7,a2E-01 6,OOE*01 3,99E»01 1,65^*01 8,76E«02 3,97E»02 i,56F»02 9.66E-03
CUM, (GR/DNCF) SMALLER THAN DSO 1,17E+00 9,a«E-01 6,27F«01 2,60E»01 1,38E«01 6,25E«02 2,«5E«02 1.52E-02
GCO, MEAN DIA, (MICROMETERS) U,11E*01 9,32E*00 S,91E*00 3.U3E+00 2.19E*00 1,33E*00 8.15E-0| 5,1SE-01 2.72E-01
DM/DLOGD (MG/DNCM) 7.95E+03 3,«1E+03 2,95E*OS 5.69E+03 1.75E+03 6.20E+02 5,9«E+02 8,t5E+01 l,11E*Og
ON/OLOGD (NO. PARTICLES/DNCM) 7.89E+07 3.35E+09 1,13E*10 7,29E*10 1,32E*H 2.11E+11 8,7«E*11
-------
COLI«S 1-13-76 1320 6UAI
IMPACTOR FLOWRATE « 0,031 ACFM IMPACTOR TEMPERATURE « 320,0 F e 160,0 C SAMPLING DURATION • 15,00
IMPACTOR PRESSURE DROP • 1,6 IN. OF HG STACK TEMPERATURE » 320,0 F « 160.0 C
ASSUMED PARTICLE DENSITY s 2,«0 GM/CU.CM, STACK PRESSURE = 29,37 IN, OF HG MAX, PARTICLE DIAMETER s 168,0 MICROMETERS
6A8 COMPOSITION (PERCENT) C02 * 12.88 CO * 0,00 N2 B 73,60 02 « 5,52 H20 « 8,00
CALC, MASS LOADING * 2.2438E+00 GR/ACF 5.6102E+00 GR/ONCF 5,13U7E*03 MG/ACM 8,261«E+03 M5/ONCM
IMPACTOR STAGE CVC SO 81 82 83 84 85 86 FILTER
STAGE INDEX NUMBER 123
-------
COII-U 1-13.76 IflSO flUAI
IMPACTOR FLOWRATE « o.osi ACFM IMPACTOR TEMPERATURE * 330,0 r *> 165.6 c SAMPLING DURATION e 15,00 MIN
IMPACTOR PRESSURE DROP « 2,0 IN, OF HG STACK TEMPERATURE » 330,0 F « 1*5,6 c
ASSUMED PARTICLE DENSITY s 2,lit) GM/CU.CM, STACK PRESSURE « 89,50 IN, OF HG MAX, PARTICLE DIAMETER • 168,0 MICROMETERS
CAS COMPOSITION (PERCENT) CO? * 12,68 CO » 0,00 N2 » 73,60 02 » 5,52 H20 " 8,00
CALC, MASS LOADING • 1.79086*00 GR/ACF 2.9054E+00 GR/DNCF 4,0980E*03 MG/ACM 6,6486E*03 MG/DNCM
IMPACTOR STAGE CYC SO SI 82 85 S« 85 86 FILTER
STAGE INDEX NUMBER !23
-------
COLU5 1.13-76 1715 2UAI
IMPACTOR FLOWRATE s o.osi ACFM IMPACTOR TEMPERATURE s 330,0 r * 165.6 c SAMPLING DURATION s 15,00 MIN
IMPACTOR PRESSURE pRflP » 2,0 IN, OF HG STACK TEMPERATURE « 330,0 f « 165,6 C
ASSUMED PARTICLE DENSITY e Z,«Q GM/CU.CM, STACK PRESSURE s ?9,50 IN, OF HG MAX, PARTICLE DIAM|TER * 166,0 MICROMETERS
BAS COMPOSITION (PERCENT) C02 • 12.68 CO « 0,00 N2 * 73,60 02 a 5,52 H20 • 8.00
CALC, MASS LOADING B 1,9876E*00 GR/ACF 3.2247E+00 GR/DNCF 4,548«E*03 MG/ACM 7.3793E+03 MG/DNCM
IMPACTOR STAGE CVC 80 81 82 SJ S4 85 36 FILTER
STAGE INDEX NUMBER 123456769
050 (MICROMETERS) 11.00 7,79 4.82 2,61 1,81 0,95 0,68 0,38
MASS (MILLIGRAMS) «9,15 2,37 1.97 2,83 1,16 1,«5 0,43 0,30 0,23
MC/ONCM/STAGE 6,06E+QS 2,92E+02 2,U$E+02 5,«OE+8a 1,«3E*02 1.79E+02 5,JOE*01 3.70E+01 2.63E+01
CUM, PERCENT OF MASS SMALLER THAN DSO 17,94 13,98 io,69 5,97 4,03 i«6i o,89 0,39
CUM, (MG/ACM) SMALLER THAN 050 8,16E+02 6,36E*02 S.86E+02 2.71E+02 1.83E+02 7,31E*Ot 4.05E+01 1.77E+01
CUM, (MG/DNCM) SMALLER THAN D50 1,32E+OS 1.03E*03 7,89E*02 a,«OE+02 2,97E+02 1.19E+02 6,57E»01 ?,87E*01
CUM, (GR/ACF) SMALLER THAN DSO 3.57E-01 2,78E-01 2,13E»Ol 1.19E-01 8,01E»02 3.20E-02 1.77E-02 7.73E-03
CUM. (GR/ONCF) SMALLER THAN DSO 5,78E«Ol a,51E-01 3,45E«01 1,9?E«01 1.30E-01 5.19E-02 2,87E»02 1,25E*02
6fO, MEAN DIA. (MICROMETERS) 4,306+01 9,a6E+oo 5,87E*oo 3,«oE*oo 2,i8E»oo I.SIE+OO s.ose-oi 5,06E-oi 2,67E«oi
DM/DLOGO (MG/DNCM) 5.11E+03 1,95E*03 9.87E+02 1.53E+03 8.97E+02 6.41E+02 J,60E»02 1.45E+02 9,41E*01
DN/DLOGO (NO, PARTICIES/DNCM) 5.13E+07 1.96E+09 3.89E+09 3.09E+10 6,93E*tO 2,25E*11 5,50E»11 8,87E*H 3,95E*12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG C AND 760MM HG,
-102-
-------
CQLI-6 1*13.76 12UA1
IMPACTOR FLOWRATE « o.osi ACFM IMPACTOR TEMPERATURE « 330.0 r • 165,t> e- SAMPLING DURATION = is.oo MIN
IMPACTOR PRESSURE DROP « 2,0 IN, OF HG STACK TEMPERATURE » 33o,o r * 165,6 c
ASSUMED PARTICLE DENSITY s 2.«o GM/CU.CM, STACK PRESSURE « 29,50 IN, OF HC MAX', PARTICLE DIAMETER « j68,o MICROMETERS
GAS COMPOSITION (PERCENT) C02 * 12,86 CO s 0,00 N2 * 73,60 02 * 5,52 H20 * 8,00
CALC, MASS LOADING « 6,2692E«01 GR/ACF 1.0171E+00 GR/DNCF 1,«3«6E+03 MG/ACM 2.3275E+03 MG/DNCM
IMPACTOR STAGE cvc so si sz ss s« ss 86 FILTER
STAGE INDEX NUMBER 125U56789
050 (MICROMETERS) 11,00 7,79 fl.K? 2,61 l,8l 0,93 0,68 0.38
MASS (MILLIGRAMS) 12.70 1,76 0.91 1,16 1,06 0,73 0,22 0,10 0,25
MG/DNCM/STAGE 1.56E+03 3,17E+02 1,12E+02 l,a3E+02 1,31E+02 8,99E*Ol 2,71E+01 1.2JE+01 3.08E*01
CUM, PERCENT OF MASS SMALLER THAN 050 12,77 23,46 18,61 12,so 6,89 3.02 1,86 1,33
CUM, (MG/ACM) SMALLER THAN 050 U.70E+Q2 3,37E«02 2.67E+02 1,79E*02 9,68E*01 «,34Et01 2.67E+01 1.91E+01
CUM, (MG/DNCM) SMALLER THAN 050 7.63E+02 5,tf6E*02 «,3flE+02 2.9}E»02 1,60E*02 7,03E*01 «,32E*01 3.09E+01
CUM, CGR/ACF) SMALLER THAN D50 2.05E-01 1.17E-01 1.17E-01 7.84E-02 4.32E-02 1.89E-02 1,16E«02 6.33E-03
CUM, (GR/DNCF) SMALLER THAN 050 3.33E-01 2,396-01 1,90E»01 1.27E-01 7.00E-02 '5.07F.02 1.89E-02 1.35E-02
GEO. MEAN DIA, (MICROMETERS) «.50E*01 9.26E+00 5,87E*00 S.flOEtOO 2.18E+00 J.31E+00 8.05E-01 5.06E-01 2.67E-01
DM/DLOGD (MG/DNCM) 1.32E+03 l,tt5E«03 4.56E«02 6,25E*02 8,I9f+02 3.23E+02 1.84E+02 «,8?E+01 1.02E+02
DN/DLOGD (NO, PARTICLES/DNCM) 1.32E+07 1,«5E+09 1.79E+Q9 1.27E+10 6,3aE*10 l,l3E*ll 2,82E*ll 2.96E+11 «,29E*12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 OES C AND 760MM HG.
-103-
-------
COLI-7 1.13-76 1822 10UAI
IMPACTOP FLOWRATE s 0,031 ACFM IMPACTOR TEMPERATURE s 550,0 F s 165.6 C SAMPLING DURATION s 15,00 HIM
IMPACTOR PRESSURE DROP « 2,0 IN, OF HO STACK TEMPERATURE » 330,0 F « 165,6 C
ASSUMED PARTICLE DENSITY « 2,ltd GM/CU.CM. STACK PRESSURE s 29,50 IN, OF HG MAX, PARTICLE DIAMETER « 16B.O MICROMETERS
GAS COMPOSITION (PERCENT) C02 * 12,88 CO » 0,00 N2 • 73,60 02 e 5,5? H20 » 8,00
CALC, MASS LOADING s l,1168E*00 GR/ACF 1.8119E+00 GR/DNCF 2,5S56E*03 MG/ACM O.IU62E+03 MG/ONCM
IMPACTOR STAGE CYC SO Si 82 S3 S« 35 86 FILTER
STAGE INDEX NUMBER t23«56T89
050 (MICROMETfRS) 11,00 7,79 «,«2 2,61 1,81 0,95 0,68 0,36
MASS (MILLIGRAMS) 25,2« 1,78 8,25 1,77 1.0« 1,20 0,28 0.07 0,02
MC/ONCM/STAGE 3,11E+OS 2,19E+02 2,77Et02 2,18Et02 1.28Ef02 1,
-------
COLI.8 l-lfl-76 1250 12UAI 86,85, HAD MINUS MASSES
IMPACTOR FLOWRATF s 0,03! ACFM IMPACTOR TEMPERATURE s 300,0 F B 1«8,9 C SAMPLING DURATION « 15,00 MIN
IMPACTOR PRESSURE DROP = 2,5 IN, or MG STACK TEMPERATURE * 300,0 r » t«8,9 c
ASSUMED PARTICLE DENSITY « 2,«o GM/CU.CM, STACK PRESSURE B 30,00 JN, OF HG MAX, PARTICLE DIAMETER « i68.o MICROMETERS
GAS COMPOSITION (PERCENT) COS t 12.88 CO • 0,00 N2 • 73,60 02 * 5,5? H20 * 8,00
CAtC, MASS LOADING « 2.6fll8E«01 GR/ACF «,05««E»01 GR/ONCF 6,0«52E+02 MG/ACM 9.27T9E+02 M6/DNCM
IMPACTOR STAGE CYC SO SI 82 83 Sfl S5 86 FIL.TER
STAGE INDEX NUMBER 123456789
050 (MICROMETERS) |0,8fl 7,68 4,36 2,58 1,79 0,9« 0,67 0,37
MASS (MILLIGRAMS) 0,00 1,68 2.11 1,«0 0,00 2.«a 0,00 0,00 0,33
M6/DNCM/STAGE 0,OOE»01 1,96E^02 2.46E+02 1.63E+03 0,OOE»01 2.84E+02 O.OOF-01 O.OOE-01 3.85E+01
CUM, PERCENT or MASS SMALLER THAN oso 100,00 78,90 52,39 30,80 301 2.12E-01 1,«1E-01 l,«iE-01 1.68E-02 t,68E-02 1.68E-02
6EO, MEAN DIA, (M-ICROMETERS) «,27E*01 9.12E+00 5.79E+00 3,36E»00 2.15E+00 1.30E+00 7.97E-01 5,OOF«01 2.63E-01
DM/DLOCD (MG/DNCM) O.OOE-01 1.31E+03 l.OOE+03 T.15E+03 fl.OOE.Ol 1.02E+03 O.OOE-01 O.OOC-Ol 1,2BE»02
ON/DLOGD (NO. PARTICLES/DNCM) O.OOE-01 1,37E*09 fl,HE*09 l,51f*10 O.OOE-01 3.71E+11 O.OOE-01 O.OOE-01 5.62E+12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG C AND 760MM HG.
-105-
-------
COLI-9 l-lfl»76 15E+03 MG/QNCM
IMPACTOR STAGE CYC SO SI S2 S3 S« SS S6 FILTER
STAGE INDEX NUMBER 12SU56789
050 (MICROMETERS) 11,00 7,7<5 a.ag 2,61 1,81 0,95 0,68 0,37
MASS (MILLIGRAMS) 08,22 1,91 2,29 2,21 2,2fc 0,00 0,07 0,00 O.lb
MG/ONCM/STAGE 5,8aE+03 2.31E+02 2.77E+02 2,68E*02 2,7«E*02 O.OOE-01 8,«8E*00 O.OOE-01 1.82E+01
CUM, PERCENT OF MASS SMALLER THAN oso 15,57 12,23 8.22 «,35 0,39 0,39 0,27 0,27
CUM, (MG/ACM) SMALLER THAN D50 6,756+02 5,30Ef02 3.56F+02 1,89E*02 1.69C+01 1.69E+01 1,16F*01 1.16E+01
CUM, (MG/ONCM) SMALLER THAN 050 1,08E*03 8,«6E*02 5.69Ef02 3,01E*02 2,70E*Ol 2,70E*01 1,85E*01 1,85E*01
CUM, (GP/ACn SMALLER THAN 050 2.95E-01 2.32E-01 1.56E-01 8.2UE-02 7,aoF-03 7,«OE-03 5.07E-03 5.07E-03
CUM, (GR/ONCF) SMALLER THAN 050 «,71E-01 3,70E"01 2,«8E-01 1.31E-01 1.18E-02 1.18E-02 8.09E-OJ 8.09E-03
GEO, MEAN DIA, (MICROMETERS) fl,30E4-01 9,26E*00 5.87E+00 3,«OE+00 2,16E*00 1.31E+00 8.06E-01 5,0«E-01 2,fcfle-01
OM/DLOGO (MG/ONCM) a,93E*03 1.55E+03 1,13E*05 1,17E»OS 1.72E+03 O.OOE-01 5.76E+01 O.OOE-01 6,0«E*01
ON/DLOGD (NO. PARTICLES/ONCM)
-------
COLt-10 1-1U.76 1520 1UAI
IMPACTOR FLOWRATE « 0.031 ACFM IMPACTOR TEMPERATURE • 340,0 F = 171,1 C SAMPLING DURATION » 15,00 MIN
IMPACTOR PRESSURE DROP « 8,5 IN. OF HG STACK TEMPERATURE « 340,0 F • 171,1 C
ASSUMED PARTICLE DENSITY * 2,40 GM/CU.CM. STACK PRESSURE m 30,00 IN, OF HG MAX, PARTICLE DIAMETER » i68,o MICROMETERS
GAS COMPOSITION (PERCENT) COS e 12.88 CO • 0,00 N2 B 73,40 02 « 5,52 H20 « 8,00
CAIC. MASS LOADING * 3.9892E.01 GR/ACF 6,4449E*Ot GR/DNCF 9.1286E+02 MG/ACM 1,4748E«03 MG/DNCM
XMPACTOR STAGE CYC SO SI 82 85 SO 35 36 FILTER
STAGE INDEX NUMBER 123«S*78»
050 (MICROMETERS) 11.05 7,83 4.00 2,63 1,82 0,96 0,68 0,37
MASS (MILLIGRAMS) 8,21 0,75 0,86 0,48 0,84 0,58 0,16 0,00 0,14
MG/DNCM/STAGE 1.01E+03 9.20E+01 1.06E+02 5,89E*01 S.OSE*02 7,12F+fll 1.96E+01 O.OOE-01 l,7aE»01
CUM, PERCENT OF MASS SMALLER THAN D50 31,70 25,46 18,31 14,31 7,33 2,50 1,17 1,17
CUM, (MG/ACM) SMALLER THAN D50 2.69E+02 2,32E*02 1.67E+02 1,31E+02 6.69E+01 2,28E«01 1.07E+01 1.07E+01
CUM, (MG/DNCM) SMALLER THAN DSO fl,68E+02 3.76E+02 2.70E+02 2.UE+02 1.08E+02 3,69E*01 1.75E+01 l,73E*Oi
CUM, (GR/ACF) SMALLER THAN 050 1.26E-01 1.02E-01 7.30E-02 5.71E-02 2.92C-02 9.98E-03 4.67E-03 «,67E-03
CUM, (6R/DNCF) SMALLER THAN 050 2.04E-01 1.64E-01 l.tBE-Ol 9.23E-02 4.72E-02 1.61E-02 7.54E-03 7.54E-03
GEO, MEAN DIA, (MICROMETERS) 4,3ie*oi <>,30E*oo 5.9oE*oo j,u2E*oo 2,j«»E+oo i.32E*oo S.OSE-OI 5,05E«oi a,*aE-oi
DM/DLOGD (MG/DNCM) B.52E+03 6.15E+02 «.29E+02 2.58E+02 6,«7E+02 2.5SE+02 1.33E+02 O.OOE-01 5,7]E*01
ON/OLOGD (NO, PARTICLES/DNCM) 8.48E+06 6.08E+08 1.66E*09 5,14E*09 4.93E+10 8,84E»10 2,01E*H O.OOE-01 2,46E*12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG,
-107-
-------
COLI-11 1-14.76 1545 3UA!
