EPA-600/2-77-138
August 1977
Environmental Protection Technology Series
            EFFECTS  OF  FLOW EQUALIZATION ON THE
               OPERATION AND  PERFORMANCE OF AN
                             ACTIVATED SLUDGE PLANT
                                  Municipal Environmental Research Laboratory
                                       Office of Research and Development
                                      U.S. Environmental Protection Agency
                                              Cincinnati, Ohio 45268

-------
                 RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology.  Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:

      1.   Environmental Health Effects Research
      2.   Environmental Protection Technology
      3.   Ecological Research
      4.   Environmental Monitoring
      5.  Socioeconomic Environmental Studies
      6.  Scientific and Technical Assessment Reports (STAR)
      7.   Interagency Energy-Environment Research and Development
      8.  "Special" Reports
      9.  Miscellaneous Reports

This report has been assigned to the ENVIRONMENTAL PROTECTION TECH-
NOLOGY series. This series describes research performed to develop and dem-
onstrate instrumentation, equipment, and  methodology to repair or prevent en-
vironmental degradation from point and non-point sources of pollution. This work
provides the new or improved technology required for the control and treatment
of pollution sources to meet environmental quality standards.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.

-------
                                       EPA-600/2-77-138
                                       August  1977
 EFFECTS OF FLOW EQUALIZATION ON THE OPERATION
AND PERFORMANCE OF AN ACTIVATED SLUDGE PLANT
                        by

       G. W. Foess, 3. G. Meenahan and D. Blough

               Johnson & Anderson, Inc.
               Pontiac, Michigan 48056
                 Grant No.S 801985
                   Project Officer
                 Ben \V. Lykins, Jr.
            Wastewater Research Division
      Municipal Environmental Research Laboratory
               Cincinnati, Ohio  45268
MUNICIPAL ENVIRONMENTAL RESEARCH LABORATORY
      OFFICE OF RESEARCH AND DEVELOPMENT
     U. S. ENVIRONMENTAL PROTECTION AGENCY
              CINCINNATI, OHIO 45268

-------
                                   DISCLAIMER
      This  report  has  been  reviewed  by  the  Municipal Environmental  Research
Laboratory, U. S. Environmental Protection Agency,  and approved  for  publication.
Approval does not signify that the contents necessarily reflect the views and policies of
the U. S.   Environmental Protection Agency,  nor  does mention  of  trade  names  or
commercial products constitute endorsement or recommendation for use.
                                       11

-------
                                   FOREWORD
     The  Environmental Protection Agency was created because of increasing public
and government concern about the dangers of pollution to the health and welfare of the
American  people.  Noxious air, foul water and spoiled land are tragic testimony to the
deterioration of our natural environment.  The complexity of that environment and the
interplay between  its components require a concentrated and integrated attack on the
problem.

     Research and development is that necessary first step in problem solution, and it
involves defining the problem, measuring its impact, and searching  for solutions.   The
Municipal  Environmental Research Laboratory develops new and improved technology
and systems for  the prevention, treatment,  and management of wastewater  and  solid
and hazardous waste pollutant discharges from municipal and community sources, for
the preservation and treatment of public drinking water supplies, and to minimize the
adverse economic, social, health, and aesthetic effects of pollution.  This publication is
one of the products of  that research;  a most vital communications link between the
researcher and the user community.

       It provides  a documentation of the operation and an evaluation of the impact of
flow equalization as applied to a medium-sized municipal wastewater treatment plant.
                                         Francis Mayo
                                         Director
                                         Municipal Environmental
                                         Research Laboratory
                                       111

-------
                                    ABSTRACT
      A plant-scale research program was carried out for more than a year to evaluate
 the impact of flow equalization on the 14,000  m /day (3.7 mgd) upgraded activated
 sludge  plant  at  Ypsilanti Township, Michigan.  Process streams were  characterized
 under both equalized and unequalized flow conditions with respect to BOD, COD, TSS
 and forms of nitrogen and phosphorus.

      The  equalization system was effective in leveling influent diurnal flow variations
 but was limited  in its  ability to  dampen variations in wastewater concentration and
 mass flux.  Some biochemical  action apparently occurred in the equalization basin,
 although  BOD removal  was marginal and inconsistent.  Analysis of secondary effluent
 indicated  that plant performance was similar with  and without equalized  flow,
 suggesting that the theoretical advantages of flow equalization may not be achieved in
 manually controlled plants.  An examination of  theoretical power costs for equalized
 and unequalized  flow conditions indicated that  the use of flow equalization  did not
 result in power cost economies.

      This report was submitted in fulfillment of  Grant  No.  S 801985 by Ypsi-
lanti Township under the sponsorship  of the U.S.   Environmental  Protection
Agency.    Work  was subcontracted  to  Johnson § Anderson,  Inc.    The  report
covers the period  June 1974  to August  1975, and work  was  completed   as  of
December  1976.
                                       IV

-------
                              CONTENTS
  FOREWORD                                                iii
  ABSTRACT                                                 iv
  FIGURES                                                   vi
  TABLES                                                   vii
  ABBREVIATIONS AND SYMBOLS                              ix
  ACKNOWLEDGMENTS                                       xi
  I.   INTRODUCTION                                       1
 II.   SUMMARY                                            4
 III.   CONCLUSIONS                                         6
 IV.   RECOMMENDATIONS                                   8
 V.   EXPERIMENTAL PLAN                                  9
 VI.   PLANT AND EQUIPMENT DESCRIPTION                   11
      Plant No. 1                                            11
      Plant No. 2                                            16
 VII.   METHODS AND  PROCEDURES                            17
      Sampling and Analysis Schedule                            17
      Analytical Methods                                      19
      Data Reduction                                         21
VIII.   RESULTS AND DISCUSSION                              22
      Equalization System Equipment Performance
           and Reliability                                     22
      Flow, Concentration and Mass Equalization                  23
      Mass Transformations within the Equalization Basin           30
      Activated Sludge System Performance                      33
      Special Studies                                         48
      Operational Problems During Study                         49
      Cost Considerations                                      51
 REFERENCES                                               56

 APPENDIX                                                 58

-------
                                       FIGURES
Number                                                                     Page

  1          Flow Schematic of Ypsilanti Township
                  Wastewater Treatment Facilities                             12
  2          Plan and Section of the Ypsilanti Township
                  Equalization Basins                                          13
  3          Typical Concentration Variations in the Influent and
                  Effluent of the Equalization Basin Over a
                  72-Hr Period (April 14-16, 1975)                              28
  4          Typical Mass Flow Variations in the Influent and
                  Effluent of the Equalization Basin Over a
                  72-Hr Period (April 14-16, 1975)                              31
  5          Concentration of BOD^ and Suspended Solids in Plant No. 1
                  Effluent During Periods of Equalized and Unequalized
                  Flow                                                        39
  6          Response of Secondary Clarifier Effluent Suspended Solids
                  Concentration to an Increase in Loading                       46
  7          Concentration of Suspended Solids in  Bi-Hourly Samples
                  of Secondary Effluent Versus Clarif ier Loading
                  Rate at the Time of Sampling - Diurnal Flow
                  Conditions                                                  47
  8          Depth Profiles of TSS and D.O.-in the Equalization Basin
                  at Different Levels of Air Input                               50
                                        VI

-------
                                      TABLES
Number
  1         Daily Samples - Collection Locations, Sample Types,
                  and Parameters Analyzed                                   lg
  2         Bi-Hourly Samples - Collection Dates and Locations,
                  Sample Types, and Parameters Analyzed                      20
  3         Performance of Plant No. 1 During Periods
                  of Bi-Hourly Testing                                       2k
  k         Performance of Plant No. 1 During Periods
                  of Bi-Hourly Testing (Cont.)                                25
  5         Performance of Plant No. 1 During Periods
                  of Bi-Hourly Testing (Cont.)                                26
  6         Performance of Plant No. 1 During Periods
                  of Bi-Hourly Testing (Cont.)                                27
  7         Mass Balance Across Equalization Basin                           29
  8         Comparison of Mean Values of BOD^ and TSS
                  in Raw Waste Versus Equalization Basin
                  Effluent - Daily Data Grouped by Month                      32
  9         Comparison of Mean Values of BOD- and TSS in
                  Raw Waste Versus Equalization Basin Effluent -
                  Daily Data Grouped in 3-Month Periods                      34
 10         Conditions of Operation of Plant No. 1 During Study
                  Period                                                    35
 11         Performance of Plant No. 1 During Study Period -
                  BOD5 and TSS                                             36
 12         Performance of Plant No. 1 During Study Period -
                  VSS and TP                                               37
                                      VII

-------
Number                                                                    Page
 13          Conditions of Operation and Performance of Plant No. 1
                  During Periods of Equalized and Unequalized Flow             40
 14          Conditions of Operation of Plant No. 1 During Periods of
                  Bi-Hourly Testing                                          42
 15          Construction Cost - Ypsilanti Township Plant No. 1
                  Improvements                                              52
 16          Construction Cost-Ypsilanti Township Plant No. 1
                  Equalization System                                        53
 17          Effects of Equalization on Annual Plant Operating Costs             55
                                     Vlll

-------
                         ABBREVIATIONS AND SYMBOLS
avg                            average
BOD^                          5-day biochemical oxygen demand
cfm                            cubic feet per minute
cm                            centimeter(s)
COD                           chemical oxygen demand
cu                             cubic
DO                            dissolved oxygen
ft                             foot (feet)
F/M                            food-to-Microorganism ratio
gal                            gallon(s)
gpd                            gallons per day
gpm                            gallons per minute
kg                             kilogram(s)
kw                            kilowatt(s)
kwh                            kilowatt hour(s)
1                               liter(s)
Ib                             pound(s)
m                             meter(s)
mm                            millimeter(s)
max                            maximum
mgd                            million gallons per day
mg                            milligram(s)
min                            minute(s)
ml                             milliliter(s)
MLSS                          mixed liquor suspended solids
MLVSS                         mixed liquor volatile suspended solids
NHo-N                         ammonia nitrogen
                                     IX

-------
                 ABBREVIATIONS AND SYMBOLS  (CONTINUED)
NO.J-N                          nitrite + nitrate nitrogen
psi                             pounds per square inch
s                               second
scfm                            standard cubic feet per minute
SOP                            soluble orthophosphate (expressed as phosphorus)
SRT                            solids retention time
sq                              square
SDI                             sludge density index
SVI                             sludge volume index
TDH                            total dynamic head
TKN                            total kjeldahl nitrogen (sum of TON and NH3-N)
TON                            total organic nitrogen
TP                             total phosphorus
TSS                             total suspended solids
VSS                             volatile suspended solids

-------
                              ACKNOWLEDGMENTS
This project  was conducted by the Environmental and Basin Management  Division of
Johnson & Anderson (G. A. deary - Director).   The technical efforts involved direct
contributions by the following personnel:

     J. G. Meenahan  -    Vice President
     G. W. Foess     -    Manager of Environmental Planning
     D. Blough       -    Chief Chemist
     D. F. Kriewall   -    Laboratory Technician
     R. H. Morris    -    Laboratory Technician

Appreciation is expressed to  the  Ypsilanti Township (Michigan) Water  and Sewer
Department for permission to conduct the work  at their Airport Wastewater Treatment
Plant.   The cooperative  attitude and  assistance of  William E. Winters,  Supervisor of
Ypsilanti Township; Eldon Ahles, Superintendent of the Water & Sewer Department and
his staff at the treatment plant contributed greatly to the successful completion of the
program.  Acknowledgment is also given to Dr.  P. M. Meier for his expert assistance in
the computer analysis of the data.

Finally, the  efforts of Ben W. Lykins,  Jr. and John M. Smith of the Municipal Environ-
mental Research Laboratory of the U.  S. Environmental Protection Agency were greatly
appreciated.
                                        XI

-------
                                    SECTION I

                                 INTRODUCTION
Most  municipal  treatment plants  experience  variations in the quantity and quality of
influent wastewater.  Such variations  occur according to the time of  day, day  of the
week, and season of the year.  Their magnitude is primarily a function of the size and
characteristics of the sewer system, the degree of infiltration-inflow, and the relative
impact of industrial contributors.

Recently, there  has been a considerable amount of interest in the use of flow equaliza-
tion basins to smooth  out  the  diurnal fluctuations of  concentration and flow rate at
municipal treatment plants.  For example, at  least three feature articles have appeared
in technical magazines since  1974 highlighting the presumed benefits and applications of
                 1  3
flow equalization.     Among the reported advantages are the following:

      1.    Equalization  improves  performance of  sedimentation  basins  by leveling
           hydraulic variations and reducing  peak flow rates; in so doing, it permits
           smaller requisite  clarifier sizes in  new plant design or increases capacity of
           existing units.

      2.    It  benefits biological treatment by producing increased uniformity  in  the
           concentration and flux of organics and nutrients in the wastewater, as well
           as  more stable retention periods and biomass concentrations in the aeration
           basin.

      3.    It  simplifies manual and automated control of  flow-rate dependent  opera-
           tions, such as chemical feeding, disinfection, sludge pumping, etc.

-------
      4.   It  improves  the  settleability  of  wastewater  and  provides  some  BOD
           reduction and odor removal (if aeration is used for mixing in the equalization
           basin).

      5.   It provides a point of return for recycling concentrated waste streams,
           thereby mitigating shock loads to primary settlers or aeration basins.

      6.   It provides the potential for lowering energy costs by dampening peak power
           demands for pumping and aeration.

 Actual operating experience  with flow equalization systems is quite limited and has
 produced some  mixed results.   LaGrega  and Keenan  found that  suspended solids
 removal in a primary settler improved with flow equalization  and that the standard
 deviation of  primary effluent data was substantially lower  under equalized conditions
 for the variables tested (BOD, COD, TOC, TSS and VSS). The diurnal variations in these
 experiments  produced a peak-to-average flow rate ratio of less than 1.5. The results of
 Boon and  Burgess  were less promising.  These  authors performed pilot plant studies
 with parallel activated sludge systems in which one system operated with constant flow
 and the other with  diurnally  varying flow at a peaking factor of 2.1.  Data obtained
 failed to show that  flow  equalization had any significant effect on 2^-hour composite
 BOD removal; however, effluent BOD was found  to be more consistent  under constant
 flow conditions.  In a plant-scale study, Foess,  et al compared the performance of an
 underloaded  plant under sequential periods  of equalized and normal flow.   They found
 that the  performance of tertiary filters was better when the flow was equalized but
 that equalization had no discernible effects on the activated sludge  system perform-
 ance.

 In  activated  sludge  systems, fluctuating  flows have the potential  to  generate (a) a
 biological response,  wherein the biochemical efficiency of substrate removal might be
 affected; (b) a  biophysical  response,  in which changes in  sludge settleability might
 occur; and (c) a purely physical response in which the liquid-solids separator might
 become overloaded  at the  peak diurnal flow.  According to George  and Gaudy,  the
 biological response in completely mixed systems becomes significant only after there is
                                                                9
 a flow rate increase of more  than 100  percent.  Busby and Andrews   showed that both
 the  biological and  biophysical effects of  diurnal  variations  can  be mitigated  by
application of one  or more  available control  strategies designed to regulate MLSS

-------
without the need for flow equalization.*  Thus, the liquid-solids separation step is the
one that appears to be the most sensitive to flow rate variations and is the one that was
focused on in this study.
                                                                                  g
The cost-effectiveness of flow equalization is another area of uncertainty.  Smith et_al
and the Ontario Ministry of the Environment   have performed work in this area but the
reported results were considered by each  author to  be  preliminary  in nature.  Plant
operating data with and without equalization  are needed before a final determination
of the cost-effectiveness of equalization can be made.

Techniques for designing the equalization basins themselves are fairly well established.
In municipal wastewater treatment, the objective is usually to equalize flows rather
than concentrations and the conventional mass diagram approach can be used.    If con-
centration dampening is the objective,  several analytical methods are available,
but their focus is on industrial rather than  municipal wastes.  Modeling of equalization
basin  performance   is  generally  based  on  assumptions  of complete  mixing  and
conservative  (nondegradable)  substances.   There   is  a virtual  lack  of published
performance  data  on  equalization  basins receiving municipal sewage.   The  work
reported herein will provide information on the magnitude of BOD reductions and other
biochemical transformations that may occur across an equalization basin.
*Such control  strategies  include,  for  example,  1) varying  sludge  return rate  in
proportion to influent wastewater rate, 2) varying the recycle flow rate in accordance
with  the height of the sludge blanket in the darifier, 3) regulating waste sludge flow
rate as a function of sludge blanket height, and 4) using continuously adjusted step-feed
contacting patterns.

-------
                                    SECTION II

                                    SUMMARY
 A plant-scale research program was carried out for more than a year to evaluate the
 impact of flow  equalization on the operation and performance  of a  conventional
 activated sludge  plant. The studies were conducted at the Ypsilanti Township, Michigan
 treatment plant, an upgraded 14,000  m3/day (3.7  mgd) facility containing an "in-line"
                                            •j
 equalization basin  with a  capacity of 2377 mj (628,000 gal).  The average daily plant
 flow  was about  15,140 m /day (4 mgd) while  peak hourly  flows were around  22,700
 m /day (6 mgd).

 Daily  24-hr composite samples were collected  from process streams before  and after
 equalization and after final  clarification; in addition,  a more rigorous sampling and
 analysis program was conducted during a  few days  each  month  in which  bi-hourly
 composite samples were collected and analyzedi For comparative purposes, short-term
 data  were obtained on plant performance after taking the equalization basin  out of
 service. Special  studies were also conducted in which the plant was stressed in both the
 equalized and unequalized modes by selectively removing final clarifiers from service,
 thereby increasing the overflow rate in the remaining clarifiers.

 The equalization system functioned in a  reliable manner throughout the study and was
 highly effective in leveling influent diurnal flow variations and providing a uniform daily
 flow  rate to the activated sludge  process.  The degree of  concentration  and mass
 dampening achieved was  much more limited  and appreciable variability of strength
 remained in the equalized  stream.  Statistical analysis of the data revealed that reduc-
 tions  in the variances of BOD- TSS and other constituents such as COD, SOP, TP, and
NH--N across the equalization basin were in the range of about 20 to 80 percent based
 on concentration  and 45 to 95 percent based on mass.

-------
Comparison of mass flux data into and out of the equalization basin for TSS, BOD, COD,
SOP, TP, NH,-N and TON indicated that some biochemical action occurred in the basin.
There was a definite increase  in  suspended solids across the basin but BOD- removal
was marginal and inconsistent.

Analysis of secondary  effluent indicated  that  the effects of flow  equalization  were
apparently less  important  in determining  effluent quality than the effects of other
operational variables such as organic loading intensity, sludge settleability, wind and
density  currents, recycle rate, sludge blanket height, chemical  dose (for P precipita-
tion), etc.  This was evidenced by a) the similar removals of TSS and BOD 5 that were
obtained with and without equalized flow, and b) the lack of sensitivity of final clarifier
performance to diurnal  variations  in overflow rate  for overflow rates up  to
57 m3/day/m2 (1400 gpd/sq ft).

An analysis of costs showed that the capital costs associated with conversion of existing
digesters to equalization basins were only  about  25%  of  those  that would have been
experienced with construction of new equalization facilities.  An analysis of theoretical
power costs  for equalized and unequalized flow  conditions indicated no power  cost
economies occurred with flow equalization.  Reductions in demand charges were slightly
less than increased  energy  charges during equalized flow periods.

-------
                                   SECTION III

                                  CONCLUSIONS
 1.    Existing digesters, which might otherwise be abandoned in a plant expansion, can
      be converted to workable equalization basins (Section VIII, p. 22).

 2.    At the Ypsilanti Township treatment plant, the use of flow equalization does not
      add measurably to overall labor requirements for the plant (Section VIII, p.
3.    The degree of concentration and mass dampening will be limited in in-line equal-
      ization basins which are sized to level only diurnal flow variations, as evidenced
      by the  reductions in variance of waste parameters across the equalization basin
      in these studies.  Variance reductions for TSS, BOD^, COD, SOP, TP, NFiL and
      TON ranged generally from  20 to 80 percent for concentration and 45 to 95
      percent for mass (Section VIII, p. 30).

4.    Equalization produces changes  in  the waste as a result of  biochemical action
      within  the  basin  but  such changes are small.   For  example, BOD^ reduction
      across the equalization basin  averaged only about 7 percent, while some  growth
      of biomass  occured, causing an increase in TSS of about 9 percent (Section VIII,
      p. 30).

5.    Performance  of  the  Ypsilanti  Township  plant  was  very  similar  under  both
      equalized and  normal  flow  conditions,  even  when  the  final  clarifiers were
                                                          •7       j
      hydraulically stressed to overflow rates as high as 57 m /day/m  (1400 gpd/sq ft)
      (Section VIII, pp. 4 1-48).

-------
6.   The theoretical advantages  of flow  equalization  were  not  achieved  in  this
     manually controlled activated sludge treatment  plant  operated at and above
     conventional design loading ranges. It is concluded that any beneficial effects of
     flow equalization were overshadowed or  neutralized by a) suboptimal application
     of control schemes for the biological process, and b) a lack of sensitivity of final
     clarifier performance to normal variations in flow rate (Section VIII, pp. 44-48).

7.   The covered equalization basin at Ypsilanti Township had no significant effect on
     wastewater temperature; basin influent and effluent readings  were  generally
     within 1°C (Section VIII, p. 48).

8.   In  the  Ypsilanti Township  equalization basin, the aeration  requirements  for
     providing complete mixing are greater than for maintaining aerobic conditions.
     The minimum level of aeration for preventing solids deposition was about 7.5x10
     m3/min/1  (1.0 cfm/1000 gal) of storage (Section VIII, p. 49).

-------
                                    SECTION IV

                               RECOMMENDATIONS
The  results of the  work reported  herein  indicate that while  flow  equalization does
provide certain benefits, it is by no means  a panacea for improving the performance of
activated sludge plants. Thus, engineers should not specify the use of flow equalization
indiscriminantly but rather should critically evaluate its merits on a case-by-case basis.

If additional research related to flow equalization is undertaken, the following deserve
further consideration:

      1.    The variation in percentage removals obtained  by primary clarifiers and
           effluent  suspended  solids  carryover  by  secondary clarifiers  should  be
           evaluated for different intensities of flow and strength variations.

      2.    The effects of flow equalization on the requisite sizes of downstream treat-
           ment units should be determined.

      3.    The relative importance of flow equalization versus concentration and mass
           equalization should be evaluated.

      4.    The limitations  of equalizing diurnal flow variations while permitting day-
           to-day, weekly, and seasonal variations to continue should be studied.

      5.    The effects of flow equalization  on chemical treatment processes,  such as
           phosphorus removal, need further clarification.

-------
                                    SECTION V

                              EXPERIMENTAL PLAN
The  experimental  program  was undertaken  to  demonstrate  the  impact  of  flow
equalization on the operation and performance of a conventional activated sludge plant
treating  municipal sewage under  practical  operating  conditions.   In  general,  the
approach  was  to compare the  relative  process  performance of  the   plant  under
consecutive periods of equalized and unequalized operation.  A side by side comparison
of equalized and  unequalized activated sludge systems was also possible  in that there
were  two independent  parallel plants  on  the  site; however, this comparison  was of
limited value  because  the plants did not receive the same feed wastewater.   The
specific program  objectives were the following:

      1.    Demonstration  of  the  applicability of  employing  flow equalization in
           upgrading an existing activated sludge treatment plant.

      2.    Characterization of the effects of flow equalization on the concentration
           and mass of  organics and nutrients in the wastewater.

      3.    Comparison  of process treatment effectiveness and economics of equalized
           and unequalized-flow activated sludge systems operating under conventional
           organic loadings (0.2-0.5 g/g-day) and  aeration detention times (5-6 hours
           based on raw flow), and moderate to high final clarifier overflow rates of
           29-57 m3/day/m2(700-1400 gpd/sq ft).

      4.    Evaluation of  overall plant operation with respect to the relative  ease or
           difficulty of operating in the equalized versus the unequalized mode.

-------
These  studies  were  conducted  using  the Ypsilanti Township,  Michigan, Municipal
Treatment Plant with the cooperation  of  Township officials and the treatment plant
staff.   The  existing  Ypsilanti Township treatment facility comprises two  parallel
activated sludge plants.  Plant No. 1 was completed in 1942 with a design flow of 9,460
m /day (2.5 mgd), but was upgraded to treat 14,000 m3/day (3.7 mgd) and equipped with
flow equalization in  1973.   Plant No. 2 was  completed in  1965 and designed  for  an
average daily flow of  14,380 m /day (3.8 mgd).  As data presented here will illustrate,
the average daily flow of each plant is about 14,000 m3/day (3.7 mgd) with hourly flow
variations from 5,680 to 22,700 m3/day (1.5 to 6.0 mgd).  The BOD  strength of the
incoming wastewater to each plant averages about 200 mg/1 with hourly variations from
50 to 400 mg/1. Feed  wastewater to each  plant is predominately of domestic origin but
contains a representative portion (about 25 percent) of industrial waste.

The  experimental  plan  was  carried  out over  approximately  a  14-month  period.
Essentially three modes of operation of Plant  No. 1 were studied:  i) equalized flow at
approximately  the  design capacity of the  plant; ii) equalized flow under hydraulically
stressed conditions in  the final clarification step; and iii) unequalized (normal diurnal)
flow conditions.  No changes were made in the operation of Plant No. 2 throughout the
study;  this plant had  no direct role in  the research other than serving as a general
control.

The program objectives and plan described in the preceding reflect some changes which
were  made during  the course of the project.  Originally, it was hoped to modify the
influent works  so that both plants received the same wastewater; however, budgetary
limitations did  not permit these modifications to be made.  It was also hoped to modify
the influent works so that the diurnal flow variations  to Plant No. 1 could be magnified;
these modifications were also not implemented because of lengthy delays in equipment
delivery.
                                        10

-------
                                   SECTION VI

                      PLANT AND EQUIPMENT DESCRIPTION
Plant No. 1

General Description —

The waste water treatment complex in Ypsilanti Township, Michigan contains two inde-
pendent treatment plants (See Figure 1).  Most of the experimental work was performed
on Plant No. 1, a plug-flow activated sludge facility equipped for flow equalization and
ferric chloride and polymer addition to  the aeration basin effluent.  The plant has a
design treatment capacity of  14,000  m  /day (3.7  mgd)  based on  a  final clarifier
                        ^»       *\
overflow rate of 32.6 m  /day/m (800 gpd/sq ft).  There are no primary  clarifiers at
Plant No. 1.

Raw sewage from a portion of the  Ypsilanti Township collection  system enters a
pumping station  (Snow  Road  Lift  Station) located remotely from  Plant  No. 1.   The
sewage is pumped directly to the equalization tanks and then is re-pumped to a bar rack
channel.  Gravity flow occurs  through  the  remaining plant processes which  consist
respectively, of aeration,  final settling, and disinfection.  The equalization tanks can be
by-passed by pumping raw sewage  from the  pumping station directly to the bar rack
channel.

Equalization System —

The equalization  system at this plant is the in-line type.  Two existing digesters were
converted to equalization tanks, providing an effective retention capacity of 2,362
m3 (624,000 gal)  which  is about  17 percent of  the average daily design flow.  Figure 2
depicts pertinent features of the tanks.
                                         11

-------
                                BY-PASS
  PLANT  NO. I
BAR RACK  CHANNEL
N)

SNOW ROAD
LIFT
STATION
V)
V)
2
•
CD
1
OVERFLOW



^


EQUAL.
BASINS


V.
i
L
R


AERATION
BASIN
ETURN
fe
w


FINAL
CLARIFIERS
SLUDGE


WASTE SLUDGE


(PORTION)^
r
GRIT
CHAMBER



w
J->
WASTE SLUDGE
^
\
^
(PORTION)
r
DIGESTER
WASTE




^
A
SLUDGE
"WASTE SLUDGE
r
i W
\
k.
W

CHLORINE
CONTACT
CHAMBER

WAYNE
COUNTY
TRUNK
SEWER



— ^
RETURN SLUDGE

PRIMARY
SETTLING

1
r ^
WASTE

AERATION
BASIN
fc.
w



FINAL
CLARIFIERS
SLUDGE

^
w

CHLORINE
CONTACT
CHAMBER


-*

_^ TYLER
POND

                                             PLANT NO. 2

                 FIGURE 1 - Flow schematic of Ypsilanti Township wastewater treatment facilities.

-------
                                                  //MANHOLE 8
                                                  Afr'STEEL LADDER
                  ELEV
                                                  V ^EQUALIZATION PUMP

                                                     8" AIR PIPE

                                               TO BAR RACK CHANNEL
                                            PLAN
                                                        MANHOLE-
                                  HIGH W.S. ELEV. 711.00	
                       PIPE SUPPORT
                                                                             CONNECTING PIPES
                                        SECTION  A-A


FIGURE 2    -  Plan and section of the Ypsilanti  Township equalization
                 basins  (Note:  in.  x 2.54  = cm; ft x 0.3048 =  m).
                                            13

-------
 The process flow rate out of the equalization tanks is regulated by precisely maintaining
 the desired liquid level in the plant bar rack channel.  This is achieved by a liquid level
 controller in the channel tied to a throttling valve located directly after the equaliza-
 tion pump.  Thus, if the liquid elevation in the channel  begins to vary from the preset
 level, the throttle valve is automatically opened or closed to maintain the desired level.
 There is only one equalization pump; it has a capacity of 126 1/s (2000 gpm) at a TDH of
 9.1 m (30 ft).

 Air is supplied to the equalization tanks by a single positive displacement compressor
 with a rated capacity of 25.5 m /min (900 scfm) at 0.84 kg/sq cm (12 psig) of head. A
 second compressor of the same size is available as a stand-by unit. Valves and meters
 were installed so that the air flow to each  equalization tank can be  regulated  and
 measured independently.  Air injection is accomplished through Walker Process "Mono-
 Sparg 5/32" nozzles located 0.6 m (2 ft) from the bottom of the tanks.

 Aeration Basins —

 There are four  rectangular aeration tanks which operate in parallel.   Each tank is
 baffled into four compartments for better  plug flow characteristics.  The total volume
 of  the tanks is 3,510 m  (927,500 gal) which results in 6.0 hrs of mixed-liquor detention
 time  based on 14,000 m3/day (3.7 mgd) feed flow.  Each tank is 7.6 m (25 ft) wide,
 30.5 m (100 ft) in length, and 4.6 m (15 ft) deep.

 Air is normally  supplied from  one  84.0  m /min  (3000 scfm)  positive  displacement
 blower.   A  second blower of the same  size is also available when needed.   The
 compressed air is diffused into the mixed-liquor through Walker Process "Duo Spray
 5/32" nozzles.  The air pipes to each nozzle header contain valves for balancing the air
flow.   Ferric  chloride and polymer  solutions  are added to the outlet trough of  the
aeration basins for precipitation of phosphorus, with the feed rate being  automatically
paced to flow rate.

 Final Settling Tanks —

 Eight final clarifiers receive the aeration tank effluent.  Four of the tanks  are 4.3 m
 (14 ft) wide and 18.3 m (60 ft) long with a 3.7 m (12 ft) water depth. The remaining four
                                         14

-------
are 2.6 m (8.5 ft) wide and 18.3 m (60 ft) long with a 3.7 m (12 ft) water depth. The
final 5.5 m (18 ft) of each tank contains a bank of effluent weirs. Assuming that half of
the weir bank  area is ineffective for settling, the total settling  area of the  tanks is
426.6 m2 (4,590 sq ft).  Based on an overflow rate of 32.6 m3/day/m2 (800 gpd/sq ft) the
design flow rate is 14,000 m /day (3.7 mgd).

Settled activated sludge is moved to collection  hoppers in  each tank by mechanical
scrapers.  It then flows by hydrostatic  pressure to sludge draw-off wells.   From the
draw-off wells the sludge is pumped to the aeration basin influent.   Excess sludge is
wasted as required to  maintain a constant concentration of activated sludge in the
aeration basin.  Waste sludge is pumped to the plant digester or directly to the Wayne
County trunk sewer (the digester has sufficient capacity  to treat only about 20 percent
of the sludge generated).  There are two return sludge pumps, each with a capacity of
63.11/s (1000 gpm) at 9.1 m  (30 ft) TDH,  and two waste sludge  pumps, each with  a
capacity of 6.3 1/s (100 gpm).  The system  is designed so that return sludge  pumping
rates  are approximately proportional to the plant flow rate.   Return  sludge rates for
each  settler can also be independently controlled to meet  process conditions at any
given time.  Piping of the final settlers permits any one or more of the  eight units to be
individually taken out of service.

The reason for the two different sizes of final settling tanks  is that half of the settlers
were  originally used as primaries.   They were  converted to final  settlers in the
upgrading program just prior to this study.  By converting primary settlers to secondary
settlers and by converting existing digesters to equalization tanks, the plant  capacity
was increased from  9,460 m /day (2.5 mgd) to  14,000 m3/day (3.7 mgd)  without the
addition of any new structures.

Flow  Metering —

Plant  influent  flow is  measured by a  magnetic  flow meter at the influent  pumping
station.  There  is digital output of the totalized  flow at the  treatment plant but no
continuous recording of flow rate.  Plant  effluent flow is measured  by a rectangular
weir and is recorded on  circular charts.  Agreement between the  influent and  effluent
meters is  usually within  10  to  20 percent.    Some  or  all of the differences in
corresponding daily readings between the influent and effluent meters can be attributed
                                        15

-------
to  net accumulation or  release  of stored wastewater in the  equalization basins.
Instances were also  observed when the  equalization  tanks  overflowed;  since the
overflow  goes to Plant No. 2, it would  not be recorded by the Plant No. 1 effluent
meter.

Return sludge flow rate is measured with a magnetic flow meter  and continuously
recorded. Waste sludge flow rate is not independently measured due to interconnection
of the waste sludge piping systems of Plants No. 1 and No. 2.

Plant No. 2

Plant No. 2 treats wastewater from three gravity lines which serve those portions of the
Ypsilanti Township system not served by  Plant No. 1.  The treatment system comprises
comminution, grit removal, primary sedimentation, aeration, final sedimentation, and
disinfection.  Ferric chloride is added continuously to the aeration basin effluent for
                                                              3
phosphorus  removal.  The design treatment capacity is 14,380  m /day (3.8 mgd) based
                            3       2
on an overflow rate of 32.6 m /day m  (800 gpd/sq ft).

Plant No. 2 contains two rectangular primary sedimentation tanks with a total effective
                              2
surface settling area of 452 m (4,860 sq. ft).  Waste activated sludge is added to the
primary tank influent and combined primary-and-secondary sludge is therefore with-
drawn from the tanks and disposed with the sludge from Plant No. 1 (See Figure 1).

The effluent from the primary tanks flows to two rectangular aeration tanks.  The total
volume of  the  tanks is  4,405 m   (1,163,900 gal) resulting in 7.4 hrs  of mixed-liquor
detention time based on 14,380 m /day (3.8 mgd) feed flow.

Two rectangular final settlers receive the effluent from  the aeration basins.   The
settlers have a total effective surface settling area of 440 m  (4,740 sq ft).
                                        16

-------
                                  SECTION VII

                          METHODS AND PROCEDURES
Concurrent with the final stages of the upgrading program at Ypsilanti Township Plant
No. 1, an  analytical laboratory was established  about  4  miles from the plant.  This
laboratory was equipped with automated equipment and instrumentation for simultan-
eously performing routine analyses on a high volume of samples.  It was intended that
this  laboratory  supplement the treatment  plant laboratory capability  by providing
analyses on samples collected on week-ends and holidays and during periods of intensive
monitoring of plant  operation and performance.

Sampling and Analysis

Daily Samples —

The  normal  daily sampling and anal ysis^ were performed  by  the treatment plant staff
except on week-ends and holidays  when  they were  performed by project personnel.
Daily sampling was carried out throughout the course of  the work.  Table 1 shows  the
various analytical measurements made on samples collected from the different plant
locations.

Daily composite samples  were collected  for a 24-hour period  beginning  at 7:00 a.m.
each day  to conform with previous plant practice. The samples were composited by
mixing equal 100 ml volumes of 12 grab samples collected every 2 hours during the 24-
hour period; it  was not possible with constraints on  manpower and budget to flow
proportion these samples.  Grab samples  of mixed-liquor were taken once per  day at
9:00 a.m.  from the aeration basin effluent troughs of each plant.
                                       17

-------
                             TABLE 1

    DAILY SAMPLES - COLLECTION LOCATIONS, SAMPLE TYPES,
                   AND PARAMETERS ANALYZED
Parameter
BOD,-
TSS 3
VSS
TP
Temp.
PH
SVI
D.O.
Wastewater
Cc
C
c
c
G
C
-
G
Equalization
Tank
Effluent3
C
C
C
C
G
-
-
G
Primary
Settler.
Effluent0
C
C
C
c
G
-
-
G
Mixed-
Liquor

G
G
—
-
-
G
G
Final
Settler
Effluent
C
C
C
C
-
G
-
G
      No.  1 only
 Plant No.  2 only
GComposite sample (C) comprised of twelve bihourly grab samples;
 .composite samples collected daily
 One grab sample (G) analyzed daily
                                 18

-------
Bi-hourly Samples —

On several days each month, bihourly samples were collected by project personnel and
analyzed individually rather  than  composited into one daily sample.  The  bihourly
samples were usually analyzed for BOD5, TSS, COD, SOP, TP, NH3-N, TON, and some-
times NO.J-N. Table 2 gives the dates and plant locations that bihourly samples were
collected and analyzed.

Analytical Methods

Analytical methods used in the work are described individually below.  All methods were
verified by running EPA standard samples.

Dissolved Oxygen —

Dissolved oxygen measurements were performed with a membrane electrode. Compar-
ison  tests using the azide modification  of the Winkler titration method described in
Standard Methods   were run during the course of the work to assure consistent results.
Determinations for BOD- were performed by the standard dilution method,   using the
previously mentioned D.O. membrane electrode.  Glucose - glutamic acid solution  with
known BOD~ was analyzed with the samples to insure quality control.

Total Suspended Solids —

Total suspended  solids  measurements  were  made  using  the  standard  gravimetric
technique.   Gooch crucibles were used to collect the residue.

COD —

Analyses  of  COD were performed according  to  Standard  Methods   using  the
dichromate reflux method.
                                       19

-------
                                 TABLE 2

         BIHOURLY SAMPLES  - COLLECTION DATES AND LOCATIONS
               SAMPLE TYPES AND  PARAMETERS ANALYZED
       Day on which Bihourly,
      Samples were Collected
       Sampling
       Location
June 5,  8,  11,  14,  17, 20, 23 (1974)
July 10,  13, 16, 19, 22, 25, 28
Aug 6, 7, 16,  19,  22,  25
Sept 11,  12, 13, 14, 15, 16, 17
Oct 14, 15,  16,  17,  18, 19, 20
Nov 12, 13,  14,  15,  16, 17,  18
Dec 12, 13,  14,  15,  16, 17,  18
Jan 12, 13,  14,  15,  16, 17, 18 (1975)
Feb 7, 8, 9, 10, 11
Mar 10
Mar 17, 18
Apr 14, 15,  16,  17
May 18,  19, 20, 21, 22
3une 3, 4, 5,  10,  11,  12
June 30; Julyl, 2,  29
Aug 5, 6
1A, IB
1A, IB
1A, IB, 1C
1A, IB, 1C
1A, IB
1A, IB
1A, IB
1A, IB, 1C
1C, 2A, 2B, 2C
1A, IB, 1C, 2A, 2B, 2C
1A, IB, 1C
1A, IB, 1C
1A, 1C, 2A, 2B, 2C
1A, 1C
1A, IB, 1C, 2A, 2B
1A, IB, 1C
alA - Plant No. 1, Influent  Wastewater
 IB - Plant No. 1, Equalization Tank Effluent
 1C - Plant No. 1, Final Settler Effluent
 2A - Plant No. 2, Influent  Wastewater
 2B - Plant No. 2, Primary  Settler Effluent
 2C - Plant No. 2, Final Settler Effluent

^Bihourly samples comprised of one grab sample collected every 2 hours.  In
 general, bihourly samples were analyzed for BOD5, TSS, COD, SOP, TP,
 NH3-N, and TON.
                                  20

-------
Total Kjeldahl Nitrogen and Total Organic Nitrogen —

Analysis of wastewater samples for total kjeldahl nitrogen was done according to the
kjeldahl  procedure  in  Standard  Methods.    Total organic nitrogen was obtained by
subtraction of NH,-N from total kjeldahl nitrogen.

Ammonia --

Ammonia analyses  were  performed with  the  Technicon Auto Analyzer II  using the
phenol-hypochlorite  procedure  described by  Technicon.     All samples were filtered
through 0.45 micron membrane filters prior to analysis to  remove participate matter.

Total Phosphorus and Soluble Orthophosphate  —

Phosphorus analyses were performed with the Technicon  Auto Analyzer II using the
                                           18
colorimetric  ascorbic  acid reduction method.    Some  analyses were  also performed
manually using the vanadate colorimetric determination of  orthophosphate as described
in Standard Methods.    To obtain total phosphorus, the persulfate digestion method was
employed on an aliquot  of  the  sample to convert all phosphorus to the ortho form.
Soluble  orthophosphate  was determined by performing  the  colorimetric  procedure
directly after filtration of an aliquot of the sample through  a 0.45 micron filter.

Nitrite and Nitrate Nitrogen —

These  analyses  were  run  by  an  automated procedure  using the Technicon  Auto
           i x
Analyzer II.   All samples were initially filtered through  a  0.45 micron membrane filter
for removal of suspended solids.  The automated procedure utilized cadmium reduction
of the nitrate and subsequent diazotization of the nitrite for color development.

Data Reduction

Raw  data were tabulated and preliminarily analyzed on a monthly basis throughout the
project. At  the end of the experimental work, all data  were computationally reduced
using a CDC Cyber 74 computer. Special programs were written to analyze and reduce
the data to meaningful form. A listing of the data may be found in the Appendix.
                                        21

-------
                                    SECTION VIII

                             RESULTS AND DISCUSSION


Equalization System Equipment Performance and Reliability

The equalization system installed at the Ypsilanti Township Treatment Plant has been
described earlier in  this  report.   Although this  system  was designed utilizing two
existing sludge  digestion  tanks as  equalization  basins, with a  strong emphasis  on
minimizing cost, the  system  functioned in a  highly reliable  manner  during and
subsequent  to  the periods of operation described herein.  Maintenance and service for
the system were minimal  and no major  modifications were  required  after the initial
installation.

Operation  and control  of  the equalization system was performed entirely by regular
treatment plant personnel  with no unusual attention required for reliable operation.  In
fact, the system typically operated fully automatically with  no need  for manual
attention other than routine surveillance. Throughout the study, there was no need to
by-pass  the equalization  basins  due to failure of  any of the  system components,
including the equalization pump, air  compressors, and controls.

