GO TO 110 160 PRINT 165 165 FCRMAT(ZX»ENTER INDEX OF DEPENDENT VARIABLE*) 1<,5 READ*,ITEST DC 167 K=l,ll IFdTEST.NE.HVAR(K) ) GO TO 167 KVAR=K GO TO 1B1 150 167 CONTINUE PRINT 169 169 FORMAT<2X* DEPENDENT VARIABLE NOT IN DATA SET--ABORTED—*) CALL EXIT 181 DO 185 K=1,KCONT 155 IFCKSORT(K).EQ.O) GO TO 185 DO 182 L=l,500 XSORT(L)=0,0 182 CONTINUE NS=NPX1K> 160 DO 183 L=1,NS XSORT(L)=XOe(K,L) 183 CONTINUE CALL PRESRT) DO 181. L=1,NS 165 XOB(K,L)=XSORT(L) 18k CONTINUE 185 CONTINUE NP=NPX<1) DO 190 K=3,KCONT 170 KB=K t IFtNPX(K).NE.NP) GO TO 200 190 CONTINUE
-------
      PROGRAM REGRES      7
              210  FORMAT(2X*NO.  OF POINTS ARE BAD*/
175                1 'VARIABLE INDEX = *I1»,2X*NO. OF POINTS  =  »!<»)
                   CALL EXIT
              220  HIN=1  t  MAX=KCONT $ MSW=0 $ LINE=0
                   IFCMAX.LT.7)  GO TO 221
                   MSW=1  $  MAX=6
180           221  KOT=MAX-MIN*1  S IFORM(1)=20H
                   ENCODE(19,223,IFORM)KOT
                   NFORM(1)=IFORM(1) $ NFORM(2)=IFORM(2>
                   00 226 J=1,NP
                   IFILINE.NE.O)  GO TO .22
              222  FORMAT(1H1,///1X*LIST OF  INPUT VARIABLES*//)
                   WRITE(COT,NFORM)(MVAR(JA),JA=MIN,MAX)
              223  FORMAT (lfH(lX,Il,mH(8X,*X(*I2»>*>)
              22t,  HRITE(COT,225) (X08( JB,J) ,JB = MIN,HAX)
190           225  FORM«T(1X,6F13.6)
                   LINE=LINE4l  $  IFfLINE.GT.50) LINE=0
              226  CONTINUE
                   IF(MSW.EQ.O)  GO TO 2<»8
                   MIN=7  J  MAX=KCONT S LINE=0 S GO TO 221
195           2li8  PRINT  2c,9
              2"»9  FORMAT (ZX'OIO YOU ENTER VARIABLES IN  THE ORDER*/
                   1   2X»YOU WOULD LIKE THEM  TO ENTER ANALYSIS*/2X»TYPE YES OR NO*)
                   READ 30.ITEST
                   FLEVEL = 99-0
200                IF(ITEST.EQ.KTEST) GO TO  270
              250  PRINT  Z6Q
              260  FORMAT(2X*TYPE F LEVEL TO ENTER(COMHA)  AND F  LEVEL TO REMOVE*)
                   REAQ*,FLE\jEN,FLEVRE
              270  PRINT  280
205           280  FORMAT(2X*ENTER NUMBER OF TITLE CARDS*)
                   REAO*,NTITLE
                   NT = 0
              290  PRINT  300
               300  FORMAT(ZX'TYPE IN A TITLE CARD*)
210                NT = NT+1
                   READ 310,  ITEM
               310  FORMAT(SAIO)
                    IFORH(1)=20H
                   LA=fl $ LB=0 $ LC=0
215            320   ITEST=ITEK(LA)
               330  JTEST=0  $  JT£ST=ITEST.AND.77B
                    IF(JTEST.NE.55B) GO TO 350
                    ITEST=SHIFTfITEST.-&) S LC = LC*  1
                    IF(LC.EQ.IO)  GO  TO 3  GO TO 370
225                00 360 K=l,8
                   KTEM(K)=ITEM(K)
              360  CONTINUE
                   GO TO  395

-------
PROGRAM REGRES
                    7W71,   OPT = 1
                                                                   FTN lU2*P380
                                                                         75/02/28.  13.13.13.
                                                                                                   PAGE
230
235
21,0
21,5
250
255
260
265
270
275
280
 370  IB=LB/2  S  tBB=LB-IB
      IC=80-L8 S ICC=IC/10 $ ICO=IC- (ICC»10 >
      IF(ICO.GT.O)  GO TO 380
      ICD=1  $  IBB=IBB-1
 380  ENCOOE(20,390,IFORM) IB, ICC, ICD.IBB
 390  FORMAT {•(•^•X," 1 2»A10,A»I2»,»I2»X)»)
      ENCODE(80iIFORM,KTEM) ITEM
 395  DO  1,00 K=l,8
      KTITLE) GO TO <»20
      CALL  VARTRN(KA,NP,KB,EXPO(J»
      GO  TO  <(30
 ",20  CONTINUE
      KB=0  S CALL VARTRN(KA,NP,KB,EXPO( J) )
 <»30  CONTINUE
      WRITE(COT,<»35)
 1,35  FORMAT(1H1,///1X»PROBLEM INFORMATION'/)
      DO  !»50 J=1,NTITLE
      WRITE (COT, 1,1,0) (KTITLEU.IO ,K=1,8)
 (,(,0  FORHAT(1X,8A10)
 <»50  CONTINUE
      HRITc(COT,<,«,5)
 1,1,5  FORMAT I///8X)
      00  1,60 K=1,KNUM
      IOV=KRANK(KI
      IF(IOV.EQ.O)   GO TO 460
      WRITE (COT, 1,55 ) IDV, (LTITLE (IOV.L) ,L=1, 8)
 1,55  FORMAT(IX»X(»I2») = *7A10,A2)
 <»60  CONTINUE
      WRITE ( COT, <<70)NP,KNUM,MVAR(KVAR)
 1,70  FORMAT (// IX'NUMBER OF EVENTS = *!<,, 10X»NUMBER OF VARIABLES = »
     i  II»///IX»INOEX OF INDEPENDENT VARIABLE  « *i«»)
      IF(FLEVEN.EQ.O.O) GO TO 1,90
      HRITE(COT,lt80)FLEVEN,FLEVRE
 J.80  FORMAT (//1X»F LEVEL TO ENTER = »F8.J,,5X»F LEVEL TO EXCLUDE = »
     1  FS.i,)
      GO  TO  510
 <»90  WRITE(COT,500)
 500  FORMAT (1X*F LEVELS HERE NOT PART  OF  INPUT AND HILL NOT BE USED*)
 510  CALL REGCOR(KVAR,FLEVEN,FLEVRE,MVAR)
      CALL EXIT
1000  PRINT  1010
1010  FORMAT (2X»YOU HAVE READ AN EOF IN  ERROR")
      GO  TO  2000
1020  PRINT  1030
1030  FORMAT 12X»NUMBER OF VARIABLES  GREATER THAN 11")
2000  CALL EXIT
      END

-------
   PROGRAM REGRES
                               OPT = 1
                                                               FTN (..2+P380
                                                                                  75/02/38.  13.13.13.
                                                                                                            PAGE
SYMBOLIC REFERENCE MAP  (R=l)
ENTRY POINTS
12257 REGRES

VARIABLES SN TYPE
5 CIT
26 EXPO
11,321 FLEVEN
11,327 IB
11,331 1C
11*333 ICO
li»33i* IOV
11,362 IFORM
0 IRANK
11,361, ITEM
13 ITRANS
11,316 J
11,320 JB
11,300 JX
11,277 KA
0 KCONT
11,315 KOT
«il KSORT
13233 KTEST
11*302 KTYPE
11,306 L
11,325 LB
11,311, LINE
11,312 MAX
11,313 MSH
15370 MVAR
151,03 NFORM
11,31,7 NPX
11,323 NT
11*301 TEMPX
12571, XRT
FILE NAMES
0 INPUT
201,1 OUTPUT
EXTERNALS
EOF
PRESRT
VARTRN
INTEGER
REAL
REAL
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
REAL
REAL
HODE
MIXED
FMT
TYPE
REAL


INLINE FUNCTIONS TYPE
SHIFT
NO TYPE

RELOCATION
INOICE
ARRAY KEYS





ARRAY
ARRAY KEYS
ARRAY
ARRAY KEYS




INDICE

ARRAY KEYS







ARRAt
ARRAY
ARRAY


ARRAY VARBLS

1,102 OUTA
1,102 TAPES
ARCS
1
3
it
ARGS
2 INTRIN


6
3
11,322
11,330
11,332
li«30i,
2
11,275
11,272
11,271,
7
11,317
11,303
11,273
11,310
1
51*
li»37i»
0
11,305
11,321*
11,326
50
11,311
11,335
11,276
i*
11,307
200
0
11,1,01,











COT
FLEVEL
FLEVRE
IBB
ICC
IOEG
IDY
INDEX
ISH
I TEST
IXR
JA
JTEST
K
KB
KNUM
KRANK
KTEM
KTITLE
KVAR
LA
LC
LTITLE
MIN
MTEST
NA
NP
NS
NTITLE
XOB
XSORT

611,3
611,3

EXIT
REGCOR





INTEGER
REAL
REAL
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
REAL
REAL

OUTB
TAPE6






STATEMENT LABELS
13237 10
12277 35
13315 1,1
12323 <>6
13365 53
131,07 58
FMT

FMT

FMT
FMT
0
13257
12320
13351,
0
12363
20
37
1,3
1,9
55
59

FMT

FMT








                                                                        ARRAY
                                                                        ARRAY
                                                                        ARRAY
                                                                        ARRAY

                                                                        ARRAY
                                                                        ARRAY
                                                                        ARRAY
                                                                                 INOICE
                                                                                 INOICE
                                                                                 INDICE
                                                                                 INDICE
                                                                                 INDICE
                                                                                 KEYS
                                                                                 TITLES
                                                                                 TITLES
                                                                                 INDICE

                                                                                 TITLES
                                                                                 VARBLS
                                                                                    10.201,   OUTD
                                                                                    10201,   TAPE7
                                                                          13252  3D
                                                                          13276  39
                                                                          13327  1,5
                                                                              0  51
                                                                          13377  57
                                                                          131,15  60
FMT
FMT
FMT

FMT
FMT
INACTIVE

-------
          PROGRAM  REGRES
                                     0°T =
                                        FTN 1..2+P380
                                                           75/02/28. 13.13.13.
STATEMENT LABELS
                                                                        PAGE
131,31
121*30
13502
1352t»
13547
13577
12533
13636
12563
13671.
12606
12626
0
12657
1371,5
13766
1(*Q07
1«,01«*
12776
11,073
13016
0
Ii»ll6
13102
UU7
11.165
11.220
13173
13201
65
75
90
102
105
120
135
11.5
lt.9
155
158
167
182
185
210
222
225
249
270
300
330
360
390
1*20
1.1.0
i*55
1.80
510
1020
FMT

FHT
FMT
FMT
FMT

FMT

FMT




FMT
FMT
FMT
FMT

FMT


FMT

FMT
FMT
FMT


COMMON BLOCKS   LENGTH
       VARBLS    11000
       TITLES      129
       INDICE        8
       KEYS         55

STATISTICS
  PROGRAM LENGTH
  BUFFER LENGTH
  CM LABELED COMMON LENGTH
13«.53
0
12i»t,2
0
12505
12527
13621.
1251.&
13660
0
12613
13731
0
0
12703
13777
0
0
11.057
lijlOt.
13026
1301,0
13057
13111
liflSii
13156
13171
0
1«*255
67
80
95
103
110
125
li»0
146
151
156
160
169
183
190
220
223
226
250
280
310
31.0
370
395
430
«.i*5
«»60
%90
1000
1030
 3H.6B    1638
1221.5B    5285
25670B   11192
                                                       FMT





                                                       FMT

                                                       FMT


                                                       FMT



                                                       FMT
                              INACTIVE
                              INACTIVE
                                                           INACTIVE
                                                       FMT
                                                       FMT
                                                       FMt
                                                           INACTIVE
                                                       FMT
131*60
131*76
121,63
12502
13560
13613
0
1361,3
12573
13707
13711,
12632
0
12671.
12712
12736
12763
11.01,0
13003
13011.
13032
13053
0
11.131*
0
11*177
11*233
li»2«»5
13203
70
85
100
1 Qi*
115
130
11.1
li*7
153
157
165
181
18i»
200
221
221*
21,8
260
290
320
350
380
1,00
1*35
450
1,70
500
1010
2QOO
FMT
FMT


FMT
FMT

FMT

FMT
FMT






FMT





FMT

FMT
FMT
FMT

                                                                      INACTIVE

-------
  SUBROUTINE VARTRN     7.GT.a.O) XRT  =AUOG10 (XOS (KA.K) >
              35  CONTINUE
                  GO TO  2000
              ««0  00 <*5  K=1»NUM
15                XRT(KA,K)=0.0  S  IF (XOBtKA.K) .GT.O .0 ) XRT (KA,K) =AUOG (XOB (KA,K) )
              itS  CONTINUE
                  GO TO  2000
              50  00 60  K=1,NUM
                  XRT{KA,K) =0.0
20                IF(XOB(KA,K).GT.O.O)  XRT (KA,K> =SQRT {XOB (KA,K) >
              60  CONTINUE
                  GO TO  2000
              70  00 80  K=1,NUK
                  XRT(KA,K) =0.0
25                IF(XOQ(KA,K) .GT.0.0)  XRT (KAfK)=XOB(KA,K) **EXPP
              80  CONTINUE
                  GO TO  2000
              90  00 100 K=lfNUM
                  XRTtKA,K)=SIN(XOB(KA,K)>
30            100  CONTINUE
                  GO TO  2000
              110  DO 120 K=1,NUH
                  XRT(KA,K)=CQStXOB(KA,K))
              120  CONTINUE
35           2000  RETURN
                  END

-------
               SUBROUTINE  VARTRN
7
-------
           SUBROUTINE PRESRT     7^/7>t   OPT=1                            FTN  e».2*P380        75/02/28. 13.13.20.

