EPA-600/3-76-107
November 1976
Ecological Research Series
OXIDANT-PRECURSOR RELATIONSHIPS DURING
POLLUTANT TRANSPORT CONDITIONS
An Outdoor Smog Chamber Study
Environmental Sciences Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into five series. These five broad
categories were established to facilitate further development and application of
environmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The five series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
This report has been assigned to the ECOLOGICAL RESEARCH series. This series
describes research on the effects of pollution on humans, plant and animal
species, and materials. Problems are assessed for their long- and short-term
influences. Investigations include formation, transport, and pathway studies to
determine the fate of pollutants and their effects. This work provides the technical
basis for setting standards to minimize undesirable changes in living organisms
in the aquatic, terrestrial, and atmospheric environments.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-600/3-76-107
November 1976
OXIDANT-PRECURSOR RELATIONSHIPS DURING
POLLUTANT TRANSPORT CONDITIONS
An Outdoor Smog Chamber Study
L. A. Ripperton, J. E. Sickles, II, and W. C. Eaton
Systems and Measurements Division
Research Triangle Institute
Research Triangle Park, North Carolina 27709
Contract No. 68-02-1296
Project Officer
J. J. Bufalini
Gas Kinetics and Photochemistry Branch
Environmental Sciences Research Laboratory
Research Triangle Park, North Carolina 27711
Environmental Sciences Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
-------
DISCLAIMER
This report has been reviewed by the Environmental Sciences Research
Laboratory, U.S. Environmental Protection Agency, and approved for publi-
cation. Approval does not signify that the contents necessarily reflect
the views and policies of the U.S. Environmental Protection Agency, nor
does mention of trade navies or commercial products constitute endorsement
or recommendation for use.
ii
-------
ABSTRACT
The formation of ozone under simulated conditions of pollutant transport
was studied in a group of four 27-cubic-meter outdoor smog chambers. The
chambers were constructed of 5 mil FEP Teflon on aluminum frames. The initial
charges in the smog chambers were irradiated for three days by natural sun-
light. Simulation of transport was accomplished by progressively diluting
the contents of the chambers with clean air.
The analogy between the chemical behavior of chamber simulations and
nonurban high-ozone (i.e., 0.08 ppm) systems in the field was good. On the
second and third days, the initial charges in the chambers generated ozone
concentrations greater than the National Ambient Air Quality Standard for
photochemical oxidant (0.08 ppm).
The initial charge of nonmethane hydrocarbon (NMHC) ranged from 1.0 to
10.0 ppmC; nitrogen oxides (NOX) ranged from 0.100 to 1.000 ppm. Therefore,
initial ratios of NMHC/NO^ varied from 7 to 20. On the second and third
days in the chambers, concentrations of NC^ ranged from 0.001 to 0.053 ppm;
NMHC ranged from 0.33 to 3.78 ppmC. The resulting NMHC/NO ratios varied
from 16 to 610.
This report was submitted in fulfillment of EPA contract 68-02-1296
(43U-994, RTI Contract Number) by the Research Triangle Institute under the
sponsorship of the Environmental Protection Agency.
ill
-------
Iv
-------
CONTENTS
Abstract ill
Figures vi
Tables vii
I. Introduction -.. . 1
II. Conclusions 2
III. Recommendations 4
IV. Description of RTI Smog Chamber Facility .......... 8
Design 8
Characterization 15
V. Design of Study ........ 17
Research plan 17
Reagents 20
Measurement methods .... 21
VI. Discussion of Results .............. 23
Ozone precursor relationships 25
"Fossil" ozone , 40
Dilution effect 45
Comparison of field observations with smog
chamber results 48
References 56
Appendixes . ...... . . . . . . . . . 57
A. Individual hydrocarbon analyses 57
B. Concentration profiles .............. . . . 78
-------
FIGURES
Number
1 A 27-cubic meter Teflon outdoor smog chamber 9
2 System diagram, RTI smog chambers 10
3 Air purification unit, RTI smog chamber 11
4 Reactant injection system, RTI smog chambers 13
5 Sampling system, RTI smog chambers 14
6 Range of all possible combinations of NO and nonmethane
hydrocarbon concentrations used in experimental work .... 19
7 Average maxima, minima, and A0_ concentrations as a
function of NO concentrations at sunrise on the second
and third days of irradiation 36
8 Average maxima, minima, and AO- concentrations as a function
of nonmethane hydrocarbon concentrations on the second
and third days of irradiation 37
9 Average maxima and AO- as a function of nonmethane hydro-
carbon to oxides or nitrogen ratio ............. 39
10 Vertical ozone soundings, August 1, 1974, Wilmington, Ohio. . . 41
11 Ozone profiles over second-day irradiations for same
initial conditions and different dilutions in Chamber #1 . . 46
12 Mean diurnal 0., concentration at Wilmington, Wooster, and
McConnelsville, Ohio, from June 14-August 31, 1974 49
13 Mean diurnal NO, concentration at Wilmington, Wooster, and
McConnelsville, Ohio, from June 14-August 31, 1974 ..... 50
14 Mean diurnal NMHC concentration at Wilmington, Wooster, and
McConnelsville, Ohio, from June 14-August 31, 1974 51
15 Typical three-day profiles for NO (a), N02 (A), and 03 (x). . . 52
vi
-------
TABLES
Numb e r Page
1 Initial Reactant Concentrations for a Proposed Extension
of the Study of Ozone-Precursor Relationships Under
Conditions of Pollutant Transport 5
2 Dilution Rate (24-Hour Dilution) 17
3 Selected Experimental Conditions, Contract (68-02-1296) ... 18
4 Experimental Conditions, Extended Project 18
5 Selected Results from the July 17-18 Two-Day Chamber
Runs 26
6 Selected Results from the July 22-24 Three-Day Runs 27
7 Selected Results from the July 28-30 Three-Day Runs 28
8 Selected Results from the August 4-6 Three-Day Runs 29
9 Selected Results from the August 8-10 Three-Day
Runs 30
10 Selected Results from the August 12-14 Three-Day
Runs 31
11 Net Ozone Generated on Second and Third Days of Irradiation
as a Function of Oxides of Nitrogen and Nonmethane
Hydrocarbon/Oxides of Nitrogen Ratio 32
12 Maximum Ozone Concentration on Second and Third Days of
Irradiation as a Function of Oxides of Nitrogen and
Nonmethane Hydrocarbon/Oxides of Nitrogen Ratio 33
13 Net Ozone Generated on Second and Third Days of Irradiation
as a Function of Nonmethane Hydrocarbon and Nonmethane
Hydrocarbon/Oxides of Nitrogen Ratio 34
14 Maximum Ozone Concentration on Second and Third Days of
Irradiation as a Function of Nonmethane Hydrocarbon and
Nonmethane Hydrocarbon/Oxides of Nitrogen Ratio 35
15 Dark-Phase Ozone Half-Lives in Smog Chamber Runs 43
vii
-------
SECTION I
INTRODUCTION
In the troposphere the primary pollutants, nitrogen oxides and hydro-
carbons, in the presence of sunlight can serve as ozone precursors. Defini-
tion of the influence of various environmental factors (such as transport)
on ozone formation is important in the design of strategies to prevent the
occurrence of excessive ozone concentrations.
Studies of experimentally produced photochemical smog have been mainly
concerned with simulation of "downtown" urban atmospheric conditions.
Typically, most experiments have involved from two to six hours of irradia-
tion. Recently observed high nonurban ozone concentrations (greater than
0.08 ppm hourly average) have called attention to the need to study the
oxidant/oxidant-precursor relationships in pollution systems after they
leave the city (i.e., leave the major sources of pollution). Under these
conditions, the pollution system is irradiated for prolonged periods (per-
haps for several diurnal cycles) with sunlight and is diluted with nonurban
air.
A study designed to investigate this problem should:
1. Determine the influence of oxides of nitrogen/hydrocarbon ratios
(NO /HC) upon oxidant generation under various conditions of
X
transport (as simulated by different dilution regimes).
2. Determine the potential for oxidant production of NO /HC mix-
X
tures in the course of several diurnal cycles of irradiation.
The objective of this study is to investigate, in outdoor reaction
chambers, the oxidant/HC/NO relationships in air mixtures that are simi-
X
lar to those resulting from drift of air pollution systems from urban en-
virons. Specifically, the oxidant/HC/NO relationships will be examined
X
under chamber-simulated conditions of atmospheric dilution and repeated
diurnal solar irradiation. The study is designed to address the question
of the maximum oxidant concentration obtainable from a given initial con-
centration of precursors on both the initial day of solar irradiation and
on subsequent days of irradiation.
-------
SECTION II
CONCLUSIONS
A study was designed to simulate the effects of transport of oxidant
and oxidant precursors on ozone (0.,) concentration behavior downwind from
urban areas. To perform th"-s simulation, experimental urban photochemical
systems were irradiated for three daylight periods with natural sunlight.
In most cases, there was a period of dilution of the reactant system to
simulate the dilution of urban pollution downwind of the center city. A
system of four 27-cubic-meter (950 cubic feet) outdoor smog chambers was
used for irradiation of the pollutants. The chambers were fabricated of
an aluminum frame covered with Teflon film.
The initial charges consisted of a mixture of 'hydrocarbons and oxides
of nitrogen (NO ) (20% nitrogen dioxide) in ratios of 7 to 20 and absolute
Wlh
concentrations of 1 to 10 ppmC nonmethane hydrocarbon (NMHC) and 0.100 to
1.000 ppra NO . By the second and third day, the measured NMHC concentration
X
range was 0.33 to 3.78 ppmC and the measured NO was 0.001 to
X
0.053 ppm.
The second and third day behavior of 0_ concentrations was remark-
ably similar to that observed in the field by RTI in rural areas which
exceeded the National Ambient Air Quality Standard (NAAQS) for photochemi-
cal oxidant.
The conclusions drawn from the study are presented below. 1) Oxides
of nitrogen in the 1-5 ppb concentration range (the noise level of current
instrumentation) are capable of generating net concentrations of Oq in
excess of the NAAQS in aged photochemical pollution systems; 2) Nonmethane
hydrocarbon (largely "nonreactive") concentrations only slightly higher
than the NAAQS for NMHC (0.24 ppmC) are capable of generating net concen-
trations of O.j in excess of the NAAQS for photochemical oxidant; 3) Although
the NMHC concentrations are greater than the NMHC NAAQS, this study suggests
the possibility that in the downwind drift of the urban plume the current
NMHC standard is ineffective to contain the 0~ concentrations below the oxi-
5
dant standard; 4) The 0,j-precursor relationship as indicated by various
graphs in the criteria document (ref. 1) do not seem applicable to the
second- and third-day irradiation chamber results; 5) Within the chambers
-------
aged photochemical systems after a day or two of solar irradiation main-
tained both 0.,-destructive and (^-generative capacity. This indicates that
neither "fossil" CL nor local precursor emissions are necessary to produce
the 0» behavior observed in rural high 0., systems. When "fossil" 0^ and
local emissions are present, however, they do influence t'ut; nonurban high
0_ systems; 6) "Fossil" 0_ (i.e., 0» generated in urban areaa and retained
in air moving downwind from a city) can account for the overnight retention
of Oo concentrations above the NAAQS, but "fossil" () from an urban area
cannot be maintained for several days at high concentrations under field
conditions without augmenting daytime synthesis; 7) Dilution of a photo-
chemical system producing 0, does not reduce the maximum CL nor the net
0_ concentration in direct proportion to the extent of dilution. At times,
the net 0_ generated is greater in the diluted system as compared to an
undiluted system, although the maximum may be lower.
-------
SECTION III
RECOMMENDATIONS
Some current problems confronting the planners of oxidant control
strategy which can be addressed with smog chamber studies are:
1. Will the achievement of the current NMHC standard in urban areas
control () concentrations downwind from the cities?
2. Must one consider total NMHC or only the "reactive" hydrocarbons
(e.g., alkenes) to achieve the oxidant standard in nonurban
areas?
3. What is the effect of urban pollution on 0_ concentrations in
nonurban areas?
4. Given an urban situation in which NMHC is controlled (NMHC NAAQS
~0.24 ppm) and NO remains uncontrolled (e.g., NO ~0.500 ppm),
x x
is there danger of 0» levels' rising above the NAAQS in areas
downwind which have suburban or natural emissions of NMHC and NO ?
x
5. What is the 0^-generative capacity of systems containing various
NMHC and NO concentrations in cold weather (e.g., 4.5°C), espe-
cially with multiple-day solar irradiation?
To answer question 1 above, smog chamber studies should extend the
range of the initial reactant concentrations to lower levels than are usually
employed and react for a 60-hour or greater period.
For example, a study with initial NMHC concentrations of 0.50 0.25
and 0.10 ppmC (urban mix) would bracket the NAAQS for NMHC. Oxides of nitro-
gen concentrations of 0.005, 0.010, 0.050, and 0.100 ppm would provide a
reasonable range of urban NO levels. The initial NMHC/NO ratio would be
X
in the range of 1 to 100 (see table 1).
Different dilution rates can be employed to simulate transport of th
system out of an urban area. Throughputs, (t), of 0.0, 1.5} an
-------
Table 1. Initial Reactant Concentrations for a Proposed Extension
of the Study of Ozone-Precursor Relationships Under
Conditions of Pollutant Transport
NMHC
PPm
005
010
050
.100
10
20
10
25
50
25
2.5
.50
100
50
10
(NMHC/NO ratios in the matrix)
that NMHC concentrations on the 2nd and 3rd day would be well below the
NAAQS. The downwind urban effects would be well simulatedassuming no
additional pollution is added once the air leaves the city.
Question 2 above considers the efficacy of controlling only "reactive"
urban hydrocarbons (alkenes) to control oxidant downwind of the city. If
one choses conditions using an urban hydrocarbon mix, which upon irradiation
bracket the photochemical oxidant NAAQS on the second and third days of the
run, the same run could be made with representative alkanes and aromatics
instead of the urban hydrocarbon mix. Both single compounds (e.g., isopen-
tane) and a surrogate rural mix (e.g., with 2 or 3% olefins) could be used.
A set of 3 series of experiments could be run to address this problem.
Three NMHC concentrations (e.g., 0.5, 0.25, 0.05 ppaC), three NO concentra-
Jx
tions (e.g., 0.100, 0.050, 0.010 ppm), and three hydrocarbon types (urban mix
with alkenes, rural mix, and isopentane) would make a study with 27 sets of
conditions. This should answer the question of whether only the reactive
hydrocarbons need be controlled to protect areas downwind of the cities
from O.j concentrations above the NAAQS.
-------
Question 3 is basically a question of how urban pollution affects the
0~ concentrations in suburban and rural areas which have some hydrocarbon
and NO , emissions of their own.
A
Nonmethane hydrocarbon, NO , and dilution regimes can be chosen to
X
bracket 0« production of 0.080 ppm. When dilution begins, a mixture of NMcIC
and NO representative of suburban, small town, or natural conditions cin
X
be used as dilution air.
Question 4 is one xv'hich has arisen in Los Angeles. Hydrocarbon control
without NO control has at times resulted in low 00 concentrations, but with
3C -3
N0« concentrations in the middle of the day in the tenths of parts per nil-
lion range (e.g., 0.500 ppm). A question which arises is what occurs when
the urban NO is diluted to much lower concentrations with air containing
A
suburban and natural hydrocarbons?
Sets of conditions can be determined in which high concentrations of
NO (e.g., 0.500 - 1.000 ppm) and low concentrations of NMHC generate no 0,
x ,3
or only that necessary to satisfy the so-called photostationary condition.
Dilution during irradiation of this system with diluent air containing
0.100 to 0.500 ppm NMHC should put this problem in perspective. Theoretical
considerations and practical experience can be used to predict in general
terms how the 0» generation in these systems will behave. The described
condition represents a real case, however, and real data from smog chamber
runs should answer the question of the desirability of controlling hydro-
carbons while leaving NO completely uncontrolled.
«Hh
Question 5 addresses the question of reported winter concentrations of
0. in excess of the NAAQS in areas north of the Gulf Coast states. The
approach to this problem is simple.
Long-range weather forecasts can be consulted to estimate arrival and
duration of cold weather (4.5°C) and sunshiny skies. Outdoor smog chamber
experiments can then be initiated.
Concentrations of NMHC and N0x representative of urban areas can be
introduced into the chambers and irradiated both statically and in a dilution
mode for a series of 3 to 5 sunlight periods.
Initial hydrocabrons could be 0.5, 1.0, and 3.0 ppmC while NO concen-
trations of 0.05, 0.10, and 1.00 could be used. A smog chamber run would
represent irradiation of such precursor systems in the cold for several
days aloft, away from fresh pollution.
-------
Chamber work is needed to address the problems associated Xv'ith deter-
mining the minimum NO which will generate 0,. in concentrations which are
X -3
at or over the NAAQS, and the circumstances under which this minimum NO con-
centration will produce such high 0., concentrations. Related is the deter-
mination of circumstances under which NO or NMHC concentrations are con-
X
trolling the maximum 0,. accumulation.
To some extent, the studies suggested above will provide inforaation
on the problems mentioned in the preceding paragraph. It is felt that tha
problems of determining the minimum NO and NMHC concentrations which can
x
generate 0- levels in excess of 0.08 ppm would best be approached at this
time by studies similar to those recommended for questions 1 through 5 above.
-------
SECTION IV
DESCRIPTION OF RTI SMOG CHAMBER FACILITY
DESIGN
The Research Triangle Institute has constructed four smog chambers
3 -1
(volume: 27 m ; surface to volume ratio: 1.9 m ). Figure 1 illustrates
the general design. The chambers were built out-of-doors and irradiation
is provided by natural sunlight. The walls are 5-mil FEP Teflon film
supported by aluminum frames. The floors are 10-mil FEP teflon film Laid
over a reflective material (aluminum foil) which serves to raise the light
intensity within the chambers and thus compensate for transmission losses
through the walls.
Mixing in each chamber is provided by an 0.45-m aluminum fan blade
driven by a 185-W motor using a belt-pulley system. Air velocity measure-
ments were made within each chamber. The minimum air velocity was measured
to be greater than 0.05 m sec within 0.02 m of the floor. Air velocities
increased with distance from the walls to a maximum value in excess of 4.0
m sec near the moving fan blade.
In addition to the chambers proper, provisions were made for:
1. Ambient air intake-purification
2. Reactant injection
3. Instrumented gas analysis
4. Wet chemical gas analysis
A line drawing illustrating the overall system is provided in Figure 2.
The details of the air purification unit are shown in Figure 3. This
unit provides for the normal modes of chamber operation: purge, cleanup,
and dilution.
During the purge mode, air is supplied by a blower from a 10-m meteoro-
logical tower. This air is then drawn through each chamber and exhausted
3 -1
at flow rates up to 0.34 m min by three two-stage diaphragm pumps.
Purging may also be accomplished at higher flow rates up to 2.3 m^ min~^"
by opening a manway in the floor and allowing the tower blower to force
air through each chamber.
After completion of the purge, the chambers are closed and air is
recirculated through the purification unit. The purification unit contains
the following equipment:
-------
-f-
3.05m
t
CM
CVI
J
INLET, OUTLETS,
STIRRER MOTOR,
SAMPLING OUTLETS
ALUMINIUM FRAME
Figure X- A 27-cubic meter Teflon outdoor smog chamber.
-------
AMBIENT
AIR -
INTAKE
INSTRUMENTATION LAO
Figure 2. System diagram, RTI smog chambers.
-------
HUMIDIFIER
"COOLING WATER
Figure 3. Air purification unit, RTI smog chamber.
-------
1. Desiccaat column (4A molecular sieves)
2. Two HEPA particle filters
3. Heated catalyst column (0.52 Pt on alumina catalyst; operating
temperature: 200-475°C)
4. Air cooler
I'M
5. Purafil P column (for NO and 0,, removal)
X ~J
6. Humidifier
Valving allox^s the inclusion or exclusion of this equipment as may be
appropriate in achieving desired experimental conditions. The purification
or "cleanup" operation requires 8 to 12 hours at a flow rate of approxi-
3 -1
mately 0.28 m min
To effect dilution, the chamber contents are recirculated through the
purification unit at appropriate flow rates to correspond to the desired
dilution rate. Flow rates for this operational mode are between 0.0085 and
0.085 m3 min"1.
A schematic of the reactant injection system is seen in Figure 4. There
are three injection manifolds from cylinders of compressed gases. The flow
rates are controlled by calibrated manual needle valves and the quantity
of each injection is controlled by timed, manual operation of the appro-
priate solenoid valves. Hydrocarbons and carbon monoxide are injected
sequentially from a single manifold as are NO and N0?. These manifolds are
flushed to ambient between injections by compressed nitrogen. Ozone may be
added by injecting oxygen through an 0, generator to each chamber. A
sketch of the sampling system is provided in Figure 5. The samples are
TM
drawn sequentially for 10-minute intervals through 0.0048~m ID TFE Teflon
sample line. An automatic timer activates the appropriate sampling solenoid
valves and provides for a 10"minute sample from each chamber once per hour.
The remaining 20 minutes are used for instrument calibration or sampling
from the ambient air supplied from the tower blower. The sample is drawn
3-1
at approximately 0.004 m min by a Metal-Bellox«s pump and is supplied to a
glass manifold from which the instruments take their samples. These instru-
ments include an 03 analyzer, a N0-N02-N0x analyzer, an environmental chro-
matograph, and a dew point sensor. A 1-m-long, 0.0048-m ID TFE Teflon
tube is located under each chamber. Wet bubbler sampler, condensation
nuclei measurements, and bag samples (for detailed HC gas chromatographic
analyses) are taken at this location.
12
-------
,., U.V. OZONE GENERATOR
LAMP TRANSFORMER
MECURY-VAPOR LAMP
. EXHAUST
EXHAUST
Figure 4. Reactant injection system, RTI smog chambers.
-------
AMBIENT Atn (low)
GLASS
MANIFOLD
INSTRUMENTATION LAD.
PUMP
EXHAUST
1
OZONE
ANALYZER
N0-N0t-H0x
ANALYZER
TOTAL
HYDFIOCAnOON
ANALYZER
TIMER
MANUAL CONTROL
Figure 5. Sampling system, RTI smog chambers.
-------
CHARACTERIZATION
Sample Line
At all concentrations examined, there is a 20% loss of 0 between the
chamber and the 0 instrument. All quoted 0 concentrations have been
3 O
corrected.
The Cleanup System
The air cleanup system routinely reduces the NO content of make-up
X
air to a measured zero. The catalyst beds, as constructed, are capable of
reducing nonmethane hydrocarbon (NMHC) to 0.01 ppmC. Electrical and
thermal problems, however, sometimes result in a decrease of the NMHC concen-
tration to only 0.50 ppmC. These problems are (at this writing) being
eliminated.
Ozone Decay (8-1-75)
Dark phase [0, concentration ~0.85 ppm]:
Chamber #1 t-,- ~22 hours
Chamber #2 t^,» ~27 hours
Chamber #3 t..,- ~23 hours
Chamber #4 t1 , ~3Q hours
Light phase [0_ concentration ~0.45 ppm]:
Chamber #1 t, , ~10 hours
Chamber #2 t., , ~1Q hours
Chamber #3 t- .» -11 hours
Chamber #4 t- -2 "10 hours
Nitric Oxide Oxidation (7-11-75)
Sunrise to 1400 hrs [NO concentration ~0.55 ppm]:
Chamber #1 .011 ppm hr~ ~ 2,5 x thermal
Chamber #2 .005 ppm hr ~1 x thermal
_-^
Chamber #3 .011 ppm hr ~2 x thermal
Chamber #4 .009 ppm hr~ ~2 x thermal
The THC reading during the above experiments were:
Chamber #1 0.05 ppmC
Chamber #2 0.13 ppmC
Chamber #3 0.02 ppmC
Chamber #4 0.07 ppmC
15
-------
Clean Air Irradiation (7-10-75)
The air in the chambers was cleaned and irradiation was started at
i
sunup (ca. 0530 EDT). The 0_ maxima occurred in the 1600-1700 sampling
period.
03 Max
1600-1700
0.15 ppm
0.14 ppm
0.15 ppm
0.16 ppm
Chamber #1
Chamber #1
Chamber #2
Chamber #3
Chamber #4
-0.10 ppmC
~0.04 ppmC
~0.16 ppmC
-0.24 ppmC
tr (<1 ppb)
tr (~2 ppb)
tr (<1 ppb)
tr (<1 ppb)
Prppylene-NO Irradiation (7-9-75)
Simultaneous propylene-NO runs were made with an approximate NMHC
X
concentration of 1.20 ppmC and 0.35 ppm NO (10% N09).
2£ *
Organics (ppmC)
Chamber
Chamber
Chamber
Chamber
Chamber
#1
#2
#3
#4
Background
After Cleanup NMHC
0.35
0.45
0.40
0.42
Propylene
0.
0.
0.
0.
69
82
77
93
Total
NMHC
1
1
1
1
.04
.27
.17
.35
N0x
(10%
0.
0.
0.
