United States
Environmental Protection
Agency
Environmental Sciences Research EPA-600/3-80-029
Laboratory February 1980
Research Triangle Park NC 27711
Research and Development
Computer
Modeling of
Simulated
Photochemical
Smog
Final Report
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:
I. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7 Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports
This report has been assigned to the ECOLOGICAL RESEARCH series. This series
describes research on the effects of pollution on humans, plant and animal spe-
cies, and materials. Problems are assessed for their long- and short-term influ-
ences. Investigations include formation, transport, and pathway studies to deter-
mine the fate of pollutants and their effects. This work provides the technical basis
for setting standards to minimize undesirable changes in living organisms in the
aquatic, terrestrial, and atmospheric environments.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-600/3-80-029
February 1980
COMPUTER MODELING OF SIMULATED PHOTOCHEMICAL SMOG
Final Report
by
D. G. Hendry, A. C. Baldwin, and D. M. Golden
SRI International
333 Ravenswood Avenue
Menlo Park, California 94025
Contract No. 68-02-2427
Project Officer
Marcia C. Dodge
Atmospheric Chemistry and Physics Division
Environmental Sciences Research Laboratory
Research Triangle Park, North Carolina 27711
ENVIRONMENTAL SCIENCES RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
RESEARCH TRIANGLE PARK, NORTH CAROLINA 27711
-------
DISCLAIMER
This report has been reviewed by the Environmental Sciences Research
Laboratory, U.S. Environmental Protection Agency, and approved for
publication. Approval does not signify that the contents necessarily
reflect the views and policies of the U.S. Environmental Protection
Agency, nor does mention of trade names or commercial products constitute
endorsement or recommendation for use.
ii
-------
ABSTRACT
The chemistry by which hydrocarbons affect photochemical smog
formation has been investigated using computer modeling techniques.
Detailed chemical kinetic mechanisms for the atmospheric reactions of
toluene, m-xylene, propene, ethene, formaldehyde, and acetaldehyde were
constructed from available experimental and chemical kinetic data.
These mechanisms were used to simulate smog chamber data from both the
Statewide Air Pollution Research Center at the University of California
at Riverside and the outdoor facility at the University of North Carolina
at Chapel Hill.
In general, the simulations predict the experimentally observed
time-concentration for NO, N02, and hydrocarbons quite well. The rate
of buildup of ozone is also well predicted, although the maximum con-
centrations of ozone as well as the time to reach the maxima are over-
predicted 30%-50% in many cases.
This report was submitted in fulfillment of contract number
68-02-2427 by SRI International under the sponsorship of the U.S. Environ-
mental Protection Agency. This report covers a period from 1 September 1977
to 31 August 1979, and work was completed as of 30 November 1979-
iii
-------
CONTENTS
Abstract iii
Figures vi
Tables vii
1. Introduction 1
2. Conclusions and Recommendations 5
3. Approach 8
Smog Chambers 8
Light Intensity Calculations 9
Chamber Characteristics 9
Modeling Technique 10
4. Aromatic Hydrocarbons 11
Contribution of Aromatics to Total Atmospheric
Hydrocarbons 11
Reactions of Aromatic Hydrocarbons 12
Products of Reaction of Aromatic Hydrocarbons .... 14
Toluene-OH Reactions 20
Reactions of Cresol 26
NO Oxidation and NOX Consumption in Toluene Reaction . 26
Mechanism for Modeling Toluene Smog Chamber Data ... 29
Toluene Simulation Results 34
Mechanism for Modeling m-Xylene Smog Chamber
Experiments 42
m-Xylene Simulation Results 45
5. Alkenes 51
Mechanism 51
SAPRC Data Set 52
UNC Data Set 62
6. Alkanes 65
Mechanism 65
SAPRC Data Set 65
UNC Data Set 65
7. Aldehydes 74
Mechanism 74
SAPRC Data Set 74
UNC Data Set 74
References 80
Appendices
A. Simulation of Aromatic Hydrocarbon Chamber Runs 85
B. Simulation of Alkehe Chamber Runs 139
C. Simulation of n-Butane and Aldehyde Chamber Runs .... 185
-------
FIGURES
Number Page
1 Simulation of SAPRC Toluene Run EC-266 41
2 Simulation of UNC Toluene Run 8.16.78 Red 43
3 Simulation of UNC Toluene Run 9.14.78 Red 44
4 Simulation of SAPRC m-Xylene Run EC-344 48
5 Simulation of SAPRC Propene Run EC-277 . 56
6 Simulation of SAPRC Ethene Run EC-156 57
7 Simulation of UNC Propene Run 6.16.78 Blue 63
8 Simulation of UNC Ethene Run 11.19.78 Red 64
9 Simulation of SAPRC Butane Run EC-309 69
10 Simulation of UNC Butane Run 2.27.78 Red 73
11 Simulation of SAPRC Acetaldehyde Run EC-253 76
12 Simulation of SAPRC Formaldehyde Run EC-252 77
13 Simulation of UNC Acetaldehyde Run 8.08.78 Red 78
14 Simulation of UNC Formaldehyde Run 9.14.77 Red 79
v±
-------
TABLES
Number Page
1 Atmospheric Reactions of Toluene 13
2 Reported Rate Constants for Reaction of OH Plus Aromatic
Hydrocarbons 14
3 Observed Products from SAPRC Chamber Run EC-273 .... 15
4 Fraction Methyl Attack by OH for Several Aromatic
Hydrocarbons 18
5 Atmospheric Reactions of Cresols 27
6 Analysis of Selected SAPRC Smog Chamber Experiments . . 28
7 Toluene Mechanism 36
8 Inorganic Reactions . 38
9 Summary of Initial Conditions for Smog Chamber
Experiments for Toluene and m-Xylene 39
10 Comparison of Experimental and Simulation Results for
Toluene and m-Xylene Chamber Experiments 40
11 m-Xylene Mechanism 46
12 Propene Mechanism 53
13 Ethene Mechanism 55
14 Summary of Initial Conditions for Smog Chamber
Experiments for Propene 58
15 Comparison of Experimental and Simulation Results for
Propene Chamber Experiments 59
16 Summary of Initial Conditions for Smog Chamber
Experiment for Ethene 60
17 Comparison of Experimental and Simulation Results for
Ethene Chamber Experiments 61
18 n-Butane Mechanism 66
vii
-------
19 Summary of Initial Conditions of Miscellaneous Smog
Chamber Experiments 70
20 Comparison of Experimental and Simulation Results for
Miscellaneous Chamber Experiments 71
21 Aldehyde Mechanism 75
viii
-------
SECTION 1
INTRODUCTION
To assist the United States Environmental Protection Agency in
developing models to describe the chemistry of photochemical smog forma-
tion, SRI International has continued to develop explicit mechanisms
describing the chemistry of individual hydrocarbons.1 This report
discusses our efforts during the past two years to develop mechanisms
describing the chemistry of aromatic hydrocarbons and simple alkenes
and alkanes. EPA-supported smog chamber data from the Statewide Air
Pollution Research Center (SAPRC) at the University of California,2
Riverside, and the outdoor facility at the University of North Carolina3
have been used to test and verify these models.
Considerable effort has been made to develop detailed models to
describe the photochemical smog chemistry of individual hydrocarbons.
Demerjian, Kerr, and Calvert^ and Niki, Daby, and Weinstock5 were the
first to work on problems of developing detailed mechanisms. Hecht,
Seinfeld, and Dodge6 investigated constructing a more compact mechanism
while maintaining important details generalizing certain reactions.
.Whitten et al.7 have also worked on developing detailed mechanisms,
but with the goal of developing a method to generalize the reactivity
of a wide variety of hydrocarbons. The most recent effort to update
the complex chemistry of propene and n-butane, besides our own effort,
is the work of Carter et al.8 who have applied the mechanisms to modeling
SAPRC data.
Our general approach to developing the kinetic models has been
to use critically evaluated kinetic data for each of the reactions
wherever possible. Where data on specific reactions were not available
or not at the appropriate temperature and pressures, we have used thermo-
chemical techniques to estimate the desired rate constants. Whenever
thermochemical data were used to predict rate constants, error bounds
-------
were determined for both the thermochemical estimates and the resulting
rate constants. If needed, we varied the estimated rate constants
within these error limits to optimize the agreement between computed
and experimental concentration-time profiles. This type of procedure
can artificially compensate for other inaccuracies in the model and
reduce the reliability of the model for application to conditions
at atmospheric concentrations of reactants. When rate constants
were varied to optimize agreement between simulated and experimental
results, the mechanisms for different hydrocarbons were considered
together and the rate constants of concern were adjusted as a group.
In this way we used the maximum possible data base to guard against
fortuitous compensations obscuring deficiencies in the mechanisms.
The major effort in model development during the last two years
has been on the toluene mechanism. The experimental data base has
been enlarged since our report two years ago,1 but the product balances
in chamber experiments still account for less than 30% of the carbon
for the most complete product analyses. The major changes
in the toluene mechanism have been made based on the following new
experimental data.
(1) A smog chamber study of o-xylene has shown that one
reaction channel, accounting for 18% of the reaction of OH
with o-xylene, gives biacetyl as a product.9 A similar type
of ring cleavage reaction has been assumed for toluene
where glyoxal and methylglyoxal are formed. There are
no data from smog chamber experiments that these compounds
form, but they would readily polymerize and react with hy-
droxylic compounds and may be extremely difficult to quan-
titatively measure or even detect using direct gas chromatography
techniques.
(2) New laboratory data on the reaction of benzaldehyde plus
OH indicate that only the following reaction is important
-------
CHO 0=
+ OH —*- fVj I + H20
with no evidence of ring addition of the type observed for
alkyl-substituted aromatic hydrocarbons.10
(3) Laboratory data have been reported for the chemistry of
peroxybenzoyl nitrate (PBzN).1* The reactions that have
been evaluated are
PhC(0)02« + N02 —*- PhC(0)02N02
PhC(0)02N02 —»- PhC(0)02« + N02
PhC(0)02» + NO —*- PhC(0)0« + N02
PhC(0)0« *- Ph» + C02
These data fix the role of PBzN in the toluene mechanism and, together
with data on the reaction of OH and benzaldehyde, clarify the role of
benzaldehyde in the overall toluene mechamism, although the fate of
Ph» is still unknown.
The major change in the mechanisms for alkenes is the observation
of Herron and Huie12 that the reaction of alkene plus ozone does not
form free radicals as readily as was originally thought. For ethene,
the reported reactions are
CH2-CH2 + 03 —*- CH20 + CH202
207
CH202 > H2 + C02
CH202 70%> H20 -I- CO
-------
107
CH2Oa » 2H- + C0
Thus the interaction of ethene and 03 gives a pair of radicals only
10% of the time rather than the 100% that had been assumed earlier
by most modelers.
-------
SECTION 2
CONCLUSIONS AND RECOMMENDATIONS
Models have been developed to describe the participation of toluene,
m-xylene, ethene, propene, and n-butane in the formation of photochemical
smog. Each model uses the best kinetic data available and is chemically
consistent with the others. Some adjustment of unknown rate constants
was necessary to give good agreement between the smog chamber experiments
and the simulations. Although this has been especially true for the
models for the aromatic hydrocarbons, it was also necessary to a lesser
extent for ethene, propene, and n-butane. The amount of adjusting of
parameters has been kept to a minimum, and although better overall
agreement could undoubtedly be obtained by further fitting, it would
not necessarily improve the predictability of the model under atmospheric
conditions and would certainly obscure the deficiencies of the models.
A toluene mechanism has been developed that reflects the chamber
data observation that approximately three NO are oxidized and one NO
3C
is consumed for each toluene molecule reacted. The mechanism has
been applied to 31 SAPRC and 2 UNC toluene runs. In the simulation
of the SAPRC data, the average time to N02 maximum was 4(±26)% greater
than observed, and the N02 maximum concentration was 8(±6)% higher.
The simulated ozone maximum came 32(±28)% later than observed, and the
maximum concentration was 47(±39)% larger-. The data for ozone reflect
the tendency to predict the correct initial ozone formation rate but
not to predict the leveling off in the ozone formation at the maximum.
This phenomena is not unique to toluene and appears to be related to an
overprediction of H02" once the NO is essentially totally consumed.
A
A model for the reaction of m-xylene was constructed based on
the toluene model and taking into account both the higher reactivity
of m-xylene and the additional methyl group in the parent hydrocarbon.
-------
Using the four SAPRC m-xylene runs to test the model, we found the
simulated time to the ozone maximum 36(± 44)% high and the maximum
ozone concentration 17(± 16)% high.
With minor changes in kinetic models describing the photochemical
smog chemistry of ethene, propene, and n-butane, proposed earlier,1
both new SAPRC and UNC smog chamber experiments for these hydrocarbons
have been simulated with relatively good results. The modeling of
the outdoor UNC chamber requires no modification of the homogeneous
mechanisms used for SAPRC data, although some changes in heterogeneous
processes were made as would be expected. It is only necessary to
account for diurnal and seasonal effects on light intensity at each
wavelength as well as the random variation of temperature and cloud
cover. In all cases it was necessary to use initial nitrous acid as
an adjustible parameter. In the case of the propene experiments, where
there is the best data base, the ozone maxima are overestimated by
31(±37)% in the SAPRC experiments (13 runs) and 18(±35!X% in the
UNC experiments (17 runs) . The ethene and n-butane mechanism overestimates
ozone similarly.
To improve our ability to model photochemical smog and increase the
accuracy of our current mechanisms, we recommend that the following informa-
tion be obtained:
(1) Analyze the loss mechanisms of relevant species at the
point of experimental ozone maximum to determine what reactions
and rate constants can cause the observed discrepancies in
the ozone maximum and the time to ozone maximum.
(2) Obtain complete product analysis for the toluene smog chamber
experiments as well as product analyses for other aromatic
hydrocarbons.
(3) Determine rates and pathways for photolysis of the critical
photoactive intermediates that are proposed in the toluene
mechanisms.
(4) Determine mechanisms of the reactions of alkenes with ozone.
(5) Determine alternative decomposition pathways for peroxynitrates.
-------
(6) Determine effect of beta-OH-substituents on rates and products
of cleavage of alkoxy radicals.
-------
SECTION 3
APPROACH
SMOG CHAMBERS
In this report explicit chemical mechanisms for the formation
of photochemical smog in the photooxidation of hydrocarbon-NO
X
mixtures are validated against smog chamber experiments. Two sets
of data are used: one from the Statewide Air Pollution Research Center
(SAPRC)2 at the University of California-Riverside and another from
the University of North Carolina (UNC).3 Both data bases consist
of concentration-time profiles from the irradiation of static mixtures
of a hydrocarbon and NO . Data are available for a number of hydrocarbons,
-A.
at various hydrocarbon/NO and N0/N0a ratios.
j£
The SAPRC data are obtained under conditions of constant temperature
(mostly at ^ 300 K), constant light intensity, and constant spectral
distribution. The data are thus relatively easy to simulate, but
somewhat different from real atmospheric conditions. The UNC data,
on the other hand, are obtained using solar irradiation. Therefore,
during the experiments, the temperature and the solar intensity and
spectral distribution change as the sun rises and sets. In addition,
meteorological variables such as cloud cover produce an additional
variation on each run. These data are more difficult to simulate because
of these added variables, but are more representative of the real
atmospheric conditions. The UNC chamber also has a much lower
surface-to-volume ratio than the SAPRC chamber, which should minimize
heterogeneous effects.
In simulation of the SAPRC data, once the temperature and light
intensity dependent rate constants are calculated for a particular
run, they remain constant throughout that run. The necessary experimental
parameters are reported by SAPRC and there is little doubt that these
processes are well represented in the model. In simulation of the UNC
8
-------
data, many rate constants vary with time during the run because of
the changes in temperature and light intensity. This makes the simulations
more complex and is a possible source of error. In general, however,
we feel that the variations of temperature and light are well represented
in the model, within the limits of the reported experimental parameters,
and that this is not a significant source of error.
LIGHT INTENSITY CALCULATIONS
For the SAPRC runs, the light intensity distribution is computed
from the relative light intensity at 12 wavelengths between 300 and
500 nm and from the experimentally determined value of the N02 photolysis.
Photo rates for compounds are then computed from the reported cross
section and quantum yields plus the computed light intensity spectrum.
For the UNC experiments, which rely on solar radiation, the photo
rates are computed hourly using the procedure of Schere and Demerjian.*3
These calculations correct for location and difference in distribution
during the day. To correct for cloud cover, hourly averaged total
solar radiations were compared with clear day values, and the ratio
was used to reduce all photo rates accordingly. The UNC chamber has
an aluminum floor that reflects the solar radiation and enhances the
light intensity, primarily from 3 to 6 PM. To correct for this
effect, we increased the computed photo rates by a factor of 1.125 during
this interval.
CHAMBER CHARACTERISTICS
In addition to light intensity differences, both facilities were
characterized with regard to ozone decay. A decay constant of 1 x 10" 3
min"l was used for the SAPRC runs and a value of 4 x 10~ * min~ * was
used for the UNC chambers.
Dilution rates for the chambers also vary. For the SAPRC chamber
the value is approximately 3 x 10~u min~l and for the UNC chamber
the value is 1 x 10" * miri"1.
-------
Our earlier analysis1 of the SAPRC data concluded that there is
a source of either OH or H02» radicals from the chamber walls equal
to a rate of 2.0 x 10~ u ppm miri" x. We have continued to include this
source of radicals in the simulation of all SAPRC data. There is no
evidence for such a source of radicals in the UNC experiments.
MODELING TECHNIQUE
The simulations of the concentration-time profiles of various
species were obtained from the given mechanism and the appropriate
starting concentrations using the computer program CHEMK of Whitten
and Meyer.1'1' This program constructs the differentials describing
the rate of change in concentration of each species of the input
mechanism. The actual numerical integration of these differentials
is then performed by the Hindmarsh15 version of the Gear16 integration
method.
10
-------
SECTION 4
AROMATIC HYDROCARBONS
CONTRIBUTION OF AROMATICS TO TOTAL ATMOSPHERIC HYDROCARBONS
Single-ring aromatic hydrocarbons make up a substantial fraction
of the hydrocarbons found in urban and nonurban atmospheres. Calvert1
reported that in Los Angeles, California (1973) 23% of the carbon
present as hydrocarbons, excluding methane, is in the form of aromatic
compounds. A report for Manhattan, New York (1969), indicates that
32% of the organic carbon is from aromatic compounds.18 Measurements
of hydrocarbons in various non-urban areas of sourthern Florida (1976)
indicate that 20% to 30% of the carbon is found in aromatic compounds.19
Based on the Los Angeles data,17 the aromatic hydrocarbons are composed
of about one-third toluene and one-third xylene isomers, with the
remaining third composed of, in decreasing order, benzene, sec-butylbenzene,
ethylbenzene, and n-propylbenzene. The Florida study indicated this
same general distribution of compounds but identified additional minor
amounts of di- and tri-alkylbenzene.19
Calvert17 analyzed the distribution of hydrocarbons based on their
reactivity toward OH and showed that, in the Los Angeles case, aromatic
hydrocarbons contribute up to about 20% of the total reactions of OH
with hydrocarbaron. The xylene isomers contribute 12.5% to the total
OH-hydrocarbon reactions, more than any other compound detected in the
atmosphere. Toluene, the second most important aromatic compound, is
the sixth most important compound overall and accounts for 5.1% of all
OH-hydrocarbon reactions. The only compounds contributing more than
toluene are propene (6.3%), isobutene (8.1%), isopentane (8.4%), 1-heptene
(7.5%), and the xylenes (12.5%).
The aromatic compounds found in the urban atmosphere are considered
to come largely from gasoline in which they are used to increase the
octane rating. Gasoline in the Los angeles basin is composed largely
11
-------
of aromatic hydrocarbons (30%-40%) and Includes 6% to 8% toluene.
Therefore, it is not surprising that aromatics make up a large fraction
of the hydrocarbons in the urban atmosphere. In recent years the aromatic
component of gasoline has been increased so as to maintain the octane
rating because the use of tetraalkyl lead compounds has been restricted.
Since additives to enhance the octane rating are not likely to be
developed and produced in sufficient quantitites to significantly affect
the use of aromatics in gasoline, aromatics will continue to be a major
component of the atmosphere for some time.
REACTIONS OF AROMATIC HYDROCARBONS
Table 1 summarizes the atmospheric reactants that we believe could
react with aromatic hydrocarbons, along with approximate concen-
trations of these reactive species and the best estimates of rate constants
for their reaction with toluene. From these data, only the reaction with
OH is expected to be important. Collision with aerosol particles is
considerably faster, but adsorption is expected to be very inefficient
(< 10" * per collision) and thus should not compete with the reaction of
OH.
Reaction with 0(3P) could account for 0.1% as much reaction as OH;
even under conditions favoring 0(3P) this percentage would not be greater
than 1%. The limit for the photolysis rate is about the same as the
0(3P) rate. The photo rate is a limit because we do not know the cross
sections in the solar region or the quantum yields; we have used liberal
estimates in both cases to define an upper limit.
For aromatic hydrocarbons besides toluene, we expect the reaction
rates with the various atmospheric species to parallel those for toluene.
Therefore, only their reactions with OH are of interest. Table 2 summarizes
the rate constants for OH reactions for a variety of aromatic hydrocarbons
as reported by four sources. The values reported by Davis et al.,20»21
Perry et al.,22 and Hansen et al.23 were obtained using resonance
fluorescence to monitor OH decays, and in the case of Doyle et al.28
the values were obtained by measuring the rate of disappearance in smog
12
-------
TABLE 1. ATMOSPHERIC REACTIONS OF TOLUENE
Species
0(3P)
OH
H02«(ROa»)
03
NO 2
N02*
NO 3
02(XA)
hv
Particulate
Cone , ppm
10- 8
10' 7
icr3
0.1
0.1
< 10""
10" 6
* 10- 5
—
^WsC
k, ppm" l miri" 1
1.
9.
2.
5.
1.
4
< 3
< 2
« 7
* 1CT
1
4
5
0
0
x
X
X
X
6 (
x 102
x 103
x icr7
x 10- 7
x 10" 8
10- 5
icr2
10" 3
ID- s
i
(Reference)
(24)
(20, 22, 23)
(25)
(26)
(a)
(a)
(27)
(a)
(b)
Ttol'
9
1
4
2
1
2
> 3
5
» 1
a, 0
.0
.1
.0
.0
.0
.5
.3
.0
.4
.2
min
x 10s
x 103
x 1011
x 107
x 109
x 108
x 107
x 107
x 10"
^Estimated.
Assumes a < 2 x 10"22 molec"L cm"2 from 290-400 nm and a quantum yield
of unity.
^Particles cm"3 average particle of 0.1-ym diameter.
Collisions s" l.
chamber experiments relative to the disappearance of n-butane, which is
known to react solely with OH. The agreement between the two methods
is as good as the agreement between the reported values obtained by
resonance fluorescence, about ± 15%. The exception is that, for toluene,
the average of the three resonance fluorescence values agrees within 5%
while the second method gives a value about 30% less than the mean of
these values.
13
-------
TABLE 2. REPORTED RATE CONSTANTS FOR REACTION OF OH PLUS AROMATIC
HYDROCARBONS
Compound
Benzene
Toluene
o-Xylene
m-Xylene
p-Xylene
1,2,3-Mesitylene
1,2,4-Mesitylene
1,3,5-Mesitylene
Perry
(Ref. 22)
1.20
6.40
14.3
24.0
15.3
33.3
40.0
62.4
Hansen
(Ref. 23)
1.24
5.78
15.3
23.6
12.2
26.4
33.5
47.2
Doyle
(Ref. 28)
< 3.8
4.2
12.8
23.2
12.3
23.0
33.0
52.0
Davis
(Ref. 20, 21)
1.59
6.11
12.4
20.5
10.5
—
—
—
PRODUCTS OF REACTION OF AROMATIC HYDROCARBON
All attempts to determine the toluene reaction products in controlled
smog chamber experiments have failed to account for large fractions of
the reacted hydrocarbon. Table 3 summarizes data for a typical experiment
reported from the SAPRC facility.2 Early in the experiment, less than
20% of the carbon from the consumed toluene is accounted for. PAN, CO,
and benzaldehyde account for most of the detected products. The cresol
isomers account for only a small portion of the consumed toluene. They
form early in the reaction and the amount detected stays constant until
late in the reaction when it decreases slightly. Later in the reaction,
the carbon accounted for increases to 22%, but most of the increase is
due to CO, which accounts for 67% of the found carbon. Some of the CO
may result from wall decomposition of products that are present from
previous runs. In this case the observed CO values would be considerably
larger than they should be.
O'Brien and coworkers29 of Portland State University have investigated
the reaction of toluene at concentrations of toluene and NO about 10
X
times higher than those at SAPRC. They observed low yields of benzaldehyde
14
-------
TABLE 3. OBSERVED PRODUCTS FROM SAPRC CHAMBER RUN EC-273
Time, min
JL2JL
.180.
240
300
360
Toluene, ppm
A Toluene, ppm
PAN
CHZ0
AcH
CO
o-Cresol
m-Cresol
p-Cresol
Benzaldehyde (+ trace of benzylnltrate)
Nltrotoluenes
Consumed toluene accounted for as products, % carbon
As CO, % carbon
a
As products, % CH3
0.587 0.423 0.383 0.334 0.309 0.284 0.255
0.155 0.197 0.247 0.272 0.298 0.327
0.000 0.024 0.032 0.031 0.029 0.028 0.028
0.002 0.006 0.004 0.009 0.009 0.013 0.017
0.001 0.002 0.004 0.006 0.007 0.007 0.008
0.33 0.38 0.37 0.47 0.57 0.63 0.67
0.0005 0.0027 0.0026 0.0024 0.0027 0.0018 0.0014
0.0003 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001
0.0047 0.0053 0.0056 0.0052 0.0054 0.0040 0.0048
0.0009 0.0097 0.0111 0.0118 0.0158 0.0123 0.0116
0.0000 0.0010 0.0008 0.0008 0.0010 0.0008 0.0009
17.6 15.1 18.2 23.5 22.4 22.1
4.6 2.9 8.1 12.6 14.4 14.8
2.39 24.8 20.2 20.2 15.8 14.7
Includes PAN and AcH but not CH20, which only in part Is from the CH9-group.
-------
(^ 4%) and o-cresol (6%) and several nitrogen-containing compounds:
benzylnitrate (1.6%), m-nitrotoluene (3.8%), and p-nitrotoluene (1.65%).
Including these nitrogen-containing products, which are expected to be
more prevalent in these experiments because of the higher concentration
of NO , and CO, 27% of the consumed toluene is accounted for. A limit
X
of less than 1% is set on the amount of ring cleavage products in the early
stages by these workers. At very long reaction times significant CO formation
occurs, a result supporting the high CO data in the SAPRC run summarized
in Table 3.
Jefferies, Fox, and Kamen of University of North Carolina have
carried out some runs with toluene in their outdoor smog chamber.3
Although they have not yet made an extensive study of the products, it
is clear that CO formation occurs in the reaction. At 60% conversion (
of the toluene, about 9% of the consumed carbon is converted to CO.
To summarize these smog chamber studies of toluene, one must conclude
that gas phase products account for about 20%-26% of the carbon consumed.
After the N02 maximum, much of the carbon found is of low molecular
weight products CO, PAN, CH20, which can be formed only by ring cleavage.
Because it is impossible to use these data to construct a clear picture
of the toluene mechanism for modeling purposes, it is important to
consider other studies beside the smog chamber data.
In their determination of the rate constants of OH with aromatic
hydrocarbons, Perry et al.22 found an unusual temperature dependence
for the OH decay with all aromatic compounds. They concluded that two
reaction paths are important, one of which is reversible at elevated
temperatures. The two pathways are
CH3
OH+
HOH
16
-------
OH +
(2)
At high temperatures (85° to 200°C) where reaction (2) was readily
reversibly, the decay of OH was governed by reaction (1). They found
for this reaction log (ki/cm3 molec"1 sec"1) = -11.3 (± 0.05) - 900(± 1000)/RT;
thus at 30°C kx = 1.1 x 10" 12 cm" molec"x s"1. Because of the extrapola-
tion, ki nay range from 0.65 to 1.9 x 10"12. At 30°C they found a much
faster decay constant, which is ki + ka and equals 6.4(±0.64) x 10" 12.
Therefore, ka = 5.3 x 10" 12 cm3 molec"1 s~ x and WCkj. + k2) = 0.16
(range:0.11 toO.20). Thus, attack at the methyl group under atmospheric
conditions accounts for about 16% of the OH reaction, with the large
uncertainty due to the value range of kn. The possibility that the
reversibility of reaction (2) is important at atmospheric conditions is
ruled out by the lack of a pressure effect on the observed decay content
at 30°C. Values of ki/(kj + ka) for several aromatic hydrocarbons are
listed in Table 4.
To determine the stable products from reactions (1) and (2) under
atmospheric conditions and thereby evaluate the ratio kx/Ckj. + k2) by
a more direct method, we investigated the OH-aromatic reaction in our
own laboratory.10 A low pressure flow system is used to generate OH,
which is then allowed to react with various aromatic hydrocarbons.
