f>EPA
United States
Environmental Protection
Agency
Industrial Environmental Research
Laboratory
Research Triangle Park NC 27711
EPA-600/2-78-211
October 1978
Research and Development
Compilation of
Level 1 Environmental
Assessment Data
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports
This report has been assigned to the ENVIRONMENTAL PROTECTION TECH-
NOLOGY series. This series describes research performed to develop and dem-
onstrate instrumentation, equipment, and methodology to repair or prevent en-
vironmental degradation from point and non-point sources of pollution. This work
provides the new or improved technology required for the control and treatment
of pollution sources to meet environmental quality standards.
EPA REVIEW NOTICE
This report has been reviewed by the U.S. Environmental Protection Agency, and
approved for publication. Approval does not signify that the contents necessarily
reflect the views and policy of the Agency, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-600/2-78-211
October 1978
Compilation of Level 1
Environmental Assessment Data
by
N. H. Gaskins and F. W. Sexton
Research Triangle Institute
PO Box 12194
Research Triangle Park, North Carolina 27709
Contract No. 68-02-2156
Task No. 22100
Program Element No. INE624
EPA Project Officer: Larry D. Johnson
Industrial Environmental Research Laboratory
Office of Energy, Minerals, and Industry
Research Triangle Park, NC 27711
Prepared for
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Research and Development
Washington, DC 20460
-------
ABSTRACT
Currently available chemical data from 19 Level 1 environmental assessment studies
are compiled in this document in standard formats. The formatted data are organized
within each study by the analytical technique used to generate the data. Inorganic data
as generated by Spark Source Mass Spectroscopy (SSMS), Atomic Absorption (AA),
Gas Chromatography (GO, Chemiluminescence for oxides of nitrogen, Anion Analysis,
and Aqueous Analysis precede the organic data generated by Gas Chromatography for
CrC6/C7 or C7-C17, Liquid Chromatographic Fractionation (LC), Infrared Spec-
troscopy (IR), and Low Resolution Mass Spectroscopy (LRMS).
Each study is introduced by a summary which is then followed by the data generated
in that study. The studies are organized by industrial type as follows: Chemically Active
Fluidized Bed Combustor, Coal-Fired Boiler, Coal-Fired Power Plant, New Energy
Source, Coke Production, Electric Arc Furnace, Fluidized Bed Combustor, Home
Heater, Multi-Type Source, Ocean Incinerator, Oil Burner, and Textile.
Sampling and analytical techniques that were used which are not specified in Level 1
are documented in the summaries and data pages. This document also includes a sec-
tion detailing some trends and anomalies that were detected among the 19 studies.
ii
-------
CONTENTS
Abstract ii
Figures v
Tables vi
Abbreviations and Symbols xxiv
Introduction I
Trends in Data 3
Chemically Active Fluidized Bed Combustor
Study 1. Preliminary Environmental Assessment of the CAFB ... 21
Coal-Fired Boiler
Study 2. Flue Gas Sampling During the Combustion of
Solvent Refined Coal in a Utility Boiler 39
Study 3. SASS Train and Level 1 Procedures Evaluation 51
Coal-Fired Power Plant
Study 4. Effect of a Flyash Conditioning Agent on
Power Plant Emissions 77
Study 5. Organic and Sulfate Sampling Analysis at
Colbert Steam Plant 87
(Unclassified)
Study 6. A New Energy Source 95
Coke Production
Study 7. Analysis of Coke Oven Quench Tower Emissions 105
Study 8. Sampling and Analysis of Coke-Oven Door
Emissions 125
Electric Arc Furnace
Study 9. Organic Analysis for Environmental Assessment .... 143
Fluidized-Bed Combustor
Study 10. Comprehensive Analysis of Emissions From Exxon
Fluidized-Bed Combustion Miniplant Unit 149
Study 11. Comprehensive Analysis of Emissions From MERC
Fluidized-Bed Combustion Unit . 223
Study 12. Method for Analyzing Emissions From Atmos-
pheric Fluidized-Bed Combustor 273
Home Heaters
Study 13. Emissions Assessment of Conventional
Combustion Systems 297
iii
-------
CONTENTS (con.)
Multi-Type Source
Study 14. Evaluation of Level 1 Organic Analysis Schemes .... 345
Study 15. Evaluation of Selected Methods for Chemical and
Biological Testing of Industrial Particulate
Emissions ^
Study 16. Level 1 Analysis of Bitumen, Steam, Condensate
and an Artificial Mixture 389
Ocean Incineration
Study 17. Status of Ocean Incineration of Organic Chlorides
Aboard Matthias III as of 29 June 1976 399
Oil Burner
Study 18. Evaluation of the SASS Train and Level 1 Sampling
and Analysis Procedures Manual 403
Textile
Study 19. Source Assessment: Textile Plant Wastewater
Toxics Study
IV
-------
FIGURES
Number Page
Trends in Data
1 Percent of samples in which elements concentrated in
particulates <3|J 7
Study 1
1 Unit operations flow diagram of the ERCA pilot plant 25
Study 3
1 Analysis plan for peripheral solids samples 55
Study 8
1 Test equipment arrangement on top of Oven No. 41 129
2 Sampling arrangement for particulate and gas samples 130
Study 10
1 Exxon fluidized-bed combustion miniplant 153
Study 11
1 MERC atmospheric fluidized-bed combustor 228
Study 12
1 Schematic outline of fluidized-bed combustor and
sampling locations 277
Study 13
1 Level 1 organic analysis strategy 302
Study 15
1 Series cyclone train, field sampling configuration 380
-------
TABLES
Number
Trends in Data
1 Distribution of Highest Trace Element Concentration by
Particulate Size Category
2 Presence of Contaminants and Hydrocarbons in LC
Fractions as Determined by IR **
3 LC Fractions Containing Identical Structures as
Determined by IR 13
4 Percentage of LC Fractions Containing Identical
Structures as Determined by IR 1?
5 Use of Analytical Techniques !8
6 Percentage of Organic Distribution by LC Fraction 19
Study 1
1 ERCA Pilot Plant Mass Flow Rates 26
2 Summary of Sampling Activity 27
3 LC Scheme From Technical Manual for Analysis of
Organic Materials in Process Streams 28
4 LC Scheme From p. 128 of the Level 1 Environmental
Assessments Procedures Manual 28
5 Spark Source Mass Spectroscopy—Stack Cyclone Partic-
ulate, Run 5, Bitumen Gasification (Startup) 29
6 Spark Source Mass Spectroscopy—Stack Cyclone Partic-
ulate, Run 4, Fuel Oil Gasification 29
7 Gas Chromatography--Flue Gases After Particulate
Removal 30
8 LC Fractionation—Various Process Samples 31
9 IR Report—Sample: Bitumen Feed 33
10 IR Report—Sample: Flue Gas (After Particulate
Removal), Run 7, Bitumen Gasification 34
11 IR Report—Sample: Stack Cyclone Particulate, Run 4,
Fuel Oil Gasification 35
12 IR Report—Sample: Stack Cyclone Particulates, Run 5,
Bitumen Gasification (Startup) .36
13 IR Report--Sample: Regenerator Bed Material, Run 5,
Bitumen Gasification (Startup) 37
VI
-------
Number Page
Study 2
1 Gas Chromatography for Inorganic Gases Phase II — Low
Sulfur Coal ......................... 43
2 Gas Chromatography for Inorganic Gases Phase III — Solvent
Refined Coal ...... .................. 44
3 Chemiluminescence for NO During Phase III — Solvent
Refined Coal ..... X ................... 45
4 Chemiluminescence for NO During Phase II — Low
Sulfur Coal ..... X ................... 46
5 Gas Chromatography for Cj-Ce/Cy, Phase II — Low
Sulfur Coal ......................... 47
6 Gas Chromatography for Cj-Cg/Cy , Phase III — Solvent
Refined Coal ........................ 49
Study 3
1 Spark Source Mass Spectroscopy—Plasma-Ashed Coal Feed .... 56
2 Spark Source Mass Spectroscopy—Bottom Ash 56
3 Spark Source Mass Spectroscopy--l|j-3(J Particulates 57
4 Spark Source Mass Spectroscopy—3|J-10(J Particulates 57
5 Spark Source Mass Spectroscopy—>10|J Particulates 58
6 Spark Source Mass Spectroscopy—Baghouse Ash 58
7 Spark Source Mass Spectroscopy—Filter Number 2 59
8 Spark Source Mass Spectroscopy—Filter Number 3 59
9 Spark Source Mass Spectroscopy--XAD-2 Extract 60
10 Spark Source Mass Spectroscopy—XAD-2 Module HN03 Rinse ... 60
11 Spark Source Mass Spectroscopy—Impingers 61
12 Atomic Absorption (AA)—Wet Chemical Methods 62
13 Anion Analysis 62
14 LC Fractionation 63
15 IR Report—Sample: XAD-2 Module Wash 64
16 IR Report—Sample: XAD-2 Cannister Wash 65
17 IR Report—Sample: Coal Feed Extract 66
18 LRMS Report—Pentane Blank Plus Condensate Blank
Before LC Fractionation 67
19 LRMS Report—Combined Cyclone Rinses Before LC
Fractionation 67
20 LRMS Report—XAD-2 Resin Extract Before LC Frac-
tionation 68
21 LRMS Report--Baghouse Dust Before LC Fractionation 68
22 LRMS Report—Bottom Ash Before LC Fractionation 69
23 LRMS Report—XAD-2 Module Wash, LC Fraction 7 .70
24 LRMS Report—XAD-2 Module Wash, LC Fraction 8 71
25 LRMS Report—XAD-2 Cannister Wash, LC Fraction 7 73
26 LRMS Report—XAD-2 Cannister Wash, LC Fraction 8 74
27 LRMS Report—Coal Feed, LC Fractions 6, 7, and 8 75
VII
-------
Number
Study 4
1 Gas Chromatography for Inorganic Gases—Flue Gas Produced
From Input Variations __
2 LC Fractionation—Low-Sulfur Coal „,,
3 LC Fractionation—High-Sulfur Coal
4 IR Report—Sample: Low-Sulfur Coal + LPA 402A
Conditioner ^
5 IR Report—Sample: Low-Sulfur Coal + Water Injection .... 85
6 IR Report—Sample: High-Sulfur Coal
Study 5
1 Properties of Extract and Combined Sample 90
2 Anion Analysis for Particulates 91
3 Gas Chromatography for Inorganic Gases 91
4 LC Fractionation—Combined Extracts From Tenax-GC
Cartridge, Filter, and Probe Wash 92
5 IR Report—Combined Extracts From Tenax-GC Cartridge,
Filter, and Probe Wash 93
Study 6
1 Spark Source Mass Spectroscopy—Site A—Sample 2 97
2 Spark Source Mass Spectroscopy—Site A—Sample 3 97
3 Spark Source Mass Spectroscopy—Site A—Sample 4 98
4 Spark Source Mass Spectroscopy—Site A—Sample 5 98
5 Atomic Absorption (AA)—Wet Chemical Methods—Site A 99
6 LC Fractionation—Site A 100
7 IR Report: Samples From Site A 101
8 Gas Chromatography for C7-C17—Site A 103
Study 7
1 Spark Source Mass Spectroscopy—Filter Blank 108
2 Spark Source Mass Spectroscopy—Filter Composite
Sample—Not Blank Corrected 108
3 Spark Source Mass Spectroscopy—Filter Composite—
Blank Corrected 109
4 Spark Source Mass Spectroscopy—Incandescent Coke 109
5 Spark Source Mass Spectroscopy—Quenched Clean Coke jio
6 Spark Source Mass Spectroscopy—Quenched Dirty Coke no
7 LC Fractionation Ill
8 IR Report—Sample: Test 13 114
9 IR Report—Sample: Clean Water Test 11A 115
10 IR Report—Sample: Coke Acetone Blank 116
11 IR Report—Sample: Coke-Quenched Clean 117
viii
-------
Number Page
Study 7 (con.)
12 IR Report—Sample: Coke Quenched Dirty 118
13 IR Report—Sample: Dirty Water Inlet 119
14 IR Report—Sample: Dirty Water Makeup Liquor 120
15 IR Report--Sample: Clean Water Samples 121
16 IR Report—Sample: Dirty Water Return 122
17 IR Report—Sample: Dirty Water Test 16 123
Study 8
1 Spark Source Mass Spectroscopy—Coke Oven Door
Emissions—A1F 131
2 Spark Source Mass Spectroscopy—Coke Oven Door
Emissions—A2F 131
3 Spark Source Mass Spectroscopy—Coke Oven Door
Emissions—A3F 132
4 Spark Source Mass Spectroscopy—Coke Oven Door
Emissions—A4F 132
5 Spark Source Mass Spectroscopy—Coke Oven Door
Emissions—ASF 133
6 Spark Source Mass Spectroscopy—Coal 133
7 Spark Source Mass Spectroscopy—Coke 134
8 LC Fractionation—Absorber Extracts 135
9 LC Fractionation—Filter Extracts 137
10 IR Report—Sample: LC Adsorber Fractions 139
11 IR Report—Sample: LC Adsorber Fractions 140
12 IR Report—Sample: LC Filter Fractions 141
13 IR Report—Sample: LC Filter Fractions 142
Study 9
1 LC Fractionation—Electric Arc Furnace Particulate 146
2 IR Report—Sample: Fraction 6, Electric Arc Furnace
Particulate 147
Study 10
1 Cleaning Procedures for Sample Containers 154
2 Stream Identification for Generalized FBC System 155
3 Spark Source Mass Spectroscopy—FBC Coal Run 2 156
4 Spark Source Mass Spectroscopy—FBC Coal Run 5 156
5 Spark Source Mass Spectroscopy—NBS/SRM 1632 Coal 157
6 Spark Source Mass Spectroscopy—NBS/SRM 88a Dolomite 157
7 Spark Source Mass Spectroscopy—FBC Dolomite Run 1 158
8 Spark Source Mass Spectroscopy—FBC Dolomite Run 5 158
9 Spark Source Mass Spectroscopy—XAD-2 Extracts Run 1 159
ix
-------
Number
Study 10 (con.)
10 Spark Source Mass Spectroscopy--XAD-2 Extracts Run 2
11 Spark Source Mass Spectroscopy—XAD-2 Extracts Run 3
12 Spark Source Mass Spectroscopy—XAD-2 Extracts Run 4 160
13 Spark Source Mass Spectroscopy--XAD-2 Extracts Run 5 1°1
14 Spark Source Mass Spectroscopy—Blank
15 Spark Source Mass Spectroscopy—Basified Condensates
From SASS XAD-2 Run 5 l62
16 Spark Source Mass Spectroscopy—Basified Condensates
From SASS Second Impinger Run 5 l62
17 Spark Source Mass Spectroscopy—Acid Condensates
From SASS XAD-2 Run 1 l63
18 Spark Source Mass Spectroscopy—Acid Condensates
From SASS XAD-2 Run 2 l63
19 Spark Source Mass Spectroscopy--Acid Condensates
From SASS XAD-2 Run 3 l64
20 Spark Source Mass Spectroscopy—Acid Condensates
From SASS XAD-2 Run 4 164
21 Spark Source Mass Spectroscopy—Acid Condensates
From SASS XAD-2 Run 5 165
22 Spark Source Mass Spectroscopy—Particulates of
Flue Gas--Run 2 166
23 Spark Source Mass Spectroscopy—Particulates of
Flue Gas—Run 4 167
24 Spark Source Mass Spectroscopy—Particulates of
Flue Gas—Run 5 168
25 Spark Source Mass Spectroscopy—Bed Reject
Material—Run 2 169
26 Spark Source Mass Spectroscopy—Bed Reject
Material—Run 4 169
27 Spark Source Mass Spectroscopy—Bed Reject
Material—Run 5 170
28 Spark Source Mass Spectroscopy—PFBC Cyclone
Number 2 Dust—Run 2 170
29 Spark Source Mass Spectroscopy—PFBC Cyclone
Number 2 Dust—Run 4 171
30 Spark Source Mass Spectroscopy—PFBC Cyclone
Number 2 Dust—Run 5 . 171
31 Spark Source Mass Spectroscopy—NBS/SRM Coal Flyash 172
32 Spark Source Mass Spectroscopy—Leachate of Bed
Reject Material—Run 2 (Ultrasonic Shaking) 173
33 Spark Source Mass Spectroscopy—Leachate of Bed
Reject Material—Run 2 (Column) J74
34 Spark Source Mass Spectroscopy—Leachate of Bed
Reject Material—Run 4 (Ultrasonic Shaking) 175
35 Spark Source Mass Spectroscopy—Leachate of Bed
Reject Material—Run 4 (Column) 176
36 Spark Source Mass Spectroscopy—Leachate of Bed
Reject Material—Run 5 (Ultrasonic Shaking) 177
-------
Number
Study 10 (con.)
37 Spark Source Mass Spectroscopy—Leachate of Bed
Reject Material—Run 5 (Column) 178
38 Spark Source Mass Spectroscopy—Leachate of PFBC Cyclone
Number 2 Dust—Run 2 (Ultrasonic Shaking) 179
39 Spark Source Mass Spectroscopy—Leachate of PFBC Cyclone
Number 2 Dust—Run 2 (Column) 180
40 Spark Source Mass Spectroscopy—Leachate of PFBC Cyclone
Number 2 Dust—Run 4 (Ultrasonic Shaking) 181
41 Spark Source Mass Spectroscopy—Leachate of PFBC Cyclone
Number 2 Dust—Run 4 (Column) 182
42 Spark Source Mass Spectroscopy—Leachate of PFBC Cyclone
Number 2 Dust—Run 5 (Ultrasonic Shaking) 183
43 Spark Source Mass Spectroscopy—Leachate of PFBC Cyclone
Number 2 Dust—Run 5 (Column) 184
44 Atomic Absorption (AA)—Wet Chemical Methods, Solid
Samples 185
45 Atomic Absorption (AA)—Wet Chemical Methods, SASS
Train Sample 185
46 Atomic Absorption (AA)—Wet Chemical Methods 186
47 Atomic Absorption (AA)—Wet Chemical Methods,
Leachate From Bed Reject Material 186
48 Atomic Absorption (AA)—Wet Chemical Methods,
Leachate From PFBC Cyclone Number 2 Dust 187
49 Gas Chromatography for Inorganic Gases—Flue Gas
Before Air Dilution 188
50 Gas Chromatography for Inorganic Gases—Flue Gas
Before Air Dilution 188
51 Gas Chromatography for Inorganic Gases—Flue Gas
After Dilution 189
52 Chemiluminescence for NO —Flue Gas Before Air
Dilution 189
53 Anion Analysis of Coal 190
54 Anion Analysis of Dolomite Sorbent 190
55 Anion Analysis of Particulate Emissions—SASS
Collection 191
56 Anion Analysis of Bed Reject Material 191
57 Anion Analysis of PFBC Cyclone Number 2 Dust . . 191
58 Anion Analysis of Leachates From Bed Reject Material 192
59 Anion Analysis of Leachates From PFBC Cyclone
Number 2 Dust 192
60 Gas Chromatography for C7-C17 193
61 Gas Chromatography for C7-C17 194
62 Gas Chromatography for C7-C17 195
63 Gas Chromatography for C7-C17 Gas Partic-
ulates <3p 196
64 Gas Chromatography for C7-C17—Flue Gas Partic-
ulates >3|J 197
65 Gas Chromatography for C7-C17—SASS Front Half Wash 198
xi
-------
Number
Study 10 (con.)
66 Gas Chromatography for C7-C17— Bed Reject Material ...... 199
67 Gas Chromatography for C7-C17--PFBC Cyclone Num-
ber 2 Dust ......................... 20°
68 LC Fractionation— Methylene Chloride Extract of
Feed Coal ......................... 201
69 LC Fractionation— Flue Gas ..................
70 LC Fractionation—Diluent Air ................ 203
71 LC Fractionation— Methylene Chloride Extract of
Flue Gas Particulates ................... 204
72 LC Fractionation— Methylene Chloride Extract of
Flue Gas Particulates ................... 205
73 LC Fractionation— SASS Front Half Wash ............ 206
74 LC Fractionation- -Me thylene Chloride Extract of
PFBC Cyclone Number 2 Dust ................. 207
75 LC Fractionation — Methylene Chloride Extract of
Bed Reject Material .................... 208
76 IR Report — Sample: Before LC Separation ........... 210
77 IR Report — Sample: Feed Coal ................ 212
78 IR Report— Sample: Flue Gas (From XAD-2) .......... 213
79 IR Report— Sample: Diluent Air ... ............ 214
80 IR Report— Sample: Flue Gas Particulates >3|J
and <3|J .......................... 215
81 IR Report— Sample: SASS Front Half Wash ........... 216
82 IR Report— Sample: Bed Reject Material ........... 217
83 IR Report— Sample: PFBC Cyclone Number 2 Dust ........ 218
84 IR Report— Sample: Method 5 Filter ............. 219
85 IR Report— Sample: Balston Filer .............. 219
86 LRMS Report— Sample: XAD-2 Module .............. 220
87 LRMS Report— Sample: SASS Front Half Wash .......... 221
88 LRMS Report— Sample: PFBC Dilution Air ........... 222
Study 11
1 Spark Source Mass Spectroscopy — Coal Culm From Feed
Hopper ........................... 229
2 Spark Source Mass Spectroscopy — NBS Coal — SRM 1633 ...... 230
3 Spark Source Mass Spectroscopy — Cyclone Number 1 —
Run 2 ........................... 230
4 Spark Source Mass Spectroscopy — Cyclone Number 1 —
Run 3 ........................... 231
5 Spark Source Mass Spectroscopy — Cyclone Number 1 —
Run 4 ........................... 231
6 Spark Source Mass Spectroscopy — Cyclone Number 2
and Filter — Run 2 ..................... 232
7 Spark Source Mass Spectroscopy — Cyclone Number 2
and Filter — Run 3 ..................... 232
XII
-------
Number Page
Study 11 (con.)
8 Spark Source Mass Spectroscopy—Cyclone Number 2
and Filter—Run 4 233
9 Spark Source Mass Spectroscopy—Bed Reject Material 234
10 Spark Source Mass Spectroscopy—FBC Cyclone Number 1
Particulates--Run 3 235
11 Spark Source Mass Spectroscopy—FBC Cyclone Number 1
Particulates—Run 4 235
12 Spark Source Mass Spectroscopy—FBC Cyclone Number 2
Particulates 236
13 Spark Source Mass Spectroscopy—Leachate of Bed
Reject Material—Run 3 (Ultrasonic Shaking) 237
14 Spark Source Mass Spectroscopy—Leachate of Bed
Reject Material—Run 3 (Column) 238
15 Spark Source Mass Spectroscopy—Leachate of Bed
Reject Material—Run 4(Ultrasonic Shaking) 239
16 Spark Source Mass Spectroscopy—Leachate of Bed
Reject Material—Run 4 (Column) 240
17 Spark Source Mass Spectroscopy—Leachate of PFBC
Cyclone Number 1 Particulates—Run 4 (Ultra-
sonic Shaking) 241
18 Spark Source Mass Spectroscopy—Leachate of PFBC
Cyclone Number 1 Particulates—Run 4 (Column) 242
19 Spark Source Mass Spectroscopy—Leachate of PFBC
Cyclone Number 2 Particulates—Run 2 (Ultra-
sonic Shaking) 243
20 Spark Source Mass Spectroscopy—Leachate of PFBC
Cyclone Number 2 Particulates—Run 2 (Column) 244
21 Spark Source Mass Spectroscopy—Leachate of PFBC
Cyclone Number 2 Particulates—Run 3 (Ultra-
sonic Shaking) 245
22 Spark Source Mass Spectroscopy—Leachate of PFBC
Cyclone Number 2 Particulates—Run 3 (Column) 246
23 Spark Source Mass Spectroscopy—Leachate of FBC
Cyclone Number 2 Particulates—Run 4 (Ultra-
sonic Shaking) 247
24 Spark Source Mass Spectroscopy—Leachate of FBC
Cyclone Number 2 Particulates—Run 4 (Column) - . . 248
25 Atomic Absorption (AA)—Wet Chemical Methods,
FBC Leachate Samples (Ultrasonic Shaking) 249
26 Atomic Absorption (AA)—Wet Chemical Methods,
FBC Leachate Samples (Column) 249
27 Atomic Absorption (AA)—Wet Chemical Methods,
Method 5 Samples 250
28 Atomic Absorption (AA)—Wet Chemical Methods,
FBC Samples 250
29 Gas Chromatography for Inorganic Gases 251
30 Gas Chromatography for Inorganic Gases 251
31 Chemiluminescence for NO 252
x
xiii
-------
Number
Study 11 (con.)
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
253
Anion Analysis of FBC Samples
Anion Analysis of FBC Leachates, Ultrasonic Shaking
Anion Analysis of FBC Leachates, Column 254
oc c
SSMS vs. OES Comparison ~"
LC Fractionation—Coal Culm From Feed Hopper 258
LC Fractionation—Bed Reject Material 259
LC Fractionation—FBC Cyclone Number I 260
LC Fractionation—FBC Cyclone Number 2 261
LC Fractionation—HVSS Filter 262
LC Fractionation—Tenax Extract 263
LC Fractionation—CH2C12 Rinse of Method 5 Train 264
LC Fractionation - 265
IR Report—Sample:
IR Report—Sample:
IR Report—Sample:
IR Report—Sample:
IR Report—Sample:
IR Report—Sample:
Coal Culm 266
Bed Reject Material 267
FBC Cyclone Number 1 Ash 268
FBC Cyclone Number 2 Ash 269
Method 5 Tenax Column 270
Method 5 Particulates From
Stream Number 1 271
50 IR Report—Sample: HVSS Filter From Stream 34 272
Study 12
1 Sample Identification and Analysis 278
2 Changes Made Between Run Nos. 1 and 2 280
3 Spark Source Mass Spectroscopy—Run 1, Illinois
Number 6 Coal 281
4 Spark Source Mass Spectroscopy—Run 1, Grove
Limestone 281
5 Spark Source Mass Spectroscopy—Run 1, Bed Material 282
6 Spark Source Mass Spectroscopy—Run 1, Ash >27|Jm 282
7 Spark Source Mass Spectroscopy—Run 1, Particulates
>27|Jm 283
8 Spark Source Mass Spectroscopy—Run 1, Particulates
<27Mm 283
9 Spark Source Mass Spectroscopy—Run 2, Illinois
Number 6 Coal 284
10 Spark Source Mass Spectroscopy—Run 2, Grove
Limestone 284
11 Spark Source Mass Spectroscopy—Run 2, Bed Material 285
12 Spark Source Mass Spectroscopy—Run 2, Ash 285
13 Spark Source Mass Spectroscopy—Run 2, Particulates
>27[Jm 286
14 Spark Source Mass Spectroscopy--Run 2, Particulates
<27|Jm 286
15 Spark Source Mass Spectroscopy—Run 2, Sludge 287
xiv
-------
Number Page
Study 12 (con.)
16 Spark Source Mass Spectroscopy—Run 2, Detection
Limits 287
17 Atomic Absorption (AA)—Wet Chemical Methods 288
18 Gas Chromatography for Inorganic Gases 288
19 Chemiluminescence for NO —Flue Gas 288
20 Anion Analyses X 289
21 LC Fractionation--Run 1 290
22 LC Fractionation--Run 2 290
23 LC Fractionation~Run 2 291
24 IR Report—Samples: From Run 1 292
25 IR Report—Samples: From Run 2 293
26 IR Report--Sample: Run 2 Sludge 294
27 IR Report—Sample: Run 2 Particulates 295
Study 13
1 Spark Source Mass Spectroscopy—Gas-Fired Furnace: Site
100, SASS Particulate Filter 304
2 Spark Source Mass Spectroscopy—Gas-Fired Furnace: Site
100, XAD-2 Resin 304
3 Spark Source Mass Spectroscopy—Gas-Fired Furnace: Site
100, Impinger, Module Rinse, Condensate 305
4 Spark Source Mass Spectroscopy—Gas-Fired Furnace: Site
100, Total Emissions Found 305
5 Spark Source Mass Spectroscopy—Gas-Fired Furnace: Site
101, XAD-2 Resin 306
6 Spark Source Mass Spectroscopy—Gas-Fired Furnace: Site
101, Impinger, Module Rinse, Condensate 306
7 Spark Source Mass Spectroscopy—Gas-Fired Furnace: Site
101, Total Emissions Found 307
8 Spark Source Mass Spectroscopy—Gas-Fired Furnace: Site
102, XAD-2 Resin 307
9 Spark Source Mass Spectroscopy—Gas-Fired Furnace: Site
102, Impinger, Module Rinse, Condensate 308
10 Spark Source Mass Spectroscopy—Gas-Fired Furnace: Site
102, Total Emissions Found 308
11 Spark Source Mass Spectroscopy—Gas-Fired Furnace: Site
103, XAD-2 Resin 309
12 Spark Source Mass Spectroscopy—Gas-Fired Furnace: Site
103, Impinger, Module Rinse, Condensate 309
13 Spark Source Mass Spectroscopy—Gas-Fired Furnace: Site
103, Total Emissions Found 310
14 Spark Source Mass Spectroscopy—Gas-Fired Furnace: Site
104, SASS Particulate Filter 310
15 Spark Source Mass Spectroscopy—Gas-Fired Furnace: Site
104, XAD-2 Resin 311
16 Spark Source Mass Spectroscopy—Gas-Fired Furnace: Site
104, Impinger, Module Rinse, Condensate 311
xv
-------
Number
Study 13 (con.)
17 Spark Source Mass Spectres copy- Gas-Fired Furnace: Site
104, Total Emissions Found 312
18 Spark Source Mass Spectroscopy-Oil-Fired Furnace: Site
300, Fuel Oil 312
19 Spark Source Mass Spectroscopy—Oil-Fired Furnace: Site
300, SASS Particulate Filter 313
20 Spark Source Mass Spectroscopy—Oil-Fired Furnace: Site
300, XAD-2 Resin 313
21 Spark Source Mass Spectroscopy—Oil-Fired Furnace: Site
300, Condensate, HN03 Rinse 3l4
22 Spark Source Mass Spectroscopy—Oil-Fired Furnace: Site
300, Total Emissions Found 314
23 Spark Source Mass Spectroscopy—Oil-Fired Furnace: Site
301, Fuel Oil 315
24 Spark Source Mass Spectroscopy—Oil-Fired Furnace: Site
301, SASS Particulate Filter 315
25 Spark Source Mass Spectroscopy—Oil-Fired Furnace: Site
301, XAD-2 Resin 316
26 Spark Source Mass Spectroscopy—Oil-Fired Furnace: Site
301, Condensate/HN03 Rinse 316
27 Spark Source Mass Spectroscopy—Oil-Fired Furnace: Site
301, Total Emissions Found 317
28 Spark Source Mass Spectroscopy—Oil-Fired Furnace: Site
302, Fuel Oil 317
29 Spark Source Mass Spectroscopy—Oil-Fired Furnace: Site
302, SASS Particulate Filter 318
30 Spark Source Mass Spectroscopy—Oil-Fired Furnace: Site
302, XAD-2 Resin 318
31 Spark Source Mass Spectroscopy—Oil-Fired Furnace: Site
302, Total Emissions Found 319
32 Spark Source Mass Spectroscopy—Oil-Fired Furnace: Site
303, Fuel Oil 319
33 Spark Source Mass Spectroscopy—Oil-Fired Furnace: Site
303, SASS Particulate Filter 320
34 Spark Source Mass Spectroscopy—Oil-Fired Furnace: Site
303, Total Emissions Found 320
35 Spark Source Mass Spectroscopy—Oil-Fired Furnace: Site
304, Fuel Oil 321
36 Spark Source Mass Spectroscopy—Oil-Fired Furnace: Site
304, SASS Particulate Filter 321
37 Spark Source Mass Spectroscopy—Oil-Fired Furnace: Site
304, XAD-2 Resin 322
38 Spark Source Mass Spectroscopy~0il-Fired Furnace: Site
304, Total Emissions Found 322
39 Atomic Absorption (AA)--Wet Chemical Methods, Gas-
fired Furnace 323
40 Gas Chromatography for Inorganic Gases 324
41 Chemiluminescence for NO --Gas-Fired Flue Gas 324
xvi
-------
Number Page
Study 13 (con.)
42 Gas Chromatography for C^-C&/C-j—Gas-Fired Furnace 325
43 Gas Chromatography for C7-C-n—Gas-Fired Furnace—
Combined Extracts 326
44 Gas Chromatography for C7-Cj7—Gas-Fired Furnace—
SASS Train Samples 328
45 Gas Chromatography for C^-CQ/Cj—Oil Fired Furnace 329
46 Gas Chromatography for C7~Cn—Oil Fired Furnace—
Combined Extracts 330
47 Gas Chromatography for Cj-Cn—Oil Fired Furnace—
SASS Train Samples 332
48 Gas Chromatography for C7-C12—Oil Fired Furnace—
SASS Train Samples, Site 300 333
49 Gas Chromatography for C7~C12—Oil Fired Furnace—
SASS Train Samples, Site 301 334
50 Gas Chromatography for C7-Ci2—Oil Fired Furnace—
SASS Train Samples, Site 302 335
51 Gas Chromatography for C7-C12—Oil Fired Furnace—
SASS Train Samples, Site 303 336
52 Gas Chromatography for C7~C12—Oil Fired Furnace—
SASS Train Samples, Site 304 337
53 LC Fractionation--Gas-Fired Furnace, CH2C12 Extract
of XAD-2 Resin (Nonvolatile) 338
54 LC Fractionation—Gas-Fired Furnace, Condensate
Extract and Module Rinse (Nonvolatile) 339
55 LC Fractionation—Oil-Fired Furnace, CH2C12 Extract
of XAD-2 Resin (Nonvolatile) 340
56 IR Report—Sample: Gas-Fired Furnace 342
57 IR Report—Sample: Oil-Fired Furnace 342
Study 14
1 LC Fractionation—Sample 0018, EPA Eight-Fraction Scheme
(E Series) vs. ADL Four-Fraction Scheme (A Series) 348
2 LC Fractionation—Sample 0053, EPA Eight-Fraction Scheme
(E Series) vs. ADL Four-Fraction Scheme (A Series) 348
3 LC Fractionation—Sample 0062, EPA Eight-Fraction Scheme
(E Series) vs. ADL Four-Fraction Scheme (A Series) 349
4 LC Fractionation—Sample 0064, EPA Eight-Fraction Scheme
(E Series) vs. ADL Four-Fraction Scheme (A Series) 349
5 LC Fractionation—Sample 0065, EPA Eight-Fraction Scheme
(E Series) vs. ADL Four-Fraction Scheme (A Series) 350
6 LC Fractionation—Sample 0066, EPA Eight-Fraction Scheme
(E Series) vs. ADL Four-Fraction Scheme (A Series) 350
7 IR Report—Sample: Number 18 351
8 IR Report—Sample: Number 53 356
xvii
-------
Study 14 (con.)
9 IR Report—Sample: Number 64
10 IR Report—Sample: Number 66 363
11 IR Report—Sample: Number 48 3°°
12 IR Report—Sample: Number 55 3°°
13 IR Report—Sample: Number 61 367
14 IR Report—Sample: Number 62 367
15 IR Report—Sample: Number 63 368
16 IR Report—Sample: Number 65 368
17 IR Report—Sample: Number 67 368
18 LRMS Report 369
19 LRMS Report—Compounds Most Probably Present,
Sample 0066
20 LRMS Report—Compounds Most Probably Present,
Fraction 66 A-3
Study 15
1 Logistics of Sample Collection ................ 379
2 Spark Source Mass Spectroscopy — lM~3M Particulates ...... 381
3 Spark Source Mass Spectroscopy — Steel Plant Open
Hearth Furnace, 3|J-10|J Particulates ............ 381
4 Spark Source Mass Spectroscopy — Steel Plant Basic
Oxygen Furnace, Ip-Sp Particulates ............. 382
5 Spark Source Mass Spectroscopy — Steel Plant Basic
Oxygen Furnace, 3|J-10|J Particulates ............ 382
6 Spark Source Mass Spectroscopy — Steel Plant Iron
Sintering, 1|4-3|J Particulates ............... 383
7 Spark Source Mass Spectroscopy — Steel Plant Iron
Sintering, 3|J-10|J Particulates ............... 383
8 Spark Source Mass Spectroscopy — Copper Smelting,
1|J-3M Particulates ..................... 384
9 Spark Source Mass Spectroscopy — Copper Smelting,
3|J-10|J Particulates .................... 384
10 Spark Source Mass Spectroscopy — Aluminum Smelter,
l(j-3M Particulates ..................... 385
11 Spark Source Mass Spectroscopy — Aluminum Smelter,
3|J-10|J Particulates .................... 385
12 Spark Source Mass Spectroscopy— Ceramics Plant,
1(J-3|J Particulates ......... ............ 386
13 Spark Source Mass Spectroscopy — Ceramics Plant,
3jJ-10|J Particulates .................... 386
14 Spark Source Mass Spectroscopy — Sludge Incinerator,
IH-SM Particulates ..................... 387
15 Spark Source Mass Spectroscopy — Sludge Incinerator,
3|j-10|J Particulates .................... 387
16 Spark Source Mass Spectroscopy — Steel Plant Coke
Oven Heater, 1|J-3|J Particulates .............. 388
17 Spark Source Mass Spectroscopy — Oil-Fired Power
Plant, 1|J-3(J Particulates ................. 388
xv
-------
Number Page
Study 16
1 LC Fractionation 392
2 LC Fractionation—Combined Extracts From an Oil
Combustion Effluent 393
3 IR Report—Sample: Bitumen 394
4 IR Report—Sample: Steam Condensate 395
5 IR Report—Sample: Artificial Mixture 396
6 IR Report—Sample: Combined Extracts From an Oil
Combustion Effluent 397
Study 17
1 Trace Metals Identified in Effluent Gases From
Matthias III While Burning From Tank Number 6 402
Study 18
1 Spark Source Mass Spectroscopy--XAD-2 Resin--Test 2 407
2 Spark Source Mass Spectroscopy—Combined Impinger
Solutions 408
3 Spark Source Mass Spectroscopy—SASS Filter—Aqua
Regia Digest 409
4 Spark Source Mass Spectroscopy—XAD-2 Resin 410
5 Spark Source Mass Spectroscopy—Number 6 Residual Oil .... 411
6 Spark Source Mass Spectroscopy—Blank Values for Aqua
Regia Digests 411
7 Atomic Absorption (AA)--Wet Chemical Methods, SASS
Train Samples 412
8 Gas Chromatography for C7-C17—SASS Train Samples 413
9 LC Fractionation 417
10 IR Report: Concentrated Samples Before LC 418
11 IR Report: Samples After LC Fractionation 419
12 LRMS Report—Probe Rinse + Filter Extract 420
Study 19
1 Spark Source Mass Spectroscopy—Wastewater Suspended
Solids, Plant A 429
2 Spark Source Mass Spectroscopy—Wastewater Suspended
Solids, Plant B 429
3 Spark Source Mass Spectroscopy—Wastewater Suspended
Solids, Plant C 430
4 Spark Source Mass Spectroscopy—Wastewater Suspended
Solids, Plant E 430
5 Spark Source Mass Spectroscopy—Wastewater Suspended
Solids, Plant F 431
xix
-------
Number Page
Study 19 (con.)
6 Spark Source Mass Spectroscopy—Wastewater Suspended
Solids, Plant K 431
7 Spark Source Mass Spectroscopy—Wastewater Suspended
Solids, Plant L 432
8 Spark Source Mass Spectroscopy—Wastewater Suspended
Solids, Plant N 432
9 Spark Source Mass Spectroscopy—Wastewater Suspended
Solids, Plant S 433
10 Spark Source Mass Spectroscopy—Wastewater Suspended
Solids, Plant T 433
11 Spark Source Mass Spectroscopy—Wastewater Suspended
Solids, Plant U 434
12 Spark Source Mass Spectroscopy—Wastewater Suspended
Solids, Plant W 434
13 Spark Source Mass Spectroscopy—Wastewater Suspended
Solids, Plant X 435
14 Spark Source Mass Spectroscopy—Wastewater Filtrate,
Plant A 435
15 Spark Source Mass Spectroscopy—Wastewater Filtrate,
Plant B 436
16 Spark Source Mass Spectroscopy—Wastewater Filtrate,
Plant C 436
17 Spark Source Mass Spectroscopy-Wastewater Filtrate,
Plant E 437
18 Spark Source Mass Spectroscopy—Wastewater Filtrate,
Plant F 437
19 Spark Source Mass Spectroscopy—Wastewater Filtrate,
Plant G 438
20 Spark Source Mass Spectroscopy—Wastewater Filtrate,
Plant K 438
21 Spark Source Mass Spectroscopy—Wastewater Filtrate,
Plant L 439
22 Spark Source Mass Spectroscopy—Wastewater Filtrate,
Plant N 439
23 Spark Source Mass Spectroscopy—Wastewater Filtrate,
Plant S 440
24 Spark Source Mass Spectroscopy—Wastewater Filtrate,
Plant T 440
25 Spark Source Mass Spectroscopy—Wastewater Filtrate,
Plant U 441
26 Spark Source Mass Spectroscopy—Wastewater Filtrate,
Plant V £41
27 Spark Source Mass Spectroscopy—Wastewater Filtrate,
Plant W 442
28 Spark Source Mass Spectroscopy—Wastewater Filtrate,
Plant X 442
29 Atomic Absorption (AA)--Wet Chemical Methods, Raw
Waste and Secondary Effluents 443
xx
-------
Number
Study 19 (con.)
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
Aqueous Analyses — Raw Waste
Aqueous Analyses — Secondary
Aqueous Analyses — Secondary
Analysis
Effluent
Effluent for Level 1
LC Fractionation- -Extracts of Secondary Effluents . . .
IR Report--Sample
IR Report — Sample
IR Report- -Sample
IR Report— Sample
IR Report — Sample
IR Report — Sample
IR Report — Sample
IR Report—Sample
IR Report—Sample
IR Report — Sample
IR Report- -Sample
IR Report — Sample
IR Report- -Sample
IR Report — Sample
IR Report — Sample
Organic
Plant A
Plant B
Plant E
Plant F
Plant G
Plant K
Plant L
Plant N
Plant S
Plant T
Plant U
Plant V
Plant W
Plant X
LRMS Report—Sample: Plant
LRMS Report — Sample: Plant
LRMS Report— Sample: Plant
LRMS Report— Sample: Plant
LRMS Report — Sample: Plant
LRMS Report— Sample: Plant
LRMS Report— Sample: Plant
LRMS Report— Sample: Plant
LRMS Report— Sample: Plant
LRMS Report— Sample : Plant
LRMS Report—Sample: Plant
Extracts Before LC
. .
A
B
F
G
L
N
S
T
U
V
W
... 444
... 446
... 448
... 449
... 452
... 453
... 454
... 455
... 456
... 457
... 458
... 459
... 460
... 461
... 462
... 463
... 464
... 465
... 466
... 467
... 470
... 472
... 475
... 478
... 481
... 484
... 487
... 491
... 494
... 497
XXI
-------
LIST OF ABBREVIATIONS AND SYMBOLS
ABBREVIATIONS
AA or AAS
ADL
AN
ANL
APS
ASTM
ATMI
B(a)P
BATEA
BCL
BOD 5
CAFB
COD
dscm
EC
EM
ESCA
ESP
FBC
FID
FPD
FTIR
GC
GCA
GPC
GRAV
HC
HGA
HPLC
HVSS
1C
ICAP
IERL
IR
K-D
LC
LLL
LRMS
MATE
MDL
MERC
— atomic absorption spectroscopy
— Arthur D. Little, Inc.
— Army-Navy (Swagelok-type fittings)
— Argonne National Laboratory
— ammonium persulfate
— American Society for Testing and Materials
— American Textile Manufacturers Institute
— benzo(a)pyrene
— best available technology, economically achievable
— Battelle, Columbus Laboratories (Ohio)
— five-day biological oxygen demand test
— chemically active fluidized bed
— chemical oxygen demand test
— dry standard cubic meters
— electron capture detection, for gas chromatography
— electron microprobe
— electron spectroscopy for chemical analysis
— electrostatic precipitator
— fluidized-bed combustor
— flame ionization detection, for gas chromatography
— flame photometric detection, for gas chromatography
— Fourier Transform infrared spectroscopy
— gas chromatography
— Geophysical Corporation of America
— gel permeation chromatography
— determinations of nonvolatile or gravimetric solids
— hydrocarbon
— hollow graphite atomizer
— high performance liquid chromatography
— high-volume sampling system
— ion chromatography
— inductively coupled argon plasma
— Industrial Environmental Research Laboratory of EPA
— infrared spectroscopy
— Kuderna-Danish apparatus
— liquid chromatography
— Lawrence Livennore Laboratories
— low-resolution mass spectroscopy
— minimum acute toxicity [value for the] effluent
— minimum detection limit
— Morgantown Energy Research Center of the Energy
Research and Development Agency
xxn
-------
MMEG
MRC
MS
MW
NBS
NDIR
OES
ORNL
PCB
P&E
PFBC
PMB
PNA
POM
ppm
ppraw
RAC
SASS
SDDC
SRC
SRM
SS
SSMS
TCO
TGA
TLC
TSS
TVA
UV
VIS
SYMBOL
Nm3
M
Multimedia Environmental Goals
Monsanto Research Corporation
mass spectrometry
megawatt
National Bureau of Standards
nondispersive infrared spectroscopy
optical emission spectroscopy
Oak Ridge National Laboratory
polychlorinated biphenyls
Perkin-Elmer Company
pressurized fluidized-bed combustor
The Process Measurements Branch of the IERL
polynuclear aromatics
polycyclic organic material
parts per million, by volume
parts per million, by weight
Research Appliance Corporation
source assessment sampling system
silver diethyl dithio carbamate
solvent-refined coal
Standard Reference Material, issued by the National
Bureau of Standards
stainless steel
spark source mass spectroscopy
total chromatographable organics (volatiles)
thermo-gravimetric analysis
thin layer chromatography
total suspended solids
Tennessee Valley Authority
ultraviolet wavelengths
visible light wavelengths
normal cubic meters (at standard temperature and
pressure)
micrometer (also written pm)
xxi 11
-------
xxiv
-------
INTRODUCTION
This document is an accumulation of all available chemical data through
February 1978 from Level 1 of the phased environmental assessment program.
The primary purpose of this compilation is to permit those involved in
environmental assessment programs to evaluate the quality and quantity of
data generated by the phased approach. It is felt that critical reviews of
these data may lead to improvements in procedures, data formatting, data
storage, and interpretation. Although conclusions related to specific
sources or source types may have been abstracted from the references to
provide background information, the focus of this presentation is on data
resulting from the sampling and analytical methods. The interested reader
should consult the referenced documents for more details and conclusions
concerning pollutant sources, control, etc.
The phased environmental assessment program, developed by the Indus-
trial Environmental Research Laboratory (IERL) of the Environmental Protec-
tion Agency (EPA) at Research Triangle Park (RTF), North Carolina, is struc-
tured in three phases. Level 1 is the survey step to determine which samples
from an environmental assessment might be hazardous or toxic. Level 1 also
serves to prioritize and rank samples for further testing. When the Level 1
sampling and analysis scheme shows the possible presence of hazards, a Level
2 scheme is initiated to specifically identify and quantify suspected hazar-
dous materials. If Level 2 reveals pollutants capable of environmental
detriment then a Level 3 scheme is begun to evaluate control technologies
and to assess long-term effects.
At the present time, Levels 2 and 3 are in the developmental stages.
Nineteen studies have been identified that contain Level 1 data, and these
studies are organized alphabetically by source types in this compilation.
It should be noted that each study included in this compilation will be
identified as final draft, preliminary draft, etc., based on the complete-
ness of the study summarized; therefore, absence of data does not neces-
sarily indicate analysis was not performed but that the study was possibly
not complete when it became necessary to compile the data. In each study,
mention is made of methods used if they differ from the methodology specified
in the IERL-RTP Procedures Manual: Level 1 Environmental Assessment.
Within each study, information is organized in the following manner:
I. Summary of the study
A. General information, purpose, conclusions
B. Gaseous grab samples—sampling and analysis
C. Source Assessment Sampling System (SASS)
samples--sampling and analysis
D. Fugitive emissions—sampling and analysis
-------
E. Liquids and slurries—sampling and analysis
F. Solids—sampling and analysis
II. Formatted data
A. Inorganic analysis data
1. Spark Source Mass Spectroscopy
(SSMS)
2. Atomic Absorption (AA) wet chemical
methods—Hg, As, Sb
3. Gas Chromatography for inorganic
gases
4. Chemiluminescence for NO
5. Anion analysis
6. Aqueous analyses for pH, acidity,
alkalinity, BOD, COD, DO, conductivity,
dissolved and suspended solids,
species analysis (anions)
B. Organic analysis data
1. Gas Chromatography for Cj-Cg/Cy
2. Gas Chromatography for Cy-C^y
3. LC fractionation
4. IR report
5. Low Resolution Mass Spectrometry
(LRMS)
The first section of this document contains a collective evaluation of
data from all of the nineteen formatted environmental assessment studies.
This evaluation was directed at identifying trends or anomalies that were
located during data compilation. The primary focus of this effort was to
compose the data among the different industrial sources in an effort to
characterize the Level 1 analytical techniques.
The following section contains this evaluation of trends and anomalies
in the compiled data which is in turn followed by the compiled data from
each study.
-------
TRENDS AND ANOMALIES IN DATA
A brief assessment of trends and anomalies in data from the nineteen
environmental assessment studies was made. Topics addressed in this section
include the following:
1. Particulate size vs. selective trace element concentrations;
2. Contaminants in LC fractions;
3. Aliphatic hydrocarbon presence in LC fractions;
4. Aromatic hydrocarbon presence in LC fractions;
5. LC fractions containing similar structures;
6. Analytical techniques used in Level 1 environmental assessments; and
7. Organic concentration distributions from two different LC fractionation
schemes.
It should be understood that the data generated during these environ-
mental assessments are sample- and source-dependent. In addition, there was"
a limited number of studies available for trend evaluation, and the analytical
methodologies used varied with some studies. The conclusions to follow were
made under these constraints and should be interpreted accordingly.
Conclusions from these evaluations follow:
1. In more than 55 percent of the samples analyzed by Spark Source Mass
Spectroscopy, Be, Mo, Zn, Hg, As, and Sb concentrated in particulates
less than 3|J in size. In more than 55 percent of the samples, Sr, Cu,
and Ga concentrated in particulates more than 3(J in size. Pb, Se, and
Cd did not show a preferential concentration with size (i.e., 50 per-
cent ± 5 percent of samples concentrated in either particulate size
range).
2. Contaminants such as silicone compounds and phthalates exhibit no
preference as to the LC fraction in which they are found, while water
tends to elute in fractions 6, 7, or 8.
3. Of the 78 samples that elute aliphatic hydrocarbons in fraction 1, 29
samples (37 percent) also showed the presence of aliphatic hydrocarbons
in fraction 2. The presence of these aliphatics in fractions other
than 1 or 2 accounts for less than 1 percent of the samples tested.
Samples from studies 16 and 19 were interpreted by the investigators to
contain such a high aliphatic HC content that they tended to bleed.
across all eight fractions.
4. Aromatic structures were frequently not fully identified as being
aromatic hydrocarbon or other chemical structure. Of the 24 samples
containing aromatic hydrocarbons in fraction 2, 10 samples (41 percent)
showed aromatic hydrocarbons in fraction 3 while 16 samples (67 percent)
showed aromatic hydrocarbons in fraction 1.
-------
5. IR data indicate that fractions 3 and 4 contained identical structures
more frequently than any other combination of adjacent fractions.
6. Analytical techniques used most frequently in effluent characterization
studies were SSMS, LC fractionation, and LRMS. Aqueous analyses and
field analyses for Ci-C6 gases were seldom used.
7. Evaluation of the gravimetric data indicates that in the Level I liquid
chromatographic fractionation, the lowest amount of organics is found
in fractions 2 and 5. This is determined by evaluation of data from
six different industrial sources.
DATA AND DISCUSSION
Trace Elemental Concentration
The trace elements Pb, Se, Cd, Cu, Ga, Mo, Zn, Hg, As, and Sb were
selected for comparison of concentration variations with particulate size
because of the high concentrations of these elements in fly ash as previously
determined by ORNL.1 Be and Sr were also included for comparison due to
potential problems that may result from their presence in larger size particu-
late.2
SSMS data on particulates from 14 different samples were compared to
determine which size particulate contained the highest concentration. These
data are summarized in Table 1. The percentage of samples in which particu-
lates less than 3(J contained the higher concentration is presented in Figure
1.
LC Fractionation—Contaminants and Hydrocarbons
Interpretations of IR data from each study were inspected to determine
what fractions repeatedly contained suspected contaminants (silicone com-
pounds, water, phthalates) and also to determine where aliphatic and aromatic
hydrocarbons eluted. These data are summarized in Table 2.
Similarities of LC Fractions
The interpretations of IR data in the formatted studies were generally
presented in text form. These IR interpretations were inspected to deter-
mine which LC fractions contained identical structures. Those fractions
containing the same structures are so designated by use of the same symbol
in Table 3. The frequency with which adjacent LC fractions contain identical
structures is shown in Table 4.
David H., et al. Pathways of Thirty-seven Trace Elements Through a
Coal-Fired Power Plant. Environmental Science and Technology, 9 (10):973~979,
October 1975.
2Dorsey, James A. Process Measurements for IERL/RTP Environmental Assessment
Programs. Environmental Protection Agency, Process Measurements Branch,
August 1977.
-------
Use of Analytical Techniques
Table 5 identifies the analytical techniques that were used in each
study. Incomplete studies are identified.
Organic Distribution by Fraction
Table 6 reports the percentage of organics separated by each fraction
of an LC fractionation scheme. The percentages for each sample are deter-
mined by the following equation:
Fraction weight .-._ _, ,
„, . . r—z —;—fi—. , x 100 = Fractional percentage.
Total of fraction weights r 6
These results are presented by source type and fractionation method
used: the BCL method as reported in Technical Manual for Analysis of Organic
Materials in Process Streams or the original Level 1 method as reported in
the Environmental Assessments Procedures Manual. The solvents and volumes
used in these methods follow:
BCL
Fraction
1
2
3
4
5
6
7
8
Volume (ml)
25
25
25
25
25
25
25
25
Solvent
60/80 pet ether
20% CH2Cl2/pet ether
50% CH2Cl2/pet ether
CH2C12
5% CH3OH/CH2C12
20% CH3OH/CH2C12
50% CH3OH/CH2C12
CH3OH
1
2
3
4
5
6
7
8
Original Level 1
25
10
10
10
10
10
10
10
(Revised Level 1 eliminates Fraction 8.)
Pentane
20% CH2Cl2/Pentane
50% CH2Cl2/Pentane
Same as BCL
Same as BCL
Same as BCL
Same as BCL
5/70/30, Cone. HC1/CH3OH/CH2C12
-------
TABLE 1. DISTRIBUTION OF HIGHEST TRACE ELEMENT CONCENTRATION
BY PARTICULATE SIZE CATEGORY*
Study no .
3 Run
10 Run
11 Run
15 Source
Total <3|J
Total Samples
Percent <3(J
1
2
4
5
2
3
4
1
3
4
6
7
8
9
Be
f
>3
t
<3
<4.6
<4.6
t
<3
>3
>3
<3
<3
<3
>3
7
11
63.6
Sr
f
f
t
t
>4.6
<4.6
t
<3
>3
>3
>3
>3
>3
>3
2
9
22.2
Pb
f
t
t
<3
>4.6
>4.6
>4.6
<3
>3
<3
>3
<3
<3
>3
5
11
45.5
Se
>3
t
t
<3
>4.6
>4.6
>4.6
<3
>3
<3
t
<3
<3
<3
6
11
54.5
Cd
>3
t
>3
t
>4.6
>4.6
t
<3
<3
<3
t
<3
<3
>3
5
10
50
Cu
>3
t
>3
<3
>4.6
>4.6
t
>3
>3
<3
>3
>3
<3
t
3
11
27.3
Ga
<3
t
>3
>3
>4.6
>4.6
<4.6
>3
>3
>3
>3
<3
<3
<3
5
13
38.5
Mo
<3
t
>3
<3
>4.6
<4.6
<4.6
<3
>3
<3
f
<3
<3
<3
9
12
75
Zn
<3
t
t
<3
<4.6
<4.6
>4.6
t
t
<3
<3
<3
<3
t
8
9
88.9
Hg
<3
>3
<3
t
>4.6
<4.6
<4.6
NR
NR
NR
NR
NR
NR
NR
4
6
66.6
As
<3
<3
<3
<3
<4.6
<4.6
<4.6
<3
>3
<3
>3
<3
<3
<3
12
14
85.7
Sb
<3
<3
<3
<3
>4.6
>4.6
<4.6
<3
>3
<3
<3
<3
<3
>3
10
14
71.4
*Particulate size categories are reported in microns.
tConcentration did not vary more than 10 percent with particulate size.
fInsufficient data.
-------
100
90
80
70
60
50
40
30
20
10
0
i
Be
63.6
Se
Pb
I
Cd
I
Cu
I
Ga
I
Mo
Hg
I
Sr Pb
22.2 45.S
Se
54.S
Cd
50
Cu Ga
27.3 38.5
Mo
75
Zn Hg
88.9 66.6
As
•
Sb ~
\
As Sb
85.7 71.4
100
90
80
70
60 «
81
50 |
40 £
30
20
10
0
Figure 1. Percent of samples in which elements concentrated in particulates < 3//.
-------
TABLE 2. PRESENCE OF CONTAMINANTS AND HYDROCARBONS IN LC FRACTIONS AS DETERMINED BY IR
00
Study Table
no. no.
1 9
10
11
12
13
3 15
16
17
4 4-J1
4-J2
5
6-J3
6-J4
5 5
6 7
7
7
7 8
9
10
11
12
13
14
15
16
17
Suspected contaminants Hydrocarbons
Sample
Coal
Flue gas
Particulates
Particulates
Bed material
Module wash
Cannister wash
Coal
Coal
Coal
Coal
Coal
Coal
Hulti
Sample 2
Sample 3
Sample 5
Test 13
Clean H20
Blank
Coke — clean
Coke — dirty
Dirty H20
Liquor
Clean H20
Dirty H20
Test 16
Silicone
compounds'*
6, 7, 8
1, 8
4, 8
8
1, 2, 4
1, 2, 3
1, 2, 3
1
1, 2
1, 2
1
I, 2
1
1, 2
1, 2
H20 Phthalates Aliphatic
8 1, 2, 7
1
4 1
6, 8 1, 2, 3, 4, 5
7, 8
7, 8
4, 5, 6, 7, 8 1, 2
6, 7
8? 1
7, 8 1
1
5
2, 3, 4, 5, 6# 1, 2
2, 3, 4, 5, 6, 7# 1
3, 4, 5, 60 1, 2
3, 4, 5, 6, 7* 1
3, 4, 5, 6, 7# 1, 2
1
1
1
1
2, 3, 4, 5, 6// 1
FractionaLion
Aromatic schemet
2f BCL
4=f
Level 1
2f, 4t, 5t
1, 2, 3 BCL
1, 2
2
2
Level 1
Level 1
5t
1 BCL
2
1, 2
See footnotes at end of table.
(continued)
-------
TABLE 2 (continued)
Study Table
no. no. Sample
8 10 Adsorber - Al
A2
A3
11 A4
A5
Air A6
12 Filter A1F
A2F
13 A3F
A4F
ASF
10 77 Coal - Run 2
Run 5
78 Flue gas - Run 1
2
3
4
5
79 Air - Run 1
2
80 Particulates >3p
Run 2
4
5
Particulates <3\l
Run 2
4
5
81 SASS - Run 2
4
5
Suspected contaminants Hydrocarbons
Silicone
compounds* H20
2
8
8
2, 3, 4, 5 8
2, 3, 4, 5, 6
2, 3
7, 8
7
1, 6
1
4
1
3, 4, 5 7
8
8
Phthalates Aliphatic
1 2
1
7
1
1
1
5, 6, 7 1
1
1
2
2
2
2
2
2
2
2
2
2
2
2, 4
1
1
1
1
1
1
1
1
1
1
1
8 1
5 2
4, 5, 6, 8 1
Fractionation
Aromatic scheme t
2,
1,
1,
1,
1,
3f
1,
1,
1,
1,
1,
2*
2,
5
3 BCL
2
2
2
2
. *f
2, 3
2, 3
2, 3
2, 3
2, 3
3, 4 Level 1
3
See footnotes at end of table.
(continued)
-------
TABLE 2 (continued)
Study Table
no . no .
82
83
11 44
45
46
47
48
49
50
12 24
Suspected contaminants
Silicone
Sample compounds* H20 Phthalates
Bed reject - 2
4 7, 8 1, 2
5 8 27, 3?
Ash - Run 2
4
5 8
Coal Culm - Run 2
Run 3 5,6
Run 4
Bed reject - Run 2
3
4 5, 6
Ash - Run 3 3
Run 4 4
Ash - Run 2
3
4 3
Tenax - Run 2 1, 2, 3
3 1, 2
4 1, 2
Blank
Parti culates
Run 2
3
4
Filter
Run 2
3
4
Particulates -
>27|J 4
<27p 4
Hydrocarbons
Fractionation
Aliphatic Aromatic schemet
1
1
1
1, 2, 3, 4, 7
Level 1
1
1
1
1
1
1
1
1, 2
1
1
1
1 1?
1, 2 2
1
1 1
1
Level 1
1
See footnotes at end of table.
(continued)
-------
TABLE 2 (continued)
Suspected contaminants Hydrocarbons
Study Table
no . no .
25
26
27
13 57
14 IR DATA
16 3
4
5
6
18 11
19 35
36
37
38
39
Silicone
Sample Compounds* H20
Bed material
Ash
Sludge
Particulate -
>27M
<27p 1
Site 300
301
302
303
304
FROM THIS STUDY ARE NOT BLANK CORRECTED.
Coal 6, 7, 8
Steam
Multi
Oil 1, 2, 7, 8 7, 8
Probe - Run 1 7, 8 8
2 7, 8 7, 8
Module - Run 1 1, 3, 4 7
23 8
Plant A 6, 7, 8 7, 8
B 1, 8
E 8 2, 8
F 1, 6, 8
G 6, 7, 8
Fractionation
Phthalates Aliphatic Aromatic schemet
1
5 1, 2, 3
1, 2 1, 2
1
1, 2 1, 2
1 Level 1
1, 2
1
7 1, 2 If, 2t
1, 2, 3, 4, 5, 2f, 3f BCL
6, 7, 8
1, 2, 3, 4, 5,
6, 7, 8
1, 2
2, 3, 4, 5
6 1 Level 1
6
4, 5, 6 1
5, 7 1, 2 2, 3, 4, 5t
6 Incomplete classification due
to high hydrocarbon concen-
trations.
f
See footnotes at end of table.
(continued)
-------
TABLE 2 (continued)
Study Table
no . no .
40
41
42
43
44
45
46
47
48
Sample
K
L
M
S
T
U
V
V
X
Suspected contaminants Hydrocarbons
Silicone Fractionation
compounds* H20 Phthalates Aliphatic Aromatic schemef
1, 2, 3, 4, 5 1 Incomplete classifications due
6, 7, 8 to high hydrocarbon concentra-
tions .
8 8
67, 77, 8
3, 4, 5, 6?
77, 8?
8
2, 4, 5, 6, 8
57, 8
*To include silicon dioxide, silicon, and silica gel.
tFractionation scheme:
BCL's method as presented in Technical Manual for Analysis of Organic Material in Process Streams.
Level 1 method as presented in the Environmental Assessments Procedures Manual.
f Incomplete classification of aromatic structure.
//Authors of study number 7 indicated phthalates were probably actual constituents of the effluent stream rather than contaminants of the
fractionation scheme.
-------
TABLE 3. LC FRACTIONS CONTAINING IDENTICAL STRUCTURES AS DETERMINED BY IR
Study no.
1
3
4
5
6
7
8
(
Table no.
9
10
11
12
13
15
16
17
4-J1
4-J2
5-
6-J3
6-J4
5
7
7
7
8
9
10
11
12
13
14
15
16
17
10
Sample
Coal
Flue gas .
Particulates-
Particulates
Bed material
a/
Module wash- .
Cannister wash-
Coal
Coal .
Coal-'
Coal
Coal
Coal
Multi-7
Sample 2 ,
Sample 3-
Sample 5
Test 13
Clean H20
Blank
Coke — clean
Coke — dirty
Dirty H20
Liquor .
Clean H20-,
a/
Dirty H20£/
Test 16
Adsorber - Al
A2
A3
1234
* * *
* * t t
*
* * |
* *
* * •{-
* *
* *
* *
* *
* *
* *
*4\ ^T
*
*& "n
*
*
Fraction
5
*
t
t
t
*
*
*
t
*
*
6 7
t t
*
f
* *
t
JL
*
*
*
t
* *
t t
t t
8
t
f
*
—No fractions contain identical structures.
(continued)
-------
TABLE 3 (continued)
Study no. Table no.
11
12
13
10 77
78
79
80
81
82
i
Fraction
Sample 12345678
A4 t t
A5 T t
Air A6 * *
Filter A1F * *
A2F * * t t
A3F * * t t
A4F * *
ASF * *
Coal - Run 2-1.
Run 5-'
Flue gas - Run 1 * *
2 * * *
Air - Run l~.
2-'
Particulates >3|J
Run 2j'
Particulates <3p
Run 2-'
4 * *
SASS - Run 2 , * *
4-'
T .
5-'
Bed reject .
Run 2j'
5 * *
a./
-No fractions contain identical structures.
(continued)
-------
TABLE 3 (continued)
Study no. Table no.
83
11 44
45
46
47
48
49
50
12 24
25
Fraction
Sample 123456
Ash - Run 2-t
4 * * *
5 * * * *
Coal culm ,
Run 2j'
Bed reject .
Run 2^.
4 * *
Ash - Run 3-'.
4-'
Ash - Run 2, * * *
Tenax - Run 2 * *
3 * * t t
4 * * *
Blank * *
Particulates
Run 2 * * t t t
3 * * *
4 * *
Filter - Run 2 * *
3 * *
Run 1
Particulates >27p-/
<27M-
Bed material *****
Ash^"
7 8
f f
t t
t?
-No fractions contain identical structures.
(continued)
-------
TABLE 3 (continued)
Study no.
13
•
16
18
19
Table no.
26
27
57
3
4
5
6
11
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Sample
Sludge
Run 2
Particulates >27p ,
<27H-7
Site 300
301 .
302-7
303
304
Coal
Steam .
Multi-7
Oil
Probe - Run I-7!
2a/
Module - Run I-7
2£/
Plant A ,
&
F
G
K ,
L-
N-
S
T
u-
V
W^
X
Fraction
12345678
* *
* * *
* *
* * *
* * t t
* * f -f-
t * * t t t t
* * * *•{••{-
* * t t
* *
* *
* * t t
* * 5V
* *
* *
* *
* * T t
—No fractions contain identical structures.
-------
TABLE 4. PERCENTAGE OF LC FRACTIONS CONTAINING
IDENTICAL STRUCTURES AS DETERMINED BY IR
Fractions identical
Occurrences identical
Total samples
Percent (%)f
Ranking
BCL fractionation scheme*
1=2
8
35
22.9
2
2=3
3
35
8.6
5
3=4
11
35
31.4
1
4=5
6
35
17.1
3
5=6
6
35
17.1
3
6=7
8
35
22.9
2
Original Level 1 fractionation schemet
7=8
4
35
11.4
4
Fraction identical
Occurrences identical
Total samples
Percent (%)f
Ranking
1=2
1
82
1.2
6
2=3
9
82
11.0
3
Summation of
Fractions identical
Occurrences identical
Total samples
Percent (%)f
Ranking
1=2
9
117
7.7
5
2=3
12
117
10.3
4
3=4
12
82
14.6
2
both
3=4
23
117
20.0
1
4=5
13
82
15.9
1
5=6
9
82
11.0
3
fractionation
4=5
19
117
16.2
2
5=6
15
117
12.8
3
6=7
7
82
8.5
4
schemes
6=7
15
117
12.8
3
7=8
4
82
4.9
5
.
7=8
8
117
6.8
- 6
*Used in Studies 1, 4, 7, 8, and 16.
tUsed in Studies 3, 6, 10, 11, 12, 13, 18, and 19-
^Percent = occurrences identical
total samples
x 100
17
-------
TABLE 5. USE OF ANALYTICAL TECHNIQUES
oo
Study no .
1
2*
3
4
5*
6*
7
8
9
10*
11*
12
13*
14*
15
16
18*
19
Total
SSMS
X
X
X
X
X
X
X
X
X
X
X
X
12
Chemilu-
minescence
M GC (NO ) ANION AQUEOUS Cj-Ce
X
XX X
X X
X X
X
XX XX
XX XX
XX XX
XX X
X
X X
8645 12
r r T P
L*7 ~~\j j 7 J-iU
X
X
X
X
X X
X
X
X
X X
X
X
X X
X
X
X X
X
4 16
IR
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
15
LRMS
X
X
X
X
4
lfThese (draft) reports may not contain results from all analyses.