                                                                                                      PAGE      t
                           SUBROUTINE PRESRT (YB.N.KEY)
                           DIMENSION YB  (N)
                           COMPA = 0.0
                           COMPB = 0.0
          5                COMPC = 0.0
                           COMPA = N
                           COMPB = COMPA * 5.E-1
                           IF  ( COMPB .  LE.  0.0  )   GO TO  100
                           COMPC = SORT  ( COMPB  >
         10                JB  = COMPC
                           KB  = N / JB
                           IF •( MOO  (N,  KB )  . EQ.  0 )  GO  TO  10
                           KB  = KB •«• 1
                           NTOT - KB * JB
         15                NP1 = N * 1
                     C"*»   SET KEY FOR  RANKING
                           RP=1.£18
                           00  5 K = NP1  * NTOT
                           YB  IK) = RP
         20              5 CONTINUE
                         10 CfiLL SORT  ( YB, JBt KB,  YB,  N.KEY  )
                           RETURN
to                      100  PRINT 110
<°                       110 FORMAT  I  8X,  39HSORRY NO SORT  DUE  TO BAO INDICE BREAKUP  >
         25                CALL EXIT
                           END

-------
       SUBROUTINE PRESRT
       SYMBOLIC REFERENCE MAP 
-------
  SUBROUTINE SORT       rif/n.   OPT=I                            FTN ^.Z+PSSO       75/02/29.  13.13.1.1.       PAGE
                  SUBROUTINE SORT (ARRAY ,JB,KBf Y,LLIM,KEY)
                  DIMENSION ARRAY(JB,KB)
                  DIMENSION YMINI200) ,KPOS(200>
                  DIMENSION Y(LLIM) ,Z<500>
 5          C»»»»  SET KEY FOR RftNKING
                  ISW=0 $ IFtKEY.EQ. 1D110710B)  ISH=1
            C
            c
            C FILL YHIN KITH THE  MINIMUM  VALUE  FROM EACH COLUMN.  SAVE THE ROW POSIT
10                DO 60 K=1,K8
                  COLMIN = SRRAYU.K
                  JPOS = 1
                  DO 50 J=liJB
                  IF (ARRAY(J.K)  ,G£. COLMIN)  GO TO 50
15                COLMIN = »RRAY(J,K>
                  JPOS = J
               50 CONTINUE
                  YMIN(K) = COLMIN
                  KPOS
-------
  SUBROUTINE  SORT
                         7<»/7J»   OPT =
                                                     FTN &.2+P380
                                                                        75/02/28.  13,13.1*1.
                                                                                              PAGE
60
65
70
75
80
85
90
95
      YMIN(LCOL) = COLMIN
      KPOS(LCOL) = JPOS
C
C
C IF THE LAST MINIMUM  CAME  FROM  THE  COLUMN INTO WHICH IT HAS SORTED, OR
C   IF THE LAST SORTED VALUE  REPLACED THE MINIMUM OF THE COLUMN IN  WHICH
C   PLACED, FOR THE  BALANCE (IF ANY)  OF THAT COLUMN FIND THE NEW MINIMUM,
C   AND PLACE IT IN  THE  CORRESPONDING POSITION IN YMIN.
  200 IF {KROW  .EQ.  J3)  GO  TO 300
      IF (LCOL  .EQ.  KCOL) GO  TO  250
      IF (KROW  .NE.  KPOS(KCOD)  GO  TO 300
  250 Jl = KROW * 1
      COLMIN =  ARRAY(J1,KCOL>
      JPOS = Jl
      00 260 J=J1,JB
      IF (ARRAY(J,KCOL)  .GE.  COLMIN)  GO TO 260
      COLMIN =  ARRAY(J.KCOL)
      JPOS = J
  260 CONTINUE
      YMIN(KCOL)
      KPOS(KCOL)
               300  CONTINUE
              350
 l»00
 <»50
C»»»*

 500
2000
                              = COLMIN
                              = JPOS
      IF(ISH.EQ.O)  GO  TO  <»50
       RESET ARRAY  FOR DESCENDING  ORDER
      NG=LLIK
      DO 350 K=1,LLIM
      Z(NG)=Y(K>
      NG=NG-1
      CONTINUE
      DO kOO K=i,LLIM
      Y (K)=Z(K)
      CONTINUE
      IF(MRS.NE.O)   GO TO 2000
       LIST THE  SORTED ARRAY
      PRINT 500, Y
      FORMAT (IX ,5F12.'»/ ( IX, 5F12. 4) >
      RETURN
      END

-------
      SUBROUTINE  SORT
       SYMBOLIC  REFERENCE HAP fR=i)
       OPT
                                       FTN
ENTRY POINTS
3 SORT
VARIABLES SN
0 ARRAY
217 ISH
0 JB
231 Jl
0 KB
0 KEY
225 KROH
0 LLIW
232 MRS
0 Y
23«* YMIN
FILE NAMES
OUTPUT


TYPE
REAL
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
REAL
REAL
MODE
FMT
STATEMENT LABELS
   ".1  50
  110  150
  1«»1  260
    0  «|00
  202  2000

STATISTICS
  PROGRAM LENGTH
                                 RELOCATION
                            ARRAY     F.P.

                                      P.P.

                                      F.P.
                                      F.P.

                                      F.P.

                            ARRAY     F.P.
                            ARRAY
221
223
222
220
22*»
5<»<»
227
230
233
226
105*»
COtMIN
J
JPOS
K
KCOL
KPOS
LCOL
LROH
NG
YLIT
Z
RtAL
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
REAL
REAL
     60
     200
     300
173  1.50
              0
            115
                                                 75/02/28.  13.13.<»1.

                                                          PAGE     3
                                                ARRAY
                                                ARRAY
                                            6«»  100
                                           123  250
                                             0  350
                                           212  500
                                                                 FMT
2070B
1080

-------
   SUBROUTINE REGCOR     7W7*   OPT = 1                            FTN l».2tP380        75/02/28. 134l3»<»$4      PAGE


                   SUBROUTINE REGCOR(KVAR.FLEVEN.FLEVRE,MVAR)
                   DIMENSION Y1500),SX (11),SY(11),A(11,11),  STDERC(ll)
                   COMMON/VflRBLS/X09tl1,500),XRT<11,500)
                   COMHON/TITLES/KTITLE<5,8!.LTITLEt11,3),NTITLE
  5                 COMMON/INCICE/KCONT,KNUM,IOY,FLEV£L,NP,CIT,COT,IXR
                   COMMON/KEYS/IRANKdl) ,1 TRANS (11) , EXPO (11) ,KSORT(11),KRANK(11)
                   DIMENSION Clllt  11),  CY(ll),  Rdl,  11), RY(ll),  KFAdl), STUDT(ll)
                  A  ,FLEV(11),STOEV(11),KOUT(11),PflRFL(11)
                   DIMENSION SUMS(11),MEANS(11),X(11,500),KSETS(11),IFORM(2),
10                1  TEMP (10 ,10) .TEMPA(ll) ,V!»(11> ,KIN(11),B(21.21) ,0(21,21) ,
                  2  R£GCOFdl),S10REG(ll),MVAR(ll>,KEX(ll)
                   REAL MEANS
                   INTEGER CIT,  COT
                   OATA(IFORM(1)=20H
15                 00 1 J=l,ll
                   KSETS(JI=0
                   KEX(J)=0
                   DO 1 K=l,500
                   X(J,K)=0.0
20              1  CONTINUE
                   DO 2 K=l,500
                   Y(K)=0.0
                2  CONTINUE
                   JAY=MVAR(KVAR)
25                 ISH=0
                   FMIN=0
                   KMIN=Q
                   KAX=0
                   IMH = 0
30                 NSTEP=0
                   PRINT 73
                   READ 7<(,ITEST
                   IF(ITFST.EQ.3RYES)  ISW=1
                   DO 3 K=1,NP
35                 Y(K)=XRT(JAY.K)
                3  CONTINUF.
                   NA=0
                   YEXP=EXPO (JAY) J IFtYEXP.EQ.0.0)  YEXP=1.0  S  KYTRAN=ITRANS(JAY)
                   DO i. K = l,ll
1,0                 IF(ITRANS(K).NE.5RPOH       )  GO TO  l»
                   KA=K  $  GO TO 7
                J»  CONTINUE
                   DO 6 1=1,11
                   IF(KRANKd).EQ.O)  GO TO 6
(.5                 IF(KRANKd).EQ.JAY)  GO  TO 6
                   J=KRANK(I) $ NA=NAtl  t  KSETS(NA)=J
                   DO 5 K=1,NP
                   X(NA,K) = XRT(J,K)
                5  CONTINUE
50              6  CONTINUE
                   GO TO 9
                7  MftX=EXPO(KA) J KAX=MVAR(KA>
                   DO 8 JA=1,MAX
                   NA=JA S  KSETS(JA)=NA
55                 DO 8 J8=1,NP
                   X(JA,JB)=XOB(KA,JB)»»JA
                8  CONTINUE

-------
  SUBROUTINE  REGCOR     7l»/7it   OPT = 1                            FTN <».Z+P380       75/02/28. 13.13. = 0.0
                    00 11 K = 1, 11
                    A(J, KJ = 0.0
 75                  C
-------
    SUBROUTINE REGCOR     7<./7it   OPT = 1                            FTN <»;2+P380       75/02/28. 13.13.<»3.      PAGE


115                 DO 16 J8=1,MAX
                    B(JA,JB) = 0.0 I D(JA,JB)=0.0
                16  CONTINUE
              C»"*   IN MATRIX OPERATION JA=ROH AND J8=COLUHN
                    MIN=M1*1
120                 00 17 JA=MIN,MAX
                    DO 17 jn=l,MT
                    JC=JB+M1
                    IF(JA.NE.JC) GO TO 17
                    B(JA,J8)=-1.0
125             17  CONTINUE
                    MIN=M1*1
                    00 18 JA=1,MT
                    JC=JA*M1
                    DO 18 JB=MIN,MAX
130                 IF(JC.NE.JB)  GO TO 18
                    B(JA,JB)=1.0
                18  CONTINUE
              C
              C   »*»*«»  FORM *A* MATRIX FOR  INDEPENDENT  VARIABLE  AND *SY» COLUMN
135           C   »»»»»»  MATRIX FOR DEPENDENT VARIABLE
              C   »*»»*»  LET  K = ROW  AND  L - COLUMN
              C
                     DO 35 J = 1, Nf>
                     LA = 1
1<*0                  MIN = 0
                     CONC = 1.0
                     CONB = 1.0
                     IF (M.EQ.O) CONB = X(LA, J)
                     SY2 = SY2 t Y(J) * Y(J)
1<,5                  DO 3? K = 1, Ml
                     SY(K) = SYtK) * Y(J) » CONC
                     MIN = MIN *• 1
                     DO 25 L = MIN, Ml
                     A(K, L) = A(K, L) + CONB » CONC
150                  A(L, K) = A(K, L)
                     IF (M.EQ.O) GO TO 20
                     CONC = CONC » X
-------
   SUBROUTINE REGCOR
                          71t/7l»   OPT = 1
                                                                   FTN <(.2»P380
                                                                                      75/02/28.  13.13.<»3.
                                                                                                                PAGE
175
130
185
190
195
200
205
210
215
220
225
                    STOY = SQRTICYY  / OENOM / (DENOM - 1.0)>
                    STOEVY =  SQRTtCYY / BIAS )

                        FORM  *C*  MATRIX ,  COVARIANCE » AND *CY* COLUMN  MATRIX
                        LET   K  =  ROW  AND   L =  COLUMN
                =1.0
                     C2 = CtK, X) » CYY
                     IF CC2.LE.O.O) GO TO 1060

                   »»**  STANDARD DEVIATION OF  COMPUTED INDEPENDENT VARIABLE
                     AND SET B MATRIX ON THE FIRST  PASS ONLY

                     STDEVIK) = SQRTtClK, K)/ BIAS  )
                    RY(K)=CYtK)/SQRTIC2) t IF (MARK.EQ.O) B /SQRTtC2) $ IF tMARK.EQ. 0) B IL,K)=B (K,L)=R !K»L>
                     CONTINUE
                     KZ = K
                     CONTINUE
                    B(M1,M1) = 1.0
                    DO 58 K=1,MT
                    8tMl,K)=BtK,Ml>
                    CONTINUE
                    FORMAT I2X*00 YOU HANT TO LIST INTERMEDIATE MATRICES*
                   1  /2X»TYPE YES OR N0»>
                    FORMAT IR3)
                    IFtISW.EQ.0) GO TO l»00
                     LIST A MATRIX - RAH SUM OF SQUARES AND CROSS PRODUCTS
                    HRITEICOT,86)
                    FORMAT (1H1,///1X»RAH SUMS OF SQUARES AND PROOUCTS-OR tA) MATRIX*)
                    DO 90 LA=1,M1
                    TEMPAtLA)=SYtLA)
                    DO 90 LB=1,M1
                    TEMP(LA,L8)=AtLA,LB)
                    CONTINUE
                    MATE=0

-------
    SUBROUTINE REGCOR     71./7I.   OPT = 1                            FTN = CU,K>
                92  CONTINUE
235           C»*»*  LIST COVARIANCE  MATRIX
                    WRITE!COT,93)
                93  FORMAT! ///1X*COVARIANCE  MATRIX OR (C) MATRIX')
                    MATE=1 $ ASSIGN 9  $ GO  TO  3«tO
260            320  IF(AMAX.GT.1.0E<»>   GO  TO  330
                    IFO = 6RF10.3)  S GO  TO  3 +1  t  IXY = MAX-MIN+2
                    ENCOOE<13,350,IFORM)IXX,IXY,IFO
               350  FORMAT(*(*I2»X,*I2,R6>
270                 IF(MATE.EQ.l) GO  TO 355
                    WRITE (COT, I FORM) (TEMP(JA,J8) , J8=MIN,MAX) , TEMPA (JA)
                    GO TO 358
               355  WRITE(COT,IFORM)
-------
   SUBROUTINE  REGCOR     7t./7(,   OPT*1                             FTN 1..2+P380       75/02/28.  13.13./.3.       PAGE