The only problem experienced with the system was occasional overflowing of the equali-
zation basin. This occurred when the plant flow rate  was exceptionally high over a 24-
hour period, preventing normal emptying of the tank at night.   The overflows were
directed to  Plant No. 2 so  that the equalized flow pattern in Plant No. 1 would not  be
affected. In a typical situation the  overflows would have to be added back to the plant
flow, thereby rendering the equalization system ineffective for  the  duration  of the
overflows.
                                        22

-------
Flow, Concentration and Mass Equalization

The  Ypsilanti Township equalization  system is highly  effective in leveling  influent
diurnal flow variations and providing a uniform daily flow rate to the activated sludge
process.  Plant flow charts typically show a constant flow rate throughout each day.
Because the equalization  system was  designed to level  flow variations only within a
given day, the day-to-day, weekly, and seasonal flow variations through the plant were
not affected.

Although hourly flow equalization was reliably  achieved, the degree of concentration
and mass dampening was limited.  Tables 3-6 show concentrations of TSS, BOD5, COD,
SOP, TP, NH^, and TON in both the raw and equalized wastewater streams during ten
periods of bihourly testing.*  Also shown in each instance are the variance, standard
deviation and coefficient of variation (standard deviation  divided by the mean) of the
concentration values (See  Appendix). The data show that the equalization basin reduced
the diurnal variability of waste strength by 20 to 80 percent for most of the parameters,
as measured by the variance.

Typical data illustrating concentration leveling effected  by the equalization basin for a
72-hour period are presented in Figure 3. Concentrations of various constituents are
plotted as a function of time for both the raw wastewater and the equalized flow.  As
shown, the  equalization system  somewhat reduced the diurnal  variability of  waste
strength and  lowered the  maximum concentrations of waste parameters.  However, it is
also clear that appreciable variability of strength remained in the equalized stream.

The  degree of mass dampening that occurred in the Ypsilanti Township equalization
basin was much greater than the concentration dampening.  Mass flow   values of the
various parameters for both the raw wastewater and the equalization basin during the
bihourly testing periods are listed in Table 7.  Also  shown for each parameter are the
variance,  standard deviation, and coefficient of variation  of the  mass flow values.
Computations show that the reductions in the variance of  the mean mass flow of each
*Only periods in which 3 or more consecutive days of data were collected are presented
for analysis.
                                        23

-------
                                   TABLE 3

                      PERFORMANCE OF PLANT NO. 1
                  DURING PERIODS OF BIHOURLY  TESTING

                (Average Over Period Based on Bihourly Values)
Parameter
Raw Waitewater
Flow, mil gal/2 hr


TSS in Raw
Waste water,
mg/1

TSS in equalization
Baiin Effluent,
mg/1

TSS In Final
•Effluent, mg/1


BOD. in Raw
Waitewater, mg/1


BOD, in Equalization
BasirT Effluent
mg/1

BOD* in Final
Effluent, mg/1

Statistical
Property
Mean
Variance
Std. Dev.
Coef. Var.
Mean
Variance
Std. Dev.
Coef, Var.
Mean
Variance
Std. Dev.
Coef. Var.
Mean
Variance
Std. Dev.
Coef. Var.
Mean
Variance
Std. Dev.
Coef. Var.
Mean
Variance
Std. Dev.
Coef. Var.
Mean
Variance
Std. Dev.
Coef. Var.
10/11 to
10/20
1974
0.33J
0.005
0.07*
0.22
202
5889
77
0.38
212
2336
48
0.23
._
--
c
—
223
6306
79
0.36
184
1271
36
0.19
_ —
c"
—
11/12 to
11/18
1974
0.010
0.008
0.091
0.22
170
S663
93
0.55
184
1655
01
0.22
_.
..
C
—
145
3973
63
0.43
139
1296
36
0.26
__
c"
—
12/12 to
12/18
1974
0.265
0.003
0.057
0.22
191
38811
197
1.03
201
6596
SI
0.41
__
..
c
—
170
6354
SO
0.47
181
6633
SI
0.45
._
c "
—
1/12 to
1/18
1975
0.333
0.003
0.057
0.17
139
10.211
101
0.73
17S
11.439
107
0.60
17
164
13
0.75
120
2127
46
0.3S
137
I6S3
41
0.30
12
48
7
0.57
3/17 to
3/18
1975
..
..
a ..
--
162
4369
66
0.40
165
1532
59
0.24
19
214
15
0.78
127
600
25
0.19
123
448
21
0.17
11
23
5
0.44
4/14 to
4/17
1975
0.323
0.003
0.053
0.17
175
324S
57
0.33
ISO
1362
37
0.21
41
1520
39
0.95
151
1676
41
0.27
130
690
26
0.20
20
454
21
1.08
5/1 8 to
5/22
1975
0.27S
0.003
0.054
0.19
176
3S4S
62
0.35
„
-.
b
--
15
63
8
0.54
161
3377
38
0.36
1)

--
12
24
5
0.42
6/3 to
6/5
1975
0.316
0.002
0.044
0.14
164
1425
38
0.23
•*
--
b „
—
11
30
5
0.49
112
2937
54
0.48
b™"
__
--
8
9
3
0.39
6/10 to
6/12
1975
0.294
0.001
0.038
0.13
1SS
376S
61
0.33
..
--
b
—
16
65
S
0.51
139
946
31
0.22
--
b ..
--
12
IS
4
0.34
6/30 to
7/1
1975

'..
a ..
—
222
5297
73
0.33
228
2266
48
0.01
16
101
10
0.62
136-
72S
27
0.20
110
219
15
0.13
6
3
2
0.30
UNO data due to flow meter malfunction
"Equalization basin out of service
cNo final effluent samples taken
                                       24

-------
                                     TABLE 1

                        PERFORMANCE OF PLANT NO. 1
                    DURING PERIODS OF BIHOURLY TESTING

                  (Average Over Period Based on Bihourly Values)
Parameter
COO in Raw
Wastewater
mg/1

COD in Equalization
Basin Effluent
mg/1

COD in Final
Effluent, mg/1


SOP in Raw
Wastewater,
mg/1

SOP in Equalization
Bat in Effluent
mg/1

SOP in Final
Effluent , mg/1


Statiitical
Property
Mean
Variance
Std. Dev.
Coef. Var.
Mean
Variance
Std. Dev.
Coef. Var.
Mean
Variance
Std. Dev.
Coef. Var.
Mean
Variance
Std. Dev.
Coef. Var.
Mean
Variance
Std. Dev.
Coef. Var.
Mean
Variance
Std. Dev.
Coef. Var.
10/14 to
10/ZO
1974
681
67,623
260
0.38
643
6,649
82
0.13
__
—
c__
—
6.7
7.5
2.7
0.41
6.7
1.6
1.3
0.19*
	
g™~

--
11/12 to
11/18
1974
590
24,210
156
0.26
597
9,722
99
0.17
__
..
c
--
5.7
5.3
.2.3
0.41
5.5
1.2
1.1
0.20
__
g~~

—
12/12 to
12/18
1974
538
36,346
191
0.35
600
36,026
190
0.32
_^
__
c
—
5.2
2.3
1.5
0.29
5.3
1.2
1.1
0.21
__
£ ~~

—
1/12 to
1/18
1975
435
41,276
203
0.47
477
19.418
139
0.29
__
__
a
~
3.6
1.7
1.3
0.36
3.5
1.0
1.0
0.29
„
• ~~

—
3/17 to
3/18
1975
S16
15,098
123
0.24
491
3,932
63
0.13
_.
..
a
—
4.0
0.59
0.8
0.19
3.9
0.17
0.4
0.10
„
__
..
—
4/14 to
4/17
1975
538
14,123
119
0.22
502
6,290
79
0.16

__
a
~
4.1
2.0
1.4
0.34
3.9
0.32
0.6
0.14
1.3
0.14
0.4
0.30
5/18 to
5/22
1975
359
15,952
126
0.35

	
b
—
63
538
23
0.37
4.1
0.40
0.6
0.16
„
—

—
2.5
0.18
0.2
0.17
6/3 to
6/5
1975

__
m
--

__
b
—

— _
a
~
4.7
1.2
1.1
0.24

b-"

—
I.I
0.27
0.5
0.25
6/10 to
6/12
1975

_
a
—


b
~

„
a"
--
4.8
1.0
1.0
0.21

b-«-

—
3.1
0.66
0.8
0.26
6/30 to
7/1
1975

	
a
—

__
a"
~


a
—
5.1
3.9
2.0
0.39
4.3
0.64
0.8
0.18
1.1
2.9
1.7
1.59
^Parameter not analyzed
 Equalization bailn out of lervlea
°No final effluent iample» taken
                                        25

-------
                                    TABLE 5

                       PERFORMANCE OF PLANT NO. 1
                   DURING PERIODS OF BIHOURLY TESTING

                 (Average Over Period Based on Bihourly Values)
Parameter
Ammonia Nitrogen
in Raw Wastewater
mg/1

Ammonia Nitrogen
in Equalization
Basin Effluent, mg/l

Ammonia Nitrogen
in Final Effluent,
nig/1

TON in Raw
Wastewater, mg/1


TON in Equalization
Basin Effluent, mg/1

TON in Final
Effluent, mg/1


Statistical
Property
Mean
Variance
Std. Dev.
Coef. Var.
Mean
Variance
Std. Oev.
Coef Var.
Mean
Variance
Std. Dev.
Coef. Var.
Mean
Variance
Std. Dev.
Coef. Var.
Mean
Variance
Std. Dev.
Coef. Var.
Mean
Variance
Std. Dev.
Coef. Var.
10/14 to
10/20
1974
13.2
11.7
3.4
0.22
13.4
6.0
2.5
0.18
_
£ ~~

—
10.)
11.2
3.4
0.32
11.3
3.7
1.9
0.17
__
f

—
H/12 to
11/18
1974
15.0
13.0
3.8
0.25
13.3
6.1
2.3
0.19
._
c~~

—
10.4
13.0
3.9
0.38
11. S
3.3
1.9
0.16
_.
£ ™"

—
12/12 to
12/18
1974
13.7
14.0
3.8
0.24
13.7
8.2
2.9
0.21
	
^ ~

—
7.8
4.9
2.2
0.28
9.3
3.7
1.9
0.20
...
—
c __
—
1/12 to
1/18
1975
12.3
6.5
2.6
0.21
11.4
3.9
2.0
0.17
M
—
a
—
7.2
4.9
2.2
0.31
7.8
8.3
2.9
0.37
...
—
* ..
~
3/17 to
3/18
1975
11.8
3.9
2.0
0.17
11.4
1.3
1.2
0.10
„
—
a __
—
8.4
3.6
1.9
0.23
9.6
2.0
1.4
0.15
._
—
a ..
—
4/14 to
4/17
1975
11.5
3.5
1.9
0.16
11.0
2.1
1.5
0.13
7.6
2.8
1.7
0.22
8.2
4.6
2.1
0.26
8.5
2.0
1.4
0.17
„
~
a ..
—
5/18 to
5/22
1975
11.6
7.0
2.7
0.23
„
b~~

—
9.9
3.1
1.8
0.18
9.4
4.6
2.2
0.23
	
b II
—
3.1
1.8
1.4
0.45
6/3 to
6/5
1975
12.8
6.5
2.5
0.20
„
..
b
—
9.5
1.4
1.2
0.13
„
	
a
—
....
b II
—
__
~
a —
~
6/10 to
6/12
1975
12.6
5.5
2.3
0.19
_
..
b „
-
9.4
2.1
1.5
0.16
..
	
a
—
„
b II
—
__
--
a —

6/30 to
7/1
1975
10.7
3.0
1.7
0.16
9.4
2.0
1.4
0.15
8.6
3.5
1.9
0.22

	
a ..
-
»
a
—
_
—
a ——
—
.Parameter not analyzed
^Equalization basin out of service
 No final effluent samples taken
                                         26

-------
                                   TABLE 6

                       PERFORMANCE OF PLANT NO. 1
                   DURING PERIODS OF BIHOURLY TESTING

                 (Average Over Period Based on Bihourly Values)
Parameter
TP in Raw
Wastewater
rog/1

TP in Equalization
Basin Effluent, m|/l


TP in Final
Effluent, mg/1


Statistical
Property
Mean
Variance
Std. Dev.
Coef. Var
Mean
Variance
Std. Oev.
Coef. Var
Mean
Variance
Std. Dev.
Coef. Var
10/14 to
10/20
1974
9.7
8.6
2.9
0.30
9.9
Z.O
1.4
0.14
	
e* ™~
—
••
11/12 to
11/18
1974
8.9
10
3.2
0.36
8.8
1.7
1.3
0.15
	
c ~"

•~
12/12 to
12/18
1074
8.8
11
3.3
0.37
8.9
2.3
1.5
0.17
..
Q

~~
1/12 to
1/18
1075
6.8
4.0
2.0
0.29
7.4
2.8
1.7
0.22
„_
1 ~~

—
3/17 to
3/18
1975
7.3
0.98
1.0
0.14
7.4
0.36
0.6
0.08
2.4
7.0
2.6
1.09
4/14 to
4/17
1975
8.3
2.9
1.7
0.20
8.3
0.83
0.9
0.11
2.8
3.5
1.9
0.66
5/18 to
5/22
1975
7.3
2.4
1.6
0.21
—
b —

~
2.7
0.28
0.20
0.20
6/3 to
6/5
1975
7.8
2.5
1.6
0.20
__
b~~

—
2.5
0.23
0.5
0.19
6/10 to
6/12
1075
7.8
1.1
1.1
0.14
	


—
3.6
0.55
0.7
0.21
0/30 to
7/1
1175
9.1
8.4
2.T
0.32
9.0
1.7
1.3
0.15
1.0
0.07
0.3
0.25
f Parameter not analyzed
 Equalization buln out of lerrice
°No final effluent umplei taken
                                       27

-------
              400
           (O  200-
           CO
        o
        o
       z  a.    10
       2  o
        UJ
        o
15
                10
                 0




                30




                20




                10



                 0
                                                   PLANT  INFLUENT

                                                   EQUALIZED FLOW
                    12 N      12 M      I2N      12 M      12 N

                                 TIME  OF  DAY, hr
                                               12 M
PIGURE 3 -
Typical concentration variations in the influent and effluent
of the equalization basin over a 72-hr period (April 1^-16, 1975).
                                     28

-------
               TABLE 7



MASS BALANCE ACROSS EQUALIZATION BASIN

1
Period

10/14 to 10/20/74
(10 value*)

11/12 to 11/18
(84 rallied

12/12 to 1Z/18
(84 values)

1/12 to 1/18/75
(84 values)


4/14 to 4/17
(48 value*)


All Periods
Combined

Statistical
PaTODCftV
rrvpcriy
Mean
Variance
c*ji r\*»«
olQ* &JW*
Coef. Var
Men
Variance
C»J *•» 	
a*lO* U9V*
Coef. Var
Mean
Variance
Std* Dev.
Coef. Var
Mean
Variance
Std. Dev.
Coef. Var.
Mean
Variance
Std. Dev.
Coef. Var
Mean

Mast Flow Into Basin
(lbs/2 hr)

TSS
57H
69,726
94U
*O1
0.4t
604
195,554
AA.1
44<
0.73
42!
178,635
423
0.99
392
68,724
262
0.67
477
30,944
176
0.37
49!

BOD5
6S2
79,509
9*t9
£B£
0.43
512
83, 0*4
•*mm
£99
0.56
386
44,834
919
£1£
0.55
337
18,507
136
0.40
412
21,457
146
0.36
460

COD
1973
941,562
O7(
Tfl
0.49
2,(KM
546,741
T^C
• J.
0.36
1,213
255,191
50!
0.42
1,22(
317,554
564
0.4<
1,45!
147, 53(
38-
0.2<
1,591

SOP
19.4
95.9
»•
• 9
0.50
20.3
110
in •?
1U*9
0.52
11.5
18.5
0.37
10.0
15.8
4.0
0.40
'11.2
20.3
4.5
0.40
14.7

TP
28.4
180
H 4
1 J*4
0.47
31.4
206
UA
• 4
0.46
19.6
64.3
0.41
19.1
44.0
6.6
0.35
Z2.6
41. Z
6.4
0.28
24. 3

NH,-N
45.5
641
ym «
£9* J
0.56
52.1
477
n*
• 9
0.41
35.0
140
0.34
34.4
103.5
10.2
0.30
31.5
83.2
9.1
0.29
40.6

TON
30.8
260
W«
e I
0.52
36.7
384
1O A
ly.o
0.53
17.7
45
0.38
20.1
61.4
7.8
0.39
22. 5
56.8
7.5
0.33
25.8

Mass Flow Out of Basin
(Ibs/Z hr)

TSS
576
17,380
0.23
628
19.Z90
1 to
uy
0.22
414
28,177
i &•
loo
0.41
5Z7
100,712
317
0.60
500
10,554
103
0.21
538

BOD(
509
10,387
102
0.20
474
15,110
1 51
1£J
O.Z6
379
9,193
96
0.25
406
14,813
IZ2
0.30
36Z
5,351
73
0.20
426

COD
1753
49,470
999
fcM
0.13
Z.037
113,347
HT
JJ(
0.17
1,240
153,910
392
0.32
1,415
170,957
413
0.29
1,398
49,750
221
0.16
1,583

SOP
18.2
11.9
0.19
18.9
13.8
0.20
10.9
5.2
0.21
10.5
6.9
2.6
0.25
11.0
2.5
1.6
0.14
14.1

TP
27.1
14.7
0.14
29.4
18.6
0.15
18.4
9.8
0.17
Z2.0
19.3
4.4
0.20
23.0
6.4
2.5
0.11
24.0

NH.-h
36.6
45.0
0.18
44.5
69.7
0.19
28.3
35.0
0.21
33.7
33.6
5.8
0.17
30.8
16.5
4.1
0.13
35.1

TON
30.9
27.5
0.17
41.2
42.6
0.16
19.7
15.8
0.20
23.4
56.4
7.5
0.32
Z3.6
15.9
4.0
0.17
28.1

The bihourly letting period* of 3/17 to 3/18 and 6/30 to 7/1 are not included became the plant flow meter was out of service;
the period* 5/18 to 5/22, 6/3 to 6/5 and 6/10 to 6/12 are not included because the equalization basin wai not in service.
NOTE: Ibi x 0.4S3 > kg
                  29

-------
parameter across the equalization basin were generally in the range of 45 to 95 percent
as compared to the 20 to 80 percent variance reduction in constituent concentrations
across  the equalization  basin.   Mass  dampening is expected  to  be greater than
concentration  dampening  because  the  former  is  a  function  of  both flow  and
concentration equalization. Figure 4 illustrates mass  leveling for a representative 72-
hour period.

Mass Transformations Within the Equalization Basin

The mass flow data summarized from the bihourly testing periods shown in Table 7 give
insight  into  the changes  that equalization  produced in the waste as a  result of
biochemical reactions within the basin.  Comparison of  the  mass flow into and out of
the equalization basin, using the combined mean  values in Table 7,  shows that there
were reductions in  BOD-, COD, SOP, and NH,-N and increases in TSS and TON. Total
phosphorus remained virtually constant across the  basin, which is the expected result
based on  conservation of mass.  These changes are consistant with those expected to
occur as  a result  of biochemical action and  associated growth of biomass in the
equalization  basin.  However,  it can be observed  that overall BOD5 removal for the
combined periods was only 7 percent and was inconsistent from one study period to the
next.

Additional mass flow data compiled and summarized from the daily plant records which
extend from June,  1974 to July, 1975 are given in Table 8. These  data are comparable
to the bihourly data in that they show a definite increase in suspended solids across the
equalization basin but marginal and inconsistent BOD5 removal.  These results tend to
confirm that growth  of biomass occurred in  the equalization basin but that there was
little net  removal of  BOD -. It should be mentioned, however, that these data have the
limitation that composite samples  were  not  proportioned according  to flow (See
Section  VII).

To  determine if the differences in monthly mean values  of  BOD^ and TSS  in the
influent and effluent of the equalization basin are significant, the test statistic ZG was
computed  (See  Table 8).   Since it  was  hypothesized that  there would be  a BOD^
reduction  and a TSS increase  across the basin, the one-sided test  was used and the
difference in means was considered significant at the 5%  level of significance (a = 0.05)
                                       30

-------
      1000
      80O-
   CO 600-
   {2 400-
      20O-
         0
      1000-
    te> 800

              600-
          00 400-
             200-
                0
                                                — PLANT  INFLUENT
                                                — EQUALIZED FLOW

O
u.
       CO
       co  a.
       <  O
       •5;  co
               30
               20
               10
                0
               30
        20-
                10-
                    12 N
                      12 M      12 N      12 M      12 N
                          TIME  OF  DAY ,  hr.
12 M
FIGURE 4 -
          Typical mass flow variations in the influent and effluent of the
          equalization basin over a 72-hr period (April 14-16, 1975).
                                     31

-------
                            TABLE 8

     COMPARISON OF MEAN VALUES OF BODS AND TSS
VERSUS EQUALIZATION BASIN EFFLUENT - DAILY DATA
                                           IN RAW WASTE
                                           GROUPED BY MONTH
Period
June. 1974
July
Aug.
Sept.
Oct.
Nov.
Dec.
Jan. 1975
Feb.
Mar.
April
May
June
July
BOD.
Raw Waste
Mean3
5,117
5,371
6,248
5,880
6,745
7,375
6,756
6,095
5,591
4,912
4,605
4,994
4,100
4,101
Variance
2,347,874
1,554,798
1,383,888
1,765,146
1,728,755
2,179,015
4,458,213
2,258,931
3,378,281
3,791,493
1,414,986
434,377
2.062,570
2,285,075
Equalization
Basin Effluent
Mean a
4,943
5,230
5,977
6,096
6,735
6,739
4,573
6,708
4,828
4,690
4,715
4,852
4,204
4,101
Variance
1,490,773
1,088,129
1,664,650
1,965,144
1,674,077
1,689,234
2,666,331
1,290,503
1,620,065
2,103,407
1,600,453
1,857,851
1,591,825
2,285,075
Percent
Removed
in Basin
1.3
0.9
4.2
-5.1
-2.2
-0.2
20.6
2.7
8.1
-2.8
-5.1
2.9
—
—
'^
0.49
0.48
0.86
0.61
0.03
1.77
4.55
1.81
1.81
0.51
0.35
0.52
0.30
-.00
TSS
Raw Waste
Mean8
4,758
5,341
5,498
5,543
6,086
5,041
5,008
5,219
4,114
3,397
3,944
3,972
4,378
3,904
Variance
2,720,166
2,197,037
1,842,880
2,534,532
1,578,256
2,319,926
3,283,881
2,723,142
2,507,642
2,494,339
2,163,205
505,340
2,528,840
863,268
Equalization
Basin Effluent
Mean3
5,572
6,096
6,426
5,965
6,422
5,860
5,586
6,155
4,527
3,782
4,925
4,221
4,563
3,908
Variance
2,804,657
2,241,632
2,677,796
1,926,007
1,633,394
2,496,575
2,840,272
2,008,436
1,891,222
1,179,767
2,713,616
1,230,302
1,848,760
864,872
Percent
Removal
in Basin
-24.1
-22.4
-13.1
-12.4
-8.2
-25.7
-18.1
-34.9
-17.7
-33.9
-36.5
-5.3
—
—
=c"
-1.90
-2.00
-2.43
-1.09
-1.04
-2.04
-1.30
-2.40
-1.04
-1.12
-2.43
-1.05
-0.48
-0.02
j*Monthly Average of Daily Values. Notei All mean values are In Ibs/dayj Ibs/day x 0.434 = kg/day.
Jfc = Y. - Y, where YT, Y. are monthly means, S., S- are the monthly variances, and n is the number of days in the month.
/V7?
V nl  "2
                             32

-------
if Z_  > 1.645* for BOD. and Z  <  -1.645 for TSS. From Table 8 it is seen from the Z^
   V*                  J      V*1                                                   \^
values that the mean values of BOD^ across the equalization  basin were significantly
different in only one of the 14 months though 3 additional months were marginal.  For
TSS, there are several Z values close to the critical value which  makes it difficult to
reach a definite conclusion. Further statistical tests were run  combining the data into
3-month groups to obtain the  benefit of more observations  per test.  The results,
presented in Table 9, show that the mean TSS value  in the equalization basin effluent
was significantly greater than  the  TSS value in the  basin influent (at the 5% level of
significance)  for each of the periods tested.   For BOD* there was only one  period in
which the difference across the basin was significant.  These results further confirm
that little or no BOD5 reduction can be expected across an equalization basin but that
some growth of biomass occurs, causing an increase in TSS.

Previously reported experience with preaeration of raw sewage has similarly shown that
aeration (without  sludge  recycle)  is  relatively ineffective  for  BODS removal.   For
                               19
example,  Seidel  and  Baumann    found in  full-scale  studies  that  48  minutes of
preaeration  had no measurable effect  on the wastewater BOD-.  In-line equalization
might  be expected to provide  somewhat higher  levels of biological activity  than a
preaeration tank because of the longer mean liquid retention period.

Activated Sludge System

Operation and Performance —

Daily records of plant operation and performance were maintained by the treatment
plant staff.  A tabular summary of  the  conditions of operation  for Plant No. 1  (the
equalized plant)  over  a  14-rnonth  period  is  given in  Table 10.   Monthly average
performance data for the plant during  this same period are given in Tables 11 and 12.
The equalization basin was in service  throughout this period except for the 31 days from
May 14, 1975 to June 14, 1975 when tests were performed under the unequalized mode.
* 1.645 is the tabulated value of the test statistic Zfor large n and a  = 0.05; see e.g. W.
Mendenhall and R. L. Schaeffer, "Mathematical Statistics with Applications," Duxbury
Press, North Scituate, Massachusetts, 1973, p. 332 ff.
                                        33

-------
                              TABLE 9

           COMPARISON OF MEAN VALUES OF BOD5 AND TSS
       IN RAW WASTE VERSUS EQUALIZATION BASIN EFFLUENT -
             DAILY DATA GROUPED IN 3-MONTH PERIODS
Period
June, July &
August (1974
Sept. Oct. &
Nov. (1974)
Dec . , Jan .
Feb (1974-75)
Mar., Apr. &
May (1975)
BOD,
Raw Waste
Mean a
5,584
6,667
6,166
4,839
Variance
1,990,855
2,260,839
3,589,071
1,913,146
Equalization
Basin Effluent
Mean3
5,388
6,526
5,043
4,753
Variance
1,603,763
1,865,863
2,109,585
1,861,762

2c
0.99
0.66
4.46
0.42
TSS
Raw Waste
Mean*
5,203
5,562
4,802
3,769
Variance
2,348,603
2,321,036
3,071,200
1,786
Equalization
Basin Effluent
Mean*
6,036
6,086
5,453
4,303
Variance
2,694,949
2,074,452
2,701,027
1,916,888
:c
-3.56
-2,38
-2.57
-2.66
aAII mean values are in Ibs/day; Ibs/day x 0.454 = kg/day.
                                  34

-------
                                 TABLE 10

             CONDITIONS OF OPERATION OF PLANT NO.  1
                        DURING STUDY PERIOD3

                    (Monthly Average of Daily Values)
Parumrter
Raw Wastcwatrr
Plow, mgd
Waitcwatrr Temp, °F
MLSS, mg/l
MLVSS, mg/l
Mixed Liquor
Settlrabilily, ml of
Settled Sludge -. 1,000
Mixed Liquor D.O.. mg/l
Applied Air
1,000 cu d/day
Sludge Recycle to
Raw Waste Flow
Rale Ratio, %
F/M, g/g-day
Clanfier Overflow
Rale, gpd/sq ft

Statistical
Property
Mean
Std. Dev.
Min.
Max.
Mean
Mean
Std. Dev.
Cocf. Var.
Mean
Std. Oev.
Coef. Var.
Mean
Std. Dev.
Coef. Var.
Mean
Mean
Mean
Std. Dev.
Coef. Var.
Mean
Std. Dev.
Coet. Var.
Mean
Std. Dev.
Coef. Var.

June
1974
3.67
0.40
2.27
1.31
.. 58
2,327
393
0.17
--
0.11
0.02
O.IS
I.I
2,582
62
7.1
0.12
--
soo
88
0.11

July
3.91
0.26
3.18
1.55
67
2,616
488
0.19
1,897
384
0.20
0.18
0.03
0.15
I.I
4,307
67
9.5
0.14
0.39
0.23
0.60
852
57
0.07

Aug
3.97
0.22
3.37
4.30
70
2,735
900
0.33
1,929
703
0.37
0.16
0.04
0.23
I.I
3,831
62
9.2
0.15
0.50
0.35
0.70
865
48
0.06

Sept
3.78
0.14
3.50
4.17
62
2,378
498
0.21
1,684
369
0.22
0.14
0.03
0.25
I.I
3,864
69
5.3
0.08
0.49
0.14
0.29
824
30
0.04

Oct
5.73
0.08
1.59
3.88
64
2,258
459
0.20
1.610
362
0.23
0.15
0.03
0.23
0.5
3,866
73
4.9
0.08
0.59
0.24
0.41
813
17
0.02

Nov
3.73
0.22
2.9S
3.99
64
1,960
521
0.27
1,417
390
0.27
0.15
0.02
0.13
1.9
3,062
72
7.3
0.10
O.SO
0.77
0.96
813
48
0.06

Dec
3.40
0.45
1.50
3.83
57
1,850
406
0.22
1,260
257
0.20
0.14
0.03
0.18
1.7
4,047
75
11.2
0.15
0.49
0.19
0.39
741
99
0.13

Jan
1975
3.96
0.28
3.13
4.27
52
1,752
512
0.29
1,201
295
0.25
0.11
0.03
0.30
2.3
4,114
63
6.3
0.10
0.66
0.24
0.16
862
62
0.07

Feb
3.96
0.33
3.18
4.52
53
1,767
429
0.24
1,213
293
0.24
0.13
0.03
0.21
3.9
6,789
64
8.3
0.13
0.56
0.24
0.42
863
73
0.08

Mar
3.91
0.44
2.35
4.3S
52
1,688
341
0.20
1,221
25*
0.21
0.12
0.02
0.13
2.7
3,989
59
16.2
0.28
0.32
0.23
0.44
832
96
0.11

Apr
3.90
0.29
3.27
4.43
55
1,707
513
0.30
1,265
410
0.32
0.12
0.03
0.2S
4.2
5,751
62
11.0
O.IS
0.31
0.17
0.34
849
63
0.07

May
3.32
0.58
2.21
4.26
59
1.M6
33 »
0.24
1,233
239
0.21
0.12
0.01
0.11
3.0
4,807
78
18.3
0.23
0.54
0.21
0.38
722
128
O.IS

June
3.23
0.35
2.32
3.64
53
1,461
252
0.17
1,084
182
0.17
0.12
0.03
0.27
2.3
3,882
78
12.9
0.16
0.52
0.19
0.37
704
78
O.I I

July
3.23
0.29
2.24
3.72
64
1,315
407
0.27
989
342
0.35
0.14
0.05
0.35
2.S
3,520
78
13.3
0.17
0.58
0.23
0.40
704
65
0.09

'Note: mgd « 0.04381 . m'scc
     °F > 0.535 (°F - 32) - °C
     en ft/day x 0.02S : m'/day   ,
b     gpd/sq ft x 0.0408 - m /day/m'
Sludge Volume lnde« - Sf lilt-ability x 10
              -TWITS	L
                                        35

-------
          TABLE 11
 PERFORMANCE OF PLANT NO. 1
cUNG STUDY PERIOD - BOD5 AND

 (Monthly Average of Daily Values)
Parameter
BOD, in Raw
Wutewater; mg/1


BOO, in Equalisation
Baain Effluent, mg/1


BOD, in Final
Effluent, mg/1


KBOD, Removed
by Secoodary
Treatment

TSS in Raw
Wa»ta water, mg/1


TSS in Bopattution
Baata Bffhmt, mg/1


Ttt a Final
Bf flout, mg/1


% TSS Removed
by Secondary
Treatment
Statistical
Property
Mean
Variance
Std Dev
Coef Var
Mean
Variance
Std Dev
Coef Var
Mean
Variance
Std Dev
Coef Var
Mean
Variance
Std Dev
Coef Var
Mean
Variance
Std Dev
Coef Var
Mean
Variance
Std Dev
Coef Var
Mean
Variance
Std Dev
Coef Var
Mean
Variance
Std Dev
Coef Var
June
1974
179
1089
33
0.18
173
441
21
0.12
22
64
8
0.38
87.4
28
5.3
0.06
176
3025
55
0.31
205
3136
56
0.27
18
169
13
0.72
90.3
58.1
7.62
0.08
July
164
1024
32
0.20
160
784
28
0.18
18
64
8
0.46
88.8
32
5.7
0.06
163
1936
44
0.27
189
1936
44
0.23
16
64
8
0.49
91.8
20
4.5
0.05
Aug
194
2916
54
0.28
200
7744
88
0.44
17
100
10
0.57
90.5
25
5.0
0.06
187
4356
66
0.36
196
2704
52
0.26
20
361
19
0.93
89.1
96
9.8
0.11
Sept
188
1849
43
0.23
201
5041
71
0.)5
16
25
5
0.34
91-4
16
4.0
0.04
187
3721
61
0.33
202
5184
72
0.36
14
49
7
0.52
92.6
19
4.4
0.05
Oct
260
6561
81
0.31
216
1681
41
0.19
18
36
t>
O.J4
91-8
6.8
2.6
0.03
201
2500
50
0.25
206
1600
40
0.19
15
25
5
0.35
92.3
9.6
3.1
0.03
Nov
263
5184
72
0.28
225
3844
62
0.28
17
36
6
0.36
91.9
11
3.3
0.04
168
3721
61
0.16
196
3481
59
0.30
22
400
20
0.93
88.8
102
10.1
0.11
Dec
232
6241
79
0-34
179
3136
56
0.31
12
25
5
0-44
91-9
18.1
4.25
0.05
m
4225
65
0.37
201
3844
62
0.31
11
25
5
0.42
93.6
19
4.4
0.05
Jan
1975
183
1681
41
0.23
173
1089
33
0.19
21
Hi
11
O.S4
87.8
57.0
7.55
0.09
16Z
3025
55
0.34
1QO
2025
45
0.24
22
196
14
0.64
88.4
60.2
7.76
0.09
Feb
179
4624
68
0.38
148
1936
44
0.30
n
64
o
0.52
90.0
19. 5
4.42
0.05
129
3844
62
0.48
134
'764
42
0.31
25
484
22
0.88
82.1
190
13.8
0.17
Mar
197
13225
115
O.S8
150
2304
48
0.32
13
64
8
0.58
91.6
10.6
3.26
0.04
115
5329
73
0.64
117
1089
33
0.29
10
5184
72
0.86
90.6
83.9
9-16
0.10
Apr
149
2601
51
0.34
151
2304
48
0.32
14
64
8
0.58
90.3
38.4
6.20
0.07
121
1764
42
0.35
151
2116
46
0.31
14
196
14
0.95
90.0
59.0
7.68
0.09
May
178
576
24
0.14
174
1521
39
0.22
11
16
4
0.34
93.3
7.40
2.72
0.03
144
625
25
0.18
150
961
31
0.21
9
19
4.4
0.49
94.0
6.81
2.61
0.03
June
160
2025
45
0.28
158
2116
46
0.29
11
16
4
0.37
92.4
19.8
4.45
0.05
170
2025
45
0.26
169
1936
44
0.26
11
25
5
0.46
93.3
77.4
8.80
0.09
July
151
2500
50
0.33
151
2500
50
0.33
13
25
5
0.36
90.6
15.1
3.89
0.04
143
7$4
28
0.20
143
784
28
0.20
8.5
25
5
0.58
94.1
8.82
2.97
0.03
              36

-------
            TABLE 12
                              c
  PERFORMANCE OF PLANT NO. 1
DURING STUDY PERIOD - VSS AND TP


   (Monthly  Average of Daily Values)
Parameter
VSS la Rmw
Wutewater, mg/1


VSS la Equalisation
Boiin Effluent, mg/1


VSS in Fta«l
Effluent, mg/1


% VSS Removed
by Secondary
Treatment

TP m Rmw
Wutewater, mg/1


TP m Final
Elf hunt. mg/1


M TP Removed
by Secondary
Treatment

Statistical
Property
Mean
Variance
Std Dev
Coef Var
Mean
Variance
Std Dev
Coef Var
Mean
Variance
Std Dev
Coef Var
Mean
Variance
Std Dev
Coef Var
Mean
Variance
Std Dev
Coef Var
Mean
Variance
Std Dev
Coef Var
Mean
Variance
Std Dev
Coef Var
June
1974
139
Z704
52
0.37
163
Z401
49
0.30
1Z
1Z1
11
0.89
91. Z
40.3
6.35
0.07
11.3
196
14.0
l.Z
1.8
0.4
0.6
0.34
79.6
65.8
8.11
0.10
July
1Z6
1Z96
36
O.Z8
1SZ
1369
37
O.Z4
10.3
49
7
0.68
93. Z
Z0.5
4.53
0.05
8.9
Z.9
1.7
OM9
Z.I
1.7Z
1.31
0.6Z
75.8
Z99
17.3
0.12
Aug
146
ZSOO
SO
0.34
ISO
1936
44
0.29
ZO
576
Z4
l.Z
85.3
4V)
21.2
0.25
8.9
1.4
l.Z
0.14
Z.O
0.85
0.92
0.46
77.9
90.4
9.51
0.12
Sept
149
2601
51
0.34
153
1225
35
0.23
11
41
6.4
0.57
92.8
14.3
3.78
0.04
8.2
0.96
0.98
0.1Z
1.3
0.19
0.44
0.34
8Z.9
31.6
5.6Z
0.07
Oct
167
2116
46
0.27
17Z
1Z96
36
0.21
12
49
7
O.S9
92.6
19. Z
4.38
0.05
9.7
1.0
1.0
0.10
2.5
0.88
0.94
0.37
73.7
106
10.3
0.14
Nov
136
ZSOO
50
0.37
153
2209
47
0.31
18
361
19
1.1
89.1
159
12.6
0.14
8.7
1.0
1.0
0.11
2.6
l.Z
1.1
0.41
70.6
14Z
11.9
0.17
Dec
143
3249
57
0.40
163
2704
52
0.3Z
7.6
13
3.6
0.47
93.3
17.1
4.13
0.04
8.2
1.7
1.3
0.16
l.Z
0.14
0.37
0.32
84.6
36.7
6.06
0.07
Jan
1975
115
2025
45
0-39
141
2304
48
0.34
11.8
Z9
5.4
0.46
90.8
45.6
6.75
0.07
7.Z
1.4
l.Z
0.16
2.2
Z.O
1.4
0.61
70.7
256
16.0
0.23
Feb
105
3481
59
0.56
109
1849
43
0.39
17
28«
17
0.98
85.2
156
12. S
0.15
__
--
--
—
1.7
1.2
1.1
0.65
76.9
213
14.6
0.19
Mar
92
3969
63
0.69
96
676
26
0.27
6.7
36
6
0.98
92.2
93.7
9.68
0.11

--
—
—
1.6
0.16
0.40
0.26
78.1
30.0
5.Z9
0.07
Apr
93
1156
34
0.37
119
15Z1
39
0.33
8.9
100
10
1.1
92.4
41.3
6.43
0.0?
7.1
0.42
0.65
0.09
1.3
0.46
0.68
0.51
81.6
83.5
9.14
0.11
May
119
484
22
0.19
120
1089
33
0.28
5.5
13
3.6
0.65
92.2
Z89
17.0
0.18
..
--
--
—
Z.O
1.4
1.2
0.61
7Z.6
Z76
16.6
0.23
June
134
1267
35.6
O.Z7
134
1ZZ5
35
0.26
11
196
14
1.3
91.7
137
11.7
0.13
8.4
1.2
1.1
0.13
3.6
16
4
1.0
58.6
1989
44.6
0.76
July
112
676
26
O.Z3
112
676
26
O.Z3
5
16
4
0.80
95.6
7.95
2.82
0.03
7.1
0.88
0.94
0.13
0.90
0.21
0.46
0.51
86.9
35.5
5.96
0.07
              37

-------
As shown in Table 10, raw wastewater flow rates were similar throughout the 14-month
period, averaging 13,970 m /day (3.69 mgd).  The final clarifiers operated with an
average overflow rate of 32.8 m3/day/m2 (805 gpd/sq  ft) which slightly exceeds the
                      •a       j
design value of 32.6 m /day/m* (800 gpd/sq ft).  Recycle sludge flow rates averaged 69
percent of the influent flow rate during this period.  Mixed-liquor D.O. concentrations
were maintained at an average of 2.1 mg/1 (for measurements taken at the head of the
aeration basin).   The mean  aeration period was 6.1 hr and the mean aeration rate was
119,980 m3/day (4,236,500 cu ft/day)  which  is equivalent  to  approximately 0.0086
m /I   (1.15 cu ft/gal) of sewage treated.

Table  10 also shows that there was some difficulty in  maintaining a constant MLSS
concentration throughout the study  period.  The mean MLSS concentration  during the
14-month period was  1977  mg/1, with monthly mean values ranging from 1461 mg/1 to
2735 mg/1.  The  organic loading intensity, F/M, also varied considerably, exhibiting a
range of 0.39 to 0.80 g/g day (Ib/lb day) and a mean of 0.55 g/g day (Ib/lb day).

To illustrate the treatment effectiveness of Plant No. 1, values of some wastewater
quality parameters for the plant influent, equalization basin effluent, and final effluent
are given in Tables 11  and 12.  Also shown are the percentage of BOD-, TSS, VSS and TP
removed by secondary treatment.  As in most of the data presented here, values for the
mean, standard  deviation,  variance, and coefficient of variation  are listed in  each
instance.

As illustrated by examination of the data in  Tables 11 and 12, the percentage removals
of BOD 5, TSS and VSS were relatively consistent throughout the study period and were
typical of those expected from a conventional activated sludge plant (averaging about
91 percent for all three parameters). Percentage removals of TP across the  plant were
not consistent, ranging from 59 to 87 percent, and reflect some of the difficulties with
the  ferric  chloride  feed  system  (pump malfunctions  and  line  plugging).   These
difficulties did not appear to have much effect on TSS removal in the plant.

Figure 5 illustrates TSS and BOD plant effluent data collected under unequalized and
equalized flow during  March-July 1975. There is little apparent difference  evident in
the level or consistency of effluent TSS and BOD  concentrations obtained under each
condition.  Effluent  TSS  concentrations averaged 9  mg/1 during the unequalized flow
                                         38

-------
U)
to
               cn
                  50
                 40
                 30
                  10
                  0
              O
              CD
                 20-
                 10-
                              EOUALIZED   FLOW
                  UNEOUALIZED
                      FLOW
                   EQUALIZED   FLOW
                        MARCH
APRIL
MAY
JUNE
JULY
                FIGURE 5 - Concentration of BOD5 and suspended solids in plant No. 1 effluent during
                           periods of equalized and unequalized flow. (1975).

