United States
Environmental Protection
Agency
Environmental Sciences Research
Laboratory
Research Triangle Park NC 2771 1
EPA-600/3-78-059
June 1978
Research and Development
&EPA
Computer Modeling
of Simulated Photo-
chemical Smog
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports
This report has been assigned to the ECOLOGICAL RESEARCH series. This series
describes research on the effects of pollution on humans, plant and animal spe-
cies, and materials. Problems are assessed for their long- and short-term influ-
ences. Investigations include formation, transport, and pathway studies to deter-
mine the fate of pollutants and their effects. This work provides the technical basis
for setting standards to minimize undesirable changes in living organisms in the
aquatic, terrestrial, and atmospheric environments.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-600/3-78-059
June 1978
COMPUTER MODELING OF SIMULATED PHOTOCHEMICAL SMOG
by
D. G. Hendry, A. C. Baldwin, J. R. Barker,
and D. M. Golden
SRI International
333 Ravenswood Avenue
Menlo Park, California 94025
Contract No. 68-02-2427
Project Officer
Marcia C. Dodge
Atmospheric Chemistry and Physics Division
Environmental Sciences Research Laboratory
Research Triangle Park, North Carolina 27711
ENVIRONMENTAL SCIENCES RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
RESEARCH TRIANGLE PARK, NORTH CAROLINA 27711
-------
DISCLAIMER
This report has been reviewed by the Environmental Sciences
Research Laboratory. U.S. Environmental Protection Agency, and approved
for publication. Approval does not signify that the contents necessarily
reflect the views and policies of the U.S. Environmental Protection
Agency, nor does mention of trade names or commercial products constitute
endorsement or recommendation for use.
ii
-------
ABSTRACT
The photochemical smog chemistries of ethene, propene, butene-1,
trans-butene-2, n-butane, 2,3-dimethylbutane, and toluene NO systems
X
h'ave been developed and tested with smog chamber data collected at
the University of California, Riverside. The mechanisms are composed
of critically evaluated kinetic data for the individual reactions
to the extent possible. Wh ere data on specific reactions were not
available or were not at the appropriate temperature and pressures,
thermochemical techniques were used to estimate or extrapolate exising
data to obtain the de.si.red rate data. Whenever thermochemical data
wore estimated to predict rate constants, error bounds were assigned
to the estimates and the resulting rate5 constants. In only a relatively
few cases was it necessary to vary the estimated rate constants
within the error limits in order to optimize the agreement between
computed and experimental concentration-time profiles. Given the
kinetic information currently available this general approach minimizes
the need for adjustment of rate constants and produces mechanisms
that are valid representations of the homogeneous gas-phase chemistry
of each of these hydrocarbons in photochemical smog formation.
iii
-------
CONTENTS
ABSTRACT ill
FIGURES vi
TABLES xi
1. INTRODUCTION 1
2. CONCLUSIONS AND RECOMMENDATIONS 4
3. DETAILED CHEMISTRY 7
3.1 Inorganic Reactions 7
3.2 Peroxynitrates 7
3.3 Alkoxy Radicals 11
3.4 Termination Reactions and Radical-Radical Reactions 16
3.5 Aldehydes 17
3.6 Photolytic Reactions 19
3.7 Alkenes 21
3.8 Alkanes 24
3.9 Toluene 28
4. RESULTS AND DISCUSSION 36
4.1 Nonhomogeneous Radical Sources 36
4.2 General Approach to Development of Mechanisms ... 39
4.3 Alkenes 40
4.4 Alkanes and Alkane/Alkene Mixtures 54
4.5 Toluene 62
4.6 Future Modeling Efforts 72
APPENDICES
A. Simulation of SAPRC Alkene and Alkene Mixture Data ... 75
B. Simulation of SAPRC Alkane and Alkane-Propene Mixture . .
Data 181
C. Simulation of SAPRC Toluene Data 265
REFERENCES 288
-------
FIGURES
Number Page
•• ' '• •— -S?i- -
1 Propene Reactions 23
2 n-Butane Reactions 26
3 2,3-Dimethylbutane Reactions 27
4 Simulation of SAPRC EC-60 41
5 Simulation of SAPRC EC-17 42
6 Simulation of SAPRC EC-21 43
7 Simulation of SAPRC EC-11 44
8 Simulation of SAPRC EC-156 45
9 Simulation of SAPRC EC-122 46
10 Simulation of SAPRC EC-157 48
11 Simulation of SAPRC EC-144 49
12 Simulation of SAPRC EC-149 51
13 Simulation of SAPRC EC-150 52
14 Simulation of SAPRC EC-42 56
15 Simulation of SAPRC EC-39 58
16 Simulation of SAPRC EC-178 60
17 Simulation of SAPRC EC-115 63
18 Simulation of SAPRC EC-106 65
19 Simulation of SAPRC EC-169 67
20 Simulation of SAPRC EC-77 70
21 Simulation of SAPRC EC-86 71
A-l Simulation of SAPRC EC-5 87
vi
-------
FIGURES
Number Page
A-2 Simulation of SAPRC EC-11 89
A-3 Simulation of SAPRC EC-12 91
A-4 Simulation of SAPRC EC-13 93
A-4A Simulation of SAPRC EC-13 (increased H0a influx) 95
A-5 Simulation of SAPRC EC-16 97
A-5A Simulation of SAPRC EC-16 (increased H02 influx) 99
A-6 Simulation of SAPRC EC-17 101
A-7 Simulation of SAPRC EC-18 103
A-8 Simulation of SAPRC EC-21 105
A-9 Simulation of SAPRC EC-51 107
A-10 Simulation of SAPRC EC-53 109
A-10A Simulation of SAPRC MC-53 (increased H02 influx) Ill
A-11 Simulation of SAPRC IiC-54 113
A-.11A Simulation of SAPRC F.C-54 (increased H0a influx) 115
A-12 Simulation of SAPRC EC-55 117
A-13 Simulation of SAPRC EC-56 119
A-14 Simulation of SAPRC EC-59 121
A-.15 Simulation of SAPRC EC-60 123
A-16 Simulation of SAPRC EC-95 125
A-L7 Simulation of SAPRC EC-121 127
A-18 Simulation of SAPRC EC-177 129
A-19 Simulation of SAPRC EC-216 131
A-I9A Simulation of SAPRC UC-216 (no radical addition) 133
vii
-------
FIGURES
Number Page
A-20 Simulation of SAPRC EC-217 135
A-20A Simulation of SAPRC EC-217 (no radical addition) 137
A-21 Simulation of SAPRC EC-142 139
A-22 Simulation of SAPRC EC-143 141
A-23 Simulation of SAPRC EC-156 143
A-24 Simulation of SAPRC EC-122 145
A-25 Simulation of SAPRC EC-123 147
A-26 Simulation of SAPRC EC-124 149
A-27 Simulation of SAPRC EC-146 151
A-28 Simulation of SAPRC EC-147 153
A-29 Simulation of SAPRC EC-157 . ,. 155
A-30 Simulation of SAPRC EC-144 157
A-31 Simulation of SAPRC EC-145 160
A-32 Simulation of SAPRC EC-160 162
A-33 Simulation of SAPRC EC-149 164
A-34 Simulation of SAPRC EC-150 166
A-35 Simulation of SAPRC EC-151 169
A-36 Simulation of SAPRC EC-152 172
A-37 Simulation of SAPRC EC-153 175
A-38 Simulation of SAPRC EC-161 178
B-.1 Simulation of SAPRC EC-39 188
B-2 Simulation of SAPRC EC-41 191
B-'J Simulation of SAPRC EC-42 193
viii
-------
FIGURES
Number Page
B-4 Simulation of SAPRC EC-43 197
B-5 Simulation of SAPRC EC-44 200
B-6 Simulation of SAPRC EC-45 203
B-7 Simulation of SAPRC EC-46 206
B-7A Simulation of SAPRC EC-46 (increased H0a influx). 209
B-8 Simulation of SAPRC EC-47 212
B-9 Simulation of SAPRC EC-48 215
B-10 Simulation of SAPRC EC-49 218
B-.10A Simulation of SAPRC EC-49 (increased H02 influx) 221
B-ll Simulation of SAPRC EC-162 224
B-12 Simulation of SAPRC EC-163 227
B-13 Simulation of SAPRC EC-168 230
B-14 Simulation of SAPRC EC-178 233
B-15 Simulation of SAPRC EC-171 236
B-16 Simulation of SAPRC EC-165 239
B-17 Simulation of SAPRC EC-169 242
B-1.8 Simulation of SAPRC EC-97 245
B-l<) Simulation of SAPRC KC-99 248
B-20 Simulation of SAPRC KC-113 250
B-21 Simulation of SAPRC KC-114 253
.1
B-22 Simulation of SAPRC EC-106 256
B-23 Simulation of SAPRC EC-115 259
B-24 Simulation of SAPRC EC-116 262
ix
-------
FIGURES
Number Page
C-l Simulation of SAPRC EC-77 268
C-2 Simulation of SAPRC EC-78 270
C-3 Simulation of SAPRC EC-79 272
C-4 Simulation of SAPRC EC-80 274
C-5 Simulation of SAPRC EC-81 276
C-6 Simulation of SAPRC EC-82 278
07 Simulation of SAPRC EC-83 280
C-8 Simulation of SAPRC EC-84 282
C-9 Simulation of SAPRC EC-85 284
C-10 Simulation of SAPRC EC-86 286
-------
TABLES
Number Page
1 Inorganic Reactions 8
2 Pressure Dependence of the Decomposition of Peroxynitric
Acid 10
3 Estimated RO- Decomposition Rates 13
4 Estimated RO- Isomerization Reaction Rates 14
5 Estimates for Reactions of RO- and 02 15
6 RO- + N02 Reactions 16
7 Aldehyde Chemistry 18
8 Photolytic Reactions 20
9 Estimated Rate of Decomposition of the p- and t-Alkoxy 29
Radicals Derived from 2,3-Dimethylbutane
10 Estimated Rates of Isomerization of the Alkoxy Radicals
Derived from 2,3-Dimethylbutane 29
11 Estimated Rate of Reaction of Oxygen with Alkoxy Radicals 29
Derived from 2,3-Dimethylbutane
12 Toluene Mechanism 32
13 Predicted Toluene Reaction Products (EC-77) 72
A-l Initial Conditions of Propene Chamber Runs 76
A-2 Initial Conditions of Alkene Chamber Runs 77
A-3 Propene Mechanism 78
A-4 Ethene Mechanism 80
A-5 1-Butene Mechanism 81
A-6 Trans-2-Butene Mechanism 83
xi
-------
TABLES
Number Page
A-7 Photolysis Rate Constants for Propene Chamber Runs .... 85
A-8 Photolysis Rate Constants for Alkene Chamber Runs .... 86
B-l Initial Condition for Alkene Chamber Runs 182
B-2 Initial Conditions for n,-Butane-Propene Mixture Runs . . . 182
B-3 ri-Butane Mechanism 183
B-4 2,3-Dimethylbutane Mechanism . 185
B-5 Photolysis Rate Constants for Alkane Chamber Runs .... 187
C-l Initial Conditions of Toluene Chamber Runs 266
C-2 Photolysis Rate Constants for Toluene Chamber Runs .... 267
xii
-------
1. INTRODUCTION
To assist the United States Environmental Protection Agency in
developing models that describe photochemical smog formation in urban
atmospheres, SRI International is continuing to develop explicit
mechanisms describing smog forming chemistry of individual hydrocarbons.
This report discusses our efforts during the past year to develop mechanisms
describing the chemistry of ethene, propene, butene-1, trans-butene-2,
n-butane, 2,3-dimethylbutane, and toluene/NO systems. Smog chamber
X
data obtained through EPA's laboratory research program at the Statewide
Air Pollution Research Center (SAPRC), University of California, Riverside,
have been used to test and verify these models.1
Our approach to computer modeling is to use critically evaluated
kinetic data wherever possible for the individual reactions incorporated
in the mechanisms. Where data on specific reactions are not available
or are not at the appropriate temperature and pressures, we used thermo-
chemical techniques to estimate the desired rate data. Whenever thermo-
chemical data are estimated to predict rate constants, we assign reasonable
error bounds to the estimates and the resulting rate constants. If
needed, we vary the estimated rate constants within our error limits
to optimize the agreement between computed and experimental concentration-
time profiles. One danger of this procedure is that inaccuracies
in the model may be artificially compensated for under smog chamber
conditions, thereby reducing the reliability of the model when extrapolated
to practical atmospheric conditions. By considering the mechanisms
for different hydrocarbons together, and only adjusting rate constants
as groups within our evaluations, we use the maximum possible data
base to guard against fortuitous compensations obscuring difficiencies
in the mechansims. We feel that, given the kinetic information currently
available, our approach minimizes the need for adjustment of rate
constants and produces mechanisms that are a good representation of
homogeneous gas-phase smog formation.
1
-------
Considerable effort has been made to develop detailed models to
describe photochemical smog chemistry of individual hydrocarbons.
Demerjian, Kerr, and Calvert2 and Niki, Daby, and Weinstock3 first
attempted to analyze in detail the chemistry of a few systems. Hecht,
Seinfeld, and Dodge4 constructed a more compact mechanism while main-
taining important details by attempting to generalize certain reactions.
Most recent is the work of Whitten5 to develop detailed mechanisms
for propene and n-butane. At each stage the improvements have been
mainly due to better kinetic information about individual reactions.
During this year,the following four major developments in laboratory
data set our effort apart from the earlier modeling programs.
(1) It was observed that the reaction
H02- + N02 - HN02 + 02
does not occur at a significant rate. Previously the inclusion
of this reaction in the models ensured a source of hydroxy radicals
throughout a simulation because HN02 is readily photolyzed to
form OH.
(2) A much higher value was reported for the rate constant
of the reaction
H02 + NO —- OH + N02
than used previously. This change becomes important as NO becomes
X
very small late in a smog chamber simulation.
(3) Peroxyacyl nitrates were observed to be thermally labile,
according to the reaction
RCOON02 RCOO- + N02 .
This reaction can lead to enhanced ozone formation late in the
simulation; it also suggests that there is a whole family of
-------
peroxynitrates, ROON02, that may affect the overall rate of smog
formation.
(4) A breakthrough in the modeling of toluene has resulted
from data on the initial products of the reaction of OH and toluene
under conditions applicable to the atmosphere. These data
make it possible, for the first time, to formulate a detailed
mechanism describing chemistry of aromatic/NO systems.
-------
2. CONCLUSIONS AND RECOMMENDATIONS
The photochemical smog chemistries of ethene, propene, butene-1,
trans-butene-2, n-butane, 2,3-dimethylbutane, and toluene have been
developed and tested using SAPRC chamber data. Each mechanism uses
the best kinetic data available and is chemically consistent with the
others. Some adjustment of unknown rate constants was necessary to
give good agreement between simulation and smog chamber experiments.
However, relatively few parameters have been adjusted, and although better
overall agreement could undoubtedly be obtained by further fitting,
it would not necessarily improve the predictability of the models.
We believe our present results best represent the current understanding
of these complex systems.
Since the ultimate goal of this program is a set of mechanisms
that may be reliably extrapolated to conditions other than those where
they have been tested, we have attempted to ensure that the reactions
represent smog chemistry on an elementary molecular level. Our
principal objective was chemical consistency between the different
hydrocarbon mechanisms, and particularly between individual experimental
runs. We have thus used only one empirical parameter that can vary
on a run-to-run basis—the postulated amount of initial nitrous acid.
We have adequately simulated most of the experimental runs for seven
different hydrocarbons, using consistent chemical mechanisms, rate
constants that are thermochemically consistent, and photolysis rate
constants that vary only in accordance with reported spectral changes.
For the simulations of single alkene, the computed ozone values
average 20.4% high with a range of 33% low to 50% high compared with
the observed values. For various alkene mixtures, the calculated
ozone averages 7.1% high with a range of 23% low to 90% high (two
extreme points dropped). The alkane mechanisms predict ozone values
-------
that average 5.9% high with a range of 30% low to 30% high. For
propenc-hutane mixtures, the computed ozone values are 12.1% low
with a range from 36% low to the observed value. The toluene mechanism
predicts ozone an average of 20.2% high with a range of 50% low to
90% high.
We believe that chamber uncertainties contribute to the variation
in fit between the calculated and observed results. Propene experiments
that have been run over a three-year period appear to indicate a
variability that is not predicted when variations in known light in-
tensities are taken into account. The effect is one where an experimental
run proceeds more slowly the later it occurs in the program. Earlier,
where there were Insufficient spectral data, the effect was interpreted
as aging of the light source. However, in the runs since that time,
where there are ample spectral data to correct for any spectral
changes, the effect is still occurring. Thus, we believe that either
there is variability associated with the ability of the chamber
walls to effect the radical concentrations during runs or there are
gross errors in spectral data for recent chamber runs, which seems
unlikely.
Thus, the most important need in the modeling program is to determine
to what degree the chamber walls affect the results in chambers, and
whether the effects change gradually with time or whether they change
significantly from run to run. In addition, to improve the reliability
of the models, more complete data are needed on the products of each
of the hydrocarbon reactions. For example, because of lack of product
data, we have assigned a fraction of the alkene plus OH reaction to form
hydroxycarbonyl compounds. Although the presence of such pathways does
not appear to have any large effect on our results, it will significant-
ly affect long-term runs where appreciable amounts of such compounds
can become a major source of carbon. Similar uncertainties concerning
the products exist in the alkane and toluene mechanisms.
-------
Some of the individual reactions that need further clarification
are the alkoxy rearrangement reactions, the photolysis of the various
carbonyl compounds in the presence of oxygen, and the reactions of
intermediate products from the various systems with OH and ozone.
-------
3. DETAILED CHEMISTRY
3.1 INORGANIC REACTIONS
The inorganic reactions, excluding photolytic reactions, that
are used in all the mechanisms are shown in Table 1. This set of re-
actions is in general well established and has been extensively used.5*6
Some notable changes to certain rate constants have been made based
on recent measurements. The rates of reaction of OH radicals with NO
and N02 to form HONO and HN03 have been increased to 1.0 x 10A ppm"1
min"1 and 1.5 x 10A ppm"1 min"1, respectively.7'^ Howard9 has measured
the rate of reaction of H02 radicals with NO and N02 at low pressures
(^ 1 torr) using a flow system with laser magnetic resonance detection.
The reaction with NO is not pressure-dependent and we have used the
measured rate of 1.2 x 10A ppm"1 min"1 in our mechanisms. The reaction
with N02 to form HONO and 02 was found to be very slow (< 5 ppm"1 min"1)
and has been omitted from the mechanisms. The rate of formation of
peroxynitric acid from H02 and N02 is more complex, being pressure-
dependent, and this is discussed in detail along with the reactions of
alkylperoxy radicals with N02 (see Section 3.2).
3.2 PEROXYNITRATES
The reaction of peroxy radicals with N02 to form peroxynitrates,
R02 + N02 + M + R02N02 + M
and the reverse reactions are potentially very important in smog chemistry.
These reactions may act either as sources or sinks of R02 and N02,
depending on how the concentrations of R02 and N02 vary during the
experiment. Very few experimental data are available on these reactions;
however, we have attempted to estimate the rates of the association and
the decomposition reactions and their pressure dependence on the basis
of what is known.
-------
TABLE 1. INORGANIC REACTIONS
No.
1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12
1-13
1-14
1-15
1-16
1-17
1-18
1-19
1-20
1-21
1-22
Reaction
0(3P) + 02 + M - 03 + M
0(3P) + NO, - NO + 0,
A &
O3 + NO - N02 + O2
OOD) + M - 0(3P) + M
0(XD) + H20 -* 2OH
03 + OH - H02 + 02
03 + H02 -» OH + 2O2
03 + N02 - N03 + 02
O3 - wall
NO3 + NO - 2N02
N03 + N02(+ M) - N205(+ M)
N2°3 + H2° " 2HN03
N205(+ M) -* N02 + N03(+ M)
NO + N02 + H20 - 2HONO
2HN02 - NO + N02 + H20
NO2 + OH(+ M) -* HNO3(+ M)
NO + OH(+ M) -» HONO (+ M)
NO + H02 -« N02 + OH
N02 + H02 -> H02N02
. HO2NOZ -» HO2 + N02
H02 + H02 -» H«02 + 02
CO -I- OH -»• HO + CO
Rate Constanta
2.0 x ID'5 b
1.3 x 104
2.5 x 101
8.6 x 104
5.1 x 105
8.7 x 101
1.2
5.0 x 10~2
1.0 x ID'3 C
1.3 x 104
5.6 x 103
5.0 x 10-6
2.4 x 101 c
2.2 x 10~9 b
1.3 x 10-3
1.5 x 10*
1.0 x 104
1.2 x 104
3.0 x 103
c
0.2
2.0 x 10s
2.1 x 10 2
Reference
10
11
12
13
13
14
13,14
13,12
10
15
13
16
13
17
17
8
18,7
9
d
d
19
13,20
Units in ppm'1 min"1 unless otherwise indicated.
Units in ppm~2 rain"1.
Units in min"1.
See Section 3.2.
8
-------
The only direct measurement of the rate of these reactions is
by Howard,9 who measured the rate of combination of H02 and N02 in
the third-order low-pressure limit (M = N2) .
H02 + N02 + N2 £ H02N02 + N2 . (1,-1)
Our procedure has been to estimate the rate of combination of H02
with N02; assuming this has no activation energy, we calculate the
A-factor for the decomposition from the overall entropy change, using
the known entropies of H02 and N0a and a reasonable estimate for
H02N02. We then estimate the bond strength D(HOa-N02), which gives
us a complete set of rate parameters in the high-pressure limit. By
performing an RRKM calculation, we calculate the pressure dependence
of the rates and the low-pressure limit rate, which may be compared
with Howard's measurement.
Since EI is assigned as zero, ki the high pressure limit of ki
must equal AI^. An estimate of Al(x) based on the analogous reaction of
of alkyl (ethyl + isopropyl) radicals using the geometric mean rule21
yields k1()o = Al0o = 1010'2 M'1 s~l. Howard10 has measured the rate of
reaction of H02 with NO as 10"7 M~x s"1; the rate with N02 should be
similar or a little slower. Batt et al.22 have measured the rate of
decomposition of methyl nitrate, from which they calculate the rate of
combination of methoxy radicals (isoelectronic with H02) and N02 to be
10».7±.6 M-i s_i>
An absolute upper limit must be ki00 = 1010
-------
The above rate parameters with the corresponding pressure dependences
are summarized in Table 2; note that the falloff behavior depends only
on kj. as k_x in the high-pressure limit is adjusted to yield the measured
value of the rate in the low-pressure limit. The details of the RRKM
calculation are also summarized in Table 2. For each limit of kx", two
sets of parameters for k.^ are derived by fitting the low pressure
data. Each set of parameters leads to the same falloff corrections
once ki°° is defined.
TABLE 2. PRESSURE DEPENDENCE OF THE DECOMPOSITION
OF PEROXYNITRIC ACID
S°(H02N02)/e.u.
E-joo/kcal mol"1
10g1Q A.jco/s-1
P/torr
0.1
1.0
5.0
20.0
100.0
760.0
1000.0
kl=o = lo9'5*
Hindrance = 98%
71.6
23.0
16.4
ki/ki°° or
1.4
1.1
5.1
1.7
6.2
2.4
2.8
69.0
27.0
17.0
k-i/k-!"
x 10-"
x ID"3
x 10~3
x 10~2
x 10~2
x 10- x
x 10- l
kloo = lO10-5*
Hindrance = 80%
71.6 69.0
23.0 27.0
17.4 18.0
ki/ki00 or k.i/k-x00
1.4 x 10-"
1.4 x 10~3
6.1 x 10~?
2.2 x 10~2
9.5 x 10-a
5.1 x 10" l
6.3 x 10'*
aUnits in M-1 s-1.
Collisional efficiency =0.4; Temperature = 300 K.
The RRKM calculation used a hindered rotational Gorin model for the
transistion state.24 The percentage hindrance used is given in Table 2.
10
-------
The other parameters for H02 and N02 in the transition state were taken
from the JANAF tables.19 Vibrational frequencies of H02N02 were taken
from data of Niki et al. 25 or were estimated from H202 and HNOa. From
the data in Table 2, the value of ki can range from 2000 to 4000 ppnr1
min~l , whereas k-x can range from 0.01 to 10 min~l. In developing
the models, we have used ki = 3000 ppm"1 min"1 and k_i = 0.2 min-i.
Subsequent to our work, Pitts has obtained k_a = 9 min-i. Using this
value in place of the value that was used has relatively little effect.
The largest effect is at the high concentrations of the more reactive
hydrocarbons, where ozone may increase by 10 to 20%.
The rates of reaction of alkylperoxy radicals with N02 are expected
to be similar to H02 and N02; ki may be slightly slower with large
alkyl groups. At 300 K and 1 atmosphere, even the smallest alkylperoxy
radicals should be close to their high-pressure limit rate. The actual
rate constants used in the mechanisms were determined empirically to
give the best fit to the propylene data, and are listed in Table 7.
3.3 ALKOXY RADICALS
Alkoxy radicals are extremely important Intermediates in smog
chemistry because most of the reacted hydrocarbon appears as alkoxy
radicals before undergoing further reactions. Alkanes react by abstraction
to form alkyl radicals, and alkenes react by addition to form hydroxy-
alkyl radicals. The alkyl radicals so formed undergo a fast addition
reaction with oxygen to form alkylperoxy radicals, which react with
NO to form alkoxy radicals and N02,
R- + 02 + R02- (2)
R02- + NO -> RO- + N0a . (3)
Reaction (2) is assumed to be very fast so that any R- formed is im-
mediately converted to R02-. The rate of reaction (3) is assumed to
be 1 x 10*1 ppm"1 min"1 for all alkylperoxy radicals based on Coward's10
measurement for hydroperoxy radicals. All alkyl radicals are assumed
to undergo reactions (2) and (3) in all the mechanisms described.
11
-------
Once formed, alkoxy radicals undergo three major types of reaction:
decomposition, isomerization, and reaction with oxygen. The rates
of these reactions for a wide variety of alkoxy radicals have been
evaluated26'27 based on available experimental data and standard
estimation techniques.28 The results are summarized in Tables 3 to
5. Isomerization by intramolecular hydrogen abstraction is only important
in radicals that have a hydrogen atom such that a six-membered cyclic
transition state can be formed. The resulting alkyl radical will add
oxygen and then react with NO to form an alkoxy radical again. Thus,
the net result of isomerization is hydroxy 'substitution of the radical
accompanied by the oxidation of NO to N02.
Alkoxy radicals may also decompose to form an aldehyde and an
alkyl radical, and subsequent photolysis of the aldehyde may yield
two radicals. Thus, the decomposition of alkoxy radicals is eventually
a source of radicals in smog chemistry. As shown in Table 3, the rate
of decomposition of alkoxy radicals depends significantly on the carbon
chain length and structure, the rate being fastest for long chains
and branched structures.
Oxygen molecules will abstract hydrogen from alkoxy radicals to
form H02 radicals and carbonyl compounds. Again, photolysis of the
carbonyl compounds may yield two radicals, so this reaction also leads
to additional radical formation. The rate of reaction of alkoxy
radicals with oxygen is much less sensitive to structure than the
rate of decomposition, as seen in Table 4.
The reactions of alkoxy radicals in the atmosphere can thus be
summarized as follows: Those radicals having a hydrogen atom six atoms
away will undergo isomerization; those that do not will largely de-
compose if they have branched structures, and if not branched, they will
react with oxygen. Because all the estimated rate parameters in
Tables 3 to 5 have uncertainties associated with them, the reported rate
constants may have uncertainties as large as a factor of ten larger or
smaller. This is a reflection of the lack of good experimental data on
12
-------
TABI3 3. ESTIMATED HO• DECOMPOSITION RATES
Radical *
C-CO-
CC-CO-
0
C-CC
ccc-co-
6
CC-CC
C
C-CO-
c .
6
HOC-CC
BOCCC-CO-
0
HOCCC-COH
9
(HO)2CCC-COH
(HO)ZCCC-C(OH)2
6
(HO)3CCC-C(OH)Z
C
HOC -CO-
0 0'
CC-CC
AHg
12.4
9.4
7.1
8.9
2.6
4.3
6.8
(3.5)6
8.7
-9.7
-9.6
-30.9
-24.5
11.4
(8.2)e
-5.1
"&
33.4
35.0
37.8
36.3
37.7
41.2
38.0
36.6
39.2
39.2
37.7
37.7
37.7
40.3
b
log Ar
8.2
8.0
8.2
7.5
8.0
8.0
8.0
7.1
7.1
6.8
6.8
6.5
7.5
7.5
log A(s-1)
13.7
13.8
14.6
13.6
14.4
15.2
14,5
13.3
13.8
13.5
13.2
12.9
13.9
14.5
Eest
21.6
19.5
17.8
19.1
14.6
15.9
17.6
(15.3)e
19.0
12.8
12.8
12.8
12.8
20.9
(18.6)e
12.8
*/*„ d
0.003
0.6
0.5
0.8
0.7
0.5
0.8
1.0
1.0
1.0
1.0
1.0
0.9
0.8
kdnin-1)
2.1 x W3
1.7 x 101
1.6 x 102
2.9 x 101
2.9 x 10s
1.5 x 10s
2.8 x 103
(2. 2 x 10s)6
2.1 x 102
2.1 x 10s
1.0 x 106
5.2 x 10s
2.6 x 105
3.6 x 10°
(2.2 x lO8/3
8.2 x 106
Notation: HOC-CC represents HOCH2CHCH3 -• HOCH2 + HCCH3 , etc.
b
A-factor for analogous alkyl radical + alkene association reaction.
Eest = 12.8 + 0.71
(kcaI/mole).
Falloff estimated from RRK Tables for 1 atm, 300 K.
6Based on Group Additivity, not on experimental AH| for,propane-l,2-diol.
Rate constants for 300 E and 1 atm air.
-------
TABLE 4. ESTIMATED RO- ISOMERIZATION REACTION RATES
Reaction a
• OCCCC -* HOCCCC •
0 OH
CCCC - CCCC •
HOCCCCO' -» HOCCCCOH
0-
HOCCCCOH - (HO)2CCCCOH
O«
(HO)2CCCCOH - (HO)2CCCC(OH)2
(HO)2CCCC(OH)2 - (HO)3CCCC(OH)2
OH QH
1 1
cccco- -» -CCCCOH
log A(s-x)
11.4
11.7
11.2
11.2
10.9
10.9
11.4
E(kcal/mole)
7.7
13.1
6.5
6.5
4.6
4.6
7.7
k (min'1)
3.7 x 107
8.6 x 103
1.9 x 108
1.9 x 108
2.2 x 109
2.2 x 109
3.0 x 108
OH
I
OH
OH
I
OH
Notation: CCCCO* - «CCCCOH represents CH3CHCH2CH20» -* »CH2CHCH2CH2OH
14
-------
TABLE 5. ESTIMATES FOR REACTIONS OF RO- + On
Reaction
CH30 + 02
EtO + 02
n-PrO + 02
i-PrO + 02
n-BuO + 02
s-BuO + 02
log (A)est
8.5
8.3
8.3
8.0
8.3
8.0
I
Ea = 4.0
k (min-1)
2.0 x 10s
1.3 x 105
1.3 x 105
6.7 x 104
1.3 x 10s
6.7 x 104
II
Eft = 10.6 + 0.25
x (AH&)
k (min-1)
2.0 x 10s
8.2 x 105
8.2 x 10s
1.5 x 106
3.5 x 105
1.1 x 106
III
Ea = 11.5 + 0.29
x (AH°)
k (min-1)
2.0 x 10s
1.3 x 106
1.3 x 106
3.7 x 106
5.8 x 10s
2.2 x 106
Effective first-order rate constants at 300 K in air (2.1 x 10s ppm O ).
-------
the reactions of alkoxy radicals. The actual rate constants used in the
mechanisms are given for each hydrocarbon in the appendices.
A further reaction common to all alkoxy radicals is reaction with
N0a to form an alkyl nitrate or an aldehyde, and nitrous acid:
RO-
N02 ->• RON02
RO- + N02 •> R'CHO + HN02
(4)
(5)
These reactions have been considered in detail by Barker and Golden,27
and their results are summarized in Table 6. The results are based
on an experimental measurement29 for the reactions of methoxy radicals and
N02.
TABLE 6. RO- + N00 REACTIONS
Reaction
CH3O- + NO2
EtO- + N02
n-C3H70' + NO2
i-C,H_0- + NO.
37 2
n-C4H30- + N02
s-C4H3O- + N02
t-C4H90' + N02
ks
(ppm'1 min~1)a
4.4 x 103
2.9 x 103
2.9 x 103
1.5 x 103
2.9 x 103
1.5 x 103
0
k*
(ppm-1 min-1)
1.5 x 10*
1.5 x 104
1.5 x 104
1.5 x 104
1.5 x 104
1.5 x 104
1.5 x 104
log
= 9 .3 + log n
3.4 TERMINATION REACTIONS AND RADICAL-RADICAL REACTIONS
The major termination steps in our mechanisms are the reactions
of alkylperoxy radicals and acylperoxy radicals with H02:
R02« + H0a-
ROOH
(6)
16
-------
- + H0a- ->• RCOOH + 02 . (7)
There are no experimental measurements on these classes of reactions;
we have estimated k6 = 2.0 x 10 3 ppm"1 min'1 by analogy with the rate
of reaction of two H02 radicals, and k7 = 4.0 x 103 ppm'1 min-1
because we expect this rate to be a little faster.
We have also included the following radical-radical reactions:
R02- + R0a- -> RO- + RO- + Oa (8)
0 0
RCOa* + RC02- +R0a' +R0a- + 2C02 + 02 . (9)
We have set ke = 2.0 x 10a ppm"1 min~l based on experiments by Parkes30
on the combination of methylperoxy radicals, and k9 = 2.4 x 103 ppm~l
min~l as a reasonable value based on solution phase data.31
3 . 5 ALDEHYDES
The chemistry of aldehydes is an important part of the smog chemistry
of all hydrocarbons. In addition to the thermal reactions considered
in this section, the photochemical reactions discussed in the following
section are also very critical. Table 7 summarizes the reactions for
formaldehyde and the generalized aldehyde /J^H) , which represents
acetaldehyde and higher analogs. Benzaldehyde is considered in the
discussion of toluene chemistry in Section 3.9.
Besides the photolysis, which is discussed in the following section,
the reaction of aldehydes with OH (reaction 7-1 in Table 7) controls
their participation in photochemical smog. The literature sets the
value for the rate constants in the range of 1 to 2 x 10" ppm"1,32'33
although the preferred value is the upper limit.13 Because of this
uncertainty, we have experimented with the rate constant for reaction 7-1
prior to our final runs and elected to use 2 x 10" ppm-1 min"1 for all
aldehydes. However, the overall results are not highly sensitive
to this rate constant, and the upper limit value has only a slight
advantage when all alkene and alkane models are considered.
17
-------
TABLE 7. ALDEHYDE CHEMISTRY
No.
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
Reaction
? oa (?
RCH + OH *• — 2 — ^ RCOa •
O o
RCOa • + N02 f RC02NOa
? K
RCOaN02 >• RC02- + N02
8 5
RCOa- + NO »- RCO- + N02
Jo- ___2^R02. +C02
R0a- +N0a ^— — R02N02
R02N02 ^ R0a • + N02
R02- + NO >• RO- + N0a
O O
HCH + OH »- Hfl-
0 O
HC- + O2 +- HC02-
HC- + 0, • H02- + CO
Rate
Constant
2 x 10*
1.5 x 103
4.0 x lO"^'0
5.4 x 103
1.3 x 103
6 x 103
0.5
1 x 10*
2 x 10 *"
80
1.0 x 10*
Reference
13
23
23
23
34
Sec. 3.2
Sec. 3.2
Sec. 3.2
.. 13
Sec. 3.2
36
Units in pprn'1 rain unless otherwise Indicated.
Units in mln"
'log k3 = 18.0 - 27000/4.576 T.
1 log k7 = 17.68 - 25000/4.576 T.