IMPACTOR FLOWRATF s o,03l ACFM IHPACTOR TEMPERATURE s 340,0 F a m.i c SAMPLING DURATION = 15,00 MIN
IMPACTOR PRESSURE DROP * 2,5 IN, OP HG STACK TEMPERATURE « 540,0 f « 171,1 C
ASSUMED PARTICLE DENSITY a 2.40 GM/CU.CM, STACK PRESSURE B 30,00 IN, OF H6 MAX, PARTICLE DIAMETER * 168,0 MICROMETERS
GA« COMPOSITION (PERCENT) C02 tt 12,68 CO » 0.00 N2 s 73,60 02 B 5,52 H20 * 8,00
CALC, MASS LOADING • 5.1057E+00 GR/ACF 5.0175E+00 GR/DNCF 7.1070E+03 MGXACM 1.1482E+04 MG/ONC*
IMPACTOR STAGE cvc so si ss 83 s« ss 86 FILTER
STAGE INDEX NUMBER 123456789
050 (MICROMETERS) It, 05 7,83
-------
COLI-12 1*14 76 1600 5UAI
IMPACTOR FLO*RATE • o.ost ACFM IMPACTOR TEMPERATURE « 345,0 r « 173.9 c SAMPLING DURATION • 15,00 MIN
IMPACTOR PRESSURE DROP » 2,5 IN, OF HG STACK TEMPERATURE « 345.0 f * 173,9 C
ASSUMED PARTICLE DENSITY f 2,40 GM/CU.CM. STACK PRESSURE s 30,00 IN, Of HG MAX, PARTICLE DIAMETER * 168,0 MICROMETERS
GAS COMPOSITION (PERCENT) C02 • 12.88 CO » 0,00 N2 • 73,60 02 « 5,5? H20 • «,00
CALC, MASS LOADING B 8.1609E-01 GRXACF 1.3267E+00 GR/DNCF 1.8675E+OJ MG/ACM 3.0360E+03 MG/DNCM
IMPACTOR STAGE CYC so si 82 S3 s« ss 86 FILTIR
STAGE INDEX NUMBER 123056709
050 (MICROMETERS) 11,08 7,85 «,«5 2,63 1,82 0,96 0,68 0,37
MASS (MILLIGRAMS) 19,96 1,11 1,06 0,80 0,63 0,44 0,19 0,06 0,14
MG/DNCM/STAGE 2.46E+03 1.37E+02 1.31E+02 9,88E*01 1.02E+02 5,431*01 2.35E+01 7,fllE+00 1.73E+01
CUM, PERCENT OF MASS SMALLER THAN 050 18,83 14,38 10,01 6,76 3,38 1,59 0,82 0,57
CUM, (MG/ACM) SMALLER THAN D50 3.52E+02 2.67E+02 1,«7E+02 1,26E*02 6,3lE*01 2,97Ef01 1.53E+01 1,07E*01
CUM, (MG/DNCM) SMALLER THAN D50 5.72E+02 U.35E+02 3,0«Et02 2,05E*02 1,03E*02 4.83E+01 2,«8E*01 1,7«E*01
CUM. (GR/ACF) SMALLER THAN D50 1.54Ev01 1.17E-01 8.17E-02 5.51E-02 2.76E-02 1.50E-02 6.68E-03 4.69E-03
CUM, (GR/PNCF) SMALLER THAN 050 2.50E-01 1.90E-01 1,33E»01 8,96E«02 4.4BE-02 2.11E-02 1.09E-02 7,62E»03
GEO, MEAN DIA, (MICROMETERS) 4.31E+01 9,32E*00 5,91E*00 3.4?E*00 2.19E+00 1.32E+00 8.10E-01 5.05E-01 2.64E-01
DM/DLOGD (MG/DNCM) 2.09E+03 9,15E*02 5,32E*02 4,32E*02 6,43E*02 1.95E+02 1,59E*02 2,83E*01 5,74E»01
ON/DLOGD (NO, PARTICLES/DNCM) 2.07E+07 8,99E*08 2.05E+09 8.57E+09 4.67E+10 6,70E*10 2.38C*!! 1.74EM1 2,47E*12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG,
-109-
-------
COLI-13 I«15w76 U35 8UAI
IMPACTOR FLOWRATE • o,033 ACFM IMPACTOR TEMPERATURE « 315,0 f s 157,2 c SAMPLING DURATION s is.oo MIN
IMPACTOR PRESSURE D"OP « 2,5 IN, OF HC STACK TEMPERATURE • 315,0 F » 1ST,2 C
ASSUMED PARTICLE DENSITY a 2,40 GM/CU.CM, STACK PRESSURE = 29,91 IN, OF HS MAX, PARTICLE DIAMETER s 166,0 MICROMETERS
GAS COMPOSITION (PERCENT) C02 s 12.88 CO » 0,00 N2 • 73,60 02 « 5,52 H20 • 8,00
CALC. MASS LOADING * 1.9«32E*00 GR/ACF 3,050at+00 GR/DNCF «.««68E+03 MC/ACM 6.9804E+03 MG/DNCH
IMPACTOR STAGE cvc so st 52 sj s« ss s& FILTER
STAGE INDEX NUMBER 123456769
050 (MICROMETERS) 10,58 7,50 a,26 2,51 1,7U 0,92 0,65 0,36
MASS (MILLIGRAMS) 52,28 2,39 2,52 2,20 1,29 1.15 0,21 0,08 0,21
MG/DNCM/STAGE 5,85E*03 2,66E+02 2.62E+02 2.U6E+02 i.««E*02 1.29E*02 2.35E*01 8,96E«00 2,35E*01
CUM, PERCENT op MASS SMALLER THAN DSO 16,13 12,29 8,25 «,72 2,65 O.BI o,«7 o,3«
CUM, (MG/ACM) SMALLER THAN D50 7.17E+02 5.47E+02 3.67E+02 2,10E»02 1,18E+02 3,59E»01 2,09E»01 1.52E+01
CUM, (HG/DNCM) SMALLER THAN D50 1.13E+03 8.58E+02 3,76E*02 3.30E+02 1.B5E+02 5,63E*01 3.28E+01 2,39E*01
CUM, (GR/ACF) SMALLER THAN D50 3.13E-01 2.39E-01 1.60E-01 9.18E-02 5.15E-02 1,57E"02 9,1«E»03 6.6UE-03
CUM, (6R/DNCF) SMALLER THAN D50
-------
CQll»14 1-15..76 1155 OUAI
IMPACTOR FLOWHATE s 0,033 ACFM IMPACTOR TEMPERATURE s 3SO.O F * 154,4 C SAMPLING DURATION e 8,00
IMPACTOR PRESSURE DROP B 3,5 IN, OF HG STACK TEMPERATURE « 310,0 F » 154,4 C
ASSUMED PARTICU DFNSITY s a,40 GM/CU.CM. STACK PRESSURE e 29,91 IN, OF HG MAX, PARTICLE DIAMETER s 168,0 MICROMETERS
GAS COMPOSITION (PERCENT) COS = 12,BB CO a 0,00 N2 o 73,60 02 9 5.52 H20 B 8,00
CALC, MASS LOADING a i.0154E»00 GR/ACF l,5836t+00 SR/DNCF 2.3235E+03 MG/ACM 3,6239E*03 MG/DNCM
IMPACTOR STA5C CYC SO 31 32 S3 S4 85 86 FILTER
STAGE INDEX NUMBER 123456789
050 (MICROMETERS) 10,56 7,49 4,35 2,51 1,74 0,91 0,65 0,36
MASS (MILLIGRAMS) 12,44 1,32 1,09 1,13 0,41 0,56 0,04 0,30 0,08
MG/DNCM/STA6E 8,60E*03 2,75E*OH 2.2.7E+02 2,36E*02 8,55E*01 1.17E+02 8,35E*00 6,2&E*01 1,67E*01
CUM, PERCENT OF MASS SMALLER THAN oso as,39 20,79 i«.3i a.oi 5,65 2.42 2,19 0,47
CUM, (MG/ACM) SMALLER THAN OSO 6,60E+02 «,83E*02 3.37E+02 1,66F*02 1.31E+02 5,63E*01 5,000 1.26E+02 7,72E»01 U.82E-01 2,52E»01
OM/DLOGD (MG/DNCM) 2,16E*03 1,6«E*03 9.25E+02 1.03E+03 5,37E*02 4.19E+02 5,66E*Ol 2.39E+02 5.54E+01
DN/DLOGD (NO. PARTICLES/ONCM) 2,30E*07 2,09E*09 4,11E*09 2.36E+10 4.69E+10 1.66E+11 9.79E+10 1,70E*12 2,75E*12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG C AND 760MM HG,
-111-
-------
COU.15 1-15-75 1212 6UUAI
IMPACTOR FLOWRATE B 0,033 ACFM IMPACTOR TEMPERATURE = 310,0 f » 154,4 C SAMPLING DURATION e 8,00 MIN
IMPACTOR PRESSURE DROP « 2,5 IN, Of HG STACK TEMPERATURE * 3VO.O F • 154.« C
ASSUMED PARTICLE DENSITY » 2,40 GM/CU.CM. STACK PRESSURE B 29,91 IN, OF HG MAX, PARTICLE DIAMETER = 168,0 MICROMETERS
GAS COMPOSITION (PERCENT) C02 « 12.88 CO B o.OO N2 s 73,60 02 » 5,52 H2D « 8,00
CALC, MASS LOADING s 3,«355E*On GR/ACF 5.3580E+00 6R/DNCF 7.B615E+03 MG/ACM l,2261f+04 MG/DNCM
IMPACTOR STAGE cvc so st 82 33 s« ss 86 FILTER
STAGE INDEX NUMBER 123456789
D50 (MICROMETERS) 10,56 7.US 4,25 2,51 1,74 0,91 0,65 0.36
MASS (MILLIGRAMS) 50,95 1,34 1,44 2,38 1,23 0.83 0,28 0.07 0,2%
MG/DNCM/STAGE 1.06E+04 2.80E+02 S.OOE+02 4,97E*02 2.57E+02 1,73E*02 5.84F+01 1.46E+01 5.22E+01
CUM, PERCENT OF MASS SMALLER THAN 050 13,31 11.03 8.58 4.53 2,44 1,03 0,55 0,43
CUM, (MG/ACM) SMALLER THAN D50 J.05E+03 8.67E+02 6.75E+02 3.56E+02 1.92E+02 8,07Et01 «,32E*01 3,38E*01
CUM, (MG/ONCM) SMALLER THAN 050 1.63E+03 1.35E+03 1.05E+03 5,56E*02 2,99C*02 1,26E*02 6.74E+01 5.28E+01
CUM, (GR/ACF) SMALLER THAN 050 4.57E-01 3.79E-01 2.95E-01 l,56E«Ol 8.38E-02 3.52E»02 1.89E-02 1.48E-02
CUM, (GR/DNCF) SMALLER THAN DSO 7,13C-01 5.91E.01 4.60E-01 2.43E-01 1.31E-01 5.50E-02 2.94E-02 2.31E-02
GEO, MEAN DIA, (MICROMETERS) 4.21E*01 8.88E+00 5.63EtOO 3,26E»00 2.09E4-00 1.26E+00 7.72E-01 4,ft2E-01 2.52E-01
OM/DLOGO (MG/ONCM) 8,84E*03 l,87f*03 1.22E»03 2.17E+03 1.61E*03 6,21E*02 3,966*02 5.59E+01 1.73E+02
ON/DLOGD (NO, PARTICLES/DNCM) 9.43E*07 2.12E+09 5.44E+09 4,97E*10 1,41E*11 2,47E*U 6.85E+11 3,97E*H 8.58E+12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG C AND 760MM HG.