-------
                                     TABLE 13
     CONDITIONS OF OPERATION AND PERFORMANCE OF PLANT NO.
        DURING PERIODS OF EQUALIZED AND UNEQUALIZED FLOW
hem
Influent to Aeration Basra
Daily Flow, mgd
Temperature i F
BOD,, rng/1
TSS. mg/1
TP, mg.'l
VSS, mg/1
Final Effluent
BOD.. r=s'l
TSs,°n-.g:i
TP, mg/1
VSS, mg/1
Percent Removal
BOD
TSS
TP
VSS
Aeration System
MLSS mg/1
MLVSS, mg/1
Settleability *
D.O., mg/1
Applied Air, 1000 cu ft/day
R ecyle Ratio, %
F/M, Ib/lb day
Final Clarlfier Overflow Rate,
gpd/iq ft
31 -Day
R/j.^lltAH Plnw Poring
Mean

3.96
56
15Z
1Z6
7.3
1Z1

13
14
1.6
9

88.0
91.0
78. Z
9Z.6

1,814
1,374
0.1Z
3.6
6.Z3Z
6Z
0.49
863

Standard
Deviation

O.Z4
1
37
35
0.5
41

9
14
1.1
10

6.4
7.7
15,3
6.5

5ZO
401
0.03
Z.3
Z.015
9.6
O.Z1
53

b
Coef. of
Variation

0.06
0.01
O.Z4
O.Z8
0.07
0.34

0.67
1.02
0.7Z
1.13

0.07
0.09
O.ZO
0.07

O.Z9
0.29
O.Z6
0.65
0.3Z
0.16
0.43
0.06

31 -Day
Uneaualiied Flow Period'
Mean

3.00
60
186
ISO
7.7
1Z3

11
9
2.8
8

93.3
93.8
64.3
93.2

1.501
1,113
0.12
1.9
4,042
83
0.56
653

Standard
Deviation

0.43
Z
36
19
0.9
17

4
4
Z.6
14

3.7
Z.4
13.8
11.6

290
Z03
0.02
1.1
1,314
18.4
0.05
94

Coef. of
Variation

0.14
0.04
0.20
0.13
0.12
0.13

0.33
0.41
0.93
1.76

0.04
0.03
O.Z1
0.1Z

0.19
0.18
O.ZO
0.54
0.33
O.ZZ
0.23
0.14

31 -Day
Equalised Flow Period
Mean

3.Z6
60
144
164
7.9
1Z7

12
11
1.8
7

91. Z
93.3
78.8
94.6

1,470
997
0.1Z
Z.6
3,851
78
0.55
710

Standard
Deviation

O.Z5
1
36
46
1.3
37

5
5
1.5
5

4.4
2.9
16. Z
3.7

386
299
0.05
1.7
1,251
9.9
0.21
54

Coef. of
Variation

0.08
0.02
0.25
0.28
0.16
0.29

0.42
0.46
0.87
0.72

0.05
0.03
0.21
0.04

0.26
0.30
0.41
0.66
0.3Z
0.13
0.39
0.08

"Not* mgd x 3785 » m3/d»yl J°F -3Z) 0.555 - °C) cu It/day x O.OZ8 « »3/
-------
period versus 14 mg/1 and 11 mg/1 during the two equalized flow periods, while effluent
BOD-  concentrations  averaged  11  mg/1  during  the  unequalized flow period versus
12 mg/1 and  13 mg/1  during the two  equalized  flow periods.   Table 13 presents a
summary of the average conditions of operation and mean  performance values for the
31-day period of unequalized operation and for the two 31-day periods  of equalized
flow which preceded  and  followed  unequalized  operation.   Like  Figure 5, Table 13
shows  that final effluent  quality (in terms  of  BOD, TSS and VSS)  and percentage
removals  were  very  similar during the  respective  31-day  periods  of  comparison.
Throughout the  periods of testing, the  plant  operated without upset and, as shown in
Table 13,  exhibited good sludge  settleability. While  unavoidable changes occurred in
some of the operating parameters, such  as F/M, the principal experimental variable was
the presence or  absence  of diurnal flow variations; thus, in this practical situation, flow
equalization had little  or no beneficial effect on plant effluent quality.

Intensive Studies —

The limited amount of bihourly data which was collected on the final effluent stream of
the equalized plant is included  in Tables  3-6.  The conditions of operation during the
periods for which bihourly effluent data were collected are summarized in Table 14.
Some helpful insight into the effects of equalization can be gained  by  examining these
study periods individually.

During the intensive study periods in March through June, 1975, the  emphasis in the
experimental  program was  on  (i) stressing  Plant  No. 1  in  the equalized mode by
selectively removing final clarifiers from service, thereby increasing the overflow rate
in the final clarifiers, and (ii) taking the equalization basin out of service and running
Plant  No. 1   under  stressed and unstressed  conditions  with  normal  diurnal  flow
variations.   These  experiments were undertaken  to permit   comparison of  plant
performance under both equalized and  unequalized flow conditions  and at both normal
and elevated final clarifier overflow rates.

(1)   On March 10, four clarifiers were removed from  service at 8:30 a.m. The  effluent
      deteriorated with  high suspended solids  carryover;  measurements taken every
      half-hour showed that TSS reached 300 mg/1 and BOD,-  was as high as 378 mg/1.
                                                              3
      During this period, the plant flow  was equalized at 15,900 m  /day (4.2 mgd), which
                                        41

-------
                                             TABLE 1*

                      CONDITIONS OF  OPERATION OF  PLANT NO. .1
                      DURING  PERIODS OF BIHOURLY TESTING a'D

                            (Average of  Daily Values Over Period)
Parameter
Wastewater Flow, mgd
Aeration Period, hr
MLSS, mg/l
MLV5S, mg/l
Mixed Liquor D.O., mg/l
Settleability*
Applied Air, 1,000 cu ft/day
Sludge Recycle Ratio, %
F/M, Ib/lb day
Clar. Overflow Rate, gpd/sq ft
Clar. Solids Load, Ibs/day/sq ft
3/17 to 3/18
I975C
4.30
5.3
1,266
998
1.05
0.13
3,977
60
0.94
915-17556
21. 4-27. Oe
4/14 to 4/17
1975C
4.14
5.4
2,461
1,840
1.33
0.13
5,843
49
0.45
902-13406
21. 4-35. le
5/18 to 5/22
197?
2.89
7.7
1,556
1,174
1.78
0.12
3,680
93
0.46
587
15.8=
6/3 to 6/5
1975*
3.34
6.7
1,227
969
1.53
0.12
3,514
71
0.71
965e
16. 9e
6/10 to 6/12
1975°
3.53
6.3
1,104
882
2.17
0.09
3,392
55
0.77
1286e
18.3e
6/30 to ]l 2
1975*
3.47
6.4
2,178
1,284
3.05
0.23
3,806
63
0.51
1002e
29.7e
fOnly those periods for which bihourly plant effluent data were obtained are shown.         .
"Note:  mgd x 3,785 = mVday; cu ft/day x 0.028 ~ m*/day; gpd/sq ft x 0.0408  m'l day mz; Ib/lb day = g/g day;
       Ibs/day/ sq ft x 4.88 = kg/day/mz
jPIant flow was equalized
"Equalization basin was out of service; normal diurnal flow conditions prevailed.
eClarifier overflow and solids loading rates were increased during part or all of these periods by intentional removal of
.some units from service; see text for description.
 See Table 10 for definition
                                                 42

-------
                                                3       2
     gave a final clarifier overflow rate of 74.7 m /day/m  (1830 gpd/sq ft) based on a
     surface  settling area of  213 m  (2,296 sq ft).  The solids  loading  was about
     129 kg/day/m  (26.5 Ibs/day/sq ft). All clarifiers were put back on line at 10 a.m.
     after 1-1/2 hours because of continued poor effluent quality.

(2)   On March 17,  three  large clarifiers were  removed from service at 9:00 a.m.
                                                      2
     yielding  an available surface settling area of 228 m   (2450 sq ft). Plant flow rate
     at the  time  was  equalized  at  about  16,275 m /day (4.3 mgd) which  gave an
                             •i       "j
     overflow rate  of  71.6 m /day/m  (1755 gpd/sq ft) and a solids  loading of about
                  2
     132 kg/day/m   (27 Ibs/day/sq ft).   Results  were poor, necessitating that the
     experiment be  suspended.  Beginning at  11:00 on the same day, the plant was
     operated after  taking two small clarifiers and one large clarifier  off-line.  The
     resulting arrangement produced a surface settling area of 280 m  (3,010 sq ft) and
     an overflow  rate of about 58.3 m /day/m2  (1430 gpd/sq ft).  Based on MLSS of
                                                                                 2
     1266  mg/1 and a  recycle  rate  of  60%,  the solids  loading  was 118  kg/day/m
     (24.1 Ibs/day/sq ft).  A  good  effluent was produced  with  BOD- and TSS values
     averaging less than 10 mg/1; however, the experiment was terminated at 3:00 p.m.
     after 4 hours of operation by instructions from the plant operator.

(3)   On April 14, four small clarifiers were  taken out of service at  9:00 a.m. leaving
     264 m  (2842 sq ft) of surface settling area remaining (with equalized flow). The
     effluent deteriorated rapidly, necessitating that the clarifiers be put back on line
     within one hour.   Part of the problem with  this particular mode of operation
     seemed to be an uneven flow distribution among the clarifiers.

(4)   On April 16, three small clarifiers were removed from service at 9:00 a.m. under
                                                                                 2
     equalized  flow  conditions.   The  resulting surface settling  area  of  306 m
     (3290 sq ft) and plant flow rate  of 16,650 m /day (4.4 mgd) produced  an  average
     overflow  rate  of  55 m  /day/m   (1340 gpd/sq ft).    The  solids  loading was
     approximately 17 kg/day/m   (35.1 Ibs/day/sq ft), based on MLSS of  2268 mg/1 and
     a recirculation ratio of 38%.  Effluent quality was generally poor with progressive
     deterioration through the day; BOD- results were better than those for  TSS but
     hexavalent chromium and phenols  were  detected  in the  wastewater and it is
     possible that the BOD,. results were low  due to toxic effects.
                                        43

-------
(5)   During the May 18-22,  June 3-5, and June 10-12 study periods, the equalization
     basin was removed from service.  The performance and operation data (Tables 3-6
     and Table 1*0 show that final effluent quality was good during each period, despite
     the fact that the  plant was stressed during the latter two periods  by removing
     final clarifiers  from service. These results indicate that the plant is  capable of
     producing a good effluent with or without flow equalization.

(6)   From  June 30 to July 2, 1975, the plant was operated in the equalized mode but
     two clarifiers were  taken  off-line to  obtain  performance data  under stressed
     conditions.   The  average  plant flow  for  the  three days  of  testing  was
     13,130 m /day  (3.47 mgd),  yielding an average  final clarifier -overflow  rate of
          32                                                               ")
     41  m /day/m   (1002 gpd/sq ft)  based  on  a  surface  settling area of  322 m
     (3,462 sq ft).  The MLSS concentration was 2,178 mg/1 and the sludge recycle rate
     64%, resulting  in a clarifier solids loading of 145  kg/day/m2 (29.7 Ibs/day/sq ft).
     The performance  data  indicate   that  there was no  apparent  effluent quality
     deterioration during the testing period.

(7)   On July 28, four clarifiers, representing half of the plant's clarifier capacity, were
     removed from service at 9:00 a.m. During the testing period, the final clarifier
                                  ^       ?
     overflow rate averaged  59  m /day/m   (1440 gpd/sq ft) based on a surface settling
     area of  213 m2   (2,296 sq ft).     The  solids  loading  exceeded  171  kg/day/m2
     (35 Ibs/day/sq ft) based  on  MLSS of 1,832 mg/1 and a recirculation ratio of 62%.
     Effluent quality remained stable  but then began to progressively deteriorate after
     about 12 hours; TSS  measurements on bihourly samples reached 78 mg/1 after 28
     hours.  A  similar experiment was conducted on  August 5 with virtually identical
     results.  These  findings  showed that there  can be a considerable  lag period (10-
     12  hr) before the  effects of a substantial increase in final clarifier overflow rate
     are observed in the final effluent.  However, as described above, previous testing
     (particularly that conducted on March 10 in which the same clarifiers were taken
     out of service under similar conditions) generally showed much shorter lag periods
     before the effluent  quality deteriorated.  The  difference is attributable to (a)
     more efficient solids return in the later testing (because the clarifiers  and sludge
     return  lines had  been  cleaned of blockages and deposits in the interim), and
     (b)  lower initial sludge levels in the clarifiers for the later testing periods.
                                        44

-------
The final effluent data in Tables 3-6 along with the preceding discussion suggests that
the effects of flow equalization on  the  performance  of  this activated sludge system
were  less important than the effects of other  operational  variables.  First,  plant
performance was similar under both equalized and unequalized conditions,  even when
the final clarifiers were stressed.   If  anything, the performance of the plant,  as
measured by the mean and variance of the bihourly  effluent TSS and BOD data, was
marginally better when the flow was  unequalized (See Table 3 and  the corresponding
conditions of operation in Table 14).  Second, there was continuing difficulty  throughout
these studies in maintaining control over the operating conditions and this lack of rigid
control undoubtedly affected  the  effluent quality, irrespective  of equalization.  For
instance, there were problems in operating  the  Ypsilanti plant with a constant BOD
loading intensity.  Likewise, there are  various other factors which may affect effluent
quality,  including sludge  settleability, wind and density currents,  recycle rate,  sludge
blanket height, chemical dose (for P precipitation), etc. Not all of these  variables could
be controlled at the plant nor would they be likely  to  be rigidly controlled at most
manually-operated plants. Therefore,  without proper operational control,  this  study
indicated that benefits of flow equalization, if any, can be lost.

Another  factor  which  would tend  to  minimize performance  differences  between
equalized and unequalized plants is the insensitivity with which final clarifiers appear to
respond  to changes in flow rate, even at high hydraulic loadings.  Figure  6  shows that
there was a time lag on the order of 12 hours before the effect of a substantial increase
in clarifier loading was observed in the effluent during  one representative experiment at
the plant (See Item (7) above).  Response times of this magnitude would  act to diminish
any adverse impact of  normal diurnal  flow variations  at  a plant.  Similar results were
observed in other runs, although as previously discussed the time lag was not always as
long as 12 hours before the effluent deteriorated. Based on our observations, variable
flows have  limited impact on final clarification efficiency  except where the  solids
loading becomes limiting, causing a build-up in the clarif ier sludge inventory, raising of
the sludge blanket, and eventual carryover of solids.

A further indication that final clarifier performance is  relatively insensitive to flow
variations is illustrated  in Figure 7.  Here,  TSS  concentrations  in grab samples  of
secondary effluent are plotted as  a function of overflow rate at the time of sampling,
for samples collected under diurnal flow conditions. It is evident that the  two variables
                                        45

-------
                                     TIME,  hrs.

FIGURE 6  Response of secondary clarifier effluent suspended solids concentration to
           an increase in loading (overflow rate increased at time zero from 720 to
           1440 gpd/sq ft (29.4 to 58.8 m  /day/m^; corresponding solids loading in-
           creased from  18 to 35 Ibs/sq ft/day (87.8 to 171 kg/day/mz).
                                      46

-------
   50
 o»
 e
z
o
cr
UJ
U
z
o
o
to
z
UJ
U.
UJ
   40-
   30-
   20"
               MAY 18-22, 1975
JUNE 3-5, 1975
•

•   •  *
  •
   •   ••
JUNE 10-12,  1975
                                                                               •     *
      0   200  400  600  800  IOOO    6OO  800  1000  1200  1400    800  1000  1200  1400  1600

                      FINAL  CLARIFIER  OVERFLOW  RATE,  gpd/sq  ft



        FIGURE 7 -  Concentration of suspended solids in bi-hourly samples of final effluent
                     versus final clarifier overflow rate at the time of sampling - diurnal

                     flow conditions.

-------
do not  correlate very well, although there is some indication that the effluent TSS
deteriorated with overflow  rates above  57 m3/day/m2 (1400 gpd/sq ft).  These  data
were subjected to linear and nonlinear regression analysis to determine if there was a
definite linear or log-log linear relationship between the effluent TSS concentration and
the instantaneous flow rate occurring at the time of sampling.  Additional analyses were
also run for lag  periods on flows of  1 hour  and 2 hours  to determine if effluent TSS
concentration was  more  strongly related  to  the flows   1 or 2 hours  earlier.   All
regression  analyses  indicated a  lack of  significance  at  the  5 percent  level between
effluent TSS and flow.

Special Studies

Effects of Equalization on Wastewater Temperature —

Temperature readings were taken on the influent and effluent of the equalization basins
over a period of several months at times  when the basins were full or nearly full, i.e.,
when the retention time was greatest. Based on  131 daily measurements between June,
1974 and  February, 1975,  it  was  found that  the  equalization  basin resulted  in
temperature changes of the influent wastewater of less than 1°C. Influent wastewater
temperature varied  from  a monthly average of  20°C in August,  1974, to 11°C  in
January, 1975.  Sometimes the  apparent effect of equalization was to increase the
temperature of the wastewater and sometimes to decrease it. Since the thermometer
used to take the measurements was only read to the nearest 0.5°C,  we believe the
differences are largely explainable in terms of the low precision of measurement.  The
conclusion  reached is that the closed equalization basins  at Ypsilanti Township had  no
significant effect on wastewater temperature.

Aeration Requirements for Equalization —

A brief study was performed to determine the minimum air flow rate necessary to both
maintain aerobic conditions  and prevent  sedimentation of solids  in the equalization
basin.  To  facilitate  the work and make  it more generally applicable, only one of the
two equalization basins was used; the second tank was taken out of service by closing  all
valves  to the tank.  Compressed air was  fed to the first tank at rates of 4.2, 8.4, 13.0
and  16.8 m3/ min (150, 300,  460  and 600  cfm). After adjusting the air flow rate to the
                                        48

-------
desired value, the D.O. concentration was aliowed to equilibrate at levels indicated in
Figure 8.  Dissolved oxygen and TSS measurements were obtained at depths of 0.3, 3.4
and 6.4 m (1, 11 and 21 ft) below the water surface representing the top, midpoint, and
bottom of the  tank.  The  tank was at full liquid  depth  (See  Figure 2) and contained
1181 m (312,000 gal) of water at the time of the measurement which corresponded to a
theoretical detention time of about 4.2 hr.  The samples and measurements were taken
through a manhole in  the  cover of the equalization basin about  half way  between the
center and periphery of the basin.

Results of the  study are presented graphically in Figure 8.  It was observed that sedi-
mentation of solids apparently occurred only at the lowest level of aeration (3.7x10
m /min/1,  0.5 cfm/1000 gal).  Aerobic conditions prevailed throughout the basin even at
the lowest level of aeration, although the D.O. content decreased with distance from
the air nozzles, achieving  a minimum of 2.3 mg/1 at a  depth of 0.3 m  (1 ft) below the
                             3
surface at an air flow of 4.2 m /min (150 cfm).  These results indicate that the aeration
requirements for providing complete mixing are greater than for  maintaining aerobic
conditions in an equalization basin. The minimum level of aeration for preventing solids
deposition was about 7.5 x  10~  m  /min/1 (1.0 cfm/1000 gal) of storage.

Operational Problems During Study

The  following  operational problems were experienced in the equalized  plant  (Plant
No. 1) during the course of the study:

1.    Rags and Debris ~ In the initial phase of the study, Plant No. 1 had no pretreat-
      ment facilities.  Therefore, rags and other debris  tended  to accumulate  in the
      aeration  compartments  and, eventually, the final  settlers.   These rags caused
      problems in the operation of the return sludge system by plugging the sludge  return
      lines.  This was remedied by installing a manually cleaned bar rack in the influent
      channel.

2.    Influent Metering —  There  were a few occasions  on which the influent magnetic
      flow meter was inoperative.
                                        49

-------
    q
    a
    0>
8.0-




7.0-




6.0-




5.0-




4.0-




3.0-




2.0^
200-




180-




160-




140-




120-




100-
D
                  O 4.2 mVmin 
-------
3.   Maintenance of Constant MLSS ~ There was difficulty experienced in maintaining
     a stable MLSS concentration at both plants.  This problem was at least partially
     caused  by the interconnected sludge  piping systems of the two plants which
     severely limited operational control over sludge wasting.

4.   Sampling — Special sampling lines were installed so that most samples could be
     taken at  a sink inside  the control building.  Nevertheless, some problems with
     plugged lines were encountered, and it was decided to collect all samples directly
     at the sample point.

5.   Ferric Chloride and Polymer Feed Systems ~ The ferric chloride and polymer feed
     lines were subject to occasional plugging or freezing.  Such problems were usually
     corrected within a day.

6.   Manpower Requirements —  There was insufficient  manpower on the Ypsilanti
     Township staff to rapidly respond to some of the non-routine duties and require-
     ments inherent in plant-scale research.  The function  of the  project research
     personnel was mainly sampling and analysis, and they were limited in their ability
     to  carry  out  or assist in any aspects involving plant  operations.  Conversely,
     treatment plant personnel  were  not able to assist in  performing  some of the
     additional sampling and analysis that  might have been desirable.

Cost Considerations

The actual construction cost for upgrading Plant No.  1 and providing flow equalization
is itemized in  Table 15 according  to the contractor's  breakdown.  The work consisted
principally of a) piping additions and deletions to convert existing primary clarifiers to
secondary clarifiers; b)  grit chamber modifications; c)  installation of a completely new
diffused air  system  for  the  aeration  basins; and d)  installation of  equipment and
appurtenances  necessary  for  converting  existing  digesters  to equalization basins,
including an equalization  pump, piping, control valving,  compressed  air system, and
instrumentation.

Costs associated with  the equalization system were  not  itemized  separately by  the
construction contractor but have been estimated as shown  in Table 16. The estimated
                                        51

-------
                         TABLE  15

                   CONSTRUCTION  COST
    YPSILANTI TOWNSHIP PLANT NO. 1 IMPROVEMENTS*
           Item
  Cost
General Conditions
Bond
Piping
Pumps
Air Compressors
Air Diffusers
Barminutor
Sheet Metal
Instrumentation
Architectural Work
Insulation
Electrical
Miscellaneous Change Orders

              TOTAL
$ 20,000
   3,500
 102,300
  19,000
  39,000
  13,000
  11,000
   1,000
  42,000
  42,000
   2,000
  58,485
  36,915

$390,200
aCosts shown are the actual construction costs itemized according
 to the contractor's schedule! the date of the  construction contract
 was May 31, 1972 (EPA Sewage Treatment Plant Cost Index 183);
 construction was completed in August, 1973.
                              52

-------
                        TABLE 16

                   CONSTRUCTION COST
YPSILANTI  TOWNSHIP PLANT NO.  1  EQUALIZATION SYSTEM4
          Item
  Cost
Equalization Pump and Controls
Piping and  Valves
Air Compressors and Piping
Electrical and Controls

                   TOTAL
$ 10,800
  35,700
  20,000
  18,500

$ 85,000
 ^Engineers estimate (EPA Cost Index  183).

-------
cost for  the  equalization  facilities of $85,000  is only  about 25% of the cost for
equalization that would have been experienced had new  concrete equalization basins
been constructed.

Use of flow equalization  at the plant was necessary to gain state approval  for the
conversion of the primary clarifiers to secondary clarifiers.  Thus, provision  of flow
equalization was cost effective in this case because,  in effect, it eliminated the need
for costly  construction  of  new  secondary clarifiers.    In  general  however, flow
equalization would not be considered a substitute for primary sedimentation.

Operation and maintenance costs for the equalization  system at Ypsilanti Township are
not monitored  separately and are therefore  difficult to  estimate.  It  is the  authors'
observation that a negligible amount of operator time is required on  a day-to-day basis
for routine maintenance and operation. The only significant requirements will be for
periodic repair  of equipment and control  systems.  After three years of operation at
Ypsilanti Township, the only  equipment failure  has  been with  the automatic  valve
following the equalization pump.

The electrical  power  supply and electrical facilities   operations  at  the  Ypsilanti
Township Treatment Plant preclude the separation of  power costs on a Plant No. 1 and
Plant No. 2 basis.  Thus, a true power cost comparison of equalized and unequalized
flow conditions could not be made.  However, the use of  theoretical power associated
expressions for equalized and unequalized flow conditions  indicated that the use of
flow equalization at Ypsilanti Township  does not result in  power cost economies.
Computations indicated that the  savings in demand  charges  for aeration and return
sludge pumping brought about by equalization were slightly less than the added power
costs of  the equalization pump and  equalization basin  blowers.  Comparison of the
theoretical power costs for equalized and unequalized flows are shown in Table 17.
                                        54

-------
                                           TABLE 17


                   EFFECTS OF EQUALIZATION ON ANNUAL PLANT OPERATING COSTS
Item
Blowers
Sludge Return Pumps
Influent and
Equalization Pumps
TOTAL
Equalized Flow Cost
Demand
Charge
$6,050
709
425
$7,184
Annual
Energy
Cost
$11,360
1,669
500
$13,529
Total
$17,410
2,378
925
$20,713
Unequalized Flow Cost
Demand
Charge
$8,380
787
0
$9,167
Annual
Energy
Cost
$ 9,780
1,669
0
$11,449
Total
$18,160
2,456
0
$20,616
en
Cn

-------
                                  REFERENCES
 1.    "Flow  Equalization -  Plus  for  Wastewater  Treatment  Plants?"  Civil Engrg.
      (Sept. 1975).

 2.    "Industrial  Wastes Digest -  Flow Equalization," Prepared by  3. C. Lamb, III,
      Public Works (Mar. 1975).

 3.    Spiegel, M., "Flow  Equalization to Insure  Designed Wastewater Treatment at
      Lowest Cost," The Diplomate, Amer. Acad. Environ., Engrs. (May, 1974).

 4.    LaGrega, M. D.  and Keenan, 3.  D., "Effects  of  Equalizing Wastewater Flows,"
      Jour. Water Poll. Control Fed., 46, 123 (1974).

 5.    Boon, A. G. and Burgess, D. R., "Effects of  Diurnal Variations in Flow of Settled
      Sewage on  the Performance  of High Rate Activated Sludge Plants," Water Poll.
      Control (Gr. Britain), 71,493 (1972).

 6.    Foess, G. W., Meenahan, 3. G. and Harju, 3.  M., "Evaluation of Flow Equalization
      at  a Small Wastewater Treatment  Plant,"  Municipal Environmental Research
      Laboratory, Environmental Protection Agency, Cincinnati, Ohio, EPA-600/2-76-
      181 (September, 1976).

7.    George, T.  K. and Gaudy, A.  F. 3r., "Response of Completely Mixed Systems to
      Hydraulic Shock  Loads," 3our. Environ. Engr.  Div., Amer. Soc. Civil Engrs., 99,
      EE5, 593 (1973).

8.    Busby, 3. B. and  Andrews, 3.  F.,  "Dynamic Modeling and Control Strategies for
      the Activated Sludge Process," 3our. Water Poll. Control Fed., 47, 1055 (1975).
                                       56

-------
 9.   Smith, R., Eilers, R. G. and Hall, E. D., "Design and Simulation of Equalization
      Basins," EPA, U. S. Dept. of the Int., Cincinnati, Ohio. (Feb. 1973).

10.   "To  Establish Viable Methods of Maintaining Waste Treatment Efficiencies with
      Reference to Flow Variations," Report by James F. Maclaren, Ltd.  to  Ontario
      Ministry of the Environment, Toronto, Ontario (1974).

11.   "Flow Equalization," Technology  Transfer Seminar Publication, U. S. Environ.
      Protection Agency (May 1974).

12.   Novotny, V.  and Englande, A. J.,  Jr., "Equalization  Design Techniques for Con-
      servative Substances  in Wastewater  Treatment  Systems,"  Water   Res.  (Gr.
      Britain), 8,325 (1974).

13.   Di Toro, D.  M.,  "Statistical Design of Equalization  Basins," Jour. Environ. Eng.
      Div., Am. Soc. Civil Engrs., 101,EE6,917 (1975).

14.   Wallace, A. T.,  "Analysis of Equalization Basins," Jour. Sanitary Eng. Div., Am.
      Soc. Civil Engrs., 94,SA6,1161 (1968).

15.   Humenick, M. J. and Taylor, R. D., "Functional Design of Equalization  Basins,"
      Center for Research in Water Resources, Univ. of Texas (Jan. 1975).

16.   "Standard Methods for the Examination of Water and Wastewater," 13th  Edition,
      Amer. Pub. Health Assn. (1971).

17.   "Technicon Auto Analyzer II Industrial Methods," No. 98-70W, (October, 1973).

18.   "Technicon Auto Analyzer II Industrial Methods," No. 100-70 W, (January  1973).

19.   Seidel,  H. F. and Baumann,  E.  R.,  "Effect of Preaeration  on the  Primary
      Treatment of Sewage," Jour. Water Poll. Control Fed., 33,339 (1961).

20.   Foess, G.  W., and  Meier,  P.  M., "Economic Comparison of  Activated Sludge
      Systems With and Without Flow Equalization," Unpublished.
                                        57

-------
                                    APPENDIX

                      MEASUREMENT OF DATA VARIABILITY
 A large volume of bihourly and daily data was collected in this study.  In analyzing these
 data it was considered desirable not only to compare the average or mean values of the
 waste parameters in different process streams, but also the variability or scatter of the
 data used to compute the  mean  values.   Three related measures  of scatter were
 employed, the variance, standard deviation, and coefficient of variation.

 If Xp \2> • • • X_ is  a sample of  n measurements having a mean of X, the standard
 deviation S of the sample is defined by
      S =
                    n
               2
The quantity S , the square of the standard deviation S, is called the variance of the
sample.  The coefficient of variation is simply the standard deviation S divided by the
mean X.
The standard  deviation can be compared with the mean of the variable parameter to
provide an individual with a feeling of the degree of uncertainty  associated with the
variable parameter.  The variance allows the individual to ascertain the tightness of
data distributions; smaller values implying data distributions less widely spread about
the mean, greater values implying data distributions widely spread about the mean. The
coefficient of variation indicates the  data scatter as a fraction of the  mean and can
thus be used to compare the scatter of data having different mean values.
                                        58

-------
                                  DATA LISTING

Experimental data analyzed in this report are listed on the following pages.  Bihourly
data (labeled as hourly data)  are listed first, followed by daily data.  Following are
some notes  of explanation for the abbreviations and shorthand notations used in the
listing:

1.    For the bihourly data, the four numbers in the left-hand column indicate the date
      and time of day of the sample; e.g., 1409 at the top of the first page indicates
      October 14, 9:00 a.m.
2.    Daily data are listed chronologically beginning 3une 1, 1974 and ending 3uly 31,
      1975.  The digits in the left-hand column indicate the month  and day of the
      sample, e.g., 620 indicates June 20.
3.    Special abbreviations used are as follow  (general abbreviations and symbols are
      given at the beginning of the report);
      RI         raw  influent
      EQ        equalization basin effluent
      FE        final effluent
      AS        aeration basin
      SETTL    settleability (See Table 10)
      APPL      applied air, cu fta
      R         recycle rate, %
      TEMP     temperature,  F
4.    For the bihourly data, flows are given in mil gal/2 hrc; for the daily data flows
      are given in mgd
5.    Zeros in the data columns indicate no data
*cu ft x 0.028 = m3
b0.555 (°F -32) = °C
Snil gal/2 hr x 3,785 = nT72 hr
amgd x 3,785 = m^/day
                                        59

-------
PLANT 1,HOURLY OATA.OCTOHEH 1974


1409
— mi
1*01
1403
1405
1407
1409
-_1M1
1401
1403
1405
1407
1509
_.15U
1501
1503
1505
1507
1S09
_. 1511
1501
1503
IbOS
1507
1609
.1611
1601
. 1603
1605
1607
1609
1611
1601
1603
1605
1607
1709
....1711
1701
1703
1705
1707
1709
1711
1701
1703
1705
1707
1809
1811
1601
1603
1605
1807
1609
1*11
1801
1603
1805
1607
1909
	 1911
1901
1903
1905
f * V ^
1907
1909
_ 1911
1901
A * V 4
: 1903
1905
1907
Rl.FlOM
.290 .
	 .263
.455
.334
.344
.368
.323
	 .431
.370
.320
.271
.214
.212
	 .317
.363
.363
.375
.3H8
.36u
	 .326
.374
.295
.337
.130
.156
	 .34Q
.388
-. .357
.367
.349
.365
. 	 .385 .
.393
.304
.293
.222
.323
	 .276
.«19
.370
.*35
.369
.391
•C.OOO
-C.OOO
-C.OOO
-C.OOO
-C.OOO
-C.OOO
-C.OOO
.393
.410
.387
.371
.361
.*13
.368
.313
.296
.244
.226
.317
.394
.450
.432
.480
.190
.185
.393
__... .336
.279
	 .205
HIiTSS
254.000
£28.000
218.000
440.000
198.000
274.000
232.000
220,000
274.000
204.000
266.000
231.000
230.000
£30,000
214.000
168.000
144.000
144,000
216.000
230.0UO
196.000
208.000
lea.ooo
£72.000
170.000
159.000
Hd.OOO
156.000
155.000
14d.QOO
166.000
160.000
leu.ooo
178.000
190.000
62.000
340.000
394.000
120.000
-0.000
164.000
134.000
118.000
£32,000
318.000
268.000
102.000
102.000
466.000
158.000
130.000
150.000
158.000
142.000
170.000
142.000
126.000
146.000
330.000
138.000
70.000
132.000
aeo.ooo
206.000
252.000
262.000
176.000
260,000
206.000
342.000
168.000
202.000
PI, 800
376.000
204.000
210.000
246.000
144.000
256.000
260.000
290.000
260.000
256.000
220.000
247.000
146.000
140.000
164.000
228.000
143.000
193.000
174.000
.. 196.000
206.000
228.000
204.000
224.000
. 72.000
162.000
216.000
154.000
132.000
216.000
168.000
194.000
204.000
198.000
156.000
80.000
2AB.OOO
. 256.000
158.000
-0.000
170.000
173.000
170.000
332.000
248.000
36A.OOO
113.000
90.000
472.000
330.000
256.000
276.000
298.000
300.000
372.000
-0.000
-0.000
-0.000
-0.000
-0.000
167.000
200.000
288.000
274.000
270.000
230.000
210.000
228.000
" 246.000
216.000
160.000
128.000
RI.COO
750.000
693.QQO
508.000
786.000
512.000
951.000
725.000
650.000
737.000
625.000
693.000
657.000
687.000
78tt,000
570.000
687.000
497.000
667.000
812.000
780.000
768.000
881.000
574.000
710.000
548.000
554.000
556.000
540.000
480.000
609.000
556.000
592.000
770.000
774.000
435.000
230.000
983.000
V5b.OOO
540.000
-0.000
550.000
681.000
528.000
846.000
944.000
891.000
SS2.000
500.000
1805.000
504.000
371.000
649.000
520.000
641.000
540.000
546.000
Sdtt.OOO
500.000
1910.000
472.000
363.000
431,000
862.000
584.000
951.000
794.000
484.000
5*6.000
713.000
1523.000
568.000
649.000
HI, SOP
B. 000
. .4,800
5.500
8.000
7.900
9.600
10.200
11.600
9.700
7.900
13.000
6.700
2.200
_ .2.500
5.000
*.900
4.900
8.000
8.700
.__ 8.300
6.500
6.600
10.000
5.700
3.000
	 7.100
4.000
4.600
5.000
5.900
6.100
7.300
18.600
13.600
6.100
*.SOO
4.300
.. . l.'TOO
4.200
-0.000
5.300
6.100
5.700
10.300
6.300
6.100
5.500
6.000
5.500
... 5,400
4.200
5. BOO
5.800
5.200
14.000
5.900
11.000
6.200
4. BOO
5,900
3.900
6.000
"5.500
6.200
7.600
6.300
6.900
7.600
6.300
9.500
5.200
4.700
MltTP
10.400
	 8,000
7.200
10.500
10.200
10,500
12.400
12.300
11.600
9.400
11.800
11.000
4.000
'.100
7.600
9.900
8.000
10.200
11.100
	 9.200
9.200
7.200
15.600
12.600
6.100
11.100
7.700
8.100
7.700
9.200
9.600
10,400
18.800
la. 700
6.900
5,700
7.400
13.100
9.500
-0.000
8.700
9.100
9.400
15, cOO
9.100
6.900
7.200
8.000
9.600
... a. 200
7.800
9.000
6.900
6.400
Id. 100
10.200
14.900
S.300
10.200
10.200
1.900
7.600
f.SOO
8.900
11.000
11.400
9.400
10.500
8.200
14.200
6.900
6.000
HI.NM3
16.000
.... 16.100
20.500
17.700
17.600
15.400
13.500
13.500
15.000
14.900'
10.200
15.600
11.600
_ 1«,500
13.200
20.300
16.900
14.100
14.000
.„ 13.000 	
14.800
14.8QO
11.200
10.100
11.600
15,000
24.000
22.600
16.800
15.000
14.200
.. 13.900 	
15.100
15.100
14.000
11.600
13.400
_. 10.800 _.
20.400
-0.000
16.400
14.300
14.300
13,900
13.500
13.400
11.700
10.900
14.000
15.500 _.
19.600
22.000
18.400
15.100
14.400
13.000
13.600
14.500
12.300
11,000
10.900
13.700 	
20.000
22.000
20.400
14,200
13.300
13,200
13.300
13.100
12.700
12.300
fil.TON
8.700
8,600
10.700
17.500
12.200
9.000
6.700
10.600
11.600
9.900
9.000
10.600
10.000
10,700
11.500
10.500
11.300
10.000
10.000
10.200
12.200
10.600
11.100
9.600
7.800
7,100
7.300
8.800
9.200
8. 800
8.100
7.700
9.900
9.400
7.200
5.800
13.700
14,900
10.700
-0.000
11.000
7.900
6.700
6.700
8.900
10.400
8.300
7.800
31.800
10.400
13.700
12.500
10.600
8.600
12.000
12.900
11.600
13.100
14.200
6.400
3.900
8.200
10.700
15.400
15.700
10..000
10.700
12.200
10.600
8.000
8.200
7.700
EO.TSS
278.000*
272,000
272.000
316,000
318.000
316.000
300.000
294, OOQ
290.000
290.000
296.000
295.000
178.000
174. OOQ
138.000
160.000
172.000
164.000
164.000
_ 176,000
234.000
226.000
242.000
240,000
242.000
278,000
200.000
190.000
162.000
196.000
160.000
162.000
186.000
196.000
1*2.000
194.000
158.000
188,000
224.000
201.000
208.000
218.000
143.000
192.000
250.000"
252.000
196.000
190.000
204.000
EC, BOO
220.000
240.000
246.000
208.000
212.000
190.000
160.000
192.000
212.000
206.000
200.000
206.000
120.000
124,000
180.000
160.000
120.000
176.000
204.000
210,000
204.000
192.000
182.000
166.000
156,000
152.000
164.000
132.000
154.000
164.000
16b.OOO
120.000
190.000
188.000
182.000
166.000
222.000
220.000
234.000
230.000
222.000
226.000
186.000
236.000
266.000'
292.000
226.000
176.000
.0.000
184,000 -0.000
188.000
192.000
186.000
Ifa4.000
166.000
158.000
184.000
152,000
170.000
126.000
140.000
132,000
158.000
196.000
234.000
254,000
230.000
224.000
" 256.000 "
262.000
250.000
304.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000^
-0,000
-0.000
-0.000
-0.000
105.000
108.000
142.000
144.000
166.000
200.000
225.000
172.000
180.000
194.000
176.000
162.000
                                              60

-------
PLANT i,HOURLY DATA.CCTOUEH  1974


2009
2011
2001
2003 .
2005
2007
2009
..2011 ...
fil.FLUtt
.195
.247
.293
.«10
.296
.280
.262
_. -0.000
PLANT 1. HOURLY DATA
M.TSS
156.000
128.000
212.000
162.000
182.000
162.000
156.000
180.000 .
.OCTOtiEH
HI, BOO
.140.000
122.000
124.000
184.000
182.000
190.000
180.000
234.000
1974
Rl.CuD
492.000
HI, SOP
4.700
536,000 3.700
625.000
372.000
508.000
56H.QOO
742.000
77V. 000

4.800
5.900
6.700
7.300
7.400
...7,100

HI, If
5.700
5.100
8.600
8,500
9.400
9.800
9.600
9,500

M.NH3
11.600
11 ,300
" 18.000
23.600
24.800
17.600
15.100
14.100

RI.TCN
6.800
7.100
""11.900
12.900
12.600
12.200
11.800
10,300

EO.TS5
202.000
212.000
"198.000
204.000
188.000
210.000
194.000
218.000

"EC, aoo
138.000
188 .000
"124.000"
168.000
152.000
200.000
194.000
208.000



1409
.. 1411
1401
1403
1405
1407
1409
1411 	
1401
1403
1*05
1407
1509
_ 1511.-.. .
1501
1503
1505
1507
1509
._1S11 .....
1501
1503 .
1505
1507
1609
_. 1611 ._.
1601
1603
1605
1607
1609
_ 1611. 	
1601
1603
1605
1607
1709
_ 1711 .__
1701
1703
1705
1707
1709
_1711. 	
1701
1703
1705
1707
1609
... ieu ....
1801
1803
1805
1807
1809
tU.COD
596.000
672.000
629 .000
641.000
60S. 000
661.000
742.000
782.000 ..
737.000
766.000
645.000
685.000
see. ooo
502.000
bSe.OOO
594.000
646.000
622.000 .
dO*. 000
743.000 .._
Tfat.OOO
780.000
739.000
75C.OOO
717.000
689. 000. _
649.000
532.000
657.000
657.000
60C.OOO
seo.ooo -
OOS.OOO
653.000
661.000
669.000
641.000
601.000 . .
TOi.OOO
656.000
677.000
713.000
649.000
60S .000 _
669.000
693.000
645.000
560.000
548.000
512.000 ...
496.000
soe.ooo
536.000
524.000
566.000
EO.SOP
6.000
5.900 ..
5.600
6.300
6.600
8.000
7.900
._8.300 ...
9.000
a. 600
7.600
7.300
5.000
._5,100._
5.000
4.900
5.200
10.000
7.100
._7.100 _
7.700
7.600
7.800
10.100
9.700
_ 7.800 ...
6.100
5.400
5.700
6.800
6.600
... 6.300._.
6.300
6.400 .
7.600
9.700
7.900
_.6.800..
5.600
7.200
6.100
8.800
7.600
_7.40Q 	
7.800
7.600
7.100
6.100
6.200
_ 5.200
5.000
5.000
5.600
3.300
7.100
tO.TP
8.900
6.900
8.300
8.700
9.400
10.400
10.200
.10.200
11.200
10.900
10.600
9.«00
8.300
..8.700
11.300
8.800
9.300
12.800
8.200
..9.300
8.000
10.000
10.600
14.000
14.000
.13.300
9.000
8.9QO
9.200
8.300
10.200
.10.000
10.000
9.800
10.600
11.800
11.000
.10.200
9.900
10.700
10.100
12.800
11.500
11.000.
11.200
11.100
10.000
9.100
10.200
8.800
9.200
9.9QQ
10.800
10.200
11.800
LO.NH3
11.000
. 11.300....
14. aoo
16.300
16.500
lb.800
13.100
._ 13,300..
12.900
13.200
10.700
13.500
9.200
10,500
20.400
15.900
15.700
14.600
13.600
.. 13.000 _ .
13.4QO
13.100
11.100
.9.700
9.600
.. 10.200 . .
13.400
16.000
16.600
15.600
15.000
13.800 _
13.100
12. bOO
11.700
10. BOO
10.400
.. 11.200 ..
13.800
12.700
16.100
IS. 200
13.700
13,500
12.600
12.300
11.100
9.800
9.500
. 11. OOO.,..
13.800
16.100
16.600
15.700
14.200
EO.TON
8.600
11.100
10.600
11.800
9.700
11.300
11.000
11.200
13.000
11.400
14.900
11.400
10.500
11.100.
10.100
11.600
12.000
12.800
10.400
8.400
10.500
10.700
12.100
10.900
10.200
12.000
13.000
10.800
7.300
8.800
7.600
8.500
9.800
8,700
9.700
10.000
6.500
6.000
12.400
10.400
9.900
8.400
12.100
FE.TSS
0.000
.. 0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
......0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
_. o.ooo
0.000
0,000
0.000
0.000
0.000
__. o.ooo
0.000
0,000
0.000
0.000
0.000
11.100 _ 0.000
10.400
12.300
14.900
9.400
13.900
13.000
9.800
12.500
12.7QO
11.300
11.000
0.000
0.000
0.000
0.000
0.000
Ft, BOO
0.000
. 0.000
0.000
0.000
o.ooo
0.000
0.000
0,000
"o.ooo
0.000
0.000
o.ooo
0.000
	 0.000.
0.000
0.000
0.000
0.000
0.000
.. 0.000
0,000
. 0.000
0.000
0.000
o.aoo
o.ooo
0.000
_ 0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
0.000
0,000
0.000
_ .0.000.
0.000
0.000
0.000
0.000
0.000
Ft, COD
0.000
O.ooo
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
. 0.000
0.000
O.ooo
0.000
_ 0.000
0.000
0.000
0.000
0.000
0.000
._.. 0,000
0.000
c.ooo
0.000
0.000
o.ooo
0,000
O.OUO
0.000
0.000
0,000
0.000
0.000
0.000
0,000
0.000
0,000 0.000
6.006
0.000
0.000
0.000
0.000
0,000 	 0.000
o.ooo
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
	 o.ooo
0.000
0.000
0.000
0.000
o.ooo
Ft. SOP
0.000
o.ooo
0.000
. 0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
.. 0.000
0.000
Fl.TP
0.000
0,000
0.000
o.ooo
0.000
0,000
0.000
0.000
0.000
	 0.000 .
0.000
o.ooo
0.000
	 0,000 	 O.OOO
o.ooo
o.ooo
0.000
.... o.ooo
0.000
	 0,000.
0.000
_.. 0.000
0.000
0.000
0.000
O.OOQ
0.000
.._. o.ooo
0.000
0.000
o.ooo
	 O.OOQ
0.000
	 0.000
0.000
0.000
0.000
	 o.ooo
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
	 9.000
0.000
0.000
0.000
0.000
0.000
o.ooo
..o.ooo
0.000
0,000
0.000
0,000
o.ooo
_ 0.000
0.000
_. 0,000
0.000
0,000
0.000
0,000
0.000
'0,000
0.000
0,000
0.000
0.000
0.000
0.000
"" 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
OjOOO
0.000
o.ooo
0.000
0.000
0.000
                                               61