18
-------
The acyl radical formed from the reaction of acetaldehyde and higher
analogs with OH rapidly adds oxygen to form the acylperoxy radical.
This radical reacts rapidly with both NO and N0a (reactions 7-2 and
7-4). The peroxyacyl nitrate slowly regenerates peroxy radical and
N02 (reaction 7-3). We have used values for the rate constants for these
reactions as reported for acetylperoxy radical23 for all acylperoxy
reactions.
The acylperoxy radical decarboxylates rapidly and yields the
corresponding alkylperoxy radical,3tf which also reacts rapidly with N02
(Section 3.2) and NO (Section 3.3). The rate constant for reaction 7-8
has been assumed to be independent of the R alkyl group and the value
in Table 7 has been obtained by adjusting the rate constant to give the
best fit in the propene simulations.
Formaldehyde reacts with OH (reaction 7-9) to yield the fonnyl
radical. The reactions of formyl radical with oxygen (reactions 7-10
and 7-11) are the most controversial. Recent work of Niki25 indicates
that oxidation of formaldehyde at low concentrations gives CO with no
evidence of formic acid; however, at high concentrations (> 1 ppm),
formic acid is detected. At 1 atmosphere, kto is estimated to be about
0.01 of the high pressure using the method of Emanuel.35 Since the high
pressure limit is expected to be about 1Q9'3 M"1 s"1, kxo is 3 x 107 M-1 s-1
or 80 ppm~l min"1. The value of kn has recently been measured at room
temperature by Martinez36 as approximately 1.0 x 10* ppm~J min"1, which
is consistent with the extrapolation of data obtained at high temperatures.37
Thus kii is much greater than klo» and we have not included reaction 10
in our models. This conclusion is consistent with Niki's experiments
with low formaldehyde concentrations;25 however, at higher concentrations,
other reactions must account for the formation of formic acid in his
system.
3.6 PHOTOLYTIC REACTIONS
The photolytic reactions used in the mechanisms are shown in
Table 8. The rates of photolysis were calculated from the absorption
19
-------
cross sections given in the references in the table. The quantum
yields for most of the processes were assumed to be unity; the photolysis
of ozone was assumed to yield 0(1D) atoms with unit quantum yield
at wavelengths below 308 nm, and 0(3P) atoms with unit quantum yield
above 308 nm.13 Recent work on the photolysis of formaldehyde in air
at 1 atmosphere by Moortgat et al.38 has established the branching
ratio for the molecular and radical pathways, at wavelengths between
276 and 366 nm, assuming the total quantum yield is unity.
TABLE 8. PHOTOLYTIC REACTIONS
No.
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
Reaction
N02 + hv
HONO + hv
H202 + hv
03 + hv
03 + hV
CH2O + hV
CH2O + hV
CH3CHO + hv
CH3CH2CHO + hv
CH3CH2CH2CHO + hv
CH3CH2CH2CHO + hV
CH3CH2C(0)CH3 + hV
-» NO + 0(3P)
- OH + NO
-• 20H
- 0(*D) + 02
- 0(3P) + 02
- CHO + H-
-» CO + H2
-* CHO + CH3
-* CHO + CH3CH2
-• CHO + CH3CH2CH2 (rad.)
-» CH3CHO + C2H4 (molec.)
- CH3CO + CH3CH2
Reference
41
42, 43
44
45, 46
45, 46
47
47
48
48
48
48
48
The SAPRC data include relative light intensity measurements
as a function of wavelength for each individual run after EC-106.
For these runs, relative photolysis rate constants were calculated
for each run by summation at 1-nm intervals over the range 380 to
420 nm, using linear interpolation between the reported relative in-
tensities (usually 10-nm intervals). These relative rates were changed
20
-------
to an absolute basis using the reported rate constant for the photo-
decomposition of N02. For runs EC-1 to EC-86, the photolysis rate is
based on a spectrum obtained immediately before EC-95. The spectrum
obtained with the new lamp was used for runs EC-95 to EC-106. There is
some doubt as to the exact spectral distribution or the reproducibility
from run to run in the early runs, and thus the uncertainty associated
with the calculated photolytic rate constants is unknown.
Many of the species in Table 8 absorb strongly only in the short
wavelength region around 280 to 300 nm where the intensities are lowest
and most difficult to measure. Very small changes in the measured relative
intensities in this region produce large changes in the relative rates
for these species compared with N02, which absorbs over the whole range.
Since the measured rate of photodecomposition of N02 is used to arrive
at the absolute rates for all other species, it is imperative that
the short wavelength relative intensity measurements be made as accurately
as possible.
The formaldehyde branching ratio calculated from the relative
quantum yields described above is also critically dependent on the short
wavelength intensity measurements, but, on the average, this ratio is
about equal for the two channels. A quantum yield of 0.5 was assigned
for radical production from acetaldehyde. 39>tt°
The actual photolytic rate constants used in each simulation are
tabulated in the Appendices.
3.7 ALKENES
The reactions of alkenes in photochemical smog are predominantly
with OH and 03 but reactions with 0(3P) and N03 can be important under
some conditions and are included in the mechanism. The principal reactions
occurring in the propylene mechanism are shown in Figure 1. Detailed
mechanisms for this species as w6ll as ethene, 1-butene, and trans-2-butene
are included in Appendix A. (The mechanisms in the appendix are complete
21
-------
except for the inorganic thermal reactions, which are given in Table 1.
The rate constants for the reactions of OH,1*9""^! Q3,52 0(3P),53~55
and N03 6 with simple olefins have received considerable attention and
are relatively well known. There are much less data on the products
from these reactions. We have applied the basic mechanism proposed by
Niki et al.57 to all the olefins. We have added irreversible formation
of the peroxy nitrate as discussed in Section 3.2. The decomposition
rate values for the two hydroperoxynitrates shown in Figure 1 are
assumed to be equal and were adjusted in the final stages of the model
devleopment to optimize fit of hydrocarbon, NO, and N02 data for the
propene simulations. For each case, the rate constants for the
competing reactions of the hydroalkoxy radical, HOCH2CH(02•)CHCH3, were
selected to reflect both the range of values in Section 3.3 and the
fact that a significant amount of cleavage occurs according to the
chamber data. Thus, for each alkene, significant amounts of hydroxy
carbonyl compound, HOCH2C(=0)CH3, are predicted although these compounds
have not been detected. Unfortunately, the measurements of the aldehydes
formed as the result of cleavage are not sufficiently accurate to verify
this competing route by difference. Because of the low reactivity of the
hydroxy carbonyl compound (relative to the reactivity of the alkenes),
the reaction of this compound with OH has not been included in the
alkene mechanism.
The proposed products of the alkene-03 reactions are consistent
with the O'Neal-Blumstein mechanism.58 Recent data by Herron and Huie59
give support to the general types of products expected, although for
ethylene the radical yield appears to be only 9% of postulated reaction
yield. Although over the entire chamber run OH accounts for most of
the alkene consumption, once the ozone maximum is reached ozone reactions
with the alkenes can dominate, and these ozone reactions can be a
significant source of radicals. For the reactions of 0(3P), we have
followed the reaction channels proposed by Whitten.5 The 0(3P) reactions,
22
-------
CHaCH=CHa
OH, Oa
ppm
HOCHa
NO
HOCH
1.0 x 10* ppm"1 min~l
aCHCHs + N0a
\0.32 ppm~l roin~l
2.7 x 10s
HOCHa- + CH9CH HOCHafiCH3 + H0a'
02\ 5.7 x 10-"
5.7 x 10~3
HCHO + HO a*
HOCHaOa-
NO
1.0 x 10-*
' + N02
Oa
0.67
HOCHaCHCHs + N02
HOCHaOa' + N0a
0(9P)
HCOH
6.0 x 103 ppm"1 min"1
0.5 min"l
6 x 10 3 ppm"1 min"1
0.5
HOCH a
OaNOa
CHCHs
1.8 x 103 ppm-1 min-1
0(3P) ^
1.8 x 103 ppm"1 min-1
0(3P)
1.8 x 103 ppm"1 min-1
CHa=CHCH9
7.5 x 10"3 ppm-1 min-1
03
,7.5 x 10~3 ppm-1 min-
CHa-CHCH3
NO 9
7.8 ppm"1 min"1
CH302- •
CH3CHaOa- + HOa- + CO
CHaO + CHsCOa' + OH
CH3CH + HOa + CO + OH
CHsCHjCH + N0a
FIGURE 1. PROPENE REACTIONS.
23
-------
although they do not contribute significantly to the alkene consumption,
can be a small but significant source of radicals at early stages
in the reaction.
3.8 ALKANES
SAPRC has reported data for two alkane-NO systems—an extensive
set for ri-butane, and a very limited set for 2,3-dimethylbutane.
Alkanes react primarily with OH radicals60'61 that abstract hydrogen to
give alkyl radicals and hence alkoxy radicals (see Section 3.3).
Butane contains only primary and secondary hydrogens and hence yields
normal and secondary alkoxy radicals; 2,3-dimethylbutane contains only
primary and tertiary hydrogens, and yields the corresponding alkoxy
radicals. Since reaction with OH is faster at the secondary or tertiary
position than at the primary position, the formation of primary alkoxy
radicals is the more minor pathway in both systems. The reaction
of alkanes with 0(3P) atoms,62 although it does not contribute significant-
ly to alkane oxidation, has been included in these mechanisms.
n-Butane—The principal reactions of the hydrocarbon species in
the butane system are shown in Figure 2 and are tabulated in detail
in Appendix B. The majority of the reacted hydrocarbon (^ 86%) forms
secondary butoxy radicals that do not have hydrogen atoms in position
to allow rapid intramolecular isomerization. These radicals may
react with oxygen to form 2-butanone, or may decompose to form acetaldehyde
and ethoxy radicals that will react principally with oxygen to give
more acetaldehyde. As described in Section 3.3, the rates of decomposition
of alkoxy radicals can be estimated with reasonable accuracy, whereas
the rates of reaction of alkoxy radicals with oxygen are much less
certain. In the ji-butane mechanism, we have used the rates of alkoxy
radical decomposition given in Table 3 and the rate of reaction of
alkoxy radicals with oxygen given in Table 5, column I, except for
secondary butoxy and oxygen. Here we used a value of 8.8 x 105 min"1
for the pseudo first-order rate constant; this value is higher than
the value in column I, but well within the estimated range for this re-
action (columns II and III). This rate constant was arrived at empirically
24
-------
to simulate the correct amounts of 2-butanone and acetaldehyde in the
products; it is very approximate and depends on the accuracy with which
these products were measured. There is now some question as to the ac-
curacy of the acetaldehyde measurements.
The remaining hydrocarbon (*• 14%) forms normal butoxy radicals.
These do have hydrogen atoms in position for intramolecular rearrangement,
and on the basis of our estimated rates, should undergo rapid reaction
to form polyhydroxy-substituted radicals with the oxidation of NO to
N02. Figure 2 shows the course of these reactions with the competing
reactions (decomposition or reaction with oxygen) at each step. As
can be seen, isomerization is much faster than either competing reaction
until the terminal carbon atoms are completely hydroxy substituted.
The ultimate fate of this hydroxy-substituted compound is not known,
but it is a minor route for the consumption of hydrocarbon. However,
because each molecule isomerizes several times, converting an NO molecule
to an N02 molecule each time, isomerization is an important process
in the NO cycle.
x *
2,3-Dimethylbutane—The principal reactions of the hydrocarbon
species in the 2,3-dimethylbutane system are shown in Figure 3, and are
tabulated in detail in Appendix B. The mechanism is precisely analogous
to that already described for n-butane, except that the majority of
the reacted hydrocarbon (^ 88$ forms tertiary alkoxy radicals. However,
in common with sj-butoxy radicals, these radicals are postulated to
decompose (reaction with oxygen is not possible) to form acetone and iso-
propoxy radicals. The isopropoxy radicals will react principally with
oxygen to yield more acetone.
The remaining hydrocarbon (^ 12%) forms normal alkoxy radicals which
have hydrogen in position for isomerization. These are expected to isomerize
repeatedly (there are 11 abstractable hydrogens), oxidizing NO to N02.
The fates of the polyhydroxylated products are not known, but again,
this is a minor route for .the consumption of hydrocarbon, although it
is very important in the NO cycle. Details of all the estimations
X
on the rates of reaction of the primary and tertiary radicals derived
25
-------
6.3 x
CH3
p °2
HO, f CHjCH^CH fH „ ... THjCH
(0.05)fc 1-3x10- Klin-
02 ,.VO
2 •< •* 1.3 x 10s min"1 2
to
0
02 ,XO
00 02 *
•* 2 2 6.7 x 104 min ' 2
02 ,NO
9 OH o2 p-
0 | 0
HOCCH CH CH °2 .N0
?»
HOCHC
02 ,NO
?'
OH
CH3CH2CH2CH3
(100)
OH
102 ppm-1 min-1 >A. 3 .8 x 103 ppnT1 min"1
CH2CHaCH2 * CH3CH2CHCH3
(14.2) (85.8)
1 0, ,NO 1 02 ,NO
* . \ ?' °2 9
\ 8. 8 x 10s min- '(5^0)3
^J°2 'X0)
3.7 x 107 min-1 4 .0 x 10s man" '^l Q
CH3CH20' + CH3CH
4 TH rM nH ^*sx. (.26 .8)
1 .3 x 10s min-^XOj
^s. p
1.9 x 10s min-1 ^ CH3CH + H02 '
(26.8)
9' (o2) 9 9.
22 2.1 x 10 min- 22 2
(0.14)
1.9 x 108 min-1
9H (O ) 0 OH 0
1 v 2' d i ,i
2LU2CHOH 1 ^ 1()6 min_i * uco» ' IOCCII2CII I H02
0 0
2.2 x 109 min"1 1 »- HCCH CH
(0.10)
9P (oz) ?H o
H2CH2fOH g ^ x 1Q5 m..n_I I2C03 IIOCUI2CH 1 II02
OH
2.2 A 109 mill ' - ' » H_0 + C0_
QH (02) OH CJ
2CH2QOH 2 6 ^ 1()S . II2C03 I IIOCCI12CH I II02
OH OH
0 0
1 *-HOCCH2CH
(13.9)
FIGURE 2 n-BUTANE REACTIONS
-------
2,3-Dimet
1.2 x 103 min-1
lylbutane
OH
ca,.
CH,CFK5HCH
0,,NO
CH-pH-CHCHg
Repeated
Isomerization
02,NO
Completely Hydroxy-
Substituted Radical
8.5 x 103 min
_i
CH 3 Cft,
CH, CH-icH,
02, NO
CH3 CH3
I I
CH3 CH-CCH3
02,NO
CH.
I
0
•
3.8 x 107 min~3
8 * ?
CCH, + CH,CHCH
6.7 x 104 min"1
Decomposition
CH3CCH3 + H02
FIGURE 3 2,3-DIMETHYLBUTANE REACTIONS
27
-------
from 2,3-dimethylbutane are shown in Tables 9 to 11. The estimation
iTK'tiiods nst'd were- dt'scribrd earlier In Section 3.3. The detailed
median I sin for this nlkaiu' IH tabulated in Appendix B.
3.9 TOLUENE
Toluene and other aromatic hydrocarbons are significant constituents
of the hydrocarbon fraction of the urban atmosphere and yet there has
been no information available on their fate. Smog chamber data using
toluene as the hydrocarbon fuel, are available, but no attempt to
model the chemistry has been successful. Therefore, one of the major
goals of this study is to.develop a mechanism to describe the chemistry
of toluene and its products using the limited amount of available
experimental data.
The loss of toluene in the atmosphere is due predominantly to
reaction with OH. Toluene, as well as most simple aromatic compounds,
is stable to troposphere radiation and to ozone. Although toluene
is capable of reacting with 0(3P), the combination of a relatively
low 0(3P) concentration and only a moderately fast rate constant63
prevents the reaction from competing favorably with the OH reactions.
Excellent agreement exists on the reported rate constant for
reaction of toluene with OH obtained by following OH decay using resonance
fluorescence. The two basic pathways suggested for the reaction are:
Abstraction:
CH3 CH2'
^^
(10)
+ OH
+ H20
Addition:
OH
(11)
28
-------
TABLE 9. ESTIMATED RATE OF DECOMPOSITION OF THE p- and t-ALKOXY
RADICALS DERIVED FROM 2,3-DIMETHYLBUTANE
Radical
Primary
Tertiary
AH°
K
6.25
-1.6
AS°
R
38.71
43.26
log Ar
(M-1 s-1)
7.53
7.5
log A
(s-1)
14.16
15.12
Eest
17.24
12.8
k (min-1)
2.4 x 103
3.8 x 107
TABLE 10. ESTIMATED RATES OF ISOMERIZATION OF THE ALKOXY
RADICALS DERIVED FROM 2,3-DIMETHYLBUTANE
Radical
Tertiary
Primary
Primary (OH)a
Primary (OH)2a
E
13.1
7.7
6.5
4.6
log A/s-1
11.7
11.4
11.2.
10.9
k (min-1)
8.6 x 103
3.7 x 107
1.7 x 108
2.1 x 109
A primary alkoxy radical abstracting hydrogen from a
4-carbon containing OH substituent.
TABLE 11. ESTIMATED RATE OF REACTION OF OXYGEN WITH ALKOXY
RADICALS DERIVED FROM 2 ,3-DIMETHYLBUTANE
Radical
Tertiary
Primary
log A/s-1
8.3
EA
Ia IIb
no r«
4.0 2.4
k (min-1)
Ia
saction poss
1.3 x 105
IIb
Lble
1.8 x 108
Estimation method I (Section 3.3).
Estimation method II (Section 3.3).
29
-------
From pressure dependence studies, Davis et al.61+ concluded that at 298 K,
ka/(ki + ka) is less than 0.5. From temperature dependence studies,
Perry et al.65 deduced that at 298 K, this ratio is 0.14 ± 0.06.
In our own laboratory we have investigated this reaction primarily
to determine what products would be formed under atmospheric conditions.^
In the range of 6 to 15 torr we have found, based on product analysis,
that k!/(ki + k2) = 0.15 ± 0.02 independent of total pressure.
The products isolated from reaction (1) are benzaldehyde and benzyl
alcohol, which result from the reactions
CHa-
+ Oa
CH20-
CHaOa'
CH20-
+ N02
CHO
+ H02
(12)
(13)
(14)
(15)
Benzyl alcohol is not expected to be an important product in the atmosphere
or in smog chambers because of a very low [H0a']/[02] ratio obtained
under these conditions. The products obtained from reaction (11)
were a mixture of o,p,m-cresol and m-nitrotoluenes. The reactions
are (showing only those for the o-addition product)
(16)
30
-------
+ H20 (17)
NO a
From the [N02]/[02] dependence of cresol-nitrotoluene products, ki7/k16
has been estimated to be 4.4 x 103. Therefore, under atmospheric
conditions and in the SAPRC smog chamber experiments, where [N02]/[02]
is less than 10~s, reaction (16) will account for essentially all the
toluene consumed in reaction (11). All these reactions are included
in Table 12 along with the other reactions that make up the complete
mechanism.
Data on the fate of benzaldehyde and the cresols are much more
limited than for toluene. Unpublished chamber data seem to indicate
that the benzaldehyde and cresols formed initially from toluene react
rapidly so that high concentrations are not found.67 For benzaldehyde
we have included both abstraction of the aldehydic hydrogen (reaction 12-11,
Table 12) similar to other aldehydes .(Section 3.5) and addition to
the ring (reaction 12-19) similar to toluene. The first pathway leads
to reaction (12-12) to (12-18). The second and minor pathway leads
to hydroxylated benzaldehyde, which we have assumed to react with OH
(reaction 12-29).
The fate of cresol has been assumed to be determined by reaction
with OH and 03. Perry et al.68 have reported rate constants for the
reaction of OH plus cresol. Following the analogy of toluene,^
they believe they have identified both an abstraction and an addition
reaction. Therefore, we have included both pathways (reactions 12-20
and 12-27). The reactions that result from radical products of
reaction 12-20 are expected to be complex and to involve a number
of parallel pathways. We have assumed that the radical can react
with 02 and NO to form a series of intermediates only four of which
react with NO (XI, X2, X3, and X4). These reactions result in the
breakdown of the ring with formation of glyoxal Hj(gH » methylglyoxal
CH3CCH , and formaldehyde (reactions 12-21 to 26).
31
-------
TABLE 12. TOLUENE MECHANISM
No.
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10
12-11
12-12
12-13
12-14
12-15
12-16
12-17
12-18
12-19
12-20
12-21
12-22
Reaction
PhCH3 + OH *- (£/^H (I>
Jj"3OH
I + N0a ^ f (Si + Ha°
0
PhCH3 + OH »- *-»• PhCHaOa- + HOH
PhCHaO2' + NO »- PhCHaO- + N02
PhCHaO- + Oa *- PhCHO + H02
PhCHaO- + N0a *- PhCHaON02
PhCHaO'+ N02 +• PhCHO + HNOa
PhCHaOa- + N0a >- PhCH202N02
PhCH2OaNOa +. PhCa2Oa' + N0a
PhCHO + OH ». °g » PhC(0)02-
PhC(0)Oa- + NO »- PhC(0)O + N02
PhC(0)02- + N02 -»- PhC(0)02NOa
PhC(0)02N02 . ^ PhC(0)Oa- + N0a
PhC(0)0-+ N0a ». PhC(0)ONOa
PhCCO)0' » °3» PhOa + C0a
PhOa- + NO *- PhO- + N02
PhO- + N02 » PhONOa
CHO
0 SZi*'
PhCHO + OH »- » [QJ + HO '
OH o
+ OH ^ 2, XI + H,0
XI + NO *~ 3C.J + N02
XI + NO »- X2 + N02 + CHaO
Rate
Constant*
7.4 x 103
0.7
1.5 x 103
1.6 x 103
1.0 x 10*
0.6
1.5 x 10*
3.0 x 103
5.0 x 103
0.53
1 x 10*
2 x 103
1.5 x 103
0.042
1.5 x 10*
5.2 x 10*
1.0 x 10*
6.0 x 103
6.3 x 103
6.0 x 10s
1.0 x 10*
1.0 x 10*
Reference
64, 65, 66
66
66
64, 65
Section 3.3
3.3
3.3
3.3
3.2
3.2
3.5
3.5
3.5
3.5
3.3
70
Section 3.3
3.3
3.9
Section 3.9
Section 3.9
3.9
Continued . . .
32
-------
Table 12 (continued)
No.
12-23
12-24
12-25
12-26
12-27
12-28
12-29
12-30
12-31
12-32
12-33
12-34
12-35
12-36
12-37
12-38
12-39
Reaction
XI + N02 *- XIPN
XIPN ^X1+N02
X2 + NO *- X3 + NOS + 1/3
CHaCCH + 2/3 HCCH
X3 + NO »_ — £_*. 1/3 CH3CCH + 2/3
HCCH + CHaO + NOa
+ H0a«
(jf\0«—^^ ^°H (+ iso^ers,
°H + H°a*
(Oj +0, -Xl*HOa.
CHO
j^VOH + OH XI + HaO
O
i 0
0 0
CH,COa- * N0a . CH,COaNOa
CH,COaNOa •• CH,COa- -v NOa
CH,Oa- + KO CH,0- + NOa
CH,0- + Oa ^ HCHO + H0a
CHS0- + N03 CH,ONOa
CHS0. -)• N0a HCHO + HNOa
PhCHaOa- + H0a PhCHaOaH
PhCHaO- + H02- • PhCHaOH
0 0
n n
Rate
Constant*
6.0 x 103
0.53
1.0 x 10*
1.0 x 10*
4.4 x 10*
2.5 x 10'2
2.5 x 10*
5.3 x 10s
1.5 x 10'
4.2 x 10"*
1.0 x 10*
2.0 x 10s
2.0 x 10"
2.2 x 10'
2.0 x 10s
2.0 x 10s
2.0 x 10^
Reference
Section 3.2
Seotlon 3.2
Section 3,9
Section 3.9
68
69
Seotlon 3 . 5
3.5
3.5
3.5
3.3
3.3
3.3
3.4
3.4
3.4
Continued. . .
33
-------
Table 12 (continued)
No.
12-40
12-41
12-42
12-43
12-44
12-45
Reaction
PhCO- + H0a -PhCOH
PhOa- + HOa- — — - Ph02H
PhO- + H02- PhOH
CH302- + H03- CHsOaH
XI + H02 • Xl-H
X2 + H0a • X2-H
Rate
a
Constant
2.0 x 103
2.0 x 10'
2.0 x 103
2.0 x 103
2.0 x 103
2.0 x 10s
Reference
3.4
3.4
3.4
3.4
3.4
3.4
34
-------
Based on very limited data we have included a reaction of cresol
with 03.69 This reaction is assumed to generate a H02 radical and the
same intermediates as formed from the reaction of cresol with OH.
Included in the mechanism is the photolysis of the aldehydic products:
benzaldehyde, glyoxal, methylglyoxal, and formaldehyde. Based on limited
uv spectra we have set upper limits for these photolysis rates and
have then adjusted the values.
Because of the degree of uncertainties for the reactions of cresols
with 03 and OH as well as the proposed photolysis reactions, the mechanism
must be considered somewhat speculative and probably less quantitative
than desired. However, judging from the results in the 'following section,
it serves as a very good starting point that can be improved further
as the needed information becomes available.
35
-------
4. RESULTS AND DISCUSSION
4.1 NONHOMOGENEOUS RADICAL SOURCES
In all attempts to simulate data from the SAPRC evacuable chamber,5*71
It has been found that a mechanism based solely on homogeneous gas-phase
chemistry predicts both a rate of decomposition of the hydrocarbon and
a rate of conversion of NO to N02 that are considerably slower than
rates indicated by the experimental data. In addition, the experimental
data on the rate of initial disappearance of the hydrocarbon indicate
that the concentration of radicals increases extremely rapidly as soon
as the chamber is irradiated. This behavior is inconsistent with the
radical supply mechanism from the photolysis of secondary carbonyl products
in our mechanism. Thus, we have postulated nonhomogeneous sources of
radicals that can be formed rapidly upon irradiation. Experimental evidence
is inconclusive, but indicates two reasonable sources—radicals produced
from the chamber walls, and the photolysis of nitrous acid formed during
the loading of the chamber.^
Regarding the first case, there ±s a certain amount of qualitative
evidence that the walls of the chamber are active in producing radicals
during irradiation; however, as yet no quantitative information is available.
Under irradiation, larger quantities of CO are produced in the chamber
than can be explained by the homogeneous mechanisms. In fact, CO is
formed even if no hydrocarbon is present (runs EC-9, EC-38)l so long as
the chamber Is irradiated; no CO is formed in the dark (EC-1, EC-40).l
The excess CO cannot-be due to the unpurified makeup air, which could
contain more CO than the original purified air, because recent experiments
(EC-216, EC-217)1 using purified makeup air also show the large increase
in CO. Since irradiation apparently produces CO from a photochemical
process, which probably involves materials absorbed on the chamber wall,
It is most likely that other species including free radicals are also
being formed.
36
-------
Other evidence for the action of the chamber walls is provided
by the observation of the "aldehyde memory effect."1 Reactions EC-46
and EC-49 have the same initial aldehyde concentrations as Run EC-41,
but were run after experiments that had high aldehyde concentrations
(due to aldehydes being added initially). In these runs a much enhanced
reactivity was observed, compared with Run EC-41 (see Section 4.4 and
Appendix B). This effect was observed despite the fact that the chamber
was subjected to an extended pumpdown between the runs and the analysis
showed no evidence of excess aldehydes. The increased reactivity is
seen as a perturbation of the "standard" behavior of the system after
exposure of the chamber to high concentrations of aldehyde. Aldehydes
are always present as products of the photooxidation of hydrocarbons;
in the propylene system the concentrations of aldehydes that are produced
are often as high as those used to produce the "memory effect" in the
butane runs. Even with butane, the amounts of aldehyde formed are
as much as one-third of the amount that causes the "memory effect."
Thus, we assume that the'Standard" reactivity observed reflects some
contribution from adsorbed aldehydes from pervious runs. We believe
that this effect as well as the formation of CO are due to the photolysis
of these adsorbed species. Although a memory effect has been demonstrated
only for aldehydes, other photochemically active species may act
similarly.
The second nonhomogeneous source of radicals is the formation and
photolysis of HNOa formed in equlibrium with NO, N02, and water:
NO + N02 + H20 £ HN02 . (9)
Given the concentrations of NO and N02 present in the chamber and the
humidity of the air, the equilibrium concentration of nitrous acid would
be significant. However, the homogeneous rate of formation of nitrous
acid is very slow at concentrations used in the runs, so that even
though the reactants are left in the chamber in the dark for about one
hour before the experiments are begun, an insignificant amount of nitrous
acid should be formed homogeneously. Chan et al.17 observed the formation
of nitrous acid during the loading of a large chamber with NO and N02.
37
-------
This may be due to heterogeneous reactions, or to high concentrations
of NO and N02 around the injection area that produce an amount of nitrous
acid closer to equilibrium than would be formed from the homogeneous process
alone. Using present experimental data, it is impossible to predict
the amount of nitrous acid formed. This amount may depend critically
on the method and timing of the NO and N02 injections, which may vary
substantially from run to run.
In attempting to simulate the SAPRC data, we found that postulating
only an initial amount of nitrous acid would not fit all the data
satisfactorily. In a number of cases postulating-an initial concentra-
tion of nitrous acid would give the desired initial rate but once
the nitrous acid was consumed (about 1 hour) the computed rates for
all reactants dropped below the oberved value. Clearly, what is needed
is an additional radical source that is effective throughout the
reaction. This problem was most important for the less reactive systems
such as n-butane, although propene and toluene also gave evidence of
this problem at the lowest concentrations. We believe that at high
concentrations of propene and toluene, this problem does not occur
because the photolysis of the carbonyl compounds formed in the reaction
generates more radicals than are produced from the wall reaction.
To simulate those runs where initial nitrous acid was insufficient
to fit the rates late in the run, we found that a continuous source
of radicals, representing wall contributions, was much more effective.
Since there are probably radicals from both nitrous acid and the walls,
we have adopted the following, somewhat artitrary conditions to represent
the nonhomogeneous radical sources. In all the simulations described
in this report, we have assumed a standard constant influx of H02
radicals of 2 x 10~A ppnr1 min-1. In practice, the results of .
representing the influx as OH or H02 radicals are identical due to
the rapid equilibrium between the two species. The radical influx
is almost certainly not due to one species; however, the above procedure
represents a workable approximation. The above rate was arrived
at such that no simulation had a rate of hydrocarbon consumption
38
-------
exceeding the experimental data with only the radical influx. In
runs that showed a slow initial rate of consumption of hydrocarbon,
an amount of initial nitrous acid (1 to 50 ppb) was postulated to
increase the reactivity. The level of nitrous acid assumed for each
run is tabulated in the appendices. Control experiments on the SAPRC
chamber are needed to elucidate the quantitative nature of nonhomogeneous
radical sources.
4.2 GENERAL APPROACH TO DEVELOPMENT OF MECHANISMS
Initially, we developed the mechanisms for propene, n-butane,
and toluene independently of each other using the preliminary work
done by others as a starting point but adding the new laboratory data
and estimations where appropriate. The mechanisms for the reactions
of ethene, 1-butene, and trans-2-butene then were prepared using propene
as a model, whereas the 2 ,3-dimethylbutane mechanism was developed
using the n-butane work. Once the individual models were constructed,
we attempted to make them consistent. Because of the wide range of
propene data, most changes were first tested using a block of propene
experiments with as wide a range of conditions as possible. Then
the effects of changes were tested on the various mechanisms to ensure
that changes would be compatible with each mechanism. Once the
mechanisms were compatible, adjustments were made in the decomposition
of peroxynitric acid and peroxyalkyl nitrates and in the OH + aldehyde
rate constants. All simulations were carried out using the Systems
Applications, Inc. routine CHEMK on either the CDC-6400 computer at
SRI International or the CDC-7600 at the Lawrence Berkeley Laboratory
of the University of California, Berkeley.
After the individual mechanisms were complete, they were combined
as needed to model the chamber data for the various mixtures and tested
with representative mixtures. When these results proved to be satisfactory,
simulations were carried out for all the conditions for which there
were smog chamber experiments.
39
-------
4.3 ALKENES
The mechanism developed for each alkene is given in Appendix A,
Tables A-3 to A-6. The starting conditions for each SAPRC chamber
reaction to which the models have been applied are summarized in
Tables A-l and A-2. The photolysis rate constants that have been
used are summarized in Tables A-7 and A-8 and have been obtained as
discussed in Section 3.6. The concentration-time plots for all the
runs that have been computed are given in Appendix A. For more
careful analysis we have redrawn representative runs for each alkene,
ethene, propane, butene-1, and trans-butene-2, as- shown in Figures 4 to
10. In these figures the simulation concentrations are represented by
the solid lines and the experimental concentrations by the ooints.
The four propene experiments reflect a wide range of initial con-
centrations and ratios of hydrocarbon to NO . For runs EC-60 and EC-17,
3t
the initial [propene]/[NO ] = 1.0, whereas the concentration of propene for
X
EC-60 is ten times that for EC-17. For runs EC-21 and EC-11, [propene]/[NO ]
X
= 0.2 and 5.0, respectively. In general the agreement between our simulated
curves and the experimental points is very good. The largest differences
show up in the data for formaldehyde, acetaldehyde, and peroxyacetyl
nitrate—components for which the experimental data are the most uncertain.
The experiments shown for ethene (Figure 8), 1-butene (Figure 9),
and trans-2-butene (Figure 10j are at [RH]/[NO ] ratios of about 0.4.
- — X
The good agreement between simulation and chamber data indicates the
validity of the alkene mechanism in general and its applicability to
specific alkenes. The mechanism is the least reliable for ethene where
ozone is underpredicted. The components that show the poorest agreement
in general are the peroxyacylnitrates and aldehydes, for which the labora-
tory data are the most uncertain.
Examples of the results with mixtures are shown in Figure 11 for
ethene-propene; Figure 12 for propene-1-butene; and Figure 13 for ethene,
propene, 1-butene, and trans-2-butene. The agreement in these mixtures
40
-------
1.20
I < I
1.20
0.100
0.075 -
g
|
Ul
o
o
0.050 -
0.025 -
0.0
50 100 150 200 250 300 350 400
TIME — minutes
50 100 150 200 250 300 350 400
TIME — minutes
0.60
I °-45
a
O
0.30
-------
ho
0.20
E 0.15
s
0.10 r
UJ
o
8 0.05 -
O
0.0
0.04
0.03
0.02
0.100
tt
UJ
o
8 0.01
0.0
50 100 150 200 250 300 350 400
TIME — minutes
I I I I I I
O O O
100 150 200 250 300 350 400
TIME — minutes
0.100
I °-075
0.050
cc
UJ
o
8 0.025
0.0
50 ' 100 150 200 250 300 350 400
TIME — minutes
1111
I I
50 100 150 200 250
TIME — minutes
300 350 400
SA-5733-6
Figure 5. Simulation of SAPRC EC-17:0.103 ppm Propene and 0.106 ppm NO .
-------
0.100
0.075
a
a.