-------
TABLE 6. PERCENTAGE OF ORGANIC DISTRIBUTION BY LC FRACTION
Fractionation
method Study
BCL
BCL
BCL
BCL
BCL
BCL Average at
Ranking
Level 1
Level 1
Level 1
Level 1
Level 1
Level 1
Level 1
Level 1
1
4
7
8
16
i Organics
3
10
11
12
13
18
19
6
Source
type
CAFB
Coal-fired plant
Coke production
Coke production
Multisource
Coal-fired boiler
FBC
FBC
FBC
Home heaters
Oil burner
Textile
New energy
Level 1 Average % Organics
Ranking
1
28
5
12
24
31
20
1
3
9
34
43
15
3
13
12
16.5
4
2
8
8
9
33
3
12.2
4
2
8
5
8
4
0.4
8
3
4.8
7
LC
3
9
2
26
14
3
10.8
5
8
10
13
12
6
1
12
6
8.5
5
Fraction
4 5
14
22
9
8
21
14.8
3
2
10
8
9
22
1
5
3
7.5
6
17
35
19
7
21
19.8
2
1
10
2
5
11
0.6
3
5
4.7
8
6
14
25
3
3
7
10.4
6
7
20
10
8
22
6
24
55
19
3
7
3
2
18
10
10
8.6
7
26
15
22
13
20
38
16
6
19.5
1
8
7
1
4
1
4
3.4
8
51
18
6
2
0
50
19
10
19.5
2
-------
20
-------
STUDY NUMBER 1
DATA
SOURCE:
PRELIMINARY
ENVIRONMENTAL ASSESSMENT
OF THE CAFB
EPA-600/7-76-017
DATA
STATUS:
Final Report, October 1976
AUTHORS:
CONTRACTOR:
Arthur S. Werner, Charles W. Young, Mark I. Bornstein,
Robert M. Bradway, Michael T. Mjlls, and Donald F. Durocher
GCA Corporation
GCA/Technology Division
Bedford, Massachusetts 01730
Contract No. 68-02-1316, Task 14
Program Element No. EHB537
TASK
OFFICER:
Samuel L. Rakes
Industrial Environmental Research Laboratory
U.S. Environmental Protection Agency
Office of Energy, Minerals, and Industry
Research Triangle Park, NC 27711
21
-------
22
-------
GENERAL
"The Chemically Active Fluidized Bed (CAFB) is a technique whereby high
sulfur, high metal residual oil is vaporized in a fluidized bed of lime to
produce a low Btu, low sulfur product gas which is then burned in a conven-
tional boiler to generate electrical energy. Most of the sulfur and metals
contained in the oil feed are captured by the lime. This spent lime is
subsequently processed to recover sulfur."* The process flow is diagrammed
in Figure 1 from the study with mass flow rates given in Table 1.
A preliminary environmental assessment of the 2.93-MW CAFB process at
the Esso Research Centre, Abingdon, England, was performed, and results of
this study were used to predict environmental impact of the Foster Wheeler
10-MW retrofit demonstration plant to be constructed at La Palma Power Sta-
tion in San Benito, Texas, and a conceptual design for a 250-MW commercial
scale unit. Very thorough discussions of operating parameters were included.
Appendixes discussed other sulfur removal technologies.
The process-pollutants released to the air from the boiler stack or
from fugitive emissions of feed materials were the primary concern of this
study. Water effluents were characterized as being similar to those of a
conventional coal combustion plant (boiler blowdown, cooling tower outputs).
The land pollutant of primary concern is the spent, sulfided limestone".
Seven separate analytical runs were made: four fuel oil gasification
runs, two bitumen gasification runs, and one combustion/startup bitumen run.
(See Table 2, Summary of Sampling Activity, from the document.) Results of
analyses were used in dispersion modeling analysis to predict impact of the
10-MW plant on the San Benito area. A final section thoroughly discussed
alternative residual oil utilization techniques and environmental considera-
tions as well as capital and operating costs.
The study concluded that top priority environmental problems of CAFB
operation include reduction of stack particulate emissions, reduction of 862
emissions during abnormal operating conditions, and disposal of spent lime.
A need for further study of organic stack emissions (possible presence of
MMEG levels of quinone, carbonyl compounds, and aliphatic hydrocarbons), for
measurement of fugitive emissions from oil storage and bitumen storage and
TM
handling (bitumen is used in the RESOX process, which reduces S02 effluent
from the lime regenerator to elemental S), and for acceptable disposal
TM
methods for the RESOX coal ash were indicated.
^Preliminary Assessment of the CAFB, Werner, Young, and Bornstein.
23
-------
GASEOUS GRAB
The Level 1 glass bulb sampler was not used. Flue gases were sampled
for NO by Federal Register Method 7, for S02/S03 by Method 8, for H2S by
MethodXll, and for CO, C02, and 02 by Orsat.
SASS
A SASS train was not used in this study. Particulate sampling was done
with a standard RAC train using Method 5. Particle size distribution measure-
ments were made with a University of Washington eight-stage cascade impactor
using ungreased substrates. Organics were adsorbed on a Tenax GC gas adsorber
cell, which was attached to the RAC train. After 1-hour sampling periods,
adsorber cells were capped and stored in darkness until analysis. Pentane
was used to extract organic vapors adsorbed on the Tenax polymer.
FUGITIVE EMISSIONS
Sampling for fugitive emissions was not performed. Mathematical modeling
TM
from fuel oil, RESOX coal, and limestone analyses gave estimates of fugitive
emissions from the storage and handling of these materials.
LIQUIDS AND SLURRIES
Fuel oil was analyzed for organics (LC-IR) and for trace elements
(SSMS-AA-wet chem). Specific sampling methods were not presented.
SOLIDS
Sampling methods for solids were not detailed. The following materials
were analyzed: bitumen (organics), limestone, (surface composition by
electron spectroscopy for chemical analysis [ESCA]), spent regenerator
limestone (organics, trace elements, ESCA), gasifier bed stone (organics,
trace elements, ESCA), left-hand cyclone particulate (organics and ESCA),
right-hand cyclone particulates (trace elements and ESCA), knockout baffle
particulates (organics, trace elements, and ESCA), and stack cyclone partic-
ulates (organics, trace elements, and ESCA). Methylene chloride was used to
extract oil, particulates, and spent stone samples. Extraction procedures
for other materials were not specified. The LC fractionation scheme speci-
fied in the Technical Manual for Analysis of Organic Materials in Process
Streams, EPA, March 1976, was generally used in this study.
This LC procedure uses an eluent scheme different than that specified
in Level 1 in that petroleum ether is used instead of pentane and also that
25-ml methanol is used to elute Fraction 8 rather than the specified 5/70/30
HCl/MeOH/CH2 C12. Eluent volumes also differ. See LC schemes, Tables 3*and
4.
24
-------
N3
Ul
\j• • • GAsmen AIB BLOWERS
Figure 1. Unit operations flow diagram of the ERCA pilot plant,
-------
TABLE 1. ERCA PILOT PLANT MASS FLOW RATES
Process stream
Mass flow rate,
kg/sec (Ib/hr)
Temperature,
°C (°F)
1. Oil feed to gasifier
2. Limestone feed to gasifier
3. Gasifier to regenerator
stone transfer
4. Regenerator to gasifier
stone transfer
5. Product gas to cyclone
6. Cyclone solids return to
gasifier
7. N~ gas to solids transfer
lines
8. Product gas to boiler
9 - Air to regenerator
10. Spent solids from
regenerator
11. Regenerator off gas to
cyclone
12. Regenerator off gas,
cyclone to stack
13. Flue gas from boiler
14. Flue gas recirculated to
gasifier
15. Flue gas to Tuyere Blower
16. Recycled flue gas from
cyclone
17. Flue gas and air to
gasifier
18. Flue gas to stack
19- Solids from boiler flue
gas cyclone
20. Solids from recycled flue
gas cyclone
21. Solids from regenerator
off gas cyclone
22. Start up kerosene to
gasifier
23. Stack emissions
24. Fuel injection air
0-04
0.003
0.11
0.11
0.16
(288)
(25)
(860)
(850)
(1,279)
88 (190)
850 (1,560)
0.0006 (4.5)
0.16 (1,279)
0.01 (65)
0.002 (14)
0.01 (63)
0.01 (63)
0.50 (4,000)
850 (1,560)
1,050 (1,920)
1,050 (1,920)
0.03
0.02
0.02
(250)
(125)
(125)
0.10 (800)
0.50 (4,000)
0.0005 (4)
0.50 (4,000)
0.01 (45)
43 (110)
26
-------
TABLE 2. SUMMARY OF SAMPLING ACTIVITY
Type of sample or test
SO
X
NO
X
H2S
Total particulate
Particulate sizing
°2
co2
CO
Moisture
Organic stack gases
Gasifier bed
Regenerator bed
Left-hand cyclone*
Right-hand cyclone*
Knockout baffle
Stack cyclone
Bitumen
Fuel oil
Limestone
Leached stone
1
X
X
X
X
X
X
X
X
X
2
X
X
X
X
X
X
X
X
X
X
X
X
X
3
X
X
X
X
X
X
X
X
4
X
X
X
X
X
X
X
X
X
Run
567
X
X
XXX
X
XXX
XXX
XXX
XXX
X X
X
X
X
X
X
X
Other
XT
XT
X
*These cyclones are located between the gasifier and boiler.
TObtained during presampling site survey September 1975.
27
-------
TABLE 3. LC SCHEME FROM TECHNICAL MANUAL FOR ANALYSIS OF ORGANIC
MATERIALS IN PROCESS STREAMS
No.
Fraction
1
2
3
4
5
6
7
8
Solvent
composition
60/80 petroleum ether
20% methylene chloride in 60/80
50% methylene chloride in 60/80
Methylene chloride
5% methyl alcohol in methylene
20% methyl alcohol in methylene
50% methyl alcohol in methylene
Methyl alcohol
petroleum ether
petroleum ether
chloride
chloride
chloride
Volume of
eluent (ml)
25
25
25
25
25
25
25
25
TABLE 4. LC SCHEME FROM P. 128 OF THE LEVEL 1 ENVIRONMENTAL
ASSESSMENTS PROCEDURES MANUAL (EPA-600/2-76-160a)
No. Solvent Volume of
Fraction composition eluent (ml)
1 Pentane 25
2 20% methylene chloride in pentane 10
3 50% methylene chloride in pentane 10
4 Methylene chloride 10
5 5% methanol in methylene chloride 10
6 20% methanol in methylene chloride 10
7 50% methanol in methylene chloride 10
8 Cone. HCl/methanol/methylene chloride (5:7:30) 10
28
-------
TABLE 5. SPARK SOURCE MASS SPECTROSCOPY
STACK CYCLONE PARTICULATE
RUN 5, BITUMEN GASIFICATION (STARTUP)
(ppmw)
u
Th
Ti
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tin
Er
Ho
<0.2
0.4
7.8
0.2
<0.3
0.4
<0.3
<0.5
Dy
Tb
Gd
Eu
So
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.2
<0.2
0.1
<0.1
0.6
0.2
55
1.3
0.3
0.3
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
5.0
0.1
1.5
0.2
32
1.1
2.2
1.3
4.1
0.4
30
33
0.22%*
17
0.12%*
21
Cr
V
•Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
51
1 . 04*
63
14.1%*
340
120
3.83%t
21
0.49%
340
0.32%
0.43%
450
2.3
<0.12
4.3
*Determined by atomic absorption spectrometry.
tDetermined by wet chemistry.
No data indicates less than 0.1 ppmw.
TABLE 6. SPARK SOURCE MASS SPECTROSCOPY
STACK CYCLONE PARTICULATE
RUN 4, FUEL OIL GASIFICATION
(ppmw)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.2
<0.3
47
<0.1
1.1
0.4
<0.3
<0.5
Cy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
B.a
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.2
<0.2
0.2
0.1
1.0
0.8
150
2.9
1.0
0.8
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
14
0.2
3.0
0.5
180
0.5
60
1.3
.
0.6
0.4
80
44
0.10%*
5.0
0.15%*
50
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
31
0.80%*
150
34.5%*
340
0.16%
2.13%t
96
0.21%
0.13%
0.32%
850
0.13%
5.0
<0.12
2.1
*Determined by atomic absorption spectrometry.
tDetermined by wet chemistry.
No data indicates less than 0.1 ppmw.
29
-------
TABLE 7. GAS CHROMATOGRAPHY*
FLUE GASES AFTER PARTICIPATE REMOVAL
00
O
Sample
Run 1
fuel oil
gasification
Run 2
fuel oil
gasification
Run 3
fuel oil
gasification
Run 4
fuel oil
gasification
Run 5
bitumen
gasification
(startup)
Run 6
bitumen
gasification
(w/lime feed)
Run 7
bitumen
gasification
Flue gas
flow rate
(dscm/s)
0.56
0.51
0.60
0.58
0.49
0.56
0.51
Temp, at Moisture, C02 02 CO NO S02
sampling % % % % ppm ppm
port, °C
108 8.3 13.0 1.0 0.1 53.5 292
109 8.6 12.0 3.8 0.1 45.7 305
111 9.7 12.2 2.8 0.2
133 9.0 11.6 5.3 0
138 9.5 12.0 3.9 0 58.4 828
j
80 2.4 12.0 3.9 0
127 7.8 12.0 3.9 0
S03 H2S Total
ppm g/dscm particulates
g/dscm
8.3 .00007 0.117
7.9 .00007 0.073
.00032 0.080
0.106
11.1 — 0.141
0.056
0.112
"Level 1 method of sampling and analysis was not used. Flue gases were sampled for NO by Federal Register
Method 7, for SO-/SO- by Method 8, for H2S by Method 11, for CO, C02 and 02 by Orsat. x
-------
TABLE 8. LC FRACTIONATION*
VARIOUS PROCESS SAMPLES
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Bitumen feed
Grav
TCO |Jg Total
8,900
890
810
350
280
1,400
210
450
Flue gas after particle removal!
run 7, bitumen gasification
Grav
Total TCO [j§
1,700
60
1,600
13,000
1,100
250 '
74
32
Total Total
Stack cyclone particulate
run 5, bitumen gasification (startup)t
Fraction TCO
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Grav
|jg Total Total
70
14
28
140
230
66
16
90
See footnotes at end of table.
31
-------
TABLE 8 (con.)
Spent limestone^ run 5, Stack cyclone particulatest
bitumen gasification (startup) run 4, fuel oil gasification
Grav Grav
Fraction TCO |Jg Total Total TCO pg Total Total
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
*By the LC
330
64
82
110
85
290
57
210
fractionation scheme
97
210
28
120
180
200
35
0
in Technical Manual for Analysis of Organic
Materials in Process Streams.
tFlue gas was sampled for organics with a Tenax-GC cartridge, attached to a
Method 5 train. A 1-hour sample was collected. Tenax-GC was extracted with
pentane.
^Extracted with methylene chloride.
32
-------
TABLE 9. IR REPORT
SAMPLE: BITUMEN FEED*
LC
1
_i
Wave number (cm )
Assignment (comments)
to
4
5
7
8
2,920; -1,450; 1,370;
-1,600; 1,690
700-900
-3,400
-1,025
From CH3, CH2
Asphaltic materials
(1690 band is from gross mixture of
carbonyls and 1600 band is due to
structures such as highly condensed
aromatics and quinones.)
Same compounds as LC-1 but also contains:
Aromatic compounds (possibly POM)
Same compounds as LC-1
Same compounds as LC-1
Same compounds as LC-1 but also contains:
-OH
(bands at 1200-1300 suggest this might be phenol)
Same compounds as LC-1 but also contains:
probably Si02 impurity
Same as LC-6
Same as LC-6
*LC scheme from Technical Manual for Analysis of Organic Materials in Process Streams was used.
-------
TABLE 10. IR REPORT
SAMPLE: FLUE GAS (AFTER PARTICLE REMOVAL)*
RUN 7, BITUMEN GASIFICATION
LC
Wave number (cm )
Assignments (comments)
2,920; 1,450; 1,370
2
3
4
5
7
8
3,400
3,400
1,640
600-800
1,000-1,100
Aliphatic hydrocarbons
(Lower frequencies are silicone oil impurities.)
Same compounds as LC-1
Disubstituted amide, N-heteroaromatic, doubly
conjugated ketone or quinone
Same compounds as LC-3
Same compounds as LC-3 plus:
Alcohol or carboxylate
Carboxylate group
Doubly conjugated ketone
Aromatics
Same compounds as LC-1
Possible traces of carboxylic acid salts plus
impurity
*Flue gas was sampled for organics with a Tenax-GC cartridge, attached to a Method 5 train. A 1-hour
sample was collected. Tenax-GC was extracted with pentane. LC scheme from Technical Manual for
Analysis of Organic Materials in Process Streams was used.
-------
TABLE 11. IR REPORT
SAMPLE: STACK CYCLONE PARTICULATES*
RUN 4, FUEL OIL GASIFICATION
LC
Wave number (cm )
Assignments (comments)
to
Ul
1
2
3
4
5
6
-2,920; 1,450; 1,370;
1,730;
Peaks between 1,100-1,500
-2,920; -1,730
-2,920; 1,450; 1,370
1,730
Broad band 1,000-1,100
1,730
-2,920; 1,450; 1,370
-3,400; 1,100-1,300
1,730
Broad band 1,000-1,100
Traces of aliphatic hydrocarbons
CH3, CH2 Carbonyl (C=0) group
suggests aliphatic esters
Other species containing C=0
Aliphatic ester
Aliphatics ) Probable aliphatic ester, ketone
C=0 J or aldehyde
Probably Si02 impurity
Carbonyl compounds
Aliphatic esters
Carboxylates or alcohols
Mixture of carbonyl compounds
impurity
""Extracted with methylene chloride.
-------
TABLE 12. IR REPORT
SAMPLE: STACK CYCLONE PARTICIPATES*
RUN 5, BITUMEN GASIFICATION (STARTUP)
LC Wave number (cm ) Assignment (comments)
1 -2,920; 1,450; 1,370 CH3, CH2 (aliphatic hydrocarbons)
1,730 C=0
2 -2,920; 1,730 Aliphatic esters
3 1,730; ~1,500 Aliphatic carbonyl compounds
4 3,400 -OH
600-800 Aromatics
1,730 Carbonyls
1,500, complex spectrum 1,000-1,300 Possible phthalates, phenols, or alcohols
5 Same as LC-4
6 Mixture of carbonyl and alcohol compounds
7&8 No data reported for these fractions
^Extracted with methylene chloride. LC scheme from Technical Manual for Analysis of Organics
in Process Streams was used.
-------
TABLE 13. IR REPORT
SAMPLE: REGENERATOR BED MATERIAL*
RUN 5, BITUMEN GASIFICATION (STARTUP)
LC
Wave number (cm )
Assignment (comments)
U)
1
2
3
5
6
7
8
2,920; -1,370; 1,450
1,730
1,730
-3,400
2,920
1,730
850, bands between 1,000-1,600
3,400
, CH2 (aliphatic hydrocarbons)
Same compounds as LC-1
Same compounds as LC-1 plus:
Ester (C=0)
Same compounds as LC-1 plus:
Carbonyl group
Alcohol or carboxylate
Same compounds as LC-4
CH2
C=0
Aromatic carbonyl compounds
Phenol or carboxylic acid
Traces of aliphatics and carbonyl compounds
Same compounds as LC-6
^Extracted with methylene chloride. LC scheme from Technical Manual for Analysis of Organics
in Process Streams was used.
-------
38
-------
STUDY NUMBER 2
DATA
SOURCE:
FLUE GAS SAMPLING DURING
THE COMBUSTION OF SOLVENT REFINED COAL
IN A UTILITY BOILER
DATA
STATUS:
Preliminary Report, July 1977
AUTHORS:
CONTRACTOR:
C. S. Koralek and V. Bruce May
HITTMAN ASSOCIATES, INC.
91 90 Red Branch Road
Columbia, Maryland 21045
Contract No. 68-02-2162
PROJECT
OFFICER:
Bill Rhodes
Industrial Environmental Research Laboratory
Fuel Process Branch
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
39
-------
40
-------
GENERAL
This study at Georgia Power Company's Plant Mitchell in Albany, Georgia,
was designed to determine if solvent-refined coal (SRC) could replace coal
as a primary fuel in a pulverized coal-fired boiler. Hittman Associates,
Inc., acted as coordinator of part of the test programs. The study was
conducted in three phases utilizing: I--low-sulfur coal; II—modified
burners and low-sulfur coal; and III—modified burners and SRC. A pre-
liminary report evaluating available results indicates the following:
1. SRC can be a suitable replacement fuel for conventional coal in pulver-
ized coal-fired boilers;
2. Averaging results of two analytical techniques for SO indicate SO
A A
emissions approximately equal when burning SRC or regular coal. Over-
all emissions are greatest for SRC at maximum load;
3. NO levels for SRC are about 10 percent greater than NO levels using
X A
conventional pulverized coal, with NO emission levels being greatest
at maximum load;
4. Cj-Cg organic emissions from SRC burners are negligible; and
5. SRC particulates in this study are higher in carbon than conventional
coal boiler particulates (70 percent v. 10 percent), and the SRC flyash
is comparatively smaller (20 percent of SRC flyash <1 pm compared to
2-5 percent of conventional coal flyash <1 |Jm). The SRC flyash has a
high resistivity and correspondingly low electrostatic precipitator
collection efficiency indicating possible future control technology
problems.
GASEOUS GRAB
Tedlar bags were used for gaseous grab samples rather than glass bulbs.
In phases II and III of the study, gaseous grab samples were analyzed for
C1~C6 organics by Level I methods (GC-FID) and for 02, N2, CO, C02, and S0x
by GC with thermal conductivity detection as specified in Level I procedures.
NO and SO were also continuously monitored using a Thermal Electron N0x
analyzer and a Theta Sensor SO monitor.
A
SASS
A SASS train was used to sample flue gases in phases II and III. .
Results of analysis on SASS samples were not yet available at the time this
report was published.
41
-------
FUGITIVE EMISSIONS
Not sampled in this study.
LIQUIDS AND SLURRIES
Not sampled in this study.
SOLIDS
Daily composites were prepared of coal and SRC from phases II and III.
Bottom ash samples from the combustion chamber were also collected. Analy-
tical results are not yet available.
42
-------
TABLE 1. GAS CHROMATOGRAPHY FOR INORGANIC GASES
PHASE II—-LOW SULFUR COAL
Date
5/26
5/31
6/02
5/25
5/29
5/30
5/27
5/28
6/05
6/06
Sample
Load
conditions*
Low
Low
Low
Med
Med
Med
Full
Full
Full
Full
Sampling
sitet
0-1
0-1
1-1
0-1
1-1
0-1
0-1
1-1
0-3
0-3
S02*
(ppm)
254/260
329/360
174/200
413/500
209/220
413/400
311/330
381/330
214/200
210/180
C0§
(ppm)
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
n #
°2
(%)
13.31
14.24
14.91
15.73
13.70
12.60
13.78
11.25
12.14
11.16
CO/
(%)
7.40
7.50
6.56
5.51
7.59
7.35
6.65
9.86
9.31
9.69
V #
N2
(%)
79.29
78.26
78.53
78.76
78.71
80.05
79.66
78.89
78.55
79.15
*Low output = 7 MW
Med output = 14 MW
Full output = 21 MW.
tSampling sites: 0-1 = outlet to precipitator 1
1-1 = inlet to precipitator 1
0-3 = outlet to precipitator 3.
tFirst number indicates onsite GC (±2%); second number indicates continuous
monitor (Theta Sensor) (±10 ppm).
§40 ppm minimum detection limit; ND = none detected.
# ±2% of total concentration.
43
-------
TABLE 2. GAS CHROMATOGMPHY FOR INORGANIC GASES
PHASE III—SOLVENT REFINED COAL
Date
6/15
6/18
6/19
6/14
6/13
6/16
6/17
6/22
6/23
6/24
Sample
Load
conditions*
Low
Low
Low
Med
Full
Full
Full
Full
Full
23.5 MW
Sampling
sitef
0-1
1-1
0-1
0-1
0-1
0-1
1-1
0-3
0-3
0-1
S02*
(ppm)
198/225
216/220
218/235
248/260
371/325
410/335
404/345
400/345
393/325
449/380
C0§
(ppm)
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0 #
02
(%)
14.79
13.25
14.00
13.65
11.39
10.62
11.11
11.20
10.75
10.76
CO/
(%)
5.88
6.73
6.26
7.53
9.86
9.12
9-15
9.25
8.90
9.29
M #
N2
(%)
79.33
80.02
79.74
78.82
78.75
80.26
79.74
79.55
80.35
79.95
*Low output = 7 MW
Med output = 14 MW
Full output = 21 MW.
tSampling sites: 0-1 = outlet to precipitator 1
1-1 = inlet to precipitator 1
0-3 = outlet to precipitator 3.
^First number indicates onsite GC (±2%); second number indicates continuous
monitor (Theta Sensor) (±10 ppm).
§40 ppm minimum detection limit; ND = none detected.
# ±2% of total concentration.
44
-------
TABLE 3. CHEMILUMINESCENCE FOR NO DURING PHASE III—SOLVENT REFINED COAL
Sample
*Low output = 7 MW
Med output = 14 MW
Full output = 21 MW.
NO concentrations
x
Date
6/15
6/18
6/19
6/14
6/13
6/16
6/17
6/22
6/23
6/24
Load
conditions*
Low
Low
Low
Med
Full
Full
Full
Full
Full
23.5 MW
Sampling
sitet
0-1
1-1
0-1
0-1
0-1
0-1
1-1
0-3
0-3
0-1
(ppm)t
125
120
125
160
190
190
190
200
220
260
tSampling sites:
±10 ppm.
0-1 = outlet to precipitator 1
1-1 = inlet to precipitator 1
0-3 = outlet to precipitator 3.
45
-------
TABLE 4. CHEMILUMINESCENCE FOR NO DURING PHASE II—LOW SULFUR COAL
Sample
NO concentrations
x
Date
5/26
5/31
6/02
5/25
5/29
5/30
5/24
5/27
5/28
6/05
6/06
Load
conditions*
Low
Low
Low
Med
Med
Med
Full
Full
Full
Full
Full
Sampling
sitet
0-1
0-1
1-1
0-1
1-1
0-1
0-1
0-1
1-1
0-3
0-3
(ppm)f
110
110
100
170
160
150
225
215
220
170
110
*Low output = 7 MW
Med output = 14 MW
Full output = 21 MW.
tSampling sites: 0-1 = outlet to precipitator 1
1-1 = inlet to precipitator 1
0-3 = outlet to precipitator 3.
f ±10 ppm.
46
-------
TABLE 5. GAS CHROMATOGRAPHY FOR Ci-Cs/C7
PHASE II—LOW SULFUR COAL
Sample
5/25
Medium output
(14 MW)
Outlet to
precipitator 1
5/29
Medium output
(14 MW)
Inlet to
precipitator 1
5/30
Medium output
(14 MW)
Outlet to
precipitator 1
5/26
Low output
(7 MW)
Outlet to
precipitator 1
5/31
Low output
(7 MW)
Outlet to
precipitator 1
6/02
Low output
(7 MW)
Inlet to
precipitator 1
Range
GC1 -160
GC2 -100
GC3 -50
GC4 0
GC5 30
GC6 60
GC1 -160
GC2 -100
GC3 -50
GC4 0
GC5 30
GC6 60
GC1 -160
GC2 -100
GC3 -50
GC4 0
GC5 30
GC6 60
GC1 -160
GC2 -100
GC3 -50
GC4 0
GC5 30
GC6 60
GC1 -160
GC2 -100
GC3 -50
GC4 0
GC5 30
GC6 60
GC1 -160
GC2 -100
GC3 -50
GC4 0
GC5 30
GC6 60
- -100
- -50
- 0
- 30
- 60
- 90
- -100
- -50
- 0
- 30
- 60
- 90
- -100
- -50
- 0
- 30
- 60
- 90
- -100
- -50
- 0
- 30
- 60
- 90
- -100
- -50
- 0
- 30
- 60
- 90
- -100
- -50
- 0
- 30
- 60
- 90
Number of
Weight peaks observed
NONE DETECTED*
NONE DETECTED!
NONE DETECTED!
NONE DETECTED*
NONE DETECTED!
NONE DETECTED!
See footnotes at end of table.
47
-------
TABLE 5 (con.)
Sample
Range
Weight
Number of
peaks observed
5/27
Full output
(21 MW)
Outlet to
precipitator 1
5/28
Full output
(21 MW)
Inlet to
precipitator 1
6/05
Full output
(21 MW)
Outlet to
precipitator 3
6/06
Full output
(21 MW)
Outlet to
precipitator 3
GC1 -160
GC2 -100
GC3 -50
GC4 0
GC5 30
GC6 60
GC1 -160
GC2 -100
GC3 -50
GC4 0
GC5 30
GC6 60
GC1 -160
GC2 -100
GC3 -50
GC4 0
GC5 30
GC6 60
GC1 -160
GC2 -100
GC3 -50
GC4 0
GC5 30
GC6 60
- -100
- -50
" I*. NONE DETECTED*
- 60
- 90
- -100
- -50
" 2Q NONE DETECTED!
- 60
- 90
- -100
- -50
~ go NONE DETECTED!
- 60
- 90
- -100
- -50
~ 20 NONE DETECTED!
- 60
- 90
*5 ppm = minimum detectable limit.
fO.5 ppm = minimum detectable limit.
48
-------
TABLE 6. GAS CHROMATOGRAPHY FOR C
PHASE III—SOLVENT REFINED COAL
Sample
6/15
Low output
(7 MW)
Outlet to
precipitator 1
6/18
Low output
(7 MW)
Inlet to
precipitator 1
6/19
Low output
(7 MW)
Outlet to
precipitator 1
6/14
Medium output
(14 MW)
Outlet to
precipitator 1
6/13
Full output
(21 MW)
Outlet to
precipitator 1
6/16
Full output
(21 MW)
Outlet to
precipitator 1
Range
GC1 -160
GC2 -100
GC3 -50
GC4 0
GC5 30
GC6 60
GC1 -160
GC2 -100
GC3 -50
GC4 0
GC5 30
GC6 60
GC1 -160
GC2 -100
GC3 -50
GC4 0
GC5 30
GC6 60
GC1 -160
GC2 -100
GC3 -50
GC4 0
GC5 30
GC6 60
GC1 -160
GC2 -100
GC3 -50
GC4 0
GC5 30
GC6 60
GC1 -160
GC2 -100
GC3 -50
GC4 0
GC5 30
GC6 60
Number of
Weight* peaks observed
- -100
- -50
" °0 NONE DETECTED
- 60
- 90
- -100
- -50
" 30 NONE DETECTED
- 60
- 90
- -100
- -50
" 3Q NONE DETECTED
- 60
- 90
- -100
- -50
I 30 NONE DETECTED
- 60
- 90
- -100
- -50
~_ 30 NONE DETECTED
- 60
- 90
- -100
- -50
~ 30 NONE DETECTED
- 60
- 90
See footnote at end of table.
49
-------
TABLE 6 (con.)
Sample
6/17
Full output
(21 MW)
Inlet to
precipitator 1
6/22
Full output
(21 MW)
Outlet to
precipitator 3
6/23
Full output
(21 MW)
Outlet to
precipitator 3
6/24
Output = 23.5 MW
Outlet to
precipitator 1
Range
GC1 -160 -
GC2 -100 -
GC3 -50 -
GC4 0 -
GC5 30 -
GC6 60 -
GC1 -160 -
GC2 -100 -
GC3 -50 -
GC4 0 -
GC5 30 -
GC6 60 -
GC1 -160 -
GC2 -100 -
GC3 -50 -
GC4 0 -
GC5 30 -
GC6 60 -
GC1 -160 -
GC2 -100 -
GC3 -50 -
GC4 0 -
GC5 30 -
GC6 60 -
-100
-50
0
30
60
90
-100
-50
0
30
60
90
-100
-50
0
30
60
90
-100
-50
0
30
60
90
Number of
Weight* peaks observed
NONE DETECTED
NONE DETECTED
NONE DETECTED
NONE DETECTED
*0.5 ppm = minimum detectable limit.
50
-------
STUDY NUMBER 3
DATA
SOURCE:
SASS TRAIN AND LEVEL I
PROCEDURES EVALUATION
DATA
STATUS:
Final Report, November 1976
AUTHORS:
CONTRACTOR:
S. L Reynolds
D. G. Ackerman, J. F. Clausen, M. L. Kraft, C. A. Zee
TRW Defense and Space Systems Group
One Space Park
Redondo Beach, California 90278
Contract No. 68-02-2165, Task 14
PROJECT
OFFICER:
Dr. R. M. Statnik
Industrial Environmental Research Laboratory
Office of Energy, Minerals, and Industry
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
51
-------
52
-------
GENERAL
The purpose of this study, performed at the coal-fired boiler at the
KVB R&D facility in Tustin, California, was to evaluate the trapping effi-
ciency of the SASS train. The raw materials, control device systems, and
all parts of the SASS train were analyzed to perform mass balance determina-
tions .
The actual catch from the SASS train was;
Probe solids 0.0939 g
10|J cyclone 38.5477
3M cyclone 23.7844
1(J cyclone 11.2979
Filters (3) 3.3463
1=77.0702
Sampling was at 4 actual cfm rather than 4 standard cfm.
Several suggestions were made for improvements on the SASS train design.
There were problems with galling or cross-threading of the interconnect
fittings within the cyclone system. Gyrolok fittings, AN fittings, stainless
steel ball and socket joints, or welding of some of the interconnect tubes
were suggested to solve these problems. Difficulties with the clamping of
the upper and lower halves of the 10|J cyclone and with cleaning of the 3p
cyclone reservoir were discussed. The exit tube to the 1(J cyclone tended to
shear off when it was used as a lever to tighten the fittings; two possible
solutions to this problem involve reinforcement of the joint weld or louver-
ing the outer surface of the cup and upper portion of the cyclone to provide
a firmer grip. Because of the necessity of frequent filter changes when
flat filters are used, "S"-pleated filters were suggested. It was further
suggested that lowering the XAD-2 module temperature from 60° C to 30° C
would reduce corrosion problems. In the impingers system, Lexan was recom-
mended as a preferable construction material and it was also recommended
that the pressure equalization tubes be closed off to permit a smaller
impinger solution volume. Use of an insulated impinger container, and a
higher-capacity desiccant were proposed.
Elemental analyses in this study were performed using SSMS, AAS, and
electron microprobe (EM). Cl~ and F analyses were by specific ion elec-
trode. Four methods of preparation of samples for inorganic analysis were
investigated: Parr bomb combustion, Teflon bomb digestion with HN03:HF,
Teflon bomb digestion will HN03, and Teflon bomb digestion with HN03:H202.
It was concluded that Parr bomb combustion "released more metal than acid
leaching" and was the method of choice.
53
-------
SSMS analyses were used in mass balance determination and in character-
izing elemental capture by the various components of the SASS train. Ele-
ments were generally distributed as was expected, the heavy metals concen-
trating toward the 10|J cyclone and the volatile elements concentrating
toward the impingers. An unanticipated effect was the trapping of volatile
trace elements by the condenser well. Mass balance closure was stated to be
generally good with the exception of contaminants from the 316 stainless
steel parts of the SASS train.
Specific elemental analysis was performed for As, Hg, Sb, Se, Cd, Pb,
and V. As analysis was by the SDDC (colorimetric) method, and Hg analysis
was by flameless AA. The remainder of the elements were analyzed by stand-
ard AA techniques.
Organic analyses were by Level 1 procedures with a few modifications.
GC analysis for C7-C12 volatile organics was performed with room temperature
injection programmed from 29° C to 150° C at 10° C/min rather than the
specified 5 minutes at 50° C with programming from 50° C to 150° C at 10°
C/min. After LC fractionation, a colored material remained in the column
and three more fractions were collected (10 ml of HC1/CH3OH/CH2C12, 10 ml of
CH3OH and 10 ml of acetonitrile) to determine the nature of the colored
material. On IR analysis of three samples, fraction 9 showed water, alcohol-,
aromatics, and an aromatic ketone. Fraction 10 showed water, alcohol,
sulfonic acid, and an aromatic ketone. Fraction 11 showed nothing by IR
analysis.
Particle characterization was performed on two filters. Photomicro-
graphs and accompanying comments from observation at 42X magnification were
presented.
GASEOUS GRAB
No sampling was performed in this study.
SASS
Cyclone and filter catches were analyzed individually by SSMS, organic
techniques, and specific ion electrode to determine distribution of constit-
uents through the sampling system. The Level 1 specified CH2C12:CH3OH rinse
was followed by an acetone rinse, then a benzene rinse, to test the effi-
ciency of the Level 1 solvent rinses. The XAD-2 cannister rinse was analyzed
separately from the condenser well to differentiate between organics trapped
in these two stages. The condenser well was also rinsed with 1:1 HN03:H20
to determine what trace metals were trapped there.
The impinger system was evaluated for several parameters. Trapping
efficiency of the H202-APS solution at different temperatures was determined
to be 100 percent in a study involving an Hg stream. A concurrent stability
study showed that after 12 hours, trapping efficiency was 0 percent. A
black precipitate was noted in the second and third impingers after the
sample had been collected. Microprobe analysis showed that this precipitate
was silver sulfide.
54
-------
FUGITIVE EMISSIONS
No sampling was performed in this study.
LIQUIDS AND SLURRIES
No sampling was performed in this study.
SOLIDS
Coal feed, bottom ash, and baghouse flyash were sampled and analyzed as
indicated in Figure 1 taken from the study:
PERIPHERAL SOLIDS
SAMPLES
BOTTOM ASH
SSMS ON
NEAT SAMPLE
ORGANIC
SOXLET
EXTRACTION
HNO3 - PARR ASH
AAS ON SELECTED
ELEMENTS
F'ANDCf
SPECIFIC ION
ELECTRODE
BAGHOUSE
FLY ASH
COAL FEED
SSMS ON
NEAT SAMPLE
ORGANIC
SOXLET
EXTRACTION
SSMS ON
HNOa PARR
ASHED SAMPLE
ORGANIC
SOXLET
EXTRACTION
HNO3 - PARR ASH
AAS ON SELECTED
ELEMENTS F" AND
Cl" SPECIFIC ION
ELECTRODE
SSMS ON
PLASMA ASHED
SAMPLE
AAS ON SELECTED
ELEMENTS F" ANDCl"
SPECIFIC ION
ELECTRODE
Figure 1. Analysis plan for peripheral solids samples,
55
-------
TABLE 1. SPARK SOURCE MASS SPECTROSCOPY
PLASMA-ASHED COAL FEED
(Mg/g)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
9
15
<0.8
36
6
<1
0.3
89
0.4
3
2
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
6
1
5
2
5
20
5
110
37
320
5
2
10
4
2
<4
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
10
23
230
2
MC
97
2
6
20
3
33
79
60
45
20
MC
240
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
340
420
MC
75
MC
MC
50
MC
MC
MC
MC
MC
MC
MC
940
7
190
No data indicates not reported.
MC = major component.
TABLE 2. SPARK SOURCE MASS SPECTROSCOPY
BOTTOM ASH
(Mg/g)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
4
11
0.6
16
1
0
0.1
0.9
0.2
0.6
1
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
2
0.7
1
0.5
2
9
5
52
20
290
5
9
0.9
2
0.7
0.3
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
9
10
110
40
960
87
8
2
17
3
13
70
75
140
30
MC
320
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F -
B
Be
Li
340
110
MC
42
MC
MC
280
MC
MC
MC
MC
MC
MC
-1 180
*130
4
*
-
No data indicates not reported.
MC = major component.
Interference
56
-------
TABLE 3. SPARK SOURCE MASS SPECTROSCOPY
lp-3y PARTICULATES
(yg/g)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
4
<0.4
0.7
39
2
1
1
0.2
1
0.3
0.9
1
Dy
Tb
Gd
£u
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
la
Cd
Ag
Pd
2
0.7
1
0.6
2
5
3
100
t
300
. t
17
3
5
1
0.3
Rh
Ru
Mo
Kb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
8
11
280
42
MC
100
1
0.7
100
12
70
190
36
35
32
MC
50
Cr
V
Ti
Sc
Ca
K
CL
S
P
Si
Al
Mg
Na
F
B
Be
Li
290
200
MC
45
MC
MC
300
MC
MC
MC
MC
MC
MC
~75
MC
8
22
No data indicates not reported.
tValue less than blank value.
MC = major component.
TABLE 4. SPARK SOURCE MASS SPECTROSCOPY
3y-10y PARTICULATES
(yg/g)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
4
11
0.7
13
t
<0.8
<0.9
0.3
3
0.3
1
1
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
3
1
2
0.8
2
9
4
130
34
290
5
8
2
6
2
1
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
9
17
170
80
780
70
2
1
68
7
43
57
44
52
24
MC
92
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
450
180
MC
68
MC
MC
MC
MC
MC
MC
MC
MC
MC
~76
680
7
3
No data indicates not reported.
tValue less than blank value.
MC = major component.
57
-------
(ue/g)
._ .nralCULATES
(M8/g)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
4
20
1
26
1
0.6
2
0.2
2
0.3
0.9
1
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
2
1
2
0.8
2
10
4
56
55
510
. 4
3
0.8
2
2
0.2
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
9
11
180
47
MC
92
1
2
45
5
31
38
48
58
18
MC
340
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
490
200
MC
60
MC
MC
MC
MC
MC
MC
MC
MC
MC
-190
MC
7
>180
Ho data indicates not reported.
MC = major component.
TABLE 6. SPARK SOURCE MASS SPECTROSCOPY
BAGHOUSE ASH
(Mg/g)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
4
18
0.4
35
1
0.09
0.9
0.2
1
0.1
0.6
1
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
2
0.6
1
43
2
20
8
89
39
270
19
' 18
2
4
0.9
4
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
8
20
200
75
MC
82
7
1
40
9
25
2.0
43
78
23
MC
>70
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
160
180
MC
40
MC
MC
530
MC
MC
MC
MC
MC
MC
~170
710
3
53
No data indicates not reported.
MC = major component.
58
-------
TABLE 7. SPARK SOURCE MASS SPECTROSCOPY
FILTER NUMBER 2
(Mg/g)
U 29
Th 10
Bi 2
Pb 55
Tl 6
Hg
Au
Pt
Ir
Os
Re
W 2
Ta
Hf
Lu
Yb
Tm
Er
Ho 2
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
4
3
12
6
10
26
11.3
214
66
493
. 8.8
0
6
18
0
0
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
43
50
90
29
>898
55
3
<0
41
10
104
116
22
0
410
MC
140
.2
.1
.4
.31
.7
.3
.2
.2
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
394
551
>687
~153
t
t
0
>796
>801
t
t
t
t
MC
t
36.
261.
9
3
No data indicates not reported.
MC = major component.
tValue less than blank value.
TABLE 8. SPARK SOURCE MASS SPECTROSCOPY
FILTER NUMBER 3
(M8/8)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
0.2
0.2
0.02
t
0.06
t
t
t
t
0.006
.02
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.05
0.2
.08
0.02
0.1
t
t
t
t
>703
. t
t
0.1
0.1
t
t
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
t
t
t
t
>898
t
t
>0.5
f
10
t
t
t
t
4
t
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
t
5
>687
~ t
t
t
t
>796
>801
t
t
t
t
t
0.1
No data indicates not reported.
MC = major component.
tValue less than blank value.
59
-------
TABLE 9. SPARK SOURCE MASS SPECTROSCOPY
XAD-2 EXTRACT
(Hg/ml)
u
Th
Bi
Pb 5
Tl 0.08
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.003
0.005
.006
.003
.013
0.001
0.16
0
0.013
.01
Eh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
0
1
t
0.1
t
<0.002
0
t
.002
0.1
6.5
>2
t
3
0
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
3
t
0
0
1
t
t
t •
0.2
t
0.1
0
t
t
t
t
^Corrected for blank.
tValue less than blank value.
No data indicates not reported.
TABLE 10. SPARK SOURCE MASS SPECTROSCOPY
XAD-2 MODULE HN03 RINSE
(Mg/ml)
D
Th
Bi
Pb <0.09
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba 0.03
Cs ,0.01
I
Te
Sb 0.03
Sn
In
Cd 0.06
Ag .04
Pd
Rh
Ru
Ho
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
0.02
0.01
.02
0.07
.6
.02
.06
0.2
2
MC
2
MC
2
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
MC
1
1
0.09
6
1
0.7
MC
8
MC
0.4
MC
MC
~2
0.9
.002
No data indicates not reported.
MC = major component.
60
-------
TABLE 11. SPARK SOURCE MASS SPECTROSCOPY
IMPINGERS
u
Th
Bi
Pb <0.05
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce 0.01
La 0.003
Ba 0.002
Cs 2
I
Te
Sb
Sn
In
Cd
Ag
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
0.08
<0.02
t
t
0.02
<0.003
<0.005
<0.04
.05
0.4
0.08
0.5
.01
5
0.1
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
2
<0.02
<0.2
<0.01
1.2
t
0.2
MC
2
1.6
0.05
0.6
MC
t
0
.
.?»
n
*Interference.
tValue less than blank value.
^Blank and sample both contained potassium as a major component.
No data indicates not reported.
MC = major component.
61
-------
TABLE 12. ATOMIC ABSORPTION (AA)—WET CHEMICAL METHODS*
(Mg/g)
Sample
Benzoic acid blank
Bottom ash (composite)
10|j cyclone
3|J cyclone
l(j cyclone
XAD-2 blank
XAD-2 sample
Baghouse ash
Coal feed
HN03 wash of XAD-2
module
Impinger #1
Impinger #2
Impinger #3
Hg
___
0.04
0.20
0.24
1.39
0.10
0.18
0.18
0.007
—
0.00085 Mg/n>]
0.0071 Mg/ml
0.0062 (Jg/ml
Sb
<30
<60
<290
<290
<300
<15
<15
<290
<30
1.4 pg/ml
L 3 Mg/ml
<0 . 2 pg/ml
<0 . 2 (Jg/ml
As
<3
<6
<29
29
50
<1.5
1.5
<29
<3
8 (Jg/ml
0.06
<0.06
<0.06
Mg/"»l
Mg/ml
Mg/ml
^Analysis by AAS.
TABLE 13. ANION ANALYSIS*
Sample
Coal feed
Baghouse ash
Bottom ash
10(J cyclone
3p cyclone
lM cyclone
XAD-2 sample
XAD-2 blank
Impinger blank
Impinger #1
Cl F
ng/g Mg/g S04 S03 N03 N02
2 <1
2 <1
0.8 <1
2 <1
0 <1
27 <1
15 <1
5 <1
0 <1
l,342t <1
*By specific ion electrode.
fThis value is mg in total impinger.
62
-------
TABLE 14. LC FRACTIONATION
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
XAD-2 module wash*
Grav
TCO mg Total Total
0.0
0.0
0.0
0.0
0.0
0.197
13.544
51.438
XAD-2 caanister washf
Grav
TCO mg Total Total
0.0
0.0
0.0
0.0
0.0
0.356
32.868
30.679
Fraction
LC 1
' LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Coal feed extract^
Grav
TCO mg Total Total
3.798
1.576
9.906
3.190
1.884
8.543
3.070
11.438
*Used 10 ml of sample, containing 161.5 mg of gravimetric solids.
fUsed 20 ml of sample, containing 194.6 mg of gravimetric solids.
fUsed 50 ml of sample, containing 50.5 mg of gravimetric solids.
63
-------
TABLE 15. IR REPORT
SAMPLE: XAD-2 MODULE WASH
LC fraction
Assignments
1
2
3
4
5
6
7
8
No IR
No IR
No IR
No IR
No IR
No IR
Water/alcohol, possibly aromatic ketone
Water/alcohol; silicone, aromatic ketone
-------
TABLE 16. IR REPORT
SAMPLE: XAD-2 CANNISTER WASH
Ul
LC fraction
1
2
3
4
5
6
7
8
Assignments
No IR
No IR
No IR
No IR
No IR
No IR
Water/alcohol
Water/ alcohol
-------
TABLE 17. IR REPORT
SAMPLE: COAL FEED EXTRACT
LC fraction Assignments
o\
1 Alkanes, trace silicone
2 Alkanes, alkenes, trace silicone, trace aromatics
3 Ethers
4 Water, olefins, ethers, silicones, aromatics
5 Water, aromatics, ethers
6 Water, ethers
7 Water, ethers
8 Water, sulfonic acid
-------
TABLE 18. LRMS REPORT
PENTANE BLANK PLUS CONDENSATE BLANK BEFORE LC FRACTIONATION
Categories Present
Intensity
Major
Minor
Category
Phthalate esters
C7H1302 (esters,
acids, etc.) or
CioHg (indanes,
indenes, or tetra-
hydronaphthalenes)
MW range
TABLE 19. LRMS REPORT
COMBINED CYCLONE RINSES BEFORE LC FRACTIONATION
1. Categories Present
Intensity
Major
Minor
Category
Phthalate esters
Aliphatic hydro-
carbons
MW range
200
-------
TABLE 20. LRMS REPORT
XAD-2 RESIN EXTRACT BEFORE LC FRACTIONATION
1. Categories Present
Intensity
Major
Moderate
Category
Phthalate esters
believed to be
primarily
dioctylphthalate
Ethyl benzoate
MW range
00
TABLE 21. LRMS REPORT
BAGHOUSE DUST BEFORE LC FRACTIONATION
1. Categories Present
Intensity
Major
Moderate
Trace
Trace
Trace
Category
Hydrocarbons,
including alkanes ,
alkenes, dienes,
cyclics
(ether, alcohol,
ester)
Possible biphenyl or
acenaphthalene
Possible naphthoic
acid
Phthalate esters
MW range
-------
TABLE 22. LRMS REPORT
BOTTOM ASH BEFORE LC FRACTIONATION
1. Categories Present
Intensity Category MW range
Major Phthalate esters
Major Hydrocarbons 200
including alkanes,
alkenes, and
possible dienes or
cycloalkenes
Minor Aromatic hydrocarbons
Trace Possibly 2,4-ditert
butyl phenol
-------
TABLE 23. LRMS REPORT
XAD-2 MODULE WASH
LC FRACTION 7
1. Categories Present
Intensity
Minor
Major
Minor
Moderate
Major
Minor
Minor
Category
Aliphatic hydro-
carbons, rings or
olefins present
HC135 and HC137
SO and S02 (only
seen at higher
probe temperatures)
CH3C135 and CH3C137
Ph-R cleavage likely
from phthalate esters
Possible CH2=CHPh
(N02) (present only
when sample at 125° C)
Phthalate esters
Unassigned-chlorinated
Chlorinated organic
MW range
41, 43, 55,
57, 69, 71, etc.
36, 38
48, 64
50, 52
77, 91, 105
148
149
151, 153, 155
See table 25 for
compound F
-------
TABLE 24. LRMS REPORT
XAD-2 MODULE WASH
LC FRACTION 8
1. Categories Present
Intensity
Major
Minor
Major
Major
Minor
Minor
Category
HC135 and HC137
Phthalate esters
(artifacts)
Methyl seloxines
(artifacts)
Chlorinated hydro-
carbon. At least 6
chlorine atoms (for
this report this is
compound A)
Chlorinated hydro-
carbon, at least 3
chlorine atoms (for
this report this is
compound B)
Chlorinated hydro-
carbon. Believed to
contain at least 8
chlorine atoms (for
this report this is
compound C)
Chlorinated hydro-
carbon, contains at
least 9 chlorine atoms
(for this report this
is compound D)
MW range
36, 38
149
207
56, 91, 93, 126, 128,
130, 161. 165, 167,
196, 198, 200, 231,
233, 235, 266, 268,
270, 272
73, 108, 110, 143,
145, 147, 178, 180,
182
198, 200, 202, 233,
235, 268, 270, 272,
303, 305, 307, 309,
338, 340, 342, 344
2J.5, 217, 219, 221,
250, 252, 254, 256,
285, 287, 289, 291
320, 322, 324, 326
328> 355, 357, 359,
390, 392, 394, 396,
398, 400
-------
TABLE 24 (con.)
1. Categories Present
Intensity
Moderate
Moderate
Category
Chlorinated hydro-
carbon, contains at
least 7 chlorine atoms
(for this report this
is compound £)
Dichloroethane
MW range
224. 226, 228, 259,
261, 263, 265, 294,
296, 298, 300, 302
63, 65, 98, 100, 102
-------
TABLE 25. LRMS REPORT
XAD-2 CANNISTER WASH
LC FRACTION 7
1. Categories Present
Intensity
Moderate
Minor
to
Major
Trace
Minor
Category
Chlorinated organic
Chlorinated organic
Chlorinated organic
contains at least 6
chlorine atoms (for
this report this is
compound F)
Methylene chloride
Hydrocarbons
Phthalates
MW range
See Table 24 for
compound A
See Table 24 for
compound C
116. 118, 120, 122
151, 153, 155, 157,
186, 188, 190, 221,
223, 225, 227, 229,
256. 258, 260
50, 52
41, 43, 55, 57, etc.
149
-------
TABLE 26. LRMS REPORT
XAD-2 CANNISTER WASH
LC FRACTION 8
1. Categories Present
Intensity
Trace
Minor*
Minor*
Major
Minor
Major
Moderate
Category
S02
Hydrocarbons
Phthalates
Chlorinated organic
Chlorinated organic
Chlorinated organic
Chlorinated organic
(Peaks caused by this
compound more intense
at lower sample probe
temperatures.)
Dichloroethane (Peaks
more intense at higher
sample probe
temperatures.)
MW Range
64, 48
41, 43, 55, 57, etc,
149
See table 24 for
compound A
See table 24 for
compound B
See table 24 for
compound E
See table 25 for
compound F
63, 65, 98, 100,
102
*These peaks may arise from phthalate esters.
-------
TABLE 27. LRMS REPORT
COAL FEED
LC FRACTIONS 6, 7, and 8*
1. Categories Present
Intensity
Ul
Major
Minor
Major
Major
Moderate
Category
None
Hydrocarbon
CH3C1
Phenylt
Alkyl substituted
phenolsf
Phthalates
MW range
Dense peak pattern
with a peak at
every atomic mass
unit (commonly
called a pickett
fence).
41, 43, 55, 57, 69,
71, 83, 87 are more
intense than
picketts
50, 52
77, 91, 105, 119
107, 108, 121, 122
149
*LC 7 has the same composition as LC6 except that the phenols (107, 108, 121, 122) were not noted.
LC 8 has the same composition as LC 7 except that a trace of a chlorinated organic, believed to be
compound F (see table 25), is seen.
tThese patterns are probably related.
-------
76
-------
STUDY NUMBER 4
DATA EFFECT OF A
SOURCE:
FLYASH CONDITIONING AGENT
ON POWER PLANT EMISSIONS
EPA-600/7-76-027
DATA
STATUS: Final Report, October 1976
AUTHOR: Leslie E. Sparks
CONTRACTOR: Industrial Environmental Research Laboratory
Office of Energy, Minerals, and Industry
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
Program Element No. EHE624
77
-------
78
-------
GENERAL
In electric generating plants, the low-sulfur coal burned to reduce
emissions of sulfur gases produces a flyash having a high resistivity, and
thus a low collection efficiency by electrostatic precipitation (ESP). The
purpose of this study, conducted at Pennsylvania Power and Light Company's
Montour Station, was to evaluate the efficiency of a flyash conditioning
agent, added to decrease resistivity of the low-sulfur coal's flyash, pro-
ducing an effluent gas that is low in both sulfur gases and suspended par-
ticulates. This flyash conditioning agent, called LPA-402A, was identified
as diethylamine sulfate in methanol and water. A secondary goal of the
program was to characterize effluent gases during use of LPA-402A. The
testing was done in three parts during combustion of: (1) low-sulfur coal +
LPA-402A, (2) high-sulfur coal, and (3) low-sulfur coal plus water. Four
types of measurements were made: (1) chemical characterization (S02, SOs,
NHs, and organics), (2) flyash resistivity, (3) flyash particle size distri-
bution, and (4) opacity. The data indicated that LPA-402A reduced resistiv-
ity of the flyash from 10 x 1010 ohm-cm to 4 X 1010 ohm-cm, but also that
ESP efficiency was still too low using low-sulfur coal + LPA-402A to meet
emission standards. In addition to this, the LPA-402A may have resulted in
increased effluent levels of SOs, S02, and NHa- Two additional observations
drawn from this study were that the 863 concentration was not significantly
different between the ESP inlet and the ESP outlet and that this electro-
static precipitation system responded slowly to changes in flyash resistiv-
ity. This study indicated a need for further work on formulating and test-
ing more suitable flyash conditioning agents.
In summary, average values during the three phases of the test were:
S03 NH3
Low-sulfur coal
no conditioners
(H20 injection)
Low-sulfur coal
+ LPA-402A
High-sulfur coal
no conditioners
GASEOUS GRAB
S02
(ppm)
663
879
1,141
Flyash
resistivity
(ohm/ cm)
16
23
2
0
5
0
9.9 X 1010
4.0 X 1010
1.5 X 1010
A special sampling train containing isopropyl alcohol to absorb S03 and
3% hydrogen peroxide to absorb S02 was used to sample sulfur oxides at the
ESP inlet and ESP outlet. Analysis was by the thorin titration method.
79
-------
Measurements at both sites were not significantly different. Another spe-
cialized train with three impingers containing dilute sulfuric acid was used
to sample for ammonia. NH3 analysis employed a modified Kjeldahl titration
of distillate from the H2S04 impinger solutions.
SASS
A SASS train was not employed in this study. The organic sampling
apparatus used in the study consisted of a heated probe, heated cyclone and
filter, cooling coil, Tenax-GC adsorption module and a Lear-Siegler standard
sampling train. Only the Tenax-GC module was taken for analysis. Organic
analyses were conducted according to the "Technical Manual for Analysis of
Organic Materials in Process Streams." Qualitative analysis of extracts and
LC fractions was by FTIR. Specific analysis for diethylnitrosamine, a
likely decomposition product of the additive, was by GC-MS, although none
was detected (minimum detection limit = 5 ppt). Samples were drawn at the
ESP inlet and ESP outlet.
Particle size measurement employed cascade impactors, a Brinks instru-
ment at the ESP inlet and an Andersen instrument at the ESP outlet. Data on
particle size distribution from cascade impactors are not readily equated to
the Level I data from sequential cyclones, but graphical representations of
cascade impactor data at the ESP inlet and outlet are given in the report.
FUGITIVE EMISSIONS
Sampling was not performed in this study.
LIQUIDS AND SLURRIES
Sampling was not performed in this study.
SOLIDS
Sampling was not performed in this study.
80
-------
TABLE 1. GAS CHROMATOGRAPHY* FOR INORGANIC GASES
FLUE GAS PRODUCED FROM INPUT VARIATIONS
Sample
Low-sulfur coal +
LPA-402A conditioner
High- sulfur coal
Low-Sulfur coal +
water injection
S02
ppm
879
1,141
663
S03
ppm
28.8
23
16
NH3
ppm
7.9
t
t
*Sulfur oxides determined by IPA-thorin titration, NHs by modified Kjeldahl
titrimetric procedure.
tNot detected.
81
-------
TABLE 2. LC FRACTIONATION*
LOW-SULFUR COAL
Jl
LPA 402A Injected
J2
LPA 402A Injected
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Grav
TCO mg Total Total
0.23
1.1
0.54
6.8
0.82
5.7
1.4
0.06
Grav
TCO mg Total Total
2.4
0.44
0.54
9.1
0.84
6.5
0.09
0-03
BW1
Water Injected
Fraction TCO
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Grav
mg Total Total
1.4
3.8
0.47
1.0
0.47
7.7
0.01
0 . 005
''Approximately 1,415 1 of gas sampled and collected on Tenax-GC column.
Pentane extraction for 24 h with one-half of extracted sample fractionated.
GC-MS performed on unfractionated half. (Sample weights not available.)
82
-------
TABLE 3. LC FRACTIONATION*
HIGH-SULFUR COAL
Fraction
-
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
J3
No Injection
Grav
TCO mg Total Total
••AMMAB^— ^^*-W*~*MM*bMMMlk^^««^Ba^VBMM^^_I^^B^^^^^Hv^.^.vta-^_^^_^^HBV>>^BV^p(^H^^^^>VBWI^^H
0.23
0.18
0.23
6.0
0.18
0.48
0.04
0.08
J4
No Injection
Grav
TCO mg Total Total
0.18
0.077
0.13
3.9
0.21
0.27
0.03
0.01
"'Approximately 1,415 1 of gas sampled and collected on Tenax-GC column.
Pentane extraction for 24 h with one-half of extract sample fractionated.
GC-MS performed on unfractionated half. (Sample weights not available.)
83
-------
TABLE 4. IR REPORT
SAMPLE: LOW-SULFUR COAL + LPA 402A CONDITIONER
LC Jl J2
1 Silicone, aromatic hydrocarbon (multiple or Silicone, aromatic hydrocarbon
fused ring)
2 Same as LC 1 Silicone, aromatic hydrocarbon, ester (trace)
3 Silicone, aromatic hydrocarbon, aliphatic Silicone, ester (trace), aromatic ketone or
ester quinone
4 Aromatic ketone or quinone Aromatic ketone or quinone
5 Aromatic ketone or quinone, aliphatic Aromatic ketone or quinone, aliphatic
ketones ketones
oo 6 Carboxylic acid, aliphatic ketones Carboxylic acid, aliphatic ketones
•?*
7 Carboxylic acid (soaps), alcohol (aliphatic, Carboxylic acid salt (soap)
polyalcohol or alkanol amine)
8 * . *
*Not reported.
-------
TABLE 5. IR REPORT
SAMPLE: LOW-SULFUR COAL + WATER INJECTION
LC BW1
1 Silicone trace
2 Aromatic ketone or quinone
3 Same as LC 2
4 Aromatic ketone or quinone, substituted phenol
5 Same as LC 4
6 Highly substituted phenol (possible polyhydroxy compound)
7 *
oo 8 *
'''Not reported.
-------
TABLE 6. IR REPORT
SAMPLE: HIGH-SULFUR COAL
LC
J3
J4
00
1
2
3
4
5
7
8
Silicone trace
Silicone (trace), aromatic hydrocarbon (trace)
Aromatic ketone or quinone
Same as LC 3
Aromatic ketone or quinone, 2nd aromatic
ketone/quinone
Aliphatic ketone
Silicone
Silicone, aromatic hydrocarbon
Aromatic ketone or quinone
Same as LC 3
Aromatic ketone or quinone, 2nd aromatic
ketone/quinone
Aliphatic ketone, 2nd aromatic
ketone/quinone
*Not reported.
-------
STUDY NUMBER 5
DATA
SOURCE:
ORGANIC AND SULFATE SAMPLING
ANALYSIS AT
COLBERT STEAM PLANT
GCA-TR-76-36-G
DATA
STATUS:
Draft Final Report, October 1976
AUTHORS:
CONTRACTOR:
Robert M. Brad way and Donajd F. Durocher
GCA Corporation
GCA/Technology Division
Bedford, Massachusetts 01730
Contract No. 68-02-1316, Task 21
PROJECT
OFFICER:
Ronald A. Venezia
Chemical Processes Branch
Industrial Environmental Research Laboratory
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
87
-------
88
-------
GENERAL
A study was performed by GCA at TVA's coal-fired Colbert Steam Plant
for Level I organics plus sulfates, PCB's, and benzo(a)pyrene (B(a)P).
Particulate loading was performed to assess the efficiency of the electro-
static precipitator (ESP) which' was tested at a particle removal efficiency
of 99.58% with an average outlet concentration of 0.0131 grains/scf. Con-
current additional testing at this same site was conducted by TVA, and
results will be published separately by TVA. Sampling took place during
nearly full load conditions and concentrated on chemically characterizing
the emissions from Colbert's Unit One, a 185-MW boiler with dual exhaust
passages (herein designated ducts A and B) to an ESP. Two tests (1 and 2)
were run on the duct A ESP outlet, and test 3 was run on the duct A ESP
inlet.
GASEOUS GRAB
The Level I methodology was not employed. Federal Register methods
with a RAC 2343 source sampling train were used to determine C02, 03, CO,
and H20, as well as other parameters.
SASS
A SASS train was not used in this study. Particulate-containing
gaseous streams, specifically the ESP outlet duct from Unit One, were
sampled with a RAC 2343 sampling system, a standard sampling system for
Federal Register methods 2 through 8 (excluding method 7), and modified to
include a Tenax-GC adsorbent module between the filter and impingers.
Since no particle-sizing cyclone system was employed, sampling velocity was
adjusted with changes in effluent stream velocity. Part of the filter from
run 2 was methylene chloride extracted in a Soxhlet apparatus, and part of
the Tenax was, likewise, pentane extracted. A portion of the run 2 impin-
ger wash (200 ml) was extracted in a separatory funnel with methylene
chloride. The following table from the text summarizes the organic analy-
sis scheme.
89
-------
TABLE 1. PROPERTIES OF EXTRACT AND COMBINED SAMPLE
Sample
Sample size
Extract medium
Extraction time
Extract color
Weight of extract
Weight of extract
used in combined
sample
Tenax
4.2303 g
Pentane
26 h
Yellow
0.8737 g
0.2355 g
Filter
0.1104 g
Methylene
chloride
26 h
Straw yellow
0.7045 g
0.2232 g
Probe wash
200 ml
Methylene
chloride
20 min
Colorless
1.7025 g
0.5574 g
The three extracts were combined, and LC fractionation was run
according to specified Level I procedures. IR analysis was run on
each LC fraction, but no LRMS analysis was run.
B(a)P analysis was run on a portion of filter extract from run 2
using a TLC separation with UV spectrophotometric quantification. Sulfate
analysis was run on an aqueous filter extract using the spectrophotometric
barium chloranilate method.
FUGITIVE EMISSIONS
Not sampled in this study.
LIQUIDS AND SLURRIES
Not sampled in this study.
SOLIDS
Not sampled in this study.
90
-------
TABLE 2. ANION ANALYSIS FOR PARTICULATES
Sample
Cl
F SO * !
30 NO NO
•J O ^*
Test 2 5.19
(ESP outlet)
*Sulfate analysis was by the spectrophotometric method (barium chlorani-
late method). The sample was extracted for 3 h with 25 ml hot water
in a Soxhlet apparatus. Appropriate sample aliquots were mixed with 25 mg
of barium chloranilate and isopropanol, shaken, and centrifuged. The UV
absorbance of the samples over the wavelength range 290 to 330 nm was
recorded using a P and E Model 202 UV-VIS spectrophotometer. Absorbance
values were determined at 310 nm for blank and calibration standards, and
a concentration versus intensity curve was prepared.
TABLE 3. GAS CHROMATOGRAPHY FOR INORGANIC GASES
Sample C0% 02% C02%
Test 1
(8/10/76 at 0.0 6.5 11.6
ESP outlet)
Test 2
(8/11/76 at 0.10 7.1 11.9
ESP outlet)
Test 3
(8/12/76 at 0.20 6.3 12.9
ESP inlet
91
-------
TABLE 4. LC FRACTIONATION
COMBINED EXTRACTS FROM TENAX-GC CARTRIDGE,
FILTER, AND PROBE WASH
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Grav
TCO jjg Total Total
633
59
166
306
247
872
1,190
58,118
92
-------
TABLE 5. IR REPORT
COMBINED EXTRACTS FROM TENAX-GC CARTRIDGE, FILTER, AND PROBE WASH
LC
1
Wave number (cm )
2,850-2,940
1,470
1,375
Intensities Assignment
Aliphatic hydrocarbons
Aliphatic hydrocarbons
Aliphatic hydrocarbons
Comments
vO
U)
Wide broad bands
across most of
spectrum
2,850-2,970
Broad bands between
1,300-2,000. Sharp
band at 1,270
Broad band at 3,450 cm"1
Sharp band 2,850-2,970
3,050
Broad band 3,400
Sharp band 1,650
Bands 800-1,300
700, 755, 780
1,180
Bands below 1,300
850
3,400
Sharp bands at 1,590,
1,725, 1,060, 1,080
and 1,120
2,400, 825,
1,000, 1,100
Weak
Weak
Strong
Strong
Strong
Strong
Aromatic hydrocarbons are not
major constituent (no band
at 3,050 cnf1)
Not identified
Alkyl groups
Possible carbonyl compound
Possible carbonyl compound
Possible carbonyl compound
Possible alcohols or phenols
Aromatics
Mixture of carbonyl compounds
Mixture of carbonyl compounds
Mixture of carbonyl compounds
Substituted aromatic groups
Not identified
Organic/inorganic sulfurs
Substitute aromatics
Carbonyl compounds and
alcohols
Amines, imines, or amino acids Conflicting indications of
sulfonic acid salts water present. Strong bands
at 3,200 and 1,640; no band
at 2,100.
Yellow
-------
94
-------
STUDY NUMBER 6
DATA
SOURCE:
A NEW ENERGY SOURCE
AUTHORS:
CONTRACTOR:
Karl J. Bombaugh
Radian Corporation
8500 Shoal Creek Blvd
P.O. Box 9948
Austin, Texas 78766
R.C. #200-143
DCN 77-200-143-14
PROJECT
OFFICER:
Bill Rhodes
Industrial Environmental Research Laboratory
Fuel Process Branch
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
95
-------
96
-------
TABLE 1. SPARK SOURCE MASS SPECTROSCOPY
SITE A—SAMPLE 2
(ppmw)
u
Th
Bi
Pb 10.