The products are determined by sampling the gas stream with solid phase
absorbance and by condensing the organics, followed by gas chromatography
and/or field ionization mass spectroscopy. These results indicate that,
at the high ratios of Oa/N02 found in the atmosphere, the benzyl radical
formed in reaction (1) gives benzaldehyde by the proposed mechanism
CH202« CH20» CHO
NO
o - ro ^ ro
(3)
17
-------
TABLE 4. FRACTION METHYL ATTACK BY OH FOR SEVERAL AROMATIC HYDROCARBONS
Hydrocarbon
k2)
Perry et al.(23) Hendry et al.(10)
Benzene
Toluene
o-Xylene
m-Xylene
p-Xylene
1,2,3-Trimethyl benzene
1,2,4-Trimethyl benzene
1,3,5-Trimethyl benzene
0.05
(0.01-0.13)
0.16
(0.11-0.23)
0.20
(0.10-0.35)
0.04
(0.02-0.04)
0.07
(0.04-0.14)
0.035
(0.02-0.12)
0.03
(0.02-0.06)
0.02
(0.02-0.04)
< 0.05
0.15 ± 0.02
0.15 ± 0.02
0.021 ± 0.006
aRate constant kx includes abstraction of aromatic ring hydrogens in this case.
In other cases this added process is relatively unimportant because of the
much larger values of kj, and k2.
and the adduct formed in reaction (2) gives o-, m-, and p-cresols by the
reaction
H
CE-.
+ 0:
+ H0a«
(4)
18
-------
From the ratio of products, it is possible to estimate the ratio k
+ ka). These values are also included in Table 4. Comparison of these
values with those reported by Perry et al., shows that they are in
excellent agreement.
These results suggest that the initial products from the reaction
of toluene should be ^ 15% benzaldehyde and 85% cresol. This conclusion
contrasts strongly with the smog chamber results discussed above where,
at best, about 6% benzaldehyde and about 5% total cresol isomers are
observed early in the run (see Table 3). Other laboratory results
complicate the issue even further. Heuss and Glasson30 found, in their
smog chamber study of toluene, that benzaldehyde accounted for 19%
of the products, a value agreeing well with laboratory measurements
mentioned above. However, the only other products reported were 3%
formaldehyde and 4% PAN. Kopczynski et al.31 conducted experiments
on mixtures of aromatics including toluene and reported no evidence of
benzaldehyde, although toluene was a relatively small fraction of the
mixture.
Hoshino et al.3^ attempted to determine the atmospheric products of
OH plus toluene by photolyzing HONO and a large excess of toluene in
air. These results indicate that 70% of the detected products are cresol or
products that would have been expected to give cresol if the OH-toluene
adduct were not partially trapped by the high concentration of N02; 30%
of the products are benzaldehyde or benzylnitrate, which would have given
benzaldehyde in the absence of high N02.
Akimoto et al.33 determined the toluene products from photolysis
of N02-toluene mixtures under conditions where they suggest 0(3P) is
the reactive species. However, because of the high N02 concentration
(11-174 ppm), a very high fraction of 0(3P) reacts with N02 by the reaction
0 + Ntf2 —*- NO + 02 (5)
Thus it is possible that OH is the dominating reactant species in these re-
actions. The ratio of products resulting from methyl-attack versus the sum
of methyl attack and ring attack (corresponding to ki/(kj. + k2) ranges
19
-------
from 0.16 to 0.30, overlapping the value expected for OH reactions from
the laboratory experiments.
Nojima et al.3£* investigated the products resulting from photolyzing
toluene (2000 ppm) in the presence of air containing 50-1000 ppm NO.
The reaction mechanism could involve OH, although the conditions may
favor wall reactions. They found only 11% of the consumed toluene
as benzaldehyde, cresol, m-nitrotoluene, p-nitrotoluene, and nitrated
cresols. With 50 ppm NO and after one hour, they found ^ 0.5% glyoxol
and 3% methylglyoxol, which are indicative of ring cleavage. Because
of the severity of the reaction conditions, it is not possible to tell
if these last two products are formed directly or by secondary reaction
of the benzaldehyde and cresols products.
Strong evidence for direct ring cleavage of aromatic rings by OH
comes from recent SAPRC chamber data for o-xylene reported by Darnall
et al.9 They found that biacetyl formation occurs very early in these
runs, consistent with 18 ± 2% of the xylene-OH reaction giving this
product directly. They found that the biacetyl photolyzes rapidly,
generating acetyl radicals, which are converted to PAN. Complete product
analyses are not given and these two products account for only about
12% of the carbon from the consumed xylene. However, based on this
data, the reaction of toluene would be expected to give methyl glyoxal
(pyruvaldehyde) to approximately the same extent as biacetyl in the o-xylene
experiment.
TOLUENE-OH REACTIONS
From the data of Perry et al.22 and Kenley et al.,10.35 the first
step of the OH toluene reaction is
20
-------
OH +
+ H20(+33 kcal/mol) (6)
OH (+ 24 kcal/mol) (7)
The isomer distribution of the last product is 81% ortho, 14% para,
and 5% meta.10 The benzyl reacts by the following series of reactions
CH2»
o
+ 0:
(8)
CH202»
CH20«
O
+ NO
O
+ N02
(9)
CH202»
CH202H
+ H02«
O
CH20»
CHO
+ H02«
(10)
(11)
21
-------
:H2o«
12ON02
o
+ N02
o
(12)
CH20-
CHO
O
+ N02
o
+ HN02
(13)
Under normal atmospheric conditions, reaction (11) dominates the other
reactions involving PhCH20». The chemistry of the OH adduct formed
in reaction (7) is as follows
0
CH;
O
+ H02«
(14)
CHS
0-
(+ 8 kcal/mol) (15)
CH3
G
-OH
N02
From the data of Kenley et al.,35 the ratio of rate constants for
reaction (14) and reaction (16) is 2.3 x 10" \ Since k^ is expected
to approximate 3 x 109 M~1 s"1, kn must be approximately 1.0 x 10s M" *
O2
22
-------
s~l. This value compares with 3.9 x 10s tf~1 s~ x for the similar reaction
of methoxy plus 02
36
CH30« + 02
CH20 + H02-
(17)
The second reaction with oxygen [reaction (15)] to form the organic peroxy
radical is expected to be just % 1 x 109 M~l s~ i. The heat of reaction
is estimated to be 8 'ccal/mol; thus the back reaction may be approximated
by the expression
log k-ls = 15.0 - 8,000/RT
k30o = 1.5 x 109 s"1
The fate of this peroxy radical is determined by what can compete with
its decay back to carbon radical and oxygen. Possible competing reactions
are
.0-0
•0-0
+ NO
N)H.
NDH
+ N02
N0200 CH3
*N)H
(18)
(19)
•0-0 CH3
'H
(20)
23
-------
The reaction with NO is expected to proceed rapidly with a rate
constant of k = 1 x 10* IT1 s~ x. Thus at even NO = 0-1 ppm (4 x 10~9 M),
k[NO] = 4s"1. The reaction with N02 is expected to proceed at a rate
similar to reaction (18); however, in this case the product is expected
to decompose back with a rate constant of 10"2 s~ l such that further
reaction is unlikely.37
Reaction (20) has been suggested by Darnall et al.9 as the major
reaction leading to ring cleavage in the reaction of o-xylene. However,
the addition of peroxy radicals to conjugated dienes has an activation
energy of 10 kcal/mol.25 Thus the activation energy for reaction (20)
is expected to be 10 plus ;the increase in strain energy, which is
another 5-10 kcal/mol. Thus assigning an A factor reflecting the large
loss of entropy gives the maximum rate constant for reaction (20) as
log k < 12 - 15000/RT
k(3oo) < 10 s"x
Thus none of three reactions of the organic peroxy radical that
we can visualize is fast enough to compete with its decomposition back
to OH-toluene adduct and oxygen [reaction (-15)]. This leads us to
the conclusion that the only reaction the toluene-OH adduct should
undergo in the atmosphere is reaction (14) to the corresponding cresol.
This conclusion is consistent with our laboratory data,10 except that
only traces of cresols are found in smog chamber experiment. Thus
either we have not anticipated all the possible homogeneous reactions
of the toluene-OH system or very rapid reactions of the cresols and
possibly benzaldehyde account for the large degree of ring cleavage observed
in smog chamber runs.
If we assume that the reactions of cresol and benzaldehyde are
only with OH, a simple consecutive model may be assumed where the OH
radical concentration is constant. The concentrations of toluene,
cresol, and benzaldehyde as function of time may be approximated by
the expressions38
24
-------
[Tol] = [Tol]oe"kTol[OH]t
f
-kTc
Cres Tol
f k [Tol] • [OH]t f
[Benzaldehyde] = ° Tol_ °(e"kTol -e~kBenzC°H]t)
oenz Tol
where k's are rate constants for reaction of OH with toluene (9.0 x 103
ppnf l miri"1)22 cresol (6.9 x 10* ppm~ * min~1),39 and benzaldehyde
(2.0 x 10* ppnf1 min"1),1*0 and f and f, are the fractions of reaction
of toluene plus OH to give cresol (0.85) and benzaldehyde (0.15).
Assuming an OH concentration of 2 x 10~7 ppnf l, 1 ppm toluene will be
reacted to the extent of 0.103 ppm after 60 min, and the concentration
of cresol and benzaldehyde would be 0.057 and 0.014 ppm, respectively,
or 55% and 13% of the consumed toluene. The remaining 32% would be
cresol and benzaldehyde reaction products. After 300 min these expressions
indicate 0.417 ppm toluene reacted (^ 42%) and concentrations of cresol
and benzaldehyde of 0.067 and 0.034 ppm or 16% and 8% of the consumed
toluene, respectively.
The data in Table 3 indicate much lower concentrations of cresol
and benzaldehyde, especially early in the reaction. Thus we must again
conclude that there are alternative pathways by which toluene reacts
or alternative pathways by which the cresols and possibly benzaldehyde
react. In the case of the cresols, the rates of the alternative pathways
would have to be 10 times faster than the cresol plus OH reaction.
The reported rate constant for the OH-cresol reaction is close to diffusion
control so it is impossible for it to be 10 times faster. It is important
for us to consider what cresol reactions might compete favorably with
the OH reaction and whether or not they can account for the cleavage
of the aromatic ring and thereby formation of PAN and other low molecular
weight products.
25
-------
REACTIONS OF CRESOL
Since cresol isomers are anticipated based on thermochemical and
kinetic reasoning but are not found, it is important to consider what
reactions ofcresol can be important. Table 5 lists typical concentrations
of various atmospheric species, their rate constant with cresol, and
their lifetimes. From the table we see that the reactive species 0(3P),
H02» (R02«), and 03 are considerably less important than the reaction
with OH. We know less about N02, N03, and 02(1A), but from our estimates
it does not appear that any of these species will account for the observed
discrepancy. Similarly, direct photolysis appears to be unimportant
because of the weak adsorption in the solar spectrum.
The only process that is faster than reaction with OH is collision
of cresol molecules with particulate. Collision with walls in a chamber
will proceed at an even faster rate. If the cresol has no affinity
for absorption to the surface, there should be no effect. However,
because cresols are highly polar, they would be expected to be readily
absorbed and because they are susceptible to oxidation, further reaction
may occur. Thus it appears that if toluene is converted largely to
cresols, then cresols at least must be rapidly reacting on the chamber
walls. This possibility should be carefully investigated.
ANALYSIS OF NO OXIDATION AND NO CONSUMPTION IN TOLUENE REACTIONS
X
We analyzed several toluene runs reported by SAPRC to determine
both the amount of NO being oxidized per toluene consumed and the amount
of NO disappearing per toluene consumed during the time leading up
X
to the NO maximum and for the comparable length of time following the
^v
NO maximum. Table 6 gives these results.
A
During the time required to reach the N02 maximum, an average of
2.7 net NO molecules are oxidized to form N02 and 03 for each consumed
toluene. After the NO maximum, the value falls to 1.8. Conversion
X
of toluene to benzaldehyde is expected to require 2 NO per toluene,
whereas conversion to cresol requires only 1 NO per toluene. Thus the
additional oxidation of NO must occur upon cleavage of the ring and/or
26
-------
TABLE 5. ATMOSPHERIC REACTIONS OF CRESOLS
Species
0(3P)
OH
H02»(R02«)
03
N02
*
N02
Oa(lA)
hv
Particulate
. Estimated.
Assumes a
yield and
Cone . , ppm k
10" 8
10- 7
10"s
0.1
0.1
< 10" *
10" 5 <
—
10sC
- > 2 x 10" 2a molec"x
average summer light
«^*M * * ••* mff^m*** s^s* «^ ^ *»4™ ^ ^ 1
, ppm" l min
8.6 x 102
6.9 x 10fc
2.5 x 10" 2
8.8 x 10"*
1.0 x 10"s
10
1 x 102
10" s
ID- sd
cm" 2 from
intensity. ^
l-L f* € f\ 1 IIWH
(Ref) T •
(41)
(39)
(42)
(39,43)
(a)
(a)
(a) >
(b)
290-400 ran and
it
ft -1 r*mf*4~ n -*•
• l/k[conc] , min
1.2 x
1.4 x
4.0 x
1.1 x
1 x
1.0 x
1.0 x
1.0 x
0.2
a unit
10s
10 2
106
10"
10 9
105
103
10s
quantum
,i ax. i_a.^.^.c<3 *-«* y
Collisions s" *.
upon further reaction of the products. The proposed mechanism must take
this into consideration.
The consumption of NO averages about 1.0 NO per toluene reacted
x x
up to the NO maximum and about 1.2 after. Much of this loss of NO
is due to the reaction
OH + N02
WO-.
(21)
The data in Table 6 indicate that 20%-40% of the loss is due to this
reaction in the interval up to the N02 maximum in most cases. After
the W2 maximum, about 45% of the NO is lost by this reaction. PAN
2t
accounts for only a small fraction of the NO loss: about 8% up to the
X
27
-------
TABLE 6. ANALYSIS OF SELECTED SAPRC SMOG CHAMBER EXPERIMENTS
Hydrocarbon
Hydrocarbon, ppm
NO, ppm
N02, ppm
HC/NOx
kx
(AND + A03)/4HC
t -tN°>
o max
tN02 _ NOa
max max
AND /iHC
t -tN°*
o max
N02 2tN°2
AHN03/AHC(from OH -
t -tNO'
o max
max max
APAN/AHC
t -tNO*
o max
tN02 _ 2 N02
max ~ max
Difference (%)b
co max
max max
EC-327
Toluene
0.573
0.357
0.096
1.26
0.40
2.58
2.27
0.85
1.67
t- N02)a
0.83
0.98
0.06
0.17
•v 0(0)
0.52(31)
EC- 340
Toluene
0.537
0.333
0.096
1.25
0.39
2.86
3.05
0.78
1.86
0.51
0.96
0.04
0.17
0.23(29)
0.73(39)
EC-266
Toluene
1.196
0.432
0.060
2.40
0.35
2.21
1.69
1.28
0.91
0.28
0.37
0.07
0.21
0.93(52)
0.33(36)
EC-78
Toluene
0.210
0.069
0.032
2.95
0.16
3.73
1.40
1.09
0.85
0.41
0.41
0.14
0.22
0.54(49)
0.22(26)
EC-85
Toluene
1.92
0.431
0.092
3.67
0.16
1.96
0.72
1.15
0.81
0.20
0.23
0.09
0.09
0.86(75)
0.49(60)
EC- 344
m-Xylene
0.486
0.520
0.154
0.72
0.39
2.67
2.88
0.94
2.18
0.42
0.53
0.22
0.61
0.30(32)
1.04(48)
EC-314
Propene
1.046
0.684
0.246
1.12
0.48
1.37
0.88
0.32
0.81
0.24
0.44
0.03
0.24
0.05(16)
0.13(16)
Rate of formation of HON02 estimated from average [N02] and [OH]; the latter concentration was
.estimated from the hydrocarbon disappearance.
"Difference - (AND /AHC) - AHN03/AHC - APAN/AHC;% = 100 x Difference/(ANO /AHC).
28
-------
N0x maximum and about 16% after the N02 maximum. This leaves 50%-70%
of the NO loss before the N0a maximum and 40% after the maximum that
X
is unexplained and must be taken into consideration by the mechanism.
MECHANISM FOR MODELING TOLUENE SMOG CHAMBER DATA
Although uncertainty remains as to what initial products are formed
from the direct addition of OH to toluene, the chamber data clearly
indicate that at least 25% and possibly as much as 90% of the consumed
toluene cleaves during or shortly after reaction by some mechanism.
Thus any attempt to model the data must recognize this fact as well
as the observation made above regarding molecules of NO oxidized and
NO consumed per reacted toluene. However, any proposed mechanism
X
will at best be a simplification of what may be a much more complex
process.
For our current modeling effort we have assumed that 15% of the
toluene-OH reaction is described by methyl abstraction, reactions (6), and
(8)-(13). The remaining 85% is assumed to react by the following reactions
n
0
14.3%
+ H02«
(22)
14.3%
CH3C(0)CHO + CJ
H02» (23)
14.3%
CH3C(0)CHO
H20 (24)
28.6%
HC(0)CHO 4- C5H603 + H02- (25)
'% HC(0)CHO + C5HS06» + H20 (26)
29
-------
The fraction of the first pathway was assigned based on the observation
of cresol. The remaining reactions were divided to give glyoxal 2/3
of the time and methylglyoxal 1/3 of the time. This ratio represents
statistical cleavage of the ring.
In each of reactions (23) through (26), a fragment is proposed
that we have no experimental evidence for, but is included to balance the
C, H, and 0. Obviously in reality each fragment could be composed of
several compounds. For simplicity we assume fragments C<,H<,03 and C3H603
in reactions (23) and (25) to be
HC(0)CH=CHC(0)OH and HC(0)C(CH3)=CHC(0)OH
The fragments ChE306* and C3HS0S« in reactions (24) and (26) are assumed
to be complex acyl peroxy radicals
H02C(0)CH=CHC(0)02» and H02C(0)C(CH3)=CHC(0)02«
We have proposed that these reactions occur without oxidation of
NO to N02; however, variations could be written for reactions (23) and
(25) where NO is oxidized to N02 without change in the overall modeling
results if OH were formed in place of H02». There would be no change
in the overall conversion of NO to N02 because the fate of H02» is to
oxidize NO except when NO is extremely low.
X
The peroxy radicals formed in reactions (24) and (26) are assumed
to react further. However, for simplication CSH506» has been assumed
to be identical to C<,H306», which reacts as follows
C<,H306» + NO —*- N02 + HC(0)CHO + CO + C02 + H02» (27)
C4H306» + N02 7-*- C«,H306N02 (28,-28)
C<,H306N02 *—*- to wall (29)
30
-------
Reaction (29) thus becomes a mechanism by which NO is removed from
x
the system. The rate of NO loss depends on the N0/N02 ratio.
X
Initially when the N0/N02 ratio is high, little NO is lost, but by
X
the time the N0x maximum is reached, this process is a major NO loss
process.
Reactions of Glyoxal
Reactions (25) and (26) generate- glyoxal. The glyoxal reactions
used in the simulation are hydrogen abstraction by OH
HC(0)CHO + OH - *-HCO» + CO + HOH (30)
and photolysis 1+5
HC(0)CHO + hv — *- H2CO + CO (31)
The rate constant used for reaction (30) is 2 x 104 ppnf 1 miri" l , which
is the same as for simple aldehydes.1*0 The rate constant for reaction (31)
has been adjusted to optimize the prediction of formaldehyde; this has
led to a value of 0.01 times the N02 photolysis rate.
Reactions of Methylglyoxal
Reactions (23) and (24) form methylglyoxal . As for glyoxal we have
assumed reactions with OH and solar radiation, although radical formation
is assumed to result from photolysis
CH3C(0)CHO + OH -^CH3C(0)02- + CO + HOH (32)
CH3C(0)CHO + hv -24- CH3C(0)02« + CO + H02» (33)
"•3 3
The assumed value of k32 is 2 x 10" ppm" l min"1.1*0 The value of k;
has been adjusted to optimize both total radicals entering the system
and PAN formation; this value is about 0.04 times that for N02 photolysis.
A minor alternative photo reaction is possibly
31
-------
CH3C(0)C(0)H + hv —*- CH3C(0)H + C0« (34)
and may be responsible for the small amount of acetaldehyde that is
often reported in the SAPRC data. We have not included this reaction
in our mechanism because of its very minor role and the uncertainties
surrounding it.
Reactions of Benzaldehyde
Both photolysis and reactions with OH have been considered for
the reaction of benzaldehyde. For the reaction with OH, we have assumed
the following mechanism.
PhCHO + OH —*-PhC(0)« + HOH (35)
PhC(0)» + 02 TT-*~ PhC(0)02« (36)
PhC(0)02« +N0a^=±: PhC(0)02N02 (37)
PhC(0)02» + NO —*- PhC02« + N02 (38)
PhC02» —*- Ph« + C0a (39)
Ph« + 02 —*- Ph02« (40)
Ph02» + NO —*- PhO» + N02 (41)
PhO» + N02 —*- N02-PhOH or PhON02 (42)
PhO« 4- 02 —»» 2HC(0)C(0)H + CO + C02 + H02» (43)
The reaction with OH is assumed to abstract only the aldehydic
hydrogen. Addition to the aromatic has been shown to be unimportant
(< 10% of total reaction) in low pressure reaction product studies.10
Reaction (42) is based on the observation of Niki'4'6 who observed formation
32 ,
-------
of nitro phenol in controlled experiments when benzoyl radicals were
generated in the presence of 02 and N02. Reaction (43) is included
to account for ring cleavage, which is expected to be important and
may include participation of NO.
To estimate the importance of benzaldehyde photolysis, we have
made use of the two SAPRC experiments with added benzaldehyde (EC-337
and -339). Simulation of these runs with our mechanism suggests that
benzaldehyde photolysis is not an important source of radicals in the
system and further that the disappearance of benzaldehyde is due largely
to reaction with OH. To slightly improve the simulation of the
benzaldehyde decay curve, we have included the reaction
PhCHO —*- Benzene + CO (44)
Using a rate constant of 2 x 10* ppm"i miri"1 for reaction (35), we
determined the best value for k<,4 to be 4 x 10"3 miri" 1.
Reactions of Cresol
The important reaction of cresol is with OH (see Table 5). The mechanism
assumed in the simulation is
CH3PhOH + OH ^£*. CH3C6H3(OH)2 + H02« (45)
CH3PhOH + OH —>- CH3PhO» + H20 (46)
CH3PhO» + 02 —*- CH3C6H<,(0)02- (47)
CH3C6H4(0)02« + NO —*- CH3CSH4(0)0- + N02 (48)
CH3C6H*(0)0- -VCH3C(0)02« + HC(0)CHO + (49)
stable products
Reaction (45) has been substantiated by product analysis of OH + o-cresol
at low pressure.47 The rate constant for the sum of reactions (45) and
33
-------
(46) was obtained from Atkinson et al.39 for o-cresol and the relative
values from Perry et al.1*8
Reactions of C^EuOa
The species C4H<,03 and C3H603 formed in reactions (23) and (25)
are assumed to be aldehydes and therefore reactive like other aldehydes.
For simplicity C5H603 is assumed to be identical to CAH*03. The reactions
with OH are
C<,H«,03 + OH J2^C<.H305- + HOH (50)
*
The rate constant for reaction (50) was assumed to be 2.0 x 10** ppm~ l
min, the same as other aldehydes. The following photolysis reaction
was assumed .
C4H«03 4- hv —*~ C<,H303» + H02» (51)
The reaction was assigned a rate constant 0.03 times the value for N02
photolysis.
To simplify the mechanism, the C«,H30S» formed in reactions (50)
and (51) was assumed to be identical to Cj,H306» formed in reaction (24).
TOLUENE SIMULATION RESULTS
SAPRC Data
The toluene mechanism, which is summarized in Table 7, was applied
to the complete set of SAPRC toluene smog chamber runs. The list of
the necessary inorganic reactions is given in Table 8. The data for
peroxynitric acid has been undated from our last report in accord with
new data of Baldwin and Golden.51 Initial concentrations for each ex-
periment are given in Table 9, and N02 and 03 maxima and times to maxima
are given in Table 10. Ozone decay rates, radical flux rates, and dilution
rates were as discussed earlier. Plots showing comparisons of simulation
and experimental data for the species monitored in each run are given in
34
-------
Appendix A. Figure 1 compares the simulation ceoncentrat ions of NO, N02,
03, and toluene as well as the products PAN, formaldehyde, benzaldehyde,
and cresol for EC-266. Qualitatively the general agreement between the
simulation and experiment is quite good in the initial stages. The agree-
ment is much improved over previous attempts, which were made with a much
smaller data base, especially less product information.
Looking more carefully at figure 1, we see that the simulation
slightly overpredicts the rate of NO oxidation before the N02 maximum
and that the amount of the N02 at maximum is slightly larger (^ 10%)
than observed. The toluene and N02 decay is too slow after the N02
maximum, indicating insufficient OH radical concentration. Despite
these differences, the simulation of ozone formation agrees well in the
first part of run but does not level off as early as experimentally
observed and the final value is overpredicted by 50%. The fact that the
ozone agrees early in the run with insufficient reaction of toluene means
that each consumed toluene eventually oxidizes too many molecules of
NO. This may mean that more of the toluene fragments are less reactive
than the model assumes or are trapped on the walls of the chamber.
With regard to the products, the formaldehyde is overestimated and the
PAN is underestimated. Benzaldehyde and cresol are slightly overestimated.
From the data in Table 10, the average of all runs indicates that
the N02 maximum averages 8% high and comes 4% later than experimentally
observed. The average ozone maximum is 47% high and comes 32% later
than observed. The initial stages of ozone formation generally match
the experimental very well, but the formation fails to level off at the
proper point. This effect is not unique to toluene but is observed in
many runs for other hydrocarbon and in principal could be due to a wide
variety of factors.
UNC Data
Two toluene runs were made in the outdoor UNC chamber. The data
are included at the bottom of Tables 9 and 10. Figures 2 and 3 are plots
showing the comparison of simulation and measured concentrations of NO,
35
-------
TABLE 7
TOLUENE MECHANISM
NO.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
_
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Activation
A Factor* Energy K
PhCH, + OH
PhCH., + OH
CH3C8HSOH
CHjCgHjOH
CH3C8HSOH
CH3C8H5OH
CH3C,H5OH
CH3C8HSOH 4- N02
PhCHjOj' 4- NO
PhCH202' 4- NO2
PhCH202N02
PhCH20'
PhCH20' 4- N02
PhCH20' 4- N02
PhCHO + OH
DWOTh A. h
PhC(0)02' + NO
PhC(0)O2' 4- N02
PhC(0)02N02
PhC(0)O'
Ph02' +• NO
PhO' + NO2
PhO'
CH.,C8H4OH 4- OH
CH C H OH 4* OH
CH3CeH4O1' 4- NO
C*H,O«- 4- NO
C,H,06. + NO
C*Ht09 4- OH
C,H«0S + OH
C*H<,O9 4- hv
C,H«0, 4- hV
CtH,0.-+ N02
C,H,0«. 4- NO2
C^H jOQNU2
C^HgOgjlVOg
CSH30«NO,
CjHjO.NO,
CH3C(0)CHO + OH
CH,C(0)CHO 4- hV
2»
-
2^
?>
Q
°*
-«
-
-
— * •
-
°*
-
-
2»
^
-s
-
-
-
-
-
-
-
-
2s
-
-
£»
Q
•«
oa
z
I*
-
-
-
-
PhCH,02' 4- H20
CH3C8HSOH
CH3CgH4OH 4- H02'
CH-,C(O)CHO + Ci,CtO,+. HO,
CH3C(O)CHO 4- C^H,06-
HC(0)CHO +C,R«O, + HO,'
HC(0)CHO 4- CjH.Os •
CH,C8H4N02 4- H20
PhCH,0' 4- N02
PhCH202N02
PhCH20,' 4- N02
PhCHO 4- H02 '
PhCHO 4- HNO2
PhCH2ON02
PhC(0)02- 4- H20
puu 4. prj
Iran, T ^u
PhC(O)0' 4- N02
PhC(0)02N02
PhC(0)02' 4- N02
PhO,- 4- C02
PhO' 4- N02
PhONO, (or NO,-C8H4OH)
2HC(0)CHO 4- CO 4- HO2-
CH3CgH3(OHX, + HO,'
CHjC8H40' 4- H20
NO, 4- CH3C(0)O,' 4- HC(O)CHO
H,0 4- 2 CO 4- C02
N02 4- HC(O)CHO 4- CO 4- C02 4- H02'
N02 4- HC(0)CHO 4- CO 4- C02 + H02'
CtH90<.