0.
ppm
N02)
35
36
35
38
°3
0
0
0
0
Max
.61
.70
.62
.71
ppm
ppm
ppm
ppm
ppm
Time NO Crossover
X
Chamber #1
Chamber #2
Chamber #3
Chamber #4
0933
0927
0924
0857
Ozone maxima occurred between 1500 and 1540 (SDT)
16
-------
SECTION V
DESIGN OF STUDY
RESEARCH PLAN
The original contract (EPA 68-02-1296) called for a series of experi-
mental runs x^ith 18 sets of conditions plus 6 replications. In subsequent
talks with Dr. Basil Dimitriades, a program involving 37 sets of experimental
conditions plus 7 replications (44 experimental runs) v/as discussed. Twenty
of the 37 sets plus 4 replications were run for purposes of this contract
(EPA 68-02-1296) and the remainder are being run as part of the subsequent
contract (EPA 68-02-2207). Dilution rates are shown in Table 2. Before
dilution was initiated, the chambers were operated in the batch mode. The
dilution was initiated at the time designated in Table 3, and dilution con-
tinued for 24 hours. After 24 hours, dilution was terminated and the chambers
were operated again in the batch mode.
The conditions for the extended project are put forth in Table 4. The
conditions for the 20 sets of conditions accomplished for this contract are
set forth in Table 3.
The concentrations ranges are:
NMHC (ppmC)
NO (20% NO ) (ppm) :
3C £m
The ratio range is:
NMHC/NO :
1-10
0.1-1.0
7-20
Figure 6 delineates all possible combinations with these concentrations
and ratios.
Table 2. .Dilution Rate (24-Hour Dilution)
Throughput in
24 Hours £ x t
in Percent V
300
150
50
0
Actual Flow Rate,
m3 min-1 x 102
5.83
2.92
0.96
Sample Replacement
Percent Original Volume
Left After 24 Hours of
Dilution at the
Specified Flow Rate
5.0
22.3
60.7
96.0
Percent
Dilution
:in 24 Hours
95
77
39
4
17
-------
Table 3. Selected Experimental Conditions,
Contract (68-02-1296)
NMHC/NOX Ratios:
95% Dilution in 24 Hours
Starting at:
Sunrise
10/1
5/.7.1
5/.2A
l/.l
NO Crossover
10/1
5/.71
S/,24
l/.l
1700
10/1
5/.71
S/.24
l/.l
77% Dilution in 24 Hours
Starting at: .
N'O,. Crossover
X
10/1
5/.71
S/.24
l/.l
NO Crossover
10/.75
5/.50
S/.36
I/. 14
No Dilution (Batch)
10/1
5/.71
S/.24
l/.l
Table 4. Experimental Conditions,
Extended Project*
Time of Initiation
of Dilution
None (Batch)
Sunrise
1700 EOT -
RTF, N.C.
NO Crossover
Z Dilution in
24 Hours
0
39
95
39
95
39
77
95
Reagent Concentrations
HC/NOx
10/1,
10/1,
10/1,
-10/1,
10/1,
10/1,
l/.l.
l/.l,
l/.l,
l/.l,
l/.l,
l/.l,
10/1, l/.l,
10/.48, 10/.75,
10/1,
l/.l,
5/.71, S/.24
5/.71, S/.24
5/.71, S/.24
5/.71, S/.24
5/.71, S/.24
5/.71, S/.24
5/.71, S/.24
S/.36, 5/.50, I/. 14
5/.71, S/.24
Number of
Runs
4
4
4
4
4
4
9
4
Total Number, Sets of Conditions 37
Replications 7
Total Runs 44
See Table 3 for Runs on Contract (68-02-1296).
18 -
-------
1.0
.8
.6
E
a.
o.
O
Z
,* .4
.2
ALL POSSIBLE COMBINATIONS
I. HC 1-10 ppmC
2. NOX O.i - f.O ppm
3. HC/NOX 7-20
© SUGGESTED COMBINATIONS
4 6 8
NONMETHANE HYDROCARBON,
ppmC
10
Figure 6. Range of all possible combinations of NOX and nonmethane
hydrocarbon concentrations used in experimental work.
-------
The purpose of the study was to study the (^-precursor relationship
under conditions of simulated meteorological transport. Two facets of
transport were employed, urban pollution mixtures were exposed to outdoor
conclitions for 60 hours beginning at sunrise the first day, and the urban
pollution system was diluted with clean air. The dilution was initiated
at different times of the day and continued at different rates for 24 hours,
after which the system was run on a batch basis. Dilution was terminated
after 24 hours because, it is probable that in the eastern United States
air with which the system is being mixed is just as polluted as the urban
system it is diluting.
REAGENTS
The HC mixture used was constituted so as to represent a reasonable
surrogate of Los Angeles air. The following fractions and ratios were
determined on a carbon basis. The 'alkane/alkene/acetylene/aromatic per-
centages were 49/22/9/20. Propane, n-butane, isopentane and cylcopentane
constituted the alkane fraction in ratios of 1,0/3.4/2.1/0.06. Propane
represented itself; n-butane, the straight chain alkanes; isopentane, the
branched chain alkanes; and cyclopentane, the cyclic paraffins. Ethylene,
propylene, butene-1, trans-2-butene and 2-methyl-butene-2 constituted the
alkene fraction in ratios of 1.0/0.32/0.39/0.21/0.29. Ethylene and propylene
represented themselves, butene-1 represented terminally double-bonded
compounds, butene-2 represented internally double-bonded compounds, and
2-methyl-butene<-2 represented branched-chain olefins. The aromatic
compounds were represented by toluene. In all cases, the NO injected was
20% N02 and 80% NO.
20
-------
MEASUREMENT METHODS
Continual Instrumental Measurements
Ozone, NO, N02> total hydrocarbons (THC), methane (CH ), and CO were
measured on a continual basis by use of automated instruments described
below. Calibration was performed prior to each three-day experiment.
Ozone was detected by use of the chemiluniinescent reaction between
0^ and ethylene. The Bendix instrument was used. A stable ultraviolet
light 0_ generator of known output serves as the calibration source. The
output of the 0, generator itself was determined by the neutral-buffered
KI procedure for 0~ and/or by gas-phase titration of a certified standard
of NO in nitrogen mixture.
Nitric oxide and N0_ were both detected by use of the chemiluminescent
reaction between NO and 0-- In this instrument the NO- is catalytically
converted to NO. A Bendix instrument and a TECO Model 14 were employed.
Calibration of the NO and NO channels of the instrument was performed by
^Kh
dilution of a certified cylinder of NO in N_. The N02 channel was calibrated
with N0~ produced from the gas-phase titration of known NO concentrations
with 0_ from the calibrated ozone generator.
Total hydrocarbons, CH,, and CO were determined by an automatic environ-
mental chromatograph equipped with a flame ionization detector. The Beckman
Model 6800 was employed. Calibration was performed by introduction of a
certified mixture of CH, and CO. This instrument was calibrated at 12-hour
intervals during each three-day experiment.
Periodic Measurements; Hydrocarbons, Oxidant, Nitrogen Dioxide, Formaldehyde,
and Condensation Nuclei
Individual hydrocarbons and selected products of photochemical reaction
were determined by gas chromatographic separation and flame ionization
detection from samples taken twice daily, A modified Perkin-Elmer Model
900 chromatograph was used.
Air samples taken from ports at the individual reaction chambers were
passed through a metal bellows pump into a Tedlar bag. A permanganate in-
line scrubber destroyed the 0- and thus stabilized the HC composition of the
sample.
21
-------
A specific volume of sample from the Tedlar bag was trapped in a
0.0032-m ID stainless steel loop which had been immersed in liquid oxygen.
The trap was connected to the chromatograph, heated, and its contents
passed into the column.
Low-molecular-weight hydrocarbons (C_-Cr) were separated by a 1.8-m
x 0.0032-m S3 column packed with n-octane on Porasil. The column was at
23°C with a carrier flow rate of 12 ml per minute.
High-molecular-weight hydrocarbons (including uromatics) were separated
by a 1.8-m x 0.0032-m SS column packed with GP 5% SI-1200/5% Bentone 34
on 100/120 Supelcoport. The column was at 75°C with a carrier flow rate
of 20 ml per minute.
The chromatograph detector response and retention times were reestab-
lished on at least every second working day by introduction of known hydro-
carbons from certified cylinders of +1% accuracy. A Hewlett-Packard Model
HP-3352 gas chromatographic data system acquired peak area data and printed
out the results on a teletype.
Ozone, N02» and formaldehyde (CH-O) were determined by wet chemistry
techniques employing impingers and spectrophotometric detection. The neutral-
buffered potassium iodide procedure was used for 0, determination, and the
Saltzman procedure was used for NO- determination (ref. 2). Formalydehyde
was collected and detected using the chromotropic acid procedure, Inter-
society Committee, Procedure No. 110 (ref. 3). Calibration curves and
blanks were prepared periodically according to the procedures referenced
above. The determinations were performed twice daily, at 0900 and 1600 EDT.
A measure of condensation nuclei (CN) was determined four times per
day. A Gardner Associates Type CN detector was used. The sample was
taken directly from the chamber through a 1-m length of Teflon tubing. The
manufacturer's calibration was used.
Radiation
Total solar radiation (TSR) was followed with a Kipp and Zonen solari-
meter. This instrument was used as a guide to the radiation behavior for
the day's experiment. The TSR and UV radiometer data collected by the EPA
Division of Meteorology at a point approximately 500 m distant from the
RTI smog chamber site were used for quantitative purposes.
22
-------
SECTION VI
DISCUSSION OF RESULTS
The. results of this study can be used to explaiu many of the major
features of the high nonurban CL concentrations observed in the eastern
United States in recent years. This air is generally characterized by
concentrations of several tens of parts per million of NMHC (e.g., 0.50 pp
-------
than the NMHC. It is postulated that as the NMHC/NO ratio in-
creases, the hydroxyl radicals generated in the system react in
larger and larger proportions with the hydrocarbons than with
N0?. Reactions of an hydroxyl with an organic molecule leads
eventually to the oxidation of NO to NO , thus preserving one 0
molecule. Reaction of the hydroxyl with NO leads to the formation
of HONO_. This reaction removes an NO molecule from the system
*L «
and does not lead to the generation of an 0_ molecule. When the NO
molecules are diluted sufficiently, the absolute rate of generation
of 0_ is so low that it cannot replace 0 lost by various extraneous
reactions always taking place in the system. In reaction and
dilution, depending on original conditions, the net 0._ generated per
NO cycle increases more rapidly than the total decrease in 0_ by
«* +ir
dilution, destruction, and synthesis inhibitionup to a point.
At some level the NO molecules become so few that they cannot supply
a net increase in 0_ in the face of the various destructive pro-
cesses such as photochemically related destruction of O_, hetero-
geneous destruction, and reaction with substances generally not
considered as part of the photochemical oxidant systems.
Data from this study support the hypothesis that these processes are
active in the generation of high rural 0_ concentrations.
24
-------
OZONE-PRECURSOR RELATIONSHIPS
The data were examined to determine the effect of concentration and
ratio of the measured oxidant precursors at the beginning of solar irradia-
tion on subsequent 0 maxima and on net 0_ generated. The pertinent data
are summarized in Tables 5, 6, 7, 8, 9, and 10.
The relationship among initial concentrations of NO and NMHC concen-
X
tration and subsequent 0., maximum concentration on second and third days
of irradiation as revealed in this study is, as expected, quite different
from that of the more classical smog chamber studies (ref. 1). Tables 11,
12, 13, and 14 illustrate this point. The ranges of concentrations and
NMHC/NO ratios used in making the tables were chosen arbitrarily in an
X
attempt to place a number of cases in each category". These data are plotted
in Figures 7, 8, and 9.
Hydrocarbon mixtures on the second and third day of irradiation were,
as expected, much lower in olefins than was the initial mixture. On the
second and third day of solar irradiation the butene was seldom as high as
2 ppbC, propylene was at or (usually) below 2 ppbC (except in the batch
runs when it was 2, 5, 12, and 15 ppbC on the second day) and ethylene was
generally in the low 10*s of ppbC. The mix contained essentially alkanes and
aromatics by the second day. (Hydrocarbon analyses are presented,in
Appendix A.)
The greater the NO concentration at sunrise on the second and third
Jv
days the greater the subsequent net 0- (AO,) generated; for example, the 1-5
ppb NO concentrations produced an average AO,, of 0.149 ppb; 6-8 ppb NO ,
X J A
a AO, of 0.171 ppm; 9-14 ppb NO , 0.180 ppm AO,,; and 15-53 ppb NO , 0.241
j X J X
AO,. For the same ranges of NO the subsequent maximum 0,, concentrations
3 x J
were 0.180 ppm, 0.254 ppm, 0.259 ppm, and 0.454 ppm. This also shows that
average daily minimum increased with increasing NO range: 0.031, 0.083,
A.
0.079, and 0.213 ppm (see Figure 7).
Average A0_ values corresponding to NMHC concentration ranges for:
0-0.49 ppmC was 0.157 ppm; 0.50-0.99 was 0.180; 1.00 to 1.99, was 0.183;
and ^2.00, was 0.257. The corresponding maximum 0,, concentrations were
0.175, 0.241, 0.301, and 0.623 ppm.
25
-------
lalle 5. Selected Results From the July 17-18 Tvo-Day Chamber Runs
Date
Chamber
No.
Chamber
No. 1
July 17-15
Chamber
No. 2
July 17-1
Chamber
No. 3
July 17-1«
Chamber
No. 4
July 17-1£
Percent
Dilution-,
Tics of
THtuMrm
Initiation
95%
@ Sunrise
0610
Start
0610
0610
0610
1
1
Initial
VXRT/* f\tf\
NMaC/SOx
Concentrations
ppmC/ppm
6.68
0.410
3.71
0.125
3.49
0.293
1.19
0.046
1
\t\fOf* tVff\
NMHC/NOjj
Ratios
16.2
29.7
11.9
25.9
Maximum
°3
First Day
ppm
0.310
0.385
0.141
0.182
4J
1.
§£
V <3
J3
CO
2
3
2
3
2
3
2
i
13
Preci
-------
Table 6. Selected Results prom the July 22-24 Three-Day Chamber Runs
Date
Chamber
No.
Chamber
So. 1
July 22-24
Chamber
No. 2
July 22-24
Chamber
No. 3
July 22-24
Chamber
No. 4
July 22-24
Psrcaat
Dilution,
Ksit of
Dilution
Initiation
95* *
i
Initial
HHHC/HOX
Concentrations
ppmC/ppm
11.45
'
' 1
1700
1700
1700
4.47
.231
4.11
.685
NMHC/NOX
Ratios
12.0
,
19.4
6.0
1
1.76 17.1
.103
i
i
!
Maximum !
°3
First Day
ppm
1.57
!
;
i
0.950
1.196
0.625
i
(subsequent
I Days
2
!
i
i 3
2
3 .
2 .
3
2
is
II
i
Precursors
(ppn) at
Sunrise
so*
0.015
0.010-.
0.009
0.007
0.010
0.007
0.004
0.005
SMHC
1.78
1.07
1.30
0.94
1.18
0.89
0.95
0.72
NMHC/NO
Ratios*
I
118.7
107.0
144.4
134.3
118.0
i
1
127.1
Min
03
ppm
.035
.016
-.015
.010
.025
.011
237.5 ! -013
144.0
.008
Max
°3
Net
°3
ppn
.185J. .15C
.323
.»
.260
.119
!
.307
.12:
.25C
.094
!
.26^ .257
!
.089! .076
.22S .217
i
t Solar
Rad. at
03 Max
(Langley's)
427.8
480.6
490.2
*
480.6
487.8
488.4
487.8
488.4
N3
-------
Table 7. Selected Results from the July 28-30 Three-Day Chamber Runs
Date
Chamber
No.
Chamber
No. 1
July 28-30
Chamber
No. 2
July 28-30
1
Chamber
No. 3
July 28-30
Chamber
No. 4
!
July 28-30
i
Percent
T\4 1 nf* ^ ««*«
uij-ucion,
Time of
Dilution
Initiation
95% <§
0830
0840
.
0840
0850
Initial
NMHC/NOX
Concentrations
ppmC/ppm
7.02
.967
4.24
.235
3.95
.715
1.15
.105
NMHC/NOX
Ratios
7.3
18.0
5.5
.
11.0
|
1
I
Maximum
°3
First Day
ppm
1.062
0.604
0.667
0.325
4J
d
OS
cr >,
0) n)
en Q
§
tfl
2
3
2
3
2
3
2
3
Precu
(ppir
Sun-
NOx
0,007
0.009
0,003
0.005
0.005
0.005
0.002
0.003
irsors
at
rise
NMHC
0.84
0.85
0.77
0.76
0.48
0.55
0.55
0.63
NMHC/NOX
Ratios
120.0
94.4
256.7
152.0
96.0
110.0
275.0
210.0
Min
03
ppm
.023
.050
.006
.038
.013
.037
.003
.042
Max
03
ppm
.286
.240
.212
.190
.214
.190
.175
.167
Net
03
nntn
ppm
.263
.190
.206
.152
.201
.153
.172
.125
E Solar
Rad. at
03 Max
(Langley's)
515.4
421.2
535.2
420.6
534.6
397.8
541.2
427.2
to
00
-------
Table 8. Selected Results From the August 4-6 Three-Day Runs
Date
Chamber
No.
Chamber
No. 1
August >
4-6
Chamber
No. 2
August
4-6
Chamber
No. 3
August
4-6
W^BMBIB^MV
Chamber
No. 4
August
4-6
Percent
Dilution,
Tine of
Dilution
Initiation
77% 6
J\A« J\
0810
0820
0830
^^BM^M«WBB>««MBMM
0805
Initial
Concentrations
ppnC/ppE
7.35
o^c
. *js
.
4.41
0.232
-
4.40
.675
^^^^MBM^
1.09
.107
Ratios
7.9
19.0
6.5
(^Itan^^BM^M^
10.2
Maximum
°3
First Day
ppm
j
1.338
0.806
0.956
^^^^^^^^^B
0.488
ubsequent 1
Days 1
V3
2
3
2
3
2
1
3
^IMH^
2
3
Precursors
(ppm) at
Sunrise
NO,.
0.017
0.012
0.009
0.006
0.010
0.007
^^^M^^PI^B^I
0.001
0.004
HMHC
1,13
0.79
0.88
0.62
0.74
0.58
OV^VAV^VM
0.61
0.47
NMHC/NO
Ratios
66.5
65.8
97.8
103.3
74.0
82.9
pViVVHflM^Bi^M^MPMBV
610.0
117.5
Uin
.03
ppm
114
.174
.054
.128
.094
.114
.041
.056
Max
C-3
ppo
.479
.293
.366
.233
.350
.238
.214
.179
Net
ppm
.365
".119
.312
.105
.256
.124
.173
.123
t Solar
Rad. at
03 Max
(Langley's)
554.7
31B.4
511.2
*
313.4
511.2
291.7
^^^^^^^l^H^H^HHHI^Bi^MVMV
554.7
318.4
N)
VO
-------
Table 9. Selected Results From the August 8-10 Three-Day Runs
Date
Chamber
No,
Chamber
No. 1
August
8-10
Chamber
No. 2
August
8-10
Chamber
No. 3
August
8-10
Chamber
No. 4
August
8-10
Percent
n-f i 1«#"{ **»%
Dilution,
Time of
D-j In)- i/->n
Initiation
n% <§
noin
0850
0940
- '-".
0940
Initial
NMHC/NOx
Concentrations
ppmC/ppm
5.81
0.717
3.52
0.347
3.09
0,481
0.93
0.144
NMHC/NOX
Ratios
8.1
10.1
6.4
6.5
Maximum
°3
First Day
ppm
0.991
0.841
0.688
0.378
4J
e
,
0) (0
CO Q
,£>
CO
2
3
2
3
2
3
2
3
Precui
/ i
(ppm,
Sunr:
NO
X
0.020
0.014
0.010
0.008
0.012
0.010.
0.002
0.004
:sors
1 at
Lse
NMHC
1.01
0.52
0.64
0.62
0.62
0.84
0.43
0.71
NMHC/NOX
Ratios
50.5
37.1
64.0
78.0
51.7
84.0
215.0
178.0
Mm
03
ppm
.100
.136
.063
.109
.074
.100
.050
.071
Max
°3
ppm
.400
.318
.293
.231
.288
.248
.179
.163
Kin 4-
Net
°3
ppm
.300
.182
.230
.122
.214
.148
.129
.092
Z Solar
Rad. at
03 Max
(Langley's)
513.0
309.6
570.0
309.6
564.0
266.4
570.0
304.8
u>
o
-------
Table 10. Selected Results Jroa the August 12-14 Three-Day Runs
Date
Chamber
No.
Chamber
Ho. 1
August
12-14
^^^^^MHI
Chamber
No. 2
August
12-14
Chamber
Ho. 3
August
12-14
Chamber
Ho. 4
August
12-14
Percenc
Dilution,
Time of
Dilution
Initiation
Static
^^MWMMBMBMH
, Initial
HMHC/HOX
Concentrations
ppmC/ppm
7.73
0.938
OTB^^*i^l^BBMMIBM>BMBBBHBBBBHB««
4.34
0.225
3,81
0.676
1.56
0.103
NMHC/NOjj
Ratios
8.2
BMMMHBBBMMBBHBBMII
19.5
5.6
15.2
°3
First Day
ppn
1.37
^^v
0.886
0.997
0.549
Subsequent I
Days 1
2
3
MOMMMM
2
3
2
3
2
3
Precursors
(ppn) at
Sunrise
N°x
0.053
0.033
M^MM^V^^H
0.022
0.018
0.039
0.019
0.011
0.007
HMHC
3.78
3.01
MPBMBMM
2.62
2.10
2.49
1.93
1.30
1.13
BMHC/KO
Ratios
71.3
91.2
lMMM*^BMBBBI>>BHBBBBBBMB
119.1
116.7
63.8
101.6
118.2
161.4
Kin
°3
ppa
.527
.270
MMIBH
.390
.228
.415
.246
.303
.191
Max
°3
-.724
.614
POMP
.525
.466
.609
.474
.336
.259
Net
°3
ppn
.197
.344
V^iBVIBi
.135
.238
.194
.228
.033
.068
£ Solar
Rad. at
03 Max
(Langley's)
595.2
547.8
IHHHHBHHHBMMMBMHMBMPBBBHB^
595.2
548.4
600.6
548.4
591.6
594.6
-------
u>
Table 11. Net Ozone Generated on Second and Third Days of Irradiation
as a Function of Oxides of Nitrogen and Nonmethane Hydro-
carbon/Oxides of Nitrogen Ratio
NMHC
NOX ppmC
Sanae opm
0-49
.165
50-99
.235
100-199
.163
>200
Avg. .147
NOX
Range ppb ^ - 5
.201 .201
avg.
*.152 .140
*.217 avg.
*.153
*.123
*.054
.076 .147
.206 avg.
.172
.173
.129
*.125
Avg. .149
6-8
*.124 .128
*.131 avg.
.263 .189
*.250 avg.
*.105
*.257
*.068
Avg. .171
9-14
.195 .154
.115 avg.
*.182
.312 .214
.256 avg.
.230
.214
*.190
*.119
*.177
.123 .134
.094 avg.
.033
*.285
Avg. .130
15-53
.181 .168
.154 avg.
.365 .315
.300 aav.
.197
.371
*.344
.150 .188
.135 avg.
-'.233
*.22£
Avg. .241
Indicates 3rd-Day Values.
-------
Table 12. Maximum Ozone Concentration on Second and Third Days of Irradiation
as a Function of Oxides of Nitrogen and Nonmethane Hydrocarbon/
Oxides of Nitrogen Ratio
~ NMHL
n NOx ppmC
Range ppm
O^AQ
»i$.y
.194
50-99
.384
inn-iQQ
.268
>200
Avg. .173
N0y
1-5
Range ppb
.214 ,214
avg.
*.190 .189
*.225 avg.
*.190
*.179
*.163
.089 .173
.212 avgT
.175
.214
.179
*.167
Avg. .ISO
6-8
*.238 .235
*.231 avg.
.286 .261
*.260 avg.
*.268
*.233
*.259
Avg. .254
9 - 14
.200 .211
.116 avg.
*.318
.366 .297
.350 avg,
.293
.288
*.240
*.293
*.248
.138 .229
.119 avg.
.336
*.322
.
Avg. .259
15-53
.181 .163
.155 avg.
.479 .GOT
.400 avg.
.724
.736
*.614
.185- .413
.525 avg.
*.465
*.474
i
i
Avg. 454
Indicates 3rd-Day values.
-------
Table 13. Net Ozone Generated on Second and Third Days of Irradiation
as a Function of Nonmethane Hydrocarbon and Nonmethane
Hydrocarbon/Oxides of Nitrogen Ratio
iVtnli
NOx£pmC
Ratio ppm
0-49
.165
bO-99
.235
100-199
.163
>200
Avg. .147
NHHC Range
pp'raC 0 - .49
.195 .161
.181 . avg.
.154
.115
.201 .201
avg.
*.123 .123
avg.
.129 .129
avg.
Avg. ".157
.50 - .99
*.182 .182
avg.
.312 -*.131 .195
.255 *.177 avg.