               415   CONTINUE
               1.20   KHAX = Q 1! VMAX = -1.0E18  $ ITOEG=NP-1-NSTEP  *  OEGF=IOEG= ITDEG-i
                    DO <»30 JA=1,MT
                    KN=KOUT(JA> $ IF(KN.LT.O)  GO TO 1.30
290                 Vi,(KN>=BtKN,Ml>*B(KN,Ml)/B(KN,KN)
                    FLEV(KN) = (Vi.*OEGF)/(B(Ml,Ml)-Vi. I KMAX = KN
               i»30   CONTINUE
295                 FMAX=FLEV(KMAX>
                    IFUMW.NE.O) GO  TO  Ski
                    WRITE,FLEV,STUDT(K)iSTDEV{K>,MEANS{ZX,F13.6) 1)
                    WRITE(COT,i.70)STOEVY,  YMEAN.SUMY
               1.70   FORMAT (//IX'STANDARO ERROR OF Y = *F13.6, lOX'MEAN OF Y = »F13.6
310                1  //1X*SUM  OF  Y  =  *F13.6)
                    IF(FLEVEN.NE.O.O)  GO TO 1.75
                    KIN(1)=KN = KFA CD SFMAX=FLEV(KN) $ KMAX=KN  $  GO  TO 5i»l
               "»75  KIN(1)=KN = KMAX
                    IF(FHAX.GE. ELEVEN)  GO  TO 51.1
315                 WRITE(COT,500) FMAX
               500  FORMATCIX'ALL  INDEPENDENT VARIABLES  FAIL  F  LEVEL TEST T0«
                   1 »ENTER  REGRESSION  F LEVEL MAX = *F13.6/2X» JOB IS ABORTED*)
                    CALL  EXIT
               541  IFCIMW.NE.O)  GO  TO  51.2
320                 IMK = 1 $  GO  TO  1.00
               51.2  NSTEP = NSTFP*1  S  IF (NSTEP. GT. MT) GO  TO  150
                    KJO=0 S  KJI=NSTEP S IFtFLEVEN.EQ. 0. 0 ) KMAX=KFA ( NSTEP)
                    FMAX=FLEV(KMAX)  $ KIN  (NS TEP) =KMAX $  IF ! KMAX.EQ.KMIN) GO TO 1100
                    IF(FLEVEN.EQ.O.O)  GO TO 5<.3
335                 IFIFKAX.LT. ELEVEN)  GO  TO 1080
               51.3  DO 51.5  JA=1,KJ[
                    DO  51.1.  JO = 1,MT
                    IF(KOUT(JE).LT.O)  GO TO 51.1.
 330                IF(KN.EQ.JB)  KOUT(JB)=-1
               51.1.  CONTINUE
               51.5  CONTINUE
                      DO 5i»7 JA = 1,MT
               51,7  CONTINUE
 335                KJI=NSTtP
                    KN=1JA=MJS=KIN[NSTEP) S KZ=KN
              C»»»»   COMPUTE  B MATRIX FOR THIS STEP
               548  MAX = MH-MT
                    DO  555  JA=1,MAX
 31,0                DO  553  JB = 1,MAX
                    IF(0(MJA,!^JS) .EQ.0.0) GO TO 101.0
                    IF(JA.NE.KN)   GO TO 551

-------
         SUBROUTINE REGCOR      Tt/Tt   OPT = 1                           FTN <>.2 + P380       75/02/29.  13.13.1»3.       PAGE


                          B(JA,JB)=D(JA,J8)/0(MJA,MJB)
                          GO  TO  553
      3<>5           551   B-(D(JA,KZ)*D(KZ, J8)/0(MJA,MJB»
                    553   CONTINUE
                    555   CONTINUE
                          IF(MJB.NE.MAX)  GO TO 558
                          DO  5S&  JA=1,MAX
      350                 IFUA.EQ.KN)  GO TO 556
                          B/D(MJA,MJB»
                    556   CONTINUE
                    558   ORGVAR = C(M1,H1) S PEREXP=11.0-B(Ml,HI)) *1. OE2
                          PERUNE=8(M1,M1)*1.0E2 S RESQR=C*8(Ml,M1>
      355                 STDRES = SQRT(RESQR/DEGF) $ CONST = 0.0 $ RMULT = SQRT< l.-B (M1,M1»
                          DO  570  JA=1,KJI
                          KN=KIN(JA>    $ REGCOF(KN)=8(KN,M1>*SQRT(C(M1,M1>/C(KN,KN))
                          MZ=M1+KN
                          STDREG(KN)=STDRES»SQRT(B(MZ,MZ)/C(KN,KN) 1
      360                 CONST=CONSTtREGCOF(KN>*MEANS(KN>
                          PARFL(KN)=
                    570   CONTINUE
                          CONST=YMEAN-CONST
                          IF(ISW.EQ.O)  GO TO 700
      365           700   WRITE(COT,710)NSTEP
                    710   FORMAT (1H1,////1X*REGRESSION INFORMATION FOR STEP NO. *!((//)
                          WRITE(COT,715)KSETS(KMAX),FMAX
                    715   FORMAT(1X»VARIABLE ENTERING REGRESSION THIS STEP IS  X(*
K                        i   I?*)<15X»F LEV;L TO ENTER =»Fi3.&/>
O     370                 HRITE(COT,720)ORGVAR,PEREXP,PERUNE,RMULT,RESQR,STORES,NSTEP,ICEG,
                         1   CONST
                    720   FORHAT (IX'ORIGINAL VARIANCE*21X ,F 12 . J,
                         1   /1X»PERCENT EXPLAINED VARI ANCE» 15X ,F9.i»
                         2   /1X»PERCENT UNEXPLAINED VARIANCE*13X,F9.<»
      375                A   /IX'MULTIPLE CORRELATION COEFF» 12X.F12. it
                         3   /1X*RESIOUAL SUM OF SUUARES'15X,F12.4
                         >t   /IX'STANDARO ERROR OF RESIDUALS'llX ,F12.I»
                         5   /IX'DEGREES OF FREEDOM OF REGRE SSION»1I,X,!(,
                         6   /IX'OEGREES OF FREEDOM OF RES IDUALS'ISX ,11.
      380                7   /IX'CONSTANT'SOXtFl?.^/)
                          WRITE(COT,725)
                    725   FORMAT (1 X *VAR I ABLE"tX'REGRESS ION* 7X*STANDARO»6X*PARTI AL*
                         1   /12X*COEFFICIENTS*3X*ERROR*9X»F VALUE*/)
                          DO  727  JA=1,KJI
      385                 KN=KIN(JA)  $  KO=KSETS(KN)
                          WRITE(COT,726>KO.REGCOF(KN>,STDREG(KN>,PARFL(KN>
                    726   FORMAT ( 3X ,I3,i»XtF13 .6 ,2 (2X.F13. &»
                    727   CONTINUE
                          DIFF2=0.0   $  AEXP=1.0/YEXP
      390                 PRINT  200,NSTEP
                          READ 7
                          DO  880  JA=1,NTITLE
                          WRITE(COT,870)(KTITLE(JA,JB),JB=1,8)

-------
   SUBROUTINE  REGCOR      7<(/7J(   OPT = 1                            FTN it.2*P380       75/02/28.  13.13.1.3.       PAGE


"•00            870   FORMAT(1X,7A10,A9>
               880   CONTINUE
                    WRITECCOT,890>
               890   FORMAT
<»05            900   FOFX=0.0
                    DO 903   JB=1,KJI
                    KN=KINCJB>  t FOFX = FOFXKREGCOF(KN)»X GO TO 905
                    IF(ITEST.EQ.5RCOS    ) GO TO 905
                    YOBS=XOB(JAY,J)
                    IFUTEST.EQ.5RLOG10  ) YCOMP=10.0••YCOMP
<»15                 IF(ITEST.EQ.5RLOGE   ) YCOMP = EXP (YCOHP)
                    IFHTEST.EQ.SRSaRT   1 YCOMP = YCOMP*YCOMP
                    IFIITEST.EQ.5REXP    > YCOMP=YCOHP*»6EXP
               905   OIFF=Y03S-YCOMP  I OIFF2=DIFF2*(DIFF»DIFF)
                    WRITE(COT,910)J,YOBS,YCQMP,DIFF
<>20            910   FORHAT(lX,I3,5X,F13»6,«tX,Fi3.6,2X,Fi3.65
                    UINE=LINE+l S  IF1LINE.GT.50! LINE=D
               930   CONTINUE
                    WRITE(COT,930)OtFF2
               930   FOR^AT(//1X»SUM  OF DEVIATIONS SQUARED = *F20.6>
«5            932   IFtFLEVRE.EQ.0.0) GO TO 400
                    DO 935 JA = 1,KJI
                    KN=KIN(JA)
                    IF(PARFL(KN).LT.FLEVRE> GO  TO 9iiO
               935   CONTINUE
l»30                 GO TO UOO
               91(0   KMIN = KN $ FMIN=PARFL(KMIN)  $ NSTEP=NSTEP-1
                    HRIT E ( COT, 9<»5)KS£TS(K MINI ,FMIN,FUEVRE
               91(5   FORMAT(//1X»VARIABLE WITH INDEX =  "lit* HAS  BEEN *
                   1  'EXCLUDED FROM  REGRESSION WITH F LEVEL  =  »F15.6
V35                2  /IX'HHERE F  LEVEL TO EXCLUDE  = »F15.6)
                    JB=0
                    DO 950 JA=1,KJI
                    KN=KIN(JA)
                    IFCKN.EQ.KMINt   GO TO 950
i«t(0                 ja=JB+l S KEX(J8)=KN
               950   CONTINUE
                    KJI=KJI-1
                    DO 955 JA--1,KJI
                    KIN(JA)=KEX(JA)
1,1(5            955  CONTINUE
                    DO 960 JA=1,MT
                    KN=KOUT(JA)
                    IF(KN.GE.O) GO TO 960
                    KOUT(JA)=KMIN
j,50                 GO TO 965
               960  CONTINUE
               965  KN=KMIN t MJA=KN+M1 $ HJB=M1+HT J  KZ=MJB
                    ITDEG=NP-1-NSTEP t  DEGF=IOEG=ITOEG
                    00 970 JA=1,MJB
1,55                 00 970 JB = 1,MJB
                    D(JA,JB)=B(JA,JB)

-------
   SUBROUTINE  REGCOR
                     OPT =
FTN
465
«»70
<»75
 970  CONTINUE
      GO TO 5i»8
1000  PRINT 1010
1010  FORMATC2X*ERROR  IN  NUMBER  OF  INDEPENDENT  VARIABLES*)
      CALL EXIT
101)0  PRINT 1050
1050  FORMAT(IX'DIAGONAL  ELEMENT IS  ZERO-JOB ABORTED')
      CALL EXIT
1060  PRINT 1070
1070  FORMAT<2X*C2  IS  LESS  THAN  OR  EQUAL  ZERO—ABORTED')
      CALL EXIT
1080  HRITE(COT,1090)KSETS 14.0, are considered not significantly different than zero or one.
                                   69

-------
The power series as shown below was used in the computer application


to approximate the solution of the aforementioned integral for the


limits -4.0 f_ x ^ 4.0.  The accuracy, or maximum error with this

            i      i             -8
series, is  |  e(x)|  <  1.0 x 10  .


                                n=50

                                            2n+1
                                      j^

                                 n=0
                                           x
Power series:  P(x) = 1/2 + Z(x)  ^  j^f - (2n+l)~  + e(x)
                                                          -9
The series was truncated when  |P(x)n - p(x)n+;jj < 1.0 x 10  .
Another mechanism that is required when the normal probability function


is used is that of obtaining the inverse of integral.  A popular


polynomial approximation to this inverse is as follows :


                         a  + a t
       x  = f (t) = t -- 2 - 1 -   + e(p)

        p                           z
where:   0 < p < 0.5 and t =    fcn    2
               ~             V      P
and:  aQ = 2.30753      &l = 0.2760

      b  = 0.99229      b  = 0.0448
and:     | e(p)  | < 3.0 x 10~3
The above polynomial does not provide the same maximum error term as


that in the approximation of the integral in the range, -4.0 <_ x <_ 4.0.


A Taylor series expansion of the higher derivatives was examined


as a method of obtaining a better approximation to the inverse.
                                 70

-------
                          2

                   1    ~x /2
     Let:   Z(x) =  -  £
     then:  Z(1) (x) = - xZ(x)
            Z(2)  (x) =  (x2 - 1) Z(x)
             (3)              3
             v '  (x) =  (3x - x ) Z(x)
             (4)         4      2
            Zv    (x) =  (x  - 6x +3) Z(x)





     Note: d(u,v)/dx = u — + v ^ was the general form used in




              obtaining the higher derivatives.






This approach to the approximation became messy in solving for the required



root in terms of the fourth degree polynomial resulting from the Taylor



series expansion.  The technique as used in the computer application for



the solution of inverse of the  integral combines the polynomial



approximation as described earlier and Newton's method of successive



approximations.




    Let:  xn = x  = f(t) + e(p)  (initial guess)
           o    p




    then:  x, = x  _ f(x )/f'(x )
            1    o      o       o




    or:    x .. = x  - f(x )/f'(x_), n-1, 2, 3, ..., k
            n+1    n      n
                                 71

-------
     where:  f(x)=P(x)-C
             f'(xn)=Z(xn)
             C = True value of the integral
                                                         i
The successive approximations were truncated when  f(x )|  < 1.0 x  10

                                      — ft

The maximum error is  e(p) | < 1.0 x 10   for the range  —4.0 <_ x <^  4.0.
The electronic computer application has attached a main program called




DRIVER.  The main program was used to test the maximum error and can be




discarded.









The subroutine used to approximate the solution of the integral and its




inverse is titled NORM, where the entry for the inverse is titled NORM1.









The subroutine is entered with three arguments labeled XR, PROB, XC.




The label XR is the argument entered for the solution of the integral.