O
H 0.050
<
cc
iu
O
O 0.025
0.0
0.008
0.006 -
0.004 -
DC
2
ut
o
8 0.002 -
50
PROPENE
O O O
O O
O O
O O
J I L I I I 1
50 100 150 200 250 300 350 400
TIME — minutes
100 150 200 250 300 350 400
TIME — minutes
0.60
g 0.45
a
a
O
IU
-------
0.60
0.45
£ 0.30
ui
o
O 0.15
o
0.0
0.24
I I I I
I I
0.12
50 100 150 200 250 300 350 400
TIME — minutes
50 100
150 200 250
TIME — minutes
300 350 400
0.100
0.075
O
P 0.050
ui
-------
2.00
•*•
Ln
0.020
45 90 135 180 225 270 315 360
TIME —minutes
45 90 135 180 225 270 315 360
TIME — minutes
0.8
-------
0.20
III
I I I I I I
PROPANAL a
FORMALDEHYDE
52 105 157 210 262 315 367 420
TIME — minutes
0 52 105 157 210 262 315 367 420
TIME — minutes
III
I I I
52 105 157 210 262 315 367 420
TIME — minutes
SA-5733-10
Figure 9. Simulation of SAPRC EC-122: 0.217 ppm Butene-1 and 0.500 ppm NO
-------
o
ID
O
0.24
0.18
0.12 -
8 0.06
135 180 225
TIME — minutes
0.08
0.06
270 315 360
I I I ! I I
0 45 90 135 180 225 270 315 360
TIME — minutes
O
0.04
(C
ill
O
8 0.02
0.0
III T I I I
PAN
I I I I I I I
45 90 135 180 225 270 315 360
TIME — minutes
SA-5733-11
Figure 10. Simulation of SAPRC EC-157: 0.216 ppm trans-Butene-2 and 0.525 ppm NOX
-------
is good and indicates that the individual mechanisms are additive with
no synergistic effect being apparent.
Analysis of the simulation of all the alkene runs summarized in
Appendix A shows that the fits for some runs are far from satisfactory.
The reason for the variation of these experiments from the computed
data cannot be easily ascertained. However, the effect cannot be related
to initial reactant concentrations since in most cases the concentrations
are matched in other runs where the fits are good. In general, data
trends suggest that the calculated simulations of the early chamber runs
tend to be slower than observed while those calculated for the later
runs tend to be faster than observed. For example, chamber runs EC-13,
-55, and -216 were carried out with about 0.5 ppm of propene and 0.5 ppm
of NO ; although there is a variation in the light intensity that the model
X
takes into consideration, the computed curves are slower than those ob-
served for EC-13, about the same for EC-55, and faster than those for
EC-216. In the absence of light intensity data at various wavelengths,
the fact that EC-55 was slower than EC-13 was assumed bv Whitten
and Hugo5 to have resulted from a faster deterioration of the solar
simulator output in the short wavelength region where ozone and aldehyde
selectively absorb than at the longer wavelengths where N02 predominantly
absorbs. Thus, photolysis of ozone and aldehydes was assumed to be
slower in EC-55 due to deterioration of the light source. However,
the very recent propene runs (for example 216), where the relative
light intensities have been measured and where there can be little
question as to photolysis rates, continue the trend of lower chamber
reactivity with time. Thus, while light source deterioration may
account for some of the effect in the early runs, it clearly cannot
be the cause of the problem in the later runs.
There are other important factors that we believe are related
to the ability of chambers to produce radicals along the lines discussed
in Section 4.1. Therefore, in addition to the simulation in Appendix A
using the standard conditions that assume an input of radicals of 2 x
48
-------
o
z
tit
0.24
0.18
0.12 -
I I I
PROPENE
8 0.06 -
vo
0.0
I I I
I I I
0 45 90
135 180 225
TIME — minutes
270 315 360
I I I I I I I
45 90 135 180 225 270 315 360
TIME — minutes
ooyooyoopoopooi >
0 45 90 135 180 225 270 315 360
TIME — minutes
SA-5733-12A
Figure 11. Simulation of SAPRC EC-144: 2.03 ppm Ethene, 0.221 ppm Propene, and 0.509 ppm NO
-------
V/l
o
1.00
I °-75
o.so
z
LU
o
S 0.2S
o.q
1 I I I
I T
45 90
FORMALDEHYDE
135 180 225
TIME — minutes
315 360
0.12
0.09
O
I
01
O
O 0.03
0.0
I I
45 90
135 180 225
TIME — minute*
270 315 360
SA-5733-12B
Figure 11. Simulation of SAPRC EC-144: 2.03 ppm Ethene, 0.221 ppm Propene, and 0.509 ppm NOX (Concluded).
-------
0 45 90 135 180 225 270 315 360
TIME — minutes
0.4
0.3
I I J I I I
ACETALDEHYDE
A
I
0 45 90 135 180 225 270 315 360
TIME — minutes
I I I I I I
0.12
45 90 135 180 225 270 315 360
TIME — minutes
45 90 135 180 225 270 315 360
TIME — minutes
SA-5733-13
Figure 12. Simulation of SAPRC EC-149: 0.384 ppm Propene, 0.209 ppm trans-Butene-2, and 0.989 ppm NO .
-------
KJ
O
0.24
0.18 -
0.12 -
UJ
O
z
8 0.06
0.0
45 90 135 180 225 270 315 360
TIME — minutes
45 90 135 180 225 270 315 360
TIME — minutes
1.1
0.9
O
g
tr
in
o
8
0.3
0.16
I I
I I I I
ETHENE
J I
I I
I
45 90 135 180 225 270 315 360
TIME — minutes
45 90 135 180 225 270 315 360
TIME — minutes
SA-5733-14A
Figure 13. Simulation of SAPRC EC-150: 1.01 ppm Ethene, 0.224 ppm Propene, 0.097 ppm Butene-1, 0.093 ppm
trans-Butene-2. and 0.998 ppm NOX.
-------
U>
0.8
0.6
0.4
tc.
Ill
o
§ 0.2
0.0
FORMALDEHYDE
I
I
I
I
I
0.08
45 90
135 180 225
TIME — minutes
270 315 360
90
135 180 225
TIME — minutes
270 315 360
SA-5733-14B
Figure 13. Simulation of SAPRC EC-150: 1.01 ppm Ethene, 0.224 ppm Propene, 0.097 ppm Butene-1, 0.093 ppm
trans-Butene-2, and 0.998 ppm NOX (Concluded).
-------
10- ppm~l min *, we have included simulations where we have altered
this radical input rate for several runs. It is necessary to increase
the radical addition rate to improve the fit for the earlier runs
EC-13, 16, -53, and -54, and to reduce it to zero for the later
runs EC-216 and EC-217. The implication is that an aging process has
occurred with the SAPRC chamber so that there are essentially no chamber
sources of radicals in the most recent runs. However, initially there
were sources of radicals in the chamber, and these sources apparently
varied depending on such factors as previous chemical history of the
chamber and clean-out procedures. The effect of removing the hetero-
geneous source of radicals in runs EC-216 and EC-217 is small, although
it is a step in the right direction. The possibility exists that the
chamber wall may be actually consuming radicals rather than generating
radicals or remaining passive. Such processes have been invoked in
many experimental programs, but further experiments are necessary to
determine whether these processes may be important in smog chambers.
4.4 ALKANES AND ALKANE-ALKENE MIXTURES
The available SAPRC data on alkanes consist of an extensive series
of runs using ri-butane, and three runs using 2,3-dimethylbutane.
Appendix B describes the results of the simulations for each run,
using the mechanisms tabulated in Tables B-3 and B-4, along with
the initial conditions and photolytic rate constants. Some typical
runs are described and discussed below. SAPRC has also reported
data on propene-n-butane mixtures. A mixture of propene and ii-butane
is often used to represent the hydrocarbons present in the polluted
troposphere. These runs allow the testing of the mechanisms developed
for individual hydrocarbons under conditions somewhat different from
those for which the mechanisms were developed, and somewhat closer to
the conditions where they may be used in a practical predictive manner.
54
-------
The results of the simulations for each run, using the mechanisms
described previously (see Section 3.8), are presented in Appendix B,
along with the initial conditions and photolysis rate constants.
Some typical runs are described and discussed below.
n-Butane—Figures 14 through 16 show the results of simulating
SAPRC runs EC-42, -39, and -178. Runs EC-42 and EC-178 have the lowest
(0.64) and highest (19.8) hydrocarbon to NO ratios in the n-butane-NO
X ~™ X
series. EC-39 has a hydrocarbon to NO ratio (3.8) typically used
X
in many experiments. The results are, in general, very good; the
simulations reproduce well the experimentally observed concentration-time
profiles. In run EC-42, the ozone concentrations are not accurately
matched; however, extremely low levels of ozone (^ 5 ppb) were observed,
and the experimental measurement is probably unreliable at these
levels. In EC-178, the computed PAN concentration is too low by about
a factor of 2; this result is seen in several other runs in the n-butane
set (see Appendix B). PAN is formed only in relatively small amounts
in n-butane systems and is difficult to measure because in the gas
chromatographic analysis used its peak overlaps that of butyl nitrate.
Thus, the experimental measurements may contain a systematic error.
Alternatively, if the experimental measurements are accurate, then
the computer-simulated level of acylperoxy radicals is too low.
In the simulations, acylperoxy radicals are produced primarily by
hydroxy radical abstraction from acetaldehyde; therefore, this rate
may be too slow. The mechanism may be missing some alternative
route to acylperoxy radicals, or the amount of acetaldehyde present
may be too low.
Apart from the PAN concentrations described above, there appear
to be no systematic discrepancies between the computed and experimental
concentrations in the n-butane systems. It is encouraging that the
same mechanism can simulate the results of experiments with initial
55
-------
0.40
0.28
0.25
45 90 135 180 225 270 315 360
TIME — minutes
I I I I
0.05
I I I I I I
45 90 135 180 225 270 315 360
TIME — minutes
0.60
0.50
O
I- 0.40
<
CC
z
111
O
§ 0.30
0.20
I I I I 1 I
0.008
E 0.006
a
Z
O
oc
z
Ul
O
0.004
8 0.002
0.0
I I
0 45 90
135 180 225
TIME — minutes
270 315 360
I I
I I I I I I I
0 45 90 135 180 225 270 315 360
TIME — minutes
SA-5733-15A
Figure 14. Simulation of SAPRC EC-42: 0.385 ppm ji-Butane and 0.601 ppm NOX.
-------
en
-j
0.020
0.015 -
0.010 -
ui
O
8 0.005 -
0.0
I I I I I I I
0.020
45 90 135 ISO 225 270 315 360
TIME — minutes
45 90 135 180 225 270 315 360
TIME — minutes
SA-5733-15B
Figure 14. Simulation of SAPRC EC-42: 0.385 ppm n.-Butane and 0.601 ppm NOX (Concluded).
-------
Ui
oo
o
en
z
UJ
o
I I I I I I
8 1-8 -
0 45
135 180 225
TIME — minutes
0.8
0.6
O
Pj 0.4
DC
Z
UJ
o
8 0-2
270 315 360
0.0
0.4
E 0.3
a
a
z
o
j= 0.2
-------
0.10
V£>
I I I I I I
0.008
90 135 160 225 270 315 360
TIME — minute*
I I I I I
45 SO 135 180 225 270 315 360
TIME — minutes
SA-5733-16B
Figure 15. Simulation of SAPRC EC-39: 2.2 ppm .n-Butane and 0.61 ppm NO (Concluded).
-------
0.08
0.12
0.09
I
o
£ 0.06
CC
z
LLJ
u
8 0.03
61 123 185 247 309 371 433 495
TIME — minutes
I I I I
o o o o
o o o
o o o o o o o
o o o o oo o oo o oo oo
_J I I I
61 123 185 247 309 371 433 495
TIME — minutes
61 123 185 247 309 371 433 495
TIME — minutes
Z
o
0.4
0.3
0.2
CC
z
UJ
o
I 0.1
0.0
61 123 185 247 309 371 433 495
TIME — minutes
SA-5733-17A
Figure 16. Simulation of SAPRC EC-178: 1.96 pom n-Butane and 0.099 ppm NOX.
-------
ill
o
0.08
0.06
0.04
I I I I I I I
S 0-02
0.0
o o
PAN
123 185 247 309 371 433 495
TIME — minutes
O
UJ
O
0.100
0.075
0.050
8 0.025
0.0
ACETALDEHYDE
I J J 1 I
61 123 185 247 309 371 433 495
TIME — minutes
SA-5733-17B
Figure 16. Simulation of SAPRC EC-178: 1.96 n-Butane and 0.099 ppm NO {Concluded}.
-------
hydrocarbon to NO ratios varying by a factor of 30, using only one
3C
adjustable parameter—the amount of initial nitrous acid.
In Appendix B, two simulations are shown for EC-46 and EC-49—the
"aldehyde memeory effect" runs (see Section 4.1). The second simulation
shows the effect of increasing the influx of radicals by 50%. In both
cases, these results show much better agreement between computed and
experimental data.
2,3-Dimethylbutane—Figure 17 shows the simulation of SAPRC run
EC-169. This run has the intermediate hydrocarbon-NO ratio of the three
X
reported runs. The agreement between the computed and experimental
concentration-time profiles are not as good as in the n-butane system;
however, in general they show the correct qualitative behavior. This
is to be expected, as there are few measured rate constants for the system
and much reliance had to be placed on estimations.
Propene-n-Butane Mixtures—Runs made with mixtures composed of
propene and n-butane were simulated using a mechanism that was a combina-
tion of the individual mechanisms for propene and ii-butane without
modification. The results of applying this mechanism to runs EC-106
and EC-115 are shown in Figures 18 and 19; these runs are typical of
the seven reported. The results are generally good, comparable with
those obtained using individual hydrocarbon runs. The ability of the
mechanism to reproduce experiments under different conditions than
those for which it was developed is good evidence that the overall
chemistry is essentailly correct and contains a minimum of fortuitous
compensations. This is particularly true of the n-butane mechanism,
as it was developed for use in runs where the radical level is quite low.
In the runs with propene, the radical level is much higher; yet the
mechanism still seems to be able to reproduce the experimental results.
4.5 TOLUENE
The toluene mechanism, which is composed of reactions from Tables 1
and 12, has been used to simulate SAPRC chamber reactions. The initial
62
-------
i i i I i i
0.60
112
168 225 281
TIME — minutes
337 393 450
56 112 168 225 281 337 393 450
TIME — minutes
0 56 112 168 225 281 337 393 450
TIME — minutes
SA-S733-18A
Figure 17. Simulation of SAPRC EC-115; 0.310 ppm Propene, 2.94 ppm n-Butane, and 0.506 ppm NOX.
-------
0.20 r
0.16
56 112 168 225 281 337 393 450
TIME — minutes
56 112 168 225 281 337 393 450
TIME — minutes
SA-5733-18B
Figure 17. Simulation of SAPRC EC-115: 0.310 ppm Propene, 2.94 ppm ri-Butane. and 0.506 ppm NOX (Concluded).
-------
cr>
I I I I °
0.60
0.45
O
i= 0.30
<
-------
0.100
0 54 108 163 217 271 326 380 435
0.20
0.0
0 54 108 163 217 271 326 380 435
TIME — minutes
SA-5733-19B
Figure 18. Simulation of SAPRC EC-106: 0.402 ppm Propene, 2.00 ppm n-Butane. and 0.500 ppm NOX (Concluded).
-------
I
1.0
0.8
0.6
0.4
DIMETHYLBUTANE
0.2
o o
0.16
0 90 180 270 360 450 540 630 720
TIME — minutes
o
<
I
HI
u
0.60
0.45
0.30
§ 0.15
0.0
I
I I I I I
0 90 180 270 360 450 540 630 720
TIME — minutes
I
ooooc
ooo —
oo
OZONE
000^ I I I I I I I
0 90 180 270 360 450 540 630 720
TIME — minutes
SA-5733-20A
Figure 19. Simulation of SAPRC EC-169: 0.74 ppm Dimethylbutane and 0.191 ppm NO
-------
0.04
i i i i i i
8
90 180 270 360 450 540 630 720
TIME —minutes
I < I I I
I I I I I I
0 90 180 270 360 450 540 630 720
TIME — minutes
SA-5733-20B
Figure 19. Simulation of SAPRC EC-169: 0.74 ppm Dimethylbutane and 0.191 ppm NOX (Concluded).
-------
conditions used are summarized in Tables C-l and C-2 of Appendix C.
Copies of all the concentration-time plots for all the simulations
are included in Appendix C; however runs EC-77 and EC-86 have been re-
plotted in Figures 20 and 21, as representative runs for more careful
consideration. These two runs were selected because they are at different
[toluene]/|NO ] ratios—0.48 and 2.63, respectively. In addition, EC-86
X
has 0.161 ppm of formaldehyde present initially.
From the data in Figures 20 and 21 we can see that the toluene
model computes the chamber data well. Again the major problem is with
the aldehydes, for which there may be sizable experimental uncertainty
associated with the data. Inspection of the runs in Appendix C indicates
that in some runs, such as EC-80, the computation underestimates the
experimental data in the last half of the run. This effect may be
due to an increase in the chamber temperature since the temperature
monitoring and refrigeration unit was not in operation for the toluene
experiment block.
Even though the toluene mechanism is at a preliminary stage of
development, in Table 13 we have summarized the toluene products
predicted by the model at 100-min intervals. We see that cresol is
predicted to be the major product, accounting for 44% of the consumed
toluene at 100 min and 17% at 400 min. The model predicts significant
amounts of dihydroxytoluene and phenylnitrate; however, this is because
the model does not include their chemistry for reasons of simplicity,
although these compounds should be very reactive. The dihydroxytoluene
should be more reactive than cresol, whereas phenyl nitrate is expected
to readily hydrolyze heterogeneously to form phenol, which again would
be reactive like cresol.
All other products except for benzaldehyde, which was analyzed
at concentrations consistent with the model, are in the sub-ppb region.
Thus, the inability to find toluene reaction products should not be
surprising. The possible exception is cresol, which should be present
largely as the ortho and para isomers; however, the material is very
69
-------
§
ui
o
0.40
0.30
°-20
0.10
I I
I I I
TOLUENE
o o
o o
po
0.0
I I 1 I I I
O
z
ui
O
8
050
0.45 -
0.30 -
OX)
0 50 100
150 200 250
TIME — minutes
0.020
0.015
300 350 400
I I I I I I I
100
150 200 250
TIME — minutes
300 350 400
O
0.010
ui
O
g 0.005
0.0
i i r i i i i
FORMALDEHYDE
OZONE
o o
o o o
I I I I I I
50 100 150 200 250 300 350 400
TIME — minutes
SA-5733-21
Figure 20. Simulation of SAPRC EC-77: 0.276 ppm Toluene and 0.574 ppm NO
-------
1.20
E 0.90
ft
O
0.60
UJ
o
8 0.30
0.0
I I I
TOLUENE
I I I
I I
0 50 100 150 200 250 300 350 400
TIME — minutes
0.40
50 100 150 200 250 300 350 400
TIME — minutes
O
OC
UJ
O
8
0.40
0.30 -
0.20 -
0.10 -,
100 150 200 250 300 350 400
TIME — minutes
I
g
<
cc
z
til
o
8
0.04
0.03 -
0.02 -
0.01 -
100 150 200 250
TIME — minutes
300 350 400
SA-5733-22
Figure 21. Simulation of SAPRC EC-86: 1.09 ppm Toluene, 0.486 ppm NO and 0.161 ppm Formaldehyde.
-------
TABLE 13. PREDICTED TOLUENE REACTION PRODUCTS (EC-77)'
Products
Benzaldehyde
Cresol
PhC02NOa
PhCH202N02
PhONO2
HCCH
Hydroxybenzaldehyde
Dihydroxytoluene
Nitrotoluene
A Toluene
Concentration -ppm
Time (min)
100 200 300 400
0 .0033
0.0163
0 .0001
0 .0001
0 .0009
0 .0004
0 .0001
0 .0046
0 .00002
0 .0374
0 .0052
0 .0245
0 .0003
0 .0003
0 .0040
0 .0006
0 .0005
0 .0220
0 .00005
0 .0774
0.0050
0 .0245
0 .0005
0 .0004
0 .0062
0 .0005
0 .0007
0 .0328
0 .00008
0.1077
0 .0043
0 .0227
0 .0006
0 .0004
0 .0083
0 .0005
0 .0007
0 .0428
0 .0001
0 .1299
Concentrations include correction for dilution.
polar and may be extremely difficult to analyze. Care must be taken
to ensure that reactive compounds like cresols and other phenols do
not react with NO in the process of trapping them out from sample
streams.
4.6 FUTURE MODELING EFFORTS
Model development is continuing during the following year. The
major emphasis will be to apply and test the current mechanisms using
new data being obtained at the SAPRC facility. Special consideration
will be given to the further development of the toluene mechanisms and
72
-------
to evaluating the effect of peroxynltric acid and the closely related
peroxyalkyl nitrates on the overall chemistry, especially ozone
formation.
73
-------
APPENDIX A
Simulations of SAPRC Alkene and Alkene Mixture Data
75
-------
TABLE A-l. INITIAL CONDITIONS OF PROPENE CHAMBER RONS
B.C.
Number
5
11
12
13
16
17
18
21
51
53a
54a
55
56
59
60
95
121
177
216
217
INITIAL CONCENTRATION (ppm)
Propene
0.970
0.447
0.082
0.500
1.036
0.103
0.972
0.104
0.552
0.551
0.514
0.545
0.531
0.530
1.082
0.504
0.483
0.493
0.503
0.099
NO
0.551
0.115
0.106
0.504
1.122
0.106
0.106
0.558
0.516
0.552
0.527
0.480
0.311
0.124
1.105
0.365
0.410
0.364
0.412
0.241
N02
0.047
0.020
0.012
0.078
0.156
0.014
0.014
0.066
0.049
0.077
0.060
0.121
0.283
0.481
0.145
0.092
0.101
0.099
0.104
0.238
HNOa
0.020
0.010
0.000
0.020
0.040
0.001
0.020
0.010
0.010
0.030
0 .015
0.020
0.030
0.010
0.020
0.020
0.030
0.005
0.000
0.000
HCHO
0.0
0.0
0.0
0.038
0.015
0.0
0.0
0.003
0.0
0.0
0.0
0.005
0.0
0.001
0.0
0.010
0.0
0.010
0.030
0.003
CHjCHO
0.003
0.002
O.001
0.005
0.007
0.002
0.003
0.008
0.004
0.001
0.003
0.003
0.002
0.004
0.002
0.005
0.005
0.001
0.002
0.146
All runs were at 302 ± 1 K, except runs 53 and 54, which were at 311 and
289 K, respectively.
76
-------
TABLE A-2. INITIAL CONDITIONS OF ALKENE CHAMBER RUNS
B.C.
Number
142
143
156
122
123
124
146
147
157
144
145
160
149
150
151
152
153
161
INITIAL CONCENTRATION(ppm)
Ethene
0.949
2.027
1.995
0
0
0
0
0
0
2.027
0.210
1.014
0
1.014
0.975
1.015
1.923
0.908
Propene
0
0
0
0
0
0
0
0
0
0.221
0.428
0.400
0.384
0.224
0.441
0.116
0.109
0.102
Butene-1
0
0
0
0.217
0.404
0.424
0
0
0
0
0
0
0
0.097
0.209
0.222
0.415
0.189
trans-
Bu'tene-2
0
0
0
0
0
0
0.231
0.417
0.216
0
0
0
0.209
0.093
0.190
0.102
0.193
0.088
NO
0.322
0.390
0.376
0.398
0.401
0.608
0.385
0.782
0.397
0.398
0.745
0.752
0.813
0.774
1.466
0.398
0.774
0.386
N02
0.158
0.110
0.124
0.103
0.106
0.385
0.124
0.200
0.129
0.111
0.246
0.241
0.176
0.222
0.590
0.104
0.197
0.123
HN02
0.050
0.050
0.050
0.030
0.030
0.030
0.030
0.030
0.020
0.030
0.030
0.030
0.030
0.030
0.030
0.030
0.030
0.030
HaCO
0.050
0.0
0.027
0.0
0.0
0.0
0.0
0.010
0.010
0.020
0.004
0.004
0.0
0.050
0.0
0.0
0.0
0.0
CH3CHO
0.005
0.002
0.001
0.002
0.001
0.001
0.002
0.002
0.001
0.005
0.003
0.002
0.002
0.001
0.001
0.002
0.003
0.002
-------
TABLE A-3. PROPENE MECHANISM
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
CHa-CHCH, + OH °"
CH.-CHCH, + 0('P) *
CH.-CHCH, + 0(*P) •»
CH.-CHCH, + 0('P) -*
CH.-CHCH, + 0, -*
CHa-CHCH, + 0, ->
CHa-CHCH, + NO, •+
HOCH,CH(6,)CH, + NO •*
CH.CHjO, + NO +
CH,6a + NO *
CH,C(0)6, + NO +
CH,CH,C(0)6, + NO -••
CH,(OH)0, + NO -»
HOCH,CH(6)CH, 2*
HOCH,CH(6)CH, + 0, •»
CH.CH.6 + 0, -f
CH,6 + 0, +
CH.OH + 0, •»
CH.OH + 0, +
CH,(OH)0 + 0, •+
CH,CH,CHO + hv •*
CHaCHO + hv •*
CHaO + hv -*•
CHaO + hv •*
HOCHaC(0)CH, + hv *
CH,CHaCHO + OH S"
CH,CHO + OH 22
CHaO +• OH SJ
HOa + NOa +
HO,NO, •*
CHa(OH)6a + NOa •*
CH,(OH)0,NO, •»
CHa(OH)CH(6a)CH, + NO, *
CH,(OH)CH(0,NO,)CH, *
CH,C(0)0, + NO. +
CH,C(0)0,NO, •»
HOCH,CH,(6,)CH,
CH, CH.CHO
CH.O, + CH,C(0)6,
CH,CH,6a + HO,
CH.CHO + HO, + OH + CO
CH,0 + CH,C(0)6a + OH
CH,CH,CHO + NO,
HOCH,CH(6)CHa + NOa
CH,CH,6 + NO,
CH,6 -I- NO,
CH.6, + NO, + CO,
CH,CH,6, + NO, + COa
CHa(OH)6 + NO,
CH.CHO + CH,OH
HOCH,C(0)CH, + HO,
CH.CHO + HO,
CH,0 + HO,
CH,(OH)6,
CHaO + HO,
HC(0)OH + HO,
CH,CH,6, + CO, + HOa
CH.Oa + CO, + HO,
CO + H,
CO + HO, + HO,
CH,C(0)6, + CHaOH
CH,CH,C(0)6, + H,0
CH,C(0)6, + H,0
HO, + CO
HO,NOa
HO, + NO,
CH,(OH)0,NO,
CH,(OH)6, + NO,
CH,(OH)CH(0,NO,)CH,
CH,(OH)CH(6.)CH. + NO,
CH,C(6)0,NO,
CH,C(0)6, + NO,
Rate Constant!*
3.8 x 10*
1.8 x 10*
1.8 x 10*
1.8 x 10*
7.5 x 10"
7.5 x 10"
7.8
1.0 x 10*
1.0 x 10*
1.0 x 10*
5.4 x 10s
5.4 x 10*
1.0 x 10*
*2.7 x 10"
* .
6.7 x 10*
*2.0 x 10'
*2.0 x 10*
*1.2 x 10"
*1.2 x 10*
*1.4 x 10"
2.0 x 10*
2.0 x 10*
2.0 x 10*
3.0 x 10*
*2.0 x 10-1
6.0 x 10*
*1.0
6.0 x 10*
*1.0
1.5 x 10"
*4.0 x 10-*
continued. . .
78
-------
Propene Mechanism (concluded)
37 CH,CH,C(0)0, 4- NO,
38 CH,CH,C(0)0,HO,
39 CH.6 + NO,
40 CH,6 -I- NO,
41 CH,CH,6 + NO,
42 CH3CH,6 4- N0a
43 CH,(OH)CH(6)CH, -t- NO,
44 CH,(OH)CH(6)CH, 4- NO,
45 CH,6, + NO,
46 CH,0,NOa
47 CH,CH,C(0)6a 4- HO,
48 CH,C(0)6a 4- HO,
49 CU,(OH)6, 4- HOa
50 CH,(OH)CH,CH,6, 4- HO,
51 CH,CH,6, 4- HO,
52 CH,C(0)6a -I- CH,C(0)6,
53 CH,(OH)CH,CH,62 + CH,(OH)CHaCHa6a
CHaCHaC(0)0,NO, 1.5 x 10*
CH,CH,C(0)6, 4- NO, *4.0 x 10^'
CH.ONO, 2.0 x 10*
CH,0 4- UNO, 2.2 x 10'
CH,CH,ONO, 2.0 x 10*
CH.CHO 4- HHO, 2.2 x 10*
CH,(OH)CH(ONO,)CH, 2.0 x 10*
CH,(OH)C(0)CH, 4- HNO, 2.2 x 10'
CH,0,NOa 6.0 x 10'
CH,6, 4- NOa 1.0
CH,CHaC(0)OOH 4.0 x 10'
CH,C(0)OOH 4.0 x 10*
CHa(OH)OOH 4.0 x 10*
CHa(OH)CH,CH,OOH 2.0 x 10*
CH.CHaOOH 2.0 x 10*
CH,6a 4- CHaO, + 2COa 2.4 X 10'
CHa(OH)CHaCH,6 4- CHa(OH)CH,CH,6 + 0, 2.5 X 10'
units ppnT* nin~* except * mln~*.
79
-------
TABLE A-4. ETHENE MECHANISM
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Rate Constants8
CH,CH, + OH 22
CHaCH, •*• 0('P) •+
CHaCH, + 0('P) -*
CH,CH, + NO, -»
CH,CH, + 0, -*
HOCH,CH,6, +• NO *
CH.Oa + NO -»•
CH,C(0)6, + NO -»•
HOCH,CHa6 + 0, -»•
CH.O- + 0, *
CHaO -»• hy 22
CHaO + hv •»
CH.CHO + hv 22
CH.O + OH 22
CH.CHO + OH 2*
HOCH.CHO -1- OH 2*
CH.O,' + HO, +
HOCHaCHaO, + HO, +
CH,C(0)6, + HO, -t-
CH,C(0)6, -t- NO, -*•
CH,C(0)0,NO, •*
HO, + NO, -t
HO,NO, +
CH,6, + NO, H-
CK,0,NO, *
HOCHaCHaO, + NO, ->•
HOCH,CH,0,NOa -*
CH,C(0)6, + CH,C(0)6. +
CH.O, + CH,6, +
HOCH.CH.O, + HOCH.CH.O, t
HOCH.CH.O $'
CH.CH, •»• 0, +
HOCH,CH,6a
CH,CHO
CH.6, + HO, + CO
CH.CHO + NO,
CH,0 + HO, + CO + OH
HOCH,CH.6 + NO,
CH.O + NO,
CH.6, + NO, + CO,
HOCHjCHO -I- HO,
CH,0 + HO,
H0a + HO, + CO
CO + H,
CH,6, + CO + HO,
CO + HO, + H.O
CH,C(0)6, + H,0
CH.O + HO, + CO
CH.OOH + 0,
HOCH,CH,OOH -f 0,
CH,C(0)OOH + 0,
CH,C(0)0,NO,
CH.C(0}0, + NO,
HO,NO,
HO, + NO,
CH,0,NO,
CH.O, + NO,
HOCHaCH,0,NOa
HOCH.CH.O, + NO.
CH.6. + CH.6, + 2CO, + 0,
CH,6 4- CH,6 + 0,
HOCH.CH.O + HOCH.CH.O + 0,
CH.O -t- CH.O + HO,
CH.CHO + 0,
1.2
6.0
6.0
1.4
2.8
1.0
1.0
2.0
*1.3
*2.0
2.0
2.0
2.0
2.0
2.0
4.0
1.5
*4.1
3.0
*2.0
6.0
*1.0
6.0
*1.0
2.4
2.0
2.0
*1.0
2.0
x 10*
x 10'
x 102
x 10-'
* 10*
x 10*
x 10*
x 10*
x 10"
x 10*
x 10*
x 10*
x 10'
x 10'
x 10*
x 10*
x 10'*
x 10'
x 10-'
x 10*
x 10'
x 10*
x 10*
x 101
x 10*
x 10-*
"Units ppnT* mln~* except * min~
80
-------
TABLE A-5. 1-BUTENE MECHANISM
No.
Rate Constant
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
CHa-CHCHaCH, + OH
CHa-CHCH,CH, 4- 0(*P)
CH,-CHCHaCH, -1- 0('P)
CHj-CHCHjCH, 4- 0('P)
CHa"CHCHaCH, + 0,
CH,-CHCHaCH, 4- HO,
CHa(OH)CH(6,)CHaCH, +• NO
CH,CHaCH,6a + NO
CH,CHa6, 4- NO
CH,6, 4- NO
HOCHaOa + NO
CH,CHaCHa6 4- Oa
CH,CHa6 + Oa
CH36 4- Oa
HOCHaO 4- Oa
CHa(OH)CH(6)CHaCH, +• Oa
CH,(OH)CH(6)CH,CH,
HOCHa 4- Oa
HOCHa 4- 0,
CHaO + hv
CHaO 4- hv
CHjCHO -f hv
CH,CHaCHO 4- hv
CH,CHaCHaCHO 4- hv
CH,CHaCHaCHO -f hv
HOCHaC(0)CHaCH, + hv
CH,0 + OH
CH,CHO 4- OH
CH,CHaCHO + OH
CH,CHaCHaCHO 4- OH
HOa + NO,
HOaNOj
CH.Oa + NO,
CH,OjNOa
CH,CH,6a + NO,
Oa
0,
CH,(OH)CH(Oa)CHaCH,
CH,CHaCHaC(0)H
CH,6a + CH,CHaC(0)6a
CH,CHaCH,0, +• HOa + CO
CHaO + CHtCHaC(0)6, + OH
CH,CHaCH,C(0)H * NO,
CHa(OH)CH(6)CHaCH, + HO,
CH,CH,CH,6 + NOa
CHjCHaO + NO,
CH,6 -I- NO,
HOCHaO + NOa
CHaCHaCHO +• HOa
CH,CHO + HOa
HOa + HOa + CO
HC(0)OH + HO,
CHa(OH)C(0)CH,CH, + HOa
CH,CH,CHO -•• HOCHa
CHaO + HO,
HOCH,6a
HOa + HO, + CO
CO + Ha
CH,6a + CO 4- HOa
CH,CHa6a + CO -t- HOa
CH,CHaCHa6a + CO +• H0a
CH,CHO + C,H,.
HOCHa + CH,CHaC(0)Oa
CO 4- HOa 4- H,0
CH,C(0)6a 4- H,0
CH,CHaC(0)6, 4- HaO
CH,CH,CHaC(0)6a + HaO
HOaNOa
HO, + NO,
CH,0,NOa
CH,6, 4- NO,
CH,CH,0,NOa
3.8 x 10*
1.8 x 10'
1.8 x 10'
1.8 x 10*
3.8 x 10~l
12.0
1.0 x 10*
1.0 x 10*
1.0 x 10*
1.0 x 10*
1.0 x 10*
6.7 x 10*
*2.7 » 10'
5.7 x 10-'
5.7 » 10~*
2.0 x. 10*
2.0 x 10*
2.0 x 10*
2.0 x 10*
3.0 x 10*
*2.0 x 10-'
6.0 x 10*
*1.0
6.0 x 10*
continued...
81
-------
1-Butene (concluded)
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
CH,CH»'0,NO, ->•
CH,(OH)CH(6,)CH,CH, + NO, +
CH,(OH)CH(0,NO,)CH,CH, •*
CH,C(0)6, +• NO *
CH,CH,C(0)6, + NO +
CH,CH,CH,C(0)6. + NO +
CH,C(0)6, + NO, f
CH,C(O)O,NO, ->•
CH,CH,C(0)6, -I- NO, •»•
CH,CH,C(0)0,NO, +
CH,CH,CH,C(0)6, + NO, ->•
CH,CH,CH,C(0)0,NO, *
CH,6 + NO, *
CH,6 + NO, -f
CH,CH,6 + NO, +
CH,CH,6 + NO, -«•
CH,CH,CH,6 + NO, •*
CH,CH,CH,6 + NO, •*
CH,CH,CH,C(0)6, + HO, *
CH,CH,C(0)6, + HO, -*
CH,C(0)6, + HO, ->•
CH,(OH)CH(6,)CB.CH, -t- HO, *
CH,CH,CH,6, -I- HO, -»
t
CH.CH.O, + HO, -»
CH,6, -f HO, •+
CH.(OH)CH(6,)CH,CH, + CH,(OH)CH(6,)CH,CH,
CHiCHiOi + NO,
CH, (OH) CH (0,NO, ) CH,CH,
CH,(OH)CH(6,)CB,CH, -I- NO,
CH,6, +• NO, + CO,
CH,CH,6, -I- NO, + CO,
CH,CH,CH,6, -I- NO, + CO,
CH,C(0)0,NO,
CH,C(0)6, + NO,
CH,CH,C(0)0,NO,
CH,CH,C(0)6. + NO,
CH,CH,CH,C(0)O.NO,
CH,CH,CH,C(0)6, +• NO,
CH,ONO,
CH,0 -(- HNO,
CH,CH,ONO,
CH.CHO + HNO,
CH,CH,CH,ONO,
CH.CH.CHO -f HNO,
CB,CH,CH,C(0)OOH + 0,
CH.CH.C(0)OOB + 0,
CH,C(0)OOH + 0,
CH,(OH)CH(OOH)CH,CH, + 0.