.230
.214
*.190
*.119
*.124
.263 £.054 .181
*.250 avg.
*.257
*.217
*.152
*.153-
*.105
'.076 .150
.206 avg.
.172
.173
*.125
Avg. .180
1.00 - 1.99
.365 .333
.300 avg.
.150 .140
.123 avg.
.094
.033
*.285
*.228
*.068
Avg. ..183
>;2.00
.197 ..304
.371 eve.
*.344
.135 .187
*.238 avg.
Avg. .257
Indicates 3rd-Day Values.
-------
UJ
Table 14. Maximum Ozone Concentration on Second and Third Days of Irradiation
as a Function of Nonmethane Hydrocarbon and Nonmethane Hydrocarbon/
Oxides of Nitrogen Ratio
NMHC
"NOSE!?.
JUitio ppin
0-49
.194
50-99
.384
100-199
.268
>200
Avg. .173
NMHC Range Q ..
ppmC 0 - .49
.200 .163
.131 , avg.
.155
.116
.214 .214
avg.
*.179 .179
avg.
.179 .179
avg.
Avg. .175
.50 - .99
*.318 .318
avg.
.366 *.231 .283
.350 *.248 avg.
.293
.288
*.240
* 293
*.238
.286 *.163 .227 "
*.260 avg.
*.268
*.225
*.190
*.190
*.233
!089 .171
.212 avq.
.175
.214
*.167
Avg. .241
1.00 - 1.99
.479 .440
.400 avg.
.185 .262
.138 avg.
.119
.335
*.322
*.474
*.259
Avg. .301
>2.00
.724 .70S
.785 avg.
*.614
.525 '.'496
*.466 avg.
Avc. .523
Indicates 3rd-Day Values.
-------
u>
.60
.40
.30
E
a.
a.
Ow .20
.10
O AVERAGE 03 MAXIMA
AVERAGE 03 MINIMA
OAVERAGE A03
10 20 30 40
OXIDES OF NITROGEN, ppb
50
Figure 7. Average maxima, minima, and A0« concentrations as a function
of NO concentrations" at sunrise on the second and third
j^
days of irradiation.
-------
OJ
.60 -
.50
.40
.30
Kt
o
.20
.10
O AVERAGE 03 MAXIMA
AVERAGE 03 MINIMA
Q AVERAGE A03
0.50
1.00
L50
NMHC, ppm
2.00
2.50
3.00
Figure 8. Average maxima, minima, and AO, concentrations a a function of
nonmethane hydrocarbon concentrations on the second and third
days of irradiation.
-------
Increasing hydrocarbon concentration at sunrise of the second and
third days tended also to increase the subsequent net 0, generation as
can be seen in Figure 8.
For the NMHC/NO ratios, the AO., for the range 0-49 was 0.165; for
X »5 ^^
50-99 it was 0.235; for 100 to 199 it was 0.163; and for >"200 it was 0.147.
Maximization of 03 concentration occurred in the 50-99 range (.«ee Figure 9) .
It can be demonstrated, in any case, that low concentrations of NO
X
(i.e., 0-5 ppb, within the noise level of the chemiluminescent NO meters)
' X
will generate 0- in concentrations above the NAAQS. In almost all cases
(the exceptions will be mentioned below) the second-day net 0- generated
was greater than the third-day net 0.,.
Although no PAN data have been obtained, the difference between N0_
determined by the Saltzman procedure and the chemiluminescent instrument
indicates the presence of nitroxy compounds other than NO and NO,,.
In general, second-day maximum net 0, generation was greater than
third-day net 0-, which was expected (Tables 6 and 10). In the static
(no dilution) runs and in the runs diluted 95% in 24 hours (dilution ini-
tiated at 1700 of the first day), the reverse was the case, even though
the cumulative sunlight to time of 0~ maximum was comparable for the series
of 2 days.
Although there is no readily apparent explanation of this anomaly in
the data, it should be noted that at the time of maxima in the dilution
runs on the second day, the system was still operating in the dilution
mode. On the third day it was operating in the batch mode. On the second
day, the combination of destruction plus mechanical removal of 0, must be
balanced against synthesis whereas on the third day only chemical reaction
was removing 0« as it was generated.
In the case of the static or batch runs, the explanation for a greater
net 0« generation on the third day than the second has to be different,
but again there is not an immediately apparent reason for the difference.
38
-------
co
VO
O AVERAGE 03 MAXIMA
AVERAGE AO,
100 ISO 200
NMHC/NOX , ppmC/ ppm
250
300
Figure 9. Average maxima and A03 as a function of nonmethane
hydrocarbon to oxides of nitrogen ratio.
-------
"FOSSIL" OZONE
One of the processes which are operative in the occurrence of high
concentrations of 0,, in rural areas is the low rate of 03 destruction in
photochemically "spent" pollution systems. ("Spent" means here that the
system has been reacting photochemically, the NO concentrations are low
X
[a few parts per billion], and the olefinic content of the air has been
exhausted, or nearly so.) This 0» is often referred to as "fossil" ozone,
^
perhaps an unfortunate adjective to apply, but the lifetime of "fossil" 0
~% .- '
is seldom, it ever, specified, even,vaguely.
Ozone measured at or near the ground (e.g., at 1.0 m) has the oppor-
tunity to engage not only in gas-phase homogeneous reactions including photo-
lysis, but also in heterogeneous reactions with the ground and other surfaces.
Under conditions of atmospheric subsidence, there is the possibility of
considerable thermal layering of the air with a considerable reduction of
mass transport across thermal boundaries. At night:, for example, a radiation
inversion can be formed in the lower part of the previous day's mixing layer.
The air between the bottom of the subsidence inversion and the top of the
radiation inversion is effectively cut off from pollution emissions at the
ground and dilution from above. Ozone, trapped in the remnant of the mixing
layer, has only "left-over" precursors to react with, so an estimation of
its duration will indicate how important both the trapped ozone and the
subsequent synthesis are in maintaining the observed nonurban levels of 0_
concentrations.
Nighttime half-lives for ground level Q calculated from the hourly averages
from three of the field stations in the 1974 RTI field study were 8.0,
8.2, and 9.7 hours (assuming first order decay). Calculated roughly from
the ground level 0, values at.Wilmington, Ohio (Figure 10), the half-life
was about 10 hours. Calculated for the 600-m level in the same figure,
the half-life of 03 aloft, out of touch with ground-based sources of pollution,
was roughly 20 hours. (These last 2 calculations were based on the assump-
tion that the vertical profile of 03 concentratipns would be the same at
0700 on August 2 as on August 1.) The 0_ destruction aloft, above the
radiation inversion layer, is likely to be more representative of "fossil"
40
-------
3.6
~ 3.0
o
o
36 2.4-
-i
CO
bl
O
1.8
1.2
0.6
1754 /I4I4
0704
1320
1656
I
0.05
0.075 0.10
0» ppm
0.125
Figure 10. Vertical ozone soundings, August 1, 1974,
Wilmington, Ohio.
41
-------
0 conditions than 0« destruction near the earth.
Dark-phase half-lives (t1 . ) for 0_ in these chamber runs were calcu-
lated and are presented in Table 15. These half-lives were calculated from
nighttime 0~ data taken at 0200 and 0500 when no dilution was occurring.
To get a feel for the dark gas-phase destruction of 0~, consider the
following table. Calculating 0_ destruction as a first order function
with an assumed constant concentration of N0~, the concentration of NO- was
calculated which would be required by the listed half-lives.
HALF-LIVES, CONSTANT CONCENTRATION OF
Hours N02 NECESSARY, ppm
1 .231
5 '.046
10 .023
20 -012
30 .008
40 .006
50 .005
Calculations using most olefins would yield similar concentrations. Nitrogen
dioxide can account for much of the 0_ disappearance at night in the chambers,
but intermediates, such as aldehydes, may also contribute to dark phase 0_
decay both in chambers and in rural air.
In any event, a few hours half-life is sufficient to account for per-
sistence of 0_ at detectable concentrations overnight. On the other hand,
a half-life of 10 hours (it would be shortened in the sunlight) would reduce
0.200 ppm 03 to .001 in 72 hours (3 days). This should offer an initial
estimate of how far (or how long) "fossil" Q can be important without on-r
going 0_ synthesis. Obviously the duration of significant concentrations
of "fossil" 0- depends on many factors, including the original urban con-
centration of 03- It is hardly likely that "fossil" 0- alone, without
concurrent daytime synthesis, can deliver 0_ concentrations in excess of
the oxidant NAAQS to nonurban sites where transport processes have taken
as long as 3 days. Therefore, persistence of 0» in a "spent" photochemical
42
-------
Table 15. Dark Phase Ozone Half-Lives in Smog Chamber Runs
Date
July 24
July 30
August 6
August 10
August 13
August 14
Experimental Type
Dilution 95% *
Initiated at 1700
Dilution 95%
Initiated at NO
Crossover
Dilution 77%
Initiated at NO
Crossover
Dilution 77%
Initiated at NO
Crossover
Batch
Batch
Chamber
Number
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
Max [03] Previous Day
ppm
0.185
0.138
0.119
0.089
0.286
0.212
0.214
0.175
0.479
0.366
0.350
0.214
0.400
0.293
0.288
0.179
1.378
0.886
0.997
0.549
0.724
0.525
0.786
0.336
[03] at 0200
ppm
0.066
0.048
0.038
0.025
0.102
0.085
0.076
0.083
0.311
0.243
0.213
0.109
0.218
0.175
0.150
0.109
0.776
0.561
' 0.567
0.415
0.422
0.333
0.352
0.252
Half -Life (t1/2)
hrs
4.3
3.6
11.6
13.3
6.4
6.2
7.4
7.8
14.9
11.6
10.0
7.1
16.6
14.2
19.2
14.2
33.5
42.9
50.3
265.4
19.9
27.2
54.5
449.6
Mechanical dilution had been terminated prior to the time periods chosen for half^life calculations.
-------
system appears to be Important in the appearance of high nonurban concen-
trations of 0,, but usually must be supplemented by additional synthesis.
To calculate half-life:
C
£n-°-=kt= [k+k]t
C t l s gj
C = 0_ concentration at 0200
o 3
C = 0 concentration at 0500
t - 0500 - 0200 = 3 hours
k = total rate = k + k
t s g
k = dark-phase rate constant from measured 0_ decay in
clean chamber air (system blank)
k = rate constant in aged photochemical system
O
Solve for k ; and subtract k from k to obtain k
t S t ;
g
£n2
-------
DILUTION EFFECT
Decrease of concentrations of precursors (at the same NMHC/NO ratios)
X
both by dynamic dilution and by decreasing initial concentrations in static
systems resulted in an increase in the efficiency of 0, generation per
unit amount of precursors. In no case, when the initial precursors were
at the same NMHC/NO ratio and were diluted, was the resultant net 00 con-
x 3
centration decreased by a similar percentage. In the batch runs, the de-
crease of 03 concentrations was 59% for a 95% reduction of the initial con-
centration (10/1.0 to 1.0/0.1, hydrocarbon to NO ).
X
The effect of dynamic dilution is shown in Figure 11, which shows the
second-day 0, concentrations for 3 dilutions. The highest 0,, was obtained
by the batch system (0.72 ppm) with -100% of the original system left, the
second highest 0_ was obtained in a 77% dilution system (0.40 ppm), and the
lowest 0_ at 95% dilution (0.29 ppm). Dilution was initiated at the time
of NO crossover in both dilution systems. With 23% of the original system
2£ '
left, 75% as much 0« was found as compared to the undiluted system and with
5% of the original system left, 40% as much 0,, was found.
If one compares the net 0_ increase (A0_) (above minimum) for the
second day, the chamber with 100% of the original system left,had a A0« of
0.20 ppm while the system with 5% of the original system left had a A0_ of
0.26 ppm. Total solar radiation was greater in the case of the static run.
The net generation of 0_ was greater in the diluted case.
The time of initiation of dilution appears to influence second- and
third-day ozone generation, but the data were too few to allow full delinea-
tion of the processes at work. The most notable effect of the time of
initiation appears in the runs in which dilution was initiated at 1700.
In these runs the net 0« generated on the third day was approximately 2
to 3 times (1.9 to 2.9) as great as on the second day. The explanation
may be that on the second day, mechanical dilution was decreasing the 0^
concentration at a rate which suppressed accumulation, enough to account
for the low net generation, relative to the third day.
45
-------
1.4
1.2
1.0
E 0.8
a.
10 0.6
O
0.4
0.2
ao
August 13 -
August 9 -
Batch 0% Dilution
03 Minimum 0.53 ppm
63 Maximum 0.72 ppm
A03 0.20 ppm
77% Dilution
03 Minimum 0.10 ppm
03 Maximum 0.40 ppm
A03 0.30 ppm
a
I I I*I«I«I»UI
July 29 -
95% Dilution
03 Minimum 0.02 ppm
63 Maximum 0.29 ppm
A03 0.26 ppm
y
I I I I 1 I
0200 0400 0600 0800
1000 1200 1400 1600 1800 2000 2200 2400
TIME (HOURS -EOT)
Figure 11. Ozone profiles over second-day irradiations for same initial
conditions and different dilutions in Chamber #1.
-------
These data indicate that dilution of an 0«-producing photochemical
system does not reduce the maximum or the net 0- concentration in direct
proportion to the extent of dilution. This increased efficiency of 0«
production under dilution conditions is also supported by other findings
(ref. 4). The dilution effect, therefore, is expected to be a signifi-
cant contributor to the occurrence of high CL concentrations at nonurban
sites.
47
-------
COMPARISON OF FIELD OBSERVATIONS WITH SMOG CHAMBER RESULTS
The following comparisons of smog chamber results with field observa-
tions will be made with data from a study conducted in the summer of 1974
(ref. 5) unless otherwise noted. The results of the field study were re-
ported in Report EPA-450/3-75-036 entitled Investigation of Rural Oxidant
Levels as Related to Urban Hydrocarbon Control Strategies.
The hourly averages of 0_ concentration for three rural sites are
presented Figure 12. Hourly averages for N02 at the rural stations are
presented in Figure 13 and hourly averages for NMHC are given in Figure 14.
In the field study, the NAAQS for photochemical oxidant was exceeded
approximately twice as frequently at nonurban as at urban stations. In
1974, frequently the urban maxima were lower than the rural maxima, although
in a few cases, the reverse was true.
All smog chamber data are presented in the various appendixes, and 0_
data from one run are presented in Figure 15 for easy comparison with the
field data.
The experimental conditions for the first day of each chamber run were
designed to represent the urban atmosphere, and the second and third days
were to represent transported, "aged" photochemical systems. In all cases
studied, the 0_ generated on the first day was greater than that generated
on subsequent days.
The analogy between chemical behavior on the first day of a smog chamber
run and that observed in urban atmospheres is not good. The city 0_ maxima
are low compared with the first-day chamber maxima. Although the city data
were, on the average, slightly lower than the rural data, they were generally
comparable in value. Second- and third-day chamber data were always lower
than the first-day smog chamber 0_ concentrations.
When 03 concentrations were high in the field study, the cities under
observation were surrounded with an atmosphere more comparable to the con-
tents of the smog chambers on the second or third day of a run. A great
difference in the behavior of the two systems (urban and chamber) is that
no additional reactants were added to the chambers after the initial charge.
Urban air, on the other hand, even when moving into rural areas, continually
receives fresh reactants.
48
-------
VO
0.081-
0.07 -
0.00
B McCONNELSVILLE
O WOOSTER
WILMINGTON
0700 0900 1100 1300 1500 1700 1900 2100 2300 0100 0300 0500 0700
flME (HOURS-EST)
Figure 12. Mean diurnal 03 concentration at Wilmington, Wooster, and
McConnelsville, Ohio, from June 14-August 31, 1974.
-------
Kr-
12
10
ai m,
O 6*
A
1
I
1
I
*P%
1
o WILMINGTON
o WOOSTER
MCCONNELSVILLE
/ ?
' ^
t
1 *
o.^x
i.
i
i
0700 0900 1100 1300 1500 1700 1900 2!00 2300 0100 0300 0500 0700
TIME (HOURS-EST )
Figure 13. Mean diurnal N0_ concentration at Wilmington, Wooster, 'and
McConnelsville, Ohio, from June "14-August 31, 1974.
-------
Q.5Q.
0.45-
0.40
0.35
O McCONNELSVILLE
O WOOSTER
WILMINGTON
0.
Q.
O
a;
O
a
7
.^-Hr
^v
0.00
i_
070O 0900 1100 1300 1500 1700 1900 2100 2300 OIOO 0300 0500 0700
TIME (HOURS- EST )
Figure 14. Mean diurnal NMHC concentration at Wilmington,
Wooster, and McConnelsville, Ohio, from June
14-August 31, 1974.
51
-------
VJI
»
z
8
ti
i
.3
.2
.1
.0
.9
.n
.7
.6
.5
.1
.3
.2
.1
10
'T'
L
-
^
_
-
7
-.
1
1_
-
£u
i ' i ' i ' i ' i ' i ' i ' i ' i ' i ' i ' i ' i ' i ' I ' i ' i ' i ' i ' i * i ' i ' ' i ' i ' i ' i ' i ; i ' i ' i ' i ' i ' i ' i ' i ' i ' i ' i ' i ' i ' i ' i ' i ' i ' i ' ' ' i ' r i " i ' i ' i ' i ' i ' i ' i ' i ' i ' i ' r i ' i ' r i ' i ' i ' i rr i ^
7/28 ! 951 » NCL DIt. BEW1H 0300 7/2911 95X» HO, Olt. ENDED 0900 7/30 fi ~
-
M
K * -
w
n 0 0 o * ~
0 » * x "3
o *
* * ~
'*. " " " , x x « " " " « « « .«««««- "-
X»» *X X ""Xx "
,UHiJUUJrfJ^.LtJ^HiiJU2j3J^^
.^
.3
.2
1
*
.0 S>
0.9 '
o.a «
0.7 3
0.6 S'
o.r,
D.3
U.3
11.)
n n
012315678 9IOUI213l11SI6ni0192«2l2223 01231567B 91011121311 IS 1617101320212223 01231567* S10111213 II IS 16 H 10 I92U::I 2223
TIME W DOT
Figure 15. Typical three-day profiles for NO (n), NO (A), and 0 (x).
-------
The closeness of the analogy between field data and second- and third-
day chamber data, however, is surprisingly good. The average hourly
concentrations of K02 at sunrise at five rural field sites were 5, 6, 6, 7,
and 8 ppb. The chamber NO concentrations (only N0_ was at concentrations
x 2.
high enough to register on the instrument) ranged from a measured 1 ppb to
39 ppb at sunrise on the second and third days of irradiation. Field NMHC
concentrations at sunup at three stations were 0.15, 0.49 and 0.54 ppmC.
Hydrocarbon/N0 ratios were 25 , 61 ° , 103 -~
x
Most second- and third-day irradiations generated 0 at concentrations
above the NAAQS in the smog chambers. Examples of second- and third-day
chamber data comparable to rural observations were: v ' . (ratio 37)
f* r Q U * UJLA NO
at sunrise producing a AO, of 0,18 ppm; ' (ratio 83) producing a AO,
0 47 -* U.uu/ j
of 0.12 ppm; and -. ' , (ratio 117) producing a A0» of 0,12 ppm.
The point of the above comparison is that 0» in concentrations above
the NAAQS can be generated in smog chambers from precursor concentrations
(and ratios) similar to those found in the rural high 0_ situations.
Urban nocturnal concentrations were considerably higher at the rural
sites than at the urban 'sites. Except when actual mechanical dilution was
taking place, smog chamber 0- concentrations never reached a measured zero
at night. The explanation is that urban sources of NO are great enough to
destroy the 03 at night, while rural sources of 0 -destructive gases are too
weak to destroy all the 0_. Thus, reduced levels of 0.,-destructive pre-
cursors and reactive intermediates permit the overnight reduction of more
than half of the chamber's 0~-
The retention 'Of 0_ in nocturnal air is of importance in the total
phenomenon of high 0_ concentrations in rural atmospheres. The smog chamber
J
data obtained in this study can be used to begin to quantify the persistence
of high nighttime 03 concentrations in layers of air aloft in the lower
troposphere. (See the previous discussion of nocturnal 0« half-lives.)
Although the olefinic content of rural air was low, there was enough
olefinic material to show that the sampled air had continually received
fresh precursors. The olefinic concentration of the chamber air on the
second and third day of irradiation is shown in Appendix A. Reduced olefinic
content allows the accumulation of 0_ at low concentrations of NO and re-
J X
duces the 0_-destructive capacity of the air.
53
-------
In the RTI field study the N0? concentrations were low (e.g., hourly
averages 1 to 10 ppb) and, as can be seen in Figure 13, there was little
diurnal variation. Earlier studies involving high rural C>3 often did not
report NO concentrations except to say they were "very low" (ref. 6 ).
X
In the chamber studies, the NO concentrations "bottomed out" but never
disappeared. These low NO^ coacantrations ranged from 1 to 39 ppb. While
this might be construed to be an effect of chamber contamination by the
original NO charge, it duplicates, on the second and third days of irradi-
-f±
ation, the conditions observed in the field. The actual chemistry by which
measureable concentrations of N0_ could be maintained in the face of oxida-
tion by 0« and other oxidizing agents is not clear, but is sometimes specu-
lated as being due to photolysis of nitroxy compounds other than nitrates.
In the field it has been assumed to be due to continued low-level emissions.
In chambers it has been assumed to be due to material sorbed by the walls
at high initial reactant concentrations and desorbed later. In any event,
the condition in the chambers simulated that in the field and may well repre-
sent some sort of cyclic gas-phase process in both cases.
Data from the RTI field study provide evidence which may indicate that
local emissions were the major cause of the diurnal variation observed at
rural sites. In the nocturnal radiation inversion these emissions may be
equally as important as contact with the ground in causing the nighttime
decrease of 0_. In the mornings they may mix with 0_ and the stable inter-
mediates of the 0_ generation to form a system capable of 0_ generation.
This interpretation is consistent with the vertical 0_ soundings depicted
in Figure 10. The indicated diurnal 0- curve between 600 and 1200 m is
much shallower than the diurnal curve at ground level. This was interpreted
as indicating that the air aloft, between 600 and 1200 m, had little 0 -
generative or -destructive capacity. The fact that on the second and third
day Oq exhibits a diurnal curve in the chambers, where there were no
added reactants, casts doubts on the assumed necessity of having local
emissions. In other words, an "aged" photochemical system may contain
sufficient 0,-generative capacity to exceed the standard. On the other
hand, local pollutants, when present, will enter into both 0«-destruction
and -generation processes.
54
-------
Although the interpretation of field data may be correct, the "spent"
photochemical system in the chamber is capable of considerable 0, generation
on second and third days of irradiation without the introduction of addi-
tional precursors or intermediates. The implication of this is that genera-
tion of 0» and diurnal behavior similar to that observed in the field can,
and in some cases may, occur in air drifting downwind of a city without any
local emissions affecting the results.
55
-------
REFERENCES
1. U.S. Environmental Protection Agency, 1971. Air Quality Criteria
for Nitrogen Oxides. Air Pollution Control Office Publication No. AP-84.
2. Intersociety Committee,'Procedure 403, 1972. Methods of Air Sampling
and Analysis. American public Health Association, Washington, D.C.
3. Intersociety Committee, Procedure 110, 1972. Methods of Air Sampling
and Analysis. American Public Health Association, Washington, D.C.
4. Fox, D. L., Kamens, R., and Jeffries, H. E., 1975. Photochemical Smog
Systems: Effect of Dilution on Ozone. Science, 188:No. 4193, p. 1113.
5. Research Triangle Institute, 1975. Investigation of Rural Oxidant Levels
as Related to Urban Hydrocarbon Control Strategies. Environmental Pro-
tection Agency Publication No. EPA-450/3-75-036.
6. Research Triangle Institute, 1974. Investigation of Ozone and Ozone
Precursor Concentrations at Nonurban Locations in the Eastern United
States. Environmental Protection Agency Publication No. EPA-450/3-74-034.
56
-------
APPENDIXES
Appendix A. INDIVIDUAL HYDROCARBON ANALYSES
Compound
Ethylene, ppbC
Propane, ppbC
Propylene, ppbC
Acetylene, ppbC
n-Butane, ppbC
1-Butene, ppbC
trans-2-Biitene, ppbC
Isopentane, ppbC
Cyclopentane, ppbC
2-Methyl-2-Butene, ppbC
Toluene, ppbC
ortho-Xylene, ppbC
THC, ppmC
Methane, ppmC
Carbon Monoxide, ppmC
NMHC, ppmC
In selected cases where analytical data are not
available, estimates were made. Estimated
concentrations are enclosed by parentheses.