-112-
-------
COLI-16 i»is»76 1458 IOUAI ss MAO A MINUS MASS
IMPACTOR FLOWRATF = 0,033 ACFM IMPACTOR TEMPERATURE » 325.0 F = i62,e c SAMPLING DURATION * s.oo
IMPACTOR PRESSURE DROP * 2,5 IN, OF HG STACK TEMPERATURE » 325,0 F » 162,8 c
ASSUMED PARTICLE DENSITY « 2,01 1.06E+01 2,77E*01
cuMi PERCENT OF MASS SMALLER THAN oso 48,28 37,94 24,44 i«,59 9,07 1,78 i,78 1,29
CUM, (MG/ACM) SMALLER THAN D50 6.56E+02 5,15E>02 3.32E+02 1,98E*02 1.23E+02 2,4ir+01 2,«SE*Ol 1,75E*01
CUM, (MG/DNCM) SMALLER THAN 050 1,04E*03 8.19E+02 5.28E+02 3.19E+02 1,96E*02 3.84E+01 3,84E*01 2.78E+01
CUM, (GR/ACF) SMALLER THAN 050 2.86E-01 2.25E-01 1.45E-01 8,65E«02 5.38E-02 1.06E-02 1,06E»02 7.63E-03
CUM. (GR/DNCF) SMALLER THAN D50 4,55E«01 3.58E-01 263lE-01 1.3BE-01 8.56E-02 J,68F«02 1.68E-02 1.21E-02
GEO, MEAN DIA, (MICROMETERS) 4,23E*01 e,95E+00 5.67E*00 3,29E+00 2,10E+00 1,27E+00 7,76E-01 4.84E-01 2.53E-01
DM/DLOGD (MG/DNCM) 9,32E*02 1.49E+03 1,19E*03 9.30E+02 7.47E+02 5,fc4E+02 O.OOE-01 «,05E»01 9,19E*01
DN/DLOGD (NO, PAHTICLES/DNCM) 9.82E+06 1.66E+09 5.16E+09 2.09E+10 6.40E+10 2.20E+11 O.OOE-01 2.85E+11 U,526*12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG,
-113-
-------
COL1-17 1-15-76 1506 JUA1
IMPACTOR FLOWRATE « 0.033 ACFM IMPACTOR TEMPERATURE e 325.0 f « 162,8 C SAMPLING DURATION * 8,30
IMPACTOR PRESSURE DROP » 2.5 IN, OF HG STACK TEMPERATURE » 325,0 F « 1*2,s c
ASSUMED PARTICLE DENSITY « a,«o GM/CU.CM, STACK PRESSURE • 29,91 IN, OF HG MAX, PARTICLE DIAMETER * us.o MICROMETERS
SAS COMPOSITION (PERCENT) C02 « 12,88 CO = 0,00 N2 a 73,60 02 m 5,52 M20 " 8,00
CALC. MASS LOADING a 9.6798E-01 CR/ACF 1.5391E+00 GR/DNCF 2.21SlE*03 MG/ACM 3.5220E+03 MG/ONCM
IMPACTOR STAGE cvc so st 82 ss s« ss 36 FILTER
STAGE INDEX NUMBER 123456789
D50 (MICROMETERS) 10,63 7,53 1.28 2,53 1,75 0,92 0,65 0,36
MASS (MILLIGRAMS) 12.43 1,20 1,09 0,92 0,76 0,52 0,07 0,05 0,t4
MG/DNCM/STACE 8.55E+03 2.46E+02 2,a3C*02 1,89E*02 1.S6E+02 1.07E+02 1,««E»01 1.03E+01 2,87E*01
CUM, PERCENT OF MASS SMALLER THAN oso 27,65 20,6? m.sa 8,97 4,55 1,52 i.u o,sa
CUM, (MG/ACM) SMALLER THAN D50 6,13E+02 4,58E*02 3.17E+02 1.99E+02 1.01E+02 3,36E«01 2,46E«Ol 1.82E+01
CUM, (MG/DNCM) SMALLER THAN 050 9.7UE+02 7,28E*02 5.04E+02 3,161+02 1,60E*02 5.35E+01 3,91E«01 2.89E+01
CUM, (GR/ACF) SMALLER THAN 050 2.68E-01 2.00E-01 1.39E-01 8.68E-02 4.40E-02 1.47F-02 1.08E-02 7,94E-03
CUM, (GR/DNCF) SMALLER THAN D50 4,26E>01 3.18E-01 2.30E-01 1.38E-01 7.00E-02 2.34E-02 1.71E-02 1.26E-02
GEO, MEAN DIA, (MICROMETERS) 4,23E*01 8,95E+00 5.67E+00 3.29E+00 2.10E+00 1,27E*00 7,76E«Ol 4.84E-01 2.53E-01
DM/DLOGD (MG/DNCM) 2.13E+03 1.64E+03 9.09E+02 8.25E+02 9,77E*02 3.82C+02 9.71E+01 3.91E*01 9,53E*01
DN/DLOGO (NO, PARTICLES/ONCM) ?,24E*07 1.82E+09 3.96C*09 J.85E+10 8,376*10 1.49E+U 1,65E*H 2,74E*11 4,69E*12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG,
-114-
-------
COLI.18 1«15«76 14«5 8UAI
IMPACTOR FLOWRATE • 0,033 ACFM IMPACTOR TEMPERATURE s 325,0 F a i62,e c SAMPLING DURATION * e,5o WIN
IMPACTOR PRESSURE DROP » 2,5 IN, OF MG STACK TEMPERATURE » 325,0 F * J62,s c
ASSUMED PARTICLE DENSITY = s.ao GM/CU.CM, STACK PRESSURE * 29,91 IN, OF HG MAX, PARTICLE DIAMETER « 168,0 MICROMETERS
GAS COMPOSITION fPERCENT) C02 B 12.88 CO B 0,00 N2 « 73,60 02 " 5,52 H20 • 8,00
CAU, MASS LOADING = 1.1031E*00 GR/ACF 1,75UOE*00 GR/DNCF 2.52U3E+03 M6/ACM 0.0137E+03 MG/DNCM
IMPACTOR STAGE cvc so si sa 93 s« ss s& FILTER
STAGE INDEX NUMBER 123456789
050 (MICROMETERS! 10,63 7,53 «,28 2,53 1,75 0.92 0,65 0,36
MASS (MILLIGRAMS) 15,71 1,26 1,34 0.48 0,56 0,37 0,08 0,05 0,20
MG/ONCM/STAGE 3,iaE+03 2.52E+02 2,68Et02 9,61E+01 i,12E402 7.41E+01 1,60E+01 l.OOE+01 4,OOE,*<> 3,so i,65 1,25 1,00
CUM, (MG/ACM) SMALLER THAN 050 5,«7E*02 3,88E*02 2.19E+02 I.59E+02 8.83E+01 a,17E*01 3816E*01 2,5«+0!
CUM, (MG/DNCM) SMALLER THAN D50 B.69E+02 6.17E+02 3.89E+02 2.52E+02 10«OE+02 6a63E+01 5.02E+01 «,02E*Ol
CUM, (GR/ACF) SMALLER THAN D50 2,39E«01 1,70E-01 9,58E"02 6.94E-02 3.86E-02 1.82E-02 1,38E«>0? 1.11E-02
CUM, (GR/DNCF) SMALLER THAN OSO 3.80E-01 2,70E-01 1.52E»01 !,10E»01 6,13E"02 2.90E-02 2,20E<«0? 1.76E-02
GEO. MfAN OIA, (MICROMETERS) fl,23E+01 B.95E+00 5,67E*00 3,29E*00 2,10E+no t,27E*00 7D76E"01 a,8«E-Ol 2.53E-01
DM/DLOGD (MG/ONCM) 2,62E*03 i,fe6P+03 1,09E*03 4.20E+02 7.03E+02 2.65E+02 1.08E+02 3.81E+0) 1,33E*02
DN/DLOGD (NO, PARTICLES/ONCM) 2,77E*07 1.87E+09 4.75E+09 9,«SE+09 6.02E+10 l,01E*ll t,85E»H 2,68E*ll 6,5flE+12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG C AND 760MM HG,
-115-
-------
COLI.20 t-U.76 09fl3 11UA!
IMPACTOR FLOWRATE « 0,033 ACFM
IMPACTOR PRESSURE DROP « 2,5 IN, OF HG
ASSUMED PARTICLE DENSITY B 2,«0 GH/CU.CM,
GAS COMPOSITION (PERCENT) €0
CALC, MASS LO*OING x J,55ft9E*00 GR/ACF
JMPACTOP STAGE
STAGE INDEX NUMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DNCM/STAGE
CUM, PERCENT OF MASS SMALLER THAN D50 26,88
CUM, (MG/ACM) SMALLER THAN 050
CUM, (MG/DNCM) SMALLER THAN 050
CUM, (GR/ACF) SMALLER THAN 050
CUM, (GR/DNCF) SMALLER THAN 050
GEO, MEAN DIA, (MICROMETERS)
DM/DLOGD (MG/DNCM)
DN/DLOGD (NO, PARTICLES/ONCM)
SAMPLING DURATION
IMPACTOR TEMPERATURE • 320,0 f * 160,0 C
STACK TEMPERATURE • 320,0 f • I6o,o c
STACK PRESSURE • 29, «5 IN, OF HG MAX, PARTICLE DIAMETER = U8,0 MICROMETERS
10,00 MIN
* 12,66
CO
a
2.4950E+00
CYC
1
0.61
«,98
fl,29E*03
6,88
8,856+02
1.42E+03
3,87E*01
6.21E-01
8.22E+01
3,56E*03
3.78E+07
7
2
«
16
5
9
2
a
8
3
3
SO
2
.51
,80
.81E+02
,«*
,66E*02
.40E+02
,566-01
,11E*01
.93E+00
,21E*03
,59E+09
a
l
2
11
it
6
1
2
%
1
n
0,00
GR/DNCF
SI
3
,26
,M
,76E*02
.61
.13E+02
.63E+02
.61E.01
.90E-01
.66E+00
,12E*03
.93E+09
N2
• 73,60
02
» 5,52
3,5562E*03 MG/ACH
32
a
2,52
1,6«
2,aee*o2
6,68
2,38E»02
3,81E*02
l.OOE'Oi
1,67E»01
3,28E*00
1,23E*03
2.79E+10
S3
9
1,7«
1,25
Z.15E*02
2,92
1,002
1.26E+OQ
3.63F+02
!,a3E*ll
85
7
0,65
0,10
i,72E*01
0,65
3.01E+01
«86«e*oi
1,32E>02
2,11E-02
7.73E-01
1.16E+02
2.00E+11
0
0
1
0
2
3
9
\
H
a
3
H20 • 8,<
5.709UE+03 MG/ONI
86
8
.36
.07
,206+01
,6«
,276+01
,636*01
.9QE-03
,59002
,81E-01
.56E+01
,266+11
FILTER
9
0.21
3.61E+01
2.51E-01
1,20E+02
6.01E+12
NORMAL (BNGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG,
-116-
-------
COII.21 1-16.76 0952 7UA1
IMPACTOR FLOWRATE « 0,033 ACFM JMPACTOR TEMPERATURE s 320.0 F * 160,0 C SAMPLING DURATION = 10,00 MIN
IMPACTOR PRESSURE DROP * 2,5 IN, OF HG STACK TEMPERATURE « 320,0 F * 160,0 C
ASSUMED PARTICLE DENSITY s 2,40 GM/CU.CM. STACK PRESSURE • 29,85 IN, OF HG MAX, PARTICLE DIAMETER = 168,0 MICROMETERS
GAS COMPOSITION (PERCENT) COS * 12,88 CO * 0,00 N2 « 73,60 02 * 5,52 M20 « 8.00
CALC, MASS LOADING a l,750«t+00 GR/ACF 2,e087E+00 GR/DNCF 4.0055E+03 MG/ACM 6.4272E+03 MG/DNCM
IMPACTOR STAGE CYC SO 81 82 S3 SO S3 86 FILTER
STAGE INDEX NUMBER 1Z3«56789
D50 (MICROMETERS) 10,61 7,51 a.26 2,52 1.7JI 0,92 0.65 0,36
MASS (MILLIGRAMS) 29,69 2,09 1,90 1,61 0,71 0.69 0,53 0,04 0,17
MG/DNCM/STAGE 5.10E+03 3.S9E+02 3.26E+02 2.76E+02 1,221+02 1.18E+02 9.10E+01 6.87E+00 2,92E*01
CUM, PERCENT OF MASS SMALLER THAN oso 20,68 is.io 10,0? 5,72 s.es i,98 0,57 n.«6
CUM, (MGXACM) SMALLER THAN 050 6,28E+02 6.05E+02 «.02E*02 2,29f+02 1.53E+02 7,9aE+01 2,27E*01 1.84E+01
CUM, (MG/DNCM) SMALLER THAN 050 1,33E*03 9.70E+02 6,OflE+02 3.68E+02 2.46E+02 1.27E+02 3.64E+01 2.95E+01
CUM, (GR/ACF) SMALLER THAN 050 3.62E-01 2,6«E«01 1,75E«01 1,OOE»01 6.70E-02 3,a7E«02 9.91E-OJ 8.04E-03
CUM, (GR/DNCF) SMALLER THAN OSO 5,81E"01 «.2«E»01 2.82E-01 1.61E-01 1.07E-01 5.57E»02 1.59E-02 1.29E-02
GEO, MEAN DIA, (MICROMETERS) a,22E+01 8,93F+00 S,66EtOO 3,28E*00 2,10EtOO 1,26E*00 7.73E-01 4.81E-OJ 2.51E-01
DM/DLOGD (MG/DNCM) a,25E+03 2.39E+03 1,33E*OS 1,21E*03 7.64E+02 «.2flEf02 6,15E*02 2.61E+01 9.70E+01
DN/OLOGD (Nn, PARTICLES/ONCM) 4.50E+07 2,68E*09 5,82E*09 2.73E+10 6,61EtlO 1.67E+11 1,06E»12 1.86E+11 4.87E+12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG C AND 760MM HG,
-117-
-------
COLI-22 1-16.76 1008 9UAI
IMPACTOR FLOWRATE « 0,033 ACFM IMPACTOR TEMPERATURE s 520.0 F « 160.0 C SAMPLING DURATION s 10,00
IMPACTOR PRESSURE DROP = 2,5 IN, op HG STACK TEMPERATURF * 320,0 F » 160,0 c
ASSUMED PARTICLE DENSITY s 2.40 GM/CU.CM, STACK PRESSUHF B 29,fl5 IN, OF HG MAX, PARTICLE DIAMETER s U8,o MICROMETERS
GAS COMPOSITION (PERCENT) C02 B 12,88 CO « 0,00 N2 » 73,60 02 B 5,52 M20 a 8.00
CALC, MASS LOADING « 6.6780E.01 GR/ACF 1,0715E*00 GR/ONCF 1.5282E+03 MG/ACM 2.4520F+03 MG/DNCM
IMPACTOR STAGE CVC SO 31 32 33 S« 85 86 FILTER
STAGE INDEX NUMBER 1234567B9
050 (MICROMETERS) 10,61 7,51 «,26 2,52 1,78 0,92 0,65 0,36
MASS (MILLIGRAMS) 9,96 1,33 0,82 1,04 0,«« 0,35 0,11 0,06 0,17
MG/DNCM/STAGE 1.71E+03 2,28E+02 l,41Et02 1.79E+02 7.56E+01 6.01E+01 1,B9E+01 ta03E*01 2.92E»01
CUM, PERCENT OF MASS SMALLER THAN 050 50,26 20,94 15,20 7,92 4,80 2,39 1,62 1.20
CUM, (MG/ACM) SMALLER THAN D50 4.62E+02 3.20P.+02 2.32E*02 1.21E+02 7.39E+01 3.65E+01 2.47E+01 1.83E+01
CUM, (MG/ONCM) SMALLER THAN D50 7,42E*02 5,14E*02 3.73E+02 1.94E+02 l,19Ef02 5,B5E*01 3.96E+01 2.93E+01
CUM, (GR/ACF) SMALLER THAN 050 2,02E»01 1.40E-01 1.02E-01 5.29E-02 3.23E-02 1.59F-02 1.08F..02 7.9BE-03
CUM, (GR/ONCF) SMALLER THAN D50 3.24E-01 2.24E-01 1.63E-01 8.48E-02 5,18E«02 2.56E-02 1,73E"0? 1,28F«02
GEO, MEAN DIA, (MICROMETERS) 4,22E*01 8,93E*00 5.66E+00 3.28E+00 2.10E+00 1,26E*00 7.73E-01 4.81E-01 2.51E-01