-------
PLANT i.HOURLY OATA.CCTOHEH  1974


_iaii
1801
18u3
ItiOb
1807
1909
_ .1«U..
1901
1903
1905
1907
1909
1911
1901
1903
1905
1907
2009
.2011.
2001
2003
2005
2007
2009
.. 2011.
PLANT

1409
....1411
1401
1403
1405
1407
1409
_ 1411
1401
1403
1405
1407
1509
1511
1501
1503
1505
1507
1509
1511
1501
i c n ?
.. 1 9 V J
1505
1507
1609
1611
1601
1603
1605
1607
1609
_ 1611
1601
1603
1605
1607
J709
EC, COO
	 5B8.000 ._
548.000
588.000
564.000
528.000
564.000
. 	 50*. 000 	
508.000
566.000
665.000
606.000
5t£. 000
	 661.000
621.000
766.000.-
697.000
738.000
846.000
756.000.
• 713.000
. 62S.OOO
742.000
621.000
560.000
.-.580.000 _..
IthOuKLV DATA
Ffc.NH3.-N
C.OOO
	 0.000._
C.OOO
0.000
0.000
0.000
0.000
	 0.000 _
C.OOO
0.000
0.000
... C.OOO
C.OOO
	 0.000 _
0.000
C.OOO
0.000
0.000
C.OOO
C.OOO
C.OOO
Onnn
. V U II
0.000
0.000
0.000
	 o.ooo _
0.000
C.OOO
C.OOO
C.OOO
C.OOO
__ ... 0.000 _
C.OOO
C.OOO
C.OOO
0.000
G.OOO
EU.SOP
..7,000. _
6.900
6.700
6.100
5.300
5.900
_5,900_.
5.200
S.700
6.400
7.300
7.000
6.700
6.000
6.400
5.600
5.400
6.000 .
5,700
6.400
5.500
5.600
6.600
6.800
.6.800 ..
.CCTOBEH
FE.TON
0.000
.. O.OOQ.
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
. 0.000.
0.000
0.000
0.000
0.000
0.000
_. 0.000
0.000
0.000
0.000
0.000
0.000
. .0.000
0.000
0.000
0.000
0.000
0.000
..0.000 .
0.000
0.000
0.000
0.000
0.000
EQ.TM
.11,700
11.400
11.100
10.900
9.500
7.600
_.8.700
7. bOO
a. ooo
9.400
10.400
10.300
10.800
9.800
9.300
9.200
8.400
7.900
. 7.200
8.600
8.400
8.600
9.400
9.500
_ 9.800
1974


































EU.NH3
13.4QO
13.800
12.800
12.900
10.700
10.500
10,600
14.500
16.500
17.800
16.300
10.900
13.300
12.400
11.700
11.100
10.600
10.400
10.200
12.300
16.900
itt.7oo
18.800
16.200
14.900
EU.TON
_.. U.«00 _
13.000
13.400
13.100
12.3QO
8.200
10,600
11.200
13.900
14.100
14,400
12.000
li.ioo
14.000
13,000
14.100
12.700
11.900
10.900
10.600
12.700
• 14.700
14.100
12.900
.14.500 _
FE.TSS
0.000
"o.ooo'
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
"o.ooo
0.000
0.000
0.000
0.000
0.000
o.ooo'
0,000
0.000
0,000
o.ooo
..0,000
PLANT l.HOUHLY OMA.CCTOdEH

1705
1707
1709
1711. _
1701
1703
1705
1707
1809
..leu..-
1801
1803
1605
1807
1809
1811___
1801
1803
1805
1807
1909
1911
1901
1903
1905
1907
1909
1911 _.
1901
1903 ..
1905
1907
2009
FE.NM3-N
C.OOO
C.OOO
C.OOO
	 C.000_...
0.000
0.000
C.OOO
C.OOO
C.OOO
_. 0.000 ...
C.OOO
0.000
0.000
0.000
C.OOO
0.000
0.000
0.000
0.000
C.OOO
C.OOO
C.OOO
C.OOO
0.000
C.OOO
C.OOO
0.000
._c.ooo 	
0.000
. 0.000
0.000
0.000
0.000
.2011 	 f.000.__



.. J711 	 C.OOO 	 0.000.
1701
1703
0.000
C.OOO
0.000
0.000


2001
2003 ._
2005
2007 .
2009
_2011 	
0.000
C.OOO ..
C.OOO
. C.OOO
C.OOO
_.c.ooo .._
FE.TON
0.000
0.000
0.000
.0.000
0.000
0.000
0.000
0.000
0.000
.0.000 .
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
0.000
0.000
O.O'OO
0.000
0.000
0.000
0.000
0.000
0.000
0.000..
FE,BOD
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0,000
"0,000
0,000
0.000
0,000
o.aoo
0,000
0.000
0.000
0.000
0.000
0.000
— .0.000
1974









































FE.CGD
0.000
0.000
o.ouo
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
o.ooo
0.000
o.ooo
0.000
0.000
0.000
0.000
0,000
0.000
0,000
0.000
0.000










































" FE.SOP
0.000
o.ooo"
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
0.000
0.000
0.000
"o.ooo
0.000
0.000
0.000
0.000
0.000
0.000
	 0,000
0.000
0,000
0.000
0.000










































>t,TP~
0.000
0.000
0.000
0.000
0.000
0.000
• o.ooo
0.000"
0,000
0.000
o.ooo
0.000
0.000
0.000
_ 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000










































                                              62

-------
PLANT 1,HOURLY DATA.NOVEMBER  1974

ft I
1209
.1211 	
1201
1203
1205
1207
1209
1211 	
1201
1203
1205
1207
1309
1311
1301
1303
1305
1307
1309
.. 1311 	
1301
1303
1305
1307
1409
.. Mil 	
1401
1403
1405
1407
1409
.. 1411 	
1401
1403
1405
1407
1509
1511
1501
1503
1505
1507
1509
1511 	
1501
1503
1505
1507
1609
_ 1611 	
1601
1603
1605
1607
1609
J611 .
1601
1603
1605
1607
1709
._ Pll 	
1701
1703
1705
1707
1709
_ 1711 	
1701
1703 ...
1705
1707 .
.FLOW
.440
.317
.317
.499
.466
.480
.483
.479
.455
.369
.356
.253
.323
.397.
.487
.456
.456
.431
.448
,*97..
.446
.375
.363
.232
.452
.246
.483
.482
.441
.453
.450
.470
.480
.376
.371
.310
.338
.301
.495
.443
.547
.387
.477
.477
.449
.480
.241
.274
.203
.281.
.400
.576
.485
.499
.498
.495
.455
.372
.372
.253
.253
.253
.366
.517
.545
.540
.515
.481
.503
.330
.388
.253
HI.TSS
140.000
IbO.QOO
126.000
138.000
156.000
166.000
194.000
1/8.000
230.000
136.000
124.000
100.000
114.000
..182,000
142.000
136.000
110.000
178.000
164.000
. 1«6.000
266.000
306.000
£4.000
78.000
252.000
164.000
148.000
194.000
240.000
160.000
122.000
232.000
268.000
252.000
174.000
122.000
128.000
.116.000
128.000
132.000
660.000
148.000
158.000
. 108.000
134.000
132.000
64.000
78.000
210.000
.176.000
240.000
320.000
212.000
220,000
204.000
210.000
200.000
154.000
182.000
106.000
194.000
100.000
144.000
148.000
1*0.000
220.000
184.000
114.000
148.000
108.000
96.000
48.000
RI.BOO
120.000
128.000
107.000
11R.OOO
190.000
184.000
182.000
188.000
204.000
214.000
161.000
11&.OQO
137.000
158.000
125.000
132.000
148.000
133.000
252.000
220.000
320.000
208.000
125.000
86.000
.108.000
. 116.000
128.000
148.000
168.000
140.000
131.000
224.000
244.000
250.000
lie. ooo
228.000
95.000
122.000
11?. 000
125.000
428.000
146.000
146.000
193.000
157.000
117.000
110.000
97.000
118.000
124.000
132.000
196.000
196,000
220.000
180.000
184,000
200.000
132.000
116.000
108.000
140.000
104,000
53.000
46.000
116.000
64.000
56.000
79,000
70.000
67.000
41.000
43.000
RJ.COD
400.000
584.000
395.000
778.000
613.000
&8t,000
669.000
604.000
504.000
484.000
592,000
524.000
496.000
870,000
532.000
580.000
600.000
637.000
633.000
746,000
951.000
971.000
355.000
341.000
455.000
806.000
564.000
691.000
81U.OOO
870.000
568.000
677.000
834.000
911.000
711.000
927.000
455.000
806.000
46».000
484.000
891.000
472.000
625.000
472,000
451.000
447.000
451.000
411.000
472.000
520.000
455.000
681.000
604.000
528.000
516.000
480.000
544.000
524.000
637.000
427,000
532.000
334.000
508.000
512.000
560.000
729.000
600.000
472,000
572.000
439,000
520.000
359.000
RI.SOP
3.000
3,300
3.700
4.500
5.600
5.900
5.800
5.900
6.400
6,300
4.800
4,600
2.900
3.400
4.400
4.700
8.600
12.500
10.300
10,800
6.200
6.000
4.200
4.300
3.500
... 2.300
4.400
4.500
4.600
7,600
5.100
	 5,700
S.500
5.500
4.500
4.700
2.600
... 3.000
4.100
4.800
6.700
4.800
5.400
5.300
5.100
5.100
4.100
3.600
2.800
3.200
4.800
6.700
7.800
8.100
6.900
6.500
6.200
6.100
4.700
3.800
3.400
2.600
" "4.200
5.100
6.300
6.600
7.600
7.300
7.400
7,400
5.000
4.100
HI, IP
6.600
7.200
6.300
6.200
8.200
10.200
8.800
6.700
9.000
6.500
6.200
0.200
6.200
8.400
9.000
8.000
13.000
18.100
16.100
15.800
B.400
b.300
6.000
6.000
5.800
_. 6,700_
7.700
7.600
7.500
11.600
8.800
8,800
8.200
8,200
6.300
6.300
9.400
6,000
6.900
10.000
14.600
8.200
6.800
6.800
'"'" b.100
7.500
5.900
5.400
5.600
5,600
7.400
10,100
10.900
11.200
9.400
9.200
~" 9.200" '
9.100
7.000
5.500
9.300
3.900
"6.800
7.200
6.900
11.200
9.700
9.800
9.800
9.400
7.400
5,800
BI.NH3
20.800
19,400
22.200
21.900
19.900
15.100
13.000
12,900
13.600
13.300
11.300
10.200
12.500
14,500
20.400
13.800
13.600
13.400
13.500
13,500
14.200
14.100
11.600
11.700
13.300
13,900
18.600
16.000
17.100
13.600
12.200
13.200
13.400
13.400
10.900
9.200
10.600
14.600
19.600
18.600
16.800
13.600
14.000
12,700
12.900
12,900
11.500
11.100
11.000
J3.500
19.300
22,100
19.900
15,500
13.700
13.800
14.100
14,100
13.100
12.900
11.200
13.200
19.300
26,000
28.500
19.300
15.500
13.500
14.600
14.600
12.100
11.900
HI, TON
11.500
12.600
10.300
10.100
12.600
10.300
10.600
10.600
13.000
10.500
7.400
7,800
7.300
9.300
12.100
16.000
13.700
11,400
11.800
10,300
13.200
12.400
9.600
7,700
11.400
9,600
10.500"
11.500
12.500
12,100
11.100
15,500
14.000
12.000
10.000
9.400
7.200
8.600
12.700
12.600
37.100
9.100
10.000
10.400
11.700
11.700
7.800
8.300
6.200
17.500
12.400 "
12.900
12.400
10.200
10.100
9.000
6.600
7.600
6.200
6.900
8.500
6.300
"8.100
5.700
6.900
13.300
9.700
8.8QO
"7.800"
6.200
6.600
8.400
ea.Tss
200.000
210.000
198.000
202.000
228.000
252.000
200.000
240.000
266.000
234,000
252.000
222.000
158.000
172,000
156.000
176.000
264,000
154,000
140.000
146.000
172.000
188.000
176.000
172.000
130.000
154,000
182.000
243.000
304.000
244.000
224.000
EC, BOO"
138. 000~"
116.000
104.000""
116.000
152.000
252.000
138.000
136.000
192.000
144.000
156.000
120.000
100.000
124.000
100.000
132.000
112.000
112,000
120.000
120.000
170.000
140.000
210.000
148,000
104.000
92.000
120.000
142,000
164.000
160.000
148.000
200.000 J72.000
270.000
240.000
230.000
210,000
144.000
140,000
156.000
164.000
162.000
166.000
162.000
172.000
160.000
150.000
144.000
160.000
138.000
106,000
170.000
228.000
228.000
216.000
206.000
228.000
188.000*
198.000
178.000
112.000
126.000
118.000
110.000
136.000
198.000
184.000
182.000
194.000
170.000
158.000
132.000
154.000
170.000
168.000
200.000
156.000
131.000
112.000
136.000"
132.000
132.000
108.000
112.000
108.000
192.000
150.000
121.000
164.000
113.000
106.000
112,000
132,000
180.000
198.000
156.000
176.000
164.000"
154,000
100.000
101.000
82.000
72.000
" 72,000"
64.000
132.000
124.000
200.000
106.000
132.000
104.000
114.000
92.000
                                               63

-------
PLANT i.HOURLY DATA.NovE.KetH  1974

Rl
1609
__ieii 	 .
1801
1B03
iaos
lao?
1809
._mi 	
1801
1803
ieos
1807

.FLO*
.366
.248
.409
.468
.471
.439
.439
.470
.506
.347
.369
.267

PI.TSS
206.000
24(3.000
140.000
148.000
112.000
124.000
148.000
160.000
104.000
136.000
142.000
104.000

HI.
104.
12*.
108.
112.
103.
126.
270.
240.
102.
114.
100.
96.

BOO
000
000
000
000
000
Quo
000
000
000
000
000
000

RI..COO
6bl.OOO
Bjo.OuO
5*2.000
621.000
S92.000
455.000
967.000
476.000
600.000
621.000
624.000
391.000
— _ . __ _
RltSOf
4.000
6. BOO
5.500
8.200
• 7.100
7,500
16.200
7.600
10.500
9.900
4.800
4.300

RI.TP
5.800
Id. 600
7.500
13.000
9.200
11.200
23.200
10.600
13.300
12.000
8.300
8.100

HI.NM3
11.600
15.600
24.200
21.000
16.600
14.300
13.000
13.700
13,900
13.800
11.400
11 .000
	
RI.TON
8.200
6.800
"6.800
13.600
6.700
7.400
15.900
9.200
9.700
9.600
7.800
6.600

EOtTSS
128.000
146.000
166.000
170.000
100.000
222.000
198.000
166.000
196.000
186.000
170.000
158.000

tfl.BOO
102.000
152.000
"142,000"
158.000
25.6.000
164.000
160.000
162.000
162.000
172.000
154.000
136.000
PLANT i,HOURLY DATA.NOVEMBER 1974

EC, COO EU.SUP
1209
....1211
1201
1203
120S
1207
1209
_.-.1211
1201
. 1203
1205
1207
1309
... 1311
1301
1303
1305
1307
1309
_ 1311
1301
1303
1305
1307
1409
-.1411
1401
1403
1405
1407
1409
mi
1401
1403
1405
1407
1509
. 1511.
1501
1503
1505
150/
1509
1511
~ 1501
1503
1505
1507
61C.OOO
.. 766.000 .._
568.000
621.000
77C.OOO
306.000
61C.OOO
	 60C.OOO _._.
625.000
625.000
629.000
645.000
564.000
	 681.000 	
592.000
613.000
613.000
621.000
624.000
	 62S.OOO 	
637,000
. 70S. 000
637.000
66S.OOO
526.000
_ _ 5 16. 000 	
56C.OOO
742.000
923.000
693.000
70S. 000
...645.000 _.
711.000
685.000
705.000
677.000
717.000
. .. 70S. 000 	
62S.OOO
556.000
554.000
552.000
576.000
566.000
504.000
665.000
566.000
447.000
5.200
4.600
4.400
4.800
5.300
5.400
5.200
5.700
5.700
5. 800
5.400
5.000
4.700
.4.500
4.300
5.100
4.900
7.8QO
a. ooo
7.000
6.8QO
6.900
6.200
6.100
5.100
4.600
4.200
4.600
5.000
5.200
5.500
5.700
5.500
5.500
4.900
4.300
4.600
4.200
3.8QO
4.800
4.700
4.600
4.900
4,900
4.700
4.600
4.700
4.100
EQ.TP
8.900
. . 9.200
B.OOO
8.300
8.800
8.800
8.900
9.000
9.100
9.400
9.300
9.400
7.900
	 7.800
7.700
8.800
9.200
11.500
11.800
-11.300
10.400
10.500
10.100
10.200
7.500
	 7.200
7.000
7.600
a. 200
R.100
8.800
._. 8.900
a. 600
8.700
8.000
7.200
7.000
	 6.900
7.200
10.000
8.700
8.900
9.000
9.300
8.400
8.500
8.600
7.600
EO,*iM3
13.500
12.200
14.200
16.700
17.000
15.400
13.500
13.400
12.900
12.600
11.200
9.600
9,000
10,600
13.800
15.800
15.500
13.300
13.400
... 13.300
12.600
12.6QQ
10.300
10.400
10.200
11.000
14.300
16.400
16.400
15.100
13.400
12.200
12.000
11.700
10.600
9.300
a.uoo
9.500
13.200
IB. 300
15.300
14.300
13. -200
12.600
11.900
11.700
10.800
9.900
EG. TON
11.700
. -.11.600
11.800
12.700
13.300
11.200
11.700
.. 11.900
12.600
15.100
14.200
11.600
12.200
10,900
13.700
13.600
9.900
11.900
13.300
_. 11.700
14.300
12.800
11.200
13.400
13.200
11.900
12.900
13.300
13.700
14.400
14.200
13.100
13.900
14.300
13.900
14.100
12.100
. 11.700
13.600
9.200
13.400
12.800
11.800
12,100
12.200
13.000
14.500
13.000
Ffc.TSS FE.80D FE.COO
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
o.ooo"
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 *
0,000
0.000
0,000
0.000
0,000
0.000
0,000
0.000
0,000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 "
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 	
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
FE.SOP
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 0,000
o.ooo 	
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0,000
o.ooo
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0,000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0,000
0.000
0.000
0.000
. . 0,000
0.000
0,000
0.000
0.000
0.000
o.ooo
0.000
0,000
0.000
0,000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
FE.TP
0,000"
o.ooo
0.000
o.ooo
0.000
0.000
0.000
0.000
o.ooo
0.000
0,000
0,000
0,000
0.000
o.ooo"
.... o.ooo
0.000
0.000
o.ooo
o.goo
"o.ooo
......o.ooo
0.000
0.000
0,000
0.000
o.ooo"
0,000
0.000
'0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
o.ooo"
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
                                              64

-------
PLANT 1.HOURLY OATk.SOVtKBER 197*


1609
1611
1601
1603
160b
1607
1609
1611 	
1601
1603
1605
1607
1709
1711
1701
1703"
1705
1707
1709
1711 . _.
1701
1703
1705
1707
Id09
1811 ...
1801
1803
1805
1607
1809
. 1811 _„.
1801
1803
1805
1807
EC, COO
472.000
52C.OOO
455.000
661.000
60<>.000
625.000
609.000
526,000
74t.OOO
552.000
705.000
56C.OOO
514. 000
463.000
472.000
459.000
492.000
52C.OOO
592.000
544.000
504.000
48C.OOO
463.000
41S.OOO
524.000
sec. ooo
754.000
692.000
776.000
534,000
564.000
516.000
496.000
526.000
52S.OOO
486.000
EOiSOP
4.500
_ . 4.200
4.100
4.900
6.200
6.800
7.000
6.700
6.300
6.100
5.100
4.60Q
4.1:00
4.100
3.800
4.300
5.200
6.400
6.900
6,900
6. BOO
6.600
5.900
5.200
5.300
5,700
6.700
6.600
7.000
.. 7.200
7.900
._ 7, faOO
7.300
7.300
6.200
5.200
EO.TP
7.200
. 6.900
7.000
8.300
9.800
10.500
10.400
10.300
9.900
10.200
8.700
a. ooo
6. BOO
6.000
5.700
6.600
7.700
8.900
9.600
9.600
9.600
9.600
9.100
8.500
. 7.100
— .7. BOO
9.200
9.000
9.800
10.200
11.000
__ 11.300
10.600
10.700
9.500
8.700
tO,"H3
10.200
.10,300
13.600
16.800
IB. 400
17.000
14.900
13.800
13.100
12.900
11.800
11.100
10.800
10.4QO
12.800
16.600
18.700
18.900
16.200
15.100
14.000
13.700
11.900
11,200
10.000
10.800
14,900
17.200
16.500
15,200
13.000
12,900
12.100
12.100
10.700
9,900
EO.TON
10.100
. .10.500
10.200
12.800
11.200
11.600
10.10U
10.600
11.000
13.700
9.600
10.300
9.700
9.600
5.400
9,900
11.200
15.200
11.400
11.200
9.500
11.400
11.400
10.800
7.100
7.100
9.000
.. 11.100
. 9.300
11.300
10.200
11.100
12.000
10.600
12.100
7.500
FE,TSS
0.000
0,000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
FE.bOO
0.000
0,000
0.000
0,000
0,000
0.000
0.000
0.000
0.000
0,000
o.ooo
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
• o.ooo
0.000
0.000
0,000
0.000
0,000
0.000
o.ooo
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
FE.COD Ft, SOP
0.000
0,000
O.OGO
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.oco
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0,000
0.000
0.000
0,000
0.000
0.000
0.000
o.ooo
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
0.000
0.000
0.000
0.000
o.coo
0.000
0.000
0.000
F£,TP
0.000
0.000
0.000 ;
0.000 :
o.ooo
0.000 :
o.ooo
0.000 '
o.ooo
o.ooo
0.000
0.000 ,
o.ooo
0.000
0.000
0,000
o.ooo
0.000 (
0.000
o.ooo
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
o.ooo
0.000
0.000
0,000
                                    PLANT  itHOURLY DATA,NOVEMBER 1974
F£,NH3-N FE.TCN
1209
_ 1211 	
1201
1203
1205
1207 _. .
1209
	 1211. 	
1201
1203
1205
.. 1207 . .
1309
	 1311 	
1301
1303
1305
. .1307 ..
1309
_1311 	
1301
1303
1305
1307
1409
	 1411 	
1401
1403
0.000
P. 000 	
0.000
C.OOO
C.OOO
0.000
C.OOO
o.ooo 	
0.000
C.OOO ..
C.OOO
C.OOO . ._
C.OOO
.C.OOO 	
C.OOO
C.OOO
C.OOO
0.000
0.000
.0.000 	
C.OOO
0.000
C.OOO
C.OOO
C.OOO
C.OOO 	
C.OOO
C.OOO
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0,ooo_
0.000
0.000
0.000
0.000
0.000
0.000 .
0.000
0.000
0.000
o.coo
0.000
0.000.
0.000
0.000
                                              FE.NH3-N FE.ION
1405
1407
1409
-_1411
1401
1403
1405
1407
1509
- 1511
1501
1503
1505
1507
1509
_ 1511
1501
1503
1505
1507
1609
1611
1601
1603
1605
1607
1609
1611
C.OOO
C.OOO
C.OOO
	 C.OOO 	
C.OOO
C.OOO
C.OOO
C.OOO
o.ooo
	 c.ooo._.
c.ooo
C.OOO
C.OOO
C.OOO
0.000
	 C.OOO 	
C.OOO
C.OOO
C.OOO
C.OOO
0.000
C.OOO
o.oou
C.OOO . .
C.OOO
C.OOO
C.OOO
C.OOO .
0.000
0.000
0.000
0.000.
0.000
0.000
o.coo
0.000
o.coo
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo.
0.000
o.ooo
0.000
0.000
0.000
0,000
o.ooo
0.000
0.000
0.000
0.000
0.000
f
1601
1603
1605
1607
1709
1711.
1701
1703
1705
1707
1709
1711 	
1701
1703 .
1705
1707 .
1309
1811
1801
1803
iao5
iao7
1809
1811 	
1801
1803
1805
iao7
t,NH3-N f
C.OOO
C.OOO
C.OOO
0.000
C.OOO
C.OOO
0.000
C.OOO
C.OOO
c.ooe
C.OOO
c.ooo
C.OOO
0.000
0.000
0.000
c.ooo
C.OOO
C.OOO
C.OOO ...
C.OOO
C.OOO
C.OOO
o.ooo __.
C.OOO
C.OOO
C.OOO
C.OOO
E.TON
0.000
0.000
0.000
o.ooo
0.000 ,
0.000
"o.ooo"
0.000
o.ooo
0.000
0.000
0.000
0.000
0,000
0.000
0,000
0.000
0.000
o.ooo'
0.300
o.ooo
0.000
0.000
0,000
0.000
0.000
o.ooo
o.ooo
                                                65

-------
PLANT 1.HOURLY DATA.OECEKBEN  1974
RltFLOM filttSS
1209
1211
1201
1203
1205
1207
1209
..1211 	
1201
1203
1205
1207
1309
_1311
1301
1303 .
1305
.1307
1309
1311
1301
1303 . . .
1305
1307 	
1409
..1411 	
1*01
1403
1405
1407
1409
1411 	
1401
1403
1405
1407
1509
1511 	
1501
1503
1505
1507
1509
..1511 	
1501
1503
1505
1507
1604
1611
1601
1603
1605
1607
1609
__161l 	
1601
1603
1605"
1607 .
1709
1711
1701
1703
1705
1707
1709
_ 17U 	
1701
1703 ....
1705
1707 	
.215
.229
.295
.284
.297
.273
.276
.319
.306
.269
.237
.127
.200
.232
.336
.302
.306
.301
.305
.317
.271
.210
.207
.149
.12b
.191
.192
.335
.236
.2U6
.262
..262
.242
.182
.192
.132
.107
.154
.192
.289
.289
.2«0
.279
.272
.267
.230
.2*9
.226
.229
.285
.351
.350
.312
.292
.303
.341
.334
.281
.285
.224
.238
.259
.353
.336
.298
.314
.318
.324
.337
.266
.264
.196
114.000
364,000 .
140.000
232.000
190.000
lib. 000
166.000
168.000
lee.ooo
1*4.000
102.000
202.000
648.000
- 224.000
222.000
196.000
168.000
192.000
Ma. ooo
..174.000.
174.000
172.000
146.000
94.000
74.000
._ 68.000
204.000
134.000
260.000
128.000
102.000
166.000
102.000
104.000
60.000
60.000
96.000
. 108.000
1&4.000
1*6.000
214.000
186.000
154.000
..108.000 ..
136.000
146.000
168,000
94.000
144.000
... 150.000..
148.000
272.000
158.000
172.000
174.000
. 220.000
140.000
100.000
94.000
as. ooo
126.000
1740,000 ..
144. QUO
166.000
198.000
174,000
104. QUO
166.000
172.000
172.000
164.000
192.000
RI.BOO
an. ooo
148.000
132.000
164.000
152.000
127.000
172.000
136.000
168.000
152.000
137.000
184.000
160.000
200.000
220.000
200.000
248.000
184.000
202.000
172.000
156.000
208.000
178.000
127.000
88.000
76.000
206.000
170.000
176.000
192.000
162.000
185.000
178.000
130.000
117.000
92.000
95.000
95.000
100.000
112.000
488.000
428.000
292.000
156.000
172.000
162.000
640.000
126.000
152.000
160.000
129.000
216.000
200.000
176.000
160.000
156.000
170.000
159.000
123.000
90.000
84.000
228.000
129.00Q
136.000
128.000
144.000
180.000
176.000
200.000
196.000
1AO.OOO
200.000
RJ.CUO
531.000
890.000
" 621.000
770.000
UbO.OUO
637.000
661.000
613,000
742.000
645.000
4bb.OOO
655.000
750.000
. 552.000
677.000
669.000
580.000
464.000
560.000
516.000
609.000
613.000
52*,000
359.000
318.000
378.000
496.000
bOO.OOO
604.000
476.000
419.000
678.000
557.000
504.000
314.000
286.000
290.000
Zbtt.OOO
363.000
3/9.000
779.000
460.000
407.000
423,000
419.000
403.000
577.000
338.000
b6b.OOO
641,000
432.000
726.000
506.000
436.000
440.000
714,000
536.000
395.000
326.000
2b4.000
326.000
572.000
464.ROO
460.000
435.000
452.000
573.000
524.000
4&B.OOO
504, 000
492.000
504.000
Rl.SOP
3.400
	 4,300
3.300
4.000
4.600
5.400
5.800
	 6,600
6.200
5.300
4.500
4.300
3.200
3.500
4.000
4.800
4.800
5.100
4.800
4.600
10.700
10.500
4.700
4.300
4.300
__4.300
5.400
5.100
6.100
9.100
7.400
.... 6. BOO
5.800
5.700
4.800
4.300
3. (SCO
	 3.700
5.400
5.600
6.400
7.600
7.700
	 6,900
6.400
6.300
5.400
4,000
3.200
	 2.700
4.200
4.500
4.700
6.500
5.900
5.800
4.400
4.200
3.500
3.200
2.700
3.400
3.8QO
4.400
4.500
5.400
5.400
5.700
5.300
5.300
4.200
3.200
RltlP
6.000
16.609
6.000
9.300
8.000
7.400
7.400
._ .9,000
8.100
7.200 ,
7.000
7.200
17.200
6,800
7.700
9.200
9.100
7.600
7.900
7.400
24.000
24.000
9.000
5.900
5.800
_. 5.600..
10.200
10.200
9.400
12,000
10.600
. 11.100
6.300
6.200
6.600
6.100
5.200
.. . 5,300.
7.700
8.000
9.300
10,600
11.000
	 9,300_
9.200
9.000
11.600
6.300
5.700
„ 5,700_..
6.800
12.800
7.900
11.200
9.900
10.800
8.100 "
7.800
6.900
5,500
4.100
10,000
4.400
8.600
6.100
8.800
8.300
d.eoo
6.100
8.100
6.800
7,100
RI.NH3
16.300
16.000
20.000
20.600
19.400
14.200
13.500
.12,900,
14.000
13.000
11.500
10.400
11.400
14.500
19.500
18.900
17.400
13.600
13.500
12.300
14.800
15.000
16.000
14.000
15.000
18,800
26.400
26.000
20.300
17.600
16.100
15.000
16.000
15.600
16.100
15.500
19.600
.19.700
25.400
23,900
27.200
19.600
16.500
16.000
16.300
16.200
13,400
11.900
11.600
.15.100
19.200
18.000
16.000
13.6QO
13.300
12,000
11.900
11.800
11.600
9,600
12.100
14.700
19,500
17.900
16.600
14,200
13.100
12.900
"13.800
13.900
12,400
10.600
RltTCN
1.200
6,200
"9.000
8.500
6.000
6.600
7.700
10.000
7.100
. 8,100
6.000
6.900
8.000
6,800
5.900
_ 7.200
5.600
... 5.500
4.300
6.200
5.900
_ 4.900
2.400
. 4.800
5.300
_ 6,500
10.200
6.100
13.300
8,700
9.300
9.600
6.800
8,700
7.900
6.800
8.200
9.200
11.200
12.200
12.700
13.000
10.700
9.400
10.500
8.300
9.200
6.100
3.100
8.100
9.200
9.700
9.100
8.600
7.300
8.600
7,300
8.200
7.700
5.700
4.600
9*900
9.700
8.600
10.900
9,200
7.900
8.400
9.700
8.700
6.700
5.800
EO.TSS
172
228
236
230
252
222
216
. 214
244
214
216
208
240
.000
EO.BOU
136.000~
.00ft 192.000
f M V V 	 A * *• t V w M 	
.000 184.000
.000
.000
.000
.000
,000
.000
.000
.000
.000
.000
2J6.000
238
250
142
228
198
204
162
190
240
222
160
.170
176
188
218
224
208
.. 1«*
196
190
146
128
116
.10*
132
146
loO
164
192
170
"148
156
222
172
184
252
250
212
276
228
224
210
206
198
174
168
116
136
"124
164
178
176
184
166
172
172
164
192
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
180.000
172.000
186,000
164.000
J66,000
172.000
152,000
144.000
220.000
I'O.OOO
176.000
"166.000
184,000
220.000
194,000
186.000
(84,000
160.000
184,000
184.000
188,000
668.000
,000 532.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.OOQ
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.006
.000
.000
.000
.000
.000
.000
.000
• 000
.000
500.000
152,000_
192.000
208,000
176.000
180.000
"160.000"
152.000
145.000
96.000
91.000 ~
90.000
"125.000"
110.000
164.000
160.000
172.000
164.000
"180.000
180.000
200.000
180.000
152.000
168,000
168.000
166.000 .
160.000
152.000
160.000
148.000
146.000~
160.000
136.000
136.000
-0.000
-0.000
'-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
160.000
160.000
-0.000
-0.000
                                               66

-------
PLANT  i,HOURLY DATA,DECEMBER  197*

1809
1811
iaoi
1603
1805
1807
1809
..1811
1801
1603
1605
1807
Rl.FLOw
.233
.266
.308
.313
.31*
.299
.310
_-, .327
.32*
.271
.239
.201
Hl.TSS
106.000
124,000
116.000
276.000
164.000
112.000
₯6.000
236.000
104.000
132.000
760.000
136.000
RI.BOO
ea.ooo
112.000
132.000
198.000
1*7.000
170.000
144.000
1S2.000
158.000
115.000
200.000
1*5.000
HI, COD
322.000
455.000
427.000
839.000
649.000
589.000
500.000
754.000
b45.000
40*. 000
1702.000
578,000
HI, SOP
3.100
4.100
b.OOO
5.200
5.400
6,600
6.SOO
6,300
6.200
6.200
7.100
4,200
Rl.TP
b.600
9.100
8.200
7.100
7.500
10,900
9.000
9.500
10.000
9.600
11. *00
7.200
RI,Nh3 F
14.600
14.800
19.600
18,900
17.700
13,900
14.000
13.200
13.500
14.000
11.900
10.000
II, TON
3.100
6.500
7.700
8.600
e. BOO
8.300
7.300
8.800
9.600
6.800
7.500
6.400
EO.TSS
172.000
864.000
"" 1BO.OOO
160.000
lt)3.000
236.000
180.000
208.000
222.000
206.000
210.000
190,000
E0.800
130.000~
312,000
165,000
166.000
191.000
179.000
172.000
172.000
174.000
214.000
202.000
185.000
PLANT 1,HOURLY DATA.OECEMBt.fi 197*

1209
1211 .
1201
1203
1205
1207
1209
1211
1201
1203
12 Ob
1207
1309
__1 3 !!_..._
1301
1303
1305
1307
1309
.1311
1301
1303
1305
1307
1*09
1*11...
1*01
1*03
140b
1407
1409
_ 1411 	
1401
1403
1*05
1407
1509
1511....
1501
Ib03
1505
1507
1509
..1511 	
1501
1503
1505
1507
EC, COO
625.000
77C.OOO
766.000
b46.000
794.000
709.000
657.000
77C.OOO
661 .000
669.000
641.000
635.000
532.000
617.000
594.000
605.000
572.000
592.000
609.000
62S.OOO
701.000
661.000
62S.OOO
596.000
516.000
614.000
573.000
573.000
561.000
557. 
-------
PLANT 1,HOURLY DATA,DECEMBER  1974


160V
16U
1601
1603
1605
1607
1609
16J1
1601
1603
160S
160?
1709
.1711
1701
1703
1705
1707
1709
nil
1701
1703
1705
1707
1809
.1811
1801
1603
1605
1807
1809
1811
1801
1803
1805
1807
PLANT


1209
. 1211
1201
1203
1205
1207
1209
1211
1201
1203
1205
1207
1309
_.13U
1301
1303
1305
1307
1309
EC, COO
526.000
. . 836.000 . .
79V. 000
69C.OOO
636.000
573.000
5H4.0
564.000
5^4.000
576.000
43t.OOO
41S.OOO
424.000
_. 620.000
5t3.000
629.000
5*6.000
5*4.000
569.000
548,000
601.000
613.000
Vll.OOO
742.000
669.000
. 	 1940.000 _
614.000
58C. 000
569.000
593.000
589.000
. 	 621.000 ._.
594.000
596.000
605.000
574.000
EO.SOP
4.900
- 4.300 ....
4.000
4.100
4.900
4.900
5.000
4.900 _..
4,600
4.600
4.500
3.300
4.200
3,flQO
3.800
4.100
4.300
5.100
5.200
5,000
4.900
4.800
4.800
4.200
4.700 .
..7i300 _.
4.400
4.600
5.HOO
5.500
5.600
.5,600 	
5.500
5.600
7.300
7.100
1, HOURLY DATA, DECEMBER

F6.NM3-N
C.OOO
	 0.000- .
C.OOO
C.OOO
C.OOO
C.OOO
C.OOO
	 0.000 .._
C.OOO
C.OOO
C.OOO
C.OOO
0.000
	 •_. .0.000 „_
0.000
0.000
0.000
0.000
0.000
_.13ll 	 0.000 	
1301
1303
1305
1307
1409
1411
1401
1403
0.000
.. . C.OOO
C.OOO
0.000
0.000
O.ono
C.OOO
C.OOO

FE.TON
0.000
..0.000.
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
_0.000_
0.000
0.000
0.000
0.000
0.000
_.o.ooo _
0.000
0.000.
0.000
0.000
0.000
O.OOQ
0.000
0.000
EO.TP
e.aoo
8.100
7.900
7.900
9.300
9.600
9.700
. 9.40Q
9.100
9.100
8.900
5.500
7.100
6.800
6.900
7.600
8.400
4.000
9.000
.8.700
9.000
B.6QO
8.500
7.60,0
6.100
13.500
7.900
7.900
8.700
8.700
9.100
_9.000
9.300
9.200
11,700
11.200
197*





























tg,Mn3
11.500
.. 11.700
13.000
14.600
14.300
13.100
12.000
11.200
10.800
10.UOO
10.500
9,600
9.600
10.200
12.600
14.400
14.400
14.000
12.900
12.300
1U900
11.900
11.000
10.100
9.600
10.700
12.900
14,800
15.500
14.200
13.400
._ 12. 600
12.000
12.000
11.500
10.600
E4l, TON
10.700
.. 8,900_.
11.600
11.500
10.700
10.900
10.200
9,700
9.900
10.300
10.300
10.14)0
8.300
. ,8.700
10.200
10.400
H.900
10.600
9.600
JO. 500
9.900
11.400
12.500
7.500
6.700
9.800
6.700
9.700
• 9.500
9.100
10.200
9,200
6.400
8.200
8.200
10.200
Ft.TSS
0.000.
o.ooo
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000 ~
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
PLANT 1, HOURLY OATA.OECEMBtH


1405
1407
1409
_. 1411 	
1401
1403
1405
1407
1509
_ 1511 ..._
1501
1503
1505
1507
1509
1511
1501
1503
A W V •?
1505
1507
1609-
_. 1611 	
1601
1603
1605
1607
1609
. 1611

Ft,NH3-N
C.OOO
C.OOO
C.OOO
... C.000._
C.OOO
C.OOO
0.000
o.ooo
0.000
.. 0.000 —
C.OOO
C.OOO
c.ooo
C.OOO
0.000
C.OOO
C.OOO
C.OOO
C.OOO
C.OOO
G.OOO
... 0.000 _
0.000
0.000
0.000
0.000
0.000
C.OOO _

FE.TON
0.000
0.000
0.000
..0.000.
0.000
0.000
0.000
0.000
0.000
. 0.000 .
o.ooo
0.000
0.000
0.000
0.000
..o.ooo
0.000
0.000
0.000
0.000
0.000
0.000.
0.000
0.000
0.000
0.000
0.000
0.000
FE.HOO
0.000
	 o.ooo
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0,000
0.000
o.ooo
0.000
0.000
• o.ooo
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
"o.ooo
0.000
0.000
0.000
0.000
0,000
0.000
0,000
0.000
0,000
1974





