57
-------
Dilution 95%, Initiated at 1700
Dates: 7/22 - 7/24/75
Chamber No. 1
Compound
Ethylene
Propane
Propylene
Acetylene
n-Butane
1-Butene
trans-2-Butene
Isopentane
Cyclopentane
2-Methyl-2-Butene
Toluene
ortho-Xylene
THC (ppm)
Methane
Carbon Monoxide
NMHC
Time of
Day 1
0508 1616
116.8
369.0
9.21
2.6
696.0
1.36
331.5
8.25
11.55 5.16
0.10 0.16
8.59 9.10
11.45 5.00
Day
0536
3.85
23.03
(3.0)
0.0
37.34
0.0
Sample
2
1706
3.7
21.39
1.85
0.0
35.48
(0.0)
14.72
0.0
16.75
0.29
1.83
0.06
1.48
1.78
1.36
0.16
0.39
1.20
Day
0533
2.09
18.82
1.61
0.45
30.20
0.0
3
1646
1.03
11.43
1.49
0.11
10.44
0.0
11.72
0.0
3.47
0.40
1.27
0.20
0.31
1.07
1.33
0,27
0.43
1.07
58
-------
Dilution 95%, Initiated at 1700
Dates: 7/22 - 7/24/75
Chamber Mo. 2
Compound
Ethylene
Propane
Propylene
Acetylene
n-Butane
1-Butene
trans- 2-Rutene
Isopentane
Cyclopentane
2-Me thy 1- 2-Butene
Toluene
ortho-Xylene
THC
Methane
Carbon Monoxide
NMHC
Time of
Day 1
0518 1631
26.3
72.9
1.19
0.33
342.80
0.0
227.5
6.0
4.94 3.69
0.47 0.50
9.60 9.95
4.47 3.20
Day
0544
2 . 25
8.96
0.16
0.0
9.52
0.0
Sample
2
1716
1.86
4.86
0.59
0.0
, 9.84
0.0
4.73
0,0
4.93
0.0
1.46
0.162
1.16
1.30
1.24
0.25
0.24
0.99
Day
0541
1.55
3.12
0.47
0.0
8.57
0.0
3
1656
0.94
1.44
0.43
0.0
2.96
0.0
3.54
0.0
5.35
0.0
1.15
0.21
0.21
0.94
1.16
0.25
0.37
0.91
59
-------
Dilation 95%, Initiated at 1700
Dates: 7/22 - 7/24/7")
Chamber No. 3
Compound
Ethylcne
Propane
Propylene
Acetylene
n-Butane
1-Butene
trans- 2-Butene
Isopentane
Cyclopentane
2-Methyl-2-Butene
Toluene
ortho-Xylene
THC
Methane
Carbon Monoxide
NMHC
Time
Day 1
0528 1728
-
,
i>
4.71 3.32
0.60 0.60
8.90 8.44
4.11 2.73
0553
2.13
6.48
0.23
0.0
7.91
0.07
of Sample
Day 2
1731
2.62
5.58
0.66
0.0
.9.84
0.0
4.29
0.0
3.25
0.0
1.28
0.10
1.19
1.18
1.14
0.22
0.26
0.93
Day
0550
3.08
3.26
1.25
0.64
14.94
0.60
3
1711
4.54
3.45
0.69
0.54
2.91
0.0
8.76
0.0
7.45
0.0
1.10
0.22
0.21
0.89
60
-------
Dilution 95%, Initiated at 1700
Dates: 7/22 - 7/24/75
Chamber No. 4
Compound
Ethylene
Propane
Propylene
Acetylene
n-Butane
1-Butene
trans-2-Butene
Isopentane
Cyclopentane
2-Methyl-2-Butene
Toluene
ortho-Xylene
THC
Methane
Carbon Monoxide
NMHC
Time
Day 1
0558 1650
5.62
16.47
0.23
0.11
38.32
0.0
17.25
0.0
2.14 1.89
0.38 0.45
10.00 9,21
1.76 1.45
0559
1-81
2.51
0.0
0.0
5.66
0.0
of Sample
Day 2
1600
3.40
1.31
0.39
0.0
2.62
0.0
3.07
0.0
1.27
0.0
1.22
0.28
0.85
0.95
1.31
0.49
0.18
0.82
0557
1.30
0.23
0.36
0.14
2.52
0.0
Day 3
1726
2.06
0.80
0.59
0.20
1.10
0.12
2.49
0.0
0.16
0.0
1.21
0.49
0.18
0.72
1.20
0.44
0.27
0.76
61
-------
Dilution 95%, Initiated at
NO Crossover
x
Dates: 7/23 - 7/30/75
Chamber No- 1
Compound
EI u ny j_ ene
Propane
Propylene
Acetylene
n-Butane
1-Butene
trans-2-Butene
Isopentane
Cyclopentane
2-Methyl-2-Butene
Toluene
ortho-Xylene
THC
Methane
Carbon Monoxide
NMHC
Day 1
0501 1701
f £ £ n \ ^7VH
(bbO) j/ . /u
660.0 275.10
309.0 15.42
1184.0 143.20
2344.0 616.0
152.4 0.0
1965.0 331.50
(79) 8.05
7.52 2.10
0.50 0.25
9.05 2.96
7.02 1.85
Time of Sample
Day 2
0538 1738
1 7°
JL . 1 O
9.63
0.26
7.70
16.66 '
0.0
6.70
0.0
0.98 0.70
0.14 0.13
0.53 0.44
0.84 0.57
Day 3
0536 1538
1 P9
J. . \j£-
8.96
0.38
6.60 _
11.38
0.0
4.31
0.0
0.91
0.15
0.57
0.81
62
-------
Dilution 95%, Initiated at
NO Crossover
Dates: 7/28 - 7/30/75
Chamber No. 2
Compound
Ethylene
Propane
Propylene
Acetylene
n-Butane
1-Butene
trans-2-Butene
Isopentane
Cyclopentane
2-Methyl-2-Butene
Toluene
ortho-Xylene
THC
Methane
Carbon Monoxide
NMHC
Time of Sample
Day
0517
270.01
188.10
420.0 -
130.80
1348.0
58.80
1
1711
4.22
9.63
0.0
0.40
20.92
0.0
1025.0
26.70
12.65
0.0
4.81
0.57
10.00
4,24
1.50
0.47
2.29
1.03
Day 2
0545 1748
2.22
4.35
0.35
0.0
10.58
0.0
2.42
0.0
1.07 0.87
0.35 0.20
0.22 0.24
0.72 0.67
Day 3
0544 1548
1.43
1.58
0.35
0.0
4.72
0.0
1.30
0.0
0.99
0.32
0.38
0.66
63
-------
Dilution 95%, Initiated at
NO Crossover
x
Dates: 7/28 - 7/30/75
Chamber No. 3
Compound
Ethy Lena
Propane
Propylene
Acetylene
n-Butane
1-Butene
trans-2-Butene
Isopentane
Cyclopentane
2-Methyl-2-Butene
Toluene
ortho-Xylene
THC
Methane
Carbon Monoxide
NMHC
Time of Sample
Day
0527
(384)
384.0
117.30
596.0
1240.0
100.0
1
1731
4.56
15.81
0.32
0.0
48.4
0.0
935.0
(37)
21.25
0.0
4.05
0.10
8.93
3.95
1.07
0.09
2.55
0.98
Day 2
0554 1758
2.12
3.80
, . , ,
0.51
0.0
7.32 -
0.0
3.63
0.0
0.60 0.35
0.08 0.10
0.31 0.33
0.52 0.25
Day 3
0552 1558
5.42
3.50
0.55
0.66
4.68
0.0
3.31
0.0
0.66
0.10
0.43
0.56
64
-------
Dilution 95%, Initiated at
NO Crossover
x
Dates: 7/28 - 7/30/75
Chamber No. 4
Compound
Ethylene
Propane
Propylene
*,
Acetylene
n-Butane
1-Butene
trans-2-Butene
Isopentane
Cyclopentane
2-Me thy 1- 2-Bu tene
Toluene
Ortho-Xylene
THC
Methane
Carbon Monoxide
NMHC
Time of Sample
Day
0536
98.48
82.35
40.50
10.30
278.60
19.88
1
1731
5.50
15.18
0.61
0.31
39.24
0.32
211.95
7.05
22.40
0.45
2.05
0.90
10.00
1.15
1.25
0.65
2.02
0.60
Day 2
0603 1828
1.04 __
0.66
0.22 _
0.0
3.67
0.0
1.48
0.0
1.00 0.94
0.40 0.41
0.20 0.23
0.60 0.53
Day 3
0602 1628
3.13
1.11
0.41
0.21
1.34 _
0.0
0.86
0.0
,
1.15
0.58
0.34
0.57
65
-------
Dilution 77%, Initiated at
NO Crossover
x
Dates; 8/4 - 8/6/75
Chamber Ho. 1
Compound
Ethylene
Propane
Propylene
Acetylene
n-Butane
1-Butene
trans-2-Butene
Isopentane
Cyclopentane
2-Methyl-2-Butene
Toluene
ortho-Xylene
THC
Methane
Carbon Monoxide
KMHC
Day
0559
8.82
12.75
5.58
13.28
59.6
46.0
Time
1
1801
1.10
2.64
0.0
4,12
6.56
0.0
31.0
0.0
3.27
0.0
770.0
183,4
7.47
0.12
9.03
7.35
2.16
0.11
4.51
2.05
05.37
0.58
4.83
0.0
4.64
4.76
0.0
of Sample
Day 2
1601
0.0
0.96
0.0
1.98
.0.94
0.0
1.33
0.0
0.0
0.0
144.2
21.;07
1.18
0.15
1.74
1.03
0.79
0.11
1.34
0.68
Day 3
0538 1638
0-94 Q.85
0.15 0.24
1.35 1.35
0.79 0.67
66
-------
Dilution 77%, Initiated at
NO Crossover
x
Dates: 8/4 - 8/6/75
Chamber 2
Compound
Ethylene
Propane
Propylene
Acetylene
n-Butane
1-Butene
trans-2-Butene
Isopentane
Cyclopentane
2-Methyl-2-Butene
Toluene
ortho-Xylene
THC
Methane
Carbon Monoxide
NMHC
Day
0542
7.82
12.57
6.09
10.18
41.20
3.04
Time
1
1811
0.62
0.73
0.0
0.82
2.30
0.0
31,45
0.0
3.83
0.0
1000.
124.6
5.19
0.78
9.84
4.41
1.84
0.38
4.61
1.46
0546
0.43
of Sample
Day 2
1611
0.27
0.36
0.0
0.23
0.38
1.82
0.0
0.61
0.0
0.0
0.0
0.0
0.0
67.87
8.89
1.16
0.27
1.62
0.89
0.91
0.33
1.18
0.58
Day 3
0548 1648
.
1.00 0.99
0.38 0.36
1.17 1.21
0.62 0.63
67
-------
Dilution 77%, Initiated at
NO Crossover
x
Dates: 8/4 - 8/6/75
Chamber 3
Compound
Ethylene
Propane
Propylene
Acetylene
n-Butane
1-Butene
trans-2-Butene
Isopentane
Cyclopentane
2-Methyl-2-Butene
Toluene
ortho-Xylene
THC (ppm)
Methane
Carbon Monoxide
NMHC
Time of Sample
Day 1
0658 1821
1.85
8.46
0.0
16.10
17.92
0.0
6.55
0.0
156.8
4.50 1-59
0.11 0.15
9.03 3.86
4.40 1.44
Day 2
0554 1658
0.37
1.75
0.13
3.29
2.99 '
0.0
1.68
0.0
1.32
0.83 0.71
0.22 0.09
1.28 0.96
0.61 0.62
Day 3
0558 1658
0.81 0.84
0.24 0.34
0.89 0.89
0.58 0.50
68
-------
Dilution 77%, Initiated at
NO Crossover
x
Dates: 8/4 - 8/6/75
Chamber No. 4
Coinpo and
Ethylene
Propane
Propylene
Acetylene
n-Butane
- 1-Butene
trans-2-Butene
Isopentane
Cyclopen tane
2-Methyl-2-Butene
Toluene
ortho-Xylene
THC (ppm)
Methane
Carbon Monoxide
NMHC
Day
0559
1.63
3.0
1.32
3.70
12.40
0.0
Titna
1
1831
0.31
1.79
0.0
4.16
3.14
0.0
12.25
0.0
0.27
0.0
295.4
50.82
1.14
0.14
10.34
1.00
0.65
0.10
3.87
0.54
0603
0.51
0.56
0.33
0.42
1.56
0.17
of Sample
Day 2
1631
0.0
0.0
0.0
0.72
0.0
0.0
1.73
0.0
0.0
0.0
0.0
0.0
0.67
0.17
1.33
0.70
0.06
1.04
ty.,49 0.64
Day 3
0608 1608
-
.
0.70 0.73
0.26 0.35
0.93 0.89
0.44 0.38
69
-------
Dilution 77%, Initiated at
NO Croasover
x
Dates: 8/8 - 8/10/75
Chamber No. 1
1
Compound
Ethylene
Propane
Propylene
Acetylene
n-Butane
1-Butene
trans- 2-Butene
Isopentane
Cyclopentane
2-Methyl-2-Butene
Toluene
ortho-Xylene
THC (ppm)
Methane
Carbon Monoxide
NMHC
Time of Sample
Day 1
0536 1731
582.74 57.40
542.71 291.0
197.90 9.54
744.01 312.0
1637.50 610.0
116.32 1.08
1152.40 324.0
27.28 7.25
2021.5 625.10
7.05 3.28
1.23 1.19
8.48 5.13
5.8l 2.09
Day 2
0535 1540
15.08 6.81
94.50 44.41
2.24 1.49
95.00 49.66
186.0 ' 50.36
0.0 0.0
95.50 21.16
2.11 0.45
(200) 59.99
2.10
1.18
1.79
0.92
Day 3
0535
5.52
34.50
1.03
30.40
32.92
0.0
17.30
0.0
58.45
1.72
1.20
1.31
0.52
70
-------
Dilution 77%, Initiated at
KO Crossover
x
Dates: 8/8 - 8/10/75
Chamber No. 2
Compound
Ethylene
Propane
Propylene
Acetylene
n-Butane
1-Butene
trans-2-Buteue
Isopentane
Cyclopentane
2-Methyl-2-Butene
Toluene
or tho-Xy lene
THC (ppm)
Methane
Carbon Monoxide
NMHC
Time of Sample
Day 1
0546 1741
288.15 26.60
294.89 122.70
104.61 3.24
452.0 168.20
830.69 255.20
47.76 0.22
535.16 134.50
14.42 3.21
1308.30 390.60
3.64 1.39
0.13 0.11
10.25 4.99
3.52 1.28
Day 2
0543 1551
10.88 1.74
42.30 12.06
1.31 0.96
50.80 12.57
86.40 15.25
0.0
46.15 9.82
1.12 0.0
200.20 41.86
0,72
0.20
1.45
0.52
Day 3
0543
2.54
10.59
0.36
13.26
12.96
0.0
6.60
0.0
22.40
0.69
0.07
0.97
0.62
71
-------
Dilution 77%, Initiated at
NO Crossover
x
Dates: 8/8 - 8/10/75
Chamber No. 3
Compound
Ethylene
Propane
Propylene
Acetylene
n-Butane
1-Butene
trans-2-Butene
Isopentane
Cyclopentane
2-Methyl-2-Butene
Toluene
ortho-Xylene
THC (ppm)
Methane
Carbon Monoxide
NMHC
Time of Sample
Day 1
0552 1748
249.73 36.40
249.53 98.70
92.70 1.88
315.68 115.20
731.56 230.40
38.94 0.36
458.35 129.0
12.27 4.24
1050.20 196.70
3.24 1-38
0.15 0.10
8.80 4.41
3.09 1.28
Day 2
0552 1556
11.58 3.63
42.0 11.19
1.76 1.06
44.20 10.68
87.60 13.97
0.0 0.0
46.55 7.36
0.97 0.0
108.50 36.33
0.69
0.14
1.33
0.55
Day 3
0551
6.40
17.01
1.02
13.94
14.68
0.0
7.30
0.0
25.62
0,91
0.07
Q<86 '
0.84
72
-------
Dilution 77%, Initiated at
NO Crossover
x
Dates: 8/8 - 8/10/75
Chamber No. 4
Compound
Ethylene
Propane
Propylene
Acetylene
n-Butane
1-Butene
trans-2-Butene
Isopentane
Cyclopentane
2-Methyl-2-Butene
Toluene
ortho-Xylene
THC (ppm)
Methane
Carbon Monoxide
NMHC
Time of Sample
Day
0600
61.70
54.22
20.21
39.78
149.34
10.17
1
1751
10.12
26.31
1.50
18.50
54.0
0.0
82.29
0.89
29.15
0.0
261.10
149.80
1.04
0.11
10.46
0.93
0.55
0.13
4.92
0.41
Day 2
0602 1606
4.46 5.36
8.04 4.54
0.35 1.39
6.12 1.24
22.56 ' 7.82
0.0 0.90
12.70 8.52
0.0 0.0
73.50 42.0
0.68
0.13
1.53
0.55
Day 3
0600
3.14
2.81
0.38
1.88
5.40
0.0
4.02
0.0
45.22
0.99
0.28
1.08
0.71
73
-------
Dilution Static
Dates: 8/12 - 8/14/75
Chamber No. 1
Compound
Ethyl one
Propane
Propylene
Acetylene
n-Butane
1-Butene
trans-2-Butene
Isopentane
Cyclopentane
2-Methyl-2-Butene
Toluene
ortho-Xylene
THC
Methane
Carbon Monoxide
NMHC
Day 1
0536 1631
552.12 83.6
449.85 360.0
180.71 0.0
415.05 336.0
946.52 848.0
112.75 0.0
1115.20 865.0
33.83 24.9
2086.50 959.0
9.02 5.93
1.29 1.14
8.70 8.94
7i73 4.79
Time of Sample
Day 2
0538 1638
5.05 4.33
1.22 1.22
9.09 8.89
3.83 3.11
Day 3
0538 1538
4-23 3.82
1.20 1.27
8.52 8.47
3.04 2.55
74
-------
Dilution Static
Dates: 8/12 - 8/14/75
Chamber No. 2
Compound
Ethylene
Propane
Time of Sample
Day 1
0545 1641
Day 2
0548 1748
Day 3
0548 1548
302.81
74.6
246.48 217.5
Propylene
92.62
3.1
Acetylene
203.90 169.8
n-Butane
538.54 384.8
1-Butene
61.74
0.0
trans-2-Butene
Isopentane
503.78 325.0
Cyclopentane
15.51
8.8
2-Methyl-2-Butene
Toluene
462.02
ortho-Xylene
THC
4.94
3.36
3.30
2.82
2.73
2.60
Methane
0.60
0.52
0.69
0.56
0.71
0.69
Carbon Monoxide
NMHC
9.50
4.34
9.61
2.85
9.89
2.60
9.58
2.25
9.30
2.02
8.93
1.91
75
-------
Dilution Static
Dates: 8/12 - 8/14/75
Chamber No. 3
Compound
Ethylene
Propane
Propylene
Acetylene
n-Butane
1-Butene
trans-2-Butene
Isopentane
Cyclopentane
2-Methyl-2-Butene
Toluene
ortho-Xylene
THC
Methane
Carbon Monoxide
NMHC
Time of Sample
Day
0554
264.14
201.61
81.02
172.29
496.79
54.12
1
1649
47.2
126.0
2.3
99.4
247.6
0.0
510.10
16.59
300.0
10.8
851.06
497.7
3.97
0.16
8.76
3.81
2.55
0.10
8.65
2.45
Day 2
0558 1758
!
2.55 2.00
0.08 0.11
8.19 7.65
2.47 1.89
Day 3
0558 1558
'
2.08 1.80
0.28 0.39
6.98 6.40
1.81 1.41
76
-------
Dilution Static
Dates: 8/12 - 8/14/75
Chamber No. 4
Compound
Ethylene
Propane
Propylene
Acetylene
n-Butane
1-Butene
trans-2-Butene
Isopentane
Cyclopentane
2-Methyl-2-Butene
Toluene
ortho-Xylene
THC
Methane
Carbon Monoxide
NMHC
Day
0602
65.51
56.77
23.99
42.83
110.92
13.21 ,
Time of
1
1659
24.40
61.20
1.06
47.0
110.80
0.0
124.39
3.61
92.0
2.33
276.66
1.67
0.11
9.40
1.56
1.31
0.06
8.84
1.25
Day
0601
24.78
62.81
2.76
47.40
134.04
0.0
Sample
2
1726
17.64
50.72
3.21
35.86
93.98
0.0
92.05
2.34
56.3
0.0
106.69
75.91
1.42
0.12
8.59
1.30
1.37
0.27
7.65
1.10
Day
0602
8.71
41.22
1.83
27.60
83.84
0.0
3
165.1
10.56
28.52
1.00
27.86
61.70
0.0
50.63
0,0
33.94
0.0
53.91
1.46
0.39
7.23
1.07
1.46
0.53
6.40
0.93
77
-------
Appendix B. CONCENTRATION PROFILES
Symbols:
x Ozone ppm
D Nitric Oxide ppm
A Nitrogen Dioxide ppm
+ Carbon Monoxide ppm
Y Nonmethane Hydrocarbon (ppmC)
* Solar Radiation (Langleys per minute)
Dates, chamber numbers, percent dilution in 24 hours,
and time dilution began are presented on the ozone
graphs of the first two days.
78
-------
o
1.0
1.3
1.2
1.1
1.0
0.9
0.8
a. 7
0.6
Q.5
o-.i
0.3
0.2
0.1
0.0
J j , | . j , J « , , | . | , , , , , | , , , j , , 4 , . , , , , , , j , | I | . , . J . j ..
r 7/17 #1 95% SUNRISE OIL. BEGflN 0610 "I
MMM WMM
W
!!«
V *"
MMM Mi Hi ii Hi
M ihllHI
^MMH* IMMMMni
MM* MMMMMI
MM*
MMMMI MMBM
M| 1MM
__
D D
D X X x _I
AA*DX xxj:
Q| LI LI Lai bi U LI Ci d LI b Bi bi bi bi bi bi bi bi bi b> b< la' if
1 . O
1.3
1.2
1.1
1.0 P
0.9 z
0.8 P
0.7 z
_ - 0
0.6 M
0.5
0.4
0.3
0.2
0.1
0.0
0123*15678 910111213H151617181920212223
TIME OF DRY
-------
oo
o
J. .0
1.3
1.2
1.1
1.0
« 0.9
* 0.8
D 0.7
^ 0.6
^
5 0.5
0.4
0.3
0.2
0.1
n n
J | > | ' | ' M I ' I1 1 ' 1 ' 1 ' 1 ' 1 ' I1 I1 I ' I1 -1 ' 1 ' 1 ' I1 I1 I1 I1 1'-
r 7/18 #1 95% SUNRISE OIL. ENDED 0610
_
___
_
_
- x x x x -
H x x x x x _:
& i&i l*i l*ji ^i Li L U bi ^i bi b)i 1 i 1 1 1 i Li Li Li Li 1 1 1 i ! i ! t ! r
123^5678 910111213H151617181920212223
TIME OF DRY
1.5
1.3
1.2
1.1
1.0 P
0.9 ^
0.8 P
0.7 z
0.6 p
0.5
0.4
0.3
0.2
0.1
0.0
-------
a*:
co
o
33-
o
o
1*J . V
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
3.0
2.0
1.0
n n
- #1 7/17 ~
*
M *.
7 Y Y Y + ~3
« \* !
^x
__ Y __
Y +
I_ Y + _I
Y v* +
~~ Y **" + "~"
"~~ £ & 3K ' *f* »p >J
»i ki Iri Li Li Li ki ki P,i Pi LI ii LI Pi Pi Pi h Li Li-Li Li. Li L Lr
J.O . U
12.0
11.0
10.0
9.0 0
8.0 -°
7.0 I
6.0 .°
5.0 g
3.0
2.0
1.0
n n
0123^5678 9101112131^151617181920212223
TIME OF DRY
-------
00
^ w V
12.0
11.0
10.0
9.0
co 8.0
o 7.0
1 6.0
- 5.0
o
0 4 0
3.0
2.0
1.0
n n
_. j . j . j . j . j . , . j . | . j . , . j , , , , i | , , , p j , j , | , , i | , j .1 j ,_
7 #1 7/18
;
-
__ __
«
M Mil
r& & e, K, k, «, If, ft ii, Hi, 1 1 1 1 R ft K, £, L, L, L, L, i.7
10 . V
12.0
11.0
10.0
9.0 0
8.0 -°
7.0 I
6.0 f
5.0 g
3.0
2.0
1.0
n n
0123^5678 910111213H151617181920212223
TIME OF DRY
-------
00
JL * \f
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.3
0.2
0.1
ft n
j j i | . | . j . I , , . , . , i j . , , , , , , , . , . j i j i j j . j 1 » j » j
I" 7/17 #2 95% SUNRISE OIL. BEGflN 0610
MM*
to
MMto
to
VMM
to>
MMHI
MMB
M*
MMMi
to
to>to»
mm
^MM
- x x x
L. x x x
I_ DDg^X Xxx
w I./ '.j IQ! irai ISi Ixyj lyi LJ Is In lAr Igj lixi Ipj Igi Ira Ipf Ip^ i^ 101 I^J Ij
'I '-
_
__
__
S fe"
0123^5678 910111213H151617181920212223
TIME OF DRY
1.5
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.3
0.2
0.1
0.0
o
ut
-------
oo
1 . o
1.1
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0,1
0.3
0.2
0 . 1
n n
j , , | . | . | « | , | . , , , , , , | , | , , , j , | i , . | , j i j i , , j , j , j . | i.
r 7/18 #2 95% SUNRISE DIL. ENDED 0610 ~
_
_
_
_
-*» .