The label PROB is the value of the integral.  When entry is made via




NORM1  (inverse of integral), the label PROB is the true value of the




integral and the label XC is the approximation of the argument.
The label SEED is the first guess (x ) and uses the polynomial approxi-




mation shown earlier.
All program-controlled error messages are displayed at the terminal.
                                  72

-------
     PROGRAM  DRIVER      7t*/7t,   OPT = 1                            FTN ^»2*P380       75/03/03.  15-11.<»3.

                                                                                              PAGE      1
                   PROGRAM DRIVER(INPUT,OUTPUT,OOT21,TAPE5=OUT21}
                   XT = -<».Q20  $ LINE=0 S IH = 5
              10   XT=XT*C.QZ  $ IF(XT.GT.%.3) CALL  EXIT
                   CALL  NORM (XT,PROB,XC>
 5                 CftLL  NORM1(XT,PR03,XC)
                   DIFF=XT-XC
                   IF(LINE.NE.O) GO TO 35
                   WRITE(IW,30)
              30   FORMAT (lHl»////<3X»P(X)*9X»X*12X*XC*liX*DIFF»)
10            35   WRITE{IH,
-------
PROGRAM DRIVER
                           OPT =
                                                            FTN (*.2+P380
                      75/03/03.  15.11.«»3.

                              PAGE     2
       SYMBOLIC  REFERENCE MAP 

ENTRY POINTS
 6151  DRIVER

VARIABLES      SN  TYPE            RELOCATION
 62l»3  DIFF       REAL                               62<*0
 6237  LINE       INTEGER                           62^1
 62<»2  XC         REAL                               6236

FILE NAMES         MODE
    0  INPUT                    20^1  OUTPUT

EXTERNALS           TYPE    ARCS
       EXIT                  0
       NORM1                 3

STATEMENT LABELS
 6156  10                                 6212  30      FMT
 6227  t»0      FMT

STATISTICS
  PROGRAM LENGTH               1018      65
  BUFFER LENGTH                61«»3B    3171
                                                IW
                                                PROB
                                                XT
INTEGER
REAL
REAL
                                                    <»102   OUT21
                                                                                  i»102  TAPE5
                                               NORM
                                                                        617*.  35

-------
      SUBROUTINE  NORM
      SYMBOLIC  REFERENCE MAP (R=i)
      OPT=1
                                      FTN 
-------
  SUBROUTINE  NORM       7<»/7«»   OPT = 1                            FTN <».2+P380       75/03/03.  15-11.«*5-

                                                                                              PftGE     1
                   SUBROUTINE NORM{XR,PR08,XC>
                   0 ATA (PI = 3. li»l 5 9265359)
                   CONST=2.0*PI $ CONST=1.0/SQRTCCONST)
                   X = ABS(XR)  $ IF(X.LE.*ZX
               35   DENOM=1.0  $ POFX=0.5 $ PPOFX=0.0
                   DO  (»0  K = l ,50
15                 N=K-1  $ KN=2*N+1 S ZAP=KN  $ DENOM=DENOM*ZAP
                   POFX=POFX*ZX»X**KN/DFNOM
                   ERROR=ABS (POFX-PPOFX) S IF(ERROR.LT.1.OE-9 )  GO TO 50
                   PPOFX=POFX
               kQ   CONTINUE
20                 PRINT  itStN, ERROR
               tt5   FORHAT(2X*N = *I<», 5X*ERROR = *F20.9)
                   CALL EXIT
               50   PROB=POFX  t IF(XR.LT.O.O)  PROB=1.0-PROB
                   GO  TO  ISX (150,100)
25                 ENTRY  NORM1
                   P=PROD=FR08 $ ISIGN=0
                   IF(PROD.GE.0.53 GO TO 60
                   ISIGN=1 $  PROO=1.0-PROD
               60   IF(P.GT.0.5) P=1.0-P
30                 IF(P.LE.O.O) P=1.0E-5
                   TEE=SQRT GO TO 90
35                 PRINT  80
               60   FORMAT(1X*TRUE VALUE OF INTEGRAL  IS GREATER THAN*
                  1  /1X*LIMIT ARGUMENT IS SET TO  SEED*)
                   XC=SEEO'$  GO TO 120
               90   ASSIGN 100 TO ISX $ GO TO  25
itO            100   DIFF = POFX-PRCO $ IF {ABS (OIFF) . LT. 1. OE-9)  GO TO  120
                   X1=X-(DIFF/ZX) $ NC=NC*1
                   X=X1 $ IF(NC.LT.30)  GO TO 90
                   PRINT  110,X
              110   FORMAT(2X*NO CONVERGENCE FOUND  IN X ERROR = *F15.9)
i»5                 CALL EXIT
              120   XC=X $ IF(ISIGN.EQ.l) XC=-XC
              150   RETURN
                   END

-------
P(X)
.00003167
.00003446
.00003748
.00004074
.00004427
.00004810
.00005223
.00005669
.00006152
.00006673
.00007235
.00007841
.00008496
.00009201
.00009961
.00010780
.00011662
.00012611
.00013632
.00014730
.00015911
.00017180
.00018543
.00020006
cOT J21577
.00023263
.00025071
.00027009
.00029086
.00031311
.00033693
.00036243
.00033971
.00041889
.00045009
.00048342
.00051904
.00055706
.00059765
.00064095
.00068714
.00073638
.00078885
.00084474
.00090426
.00096760
.00103500
.00110669
.00118289
.00126387
.00134990
X
-4.00000000
-3.S8000000
-3.96000000
-3.94000000
-3.C2000000
-3.90000000
-3. 83000000
-3.86000000
-3.84000000
-3.82000000
-3.80000000
-3.73000000
-3. 76000000
-3.74000000
-3.72000000
-3.70000000
-3.68000000
-3.66000000
-3.64000000
-3.62000000
-3.60000000
-3.58000000
-3.56000000
-3. 54 000000
-3.52000000
-3.50000000
-3.48000000
-3.46000000
-3. 44 000000
-3.42000000
-3.40000000
-3.38000000
-3.36000000
-3.34000000
-3.32000000
-3.30000000
-3.28000000
-3.26000000
-3.24000000
-3.22000000
-3.20000000
-3.18000000
-3.16000000
-3.14000000
-3.12000000
-3.10000000
-3.08000000
-3.06000000
-3.04000000
-3.02000000
-3.00000000
xc
-4.00000000
-3.98000000
-3.96000000
-3.94000000
-3.92000000
-3.90000000
-3.88000000
-3.86000000
-3.84000000
-3.82000000
-3.80000000
-3.78000000
-3.76000000
-3.74000000
-3.72000000
-3.70000000
-3.68000000
-3.66000000
-3.64000000
-3.62000000
-3.60000000
-3.58000000
-3.56000000
-3.54000000
-3.52000000
-3.50000000
-3.48000000
-3.46000000
-3.44000000
-3.42000000
-3.40000000
-3.38000000
-3.36000000
-3.34000000
-3.32000000
-3.30000000
-3.28000000
-3.26000000
-3.24000000
-3.22000000
-3.20000000
-3.18000000
-3.16000000
-3.14000000
-3.12000000
-3.10000000
-3.08000000
-3.06000000
-3.04000000
-3.02000000
-3.00000000
                    OIFF
                 -.oooooooo
                 -.00000000
                 -.00000000
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.00000000
                 -.oooooooo
                 -.oooooooo
                 -.00000000
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.00000000
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.00000000
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.00000000
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.00000000
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.00000000
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.oooooooo
                 -.00000000
77

-------
P(X)
. 00144124
.00153820
.00164106
.00175016
. 001865 81
.00198838
.00211821
. 00225558
.00240118
.00255513
.00271794
.00239007
.00307196
.00326410
.00346697
.00368111
,00390703
.00414530
.00439649
.00466119
,,00494002
.00523361
.00554262
.00586774
.00620967
.00656912
.00694685
.00734363
. 00776025
.00819754
.00865632
.00913747
.00964187
.01017044
.01072411
.01130384
.01191063
.01254546
.01320938
.01390345
.01462873
.01538633
.01617738
.01700302
.01786442
.01876277
.01969927
.02067516
.02169169
.02275013
.02385176
X
-2.98000000
-2.96000000
-2.94000000
-2.92000000
-2.90000000
-2,88000000
-2. 86000000
-2.84000000
-2.82000000
-2. 80000000
-2.78000000
-2.76000000
-2.74000000
-2.72000000
-2.70000000
-2.63000000
-2.66000000
-2.64000000
-2.62000000
-2.60000000
-2.58000000
-2.56000000
-2.54000000
-2.52000000
-2.50000000
-2.48000000
-2.46000000
-2. 44000000
-2.42000000
-2.40000000
-2.33000000
-2.36000000
-2.34000000
-2.32000000
-2.30000000
-2.28000000
-2.26000000
-2.24000000
-2.22000000
-2.20000000
-2.18000000
-2.16000000
-2.14000000
-2.12000000
-2.10000000
-2.03000000
-2.06000000
-2.04000000
-2.02000000
-2.00000000
-1.98000000
XC
-2.93000000
-2.96000000
-2.94000000
-2.92000000
-2.90000000
-2.88000000
-2.86000000
-2.84000000
-2.32000000
-2.80000000
-2.78000000
-2.76000000
-2.74000000
-2.72000000
-2.70000000
-2.6SDOOOOO
-2.66000000
-2.64000000
-2.62000000
-2.60000000
-2.58000000
-2.56000000
-2.54000000
-2.52000000
-2.50000000
-2.48000000
-2.46000000
-2.44000000
-2.42000000
-2.40000000
-2.38000000
-2.36000000
-2.34000000
-2.32000000
-2.30000000
-2.28000000
-2.26000000
-2.24000000
-2.22000000
-2.20000000
-2.18000000
-2.16000000
-2.14000000
-2.12000000
-2.10000000
-2.08000000
-2.06000000
-2.04000000
-2.02000000
-2.00000000
-1*98000000
                    DIFF
                 -.00000000
                 -*00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -. 00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
                 -.00000000
78

-------
PCX)
.02499790
.02618984
.02742895
.02871656
.03005404
.03144276
.03283412
.03437950
.03593032
.03753798
.03920390
.04092951
.04271622
.04456546
.04647866
.04845723
.05050258
.05261614
.05479929
.057053t,3
.05937994
.06178018
.0642554S
.06680720
.06943662
,07214504
.07493370
.07730384
.08075666
.08379332
.08691496
.09012267
.09341751
.09630048
.10027257
.1038346'?
.10748770
.111232/,it
.11506967
.11900011
.12302^40
.12714315
.13135688
.13566606
.1^007109
.1^457230
.Ii»9l6995
.15386423
.15855525
.16354306
.16852761
X
-1.96000000
-i. 94000000
-1.92000000
-1.90000000
-1.88000000
-1.86000000
-1.84000000
-1.82000000
-1.80000000
-1.78000000
-1.76000000
-1.74000000
-1.72000000
-1.70000000
-1.68000000
-1.66000000
-1.64000000
-1.62000000
-1.60000000
-1.53000000
-1.56000000
-1.54000000
-1.52000000
-1.50000000
-1.48000000
-1.46000000
-1.44000000
-1,42000000
-1.40000000
-1.38000000
-1.36000000
-1.34000000
-1.32000000
-1.30000000
-1.28000000
-1.26000000
-1.24000000
-1.22000000
-1.20000000
-1.18000000
-1.16000000
-1.14000000
-1.12000000
-1.10000000
-1.08000000
-1.06000000
-1.04000000
-1.02000000
-1.00000000
-.98000000
-.96000000
XC
-1.96000000
-1.94000000
-1.92000000
-1.90000000
-1.88000000
-1.86000000
-1.84000000
-1.82000000
-1.80000000
-1.78000000
-1.76000000
-1.73999999
-1.72000000
-1.70000000
-1.68000000
-1.66000000
-1.64000000
-1.62000000
-1.60000000
-1.58000000
-1.56000000
-1.54000000
-1.52000000
-1.50000000
-1.48000000
-1.46000000
-1.44000000
-1.42000000
-1.40000000
-1.38000000
-1.36000000
-1.34000000
-1.32000000
-1.30000000
-1.28000000
-1.26000000
-1.24000000
-1.22000000
-1.20000000
-1.18000000
-1.16000000
-1.14000000
-1.12000000
-1.10000000
-1.08000000
-1.06000000
-1.04000000
-1.02000000
-1.00000000
-.98000000
-.96000000
                 .00000000
                 .00000000
                 .oooooooo
                -.00000000
                 .oooooooo
                 .oooooooo
                -.OOOOOOOO
                 .oooooooo
                -.oooooooo
                -.oooooooo
                -.oooooooo
                -.00000001
                 .oooooooo
                 .oooooooo
                 .oooooooo
                -.oooooooo
                 .00000000
                 .oooooooo
                -.oooooooo
                -.oooooooo
                -.oooooooo
                -.00000000
                -.oooooooo
                -.oooooooo
                -.oooooooo
                -.oooooooo
                -.oooooooo
                -.oooooooo
                -.oooooooo
                -.oooooooo
                -.oooooooo
                -.oooooooo
                -.oooooooo
                -.oooooooo
                -.oooooooo
                -.00000000
                -.oooooooo
                -.oooooooo
                -.oooooooo
                -.oooooooo
                -.oooooooo
                -.00000000
                -.oooooooo
                -.oooooooo
                -.oooooooo
                -.oooooooo
                -.oooooooo
                -.oooooooo
                -.oooooooo
                -.oooooooo
                -.oooooooo
79