CH.CH.CH.OOH + 0,
CH.CH.OOH •(• 0,
CH.OOH -f 0,
+
CH,(OH)CH(6)CH.CH, + CH,(OH)CH(6)CH,CH, + 0,
62
CH,C(0)6, + CH,C(0)6, +
CH.6, •«• CH.6, + 2CO, + 0,
A
1.0
6.0 x 10s
*
1.0
2.0 x 10*
2.0 x 10*
2.0 x 10*
1.5 x 10*
*4.0 x 10~a
1.5 x 10*
*4.0 x 10"
1.5 x 10"
*4.0 x 10"
1.5 x 10*
4.4 x 10*
1.5 x 10*
2.9 x 10*
1.5 x 10*
2.9 x 10*
4.0 x 10*
4.0 x 10*
4.0 x 10*
2.0 x 10*
2.0 x 10*
2.0 x 10*
2.0 x 10*
4.0 x 10*
2.4 x 10*
"Units ppnr* min"1. except *
82
-------
TABLE A-6. TRANS-2-BUTENE MECHANISM
No.
Rate Constant8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
CH3CH-CHCH3 + OH
CK3CH-CHCH3 + 0('P)
CHjCH-CHCHs + 0('P)
CH3CH=CHCH3 + NO,
CH3CH="CHCH3 + 03
CH,CH(OH)CH(6a)CH3 + NO
CH36a + NO
CH3CHa6a + NO
CH3CH(OH)6a + NO
CH,CH(6a)C(0)CH3 + NO
CH3C(0)6a + NO
CH3CH(OH)CH(6)CH3
CH3CH(OH)CH(6)CH, + Oa
CH36 + Oa
CH.CHaO + 0,
CH3CH(OH)6 + Oa
CHjCHOH + Oa
CH3CHOH + Oa
CHaO + hv
CHjO + hv
CH3CHO -1- hv
CH3CH(OH)C(0)CH, + hv
CH3CHaC(0)CH3 + hv
CH,0 +• OH
CH.CHO + OH
CH,CH,C(0)CH, + OH
HOa -I- NOi
HOaNOa
CH.Oa + NOa
CHjOaNOa
CH,CH(OH)CH(6a)CH. + NO,
CH3CH(OH)CH(OaNOa)CH,
CH,CHj6j + NOa
CH3CHaO,NO,
CH3C(0)6a + NOa
CH,C(0)0,NOa
CH3CH(OH)CH(Oa)CH3
CH3CHaC(0)CH3
CH3CH26a + CH3C(0)6a
CH3CHaC(0)CH3 + N0a
CH3CHO + CH3C(0)6a + OH
CH3CH(OH)CH(6)CH3 + NOa
CH36 + NOa
CH3CH26 + N0a
CH3CH(OH)6 + NOa
CH3CH(6)C(0)CH3 + NOa
CH36a + NOa + C0a
CH3CHO + CH3CHOH
CH3CH(OH)C(0)CH3 + HOa
CHaO + HOa
CHjCHO + HOa
CH3C(0)OH + HO,
CH3CH(OH)6j
CH3CHO + HOa
CO + H3
CO + HOa + HOa
CH36a + HOa + CO
CH3C(0)Oa + CH3CH(OH)Oa
CH3C(0)6a + CH3CHaO,
CO + HOa + HaO
CH3C(0)6a + H30
CH,CH(6a)C(0)CH3 + HaO
HOaNOa
HOa + NOa
CH,0,NOa
CH363 + NOa
CH3CH(OH)CH(03NOj)CH3
CH3CH(OH)CH(6a)CH, + NO,
CH,CHaOaNOa
CHjCHjOa + NOa
CH3C(0)OaNOa
CH3C(0)6a + N02
7.2 x 10*
9.0 x 10'
1.8 x 10*
2.1 x 102
3.8 x 10'
1.0 x 10*
1.0 x 10*
1.0 x 10*
1.0 x 10*
1.0 x 10*
2.0 x 10*
*2.7 x 10s
*6.7 x 10*
*2.0 * 105
*1.3 x 10'
*1.4 x 10*
*1.2 x 10'
*1.2 x 10'
2.0 x 10*
2.0 x 10*
5.0 x 10*
3.0 x 10'
*2.0 x 10-1
6.0 X 10'
*1.0
6.0 x 10'
*1.0
6.0 x 10'
*1.0
1.5 * 10'
*4.0 x 10-a
continued . . .
83
-------
trin«-2-Bur«n« M«ch«ni«m (concluded)
17 CH.6 + NO, * CH.ONO, 1.3 x 10*
38 CH.6 + NO, ->• CH.O + HNO, 4.4 x 10'
39 CH.CH.6 + NO, -* CH,ONO, 1.5 A 10*
*° CH.CH.6 -t- NO, * CH.CHO + HNO, 4.4 x 10'
*1 CH,CH(OH)CH(6)CH, + NO, * CH,CH(OH)CH(ONO,)CH, 1.5 x 10*
42 CH,CH(OH)CH(6)CH, -I- NO, * CH,CH(OH)C(0)CH, + HNO, 4.4 x 10'
43 CH,C(0)6, + HO, -*• CH,C(0)OOH 4.0 x 10'
44 CK,6a + HO, * CH.OOH 2.0 x 10*
45 CH,CHa6, -I- HO, ->• CH,CH,OOH 2.0 x 10'
46 CH,CH(OH)CH(6,)CR, + HO, •»• CH.CH(OH)CH(OOH)CH, 2.0 x 10'
47 CH,C(0)6, +• CH,C(0)6, -* CH.O, + CH,6, + 2CO, + 0, 2.4 x 10*
48 CH,CH(OH)CH(6,)CH, + CH,CH(OH)CH(6a)CH, -*• CH,CH(OH)CH(6)CH, + CH,(CH(OH)CH(6)CH, + 0, 4.0 X 10'
"Units ppm~* min~*; except * rntn"1 .
84
-------
TABLE A-7. PHOTOLYSIS RATE CONSTANTS FOR PROPENE CHAMBER RUNS (min"1)
00
Ul
B.C.
Number
5
11
12
13
16
17
18
21
51
53-56
59,60
95
121
177
216,217
N°2
0.24
0.23
0.22
0.22
0.21
0.21
0.20
0.19
0.22
0.21
0.20
0.35
0.30
0.33
0.43
HH02
0.066
0.063
0.060
0.060
0.058
0.58
0.055
0.052
0.060
0.058
0.055
0.11
0.089
0.098
0.13
«2°2
4.9 x 10-4
4.7
4.5
4.5
4.3
4.3
4.1
3.9
4.5
4.3
4.1
8.6
6.6
7.8
9.9
03(1D)
10.0 x ID"4
9.6
9.2
9.2
8.8
8.8
8.3
7.9
9.2
8.7
8.3
50.0
34.0
15.0
18.0
03(3P)
3.0 x 10"4
2.8
2.7 '
2.7
2.6
2.6
2.5
2.4
2.8
2.6
2.5
19
13.0
19.0
23.0
H2CO
(rad.)
6.3 x 10~4
6.0
5.7
5.7
5.5
5.5
5.2
5.0
5.8
5 J5
5.0
14.0
10.0
13.0
16. 0
H2CO
(molecx)
1 .2 x 10~3
1.1
1.1
1.1
1.0
1.0
1.0
0.9
1.2
1.0
.90
2.3
1.7
2.3
2.8
CHaCHO
3.0 x 10-4
2.8
2.7
2.7
2.6
2.6
2.5
2.4
2.7
2.6
2.5
7.5
10.0
13.0
16.0
CjH5CHO
3.0 x 10"4
2.9
2.8
2.8
2.7
2.7
2.5
2.4
2.8
2.6
2.5
8.0
11.0
14.0
17.0
HOCH2C(0)CH3
1.8 x 10-4
1.8
1.7
1.7
1.6
1.6
1.5
1.5
1.7
1.6
1.5
6.1
3.6
4.8
5.4
-------
TABLE A-8. PHOTOLYSIS RATE CONSTANTS FOR ALKENE CHAMBER RUNS (min"1)
B.C.
Number
142,143
156
122
123
124
146
147
157
144
145
160
149
150
151,152
153
161
NO,
0.33
0.32
0.29
0.28
0.27
0.33
0.34
0.33
0.33
0.34
0.34
0.33
0.33
0.35.
0.34
0.34
HNOZ
0.095
0.096
0.087
0.084
0.081
0.092
0.097
0.096
0.095
0.098
0.096
0.092
0.098
0.099
0.097
0.096
H2°,
6.0 x 10~*
6.1
6.5
6.3
6.0
5.6
6.5
6.1
6.0
6.5
6.1
5.6
6.4
6.4
6.3
6.1
0,(1D)
11 .Ox 10-*
11.0
35.0
34.0
32.0
15.0
25.0
25.0
3.6
13.0
6.9
15.0
0,(3P)
12.0 xlO-*
12.0
14.0
13.0
13.0
t
7.8
12.0
12.0
E
11.0
12.0
11.0
HaCO
(radJ
Ethene
9.0 x 10-*
8.2
Butene-1
9.9
9.7
9.5
H2CO
(molecj
17 .0x10""
17.0
17.0
16.0
15.0
rans-Butene-2
7.5
8.8
8.8
thene/Propei
7.9
9.3
8.2
18.0
17.0
17.0
ae
17.0
18.0
17.0
Propene/trans-Butene-2
7.8
7.5
18.0
CH3CHO
4.4x10-*
4.4
5.4
5.0
4.8
3.1
4.4
4.4
3.7
4.5
3.8
3.1
i
Ethene/Propene/Butene-1 /isaaft-Butene-2
10.0
10.0
10.0
6.9
12.0
12.0
12.0
11.0
8.4
8.8
8.4
8.2
17.0
17.0
17.0
17.0
4.0
4.2
4.0
3.8
C^jCHO
7.5 x 10-*
7.8
12.0
11.0
11 0
6.4
9.3
7.8
7.5
9.4
7.8
6.4
8.6
8.8
8.6
7.8
C,H7CHO
(rad.)
5.8 x 10-*
6.0
8.3
8.0
7.8
4.8
6.6
6.0
5.8
8.0
6.0
4.8
6.4
6.6
6.2
6.0
C,H7CHO
(mo lee)
2.8 x 10"*
3.0
4.1
4.0
4.0
2.5
3.3
3.0
2.8
4.0
3.0
2.5
3.0
3.3
3.0
3.0
1
CsH,C(0)Oi
2.0 x 10~*
2.2
4.1
4.0
4.0
2.0
3.3
2.2
2.0
3.1
2.2
2.0
2.5
2.7
2.5
2.2
00
-------
1.00
A
0.75
AA
AA
A
• AA
AA
Propene
a
B» CCC A
C CC CC C A
B CX C A
C X • C AA
a x MA cc A
» C X WW2 C A*
aac c A
CC • C AA
B X C AA
C X B • C C A
C X CC A *
»B ,„ X • C AA
C B WO X • CC AA
X BB X C AA A
C » 8 X CC A AA
»B « » » t » » » X CX XXX XA XXX XXX
aaa e as BBS »ccccccc occcc c c< c»c »c » c« c cc
SO 100 ISO 200 2S1 303
TINE (MINUTES)
35C
.60
0.<»5
C
0
N
c
E
N
T
R
A 0.3i
T
I
0
N
P
P
H
0.1$
A A
A A
AA>
Oz6ne
• A A
AA
A A
AA
A • T) A M * *
A rAlN 3 asaa B a» B e »
A » aaaeas a a e« e BB
A B B
A » 338
• A BB
AA 388
AA » B B
AAAA>AAAA 888 B 88 88
SO 100 ISO 200 2}li 30) 351,
-------
0.6.
0.»S
C
0
N
C
E
N
r
it
A 0.3.
T
I
0
N
P
f
II
a. is
Acetaldehyde
BMW aaaieaa a teas
MM AAAA AAAAAAA A AAAA IB 16
61 AAAAA A A A A 8
OBAA 6 •
asa A ae
a
aa A
aa AA
ae A
BBA
a A
BA
BBA
BBAA
BBAA
a** Formaldehyde
•
BA
2BO ttt Stl
TIMI INXNUTCSI
Figure A-l. Simulation of SAPRC EC-5 (Concluded).
88
-------
IP
M * " *
c i "
: I "P
1 »»
V" I oi-
I f
ft i . 5.) t » "C
I? 333 3 3
I I » P 3 33
I PP 33
M ' PS. 33
I » K 333
P | po**** 332
••i t *p 33J3 3 « • Ozone
•I 1 "P 3533 • • *
; » *?~ P» * « * • *
:.'. = • i t op * * *
I *• JJ PP
; -:- * PP
" 3 » P P
1 • 3 » * P P
* P
I
i
Propene * * "»P
150 200 250 300 350
TIME (HIVUTESI
2*
'i
2 HUa *
• * +
i i
1 2 »»»»»»
: i '
i i 2
1 • < 2? 22222 22222 2 2
• 11 22 2222 22222 22*
1
<:.3?»
1J
100
150
200
260
300
350 4
Figure A-2. Simulation of SAPRC EC-11.
89
-------
• P P P P P P PPPPP P P
pp p P P P p p » •
f>P PP
PAN
50 10? ISO 20C 253 230 350 400
TI«F (MINUTES)
'.2**
.11
Acetaldehyde
AA A F F F
A *A F F
AAA FFFF
AAA tfff
AFF
AAF-
ttFF
A ft-
A
f
Formaldehyde (*)
AF
AF
A A
A ffff
AAAAA F F
A A
IT
(WNUT6SI
270 300 350 400
Figure A-2. Simulation of SAPRC EC-11 (Concluded)
90
-------
O.iO *
c
0
N
C
E
N
r
R
A
T 0.10
I
3
N
P
P
N
0.05
PP»
333
3333
3333
33
3 3
33
3 »
3* »
33
» 3
3
33
Ozone »3
» 333
3
» 3
» 33
» 33
33
» 3
3
3
»3
PP » 3
P» 33
PP» 33
P P* * 3
P » 3
PPPP • »
PPP «3
»3 P •
3 P
33
»33
PP
* p% p., . Propene
3»
333*33* 3
100
p»p
P p«ppp»
PP *pp«p *p p*pp*p *ppp* • •
ISO 200 2SO
TINE (HINUTESI
300
350
400
.100*
II
.075
C
0
N
C
E
N
T
R
* .050
T
0
N
P
P
N
.025
• 22*2 »2 2
1 22* 22
2 » »22
1 » 22
2 » 2
12 2
2 * 2
1 +2 2
2*
21
21*
2
» 222
N0a .«,
1 »
1
1
2
» 22
» 22
22
» 2
»2 2
2
• MV
11 •
1
1 • » • •
11 * • •
111 11 » • « •
1111 1111111 11111 11 11
22 *
22
22
22
2 22
2222222
50
100
150 200 250
TINE ININUTESI
300
Z22
350 400
Figure A-3. Simulation of SAPRC EC-12.
91
-------
.020
.013
.010
.005
.000
• •
pp
ppppp pppp
pp
pp
FAN P P
p
p
PP
p
p
PP
PP
PP
pp
• PP
P-P
pp
PP
* p
p P
p PPPPPP
SO 100
ISO 200 250
TIME (MINUTES)
300 350
400
.060
.0*5
C
0
N
C
E
N
T
*
*
T
I
0
N
P
P
*
.030
.315
Formaldehyde
FF F F F fffff J
FAAAA AAA A A A AA ff FFFFF
• A A* AAAAA * F FF F »
* * AAAA fff
AAA AA ff f
AAF AAA FFF
AF AAA F F
A* , . AAA FF
A A Acetaldehyde ** ffff
A* * AA
AF AAM
AF
AA
A
IAF
0 .00 »---———»--
0 SO
AAA
100
ISO 2CO 2SO
TIME IMINUTES I
300 350
—»
408
Figure A-3. Simulation of SAPRC EC-12 (Concluded).
92
-------
0.611.
u.»5
C
0
N
C
F
N
T
H
• u.lO
T
I
0
3 3
PP
p
• P P
P
P
*
Propene.
Ozone } '
33
333
333
333
3*3 »
P«M 33
• PPP 31
• OP 333
• PPPP 3
n.lS • P333
• 333PP
• • 133 PPP
• -ft PP
• 33 PPP
33 • P o
3333 • P
» 3 33 • • P P
.33 • » PPPPPPP
I • !• 3333 333 ••••«• .pp. p p p pp
50
100
ISO
200 750
(MINUTES)
300
3iO 400
0.60
c
0
N
c
E
N
T
H
4 0.30
T
I
n
•4
P
p
•..is
I?
?\
22ZZ72
222
2222
22
222
222
N0a
22
22
<•
* NO ,
222
222
1 11
11111
n.OO*-
0
SO inn ISO ?00 750 300 3»0 400
TIME (MINUTES)
Figure A-4. Simulation of SAPRC EC-13.
93
-------
0.20.
n.i*
c
o
N
c
r.
H
T
a
A g.10
T
I
0
N
n. OS
.1.00.
P P
PAN
PPPP
PPPP
p P
p p p
ino
ISO 700 710 300 3*0 400
(MINUTES)
O.»0»
O.Jfl
1.10
Formaldehyde (*)
Acetaldehyde
*AA«* A*** A A r rr
AAAAAAAA * A AAAAAAAAFF
r f f AAAAA AA AAA A A F
r r A AAAA A AA
ff f A A
rr A A
F AA A
F AA
F
AA
IF •
1 «
IA
I
n.oo.
100
140
XOO
Z90
300
Figure A-4. Simulation of SAPRC EC-13 (Concluded).
94
-------
u.
I
I
0.45
C
0
N
C
e
N
T
ft
« 0.30
T
1
0
B
P
M
(1.1S
.1 J 3
3 3 3 3
333
33 3
1J3
33 Ozone
33
33 . . . . •
3 * • * * *
3 3
P »
PP • 3
• P »33
P • 1
•PP 1
PP « 3
• P 33
P» 333
• PP 3
• 3 PP
• 3 PPP
• 3 • P
3 • P P Propene
« 3
33
33
• 3
• 3
• 33*33333
PP
• PPP
• PPP
• • P PP
0.00.
100 ISO ?00
TIMt (MINUTES)
300
n.»S
ii. 3D
2< 2 2ZZ
?
NO
•11
N0
2 .
?2
•ll« I'll »11«1
SO 100
?00 ?SO
TIME (MINUTES)
300
2«f 2 i*i
350
400
Figure A-4A. Simulation of SAPRC EC-13.
(Radical Addition Rate » 8.0 x 10-" min"1)
95
-------
P.IS
c
n
«<
C
F
N
T
0
• 0.10
T
I
O
N
0.00.
PAN P
» p
• PP
p
PP
p p
• p
p p
RPP
• PP
PP
ppp
pppp. l> ppp
SO 100 ISO 200 ?50 300 350
*00
0.30
0.10
Formaldehyde (*)
F F FF
F F FF FFFFA A AAA AAA A*F F
F FFFFF AA AAAA A AAAAAFF
FF F AAA A AAA AAF
FF A AAA AAAAF
AAA
F"AA** * Acetaldehyde (+)
rr AA
T A
F A
A
AA Al-
A A f f
A A F r
A A F
A
F
IA
I
so
100
ISO ZOO 240
TIMt (MINUTES)
300
3t>0
Figure A-4A. Simulation of SAPRC EC-13.
(Radical Addition Rate = 8.0 x 10~4 min~l) (Concluded)
96
-------
11.00.
P P
• P
P
• P
PPP
• PPP
SO 100
. Propene p
PPP
PPP
700 750 300 350 »0l)
TIMt (MINUTES)
I
0.90
c
0
N
c
F
N
T
B
t !>.<>«
T
I
n
n
n.30
1
•
1
• 1 22
I 22
1 • 2
1
• 2
• 2 1
2 1
• 2 222 22 2
22722 2
22 • 22
22 2 2
NO,
222
222
2 2
22
11
11
22
NO »
2
11
111
II
I 11
•1*1 1 1 11111 11111
SO 100
ISO 200 2SO
TIMt (MINUTES)
300 350 «00
Figure A-5. Simulation of SAPRC EC-16.
97
-------
O.tiO*
o.»s
c
0
N
C
e
N
T
B
» 0.30
T
I
n
N
P
P
ii.IS
II.OO.
Ozone
33
333
3 3
33
• 333
33
.1 PP
* -1 DAM/'J-N ^ PP
• J PAN(+) |>ppp
3 P P »
• 33 PPP P
• 3 333 l» PPP
33* 3333*3 333 33PPPP PCP PP P P P P
100
700 2*0
Tint (MINUTES)
300 3bO
400
Acetaldehyde
A A ***** F F F f FFFFFF FF FF
»» • * Formaldehyde (*)
*****
*** F
F
**
I*
0.00.
10 100
ISO 200 250
TIMt (MINUTES)
300
390 400
Figure A-5. Simulation of SAPRC EC-16 (Concluded).
98
-------
P •
P
PP
pp.
P
_
Propene
?00 ?SO
(MINUTES)
300
»?3
2
32
NO
i i
32
22223
ISO 200 250
TlMt (MINUTES)
300
350
Figure A-5A. Simulation of SAPRC EC-16.
(Radical Addition Rate = 6 x 10-* min"1)
99
-------
O.M)
33
333
33
• *33»
• 3
33
33
3
3
• Ozone
33
3
33
33
33
33
333
3
.13 •
PHPPPP
HPPP
31 •
PAN
PPP
P PP
11.00.
•13 P KP
13.1.13 ,133J« P H . P p PPPP P
SQ 1«0 ISO 200 fit 300 340 400
Tint (MINUTES)
n. to
»AA AF
* • *"
• • r
* Acetaldehyde
AAAAAA A AA AAAAA A A AA
AAFFFFFt F F F FFAAAAAA
FFFKFFAA A
Formaldehyde (*)
so
110 ISO 200 2SO 300 3iO
TIMt (NINUTES)
»00
Figure A-5A. Simulation of SAPRC EC-16.
(Radical Addition Rate = 6 x 10~* min-1) (Concluded).
100
-------
0.2?<
33
3 33
333
0. 15«
C
C
N
C
E
N
T
(t
•» o.io*
T
0
N
P
P
H
IPP
33
33
33
33
+ * » * +
3 »
, , Ozone
33
*3
• 3
33
' * 3
F F 3
• P P • 3
*P P 33
»PP 3
• 3 PPPP
» 33 * P P
,. 3 * /p "„„„., "ropene
» 3
3
• OPPP
« » P
33^33
,35
4 P
* P*PPPP
* P* P* P »PP'F *FP *F »PP*
0.00<—
100
150 200 251
TINE (MINUTES)
3JJ
353
.375»
c
N
C
E
N
T
R
* .o:c<
T
I
I)
N
P
P
M
.02f»
22 222
2 *222
i +22
« 2
1
2
21
2 1
2 1
12
.OJO*
1 NO
• 1
1 •
11
2
•22
2
« 22
NOS
2 «
2 «
2 <
22
22
22
2 2
22
22
100
111 • • • •
1 111 »
11111 1 1 1 11111111
ISO 200 250
T1HE (MINUTES)
2 22
22222 22 2 2
330 353
4GO
Figure A-6. Simulation of SAPRC EC-17-
101
-------
0.03
C. 02
3. JO
PPFPP P
PP PP P P P
PAN
PPP
PP
FPP
PPP
PPP
«ep pp FFP pp
SO 100 ISO 200 233
TIME (UNUTfS)
3JO 35C «30
.lot
.075
,0!0
Acetaldehyde AAA
AAAAA F
AAA FF
.023 « »* f
AA F
AA r
A f
AF
,••' Formaldehyde
A F
Af
IAF
FFFF »
AAA AAAAAAFF FF
At* AA F FFFF
A AAA F FFF
AA A FF FF
AA AA FFFF F
AA* FFF
AA A
A A A
.090*
100
ISO 200 290
TICE (MINUTESI
300
3SC
«CO
Figure A-6. Simulation of SAPRC EC-17 (Concluded).
102
-------
*
J.75
C
0
N
C
E
N
T
R
A 0.50
T
I
0
N
P
P
M
0.2S
AA
* * Propene
AA
A A
• A
AA
A A
AA
A AA
A
A A
Acetaldehyde
X
CCCC8B
CCCBB
ICC C CB
•• CSCCCC
cc c *c »c ea e B a e
c c c B a a a •• <
c ccc cc a B • . »
CC CC CC8 6BB
cc CCCBB B Formaldehyde (+)
SO
106
ISO 200 2SO
TIME (MINUTZS)
30J
3S«
0.09
C
0
N
C
E
N
I
R
A t.Oo
T
I
0
B
p
p
N
O.C3
C C
»c c
c
c »
c
N02 *
NO
i
o.og»-
g
B • • c
BBBB ccccc cc ccc ccc cc c c c c c ccc c c c c c c
tab
lit 200 291 30} 350 400
TIME (MINUTES)
Figure A-7. Simulation of SAPRC EC-18.
103
-------
u.i.;
o.i:
c
0
N
C
E
N
T
ft
* C.Zu
T
I
0
N
P
P
N
o.o:
Ozone * ...
* *
» A
A
A
A
AA AA • •
A AAA AA A A A A 0 ZOO 210
TINE IHINUTCSI
•-«
000
Figure A-7. Simulation of SAPRC EC-IS (Concluded).
104
-------
.10.
.075
.05J
.025
.000
A
A
» A
A Propene
A
« A
A A
A A
50 104
ISO 200 2*0
TINE (NINJTbS)
jo;
3(0 *00
o. 6:«•
ii
o.«.s
c
0
N
C
e
N
I
It
A 0.39
T
i
o
N
f
f
N
0.16
1 !•
1
1 •
• 1
«2
NO
* •
• » l« « » Z« »2 2 Z
» » » » Z 22
» » 2 2 2» 1
» 2 • • 1 1
» 2 2 • 1
» 2
in
N02
2»
2 »Z
22*
2»
12 22
O.OJ»-
c
SO 10(1
ISO ZOO 250
TINE (MINUTESI
30li
3fO 010
Figure A-8. Simulation of SAPRC EC-21.
105
-------
.008
.006
.oo»
.ooz
.oa:
Ozone
* *
AAA
A A
PAN
teas
B B
3 Bee
50 100 150 200 210 309 3(0
TXHE (MINUTES)
.01)
.060
.0*;
.021
.00.
• B 8
B B A
Acetaldehyde a J *
B A
B A
• B
B A
•• A
a B * Formaldehyde
B A
B A
BB A
B AA
A
A
A
A «
B e
100
ISO ZOO 250
TINE (NINUTES)
300
310
too
Figure A-8. Simulation of SAPRC EC-21 (Concluded).
106
-------
^^•
•c p
33
3 3
333
333
33
ppp
3 3
Ozone
333
3 » *
33 *
3 » *
333
"Jpp Propene
PP
* p p
PP
* PP
PP
• PP
« p * *
• P » 3
* * 3
3 P
*33 PPP
» 33 * P P
» 33 • P
» 33 * P P
33 • PPPP
« 33 * P PP
» 333 * * PPPP
33 * * PPPP
3333»32»33>333 * * P P PP
<• i-:) isc 200 250 300 350 too
TIME (MINUTES)
J.tJ«
1
1
1
I
I
1
1!
I 1
2.7222
2 2
22
2?2
22
22
* 2
* 2
NO 2 * 2*2
1
* 1
11
NO
11
i
« a
11
2
»2 *
2 »
22 »»
22
2
2 2 <•
2
22
222
2 2
111 I 22
* *111*11*11» 1 » 1*11*1 * * * * • *
liO 200 250
TIME I MINUTE SI
300
350
400
Figure A-9. Simulation of SAPRC EC-51.
107
-------
.KC
.275
P «
P •
P
PP
• P
• P
P
P
* P
PP
P
• P
PAN
* P
P
PP
p
PP
PP
* PPPP PPP PPPP
100 ISO 200 250 300 350 400
TIME (MINUTES)
O.Ob
A « AA AtAAA AA
AAA AAAA
A A f F ^f• ffFFf FF F AAAA
A F FFF FFFFF A
AAA F FF F A
* F Formaldehyde *= »»
Acetaldehyde (+) ^A»
AA FF
AA FF
A f-F
AA F
A FF
AA F »
* FF
« F
AAFF
A F
A F
AFF
A F
«F »
AF *
AF
AF
»»
Ff
IF
AF
AF
H
A
IAF
IF
S3
19C 2CO 29C
TIME (MINUTES)
300 250 4CO
Figure A-9. Simulation of SAPRC EC-51 (Concluded)
108
-------
0.60«
P
3.45
C
0
N
C
E
N
T
R
A C.30
T
p P
• P
33
333
333
33
33
33
33
Ozone
3
33
3
3
3 »
3 »
3 *
3
3 »
C.15
0.00
»3
33
1333 33 3*
3*3
P 3*
P* 3
3
• 3 PP
«33 P
* PP
•33 « PPP
PP p Propene
P P
• PP
* * P P
* • P«PP* PP*P *PP*PP P
•00 ISO 1C1 250
TIKE (MINUTES!
35?
0.60
1
0.45
C
0
N
C
E
N
T
R
» 0.30
T
1
0
N
P
P
N
0.15
2222 22
22 222
2 « 22
2*
22
2
2«
1*2
2
2*1
1»
O.OO
• 1
NO
2
22
2
22
» 2
2
» 2
2
* 2
22
111
• 11
* 1 11
* * 11*11*11*1 1*1 *11* * *
2 »
2 « »
22
22
2222
222 22 2 2
**•***• 2
50
100
153 20C 2J9
TIME (MINUTES I
35:
*••
Figure A-10. Simulation of SAPRC EC-53.
109
-------
0.12*
3.19
C
C
N
C
£
N
T
II
* 0.06
T
C
N
P
f
0.03
0.00»
• p pppp
99 ppo
P P
P P
* * P P
P o
• P P
P
• PAN
pp
P
PP
p p
• P PPPPPP
PPP
50 ICO
130 200 23?
TIMe ("INUTESI
¥.) 39'.
0.20*
0.15
C
o
N
C
E
N
T
ft
A 0.10
T
I
0
N
P
P
H
0.05
fff f ff ff r Ff f r Formaldehyde (*)
FF A A AA AA F F
FF AAA A AA FFF
F AAA A FFF
FA A A A F F
FAA A FFF
FA AA FF
AA Acetaldehyde * *M r •=
A A
A A A
AF » AA
AAF AA
AF A
A
F
A
AF
F
A »
A
AF
IA
IF
o.oo* »
e v,
ISC 2PC 230 300 350
TIME (MINUTES!
—»
400
Figure A-10. Simulation of SAPRC EC-53 (Concluded).
110
-------
0.60*
I
X
I
I
I
I P»
I
O.I.5* »
I p
C I P'
DIP
N I PP
C I
E I
N I
T I
0 I
* 0.30*
T I
I I
0 I
N I
X
P I
? I
M I
I
o.is»
i
i
i
i
i
i
i
i
33
0. 01*
33
P 33 _
«FP 3 Ozone
p
» pa
33333333 33>
>P
• PP
PP 3
p
• P 3
P 3 »
• P 33
P 3 »
• PP J»
3 P
• 3 PP
3 t PP
• P
3 » • P
3 P
3» » P P
3
33» • PPP
33 • PP P
33 « • »P PP
.""„ Propene
100
ISO ZOO 250
TIME (KIOUTE5)
3iO
WOO
0.60*
I
I
O.fci
C
0
N
C
E
N
T
R
* 0. Jt
T
I
0
N
P
P
N
I
t. M
i
2222 2
222 2 2
• 2*2
2 » 2
2 » 2
2 » » 2
2 » 2
1 2 22
» 2
12 »
12
21
*
2 1
2 «
1
t. NO
i
i
i
2»
22
22
22
ti
1 1
22 2 2 2 22
lit
ISO 200 250
TINE (HIMITES)
350
1.00
Figure A-10A. Simulation of SAPRC EC-53.
(Radical Addition Rate = 3 x 1Q-" rain'1)
111
-------
o.iz
0.05
c
0
N
C
E
N
T
R
A O.Ot
T
I
0
N
P
P
H
0.03
0.00
PPPPP
PP • PP
P P »
P P
P P
P • P
» P
P
PP
P
P
PP
PAN
PP
• PPPPPPPP P
p P
SO 100 ISO 200 250
TIHC (HIMITES I
300 JiO «00
0.20
9. It
C
0
N
C
E
N
T
ft
* t. It
T
I
0
N
p
P
H
0.05
F F FFFFFF
FFAFAAAA,A FFFFFF Formaldehyde (*)
FFFM AAA FF
FAAA AA FFF
FA A AA F F
FA AA F F
FA A F f
FA AA FF
A A AA F
A A F F
/ Acetaldehyde ^ * 4
AA ft
* A *
A« * A
AF «
A F « «
« A
AF , »
AF •
AF •
F »
A
A » •
F
If
IF
I
0.00*"
50 100
150 200 2*0
TIME (riKUTESI
310 150
l>00
Figure A-10A. Simulation of SAPRC EC-53.
(Radical Addition Rate = 3 x 10~* min~l) (Concluded).
112
-------
J.46
0.15
* P P
• PPPP
* PP
Propene
• » » » 3
» * • *3 3
3 3
3 3 »33»33»3 3* 3* 3 3 3
» » 33
3 3 Ozone
0.'.
1C-'
23* ZX
TIKE I»INOTES I
350
400
0.6C
1
N
C
E
N
1
R
A ..3
T
I
• 1
• 2 «2 2 222
* * 2 » » 2
* 2 2 * » * 2
222 » 2
" N02 . .
2 1
2 • 1
2* 1
• 111
• 1
2 1
11
! NO
• 1
2
• 1
» * 1
• » 11
• * * * .1 * 1« .
SC 100 HO 200 2SO 300
TIME (MINUTES)
330 400
Figure A-ll. Simulation of SAPRC EC-54.
113
-------
.C8C
.020
PAN
IX
ISO 2CO 250
T1MF (HINUTESI
333
3SO WO
0.12
f.
n
N
C
t
N
r
P
A 0.3*
T
I
P
N
0.03
f F
Acetaldehyde (+) « *
A F
F
A/ FF F Fo nnaldehyde t
AA FF •
AA F •
FF
A FF <•
A
A r
A F
A F
AT
A
e
F »
AF
AF
I*
I
IF
100
150 200 2)0
TIME IHINUTESI
300
350
400
Figure A-ll. Simulation of SAPRC ED-54 (Concluded)
114
-------
0.60
C
0
N
C
E
N
T
R
A 0.30
T
I
0
N
P
P
H
0.1!
P
P •
PP
P P
« P
PPPP
P P
Propane
• PPPP
• » P P
• PPPP 3
• • P33 3
• » 3*33* P P
* » 3*3 J • •
Ozone * * 33333
» » 3
» » 3 3
* » 3 3
3 33 »J3»33« 33* »3 3
100
ISO 200 2SO
T1HE (HIHUTtS)
300 3SO
",00
0.4$
C
0
N
C
E
N
T
R
* 1.30>
T
I
0
N
P
P
N
0.1!
I. It
» Z t
ZZ »Z » Z Z
2 » * » Z
Z2
1 »
•1 ZZ
»
21
Z •
2 »
* 11
ZZ Ml
Z 11
» 1
Z » 11
2 • 11
.._
N0
* ZZ
Z22Z
» » Z Z
» Z Z
» 2Z2Z
* 222
» Z
2*
• 1
• 1
• 1
• 1
• mini i i
IOC
1M Z«0 ZSO
TINC IHIMTCSI
300
350
Figure A-11A. Simulation of EC-54.