~~ x x x x ~
y X X X X _
I& IM Isa Iraf lot ltd Ipd led IS Ira In Igi 1 i 1 i 1 i LJ Li \pt \&i \ \ \ \ \ \ \ i 1 i~
J. . 0
1.1
1.3
1.2
1.1
1.0 P
0.9 z
0.8 P
0.7 z
o
0.6 "
0.5
0.4
0.3
0.2
0.1
n n
012315678 91011121311151617181920212223
TIME OF DRY
-------
00
\J\
10 . V
12.0
11.0
10.0
9 . 0
co 8.0
o" 7.0
T*''''
g 6.0
5.0
o
0 t 0
3.0
2.0
1.0
n n
j | . | . | . | . , . | , , , j , j , , , , , , , , , , , j , | , , , , , j , | , j . j i , L
- #2 7/17 -
WM mm
mmm »
i»
MM*
MM
mmmm* «^MM
MM i *! a ****
«.- - _
+
_. a.
_
~_. +
Y Y +
Y Y +
- Y +
Y + j.
Y ^ + j.
Y v + + .
^ Y Y 4- 4.
» h* K L L L U b R 1^ 1* 1*. (*, 1^ K 1^ ft li i£ K l| it ft Ift"
10 . U
12. 0
11.0
10.0
9.0 0
8.0 -°
j,
7r, -^1.
. 0 s:
IE
6.0 P
5.0 ^
?D
*f.O
3.0
2.0
1.0
n n
123^5678 910111213H151617181920212223
TIME OF DflY
-------
00
o
31
O
O
-------
00
o
JL * ^»
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
r
-
_
d L U.
7/17 #3 95% SUNRISE OIL. BEGflN 0610 "I
i
O n ~ *
D
D D
4 2 B xXXXxxxx, -
'ri 'S3 >^ '^ '^ i^ '^ "^ 'S '^ 'pl 'n 'R '^ 'fl 'ft '3 ^ IM lii IxT
012345678 91011121314151617181920212223
TIME OF DRY
1.5
1.4
1.3
1.2
1.1
1.0
P
o
0.8 5
0.7
0.6
0.5
0.4
0.3
0.2
0.0
-------
00
00
N
O
J» i V/
1.4
1.3
1.2
1.1
.1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3;
0.2
0.1
n n
.
MMM
MM
MMHM
mm
H
Mft
M
MM*
MW
*H| |[g JH |j
7/18 #3 95% SUNRISE DIL. ENDED 0610 ~I
* ^_w
x x x x ~
Xy v X ~
1 1 I 11-. IA Iff I 1 1 1 1 1 1 1 1 f -
a laJfl..lsUa-l8 ift Mia h h 1 1 Ifl'U Ifl U 1 1 liljJ^Ll.i.
012345678 91011121314151617181920212223
TIME OF DRY
1.5
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.3
0.2
0.1
0.0
o
u
o
-------
oo
VO
a:
CO
*
o
I
CD
e_3
A W .
12.
11.
10.
9.
8.
7.
6.
5.
4.
3.
2.
1.
n
V
0
0
0
0
0
0
0
0
0
0
0
0
n
,«,.,.,.,.,, j . j . ,,,.,.,,,, 1 ., ,,,,,, j ,,,,, 1 ,,. j «_
IT #3 7/17 -
__ ^ ;
+ -f +
+
*
L. + -I
+
-
Y v -t- -
I J ^f *
1 Y
~~ Y Y ^ -H . ~~
Y 4.
Y 4-
YYyYY + + + +
2 iv is u u u i* i» if it i" i* i" it it it i«f i* il i! ij i5 is ir
12345678 91011121314151617181920212223
TIME OF DfiY
13.0
12.0
11.0
10.0
9.0
8.0
o
o
7.0 |
6.0 P
5.0 co
3.0
2.0
1.0
0.0
-------
VO
o
a:
co
o
10. V
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
3 . 0
2.0
1 . 0,
n n
7 #3 7/18
=.
: :
.._
*
.
Kf ix ix ix ix is I* if m i* i* i% \l if i! il il ix I$LJ L. L.I i..i Lr
10. g
12.0
11.0
10.0
9.0 0
8.0 -°
7.0 I
zc
6.0 ,°
5.0 g
3.0
2.0
'1.0
n n
1 2 '3 '* 5 6 7 8 910111213H151617181920212223
TIME OF DAY
-------
VO
i .0
l.T
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.3
0.2
0.1
n n
-MM
_
i
"ife ' ifc 1 1
. | . | > | i | . | I | .,. | . | . | .,.,.,, | . | . | . | I | I | . ] I | ..
7/17 #^ 95% SUNRISE OIL. BEGflN 0610 1
x x
XX X>
-------
N9
JL . \J
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
r 7/18 #4 95% SUNRISE OIL. ENDED 0610 ~
- -
^_
_
H_ x x x x x _I
1 .0
1.3
1.2
1.1
1.0 P
0-9 "-^
0.8 P
0.7 z
0.6 P
0.5
0.4
0.3
0.2
0.1
n n
12345678 91011121314151617181920212223
TIME OF DRY
-------
vo
u>
a:
CO
o
o
o
A w W
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
1.0
3.0
2.0
1.0
n n
j | . | i | . j | . | . | i j i | . | j j . | . j . j . | . | . | . j j . j i j « j ._
#1 7/17 ~
M> H
M«M «<
tmm MB
MM* ami
V MWh
MMMt irti f-H
+ + 4" + ^
M* *
MWMM *
» T* *"*
__
4-
4. _
_
»_ 4« -
4- +
YYYYYYY«^5K + + + 4. ""
^ i ^^ I N^ 111211 3K 1 5lf I ^^ I IL I ^r 1 ^M 1 5l£ 1 *^ E V? ! ^^ 1 V^ ! ^^ 1 ^* 1 'x? 1 'v' 1 iir*1
lITlJ'iJ I J 1 \l/ 1 *!£ 1 Sjff I 1^ i *V 1 1 I I 1 1 I T^ I i^ 1 *T* 1 ?lv 1 2m 1 NK llil ! T I T I 1^
iO . U
12.0
11.0
10.0
9.0 0
C~)
8.0
7.0 I
IE
6.0 .°
5.0 g
1.0
3.0
2.0
1.0
n n -
012315678 91011121311151617181920212223
TIME OF DflY
-------
O
O
O
AU . V
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
*.o
3.0
2.0
1.0
o n
_i j i , . j . j . | , j . j . j , j , , « j , , , | , , , j i | , , , , , j , , , j , , , | L
- #* 7/18
_
_
-
_
__
_ __
^^lY^^iSlfi^l^lJlSlIlflflflSlXlllAl..!.,!.,.^
IO. U
12.0
11.0
10.0
9.0 0
8.0 -°
7.0 I
6.0 P
5.0 Sg
f.O
3.0
2.0
1.0
0.0
0123*5678 9101112131*151617181920212223
TIME OF DRY
-------
VO
1ft
.4
1.3
1.2
1.1
1.0
0.9
0.8
v **
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
-'I1!1!1! 'I'M I1 I1 I1 I'l'l1 Ixlxlx1 l>
7/22 #1 95% 1700 OIL.
MM
mm
M*
M*
X
M»
MHB
MMMMM
ft
M
r D D A
' D A
- A
A
«
X
A A
A A A A
D A A
sl Jsl ill tl Ll Ij-Li-Llll l>d fit Inl Irfi Irh U Irf U
^, ,«,, | ,,,,»,,,,.
BEGflN 1700
x T
x __
X -I
mmmmm
X
^m
x
__
X
ihAiliJiRilftlr
012345678 91011121314151617181920212223
TIME OF DRY
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0
0.5
0.3
0.2
0.1
0.0
o
u
6»°
-------
vo
o
I .0
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.3
0.2
0.1
n n
J j ' | i | - | i | i 1 ' | i | ' | ' | i | ' | ' ] ' | ' | ' | ' | > | ' J | | > | ' | ' 1 '.
r 7/23 #1 95% 1700 OIL. ENDED 1700 T
.
__
__
~* x xx x x x x' x x "T
H x x x __
s/
sr hi U U U £i ii ki fe IX Ul iftKi h U U U U 1 1 U 1 1 IriJ i A f
I . o
1.3
1.2
1,1
1.0 P
w
0.8 P
0.7 z
0.6 p
0.5
0.3
0.2
0.1
n n
0123^5678 910111213H151617181920212223
TIME OF DflY
-------
O
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
..,.,.,.,,,.,,,,,,,.,,,.,,,,,, j ,,,,,,, j , j M , j «
r 7/24 #1 95% 1700
mmm
MM*
to
^MM
MM
MM*
V
M*
V
*
F
. " * '"
- X X
X
^1 fti IS U IX Ix IM l« 1 »l Mki fit Si hi Ift U 1 Ah 1 1 1 1 1 1 1 1
_
«-
7
0 1 2 3
5 6"7 8 910111213H151617181920212223
TIME OF DRY
1.5
1.3
1.2
1.1
1.0
0.3
0.8
0.7
0.6
0.5
0.3
0.2
0.1
0.0
P
-------
vo
oo
ceL
CO
o
:c
s:
--,
o
0
1
7i 1 1 1 1 1 1 1 . 1 1 is r f i f 1 1 1 1 1 1 1 1 . 1 1 1 1 1 i Ti 1 * * . A i i , UJ.4 r
0123-45678 91011121314151617181920212223-
TIME OF DRY
13.0
12. C
11.0
10.0
9.0
8.0 :
7.0
6.0
3.0
2.0
1.0
0.0
o
o
-------
vo
Of
CO
o
Q
o.
12.0
11.0
10.0
9.0
8.0
7.0
e:o
5.0
416"
3.0
2. 0
1.0
n n
j j . j i j . , t , , , , | , , , , , , , | , , . | , , , | , , , j , j , , , j , j , , i | ,_
- #1 7/23 ~
*> <«
»»* *
"" mm
*
«» 1Mb.
""» rr-ri
» MM
MHM ««MH
^
§ tmmmm
^I ^^W
^ <
Mpt «
»-+ '
"~ Y ^ ~
Ii'ti U U U Li b h ta i i itlTfi i+i n 1 1 1* l*ii iiii l*i'itf
10. U
12.0
11.0
10.0
9.0 0
8.0 -°
7.0 1
T"
6.0 ,°
'5.0 eg
4.0
3; o
2.0
1.0
n n
0123^5678 91011121314151617181920212223
TIME OF DftY
-------
o
o
CO
O
O
10 . U
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
3.0
2.0
1.0
n n
_, j i j . , , j i | , j , , , | , , , , , j , , , j . j i j . j i , , j . j , i | 1 1 | _
7 #1 7/2* ~
:
_ _^_
: :
.
^ItHAlIlIlItalllllT* ?,*,*, l^lTlW,,J.,J.41:|.,lr
10 . U
12.0
11.0
10.0
9.0 0
8.0 -°
7.0 I
DC
6.0 F
5-° s
3.0
2.0
1.0
0.0
0123^5678 9101112131*151617181920212223
TIME OF DRY
-------
o
H1
<5
1*1
A
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
*"* til
mmmm
mm
mmmm
mm
mmmm
umm
mmmm
mm
mmmm
mm
mmmm
mm
mmm^
mmmt
mm
mmmm
mmmmt
mm
mmmm
mm
mmmm
mmmm
mm
mmmm
m! Ll Lilt
, i , . , . j 1 | . , I , I , , , i , . | . , . , , | . , I , , , I , i , i , L
7/22 #2 95% 1700 OIL. BEGRN 1700 ~I
__
x x x x _I
X
X
x _
X ~~
x _I
X
_
X X -
X "I
pi p| ^ mmm*
D A A
JL AA*AA "
Li bi £. Ci Hi In U U J,i 1,1 tiL 1 hi ^i hi h U U 1 r
0123^5678 910111213H1S1617181920212223
TIME OF DflY
1.5
l.^f
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.^
0.3
0.2
0.1
0.0
-------
o
K5
1 . O
1.3
1.2
1.1 :!
1.0;
0.9 i
o.s !
0.7 i
0.6 !
0.5
0.*''
0.3
0.2
0,1
n n
j , i | . j i j . | . j . j , , , j , j , , , j , , , ^ , , , | , , M , | , , , j , |, , ,_
r 7/23 #2 95% 1700 OIL. ENDED 1700 "3
'.
:
<
-2.
*- ^-
_
.
~x x x x x x x x xx Xx x T
i . 0
1.3
1.2
1.1
1.0 P
0.9 z
0.8 P
0.7 2
rt r °
0.6 w
0.5
0.^
0.3
0.2
0.1
n n
0123^5678 9101112131^151617181920212223
TIME OF DRY
-------
s
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.3
0.2
0.1
n n
-1 1
mmmm
mm
mmmm
mmt
mmmm
mmmm
MM
mmmm
mm
mmmm
mm
mmmm
mm
mmmm
mm
.
..
_
-££
1 I i 1 i I i I i 1 i i i i t | i j i 1 i i i i t I i i i i t 1 1 I I | I 1 i | < | i_
7/2f #2 95% @ 1700 ~
__
,
:
.
x X
v
'N
X
v
i K 1 >U . 1 x! Kl Kfc, L, hi fc IX G U UUUI 1 1 , h 1 , 1 , 1 r
0123^5678 910111213H151617181920212223
TIME OF DflY
1.5
1.3
1.2
1.1
1.0 P
0.3 "2
0.8 P
0.7 -z
0.6 °
0.5
O.f
C. 3
0.2
0.1
0.0
-------
AO . V
12.0
11.0
10.0
9.0
to 8.0
o" 7.0
| 6.0
o 5'°
0 f.O
3.0
2.0
1.0
n n
j j . | . | . j i | « j . | . j i j i j . j , , , , , j , , , , , , , , , j , , » | , j i j ,_
7 #2 7/22 ~
7 + + + + ^+4.+ +4- + '*-++ ~
f-
I" + T
Y Y Y +
. ' V v* .
v * Y v- -i"
Y YYYvv ~
___, r Y Y
L Y Y Y Y ~
~- Y _
"T . . & 3K «i ""
Y YV ^^^f^if^^M
^^^^ I t. nj^ «> yf\ "^ yip
Zi Li Li Ll Ll Ll IKI Pi M 1 I 1 1 1 1 1 1 i t 1 1 1 1 I xl *li Li Li |M{ |al i~
10 . u
12.0
11.0
10.0
9.0 0
8.0 -°
7.0 I
n:
6.0 P
5.0 w
3.0
2.0
1.0
n n
0123^5678 910111213H151617181920212223
TIME OF DRY
-------
O
Ul
JL w V
12.0
11.0
10.0
9.0
8i 8.0
J 7.0
g 6.0
5,0
o
0 4.0
3.0
2.0
1.0
0.0
j j . | . | . | . j . j . | i | i | . j | i j , j , j , j , , , | i j . | , j i j « | i j ,_
- #2 7/23 ~
«w
» MMM>
1^0 ^BM
M !*
MB 1MB.
»"» M.
mum *,
MHMB VMHBM
^
MM* ^M^^,
__
M0
-------
o
ON
-------
It \*
1*1
.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
j I . I . j . 1 . I ,,.,,,.,.,.,, 1 ,,,,.,.,,,, j ,,, j ,,, j ,,,_
r 7/22 #3 95% & 1700 OIL. BEGflN 1700 T
ft gQBg
x
L. x _I
H x -
" x x "I
I- X -I
ZL _I
On X X _
° D A A
I_ n A x
A X -
- D X -
A A
- A A A A A
__ ° A
__ ^
Ij l-j I.J Irt LJ LA LJ Ivj LJ J- i ivl ^ | ni ril o |h f [D 1 Q' 'd 'd ' fi( ' ifi ' tfl ' '~
1 .0
1.4
1.3
1.2
1.1
1.0 P
0.9 ^
0.8 P
0.7 z
0.6 °
0.5
0.4
0.3
0.2
0.1
n n
012345678 9101112131415161718192021
TIME OF DRY
2223
-------
o
00
M
O
* * ^J
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0,6
0.5
0.3
0.2
0.1
n n
-M ' 1 ' 1 ' 1
__
___
_ _
Ik
1_ xx >
"A 1 .L 1 4biL 1 J
, , , , , , . | . , , | , | , , , , , j , | , , , , , , , j , , . j i j » j L
7/23 #3 95% & 1700 OIL. ENDED 1700 T
.
*
{ xxxxxxxx ~
,,Kii*l«l^i&UUIi^iU.Uitr
-------
o
X w
1 4
i.i
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.3
0.2
0.15
n n *
J | ' | ' I ' 1 ' 1 ' 1 '
___
M*
;^
ri&lxlxl*lxk
l i i i j 1 1 1 1 1 1 1 1 1 1 1 1 i l i l i l i j i l i j i j i j i_
iiiiiiiiiiiiiiiii
7/21 #3 95Z & 1700 "I
v x x "I
X
X
kiU, UMsmjait-AiUihlil-lf
012315678 91011121311151617181920212223
TIME OF DflY
1.5
1.1
1.3
1.2
1.1
1.0 P
0.9 "z
0.8 P
0.7
0.6
0.5
0,1
0.3
0.2
0.1
0.0
z.
o
N
-------
Q±
CO
O
O
O
J.O . U
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
3.0
2.0
1.0
0.0
7 #3 7/22 -
+ + + + + ++ ++ + + ++ +
4-
__ ^_ _
I~ + ~I
~ v Y Y
* * V v ^, i
T V NX '
Y YY Y Y v + ~
Y Y Y y J
Y Y
" SIC Y Y ~
^*r^ I f *** *" *^ ^^ 3K
3R %^i*
^t l^r 1^ 1^ 1^ 1^ l» R 1 i 1 i 1 i i i 1 i 1 i 1 i 1 i T i IKI I* l«j 1 ^ LJ j,,L r
0123^5678 9 10 11 12 13 HIS 16 17 18 1920212223
xo . y
12.0
11.0
10.0
9.0 0
8.0-°
7.0 I
6.0 P
5.0 g>
*: 0
3.0
2.0
1.0
0.0
TIME OF DRY
-------
a:
CO
o
o
o
«L w W
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
3.0
2.0
1.0
n n
I i i i i i | i I i i i j i i i i ii i i i i i i 1 1 1 I ! 1 1 J 1 j i i i j i i i i i i I
- #3 7/23 -
IMN g^
t
mmtmm j-n-.-r--
^
l^^mm «MM
MB ^H.
MM .....
HM
mm^rn ~~
mm va
» «M
|BHHH^ ^^^^^
| * ,
-4.
"""*"+ * "I
"* 1 * fclf i 4i li 1 *l *l *fr ft n 1 f 1 1 fhi.>iJjAiJ±_LJ.4.i.i_ij L"
10 . U
12.0
11.0
10.0
(
8.0 -
7.0 I
1*1
6.0 5
5.0 c
^
f.Q
3.0
2.0
1.0
n n
0123^5678 91011121314151617181920212223
TIME OF DRY
o
o
-------
AO . V
12.0
11.0
10.0
9.0
to 8.0
o 7.0
| 6.0
o 5-°
8 4.0
3.0
2.0
1.0-
n n 3
7 #3 7/24 -
-
: :
: :
.
* YYY YYYY 5KYY^?^^ ""
fi 1* 1*1 *l 1,1 *fcl fcl fel W 1 1 k It 1 1 Itfl Pi h l*l| I 1 llllilf
10 . V
12.0
11.0
10.0
9-0 o
8.0 -°
7.0 I
in
6.0 .°
I'.l"
3.0
2.0
1.0
n n
012345678 91011121314151617181920212223
TIME OF DRY
-------
H
CO
cS
z
*
o
z
»
c5
mt * \J
IM
.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
j j . , . , . j j . , . j , , . , . j , , , | . , , | , , , « , , , , , , , . j , , . | L
r 7/22 #4 95% & 1700 OIL. BEGflN 1700 "I
V OTM
.
^V MB
^1 M*m^i
Ml MH
> «
__ __
x " x x _I
^^ \y * xx ^^
XX-
I" x "I
X _
X
t
X
I. X -I
XX-
"ihl hi faUl *Ul.ftl.<thi.L.Ri IH IH lAA-kJ^-LAlAU.!.^! h-Ur
i .^
1.4
1.3
1.2
1.1
1.0 P
.»
0.8 P
0.7 z
0.6 p
0.5
0.4
0.3
0.2
0.1
n n
0123^5678 910111213H151617181920212223
TIME OF DflY
-------
(5
1 . O
1.3
1.2
1.1
1.0
0.8
0.7
0.5
a.*
0.3
0.2
0.1
n n
r 7/23 #^ 95% & 1700 OIL. ENDED 1700 "I
_ __
-
,
TJ*fc & h ki*i j
-------
Ul
JL * w
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
. J i | . | . j | | . | . | . | . | . j . | . | . | . , . j . j . j . | . | « j « j j L
7/24 #4 95% 1700 "I
mmmm* ii»i»«n
mmt «M
mmmmm «*m*um
mm **,
mmmmm ir TT~
mm) *HVU
mmmm .«,.
mm mm
mmmmm mmmmm,
mm mmm
mm >
P *""
_
,
T x x T
XX
;i UlxUli W U l« liti LlxIxIXIidi Ifti U U U 1 1 1? 1 1 1 i.l r
L .0
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
012345678 91011121314151617181920212223
TIME OF DRY
o
-------
Cs
cc
CO
o
1C
21
z
o
o
J.O .
12.
11.
10.
9.
8.
7.
6.
5.
t\.
3.
2.
1.
n
v
0
0
0
0
0
0
0
0
0
0
0
0
n
i i i i i i i i i i i i i 1 i i i i i i i i i i t i i i i i i 1 i i i i i i i i i i i i i 1 i
J #4- 7/22
'
«J--f- + -J- + .f.4.4.
"" T
"*"
+ -
I_ + «I
_ 4*
- ^
_ YYYYYYYYY^YYYYY
"*rl tl ifl ifl ifl iJ *l f 1 1 1 1 1 I.J.I.I LLlllJ l.fl k Id iJ^J-iJ-iiil
0123^5678 3101112131^151617181920212223-
TIME OF DRY
13.0
12.0
11.0
10.0
9.0
o
o
8.0 -
7.0 I
6.0 ."
5.0
3.0
2.0
1.0
0.0
-------
o:
co
o
o
J.O . V
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
H.O
3.0
2.0
1.0
n n
j ,.,.,.,. | .,.,, j ,,,,. j ,,,,,,,, i j ,,» j « j « j , | i ,» j ,_
"~ *Mf 7/23
^^. ^^
MM ,-
^» «»
^"^ MBM
* «
MM
mm
mm f^,
MM .
* J^J
"4,1 a, Li Li Li Li i i ki KI 1 i K IT! ^i-i l+i H-I ii ti l$i i l^li A i ! *"
10 . u
12.0
11.0
10.0
9.0 0
8.0 -°
7.0?
6.0 P
5.0 %
-------
00
a:
CO
»
o
H
o
0
o .
0
I
1.
0.
u
0
0
0
0
0
0
0
0
0
0
0
0
0
"
o
p
*»>*
V-»- 0
"3L
1C.
.°
CO
~^
012345678 91011121314151617181920212223
TIME OF DflY
-------
ft
o
Iff
.*
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.*
0.3
0.2
0.1
n n
J | | | ' | ' 1' J ' I1 1 ' J ' 1 ' I1 I1 1 ' I1 1 ' I1 1 ' 1 ' 1 ' I1 I ' 1' i ' I '-
7/28 #1 95% NOX OIL. BEGflN 0900 "I
MMM» WMM
» mm
mmmmm mmmmm
*mt mm
mmmmm "am
X
r x x -
-_ X
-------
to
O
M
O
O
*
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.3
0.2
0.1
0.0
j ,,,.,,,. j ,,,,, j ,,, j , j , j ,,,,,,, j ,,.,,,, j , j .,. j «_
r 7/29 #1 95% NOx OIL. ENDED 0900 "I
H -I
__
__
. y X ^ X x v _
V *^ ^ V
l^M ^/ ^ ^ \/
- x x X X-
x x x x
~& \A \A L \A 12 1^ !M IM 12 \A \A \A U U \ft \ft \ft\fi U |,^ U I/! Lf
0123^5678 910111213H151617181920212223
JL vJ
1.3
1.2
1.1
i.O JP
0.8 P
0.7 z
0.6 ^
0.5
0.3
0.2
0.1
L o.o
TIME OF DRY
-------
1 . %J
I *^
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.3
0.2
0.1
n n
J | i | | ' | ' | ' |
MM
«>
»
mmm
MM
»
MM^M
MB
»
B
MH»
B»
!
>
HMMM
«»
L. x x x x
X l.«4 1(4 M IfH M If1
, | , , , j , j , , , j , , , j , | , , , , l j , , , | , , , j » , ,.
7/30 #1 95*. NOX "I
_.