FE.COD
0.000
FE,SOP
0.000
0*000 0.000
0.000
0.000
0.000
0.000
0.000
0.000
" 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000



1601
1603
1605
1607
1709
_ J/U _
1701
1703
1705
1707
1709
_. 1711 ...
1701
1703
1705
1707
ieo9
..1811 ..
1601
1803
1805
1807
1809
_.. 1811 _
leoi
1803
1805
1807
0.000
o.ooo
0.000
0.000
0.000
o.ono
"o.ooo"
0.000
0.000
o.ooo
0.000
0.000
0.000
0,000 ._.
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0,000
0.000
0.000
o.ooo"
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000


Ft ,NM3-N
C.OOO
C.OOO
C.OOO
C.OOO
C.OOO
	 C.OOO .
0.000
o.ooo
C.OOO
C.OOO
0.000
	 0.000
C.OOO
c.ooo
0.000
C.OOO ..
o.ooo
C.OOO .
C.OOO
0.000
C.OOO
0.000
0.000
._.. 0.000 _
C.OOO
0.000
0.000
C.OOO
FEiTP"
"o.ooo
0.000
0.000
0.000
0.000
0.000
0.000
0.000
~ o.ooo"
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
~ o.ooo
0.000
0.000
' 0.000
' 0.000
0.000
0.000
0.000
0.000
0.000


FE.TON
0.000
0.000
0.000
0.000
0.000
_.-0,000
0.000
0.000
0.000
.. o.ooo
0.000
0,000
""o.ooo
0.000
0.000
0.000
0.000
0,000
0.000
. 0.000
0.000
0.000
0.000
... 0,000
0.000
0.000
0.000
0.000
                                               68

-------
PLANT 1,HOURLY DATA.JANUARY  1975
Rl
1209
1211
1201
1203
1205
1207
1209
1211
1201
1203
1205
1207
1309
1311 	 	
1301
1303
1305
1307
1309
.. 1311 	
1301
1303
1305
1307 .
1*09
1*11 	
1*01
1*03
1*05
1407
1409
.1411 	
1401
1403
1405
1407
1509
1511 	
1501
1503
1505
1507
1509
...1511 	
1501
1503
150S
1507
1609
_ 1611 	
1601
1603
1605
1607
1609
1611
1601
1603
1605
1607 . .
1709
_.17U 	
1701
1703 ... .
1705
1707 ._.. .
1709
1711
1701~
.1703 	
1705
1707 ....
,FLO»
.266
.303
.376
.326
.359
.373
.352
.365
.357
.352
.374
.336
.382
.392
.373
.383
.364
.376
.379
.376 .
.372
.380
.287
.334
.346
.396
.325
.381
.363
.369
.359
.382
.371
.351
.285
.319
.332
.356
.388
.362
.390
.357
.366
,3B1
.346"
.306
.240
.279
.327
.*05.
.330
.362
.371
.360
.406
,318
.3*0
.327
.240
.293
.305
.*11
.326
.357
.321
.383
.370
.318..
.257
.2*3
.197
.173
RI.TSS
160.000
212.000
136.000
200.000
166.000
136.000
120.000
98,000
112.000
80.000
92.000
164.000
228.000
158,000
126.000
216.000
160.000
154.000
120.000
156,000
214.000
166.000
152.000
112.000
400.000
.122.000
104.000
150.000
116.000
144.000
100.000
90.000
196.000
166.000
94.000
98.000
62.000
214.000
IE*. 000
210.000
90.000
13*. 000
164.000
1*4.000
108.000
164.000
60.000
76,000
32.000
. «.*. 000
158.000
1«*. 000
130.000
108.000
102.000
118,000
130.000
152.000
780.000
62,000
86.000
90.000
266.000
166.000
118.000
64.000
108.000
98.000
154.000
152.000
54.000
40,000
RI
73
1**
79
84
112
90
122
. 10?
115
115
110
114
148
11*
98
158
95
92
1*0
.. 11*
178
130
13fl
100
.312
. 103
92
132
133
153
132
. 127
200
220
1*8
110
flfi
.. 72
11*
162
108
161
126
..136
1*2
1*3
123
115
105
..100
111
132
121
122
112
225
121
11*
328
92
85
90
16*
13*
118
120
133
_ l»o
1*8
1*7
88
79
, BOO
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.OQO
.000
.000
.000
.000
.000
.000
,000
.000
,000
.OQO
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.OOQ
.000
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
Rl.COO
226.000
213.000
258.000
319.000
338.000
322.000
338.000
312.000
701.000
355.000
428.000
762.000
710.000
447.0QO
266.000
454.000
412.000
298.000
496.000
464.QOO
496.000
424.000
354.000
363.000
879.000
447.QOO
399.000
544.000
480.000
415.000
350.000
472.000
581.000
520.000
439.000
351.000
294.000
589.000
649.000
730,000
411.000
636.000
56H.OOO
395.000
419.000
540.000
351,000
407.000
452.000
569.QOO
633.000
580.000
552.000
496.000
4bd,QOO
878.000
464.000
444,000
1598.000
415,000
314.000
338,000
637.000
464.000
439.000
391.000
169.000
403,000
464.000
468.000
105.000
359,000
HI, SOP
1.200
.... l.ooo
2.100
1.700
3.400
3.700
3.700
3,600
3.300
3.400
3.000
6.800
2. 000
.._ 2,000
2.300
3.100
2.900
3.000
2.800
	 2.900.
3.500
3.600
3.000
2.300
3.000
._ 2.000
2.600
3.100
3.200
3.100
3.300
3.400
3.500
3.500
3.300
2,800
2.100
.. 2.700
2.700
3.100
3.000
3.700
4.900
3.300
3.600
*.700
2.900
3.300
2.600
3.000
3.100
5.600
3.800
5.900
6.400
5.400
4.000
3.900
3.700
2.600
2.400
3.500
6.800
*.ooo
4.300
5,600
4.800
4.400
4.200
4.200
3.600
3.800
NI.T*
2.800
2,200
4.800
4.700
7.000
7.400
7.500
7.000
6.700
6.600
5.400
10.100
3.200
o.OOO
4.600
7.000
6.700
7.000
7.500
	 7,000
7.700
7.400
6.400
5.600
7.200
5.200
5.600
6.700
7.000
7.300
6.900
6.600
6.600
6,900
7.100
6.300
3.600
7,900
5.300
6.100
6.200
7.700
8.300
6.500
" 6.900
6. bOO
4.900
5.000
3.400
7,300
8.300
9.300
7.000
9.000
9.600
7.500
7.600
7.200
12.4QQ
4.900
4.000
5,700
"11.200
7.500
7.300
9,400
7.800
6.100
6.000
6.200
b.500
5.200
H1.NH3
7.800
8.200
13.4QO
11.400
15.500
12.500
11.800
10.900
12.100
12.100
9.400
8.200
9.800
11.800
14.500
15.600
13.400
10.600
10.400
-_»0.200
10.800
11.000
9.300
8.200
10.200
12.200
13.600
16.600
13.600
12.000
10.900
11.300
11.400
11.400
9.400
8.400
10.300
13.100
15.400
16.200
14.300
12,300
10.800
11.400
12.000
11.700
9.600
8.500
9.6QO
.. 12.200
14.500
16.300
15.600
13.400
12.500
12.200
" 12.900
12.600
10.700
9.000
10.200
13.500
""16.200
17.700
12.9QO
11.500
12.600
11.400
~ 11.300
11,000
13.700
13.000
HI, TON
5.200
6,300
7.800
10.100
8.100
7.*00
9.200
10.400
9.500
9.100
5.100
6.000
5.500
	 8,300
8.300
10.700
7.300
6.100
6.8QO
7.000
9.100
8.700
7.500
5.800
9.400
6,200
8.900
9.000
8.400
5.8QO
7.000
8,500
8.900
8.700
6.600
6.900
6.600
6.600
7.000
7.300
8.400
6.500
5.800
7.6QO
7.800
8.3QO
6.200
5.9QO
4.300
5,600
3.900
1.900
2.600
5.000
7.200
4.100
"2.600
6.900
11.000
3.600
6.900
6.500
8.100
8.300
7.200
7.500
8.200
5.600
8.000
7.900
7.100
4.800
EO.TSS
266.000
EQiBOO
124.000
296.000 136.000
200.000
192.000
200.000
162.00Q
156.000
lbfi.000
172.000
166.000
180.000
172.000
206.000
84.000
76.000
80.000
66.000
96.000
87.000
102.000
110,000
104.000
96.000
76.000
164,000. 92.000
1H6.000
154,000
172.000
180.000
170.000
172,000
174.000
168,000
156.000
136.000
136.000
142.000
158.000
156,000
178.000
134.000
146.000
164.000
162.000
166.000
166.000
1*2.000
16*. 000
162.000
166.000
196.000
194.000
244.000
200.000
196.000
164.000
198.000
182.000
172.000
128.000
142,000
1*6. 00$
166.000
176.000
172.000
184.000
156.000
"122.000
128.000
1056.000
144.000
1*2.000
466.000
154.000
156,000
158.000
194.000
168.000
160.000
164.000
IbO.OOO
150.000
120.000
60.000
95.000
106.000
180.000
84.000
96,000
104.000
96,000
91.000
160.000
128.000
_J12.000
118.000
119.000
116.000
124.000
121.000
140.000
" ISb.OOO"
145.000
"135.000
139.000
97.000
128.000
76.000
104.000
144.000 "
150.000
140.000
126.000
140.000
144.000
136.000
156.000
126.000
1 16 .000
" 132.00QT
137.000
146.000
172.000
172.000
153.000
163.000
156.000
326.000
161.000
124.000
164.000
1*6.000
148.000
144.000
204.000
160.000
164.000
1*3.000
158.000
131.000
130.000
                                              69

-------
PLANT 1,HOURLY DATA,JANUARY 1975

1809
.iHii
1801
1603
1805
1607
1609
. 1811
1601
1603
1805
1807
HI, FLO*
.197
.269
.334
.373
.417
.264
.327
	 .291
.237
._. .235
.184
.177
HI.TSS
28.000
22.000
30.000
508,000
154.000
62,000
48.000
50.000
42.000
86,000
54.000
24,000
RI, BOD
. 54.000
65,000
60.000
133.000
74.000
80.000
69.000
74.000
67.000
53.000
91.000
58.000
RItCOO
129.000
117.000
145.000
363.000
395.000
270,000
242.000
210.000
234.000
206.000
242.000
157,000
HI .SOP
2.000
2.300
3.100
6.800
. 5.100
7.200
5. BOO
5,700
5.300
2,800
4.200
3,700
HI, IP
3.200 '
3.200
5.000""
13.600
8.800
10.300
8.600
8. BOO
7.900
5.500
6.900
5.600
RI,*H3
9.400
12.000
17.200
21 .200
16.000
16.700
13.700
13.900
14.100
7,600
14.300
13.500
HI, TON
5.100
3.900
6.000
17.800
' 10.200
7.700
5.100
7.100
3.800
6.900
7.500
4.400
EO.TSS
100.000
M4 Ann
""'66.000"
1 42 n An
148.000
164.000
136.000
126.000
116.000
126.000
124.000
124.000
CO t BOO
126.000'
1 1 3 AA A
"127.000"
197.000
207.000
•209.000
213.000
214.000'
208.000
188.000
167.000
PLANT i,HOURLY DATA.JANUARY 1975


1209
.1211 ..
1201
1203
1205
1207
1209
1211 ..
1201
1203
1205
1207
1309
.1311
1301
1303
130b
1307
1309
.1311.
1301
1303 ...
1305
1307
1409
1411
1401
1403
1405
1407
1409
1411
1401
1403
1405
1407 -
1509
1511 	
1501
1503
1505
1507
1509
1511
1501
1503
1505
ISO?

it. COO
399.000
472.000.
371.000
321.000
306.000
354.000
322.000
432.000
302.000
266.000
386.000
411.000
464.000
653,000
464.000
439.000
596.000
444.000
729.000
49<.000.
472.000
464.000
39S.OOO
386.000
416.000
544 .000
500.000
500.000
536.000
504.000
395.000
49t.OOO
47C.OOO
526.000
54C.OOO
476.000
439.000
516.000
504.000
553.000
529.000
564.000
709.000
586.000
524.000
560.000
591.000
504.000

tU.SOP
2.600
. 1.900
1.600
3.000
2.600
3.100
3.300
... 3,300
3.200
3.300
3.000
2.6QO
2.500
2.300
2.200
2.300
2.500
3.200
3.100
3.00Q
3.000
3.000
2.900
... 2.700
2.700
2.700
3.200
3.200
3.200
3.200
3.200
3.200
3.100
3.100
3.200
2.900
2.900
_.3.100
2.700
... 2.800
2.800
3.000
4.100
4.000
3.600
4.100
3.600
. 3.500

EO.TP
5.000
. ..4.600.
3.800
5. t>00
5.300
6.000
6.700
6.600
6.700
6.600
6.500
5.900
4.900
5.400
4.600
5.200
10.600
6.700
8.000
8.000
6.000
8.400
7.100
6.60,0
. 6.300
6T200
6.900
. .6.900
8.500
7.600
7.000
7.000
6.900
6.700
7.100
6.300
6.000
	 6.600 .
6.300
. 6.400
6.000
7.600
e.doo
9.600
7.900
6.200
7.700
7.500

EQ.NH3
8.900
..8.200
9.800
15.000
12.800
12.800
11.700
. 11.000
10.700
10.600
9.900
9.300
8.800
9.100
10.700
12.4QO
12.800
11.600
10. 600
10.4QO
10.000
10.000
9.200
8.700
7.800
8. 9QO
10.400
12.100
12.500
11.900
11.200
10.6QO
10.400
10.400
9.600
9.100
8.300
. 9.400
10.700
12.6QO
12.900
12.000
11.200
10.700
10.500
11.000
9.700
9.500

CO, TON
10.900
5,600
6.800
5.600
H.600
7.400
8.600
5,800
6.000
7.700
8.600
6.600
6.600
5.200
6.200
9.600
9.500
8.100
7.400
8.400
6.400
9. BOO
6.900
9.100
7.600
6.800
6.300
9.400
6.100
9.000
£.600
7.900
8.500
9,200
8.200
8,800
8.000
._ 7.900 ..
8.700
8.000
7.700
10.100
6.500
6.80Q
7.300
9.900
7.500
5.700

FE.TSS
8.000
6.000
6.000
7.000
7.000
3.000
2.000
5.000
9.000
7.000
a. ooo
4.000
11.000
0.000
6.000
8.000
21.000
5.000
12.000
16,000
6.000
6.000
7.000
2.000
6.000
7,000
7.000
8.000
6.000
7.000
3.000
6,000
6.000
a. ooo
5.000
5,000
13.000
12.000_
13.000
23.000
14.000
14.000
19.000
14.000 .
16.000
la.ooo
17.000
19.000

FE.60D
5,000
3.000
4.000
4.000
3.000
5.000 . .
4.000
4.000
4.000
4.000
6.000
5.000
15.000
4,000
5.000
. 5,000 ..
5.000
6.000
7.000
9.000
6.000
15.000 ....
7.000
7.000 ..
7.000
9.000
6.000
5.000 .__
8.000
5.000 . .
5.000
6,000
6.000
7.000
7.000
6.000
14.000
..13.000 	
11.000
14.000
12.000
10.000
10.000
9,000
11.000
12.000
12.000
13.000

ft, COO
0.000
O.OOQ
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
.0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000

FE»SOP
0.000
0.000
0.000
	 0,000
0.000
0,000
0.000
0.000
0,000
o.ooo
0.000
0.000
0.000
0.000
0.000
__. 0.000
0.000
0.000
0.000
0,000
O.OOfl
	 0.000
0.000
... o.ooo
0.000
0.000
0.000
	 o.ooo
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
_P|000_
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
O.OOQ

FE.TP
o.ooo"
0.000
0.000
	 o.ooo
0.000
0.000
0.000
0.000
0.000
„ o.ooo
0.000
0,000
0.000
0.000
0.000
.0.000
0.000
0,000
0.000
0.000
0.000
	 o.ooo
0.000
0.000
0.000
0.000
0.000
0.000.
. o.ooo
0.000
" 0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
o.ooo"
0.000
'o.ooo
0.000
0.000
0.000
0.000
0,000
0.000
_._0,OOQ.
                                              70

-------
PLANT 1.HOURLY DATA,JANUARY  1975


1609
1611
1601
1603
1605
1607
1609
..1611
1601
1603
1605
1607
1709
mi
1701
1703
1705
1707
1709
1711
1701
1703
1705
1707
1809
1811
ieoi
1803
1805
1807
1809
„ 1811
1801
1803
1805
1807
EC, COO 60. SOP
468.000
552.000 .
600.000
613.000
697.000
576.000
584.000
572.000 ._..
604.000
5ZC.OQO
1192.000
467.000
504.000
7d2,000
504.000
512.000
520.000
540.000
520.000
500.000
479.000
456.000
375.000
16S .000
242.000
338.000 .
296.000
339.000
322.000
383.000
362.000
-._3Hi.OOO ..__
326.000
342.000
334.000
324.000
3.200
3.000
3.700
4.100
4.200
4.300
4.600
4,600
4.200
4,100
4.800
4.000
3.800
4.800
4.200
4.700
4.900
4.600
4.900
4.800
4.400
4,300
3.700
3.300
3.200
2,70Q
2.600
3.900
4.600
5.600
5.600
5,700
5.300
5.200
4.400
3.900
EO.TP
6.300
6.000
6.900
7. 800
8.300
8.600
8.700
8,700
8.700
8.400
.8.300
8.300
6.800
9,900
7.600
B.100
8.700
9.100
9.400
..9.300
8.700
8.600
7.700
7.000
. 5.900
._.. 5.100
5.200
7.400
8.300
10.300
10.400
. 10.500
10.000
9.300
9.000
8.300
£Q,«n3
U.900
.. 10.100
12.000
13.500
13.900
13.000
12.400
11.800
11.600
11,400
10.600
9.800
9.200
10.500
12.100
13.600
13.900
12,600
11.600
10,800
11.000
10,900
11.400
11,100
10.700
10.700
14.000
16.900
17.800
16.900
14.200
14.100
13.600
13.500
13.300
12,800
eQ,TUN
4.100
2.600
3.100
2.700
2.500
7.800
1.500
3,100
1.900
9.700
19.400
7.400
5.800
J4.300
8.200
9.300
8.900
5.500
6.300
JO. 000
7.900
9.300
10.200
7,300
9,100
7.600
7.900
6,400
. 9.400
11.700
11.200
9,600
8.300
9,700
8.100
8.100
Pfc.TSS
11.000
13,000
10.000
13.000
10.000
12.000
14.000
16.000
"1H.OOO
20.000
29.000
27.000
lb.000
13.000
25.000
26.000
25.000
24.000
25.000
36.000
2b.OOO
38.000
22.000
24.000
32.000
36.000
""20.000
44.000
40.000
60.000
40.000
44,000
52.000
40.000
38.000
32.000
ft, BOO FE.CCO
8.000
8,000
7.000
11.000
8.000
7.000
10.000
11.000
" "i i.ooo
13.000
17.000
18.000
21.000
14.000
17.000
17.000
20,000
22,000
20.000
23.000
24.000
23.000
22.000
22.000
'25.000
24.000
24.000
25.000
22.000
23,000
25.000
23.000
23.000
21,000
22.000
20,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
b.ooo
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
FE.SOP
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
" 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
FE.TP
o.ooo"
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.'ooo
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
~ 0,000"
0.000
"o.ooo
0.000
0.000
0.000
.0.000
0.000
0.000
0.000
0.000
0.000
o.ood
0.000
                                               71

-------
PLANT  i,HOURLY  DATA,JANUARY  UTS
                                       PLANT itHOURLY DATA,JANUARY 197S
           FE.NH3-N FE,TON
                                                             Ft.NM3-N FE.TUN
1209
.1211 	
1201
1203
1205
1207
1209
1211 	
1201
1203
1205
1207
1309
1311 	
1301
1303
1305
1307
1309
1311
1301
1303
1305
1307
1409
1411
1401
1403
1405
1407 ...
1409
1411
1401
1403
1405
1407
1509
1511 	
1501
1503
1505
1507
C.OOO
0.000
C.OOO
0.000
0.000
0.000
C.OOO
C.OOO
0.000
C.OOO
0.000
c.ooo
0.000
0.000
C.OOO
C.OOO
C.OOO
C.OOO
0.000
C.OOO
C.OOO
0.000
0.000
0.000
0.000
C.OOO
C.OOO
0.000
C.OOO
0.000
0.000
0.000
C.OOO
0.000
C.OOO
C.OOO
0.000
£.000
C.OOO
C.OOO
0.000
0.000
0.000
._ O.OOQ
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
	 0.000.
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
O.OOQ
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
O.QOO
0.000
	 0.000.
0.000
0.000
0.000
0.000
1509
1S11
1501
1503
1505
1507
1609
.1611 	
1601
1603
1605
. 1607
1609
..1611 	
1601
1603
1605
1607
1709
_1711 	
1701
1703
1705
1707
1709
_1711 	
1701
1703
1705
1707
1609
- .1811 	
1801
1803 ...
1605
1607 ...
1609
.. 1811 	
1601
1803
1805
1807
C.OOO
C.OOO
0.000
C.OOO
0.000
C.OOO
C.OOO
0.000
0.000
0.000
0.000
o.ooo
C.OOO
o.ooo
0.000
0.000
G.OOO
C.OOO
0.000
.0.000
0.000
c.ooo
C.OOO
o.ooo
0.000
O.ooo
0.000
0.000
0.000
c.ooo
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
C.OOO
C.OOO
C.OOO
0.000
o.ooo
0.000
0.000
0.000
0.000
0.000
.. 0.000
0.000
0.000
0.000
0.000
0.000
-_ o.ooo
0.000
0.000
0.000
0.000
0.000
	 o.ooo
0.000
0.000
0.000
0.000
0.000
.... 0,000
0.000
0.000
0.000
0.000
0.000
	 o.ooo
0.000
o.ooo
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
PLANT 1,HOURLY DATA.fAHCh 1975
           Rl.FLOW  RIiTSS   HI, BOO  Rl.COD   RI.SOP   H1,TP    BI,t.H3   fll.TCN   EQ.TSS   EO.BOO
 T70T-
  1609
  1811
  1801
 '1803
  1805
 0.000  214.000
 o.ooo ~ie4;oo«r
 0.000  170.000
"0".ooo"~i6a;ooo"
 C.OOO116.000
""CTOOO  T3STD00"
 C.OOO  146.000
"0.000 "210.000
 C.OOO  142.000
"0.000 -"120.000"
 0.000	66.000
 C.O 0"0  T' 0.000"
 0.000  360.000
 0.000  128.000
 0.000  128.000
"o;ooo~~277.ooo
 0.000  178.000
                 192.000  580.000
                ~i3o;ooo~5B4;ooo
                 116.000  500.000
                ~104.000~439.000"
                 112.000	443.000
                "T05TOOO  42370 0"0~
                 110.000  395.000
                "142.000" 496.000"
                 157.000  532.000
                "159'.000 "649.000"
                 124.000  68KOOO
                TO 170 oo*i57ono~
                 121.000  814.000
  1609
  1801
 '1803
  1605
                 153.000  584.000
                 105.000  379.000
                "I2«.ooo-~455;ooo"
                 120.000  431.000
-	T270 00—2S«70 00~
 1.800
"2.-600"
 5.700

 4!eoo

 4!lOO
 4.200"
 3.600
 3.300
 3.900
 4T001T
 3.900
 3.300
 .000
 .000"
 .000
 7700-
 .900
                                                         6.500    9.100
                                                         61200	13."200'
                                                         9.200   16.400
                                                        "T. 500	13.800-
                                                         7.700   15.200
                                                         7.500
                                     4.500
                                    "4ilOO"
                                     3.900
                                     I740C
          12.500
         '11.500"
 8.300    11.000
~ "7.000	10.800
 7.200    9.700
—77100	a;soo-
 6.400    8.600
"5.500 ~  10.500
 6.500    13.600
-7.800	12.600
 7.600    13.000
-87300	117400-
 6.000    12.700
-B.500—11.700"
 7.600    11.800
-6;7oo—ii;aoo"
 6.100    10.300
  9.700  200.000  108.000
 ~9i500—1967006—T407000"
  9.500  180.000  120.000
  8;200—152.000—124^000"
  9.000  226.000  156.000
   7* OT—13 8^B DO	IT87T)T) 0~
  7.400  208.000  124.000
  r.500-"162.000~U2.000~
 10.900  142.000  123.000
—r.eoo •i4o.ooo~'i2t;ooo~
  5.600  lia.OOO  181.000
—57*00—134-7x100—ivr7aao—
  6.100  260.000  110.000
•12.800" 110.000 "120.000~
 12.400  142.000   67.000
  8.800   190.000   104.000
 -6"; 800—235."000	1067000—
  7.400   168.000   132.000
 "9.6oo~i7i;ooo~i04;ooo~
  a.300   127.000   124.000
 -8.500"~135.000~~13«.000~"
  7.500   135.000   137.000
        12371
                                                72

-------
PLANT itHOURLY DATA,MARCH 1975
           EC,COO   EO.SOP   EO.TP
                             EQ.NH3   EOtTON   FE.TSS   Ft,600   FE.COD   FEtSOP   FE.TP
  1709
  1711"
  1701
  1703
  1705
 "1707-
  1709
  1711
  1701
  1703"
  1705
 T707
  1809
  1811
  teoi
 "ieo3
  1605
 "1807
  1609
  1811
  leoi
  1603
  1605
 T607
 387.000
'54C.OOO
 536.000
 516.000
 455.000
"4237000-
 4*3.000
 415.000"
 475.000
 544.000'
 572.000
"4S2.000-
 447.000
 SOf.OOO"
 493.000
 431.000'
 45S,000
-50871)00-
 48£.000
 66S.OOO"
 564.000
"464.000"
 476.000
-4-TJ-. 000'
 4.300
'2.800
 3.400
"3.900"
 4.100
-47200"
 3.900
"4.000
 4.000
"3.500"
 3.700
 3770
 3.600
"3.800"
 3.700
-37800
 4.200
-47300"
 4.200
-47400
 3.900
"4.'600"
 4.600
 6.300
"6.300"
 6.900
 7.800
 7.600
        10
       "10
        12
        11
        13
 r.-200 - 137
 7.700
"7.900""
 e.ioo
'87000-
 7. .500
  ."ttO"0 - 10
 7.200    9
"6;300    9
 6.700   11
~T;OOO — 12
 7.400   13
-77600 - 13
 e.ioo   12
•B;IOO — ii
 7.900   10
,500    6.100   15.000
;eoo9i6oo43.000"
,500   11.300    4.000
 90011.700 ~   9.000
       10.300    9.000
        97400	4VOOO"-
       10.900    3.000
       "9.60010.000
       11.000
       "9.200
                 13
                "18
                  7
                '  9
                  6
           600
9.300
7.100
57600
         11
                12.000
                 5.000
                 7.000
:soo	87000	nrooa
,300     6.900     6.00U    10
,800 —  9.40014.0006
,300    11.500     7.000     7
,600     9.BOO	11.000	13
,300     9.100    14.000     7
;«0ff	97700	3Z7000	T2
,700     8.900    44.000    16
,600	9.900	417000	17
 000    12.400    39.000    IB
        0.00034.00018
        6.600    26.000    16
.100"
.000
7UOO~
                             J7500	427000	197000
.000   -0.000
.000iO.OOO"
.000   -0.000
.000   -07000
.000   -0.000
7000	^D 7T)O
.000   -0.000
.000"  -0.000
.000   -0.000
.000-0.000"
.000   -0.000
7000   =TJ700
.000   -0.000
.000ifl.OOO
.000   -0.000
.000—-07000"
.000   -0.000
700
.000   -0.000
.000-OiOOO"
.000   -0.000
.000 —"-0.000
.000-0.000
       =07000"
 -o.ooo
•-o;ooo
 •0.000
"-0.000
 -o.ooo
  D7wo
 -0.000
 -0.000
 -0.000
 iO.OOO
  0.000
  OTOOO
  0.000
 -0.000
 -0.000
 .0.000
 -0.000
 "o;ooo
  0.000
  O'.OOO"
  0.000
  0.000"
  0.000
  07001)"
                                                                                             2.300
                                             1.400
                                             i . r ffO"
                                             2.000
                                             2.200"
                                             2.300
                                             2.300
                                             2.400
PLANT i,HOURLY DATA.KAHCH 1973
                 -N FE.TON
1709
~- 1711 	
1701
— "1703 	
1705
	 T707 	
1709
1711
1701
— 1703 	
1705
1809
~ 1811
1601
1803
1605
1809
	 1811 	
1801
1803
1605
18U7
0.000
0.000
0.000
0.000
0.000
07000
0.000
0.000
0.000
0.000
C.OOO
t.ooo
0.000
O.'OOO
0.000
c.ooo
0.000
o;ooo
0.000
0.000
c.ooo
c.ooo
0.000
tT7000
0.000
	 o.ooo~
0.000
o;ooo~~
0.000
	 07000—
0.000
" 0.000
0.000
	 o;ooo~
0.000
O.gOO
0.000
0.000
0.000
0.000
0.000
	 07000—
0.000
o;ooo~
0.000
0.000 ~
0.000
0.000
PLANT 1.HOURLY DATA.APRIL 1975
           RI.FLOM  MtTSS   RI.BOO   Hi,COO   Rl.SOP   ftl.TP    HI,hH3    PI,TON    EO.TSS    EC, BOO
1409
-Mir ' '
MOl
1403 ' "
1405
MUT
1409
Mil
.274 136.000 70.000 234.000
7324 124.000—168.000 4497000
.376 176.000 110.000 422.000
.386 2967000 2807000' "730.000
.384 252.000 136.000 603.000
,3h7 196.000 222. UOO 480.000
.382 128.000 226.000 434.000
.382 '"1307000 "232.000" "392,000
1.000
•~3. 700
3.500
3. BOO
5.100
4.900
4.600
4.100
b
U
6
I
b
V
.200
.200
.700
.100
.800
.600
.too
.100
11
U
14
M
13
U
12
11
*
•
•
•
•
•
•
•
300
400
300
100
900
TOO™
100
700
2.700
—107800
9.900 .
9.500
9.600
10. Hu
10.400
7.400
130
1/2
214
160
182
146
236
.000
7000
.000
7000
.000
!ooo
.000
105.000
"143.000
154.000
"180.000"
166.000
166. uua
153.000
180.000
                                                73

-------
PLANT  i.HOURLY  DATA.APRIL  1975
	El.HO*   fil.TSS   HI, BOD   Rl.CUO   RI,SOP   M.TP	HI^h3   PI.TON   EC.TSS   CO,BOO
                                                 5.TOO   10.000
                                                          5.400
                                                          7.800"
                                                          6.900
                                                          7.200
                                                          a.aoo
 .306  126.000  162.000  499.000    6.900
"1364168i000 T74;00fl  6S7iOOO	10.000
 .252106.000  193.000  460.000
"7237	78; ODD	TO7000—3B870J)
 .288 _ 64.000   70.000  376.000
'.343-  150.00090.000" 549.000
 .372  160.000  125.000  434.000
"1371 """186.000 ""123,000 "518.000
 .371172.000  125.000  603.000
~T352—r«4-;ooo—iT97Doo—434-7000
 .363  132.000  113.000  396.000
~T37I~208,008I62.000~588.000
 .370  150.000  165.000  442.000
".345270".000~ 179.00d~664.000~
 .268  250.000  190.000  749.000
~232—232;oOna—I77700T)—6807000-
 .269  168.000  144.000  465.000
~336~192.000~164.000~ 684.000"
 .360  152.000  122.000  499.000
-7364—190i000~144.000  576.000-
 .357  1S2.UOO  162.000  545.000
~735?—2187000	14-47001T—3917000-
 .349  216.000  150.000  499.000
"7355  192i000 --140.000" 503.000'
 .345  208.000  132.000  584.000
-7306-  168. 00fl-"140.000 "614.000-
 .237  340.000  152.000  629.000
"7223	7671100	7970UO—3847000'
 .269   60.000   89.000  503.000
•;265--166.000"143.000" "680.000"
 .326  234.000  196.000  737.000
'.341—198.000 — 164.000~ 534.000
 .348  260.000  196.000  741.000
—328	T90.-ODO—166TOOD—3847000"
 .327  144.000  138.000  511.000
 .321"134;000 "-153;000  515.000-
 .305  177.000  151.000  561.000
7280 -120;000"114;000 " 419.000-
 .213  166.000  164.000  607.000     .
-7183	IKUOOIT—147;000—4727000	3;400	S.-40
                                                         10.900   11.000
                                                        "13.100	10.900
                    9.600
                    '7
-------
PLANT 1.HOURLY DAT*.*PHIL 1975
           EC,COO   tQ,SOP   EQ.TP    EU,NH3   EC,TON    FE.TSS   FE.BOD   FE.COD   Ft,SOP   FE.TP
1507
1609
1611
1601
1603
1605
1607
1609
1611
1601
1603
1605
"1607
1709
1711
1701
1703
1705
T707
1709
1711
1701
1703
1705
"1707

64!. 000
672.000
641.000
595.000
— 52c.OOO
564.000
	 568.000"
530.000
' 572,000
540.000
' 54SiOOO
545.000
51!. 000
43E.OOO
"- 48E.OOO
530.000
47Z.OOO
522.000
	 54S700J
541.000
541.000
507.000
	 48E.OOO
522.000
	 37300-
4.SOO
4.600"
4.500
	 3.700"
4.200
3.900
3.800
"3.700
4.800
4.400 '
4.100
	 *;ooo-
3.400
3.200 "
2.900
— 3.000 '
3.400
	 3r70o-
3.400
3.400"
3.600
3.800
4.400
49f,UOO J.VUD
— 9-;soo
6.400
8.500
8.500
— 7;aoo
8.500
a. 100
8.700
9.100
9.900
9.600
8.800
— srrocr
7.100
"6.900
7.000
-"7.100
8.200
	 8;40ff
8.000
a. 100
8.200
a. 5uo
8.200
8.200
— lo^TOtr
7.700
-—9.400
11.500
— 12.200
12.500
	 12.90IT
12.200
10.600
11.500
	 10.300
10.100
9.-60D
a. 200
• "9.400
11.200
12.100
12.400
12.8UO
11.700
'10.600
10,600
- 10.200
9.900
	 97400
7.000 43.QOO
9.500 23.000
7.500 124.000
8.400 50.000
	 6.300 	 44.000
9.900 48.000
	 B;?OO 	 72;ooo
9.000 72.000
9.400 12^.000
7.900 1&0.000
10.000 116.000
10.500 116.000

9.000
10.000
47.000
22.000
	 18,000
17.000
— 22;ooo
24.000
41.000
57.000
63.000
76.000
8.000 136.000 85.000
7.100 30.000 44.000
7.500 30.000
9.300 38.000
~~ 8.900 ' 22.000
7.600 35.000
8.200 3d. 000
9.100 44.000
"8.300 19.000
8.600 -0.000
B. 500 20.000
11.600 10.000
— ro.ioo — lOiuoo
21.000
11.000
11.000
11.000
	 9T000
9.000
"9.000
-0.000
•8.000
9.000
8.UOO
	 =0700TT
-0.000
-0.000
-0.000
— -o;ooo-
-0.000
-u.ouo
-0.000
-0.000
-0.000
-.0.000
-0.000
	 -070 Ofl-
-0.000
- .0.000
-0.000
~ -0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
	 =07BOO-
	 17300-
1.100
1.200
1.100
	 1^200"
1.100
1.400
1.300
1.400
1.300
1.400
1.700
	 17600"
1.200
1.200
1.200
	 i.ooo
1.000
1 .uuo
1.000
1.100
.0.000
1,100
1.100
1.100
	 27TOTT
2.000
b.300
2.900
	 2;600"
2.400
2.900
3.000
4.600
5.900
7.IUO
7.700
	 8"^00~
8.500
2.400
2.100
	 1.900"
1.700
1.700
1.700
1.700
-0.000
	 17700-
1.700
1. fuu
PLANT 1,HOURLY DATA,APRIL 1975
                                                PLANT  1,HOURLY 0*1*.APRIL 1975
           FE.KH3-N FE.TON
                                                           FE.NH3-N FE.TON
1409
1411
1401
— 1403"
1405
	 1407"
1409
1411
1401
'1403
1405
1509
"1511
1501
1503
1505
ibor
1509
1511
1501
"1503 '
1505
1507
10.900
10.400
9.600
•5.500
'5.300
IfllsoO
12.300
5.400
S.600
E.BOO
	 FTOOff
€.500
7.600
6.900
i.900
7.500
e.ioo
e.6oo
«!*00
•E.600
•e.3oo
7.500
0.000
0.000
0.000
o;ooo
0.000
	 07000 —
0.000
0.000
8.000
0.000
0.000
	 07BOO —
0.000
0.000
0.000
0.000
0.000
0.000 "
0.000
0.000
0.000
0.000
0.000
0.000
PLANT i,HOURLY DATA,CAY 1975
1609
1611
1601
1603
1605
	 1607 	
1609
1611
1601
1603
1605
1607
1709
1711
1701
17UJ
1705
1707
1709
.. 171J
1701
1703"
1705
1707
7.600
t.800
•5.900
t.OOO
e.soo
— c;7oo —
6.9QO
~7;ooo
(.400
.800 "
• .800
• .500
.200
.100 —
.600
" 4.800
£.900
" C.600
7.300
" "7.800
-0.000
- 7;7oo
7.700
•e.6oo •"•
0.000
0.000
0.000
0.000
0.000
OTOOO
0.000
OiOOO
0.000
0.000
0.000
0.000
0.000
0.000
0.000
07000
0.000
0.000 '
0.000
0.000
0.000
0.000
0.000
0.000
           RJ.FLOW  PI,TSS   RI.BOD    HI,COO   HI,SOP   H1,TP    RI.M13   PI.TON   EO.TSS   tO.BOO
1809
1801
iao3
1805
1807
1809
iaoi
.166
.161
.201
.250
.262
.237
.229
.233
.262
48.000
. .54.000
106.000
150.000
180.000
100.000
64.000
.leo.ooo
IdO.OOO
47.000
55.000
235.000
146.000
192.000
125.000
123.000
126.000
168.000
137.000
194.000
525.000
429.000
406.000
376.000
384.000
342.000
471.000
2.900
.2.100 .
3.700
4.700
4.1.00
4.700
5.000
.. 4.100 .
3.700
3.700
3.600
6.300
a. 900
a. 100
a. 100
a. 300
7,700
a. 400
9.600.
11.000
17.400
20.000
16.000
15.600
14.500
.12.800..
12.900
5.800
6.300
9.900
12.000
11.400
10,000
7.400
9.300
12.200
0,000
0.000
0.000
0.000
0.000
0.000
0.000
. ,0.000
0.000
""o'.ooo
0.000
0.000
0.000
0.000
O.OOQ
0.000
0.000
0.000
                                               75

-------
ItHOURLY DATA,»AV  1975
HI, FLO" RI.TSS RI.BOO
1603
1805
1607
1909
_ 1911
1901
1903
1905
1907
1909
— 1911
1901
1903
1905
1907
2009
2011
2001
2003
2005
2007
2009
2011
2001
2003
2005
2007
2109
.2111
2101
2103
2105
2107
2109
2111
2101
2103
2105
2107
2209
2211
2201
2203
2205
2207
2209
221 1
~ 2201
2203
2205
. 2207
PLANT


1809
1811
1601
1603
1805
1607
1609
1911
1801
1803
1805
1807
1909
.263
.208
. .179
.304
,304
.331
	 .316
.245
" .. .191
.191
	 .237
.291
-- .345
.345
.320
.304
,325
.304
	 .325
.254
.200
.208
	 .245
.316
.339
.341
.304
.337
.225
.291
.312
.262
.229
.204
,262
.325
.350
.350
.329
.323
.332
.333
.306
,2S1
.285
.250
.262
" " .338
.350
.340
. .322
144.000
192.000
192.000
202.000
IdO.QOQ
. 162.000
164.000
314.000
240.000
166.000
. 126.000
236.000
176.000
136.000
128.000
136.000
.204.000
190.000
174.000
178.000
152.000
126.000
-197.000
258.000
220.000
240.000
170.000
180.000
. 230.000
246.000
254.000
418.000
212.000
188.000
164.000
198.000
234.000
252.000
70.000
104.000
152.000
150.000
186.000
240.000
158.000
144.000
143.000
162.000
158,000
148.000
68.000
179.000
162.000
112.000
116.000
152.000
164.000
168.000
300.000
312.000
156.000
.175.000
336.000
144.000
147.000
166. Odo
170.000
. 196.000
228.000
160.000
172.000
136.000
160.000
-.176.000
164.000
116.000
104.000
101.000
152.000
. 160.000 .
160.000
164.000
28A.OOO
200.000
156.000
..,192.000
182.000
232.000
218.000
69.000
78.000
.. 173.000-
198.000
238.000
148.000
98.000
100.000
. 114,000 _
108.000
118.000
115.000
80.000
R!.«CUO ft I, SOP Rl.Tf Ml,hM3 BI.TON EC,TS!
592.000
460.000
296.000
372.000
523.000
542.000
512.000
705.000
629.000
432.000
417.000
504.000
531.000
436.000
322.000
444.000
54d.OOO
489.000
425.000
463.000
398.000
406.000
360.000
489.000
421.000
398.000
246.000
•0.000
.. -0.000
•0.000
-0.000
-0.000
-0.000
-0.000
.--0.000
-0.000
-o.ooo
-0.000
-0.000
•0.000
•o.ooo
•0.000
•0.000
•0.000
-0,000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
4.200
4.800
4.000
3.500
3,900
4.600
4.700
5.400
4.700
4.600
. _. 4.800.
4.600
4.900
4.000
4.200
3.100
. 3.300
3.800
4.100
3.900
3.900
3.600
.__ 4.300.
4.200
3.800
3.400
3.400
2,900
	 3.400
4.300
4.800
5.600
4.000
3.700
4,000.
4.200
5.100
4.200
3.400
3.200
3.400
3.800
4.100
4.200
3.8QO
3.800
4,500
4.200
3.900
4.100
3.500
7.900
7.600
6.200
5.100
7,100
6.800
9.700
11.100
9.600
8.700
8,600
"8.500
8.500
7,600
1.700
5.500
7.300
9.000
8.000
'8.600
7,500
7.400
	 7.300
7.700
6.500
5.400
4,500
3.600
	 5.400
7.300
8.400
8.900
7.100
7.900
7,700
7.400
8,000
6.200
5.000
4.000
5,800
6.900
8,000
7.700
7.900
7,400
8.500
7.400
6.800
6.600
5,200
12.400
11.000
9.000
8.600
12,000
""16.500
14.600
13.100
11.900
11.600
_. 10.900
10.600
10.900
9.500
8.000
7.300
10.200
15.100
13.400
12.300
11.700
10.000
..—10.800
10.600
10.400
9.100
7.200
6.600
	 11. 100.
15.000
14.700
14.700
11.300
10.300
12.100
10.500
10.900
9.600
7.600
7.700
11.000
15.000
13,600
12.000
10.600
10.700
11.200
11.000
10.500
9.500
6.300
9.400
7.600
. 6,600
7.100
11.700
12.200
10.400
13.300
9.400
8.600
6.900
10.600
9.100
4.800
6.700
6.600
12,300
12.000
10.900
11.400
10,900
9.900
6.300
6.900
9,000
9.900
5,800
7.300
	 -o.ooo
11.500
10.200
9.900
10,700
10.400
J0.200
11.500
9,200
9.000
5,000
5.400
0.000
0,000
0.000
0.000
0.000
	 	 :f f VM:i
0.000
_. 0.000
0.000
.... o.ooo
0.000
. P.OOQ
0,000
. o.ooo
0.000
. o.oon
0.000
0.000
0.000
... o.ooo
0.000
0,000
0.000
0,000
0.000
o.ooo
0.000
0,000
0.000
	 _ 0.000
0.000
0.000
0.000
0,000
0.000
0,000
0.000
0,000
0.000
0,000
0.000
_12,000 0.000
12.900
10.600
11.500
11.000
9.600
10.300
8.300
6.800
7.900
6.200
0.000
0,000
0,000
0.000
0.000
0.000
o.ooo
0.000
0.000
0.000
f teiebo
... o.ooo
0.000
_.. O.ooo..
0.000
0.000
o.odo"
o.ooo
0.000
0.000
0.000
	 0,000
0.000
0,000
0.000
o.ooo
0.000
0.000
0.000
	 0,000.
0.000
'0.000
0.000
0,000
o.ooo
0.000
0.000
0.000
0,000
	 fi.OOQ
0.000
0.000
o.ooo
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
6.000'
0.000
0.000
0.000
1, HOURLY DATA, HAY 1975