Tl
Hg 0.12*
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Tb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0
0
0
0
27
'0
1
0
0
.6
.3
.5
.6
.0
.1
.8
.9
Rh
Ru
Ho
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Cot
Fe
Mn
1
0.7
<0.2
10
0.2
2
3
4
1
8
7
3
5
5
120
0.9
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
3
0.
29
0.
630
100
6
520
17
170
25
23
71
=22
19
0.
4
8
7
1
*Hg data by flameless AAS.
tHeterogeneous.
No data indicates concentration < 0.2 ppmw.
TABLE 2. SPARK SOURCE MASS SPECTROSCOPY
SITE A—SAMPLE 3
(Mg/D
u
Th
Bi
Pb 0.04
Tl
Hg 0.007*
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.
0.
0.
<0.
0.
'1
0.
0.
0.
t
<0.
01
005
01
01
1
5
1
02
02
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
0
0
0
0
0
4
0
<0
0
0
0
0
<0
3
0
.06
.01
.2
.03
.2
.0
.2
.02
.006
.07
.1
.1
.008
.0
.03
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
0.
0.
<0.
f
f
0.
f
t
7
1
2
f
-2
2
0.
03
05
006
3
2
*Hg data by flameless AAS.
tInternal standard.
•fttajor component.
No data indicates concentration < 0.004, pg/1.
97
-------
TABLE 3. SPARK SOURCE MASS SPECTROSCOPY
SITE A—SAMPLE 4
(ppmw)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
56
86
0.4
7
0.5
0.3
10
2
10
2
12
1
8
11
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
17
4
10
5
28
56
42
260
280
*
-10
0.3
1
4
t
3
<0.3
Rh
Ru
Ho
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
22
82
430
260
*
120
12
20
4
4
66
26
540
120
61
*
680
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
510
*
*
29
*
*
230
250
*
*
*
*
*
=56
130
22
190
*Major component.
tInternal standard.
No data indicates concentration <0.2 ppmw.
TABLE 4. SPARK SOURCE MASS SPECTROSCOPY
SITE A—SAMPLE 5
(ppmw)
U
Th
Bi 2
Pb 60
Tl
Hg 0.01*
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
9
2
1
9
21
5
45
45
460
' 1
4
9
8
2
t
<2
3
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
14
12
80
70
340
33
20
24
27
5
130
85
130
30
16
t
120
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
90
100
t
12
f
f
720
f
f
f
t
t
*
S720
70
6
27
*Hg data by flameless AAS.
•("Internal standard.
^Major component.
No data indicates concentration < 0.2 ppmw.
98
-------
TABLE 5. ATOMIC ABSORPTION (AA)*--WET CHEMICAL METHODS
SITE A
Sample Hg Sbt Asf
2 (ppm) 0.12 0.8 4
3 (Mg/D -007 0.1 0.2
4 (ppmw) 1 4
5 (ppmw) 0.01 8 27
*AA used to determine Hg.
fSSMS used to determine Sb and As.
99
-------
TABLE 6. LC FRACTIONATION—SITE A
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Sample 2
Grav
TCO mg/g Total Total
1.49
10.95
96.80
47.00
41.03
293.37
27.88
41.63
Sample 3
Grav
TCO mg/1 Total Total
0.3
1.8
5.0
17-0
163.0
1,655-0
69-0
186.0
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Sample 4
TCO Grav Total Total
Extract of 50.3 g
sample yielded only
0.89 mg of organics, so
no LC separation was
performed.
Sample 5
Grav
TCO ppm Total Total
109
18
1
3
3
113
19
44
100
-------
TABIE 7. IR REPORT: SAMPLES FROM SITE A
LC
1
2
3
Sample 2
Sample 3
6
7
Aliphatic hydrocarbons (-CH--) ,, some
branched
Substituted aromatic with alkyl and branched
alkyl substituents
Substituted aromatic with alkyl and branched
alkyl substituents
Same as above, plus NH stretch
Same as above, but probably OH stretch,
trace C = 0
Bonded OH and NH stretch
Primary OH, water of hydration, CO, ether,
ester (acetate), split carbonyl (possibly
acid) i
Split C = 0 (acid and ester), water of
hydration, possible ester (acetate), aliphatic,
methyl group
Aliphatic hydrocarbons
Alkyl-aryl hydrocarbons
Alkyl-aryl hydrocarbons, trace carbonyl,
possible polycyclics or multisubstituted
aromatic
Alkyl-aryl hydrocarbons, possible
polycyclics, -OH present (possibly
atmospheric moisture)
Phenol + alkyl/diakyl phenol
Principally phenol + other phenols
Phenols
Alkyl-aryl CH stretch, OH, C = 0, methyl
bending vibration, primary OH, possible
inorganic sulfur + other ionic compounds
-------
TABLE 7 (con.)
LC
Sample 4
Sample 5
S
1
2
3&4
7
8
No separation was performed due to low
organic concentration in sample. IR
indicates presence of aliphatic hydro-
carbons and possibly ester or acetate
Paraffinic hydrocarbons, considerable
branching
Paraffinic hydrocarbons, trace substituted
aromatics
Split carbonyl (formate or butryate), methyl,
isopropyl and tributyl branching, primary
alcohols
Aromatics, carbonyl, aliphatic hydrocarbons
Split carbonyl; methyl, isopropyl and tri-
butyl branching secondary alcohols; ester
possible 5-C ring lactone; branched cyclic
alcohol
No assignment made
Not reported
-------
TABLE 8. GAS CHROMATOGRAPHY FOR C7-C17
SITE A
Sample
#3 (ppm)
n (mg/g of
sample)
#5 (mg/g of
sample)
Range
GC7 90 - 110
GC8 110 - 140
GC9 140 - 160
GC10 160 - 180
GC11 180 - 200
GC12 200 - 220
GC 13 and greater
GC7 90 - 110
GC8 110 - 140
GC9 140 - 160
GC10 160 - 180
GC11 180 - 200
GC12 200 - 220
GC13 and greater
GC7 90 - 110
GC8 110 - 140
GC9 140 - 160
GC10 160 - 180
GC11 180 - 200
GC12 200 - 220
Volatile
weight
260*
0
0
2,544
2,766
917
800
3.0
0
0
18.2
56.7
72.5
307.5
2.2
Gravimetric
No. of nonvolatile Total
peaks weight organic
"«.-.-. •»•.«•*•
-
No components detected in
C7-Ci2 range (except the one
peak), nor in range C^-Cg;
therefore, the peak reported
here originated from the
extracting solvent.
*260 may have originated from extraction solvent s-ince GC8 and GC9 detect
nothing.
103
-------
104
-------
STUDY NUMBER 7
DATA ANALYSIS OF COKE OVEN
SOURCE:
QUENCH TOWER EMISSIONS
DATA
STATUS: Letter, April! 977
TO: Ms. Diane K. Sommerer
Director of Environmental Sciences
York Research Corporation
1 Research Drive
Stamford, Connecticut 06906
FROM: Peter W. Jones
Battelle-Columbus Laboratories
505 King Avenue
Columbus, Ohio 43201
105
-------
106
-------
GENERAL
Fifteen samples from a coke quenching operation were collected for
Level 1 analyses and POM analysis by GC-MS. Details of sampling proce-
dures and experimental design were not given in the letter.
Level 1 analysis for organics was performed on ten samples according
to the Technical Manual on Analysis of Organic Materials in Process Streams,
and data formatted for organics includes FTIR and gravimetric analyses.
SSMS elemental analysis was performed on four samples.
107
-------
TABLE 1. SPAKK SOURCE MASS SPECTROSCOPY
FILTER BLANK
(ppmw)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<2
<0.
<0.
<10*
<0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.
<0.
<2
<0.
<0.
<0.
1
1
1
3
1
3
2
2
2
3
2
5
2
2
3
1
Dy
Tb
Gd
Eu
Sra
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.
<0.
<0.
<0.
<1
<0.
<0.
0.
<0.
2,000
<1
<50
<0.
1
2
5
2
5
3
5
5
2
5
2
<2*
<0.
<2
<2
3
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.5
<0.3
2
0.5
50
1
100
5
20
<50*
<5*
<1
<1
30
50
50
3
1,000
30
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
10
0.
20
2
-2%
5,000
1,000
500
5
-20%
-2%
-3%
-10%
300
2,000
0.
20
5
03
*Memory from previous sample.
TABLE 2. SPARK SOURCE MASS SPECTROSCOPY
FILTER COMPOSITE SAMPLE--
NOT BLANK CORRECTED
(ppmw)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<2
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<1
3
<1
<2
<0
<0
<0
.1
.1
.2*
.3
.3
.1
.5
.3
.3
.2
.3
.5
.5
.5
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
-------
TABLE 3. SPARK SOURCE MASS SPECTROSCOPY
FILTER COMPOSITE—BLANK CORRECTED
Cppmw)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
V
Ta
Hf
Lu 3
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr 1
Ce 9.8
La 5
Ba 18,000
Cs ..
I
Te
Sb 4
Sn
In
Cd
Ag
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
3
1.5
50
4
900
5
180
50
50
2
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
40
1.5
80
~3%
5,000
19,000
1,500
25
200
0.07
30
Blank data spaces indicate sample valves < blank values.
TABLE 4. SPARK SOURCE MASS SPECTROSCOPY
INCANDESCENT COKE
(ppmw)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.5
<0.5
<0.3
<5*
<1
<1
<0.3
<1
<1
<1
<0.5
<1
<2
<1
<0.5
<1
<3
<1
<0.5
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
-------
TABLE 5. SPARK SOURCE MASS SPECTROSCOPY
QUENCHED CLEAN COKE
(ppmw)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.5
<0.5
<0.3
<30*
<1
<2
<0.3
<1
<1
<1
<0.5
<1
<3
<2
<0.3
<1
<3
<1
<0.5
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
-------
TABLE 7. LC FRACTIONATION
Coke-quenched, clean
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Grav
TCO mg Total
0.35
0.030
0.068
0.049
0.069
0.068
0.11
0.090
Total
Coke-quenched, dirty
Grav
TCO mg Total Total
0.79
0.022
0.038
0.073
0.12
0.042
0.19
0.038
'
Coke-quenched, clean
Fraction TCO
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Grav
mg
0.14
0.036
11.6
1.38
0.24
0.062
1.52
0.43
Total Total
-
Ill
-------
TABLE 7 (con.)
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Dirty water inlet Dirty water return
Grav Grav
TCO mg Total Total TCO mg Total Total
0.13 0.09
0.23 0.054
2.54 1.57
7.74 1.58
12.5 21.0
1.78 0.9
12.6 11.03
0.28 0.42
Dirty water makeup liquor
Grav
Fraction TCO mg Total Total
LC 1 0.12
LC 2 0.044
LC 3 2.8
LC 4 6.1
LC 5 13.1
LC 6 2.28
LC 7 7.45
LC 8 0.26
112
-------
TABLE 7 (con.)
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Clean water samples
Grav
TCO mg Total Total
0.90
0.19
0.57
0.37
2.72
0.23
2.95
0.22
Clean water test 11A
Grav
TCO mg Total Total
2.1
203
271
88
9.3
2.96
22.9
8.51
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Dirty water test 16
Grav
TCO mg Total Total
2.7
0.31
44
3.4
1.58
4.77
13.3
6.2
Test 13
Grav
TCO mg Total Total
2.8
- 422
335
34
11.5
3.25
42.0
10.8
113
-------
TABLE 8. IR REPORT
SAMPLE: TEST 13
Fraction Assignments (comments)
LC 1 Aliphatic HC, aromatic HC, silicone grease
LC 2 Aliphatic HC, phthalate(s)*
LC 3 Phthalate(s)
LC 4 Phthalate(s)
LC 5 Phthalate(s), carboxylic acid
LC 6 Phthalate(s), carboxylic acid
LC 7 Similar to acrylate polymer
LC 8 Crystalline hydrocarbon structure, estert
*These phthalates as well as those in the rest of the set seem to be composed of changing amounts
of at least three phthalates. The most likely candidates are:
(a) Butyl benzyl phthalate
(b) Dimethyl cyclohexyl phthalate
(c) Mixed alcohol phthalate(s).
Note that some of the fractions such as 16A - 3,4 and 13A - 3,4 had so much of the phthalates that
we had to run the spectra as liquid films rather than solvent cast dry films.
tSurprising to find an ester in fraction 8, could be introduced during separation.
-------
TABLE 9. IR REPORT
SAMPLE: CLEAN WATER TEST 11A
Fraction Assignments (comments)
LC 1 Aliphatic HC, silicone
LC 2 Silicone, phthalates
LC 3 Phthalates
LC 4 Phthalates
LC 5 Phthalates, aldehyde (aliphatic + carboxylic acid +?)
LC 6 Phthalates, aldehyde + acid +?
(->
en LC 7 Phthalates, much polar material, possible acrylates plus other esters
LC 8 Same as fraction 7 without phthalate
-------
TABLE 10. IR REPORT
SAMPLE: COKE ACETONE BLANK
Fraction Assignments (comments)
LC 1 Polyethylene*, silicone grease
LC 2 Normal amounts of aliphatic and aromatic hydrocarbons, ester
LC 3 Phthalate(s) , polyethylene
LC 4 Phthalate(s)
LC 5 Phthalate(s), ester, polyethylene
LC 6 Phthalate(s)
LC 7 Aliphatic ester IV
LC 8 Aliphatic ester IV
*"Polyethylene" does not exclude the possibility of a long chain hydrocarbon(s)
tNormal means similar in levels to that seen in the BCL tenax washed blanks.
4=Phthalates are the most common spectral feature in these series.
"Phthalate" may indicate more than one phthalate, i.e., a mix of phthalates.
-------
TABLE 11. IR REPORT
SAMPLE: COKE-QUENCHED CLEAN
Fraction Assignments (comments)
LC 1 Normal aliphatic hydrocarbons
LC 2 Normal aromatic ester I
LC 3 Hydrocarbon, ester I (aromatic), phthalate I
LC 4 Phthalate I
LC 5 Phthalate
LC 6 Phthalate
LC 7 Phthalate, aliphatic ketone
LC 8 Normal polar materials
-------
TABLE 12. IR REPORT
SAMPLE: COKE-QUENCHED DIRTY
Fraction Assignments (comments)
LC 1 Aliphatic hydrocarbon, silicone grease
LC 2 Aliphatic hydrocarbon, silicone grease
LC 3 Phthalate I
LC 4 Phthalate I
LC 5 Phthalate II
>_< LC 6 Phthalate II, possible ester
M
CO
LC 7 Phthalate II, aliphatic ketone
LC 8 Normal polar materials
-------
TABLE 13. IR REPORT
SAMPLE: DIRTY WATER INLET
Fraction Assignments (comments)
LC 1 Aromatic hydrocarbon, aliphatic hydrocarbon
LC 2 Probably condensed ring aromatic*
LC 3 Carbazole and/or indole types
LC 4 Phenols
LC 5 Phenols, nitrile or N-H compound
*-* LC 6 Phenols, nitrile or N-H compound
vo
LC 7 Carboxylic acid or possible quinone
LC 8 Carboxylic acid or possible quninone, possible amine HC1 salt
^Fraction 2 is most likely a condensed ring aromatic, benzopyrene(s) being a definite possibility.
-------
TABLE 14. IR REPORT
SAMPLE: DIRTY WATER MAKEUP LIQUOR
Fraction Assignments (comments)
LC 1 Aliphatic hydrocarbon
LC 2 Trace ester (normal levels)
LC 3 Carbazole and/or indole types
LC 4 Phenols
LC 5 Phenols
LC 6 Phenols
LC 7 Conjugated aromatic carboxylic acid and other C-0
LC 8 Similar to fraction 7 but less of acid structure
-------
TABLE 15. IR REPORT
SAMPLE: CLEAN WATER SAMPLES
Fraction Assignments (comments)
LC 1 Aliphatic hydrocarbon
LC 2 Aromatic ester
LC 3 Aromatic ester with alcohol group as well*
LC 4 Similar to fraction 3 but more aromatic nature
LC 5 Phenols
LC 6 Phenols, nitrile
LC 7 Nitrile, aromatic carboxylic acids
LC 8 Aromatic carboxylic acids, ketone, probably aromatic
*Note that this could be an aliphatic alcohol and an aromatic ester, or an aromatic ester
with an OH on a side chain of the aromatic ring, or be directly on the ring (a phenol).
-------
TABLE 16. IR REPORT
SAMPLE: DIRTY WATER RETURN
Fraction Assignments (comments)
LC 1 Aliphatic hydrocarbon (normal levels)
LC 2 Trace ester (normal)
LC 3 Probable carbazole*, carbazole indole types
LC 4 Phenols, other C-0 compounds
LC 5 Phenols
LC 6 Phenols, cresol(?), nitrile
LC 7 Carboxylic acid aromatic, possible C=N compound
LC 8 Carboxylic acid aromatic, amine HC1 salt
*We have never seen this in a Level 1 b'efore.
-------
TABLE 17. IR REPORT
SAMPLE: DIRTY WATER TEST 16
Fraction Assignments (comments)
LC 1 Aliphatic hydrocarbon, silicone grease
LC 2 Phthalate, silicone grease
LC 3 Phthalate(s)
LC 4 Phthalate(s)
LC 5 Phthalate(s), ketone, carboxylic acid
LC 6 Phthalate(s), ketone, carboxylic acid
NJ
us
LC 7 Possible isothiocyanate, carboxylic acid
LC 8 Possible isothiocyanate, possible phosphine
-------
124
-------
STUDY NUMBER 8
DATA
SOURCE:
SAMPLING AND ANALYSIS
OF COKE OVEN DOOR EMISSIONS
EPA-600/2-77-213
DATA
STATUS:
Final Report, October 1977
AUTHORS:
CONTRACTOR:
R. E. Barrett, W. L. Margard,
J. B. Purdy, and P. E. Strup
Battelle-Columbus Laboratories
505 King Avenue —
Columbus, Ohio 43201
Contract No. 88-02-1409, Task 34
Program Element No. 1AB604C
PROJECT
OFFICER:
Robert C. McCrillis
Industrial Environmental Research Laboratory
Office of Energy, Minerals, and Industry
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
125
-------
126
-------
GENERAL
A specially constructed hood of black metal with cooling vents, fitted
over the entire front of an oven door, was used to sample emissions from
leaks in coke oven doors at the Republic Steel Corporation's plant in Youngs-
town, Ohio. During sampling, metered air was blown in through the bottom of
the hood and metered air was drawn off at the top so that a zero pressure
change was maintained across the face of the door; in this manner, measure-
ments of the amount of gaseous emissions could be made. Figure 1 from the
text shows the sampling setup and figure 2 schematically shows the sampling
apparatus. Two coking cycles of about 16 hours were sampled on 3/31/76 (run
1) and 4/1-2/76 (run 2). Since sampling problems were encountered in run 1
and since run 2 indicated much greater quantities of emissions than run 1,
run 2 was chosen for detailed Level I analysis. Results indicate that a
large percent of the emissions occur during the first hour of coking, with
variations in this percent possibly dependent on tightness of the door seal.
Large amounts of POM are emitted with benzopyrene emissions at the top of
the list. Data indicate particulates from filters are heavily laden with
mutagens. Ames assay found mutagens in all samples.
GASEOUS GRAB
With a coking cycle of approximately 16 hours and an anticipated high
initial emissions level, six samples were taken at startup +0.5, +1.5, +3.0,
+6.0, +10.0, and +13.0 hours. The evacuated glass bulb sample was withdrawn
from the sampling apparatus (see description in Fugitive Emissions Section)
downstream from a Tenax-GC adsorber cartridge.
SASS
A SASS train was not used in this study.
FUGITIVE EMISSIONS
The blower from the specially constructed sampling hood directed an
effluent stream through an 8 in. x 10 in. high volume filter. A smaller
line of Tygon tubing connected the effluent stream, prior to the filter, to
an adsorber capsule containing Tenax-GC. Another section of Tygon tubing
directed the effluent stream from the adsorber capsule to an evacuated gas
bulb sampler.
After being weighed, the Hi-Vol filters were divided into quarters for
organic and inorganic analysis and bioassay. Filter portions for organic
analysis were Soxhlet extracted sequentially with methylene chloride and
methanol until the solvent around the Soxhlet thimble remained clear.
Extracts were combined and reduced in volume. The Tenax-GC adsorbent was
extracted for 24 hours with pentane. Extracts were evaporated to dryness.
All the sample from Tenax-GC extraction and l/600th of the sample from
127
-------
filter extraction were subjected to LC fractionation per "The Technical
Manual for Analysis of Organic Materials in Process Streams," EPA 3/76. A
Fourier Transform Infrared System (FTIR) was used for IR analysis. Repre-
sentative filter and adsorber samples from each LC class fraction were
selected for GC-MS analysis (rather than LRMS).
Filter portions for inorganic analysis were extracted in hot aqua
regia, and the resulting extract was dried, then mixed in a ratio of 3 parts
sample to 1 part graphite to make an SSMS electrode. Wet chemical-atomic
absorption analyses for Hg, Sb, and As were not conducted.
Sampling periods and identifications follow:
IDENTIFICATION OF TEST NUMBER 2 SAMPLES
Sampling time Filter nos.
BCL code
1303-1411
1414-1506
1506-1708
1708-2105
2105-0215
119-131
132-136
137-147
148-155
156-161
A1F
A2F
A3F
A4F
A5F
Adsorber nos.
2.1, 2.2
2.3, 2.4
2.5, 2.6
2.7, 2.8
2.9, 2.10
2.11
BCL code
Al
A2
A3
A4
A3
Compressor
air supply — — TP.4 A6
(blank)
LIQUIDS AND SLURRIES
No liquids or slurries were sampled.
SOLIDS
Coal and coke were analyzed by SSMS. No sampling methods were speci-
fied. Analytical methods were similar to those used in analysis of glass
fiber filters.
128
-------
Vorioe for Hi-Vol blower
speed control
Flow to Hi-Vol
Hi-Vol samplers
Orifice pressure drop
Manometer lo measure pressure
beneath hood
•Adsorber flow meler
Blower
Pressure lap
Furnoce cement
seal
Hinges covered
Orifice
Hood exhaust duct
Metered o^r supply to
bottom of oven door
Special
hood clamps
Hood sections,
corrugated and
pointed black to
dissipate heat
Edges of hood
sealed with
furnace tape
and cement
• Neighboring coke oven doors
Figure 1. Test equipment arrangement on top of Oven No. 41.
129
-------
Tar film on inside
surfaces after tests
After tests Tygon tubing
dark and discolored
but no heavy deposits
Adsorber
Purge line from
positive pressure
side of blower
Gas sample
pump
8" x 10" filter
Blower and motor section
Positive pressure area
Flow fro'm
hood sample
•Transducer tap for
measuring flow
Figure 2. Sampling arrangement for particulate and gas samples.
130
-------
TABLE 1. SPARK SOURCE MASS SPECTROSCOPY
COKE OVEN DOOR EMISSIONS*—A1F
(Mg/g)
u
Th
Bi
Pb
Tl
Hg
Au
Ft
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.0079
<0.0079
0.24
16
<0.016
<0.016
<0.016
0.016
<0.016
<0.016
<0.016
0.016
<0.031
<0.016
<0.031
<0.031
<0.031
<0.031
<0.031
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb ..
Sn
In
Cd
Ag
Pd
<0.031
<0.031
<0.031
<0.031
<0.031
<0.047
<0.016
1.6
0.79
<7.9
<0.016
<0.0079
<0.016
<0.16
7.9
<0.079
<0.079
0.16
<0.031
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.031
<0.079
0.16
<0.016
0.31
<0.016
<0.47
0.47
1.3
<0.16
0.47
<0.31
<0.16
<1.6
~0,47
0.79
0.16
16
0.16
Cr
V
Ti
Sc
Ca
K
Cl
S
p
Si
Al
Mg
Na
F
B
Be
Li
1.6
<0.16
0.79
<0.31
<470
<310
<160
<0.79
<110
<79
<2,400
<0.031
<31
<0.16
0.024
*Aqua regia extraction of Hi-Vol filter. Data expressed in |Jg above the
blank for entire sample collected.
No data indicates "not detected above the level of the blank."
TABLE 2. SPARK SOURCE MASS SPECTROSCOPY
COKE OVEN DOOR EMISSIONS*--A2F
(Mg/g)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.016
<0.016
0.16
<32
<0.032
<0.032
<0.032
<0.032
<0.032
<0.032
<0.032
<0.032
<0.064
<0.032
<0.064
<0.064
<0.064
<0.064
<0.064
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.064
<0.064
<0.064
<0.064
<0.064
<0.095
<0.032
<0.032
<0.032
<16
<0.032
<0.016
<0.032
<0.032
<0.64
<0.16
<0.16
<0.16
<0.064
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.064
<0.16
<0.32
<0.032
<0.64
<0.032
<0.95
<0.95
0.32
<0.32
<0.64
<0.64
<0.32
<3.2
0.32
0.95
<0.32
1.6
<0.32
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
1.6
<0.32
<1.6
<0.64
<950
<640
<320
<1.6
<220
<160
<4,800
<0.064
<64
<0.32
0.32
*Aqua regia extraction of Hi-Vol filter. Data expressed in pg above
the blank for entire sample collected.
No data indicates "not detected above the level of the blank."
131
-------
TABLE 3. SPARK SOURCE MASS SPECTROSCOPY
COKE OVEN DOOR EMISSIONS*—A3F
(Mg/8)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.015
<0.015
<0.015
<29
<0.029
<0.029
<0.029
<0.029
<0.029
<0.029
<0.029
<0.029
<0.058
<0.029
<0.058
<0.058
<0.058
<0.058
<0.058
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn.
In
Cd
Ag
Pd
<0.058
<0.058
<0.058
<0.058
<0.058
<0.087
<0.029
<0.029
<0.029
<15
<0.029
<0.015
<0.029
<0.29
<0.58
<0.15
<0.15
<0.15
<0.058
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.058
<0.15
<0.29
<0.029
<0.58
<0.029
<0.87
<0.87
<0.29
<0.29
<0.58
<0.58
<0.29
<2.9
1.5
<0.87
<0.29
29
<0.29
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
0.29
<0.29
<1.5
<0.58
<870
<580
<290
<1.5
<204
<150
<4,400
<0.058
<58
<0.29
0.015
*Aqua regia extraction of Hi-Vol filter. Data expressed in pg above the
blank for entire sample collected.
No data indicates "not detected above the level of the blank."
TABLE 4. SPARK SOURCE MASS SPECTROSCOPY
COKE OVEN DOOR EMISSIONS*—A4F
(Hg/g)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.026
<0.026
<0.026
<52
<0.052
<0.052
<0.052
<0.052
<0.052
<0.052
<0.052
<0.052
<0.10
<0.052
<0.10
<0.10
<0.10
<0.10
<0.10
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.10
<0.10
<0.10
<0.10
<0.10
<0.16
<0.052
<0.052
<0.052
<26
<0.052
<0.026
<0.052
<0.52
<1.0
<0.26
<0.26
<0.26
<0.1
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.1
<0.26
<0.52
<0.052
<1.0
<0.052
<1.6
<1.6
<0.52
<0.52
<1.0
<1.0
<0.52
<5.2
0.52
<1.6
<0.52
26
<0.52
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<0.52
<0.52
<2.6
<1.0
<1,600
<1,000
<520
<2.6
<370
<260
<7,900
<0.10
<100
<0.52
<0. 00010.
*Aqua regia extraction of Hi-Vol filter. Data expressed in jjg above the
blank for entire sample collected.
No data indicates "not detected above the level of the blank."
132
-------
TABLE 5. SPARK SOURCE MASS SPECTROSCOPY
COKE OVEN DOOR EMISSIONS*—A5F
(M8/g)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.087
<0.087
<0.087
<17
<0.17
<0.17
<0.17
<0.17
<0.17
<0.17
<0.17
<0.17
<0.35
<0.17
<0.35
<0.35
<0.35
<0.35
<0.35
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn.
In"
Cd
Ag
Pd
<0.35
<0.35
<0.35
<0.35
<0.35
<0.52
<0.17
<0.17
<0.17
<87
<0.17
<0.087
<0.17
<1.7
<3.5
<0.87
<0.87
<0.87
<0.35
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.35
<0.87
<1.7
<0.17
<3.5
<0.17
<5.2
<5.2
<1.7
<1.7
<3.5
<3.5
<1.7
<17
3.5
<5.2
<1.7
<52
<1.7
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
1.7
<8.7
<3.5
<5,200
<3,500
<1,700
<8.7
<1,200
<870
<26,000
<0.35
<35
<350
<0.0017
*Aqua regia extraction of Hi-Vol filter. Data expressed in Mg above the
blank for entire sample collected.
No data indicates "not detected above the level of the blank."
TABLE 6. SPARK SOURCE MASS SPECTROSCOPY
COAL
(ppm)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<1
<3
<1
1
<2
<5
<2
<5
<3
<2
<1
<1
<2
<3
<2
<1
<1
<1
<0.5
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
3
<1
1
<1
3
10
1
20
10
100
1
<1
<1
<0.5
1
<0.5*
10
0.5
<1*
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<1
<2
10
2
200
100
2,000
5
10
<5*
10
2
30
30
30
20
20
~5%
300
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
100
100
5,000
30
2,000
500
100
3,000
300
~io%
~5%
5,000
3,000
5
100
5
30
*From previous memory.
133
-------
TABLE 7. SPARK SOURCE MASS SPECTROSCOPY
COKE
(ppm)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
3
5
<1
10
<2
<5
<2
<5
<3
<5
<1
<2
<2
<1
0.5
5
<1
5
1
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
10
1
10
3
10
200
100
200
300
1,000
20
5
3
2
100
<2*
10
5
<10*
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
-------
TABLE 8. LC FRACTIONATION
ABSORBER EXTRACTS*
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Al
(First adsorber)
Grav
TCO mg/hr Total Total
1,966.40
2,704.20
159.29
335.43
497.72
103.42
321.35
5-08
A2
(Second adsorber)
Grav
TCO mg/hr Total Total
3,275.03
1,429.73
213.51
613.83
571.13
143.35
293.83
7.37
A3
(Third adsorber)
Grav
Fraction TCO mg/hr Total
LC 1 1,000.43
LC 2 1,097.24
LC 3 81.54
LC 4 189.34
LC 5 127.58
LC 6 106.22
LC 7 96.69
1C 8 2.60
A4
(Fourth adsorber)
Total
TCO
Grav
mg/hr
Total
Total
1,202.53
879.45
10.43
137.74
271.89
27.09
75.91
3.66
See footnote at end of table.
135
-------
TABLE 8 (con.)
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
A5
(Fifth adsorber)
Grav
TCO mg/hr Total Total
581.42
1,067.07
44.56
106.57
231.11
17.17
64.89
2.89
A6
(Compressor air supply blank)
Grav
TCO mg/hr Total Total
20.98
3.26
1.01
0.96
1.10
0-91
6.37
0.18
""Adsorbent samples extracted with pentane.
136
-------
TABLE 9. LC FRACTIONATION
FILTER EXTRACTS*
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
A1F
(First filter group)
Grav
TCO g/hr Total Total
8.28
22.71
7.93
6.62
2.88
0.87
10.09
0.50
A2F
(Second filter group)
Grav
TCO g/hr
2.79
20.36
4.95
3.75
3.74
0.96
9.25
0.61
Total Total
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
ASF
(Third filter group)
Grav
TCO g/hr Total Total
1.52
11.70
3.44
2.60
1-40
1.68
3.94
0.74
" (Fourth
Grav
TCO g/hr
0.88
4.99
1.33
1.20
0.88
0.58
1.39
0.10
A4F
filter group)
Total Total
*Filters extracted with methylene chloride and methanol.
137
-------
TABLE 9 (con.)
ASF
(Fifth filter group)
Grav
Fraction TCO g/hr Total Total
LC 1 0.31
LC 2 0.15
LC 3 0.33
LC 4 0.26
LC 5 0.23
LC 6 0.08
LC 7 0.30
LC 8 0.01
138
-------
TABLE 10. IR REPORT
SAMPLE: LC ADSORBER FRACTIONS
LC
1
2
3
4
Al
A2
A3
co
VO
6
7
8
Aliphatic HC
Aliphatic HC, fused ring
aromaticst
Nitrilef§, fused ring aroma-
ticst Carbazole//, LC 3*
Conjugated ketone, nonconju-
gated ketone A, phenols,
carbazole//, LC 4*
Conjugated ketone, nonconju-
gated ketone A, nonconju-
gated ketone B, phenols,
LC 5*
Nonconjugated ketone B
Nonconjugated ketone B
Insufficient sample
Aliphatic HC, naphthalene,
LC 1*
Aliphatic HC, napthalene,
fused ring aromatics~
Carbazole//, nitrilef
Conjugated ketone§, noncon-
jugated ketone A, phenols
Conjugated ketone§, noncon-
jugated ketone A, noncon-
jugated ketone B, phenols
Nonconjugated ketone B,
LC 6*
Nonconjugated ketone B
Insufficient sample
Aliphatic HC, napthalene
Aliphatic HC, napthalene
fused ring aromaticst
Carbazole//, LC 3*
Conjugated ketone§, noncon-
jugated ketone A, phenols
Conjugated ketone§, noncon-
jugated ketone A, phenols.
Nonconjugated ketone B
Nonconjugated ketone B,
LC 7*
Insufficient sample
^Sample subjected to GC-MS analysis.
tPyrenes and benzo pyrenes are likely in this fraction.
fNitrile is most likely, but the possibility of C=C cannot be excluded. Aromatic Para-Substitution
nitrile is most likely.
§Can be conjugated ketone, quinone, or mixture of both.
//Probably primarily carbazole.
-------
TABLE 11. IR REPORT
SAMPLE: LC ADSORBER FRACTIONS
LC
A4
A5
A6
(Compressor air supply blank)
1
2
3
4
6
7
8
Aliphatic HC, napthalene
Aliphatic HC, napthalene,
fused ring aromatics*
Insufficient sample
Conjugated ketone^,
nonconjugated ketone A,
phenols
Conjugated ketonet,
nonconjugated ketone A,
nonconjugated ketone B,
phenols
Nonconjugated ketone B
Nonconjugated ketone B
Insufficient sample
Aliphatic HC, napthalene
Aliphatic HC, napthalene,
fused ring aromatics*,
LC 2t
Carbazole
Phenols^, conjugated
ketone^, nonconjugated
ketone A
Phenols^ nonconjugated
ketone A, nonconjugated
ketone B
Phthalate ester, noncon-
jugated ketone B
Phthalate ester, LC 7t,
nonjugated ketone B
Insufficient sample
Aliphatic HC
Aliphatic HC, silicone, LC 2t
Trace aromatics, LC 3t
Trace aromatics
Insufficient sample
Insufficient sample
Nonconjugated ketone,
phthalate, LC 7t
Insufficient sample
*Pyrenes and benzo pyrenes are likely in this fraction.
tSample subjected to GC-MS analysis.
^Can be conjugated ketone, quinone, or mixture of both.
-------
TABLE 12: IR REPORT
SAMPLE: LC FILTER FRACTIONS
LC
A1F
A2F
1 Aliphatic HC, fused ring aromatics*
2 Aliphatic HC, fused ring aromatics*
3 Fused ring aromatics*, possible
carbazole, C=Nt
4 Phenolf, C=Nt, LC 4§
5 Phenol// or amine//, C=Nt, LC 5§
6 Phenol// or amine,//
7 Aromatic, carboxylic acid//
8 Insufficient sample
Aliphatic HC, fused ring aromatics
Aliphatic HC, fused ring aromatics
Fused ring aromatics, carbazole, C=Nf
C=Nt, phenol
Phenol
Phenol
Aromatic, carboxylic acid, phenol
Insufficient sample
*Possibly contains pyrene and/or benzo pyrenes.
tPossibly C=N or (less likely) CsC.
^Possibly carbazole types.
§sample subjected to GC-MS analysis.
//Possibly S compounds. '
-------
TABLE 13. IR REPORT
SAMPLE: LC FILTER FRACTIONS
LC
A3F
A4F
ASF
1 Aliphatic HC, fused ring
aromatics, LC 1*
2 Aliphatic HC, fused ring
aromatics
3 C=Nt» fused ring aromatics,
carbazole, phenol§, LC 3*
4 Phenol§
5 Phenol§, aromatic carboxylic
acid
6 Aromatic carboxylic acid
7 Aromatic carboxylic acid,
LC 7*
8 Insufficient sample
Aliphatic HC, fused ring
aromatics
Aliphatic HC, fused ring
aromatics
CsNt, fused ring aromatics,
carbazole//, phenol§
Phenol§
Phenol§, aromatic carboxy-
lic acid
Aromatic carboxylic acid
Aromatic carboxylic acid
Insufficient sample
Aliphatic HC, fused ring
aromaticst
Aliphatic HC, fused ring
aromaticst, LC 2*
CsN^, fused ring aromaticst,
ketone, phenol
Phenol, ketone
Phenol, ester phthalate
Aromatic carboxylic acid,
ester phthalate, LC 6*
Aromatic carboxylic acid,
ester phthalate
Insufficient sample
*Sample subjected to GC-MS analysis.
tPossibly contains pyrene ano/or benzpyrenes.
fPossibly C=N or (less likely) CEC.
§Possibly S Compounds.
//Possibly carbazole types.
-------
STUDY NUMBER 9
DATA ORGANIC ANALYSIS FOR
SOURCE:
ENVIRONMENTAL ASSESSMENT
DATA
STATUS: Final Report, September 1977
AUTHORS: L. D. Johnson and R. G. Merrill
CONTRACTOR: Process Measurements Branch
Industrial Environmental Research Laboratory
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
143
-------
144
-------
GENERAL
Organic analyses for the IERL phased approach to environmental assess-
ments were discussed in the first part of the paper. Some examples of
Level 1 data were provided from an electric arc furnace particulate sample.
145
-------
TABLE 1. LC FRACTIONATION
ELECTRIC ARC FURNACE PARTICIPATE
Grav
Fraction TCO mg Total Total
LC 1 7.2
LC 2 1.5
LC 3 2.0
LC 4 1.9
LC 5 1.8
LC 6 3.3
LC 7 1.4
LC 8 0.1
146
-------
TABLE 2. IR REPORT
SAMPLE: FRACTION 6, ELECTRIC ARC FURNACE PARTICULATE
Wave number (cm ) Assignment
3,500 A broad band indicating hydroxyl
1,710 Aromatic or conjugated ketone
1,510 Aromatic carbon stretch
1,455; 1,460; 1,380 Carbon-carbon scissor and wag
830, 750 Substituted aromatic
Note: The IR of fraction 1 contained only hydrocarbon bands. The spectrum of fraction 3 contained
bands at 2,925; 2,915; and 2,830 cm , indicative of aliphatic substitution. Infrared analysis
of fractions 3 through 7 showed that the organic content of the sample was aromatic in nature
with a variety of functional groups including multiple ring structures and oxidation products
such as ketones and acids. No LRMS was performed on these samples since the quantity of
material in any of the fractions was less than the threshold amount.
t
-------
148
-------
STUDY NUMBER 10
DATA
SOURCE:
COMPREHENSIVE ANALYSIS OF EMISSIONS
FROM EXXON FLUIDIZED-BED
COMBUSTION MINIPLANT UNIT
DATA
STATUS:
Draft Report, September 9, 1977
AUTHORS:
CONTRACTOR:
J. M. Allen, J. E. Howes, Jr.
S. E. Miller, and K. M. Duke
Battelle-Columbus Laboratories
505 King Avenue
Columbus, Ohio 43201
Contract No. 68-02-2138
PROJECT
OFFICER:
D. B. Henschel
Industrial Environmental Research Laboratory
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
149
-------
150
-------
GENERAL
Data from a Level 1 environmental assessment of Exxon's 12.5-inch
(miniplant) pressurized fluidized-bed combustion (PFBC) unit located in
Linden, New Jersey, are compiled in this report. Battelle Columbus Labora-
tories (BCL) sampled and analyzed five runs while burning Champion Pitts-
burgh Seam Coal (2% S) with dolomite (CaC03 + MgC03) sorbent injection. Sor-
bent regenerator was not used. Runs 1, 3, 4, and 5 operated at 890°-895° C;
run 2 operated at 805° C.
List of procedures different from Level 1.
1. Containers for SASS samples and preconditioning cleaning procedures of
containers were not as specified by Level 1. Specific variations are
listed in table 1. Glass condensation modules, instead of stainless
steel, were used in runs 2, 4, and 5 (acknowledged by EPA).
2. LC silica gel was activated by heating at 200° C for 24 hours prior to
slurry packing the columns using pentane. Level 1 states heating at
110° C for at least 2 hours prior to dry packing the columns using
methylene chloride.
3. Several inorganic gases and components were not analyzed by GC, but by
various wet chemistry methods and continuous withdrawal analyzers as
noted on the data sheets.
4. Samples for SSMS, except XAD-2 resin and coal_, were mixed directly with
graphite to form electrodes and thus bypassed the Parr bomb step. Coal
was prepared by low temperature (plasma) ashing, and As, Hg, and Sb were
prepared by wet digestion. Sb was analyzed by AAS with graphite furnace.
The study produced the following conclusions:
1. Except for trace elements (unresolved at time of report) "no direct
emissions . . . expected to be grossly unacceptable for environmental
reasons;"
2. S02 levels decreased during the runs, perhaps due to inadvertent use of
lower sulfur coal (0.6%) as delivered by the supplier;
3. Particulate emissions were in excess of allowable emissions;
4. Organic and hydrocarbon emissions were very low;
5. Organic characterization by LC and IR resulted in many anomalies;
6. Organic analysis of coal shows "surprisingly small quantity of POM and
HC compounds" with C >6;
7. Trace metals were found that exceeded land MATE values;
8. Several toxic elements in dolomite and suspended particulates exceeded
land MATE values;
151
-------
9. Bed reject leachates were found to be the most toxic material in the
soil microcosm test;
10. Alternate sample preparation for SSMS indicates "agreement well within
Level 1 accuracy requirements" when results are compared to NBS/SRM
samples.
GASEOUS GRABS
Flue gases were sampled continuously for S02 by IR or UV, CO by NDIR,
02 by point electrode, and C02 by IR. Grab samples were taken and analyzed
for 02 by Orsat, H2S/COS by GC, and NO by chemiluminescence. 02 in dilution
air was also determined continuously using a paramagnetic technique. Samples
for HC analysis by FID were taken by Tedlar bags from sampling points la and
14 or continuously from Ip (see attached diagram).
SASS
A SASS train was used to sample flue gases. Runs 1 and 3 used a stain-
less steel condenser module, whereas runs 2, 4, and 5 used glass. Results
moderately favor the all-glass module. Samples were collected at a flow
rate of 4 scfm while located at sampling port la (= atmospheric pressure).
XAD-2 sorbent was used to collect organics.
FUGITIVE EMISSIONS
Leachates of PFBC cyclone number 2 and bed reject material were analyzed
by SSMS for trace metals, toxic elements, and ions. Two leaching techniques
were used. One involved ultrasonic mixing of the 1-g sample with 10 separate
4-ml volumes of distilled water. Shakes number 1 and 10 were then analyzed.
The second method of leachate preparation was by pumping water through a
column housing the sample.
LIQUIDS AND SLURRIES
Eight biological systems were used for wastewater toxicity evaluation.
No other sampling or testing on these streams was performed.
SOLIDS
Particulate mass concentrations were determined using an HVSS with four
specially designed impingers. An SS probe heated to 205° C was used at
sample port la (alternated with SASS). Coal, dolomite, bed reject material,
and PFBC cyclone Number 2 dust were all grab sampled and riffled into ali-
quots. Coal, PFBC cyclone Number 2 dust, and bed reject materials were
Soxhlet extracted with CH2C12.
152
-------
oo
AEROTHERM
CADILLAC
UNIT
COOLING
WATER
CITY
WATER
M6
(19
COAL
&
LIMESTONE
FEED
SUPPLY
AUXILIARY
AIR
COMPRESSOR
1
_ TO 34,35
SCRUBBER
FEED
WATER
RESERVOIR
SOLIDS
REJECT
VESSELS
NATURAL GAS
COMPRESSOR
MAIN AIR
COMPRESSOR
(1400 SCFM @
150 PSIG)
LIQUID FUEL STORAGE
Circled numbers denote streams sampled, uncircled numbers were not sampled.
Figure 1. Exxon fluidized-bed combustion rainiplant.
-------
TABLE 1. CLEANING PROCEDURES FOR SAMPLE CONTAINERS
Sample
Container
Battelle
Level 1
Container Conditioning
Battelle
Level 1*
On
SASS cyclone
catch
SASS washes
XAD-2 resin
Organic
module
condensate
SASS impinger
solutions
Amber polypropylene
bottles
Glass bottles, caps
with Teflon liners
Original cartridge
packed in polyethy-
lene bag and stored
in metal container
Glass bottle
Nalgene bottles
Glass bottles
Rinse with distilled
water; oven dry
Amber glass bottles, Rinse with distilled
caps with Teflon water; oven dry
liners
Amber glass bottle
Amber glass bottle
Nalgene bottles
Bottles rinsed with
nitric acid and dis-
tilled water and oven
dried
Bottles rinsed with
distilled water;
oven dry
Clean in three successive
stages using distilled
water, isopropyl alcohol,
and methylene chloride
(Same as above)
(Same as above)
(Same as above)
Clean in two successive
stages using distilled
water followed by
isopropyl alcohol
*Level 1 specifies that all sample containers should be prepassivated by a 1-hour standing contact with 1:1
(v/v) aqueous nitric acid. This has been changed to 15 percent nitric acid.
-------
TABLE 2. STREAM IDENTIFICATION FOR GENERALIZED FBC SYSTEM
Stream number Stream identification
la Stack gas from FBC (nominally atmospheric, after air dilution)
lp Pressurized flue gas (before air dilution)
2 Particulate removal discard from FBC, i.e., second cyclone
catch
3 Bed solids discard from FBC
14 Air to combustor (dilution air)
16 Fuel feed to FBC (coal)
19 Prepared sorbent feed to FBC (dolomite)
23 Recycle of particulates from particulate removal to FBC
(first cyclone) collected only at end of test program
32 Fugitive or secondary emission from FBC discard bed material,
i.e., leachate
33 Fugitive or secondary emission from FBC particulate disposal
(second cyclone), i.e., leachate
35 Discard from FBC secondary stack gas cleaning device (scrubber
slurry)
155
-------
TABLE 3. SPARK SOURCE MASS SPECTROSCOPY--FBC COAL RUN 2
(Mg/g)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
0.6
2
<0.02
24
0.06
<0.2
<0.02
<0.06
<0.03
<0.06
<0.03
0.1
<2
1
<0.03
0.2
<0.03
0.2
0.05
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.3
0.05
0.1
0.08
0.8
1
0.5
8
5
240
0.5
<0.03
<0.03
2
0.1
<0. 1
0.05
0.03
<0.03
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.03
<0.06
2
0.2
5
0.5
24
24
16
6
6
0.3
3
32
16
16
6
6,400
8
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
24
16
800
2
2,000 (0
2,000
2,000
2,000
32
3.2%
1%
640
120 (0
0.2
5
0.1
8
•14)
.02)
*Weight percent by AAS/flame emission.
TABLE 4. SPARK SOURCE MASS SPECTROSCOPY--FBC COAL RUN 5
(Mg/g)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Uo
0.6
2
<0.02
32
<0.06
<0.2
<0.02
<0.06
<0.03
<0.06
<0.03
<0.1
<1
1
<0.03
0.2
<0.03
0.1
0.03
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.3
<0.03
0.1
0.08
0.8
1
0.5
8
3
120
0.5
<0.03
<0.03
1
0.2
<0.1
0.05
0.03
<0.03
Rh
Ru
Mo
Kb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.03 -
<0.06
2
0.2
4
0.5
14
18
16
3
10
0.3
3
32
16
6
3
6,400
5
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
36
16
400
1 *
1,000 (0.06)
2,000
670
2,000
32
6.4%
2.4%
6,400 *
280 (0.01)
0.2
5
0.1
8
*Weight percent by AAS/flame emission.
156
-------
TABLE 5. SPARK SOURCE MASS SPECTROSCOPY--NBS/SRM 1632 COAL
(Ng/g)*
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Ira
Er
Ho
1
2
<0.02
32
0.06
<0.2
<0.02
<0.06
<0.03
<0.06
<0.03
<0.1
<2
1
<0.03
<0.02
<0.03
<0.1
0.03
(1.4 NBS)
(3.0 NBS)
(30 NBS)
(0.12 NBS)
(0.17)
(0.95)
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.3
0.03
0.1
0.2
1
2
0.6
14
5
670
0.1
<0.03
<0.03
7
0:03
<0.1
0.1
0.06
<0.03
(0.21)
(1.7)
(18.5)
(10.5)
(405)
(1.4)
(4.45)
(0.07)
(0.19 NBS)
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.03
<0.06
3
0.2
6
0.5
160
38
16
6
7
0.6
5
70
64
14
13
2%
32
(3.4)
(45)
(144)
(24)
(14.2)
(2.9 NBS)
(5.9 NBS)
(8.5)
(37 NBS)
(18 NBS)
(15 NBS)
(6 NBS)
(0.87% NBS)
(40 NBS)
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
32
16
1,000
1
1%
2,400
640
4,800
24
6.9%
2.7%
3,800
280
0.5
8
0.1
8
(20.2 NBS)
(35 NBS)
(800 NBS)
(4.5)
(0.44%)
(0.29%)
(1,000)
(3.2% (NBS)
(1.9%)
(.25%)
(390)
*Values in parentheses are reference values from NBS (as noted), ORNL or Lit.
TABLE 6. SPARK SOURCE MASS SPECTROSCOPY--NBS/SRM 88a DOLOMITE
(Hg/g)*
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
0
0
<0
0
<0
<0
<0
<0
<0
<0
<0
<0
<1
<0
<0
<0
<0
<0
<0
.15
.15
.15
.4
.2
.4
.1
.4
.2
.4
.2
.4
.3
.1
.3
.1
.3
-1
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0
<0
<0
0
<0
1
0
3
1
15
<0
<0
<0
<0
<0
<0
<0
<0
<0
.3
. i
.3
.15
.5
.5
.07
.07
.3
.1
.2
.2
.5
. i
.4
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.
<0.
0.
0.
0.
0.
50
6
0.
0.
2
<0.
0.
10
1.
40
<1
4,000
300
j
6
7
07
6
7
(0.01)
6
3
15
2
5
(0.28)
(0.03)
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
20
2
50
<0.3
30%
5,000
15
500
15
5,000
1,500
15%
30
0.3
1
(0.02)
(30.1)
(0.01)
(1.2)
(0.19)
(21.3)
(0.01)
0.07
3
-
*Values in parentheses are reference values from NBS (as noted), ORNL or LLL
(values in percent by weight as oxides).
157
-------
TABLE 7. SPARK SOURCE MASS SPECTROSCOPY—FBC DOLOMITE* RUN 1
(Mg/g)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
lu
Yb
Tm
Er
Ho
0.2
0.2
<0.15
0.7
<0.2
<0.4
<0.1
<0.4
<0.2
<0.4
<0.2
<0.4
<1
<0.3
<0.1
<0.3
<0.1
<0.3
<0.1
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.3
<0.1
<0.3
<0.15
<0.5
<0.5
0.2
0.5
0.5
2
<0.07
<0.07
<0.2
0.2
><0.2
<0.2
<0.5
<0.1
<0.2
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.1
<0.6
0.5
0.07
0.6
0.3
50
3
3
0.3
6
0.2
0.2
5
1.5
40
<1
600
50
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
5
2
20
<0.3
30%
5,000
70
100
3
1,500
700
15%
500
10
10
0.015
5
*Electrode formed directly—no Parr bomb.
TABLE 8. SPARK SOURCE MASS SPECTROSCOPY—FBC DOLOMITE* RUN 5
(M8/8)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
0.4
0.15
<0.15
1.5
<0.2
<0.4
<0. 1
<0.4
<0.2
<0.4
<0.2
<0.4
<3
<0.3
<0.1
<0.3
<0. 1
<0.3
<0.1
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0
<0
<0
<0
<0
<0
0
0
0
6
0
<0
<0
<0
<0
<0
<0
<0
<0
.3
.1
.3
.15
.5
.5
.1
.5
.3
.5
.07
.2
.1
.2
.4
.5
.1
,2
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
-------
TABLE 9. SPARK SOURCE MASS SPECTROSCOPY—XAD-2 EXTRACTS* RUN 1
(Mg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
4 Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
0.06 I
Te
Sb
Sn
In
Cd
Ag
Pd
0.1
0.08
3
0.2
.11
0.2
0.7
1
Rb.
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
6
0.5
0.3
0.1
3
1
0.08
8
1,864
25
2,486
41
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
207
2
2
28
280
124
1,388
46
1,968
21
932
2
0.04
*Collected by SASS at (la). Results corrected by subtraction of blank.
No data indicates "not detected above level of blank."
TABLE 10. SPARK SOURCE MASS SPECTROSCOPY--XAD-2 EXTRACTS*
(M8/m3)
RUN 2
D
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
V
Ta
Hf
Lu
Yb
Tm
Er
Ho
0.6 Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba 0.4
Cs
I
Te 1
Sb 6
Sn
In
Cd
Ag 1
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr 0.02
Rb
Br
Se 3
As
Ge
Ga
Zn
Cu
Ni 3,500
Co 9
Fe 234
Mn 94
Cr 47
V
Ti
Sc
Ca 6
K
Cl
S 93
P
Si 1,520
Al
Mg
Na 47
F
B
Be
Li
*Collected by SASS at (la). Results corrected by subtraction of blank.
No data indicates "not detected above level of blank."
159
-------
TABLE 11. SPARK SOURCE MASS SPECTROSCOPY--XAD-2 EXTRACTS* RUN 3
(Mg/m3)
u
Th
Bi
Pb 8
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu 0.1
Sm
Nd
Pr
Ce
La
Ba 2
Cs
I
Te 0.8
Sb 28
Sn 0.2
In
Cd
Ag 0.3
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
10
0.6
0.2
0.4
4
5
3
0.08
2
3,938
8
2,486
145
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
310
1
0
49
21
62
83
8
0
0
.8
.6
.2
*Collected by SASS at (la). Results corrected by subtraction of blank.
TABLE 12. SPARK SOURCE MASS SPECTROSCOPY--XAD-2 EXTRACTS* RUN 4
(|Jg/m3)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te 2
Sb 4
Sn
In
Cd
Ag
Pd
Rh
Ru
Mo 2
Nb 0.04
Zr 0.5
Y
Sr 0.05
Rb
Br
Se a
As
Ge
Ga
Zn
Cu
Ni
Co 2
Fe
Mn
Cr
V
Ti 0.2
Sc
Ca 1
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
*Collected by SASS at (la). Results corrected by subtraction of blank.
160
-------
TABLE 13. SPARK SOURCE MASS SPECTROSCOPY--XAD-2 EXTRACTS* RUN 5
(Mg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
So
Nd
Pr
Ce
La 0.05
Ba
Cs
I
Te
Sb
Sn
la
Cd
Ag
Pd
Rh
Ru
Mo
Nb 0.05
Zr 0.3
Y
Sr
Rb 0.02
Br
Se 2
As
Ge
Ga
Zn
Cu
Ni
Co 3
Fe
Mn
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
25
1
2
*Collected by SASS at (la). Results corrected by subtraction of blank.
TABLE 14. SPARK SOURCE MASS SPECTROSCOPY—BLANK
(Mg/g)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
0.08
<0.1
<0.01
1
<0.03
<0.03
<0.01
<0.03
<0.02
<0.03
<0.02
0,04
<0.3
<0.03
<0.01
<0.03
<0.01
<0.03
<0.01
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.03
<0.01
<0.03
<0.02
<0.03
<0.03
<0.005
0.2
0.005
0.08
<0.005
0.08
0.2
0.8
0.2
<0.005
0.08
0.05
<0.02
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.02
<0.03
0.5
<0.004
<0.05
<0.02
0.03
0.02
0.1
0.4
0.08
0.08
0.03
2
250
300
2
150
15
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
25
0.2
0.2
<0.03
0.8
8
20
15
2
25
75
15
25
<0.03
0.4
0.008
0.02
161
-------
TABLE 15. SPARK SOURCE MASS SPECTROSCOPY
BASIFIED CONDENSATES FROM SASS XAD-2 RUN 5
(M8/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.0001
<0.0001
<0.0002
<0.006
<0.0003
<0.0006
<0.0003
<0.0003
<0.0001
<0.0003
<0.0001
<0.0002
<0.001
<0.0002 ,
<6 x 10°
<.0002 .
<6 x 10
<0.0002 ,
<6 x 10"3
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.0002 .
<6 x 10°
<0.0002
<0.0002
<0.0003
0.0006
0.0002
0.0006
0.0006
0.06 -
<3 x 10
0.01
<0 . 0002
<0 . 0003
0.0006
<0.0001
<0 . 0009
<0.03
<0.0001
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.0002
<0.0006
0.001
0.002
0.009
9 x 10"3
0.03 _
<3 x 10
0.009
0.003
0.003
<0.009
0.0003
0.006
0.2
2
0.06
14
0.2
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
3
0.0003
0.06
0.0002
0.7
0.06
0.09
0.01
0.0003
0.2
0.09
0.5
3
0.001
0.003 ,
<3 x 10J?
6 x 10
TABLE 16. SPARK SOURCE MASS SPECTROSCOPY
BASIFIED CONDENSATES FROM SASS SECOND IMPINGER RUN 5
(Hg/m3)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.002
<0.002
<0.003
0.02
<0.0009
<0.003
<0.0009
<0.003
<0.002
<0.0009
•C0.0006
<0.0009
<0.02
<0.0009
-------
TABLE 17. SPARK SOURCE MASS SPECTROSCOPY
ACID CONDENSATES FROM SASS XAD-2 RUN 1
(M8/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
0
0
0
2
<0
<0
0
0
<0
<0
<0
0
<0
^0
-------
TABLE 19. SPARK SOURCE MASS SPECTROSCOPY
ACID CONDENSATES FROM SASS XAD-2 RUN 3
(M8/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.5
<0.5
<0.08
0.2
<0.2
0.5
<0.08
<0.2
<0.2
<0.3
<0.2
0.8
<0.3
<0.3
<0.08
<0.3
<0.08
<0.3
<0.08
Dy
Tb
Gd
Eu
Sra
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.3
<0.08
<0.3
<0.5
<0.3
<0.5
<0.2
<0.3
<0.3
0.8
<0.2
8
2
0.6
0.8
0.2
0.8
8
<0.5
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.3
<5
164
2
5
<0.5
1
5
123
<2
0.8
0.8
<0.8
3
5
4,918
33
16,393
82
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
4,918
6
123
<0.2
49
12
8,197
1,639
1
492
164
164
264
16
25
<0.003
0.3
TABLE 20. SPARK SOURCE MASS SPECTROSCOPY
ACID CONDENSATES FROM SASS XAD-2 RUN 4
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0
<0
<0
0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
.3
.3
.06
.8
.2
.2
.06
.2
.1
.2
.1
.2
.3
.2
.06
.3
.06
.2
.06
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0
<0
<0
<0
<0
<0
<0
0
0
2
<0
3
<0
<0
<0
0
0
56
<0
.2
.06
.2
.2
.3
.3
.06
.4
.2
.03
.1
.1
.6
.06
.2
.3
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.
<3
1
2
0.
0.
2
<0.
167
8
2
0.
0.
4
33
222
56
2,777
56
2
6
2
2
6
3
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
56
2
<6
<0.
83
33
1,110
233
8
1,666
833
833
333
56
111
0.
1
6
02
164
-------
TABLE 21. SPARK SOURCE MASS SPECTROSCOPY
ACID CONDENSATES FROM SASS XAD-2 RUN 5
(|Jg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.5
<0.5
<0.1
0.9
<0.3
0.5
<0.1
<0.3
<0.2
<0.3
<0.2
0.3
<0.5
<0.3
<0.3
<0.5
<0.1
<0.3
<'0.1
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.3
<0.1
<0.9
<0.3
<0.5
<0.5
<0.2
1
0.6
5
0.1
5
<0.9
0.3
1
0.2
0.6
52
<0.5
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.3
<0.9
13
1
0.9
<0.2
1
<2
522
35
3
2
0.3
13
5
61
52
4,346
261
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
87
3
<17
<0.9
869
26
1,739
13,039
1
2,608
348
522
174
26
87
<0 . 06"
0.2
165
-------
TABLE 22. SPARK SOURCE MASS SPECTROSCOPY
PARTICULATES OF FLUE GAS*—RUN 2
(M8/g)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
<3M
7
20
1.5
100
7
<0.4
<0.1
<0.4
<0.2
<0.4
<0.2
2
<1
6
0.4
6
1
3
1
5
1
6
3
7
40
10
70
30
1,000
20
0.6
<0.3
3
10
<1
10
15
>3|J
4
7
0.7
60
2
<0.4
<0.1
<0.4
<0.2
<0.4
<0.2
<0.5
<2
3
<0.2
3
0.5
3
1
5
1
3
1.5
4
20
15
50
30
700
10
0.4
<0.3
1
3
<0.6
10
7
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
V
Ti
Sc
Ca
K
Cl
S
p
Si
Al
Mg
Na
F
B
Be
Li
<3|J
<2
<0.2
<1
10
20
100
30
700
300
7
10
100
20
70
200
70
400
30
6%
200
300
200
4,000
50'
1.5%
3%
4
1.5%
700
10%
10%
1%
1,000
5
100
6
300
>3p
<2
<0.2
<1
10
10
100
30
700
300
7
10
50
10
70
200
70
200
30
10%
200
300
200
7,000
70%
1.5%
2%
7
7,000
500
20%
20%
2%
2,000
10
100
10
300
'"Collected by SASS at la. Electrode formed directly (no Parr bomb)
166
-------
TABLE 23. SPARK SOURCE MASS SPECTROSCOPY
PARTICULATES OF FLUE GAS*—RUN 4
(Hg/g)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
<3|J
7
15
0.4
100
4
<0.4
<0.1
<0.4
<0.2
<0.4
<0.2
1
<2
3
0.4
6
0.3
3
1
5
1
6
3
7
40
10
70
30
2,000
40
0.4
<0.3
1
3
<0.6
<3
1
>3M
2
7
0.7
60
4
<0.4
<0.1
<0.4
<0.2
<0.4
<0.2
1
<2
3
0.4
3
0.5
3
1
7
1
6
3
7
40
15
70
30
1,000
20
<0.1
<0.3
1
3
<1
<6
1
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<3M
<2
<0.2
<1
5
5
100
30
700
600
4
10
40
10
70
100
40
200
30
3%
200
200
200
4,000
20'
3%
1.5%
4
4,000
300
10%
10%
2%
2,000
15
100
4
500
>3|J
<2
<0.2
<1
10
10
300
50
1,500
300
7
10
50
10
100
100
70
400
30
6%
200
300
100
7,000
50
5%
5%
7
2%
500
15%
20%
2%
2,000
15
100
4
300
^Collected by SASS at la. Electrode formed directly (no Parr bomb)
167
-------
TABLE 24. SPARK SOURCE MASS SPECTROSCOPY
PARTICIPATES OF FLUE GAS*--RUN 5
(M8/8)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tin
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
<3|J
7
15
0.6
40
3
<0.4
<0.1
<0.4
<0.2
<0.4
<0.2
0.5
<1
3
0.3
3
0.6
3
1
4
0.7
5
3
7
40
7
150
50
1,500
20
0.4
<0.3
2
6
<0.6
<1.5
0.7
>3|J
2
7
0.3
40
1.5
<0.4
<0.1
<0.4
<0.2
<0.4
<0.2
0.5
<0.6
1
<0.15
2
0.15
2
0.6
3
0.5
2
1
3
10
2
50
20
600
3
0.1
<0.3
0.7
2
<0.6
<1.5
0.7
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<3|J
<0.7
<0.4
<1
5
7
100
40
1,500
100
10
15
30
15
60
70
70
400
30
6%
200
300
200
7,000,
40
3%
3,000
20
1.5%
100
20%
20%
10%
1,500
15
50
4
200
>3M
<0.4
<0.4
<0.4
3
3
100
15
300
40
2.5
5
10
3
10
20
30
100
20
2%
50
200
50
3,000
70
3%
1,500
20
7,000
500
20%
20%
5%
700
15
50
3
100
"'Collected by SASS at la. Electrode formed directly (no Parr bomb)
168
-------
TABLE 25. SPAI
BED REJ]
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
0.4
1
0.1
3
1
<0.3
<0.1
<0.3
<0.2
<0.3
<0.2
<0.3
<0.3
0.3
<0.1
1
<0.15
0.3
<0.15
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.6
0.3
0.6
0.5
1.5
4
1
5
3
60
4
<0.07
<0.3
0.7
2
<0.3
<0.5
<0.1
<1
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
TROSCOPY
2
<0.2
<0.5
4
0.7
10
3
150
40
1
1.5
30
10
7
100
15
100
3
1%
300
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
20
20
200
3
15%
1%
40
3%
200
3%
2%
15%
100
0.6
50
0.5
50
*Electrode formed directly (no Parr bomb).
TABLE 26. SPARK SOURCE MASS SPECTROSCOPY
BED REJECT MATERIAL*—RUN 4
(yg/g)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os .
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
0.2
1
<0.1
1
2
<0.3
<0. 1
<0.3
<0.2
<0.3
<0.2
<0.3
-------
TABLE 27. SPARK SOURCE MASS SPECTROSCOPY
BED REJECT MATERIAL*—RUN 5
(Ug/g)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
0.4
0.2
<0.15
2
<0.2
<0.4
<0.1
<0.4
<0.2
<0.4
<0.4
<0.4
<0.3
<0.3
<0.3
<0.3
<0.1
<0.3
<0.1
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.3
1
3
0.5
1.5
6
1
7
7
30
4
<0.07
<0.4
1
2
<0.6
<0.5
<0. 1
^0.5
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
-------
TABLE 29. SPARK SOURCE MASS SPECTROSCOPY
PFBC CYCLONE NUMBER 2 DUST*--RUN 4
(yg/g)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
2
4
0
20
1
<0
<0
<0
<0
<0
<0
<0
<1
<2
0
3
0
2
0
.3
.5
.4
.1
.4
.2
.4
.2
.5
.3
.3
.6
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
4
0
5
2
7
40
7
100
50
600
10
0
0
0
3
<0
1
<0
<2
.7
.1
.6
.7
.6
.5
.2
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.4
<1
3
5
100
15
700
150
5
1.5
10
6
20
40
50
100
10
10%
100
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
50
100
5,000
15
5%
3,000
7
10
7,000
300
3%
6%
3%
1,500
6
30
0.15
100
*Electrode formed directly (no Parr bomb).
TABLE 30. SPARK SOURCE MASS SPECTROSCOPY
PFBC CYCLONE NUMBER 2 DUST*—RUN 5
(yg/g)
D
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
2
2
0
20
0
<0
<0
<0
<0
<0
<0
<0
<0
<1
0
3
0
3
1
.1
.5
.4
.1
.3
.2
.3
.2
.3
.6
.6
.6
Dy
Tb
Gd
Eu .
Sm
Nd
Pr
Ce
La
Ba2,
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
3
1
3
5
15
20
10
100
50
000
60
<0
0
0
1
<0
<1
<0
<1
.06
.3
.4
.2
.5
.2
£h
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.4
<0.5
7
7
200
50
1,500
400
1.5
1.5
40
20
70
40
50
700
3
10%
300
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
200
200
7,000
10
5%
6,000
40
1
300
15%
15%
5%
1,000
3
30
0
50
.5%
.15
*Electrode formed directly (no Parr bomb).
171
-------
TABLE 31. SPARK SOURCE MASS SPECTROSCOPY
NBS/SRM COAL FLYASH
(M8/8)*
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
8
15
0.15
40
1.5
<0.4
<0.1
<0.3
<0.2
<0.3
<0.2
1
<0.6
6
0.2
0.2
0.2
2
0.5
3
0.5
3
3
5
20
3
100
40
2,000
20
0.4
<0.2
2
0.5
<0.6
5
0.6
(11.6 NBS)
(24 NBS)
(70 NBS)
(0.14 NBS)
(1-6)
(10.8)
(2.86)
(15)
(146)
(82)
(2,780)
(8.6)
(7.8)
(1.45 NBS)
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<2
<0.2
<0.5
7
7
200
20
700
200
15
5
40
10
40
200
150
100
30
10%
500
100
200
6,000
30
3%
1.5% -
40
700
300
15%
15%
2%
1,000
6
200
3
100
(301)
(1,380 NBS)
(112 NBS)
(6.0)
(9.4 NBS)
(61 NBS)
(49)
(210 NBS)
(128 NBS)
(98 NBS)
(38 NBS)
(6.37%)
(493 NBS)
(131 NBS)
(214 NBS)
(6,920)
(32)
(4.34%)
(1.72%)
(42)
(21%)
(12.5%)
(1.98 NBS)
(3,070 NBS)
*Values in parentheses are reference values from NBS (as noted), ORNL,
and LLL.