(Radical Addition Rate = 3 x 10~A rain"1)
115
-------
.060
C
0
N
C
E
N
T
R
* .0*0
T
I
0
N
P
P
H
.ozo
PAN
PP
PPP
.000»
• P »pppppp PPP
SO 100
P P
150 200 250
TIME (MINUTES)
300
ISO
0.12»
0.09
C
0
N
C
E
N
T
R
A o.oe
T
I
0
N
P
P
N
0.03
t.OI
Acetaldehyde
A
A
A FF
AA F Formaldehyde
AA FF
FF
A F •
F
A »
f
A F
A F
A F
A F
AF
F
A
F
A
F
A
F
100
ISO ZOO 2(0
TINE (MINUTESI
300
ISO
1(00
Figure A-11A. Simulation of SAPRC EC-54.
(Radical Addition Rate = 3 x ICr1* min"1) (Concluded).
116
-------
PP
p
* p
• V P
PPP
PP
PP
Propene .
339
333
3
33 3
33"" Ozone
333 * »
3 »
33 » »
33 »
3 »
• P 333 *
PP 33 »
« 3 P»
• * PPP
3*3 • PP
*• * PP
3 • p p
3»3 * PPP
»33 • PPPP
»33 • PPP
3333 » PC
3» • » * P PP
3533 33 » 3»3 » • PPPPP P
100
150 200 250
TIME IHINUTESI
300
350
400
.0 J*
1
I
I
11
I \
i. 2 222222
2 2222
22
\ 1
3.JJ*
1
1
I
1 2 »
* i'i.
I
i *
2
1
•1
1
i NO
« i
2
2
» 22
2
» 22
» 22
» 22
N0
22 »
22
22 »
22 »
1
« i
• 111
222
uiii
* *n»i i» i»i »i i»n«i «i
is; ior 2so
TIME (MINUTES)
222
2 2
* • • »
300 390 4CO
Figure A-12. Simulation of SAPRC EC-55.
117
-------
J.U*
pp
pf>
p
pp *
» pp
pp
* p
p
pp
PAN
PPP
< PPPPP
p p F >> D pppp
150 200
-------
C.6C
f
O.W
C
0
N
C
£
N
T
R
A 0.3:
I
I
0
N
0.15
0.03
P»
P
33333
3 31
331 3
PP
• PP
PP
PP
33
] 3
33
* J„ Propene
3)
33
3 3
33
33
33
P
• P
P
• V
PP
• PPP
» P 3 *
P 33 »
• 3 P *
3 • P*
33 » »P
33 PPP
33 » « PP
3 » PP
3 » «PP
3 * »PP«
3 3 PPPP»
33 »
33*
3J3 333 3*33+ »
3333
3 Ozone « »
PP PfP • • .
PPP P'PPPPPPP P
*0
toe
158 200 230 JOB
TIME (MINUTES!
350
O.fcu*
o.t;
C
a
N
C
E
N
r
*
A 0.3J
T
I
0
N
P
P
N
0.15
2 2 22 2 2
ZZ 22
2 » * » » 2
Z 2 »
2
2 »
N0a
222
2 »
2
2
22 *
22 »
22
22
2
22
22
22
22
1 1
1
22
11
22
O.OJ<
i • i Mintn i»ti»ii«i • • • •
22222
• • 2Z22 2
IN ZOO 2*0 303 35C 00«
TINE (HINUTESI
Figure A-13. Simulation of SAPRC EC-56.
119
-------
o.iz
0.09
c
0
N
C
E
N
I
ft
* 0.06
T
I
0
N
P
P
M
0.03
o.o:
PFPPP f
ppB
PP
PAN „/"
PP
P •
P
p •
PP
PP
• P
PP
PP
» PP
P
P
» p p
PPP» P PP P
SO 10, 150 200 290 303 350 «CO
TIME (MINUTES)
.12*
I
0.69
C
0
N
C
E
N
T
ft
* C.
t
I
0
N
P
P
H
06
0.03
0.0.
» Acetaldehyde
f Fo rmaldehyde
*
AF
A F
A
F
A F
AF
A
AF
AF
AF
A F
F
SO 100
ISO 200 2SO
TIME (MINUTES)
3CJ
350 <»00
Figure A-13. Simulation of SAPRC EC-56 (Concluded)
120
-------
0.1.3
C
0
N
C
E
N
I
R
A 0.33
T
I
0
N
P
P
N
0.10
PP
PP
• PP
P
• P
P
» P
J3 33
. p P Propene
. pp
3 3
333
33
3 33
33
3333
3 Ozone
« *
O.Ojt-
P 3
• P 33 » »
P 3 » *
• PP 33 *
P 33 » t
• PP 33 » »
f 3
« 3 3 t »
33 » PP
33 P P
3 • » PP
33 « »PP
3 «P
33 » P»»
3 » P »
3 3» P •
3 PPP"
3 » ?P • »
33*3 » PPP P» •
I33» 33» PP PPP'PF* P P P PF
100
150 ZOO 250
TIHE (HINUTSSI
301
35U
".CO
0.1.5
C
0
N
C
E
N
r
A 0.3j
T
I
0
N
P
P
H
0.15
* + <
222222 2 2»
2*2
22*
2 »
2 »
2
22 »
22 «
2
2 *
2
2
2 2
22
11
NO
N02 ' .
222
22
2 2
222
22
2 2 2 22
50 103 ISO 200 250 301 350
TIHE ININUTCS)
l«00
Figure A-14. Simulation of SAPRC EC-59.
121
-------
.10J
.075
C
0
N
C
E
N
T
R
A .050
r
i
o
N
P
P
N
.02!
PP
P
P PAN
PP »
P
p
p •
•p
.aoo»—
o
PPPPPP •
PP
50 180 ISO 200 230 10]
TIME IHINUTES)
ISO <»00
0.1,0
0.3.
C
0
N
C
E
N
T
R
i.2
H
O.OJ
Acetaldehyde (+)
* A * MAMA A
AAA
A r
• A »
AA
A F
* *
A AA
AF
AAA
AAA AAF
AAA AF
* *F Formaldehyde
AA« AAA
**» AAF
A A « F F
A AA
AA
XAAA AA
'0 100 150. 2*0 250 303 350 ICO
TIME IHINUTESI
Figure A-14. Simulation of SAPRC EC-59 (Concluded)
122
-------
P
c
0
N
C
E
N
T
R
A 0.6.
r
I
0
N
P
P
N
u. Oj i
PP
»P
P P
• PPP
•P P
PP
• PP
• PPP
• PP
SO
PPP
Propene ' .
PPP
PPP
• p P
p P
PPP
• P 333
• P 3 33
• P333
33 » » F
/-. 3 » • • P
UZOIie 3333 » « PFFPP
333 » p
33 * *
3333 333 33 3* 3*33*3 *
100
150 2CO 250
TINE (MINUTCSI
30.
350
1.00
I
I
I
I
II
I
I !•
0.9;
C
0
N
C
E
N
T
R
A 9.6*.
T
I
0
H
P
p
H
O.Jj
0.0,
222222
22 2 22 2
• 22 * * * * »22
1 22** »22
"Z NO 3 *2
1 • 22 * "U2 »
1 2 * 2 «
1 • 2 2 »
11 22 » 2
12 •
21 • 22 *
22 222 »
2*1
Z 1 » 2
211 22
2*1 2
u
NO
22
22
2
2»
!•
1
22
t
» 1
I'll
•1 1
»u»un
50 ItO 150 200 2>0 309 350 *00
TIME (MINUTES!
Figure A-15. Simulation of SAPRC EC-60.
123
-------
C
0
N
C
E
N
T
»
* .05;
r
i
o
N
P
P
N
.02;
.1)0.
f>
P»
P
P •
•PP PPPPPPP PPP p
SO
ISO 201 293
TINE (HINUTtSI
30-
350
.»..
Acetaldehyde , „
. * * AJ14A F FF FFFFFF *
»» * r F
A* AAFF »
AA AFF
AAAA FF
* *A A "*FF "Formaldehyde
A* FF •
AA AF
AAAAF
» A AF»
AAF F
AA F
AAAF
A A
A »
AF
AA
IAA F
O.OJ»-
50 101 111 2BC
TINE (MINUTES!
lOi 3til
Figure A-15. Simulation of SAPRC EC-60 (Concluded).
124
-------
3 3 333
33
3333
333
33 3
p
« P
33
3 3
3
3" Ozone
3 » »
33 * »
3
1
3 *
•J
33 «•
Propene
*3
3
33
3 • P
* 3 • PP
PP
« PPP
* *D
*p p#ppt p*p * * *
200 253 300 350
I"!)
400
1
22
-2 NO 2
22
*
2
NO
* Ml- 11*11 «11«
22
• « i 2222* 222 22222 *22»2 «2 » 2* 2 222
tte
300
!50
400
VI MF |M1»'UTFSI
Figure A-16. Simulation of SAPRC EC-95.
125
-------
0.20
PAN
p ppppp ppp ppppp
P PPP P
PP P P
P P
P p
P PP
pnpp ?pa
10) ISO 230 2SO 300 350 400
(MINUTES)
0.3J
Acetaldehyde
»A& A&AAA AAAAAt
» 4AAFF FFF> FF^FFFAAA
ftf hF » FF ««
iJff FF AAA
Iff » F»»
1 '.
M
Formaldehyde (*)
AFFF »
AAA F FF
AA » F F »
A> »F
A f-
A F
A FFF
»
AAA
'.?? 29C 251
TIMF (HINUT6S)
300
350
400
Figure A-16. Simulation of SAPRC EC-95 (Concluded).
126
-------
;
1
1
c
6
.4
r
4
t
-
1
"I
ri
p
r>
*
C
"1
^
C
c
\]
K
\
1
,
t
t
t>
1
I
1
1
I
I
1
1
u
' A
J «
I
I « CC CCCC
1* A CC C
:n AC C C
I C AA ,T/». C
,.j> x AX NOa c
! • C AA X C
I b CX AX CC
1 • AA c
I tf. 1 » C
1 (. A C
1 A> * AX C
i L d Propene A x c
IX A CC
1 » * AA X C
.'.1J»C • AA X C
Id A :
IX »l) ' AA XCC
> NO AA C
! 8 • A» XC
1 b * AA XC
I • B * AAA C CX
I « » AA C X
7 BH*H • AA A CCC X
I 8*8 * fl*88H» 8*8 * • » * >AA«CCCC XCC XC X CXCC X C
' 50 ICO 150 200 250 300 350
TIME (MINUTES)
J.uj* A
1 A A
I AAA
I A A»
! AA " Ozone
I AAA
I A •
. * 'j * A * *
I A
I A *
1 A *
A •
1 AA
1 A •
A*
A
I »A
..J> AA
! A
1 A
• k
1 » A
I AA
I - AA
1
- -,' *
I A * * *
1 •
1 « A
1 « A «• BBbfl Bail BB 8 B
1 AAA 8BB8B BB B B
I » 89 BB PAN
1 AA » 8BU8B •""
1 * A » 88BBB
1 AA AAtA.X * B3B B 3 BBBfeBB B
CCC
400
A
* •
B
B B
50 103 150 200 2SO 300 350 400
TIKE (MINUTES)
Figure A-17. Simulation of SAPRC EC-121.
127
-------
4 O..M
Acetaldehyde
d 6>BBB6BBB8BBb
RBBBS4 AAAA AAAA BB 3
• »B d 4*4 * 4BBBB
On A 4 ABBB
•JI'HS/V 4. B BA
Ad AA * »bB BA A
•111 A D B A A
f>u'« B BA A
044 1-, -, , •, , » B B A A
LA. Formaldehyde (*) * *
,> i B » A
4 B 3
I'.i
150 2CO 25.C
71Hfc (MINUTES)
300
390
400
Figure A-17- Simulation of SAPRC EC-121 (Concluded)
128
-------
it.hO*
I
r c r
cc <»c
XXX XXXXX *
if K • A r (
L A C »«
1 ex »A r xx *
HC<
V
r>
r \ Propene £ H
• c
A «c
NO
»A C X
c • x
AC •
ACC • X
AC • X
C • • X
>. « » • cctc ccccc c c c» cxc x . c» c c « c« ccccc ccc
M> I ?
ri«t ("INCITES)
3«0
Ozone
PAN
4 -JHOM BHHHH t)
HH>4 -I « R H H 4 ri
HM. H M B
M «i< b BrtOHb t)
HM OU8
hO I'O
I nil <-»0 300
T|Mk IMINUTtM
360
Figure A-18. Simulation of SAPRC EC-177.
129
-------
Acetaldehyde
K HM HUH
» HH AA AAAhH
- « > X
"« « H
H AH
HdA
HAA
H A
H *
H A
H A
Formaldehyde
Propanal
1C COCC C XfXC «CCCC » C X X X
AAA
AA
A
B AA
BMbH
B B4B
IMu ?»0
Tint
360
»eo
Figure A-18. Simulation of SAPRC EC-177 (Concluded)
130
-------
Ozone
Propene * I
3 t> •
*
3 »P»
P •
•1
3 » V
• P
)
Op p PPP • • • • • w
300 37S
TIME (MINUTES)
*50
-I .
600
0.30
Z?
• a •
NO:
., NO
n • • ?
n 0 no* • • • * «?»?a? ?«»?? •
Zi 22 ?2 32 22*222 222 2222 X id 222
300 375
TIME (MINUTES)
»50
525
600
Figure A-19. Simulation of SAPRC EC-216.
131
-------
Acetaldehyde 4 4a*
• AAF FF A
F FA
FA F FA
F A • FA
FF
AA
„ PAN
F -A
FA
ppp pp pp . .
Dp F ppp p .
Af P PP
A F XPP X *
AX X I PX
A p , »
X F P P
FFF PP
< A F PP
AA F P P
A FF PP
F P P
AA F PP
« FF PPP
* AA FF FFF Formaldehyde
A* AA AA FFf FFFF ^ Ff FFF
300 375
TtMt IHIMUTESI
525
600
Figure A-19. Simulation of SAPRC EC-216 (Concluded)
132
-------
* r
» p
Ozone
" Propene
75 !«•'
225 3" ?75
TIMl (MNUTESI
525
6JC
22 »
?
/ NO
N0a
n
•a
, 22
p»0»r'«.'ir» * • » * 22*22 22 22 2 I 2 2 «2222 222 22 22 22 2 222
71 isr
J25
3liS 375 453
(MINUTFSI
525
600
Figure A-19A. Simulation of SAPRC EC-216
(Radical Addition Rate = zero)
133
-------
FA
* »
AA A
» A A ff AA • *
/F e% * Acetaldehyde
• f F A «
A FA - »
FA
Formaldehyde
ft
• *
F A /*\ " PP "P pp
» \ } PP A » ' P »
f ' PA P P
P A X P X X
FA X FX X X PPP
* P A F tPP t
A P X F PPP
P X A F PP
F
A PP P
f A F P P
X • F PP
P A FF P
» P A FFF
P ' A FFF
X » FF
X FP" P AAAA AAA * FF FF f FFF
PANpr «
sco 375
(fINUTESI
szs
FigureA-19. Simulation of SAPRC EC-216.
(Radical Addition Rate - zero) (Concluded).
134
-------
0.14
AAA
A**
0.12
c
0
N
C
E
N
ft
A
T
I
0
N
P
P
N
P
0.01
0.04
AA
f>
» P
AA
A
PP
• P
AA Acetaldehyde
pp
•fp Propane
AA
AA
P»
P • AA
P AA
P • A
P * A
P •
P • * AA
PPP • • AA
PPPPP PPPPP • » AAAAA A * *
100 200 300 400 500 600
TIME (MINUTES)
AA
TOO
0.40*
0.30
C
0
N
C
E
N
r
R
* 0.20
r
i
o
N
P
P
N
0.10
B •
A a » »
B*
cc
cc
BSBBB
BB BBB
B B
»B
B C
C
C B
C
C
C
c
c
cc
c*
c+ * »
N02
A *
A
NO* *
A *
A *
A * C
BB
B
BB
BBB )
B XX X X
BB X XX
B XXX
XBB
» » X
** X X
X XX » »
X XX *
c *
A C ••
AC •
AC *
CA • •
Ozone« ** • • x* «
C AA * XX X B
CC A XX X *• • • BB
CC AA X » • BB •• •
1CCXC XX X XX X XX XX X XA AAAAAAAA AA BBBBBB*BBBBBB«t ••**•* ••
0 100 ZOO 300 400 900 tOO TOO
TINE ININUTESI
MO
Figure A-20. Simulation of SAPRC EC-217.
135
-------
.0*0*
.045*
FF f ff
f ff
ff r
f ff
f FF
F F
fr Formaldehyde r f
r ff
f
F F
» F NNNNNN »
FF NN NN
FNN N
NNNF N
N F N
.090* NN *
N F »
NN F N
*N » *FF N
NN NN
NN _.„ F N
NN PAN F
N F NN
N F NN
N F *
.015 N F • * •
F » N • • »F
• • F
F N * F
N * • * • F
NNN • F
F »H • ff
•NNN fff
* NN FFF
F •NHNNN
100 200 300 400 500 600
TINC (MINUTES)
700 tOO
Figure A-20. Simulation of SAPRC EC-217 (Concluded)
136
-------
AAA
4 /.
AA4*
tf
t f
AAA
P
Vtt
PP
• P
Propene
4/1
AAA
t A
AA
Acetaldehyde *
AA
•P AA
*PP* AA
P P * »
P p ptppp* P* * A « *
TIKE (MINUTESI
70"! 8CC
j.l
ccc
ccr
cc
c c
CCf
c
cc
c
CC
nc
r,«
r R
r.
cc
rr
Ozone
• cc
* * r
» r
A «c
A CC »
«A re •
cc • *
c A' MQ » *
cr *A — « »x n
cr «* xx x •* * *
cere * XA *
ICO r B
B x
Bl) XX X X
X XX B
XXX n
X BB
XX X BPB
» » X
*» X X
X XX * »
X XX «
a B
V.
Tiff (KINUTtSI
Figure A-20A. Simulation of SAPRC EC-217.
(Radical Addition Rate = zero)
137
-------
FF F«F F
F ' FF
FF F
r F
f f
" F
f Formaldehyde r
1 r
:) c fF
N. ^ FF
FT » f
r FF
•^ ' FF
1
I FF
*
r *
FF
1 » « « • F
K MNhTN NN
r • NNN N 1=
\ F
: W-"N PAN . . . •
» ^^ * * *
MN » *
c M> »
* • * •
F • NKN
• * N •;
• "INW
ir: ;r.r 3i^ «oo w «: TOC eoc
Tl«f (KINUTFS)
Figure A-20A. Simulation of SAPRC EC-217.
(Radical Addition Rate = zero) (Concluded).
138
-------
1 .00.
r •
Ff.
K-rt •
EfE f •
Eft «
tfFf *
ttF.*
EF.f
Ethene
0000000
•F OOUO
f. . 000
E«E 000
EFE • 0
• E E 000
0 EE E
« 000 • EEE
0 • EEE
» 0 • EtEE
Ozone oo.° " • «£ EEE
00 • • EEEE
00«
no.
no o
r> on *
ns isg ?zs
TIMt (MINUTES)
270
360
U.3
22
2 2
?2
22
N0a
2«
*
2 •
22
2
NO
222
N N NN NNNNNNNN N« N.
22 2222222
l.V> IflO 22S
TIMt (MINUTES)
270 315
Figure A-21. Simulation of SAPRC EC-142.
139
-------
ppp
PAN ppp"""
PPP
p PPP
ppp p
PHPCPP pp p p
ns
370 3lb
TIMt (MINUTES)
MMH MMMMMMMMMMM MHM
MMH MMMMHH
Formaldehyde
lls IflO 22S
TIMt (MINUTES)
370 31b
360
Figure A-21. Simulation of SAPRC EC-142 (Concluded).
140
-------
l.sn
fi-
m:
•F t
• FE
E E
• FF.
F
Ethene F «-
• Ft
• « F F
tEE
E E
• 0000 0
onnn oooo oo o o • E
Ozone '
o o
e
• E E
.) Ill ISO 725 ZTO
Tl«b ("INUTtS)
NO
<• N02
| RO
TlHt (MINUTES)
2 Z 2» 2
2TO
360
Figure A-22. Simulation of SAPRC EC-143.
141
-------
l.u .
PAN P
PD
U p
I II 180 ??
-------
2.01«
• FEF
«EFF
FF.
• KE
t F
FF
• FE
Ethene
£F
tE •
• F»E •
F
• Ft t
Ozone
•00 0 0 O 0 0
000000 00 0 0 0 • E
(i o onn • • e
on • E
1HO
TI«t (MINUTtS)
270 315 360
",?
?? 22
NO
N0a
2 22 ?• • • 2 2 2 22
!!"• 180 22S
TIHt (MINUTES)
270 315 360
Figure A-23. Simulation of SAPRC EC-156.
1A3
-------
PAN
HO ?/es 270 315
TIȣ (MINUTFSI
360
Formaldehyde
FfFFFFF FF f F FF F F F
F FF F F
Ft F
• FFf
yr
IF
I
180 7Z5
TIMt IHlNUTtS)
?70 31S
360
Figure A-23. Simulation of SAPRC EC-156 (Concluded).
144
-------
°f * .
p Butene-1
11
B •
p
F CXFPP!>?PPP°P
rorp oxpr •• P X PPPP PPPPP
popp K » x° P PPP
0 /".FFC. /CF F " e Cf * r'f *l f F F" c x Propanal
I PC fFfX • 8 ff'Ff FFF X X
i -t-1- Formaldehyde i FF = «F «
I Pt • 1PB F X
! Pt • BB 19
IF « « 1 B
| p » • BB
IP * * * •
•;: ::5 117 ut 2*2 sn 367 *2C
TIT
. 2 ii 2 2
\
t
C
K '.'I 2: » < » x x • 222
r 2 X X 22 2
I N 22« » XX 22
N 2 X 22
T 2 r X X •>.
2 N X *
- M 4 X X 222 • •
V X 0
I n 4 OOX •
K ; i< n x X
V l> 4 3 * X
f : ^ Mrt ooo • x
P r. NO 00*
•n 4 own «
, \ o •
" * J * n
K » o» • Ozone
H 4- 0
N • *
«: M » 4-c
N«r • *
r • K N 4
n • N K » • »
C C«CC» N N » » •
C-IL.I ccirccrr >cc» NNNNI HNNNN »•* »NN» » » » »
52 I.'? l?7 21. i»2 315 J67 »J(
TI«E (H1KUTESI
Figure A-24. Simulation of SAPRC EC-122.
145
-------
. 1
f>
PP
PPN
PP
p
p »
F F
P A
» PP A AAA
P' P * _... AAAAA
;>p p • JrAJN j A
4 PP on * £ *
P4->P pofppi • 1» ', J; / AA A ' 4 A
157 2ir 362 315 ' 367
TIMf
Figure A-24. Simulation of SAPRC EC-122 (Concluded)
146
-------
1
I B
I
M '
r I
r i
T i
Butene-l
i i
II "B B
N I Alt
• n
i-- i » 9
v, j x opppxp pp pppp pppp "ropanal
I f A PX P»PP o PPPPP «•
.1* fnp P » B1 XX PP PP
\ to en B x PPP P
I t,t f fff f FFF FF H PPP p
I -'P K I I FT Ff*F FF FFFF X X PPPP P
1 P->-r B B FFFFFFFF X P PP P
I BXK * *BBB F FF Fhf PP PPPP
\ PF « BB FF FFF TF X X
' " Formaldehyde (+) *»» f" «• « * *
I •> ' ' *BB* FF FFFF
\v B >B *BB«B »B* b*B
j.j, 1 » t 1 » » » .
lo Hi 168 2if 281 337 393 *SO
TIME (MINUTES!
I
I
I" 2
I 222 2 :22
' 2 22
I 2 2
1 '» 2
?.3» 2 • » » » 2
12 » 2
: i 2 2
« I N 2 * 2
N | «• 2
C 1 <• 2
c 1 Ni * 2
M 1 ?• *
« 1.2. : 22
TIN t 22
1 1 ••>
? I • > 2
2
. NO
14 2
j.i« •' f
I 2 »
I *w 222*
1-4* 2 »
I »v • 22*
IN 2»22
1 N» • » 22 Z
I N NN!4N*>4 *N *>4N* ^*^^» *****•**«»**•
}.)4... .. --**-—-—•-»--•———»«-«•-»—^•-...•«.»«4»__»__«._»«_._._.».+._..__..__^
0 56 IU 169 225 281 337 J93 <,5D
TI««E miUTES)
Figure A-25. Simulation of SAPRC EC-123.
147
-------
• coooc
•3 333
•COO
•P 0
•3 T
10 33 333 3333
•no
•no
Ozone
If 9
22! 2B1
IHNUTESI
337
393
450
C.Od
J.06
A l.f»
r
t
0.02
1.)
P •
P »
» P
P
* P
PPN /
PAN
« AA A
AA
AA
, P P AAA
PP AAAA
P PP * » A*
»!•«•« PP ** <*t A AAA AAAA
lit 168 £25 281 337 393 *S3
TIME (MINUTES)
Figure A-is. Simulation of SAPRC EC-123 (Concluded).
148
-------
N
C
F
N
I
q
A 0.2
T
1
II
s
p
p
K
5.1
n
» p
HB
« P
p
* p
« F
• PP
Butene-1
PppPppp p ,
Propanal FPX PPK ee « p PPPPP *
PPXP * « X XBP- X X PPPP P »
F XP Bfl > FPPFF
PXF ftf TTfff ff ffFFF P XX PP PP
PP I- tFFFFF * *FFFF F FFFFF XX P PP
XF fFFF P^-^mo1 J~U J« ' BB FF ff ff (">(">P
P(FF formaldehyde * . B»n FFFFFFF F x x x
F PF * « 89 FFFFFFF FF X
o> * • p« B F FFFFFFF
PF *R*B»
IFF R*e* *e«e»B«p «p« * • »
157
23t 315
TIM?
393
551
630
c.e
C
,1
N
C
E
T
H
» 3.4
T
t
0
N
N
0.7
222
222 22222 2
2222 2 222
22 VTn 22
N 22 22
N* 22 X X X X X X 22
N « ? XX XXXXX 22
2 X X X X X 22
2 2 * X X X22
2 NX » X 2X
2 » X N 22 X
X N t 22X X
2 N « 22 X » C
* 2 X X 0000
NN 222 X 00 00
N « 2 XC »
N • 220000 X X
•I * 0 0 22 X
N * CCC 22 X X
NN « OOOn 22 • •
M 00 C 22 ••
NN • t 00 22
* * °°° f\ ~~« • • • 22
N N • * ooo Ozone * * 222
N « 0 1 • * 2
HUH 0»C» • • •
K roc > » • •
K NN • « » t
100 0 NNNNN * • tit
630
NO
15f
236 315 393
TIC6 (MINtTESI
*72
551
Figure A-26. Simulation of SAPRC EC-124.
149
-------
0.04.
I
I
I
C.J2
c
c
N
C
F
n
T
R
* 0.)?
0.01
• j.o
• t
*
A
*p •
p
t p
« r • A
P M
» P « A
P *»
PPN P " * AA*
F A
» P « A
. PAN ft4
P *A
• A
A
» A
A
A
AA
A
* PP
PP •
» P
PP • AAA
P PP • AAA
« fff * AA
, ooppoc. » *AAAAAAA> AtAAA
* AA
A A
A A
TS 157 23* 31i 393 472
TI»f (HtSUTESI
Figure A-26. Simulation of SAPRC EC-124 (Concluded).
150
-------
A AAAAAAA0
Acetaldehyde
AA A
AA AA
trans-Butene-2
,. •.•>
"ii r
1^ 1HO 22S>
TIMc (MINUTES)
270
315
360
'1.1
2?2 222?
?2? ??2
I • ?
2?
* » ??'
N0a
? 2 •
2? «
222
i?
£ 1 *
« X2 ? *
222 * »
X 22 0
X 22 0000
2 2 000 0
2 2 OOOO
0 00 0
-------
PAN
PK ff
» PPPPPMPp pppp pp pp p
- ptfOUpUp pppppp pp ppppp pp ppfpppp
270 SIS
360
Figure A-27. Simulation of SAPRC EC-146 (Concluded)
152
-------
Acetaldehyde "***»»
AAA
TIMt (MINUTES)
^^5
360
?? rt at
NO 2
2222*
22
2 22
NO
* * * *
* • *
N NNNNNNNN NNNNNNNNNNNNMNNNN NNNNN HNHN NN NNN
1«0 22S
T|Mt OINUTtSI
2TO
360
Figure A-28. Simulation of SAPRC EC-147.
153
-------
• !*•*
0.1?
r
o
N
c
F
N
r
R
• I). II"
T
I
0
N
n.iu
Ozone
00
0
ppp
P P PPPPPPPP pppppppppp
PPPPPPP PPHP
P PPPH PP
0 PPPP PP ppp
r PP
n P
PAN
P 0
o
IT- 1*0
TIMt (MINUTES)
270
315
360
Figure A-28. Simulation of SAPRC EC-147 (Concluded)
154
-------
AA AAA A
» AA AA AA
Acetaldehyde
A A A
AAAAA
_trans-Butene-2
T|Mt (W1NIITE.S)
31S JhO
?? if. ??t? 'if
N ?? ft??
' . * * . N02 " '.,
«
-------
.OH .
PP f f
PPPH PCP •
TJAVT
r AN • O.PDPPP
*!ip p PPPPP p P
1 1- 1MO ??S
TIMt (MINUTtSt
Figure A-29. Simulation of SAPRC EC-157 (Concluded)
156
-------
P
3.IB
C
0
N
C
E
-------
*
0.3
C
0
N
C
E
N
T
R
A 3.2
r
!
0
N
P
P
M
2 22
2 2
2 2
2 *
2
»2
2 «
N
2
N*NO
N
N
NO a
2
2 »
2
22
22
2*22
22 222 2
» 2222
22222
22222222 22 2 2
N NN*NNN«
135 180 225 270 315 3*0
TIM t MINUTE SI
3.12
0.09
C.
a
N
C
E
N
T
O.Ob
Acetaldehyde
AAA AA A A A A
AAAAAA A A A A
AA • *****
AAA *** **
AA A
A * • • » A A
f f PPPPPPPP PP P
P P P P P P
PAN
0.03
PP
• ppp
!A • PPPPPP PP
0 *5
-------
0.5
0.25
Formaldehyde
f f F e f F F ffff^^F^ FF F F f
FFF F
FF FF F
FfF
FF FFFFFFFFF
90 13$ 180 225 270 315 363
TINE (MINUTES!
Figure A-30. Simulation of SAPRC EC-144 (Concluded)
159
-------
O.o •
* 3.3
T
P
P *
P
PP
• PPP
PP
• PP P
PP.
PP
P P
Formaldehyde
* •
PPP
PPPPP
p PP
p PP
PPP P
ft f fffff ft ff f r- ft F f
f f f fff^ff^ f f
^ ^ f ff • p p
ff MFF • P P
fff f « »
J.3.-
l^^^ ^
Propene
» « • • •
135 ISC 225 270 315 360
TIME (HINUTESI
3.2*
o.ia
c
o
^
c
E
H
r
n
A 0.12
I
I
0
N
P
P
1
O.Ob
E6»E
EEE EE
* E EEE
* E E E E
* EE E X
Ethene * EEE x
» X EEEEE
* EE E EE
» E EEE A* A X A A A A
* AAAAA AA t
*AAAAA EEE
AAAAAA * * E
t t » E E
Acetaldehyde * * * \
A A • X
X A A * »
AA *
AA *
A » •
AA *
A » »
AA
PAN
PPP
it
o **
» p PP p p p p PPPPPPP P PP P PPPPP PP p
133 180 225
TIME (MINUTES)
270
360
Figure A-31. Simulation of SAPRC EC-145.
160
-------
0.8 *
N
u.o
C
0
N
C
E
N
r
R
» 0.*
r
i
3
N
0.2
KN
» NN
X X
XXX 2222 2 2i 2 22222 22 22 2 *
X 2 222X 2 2
X 222 .._ 2
22 NO 2 " * 2 2
N X 2 2 X
N 22
NN 22 X *
X 22
» 22 N X •
2 NN
22 N A
X2 N *
2 » N X
2 N •
*2 NO " *
2 » ntj N »
2
O.J»-
N N
NNN *
NNN
* M N
Ozone , * * ,
0 -300 3»3t • 0 * 00 COO 0 OOOOOOD»O
N X
NNN 0 0
NNN N OX
N NN N 0 3
0 00 C- N
Ci 00333 3 NNN
13? 180 • 22S
TIME I MINUTE SI
270
315
360
Figure A-31* Simulation of SAPRC EC-145 (Concluded)
161
-------
1.0 >
IE
C.7i
tct
• (I t
• EtEff
E Eft
fEEf
t tf
Ethene
00
Ff on
ft r
vtc < en
£ f r
x E E or
• E f c
e £
x « • .1
f«
r •
E e
Ef
PPPP
» PP P
no
on
Propene , .
0
• FF PF X O1
* p P P TOP
PPPPP P x o -
PXPPPF c
• PPPPP on
x cor PPP •
OrniiP " ' CCCT PFf> ""
U^CUlc x 000(10 # P PPPPP
cc CCOCCKCC xcc c cccoon t • • » t » pr»pp PPPP PP poppp
o.c»-
*5
9l
135
18. 225
("IKUTfSI
315
36.
>• > 2
22
^ 2
s »::
Z2Z2 22222222222
2 Z2C
HO,
I ,0»
12
22
22
2
22
225
27
315
Figure-A-32. Simulation of SAPRC EC-160.
162
-------
0.12
C
C
N
C
t
K
T
f
A C.C8
T
I
C
N
P
P
M
0.34
IF
F F •
f
FFF
FFF
t AA AF AAAAAA AA AA
• «A AFF Ft AAA
AAA F F A A *
• AAA F A A
Acetaldehyde *» F " "
J AAA FFF AA
» AAA FFF • AA
A A FF *
AA FFF
AA FF
» AFFF
AAF * PP
AF F Formaldehyde » P
A AF P
A F » PP
A FF P
AAF * P
AFF P «
AF PP
AF * PP
A F P
AF PP
*AF « P
AF P
F PP
A « PP
AF PP
PAN pp p"
p PP
PP
• PPP p
• PPPPP
PPP PP PPP P PPPPPP PPPP
135 180 225 270
TICE (PIMJTESI
3IS
360
Figure A-32. Simulation of SAPRC EC-160 (Concluded)
163
-------
•1.1
c
n
N
C
F
M
T
R
* (1.2
T
I
n
N
K.I
PP
P
P
• P
PPP
• pp
"P p.p Propane
N trans-Butene-2
HHH
• -ri HHHHH
»»• •
PPPM •
>">0 » •
PPPPM*
•"I IIS
270 3IH
TI"t (MINUTES)
if
. 2 ?
N0
NO
f
NN NNNN NNNN NN NNNNNMNNM NN*NNN* N • • • •
13S |HO
Tint (MINUTES)
270 31S
960
Figure A-33. Simulation of SAPRC EC-149.
164
-------
o.i
Acetaldehyde
0 I)
0
00
A AA AA QO
AA AAA *0
A At 00
AAAAA •
0 AAAA
0 AAAA •
0 AAA A •
no A AA •
0 « AAAA
A
00 •
on Ozone
0 OOO 0» 0
mo
f. (MINUTES1
270
31i 360
U.O"
C
O
N
C
F
N
T
R
A 0.0*.
T
I
O
N
0.01
F Formaldehyde
F
f P»P
PAN
180
T|M£ (MINUTES)
Figure A-33. Simulation of SAPRC EC-149 (Concluded).
165
-------
.,, T>
Propene
", ",. , Butene-1
11 i
• I 1 I 1 PC
• Mil
f trans- . ,.n
ff "n ^ „ 1 • 111 • 1
, r, ^^«?Butene-2 i
i»p P*PP»HPP» •
?'0 315 360
?<;s
rfc. Ethene
t
tF •
ft
Ft
FF «
KE
FF
FF.
ttEF.