EC, COD
C.OOO
0.000
0.000
0.000
0.000
0.000
0.000
	 0.000
C.OOO
— 0.000
0.000
0.000
C.OOO

EQ.SOP
0.000
0*000
0.000
0.000
0.000
0.000
0.000
	 0.000
0.000
0.000
0.000
0.000
0.000

EO.TP
0.000
0.000—
0.000
0.000
0.000
0.000
0.000
	 0.000 _
0.000
0.000
0.000
... 0.000
0.000

iO,NH3
0.000
0.000
0.000
0.000
0.000
0.000
0.000
_. 0.000
0.000
0.000
0.000
0.000
0.000

CO, TON
0.000
0.000
0.000
0.000
0.000
0.000
0.000
	 0.000
0.000
0.000
0.000
0.000
0.000

fk.TSS
15.000
. 7.000
11.000
4.000
6.000
5.000
19.000
23.QOO
2S.OOO
16.000
16.000
33.000
15.000

FE,60D
10.000
	 10.000
10.000
10.000
11.000
13.000
13.000
	 11.000
a. ooo
13.000
11.000
6.000
8.000

FE.COO
111.000
115.000
103,000
111.000
103.000
115.000
118.000
_U1. OOP
122.000
118.000
46.000
46.000
49.000

Ft, SOP
2.000
2.000
2.000
1.700
1.600
. 1.900
2.300

PE.TP
2.000
2.2QO_
2.000
_... i.aoo._
1.600
.. . 2.100 ..
2.400
	 2.400 	 2,600__
2.400
.. ._ 2.300
2.800
.... 3.200
3.100
2.500
	 2.700_
2.900
_._ 3.200_.
3.100
                                        76

-------
PLANT i.HOURLY DATA,CAY  1975

__1911
1901
19U3
1905
1907
1909
1911
1901
'19U3
1905
1907
2009
. 2011
2001
2003
2005
2007
2009
- 2011
2001
2003
2005
2007
2109
.2111
2101
2103
2105
2107
2109
2111
2101
2103
210b
2107
2209
2211
2201
2203
2205
2207
2209
2211
2201
2203
2205
2207
PLANT

1809
_ mi
1801
1903
1805
1607
1809
1811
ieoi
1803
1605
_- 1807
1909
— 1911
1901
1903
1905
1907
EC, COO
.0.000 .
C.OOO
0.000
0.000
. .. C.OOO -
0.000
. .C.OOO
C.OOO
0.000
0.000
C.OOO
C.OOO
	 C.OOO 	
C.OOO
0.000
C.OOO
C.OOO
0.000
C.OOO
0.000
0.000
C.OOO
C.OOO
C.OOO
	 .0.000 —
0.000
0.000
0.000
C.OOO
0.000
0,000
C.OOO
0.000
0.000
C.OOO
0.000
0.000
0.000
0.000
0.000
0.000
'fl.OOO
. __-C.ooo . _
0.000
C.OOO . .
0.000
c.ooo
EU.SOP EO.TP EO.NH3 LO.TON Ft.TSS
.0.000. .
0.000
0.000
0.000
0.000
0.000
_0.000 -.
0.000
0.000
0.000
0.000
0.000 .
_o.ooo 	
0.000
0.000
0.000
0.000
0.000
..0.000. „
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
. 0.000 . .
0.000
0.000
0.000
0.000
0.000
. 0.000
0.000
0.000
0.000
0.000
0.000
.0.000.
0.000
0.000
0.000
0,000
IthOUHLY DATA, HAY 1975
FE.NH3-N
11.100
	 10.000 .._
1C. 200
1C. 200
10.900
12.200
13.000
lc.9QO
12.900
12.200 .
11.900
11. BOO
11.200
	 10.100....
«.«00
1C. 600
11.100
11.300
FEtTON
2.400
.-2.600—
3.700
S.500
2.300
3.100
3.000
..2,600
3. 500
.400
.100
3.900
1.800
-2.100..
2.800
2.300
3.000
4.200
FE.80D FE.COD FE.SOP FE.TP
0.000 0.000. .0.000 . 4.000 . 11.000 49.000 2.600 2.900
0.000 0.000 0.000 2.000
0.000 0.000 0.000 10.000
0.000 0.000 0.000 10.000
0.000 0.000 0.000 19.000
0.000 0.000 0.000 13.000
0.000 	 0.000 . .0.000 .._!«. 000
0.000 0.000 0.000 4.000
0.000 0.000 0.000 14.000
0.000 0.000 0.000 17.000
0.000 0.000 0.000 12.000
0.000 0.000 0,000 9.000
0.000 . 0.000 	 0.000 	 8.000__
o.ooo o.ooo o.ooo e.ooo
0.000 0.000 0.000 7.000
0.000 0.000 0.000 6.000
0.000 0.000 0.000 4.000
o.ooo o.ooo o.ooo 10.000
0.000. 0.000 . 0.000 22.000
0.000 0.000 0.000 21.000
0.000 0.000 0.000 12.000
0.000 0.000 0.000 12.000
0.000 0.000 0.000 la. 000
0.000 0.000 0.000 23.000
0.000 .0.000 . 0.000 . 23.000...
0.000 0.000 0.000 24.000
0.000 0.000 0.000 14.000
0.000 0.000 0.000 36.000
0.000 0.000 0.000 21.000
0.000 0.000 0.000 18.000
0.000 0.000 0.000 13.000
0.000 0.000 0.000 47.000
0.000 0.000 0.000 14.000
0.000 0.000 0.000 14.000
o.ooo o.ooo o.ooo 11,000
0.000 0.000 0.000 17.000
o.ooo o.ooo o.ooo 12,000
0.000 0.000 0.000 6.000
0.000 0.000 0.000 14.000
0.000 0.000 0.000 17.000
0.000 0.000 0.000 21.000
0.000 0.000 0.000 11.000
0.000 .0.000 ...0.000 13,000
0.000 0.000 0.000 16.000
0.000 0.01)0 0.000 7.000
0.000 0.000 0.000 16.000
0.000 0.000 0.000 13.000
PLANT 1, HOURLY DATA, MAY 1975
FE.NH3-N FCiTON
1909 lc.000 3.000
	 1911 	 11.400 	 .4.600_
1901 11.200 3.700
1903 10.600 3.300
1905 f.800 4.100
1907 S. bOO 3.200
2009 9.000 1.200
2011 7,8pO 2.500
2001 7.400 2.400
. 2003 7.500 2.200
2005 6.900 3.000
2007 . S.600 2.600
2009 4.700 2.500
._ 2011 	 _«.600 	 2.80tt_
2001 9.000 3.000
2003 e.eoo- 3.100
2005 £.600 3.100
2007 C.400 4.400
8.000 49.000 2.500 2.600
9.000 49.000 2.300 2.400 ..
10.000 57.000 2.100 2.400
7.000 ea.ooo 2.400 __ 2.eoo
11.000 61.000 2.900 4.100
7.000 49.000 2.600 3.100
11.000 49.000 2.700 3.000
10.000 49.000 2.800 3.100
12.000 61.000 3.000 3.500
10.000 49.000 3.200.. 3.500
10.000 49.000 2.900 3.100
.7.000. 4,2.000. 2.600 2,800
8.000 46.000 2.400 2.500
11.000 . 49.000 ... . 2.200_ 2,300
9.000 42.000 2.000 2.100
12.000 42.000 2.200 '2.300
12.000 42.000 2.400 2.500
15.000 46.000 2.400 2.500
10.000 46.000 2.300 2.500
12.000 38.000 2.500 2.600
11.000 42.000 2.900 2.900
14,000 57,000 2.900 3.000
14.000 -0.000 2.400 2.600
14.000 -0.000 2.600 2.800
10.000 -0.000 2.300 2.400
.12.000 -0.000 2,200 2,300
16.000 -0.000 2.200 2.200
12.000 -0.000 2.500 2,800
15.000 -0.000 2.500 2,500
19,000 -0.000 3,100 3.200
42.000 -0.000 3.700 4.900
15.000 -0.000 2.900 3.000
18.000 -0.000 3.200 3.300
9,000 -0.000 2.800 3.000
10.000 -0.000 2.600 3.300
7.000 -0.000 2.500 2.600
8.000 -0.000 2.100 2,300
8.000 -0,000 2.100 2,200
8.000 -0.000 1.900 2.100
10.000 -0.000 1,800 2,100
11.000 -0.000 1.900 2.400
14.000 -0.000 2.200 2.600
11.000 -0.000 2.100 2.200
11.000 -0.000 2.300 	 2.400
11.000 -0.000 2.700 2.800
19.000 -0,000 2,700 2.800

PLANT 1, HOURLY DATA, HAY 1975
FE.NH3-N FE.TON
2109 7.900 1.700
_ 2111 	 7.400 	 .800....
2101 6.600 3.100
2103 7.500 2.000
2105 6.700 2.300
2107 5.600 2.700
2109 S.200 5.000
2111 S.700 2.600
2101 16.000 10.000
2103 £.900 4.400
2105 8.600 4.200
2107 f.OOO 2.600
2209 £.200 2.600
	 2211 	 7.000. ._1.800 	
2201 6.800 1.800
2203 7.600 2.900
2205 S.300 3.600
2207 10.000 3.300
                                               77

-------
                         PLANT  lihOUHLV OATA.fAY 1975


2209
_ 2211
2201
2203
220S
2207
Ft ,NH3-N
10.500
_ 10.500
10.200
10.000
•S.BOO
* .100
FEiTON
3.400
3.600
4.200
3.60Q
3.700
2.000




PLANT \t HOURLY DATA, JUNE/1 1975


309
Jll
301
303
305
"307
309
311
301
303
305
307
409
411
401
403
405
407
409
411
401
403"
405
407
509
bll
SOI
503 " 	
505
5U7
509
511
501
503
SOS
5U7

HI, FLO« AI.TSS RI.BOD Hi, COD
.316 160.000 38.000 -0.000
.333 142.000 45.000 -0.000
.345 154.000 47.000 -0.000
.327 1K4.000 56.000 -0.000
.281 154.000 37.000 -0.000
.229 1*4. UOU 37.UUO -U.OOO
.208 132.000 45.000 -0.000
.272 153.000 66.000 -0.000
.325 106.000 62.000 -0.000
.3S4 	 128.000 58.000 -0.000
.358 160.000 73.000 -0.000
.339 64.000 81.000 -U.OOO
.256 52.000 69.000 -0.000
;289"180.000 116.000" -O'.OOO
.343 200.000 188.000 -0.000
~ ' .352 174.000 " 168.000 -0.000
.400 170.000 133.000 -0.000
.333 174.000'" 184. 000 -0.000
.333 160.000 151.000 -0.000
.333 144.000 138.000 -0.000
.333 176.000 176.000 -0.000
.302 156.000 160.000\ -0.000
.260 152.000 136.000 -0.000
.241 ISO. UUO 73.000 -0.000
.291 178.000 68.000 -0.000
.293 192.000 106.000 -0.000
.289 188.000 124.000 -0.000
.377 184.000 130.000 -0.000
.387 238.000 224.000 -0.000
.352 226.000 "220.000 -0.000
.341 160.000 143.000 -0.000
.341 196.000 155.000 -0.000
.362 256.000 184.000 -0.000
.337 164.000 119.000 -0.000
.295 168.000 133.000 -0.000
.264 132. UOO 94.000 -0.000

Rl.SOP
2.400
3.300
4.200
4.000
4.000
	 97100—
8.400
5.900
4.300
" "4.100
4.000
J.100
2.600
3.400
4.100
4.600
5.100
4. bOO
4.300
-'5.300 '
4.500
s.ioo
4.800
5.JOO
S.700
— *;ioo —
4.100
6.100
5.600
5.400
6.300
5.300
S.200
5.300-
6.100
' 9.000

Hl.TH
4.200
' s.800
8.300

HI.M13
7.800
13.200
16.200
"8.200 15.100
8.100 13.700
— 67 s o o — r 3 ; s oo —
11.500 12.700
9.200
8.000
•7.000
6.000
4. 30u
3.600
5.600
6.900
8.400
8.600
—87000
8.000
8.200
7.400
1.400
6.800
' 7.600"
7.700
— 7;ioo
7.800
10.400
9.400
— 970oor
9.100
9";ioo
8. 500
8.500*
8.200
o« 4"00~
12.200
12.300
12.000
12.500
9.400
9.500
14.600
18.600
— 15.700
15.200
13.200
13.000
' 13.600 ~
13.000
13.60.0
11.900
9.400
e.eoo
"12.700"
17.600
17.700
15.000
12. tOO
11.900
11.600
11.400
11.400'"'
10.200
	 8;eoo —

HI, TON
0.000
0.000
0.000

EQtTSS
0.000
•• o.ooo •
0.000
0.000 0.000
0.000 0.000
— 07000 	 OTOOO—
0.000 0.000
0.000
0.000
0.000
0.000
o.oou
0.000
o;ooo"
0.000
0.000"
0.000
— 07 ODD—
0.000
0.000
0.000
0.000
0.000
— 07000—
0.000
07000
0.000
0.000
0.000
' 0.000
0.000
o;ooo
0.000
0.000
0.000
— TT."000—
0.000
0.000
0.000
0.000
	 07000—
0.000
0.000
0.000
0.000
0.000
u.voo
0.000
o.ooo
0.000
0.000"
0.000
U.OOo
0.000
0.000"
0.000
0.000
0.000
— o~;uo
-------
 PL'NT 1,HOURLY DATA,  JUM/1  1975
            E6.COU    EQ.SOPEO.TP     tO,NH3   EO.TON   FE.TSS   Ft,BOD   FE.COD   FE.SOP   FE.TP
              TT7000-
              0.000
              0.000"
              0.000
              0.000 '
              0.000
              C7000-
              0.000
              0.000"
              0.000
              0.000"
              0.000
                ooc
              0.000
              0.000'
              0.000
              c.ooo-
              0.000
              07000"
 —oroot
  0.000
 ~0.000
  0.000
 •~o;ooo"
  0.000
 -07000-
  0.000
 "0.000"
  0.000
 "0.000
  0.000

  0.000
  o;ooo~
  0.000
 "0.000
  0.000
 -07000-
  •.ooi
 0.000
"o;ooo—
 0.000\
"0.000*"
 0.000
-070tr0—
 0.000
"o;ooo~
 0.000
 0.000"
 0.000
 17000—
 0.000
"o.ooo—
 0.000
"0.000 "
 0.000
T>7t>o0—
"07000"
 0.000
"o.ooo-
 o.ooo
"0.000"
 0.000
 u.uOO"
 0.000
"0.000"
 0.000
"0.000"
 0.000
"OTOOD"
 0.000
"0.000
 0.000
"0.000"
 0.000
"070 otr
;ooo	107000	I0;oo0-
,000	8,000    9.000
,0008,000lOiOOO"
,000     a.ooo    9.000
,00010.000:9.000
,000    12.000   10.000
rOOO	237000	6;000"
,000    31.000   10.000
1000     a.ooo"
 000     5.000
,000	12.000-
iQOO    15.000
rooo"
iDOO    13.000
;ooo     a.ooo"
                 6.000"
                 6.000
                 7.000"
                 7.000
                 7.000"
                 5.000
                 9.000
,000    17.000    23.000
,000    16.000	7.000
,000	15.000     8.000
,000    187000	7;000"
• 07000-
-0.000
•0.000"
.0.000
-0,000
•0.000

•0.000
;o.ooo"
•0.000
io;ooo"
-o.ooo
-D;OOC
•0.000
•o;ooo~
•0.000
»o.oo0~
•0.000
"17700"
 2.000
~2."306"
 1.900
"2-.100'
 2.500
 ?7«0l
 2.300
~2;ioor
 2.100
"2.100"
 l.eoo
"2TOOO"
 2.500
"2i90fl-
 2.400
"2.400"
 2.800
 r.ooc
-27-300
 2.500
"2.700—
 2.300
"2.600 —
 3.000
 172 00—
 2.600
~2i500—
 2.200_

 2.100
 £ • ^ Vv
 2.900
                                            2.800
                                           "2i 700"
                                            2.700
                                            37700—
PLANT 1 .HOURLY DATA, JQf.E/1  1975

           Ffc,NH3-N FEtTON
                 ^LANTj^hOuflLY^ DATA, JUNE/1 1975

                             Ft,KH3-N FE.fON
            9.300
            8.300"
            7.600
            •e.700
           10.000

           io!ioo
           1C.800"
           10.300
           "5.900"
           -0.000
 0.000
"0.000"
 0.000
 0.000
 0.000
  rooo-
 0.000
"0.000
 0.000
 0.000"
 0.000
            ^iBOO	07000"
            e,9oo_   o.ooo
            e.3o6    o.ooo"
            7,500	0.000
            £.700    0.000"
           10.700    0.000
            17400	07000"
PLANT 1,HOURLY DATA,uU*E/2 1975
409
411
401
"403
405
"*07 	
509
bll
501
503
SOS
5U7
509
"511"
SOI
503 "
505
sor
11.200
11.600 "
11.200
"10.200
S.700
6.600
"7.500
7.000
"8.100
•5.400
10!700
10.400
•5.700
•5.600
e.600
e.ooo '
0.000
0.000
0.000
0.000
0.000
— 07000"
0.000
0.000
0.000
0.000"
0.000
0.000
0.000
0.000
0.000
0.000
0.000
• o.ooo
           HI,FLO*  HI.TSS   RI.BOD
                           HI,SOP   RI.TP
                                            HI,TON   Efl.TSS   tO,BOO
1009
...JO 11 	
1001
1003
1005
1007
1009
.—1011 ...
1001
1003
100S
1007 _ .
1109 '
—1111 	
1101
1103
11 Ob
1107
1109
	 1111 	
1101
1103 ....
1105
.211
.278 .
.309
.320
.340
.309
.299
.295
.320
.290
.258
.229
.243
.273 ..
.305
.333
.363
.321
.312
.320
.331
.309
.249
126.000
196.000
176.000
292.000
246,000
210.000
212.000
176.QOO
162.000
104.300
90.000
144.000
184.000
220,000
242.000
280.000
246.000
260.000
216.000
184.000
132.000
190.000
338.000
98.000
124.000
126.000
182.000
180.000
184.000
16ft. 000
157.000
157.000
132.000
109.000
90.000
76.000
136.000
184.000
156.000
164.000
174.000
156.000
168,000
135.000
139.000
172.000
-0.000
_. -0.000.
-0.000
-0.000
-0.000
-0.000
-0.000
-0,000
-0.000
-0.000
-o.ooo
-0.000
-0.000
-0.000
-0.000
-o.ooo
-o.ooo
-o.ooo
-0.000
-0.000
-0.000
-o.ooo
-0.000
3.800
6.400
4.400
4.300
4.SOO
5.600
7.000
5.900
5.200
5.200
8.100
6.000
4.600
.5,300.
3.600
3.600
3.900
3.700
4.600
4.400
4.400
4,300
4.900
b.400
_ 7.600
7.400
7.600
7.600
8.000
10.000
9,200
7.900
8.000
10.000
7.000
/.OOO
7.600
7.400
7.800
7.500
11.000
8.400
6.000
7.700
7.200
7.800
9.600
. .12.700
17.400
15.200
1*.500
13.600
11.100
12.400
12.700
12.000
10.500
8,800
8.600
13,700
16.000
17.700
14.900
13.600
13.100
11.400
11.400
11.600
11.100
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
.0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
'o.ooo
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000"
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
                                                79

-------
PLAN! 1 .HOURLY DATA.JUNE/a 19T5
           HI,FLO-  HI.TSS   RI.BOD   R(,CUO   HI,SOP    Rl.TH    RI.NH3   RI.TON   tO.TSS   tO.BOO
1107
1209
1211
1201
1203
1205
1207
1209
1211
1201
1203
1205
1207
... .230
.2*3
,201
.335
..— .339,
.330
.316
.313
	 .313..
.311
.281
.259
.225
66.000
166.000
216.000
276.000
244.000
224.000
160,000
156.000
142.000
158.000
144.000
114.000
72. QOO
91
. 7a
. 116
156
148
160
120
117
-_159
130
136
114
104
.00.0
.000
.009
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
-0,000
-o.ooo
-0.000
-o.ooo
-0,000
-o.ooo
-0.000
-0.000
-o.ooo
-o.ooo
-o.ooo
-o.ooo
-0,000
4.700
4.100
3.400
4.000
4.400
• 4.100
3.800
S.400
4.900
4.600
5.100
5,800
6.200
6.100
5. $00
6.400
7.700
8.100
a. 400
7.700
H.700
tt.300
7.500
it. 000
7.700
7.600
9.600
8.700
13,400
17.000
14.600
14.500
12.000
11.500
11.600
12.000
12.000
11.300
9,800
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
0.000
0.000
0.000
0.000
O.ooo
0.000
.0.000
0.000
0.000
0.000
o.ooo"
	 0.000
0.000
0.000
      1,HOURLY DATA,JUKE/2 1975
EC, COO EQ.SOP
1009
-1011
1001
1003
1005
1007
1009
1011
1001
1003
1005
1007
1109
1111
1101
1103
1105
1107
1109
.1111
1101
1103
1105
1107
1209
.1211
1201
1203
1205
1207
1209
.1211
1201
1203
1205
1207
0.000
	 C.OOO . _
0.000
C.OQO
o.ooo
C.OOO
0.000
. o.ooo
0.000
... C.OOO
0.000
	 c.ooo
C.OOO
C.OOO
C.OOO
	 0.000
0.000
C.OOO
C.OOO
0.000
C.OOO
.. ... C.OOO
C.OOO
C.OOO
0.000
	 	 0.000 	
C.OOO
0.000
C.OOO
0.000 ..
0.000
fl.ooo
0.000
C.OOQ
C.OOO
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
0.000
0.000
0.000
.0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
..0.000
0.000
0.000
0.000
0.000
0.000
E0.1P
0.000
. 0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
0.000
0.000
0.000
O.OOQ
0.000
0.000
0.000
0.000
0.000
. -0.000
0.000
0.000
0.000
0.00.0
. 0.000
..._ 0.000
o.ooo
0.000
0.000
0.000
.0.000
0.000. 0.000
0.000
0.000
0,000
0.000
PLANT 1, HOURLY DATA, JUNE/2
0.000
0.000
o.ooo
0.000
E(J,NM3
0.000
	 o.ooo
o.ooo
o.ooo
0.000
0.000
o.ooo
_ o.ooo
o.ooo
o.ooo
o.ooo
0.000
o.ooo
o.ooo .
o.ooo
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000.
o.ooo
o.ooo
o.ooo
0.000
0.000
o.ooo
0.000
0.000
0.000
0,000
EQtTUH




































0.000
.0.000
0.000
0.000
0,000
0.000
0.000
O.ooo
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
o.ooo
Ft.TSS
11.000
18.000
20.000
18.000
36.000
19.000
16.000
20,000
26.000
14.000
17.000
Id. 000
It). 000
9,000
18.000
22.000
29.000
38.000
19.000
29.000
12.000
6.000
6.000
3.000
12.000
... 6,000
11.000
15.000
12.000
3.000
15.000
10.000
11.000
10.000
12.000
13.000
FE.BOD
7.000
Ft, COO FE,SOP F£»Tf»~
'-0.000
_ 10.000 -0.000
9.000
12.000
17.000
12.000
13,000
13.000
19.000
14.000
14.000
16.000
8.000
6,000
6.000
9.000
18.000
22.000
19.000
22.000
18.000
15.000
14.000
13.000
10.000
_. 9.000
11.000
9.000
10.000
10.000
11.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0,000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000 _.
-0.000
•o.ooo
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
3.100
3.100_
3.200
3.100
2.800
3.000
3.500
4.10Q
4.100
4.600
5.100
5.100
4.300
3,800
3.100
3.500.
2.700
2.600
2.800
2.9-QQ.
2.500
2.000
2.800
2.900
2.300
3.200
3.400
3.500
_ 3,600
3.500
3.500
3.900
4.300
4.500
.._ 4,900
5.500
. 5.200
4.600
4,000
3.900
... 3,900
3.700
3.700
3.500
3.800
3.100
. 2.700
3.300
3.200
2.700
-0,000 2.20Q 2.600
-0.000
-0.000 .
-0.000
-0,000
-0.000
12.000 -0.000
6.000
10.000
11.000
12.000
1975 PLANT i, HOURLY DATA.JUNE/Z 1975 PLANT
FE,NH3-N FEtTON
1009
101]
1001
1003
1005
1007
1009
1011
1001
1003
1005
1007
e.soo
... 8.100 	
7.200
7.900
9.600
1C. 9QO
12.300
10.900
1C. 100
1C. 000
9.600
9.500
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000.
0.000
0.000
0,000
0.000












1109
1111 	
1101
1103
1105
1107 ..
1109
mi 	
1101
1103
1105
1107 ..
FE.NH3-N
e.
.7.
t.
7.
1C.
11.
11.
11.
11.
e.
9.
9.
400
FE.TON
0.000
500 _. 0,000..
900
800
000
300
700
600 _
700
700
500
300
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
-0.000
-0.000
-0,000
-0.000
2.100
2.200
2.000
2.200
2.700
?.900_
2.600
3.000
3.400
4.200
2.400
2,600
2.500
2.600
3.100
. .3,500
3.100
3.500
4.000
4.300
i, HOURLY DATA, JUNE/2 1975
FE.NM3-N FE,
1209
1211
1201
1203
1205
1207
1209
..1211
1201
1203
1205
1207
e.soo
	 7.600
7.000
7.800
•9.700
10.900
11.000
	 10.500
9.700
9.000
E.500
9.100
0.
0.
0.
0,
0.
0.
0.
... 0,
0.
0.
0.
0.
ION
000
000
000
000
000
000
000
000 .
000
000
000
000
                                               80

-------
PLANT l.MOULfcY DATA,JUNE-JULY  197b
-
3009
3011 ...
3001
3003
3005
3007
3009
301)
3001
3003
3005
3007
109
.111 _.
101
103
105
107 ...
109
111
101
103 ...
105
107 ._
209
211 .. .
201
203
205
207
209
_.211 	
201
203
205
207
RI, FLO-
-C.OOO
rC.OOO .
-0.000
-C.OOO
-C.OOO
. C.OOO
-0.000
-C.OOO
-0.000
-C.OOO
.C.OOO
-C.OOO
-C.OOO
-c.noo
-C.OOO
-c.ooo
. c.ooo
-c.ooo
-c.ooo
-c.ooo
-c.ooo
-c.ooo
-C.ooo
-0.000
-0.000
..-c.ooo
-c.ooo
-0.000
-c.ooo
-C.OOO
-c.ooo
-c.ooo..
-c.ooo
-0.000
-0.000
-c.ooo
HI.TSS
376.000
224.000
268.000
234,000
350.000
366.000
298.000
304.000
214.000
170.000
164.000
64.000
214.000
314.000
224.000
190.000
216.000
222.000
260.000
296.000
220.000
172.000
157.000
110.000
90.000
150,000
244.000
236.000
2(34.000
260.000
166.000
126.000
168.000
208.000
160.000
24Q.QOO
Rl.BOD
lOfl.OOO
116.000
136.000
120,000
192.000
134.000
134.000
(48.000
166.000
119.000
152.000
87.000
162.000
176.000
162.000
162.000
132. QUO
114.000
148.000
130,000
166.000
105.00Q
96.000
125.0*0
. 86.000
169.000
176.000
18Q.OOO
144.000
108.000
110.000
112.000
120.000
152.000
124.000
128.000
ft I, COD
-0.000
-0,000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-o.ooo
-o.ooo
-0.000
-o.ooo
-0.000
-0.000
-o.ooo
-0.000
-0,000
-0.000
-0.000
-o.ooo
-o.ooo
-o.ooo
-0.000
-0.000
-o.ooo
-0.000
-o.ooo
-0.000
-0.000
-0.000
....-o.ooo
-0.000
-0.000
-0.000
-o.ooo
HI, SOP
3.800
... *.10Q
7.600
5.100
4.400
4.HOO
5.800
5.300
4.700
5.200
14.400
6.000
3.000
6,200
3.900
3.700
4.300
4.300
3.900
4.200
4.100
4.100
3.900
3, 500
3.200
3.700
3.700
4,200
. 3.900
4.600
6.300
6,200
6.500
6.900
6.800
7.100
RI.Tf
10.600
._7,700
0.300
10.200
13.400
10.300
8.900
11.600
9.900
9.100
22.200
a. ooo
4.500
10.600
6.400
7.600
9.200
a. BOO
a. 600
a. <.oo
8.900
7.600
7.600
7.400
5.400
6.500
5.300
6.600
7.900
7.700
9.700
10.200
10.600
10.500
11.100
10,600
BI.NM3
9.500
10,900
11.300
12.700
13.400
12.600
12.500
10.300
10.500
10.400
9.700
8. 500
6.200
10.200
12.600
13.500
13.600
13.200
11.600
10.500
9.900
9.600
9.000
7.700
' 7.100
6.4QO
10.500
12.900
12.500
12.000
11.200
10.200
9.900
10.300
9.600
6.700
PI, TON
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
' 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0,000
EO.TSS
230.000
208.000
256.000
246.000
358.000
336.000
278.000
254.000
2J4.000
210.000
232.000
210.000
270.000
266.000
224.000
216.000
236.000
214,000
280.000
286.000
234.000
220.000
192.000
164.000
162.000
204.000
272.000
242.000
258.000
138.000
176.000
166.000
164.000
192.000
196.000
170.000
to,aoo
92.000
92.000
104.000
104.000
116.000
136.000
104.000
124.000
136.000
156.000
120.000
104.000
108.000
92.000
124.000
100.000
104.000
106.000
88.000
92.000
loe.ooo
126.000
105.000
95.000
106.000
108.000
132.000
124.000
1(2.000
100.000
95.000
99.000
107.000
109.000
118.000
109.000
PLANT I.HOUL&Y DATA, JUNE-JULY 1975


3009
3011 .
3001
3003 . .
3005
3007
3009
3011
3001
3003
3005
3007
109
111
101
103
105
107
109
111
101
103 	
105
107
209
211
201
203 	

EC, COD
-0.000
-0.000...
-0.000
-0.000
-0.000
-c.ooo
-0.000
rO.Ooo.__
-0.000
-o.ooo
-0.000
-0.000
-c.ooo
.rfl.OOO
-c.ooo
-0.000
-o.ooo
-o.ooo
-c.ooo
rfl.OOO.
-c.ooo
-C.OOO ..
-c.ooo
-0.000
-0.000
.rC.OOO
-o.ono
-0.000

EQ,SOP
4.300
.4.000 ..
5.600
4.000
4.000
4.600
5.400
4,500
4.400
4.500
4.800
. 5.800
5.200
5.10Q
4.200
5.000
4.400
4.000
4.100
3.700._
3.700
3.900
3.400
3.200
3.400 •
3.200.
3.100
... a. 100

EO,TP
7.400
10.100
9.800
9.200
11.000
11.000
10.200
9.000
10.000
9.500
9.300
10.400
9,100
9.300
9.200
6.900
6.900
9.100
9.100
6.8QO
9.600
9.100
fl.200
8.66,0
6.200
6.3QO
6.200
6.600

tO.NrO
9.500
. 9,200
10.800
11.100
11.600
12.300
11.000
11,000
11.200
10.500
8.400
a. 600
7.500
7,700
a. 900
10.500
11.000
11.500
11.200
9.?00
9.200
8.800
8.300
7.500
7.000
7.100
e.ioo
9.100

EC, TON
.100
..150
.100
.ObO
.050
.050
.050
.050
.050
.050
.050
.050
.100
.100
.050
.050
.050
... .050
.050
.050
.050
.050
.050
.050
.050
.050
.050
... .050

Ft.TSS
22.000
. 18.000
26.000
19.000
2U.QOO
42.000
38.000
24.000
10.000
11.000
6.000
2.000
4.000
14,000
10.000
10.000
22.000
15.000
29.000
.20.000
17.000
12.000
11.000
12.000
17.000
26,000
22.000
29.000

FE.80D
2.000
.3,000
1.000
5.000
3.000
4.000
6.000
3.0QO
6.000
7.000
7.000
7.000
6.000
7.000
6.000
_ 7.000
6.000
7,000
B.OOO
7.000
e.ooo
6.000
7,000
6.000
6.000
7,000
6.000
9.000

FEtCOO
-0.000
-0,009
-0.000
-o.ooo
-0.000
-0.000
-0.000
-0.000
-0.000
•0,000
-0.000
-0.000
-0.000
-0,000
-0.000
-0,000
-0.000
-0,000
-0.000
-0,OOQ
-0.000
-0.000
-0.000
-o.ooo
-0.000
-0,000
-0.000
-0.000

Ft, SOP
" ~ .400
.400
.400
.._ .400
.500
,600
.700
.700
.600
	 ,900
.900
.11.000
.800
.800
.700
	 .800
.800
_. .900
1.000
1.100
1.100
	 .800
.800
— .800
.700
.700
.800
_.... .800

FC.TP "
.600"
.600
.700
	 .600
1.000
1,100
1.100
1.100
1.000
1,000
1.000
	 1,000.
1.100
1.000
1.000
	 1.100
1.200
1.200
1.300
1.100
1.400
	 i.aoo
1.700
- . 1.500
.800
.600
.800
	 ,800
                                               81

-------
PLANT I.MUULRY DAT*,JUNE-JULY 1975
           EC,COO   EQ.SOP   EQ.TP    tO,Nn3   EC,TON   Ft,TSS   FE.BOD    FE.COO   FE.SOP   FCtTP
205
207
209
211
201
203
205
207
-0.000
. -o.ooo
-C.OOO
-.r-0.000.
-0.000
-C.OOO
-C.OOO
-0.000
3.100
3.400
4.400
._ 4.700 _
4.600
5.500
5.400
5,600
7.200
7.500
8.000
. 8.800
9.600
9.900
10.400
11.000
9.600
10.200
b.aoo
.-.9.000
8.700
u.aoo
a. ooo
7.500
.050
.o&o
.050
.050
.050
.050
.050
.050
28.000
3.000
1.000
4.000
b.OOO
6,000
10.000
11.000
e.ooo
7,000
6.000
6,000
6.000
6.000
7.000
9.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0,000
-0.000
-0.000
.700
.800
.900
.900
.900
1,000
.900
1,000
,800
.900
.900
1.000
1,000
1.000
1,000
1.000
PLANT l.HUULSY DATA.JUKE-JULY 1975
PLANT 1,HUUL*Y OATA,JUKE-JULY  1975






FE.NM3-N FE,TON
3009 12.000 0,000
_ 3011 	 11. 300. _ 0.000 	
3001 1C. 800 0.000
3003 ... 10.300 0.000
3005 10.600 0.000
- 3007 12.300 0.000
3009 11.200 0.000
— 3011 	 n.ooo_. .0.000
3001 11.200 0.000
3003 10.500 0.000
3005 S.900 0.000
. 3007 ... -6.700 . . 0.000
109 9.400 0.000
. . 111. . 5.100 O.OOQ
101 6.400 0.000
103 6.000 0.000
105 7.700 0.000
._ 107 7.500 . 0.000
PLANT



._


FE.NM3-N FE.TON
109 6.500 0.000
	 111 	 6,600 	 0,000
101 $.600 0.000
103 . 6.000 0.000
105 7.400 0.000
107 . 7.400 . 0.000
209 7.600 0.000 .
_ 211 £.800 0,000
201 £.300 0.000
.. 203 6.100 0.000
205 £.400 0,000
207 t.300 0.000
209 6.900 0.000
211 6.600 0.000
201 7.100 0
203 i.600 0
205 6.600 0
207 7.000 0
.000
.000
.000
.000


1. DAILY DATA, 1974-1975 	 	
HI, FLO* HI.UMP RI. BOD
601
602
	 603
604
60S
606
607
608
— 609
610
611
612
613
614
	 615
616
617
610
619
620
	 621
622
623
624
625
626
627
628
629
630
631
701
- ;3.290
3.250
	 3.580
3.3JO
.3.030
•3.630
•3.620
•3.660
	 .3.460
2.270
3.500
•3.520
•3.670
•3.800
	 -3.750
•3.700
- -3.8*0
•3.770
4.3JO
4.270
	 4.200
•3.600
3.850
4.010
4.200
•3.910
	 	 4.100
•3.710
3.620
•3.650
4.550
4.2*0
-0.000
58.000
~ 59-.000
59.000
62.000
61.000
-0.000
-0.000
	 64.000
59.000
£9.000
62.000
59.000
-0.000
— -0.000
62.000
60.000
59.000
• 59.000
60.000
- -o.ooo
-0.000
59.000
-0.000
60.000
59.000
60.000
-0.000
-0.000
-0.000
61.000
62.000
-0.000
176.000
—155.000
155.000
158.000
163.000
-0.000
-0.000
'207.000
265.000
140.000
1*6.000
159.000
-0.000
-0.000
214.000
195.000
205.000
145.000
170.000
-0.000
-0.000
159.000
220.000,
269.000
145.000
173.000
20*. 000
205.000
189.000
245.000
210.000
RI.TSS
-0.000
68.000
'206.000
156.000
194.000
190.000
-0.000
-0.000
228.000
184.000
106.000
128.000
162.000
-0.000
-0.000
120.000
228.000
170.000
130.000
146.000
-0.000
-0.000
110.000
190.000
246.000
164.000
19U.OOO
374.000
222.000
172.000
202.000
188.000
NI.TP
-0.000
6.600
	 8.100
8.300
8.300
8.000
-0.000
-0.000
— ' 6.300
8.600
85.000
8.800
8.600
.0.000
-- -0.000
7.400
8.800
8.500
11.000
-0.000
-.0.000
-0.000
7.500
7.900
7.700
5.800
7.200
12.400
10.400
7.600
8.900
9.000
fll.VSS
-0.000
64.000
• 138.000
82.000
96.000
104.000
-0.000
-0.000
Ib4.000 •
150.000
100.000
102.000
140.000
-0.000
- -o.ooo
120.000
178.000
136.000
60.000
206.000
- -o.ooo
-0.000
92.000
118.000
208.000
116.000
64.000
304.000
166.000
146.000
172.000
160.000
pE.euo
-0.000
157.000
' 163.000
175.000
119.000
155.000
-0.000
-0.000
210.000
225.000
155.000
174.000
162.000
-0.000
-0.000
145.000
175.000
177.000
139.000
166.000
-0.000
-0.000
165.000
210.000
195.000
168.000
H9.000
158.000
163.000
218.000
200.000
176,000
PE.TSS
-0.000
168.000
"234.000
166.000
236.000
232.000
. -0.000
-0.000
- 178.000
166.000
200.000
196.000
284.000
-0.000
.0.000
156.000
342.000
214.000
142.000
126.000
- -o.ooo
-0.000
130.000
178.000
164.000
166.000
266.000
268.000
212.000
156.000
184,000
174.000
PE.VSS
-0.000
46.000
"172.000
102.000
138.000
172.000
-0.000
-0.000
172.000
152.000
180.000
166.000
252.000
-0.000
.0.000
148.000
264.000
172.000
102.000
158.000
-0.000
-0.000
106.000
118.000
134.000
116.000
220.000
170.000
160.000
134.000
138.000
142.000
AS.MLSS
2300.000
2100.000
1900.000-
2500.000
2000.000
2000.000
2100.000
2200.000
2700.000
-0.000
2100.000
2100.000
2100.000
-0.000
- -o.ooo-
2900.000
2900.000
2700.000
2800.000
3100.000
2600.000 •
-0.000
-0.000
2400.000
2200.000
1900.000
2400.000
2300.000
-0.000
1100.000
2404.000
2352.000
                                               82

-------
PLANT i•DAILY OATA,i9T4-i975

	 702
703
70«
706
707
706
709
710
711
712
713
71*
	 715-
716
717
716
RI.H.O*
	 4.210 -~
3.780
3.840
3.850
•3.690
4.130
	 4.170 -
4.200
4.230
4.110
•3.640
3.610
	 -3.910—
•3.790
3.710
3.870
HI, TEMP
62.000"
62.000
-0.000
-0.000
70.000
70.000
70.000
70.000
71.000
71.000
70.000
71.000
70.000 -
72.000
71.000
71.000
Rl.bOO
162.000
163,000
1*4.000
162.000
205.000
173.000
180.000
178.000
110.000
97.000
167.000
162.000
--o.ooo
100.000
186.000
153.000
RI.TSS
102.000
92.000
lie. ooo
140.000
240.000
1*0.000
152.000
202.000
120.000
-0.000
IbU.OOO
na. ooo
- 164.000
144.000
62.000
126.000
HI.TH
- 11.200
5.800
9.600
12.200
9.200
8.900
6.000
8.000
7.400
14.500
11.600
6.600
• - 9.200
8.900
9.300
8.000
HI.VSS
153.000
74.000
98.000
79.000
176.000
102.000
130.000
1H2.000
106.000
-0.000
-0.000
50.000
154.000
9(1.000
80.000
110.000
HE.euo
146.000
149.000
144.000
154.000
159.000
170.000
183.000
165.000
141.000
147.000
175.000
160.000
130.000
110.000
193.000
149.000
PE.1SS
209.000
116.000
258.000
164.000
170.000
162.000
158.000
190.000
228.000
•0.000
265.000
110.000
194.000
166.000
102.000
154.000
PE.VSS
174.000
90.000
216.000
92.000
162.000
120.000
134.000
176.000
192.000
-0.000
-0.000
94.000
- 170.000
136.000
64.000
134.000
AS
2232
2705
-0
2555
4400
2992
2416
2708
2360
2740
-0
-0
2920
3292
1976
2968
,HLS
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
PLANT 1. DAILY DATA, 1974-1975-