172
-------
TABLE 32. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE* OF BED REJECT MATERIAL
RUN 2 (ULTRASONIC SHAKING)
(Mg/D
Shake Number
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
1
<2
<2
<0.4
1.5
<0.7
<2
<2
<2
<0.7
<2
<0.7
<2
<60
<1
<0.4
<1
<0.4
<1
<0.4
<1
<0.4
<1
<0.7
<1
<1
<0.4
0.4
0.6
70
2
0.4
<1
<0.3
2.5
<0.4
-------
TABLE 33. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE* OF BED REJECT MATERIAL
RUN 2 (COLUMN)
(MS/D
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
<15
<15
<3
30
<6
<15
<15
<15
<6
<15
<6
20
<30
<10
<3
<10
<3
<10
<3
<10
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
Rh
<3
<10
<15
<15
<10
<3
2
20
1,500
200
3
<10
15
10
<6
<20
3
<6
<15
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
<30
100
<2
20
<10
3,000
2,000
200
500
300
<15
15
<300
100
500
<30
4,000
100
300
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
600
1,500
<10
2,000,000
20,000
5,000
5,000,000
1,000
3,000
500
3,000,000
50,000
<10
600 -
0.2
3,000
*Electrode formed directly (no Parr bomb).
174
-------
TABLE 34. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE* OF BED REJECT MATERIAL
RUN 4 (ULTRASONIC SHAKING)
(Mg/D
Shake Number
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
la
Cd
Ag
1
<3
<3
<0.6
10
<1
<3
<3
<3
<1
<3
<1
<2
<60
<2
<0.6
<2
<0.6
<2
<0.6
<2
<1
<2
<3
<3
4
<0.4
1
1.5
400
6
1
6
1
6
<1
<3
1
10
<2
<2
<0.3
2
<0.6
<2
<2
<2
<0.6
<2
<0.6
<1
<30
<1
<0.3
<1
<0.3
<1
<0.3
<1
<0.3
<1
<1
<2
<1
<0.3
0.5
0.3
200
2
0.6
<1
<0.3
1
<0.3
<1
<0.6
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
Shake Number
1
<2
<3
<10
100
0.3
1
<0.3
400
60
15
30
30
<3
1
<60
150
150
<6
3,000
30
100
30
600
<2
600,000
15,000
400
400,000
3,000
3,000
3,000
10,000
15,000
6
10
<0.03
300
10
<2
<1
<3
6
<0.5
6
0.2
500
30
2
30
10
<1
2
<30
15
20
<3
300
10
15
6
60
<1
300,000
3,000
60
200,000
30
600
300
3,000
2,000
3
30 -
<0.05
30
*See description of leachate preparation in summary.
(no Parr bomb).
Electrode formed directly
175
-------
TABLE 35. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE* OF BED REJECT MATERIAL
RUN 4 (COLUMN)
(pg/D
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
<6
<6
<1
15
<4
<5
<5
<5
<2
<5
<2
5
<100
<4
<1
<4
<1
<4
<1
<4
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
Rh
<1
<4
<4
<6
<2
<1
<1
70
500
7
0.6
<4
<0.7
100
<2
<2
<1
<2
<2
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
<15
70
<0.6
3
<0.6
700
150
70
15
150
<4
3
<100
30
300
<10
2,000
10
30
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
5
300
<3
500,000
10,000
2,000
1,500,000
150
400
150
200
2,000
<4
200
<0.06-
200
^Electrode formed directly (no Parr bomb).
176
-------
TABLE 36. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE* OF BED REJECT MATERIAL
RUN 5 (ULTRASONIC SHAKING)
(M8/D
Shake Number
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tin
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
1
<3
<3
<0.5
3
<1
<2
<2
<2
<1
<2
<1
<2
<70
<2
<0.5
<2
<0.5
<2
<0.5
<2
<0.5
<2
<3
<3
<1.5
<0.5
0.7
0.7
500
2.5
0.5
<1.5
<0.5
5
<0.5
<1.5
<1
10
<3
<3
<0.5
3
<1
<2
<2
<2
<1
<2
<1
<2
<150
<2
<0.5
<2
<0.5
<2
<0.5
<2
<0.5
<2
<2
<3
<2
<0.4
0.5
<0.4
250
2
0.5
<2
1
1.5
<3
<2
1.5
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
Shake Number
1
<1
<1
<5
50
<0.3
5
7
700
50
4
15
40
<2
5
<50
20
50
<5
700
5
50
100
150
<1.5
400,000
2,500
300
200,000
150
25,000
1,500
1,000
1,500
<1.5
15
0.1
100
10
<1
<1
<3
10
<0.3
5
<0.3
700
50
5
25
50
<2
1
<50
15
70
<5
1,000
10
100
15
500
<2
150,000
7,000
700
300,000
150
2,500
2,500
5,000
1,500
<2
15 *
0.07
100
*See description of leachate preparation in summary.
(no Parr bomb).
177
Electrode formed directly
-------
TABLE 37. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE* OF BED REJECT MATERIAL
RUN 5 (COLUMN)
(MS/1)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
<5
<5
<1
20
<2
<4
<4
<4
<2
<4
<2
20
<100
<3
<1
<3
<1
<3
<1
<3
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
Rh
<1
<3
<5
<5
<2
<0.7
1
40
700
20
4
<3
<0.6
10
<2
<2
10
<6
<6
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
<15
400
<0.5
30
<0.5
300
300
300
100
150
<4
3
<100
100
500
0
2,000
10
200
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
30
1,000
<3
1,000,000
10,000
2,000
1,500,000
500
1,500
1,500
70
3,000
5
300
1.5 •
1,000
*Electrode formed directly (no Parr bomb).
178
-------
TABLE 38. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE* OF PFBC CYCLONE NUMBER 2 DUST
RUN 2 (ULTRASONIC SHAKING)
(Mg/1)
Shake Number
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tin
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
1
<3
<3
<0.6
4
<2
<3
<3
<3
<2
<3
<2
10
<100
<2
<0.6
<2
<0.6
<2
<0.6
<2
<0.6
<2
<3
<4
<2
<0.6
2
2
600
4
2.5
2
2.5
6
<0.6
<2
<1
10
<1
<1
<0.2
1.5
<0.4
<1
<1
<1
<0.4
<1
<0.4
<1
<6
<0.6
<0.2
<0.6
<0.2
<0.6
<0.2
<0.6
<0.2
<0.6
<0.6
<1
<0.6
<0.2
0.3
0.2
60
0.4
0.4
<0.6
2
<1
<0.2
<1
<0.4
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
Shake Number
1
<1
<4
<6
100
0.4
6
2
4,000
400
4
60
25
<3
3
<60
60
30
<6
600
6
20
100
200
<2
400,000
10,000
100
400,000
200
4,000
2,000
100,000
3,000
<2
60
0.1
2,000
10
<1
<6
<7
60
<0.6
2
1
1,500
200
10
200
6
<1
0.6
<20
20
60
<6
40
6
10
40
<20
<0.6
60,000
20,000
100
100,000
10
400
30
50,000
6,000
<0.6
600 .
<0.03
200
*See description of leachate preparation in summary.
(no Parr bomb).
Electrode formed directly
179
-------
TABLE 39. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE* OF PFBC CYCLONE NUMBER 2 DUST
RUN 2 (COLUMN)
(M8/D
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
<15
<15
<3
20
<6
<10
<10
<10
<6
<10
<6
7
<70
<10
<3
<10
<3
<10
<3
<10
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
Rh
<3
<10
<4
<15
<6
<2
2
<2
2,000
5
15
<6
<2
7
<6
<6
<3
<6
<6
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
<15
20
<2
25
<2
4,000
150
15
40
70
<10
15
<250
70
150
<30
2,500
15
130
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
250
500
<10
700,000
25,000
2,000
2,000,000
400
15 , 000
15,000
5,000
5,000
<10
15
<0 . 15-
500
*Electrode formed directly (no Parr bomb).
180
-------
TABLE 40. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE* OF PFBC CYCLONE NUMBER 2 DUST
RUN 4 (ULTRASONIC SHAKING)
(Mg/D
Shake Number
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
1
<2
<2
<0.3
2
<0.6
<2
<2
<2
<0.6
<2
<0.6
<1
<50
<1
<0.3
<1
<0.3
<1
<0.3
<1
<0.3
<1
<1
<2
2
0.3
1.5
1
300
3
2
<1
<0-6
3
<0.3
<1
1
10
<2
<2
<0.3
5
<0.7
<2
<2
<2
<0.7
<2
<0.7
<1
<30
<1
<0.3
<1
<0.3
<1
<0.3
<1
<0.3
<1
<2
<2
<1
<0.3
0.7
0.3
300
3
0.7
<0.7
0.7
1
<0.7
<0.7
0.3
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
Shake Number
1
<0.6
<1
<2
20
1
4
1.5
1,500
150
2
15
20
<1.5
6
<30
10
30
<3
1,500
7
30
60
150
3
200,000
6,000
60
200,000
70
7,000
7,000
1,500
3,000
<1
60
0.15
600
10
<0.7
<0.7
<2
7
0.2
2
0.5
1,000
70
2
5
10
<2
2
<30
15
50
<4
700
3
30
30
100
1
100,000
5,000
250
250,000
50
5-, 000
1,500
1,500
1,500
1.5
7 -
0.02
70
description of leachate preparation in summary.
(no Parr bomb) .
181
Electrode formed directly
-------
TABLE 41. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE* OF PFBC CYCLONE NUMBER 2 DUST
RUN 4 (COLUMN)
(M8/D
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
<3
<3
<0.5
7
<1
<2
<2
<2
<1
<2
<1
1.5
<15
<2
<0.5
<0.5
<0.5
<2
<0.5
<2
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
la
Cd
Ag
Pd
Rh
<0.5
<2
<2
<3
1
<0.5
2
10
100
20
2
<2
<0.3
3
<1
<1
0.5
<1
<1
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
<3
30
<0.3
3
<0.3
300
300
7
20
15
<2
2
<50
50
30
<5
200
2.5
50
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
20
150
<2
500,000
150,000
300
700,000
250
5,000
700
1,500
15,000
2.5
100
<0.03-
1,000
""Electrode formed directly (ao Parr bomb).
182
-------
TABLE 42. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE* OF PFBC CYCLONE NUMBER 2 DUST
RUN 5 (ULTRASONIC SHAKING)
(Mg/D
Shake Number
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
1
<2
<2
<0.3
2
<0.5
<1
<1
<1
<0.5
<1
<0.5
1.5
<40
<1
<0.3
<1
<0.3
<1
<0.3
<1
<0.3
<1
<2
<2
<1
<0.3
0.7
0.7
400
1
1.5
<0.3
3
<0.3
<0.6
10
<2
<2
<0.3
7
<0.6
<1
<1
<1
<0.5
<1
<0.5
1
<15
<1
<0.3
<1
<0.3
<1
<1
<1
<0.3
<1
<2
<2
4
0.5
5
2
400
3
0.6
<0.5
<0.3
1
<0.5
<1
0.4
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
Shake Number
1
<0.6
<2
<3
50
<0.4
3
0.4
1,000
50
4
30
15
<1
10
<30
15
40
<3
300
7
70
150
150
<1
250,000
4,000
50
150,000
70
7,000
15,000
1,000
700
1.5
100
0.04
250
10
<0.6
<0.6
<2
7
0.2
4
0.7
1,500
150
1.5
<10
25
<1
10
<30
20
40
<3
2,500
10
50
100
250
3
250,000
700
100
200,000
150
15,000
15,000
4,000
3,000
1.5
5 -
0.04
50
*See description of leachate preparation in summary. Electrode formed directly
(no Parr bomb).
183
-------
TABLE 43. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE* OF PFBC CYCLONE NUMBER 2 DUST
RUN 5 (COLUMN)
(M8/D
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
<3
<3
<0.5
7
<1
<2
<2
<2
<1
<2
<1
2.5
<50
<2
<0.5
<2
<0.5
<2
<0.5
<2
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
Rh
<.5
<2
<2
<2
<2
<0.4
0.5
2.5
150
10
1
<1
2
<1.5
<1
<7
2
1
<3
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
<4
100
<0.3
5
<0.3
3,000
500
15
50
20
<2
20
<50
30
30
<5
200
5
150
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
150
150
<2
300,000
30,000
200
300,000
700
2,500
2,500
10,000
10,000
15
50
<0.03-
2,500
*Electrode formed directly (no Parr bomb).
184
-------
TABLE 44. ATOMIC ABSORPTION (AA)--WET CHEMICAL METHODS
SOLID SAMPLES
(M8/8)
Sample
Feed coal
Dolomite sorbent
Bed reject material
PFBC cyclone #2 Dust
Run
2
5
2
5
2
4
5
2
4
5
Hg*
.17
.12
<0.02
<0.02
<0.02
<0.02
<0.02
<0.02
0.05
0.04
Sbt
<0.5
<0.5
<0.5
<0.5
<0.5
2.0
0.5
1.3
2.0
2.7
Asf
14
7.5
<1
2.2
52
35
21
36
33
34
*Hg by flameless AAS.
tSb by AAS with graphite furnace.
by colorimetric/silver diethyl dithiocarbamate.
TABLE 45. ATOMIC ABSORPTION (AA)—WET CHEMICAL METHODS
SASS TRAIN SAMPLE
(Mg/g)
Sample
Filter and first cyclone
(<1 - 3jJ particles)
Second and third cyclones
(3 - lOjj particles)
XAD-2 resin
First, second, and third
' r
impingers
Run
2
4
5
2
4
5
1
2
3
4
5
2
4
5
Hg*
<0.02
0.16
<0.02
0.69
<0.02
<0.02
1.2
§
0.4
0.3
1.5
~1.26
-1.27
0.50
_.Sbt
5.7
5.3
4.0
3.7
3.3
2.3
§
149
249
60
§
<1.5
^f
<1.2
^
<1.5
t*t
Ast
128
85
45
83
64
36
0.04
0.15
a. 21
0.15
<0.05
-2.1
-1.8
<0.8
••v
*Hg by flameless AAS.
tSb by AAS with graphite furnace.
tAs by colorimetric/silver diethyl dithiocarbamate.
§Not detected above level of blank.
185
-------
TABLE 46. ATOMIC ABSORPTION (AA)--WET CHEMICAL METHODS
(|jg/m3 of gas sampled)*
Sample Run Hgt Sbf As§
XAD-2 module
condensate
(acidified)
XAD-2 module
condensate
(basified)
1
2
3
4
5
1
2
3
4
5
0.22
0.50
0.43
0.24
0.35
0.22
0.50
0.52
0.27
0.35
<0.1
<0.3
<0.2
<0.1
<0.2
<0.1
<0.3
<0.2
<0-1
<0.2
0.05
0.1
0.16
0.17
0.35
<0.05
<0.1
0.08
0.11
0.35
*Each value represents the total concentrations in the gas phase based on
separate analyses of the acidified and basified condensate solutions.
fHg by flameless AAS.
^Sb by AAS with graphite furnace.
§As by colorimetric/silver diethyl dithiocarbamate.
TABLE 47. ATOMIC ABSORPTION (AA)—WET CHEMICAL METHODS
LEACHATE FROM BED REJECT MATERIAL*
(Mg/D
Sample Run Hgt Sbt As§
#1
#10
Column
#1
#10
Column
#1
#10
Column
2 <5
<5
<5
4 <5
<5
<5
5 <5
<5
<5
<20
<20
<20
<20
<20
<20
<20
<20
<20
50
<50
50
110
<50
50
300
<50
<50
*Artificial Leaching by ultrasonic shaking identified as shake #1 and #10.
Artificial Leaching by Column identified as Column.
tHg by flameless AAS.
fSb by AAS with graphite furnace.
§As by colorimetric/silver diethyl dithiocarbamate.
186
-------
TABLE 48. ATOMIC ABSORPTION (AA)--WET CHEMICAL METHODS
LEACHATE FROM PFBC CYCLONE NUMBER 2 DUST
(Mg/D
Sample Run Hg* Sbt Asf
#1
#10
Column
#1
#10
Column
#1
#10
Column
2 <5
<5
<5
4 <5
<5
<5
5 <5
<5
<5
<20
<20
<20
<20
<20
<20
<20
<20
<20
70
50
50
250
50
50
50
50
<50
*Hg by flameless AAS.
fSb by AAS with graphite furnace.
fAs by colorimetric/silver diethyl dithiocarbamate.
187
-------
TABLE 49- GAS CHROMATOGRAPHY* FOR INORGANIC GASES
FLUE GAS BEFORE AIR DILUTION
Sample Run
1
2
3
4
5
S02
(ppm)
355
151
62
41
29
CO
(ppm)
100
130
90
56
53
02%
5.6 (15.5)
7.6 (16.7)
6.1 (15.5)
6.0 (15.4)
5.5 (15.3)
C02%
13.7
9.8
12.0
12.5
13.1
*Gas chromatography was not used to identify these gases. Continuous monitors
already on line were used as indicated below:
S02 by IR (0-3000 ppm) or UV (0-100 ppm);
CO by NDIR;
02 by Beckman 715 Ft electrode; data in parentheses are 02
concentrations after dilution;
C02 by IR.
TABLE 50. GAS CHROMATOGRAPHY* FOR INORGANIC GASES
FLUE GAS BEFORE AIR DILUTION
(ppm)
Run
1
2
3
4
5
S02 H2S/COS
583.2
156.2 <0.1
46.8 <0.1
70.2 <0.1
28.1 <6
NH3
0.06
0.09
0.27
0.07
0.64
HCN
<0.0008
0.001
<0.0004
<0.0004
. 0.001
F
7.3
6.7
12.3
14.5
12.8
Cl
47.1
46.2
42.5
38.6
33.5
*Gas chromatography was used to determine H2S/COS after collection by
evacuated bulb. The following were collected by midget impingers and
analyzed as indicated:
S02 by barium perchlorate/thorin titration,
NH3 by microkjeldahl titration,
HCN by colorimetric/pyrindine-pyrazolone,
F by ion chromatography,
Cl by gravimetric/silver chloride.
188
-------
TABLE 51. GAS CHROMATOGRAPHY* FOR INORGANIC GASES
FLUE GAS AFTER DILUTION
Sample
Run
02%
C02%
After air dilution
(sample port la)
Before air dilution
(sample port Ip)
Dilution air
(sample port 14)
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
15.3
15.0
14.0
No data
13.8
No data
No data
5.9
5.7t
4.8
20.1
19.8
21.0
19.1
No data
4.7
5-0
5.9
No data
6.1
No data
No data
12.8
12.1
13.4
0
0
0
0
No data
*02/C02 by Orsat.
tAnalyzed by Exxon.
TABLE 52. CHEMILUMINESCENCE FOR NO *
FLUE GAS BEFORE AIR DILUTION K
Sample
Units
NOx concentrations
Run 1
Run 2
Run 3
Run 4
Run 5
ppm
ppm
ppm
ppm
ppm
102 (15.0)f
136 (29-0)t
128 (40.0)t
124 (no data)t
119 (70.0)t
*Sampled from port Ip (after PFBC cyclone #2).
fPhenoldisulfonic acid method (evacuated bulb sample).
189
-------
TABLE 53. ANION ANALYSIS OF COAL
(wt percent)
Run
2
5
Cl
0.39
0.59
F S04
0.011 .04
0.011 .02
S03
*
*
N03
<0.001
<0-001
NO 2
0.001
<0.001
C03
.10
.10
s
1.10
1.03
*Not determined.
Analytical techniques:
Reduced sulfurs by ASTM D-2494-68
Cl — Gravimetric/silver chloride
F — Ion chromatography
N03 — Ion chromatography
N02 — Colorimetric/azo dye
C03 — C00 evolution/gravimetric
TABLE 54. ANION ANALYSIS OF DOLOMITE SORBENT
(wt percent)
Run Cl F S04 S03 N03 N02 C03
2
5
0.
0.
054
050
<0.001
0.011
0.7
0.5
0
0
.003
.003
<0.001
<0.001
0.002
<0.001
63.8
63.0
0.
0.
006
13
Analytical techniques:
Cl — Gravimetric/silver chloride
F — Distillation/ion chromatography
S04 — Gravimetric/barium sulfate
S03 — S02 evolution/colorimetric (p-rosaniline)
N03 — Ion chromatography
N02 — Colorimetric/azo dye
C03 — C02 evolution/gravimetric
S — H2S evolution/titration
190
-------
TABLE 55. ANION ANALYSIS OF PARTICULATE EMISSIONS--SASS COLLECTION
(wt percent)
Run
2
<3|J 4
5
2
>3(J 4
5
Cl
0.10
0.002
0.011
0.097
0.005
0.007
F
0.015
0.032
0.031
0.014
0.032
0.032
S04
12.1
10.8
9.4
10.4
10.1
8.7
S03
0.002
0.002
0.001
0.003
0.003
0.004
N03
0.004
0.001
<0.001
0.002
0.003
<0.001
N02
<0-001
<0.001
<0.001
<0.001
<0.001
<0.001
C03
<0.2
<0.2
<0.2
<0.2
<0.2
<0.2
S
0.03
<0.03
<0.03
0.03
<0.03
0.03
Aaalytical techniques:
Cl — Colorimetric/ferricyanide method
All others same analyses as used on dolomite sorbent.
TABLE 56. ANION ANALYSIS OF BED REJECT MATERIAL
(wt percent)
Run
2
4
5
Analyses
Run
2
4
5
Cl
.026
.025
.030
F
.004
.016
.003
same as used on
TABLE
Cl
.024
.030
.031
57.
F
.024
.017
.022
S04
32.3
26.1
27.7
dolomite
S03
.012
.006
.011
sorbent.
N03
0.004
0.002
0.001
N02
<0.001
<0.001
<0.001
ANION ANALYSIS OF PFBC CYCLONE NUMBER
(wt percent)
S04
11.1
14.2
14.2
S03
.015
.014
.024
N03
<0.001
<0.001
<0.001
N02
0.007
0.006
0 . 002
C03
12.0
8.7
15.1
2 DUST
C03
3.1
2.3
1.6
S
.014
.005
.005
S
.010
.*003
.005
Analyses same as used on dolomite sorbent.
191
-------
TABLE 58. ANION ANALYSIS OF LEACHATES FROM BED REJECT MATERIAL*
(M8/D
Sample
Run 2
Run 4
Run 5
#1
#10
column
#1
#10
column
#1
#10
column
Cl
11
5
176
5
2
64
5
4
62
,500
,000
,000
,900
,200
,000
,500
,800
,000
2
1
4
1
2
1
1
1
F
,400
,900
,000
,700
300
,100
,100
,100
,700
S04
3.0
1.6
1.5
1.5
1.3
0.2
1.0
1.5
0.2
X
X
X
X
X
X
X
X
X
106
106
106
106
106
106
106
106
106
S03
800
1,000
3,100
300
100
1,500
300
500
1,300
N03
300
8,300
<300
<300
<300
<300
<300
7,100
1,800
N02
1,100
200
700
1,500
400
800
<200
300
1,900
^Artificial leaching by ultrasonic shaking identified as shake #1 and #10.
Artificial leaching by column method identified as column.
TABLE 59. ANION ANALYSIS OF LEACHATES FROM PFBC CYCLONE NUMBER 2 DUST*
(Hg/1)
Sample
Run 2
Run 4
Run 5
#1
#10
column
#1
#10
column
#1
#10
column
6
7
65
8
53
12
5
33
Cl
,700
,100
,000
,700
200
,000
,500
,800
,000
F
2,400
2,300
2,000
900
200
400
1,800
300
1,200
S04
2.5
0.8
0.9
1.0
1.2
0.2
1.1
1.1
0.2
X
X
X
X
X
X
X
X
X
106
106
106
106
106
10s
106
10s
106
so3-
300
500
2,300
<100
100
1,500
<100
<100
1,300
N03
6,400
6,700
2,500
1,300
<300
<300
1,600
300
3,000
8
71
8
49
3
17
N02
,600
300
,000
,600
300
,000
,300
300
,000
*Artificial leaching by ultrasonic shaking identified as shake #1 and #10.
Artificial leaching by column method identified as column.
192
-------
TABLE 60. GAS CHROMATOGRAPHY FOR C7-C17
Sample
Feed coal -
Run 2
Feed coal -
Run 5
Range
GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13 and
GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13 and
- 110
- 140
- 160
- 180
- 200
- 220
greater
- 110
- 140
- 160
- 180
- 200
- 220
greater
Volatile No. of Gravimetric Total
weight, peaks nonvolatile organic,
Hg/g weight, rag mg
389 t t t
345
193
69
103
72
418
302
354
190
61
85
81
209
GC7 90 - 110 120
GC8 110 - 140 1170
GC9 140 - 160 0
Flue gas* GC10 160 - 180 384
(diluted) GC11 180 - 200 31
Run 1 GC12 200 - 220 7
GC13 and greater 86
^Collected by XAD-2 module.
fNot reported.
193
-------
TABLE 61. GAS CHROMATOGRAPHY FOR C7-C17
Sample
Flue gas*
(diluted)
Run 2
Flue gas*
(diluted)
Run 3
Flue gas*
(diluted)
Run 4
Range
GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13 and
GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13 and
GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13 and
- 110
- 140
- 160
- 180
- 200
- 220
greater
- 110
- 140
- 160
- 180
- 200
- 220
greater
- 110
- 140
- 160
- 180
- 200
- 220
greater
Volatile No. of Gravimetric Total
weight, peaks nonvolatile organic,
pg/m3 weight, mg mg
1085 t t t
1215
429
1037
527
478
3337
34
654
0
0
0
0
29
1058
1911
403
0
0
25
145
*Collected by XAD-2 module.
tNot reported.
194
-------
TABLE 62. GAS CHROMATOGRAPHY FOR C7-C17
Sample
Flue gas*
(diluted)
Run 5
Diluent air
Run 1
Diluent air
Run 2
Range
GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13 and
GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13 and
GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13 and
- 110
- 140
- 160
- 180
- 200
- 220
greater
- 110
- 140
- 160
- 180
- 200
- 220
greater
- 110
- 140
- 160
- 180
- 200
- 220
greater
Volatile No. of Gravimetric Total
weight, peaks nonvolatile organic,
Mg/m3 weight, mg mg
110 t t t
1630
0
0
0
0
58
616
9086
0
1970
260
37
443
819
1397
311
267
329
294
5482
Collected by XAD-2 module.
fNot reported.
195
-------
TABLE 63. GAS CHROMATOGRAPHY FOR C7-C17
FLUE GAS PARTICULATES <3p
Sample Range
Run 2 GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13 and
Run 4 GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13 and
Run 5 GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13 and
- 110
- 140
- 160
- 180
- 200
- 220
greater
- 110
- 140
- 160
- 180
- 200
- 220
greater
- 110
- 140
- 160
- 180
- 200
- 220
greater
Volatile No. of Gravimetric Total
weight, peaks nonvolatile organic,
Hg/g weight, mg mg
63 * * *
113
116
35
46
25
18
659
1038
266
65
118
88
81
56
68
32
9
12
10
7
*Not reported.
196
-------
TABLE 64. GAS CHROMATOGRAPHY FOR C7-Ci7
FLUE GAS PARTI CULATES >3\i
Sample Range
Run 2 GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13 and
Run 4 GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13 and
Run 5 GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13 and
- 110
- 140
- 160
- 180
- 200
- 220
greater
- 110
- 140
- 160
- 180
- 200
- 220
greater
- 110
- 140
- 160
- 180
- 200
- 220
greater
Volatile No. of Gravimetric Total
weight, peaks nonvolatile organic,
|Jg/g weight, mg mg
0 * * *
340
193
415
0
0
265
69
4
12
0
0
0
1
22
30
17
5
8
6
6
*Not reported.
197
-------
TABLE 65. GAS CHROMATOGRAPHY FOR C7-C17
SASS FRONT HALF WASH
Sample
Range
Volatile
weight,
Mg/g
No. of
peaks
Gravimetric
nonvolatile
weight, mg
Total
organic,
mg
Run 2 GC7 90 - 110 0
GC8 110 - 140 23,368
GC9 140 - 160 0
GC10 160 - 180 0
GC11 180 - 200 0
GC12 200 - 220 0
GC13 and greater 236
Run 4 GC7 90 - 110 0
GC8 110 - 140 732
GC9 140 - 160 0
GC10 160 - 180 0
GC11 180 - 200 0
GC12 200 - 220 0
GC13 and greater 11
Run 5 GC7 90 - 110 0
GC8 110 - 140 195
GC9 140 - 160 0
GC10 160 - 180 0
GC11 180 - 200 0
GC12 200 - 220 0
GC13 and greater 5
*Not reported.
198
-------
TABLE 66. GAS CHROMATOGRAPHY FOR C7-C17
BED REJECT MATERIAL
Sample Range
Run 2 GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13 and
Run 4 GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13 and
Run 5 GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13 and
- 110
- 140
- 160
- 180
- 200
- 220
greater
- 110
- 140
- 160
- 180
- 200
- 220
greater
- 110
- 140
- 160
- 180
- 200
- 220
greater
Volatile No. of Gravimetric Total
weight, peaks nonvolatile organic,
M8/S weight, mg mg
14 * * *
16
6
13
7
6
43
0
0
0
0
0
0
0
20
22
12
4
5
3
17
*Not reported.
199
-------
TABLE 67. GAS CHROMATOGRAPHY FOR C7-C17
PFBC CYCLONE NUMBER 2 DUST
Sample Range
Run 2 GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13 and
Run 4 GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13 and
Run 5 GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13 and
- 110
- 140
- 160
- 180
- 200
- 220
greater
- 110
- 140
- 160
- 180
- 200
- 220
greater
- 110
- 140
- 160
- 180
- 200
- 220
greater
Volatile No. of Gravimetric Total
weight, peaks nonvolatile organic,
Mg/g weight, mg mg
117 * * *
9
0
6
0
0
0.3
15
19
10
3
4
3
3
41
53
31
8
10
7
17
*Not reported.
200
-------
TABLE 68. LC FRACTIONATION*
METHYLENE CHLORIDE EXTRACT OF FEED COAL
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Run 2
Grav
TCO |jg/8 Total Total
161
85
198
82
2
306
664
0
Run 5
Grav
TCO |jg/g Total Total
82
105
177
104
83
335
421
0
*A11 LC fractionations expressed as weight per gram of sample—corrected for
solvent blanks.
TABLE 69. LC FRACTIONATION
FLUE GAS*
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Run 1
Grav
TCO (Jg/Nm3 Total Total
67
71
32
18
41
367
t
1802
Run 2
Grav
TCO M8/Nm3 Total Total
4104
202
944
283
324
1337
157
749
Collection by SASS XAD-2 module and condenser (pentane extraction) and
combined for organic analysis.
tResidue dissolved weighing dish.
201
-------
TABLE 69 (con.)
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Run 3
Grav
TCO Hg/Nm3 Total
60
2
2
66
148
67
*
371
Fraction TCO
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Run 4
Grav
Total TCO Mg/Nm3 Total Total
314
32
11
830
369
714
290
978
Run 5
Grav
Mg/Nm3 Total Total
58
107
238
86
106
636
159
407
^Residue dissolved weighing dish.
202
-------
TABLE 70. LC FRACTIONATION
DILUENT AIR*
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Run 1
Grav
TCO Mg/Nm3 Total
2214
29
17
33
55
297
586
9080
Run 2
Grav
Total TCO M8/Nm3 Total Total
1835
11
27
53
119
133
537
6184
'"Collection at sample port 14 by Tenax sorbent.
203
-------
TABLE 71. LC FRACTIONATION
METHYLENE CHLORIDE EXTRACT OF FLUE GAS PARTICIPATES
(> 3(J)
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Run 2 Run 4
Grav Grav
TCO |Jg/8 Total Total TCO pg/g Total Total
7 16
4 27
33 44
0 0
8 0
238 0
926 0
0 0
Run 5
Grav
Fraction TCO |Jg/g Total Total
LC 1 0
LC 2 0
LC 3 13
LC 4 28
LC 5 17
LC 6 35
LC 7 0
LC 8 0
204
-------
TABLE 72. LC FRACTIONATION
METHYIENE CHLORIDE EXTRACT OF FLUE GAS PARTICIPATES
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Run 2
Grav
TCO |Jg/g Total Total
0
33
39
27
122
103
139
0
Run 4
Grav
TCO |Jg/g Total Total
767
494
461
28
0
0
0
562
Fraction TCO
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Run 5
Grav
M8/8 Total Total
0
14
43
91
0
44
0
0
205
-------
TABLE 73. 1C FRACTIONATION
SASS FRONT HALF WASH
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Run 2
Grav
TCO |Jg/g Total
78
15
2
10
348
710
426
22,015
Fraction TCO
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Run 4
Grav
Total TCO |Jg/g Total Total
42
4
38
19
4
143
0
493
Run 5
Grav
Mg/g Total Total
22
2
14
27
135
0
0
0
206
-------
TABLE 74. LC FRACTIONATION
METHYLENE CHLORIDE EXTRACT OF PFBC CYCLONE NUMBER 2 DUST
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Run 2 Run 4
Grav Grav
TCO |Jg/g Total Total TCO |Jg/g Total Total
0 0
73 12
29 0
1 22
18 23
11 0
0 0
0 0
Run 5
Grav
Fraction TCO pg/g Total Total
LC 1 0
LC 2 0
LC 3 0
LC 4 0
LC 5 0
LC 6 63
LC 7 104
LC 8 0
207
-------
TABLE 75. LC FRACTIONATION
METHYLENE CHLORIDE EXTRACT OF BED REJECT MATERIAL
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Run 2
Grav
TCO (Jg/8 Total Total
0
0
0
0
0
34
70
0
Run 4
Grav
TCO |Jg/g Total Total
0
0
0
0
0
0
0
0
Run 5
Fraction TCO
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Grav
|jg/g Total Total
0
0
0
<1
6
64
0
0
208
-------
IR ANALYSIS OF LC FRACTIONS
NOTE:
1. Species reported are those which are clearly different from
species observed in the solvent, XAD-2, and Tenax blanks.
2. Fractions seven and eight of many samples contained water that
presented great difficulty in the IR analysis. It was impos-
sible to eliminate the water with moderate heating; thus, it is
believed to be water of hydration of inorganic compounds in the
fractions.
3. Clean denotes at or below IR detection limits of 1 to 5 |Jg.
209
-------
TABLE 76. IR REPORT
SAMPLE: BEFORE LC SEPARATION
Sample
Run
Findings
Feed Coal
XAD-2
Dilution Air
0 SASS 10|J + 3|J particulates
SASS 1|J + Filter Particulates
SASS Front Half Wash
2 Diethylene glycol and probably water and carboxylic acid.
5 Diethylene glycol, water, and carboxylic acid.
1 Water and aromatic sulfonate.
2 Silicones, ester, and carboxylic acid.
3 Aliphatic HC, water, and ethers.
4 Aliphatic HC and ester carbonyl.
5 High aliphatic HC content with mixture of carbonyl species,
including ester, phthalates, and ethers.
1 Virtually pure aliphatic HC, probable traces of carbonate and
sulfate.
2 Same as Run 1.
2 Large amount of diethylene glycol, some water and a carboxylic
acid and its salt are also probably present.
4 Large amount of diethylene glycol. Some esters and probably
some acids are present which do not appear in the LC fractions.
5 Strong ester and diethylene glycol bonds; however, not much
ester appears in the fractions.
2 Silicones, ether, and carbonyls of ester and/or acids.
4 Rather weak total spectrum, showing some carbonyl bonds which
were observed in LC fractions 6 and 7. More of the 1740 cm 1
ester carbonyl is seen in the unseparated sample than in the
LC fractions.
5 Small quantity of material, only inorganics and some carbonyl
(ester of ketone).
2 Small amount of silicones, aromatic sulfonate, ester, and
probably carboxylic acid.
4 Primarily a hydrated sulfate. Water, but not sulfate,
observed in LC fraction 8.
5 Silicones, ester, and some carbonyl.
-------
TABLE 76 (con.)
Sample
Run
Findings
FBC Bed Reject
FBC Cyclone Number 2 Dust
Method 5 Filter
Balston Filter
2 Small amount of aliphatic HC and ester carbonyl.
4 Weak spectrum, some diethylene glycol and ester carbonyl.
5 Very weak spectrum showing a small quantity of diethylene
glycol and some ester carbonyl.
2 Small amount of aliphatic HC and ester carbonyl.
4 Very weak spectrum, trace of carbonyl.
5 Very clean, no functional groups observed.
Primarily inorganics—carbonates and sulfates.
of aliphatic HC.
Small amount
Small quantity of aliphatic HC and bands, probably resulting
from water and a carboxylic acid and its salts.
-------
TABLE 77. IR REPORT
SAMPLE: FEED COAL
LC
Run 2
Run 5
LC 1 Aliphatic HC
LC 2 Aliphatic HC, aromatic HC
LC 3 Aromatic (fused ring?) HC
LC 4 Aromatic HC (trace)
LC 5 Clean
LC 6 Diethylene glycol, mixed aromatic carbonyl
LC 7 Diethylene glycol
LC 8 Diethylene glycol, water
Aliphatic HC
Aliphatic HC, aromatic HC
Aromatic (fused ring?) HC
Aliphatic HC, ester, ketone, acid
Phenol, carbonyl species
Diethylene glycol
Aromatic carboxylic acid, amide, water
ro
-------
TABLE 78. IR REPORT
SAMPLE: FLUE GAS (FROM XAD-2)
LC
LC 1
LC 2
LC 3
LC 4
LC 5
to
w LC 6
_
LC 7
LC 8
Run 1
Aliphatic HC
Silicone
Silicone
Silicone, ester
Silicone, ester,
aromatic structure
Carboxylic acid,
dichlorobenzoic
acid
Sulfonic acid
Aromatic sulfonate,
water of hydration
Run 2
Aliphatic HC
Silicone
Silicone, tetra-
decaethyl siloxane
Silicone
Silicone
Silicone, ester
ketone
Ester, ether, acid
Carboxylic acid
+ salt, chloride
Run 3 Run 4
Aliphatic HC Aliphatic HC
(Clean) (Clean)
/•/-"I _»„ \ _____
Aromatic Background
carboxylic acid,
benzoic acid
Benzoic acid +
ester, aliphatic
carboxylic acid
Aliphatic acid, Background
ether
Ether Ether
Aromatic
sulfonate
Run 5
Aliphatic HC
Silicone
Silicone, ester
Ester
Background
Ether acetamide
Ester
Polar material
of sulfur
-------
TABLE 79. IR REPORT
SAMPLE: DILUENT AIR
LC
Run 1
Run 2
LC 1 Aliphatic HC
LC 2 Clean
LC 3 Clean
LC 5
LC 6 Aromatic ketone, ester, phenol
LC 7 Water, ketone, aliphatic alcohol, NH4C1
LC 8 Carboxylic acid, salts, water
Aliphatic HC
Clean
Clean
Ketone, ester
Ester, ketone, phenol
Water, ketone, aliphatic alcohol, NH4C1
Carboxylic acid, aromatic amine, phenol
-------
TABLE 80. IR REPORT
SAMPLE: FLUE GAS PARTICIPATES >3|J
Cn
LC
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Run 2
Silicone, aliphatic HC
Clean
Ester
Clean
Clean
Silicone
Diethylene glycol
Carboxylic acid, hydroxyl
group
Run 4
Run 5
Aliphatic HC, water
Clean
Clean
Clean
Clean
Ester
Carboxylic acid, ether, or
alcohol
Clean
Clean
Diethylene glycol,
Ketone, ether
ester
FLUE GAS PARTICULATES <3|J
LC
Run 2
Run 4
Run 5
LC 1 Aliphatic HC
LC 2 Clean
LC 3 Clean
LC 4 Ester, water, HC
LC 5 Aromatic HC, ester
LC 6 Carbonyls, amine, or hydroxyl
LC 7 Ester, HC
*
LC 8 Carboxylic acid
Aliphatic HC, water
Clean
Clean
Clean
Clean
Carbonyls, ketone NH4C1
Mix of carbonyls,
carboxylic acid
Mix of carbonyls,
carboxylic acid
Aliphatic HC
Clean
Clean
Clean
Clean
Carbonyls (ester or ketone)
Clean
Carboxylic acid, other polar
materials
-------
TABLE 81. IR REPORT
SAMPLE: SASS FRONT HALF WASH
o\
LC
LC 1
LC 2
LC 3
LC 4
Run 2
Background
Clean
Silicone, ester
Silicone, ester
Run 4
Background
Aliphatic HC
Trace HC + ester
Trace ester
Run 5
Aliphatic HC
Clean
Trace ester
Phthalate + ester +
aromatic
LC 5 Silicone, esters, aromatic
structure
LC 6 Ester alcohol + possible
ethylene glycol monoacetate +
other esters
LC 7 Sulfate + water of hydration
LC 8 Carboxylic acid + acid salt
Ester + phthalate
Background
Ester + possible carboxylic
acid + salt
Carboxylic acid + acid salt
+ water of hydration
+ aldehyde
Ketone + phthalate and/or
ester + aromatic structure
Ketone + Carboxylic acid +
ester and/or phthalate
Trace carboxylic acid +
acid salt + ester
Water of hydration +
phthalate + aromatic sulfonate
-------
TABLE 82. IR REPORT
SAMPLE: BED REJECT MATERIAL
10
LC
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
Run 2
Clean
Clean
Clean
Clean
Clean
Ketone
Clean
Run 4
Aliphatic HC, phthalate
Phthalate
Clean
Clean
Clean
Ketone
Diethylene glycol ,
Run 5
Aliphatic HC, carbonyl species,
(phthalate?)
Carbonyl (phthalate?)
Carbonyl (phthalate?)
Alcohol, ester
Ester, ketone
Mix of carbonyls
Diethvlene glvcol,
LC 8 Inorganics, NH4C1
ester, water
Water
mix of carbonyls
Water
-------
TABLE 83. IR REPORT
SAMPLE: PFBC CYCLONE NUMBER 2 DUST
LC
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Run 2
Aliphatic HC
Clean
Clean
Clean
Clean
Amine , phenol
Clean
Carboxylic acid
Run 4
Aliphatic HC
Aliphatic HC
Aliphatic HC
Aliphatic HC, carbonyl
species
Clean
Ketone
Aliphatic HC, ester
Unsaturated carboxylic acid,
Run 5
Ester (acetate?)
Amide, urea types
Amide, urea types
Amide, urea types
Amide , urea types
Ketone
Diethylene glycol
Phthalate
00
other polar species
-------
TABLE 84. IR REPORT
SAMPLE: METHOD 5 FILTER
LC Findings
LC 1 Aliphatic HC
LC 2 Clean
LC 3 Clean
LC 4 Clean
LC 5 Clean
LC 6 Ester + ketone + carboxylic acid
LC 7 Clean
LC 8 Aromatic sulfonate
TABLE 85. IR REPORT
SAMPLE: BALSTON FILTER
LC Findings
LC 1 Clean
LC 2 Clean
LC 3 Clean
LC 4 Clean
LC 5 Clean
LC 6 Ester + ketone + carboxylic acid
LC 7 Ester + ketone + carboxylic acid
LC 8 Carboxylic acid + acid salt
219
-------
TABLE 86. LRMS REPORT
SAMPLE: XAD-2 MODULE
1 . Categories Present
Run
1
2
4
5
2. Subcategories
Run
2
4
5
3 . Other
Intensity '
N.R.
LC
8
1
3
6
8
4
6
6
, Specific
LC
1
3
6
8
4
6
6
Intensity
Compounds
Intensity
100
100
100
None
None
None
100
Category
Aliphatic HC
None
None
None
None
Compound
Tetra-decaethyl
siloxane
Dichlorobenzoic
acid
None
None
None
Acetamide?
,
MW Range
m/e Composition
-------
TABLE 87. LRMS REPORT
SAMPLE: SASS FRONT HALF WASH
S3
1 . Categories Present
Run LC
2 8
4 8
2. Subcategories , Specific
Run LC
2 8
4 8
3 . Other
Intensity
N.R.
Intensity
10
None
Compounds
Intensity
None
None
Category MW Range
Chloride or sulfur
None
Compound m/e Composition
None
None
-------
TABLE 88. LRMS REPORT
SAMPLE: PFBC DILUTION AIR
1-0
1 - Categories Present
Run LC
Intensity
1
2
8
8
2. Subcategories, Specific Compounds
Run
1
2
3. Other
Intensity
N.R.
LC
8
8
Intensity
None
None
Category
None
None
Compound
None
None
MW Range
None
None
m/e
Composition
-------
STUDY NUMBER 11
DATA
SOURCE:
COMPREHENSIVE ANALYSIS
OF EMISSIONS FROM MERC
FLUIDIZED-BED COMBUSTION UNIT
DATA
STATUS:
Draft Report, September, 1977
AUTHORS:
CONTRACTOR:
J. M. Allen, E. L. Merryman, J. E. Howes, Jr.,
S. E. Miller, and E. J. Schulz
Battelle Columbus Laboratories
Columbus, Ohio 43201
Contract No. 68-02-2138
PROJECT
OFFICER:
D. B. Henschel
Industrial Environmental Research Laboratory
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
223
-------
224
-------
GENERAI
In September 1976, Battelle Columbus Laboratories (BCL) sampled the
18-inch atmospheric fluidized-bed combustor (FBC) at the Morgantown Energy
Research Center (MERC). Atypical aspects of this operation were: use of a
cone-shaped FBC distributor plate in the MERC unit; use of a lower ash, lower
Btu anthracite culm as an FBC fuel (anthracite culm =5,000 Btu/lb; about
one-half the value of normally used coal); no use of limestone sorbent in most
test runs; lower velocity within the bed (~3 ft/sec); and use of poorly func-
tioning bag filters in the gaseous effluent stream just prior to discharge.
Figure 1 from the study diagrams the MERC operation. Fuel feed rate was
90 Ib/hr, and bed temperature was ~1,600° F. The stated objective of this
study was "to measure all potential pollutants from both direct and indirect
sources, which might be of significance in the commercialization of this
specific type atmospheric" FBC process.
Four sampling runs of 5 hours each were made. Runs 1, 3, and 4 were made
under "normal" operating conditions. In run 2, fines from the first FBC
cyclone were recycled into the bed and some limestone sorbent was added to the
bed. Only samples from runs 2, 3, and 4 were analyzed. Nine streams, from a
40-stream list, were sampled. These were: stack gas from FBC, particulate
removal discard from FBC, bed solids discard from FBC, fuel feed to FBC, flue
gas from FBC to particle removal, recycle of particulates from particle removal
to FBC (run 2 only), fugitive or secondary emission from FBC particulate
disposal, and effluent gas from secondary stack gas cleaning device.
Some conclusions drawn in the report of this study were: that excess 02
caused low CO (£400 ppm) and low levels of reduced sulfur compounds; that
sulfur compounds were more concentrated in the smaller particulate fractions;
that the NO (average concentrations of 222 ppm) was probably from the fuel N;
and that N0£ from this process was very low (<5 ppm). A comparative evalua-
tion of the MERC FBC with FBC units at Argonne National Laboratory (ANL) and
Battelle Columbus Laboratories (BCL) showed an overall wide variation, perhaps
due to use of different coals. However, there were strong tendencies for the
33 elements of interest to concentrate, going from larger to smaller particle
size, and from bed ash to the first cyclone to the second cyclone. Considering
the MERC and BCL FBC units in relation to the N and S levels in the different
tyges of coal, the two units were roughly equivalent in emission of S02, SOs,
CN and Cl~; the BCL unit was somewhat higher for NH3; and the MERC unit was
much higher for F". The BCL and MERC units were comparable for organic emis-
sions in most cases within a factor of 5, excepting the BCL cyclones which
were much higher in organics. The BCL FBC gaseous emissions were somewhat
higher in As than the MERC. Bioassays showed no significant mutagenic activ-
ity, no significant bacterial toxicity, and no significant cytotoxicity.
The modified method 5 sampler (see subsequent description) showed par-
225
-------
ticulate loadings of: Run 2—7,320 mg/m3, Run 3--2,940 mg/m3, and Run 4~
2,490 mg/m3 at the bag collector inlet. The HVSS (subsequently described)
showed loadings of Run 2—1,518 mg/m3, Run 3—1,497 mg/m3, and Run 4—1,014
mg/m3 at the stack effluent, after the bag collectors.
GASEOUS GRAB
The specified glass bulb was not used for some gaseous grab sampling.
Some samples were taken by continuous withdrawal to autoanalyzers (C02 and CO
by NDIR; S02 by flame photometric; NO and NO by chemiluminescence; and Q% by
paramagnetic). Other gaseous samples were drawn with separate sampling trains.
S03 and H2S04 were sampled with a Goksyr-Ross controlled condensation apparatus
and analyzed by ion chromatography. NH3 was sampled with a modified Method 6
train containing H2S04 in impingers and analyzed by the Kjeldahl method.
Cyanides were sampled with a modified Method 6 train with KOH in impingers and
analyzed by a colorimetric method. HC1 was sampled with a modified Method 6
train with NaOH in impingers and analyzed by titration, and volatile fluorides
were sampled with a Method 6- type train with NaOH in impingers and analyzed
by specific ion electrode. C02, 02, and CO were determined by Orsat from the
evacuated bulb sample. The evacuated flask or bag technique was used to
obtain samples for total hydrocarbon analysis at Battelle. H2S, COS, and
disulfides were sampled by an evacuated glass bulb and analyzed by gas chroma-
tography-gas mass spectroscopy at Battelle.
SASS
A SASS train was not used in this study. A modified Method 5 train was
used to collect particulates, organic vapors, and trace metals from the gas-
eous stream entering the bag collector. This modified Method 5 train con-
sisted of a probe, two glass cyclones held at 250° F (cutoff sizes at 4.6|J and
2.1|j), a quartz filter at 250° F, a Tenax-GC trap held at 125° F, an impinger
containing an 1^02 solution, an empty impinger, two"more impingers containing
1 N HN03 (originally used (NH4)2S20g/AgN03 solution, but encountered precipi-
tate), an empty impinger, and a sixth impinger containing silica gel. All
impingers were in an ice bath. A flow rate of 0.75 cfm was used during sampling.
Sample was rinsed from the apparatus with CH2C12•
An HVSS was used to measure the effluent stream leaving the stack. This
system was similar to the modified Method 5 train but with a heated probe at
250° F, heated filter at 250° F, and impingers in an ice bath. The first and
second impingers contained water, the third was empty, and the fourth contained
silica gel. The HVSS contained no cyclones or Tenax-GC trap. The HVSS system
was operated at about 1.5 scfm. The HVSS was rinsed with acetone.
A Mark III, eight-stage, Andersen cascade impactor, connected to the
modified Method 5 train probe and heated to 250° F by the method 5 train^oven,
was used to size particulates. A high-purity quartz substrate was the collect-
ing medium.
The samples collected by the modified Method 5 train, HVSS, and cascade
impactor were analyzed by SSMS for trace metals. Major elements were deter-
mined by emission spectroscopy. Organic analysis followed the usual Level I
226
-------
procedure of extraction, LC separation and IR, but no LRMS analysis was per-
formed. Biological samples were assayed by the Ames1 bacterial mutagenicity
test, the mammalian cell cytotoxicity assay (prescreen confluency assay), and
the bacterial toxicity assay (percent survival of the Ames1 bacterial strains).
FUGITIVE EMISSIONS
Artificial leachates were prepared from the bed discard and the first and
second FBC cyclone discards by two different procedures. In the first method,
sample plus water was agitated ultrasonically for 10 1-hour increments; then
the first and tenth leachate solutions were analyzed for trace metals isSMS);
toxic elements (AA); and the following anions: Cl~ (colorimetric), 804 (titra-
tion), SOa (colorimetric), NOf (colorimetric), and NOf (colorimetric). In the
second method, a sample bed was prepared in a 50-ml buret column, through
which water was pumped up at 1.2 ml/min. Three successive 8-ml portions were
removed from the top of the bed, but only the first portion was analyzed.
Leachates prepared by the second method were analyzed by the same procedures
in the first method.
LIQUIDS AND SLURRIES
No liquids or slurries were sampled.
SOLIDS
Limestone sorbent was grab sampled and riffled to a 1-quart sample, but
since very little limestone was used with the low sulfur coal in this study,
limestone was not analyzed. Bed discard, cyclone 1 discard, and cyclone 2
discard were sampled hourly and composited. These three samples were analyzed
for: particle size distribution by sieving and weighing; anions (Cl , F ,
804, SOa, N05, NOf) by various colorimetric or titrimetric methods; trace
metals by SSMS; toxic elements (Hg, As, Se, Sb) by~AA; particle morphology by
scanning electron microscope; major elements (Al, Ca, Fe, K, Na, Si) by optical
emission spectroscopy; and organic classes by LC-IR. The anthracite fuel feed
was grab sampled from the feed hopper and analyzed as follows: trace metals
by SSMS; fuel analyses (moisture, volatile matter, ash, fixed carbon, C, H, N,
S, 0, Btu, and sulfur) by ASTM methods; organic classes by LC-IR; particle
size distribution by sieving and weighing; toxic elements (Hg, As, Se, Sb) by
AA; major elements (Al, Ca, Fe, K, Na, Si) by optical emission spectroscopy;
biological analyses by Ames' test, prescreen confluency assay and bacterial
toxicity; C02, Cl" and F" by ASTM methods.
227
-------
N5
S3
oo
ne
Fuel
Limestone
OLi
II stone
V? hopper
Fuel hopper
Weigh hopper
Screw
feeder
Screw feeder
Injector air
Bed material
Figure 1. MERC atmospheric fluidized'-bed combustor.
-------
TABLE 1. SPARK SOURCE MASS SPECTROSCOPY
COAL CULM FROM FEED HOPPER
(ppmw)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
2
1
10
<0.1
3
0.2
<0.3
<0.1
<0.3
<0.2
<0.2
<0.2
<0.5
<0.5
2
0.2
1
0.3
2
1
10
<0.5
2
2
10
50
10
100
50
2,000
50
0.1
<0.5
1
3
<2
5
0.3
Run
3
1
2
0.1
3
0.2
<0.3
<0.2
<0.5
<0.3
<0.3
<0.3
<2
<0.5
3
0.2
3
1
2
1
5
0.5
3
2
10
30
5
50
20
1,000
50
0.1
<0.3
1
3
<2
0.3
0.1
4
1
10
<0.2
3
0.2
<0.3
<0.1
<0.5
<0.2
<0.2
<0.2
<2
<1
3
0.2
5
1
2
1
10
<1
5
2
10
50
20
100
50
2,000
10
0.05
<0.3
2
5
<2
1
0.2
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
2
<0.5
<0.5
<0.3
5
10
200
30
100
200
0.3
<20
20
1
20
5
10
50
2
-1%
30
50
200
3,000
10
300
~3%
5
1,000
100
~15%
~15%
. 2,000
2,000
50
20
0.5
10
Run
3
<0.3
<0.5
<1
2
10
50
10
100
200
0.5
<5
10
5
5
1
5
50
2
5,000
20
30
100
2,000
10
300
~2%
5
100
30
-15%
-15%
2,000
500
20
50
0.5
10
4
<2
<0.5
<0.3
5
20
200
50
200
100
1
<20
10 .
3
5
5
5
100
10
-1%
10
100
100
3,000
50
200
-1%
0.5
100
100
-15%
-15%
1,000
300
2
20
1
- 20
229
-------
TABLE 2. SPARK SOURCE MASS SPECTROSCOPY
NBS COAL—SRM 1633
(ppmw)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
2
10
0.5
30
1
<0.3
<0.1
<0.3
<0.2
<0.2
<0.1
<0.5
<0.5
1
0.3
3
1
3
1
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
10
2
10
2
20
30
10
100
30
3,000
10
0.3
<0.5
1
5
<3
<0.5
1
<2
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.5
<0.5
20
5
100
200
2,000
300
1
<10
30
20
3
100
100
100
30
~1%
200
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
10
100
3,000
20
~5%
~2%
10
300
200
~15%
~15%
~1%
2,000
3
50
5
50
TABLE 3. SPARK SOURCE MASS SPECTROSCOPY
CYCLONE NUMBER 1—RUN 2*
(>4.6 p particles [ppraw])
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
10
100
20
300
5
<0.5
<0.1
<0.3
<0.2
<0.2
<0.2
3
<5
20
5
30
5
50
20
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
50
10
100
20
100
500
100
500
300
2,000
* 100
10
2
50
100
-------
TABLE 4. SPARK SOURCE MASS SPECTROSCOPY
CYCLONE NUMBER I—RUN 3*
(>4.6 |j particles [ppmw])
u
Th
Bi
Pb
Tl
Hg
Au
Pt
IT
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
5
50
10
200
2
<0.5
<0.1
<0.3
<0.2
<0.2
<0.2
0.3
<1
<0.5
<0.2
<0.5
3
20
5
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs '
I
Te
Sb
Sn
In
Cd
Ag
Pd
10
5
50
10
20
200
50
100
200
500
10
1
0.5
10
10
4.6 (J particles [ppmw])
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
10
50
10
500
3
<0.5
<0.1
<0.3
<0.2
<0.2
<0.2
3
<2
<0.3
<0.3
<0.5
2
10
1
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs .
I
Te
Sb
Sn
In
Cd
Ag
Pd
10
1
20
5
10
200
20
100
50
500
30
2
<0.5
10
10
-------
TABLE 6. SPARK SOURCE MASS SPECTROSCOPY
CYCLONE NUMBER 2 AND FILTER—RUN 2*
(<4.6 |J [ppmw])
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
5
10
10
100
1
<0.5
<0.1
<0.3
<0.1
<0.2
<0.2
1
<1
3
1
10
1
10
2
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
10
2
20
10
30
100
30
200
100
1,000
. 50
0.3
1
10
30
-------
TABLE 8. SPARK SOURCE MASS SPECTROSCOPY
CYCLONE NUMBER 2 AND FILTER--RUN 4*
(<4.6 |J [ppmw])
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
10
20
10
100
1
<0.5
<0.1
<0.3
<0. 1
<0.2
<0.3
3
<2
10
1
10
2
20
5
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
30
3
50
10
50
300
50
200
200
2,000
50
2
1
10
30
-------
TABLE 9. SPARK SOURCE MASS SPECTROSCOPY
BED REJECT MATERIAL
(ppmw)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tin
Er
Ho
Dy
Tb
Gd
Eu
Sin
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
2
2
10
<1
100
2
<0.3
<0.1
<0.3
<0.2
<0.2
<0.2
<1
<0.5
2
0.5
3
0.5
5
2
10
3
5
5
10
50
20
200
50
3,000
100
0.05
<0.3
1
10
<1
<0.5
2
Run
3
2
10
0.3
100
1
<0.3
<0.1
<0.3
<0.2
<0.2
<0.2
<1
<0.5
2
0.5
3
0.5
3
2
3
1
3
3
10
50
5
100
30
500
30
0.05
<0.5
1
5
<1
<0.5
0.2
4
2
10
<1
100
2
<0.3
<0.1
<0.3
<0.2
<0.2
<0.2
<1
<0.5
3
0.5
3
0.5
5
2
10
2
3
5
5
50
10
100
50
1,000
50
<0.05
<0.3
1
5
<3
<0.5
0.3
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
2
<2
<0.5
<0.5
2
10
100
50
300
1,000
1
<5
20
5
20
50
50
20
5
5,000
30
50
100
3,000
10
5,000
~10%
20
500
100
~15%
~15%
-1%
3,000
50
20
0.5
30
Run
3
<2
<0.5
<0.5
2
10
50
30
100
1,000
0.5
<2
20
2
20
20
10
20
5
5,000
30
10
100
3,000
10
-1%
-10%
10
1,000
50
-15%
-15%
5,000
2,000
30
50
1
50
4
<3
<0.5
<0.5
2
20
100
30
100
1,000
0.5
<1
20
2 -
30
20
30
10
3
5,000
20
20
100
5,000
10
-1%
-10%
10
300
200
-15%
-15%
-1%
2,000
30
100
2
300
234
-------
TABLE 10. SPARK SOURCE MASS SPECTROSCOPY
FBC CYCLONE NUMBER 1 PARTICULATES—RUN 3
(ppmw)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
1
10
<0.1
30
0.5
<0.3
<0.1
<0.3
<0.2
<0.2
<0.2
<1
<0.2
0.5
0.2
2
0.3
2
0.3
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
2
0.3
3
2
10
30
10
100
50
2,000
50
0.05
<0.3
2
10
<1
<0.5
3
<1
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.5
<0.5
3
20
200
20
100
200
0.5
<5
30
5
20
10
50
30
10
~1%
30
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
50
100
3,000
20
5,000
~5%
2
100
100
~15%
~15%
2,000
1,000
10
10
0.2
30
-
TABLE 11. SPARK SOURCE MASS SPECTROSCOPY
FBC CYCLONE NUMBER 1 PARTICULATES—RUN 4
(ppmw)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
2
10
<0.2
30
2
<0.3
<0.1
<0.3
<0.2
<0.2
<0.2
<1
<1
0.5
0.1
2
0.3
2
1
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
5
1
3
2
5
30
10
50
30
1,000
30
0.1
<0.3
1
10
<10
<0.5
0.3
<1
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.5
<0.5
2
20
100
10
100
1,000
0.5
<5
10
3
20
10
20
30
5
5,000
30
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
30
50
3,000
20
5,000
~5%
5
300
50
~15%
-15%
-1%
1,000
20 .
20
0.5
30
235
-------
TABLE 12. SPARK SOURCE MASS SPECTROSCOPY
FBC CYCLONE NUMBER 2 PARTICULATES
(ppmw)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
2
2
20
1
100
0.5
<0.3
<0. 1
<0.3
<0.2
<0.2
<0.2
<1
<1
2
0.1
2
0.2
2
1
5
1
5
2
10
100
20
100
100
2,000
30
<0.05
<0.3
2
5
<5
<0.5
0.1
Run
3
2
10
1
200
2
<0.3
<0. 1
<0.3
<0.2
<0.2
<0.2
<1
<1
2
0.1
2
0-1
2
1
5
1
5
2
20
30
10
100
50
2,000
50
<0.05
<0.3
3
10
<20
<0.3
0.2
4
1
10
1
30
0.5
<0.3
<0. 1
<0.3
<0.2
<0.2
<0.2
<0.5
<0.5
1
0.1
3
0.5
2
0.5
3
1
3
2
5
30
5
50
50
500
30
0.3
<0.5
1
5
<3
<0.3
1
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
2
<2
<0.5
<0.3
3
20
200
50
100
500
0.5
<20
30
5
20
30
30
50
10
-1%
50
30
203
3,000
50
3,000
-3%
2
300
100
-15%
-15%
-1%
2,000
20
30
20
50
Run
3
-------
TABLE 13. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE OF BED REJECT MATERIAL—RUN 3 (ULTRASONIC SHAKING)*
(ng/ml)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os ,
Re
W
Ta
Hf
Lu
Yb
Tin
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Shake
1
t
t
<0.2
2
<0.2
<0.5
<1
<0.3
<0.2
t
<0.3
0.5
<20
-------
TABLE 14. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE OF BED REJECT MATERIAL
RUN 3 (COLUMN)*
(ng/ml)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tin
Er
Ho
t
t
0.15
1.5
0.15
<0.4
<0.7
<0.2
0.15
t
<0.2
1.5
<40
<0.6
<0.07
<0.2
<0.07
t
0.07
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.2
<0.07
<0.2
<0.07
<0.2
<0.2
<0.07
<0.07
<0.07
15
3
0.5
0.2
15
<0.15
<0.7
4
0.5
<0.15
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.15
<0.15
300
<0-15
<0.15
<0.15
150
300
50
<3
300
3
5
15
7
30
<0.15
70
0.7
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
7
1,500
400
<0.04
60,000
100,000
15,000
30,000
15
3,000
400
700
1,000
4
150
<0.004
100
*See leachate preparation in summary.
tNot reported.
238
-------
TABLE 15. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE OF BED REJECT MATERIAL
RUN 4 ( ULTRASONIC SHAKING)*
(ng/ml)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Shake
1
t
t
<0.4
<1.5
<1
<1
<1
<1
<1
t
<1
<1
<10
<2
<0.2
<1
<0.2
f
<0.2
<1
<0.2
<1
<0.4
<1
1.5
0.2
1
0.5
15
0.5
<0.2
<1
<0.4
<0.7
<0.3
<2
<0.3
Number
10
t
t
<0.1
<0.4
<0.4
<0.4
<0.4
<0.4
<0.4
<0.4
<0.4
<2
<1
<0.1
<0.4
<0.4
<0.1
<0.4
<0.1
<0.4
<0.2
<0.2
<0.3
<0.1
0.2
0.2
1
0.1
0.06
<0.3
<0.2
<0.3
<206
<1.5
<0.1
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Mi
Co
Fe
Mn
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
Shake
1
<0.4
<0.2
<0.7
1
<0.1
<3
<0.2
1
7
4
<0.7
7
<0.04
2
7
40
2
0.2
2,000
40
4
5
700
0.3
50
50,000
402
72
4,000
100,000
70,000
1,500
1,000
<0.7
10
0.07
70
Number
10
<0.2
<0.05
<0.2
0-7
<0.05
<0.1
<0.05
0.5
1.5
2
<1
1
<0.3
0.2
300
200
10
0.15
600
0.3
2
1.5
50
0.6
70
9,000
150
70
100
15,000
1,500
150
500
<0.3
30
0-. 03
3
*See leachate preparation in summary.
tNot reported.
239
-------
TABLE 16. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE OF BED REJECT MATERIAL
RUN 4 (COLUMN)*
(ng/ml)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tin
Er
Ho
t
t
<0
<2
<1
<1
<2
<1
<1
t
<1
<1
<10
<4
<0
<1
<1
t
<0
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
-------
TABLE 17. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE OF PFBC CYCLONE NUMBER 1 PARTICULATES
RUN 4 (ULTRASONIC SHAKE)*
(ng/ral)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Shake
1
t
t
<0.1 '
<0.4
<0.2
<0.2
<0.5
<0.2
<0.2
t
<0.2
<0.2
<3
<0.6
<0.05
<0.2
<0.05
t
<0.05
<0.2
<0.05
<0.2
<0.1
<0.2
<0.2
<0.05
<0.05
<0.05
1
<0.05
<0.05
<0.2
<0.1
<0.2
<0.05
<0.6
<0.07
Number
10
t
t
<0.06
0.1
<0.2
<0.2
<0.6
<0.2
<0.2
t
<0.2
<0.2
<3
<0.4
<0.03
<0.2
<0.03
t
<0.3
<0.2
<0.03
<0.2
<0.06
<0.2
<0.2
<0.02
<0.04
0.1
0.6
0.04
<0.02
<0.1
<0.04
<0.1
<0.02
<0.2
<0.03
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
Shake
1
<0.01
<0.03
<0.1
0.3
<0.03
<0.1
<0.03
3
2
1
0.5
5
<0.1
<0.05
4
2
3
0.5
20
3
0.5
1.5
10
<0.03
2,200
10,000
15
1,000
3
200
5
200
1,500
0.4
0.3
0.01
200
Number
10
<0.06
<0.03
<0.06
0.2
<0.02
<0.15
<0.02
0.06
1
<1
<0.06
1
<0.01
0-1
6
6
3
0.04
100
0.6
0.3
1
20
<0.02
5
50
30
70
4
400
600
40
10
<0.2
0.3
(L02
0.4
*See leachate preparation in summary.
tNot reported.
241
-------
TABLE 18. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE OF PFBC CYLONE NUMBER 1 PARTICULATES
RUN 4 (COLUMN)*
(ng/ml)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
t
t
<0.4
15
1.5
<1
<6
<0.7
<0.4
t
<0.7
<0.7
<150
<2
0.15
1.5
0.3
t
1
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
3
1
6
1.5
6
15
3
60
30
50
1.5
0.15
0.6
6
0.6
<0.3
30
<0.4
<0.4
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<1
<0.2
15
<0.1
<1.5
60
1,500
1,000
60
15
300
15
6
600
100
300
150
3,000
1,500
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
150
100
60
1
70,000
300,000
300
60,000
20
6,000
1,500
30,000
2,000
60
100
0.7
600
*See leachate preparation in summary.
tNot reported.
242
-------
TABLE 19. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE OF PFBC CYCLONE NUMBER 2 PARTICULATES
RUN 2 (ULTRASONIC SHAKING)*
(ng/ml)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Shake
1
t
t
<0.04
0.3
<0-15
<0-15
<0-15
<0.15
<0.07
<0.15
<0.07
<0.15
<3
<0.5
<0.04
<0.15
<0.04
<0.15
<0.04
<0.15
<0-07
<0.2
<0.07
<0.15
<0.15
<0.04
<0.04
<0.04
0-7
0.04
0.15
<0.2
t
<0.07
<0.4
<0.5
<0.04
Number
10
t
t
<0.07
0.6
<0.15
<0.15
<1
<0.15
<0.15
<0.15
<0.07
<0.15
<10
<0.5
<0.04
<0.15
<0.04
<0.15
<0.04
<0.15
<0.04
<0.15
<0.07
<0.15
<0.15
<0.03
<0.03
0.2
0.7
0.1
<0.03
<0.1
t
<0.1
<0.03
<0.03
<0.04
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
Shake
1
<0.07
<0.04
<0.2
0.7
<0-02
0.3
<0.02
7
0.7
1.5
1.5
2
<0.3
<0.4
0.7
0.4
0.7
0.2
30
0.7
0.07
1.5
4
<0.07
400
1,000
15
2
2
7
70
70
300
0.7
1.5
0.04
5
Number
10
<0.07
<0.03
<0.07
0.3
<0.02
<0.1
<0.02
0.15
1.5
5
<0.07
4
<0.01
<0.1
10
15
6
0.15
400
0.7
0.4
2
30
<0.02
150
1,000
100
4,000
20
1,500
700
150
150
<0.15
4
a. 01
30
*See leachate preparation in summary.
tNot reported.