C,HS0« •
C»H,0.. 4- HO,-
C,H,0,. 4- HO
C4H30,NO,
C3HjO«NOi
C^HjO, • 4. NO,
wall
1.6 x
7.4 x
*1.5 x
*1.S x
*1.5x
*3.0 x
*3.0 x
2.0 x
1.0 x
7.8 x
103
103
10s
10s
10s
10s
10s
10*
10*
10s
*1 .25x10" 1.16 x 10*
*1.3 x
1.5 x
3.0 x
2.0 x
3.7 x
2.5 x
*9.5 x
*5.2x
1.0 x
6.0 x
*1.0 x
6.9 x
6.9 x
1.0 x
7.5 x
7.5 x
2.0 x
20 x
- •
2.5 x
2.5 x
10s
10*
103
10*
10*
10*
10t8 1.3 x 10*
10T
10*
103
10s
10*
10s
10*
10s
103
10*
10*
-
103
103
*1.02 xlO18 1.35 x 10*
*3.0 x
10-2S
C,HS0S. + NO, *1.02 x!0ts 1.35 x 10*
-
2*
2>
wall
CH3C(0)02- 4- CO 4- H,0
CH3C(0)0,-4- CO 4- HO, '
*3.0 x
2.0 x
-
10-"
10*
-
continued ....
36
-------
Table 7 Toluene Mechanism (concluded)
No.
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
CH3C(0)02' + NO 22
CH3C(0)02- + SO, -
CH3C(0)02W>2 _
CH302- + NO -
CH30' + 02 -
CH30' + N02 -
CH30' + NO2 -
CH20 •*• OH -
CH20 + hv -
CH20 + hv -•
HC(0)CHO + OH -
HC(0)CHO + hv -
CHjCHO •(• OH -*
CH,CHO + hv -
PhCH202' + HO2' -
PhCH20- + H02 -
Ph02' + HO,' -
PhO- + H02- -
PhC(0)02' + H02- -
PhC(0)0' + H02- -
CHjOj' + H02' -
CH3C(0)O2- -t- H02' -
2CH;,C(0)02- 22
2CH,02- -
CHaCgH^OH + 0, -
NO2 + CH3O2' + C02
CH3C(0)02N02
CH3C(0)02' + N02
CHjO- + N02
CH2O + H02'
CH20 + HN02
CH3OH02
H02- + CO + H20
H2 + CO
2H02' + CO
B02' + CO * CO + H20
2H02' + 2CO
CH3C(0)O2' + H20
CH3C(O)02- + HO,'
2CR,02 ' + 2CO.,
CH20 + CH3OH
OH
Activation
A Factor* Energy K
7.5 x 103
2.5 x 103
*1.02 x 1018 1.35 x 10*
1.0 x 10*
2.0 x 10s
2.2 X 103
2.0 x 10*
2.0 x 10*
2.0 x 10*
2.0 x 10*
2.0 x 103
2.0 x 103
2.0 x 103
2.0 x 103
2.0 x 103
2.0 x 103
2.0 x 103
2.0 x 103
2.0 x 102
2.0 x 102
1.0 x 103
Units are ppm~' oin'1 except those narked * are min~*.
b
bln UNC chamber run, rate constant for reactions 36 and 38 is 7 x 10'3 nin'1.
37
-------
TABLE 8. INORGANIC REACTIONS
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
— •^••••a*-" "i
'units in ppm
ppnf 2 min~ .
Reaction
0(3P) 4- 02 4- M
0(3P) 4- N02
03 + NO
0(*D) + M
O(XD) + H2o
O3 + OH
03 + H02
03 + N02
N03 -i- NO
N03 4- N02(4- M)
N2O«+ H O
z 3 T na\J
N20S(+ M)
NO 4- N02 4- H20
2HNO2
N02 4- OH(4- M)
NO 4- OH(4- M)
NO 4- H02
N02 + H02
. HO2NOZ
TT/X . IT/"\
riUj 4- nU2
CO 4- OH
NO -f- hv
03 -t- hv
0,+. hv
HONO + hv
Hi02 + hv
' 1 miri" l except
- 03 4- M
-* NO 4- 02
- N02 + 02
-* O(3P) + M
- 20H
- H02 4- 02
- OH 4- 202
- N03 + 02
- wall
- 2N02
- N205(+ M)
- 2HNO3
- N02 4- N03(4- M)
- 2HONO
- NO + N02 4- H20
- HNO3(4- M)
- HONO (+ M)
-» N02 + OH
- H02N02
- H02 + N02
- H«02 4- 02
•*• HO + CO
-»• NO -i- O( P)
•*• 0( JD) + Oa
-»• O( 3IO fc 02
-»• OH + NO
-»• 2OH
Mto-^A^^^B«*M^.^«^B«^.B^^B^P^HVW^H«^^B^«B«
-------
TABLE 9.
SC No.
83
82
85
81
265
266
264
80
84
271
79
269
327
340
273
77
78
335
272
86
336
270
337
339
331d
338d
328
334
329
330
UNC8.16.78R
UNC9.14.78R
344f
343f
345f
346f
SUMMARY OF INITIAL CONDITIONS FOR SMOG CHAMBER EXPERIMENTS FOR TOLUENE AND
Toluene
5.63
1.88
1.92
1.96
1.07
1.20
1,16
1.02
0.97
1.15
0.98
0.57
0.57
0.54
0.59
0.28
0.21
1.00
0.58
1.09
1.01
0.58
0.96
0.54
1.99d
0.95d
0.57*
0.99e
0.56e
0.57e
0.56
0.32
0.49f
0.49f
0 .48f
0.49f
NO
1.36
0.68
0.43
0.41
0.44
0.43
0.42
0.40
0.39
0.19
0.08
0.40
0.36
0.33
0.096
0.52
0.069
0.35
0.40
0.41
0.34
0.41
0.32
0.34
0.35
0.35
0.36
0.35
0.35
0.20
0.60
0.24
0.52
0.21
0.22
0.20
N02
0.66
0.34
0.099
0.094
0.048
0.060
0.056
0.095
0.080
0.029
0.019
0.074
0.096
0.096
0.014
0.058
0.032
0.092
0.080
0.08
0.10
0.05
0.12
0.10
0.112
0.100
0.096
0.10
0.10
0.09
0.088
0.057
0.15
0.066
0.059
0.059
H2CO
0.00
0.001
0.00
0.00
0.012
0.010
0.008
0.00
0.007
0.004
0.011
0.003
0.00
0.005
0.002
0.003
0.00
0.010
0.017
0.161
0.303
0.178
0.009
0.002
0.006
0.008
0.015
0.015
0.001
0.009
0.00
0.00
0.00
0.009
0.002
0.006
ACH
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.001
0.00
0.00
0.30
0.00
0.00
0.00
0.00
0.00
0.00
0.001
0.001
0.001
0.001
0.002
0.002
0.00
0.00
0.001
0.001
0.00
0.001
BAL
0.016
0.00
0.005
o.OO
0.00
0.00
0.00
0.00
0.032
0.00
0.00
0.00
0.000
0.00
0.00
0.00
0.00
0.002
0.009
0.00
0.00
0.003
0.172
0.187
0.00
0.001
0.00
0.00
0.00
0.00
0.00
0.00
0.000s
0.002s
0.000s
0.000s
HONO
0.000
0.01
0.001
0.02
- _
0.001
—
0.02
0.001
0.00
—
0.000
0.000
0.003
0.000
0.001
0.001
0.000
0.001
0.001
0.000
0.000
0.000
0.000
0.01
0.003
0.003
0.006
0.002
0.006
0.010
0.004
0.000
0.000
0.000
0.000
m-XYLENEa
Tol/N0x
0.80
1.85
3.67
3.90
2.22
2.43
2.42
2.05
2.06
5.33
9.86
1.20
1.26
1.25
5.34
0.48
2.07
2.24
1.21
2.24
2.30
1.24
2.15
1.21
4.27
2.14
1.25
2.22
1.22
1.94
0.73
1.77
1.71
1.89
kN02
0.16
0.16
0.16
0.16
0.35
0.35
0.35
0.16
0.16
0.37
0.35
0.40
0.39
0.37
0.16
0.16
0.39
0.35
0.16
0.39
0.35
0.39
0.39
0.40
0.39
0.40
0.39
0.4O
0.40
- -
0.39
0.38
0.39
0.39
are ppm. Standard conditions include in addition:
103 ppm HaO was used; chamber temperature 302 K.
Amount of HONO used in simulation.
"jCnits are rain" *.
Plus 2.04 ppm n-butane.
pPlus 0.096 ppm propene.
m-Xylene run, no toluene present.
*Me thylb enzaldehyde.
2 x 10* ppm HtO except for EC-83 where only 1.8 x
39
-------
TABLE 10. COMPARISON OF EXPERIMENTAL AND SIMU1ATIOH RESULTS FOR TOLUENE AND m-XYLEHE CHAMBER EXPERIMENTS
EC No.
83
82
85
81
265
266
264
80
84
271
79
269
327
340
273
77
78
335
272
86
336
270
337
339
331
338
328
334
329
330
UITC8.16.78B
UNC9.14.78R
344
343
34S
346
E X
O3-inax
ppn
> 0.42
> 0.36
0.27
0.26
0.39
0.40
0.42
0.34
0.23
0.30
0.096
0.30
0.38
0.35
0.22
> 0.01
0.092
0.40
0.41
0.30
0.39
0.37
0.32
0.22
0.52
0.48
0.52
0.41
0.40
0.34
> 0.27
> 0.31
0.59
0.28
0.40
0.38
PERI
Bin
> 360
> 360
240
180
220
220
220
255
360
90
120
> 360
360
360
80
> 360
195
225
340
330
165
330
255
> 360
120
240
360
180
310
180
> 750
> 770
180
75
75
60
MENTAL
NOj-ma
PP»
1.37
0.61
0.35
0.34
0.30
0.30
0.29
0.31
0.27
0.14
0.063
0.26
0.26
0.25
0.064
JO. 24
0.066
0.27
0.30
0.34
0.27
0.27
0.26
0.24
0.33
0.30
0.30
0.29
0.28
0.19
0.40
0.18
0.45
0.19
0.19
0.12
X
nln
270
180
120
75
90
90
90
105
140
30
30
140
135
120
30
300
45
75
100
120
60
100
105
195
45
75
105
60
100
60
490
490
45
30
25
35
S
0, -max
ppn
> 0.42
> 0.25
0.46
0.48
}
>0.60
)
> 0.35
0.33
0.40
0.30
0.39
> 0.40
0.25
> 0.01
0.16
0.69
0.68
0.48
0.65
0.52
0.58
> 0.38
0.98
0.98
> 0.96
0.73
> 0.56
0.57
> 0.30
> 0.18
0.70
0.40
0.40
0.41
I M U L A
rain
> 360
> 360
300
250
310
> 360
> 360
150
> 360
> 360
> 400
110
> 360
250
330
> 400
> 400
210
> 360
360
> 400
270
380
> 400
330
> 400
330
> 720
> 720
180
100
85
120
T I 0 N
N02-i
ppn
1.40
0.67
0.36
0.36
0.33
0.33
0.30
0.144
- -
0.29
0.27
0.26
0.07
0.26
0.064
0.30
0.33
0.34
0.29
0.29
0.29
0.29
0.36
0.34
0.34
0.31
0.30
0.20
0.38
0.16
0.45
0.19
0.20
0.17
nax
rain
200
190
95
60
90
100
130
50
160
140
135
35
3OO
60
55
80
100
40
100
115
150
55
100
110
80
125
70
540
520
45
25
30
30
40
-------
M»»ei«S Mvf. MH.
MR • |
till . I
J li juti it
II 1 J 14
II
I)
1
rft I II
" If
* • •
I II
5 .
I I I
• • I! •
I |
> I I >
' Il"'l . ' "
H1I II II III .III- I •) .,| . I. if. . .
t »
li •
« rccc ccccccc cc re cc c
* >c trrrc • c ccccccccc ccc cccc re
« re c tccccccticc c c ccc
• •> IM m ttt us
tlHl IKIWHCSt
is» ;•• nt too is- «••
tint IHIMUTCH
ii s»rclts uri. SIM.
i li IM. • i
ii 11
• I II
I I
lit!
I III
ill ri
ii ii
• • III III Illl
• • **
<• us iii in ft
IIME
in IVS 1*0 ?7* /II
IIHt fHIMIlltSI
Figure 1. Simulation of SAPRC Toluene Run EC-266.
-------
N02, 03, toluene, and CO for these runs. In both cases the agreement
between simulation and experiment is quite good. In these runs the
initial HN02 was varied to obtain the desired initial NO decay. In both
cases after the N0a maximum, the decay of N02 is slightly slower than
observed as was often also observed in the SAPRC runs. The ozone buildup
is low in one case and high in the other. Unfortunately, it is not
possible to make any generalization regarding the source of this discrepancy
with just these two experiments.
MECHANISM FOR MODELING m-XYLENE SMOG CHAMBER EXPERIMENTS
The m-xylene mechanism was based on the toluene mechanism with
the following changes:
• The total rate constant for the reaction of OH with m-xylene
is 3.6 x 10" ppm"1 min" l (see Table 2).
« The ratio of methyl attack to total reaction for OH + m-xylene
is 0.083 (see Table 4).
• The xylene-OH adduct was assumed to react by reactions parallel
to reactions (22) through (26), the same as for toluene; however
the proportions assumed were 14.3:28.6:28.6:14.3:14.3, respectively,
to account for the additional methyl group in xylene. The reactions
for xylene are:
+ 03
14.3%
(22')
CH3C(0)CHO + CSH603 + H02» (23'
CH3C(0)CHO + C9HS06« + HaO (24')
HC(0)CHO + C6H803 + H02«
(25')
HC(0)CHO + C6H706» + H20
42
(26
-------
till I I I l«ll *•*•
III till ••
!!••
I • »*•
•* » 7??»?y«***»y>
• •* f» **tt9
• ft » n
• r
• *
•»»
• •
•» •!
r
r • i
r • i
• i
r n
' t i
•• i I
•• if
•» i
9-
» ••
j •
j >•
i J ii
n in
• n mi
• II Ml
HI I
•I •"•III
1UIIK Illll
iiif ••••••••• »i ii ii i i
!•« l»l*IITffM
It.
Illl III* IIMIOII*
I fl»ll
•lit*
III
Illlll
t Illl
Illll
• I II I
• Ml t
*• IM tflfe Utt *»* *«» ftJt '*•
fl**i
U)
• •
er
: f«cc«crcreer«
vq IMA ?ii IAD
M KM
I M
sa \4o AJO IM
* it ??•
Figure 2. Simulation of UNC Toluene Run 8.16.78 Red.
-------
01 I
«, 1
Illl I I 1*1 I «l l«| i*
•nun*
in*
in
**' • t . . lint.lt
• > > > i i i itr i t
t* ... |i t
I • mm f» ..
I* t i it «•* 11
I •'« it* »
ii » • •»» it
" I* it »»
»• i » i »
»• i ID.
«f I • »
»» i i ) •
'•' I fit •
>|| j)
in
i >• III I
111 111 J«1J > • • l*lllll| Illl I I
l|Nt
•»• III
iff I r I ( I*
III I IMItl •
HIM
ITU
III •
III
I •
till
MM
• urn
i i
• .•>•»»«...»•.».«•.»,...
• •• !»•
tl-f
Ml «»• »«•
C C
CCC
CCC
CC
CC C
ccc
C C
CCC
tier c c-c • cccccccc
ccc crc c cccccc cc
Figure 3. Simulation of UNC Toluene Run 9.14.78 Red,
-------
Since the fragments in reactions (23' )-(26' ) have an additional
CH3, reactions (27)-(29), (50), and (51) are changed accordingly
C3H506« + NO — *- N02 + CH3C(0)C(0)H + CO + C02 + H02« (2/ )
C5H506» + N0a ^±! CSH50SN02 (28' )
C5HS06N02 — *- wall (29' )
CSH603 + OH — *- CSH50S- + HOH (5C)' )
C5H603 + hv — *- CSHS0S- + H02»
The intermediates C6H80 3 and CSH603 are assumed to be identical,
and C6H706» and C3HS03« are the same as CSHS06».
The data in Table 6 calculated for xylene run EC-344 indicate that
32%-48% of the NO loss is due to reactions between the organic fragments
X
and NO . This percentage is similar to that observed for toluene, so
X
no changes were made in reactions (27) through (29) .
The reactions of methyl benzaldehyde and dimethylphenol were assumed
to be identical to those of benzaldehyde and cresol, which are formed
in the toluene mechanism. The complete m-xylene mechanism is given in
Table 11.
m-XYLENE SIMULATION RESULTS
The results from four SAPRC runs are available to develop and test
the m-xylene mechanism (Table 11) . Three of these runs are under nearly
identical conditions. The concentration data for these experiments are
included in Table 9; N02 and 03 maxima and times to maxima are given
in Table 10. Figure 4 plots the simulated and observed concentrations
for EC- 345 as an example. Plots of all four experiments are given in
Appendix A.
45
-------
Table 11 n-XYLENE MECHANISM
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Activation
A-Factor Energy K
CH3PhCH3 •)• OH
CH3PhCH3 + OH
(CH,)2C8H4OH
(CH3)2C8H4OH
(CH3)2C8H4OH
(CH3)2C8H4OH
(CH3)2CSH4OH
(CH,)2CSH,OH + N02
Ca,PhCH202- + NO
CH,PhCH202 + N02
CH3PhCH202H02
CH3PhCH20'
CHjPbCHgO' + N02
Ca,PhCH20- + S02
CHjPhCHO + OH
CH-jPhCHO + hv
CH3PhC(O)O2- + NO
CHjPhCCOjO,- + NO,
CH3PhC(0)02N02
CH3PhC(0)O-
CH3Ph02' + NO
CH3PhO- * N02
CHjPhO-
(CH3)2CBH3OH + OH
(CHa)2C6H3OH +• OH
\Cu
-------
Table 11 m-Xylene Mechanism (concluded)
No.
41
42
43
44
45
46
47
48
49
50
51
52
S3
54
55
56
57
58
59
Activation
A-Factora Energy K
CHjO- +
CH20
CH20
CH20
HC(O)CHO
HC(0)CHO
CH,CHO
CHjCHO
CHjPhCHjOj' +
CH,PhCH2O- +
CH,Ph02- +
CHjPhO- +
CH,PhC(0)02- +
CHsPhC(0>0- +
CH,02- +
CHjC(0)02- +
acH,c(<
N02 - CH3ON02
+ OH •» HO2- + CO •»• H20
+ hv - H2 + CO
+ hv - 2H02' + CO
+ OH - H02- + CO + CO + H20
+ h^ -• 2HO ' + 2CO
+ OH -z CHjC(0)02' + H,0
+ hv - CHjCCOOj- + HO2-
H02- -
HO," -
H02- -
H02- -
H02- -
H02- -
H02- -
H02- -
3)02- - 2CH302- + 2C02
2CH,02- - CH20 + CH3OH
(CH,),C8H4OH
+ 0, - OH
2.0 x
2.0 x
2.0 x
- -
2.0 x
2.0 x
2.0 x
2.0 x
2.0 x
2.0 x
2.0 x
2.0 x
2.0 x
2.0 x
2.0 x
1.0 x
104
104
104
10"
103
103
103
103
103
103
103
103
102
102
103
*Units are ppn~l min"1 except those marked * are min"1.
47
-------
I •
9
I
n
a i m it n i /«*>/< t • i i
'* IK i« 111 t/t
1 1 "I IMWICtl
IIMIIU
»«« II III
1 I 1 I I
*•
00
*«•• •!*! M • « * »t * *
/Ag >*• tM !*• *»•
crcccrtccrcc
c cue cc c t t c ccc ec t e c c
|s«
'•*• ••« la I «•»
Figure 4. Simulation of SAPRC m-Xylene Run EC-344.
-------
VO
• *
Figure 4. Simulation of SAPRC m-Xylene Run EC-344 (concluded).
-------
All the simulated and observed concentration profiles agree very
well. The experimental ozone for run EC-343 does not agree with parallel
runs EC-345 and EC-346, and this is reflected in the simulated values.
The model greatly overpredicts the PAN decay after the maxima.
This effect appears to be due to overpredicting the peroxy radical-radical
interactions, which in turn, may be due to errors in the computed NO
and NO2 values.
The success in applying the toluene mechanism to the xylene reaction,
with only the changes indicated, confirms the general nature of the toluene
and xylene mechanism. The basic assumption that cleavage of the aromatic
ring does occur to give o-dicarbonyl forces one to expect more methylgly-
oxal instead of glyoxal in the xylene experiments than in the toluene
experiments. Since methylglyoxal is a radical source and glyoxal is
not, m-xylene is expected to be more reactive in oxidizing NO than toluene,
not only because of the larger OH rate constant, but also because of
the larger radical input from the increased amount of methylglyoxal.
This dual effect is apparent in the modeling results.
50
-------
SECTION 5
ALKENES
MECHANISM
In our previous report we modeled data reported by SAPRC for the
hydrocarbons propene, ethene, 1-butene, and trans-2-butene. In this
report the mechanisms have been slightly updated and the temperature
dependence of reactions having a significant activation energy has been
included. Using the revised mechanisms we have modeled SAPRC data for
propene and ethene, including one propene run at higher and one run at
lower than the standard (300 K) temperature. We also modeled UNC data
for ethene and propene, using the temperature-dependent mechanism to
simulate the experimentally observed temperature changes.
The complete mechanisms for ethene and propene are given in Tables 12
and 13, respectively. The only significant changes from our previously
reported mechanisms are as follows:
• The ozone-alkene mechanism has been modified to be consistent
with the experimental results of Herron and Huie.12 They found
that the ozonolysis of ethene formed formaldehyde and Criegee
biradical, which decomposed to give 20% radical products. Thus
we represent this reaction as:
CH2=CH2 + 03 —*- CH20 + 0.2H02»
Similarly for propene:
CH3CH=CHa + 03 —*- 0.5CH20 + 0.5CH3CHO + 0.2H02-
Although in this case the production of radicals may be higher,1*9
this mechanism assumes that the two possible Criegee biradicals
formed in the propene case are equally likely to be formed and
51
-------
that the two carbon biradical decomposes to radical products in
the same ratio as the one carbon biradical.
• The temperature dependence of the critical rate constants have
been added. This includes the decomposition of peroxyacyl
nitrates50 and peroxyalkyl nitrates,51 the reactions of alkoxy
radical,52 and the reactions of 0(3P), OH, and 03 (Table 8).
In accordance with the experimental results of Niki et al.,51+ the
OH-substituted alkoxy radicals formed by OH addition to propene and
ethene are assumed to decompose faster than they react with oxygen.
Earlier, based on thermochemical estimates1'8'52 we assumed that for the
ethene case the reaction with oxygen was nearly identical with decomposi-
tion. The reason for this inconsistency is an unresolved question at
present. Thus the reactions of the OH-substituted alkoxy radicals may
be more complex than the present mechanism indicates.
SAPRC DATA SET
Simulations are presented for 13 propene and 6 ethene chamber runs
performed at the SAPRC facility (see Appendix B); typical propene and
ethene results are shown in Figures 5 and 6. Initial conditions are
given for the propene runs in Table 14, and 03 and N0a maxima and time
to each maxima are given in Table 15. Similar data for the ethene
results are given in Tables 16 and 17. In all the simulations a standard
heterogeneous input of 2 x 10"4 ppm min~ l of H02 radicals is used, although
input of OH at the same level gives the same results in cases tested.
In general the simulations reproduce the experimental results wifch
reasonable accuracy. The only discernible systematic trend is that the
maximum ozone concentration is overpredicted 31(±18) % on the average for
propene and 23(±21)% for ethene.
Two propene experiments were reported at other than the standard
temperature. The increase in the reactivity observed at higher temperature
(312 K, EC-316) is well simulated by the homogeneous mechanism. The
run at lower than standard temperature (289.5 K, EC-215) shows a much
decreased reactivity, which is not predicted by the model. It is
difficult to draw meaningful conclusions based on one experiment, but the
52 ,
-------
TABI£ 12 PBOPENE MECHANISM
No,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
CHa=CHCH3 + OH "2
CHa«CHCH3 4- 0(SP) *
CH2-CHCH3 + 0('P) ->•
CH2-CHCH3 4 0(3P) -»
CHa-CHCH3 4 03 •*
-*
CH2=CHCH3 4 03 -••
•*•
CHi-CHCH3 4 N03 *
HOCHaCH(6a)CH3 4 NO -
CH3CH262 4 NO *
CH36a + NO •*
CH3C(0)6a 4 NO *
CH3CHaC(0)62 4 NO •*
CHa(OH)02 4 NO +
HOCH,CH(6)CH3 2»
HOCHaCH(6)CH3 4 Oa •»•
CHjCHjO 4 Oa •*
CHjO 4 Oa ->
CHaOH 4 Oa •*
CHaOH + 0, *
CHa(OH)0 + 02 *
CH3CH2CHO +• hv •*
CHjCHO + hv ^
CHaO 4 hv *
CH20 + h\) ->•
HOCH2C(0)CH3 +• hv -»
CHsCHaCHO + OH 21
CH3CHO -t- OH +2
CH20 + OH 2J
HO, + NOa *
HOaNOa •*
CHa(OH)6a + NO, •+
CH,(OH)OaNOa *
CH,(OH)CH(6a)CH3 + N02 *
CHa(OH)CH(02N02)CH3 *
CH3C(0)02 + NOa *
CH3C(0)02NOa *
HOCH2CH2(6a)CH3
CHjCHjCHO
CH362 + CH3C(0)62
CH3CHa62 + HOa
CH3CHO + CO
CHSCHO + HOa*
CH20 + CO
CH, 0 + H02 •
CH3CHaCHO -I- N02
HOCHaCH(6)CH3 + N02
CH3CH26 + N02
CH36 -t- N02
CH362 + N02 + C02
CHjCHaOa + NO, + CO,
CH2(OH)6 + N02
CHjCHO +• CHjOH
HOCH2C(0)CH3 + HOa
CHsCHO + HOa
CHaO + HOa
CH2(OH)62
CH20 •+• H02
HC(0)OH + HOa
CH3CH262 + C0a + HOj
CH362 -1- CO, + HOa
CO + H2
CO +• H02 4- HOj
CH3C(0)62 + CHaOH
CH3CH2C(0)62 + H20
CH3C(0)62 -*• HaO
HOa 4- CO
H02N02
H02 + NO,
CH2(OH)02N02
CH2(OH)6a 4 N02
CHa(OH)CH(OaN03)CH3
CHa(OH)CH(62)CH3 -t- N02
CH,C(6)02N02
CH3C(0)62 + N02
A Factor*
6.00 x 103
1.8 x 103
1.8 x 103
1.8 x 103
6.0 x 10~l
1.5 x 10-3
6.0 x 10~3
1.5 x 10-3
7.8
1.0 x 10*
1.0 x 10*
1.0 x 10*
5.4 x 103
5.4 x 103
1.0 x 10*
*3.00 x 10"
*6.7 x 10'
*2.0 x 103
*2.0 x 10s
*1.2 x 102
*1.2 x 103
*1.4 x 10s
2.0 x 10'
2.0 x 10*
2.0 x 10'
2.0 x 10s
*7.80 x 10"
7.8 x 103
*
1.60 x 10"
7.8 x 103
*1.60 x 10"
1.5 x 103
*1.02 x 10"
Activation
Energy K
-5.40 x 102
7.76 x 103
1.04 x 10*
1.16 x 10*
1.16 x 10*
1.35 x 10*
continued. . . .
53
-------
Propene Mechanism (concluded)
37 CH»CHJC(0)0, ••• NOa *
38 CH,CH,C(0)0,NO, »
39 CH,6 + NO, *
40 CHjO + NOa +
41 CH,CH,6 + NO, ->•
42 CHjCHjO + NOa +
43 CHa(OH)CH(6)CH, + NOa ->•
44 CHa(OH)CH(6)CH, •(• NOa -v
45 CH36, + NOa -*
46 CH,0,NO, ->•
47 CH,CH,C(0)6, + BOa ->
48 CH,C(0)6a + HO, *
49 CH,(OH)6, -I- HOa +
50 CH,(OH)CH,CH,6a + HOa -*
51 CHjCHaOa •*• HOa -+
52 CH,C(0)6, + CH,C(0)6a ->-
53 CH,(OH)CH,CH,6, + CH,(OH)CH,CH,6, ->
CH,CH,C(0)0,NO,
CHSCH,C(0)6, + HO,
CH,ONO,
CH,0 + HNO,
CHjCHjONO,
CH,CHO + HNO,
CH,(OH)CH(ONO,)CHj
CHa(OH)C(0)CHs + HSO,
CHjOjNO,
CH30, + NO,
CH3CH,C(0)OOH
CH3C(0)OOH
CH,(OH)OOH
CH, (OH)CH,CHaOOH
CH3CH,OOH
CBsOi + CH,6, + 2CO,
CHa(OH)CH,CH,6 + CH, (OH)CH,CH,6 -I- 0,
1.5 x 103
*1.02 x 10" 1.35 x 10*
2.0 x 10*
2.2 x 10s
2.0 x 10*
2.2 x 10s
2.0 x 10*
2.2 x 103
7.8 x 10s
*1.60 x 101" 1.16 x 10*
4.0 x 103
4.0 x 10s
4.0 x 10*
2.0 x 103
2.0 x 103
2.4 x 103
2.5 x 10a
Units pprn"1 min~* except * rain"1 .
54
-------
TABLE 13 ETHENE MECHANISM
Ho.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
A Factor
CH2CH2 + OH -*
CH2CH2 + 0(3P) -
CH2CH2 + 0(3P) -
CH2CH2 + BO, -
CH2CH2 + 03 -
HOCH2CH262 + NO -
CH362 * NO -
CH3C(0)62 +• NO -
HOCH2CH26 + 02 -
CH36 + 0, -
CH2O + hv -.