-------
P(X)
.17360878
. 17878638
. 18^06013
.189^2965
. 19i+89tf52
.200**5
-------
     P(X)
.53188137
.53982784*
.54,77584,3
.55567000
• 5635594*6
.5714+2372
.57925971
.587064*4,2
,59<*834*87
.60256811
.61026125
.6179114*2
.62551583
.63307174*
.64*05764*3
.64*802729
.6554*2174*
.66275727
.6700314*5
.67724*189
.684*38630
.6914*624*6
.6981*6821
.7054*014*8
.71226028
.71904,269
.72574*688
.73237111
.73891370
.74*537309
.75174*777
.75803635
.76423750
.77035000
.77637271
.782304*56
.78314*4,60
.79389195
.79954*581
.8051054*8
.81057035
.81593987
.82121362
.82639122
,831i»7239
.3364*5691*
.84*134*4*75
.84*613577
.85033005
.8554*2770
.85992891
 .03000000
 .10000000
 .12000000
 .1^000000
 .16000000
 .18000000
 .2QOQQOOQ
 .22000000
 .24*000000
 .26000000
 .28000000
 .30000000
 .32000000
 .34,000000
 .36000000
 .33000000
 .4,0000000
 ,4,2000000
 .4f 4*000000
 .4,6000000
 .4,8000000
 .50000000
 .52000000
 .54,000000
 .56000000
 .53000000
 .60000000
 .62000000
 .64*000000
 .66000000
 .68000000
 .70000000
 .72000000
 .74*000000
 .76000000
 .78000000
 .80000000
 .82000000
 .84*000000
 .86000000
 .88000000
 .90000000
 .92000000
 .94*000000
 .96000000
 .98000000
1.00000000
1.02000000
1.04*000000
1.06000000
1.08000000
    XC
 •08000000
 •10000000
 •12000000
 •1^000000
 •16000000
 •18000000
 .20000000
 .22000000
 .24*000000
 .26000000
 .28000000
 .30000000
 .32000000
 .34,000000
 .36000000
 .38000000
 .4,0000000
 .4*2000000
 .4*4,000000
 .4*6000000
 .4*8000000
 .50000000
 .52000000
 .54*000000
 .56000000
 .58000000
 .60000000
 ,62000000
 .64*000000
 .66000000
 ,68000000
 .70000000
 .72000000
 .74*000000
 .76000000
 .78000000
 .30000000
 .82000000
 .84*000000
 .86000000
 .88000000
 .90000000
 .92000000
 .94*000000
 .96000000
 .98000000
1.00000000
1.02000000
1.0^000000
1.06000000
1.08000000
  DIFF
.00000000
.00000000
.oooooooo
.OOQOOOOO
.oooooooo
.oooooooo
.oooooooo
.oooooooo
.oooooooo
.oooooooo
.00000000
.QOOOOOOO
.oooooooo
.oooooooo
.oooooooo
.00000000
.oooooooo
.oooooooo
.oooooooo
.00000000
.oooooooo
.oooooooo
.oooooooo
.oooooooo
.oooooooo
.oooooooo
.QOOOOOOO
.00000000
.oooooooo
.00000000
.oooooooo
.00000000
.00000000
.00000000
.oooooooo
.00000000
.oooooooo
.oooooooo
.00000000
.oooooooo
.oooooooo
.oooooooo
.QOOOOOOO
.00000000
.oooooooo
.00000000
.00000000
.oooooooo
.oooooooo
.00000000
.QOOOOOOO
                           81

-------
PCX)
.86433394
. 86864312
.87285685
. 37697560
.88099989
.88493033
. 38876756
.89251230
.89616532
.89972743
.90319952
.90658249
.90987733
.91308504
.91620668
.91924334
.92219616
.92506630
.92785496
.93056338
.93319280
.93574451
.93821982
.94062006
, 94294657
.94520071
.94733386
.94949742
.95154277
.95352134
.95543454
.95728378
.95907049
,96079610
.96246202
.96406968
.96562050
.96711588
.96855724
.96994596
.97128344
.97257105
.97381016
.97500210
.97614824
.97724987
.97830831
.97932^84
.98030073
.98123723
.98213558
X
1.10000000
1.12000000
1.14000000
1.16000000
1.18000000
1.20000000
1.22000000
1.24000000
1.26000000
1.28000000
1.30000000
1.32000000
1.34000000
1.36000000
1.38000000
1.40000000
1.42000000
1.44000000
1.46000000
1.48000000
1.50000000
1,52000000
1.54000000
1.56000000
1.58000000
1.60000000
1.62000000
1.64000000
1.66000000
1.68000000
1.70000000
1.72000000
1.74000000
1.76000000
1.78000000
1.80000000
1.82000000
1.84000000
1.86000000
1.88000000
1.90000000
1.92000000
1.94000000
1.96000000
1.98000000
2.00000000
2.02000000
2.04000000
2.06000000
2.08000000
2.10000000
XC
1.10000000
1.12000000
1.14000000
1.16000000
1.18000000
1.20000000
1.22000000
1.24000000
1.26000000
1.23000000
1.30000000
1.32000000
1.34000000
1.36000000
1.38000000
1.40000000
1.42000000
1.44000000
1.46000000
1.48000000
1.50000000
1.52000000
1.54000000
1.56000000
1.58000000
1.60000000
1.62000000
1.64000000
1.66000000
1.68000000
1.70000000
1.72000000
1.73999999
1.76000000
1.78000000
1.80000000
1.82000000
1.84000000
1.86000000
1.88000000
1.90000000
1.92000000
1.94000000
1.96000000
1.98000000
2.00000000
2.02000000
2.04000000
2.06000000
2.08000000
2.10000000
OIFF
. oooooooo
. oooooooo
. oooooooo
. oooooooo
.oooooooo
. oooooooo
.oooooooo
. oooooooo
. oooooooo
. oooooooo
.oooooooo
.oooooooo
.oooooooo
.oooooooo
. 00000000
. oooooooo
.oooooooo
. oooooooo
. oooooooo
. 00000000
. 00000000
.oooooooo
.00000000
. oooooooo
. oooooooo
.oooooooo
. oooooooo
.oooooooo
.oooooooo
.00000000
.oooooooo
.00000000
. 00000001
.oooooooo
.oooooooo
. 00000000
.00000000
.oooooooo
.00000000
.00000000
.oooooooo
.00000000
.00000000
.oooooooo
.00000000
.00000000
.oooooooo
.oooooooo
.oooooooo
.oooooooo
.00000000
82

-------
PCX)
.98299698
.98382262
.98461367
.98537127
.98609655
.98679062
.98745454
.98808937
.98869616
.98927589
.98982956
.99035813
.99086253
.99134368
.99180246
.99223975
.99265637
.99305315
.99343083
.99379033
.99413226
.99445733
.99476639
.99505998
.99533881
.99560351
.99585470
.99609297
.99631889
.99653303
.99673590
.99692804
.99710993
.99723206
. 99744487
.99759882
.99774432
.99788179
.99801162
.99813419
.99824984
.99835894
.99346180
.99855876
.99865010
.99873613
.99881711
.99889331
.99896500
.99903240
.99909574
X
2.12000000
2.14000000
2.16000000
2.13000000
2.20000000
2.22000000
2.24000000
2.26000000
2.28000000
2.30000000
2,32000000
2.34000000
2.36000000
2.38000000
2.40000000
2.42000000
2.44000000
2.46000000
2.48000000
2.50000000
2.52000000
2.54000000
2.56000000
2.53000000
2.60000000
2.62000000
2.64000000
2.66000000
2.68000000
2.70000000
2.72000000
2.74000000
2.76000000
2.78000000
2.80000000
2.82000000
2.84000000
2.86000000
2.88000000
2.90000000
2.92000000
2.94000000
2.96000000
2.98000000
3.00000000
3.02000000
3.04000000
3.06000000
3.08000000
3.10000000
3.12000000
XC
2.12000000
2.14000000
2.16000000
2.18000000
2.20000000
2.22000000
2.24000000
2.26000000
2.28000000
2.30000000
2.32000000
2.34000000
2.36000000
2.38000000
2.40000000
2.42000000
2.44000000 ,
2.46000000
2.48000000
2.50000000
2.52000000
2.54000000
2.56000000
2.58000000
2.60000000
2.62000000
2.64000000
2,66000000
2,68000000
2.70000000
2.72000000
2.74000000
2.76000000
2.78000000
2.80000000
2.82000000
2.84000000
2.86000000
2.88000000
2.90000000
2.92000000
2.94000000
2.96000000
2.98000000
3.00000000
3.02000000
3.04000000
3.06000000
3.08000000
3.10000000
3.12000000
DIFF
.00000000
,00000000
.00000000
, 00000000
,00000000
. 00000000
. 00000000
. 00000000
. 00000000
. OQOOOOOQ
. 00000000
.00000000
. oooooooo
.00000000
. oooooooo
. oooooooo
.00000000
,00000000
.oooooooo
.oooooooo
.oooooooo
. oooooooo
.oooooooo
. OQOOOOOO
.oooooooo
.00000000
.oooooooo
.00000000
.oooooooo
. oooooooo
.oooooooo
.00000000
. oooooooo
.oooooooo
. oooooooo
. oooooooo
.oooooooo
. oooooooo
. oooooooo
.oooooooo
.00000000
.oooooooo
.00000000
.oooooooo
.oooooooo
.00000000
.oooooooo
. oooooooo
.00000000
. 00000000
.oooooooo
83

-------
P(X)
.99915526
.99921115
.99926362
.99931286
.99935905
.99940235
.99944294
.99948096
.99951658
.99954991
.99958111
.99961029
.99963757
.99966307
.99968689
.99970914
.99972991
.99974929
.99976737
.99978423
.9997999
-------
                          BETA DISTRIBUTION


A random variable is said to have a beta distribution  if  its



probability  density is:
                 k.X3"1 (1 - X)b-1 for 0 <  X <  1

     f(x) =
               i
                                   elsewhere
              T(a + b)
where   k = 	
              r(a)  r(b)








It is obvious  from the  above  that  the beta distribution is a two-



parameter function and  the  distribution  is related to the gamma



distributions.






The beta distribution is  fundamental in  the solution of the I and J



integrals used in  total sediment in transport analysis.  This



distribution  is also fundamental in the  determination of the dis-



tribution of  sediment deposited in a reservoir.  This distribution



is used extensively when  the  argument "X" (or its transform) is in



the range zero to  one.






The integral of f (x) is evaluated  from "0" to "x" with the use of



the following derivation:
                                 85

-------
Let the beta density function be defined as:


               a-1      b-1
       f (x) = X—  (1-X)	  Where 0 < X < 1 and
                f3(a, b)             -   -

                                  a > 0, b > 0



and the beta distribution function be defined as:
                  1      px a-1        b-1
       F(x) =  fj(a, b)  J  t     (1 -  t    dt

                        o


where
       3(a,b) =  J  t:     (1 -t)D-xdt =   ^a ^     (1)
                 o


See 6.2.1, page 258, Handbook of Mathematical Functions, U.  S.


Department of Commerce, National Bureau of Standards, Applied


Mathematics Series 55, June 1964. On page 263, 6.6.1, of this same


handbook the incomplete beta function is:
         6x(a, b) -     ta    (1 - t)13"  dt
and
         F(x) =  Ix (a, b) = gx(a, b)/g(a, b)           (2)
and                   .

           (a, b) = a~  Xa F(a, 1-b; a+1; X)
where F(a, 1-b; a+1; X) is the hypergeometric series.
                              86

-------
The circle of convergence of the Gauss hypergeometric series


is  |Z| < 1.  Within this circle F is defined as shown:
                        F(c)      V  r(a+n) F(b+n) Zn
    F(a, b;  c;  z)  = r(a)  r(b)   ^       r(c4tl) n.
                        r(c)       r(a) r(b) z" .  r(a+i) r(b+i) z ,
                     r(a) r(b)  I      r(c) 0!          rr	
                                   r(a+2) F(b+2) Z2 + F(a+3) T(b+3)  Z3
                                       F(c+2) 2!          F(c+3) 3!
 Using recurrence formulas:



           T(z+l) = ZF(z) and



           r(z+n) = (n-1 + z)  (n - 2 + z)  ...  (1 + Z) F(1 + z)
 then:
                       r(c)       [ r(a) r(b)   ar(a) br(b) z
     F(a, b; c; z) = r(a) r(b)    I     r(c)        cr(c)
                            T(a) b  (b+1) F(b) Z2 +
                                   T(c) 2!


                                                         3
                     a(a+l)(a+2)  T(a) b  (b+1) (b+2) T(b) Z
                           c(c+l)(c+2) T(c)  3!
 and upon further reduction:
                                87

-------
                       r(c)      [  r(a)  r(b)  4- r(a)  r(b)  abz
   F(a, b; c; z) =  r(a)  r(b)         r(c)         r(c)     c
                                       F(b)   a(a+l)  b (b+1) Z
                                                             2
                                     r(c)        c(c+l)  2!
                                       F(b)   a(a+l)(a+2)  b(b+l) (b+2)Z3
                                     T(c)         c(c+l)(c+2) 3!


and:

                      T(c)    .  F(a)  T(b)  ["     abz     a(a+l)  b(b+l) Z2
   F(a, b; c; z) =  r(a)F(b)       r(c)      L    T(c)       c(c+l)  2!
                                            a(a+l)(a+2)b(b+l)(b+2)  Z3
                                                       (c+2)  3!
Let:  a=a, b = 1 - b, c=a+l, and Z = X
then:


     F(a, 1-b; a+1; x) = 1 +   a+1+      (a+l)(a +1+1)  2!
                             a(a+1)  (a+2)  (1-b)  (1-b+l)  (l-b+2)  X3 ,
                                (a+1)  (a+1+1)  (a+1+2)  3!
and:
                           a(1-b)  (2-b)  (3-b) X3
                                 (a+3) 3!
                                      88

-------
then:
                                    (n-b) 0.50.  By taking advantage of the symmetry which is expressed

as follows :


        I (a, b)  = 1 - 1^ (b,  a)          (5)

a good comparison was  obtained.  In the data analysis model  the

integral was solved using the series  of  equation (4)  and  the

symmetry of equation (5) where the series (4)  was truncated

when the last term was equal to 1'10~7 or less.   In  the model

"a" and "b" were  allowed to assume any value greater than zero without
                                   89

-------
any apparent discontinuity.  Solving the inverse of the integral can

be accomplished using Newton's method and will be described in a

later portion of this narrative.




It is left to the experience of the user to use this technique with

good judgment.