DM/DLOGD (MG/DNCM) l,fl3E+03 1.52E+03 5.73E+02 7.81E+02 4.73E+02 2.15E+02 1.28E+02 3,91E*01 9.70E+01
DN/OLOGO (NO, PARTICLES/DNCM) 1,51E*07 J.71E+09 2.51E+09 1.77E+10 4.09E+10 8.48E+10 2,20F*11 2,79E*11 4,87E*12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 OEG C AND 760MM HG,
-118-
-------
COLI.23 1-16.76 14J3 3UAI
IMPACTOR FLOWRATE " 0,033 ACFM IMPACTOR TEMPERATURE s 330.0 F * 165,6 C SAMPLING DURATION a 10,00
IMPACTOR PRESSURE DROP * 2,5 IN, OF HS STACK TEMPERATURE a 330,0 F * 165,6 C
ASSUMED PARTICLE DENSITY e 2.40 GM/CU.CM. STACK PRESSURE s 29,44 IN, OF HG MAX. PARTTCLE DIAM£Tf.R a 168.0 MICROMETERS
GAS COMPOSITION (PERCENT) C02 a 12,8S CO a 0,00 N2 • 73,60 02 « 5,52 H20 « 8,00
CAUC, MASS LOADING s 2.4682E+00 GRXACF 4.0127E+00 GR/DNCF 5.6482E*03 MQ/ACM 9,1823E*03 MG/ONCH
IMPACTOR STAGE CYC so si sa 53 st ss 86 FILTER
STAGE INDEX NUMBF.R 123«56789
D50 (MICROMETERS) 10,66 7,55 fl.26 2,53 1,75 0.92 0,65 0,36
MASS (MILLIGRAMS) «2,a6 3,75 2,3« 2,26 1,02 0,55 0,18 0,04 0,18
MG/DNCM/STAGE 7,3
-------
COLI-24 1*16-76 1425 1UAI
IMPACTOR FLOWRATE x 0,033 ACFM IMPACTOR TEMPERATURE * 3?o,o F a 165,6 c SAMPLING DURATION s 10,00 MIN
IMPACTOR PRESSURE DROP s 2,5 IN. OF HG STACK TEMPERATURE » sso.o F « 165,6 c
ASSUMED PARTICLE DENSITY a 2.40 GM/CU.CM, STACK PRESSURE s 29,44 IN, OF HG MAX, PARTICLE DIAM&TER » i68,o MICROMETERS
GAS COMPOSITION (PERCENT) C02 • 12.68 CO » 0,00 N2 » 73,60 02 » 5,52 HZO » 8,00
CAlC, MASS LOADING s 8.7591E-01 GR/ACF 1.4240E+00 GR/DNCF 2,0044E«03 MG/ACM 3.2585E+03 M6/DNCM
IMPACTOR STAGE cvc so si sa sj 84 ss 86 FILTER
STAGE INDEX NUMBER 123456789
DSO (MICROMETERS) 10,66 7,55 a.38 2.53 1,75 0,92 0,65 0,36
MASS (MILLIGRAMS) U,45 1,74 1,52 1,07 0,64 0,78 0,19 0,13 0,21
MG/ONCM/STAGE 2.17E+03 3,03E+02 2.64E+02 1.86E+02 l.UE+02 1.36E+02 3,31E+01 ?,2bE+01 3,65E^Oi
CUM. PERCENT OF MASS SMALLER THAN 050 33.53 24,24 16.13 10.42 7.00 2,83 1,62 1,13
CUM, (MG/ACM) SMALLER THAN D50 6.72E+02 4.86E+02 3.23E+02 2609E*02 1.40E+02 5,68E+01 3,65E+01 J.26E+01
CUM, (MG/DNCM) SMALLER THAN DSO 1,09£*03 7890Et02 5.26E+02 3.39E+02 2.28E+02 9,24E«>01 5,93E«01 3.67E+01
CUM, (GR/ACF) SMALLER THAN 050 ?,94E«01 2.12E-.01 1.41E-01 9.12E-02 6,13E"02 2.48E-02 1.59E.02 9.86E-03
CUM, (GR/ONCF) SMALLER THAN DSO 4,78E«>01 3.4SE-01 2.30E-01 1,48E"01 9.97E-02 4.04E-02 2.59E.02 1.60E-02
GEO. MEAN DIA, (MICROMETERS) 4.23E+01 B.97E+00 5.69E+00 3.29E+00 2,10E*00 1.27E+00 7.76E-01 4.82E-01 2,52E^01
DM/DLOGO (MG/DNCM) 1.B1E+03 2.02E+03 1,07E*03 8,14E*02 6.97E»02 4,85E*02 2.23E+02 8.56E+01 1.21E+02
ON/DLOGD (NO. PARTICLES/DNCM) 1.90E+07 2,23E*09 «.65E*09 1,82E*10 5.95E+10 1.89E+11 3.80E+11 6.07F+11 6.07E+12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 OEG C AND 760MM HG,
-120-
-------
COLI-25 1-16-76 1108
IMPACTOH FLOWRATE a 0,057 ACFM IMPACTOR TEMPERATURE s 330,0 F a 165,6 C SAMPLING DURATION » 10,00 WIN
IMPACTOR PRESSURE DROP * 2,5 IN, OF HE STACK TEMPERATURE * 330,0 F » us.6 c
ASSUMED PARTICLE DENSITY a 2.40 GM/CU.CM. STACK PRESSURE * 29,44 IN, OF HG MAX, PARTICLE DIAMETER » 168,0 MICROMETERS
GAS COMPOSITION (PERCENT) C02 B 12,88 CO a 0,00 N2 a 73,60 02 = 5,52 H20 " 8,00
CALC, MASS LOADING a l,3993E*OQ GR/ACF 2,274<»E*00 GR/DNCF 3.2022E+03 MG/ACM 5,20586*03 NG/ONCM
IMPACTOR STAGE CVC SO 81 82 33 S4 SB S6 FILTER
STAGE INDEX NUMBER 123456769
. 050 (MICROMETERS) 10,07 7,12 4,0*1 2,38 1,65 0,86 0,61 0,33
MASS (MILLIGRAMS) 25,40 2,49 1,60 2,10 1,09 0,46 0,12 0,05 0,24
MG/DNCM/STA6E 3.94E+03 S.86E+02 2.4BE+02 3,26E*02 1,6lE"02 2,7'»E«'02 1B98E-02 1.6aE»02
GEO, MEAN DIA, (MICROMETERS) 4,iiE+oi e,47E+oo 5.36E+oo 3,ioE»oo t.<»8E*oo I,I<»E*OO 7,27E-ot 4,49e-oi 2,3je-oi
OM/OLOGD (MQ/DNCM) 3.22E+03 2,57E*03 l,01E*03 1.42E+03 1.06E+03 2,54E*02 1,25E*0? 2,89E*01 1.24E+0?
ON/OLOGD (NO, PARTICLES/ONCM) 3.69E+07 3.37E+09 5.20E*09 3.79E*10 1.08E+11 t.l^E+ll 2,59F*11 2,5aE*ll 7.75E*12
NORMAL (FNGINEERING STANDARD) CONDITIONS A"E 21 OEG C AND 760MM HG,
-121-
-------
COLI-26 1M9-76 1113 12UA! CYCLONE CATCH WAS DESTROYED
IMPACTOR FLOWRATE a 0,037 ACFM 1MPACTOR TEMPERATURE a 310,0 f a 154,4 C SAMPLING DURATION a 10,00
IMPACTOR PRESSURE DROP " 2,5 IN, OF H6 STACK TEMPERATURE « 310,0 f * 154,4 C
ASSUMED PARTICLE DENSITY B 2,40 GM/CU.CM. STACK PRESSURE a 30,06 IN, OF HG MAX, PARTICLE DIAMETER » 166,0 MICROMETERS
GAS COMPOSITION (PERCENT) C02 « 12,88 CO * 0,00 N2 a 73,60 02 « 5,52 H20 « 8,00
CALC, MASS LOADING s 2.7111E»01 OR/ACF 4,2072E«01 GR/DNCF 6.2039E+02 MG/ACM 9,6275E*02 MG/DNCM
IMPACTOR STAGE CYC so si 92 ss so ss s& FILTER
STAGE INDEX NUMBER 123456789
050 (MICROMETERS) 9,97 7,06 4.00 2,36 1,64 0,86 0,61 0,33
MASS (MILLIGRAMS) 0,00 1,92 1,45 1,27 1,26 0,24 0,16 0,02 0,18
MG/ONCM/STAGE 0,OOE«Oi 2.S4E402 2.15E+02 1,88E*02 1,87E+02 3,S5E»01 2.37E+01 2.96E+00 E.67E+01
CUM, PERCENT OF MASS SMALLER THAN D50 100,00 70,47 48,16 28,62 9,24 5,54 3,08 2,77
CUM, (MG/ACM) SMALLER THAN 050 6.20E+02 4037E*02 2,99E»02 1.78E+02 5.7SE+01 3.44E+01 1,91E*01 1,72E*01
CUM, (MG/DNCM) SMALLER THAN 050 9.63E+02 6878E+02 4,64E*02 2.76E+02 8,89E*01 5.34E+01 2,97E*01 2,67E+01
CUM, (GR/ACF) SMALLER THAN D50 2,71E«01 1.91E-01 1,31E*01 7.76E-02 2,50E»02 1.50E-02 8,36E-03 7.52E-03
CUM, (GR/DNCF) SMALLER THAN 050 «,21E<»01 2096E"01 2,03E«01 1.20E-01 3,89E»02 2.33E-02 1,30E«02 1,17E«>02
GEO, MEAN OIA, (MICROMETERS) 4.09E+01 8,39E*00 5,S2E»00 3,08E*00 l,97E*00 1.19E+00 7.24E-01 a,50E-01 2.35E-01
DM/OLOGD (MG/DNCM) 0,OOE»01 1,90E*03 8,73E*02 8,22E*02 1.17E+03 1,?7E+02 1.60E+02 1,12E*01 8.B6E+01
DN/DLOGD (NO, PARTICLES/DNCM) 0,OOE«01 2,56E*09 4.62E+09 2.25E+10 1.22E+11 6.07E+10 3.35E+11 9.77E+10 5.45E+12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG C AND 760MM HG,
-122-
-------
COLI-27 1-J9«76 1108 10UAI Sf, HAD A MINUS MASS
IMPACTOR FLOWRATE s 0,037 ACFM IMPACTOR TEMPERATURE s 310,0 F « 151,0 C SAMPLING DURATION s 10,00 MIN
IMPACTOR PRESSURE DROP = 2,5 IN, OF HG STACK TEMPERATURE s 310.0 F a 150,a C
ASSUMED PARTICLE DENSITY = 2.40 GM/CU.CM, STACK PRESSURE E 30,06 IN, OF HG MAX, PARTICLE DIAMETER = 168,0 MICKOMETtRS
GAS COMPOSITION (PERCENT) C02 ».12,88 CO » 0,00 N2 a 73,60 02 a 5,52 H20 « 8,00
CALC, MASS LOADING a 1.9291E+00 GR/ACF 2.9936E+00 GR/DNCF 4,4143E*03 MG/ACM fe,8503E + 03 MG/ONCM
IMPACTOR STAGE CYC so si s? 33 31 35 s& FILTER
STAGE INDEX NUMBER 123*1 '5 6789
D50 (MICROMETERS) 9,97 7,06 a.oo 2,36 i,6« 0,66 o,6i 0,33
MASS (MILLIGRAMS) 35,83 3,74 1,95 1,75 1,78 0,83 0,14 0,00 0,23
MG/DNCM/STAGE 5.31E+03 5.54E+02 2.89E+02 2.59E+02 2.64E+02 l,23Ef02 2.07F+01 O.OOE-01 3.41E+01
CUM, PERCENT OF MASS SMALLER THAN oso 22,53 14,45 10,23 6,45 2,60 o.eo 0,50 o.so
CUM, (MG/ACM) SMALLER THAN 050 9.95E+02 6.38E+02 4.52E+02 2.85E+02 1.15E+02 3.55E+01 2.22F+01 2.22E+01
CUM, (MG/DNCM) SMALLER THAN 050 1.54E+03 9.90E+02 7.01E+02 4,42E*02 1.78Et02 5,51E*01 3.44E+01 3.44E+01
CUM, (GR/ACF) SMALLER THAN D50 4.35E-01 2.79E-01 1.97E-01 1.24E-01 5.01E-02 1,55E»02 9.69E-03 9.69E-03
CUM, (GR/DNCF) SMALLER THAN D50 6.75E-01 4.33E-01 3.06E-01 1.93E-01 7.78E-02 2.41E-02 1.50E-02 1.50E-02
GEO, MEAN DIA, (MICROMETERS) 4.09E+01 8.39E+00 5.32E+00 3.08E+00 1.97E+00 1.19E+00 7.24E-01 4,50E»>01 2.35E-01
DM/OLOGO (MG/DNCM) 4.33E+03 3.69E+03 1.17E+03 1,13E*03 1.6SEt03 4.39E+02 1.40E+0? O.OOE-01 1.13E+0?
ON/OLOGO (NO, PARTICLES/DNCM) 5,02E*07 4.98E+09 6,22E*09 3.09E+10 1.73E+11 2.10E+11 2,93E*11 O.OOE-01 6.97F+12
NORMAL (ENGINEERING STANDARD) CONDITIONS APE 21 DEC C AND 760MM HG,
-123-
-------
COLI-28 1.19176 1050 BUAI
IMPACTOR FLOWRATF s 0,037 ACFM IMPACTOR TEMPERATURE e 3JO,0 F « 154,4 C SAMPLING DURATION s 10,00
IMPACTOR PRESSURE DROP = 2,5 IN. OF HG STACK TEMPERATURE » 310,0 F « 154,4 c
ASSUMED PARTICLE DENSITY s 2.4Q GM/CU.CM. STACK PRESSURE a 30,Ob IN, OF HG MAX, PARTICLE DIAMETER « 168.0 MICROMETERS
GAS COMPOSITION (PERCENT) C02 r 12.88 CO • 0,00 N2 e 73,60 02 B 5,52 H20 * 8,00
CALC, MASS LOADING s 1.7981E+00 GR/ACF 2.7903E+00 OR/DNCF 4.H46E + 03 MG/ACM 6,3853E*03 MG/DNCM
IMPACTOR STAGE CYC 80 81 82 S3 84 85 86 FILTER
STAGE INDEX NUMBER 123056789
DSO (MICROMETERS) 9,97 7,06 4,00 2,36 1,64 0.86 0,61 0,33
MASS (MILLIGRAMS) 33,79 1,95 2,15 2,08 2,03 0.66 0,16 O.OS 0,24
MG/DNCM/STAGE s,ooE+Q3 a,89E*o2 3,ieE+o2 S.OBE+OZ 3,oiE+oa <5,78E+oi a,37E*oi 7,«iE*oo 3,S5E«oi
CUM, PERCENT OF MASS SMALLER THAN DSO 21,62 17,10 12,11 7,29 2,5e i.os 0,68 o,56
CUM, (MG/ACM) SMALLER THAN DSO 8.90E+02 7,04E+02 4,9BE«02 3,OOEf02 1.06E+OZ 4.32E+01 2.79E+01 2,3lE*01
CUM, (MG/DNCM) SMALLER THAN DSO 1.38E+03 1,09E*03 7.73E+02 4,65E*02 1.65E+02 6,70E*01 4.33E+01 3,59E*01
CUM, (GR/ACF) SMALLER THAN DSO 3,89E«01 3,07E«01 2,18E-01 1,31E-01 4,64Et»02 1.89E.02 1,22E»02 1.01E-02
CUM, (GR/DNCF) SMALLER THAN DSO 6,03E"01 4,77E-01 3.38E-01 2,03E-01 7,20E-02 2,9JE»02 1.89E-02 1.S7E-02
GEO, MEAN DIA, (MICROMETERS) 4,09E*fll 8,39E*00 5,32E*00 3,08E+00 1,97E+00 1,19F+00 7,24E«01 4,SOE«01 2,35E«01
DM/DLOGD (MG/DNCM) 4,06E*03 1.93E+03 1.29E+03 1.35E+03 1.88E+03 3.49E+02 1.60E+0? 2.80E+01 1.18E+02
ON/DLOGD (NO, PARTICLES/DNCM) 4.74E+07 2,60E*09 6.86E+09 3,68EtlO 1.97E+11 1.67F+11 3.35E+1I 2.44E+11 7,27E»12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG,
-124-
-------
COLI-29 1-19176 1553 2UAI
IMPACTOR FLOWRATE » 0,037 ACFM
IMPACTOR PRESSURE DROP » 2,5 IN, OF HC
ASSUMED PARTICLE DENSITY r 2,40 GM/CU.CM.