CH,O + hv —
CH3CHO + hv -*
CH20 + OH -*
CH3CHO + OH -*
HOCHjCHO + OH -
CH,02 + H02 -
HOCH2CH262 + H02 -
CHjC(0)62 + HO2 -
CH3C(0)62 + N02 -
CH3C(0)02K02 -
H02 + N02 -
H02N02 -
CH362 +- N02 -
CH302N02 -
HOCH2CH262 + N02 -
HOCH,CH202H02 -
CH3C(O)0., + CH3C(0)02 -
CH362 +• CH,02 -
HOCH2CHj62 + HOCH2CH2Oa -
HOCH2CH26 -2
CH2OH + 02 -
HOCH2CH202
CH3CHO
CH..6.J + H02 + CO
CH3CHO •(• NO2
CH20 * H02
CH20 + CO
HOCH2CH20 + N02
CH30 + N02
CH.,6, + NO, + C02
HOCH2CHO + H02
CH,0 + HO,
H02 + H02 + CO
CO + H2
CH3O2 + CO + H02
CO + HO2 + H2O
CH3C(0)62 + H20
CH20 + H02 + CO
CHjOOH +• O2
HOCH2CH2OOH + O2
CHjC(0)OOH + O2
CH3C(0)02N02
CH3C(0)02 + NO,
H02N02
H02 + N02
CH302NO,
CH302 + N02
HOCH2CH202ND2
HOCH2CH262 + N02
CH.,62 + CH,02 + 2C02 + 02
CH36 + CH36 + 02
HOCH2CH20 + HOCH2CH26 + 02
CH20 + CH,OH
CH20 -f H02
3.26
4.07
4.07
1.4
2.66
1.06
1.0
1.0
5.4
*
1.0
*2.0
2.0
2.0
2.0
2.0
2.0
4.0
1.5
*1.02
2.0
*7.80
7.8
*1.60
7.8
*1.60
2.4
2.0
2.0
*l.O
*1.2
x 103
x 103
x 103
x 10'
x 104
x 104
x 103
x 103
x 103
x 10"
x 104
x 104
x 103
x 103
x 103
x 103
x 10"
x 103
x 101S
x 103
x 10"
x 103
x 10"
x 103
x 102
x 102
x 10s
x 103
Activation
Energy K
-3.85 x 102
5.65 x 10Z
5.65 x 102
2.56 x 103
2.56 x 103
1.35 x 104
1.04 x 10"
1.16 x 104
1.16 x 104
Units ppn"1 ain"1 except * min'
55
-------
S1CIH KM. sin.
Ml • X
M» • *
tl
I t
»• t
f
(
I.M
•.I*
t
• II
tm (tail
t t I
•i in
IDIMICfl
>-•••-•**•••«-•»»
!>l II*
tncifi ttn. tm.
• • »
gi • «
« 9
• 10 COM • I I « I I •
• » •
IM IM ttl III tit
I IK MIMI'MI
.!»
trreiis ti»i. sm.
»>eo • t
* I
U *
» rr •
t r rr r rrr'r r t
t rr r « • •
rr ii rn «
' * .
i « « rrii
•r f •
/'
,: r •
.•IS
r t r r r r
l> » m>M i
. . .^
IM lit its l'« »»
fl«C IMfHUfCSI
Figure 5. Simulation of SAPRC Propene Run.
-------
I.H
• M
I.I <
tMciti t»»i. sm.
«, •»" r o
t •
( (
II •
If
I •
II
•
If •
F
".'
II •
I OOOOOOO • •• O
(I OO 0 < • . 0 • 0> O
• I 0.000.0
M I • • 00.00>«
Q0 CCC * ft • OOt
• • I • «••
• . Ill •
O • II*
no" " . . • .
oo C ( *
oo00 . * * e ""/««; . . .
A 2 ccuc ' • •
* ° 1C I C
• * mm
M**
• •
00
mm 4 «
•••
•••
l.l
•.• 1
I t
1 IFfCIM IIH. (III.
MM • I
II m . M
I •
* 9
•1
•
a
•
t
i
1
1 •
f
• I
n * t •
t
g
^ ^
* ••
* '
u •
• • r
I
t •
it
• « •
it
• I •
N U •
• • It*
N f* t* •
KMIIII « MKMK • till tlt'lfl* •
•» «•
IM m »>• us
i IK miiwiisi
i» IM in
IIHt IHIMITHl
»?• in
.•It'
Ln
s*fcic« Fin. sm.
rr r
FFFFF
TlPC INIHUVCSI
•> «i in Hi in »•• 911
IIMC IKIWIffft
Figure 6. Simulation of SAPRC Ethene Run EC-156.
-------
TABLE 14 SUMMARY OF INITIAL CONDITIONS FOR SMOG CHAMBER EXPERIMENTS FOR PROPENE
So.
256
257
276
277
278
279
314
315
316
317
318
319
320
12.26.77R
1.10.78R
2.27.78R
3 .06 .78R
3 .31 .78R
6. 16 .788
7. 01 .788
7.24.78R
7.24.788
7.30.78B
8.05.78R
8.05.788
8 .06 .78R
8.15.78R
8.16.78R
10.03.788
10.12.788
Propene
0.11
0.112
0.54
0.56
1.02
1.14
1.06
0.97°
1.07d
0.49®
f
0.51
0.50B
0.54
O.99
1.08
1.32
1.26
1.27
0.67
0.51
0.99
0.49
0.42
0.28
0.51
0.56
0.48
0.52
0.45
0.44
NO
0.520
0.530
0.410
0.098
0.366
0.730
0.684
0.664
0.735
0.236
0.172
0.100
0.222
0.28
0.32
0.37
0.39
0.39
0.42
0.61
0.78
0.80
0.40
0.21
0.43
0.43
0.43
0.62
0.35
0.36
N02
0.044
0.032
0.106
0.010
0.128
0.244
0.246
0.276
0.246
0.281
0.331
0.430
0)290
0.12
0.14
0.12
0.12
0.091
0.21
0.32
0.18
0.17
0.084
0.052
0.145
0.121
0.109
0.070
0.14
0.12
CH,0
0.042
0.371
0.016
0.005
0.017
0.017
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
HONO
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.020
0.020
0.005
0.000
0.004
0.001
0.015
0.020
0.020
0.010
0.030
0.030
0.030
0.030
0.020
0.010
0.010
RH/NOX
0.19
0.86
1.06
S.22
2.04
1.17
1.16
1.03
1.09
0.93
1.02
0.95
1.05
2.48
2.35
2.69
2.47
3.09
1.06
0.55
1.03
0.51
0.88
1.07
0.89
1.02
0.89
0.75
0.92
0.92
"NO,
0.30 j
0.30
0.35
0.35
0.35
0.35
0.55
0.55
0.55
0.55
0.55
0.55
0.55
_ _
- -
_ _
- -
- .
- -
- -
- -
- -
- -
Units In ppm.
Units in min
Temperature, 289.5 K.
Temperature, 312.0 K.
'initial PAN, 0.072 ppm.
Initial PAN, 0.149 ppn.
Initial PAN, 0.036 ppm.
58
-------
TABLE IS COMPARISON OF EXPERIMENTAL AND SIMULATION RESULTS FOR PHOPENE CHAMBER EXPERIMENTS
No.
256
257
276
277
278
279
314
315
316
317
318
319
320
12.26.77R
1.10.78R
2.27.78B
3.06.78R
3.31.78R
6.16.78R
7.01.78B
7.24.78R
7.24.78B
7 .30 .788
8.05.78R
8 .05 .788
8.06.78R
8.15.78R
8.16.78R
10. 03 .788
10.12.788
E X
0,-max
opm
0.020
0.066
0.37
0.31
0.63
0.68
0.73
0.34
0.95
0.61
0.68
0.76
0.64
0.38
0.36
0.59
0.65
0.82
1.02
0.56
1.20
0.29
0.78
0.62
0.77
0.50
0.91
0.73
0.41
0.46
PERI
min
> 360
> 360
> 360
135
195
> 360
> 360
> 360
> 360
> 360
> 360
255
330
700
700
570
540
480
> 720
820
680
> 720
> 720
720
700
> 600
> 650
> 720
700
> 720
MENTAL
NO, -max
ppm
0.21
0.30
0.37
0.085
0.39
0.71
0.67
0.61
0.72
0.40
0.42
0.46
0.40
0.31
0.37
0.38
0.44
0.42
0.49
0.68
0.81
0.66
0.37
0.25
0.48
0.51
0.47
0.53
0.38
0.37
min
> 360
195
135
30
60
105
90
135
75
75
45
30
60
525
460
540
420
370
420
470
370
540
450
300
350
280
360
450
520
510
o,-.
ppm
0.007
0.066
0.67
0.46
0.79
0.89
1.10
0.53
1.40
0.60
1.00
1.11
0.95
0.23
0.19
0.88
0.90
1.17
1.11
0.77
1.47
0.60
0.92
0.61
0.87
0.63
1.00
0.87
0.49
0.39
S I M U L A T
nax
min
> 360
> 360
> 360
180
240
> 360
> 360
> 360
> 360
> 360
> 360
> 360
> 360
720
720
720
> 720
> 720
> 720
> 840
720
> 720
> 720
720
720
> 720
> 720
> 720
> 720
> 720
ION
N02-max
ppm
0.19 >
0.32
0.39
0.088
0.40
0.76
0.69
0.65
0.74
0.38
0.40
0.45
0.41
0.27
0.27
0.33
0.34
0.36
0.48
0.70
0.76
0.73
0.36
0.23
0.45
0.46
0.43
0.53
0.37
0.35
min
360
240
120
45
90
120
120
160
120
140
45
30
60
480
600
480
420
420
480
480
420
520
420
360
400
400
360
420
480
540
59
-------
TABLE 16 SUMMARY OF INITIAL CONDITIONS FOR SMOG CHAMBER EXPERIMENT FOR ETHEHE
No.
142
143
156
285
286
287
6.16.78R
8.21.78R
9 .19 .78R
10 .17.788
10 .18 .78R
11.19.78R
11.20.78R
Ethene
0.95
2.03
1.99
1.95
3.76
4.00
1.98
0.695
0.940
1.37
1.56
1.89
2.20
NO
0.32
0.39
0.38
0.79
0.71
0.40
0.42
0.80
0.57
0.37
0.34
0.42
0.42
NO,
0.16
0.11
0.12
0.22
0.24
0.12
0.21
0.18
0.12
0.12
0.11
0.034
0.030
HONO
0.050
0.050
0.050
0.000
0.000
0.000
0.004
0.000
0.003
0.010
0.000
0.006
0.010
RH/NOX
1.98
4.06
3.98
1.93
3.96
7.69
3.14
0.71
1.36
2.79
3.47
4.20
4.89
*N02
0.33
0.33
0.33
0.39
0.39
0.39
- -
~ ~
Units la ppm.
60
-------
TABLE 17 COMPARISON OP EXPERIMENTAL AND SIMULATION RESULTS FOR ETHENE CHAMBER EXPERIMENTS
No.
142
143
156
285
286
287
6.16.78R
8.21.78R
9.19.78K
10.17.78B
10.18.78R
11 .19 .78R
11.20.78R
EXPERIMENTAL
Oj-max N0z-max
ppo min ppm min
> 0.78
1.09
1.05
> 0.84
1.08
0.96
1.10
0.012
1.03
0.44
0.71
0.79
0.75
> 360
210
195
> 360
180
135
480
> 720
700
> 600
690
630
630
0.30
0.38
.36
0.71
0.76
0.45
0.48
0.37
0.51
0.39
0.31
0.43
0.42
105
60
45
160
70
45
320
670
430
480
500
460
480
S I M U L
0,-raax
ppm nin
1.15
1.08
1.08
> 1.00
1.50
1.30
2.04
0.024
0.61
1.38
1.14
1.23
1.32
> 360
180
180
> 360
200
140
660
720
720
720
720
720
720
A T I 0 N
NO z -max
ppm min
0.38
0.45
0.44
0.71
0.75
.45
0.52
0.54
0.47
0.36
0.35
0.39
0.41
60
25
25
190
100
45
420
720
600
420
540
550
480
61
-------
large magnitude of the change for only a ten-degree change in temperature
suggests a nonhomogeneous effect.
UNC DATA SET
UNC has reported data for propene and ethene. The results are also
shown in Appendix B, typical runs are shown in Figures 7 and 8. Starting
conditions are given in Table 14, and the 03 and N02 maxima and times
to maxima given in Table 15. The results are, in general, good; no
systematic discrepancies between computed and experimental data are
apparent except for the ozone. The computed ozone values average 18(± 35)%
for the propene runs and 78(+ 80)% for ethene. Note that the apparent
discrepancy for N02 rate in some runs is due to the experimental measure-
ment including PAN as N02. Substraction of the computed PAN concentra-
tion produces good agreement in all cases. A small initial amount of ,
nitrous acid was assumed in the simulations to achieve the correct overall
rate of reaction. The amounts are also given in Table 14.
62
-------
0.1*
U)
O.I
SMxm tin. sin.
to • »
not • i
< 1 I
• I 11
* t <
MHM * II II Ml Ml'MM i 1
MH*M N • 2
XX • 1
Ml I
MI I
• KN t • t
n l i
HI
i* • • It
. I *
M » • 1
• It N 1
11 •!
it * II > •
jin t i a « 11111111.1 ii i . . <
* * «
• » »
II 1
X t
I
II It
II t
• *
«
• M IMNMIIMI
M IM tie l»0 «H MO 410 HO
, iim mmuicn
irccifl «•»'• «""•
ru • *
1.0
0.11
„
0.10
».!»
0.0
IrKKI tin. II*. o .
01 • 0 •
r • ' • o
o
0
•
ou
0
• a
0
• 0
999 99
• 9*99 O
»» a
99
• 99 • 0
P 0
9 0
• P
9 a
9 • 0
• »» a
a
• or
• •
0 »
0 '
a "
a 9
»0 • 9
OOOOOO «OU • •99*999 99 «
» too iro i»o «>o f«o »io n
IINC IHIMMVfVI
•0 110
no no
tint IHINUIISI
Figure 7. Simulation of UNC Propane Run 6.16.78 Blue,
-------
••H
t.*<
IWCItl KM. ||«.
w ; j
mi *i IM i i i mm i
• • • • inn
• • I
I«M
•i
• t« HI
tt n i
/ '"•.
trit
n
nn •
i«fft« it. •
't
il t
•i t
i*
t i
t • i
«»• i
• i
•>•»•} *><»*«i ••»*>*• •*• *»
in ttt
m
• mil mi
tilt IMIMItftl
I.M*
i.i*
I.M
wrcm UM. UK.
01 • I
I •
M,
IM til Ml «•«
IIW MIIWMII
Ml »M ft*
t.M*
.»4
!.«•
*.*•
tin.
net 11«i 11 t'tt ml fttttt
in t*
tttt
m *
it
it
II
'. *
n
n
I.M
•.n
' M IM *»* >•« »*• *»« •'• '**
lir
M IM
III Ml «••
IIM IKIMIIfll
I..............................
•41 *M IM
Figure 8. Simulation of UNC Ethene Run 11.19.78 Red.
-------
SECTION 6
ALKANES
MECHANISM
Both SAPRC and UNC have reported data on butane-NO systems. The
butane mechanism is given in Table 18. The major change from our previous
report,1 besides addition of the activation energy terms, is the reduction
of reaction (16) in the table. This change improves the simulation of
the butanone data as well as the agreement of the rate constant with
values for similar reactions.
SAPRC DATA SET
The results for six SAPRC butane chamber runs are shown in Appendix C.
Initial conditions are given in Table 19, and the N02 and 03 maxima and
the time to these maxima are given in Table 20- A typical result is
shown in Figure 9. In all the simulations a standard heterogeneous
radical input of 2 x 10"'' ppm miri" * of H02 radicals is assumed. In general
there is good agreement between the computed and experimental results.
In common with the propene set, there is a systematic tendency to
overpredict ozone.
The results for the two nonstandard temperature runs (EC-308, 288.5 K;
EC-309, 311.5 K) are similar to the results for the propene experiments.
The increased reactivity at higher temperatures is adequately simulated,
whereas the decrease in reactivity at low temperature is not, probably
because of heterogeneous effects.
In summary these results are similar to the bulk of our previous
work in tthe SAPRC butane-NO data set.
A
65
-------
TABLE 18 n-BUTANE MECHANISM
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
CH3CH,CH,CH3 +
CH3CH,CH,CH3 +
CH3CH,CH*CH3 + 0(
CH3CH,CH2CH,6, +
CH3CH,CH(6,)CH3 4
CH3CH,CH,C(0)6, 4
CH3CH,C(0)6, +
CH3C(0)6, +
CH3CH,(6,)C(0)CH3 4
HOCH,CH,CH,CH262 4
CH3CH,CH262 4
CH,,CH2Oi 4
CHjOj 4
OH
OH
'P>
NO
NO
• NO
NO
NO
• NO
• NO
• NO
• NO
• NO
CH3CH2CH(0)CH3
CH3CH,CH,CH,0
CH3CH,CH(6)CH3 4
CH3CH,CH,CH26 4
CH3CH,CH,0 4
CHjCHiO 4
CH36 4
CH,0 4
CH,0 4
CH3CHO 4
CH3CH,CHO 4
CH3CH,CH,CHO 4
CH3CH2CH2CHO 4
CH3CH2C(0)CH, 4
CH20 4
CH3CHO 4
CH3CH2CHO 4
CH3CH,CH,CHO 4
CH,CH2C(0)CH3 4
CH3CH,CH2C(0)6, 4
CH3CH,C(0)6, 4-
CH3C(0)6, 4-
HOCH,CH,CH,CH,6, 4-
• 0,
• o,
" 0,
• 02
• 0,
• hv
• hv
• hv
• hv
• hv
• hv
• hv
• OH
• OH
• OH
• OH
• OH
• HO,
HO,
HO,
HO,
u,
0,
0,
+
+
0,
0,
0,
02
*
*
*
+
0,
0,
*
+
+
+
+
20,
-*•
20,
20,
20,
+
202
->•
0,
0,
0.
2*
•*
*
*
+
CH3CH,CH,CH,0, 4- H,0
CH3CH,CH(6,)CH3 4- H,0
CH3CH2CH,CH,6, 4- OH
CH3CH,CH,CH26 4- N02
CH3CH,CH(6)CH3 4- N02
CH3CH262 4- N02 4- CO,
CH3CH,6, 4- NO, 4- CO,
CH36, 4- NO, 4- C02
N02 4- H02 4- CH3C(0)C(0)CH3
HOCH,CH,CH2CH,6 4- NO,
CH3CH,CH,6 + NO,
CH3CH,6 4- NO,
CH,6 4- NO
CH3CH,02 4- CH3CHO
CH,(62)CH,CH,CH,OH
CH3CH,CH(0)CH3 4- HO,
CH3CH,CH,CHO 4- HO,
CH3CH,CHO 4- HO 2
CH3CHO 4- HO,
CH,0 4- HO,
HO, 4- HO, 4- CO
H, 4- CO
CH362 4- HO, 4- CO
CH3CH,6, 4- HO, 4- CO
CH3CH2CH26, 4- HO, 4- CO
CH3CHO 4- C,H»
CH3C(0)62 4- CH3CH26,
CO 4- H02 4- H,0
CH3C(0)6, 4- H,0
CH3CH,C(0)6, 4- H,0
CH3CH,CH,C(0)6, 4- H,0
CH3CH(6,)C(0)CH3 4- H,0
CH3CH,CH,C(0)OOH 4- 0,
CH3CH2C(0)OOH 4- 0,
CH3C(0)OOH 4- 0,
HOCHjCHjCHjCHjOOH + 02
A Factor
8.87 x 103
1.36 x 10*
6.4 x 10l
1.0 x 10*
1.0 x 10*
5.4 x 103
5.4 xlO3
5.4x 103
5.4x 103
1.0 x 10*
1.0 x 10*
1.0 x 10*
1.0 x 10*
* 1.05 x 10"
* 1.51 x 1013
*5.15 xlO'
* 1.02 x 10"
1.02 x 10*
* 1.02 x 10'
* 1.63 x 10"
2.0 x 10*
2.0 x 10*
2.0 x 10*
2.0 x 10*
5.2 x 103
4.0 x 10'
4.0 x 103
4.0 x 103
2.0 x 103
Activation
Energy
8.20 x 10*
4.30 x 10 a
7.35 x 103
3.87 x 103
1.76 x 103
2.01 x 103
2.01 x 103
2.01 x 10s
2.01 x 103
66
-------
Table 18. n-Butane Mechanism (continued)
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
5E
59
60
61
62
63
64
65
66
67
66
69
70
71
72
CHsCH(02)C(0)CHj 4- HOj
CH3CH,CH(6a)CH3 + H02
CH,CH,CH,CHaO, + H0a
CH,CH,CH,da + H02
CH,CH,6a -I- H0a
CH,6a + HO,
CH3CH2CHjC(0)Oj + N02
CH3CH2C(0)62 + N02
CH3C(O)6a +N0z
CH3CHiCH2C(0)OaNOa
CHiCH2C(0)02HO,
CH3C(0)OatlOa
CH36 + H0a
CH36 + N02
CH3CH26 + K02
CH3CH26 + N02
CH3CH2CHaO + NO 2
CH3CHaCHa6 +> N02
CH3CH2CH2CH26 -I- H0a
CH,CB2CH1CH>6 -I- N02
CH3CH2CH(6)CH3 + NO,
CH,CH2CH(6)CH3 + NO,
HOi + N0a
H02N02
CH362 + N02
CH302N02
CH3CH262 + H0a
CH3CH202N02
CH9CH2CH262 -t- N02
CH3CHaCH202N02
CH3CHaCH2CH26a + N02
CH3CH2CH2CH202N02
CH3CH2CH(02)CH3 + N03
CH3CH2CH(02N02)CH3
CH3CH2CH(Oj)CH3 + CH3CH2CH(62)CH3
CH,CH2CH2CHj6, + CH,CH,CH2CH26,
CH3CH(OOH)C(0)CH3 + Oa
CH3CHaCE.(CH. )OOH -t- 0,
CH3CH2CH2CH2OOH + 02
CH3CHaCHaOOH + 02
CHjCHjOOH + 02
CH,OOH + 02
CH3CH2CH2C(0)02N02
CH3CH2C(0)02N02
CH,C(0)02KOa
CH3CH2CH2C(0)Oa + N0a
CHaCH2C(0)02 + N02
CH3C(0)62 + N02
CH3ON02
CHjO + HNOa
CH3CH2OKOa
CH,CHO + HNO,
CH9CHaCH2ON02
CH3CHaCHO + HN02
CH3CH2CH2CH2ON02
CH,CH2CH2CHO + HNOa
CH,CHaCH(ONOa)CH3
CH3CH2C(0)CH3 + HN02
H02N02
H0a + N0a
CH302N02
CH36a + NO,
CH3CH202N02
CH3CH26a + N02
CH3CH2CH2OaNOa
CH3CHaCH262 + N02
CH3CH2CH2CH202N02
CH3CH2CHaCHaOa + N02
CH3CH2CH(02N02)CH,
CH3CH2CH(62)CH3 + N02
CH3CH2CH(6)CHs + CH3CH2CH(6)CH3 + 02
CHsCHaCHaCH,0 * CH3CH2CHaCHsO -I- 02
2.0 x 103
2.0 x 103
2.0 x 103
2.0 x 103
2.0 x 103
2.0 x 10*
1.5 x 103
1.5 x 103
1.5 x 103
*1.02
1.35 x 10*
*1.02 x 10" L35 x 10*
*
1.02 x 10la 1.35 x 10*
1.5 x 10*
4.4 x 103
1.5 x 10*
2.9 x 103
1.5 x 10*
2.9 x 103
1.5 x 10*
1.5 x 103
1.5 x 10*
1.5 x 10*
2.0 x 103
*
7.80 x 10>s 1.04 x 10*
7-8 x 103
A
1.60 x 10le 1.16 x 10*
7.8 x 103
*
1.60 x 10" 1.16 x 10*
7-8 x IQ3
1.60 x 10" 1.16 x 10*
7-8 x IQ3
*
1.60 x 1018 1.16 x 10*
7.8 x 103
1.6 x IQ18 1.16 x 10*
2.0 x 103
2.0 x 102
continued . . .
67
-------
Table 18. n-Butane Mechanism (concluded)
73 CH9CHaCHa6a + CHjCHjCHjOj -> CHjCHjCHjO + CHjCHjCHjO + 02 2.0 x 102
74 CH,CH,6, + CH,CHa6a -f CH,CHa6 + CH,CH,6 -1-0, 2.0 x 10*
75 CH36a + CH,0, -»• CH,6 + CH»6 + 0, 2.0 x 102
76 CH3C(0)6, -t- CHSC(0)6» + CH,6» + CH,6, + 2COa + Oa 2.4 x 103
77 CHa(0)CHjCHaCHaOH °2 CHa(OH)CH2CHaCH(OH)6a *9.51 x 1012 3.27 x 103
78 CHa(OH)CHaCHaCH(OH)6, + NO + CHa(OH)CHaCH2CH(OH)6 •(- NO, 1.0 x 10*
79 CHa(OH)CHaCH3CH(OH)6, + HO, * stable product 4.0 x 10s
80 CH,(OH)CHaCHaCH(OH)6 3* CH(OH) (6a)CHaCH2CH(OH) a *9.51 X 1011 3.27 X 103
81 CH(OH)(6a)CHaC2i,CHa(OH)a + NO * CH(OH) (6)CH,CHaCH(OH), 1.0x10*
82 CH(OH)(62)CHaCHaCHa(OH)a + HO, * stable product 4.0 x 103
83 . CH(OH)(6)CH,CHaCH(OH)a °a CH(OH)aCHaCH,C(OH)a6a *4.76 X 1011 2.31 X 103
84 CH(OH)aCHaCHaC(OH)a6a -t- NO -*• CH(OH) jCHjCHjCCOWO 1.0x10*
85 CH(OH)zCHaCHaC(OH)26a 4- HOa * stable product 4.0 x 103
86 CH(OH),CHaCHaC(OH)a6 $2 C(OH)1(6>)GH2CH,C(OH), *4.76 x 10" 6.44 x 103
87 C(OH)a(6a)CHaCHaC(OH)3 + NO ->• C(OH) j(6)CHaCHaC(OH)3 1.0x10*
88 C(OH),(Oa)CH2CHaC(OH)9 -f HOa •* stable products 4.0 x 103
ppm"1 min~l, except * units rain'1.
68
-------
(.11
tmrn nn. JM.
oj . o
"o • *
mt > i
Ill ' IMCIIl MM. »l«.
M Mil • •
11 ti mm! ii i • i
• tnt • i lint •
* ii i iii i tut i
• t i • • a tit •
••>• « i M > in 11
• it oo • » i i
in o i
>t o • m
it • • ii
m
ti
II «
nt
1.1
1.1
I • H 10
* *co
• I • Ml
• «• mm
• • a «•••••
|M «q«00 * * NMM<« *• MKMUIMMMI I ••«""!•
J^^I^^MUMI wmmmm m\ fj • •in •• •• ^••••_LB j -• jjji-m-ai r • j x»*»-» >-B^4M mmmmm im-mtmmmmmm • .•• • «0 ••!•
* «t «• lit IK t»l tri
tIM MIMIffll
M
ill III
ilia
III 110 Mt
4.ia>
a>
ll.it
MN
«H
u»l. UN.
U
t
* »
I t
« *
II I MM*
U I • •» MUM
I WWWW »
U «» • •• *
111 1 HIM II II H II II «• IHW • * • I
• 49 «0 111 III
IIM IMMUIIII
rt »
ill in
t »
•if M*
Figure 9. Simulation of SAPRC n-Butane Run EC-309.
-------
TABLE 19 SUMMARY OF INITIAL CONDITIONS OF MISCELLANEOUS SMOG CHAMBER EXPERIMENTS*
No.
304
305
306
307
c
309
7.21.78R
7.22.78R
2.27.78R
250
251
252
255
9.14.77R
9. 15.788
9.21.78B
253
254
12.26.77B
8 .08 .78R
Subst .
n -Butane
4.28
4.30
6.44
6.44
4.05
4.31
1.83
2.09
3.37
CH,0
0.33
0.19
0.36
0.33
1.05
2.00
1.97
A0H
0.546
0.472
1.91
0.46
NO
0.349
0.078
0.147
0.083
0.305
0.203
0.189
0.432
0.189
0.011
0.080
0.392
0.006
0.293
0.211
0.190
0.011
0.085
0.29
0.42
NO,
0.117
0.020
0.040
0.019
0.178
0.272
0.054
0.116
0.077
0.012
0.033
0.103
0.010
0.104
0.057
0.067
0.009
0.027
0.117
0.095
HONO
0.000
0.000
0.000
0.000
0.000
0.000
0.020
0.020
0.020
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
0.000
RH/NOX
9.18
43.9
34.4
63.1
8.39
9.07
7.53
3.81
12.7
14.3
1.71
0.73
20.63
2.64
7.46
7.67
27.3
4.32
4.69
0.89
"NO,"
9.43
0.43
0.43
0.43
0.43
0.43
- _
- -
0.30
0.30
0.30
0.30
_ _
- -
0.30
0.30
- -
"
bUnits In ppm.