Solving for mean and variance of the beta function given "a" and
  "b", where a > 0 and b > 0

The general term for the derivation of moments is as follows:



                 =   T(a+b)  T(a+r)
              yr    T(a) T(a + b + r)


where  r = 1, 2, 3, ... or the first, second, third ... moments.




When r = 1 the first moment or mean is:



              ,.  _   r(a+b)
               1     T(a) T(a + b + 1)
Let:  a + b = c

and the recurrence formula:


      T(z + 1) = Z T(z)


then
            F(c) a T(a)        .     a
            r(a) c r(c)    = a/c =    ~ = mean'
                                 90

-------
 the second moment =• u_ and:
                              Ha+2)
                  *   T(a) T(a + b + 2)


Let:    a + b = c


and using the recurrence formulas



       T(z + 1) = ZF(z)


       T(z + n) = (n - 1 + z) (n - 2 + z) ... (1 + z) r(z + 1)
 then
            r(c)  a (a+1) T(a)   =  a(a+1)
            r(a)  c (c+1) F(c)      c
or

                  (a+1)
       M2  "   (a+b)  (a + b + 1)



Variance  =   a2  = E(x2) - y2 and E(x2) =  y
                           1               2


Then:
                                        2
                     a (a+1)
          0  -  (a+b)  (a + b + 1)     (a+b)2


and:

         a2  = a(a+b)  (a+1) - a2(a + b + 1)

                   (a+b)2  (a + b + 1)


which reduces to:

                	ab	
          n2 _        o               = variance.
          0  =  (a+b)2  (a + b +  1)
                          91

-------
Solving for "a" and "b" in terms of mean and variance



Solve first for "b" in terms of "a" and V'
           b =
                   y
                    i
Solve for "a" by substitution of "b" in equation for variance
           a-            2
                              92

-------
Inverse of Integral



The inverse of the integral of the beta distribution function was



first attempted using Newton's method.  The computation of the



inverse in this manner proved to be very sensitive at the end points



and also lacked continuity for large values of the parameters "a"



and "b".  Tne mechanism used was as follows:





     Let:  ZX = X S~   (1 - Xt)
           FN  = value of integral for X



           FN  = true value of integral
Then:

                       FN  - FN

                  Xt - —^-^—£   (Newton's method)
The final attempt for the solution of inverse of the aforementioned



integral made use of the following recursion formulas:




                               .an  ,-
                              x  (1-x)
                                     _

      Ix(a,b) - Ix(a,b-l) +  (a+b-l)B(a,b)







and:  Ix(a,a) = 1/2  [1 + Ix,(l/2,a)]




              =1-1/2 I    ,   (a, 1/2)
                         JL""*X




      where:  x' - 4(x - 1/2)2  or x = 1/2(1 + 41




The technique used to estimate  the value of the inverse then became:
                                 93

-------
      Let:   FN  = true value of integral
            FN' = X  - X  ,
                   n    n-I
            FN" = FNX  - FN     (values of Integral for Xfl and

                     n      n-1
     Then:  X    =X  -   FN'ClN   - FN )/FN"

                    n
The subsequent narrative includes the computer generated tables for



a range of distribution parameters "a" and "b".  The table is self-



explanatory and the values shown therein were compared with those



included in K. Pearson's Tables of the Incomplete Beta Function,



Cambridge (1956).  This comparison indicated the computer generated



table was within all significant digits of those of Pearson's Tables.








SUBROUTINE BETAX



This subroutine is the electronic computer application for the solution



of the beta distribution function and its inverse.
                                   94

-------
The entry for the solution  of  the inverse  is  labeled  BETAX1.



The arguments for entry  are labeled as  follows:


                     A = value of a

                     B = value of b

                     XR = value of x

                     BETA =  value of distribution  function
                             and true value for the inverse
                             computation

                     XC = value of the inverse
The label  CONGAM is  the title of the computer function  for the solution

of the  complete  gamma function.   This function (subroutine type) will

be discussed  in  a subsequent portion of this narrative  which concerns

the subroutines  required for the electronic computer  application for

the solution  of  the  incomplete gamma function.



All other  labels included in the BETAX subroutine  are self-explanatory.
                                   95

-------
     PROGRAM  QPIVTR      7U/71,   0°T = 1                            FTN 
                   CALL  9ETOX1 ( A , 8, X , BFT A, XC)
                   DIFF=X-XC
                   IFtitC.EQ.S9.» GO TO 21
                   WRITE (IH,?0)X,3FT41,XC,DIFF
               20   FORMAT I20X.F6.2, 3(2X,FIO. 7) )
                   GO TO 25
25             21   HPITE(IW,22)X,BETA1
               22   FORMAT(?OX,F6.2,2X,F10.7,2(1X»NOT  DEFINED'))
               25   COIITIHUE
                   LINE=LINF«1 S IF tLINE.EQ.2)LINE=0
                   GO TO 10
30             101  IF I  rj . GT.  5. )  GO TO  200
                   8=8*0.5
                   A = B
                   GO TO 1?
               201  CALL  FXIT
35                 E«D
           OPIV^R      7<«/7
-------
                   DRIVER
                              71./7".   OPT-l
                                                                       FTN i,.2tP3SO
                                                                                          75/03/25.  09.12.28.
                                                                                                                    PAGE
       SYMBOLIC  REFERENCE MSP IR =
ENT»Y POINTS
1C21U  DRIVER
VARIABLES
               SN   TYPE
       ft
       BETS
       OIFF
       FX
       IK
10366
10573
1Q376
    0
    0
10370'
    1
FILE NAMES
 1.102  FIN
       TSPE5
                 REAL

                 REAL
                 INTEGER
                 INTEGER
                   MODE
                                  RELOCATION
                                      VARBLS
                                      UNITS
                                      V4RBLS
                                6li»3  FOU
                                61
-------
   SUBROUTINE 3fTSX      1<>/1<,    0"T=1                            FIN  "..3«P3SO        75/03/35.  09.13.Z9.      PACE


                   sun=>ouirnF BETS* ia,e,*«,nFTa,xci
                   COH-10N/IJNITS/IH, IR
                   COMMON/VAP8LS/FX,XAB,FOFX
                   X = XR
 5                 ASSIGN eooo  TO  isx
               10  IOH=0 1 XA = X  t  IF(A.NE.B)  GO TO 1?
                   IOW=1 t 87=0.5  1  TZ=BZ  t MAX = 0
                   XA=XA-0.5 $  XA =   GT  TO  30
                   AR=A J 1C=OZ  »  ISH=0
 5                 GO TO 50
               30  «a=OZ J BC=A  t  XA=1.D-XA t ISH=1
               50  GX=ar? J FACTN=1.D  t  FOFX = 1.0 « BETAM=1.0
                   00 liO K = l ,50
                   BK=K J FACTN=FACTN'BK J BD=BK-BC
 3                 GX=GX«XA"ED  J  FX=GX/(
                   FOFX = FOFXtFX  H  I F ( ABS (FX) . L T . 1. OE-1 0) GO TO 90
               60  CONTINUE
                   PRINT 70
               70  FOP'-tAT IIX'NO  COIIVERGFNCE FOUND FOR FX - ABORTED*)
 5                 CALL FXIT
               90  XM=»BS(XA> |  BETAH = XM«*al/AB J ARGA = AB<-BC
                   XAIliCOIir.ACtABOA) /(CONCAH(HB) »COW, AM I BCI I
                   BKTAH^xaO'GETAM'FOFX  j  IF(ISW.Ea.11 BETAM=1.0-BETAM
                   IFC3ETAH.LK.1.0E-1"!)  BET»H = 0.0
 1                 IF(MAX.HE.0)  GO  TO  100
                   GO TO 150
              100  XBP*X»M  I CONA = CONGAM(a)
                   00 110 K=1,HAX
                   CK=K r CKK=CKtT7  t  APGA=A*CKK $ COND=CONGAM?ZX*XAP = *FK.6
                  1  /IX'XAn =  'F15.6>
              110  COHTIMUF
 >1            l?o  fOPIBT II X'MAX  = "Iit,SX*X = •F15.7,5X»n? = »F15.7
                  t  /1X«A = »F15.?,2X'n = 'F15.7i2X«aETA = *F15.7)
                         6TAH t  IFdOH.NE.ll  GO TO 160
                      a = t .0- (O^'B^TAH)  t  IF ( X.LT. 0. 5) BETA=1,0-Bf TA
              lf,Q  GO TO I".X (?000,250,300,31Q)
1.5                 ENT»Y BStaxl
                   X=1.0 t IF (BFTA.EO.1.1)  GO TO "t50
                   X=t.O-1.0E-5  ! UC=0 t TEST=BETA t SAVE=X
                   IF(3ETA.GT.I.nE-7) GO TO 200
                   X=91. I GO TO i»50
50            ?00  ASStHH 750 TO  ISX « GO  TO  10
              ?50  IFINC.GT.OI  GO TO 300
                   IFCDETA.LT.TESTI GO TO  Z10
                   IFOFT4.fO.TFSn GO TO  (.50
                   SAVF=X * x=X-1.0E-l t IF(X.LE.O.O» GO TO 2*0
55                 SAVE=X t GO TO »00
              ?BO  X=X1=SA«E * ASSIGN 300  TO  ISX « GO  TO 10
              300  FX1=BETA » X=X3=Xl-l.OE-7
  SUBP1UTH.E  BFTAX       7W71.   OPT=l                            FTN l,.3»P3'iO        75/03/35.  09.13.39.


              105   ASSIGN ?10 TO ITX « GO  TCI  10
              i.n   r*7-oFTA » nx=x?-Xl t OXDP=FX2-FX1

-------
  SUBROUTINE BF.TSX       7t,/?tt   OPT=1                            FTN I..2+P390       75/03/25-  09.13.29.      PAGE


             305  ASSIGN 510 TO ISX t GO TO 10
             310  FX2 = 8fFT«  « OX=X2-X1 1 OXOP=FX2-FX1
60                IF(OXOO.EO.O.O) GO TO <*50
                  X3=X?-(OX*(FX2-TEST(/DXDP) $ ERROR  =  X3-X2
                  IFIUBS(ERROR) .LT.1.0F.-7) GO TO  1(50
                  X1=X2 $ X=X2=X3 t NC=NCtl $ FX1=FXZ
                  IF(XZ.GT.X1»3.0)X=X2=3.0»X1
65                IFINC.LE.100) GO TO 305
             i.50  XC=X I GO TO 2000
             2000  RFTURN
                  END

-------
                 SU1RCUTHE  BETiX
                                        74/74   OPT = 1
                                                                                 FIN  4.2*P380
                                                                                                    75/03/Z5. 09.1Z.Z9.
                                                                                                                             P«GE
                 SY190LIC  PEFEPE'tCE MAP
O
o
ENTRY POINT"
3 BETAX
ve»le=iLES SN
o a
414 A PGA
403 PC
0 ': £ T a
411 8K
375. 3Z
420 CK<
421 COM3
434 CXQP
406 FACTN
0 FX
43? FX2
373 IGW
404 ISH
o Iw
377 MAX
400 NP
425 TEST
371 X
1 XA9
415 XAP
0 XC
1 XR
431 X2
FILE 'JAPES
OUTPUT
EXTEP'IALS
CONGAS
IMLIN-: FUNCTIONS
ans
"TATEHFNt LAf-ELC
11 10
45 30

206 BETAX1
TYPE RELOCSTION
°E4L F.P.
REAL
R^ AL
°EaL F.P.
REAL
REAL
R EaL
REaL
RF8L
REaL
RFAL VAROLS
"EBL
INTEGE0
INTEGER
U.TEGrP UNITS
IMEG-R
INTEG'P
REAL
REAL
REAL VSRflLS
0 r AL
?-tl F.P.
°EAL F.P.
PFAL
MCD^
FnT
TYPE APGS
OFAL 1
TYPE APGS
REAL 1 INTRIN

25 12
53 50



402
0
412
407
401
417
416
433
436
2
430
405
1
372
410
424
426
376
374
423
422
413
427
435












OR
8
in
SET AM
RP
CK
CONA
OX
ERROR
FOFX
FX1
GX
IR
ISX
K
NC
savE
TZ
xa
XAC
XAQ
XM
XI
X3



EXIT








REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
PEAL
PEAL
PEAL
INTEGER
INTEGER
INTEGER
INTEGER
PEAL
PC AL
RFAL
REAL
REAL
RFAL
REAL
REAL









324 70 FHT 103 90
134 100
173 150
231 250
253 305
!04 2000
COMMCN BLOCKS
UNITS
VAPBLS
STATISTICS
»ROG»AH LENGTH
0 110
203 160
243 260
255 310

LENGTH
2
3

4378 217






























CM LaPELEO CCfMON LENGTH 58 5
                                                                                                    F.P.
                                                                                                   VAR6LS
                                                                                               37  15
                                                                                                0  60
                                                                                              332  95
                                                                                              342  120
                                                                                              227  200
                                                                                              247  300
                                                                                              302  450
FMT  NO REFS
FMT  NO REFS
                                        74/74   OPT=1
                                                                                                    75/03/75. 09.12.31.
                                 FUNCTION  CONGAM  (SLF )
                                 COMMON/UNITS/IH,IR
                                 rtTwenrrnw   or rut