IMPACTQR TEMPERATURE « 335,0 F • i62,e c SAMPLING DURATION * 10,00 MIN
STACK TEMPERATURE « 325,0 f * 162,8 c
STACK PRESSURE a 29,96 IN, OF HS MAX, PARTICLE DIAMETER » 16fl,0 MICROMETERS
GAS COMPOSITION {PERCENT) C02 * 12.88
CALC, MASS LOADING s 9.0968e«01 GR/ACF
IMPACTOR STAGE CYC
STAGE INDEX NUMBER 1
DSC (MICROMETERS) 10,01
MASS (MILLIGRAMS) 12.69
MG/DNCM/STAGE
CUM, PERCENT OF MASS SMALLER THAN 050 3.26E+10 1.20E+11 2,36E*11 2,52E*11 l,97E*Il 4,94E*12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 HEG C AND 760MM HG,
-125-
-------
COLI.30 1-19-76 1530 6UAI
IMPACTOR FLOWRATE • 0,037 ACFM
IMPACTOR PRESSURE DROP « 2,5 IN, OF HG
ASSUMED PARTICLE DENSITY = 2,40 GM/CU.CM,
SAMPLING DURATION
10,00
IMPACTOR TEMPERATURE • 335,0 F » i62.e c
STACK TEMPERATURE * 325,0 F » i62,e c
STACK PRESSURE • 29,98 IN, OF HG MAX, PARTICLE DIAMETER s 168,0 MICROMETERS
GAS COMPOSITION (PERCENT) C02 s 12,88
CALC, MASS LOADING n 1.7710E+00 GR/ACF
IMPACTOR STAGE cvc
STAGE INDEX NUMBER 1
D50 (MICROMETERS) 10, 0«
MASS (MILLIGRAMS) 27,97
MG/DNCM/STAGE
CUM, PERCENT OF MASS SMALLER THAN D50 3«,13
CUM, (MG/ACM) SMALLER THAN 050
CUM, (MG/DNCM) SMALLE" THAN D50
CUM, (GR/ACF) SMALLER THAN D50
CUM, (GR/ONCF) SMALLER THAN D50
GEO, MEAN DIA, (MICROMETERS)
DM/OLOGO (MG/DNCM)
DN/OLOGD (NO. PARTICLES/ONCM)
CO a 0,00
2.8093E+00 GR/DNCF
so si
2
7,11
«,66
3
4.03
2.72
N2 » 73,60 02 * 5,52
«,0526E*03 MG/ACM
82 33
«5
2,38 1,65
3,22 2,71
7a06E+02
23, it> 16,75
9,17 2,78
S4
6
0,86
0,80
1.21E+02
0,90
85
7
0,61
0,12
1,82
0,62
H20 t 8.00
6,«287E»03 MG/DNCM
se FILTER
fl9
0,33
O.Ofl 0,22
6S06E*00
0,52
1.3BE+03 9.38E+02 6.79E+02 3.71E+02 l,13Et02 3,65E*01 2,50E»01 2,i2E*01
2.19E+03 l,«9g+03 1.08E+03 5.B9E+02 1,79E*02 5,7"JE*01 3,97E*Ol 3,3fcE*01
6.00E-01 «,10E«-01 2.97E-01 1.62E-01 «,93E"02 S.59E-02 1.09E-02 9.26E-03
9.59E-01 6,51E»01 4,71E»01 2.56E-01 7,B2E->02 2,53E»02 1.73E-02 1.47E-02
a.HE+Ol 8,«5E+00 5,35E*00 3,10E*00 1,9RE+00 1,19E+00 7,27E»01 U,51E-01 2,35Ei.01
3.46E+03 «,70E*03 1.67E+03 2,13E*03 2.56E+03 fl,32f+02 1,22E*02 2,28E*01 1.11E+02
3,98E*07 6,20E*09 8.6BE+09 5.70E+SO 2.63E+H 2.03E+11 2.52E+11 1.97E+11 6.79E+U
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 OE6 C AND 760MM HG
-126-
-------
COLI-3! 1-19.76 1SUO 4UAI
IMPACTOR FLOWRATE B 0,037 ACFM IMPACTOR TEMPERATURE e 320.0 F * 160,0 c SAMPLING DURATION z 10,00 MIN
IMPACTOR PRESSURE DROP » 2,5 IN, OF HE STACK TEMPERATURE » 320,0 F » 160,0 c
ASSUMED PARTICLE DENSITY a 2,«0 GM/CU.CM, STACK PRESSURE * 29,98 IN, OF H6 MAX, PARTICLE DIAMETER * 168.0 MICROMETERS
GAS COMPOSITION (PERCENT) C02 * 12,68 CO » 0.00 N2 • 73,60 02 • 5.52 H20 * 8,00
CALC, MASS LOADING » 1.3017E+00 GR/ACF 2.0518E+00 GR/DNCF 2.9788E+03 MG/ACM
-------
COLI*32 1«20*76
IMPACTOR FLQWRATE • 0,037 ACFM IMPACTOR TEMPERATURE » 320,0 F « I60.o c SAMPLING DURATION B 10,00 MIN
IMPACTOR PRESSURE DROP » 2.5 IN, OF HG STACK TEMPERATURE » 320,0 F * uo.o c
ASSUMED PARTICLE DENSITY s 2,«o GM/CU.CM, STACK PRESSURE a ?9,9B IN, OF HG MAX, PARTICLE DIAMETER = i6e,o MICROMETERS
GAS COMPOSITION (PERCENT) C02 a 12,88 CO s 0,00 N2 * 75,60 02 « 5,52 H20 * 8,00
CALC, MASS LOADING x l,7097E»00 GR/ACF 2,69«8E*00 GR/ONCF 3.9123E+03 MG/ACM fe,1666E+03 MG/DNCM
IMPACTOR STAGE CYC SO SI 82 S3 S« S5 S6 FILTER
STAGE INDEX NUMBER 123056789
D50 (MICROMETERS) 10,02 7,09 fl.02 2.37 1,64 0,66 0.61 0,33
MASS (MILLIGRAMS) 32.63 2,50 1,63 1,35 1,40 0,91 0,17 0.05 0,15
MG/ONCM/STAGE «,<>tE*03 3,76E*02 2.75E+02 2,03E+02 2.UE+02 1,376*02 2,56E*01 7,52E»00 2,26E»01
CUM, PERCENT OF MASS SMALLER THAN oso 20,«o i«,30 9,ea 6,5
-------
COLI-33 1-20.76 0953 9UAI
IMPACTOR FLOWRATE • 0,037 ACFM IMPACTOR TEMPERATURE « 320,0 F • j60,o c SAMPLING DURATION = 10,00 MIN
IMPACTOR PRESSURE DROP • a,s IN, OF HG STACK TEMPERATURE = 320,0 F « i6o,o c
ASSUMED PARTICLE DENSITY s 2.40 GM/CU.CM. STACK PRESSURE s 29,98 IN, Of HG MAX, PARTICLE DIAMETER « 168,0 MICROMETERS
GAS COMPOSITION (PERCENT) COS e 12,88 CO « 0.00 N2 B 73,60 02 s 5,52 H20 « 8,00
CALC, MASS LOADING s 2.7611E+00 GR/ACF «,3521E+00 GR/DNCF 6.3184F. + P3 MG/ACM 9.9592E*03 MG/DNC*
IMPACTOR STAGE cvc so si 82 ss s« ss s& FILTER
STAGE INDEX NUMBER 123456769
DSO (MICROMETERS) 10,02 7,09 4,02 2.37 1,64 0.86 0,61 0,33
MASS (MILLIGRAMS) 53,94 3,37 2,35 3,86 1,80 0,58 0,09 0,07 0,m
MG/DNCM/STAGE 8.11E+03 5.07E+02 3.54E+02 5.81E+02 2,7lE*02 8.73E+01 1.35E+01 1.05E+01 2,11E*01
CUM, PERCENT OF MASS SMALLER THAN 050 16,52 13,43 9,88 4,05 1.33 0,46 0,32 0.22
CUM, (MG/ACM) SMALLER THAN 050 1,17E+03 6.49E+02 6.25E+02 2.56E+02 8.U3E+01 2,89Ef01 2.04E+01 1.37E+01
CUM, (MG/DNCM) SMALLER THAN 050 1.84E + 03 1.34E4-03 9.84E + 02 4,04E*02 1.33E + 02 4.56E + 01 3.21F- + 01 2.16E + 01
CUM, (GR/ACF) SMALLER THAN 050 5.11E-01 3.71E-01 2.73E-01 1.12E-01 3.68E-02 1.27E-02 8.90E-03 5.98E-03
CUM, (GR/DNCF) SMALLER THAN 050 8.06E-01 5,85E"01 4.30E-01 1.76E-01 5.81E-02 1.99E-02 1.40E-02 9.42E-03
GEO, MEAN OIA, (MICROMETERS) 4.10E+01 8.43E+00 5.S4E+00 3.09E+00 1.97E+00 1.19E+00 7.26E-01 4.51E-01 2.35E-01
DM/DLOGD (MG/ONCM) 6,63E*03 3.38E+03 1.44E+03 2,54E*03 1,69E*03 3.11E+02 9.10E+01 3,97E*01 7,OOE*01
DN/DLOGD (NO. PARTKLES/DNCM) 7.64E+07 4.49E+09 7,50Et09 6.84E+10 1.75E+11 1.47E+11 1.89E+11 3.45E+11 4.30E+12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG.
-129-
-------
COLI-34 l-20«T6 0036 7UAI
IMPACTOR FLOWRATE » 0,037 ACFM IMPACTOR TEMPERATURE • 320,0 F a i6o,o c SAMPLING DURATION « 10,00 HIN
IMPACTOR PRESSURE DROP « 2,5 IN, OF HG STACK TEMPERATURE * 320.0 f e 160,0 C
ASSUMED PARTICLE DENSITY a 2,40 GM/CU.CM, STACK PRESSURE • 29,98 IN, OF HG MAX, PARTICLE DIAMETER f 168,0 MICROMETERS
6AS COMPOSITION {PERCENT) C02 « 12,88 CO « 0,00 N2 e 73,60 02 » 5,52 H20 « fl.OO
CALC, MASS LOADING e l.7384E*00 GR/ACF 2,rfl01E*00 GR/DNCF 3,978lE*03 MG/ACM 6,270«E+03 MG/DNCM
IMPACTOR STAGE CYC SO 81 S2 S3 34 S5 86 FILTER
STAGE INDEX NUMBER 123456789
DSO (MICROMETERS) 10,02 7.09 tt,02 2.37 1,60 0.86 0,61 0.33
MASS (MILLIGRAMS) 32,42 3,15 2,17 1,75 1,30 0.55 0,07 0,14 0,13
MG/DNCM/STAGE
-------
COLI»35 1-20-7ft 1U54 1UAI
, IMPACTOR FIOWRATE a 0,037 ACFM IMPACTOR TEMPERATURE s 310,0 F « 15«,01 1.8JE-01 9,75E*02 «,23E-02 l,fc3E»02 1,2«E*02 7.21E«03
GEO. MEAN DIA, (MICROMETERS) «,09£+01 8.39E+00 5.32E+00 3,08E*00 1,97E*00 1,19E*00 7.24E-01 fl,50E»01 2,3ttE=01
OM/DLOGD (MG/ONCM) 1.50E+OS 3,61E*03 l,l«E*03 8.37E+02 7.90E+02 2.12E+02 6,OOE*01 a,«9E*01 5,«3E*01
DN/OL060 (NO, PARTICLES/DNCM) 1.75E+07 a,86E+09 6,05E*09 2.29E+10 8,27E*10 1.02E+H 1.26E+H 3.93E+JI 3,36E*12
NORMAL.. (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG C AND 760MM HG,
-131-
-------
COL 1.56 1-30.76 1«U2 JUAI
IMPACTOR FLOWRATE • 0,037 ACFM IMPACTOR TEMPERATURE a 310,0 F » isa.u c SAMPLING DURATION s 10,00
IMPACTOR PRESSURE DROP « 2,5 IN, OF HG STACK TEMPERATURE « 310.0 r * isa.a c
ASSUMED PARTICLE DENSITY s 2,40 GM/CU.CM, STACK PRESSURE e 29,96 IN, OF HG MAX. PARTICLE DIAMETER * ifcS.O MICROMETERS
GAS COMPOSITION (PERCENT) C02 * 12,88 CO * 0,00 N2 « 73,60 02 » 5,52 H20 • 8,00
CALC, MASS LOADING s 1.2759EtOO GR/ACF 1.9866E+00 GR/DNCF 2.9197E+OS MG/ACM 4.S460E+03 MG/ONCM
IMPACTOR STAGE CYC so si 82 ss s« ss 86 FILTER
STAGE INDEX NUMBER 123*56789
DSO (MICROMETERS) 9,97 7,06 4,00 2,36 1,64 0,86 0,61 0,33
MASS (MILLIGRAMS) 22,15 3,07 1,63 1,45 0,98 0,63 0,11 0.02 0,15
MG/DNCM/STAGE 3,29E+03 S.16E+02 2.42E+02 2.1SE+02 1.46E+02 9.36E+01 1.63C+01 2.97E+00 2,23E*01
CUM, PERCENT OF MASS SMALLER THAN DSO 27,60 16,25 10.92 6,ia 2,96 0,92 o,36 o.so
CUM, (MG/ACM) SMALLER THAN DSO a,06E+02 «,75E*02 3.19E+02 1.61E+02 8.TOE+01 2.69E+01 1.64E+01 S.U5E+01
CUM. (MG/DNCM) SMALLER THAN DSO 1,?5E+03 7,39£*02 <».97E+02 2.81E+02 1.35E+02 «,18E»01 2,55E»Ol 2,25Et01
CUM, (GR/ACF) SMALLER THAN 050 5.52E-01 8.07E-01 1.39E-01 7.89E-02 3.80E-02 1.17E-02 7.15E-03 6.32E-03
CUM, (GR/DNCF) SMALLER THAN 050 5.48E-01 3.23E-01 2.17E-01 J.23E-01 5.92E-02 1.83E-02 1.11E-02 9,8flE-03
GEO, MEAN DIA, (MICROMETERS) «,o9E+oi 8,39t+oo s,32E+oo S.OSE+OO i,97E+oo i,i9E+oo 7,2«E-oi O.SOE-OI a,34E»oi
DM/DLOGD (MC/DNCM) 2.68E+03 3.44E+03 9,8«E+02 9,41E*02 9.11E+02 3.34E+02 1.10E+02 1.12E+01 7,«1E*01
DN/DLOGD (NO. PARTICLES/DNCM) 3.12E+07 H.64E+09 5.22E+09 8,57EtlO 9.54E+10 1.60E+11 2.31E+H 9.82E+10 4,58E*12
NORMAL (ENGINEERING STANDARD) CONDITIONS A»E 21 OEG C ANO 760MM HG,
-132-
-------
COLI-37 l«20-76 1430 5UAI
IMPACTOR FLOWRATE « 0.037 ACFM IMPACTOR TEMPERATURE e 312,0 F = 155,6 C SAMPLING DURATION z io,00
1MPACTOR PRESSURE DROP « 2,5 IN. OF HG STACK TEMPERATURE « 51?,0 F « 155,6 C
ASSUMED PARTICLE DENSITY = 2,10 GM/CU.CM. STACK PRESSURE B 29,96 IN, OF HG MAX, PARTICLE DIAMETER e 168,0 MICROMETERS
GAS COMPOSITION (PERCENT) C02 « 12,88 CO a 0,00 N2 « 73,60 02 » 5,52 M20 » 8,00
CALC, MASS LOADING « 1,77B9E*00 GR/ACF 2.7770E+00 GR/DNCF 4.0707E+03 MG/ACM 6,354TF*03 MG/DMCM
IMPACTOR STAGE CVC SO SI 82 83 84 85 86 FILTER
STAGE INDEX NUMBER 123056789
D50 (MICROMETERS) 9.98 7,06 11.01 2,37 1.64 0,86 0,61 0,33
MASS (MILLIGRAMS) 34,39 2,21 1,50 2,16 1,20 0,59 0,35 0,07 0,1«
MG/DNCM/STAGE 5,12E+03 3.29E+02 2.29E+02 3,22E*02 1.79E+02 8.79E+01 5.21E+01 l.OOE+01 2.09E+01
CUM, PERCENT OF MASS SMALLER THAN oso 19,37 i«,i9 io.se 5,51 2,70 1,32 o.so 0,33