Units in oin~*.
Temperature, 288.5 K.
Temperature, 311.5 K.
70
-------
TABLE 20 COMPARISON OF EXPERIMENTAL AND SIMULATION RESULTS FOR MISCELLANEOUS CHAMBER EXPERIMENTS
7
7
2
9
9
9
12
8
No.
304
305
306
307
308
309
.21.78R
.22.78R
.27.78R
250
251
252
255
.14.77R
.15.788
.21.788
253
254
.26.778
.08.78R
E X
03-nax
ppm
0.36
0.40
0.54
0.42
0.04
0.56
0.72
0.13
0.72
0.21
0.25
0.02
0.15
0.62
0.55
0.74
0.125
0.20
0.039
0.51
PERI
min
> 435
> 360
> 405
> 390
> 360
360
> 720
> 720
680
360
315
> 360
315
> 720
630
630
> 360
> 360
700
770
MENTAL
NO. -max
ppm
0
0
0
• o
0
0
0
0
0
0
0
0
-
0
0
0
.
0
0
0
.32
.077
.15
.078
.28
.36
.22
.43
.27
.22
.08
.20
-
.28
.22
.25
.
.06
.33
.42
min
180
90
100
60
345
90
400
660
300
330
30
180
30O
300
300
..
90
660
470
o,
ppm
0.98
0.76
0.99
0.84
0.35
0.91
0.84
0.19
0.62
0.21
0.063
0.013
0.18
0.52
0.93
1.25
0.14
0.16
0.60
0.75
S I M U
-max
min
> 435
> 360
> 400
> 390
> 360
> 360
> 720
> 720
> 720
230
360
> 360
240
720
650
660
> 360
> 360
720
780
L A T I ON
NO -max
ppm
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.35
.075
.15
.08
.35
.35
.20
.42
.22
.012
.07
.20
.01
.30
.21
.22
.013
.082
.28
.34
min
170
60
90
60
220
160
480
660
600
0
60
170
0
360
300
300
90
180
360
480
71
-------
UNC DATA SET
The results for the selected UNC butane runs are shown in Appendix C.
Initial conditions are given in Table 19 and results summarized in
Table 20. A typical result is shown in Figure 10. The results are
generally in good agreement. A small variable amount of initial nitrous
acid was used to increase the overall reaction rate of the simulations
to match the experimental data. The amounts used are listed in Table 19.
72
-------
o.*v»
i
u
It
i
1
1.
I
ft
* **•!«
1
1
t
N
>
*
N
0.15
O.w
s»*eics ««*?. MN
W • t. " • O
»n; t J II
p* * p I
n •
I
D
• I
I 0 « ,
0 I
fj-'N H H I. hfclWftN* fc* * g
ft M*N * g
N*N
MN I I«II
* » I I f Q
Nil
* t n
• H» t • }
1 0
t t
2 N 0 «J
I*N n t »•**
III *
2 It • N 0 1
X M» * N 1
J.'f? J 1 / 22f222* # • 10
NO 7
** *
* 0 II
CM *
Q UN tt
nn o OOWIQI * HHhHM NN }? ttiwin? ttxtn
I1" 211 119 420 929 A10 Ml MO
!•• •
1.2
1
ll.H
<*.«
/
P « ' '» '
rn » e
crrcrcc
ccc
cc
* »>r» » c
• » »» cc
* •» c
99 C
rr »
•
• 9 T-
9 '
9 r
•
e
» e •
I* C
• » c
P • •
•c • • *
• c »
C 9 •
C
C f
C f
t 9
*tc
t c» »
CCCf »
uctrttc c cc»c t » P
tc". ' c c uccrrt c t • • »
• r
9*
• * **,*«p«»rp
... -•-. - * • * t ^
II"! l«IHUtfll
CO
srrcii* c»f i. SM*
119 420
Tlir IMIKU1CSI
Figure 10. Simulation of UNC n-Butane Run 7.27.78 Red.
-------
SECTION 7
ALDEHYDES
MECHANISM
Both SAPRC and UNC have reported experiments for acetaldehyde and
formaldehyde chamber experiments. The aldehyde mechanisms are subsets
of the alkane and alkene mechanism, but are given explicitly in Table 21
for convenience.
SAPRC DATA SET
The six SAPRC aldehyde runs have been modeled and are shown in
Appendix C. Initial conditions are in Table 19 and the results are
summarized in Table 20. Typical results for acetaldehyde and formaldehyde
are shown in Figures 11 and 12. Aldehydes present a difficult analytical
problem and there is considerable scatter in their concentration
measurements. However, in general the results are in good agreement.
UNC DATA SET
The UNC aldehyde chamber runs are given in Appendix C. Initial
conditions are in Table 19 and results are summarized in Table 20. A
typical result for acetaldehyde is shown in Figure 13, and for
formaldehyde in Figure 14. As in the SAPRC data set there is considerable
scatter in the hydrocarbon measurement, but in general the results are
in agreement.
74
-------
TABLE 21
ALDEHYDE MECHANISM
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Activation
A-Factora Energy
0
CHjCHO + hv •*•*
CHaO > hv *
CHaO + liv •*
OUCHO + OH +*
CHaO + OH ->•
CH3C(0)6a + SO »
CH3C(0)6a + N02 *
CH3C(0)OaNOa *
CHjOa + NOa •*
CH362N02 •*
CH36a + NO ->•
CH30 ••• Oa •*
CH36 + NOa -*•
CH30 + NOa *
CH»C(0)6a +• CH3C(0)6a *
CH3C(0)Oa + HO, *
CH36 + HOa *
CH302 -t- CO + HOa
CO + HO, + HOa
CO
CH3C(0)6a -I- H,0
H02 + CO+ HjO
CH362 -I- NOa + CO,
CH3C(0)0,NO,
CH3C(0)63 + NO,
CH30,NOa
CH362 + N02
CHjO + NOa
CH20 + HOa
CH3ONOa
CHaO + HNOa
CH36a + CH36a + 2COa
CH3C(0)OOH
CH3OOH
2.0 x
2.0 x
5.4 x
1.5 x
1.02 x
7.8 x
*1.6«
1.0 x
*2.0 x
2.0 x
2.2 x
2.4 x
4.0 x
2.0 x
10*
10*
103
103
1018 1.35 x 10*
103
10" 1.16 x 10*
10*
103
10*
103
103
103
103
^nits in ppm"1 min"1, except
* min
"1
75
-------
»
I.IS
i.U
il.es
n) • »
ouoo oom
ooo
ooo
o n •
00
on
oo •
<» in
IIM
tlHf
IIS M«
ON
• ••*
• .•I
I- »C»
»t ti n a
it
. . ...
tifir *
• ». i f f f ntiz *
MM > n n n t •
N Ml r t *H « « • Itll*
t M* M. I 1, • • 2
W »»H-»I< P> >• 1, N MM. IIMi C •» M
-------
JFICICl «••!. Sir
OJ . 0
l.i
i •
r »
•.I
•.•I*
• o e
oooo
0 fl • • • •
o g o c
10 a
I
«$
In* '19 tin III
IMMIIItl
•» n in
111
irccui (in. si>.
Ik HO • II
" * *«» • »
II k
« N
• •
t.i
I.I
• n t
t 11 t
N * • k
• I*
|I9
IIX I«I«UIUI
III! 119 MO
Figure 12. Simulation of SAPRC Formaldehyde Run EC-252.
-------
•.•«•
imui im. tm
ci i •
*.i>
1111
• NH it g
in in • •
• i il it
• I 1I» 8 ,
• • • I I .
• I
• 1 • 11 * •
• HI II
» • I .
I I I »
• »• • a i «
IB • I
t It •
I w • a 11
• * • II
II • in
• I • • i
* i M • • 111
I I M »lt HI | Bt,
a
B i tm
if re in ti»t. tm,
•CM • *
t 1 M ••• IM U
M
1*1 ttl
IIM immiili
1M »M
If* Mi
«*• «8t
tin imininii
ill »t ft*
VJ
00
*.*»
«.**
•.«
incut i>«. »•«•
MM • f
o.l
•.1
tr
_.*.~
l«»
m r
«..*.»«.
1*1
iflCIII l»l. II*.
CD • C
Ct
cc
cut t c (c tec ut u cct
•
ccc «
cc c
IM
«•' »•»
—•—-
•M
'*•
tr It! Jt*
ira MI
IIM mmumi
fM *M ?M
Figure 13. Simulation of UNC Acetaldehyde Run 8.08.78 Red.
-------
!0»ffcilo tart, tin*
MO • »
MOf • t
» M • M
1.1
I.I
tt MM
H • I
II t
H
II I
ft
I
II
I •
H
t
N •
I «
* II
It « M
lit* t t I t tilt •
I
t II
M
> I
II
• t
I
I
• It
lit
• Ml
t tt
mil
t Ml
IPtCII* f»*f. UK.
•' • t
we* • r
rrtt t t t l rrr.rr
r
•r
rt
• * • i
loo tf| Ml »§« l«o OM
UN* MIMIIUl
m
t
• tf
•• •*
* t '
mm t"
t»« Ml
•mill ci»i. iu.
to • c
cccc c t c c cccccc •
•I loo
IIM
4W lit
Figure 14. Simulation of UNC Formaldehyde Run 9.14.77 Red.
-------
REFERENCES
1. D. G. Hendry, A. C. Baldwin, J. R. Barker, and D. M. Golden, "Computer
Modeling of Simulated Photochemical Smog," EPA Report 600/3-78-059,
June 1978.
2. J. N. Pitts, Jr., et al., "Mechanisms of Photochemical Reactions in
Urban Air," EPA Report 600/3-77-0146, February 1977, and subsequent
quarterly reports.
3. H. E. Jeffries, D. L. Fox, and R. M. Kamen, "Outdoor Smog Chamber
Studies: Effect of Hydrocarbon Reduction on Nitrogen Dioxide," EPA
Report 650/3-75-011, June 1975 and subsequent quarterly reports.
4. K. L. Demerjian, J. A. Kerr, and J. G. Calvert, Adv. Environ. Sci.,
4., 1 (1974).
5. H. Niki, E. E. Daby, and W. Weinstock, Adv. Chem. Series, 113, 16
(1972).
6. T. A. Hecht, J. H. Seinfeld, and M. C. Dodge, Environ. Sci. Technol.,
8, 327 (1974).
7. G. Z. Whitten et al., "Modeling of Simulated Photochemical Smog with
Kinetics Mechanisms," EPA Report 600/3-79-001, January 1979.
8. W.P.L. Carter, A. C. Lloyd, J. L. Srung, and J. N. Pitts, Jr., Int.
J. Chem. Kinetics, 11, 45 (1979).
9. K. R. Darnall, R. Atkinson, and J. N. Pitts, Jr., J. Phys. Chem.,
_83, 1943 (1979).
10. D. G. Hendry, R. A. Kenley, J. E. Davenport, and B. Y. Lan, "Reactions
of Oxy Radicals in the Atmosphere," EPA Report 600/3-79-020, March
1979.
11. D. G. Hendry and R. A. Kenley, "Abstracts of Papers," Part II, 178th
American Chemical Society National Meeting, PHYS-251, September 1979.
12. J. T. Herron and R. E. Huie, J. Amer. Chem. Soc., 99, 5430 (1977).
13. K. L. Schere and K. L. Demerjian, "Calculation of Selected Photolytic
Rate Constants over a Diurnal Range," EPA Report 600/4-77-015, 1977.
14. G. Z. Whitten and J. P. Meyer, "CHEMK: A Computer Modeling Scheme
for Chemical Kinetics," Systems Applications, Incorporated, San Rafael,
California, 1975.
80
-------
15. A. C. Hindmarsh, "GEAR: Ordinary Differential Equation Systems
Solver," Lawrence Livermore Laboratory Report UCID 3001, Rev. 2,
1972.
16. C. W. Gear, Conm. Amer. Corap. Mach., 14, 1976 (1971).
17. J. G. Calvert, Environ. Sci. Tech., 10, 256 (1976).
18. W. A. Lonneman, S. L. Kopcynski, P. E. Danley, and F. D. Sutterfield,
Environ. Sci. Tech., J3, 229 (1974).
19- W. A. Lonneman, R. L. Seila, and J. J. Bufalini, Environ. Sci. Tech.,
12, 459 (1978).
20. D. D. Davis, W. Bollinger, and S. Fischer, J. Phys. Chem., 79, 293
(1975).
21. D. D. Davis, "Investigation of Important Hydroxyl Radical Reactions
in the Perturbed Troposphere," EPA Report 600/3-77-11, October 1977.
22. R. A. Perry, R. Atkinson, and J. N. Pitts, Jr., J. Phys. Chem., 81,
296 (1977).
23. D. A. Hansen, R. Atkinson, and J. N. Pitts, Jr., J. Phys. Chem.,
_79, 1763 (1975).
24. R. Atkinson and J. N. Pitts, Jr., J. Phys. Chem., 79. 295 (1975).
25. D. G. Hendry, T. Mill, L. Piszkiewicz, J. A. Howard, and H. K.
Eigenmann, J. Phys. Chem. Ref. Data, J3, 937 (1974).
26. T. W. Nakagawa, L. J. Andrews, and R. M. Keefer, J. Amer. Chem.
Soc., 82, 269 (1960).
27. S. M. Japar and H. Niki, J. Phys. Chem., 7.9, 1629 (1975).
28. G. J. Doyle, A. C. Lloyd, K. R. Darnall, A. M. Winer, and J. N.
Pitts, Jr., Environ. Sci. Tech., 9_, 237 (1975).
29. R. J. O'Brien, P. J. Green, and R. M. Doty, "Chemical Kinetic Data
Needs for Modeling the Lower Troposphere," NBS Special Pub. 557,
August 1979, p. 93.
30. J. M. Heuss and W. A. Glasson, Environ. Sci. Tech., .2, 1109 (1968).
31. S. L. Kopczynski, R. L. Kuntz, J. J. Bufalini, Environ. Sci. Tech.,
2, 648 (1975).
32. M. Hoshino, H. Akimoto, and M. Okuda, Bull. Chem. Soc. Japan, 51,
718 (1978).
81
-------
33. H. Akimoto, M. Hoshino, G. Inone, M. Okuda, Bull. Chem. Soc. Japan,
51, 2496 (1978).
34. K. Nojima, K. Fukaga, S. Fukui, and S. Kanno, Chemosphere, 3^, 247
(1974).
35. R. A. Kenley, J. E. Davenport, and D. G. Hendry, J. Phys. Chem., 82,
1095 (1978).
36. J. R. Barker, S. W. Benson, and D. M. Golden, Int. J. Chem. Kinetics,
1, 31 (1977).
37. D. G. Hendry and R. A. Kenley, "Atmospheric Chemistry of Peroxy-
nitrates in Nitrogenous Air Pollutants, D. Grosjean, Ed., Ann Arbor
Science, 1979, p. 137.
38. S. W. Benson, The Foundation of Chemical Kinetics, McGraw-Hill Book
Company, Inc., New York, 1960, p. 33.
39. R. Atkinson, K. R. Darnall, and J. N. Pitts, Jr., J. Phys. Chem.,
82,, 2759 (1978).
40. H. Niki, P..O. Maker, C. M. Savage, and C. P. Breitenbach, J. Phys.
Chem., 8.2, 132 (1978).
41. R. Atkinson and J. N. Pitts, Jr., J. Phys. Chem., 79, 541 (1975).
42. J. A. Howard, Adv. Free Radical Chemistry, 4^, 49 (1972).
43. D. G. Hendry, "Chemical Kinetic Data Needs for Modeling the Lower
Troposphere," NBS Special Publication 557, August 1979, p. 85.
44. D. G. Hendry, "Atmospheric Reaction Products of Organic Compounds,"
EPA Report 560/12-79-001, June 1979.
45. C. S. Parmenter, J. Chem. Phys., 41, 658 (1964).
46. H. Niki, P. D. Maker, C. M. Savage, and L. P. Breitenbach, "FTIR
Studies of Gaseous and Particulate Nitrogenous Compounds," in
Nitrogenous Air Pollutants, Ed., D. Grosjean, Ann Arbor Science,
Ann Arbor, Michigan, 1979, p. 1.
47. D. G. Hendry, unpublished data.
48. R. A. Perry, R. Atkinson, and J. N. Pitts, Jr., J. Phys. Chem., 81,
1607 (1977).
49- M. C. Dodge and R. R. Arnts, Int. J. Chem. Kinetics, 11, 399 (1978).
50. D. G. Hendry and R. A. Kenley, J. Amer. Chem. Soc., 99, 3198 (1977).
82
-------
51. A. C. Baldwin and D. M. Golden, J. Phys. Chem., 8:2, 644 (1978).
52. A. C. Baldwin, J. R. Barker, D. M. Golden, and D. G. Hendry, J.
Phys. Chem., 81, 2483 (1977).
53. R. F. Hampson and D. Garvin, "Reaction Rate and Photochemical Data
for Atmospheric Chemistry - 1977," NBS Special Publication 513,
1977.
83
-------
Appendix A
SIMULATION OF AROMATIC HYDROCARBON CHAMBER RUNS
85
-------
TABLE A-l. PHOTOLYSIS RATE CONSTANTS FOR TOLUENE AND m-XYLENE CHAMBER RUNS (in min"1)
EC No. N02 HN02 H30a OaQD) 03(3P) H2CQ(rad) H3CO(molec)
77-86 0.16 4.5 x 10" 2 3.3 x 10" * 6.0 x 10" * 6.6 x 10"" 5.6 x 10"" 8.0 x 10~4
266-272 0.35 0.11 7.7 x 10" * 1.2 x 10"3 1.7 x 10"3 1.2 x 10"3 2.2 x 10~3
273 0.37 0.12 8.2 x 10"" 1.3 x 10"3 1.8 x 10"a 1.3 x 10"3 2.4 x 10"3
** 327-340 0.40 0.12 7.8x10"" 7.9xlO~" 1.6xlO"3 7.8x10"" 2.5xlO"3
343-346 0.38 0.11 7.6 x 10" * 1.0 x 10"3 1.6 x 10"3 8.2 x 10~" 2.4 x 10"3
-------
M.TU • t
M n*
• «'
• t c
• . ee
re«c ee «
* •
am •
m •
«• • c c C rr « r.
m cc
cc c> •
cccc • • • •
ccc> • i •
CCC* H »
• • n •
C> II •
•e * •
R
H «H ft
1 )
3 )
•n • •
» > rr n f
II ) II 13 J.
?M 29t fDD ISO *««
II "t IHtNUTCKl
l» 150 210
IINC IMIkUHSI
100 Jfl ••»
00
V»CICS l«cl. SIK.
II>1 • I
It* •
II •
I
Illl •
mi i
m ii • •
i i
i i
ti n i
ISO 200 230
Till KINUIESI
100 3!>a «JO
FIGURE A-l SAPRC EC-77
-------
swcus tin, tm.
MB . |
tat . i
I .
2 lit
i a . tt
• * 2
I 2 «
• 2 'II
I 2
2 I
• I • i
t >
t .2
21 .2
< I 2
I • •
II ...
nun nun
«...
2
22
M
•J*2«
r»I. tin.
•j J5l " i
t»
ft»
t •
11
MIIIM 1 1 JJJM11 J
n •
f i •
ii •
ttf •
ft * i
tt • u
ttt > >»
tt » • •
it •
> ttt
i tut
i ttt
i ittnt
U f ft f
i itintt
) 1 1 >J
• •
. .
. . »
»« IM It! *>« lit >M »«
lint MINUKil
f|«|
Oo
00
.tl*>
i>rt. tin.
•uco •
* • ti i
trtiifi i
n it ii nun f u
IIHI -n
itt i>t »• **• J" »•
tint i*IM>rcst
FIGURE A.-2 SAPRC EC-78
-------
I MO*
I
I •
I
I • .....
I I •!!• 11*1 • !• It'll* •• • • • •*.
** in* ISO ?••
e.in
• i
»
ill
*• 141
00
VO
• •••o
(. .
Ill
VIC It, ltd. tin
lilt • I
II*
I II*
111*
Till
• I I
• III
• III I
100 ISO
2*0 100
FIGURE A-3 SAPRC EC-80
!»•*» •
i t
F f *
tr
rf
Ff'fF *
.1*
>• p
SO 100 ISO 200 2!>0 )0> liu tOO
IIMi; IHIHUTCSI
-------
».»»
srrcus f«»i. sm.
mi • i
in «
I III
f • i
I • It
• It
•.in
i i
i i
ii
112
I
t I
II
III
I • • III
II « • t II
llll*ll* !•! ••• ••• •«•• «!!•!!•! !•
»• It! IM It< «( »t !••»
flMC IMINUIC&I
til
»> • i
I
1 •
1
1 •
iw
IIBt IlilNUKfl
vo
o
I
II
!.»•
snetu f»M. si*.
1(14. • I
III
III*
II f«
• .»•
Ill
t f ff
fit II
i fin
Illl If
ti n fi
• • • MIII linn
• • • i ii in ii
• * • •
""> nt
JMCICI ft PI. »|H.
UN . %
i i
n
• it
it
in
ni
nt
II F
HI rrrr frrn
• ti r rff ff
nit ff r
• in ff r
rff • ff
n ff
n
m
i •
n . i
if f
ir • •
*• i>< itt itt *»« »< uo ••«
lint
FIGURE A-4 SAPRC EC-81
-------
SIH.
I
? I I III
i ' rut
I? •
t .
I ?? •
I »•
I •
Ml*
IIIMI'I MIMII" •! • I • !• •
TIKE IMINUtCSI
FAPT. MM.
• i
91
• •11
•I 1*1>"13O •11J1I 1
••« inn
VO
SMCICS KCI. SIM.
rw. • I
f
• I I
• run
• rt fi
• f IT?
• • I i i
• i r FI
• • i unit
• IT IIT I
-.8 100
200
II«C IHINUIESI
)U4 11U «00
ISO «00
FIGURE A-5 SAPRC EC-82
-------
1.10
cu>f. tm.
Mfl • I
mi • i
nil
• IM
linn
t it •»»•
i It
i • n
i ti
• t
i • 11 •
i i •
i • n •
• i •
• «i « i i
mn i •
n
i
i
i
n
i muni 111*1 • • • •
»« Itl IM IM ISt Ml 1ft »lt
tint IKIHUtftl
SPFCICS tlPI. SIN.
0» "I
11
1 •
11* •
• • »1M*I1*1»*1 111
»t IN 14* IM !«• IM
lilt Minutes)
NO
NJ
srrcus tin. ti*.
im. < i
i • •
TI Tim*? •
r » *r • •
ill*
MM* •
trill* •
i ffit*
iti'itt*
tti*t tn
1.00
•t i it
» • tit ir IT
i i t
Ml
tint IHINUUtl
FIPT. sin.
NIL • •
NJCO I >
* ff
• r
• l
• r
• • r
ft 9 t • >
1*1 IU iM ISI IM IM «««
ti«c
FIGURE A-6 SAPRC EC-83
-------
•.I*
swells opt. sin.
m> • «
»» «>» • c
ccccccc c
cc
• c .
• t •
cc
• cc
• c
c c
c
C • ft
etc
cct
B H ARRtttlll BHHH«afl*ft8*
M IM 110 ?«• »( '»« ISO A»0
IIM IBlNUKtl
flP?. SIN.
•« • *•* • • *H H Ma*Utlll *RHII 111
IHtNUIltl
VO
IOL
«•
AI4*
• A AAA
AAAAAA
AAAA A
ing
TIME IHINUTCSI
sorcics ri»i. SIB.
H>CO • >
HAL • •
AA
A*
H A HRB KflHHHHH 8 R A
H RH HH H • HHAHHH BHH8 BR HHH
HUM RPRR AA R H HH4HHHHH
A A Hl< t* It H M bR
A A no
10 100
1INC IHINIITES1
FIGURE A-7 SAPRC EC-84
-------
«. 11
I .IT. SIM.
cccc e
tf • *c
c
c>
c
ccc
• c
ccc
ccc
* • *ccc*
«CC»tC«c CCC
*• ill isg ?»« ni in ISA ••>
»!*•€ IMIMUfCSI
OM. SIM.
• • • MWMIM
• «»• * • • *•* •HftHHll tHIIIMHIIW
II •• DIM
IHIXUflll
lot "-.» •••
VD
SIK.
*
AAAAAAAA
i
• •
A.on.
100 ISO «•»
FIGURE A-8 SAPRC EC-85
H?CII
•H
*!»•
•
C
* A
A* i
C C
t
•A A
A*
AA
A
A C CCCCCCCCC CC C
A CCCC CCC CC C CCtCCCC
AA C C CCC
ACtC C
. CCCCC
CCC AAA
CCC A •
re •
CC >A
A
AA
CC *A
C C ••
1C C • A •
I AAAAA
IM »•• 2S>
it»t mmuicsi
-------
«.)A
0.2.
• .10
• B0fl<
1 s-rcirt r«»i. SIM.
*MI • I
'• r • '
• *
2 tt >
f • 2 •
1 • ? 22
2 I i
ft
1 f 2
1 I 2
* • •
2 I
II «2
»l • I
• ' il
i t
' \ I
I '11
1 2
• • fir
i • *
I • 12
t 1 11
• •
21 2
i • • 2
1 • V
1 2
1 • • • *
i • • m
1 • 2»
II • 22
A. 30
0.<"1
0.10
O.ftft
**>fCICS f 1P1. ft IN, *
OX • 1
M?CO * r »»
3
IX
31
J
)
3
> • •
j . . .
9) *
J •
)
1 *
1
J •
1 *
3
1 *
fff 3
rrrF 3 •
rrr * i
»frr r »
ffFF FFF*r 1 * *
F PFF ffrr r F - •
i * f F tftr fff rrrrt
i ffff f r f f rt
s rnrtff
3 *
3
3
31 *
133134 S3 • * •
lot |4o ?oo 2M
IHINUttSI
Cn
0.10
S*FCIes CIM. MM.
ttt •
til •
II I •
lit
It It •
ft tt«
• I • It
III tt
• t tint
• • Ittl
I lit
ttltttt
I IMC IHINUIESI
0.0?
• ABtt HHBRIIH
B 6 SBBB PR
HNI 0 * • a rlUHBUO
P P
p •
m» P.PP
100 140 ?00 »0
I1MC IHINUTCtl
3,1, .00
FIGURE A-9 SAPRC EC-86
-------
*""« ""• -'«•
5? i i
1 11 JH.I 11
*/ > t
2 • • ft
• « 1
it
> •
i
f I
III*
111
11 I •
1111 1> M III
?
221
»
If
">
IK 1*1 }2f »»« IIS
ItHl IHINUICSI
«»FC|fS t II'T. SIM.
Nil • •
4 •
M •
1 CCCC CCCCCCC CC CC CC C
H »C CCCCC • C CCCCCCCCC CCC CCCC CC
« cc c cccuccucc c c tec
> CC
c cere ...
fit l»»
live miMiusi
loo
VO
II SKfCIES f>»l. SIM.
t t' lot • i
•I
It
II
Iff
I III
II I
• It It
• I II
I I
lit!
1 III
Ill III Illl
~« l» IM Z25 *'« »•• M
ii«e
P»H •
xpcn .
HHH HHNHNH- HH HH MM
.tan.
«S 01 MS IM
FIGURE A-10 SAPRC EC-266
-------
.1*
WOCS (>M. Sin.
1 1
I I I I it
' tit I
...
J
1 I
»»
. f
t
• It
tl
ft I
• I
*
I I
ii 1
222 1 1
22 II
7 2 I
• 111' I
11 Ii
• J 22
1 > 22
11 « 2
I 1 .
» • 11
i a * •
)i .
• i >
i- i •
i •
i i •
> i « in •
• " i i • •
" ItlOJOtal I HUM "| Mll'll'll* •
H
til
M» »»»
M«t KIMU1CSI
Jr>» no
Cuff. SI***
• 111
1*11 I
•>« 100
lift I
• r mi
• I ii
* HIM
II t
200 241
!l»t IXIHUTCM
VO
SI".
c
c c
c c c c c cccc c
cc cc cccc
c cc cc c
c cccc c
c cce
c cc
ccccc
c c
Sfl 100 ISO ?|)0
Fl"t IBINUU5I
300 ISO 400
FIGURE A-ll SAPRC EC-269
M MH MHHH HH
H rt ft U R HHbR AH
HfiU »t*P P PO PHP
HUH P K *PP P n P f f f » ******
• H HHHrtiil* MB 8HH« HH
H H HnxttuMl R
SO 100
ISO ?0(l 2SO
f|**C
350 «0ft
-------
.10
.(,«.
t* 1)1
I II • " I I 11
I t • • • III 111 »
• « > III 1
It* *1 I
. 1 til
t 11 • tit
•I • ) • ti t
11 i > 11
11 11 . i
*• • i > • i
til > it
i i a i . mil
•' n • i i mi
t !)•> . ttt
t 1 .It
11) Mil* • . Ill
it) »>i ii • ii ii«i >ii «i • i«m«u« • ....
tl*c mlmiTcsi
wren* «""• sl"'
toi • i
Til «
II
lilt I
* Ill
nun
inn
i it
i n
M lit
1*1 HI »• le» »• •••
TIM IHIMUIIVI
VO
00
FIGURE A-12 SAPRC EC-270
-------
SPTCICS OPT. si*.
pi* » p
urea • H
••i i •
H HH •
"M HH
• - PPPPHH H Htt H
«« nuf»« • ei m mm n» •* MBBH «• • u • * anaumHn n M •
inn aamn* am pp« p n» pp pppp ppp IP ppppp p « « «
no
vO
r|Nt IHlMUTEtl
FIGURE A-12 SAPRC EC-270
-------
• tn
i t i
> i
l
H.IS
W>«(US CIPI. SIX.