_
»
x x x x j;
x ~
< x X
4 |3 |2 \A ]A (A IA lA \A \A \ 1 1 1 1 1 1 1 1 ! 1 ! 1 1 1 }""
012315678 910111213H15161718.1920212223
TIME OF DRY
1.5
1.3
1.2
1.1
1.0 £=
<
O.B P
0.7
0.6
0.5
O.f
0.3
0.2
0.1
0.0
o
-------
Ni
2?
o
re
o
o
13.0
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0
"
*-
-
-
-
Y" Y ,
4 U.I 4.
#1 7/28 "
+ + + +
Y H-
Y Y Y
Y + _!
Y +
Y +
Y +
Y Y + +
Y Y + + ~
T Y *^ JK
M/ *tf£ Y V S/ rl- *""
4r **> *flp ' T i vx t
^^ 7f\ jK *T> * y *^<* -
yf * \ix
1 1 1 1 1*11 1 1 1 1 I 1 1 ** 1 ^ 1 1 ! 1 1 I
iv.1 L{ IjJ l» In 1 Mil II II II 11*1 1 1 1 \*i 1* |M» Li |v? 'vf |«if
O
o
012345678 91011121314151617181920212223
TIME OF DRY
13.0
12.0
11.0
10.0
9.0
8.0 -
7.0 ^
6.0 P
5.0 g
4.0
3.0
2.0
1.0
0.0
-------
to
IjO
CO
o
1C
o
o
X w V
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
3.0
2.0
1.0
0.0
-' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' i ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' I ' 1 ' 1 ' I1 1 ' 1 ' 1 ' ! ' 1 1-
7 #1 7/23 -
^
__
B"kl^ *Vfc^v
- * * -~
l~ "T" JT i j[ |[ ^^" JWf ^^ 3K «rt*k ^^ ^K ^j^ ^ .- ^^ *^ "^> |*^ ^^
il i 1 il ilil il *" 1 ^t 1 *4r I *4# 1 J# I *n 1 TT 1 "TT 1 «Tfc I *>*T 1 ^M 1 dn 1 \J> 1 *V It 1 1 M ) ^*i
j 10 . u
j 12.0
11.0
10.0
9.0 0
8.0 -°
7.0 I
a:
6.0 P
5.0 g
3.0
2.0
1.0
0.0
0123^5678 910111213H15161718-1920212223
TIME OF DRY
-------
NS
JU \J m V
12.0
11.0
10.0
9.0
to 8.0
o.. 7.0
|: 6.0
5.0
o
0 ^ 0
3:0
2.;0
1.0
n n
j j i j . j i | . , , j , | , j , | . j , j , j , j , j , j , j , , , j , j i , . , , | i pi
#1 7730
.
_
» , »
pIB fmfmmi^m
«Hi *m
.
V-VY 3K***T^i?Ky
4- 1-4- 14-1 1 1 1 Mf 1 1 1 l4-lszl"'"l^l»l«fel 1 1 1 ! 1 ! i
5 13 13 !v> lv> Iw In 1 i 1 i 1 i 1 i 1*1 1 i 1 i I 11*1 1* l«l IvJ M k; 1*1 iv» i.»
iO . U
12.0
11.0
10.0
9.0 0
8.0-°
7.0 I
6.0 p
5.0 eg
3.0
2.0
l.C
fi n
0 1 2 3 45 678 910111213H151617181920212223
TIME OF DRY
-------
N>
o
It * \r
i
In
.4
i
L3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
_i i
MMH*
mmmm
^
MMM -
»
"*
i^
MHM
»
I
IB
MM*
^1^
^1
^
1
_
-
"*l
1 1 1 1 I 1 1 ] 1 1 . 1 . 1 I 1 . j . 1 . 1 . 1 . , I 1 , 1 . 1 . 1 1 1 . 1 I 1 . 1 . 1 ._
7/28 #2 95% & NOx OIL. BEGflN 0840 "I
:
X^^c ^ J ^^^^~
** X v/
X _
X
x x "I
X
\f
* x -
n n A X
n A ' X . . ^
n v
A ^ ^-
i^A^$^'$'$'^'ii'di'di'r!]^di'i!i'S'S^dfiftA'6'6'6^^
012345678 91011121314151617181920212223
TIME OF DRY
1.5
1.4
1.3
1.2
1.1
1.0 P
0.9 ^
0.8 P
0.7 z
0.6
0.5
0.4
0.3
0.2
0.1
0.0
P
-------
N)
N
z
«fr
o
.»
^
c5
1.3
1 . 2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.1
0.2
0.1
n n
j ,. j .,. 1 .,« j ,,. j i ,«,.,,,,,,,,,,,, j ,,, r j ,,,,, j ,_
7/29 #2 95% NOx DIL. ENDED 0840 "I
__
_
-.
_ .
,
x x x Xxxx~
"X" X
~t*m^lxMtiUUl « I iLJ^J.rt 1 A i A 1 A U 6 U U ' :', ; ;: 1 ; I ::
012345678 9101112131415161718192021
TIME OF DRY
2223
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
o
Id
a
ro
-------
N
O
A v
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
.. 1 . , . 1 . 1 . 1 . 1 i I . I i I . I . , . 1 . 1 . 1 . 1 . ] . I . I > I . I . ] . ]
r 7/30 #2 95% Q m*
MMM»
mmmm
ft
MM
M*
"»
1
I^HMV
MB
MM
BHt
MMMft
^^
M»
«>
^
IMBMP
IB)
r x x x x x
^Ul^lAl2lHll^lXlXlAl!!lAUlAl.,Ullllllllillri
-I
i ! f
012345678 9101112131415161718192021
TIME OF DRY
2223
O
u
1.5
1.4
1.3
1.2
1.1
1.0
0.9 ^
0.8 P
0.7 -2L
0.6 *
0.5
0.4
0.3
0.2
0.1
0.0
-------
ro
00
CO
M
o
s:
1Z.
**
13.0
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
o
o
3. 0
2.0
1.0 h-
0.0
j | i | . j . j i . | . , . | . | . , i | - | , i | i | i j . , ,
-
4- + 4- 4- +
I_ +
Y +
Y Y +
T-rpyq-ryrp:
#2 7/28
L Y * ' + _I
' V 4-
JK^SK^YVy v + + , ""
iililij.ui»i₯i*i .1 .1 .1 .1.1 .1 .1* ₯U
KisL iljfcUUU
0 1 2 3 ^ 5^6 7 8 910111213H151617181920212223
TIME OF DRY
13.0
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
3.0
2.0
1.0
0.0
o
o
"_!?'
X
-------
N5
SO
eel
o
o
m W * V
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
3.0
2.0
1.0
n n
I" #2 7/29 -
mmmmm -»-!-
* «
mtmmm _ _-
« **m
mmmmm - T p-
M» <«
»H>«M> <^UM
*» «
MB immi-im
MVr *iW>
\U> ^y
^r |[ ^x ^x ^r \^ ^^ ^jt ^? 'W' '*B ffi> 55 ^+ ^s ^i* ^^ Y* N^ ^^ v v sx Y
^ i" 1 "T* 1 ---»-- II 1 3fcl I 1 III 1 1 * 1 ^^ I *Jx I.Iflllt II IJ_*r *^
* * 1 % 1 1^ 1 **T* fcW 1 ^& Iflllflcll 1 i I h I k 1 Tff* I ^^ I r^ I * 1 ^- | *- I *"T I }-
\l/ w I w I w 1 W 3R I " 1 mr IT! *f- 1 "I" 1 "f" "f" 1 "T" 1 "T* 1 T I * 1 * 1 w I w 1 \I.* i \ls I M^ I ^f/
j 12.0
11.0
10.0
9.0 0
8.0 -°
7.0^
6.0 P
5.0 g
3.0
2.0
1.0
0.0
0123*5678 910111213H151617181920212223
TIME OF DflY
-------
10 . U
12.0
11.0
10.0
9.0
to 8.0
o 7.0
1 6-.°
- 5.0
o
0 t.O
3.0
2.0
1.0
n n
#2 7/30
___ ___
* """"
.
___
flJlIlJ.UmThlflfl^lflMl^U.IJ,!,!,!?
iO . U
12.0
11.0
10.0
9.0 0
8.0 -°
7.0 I
6.0 P
5.0 <£
^.0
3.0
2,0
1.0
0.0
0123^5678 910111213H151617181920212223
TIME OF DRY
-------
A » w
i
1.4
i
L3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
"* 1 I
MM
MMHH
M
MI
MW
»
^w
NW
MM
M
_
to
>
M
*'
_
w"
*
M>
"j-| J.
I I 1 1 1 | 1 I 1 I 1 1 1 1 I 1 1 1 1 | 1 1 1 I 1 1 1 J 1 I 1 I 1 1 1 1 1 i ! | 1 j l_
7/28 #3 95Z NO* OIL. BEGflN 0900 ~
x
D a a n x "-
D A v, y
A ~
D A X -
jflf * V>
fa % *^
AQ A x s/ _I
^A * * ^> "* \. »
^> ^J ^H
i j,i ^1 if\ 4/1 a/ 1 jj 4/1 4/1 si ^1 hi ^.i A.I .hi A,! £i fii A! A! A! ^i &
012345678 91011121314151617181920212223
TIME OF
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0,6
0.5
0.4
0.3
0.2
0.1
0.0
o
c*
a
o
N
-------
M
U>
N)
1 .0
1.4
1.3
1.2
1.1
1.0
o, 0.9
^ 0.8
o 0.7
^np
0.6
%
c5 0.5;
0.4
0.3
0.2
0 . 1
n n
.. , . j . j . j | . j . j . | i , . | , j , | , j , | , j , , , , , , , j , | , j . j , ] ,_
7/29 #3 95% NOx DIL. ENDED 0900
.
___
_______ ui n
,
__
,
- x*XXXxxx ~
~*v X X x v
^ x v "^
"*»l ihl iil 81 %\ xl «l M|. xJ,.U-J-d feUI fti^LiiJ-AjbiAl.jJ...fe.Lk
I . O
1 4
1.3
1.2
1.1
1.0 P
0.9 '^
0.8 P
0.7 .2
0.6 °
0.5
0.4
0.3
0.2
0.1
n n
012345678 9101112131415161718192021
TIME OF DRY
2223
-------
4L W
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
-MM
MM*
MK
MMMK
M»
MMMM*
M>
MB*
"»
MM
^m
PMB
m
MHM)
MM*
i^
^|X|
hi hi
. | . | I | . | . | . , . 1 . | . | . | . | I | . , . | , , . | . | I | . | . | . | ..
7/30 #3 95Z NOx "
.
x xx x x x -_
*\ hi SUlXIxIXI ilUUUUI *UI . 1 . 1 1 1 1 1. 1 1 1. 1 f
012345678 91011121314151617181920212223
TIME OF DRY
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
-------
u>
CO
w
O
o
o
JL ^»f * W
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
n n
7 #3 7/28
"*" + + + +
" a.
r + i
r Y + T
Y Y Y +
Y T Y Y +
Y 4-
Y +
-T""-r11 T y> i.
~y . . 3K . ^ * Y Y Y Y Y ^
-\Y\Y\ \ 1 1 5KI 1 1 1 1 1 i(l 1 I 1 ' ! !
Je.L {? i i/ L.V.LkiJU T 1 II I.I III 1 U 11 1 1 1 1,1 1 r 1 In ifJ-i^.Ll-Jj,:! -L<.i «k.
iO . U
12.0
11. 0
10. C
3.0
8.0
7.0
6.0
~ f\
^ . u
4.0
3.0
2.0
1.0
?. n
0123
45678 91011121314151617181920212223
TIME OF DRY
o
o
3:
m
o
-------
Ln
12.0
11.0
.10.0
9.0
GO 8.0
J 7.0
1 6.0
o
0 4.0
3.0
2.0
1.0
0.0
#3 7/29 -
* «M
»» !.!
^B
P* ^m
" WMWH
^K
^K .
MB ^^
^B *«
^^ mt*jt*l*
tf*
W> VHP
^m * ' "«"i
M£ *,y
"t"J»w \/ 3K 3\^3K **^^ V sx ' X-*
012345678 91011121314151617181920212223
JLO. U
12.0
11.0
10.0
9.0 0
8.0 -°
7.0 I
6.0 p
5.0 g
4.0
3.0
2.0
i.O
0.0
TIME OF DRY
-------
12.0
11.0
10.0
9.0
GO 8.0
o 7.0
I 6.0
o
3.0
2.0
1.0
n n
j \ ' \ ' \ ' i '
M>
MM
mfHU^f
HMMOB
MB
HgiH^^
^
MB
Mi
MBMM
^M
I^B*
*f*m
IIHMM*
MM*
PMMMM*
^
'
f
'
f
*
'
?
'I1
?!!!
'I'l'l'l1
flflfl^l,
I
t
*<
'I1
#3
IvU
7/30
*VK*
HHBMM
MM
^ll
lm-rr-^1
_
- I
12. 0
11.0
10. 0
9.0 0
8.C-°
j -
-r/ f, 1«
5.0 ,°
5.0 g
3-3 ..
j 2.o
niiiiiii.imn
1.0
n n
0123^5678 910111213H151617181920212223.
TIME OF DRY
-------
O
*.* U|i|i|
1.3 t-
1.2 P-
1.1 f-
1.0 F-
0.9 h-
0.8 t-
0.7 F-
0.6 t-
0.5 F-
0.4 F-
0.3 t-
*-
0.2 F-
n n b L U If
1 J I j 1 I 1 j 1 I 1 1 1 1 1 1 I J 1 I 1 J 1 j 1 J 1 I 1 J 1 j 1 J 1 [ 1 j 1 J l_
7/28 #4 95* & NO* OIL. BEGflN 0830 "I
x x x x x _:
..X
\/ y
x X x
.D |D' |D iD |B |A .A JA | | i i I i | I | i |X ,x~
« 1^1 m m W IS W Inl lft ISl lAl lAi IAf UJrf. U U. W W Irrf Iri"
012345678 91011121314151617181920212223
TIME OF DRY
1.5
1.4
1.3
1.2
1.1
1.0
0.3
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
o
u
-------
M
LO
00
«
a
* » w
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n ft !
jj i 1 . I . 1 . j . , . j » j , j . 1 , i.| i j i| , ,, | , , , | i | . , , | . j , ,_
7/29 #4 95% & NOx DIL. ENDED 0830 1
_ .
~_
^ «
~_
^b » *
I . x x x x X X X X X * x x 2
& 1% b ha INI LJrfJdJyJMJS-LdMJUJ^d^ ^"
i . a
1.4
1.3
1.2
1.1
1.0 P
0.9 z
0.8 P
0.7 ^
0.6 p
0.5
0.4
0.3
0.2
0.1
n n
012345678 91011121314151617181920212223
TIME OF DflY
-------
w
* * w
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
..,.,.,., i ,.,.,,,,,. I ,,, I .,.,,,,,, 1 .,, j ,,, j , j . 1 ,.
7/30 #4 95* & NO*
mmmm
«" «
» MHM
" mm
^MMHI ^MB
w.
mm*m n
*> .
» «
^»
__
_ ,
_
£_ x x x x x _-
IJ Lt Lt |fj Li Li IM! (Xj l^i la Li Li Li \fj IAI IAI 1 i 1 i I i I I 1 i 1 i I i 1 f
i . 0
1*1
.4
1.3
1.2
1.1
1.0 P
0.5 "_
0.8 P
0.7 z
0.6 p
0.5
0.4
0.3
0.2
0.1
n n
012345678 91011121314151617181920212223
TIME OF DRY
-------
j.o . v
12.0
11.0
10.0
9.0
co 8.0
o 7.0
1 6.0
5.0
o
0 4:0
3.0
2.0
1.0
n n
I i 1 M i I i INI i 1 i 1 i Mi i 1 i 1 i I i 1 i T"~rn |TT~n A°- ^
1 1 1 II I 1 1 1 1 i ! i 1
- M 7/28 -12.0
'
4- + 4- 4- + +
.
11.0
10.0
9.0
-1 a. o
1 + -^ 7..0
1 + _I
4-
M* * «.««*
^^MM "J » - ' -*
- Y 3K 5K "*" 4.
v IY 1 !a? * 1 II Y |Y T iJ« iM iY |Y Y Y |Y |Y i^-
5l *! M W a^ * ' « ' ' ' ill'' ill II I mhtf M fli Jj M Mj*l
6.0
5.0
Q n
v> . v;
2.0
1.0
n n
0123^5678 9101112131*151617181920212223
TIME OF DflY
o
o
-------
10 . U
12.0
11.0
10.0
9.0
o5 8.0
o 7.0
§ 6.0
,-C 5-0
o
0 *.o.
3.0
2.0
1.0
n n
"" #f 7/29
» -*M
mmm* ^mmm
M
MM .
MM
H
Mt *
«
MM ««
» «w
^^MV OPHBiM
-
^
'*& ft ft a . li £ i! S i! i! ii ii a A K il & a £ iX K if
10. u
12.0
11.0
10.0
9.0 (
8.0 -
7.0 I
IV
6.0 j
5.0 £
''r.O
3.0
2.0
1.0
n n
0123^5678 910111213H151617181920212223
TIME OF DRY
o
-------
to
a:
CO
o
o
o
JL w w
12.0
11.0
10.0
9.0
8.0
7 . 0
6.0
5.0
4.0
3.0
2.0
1.0
n n
_, j, | , j . ,, ,, ,, j , , , j, ,, j , ,, | i | i ,i , , , , , , i-j-rp-jiyn
~ #4 7/30
___.
__
__
__ .
'i r. .
__
1
. yf v* & <*/ ... ytt
NX v ^'''KVvSJKvvx
* IY lY iT i I \xt I I I i! li lY IT II I* I I I ! i I i i
±i l±i !*« Ida u l*i n 1 i 1 i 1 i m m l+i m m m 15^ l^i u U U U u U
1 O . U
12, 0
11.0
10.0
9.0 0
8.0 -°
7.0 1
6.0 p
5.0 eg
4.0
3.0
2.0
1.0
n n
0123^5678 910111213H151617181920212223
TIME OF DRY
-------
*«
UJ
o
* w
1
In
.4
1.3
i
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
-'1 T I'l
MMM
mm
MM»
V
»
>
>
V
MB)
>
»
»
»
»
MMB
MV
^
IB
^^
d Id Id Iw
.,.,. 1 ,,.,,,,,,,,,,,,,, J , J ,,,,, 1 , j » j , J L
8/4 #1 77Z NO, OJL. BEGflN 0840 ~
XX
^^ '^ w
\/ m-M-*
,,-m -,-.--
x x
^^
x
1^^
D n *
^_ ^v
D A X -
X "I
D X *
g A
AB)
&A *
A A A x _I
0 " A A A A -I
Iw Iw Iw Ig Ig U Id Id Id Id Id Id Id Id Id l'3 Ifl Id Ifi Ifl"
012345678 91011121314151617181920212223
TIME OF DRY
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
a. 4
0.3
0.2
0.1
0.0
a
a
O
M
-------
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
i
0.3
0.2
. i
0.1
n n !
.1 j i i i i i j i i i i i i i i i i i i i i i j i i i i i i i i i i i i i j i i i i i i
7 8/5 #1 77* NOx DIL. ENDED 0840
MB
A
Itf
^
"
MMBB>
»
«»
M
x x x x y
k x x x x s
- x x x >
- x x
X w
x x
y
x x
_ XX
"A Ifl Ifl Ifl Ifl Ifl U Ifl Ifl Ida I-A IA IA LA I,A,|,A LA Ulfl.tfl U 1-
1 1 1_
r
-
< xl
__
K
__
^
~--
t Iff
012345678 91011121314151617181920212223
TIME OF DflY
1.5
1.4
1.3
1.2
1.1
1.0 P
0.9 "^
0.8 P
0.7 ^
0.6 °
0.5
0.4
0.3
0.2
0.1
0.0
-------
N
O
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
.. , . , . , 1 J . 1 , 1 , 1 , , , , , J , , . 1 1 J
X y »>
^^^B ^^ 3C \4
x v
X X X
r * x x x x x
~A Id U Id Id Irt 1 »a U U. J/5.lAlA-U-l.^
. 1 , 1 , 1 . , I 1 . , . 1 1 , . 1 . , ._
8/6 #1 772 (? NQX "I
, x x x ~
U U IA 1 1 1 i i i ! 1 1 ; ! ! ! r
012345678 91011121314151617181920212223
TIME OF DRY
1.5
1.4
1.3
1.2
1.1
1.0 P
°-9^
0.8 P
0.7 ^
0.6
0.5
0.4
0.3
0.2
0.1
0.0
O
-------
mi ^J * V
12.0
11.0
10.0
9.0
GO 8.0
o 7.0
x:
i 6.0
z.
- 5.0
o
0 _
4.
i o . g
12.0
11.0
10.0
9.0
8.0
7.0
- Y + + -i 6.0
Y ^ _j
4.
L. Y Y + _I
- Y Y + + ^
V/ . 1
- . Y Y
Y Y Y
' **'' V
* * * * * » *
Y IN/ Iv 1.^ 1 1 i ^ 1 1 1 1 1 1 1 1 1 \& 1 1 1 1 ! 1 i
4> 1^ 1^ IV i*t 1* n 1 I I.J-Li 1 i 1 i 1 i 1 i 1 i 1 i . n la liU«Lirf.LiUd,..U
5.0
f . 0
3.0
2.0
1.0
n n
o
o
0123^5678 910111213H151617181920212223
TIME OF DRY
-------
Q£
CO
O
"T"
21
O
O
10 .
12.
11.
10.
9.
8.
7.
6.
5.
-------
00
or
CO
o
o
o
13.0
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
1.0
3.0
2.0
1.0
0.0
-' 1 ' 1 ' 1 ' ! ' 1 ' 1 ' ! ' 1 ' 1 ' 1 ' 1 '
^- + + + + + + + 4- + *
Y" Y Y Y Y Y Y Y X Y Y
II 11 11 11*1 3lr 1 w 1
I I I 1 1 1 ^t/ I M/ 1 NV I *" 1 3K 1
4 w U? NT u Ix l3^ ftp* 1 i n 1 i.
i | . | i | . | i | i i i | i | i | i | i i g
#1 3/6 H
i
j. + 4- + 4- +
i i rl hif l« Isii 1^ l^j L» L.I L} L.4
012315678 91011121311151617181920212223
TIME OF DRY
13.0
12.0
11.0
10.0
9.0
8.0 -
5.0
1.0
3.0
2.0
1.0
0.0
o
o
. -£
1C
:^ O
-------
vo
4 * \r
1.4
i
1.3
1.2
1.1
1.0
0.9
0.8
.
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
1 1
*** 1
»
mm
MMM»
mm
MMM»
M
M*M
mm
MMM
mm
m^mm
M
MUM
m
MM*
BA
MBMB
^
M1M*
i»
MWM
^
IMi
"^ 1
. J « | . , . | . | , , , , « J IJ , , , , , , , j , , , , , , , , , J , , , J , , , j L
8/4 #2 777. NO* OIL. BEGflN 0840 "I
xxx
XX
^y -, -n- TI.
x x _:
X
x
X
X X
X _
DDDa^A, ~~
A2XAAA -
^ll|la[3!3lalaiH]ii4iif4|i^i^lri.i^i^l^lAiAlAi^!Alf^!r'r
012345678 91011121314151617181920212223
TIME OF DRY
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
o
u
2:
o
-------
£
o
1
c3
1 . vJ
In
.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n !
-' 1 ' 1 ' 1 ' 1 ' I ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' I' 1 ' i ' i
8/5 #2 77% NOX OIL. ENDED 0840
>
«
mm*m
P
^MK
MB
mmmm
m*
mmmm
tu
NMBt
!
mmmtt
^^B
xxxXXXxXxx
* X v X
X
^ X v v
"A 1 rf. U 1 rt U U 1 A 1 $ 1 A U U U U 1 ft 1 A-.I A 1 A U U U 1 A U I
i | 1
"-*
_
X v-
012345678 91011121314151617181520212223
TIME OF DRY
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
.5
.4
.3
.2
.1
.0
.9
. 8
.7
.6
.5
.4
/3
.2
.1
.0
o
-^
o
2:
o
IS)
-------
Ui
1.4
i
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
j | . j i j . | . j . , . j . j . j i | . , , 1 , , . , , , , j . , . , . , . , , , , , » 1 L
8/6 #2 11% NOX "I
"*M> III!
* **
"* «
"* «
mmm ..
* «k
MM* .,
M> MM
MM» in i. i
^ .
MMM IMMW
M «
*-
~
_i- '
"Xxxx vxxx
X v ... ., x
^_ AXXXXXX j-
"A'r^'A'A'A'rt'rt'A'A'A'A'A'A'ft'fi'A'A' ' ' ' ' ' ' ' ' ' ' ' ' '"
i .d
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
012345678 91011121314151617181920212223
TIME OF DRY
P
p
-------
ro
a:
CO
o
o
J.O . V
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
d n
7 #2 8/4
+ + + + + + +
. .j.
_. + _
_i_
L + _:
L + _I
YYYy +4-
Y + +
- Y Y .