243
-------
TABLE 20. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE OF PFBC CYCLONE NUMBER 2 PARTICULATES
RUN 2 (COLUMN)*
(ng/ml)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
t
t
<0
15
4
<1
<10
~<1
<0
<1
<0
<1
<200
<3
<0
<1
<0
0
0
.5
.5
.5
.5
.2
.5
.2
.7
.4
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
2
0
4
1
4
20
4
40
20
40
20
0
1
t
0
<0
30
<0
<0
.7
.5
.4
.5
.4
.4
.5
.5
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
2
1
1
1
1
4
4
<1.5
<2
30
<0.15
<1
20
,000
,000
100
70
400
40
15
,500
150
,500
,500
,000
,000
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
300
500
200
20
20
100
7
1
200
70
150
0.4
,000
,000
200
,000
30
,000
,000
,000
,000
150
700
0-7
,500
*See leachate preparation in summary.
tNot reported.
244
-------
TABLE 21. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE OF PFBC CYCLONE NUMBER 2 PARTICULATES
RUN 3 (ULTRASONIC SHAKING)*
(ng/ml)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Shake
1
t
t
<0.06
0.4
<0.1
<0.2
<0.6
<0.2
<0.1
<0.2
<0.1
<0.2
<40
<0.7
<0.05
<0.2
<0.05
<0.2
<0.05
<0.2
<0.05
<0.2
<0.1
<0.2
<0.2
<0.05
0.05
<0.05
10
0.5
0.5
<0.2
t
0.5
<0.05
<0.6
0.05
Number
10
t
t
<0.06
<2
<1
<1
<3
<1
<1
<1
<0.5
<1
<15
<3
<0.3
<1
<0.3
<1
<0.3
<1
<0.3
<1
<0.5
<1
<1
<0.3
<0.3
0.1
1
<0.3
<0.3
<1
t
<1
<0.3
<3
<0.4
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
Shake
1
<0.3
<0.1
<0.3
40
<0.03
<0.4
0.03
500
50
20
20
20
<3
0.3
20
5
20
<1
100
20
10
30
20
<0-1
100,000
40,000
200
150,000
30
500
100
5,000
4,000
2
30
0.1
300
Number
10
<0.5
<0.3
<0.5
5
<0.15
<2
<0.15
0.5
1
2
<0.4
1.5
<0.5
<0.3
4
5
<1.5
<0.15
400
0.7
1
3
40
<0.15
300
400
70
30
15
100
1,500
100
60
<1
1
<0.01
70
*See leachate preparation in summary.
tNot reported.
245
-------
\
TABLE 22 . -^ °^ SOURCE MASS SPECTROSCOPY
LEACHATE OF PF, ^ %LONE NUMBER 2 PARTICIPATES
K -^ (COLUMN)*
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
t
t
<0
5
0
<0
<10
<0
<0
<0
<0
<0
<100
<1
<0
<0
0
0
0
.2
.4
.4
.4
.2
.4
.2
.4
.5
. i
.4
.1
.4
.2
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
1
0
3
0
1
4
1
6
3
40
15
1
0
t
0
<0
5
<0
<0
.5
.3
.3
.3
.4
.4
.4
.4
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.6
<1.5
200
<0.2
<1
~6
1,000
400
100
40
40
7
<0.3
200
60
40
10
500
300
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
150
150
300
3
3
15
15
5
6
100
100
0.5
,000
,000
300
,000
15
,000
,000
,000
,000
70
100
0.5 .
,000
*See leachate preparation in summary.
fNot reported.
246
-------
TABLE 23. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE OF FBC CYCLONE NUMBER 2 PARTICULATES
RUN 4 (ULTRASONIC SHAKING)*
(ng/ml)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Shake
1
t
t
<0.2
7
0.7
<0.3
20
<0.3
<0.2
<0.3
<0.2
<0.3
<50
<1
0.07
1.5
0.3
1.5
0.7
2
0.7
7
0.7
3
20
4
40
20
40
10
0.4
0.2
t
0.4
<0.3
4
0.5
Number
10
t
t
<0.05
4
<0.2
<0.2
<0.2
<0.2
<0.2
<0.2
<0.1
<0.2
<20
<0.6
0.05
<0.2
<0.2
<0.2
<0.05
<0.7
0.05
<0.2
0.1
0.2
1.5
0.3
1.5
1.5
20
1.5
0.3
<0.15
t
0.4
<0.04
<1
0.5
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
Shake
1
<0.3
<0.4
<1.5
7
<0.4
<0.3
30
700
400
50
15
40
10
<0.2
400
70
300
400
3,000
700
40
40
50
1.5
40,000
200,000
150
150,000
20
4,000
70,000
30,000
7,000
150
40
0.7
3,000
Number
10
<0.1
<0.1
<0-15
1
0.3
7
0.5
5
20
5
<0.7
15
0.7
1.5
60
15
10
1
15,000
5
10
50
400
1
150
6,000
30
50
70
30,000
20,000
100
400
6
30
2.5
40
*See leachate preparation in summary.
fNot reported.
247
-------
TABLE 24. SPARK SOURCE MASS SPECTROSCOPY
LEACHATE OF FBC CYCLONE NUMBER 2 PARTICULATES
RUN 4 (COLUMN)*
(ng/ml)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
t
t
10
1,000
3
<1
<2
<1
<0.5
<1
<1
5
<50
3
0.5
3
0.5
10
3
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
15
5
40
7
50
100
40
300
40
400
40
7
2
t
200
<3
50
10
<2
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
5
1
3
5
10
700
5
<1
<5
20
3
20
150
,000
,000
,000
70
200
40
20
,000
,000
500
300
,000
,000
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
1
150
150
10
150
1
30
500
300
70
1
4
300
70
,000
10
,000
,000
,000
,000
,500
,000
,000
,000
,000
,000
300
10
,000
*See leachate preparation in summary.
tNot reported.
248
-------
TABLE 25. ATOMIC ABSORPTION (AA)--WET CHEMICAL METHODS*
FBC LEACHATE SAMPLES (ULTRASONIC SHAKING)f
(ppm)
Sample
Bed reject material
FBC Cyclone #1
FBC Cyclone #2
Shake
1
10
1
10
1
10
1
10
1
10
1
10
Run
3
3
4
4
4
4
2
2
3
3
4
4
Hg Sb
<0.005 t
<0.005
<0.005
<0 . 005
<0.005
<0.005
<0.005
<0.005
<0.005
<0.005
<0.005
<0.005
As
<0.02
0.06
0.44
0.11
0.22
0.14
0.22
0.30
0.08
0.38
0.12
0.64
*Analysis by AA.
tSee leachate preparation in summary.
reported.
TABLE 26. ATOMIC ABSORPTION (AA)— WET "CHEMICAL METHODS*
FBC LEACHATE SAMPLES (COLUMN)t
(ppm)
Sample
Bed reject material
FBC Cyclone #1
FBC Cyclone #2
Run
3
4
4
2
3
4
Hg Sb
<0.005 f
<0.005
<0 . 005
<0 . 005
<0 . 005
<0.005
As
0.79
3.2
1.6
1.5
<0.02
0.22 .
*Analysis by AA.
tSee leachate preparation in summary.
reported.
249
-------
TABLE 27. ATOMIC ABSORPTION (AA)--WET CHEMICAL METHODS*
METHOD 5 SAMPLES
(ppm)
Sample
Cyclone #1 (>4.6p)
Cyclone #2 and filter
(<4.6|J)
\
Impinger #1 and rinsef
(HO)
£* £•
Impinger #3 and #4 andf
rinse (1 N HNO,)
*3
Run
2
3
4
2
3
4
2
3
4
2
3
4
Hg
5.1
0.76
0.83
2.8
1.0
1.6
0.069
0.39
0.24
0.063
0.12
0.04
Sb
23
9
6
7.4
7.3
7.4
<0.24
<0.23
<0.21
<0.24
<0.16
<0.06
As
155
159
219
274
253
389
0.62
0.23
<0.09
<0.10
<0.10
<0.03
*Hg by flameless AAS, Sb by HGA/AAS, As by hydride generation AAS.
o
tData from impinger samples reported in Mg/m • HNO- used due to precipitate
formation when using (NH,)- S-Og/AgNO-.
TABLE 28. ATOMIC ABSORPTION (AA)—WET CHEMICAL METHODS*
FBC SAMPLES
(ppm)
\
Sample
Coal culm
Bed reject material
'
FBC Cyclone #1
FBC Cyclone #2
Blank
Run
2
3
4
2
3
4
3
4
2
3
4
Hg
0.21
0.21
0.29
0.18
0.17
2.7
0.32
0.19
0.30
0.36
0.31
0.41
Sb
0.7
0.7
1.2
<0.5
<0.5
<0.5
<0.5
1.2
4.0
4.8
6.0
16.9
As
34
26
40
35
41
36
35
47
60
90
107
59
*Hg by flameless AAS, SB by HGA/AAS, As by hydride generation AAS.
250
-------
TABLE 29. GAS CHROMATOGRAPHY* FOR INORGANIC GASES
Sample
Run 1
Run 2
Run 3
Run 4
S02
(ppm)
379
444
352
440
co%
.023
.04
.01
.016
02%
9
9
11
10
.84
.40
.5
.6
C02% N2
10
11
9
10
.4 t
.3
.6
.4
H2S
(ppm)
<2
<2
<2.3
<2.2
COS
(ppm)
<2
<2
<2
<2
NH3
(ppm)
.13
.13
.13
.13
HCN
(ppm)
<.06
<.04
<.05
<.18
CN2
t
*Gas chromatography was not used.
Analysis and collection techniques:
S02 by flame photometric—continuous withdrawal between cyclone //I and #2.
C0/C02 by NDIR—continuous withdrawal from stream 21.
02 by paramagnetic—continuous withdrawal from stream 21.
H2S by HRGM spectroscopy—collection by evacuated flask—stream 1.
COS by HRGM spectroscopy—collection by evacuated flask—stream 1.
NHs by Kjeldahl—collection by method 6 train with H2S04 impinger—stream 1.
HCN by colorimetric—collection by method 6 train with KOH impinger--stream 1,
tNot reported.
TABLE 30. GAS CHROMATOGRAPHY* FOR INORGANIC GASES
Sample
Run 1
Run 2
Run 3
Run 4
S02
(ppm)
269
609
421
511
02%
9.5 (12.75)
9.2 (11.25)
9.17 (11.25)
8.6 (10.25)
C02%
10.3 (7.25)
11.0 (8.5)
10.87 (8.8)
10.8 (9.75)
*Gas chromatography was not used.
Analyses and collection techniques:
S02 by 1C—collection by method 6 train—stream 1. Goksyr-Ross/IPA,
Blank, H202, H202.
02C02 by Orsat—collection by Tedlar bag at stream 1 or 34. Data in
parentheses refer to sample taken from stream 34.
251
-------
TABLE 31. CHEMILUMINESCENCE FOR NO *
x
Sample Units NO concentrations
r x
Run 1 ppm 228 (222)t
Run 2 ppm 193 (183)t
Run 3 ppm 248 (238)t
Run 4 ppm 239 (240)t
""Collection by continuous withdrawal at stream 21.
tNO concentrations.
252
-------
TABLE 32. ANION ANALYSES OF FBC SAMPLES
(wt. percent)
Sample Run
Cyclone
#1
Cyclone
#2 and
filters
Coal feed
Bed
reject
material
FBC cy-
clone #1
FBC cy-
clone #2
NBS Coal
2
3
4
2
3
4
2
3
4
2
3
4
3
4
2
3
4
Cl
0.001
<0.001
<0.001
<0.001
<0.001
<0.001
0.029
0.015
0.029
0.160
0.030
0.009
0.024
0.013
0.009
0.060
0.011
0.030
F
0.22
0.22
0.20
0.22
0.29
0.31
0.037
0.048
0.033
0.031
0.027
0.005
0.026
0.045
0.042
0.065
0.081
0.010
S04
0.45
1.47
1.47
0.52
1.24
1.32
0.09
1.02
0.12
0.18
0.09
0.09
0.57
0.39
1.02
S03
0.20
0.30
0.20
0.35
<0.01
0.02
0.03
0.36
0.26
0.36
0.13
0.15
<0.01
N03
<0
<0
<0
<0
<0
<0
--
--
--
0
<0
0
0
<0
0
<0
<0
<0
.001
.001
.001
.001
.001
.001
--
--
—
.003
.001
.002
.001
.001
.001
.001
.001
.001
N02
<0
<0
<0
<0
<0
<0
—
--
—
<0
<0
<0
<0
<0
<0
<0
<0
<0
.0005
.0005
.0005
.0005
.0005
.0005
--
--
—
.001
.001
.001
.001
.001
.001
.001
.001
.001
s
<0.01
0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
C03
0.06
<0.03
<0.03
0.01
<0.01
<0.01
0.05
0.05
0.10
0.10
0.10
0.10
0.10
0.05
0.05
0.05
0.05
0.35
Analysis methods: „
Cl Colormetric, ASTM D-512, method C.
F Distillation/SPADNS, colorimetric, ASTM D1179, method A.
S04 Barium perchlorate/thorium titration, ASTM D516, method C.
S03 S02 evolution/West-Gaeke colorimetric, ASTM D2914.
N03 Brucine colorimetric, ASTM D992.
N02 Colorimetric, ASTM D1254
S H2S evolution/KI03 titration.
C03 C02 evolution, ASTM D1756.
253
-------
TABLE 33. ANION ANALYSES OF FBC LEACHATES
ULTRASONIC SHAKING*
(ppm)
Sample
Bed
reject
material
FBC cy-
clone #1
FBC cy-
clone #2
Run
3-1
3-10
4-1
4-10
4-1
4-10
2-1
2-10
3-1
3-10
4-1
4-10
Cl
0.04
18
2.0
3.0
0.31
0.23
0.10
0.73
1.4
0.72
1.5
0.04
F
0.21
5.0
0.16
0.64
<0.05
0.09
0.25
0.50
1.3
1.5
10
0.90
S04
116
137
36
8.3
93
<0.1
86
8.3
1040
<0.1
773
<0.1
S03
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
N03 N02
<0.1 0.16
<0.1 0.16
<0.1 0.82
0-13 0.10
<0.1 <0.08
<0.1 0.14
<0.1 <0.05
<0.1 0.31
0.35 <0.05
<0.1 0.06
<0.1 <0.05
<0.1 0.08
*See leachate preparation in summary. Analysis methods same as used in
nonleached samples, table 32.
TABLE 34. ANION ANALYSES OF FBC .LEACHATES
COLUMN*
(ppm)
Sample
Bed reject
material
FBC cy-
clone #1
FBC cy-
clone #2
Run
3
4
4
2
3
4
Cl
2.3
2.2
6.1
6.1
7.6
7.3
F
1.1
<0.05
10
14
6.5
27
S04
334
198
2260
3440
1590
3010
S03
<0.5
<0.5
<0.5
<0.5
<0.5
<0.5
NO 3 N02
<0.1 1.0
0.50 0.89
<0.1 <0.05
<0.1 0.05
<0.1 0.05
5.5 6.7
*See leachate preparation in summary.
Analysis methods same as used in nonleached samples, table 32.
254
-------
TABLE 35. SSMS vs. OES COMPARISON*
(SSMS in ppmw, OES in weight percent)
to
Method 5
Cyclone 1
Element Run
Si 2
3
4
Fe 2
3
4
Al 2
3
4
K 2
3
4
Ca 2
3
4
Mg 2
3
4
Ti 2
3
4
Na 2
3
4
Pb 2
3
4
SSMS
-30%
-30%
-30%
-3%
-5%
-5%
-10%
-10%
-10%
-2%
5,000
-1%
3,000
1,000
2,000
-1%
5,000
5,000
-2%
-2%
-1%
3,000
1,000
2,000
300
200
500
*
Train
FBC
Cyclone 2
OES SSMS
18
18
18
5
5
5
9
9
9
4
4
4
0.1
0.1
0.05
0.3
0.3
0.3
1
1
1
0.1
0.1
0.1
0.01
0.02
0.02
-30%
-30%
-30%
-5%
-10%
-10%
-10%
-10%
-10%
5,000
-1%
5,000
2,000
3,000
2,000
-1%
-1%
-1%
-2%
-2%
-3%
3,000
1,000
3,000
100
100
100
OES
18
18
18
9
9
9
9
9
9
4
4
4
0.1
0.1
0.05
0.3
0.3
0.3
1
1
1
0.1
0.1
0.1
0.02
0.02
0.02
Coal
SSMS
-15%
-15%
-15%
-1%
5,000
-1%
-15%
-15%
-15%
-3%
-2%
-1%
300
300
200
2,000
2,QOO
1,000
3,000
2,000
3,000
2,000
500
300
3
3
3
Culm
OES
15
15
15
2
2
2
5
5
5
2.5
2.5
2.5
0.02
0.02
0.02
0.2
0.2
0.2
0.3
0.3
0.3
0.1
0.1
0.1
<.01
<.01
<.01
Bed
SSMS
-15%
-15%
-15%
5,000
5,000
5,000
-15%
-15%
-15%
-10%
-10%
-10%
5,000
-1%
-1%
-1%
5,000
-1%
3,000
3,000
5,000
3,000
2,000
2,000
100
100
100
Ash
OES
15
25
25
2
2
2
12
12
12
5
4
5
0.05
1
0.5
0.3
0.3
0.3
0.5
0.5
0.5
0.1
0.1
0.1
<.01
<.01
<.01
Cyclone 1
SSMS
-W _ w
-15%
-15%
-1%
5,000
1%
-15%
-15%
-5%
-5%
5,000
5,000
2,000
-1%
3,000
3,000
1,000
1,000
30
30
OES
— _ —
25
25
2
2
12
12
4
4
0.1
0.03
0.3
0.3
0.5
0.5
0.1
0.1
<.01
<.01
Cyclone 2
SSMS OES
-15% 25
-15% 25
-15% 25
1% 2
1% 4
1% 4
-15% 12
-15% 12
-15% 12
-3% 4
-5% 4
-5% 4
3,000 0.05
3,000 0.2
5,000 0.05
-1% 0.3
-1% 0 . 3
-1% 0.3
3,000 0.5
3,000 0.5
3,000 0.5
2,000 0.1
2,000 0.1
3,000 0.1
100 <.01
200 0.02
30 0.02
NBS
SSMS OES
-15% 25
'•^1 °/ ^t
•** /O *^
-15% 12
-2% —
-5% 5-7
-1% 1
3,000 0.3
2,000 0.1
30 0.01
«OES valid to ± 50%.
-------
TABLE 35 (con.)
Cn
Method 5
Cyclone 1
Element Run
Ba 2
3
4
Mn 2
3
4
V 2
3
4
Cu 2
3
4
Zr 2
3
4
Ni 2
3
4
Cr 2
3
4
Sr 2
3
4
B 2
3
4
SSMS
2,000
500
500
100
50
100
300
500
300
300
300
100
500
500
500
200
100
100
500
300
500
300
200
200
5
5
10
Train
Cyclone 2
OES SSMS
0.04
0.04
0.04
0.007
0.007
0.007
0.02
0.03
0.03
0.007
0.007
0.007
0.03
0.03
0.03
0.005
0.005
0.005
0.01
0.01
0.01
0.01
0.01
0.01
1,000
2,000
2,000
200
200
200
300
1,000
500
100
100
100
500
500
500
200
200
200
300
300
300
200
300
200
20
20
20
Coal
OES SSMS
0.06 2
0.06 1
0.04 2
0.01
0.01
0.01
0.04
0.04
0.03
0.007
0.007
0.007
0.03
0.03
0.03
0.007
0.007
0.007
0.02
0.02
0.02
0.01
0.01
0.01
,000
,000
,000
30
20
10
200
100
100
10
5
5
200
50
200
50
50
JOO
50
30
100
100
100
200
20
50
20
Culm
Bed
OES SSMS
0.02 3
0.02
0.02 1
0.003
0.003
0.003
0.005
0.005
0.005
<.003*
< . 003*
<.003*
0.01
0.01
0.01
<.01
<.01
<.01
<.01*
<.01*
<.01*
<.01
<.01
<.01
<.01
<.01
<.01
,000
500
,000
30
30
20
100
100
100
50
10
30
100
50
100
20
20
10
50
10
20
300
100
100
20
50
100
Ash
FBC
Cyclone 1 Cyclone 2 NBS
OES SSMS
0.04 -
0.03 2
0.04 1
0.005 -
0.01
0.005
0.01 -
0.01
0.01
< . 003*
<.003*
< . 003*
0.02 -
0.02
0.02
<.01 -
<.01
<.01
<.01* -
<.01*
<.01*
<.01 -
<.01
<.01
<.01 -
<.01
<.01
__
,000
,000
—
30
30
—
100
50
50
20
--
200
100
--
30
30
—
50
30
--
100
100
--
10
20
OES SSMS OES SSMS
2
0.03 2
0.03
0.003
0.003
0.01
0.01
< . 003*
<.003*
0.02
0.02
<.01*
<.01*
<.01*
<.01*
<.01
<.01
<.01
<.01
,000 0.03 3,000
,000 0.03 ---
500 0.03 ---
50 0.003 200
30 0.003
20 0.003
200 0.01 100
200 0.01 —
50 0.01 —
30 <.003* 100
30 0.003 —
30 0.003
200 0.02 100
100 0.02 —
100 0.02 — -
50 <.01* 100
50 <.01* —
50 <.01* —
30 <.01* 10
30 0.01
20 0.01
100 <.01 2,000
100 <.01 —
300 <.01 —
30 <.01 50
30 <.01 —
30 <.01 ---
OES
0.01
0.03
0.01
0.01
0.02
.01
<0.01*
0.1
0.03
_ __
*Trace.
-------
TABLE 35 (con.)
Element
Co
Run
2
3
A
Method
Cyclone 1
SSMS OES
30 —
30 —
30 —
5 Train
Cyclone 2
SSMS OES
50 —
50 —
50 —
FBC
Coal
SSMS
2
2
10
Culm
OES
<.01
<.01
<.01
Bed Ash
SSMS OES
5 <.0]
5 <.0]
3 <.0]
Cyclone 1
SSMS OES
1 ^ Ml ^ •• ^ •••
I 10 <.01
[ 5 <.01
Cyclone 2
SSMS OES
10 <.0]
I 10 <.0]
L 10 <.0]
NBS
SSMS OES
L 30 <0.01*
1 «m* «M» v* «•• *•» •••
[ *• — -* •• *•* Mt
*Trace.
Ui
-vl
-------
TABLE 36. LC FRACTIONATION
COAL CULM FROM FEED HOPPER
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Run 2
Grav
TCO |Jg/g Total Total
112.6
0
5.2
5.2
0
0
13.6
0.8
Run 3
Grav
TCO |jg/8 Total Total
83.6
0
3.0
4.0
0.6
10.0
4.2
2.4
Run 4
Fraction TCO
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Grav
Hg/g Total Total
131.8
0
6.8
3.0
0
13.0
56.0
LOST
NOTE: Values corrected for solvent blank A.
258
-------
TABLE 37. LC FRACTIONATION
BED REJECT MATERIAL
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Run 2
Grav
TCO (jg/g Total Total
11.4
0
0.6
4.8
0
4.4
21.8
2.8
Run 3
Grav
TCO |jg/g Total Total
13.2
0
1.8
3.8
0
1.4
44.4
0
Run 4
Fraction TCO
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Grav
|jg/g Total Total
3.4
0
0
2.6
0
4.4
0
2.6
NOTE: Values correlated for solvent blank A.
259
-------
TABLE 38. LC FRACTIONATION
FBC CYCLONE NUMBER 1
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Run 3
Grav
TCO |Jg/g Total Total
14.2
0
0
4.0
0.8
7.8
0.8
0
Run 4
Grav
TCO [Jg/g Total Total
3.4
0
1.2
1.6
0
0.6
0
10.8*
*Some silica gel in sample.
Note: Values corrected for solvent blank A.
260
-------
TABLE 39. LC FRACTIONATION
FBC CYCLONE NUMBER 2
Fraction.
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Run 2
Grav
TCO |Jg/g Total Total
8.2
0
1.2
2.0
0
0.4
5.2
0
Run 3
Grav
TCO M8/8 Total Total
0
0
3.8
0.6
0
3.0
5.4
0.6
Run 4
Fraction TCO
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Grav
pg/g Total Total
2.2
0
3.0
2.6
0
3.0
12.2
2.6
NOTE: Values corrected for solvent blank A.
261
-------
TABLE 40. LC FRACTIONATION
HVSS FILTER
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Run 2
Grav
TCO |Jg/g Total Total
52.0
4.0
0
0
0
0
0
0
Run 3
Grav
TCO (Jg/8 Total Total
50.0
0
0
0
0
0
0
0
Run 4
Fraction TCO
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Grav
(Jg/g Total Total
11.0
0
0
0
0
32.0
0
0
Values corrected for solvent blank C.
262
-------
TABLE 41. 1C FRACTIONATION
TENAX EXTRACT
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Run 2
Total
TCO Grav Total |Jg/m3 TCO
410*
97.3
3.8
6lO.lt
70.2
22.6
493.4
12.9
Run 3
Total
Grav Total MS/™3
67.9*
203.7
4670. 2t
37.4
5.8
79.9
46.8
0.3
Run 4
Fraction TCO
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Total
Grav Total MS/m3
30 . 3*
29.7
1159. 7t
101.5
27-6
17.3
122.7
32.4
*Silicone grease detected in sample.
tHigh weights possibly result of Tenax breakdown with quinone formation.
NOTE: Values corrected for Tenax blank.
263
-------
TABLE 42. LC FRACTIONATION
CH2C12 RINSE OF METHOD 5 TRAIN
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Run 2
Total
TCO Grav Total Mg/ra3
110.8
62.5
0
39.3
0
0
143.8
12.8
Run 3
Total
TCO Grav Total Mg/m3
45.8
79-6
0
0
0
0
127.4
0
Run 4
Fraction TCO
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Total
Grav Total (Jg/m3
90.6
24.8
0
0
0
0.9
83.6
30.3
Values corrected for solvent C.
264
-------
TABLE 43. LC FRACTIONATION
Solvent Blank A Tenax Blank
Fraction
LC I
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Grav
TCO |jg/g Total
3.0
12.2
2.6
1.6
8.2
2.2
7.6
2.0
Fraction TCO
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Grav
Total TCO |jg/g Total
Solvent Blank C
Grav
|jg/g Total Total
49.0
32.0
547.0
93.0
112.0
117.0
170,0
34.0
Total
113.0
79.0
191.0
378.0
61-0
34.0
208.0
62.0
265
-------
TABLE 44. IR REPORT
SAMPLE: COAL CULM
LC Run 2 Run 3 Run 4
1
2 ___
3 Ester Ester
4 Ester Ester, possibly aromatic;
may be methyl
5 — Phthalate ester Possibly alcohol or mixture
of alcohol
6 Ketone, may be aromatic;
phthalate ester
7 Inorganic substances
8 Lost in liquid chromatography
Note: Wavelength, intensity and comments were not detailed in this study. A dash ( ) indicates no
compounds were seen that were not present in the blank.
-------
TABLE 45. IR REPORT
SAMPLE: BED REJECT MATERIAL
N>
CTv
-J
LC
1
2
3
4
5
6
7
Run 2
Saturated hydrocarbons —
long chain
Ester
Run 3
Saturated hydrocarbons —
long chain
—
Ester
—
Aliphatic ester and
Run 4
Saturated hydrocarbons —
long chain
Ester
Phthalate ester
Phthalate ester
Aliphatic ester and possible
possible carboxylic acid
carboxylic acid
Possible sulfonic acid
-------
TABLE 46. IR REPORT
SAMPLE: FBC CYCLONE NUMBER 1 ASH
LC Run 3
1 Saturated hydrocarbons
2
3 Phthalate ester
4
5
6
7
8
to
Run 4
Saturated hydrocarbons — long chain
Trace ester
Phthalate ester
___
-------
TABLE 47. IR REPORT
SAMPLE: FBC CYCLONE NUMBER 2 ASH
LC
Run 2
Run 3
Run 4
N>
O\
2
3
4
5
6
7
8
Saturated unbranched
hydrocarbon
Ester, not an acetate
Ester, not an acetate
Ester not an acetate
Trace ester
Possibly organic phosphate
or ester
Saturated unbranched
hydrocarbon
Phthalate ester
Ester, probably unsaturated
-------
TABLE 48. IR REPORT
SAMPLE: METHOD 5 TENAX COLUMN
LC
1
2
3
4
5
6
7
8
Run 2
Silicone grease
Aromatic hydro-
carbon
Silicone grease
Aromatic hydro-
carbon, ester
Silicone grease
Aromatic ester
Quinone*
Quinone*
Aromatic ketone
acrylate
Aromatic ketone
acrylate
Cyclic ketonet
Polar material
Aliphatic ester
Run 3
Silicone grease
Aliphatic hydro-
carbon
Silicone grease
Aromatic ester
Quinone?
Quinone?
Inorganic^
Inorganic^
Ketone I, alc9hol?,
aromatic§, ether
Ketone I, alcohol?,
aromatic§, ether
Run 4
Silicone grease
Aliphatic hydro-
carbon
Silicone grease
Ester
Quinone , ketone?
Phenol?
Quinone , ketone?
Phenol?
Weak spectrum
(like fraction 4)
Below IR limits
Aromatic phenol?
Aromatic aldehyde?
Polar materials
Blank
Normal hydrocarbon
background
Aromatic ester
Quinone (like run 3, LC 3),
aromatic ester (like run 3, LC 2)
Quinone (like run 3, LC 3),
ketone II
Quinone (like run 3, LC 3),
ketone II
Clean
Similar to run 3, LC 7 with
alcohol
Same as fraction 7
""Quinone is probably a contaminant either from sampling column or sample handling.
tCyclic ketone may be a substituted cyclohexanane.
^Possible fused hetrocyclic aromatic with nitrogen or sulfur.
§Aromatic may be associated with the ketone, alcohol, or the possible ether.
-------
TABLE 49. IR REPORT
SAMPLE: METHOD 5 PARTICULATES FROM STREAM NUMBER 1
LC
Run 2
Run 3
Run 4
1 Blank
2 Mix of possible polynuclear
aromatic ester and ali-
phatic ester
3 Mix of possible polynuclear
aromatic ester and aliphatic
ester
4 Same aliphatic ester as in
fractions 2 and 3
5 Same aliphatic ester as in
fractions 2 and 3
6 Same aliphatic ester as in
fractions 2 and 3
7 Ketone, possibly quinone
8 Ester, possibly that in
fractions 4, 5, and 6
Aliphatic hydrocarbon,
aromatic hydrocarbon?
Ester mix similar to run 2,
fraction 2
Aliphatic ester of run 2,
fraction 2, and ketone
Aliphatic ester of run 2,
fraction 2, and ketone
Aliphatic ester of run 2,
fraction 2, and ketone
Similar to fractions 3, 4,
and 5, but with more ketone
Carboxylic acid, possible
ketone
Blank
Aliphatic hydrocarbon,
unsaturated hydrocarbon
Aromatic hydrocarbon, aliphatic
hydrocarbon, ester
Mix of ester as in run 2,
fraction 2
Aliphatic ester of run 2,
fraction 2
Aliphatic ester of run 2,
fraction 2
Blank
Ketone, carboxylic acid, same
ester as run 3, fraction 7
Small amount of polar material
-------
TABLE 50. IR REPORT
SAMPLE: HVSS FILTER FROM STREAM 34
LC
1
2
3
4
5
6
1*0 7
-vl
8
Run 2
Aliphatic hydrocarbon
Ester I
Ester I
Blank*
Blank*
Blank*
Ketonet
Blank*
Run 3
Aliphatic hydrocarbon,
aromatic hydrocarbon
Ester II
Ester II
Blank*
Blank*
Blank* — maybe trace of
ketone
Ketonef
Blank*
Run 4
Aliphatic hydrocarbon
Blank*
Blank--
Blank*
Blank*
Blank*
Ketonet
Blank*
*Blank implied below IR detection limits with only normal background spectra present.
tKetone in fraction 7 of all three samples are possibly the same, but not definitely.
-------
STUDY NUMBER 12
DATA
SOURCE:
METHOD FOR ANALYZING EMISSIONS
FROM ATMOSPHERIC
FLUIDIZED-BED COMBUSTOR
EPA-600/7-77-034
DATA
STATUS:
Final Report, April 1977
AUTHORS:
CONTRACTOR:
E. L. Merryman, A. Levy, G. W. Felton,
K. T. Liu, J, M. Allen, and H. Nack
Battelle-Columbus Laboratories
505 King Avenue
Columbus, Ohio 43201
Contract No. 68-02-1409, Task 33
Program Element No. EHB536
TASK
OFFICER:
Walter B. Steen
Industrial Environmental Research Laboratory
Office of Energy, Minerals, and Industry
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
273
-------
274
-------
GENERAL
This manual gives data resulting from sampling and analysis of FBC
combustion units. The 6-in. FBC unit at BCL was studied as an example, and
six high priority sampling sites on the unit (of a possible 30 effluent
streams) were selected for this study: (1) coal feed stream, (2) limestone
feed stream, (3) overflow bed material, (4) ash, (5) sludge (from water
scrubber to flue gas stack), and (6) flue gas stream (sampled at several
different sites, 6-10). Figure 1 (from the text), shows the sampling loca-
tions schematically. Samples from the three runs were taken after stabi-
lized FBC conditions had been achieved; Table 1, from the text, enumerates
the samples taken.
Firing conditions for the three runs were as follows:
Run 1 Run 2 Run 3
Coal feed rate, Ib/h 15.9 8.8 9.3
Limestone feed rate, Ib/h 15.4 4.3 8.1
Air feed rate, Ib/h 145.0 87.3 84.2
Bed height: expanded, in.
settled, in.
Bed temperature, °F
Superficial gas velocity, ft/s 9.1 6.0 5.3
Ca/S ratio 6.7:1 2.9:1 7.1:1
q
Particulate loading, g/m 1.44 1.64 NA
Runs 1 and 2 were selected for analysis since analytical techniques
were somewhat different between the two runs (see attached Table 2 from
the text). Analytical results were presented comparing this site with
other FBC units and with pulverized coal units. The FBC was higher in
CO (2,090 v. 90-300 ppm), but lower in S02 (730 v. 1,200-1,500 ppm) than
a pulverized coal operation.
It was suggested for FBC units that additional sampling programs be
included for biological testing, radioactivity measurements, and noise
measurements.
48
12.6
48
21.6
48
21.6
1,538
1,655
1,490
275
-------
GASEOUS GRAB
Continuous monitors already installed at the FBC site were used for
measuring CO, C02, S02, NO , 02, and total hydrocarbons. Pyrex glass wool
plugs used to remove particulates and water vapors from gaseous streams
may have caused some bias in data. Method 5-type sorbtion trains were
used to sample for acidic (HC1, HF, HCN) and basic (NH3) gaseous compo-
nents. A Goksoyr-Ross apparatus was used to sample for 803.
SASS
No SASS train was used. A modified Method 5 train was used to
sample particulate-containing gaseous streams. Modifications included
addition of a heated small glass cyclone (which collects particles >2.3
Mm) prior to the filter (which collects particles 2.3 |Jm - 0.1 pm) and
addition of a Tenax-GC cartridge downstream of the filter. Sampling was
isokinetic but from a single, representative point (no traverse). The
sampling point was downstream of a process cyclone that removed particles
>27 pm. A Method 5-type sorbtion train containing an oxidizing solution
was used to collect certain trace metals (Pb, Hg, Se, Te, Be, As, and Cd).
POM analysis was run on the FBC cyclone particulates and flue gas vapors
adsorbed on Tenax.
FUGITIVE EMISSIONS
Sampling was not performed in this study.
LIQUIDS AND SLURRIES
The solid material (sludge) caught in the water scrubber from the FBC
flue gas stack was separated from the scrubber liquids by centrifugation.
The solids were dried and stored in the dark. _Sol£ds were subsequently
analyzed for trace metals, organic classes, 804, SO^, and via proximate/
ultimate analysis for C, H, N, S, 0, ash, volatiles, and moisture.
SOLIDS
Three to four cross-sectional grab samples were collected over a 2-
hour period from the coal-feed conveyor belt, and these were combined in
a single plastic container, sealed, and stored in the dark. This composite
sample was analyzed for trace metals by SSMS and for Na and Ca by AA. In
addition to Level I requirements, proximate/ultimate analysis (ASTM-D-
291), total sulfur forms (ASTM-D2492-68), particle size (sieve), and
heating value (ASTM-D2015-66) were run on the composite coal sample.
Limestone sorbent was sampled and composited like the coal. The
ligjestone was tested for trace metals (SSMS), selected anions (Ca, Hg,
COs, N02, NOg, by spectrophotometric methods), and particle size (by
sieve).
276
-------
A representative sample of overflow bed material, which was primarily
limestone, was taken from the overflow container at the end of a 2-hour
run.. This material was analyzed for trace metals by SSMS, anions (804,
S03, S , N02, N03) by wet chemical methods, organics by extraction--LC-IR,
and particle size by sieve. Particles less than 325 mesh were classified
as bed ash, and the same analyses were run on these as on the overflow bed
materials.
Flue Cos Analyzer
Cyclone
I
CO
I
C02
I
S02
I
NO*
THC
Gas Absortion
Trains
Scrubber
Y
Participate
>27/i ©
Tenax Plug
(POM, He)
Mod. Method 5 Trains
* I I
Participate
I
Participate
Air
Ash
Figure 1. Schematic outline of fluidized-bed combustor
and sampling locations.
277
-------
TABLE 1. SAMPLE IDENTIFICATION AND ANALYSES
MaterinT
Fluid-Bed
Satnole No.
Sample Ku=c,sr
Destgnaclr-.
Analyses
l>rn*«m.»./,lMm«f-. C<1) Moisture (W Volatile natter
Proxi»ate/ulti27u S~2"6
. S-2-5-1
V
\s_5_^_^
S-?-6-l
/" S-2-6-2
\V S-2-6-3
\ S-2-6-4
/ a Sulfur fl« g'jj g} S0rl»nlc
»- (_^Z) ryrltuu (*; su^
Na, Ca
Heatiti? value
Trace oetala
Particle Size
Ca, Hg, CO" KO" KO"
3 2' y
Trace metal a
Particle Size
Trace aetala
Organic Classes
soT . so", s". NO". KO"
Particle"^ Size *
NO", N0~, S « SO . and SO
— c- ) 4 J
Fusion temperature
Trace tiecals
Organic Classes
C. H, N, S, 0. SO*, "and Sb"
Trace Ketsls
Crcanic Classes
Trace netala (approx 60 cetala)
c, H, a, s, o
_ ~ *• X
Anions , KO.,, NO.. SO , SO,.
„. Organic classes
Partical Size
Organic and reduced sulfur conpounda
278
-------
TABLE 1 (con.)
Material
Flue gas arrears
Parciculate <27u
(If two parttculata
fractions involved
here, e. 5- <2?
>2.3 , and <2.J ,
Baaller fraction is
designated Batch No.
S-2-8 and same anal-
yses as S-2-?.)
Flue gas stream
Cesea
Fluid-Bed
Sample No.
Saaple Number
Designation
S-2-7-1
s-e-7
/ S-2-7-2
\V S-2-7-3
S-2-7-4
Particlfe Size
Cases, continuous
cnnicorlng
(AL-3) S-2 -9-1 ^
S-e-9
•
S-2 -10
•^ S-2-9-2
^5\ S-2-9-3
% S-2-9-4
^ S-2-9-5
\ S-2-9-6
S-2-10-1
/S-2-10-2
S-2-10-3
^\ S-2-10-4
V\ S-2-10-5
\ S-2-10-6
~--^
Ut-2) .
(A!.- 2) _
(At-2)
(At-4)
(AL-3)
^_POM
*-Orgi
HC1
HCK
Tra(
so3
°2
co2
CO
so2
KO
X
HC
Analyses
Trace netals
C, H, N, S, O
Anions, CO", K0~,'<'0~, SO^ , SO*
Organic classes
TOM
Organic and reduced sulfur coapounda
Organic classes
POM
Organica - reduced sulfur
Trace eleaents (solution)
(Goksoyr-Rsss)
279
-------
TABLE 2. CHANGES MADE BETWEEN RUN NOS. 1 and 2
Change Mode
Reason for Change
CO
o
1. Proximate/ultimate analysis made on bed material -325 M
in Run No. 1; discontinued in Run No. 2
2.- Fe, Al, Si, K, Cl"~, F~ analyzed individually (e.g., atomic
absorption, ion electrode, etc.) in bed material samples
in Run No. 1; determined these elements by SSMS in Run
No. 2
_ EI = a
3. N0?, S0n, S , and CCL anions added to the analysis of bed
material and particulate samples in Run No. 2
4. Analysis for POM increased to include bed material,
sludge, and particulate samples in Run No. 2
5. Organic class analyses increased to include bed material
and sludge samples in Run No. 2
6. Increased analysis of trace elements to include sludge
samples in Run No. 2
7. Increased particle size analysis to include bed material
and particulate (both >27 and <27 microns) samples in
Run No. 2
8. Reduced quantity of solid sample for bioassay from 20
grams in Run No. 1 to 2 grams in Run No. 2
Analysis of little use
More efficient, eliminate dupli-
cation
More completely define anion concen-
trations in solid samples
More completely define the POM levels
in solid samples
More completely define organic classes
in solid samples
To better define trace elements in
effluent waste material
To define particle size ranges more
completely
Only 2 grams of sample needed for
analysis
-------
TABLE 3. SPARK SOURCE MASS SPECTROSCOPY--RUN 1
ILLINOIS NUMBER 6 COAL
(ppmw)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
1
1
*
0
0
0
<0
<0
<0
<0
^
0
0
0
<0
0
<0
0
<0
.0
.7
.47
.59
.16
.1
.1
.1
.1
.31
.27
.18
.1
.23
.1
.34
.1
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs -
I
Te
Sb
Sn
In
Cd
Ag
Pd
0
*
0
*
0
6
2
9
5
35
0
0
<0
0
0
^
0
<0
.70
.40
.71
.6
.1
.8
.0
.65
.10
.37
.56
.28
.10
.1
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0
<0
2
3
10
9
80
21
4
0
2
2
1
37
9
33
4
>1%
80
.1
.1
.9
.1
.4
.7
.29
.7
.0
.7
.0
.0
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
13
20
240
1.
-4,000
-1,200
-1,100
>0.
3.
>1%
>1%
400 (0.
890 (0.
110
93
0.
0.
6
(0.4l)t
5%
2
06)f
23)t
17
13
*Not reported.
tWeight percent by AA.
^Internal standard.
TABLE 4.
SPARK SOURCE MASS SPECTROSCOPY—RUN 1
GROVE LIMESTONE
(ppmw)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
0.34
0.34
<0.24
0.86
*
<0.01
<0.1
<0.1
<0.1
<0.1
t
<0.22
0.33
1.8
<0.15
<0.21
<0.1
*
<0.1
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs -
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.20
*
*
*
0.31
1.7
0.86
2.9
2.2
90
0.19
2.9
*
*
0.12
t
*
*
1% (37.1)t
>0.5%
18
240
140
<1%
~3,000
<0.5 (0.51)t
140
140
6.2
<0.18
2.9
*Not reported.
tWeight percent by AA.
f Internal standard.
281
-------
TABLE 5. SPARK SOURCE MASS SPECTROSCOPY—RUN 1
BED MATERIAL
(ppmw)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
0.80
1.1
<0.24
1.9
*
<0.01
<0. 1
<0. 1
<0. 1
<0.1
t
<0.32
0.87
1.1
<0.15
<0.49
<0.1
0.11
<0.1
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs *
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.49
*
*
0.25
0.83
3.8
2.0
15
6.4
180
0.43
0.29
*
*
0.55
t
0.14
*
<0.1
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe~4
Mn
<0.1
<0. 1
1.2
0.69
28
3.6
470
7.3
4.5
*
0.67
1.4
1.1
17
78
23
0.14
,600
26
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
1.3
7
130
0.16
>1%
~1,600
120
>0.5%
310
>0.5%
~3,000
<0.5%
320
170
33
<0.18
5.7
*Not reported.
tlnternal standard.
TABLE 6.
SPARK SOURCE MASS SPECTROSCOPY—RUN 1
ASH >27 |Jm
(ppmw)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
4.0
5.7
<0.24
7.2
1.0
0.01
<0.1
<0.1
<0.1
<0.1
t
0.36
0.43
0.79
0.38
1.6
<0.1
0.28
0.39
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba*
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
2.0
0.25
0.32
0.50
1.7
7.5
2.0
11
6.4
180
4.4
1.2
*
0.67
0.92
t
0.67
0.30
<0.1
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.1
<0.1
3.3
3.2
35
8.3
140
37
12
4.4
2.0
3.0
2.3
80
78
46
14
>1%
210
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
32
38
870
0.73
>1%
<0.5%
240
310
310
>1%
>1%
>0.5%
~3,200
290
710
18
220
tlnternal standard.
*Not reported.
282
-------
TABLE 7. SPARK SOURCE MASS SPECTROSCOPY--RUN 1
PARTICIPATES >27 |Jm
(ppmw)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
1.
2.
<0.
4.
0.
<0.
<0.
<0.
<0.
<0.
f
<0.
0.
1.
0.
1.
<0.
0.
0.
7
4
24
3
48
01
1
1
1
1
32
87
8
50
6
1
28
16
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs *
I
Te
Sb
Sn
In
Cd
Ag
Pd
1.4
0.19
0.32
0.50
1.7
10
2.0
15
6.4
180
1.9
0.58
*
0.67
1.2
f
0.67
*
<0.1
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.
<0.
3.
3.
35
3.
470
20
6.
0.
4.
3.
2.
67
66
23
2.
>1%
60
l
1
3
2
6
0
94
1
0
3
1
(5.42)*
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
15
25
870
1
>1%
>0
240
310
310
>1%
>1%
>0
~1,400
290
500
2
*
.6
.5%
(6.
(2.
.5%
.6
(0.47)t
00)t
53)t
tWeight percent by AA.
^Internal standard.
*Not reported.
TABLE 8. SPARK SOURCE MASS SPECTROSCOPY—RUN 1
PARTICULATES <27 ym
(ppmw)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
8.0
11
0.80
43
10
14
<0.1
<0.1
<0.1
<0.1
t
1.1
0.87
1.8
0.50
2.5
0.14
0.56
0.61
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs-
I
Te
Sb
Sn
In
Cd
Ag
Pd
2.0
0.48
0.69
0.94
3.6
21
15
44
30
320
4.3
29
*
1.4
12
*
1.0
0.30
<0.1
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.1
<0.1
14
16
120
29
250
37
60
9.4
6.1
14
11
140
120
99
14
>1% (6.68)*
60
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
87
140
-2,200
7.3
- >1%
>1% (2.10)t
300
310
310
>1% (ll.O)t
>1% (7.36)T
>0.5%
>0.5%
450
~2,000
6.0
57
*Not reported.
tWeight percent by AA.
^Internal standard.
283
-------
TABLE 9. SPARK SOURCE MASS SPECTROSCOPY--RUN 2
ILLINOIS NUMBER 6 COAL
(ppmw)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.5
<1
<0.5
<1
<1
<2
<0.5
<1
<1
<1
<1
<1
<0.5
<2
<0.3
<0.5
<0.3
<0.5
<0.3
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs '
I
Te
Sb
Sn
In*
Cd
Ag*
Pd
-------
TABLE 11. SPARK SOURCE MASS SPECTROSCOPY—RUN
BED MATERIAL
(ppmw)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
0.5
0.2
<0.1
1
<0.2
<0.3
<0.1
<0.3
<0.2
<0.2
<0,2
<0.3
<0.3
<0.5
<0.05
<0.2
<0.1
<0.2
<0.05
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs'
I
Te
Sb
Sn
In*
Cd
Ag*
Pd
<0.2
<0. 1
<0.3
<0.3
<0.5
0.5
0.3
5
2
200
0.3
0.5
<0.3
<0.2
<1
<2
<10
<2
<2
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se*
As
Ge
Ga*
Zn
Cu
Ni
Co
Fe
Mn
<0.3
<1
<3
0.5
20
3
500
5
1
<2
1
10
<0.5
<3
3
<2
0.3
-0.1%
20
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
10
10
2
1
-30%
-0.2%
50
3,000
20
-0.5
-0.1%
2,000
200
<3
5
<0.005
1
*Memory from previous sample.
TABLE 12. SPARK SOURCE MASS SPECTROSCOPY—RUN 2
ASH
(ppmw)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
5
10
1
300
5
<0.3
<0.1
<0.3
<0.2
<0.2
<0.2
1
<0.3
1
<0.1
0.2
0.2
2
0.5
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs -
I
Te
Sb
Sn
In*
Cd
Ag*
Pd
2
0.5
5
2
5
5
5
50
20
300
5
3
<0.3
2
200
<3
<10
<5
<2
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se*
As
Ge
Ga*
Zn
Cu 2
Ni
Co
Fe
Mn 1
<2
<1
30
5
200
30
300
20
20
<5
10
10
<5
30
,000
50-
5
-1%
,000
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
100
100
100
10
-30%
~2%
-1%
-2%
50
-8%
-1%
-2%
~1%
<10
30
,. 0.5
10
*Memory from previous sample.
285
-------
TABLE 13. SPAM SOURCE MASS SPECTROSCOPY—RUN
PARTICULATES >27 pm
(ppmw)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
2
5
<0.1
20
5
<0.3
<0.1
<0.3
<0.2
<0.2
<0.2
0.3
<0.2
2
<0.1
1
0.3
0.5
0.5
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs *
I
Te
Sb
Sn
In*
Cd
Ag*
Pd
3
0.5
1
1
5
20
5
50
50
500
0.5
0.5
<0.3
0.2
<2
<1
<3
<1
<2
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se*
As
Ge
Ga*
Zn
Cu
Ni
Co
Fe
Ma
<0.2
<0.5
20
3
200
30
200
5
0.5
<5
1
3
<5
<3
50
200
10
~2%
200
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
100
500
1,000
30
~7%
~1%
• 800
1,000
50
~20%
~5%
5,000
3,000
<5
50
0.2
10
*Memory from previous sample.
TABLE 14. SPARK SOURCE MASS SPECTROSCOPY--RUN
PARTICULATES <27 |Jm
(ppmw)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
2
5
1
100
10
<0.3
<0.1
<0.3
<0.2
<0.2
<0.2
<0.3
<0.2
<0.5
<0.1
1
0.1
1
0.5
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs-
I
Te
Sb
Sn
In*
Cd
Ag*
Pd
2
0.3
3
1
3
20
5
20
30
300
2
5
<0.5
1
10
<1
<3
<1
<2
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se*
As
Ge
Ga*
Zn
Cu
Ni
Co
Fe
Mn
<0.5
<0.5
10
5
200
200
300
10
1
<5
3
10
<10
<3
50
100
10
~2%
500
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
100
1,000
~1%
30
• ~7%
~2%
~1%
3,000
200
~20%
-5%
-1%
5,000
<20
300
2
20
*Memory from previous sample.
286
-------
TABLE 15. ARK SOURCE MASS SPECTROSCOPY--RUN 2
SLUDGE
(ppmw)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
V
Ta
Hf
Lu
Yb
Tm
Er
Ho
20
50
10
200
10
<0
<0
<0
<0
<0
<0
2
<1
10
0
5
1
5
3
.3
.1
.3
.2
.2
.2
.5
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs *
I
Te
Sb
Sn
In*
Cd
Ag*
Pd
10
2
20
10
30
50
20
500
200
5,000
3
1
<0.3
1
100
<1
<3
<2
<2
Rh
Ru
Mo
Nb
Zr 1
Y
Sr
Rb
Br
Se*
As
Ge
Ga*
Zn
Cu
Ni
Co
Fe
Mn
<0.5
<1
10
20
,000
200
500
10
1
<5
3
20
<10
<3
50
200
5
~5%
200
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
100
500
5,000
30
~7%
~5%
200
1,000
50
~20%
~3%
5,000
3,000
<5
50
0.2
10
*Memory from previous sample.
TABLE 16. SPARK SOURCE MASS SPECTROSCOPY--RUN 2
DETECTION LIMITS
(ppmw)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
0.1
0.1
0.1
0.2
0.1
0.3
0.1
0.3
0.2
0.2
0.2
0.3
0.2
0.3
0.05
0.2
0.05
0.2
0.05
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs *
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.2
0.1
0.3
0.3
0.3
0.5
0.2
0.5
0.3
0.5
0.3
0.3
0.3
0.1
1.0
1.0
3.0
1.0
0.3
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
0.3
1.0
0.3
0.2
0.3
1.0
0.3
2.0
0.3
0.3
0.3
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
'B
Be
Li
0.3
0.3
0.3
0.3
0.5
0.5
0.5
0.5
0.3
2.0
10.0
3.0
0.1
0.5
0.03
0.005
0.005
287
-------
TABLE 17. ATOMIC ABSORPTION (AA)--WET CHEMICAL METHODS
Sample
Flue gas stream
Run 1* (ppmw)
Run 2 (ppmw)
(ng/m3)
Hg
-------
TABLE 20. ANION ANALYSES*
(WT. PERCENT)
Sample Cl F
Run 1
Illinois #6 coal t t
Grove limestone t t
Particulates 0.12 0.005
>27 |Jm
Particulates 0.48 0.019
>27 M«n
Run 2
Illinois #6 coal
Limestone
Overflow bed material
Bed material-ash
Particulates >27 Mm
Particulates <27 Mm
S04
t
t
20.2
16.4
3.37
5.34
S03
t
t
0.04
0.16
0.31
<0.1
N03
t
t
0.008
0.003
t
<0.0003
0.0012
0.012
0.006
0.002
N02
f
<0.0003
0.0007
0.0043
0.0008
0.0006
C03
0.68
57.7
f
t
0.11
57.6
t
f
6.45
5.97
*Analytical techniques and minimum detection limits for run 2 (run 1
MDL not reported): S04 by gravimetric, with 0.05 MDL; S03/C03 by
titration, with 0.05 MDL; N03/N02 by colorimetric, with 0.0003 MDL;
Cl and F MDL not reported.
tBelow MDL.
No data indicates not reported in original document.
289
-------
Particulates >27 (Jin
TABLE 21. FRACTIONATION—RUN 1
Particulates <27
Fraction TCO
LC 1 .
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Grav
|jg/g Total
309
10.9
21.8
29.1
4.7 *
9.6
6.4
13.1
Grav
Total TCO |Jg/g Total Total
750
35
55
85
50
75
35
20
TABLE 22. LC FRACTIONATION--RUN 2
Bed Material* Ashf
Sludgef
Fraction TCO
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Grav
|Jg/m3 Total Total
1,288
41
275
170
135
381
381
52.1
Grav
TCO Mg/n3 Total Total
33.5
2.5
6.3
5.6
3.0
2.3
7.2
3.3
Grav
TCO (Jg/m3 Total Total
247
231
214
184
91.9
150
124
28.7
*Multiply results of Bed Material by .023 to get pg/g.
tMultiply results of Ash by 11.7 to get (Jg/g-
^Multiply results of Sludge by 1.42 to get Mg/g-
290
-------
TABLE 23. LC FRACTIONATION—RUN 2
Particulates >27 pro* Particulates <27 prat Flue gas
Fraction TCO
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Grav
[Jg/m3
372
422
144
112
73.8
66.8
162
38.7
Grav
Total Total TCO Mg/m3 Total Total
144
83.2
150
118
70.7
141
536
8.1
Grav
TCO |Jg/m3 Total Total
4,158
605
2,364
1,873
610
919
1,033
10.9
^Multiply results of particulates >27 pm by 0.06 to get pg/g.
fMultiply results of particulates <27 pm by 0.53 to get (Jg/g-
291
-------
TABLE 24. IR REPORT
SAMPLES: FROM RUN 1
LC
Particulates >27 JJm
Particulates <27 |Jm
1 Vinyl unsaturated hydrocarbons
2 Aliphatic esters
3 Aliphatic esters, ketone
4 Phthalate ester
5
6
is 7
8
Aliphatic hydrocarbons, vinyl unsaturated hydrocarbons.
Aliphatic esters
Conjugated ketone or quinone
Phthalate ester
-------
TABLE 25. IR REPORT
SAMPLES: FROM RUN 2
LC
Bed Material
Ash
to
6
7
Aliphatic hydrocarbon containing a significant
amount of vinyl unsaturation.
Contains only traces of hydrocarbon structure.
Quantity of material is very low.
Contains only traces of hydrocarbon structure.
Quantity of material is very low.
Contains only traces of hydrocarbon structure.
Quantity of material is very low.
Contains only traces of hydrocarbon structure.
Quantity of material is very low.
Contains only traces of hydrocarbon structure.
Quantity of material is very low. i
Material concentration extremely low.
A trace of aliphatic and carbonyl structure
is present.
Aliphatic hydrocarbon containing a small amount
of unsaturation including vinyl.
Aliphatic hydrocarbon containing a small amount
of carbonyl.
Aliphatic hydrocarbon containing some aliphatic
ester.
Carboxylic acid ester plus aliphatic ether
groups, possibly a vinyl ether.
A small amount of phthalate ester.
Primarily aliphatic—2 different carbonyls are
present, one of which is probably a ketone.
8 (Not reported)
(Not reported)
-------
TABLE 26. IR REPORT
SAMPLE: RUN 2 SLUDGE
LC 1 Aliphatic and fused ring aromatic hydrocarbons; pyrene and benzopyrene types are possible.
LC 2 Similar to 1 but concentration of fused ring aromatics is higher.
LC 3 Some of the fused ring aromatics of cuts #1 and #2 but primarily an aromatic ketone. Nitrile groups
are present. A small amount of hydroxyl structure is present.
LC 4 Aromatic ketone and quinone structures. Small amounts of nitrile and hydroxyl.
LC 5 Aromatic ketone and quinone structures. A trace of nitrile. A small amount of anhydride or other
strained ring carbonyl is probable.
S3
^ LC 6 A complex mixture of many types of carbonyl, aliphatic, aromatic structures and with a trace of
nitrile.
LC 7 Same as cut 6
LC 8 Only a trace of material; complex carbonyl structures.
-------
TABLE 27. IR REPORT
SAMPLE: RUN 2 PARTICULATES
LC
>27
<27
Ul
1 Aliphatic hydrocarbons
2 Ester (very small amount of material).
3 Trace of ester plus other carbonyl.
4 Trace of material containing several carbonyls.
5.
6
7
8
Trace of material containing carbonyls
Trace of material containing carbonyl.
Trace of material containing carbonyl.
Aliphatic and fused ring aromatics plus silicone.
Aliphatic and fused ring aromatics plus a small
amount of ester.
A mixture of aliphatic and aromatic esters plus
a trace of nitrile.
Ester, ketone, and quinone are probable; both
aromatic and aliphatic structure are present.
Aliphatic ester, probably unsaturated.
Aromatic strained ring or halogenated carbonyl.
(Not reported.)
(Not reported.)
-------
296
-------
STUDY NUMBER 13
DATA
SOURCE:
EMISSIONS ASSESSMENT OF
CONVENTIONAL COMBUSTION SYSTEMS
VOLUME I:
GAS-FIRED AND OIL-FIRED RESIDENTIAL HEATING
SYSTEM SOURCE CATEGORIES
GCA-TR-77-30-G(1a)
DATA
STATUS:
Draft Report, September 1977
APPROVED BY:
CONTRACTORS:
B. J. Matthews
TRW, Inc.
Energy Systems Group
One Space Park
Redondo Beach, California 90278
Contract No. 68-02-2197
N. F. Surprenant
GCA Corporation
GCA/Technology Division
Burlington Road
Bedford, Massachusetts 01730
PROJECT
OFFICER:
Ronald A. Venezia
Chemical Processes Branch
Industrial Environmental Research Laboratory
U.S, Environmental Protection Agency
Research Triangle Park, NC 27711
297
-------
298
-------
GENERAI
The first of a series of five environmental assessments, this study
presents procedures used and results obtained in an evaluation of five gas
fired and five oil-fired residential heating systems. Emission rates of
particulates, gases, and trace elements were determined and added to an
existing data base. Interpretation of these data conclude these emission
sources are "not significant emitters of hazardous emissions," hence Level
II analysis is not applied to the sources. This conclusion was based on the
fact that the ratio of maximum ground level concentrations to predetermined
hazardous levels was well below 0.1. Polycyclic organic material (POM) was
also low with no detection of benzo(a)pyrene or dibenzo-anthracene.
The choice of sites to sample was based on their representation of
other heaters currently in use across the country. Gas-fired units tested
were warm air furnaces, whereas the oil-fired units were warm air as well as
forced hot water types. All units used high pressure burners. The ten
furnaces studied are identified as follows:
1. No. 100; gas, home unit; Gaffers and Sattler; No. 580; forced air
furnace; 14 years old.
2. No. 101; gas, home unit; Gaffers and Sattler; No. 580; forced air
furnace; 8 years old.
3. No. 102; gas, home unit, D&N Model C-80V; forced air furnace; 12 years
old.
4. No. 103; gas, home unit; Sears Homart; forced air furnace; 20 years
old.
5. No. 104; gas, home unit; Sears 735; forced air furnace; 6 years old.
6. No. 300; oil, FHW; American Standard; Model MF-A; 27 years old.
7. No. 301; oil, FHW; American Standard; No. W0391; 25 years old.
8. No. 302; oil, warm air; General Electric; No. SKI + 39Cgl.2-g; ME1
burner; 21 years old.
9. No. 303; oil, warm air; U-Lubs; No. L862645; 5 years old.
10. No. 304; oil, warm air; Embassy Steel Products; 16 years old.
299
-------
GASEOUS GRAB
Collection of gas-fired furnace gases was by Tedlar bags using a stain-
less steel probe. Analysis for GI-CS was by GC/FID; inorganic gases were
separated by GC with thermal conductivity detection and quantified with use
of standard gas mixtures. NO concentrations were determined electrochemi-
cally at gas-fired sites withXa Theta sensor. At oil-fired sites, an evacu-
ated flask was used for gas collection with analysis for NO using EPA
Method 7. No data for this analysis were reported in the document.
SASS
The conventional SASS train was altered, due to expected particulates
being less than 1 to 2 pm, by replacing the cyclones with a straight pipe
leading to a Type N glass fiber filter in a heated oven. Organics were
collected by a XAD-2 resin module and extracted with CH2C12 instead of
pentane. Sampling occurred during the operational cycle of the furnace in
which a typical cycle was 50 minutes on and 10 minutes off. Sampling times
at gas-fired units was about 3 hours in which 30 m3 of gas were sampled,
while at oil-fired units 90 m3 of gas were sampled over a period of 10
hours.
Particulates were prepared for SSMS by aqua regia extraction as opposed
to the Level 1 preparation by Parr bomb.
FUGITIVE EMISSIONS
No sampling was performed in this study.
LIQUIDS AND SLURRIES
The oil-fired furnace fuel was analyzed for trace elements by SSMS.
No other samples of this nature were taken.
SOLIDS
No sampling was performed in this study.
Level 1 methods were used throughout this study, however, deviations
from these methods did occur and are documented in the following list as
well as in the text of this summary.
1. A HNOs module rinse for sample collection was not specified in Level 1
procedures. There were several references to a HNOg rinse in the
GCA-TRW discussions of analytical methods.
2. Stainless steel components of the SASS train were rinsed with CH2C12 or
a 1:1 (v/v) solution of CH2C12 and CHsOH. Level 1 procedures specify
only the 1:1 solution of CH2C12 and CH3OH.
300
-------
3. Solvent fraction #8 should have been eluted with 10 ml rather than 25
ml to comply with Level 1 procedures.
4. LC fractionation was not performed on the SASS train rinses.
5. LRMS analysis was omitted on LC fractions. Only TCO and IR were run.
6. AAS analysis of oil-fired emissions for toxic elements Hg, Sb, and As
were omitted.
Organic analysis strategy used in this study is outlined in Figure 1.
301
-------
SAMPLE
APPORTiONATiCN
VOLATILE ORGANICS
DETERMINATION •
VIA TCO*
STOP"
OSOANIC SOLVENT
EXTRACTION WITH
CONCENTRATION OF
BULK TO 10 ML
VIA KUOERNA - DANISH
POLYCYCLIC ORGANIC
MATTER DETERMINATION
VIA GC/MS3
GAS CHROMATOGRAPHY
DETERMINATION OP
CB-CIJ BOILING jiANGE
ORGANICSir
CLASS SEPARATION BY
LIQUID CHROMATOGRAPHY
NONVOLATILE ORGANIC:
DETERMINATION VIA.
GRAVIMETRIC T
S FRACTIONS
1'
PARAFFINS
OLEFINS
V
|2**
t
AROMATICS
•(•
OLEFtNS
1'"
AROMATICS
1'
LOW POLARITY
OXYGEN i-
SULFUR
SPECIES
^x* I6 sS**
PHENOLS. ALCOHOLS,
— PMTH AL»T£S. AMI WES
KETCNES. AI.OEHY06S,
AMIDES, DIOLS, ESTERS
J
\
AC
^-v
WAS
TCO DETERMINATES
FOR VOLATILES
VOLATILE DETERMINATION
OF FRACTION X VIA TCO
NONVOLATILE DETERMINATION
OF FRACTION X VIA
GRAVIMETRIC
IB SPECTRUM FOR.
COMPOUND IDENTIFICATION
OF FRACTION X?f» .
Figure 1. Level 1 organic analysis strategy.
302
-------
*TCO is a gas chromatographic technique for detecting hydrocarbon-
equivalent compounds boiling between 90° and 290° C.
fKuderna-Danish concentration is a glass apparatus for evaporating bulk
amounts of solvents.
^Gravimetric determination tare weighs organic compounds boiling above
290° C.
§GC/MS is sequential gas chromatography mass spectrometry which sepa-
rates a mixture of compounds and identifies each.
#Boiling range determination is a gas chromatographic technique de-
signed to quantitate hydrocarbon-equivalent compounds boiling in the ranges,
110° to 140° C, 140° to 160° C, 160° to 180° C, 180° to 200° C, and 200° to
220° C.
**This fraction is composed mostly of halo-aromatics; e.g., PCB.
§§This fraction is composed mostly of polycyclic organic aromatics.
##Infrared spectroscopy identifies functional groups present in organ-
ics; e.g., alcohol, amine, carboxy, aromatic, etc.
Figure 1 (con.)