CUM, (MG/ACM) SMALLER THAN 050 7.89E+02 5.78E+02 0.31E+02 2,2«Et02 1,10E*02 5,37E*01 2.02E+01 1.36E+01
CUM, (MG/DNCM) SMALLER THAN 050 1,23E*03 9.02E+02 6.72E+02 3.50E+02 1.7?E»02 fl,38E*01 3,16E»Ol 2.12E+01
CUM, (GR/ACF) SMALLER THAN 050 3.15E-01 2.52E-01 l,e8E»01 9.B1E-02 4.81E.02 2.34E-02 8.85E-03 5.93E-03
CUM, (GR/DNCF) SMALLER THAN 050 5.3SE-01 3.94E-01 2.94E-01 1.53E-01 7.50E-02 3.66E-02 1,3R|»02 9,25E«03
GEO, MEAN OIA, (MICROMETERS) fl,09E+01 8.40E+00 5,32E*00 S.OBEtOO 1.97E+00 1.J9E+00 7.21E-01 a,50E"01 2.3«E»01
DM/OLOGD (MG/DNCM) 4.18E+03 2,19E*03 9.32E+02 1,«1E+03 1,12E*03 3,1«E+02 3,51E»02 3,9«E*0» 6.93F+OJ
DN/DLOGD (No, PARTICLES/DNCM) 4.84E + 07 2.95E + 09 «.93E»09 3.83E+1Q 1.17E + 11 1.50E*tl 7,35E*11 3,«
-------
OUTLET IMPACTOR DATA
-134-
-------
1COLO-12 l»12-76 1705
IMPACTOR FLOWRATE * 0,500 ACFM
IMPACTOR PRESSURE DROP a 0,7 IN, OF HG
ASSUMff) PARTICLE DENSITY s 2,40 GM/CU.CM,
IMPACTOR TEMPERATURE = 270,0 F » 132.2 c
STACK TEMPERATURE « 270,0 F = 132,2 C
STACK PRESSURE = 29,68 IN, OF HG MAX, PARTKU DIAMETER =
SAMPLING DURATION 3 90,00
GAS COMPOSITION (PERCENT) C02 = 12,68
CALC, MASS LOADING s 1.4952E-03 GR/ACF
IMPACTOR STAGE SI
STAGE INDEX NUMBER 1
050 (MICROMETERS) 9,35
MASS (MILLIGRAMS) 1,68
CO a 0,00
2.2582E-03 GR/DNCF
82 S3
23
6,56 «,0«
0,11 0.18
1,99E+00 1,30E-01 2,13E«01
CUM, PERCENT OF MASS SMALLER THAN 050 61,47 58,95 54,82 48,17
34
4
2,84
0,29
N2 » 75,60 02
3.4216E+00 MG/ACM
S5
5
l,8fl
fl.08
9,«8E«02
46.34
5,52
S6
6
0.85
0,46
5.45E.C
5.78
0
0
)1 3
29
87
7
,50
.27
.20E-01
.59
CUM, (MG/ACM) SMALLER THAN 050
CUM, (MG/DNCM) SMALLER THAN 050
CUM, (GR/ACF) SMALLER THAN D50
CUM, (GR/DNCF) SMALLER THAN D50
GEO, MEAN DIA, (MICROMETERS)
OM/OLOGD (MG/DNCM)
DN/DLOGO (NO, PARTICLES/ONCM)
2.10E+00 2.02E+00 1,88E*00 1,65E*00 1.59E+00 1.22E+00 1.01C+00
3.18E+00 3.05E+00 2.83E+OQ 2.49E+00 2.39E+00 1,956+00 1.53E+OQ
9,19E»04 8,81E-04 6,20E»04 7.20E-04 6.93E-04 5.35E-04 4.42E-04
1.39E-03 1,33E"03 1.24E-03 1,09E«03 1.05E-03 8.08E-04 6.68F-04
2.16E+01 7.83E+00 5.15E+00 3.38E+00 2.29E+00 1.25E+00 6.53E-01
2.73E+00 8.47E-Q1 1.01E+00 2.24E*00 5.07E-01 1.62E+00 1,41E*00
2.15E+05 1.40E+06 5.91E+06 4.60E+07 3.37E+07 6.57E+08 4.02E+09
50,0 MICROMETERS
H20 a 8,00
5.1675E+00 MG/ONCM
Sfl FILTER
89
0,37
0,21 1.08
2.49E-01 1.28E+00
24,78
8.48E-01
1.28E+00
3.70E-04
5.59E-04
4.JOE-01 2.60E-OJ
1.84E+00 4.2SE+00
1.84E+10 1.93E+H
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG C AND 760MM
-135-
-------
!COUO-t3 l-l?-76 1711
IMPACTOR FLOWRATE * O.SSB ACFM IMPACTOR TEMPERATURE e 370.0 F » 132,2 c SAMPLING DURATION • <»o,oo MIN
IMPACTOR PRESSURE DROP * 0,7 IN, OF HG STACK TEMPERATURE » 27o,o F » 132,2 c
ASSUMED PARTICLE DENSITY s 2,40 GM/CU.CM, STACK PRESSURE « 29,68 IN, OF HG MAX, PARTICLE DIAMETER " 50,0 MICROMETERS
GAS COMPOSITION (PERCENT) C02 B 12,88 CO a 0,00 N2 e 73,60 02 « 5,52 H20 « 8.00
CAlC. MASS LOADING « 7.2349E-04 GR/ACF 1.0927E-03 GR/DNCF 1.6556E+00 MG/ACM 2.50Q4E+00 MG/DNCM
IMPACTOR STAGE si 82 ss s« ss s* 37 se FILTER
STAGE INDEX NUMBER 1 23056789
oso (MICROMETERS) 9,01 6,32 3,99 2,73 1,77 o.ei o,«e 0,35
MASS (MILLIGRAMS) 0,98 0,20 0,27 0,24 0,08 0,09 0,02 0,00 0,00
HG/DNCM/STAGE 1.08E+00 2.20E-01 2.97E«01 2,64CpQl 8.81E-02 5.29E-01 2.20E-02 0,OOE«01 O.OOE.01
CUM, PERCENT OF MASS SMALLER THAN 050 56,83 48,02 36.15 25,56 22.03 0,89 0,01 0.01
CUM, (MG/ACM) SMALLER THAN D50 9,41E*01 7,95£»01 5.98E«01 4,23E*01 3.65E-01 1,47E»02 8.28E-05 6.28E-05
CUM, (MG/DNCM) SMALL?" THAN 050 1,42E*00 1.20E+00 9.031-01 6.39E-OJ 5,5tE«01 2.22E-02 1.25E-04 1.25E-04
CUM, (GR/ACF) SMALLER THAN 050
-------
1COLO-15 1-13-76 1218 PORTS 1,2,3
IMPACTOR FLOWRATE s 0,396 ACFM IMPACTOR TEMPERATURE B 280,0 f * 137.8 C SAMPLING DURATION = 120,00 MJN
IMPACTOR PRESSURE DROP » 0,5 IN, OF HG STACK TEMPERATURE • 280,0 F » 137,e c
ASSUMED PARTICLE DENSITY s 2.40 GM/CU.CM, STACK PRESSURE 3 29,50 IN, OF HG MAX, PARTICLE DIAMETER « 50,0 MICROMETERS
GAS COMPOSITION (PERCENT) C02 * 12,88 CO » 0,00 N2 « 73,60 02 « 5,52 H20 « 8,00
CALC, MASS LOADING * 2.9437E«03 GR/ACF 4.5342E-03 GR/DNCF 6.7361E+OQ MG/ACM 1.0376Et01 MG/ONCM
IMPACTOR STAGE SI 82 S3 54 85 86 57 38 FILTER
STAGE INDEX NUMBER 123456789
D50 (MICROMETERS) 10,55 7,40 4.56 3,21 2,09 0,97 0,58 0,«3
MASS (MILLIGRAMS) 0,82 0,50 1,12 1,00 1,23 1,70 1,61 0,68 0,45
MG/DNCM/STAGE 9,346-01 5.69E-01 1.2BE+00 1.14E+00 1.40E+QO i,94E»00 1,63E»00 7.74E-01 5,13E«-01
CUM, PERCENT OF MASS SMALLER THAN D50 91,00 85,52 73,22 62,24 48,74 30,08 12,41 a.9<|
CUM, (MG/ACM5 SMALLER THAN 050 6.13E+00 5.76E+00 4.93E+00 4.19E+00 3.28E+00 2.03E+00 8,36E«01 3.33E-01
CUM, (MG/DNcM) SMALLER THAN 050 9.44E+00 8.87E+00 7',60E+00 6,46E*00 5.06E+00 3.12E+00 1.29E+00 5,13E«01
CUM, (GR/ACF5 SMALLER THAN 050 2,68E«03 2.52E-03 2.16E-03 1,83C»03 1.43E-03 8.B6E-04 3,65E-Oa t,46E-04
CUM, (GR/DNCF) SMALLER THAN D50 4.13E-03 3,88E-03 3,32E»03 2,82E«03 2.21E-03 1.36E-03 5,63E*0« 2.24E-04
GEO, MEAN DIA, (MICROMETERS) 2.30E+01 8,84E+00 5,81E*00 3.82E+00 2.59E+00 1,42E*00 7,fl5E»01 4.9SE-01 3,OIE»01
DM/DLOGD (MG/DNCM) 1.3J3E+00 3,70E*00 6.06E+00 7.45E+90 7.52E+00 5.78E+00 8,16r*00 5.94E+00 1,70E*00
DN/DLOGD (NO, PARTICLE8/DNCM) 9.08E+04 «,27E+06 2.46E+07 1.06E+08 3.45E+08 1,61E*09 1.57E+10 3.89E+10 4,95E*10
NORMAL (ENGINpfRING STANDARD) CONDITIONS APE 21 DEG C AND 760MM HG,
-137-
-------
1COLO-16 l«13-76 1224 PORTS 4,5,6
IMPACTOR FLOWRATE = o,«o3 ACFM IMPACTOR TEMPERATURE « 280,0 r » 137.e c SAMPLING DURATION a 120.00 MIN
IMPACTOR PRESSURE DROP * 0,5 IN. OF HC STACK TEMPERATURE • 280,0 F » 137,8 C
ASSUMED PARTICLE DENSITY • 2,40 GM/CU.CM. STACK PRESSURE s 29,50 IN, OF H6 MAX, PARTICLE DIAMETER « 50,0 MICROMETERS
GAS COMPOSITION (PERCENT) COS a 12,88 CO a 0,00 N2 « 73,60 02 s 5,52 M20 » 8,00
CALC, MASS LOADING s 4.3678E-03 GR/ACF 6.7587E-03 GR/ONCF 1,00«1E+01 MG/ACM 1,5«66E»01 MG/ONCM
IMPACTOR STAGE si S2 33 s« ss 86 57 SB FILTER
STAGE INDEX NUMBER t23«56789
050 (MICROMETERS) 10,
-------
1COLO-1S 1-13-76 1634 PORTS' «.5,6
IMPACTOR FLOWRATE « 0,394 ACFM IMPACTOR TEMPERATURE » 2so.o F « 137.8 c SAMPLING DURATION a 120,00 MIN
IMPACTOR PRESSURE DROP = 0,5 IN, OF HG STACK TEMPERATURE s 380,0 F » 137,8 C
ASSUMED PARTICLE DENSITY e 3.40 GM/CU.CM, STACK PRESSURE » 39,42 IN, OF HC MAX, PARTICLE DIAMETER « 50,0 MICROMETERS
GAS COMPOSITION (PERCENT) C02 « 12,88 CO a 0,00 N2 * 75,60 02 • 5,52 H20 a 8,00
CAU, MASS LOADING 9 4.2922E-03 GR/ACF 6.6294E-03 GR/DNCF 9.8221E+00 MG/ACM 1,5170E»01 MG/ONCM
IMPACTOR STAGE 81 82 S3 8« 85 86 87 88 FILTER
STAGE INDEX NUMBER 123456789
050. (MICROMETERS) to,6o 7,«4 «,SB 3,22 2,10 0,97 o.sa 0,43
MASS (MILLIGRAMS) 2.45 2,0« 2.21 1.75 1,39 1.58 1,16 0,57 0,00
MG/DNCM/STAGE 2.83E+00 2,S5E*00 2.55E*00 2,OaE+00 1,60E*00 1,82E+00 1,34E*00 6,53E«01 0,OOE«Ot
CUM, PERCENT OF MASS SMALLER THAN 050 Rt.37 65,66 49,05 35,75 25,IB 13,16 4,34 0,01
CUM, (MG/ACM) SMALLER THAN 050 7.99E+00 6,47E*00 4.82E+00 3,51E*.QO 2,47E*00 1,29E*00 4.26E-OJ «,9lE«0«
CUM, (MG/ONCM) SMALLER THAN 050 1.23E+01 9.99E+03 7.44E+00 5,«2E+00 3.82E+00 2,00r*00 6.58E-01 7.S9E-04
CUM, (GR/ACF) SMALLER THAN 050 3.49E-03 2,83E-03 2,ilE-03 1.53E-03 1.08E-03 5.6SE-04 1,86E»04 2.15E-07
CUM, (GR/DNCF) SMALLER THAN 050 5.39E-03 4.37E-03 3.25E-03 2.37E-03 1.67E-03 8.72E-04 2.88E-04 3.31E-07
GEO, MEAN DIA, (MICROMETERS) 2.30E+01 6.88E+00 5,84E*00 3,84E*00 2.60E+00 1,43£*00 7,U9E»OJ «,98E"01 3,03E»01
DM/OLOGO (MG/ONCM) 4,2-OE+OO 1.53E+01 1.21E+01 1.32E+01 8,61E*00 5.44E+00 5,96e+00 5.05E+00 O.OOE-61
ON/DLOGO (NO, PARTICLES/DNCM) 2.74E+05 1.74E+07 4.84E+07 1.85E+08 3,89E*Ofi 1.49E+09 1.13E+10 3.25E+10 O.OOF-01
NORMAL (FNGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG,
-139-
-------
1COLO»19 1-15-76 1650 PORTS 1,2.3
IMPACTOR FLOWRATE a 0,«01 ACFM IMPACTOR TEMPERATURE » 280,0 F a 137,8 C SAMPLING DURATION = 120,00
IMPACTOR PRESSURE DROP = o.s IN, OF HG STACK TEMPERATURE * 200,0 F * 137,6 c
ASSUMED PARTICLE DENSITY * 2.40 GM/CU.CM. STACK PRESSURE s 29,42 IN, OF HG MAX, PARTICLE DIAMETER a 50,0 MICROMETERS
CAS COMPOSITION (PERCENT) CO? « 12,88 CO * 0,00 N2 » 73,60 02 B 5,52 H20 * 8.00
CALC, MASS LOADING « 6.455BE-03 GR/ACF 9.9711E-03 GR/DNCF 1.4773E+01 MG/ACM 2,8B|7E*01 MG/DNCM
IMPACTOR STAGE SI 82 S3 84 85 S6 87 88 FILTER
STAGE INDEX NUMBER 123456789
050 (MICROMETERS) 10,51 7,37 «,5« 3,19 2,08 0,96 0,57 0,«2
MASS (MILLIGRAMS) 5,50 2,87 2.57 i,6« 1,60 3.13 1,82 0,37 0,58
MS/DNCM/STAGE 6,23E+00 3,2St+00 2,91E*00 1,92E*00 1.8lEtOO 3,55E+00 2,06E+00 «,19e»0l 6,57Ei.01
CUM, PERCENT OF MASS SMALLER THAN 050 72,68 SB,as «5,66 37,26 29,31 13,77
-------
1COLO*28 1»16»76 0917 PORTS 4,6
IMPACTOR FLOWRATE « 0,415 ACFH IMPACTOR TEMPERATURE « 300.0 F * 148,9 C SAMPLING DURATION > 80,00 MIN
IMPACTOR PRESSURE DROP * 0,5 IN, OF H6 STACK TEMPERATURE « 300,0 F « 148.9 C
ASSUMED PARTICLE DENSITY > 2.40 CM/CU.CM. STACK PRESSURE « 29.45 IN, OF HG MAX, PARTICLE DIAMETER * 50.0 MICROMETERS
GAS COMPOSITION (PERCENT) COS « 12.68 CO « 0.00 N2 . T3.60 02 « 5,52 H20 • 8.00
CALC, MASS LOADING a 1.1374E.02 GR/ACF 1.8025E.02 GR/DNCF 2.6029E+01 MG/ACM «.12«7E*01 MG/DNCM
IMPACTOR STAGE SI 82 83 Sfl SS S6 87 88 FILTER
8TASE INDEX NUMBER 123156789
050 (MICROMETERS) 10.03 7,32 fl,5l 3,17 2.06 0,95 0.56 0.42
MASS (MILLIGRAMS) 5,38 2,51 3.02 2,01 2,8
-------
1COLO-29 1-16-76 0914 PORTS 1,?