601
602
-'603
60*
60S
606
607
60S
609-
610
611
612
613
61*
615
616
617
61U
619
620
621-
622
623
624
625
626.
627*
62b
629
630
631
701
702
703
704
706
707
706
709
710
711
712
713
71*
715-
716
711
718
AS.HLVSS
-C.OOO
-0.000
— -o.ooo --
-C.OOO
-C.OOO
-0.000
-o.ooo
-C.OOO
— -c.ooo -
-0.000
-C.OOO
-0.000
-C.OOO
-0.000

	 - -c.ooo '
-0.000
-c.ooo
-o.ooo
-0.000
-0.000
--c.ooo ~
-c.ooo
-c.ooo
-0.000
-c.ooo
•0.000
•- -c.ooo
-c.ooo
-c-.ooo
-c.ooo
177C.OOO
187e.OOO
-•use.ooo'™-
1555.000
-c.ooo
237C.OOO
216C.OOO
2276.000
-1816.000 —
2092.000
1752.000
2026.000
-0.000
-C.OOO
"214C.OOO '-
2*60.000
492.000
2206.000
AS.SETTL
.120
• 120
— .110--
.140
.140
.110
-0.000
.160
AS, 00
-0.000
2.000
I. 000
.900
.700
.000
.000
.200
— .170 •— .400
-0.000
.140
.130
.110
-o.ooo
••o.ooo —
.120
-- .140
.ISO
— .160
.1*0
- .100 -
-o.ooo
.160
.1*0
.140
.120
	 .140 -
.110
-0.000
.isn
.160
.ISO
- .140 -•
.150
-0.000
.160
-0.000
.200
- -.200 •
.160
.160
.ISO
.210
.230
- .llo —
.190
.200
.220
.500
.500
.000
.000
-0.000
-0.000
.900
.900
1.000
.900
.500
- 2.000
-0.000
.900
1.100
' .800
.'2.100,
- .500^
1.600
1.800
.900
2.000
.600
- .300
.400
.300
.500
.600
.400
- .900
2.000
1.000
1.600
.600
.600
— -.500
.600
1.200
.700
AS.AHPL
2223.000
2763.000
222B.OOO
2560.000
2663.000
2513.000
2434.000
2566.000
2633.000
2509.000
2674.000
2524, QUO
2662.000
2^96.000
2633.000
25^1.000
2565.000
2534.000
2477.000
2562.000
2499.000 •
2651.000
2671.000
2627.000
2668.000
2561.000
2605.000
2641.000
2629.000
2694.000
37U5.000
3762.000
3666.000
39QO.OOO
3851.000
3802.000
3624.000
3760.000
3757.000
3807. QUO
3657.000
3721.000
3661.000
3020.000
3009.000
3842.000
3636.000
3789.000
. AS.R
56.000
63.000
53.000
57.000
65.000
53.000
63.000
63.000
64.000
49.000
65.000
56.000
49.000
65.000
- 74.000
70.000
69.000
73.000
56.000
66.000
54.000
74.000
72.000
65.000
62.000
67.000
48.000
59.000
71.000
74.000
35.000
59.000
63.000
75.000
74.000
70.000
66.000
66.000
69.000
70.000
65.000
65.000
74.000
77.000
• 69.000
71.000
73.000
45.000
FE.800
-0.000
16.000
15.000
14.000
14.000
13.000
-0.000
-0.000
14.000
18.000
47.000
14.000
21.000
-0.000
•-o.ooo
17.000
23.000
24.000
14.000
26.000
- -o.ooo
-0.000
20.000
26.000
31.000
26.000
37.000
11.000
35.000
18.000
-0.000
18.000
- 21 .000
20.000
23.000
15.000
25.000
32.000
47.000
13.000
16.000
16.000
25.000
24.000
22.000
26.000
10.000
IB. 000
FE.TSS
9.000
9.000
1.000
2.000
17.000
11.000
-0.000
-0.000
61.000
8.000
25.000
12.000
7.000
-0.000
-0.000
8.000
15.000
21.000
21.000
26.000
-0.000
-0.000
24.000
16.000
13.000
11.000
36.000
-0.000
37.000
11.000
-0.000
12.000
24.000
20.000
19.000
18.000
16.000
46.000
13.000
17.000
28.000
-0.000
13.000
6.000
7.000
10.000
9.000
10.000
fE.TP
2.200
.300
.000
.300
.500
.800
- .000
- .000
.100
.300
.900
.500
1.000
-0.000
-6.000
.900
1.100
3.200
2.100
-0.000
-0.000
-0.000
3.200
2.700
1.500
1.900
- - 2.100
-0.000
2.200
1.800
-0.000
1.500
- --4. 100
5.600
1.300
4.900
4.400
4.600
--• 3.600
2.200
2.100
1.700
1.700
1.000
— i.ooo
.600
1.500
1.500
FE.VSS
4.000
8.000
— -o.ooo
1.000
5.000
5.000
-0.000
-0.000
56.000
6.000
18.000
11.000
5.000
-0.000
-0.000
7.000
10.000
11.000
12.000
16.000
-0.000
-0.000
19.000
7.000
12.000
e.ooo
25,000
-0.000
30.000
6.000
-0.000
5.000
ll.ooo-
16.000
12.000
10.000
14.000
26.000
' • -8.000
15.000
26.000
-0.000
-0.000
2.000
— 5.000
3.000
7.000
7.000


































































































                                               83

-------
PL»NT 1,DAILY DATA,1974-1973


719
720
721
722
723
724
725
726
727
726
729
730
731
601
602
603
604
605
606
607
808
809
610
611
812
613
614
815
616
617
618
619
620
621
822
823
824
625
826
627
628
829
830
831
901
902
903
904
RI.FLOM
4.110
•3.750
— 3.920
•3.840
•3.930
3.930
•3.980 -
•3.950
- - 3.640
3.570
•3.620
•3.160
4.000
3.370
	 4.120 -
4.250
4.000
3.920
3.950
4.000
4.160 -
4.240
•3.800
•3.760
4.200
4.010
3.960
4.040
4.300
4.200
3.890
4.200
	 4.300 -
3.98Q
3.710
•3.900
•3.780
3.640
- — ;3.810 " "
4.030
4.0*0
•3.660
4.110
•3.570
	 -3.500 —
2.560
3.690
3.580
HI ,TfcM
-0.000
-0.000
65.000
65.000
£6.000
£4.000
65.000
-0.000
-0.000
£9.000
68.000
70.000
70.000
68.000
-o.ooo
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-o.ooo
£9.000
70.000
68.000
£7.000
69.000
£8.000
-0.000
-0.000
70.000
71.000
--o.ooo
-0.000
72.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-o.ooo
-0.000
-o.ooo
-0.000
ea.ooo
£8.000
,»» HI, BOO
203.000
170.000
165.000
156.000
225.000
150.000
151.000
134.000
- 160.000
177.000
172.000
121.000
143.000
193.000
150.000
161.000
158.000
156.000
171.000
129.000
- 236.000
140.000
284.000
194.000
187. OOq
1 -95. 000'
210.000
154.000
176.000
193.000
174.000
220.000
"195.000
176.000
195.000
408.000
192,000
260.000
208.000
265.000
179.000
165.000
140.000
220.000
~ 135.00(T
146.000
-0.000
173.000
HI.TSS
160.000
140.000
164.000
1*0.000
214.000
196.000
112.000
148.000
164.000 •
230.000
24Q.OOO
164.000
250.000
144.000
li>4.000
154.000
140.000
186.000
152.000
76.000
• 220.000
230.000
186.000
3UU.OOO
196.000
i lbd.000
202,000
172.000
166.000
140.000
136.000
168.000
320.000 -
194.000
152.000
210.000
168.000
54.000
• 256.000
322.000
138.000
154.000
174.000
158.000
-'102.000
184.000
"0.000
226.000
«I.Tf
10.300
9.300
7.900
8.300
8.900
9.000
8.300
.0.000
.0,000
7.200
7.900
6.400-
6.100
7,600
9.200
9.900
5,700
7.100
9.600
8.600
6.700
10.600
9.6QO
9.000
6.900
6.300
8.800
9.300
12.100
8.000
8.000
6.800
• 9.300
6.800
9.000
9.800
11.000
6.500
9,900
9.300
9.200
6.900
6.200
6.200
6.6QO
6.600
.0.000
10.400
NI,VSS
-0.000
128.000
136.000
110.000
1/4.000
160.000
76.QOO
92.000
132.000
164.000
130.000
144.000
174.000
96.000
126.000
136.000
62.000
150.000
124.000
46.000
96.000
158.000
154.000
240.000
156.000
160.000
150.000
120.000
130.000
110.000
112.000
154.000
260.000
166.000
108.000
184.000
146.000
144.000
104.000
292.000
136.000
144.000
146.000
152.000
84.000
146.000
-0.000
194.000
HE, 600
206.000
212.000
-135.000
147.000
235.000
140.000
145.000
136.000
166.000
-0.000
-0.000
124.000
117.000
196,000
149.000
131.000
153.000
143.000
177.000
151.000
2)6.000
120.000
306.000
145.000
151.000
175.000
205.000
165.000
170.000
416.000
177.000
220.000
170.000
172.000
190.000
552.000
176.000
275.000
225.000
255.000
208.000
146.000
136.000
200.000
198.000
139.000
-0.000
190.000
PE.TSS
126.000
172.000
226.000
162.000
236.000
214.000
178.000
160.000
194.000
130.000
260.000
200.000
270.000
260.000
204.000
174.000
164.000
106.000
226.000
160.000
210.000
200.000
166.000
256.000
202.000
243.000
242.000
216.000
176.000
176.000
92.000
174.000
140.000
226.000
86,000
266.000
210.000
90.000
156.000
216.000
254.000
256.000
222.000
198.000
180.000
146.000
-0.000
234.000
PE,VSS
.0.000
142.000
178.000
148.000
192.000
186.000
14?. 000
116.000
142.000
102.000
220.000
160.000
202.000
152.000
166.000
154.000
114,000
92.000
166.000
138.000
60.000
136.000
122.000
140.000
146.000
192.000
164.000
150.000
154.000
140.000
72.000
134.000
124.000
184.000
56.000
208.000
172.000
90.000
124.000
204.000
236.000
234.000
174.000
170.000
142.000
128.000
.0.000
186.000
AS, MISS
2668
2205
1575
2668
3306
2646
2226
2220
2300
2730
2636
2236
2220
2366
2364
2510
1995
1216
2646
sit
4356
1540
3500
2635
2912
3100
556
3088
2976
3140
3665
2900
3236
3840
2456
2506
3645
2760
1156
3384
3160
3176
403*
2935
2770
2435
1680
.0
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
PL*KT i.DAiLf DATA, 1974-1975

719
720
— 72 r
722
723
724
725
726
	 727
728
7Z9
730
731
601
— 802
603
AS.MLVSS
229Z.OOO
1535.000
	 1145.000 ""
1904.000
2344.000
2132.000
1674.000
163c.OOO
~ 159C.OOO ~
1970.000
1872.000 "
206C.OOO
152C.OOO
1684.000
" 1686.000 —
1700.000
AS.SETTL ASiUO
.190
.0.000
— .110
.160
.200
.200
.210
.150

!l70
.140
.140
.130
.130
. 1 4 0
.160
1.400
.0.000
-0.000
2.900
.500
.300
.300
.200
	 .300
1.900
' 4.700
.300
3,100
1.100
--•1.400
1.100
AS.APPL.
3770.000
3627.000
3912.000 •
3659.000
3855.000
3833. QUO
3628.000
3615.000
7639.000
4109.000
6596.000
6300.000
7900.000
3854.000
3757.000
3701.000
AS.R
89,000
65.000
61.000
69.000
65.000
69.000
69,000
66.000
75.000
76.000
72.000
62.000
56.000
70.000
60.000
55.000
Ft.BWJ
14.000
12.000
19.000
16.000
15.000
14.000
13.000
13.000
- 6.000
9.000
0.000
9.000
9.000
10.000
11.000
12.000
FE.1SS
14.000
9.000
11.000
12.000
13,000
23.000
11.000
14.000
12.000
13.000
9.000
13.000
15.000
3.000
14.000
15.000
FE.t?
2.300
1.000
	 .500
\.400
2.100
1.800
1.200
.0.000
.0.000
1.200
1.400
1.700
1.400
1.000
~ 2.400
2.400
FE.VSS
3.000
7.000
-" 7.000
6.000
6.000
11.000
4.000
5.000
	 7.000
12.000
7.000
9.000
7.000
1.000
9.000
14,000


_ *•





— ^—























                                               84

-------
PtANT I,DAILY DATA.19T4-1975
AS.HLVSS AS.SETTL AS, 00
80*
80S
806
807
- - 808 '
609
aio
till
eu
8u
-.. -ei4-
eis
ei6
817
ait)
819
	 B20 ' •
821
022
623
824
825
	 826 •-
827
828
629
830
831
~ 901 '
902
903
904
1375.000
faOt. 000
1692.000
6U.OOO
314C.OOO
420.000
235C.OOO
194E.OOO
2176.000
214E.OOO
504.000
2236.000
2405.000
2210.000
25*0.000
206C.OOO
2204.000
2924.000
1764.000
1654.000
257C.OOO
195C.OOO
824.000
250C.OOO
2352.000
2392.000
3104.000
213C.OOO
2030.000
1730.000
1364.000
-C.OOO
.MO
.160
.120
.100
	 .200
-0.000
.210
.160
- .160
.210
	 .150
.190
.230
.190
.260
.180
	 ;2oo
.190
.1*0
.130
.140
.140
	 .120
.120
.130
.140
.1*0
.110
	 .iso
.140
.120
•0.000

2
- 1

	





~ "


-0
1

'" 	





_ 	
1
1

5
• 0
•— .0
-0
2
• 0
.300
.100
.TOO
.400
;Soo
.700
.700
.500
.900
.700
.300
.500
.300
.000
.700
.300
.400
.400
.900
.400
.(00
.700
.700
.600
.400
.900
.500
.000
.000
.000
.100
.000
AS.
3932.
3612.
3819.
3H25.
3867.
3/92.
380«.
3895.
37*4.
3799.
3852.
3862.
3818.
3640.
396U.
3813.
3817.
3841.
3834.
3874.
3802.
3971.
3762.
3038.
386b.
3873.
3d34.
3657.
396b.
3969.
3943.
3926.
APPU.
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
ooo -
000
000
000
AS.H
bO. 000
67.000
71.000
65.000
48.000
48.000
44.000
74.000
64.000
70.000
68.000
54.000
45.000
se. ooo
67.000
53.000
54.000 "
56.000
67.000
72.000
75.000
72.000
74.000
72.000
65.000
63.000
56.000
64.000
63.000 '
57.000
55.000
73.000
ft,UVU
17.000
IS. 000
11.000
22.000
60.000
26.000
40.000
16.000
16.000
14.000
lb.000
12.000
13.000
11.000
16.000
10.000
12.000
19.000
15.000
18.000
11.000
24.000
18.000
13.000
16.000
25.000
14.000
1<2.000
7.000
21.000
-0.000
17.000
fE.TSS
44.000
26.000
13.000
32.000
' 90.000
57.000
60.000
19.000
•7.000
9.000
7.000
11.000
la.ooo
9.000
15.000
8.000
• -3.000
9.000
11.000
12.000
13.000
3.000
18.000
21.000
15.000
20.000
27.000
18.000
11.000
10.000
-0.000
16.000
rt,ii>
.600
1.000
3.000
2.300
— 4.300
4.000
3.200
3.200
2.800
1.700
-1.500
1.700
1.300
.600
.800
2.500
— 1.300
1.300
1.500
1.500
1.400
1.500
-1.800
1.600
1.700
2.800
2.800
1.700
-— .800
.900
-0.000
1.300
FE.VSS
89.000
86.000
66.000
-0.000
33.000
37.000
34.000
3.000
8.000
8.000
" 3.000
6.000
14.000
6.000
13.000
6.000
	 2.000
7.000
6.000
10.000
9.000
2.000
•- 13.000
7.000
9.000
13.000
22.000
16.000
-0.000
8.000
-0.000
14.000
PLANT i.DAILY DATA,1974-1973

90b
906
••- 907
908
909
910
911
912
- 913
914
915
916
917
918
919
920
921
922
923
924
•' 925
926
927
928
9
-------
PLANT 1.DAILY DATA,1974-1973

~ 1007
lOOb
1009
1010
1011
1012
• 1013
1014
1015
1016
1017
1018
""1019
1020
1021
1022
PLANT

'90S
906
907
908
909
910
911
912
BI.FLOW
	 :2.810-
•2.600
•3.610
•2.710
•2.650
2.590
	 .2.610 '
2.780
•3.660
•2.720
•3.660
2.750
:3.650 —
•3.660
•2.720
•2.630
HI, TEMP
63.000
58.000
59.000
60.000
65.000
-0.000
-0.000
66.000
66.000
64.000
67.000
-0.000
--o.ooo -
62.000
65.000
64.000
Rl.tJOC
179.000
265.000
265.000
210.000
1*4.000
266.000
220.000
175.000
175.000
380.000
266.000
-0.000
-0.000
265.000
303.000
373.000
RI.TSS
216.000
226.000
194.000
256.000
21tt.OOO
150.000
Ib2.000
202.000
148.000
Il6.000
170.000
228.000
216.000
154.000
172.000
202.000
HI.TP
~ 8.600
10.300
10.400
9.300
6.900
8.300
' 7.600
11.900
11.300
9.400
9.900
10.900
-- 9.200
6,800
9,300
11.300
Hl.VSS
162.000
190.000
150.000
222.000
196.000
138.000
130.000
IbB.OOO
116.000
96.000
136.000
194.000
-170.000
126.000
134.000
180.000
PE.BOD
181.000
187.000
215.000
165.000
-0.000
196.000
230,000
225.000
195.000
290.000
165.000
-0.000
-0.000
240.000
260.000
275.000
PE,TiS
162.000
uo.ooo
234.000
214.000
216.000
210.000
122.000
208.000
156.000
158.000
146.000
170.000
214.000
216.000
228.000
224.000
PE.VSS
140.000
136.000
106.000
202.000
104.000
176.000
110.000
198.000'
126.000
134.000
114.000
150.000
104.000
180.000
178.000
194.000
AS
1464
2628
3104
2376
2260
2295
2210
2524
2596
22*6
2216
2764
214Q
1940
1106
1808
iHLS
.000
.000
.000
.000
.000
.000
.000
.000
.000
,000
.000
.000
.000
.000
.000
.000
1. DAILY DATA, 1974-1975
AS.HLVSS
~ 1800.000
2076.000
" 2280.000 -•-
2035.000
1816.000
2044.000
2100.000
196C.OOO
AS.SETTL
.140
.160
--0.000"
-0.000
.180
.140
.160
.170
913 	 2006.000 	 .140 —
914
915
916
917
916
919
920
921
922
923
924
925
926
927
928
929
930
1001
1002
1003
1004
1005
1006
1340.000
1370.000
1160.000
-0.000
nat.ooo
.060
.120
.220
-0.000
.000
• 162C.OOO 	 .130 —
2266.000
1330.000
1385.000
1352.000 ~
130C.OOO
--176C.OOO 	
224C.OOO
.120
' .110
.110
~ .090--
.100
AS, 00
3.200
1.100
	 .800
.300
.400
.600
.*00
1.900
-1.800
-0.000
-0.000
2.800
3.200
.800
— .500
.400
-0.000
1.000
-- .700
1.200
~ .110 	 .800
.130
1526.000 ~ .150
126C.OOO
1515.000 •—
04C.OOO
— 912.000 	
1446.000
1466.000 •"
158C.OOO
1650.000 "
1575.000
.130
--.14Q
.140
.900
~ 1.400
AS.APPL
3727.000
4013.000
3786.000
3877.000
3818.000
3826.000
3672.000
3992.000
3919.000
3992.000
3919.000
3929.000
3804.000
3991.000
3786. QUO
3966.000
4112.000
3812.000
3986.000
3700.000
3817.000
3780.000
3702.000
,600\3667.000
-- .400
.300
— .120 	 ;3oo
.160
.140
.140
-0.000
-0.000
1007 — 1072.000 	 ;ioo~
iooa
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019'
1020
1021
• *»fc 1
1022
1692.000
2074.000 ~
1706.000
174C.OOO
1600.000

1692.000
2032.000
1546.000
153t.OOO
1966.000
.140
- .130
.140
.150
-0.000
-o.ooo •-
.160
.290
.180
.170
.140
-"143C.OOO 	 -0.000 "'
1460.000
BSt ,000
11^4.000
-0.000
.070
.120
.200
.400
.600
-0.000
-0.000
	 '.500
1.300
- .400
.800
.400
.500
-. o.ooo
.300
.500
1.300
.500
.700
••-o.ooo
-0.000
1.800
1.700
339U.OOO
3866.000
3506.000
3944.000
3986.000
3714.000
4294.000
3460.000
3901.000
3664.000
306b.OOO
3665.000
3695.000
3954.000
391U.OOO
3029.000
388*. 000
3864.000
3080.000
3742.000
4064.000
4045.000
3979.000
3083.000
. AS,R
75.000
66.000
72.000
74.000
66.000
70.000
73.000
58.000
62.000
67.000
67.000
66.000
71.000
72.000
73.000
72.000
72.000
68.000
74.000
70.000
74.000
67.000
69.000
70.000
77.000
69.000
72.000
72.000
72.000
69.000
79.000
63.000
70.000
76.000
76.000
72.000
70.000
87.000
78.000
69.000
73.000
73.000
75.000
71.000
78.000
72.000
76.000
74.000
ft, BOO
12.000
15.000
• 12.000 -
24.000
13.000
18.000
21.000
22.000
10.000 -
20.000
10.000
-0.000
11.000
9.000
16.000
-0.000
5.000
19.000
11.000
17.000
- 13.000
21.000
-0.000
22.000
25.000
17.000
12.000
10.000
21.000
11.000
14.000
21.000
13.000
14,000
17.000
9.000
10.000
8.000
12.000
14.000
23.000
30.000
17.000
-0.000
-27.000
19.000
23.000
22.000
FE.TSS
17.000
28.000
10.000
11.000
8,000
19,000
12.000
16.000
3.000
11.000
22.000
-0.000
4.000
2.000
-10.000
11.000
7.000
24,000
7.000
9.000
25.000
13.000
30.000
20.000
8.000
12.000
13.000
5.000
23.000
10.000
23.000
14.000
' 12.000
12.000
22.000
9.000
14.000
10.000
•9.000
24.000
19.000
27.000
21.000
19.000
14.000
14.000
19.000
a. ooo
FE.TI-
1.300
1.500
- 1,500
i.eco
2.300
2.000
1.900
.600
	 .700
.800
1.000
-0.000
1.500
1.500
1.800
1.000
.700
1.100
1.600
2.100
-- 1.500
.900
1.600
,900
1.300
2.300
2.100
1.600
3.100
1.600
1.300
2.500
	 1.500
1.800
1300
1,600
1.200
1.000
3.400
1.400
4.300
•2.300
2.000
2.400
— 4.400
4.500
2.400
3. 100
FE.VSS
10.000
26.000
— 21.000
6.000
3.000
19.000
11.000
15.000
— o.ooo
7.000
14.000
-0.000
3.000
1.000
8.000
8.000
4.000
12.000
5.000
1.000
21.000
13.000
22.000
10.000
7.000
7.000
11.000
4.000
18.000
7.000
9.000
9.000
	 7.000
9.000
22.000
9,000
11.000
a. ooo
-- 6,000-
19.000
14.000
23.000
18,000
15.000
"41.000
12.000
16.000
8.000


































































































                                               86

-------
PLANT i,DAILY DATA,1974-1975

1023
1024
-1025
1026
1027
1028
1029
1030
' 1031
1101
1102
1103
1104
1105
-1106
1107
1108
1109
1110
nil
- ni2
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
*"1 1?4
1125
1126
112'
1128
1129
1130
1201
1202
1203
1204
1205
•-1206
1207
1208
1209
PLANT

Rl
.1
,2
— ,
.2
,2
,2
.2
.2
	 -.2
.2
•3
.^
.2
.2
— . . ;2
.2
•3
.2
•3
.2
	 2
.2
	 2
.2
.2
.2
- 	 .2
.2
2
.2
.2
,2
~~ — ' -2
2
.2
2
,2
2
_ _ . . .^
e
.2
.3
.2
2
	 2
•3
.2
2
1. DAILY
"
.FLOW
.730
.820
.700 "
.770
.660
.790
.720
.790
.450"
.590
.680
.690
.660
.820
.740
.640
.930
.790
.770
.870
.910
.870
.260
.680
.840
.930
.820 '
.920
.850
.990
.680
.680
.480 —
.760
.680
.640
.410
.980
.060 ~
.950
.260
.680
.540
.660
.700"-
.520
.630
.830
HI, TEMP
67.000
-0.000
-0.000 '
-0.000
66.000
69.000
67.000
70.000
71.000
69.000
-o.ooo
-0.000
68.000
67.000
66.000
65.000
65.000
-0.000
-0.000
62.000
63.000 "
64.000
53.000
60.000
56.000
60.000
--o.ooo
-0.000
60.000
60.000
61.000
-0.000
-o.ooo-
-0.000
60.000
56.000
59.000
57.000
56.000'
59.000
59.000
60.000
59.000
54.000
59.000 -
58.000
57,000
-0.000
PI, HOC
270.000
333.000
212.000
-0.000
245.000
335.000
305.000
480.000
315.000
28R.OOO
360.000
450.000
390.000
298.000
278.000
270.000
245.000
174.000
-0.000
228.000
258.000
145.000
233.000
138.000
222.000
230.000
2*8.000
300.000.
255.000*
285.000
204.000
408.000
278.000
300.000
233.000
-0.000
230.000
190.000
442.000
-0.000
288.000
165.000
165.000
190.000
166.000
336.000
290.000
•0.000
HI.TSS
166.000
370.000
276.000
152.000
130.000
214.000
230.000
216.000
160.000
190.000
160.000
126.000
220.000
60.000
13*. 000
156.000
364.000
146,000
-0.000
244.000
190.000
116.000
84.000
138.000
222.000
58.000
130.000
82.000
136.000
166.000
244.000
182.000
170.000 —
192.000
206.000
-0.000
IbQ.OOO
200.000
124.000 '
-0.000
162.000
200.000
210.000
1VO.OOO
220.000
176.000
262.000
-O.OOO
HI.TP
10.100
11.300
10.100
7,900
10.100
9.900
10.000
6.800
- e.aoo
8.500
8.400
6.800
8.600
7.200
8.200
8,600
6.700
10.800
-0.000
8.800
7.900
8.300
7.200
7.900
6. 500
10.300
10.400
9.400
7.500
6.700
8.800
9.000
-9.500
10.400
6.800
-0.000
6.200
6.400
- 8.300
-0.000
12.700
10.400
7.500
6.600
8.400
7.100
7.900
-0.000
H1,VSS
140.000
306.000
246.000
'140.000
66.000
180.000
166.000
188.000
152.000
166.000
136.000
86.000
186.000
56.000
116.000
132.000
274.000
112.000
-0.000
164.000
170.000
100.000
56.000
92.000
186.000
52.000
66.000
50.000
110.000
154.000
196.000
148,000
-132.000
166.000
176.000
-0.000
146.000
172.000
120.000
-0.000
120.000
168.000
• 174.000
154.000
- 176.000
158.000
212.000
-0.000
PE.BOD
235.000
235.000
-0.000
172.000
235,000
255.000
177,000
2tO.OOO
265.000
275.000
388.000
200.000
194.000
270.000
200.000
229.000
268.000
153.000
-0.000
154.000
160.000
140.000
191.000
198.000
270.000
166.000
-0.000
275.000
245.000
275.000
204.000
416.000
172.000
220.000
209.000
-0.000
203.000
-0.000
-0.000
-0.000
139.000
210.000
160.000
215.000
172.000
128.000
114.000
-0.000
PE.TSS
216.000
154.000
276.000
218.000
174.000
244.000
210.000
264.000
220.000
244.000
208.000
280.000
138.000
82.000
160.000
150.000
168.000
166,000
-0.000
182.000
218.000
180.000
160.000
198.000
270.000
176.000
212.000
156.000
66.000
240.000
226.000
296.000
- 162.000
142.000
318.000
-0.000
lee.ooo
166.000
166.000
-0.000
190.000
192.000
266.000
262.000
174.000
210.000
326.000
-0.000
PC.V3S
166.000
124.000
232.000
196.000
156.000
220.000
166.000
240.000
200.000
190.000
150.000
194.000
98.000
70.000
136.000
120.000
162.000
130.000
-0.000
130.000
108.000
1J8.QOO
116.000
142.000
222.000
158.000
164.000
124.000
50.000
190.000
198.000
246.000
126.000
116.000
240.000
-0.000
154,000
148.000
128.000
-0.000
144.000
150.000
208.000
216.000
142.000
164.000
262.000
-0.000
AS.HLSS
2552.000
2456,000
2732.000 -
2715.000
2415.000
2160.000
2760.000
2716.000
2420.000 -
2356.000
2210.000
2275.000
2186.000 -
1536.000
208.000
360.000
1384.000
2110.000
2270.000
-0.000
2192.000 -
2016.000
1968.000
2256.000
2275.000
2510.000
2356.000
2286.000
1468.000
1680.000
2068.000
2130.000
1975.000-
1872.000
2112.000
1992.000
-0.000
2060.000
1990.000
2280.000
-0.000
1804.000
1608.000
2124.000
1760.000-
2350.000
3375.000
1304.000
DATA, 1974-1973


AS.MLVSS *J»,StTTL
1023
1024
1025
1026
1027
1026
1029
1030
1031
1101
1102
1103
1104
1105
1106
1107
216C
158*
" 2216
196S
1791
1464
2184
175C
•— 160C
2236
1060
164C
163<
1216
~ 20C
31c
.000
.000
.000 •-
.000
.000
.000
.000
.000
.000" —
.000
.000
.000
.000
.000 '
.000 ~
.000
.160
.160
— .170 '
-0.000
•0.000
.160
.160
.170
— .170" '
.190
.160
•0.000
.110
.130
— .130 —
.110

AS, DO
.300
.600
— -.500
-0.000
-0.000
.300
.300
.400
"1.200
.900
-0.000
.000
- .500
.600
--- .500
4.200

AS.APPL,
3664,000
3643.000
3680.000
4210.000
3707.000
3706.000
3606.000
3637.000
3034.000
3735.000
3724.000
3950.000
3655.000
3661.000
3913.000
3*10.000

AS.R
76.000
61.000
74.000
75.000
60.000
70.000
72.000
71.000
60.000
74.000
70.000
72.000
65.000
67.000
68.000
69.000

ft, BOO
23.000
16.000
14.000
-0.000
32.000
22.000
24.000
17.000
20.000
31.000
27.000
22.000
23.000
20.000
16.000
16.000

FCtlSS
19.000
9,000
17.000
•0.000
14.000
21.000
15.000
11.000
6.000
26.000
16.000
23.000
6.000
4.000
11.000
9.000

«,TH
3.300
2.600
3.000
3.200
3.600
2.900
3.400
2.600
-2.300
3.500
3.200
1.600
1.400
2.300
— 1.600
1.800

Ff.vsa
17.000
6.000
- 12.000-
-0.000
6.000
11.000
S.OOO
a. ooo
— 7.000
14.000
10.000
17.000
2.009
3.000
	 6.000
4.000

















                                                87

-------
PLANT l.DAILY OAIA, 1974-1973
AS.MLVSS Ai.stTTL AS,UO
1108
1109
1110
1111
1112 -
1113
1114
1115
1116
1117
1118 -
1119
1120
1121
1122
1123
1124 '
112b
1126
1127
1128
1129
1130 -
1201
1202
1203
1204
120b
1206 —
1207
1208 •"
1209
1124.000
IbCS.OOO
isec.ooo
-c.ooo
1592.000
1496.000
134C.OOO
136C.OOO
1635.000
1835.000
16*0.000
150C.OOO
964.000
123Z.OOO
ittc.ooo
1595.000
1470.000
1332.000
1544.000
isat.ooo
-c.ooo
1476.000
145C. 000
1245.000
-C.OOO
114C.OOO
1192.000
1572.000
1166.000
1780.000
1775.000
948.000
PLANT I.UMLY DATA


" 1210
1211
	 1212 " -
1213
1214
1215
1216
1217
-" 1218 	
1219
1220
1221
1222
1223
	 1224 	
122S
1226 -
1227
1226
1229
— 1230 	
1231
101
102
103
104
— 105 	
106
107
106
-- 109

fil.FLOw
2.900
•3.700
—3.700-
3.730
•3.430
•3.460
•3. 750
•3.740
- 3.850 -
•3.600
3.790
3.500
•3.620
Z.770
— 2.990"
•3.330
1.500
3.490
•3.300
•3.080
- -3.320-
3.480
3.4HO
.3.850
4.050
3.750

•3^690
•3.890
•3.940
3.920
.140
-0.000
-0.000
-0.000
•' '-'.170
.160
.150
.140
-0.000
.IbO
•-• .190
.160
.170
.170
.150
.150
	 ". 150"
.120
.140
.140
.150
.140
	 .150
.130
-0.000
.190
- .160
.170
	 .120
.180
-- .170
.150
6.300
-0.000
-0.000
-0.000
	 .600
.300
2.600
1.700
-0.000
-0.000
	 2.800*
2.300
1.400
.500
.700
-0.000
~ iO.OOO'
.700
.700
.900
2.000
.200
— - 5.300
3.500
-0.000
2.400
2.700
.300
	 .400
2.100
.900
.600
AS.APPL. AS.R
39S4.000
3960.000
3916.000
3906.000
3924.000
3969.000
4010.000
4009.000
4893. QUO
404J.OOO
3941.000
3895.000
3922.000
3973.000
3979.000
3762.000
4125.000
4078.000
4040.000
3654..000
3906.000
4011.000
3962.000
4248.000
3873.000
4092.000
4066.000
4055.000
4026.000
4173.000
3874.000
4087.000
66.000
69.000
83.000
68.000
70.000
72.000
60.000
66.000
70.000
79.000
71.000
60.000
60.000
61.000
78.000
84.000
79.000
72.000
68.000
70.000
76.000
92.000
" 91.000
104.000
61.000
75.000
106.000
89.000
75.000
80.000
71.000
69.000
Ft.buu
9.000
9.000
-0.000
12.000
• 23.000
24.000
20.000
20.000
24.000
24.000
-0.000
21.000
16.000
14.000
10.000
9.000
' - 12.000
15.000
17.000
-0.000
9.000
6.000
— 5.000
-0.000
16.000
6.000
12.000
12.000
9.000
9.000
IS. 000
-0.000
FE.1SS
8.000
9.000
.0.000
12.000
64.000
88.000
26.000
56.000
•0.000
16.000
45.000
21.000
6.000
13.000
10.000
11.000
24.000
22.000
13.000
-0.000
12.000
4.000
-' 6.000
-0.000
9.000
7.000
S.OOO
16.000
- 16.000
12.000
9.000
-0.000
F'E.TH
2.000
2.000
•0.000
1.400
3.600
4.200
2.600
3.000
3.400
4.600
••• 2.900
2.700
3.600
2.600
2.600
2.000
	 i.ooo
2.600
4.700
-0.000
1.100
.800
- 1.100
-0.000
1.200
1.300
1.000
1.600
-- 1.200
1.000
1.200
-0.000
FEiVSS
7.000
5.000
-0.000
6.000
" " 61.000
67.000
-0.000
45.000
-0.000
13.000
- 28.000
15.000
6.000
11.000
6.000
9.000
17.000
19.000
8.000
-0.000
9.000
3.000
5.000
-0.000
7.000
6.000
5.000
13.000
14.000
10.000
4.000
-0.000

































.1974-1979

hl.TtHf
-0.000
58.000
' "58.000
£7.000
57.000
£6.000
56.000
56.000
--S7.000
-0.000
56.000
57.000
57.000
56.000
— -o.ooo
-0.000
-0.000
57.000
57.000
56.000
— -o.ooo
-0.000
£9.000
59.000
60.000
59.000
•' £9.000'
59.000
£9.000
60.000
60.000

RI.BOO
-0.000
240.000
iso;ooo
-0.000
156.000
223.000
230.000
180.000
270.000 -
263.000
252.000
-0.000
273.000
120.000
-0.000
258.000
230.000
156.000
128.000
215.000
196.000"
-0.000
135.000
130.00ft
221. 000*
134. OGO
210.000
155.000
145.000
230.000
160.000

RI.TSS
-0.000
162.000
92.000
164.000
146.000
12U.OOO
126.000
130.000
138.000
236.000
212.000
294.000
146.000
92.000
•-o.ooo
314.000
50.000
174.000
Ib4.000
128.000
184.000-
-0.000
120.000
176.000
208.000
134.000
60.000
114.000
112.000
144.000
128.000

RI.TP
-0.000
8.100
— 7.700
8.800
8.800
8.100
9.000
5.700
8.100
9.400
8.100
9.800
7.000
8.800
--o.ooo
5.700
6.100
7.100
7.800
9.000
— 6.400
-0.000
7.200
9.400
7.700
7.400
— 9.100
6.800
7.700
7.900
5.300

Hl.VSS
-0,000
146.000
62.000
165.000
116.000
10(9.000
94,000
108.000
124.000
192.000
166.000
226.000
116.000
54.000
-0.000
306.000
38.000
144.000
134.000
104.000
112.000
-0.000
102.000
134.000
168.000
100.000
bb.OOO
106.000
46.000
100.000
100.000

FE.BUO
-0.000
-0.000
141.000
-0.000
176.000
169.000
182.000
179.000
171.000
220.000
168.000
-0.000
220.000
348.000
-0.000
162.000
229.000
156.000
172.000
177.000
151.000
-0.000
220.000
195.000
198.000
152.000
199.000
145.000
160.000
265.000
159.000

PE.T5S
-0.000
234.000
122.000
246.000
208.000
126.000
166.000
176,000
162.000
136.000
206.000
192.000
212.000
252.000
-0.000
246.000
62.000
202.000
154.000
122.000
150.000
-0.000
122.000
196.000
164.000
148.000
264.000
168.000
148.000
258.000
276.000

PE.VSS
-0.000
208.000
•90.000
218.000
116.000
108.000
132.000
1S6.000
-160.000
114.000
178.000
174.000
160.000
172.000
-0.000
232.000
42.000
166.000
126.000
96.000
122.000
-0.000
108.000
150.000
146.000
118.000
• 206.000
148.000
120.000
224.000
230.000

AS.MLSS
-o.ooo -
. -0.000
2200.000-
1464.000
2010.000
1965.000
1468.QOO
1564.000
2212.000 -
1616.000
1728.000
1985.000
1810.000
1832.000
1710.000
-0,000
1692.000
1492.000
1795.000
1600.000
1340.000 -
2990.000
-0.000
1464.000
2072.000
2480.000
2535.000-
2436.000
2112.000
1476.000
1326.000
                                              88

-------
I.UAILY  DATA,1974-1979
HI. FLO*
110
•" ill
112
113
114
lib
116
117
116
119
120
121
122
'123
124
125
126
PtANf
4.1BQ
	 	 -4
4
4
i
4
4
-...._ t
.;
.;
4
.4
4
.. _ „ (
4
•
*.160 —
i.230
U170
.200
1.150
.220
1.130 ~
i.950
S.890
1.2*0
1.210
i.230
>.27fl
.270
!.9SO
3.800
l.OMLt DATA*
- AS.MLVSS
1210
1211
1212
1213
1214
1215
1216
1217
1216
1219
1220
1221
1222
1223
122*
1225
1226
1227
1226
1229
1230
1231
101
102
103
104
105
106
107
106
109
110
-C.OOO
-C.OOO
-l4b€.000-~
1206.000
156G.OOO
13SC.OOO
954.000
1304.000
1724,000 ~
1412.000
1164.000
1470.000
1260.000
1186.000
— H4£.ooa •
•0.000
1320.000
626.000
119C.OOO "
117C.OOO
	 724.000 '
HI.TtMK
£8.000
-£5.000 "
46.000
48.000
35.000
37.000
35.000
36.000
39.000
47.000
£4.000
53.000
54.000
52.000
53.000
£3.000
53.000
1974. 19?3
01, BOO
66.000
208.000
185.000
233. OQO
155.000
260.000
230.000
134.000
195.000
195.000
215.000
225.000
170.000
240.000
146,000
166.000
220.000

AS.SETTt AS, 00
•0.000
•0.000
- ,170 -
.090
.170
.150
.100
.100
-0.000
-0.000
' 1.500
1.200
2.000
2.600
.700
.600
	 .160 	 .500
.150
.160
.130
.130
.110
.500
.600
2.200
2.400
.500
— .110 	 3.300
. o.ooo
- ,uo
.060
- .150
.140
•" .140
1460.000 .140
-c.ooo -
1126.000
1436.000
1735.000
• ' 177
:.000 '
144C.OQO
1392.000 "
1004.000
944.000
157c.OOO
111 	 1555.000 —
112
113
114
115
116
11T
118
119
120
121
122
123
124
125
126
1000.000
706.000
766.000
612.000
1064.0QO
1406.000"
630.000
1070.000
920.000
926.000
1096.000
1320.000""
1292.000
152S. 000
157E.OOO
•0.000
.160
.160
.160
— ;i6o
.160
"- .170
.160
.140
.120
— -.100-
.060
.060
.090
.070
.070
-O.OUO
.200
.200
• • 4.000
3.300
-- -;.boo
2,400
-0.000
1.000
l.lOtf
• .800
-2.400
1.200
.500
.700
.200
1.100
— 4.300
7.500
7.500
4.900
4.900
1.700
-".070 	 1.400
.060
- .070
.080
• .080
.060
2.000
4.200
1.300
.700
.600
	 .090 	 2.200
.080
.120
.120
2.300
4.600
3.500
RI.TbS
154.000
244.000
114.000
160.000
174.000
162.000
1*4.000
10U.OOO
140.000
196.000
240.000
1*6.000
136.000
254.000 -
156.000
196.000
230.000

AStAHPl
3959.000
4143.000
4016.000
4023.000
4066.000
3992.000
4007.000
40*4.000
405*. 000
4043.000
3912.000
4043.000
4106.000
4135.000
4133.000
4059.000
3994.000
4074.000
4050.000
4014.000
4067.000
4151.000
3999.000
4062.000
3861.000
4138.000
4072.000
4032.000
4102.000
3637.000
4049.000
3903.000
4050.000
4145.000
4135.000
4119.000
4056.000
4111.000
4091.000
3914.000
4064.000
4059.000
4605.000
5639.000
4044.000
3689.000
3900.000
*16b,000
KJ.TH
5.000
-- 4.900
5.300
6.500
6.400
6.500
6.100
~ ' 8,500
7.900
7.500
7.600
6.100
6.400
--7. 900
6.400
6.000
7.000