1 13
111
IIU1
• 1
1
1
. 1
i
1
1
Mil)
I1HC IMtMIICSI
lit INIMUICSl
O
o
n»f. MU
SH • >
MO? - *
If '
f i
1.2 •
1^1 r its tt«. km.
' '
ri
I l
I l
• lit
nr
• 1111
1ITTII11 If T
TI mint it
HI? TI1IHII ?
0.0(1.
Il«( IXINUtCSI
1IM IHINUTCSI
• •I
-------
«•
CD
i
0>
=5 Q)
ct> cr
z 55
SE -2
*>*>*eiis i Rtir. ••i'
NM
M * BBRWHHftbftn ftft
• M NHHH pl'» 9
H NH fl p»
l» W »
i«a 2*0 tso
TIHt IMfNUTCSl
1*0 *oo
FIGURE A-13 SAPRC EC-271
-------
.11
c
.11
.It
s
'"
• H
.•21
.
spfciti r>pt. SIM. i ii
NO • 1 ,
N02 . 2 | |
1 03 « 1 11
1 B
11
1 1
* 2 2? ill ,
2 t 22
1*^2 1 ,
» • 22
2 » 2 J 1
12 • «221
• 122 «
t 1 *
• 1 •
* » %
» 1 2 II
1 22
• • 11 2
* I • 1 2
1 . 2
> 1 2
» 1 • 1 222
• 1 > « 22
211 22
1 * • 22
• 11 2
2 1 11 I .22
22
1 1 • « • 22
1 22
> II 1 .22
1 • • 22
1 III • 222
11 1 II • • • 222
• H Itl l»« ttt IS! >•• 1S> »••
IIM IMINUtUI
SWCIIS Cipt. SIM. • "
»«N « P »P
HVCO • N *
*M
flM IHIMIftSI
ipTCUt IlPt. Sl».
CMS • C
..
ccec ccccc c ccccccc cc c
cc c cc ccc cc c cccccccc cc cccccc ccccccc ccccccc
c cccccc • • •
not miHutcsi
fl*C
31*
-------
swctri e«Pt. SIN.
• to i>>
TIKE
o
co
FIGURE A-14 SAPRC EC-272
-------
vrrus t«p|. SIM.
MO • |
MO? . i
t I
' f
? *
I
I IMII* > I »•
ISO 7M
rim
SIM.
i
M II 1111)
• i
i
i
•Jl'llMM* • • •
in nt i) • •
I SJ»
ll«i IHINUICil
CMPT. SIM.
.11
.is
ITT
Til
• t TIIIT
• IT I IIIII
T I II ITI
T ITTTTT TIT
Ttl Til IT
II IIIIIITT
mlMUTfSI
«1*>'CIC5 f««T. SIM.
M/CO. • N
M H HN
N
I fWMfcHHHHHi*
X !*.»
H HftllHIl M II MH M
P PIPPP P «HB
?«• JSO
IIM£ ININUICSI
HHI HHII Uhu HrfHI pHHMItaHII
«• ISO »lt
-------
l. KIM.
c
ccc cccccccccc e ccccccc c ccccc
c c cc cccc cccccc ccc ccc ccc cccc cccccccc
TI"C IXINUUSI
ni IM 3-.0 »••
o
en
Figure A-15 SAPRC EC-273
-------
vrcits HPT. si«.
"** • I >
•<«t « 2 11
f>* Jl 1 1 J
1 . J
" J
• • .1
1 « .11
1 11
• « )
1 3
1
•1 ZZ2222 1
1 2 • « ?22 9
• »• • 22 2 > >
12 • 72 I
• It « ' 2 2 « Jl
l>»2 2 1
> • « 11?
•1 12
2| » ?2
• 2 1 1 2
21 «1 • I
2 «l 1 • 2
• » 1 > 221
' 11 • fl
•'•If 1
' * 1 .22
ft •! »1 22
1 .
l« • •
Kll •
«J M * • •
111 111*1 •
«.4S
"
• •1*
III
It 1
• II
1 1
• 1 I
II
111
• * 1
• 1
t 1
III
• III
« II II
II 1
• nil
i 11 i
• 11
* in
Illl
* 1 II
If
f
*
*
-
M 100 Ifl ?•• ISO 10»
Tine
HMC ININUUM
-------
SWCIlS »««. SIH.
PAN • P
r
rr r r
no
TIM (KlNUUtl
HO MO •»«
FIGURE A-16 SAPRC EC-327
-------
«.40.
incut inn. *i».
HO • 1
Ml • 2
01 « '
•2
• I
I.II
I.I*
71 I I
* * It J
' mi
* 22 J «
• • It
• J «?
1 «
)
) I
I
II
12
III
I
• 1
II
II
» • I
1 ill .1
» • • . 22
III !• •
1 I I • • •
111 11311 111! K I III! Illll*! • ll«ll* •• ••• •••
I »t lit ISO 211 2*1 >«• Ht «««
f|«
».|S
•.HCtC, llfl. 4I»,
101 • I
Illl
I Itl
• Hill
• I 111
• Illl
• Illl II
Illl I I
• I 11 II
I I i
II II
t.«D....i.
I
1*0 |4| 700
O
00
IlM. «!»•
»• MS HMflO
* • *
II III IM tit
VIMf IHINUK9I
t.lt
SMCItS CI»1. Sin.
01 • )
1
11 •
MM •!)•)
rti
MM IXINUICSI
111 Ml
-------
SPFCICS CXf>f. ftlM.
* <
> t
|IM AHHKH HNH •
I I
IAA • rrtrer r r i e
lit
2«( tM Ml
FIGURE A-17 SAPRC EC-328
-------
fin.
I 11 > III J
Mi
« 3
J
I ]) If
i n
31
' n
i
>i
i
I 3
31
I )
I 1
I
I 13
II
1 • I
ill
l»l •
III -IIMIIMI-I •
IM
IM ?•• *S«
tl»L IMINUtCSI
I* !• I'll • • •
300 3M ••
SPfCIf* I'ft. SIM.
P • P
• e
Il« IKINU1CSI
n
• in
i ii
11 11
• i in i
MIIII
II i i
ill
I MPt. Kilt.
• f>
I INK. f> f A« *
«*PI*P PP «*4
Il"l IMINUHtl
-------
.00?
N MM ft MHH
M H
i *
PPP I
• *
fPH Ppppppp HPPP P H p ^ ppppPPPPPP f PP
SO |oo ISO
FIGURE A-18 SAPRC EC-329
-------
t.
CIM. SIN.
NO • |
0' II
I 1 I I
I 1
t
11
2 22 22 I 1
•2 • 221
t 222
12 • 1 22
• •> • 1 22
12 • 1 22
I t I
r 1 • 22
• I I 2
211 I
2 •
I 1
I I 1
I 1
•II
II
til
222
n
11 M ... 2 • • • •
1* 1> • IMIMII' 1*1 *ll « • • • • • • 2*2 22 2222* •
FIGURE A-19 SAPRC EC-330
FIPI. SIM.
101. • I
I t
m
• I Ml
• III
t»
• I I
•i Him
•Illllf
• inn
lit 1st 2M 2tt
IIM mmuicsi
IHt Ml
-------
CXPT, SIM.
• p
I-1
M
LO
SO lot 140 »•
1I« IHIMUTest
» •» »PPC»HW
>OI >Sl
PAN
M?Ctt
•CM
fMPT. SIM.
•* AA A
A * PPP ft» PP f
A A A PPPP
AAAA
« p AAAA
AA *A A AAA
••a 100 iso ?eo
f|**C
FIGURE A-19 SAPRC EC-330
-------
tin. SIM.
Ml > |
Wit . I
I
* I I ?
I »
• « I
.... !:i!:i!:!.:!!i:.!:..:...:..:..:...:..:..:f
• « II* ISI III M«
»»l 411
sorcift tin. SIN.
01 • i i
• Ji
1
SI III l»> III Ml
tl«l IHIMITISI
411
I sprcics fid. SIM.
if ft
T Tiff
• t ft
I lift
l.»
linn
ttff
• itiini
• * TTTf TITIf
• «n urii t i
f i t
I.to
1.60
vrcict I>M. im.
nut • •
mom SIM
ll
fl«f IMlMUtfSI
iii i«i ?ii m >•• nt 411
MM
-------
H?ca . H
•CH I >
A I
»• lot
II«C INlNlltCil
FIGURE A-20 SAPRC EC-331
-------
SPICKS
«n
01
« «x
« I i
>
i
• i
J»
I
i.II
« 1
>
f
I i
• I
< II
1 •!
1*11 .72* ... •
)•• !«• rtt
TIHC I«INUIE5I
too
r * r
I ».p PPP .PPPPPP.PPC
l. on.
lit
141 ?•! 750
I1W IHIMIICfl
»»•
I.0«*
I tprtus »•?!. si*
Illl I«l * I
i t
in
i i
• mi
in i
Mill
i ii mi i
«0 101
HO Ht »•
IIHC IHINUIOI
I'll «««
wens run. si«.
H?CO . H
HltttHH HHH H H H H
HHHH H H HHH I
• •
*
PPPPPPPl*l*p*PI* P
f rpp f f
PPP PPP
. ppppp PP PPrp
M II* 140 ill >»• l«l ISO
HI miwKsi
-------
*0 IX
tira tmNurcsi
cue t c ecu c
II C CCCC CCCC CCC C
CC C CCCC
H CCC CCC CCC
c ccccccc
* CC CC CC CCC
C C CC
» c
M C
I
ItC
tc
1« l«»
laa isv •••
FIGURE A-21 SAPRC EC-334
-------
VFCIfS €!•!. flu. 1
Ml • | 11
MI2 . i 1
01 I ]
2222 2
I 2 22
2 2
• r i
2 • • 2 1
I 21
2 • . > 22
O.?1
II
• 2
1 I
1 2
f
• 22
1 * 2
1 • > 2
22
22
22
II I
II
1 I •
1 > I •
1 III •
111 »111 • I II till
2t
I I
!!• ¥
ff 111
SO 100
140 200 2SO
TIHt IMIHUTCSI
100 WO
II
I II I
III!
II If
irtf
fir ii
• ifiiii
• MI inn
• i ii n i
SO 100 ISO 200 2SO «•« HO «00
t IX iniNuiesi
00
sorcics
PAN
H7CO
ca
SIM.
»
0.10
C HNN
C x
H(
Mr
N R
M C
ICC »
SMCICS fi*i. VI"
ACM • •
0 0
• A* A
A A
AIAA
• A AA
AAAA
AAA AA
• «AAAAAA» ,,
A*A AAA*AA
AA*AA A A
so 1*0
ISO 200 *•>«
IIM mmutrsi
ISO »0»
0.00*
100 ISO 200 , 2SO >00 ISO
TIM
-------
• c
cc
* • c •
II C
c
c
cc cc c
• cecc c c ccccc ccccccc
c cc cc ccccc
ccc cccccc ccc
cc ccc cc cc
M 111 141 Nl ISl III Ml «M
tl«C IKIHUUSI
H*
g
FIGURE A-22 SAPRC EC-335
-------
».««• J
wcies e«»t. SIN. i
*" • i > i
• .ID
OS « J
1 »
>
1 I
It srrciti f»M, tin.
t toi • f
t ?
?
i
•IT
i in i
• * * *•
it*
i
n
i i
» i i
•
I 3
1111 i i i inn
'• III 111 711
tint mlNuttsi
111
I I
• It
lltlflll
• I III II III
I I III!
I I I ft
111 V>« •!•
II* IM »••
UNI WINUtfSI
C S'FCUt ClM. SIX.
H?ca • n
C PAN • •
CO C
H C
H C
C
IN H HH
MHM H N HH
f f f
u HI
r frmrrr rrmrm r
nt
tlW ININUIC*)
rr f f rmr » r rr
"ill " Ml «•«
-------
« SCfCICS F>BI. M«.
•>L • *
tlxt IMIHUIfSI
FIGURE A-23 SAPRC EC-336
-------
W
HOJ
• I •
I
II
• I • •
• 1111 •
ij . II • • •
•• • i ii Hum
• Itee* 1C
I*'" >f»U fib iWtl
11 ••» l»li.*IM .1
»»»!• It1'.
llll
• III
IMM •
llll It
10
SKCIfi »«^- *«•
»»N
wvr. sin.
• *
,'»!. • ,•( tfl't-
-------
OJ
C ICCCCCC C tC i CCC
JCC C C I UCCtt.CC
1 CCCCUC
!<.« I'.-
114 I1I.IU1I b
JUII .IS! «g«
FIGURE A-24 SAPRC EC-337
-------
m tt
i i
i i
I
•II
n
i »
i i
loo
ININUYtll
1
1)
• 1
>
»
1IMC INIMUICftl
nt MI }*• *••
K>
WfCUi Iirt. tlH.
. int « r
IIIIT
itt»
i mi i
tin mtr
• .00*
•>0 100
150 t*
l.oo
i. to
1.10.
sorcics '•". si«.
•UT • *
• BNIIII i
• 8 • » »
• "AM HHHH n.tl«H H
DMMHII
51 III
It! IM lit
tl»( mimircsi
101 J-!l til
-------
e«i»T. st*.
H?CO
*C«
• I* *H I
P H HUM
N H
HN H «
A H H
* * HH
40 10*
IIMC INtHlllCSI
250 3«« ISO *00
Ln
FIGURE A-25 SAPRC EC-338
-------
N>
"
c
0
••2tt
u.U
• i*
..IS
c
0
41 I'M
1
,
1
1
1
1
1
1 ..4*
1
1
1
1
1
1
1
1
( . rM
'•*• tf i -«
;'*•» • / 3-t
' ' i '
, *
i ^
*' :•
'" »j" *'*
i * ij *•
1 1 o
I • tit ill ft *
1 t't i ] C
*< Z 1 I
1 • » i 1 K
1 H* . * * * * « t 1»J > »
i • • ru * ».'«
1 • • • J Z!< 1
i 1 . * 1 I 1
* • * • f ''
< • II • . J J
• II • J • «ij *
' 1 • 2f C
'» • 1 • 1 > i < »
'•1 « . <
•ii 1 • j . « I . .'»
» * 1 t »
1 J)< *
1 1 •
II 11 • t
1 1 •
M 11 i • •
Jl I > • •
1JJ a I I • * •
1 virus l«i'l. H«.
1 njll. • •
1
!»
[ «r
«l
1 HI- •
> * r. nl-
li
b • e
1 < 0
tn «
us • c
Sab k
u •
M
Ml
*i * C»*"
Ml
h an •
n •
>
. .
muM
» k * • l.ic.
bv •
tflimui*
ftV • H
Mi
«nr|«» I1CI. »l».
IUI • 1
1 1
HIM
11 I-
II
r nt»
II !!•
i Iff
1 !•
1 •
1 •
1 1
• inn
• i i
1 Mil
ii» i
i i i
ii
t *• » l-lil ir-ti fl'll ^MI Iflw 4st *l I'
SI'KIIS IMM. SIM. • 1C
t« • I C C
**< • * i.L
H?ri| I n LCCC
cm
• cc
• t
cc
cccc
c
c
c
c
• (.
c
c c
r cc
ccr.
cc •
• etc
1C
cccc
cc
CC f.
C CCICCC
H H Illinium 1* H HH Hr«Hllll».M ml H HHH
H HHHHH IIHhkll >1Htl HHH HHh IUMI • • » ttFI tt'f
-------
t«i>i. ilH.
• i
C CC I. C C C CCCC
r cc cc c c
• ccc cc cc
C CCCI
CC c 1C
c c r
cc
c
cc
.•<» c
c
•c
c
c
»c r
ISA 2^.0 ^(. ItV
IIHf ll*|«iUlLSl
FIGURE A-26 SAPRC EC-339
-------
II
o.io
sprcics IIPT, si».
•mi • 2
01 11
*****
I *•••»?
•!••?* • ??»
, , * • ** i
I ft . i
•!»
33 I
111
'I
• » « i
'
it «
11
I ]» .
• I
X •
» I I- •
111* •
111 I . . . .
Kill Illl tl"ll«ll« I* I • OUMI •! II •
l«0 ISO 20<
ISJ
00
svrcus t»-i. UK
»N • '
H»0 • X
CO C
H H H MHHHMH NN Hn
H
H •
PPPP ppp p p P p
ISO l»t ISO 100
ll«l
FIGURE A-27 SAPRC EC-340
4. II
sorcits oof. MX.
lot • i
tt
ITI III
* lit tl
*• HO
I IMC
100 *SO 100 ISO tOO
tin. »l"
MI • »
CO* * • C
mm mum *» » • • mmm m
CCCC CCCCC C C CCCC CCCCC CC
«" CCC C C C CCCCC
CC • C CC CC C C
«cc ccc
1- • C
H C
re
C •
ICC C . .
100 HO in »»o
tint
)-» tOO
-------
Mil I I I 1*11 ••••
III III! »
!•
I •
I •
••lit
• *«
• *
•I •!
• i
• I
n
• 11
••ii
• • « *
• • i
i •
• i i ii
i > ii
i j i
• i j ii
• ii >n
• ii mi
• II >l mill
Mini* mil
minimum ••••••••• «| ii ii i
III! Ill* II-IIOII-
I It'll
vo
HHH HHMHHMHH HHHHHHMHH H HH tt H
H HH **HHH HHH H
• II
•III
III
III I
linn
i mi
inn
•i ii i
Mil »»• S«l 4M
int I«|HUUSI
mi M mi HB » *
fl.Ot.
FIGURE A-28 UNC 8.16.78 RED
-------
III! I I Ml I M 1*1 I*
«.»•
f . • •
> »rtit t in it
III.
III
r>>
II >
It • • • • 1
I • mm in •
it t i it ti'i n
i >ti in n
n » < •»! a
tt i- 11 M
i* i lit
>. i i u •
•» i • 11
t » i 11 •
i in •
>u 11
in
131»l II
I II III I
111 111 »11 I • • l-llllll Illl I I
*!• Ml
urn
•it ftl tit lit
vrcir* ('ff. fl*>.
tn • i
nit i i i i
in i it«in «
in •
fii
i i •
in?
tin
• mil
i i
»t Ml •»•
ll«l ("IWJIIII
«t tM lit
U)
o
-------
c cc
c c
cc
ccc
cicr c t«c • cccccccc
c c c ccc c cccccc cc
1M
u«t mmuusi
I-1
U>
FIGURE A-29 UNC 9.14.78 RED
-------
I I II
1 f 9 f f •»*,£ • I f
Iftw tJt\
IIS »•
|*il I1")
?•** M« »« «••
HH III *
• M
•KIR ••
S* I DO
**»
4M
-------
*•• tna
FIGURE A-30 SAPRC EC-343
-------
V'lr It S » «Ht. M-.
1 1 J J J
|S>I |4F
Ml*
s« in* i ti» ?nn ?•»« I«B *tt **•
re •
l.it"
r cue cc c c c c ccc tc c c c c
rrcccrt.cr.rcc i»
ircrcci: •
on i *
rrn r »
< i.
* frr • *
• 1 « I'""
I.'"
n.u»-----------.-.--------t--.----..-.—..—..»«....—--».——.—.-,—.,......,..--...»..»
»O
-------
Ul
FIGURE A-31 SAPRC EC-344
•
•••
-------
tf f •
H-t fMlNMlfM
* » •I* 1
I * HO
• I •
I 111
II
It*
CO
W*M llfS I •>•». M*>
• Tl • •
* •
I
«»**
• Iftl II
«.M«
M HffMH M M>M >«H H
111 ISII
-------
Id* ISO ?•• 9*9
FIGURE A-32 SAPRCE EC-345
-------
* ,*
'•> Uo
Il»t <»!<
H i ** n » J
*«i I * II1J1I
00
«TI •
IK Ilk IJUI
III *IIIJI««lll«
Jit *••
FIGURE A-33 SAPRC EC-346
-------
Appendix B
SIMULATION OF ALKENE CHAMBER RUNS
139
-------
TABLE B-l. PHOTOLYSIS RATE CONSTANTS FOR PROPENE AND ALKENE CHAMBER RUNS (in mliT1)
EC-No .
142-143
156
256-257
276-279
285-287
314
S 315
316
317-318
319-320
NO a
0.33
0.33
0.30
0.35
0.39
0.48
0.49
0.51
0.53
0.55
9.
9.
8.
0.
0.
0.
0.
0.
0.
0.
HN02
5 x 10" 2
5 x 1CT2
0 x 10" 2
11
12
14
15
15
16
16
H20a
6.5 x 10""
6.5 x 10" *
5.7 x IGT*
7.6 x 10""
6.5 x 10" "
1.0 x 10" 3
1.1 x 10" 3
1.1 x 10' 3
1.1 x 10" 3
1.1 x 10" 3
03(XD)
1.1
1.1
8.4
1.2
1.3
1.5
1.7
1.7
1.3
1.2
x 10" 3
x 10" 3
x 10" "
x 10" 3
x 10" 3
x 10" 3
x 10" 3
x 10" 3
x 10" 3
x 10" 3
03(3P)
1.2 x 10" 3
1.2 x 10" 3
1.2 x 10" 3
1.7 x 10"3
1.8 x 10" 3
2.2 x 10"3
2.3 x 10"3
2.3 x 10" 3
2.3 x 10" 3
2.3 x 10" 3
H2CO(rad)
9.0 x 10" *
9.0 x 10" u
8.4 x 10" *
1.2 x 10" 3
1.3 x 10" 3
1.1 x 10" 3
1.2 x 10" 3
1.2 x 10" 3
1.2 x 10"3
1.2 x 10" 3
H2CO(molec)
2.4
2.4
1.6
2.1
2.4
3.4
3.4
3.4
3.5
3.7
x 10" 3
x 10" 3
x 10" 3
x 10" 3
x 10" 3
x 1
-------
» tff
SPICK* CXPT. SIM.
• » r
r t
•.*«. rrn
rrrr i
IPICIII CIPT. Sl».
HIU • f
ACH • *
t r r
r r • • •
• r r
» f f
ll»l IKINUIU)
FIGURE B-l SAPRC EC-256
H II
*.M
I. II
(MCllt *»»t. tl».
« • «
kO> • *
• MM
• H N
• N k
• * •
• It
It t.Ul
• • i a
•4 tin
a *
• ' t i i
i t
* •
• ••
• • » i t i
• • ill
t I
H N b
• *
* •
• » •
i * * «a
•» *• |lf !•« Ml
IIM IKIMlTMt
m n«
-------
l.ll*
»
l.l*
l.ll
•ficiet tin. 11*.
*
» p
r •
• •
r p
IPICUI !>PT. no.
kO • N
MI • t
MCO I I
f k •
rr H
r «
»PP »
PP M
P» N I i • • •
«P I I •
it NPF P >
t > N* P tP 1
1* HM • PP
t ft P P P
U • • P P
I.It i • K • I
* » •
t k •
• k «N
t.
t * I » 1 I
• 4 . ,
P I
I.I
1" 1(1 HI I?* Ill
Hit IKINUTUI
Ml
III U« III III III 1*1
lilt IHIMIIMI
•II •
1.1*
t.tt
IKCIII tin. IIK.
0) • 0
ten • t
• «« •»
•*
t
A
* 000
0 0
I 000
|1»0 OOOO
ipfciu (m. in.
ru> ' r
f r
• f
p p
M I3J
lint mtMiTlll
lit tin Ml III III JM
HM
FIGURE E-2 SAPBC EC-257
-------
p
0.0
t.l*
VTCICS 01*7. .in.
«9 • 0
p »
• p
p
P
« p p
a
oa
1 P o
p
« P
«p
PP.
0
a
o
no •
i» u» m tti an
IIW IHINUICfl
• .IS
«.u
SPICKS ««"• *'"•
PtN • P
M»ca • *
r "i ft •
• r ** f r **
A rr ff'F
* r • r r M
• f
« rf
r
r »
i t
F It
• FF »
F« •
f»
r >
F>
n
t
F
IF «
I
It *
ft •••»4*>***4A**^v«l
I **
• f
» P
^^
IIM IHINUIfSI
2H
FIGURE B-3 SAPRC EC-276
••«*
tpfciu UPI. »<»•
NO . «
Ml • >
* »»
i I It tlli t
« »»••!»
• • • • 2
II It •
Ml t *.
N I « I •
• • I« 2 •
• M
W 1
t
It
II
lit
ttt
«f «» US 1*1 22* IT* 11*
TINC
-------
.01*
.»*•
IfCICS f»M. tin.
•Ml • N
"0* • *
I •
t
N IWNNM MNI
0 «f «,
O.I*
ti
in
• • i «»
114
iu
lilt IHIHUUSI
I»0 )lt
trrcin f>ri. tm
f • •
o« • a
a oo oooo oaaaa o • o
« r •
•« «i IM no its no ill
I|H( MIMIKSI
.on
tncin (wi. tin.
HKO • r
MM I «
M ff
• i n i tii'i i
»r
a
rr
* '
r
«
rr i
r « i
f
...
rm t n rrrr
r r r r r r
It r rfrrr »
o "«*
IM
I"
II* MO
FIGURE B-4 SAPRC EC-277
-------
•.n
pp 1* • ft
" 01 • 0
_
0 A
• M oo o a •
* .°°
0
• 'r
* * • • * » *
»• ft
o
tt
• o r
o r
f
o • r
0
ft f
* 0 *
™
0 W
o r
0 • p
• «* *• '« III 12| III 111 Ml
VKUAT • UffbAI'frAY At a
_
l.l
« ' «wcic» c«»». IIH.
• ** NO • N
* i HOI ' I
'I i
• t
N I 2
>
h
>2 • 2
2 2
M 2
2 I 1
• 11
• 2 2
II
2
2
2 N
2
1 *
• 1
2 • 2
M 2
• 2
22
• N •
N 2
• M 2 Z
NO 22
«» *l lit !•• 22S 211
IIMt IMIMlKtl
lit 1*1
Ui
1.15
SHCICS Cl»T. SIM.
wca • '
••» • *
Mil • *
MM * *
• > A MM
• • i • 4 •
M « A
A » r tin tt » A
* r • tit A * »
A rr lit *
Air rr r A AA
* rr •> r r M
A r r r M *
A r » • »
• »A r (i rr i
rr • r
> F
pp p
rrrrmr
IA AA .„„.»....„.„-..„„ .
,.,. .. .- -~ -.j -•- -;j jj~ -^
HOC IMINUICil
FIGURE B-5 SAPRC EC-278
-------
srrcict itn. sin.
• i a
t
*M
0 « »
a •
o o cn
• • * U »»«A U
M
A 1 II
• ' r
AA r r
A fr
• A iff
M rr
A r
A rr
AI r
a*
.r
IAf
r
• 'fr
AAA
M
*
r f AAA
r r • A*
, trt
A r
tn
f ft
r r
X A
FA
FA
r A
IA AA
«• its ua tit tit us
IIM
FIGURE B-6 SAPRC EC-279
A.|. SWC1H £irl. SIM.
MO • M
NOJ « 1
2 m« t
t til
H 21
2 • • • U
I • >
t.t
• >
•»
a
• 2
• i
t
t • <
t
z
« *
M
• i
I
u
•HI NOMWMN* » • « •
IN IAI
tint UUMUHil
lit
U
• Hi
tllit
"M MI
-------
A.I
*.**»(•!(« F»»l. MM.
OK
oo
to
lit
(MII4UHSI
210 Jl*> J6«
*S VI 11% MO 22%
•**•• 4 *•
H?CO * f
FF« A *
ff *
FFF Ji
** r
* f
AM*
**»
* Ff
** •**» l is
22* 2YO
FIGURE B-7 SAPRC EC-314
-------
t »
i >I I II
•• • • 2
H 0
• ? 0
» 1 0
• M 00
• 00
00 «
•0 i
0 . I
a • i
oo •
oo • <
oo » «
• N N 0
« 0
••WO •
•AM X
OO 0 • Nil
OOO R • N • W
III0U U^l* OOO I
st'f ( IIS t >i*1. SIN,
«> u« if. !•• lit in us
tint l"IHUItSI
IX
tl«l IHINUKkl
p
JM
00
AftAAA « « A
111 rrnir iri in
*** f ir
u • fff
« F
* r f
• »
1 F
«S 'ID
il**e
lilt »* ITO
FIGURE B-8 SAPRC EC-315
-------
VO
f >* ** ft
«.»•»<• US » •» I. M»
Ill) * N
tin? • f
N M
1 **
• •«*»*• H* NN*NM *N *N M*
no
oo* • •
*>,*«.