303
-------
TABLE 1. SPARK SOURCE MASS SPECTROSCOPY
GAS-FIRED FURNACE: SITE 100
SASS PARTICULATE FILTER*
(Mg)
u •
Th
Bi
Pb <
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tra
Er
Ho
<0. 1
<0. 1
<0. 1
15
<0.1
<0.05
<0. 1
<0.1
<0. 1
<0. 1
<0. 1
<0.05
<0.01
<0.05
<0.05
<0.05
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0
<0
<0
<0
<0
<0
<0
<0
<0
£10
<1
<0
<0
<2
<2
<0
<0
.05
.05
.1
.05
.1
.1
.05
.1
.05
.0
.05
.1
.1
.1
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0
<0
<0
<0
<0
<0
<1
<1
<0
<1
<1
<0
<0
200
<50
50
<0
<50
-------
TABLE 3. SPARK SOURCE MASS SPECTROSCOPY
GAS-FIRED FURNACE: SITE 100
IMPINGER, MODULE RINSE, CONDENSATE
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<3
<3
<3
<70
<6
<3
<6
<6
<6
<6
<6
<3
<6
<3
<6
<3
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<9
<3
<9
<3
<6
<6
<3
<6
<3
41
<3
<3
<6
<3
<130
<6
<6
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<9
<6
<15
<3
<3
<3
<3
<6
<3
<3
<3
<3
<3
<200
<30
<90
<3
<300
<15
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<60
<3
<15
<3
<300
<80
<10,000
<20
<250
<15
<20,000
<150
<3
<1.5
<3
TABLE 4. SPARK SOURCE MASS SPECTROSCOPY
GAS-FIRED FURNACE: SITE 100
TOTAL EMISSIONS FOUND
(Hg/ra3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.3
<0.3
<0.3
<15
<0.6
<0.3
<0.6
<0.6
<0.6
<0.6
<0.6
<0.3
<0.6
<0.3
<0.6
<0.3
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.5
<0.3
<1.5
<0.3
<0.6
<0.6
<0.3
<0.6
<0.3
1-20
0.03-0.3
<0.3
<0.6
1.8
<20
<0.5
<0.6
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<1.5
<0.6
<2
<0.3
<0.3
<0.3
<2
<0.6
<0.3
0.5
<1
<0.3
<0.3
6-30
<300
2-30
<0.3
50-70
<2
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
3-6
<0.3
1-2
<0.3
<150
<30
<600
<15
<60
0.5-1.5
<1,500
<20
<10
<0.2
<0.3
305
-------
TABLE 5. SPARK SOURCE MASS SPECTROSCOPY
GAS-FIRED FURNACE: SITE 101
XAD-2 RESIN
(Mg)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<8
<8
<8
<400
<15
<8
<15
<15
<15
<15
<15
<8
<15
<8
<15
<8
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<30
<8
<30
<8
<15
<15
<8
<15
<8
<300
<8
<8
<8
15
<10
<30
<15
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<30
<15
<60
<8
<8
<8
<30
<30
<8
<30
<20
<8
<8
<300
<10,000
<300
<8
<800
<20
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<200
<8
23
<8
<4,000
<500
<8,000
<200
<1,000
<200
<11,000
<800
15
<8
<8
TABLE 6. SPARK SOURCE MASS SPECTROSCOPY
GAS-FIRED FURNACE: SITE 101
IMPINGER, MODULE RINSE, CONDENSATE
(Mg)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<5
<5
<5
<200
<9
<5
<9
<9
<9
<9
<9
<5
<9
<5
<9
<5
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<15
<5
<15
<5
<9
<9
<5
<9
<5
40
<5
<5
<9
<30
<400
<300
<9
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<15
<9
<60
<5
<5
<5
<20
<20
<9
<5
45
<5
<5
<5,000
<1,000
<2,000
50
<2,000
130
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<700
<0.9
<9
<5
<2,000
3,600
<400,000
<200
450
<300
36,000
1,600 -
<20
<2
<10
306
-------
TABLE 7. SPARK SOURCE MASS SPECTROSCOPY
GAS-FIRED FURNACE: SITE 101
TOTAL EMISSIONS FOUND
(Hg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0
<0
<0
<20
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
.5
.5
.5
.8
.5
.8
.8
.8
.8
.8
.5
.8
.5
.8
.5
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<2
<0
<2
<0
<0
<0
<0
<0
<0
.5
.5
.8
.8
.5
.8
.5
<1-20
<0
<0
<0
0
<20
<10
<0
.5
.5
.8
.5-1.5
.8
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<2
<0
<4
<0
<0
<0
<2
<2
<0
<2
1
<0
<0
<200
<400
<80
2
<100
<4
.8
.5
.5
.5
.8
.5
.5
.5
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<40
<0.8
0.77
<0.5
<300
120
<20,000
<20
15-50
<20
1,200-2,
000
50-300
0.5-2
<0.4
<0.6
TABLE 8. SPARK SOURCE MASS SPECTROSCOPY
GAS-FIRED FURNACE: SITE 102
XAD-2 RESIN
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<8
<8
<8
<400
<15
<8
<15
<15
<15
<15
<15
<8
<15
<8
<15
<8
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<25
<8
<25
<8
<15
<15
<8
<15
<8
300
<8
<8
<15
<15
<200
53
<15
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<25
<15
120
<25
<8
<8
38
<20
<8
<15
<70
<8
<8
<150
<40,000
<1,500
<8
750
<40
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
400
<8
15
<8
1,300
<900
<40,000
<1,.400
1,400
<400
<15,000
<800
30
<8
<20
307
-------
TABLE 9. SPARK SOURCE MASS SPECTROSCOPY
GAS-FIRED FURNACE: SITE 102
IMPINGER, MODULE RINSE, CONDENSATE
(Mg)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<3
<3
<3
<100
<5
<3
<5
<5
<5
<5
<5
<3
<5
<3
<5
<3
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<8
<3
<8
<3
<5
<5
<3
<5
<3
38
<3
<3
<5
<15
<100
60
<5
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<8
<5
<40
<5
<5
<5
<15
<3
<3
4-0
15
<3
<3
<500
<400
<400
<3
380
48
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<400
<3
<30
<3
<1,000
<500
<10,000
<300
<500
<100
<18,000
<200
<3
<3
<3
TABLE 10. SPARK SOURCE MASS SPECTROSCOPY
GAS-FIRED FURNACE: SITE 102
TOTAL EMISSIONS FOUND
(Mg/m3)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.3
<0.3
<0.3
<20
<0.6
<0.3
<0.6
<0.6
<0.6
<0.6
<0.6
<0.3
<0.6
<0.3
<0.6
<0.3
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1
<0.3
<1.5
<0.3
<0.6
<0.6
<0.3
<0.6
<0.3
10
<0.3
<0.3
<0.6
<1
<10
1-4
<0.6
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<1.5
<1
4
<1
<0.3
<0.3
1.2
<0.6
<0.3
0.1-0.6
0.5-3
<0.3
<0.3
<20
<1,500
<60
<0.3
34
1-3
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
10-20
<0.3
0.5-2
<0.3
40-80
<50
<1,500
<20
40-60
<15
<1,000
<30
<1
<0.3
<0.6
308
-------
TABLE 11. SPARK SOURCE MASS SPECTROSCOPY
GAS-FIRED FURNACE: SITE 103
XAD-2 RESIN
(Hg)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<8
<8
<8
<300
<15
<8
<15
<15
<15
<15
<15
<8
<15
<8
<15
<8
Dy
Tb
Gd
Eu
Sra
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<23
<8
<15
<8
<15
<8
3
<8
<140
2.3
<8
<15
<10
<230
<10
<15
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<23
<15
<12
<8
<3
<8
<20
<11
<7
<8
<5
<8
<8
<230
<750
<1 ,100
<2
<800
<40
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<100
<9
<20
<8
<3,200
<700
<38K
<300
<700
<140
<5,000
<8
<6
<2
<4
TABLE 12. SPARK SOURCE MASS SPECTROSCOPY
GAS-FIRED FURNACE: SITE 103
IMPINGER, MODULE RINSE, CONDENSATE
(Mg)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<2
<2
<2
<50
<4
<2
<4
<4
<4
<15
<4
<2
<4
<2
<4
<2
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<6
<2
<6
<2
<4
<4
<2
1.8
<2
<2
20
<2
<4
<2
<100
<20
<4
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe .
Mn
<6
<4
<20
<4
<2
<2
<13
<4
<2
<2
<4
<2
<2
<300
<40
<200
<2
<600
31
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<200
<2
<6
<2
<800
<200
<3,000
<-10
<100
<80
<4,000
<2
<2
<2
<2
309
-------
TABLE 13. SPARK SOURCE MASS SPECTROSCOPY
GAS-FIRED FURNACE: SITE 103
TOTAL EMISSIONS FOUND
(Mg/m3)
u
Th
Bi
Pb <
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.3
<0.3
<0 .3
:10
<0.6
<0.3
<0.6
<0.6
<0.6
<1
<0 .6
<0.3
<0.6
<0.3
<0.6
<0.3
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba.
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
-------
TABLE 15. SPARK SOURCE MASS SPECTROSCOPY
GAS-FIRED FURNACE: SITE 104
XAD-2 RESIN
(Mg)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<8
<8
<8
<130
<8
<8
<8
<10
<8
<15
<10
<8
<15
<15
<10
<8
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<15
<4
<15
<8
<10
<20
<4
<4
<4
<200
<4
<4
<8
<15
<300
<6
<8
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<15..
<8
<5
<4
<4
<4
<20
<4
<1.5
<8
<5
<4
<4
<100
<500
<100
<1
<500
<10
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<20
<2
<6
<4
<1,500
<300
<8,000
<200
5,700
<90
<5,000
<2
<3
<0. 1
<4
TABLE 16. SPARK SOURCE MASS SPECTROSCOPY
GAS FIRED FURNACE: SITE 104
IMPINGER, MODULE RINSE, CONDENSATE
(Mg)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<2
<2
<200
75
<2
<2
<2
<3
<2
<4
<3
<2
<4
<4
<3
<2
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<4
<1
<4
<2
<3
<6
<1
<1
<1
340
5.4
<1
<2
<9
<6,000
<50
<2
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<4
<2
<30
<1
<1
<1
<6
<3
<1
<2
<5
<1
<1
<800
<70
<170
<2
<12,000
<140
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<100
<1.5
<0.2
<1
<500
<170
7,600
560
<130
<47
<6,000
<0.9 .
<0.7
<0.1
<0.5
311
-------
TABLE 17. SPARK SOURCE MASS SPECTROSCOPY
GAS-FIRED FURNACE: SITE 104
TOTAL EMISSIONS FOUND
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0
<0
<6
2
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
.3
.3
.3-6
.3
.3
.3
.4
.3
.6
.4
.3
.6
.6
.4
.3
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.6
<0.2
<0.6
<0.3
<0.4
<1
<0.2
<0.2
<0.2
10-15
0.17-0.3
<0.2
<0.3
<0.8
<200
<2
<0.3
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0
<0
<1
<0
<0
<0
<1
<0
<0
<0
<0
<0
<0
<30
<20
<10
<0
<400
<5
.6
-3
.2
.2
.2
.2
.1
.3
.3
.2
.2
.1
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<4
<0
<0
<0
<70
<20
.1
.2
.2
240-470
17-24
180
<4
<400
<0
<0
<0
<0
.2
.4
.006
.2
TABLE 18. SPARK SOURCE MASS SPECTROSCOPY
OIL-FIRED FURNACE: SITE 300
FUEL OIL
(ppra)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0
<0
<0
1
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
.01
.01
.02
.4
.02
.01
.02
.02
.02
.03
.02
.01
.02
.01
.02
.01
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0
<0
<0
<0
<0
<0
<0
0
0
0
<0
<0
<0
<0
<0
<0
.03
.01
.03
.01
.02
.05
.03
.12
.08
.41
.01
.01
.02
.03
.01
.02
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0
<0
0
<0
<0
<0
0
0
<0
<0
<0
<0
<0
1
1
6
0
4
2
.03
.02
.072
.05
.07
.01
.12
.03
.02
.02
.03
.01
.01
.7
.3
.0
.01
.5
.2
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
0
0
0
<0
15
2
<25
300
0
7
1
<30
<0
<0
<0
0
.61
.03
.19
.01
.6
.38
.0
.8
.5
.005
.005
.02
312
-------
TABLE 19. SPARK SOURCE MASS SPECTROSCOPY
OIL-FIRED FURNACE: SITE 300
SASS PARTICULATE FILTER*
(Mg)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<1
<1
<3
1,200
<3
<1
<1
<2
<2
<3
<2
<1
<2
<1
<2
-------
TABLE 21. SPARK SOURCE MASS SPECTROSCOPY
OIL-FIRED FURNACE: SITE 300
CONDENSATE/HN03 RINSE
(Hg)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<1
<1
<1
<130
<2
<1
<1
<2
<1
25
<2
<1
<2
<1
<2
-------
TABLE 23. SPARK SOURCE MASS SPECTROSCOPY
OIL-FIRED FURNACE: SITE 301
FUEL OIL
(ppm)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0
<0
<0
1
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
.02
.02
.02
.1
.03
.01
.02
.02
.02
.03
.02
.01
.02
.01
.02
.01
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0
<0
<0
<0
<0
<0
<0
0
<0
. <0
<0
<0
<0
<0
<0
0
<0
.03
.01
.03
.01
.02
.05
.01
.10
.03
.6
.01
.01
.02
.02
.4
.15
.02
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<2
<4
3
0
<7
<0
.03
.02
.05
.01
.02
.01
.01
.03
.01
.01
.01
.01
.2
.030
.2
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<0
<0
<0
<0
<4
1
<10
320
0
<8
<0
<20
<0
<0
<0
<0
.3
.01
.2
.01
.3
.06
.4
.01
.01
.01
.007
TABLE 24. SPARK SOURCE MASS SPECTROSCOPY
OIL-FIRED FURNACE: SITE 301
SASS PARTICIPATE FILTER*
U <1
Th <1
Bi <1
Pb <600
Tl <1
Hg
Au <1
Pt
Ir <1
Os <1
Re- <1
W <8
Ta
Hf <1
Lu <1
Yb <1
Tm <1
Er <1
Ho <1
Dy <1
Tb <1
Gd <1
Eu <1
Sm <1
Nd <1
Pr <1
Ce 2.6
La <1
Ba <300
Cs <1
I <1
Te <1
Sb <3
Sn
In
Cd <8
Ag
Pd <1
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
-------
TABLE 25. SPARK SOURCE MASS SPECTROSCOPY
OIL-FIRED FURNACE: SITE 301
XAD-2 RESIN
(Mg)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<2
<2
<2
<200
<3
<2
<2
<2
<2
<3
<2
<1
<2
<1
<2
<2
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<3
<1
<3
<1
<2
<20
<4
9.6
<4
<70
<2
<2
<4
<7
<40
29
<2
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<3
<2
10
<3
<6
<2
<20
<20
<5
<4
<7
<1
<1
580
150
130
<4
<800
<30
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<40
<10
13
<1
1,200
<30
<4,000
72,000
65
880
150
<6,000
<20
<2
<1
<4
TABLE 26. SPARK SOURCE MASS SPECTROSCOPY
OIL-FIRED FURNACE: SITE 301
CONDENSATE/HNOs RINSE
(Mg)
U
Th
Bi
Pb
TI
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<5
<5
<5
<200
<5
<2
<5
<5
<5
<12
<5
<2
<5
<2
<5
<2
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<7
<2
<7
<2
<5
<5
<2
15
<5
64
<2
<2
<5
100
<10
<2
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<2
<2
180
<5
5
<2
71
<2
<7
20
<2
<2
<300
<800
<60
7
2,600
86
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
1,100
<5
93
<2
4.400
1,400
<1,000
12,000
1,100
220
78
10,000
<70
<5
<2
<2
316
-------
TABLE 27. SPARK SOURCE MASS SPECTROSCOPY
OIL-FIRED FURNACE: SITE 301
TOTAL EMISSIONS FOUND
(Mg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.08
<0.08
<0-08
<12
<0-1
<0.06
<0.09
<0.09
<0.09
<0.4
<0.09
<0.05
<0.09
<0.05
<0.09
<0.06
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0
<0
<0
<0
<0
<0
<0
0
<0
0
<0
<0
<0
1
0
<0
.2
.05
.2
.05
.09
.4
.08
.31
.2
.6-5
.06
.06
.2
.1
.3
.06
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.
<0.
2.
<0.
0.
-------
TABLE 29. SPARK SOURCE MASS SPECTROSCOPY
OIL-FIRED FURNACE: SITE 302
SASS PARTICULATE FILTER*
(Mg)
U <1
Th <1
Bi <1
Pb <400
Tl <1
Hg
Au <1
Pt
Ir <1
Os <1
Re <1
W <1
Ta
Hf <1
Lu <1
Yb <1
Tm <1
Er <1
Ho <1
Dy <1
Tb <1
Gd <1
Eu <1
Sm <1
Nd <1
Pr <1
Ce <2
La <1
Ba .<30
Cs <1
I <1
Te <1
Sb <1
Sn <10
In
Cd <9
Ag
Pd <1
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<1
<1
<2
<1
<10
<1
<5
<4
<2
<3
<5
<1
<1
<400
350
<350
<1
750
<15
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
15
<1
<60
<1
<800
<300
34,000
<50
<800
<100
<6,000
<30
<10
<0.5
<5
'cAqua regia digestion; no Parr bomb.
TABLE 30. SPARK SOURCE MASS SPECTROSCOPY
OIL-FIRED FURNACE: SITE 302
XAD-2 RESIN
(M8)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<3
<3
<3
<200
<6
<3
<6
<6
<6
<5
<6
<3
<3
<3
<6
<3
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<10
<3
<10
<3
<6
<10
23
<6
<3
77
<3
<3
<10
<7
<70
370
<3
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<2
<2
8.5
<3
<2
<2
27
<30
<8
<6
<50
<6
<6
1,300
350
250
<7
<1,300
<50
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<40
<20
26
<7
21,000
270
<12,000
30,000
250
<13
<500
7,500
<40
<4
<3
<4
318
-------
TABLE 31. SPARK SOURCE MASS SPECTROSCOPY
OIL-FIRED FURNACE: SITE 302
TOTAL EMISSIONS FOUND
(Mg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tra
Er
Ho
<0
<0
<0
<6
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
.04
.04
.04
.07
.04
.07
.07
.07
.06
.07
.04
.04
.04
.07
.04
Dy
Tb
Gd
Eu
Sra
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0
<0
<0
<0
<0
<0
<0
<0
<0
0
<0
<0
<0
<0
<0
3
<0
.2
.04
.2
.04
.07
.2
.04
.08
.04
-7-1.1
.04
.04
.2
.08
.8
.7
.04
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0
<0
0
<0
<0
<0
0
<0
<0
<0
<0
<0
<0
.03
.03
.085
.04
.2
.03
.30
.4
.1
.1
.7
-07
-07
12-17
7
2
<0
7
<0
.0
.5-6.0
.08
.5-22
.7
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
0
<0
0
<0
210
2
640
2
<9
<6
.15-0.6
.3
.2-0.9
.08
.7-6.0
.5
75-140
<0
<0
<0
<0
.7
.15
.04
.09
TABLE 32. SPARK SOURCE MASS SPECTROSCOPY
OIL-FIRED FURNACE: SITE 303
FUEL OIL
(ppm)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0
<0
<0
0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
.02
.02
.02
.38
.02
.02
.02
.03
.02
.04
.03
.02
.04
.02
.03
.02
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0
<0
<0
<0
<0
0
<0
<0
<0
<0
<0
<0
<0
<0
0
<0
.04
.01
.04
.02
.03
.043
.0067
.05
.02
.8
.01
.1
.01
.03
.052
.02
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.04
<0.02
<0.05
<0.03
<0-05
<0. 1
<0.04
<0.11
<0.02
<0.067
<0.03
<0.1
<0.01
<1.4
<2
<4
<0.01
<5
<0.2
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<0.
<0.
0.
<0.
<3
<1
<20
170
0-.
<7
0.
<15
<0.
<0.
<0.
<0.
3
2
34
01
22
52
01
01
01
007
319
-------
TABLE 33. SPARK SOURCE MASS SPECTROSCOPY
OIL-FIRED FURNACE: SITE 303
SASS PARTICIPATE FILTER*
(M8)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0
<0
<1
1,200
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
.3
.3
.3
.3
.3
.5
.3
.7
.5
.3
.7
.3
.5
.3
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0
<0
<0
<0
<0
1
<0
<0
<0
.<30
<0
<0
<0
<3
12
<12
<0
.7
.2
.7
.3
.5
.1
.2
.6
.4
.3
.2
.3
.3
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0
<0
2
<0
<15
<0
5
<5
<1
3
<3
<0
<0
3,000
940
<500
<0
<1,000
47
.7
.3
.2
.1
.4
.4
.4
.2
.2
.9
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
27
0
81
<0
<700
<300
36,000
<150
<900
<150
<2,500
<0
<40
<0
<1
.76
.2
.2
.03
.5
*Aqua regia digestion; no Parr bomb.
TABLE 34. SPARK SOURCE MASS SPECTROSCOPY
OIL-FIRED FURNACE: SITE 303
TOTAL EMISSIONS FOUND
(H8/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.004
<0.004
<0. 1
15
<0.004
<0.004
<0.004
<0.006
<0.004
<0.009
<0.006
<0.004
<0.009
<0.004
<0.006
<0.004
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0
<0
<0
<0
<0
0
<0
<0
<0
<0
<0
<0
<0
<0
0
<0
<0
.009
.003
.009
.004
.006
.014
.003
.008
.005
.4
.004
.003
.004
.04
.14
.15
.004
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0
<0
0
<0
<0
<0
0
<0
<0
0
<0
<0
<0
38
12
<7
<0
<13
0
.009
.004
.028
.002
.2
.005
.068
.06
.02
.043
.04
.003
.003
.01
.59
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
0
0
1
<0
<9
<4
450
<2
<12
<2
<30
<0
<0
<0
<0
.34
.0095
.0
.003
.003
.5
.004
.02
320
-------
TABLE 35. SPARK SOURCE MASS SPECTROSCOPY
OIL-FIRED FURNACE: SITE 304
FUEL OIL
(ppm)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tin
Er
Ho
<0.02
<0.02
<0.02
1.3
<0.02
<0.02
<0.02
<0.03
<0.02
<0.04
<0.03
<0.02
<0.02
<0.02
<0.03
<0.02
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0
<0
<0
<0
<0
0
0
0
0
. 0
<0
<0
<0
0
<2
0
<0
.04
.01
.04
.02
.03
.061
.016
.11
.025
.81
.01
.01
.02
.55
.50
.02
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0
<0
0
<0
<0
<0
<0
<0
<0
0
0
<0
<0
1
3
<4
0
54
0
.04
.02
.10
.03
.05
.01
.08
.04
.04
.066
.055
.01
.03
.4
.3
.0
.027
.47
Cr
V
Ti
Sc
Ca
K
Cl
S
p
Si
Al
Mg
Na
F
B
Be
Li
<0
0
<0
<0
<8
<1
<10
290
0
27
0
<30
<0
<0
<0
<0
.4
.059
.2
.01
.4
.21
.27
.1
.023
.012
.01
TABLE 36. SPARK SOURCE MASS SPECTROSCOPY
OIL-FIRED FURNACE: SITE 304
SASS PARTICULATE FILTER*
(Mg)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tra
Er
Ho
<0.3
<0.3
<0.3
<120
<0.3
<0.3
<0.3
<0.5
<0.3
<0.7
<0.5
<0.3
<0.7
<0.3
<0.5
<0.3
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.7
<0.2
<0.7
<0.3
<0.5
<1
<0.2
<0.7
<0.2
<30
4.0
<0.2
<0.3
<0.5
<15
<0.3
<0.3
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.7
<0.3
3.7
<0.2
<10
<0.2
<3
<5
<1
<0.3
<3
<0.2
<0.2
350
<500
<320
2.2
6,400
18
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<8
1.2
<60
<0.2
<17
<200
11,000
<20
<1,300
<50
5,000
<3
110
<0.2
<1
*Aqua regia digestion; no Parr bomb.
321
-------
TABLE 37. SPARK SOURCE MASS SPECTROSCOPY
OIL-FIRED FURNACE: SITE 304
XAD-2 RESIN
(M8)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<3
<3
<3
<20
<3
<3
<3
<4
<3
<6
<4
<3
<6
<3
<4
<3
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<6
<2
<6
<3
<4
<8
<1
<5
9.5
<50
<1
<2
<3
<5
<16
<7
<3
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<6
<3
5.5
8.1
7.9
<2
<10
<4
<3
<2
<2
<2
2.5
<120
<160
<160
<1
<200
<6
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<10
<1
<2
<2
<7,000
<100
<4,000
<16,000
<86
<300
<300
<2,500
<0.2
<0.2
<0.03
<0.9
TABLE 38. SPARK SOURCE MASS SPECTROSCOPY
OIL-FIRED FURNACE: SITE 304
TOTAL EMISSIONS FOUND
(Mg)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0
<0
<0
<2
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
<0
.04
-04
.04
.04
.04
.04
.05
.04
.08
.05
.04
.08
-04
.05
.04
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.08
<0.03
<0.08
<0.04
<0.05
-------
TABLE 39. ATOMIC ABSORPTION (AA)—WET CHEMICAL METHODS
GAS-FIRED FURNACE
(Mg/m3)
Sample Hg Sb As
XAD-2 resin
SITE 100 0.03 <0.5 <0.11
SITE 101 0.25 <0.5 <0.13
SITE 102 3.14 <0.5 <0.12
SITE 103 4.02 <0.5 <0.11
SITE 104 1.04 <0.5 <0.12
Composite*
SITE 100 NDf <0.17 <0.04
SITE 101 ND <0.3 0.36
SITE 102 ND 3.8 <0.04
SITE 103 ND <0.11 <0.03
SITE 104 ND <0.11 <0.03
APS impinger
SITE 100 ND <0-05 <0.03
SITE 101 ND <0.12 <0.03
SITE 102 ND <0.06 <0.03
SITE 103 ND <0.04 <0.02
SITE 104 ND <0.06 <0.03
^Composite of condensate, HNOs wash of XAD-2 module and H202 impinger.
tND—Not detected indicates sample less than blank concentration.
323
-------
TABLE 40. GAS CHROMATOGRAPHY* FOR INORGANIC GASES
Sample
Gas-fired furnacet
SITE 100
SITE 101
SITE 102
SITE 103
SITE 104
Oil-fired furnace^
SITE 300
SITE 301
SITE 302
SITE 303
SITE 304
CO
ppm
<500
<500
<500
<500
<500
<0.2
<0.2
<0.2
<0.2
<0.2
02
%
16.7
12.9
19.5
19.1
16.8
17.2
17.4
19.6
17.3
17.5
C02
%
6.4
1.4
3.0
1.7
1.1
3.8
3.7
1.2
2.9
2.6
^Separation by GC with thermal conductivity detector.
fCollection by Tedlar bag.
^Collection by evacuated flask.
TABLE 41. CHEMILUMINESCENCE FOR NO *
GAS-FIRED FURNACE FLUE GAS X
Sample
SITE 100
SITE 101
SITE 102
SITE 103
SITE 104
NO
mg?m
25.3
9.4
18.8
12.5
9.3
concentrations
3 lbs/106 Btu
0.054
0.011
0.027
0.026
0.011
*Theta sensor used for determination electrochemically. Collection by
Tedlar bags.
324
-------
TABLE 42. GAS CHROMATOGRAPHY FOR Ci-C6/C7*
GAS-FIRED FUENACE
Sample
SITE 100
SITE 101
SITE 102
SITE 103t
SITE 104
GC1
GC2
GC3
GC4
GC5
GC6
GC7
GC1
GC2
GC3
GC4
GC5
GC6
GC7
GC1
GC2
GC3
GC4
GC5
GC6
GC7
GC1
GC2
GC3
GC4
GC5
GC6
GC7
GC1
GC2
GC3
GC4
GC5
GC6
GC7
Range
160-100
100-50
50-0
0-30
30-60
60-90
90-100
160-100
100-50
50-0
0-30
30-60
60-90
90-100
160-100
100-50
50-0
0-30
30-60
60-90
90-100
160-100
100-50
50-0
0-30
30-60
60-90
90-100
160-100
100-50
50-0
0-30
30-60
60-90
90-100
Weight
|jg/m3 No. of peaks observed
0
0
0
0
0
0
Not reported
0
0
0
0
0
0
Not reported
0
0
0
0
0
0
Not reported
39,400
37,800
55,500
0
0
0
Not reported
0
0
0
0
0
0
Not reported
*Flame ionization detection; detection limits 1.0 ppm (1,000 |Jg/m5).
tFurnace appears to have malfunctioned resulting in excess emissions of
GI, C2, and GS-
325
-------
TABLE 43. GAS CHROMATOGRAPHY FOR C7-C17
GAS-FIRED FURNACE—COMBINED EXTRACTS*
Sample
Range
Volatile
weight, No. of
(Jg/m3 peaks
Gravimetric Total
nonvolatile organic,
weight, (Jg/ro3 Mg/m3
SITE 100
SITE 101
SITE 102
SITE 103
SITE 104
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
>GC17
GC1 - >GC17
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
>GC17
GC1 - >GC17
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
>GC17
GC1 - >GC17
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
>GC17
GC1 - >GC17
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
>GC17
GC1 - >GC17
Not reported
<10
<10
1,490
560
60
Not reported
<10
<10
<10
<10
<10
Not reported
-ir*
Not reported
<10
<10
770
680
<10
Not reported
<10
<10
1,960
2,680
370
400
-2,500
1,240
-1,240
780
>780
480
-1,900
920
-5,900
See footnote at end of table.
326
-------
TABLE 43 (con.)
Sample
Range
Volatile
weight,
(Jg/m3
No. of
peaks
Gravimetric
nonvolatile
weight, |Jg/m3
Total
organic,
(Jg/m3
GC7 90-110 Not reported
Average GC8 110-140 <10
Gas-fired GC9 140-160 <10
sites GC10 160-180 1,060
100-104 GC11 180-200 980
GC12 200-220 110
>GC17 760
GC1 - >GC17 ~2,500
extract of XAD-2 resin, rinses, etc.
327
-------
TABLE 44. GAS CHROMATOGRAPHY FOR C7-C17
GAS-FIRED FURNACE—BASS TRAIN SAMPLES
Sample
Probe solvent
rinse (PR-0)
SITE 100
SITE 101
SITE 102
SITE 103
SITE 104
Solvent XAD-2
module rinse
(MR-0)
SITE 100
SITE 101
SITE 102
SITE 103
SITE 104
XAD-2 resin--
Range
C7-C12
>C17
C7-C12
>C17
C7-C12
>C17
C7-Ci2
>C17
C7~C12
>C17
C7-C12
>C17
C7-C12
>C17
C7-C12
>C17
C7-Cj2
>C17
C7-C12
>C17
Volatile
weight ,
mg/m3
<0.010
<0.010
0.36
<0.010
<0.010
<0.010
<0.010
<0.010
Gravimetric Total
No. of nonvolatile organic
peaks weight, mg/m3 weight
0
0.14
0.025
0.03
0
0.18
0.81
0.47
0.27
0.86
solvent extract
(XR-S)
SITE 100
SITE 101
SITE 102
SITE 103
SITE 104
C7-C12
>C17
C7-Ci2
>C17
C7-C12
>C17
C7-C12
>C17
C7-C12
>C17
2.11
<0.010
1.09
5.01
0.22
0.29
0.28
—
0.18
0.06
328
-------
TABLE 45. GAS CHROMATOGRAPHY FOR Ci~C&/C7*
OIL-FIRED FURNACE
Sample
SITE 300
SITE 301
SITE 302
SITE 303
SITE 304
Average
Oil-fired
SITE 300-
304
GC1
6C2
GC3
GC4
GC5
GC6
GC7
GC1
GC2
GC3
GC4
GC5
GC6
GC7
GC1
GC2
GC3
GC4
GC5
GC6
GC7
GC1
GC2
GC3
GC4
GC5
GC6
GC7
GC1
GC2
GC3
GC4
GC5
GC6
GC7
GC1
GC2
GC3
GC4
GC5
GC6
GC7
Range
160-100
100-50
50-0
0-30
30-60
60-90
90-100
160-100
100-50
50-0
0-30
30-60
60-90
90-100
160-100
100-50
50-0
0-30
30-60
60-90
90-100
160-100
100-50
50-0
0-30
30-60
60-90
90-100
160-100
100-50
50-0
0-30
30-60
60-90
90-100
160-100
100-50
50-0
0-30
30-60
60-90
90-100
Weight
Mg/ra3 No. of peaks observed
9,600
1,700
<200
<300
<300
<400
Not reported
2,700
1,900
4,400
<300
<300
<400
Not reported
2,000
400
<200
<300
<300
<400
Not reported
1,800
<100
<200
<300
<300
<400
Not reported
2,800
140
<200
<300
<300
<400
Not reported
3,800
850
>1,000
<300
<300
<400
Not reported
^Document states analysis by GC with FID. Lower detection limits must have
been realized with oil-fired samples as opposed to 1,000 \lg/m3 for gas-
fired samples. (See Table 42.)
329
-------
TABLE 46. GAS CHROMATOGRAPHY FOR C7-C17
OIL-FIRED FURNACE—COMBINED EXTRACTS*
Sample
SITE 300
SITE 301
SITE 302
SITE 303
Range
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
GC12 - GC17
>GC17
GC1 - >GC17
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
GC12 - GC17
>GC17
GC1 - >GC17
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
GC12 - GC17
>GC17
GC1 - >GC17
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
GC12 - GC17
>GC17
GC1 - >GC17
Volatile Gravimetric Total
weight, No. of nonvolatile organic,
|jg/m3 peaks weight, M8/m3 MS/m3
Not reported
6.3
4.9
46
25
1.3
86
650
12,000-
13,000
Not reported
1.2
3.0
14
6.6
33
122
1,800
11,000-
12,000
Not reported
7.5
9.0
26
44
45
429
290-560
3,000-
4,700
Not reported
1.2
15
43
47
65
384
1,200-
1,400
3,600-
5,100
See footnote at end of table.
330
-------
TABLE 46 (con.)
Sample
Range
Volatile
weight ,
(jg/m3
No. of
peaks
Gravimetric
nonvolatile
weight, |Jg/m3
Total
organic,
Mg/m3
SITE 304
Average
Oil-fired
sites
300-304
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
GC12 - GC17
>GC17
GC1 - >GC17
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
GC12 - GC17
>GC17
GC1 - >GC17
Not reported
5.2
7.3
43
49
81
134
Not reported
4.3
7.8
34
34
45
360
6,000
9,300-
10,500
2,000-
2,400
7,800-
9,100
extract of XAD-2 resin, rinses, etc.
331
-------
TABLE 47. GAS CHROMATOGRAPHY FOR C7-C17*
OIL-FIRED FURNACE—SASS TRAIN SAMPLES
Sample type
Probe solvent
rinse (PR-0)
Solvent XAD-2
module rinse
(MR-0)
Condensate —
solvent
extract
(CD-S)
XAD-2 resin--
solvent
extract
(XR-S)
Site
300
301
302
303
304
300
301
302
303
304
300
301
302
303
304
300
301
302
303
304
Volatile
Total pg
<31
<217
<140
<116
<285
<31
644
<140
<116
<285
<300
<34
1,880
1,840
<34l
15,500
15,400
56,600
42,900
24,600
Cy-Cig Nonvolatile >Ci7
mg/nr
0.0073
0.0213
0.0228
0.167
0.175
0.544
0.532
0.321
Total [Jg
<1,000
<5,000
<13,000
<6,000
114,000
<1,000
20,200
<13,000
<6,000
14,900
15,600
87,800
<2,000
<6,000
92,700
43,000
52,600
30,200
96,600
237,000
mg/m-3
1.49
0.229
0.194
0.170
0.997
1.21
0.469
0.597
0.290
1.20
-3.09
Volume
sampled
m3
91.9
88.1
104
80.6
76.7
91.9
88.1
104
80.6
76.7
91.9
88.1
104
80.6
76.7
91.9
88.1
104
80.6
76.7
Total
, organics
mg/m3
«.•_
—
—
—
1.49
—
0.236
—
—
0.194
0.170 .
0.997
0.021
0.023
1.21
0.636
0.772
0.834
1.732
3.411
*A11 values have been blank-corrected.
format. Data was not broken down.)
(Note that this is incorrect data
tAll numbers reported as "less than" (<) are sample values found to be less
than the blank value; number reported is value of blank.
332
-------
TABLE 48. GAS CHROMATOGRAPHY FOR C7-C12*
OIL-FIRED FURNACE—SASS TRAIN SAMPLES, SITE 300
Sample
Probe
solvent
rinse
(PR-0)
XAD-2
module
rinse
(MR-0)
Condensate
extract
(CD-S)
XAD-2
resin
extract
(XR-S)
Range
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
Volatile Gravimetric Total
weight, No. of nonvolatile organic,
Mg/m3 peaks weight, mg mg
Not reported
0
t
f
0
0
Not reported
0
0.422
0.984
1.14
0
Not reported
t
t
t
t
t
Not reported
6.33
4.33
45.4
23.8
1.31
values have been blank-corrected.
tLess than blank.
333
-------
TABLE 49. GAS CHROMATOGRAPHY FOR C7-C12*
OIL-FIRED FURNACE--SASS TRAIN SAMPLES, SITE 301
Sample
Probe
solvent
rinse
(PR-0)
XAD-2
module
rinse
(MR-0)
Condensate
extract
(CD-S)
XAD-2
resin
extract
(XR-S)
Range
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
Volatile Gravimetric Total
weight, No. of nonvolatile organic,
|jg/m3 peaks weight, mg mg
Not reported
t
t
t
0
0
Not reported
0.0276
t
0.221
0.286
0.110
Not reported
4.96
0.110
t
t
T
Not reported
6.95
2.75
13.7
6.36
32.6
*A11 values have been blank-corrected.
tLess than blank.
334
-------
TABLE 50. GAS CHROMATOGRAPHY FOR C7-C12*
OIL-FIRED FURNACE—SASS TRAIN SAMPLES, SITE 302
Sample
Probe
solvent
rinse
(PR-0)
XAD-2
module
rinse
(MR-0)
Condensate
extract
(CD-S)
XAD-2
resin
extract
(XR-S)
Range
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
Volatile Gravimetric Total
weight, No. of nonvolatile organic,
pg/m3 peaks weight, mg mg
Not reported
t
t
0.0167
0
0
Not reported
t
t
0.234
0.395
0.420
Not reported
t
0.396
0.981
0
13.5
Not reported
7.51
8.65
24.7
43.4
31.0
*A11 values have been blank-corrected.
fLess than blank.
335
-------
TABLE 51. GAS CHROMATOGRAPHY FOR C7-C12*
OIL-FIRED FURNACE—SASS TRAIN SAMPLES, SITE 303
Sample
Probe
solvent
rinse
(PR-0)
XAD-2
module
riase
(MR-0)
Condensate
extract
(CD-S)
XAD-2
resin
extract
(XR-S)
Range
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-1£0
GC11 180-200
GC12 200-220
Volatile Gravimetric Total
weight, No. of nonvolatile organic,
|jg/m3 peaks weight, mg mg
Not reported
0
t
0.150
0
t
Not reported
0
t
0.242
0.023
t
Not reported
f
t
t
t
f
Not reported
11.6
14.6
41.6
46.5
64.7
*A11 values have been blank-corrected.
fLess than blank.
336
-------
TABLE 52. GAS CHROMATOGRAPHY FOR C7-C12*
OIL-FIRED FURNACE—SASS TRAIN SAMPLES, SITE 304
Sample
Probe
solvent
rinse
(PR-0)
XAD-2
module
rinse
(MR-0)
Condensate
extract
(CD-S)
XAD-2
resin
extract
(XR-S)
Range
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
GC7 90-110
GC8 110-140
GC9 140-160
GC10 160-180
GC11 180-200
GC12 200-220
Volatile Gravimetric Total
weight, No. of nonvolatile organic,
[Jg/m3 peaks weight, mg mg
Not reported
t
f
t
0
0
Not reported
f
t
0.567
0.231
0.122
Not reported
t
t
0.131
0.335
t
Not reported
5.23
7.00
39.3
48.9
75.0
*A11 values have been blank-corrected.
tLess than blank.
337
-------
TABLE 53. LC FRACTIONATION—GAS-FIRED FURNACE
CH2C12 EXTRACT OF XAD-2 RESIN (NONVOLATILE)
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
SITE 101
Grav
TCO MS/™3 Total Total
150
66
23
18
2
87
44
SITE 102
Grav
TCO Mg/m3 Total Total
110
<0.4
38
23
76
110
<0.4
SITE 103
Fraction TCO
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Grav
|Jg/m3 Total Total
<0.8
100
61
520
<0.8
<0.8
150
___
338
-------
TABLE 54. LC FRACTIONATION--GAS-FIRED FURNACE
CONDENSATE EXTRACT AND MODULE RINSE (NONVOLATILE)
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
SITE 101
Grav
TCO M8/">3 Total Total
<0.8
<0.8
12
430
110
120
140
SITE 102
Grav
TCO MgM3 Total Total
<0.5
<0.5
<0.5
280
100
72
16
SITE 103
Fraction TCO
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Grav
Mg/m3 Total Total
N.R.
N.R.
N.R.
N.R.
N.R.
N.R.
N.R.
N.R.
N.R. = not reported.
339
-------
TABLE 55. LC FRACTIONATIOK—OIL-FIRED FURNACE
CH2CL2 EXTRACT OF XAD-2 RESIN (NONVOLATILE)
SITE 300
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
TCO
(jg/m3
43
36
17
15
17
45
0.2
Grav
Mg/m3
88
<0.5
<0.5
24
107
91
157
Total
Mg/m3 Total
131
36
17
39
124
126
157
TCO
(Jg/m3
68
16
15
20
36
1.4
9
<0.2
SITE 301
Grav
|jg/m3
30
23
35
15
23
402
65
<0.6
Total
|jg/m3 Total
98
39
50
35
59
416
74
<0.8
SITE 302
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 1
LC 8
TCO
Mg/m3
91
62
48
84
179
101
<0.6
<0.6
Grav
Mg/m3
1
2
5.5
4.4
10
17
250
<0.3
Total
Mg/m3 Total
92
64
54
88
189
118
250
<0.9
TCO
<0.5
10
84
135
155
144
29
<0.5
SITE 303
Grav
Mg/m3t
266
40
288
152
152 -
342
19
-------
TABLE 55 (con.)
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
TCO
Mg/m3t
250
27
23
19
5
4
<0.3
<0.3
SITE
Grav
Mg/m3f
2,250
140
280
400
280
730
400
<10
304
Total
Hg/m3 Total
2,500
170
300
420
285
730
400
<10
*Four percent of the volatiles were from the condensate extract, remainder
were from the XAD-2 resin.
tXAD-2 resin.-
fFour percent of the nonvolatiles were from the solvent module rinse, 27
percent from the condensate and the remainder from the XAD-2 resin.
341
-------
TABLE 56. IR REPORT
SAMPLE: GAS-FIRED FURNACE
Quote from text:
"IR analysis was found to be impossible due to the insufficient amounts of material available
for the taking of clean, interpretable spectra."
TABLE 57. IR REPORT*
SAMPLE: OIL-FIRED FURNACE
LC
LC 1
LC 2
LC 3
LC 4
LC 5
SITE 300
Alkanes
Unknown
Unknown
R-CN, substituted aliphatics
Substituted aliphatics and
SITE 301
Aliphatics
Aliphatics and halogen,
substituted aliphatics
Substituted aliphatics
Substituted aliphatics
Substituted aliphatics
SITE 302t
___
_ __
ethers
LC 6 Substituted aliphatics and
alcohols
LC 7 Substituted aliphatics
and carboxylic acids
LC 8 Same as LC 7
Aliphatics and/or aromatic
esters and ketones and
phenols
Aliphatic acids
Substituted aliphatic acids
See footnotes at end of table.
-------
TABLE 57 (con.)
LC
SITE 303
SITE 304
CO
*-
to
LC 1 Aliphatics
LC 2 Substituted aliphatics
LC 3 Substituted aliphatics,
ethers, esters, and ketones
LC 4 Same as LC 3
LC 5 Ethers, esters, and ketone
LC 6 Ethers, esters, and ketones
LC 7 Aliphatic acids
LC 8 Hydroxy acids
Aliphatics and aromatics
Aliphatics and aromatics
Substituted aliphatics, ethers
esters, and ketones
Same as LC 3
Carbonyl compounds and aromatics
Same as LC 5
Substituted aromatics, aliphatics
and carboxylic acids
Same as LC 7 plus hydroxy acids
*IR by grating spectrophotometer (nonvolatiles only analyzed).
tSite 302 had no IR data reported.
-------
344
-------
STUDY NUMBER 14
DATA
STATUS:
EVALUATION OF LEVEL 1
ORGANIC ANALYSIS SCHEMES
DATA
STATUS:
Rough Draft, June 10, 1976
AUTHOR:
CONTRACTOR:
P. Levins
Arthur D. Little, Inc.
Contract No. 68-02-21 50
PROJECT
OFFICER:
L. D. Johnson
Process Measurements Branch
Industrial Environmental Research Laboratory
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
345
-------
346
-------
GENERAL
The purpose of this analytical study was to identify problem areas in
the Level I scheme and to address cost-effective alternatives. Two stated
problem areas were the "less than optimum" LC fractionation scheme and the
subsequent analysis of LC fractions exclusively by IR.
Several problems in the LC fractionation scheme from the Technical
Manual for Analysis of Organic Materials in Process Streams were addressed.
The lack of methodology for dealing with high molecular weight species was
mentioned, and the use of thermal gravimetric analysis (TGA) to determine
their presence was suggested. It was stated that samples containing high
molecular weight species could be separated readily by gel permeation chroma-
tography (GPC) procedures. A four-fraction LC scheme was suggested as more
cost-effective than the eight-fraction scheme and as adequate for most
environmental samples.
It was stated that IR analysis did not seem adequate to characterize
complex environmental samples. LRMS analysis was suggested as an addition
to the IR analysis for more complete identification of organic groups.
In order to compare the four-fraction LC scheme with the eight-fraction
scheme, 12 environmental samples from several sources were supplied by PMB.
Five samples were selected for fractionation by the eight-fraction scheme
plus IR. Samples fractionated by the four-fraction scheme were analyzed by
IR and LRMS.
GASEOUS GRAB
No sampling was performed in this study.
SASS
No sampling was performed in this study.
FUGITIVE EMISSIONS
No sampling was performed in this study.
LIQUIDS AND SLURRIES
No sampling was performed in this study.
SOLIDS
No sampling was performed in this study.
347
-------
TABLE 1. LC FRACTIONATION
SAMPLE 0018
EPA EIGHT-FRACTION SCHEME (E SERIES) vs. ADL FOUR-FRACTION SCHEME (A SERIES)
(wt. percent)
A series
Fraction TCO Grav Total Total
LC 1 22
LC 2 53
LC 3 11
LC 4 *
LC 5
LC 6
LC 7
LC 8
E series
TCO Grav Total Total
70
9
5
N.R.
N.R.
9
N.R.
N.R.
*Not available because of initial blanks problem with aluminum pan.
N.R. = not reported.
TABLE 2. LC FRACTIONATION
SAMPLE 0053
EPA EIGHT-FRACTION SCHEME (E SERIES) vs. ADL FOUR-FRACTION SCHEME (A SERIES)
(wt. percent)
A series
Fraction TCO Grav Total Total
LC 1 42
LC 2 32
LC 3 25
LC 4 *
LC 5
LC 6
LC 7
LC 8
E series
TCO Grav Total Total
68
6
7
1
N.R.
12
N.R.
N.R.
*Not available because of initial blanks problem with aluminum pan.
N.R. = not reported.
348
-------
TABLE 3. LC FRACTIONATION
SAMPLE 0062
EPA EIGHT-FRACTION SCHEME (E SERIES) vs. ADL FOUR-FRACTION SCHEME (A SERIES)
(wt. percent)
A series
Fraction TCO Grav Total Total
LC 1 39
LC 2 36
LC 3 9
LC 4 *
LC 5
LC 6
LC 7
LC 8
E series
TCO Grav Total Total
76
3
1
N.R.
N.R.
2
N.R.
N.R.
* Not available because of initial blanks problem with aluminum pan.
N.R. = not reported.
TABLE 4. LC FRACTIONATION
SAMPLE 0064
EPA EIGHT-FRACTION SCHEME (E SERIES) vs. ADL FOUR-FRACTION SCHEME (A SERIES)
(wt. percent)
A series
Fraction TCO Grav Total Total
LC 1 0
LC 2 57
LC 3 38
LC 4 5
LC 5
LC 6
LC 7
LC 8
E series
TCO Grav Total Total
16
4
15
13
5
32
2
N.R.
N.R. = not reported.
349
-------
TABLE 5. LC FRACTIONATION
SAMPLE 0065
EPA EIGHT-FRACTION SCHEME (E SERIES) VS. ADL FOUR-FRACTION SCHEME (A SERIES)
(wt. percent)
A series
Fraction TCO Grav Total Total
LC 1 0
LC 2 27
LC 3 53
LC 4 5
LC 5
LC 6
LC 7
LC 8
E series
TCO Grav Total Total
4
5
12
24
20
64
8
2
TABLE 6. LC FRACTIONATION
SAMPLE 0066
EPA EIGHT-FRACTION SCHEME (E SERIES) VS. ADL FOUR-FRACTION SCHEME (A SERIES)
(wt percent)
A series
Fraction TCO Grav Total Total
LC 1 1
LC 2 57
LC 3 21
LC 4 2
LC 5
LC 6
LC 7
LC 8
E series
TCO Grav Total Total
43
9
6
7
4
12
1
1
350
-------
TABLE 7. IR REPORT
SAMPLE: NUMBER 18
Sample ,
description Wave number (cm ) Intensity
Assignment (comments)
Before LC
separation
3
,050
Weak
Unsaturated
CH,
probably
aromatic
Al*
2 A2
2,960; 2,930; 2,860
1,600
1,460; 1,380
725
2,960; 2,930; 2,860
1,460; 1,380
725
3,450
3,050
2,960; 2,930; 2,860
1,700
1,600
1,460; 1,380
1,095
1,030
870; 815; 750
725
Strong
Weak (broad)
Medium
Weak
Strong
Medium
Weak
Very weak (broad)
Weak to medium
Strong
Very weak
Weak to medium
(broad)
Medium
Medium
Weak
Medium
Medium
Saturated aliphatic CH2, CH3
Aromatic C=C
Aliphatic CH2, CH3 bend
CH2 wag of more than four CH2 groups
Saturated aliphatic CH2, CH3
Aliphatic CH2, CH3 bend
CH2 wag of more than four CH2 groups
Bonded and unbonded OH (or NH)
Unsaturated CH, probably aromatic
Saturated aliphatic CH2, CH3
C=0 of aryl aldehyde, acrylic ketone,
aliphatic acid or Of-p Unsaturated acid
(1) Aromatic C=C; (2) NH bend; (3) C00~;
(4) chelated or conjugated carbonyl
Aliphatic CH2, CH3
C-0 of acyclic ether
(1) Aromatic CH in-plane bend; (2) C-0 of
alcohol
Aromatic substitution bonds
CH2 wag of more than four CH2 groups
to A4 is the ADL four-fraction scheme.
-------
TABLE 7 (con.)
Ul
to
Sample
description
A3
A4
Wave number (cm )
3,250
3,050
2,960; 2,930; 2,860
1,700
1,650
1,600
1,460; 1,380
1,030
870; 815; 750
725
3,160
3,055
2,960; 2,930; 2,860
1,740
1,700
1,640
1,460; 1,380
1,410
1,020
870; 815; 750
725
Intensity
Weak (broad)
Weak
Medium
Weak to medium
Weak (short)
Medium (broad)
Medium
Weak
Weak to medium
Weak
Weak
Weak
Strong
Very weak
Very weak
l
Very weak
Medium
Weak
Weak
Weak
Weak
Assignment (comments)
Bonded OH (or NH)
Unsaturated CH, probably aromatic
Saturated aliphatic CH2, CH3
Aliphatic acid or a-p unsaturated acid
(1) C=0 of amide; (2) C=C of olefin
(1) Aromatic C=C; (2) NH bend; (3) C00~;
(4) chelated or conjugated carbonyl
Aliphatic CH2, CH3 bend
(1) Aromatic CH in plane bend (2) C-0 of
alcohol
Aromatic substitution bands
CH2 wag of more than four CH2 groups
Bonded NH stretch
Unsaturated CH, probably aromatic
Saturated aliphatic CH2, CH3
C=0 of saturated aliphatic ester
C=0 of aryl aldehyde, acrylic ketone,
aliphatic acid or ot-p unsaturated acid
(1) C=0 of amide; (2) C=C of olefin
Aliphatic CH2, CH3 bend
CH2 next to C=0
(1) Aromatic CH in plane bend; (2) C-0 of
alcohol
Aromatic substitution bands
CH2 wag of more than four CH2 groups
-------
TABLE 7 (con.)
Sample
description
Wave number (cm )
Intensity
Assignment (comments)
co
Cn
W
El*
E2
3,370
3,050
2,960; 2,930; 2,860
2,730
1,735
1,715
1,600
1,260
1,170; 1,130; 1,070;
1,030
870; 815; 750
725
Weak to medium
(broad)
Weak (short)
Strong
Weak
Medium
Medium
Weak to medium
Weak
Weak
Weak to medium
Weak
Generally resembles spectra before
separation, but with aromatic bands less
strong.
Bonded OH (or NH)
Aromatic CH
Aliphatic CH2, CH3
Aldehyde CH
Saturated ester
(1) Unsaturated ester; (2) aldehyde
(1) Aromatic C=C; (2) chelated or conjugated
carbonyl; (3) NH bend; (4) C00~
C-0 of ester
C-0 stretching of ethers, alcohols
Aromatic substitution bands
CH2 wag of more than four CH2 groups
*E1 to E8 is EPA eight-fraction scheme as described in the Technical Manual for Analysis of Organic
Materials in Process Streams.
-------
TABLE 7 (con.)
Sample
-1,
description Wave number (cm )
Intensity
Assignment (comments)
E3, 4, 5*
10
Cn
E6
3,200-3,500
3,050
2,960; 2,930; 2,860
1,700
1,600
1,460; 1,380
1,030
870, 815, 750
725
3,250
3,050
2,960; 2,930; 2,860
2,730
1,730
1,690
1,650
1,600
1,030
870; 815; 750
, 725
Weak (broad)
Weak (short)
Strong
Weak (short)
Weak to medium
Medium
Weak
Weak
Weak
Weak (broad)
Very weak (short)
Weak
Weak to medium
(short)
Medium (short)
Medium
Medium (broad)
Medium to strong
Weak to medium,
Weak
Generally similar with less aromatic content
evident
Bonded OH (or NH)
Aromatic CH
Aliphatic CH2, CH3
C=0 of aldehyde, ketone
(1) Aromatic C=G; (2) chelated or conjugated
carbonyl; (3) NH bend; (4) COO"
Aliphatic CH2, CH3
(1) C-0 of alcohol; (2) aromatic CH in-plane
bending
Aromatic substitution bands
CH2 wag of more than four CH2 groups
Bonded OH (or NH)
Aromatic CH
Aliphatic CH2, CH3
Aldehyde CH
C=0 of saturated ester
C=0 of aldehyde or unsaturated ester
(1) C=C of olefin; (2) C=N of imine; (3) C=0 of
distributed amide
(1) Aromatic C=C; (2) chelated or conjugated
carbonyl; (3) NH bend; (4) C00~
(1) C-0 of primary alcohol; (2) aliphatic
aldehyde; (3) aromatic CH
Aromatic substitution bands
CH2 wag of more than four CH2 groups
*E5 had very little sample and indicated mainly aliphatic hydrocarbon.
-------
TABLE 7 (con.)
Sample
description Wave number (cm~ ) Intensity
Assignment (comments)
E7
co
m
Cn
3,050
2,960; 2,930; 2,860
1,730
1,600
1,460; 1,380
1,100-1,300
1,030
870; 815; 750
725
Very weak (short)
Strong
Weak (short, broad)
Weak to medium
(broad)
Medium
Weak to medium
(broad)
Weak
Weak
Weak
Aromatic CH
Aliphatic CH2, CH3
C=0 of saturated ester
(1) Aromatic C=C; (2) chelated or conjugated
carbonyl
Aliphatic CH2, CH3
C-0 stretching region
Aromatic CH in-plane bending
Aromatic substitution bonds
wag of more than four CHg groups
-------
TABLE 8. IR REPORT
SAMPLE: NUMBER 53
Sample
-1,
description Wave number (cm )
Intensity
Assignment (comments)
Before 2,960; 2,930; 2,860
separation
1,720
1,460; 1,380
1,000-1,150
725
Al
CO
en
ON
A2
3,080
2,960; 2,930; 2,860
1,640
1,460; 1,380
970; 915
725
3,000-3,100
2,960; 2,930; 2,860
1,730
1,600
1,460; 1,380
1,120
1,070; 1,030
870
815
750
725
Strong
Weak to medium
Medium
Very weak (broad)
Weak
Weak
Strong
Very weak
Medium
Weak
Weak
Weak
Strong
Weak to medium
Weak (broad)
\
Medium
Weak
Weak
Weak
Weak
Weak
Weak
Aliphatic CH2, CH3
C=0 of aldehyde, ketone
CH2, CH3 bend
C-0 of ether or Si-0 or P-0
CH2 wag of mroe than four CH2 groups
Unsaturated CH, perhaps olefinic
Saturated aliphatic CH2, CH3
C=C of olefin
CH2, CH3 bend
CHRi=CH2 type CH bending
CH2 wag of more than four CH2 groups
Unsaturated CH, probably aromatic
Saturated aliphatic CH2, CH3
C=0 of saturated aldehyde or Unsaturated
ester or aryl ester
(1) Aromatic C=C; (2) NH bend; (3) C00~;
(4) chelated or conjugated carbonyl
CH2, CH3 bend
C-0 of aromatic ester
(1) C-0 of aromatic ether (2) aromatic CH in
plane bend; (3) Si-0 (impurity?)
Aromatic substitution patterns:
1,3; 1,3,5; 1,2,3,5; 1,2,4,5; 1,2,3,4,5
Aromatic substitution patterns:
1,4-; 1,2,3,4; 1,2,4; 1,3,5
Aromatic substitution patterns:
1,2-; 1,3
CH2 wag of more than four CH2 groups
-------
TABLE 8 (con.)
Sample
-1,
description Wave number (cm )
Intensity
Assignment (comments)
A3
CO
3,100-3,600
2,960; 2,930; 2,860
1,770
1,750
1,710
1,610
1,460; 1,380
1,410
1,260; 1,165
1,120
1,020
725
Weak to medium
(very broad)
Strong
Weak (short)
Weak to medium
(short)
Strong
Weak to medium
Medium
Weak
Weak
Weak
Weak
Weak t
Bonded and unbonded OH (or NH)
Saturated aliphatic CR2, CE^ stretch
C=0 of acid halide, lactone, or vinylic or
phenolic ester
C=0 of saturated ester or or-keto ester or
a-diester
C=0 of aryl aldehyde, acyclic ketone,
aliphatic acid or a-p-unsaturated acid
(1) Aromatic C=C; (2) NH bend; (3) COO";
(4) chelated or conjugated carbonyl
Aliphatic CH2, CH3 bend
(1) CH2 next to C=0 (2) C00~
Aldehyde or ketone skeletal vibrations
C-0 of aromatic ester
(1) C-0 of alcohol; (2) Si-0, P-0;
(3) aromatic CH in-plane bend
CH2 wag of more than four CHg groups
-------
TABLE 8 (con.)
Sample
-1,
description Wave number (cm )
Intensity
Assignment (comments)
A4
u>
Ut
oo
3,300-3,600
3,150
3,060
2,960; 2,930; 2,860
1,780
1,740
1,715
1,595
1,460; 1,380
1,410
1,260
1,170
1,120
1,020
725
Weak (broad)
Weak
Weak
Strong
Weak (short)
Weak (short)
Medium
Medium
Medium
Weak
Weak to medium
Weak to medium
Weak to medium
Weak to medium
i
Weak to medium
El
Bonded and unbonded OH (or NH)
NH stretch
Unsaturated CH, probably aromatic
Saturated aliphatic CH2, CH3
C=0 of acid halide, lactone, or vinylic or
phenolic ester
C=0 of saturated ester
C=0 of aryl aldehyde, acyclic ketone,
aliphatic acid or a-p unsaturated acid
(1) Aromatic C=C; (2) chelated carbonyl;
(3) NH bend; (4) C00~
Aliphatic CH2, CH3
(1) CH2 next to C=0; (2) COO"
Aldehyde or ketone skeletal vibrations
Aldehyde or ketone skeletal vibrations
C-0 of aromatic ester
(l)C-O of alcohol; (2) Si-0, P-0
(3) aromatic CH in-plane bend
CH2 wag of more than four CH2 groups
Curve indicates aliphatic hydrocarbons only
-------
TABLE 8 (con.)
Sample
description Wave number (cm~ ) Intensity Assignment (comments)
12 (Very weak aromatic indications)
3,200-3,500 Very weak (broad) Bonded OH (or NH)
2,960; 2,930; 2,860 Strong Aliphatic CH2, CH3
2,730 Weak Aldehyde CH
1,720 Medium to strong Unsaturated or aromatic ester C=0
1,700 Medium C=0 of aldehyde or ketone
1,605 Weak (1) Aromatic C=C; (2) chelated or conjugated
carbonyl; (3) NH bend
1,125 Medium (1) C-0 of aromatic ester; (2) aldehyde,
ketone skeletal vibration
1,070; 1,030 Medium (1) C-0 of alcohol or ether; (2) aldehyde
skeletal vibration; (3) Si-0
725 Weak CH2 wag of more than four CH2 groups
E3,4,5 All similar to E2
E6 (Stronger carbonyl fraction)
2,500-3,600 Weak (broad) Strongly bonded OH (or NH)
2,960; 2,930; 2,860 Strong1 Aliphatic CH2, CH3
1,770 Weak (short) C=0 of acid halide or lactone
1,710 Short (broad) C=0 of acid, aldehyde or ketone
1,610 Weak (short) (1) Chelated or conjugated carbonyl; (2) NH
bend; (3) COO*
1,460; 1,380 Medium Aliphatic CH2, CH3
1,410 Very weak (short) (1) CH2 next to C=0; (2) C00~
1,100-1,300 Weak to medium C-0 stretching of ether, alcohol, ester
(broad)
950-1,050 Weak to medium C-0 stretching of ether, alcohol, ester
, (broad)
725 Weak CH2 wag of more than four CH2 groups
-------
TABLE 8 (con.)
Sample
-1,
description Wave number (cm )
Intensity
Assignment (comments)
E7
E8
Used entire sample. Curve generally similar
to E6 but broader peaks at 1,600 cm x and
1,400 cm"1 (C00~). Also new peaks at 1,055
cm"1 (?) and 760^ 790 cm"1 (C-C1 bands?). A
peak at 1,560 cm l may be due to nitro groups,
Very little sample. Curve indicated some
aliphatic hydrocarbon and a very broad
1,550-1,650 cm"1 band.
Os
o
-------
TABLE 9. IR REPORT
SAMPLE: NUMBER 64
Sample
™" J. •s
description Wave number (cm )
Intensity
Assignment (comments)
Before
separation
to
CTv
3,530
3,350
3,030; 3,050
2,960, 2,930; 2,860
2,400-2,700
1,600
1,480-1,550
1,450
1,375
1,260
1,110-1,350
960; 1,035
870
855
815
740
705
Weak
Weak (broad)
Weak to medium
Strong
Weak (broad)
Strong
Medium (short)
Medium to short.
Medium
Weak to medium
Medium (broad)
Weak ,
Medium to strong
Weak to medium
Medium to strong
Medium to strong
Weak
Unbonded OH
Bonded OH (or NH), phenols
Unsaturated CH, probably aromatic
Aliphatic CH2, CH3
Bonded OH
(1) Chelated or conjugated carbonyl =C-C=0,
e.g., acetylacetone, hydroxyacetophenone;
(2) aromatic C=C with -0- substituent;
(3) C00~
Aromatic ring stretching
(1) Aliphatic CH2, CH3; (2) aromatic C=C;
(3) ionic carbonate
CH3 groups
(1) aryl and aralkyl ethers =C-0 (phenoxy)
(2) alkyl ketones
Aryl and aralkyl ethers =C-0 (phenoxy)
(1) Clay minerals; (2) phenoxy; (3) aromatic
CCH in single or condensed rings
1,3-disubstitution aromatic
p-naphthalenes
1,4-; 1,2,4-; 1,3,5-; 0-naphthalenes
1,2-disubstitution
Mono- or 1,3-disubstitution
-------
TABLE 9 (con.)
Sample
-1,
description Wave number (cm )
Intensity
Assignment (comments)
N>
Al
A2
A3
A4
El
E2
E3
E4
E5
E6
E7
Very little sample, aliphatic hydrocarbon
present.
Resembles total sample, with broad hydroxyl
band narrowed and centered at 3,430 cm 1i Two
aromatic bands appeared stronger; 705 cm *
and 855 cm'1.
Resembles total sample.
Very little sample, but generally resemble
total.
Curve generally resembles total sample with
very little hydroxyl evident, and C-0 bands
more defined.
Very similar to El with aromatic bands at
710 cm * and 840 cm 1 appearing stronger.
Similar to total, but containing two well-
defined hydroxyl bands at 3,540 cm l (unbonded
OH) and 3,425 cm"1 (more bonded OH or NH).
Resembles total sample with extra shoulder at
1,700 cm l (acid, ketone, or aldehyde carbonyl.
Resembles E4 with broader hydroxyl band
Resembles total sample.
Very little sample but resembles total.
-------
TABLE 10. IR REPORT
SAMPLE: NUMBER 66
Sample
-1,
description Wave number (cm )
Intensity
Assignment (comments)
Before
separation
3,550
Weak
Unbonded OH
or NH
CO
o\
CO
3,430
3,060*
2,960; 2,930; 2,860
1,600
1,500
1,450
Weak
Medium
Strong
Strong
Medium (short)
Medium to short
Medium
Weak (broad)
1,380
1,330; 1,300; 1,275;
1,190
1,240*; 1,140*; 1,040; Weak to medium
1,010; 950
865 Weak to medium
845 Weak tq medium
815 Strong
740 Strong
715 Weak to medium
620 Weak to medium
Bonded OH or NH
Unsaturated CH, probably aromatic
Aliphatic CH2, CH3
(1) Chelated or conjugated carbonyl =C-C=0;
(2) aromatic C=C with -0- substituent; (3) COO"
Aromatic ring structure
(1) Aliphatic CH2, CH3 (2) aromatic C=C;
(3) ionic carbonate
Al
groups
Aryl and aralkyl ethers = C-O-(phenoxy)
(1) Aromatic CCH in single or condensed rings;
(2) clay minerals; (3) phenoxy
*1,3 disubstituted aromatic
*p-naphthalenes
*1,4-; 1,2,4-; 1,3,5-; p-naphthalenes
*1,2 disubstituted
*Mono or 1,3 - disubstituted
*?
Curve resembles aliphatic hydrocarbon only.
'"'Present in phenanthrene.
-------
TABLE 10 (con.)
Sample
-1,
description Wave number (cm ) Intensity
Assignment (comments)
A2
A3
A4
El
CO
E2
E3
Curve has more definition with stronger
aromatic character, but generally resembles
total (broad C-0 ether band not present).
Curve generally resembles 64^-A3 with more
definition in 1,150-1,300 cm * region and
slight shift in aromatic substitution bands
pattern.
Less sample, but similar to A3
Resembles total sample; generally, all bands
are more well-defined; 1,600 cm 1 band more
resolved with shoulders on either side;
hydroxyl bands at 3,430 cm 1 and 3,550 cm 1
have disappeared; broad absorption 1,150-1,300
(C-0 of phenolics) not evident
Resembles El; aliphatic character greatly
reduced.
Aromatic substitution pattern changed (810,
750, 730); aliphatic character stronger than
E2; hydroxyl bands at 3,430 cm'1 (bonded OH)
very strong with weak band at 3,550 cm 1
(bonded OH), with corresponding phenolic C-0
bands at 1,240 and 1,330 cm'1
-------
TABLE 10 (con.)
Sample
-1,
description Wave number (cm ) Intensity
Assignment (comments)
E4
E5
E6
E7
E8
Resembles 64-E5 sample with addition of_weak
carbonyl at 1,705 cm 1, bands at 850 cm *
and 1,005 cm *, and much stronger and broader
hydroxyl.
Resembles 64-E5 with stronger aromatic
definition and broad phenolic C-0 centered at
1,200 cm'1 rather than 1,250 cm"1.
Well-defined aromatic character lost; broad
OH band from 2,300-3,500 cm"1 (bonded
hydroxyl); methyl to methylene ratio higher.
Very little sample; only aliphatic CH2 and
CHs evident.
Very little sample; generally resembles E6.
-------
TABLE 11. IR REPORT
SAMPLE: NUMBER 48
Sample
description Wave number (cm~ ) Intensity
Assignment (comments)
A6,8
All contained bands indicating aliphatic
hydrocarbon and weak ester carbonyl (plus
silicone oil impurity).
TABLE 12. IR REPORT
SAMPLE: NUMBER 55
o\
Sample
description
Wave number
,
(cm )
Intensity
Assignment (comments)
Before
separation
All contained bands indicating aliphatic
hydrocarbon and weak ester carbonyl (plus
silicone oil impurity). A Soxhlet blank also
showed aliphatic hydrocarbon, weak (aldehyde
or unsaturated ester) carbonyl, and silicone
oil impurity.
-------
TABLE 13.
SAMPLE:
IR REPORT
NUMBER 61
Sample
-1,
description Wave number (cm~ )
Intensity
Assignment (comments)
Before
separation
2,960; 2,930; 2,860
1,600
1,460; 1,380
1,050-1,200
725
Strong
Very weak
Medium
Very weak (broad)
Weak
Saturated aliphatic CH2, CHa
(1) C=C of aromatic ring; (2} chelated or
conjugated carbonyl; (3) COO
Aliphatic CH2, CH3
C-0 stretching region
CH2 wag of more than four CH groups
o\
TABLE 14. IR REPORT
SAMPLE: NUMBER 62
Sample .
description Wave number (cm ) Intensity
Assignment (comments)
Before
separation
Resembles sample 64 with much stronger
aliphatic content, very weak hydroxyl, and
absence of broad "phenoxy" band from 1,100-
1,350 cm'1.
-------
TABLE 15. IR REPORT
SAMPLE: NUMBER 63
Sample
description Wave number (cm ) Intensity
Assignment (comments)
Before
separation
Resembles sample 62
TABLE 16. IR REPORT
SAMPLE: NUMBER 65
to
co
Sample 1
description Wave number (cm ) Intensity
Assignment (comments)
Before
separation
Resembles sample 64.
\
TABLE 17. IR REPORT
SAMPLE: NUMBER 67
Sample
-1,
description Wave number (cm )
Intensity
Assignment (comments)
Before
separation
Resembles sample 66 with less aliphatic
content and stronger band of 780 cm 1
(probably 1,3- or 1,2,3- aromatic
substitution).
-------
TABLE 18. LRMS REPORT
Fraction
MS observations (in order of intensity)
Sample 0018
Total
A-l
A-2
A-3
A-4
Sample 0053
Total
A-l
A-2
A-3
A-4
Very complex, to m/e 1,200, principally saturated aliphatic. More than 75%
vaporized.
Aliphatics; 2n, 2n-2, 2n-4, and 2n-6 all about equal. 2n-6 and 2n-8 predominate at
high temperature. 75% vaporized.