• •
•••_••
'360
I IS |MO
l|Hr
Figure A-34. Simulation of SAPRC EC-150.
166
-------
00
0
n Ozone
N02
<< oo
2<
ci*1 x •
o ?
n ,>? •
II f X
no «2
NO
2 X
22 a
22X
22
X
mo
?2S 270
315
360
Acetaldehyde *****
PPP p
* * PP
** P
* * •
p *
p **•
p »•
pp
p
P" •
/PAN
PDPP
PPP*
P V
Off .
•"> I3S mo ?25 270 315 360
TIMt (MINUTES)
Figure A-34. Simulation of SAPRC EC-150 (Continued).
167
-------
Propanal
PPN
ppp«pp •
pp p*
ppp pp ppp f p
. P P PPP p
ppppp
P P P P
PP PP P
PPP pp p
Formaldehyde
ffFP FFfF FPF F Fl-
f F
I MO
Tint (MINUTES)
770
31S
360
Figure A-34. Simulation of SAPRC EC-150 (Concluded).
168
-------
n i P
HI »P
r i P
F i
N I
T i
» i
%p Propene
T II
1 III-
I II
If .1 P
I f II »ppp
I t' I 11 PP
I ? . Ill • P
•»: „ Butene-1 " pppp
* *? »mi • PP
i ? i n • PPP
i • »i i n • pp P
i « t f. • in i • PP»P
1 "f trans- » 11 i P*P
I ' ?/ _____ . llll'l P»PP •
I ?/• •R,,«-Qrtfa 9 * * 111111 PPPPP* •
i » ? i-a outene—^ . » 1111 11 PPPP p»
i « » __ ___..__ — « -_-_---.--*------•---«-----—-••-*-------•••»—•••----••'•*--•— ---—••••••••—••••4
n .1 "I IIS 1HO ??b Z70 315 360
T|Mt (MINUTES)
Figure A-35. Simulation of SAPRC EC-151.
169
-------
222?<> ?2 ? ?2?2?
NO
222
2 2
• 222
• .2 2«
222*
22 • »
22
22
22
22
N NO
N
MM
•UN
NNN . • .
NN NNNNNNN NNNN NNMNNNNNNNNN NNNN
mo ??•>
TI»t (MINUTES)
270
315
360
0
00
0
ppp
p p
pp
p pp
TJAUT
FAN
(111 pp
on » p
Ozone(*) ..nUir'".
IHO 725
IIMt (HlN(ITt<;)
?70
315
Figure A-35. Simulation of SAPRC EC-151 (Continued).
170
-------
AAA AAAAAAA AAAA AAAA
A AA AAAAA
AAA AAA A
AAAA • AAA
,1 * Propanal
pp
PPN
e PPPH
Dp p
0ppplAAAA A
A FH-'F » •
/ "./' Formaldehyde
1HO ?
-------
0.? .
1.1S.
» ".in
T
I
I
•I
Propene \
PP 11
V • 1 •
HPP« II
'S,Butene-2 •""%
->PPP 111*
135 180
TIME (MINUTES)
270 315 360
IF
ff
^ • Ethene
F.F •
t
F «
fF
E E
US 1»0 225
TIME (MINUTES)
270 315 360
Figure A-36. Simulation of SAPRC EC-152.
172
-------
.1.3
0.1
NO 2
?2222 • 2
22 Z 2 2 2
NO
22222 222
1BO 22S 270
(MINUTES)
315
0 00
••
000
00000 000
0 0
00
0«
Ozone
•0
(I
BPPPPPRPD «ppppp
PPPPPPP P .
1 UU OCI«PPPPP P» P
PAN
p p p p P p p
(H1NUT£*>)
?n
?TO 31S
Figure A-36. Simulation of SAPRC EC-152 (Continued)
173
-------
AAAAAAAA *A
A AA AA«fl
Propanal . A \
p p p p p •
V V P t A PfK
PP t * • f
Of A
OP PPN
» o • , r £ IN
tntpu
4S
«•> IIS 1BO ??5
31S 360
0.1?
0.01
* A*A •
A F A A
A AA
F AA
A F AA
A
A r
F
A F
. F
f Formaldehyde
Acetaldehyde
A A «
A
IT, 180 ?
-------
trans-Butene-2
Propene
.ppp.pp.p p.p p.
4S 41) US 180 225
TIME (MINUTES)
2TO
315
3*0
fre.
o r
%* Ethene
r •
f. •
kt
f •
Ef
E E E
•>•• ns i HO
TI«t (MINUTES)
2TO 315 360
Figure A-37. Simulation of SAPRC EC-153.
175
-------
O.f.
* *
* • »
0 00 00»00 00 0 0 0000000 0
• 000 0 •
000 •
o o Ozone •
• n
0
0
•
0 If
Fo rmsldehyde
11
1 1
11 « 0 FF FF
•11 n FFFF
• 1110 FFF
11 FFF
» 0 HFFFF
l> FFFF11
F FFF .,1 Butene-1
1 FFFO »1)
[ ^^ FFFnnn •I11»1H'11«
FFF FFF FFFF F F
FF FFF F FFFFFFF F
•»••> 1 IS 1AO ?25 270 315 360
TIMt (MINUTES)
« 0.
7
I
N02
NO
22Z22Z 2
n»00»flOO»
»1 WO
1BO ?25 270 315
(MINUTES)
Figure A-37. Simulation of SAPRC EC-153 (Continued).
176
-------
n.2 •
* AA
A »
A » A
AA .p P p pp p p P •
AAA PPP PP P P »P
PP »A . P P
PP AA A P PP
PP A A PPPPP
P « A A • •
P AA A •
PP A
P A A
" Acetaldehyde * *A A
PAN
AAAAAA
A A
A P
P
4% «o lib ISO ?25 270 315 360
TIME (MINUTES)
AAAAAAAA
AA* AAA
A . * A
44 Propanal *A .
* p P P
P P P P A P P PPP
__. P P H A PPPP P
PPN «• • » •
P P A
PP » »
» • AA
" AAA*
"^ • A A
o.n*
1RO Z2S ZTO 315
Ti-t IHINUTCSI
360
Figure A-37. Simulation of SAPRC EC-153 (Concluded).
177
-------
1
pPropene "i
p •
p
P 2 P
. 'i Butene-1
i
2 PP
• PP . |
-„„„ • P» 11
crans~ ,PP »
• 11*11*1 !•
90
135 180 Z2S
TIME (MINUTES)
270 319 360
FEF
< FF
XEF
Ozone oooo
oo o
0 00
00 0 &• 0« 0 000
FF on
KX 0
ft 0
FF 00
FFX
• n ft *
n ff «
0 FE
Ethene
0 Ft «
• 0 f E « •
0 FF *
n f.t x
n . E F X X •
E X
0 F E A X
n° Formaldehyde E E E E x * x x
fl E
no
• 0 FF FFFFF F FF
d F FFFFFFF
n Ff ^Ff^
nnff
^^ FFFFFF
E E
•<0 lib 180 225 210 315 360
TIMt (MINUTES)
Figure A-38. Simulation of SAPRC EC-161.
178
-------
r.
o
N
c
F
N
T
a
» n.?
T
!
n
N
?
2 ?
NO
322?
22
2 2 Z 2 22
2 22 22 222
135 1AO 22%
TIME (MINUTES)
2TO 315 360
0.1?.
n.n->
it
t*
»* . p p p P .
*»« P PP PP p p p p p
A« » p p
•PPP A A P P
PP » A • P
M A *
PP A A •
P A *
Acetaldehyde • * A
•> PAN
"0 1V> 1BO
Tint (MINUTtSl
270 315 360
Figure A-38. Simulation of SAPRC EC-161 (Continued).
179
-------
AAAAAA
«A A AA AAA
> AA •
Propanal * «A
AA
A
* A • •
A A« •
• A P P P P«
• PPPPA P P P
P P A P P
PP P « A
P A
• PP A
PP • A «
P » A
Up° PPN
"0 IIS !«(, ??cj 270 315
TIMt (MINUTES)
Figure A-38. Simulation of SAPRC EC-161 (Concluded).
180
-------
APPENDIX B
Simulationsof SAPRC Alkane and Alkane-Propene Mixture Data
181
-------
TABLE B-l. INITIAL CONDITIONS TOR ALKANE CHAMBER RUNS
B.C.
Number
39
41
42
43
44
45
46
47
48
49
162
163
168
178
INITIAL CONCENT RATION (ppm)
Butane
2.200
4.030
0.385
0.380
3.920
1.940
3.990
3.900
1.940
4.120
2.050
1 .978
1 .961
1.961
NO
0.547
0.524
0.542
0.126
1.140
0.552
0.527
0.534
0.535
0.553
0.383
0.377
0.327
0.087
*
Initial aldehyde added.
165
169
171
2,3-
Dimethyl-
butane
1.885
0.740
0.586
0.088
0.127
0.086
N02
0.060
0.063
0.059
0.013
0.132
0.062
0.061
0.062
0.054
0.059
0.122
0.113
0.166
0.011
0.011
0.064
0.013
HNOZ
0
0.01
0.005
0
0
0
0
0"
0
0
0.03
0.03
0.01
0.015
0
0
0
HCHO
0.001
0
0.007
0.001
0.02
0.129*
0.013
0.0
0.0
0.0
0.02
0.0
0.101*
0.0
0
0
0
CH3CHO
0.001
0.002
0.002
0.005
0.001
0.002
0.002
0.002
0 .245*
0.005
0.014
0.526*
0.029
0.001
0
0
0.002
TABLE B-2. INITIAL CONDITIONS FOR n-BUTANE-PROPENE MIXTURE RUNS
K .0 .
Number
97
5)9
1()<5
113
114
115
116
INITIAL CONCENTRATION (ppm)
Butane
2.040
2 .000
2 .000
2 .040
3.660
2.940
4.000
Propene
0 .500
0.400
0.402
0.410
0.766
0.310
0.824
NO
0.397
0 .407
0 .401
0.091
0.794
0.402
0.391
N02
0.088
0 .090
0.102
0.020
0.204
0.104
0.104
HN02
0.01
0.01
0.01
0 .02
0.01
0.01
0.01
HCHO
0.004
0
0.012
0
0.008
0.012
0.005
CH3CHO
0.001
0.001
0.001
0
0
0
0
182
-------
TABLE B-3. n-BUTANE MECHANISM
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
CH,CH,CH,CH, + OH 2'
CH,CH,CH,CH. + OH 2"
CH,CH,CH,CH, 4- 0('P) -»*
CH,CH,CH,CH,6, 4- NO *
CH,CH,CH(6,)CH, + NO -t-
CH,CH,CB,C(0)6, 4- NO 2*
CH,CH,C(0)6, 4- NO 2*
CH,C(0)6, 4- NO 2*
CH,CH,(6,)C(0)CH, 4- NO 2*
HOCH,CH.CH.CH,6, 4- NO *
CH,CH,CH,6i + NO *
CH.CH.6, + NO *
CH.O, 4- NO *
CH,CH,CH(6)CH, 2*
CH,CH,CH,CH,6 2*
CH.CH,CH(6)CH, 4- 0, -v
CH,CH,CH,CH,6 + 0, -»
CH.CHaCH.6 4- 0, *
CH.CH.6 + 0, .»
CH.6 4- 0, *
CH.O + hv 22*
CH,0 4- hv *
CH.CHO 4- hv 22*
CH.CH.CHO + hv 22'
CH.CH.CH.CHO 4- hv 22*
CH.CH.CH.CHO 4- hv *
CH,CH,C(0)CH, 4- hv 22"
CH.O 4- OH 2*
CH.CHO 4- OH 2'
CH.CH.CHO 4- OH 2'
CH.CH,CH,CHO 4- OH 2*
CH,CH,C(0)CH, 4- OH 2*
CH,CH.CH,C(0)6, 4- HO, *
CH,CH,C(0)6, 4- HO, *
CH,C(0)6, 4- HO, •*
UOCH,CH,CH,CH,6, 4- HO, +
CH,CH(6,)C(0)CH, 4- HO, -*•
CH,CH,CH(6,)CH, 4- HO, •+
CH.CH.CH.CH.6, 4- HO, -v
CH.CH.CHj6. 4- HO, -»
CH.CH.6, 4- HO, •»
CH.O, 4- HO, *
CH,CH,CH,C(0)6, 4- NO, •»
CH,CH,C(0)6. 4- NO, -v
CH,CH,CH,CH,6, 4- H20
CH,CH,CH(6,)CH. 4- HaO
CH.CHaCHaCHaOa 4- OH
CH,CH,CH,CH,d 4- NO.
CH.CH,CH(6)CH, 4- NO,
CH,CH,6, 4- NO, 4- CO,
CH.CH.6, 4- NO, 4- CO,
CH.Oj 4- NO, 4- CO,
NO, 4- HO, 4- CH,C(0)C(0)CH,
HOCH.CHaCHaCHaO 4- NO,
CH,CH,CH,6 4- NO,
CH.CHaO 4- NO,
CH.6 4- NO
CU,CH,6, + CH.CHO
CH,(6,)CH,CH,CH,OH
CH,CH,CH(0)CH, 4- HO,
CH,CH,CH,CHO 4- HO,
CH.CH.CHO 4- HO,
CH.CHO 4- HO,
CH,0 4- HO,
HO, 4- HO, + CO
H, 4- CO
CH.6, 4- HO. 4- CO
CH.CH.O, 4- HO, 4- CO
CH.CH.CH.6, 4- HO, 4- CO
CH.CHO 4- C,H4
CH,C(0)6, 4- CH.CH.6.
CO + HO, 4- HaO
CH,C(0)6, 4- H.O
CH.CH.C(0)6i 4- H.O
CH.CH,CH,C(0)6a 4- H.O
CH,CH(6,)C(0)CH, -t- H,0
CH,CH,CH,C(0)OOH 4- 0,
CH,CH,C(0)OOH 4- 0,
CH,C(0)OOB 4- 0,
HOCHaCHaCH.CHaOOH 4- 0,
CH,CH(OOH)C(0)CH. 4- 0,
CH,CH,CH(CH,)OOH 4- 0,
CH,CH,CH,CH,OOH 4- 0,
CH.CH.CHaOOH 4- 0,
CH.CH.OOH 4- 0,
CH.OOH 4- 0,
CH,CH,CH.C(0)0,NO.
CH,CH,C(0)0,NO,
183
Rate Constants*
6.3 x 10*
3.8 x 10'
6.4 x 10*
1.0 x 10*
1.0 x 10*
2.0 x 10*
2.0 x 10'
2.0 x 10'
2.0 * 10'
1.0 x 10*
1.0 x 10*
1.0 x 10*
1.0 x 10*
*2.9 x 10s
*3.7 * 10'
*8.8 * 10*
*1.3 x 10"
*1.3 x 10s
*1.3 x 10'
*1.9 * 10"
2.0 x 10*
2.0 x 10*
2.0 x 10*
2.0 x 10*
5.2 x 10'
4.0 x 10*
4.0 x 10*
4.0 x 10*
2.0 x 10*
2.0 x 10*
2.0 x 101
2.0 x 10*
2.0 x 10'
2.0 x 10*
2.0 x 10*
1.5 x 10*
1.5 x 10*
-------
Bufane Mechanism (concluded)
45
46
47
4H
49
50
51
52
53
54
55
56
57
58
59
60
61
62
61
M
h'>
6h
67
68
69
70
71
72
73
74
75
76
77
7H
/«)
80
81
82
8')
84
85
86
87
88
CH9C(0)6,
CH,C1I,CH,C(0)0,NO,
CH,CH,C(0)OaNO,
CII,C(0)OaNO,
CHsO + NO,
CH,6 + NO,
CHsCH,6 + NO,
CHaCHjO + NO,
CHSCH,CH,6 + NO,
CH,CH,CHj6 + NO,
CH9CH,CH,CH36 + NO,
CHsCH,CH,CHj6 + NO,
CH9CH,CH(6)CH9 + NO,
CH3CH,CH(6)CH, + NO,
HOa + NO,
HO,NO,
CH96a + N0a
CH90,NO,
CH,CH,OI + NO,
ciuni,oaNn,
<:il,<:ii,i:il,('), + tin,
CII,<:il,CllaOaNO,
CH,CH,CH,CII,6, + NO,
CH,Cll,C!l,CHaOaNO,
CH9CH,CH(0,)CH9 + NO,
CH,CH,CH(OaNOa)CH,
CH,CH,CH(6,)CH, + CH,CHaCH(6,)CH9
CH ,CHaCHaCH,6a + CH,CH,CHaCHaO,
CH,CH,CHa6a + CH,CH,CH,6a
CH,CH,6, + CHiCHaO,
CH,6, + Cil,0,
CH,C(0)6, + CI1,C(0)6,
CHa(O)CH,CH,CH,OH
CII,(tm)CIIaCII,CH(OH)0, + NO
(:ll,(OH)CH9CllaCII(Oll)6, + 110,
<:ii,(oii)c:Ha(;ii,CH((m)6
{:ii(()il)(<)a)CHa(:ii,(:ii,(oii), + NO
CIKOII) (('),, )CII,CH,(:ll, (OH) 3 + IIOa
(:ii(OH)(o)ui,(:HaCH(uii),
CH(OH),CHaCHaC(OI!)a6, + NO
CH(OH)aCHaCHaC(OH)a6, + HO,
CH(OH) aCH,CH,C(OH) ,6
C(OH),(6a)CH,CHaC(OH), + NO
C(OH)a(6a)CHaCH,C(OH), + HO,
•>• CH,C(0)0,NOj
<• CH,CH,CH,C(0)0, + NO,
<• CH,CH,C(0)0, + NO,
•v CH,C(0)6, + NO,
>• CH,ONO,
>• CH,0 + HNO,
>• CH,CH,ONO,
-* CH,CHO + HNO,
-* CH,CH,CH,ONO,
•> CH,CH,CHO + HNO,
•* CH,CH,CH,CH,ONO,
>• CH,CH,CH,CHO + HNO,
•* CHjCH,CH(ONO,)CHs
•* CHjCHaC(0)CHs + HNO,
•* HO,NO,
-t- HO, + NO,
-)• CH,0,NO,
> CHjO, + NO,
>• CH,CH,O,NO,
•• ClUCHaO, + NO,
> CH,CH,CHaOaNO,
>- CII,CHaCHa6a + NO,
> CH,CH,CHaCH,0,NO,
•• CH,CH,CH,CHa6, + NO,
> CH,CH,CH(0,NO,)CH,
•> CH,CHaCH(6,)CH, + NO,
> CH,CH,CH(6)CH3 + CH,CH,CH(6)CH, + 0,
<• CH,CH,CH,CH,6 + CH9CH,CHaCH,6 + Oa
•>• CH,CH2CHa6 + CH,CH,CHa6 + O,
• CH,CHa6 + CH,CHa6 + Oa
-•• CH,6 + CH,6 + 0,
• CH,0, 1- CHiOi + 2CO, + 0,
"' CH,(OII)CH,CH,CH(OH)0,
' ai,(oH)cii,ai,CH(oH)o + NO,
> Hrnhtc produrt
"'' (:il(OII)(()a)CllaCHaCII(OH),
> CM (OH) (0)CH,ai,CI«OH),
> Ntnbh< product
"J CH(OH),CH,CII.C(OH),6a
> CII(OH),CllaCHaC(OH)6
>- stable product
S3 C(OH,)(6a)CH,CHaC(OH)3
-> C(OH,)(6)CH,CH,C(OH),
-» stable product!)
1.5 x 10'
*4.1 A 10-3
*4.1 x 10-3
*4.1 x 10-'
1.5 x 10*
4.4 x 10s
1.5 x 10*
2.9 x 10'
1.5 x 10*
2.9 x 10'
1.5 x 10*
1.5 x 10'
1.5 x 10*
1.5 x 10*
3.0 A 10'
*2.0 x 10-'
6.0 x 10'
*1.0
6.0 x 10'
*1.0
6.0 x 103
*1.0
6.0 A 10'
*1.0
6.0 A 10'
*1.0
2.0 x 10s
2.0 x 10"
2.0 x 10*
2.0 x 10'
2.0 x 103
2.4 A 10'
*1.9 x 10"
2.0 x 10"
4.0 x 10'
*1.9 x 10'
2.0 x 10*
4.0 x 10"
*2.2 x JO*
2.0 x 10*
4.0 x 10'
*2.2 x 10'
2.0 x 10*
4.0 x 10'
Units ppn""1 mln"~l, except * units min~' .
184
-------
TABLE B-4. 2,3-DIMETHYLBUTANE MECHANISM
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
CH,CH(CH,)CH(CHa)CHa + OH °-?
CHaCH(CHa)CH(CH,)CHs + OH ^?
CH,CH(CH»)CH(CH,)CH. + 0(*P) +'
CH,CH(CHS)CH(CH,)CH,6, + NO -*
CH,CH(CH.)C(CH,)(6,)CHa -I- NO •*•
CHaCH(6,)CH. + NO f
CHaCH,6, + NO ->
CH,C(0)6a + NO °-f
CH,CH(CH,)CH(CH,)6, + NO -v
CHaCH(CHa)CH(CHa)CH,6a +0, -+
CH,CH(CH,)C(CHs)(0)CHa +a
CHaCB(6)CH, + Oa ^
CH,CH(CH,)CH(CHj)CHO + hv +
CHaCH(CHa)CH(CHa)CHO + hv +a
CH,CH,CHO + hv *'
CHaC(0)CHs + hv 2+"
CH3CH(CH,)CH(CHa)CH,6, + HO, ->
CHaCH(CH,)C(CH,)(6,)CH3 + HO, ->.
CHaCH(6a)CHa + HO, >
CHaCH,6a + HO, ^
CHaC(0)Oa + HO, ->
CH,CH(CH,)CH(CH,)6, + HO, +
CH,CH(CH,)C(CHa)(6)CH, + NO, -*
CH,CH(CH,)CH(CH,)CH,6 + NO, -v
CH,CH(CH,)CH(CH,)CHa6 + NO, ^
CH,CH(6)CHa + N0a H.
CH,CH(6)CH, + NO, H.
CHaC(0)6a + NO, -^
CH9C(0)0,NO, -^
HO, + NO, +
HO,NO, ^
CH,CH(6,)CH, + NO, +
C11,CH(0,NO,)CH, 4.
CH,CH(CHa)C(CH,)(6.)CH, + NO, *
C1I,CI1(CH,)C(CH,)(0,NO,)CH, ^
CH,CH(CH,)CH(CH,)CH,6, + H,0
CH,CH(CH,)C(CHa)(6a)CHa + H,0
CH,CH(CHj)C(CH,)(6a)CHs + OH
CHaCH(CH,)CH(CH,)CH,6 + NO,
CHaCH(CHj)C(CHs)(6)CH, + NO,
CH,CH(6)CH, + NO,
CHaCH,6 + NO,
CH.6, + NO, + C0a
CHsCH(CHa)CH(CHa)6 + NO,
CH,CH(CH3)CH(CH,)CHO + HO,
CH,C(0)CH, + CH,CH(6,)CH,
CH,C(0)CHa + HO,
CH,CHjCHO + CHaCHCHs
CHaCH(CHa)CH(CHa)6,HOa + CO
CH9CH,6, +• HO, + CO
CH,6, + CH,C(0)6,
CHaCH(CHa)CH(CHa)CR,OOH + 0,
CH,CH(CH,)C(CH,)(OOH)CHa + 0,
CH,CH(OOH)CH, + 0,
CHaCH,OOH + 0,
CH,C(0)OOH + 0,
CHaCH(CHa)CH(CH,)OOH -1- 0,
CHaCH(CHa)C(CHa) (ONOa)CHj
CH,CH(CH,)CH(CH,)CH,ONO,
CH,CH(CH,)CH(CH,)CHO + HNOa
CHiCH(ONO,)CH,
CHjCOCHj + HNO,
CH.C(0)0,NO,
CH,C(0}6, + NO,
HO,NO,
HO, + NO,
CH,CH(OaNO,)CHa
CH,CH(6j)CH, -f NO,
CH,CH(CHa)C(CH>)(01NO,)CHa
CH,CH(CH,)C(CH,)(6,)CH, -f NO,
Rate Constant
1.2 x 103
8.5 x 10s
3.4 x 10"
1.0 x 10*
1.0 x 10*
1.0 x 10*
1.0 x 10*
2.0 x 10'
1.0 x 10*
1.8 x 10*
3.8 x 10'
6.7 x 10*
2.0 x 10'
2.0 x 105
2.0 x 10'
2.0 x 10s
4.0 x 10s
2.0 x 10s
2.0 x 10*
2.0 x 10*
2.0 x 10*
2.0 x 10*
2.0 x 10*
1.5 x 10s
A
4.0 x 10-"
3.0 x 10'
*2.0 x 10-1
6.0 x 101
*1.0
6.0 * 10*
*
1.0
continued . . .
185
-------
2,3-Dimethylbutane Mechanism (concluded)
36 CH,CH(CH,)CH(CH,)CHa6a + NO,
37 CH3CH(CH,)CH(CH,)CH2OaNOa
38 CH,C(0)Oa + CH,C(0)6,
39 CH,CH(62)CH3 + CH,CH(6a)CH3
40 2CH,CH(CHs)CH(CH,)CHa6a
41 2CH,CH(CH,)C(CH,)(6,)CH,
42 CH,CH(CH,)CH(CHs)CHa6
43 CHa(Oa)CH(CH,)CH(CH,)CHaOH + NO
44 CH,(6)CH(CH,)CH(CH,)CHaOH
45 CHa(OH)CH(CH,)CH(CH,)CH(6a)OH + NO
46 CHa(OH)CH(CH,)CH(CH,)CH(6)OH
47 CH(OH)(62)CH(CH,)CH(CH,)CH(OH)a + NO
48 CH(OH)(6)CH(CH3)CH(CH,)CH(OH)a
49 CH(OH)aCH(CH,)CH(CH3)C(OH)a(6a) + NO
50 CH(OH)aCH(CH3)CH(CH,)C(OH)a(6)
51 C(OHa)(6a)CH(CH3)CH(CH3)C(OH), + NO
52 C(OH,)(6)CH(CH,)CH(CH,)C(OH),
53 C(OH),CH(CH3)CH(CH,6a)C(OH), + NO
54 C(OH),CH(CH,)CH(CHa6)C(OH),
55 C(OH),CH(CHa6a)CH(CHaOH)C(OH), + NO
56 C(OH),CH(CH,6)CH(CH,OH)C(OH),
57 C(OH)3CH(CHaOH)CH(CH(OH)6a)C(OH), + NO
58 C(OH),CH(CH»OH)CH(CH(OH)6)C(OH),
59 C(OH),CH(CH(OH)6a)CH(CH(OH)a)C(OH), + NO
60 C(OH)3CII(CH(OH)6)CH(OH),)C(OH),
(.1 C(OII),CH(CH(0!l)a)CH(C(OH)a6a)C(OH), -I- NO
62 C(OH),CH(CH(OH)a)CH(C(OH)a6)C(OH),
63 C(OH),Cll(C(OH)a6a)CH(C(OH),)C(OH), + NO
"Units ppnT1 rain"1, except * min-* .
Oa
CH3CH(CH,)CH(CH3)CH2OaNOa 6.0 X 10s
CH3CH(CH3)CH(CH,)CHa6a + N0a *1.0
CH,02 + CH,6a + 2CO, + Oa 2.4 x 10s
CH,CH(6)CH, + CH,CH(6)CH, + 0, 2.0 x 10*
2CH,CH(CH,)CH(CH,)CHa6 + Oa 2.0 x 10a
2CH,CH(CH,)C(CH,)(6)CH, + Oa 2.0 x 10*
CHa(6a)CH(CH3)CH(CH,)CHaOH *1.7 X 10"
CHj(6)CH(CH,)CH(CH,)CHaOH 1.0 X 10*
CHa(OH)CH(CH,)CH(CH,)CH(6a)OH *1.7 x 10°
CHa(OH)CH(CHs)CH(CH,)CH(6)OH 1.0 X 10*
CH(OH)(6,)CH(CH,)CH(CH,)CH(OH)a *2.1 X 10*
CH(OH)(6)CH(CH,)CH(CH,)CH(OH)a 1.0 X 10*
CH(OH)jCH(CH,)CH(CH,)C(OH)a(6a) *2.1 X 10*
CH(OH)aCH(CH,)CH(CH,)C(OH)a(6) 1.0 X 10*
C(OHa)(6,)CH(CH,)CH(CH,)C(OH), *2.1 X 10*
C(OHa)(6)CH(CH,)CH(CH,)C(OH), 1.0 K 10*
C(OH),CH(CH,)CH(CHa6a)C(OH,) *3.7 X 107
C(OH)3CH(CH3)CH(CHa6)C(OH)3 1.0 X 10*
C(OH)3CH(CHj6a)CH(CHaOH)C(OH)3 *3.7 X 107
C(OH),CH(CHa6)CH(CHaOH)C(OH), 1.0 x 10*
C(OH),CH(CHaOH)CH(CH(OH)6a)C(OH), *1.7 v 10'
C(OH),CH(CHaOH)CH(CH(OH)6)C(OH), 1.0 x 10*
C(OH),CH(CH(OH)6,)CH(CH(OH)a)C(OH)3 *1.7 x 10"
C(OH),CH(CH(OH)6)CH(OH)a)C(OH)s 1.0 x 10*
C(OH),CH(CH(OH)a)CH(C(OH)a6,)C(OH), *2.1 x 10*
C(OH)3CH(CH(OH),)CH(C(OH)a6)C(OH), 1.0 X 10*
C(OH),CH(C(OH)a6a)CH(C(OH),)C(OH), *2.1 X 10*
C(OH),CH(C(OH)a6)CH(C(OH,))C(OH), 1.0 X 10*
186
-------
TABLE B-5. PHOTOLYSIS RATE CONSTANTS TOR ALKAHE CHAMBER RUMS (min"1)
fe.c.
Number
39
41
42
43
44
45
46
47
48
49
162
163
168
178
165
169
171
97
99
106
113
114
115
116
NO,
0.24
0.24
0.24
0.23
0.23
0.23
0.23
0.22
0.22
0.22
0.35
0.34
0.33
0.33
0.33
0.33
0.33
0.35
0.35
0.35
0.35
0.35
0.35
0.35
HR02
6.6xlO~2
6 .6 x 10-2
6.6xlO"2
6.3xlO-2
6. 3 xlO~2
6 .3 x 10~2
6 .3 x 10-2
6.1xlO'2
6.1x10"*
6.1 xlO-2
9 .4 x 10 -*
9-lxlO"2
9 .8 x 10"»
9 .8 x 10"2
9 .0 x 10"2
9 .8 x 10-2
9 .8 x 10-2
l.lxlO"1
1 .1 x ID"1
l.lxlO-1
1 .0 x 10-1
1 .0 x 10"1
1 .0 x 10-1
1 .0 x 10-*
H,02
4.9x10-*
4 .9 x 10'*
4.9x10-*
4.7x10-*
4.7x10-*
4.7x10-*
4.7x10-*
4.5xlO~*
4.5x10-*
4.5x10-*
5.7x10-*
5 .5 x 10~*
7 .7 x 10"*
7 .7 x 10-*
5 .4 x 10-*
7.7x10-*
7 .7 x 10-*
8 .6 x ID"4
8 .6 x 10-*
8 .6 x 10-*
8 .0 x 10-*
8 .0 x 10-*
8 .0 x 10~*
8 .0 x 10-*
0,(»D)
1 .0 x 10-3
1 .0 x 10~3
1 .0 x 10-3
9 .6 x 10-*
9.6x10-*
9 .6 x 10-*
9 .6 x 10-*
9 .2 x 10"*
9 .2 x 10-*
9 .2 x 10-*
1 .2 x 10"3
1 .2 x 10"3
1 .7 x 10-3
1 .7 x ID"3
1 .2 x 10~3
1 .7 x ID"3
1 .7 x ID"3
5 .0 x 10-3
5 .0 x 10-3
5 .0 x 10-3
4 .8 x 10-3
4. 8 xlO-3
4. 8 xlO-3
4 .8 x 10-3
0,(3P>
3 .0 x 10~*
3 .0 x 10"*
3 .0 x 10-*
2 .9 x 10~*
2 .9 x 10-*
2.9x10-*
2 .9 x 10-*
2 .8 x 10-*
2 .8 x 10-*
2.8x10-*
8 .9 x 10 ~*
8 .6 x 10"*
1 .9 x 10-3-
1 .9 x 10-3
3 .5 x 10-*
1 .9 x 10 ~3
1 .9 x 10-3
1 .9 x 10-3
1 .9 x 10-3
1 .9 x 10-3
1 .7 x 10-3
1 .7 x 10-3
1 .7 x 10-3
1 .7 x 10-3
H2CO
- (radJ
U-Bu
6.3x10-*
6.3x10-*
6.3x10-*
6 .0 x 10-*
6.0x10-*
6.0x10-*
6 .0 x 10"*
5 .8 x 10-*
5 .8 x 10-*
5 .8 x 10"*
4.5x10"*
6 .3 x 10"*
2.1x10"*
2.1x10"*
C«£!l
;*ne
i .2 x 10-*
1 .2 x 10-*
1 .2 x 10-3
1.2x10-*
1.2xlO-3
1.2xlO'3
1.2xlO"3
1 .1 x 10 "3
l.lxlO-3
1 .1 x 10"3
1 .5 x 10-3
1 .5 x 10-3
1 .3 x 10-3
i 1 .3 x 10~3
2 ,3-Pimetfrylbutane
6 .1 x 10"*
2.1x10-*
2 .1 x 10-*
1 .5 x 10-3
1 .3 x 10-3
1 .3 x 10-3
jL-Butane-/Propene
1 .4 x 10-3
1 .4 xrlO-3
1 .4 x 10"3
1 .1 x 10"3
l.lxlO"3
l.lxlO-3
l.lxlO"3
2 .3 x 10-3
2.3xlO-3
2.3xlO-3
2 .1 x 10~3
2.1 xlO"3
2 .1 x 10-3
2.1 xlO-3
CH*CBO
3.0 xlO-*
3 .0 x 10~*
3.0x10-*
2 .9 x 10-*
2.9x10-*
2 .9 x 10~*
2 .9 x 10~*
2 .8 x 10-*
2 .8 x 10~*
2 .8 x 10~*
3 .3 x 10-*
3.2xlO~*
6.5x10-*
6.5x10-*
3.1x10-*
6.5xlO~*
6 .5 x 10-*
7 .5 x 10-*
7.5x10-*
7.5x10-*
6.5x10-*
6.5x10-*
6.5x10-*
6 .5 x 10-*
c*scso
6 .0 x 10"*
6.0x10-*
6.0x10-*
5.8 xlO-*
5 .8 x 10~*
5.8x10-*
5 .8 x 10"*
5 .5 x 10-*
5.5x10-*
5.5x10-*
6 .8 x 10-*
6.6x10"*
1 .4 x 10"3
1 .4 x 10"3
6.4x10-*
1 .6 x 10"*
1 .6 x 10"*
1 .6 x 10"3
1 .6 x 10-3
1 .6 x 10"3
1.4xlO"3
1.4xlO-3
1.4xlO-3
1 .4 x 10-3
(rad)
4.6 xlO-*
4.6x10-*
4.6x10-*
4.4x10-*
4.4x10-*
4 .4 x 10-*
4 .4 x 10~*
4 .2 x 10"*
4.2xlO~*
4.2 xlO-*
5.1x10"*
5 .0 x 10~*
1 .0 x 10"3
1 .0 x 10"3
4.3x10"*
1 .4 x 10~3
1.4xlO~3
1.2xlO~3
1.2xlO-3
1 .2 x 10-3
1 .1 x 10-3
l.lxlO-3
1 .1 x 10-3
1.1 xlO~3
CgB7CHO
(mo lee.)