_ y ^,
- Y v Y Y Y Y Y ^ ^ -
iiyiyiYiTui^iTLhhhhLhhi^ui^iiLjiIif
10. U
12.0
11.0
10.0
9.0 0
8.0 -°
7.0 I
6.0 P
5.0 w
3.0
2.0
1.0
0.0
012345678 910111213H151617181920212223
TIME OF DRY
-------
Wl
U)
C£
o
^c
o
o
JL Vr \l
12.0
11.0
10.0
9.0
8.0
7.0
6.0
*'!
3.0
2.0
1.0
on
- #2 8/5 ~
^v ^
*« __
MM -
» »
^«" .
w «^
_
^* i«
^
-
.
+ + , ? JI
+ + + +
^iLliIiIiIiJi^iiiTiTiTiTiYiTiTi^iIiJiJiJi^^
10. U
12.0
11.0
10.0
9.0 0
8.0 -°
7.0 i
zc
6.0 P
5.0 g
3.0
2.0
1.0
0.0
0123
-------
Ul
xo . v
12.0
11.0
10.0
9.0
35 8.0
o 7.0
"T*"
i 6.0
« 5-°
o ?
0 1.0
3.0
s -
2..0
1.0
n n
j | 'I'I'I'I 'I'l 'I'I'I'I 'I'l'l'l'l'l'l'l'l'l' 1 '1 '-
7 #2 8/6 -
'
__
. ~
: :
M. ' _
liiiiiiiiiSiJi!iJi?iJm*i?iJ.iJi:ixiJ.'iiiaiii.i7
10. u
12.0
11. 0
10.0
9.0 {
8.0 -
7.0 ]
6.0 j
4.0 '
3.0
2.0
1.0
n n
123' ^5678 91011121314151617181920212223
TIME OF DRY
o
-------
in
A * w
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
mmmm
M
»
ft
1
m
^M»
tm
MM
IV
MHMMi
I
MM*
MB
8/4 #3 77% NO. OIL. BEGflN 0900 "I
XX "
X x
x j;
x
x
X
° A A X X ~
O A "^
A
A
A X A
1 fcUl irUI Irl J i(Ljl.ihl fal fal fal fal fal fal fil Ai-Al.A.Lft.l-fe
012345678 91011121314151617181920212223
TIME OF DflY
1.5
1.4
1.3
1.2
1.1
o
u
O
M
1.0
0.9 2
0.8 P
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
-------
Ui
o
z
A * Vy
1.3
1.2
I.I
1.0
0 : 9
0.8
0.7
0.6
0,5
0:3;
0.2
n . n
8/5 #3 772 & NO* OIL. ENDED 0900
-,
.
.
__ __.
± x xxXXXxxXsZ
x x w x
X %/* ^v *
^\ \j ^^
"""" x X ~~
"ft i .hi ^liihi iii iii A! A! A! A! A! A! A! ^1^1 A.Lftm *j ^i ^1^1 ^i -;
i . O
1.3
1.2
1.1
1.0 P
0.9 "2
0.8 P
. 0.7 -z
0.6 P
0,5
0.3
0.2
.0.1
n n
0123^5678 910111213H151617181920212223
TIME OF DRY
-------
o
1.5
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
-' 1 ' 1 ' 1
_
2 x x
~hl hi fcJ
' 1 ' | ' | ' | ' | ' | ' | ' | ' | ' | ' | ' | ' | ' | * | < | < | ' | | | > | '_
8/6 #3 77% ff N0«
X/%> XX
X .
v/
hi ,hl hUl *.! ftl A! ftl ftUUI ftUUI 1 1 1 1 1 1 i 1 1 1 L_L.I:
o
u
012345678 91011121314151617181920212223
TIME OF DRY
1.5
1.3
1.2
1.1
1.0
0.9 z
0.8 P
0.7 ^
0.6 p
0.5
0.4
0.3
0.2
0.1
0.0
-------
oo
A XJ * v*
12.0
11.0
10.0
9.0
S> 8.0
o 7.0
| 6.0
5.0
o
0 1 0
3.0
2.0
1.0
0.0
j|.'i'i'i-i'i'|.|..|.|.|.|.|.|.|.|.|.|.ir|.^|.|L
-
* +
: + + :
Y Y Y +
r Y Y Y ++ -
1 Y Y V Y + + +£
Y
^i ji ji ji jui i«i f 1 1 1 . i 1 1 1 Ti j 1 1 f i ^i *i ki ki iji j,i ^i^-
012315678 910111213H151617181920212223
10 . U
12.0
11.0
10.0
9.0 0
8.0 -°
7.0 |
6.0 P
5.0 g
3.0
2.0
1.0
0.0
TIME OF DRY
-------
vn
vo
o
o
o
10. V
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
3.0
2.0
1.0
n n
J | ' | i 1 ' | | | | | i | i | < | i | i | | | | | | | i | i | ' | | | | | i | ' | < | ' | '
- #3 8/5 -
<
MM* «
M ^M
MM MMM
M «M
MM* «IMM
Mk
)» > i
IM»
~~ , ~
H- +
"""*"* + + 3K
10 . U
12.0
11.0
10.0
9.0 {
8.0 -
7.0 ]
6.0 j
5.0 c
x
4.0
3.0
2.0
1.0
n n
012345678 91011121314151617181920212223
TIME OF DRY
o
o
"3L
-------
10 . V
12.0
11.0
10.0
9.0
co 8.0
o" 7.0
I M
5.6
o
0 1 0
3.0
2.0
1.0
n n
jji |i| . 1. 1 >i>i'i 'i1 i1!1 ri'i 'ri'i'i'r r i ' i1 1 -
7 #3 8/6
6 «
MBBMB ^fti^
V Wl
^Mtt ^BH^
I^MMM
mm* f^
MHI <«
^MMM HMHM
"
IM^ *HM»*
* *^
^WM» " '*'
xo . u
12.0
11.0
10.0
9.0 0
-8.0-°
7.0 I
IE
6.0 p
5.0 £g
3.0
2,0
1.0
0.0
012315678 91011121311151617181920212223
TIME OF DRY
-------
V W
1«
,4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
j j . , i , , , , j , , , , , , j , , , j , , , , , |
. i . | . | . I . I . i . | . I . 1 ..
r 8/4 #4 HZ & NO, OIL. BEGflN 0800 ~
BJPBBB
V
»
P
MW
»
V
>
*
H
>
Bl
x x
I- X
X
~r x
~~l 1 1 ID ID ID * lA IV IA fA |A U 1
d Ll Li Inf b k\ m yilBLlaLlnLlril Ift Ift Ifl
X X ~
x
X
X _
x
x x "
I U Itf U U Itf la' laLJai-laL
0123^5618 91011121314151617181920212223
TIME OF DflY
1.5
1.4
1.3
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.3
0.2
0.1
0.0
P
-------
N>
J. . 0
1.4
1.3
1.2
1.1
1.0
0.3
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
8/5 #4 111 NOx OIL. EN
- v x x x
^y \f
^ ^S ^S '^
X x x X
dJ.dJnJ*daLl«dnl lol Ift ift Lt , *L Al. \fL\fL\.fLl^.
DED 0800 "I
x x x x
X. V » M
^^ \f mm
P_
LLUJnl-lr^U! »! .nL
012345618 91011121314151617181920212223
TIME OF DRY
1.5
1.4
1.3
1.2
1.1
1.0
0.8
0.7
0.6 -
0.5
0.4
0.3
0.2
0.1
0.0
-------
1 . %J
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.3
0.2
0.1
n n
**** 1 J 1 1 I 1 1
mfmmm
mm
aw
m
mtmm
IV
mmmm
mm
mmmm
M>
mmm*
M>
*
MP
tm
IHI
5- x x y v
^^ X x V v
d Id In! Id Id Ul UU
8/6 #4 77: 6> NOx -
.
x x x x 1
IS IAI Ui.Ui U.ld ,U,.LJd.l ,.i I 1,1. ,i. LiJ. J.L l.£
012345678 91011121314151617181920212223
TIME OF DRY
1.5
1.4
1.3
1.2
1.1
1.0 P
0.9 ^
0.8 P
0.7 2
0.6 p
0.5
0.4
0
3
0.2
0.1
0.0
-------
C£
CO
O
O
o
J.O . U
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
n n
j I > 1 > 1 ' 1 ' 1 ' 1 » 1 ' 1 1 1 ' 1 ' 1 ' 1 i 1 1 1 1 1 1 1 ' 1 ' 1 ' 1 < 1 ' 1 > i >[ L
7- #4 8/4 -
_
-_+ + + + + _;
I * + + 2
T + ~I
L. + -I
*
+ ,_ _;.
"* 'f ""
?tt to to b> i« * r, i , r, IY. IY, i₯. IY. i₯. ft K K c K c C C C-
10 . u
12.0
11.0
10.0
9.0 0
8.0 °
7.0 i
a:
6.0 .°
5.0 ^
3.0
**^ p.
1.0
0.0
012345678 91011121314151617181920212223
TIME OF DflY
-------
IvJ. U
12.0
11.0
10.0
9.0
co 8.0
o 7.0
| 6.0
o 5'°
0 4.0
3.0
2.0
1.0
n n
j | . | . | j j . , . , . | . | . j . , , j j , j i j , i j . , . , i j , j , j . j ,_
7 #* 8/5 -
» mm
«W *"
<4>
r + + + + +
Yi iX lX IYJ |X l£ I^ ft IY. IYI 1Y, |Yi l*i IYI r i n 1^ li K PG IYJ ITj IYJ i^""
wl 1-iJ lu/f Kul Iwl 13(9 1 1 1 1 1 1 1 1 1 1 I | 1 1 1 1 1 1 1 1 1 1 1*1 lv/1 lu/f lu/l IM/I irj/f Jv/l
10. U
12.0
11.0
10.0
9.0 0
8.0 -°
7.0 1
-C
6.0 .°
5.0 fg
3.0
2.0
1.0
n n
O'l 2 3 * 5 6 7 8 9101112131*151617181920212223
TIME OF DRY
-------
Of
CO
o
o
o
J.O. U
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
1.0
3.0
2.0
1.0
n n
7 #1 8/6 -
» m*m
m+ «
MB iiiMnii
M*
MVJ» .-jam.
1 "
I^BMP MMBBI
^B
Wk «
mmmm» m i 1 1
MB I" I I
Mt '"
MUM «
H4-4- + + + + + + -fc + ^^i + + + "~
!T, C to C K U K * K I*. K IY. »Y. ft W W te !,, L L L L, L. Lr
12.0
11.0
10.0
9.0 0
8.0 -°
7.0 |
6.0 P
5-° 33
1.0
; 'S'.o
2.0
1.0
n n
0123^5678 910111213H151617181920212223
TIME OF DRY
-------
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
.. , . I . I . I . I . 1 . 1 . I . I . I . , . , . , . , . , , I . 1 . , . , . , . j . 1 . 1 ._
r 8/8 #1 111. & NOx OIL. BEGflN 0940 "I
M ...
mm M
mmmmmt -.
M> MH
M> .*,..
mt v«
:" x x -:
xx
x
X
T- aDDon X X -
- ° D A x ^ j;
_ . v
a x A x-
A A A A A y ^^A
"* U U U 1 ^ U 1 ^ 1 *,l,jf,l.* 1 1 1 itl.idjdjiJLiUiLiJLi^
1 .0
1.3
1.2
1.1
1.0 P
»
0.8 P
0.7 2
0.6 p
0.5
0.4
0.3
0.2
0.1
n n
012345678 9 10 11 12 13 H 15 16 17 18 132021
TIME OF DRY
2223
-------
J-1
O\
00
i » \J
1 4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
_, , , j . , . j , | , , , , , j , | , , , j , , , | , , , j , | . j , , , j , , , , , | , , ,_
- . 8/9 #1 777. 0 NOX OIL. ENDED 0940
__
MMMB B^WM
( ^ «
^^O
V »
_ '
... .
~~ X X X X X -"
^x x X X X x x ^
- x x v v X -
Xx/^^X
^ v v> y
^ X *
^ 1 ^ I f^ 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 ^ 1 A 1 A 1 A 1 A
i . 0
1.4
1.3
1.2
1.1
1.0 P
0.9 "
0.8 P
0.7 z
o
0.6 °
0.5
O.£r
! 0.3
0.2
0.1
n n
012345678 91011121314151617181920212223
TIME OF DRY
-------
VD
X Vr
1.*
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.*
0.3
0.2
0.1
^r 9 M>
n n
MHM>
N*
MB
B»
BBMMP
1
MM**
B»
BMB»
MI
IMMB>
M»
MMl
Ml
Ml
MM»*
MHt
X X v v
^^^^^
-------
0£
o
iE
z
»
0
0
JLO . U
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
n n
j | j j . | i j i | . j i | . j i j j i . j . j i j i j . j i | . j , j . j « j . | L
7 #1 8/8
.
""* 4. 4. 4- ~~
+ + * * +
+ _
YYYY * + -*
r Y + + + ";
Y "*" 4- -
Y Y i^
y
- Y Y Y v
Tr \X
^ Y Y y1"
******
"aJdJjJjJaJuJjfl^l*! i 1 i 1 i 1 i I i 1 i I i l*l*lj&l4-li>la>Kjf!^r
0123^5678 91011121311151617181920212223
TIME OF DRY
13.0
12.0
11,0
10.0
9.0
8.0
7.0
6.0
5.0
3.0
2.0
1.0
0.0
o
o
o
-------
0£
CO
O
1
o
0
AO . V
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
no
i|i|i|i|i|i|i|i|i|i|i|i|i|ijiii|iii|i|i|i|iTriT
- #1 8/9 -
mm*
«» ' - TllL
mm <
mmmm <...
mm .
_^
mm ^M
« <_«
* MM
_>
=F + -1
+ 4. + +
MW 1 J[ I If ^^ %.^ alC 3^5 ^^ jlf ^^ %tf J^ ^B!
1O . U
12.0
11.0
10.0
3.0 0
8.0 -°
7.0 1
1C
6.0 .°
5.0 g>
4.0
3.0
2.0
1.0
0.0
012345678 91011121314151617181920212223
TIME OF DRY
-------
J
N)
J.O . U
12.0
11.0
10.0
9.0
w 8.0
o 7.0
i 6.0
5.0
o
0 t.O
3.0
2.0
1 . 0
n n
j 1 . , . j . j . , , , , j . , . j . j , , i , , , , j , , , j i j , , , j » j , , , j , j L
7 #1 8/10
'" _
.
-
__
__ ! i
!« <^+
^^
^"^** *<^ ^^ ^"
-------
N
O
U)
1.5
1.1
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.*
0.3
0.2
0.1
0.0
J J 1 j 1 j . 1 . j I J . J » J I
| i | i i , . j i | . j . j , j . i . j « , . j . j i j L
r 8/8 #2 77% NOx OIL. BEGfiN 0850 "I
.
KM
-
x
x
x x
x
XKX ^
^ ,IJLT
L. A D A . -I
_ 1 . i A Ai Ai Ai Ai
jJjkLkLu. jaUzIjfrUJL:
kifin faUlfaklfalfalftlftl.filftlfiiAli
0123^5678 910111213H151617181920212223
TIME OF DRY
1.5
1.4
1.3
1.2
1.1
1.0 P
0.9 "_,
0.8 P
0.7 35
0.6 p
0.5
O.^f
0.3
0.2
0,1
0.0
-------
CM
O
o
> * \J
IA
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
O.f
0.3
0.2
0.1
n n
j { . j . j . j . | « j . | . j . [ . j » | « j . j . j . j . | , | , j . j , j . | , , , | ._
r 8/9 f2 77% (i> NOX OIL. ENDED 0850 "I
' .
'
MM . **».
MM* M»JM"i
MM* «BMBHI
"" X * x * X X """
Hl^Ut < 4 k ^V »ll/ 1»
?s \s ' X
"<>V^. v> *
^Ni *^P \f~
~A! ^l rfvi fti.AUi hi fof shi ihUi 1^1 fti A! fti Ai,.fti.,Ai A! ^i ^i ^i ^i ^
1 . U
1 4
1.3
1.2
1.1
1.0 P
0.9 "2
0.8 P
0.7 35
0.6 »°
0.5
O.^f
0.3
0,2
0.1
n n
01231-5678 910111213 HIS 16 17181920212223
TIME OF DRY
-------
o
2
L * ^J
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.3
0.2
0.1
n n
i i i | i i i t i 1 i I t i I i i i i i i i i i i i i i i i i i i 1 i I | t 1 1 j i
MIL
r 8/10 #2 77% & NO* "I
MW
»
^M
MV
BMB»
>»
HMMM
^9
M^
.
-
^< x x x x
^XXXxxxxxxXX
jJjJjJjJUJ-ih^ .hi fcl.iK.L^fei^U-U 1 1 1 T 1 f Mf 1 1 1 1 1
;
.
-
ilr
012345678 91011121314151617181920212223
TIME OF DflY
1.5
1.4
1.3
1,2
1.1
1.0 P
°'9 "z
0.8 P
0.7 -z
0.6 «°
0.5
0.4
0.3
0.2
0.1
0.0
-------
«L O * W
12.0
11.0
10.0
9.0
co 8.0
o" 7.0
1 6.0
- 5.0
0
0 4.0
3.0
2.0
1.0
n n
j j . j . j i j i j . j j . | . j « | i | . j , j » j i | i j . , i j , | » j . | i | i | i_
7 #2 8/8 ~
. _
~, + + + + 4-+ j;
.
L. + -
,
4-
Ml * «M«<
« M&» «»
+
*» f" ^"
Mta^W ' ^
JL
Y Y Y Y j -
Y Y "*" 4-
Y y ' ^
Y Y
Y 5K * Y Y
"iiLbLlrl *rl 4/1 ifl *| f^l f 1 r 1 1 1 I 1 1 I.I 1 1 .1 I I . W ^1 |J 4/1 4,1 iJ 4rl J
10 . U
12.0
11.0
10.0
9.0 ^
8.0 -C
7.0 |
6.0 f
5.0 £
4.0
3.0
2.0
1.0
n n
0123^5678 91011121314151617181920212223
TIME OF DRY
-------
AO . y
12.0
11.0
10.0
9.0
So 8.0
J 7.0
*"'"
§ 6.0
o"
0 *\ 0
3.0
2.0
1.0
n n
J | ' | ' | ' | ' | < | ' I1 1 ' I1 I1 I1 I1 1 ' I1 I1 1 ' 1 ' 1 ' I1 1 ' I1 1' 1 '-
~ #2 8/9 ~
^«<
mmmmm .MM.
" <,
>.
"W w
*m*m* imii ni_
MHP " «.
-^
«MV ^i.a
*
. .
****+ ""
MliIiJl ?! ₯\ f 1 7 1 r l n r I ri rl f I f I r\ *l ^l i-l tUUU:
10. U
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
3.0
2.0
1.0
n n
0123^5678 910111213H151617181920212223
TIME OF DRY
o
o
-------
oo
CO
o
21
O
o
10 .
12.
11.
10.
9.
8.
7.
6.
5.
*K
3.
2.
'1.
n
U
0
0
0
0
0
.0
0
0
0
0
0
0
n
J 1 ' I ' i ' 1 ' 1 '
_ .
^
.
_
__
"- Y" + t Y" Y
[id-lJ-ir-IjJjJjk
1 1 1 1 I
H- 4- 4;
ttl $1 1
1
Y
1
j « j I | , . | I , I | I | i , . j I j j « | _
#2 8/10 -
ill*.
«
MBAMW
V
MM
Ml
H«^H
\
«MVM^
"*'
Id*^
*
MMm
&t* ^ A
3a * 4- 4- +
rl i Li 1 ^Ul a.LiJ,.fc,U].fr! 4JLil.{J_{Z
10 .
12.
11.
10.
9.
8.
7.
6.
5.
*K
3.
2.
1.
n
u
0
0
0
0
0
0
0
0
0
0
0
0
n
o
M
~z.
2
in
o
CO
0123^5678 910111213H151617181920212223
TIME OF DRY
-------
tj
VD
o
Z.
i .0
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
-' 1 '
MMMB
^
mm
MM
MHMB
*
MM*
»
M*
MM
MM*
-~*
-
-
»l Jfl
J . ] . J . | . | I | , j » | , , . J . | , J , , , j , j « , I J . , . j 1 , , j i ; | L
8/8 #3 77% NOX OIL. BEGRN 0940 "I
x x x "I
x _.
X
n \x
A A X ~
s x A A xj:
A A
ii.Utl.lf 1 tl Ll l\ j
-------
Oo
O
JL X^
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.3
0.2:
0.1
n n i
j j . | i j . j . | . j . | . j . j . j , j , | , | . , . j , j i | , j i , , j , j . , i j ._
8/9 #3 111
-------
oo
H
1 .O
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
j j i j i 1 i j i j i I i j i i i 1 i
-.
<
t"x
XxxXxxX
7l Li kl kl 111 til L JiLkl.kl.
| i I i i i j i i i i i i i i i i i j i ] i | < j M i.
8/10 #3 11% @ NOX "I
-
.
__
v x x x x j:
X
x -I
klkiklll,kllLLl.l i Ll 1 1 1 1 1 i 1 1 1 f
0123^5678 910111213H151617181920212223
TIME OF DRY
1.5
1.4
1.3
1.2
1.1
1.0 P
°-9 "z
0.8 P
U. /
0.6
0.5
0.4
0.3
0.2
0.1
21
P
0.0
-------
N)
13
12
11,
10,
9.
to 8,
"7
O '
a:
5 6,
o
o
V
0
0
0
0
0
0
0
0
0
0
0
0
n
j j . j . | . | j , j , j , j , , . | . j . j , , » , « j , j , j . | , | , j | i | i | r_
#3 8/8
-
__
L + + + * + +
M ^» -
__
+
+
' +
^ , * + ~
IBB, J^ *fH
~ V +
V ' V «o. -i
T T Y Y + .i. ~*
Y Y Y i -
%>
M/YVN/^^ ""
w Sli 7K W, T T V"
»^ t ^ 5J^ ?K ^ * vx M^ Y Y v v ^^'"*-i
7i Li it Li ii li ii fri f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 * i ₯\ i.1 It Li Li Li LIJ
i^J . U
12.0
11.0
10.0
9.0 0
o
8.0 -
7.0 I
1C
6.0 P
5-0 g
*.o
3.0
2.0
l.C
rv .n
5.0 -
3
2
1
0,
0123*5678 910111213H151617181920212223
TIME OF DRY
-------
00
a:
V)
o
o
o
IvJ . W
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
1.0
3.0
2.0
1.0
n n
1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 ] 1 I 1 j 1 | 1 1 1 1 1 I 1 I 1 1 1 ~| 1 I I I 1 I 1 ] 1 1 ! ] I
- #3 8/9 ~
^» *
MM* (MMWMi
^» «
MMW M*M
^B «
m*mmm ^MW,
IMP *W
WMW
^
MMB MMM
> ^rm
^^^^ V^BMI^
:
.
ir"1* * i
"* "4" «A- *iL. Skt O£ \i* ^M ""
^ Y Y y v v^ iK y _L, ^* %u
io. u
12.0
11.0
10.0
9.0 (
8.0 -
7.0 \
6.0 5
5.0 c
^^
3.0
2.0
1.0
n n
0123^5678 910111213H151617181920212223
TIME OF DRY
o
-------
(XL
CO
O
O
o
Jk VJ W
12.0,
11.0
10.0
9.0
8.0
7 . 0
6.0
3.0
2.0
1.0
n n ?
j | . | . j i | . j . j , , . j . | , j , j . j , . , i , , , j , , , , , , , j i j i j ,_
7 . #3 8/10 "I
_
_i
~~ i
-
ri li ti Et ti ti )KI ^i.li.Ti L i til L« i Ki £iJu kill liii ti ti i-f"
iO . U
12.0
11.0
10 . 0
9.0 0
8.0 -°
,7-0 |
6.0 P
. 3 . 0
2.0
1.0
n n
0 123^ 5 678 910111213HIS 1617 18 1920212223
TIME OF DRY
-------
00
Ol
J. .0
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.3
0.2
0.1
n n
«»
m
MM)
M
iM
»
»
Ml^
_
~
8/8 #4 77/? & NO* OIL. BEGflN 0940 ~
-
__
* * * * x j:
X X x x -I
aaaaoDgwA
^ U U k l« l« l« Ift l3J§..lnJrL.ld-LSJAJAJ.fi.lAJ.ifii...U Id. U,,U:
012345678 910111213H151617 181920212223
TIME OF DflY
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.3
0.2
0.1
0.0
o
o
-------
00
ON
»
o
J» V
1.4
1.3
1.2
1.1
0.9
0.8
0 .7
0.6
0.5
0.3
0.2
0.1
n n
*
w
MB
«
MMfMri
»
MMM
MM
Mi
HBBHHp
mm
MM^M
«
Ml
^^Mf
MMBWI
HI
ix X ;
8/9 #f 77>? @ NOx OIL. ENDED OS'fO ~
..