IMPACTOR FLOWRATE s 0,39a ACFM IHPACTOR TEMPERATURE a 300,0 F * 108,9 C SAMPLING DURATION « 80,00
IMPACTOR PRESSURE DROP « 0,5 IN. OF HG STACK TEMPERATURE » 300,0 F * I4fl,9 C
ASSUMED PARTICLE DENSITY = 2.40 GM/CU.CM. STACK PRESSURE • 29,45 IN. OF HG MAX. PARTICLE DIAMETER » 50,0 MICROMETERS
GAS COMPOSITION (PERCENTJ C02 B 12,88 CO « 0,00 N2 • 73,60 02 « 5,52 H20 m 8,00
CALC, MASS LOADING a 8.8570E.03 GR/ACF 1,4035E«02 GR/DNCF 2.0268E+01 MS/ACM 3.2U6E + 01 MG/DNCM
IMPACTOR STAGE SI 52 S3 84 35 86 87 88 FILTER
STAGE INDEX NUMBER 123*156789
D50 (MICROMETERS) 10,71 7,51 4.63 3,25 2,12 0,98 0,58 0,«3
MASS (MILLIGRAMS) 0,00 2,46 1,33 2,16 2,«7 5,19 2,39 0,67 !,««
MG/DNCM/STAGE O.OOE-Ol 4,37E*00 2.36E+00 3,83E*00 4.39E+00 9,2tE+00 4.24E+00 1.19E+00 2.52E+00
CUM, PERCENT OF MASS SMALLER THAN oso **,** 86,«i 79,05 67,11 ss,«6 24,77 ii,56 7,85
CUM, (MG/ACM) SMALLER THAN 050 2.03E+01 1.75E+01 1.60E+01 1.J6E+01 1.08E+OI 5.02E+00 2.34F+00 l,59EtOO
CUM, (MG/DNCM) SMALLER THAN 050 3,21E*Oi 2,78E+01 2,54Et01 2,16C>»Oi i,72C4>Oi 7,96EfOO 39riE*00 2,52E+00
CUM, (GR/ACF) SMALLER THAN 050 8,86E»03 7,65E"03 7,OOE>03 5,94E*03 4.73E-03 2.19E-03 i,02E«03 6,96E-04
CUM, (GR/DNCF) SMALLER THAN D50 1.40E-02 1.21E-02 1,11E»02 9.42E-03 7.50E-03 3,«8E-03 1.62E-03 1.10E-03
GEO, MEAN DIA, (MICROMETERS) ?,3iE+oi s,97E+oo s,90E*oo s.see+oo 2,63C+oo i,a«E*oo 7,55E-oi S.OIE-OI S.OSE-OI
DM/DLOGD (MG/ONCM) O.OOE-01 2,84E*01 1,12E*01 2,51E*Ol 2.35E+01 2.75E+01 t,88E*01 9,096*00 8,38E*00
DN/DLOGO (NO, PARTICLES/DNCM) O.OOE-Ot 3,13E*07 «,35E+07 3,421+08 J.03E+09 7.33E+09 3.49E+10 5.76E+10 2.36E+U
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE ?1 DEC C AND 760MM HG,
-142-
-------
1COLO-30 1-16-76 13«2 PORTS 1,2,3
IMPACTOR FLOWRATE • o.aie ACFM IMPACTOR TEMPERATURE = 300,0 F « i«e,9 c SAMPLING DURATION * 90,00
IMPACTOR PRESSURE DROP = 0,5 IN, OF HG STACK TEMPERATURE = 300,0 F » 148,9 C
ASSUMED PARTICLE DENSITY s 2,40 GM/CU.CM. STACK PRESSURE e 29,US IN, OF HG MAX, PARTICLE DIAMETER = 50,0 MICROMETERS
GAS COMPOSITION (PERCENT) C02 * 12.88 CO = 0,00 N2 B T3.60 02 * 5,52 H20 = fi.OO
CALC, MASS LOADING = 1.1367E.02 6R/ACF 1.8013E-02 GR/DNCF 2.6012E+01 MG/ACM 4.1220E+01 MG/DNCM
IMPACTOR STAGE SI 82 S3 34 S5 S6 S7 Sfl FILTER
STAGE INDEX NUMBER 123«5678»
D50 (MICROMETERS) 10,39 7,29 4,49 3,16 2,05 0,95 0,56 0.42
MASS (MILLIGRAMS) 3,29 2,60 5,02 3,14 4,64 5,47 2,30 0.25 0,80
MG/DNCM/STAGE 4,69E+00 3,87E+00 7,47E*00 4.&7E+00 7,2oe+00 e,14E*00 3,42E+00 3,72E"Ol 1,19E»00
CUM, PERCENT OF MASS SMALLER THAN 050 ee.is 79,75 60,63 49,30 31,83 12,09 3,79 2,69
CUM, (MG/ACM) SMALLER THAN 050 2.29E+01 2.05E+01 1.58E+01 1.28E+01 8,2BE*00 3.15E+00 9.87E-01 7.52E-01
CUM, (MG/ONCM) SMALLER THAN D50 3.63E+01 3,25E*01 2.50E*01 2.03E+01 1,31E*01 4.99E+00 1.56E+00 1.19E+00
CUM, CGR/ACF) SMALLER THAN D50 l.OOE-02 8.95E-03 6.89E-03 5.60E-.03 3.62E-03 1.37E-03 4.31E-04 3.29E-04
CUM, (GR/DNCF) SMALLE" ™AN 050 1.59E-02 1.42E-02 1.09E-02 8.88E-03 S.73E-03 2.18E-03 6,83E-04 5.21E-04
GEO, MEAN DIA. (MICROMETERS) 2.28E+01 8,70E+00 5,72E*00 3.76E+00 2,55E*00 1.39E+00 7.30E-01 4,83E»01 2,9«E-01
DM/OLOGD (MG/DNCM) 7.17E+00 2.51E+01 3.55E+01 3.0SE+01 3.B6E+01 2.42E+01 1.51E+OJ 2,82E*00 3.95E+00
DN/DLOGD (NO, PARTICLES/DNCM) 4.82E+05 3.03E+07 1.51E+08 4.56E+08 1.86E+09 7.10E+09 3.10E+10 1.99E+10 l,24E*ll
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 OEG C AND 760MM HG,
-143-
-------
1COLO-31 1-16-76 1336 PORTS a,5,6
IMPACTOR FLOWRATF a 0,115 ACFM IMPACTOR TEMPERATURE « 300,0 F « 108,9 C SAMPLING DURATION = 90,00 MIN
IMPACTOR PRESSURE DROP = 0,5 IN, OF HG STACK TEMPERATURE « 300,0 F = iue.9 c
ASSUMED PARTICLE DENSITY e 2,40 GM/CU.CM. STACK PRESSURE a 29,45 IN, OF HG MAX, PARTICLE DIAMETER * 50,0 MICROMETERS
GAS COMPOSITION (PERCENT) COS s 12,88 CO s 0,00 N2 " 73,60 02 » 5,52 H20 « 8,00
CALC, MASS LOADING • 1,15696.02 GR/ACP 1.8333E-02 GR/DNCF 2,6«7flE+01 MG/ACM «,1953E+01 MG/DNCM
IMPACTOR STAGE si 82 S3 s« ss 86 s? SB FILTER
STAGE INDEX NUMBER 123«S6769
050 (MICROMETERS) lO.flS 7,32 «.51 3,17 2,06 0,95 0,56 0,82
MASS (MILLIGRAMS) fl,13 2,83 3,19 3,79 2,97 «,73 2,81 1,2« 2,31
MG/DNCM/STAGE 6,19E*00 «,2«E+00 «.78E+00 5,68E+00 «,«5E+00 7.09£+00 «,21E+00 1.86E+00 3,46EtOO
CUM, PERCENT OF MASS SMALLER THAN oso 85,25 75,15 63.75 50,22 39,6i 22,72 12,68 8,25
CUM, (MG/ACM) SMALLER THAN 050 2,26E+01 1.99E+01 1,69E*01 1.33E+01 1.05E+81 6.01E+00 3.36E+00 2,19EtOO
CUM, (MG/ONCM) SMALLER THAN 050 3.58E+Q1 3.15E+01 2.67E+01 2,116+01 1.66E+01 9,53E«00 5.32E+00 3,00 1,«OE»00 7.33E-01 «.85E»01 2,95E«01
OM/OLOGO (MG/DNCM) 9.09E+00 2.76E+01 2.27E+01 3,71E*01 2.38E+01 2.11E+01 l,86C*Ol 1,«1E+01 1.15E*01
ON/DLOGD (NO, PARTKLESXDNCM) 6.08E+05 3.29E+07 9,5«E+07 5,«8E+08 1,1UE»09 6.12C+09 3.77C+10 9.63E+10 3.57E+11
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG,
-144-
-------
1COLO-36 1-19.76 1541 PORTS 1,2,3
IMPACTOR FLOWRATE s 0,399 ACFM IMPACTOR TEMPERATURE * 285,0 F = 140,6 C SAMPLING DURATION = 64,00
IMPACTOR PRESSURE DROP = 0,5 IN, OF HG STACK TEMPERATURE * 285,0 F = 140,6 C
ASSUMED PARTICLE DFNSITY s 2.40 GM/CU.CM, STACK PRESSURE e 30,06 IN, OF HG MAX, PARTICLE DIAMETER « 50,0 MICROMETERS
GAS COMPOSITION (PERCENT) C02 * 12.8« CO = 0,00 N2 = 73,60 02 a 5,52 H20 e 8,00
CALC, MASS LOADING = 1,6203E«02 GR/ACF 2.4659E»02 GR/DNCF 3.7078E+01 MG/ACM 5.6428E+01 MG/DNCM
IMPACTOR STAGE SI 82 S3 S4 85 S6 87 S6 FILTER
STAGE INDEX NUMBER 123456789
050 (MICROMETERS) 10,56 7,41 4,57 3,21 2,09 0,97 0,58 0,43
MASS (MILLIGRAMS) 3,53 3,78 4,87 4,65 4,80 6,99 4,23 1,18 1,16
MG/DNCM/STAGI 5.66E+00 6.06E+00 7.81E+00 7.46E+00 7.70E+00 1.12E+01 6.78E+00 1.89E+00 1.86E+00
CUM, PERCENT OF MASS SMALLER THAN oso 39,97 79,23 65,39 52,18 38,54 is,66 6,65 3,30
CUM, (MG/ACM) SMALLER THAN 050 3.34E+01 2,945+01 2.42E+01 1.93E+01 1.43E+01 6.92E+00 2.47E+00 1.22E+00
CUM, (MG/DNCM) SMALLER THAN D50 5.08E+01 4.47E+01 3.69E+01 2.94E+01 2.17E+01 1.05E+01 3.76E+00 1.86E+00
CUM, (GR/ACF) SMALLER THAN OSO 1,46E»02 1,28E"02 1,06E»02 8.45E-03 6.24E-03 3.03E-03 1.08E-03 5.35E-04
CUM, (GR/DNCF) SMALLER THAN 050 2.22E-02 1.9SE-02 1.61E-02 1.29E-02 9.50E-03 4.61E-03 1.64E-03 8.14E-04
GEO, MEAN DIA, (MICROMETERS) 2.30E+01 8.85E+00 5.82E+00 3.83E+00 2.59E+00 1.42E+00 7,47E«0] 4.97E-01 3.03E.01
DM/DLOGO (MG/DNCM) 8.36E+00 3.94E+01 3.71E+01 4.88E+01 4.13E+01 3,35E*01 3.02E+01 1.46E+01 6.18E+00
ON/DLOGD (NO, P4RTICLES/ONCM) 5.50E+05 4.53E+07 1.50E+08 6.91E+08 1.89E+09 9.25E+09 S.76E+10 9.44E+10 1 77E+H
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG.