-------
          FUNCTION CQNGAM
                               7W7I.
                                       OPT = 1
                                                                        FTN <».2+P390
                                                                                            75/03/25.  09.12.31.
                                                                                                                      PAGE
      15
O
       35
       (.0
       1.5
       50
     FUNCTION  CONGAM  (ALF )
     COMMOII/UNITS/IH.IR
     DIMENSION    8C  (8)
     DATAUBC  (K>  ,  K = 1,8 )
    I   -0.397056937
    2     -0.193527818  ,
     PI = 3.111159265358979
     KSH -  1
     CONGAM =  0.0
                                                        -0.577191652 , 0.988205691  ,
                       0.918P06857  ,   -
                           0.03556831,3
                                                              0.75670<.078
                                                                )
                                                                             0. <(8219939<«t
IF ( ALF . GT. 1. E-10 )
IF ( ALF . LT. 1. E-10 )
CONGAM = 1.0
GO TO 100
NCP - ALF
SAVE = ALF
ALFl = A3S (NCP)
COMP = 0.0
COMP = ALF » ALFI
GO TO 1
GO TO 5
   IF ( ABS  (COMP)  .GT.  l.E-10  )     GO TO 15
   PRINT 10
10 FORMAT  (  8X,  28HALPHA  IS A  NEGATIVE INTEGER
   GO TO 100
15 KSW = 2
   ALF = i.o - ALF
   IF ( ALF  . GT. l.E-10   )   GO TO 1
   PRINT 11
H FORMAT  (  «X,  30H9AO EQUATION IN TERMS OF ALPHA
   CALL EXIT
19 ALF = SAVE
   CONGAM  =  PI /  (  CONGAM  »  SIN ( PI » ALF) )
   GO TO 100
 1 MARK -  1
   FR = 1.0
   N = ALF
   COM" =  0.0
                                                      8X, E19.1? )
      N = COMP
CK OT(" Cl    8 FORMAT  (  8X,  lit  ,
      KN = N -  1
      IF (KN.GE.l)  GO  TO 20
      IF ( ALF  .LT. 1.0  )   GO TO 9
      X = ALF - 1.0
      GO TO 

EPA-600/2-77-179d
August 1977
Environmental Protection Technology Series
                 PREDICTION  OF  MINERAL  QUALITY  OF
                              IRRIGATION RETURN  FLOW
                               Volume  IV.  Data  Analysis
                                          Utility Programs
                                Robert S. Kerr Environmental Research Laboratory
                                         Office of Research and Development
                                        U.S. Environmental Protection Agency
                                                Ada, Oklahoma 74820

-------
                RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology.  Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:

      1.  Environmental  Health  Effects Research
      2.  Environmental  Protection Technology
      3.  Ecological Research
      4.  Environmental  Monitoring
      5.  Socioeconomic Environmental Studies
      6.  Scientific and Technical Assessment Reports (STAR)
      7.  Interagency Energy-Environment Research and Development
      8.  "Special" Reports
      9.  Miscellaneous Reports

This report has been assigned  to the ENVIRONMENTAL PROTECTION TECH-
NOLOGY series. This series describes research performed to develop and dem-
onstrate instrumentation, equipment, and methodology to repair or prevent en-
vironmental degradation from point and non-point sources of pollution. This work
provides the new or improved technology required for the control and treatment
of pollution sources to meet environmental quality standards.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.

-------
                                             EPA-600/2-77-179d
                                             August 1977
          PREDICTION OF MINERAL QUALITY
            OF IRRIGATION RETURN FLOW
                    VOLUME IV
         DATA ANALYSIS UTILITY PROGRAMS
                       by
              Bureau of Reclamation
         Engineering and Research Center
                Denver, Colorado  80225
                 EPA-IAG-D4-0371
                 Project Officer
                Arthur G. Hornsby
            Source Management Branch
Robert S.  Kerr Environmental Research Laboratory
              Ada, Oklahoma  74820
ROBERT S.  KERR ENVIRONMENTAL RESEARCH LABORATORY
      OFFICE OF RESEARCH AND DEVELOPMENT
     U.S.  ENVIRONMENTAL PROTECTION AGENCY
              ADA, OKLAHOMA  74820

-------
                            DISCLAIMER

     This report has been reviewed by the Robert S.  Kerr
Environmental Research Laboratory, U.S. Environmental Protection
Agency, and approved for publication.  Approval does not signify
that the contents necessarily reflect the views and policies of
the U.S. Environmental Protection Agency, nor does mention of
trade names or commercial products constitute endorsement or
recommendation for use.

-------
                               FOREWORD
     The Environmental Protection Agency was established to coordinate
administration of the major Federal programs designed to protect the
quality of our environment.

     An important part of the Agency's effort involves the search for
information about environmental problems, management techniques and
new technologies through which optimum use of the Nation's land and
water resources can be assured and the threat pollution poses to the
welfare of the American people can be minimized.

     EPA's Office of Research and Development conducts this search
through a nationwide network of research facilities.

     As one of these facilities, the Robert S. Kerr Environmental
Research Laboratory is responsible for the management of programs to:
(a) investigate the nature, transport, fate and management of pollutants
in groundwater; (b) develop and demonstrate methods for treating waste-
waters with soil and other natural systems; (c) develop and demonstrate
pollution control technologies for irrigation return flows; (d) develop
and demonstrate pollution control technologies for animal production
wastes; (e) develop and demonstrate technologies to prevent, control
or abate pollution from the petroleum refining and petrochemical
industries; and (f) develop and demonstrate technologies to manage
pollution resulting from combinations of industrial wastewaters or
industrial/municipal wastewaters.

     This report contributes to the knowledge essential if the EPA is
to meet the requirements of environmental laws that it establish and
enforce pollution control standards which are reasonable, cost effective
and provide adequate protection for the American public.
                                        William C. Galegar
                                        Director
                                        Robert S. Kerr Environmental
                                          Research Laboratory
                                    111

-------
                              PREFACE


This report is one of a set which documents the development and
verification of a digital computer modeling effort to predict the
mineral quality changes in return flows occurring as a result of
irrigating agricultural lands.  The set consists of five separate
volumes under one general title as follows:

     "Prediction of Mineral Quality of Irrigation Return Flow"

          Volume I.    Summary Report and Verification

          Volume II.   Vernal Field Study

          Volume III.  Simulation Model of Conjunctive Use and
                       Water Quality for a River System or Basin

          Volume IV.   Data Analysis Utility Programs

          Volume V.    Detailed Return Flow Salinity and Nutrient
                       Simulation Model

This set of reports represents the culmination of an effort started
in May 1969 by an interagency agreement between the U.S. Bureau of
Reclamation and the Federal Water Pollution Control Administration
on a joint research proposal on the "Prediction of Mineral Quality
of Return Flow Water from Irrigated Land."  This research project
has had three different project identification numbers during the
project period.  These numbers (13030 EH, EPA-IAG-048-(D) , and
EPA-IAG-D4-0371) are given to avoid confusion on the part of indi-
viduals who have previously tried to acquire project reports for
the earlier project numbers.
                                IV

-------
                             ABSTRACT

    This volume of the report contains a description of the data
analysis subroutines developed to support the modeling effort
described in Volume III.  The subroutines were used to evaluate
and condition data used in the conjunctive use model.  The sub-
routines include (1) regression analysis, (2) Gaussian probability
function, (3) Beta distribution,  and (4) Pearson's incomplete
gamma function.  For each of these subroutines, a brief theory is
given plus a program listing and sample problem.

    This report was submitted in  fulfillment of EPA-IAG-D4-0371 by
the Bureau of Reclamation, Engineering and Research Center, under
the sponsorship of the Environmental Protection Agency.

-------
                              CONTENTS




                                                              Page




Introduction 	     1




Regression Analysis	     2




Program Listing Regression Analysis	    20




Sample Problem Regression Analysis (Ralston and Wilf). ...    47




Sample Regression Analysis (Hold Data)  	    56




Normal or Gaussian Probability Function	    69




Program Listing Normal Probability Function	    73




Sample Problem Normal Probability Function 	    77




Beta Distribution	    85




Program Listing Beta Distribution	    96




Sample Problem Beta Distribution 	   105




Pearson's Incomplete Gamma Function	   177




Program Listing Incomplete Gamma 	   186




Sample Problem Incomplete Gamma	   201
                               VII

-------
                             INTRODUCTION
Hydrology and related fields have a continued requirement for various
tools of modern statistical theory. Most of the tools are needed for
the examination, extension, and analyses (time series) of different
forms of basic or observed data.

Prior to the advent of the electronic computer the extensive use of the
techniques of modern statistics was prohibitive because of the many
laborious and tedious hand computations. However, as computer technology
advanced, resulting in greater computation speeds and larger rapid access
storage facilities, the usage of these statistical techniques grew as
various forms of computer applications.

It is obvious that no one tool will solve all problems encountered in
the analysis of hydrologic data.  Further, a comprehensive computer
package that was portable and not exclusively propertied was beyond
the scope of a reasonable effort both in time and money.  Within the
limits of a reasonable effort it was determined that a computer package
composed of computer applications of regression analyses, tools for
the solutions of the normal, beta, and gamma distributions would be a
good initial step.  Many of the other tools of modern statistical
theory such as chi-square tests, Markovian analyses, and pseudo-distribution
functions, to name a few, are extensions  of the tools contained in this
computer package.

In the subsequent narrative a brief description is given of some of the
applications of these statistical tools in the field of hydrology.
                                     1

-------
                            REGRESSION ANALYSIS




The computer application of this regression analysis has Been designed




to be interactive with a terminal.  The interactive feature provides




easy access to the computer and reduces the narrative required in terms




of a user's guide.







Regression analyses are used extensively in the field of hydrology in




the manipulation and extension of data. In this respect, the computer




application was adapted to  fit the more common needs of the practiced




hydrologist with some fundamental skill in statistics. This adaptation




does not, however, preclude other uses of the regression analysis for




problem-solving in areas not related to hydrology.







The subsequent discussion will concern the various features of the




computer application and.where necessary.a brief explanation of statistical




theory will be included.






Data Input




The input data are limited to a maximum of 11 variables, one of which




is the dependent variable and the remaining 10 are the independent




variables.   The maximum number of observations (data points) is 500.




The two maxima were chosen to fit the majority of hydrology applications.








Each variable must have a title and must also have a reference index of




at least one and not more than two digits.

-------
The entry of the above data can be accomplished by any one of two




choices. When the sample size is relatively small and the number of




variables are few, entry of the data via the terminal is more expedient.




Data entered in this manner will be formatted internally and written




on an output file labeled OUTO.  The internal format used in this case




is compatible to that required when data are entered via a read device.









The remaining means of data entry is via a read device. The input file




name for the read device is labeled OUTA.  Entry of data via the read




device is more expedient when the sample size (number of data points)




is large, the number of variables many, and where variables are trans-




formed prior to entry into the regression analysis.  Surface responses




are cases in particular where simple stand-alone mechanisms would




be a judicious choice of transformation of variables prior to data




entry.









The format required for entry of data concerning the variables is as




follows:




   Variable title (first line) - 1X,7A10,A9




   Variable index and number of data points (second line) - 9X,I3,6X,I3




   Data points for variable (third, ....lines)  - 1X,6F13.0/(1X,6F13.Q)




   Data points must include decimal point in field, if applicable.






The title of the variable is stored in a two-dimensional array labeled




LTITLE, the index of the variable is stored in a single-dimensional

-------
array labeled MVAR, the data points are stored in a two-dimensional




array titled XOB, and the number of data points are stored in a single-




dimensional array labeled NPX.  A check is made to determine if all




variables entered have the same number of data points and when this




check fails, a program-controlled error message is displayed at the




terminal, otherwise the number of data points entering the regression




analysis is stored with the label NP.








All other information pertinent to the regression analysis is entered




via the terminal as responses to queries displayed at the terminal.




Whenever the query requires a "yes" or "no" response, any single




character will suffice for the "no" response; however, the "yes"




response must be the three alpha characters YES.








The query format as displayed at the terminal is self-explanatory and




the response required is direct, hence any discussion in this respect




would be redundant.








Output Files




The computer application for the regression analysis has provisions for




three output files.  The file assigned the label OUTPUT is used for all




queries displayed at the terminal as well as the display of all error




messages displayed at the terminal that are program generated.









The output file assigned the label OUTA is used to store the formatted




data,  i.e.,  variable name, index, and data points as accepted via terminal




input.

-------
The output file assigned the label OUTB  is used  to store  the  results




of regression analysis, the intermediate matrices and the residual




lists.  Options are provided to write the intermediate matrices and




residual lists. The intermediate matrices are the (1) raw sums of




squares and products  (A. matrix),  (2) covariances (C matrix),  and




(3) simple coefficients of regression.








The residuals can be  listed at each, step of the regression analysis.




A list of variables from the input set will always be included as part




of this output file.






Program Structure




The program (electronic computer application) structure is composed




of the main program and four subroutines and requires approximately




115,000,, words to load. The program can be used as a stand-alone




application or can be used as five subroutines where four remaining




subroutines are monitored by the main subroutine or program.






Main Program - REGRES




The main program monitors all subroutines and nearly all of the




terminal queries are contained in the main program.






   Problem Title




   The problem title can be represented with at  least one line (79 or




   less characters per line)  or with as many as  five lines.   The




   number of lines are stored under the label NTTTLE and the lines of

-------
title information are stored in a two-dimensional array labeled




KITTLE.  The lines are entered left justified and will Be




centered internally on the basis of an 80-character line.






Variable Sequence




The variable sequence is controlled by the order in which each




variable is entered at time of input either via terminal or read




device.  The variable sequence is stored in a single-dimensional




array labeled KRANK.  The variable sequence can be changed and only




selected variables within the input data set will be allowed to




enter the regression analysis.  When selected variables are not a part




of the input data set, a program-controlled error message will be




displayed at the terminal. The index of the dependent variable is




stored under the label KVAR.






Variable Transformation




The purpose of variable transformation is to use a simple linear




regression model in terms of the transformed variables rather than a




more complicated model in terms of the original variables. When a




nonlinear model, defined as nonlinear in parameters to be estimated,




can be expressed by adequate transformation of variables in the form




of a linear model, it is referred to as being intrinsically linear,




and such is the limitation of suitable transforms.  This particular




computer application of a regression analysis has purposely been




further constrained by allowing only six rather simple transformations

-------
to be accomplished internally.  These six transforms are as


follows:


         Form                       Alpha configuration


     X'±. - log X..                        LOG10


     X'   = In X±.                         LOGE


     X1  . = /1T7~                         SQRT



     x'ij = Xi1                            EXP


     X1   = sin X..                        SIN



     X' .. = cos X. .                        COS
       13        13





The above transforms are those most commonly used in hydrology where


the sine and cosine transforms are a bit far out and the log and In


transforms seem redundant where one can be expressed in terms of the


other.   In any event, the computer application can be easily modi-


fied to  discard and replace some of the six transforms listed


above or number of transforms performed internally can be expanded


to as many as 10.