Complex, to m/e >1,000; substituted naphthalenes and phenanthrenes present. 50%
vaporized.
Complex, to m/e >1,000; palmitic acid, phthalate, stearic acid. 50% vaporized.
Complex, to m/e ~750; small amount of substituted naphthalenes. <50% vaporized.
Very complex, to m/e >1,000, mostly saturated. 50% vaporized.
Aliphatics, 25% 2n, 19% 2n+2, 19% 2n-2, 16% 2n-6, 13% 2n-4, 7% 2n-8. Completely
vaporized.
Aromatics and substituted aromatics, in order of abundance: 2n-6, 2n-8, 2n-10, 2n-12,
2n-l4; also some nitrogenous material. 50% to 75% vaporized.
Very complex, to m/e 300. Less than 50% vaporized.
In order of abundance: palmitic acid, stearic acid, methyl palmitate, methyl stearate.
50% to 75% vaporized.
-------
TABLE 18 (con.)
Fraction
MS observations (in order of intensity)
co
>-j
o
Sample 0055
Total
extract
Sample 0061
Total
Sample 0062
Total
A-l
A-2
A-3
A-4
Sample 0063
Total
Dioctylphthalate; 75% vaporized.
Complex, in order of abundance: aliphatics to m/e 350; alkyl benzenes; nitrogenous
material; alkyl naphthalenes. 50% vaporized.
Aliphatics predominate to m/e 1,100, mostly saturated.
Aliphatics to m/e 1,150, in order of abundance: 2n+2, 2n, 2n-6, 2n-2, 2n-8, 2n-10.
75% vaporized.
Alkyl benzenes, to C7 $; aliphatics to m/e >960; N species; 2n-l6 series.
50% vaporized.
Complex, to m/e ~ 1,000; contains some phthalates and fatty acids. 50% vaporized.
Very little to be seen; sqme palmitic and stearic acids. 50% to 75% vaporized.
Complex, to m/e >1,200; aliphatics, alkyl benzenes to C74»; alkyl naphthalenes; some
PNA material; carbazole. 75% vaporized.
-------
TABLE 18 (con.)
Fraction
MS observations (in order of intensity)
Sample 0066
Total
A-l
A-2
A-3
A-4
Sample 0067
Total
Anthracene, methyl anthracene, other substituted anthracenes, pyrene, carbazole,
methyl pyrene, other PNA's to C2o+- 50% to 75% vaporized.
Paraffins, to €30 and beyond; Cjg to €23 the largest. ~90% vaporized.
Anthracene, methylanthracene, chrysene, methyl chrysene, dimethyl chrysene and many
combinations of substituted PNA's. 75% to 90% vaporized.
Methyl benzthiophene, ethyl benzaldehyde, methyl quinoline, benzylphenol,
dimethylbenzthiophene, phenyl phenol, ethyl quinoline, methyl cresol, etc.
50% to 75% vaporized.
Very little; complex to m/e 400.
Anthracene, pyrene, methyl anthracene, methyl pyrene, other substituted PNA;s,
chrysene, carbazole, benzpyrene. 50% to 75% vaporized.
Other fractions <
6 Polyphenyl ether; silica gel residue.
8 Polyphenyl ether; silica gel residue.
-------
TABLE 19. LRMS REPORT
COMPOUNDS MOST PROBABLY PRESENT
SAMPLE 0066
Percent of total sample
Aromatics
23
6
6
5
4
3
3
2
2
2
2
2
2
2
1
5
Oxygenates
4
2
5
Thiophenes
2
1
Anthra cene/phenanthrene
Pyrene
Methyl anthracene
Diphenyl ethane/hydroxy fluorene
Stilbene
Diphenyl propane
Methyl pyrene
Fluorene
Methyl phenyl benzene
Methyl stilbene/diphenyl propene
Phenyl naphthalene
Dimethyl phenanthrene
Hexadecahydro pyrene
Trimethyl phenanthrene
Chrysene
Others, unidentified but above 1% level
Methoxy biphenyl/diphenylene propene
Methoxy stilbene
Hydroxyfluorene/diphenyl ethane
Methyl dibenzthiophene
Dimethylnaphthothiophene
-------
TABLE 20. LRMS REPORT
COMPOUNDS MOST PROBABLY PRESENT
SAMPLE FRACTION 66 A-3
Percent of total sample
Oxygenates
4
4
3
3
3
3
3
2
2
2
I
1
Thiophenes
5
5
4
3
Nitrogenous
5
4
4
4
3
Benzylphenol
Methoxyfluo rene
Ethylbenzaldehyde/terphthaldehyde
Phenyl phenol
Hydroxyfluorene
Methoxystilbene
Dimethoxy biphenyl
Hydroxybenzaldehyde
Terephthalic acid/piperonal
CyclohexyIpheno1
Cresol
Methoxybenzaldehyde
Methylbenzthiophene/methoxy propyl benzene
Methyldlbenzthiophene
Dimethylbenzthiophene
Dimethylnaphthothiophene
Methylbenzoquinoline
Methylquinoline
Ethyl quinoline
Benzo quinoline/acridine
Methyl phenyl indole
-------
374
-------
STUDY NUMBER 15
DATA
SOURCE:
EVALUATION OF SELECTED METHODS
FOR CHEMICAL AND BIOLOGICAL TESTING
OF INDUSTRIAL PARTICULATE EMISSIONS
EPA-600/2-76-137
DATA
STATUS:
Final Report, May 1976
AUTHOR:
CONTRACTOR:
H. Mahar
The Mitre Corporation
Westgate Research Park
McLean, Virginia 22101
Contract No. 68-02-1859, Task 5
ROAPNo. 21ADD-BG
Program Element No. 1 AB013
PROJECT
OFFICER:
L. D. Johnson
Process Measurements Branch
Industrial Environmental Research Laboratory
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
375
-------
376
-------
GENERAL
This report presents results of chemical analyses (SSMS, GC-MS, HEMS)
and cellular biological assays (RAM Cytotoxicity, Ames1) performed on size-
classified particulates collected at nine industrial sites using a SASS
train. The industrial processes sampled included the following:
1. Steel plant open hearth furnace,
2. Steel plant coke oven heater,
3. Steel plant basic oxygen furnace,
4. Steel plant iron sintering,
5. Oil fired power plant,
6. Copper smelting,
7. Aluminum smelter,
8. Ceramics plant,
9- Sludge incinerator, and
10. Pulp and paper mill.
The purpose of the study was to evaluate the effectiveness of selected
testing methods in accomplishing the following objectives.
1. Obtain size-classified particulate samples,
2. Obtain toxicity ratings of samples,
3. Obtain mutagenic ratings of samples, and
4. Correlate chemical and biological data.
Results indicate that objectives one, two, and three can be effectively
accomplished; however, no strong correlation between the chemical and biolog-
ical results was established.
With a target of 300 rag of particulate to collect, each run was success-
ful except the 3|J-10(J cyclone collection at the open hearth furnace, coke
oven heater, and the basic oxygen furnace. The oil-fired power plant shut
down 2 hours after sampling began resulting in <300 mg. The pulp and paper
mill substantially reduced the stack emissions during the sampling as com-
pared to the previous day and resulted in a negligible amount of particulate
being collected. Analyses of this site were therefore not conducted.
Particulates >10|J were not analyzed due to their "minor air pollution haz-
ard," based on their short airborne time.
Results of the study indicate that the SASS train operated successfully
under a variety of circumstances, but was quite awkward and difficult to
manage. The particulate sizes (1|J-3(J vs. 3[J-10|J) produced a substantial
variation in results of elemental composition as well as GC-MS, cytotoxicity,
and mutagenic activity. Arsenic concentrations were highest in copper
smelting samples. Polycyclic organic species were detected only in the
1|J-3|J sample from the iron sintering plant.
377
-------
The concentrations of coronene and dibenzocarbazole, as determined by
GC-MS and HRMS analysis of aluminum smelter samples, indicate HRMS produced
results ranging two to seven times greater than those obtained by GC-MS.
Bioassay results on the aluminum smelter show a weak mutagenic response in
the 1|J-3|J particulates while the copper smelter 1|J-3|J particulates indicated
possible mutagenic activity.
GASEOUS GRAB
Sampling was not performed in this study.
SASS
Sampling locations and conditions are listed in Table 1 with an illus-
tration in Figure 1. Stainless steel CUES 316 was used exclusively for the
cyclones, tubing, and fitting; Viton "0" rings were used as seals and Teflon
needle felt material was used as the filter material. At 3 scfm, cyclone
cutoffs were 9.5|Jj 2.0|J, and 0.5(J. Sampling was limited to a maximum of 5
hours (intermittently, if particulate loading was high). No impingers or
organic collection module were used.
FUGITIVE EMISSIONS
Sampling was not performed in this study.
LIQUIDS AND SLURRIES
Sampling was not performed in this study.
SOLIDS
Sampling was not performed in this study.
378
-------
TABLE 1. LOGISTICS OF SAMPLE COLLECTION
VO
Source
Sampling
location
T° stack*
T° 10u cyclone*
T oven*
Flow rate
through
sampling
train
Total
sampling
time
Open
Hearth
Furnace
Electrostatic
preci pita tor
(4 duct diam-
eters down-
stream from
ESP, 4 duct
diameters
upstream of
stack)
350°-425°
350°
350°-400°
4.8 scfm
5 hours
continuous
Coke
Oven
Heater
Base of
stack
400°
380°
380°-
400°
3.5 scfm
5 hours
continu-
ous
Basic
Oxygen
Furnace
Downstream
of ESP,
downstream
of induc-
tion fan.
upstream
of stack
150-225°
270°
270°
4.6 scfm
5 hours
continuous
I
Iron
Sintering
Plant
Inlet to
baghouse
400°
350°
390° •
5 scfm
2 hours
intermittent
over 5 hour
period
Oil
Fired
Power
Plant
Wet
scrubber
inlet
170°
195°
250°
4.5 scfm
2 hours
continuous
Clay
Aggregate
Plant
Between
primary
and
secondary
cyclones
510°
400°
400°
3.8 scfm
1.25 hours
intermittent
over 5 hour
period
Copper
Smelter
Outlet
of
roaster
rever-
berator
inlet
to bag-
house
250°
275°
300°
4.7 scfm
1 hour
continuous
;
Aluminum
Smelter
Inlet to
bag.
house
210°
300°
300°
5 scfm
•
2 hours
intermittent
over 5 hour
period
Minicipal
Sludge
Incinerator
Duct
between
furnace
and
water
quench
1100°
410°
380°
4.7
scfm
5 hours
continuous j
Kraft
Mill
Process
Stack
effluent
from ESP
335°
335°
350°
4.8
scfm
5 hours
continuous
'Degrees fahrenheit
-------
co
oo
o
PITOT
SAMPLING
PROBE
HEAT
TRACE
WRAPPING
O VACUUM GAGE
AEROTHERM OVEN J _
VAC.
LINE
COLD
BOX AEROTHERM
GAS METER
T. C.
10 M CYCLONE
X ••= LOCATION OF THERMOCOUPLES
D = DISASSEMBLY POINT FOR CLEANING
£) VACUUM GAGE
J-f) COARSE ADJ. VALVE
FINE ADJ.
BYPASS VALVE
AIR TIGHT
VAC. PUMP
DRY TEST
METER
ORIFICE AP
MAGNEHELIC GAGE
Figure 1. Series cyclone train, field sampling configuration.
-------
TABLE 2. SPARK SOURCE MASS SPECTROSCOPY
1M-3M PARTICULATES
(ppm)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
1.5
<0.22
21
SI, 900
1.5
*
10
0.79
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.65
0.13
1.1
0.20
12
2.5
3.9
0.40
70
610
*
44
65
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
79
0.9
1.4
0.51
11
95
43
2.3
480
18
87
2.0%
=2,900
470
110
40%
£4,400
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
60
330
15
<0.16
0.83%
3.0%
260
4.0%
=4,900
£4,300
140
1.0%
8.0%
760
31
0.34
110
*Internal standard.
No data indicates "below detection limit of 0.1 ppmw."
TABLE 3. SPARK SOURCE MASS SPECTROSCOPY
STEEL PLANT OPEN HEARTH FURNACE
3|J-10M PARTICULATES
(ppm)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
0.33
<0.23
11
900
0.53
*
11
0.82
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0
0
1
0
. 6
0
1
0
27
340
*
5
41
.68
.13
.2
.21
.3
.26
.7
.15
.4
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
35
0
0
0
4
32
10
2
190
7
90
2
£3,600
490
120
.93
.64
.78
.8
.7
.1
.0%
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
880
290
33
<0
2
0
270
2
0
0
68
1
2
790
47
<0
59
.16
.0%
.69%
.0%
.5%
.89%
.0%
.0%
.24
40%
0
.52%
*Internal standard.
No data indicates "below detection limit of 0.1 ppmw."
381
-------
TABLE 4. SPARK SOURCE MASS SPECTROSCOPY
STEEL PLANT BASIC OXYGEN FURNACE
lp-3M PARTICULATES
(ppm)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.14
<0.14
2.9
210
0.97
*
6.8
0.52
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.18
0.04
0.73
0.28
40
1.2
2.6
<0.08
9-7
40
*
12
43
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
10
2.7
0.40
0.71
14
74
65
0.40
52
6.0
57
==4,600
800
46
57
40%
0.77%
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
170
23
9.6
<0.10
2.0%
2.0%
3.0%
5.0%
=1,200
0.56%
21
22,500
.077%
6.0%
50
<0.15
16
*Internal standard.
No data indicates "below detection limit of 0.1 ppmw."
TABLE 5. SPARK SOURCE MASS SPECTROSCOPY
STEEL PLANT BASIC OXYGEN FURNACE
3|J-10|J PARTICULATES
(ppm)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
6.2
<0.25
5.0
170
0.78
*
12
0.44
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.
0.
5.
2.
68
2.
19
0.
17
140
*
9.
440
73
15
9
2
8
15
7
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
38
2
.3
0.69
0
43
63
110
0
67
10
97
0
1,100
93
130
.56
.51
.58%
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
220
40
0
<0
4
4
3
=3,500
S3, 500
1
73
2
9
5
130
<0
27
.44
.18
.0%
.0%
.0%
-0%
.0%
.0%
.0%
.26
-
>80%
1
.0%
*Internal standard.
No data indicates "below detection limit of 0.1 ppmw."
382
-------
TABLE 6. SPARK SOURCE MASS SPECTROSCOPY
STEEL PLANT IRON SINTERING
1|J-3M PARTICIPATES
(ppm)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
3.7
3.7
100
0.82%
35
*
3.6
0.20
0.44
0.24
0.21
0.09
0.37
0.09
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
1.3
0.15
0.28
0.67
6.5
2.8
46
10
140
25
69
2.0
3.5
6.1
*
22
35
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
17
4.5
14
25
110
£950
270
310
120
9.2
4.4
21,100
252,200
64
59
2.0%
321
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
52
33
370
1.1
30%
3.0%
1.0%
1.0%
890
2.0%
890
4.0%
5.0%
0.7%
76
0.39
28
^Internal standard.
No data indicates "below detection limit of 0.1 ppmw."
TABLE 7. SPARK SOURCE MASS SPECTROSCOPY
STEEL PLANT IRON SINTERING
3p-10|J PARTICIPATES
(ppm)
D
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
2.3
2.3
5.7
£2,100
11
*
6.8
0.29
0.63
0.06
0.57
0.03
0.53
0.13
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
1.8
0.10
0.41
0.98
1.1
9.5
0.95
38
7.3
60
18
29
0.58
2.5
4.4
*
14
6.1
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
11
6.5
10
65
160
180
150
89
35
2.9
6.3
760
21,000
26
86
6.0%
640
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
76
48
290
1.1
40%
1-0%
S3, 300
0.31%
1,300
3.0%
SI, 300
6.0%
3.0%
1-0%
61
0.57
18
^Internal standard.
No data indicates "below detective limit of 0.1 ppmw."
383
-------
TABLE 8. SPARK SOURCE MASS SPECTROSCOPYf
COPPER SMELTING
1|J-3|J PARTICULATES
(ppm)
u
Th
Bi
Pb
Tl
Hg
Au
Ft
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
5.6
0.56
2.0% (5,700)
35% (11.2%)
=3,900 (875)
(Trace)
25
180
1.3
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
9.8
2.0
3.9
4.1
170 (31)
1.9 (60)
160 (25)
=3,600 (1,700)
8.0% (5.8%)
4.0% (3,700)
*
0.49% (3,800)
SI, 100 (420)
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
0.51% (570)
31 (5.3)
11 (9.8)
19 (16)
29 (45)
140 (105)
750 (52)
0.55% (865)
3.0% (21%)
140 (120)
6.5 (18)
1.0% (1.7%)
5.0% (2.9%)
1,300
180 (69)
3.0% (1.0%)
310 (73)
Cr
V
Ti
Sc
Ca
K
Cl
s
p
Si
Al
Mg
Na
F
B
Be
Li
190 (153)
49 (128)
560 (170)
0.78 (<15)
0.75% (800)
10% (1,600)
610 (135)
2.0%
=1,300 (180)
1.0% (3,000)
250 (940)
2.0% (1.1%)
3.0% (1,700)
210
11
5.9
43
^Internal standard.
tData in parentheses generated by EMSL/RTP.
No data indicates "below detection limit of 0.1 ppmw."
TABLE 9. SPARK SOURCE MASS SPECTROSCOPY
COPPER SMELTING
3|J-10|j PARTICULATES
(ppm)
U
Tb
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
2.4
1.1
1.0%
4.0%
1,100
(Trace)
*
13
79
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.31
3.6
9.8
2.0
20
7.9
81
3.7
160
SI, 300
3.0%
=4,600
*
SI, 400
S2.200
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
£2,500
6.7
11
8.1
82
43
750
S3, 400
6.0
24
13
0.7%
20%
760
480
20%
880
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
79
98
SI, 100
1.7
4.0%
1.0%
si, 100
2.0%
SI, 300
3.0%
S2.500
1.0%
7.0%
370
23
59
18
*Internal standard.
No data indicates "below detection limit of 0.1 ppmw."
384
-------
TABLE 10. SPARK SOURCE MASS SPECTROSCOPY
ALUMINUM SMELTER
1|J-3|J PARTICIPATES
(ppm)
U 1.3
Th <0.24
Bi 270
Pb 330
Tl 3.0
Hg
Au
Pt
Ir
Os
Re *
W 21
Ta 1.5
Hf
Lu
Yb
Tin
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
1.
0.
0.
0.
5.
7.
34
26
130
100
*
16
2.
1
08
45
37
2
5
0
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
67
1.
5.
2.
9.
98
86
22
£4,100
3.
900
160
£2,200
£2,800
43
4.
20
8
3
2
4
4
0%
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
90
0
130
<0
£1,800
£4,100
690
3
0
740
2
330
8
.51%
.17
.0%
.76%
.0%
-0%
>50%
72
2
9
.9
.8
^Internal standard.
No data indicates "below detection limit of 0.1 ppmw."
TABLE 11. SPARK SOURCE MASS SPECTROSCOPY
ALUMINUM SMELTER
3M-10M PARTICULATES
(ppm)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
0.40
<0.12
56
78
0.19
*
20
0.91
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.
0.
0.
25
0.
16
4.
66
33
*
1.
1.
03
14
05
27
3
8
1
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
51
0.
1.
1.
50
6.
23
14
700
2.
200
56
£4,600
£3,800
27
2.
6.
48
5
4
1
1
0%
3
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
56
£1,500
140
<0.08
2.0%
840
140
0.6%
£2,000
230
£3,500
870
27
20%
27
1.8
13
^Internal standard.
No data indicates "below detection limit of 0.1 ppmw."
385
-------
TABLE 12. SPARK SOURCE MASS SPECTROSCOPY
CERAMICS PLANT
1M-3M PARTICIPATES
(ppm)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
10
10
140
60
10
*
17
0
0
0
1
0
0
0
.54
.99
.32
.1
.12
.50
.27
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
1
0
0
1
2
45
13
180
37
480
6
11
2
10
36
*
13
0
.7
.36
.89
.3
.5
.0
.7
.57
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
23
29
35
61
=1,200
460
14
42
890
6.3
60
360
210
88
3.4
6.0%
21,600
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
150
540
0.51%
15
15%
4.0%
330
S3 ,800
0.61%
40%
3.0%
10%
20%
9.0%
100
2.3
390
*Internal standard.
No data indicates "below detection limit of 0.1 ppmw."
TABLE 13. SPARK SOURCE MASS SPECTROSCOPY
CERAMICS PLANT
PARTICULATES
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
5.6
11
79
33
5.3
*
3.7
0.60
1.3
0.36
1.8
0.14
1.0
0.30
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
4.5
0.53
0.99
1.8
3.6
49
9.9
200
27
290
6.6
5.9
1.3
5.3
9.2
*
6.6
0.64
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
12
32
38
38
21,400
370
7.6
20
110
1.4
36
220
93
36
18
6.0%
21,300
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
120
210
0.67%
40
15%
4.0%
200
24,700
0.67%
30%
3.0%
6%
15%
1.0%
230
1.2
430
^Internal standard.
No data indicates "below detection limit of 0.1 ppmw."
386
-------
TABLE 14. SPARK SOURCE MASS SPECTROSCOPY
SLUDGE INCINERATOR
1|J-3|J PARTICIPATES
(ppm)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
11
2.3
SI, 500
£1,300
2.5
84
*
35
1.4
2.7
0.72
0.29
0.10
0.26
0.13
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
1.8
0.21
1.5
0.97
1.1
47
9.4
190
39
SI, 700
18
280
0.29
2.5
1.0%
*
630
600
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
110
30
210
18
SI, 300
22
720
73
100
2.8
130
0.56%
3.0%
S4.500
850
7.0%
850
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
S4,000
94
0.53%
3.8
>1%
1.0%
24,600
0.8%
10.0%
10%
0.9%
6.0%
10%
S4.300
82
2.4
50
*Internal standard.
No data indicates "below detection limit of 0.1 ppmw."
TABLE 15. SPARK SOURCE MASS SPECTROSCOPY
SLUDGE INCINERATOR
3|J-10M PARTICIPATES
(ppm)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
31
3.1
SI, 900
S2,200
5.3
120
*
44
3.4
3.7
0.37
0.37
0.08
0.31
0.13
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
2.5
0.30
0.55
1.3
2.6
55
11
220
42
S2.000
11
330
0.34
30
0.5%
*
790
500
16
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
33
31
120
21
SI, 500
24
420
52
43
1.7
74
0.56%
3.0%
S3, 000
SI, 000
8.0%
SI, 000
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
2,300
55
S3 ,800
4.4
20%
1.0%
S2 , 700
0.57%
10.0%
8%
0.69%
7.0%
8%
S2,500
65
14
85
*Internal standard.
No data indicates "below detection limit of 0.1 ppmw."
387
-------
TABLE 16. SPARK SOURCE MASS SPECTROSCOPYf
STEEL PLANT COKE OVEN HEATER
IH-SM PARTICULATES
(ppm)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
3
0
48
940
7
*
0
0
.4 (16)
.24
(135)
(1,500)
.5 (84)
.87
.18
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.
0.
1.
0.
1.
0.
3.
66
*
9.
4.
10
03
0 (15)
53
8 (5.8)
85
7
(81)
4 (131)
2 (35)
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
17
0
0
1
21
1
9
3
0
4
=1,100
170
51
2
(12)
.66
.08
.2 (6.5)
(340)
.1
.8
.9 (200)
.98
.0
(850)
(190)
.6 (11)
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
94
38
8.
>1%
=1,100
=1,700
17
>1%
41
200
5.
170
=2,200
220
3.
0.
6.
(170)
(15.5)
0 (125)
(220)
(1,500)
(7,250)
(82)
(2,500)
3 (17)
(700)
(100)
3 (15)
25
1
>1% (4,500)
250
(82)
*Internal standard.
tData in parentheses generated by EMSL/RTP.
No data indicates "below detection limit of 0.1 ppmw."
TABLE 17. SPARK SOURCE MASS SPECTROSCOPY
OIL-FIRED POWER PLANT
1(J-3|J PARTICULATES -
(ppm)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tin
Er
Ho
1.3
1.3
1.1
450
0.78
*
2.4
0.41
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
f*A
uu
Ag
Pd
0
0
0
0
0
0
14
0
280
4
0
0
7
14
*
0
4
.31
.04
.10
.33
.68
.14
.52
.6
.61
.12
.8
.97
.4
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
814
0.22
2.2
13
57
29
10
63
9.3
4.7
190
900
300
5.2
220
1.0%
220
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
=1,000
2.
210
<0.
1.
=3,500
33
7-
=1,600
=4,500
3.
0.
20.
31
16
8.
13
0%
08
0%
0%
40
59%
0%
1
*Internal standard.
No data indicates "below detection limit of 0.1 ppmw."
388
-------
STUDY NUMBER 16
DATA
SOURCE:
LEVEL 1 ANALYSIS OF
BITUMEN, STEAM CONDENSATE
AND AN ARTIFICIAL MIXTURE
EPA Contract No. 68-02-1409,
Tasks 39 and 41
DATA
STATUS:
Letter, January 1976
TO:
Mr. Larry D. Johnson
Control Systems Laboratdfy
Industrial Energy Research Laboratory
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
FROM
Peter W. Jones
Battelle-Columbus Laboratories
505 King Avenue
Columbus, Ohio 43201
389
-------
390
-------
GENERAL
Five samples (bitumen, steam condensate, an artificial mixture, an oil
combustion effluent before addition of water to the oil, and an oil combus-
tion effluent after addition of water to the oil) were subjected to Level 1
analysis. The oil combustion samples were composites of extracts of an
adsorbent sampler, a filter, and solvent rinses of the probe and filter
holder. Samples were analyzed according to the Technical Manual for Analy-
sis of Organic Materials in Process Streams. The oil combustion samples
were also analyzed for POM's by GC-MS. Copies of all of the actual spectra
were attached to the letter.
391
-------
TABLE 1. LC FRACTIONATION
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Bitumen
TCO Grav Total Total
g
0.0089
.00089
.00081
.00035
.00028
.0014
.00021
.00045
Steam Condensate
TCO Grav Total Total
g
.00004
.00002
. 00003
.0018
.012
.00004
.00014
.00077
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
Artificial Mixture
TCO Grav Total Total
g
.0043
.0015
.0012
.0036
.0071
.003
.014
.00081
392
-------
TABLE 2. LC FRACTIONATION
COMBINED EXTRACTS FROM AN OIL COMBUSTION EFFLUENT
Before addition of water to oil After addition of water to oil
Fraction TCO Grav Total Total TCO Grav Total Total
8 g
LC 1 .0014 .006
LC 2 .00003 .00031
LC 3 .00019 .00026
LC 4 .0033 -0029
LC 5 .000077 .00026
LC 6 .00038 .0015
LC 7 .00022 .00019
LC 8 .00045 .000039
393
-------
TABLE 3.
SAMPLE:
IR REPORT
BITUMEN
LC FRACTION
Wave number
(cm"1)
Intensity
Assignments
Comments
3
4
5
1,690; 1,600
Strong
1,025
1,025
1,025
Aliphatic hydrocarbons
Asphaltic materials
Same as fraction 1 plus
aromatic materials
Same as fraction 2
Same as fraction 1
Same as fraction 1 plus
considerable -OH
Same as fraction 1 plus
possible Si02'v
Same as fraction 1 plus
possible Si02'v
Same as fraction 1 plus
possible
The 1690 band is due to a
gross mixture of different
carbonyl compounds. The
1600 band is due to struc-
tures such as highly con-
densed aromatics and
quinones.
Possible POM's
Probably phenolic
Si02(1025) band weakest
in fraction 6 and strongest
in fraction 8
Si02(1025) band weakest
in fraction 6 and strongest
in fraction 8
Si02(1025) band weakest
in fraction 6 and strongest
in fraction 8
is a probable assignment in view of the slight solubility of silica gel in methyl alcohol.
-------
TABLE 4. IR REPORT
SAMPLE: STEAM CONDENSATE
10
to
Ul
LC FRACTION
1
2
3
4
5
Wave number
(cm"1)
1,725
Intensity
Very weak
Very weak
Very weak
Strong
Assignments (Comments)
Aliphatic hydrocarbon
Aliphatic hydrocarbon
Ester
Same as fraction 2
Same as fraction 2
Same as fraction 2 plus a strong -OH which is aromatic
1,040; 1,065
and probably monosubstituted. The -OH is probably
phenolic, but could possibly be a mixture of ..phenol and
alcohol in view of band at 1040 and 1065 cm which
could be attributable to an alcohol.
6
7*
8*
1,600;
1,600;
1,690
1,690
Same as fraction 2
Same as fraction 2 plus probable condensed ring
asphaltic species.
' Same as fraction 2 plus probable condensed ring
asphaltic species.
'Probable condensed ring asphaltic species stronger in fraction 8 than in fraction 7.
-------
TABLE 5. IR REPORT
SAMPLE: ARTIFICIAL MIXTURE
LC FRACTION
Wave number
(cm"1)
Intensity
Assignments (Comments)
CO
<£>
1
2
3
4
5
6
7
Anthracene
Anthracene; an aromatic compound which could be
chlorinated.
Aliphatic ester; same aromatic compound as fraction 2.
Phenol; the same aliphatic ester as fraction 3; a
ketone; possibly an ether.
Phenol, 1-octanol
Aromatic amide, alkyl benzene sulfonate (acid or salt)
The same sulfonate as fraction 6; dimethyl sulfoxide; an
unknown compound masked by the sulfoxide
The same sulfonate as fraction 6
-------
TABLE 6. IR REPORT
SAMPLE: COMBINED EXTRACTS FROM AN OIL COMBUSTION EFFLUENT
LC fraction Before and after addition of water to oil*
1 Trace of silicone grease (presumably a contaminant)
2 Trace of silicone grease (presumably a contaminant); a carbonyl compound; an aliphatic
hydrocarbon (probably an ester)
3 Carbonyl compound and an aliphatic hydrocarbon as in fraction 2; an unknown orange-
colored material (possibly a highly conjugated aromatic aldehyde or a quinone, both
having aliphatic substitution [this material is frequently observed during POM analyses]).
4 Same as fraction 3
5 Same as fraction 3 plus an aromatic species which is probably a phenol
6 Aliphatic acid
-1
7 Very weak hydrocarbon bands; bands at 1600 cm , which are probably water on dissolved
silica gel
8 Same as fraction 7
^Spectra of before and after addition of water to oil were identical.
-------
398
-------
STUDY NUMBER 17
DATA
SOURCE:
STATUS OF OCEAN INCINERATION
OF ORGANIC CHLORIDES ABOARD
MATHIAS III AS OF 29 JUNE 1976
DATA
STATUS:
Preliminary Report, June 1976
AUTHOR:
CONTRACTOR:
H. J. Fisher
TRW, Inc.
Environmental Engineering Division
One Space Park
Redondo Beach, California 90278
Contract No. 68-02-2165
APPROVED BY:
Birch J. Matthews
Program Manager
PROJECT
OFFICER:
Ronald A. Venezia
Chemical Processes Branch
Industrial Environmental Research Laboratory
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
399
-------
400
-------
GENERAL
The ship Matthias III is an ocean-going incinerator designed to
burn liquid and solid wastes. In a cooperative study involving EPA, the
French Atomic Energy Commission, Meneba (a Dutch holding company) and
its subsidiary, Stahl-und Blech-Bau, nonbiodegradable organic chloride
compounds were incinerated aboard the Matthias III. The purpose of this
study was threefold: to perform an initial evaluation of the capabilities
of the Matthias III for burning organic chloride wastes; to become
acquainted with the French analytical team; and to visit the French CEA
and CERBOM laboratories.
The nonbiodegradable organic chloride compounds, when incinerated
under ideal conditions, produce K^O, N2, C02, and HC1. The ocean's
bicarbonate buffering system and inherent high chloride level will
theoretically accommodate these effluent gases. To study incinerator
efficiency, the amount of emitted HC1 was compared to the amount of HC1
produced by catalytic oxidation of effluent gases.
In this study, liquid-air burners were used with combustion tempera-
ture held at 1200°-1500° C. Two separate tanks (#8 and #6) of organic
chloride wastes were burned. Tank #8 was described as a two-phase, com-
plex mixture containing 5% Cl in the top layer and 36% Cl in the bottom
layer. Tank #6 was more homogenous and contained 27% Cl. Some prelim-
inary data from the burns of the two tanks are reported.
Some problems encountered in this study were: the 3-meter probe
was too short for efficient sampling under some wind conditions; the
flame was, at times, not contained in the stack; and on occasion, a
black plume indicated incomplete combustion (determined by testing to be 98%
complete). No Level 1 data are formatted from this preliminary report,
but this summarization is included for future reference.
GASEOUS GRAB
A Level 1 gaseous grab sample was not obtained. Sampling of effluent
gases was accomplished through a specially insulated and cooled Teflon-
lined probe, connected by Teflon tubing to analytical apparati. HC1 con-
centration and concurrent incinerator efficiency were tested using this
sampling configuration, plus a microcoulometry cell. A developmental
emission spectrophotometer was used for remote measurement of C02 and S02,
but these results were not available at the time of the report.
SASS
A SASS train was not used in this study. Organic vapors from the
sampling probe described under gaseous grab sampling were collected on
401
-------
Tenax-GC cartridges for subsequent GC-MS analysis. Preliminary interpre-
tation of analyses showed tank #8 effluent gases contained carbonic
acid, chloride, benzene, styrenes, homologs of styrene, acetophenone,
and a broad range of alkyl benzenes. Likewise, tank #6 contained ethyl
chloride, trichlorofluoromethane, acetone, dichloromethane, octanol,
trichloroethylene, and tetrachloroethylene. Tank #6 also showed some
trace metals as indicated in Table 1 from the report.
TABLE 1. TRACE METALS IDENTIFIED IN EFFLUENT GASES FROM
MATTHIAS III WHILE BURNING FROM TANK NUMBER 6
(Cadarache, preliminary data)
Cd
Cr
Cu
Fe
Hg
Mn
Ni
Zn
Pb
2.5 ppm*
0.5 ppm
18 ppm
140 ppm
1 . 2 ppm
7 . 5 ppm
6.5 ppm
62 ppm
18 ppm
*Chloride basis, e.g., Cd/Cl = 2.5/106
FUGITIVE EMISSIONS
No sampling was performed in this study.
LIQUIDS AND SLURRIES
No sampling was performed in this study.
SOLIDS
No sampling was performed in this study.
402
-------
STUDY NUMBER 18
DATA
SOURCE:
EVALUATION OF THE SASS TRAIN
AND LEVEL 1 SAMPLING AND
ANALYSIS PROCEDURES MANUAL
DATA
STATUS:
Draft Report, November 1976
AUTHORS:
CONTRACTOR:
C. A. Zee, D. G. Ackerman
J. F. Clausen, M. L. Kraft, S. L. Reynolds
TRW Defense and Space Systems Group
One Space Park
Redondo Beach, California 90278
Contract No. 68-02-2165, Task 5
PROJECT
OFFICER:
Robert M. Statnick
Industrial Environmental Research Laboratory
Office of Energy, Minerals, and Industry
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
403
-------
404
-------
GENERAL
"The task objective was to test and evaluate the Source Assessment
Sampling System (SASS) and the Level I Sampling and Analysis Procedures."
Testing was done on combustion of #6 residual oil, doped with Hg, As, Se,
and Sb, in a TRW Low-NO burner system. Combustion conditions were: flame
J^
temperature - 810° to 870° C; oil feed rate - 63.5 g/s; air feed rate - 103
kg/s. Two test runs were made. Approximate particulate loadings were:
test I - 8.223 mg/dscm, and test II - 13.903 mg/dscm.
Specific recommendations were made for improving the SASS train and
sampling procedures. For the SASS train, these included: (1) replacing
Teflon 0-rings with gaskets, (2) designing the XAD-2 canisters to have
screwoff lids, (3) recalibrating the thermocouple on the small filter oven,
(4) examining the welding materials to eliminate rust, (5) insulating the
impinger box, and (6) using smaller corrosion-resistant packing containers •
for the XAD-2 canisters.
For sampling and analysis procedures, recommendations included: (1)
specifying 30 m3 as the dry standard volume for an SASS sample run; (2)
extracting CH2C12 from a portion of the aqueous condensate rather than from
the total condensate; (3) defining the weight of sample necessary to perform
LC fractionation as 15 mg for a 30-m3 sample; (4) cleaning particulate
filters by aqua regia digestion rather than by Parr bombing; (5) expanding
details on the Hg, As, and Sb procedures; (6) defining "dry weight" in the
gravimetric procedures; and (7) using a small Soxhlet for extractions with
several rechargings per sample. Problems also were noted with possible
silica gel artifacts in LC fractions and incomplete Parr bomb combustion of
the XAD-2 resin.
Conclusions of the study were that: (1) no organics were detected
downstream of the XAD-2 module, (2) the majority or inorganics were collected
on the particulate filter, (3) the APS/AgN03 solution was effective in
scrubbing Hg, (4) the amount of an inorganic constituent could not be related
directly to its level in the oil or doping solution, (5) some Level I analyt-
ical procedures needed more detail, and (6) Level I sampling procedures were
"specific, easy-to-follow, and technically sound."
GASEOUS GRAB
No sampling was performed in this study.
SASS
The SASS train was modified as follows: No cyclones were used for
particle sizing; all particulates. were collected on filters which were pre-
405
-------
pared for SSMS by aqua regia digestion rather than by Parr bombing. A
water- and air-cooled probe was substituted for the standard SASS probe.
The XAD-2 resin was not removed from the resin module in the field and the
CH2C12 extraction of the aqueous condensate was not performed in the field.
Aqueous impinger catches were not combined (so that the distribution of As,
Se, Hg, and Sb throughout the system could be analyzed). Sb analysis was
done by AA rather than the specified Rhodamine B method.
FUGITIVE EMISSIONS
No sampling was performed in this study.
LIQUIDS AND SLURRIES
Sampling methods were not specified. The #6 residual fuel oil was
tested by SSMS.
SOLIDS
No sampling was performed in this study.
406
-------
TABLE 1. SPARK SOURCE MASS SPECTROSCOPY
XAD-2 RESIN—TEST 2
(|Jg/l of gas sampled)
First duplicate analysis
u
Th
Bi
Pb 0.003
Tl
Hg
Au
Pt T
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
t
U
Th
Bi
Pb 0.1
Tl
Hg
Au
Pt t
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.006
<0.003
0.002
*
0.08
<0.002
Second
<0.001
<0.001
0.002
*
*
<0.001
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
duplicate
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.008
0.008
<0.003
0.0005
<0.0008
<0.0005
<0.001
<0.001
0.01
*
*
<0.0008
*
*
analysis
<0.001
—
0.017
<0.003
0.0005
<0.0008
<0.0005
<0.001
<0.001
*
*
*
<0.0008
*
0.003
Cr *
W ^i
V *
Ti *
Sc <0.001
Ca 0.08
K 0.1
Cl 0.06
S 0.08
P 0.03
Si *
Al *
Mg 0.11
Na *
F SO. 003
B 0.003
Be
Li <0.003
Cr *
V 0.0003
Ti *
Sc <0.001
Ca 0.08
K *
Cl 0.04
S 0.14
P 0.06
Si 0.03
Al 0.006
Mg 0.08
Na *
F SO. 01
B 0.04
Be
Li <0.0003
.
* Blank value is greater than or equal to sample value.
tPlatinum values do not necessarily relate to the source since Pt wire was
used in the Parr bomb preparation of the resin sample.
NOTE: No data indicates "not detected"; minimum detectable limit is 0.0014
407
-------
TABLE 2. SPARK SOURCE MASS SPECTROSCOPY
COMBINED IMPINGER SOLUTIONS
(pg/1 of gas sampled)
Test 1
U
Th
Bi
Pb <0.004
Tl
Hg
Au
Pt <0.0007
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La '
Ba 0.0007
Cs <0.0005
I <0.0005
Te
Sb
Sn <0.004
In
Cd
Ag
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.005
<0.004
<0.0007
<0,0004
<0.0007
<0.0006
<0.009
0.001
0.01
<0.001
0.1
0.001
Cr 0.02
V <0.0006
Ti <0.003
Sc <0.0005
Ca 0.06
K 0.2
Cl 0.07
S 0.9
p *
Si 0.01
Al 0.006
Mg 0.03
Na 0.2
F SO. 004
B <0.005
Be
Li <0.0001
Test 2
U
Th
Bi
Pb 0.007
Tl
Hg
Au
Pt <0.004
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba <0.001
Cs <0.001
I <0.0009
Te
Sb
Sn <0.001
In
Cd
Ag
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.001
—
<0.4
<0.001
<0.001
<0.0008
<0.001
<0.003
*
0.009
<0.001
0.1
0.002
Cr 0.02
V <0.001
Ti <0.01
Sc <0.001
Ca 0.04
K 0.01
Cl 0.03
S 0.01
p *
Si 0.03
Al 0.005
Mg 0.04
Na 0.03
F SO.l
B <0.001
Be
Li <0.0007
*Blank value is greater than or equal to sample value.
NOTE: No data indicates "not detected;" minimum detectable limit is 0.007
JJg/1 for test 1 and 0.0013 pg/1 for test 2.
408
-------
TABLE 3. SPARK SOURCE MASS SPECTROSCOPY
SASS FILTER—AQUA REGIA DIGEST*
(M8/1 of sample gas)
= =
Test 1
u
Th
Bi <0.0007
Pb 0.01
Tl <0.001
Hg
Au
Pt
Ir
Os
Re
W <0.001
Ta <0.0003
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La *
Ba <0.005
Cs <0.0003
I
Te
Sb <0.0003
Sn
In
Cd
Ag
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.001
0.004
<0.0003
<0.0001
<0.0003
0.01
<0.0004
0.0007
0.002
0.07
0.01
0.07
0.002
Cr 0.03
V 0 05
9 \J * V^
Ti 0.005
Sc <0.0005
Ca >0.06
K 0.007
Cl t
S 0.07
P 0.02
Si 0.03
Al 0.03
Mg >0.06
Na >0.03
F f
B 0.002
Be <0.d003
Li 0.0001
Test 2
U
Th
Bi <0.0007
Pb 0.007
Tl <0.004
Hg
Au
Pt
Ir
Os
Re
W <0.0007
Ta <0.0007
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba <0.003
Cs <0.02
I
Te
Sb <0.004
Sn
In
Cd
Ag
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
*"
<0.0007
0.0001
0.003
<0.0003
<0.002
0.03
<0.001
0.002
0.0006
0.03
0.005
0.04
0.001
Cr 0.01
V 0.04
Ti t
Sc <0.0003
Ca 0.1
K t
Cl f
S >0.1
P t
Si 0.03
Al 0.09
Mg 0.07
Na >0.1
F t
B 0.01
Be <0.0001
Li t
-
*No cyclones were used in this study.
tBlank value greater than or equal to sample value.
NOTE: No data indicates "not detected"; minimum detectable limits are 0.003
pg/1 for test 1 and 0.007 HgA for test 2-
409
-------
TABLE 4. SPARK SOURCE MASS SPECTROSCOPY
XAD-2 RESIN
of gas sampled)
Test 1
u
Th
Bi
Pb 0.04
Tl
Hg
Au
Pt t
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce <0.008
La <0.005
Ba 0 . 02
Cs *
I 0.005
Te
Sb
Sn
In
Cd
Ag <0.003
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.01
0.01
<0.003
0.001
<0.002
<0.001
<0.001
<0.005
0.05
0.05
*
<0.002
0.03
*
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
*
0.005
*
<0.002
0.6
1.4
0-06
0.08
0.08
*
0.005
0.08
>1
£0 . 04
0.04
<0.0003
*Blank value greater than or equal to sample value.
tPlatinum values do not necessarily relate to the "source since Pt wire was
used by the Parr bomb preparation of the resin samples.
NOTE: No data indicates "not detected"; minimum detectable limit is 0.0024
410
-------
TABLE 5. SPARK SOURCE MASS SPECTROSCOPY
NUMBER 6 RESIDUAL OIL
(Mg/g)
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W <9
Ta 7
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba 2
Cs
I *1
Te
Sb
Sn
In
Cd
Ag 2
Pd
Rh
Ru
Mo
Kb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
6
3
<0.8
2
7
20
300
2
80
20
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
^y
Na
F
B
Be
Li
70
10
8
<2
40
20
40
200
40
20
5
40
100
S2
1
<0.1
NOTE: No data indicates "not detected."
TABLE 6. SPARK SOURCE MASS SPECTROSCOPY
BLANK VALUES FOR AQUA REGIA DIGESTS*
(Total |Jg)
u
Th
Bi <12
Pb 60
Tl <12
Hg
Au
Pt
Ir
Os
Re
W <12
Ta 18
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba <12
Cs <12
I '
Te
Sb <12
Sn
In
Cd
Ag
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<12
10
60
<12
<12
8
<12
20
10
40
6
200
4
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
20
4
60
<6
400
200
180
20
600
400
200
200
1,200
=120
20
<8
2
*0ne filter used.
NOTE: No data indicates "not detected."
411
-------
TABLE 7. ATOMIC ABSORPTION (AA)—WET CHEMICAL METHODS
SASS TRAIN SAMPLES
(Kg)
Sample
Filter
Filter blank
XAD-2 resin
XAD-2 blank
Condensate
1st impinger
2nd impinger
3rd impinger
TOTAL
Hg
0.16
0.20
14.35
6.1
1.2
1.9
2.7
1.3
15.35
Test 1
Sb As*
<30 1,080
<30 1
3,590 <115
4,400 <115
<146 1
708 209
<364 74
<80 <1
708 1,363
Test 2
Filter 0.88 (1.44)t 908 (l,572)t 7,360 (7,520)t
Filter blank 0.40 <60 2
XAD-2 resin 62.56 (49.59)t 4,470 (4,230)t 5,960 (5,834)t
XAD-2 blank 6.2 4,400 <120
Condensate 15.5 <396 1,954
1st impinger 24.0 235 388
2nd impinger 1,515 84 <1
3rd impinger 371 <65 <1
TOTAL 1,976 1,559 15,677
*As by colorimetric/SDDC method.
fDuplicate analysis.
From p. 33 of the document:
"The analyses for mercury, arsenic, antimony and selenium were performed
on each component sample from the SASS without making any combinations as
called for in the Level I manual. In addition, nitric acid rinses were made
of the quartz probe liner and the heat traced Teflon sample line and were
also analyzed. There was a factor of 4 to 5 difference in the feed rate
of the doping solution between Tests I and II."
412
-------
TABLE 8. GAS CHROMATOGRAPHY FOR C7-C17
SASS TRAIN SAMPLES
Sample
Probe
rinse
Test 1
Probe
rinse
Test 2
Filter
extract
Test 1
Range
GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13
GC14
GC15
GC16
GC17
GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13
GC14
GC15
GC16
GC17
GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13
GC14
GC15
GC16
GC17
- 110
- 140
- 160
- 180
- 200
- 220
- 110
- 140
- 160
- 180
- 200
- 220
- 110
- 140
- 160
- 180
- 200
- 220
Volatile
weight, No. of
mg/m3* peaks
24.1 N.R.
(0.02)
(0.02)
0.02
(0.02)
(0.02)
(0.02) N.R.
(0.02)
(0.02)
(0.02)
(0.02)
(0.02)
»-
(0.01) N.R.
(0.01)
(0.01)
(0.01)
(0.01)
(0.01)
Gravimetric Total
nonvolatile organic,
weight, mg mg
Probe
rinse +
filter
extract
222.6
Probe
rinse +
filter
extract
314.8
Combined
with
probe
rinse
for
grav.
*Values in parentheses are lower detectable limits for samples for which no
peaks were found.
413
-------
TABLE 8 (con.)
Sample
Filter
extract
Test 2
Module
rinse
Test 1
Module
rinse
Test 2
Range
GC7 90 -
GC8 110 -
GC9 140 -
GC10 160 -
GC11 180 -
GC12 200 -
GC13
GC14
GC15
GC16
GC17
GC7 90 -
GC8 110 -
GC9 140 -
GC10 160 -
GC11 180 -
GC12 200 -
GC13
GC14
GC15
GC16
GC17
GC7 90 -
GC8 110 -
GC9 140 -
GC10 160 -
GC11 180 -
GC12 200 -
GC13
GC14
GC15
GC16
GC17
110
140
160
180
200
220
110
140
160
180
200
220
110
140
160
180
200
220
Volatile
weight, No. of
mg/m3* peaks
(0.01) N.R.
(0.01)
(0.01)
(0.01)
(0.01)
(0.01)
(0.02) N.R.
(0.02)
0.027
(0.02)
(0.02)
(0.02)
—~
(0.02) N.R.
0.038
(0.02)
(0.02)
(0.02)
(0.02)
.
Gravimetric Total
nonvolatile organic,
weight, mg mg
Combined
with
probe
rinse
for
grav.
Combined
with resin
extract and
condensate
extract
for grav.
Combined
with resin
extract and
condensate
extract
for grav.
*Values in parentheses are lower detectable limits for samples for which no
peaks were found.
414
-------
TABLE 8 (con.)
Sample
Resin.
extract
Test 1
Resin
extract
Test 2
Condensate
extract
Test 1
Range
GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13
GC14
GC15
GC16
GC17
GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13
GC14
GC15
GC16
GC17
GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13
GC14
GC15
GC16
GC17
- 110
- 140
- 160
- 180
- 200
- 220
- 110
- 140
- 160
- 180
- 200
- 220
- 110
- 140
- 160
- 180
- 200
- 220
Volatile
weight,
mg/m3*
(0.01)
0.98
0.039
0.72
1.7
1.1
(0.01)
0.35
0.038
0.073
3.4
2.0
(0.005)
(0.005)
(0.005)
(0.005)
(0.005)
(0.005)
Gravimetric Total
No. of nonvolatile organic,
peaks weight, mg mg
N.R. Module rinse
+ resin
extract +
condensate
extract
49.8
N.R. Module rinse
+ resin
extract +
condensate
extract
38.7
_
N.R. Combined
with resin
extract and
module
rinse
*Values in parentheses are lower detectable limits for samples for which no
peaks were found.
415
-------
TABLE 8 (con.)
Sample
Condensate
extract
Test 2
Heat traced
sample line
rinse (for
both runs)
Range
GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13
GC14
GC15
GC16
GC17
GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13
GC14
GC15
GC16
GC17
GC7 90
GC8 110
GC9 140
GC10 160
GC11 180
GC12 200
GC13
GC14
GC15
GC16
GC17
- 110
- 140
- 160
- 180
- 200
- 220
- 110
- 140
- 160
- 180
- 200
- 220
- 110
- 140
- 160
- 180
- 200
- 220
Volatile Gravimetric Total
weight, No. of nonvolatile organic,
mg/ra3* peaks weight, mg rag
(0.007) N.R. Combined
(0.007) with resin
(0.007) extract
(0.007) and
(0.007) module
(0-007) rinse
(0.01) N.R.
13.8
(0.01)
(0.01)
(0.01) 0.082
(0.01)
*Values in parentheses are lower detectable limits for samples for which no
peaks were found.
416
-------
TABLE 9. LC FRACTIONATION
Run 1
Probe rinse and filter extract
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
TCO Grav Total
mg* mg mg
0.565
0.0
0.0
0.0
0.0
0.521
36.444
29.441
Totalt
mg/m3
0.020
0
0
0
0
0.019
1.32
1.06
TCO Grav
mg* mg
0.0
0.0
0.0
0.0
0.0
0.347
57.753
23.937
Total Totalt
mg mg/m3
0
0
0
0
0
0.013
2.12
0.880
Run 1
Module rinse + resin
extract +
condensate extract
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8
TCO Grav Total
mg* mg mg
0.418
0.0
0.343
0.409
0.245
2.080
2.429
12.746
Totalf
mg/m3
0.015
o -
0.012
0.015
0.009
0.075
0.088
0.460
Run
Module rinse +
2
resin extract +
condensate extract
TCO Grav
mg* mg
1.270
0.218
0.544
0.533
0.177
2.029
2.467
10.064
Total Totalf
mg mg/m3
0.047
0.008
0.020
0.020
0.007
0.075
0.091
0.370
*TCO was not performed in this study.
tTotal volumes sampled: Run 1 - 27.7 m3, Run 2 - 27.2
417
-------
TABLE 10. IR REPORT: CONCENTRATED SAMPLES BEFORE LC
-e-
i—•
oo
Run Findings
1 Probe Rinse + Filter Extract contains alkanes, esters, ketones.
2 Probe Rinse + Filter Extract contains water, silicone, alkanes, ethers, sulfonic acids.
1 Module rinse + resin extract + condensate extract contains alkanes, alkenes, aromatic
esters, amides, low substituted aromatics, ethers, ketones.
2 Module rinse + resin extract + condensate extract contains aliphatic ethers, water, alcohols,
Blank Module rinse •*• resin extract + condensate extract contains alkanes, ketones, aromatic esters
Heat traced line rinse for both runs contains alkanes, alkenes, amides, aromatic esters.
-------
TABLE 11. IR REPORT: SAMPLES AFTER LC FRACTIONATION
6
7
Run 1
Probe rinse +
Phthalate esters
Epoxides, ethers
silicones, alcohols
Epoxides, ethers
silicones,
alcohols, water
Run 2
Probe rinse +
Run 1
Module rinse + resin
extract + condensate
Run 2
Module rinse + resin
extract +• condensate
LC filter extract
1 Alkanes
2 *
3 *
A *
5 *
filter extract extract
* Alkanes , trace
silicones
* *
* Epoxides, low sub-
stituted aroraatics,
olefins, ethers, trace
silicones
* Trace silicones,
aromatic esters,
phthalate esters
* Aromatic esters,
phthalate esters
extract
Alkanes
Alkanes , trace
alkenes, aromatics
Silicones, ethers
aromatics
Esters, aromatics,
ketones, ethers
Ketones , esters
aromatics, phthalate
Aromatic esters,
phthalate esters
Epoxides, sulfonic
acids, silicones,
water, alcohols
Ethers, silicones
sulfonic acids,
alcohols, water
Phthalate esters
Water, alcohols
Phenols, sulfonic
acids
esters
Aromatics, aromatic
esters
Phthalate esters
alcohols
Aromatic esters,
aromatics, alcohols,
water
^Insufficient sample to analyze.
-------
TABLE 12. LRMS REPORT
PROBE RINSE + FILTER EXTRACT
1. Categories Present
Run LC
1 7
Intensity
Major
Minor
Major
Major
Major
Trace
Minor
Major
Minor
Trace
2. Subcategories, Specific Compounds
Run LC Intensity
1 7
3. Other
Intensity: N,R.
Category
Water
Hydrocarbons to m/e
200
HCI
S02 alkyl sulfonates,
alkyl sulfinates
Alkyl pyrroles,
substituted pyridines,
or anilines
Indenes, substituted
naphthyl compounds,
and/or aliphatic
esters
C9Hlt, substituted
benzene compounds
Five compounds all
believed to be
siloxanes
Phthalate esters
Substituted anthracene
compounds
Compound
N.R.
MW Range
N.R.
m/e Composition
NOTE: LRMS analysis was run on LC fractions with dry weights greater than 15 mg/30 m3 of gas sampled.
-------
TABLE 12 (con.)
•t-
to
1 . Categories Present
Run
1
LC Intensity
8 Major
Major
Major
Category
HCL
CH3OH
S02, alkyl sulfonates,
MW Range
N.R.
Major
Minor to Trace
Major
2. Subcategories, Specific Compounds
Run LC Intensity
1 8
3. Other
alkyl sulfinates
Alkyl pyrroles, sub-
stituted pyridenes,
and anilines
3 compounds believed
to be siloxanes
Phthalates
Compound
N.R.
m/e Composition
"This sample is somewhat dissimilar from the other three samples because it appears to have
fewer components and the resulting spectrum is less complex."
Intensity
N.R.
NOTE: LRMS analysis was run on LC fractions with dry weights greater than 15 mg/30 m3 of gas sampled.
-------
TABLE 12 (con.)
ho
to
1. Categories Present
Run LC
2 7
Intensity
Minor
Major
Major
Major
Minor
Major
Minor
Major
2. Subcategories, Specific Compounds
Run LC Intensity
2 7
3. Other '
Intensity
N.R.
Category
Hydrocarbons to m/e
MW Range
N.R.
HC1
CH3OH
H20
H2S04 tentative (can
also be CgH^oj furfural
alkanoates or C7H14;
substituted thiophenes)
Sulfur oxides, sulfa-
nates, sulfinates
Phthalate esters
Siloxane compounds
Compound
N.R.
m/e Composition
NOTE: LRMS analysis was run on LC fractions with dry weights greater than 15 mg/30 m3 of gas sampled.
-------
TABLE 12 (con.)
1. Categories Present
Run LC
2 8
Intensity
Minor
Major
Minor
Moderate
Trace
Moderate
Major
J^ Minor
Minor
Minor
Moderate
Minor
Trace
Minor \
Minor
Minor
2. Subcategories, Specific Compounds
Run LC Intensity
2 8
3. Other
Intensity: N.JR.
Category
Hydrocarbons, detected
to mass 200
HC1
CH3C1
C5H6N, aklyl pyrroles,
substituted pyridines
or anilines
MW Range
N.R.
CyHji, alkyl diene or
cycloalkane fragments
Silicone compound(s)
CsHi302Si or substi-
tuted benzene compounds
Methyl siloxanes
Dichlorobenzene (?)
(CH3)3Si-0-Si(CH3)2
Phthalate esters
Trichlorobenzene
Substituted anthracene (?)
Methyl Siloxanes
Esters of adipic acid
(CH3)7Si404 (methylsiloxanes)
Compound
N.R.
m/e Composition
NOTE: LRMS analysis was run on LC fractions with dry weights greater than 15 mg/30 m3 of gas sampled.
-------
424
-------
STUDY NUMBER 19
DATA
SOURCE:
SOURCE ASSESSMENT:
TEXTILE PLANT WASTEWATER TOXICS STUDY
DATA
STATUS:
Preliminary Draft, December 1977
AUTHOR:
CONTRACTOR:
G. D. Rawlings
Monsanto Research Corporation
1515 Nicholas Road
Dayton, Ohio 45407
Contract No. 68-02-1874
ROAPNo. 21AXM-071
Program Element No. 1AB01 5
TASK
OFFICER:
Max Samfield
Industrial Environmental Research Laboratory
Office of Energy, Minerals, and Industry
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
425
-------
426
-------
GENERAL
This manual covers the period from January 1977 to December 1977 in
which Monsanto Research Corporation (MRC) compiled data of an ongoing
study of effluents from 23 textile plants. MRC, in using a two-phased
approach, reports data from Phase I in which baseline toxicity is gath-
ered on the 23 plants and ranks the plants in order of toxicity. (Phase
2 will be to determine degrees of toxicity removal of the best of seven
possible tertiary systems as applied to 10 plants chosen from Phase I.)
This study coincides with a study by EPA/ATMI (Environmental Protec-
tion Agency/American Textile Manufacturers Institute) identified as
BATEA (best available technology economically available), in which a
two-phased approach is also used. Phase I is to determine the best
available technology for removing criteria pollutants (BOD5, COD, color,
sulfide, pH, chromium, phenols, TSS), priority pollutants (129 compounds),
and toxic materials (arsenic, mercury, etc.) with Phase II following to
determine which technology is economically available. The objective of
both studies is to determine BATEA for toxicity removal in textile
wastewater.
Phase I of the EPA/MRC study was already under way when it was
decided to include Level 1 Environmental Assessment procedures; there-
fore, only 15 plants were sampled and tested under this plan. Biolog-
ical testing was performed on 23 plants.
IR showed presence of aliphatic HC, C=0 esters and acids, aromatics,
phthalate esters, and fatty acid groups. LRMS identified paraffinic/
olefinic alkyl benzenes, alcoholic esters, di-n-actyl phthalate, bis
(hydroxy-t-butyl phenol) propane, tri-t-butyl benzene, alkyl phenols,
dichloroaniline, toluene-sulfonyl groups, vinyl stearate, and azo com-
pounds. Bioassay results of secondary effluent of 23 plants indicate 7
to be sufficiently toxic enough for Phase II study. Most toxic were
plants N, A, L, T, C, P, and S; least toxic were V and W; plant R was
also included due to improper sampling during Phase 1. Plants B, D, E,
F, G, H, J, K, M, U, X, Y, and Z were characterized as nontoxic.
C7-C12 hydrocarbons were less than 1.0 g/m3 (ppm) in 13 of the 14
plants tested with Plant X containing 3.0 g/m3 of the C7-C12 hydrocarbons.
A deviation from Level 1 procedures was approved by EPA in which
methylene chloride extractions were not performed in the field due to
the emulsions formed with textile effluents. The emulsion is best
broken down in the lab. In addition, the CH2C12 extract was not evapo-
rated to dryness prior to LC/LRMS. Two additional steps are the use of
GC/MS to quantitate C7-C12 and the use of a solvent exchange to alter
the polarity of the medium containing the organics.
427
-------
GASEOUS GRAB
No sampling was performed in this study.
SASS
No sampling was performed in this study.
FUGITIVE EMISSIONS
No sampling was performed in this study.
LIQUIDS AND SLURRIES
Composite sampling of raw wastewater was performed at a location
between the plant and aeration ponds. Secondary effluents were composite
grab sampled over a period of 8 hours at a location between the clarifier
and the chlorine contact basin. Plant R samples were taken between the
aeration lagoon and settling basin and Plant Y samples were taken after
the finishing pond. The effluents were filtered prior to CH2C12 extrac-
tion of the filtrate. DO, pH, color, odor, and cyanide samples were not
extracted prior to analysis. The CH2Cl2 extract was analyzed for C7-C12
organics. The extract was concentrated by K-D and analyzed by IR, LC
Fractionation, and LRMS.
TEXTILE PLANT
RAW
1
WASTEWATER 0 — '
SMI RLE
0
o
o
o
o
o
AERATION LAGOON
Phase I sampling locations
1 — \
—t PI .arMrirp i
v_y
SECONDARY
EFFLUENT (2>—
CHLORINE
CONTACT
BASIN
I
SAMPLE EFFLUENT
SOLIDS
Suspended solids as removed from the wastewater were the only
solids studied. Leachate analysis was not performed because each plant
met EPA effluent standards for TSS. Filter paper was ashed by low
temperature plasma, digested, and analyzed for trace elements by SSMS.
428
-------
TABLE 1. SPARK SOURCE MASS SPECTROSCOPY--WASTEWATER SUSPENDED SOLIDS PLANT A
(M8/D*
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.04
<0.04
3.0
42
<0.04
m
t
<0.08
<0.03
<0.11
<0.04
<0.03
<0.03
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.01
<0.03
<0.04
<0.04
<0.07
<0.09
<0.05
1.3
0.91
15
0.33
1.6
13
t
2.5
1.1
Rh
Ru
Ho
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
le
Mn
17
0.03
1.9
0.08
6.0
1.0
3.0
0.25
3.4
0.03
0.13
300
172
26
2.0
582
11
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
56
318
9.5
0.07
1,220
265
15
1,987
1,590
450
874
702
4,636
28
m
<0.04
1.3
^Detection limit—0.01 (Jg/1
tinternal standard
NR = Not reported
No data indicates "not detected above detection limit."
TABLE 2. SPARK SOURCE MASS SPECTROSCOPY--WASTEWATER SUSPENDED SOLIDS, PLANT B
(Hg/D*
u
Th
Bi 0.05
Pb 0.2
Tl
Hg NR
W
Au
Pt
Ir
Os
Re t
W
Ta 0.003f
Hf <0.02
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
Rh
Ru
Mo
Nb
Zr
0.1 Y
Sr
0 . 02 Rb
0.01 Br
1.8 Se
As
Ge
Ga
Zn
0.01 Cu
t Ni
Co
le
Mn
-
0.04
0.1
0.08
0.02
1.8
0.3
0.07
13
0.3
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
0.5
0.02
0.3
30
11
0.3
24
120
340
25
130
240
6.8
NR
0.0.4
""Detection limit—0.01 pg/1
flnternal standard
^Instrument source
NR = Not reported M
No data indicates "not detected above detection limit.
429
-------
TABLE 3 SPARK SOURCE MASS SPECTROSCOPY—WASTEWATER SUSPENDED SOLIDS, PLANT C
(M8/D*
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
0.7
0.6
0.07
NR
t
0.07
O.Olf
0.1
0.07
0.07
Dy
Tb
Gd
Eu
Sra
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
. Sn
In
Cd
Ag
Pd
0.07
0.07
0.1
0.07
57
0.03
0.03
0.1
0.2
t
0.07
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
le
Mn
0.1
0.2
0.03
1.6
2.8
1.1
0.07
29
4
0.9
0.07
20
0.9
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
0.8
1.1
0.8
0.1
83
330
43
110
700
1,100
530
160
2,800
33
NR
0.3
*Detection limit—0.05 (Jg/1
tlnternal standard
^Instrument source
NR = Not reported
No data indicates "not detected above detection limit."
TABLE 4. SPARK SOURCE MASS SPECTROSCOPY—WASTEWATER SUSPENDED SOLIDS, PLANT E
(H8/D*
U
Th
Bi 0.07
Pb 0 . 09
Tl
Hg NR
Au
Pt
Ir
Os
Re t
W 0.09
Ta
Hf <0.05
Lu
Yb <0.04
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.02
0.02
0.02
0.09
0.16
0.02
0.04
t
0.02
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As.
Ge
Ga
Zn
Cu
Ni
Co
ie
Mn
0.04
0.02
0.32
0.49
2.8
<0.07
0.12
0.04
0.05
0.94
0.05
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
0.07
0.05
<0.04
3.9
110
18
0.74
0.04
3.5
18
5.8
972
11
NR
0.02
*Detection limit--<0.02
tlnternal standard
NR = Not reported
No data indicates "not detected above detection limit."
430
-------
TABLE 5. SPARK SOURCE MASS SPECTROSCOPY--WASTEWATER SUSPENDED SOLIDS PLANT F
(Mg/D*
u
Th
Bi
Pb 4.0
Tl
Hg NR
Au
Pt
Ir
Os
Re f
W
Ta 0.002t
Hf <0.1
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.1
0.05
4.3
0.4
1.3
t
0.2
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
le
Mn
0.1
0.4
0.6
0.1
1.6
0.5
39
29
1.2
0.1
67
1.1
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
2.0
0.1
1.4
120
87
34
106
290
820
42
30
1,100
82
NR
NR
*Detection limit—0.05 pg/1
tInternal standard
^Instrument source
NR = Not reported
No data indicates "not detected above detection limit."
TABLE 6. SPARK SOURCE MASS SPECTROSCOPY—WASTEWATER SUSPENDED SOLIDS, PLANT K
(Mg/D*
U
Th
Bi
Pb 0.51
Tl 0.01
Hg NR
Au
Pt
Ir
Os
Re t
W 0.06
Ta
Hf <0.03
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.01
0.03
0.04
0.84
0.03
0.01
0.04
t
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
le
Mn
0.06
0.06
0.06
0.3
0.03
<0.04
0.75
0.97
0.32
3.2
0.1
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
0.8
0.09
<0.03
100
23
1.2
18
9-7
23
45
7.2
308
1.4
NR
-
0.03
*Detection limit—0.01 pg/1
tlnternal standard
NR = Not reported t)
No data indicates "not detected above detection limit.
431
-------
TABLE 7. SPARK SOURCE MASS SPECTROSCOPY—WASTEWATER SUSPENDED SOLIDS, PLANT L
(M8/D*
u
Th
Bi 0.05
Pb 9
Tl
Hg NR
Au
Pt
Ir
Os
Re t
W
Ta O.OOlf
Hf <0.1
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
. Sn
In
Cd
Ag
Pd
0.3
0.05
0.05
0.2
0.1
23
0.2
0.2
f
0.05
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
le
Mn
0.1
0.3
1.0
0.3
0.4
1,900
31
3.6
0.05
380
2.2
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
13
1.0
3.2
<0. 1
1,200
95
37
360
1,200
4,600
440
650
5,000
33
NR
0.3
*Detection limit--0.05 |Jg/l
fInternal standard
^Instrument source
NR = Not reported
No data indicates "not detected above detection limit."
TABLE 8. SPARK SOURCE MASS SPECTROSCOPY—WASTEWATER SUSPENDED SOLIDS, PLANT N
(Hg/D*
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
0.04
4.0
NR
t
0.04
0.003f
<0.08
0.08
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.08
<0.04
0.1
0.1
0.1
0.5
0.1
14
0.4
0.2
0.3
t
0.08
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge.
Ga
Zn
Cu
Ni
Co
le
Mn
-
0.2
0.6
0.4
0.8
0.08
0.1
0.04
0.8
0.04
150
12
2.9
1.7
600
12
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
680
0.4
5.6
<0.2
280
44
3.8
1,240
2,000
2,000
200
110
520
76
NR
0.2.
"Detection limit—0.04 pg/1
tInternal standard
^Instrument source
NR = Not reported
No data indicates "not detected above detection limit."
432
-------
TABLE 9.