___.
"
..
xxxxxxxxxx^
Xk. V ^ ~ '
i |X iX tX iv iv |X i I i i I i i i i t I r i
d IriJd !dJdJ31A^JHl^J.rtJ^^J4J4lriJ^Jr^l^ IrJ.-r
012345678 91011121314151617181920212223
TIME OF DflY
1.5
1.4
1.3
1.2
1.1
1.0 P
0.8 P
0.7 2:
0.6 p
0.5
0.4
0.3
0.2
0.1
0.0
-------
00
A . 0
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n ft
-MM
MM*
M*
MHMW*
MM
MJBHM>
MB
k
MM*
i
MB*
H
»
.
_
2L. X )
ri IH li
. 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . , 1 1 . 1 .,. 1 . 1 . 1 1 1 1 1 1 1 1 1 1 1 ..
8/10 #4 777. NOX "I
__
__
X& A
^ « x
> v> \^ ^^
4 Iri U Id U Iri Iri Irdfdtf lidfl Ifl Irt 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 f
012345678 910111213 HIS 1617181920212223
TIME OF DRY
1.5
1.3
1.2
1.1
1.0 P
0.9 "z
0.8 P
0.7 z
0.6^
0.5
0.3
0.2
0.1
0.0
-------
I-1
00
oo
Q±
CO
O
O
O
10 . U
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
/
£1 - rt
3.0
2.0
1.0
n n
7 #* 8/8
I" + ~1
"""" >4" ~~
I_ * *- _I
- + ^
4.1^ ^tf 3R ^^
YYY ^('K'R:*SKSK
- 1 I 1 III |£ |^f |Y |Y |Y |Y |Y |? |Y ||E |« |Y |Y |Y IY |Y |Y-
A kr IjJtF lrf.ltf.l*HJ*J l,l,,f,,i..,LLlJ.,LlxJ.Ll!5JJ li.U.lil3 1^ Irf-
10. u
12.0
11.0
10.0
9.0 0
8.0 -°
7.0 I
6.0 P
5.0 g
1-.0
3.0
2.0
1.0
n n
012 3^5678
910111213H151617181920212223
TIME OF DRY
-------
00
vo
Of
CO
o
o
5
AO . V
12.0
11.0
10.0
9.0
8.0
7.0
6.0
4.0
3.0
2.0
1.0
n n
J|i|i|'|'|'|i|i|'|'
«»
£
mmm*
»
MMMB
N*
MMMt
Mi
MHMfe
M
H*
^
^****...
L J *
i IY |YiY IY IY il£ l₯ |Y n
^1 N h; U l^> l» n 1 1 1 1 1
,,,. j , j ,,,,,,,,. j .,,,,, M . j L
#4 3/9 ~
__
__
.
_
; ix i^ n \* n Is! i* u irf irf L, L, L, i.~
012345678 9 101112 13 HIS 16 17181920212223
TIME OF DRY
o
o
13.0
12.0
11.0
10.0
9.0
8.0 -
7.0 j
6.0 j
5.0 so
3.0
2..0
1/0
0.0
-------
I-1
\o
o
Of
CO
O
O
o
AO . U
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
n n
III I I I I I I i 1 1 j I I I I I I I I I ' I I I j I j I I I j I I I j I I I j J j i I I
7 #4 8/10
mmmff
» *
_
Mt *^'
> «"
_-.
M * »
P **!
*<5Kj.j. + a.
^ ^ ^ i *K 't' y ^ 5 Y Jp i i y Y
TJ L j L L l»i~l* If 1 1 1 1 i 1 1 1 1 1 1* 1* U 1* U U Li L» L la L,f
xo. u
12.0
11.0
10.0
9.0 0
8.0 -C
7.0 |
~r
-i
5.0 g
4.0
3.0
2.0
i.o
n n
12345678 91011121314151617181920212223
TIME OF DRY
-------
NO
ff»
O
1 .O
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
n 4-
U . T
0.3
0.2
0.1
n n
MM
* 1 1
IMV*
»
MM
^m
^MM»
»
MM*
PMMM
M>
M^BM
P
>
Ml -
.
*"
_
^
.
j L 1
i I i I i I i I i 1 i 1 i" j i 1 i 1 i 1 i 1 i 1 i 1 i i i 1 i 1 i j i } i i i i i i i
x a/12 #1 STfiTIC "I
x x
X ~~
x x JI
x
X _
X
Kl
,
D o ^ x ^
A A
n D -I
A
A x ~I
\
AAAAAO A JI
A .
A A A
ri Ut ^1 '^ '^ ^ '^ ^ '^ 'd 'ri U 'd 'ri U 'ri 'H 'd 'd 'H ^H '^~
012345678 91011121314151617181920212223
TIME OF DRY
1.5
1 4
1.3
1.2
1.1
1.0
0.9 .
0.8 j
0..7 ;
0.6
0.5
0.3
0.2
0.1
0.0
o
c&
-------
VO
to
o
- *
o
A . vl
1 . 4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
.. f .,.,.,, j , j » j ,
_
.
3T
-x x
x
- X x x
.A iA IA |A JA |A (A |A
H IH IH IH IH IH IH IH
1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 >_
8/13 #1 STflTIC "I
v X X *
x x x
x x x x x xl
13 13 13 13 13 13 13 13 131313 is ia iftia i?
012345678 91011121314151617181920212223
TIME OF DflY
1.5
1.3
1.2
1.1
1.0 ?
0.9 z
0.8 P
0.7 z
0.6 p
0.5
0.4
0.3
0.2
0.1
0.0
-------
CO
n
O
A w
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.3
0.2
0.1
n n
j | i j i j i j i j i j i j i j i j i j i j i j i j i j i j
MM*
M*
MMHM
MM
MM»
MM
MMHMt
mm
^^MM
»
MMMM
MB
M
"" X '
X
- * x x
* x x x
L. x x v x
x x x
1 1 f 1 t I f IktA.IAIAf^VtA.tyVI^
^ A A (A lA lA lA lA 1ft IS IH Iri 15 IH IH 1
,,, 1 ,,,,.,,,, j ,,,_
8/H tl STflTIC ~
-
<
4 1 1 1 I | 1 1 1 ! ! i ! I 1 ! |~
0123^5678 910111213H151617181920212223
TIME OF DRY
1.5
1.3
1.2
1.1
1.0 P
0.9 2
0.8 P
0.7
0.6
0.5
0.3
0.2
0.1
0.0
o
-------
\D
12.0
11.0
10.0
9.0
Ss R n
v> o. U
o" 7.0
§ 6.0
- 5.0
o
0 1.0
3.0
2.0
1.0
n n
7 #1 8/12 -
___
r + + + + + + + + + ±-
MB *
- Y Y Y -
_ Y v
' Y Y
. .
__ _
- 1 I 1 t 1 I;*; 1 1 1 I I 1 I 1 |M/ 1 1 1 t I t 1 I -
<* U whf l«i 'I* n li 1 LI f 1 rl.,iJ ,LlJJjJ*Ll3KJit U? U U Iw U N
10 . U
12.0
11,0
10.0
9.0 0
8.0 -°
_ _ -^
7.0 ^
1C
6.0 ,°
5.0^
3.0
2.0
1.0
n n
^^^ W^ *W^ W9^ ^w-w *"* * w^-w ^ m n« r*^
0123^5678 910111213H151617181920212223
TIME OF DflY
-------
VO
Ui
1«J . VI
12.0
11.0
10.0
9.0
w 8.0
J 7.0
| 6.0
o
3.0
2.0
1.0
n n
- #1 8/13 -
mm mm,
mmmmm ~mmm
mm* *
mmmmm mitmmi
mmt *
Hmmfi * ^f* *J" *^* «^» *J» ^t *V* J» «M» ^^ m £* MM ^1 _j__ . 1^ f »
» - *
« ^iBIVN
^B «
«M
^M
W
Y Y Y Y v
-. TTYYYYYYYYr-
. _
- I 11 f 1 1*1^1 1 1 1 1 1 1 1^ ISK I 1 1 1 1 1 I -
-J l^j 1^; 1^) IvJ l» I"? 1 i 1 « 1 i 1 i 1 i 1 i 1 i 1 li i I*T }# IM! \~i 1^ |«i KJ {,.1
v* ^^
12.0
11.0
10.0
9.0 (
8.0 -
7,0 I
«
6.0 f
5.0 5
+
^.0
3.0
2.0
1.0
n n
0123
-------
VO
o
10 . U
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
3.0
2.0
i.o.
n n
7 #1 8/1* 1
FH. + + + + + + + + + + + + + + j
"» MM
P «*!
Mt 4VV
^ ^B
Y Y Y Y Y
₯- Y Y Y Y Y YY
L. JK*****^ -I
^^ ^^ 5Bf
"i,.Uj U L 1^ l» N 1 1 1 1 1 1 1 1 1 i li ! r 151*. 1** Ivj U 1^ *i lvjJ.5jI
12.0
11.0
10.0
3.0 o
8.0 -°
7.0 I
zc
6.0 .°
5'° ^
3.0
2.0
1.0
n n
0123*5678 9101112131*151617181920212223
TIME OF DRY
-------
N
O
z
o
L * ^r
1.1
1.3
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.1
0.3
0.2
0.1
n n
j j i j
»
MOT
MM
V
»
MM'
»
*
MMB
MB
»
m
MMMt
*
_
.
"cfc ' A
1 | 1 1 1 I 1 J 1 J 1 1 1 1 1 I 1 J 1 J 1 J 1 J 1 J ! IN I 1 J 1 | 1 j 1 j J j M l__
8/12 #2 STflTIC 1
_
___
w X X v ~~~
x x x -
x
x x x __
x X-
x
x T
o a D a A
°AAA^AAA -
ik'^'^'^'S'^'ril'rh'rt'rt'rt'rt'A'ri'rt'rh'n'^'^'n'^i'^"
1.
012345678 9101112131*151617181920212223
TIME OF DflY
1.3
1.2
1.1
1.0
0.8
0.7
0.6
0.5
0.3
0.2
0.1
0.0
o
u
o
z
10
-------
00
o
0
Jm * \pf
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0. 4
0.3
0.2
0.1
n n
^
M*
*
MMMBK
R
«»
Ml
M*
M*
MO*
^^* ^^
X X v
X X X >
^R
MMMH
M*
MMMW
«>
I^H*H>
"ft IA U U U IA U 1 .A i itU.,U.U
i ' i ' i ' i ' i i i i I ' i ' i > i ' i > i '-
8/13 #2 STRTIC ~
V V s/
X X v
< x x x x x x j-
- L
UAlAlA.1 AiftJAi A. 1 A- 1 A.U I A 1 £
12345678 91011i213H151617181920212223
TIME OF DRY
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
o
O
M
-------
VO
VO
X .0
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
j , . , . , . , . 1 . 1 i 1 . 1 . 1 . 1 i I i I . 1 . I . 1 . I i 1 i I . 1 . 1 . , . 1 . 1 ._
7 8/14 #2 STflTIC "I
MBM» MM
mm *
mmmmm » «
M». *"
MMM ««M^
MM "
mmmmmt MMM.
Ml «^
MM* WWBM
MM* «MMI
MM*
Ml ^^ X^ ^j
~ x x v x X ~
x x x x
^. x x x x j;
"^^A^'A'A'A'A'A'A'A'A'ft'^i'^i'f'i'ft' ^ ' i ' I i ' f f ! 1 1 r
x .0
1.3
1.2
1.1
1.0 P
0.9 2
0.8 P
0.7 z
0.6 ^
0.5
0.4
0.3
0.2
0.1
n n
012345678 9101112131^151617181920212223
TIME OF DRY
-------
10
o
o
13.0
12.0
11.0
10.0
or
CO
*
o
z
«k
o
o
9.0
8.0
7 . 0
6.0
5.0
1.0
3 . 0
2.0
1.0
0.0
j j i | i | i j i j i j i j i j i j i | « j i
4. + + 4-
+ + +
L. v Y Y
V Y Y y
^iJuiUumThi.hi.
1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' i ' i '-
#2 8/12 ~
YVYYYYYYY vl
* * * -
i 1 t i i 1 ^ I * 1 !f I a 1 a Li, Li. 1 , L | j~
13.0
12.0
11.0
10.0
9.0
o
o
012315678 91011121311151617181920212223
TIME OF DRY
8.0 -
7.0 |
6.0 P
5.0 w
3.0
2.0
1.0
0.0
-------
to
o
10 . U
12.0
11.0
10.0
9.0
85 8.0
o" 7.0
1 6.0
o
0 4 0
3.0
2.0
1.0
n n
MMMM
MMMB
I
T
IV
*»
»
-
5r
l.l.jllllll.lllll.l , Illil 1 jllll III].). j. l> JL
#2 8/13
+ + -H 4. + + + +
+ + + + + -f- + + + + +£
""""""
-
YYYYYYYYYYYVN/ "I
TTTYYYYYY YYY^.
1 1 * U 1 ^ 1*1 S 1 1 1 1 1 LLiLdj ii 1 i ,1 1 1 ₯ 1 * U U 1 4 U U LjZ
o
0123^5678 91011121314151617181920212223-
TIME OF DRY
13.0
12.0
11.0
10.0
9.0
8.0 ~
7.0 HL
6.0 F
5.0 09
3.0
2.0
1.0
0.0
-------
tr.
V)
o
o
o
7.0 -
13.0
12.0
11.0
10.0
9.0
8.0
0
6.0
5.0
4.0
3.0
2.0
1.0
0.0
l*+++++*+++++,++
»
L *******
jjtixuuui^fiihiiiiiihiiifiauiai
1 I ' 1 f i ' i !-
=2 8/14 "~
jtUL&ljrUl
13.0
12.0
11.0
10.0
^ 9.0
o
o
012345678 91011121314151617181920212223
TIME OF DRY
H 8.0 -
7.0 I
-j.
6.0 .°
5.0 to
3.0
2.0
1.0
0.0
-------
N5
O
A \J
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
t i i i i I i I 1 1 1 1 I i i i i i i i i i i i i i i i i i i i i i i | i | i ]M i | : j i_
7 8/12 #3 STflTIC 1
mmmm "
mm mm
mm
mm mm
mmmm mmi Ilmm
mm »
x
X X
x
x -
- x
xx-
: X -
X,
n D a D
~~" D * * "~~
- A A _
~~ D A A "~
I" A n x . A ~
^m- A A A ^^» ^^
^3k ^QI ^^ ^j v/ yv "*
-1 1 1 1 1 1 1 1 1 ID1 1 1 1 1 1 I |A|A|AI^iA!A-
kl fel fcLiJJcl xl j
-------
1.3
1.2
1.1
1.0
<3 °'9
§ 0.8
g o 0.7
z 0.6
<5 0.5
0.*
0.3
0.2
0.1
n n
r 8/13 #3 STRTIC "I
.
. - __
* x x x x x x x v ~~
I. x x x xx x x
1. x x x x ^
.
-£l£l£l£l£lAlAlAi£l£i£l£l£l£l£!Ai£l£lAiAiAJ i J ,~
fil ft, Kl fil fiLfil B .fil..ftJ.JU-BI.R.l.felJfil hi fit tol fii filAJ..:Ai i:,l s-J-.^.
1 . x3
1.3
1.2
1.1
1.0 P
o.s ^
0.8 P
0.7 2
0.6^
0.5
0.*
0.3
0.2
C.I
A n
012345678 9101112131*151617181920212223
TIME OF DRY
-------
A .
1.
1.
1.
1,
1,
0
0
0
0
0
0
0
0
0
n
^ n J i | « | « | i | i | » | i | i | i j i | l | » j i | i | i | i j i | « j > j | i | ' j L
* F 8/1* #3 STflTIC "I
3 r ~~
2 P- -
>1E~ "^
.0 P- "-
9 r "^
.8 t- -
,7 t- ~
f^ *M
.6 F- -
.5 h- v
f* X "
.* p x x x ~
"0 F Xxxxx "I
. 1 r-
n I"A! A! ft! ftUUl Alft.Ul..ftU.U.mft.LftI A! \ \ \ 1 1 1 1 1 » 1 ? 1 1 r
U
i .
1.
1.
1.
1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n
-------
S.
o
o
o
AO. V
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
9.0
3.0
2.0
1.0
n n
^ j ,,.,.,.,. j , j M i 1 , j , j ,,,,,,, j , 1 ,,,,,,, j ,,, j , I ,_
7 #3 8/12
~~~ * + + + + + + + + + J. ,""
T^ + + + 4-^f
M *M
MBMI WIMMM
r* Y y Y
YY'YYYYYY^
"" * ₯ * * *!
«> 3K * * 5K '
^DK i^^v 4n%
"?' XUfJ^' if' *' *' ' 1 - » 1 ! 1 ! 1 ' 1 ' J I ' 1 *' *' %' if' i'J i-' i'l i'l £
iO . U
12.0
11.0
10.0
9.0
8.0
7.
6.0
5.0
*LO
3.0
2.0
1.0
n n
012345678 910111213 H151617181920212223
TIME OF DRY
o
o
o
-------
NJ
O
C£L
CO
O
O
O
13.0
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0
Iliriirilrrrrriir.lMllllll Tl'i'i !i 'I
#3 8/13
*.
012345678 91011121314151617181920212223
TIME OF DRY
13.0
12.0
11.0
10.0
s.o
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0
12
O
-------
N>
O
00
cc
CO
o
o
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
3.0
2.0
1.0
n n
j ,, 1 , j ,,,., i j »,,,» 1 , M j ,,,,, j , 1 , j ,,. 1 i ,, j ,,,,,_
7 #3 8/14
__
_ _
__
;^lt|p + _
B^
» «*»»
^M -irmm-ifi
^YYYYYYYYYYYYY "~
\\ 4-1 4rl,vl fcliel jLtLdj 1 1 1 1 1 ,i 1 1 1 1 1 fl ffl kLkl.A.l.iflifl */Li
10 . U
12.0
11.0
10.0
9.0 c
8.0 -
7.0 !
6.0 f
*
3.0
2.0
1.0
n n
012345678 9101112131*151617181920212223
TIME OF DflY
-------
JO
o
VO
c5
JL . O
1.4
1.3
1.2
1.1
1.0
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
n n
-H ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' i
mmmm
*
MM*
«
»
!
MMM
I^P
^MA
10
_
ZLLt.LiLifeifti fti.lJ
1 J 1 J 1 j 1 j 1 j 1 J 1 J 1 j 1 j 1 J 1 j 1 J 1 J I j 1 j l_
8/12 #4 STflTIC ~~.
__
x x x x
x x * x x x~
X -~
X ~~_
__
X
L^J-feJ-£l £l fet fel fel fel fel Kltj 1 k I 1 1 k.LklI
^m VH*
-------
to
M
O
01
O
O
1 . 0
1.1
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.3
0.2
0.1
n n i
r 8/13 #1 STflTIC "I
__ ,
__
__
: i
_
I XXXXXxxXxxxxxxxxXxXxx2
MV ^M
M
MHBV ««
"l ttl kl kl ^kl kl Ll kf tl kt i]l kl kl hi kl kl jki ki Li ki i. f k i k r.L L
1 .0
1.3
1.2
1.1
1.0 P
0.9 "2
0.8 P
0.7 2:
0.6 p
0.5
0.3
0.2
0.1
n n
01-23^5-678 9101112 13mS 161718 1920212223
TIME OF DRY
-------
o
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
8/14 #4 STflTIC
i
i
,
012345678 91011121314151617181920212223
TIME OF DRY
1.5
1.3
1.2
1.1
1.0 P
0.8 P
0.7 z
0.6 p
0.5
0,'r
0.3
0.2
0.1
0.0
-------
JLO . U
12.0
11.0
10.0
9.0
to 8.0
o 7.0
| 6.0
- 5.0
o
0 4.0
3.0
2.0
1.0.
n n :
j | | . j , , . , , , , , , j , j , j , , , | , j , j , , , , , | , j , , , | , j , j , , »_
7 #4 8/12
, +
J. 4- a.
L- "f+ 4- * + + + 4. 4. + + * 4-^
_
l*~*rr -T-rm
MM* VH
,1 L Ll Ll Llfcl f6! ll 1 F 1 1 1 1 I T 1 1 1 1 1 1^1 klLl Lf Ll Ll Ll Ll Ll
J.O . U
12.0
11.0
10.0
9.0 c
8.0 -
7.0 ]
6.0 1
5.0 <
^
3.0
2,0
1.0
n n
012345678 91011121314151617181920212223
TIME OF DflY
-------
13.0 |i | i | i |i i | i | | | | i| | | i | j i | i | i |ij i | i || |
12-° [7 #4 8/13
11.0
10.0
9.0
o 7.0
x:
3.0
2.0
0 0 fc"'le'k'lc'l(ifrF'l 'I i M tl 'h I ifiMiiciUJUJfriJfrLJL
012345678 91011121314151617181920212223
TIME OF DRY
13.0
12.0
11.0
10.0
9.0
o
o
8.0 -
7.0 I
6.0 r
5.0 g
3.0
2.0
1.0
0.0
-------
Q£
CO
10 . U
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0 '
n n :
7 #4 8/14
___
-"-
;-* ****** + * + + + + + + + -j
_. ^
.
"" * ~~
LYYYYYYY*₯«Y**XYY
10 . U
12.0
11.0
10.0
9-0 o
8.0 -°
7.0 I
i
6.0 ,°
5.0 g
4.0
3.0
2.0
1.0
n n
012345678 91011121314151617181920212223
TIME OF DRY
-------
REPORT NO.
EPA-600/5-76-107
4. TITLE AND SUBTITLE
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
|3. RECIPIENT'S ACCESSION-NO.
OXIDANT-PRECURSOR RELATIONSHIPS DURING POLLUTANT
TRANSPORT CONDITIONS
ATI Diitdnnr Smn
5. REPORT DATE
November 1976
6. PERFORMING ORGANIZATION CODE
L. A. Ripperton, J. E. Sickles, II, and W. C. Eaton
8. PERFORMING ORGANIZATION REPORT NO,
9. PERFORMING ORGANIZATION NAME AND ADDRESS^
Research Triangle Institute
Research Triangle Park, North Carolina 27709
10. PROGRAM ELEMENT NO.
i AA£r>7 (\
-------
INSTRUCTIONS
1. REPORT NUMBER
Insert the EPA report number as it appears on the cover of the publication.
2. LEAVE BLANK
3. RECIPIENTS ACCESSION NUMBER
Reserved for use by each report recipient.
Title should indicate clearly and briefly the subject coverage of the report, and be displayed prominently. Set subtitle, if used in smaller
type or otherwise subordinate it to main title. When a report is prepared in more than one volume, repeat the primary title, aaa volume
number and include subtitle for the specific title.
5. REPORT DATE j , r
Each report shall carry a date indicating at least month and year. Indicate the basis on which it was selected (e.g., date oj issue, date oj
approval, date of preparation, etc.).
6. PERFORMING ORGANIZATION CODE
Leave blank.
7. AUTHOR(S)
Give name(s) in conventional order (John R. Doe, J. Robert Doe, etc.). List author's affiliation if it differs from the performing organi-
zation.
8. PERFORMING ORGANIZATION REPORT NUMBER
Insert if performing organization wishes to assign this number.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Give name, street, city, state, and ZIP code. List no more than two levels of an organizational hirearchy.
10. PROGRAM ELEMENT NUMBER
Use the program element number under which the report was prepared. Subordinate numbers may be included in parentheses.
11. CONTRACT/GRANT NUMBER
Insert contract or grant number under which report was prepared.
12. SPONSORING AGENCY NAME AND ADDRESS
Include ZIP code.
13. TYPE OF REPORT AND PERIOD COVERED
Indicate interim final, etc., and if applicable, dates covered.
14. SPONSORING AGENCY CODE
Leave blank.
15. SUPPLEMENTARY NOTES
Enter information not included elsewhere but useful, such as: Prepared in cooperation with, Translation of, Presented at conference of,
To be published in, Supersedes, Supplements, etc.
16. ABSTRACT
Include a brief (200 words or less) factual summary of the most significant information contained in the report. If the report contains a
significant bibliography or literature survey, mention it here.
17. KEY WORDS AND DOCUMENT ANALYSIS
(a) DESCRIPTORS - Select from the Thesaurus of Engineering and Scientific Terms the proper authorized terms that identify the major
concept of the research and are sufficiently specific and precise to be used as index entries for cataloging.
(b) IDENTIFIERS AND OPEN-ENDED TERMS - Use identifiers for project names, code names, equipment designators, etc. Use open-
ended terms written in descriptor form for those subjects for which no descriptor exists.
(c) COSATI FIELD GROUP - Field and group assignments are to be taken from the 1965 COS ATI Subject Category List. Since the ma-
jority of documents are multidisciplinary in nature, the Primary Field/Group assignment(s) will be specific discipline, area of human
endeavor, or type of physical object. The application(s) will be cross-referenced with secondary Field/Group assignments that will follow
the primary posting(s).
18. DISTRIBUTION STATEMENT
Denote releasability to the public or limitation for reasons other than security for example "Release Unlimited " Cite any availability to
the public, with address and price.
\
19. &20. SECURITY CLASSIFICATION
DO NOT submit classified reports to the National Technical Information service.
21. NUMBER OF PAGES
Insert the total number of pages, including this one and unnumbered pages, but exclude distribution list, if any.
22. PRICE
Insert the price set by the National Technical Information Service or the Government Printing Office, if known.
EPA Form 2220-1 (9-73) (Reverse)
------- |