2 .3 x 10-*
2 .3 x 10-*
2 .3 x 10-*
2.2 xlO-*
2.2x10-*
2.2x10-*
2 .2 x 10-*
2.1x10-*
2 .1 x 10"*
2.1x10-*
2 .6 x 10-*
2.5x10-*
6 .0 x 10~*
6 .0 x 10~*
2.5x10-*
6.4x10-*
6 .4 x 10-*
6 .0 x 10~*
6 .0 x 10-*
6 .0 x 10"*
5 .0 x 10~*
5 .0 x 10~*
5 .0 x 10-*
5 .0 x 10-*
CSH,C(O)CH:
1 .0 x 10-*
1 .0 x 10-*
1.0x10-*
1 .8 x 10-*
1 .8 x 10~*
1 .8 x 10-*
1 .8 x 10"*
1 .7 x 10-*
1.7x10-*
1.7x10-*
2.1x10-*
2 .0 x 10"*
4.7x10-*
4.7x10-*
2.0x10-*
4.7x10-*
4.7x10-*
6.1x10-*
6.1x10-*
6 .1 x 10~*
S.SxlO-3
5 .5 x 10~3
5. 5 xlO-3
5 .5 x 10-3
00
-------
N
E
N
T
K
t 2.3
T
I
C
N
P
P
i.e
* »
PAR •
BPB •
8 RB
B R •
*r p *
• R B •
M8R *
* PB ee • *
B R
B B «
RPB
•n 4. BBB 6 ,* * •
n-Butane RB
B B
BBBBB*
0 P B
* B»B B«
R
l.n
13! 180 229
TIPE (MINUTES)
27;
315
36C
O.t
C
r>
N
c
N
T
!••
A .4
T
t
I'l
N •
Kit
NMN
NN N
NN N N •
N • N •
NNN* N * N»
N N*
139 !«•• 225 ZTI 319 360
TI»f (MINUTES)
Figure B-l. Simulation of SAPRC EC-39.
188
-------
3.4
J.i
;.2
0.1
0.0
2 22
22 2 222222 2 2 2 2 22
22222
2 22
2 2
22
22 . * N0a
2
2 •
2
2 •
2
22
2 •
22
2
22
2 •
*5
139 180
Tiff
229 27; 319 36C
.10
.'7
.12
Ozone
3
3 *
3
3
33 *
3 *
«
33
333
3 :
333 3
3 333
323 33
333333 333J?33 33} *
3 3
3 3
* « I
1'. 13« UC 229 27C 319
Tint (MINUTES)
369
Figure B-l. Simulation of SAPRC EC-39 (Continued).
189
-------
.906
C.
C
c
I
H
T
P
A .004
T
I
C
PP
PAN
« PP*
po
P PP • »
ppp ppp ppp
1?5 1HO 2Z5 2M 315 360
T1PE (flKUTESI
Figure B-l. Simulation of SAPRC EC-39 (Concluded)
190
-------
4.20
3.15
• 2. tC
I
r
N
P
p
3.13
3.'.-'
fee
• * • ee e B B e
. • «B BBBB 3BBBB
• • PBBBB BB BB B
* * * e BBBB96 SB B
• * < BBBBBBt B B 68
n-Butane
125 18C 225
lift (Minutest
2TC
C.6C
c. i:
3. )0
N •
N
N «
N
N0a
22222 22 22 2 2
2 22222 222222 2
22
222
22 2222
222 2 2
• • • *
22
22
N « 2
N 22
M •
*
• N
NO
2
2 •
X 33 3
X 3333^3
333333
333
Ozone
N NN
» NNN X
» KNNN X 33 3
X333X 3N N
32X3 3 * N N K NN
322 2223 32 3 3X2 X2 3X32 X + « « » N4NN *K »
45 90 135 180 225 27Q
(»iNures)
NN*NNN»
319
N»N N*
260
Figure B-2. Simulation of SAPRC EC-41.
191
-------
• *
• • ppp
CMP P«P PP PFPP PP
PAN
10 225
TIKE (MINUTES)
270
315
360
O.U
0.12
N
Cf
E 4
N
T
H
» 0. CP
T
0
N
P
P
0.0*
Butanone
0. J »- •
3
135 IB I 225
TIHF (MINUTFSI
270 315
3AO
Figure B-2. Simulation of SAPRC EC-41 (Concluded)
192
-------
p
3.37
3.34
* • •
«
» *
F>
*
n-Butane B.
0.31
ft *
fl
0.21
1-1 13! ISO 2Z1 275 315
Tiff (MINUTES)
140
N K •
Mk
111
K •
K
N
NO
O.J)
* N
N »
US 1H3 225 ZTO 31S 360
TIME (MINUTES!
Figure B-3. Simulation of SAFRC EC-42.
193
-------
0.25
C. 20
2 * *
» ). 15
T
I
2 •
2 •
NOS
c. ic
2 *
2 »
22
2 •
r ;
12
•}•) 135
225 275 315
3 2
135
Ozone
1BJ 225
T1KF (HINUTtS)
27')
315
360
Figure B-3. Simulation of SAPRC EC-42 (Continued)
194
-------
.02?
C
C
c
E
N
T
o
» .01C
T
t
A Acetaldehyde
.105
» •
us*
1J 135 IB) 225 Z7C 315
TIKF
3oO
.005
Butanone
G.3 »
9J 135 1)0 225
TIKE (MIMJTESI
271 315 3*9
Figure B-3. Simulation of SAPRC EC-42 (Continued).
195
-------
3.5
crcr crcc
3. )
2.)
* * * *
ccccc c c
c cc c
c c c c
c c c
CO
c c c
r C
C C
c e
UO 229
(HINUTES)
270
315
--t
340
Figure B-3. Simulation of SAPRC EC-42 (Concluded).
196
-------
»e *
n
• fee • •
e»
%
B ?
e e
e e •
8E»B
n-Butane BB
B9 9
388 *
B
8 R • »
epc B
135
ISO 223
(KINUISSI
JtJ
K •
S
o. :*
NO
NN KJNNN NNNtl N N N N NNSNN NNNN N
135
180 225
IMINUTESI
zro
31?
3«0
Figure B-4. Simulation of SAPRC EC-43.
197
-------
O.C3
22
222
22
2
2
2
2 «
2»
22
222
N0
• • 222
•2:
2 2
22
O.J
IBJ 225
TIft (MINITESI
270
.012
A . JOt
T
1
C
PAN
FF •
pp
PP pp
IBO
TIPF (MINUTES I
270 315 J60
Figure B-4. Simulation of SAPRC EC-43 (Continued).
198
-------
33
c
c
N
f
e
H
T
a
» «.0t
T
33
33
33
3 Ozone
0.03
33
33
3
33 •
33
33 •
33 «
23 333333 * •
0.3
SO
139 HO 225
TIPE (MINUTES)
27C
313
360
Figure B-4. Simulation of SAPRC EC-43 (Concluded).
199
-------
IP
n =•
' MB B
l> p
* e e
e e
p
• B B
P R»
« • RB8B
ee
n-Butane B B
• * R
135 UJ 225
TIMt (MINU'USI
2M 315 360
u?
•
l" • 9
c
i
ti
r
F
ty
T
Q
• O.a
T
|
,j
K
P
P
VI
r, 3
KM
\A V
* KK
* K N
*^^
K K
* i>| N
K
• N
N N
« N
• N
N N
• S
•v NO
» N
• NNNN
* NN N
NN N
*
A
*
12* 18G 225
TIKE (MINUTES)
270
315
363
Figure B-5. Simulation of SAPRC EC-44.
200
-------
u. a +
I
Co 6
0.2
« 2
2
* 22 2
• 22 2
* 2222
» 2
* 2
• • • 2
2 2
2
* * 22*
• 2
22
2 N0a
«22
* 22
2222
« 2 2
• 2
22
22
135 ISO 225
TtPE (MINUTES)
2TO
315
360
.02
.01
.1J!
333
333
Ozone
3 3
33 3
33
3 3353
I33J •
J 45 91 135 16) 225 270 315
TIKE (HINUItS)
360
Figure B-5. Simulation of SAPRC EC-44 (Continued)
201
-------
.12
MM
• MM
H Butanone
9) 13! 180 22! 270 31$ 340
TICE (MINUTES)
AAA
, " Acetaldehyde
— * —• ..««,•. -4 — ..• • _>».& . .>•...___ «»,..._ ^>.M« V^KB>K« • +—"•—*'--"——+«••—« — «— A
CT liS HO 22S 27J 315 360
TIME (MINUTES)
Figure B-5. Simulation of SAPRC EC-44 (Concluded).
202
-------
2.2
2.:
ins
1.9
1.6
HRfl*
PB B
* B«
B RK
n-Butane
BBfl*
B R
B B
* B B
BBBR
• R (> B
BB8BB
13! ISO 22S
TIKF (NINUtFSI
27} 315
360
INN
KN •
N
.1$
NN«
22 •
2
22222222 22222
2 222 » » 222 222
2222 » * » » » 22
2 2 * „_ » »
2 » N03 *
22» »
H * 22 » »
N 2 « »
22K
2 » •
22 NN
V NO
N»N
22
*N N
* N* N
12
* N N
* * N NNNNN
1)1
UO 223
(KINUTCSt
2TO
31$ 360
Figure B-6. Simulation of SAPRC EC-45.
203
-------
.1*
.04
» 0
c
0
F ff
* FFF
F F •
* FFFFF
» C
00
00
f FFF * » Q
0
Formaldehyde F F F F F
Ozone „ °*
one
oooo
c r
cc of
oorc err ccrrcccr » »
•>; 1?5
TIPE (HINUTESI
Z77 315
36C
.06
r
o
N
C
E
N
T
p
A .04
t
1
C
.02
HHHK
X MM
Butanone
H M H
A A AAAAA
BM
MMM
HMM A A
M A A
M AA
M AA
MX AAA
A
. A
* t Acetaldehyde .
H t A
KK A »
A
MM AA
N A
M AA
M A
"A
"A
A »
135 160 22!
f!Mk (MlNUtES)
2T)
315
Figure B-6. Simulation of SAPRC EC-45 (Continued).
204
-------
.014
.012
.«.:*
PP
PPPP
* P P
p
P ' PAN
180 229 2T9 315 3W)
TlCf (UNUTFSI
Figure B-6. Simulation of SAPRC EC-45 (Concluded).
205
-------
<-.2^
I
I
IHl-B* R
! »R8P OB B
I * «
I
1
ft }.«•«
1
I
I
S !
I
1
I
I
PBP PPPP
B8P.B 8 8 RB P
• * • • • B B BBXB
« * 8BB BBBB 88 88R
n-Butane * * * * * B8B B
B B
135 1BO 225
TIMF (MINUTES)
270
315
360
M
0.1!
N N
• N
2 2 2222 222 2222 22 2
2 2 22222 2 22
* * 22
• 2 2«
22 » «
222 Mr. *
22 N02 .
* *
22 2
« 2? •
?2
2
• 2
22
N NO
UN
• X
X •
X X
N N
2
X • 33
N „ * Ozone 3 33 3 3
. NX 33333
X N 3 33 3
» » » N N 33 3333
X 3333 3N
X . 33 It NNNN NN
« X3 3X3 3X33X333 3 3 33»3 3 »»»»»» N*NN»k N*NN » N* N»
135 ISO 225
TIME (MINUTES)
270
315
36C
Figure B-7. Simulation of SAPRC EC-46.
206
-------
3.03
c
0
N
C
f.
N
T
R
• 0.02
T
I
C
K
P
P
H
0.01
pp
PAN
pp PPPP
* p PPPPPPPP p P pp p p p
«5 90
135 ISO 225
TINE (MINUTFSI
279 315 360
A A*
A A
A * Acetaldehyde
139 1*9 225 2T3
TI»f I MINUTES I
45
315 36C
Figure B-7. Simulation of SAPRC EC-46 (Continued).
207
-------
J.06
3.02
„" Butanone
13! 110 22?
TIME (MINUTFS)
27J
315
36C
Figure B-7. Simulation of SAPRC EC-A6 (Concluded).
208
-------
*.»>
r
0
K
C
E
K
T
> 3.6C
T
1
N
f
p
0
3.31
2. M«
eef«n»
•ffp e»8p
* »» B 1M RHD
n-Butane
• B»B BO BBS
« • C 88888 88 R
• • • • «f|BB M B86BB
• • • e«fls *
139 HO 225
TlfE IHINtTESI
2TJ
31$
360
J.60
N
C
0
3m 3JX 3X 3 S3 • » » » » *HN«N N* N «*N» NN»NNN«NN*NN »
0..
139 U3 223
Tiff MINUTES!
2/0
319
360
Figure B-7A. Simulation of SAFRC EC-46.
(Radical Addition Rate - 3 x 10-* min~l)
209
-------
C. J2
PAN PP PP
PPP
PPP p
P PB
e PPPP
PPPP
FfFFf FFF FF F FFF
9J
135 180 225
TIME (HINUTFSI
27C
360
0.1B
/ Butanone
135 11} 225
TIfF (HINUTFSI
315 360
Figure B-7A. Simulation of SAPRC EC-46.
(Radical Addition Rate = 3 x 10~" rain"1) (Continued).
210
-------
* AAA A
• A A
A AAA t
A AA
A
A AA
AA A
AA
AA
t
A
I
4
<
*
Acetaldehyde
O.C2
A
A
A
A
A
A
IM
US UO 221 270 319 JtO
TIKF (MINUTES)
Figure B-7A. Simulation of SAPRC EC-46.
(Radical Addition Rate = 3 x 10"** min-1) (Concluded).
211
-------
".7
n-Butane
II? Itf
TJMt
?tll 337 3*3
110
H WO
« -J J
fit
MNNN
NNN
» * NNNN NN N
N N NN »N
3»*J
137
Figure B-8. Simulation of SAPRC EC-47.
212
-------
no
n.l.
Ozone
000
no ijnoo nnoo*ou*u •
=••> it*
T|Mt (MlNUTtS)
337 3t3
«SO
tl.O.
(I.!)*
c
n
N
C
r
N
T
ft
* n.o*
T
o.n'
• PAN PPPPP »< P »>
PPP p pp
•pt> p «p PP P ppppppppp pppp PP
O.A*
IIZ
TlHt
201
337
Figure B-8. Simulation of SAPRC EC-47 (Continued).
213
-------
. I •
I
n-Butane
Butanone .„/ • . ..^ " "
-M*M a A
•'•" AA At
•' " AAAA
' * AAwA
Acetaldehyde
II' I*- ??•- ?ol 33'
T|-t (XINnTtM
Figure B-8. Simulation of SAPRC EC-47 (Concluded).
214
-------
2.2
2.4
c
0
N
C
C
N
T
R
* 1.1
T
I
0
N
P
P
N
1.*
•B
a*si>
l.k*-
(
BBS*
as*
I M •
B B •
•MM
fcS
8 B •
as* * •
SB • •
BBSS
n-Butane MB 8,
a e
ill 180
TIME
e en
•EDES
8 e
J15 3(0
-------
.20
.1$
C
0
N
C
E
N
I
*
A .10
T
I
0
N
P
P
N
.Of
00
00
Ozone
0 0
0 •
oooc
0 OiJO«
000000 0 0 00 00* *
0.0»"
I
1.5
90 US HO 22S 27. 315 36C
TIDE (MINUTES)
.10
.07S
C
0
N
C
E
N
I
*
* .05
T
I
0
N
P
P
N
.025*
O.I
KNMH HN
N HI *
Butanone
MM Ml
MMH H»
N
MM »
NhH
»M
H »
H
N »
M
»H
MM • pp p p p
ltli»lt • PPP P • PP PPP P PPPP
PAN
p p pp
FPPP PP
f f
PP PP P
P P PPPP P
13S ISO 225 27J 31° StO
TIHE (MINUTESI
Figure B-9. Simulation of SAPRC EC-48 (Continued).
216
-------
t.J
**•»•• « , . .
• ****** * * * • Acetaldehvde
• * *** « ****** J •
t,t ********
** *** ** * *
I * * «*«*
• «*«***
I *f 10 III 1IB 2{f Z7) 315 3Cb
TIM IHXNUUSI
Figure B-9. Simulation of SAPRC EC-48 (Concluded).
217
-------
n-Butane
1-10 .»?»
(MINUTES)
NO
31-3
3bi)
("JMITK')
Figure B-10. Simulation of SAPRC EC-49.
218
-------
O.I
• ii»no«oo •••)(>•) u imoo on '>
»s x-i i is
n u o
Ozone
0 no
ooooo
•> 00
PAN
P w i* »«
Z'O JJS
360
Figure B-10. Simulation of SAPRC EC-49 (Continued).
219
-------
Butanone
*
KMMM. M -I
A«AAAA 4*
0 A 4 M
Acetaldehyde
Figure B-10. Simulation of SAPRC EC-49 (Concluded).
220
-------
n-Butane
1 <•> till
M't ("1MITKSI
311
.IS
/' N03
• | • r>
N '
•I ?
NO
<•
Figure B-10A. Simulation of SAPRC EC-49.
(Radical Addition Rate » 3 x 10~* min"1)
221
-------
Ou
II'IIHI
O Oil
1.0 I)
oon
• Vl»0')» CMI»'I I'lll 'I
Ozone
n.a >
IT.
PAN
<••! ns
?in sis
I|«t I-IMUUSI
Figure B-10A. Simulation of SAPRC EC-49.
(Radical Addition Rate = 3 x 1Q-* min-1) (Continued).
222
-------
* • • »
» •
Butanone
^ -4 AAAAAM A - . . .,
-» A !.„ Acetaldehyde
M... A A
» A <14
v > /I
•!« AA
Figure B-10A. Simulation of SAPRC EC-49
(Radical Addition Rate « 3 x IQ-4 min-1) (Concluded).
223
-------
2.3
2.1
1.9
R*B
1. 5»—
0
e* e
* B
• e 8 e
n-Butane
B B
• B B
• » * B
* B B
« BB
* BBBBB
• * B
*5 . 90
135 ISO 225
TIME (MINUTES I
27C 315
360
0.4*
0.3
0.1
22 2
2222
2222 2222
22 2
NO,
» 22
2
N 2
2 »
t. 2
N2
2N
2
S
N
2 N
22
• NN
2 *
NO
N N
2 2
2 2
2 222
22 2
N N
N N
N N N N
90 135 180 22! 270 315 360
TIME (MINUTES)
Figure B-ll. Simulation of SAPRC EC-162.
224
-------
>1 •
.075
.09
.025
0 Ozone
c c
cc
cc
cc •
c •
10 « •
*5
99 115 110 221
TINE (MINUTES)
273 311 360
.01*
.012
C
n
N
C
f
N
T
R
A .008
T
I
0
N
P
P
N
.004
o.o
* *
* p
p
P
PAN
* P*P P
p P
* p PPP
PPPPP
* P
p
p P
PP
P P*FP
s-Butylnitrate (+)
KNNIifckNNNNNNNN NNN N N N N
119 110 Z2S
TIPE ININUTISI
2TO 115
140
Figure B-ll. Simulation of SAPRC EC-162 (Continued).
225
-------
.075
C
0
N
C
E
N
T
R
A .05
T
I
0
N
P
P
.02!
MM M
Butanone
H M
AAA A
KM « » A AA AA *
KM A A *
MM A A
K K A A »
MM A A
MM A A A * *
KK * t »
MM « A i , t- J *
MC AA A Acetaldehyde
M AA A
f AA *
K AA *
M A
P AA 4
A »
MA
IM
IA
0. 0» »--
0 «5
90 135 180 225
TIME (MINUTES)
270
315 360
Figure B-ll. Simulation of SAPRC EC-162 (Concluded).
226
-------
2.3*
2.1
B
* 1.4
T
I
0
N
t>
P
1.1
»8BB
n e
*s«
•B SB
eee B
• • B B B n-Butane
• • BBBBB
* B B8 t
• t
• BBBBSB
• • B t B
* BBS
• • B8B
* BBS B
* BB B
• • «
*
• *
0 *5 93 135 180 225 270 315 360
Tire (MINUTES I
0.4
0.!
C
0
N
C
E
N
T
*
A 0.2
T
I
0
•i
22222 222
22 2 22
2 2222
N 22 222
2 22 2
N0a * 2
N 2 • • 222
2 « •
O.I
222
2 *
22
2
N
2 «
It*
2 K
22
222
22
2 2
2
NO
o.o» *--
0 *»
N N
N N » »
fc KMiKKN » 4 « « »
N NN N * NNNHNNN N NN N N* «NNN»N N«NN«N *
90 133 1W 225 273 315 363
TIPE (MINUTES!
Figure B-12. Simulation of SAPRC EC-163.
227
-------
0.2
C
I)
H
C
E
N
T
R
» 0.2
T
I
n
N
p
f
M
0.1
« 0
0
* CO
0
• 00
00
* 00
0
0 0
Ozone n
o*
0*0
00
0 0*
0
00 *
00
u •
00
cc •
no •
oco
oo *
IOOO*00*C »
0 4S 90 139 180 225 270 315
TIME (MINUTES I
360
0.12
0.04
0.3t
0.03
P PP
PPFP
PPPP
PPP
PP P
PPPP PAN
p p
PPP
PPP
PPP p
• F F
PPP
P
IPPP
0 45 90 13* 160 225 270 31!
TIME OUNUTESI
36C
Figure B-12. Simulation of SAPRC EC-163 (Continued).
228
-------
0.5
0.4
C
0
K
C
E
N
T
0
* 0.3
T
0
N
P
P
H
0.2
* A
AAt
*»»
t <
»S
A At
A « I
Acetaldehyde
«*««* *
• *
131 1*0 223
TIPE (MINUTES!
zro us
j to
a. 01
0.06
C
0
N
C
f
H
T
R
A 0.04
T
I
0
N
P
P
M
0.02
• »«•« M
HKH
•NNHM
MM
•M *
" , Butanone
1C •
0 49 M 11) 1*0 22» 27) 315
Tl« (HINUTESI
360
Figure B-12. Simulation of SAPRC EC-163 (Concluded).
229
-------
aa
• a
l.a
P
A l.b
B a
B
• 68
* BB
• • a B
BB B
* • B
"-Butane
dB6
BBB
B B
86
BBBB
175
262 350 437
TIME (MINUTESI
525
* * •
612
700
» 0.2
f
1
1
M
P
P
M
J.I
3.1
2222 2 22 2
2 222
2 22
2 222
N 2 22
2» » » » 22
2» » » 22
N 2 * » 22
• » » 222
* * * . HO. '"22
2 » 2
•N »
2
222
22
2 2
22
NO
22
22
22
222
N* * *N* * »
MNNN**N*N*N*N*N*N*N* ** • * * *N«N»N»
87 175 262 350 437 525 612 700
TIME (HINUTESI
Figure B-13. Simulation of SAPRC EC-168.
230
-------
O.a»
0.6
0.2
oouo
00
000}
0000
oooo
• 00
• CO
« 00
• • 300
ooooo Ozone
« • 00
* 00 0
*• ooou
* 0 00
• 00
* • 0 00
• 03
• * oooo
t>*3*o*«o a o
* C «7 175 262 350 437 525
TINE (MINUTES!
612 700
.075
C
0
N
C
*
T
It
4 .35
I
J
.029
9.0
PPPP
PAN
PP PP
ff
PPP
p PPPP f PP PPPP P
PPP PPPP
PPPPPPP p
PPPPP
• 7 175 262 MO *JT »2* 612 700
TINE (MINUTESI
Figure B-13. Simulation of SAPRC EC-168 (Continued).
231
-------
F
.073
1
N
C
E
N
T
R
A .05
r
I
0
N
p
p
H
.025
0.0»-
C
FFF •
F
FFFF
fff
87
Formaldehyde
FFF
FFFF
FFFFF
FFFF FF FF
FFFFFFFFFF
175
262 350 437
TIME (MINUTESI
525
612
700
0.2
0.19
0.10
0.05
* *
* H MM MM
H H MMM
MHM
Butanone (+)
•M M AAA A
* H N A A
• MMA »
» MMAA
HA
M A
INMA
o .0 » « »-
0 67 175
* MM HMM AAAA AA AAAAAA
MMMMM AAAA A
» * MM M AAAAAAAAAA
* » MM MM AAAAA AAA
M M M A A AAA
MMM AA AAA Acetaldehyde
*
MMM
AAAAAA
262 350 437
TIMC (MINUTES)
52S
612
700
Figure B-13. Simulation of SAPRC EC-168 (Concluded).
232
-------
c
p
It
c
c
n
I
t
A 1.0
T
I
[I
S
f
9
f
l.t<
IB •
e p «
BHH «
e a*
1.4
fla» •
e ee •
eepp.
bB
8BB*
e *B»
* BBS
n-Butane 8*%.BB
«BB
•S 8
* • 8
•8
123 IBS 247
TI»E (MKUTES)
371 433
» * » •
"NS NO *
NK N
« • •
309
«i
123 18} 247
TICE
371
433
Figure B-14. Simulation of SAPRC EC-178.
233
-------
.08
222
2 22
22
2
2
* •»
2
» 2
. 2 N0a
» 2
2
2
2
2
• 22
2 2
222
2222 22 22222
222222 2 22
61 123
185 2*7
T1CE (PISUTfS)
371 «33
495
J.3
C
c
N
C
E
N
T
8
< 3.2
T
C
K
P
P
V
0 C 0
•j c c r
ccco
Ozone fcc\ *
00
nn •
c *
on
cc •
c.
r •
• oor> o i
CO 00
•000
ccc
cc
dC
c •
I)
CO •
oc
JCO • •
123 185 247 309 371 *33
TIVF ICIKUTES)
Figure B-14. Simulation of SAPRC EC-178 (Continued).
234
-------
.02
J.3 »-
P PPPPP
PPP P P
P P P P
PPP PP
PPPPPP P
PCFF-FFFP'FFF PP
OPPPPP
PPPPP
61
12}
18! 247 309
TIPE (MINUTES I
371
433
49 5
.•1 •
» » M C
• MM
« MM M
H MMN
«" Butanone
KIN »
•(Ml
AAA
A A
» HM»
Mil
AAAA
AAAAA
AAAA
AA AA
fft » A«A AA
MMM AAAA
C » *At A
„„** t „/•*• Acetaldehyde (*)
•" < AA*
» M AAA
f AA
MM AAA
f AA
f AA »
A
PA
MA
A
M •
A
122
1»5 247 3C«
TIME (MINUTES1
371
433
49S
Figure B-14. Simulation of SAPRC EC-178 (Concluded).
235
-------
I
ID
0.45
0.30
O.l-i
ODD*
000
0.0
0 0 •
000
0 0 •
DOO
n»oo
DO
DD
Dime thyIbutane "" DD
DO
UOO
00 0
80 160
320 400 480 560
TIME (MINUTES)
100
07*
IN
N 22 22
2 2
•2 2 2
2
• 2
»?
2«
2 •
2 • •
N02
* ?
2
2
2
12 N
O.v
I NN
I N NN
I NNNN
D 80 1*1
NN NNNNN 222222222
> 240 320
•
.
22 22 22 . » »
400
2«2Z2
4»0 S60
640
TIME (MINUTES)
Figure B-15. Simulation of SAPRC EC-171.
236
-------
O.ftO*
0.45
0.30
•000
• 0
•00
•n o
•no
• «oo
• o
• o
• oo
oo o
• 0 000
• 0 00 00 00 0 0 000 0000
• oooooo ooo
•0 00
• •* Ozone
00
•oooo
•0 160 2*0 3ZO 400 460 MO 6*0
(MINUTES)
0.4
0.3
C
0
•J
e
r
N
T
o
» A. Z
T
I
n
O.I
* »
Acetaldehyde »*
*«* •
***
* *
A *
0.0
80 160
?»0 320 400 **0
TIHE ININUTES)
560 640
Figure B-15. Simulation of SAPRC EC-171 (Continued).
237
-------
.02
-01S
C
0
N
C
r.
N
T
R
* .010
T
I
0
N
p
P
PAN
0
P •
P
P •
P
P •
80 160 2*0 330 *00
TIME (MINUTES)
»BO 560
Figure B-15. Simulation of SAPRC EC-171 (Concluded).
238
-------
1.3 •
1.1
C
0
N
e
i
N
T
R
* 0.9
T
I
0
N
P
P
0.7
0 U*
DO
o.s
no*
• oo*
00
•ooo
0* •
00
DO*
ODD •
o • • •
DO
oo n • •
Dimethylbutane ° non . .
00
00 • •
00 •
no
oo
o o
o
o o
ao
2*0 310 400
Tint (MINUTES)
400 560
100
OTS
e
n
N
e
e
N
I
R
• .0%
T
I
0
P
P
M
.021
N
2 22
N ? 21
?.• • 2?
»N
? •
2 N HO
N
%. N0a
?•
«
a
2
2?£22 2 22222* • 2 2 2 2 2 2
ao
2*0 320 400
TIME (MINUTES)
480 560
640
Figure B-16. Simulation of SAPRC EC-165.
239
-------
0.4?
0.30
0000 000000 00 000
000 0 00 0 000 00
0 000
00 _
oo Ozone
00
00
0 0
• «0000
80 160 240 320 400 480 560 640
TIME (MINUTES)
.02
.015
c
0
N
C
E
N
T
0
* .010
T
I
0
N
p
P
M
.005
PAN
p •
p
p •
pp •
p
p
p
p •
pp
p •
o.o
DO 160 240 320 400
TIMt (MINUTES)
480 *>60 640
Figure B-16. Simulation of SAPRC EC-165 (Continued).
240
-------
0.6 •
AA
0.4%
c
0
N
C
r.
H
T
R
A 0.3
T
0
N
p
p
H
0.14
• A• Acetaldehyde
AAAA
• »» A
AA»
AAA
0.0
IA AAAA
AA
80 1*0 Z»0 320 »00 480 S60 *40
TIME (HINUTCS)
Figure B-16. Simulation of SAPRC EC-165 (Concluded).
241
-------
1.0 •
00
n«oo
n.?
ODD
• 0 0
00
• D DO
•ODD
• 00
0.0
Dimethylbutane oo
DUO
00 0 • • •
0 00
ODD
ODD
0 0
000
00 DO DO
90 1«0 270 360 450 5*0 630 720
TIMt (MINUTtS)
0.1IS4
n.l?
C
0
N
C
F
N
T
R
A 0.08
T
t
0
N
N
0.04
222 2 I
f ? t.
» 4 * 4 *
i
NO
22
?2
0
N • •
H • • •
N ••
N « • •
NN NN NN NNNNNNNN
90 180 270 360
2 4
2 4
2 4
22 2 22222 2222*2*2*2 • «2424 44
4SO 540 630
4 4
720
TIME (MINUTES)
Figure B-17. Simulation of SAPRC EC-169.
242
-------
0.40.
0.4*
c
0
N
C
e
N
T
*
* 0.10
T
I
0
N
P
P
M
0.1S
00.
00
0 •
o* •
00
Ozone 00°° . •
00 •
00 •
00 •
00 • •
00 •
0 •
o • •
• oo o o o o ooooo
o 0*000 oo oo oo
000 0*
0.00
• 0
• • 0
• • 00
•o* ooo
»0 110 ZTO 3«0 450 5*0 630 720
TIMC (MINUTES)
0.0*
0.03
0.02
PAN /
P
0.01
pp
P P
0.0
•0 ISO ZTO 3*0 450
TINE INtNUTCS)
540 »30 TZO
Figure B-17. Simulation of SAPRC EC-169 (Continued).
243
-------
0.4
0.3
c
0
N
C
e
N
T
R
* 0.2
T
I
0
N
P
P
M
0.1
Acetaldehyde ^ *
AA
AAA
• AA
A •
• AAA
« A
!AA A
0.0
90 ISO 2TO 360 »SO 540 630
TIMt (MINUTES)
TZO
Figure B-17. Simulation of SAPRC EC-169 (Concluded).
244
-------
' »»
»8*
J B
C I
£ I
I
'« l
A 1.8 •
• I
I t
•« 1
I |
•> I
B'bBB
*BB8
SB B
* *BBB
8 86 _
* BB n-Butane
88BB
* BB
t BB
• • B B
BBB
BB
• BBB
• B* B
9)
BBB
* BBB
B*BB
•B B*
B B
119 UO 225
TINE (MINUTES!
2TO 315
1*0
PP»
P
PP
09
» P
PP
» PP
PP
PP
* PP
cu a
c° Ozone
COG
* 0
o *a *
cro 3
P • 0
» • PP 0
PP C3
» P
• . M° ""% Propene
.!» 0 P P
0 » PP
a PP
• on » PP
n » PPP
m PP
01 » PP PP
• oo » PPPP
no » » P PPPP
i) fpoi • no »»»»»(> p»p i>» p »
93 135 IBS 225 2TC 315 360
TINE (NINUTESI
Figure B-18. Simulation of SAPRC EC-97.
245
-------
H
• J.
•> 2222
22* 2 2
» * 22
'-" 22 2
i 2
< ; » 2
2 2
2N
•
2 4
2
2
«• 2
N WO
It
NO a
2
» 2
2
2 »
2
UN 2 » »
NNM 222 * »
» »,>! N»NN *M»N.NN*NN • « * 2 2222222 2222»i 2»2 2* »2 *
13S ISO 22S
TIME (MINUTES)
270
315 360
J.I •
I
H
X X
X M H X
XM
XN MM
MNH
X MM
MM
MM
MM
X MM
MHM
MM
MM
X MMM
H
M MM
X M
HMM Butanone
X KH
MM-I
Propanal
• * * * *
» »p pppp»p pppp *PPPPPP»PPP PP»PPPPPPP» PPPPPPP PPPP*P P P P* P »
90
135 180 225
TIME (MINUTES)
270 315
360
Figure B-18. Simulation of SAPRC EC-97 (Continued).
246
-------
e :. » •
; i
I I
i
v 1
I
P P
p pp
ppp
ppp
pp
pp
pp
/ PAN
pp
p P
pp
PPP
ppppeppp ppp
»I 135 180 225 270 315 3*0
TIME (MINUTES)
0.4
0.3
1.1
• AAAAA AAAA>A « A A
AAAIAA A* AAA
» AA»AA » •
» AA
A/* * Acetaldehyde
AA*
AA
AAA
AA
»A P FFFF fffffff fff fffffffFFff ffff-fff ff
A tff fffff ff F f f ff F F
^ f ff fff" Formaldehyde
A F F
A FFF
IAAAF
"<•"*» n 135 MC 22» 219 31» 360
TIMF. (MINUTES)
Figure B-18. Simulation of SAPRC EC-97 (Concluded).
247
-------
• FP-FPP
* pp PPP
p pp
pp
Propene
cpp p
0. 3*
135 IK-) 225
'Iff (KINUTESI
P PPP »
opp PP
. « , .pp»pFp.fp .pp.pop.pp pppp p p
27C 315 360
|Hn
"
RP
n-Butane
»B B
BB
• e en
BAB
' nee
BBS
* * BBB*
* BBP.
BBBB
* »BB» S •
135 1HJ 225 270 315
TIDE (MINUTES)
360
Figure B-19. Simulation of SAPRC EC-99.
248
-------
323
33 3
33313
333* 33
X
33 3 X
333
K X
» »
N < 222 222 2 22 X
V » 2 2? * 22
'• i 22 X
-.2 • 22 3 3
N 22 X 222 3 3
• 2 » 33
2k > 33 2 2
* K Vn 33 « 2 2
! I wu » 33 .?
2« N 3 » 2 2
2 '"I X 33 » 22
33
33
3 3 Ozone
2
3 3
X N 33
• J 3KN
a
22*
«NI«*NNfl>
22«
222 »
2222 »22*222»22 »22» 2
13i 18) 225
TIKE (PINUTESI
31!
3«0
.1C
.12
C
1
N
i
N
T
t
I .Cf
r
i
0. •>-
j
* A
At
PAN
A '
•A •
A« •
A* A
131 l«j 221 271 3H 360
TIME ININOTEf I
Figure B-19. Simulation of SAPRC EC-99 (Concluded).
249
-------
?.•» « f p
1. •(
T
r>
* 1.