SPARK SOURCE MASS SPECTROSCOPY--WASTEWATER SUSPENDED SOLIDS PLANT S
(M8/D*
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
0.08
0.21
2.4
7.1
<0.02
NR
t
<0.11
0.55*
<0.13
<0.02
<0.07
<0-02
<0.04
0.01
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.01
0.04
0.05
0.09
1.0
0.36
3.4
4.0
'49
0.99
0.38
188
31
t
1.1
0.25
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
le
Mn
6.5
0.1
1.6
0.33
6.8
11
14
<0.22
7.0
0.16
.56
13
306
16
0.44
2,588
56
Cr
V
Ti
Sc
Ca
K
Cl
S
p
Si
Al
Mg
Na
F
B
Be
Li
26
6.1
40
0.14
4,353
y *f *f *r
859
129
1,882
4,824
1,106
2,000
1,035
694
56
NR
<0.05
0.58
*Detection limit--0.01
"("Internal standard
^Instrument source
NR = Not reported
No data indicates "not detected above detection limit."
TABLE 10. SPARK SOURCE MASS SPECTROSCOPY—WASTEWATER SUSPENDED SOLIDS, PLANT T
(Mg/D*
U
Th
Bi
Pb 53
Tl
Hg NR
Au
Pt
Ir
Os
Re t
V
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce 0.4
La
Ba 150
Cs
I
Te
Sb 0.7
Sn 1.1
In t
Cd
Ag
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
le
Mn
0.2
0.9
0.2
1.6
1.1
1.8
98
29
1.6
0.2
320
4.9
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
5.1
0.4
7.3
1,500
330
11
140
1,300
1,040
550
530
2,700
890
NR
..
0.7
*Detection limit—0.01 (JgA
flnternal standard
NR = Not reported
No data indicates "not detected above detection limit.
433
-------
TABLE 11. SPARK SOURCE MASS SPECTROSCOPY--WASTEWATER SUSPENDED SOLIDS, PLANT U
(|Jg/l)*
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.02
<0.04
<0.05
7.4
<0.02
NR
t
<0.07
<0.23f
<0.09
<0.06
<0.04
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.02
0.02
0.02
0.01
0.62
0.38
12
0.01
0.28
1.7
4.3
t
0.44
0.23
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
le
Mn
5.2
2.2
0.16
6.4
3.3
5.5
0.09
<0.13
0.18
60
29
11
0.20
560
12
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
23
0.49
18
0.1
756
402
12
2,680
597
378
1,220
116
1,950
96
m
0.40
*Detection limit—<0.01 pg/l
tlnternal standard
^•Instrument source
NR = Not reported
No data indicates "not detected above detection limit."
TABLE 12. SPARK SOURCE MASS SPECTROSCOPY--WASTEWATER SUSPENDED SOLIDS, PLANT W
(Mg/D*
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
0.5
<0.2
14
<0.1
NR
t
<0.2
0.006f
<0.3
<0.2
<0.1
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.1
0.5
0.2
<0.9
1.5
1.3
8.0
2.3
230
0.1
0.07
0.4
1.3
t
0.3
0.07
Rh
Ru
Mo
Nb
Zr
Y
Sr-
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
le
Mn
—
0.5
0.2
1.9
1.1
19
3.1
2.5
13
2.3
66
23
17
8.0
4,500
370
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
10
15
160
0.4
15,000
1,500
290
330
1,700
2,600
6,700
3,700
3,300
390
NR
0.2
13
**
•^Detection limxt--0.05 (Jg/1
tlnternal standard
^Instrument source
NR = Not reported
No data indicates "not detected above detection limit."
434
-------
TABLE 13.
SPARK SOURCE MASS SPECTROSCOPY--WASTEWATER SUSPENDED SOLIDS PLANT X
(Mg/D*
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.09
5.0
<0.06
NR
t
0.06
O.OSf
<0.1
<0.09
<0.06
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.06
<0.06
0.06
0.06
0.2
0.09
22
0.09
2.4
0.44
t
0.06
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
le
Mn
0.1
0.06
0.4
0.08
1.3
0.4
17
<0.06
0.06
410
27
7
2.7
1,300
2.5
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
o
Na
F
B
Be
Li
12
0.4
4.7
0.06
1,200
7
53
17
110
2,400
880
640
2,200
38
NR
0.15
*Detection limit~0.03 Mg/1
flnternal standard
^Instrument source
NR = Not reported
No data indicates "not detected above detection limit."
TABLE 14. SPARK SOURCE MASS SPECTROSCOPY--WASTEWATER FILTRATE, PLANT A
(mg/1)*
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.003
<0.003
<0.006
0.38
<0.004
NR
t
<0.008
0.008^
<0.010
<0.002
<0.007
<0.002
<0.007
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.003
<0.002
<0.002
<0.004
0.009
0.002
0.004
0.51
0.003
0.011
0.095
0.10
t
0.005
0.001
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
le
Mn
_.
0.043
0.031
0.003
0.70
0.19
0.47
0.003
<0.015
13
0.14
1.0
0.021
6.1
0.48
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
1.4
2.5
0.087
<0.006
170
8.8
11
130
6
18
6.4
10
180
1.1
NR
<0.003
0.12
^Detection limit—0.001 mg/1
tlnternal standard
^Instrument source
NR = Not reported . „
No data indicates "not detected above detection limit.
435
-------
TABLE 15. SPARK SOURCE MASS SPECTROSCOPY—WASTEWATER FILTRATE, PLANT B
(mg/1)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.003
<0.003
<0.005
0.17
<0.002
NR
*
<0.007
o.iot
<0.009
<0.006
<0.002
<0.003
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.003
<0.002
<0.002
<0.003
<0.002
<0.003
<0.002
0.20
0.001
0.004
0.019
0.017
*
0.006
0.001
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
le
Mn
<0.007
0.004
0.002
0.22
0.25
0.26
0.006
0.28
1.2
0.16
0.017
0.008
2.4
0.41
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
0.24
0.005
0.079
<0.003
21
79
2.1
300
45
8.0
0.96
14
190
3.7
NR
<0.003
0.032
*Internal standard
tlnstrument source
NR = Not reported
No data indicates "not detected above detection limit of 0.001 mg/1."
TABLE 16. SPARK SOURCE MASS SPECTROSCOPY--WASTEWATER FILTRATE, PLANT C
(mg/1)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.005
<0 . 005
<0.010
<0.25
<0.007
NR
*
<0.013
<0.045t
<0.017
<0 . 003
<0.011
<0.003
-------
TABLE 17.
SPARK SOURCE MASS SPECTROSCOPY-WASTEWATER FILTRATE PLANT E
(mg/1)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
V
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.002
0.063
<0.002
NR
*
<0.003
o.ooit
<0.003
<0.002
<0.002
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.002
0.007
0.004
0.022
0.019
0.29
0.011
0.13
0.006
*
0.004
0.001
Rh
Ru
Mo
Kb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
le
Mn
0.004
0.009
0.094
0.071
0.92
0.002
0.035
0.76
0.10
0.038
0.001
0.86
0.035
—••••••••I ii" 1 1 • •
Cr
V
Ti
Sc
*^^
Ca
K
Cl
S
P
Si
Al
Me
o
Na
F
B
Be
Li
•
0.043
0.018
0.13
36
26
1.3
290
9.2
2.9
0.39
2.1
70
13
NR
0.014
"Internal standard
tlnstrument source
NR = Not reported
No data indicates "not detected above detection limit of 0.001 mg/1."
TABLE 18. SPARK SOURCE MASS SPECTROSCOPY—WASTEWATER FILTRATE, PLANT F
(mg/1)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.003
<0.004
<0.007
0.033
<0.005
NR
*
-------
TABLE 19 SPARK SOURCE MASS SPECTROSCOPY—WASTEWATER FILTRATE, PLANT G
(mg/1)
u
Th
Bi
Pb 0.10
Tl
Hg NR
Au
Pt
Ir
Os
Re *
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.004
0.004
0.23
0.001
0.007
1.2
0.032
*
0.002
0.003
Rh
Ru
Mo
Nb
Zr
y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
le
Mn
0.006
0.011
0.089
0.017
0.036
0.001
0.014
0.84
0.11
0.038
0.13
1.6
0.17
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
0.018
0.12
0.11
16
20
1.1
43
16
8.7
2.2
1.4
48
3.2
NR
0.32
*Internal standard
NR = Not reported
No data indicates "not detected above detection limit of 0.001 mg/1."
TABLE 20. SPARK SOURCE MASS SPECTROSCOPY—WASTEWATER FILTRATE, PLANT K
(mg/1)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.002
<0.002
<0.004
0.017
NR
*
<0.005
<0.015t
<0.006
<0.004
<0.003
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.002
<0.002
<0.002
<0.002
<0.002
0.19
23
0.048
0.011
*
0.003
Rb
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
le
Mn
-
0.006
0.005
0.19
0.027
2.9
0.32
0.010
0.001
0.77
0.11
0.014
0.012
0.72
0.008
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
0.090
0.015
0.018
<0.002
24
26
650
105
6.8
120
0.71
13
120
87
NR
<0.002
0.005
^Internal standard
tlnstrument source
NR = Not reported
No data indicates "not detected above detection limit of 0.001 mg/1."
438
-------
TABLE 21.
SPARK SOURCE MASS SPECTROSCOPY--WASTEWATER FILTRATE PLANT L
(mg/1)
u
liv.
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.002
0.14
NR
*
<0.003
o.oost
<0.004
<0.003
0.001
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.007
0.011
0.005
0.37
0.007
0.005
0.30
0.046
*
0.003
0.001
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
le
Mn
0.015
0.005
0.026
0.001
0.99
0.20
0.51
0.002
0.031
2.4
0.54
0.25
0.033
4.5
0.27
Cr
V
Ti
Sc
Ca
K
Cl
s
p
Si
Al
Mg
o
Na
F
B
Be
Li
0.26
0.23
0.24
110
5.3
2.1
330
10
15
0.44
4.6
78
2.5
NR
2.1
*Internal standard
"("Instrument source
NR = Not reported
No data indicates "not detected above detection limit of 0.001 mg/1."
TABLE 22. SPARK SOURCE MASS SPECTROSCOPY—WASTEWATER FILTRATE, PLANT N
(mg/1)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0 . 004
<0.004
<0.008
0.95
<0.002
NR
*
<0.0|0
<0.011
<0.012
<0 . 002
<0.008
<0.003
<0.004
!
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.002
<0.003
<0.003
<0.005
<0.004
0.002
0.005
0.008
1.3
0.001
0.12
0.12
0.008
*
0.004
0.002
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
£o
le
Mn
0.030
0.001
0.054
0.017
2.1
0.51
0.19
0.063
0.40
0.005
0.002
580
0.11
0.39
0.46
80
27
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
44
0.033
0.089
<0.004
570
58
1.1
1,400
110
54
110
42
150
41
NR
<0.004
0.033
*Internal standard
NR = Not reported . ..... f n nn-, n
No data indicates "not detected above detection limit of 0.001 mg/1.
439
-------
TABLE 23. SPARK SOURCE MASS SPECTROSCOPY—WASTEWATER FILTRATE, PLANT S
(mg/1)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.002
<0.002
0.012
0.085
NR
*
<0.005
<0.012
<0.004
<0.003
<0.002
<0.003
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.002
<0.004
<0.005
<0.005
<0.007
0.097
0.002
0.017
0.84
0.024
*
0.008
0.001
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
le
Mn
0.021
0.002
0.016
0.027
0.81
13
0.001
0.064
0.29
0.28
0.005
1.0
0.10
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
0.016
0.006
0.010
<0.002
11
73
2.5
24
15
18
18
2.8
95
1.1
NR
<0.002
0.011
*Internal standard
NR = Not reported
No data indicates "not detected above detection limit of 0.001 mg/1."
TABLE 24. SPARK SOURCE MASS SPECTROSCOPY—WASTEWATER FILTRATE, PLANT T
(mg/1)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
0.002
0.042
NR
*
<0.002
<0.002
<0.002
<0.002
<0 . 002
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.002
0.002
0.006
0.022
0.001
0.002
0.009
0.005
*
0.001
0.002
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
le
Mn
0.005
0.006
0.002
0.030
0.13
0.13
0.005
<0.003
0.29
0.040
0.045
0.002
0.57
0.059
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
0.058
0.014
0.019
5.2
36
0.51
0.70
0.79
1.9
3.3
1.4
40
0.95
NR
0.008
'internal standard
NR = Not reported
No data indicates "not detected above detection limit of 0.001 mg/1."
440
-------
TABLE 25.
SPARK SOURCE MASS SPECTROSCOPY--WASTEWATER FILTRATE, PLANT U
(mg/1)
U
Th
Bi <0,002
Pb 0.006
Hg NR
Au
Pt
Ir
Os
Re *
W <0.002
Ta
Hf <0.002
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.026
<0.081
0.16
0.002
0.076
0.19
0.003
*
0.003
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
le
Mn
0.007
0.002
0.001
0.32
0.043
0.55
0.018
0.14
16
0.099
0.058
0.10
0.12
0.53
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
O
Na
F
B
Be
Li
^•^•^^^^^v-^^^^^^ww
0.005
0.002
0.024
0.003
180
37
170
16
6.4
14
0.24
11
83
2.4
NR
0.023
^Internal standard
NR = Not reported
No data indicates "not detected above detection limit of 0.001 mg/1."
TABLE 26. SPARK SOURCE MASS SPECTROSCOPY--WASTEWATER FILTRATE, PLANT V
(mg/1)
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
0.003
0.089
NR
*
<0.002
<0.002
<0.001
<0.002
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.002
<0.002
0.005
0.003
0.36
<0.003
0.010
0.009
*
0.011
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
le
Mn
0.005
0.002
0.001
0.19
0.022
1.1
0.012
3.1
2.0
0.010
0.073
4.7
0.31
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
0.066
0.012
0.12
43
2.0
1.0
45
4.2
9.5
4.0
7.4
42
1.4
NR
-
.0.041
^Internal standard
NR = Not reported „
No data indicates "not detected above detection limit of 0.001 mg/1.
441
-------
TABLE 27. SPARK SOURCE MASS SPECTROSCOPY—WASTEWATER FILTRATE, PLANT W
(mg/1)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.003
<0.003
<0.005
0.17
<0.002
NR
*
<0.007
<0.003t
<0.009
<0.001
<0.006
<0.002
<0.003
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.001
<0.002
<0.004
<0.003
<0.004
<0.004
<0.010
<0.006
0.003
<0.013
<0.013
0.011
*
0.006
0.003
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
le
Mn
<0.007
0.023
0.006
0.31
2.0
0.55
0.018
0.033
<0.004
0.004
0.060
0.072
0.024
0.048
0.67
0.22
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
0.028
0.011
0.079
<0.002
94
660
1.2
16
0.12
30
7.3
12
8.3
11
NR
<0.003
0.054
^Internal standard
tlnstrument source
NR = Not reported
No data indicates "not detected above detection limit of 0.001 mg/1."
TABLE 28. SPARK SOURCE MASS SPECTROSCOPY—WASTEWATER FILTRATE, PLANT X
(mg/1)
U
Th
Bi
Pb 0.030
Tl
Hg NR
Au
Pt
Ir
Os
Re *
W <0.002
Ta
Hf <0.002
Lu
Yb <0.002
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
0.001 Br
0.13 Se
As
0.037 Ge
Ga
1.9 Zn
0.004 Cu
* Ni
Co
le
Mn
0.005
0.007
0.14
0.023
2.5
0.022
0.005
0.001
0.14
0.87
0.006
0.12
2.5
0.028
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
0.027
0.026
0.018
<0.002
23
9.0
130
2.9
29
18
8.2
4.6
33
11
NR
„
0.052
"Internal standard
NR = Not reported
No data indicates "not detected above detection limit of 0.001 mg/1."
442
-------
TABLE 29.
ATOMIC ABSORPTION (AA)—WET CHEMICAL METHODS
RAW WASTE AND SECONDARY EFFLUENTS
(mg/1)
(Secondary Effluent Data in Parentheses)
Plant
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R*
S
T
U
V
W
X
Y
Z
Y-001
C-001
JJ
KK
LL
MM-1
MM-2
MM-3
\jnir f
MM— 4
NN
00
PP
Hg
0.004
0.0009
t
t
t
t
t
t
t
t
t
t
0.0004
+
t
t
0.0007
0.0004
t
t
t
t
t
§
§
§
§
§
§
§
§
§
§
§
(t)
(0.0006)
(0.0007)
(t)
(t)
(0.0009)
(t)
(t)
(t)
(t)
(t)
(t)
(t)
(t)
(t)
(t)
(t)
(t)
(t)
(0.0005)
(0.0009)
(t)
(t)
(§)
(§)
(§)
(§)
_
_
^
(§)
(§)
-
Sb
t
t
0.007
0.003
0.008
0.001
0.052
0.004
0.0007
0.003
0.005
0.0008
0.0002
t
t
0.057
-
0.007
t
t
0.0003
0.016
0.011
t
§
§
§
§
§
§
§
§
w.
§
§
§
(0.03)
(t)
(0.004)
(0.002)
(0.0008)
(0.0003)
(0.011)
(0.006)
(t)
(0.0008)
(0.003)
(0.004)
(0.002)
(t)
(t)
(0.074)
(0.001)
(0.004)
(t)
(0.0009)
(0.003)
(0.012)
(t) _
-
(§)
(§)
(§)
-
-
-
_
(§)
(§)
—
As
t
t
t
0.017
t
t
t
t
t
0.006
t
t
t
t
t
0.005
t .
t
t
t
t
t
t
t
t
0.20
0.12
0.10
0.055
0.003
0.007
0.006
t
t
(t)
(t)
(t)
(0.006)
(t)
(t)
(t)
(t)
(t)
(t)
(t)
(t)
(t)
(t)
(t)
(t)
(t)
(t)
(t)
(0.004)
(t)
(t)
(t)
(t)
-
(0.16)
(+)
(0.07)
(t)
(t)
«_
t Concentration below detection limit of 0.0005 for Hg and Sb and 0.005 Jror As.
* Secondary effluent inadvertently collected prior to settling pond,
§ Analysis not performed.
- No data reported.
443
-------
TABLE 30. AQUEOUS ANALYSES—RAW WASTE
Sample
description
Plant A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
S
T
U
V
W
X
Y
Z
JJ
PH
10.7
10.5
11.2
10
10
9.2
11
10
11
10
7.4
11
9.2
10
10
10
9.5
10
9.0
10.4
10.2
'10.5
10
*
Acidity Alkalinity BOD
rag/1
459
1,050
445
71
18
194
203
288
210
564
379
830
334
1 680
450
219
501
400
53
1,920
237
122
351
*
COD D.O.
mg/1
1,735
1,264
802
224
2,660
583
1,340
320
810
1,725
1,117
2,265
1,140
172
1,692
559
500
1,464
*
6,124
786
457
812
1,545
Dissolved Suspended
Conductivity solids solids
mg/1
165
32
49
16
52
23
37
39
0.01
69
19
210
68
6
87
25
28
111
54
2,300
24
33
20
*
Anions
mg/1
CN
<.004
.017
.007
.21
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004
.19
<.004
.007
<.004
<.004
.006
.015
<.004
<.004
<.004
.005
-------
TABLE 30 (con.)
Oi
Sample pH
description
Plant KK *
LL *
MM-1 *
MM-2 *
MM-3 *
MM-4 *
NN *
00 *
Y-001 *
Acidity Alkalinity BOD
mg/1
*
*
*
*
*
*
938
1,889
*
COD D.O.
mg/1
1,955
727
*
*
*
*
*
*
*
Dissolved Suspended
Conductivity solids solids
mg/1
*
*
*
*
*
*
*
*
*
Anions
mg/1
CN
<.004
.008
<.004
<.004
<.004
<.004
.04
<.004
<.004
* Analysis not performed on sample.
-------
TABLE 31. AQUEOUS ANALYSES—SECONDARY EFFLUENT
c^
Sample
description
Plant A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
S
T
U
V
pH
7.3
7.5
10
7.2
7.2
7.4
7.5
7.6
7.8
7.2
5.8
7.5
7.0
7.1
8.1
7.8
7.4
7.3
7.1
Acidity Alkalinity BOD
mg/1
168
< 5
25
6.6
< 5
69
42
1*
25
< 5
13
< 5
36
' 28
70
59
32
24
< 5
COD D.O.
mg/1
1,652
99
396
64
78
276
502
300
376
131
234
255
286
45
830
1,035
414
748
128
Dissolved Suspended
Conductivity solids solids
mg/1
228
8
300
154
19
44
6
43
0.023
21
78
21
77
45
225
581
35
92
26
An ions
mg/1
CN
.015
<.004
.013
.21
<.004
<.004
.006
<.004
<.004
<.004
.172
<.004
<.004
.14
<.004
<.004
<.004
.212
.018
-------
TABLE 31 (con.)
Sample pH
description
Plant W 8.1
X 7.2
Y 8.0
Z 8.0
JJ *
KK *
LL *
MM-1 *
£ MM-2 *
^ MM-3 *
MM-4 *
NN *
00 *
PP *
Y-001 *
C-001 *
Acidity Alkalinity BOD
mg/1
84
15
< 5
< 5
*
*
*
*
*
*
*
*
t *
*
*
COD D.O.
mg/1
837
258
115
105
510
447
155
*
*
*
236
635
339
*
*
Dissolved Suspended
Conductivity solids solids
mg/1
300
18
17
13
*
*
*
*
*
*
*
*
*
*
*
*
Anions
mg/1
CN
.020
.101
<.004
<.004
<.028
<.004
.006
<.004
<.004
<.004
<.004
<.004
<.004
<.004
.029
<-004
* Analysis not performed on sample.
-------
TABLE 32. AQUEOUS ANALYSES—SECONDARY EFFLUENT FOR LEVEL I ANALYSIS
oo
, Sample pH Acidity Alkalinity
description mg/1 mg/1
(Methyl Orange)
PLANT A
B
C
E
F
6
K
L
N
S
T
U
V
W
X
7.3
7.5
10
7.5
7.4
7.5
7.2
5.8
7.0
7.8
7.4
7.3
7.1
B.I
7.2
0
0
0
0
0
0
0
0
20
0
0
0
0
0
0
100
5.5
8.3
35
2.4
30
710
30
0
130
300
120
0.4
950
140
BOD
mg/1
168
NA
25
< 5
69
42
< 5
13
36
59
32
24
< 5
84
15
COD D.O.
mg/1 mg/1
1,652
99
396
78
276
502
131
234
286 .
1,035
414
748
128
837
258
5.5
7
6
8.5
5
8
5
4
9
7
8
9
9
5
7.2
Dissolved
Conductivity solids
Mmhos @ 25° C mg/1
1,500
1,200
2,400
310
1,900
155
875
555
990
640
460
770
360
1,250
285
1,725
1,681
2,924
13,120
2,006
276
1,256
725
1,352
692
660
1,331
NA
1,648
437
Suspended
solids
mg/1
234
7
24
10
10
5
14
42
13
349
44
111
NA
217
1.3
Cz
0.18
0.004
0.031
0.004
0.004
0.003
0.004
0.03
1.8
0
0
0.014
0.003
0.003 '
0.039
Anions
mg/1
SOj N02 N03
8.5
368
40
12
10
56
>1
460
640
150
100
0
57
0
1
0.06
<0.005
4.64
0.016
0.043
0.076
0.056
0.864
0.003
0.033
0.04
<0.005
0.264
0.145
0.44
1.9
0.002
23.3
79.2
0
1.32
4.4
13.5
5.5
4.4
0.8
0.8
0.88
12.3
0.033
H2S
4
0.20
5
0.1
0.1
<2
2
3
0.1
0.3
6
3.5
0.5
0.1
0.01
NA - Not analyzed.
Samples for D.O., pH, color and anions were not extracted prior to analysis.
-------
TABLE 33. LC FRACTIONATION*--EXTRACTS OF SECONDARY EFFLUENTS
Plant A
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8t
Grav
TCO mg/1 Total Total
<0.01
1.61
0.53
<0.01
<0.01
1.02
<0.01
2.10
Grav
TCO mg/1 Total Total
<0.01
1.03
<0.01
0.38
<0-01
1.39
<0.01
1.50
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8t
Plant F
Grav
TCO mg/1 Total Total
0.94
0.03
0.19
0.33
0.14
1.86
5.17
4.27
Plant G
Grav
TCO mg/1 Total Total
3.18
0-72
0.23
0.09
0.03
2.90
1.39
1.55
See footnotes at end of table.
449
-------
TABLE 33 (con.)
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8t
Plant L
Grav
TCO mg/1 Total Total
1.27
0.22
0.86
0.86
0.97
5.51
11.7
1.81
Plant N
Grav
TCO mg/1 Total Total
4.45
0.10
0.39
0.21
0.10
2.05
0.89
1.66
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8f
Plant S
Grav
TCO mg/1 Total Total
1.23
0.47
1.97
1.11
0.66
2.68
0.65
1.36
Plant T
Grav
TCO mg/1 Total Total
1.85
0.26
0.67
1.29
0.69
1.74
2.92
1.71
See footnotes at end of table.
450
-------
TABLE 33 (con.)
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8f
Plant U
Grav
TCO mg/1 Total Total
19.7
2.7
3.67
1.47
1.77
7.3
3.83
7.93
Plant V
Grav
TCO mg/1 Total Total
1.53
0.49
0.38
0.55
1.18
0.39
2.26
1.98
Fraction
LC 1
LC 2
LC 3
LC 4
LC 5
LC 6
LC 7
LC 8t
Plant W
Grav
TCO mg/1 Total Total
2.09
0.34
1.32
0.85
0.57
0.42
1.41
1.17
*TCO was not determined
fWeights for fraction 8 contain silica contaminant; blank value not subtracted
from total.
451
-------
TABLE 34. IR REPORT
SAMPLE: ORGANIC EXTRACTS BEFORE LC
Ui
Plant
A Bonded OH, aliphatic CH, C=0 ester and acid, ketone or aldehyde, conjugated C=C, possible aromatic
C=C, ether groups, (CH2)n, where n > 4.
B Bonded OH, aliphatic CH, ether (CH2)4, C=0, or C=C?
E Aliphatic CH, diffuse C=0 region, carboxylate ion, ether group complex spectrum.
F Bonded OH, aliphatic CH, diffuse C=0, and C=C regions, Si-0 possible, trace CH2C12.
G Aromatic and aliphatic CH, residual CH2C12 in spectrum.
K Bonded OH, aliphatic CH, diffuse C=0 region Si(CHa) group? Diffuse spectrum.
L Bonded OH, aliphatic CH, C=0, aromatic or conjugated C=C, ether group. Complex spectrum
C=N, Si02 -?
N Bonded OH, aliphatic CH, diffuse C=0, C=C region, silicone (CH2)4 ether?
S Bonded OH, aliphatic CH, ester C=0, (CH2)n groups, broad diffuse spectrum, ether groups possible.
\
T Bonded OH, aliphatic CH, C=0, C=C, ether or SiO groups, (CH2)n groups. Very diffuse spectrum.
U Trace bonded OH, aliphatic CH, acid, ketone or aldehyde C=0, silicones, some (CH2)n groups.
V Trace bonded OH, aliphatic CH, ester C=0, acid, aldehyde or ketone C=0, silicone adsorption,
some (CH2)n groups.
W Bonded OH, aliphatic CH, ester C=0, acid, ketone, or aldehyde C=0. (CH2)n - n where n > 4,
diffuse spectrum 1,300 cm to 900 cm
*
X Bonded OH, aliphatic CH, C=0, ether or SiO, (CH2)n, numerous broad diffuse bonds.
-------
TABLE 35. IR REPORT
SAMPLE: PLANT A
LC 1 All aliphatic hydrocarbons.
LC 2 Aliphatic and aromatic hydrocarbons, aromatic C=C.
LC 3 Aliphatic C-H, ester or aldehyde C=0, conjugated C=C, various CH2 groups, or aromatic substitu-
tion bonds.
LC 4 Similar to fraction 3.
LC 5 Similar to fraction 3.
LC 6 Bonded OH, aliphatic C-H, acid, ketone or aldehyde C=0, conjugated and aromatic C=C, possible
phthalate ester, ether group or Si-0.
£; LC 7 Bonded OH, aliphatic CH, ester or aldehyde C-0, water in material, ether or Si-0 groups.
to
LC 8 Bonded OH and 1,630 cm absorption - water, aliphatic C-H, trace of C=0, Si02, poorly defined
organic.
-------
TABLE 36. IR REPORT
SAMPLE: PLANT B
LC 1 Aliphatic CN, trace aromatic CH, Si-CH3 (?), methylene CH2 groups >4.
LC 2 Very strong background adsorption—only aliphatic CH visible.
LC 3 Bonded OH, aliphatic CH, ester C=0, acid, aldehyde or ketone C=0 (CH2)n or >4.
LC 4 Bonded OH, trace aromatic CH, aliphatic CH, ester C=0, acid, aldehyde or ketone C=0, various
CH2 groups.
LC 5 Similar to 4, but stronger bonded OH, less ester C=0, more acid, aldehyde or ketone C=0,
various CH2 groups, complex spectrum.
LC 6 Bonded OH, aliphatic CH, some ester C=0, acid, aldehyde or ketone C=0, ether groups, may
contain glycol ether type compounds.
LC 7 Bonded OH, aliphatic CH, ester C=0, acid, aldehyde or ketone C=0, strong ether group, glycol
ether type of compound.
LC 8 Strong bonded OH, weak C-H (aliphatic) trace C=0, nonconjugated C=C, Si02 present.
-------
Ui
TABLE 37. IR REPORT
SAMPLE: PLANT E
LC 1 Aliphatic hydrocarbons, no indication of number of CH2 groups.
LC 2 Poor spectrum — aliphatic CH, C02, and water vapor in spectrum.
LC 3 Poorly defined spectrum — aliphatic CH, numerous ill-defined bonds, no C=0 or C=C.
LC 4 Aliphatic CH, ester C=0, strong background adsorption.
LC 5 Aliphatic CH, ester =0, most likely aliphatic ester, possibly acetate — may be single compound.
LC 6 Spectrum too strong — bonded OH, aliphatic CH, ester C=0, acid, ketone or aldehyde C=0, large
portion of compound in No. 5 plus additional carbonyl compounds.
LC 6 (Repeat) Mixture of several compounds, ester C=0, and acid, ketone or aldehyde C^O, ether
LC 7 Bonded OH, aliphatic CH, acid, ketone or aldehyde C=0, spectrum too strong for good ID.
LC 7 (Repeat) Bonded OH, aliphatic CH, acid, aldehyde or ketone C=0, evidence of both acid and acid
salt (carboxylate ion) CH(CHa)2 group possible, no long chain (CH2) groups.
— i _i
LC 8 Bonded OH - evidence of water (3,350 cm and 1,635 cm ), Si02 present, aliphatic CH.
-------
TABLE 38. IR REPORT
SAMPLE: PLANT F
LC 1 Long chain aliphatic hydrocarbons, unknown 1,265 cm bond, Si-(CHs)- ?
LC 2 Aliphatic CH, ester C=0, conjugated C=C, trace 1,265 cm'1.
LC 3 Weak bonded OH, aliphatic CH, aromatic CH-?, ester C=0, conjugated C=C, progression of CH
substitution bonds, series of CH2 bond.
LC 4 Similar to No. 3, series of ill-defined bonds below 1,400 cm .
LC 5 Bonded OH, trace aromatic CH, aliphatic CH, ester or aldehyde C=0, conjugated C=C, series of
CH2 groups aromatic substitution bonds - ?
LC 6 Bonded OH, aliphatic CH, ester 0=0, nonconjugated C=C or amides, ether or SiO groups, secondary
amide possible, CH2 groups n >4.
JN
& LC 7 Similar to No, 6.
LC 8 Strong bonded OH, aliphatic CH, weak ester or aldehyde C-0, H20 present (1,640 cm"1), Si02
present.
-------
TABLE 39. IR REPORT
SAMPLE: PLANT G
LC 1 Aliphatic hydrocarbon—chain length >C4, possible C(CHs)3 group.
LC 2 Aliphatic CH, ester C=0, phthalate bonds, various chain lengths of CH2-
LC 3 Aliphatic CH, ester C=0, some C=C, various CH2 groupings.
LC 4 Bonded 0-H, aliphatic CH, ester C=0, some acid, aldehyde or ketone C=0, C=C, possible fatty
acid group, various CH2 groups.
LC 5 Identical to No. 4.
LC 6 Considerable bonded OH, aliphatic CH, ester C=0, conjugated C=C, Si-0 or ether group.
LC 7 Similar to No. 6.
LC 8 Considerable 0-H, aliphatic C-H, ester C=0, SiO or ether groups.
-------
TABLE 40. IR REPORT
SAMPLE: PLANT K
LC 1 Appears to contain water, aliphatic C-H, Si-CHs, mainly hydrocarbon compounds.
LC 2 Aliphatic hydrocarbons, silicones.
LC 3 Mainly silicone type material.
LC 4 Bonded OH, some aromatic CN, aliphatic CH, ester C=0, acid, ketone or aldehyde C=0, carboxylic
ion, conjugated C=C, some silicone material, (CH2)n where n :> 4.
LC 5 Strong background adsorption, aliphatic CH, ester C=0 various (CH2)n groups, some silicone
adsorption.
LC 6 Bonded OH, aliphatic CH, trace aromatic CH, ester C=0, aromatic C=C, silicone adsorption.
l> LC 7 Similar to No. 6, not as strong a spectrum.
oo
LC 8 Strong OH adsorption, very weak C-H, trace of C=0 (may be ^0 background) Si02 adsorption, low
organic content.
-------
TABLE 41. IR REPORT
SAMPLE: PLANT L
LC 1 Aliphatic CH, trace C=0, C=C, CH2 group >4, possible CH (CHa)2 group—mainly aliphatic hydro-
carbons.
LC 2 Aliphatic hydrocarbons—branched chain, trace of C=0, C=C no long (CH2)n groups.
LC 3 Bonded OH, aliphatic CH, ester C=0, conjugated C=C strong ether group, possible glycol ether.
LC 4 Bonded OH, aliphatic CH, ester C=0, nitrite (C=0, group, strong ether group, various straight
and branched CH2 groups.
LC 5 Bonded OH, some aromatic CH, aliphatic CH, C=N nitrite group, ester C=0, conjugated or aromatic
C=C, ether group, very complex mixture spectrums.
LC 6 Similar to No. 5 but less C=N, more bonded OH, ester C=0, conjugated or aromatic C=C, some
jJJ; aromatic C-H, aliphatic CH, ether grouping—complex spectra.
VO
LC 7 Some bonded OH, aliphatic CH, trace C=R, carboxylate ion, possible C-C1 group.
LC 8 Contains water and Si02, plus some of materials found in No. 7—Carboxylate ion.
-------
TABLE 42. IR REPORT
SAMPLE: PLANT N
LC 1 Long chain aliphatic hydrocarbons.
LC 2 Aliphatic CH, ester C=0, possible CH(CHa)2 group, spectrum not very distinct.
LC 3 Weak bonded OH, aliphatic CH, ester C=0, conjugated C=C, CH(CH3)2 group, various CH2 groups.
LC 4 Weak bonded OH, aliphatic CH, ester C=0, possible fatty acid groups.
LC 5 Bonded OH, aliphatic CH, medium ester C=0, nonconjugated C=C, not very distinct spectrum.
LC 6 Bonded OH, aliphatic CH, ester C=0, acid, aldehyde or ketone C^O, conjugated C=C, aliphatic
ketone or ester group, possible ether group, various CH£ chain length.
LC 7 Bonded OH, aliphatic CH, ester C=0, conjugated C=C, possible fatty acid groups, ether group.
o LC 8 Strong OH, weak aliphatic CH, ketone, acid, or aldehyde C=0, strong C=C, ether group.
-------
TABLE 43. IR REPORT
SAMPLE: PLANT S
LC 1 Aliphatic hydrocarbon, chain length < €4, unidentified bond at 1,265 cm
LC 2 Aliphatic hydrocarbons, trace of ester C=0, trace of C=C, not well defined below 1,300 cm .
LC 3 Aliphatic CN, trace of aromatic CH, very strong ester C=0 or aldehyde C=0. Ester group may
be acetate; if aldehyde, long chain aldehyde.
LC 4 Strong background adsorption 4,000 cm to 900 cm . Aliphatic CH, ester or aldehyde C=0.
Poor spectrum for interpretation.
LC 5 Nearly identical to No. 4.
LC 6 Very complex spectra. Bonded OH, aliphatic CH, ester and acid, ketone or aldehyde C=0, ether
or SiO groups. Several types of CH2 groupings.
LC 7 Weak and diffuse spectra. Aliphatic CH, ester C=0 serve C=C, ether or SiO group.
LC 8 Strong OH group, weak aliphatic CH, weak acid; aldehyde or ketone C=0, strong conjugated C=C
contains some Si02, diffuse spectrum.
-------
TABLE 44. IR REPORT
SAMPLE: PLANT T
LC 1 Bonded OH, aliphatic CH, ester C=0, some C=C, CH2 groups >C4.
LC 2 Bonded OH, aliphatic CH, medium ester C=0, possible fatty acid group, no definite CH2 groupings.
LC 3 Bonded OH, aliphatic CH, strong ester C=P, nonconjugated C=C, ether or SiO groups. Various
chain lengths of (CH2)n.
LC 4 Bonded OH, medium aliphatic CH, medium ester C=0, nonconjugated C=C, ether or SiO group,
various (CH2)n groups, possible acid salts.
LC 5 Similar to No. 3.
LC 6 Bonded OH, aliphatic CH, medium ester C=0, series of 5 unknown bonds, medium intensity 1,510 cm
to 1,610 cm , ether or SiO group, various (CH2)n groups.
LC 7 Similar to No. 6, but weaker OH, C=CO, conjugated C=C, fatty acid groups? Ether or SiO group.
groups.
LC 8 Very strong bonded group, medium aliphatic CH, weak ester C=0, strong nonconjugated C=C possible
fatty acid group, ether or SiO group, no CH2 > C4.
-------
ON
TABLE 45. IR REPORT
SAMPLE: PLANT U
LC 1 Aliphatic hydrocarbon, conjugated or aromatic C=C, weak, (CH2)n--no > 4.
LC 2 Aliphatic hydrocarbon, conjugated C=C (alkene?) diffuse CH2 groups.
LC 3 Aliphatic C-H, ester C=0, conjugated or aromatic C=C, possible unsaturated ester-fumarate,
maleate, etc.
LC 4 Bonded OH, trace sec N-H or oxcetone C=0, aliphatic C-H, possible trace C^N, ester C=0, con-
jugated C=C, unsaturated ester group. Complex spectra below 1,500 cm
LC 5 Aliphatic C-H, ester C=0, diffuse spectra below 1,100 cm .
LC 6 Complex spectra, bonded OH, NH or C^O overtone, aliphatic C-H, ester C=0, acid, aldehyde or
•e- ketone C=0 (weak), ether group, complex bond pattern below 1,500 cm
LC 7 Bonded OH, aliphatic C-H, ester C=0, conjugated C=C, possible ether group, miscellaneous
(CH2)n groups.
LC 8 Bonded OH strong, aliphatic CH, strong C=C, ether group, some Si02 possible glycol ethers.
-------
TABLE 46. IR REPORT
SAMPLE: PLANT V
LC 1 Aliphatic CH, (CH2)n, where n > 4, hydrocarbons plus possible Si - CH3.
LC 2 Aliphatic and aromatic CH, some ester C=0, silicones.
LC 3 Poor spectrum—low organic content? Aliphatic CH strong background adsorption.
LC 4 Bonded OH, aromatic and aliphatic CH, ester C=0, conjugated C=C, silicones.
LC 5 Identical to No. 4.
LC 6 Aliphatic CH, ester C=0, silicones, CH, various groups ester stronger, silicones weaker than
in No. 4 or No. 5.
LC 7 Bonded OH, aliphatic CH, ester C=0, conjugated C=C ether group — possible glycol ether compounds.
LC 8 Strong bonded OH, weak aliphatic CH, ester C=0, strong C=C, some ether under Si02 adsorption.
-------
TABLE 47. IR REPORT
SAMPLE: PLANT W
LC 1 Bonded OH, aliphatic CH, ester C=0, possible ether groups (CH2)n where n > 4. Not typical
fraction 1 .
LC 2 Aliphatic CH groups, ester C=0, weak spectrum.
LC 3 Aliphatic ester compounds, ester C=0, no aromatic CH.
LC 4 Trace OH, aliphatic CH, ester C=P, weak diffuse spectrum.
LC 5 Weak diffuse spectrum, poor background, OH (water?). Aliphatic CH, weak ester C=0, noncon-
jugated C=C.
LC 6 Bonded OH, aliphatic CH, ester C=0, long chain CH2 groups, unsaturated acid, aldehyde or ketone,
conjugated C=C, possible amide groups.
LC 7 Poor spectrum. Bonded OH, aliphatic CH, numerous C=0 types, C=C, amide possible, very diffuse
below 1,400 cm
LC 8 Weak spectrum, bonded OH--likely H20, very weak aliphatic CH, low organic content.
-------
TABLE 48. IR REPORT
SAMPLE: PLANT X
LC 1 Aliphatic hydrocarbons, possible Si (CHs).
LC 2 Aliphatic CH, ester C=0, conjugated C=C, hydrocarbon.
LC 3 Bonded OH, aliphatic CH, ester C=0, phthalate plus other types of ester materials.
LC 4 Similar to fraction No. 3.
LC 5 Bonded OH, trace aromatic CH, aliphatic CH, ester C=0, acid, aldehyde or ketone C=0, conjugated
C=C, various straight and branched CH2 chains.
LC 6 Bonded OH, aliphatic CH, ester C=0, conjugated and aromatic C=C, ether group, long CH2 chains.
LC 7 Very similar to No. 6.
4^
0 LC 8 Strong OH adsorption, similar to No. 6 and No. 7 but more OH and presence of
-------
TABLE 49. LRMS REPORT
SAMPLE: PLANT A
1.
LC
1
2
3
4
5
6
7
8
2.
LC
1
2
3
4
5
Categories Present
Intensity
*
100
100
100
100
*
*
100
10
10
10
*
10
100
Subcategories, Specific Compounds \
Intensity
M
*
100
100
100
*
*
Category MW range
*
Aliphatics
Aromatics -
Aliphatics -
Aromatics -
*
*
Aliphatics -
Alcohols/ethers -
Phenols
Esters
*
Aliphatics -
Alcohols/ethers -
Compound m/e Composition
* - _
Parafinic/olefinic (or parafinic)*5
Alkyl benzenes, (91, 105, 114, 133
ions present)0"
(Same as LC-2)
*
* -
See footnotes at end of table.
-------
TABLE 49 (con.)
00
3.
LC
1
2
3
4
5
6
7
8
2. Subcategories, Specific Compounds (con.
LC Intensity
6 100
10
7
8
10
10
A
10
100
Other
Intensity
*
No masses above 498
10: 368(100), 369(45), 353(20)
1: 345(100), 396(35), 411(30)
No masses above 414
A
No masses above 368
100: 254(100), 126(20), 127(15)
Compound m/e
Parafinic/olefinic (or cyclic para-
Alcoholic ethers (45 ions to 89 -
ions)*§
Bis (hydroxy-t -butyl phenyl) propane 340
Di-n-octyl phthalate „„„
Parafinic/olefinic (or cyclic-para-
Alcoholic-ethers (45 ions to 89 -
ions)*§
Ethers: Di-n-octyl phthalate 390
Composition
C23H32°2
C24H38°4
C24H38°4
See footnotes at end of table.
-------
TABLE 49 (con.)
Footnotes
*0rganic weight of fraction below gravimetric threshold of 0.1 rag; therefore, no analysis was performed,
tGenerally all ions up through 498 present in aliphatic-type pattern; however, all mass >100 are
abnormally strong for typical aliphatics.
4-No molecular weight range determination possible.
§No composition determination possible.
NOTE: LRMS performed on CH2C12 extract of secondary effluent.
-------
TABLE 50. LRMS REPORT
SAMPLE: PLANT B
1.
LC
1
2
3
4
5
6
7
*> 8
-vl
o
2.
LC
1
2
3
4
5
6
7
Categories Present
Intensity
A
100
100
A
10
A
1
100
A
10
10
10
Subcategories, Specific Compounds
Intensity
A '
100
100
A
10
A
1
100
t
A
Category MW range
A -
Aliphatics -
Esters
A _
Aliphatic
A
Aliphatics -
Phenols -
A
Aliphatics -
Alcohols /ether s
Esters
Compound m/e Composition
A _ _
Same as Plant A, Fraction 2 -
Same as esters, Plant A, Fraction 6 -
A _
Same as Plant A, Fraction 2 -
A _ _
Same as Plant A, Fraction 2
Bis (hydroxy-t-butyl phenol) propane 390 C«,.H,.90
A _ _
See footnotes at end of table.
-------
TABLE 50 (con.)
2.
LC
8
Subcategories, Specific Compounds (con.)
Intensity
10
10
Compound m/e
Same as Plant A, Fraction 2 -
Alcohols/ethers (45 ions to 89
Composition
3.
LC
1
2
3
10
ions)ft
Same as esters, Plant A,
Fraction 6
Other
Intensity
*
No masses above 354
*
4
5
6
7
8
No masses above
10: 279(100),
100: 341(100),
100: 381(100),
100: 410(100),
100: 429(100),
*
No masses above
*
No masses above
100: 294(100),
483
294(28),
356(36),
396(15),
151(37),
444(23),
437
414
127(20),
280(12)
342(27)
382(11)
411(31)
445(15)
\
128(12)
Organic weight of fr'action below gravimetric threshold of 0.1 mg; therefore, no analysis was performed.
No molecular weight range determination possible.
No composition determination possible.
NOTE: LRMS performed on CH2C12 extract of secondary effluent.
-------
TABLE 51. LRMS REPORT
SAMPLE: PLANT F
ho
1.
LC
1
2
3
4
5
6
7
8
2.
LC
1
2
Categories Present
Intensity
100
100
100
1
100
10
100
10
10
10
1
10/100
100
1
10/100
10
100
10
100
10
100
Subcategories, Specific Compounds
Intensity
100
100
'100
Category MW Range
Aliphatics -
Aliphatics -
Esters
Aliphatics
Aromatics -
Esters -
Aliphatics
Aromatics
Esters -
Aliphatics -
Aromatics -
Phenols -
Esters
Aromatics -
Phenols -
Esters
Aliphatic
1 Phenols
Esters
Aliphatics -
Esters
Compound m/e Composition
*t
Primarily parafinic - -
Same as Plant A, Fraction 2 -
Same as esters, Plant A, Fraction 6 - -
See footnotes at end of table.
-------
TABLE 51 (con.)
2. Subcategories,
LC Intensity
3 1
100
10
4 100
10
10
5 10
1
10
100
*. 100
^6 1
10
100
10
7 100
10
100
8 10
100
Specific Compounds (con.)
Compound
*t
Aliphatics
Alkyl benzenes: Tri-t-butyl benzene
Same as esters, Plant A, Fraction 6
Same as Plant A, Fraction 2
Tri-t-butyl benzene
Same as esters, Plant A, Fraction 6
Same as Plant A, Fraction 2
Aikyl benzenes: Tri-t-butyl
benzene*"'"
Alkyl phenols (135, 107, 121, 148
ions)*t
Bis (hydroxy-t-butyl phenyl)
propane
Same as esters, Plant A, Fraction 6
Tri-t-butyl benzene
Alkyl phenols (135, 107, 121, 149
ions)**
Bis (hydroxy-t-butyl phenyl)
propane
. Same as esters, Plant A, Fraction 6
*t
Primarily parafinic
Bis (hydroxy-t-butyl) propane
Same as esters, Plant A, Fraction 6
Same as Plant A, Fraction 2
Same as esters, Plant A, Fraction 6
m/e
—
246
—
-
246
—
-
246
-
390
—
246
—
390
-
—
390
-
_
—
Composition
-
C18H30
•ft* *-' •-** ^/
-
C18H30
_H-> ^J\J
-
C1QH_0
18 3
-
C23H32°2
£, J J£m £~
CT1
1 O O f\
18 JO
_
C?,.H^70
J_
_
C H 0
23 32 2
—
See footnotes at end of table.
-------
TABLE 51 (con.)
3. Other
LC Intensity
1 No masses above 446
2 No masses above 354
3 No masses above 354
4 No masses above 381
5 No masses above 340
10: 239(100), 240(20), 254(25)
6 No masses above 354
100: 45(100), 42(90) (2 compounds)
100: 59(100) (4 compounds)
7 No masses above 354
8 No masses above 354
No molecular weight range determination possible.
No composition determination possible.
NOTE: LRMS performed on CH2C1 extract of secondary effluent,
-------
TABLE 52. LRMS REPORT
SAMPLE: PLANT G
1.
LC
1
2
3
4
5
6
7
8
2.
LC
1
Categories Present
Intensity
100
1
100
100
1
100
1
10
1
100
100
100
1
1
100
100
1
1 '
100
10
1
Subcategories, Specific Compounds
Intensity
100
1
Category MW Range
Aliphatics -
Aliphatics
Esters . -
Aliphatics
Esters -
Aliphatics
Esters
Aliphatics -
Phenols
Esters -
Aliphatics -
Alcohols/esters -
Phenols -
Esters
Aliphatics -
Alcohols/ethers -
Phenols
Esters -
Aliphatics -
Alcohols/ethers -
Esters -
Compound m/e Composition
Same as Plant F, Fraction 2 -
Same as Plant A, Fraction 2 -
100
Same as esters, Plant A, Fraction 6
-------
TABLE 52 (con.)
2. Subcategories. Specific Compounds (con.)
LC_ Intensity
3 100
1
4 100
1
5 10
1
100
6 100
100
1
1
100
100
1
1
100
10
1
Compound m/e
Same as Plant A, Fraction 2 -
Same as esters, Plant A, Fraction 6
Same as Plant A, Fraction 2 -
Same as esters, Plant A, Fraction 6
Same as Plant A, Fraction 2
Same as phenols, Plant A, Fraction 6 -
Same as esters, Plant A, Fraction 6
Same as Plant A, Fraction 2
Alcoholic ethers with 41, 43, 45,
55, 57, 59 ions*t
Same as phenols, Plant A, Fraction 6 -
Same as esters, Plant A, Fraction 6
Same as Plant A, Fraction 2
Same as Fraction 6 -
Same as phenols, Plant A, Fraction 6 -
Same as esters, Plant A, Fraction 6
Same as Plant A, Fraction 2 -
Same as Fraction 6 -
Same as esters, Plant A, Fraction 6
Composition
See footnotes at end of table.
-------
TABLE 52 (con.)
3. Other
L£ Intensity
1 No masses above 410
2
3 No masses above 378
4 No masses above 381
5 No masses above 325
6 No masses above 354
1:69(100), 41(87), 43(78)
7 No masses above 354
10:69 (100), 41(80), 43(78)
8 No masses above 354
A
No molecular weight range determination possible.
No composition determination possible.
NOTE: LRMS performed on CH_C1? extract of secondary effluent,
-------
TABLE 53. LRMS REPORT
SAMPLE: PLANT L
^1
oo
1.
LC
I
2
3
4
5
6
7
8
2.
LC
1
2
Categories Present
Intensity
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100/10
100
100 l
100
Subcategories, Specific Compounds
Intensity
100
100
100
Category MW Range
Aliphatics -
Aliphatics -
Aromatics
Phenols -
Esters -
Aliphatics -
Aromatics -
Phenols -
Esters
Aliphatics -
Phenols -
Esters -
Phenols -
Esters -
Aliphatics -
Phenols -
Esters -
Aliphatics
Esters -
Compound m/e Composition
Same as Plant F, Fraction 1 -
Same as Plant F, Fraction 1
Same as Plant A, Fraction 3 -
-------
TABLE 53 (con.)
2. Subcategories, Specific Compounds (con.)
LC
3
4
5
6
7
8
Intensity
100
100
100
100
100
100
100
100
100
100
100
100
100
100
10
100
100
Compound m/e
Alkyl phenols (135, 107, 121, 149
ions)*t
Same as esters, Plant A, Fraction 6
Same as Plant F, Fraction 1
Same as Plant F, Fraction 3
Di-t-butyl phenol 206
Same as esters, Plant A, Fraction 6 -
Same as Plant F, Fraction 1
Alkyl phenol (135, 107, 121, 149
ions)*t
Same as esters, Plant A, Fraction 6 -
Alkyl phenols (135, 107, 121, 149
ions)*t
Phthalate, probably di-Cs alkyl but
with a new series of ions added
(203, 237, 251, 265, 279)
Same as Plant A, Fraction 2
( Alkyl phenols (135, 107, 121, 144
ions)*t
Bis-(hydroxy-t-butyl phenyl)
propane 340
Same as Plant A, Fraction 2
Same as Plant A, Fraction 6
Composition
-
-
-
-
C14H22°
XH- £• £•
_
-
—
-
_
-
-
C9.H 0.
2.J 32 2
—
—
See footnotes at end of table.
-------
TABLE 53 (con.)
3. Other
LC Intensity
1 No masses above 367
2 No masses above 367
3 No masses above
10: 69(100), 41(80), 43(78)
4 No masses above 429
5 No masses above 429
10: 69(100), 41(80), 43(78)
6 No masses above 340
7 Ho masses above 381
*. 100: 69(100), 41(80), 43(78)
§ 1: 158
1: 200(100), 201(86)
10: 280(100), 279(98)
8 No masses above 279
1: Cesium iodide from infrared plates
\
No molecular weight range determination possible.
No composition determination possible.
NOTE:
LRMS performed on CH?C1_ extract of secondary effluent,
-------
TABLE 54. LRMS REPORT
SAMPLE: PLANT N
oo
1.
LC
1
2
3
A
5
6
7
8
2.
LC
1
Categories Present
Intensity
100
10
100
100
100
100
100
10
100
10
100
10
100
100
10
10
10/10
10
100
10
1
I
100
10
100
Subcategories. Specific Compounds
Intensity
*100
10
Category MW Range
Aliphatics -
Esters -
Aliphatics -
Aromatic s ' -
Esters -
Aliphatics
Aroma tics
Esters -
Aliphatics -
Esters -
Aliphatics -
Phenols -
Esters -
Aliphatics
Aroma tics -
Amines
Phenols -
Esters -
\
Aliphatics -
Phenols _
Phenols _
Esters _
Aliphatics _
Phenols _
Esters _
ComP°und m/e Composition
Same as Plant A, Fraction 2
Same as esters, Plant A, Fraction 6 -
-------
TABLE 54 (con.)
00
2. Subcategories,
LC Intensity
it-
2 100
100
100
3 100
100
10
4 100
10
5 100
10
100
6 100
10
10
10
10
7 100
10
1
1
8 100
10
100
Specific Compounds (con.)
Compound m/e Composition
Same as Plant A, Fraction 2 -
Alkyl benzene (91, 105, 119 ions)*t
Same as esters, Plant A, Fraction 6 -
Same as Plant A, Fraction 2 -
Same as Plant A, Fraction 3 - -
Same as esters, Plant A, Fraction 6 -
Same as Plant A, Fraction 2 - _
Same as Plant A, Fraction 6 -
Same as Plant A, Fraction 2 -
Same as Plant F, Fraction 5 -
Same as esters, Plant A, Fraction 6 - _
Same as Plant A, Fraction 2 _ _
t-Butyl dichlorobenzene 202 C H Cl
10 12 2
Dichloroaniline ifti Q jj J^Q^
Same as phenols, Plant F, Fraction 5 _ 6 5 _ 2
Same as phenols, Plant A, Fraction 6 - _
Phthalate, probably di-Cg alkyl but
with a new series of ions added:
< 223, 237, 251, 265, 279 390 C H 0
24 38 4
Same as Plant A, Fraction 2
Same as phenols, Plant F, Fraction 5 _
Same as phenols, Plant A, Fraction 6 -
Same as esters, Plant A, Fraction 6
Same as Plant A, Fraction 2 - -
Same as phenols, Plant F, Fraction 5 - -
Same as esters, Plant A, Fraction 6 -
See footnotes at end of table.
-------
TABLE 54 (con.)
oo
OJ
3.
LC
1
2
3
Other
5
6
7
8
Intensity
No masses above 428
No masses above 394
No masses above 498
10: 368(100), 369(30), 353(20)
10: 395(100), 396(30)
1: 410(100), 411(30)
No masses above 499
10: 368(100), 369(30), 353(20)
10: 395(100), 396(30)
10: 410(100), 411(30)
No masses above 279
No masses above 490
1: 155
No masses above 340
No masses above 279
1: Cesium iodide
No molecular weight range determination possible.
No composition determination possible.
NOTE: LRMS performed on CH-Cl- extract of secondary effluent.
-------
TABLE 55. LRMS REPORT
SAMPLE: PLANT S
1.
LC
1
2
3
4
5
oo
-P-
6
7
8
Categories Present
Intensity
100
100
100
100
10
1
10
100
10
10
10
100
100
1
100
10
10
1
10
100
100
10
Category
Aliphatics
Aliphatics
Aromatic s
Aliphatics
Aromatics
Esters
Aliphatics
Aromatics
Aromatics
Phenols
Phenols
Aliphatics
Aromatics
Aliphatics
Aromatics
Phenols
Esters
l Aliphatics
Aromatics
Esters
Aliphatics
Esters
MW Range
-
—
-
-
-
-
-
-
-
-
-
-
-
-
-
2. Subcategories, Specific Compounds
LC Intensity
1 100
Compound
Same as Plant A, Fraction 2
m/e
Composition
-------
TABLE 55 (con.)
oo
Ul
2.
LC
2
3
4
5
6
7
8
Subcategories, Specific Compounds (con.)
Intensity
100
100
100
10
1
10
100
10
10
10
100
100
1
100
10
10
1
10
100
100
10
1
1
Compound m/e
Same as Plant A, Fraction 2
Same as Plant A, Fraction 2
Same as Plant A, Fraction 2
Same as Plant F, Fraction 3
Same as Plant A, Fraction 6 -
Same as Plant A, Fraction 2
Toluene-sulfonyl groups (91, 155
ions)
Best identity is p-toluene -
sulf onamide
Same as Plant F, Fraction 3 -
Di-t-butyl phenol 206
Same as Plant A, Fraction 2
Toluene-sulfonyl group (91, 155
ions)
Best identity p-toluene sulfonamide
Same as Plant A, Fraction 2 -
Toluene-sulfonyl group (91, 155
< ions)*t
Same as phenols, Plant A, Fraction 6 -
Same as esters, Plant A, Fraction 6
Same as Plant A, Fraction 2
Same as aromatics, Plant A, Fraction -
Fraction 4
Same as esters, Plant A, Fraction 6 -
Same as Plant A, Fraction 2
Same as esters, Plant A, Fraction 6
Methyl esters (74, 89 ions)*t
Composition
_
-
-
-
-
-
-
-
-
—
C14H22°
-
-
-
-
-
_
-
-
-
-
-
-
See footnotes at end of table.
-------
TABLE 55 (con.)
3. Other
LC Intensity
1 No masses above 446
2 No masses above 446
3 No masses above 452
4 No masses above 477
1: 381(100), 382(27), 396(17)
5 No masses above 354
100: 98(100), 97(75)
6 No masses above 446
10: 90(100), 91(68), 106(58)
7 No masses above 446
10: 90(100), 91(68), 106(58)
8 No masses above 354
*
No molecular weight range determination possible.
No composition determination possible.
NOTE:
LRMS performed on CH_C1? extract of secondary effluent,
-------
TABLE 56. LRMS REPORT
SAMPLE: PLANT T
00
1.
LC
1
2
3
4
5
6
7
8
Categories Present
Intensity
100
1
100
100
10
100
100
10
10
100
10
10
1
10
100
100
100
100
100
100
100
100
10
10
Category
Aliphatics
Esters
Aliphatics
Aromatics
Esters
Aliphatics
Aliphatics
Aromatics
Esters
Aliphatics
Aromatics
Phenols
Esters
Aliphatics
Esters
Aliphatics
Phenols
Phenols
Esters
Aliphatics
Phenols
Esters
Aliphatics
Esters
MW Range
-
*"
-
-
-
-
-
-
-
_
-
-
-
_
-
„_
-
_
-
_
_
-
—
-
NOTE: LRMS performed on CH2C12 extract of secondary effluent.
-------
TABLE 56 (con.)
2.
LC
1
oo
oo
Subcategories, Specific Compounds
Intensity
100
1
100
100
10
100
100
10
10
100
10
10
1
10
100
100
100
100
100
Compound
Same as Plant A, Fraction 2
Same as esters, Plant A,
Fraction 6
Same as Plant A, Fraction 2
Same as Plant A, Fraction 2
Same as esters, Plant A,
Fraction 6
Same as Plant A, Fraction 2
Same as Plant F, Fraction 1
Same as Plant F, Fraction 3
Same as esters, Plant A,
Fraction 6
Same as Plant F, Fraction 1
Same as Plant F, Fraction 3
Di-t-butyl phenol
Same as Plant A, Fraction 6
Jjame as Plant A, Fraction 2
Same as esters, Plant A,
Fraction 6
Same as Plant F, Fraction 1
Same as Plant F, Fraction 3
Same as phenols, Plant A,
Fraction 6
Same as esters, Plant A,
Fraction 6
m/e
Composition
206
NOTE:
LRMS performed on CKLC1- extract of secondary effluent
-------
TABLE 56 (con.)
2. Subcategories, Specific Compounds (con.)
LC
7
Intensity
100
100
100
10
10
Compound m/e
Same as Plant A, Fraction 2
Same as phenols, Plant F,
Fraction 5
Phthalate, probably di-CR alkyl but
with a new series of ions added:
223, 237, 251, 265, 279 ions 390
Same as Plant A, Fraction 2
Same as esters, Plant A,
Fraction 6.
Composition
C24H38°4
3. Other
LC Intensity
1 No masses above 362
2 No masses above 312
10:69 (100), 41(80), 43(78)
3 No masses above 486
1:314(100), 315(25)
10:410(100), 411(32)
4 No masses above 396
10:69(100), 41(80), 43(78)
5 No masses above 396
6 No masses above 340
100:99
NOTE: LRMS performed on CH2C12 extract of secondary effluent.
-------
TABLE 56 (con.)
3. Other (con.)
LC Intensity
7 No masses above 279
8 No masses above 336
100:117(100), 59(44)
10:69(100), 41(80), 43(78)
Also many organo-silicon ions:
e.g., 207, 221, etc.
vo
o
NOTE: LRMS performed on CILCl extract of secondary effluent
-------
TABLE 57. LRMS REPORT
SAMPLE: PLANT U
1.
LC
1
2
3
4
5
6
7
8
Categories Present
Intensity
100
100
100
100
100
100
10
10
100
100
10
100
100
10
100
100
10
100
100
10
Category
Aliphatics
Aliphatics
Aromatics
Aliphatics
Aliphatics
Esters
Esters
Amines
Aliphatics
Esters
Amines
Aliphatics
Esters
Amines
1
Aliphatics
Phenols
Esters
Esters
Aliphatics
Esters
MW Range
-
-
-
-
-
-
-
-
-
-
-
-
-
-
NOTE: LRMS performed on CH Cl extract of second effluent.
-------
TABLE 57 (con.)
2. Subcategories, Specific Compounds
LC Intensity
1 100
2 100
100
3 100
4 100
100
10
10
§ 5 100
100
10
6 100
100
10
7 100
100
10
100
Compound m/e
Same as Plant F, Fraction 1
Same as Plant A, Fraction 2
Same as Plant A, Fraction 2
Same as Plant A, Fraction 2
Same as Plant A, Fraction 2
Same as esters, Plant A,
Fraction 6
Vinyl stearate 310
Azo compound:
Naphthalene-mno-azo-benzene 248
Same as Plant A, Fraction 2
Same as esters, Plant A,
Fraction 6
Halogenated amines: chloroaniline 127
Same as Plant A, Fraction 2
Same as esters, Plant A, 310
Fraction 6 and vinyl stearate
Chloroaniline 127
Same as Plant A, Fraction 2
Same as phenols, Plant A,
Fraction 6
Same as esters, Plant A,
Fraction 6
Vinyl stearate 310
Composition
-
-
-
—
C20H38°2
-
C,H,C1
O D
C20H38°2
C6H6C1
.
—
C20H38°2
NOTE: LRMS performed on CJLCl- extract of secondary effluent.
-------
TABLE 57 (con.)
2. Subcategories, Specific Compouru.^.
LC Intensity Cou.t m/e Composition
8 100 Same as PJ.O.. . A, Fraction 2 -
10 Same as esters, Plant A, Fraction 6 -
3. Other
LC Intensity
1. No masses above 404
2 No masses above 410
3 No masses above 398 in aliphatic type pattern; all masses above 100 are abnormally strong
for typical aliphatics.
-t> 4 No masses above 411
S 10:410(100), 411(30)
5 No masses above 444
10:429(100), 444(20)
6 No masses above 496
(
7 No masses above 495
Similar to unusual pattern in Fraction 3 through mass 495.
8 No masses above 340
100:155
10:254, 127(diatomic iodine or probably napthyl iodide).
1: Cesium iodide..
NOTE: LRMS performed on CH2C12 extract of secondary effluent.
-------
TABLE 58. LRMS REPORT
SAMPLE: PLANT V
1.
LC
1
2
3
4
5
6
7
8
Categories Present
Intensity
100
10
100
10
100
1
100
10
10
100
10
100
100
100
100
10
100
100
100
Category
Aliphatics
Esters
Organo-silicon species
Esters
Aliphatics
Aromatics
Esters
Aliphatics
Organo-silicon species
Esters
Phenols
Esters
Aliphatics
Phenols
Esters
Aliphatics
Alcohols/ethers
Esters
Esters
MW Range
-
-
-
-
-
_
-
-
-
-
-
-
NOTE: LRMS performed on CKLC1- extract of secondary effluent.
. £- £-
-------
TABLE 58 (con.)
2. Subcategories, Specific Compounds
LC Intensity
1
100
10
100
10
100
1
100
10
10
100
10
100
100
100
100
10
100
100
100
Compound m/e
Same as Plant F, Fraction 1
Same as esters, Plant A, Fraction 6
73 (dominant), 147, 207, 221,
355 ions*t
Same as esters, Plant A, Fraction 6
Same as Plant A, Fraction 2
Same as Plant A, Fraction 2
Same as esters, Plant A, Fraction 6
Same as Plant F, Fraction 1
73(dominant), 147 ions*t
Same as esters, Plant A, Fraction 6
Same as phenols, Plant A, Fraction 6
Same as esters, Plant A, Fraction 6
Same as Plant F, Fraction 1
Same as phenols, Plant A, Fraction 6
Same as esters, Plant A, Fraction 6
Same as Plant F, Fraction 1
Pattern indicates alcoholic ethers
41, 43, 49(dominant) and 55, 57, 59
(dominant) ion clusters'1^
Same as esters, Plant A, Fraction 6
Same as esters, Plant A, Fraction 6
Composition
*No molecular weight range determination possible.
tNo composition determination possible.
NOTE: LRMS performed on CH2C1 extract of secondary,effluent.
-------
TABLE 58 (con.)
3. Other
LC Intensity
1 No masses above 451
2 No masses above 491
3 No masses above 296
10L69C100), 41(80), 43(78)
4 No masses above 477
100:69(100), 41(80), 43(78)
5 No masses above 340
10:69(100), 41(80), 43(78)
6 No masses above 253
10:156(100), 155(35)
Possibly bipyridyl or phenyl cyclohexadiene MW 156 each
7 No masses above 373
8 No masses above 279 '
NOTE: LRMS performed on CH2C12 extract of secondary effluent.
-------
TABLE 59. LRMS REPORT
SAMPLE: PLANT W
1. Categories Present
LC
1
2
3
4
5
6
7
8
Intensity
100
100
1
100
10
100
10
1
100
10
100
10
10
100
100
10
100
10
100
Category MW range
Aliphatics
Aliphatics
Esters
Aliphatics
Aroma tics
Esters
Aliphatics
Esters
Aliphatics
Esters
Aliphatics
Phenol
Esters
Aliphatics
, Phenols
Phenols
Aliphatics
Esters
Aliphatics
NOTE: LRMS performed oh
extract of secondary effluent.
-------
TABLE 59 (con.)
oo
2. Subcategories, Specific Compounds
LC
1
2
3
4
5
6
7
8
Intensity
100
100
1
100
10
100
10
1
100
10
100
10
10
100
100
10
10
100
10
100
Compound m/e
n-Paraf fins*t
Same as plant A, fraction 2
Same as esters, plant A, fraction 6
Same as plant A, fraction 2
Same as plant A, fraction 2
Same as esters, plant A, fraction 6
Same as plant A, fraction 2
Same as plant A, fraction 6
Same as plant A, fraction 2
Same as esters, plant A, fraction 6
Same as plant A, fraction 2
Same as phenols, plant A, fraction 6
Same as esters, plant A, fraction 6
Same as plant A, fraction 2
Same as plant F, fraction 5
Same as phenols, plant A, fraction 6
' Same as esters, plant A, fraction 6
Same as plant A, fraction 2
Same as esters, plant A, fraction 6
Same as plant A, fraction 2
Comp^siJtiojEl
_
-
—
-
-
—
-
—
-
-
-
-
-
-
-
-
-
-
-
-
*No molecular weight range determination possible.
tNo composition determination possible.
' ' ' .
NOTE: LRMS performed on CH2C12 extract of secondary effluent.
------- |