«.»•* C|f*- I1 VI. *>!*•
I*»M • *"
H'f.0 • *
ffff **
I *
»
* f*
***
IIS J*B
FIGURE B-9 SAPRC EC-316
-------
•.I
N M
• WNNNMM
• « «M • *••» *«« • N«NH«N *• N«N M *N • •
^ '< < US t N»T. Sit-.
• Oil
0
* o
» no
• 0
li •
0 fl
•mm •»
1*0 no
?s«
ut ><•
*>o too no ;oe
1IHL
Ul
o
< o.l
t
tpi'l. M".
f «
r
i
IDA 1^(1
FIGURE B-10 SAPRC EC-317
-------
t it
99 *
• I
*« I :i*>
us MO
?IO Jib
0.10
tffff *
k r **
ft *«
•r »
» *
* r
* **
FIGURE B-ll SAPRC EC-318
-------
*.* *4
II*
**•*••
ft* ?ro
IftO
IMlWJfCSt
*?« m
Ui
AfH t «
ft f » f *
*«**
* •»
• A* f
* f
A * f
• I »ft
* r
AA
*S •"> 1 **>
FIGURE B-12 SAPRC EC-319
-------
SPfClttS f »Mf,
II
• llf
till
• • nit
• ' i
• i
Oi
CO
i. si**
A* ******* «
I*A* * **
» A F ff Ffffff «
» FFF t ft f
F fl
F *"
FFF '»»
« FFF» »
1HO
(MINUTES)
Ita 3IS
FIGURE B-13 SAPRC EC-320
n o
oo
o *
«* •>*
II*.
-------
0.4
O.I
o.t
9
9
«
O.I
0.0
iritlfs tin. ti*.
NO • II
MU • I
01 I O
II 1
I 1
*
. " ,
1 1
•
MM • N MM* •
Ml 1 11111 ti «
N*N • • ti Hi
N • tt t
II «il • 11* 0 OOOOOO
» tt I O 00
t too
•Nil • 01 • 0
ill < 0 0
I Ml • 0 l» 0
4 N • 0 0
1 MM > 0 i* 0
i II 0 11 . 00 1
tl N O 11 « • • 0 1
tt • N 0 i 1
ill I I 1111 • • » « 0« tt
• > N 00 t
N i
0 11
NNKO i
01 tt
UO*NN t
O N
00 UN
00 « • NN
OOOOOO OOOO 1 • NNNNN UN NN
1.0
O.M
0.10
»
»
1
O.ti
e.c
SMCIIf MM. UN.
f • 9
KM * 4
1999 « 9 999
• • 99 99
9999
999
9
9
9
•» 9
A*
rw
f
9
9
9
* f
_
99
9
99 » »
9
• 9 *
* 44444
9 ***** 4
9 *44A*«
» 44 99
• 44 99
• 444 99
44 999
444 * 99 9
44 9f999
*4 • *
444
44 4
4444
444444444 44
119 «IO it!
IIW IMINHIftl
101 110 111 tio
IIW IKIMJIISI
tl« til Ito
FIGURE B-14 UNC 12.26.77 Red
-------
1
1
Ui
Ul
o.»
0.1
:
i
e.t
O.I
0.0
SFfCICS twr. SIM.
MO * in
HOI * I
O) 10
* XI
» XI
UN* HUM NNNNN H * • * J
NN • * I
* m .
"1 • limn !
- NNN 11 11>1
NN • 1 » 11
NN • 11 11
N 1 11 • « 11
11>1 .1 11
11 NN 1
mi N « • oo in o
11 1 • N 00 001
11 • N U > • 00
11 M 0<0
11 • N 00 >
111 1 1 1 11111 1* • > HI
N 0
O
• N OO
N 0
NH 0
OO
00 NN
0 NN
•00 N
000 N N
0000 1 NNN
00 OOUOOOOUU 0 > N«W» NN NN
»f 194 1«1 )»0 »«! Hi *tl lt»
V • df *d!Ufll*C« ft
i.i
0«*
',
B
V
i
0 • A
0.3
'
0
s
if ecus tin. SIN.
9 • 9
999 f 9 9 99999 9 99 *
99999 *
9 9
999 *
99 •
9
99
99
9
f
* *
99
'
9 I
'
• 999
99
Vt 199 29Z 190 «•? $» bt* 9*
I Ml IHINUIESI
FIGURE B-15 UNC 1.10.78 Red
-------
*).4a
J.Jw
J.I 5
..2.J
SMCltS «IH. sn.
KO . N « 0
W? * 2 J?
01 K p "
i
fl K
_ *
0
no '
* 1
0
M'l'iii II H 1. I.MI1MI. M t . ,
M N*N • Q
N«N
NM I I«22
• N 2 < 2 O
N 2 2
« 2 20
• N> 2 • 2
2 0
2 2
2 H O <2
2 • N O 2 -»«»•
222 •
222 • -N 0 2
i 222 • N 2
an lit limit • • i o
NO ?
f i
•ON
en t
0 NN 22
nn o oo ino « • NMMW KN 22 222222022 222221
I1" 211 II* 420 tit 610 Ml 140
TIMf IXINMIElt
srrcili tin. SIN. M •
rui • »
1.2
i
u.<
*"*
0*0
(1
P • C
c
crrtrtt
re
pppn* p* p* p f fipfipp^ » fffff fl
* oi«i» r c
• P P* Cf
* *•> c
pp C
**t ' r
» 9 e
•> r
» C
f
f.
pj r
r v
• f C
»c • » •
* C '
c * *
c
c r
C '
f #
•cc
c c» »
CCCC P
cccerttc c tc»t • » f
CCT r e c fcccrn: c t • • *
* r
• • .»». ..»!..
"*JJ 7|-> "" »|™ i?0 "~™»» •'« >»« " "••
iix i«iwim
11.13
I
*
» 0.10
I
b
N
0.05
11 If IMMITE1I
FIGURE B-16 UNC 2.27.78 Red
-------
Ui
o.to
•.10
0*lf
0*0
SPCCICS fK*l. SIN.
NO * M
N02 » 2
NMMN N NNU NMNNWVW
•NWNNN
NN
*
M * 112 21 »
2 22
N« 2 2
N 2 2 »
* N 2 I
<» * » • »
2 I * • *
*N | • *
2
2 2
2* N
2 N 22
2 N
22 » 2
2222 2 222 22222222*22*222 *N
N 2
* N 2
N 22
NN 2 22
H Hi I
• NNNH N N 22 22 .222222
»T l« 2«2 190 it? *•» 682 7*0
FINE tMIHUliSt
!••
1.2
:
a •
0.*
0.0*
a
iPCCICS CXPI. tin.
p • p
CO • C
Ol Jl 0
c
c ccccc
c cc
rPPP 9 999 99999999 *P C
999999 9 CC
P P • CC
PP C
PP CC
PP C
9 C *
PP C
PC •
f C 0 UO ODOUOO
9 C 00 O t
P C UO »
• p o 0
9 C 0 • >
C • u
9 C « OU
• C > OK
• 0 «
CO > I
CC P O IX
c a i
C I OP
C C ii p
• CO 0 P
. >cccc » . o >
CCCL C CCC CCCCCCCC OCCOCC CC C CC • •
n uo PP
, UO P
0 PP
aaaonouiiai • PP*PP PP •
9' It* 242 990 ««T SB) 6M ISO
IIHE IKINUfESI
FIGURE B-17 UNC 3.06.78 Red
-------
00
0.4
0*>
c
0
0.1
tt.l
•*0
S'ECIfl f>PI. (IH.
NO • N
NO2 • 2
•
JUWN N N MMNMNN •
NN (22
« • 2 U
•N 12
M
N 2 • 2
NN
• 2 a
NN
N 2
a a
N •
2 1 • » •
112 • •
• 2 * » •
2N« •
in I
2
2 » 2
2
2 • N
22 a
2 *
22 a
2
22 • N
222 • 2
2222 2 t 122222 t It I
•
« *
N 2
N 2
II 2
N 22
• . ' • NNNNNN 2222 ill 22222 2
«0 1(0 210 1*0 **0 MO till >20
4.*
1.2
ft*t
0.4
(
srccid tan. SIN.
9 * 9
O» » 0
rPPP » « MP»0»M>M>* P •
9 999999 9
r* • oo
"f 00 ODD 0000
ft OOO
P 00
« 00
f O
P 0
o
r • • o
• P 0
r u
» r o
o
• « >
0
9 • •
0 > •
0 *
* p
U * f
» o r
OO M
OO'OOO • * 99 999999
*0 110 MO 1*0 «»0 »*0 *l(t FJFO
IHINUICSI
FIGURE B-18 UNC 3.31.78 Red
-------
Oi
VO
*•**
O.M
O.ll
0.0
I
0.4
srecics ««M. SIN.
in • N
HOI • 2
•II It
I • t
• I 22
2 2
NNNN N N N NN NH.HHH 2 2
NN»N N .2
N N . I
NN I 2
NN 2 2
• NN 2 • I
N I 2
III
IN • • 22
• 2 N
22 N t 1
• 22 N 1
» >2
2212 2 2 2 22 22222222*2 "« '2' . . .
• t •
• N 2
• 22
N 2
N 2
2
N 22
N 2
• N
N
mi
t * NN mxHHium
tO 100 tit 140 4>0 »40 410 120
, lint ININUUSI
iptclEl IXM. SIN.
I.O
O.M
O.S4
0.1»
0*Q
SPEC lit MPt. 1 IX. 0 •
01 • 0 •
f • 9 • O
o
o
OJ
0
• II
0
• 0
pppp p p » PP trmmrt rr a
m n
nt o
AA
» P r • 0
P 0
P 0
• P
f O
P • O
P
> PP 0
o
r
• or
• p
0 P
0 P
0 PP
O P
•0 » »
00 PP
OOOOOO >OU • »PP>PPP PP •
«0 110 2?0 140 4SO , >«0 410 ftO
line ININUIISI
0.2
O.I
0.0
tO 110 2TO 140 4>0
IIKE iniNurcsi
4JO 120
FIGURE B-19 UNC 6.16.78 Blue
-------
c
ll
Ik
c
"•*
4.2
1
Sl-fCUrS UPl. s|«.
'" • N 0
N"2 . , „ „„
ft t 0 , 0 DO
0 1)0
222 2222 OUO
2 « » • 2 0
>• • 2
2» 2O
fcl.it « N »«•«• .J • 2 f.
'•«••* • . 22 0
» « 20 I
""• » 2 .20 I I
II • 12 . 0 ii
«•<• 2 22 > 1
» «2 •>• 2
•••« 0 • 2 2 1
?2N a J
2» • HN O.I
22« 1 . 22
2 2 . N 0 2
2» NN . 22
•2 N 0 M • M
-•-'-• 2 2 ll'l'it> • > 22
• 0 • 2 2
N « I .222
it a •
• N 1 •
II 0 •
• NO »
II <
N 0
• k 0 <
• NO
OW >
•>« IIS MO
tint IIINUTtSI
O.ft
0.4
0.3
O.I
0.0
<
:.*"•*. its f '"i. si*.
r • p
_ _ p _ •••» r*"»»
^
V •
p PI*
* 99
* *
«
p
f
• f1*
• p
• 9
9
p
* 9
9
9
• P
9
* »
0
• 9
9
9 •
99
9l> *
I 105 2I» tl« »>0 "»» «'« M» •
VI*E IMMITCSI
SI-CU1 l«Cl. I|M.
tm • r
4 U
«A *****
*A * *
«** •
• » U
>rr rut
FIGURE B-20 UNC 7.01.78 Blue
-------
0.4
MNM H M> MMHN
J I
II •!
I*PI. UK.
• N
N • 1
0 I
•
i
> N
I
J N
I
» 1
2*
I
II
i •
I
11
i t
N
* N
I
i • '
t
I
I
o.a
II
N
• N
HM
• NN*MI UN i
tit
UO 110 ItO «» MO 410 HO
tint IHINUIEil
P
CO
pppp i r n
c
c o
cc o
• o
c o
c o
•C 0
CO «
C 0
c
c o
0
c o
c o
c
0 «
• P C 0«
P C U
• p a
u
i ccc
II t CCCC CC
iccc c c cc cccccccc ccccccc
PC
• CCP a
c c a
c OP
c< • p
•o
i
0
10 ItO 210
lINf IKIWIIfll
MO »>0 I/O
CT>
0.1%
f«n. tm.
• >
4» »
• t
44
• P
P
P
4 •
44
• PPP PPPPP
no no 140 »»o i*o
IIHC IHINUtfSI
no
FIGURE B-21 UNC 7.24.78 Red
-------
0.4
C
•
0.4
0.1
0.0
o
«•.»• • M IM MHM
• • .u u 5*CCStS EK?f. SI*.
.MM "0 • 1
MM *" * '
, „ « 0> 10
*„ J«l 2 It
" 12 »
•** 2 22
N 2 • • 4 22
•m .* * "
•F»l ] £
J * * • * «•
* * 22 0
11 2. 2
• « * .2
* , * OO 221
• « a
* 2 O
•in
2 * a
' • o
• « a
«'
• • « a
JJ N a
' * a i
»* ^ A
*» * 0
2 MOM
a-.-" ' "I «'
«lt 122. « -•
» O
on
UN I
* . 00 H> 1
• go MM
' ooouo oo oooooo 11 » •» m MN»NMM mam MMH
•° KO ITO 140 t» >«0 «IO FZO
0.40
0.4»
o.io
OaO
t*um e«pT, sm, c
» * f t
«CH » * CC
CO I C (
F M
rrrr r * »r rpr c
f 9n c I
• w C
• 999
Mr
fc
• f C
99 C
• »w cc
9 C 1
• rr « cc
if t
»c
• ccr
CC r
> I I • 99 *
CC C »»
• CCCC* • 99 •
1 < CCCCCC C f 44 444*44
CCCC C C CC CCCC CCCC CCC • 444 41 4414
44 4 • •
444 9 •
• 44 4 • 99
44 9
444*4 • »f
4 99
4»» r
444 -• 9999
4444 444 • • "'
•o 140 ire 140 «>o >«o 410 u
HIM inlHulcil
< IIM immiifti
•.Ok.
0.02
0.01
•.a
IMCIft fWI. ilH.
99
99
• 99
9 9
• 9999 99 99999
210 140 «>0 MO »>0 »0
TIM IMWIIftl
FIGURE B-22 UNC 7.24.78 Blue
-------
SP*CI» e«M. SIN.
NO > N
MI2 • 2
• >
N NNNNNNWN MM NN« •
NNNN
NN • • 2222<22
N 22 12
WM 2 >22
NN 2 2
NN • 2 2
•N 2 >ll
NN 2 2
N 2 •
• NN2 2
• 22N 2
22 N • 2
t N 2
•2 N >2
22 N 2 •
2 • N 2 »
22» N 22*
22 22
2 2 . N 2
22222* • N 222
2 222222222 212 » NN 22
0.0.-—
0
»o no 210 iu «i« >«o no no
Fill UtlNVrfll
SPiCIIS EXPf. SIM.
01 » 0
CO » C
ccc
ccc
C C 00
C 00
• C 00
cc a
C 0
c o «
c o
C • o •
cc a •
c o
c •
•cc
ccc
c
cc
c.cccccc.cc ccc ccccccocccccctccc ccccc
a
• 0
0
00 0*00 <0
to no 2?0 >«0 4*0 »»0 410
UME ININUICil
SPtcUS OPI. tin.
f • »
• ppp
p
• pp
t 9fff» P
HO 210 11.11 «*0 MO HO
lint
120
FIGURE B-23 UNC 7.30.78 Blue
-------
0.4
8.1
O.t
f
1
O.I
0*0*
0
S'CCiEI fl»t. tin.
NO • II
HOI • 2
• •
** • •»»
»» »*•
•• 2 2112 •
•12 222 222t*>
••DM ••*••••• || , ,„
• • Wl I ..
••N • 2 »1
•* • 2 ••!
1^ tt££
» 2 » 2
•« 2 •»•
2 N ••»
••IN 2 »«•»«••»
• 1 • 11 •••• ••
»• 1 • 1
I »' 12
It H>* 22
Ml 2 2 112 «•• 22
^9tft ft
•*M N »** H m
* ••••••NI««»*ttNMItMMNMN UN M
tO 1 *0 110 1*0 4>|) »»0 410 1 20
O.I
0.*
0.*
0.2
.
0*Q
srtcifi S»M. SIM. cc uc
01 < 0 c CC
CO • C ciC • •
•cc •
• CIC
• >cc
CIC
cc
I C
• ( C •»••»•••• •••
• » cc • o OQ o
cc » •« oo
cctc • ••• ouo
* » • * cc • u
CCCC • CO
CCC CC • 0
CC CCCCC C 00
CO C« • C "CCCCOC » •• 0
• 0
oo
• • 0
• oo
••••• 0
•• 0
• O 0
• 0
g
• 0
•• 00
• 00
• 0
* 0
• 00
• 00
••00
. 0»«« 0
0 O0**«*»
*g MO 2fo i»o «to MO «»a 120
line loiwiteii
tl*E HINUIISI
o.t
O.I
lint
FIGURE B-24 UNC 8.05.78 Red
-------
Ul
•*•
O.ft
0.4
0.2
• n
*li
tmitt flM. SIN.
NO • N
NU2 • 2
01 10
' 00
OOO
II 1 1
mill i i
10
10
I II
I II
1
I 0
0
I 0
0
•0
I 0
ID
• 0
• »» • » 1
*•• 2222>t>2 2 0
•••••••• >N N N N . 2 • 221 II
•••••• NNN . 22 « 221
••• » « 2 » 122
• KM »22 •• 10 22
•• H 2» 1110 1
•• N »• H Ot* 22
• N 2 1 0 »» 2
••«2 « •• 22
•*2*N 10 »t 22
• » 2 »N 0 •> 22 2
• 2 «NN 1 •» 22 222
.» 2 ««N •• 222
•• 22 • N H 10 »•••• 22
222 1 • »«•«! 2 NN 1 0
• NO
• BID
• • 1 ON
• XOCJ NN
UOXIUXXKnt*** N te NftMNhNNN NNN
« HO 210 310 «50 1«0 HO 120
1 .0
O.Ti
0.10
0.2S
UAk
• V'
0
SHCIfi l»l. UN.
CO • C
f » 9
(. C
CCCCl
cc
cc c •
cc •
c <
cc •
• •
• cc
• c c
• c
c
• c
c
cc
• c
• cc
c
• c c
999 99 9*9 9999 • • CC
re,r cc
• • • 99 CCC
» 999 CC C C
•ccc • c c c c cccc ecu CCCCCWPP
• * • 9
• 999
99
9 .
99 '•
9 1
PP
Pf>
P
PP
*P P
. '^ *
PP P* P PPPP
90 IBO 2TD 1"0 *»0 4*0 *)0 12
II"t IHINUIfSI
HUE ININUICSI
FIGURE B-25 UNC 8.05.78 Blue
-------
I-1
ON
ON
o.to
o.ts
i
0.1O
O.I*
0*0
1
tMcics Cxrr. SIN.
Nil • N
H02 • 2
01 «0
0 ».to
(1
O
0
0
0
JU
*•* •* X XX 0
•• * "• » «.«*
«t 2222 X X U
* >i 1222 X 0 c
•••••••N N NN N 22 •• X 22 2 » O 0
•*•••»• NHN • 21 • XX XI OU N
•• NN 2 X 2 XX c
• N» 22 » 22 0 •
••N 2 I •• 2O N
N 2 • 2UO
• •N 2 I • 022
• 2 02 0.10
• N 2 • 0 2
• N 2 X O 22
• I I 00 22
• 2 N > 10 2
» 2 N 0 2
• •NX 0> 22
2 02
• •2NX 0 • 22 *
• 2 N 0 »* 22
• • 2 • N 0 ••• 22 o.ti
• •• 22 NX ••»•••#
•••••• 22 • X 0 •
2>» 1 2 22 22 • X N O
• X NN 0
• NO
XXX NO *
*• I DON
• X 0 NNN
• • X XXKXU»Otl*OOUOO NNNNNN NN NNNNNNN
1 «0 1(0 210 140 *»tf *»» •»> "> C
tlNE (NINUfCll
SVECIfi IXfl. i|«.
*
M** f P » P
fffff
r 9
99
99
f
99
* t f
f
99
• 99
ff
f
9
9
ft
9
9
9
9
' 9
r
9
* 9
f
f
9
9
99
9
9 9
* f
• 99
99
• 999999999
90 110 110 1*0 4 SO 5*0 ft JO 7
-------
0.10
SPCCIES tun. SIM.
NO • N
MU • >
O> > 0
NNNN M* •
M* 1
N »
I
I
»0
I
0
• • • • o
• • o
ti it •
• II 11 10
11 ft
i o
1 01
0 >1
• 1
O • 1
lit! t • •*• •»
0.0.
1 II U
<> <
If H 0
1 >> >
!• • H 0
II 10
• N <0
H
II 01
MM
• 0<
•DO* II II
Ol« II
0000 «««!« • • NNNNNN MM I
1 • >
11 >
11
11
111
110 1*0
line
MO »)0 Till
lift
ito
line IIIINUIISI
tto »io
ON
0,01
SKCKS CUM. II*.
MH • '
O.TJ
«a
IlHi ININUIESI
610 110
etc
Cl o
t 1C
•Cl •
cc
c •
c
c
c •
c •
cc
c •
CLCC C C CC CCCCCCC C
c c
ccc •
c ccc
•cccccccoc* • «
to no iro
TIHE ININUItSI
FIGURE B-27 UNC 8.15.78 Red
-------
00
o.a
o.*
c
0.*
•
O.f
••0
Q
srtcus MM. six.
NO • tt
MU • 2
0) 10
0 O.I
0
Q
0
0
a •
0 I
a »
0 II 0.*
NN*****«****«*«**M«tfM 0 I
•»•** , c
*•• • 0
•• DO 11 X
** 2222*2 I C
«• «»•«« *2 • 0 I !
*• 2** 2»* I N
«• 2 • *• 00 » '
Jt» 2»» »* *
N* 2* 02* X I 0.4
N* 2* ••• f
«• • a ••• I
• 2»» 0 I ** 0
2* It* 1
• 0 « 2*»
2* • I *• C
22* •* OK »• **
2 » *n ax *»*
2 * • OK 2* 0.2
2 • • I 21
2 > • 0 <
2» *M a
22* • 0
* Mi 0
...» *>a »
2221 2 •• 12 1 ' UO •»*
•• OO1XI OORItKIIKJtIM •NN*** NNWtNNN
to ito i>o 1*0 «»o >ta tin 120
ii-fcus tin, sm.
CO • C
c
c
cc
c
cc
c
•
cc
c
c
c •
c
c *
c
c
c •
c
c
cc •
c
cc
c c
cc • •
cc c •
ccccc cc
c*cc> c •(. >c •cu«ccc*coccc* • • •
•0 l(l> 210 i»0 »50 >«> >U> H
TINC IHINUIfil
IIHC lltlNUIESI
FIGURE B-28 UNC 8.16.78 Red
-------
incitt urr. int.
HO • II
MX • J
0« 10
N N NIUHIMW H
0.1
0.1
0.1
Ml •
N •
t t limit t muni*
1» • 0 »
ill Itl
i to
1 • 11
10 • I
i a i
i o 11
i • i •
•HI a 11
N • i i •
M» 1 » 0 1
1 HI
Ml 1 •
I K« B
1 • 0
II N
1 N
11 » •
I HOI
11 • II
11 a
11 » »•
i •> t
0.4
c c ccccccc c cccccccccc ccccccccc c
r r tmm r rr»nmr* tm •
00 I (IN
DQQQQOQQQOQ ON Jl £M*M tl^MHHMWiH N N
0 »0 1*0 110 140 4U >40 410 110
IIW IKINUIEll
IMCItS E«M. UN.
r • f
CO • t
cccccccccc c
CCCC
IU 1TO 140 «50 >40 410 T10
IIHI ININUfESI
VO
o.o)
fin. UK.
• p
IfO 140 4SO
Tl« IKINUIESI
FIGURE B-29 UNC 10,03.78 Blue
-------
0..0.
0.«
C
0
O.JO
0.11
0.0
NO • N
NU • 1
OJ 10
X
000
1000
0
MM* N N N N NN« t 0
N N.KM . i. mi ]. UI>
NN • 11 1 11 0
N N • 1 . • 0
N 1 0«
N 1 1111
MM • i • a >i
N 1 Oil
Nil O 11 • 1111
HIM' 0 1
i »N
UN 0
1 N
11 • N 0 «
11 • 0
111 « NO
111 1«1 • • NO
111 till* NO!
•NO
0
DON
OO 1 HUH
000 0000 BOO N 1 *N Ml NNN NNMMM N
0. U
0.0
P « 9
•CM • 4
*"*'** *" * fflfff .
99 9 •
9 99
m p
1 yff ^
99
9
99*
9
ft
9
9
99 •
9 »
»
9 *»444 4 4 444444
4 444
44 4 P
44 9
44 9
44 99
444 PP
44 * ft
444 « 9
44 * » 9999
•44 44 4 4 PP
110 140 «U
ma iKiNuitsi
»IO T10
IU
lit 140 «»0
UNi IMINUIfSI
»io n»
0.04
species e«pi.
lla 170
p»pp PP
450
nw
FIGURE B-30 UNC 10.12.78 Blue
-------
••3
• •I
*.!
••*
i
i n n war • *
'It ill 1 NO • N
« 1 11
* * t
* t i
' n
Sf
i 1
* • »
• • • I
• I
• • • f
* • K
N „
• ft
• f
* • n
9
N . >
* • /I
* *t
» . %
t
* • «
M j
t • *
" • ' It
" • *l
" - ' f
«•» . %
« «»» »
NN * »»
Ute . *
HH 9 • 9 t
*~**. * *
mm * • •
HN »MI N • »
1 ** «• l>5 |M« tt$ 2T« Jib }»|
TIMC (HIMUTCSI
• •••
•«t*
«.«
• •• '
1
meiit e«»t. tin.
fit • •
o> • •
i
f •
t *
a M
fff • 00
ftff • » •
CI f • 00 •
If f • • 0
• a • • .
HI • O
ft ( 0 0 •
ff" 0
(•f a •
f • 000
f f« 0 •
U- u
Iff oo •
AMk£ff
QW*v
a •• if*
00 Iff
0 • «f«
0 *t
0 O • ft*
0 0 If*
u • Uf
00 ••« •
a o • fi
o a •
00
0 00 •
000 •
00 O •
000
I 0000000* • •
«« »« 115 100 *n "• "»
IIHf ININUIfSI
f c*
•^4 o.s
HICO •
IPCCIft f«P». SI".
IH
>M IIS
115 IM
I IMC IMINUItll
if! 114
FIGURE B-31 SAPRC EC-142
-------
I l»fCi(S IWt. ill).
If tlH • (
• ai • o
1.4 • I I
I.II
I.It
l.l
ft
ft
f ( •
f
H •
II
I •
f C
I •
CI
1C
c •
I 0 QOO B* ft •» • • •
M f C • 0006M a • «
• I* •••••
00 • CI •
a M
« • II*
a i . .
o i t •
• • i i •
*• IUI C • •
0 IIUII • •
•• • I II I • •
* II Kid
iu m in in
tine miiair»i
t.i
1.1
I \MCltt U'l. SIX.
I UOl • t
• t M » •
2 •
I
II •
I
I •
II
II •
I •
II •
II • •
I XII «•»••••
• • » • • • . . • •!•! t.IIKII.lI • t • 'III*
i «i ii in in «* in n> MI
IIM IKIMUirtl
.Ill
uncut f.n. tut.
fM • f
«* •• i*» !•• tt*
I IMC IMlMJUtl
!!• lit
l.tl
I.IS
mcies
*
-------
I.M
t.»l
«.*
1
SMCIES (M>T. Sin.
»«t • I
',01 .0
( t
1C •
(f
(f •
I •
(I
« •
V
« •
It .
I 0000000 0 .0 0
CIOOO* • » 0 • 0* 0
0 C O'OOO.O
00 C . • OO'OO.O
00 CM . 0 . 00.
o*f • oo.
0 (II «
0 . ( I •
00 (C •
0» f ( •
• < e • •
oo tin .
oo » c (cii • w •
0 CCCII K • •
»8°* • "' *«I
o «
00
ooo « .
> «* *• IH IU IIS IK lit lit
TIM INIMIIISI
I.*
• •1
"
t.l
1
' I t
t svrcif* tin. n».
Mil • I
II NO . N
i •
• f
•1
X
*
t
I
t •
I
. (
* * •
.
'
f •
_
II •
N * I
I
I •
II
II II •
12
« I •
• 12 •
II • II*
MNHMH N HN.NHN. • « till t!!*I!*t! •
«» M IH |0t ttl tit 11*
(IMC IMIHUTCSI
C«M. SI".
flMC IHIMirasi
t.l
S»FCICS IIPI. SIX.