. AS.R
52.000
73.000
- 72.000
75.000
76.000
76.000
73.000
72.000
- 70,000
72.000
64.000
74.000
74,000
76.000
90.000
74.000
65.000
59.000
73.000
78.000
60.000
61.000
66.000
67.000
61.000
70.000
72.000
70.000
70.000
66.000
67.000
61.000
47.000
56.000
59.000
61.000
61.000
61.000
62.000
63.000
60.000
55.000
61.000
59.000
' 56.000
54.000
62.000
64,000
H1.VSS
92.000
102.000
60.000
108.000
124.000
124.000
122.000
60.000
78.000
156.000
206.000
120.000
92.000
192.000
114.000
132.000
206.000

FE.BCD
-0.000
25.000
11,000
16.000
10.000
14.000
13.000
16.000
••20.000
14.000
9.000
7.000
13.000
5.000
- --o.ooo
22.000
25,000
6.000
7.000
11.000
10.000
-0.000
7.000
11.000
13.000
9.000
16.000
13.000
11.000
16.000
11.000
6.000
•- 6.000
21.000
35.000
12.000
14.000
17.000
- 14.000
32.000
.0.000
-0.000
-0.000
-0.000
— -o.ooo
43.000
53.000
23.000
FC.bUD
112.000
179.000
163.000
195.000
140.000
166.000
216.000
160.000
156.000
200.000
205.000
197.000
157.000
205.000
142.000
•0.000
145.000

FE.1SS
-0.000
21.000
14.000
11.000
6.000
20.000
4.000
14.000
12.000
1.000
13.000
6.000
11.000
11.000
•0.000
12.000
13.000
16.000
10.000
14.000
21.000
-0.000
15.000
14.000
14.000
10.000
14.000
4.000
11.000
13.000
9.000
14.000
"• 9.000
5.000
5.000
5.000
13.000
18.000
30.000
43.000
10.000
42.000
3.9.000
32.000
-•46.000
-0.000
-0.000
£6.000
PE.TSS
164.000
230.000
136.000
152.000
172.000
162.000
156.000
150.000
152.000
222.000
266.000
1(6.000
192.000
290.000
leo.ooo
156.000
226.000

FE,tP
.0.000
.600
--- .000
.200
.200
.000
.300
.400
- .500
.900
1.300
.600
2.300
1.400
-0.000
.700
1.300
.600
.400
.600
1.800
.0.000
.900
2.000
1.400
1.500
1.500
1.200
2.300
1.600
.900
1.000
— - ,400
.500
1.000
1.300
2.300
1.700
- 3.200
3.800
1.900
6.100
3.700
4.100
	 3.700
4.600
4.400
1.900
PE.VSS
116.000
106.000
66.000
114.000
114.000
140.000
128.000
106.000
36.000
178.000
226.000
78.000
192.000
224.000
138.000
106.000
192.000

fE.VSS
'0.000
9.000
— 6.00}
9.000
5.000
15.000
2.000
12.000
- 6.000
0.000
10.000
7.000
7.000
2.000
-0.000
9.000
9.000
13.000
6.000
12.000
- 11.000
-0,000
11.000
12.000
9.000
7.000
14.000
3.000
11.000
13.000
9.000
11.000
- i.ooo
5.000
4.000
5.000
11.000
12.000
10.000
13.000
6.000
16.000
22.000
21.000
" 19.000
-0.000
-0.000
13.000
AS, MLS
1792.000
2290.000
1595.000
1384.000
1396.000
1476.000
1632.000
1586.000
1240.000
1*55.000
1056.000
1184.000
1356.000
1520.000
1506,000
2020.000
2195.000
















-

































                                         89

-------
PLANT i,DAILY DATA,1974-1975


127
128
129
130
131
201
- 202
203
— 20*
205
206
207
208
209
	 210
211
212
213
21*
215
— 216'
217
218
219
?20
221
" 222
223
22*
225
226
227
r- 228-
301
302
303
30*
305
' 306
307
308
309
310
311
' ' 312
313
314
315
PLANT 1


127
128
•129
130
131
201
202
203
20*
205
206
207
208
209
210
211
RI.FLOW
3.600
3.130
	 4;i4o —
•3.910
- -2.240
4.520
•3.400
4.0 80.000
12*.000X 124.000
95.000
170.000
268.000
-0.000
-0.000
225.000
100.000
94.000
1*0.000
125.000
130.000
140.000
115.000
92.000
110.000
175.000
383.000
220. POO
90.000
82.000
06.000
05.000
82.000
78.000
104.000
62.000
38.000
150.000
118.000
82.000
• 100.000
100.000
90.000
70.000
88.000
60.000
238.000—106.000
400.000
123.000
99.000
80.000
136.000
72.000
HI,TP
6.900
6.400
- 6.100
6.400
7.200
-0.000
-0.000
-0.000
• -o.ooo
-0.000
-0.000
-0.000
-0.000
-0.000
--o.ooo
-0.000
-0.000
-0.000
-o.ooo
-0.000
-0.000
-0.000
•0.000
-0.000
-o.ooo
-0.000
-0.000
-0.000
-0.000
•0.000
-0.000
-0.000
-0.000
•0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
Hl.VSS
64.000
62.000
212.000
120.000
222.000
52.000
138.000
158.000
276iOOO
156.000
66.000
106.000
122.000
sa.ooo
02.000
128.000
132.000
102.000
104.000
50.000
-0.000
60.000
236.000
80.000
70.000
120.000
62.000
48.000
60.000
66.000
64.000
66.000
70.000-
52.000
34.000
124.000
88.000
42.000
90.000
82.000
74.000
40.000
70.000
42.000
60.000
70.000
116.000
68.000
PE.eoo
173.000
158.000
124.000
140.000
186.000
194.000
1*9.000
215.000
290.000
142.000
146.000
120.000
80.000
133.000
155.000
168.000
154.000
165.000
133.000
104.000
-0.000
119.000
83.000
195.000
146.000
124.000
ei.ooo
133.000
147.000
177.000
119.000
It*. 000
116.000
115.000
103.000
115.000
147.000
148.000
127.000
108.000
111.000
107.000
163.000
165.000
164.000
245.000
132.000
99.000
PE,TSS
158.000
154.000
222.000
164.000
216.000
164.000
230.000
166.000
202.000
leo.ooo
154.000
194.000
126.000
60.000
92.000
118.000
138.000
166.000
130.000
118.000
-0.000
148.000
76.000
128.000
92.000
148.000
106.000
88.000
114,000
104.000
88.000
108.000
144.000
100.000
64.000
98.000
120.000
130.000
162.000
126.000
138.000
90.000
100.000
72.000
104.000
68.000
120.000
120.000
PE.VSS
130.000
104.000
-134.000
138.000
192.000
130.000
212.000
148.000
-164.000
138.000
128.000
170,000
106.000
46.000
86.000
114.000
126.000
122.000
124.000
60.000
-0.000
100.000
40.000
96.000
78.000
136.000
08.000
52.000
74.000
82.000
76.000
90.000
116.000
96.000
56.000
76.000
96.000
92.000
138.000
110.000
112.000
64.000
82.000
50.000
78.000
66.000
104.000
104.000
AS.MLSS
1588
1420
1220
1504
1480
1610
14.30
1104
1344
1152
1728
2164
2245
1900
1304
1200
2048
1020
1264
2455
.000 -
.000
.000-
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
2*Ob.OOO -
-0
182*
1544
1988
1992
2385
1975
1368
1716
2046
220*
1780
17*0
1535
200*
2108
2452
1728
1604
1520
1645
2060
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000-
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
2184.000
2248
1816
.000
.000
aoe.ooo
1580
.000
fOAILV DATA, 1974-1973

AS.MLVSS
1076.000
1040.000
— 92C.OOO ~
952.000
956.000
1090.000
1035.000 *
864.000
— 972.000 	
796.000
HOC. 000
1656.000
1705.000 •
12SS.OOO
- 912.000 —
966.000

AS.SETTL
.110
.110
illO"
.100
.090
.090
.080
.080

AS.UO
• .700
.500
-1.200
2.300
3.000
3.500
4.000
2.400
— .100 	 1.200
.100
.130
.140
.120 -
.120
2.500
3.000
4.900
6.500
7.900
-.120 	 3.300
.120
3.700

AS.APPL.
4112.000
3929.000
401*. 000
4062.000
4124.000
3999.000
3999.000
4295.000
8425.000
8539.000
8569.000
8bH2.000
8834.000
8746.000
8650.000
8476.000

AStR
67.000
83.000
57.000-
61.000
77.000
52.000
71.000
62.000
59.000
63.000
68.000
66.000
71.000
73.000
64.000 ~
64.000

Ft, ecu
14.000
16.000
13.000
21.000
14.000
24.000
27.000
•0.000
-0.000
-0.000
35.000
14.000
10.000
17.000
10.000
12.000

FE.TSS
21,000
17.000
34.000
38.000
26.000
49.000
48.000
67.000
91.000
40.000
65.000
40.000
19.000
34.000
- 7.000
2.000

FE»TP
.700
.500
•" .300
.500
.600
.000
.500
,30D
.500
.800
.300
.800
.600
.900
	 .500
.100

FEtVSS
13.000
a. ooo
- 17.000-
18.000
18.000
. 26.000
33.000
47.000
63.000
28.000
53.000
33.000
15.000
22.000
- 7.000
2.000


































                                              90

-------
PL«NT l.OAJLY DATA,1974-1973

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
226
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
AS
1M2
784
924
1745
•—1505
-0
1200
1084
1412
1452
-1620
127S
66C
102E
135Z
U60
" 122*
120C
1110
119Z
1366
1604
1284
1126
1195
122C
153f
1686
— 1780
1412
624
1160
,MLVSS AS
.000
.000
.000
.000
.000 	
.000
.000 	
.000
.000 •••
.000
.ooo'— ""•
.000
.000
.000
.000
.000
.000 	
.000
.000
.000
.000
.000
.000" "•
.000
.000
.000
.000
.000
.000 	
.000
.000
.000
.SETTL
.
.
.
.
.
.
«
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
120
160
150
170
170 ~
170
no -
130
150
1*0
130 -
130
110
110
ISO
150
130' '
110
100
100
140
180
1*0'
100
110
100
100
120
AS, DO
7.600
*.200
3.000
5.600
— 6.200
6.800
2.200
1.600
AS.APPL,
6695.000
6626.000
87*6.000
8016.000
6507.000 -
6772.000
8*51.000
8*90,000
2.000\ 8552.000
'1.100
' 8.300
5.400
3.100
3.200
1.500
.500
-•2.600
-0.000
-0.000
5.000
2.900
1.900
-3.000
5.100
•0.000
-0.000
.700
1.500
;160 	 .600
•
*
•
150
130
120
1.000
1.100
5.200
4027.000
3994.000
3958.000
3987.000
3926.000
405S.OOO
4042.000
3345.000"-
3645.000
3962.000
4073.000
4050.000
4011.000
4004.000
3976.000
4060.000
4199.000
4064,000
4039.000
3976.000 —
4094.000
4094.000
3973.000
AS.R
66.000
66.000
63.000
66.000
66.000
72.000
63.000
57.000
49.000
54.000
66.000
60.000
61.000
63.000
59.000
56.000
55.000
64.000
64.000
62.000
61.000
46.000
45.000
50.000
63.000
69.000
13.000
46.000
56.000
59.000
58.000
63.000
Ft, ecu
10.000
17.000
14.000
7.000
- -o.ooo
9.000
10.000
16.000
6.000
6.000
4.000
12.000
17.000
13.000
9.000
12.000
	 7.000
b.OOO
12.000
14.000
16.000
13.000
-0.000
9.000
10.000
11.000
16.000
25.000
-- 12.000
13.000
8.000
5.000
FE.TSS
9.000
6.000
38.000
18.000
•0.000
9.000
14.000
27,000
16.000
10.000
7.000
7.000
5.000
6.000
10.000
8.000
--12.000
11.000
6.000
26.000
26.000
9.000
• 5.000
11.000
14.000
10.000
9.000
7.000
••— 8.000
9.000
7.000
7.000
FE.TP
1.000
1.100
2.100
1.000
--o.ooo
.900
1.000
1.500
1.800
.800
	 .600
.400
.900
.900
1.000
2.000
--2. 000
1.600
1.500
1.800
2.000
2.000
- "1.500
1.800
1.100
2.100
1.100
2.300
	 1.500
1.300
1.600
1.100
FE.VSS
6.000
2,000
33.000
15.000
--o.ooo
5.000
2.000
14.000
4.000
1,000
5.000
2.000
0.000
6.000
6.000
8.000
"10.000-
9.000
3.000
15.000
12.000
5.000
2.000
10.000
13.000
6.000
4.000
3*000
	 4.000
7.000
6.000
6.000
PLANT 1.DAILY DATA,1974-1979
R I.FLO*
316 4.000
317 *.270
-'318 	 *.120
319 3.970
320 3. 9UO
321 *.020
322 2.960
323 -3.910
- 324 	 4.110 "
325 *.010
326 '3.200
327 Z.-810
320 2.350
329 3.620
- 330 	 3.740"-
331 -3.270
401
402
403 --' -
40*
- 405 	 -
406
407
406
- 409
410
- 4J1 	
412
.590
.500
.720
.470
.480 '"•
.400
.960
,?00
.670
.990
.020
.980
413 - 4.020
414 4.160
415 -3.9*0
KI.TEMP
53.000
53.000
53.000
54.000
54.000
54.000
55.000
55.000
54.000 ~
53.000
54.000
53.000
50.000
50.000
50.000
51.000
-0.000
51.000
50.000
52.000
£3.000 ~
£4.000
£5.000
54.000
53.000
53.000
53.000 -
54.000
54.000
55.000
57.000
HI.
110.
440.
•0.
-0.
220.
105.
120.
245.
245.
275.
320.
102.
106.
98.
160.
130.
195.
223.
325.
66.
219.
140.
eo.
166.
155.
no.
166.
-0.
130.
135.
167.
BOO
000
000
000
000
000
000
000
ooo
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
ooov
000\
000
000
000
000
000
Hl.TbS
62.000
366.000
92.000
eo.ooo
62.000
144.000
110.000
140.000
130.000
148.000
368.000
74.000
164.000
112.000
58.000
96.000
108.000
112.000
70.000
60.000
1BH.OOO
132.000
106.000
142.000
138.000
142.000
136.000
144.000
76.000
96.000
96.000
RI.TP
•0.000
-0.000
-•- -o.ooo-
-0.000
-0.000
-0.000
-o.ooo
-0.000
-0.000
-0.000
'-0.000
-0.000
•0.000
-0.000
- -0.000
•0.000
-o.ooo
-0.000
•0.000
5.500
"7.200
-0.000
-0.000
-0.000
-0.000
•0.000
7.400
7.400
-0.000
-0.000
-0.000
Hl.VSS
60.000
308.000
80.000
76.000
60.000
140.000
76.000
116.000
(16.000
122.000
300.000
26.000
102.000
106.000
50.000
82.000
90.000
92.000
46.000
62.000
152.000
76.000
90.000
110.000
104.000
136.000
130.000
66.000
76.000
Be. 000
84.000
' PC.bOO
146.000
260.000
--•o.ooo
•0.000
151.000
107.000
140,000
165.000
165.000
159.000
175.000
108.000
130.000
68.000
U3.000
131.000
166.000
137.000
260.000
60.000
184.000
131.000
124,000
295.000
175.000
110.000
152.000
-0.000
155.000
165.000
149.000
PE.TbS
70.000
92.000
-•92.000
66.000
64.000
156.000
130.000
136.000
202.000
164.000
134,000
134.000
172.000
116.000
-0.000
96.000
62.000
170.000
100.000
132.000
•0.000
166.000
196.000
168.000
142.000
200.000
156.000
216.000
138.000
126.000
90.000
: PE.VSS
66.000
66.000
02.000
76.000
76.000
. 152.000
86.000
lie. ooo
156.000
136.000
110.000
100.000
110.000
104.000
•0.000
76.000
48.000
136.000
64.000
96.000
•0.000
124.000
170.000
136.000
118.000
154.000
130.000
136.000
128.000
114.000
90.000
AS, MLS!
1670.000
1172.000
1360.000
972.000
1664.000
1644.000
1665.000
1680.000
1616.000
1752.000
1584.000
2012.000
1530.000
1585.000
1385.000
1116.000
1746.000
1380.000
1716.000
1508.000
1460.000
1575.000
1226.000
1760.000
1672.000
1408.000
1472.000
1570.000
2000.000
2104.000
1966.000
                                                91

-------
PLANT 1,DAILY DATA,1974-1973


416
	 417
416
419
420
421
422
•'423
424
- 425
426
427
426
-~429
430
501
502
RI.FLO*
4.430
	 -2.950 —
3.980
4.190*
•3.970
•3.810
4.150
4.090"
,3.880
4.400
>3.600
•3.960
.000
	 .120 -
• .760
.140
.090
hl.TEM
56.000
-C.OOO
-0.000
56.000
57.000
56.000
57.000
56.000"
55.000
56.000
57.000
-0.000
-0.000
57.000'
57.000
56.000
57.000
' nr.eoo
100.000
-220.000
146.000
104.000
145.000
119.000
73.000
' 1P6.000
121.000
124.000
123.000
lbft.000
150.000
~ 170.000
180.000
190.000
138.000
H1.T5.S
122.000
• 166.000 '-
246.000
120.000
100.000
110.000
68.000
' 88.000 •"
60.000
210.000
118.000
48.000
150.000
- 126. 000 —
94.000
104.000
60.000
Rl.TP
-0.000
-0.000
6.700
6.300
-0.000
-0.000
-0.000
-0.000
•0.000
7.900
7.500
-0.000
-0.000
-0.000
-0.000
•0.000
•0.000
H1.VSS
110.000
146.000
142.000
84.000
76.000
54.000
54.000
52.000
42.000
154.000
94.000
40.000
148.000
-98.000
66.000
96.000
72.000
HE, bOO PI

123.000 154.000
230.000 218.000
160.000 204,000
106.000 164.000
156.000 218.000
102.000 176.000
63.000 106.000
137.000 92.000
132.000 68.000
125.000 178.000
136.000 178.000
160.000 70.000
167.000 176.000
109.000" 160.000
210.000 128.000
150.000 110.000
216.000 160.000
' frE.VSS
166.000
166.000
140.000
110.000
172.000
156.000
80.000
62.000
30.000
144.000
130.000
54.000
162.000
- 138.000
2.000
102.000
142.000
AS.HLSS
2268
3504
19bt
1750
2040
1096
1568
776
936
1232
2090
2150
1636
2432
1296
1312
.000
.000
.000
.000
,000
.000
.000
.000-
.000
.000
.000
.000
.000
.000
.000
.000
1452.000
PLANT ItOAILt DATA, 1974-1975

316
317
AS.MLVSS
122k. 000
866.000
	 318 	 1126.000 ~
319
— 320
321
322
323
660.000
620.000
1432.000
12U.OOO
lit Q.OOO
	 324"- 1200.000 —
325
- 326
327
328
329
	 330
331
-• 401
402
403
404
~^' 405
406
407
406
409
410
	 411
412
413
414
415
416
- 417
416
419
420
421
422
1184.000
1166.000
1446.000
1060.000
lllb.OOO
	 950.000 —
936.000
1346.000
976.000
1164.000
932.000
-"" 93!:. 000
96C.OOO
904.000 —
13CC.OOO
1232.000
lilt. 000
" 1064.000 "
1170.000
135C.OOO
1556.000
1506.000—
1664.000
- 2612.000
l-.3i.000
1290.000
1460.000
964.000
1126.000
AS.SETTL AS. OQ
.120
.130
2.000
.400
— ;iso 	 i.7oo
.140
- .140
.130
.120
.110
— .110
*lio
.140
.120
.110
.110
1.700
1.200
1.300
3.700
5.600
	 2.000
2.100
3.700
3.700
1.900
•0.000
-•0.000 — - 4.500
.060
- .110
.130
- - .160
.130
.120
.110
— .110
.110
.110
.120
--0.-000
.090
.110
.120
.130
.140
.140'
-0.000
.100
.110
.100
.130
— 423 "•606.000 	 1090
424
425
426
427

	 425
430
501
502
bOE.OOO
80C.OOO '
15SC.OOO
160C.OOO
1216.000
2240.000 —
946.000
' 1024.000 "
1256.000
.070
.090
.120
-0.000
.260

!l30
- '.ISO
.120
f .400
5.900
4.900
5. 100
6.400
' 5.600
5.100
4.600
2.000
AS.APPL.
4009.000
4008.000
3946.000"
4106.000
3734.000
3672.000
3652.000
3835.000
3788.000
3906.000
4092.000
4059.000
4064. OOP
4058.000
4056.000
3993.000
3998.000
4004.000
4017.000
4008.000
4081.000
4160.000
3997.000
4023.000
.600\4042.000
'3.100
— i.ooo
6.500
•0.000
3.100
.400
.500
— 1.300
-0.000
S.700
7,400
2.600
1.900
--•3.200
3.800
1.600
6.300
•0.000
7.800
— " 0.700
1.700
"3.000
5.400
3997.000
3942.000
4014.000
4077.000
4003.000
3960.000
8098.000
7304.000'
8003.000
8136.000
6449.000
8383.000
8235.000
8068.000 —
8137.000
7950.000
8247.000
6561.000
8132.000
4495.000 '
3854.000
3623.000
3553.000
AS.R
64.000
58.000
61.000
68.000
58.000
57.000
57.000
66.000
66.000
67.000
79.000
92.000
60.000
25.000
23.000
24.000
75.000
75.000
64.000
73.000
67.000
80.000
65.000
62.000
69.000
64.000
64.000
59.000
56.000
53.000
55.000
36.000
45.000
59.000
59.000
65.000
64.000
58.000
55.000
69.000
59.000
74.000
66.000
63.000
60.000
66.000
55.000
61.000
Ft, BOO
7.000
30.000
-- -o.ooo
-0.000
15.000
7.000
6.000
16.000
13.000
26.000
8.000
4.000
5.000
6.000
13.000
12.000
13.000
13.000
21.000
7.000
' 9.000
13.000
14.000
17.000
15.000
11.000
9.000
-0.000
26.000
19.000
26.000
48.000
' 21.000
12.000
8.000
12.000
12.000
6,000
11.000
7.000
9.000
a. ooo
11.000
12.000
' 10.000
11.000
11.000
11.000
FE.TSS FC.TP
5.000
1.400
46.000 2.400
•—11.000 	 2.000
8.000
3.000
8.000
3.000
4.000
10.000 -••-
9.000
2.000
.400
.500
.600
.400
.100
.500
.300
.500
6.000 -0.000
6.000
1.000
4.000 1.500
	 3.000 2.100
11.000
6.000
12.000
16.000
5.000
" 6.000
6.000
9.000
12.000
12.000
13.000
13.000 — -
13.000
26.000
14.000
12.000
63,000
	 22.000 "
15.000
11.000
12.000
12.000
7.000
7.000 —
9.000
,.500
.900
.800
.900
,600
.500
.900
.100
.900
.100
.500
.800
.400
.100
.500
.600
.100
& A A
.600
.600
.200
.000
.500
.100
.500
.400
14.000 2.000
9.000
17.000
13.000
.900
.600
.400
•7.000 	 liOOO
6.000
3.000 -
12.000
.400
.900
,600
FEtVSS
3.000
37.000
	 9.000
7.000
2.000
7.000
2.000
4.000
	 5.000
6.000
1.000
3.000
2.000
3.000
2.000
4.000
4.000
4.000
7.000
4.000
3.000
3.000
5.000
6.000
9.000
5.000
- 9.000
a. ooo
20.000
11.000
8.000
59.000
- 16.000
10.000
a. ooo
4.000
7.000
3.000
- 3.000
4.000
10.000
a. ooo
10.000
11.000
	 2.000
2.000
2.000
a. ooo



...



































• ~





...




















































                                               92

-------
i,OML>  OATA,1974-1975

HI, FLOW M.TEMP
503
504
'SOS
506
307
508
509
510
511
512
513
514
Sib
516
517
518
519
520
521
522
523
£24
525
526
527
528
329
530
£31
601
602
603
-60*
605
60t>
607
60S
609
610
611
612
613
61*
615
616
617
618
619
PLANT

4
*
4
1
,1
t*i
.3
.3
.020
.050
.?60~-
.750
.550
.210
.710
.710
56.000
55.000
55.000-
54.000
55.000
55.000
54.000
55.000
	 '3.890 ----0.000 -
tt
- ;1
C
c
c
	 2
c
c
2
- - • - .3
3
	 ,3
2
'€
2
2
•3
	 — .3
.1
_t
i
"«
•3
"3
•3
	 c
€
'£
1
••.
- - 	 	 .3
.3
.3
2
•3
,3
	 -*
•3
- — -3
i
—
.970
.eao
.8*0
.900
.MO
.250 "
.210
.930
.080
.000
.250
.090'-
.570
.700
.790
.210
.210
.330 —
.0*0
.6*0
.*90
.950
.300
.320 	
.390
.790
.320
.3*0
.030
.510 -
.5*0
.5*0
.700
.310 -
.300
,*ao -•
.290
.*00
.330
-0.000
60.000
58.000
59.000
59.000
58.000 -
59.000
60.000
61.000
62.000
62.000
62.000-"
63.000
62.000
62.000
63.000
62.000
62.000--
64.000
-0.000
-0.000
58.000
59.000
58.000"
58.000
-0.000
-0.000
58.000
58.000
58.000-
59.000
59.000
59.000
58.000
58.000
£9.000
58.000
-0.000
-0.000
HI, ecu
124.000
139.040
165.000
196.000
215.000
159.000
114.000
131.000
1*8.000
169.000
191.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
--o.ooo
-0.000
-0.000
-0.000
-0.00)1
-0.000
-0.000
-o.ooo
-0.000
12*. 000
133.000
261.000
157.000
159.000
64.000
1*8.000
189.000
280.000
210.000
207.000
-0.000
20*. 000
14*. 000
170.000
1*9.000
161.000
129.000
171.000
HI.TSS
88.000
14B.OOO
134.000
196.000
200.000
138.000
112.000
132.000
124.000
136.000
154.000
-0.000
-0.000
-0.000
-0.000
-0.000
-o.ooo
-0.000
-0.000
-o.ooo
"- -o.ooo
-0.000
-o.ooo
-0.000
-o.ooo
-0.000
•-• -o.ooo
-0.000
-o.ooo
124.000
76.000
142.000
" 146.000
194.000
136.000
160.000
178.000
110.000
"V64.000-
150.000
-0.000
200.000
266.000
234.000
214.000
260.000
1*6.000
202.000
NI.TP
-0.000
-0.000
- -o.ooo
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0,000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
- -o.ooo
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
5.400
7.600
8.300
- -8.100
9.600
7.800
9.000
-0.000
-0.000
• 7.200
7.600
-o.ooo
8.800
e.*oo
7.100
— 10.100
9.100
9.600
9.100
Hl.VSS
52.000
1*0.000
124.000
156.000
172.000
118.000
90.000
106.000
102.000
110.000
126.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
•0.000
-0.000
-0.000
-0.000
-0.000
100.000
66.000
122.000
-128.000
164.000
114.000
130,000
154.000
100.000
132.000
100.000
-0.000
11*. 000
200.000
178.000
176.000
188,000
11*. 000
172.000
PE.EUO
118,000
127.000
160.000
178.000
215.000
153.000
117.000
128.000
1*6.000
140.000
179.000
170.000
1*9.000
12*, 000
132.000
160.000
215.000
210.000
200,000
230.000
122.000
176.000
-0,000
152.000
2*0.000
275.000
179.000
152.000
179.000
124.000
133.000
261,000
157.000
159.000
64.000
148.000
189.000
280.000
210.000
207.000
-0.000
204.000
14*. 000
170.000
1*9.000
Ul.OOO
129.000
171.000
PE.TSS
130.000
136.000
154.000
186. QUO
188.000
178.000
1*0.000
1*0.000
1*8.000
16*. 000
188.000
172.000
162.000
11*. 000
110.000
150.000
152.000
182.000
208.000
170.000
174.000
128.000
-0.000
86.000
188.000
124.000
82.000
178.000
168.000
124.000
76.000
142.000
1*6,000
194.000
136.000
160.000
178.000
110.000
164.000
150.000
-0.000
200.000
266.000
234.000
214.000
260.000
146,000
202.000
PE.VSS
98.000
128.000
-142.000
164.000
162.000
13*. 000
116.000
112.000
122.000
138.000
15*. 000
1*0.000
132.000
88.000
92.000
122.000
128.000
1*4.000
162.000
1*0.000
118.000
10*. 000
-0.000
78.000
162.000
92,000
62.000
128.000
138.000
100.000
66.000
122.000
128.000"
16*. 000
11*. 000
130.000
154.000
100.000
- 132.000
100.000
-0.000
11*. 000
200.000
178.000
176.000
188.000
11*. 000
172.000
AS.NLSS
2200.000
2590.000
1428.000
1752.000
1680.000
2064.000
1862.000
1950.000
1930.000
1664.000
1604.000
1104.000
1039.000
1936.000
2000.000
1660.000
1180.000
1686.000
1760.000
1*92.000
1612,000-
1700.000
1840.000
-0.000
1276.000
1556.000
1276.000
192*. 000
1965.000
1*10.000
11*8.000
1220.000
112*. 000
1336.000
13S6.000
17*0.000
1*90,000
1500.000
-0.000
1052.000
1156.000
1228.000
1707.000
-0.000
1184.000
16*8,000
1212.000
1196.000
l.DAILt OAT A, 1974- 1979 """ " "


AS.HLVSS
503
504
— 505
506
507
508
509
510
- 511
512
513
51*
SIS
S16
•- 517
518
519
1605
200C
"1076
I45t
1280
lb*0
1360
1*1£
~137C
1196
1300
668
652
1*12
— ' 1*35
1135
1016
.000
.000

AS.StTTL
.120
.100
.000 .100"
.000
.000
.000
.000
.000
.000 —
.000
.000 -
.000
.000
.000
.000" -
.000
.000
.100
.110
.120
.120
.1*0
--.130--
.120
.110
.120
.1*0
.140
-- .120'-
.110
.100

AS, 00
1.400
3.300
1.800
4.300
3.700
3.300
4.600
2.600
•'1.600
.300
1.500
.600
2.000
1.700
— 2.600
4.000
1.700

AS.APPL
3527.000
3678.000
7631.000
8012.000
8013.000
8028.000
4568.000
3685.000
3832.000
6939.000
7954.000
7831.000
7967.000
489V. 000
365V. 000
4010.000
3568.000

. AS.R
37.000
60.000
"65.000
69.000
76.000
ttl.ooo
70.000
70.000
70.000
66.000
67.000
70.000
111.000
105.000
115.000
126.000
92.000

FE.BOO
11.000
12.000
-10.000
9.000
25,000
8.000
6.090
8.000
• 10.000
11.000
7.000
7.000
6.000
17.000
13.000
10.000
12.000

FC.TSS
7.000
9.000
-• 4.000-
6.000
26,000
8.000
7.000
10.000
' ' 8.000
10.000
7.000
7.000
7.000
5.000
"12.000
10.000
10,000

FE.TH
.900
1.100
	 2.600
2.500
1.900
2.500
.800
.900
	 .900
6.300
2.400
1,100
1.100
1.400
• 1.600
2.400
2,400

FC.VSS
- 3.000
6.000
	 3.000
6.000
20*000
. 8.000
4.000
3.000
~ 6.000
7.000
2.000
2.000
2.000
4,000
--10.000
7.000
7*000





-












                                         93

-------
 PLANT l.UAILt DATA,197*.1975
            AS.HLVSS «S,StTTL  AS.00     AS.APPL. AS.H     FE.BOO   FE.TSS   FE.TH     FE.VSS
520
521
522
-' 823
524
52S
526
527
528
• 529
530
531
601
602
6U3
" 604
60S
606
607
606
609
610
611
612
613
614
615
— 616
617
618
619
1266.000
1292.000
1160.000
~ 120C.OOO
1135.000
13/0.000
-0.000
980.000
1126.000
"~ 96E.OQO
1204.000
1420.000
1060.000
652.000
864.000
1004.000
104C.OOO
1112.000
1|3C.OOO
10SC. 000
120C.OOO
•~ ~ -e.ooo
88E.OOO
tit. 000
966.000
862.000
-0.000
	 8BC.OOO
1292.000
994.000
920.000
.110
-.ISO
.130
	 .140
.130
- .120
•0.000
""• .100
.130
	 .120
.100
-— .140
.110
.120
.110
	 iiio
.150
.210
.170
.120
.110
	 -.080
.110
- .090
.0,000
.090
-0.000
	 — .080
.100
.080
.070
1.400 3610.000
.600 3612.000
1.200 3602.000
.600 4781.000
1.300 3605.000
3.700 3413.000
-0.000-. 3556.000
1.800 3S60.000
.900 3546.000
	 1.800 3491.000
.000 3401.000
1.000 3379.000
2.200 3637.000
1.400 3481.000
1.200 3565.000
	 1.300 3512.000
2.100 3465.000
1.900 3475.000
2.400 3524.000
5.000 3t>27.000
3.200 3474.000
2;000 3436.000
1.600 3339.000
- 2.700 3402.000
•0.000 3382.000
1.200 333B.OOO
-0.000 3487.000
	 1.400 3456.000
.600 7361.000
5.900 7736.000
3.600 3778.000
88.000
88.000
72.000
~ 78.000
94.000
89.000
86.000
74.000
71.000
' 63.000
78.000
60.000
106.000
89.000
73.000
70.000'
70.000
89.000
101.000
loe.ooo
78.000
55.000 —
53.000
se.ooo
96.000
82.000
02.000
" 77.000 "
71.000
00.000
77.000 .
17.000
13.000
15.000
10.000 -
10.000
-0.000
11.000
9.000
0.000
11.000 •"
11.000
lo.ood;
s.oo
-------
PLANT i,DAILY DAT»ii974-i9TS


723
72*
725
726
72J
	 728 -
729
730
731

RI .FLOi
2.500
.3.370
2.290
.3.200
•3.3*0
-~ 3.720
•3.290
3.280
•3.2SO

1 KI.TtMp
71.000
70.000
70.000
70.000
69.000
--70.000 •
71.000
71.000
70.000

RI.UOO
200.000
181.000
125.000
103.000
136.000
169.000
164.000
199.000
159.000

RI.
210.
1JS.
1**.
146.
1*8.
160.
19tt.
iua.
168.

TSS
000
000
000
000
000
000
000
000
000

KI.TP
6.700
6.100
8.300
7.400
5.900
7.600'
8.900
8.400
8.400

HI.VSS
186.000
110.000
116.000
97.000
118.000
146.000
150.000
96.000
144.000

PE.bOO
200.000
181.000
125.000
103.000
138.000
169.000
164.000
199.000
159.000

PE.TSS
210.000
138.000
144.000
146.000
148.000
160.000
198.000
188.000
168.000

pe.vss
186.000
110.000
116.000
97.000
118.000
146.000
150.000
96.000
144.000

AS.HLSS
1900.000
1976.000
1960.000
1620.000
1340.000
1492.000 '
2172.000
1812.000
920.000
              DATA,1974.1973

AS.MLVSS «s.seTTL AS
620
621
-- 622-
623
624
625
626
627
—•628
629
630
701
- 702
703
704-
705
706
707
"- 708
709
~-710 —
711
712
713
-- 714
715
~716 —
717
— 718
719
7*0
721
	 722 -
723
724
725
726
727
— 728 —
789
730
731
1288.
106C.
101C.
916.
1072.
1456.
1072.
143t.
1330.
124Q.
1604.
964.
1572.
1232.
91C.
740.
37C.
716.
686.
85Z.
616.
572.
680.
670.
720.
552.
1172.
806.
-0.
82C.
990.
1144.
ll«4.
1436.
1416.
1416.
112C.
820.
looe.
1686.
1366.
/i2.
000
000
000
000
000
000
ooo -
000
000
ono
000
000
000
000
ooo 	
000
000 '
000
ooo —
000
ooo 	
000
000
000
000
000
ooo —
000
000
000
000
000
ooo 	
000
ooo -
000
000
000
ooo 	
000
000
000
.150
.1*0
-.130
.100
.110
.140
.120
.130
-.ISO
.180
.220
.240
.200
.200
-.140
.100
.080
.100
.100
.100
-.080
.080
.090
.100
.100
.110
-.120
.120
.120
.130
.1«0
.130
2
-0
-••-o
2
1
2
1
1
	 j
5
5

1

	 1
S
S
2
2
2
— 3
1
S
5
2
'2
	 2
1
2
3
3
3
^160 	
.200
.210
.210
.180
.140
-.130
.200
.070
.210


6
S
2
	 1

1
1
,00
.200
.000
.000
.700
.400
.200
.800
.500
.400
.400
,200
.900
.200
.900
.600
.BOO
.700
.600
.600
.100
.300
.800
.000
• AS,APPL. AS,R
3490.000
3468.000
3427.000
3407.000
3416.000
3506.000
3436.000
3317.000
3409.000
7826.000
4084.000
3526.000
3473.000
3433.000
3411.000
3J80.000
33bJ.OOO
3331.000
3367.000
3380.000
33bS.OOO-
3372.000
3357.000
.300X3275.000
.900 3357.000
.800
.200
.800
.600
.000
.000
.600
.700
.900
.700
.100
.200
.400
.100
.900
.500
.000
3314.000
3387.000
3244.000
3217.000
3235.000
3254.000
3272.000
32b4.000
3J96.000
3426.000
7150.000
3965.000
3407.000
3393.000
3333.000
3459.000
3380.000
79.000
78.000
80.000
79.000
79.000
72.000
79.000
74.000
79.000
80.000
63.000
63.000
65.000
72.000
-75.000
72.000
72.000
71.000
70.000
73.000
ao.ooo
110.000
97.000
95.000
122.000
82.000
83.000
83.000
84.000
84.000
83.000
79.000
75.000
72.000
73.000
71.000
66.000
74.000
51.000
73.000
80.000
80.000
Ft, BCD
14.000
21.000
- -8.000
7.000
8.000
8.000
7.000
11.000
- 12.000
6.000
9.000
17.000
9.000
21.000
15.000
9.000
10.000
9.000
10.000
11.000
--a. ooo
15,000
29.000
11.000
is. ooo
7.000
8.000
7.000
18.000
17.000
11.000
14.000
17.000
16.000
13.000
17.000
12.000
14.000
21.000
16.000
12.000
12.000
FE.TSS
22.000
20.000
5.000
9.000
13.000
8.000
4.000
12.000
13.000
8.000
4.000
10.000
7.000
9.000
7.000
6.000
5.000
13.000
6.000
8.000
- 7.000
15.000
5.000
11.000
•8.000
3.000
•- 3,000
-0.000
5.000
4.000
3.000
2.000
-10.000
13.000
10.000
7.000
10.000
19.000
-22.000
18.000
12.000
12.000
FE.TP
1.900
3.000
- .100
.800
.400
.400
.100
.100
- .900
.700
.700
1*600
.900
1.000
	 .900
.500
.500
.500
.500
.700
.700
.900
.600
.900
.500
.500
.500
•0,000
.600
.700
.700
.900
	 1.800
1.000
- i.ooo
.700
.800
1.300
- 1.500
1.600
2.500
1.100
FE.VSS
12.000
20.000
— o.ooo-
4.000
7.000
5.000
2.000
10.000
— 3.000-
10.000
3.000
4.000
3.000
1.000
	 5.000
5.000
2.000
6.000
2.000
1.000
	 3.000
8.000
4.000
2.000
6.000
2.000
" 2.000"
.0.000
3.000
3,000
2.000
2.000
-••• 9.000
10.000
9.000
3.000
5.000
13.000
-19.000
11.000
4.000
7.000
                                               95

-------
                                    TECHNICAL REPORT DATA
                             (Please read Instructions on the reverse before completing)
 1. REPORT NO.
 EPA-600/2-77-138
                                       3. RECIPIENT'S ACCESSION>NO.
 4. TITLE AND SUBTITLE
 EFFECTS OF  FLOW EQUALIZATION ON  THE OPERATION AND
 PERFORMANCE OF AN ACTIVATED SLUDGE PLANT
                                       5. REPORT DATE
                                         August 1977  (Issuing  Date)
                                       6. PERFORMING ORGANIZATION CODE
 7. AUTHOR(S)
            Gerald W. Foess, James  G.  Meenahan
            and David Blough
                                                            8. PERFORMING ORGANIZATION REPORT NO.
 9. PERFORMING ORGANIZATION NAME AND ADDRESS
 Ypsilanti  Township
 1165 Ecorse  Road
 Ypsilanti, Michigan  48197
                                       10. PROGRAM ELEMENT NO.
                                          1BC611
                                       11. CONTRACT/GRANT NO.
                                         S801985
 12. SPONSORING AGENCY NAME AND ADDRESS
   Municipal Environmental  Research Laboratory --Cin., OH
   Office of Research  £  Development
   U.S.  Environmental  Protection Agency
   Cincinnati, Ohio 45268
                                       13. TYPE OF REPORT AND PERIOD COVERED
                                         Final
                                       14. SPONSORING AGENCY CODE

                                          EPA/600/14
 15. SUPPLEMENTARY NOTES
  Project  Officer:  Ben W. Lykins,  Wastewater Research Division,  Municipal Environmental
  Research Laboratory, Cincinnati,  Ohio  45268  (513-684-7615)
 16. ABSTRACT
 A plant-scale research program was carried out for more  than a year to evaluate the
 impact of flow equalization  on the 14,000 m /day  (3.7 mgd)  upgraded activated sludge
 plant at  Ypsilanti Township, Michigan.   Process streams  were characterized under
 both equalized and unequalized flow conditions with respect to BOD, COD, TSS and
 forms of  nitrogen and phosphorus.

 The equalization system was  effective in leveling influent  diurnal flow variations
 but was limited in its ability to  dampen variations in wastewater concentration and
 mass flux.   Some biochemical action apparently occurred  in  the equalization basin,
 although  BOD removal was marginal  and inconsistent.  Analysis of secondary effluent
 indicated that plant performance was similar with and without equalized flow,
 suggesting that the theoretical  advantages of flow equalization may not be achieved
 in manually controlled plants.   An examination of theoretical power costs for
 equalized and tnequalized flow conditions indicated that the use of flow equalization
 did not result in power cost economies.
 7.
                                KEY WORDS AND DOCUMENT ANALYSIS
                   DESCRIPTORS
                                               b.lDENTIFIERS/OPEN ENDED TERMS  C.  COSATI Field/Group
 Waste Treatment,  Waste water,
 Flow Control,  Cost Comparison
                           Wastewater Treatment,
                           *  Flow Equalization
    13B
 3. DISTRIBUTION STATEMENT
 Release to  Public
                          19. SECURITY CLASS (ThisReport)
                            Unclassified     	
21. NO. OF PAGES

   108
                                               20. SECURITY CLASS (Thispage)
                                                Unclassified
                                                                          22. PRICE
EPA Form 2220-1 (9-73)
 oU.S. GOVERNMENT PRINTING OFFICE:
                        96
1977-757-056/6494

-------