B-
1
n-Butane
• BB » •
ea
pp
a 9
e
1.6* ••
13S Lij 229
Tl«f (MINUTES)
315 360
pp
«»
• * * *
p
FF
P
< DP
cc ccccc
* » •
0
30 00
ooo
n ^
9p
« P
*CC C « F
in p
• re « p
nc t p " Propene
C P
c » P
pp p
PPPP
« « «• P p
* * *
1) 135
IflJ 22S
IKINCTFS)
2T1 313
360
Figure B-20. Simulation of SAPRC EC-113.
250
-------
2»
i 2
?
NO
N0a
2 4
2
222 1222722 2 22 22! 22 22 2 22 22222 22222
*'.
111 22> JO IIS
(XINUTESI
!«•!
.08 »
.04
Butanone
•It
Propanal
P P« « P X PX PPX
P»XPP P PX P P X
319 3t:
13$ U.) 22»
Tiff (HINITFSI
Figure B-20. Simulation of SAPRC EC-113 (Continued).
251
-------
.16
N
r
f
\
T
0
» .08
T
I
1
fl
4» Acetaldehyde
« « * .
«
»•
A •
A
•
A PP PPPPP p p p p p
• P P
P P P
« • P P P
PO p pp
M P PRPPP
I • PPPPP pppppppp
0.0* ••- »..-.. ...-«. ....... .4. *-_-—..--*_-.-..._-.*-----..—_*.-
' 49 41 1J5 l(j 22> 2Tj 319
Figure B-20. Simulation of SAPRC EC-113 (Concluded).
252
-------
3.6
2.4*
H8
• • BK
fP
• e
• (> *
n-Butane
Ba
98
• 8
BB
B
• B
B1
•BB
6KB
• B
f* *
•e
BB*
n
1«C 225 270
TIPS IMIN'JTISI
—»
160
pp
I.D
» ft
Propane
000
000 0
0000
03
00
or
p p
p p
PP »
p
P
i' Ozone
a u
« -3P
• C P
« 0 PP
no •
« PP
3t » P»
• ce «
» CC
« C-W
''A' iCT k- •'•:W"J
*' 113
11.1
p P
PP
PPP
« « PPPP
» PPPP
» » » « P» P»PPP»
JJS ZTC 31! 1(0
Figure B-21. Simulation of SAPRC EC-114.
253
-------
V.I
0,6
222
« 22* 222
» 22 « 2
22 22
• 2
2
22
K » 2
2
12
o-.:
NO
N
* (I
« 22
» 2
2
» 2'
2 N0a
2
* .1
2
» 2
« 2
» 2
2
2
* 2
2
NN » 2
kK 22
NH » 2
N IN >2
* • • K» NN'NN »NN'NNN«(IN
10
12!
18J 22!
(PINUTES)
2<«222» 2*22!*
270
31!
3 is;
.15
.1
• r
Butanone
• a r
Of
HMW
i nv
H-
•IM'4
Propanal
X ' "PPPXPPOP PXPPPP P XfPP PPXPP PPPXPPP PPPX PPP PX PPP PXPPPPPPPX PPPPPX
*J
11) 2£5
TI»E (MIN'JTFSI
21!
Figure B-21. Simulation of SAPRC EC-114 (Continued).
254
-------
•j.l
AA Att I*««AAAAA« AAAtAX
XX A/ A >
»X *
AA
I\A
\ X «
A*
X t
A
A
A*
' Acetaldehyde
X •
41
A
t A A •
A
«» • PPPP
' /" Formaldehyde (+) „•"""•
.\< ft FF FFF»FFF FF P PP
i FFF F «FFh FF FFF FF FFF FF
At FF FFF P> FFFFFFFF FF
A FFF • P » FFFF
4 FFF PP
» FT! PPO
• rr - PP
A I- F PPP
4A F( « PPP
IF P po
Al PF P
I. . otptcF ffttae t PP
135 l«j 229 2TC 31* 360
TJKF ("iriuTE'l
Figure B-21. Simulation of SAPRC EC-114 (Concluded)
255
-------
2.2 »
2.0
N
c
£
N
T
A
* l.»
T
P
P
N
1.6
a *
SB a
• 68*
BBB*
B BB
BBB
B BB
B*B
B*B
n-Butane
B* *
B BB
BB *
SB *
B BB •
BB
SBB
BB * *
BBB •
BBB *
BB B •
B B
BBB •
* 083 b
0 5* 10B 163 217 271 326
TINE (MINUTESI
J8J
.**
p
p p
pp
»pp
• 0
.1
• o cc ?
00 0
• 3333
00
•oor
oo
ooooo *
o oo
3
• 0
n
CP
Ozone
•0
r
pp o
* pp «
»p p o
PP *o
» PP oo
* PP3
*pp _
.is n» PP Propene
30 » PP
00» » PP
0 P P
0 * » PP
n * PP
3!?» » P»PP
oo »PP
oo * *PPP P
* * »PP»PP» P» P* P» P» PPP
t 54 10B 163 217 271 326 380 43S
TIME (MINUTES)
Figure B-22. Simulation of SAPRC EC-106.
256
-------
0.*
H
0.3
0.2
0.1
22222
2 » »2 »
2 2 »
» 2 »
N 2
2
•
N« 2
2
HZ
*
2*
•
2 N
*
N
2 N
22
2 »
2
2
2 »
2 »
2
2 »
2
NO
2
2 *
2
2
2
N* 2 »
S 2 »
NN • 2 »
H * 22
NNNN * 22 »
NNNN*NN* N*N *NN • • • • 2 22222222 22 2* 2» 2* 2*22*2 2
C 34 IN 1*3 21T 271 326 3*0 433
1IME (MINUTE SI
.075
N
H H •
1
C
E
1
0
A .4»
V
I
1
N
P
P
•*
.025
M
MM
MM •
M M
MM"* ButJ
MM
MM
MM »
M<4
MM
MM «
M
MMN
v *
M M
MM
M *
MM
Propanal
INN * * «f»ppp»p|>|>pp» ppp »pppp p»fpf^P>PPP P»PPPPP» PP P« P P PPPP*P p
C 5* 106 163 217 271 326 310 »3S
TIME (NINUTESI
Figure B-22. Simulation of SAPRC EC-106 (Continued).
257
-------
0.2 «•
.IS
c
n
*
c
E
N
r
n
A 0.1
r
i
3
N
S>
P
.as
» AAAAAAAAA AAAAAAAA AA AA
A A* X + A A A
AA X AAAAA
XA A
A X »
A X X X
X A X
* Acetaldehyde
AA
X A
AA
XAA
A
P P
• PP
PPPP
PPP
PP
p PPPPP
A Formaldehyde • p
A PP
AX FFFFFFF FFF FFFFF F FFFfPP
A FFFFFF PPFFFFF FFFF
A ffff PP FFFF FF FF F
• • PP
PAN P PP
PP
A FF
FF
A FF
A F
XF
A f^ PPP
I * PPP
' 1 AF PPPP
IAF * PP P*PPPP PPP
Q Jij^gjjjT-jjjji >•-.»-»• mm*,m.m^tm •«-••_»• _••»>-•! __M — nj»* -• ••-.••.••Tr^TTJ-—i—••—•---—— f.— — — — —-+—-
0 S* ira 163 Z1T 271 326 38C
TIME (MINUTES)
F FFFFFF F
Figure B-22. Simulation of SAPRC EC-106 (Concluded)
258
-------
3.) »
*•<•
2.B
C
C
N
r
6
N
T
M
A 2. t
T
I
T
N
p
e •
2.2
)
• ".B
. . • n-Butane
112 168 22S
lift
2B1
aee *
* nee p •
393 490
.•45
C
N
r.
r
N
T
4 .3
T
t
1
•<
>
p
P
e.P >
:>CP
•T
on
.° Ozone
•c
r
re
C C »
cc rcrc cc •
« ep
• HP
l« » PPP _
T . r >e Fropene
4 PPP
• OP?
« • PPCP
0 0110
112
22:
J21
Figure B-23. Simulation of SAPRC EC-115.
259
-------
2.222
2
2
V? •
£
N •
« N
\ N0
2*
2
2»
2*
22 «
2
2 »
2 »
N0a 2,
2 «
2Z
22 »
« • t • « 222222*2 222*22* >22222«22»
112
16<) 22S 281
Tlfct (Klfl-JTESI
337 393
450
M M
* NM»
MM
•I •
MM
• KM
p MM
• I'M
MUM
Butanone
Propanal
xxx »popxr»pppx pfppx'poppx BPPPXP P >P> PP» PPPXPP PPX
'-" HI Its 22! 2(1 337 39}
TICP |«INUTFS)
430
Figure B-23. Simulation of SAPRC EC-115 (Continued).
260
-------
.IS
I11AAA A tl*
«AA
A*
X «A
'.A I
^x Acetaldehyde
it r.
t
x*
AA
ppppf
A PPP
A • p p
* Formaldehyde (+) 9fff'
AX F FFFFtFFFFFF FFFFTF-
« FF FFFFFFF t* FFFFf FfFF^F F FF
, FFFf f P P F FFf FFFFFF FFF
ppp"" PAN
IFF • FP
A Ff PPO
IFF * fFe"
«f • epptpppp ppp p
•So 112 1*R 223 281 337 343
(HINUTFS)
Figure B-23. Simulation of SAPRC EC-115 (Concluded).
261
-------
*. 3 •
3. (
3.2*-
}
•n
*5
n-Butane
» e
1-! ir;
p f
..».._.. ..... «....n..-....»
.'. ir.-:
p
%„ 3":jri • Ozone
PP
Ct
PP
PP
f
P P
•1C)
p p
r cccic« c
45
rO 1?! 1C 229 ZTO 31)
Tiff (MINUTES I
360
Figure B-24. Simulation of SAPRC EC-116.
262
-------
tv
.-' N0a
NO
2 «
222222 2» »2 22 2 «2 2 I" 2 »2 • 2» 2» «2 2
135 IB) 2i5
TII*C ICIXJTES)
2TC 315
360
p »
p(1 Propanal
„.) 13
TlfE
Figure B-24. Simulation of SAPRC EC-116 (Continued).
263
-------
.15
.55
• «
M «
Butanone
„ M „
V P
»»» PAJI »•
vi . rnSt pp
XHUH * fff PPRppp p
*5
13! 18)
TIME e»l'KTL5l
2fi 219 36.
» * «
A »
» *
<>« Acetaldehyde
• Ffffff FfflffF ff H- «• f F r F F T F F F
A FF FFfr F
a FFF r
^ FF
.' rft> Formaldehyde
119 181. 22» 270 315 160
(MINLTES)
Figure B-24. Simulation of SAPRC EC-116 (Concluded).
264
-------
APPENDIX C
Simulations of SAPRC Toluene Runs
265
-------
TABLE C-l. INITIAL CONDITIONS OF TOLUENE CHAMBER RUNS
B.C.
Number
77
78
79
80
81
82
83
84
85
86
I
INITIAL CONCENTRATION(ppm)
Toluene
0.276
0.210
0.976
1.02
1.96
1.88
5.63
0.968
1.92
1.09
NO
0.518
0.069
0.080
0.401
0.408
0.679
1.363
0.388
0.431
0.407
N0a
0.058
0.032
0.019
0.095
0.094
0.337
0.664
0.080
0.092
0.080
HNOa
0.005
0.001
0.020
0.020
0.020
0.030
0.02
0.001
0.005
0.001
HaCO
0.003
0.0
0.011
0.0
0.0
0.001
0.0
0.007
0.00
0.161
PhCHO
0.0
0.0
0.0
0.0
0.0
0.0
0.016
0.032
0.005
0.0
266
-------
TABLE C-2. PHOTOLYSIS RATE CONSTANTS FOR TOLUENE CHAMBER RUNS
B.C.
No.
77-86
N02
0.16
HN02
0.045
H2°2
3.3xlO~*
03(1D)
1 .2 x 10-3
03(3P)
6.6x10-*
H2CO
(Had)
5.0x10'*
HZCO
(mo lee)
9.0x10-*
PhCHO
5 .0 x 10~3
:H3C<0)CHO
0.09
HC(O)CHO
0.09
to
-------
T T.
TTTT • •
T» T T
T T t • •
T T » » »
_ , T T • •
Toluene T T • *
T T • •
T T T
Tl«f IMINUTESI
iv
s::
sso
400
.&:«
0.4!
r.
p
K
c
E
'I
T
4
* 3.3C
T
I
o
N
f
9
N
.1!
3.00
BC •
t »
8 H*
•:. HO
» n
• 8
*C
• cecc
» » « r r
» » c c« «•
» » C C « I
« e c • R
» » c c c •
»erf. e e HO » •
*
*r r. c
C C
•ce «c r
cr» c r
100
MCE IMIMJKM
31.
Figure C-l. Simulation of SAPRC EC-77.
268
-------
.' 15
r
F
ti
T
D
A .iK
T
I
0
s
p
f
Formaldehyde
s ' Ozone
I
!
!
ms
efFfF F F
J ;
*
J 3
3 J 3
333U
ISC IS'' 20? ?»»
("IN'ITfSI
S5"
Figure C-l. Simulation of SAPRC EC-77 (Concluded).
269
-------
-.2*
.18
T»T
3 3
3 j
3 3
3333
33
33
T *
TT
33
Toluene TTr . , Ozone
T « 33
"T 3* *
T T3 « • »
3 ITT • • *
TT T • *
3 TTT • • •
3; TT
3 T T
TT
J T T
33 »»««« TT
T T
' T
» 3!
»3
15: 21/':
TII»E (flMITFSI
3»J 35J
»*)
.\ «
1
2» 22
12
I
2 1
NO
i
22
2 NO,
» 2
t
»2
11
•i •
11
22* » »
22 » »
222222 222
222222 2
.***»* *2 222
i 11 mm
15C 20i 230
TINE IHINUTFSI
350 400
Figure C-2. Simulation of SAPRC EC-78.
270
-------
.r.ts
.015
f F
FF
F FFF" Formaldehyde
ff=
FF
• (f
FF pp p p pp P p
FF F«F«TF*F ppppvppppp ppppp pppp PAN
* *
PPP P P P PP
30 100 l«0 ZOO 25? 3)0 35J
TI»f
Figure C-2. Simulation of SAPRC EC-78 (Concluded)
271
-------
T
0.7»
«.*.
TT •
T TT .•
TT
O.OJ»-
0
TT»
TTM
T»TT«
IT • TT»
TTT»TT»
TTTT « T»
T »T • • •
Toluene ' ' " ? '.
t T
100
1*« 201
TIME CMZNUTKSI
35U •,<..
.07*
C
0
N
C
C
N
T
R
* .01:
T '
I
0
N
1
.02S
22
2 2
N0a
t
I •
1 2 »
NO > «
1 »»»222 .»»«»,»»».«»»««
1 2 22222*222 22(2 • (• 2 »•• ... ...
1 222222Z222
111 111
1(0 1M 200 2» 309
TIHC ININUTCSI
oca
Figure C-3. Simulation of SAPRC EC-79.
272
-------
• 10.
c
0
N
C
E
N
T
R
A .l>Si
T
I
0
N
P
P
M
3 » •
3
3»
3 Ozone
. Ff
rrr
FF » Formaldehyde
.OGO»-
3 FFF
FFF
3 »FF F
FF FF »
IFF 3
I
133»
F FF
FF F
FFF
FF »
fO 101.
240 2fO 30} 3SC
TIME IMNUTfSI
.01$
C
0
N
C
E
N
T
R
* .an
T
I
0
N
P
P
N
•tot
P»
" PAN
pp
PP
p P
p
p P
•PP PP
M 110 ISO ZOO 213 3;j 3C6
TIME (MINUTESI
Figure C-3. Simulation of SAPRC EC-79 (Concluded).
273
-------
ITT
S.'J
0.50
0.25
•TTT
t»
TT
•TT
T »T
• TT
rr T
« TT T
TT TT Toluene
TTT
>• TTTT
TT r
• • T TT
• mr
• m T
• TTT T
» * T TTT
• • TT TT
• • • TT
100 ISO 200 250 »00 350 400
o.o*
11
0.30
N
C
E
N
r
R
4 0.20
T
t
1
N
P
P
M
0.3}
•1
22. 22 222
1 » Z2 22
» 2 » 22
1 2 22
1 » 2T »
* 2 2
72
21
•21
22
»2
2
i NO
1
1
it
2
2
1 » 2
* 1 » 2
11 » 2
• 1 » 2
• 11 1 »22» » » »
• • "ll'l • I *U» • * » « « 2222 22 22222 2222
5J 1?? 150 200 2»9 30C 359 *00
IM1NUTCSI
Figure C-4. Simulation of SAPRC EC-80.
274
-------
o.»o»
I
0.39
C
0
t
C
E
N
T
R
A 0.20
T
I
0
N
P
P
It
0.10
0.00+-
o
333
3333
33 3
3133 33
33
33
• • 3»
* 3 si
3 Ozone
* 3
3
• 3
33
i
* 1
3
• J 3
3 3
•33 *3 *3333 3333
SO 100 1IC ZOO 2SO 30C
TIME (MINUTES)
f-F
FFF
FF
FF
FF
FF »
Formaldehyde F F
F
F F
F
PAN „
PPPP
PPPP
PPP
f F
FF* W F <
SO 100
PP» PPPPPP P P
PPPP
153 2JO 2»0 330 3S3 400
»JHP (MIMU1EJI
Figure C-4. Simulation of SAPRC EC-80 (Concluded).
275
-------
2.:c»
i
IT
1.5.
1.5C
•TTT
• TTT
»TTT
» T
TTTT
T TT TTTT Toluene
• TT TT
• • T T
* T TT T
T T
• T T
iv
2::
rs:
350
—-»
40C
1
'.15
2 »
1
i r
*
i *i
••»
j i
2 N02
2
i NO 2
\ »
2
1 »
11 2
• 1 »2
1 2*2 »2
• :» 1*1li* • « » • • » 2* 2*
15' K: 2S*
T|»t IflNUTESI
2*2 »2 » »2 » 2* 2 22
»•> 3K *00
Figure C-5. Simulation of SAPRC EC-81.
276
-------
.1
3 3
Ozone
23
IV. ISO
ZOO 250
m MITE si
300 390
400
.1-?
.075
C
r
N
c
e
N
T
P
* .050
T
1
0
N
o
p
C
.125
.COJ
f
f
f
F
F
Formaldehyde
F
F »
F
F
F
f (
F •
*
F
• » • '
FF P
p
F P
P P
F P
•F P
PP " PAN
F P
F PP
F P
FF p
FF p
F PP
FFF ppp
FFFF F • PP P PPP
1C 190 200 2M 330
Tl»t (HI MITE SI
3SO
400
Figure C-5. Simulation of SAPRC EC-81 (Concluded).
277
-------
TT«TT
J.5
TT« T
"IT
• T t
• TTT1TT rr i
. . T TI T Toluene
« TTTTJ T
• • TTTTTTT
« TTT1TTTT
» TT'T T
s:
i:.
TTTTT T
iv ?:• 25
'IKE ("IWTFSI
35"
TT
i
11
22
Z2Z222Z2 222222
* 222 22
» » 2 »2 HOa 2
» 22 2
22* 2
» 2222 * 2
1 . •>. 22
« 2 2 » 2
I a'l
2*2
• U
11
NO
1
11
U
11
11
• 1
111
• 111
• 111
111
* • * • 1*11* i*m*ii* •
IV 20n 250
TIME imUTFSI
J!0
400
Figure C-6. Simulation of SAPRC EC-82.
278
-------
• 3
3
3
• 3
3
,3 Ozone
3«: •
« ?33
« • 3333
3J323i i 32 3 33333 33
33
33
33
33
IV- 2J? 2JO
Tint (*t«UTESI
33C
3M 409
.'.73
F »
F
F •
Formaldehyde /
FF
ft
ff «
Ff-F
FFF
» * »
PAN
pp
FFF
FFF FFFFf f F F *
PPPPPPPPPPPP»PP»
IV 10 i 2K ST.' 33 4V
TIXC ("INUTFSI
Figure C-6. Simulation of SAPRC EC-82 (Concluded).
279
-------
6.
i'
1. !1
•T «TMT
' TTT T T
» - T T TTTT
Toluene
1JO
15C
1TTTTTTT
'TTTTTfV
v • TTTTTTT
« - TTT7T
203
2*C
3i:
35:
4C1;
I.S.
u :•:
• i
« i »
11*111 •• * *
• »222222222
» 22222 * 222
2222 » 222
« 22 « 2
2 2 Mn * 2
2222 WU2 2
« 222 2
• 2 2 2
« 2 1 22
« t 2 • 2
27 • 2 « 111 2
»; «ir» in
"*<•••' * l ! i NO
» 1
1
• 11
• u
111
* 11
111
• 11
* 111
• « » • 1*11111111
9: n> is: 2;) IK 300 390 too
TIP'S (MINUTES!
Figure C-7. Simulation of SAPRC EC-83.
280
-------
31
3
Ozone
33
33
• • 33
• ' 333
• 3)33332 3 3 i 1 3333333333?
is: zee 290
TICE (MINUTES)
si:
350
06:
.J2'-
.030
, , . .
Benzaldehyde
e
• F
f
r
F
f
FF
f
f
f
F
FRRBBM
H" 8
XPHBHB
FF
FF
F
OP
PPBB
P
FF
FF
Formaldehyde , F
XF
PF«FF F r F «
*: ir>
TIPF (MINUTES)
» PP
pp
PAN fn*>"
p PPPPPPPPPPPPP
z*j 3j; 35;
400
Figure C-7. Simulation of SAPRC EC-83 (Concluded).
281
-------
1. •:•
t»
J.M«
»« A
",, „ Toluene
ttx t
«A A
A A
..J5»
1))
15) 23.-
Tt«F I1I-IUTESI
3)0
35'J
••-*
433
|n
ce cccc c
«C
" c
c
»• •
CtC
r
* C
« C
c
, e
NO
N0a c; . '
c 4
c
P J « « CC
BPPB a im B*BB* • * * cc ccccc c c*c c c c
151 200 Z» 330 3M 400
TIKE IHINUTESI
Figure C-8. Simulation of SAPRC EC-84.
282
-------
:• i
A A A
AAAA
A * A
A* A
A Ozone *
A *
A •
A
A •
M •
-------
'. 1.
T
I
Toluene
*A 4
H
IOC ISC
33'
35:
I
» « r rccc
'. r.t crc
r « er.
• « r
• »
«C
» r •
cc
r
cc
c
» C
« C
, • «6»"etB«PB« •« « « • CC CCC C»C C C CC * C« C C CC
i:c 2C-: z«c JJC 3M «oo
Figure C-9. Simulation pf SAPRC EC-85.
284
-------
A«
* *
lit
AAA *
A A A
•A
Ozone
. « PAN
• » 4 » » B 8 B 8f
At • » 6B6 9 B 8 B 8S »
.'•• /(«.'A»ef« « »HB C PRPB6HHBRB BB
1'J 15; 21} 25J 3J1 351 400
Tl»e (HINUTCSI
3. >e
C. )4
O.JO
• Formaldehyde
rrc ccc cccc «
cccc « « cccccrc
ere • A A c c ccc
c r A eccccc
cr .• • r cc cc
• « •»
t*A AW.A A
Benzaldehyde r c f f c cc or
c cc.
15! 2J: 25?
TICF (MINUTES)
__
35J *00
Figure C-9. Simulation of SAPRC EC-85 (Concluded).
285
-------
U2v
.00*
it
11 fT
TTT *
II "
151
TT TT'
1TT«
TTTT T
Toluene
*TTI
T'TTTT
If'
TlfF (Mi:«JTES)
25.'
• T • 1
1 1
-.4..*
11
71
2»
2
22*
z
I «2
1
1 J
1 • 7
1
1 2
1 1
•• • '
1 2
1 Z
I-
\
1
1
I
\
t
'l NO ?2 * .
!• 2
»
\ Z
I 2 •
i' i «
1 2 *
1
. 2 « »
j 2 * «
1 • 2
11 « 222 22
11 i* ll'U- « • » » • 22 22 2*2 2*2 2 »2 2 2
!«.? 2CC
Tiff
2!C
330 319
400
Figure C-10. Simulation o£ SAPRC EC-86.
286
-------
r riir FKTF
3 1
3 3
33 3
333
Ozone ,,33 3
3"
333
HII FFFf-err FFFFF FF
3 •
2
3' •
F F F F F F F
3 FFFFFFF FFFF FF
3? fFF FFF r, 1 j i_ j
FF FFFFFFF *ormalaehyae
33
SJ IJt IS} Z.» 29J 331 353 400
13
O.J1
pp
PP° PAN
fff•• feeee ee P
!>» SB * PP
P1"1 BBBB P *
"C « « 88B«°
1 « « PB BBS » » »
• P *8fl
» PP BBBB B
A f «BB BB
PP B B fl
•* P B B B
BO
» « F»F fPppp P
19) 2)0 2» 330 3!J 400
Figure C-10. Simulation of SAPRC EC-86 (Concluded).
287
-------
REFERENCES
1. J. N. Pitts, Jr., et al., "Mechanisms of Photochemical Reactions in
Urban Air," EPA Report 600/3-77-0146, February 1977, and subsequent
Quarterly Reports.
2. K. L. Demerjian, J. A. Kerr, and J. G. Calvert, Adv. Environ. Sci.,
4., 1 (1974).
3. H. Niki, E. E. Daby, and W. Weinstock, Adv. Chem. Series, 113, 16
(1972).
4. T. A. Hecht, J. H. Seinfeld, and M. C. Dodge, Environ. Sci. Technol.,
.8, 327 (1974).
5. G. Z. Whitten and H. Hugo , "Mathematical Modeling of Simulated
Photochemical Smog," EPA Report 600/3-77-011, January 1977-
6. M. C. Dodge, "Effect of Selected Parameters on the Prediction of a
Photochemical Model," EPA Report 600/3-77-048, June 1977.
7. R. Overend, G. Paraskevopoulos, and C. Black, J. Chem. Phys., 64,
4149 (1976).
8. C. Anastasi, I.W.M. Smith, and R. Zellner, Chem. Phys. Letters,
37, 370 (1976); L. Anastasi, I.W.M. Smith, J. Chem. Soc. Faraday
Trans II, 1459, (1976).
9. C. J. Howard, J. Chem. Phys., private communication.
10. P. L. Bevan and G.R.A. Johnson, J. Chem. Soc., Faraday Trans. I,
j69_, 216-277 (1973).
11. D. D. Davis, J. T. Herron, and R. E. Huie, J. Chem. Phys., 58,
530-535 (1973).
12. K. H. Becker, U. Schurath, and S. H. Seit, Int. J. Chem. Kinetics,
£, 725-739 (1974).
13. R. F. Hampton and D. Garvin, "Chemical Kinetic and Photochemical
Data for Modeling Atmospheric Chemistry," NBS Technical Note 866,
National Bureau of Standards, Washington, D.C,, 1975.
14. W. B. DeMore, Science, 180. 735-737 (1973).
15. A. Barker and H. S. Johnston, J. Phys. Chem. 77_, 1153-1156 (1973).
288
-------
16. E. D. Morris and H. Niki, J. Phys. Chem., 77, 1929-1932 (1973).
17. W. H. Chan, R. J. Nordstrom, J. G. Calvert, and J. H. Shaw, Environ.
Sci. Technol., 10, 674-682 (1976).
18. R. Atkinson, D. K. Hansen, and J. N. Pitts, Jr., J. Chem. Phys.,
j>2, 3284 (1975).
18. R. Atkinson and J. N. Pitts, J. Chem. Phys., 6>2_, 3284-3288 (1975).
19. T. T. Paukert and H. S. Johnston, J. Chem. Phys., 56, 2824 (1972).
19a. JANAF Thermochemical Tables, 2nd Ed., D. R. Stull and H. Prophet,
Nat. Stand. Ref. Data Ser., Nat. Bur. Stand., J37_ (June 1971).
20. F. Stull and H. Niki, J. Chem. Phys., 57_, 3671-3677 (1972).
21. R. Walker, Chem. Soc., Spec. Publ. II.
22. L. Batt, R. T. Milne, and R. D. McCullough, Int. J. Chem. Kinetics,
i, 567-587 (1977).
23. D. G. Hendry and R. A. Kenley, J. Amer. Chem. Soc., 99, 3198 (1977).
24. D. M. Golden and G. Smith, Int. J. Chem. Kinetics, in press.
25. H. Niki, P- D. Maker, C. M. Savage, and L. P. Breitenbach, Chem.
Phys. Letters, in press.
26. A. C. Baldwin, J. R. Barker, D. M. Golden, and D. G. Hendry, J.
Phys. Chem., in press.
27. J. R. Barker, S. W. Benson, G. D. Mendenhall, and D. M. Golden,
"Measurement of Rate Constants of Importance in Smog." EPA Report
600/3-77-110, October 1977.
28. S. W. Benson, Thermochemical Kinetics, 2nd ed. (John Wiley and Sons,
Inc., New York, 1976).
29. J. R. Barker, S. W. Benson, and D. M. Golden, Int. J. Chem. Kinetics,
9_, 31 (1977).
30. D. A. Parkes,Int. J. Chem. Kinetics, £, 451-469 (1977).
31. G. E. Zaikov, J. A. Howard, K. U. Ingold, Can. J. Chem., 47, 3017
(1969).
32. J. T. Herron and R. D. Penzhorn, J. Phys. Chem.,23_, 191 (1969).
33. E. D. Morris, Jr., and H. Niki, J. Chem. Phys., 55, 1991 (1971).
289
-------
34. W. J. Braun, L. Rajbenbach, and F. R. Eirich, J. Phys. Chem., 66,
1591 (1962).
35. G. Emanuel, Int. J. Chem. Kinetics, 4_, 591 (1972).
36. R. I. Martinez, Dissertation Abstracts International, 1976, 6193-B.
37. M. B. Colket, D. W. Naegeli, and I. Classman, 16th Combustion
Symposium, Paper No. 87 (1976).
38. G. Moortgat, private communication and Abstracts from Fifth Inter-
national Symposium on Gas Kinetics, July 1977.
39. J. G. Calvert, J. N. Pitts, Jr., and D. D. Thompson, J. Amer.
Chem. Soc., 2*L> 4239 (1956).
40. J. Weaver, J. Meagher, and J. Heicklen, J. Photochem. , 6_, 111,
(1976/77).
41. H. S. Johnston and R. Graham, Can. J. Chem., 52, 1415 (1974).
42. R. A. Cox, J. Photochem., _3, 175 (1975).
43. H. S. Johnston and R. Graham, J. Phys. Chem., 77, 62 (1973).
44. H. C. Urey, L. H. Dawsey, and F. 0. Rice, J. Amer. Chem. Soc., 51,
1371 (1929).
45. M. Gripps, J. of Chem. Phys., 49. 857 (1968).
46. E.C.Y. Inn and Y. Tanaka, J. Opt. Soc., Amer., 43, 870 (1953).
47. R. D. McQuigg and J. G. Calvert, J. Amer. Chem. Soc., 91, 1590 (1969)
48. J. G. Calvert and J. N. Pitts, Jr., "Photochemistry," (John Wiley
and Sons, Inc., New York, 1967).
49. R. Overend and G. Paraskevopoulos, J. Chem. Phys., 67_, 674 (1977).
50. R. Atkinson and J. N. Pitts, Jr., J. Chem. Phys., 63, 3591 (1975).
51. D. D. Davis, "Investigation of Important Hydroxyl Radical Reactions
in the Perturbed Troposphere," EPA Report 600/3-77-111, October 1977.
52. S. M. Japar, C. H. Wu, and N. Niki, J. Phys. Chem., 7.8, 2318 (1974).
53. F. Stuhl and H. Niki, J. Chem. Phys., 55_, 3904 (1971).
54. R. J. Cvetanovic, Adv. Photochem., !_, 115 (1963).
290
-------
55. R. Atkinson and J. N. Pitts, Jr., J. Phys. Chem., 78, 1780 (1974).
56. S. M. Japar and H. Niki, J. Phys. Chem., ^79, 1629 (1975).
57- H. Niki, E. E. Daby, and B. Weinstock, Advances in Chemistry Series,
113, American Chemical Society, Washington, D. C.
58. H. E. O'Neal and C. Blumstein, Int. J. Chem. Kinet., .5, 397 (1973).
59. J. Herron and R. E. Huie, J. Amer. Chem. Soc., j>9_, 5430 (1977).
60. N. R. Greiner, J. Chem. Phys., ^6, 1919-1924 (1972).
61. A. C. Lloyd, K. R. Darnall, A. M. Winer, and J. N. Pitts, J. Phys.
Chem., 80, 789-794 (1976).
62. J. T. Herron and R. E. Huie, J. Phys. Chem., 73, 3327-3337 (1969).
63. R. Atkinson and J. N. Pitts, Jr., J. Phys. Chem., 79, 295 (1975).
64. D. D. Davis, W. Bollinger, and S. Fischer, J. Phys. Chem., 79,
293 (1975).
65. R. A. Perry, R. Atkinson, and J. N. Pitts, Jr., J. Phys. Chem.,
8.1, 296 (1977).
66. R. A. Kenley, J. E. Davenport, and D. G. Hendry, to be published.
67. R. J. O'Brien, unpublished data.
68. R. A. Perry, R. Atkinson, and J. N. Pitts, Jr., J. Phys. Chem.,
81, 1607 (1977).
69. D. G. Hendry, unpublished data.
70. J. D. Bevington and J. Toole, J. Polyra. Sci., 28, 413 (1958).
71. W.P.L. Carter and J. N. Pitts, private communication.
291
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
REPORT NO.
EPA-600/3-78-Q59
3. RECIPIENT'S ACCESSIOWNO.
4. TITLE AND SUBTITLE
COMPUTER MODELING OF SIMULATED PHOTOCHEMICAL SMOG
5. REPORT DATE
June 1978
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
D.G. Hendry, A.C. Baldwin, J.R. Barker, and D.M. Golden
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
SRI International
333 Ravenswood Avenue
Menlo Park, California 94025
10. PROGRAM ELEMENT NO.
1AA603 AC-20 (FY-77)
11. CONTRACT/GRANT NO.
Contract No. 68-02-2427
12. SPONSORING AGENCY NAME AND ADDRESS
Environmental Sciences Research Laboratory - RTP, NC
Office of Research and Development
U.S. Environmental Protection Agency
Research Triangle Park. North Carolina 27711
13. TYPE OF REPORT AND PERIOD COVERED
Tntprim Q/76 - Q/77
14. SPONSORING AGENCY CODE
EPA/600/09
15. SUPPLEMENTARY NOTES
16. ABSTRACT
This report discusses continuing efforts to develop kinetic mechanisms to
describe the formation of photochemical smog. Mechanisms were formulated for
the ethene, propene, butene-1, trans-butene-2, n_-butane, 2,3-dimethylbutane,
and toluene/NO systems. Smog chamber data collectedwat the University of
California, Riverside were used to test these mechanisms. The mechanisms are
composed of critically evaluated kinetic data for the individual reactions to
the extent possible. Where data on specific reactions were not available or
were not at the appropriate temperature and pressures, thermochemical techniques
were used to estimate or extrapolate existing data to obtain the desired rate
data. Whenever thermochemical data were estimated to predict rate constants,
error bounds were assigned to the estimates and the resulting rate constants.
In only a relatively few cases was it necessary to vary the estimated rate
constants within the error limits in order to optimize the agreement between
computed and experimental concentration-time profiles. Given the kinetic
information currently available, this general approach minimizes the need for
adjustment of rate constants and produces mechanisms that are valid representations
of" the homogeneous gas-phase chemistry of each of these hydrocarbons in photochemical
smog formation.
7.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
Air pollution
Reaction kinetics
Photochemical reactions
Mathematical models
Computerized simulation
b.lDENTIFIERS/OPEN ENDED TERMS C. COS AT I Field/Group
13B
07D
07E
12A
14B
8. DISTRIBUTION STATEMENT
RELEASE TO PUBLIC
19. SECURITY CLASS (ThisReport)
UNCLASSIFIED
21. NO. OF PAGES
304
20. SECURITY CLASS (Thispage)
UNCLASSIFIED
22. PRICE
EPA Form 2220-1 (9-73)
292
------- |