NO • i
in? . l
ttrrtrr r rr r
rr r r r r
rrrr
rr
119 1M
I «5 »0 IK 110
TIDE INIMItESI
!'• Ill
FIGURE B-33 SAPRC EC-156
-------
ti* •
»KI ttt
ml • »C
II- i«'l
* r f
f f t
f'tf If
«S
i >•>
i t a
•a —i
lliH. INlNllltSI
ft t f. t £ f. ftittt f I
H f
• fttf
• ffl
il
• f
t » t f« •
c » i mm f r
t t
Kf flfff (f»
FIGURE B-34 SAPRC EC-285
-------
* <>
I* I)
>»»•»**<•/ tit f f't'.tt, t €
|MU 7f» ifIA -lib Ifeil
*»»
• *»>
• ft k
9 » f * »• •
tit fftfff t f
t *
rttfc* *.
FIGURE B-35 SAPRC EC-286
-------
•Wl • K <|
«V 4 f
ft*
If •
• ft » «
r »'• • • • •
FF FF» Ff ft I If f » f » > • •
ffff F f » >
FFF t « t » F
F' > f F
FFF f
* it at r
*ft
»• 9 0 f
•« » a ?
i
• a
>
111 |*Q
FIGURE B-36 SAPRC EC-287
-------
W»W
t»»*S
U.JO
J.15
spsr.icj E>M. sn. ,
K12 • 2
P3 13
22
2 2 22 3
2
2« 2
2
2 •
• * • 32
III! 1 1 1 II !•! Ill 2
1 •! >
111 2
II* 2 i
I •
II I »• I
1 >
12
2 « 1 I 2
22 1 1
22 1
222 • 2
2? 22 •! 2
2222 2 2 2 2J 222 J2 1 1 2
• * •
1 I
] 2
• • 1 22
• t
1 1 «
• 222
3 • U
I! 22
1 • • 2221
13 1 • • • «
33 33111J1I • Illllll «
o in mo 2)0 1*0 «»» >*> •»» ""
imE im»uiisi
. »!»•
" • ctiei c
• tEEE
• E E
E E
• Et
E
• E
E
f
f
E
t
E
• E
E
E
C
•E
t
E
f •
EE •
£ •
EE •
CE
EEE
KE
> ('J 1^0 /Tc 3AC 45O $40 1 10 '2
FIGURE B-37 UNC 6.16.78 Red
-------
u.2»
S* (KM. SI*.
Ml • I
N01 • t
1111 1111 11*11111 I 11IIU11
• • > mill
111!
Ill
I I
II
II
• II I 21
I 1II
• II 2 it
I »»
• I Jl
122 II
22 II
III • • • • !!• • •
•»!»••• II
• lit I II
• 217 • I
• 222 •
• > 222 2
• • • I 2222222 • •
2222 1222 22«2222> 2 22112222 •
W l«»
210 ltd 434
Ilttf IKINUTCSI
M< • )*
11*
u.os
!» Ill U
II »>•
1 31
111 >
90 110
Iff >»« »5«
TINf miHUIESI
M* *M
•vl
00
f>n. UN.
C • I
CiiC I i*C I »l£i€£lt i tttftlf
EC (fffifll
it mi
fin
ti (f
ifi *
M fit
«o no 210 1*0 «o MO no 120
IIHf IKIMJTESI
[>rt. sin.
tn • t
• C
C C
cc
ccc
CC C
• • (CC •
cue
CCCCCCCC C
CCCC C C C C CCCCCCCC C CCCCCCCC C CC • •
90 160 270 360
I1M
«ta no
FIGURE B-38 UNC 8.21.78 Red
-------
0.11
nil i i t I I I I'll
farr. tin.
• I
1111 12111 1 1>22
II. »' « >
II
I • • 2 11111111 1
I 1121
• 1 111
I « 11 11
II I • • I 11 1
11 1
I » 1 111
• I 1 11
111 • 11
•II t 1
it a
i it
11 •»
11 i i
« *o i i
i i
i i
t • •
i • i
• i i
22 II.
1 111
1 I
»• II.
•t • I 1
III .
1 .
> 1 II
1 II
* 111 II
linn i 11111 • » it iiiiiiini i
«0 110 110 140 490 MO 410 11*
MM mimmsi
O.fi>
O.lt
CEEC
u>ecus
iffff
• IH
• lit
• fifi
ill
• I It
«I
IN
ft
III
I i
II
II
II
fi
10 1(0 110 140 490 940 410 110
TIM ININUTISI
vo
u.«i.< c re
cccc c c c c c c cccc ccccecc
• SPECIES [in. SIN.
HllO • f
co • t
J.IIO* -
a
110 210 140 4U S40 410 110
11ni
smifs tin. si*.
MII • r
I BO 210 140 490 940 410 Til
TIKI INIMIIfSI
FIGURE B-39 UNC 9.19.78 Red
-------
t-i
00
o
ft. JO
0.20
41*10
rt yrt
1
V.ft* >
SFECUS Iiri. SI". ' 2.00
xo * i t
i t mini i minim ns « > ,"", ' .
•I I « 2.2
III • 2
1 2
1 * 2 * > »
', • ' '
II 2 2 c
1 2 *
12* 2 •
1 •
12 2
21 >
2 1
M . « I.M
*l »
2 • 1 2
2 1
2 •
2 1 2
2 9
22 • 1
2 22> • 1 t
2 2 2222222 2 2222222222* 1 • 1
> II. »0
1 > 2
1 2
« • I 22
> 1 22
1 222222
11 21
> > 1
t I •
» JM1191 til l>lll
> 10 HO 2I« UO 4I« M« »» T2C 1
IIHI IHIMIICSt
SKCIIS l«M. SHI.
H2CO • f
i
S»CIES HPI. SI».
1 • 1
i i utiiit i iiiiiciuiei in •
Hit II II*
Mill "
1 III •
III •
II
I I
I
II •
1
Eg
1
t
I
2
II
I
II
I
I
III
H
I 1
1
I 111 ItO 2FO 1*0 490 140 410 T2«
line immiiisi
0.19
i mn
H ft
f f
f
F •
210 »»0
IIHI ININUlfSI
FIGURE B-40 UNC 10.17.78 Red
-------
(Kelts Inn. ll«
NO • I
HOI '1
01 < J
till I I I I I I HUM ||«|l* 111 III
* III
112111 I
> II
1 it
II • • 1
II 1 1
• IX
• II 2 I
1
• I
• 2 * I
12 1
• 21 II
* » 2* 22222 I
2222 12111 1 2222>X 222112 22 • I U
1
1 II
it I
•1111 11U11I • Illl Illl
• 12
SMCUl «»>»• »'»•
t • «
III! f f«t t I «l ItfU* Ul«« iff fliilllUI I
(I fl
• If
III
• II
Ci
• II
i I
!•
M
l«0 1TO MO *M MO »M
IIW IKIMUIfil
120
210 »tO
1 1 ni
»»»
MO »M
120
00
I-1
un. sm.
H2CO * f
co • c
t
t
t •
t
t n
• n •
r
c •
• «
r c
f C
r c
ff C
f C
ff C
F C
ff C
FF CC
F C
fFF CCC •
ffftffff CCCCCCCC
90 IBO 110 160 450 940 410 12'
IIM IKINUUSI
FIGURE B-41 UNC 10.18.78 Red
-------
•.II
••rein ts«. »m.
•« . i
mi • t
mi »i HI i i i mill i
'!,
n t »
'
i i
i • i
»»• i
*i I
rt .
*' i
itti t i t i*t • t
-------
J.JO
U.IS
SI-
|
2
Mil • 1*1 I«I »l Illl 222*2 2
« Ml • 2 22
III • 2 2
', ' .'
II
12 • I
I • 2
22 2
2 I
2 2
2 • •
221 • 2
2 2
2*1 22 22
22 I 22
222 > I J
•22 » • . jj
2222 • 2*2 2<2 <2 2<22 2 l« '22
1 •
II •
II •
• Illllllll
J •
])JJ)3) 11 •
2'0 ItO »50 t«o «)0 120
IlrE iHlMilfSI
•Id I mi 2*0 160
flfS IMIhUlfSI
MO MO
00
ff
f«
Ei
IMM'IISI
5«o no
H2CI) •
*" 1MIKUIFSI
FIGURE B-43 UNC 11.20.78 Red
-------
Appendix C
SIMULATION OF n-BUTANE AND ALDEHYDE CHAMBER RUNS
185
-------
TABLE C- 1. PaJTO^.Ji- ;UT- ^^iCTAiSTS '.'OR n-BUT,':'E, ""Ma'iliU™" 7, AND AC™7.-:.":""'.7 Cr.WT'.R RUNS (In rolif ')
C5H7CHO C3H7CHO
EC-No. NO, HNOa Ha02 O;,: V, C.,(3P) H2CO(i:i-l) HzCQ(molec) Cl^C'IO "JUCHO raJ aolec C3H.C(0)CH,
250-255 0.30 8.0 x 10" * 5.7 x 1C" * 3.4 .. if" 1.2 :i 10"' 8.4 x V* 3.5 :- ir 3 •'; n :c '""
304-307 0.43 0.13 9.1x10-* 1.6x10"* 2.0xlO"3 l.OxlCT3 2.9xlO~3 7.Ox IT* 1.4xlCT3 1.0xlO~3 6.0 x 10"* 4.6 x 10" *
308 0.44 0.13 9.3 x 10'* 1.6 x 1€T= 2.1 x 10"3 1.0 x 1C"3 3.0 x I0~3 7.2 x 10"* 1.4 x 10"a 1.0 x 10"3 6.1 x 10"* 4.7 x 10"*
309 0.45 0.13 9.5 x 1CT * 1.7 x 1(T3 2.1 x 10"' 1.0 x 10"' 3.1 x 10"3 7.4 x HT» 1.5 x 10"3 1.0 x lO"3 6.3 x 10"* 4.8 x HT*
00
o>
-------
*.!
irtcitt tin. UN.
«0 • H
MOt « |
ft * t
it
III
tl
t •
• t
* t
•H •
a t 11 mti
t 0
I
• • II
0 • I
• rt
o . i
oo
a
•t •
it »
t*i
t •
Ml •
•
• tt •
« t
It
0.1 •IK o
• I • o
,' ".
.. •
111* II i
t » ^ 0 I
II 0 II
« • 0 I
UN •
•HO I
N in •
o m • •
oo • •
eno m N •
On * • •
o o > > K MII » • • •
100 imOflDIO I Ol I NWIM » M • • N m«M«MI>ll *IM* • • •
• M IM U> III til It* IM
lira iniwinii
tl
I.I
' »
on. tin.
tut • I
• t •
i
• t
I
• I
M*
• It
• I
I
• «
• * *
• • t
IM 141 111 ill lit 1M
Il«l IHIM11III
00
a.u
IMCIM ••'•« Sl«.
Mil • '
WN • «
•en • ii
M
< II
t « «
• *
« H
• "»
* i UN
< • m N
* »HK *
t > H M
>I N N
t II • • • • »
IU NIMIMMI • *f t f»f »»»»>»»_• > ____ _
**"» M IM ill JH III >»» t*§ »lt
TIM
FIGURE C-l SAPRC EC-304
-------
••I
••1
SMcm em. >i«,
Ol • 0
NO t ||
Wt I ,
Ik iMCett t»»J. SIM.
tt till » I
it
0 •
0
O
n •
4.1
lit ttttl Hi
M tit I I II tl lit
"10 > t I I I I
t> tlttt I I
* ' £• in t i i i
It * tit 1IIIIII
« el"09!. *" "I* "'""I* J *_* • _• • • • • ****» « * *«" ••** ' '*"" * "
• *< «0 Iti 110 ttl ITU 111 M*
M>
M>
I
• t
II I
• *
"
..
•M
• I
ito
nm minimi
00
00
u.u
S'fCItt MM. II*.
put * ' '
|U| t A
«> I • •
4
*
NIUU II
I
• II
WMIM
II II II «
r rr r rrrrr r n r rrrn r r
r r
t M '
1/tmM mw »'» 'Mf r > •
1 1 HI UIMIIItl
FIGURE C-2 SAPRC EC-305
-------
II
U.I*
u auui
II
M
• • 1
I.
mem MM. tin.
NO • *
MOl • 1
HI
it a
• a
I M
a »
a »
11 i
a
a •
a
a
u
o.u.
u •
M lit
aia
aa
a a
aa
aaa
aaaaa
an a»ia aa
til »•» 1>I
nut imwiiiti
Ml (M
0.49
0.19
mcui inn. tin.
ri • o
o •
ro •
no oo* •
i.o» ——-••—~—...».—
0 10 101
111 101 1)1
TIM miMJMil
111
IM
409
GO
v£>
»•»
SMCHI I1H. IM.
I I
IM
•I II
I U
• I I
M I
* Ml •
o.l»<
«•!<
MM*
Ml «
I M
I IM •
(Ml
"IS"' "!'• "••
N HUMP HM N
• urn
PMffft Jl
i
•
r M
• >
• • H
M •
10 101
in in an
i tut HUMIIMI
*«••».
101
114 «»
0.0«-
0
rut rftt »•• •
90 101 111 101 111 101 114
IIKt miNVTtlt
...*•
409
FIGURE C-3 SAPRC EC-306
-------
£.0
mcut it'f. >».
M • II
HOI • I
II lllllil •
1 II • •
I 11
I I • •
HI 1 J
I • «
1
111 II
ill
II
N •
N •
• * « •
I I
inn
III
11111 11 I 1
1*4 1*1 Ml
TIM imwtiiit
1«« Ml »••
0.»O* 0
sncu: is??, sax. o
0> « 0 0
0
«? 1»« lt> >«)
tint IHIKUttlt
m MI •<«
VO
O
«.»•
i men i IIM. tm.
II WJ • I
111
• Ml
f.u
«.»•-
«
* *
MM
•* 1
MM
III •
t • M
•M I
I I
• I
44
tint
2M 141
o.l».
0.11
IMlltl IIM. II*.
I'M • A
•M I •
*
nm N H m
UK I
i M*
• « H I
> *
I • m
« 9 99999 99
* M N 9999999 9 9 99999 9999
• m » f
»"« t > f
1 • HI 9999 I »
R * H »P»M •
I M 999 » »
I AW MH WfM* 99 999 9
*«
tit iNimititi
141 2*1 Ml
FIGURE C-4 SAPRC EC-307
-------
0.1
t.l
II IS
It It It
t It
II
II •
11
« t
• t >•
* t • in
lull
tt i • • •
in*
im * i
• i i •
it t •
It 0
I 0
IBM
0111
• no ti i •
i ill
o tt
• tit
I I
HI
II
0 N
1.1
O 00
00 oo mm * * • » «
0 a oo * MWM • • • •
10 o oooon •••••••••••••• MM ttmm UN • MM*
* • »> t* Hi II* IIS IT« HI >»•
tiM imwitn
t»i. im.
•ui * •
• «
* •
*
* •
Mt
• I
t •
t 0
•MM •
»l
Iff IM II* 110 tit
IIM immniii
VO
KM. (M.
MM • t
A I •
*
* *
I
. •
* 1 II
•ulu
.Oli
• «
<•>• i
• » »
> • » f
AM » »
A II » •
INN* • • run r • r t» r • •
* 0 «! M III lt° 12» »• til MO
llm MIKUHil
FIGURE C-5 SAPRC EC-308
-------
••It
mcict MM. ii*.
01 . c
»o . *
WM 1 «
0
t t M illtllt tl I OB
I H«t I I HIM •
I U I III I mi |
ll« 110 *tt •
,°° . *
0 *
IM IPiUSS 6<>l. SI*.
II Mil • I
»w
t I
I *
til
t t
lit
n
oo •
00 •
100
•
» • II «O
• • • Nil
• 0> MM
• O O • »» »« »
«"3«IO * 0 NKtl9*9 IK BHIia.SieiWS • »««»•
«» «0 111 II* 1» If*
TIM inlHUIMI
>I1 It*
it
* I
in
• I
* »
• t
S.S
111 UO «19
ii in miwiiii
IT*
lit
——•
M*
VO
S3
v.lu
itfcui UN. im.
UK * •
Ml I «
*
*
*
a •
A
* •
• i
4
t
«i ** « m *
A A ttlMM M M M H H M^ Him ^ '
41 M II* II* »! 1>« •»
IIW IMHUIIII
FIGURE C-6 SAPRC EC-309
-------
•.I*
t«CICS tin. MX.
Ml • I
NO* . >
111 I 1 l-l •
II
tiliil 1 I
til t I •
I'* lit
I • ill I .
I I'i t
I • »?» I .
I II I
1 » » .
• *
I * • t
* in •
2 Illl
t • II
I
ii
ii
ii
ii i
> i it
• • ii«n i mi it
t.M
M*rcin c«ft.
oj .
i
i •
i
i
> •
>
i
i
i »
M
11
1 •
11
Ull •
Ul •
IHlllJU 11.1111 •
1*0 ?TO U« «»• 5«l tit IM
•• IX
HI l»t «»•
IIIK WIMUICSI
»4« tit »•
CO
WfCICS (•'
HUT «
• I IMM *»•
M MUB«
•• l"»
FIGURE C-7 UNC 7.21.78 Red
-------
i.M
SPfCUS £>l>t. Six.
fit
m
III! II II 11111*1 • . • • 2*2>2>
til • • HI it 22 •
II • 2 22
• in • 222
I • «2 2
II • 1
mi • 222
i* i • 22
mi i
• tl • 22
• II 22
22 III
•2222 I
22 222 • I
222 • I
22 • II 1
2> • .11 it
22 ' . I 1
22 I J»
2*2 • • II 1
Hit 22 22 222»«22 • I > 1 >
• II » •
• II 11
till I
111* I *
Jl 11 » I 111
133 1343113 31 1J11 1 11H13* N « • •111*1 •
Hrt BbAd d ttft
»sa«is E»a»o attuue •
lan 2)0
«o I HO it a
il-t
• M 12*
FIGURE C-8 UNC 7.22.78 Red
-------
*.»
s**ciCi (1*1. si«
•n • i
NO? • I
IU It iltit *
Hit II' '"'
i »»
11
in i i in •• *
'„. .
i i
i t
i •
t i
i i
i i
«
n i
r i
HI i I Ui !• I
II
• I
It
*
M
III II II
I II I
I III III
ii mini tn mi
SMCIH t>»l. ill*
mil • *
IM lit
•<« 5«» 41* T»
TIKI INIMIKSI
VO ••§••
tHCIH
01
I.) J 11 1 1 J J 1 Jl 1 11
J 11
..... ...
FIGURE C-9 UNC 2.27.78 Red
-------
1.1 <
c ir
•.I
HICO . f
01 . o
II 0 u
00*
f CO
r o
o r
lo
lift
U5
so
FIGURE C-10 SAPRC EC-250
•MC186 il»l. lie.
1.0 « N
• • • • •
III
It *
•a
• at t
I t
t i
i t
tit •
III
til
till
« * vw«. V« * «
111 1*1 lt» l>e
rim
lit Mi
-------
•.I
MKO » * f""
01 * b
• * • *
•
• *
*
*
F
If
» « •
Ft
F .
FFF •
F FF
• r (
f F FF
UOOOO F f f f
uonooo • . t i r » f
looO'uoo uonaoo • .
» •» »o I3» In 22» Z7« us 1*0
HIT itikuUM
••••
«."«
1
spfcui tin. ill'.
• kO • k
k KOt • i
•
k •
21 1 * lit
H 11 ?i22> '
i mi
t • I t
" ' * ' , ,
° ' , ,
* * *
«H . * I
•
2 M *
N
fN
• N * • •
? *
N *
N * * ' *
N •'
Ml " ' •
NN
H
• H H
N h
M N
• NMMM Mtflft
• • h N N N
1 «S •• 1 U 1 HO 22b H • lib 1*
riMr iMiMiu&i
FIGURE C-ll SAPRC EC-251
-------
IF
• .1
i r
r f i
T!-f
u*
911
uri. si'-
01 • o
o o n o
ooo « • •
0 o o c
o o o c e «
„ 0 0 «
« 00
10 e
I
l*m>
115 J»0
VO
00
I.*
(.i
(.1
IftCltl flfj, tlf,
kO • N
N kOI • 1
M k
• H
• n *
i ii
• n
i
• *»
» « N k
i» im> n* »i« 119 »i
ti«e - •"-•
FIGURE C-12 SAPRC EC-252
-------
0.3
o.t
•.I
SPCCKS €••!. M».
Bieo . r
ol . D
n o onooocoo o o< o o . • > .
ooo • • o o « o o
•oo • •
oo » •
oo rr
o rr
trccici «m. '!••
oo • *
it
t>
t r t
tilt r it it
HHfc ft II »
....„..—.-—...-.....
HIT I»T«UIIII
•s »• i» »»•>
line iMwiitsi
lit its J»n
VO
VO
FIGURE C-13 SAPRC EC-255
-------
I.I
l.i
WCItl HC1. ll«
M • »
not • a
H • N H mat •
t
U tSil
t U
*.<
N 8
ft
* 1
•
a
4
i •
H
I
N •
I •
1 II
II • M
an tail am •
t
> u
li
II
• a
a
a
• aa
«>
• >aa
( *a
aaaaa
WCils tm. »in
at • a
» r » f rrr.rr
o«
• » • wo
ewa
« «
oooeoooo co«
• p f
UK
!*• 488 l«t tit
iii ait MI tst wi tit
rrr
itt
O
O
l.t •
I
IffCIU tin. tin.
co • e
1.1*
•cc
cccc c c c c cccccc •
in an MI tu *ti **i »•
TIM IHINUieil
FIGURE C-14 UNC 9.14.77 Red
-------
•.I
•MCICS l!fl. tin,
NO • *
•Mi . I
mi •
N «• •MM II
•N It
" . * *
N i • li
Hi •
Ml
•li
tit
1 M
i • •
MM » t ««•» N
t I
t.H
II
I i* 11
MM
Ml
til 1
Mil
tor. UK.
o» « a
0
00 •
** lit IK »« «•• t4t 4M Tit
tint IMlNUICtl
tt l*« Iff Ml >*•
»t lit
N>
O
l.t
l.t
f»rr f r •rrfrr
tMCIft UM. IIH. r
Mico • » r
ce « c r
ccc
cc
» • c
r cc
re
» cc
r c
• r c
re
cr
c r
• c i
• c r
c «
c > r
c rr
c r
c • • rr
cc
•c c
cccc. c c cccccc
r •
'
lit •
ni
,.,._.-.-.—....-.——-.- . ...
IINC IHINUIftl
FIGURE C-15 UNC 9.15.78 Blue
-------
(.1
mem on. im.
NO • *
not . t
MM • II • « M • IK
I M
t ••
I ff
tin 11 111 i ttttt
H t
N t
*
*
•It H
M
r
• tt
• ttt
tt
t tt
tt t
• M Ml
IM !?•
ttt
tit
• ttt
• »«tt
tiw mmuflni
»»• «4I »tf tit
t.*
I.I
r r r r r t tmr n
•
fKCICI t«»t. tin.
H«O • r
ca • e
• r •
r
r
r
• tr
rr
c •
t
c *
r c
c •
c r
•
e • t
c r
cc •
c
ccc >
CCCC C C C C C C'CCttt «CC •
t
t
r
• r
r
• r*
IM
tt« Ml •»»
lint IHINMTttl
rrr r r tnn '
«• •>§ rn
FIGURE C-16 UNC 9.21.78 Blue
t.t •
tMcut n»t. im.
OJ • •
t.i
• 0
t
a
•t IM 111
tlM
t«l tit »•
-------
AA AftAA • •
A* AAAA
AA AA A
A A* A
P.M.
«.ts
«.!•
Ill . 0
POO 0
OUOO 0000
0 00
000
000
oo«
0 2'f IIS 1»0
to
O
U>
A..«.
i.ol
•.•I
ll
j»critt
HO
lit II It i*
ru . it nn
f p pri-
un
ft n
P WPP ZZZJI
2k
I UN
••Ml
NMI A ft l>> {> ' t »
H MI t P rpi ii k » Z22
« MA Mt K Ik • jt
PPP PPfCPP PP P Ii N fcNNh UNIi t fit ttNHltt hlA ill
FIGURE C-17 SAPRC EC-253
-------
*.**<
*.**
• »!•
A.IS
• A
• "
SPCCItS MM. SIH.
0) . 0
*
It
> HUM •
AUAM
4t»»
** »• 4
• • • • <
1 AftAAAAA
•» * •
< *
• » • •
• t *
* A
• •
• . •
< . •
• •
» • •
.
• *
.
* * « «
. 00
* » 0
* 00
• 000
• 0 00 0
• 000000
• * 0 0 O 0
• 0*0000 ooooovoo no e
t «» *• in IM MI »>« us M«
tlM INtMUItCl
«.«•
_
• ••*
«n
• • '
1
SKCici MM. tin.
• k MO • N 2?*}22a ti
I HOI .9 'it i>><
!* MM « f a a
ft a a t a
i t
N ia a >
a » a •
UN « » > a
•aa • • •
* 22 *
M *
N 2 •
• * 2 V
• ft *
an »
• ? H
i *
N * •
> N
IN •
2 N *
H
2 N I •
2 NM *
* h
i » •
? X
A ft * *
* N * • •
* MM
* MM
I • WMMNN * *
• » Mi 9 t ?
• • N N N * *
P4*^W*f*W* 1*1* P r t1 f I* &P^& 9t tt
ii"t minviisi
FIGURE C-18 SAPRC EC-253
-------
tan, «l«.
03 to
tt
• t t 0
W • • i» f
It*
» I • 0
t •
M
to • (
t 0 •
" 01
I »
t II • «•
t » 0 t
ft » • • 0
tm i mm * » t •
MO I
NO t
*
0»
0 •
0 UN
NI« • titoni tit i mntit'i ma •
IH MA 111 •»• US AJ« TH Ml
Tint (DINUTOI
•.t <
A.I1
in n«
Ill •»« 9J1
IIM miwrm
«J1 TOT ««»
FIGURE C-19 UNC 12.26.77 Blue
I.I
MA* • • AAA**AAAA A AAA
• AAAA
• AA
A A AAAAAAAA ft AAAAAAA
IK lit 4|A
lINt IMIMITHl
UA TM •**
-------
a. is
INCUI
Ml
Mil
Cl
*»T. II*.
• «
• 1
> 0
MINN * N M «k* >M Ml
till * 1 II
W-*~_VI
»l
• Ml || 0
an m • i
* • 11 ii
HI 110 i
• • • i i *
O I
II I Out »
« M I II
t Oil
1 II*
• I* M 0 I »
I • 0 I
t U *
1 •• • I II
•HO II
II I III
* 1 H 0 I
• 1 11 MO 111
•1» III 1 Hit
0
0 II
O I UN
_ OOOiaaO I •**"• •** ""1IM'
1*1 1*1 )«• «!~~ Ml Ml II*
IIM MlMIIIII
0.4
IPICItS I»M. «!"•
•CM • •
•Itl * * M !•• Mt •« M
*
•t
«t l*<
1*1 Ml
tIM IHIIWflll
I
ft
•»»-..
*•>
til
•U fl*
Is)
O
o.u
•••a
o.at
incus MM. »i«.
M« • t
IIM imwiKi
o.i
tMCIIt I«M. UK.
to • t
CCCC ( C CC CCC CCC CC CCC
CC
CC
CC C
«f Itl
1*1 1*1 4*1
TIM HHMIWII
tit Ml II*
FIGURE C-20 UNC 8.08.78 Red
-------
TECHNICAL REPORT DATA
(l lease read lauructions on the reverse before completing}
REPORT NO.
EPA-600/3-80-029
2.
3. RECIPIENT'S ACCESSIOI*NO.
4. TITLE AND SUBTITLE
COMPUTER MODELING OF SIMULATED PHOTOCHEMICAL SMOG
Final Report
5. REPORT DATE
February 1980
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
D. G. Hendry, A.C. Baldwin, and D. M. Golden
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
SRI International
333 Ravenswood Avenue
Menlo Park, California 94025
10. PROGRAM ELEMENT NO.
1AA603 AC-27 (FY-79)
11. CONTRACT/GRANT NO.
Contract No. 68-02-2427
12. SPONSORING AGENCY NAME AND ADDRESS
Environmental Sciences Research Laboratory-RTP, NC
Office of Research and Development
U.S. Environmental Protection Agency
Research Triangle Park. North Carolina 27711
13. TYPE OF REPORT AND PERIOD COVERED
Ftn^l Q/77 -
14. SPONSORING AGENCY CODE
EPA/600/09
15. SUPPLEMENTARY NOTES
16. ABSTRACT
Efforts to develop chemical kinetic mechanisms to describe the formation of
photochemical smog are discussed. Detailed mechanisms for the atmospheric reactions
of toluene, m-xylene, propene, ethene, formaldehyde and acetaldehyde were con-
structed from available experimental and chemical kinetic data. These mechanisms
were used to simulate smog chamber data from the Statewide Air Pollution Research
Center at the University of California, Riverside and the outdoor facility of the
University of North Carolina.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
c. cos AT I Field/Group
*
*
*
*
*
Air pollution
Reaction kinetics
Photochemical reactions
Mathematical models
Computerized simulation
13B
07D
07E
12A
14B
3. DISTRIBUTION STATEMENT
RELEASE TO PUBLIC
»•••••••—••••———
EPA Form 2220-1 (9-73)
19. SECURITY CLASS (ThisReport)
UNCLASSIFIED
21. NO. OF PAGES
215
20. SECURITY CLASS (Thispage)
-UNCLASSIFIED
22. PRICE
207
------- |