-145-
-------
ICOLO-37 1-19-76 1544 PORTS a,5,6
IMPACTOR FLOWRATE « 0,396 ACFM IMPACTOR TEMPERATURE si 285,0 F * 140,6 C SAMPLING DURATION a 64,00
IMPACTOR PRESSURE DROP • o.s IN, OF HO STACK TEMPERATURE • 285,0 F » MO,6 c
ASSUMED PARTICLE DENSITY x 2,40 GM/CU.CM, STACK PRESSURE « 30,06 IN, OF HG MAX, PARTICLE DIAMETER * 50.0 MICROMETERS
GAS COMPOSITION (PERCENT) C02 e 12,68 CO « 0.00 N2 a 73,60 02 « 5,52 H20 « 8,00
CALC, MASS LOADING « 1.340SE.02 GR/ACF 2.0398E-02 GR/DNCF 3,0671E*Ol MG/ACM 4,6677Ef01 MC/DNCM
IMPACTOR STAGE si 82 ss s« s? 86 57 SB FILTER
STAGE INDEX NUMBER 123456769
DSO (MICROMETERS) 10,60 7,a« 4.S6 3,23 2,10 0,97 0,58 0,43
MASS (MILLIGRAMS) 5,40 2,32 2,95 2,61 3,27 5,73 3,52 2,01 1,06
MG/ONCM/STAGE e,72E«oo S.TSE+OO «,77E*oo O.ZEE+OO 5,2SE*oo 9,26E40o s,69E*oo j,25E+oo i,7«E*oo
CUM, PERCENT OF MASS SMALLER THAN DSO 91,31 73,28 63,07 54,04 42,72 22,68 10,70 3.74
CUM, (MG/ACM) SMALLER THAN 050 2.49E+0! 2,25E+01 l,93E+Oi 1,66E+01 l,3tE+Oi 7.02E+00 3.2BE+00 1.15E+00
CUM, (MG/DNCM) SMALLER THAN 050 3.80E+01 3,»2E*01 2,94E*01 2.S2C+01 1,99E*01 1,07E»01 4.99E+00 1,75E*00
CUM, (GR/ACF) SMALLER THAN 050 1,09E«02 9.82E-03 6.45E-03 7,24E«03 5.73E-03 3,07E«03 1.43E.03 5,02E»Ofl
CUM, (GR/DNCF) SMALLER THAN DSO 1,66E«02 1.49E-02 1.29E-02 1.10E-02 6,7lE«03 4.67E-03 2.18E-03 7.64E-04
GEO, MEAN DIA, (MICROMETERS) 2.30E+01 8,88E*00 5.84E+00 3.65E+00 2.60E+00 1.43E+00 7.SOE-01 4.99E-01 3.04E-01
OM/DLOGD (MG/DNCM) 1,30E*01 2.44E+01 2.27E+01 2.76E+01 2.84E+01 2.77E+01 2.54E+01 2.50E+01 5,80E»00
DN/OLOGD (NO, PARTICLES/ONCM) 8,45E*05 2.77E+07 9,05E*07 3.87E+08 1.28E+09 7.55E+09 4,77E»10 1.60E+11 1,64E*11
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 OEG C AND 760MM HG,
-146-
-------
1COLO-39 l-20-76> 0943 PORTS 1,2,5
IMPACTOR FLOWRATE = o.aio ACFM IMPACTOR TEMPERATURE = 280,0 F » 137.8 c SAMPLING DURATION = 120.00
IMPACTOR PRESSURE DROP « o.s IN, OF HG STACK TEMPERATURE B seo.o P * 137,8 c
ASSUMED PARTICLE DENSITY = 2,40 GM/CU.CM, STACK PRESSURE s 30,00 IN, OF HG MAX, PARTICLE DlAMETfR • 50,0 MICROMETERS
SAS COMPOSITION (PERCENT) co2 * ifc.se co • o.oo N2 » 75,60 02 * 5,52 H2o • e,oo
CALC, M»SS LOADING • u,6b7UE*03 6R/ACF 7,069«E««03 GR/DNCF 1.0681E+01 MG/ACM 1.6177E+01 MG/DNCM
IMPACTOR STAGE 81 52 S3 3i 2,62 t,B9 0,73 0,22
MG/DNCM/STAGE 2,70E*00 1,3«E*00 1,83E*00 2,09E*00 2,08E*00 3,07E*00 2,05E*00 7,9«E*Oi 2,39E«OJ
CUM, PERCENT OF MASS SMALLER THAN oso B3,3« 75,07 6J.78 50,88 38,o« 19,09 6,39 i,«e
CUM, (MG/ACM) SMALLER THAN D50 8.90E+00 6.02E+00 6.81E+00 5,U3E*00 fl,06E*00 2.04E+00 6.82C-01 1.58E-01
CUM, (MG/DNCM) SMALLER THAN 050 1.35E+01 1.21E+01 1,03E*01 8,23E»00 6.15E+00 3.09EtOO 1,03E*00 2,«OE-01
CUM, (GR/ACF) SMALLER THAN 050 3,fl9E«03 3.50E-03 2.98E-03 2,37E«03 1.78E-03 8,91E»0« 2,98E-Oa 6.92E-05
CUM. (GR/D^CF) SMALLER THAN 050 5,89E«.03 5.31E-03 «.51E«03 3.60E-03 2.69E-03 1.35P.03 «,52E-0« 1.05E-04
GEO, MEAN DIA, (MICROMETERS) 2.28E+01 8,71E*00 5.72E*00 3.77E*00 2.55E+00 1,40E»00 7.30E.01 «t,86E-01 2.97E-01
DM/OLOCD (MG/DNCM) 3,95E*00 8.70E + 00 8.68E*00 1.S7E + 01 l.HE + 01 9.15F + 00 9,1/lE + OO 6.10E + 00 7.95E-01
ON/DL06D (NO. PARTICLES/DNCM) 2.66E*05 1.05E+07 3,68E»07 2,03E*08 5,35E*08 2.66E+09 1.8SE+10 fl,17E*10 2.41E+JO
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG,
-147-
-------
1COL0.40 1»20»76 0945 PORTS 4,5,6
IMPACTOR FLOWRATE e 0,581 ACFM 1MPACTOR TEMPERATURE a 280,0 F x 137,8 C SAMPLING DURATION « 120,CO
IMPACTOR PRESSURE DROP * 0,5 IN, OF HG STACK TEMPERATURE = 280,0 F « 137.8 C
ASSUMED PARTICLE DENSITY • 2,40 GM/CU.CM. STACK PRESSURE • 30,00 IN, OF HG MAX, PARTICLE DIAMETER » 50,0 MICROMETERS
GAS COMPOSITION (PERCENT) C02 « 12,68 CO « 0.00 N2 « 73,60 02 " 5,52 H20 « 8,00
CALC, MASS LOADING » 5,S796E«03 SR/ACF B.4511E-03 GR/DNCF 1,27686*01 MG/ACM t,9339E*01 MG/DNCM
IMPACTOR STAGE si 32 33 s« ss 86 37 SB FILTER
STAGE INDEX NUMBER 123056789
050 (MICROMETERS) 10,78 7,57 4.66 3,28 2,14 0.99 0,59 0,44
MASS (MILLIGRAMS) 3,08 2,16 2,18 2,48 2,33 2,71 1,52 0,07 0,00
MG/DNCM/STAGE 3.60E+QO 2.53E+00 2.55E+00 2.90E+00 £,73E*00 3.17E+00 i,78E«00 8.19E-02 O.OOE-Oi
CUM, PERCENT OF MASS SMALLER THAN 050 si,37 68,31 55,12 «o,n 26,02 9,62 0,43 o.oi
CUM, (MG/ACM) SMALLER THAN D50 1.04E+01 8.72E+00 7,04E*00 5,12E*00 3,32E*00 1,23E»00 5.47E-02 6.38E-04
CUM, (MG/DNCM) SMALLER THAN D50 1.57E+01 1.32E+01 1,07£*01 7.76E+00 5.03E+00 1.86E+00 8.29E-02 9,67E*04
CUM, (GR/ACF) SMALLER THAN OSO 4.54E-03 3,81E«03 3.08E»03 2.24E-03 1.45E-03 5,S7E"0« 2,39E»05 2,79C«07
CUM, (GRXDNCF) SMALLER THAN D50 6,88E*03 5.77E-03 4.66E-03 3.39E-03 2,20E«03 8.13E-04 3.62E-05 4.23E-07
OEO, MEAN DIA, (MICROMETERS) 2,32E*Oi 9,03E+00 5,94E+00 3,91E*00 2,65E+00 1,46E+00 7,65E«01 5S10E»01 3.11E-01
DM/DLOGD (MG/DNCM) 5,41£+00 1.64E+01 1.21E+01 1.90E+01 1.46E+01 9,48E*00 7,95E*00 6,34E«Ol 0,OOE«01
DN/DLOGD (NO, PARTICLES/DNCM) 3.44E*05 t,77E*07 4.60E+07 2.53E+08 6.27E+08 2,«5E*09 1.41E+10 S,80E*09 O.OOE-01
NORMAL (ENGINEERING STANDARD) CONDITIONS A»E 21 DEC C AND 760MM HG,
-148-
-------
ICOLO-41 1-20-76 IU17 PORTS 4,5,6
IMPACTOR FLOwRATE » 0.598 ACFM IMPACTOR TEMPERATURE » 276.0 f e 135,6 C SAMPLING DURATION r 120,00 WIN
IMPACTOR PRESSURE D«OP * 0,5 IN, OF HG STACK TEMPERATURE » 376,0 F = 135,6 C
ASSUMED PARTICLE DENSITY * 2.40 GM/CU.CM, STACK PRESSURE » 30,00 IN. OF HC MAX, PARTICLE DIAMETER a 50,0 MICROMETERS
GAS COMPOSITION (PERCENT) C02 3 12.88 CO a 0,00 N2 • 73,60 02 • 5,52 H20 « 8,00
CALC, MASS LOADING m 4.58S1E.03 GR/ACF 6.9073E-03 GR/DNCP 1.0492E+01 MG/ACM 1,5806E*01 MG/ONCM
IMPACTOR STAGE 31 32 S3 S4 85 86 87 Sfl FILTER
STAGE INDEX NUMBER 123456709
050 (MICROMETERS) 10,53 7,39 4.55 3,20 2,09 0,97 0,58 0,43
MASS (MILLIGRAMS) 2,53 1,26 3.05 1,83 1,72 2,20 0,98 0,33 0,29
MG/ONCM/STAGE 2,82E+00 l,«oe+00 3,40E*00 2,04E+00 1,92E*00 2,45E*00 1,09€*00 3.68E-01 3,23E»01
CUM, PERCENT OF MASS SMALLER THAN 050 82,18 73,30 51.80 38,91 26,78 11,28 4,37 2,05
CUM, (MG/ACM) SMALLER THAN D50 8.62E+00 7.69E+00 5.44E+00 4.08E+00 2.81E+00 1,18E»00 4.59E-01 2.15E-01
CUM, (MG/DNCM) SMALLER THAN 050 1.30E+01 1.16E+01 6.19E+00 6.15E+00 4.23E+00 1,78E*00 6,91E«Ol 3.24E-01
CUM, (GR/ACF) SMALLER THAN 050 3,77E-03 3.36E-03 2.38E«'03 1.78E-03 1.2JE-03 5,17E«04 2.01E-04 9.39E-05
CUM, (GR/ONCF) SMALLER THAN OSO 5.68E-03 5.06E-Q3 3.58E-03 2.69E-03 1.B5E-03 7.79E-04 3.Q2E-04 1.42E-04
GEO, MEAN CIA, (MICROMETERS) 2.29E+01 8,82E+00 5.eoE+00 3,82E+00 2,b8E*00 1.42EfOO 7.46E-01 4.96E-01 3.02E-01
DM/DLOGO (MG/DNCM) 4.1.6E+00 9.13E*00 1.62E+01 1.33E+01 1.03E+01 7.32E*00 4,87E*00 2.83E+00 1.07E+00
DN/DLOGO (NO. PARTlCLES/ONCM) 2,74E*05 1.06E+07 6,59E*07 1.91E+08 4.74E+08 2.04E+09 9,35E*09 t.SSEtlO 3,09E»10
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG C AND 760MM HG,
-149-
-------
icoLO-42 1-20.76 i
-------
APPENDIX B
Figures 1 and 2 show penetration-efficiency curves for half-normal
and normal current density operation. In these figures data are
plotted for measurements made with calibrated and uncalibrated
impactors and ultrafine measurements made with the ultrafine par-
ticle sizing system.
Since these data were first reduced, the impactors used in field
test measurements have been calibrated according to the procedures
given in EPA reports 600/2-76-118 * and 600/2-77-0042. In addition
the upper stages of each type of impactor used were calibrated with
ammonium fluorescein aerosols in the size range from 2 urn to 8 ym.
Typical impactor calibrations were reported in EPA report 600/2-76-2803
"Particulate Sizing Techniques for Control Device Evaluation: Cascade
Impactor Calibrations".
The effect of these calibrations is shown in the figures. Data
recalculated for calibrated impactors are shown as solid circles with
50% confidence intervals. Data for uncalibrated impactors are shown
with solid triangles with no confidence intervals drawn. Ultrafine
data are plotted with open circles and 50% confidence intervals. In
general calibrated and uncalibrated impactor data follow approximately
the same shape curve with the notable difference of uncalibrated
impactor data at 0.45 ym.
-151-
-------
a
M
h-
UJ
bJ
U
QL
hi
a.
PESETRATION-EFFICieCY
03L8ERT - EFFIOaCT - HWAL 1-1S-76.1-13-7G
101-:
10°,:
lO'H
10'
::30.0
5 5
• «
»*».
• Calibrated Impactor Data
Uncalibrated Impactor Data
o Ultrafine Data
*!
& <
M U
M y
u. i
11_
111 r
h- y
2: u
bJ K
U bl
bJ
CL
i i i Mini—i i i mn|—i i i uin|-_gg.33
10°
Figure 1.
PARTICLE DIAMETER (MICROMET
Half normal current density penetration-efficiency
graph with calibrated and uncalibrated cascade impactor
and ultrafine data shown. The uncalibrated impactor
data is shown without confidence intervals. 50%
confidence intervals are shown for all other data.
-152-
-------
PE1SETRATIDN-EFFICIENCY
COLBERT - EFFIOOO - HQOAL M3-7E.1-20-7G
-l_l_; -
m*
IDS
-7-
5 :
M
h-
<
DC
h-
U
z
£ 10°,
•
«
h-
z
LJ
U
e
Q_
ICT1-
•
*
*
4
M
M
4i
-i o-2_
; • Calibrated Impactor Data
A Uncalibrated Impactor Data
•
o Ultrafine Data
•
•
™ (
: J
: ll 1.
»
»
to
•
•
•
— i iiium — v-
A
I» A.
, *,' '**
1 *' ,
A
i 4
[ -*si
".•4" :
*
V •
I
M
I -
•
f :
•
•
4k
i i HUH — i i i mill — i i i inn
f U«U
»
»
V
»
•
:30.0
• >-
U
-j?
LJ
M
U
J— 1
• I
b_
-39oOJij
h-
z
LJ
U
Q£
LJ
DL
3S.9
RR.RR
v-2
1O"C 10"1 10° 101 1O2"
PARTICLE DIAMETER (MICROMETERS)
Figure 2,
Normal current density penetration-efficiency graph
with calibrated and uncalibrated cascade impactor
and ultrafine data shown. The uncalibrated impactor
data is shown without confidence intervals. 50%
confidence intervals are shown for all other data.
-153-
-------
REFERENCES
1. Calvert, S., Lake, C., and Parker, R., "Cascade Impactor
Calibration Guidelines", Air Pollution Technology, Inc.
EPA Contract No. 68-02-1869, U.S. Environmental Protection
Agency, Industrial Environmental Research Laboratory, Report
EPA-600/2-76-118. Research Triangle Park, N.C., April, 1976.
2. Harris, D. B., "Procedures for Cascade Impactor Calibration
and Operation in Process Streams", U.S. Environmental Pro-
tection Agency, Industrial Environmental Research Laboratory,
Report EPA-600/2-77-004. Research Triangle Park, N.C.,
January, 1977.
3. Gushing, K., Lacey, G., McCain, J., and Smith, W., "Particulate
Sizing Techniques for Control Device Evaluation: Cascade
Impactor Calibrations", Southern Research Institute, EPA
Contract No. 68-02-0273. U.S. Environmental Protection Agency,
Industrial Environmental Research Laboratory, Report EPA-600/
2-76-280, Research Triangle Park, N.C., October, 1976.
-154-
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
. REPORT NO.
EPA-600/2-77-011
3. RECIPIENT'S ACCESSION-NO.
4. TITLE AND SUBTITLE
Particulate Collection Efficiency Measurements on an
ESP Installed on a Coal-fired Utility Boiler
5. REPORT DATE
January 1977
6. PERFORMING ORGANIZATION CODE
7. AUTHORS John P. Gooch, G.H. Marchant, Jr. , and
Larry G. Felix
8. PERFORMING ORGANIZATION REPORT NO.
SORI-EAS-76-471
3540-1
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Southern Research Institute
2000 Ninth Avenue South
Birmingham, Alabama 35205
10. PROGRAM ELEMENT NO.
1AB012; ROAP 21ADL-027
11. CONTRACT/GRANT NO.
68-02-2114, Task 1
12. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
Task Final; 1-9/76
14. SPONSORING AGENCY CODE
EPA-ORD
is. SUPPLEMENTARY NOTES JJERL-RTP project officer for this report is L.E. Sparks, Mail
Drop 61, 919/549-8411 Ext 2925.
is. ABSTRACT The reporj. gjves results of fractional and overall collection efficiency mea-
surements of an electrostatic precipitator collecting fly ash from a coal-fired boiler
burning high-sulfur coal. The mass median diameter of the particulate entering the
collector was approximately 40 micrometers; that leaving the collector was between
3 and 4 micrometers. Measurements were conducted at two levels of precipitator
operating current density. Measured efficiencies were compared with those predicted
from a computer model of electrostatic precipitation. Measured efficiencies are
higher than predicted.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
Air Pollution
Measurement
Dust
Electrostatic
precipitation
Boilers
Coal
Fly Ash
Mathematical Models
13. DISTRIBUTION STATEMENT
Unlimited
•
EPA Form 2220-1 (9-73)
b.lDENTIFIERS/OPEN ENDED TERMS
Air Pollution Control
Stationary Sources
Particulate
Collection Efficiency
19. SECURITY CLASS (This Report)
Unclassified
20. SECURITY CLASS (This pane)
Unclassified
COSATI Field/Croup
13B 21D
14B 21B
11G 12A
13H
13A
161
22. PRICE
-155-
------- |