The alpha configurations of the transforms are stored in a single


dimensional array labeled ITMNS.






When it  is desirable to represent a "kthu order model - single


independent variable, another alpha configuration is used.  This


alpha configuration is the three-character signal POW.  The


response to this signal will be a query concerning the degree


(order) of the polynomial.

-------
The  exponents  or  order  of  polynomial  are  stored  in  the  single

dimensional  array EXPO.



The  use  of transformed  variables  should Be  investigated with an

examination  of the residuals as obtained  as a result of the

regression equation. An aid in this examination  has been provided

by listing the residuals when the dependent variable has been

transformed  in terms of the original  independent variable  (exception

sine and cosine).


F Levels

Each of  the  observations of the dependent variable are random

variables, hence  all variables that are functions of this  set

are  also random variables. These  two  functions are the mean  square

due  to the regression and  the mean square of the residuals.   Both

functions have particular  distributions, means, variance,  and

moments.  Assume  that the  errors  (deviations) e.  are independent,

i.e., N(0,a2)  variables, and also that it can be demonstrated that

mean square  due to the  regression multiplied by its degrees  of

freedom  (regression) and the mean square of the residuals multi-

plied by its degrees of freedom (residual), both will follow a

chi-square distribution. It can also be shown that the two variables

are  independent. Without further  discussion it can be said that:


                _ mean square due to regression
                  mean square due to residuals


represents the F ratio and said ratio follows an F distribution.

-------
Nearly all statistical texts or handbooks have tables for the




1 percent (99 percent) and 5 percent  (95 percent) F levels.









The regression analysis as represented by this computer application




has provision for the entry of F levels.  The F level to enter a




variable in the regression is stored  under the label FLEVEN and




the F level to exclude a variable from the regression is stored




under the label FLEVRE.









When no F level is given the variables enter the regression in the




sequence stored in the array KRANK.








The F level to exclude a variable from the regression should always




be less than or equal to the F level  to enter a variable in the




regression.








It is suggested that one assume two degrees of freedom for the regres-




sion and twenty degrees  (>20 data points) to estimate F levels.




Under such an assumption use F level  ^3.5 for 5 percent (95 percent)




and F level ^6.0 for 1 percent (99 percent).

-------
                        Ranking of Data Points

This application has the provision to rank the data points (observa-

tions) by magnitude.  In some hydrology studies this sort of license

is taken without statistical justification.  One would have to

possess a keen knowledge of the observed data to use this facet with

a linear model.  However, the mechanism to do the ranking is a good

tool in setting up distribution studies.



The alpha signal to rank in ascending order of magnitude is LOW and

to rank in descending order of magnitude the alpha signal is HIGH.

These alpha signals are stored in a single dimensional array labeled

IRANK,

   Miscellanea

   The number of variables entered during input is stored under the

   label KCONT.  The number of variables in regression analysis

   is stored under the label KNUM.  Intermediate storage of ranked

   data points is provided by the single dimensional array labeled

   XSORT.



Subroutine VARTRN

This subroutine is a simple setup mechanism for the six transformations

The argument list is as follows:


           KA    = Order of variable to be transformed
           NUM   = Number of data points
           KTRAN = Order in the transform list
           EXPP  = Exponent, if any
                                   10

-------
All variables are shoved through this subroutine even though no

transform is desired.  The data points for each variable  (transformed

or raw) are stored in a two dimensional array labeled XRT.  All data

ranking, if required, is completed before entry to this subroutine.



Subroutine PRESET

This subroutine is used for the sole purpose of setting the indices JB

and KB in preparation of the quadratic sort mechanism used in ranking

the data points by magnitude.



Subroutine SORT

This subroutine is used to rank the data points in terms of magnitude.

The subroutine uses a quadratic sort mechanism.  Detailed discussion

of this subroutine is not considered pertinent with respect to the

regression analysis.



Subroutine REGCOR

This subroutine contains the actual computational sequence of the

regression model.  Before discussion of the details of this subroutine

it might be wise to begin with a little of the philosophy of the linear

model where the model has the following form:


     y = a0 + axx    + a2X2 + . . . + s^x^ + e   (0 < n < 11 )
         where: e  represents the residual and every other
                   term on the right side of the equation
                   represents the regression.
                                    11

-------
i'he fundamental notion is to complete the regression of all the




variables as a series of straight line regressions where each of




the straight line regressions represents a step,or as some say, stage.









The first computational effort is to determine the previously mentioned




A matrix which contains the sums and cross products of all the variables




in the regression, including the dependent variable.








The second computational effort is to determine the covariances of all




the variables, which  is the previously mentioned C matrix.








The third computational effort is to determine the simple correlation




coefficients of all the variables, which is the previously mentioned




R matrix.
The next and final computational effort  prior to the initiation of  the




straight line regressions or steps is  to augment the R matrix in the




following manner (n = number of independent  variables):
       B =
R(n x
T( 1 V
\ -L A
-I(n x
—
n) !
n) .
n) .

T'(n
S(l x
0(n x

x 1) !
1) .
1) .

I(n x n)
0(1 x n)
0(n x n)

                                  12

-------
where:  R(n x n) = matrix of simple correlation coefficients



        T(l x n) = correlation vector with response to dependent

                     variable
       -I(n x n)



       T' (n x 1)



         S(l x 1)



         I(n x n) = identity matrix
negative identity matrix



transpose of T



correlation of response with itself (R   ~= 1)
                  F                   yy
As an example, consider the following model:
       y = aQ + alXl
                  a, x.
                   4 4
then:
Rll

R21

R
31

R
4 1

R .
7l
-1
0
0
0
R12

R22

R
32

R, .
42

R
72
0
-1
0
0
R13

R23

R
33

R
4 3

R
73
0
0
-1
0
R14

R24

R


R
|L |l

_
R
74
0
0
0
-1
R17

R2y

R
37

R
4y
L _
= 1

0
0
o
0
1

o

0


0


0

Q
0
0
0
0

1

Q


0


0

0
0
0
0
0

0

1


0


0

0
0
0
0
0

0

0


1


0

0
0
0
0
the B matrix is used to determine the F level of each of the independent



variables and choosing that independent variable with the highest F



level to enter the regression, if this F level is equal to or greater



than the critical F level for entry.  The computation of the F level



is as follows:
                                    13

-------
     Let :   V be a  measure of  variance


           DEGF -  degrees of  freedom of the residual


     then:  V. = (Bi>n+1> (B±jn+i)/B. )±    i - i,  ....  n
           F.=v.  (DEGF)/(Bn+1>n+1- V.)   1-1,  ....  n
Initially the degrees of freedom for the regression equals zero and


the degrees of freedom for the residual = NP-1,  where NP = number of


data points (observations) .





The mechanism used in updating the B matrix (augmented R matrix) as each


variable enters the regression and the updating  of the B matrix after


a variable has been excluded from the regression will be discussed in


a subsequent portion of this narrative.





Continuing with the philosophy, it might be well to examine a few


transformations of variables and the resulting models.


     No Transformations (1)


        y=a  + a x + e - one independent variable


        y = a  + a Xi + a->xo + e ~ two independent variables


        y = a  + a x  + a x  +...+ ax  + e - n independent variables





     Logarithmic Transformations (2)

        Iny = Ina  + a Inx + e     "1
                 01             >•  one independent variable
        logy = log aQ + a logx + e J


        y = a  + a Inx  + a Inx  + e - two independent variables
                                   14

-------
    Square  Root  Transformations (3)


                      1/2       1/2
         y  =  a  + a,x     + ax   + e - two independent variables




    One Independent Variable(4)


                           o
         y=a  + a,x + ax+e- second-order models



         y  =  a  + ax + ax2+...+a_xk+e- kth order models
         J     O     I     2            K.
    Two Independent Variables (5)


                                   2     2
         y - aQ + a1x1 + a2x2 + a^ +a4x2 + a^x^ + e ~ second-order


                                                          models - surfaces



         y = ao + axx + a^ + a^ + a^Xlx2 + a^ +



             aexf + a_xfx0 + aDx x. + ax  + e - third-order models -
              bl    /iz    o i ^    yz
                                                          surfaces
The above examples of transformations are but a few of the many that are


possible.  However, the examples should display the general idea of



transformations.






Transformations (1), (2), (3), and (4) are handled by the computer


application.  Transformation  (5) can be accomplished by manipulation


of the input data file with a stand-alone technique. It can be seen


that a third-order model of a surface would be near the limitation of



10 independent variables.
                                     15

-------
                   Algorithms - Updating B Matrix

Let k = index of variable entering regression
    n = number of independent variables
    i = 1,2, ..., 2n-l
    j = 1,2, ..., 2n-l
    B.. =Dkj/Dkk  *
          Dij -
Let k = index of variables excluded from regression
    n = number of independent variables
    I = k + n+1
    m = 2n-l
    i = 1,2, .. . , 2n-l
    j = 1,2, ..., 2n-l
    Update ktn vector
    i = 1,2,  . ..,  2n-l
    B.,  = Dik - D.  ID
     ik    1K    im  £m

    Note:   The  D matrix is  an exact  image of  the B matrix from
             the previous step (stage)
                                16

-------
 Labels




            Item                            Array




      A matrix                            A(ll,ll)




      B matrix                            B(21,21)




      C matrix                            C(ll,ll)




      D matrix                            0(21,21)




      R matrix                            RC11,11)




      Independent variables               X(11,500)




      Dependent variables                 Y(500)




      Students T value                    STUDT(ll)




      Standard deviation                  STDEV(ll)




      Partial F values                    PARFL(ll)




      Regression coefficients             REGCOF(IO)




      Variables in regression             KIN(11)




      F levels                            FLEV(ll)




      Variables not in regression         KOUT(ll)




      Original variable index             KSETS(ll)




      Variances                           V4(ll)




      Degrees of freedom - regression     NSTEP




      Degrees of freedom - residual       IDEG.DEGF




      Step or stage of regression         NSTEP






All other labels are self-explanatory.
                                 17

-------
Statistics





Let  n = number of independent variables



     m = n+1



             I, C =
 Original variance  (ORGVAR)  independent variable  =  C
                                                   mm


 Percent explained variance  (PEREXP) =  (1  -  B   )(100)
                                            mm
 Percent unexplained variance  (PERUNE) =  B   (100)
Multiple  correlation  coefficient  (RMULT) =  / 1.0  -



Residual  sum of  squares  (RESQR) = C
 Standard  error  of  residuals  (STDRES) =  VRESQR/DEGF





      Let   k = index  of variable



           £ = k +  m



           KJI = number of variables in  regression



           i = 1,2,  ..., KJI
Regression  coefficient  (REGCOF(i)) = B.  .,     /t;
                                       im V      ii
                                       •n


Standard error  (STDREG(i)) = STDRES          ..




                                       2
Partial F value  (PARFL(i)) = DEGF  (B.  ) /B   .B
                                    im   mm ££
The partial F value is tested against critical F level to  exclude



a variable from the regression because of a nonsignificant contribu-



tion to the response of the dependent variable.
                                  18

-------
                Regression Analysis References
1.  N. R. Draper, H. Smith,  Applied Regression Analysis,
      Second Printing, 1967, John Wiley and Sons, Inc.,
      New York, London, Sydney.
2.  R. S. Burington, D.C. May, Jr., Handbook of Probability
      and Statistics with Tables, 1953, Handbook Publishers, Inc.,
      Sandusky, Ohio
3.  M. A. Efroymson, "Multiple regression analysis," Chapter 17,
      Mathematical Methods for Digital Computers, Ralston and
      Wilf, Second Printing, 1962.
                                 19

-------
      PROGRAM REGRES     7i./7<.   OPT = 1                            FTN 1..2+P380       75/02/28. 13.13.13.       PAGE


                   PROGRAM REGRES(INPUT,OUTPUT,OUT A,OUTB,OUTD,TAP£5=OUTA,TAPEG=OUTB,
                  1TAPE7 = OUTD)
                   COMMON/VARBLS/ XOB(11,500),  XRTfll,500)
                   COMMON/TITLES/KTITLE(5,8>, LTITLEtll,8),NTITLE
 5                 COMMON/INDICE/KCONT,KNUM,IDY,FLEVEL,NP,CIT,COT,IXR
                   COMMON/KE-VS/IRANK(il> ,ITRANS(11),EXPC(11) ,KSORT (11) ,KRANK(11)
                   DIMENSION MTEST(IO)  ,  NPX(11>,IFQRM(2>,ITEM(8>,KTEM(8),XSORT(500)
                   DIMENSION MVARU1) ,NFCRM<2>
                   INTEGER CIT.COT
10                 DATA((MTEST(K),K=1,10)=5RLOG10,5RLOGE  ,5RSQRT .5REXP  , 5RSIN  ,
                  1  5RCOS  ,  <.*5R      )
                   DATA(KTEST=310523B)
                   CIT=5 $ COT=f> $ IXR=7  t  ISH=0
                   PRINT 10
15             10  FORMAT(2X»THIS IS A  REGRESSION  ANALYSIS  PACKAGE  WITH*
                  1  /2X'A MAXIMUM NUMBER OF  ELEVEN VARIABLES*)
                   ISH=0
                   KCQNT=C
                   00 20 K=l,ll
20                 MVAR(K)=0
                   NPXtK)=0
                   IRANK(K)=0
                   ITRANS(K)=0
                   EXPO(K)=0.0
25                 KSORT(K>=0
                   KR«NK!K)=0
               20  CONTINUE
               30  FORMAT(R3)
               35  PRINT 37
30             37  FORMAT(2X»00 YOU WANT  TO ENTER  ANOTHER  VARIABLE  - YES OR NO*)
                   READ 30.ITEST
                   IF(ITEST.NE.KTEST) GO  TO 100
                   PRINT 39
               39  FORMAT(2X*00 YOU WANT  TO ENTER  VARIABLE  VIA  TERMINAL-YES OR  NO*)
35                 READ 30.ITEST
                   IFUTEST.EQ.KTEST) GO  TO 59
   =                IF(ISW.NE.l) GO TO *t3
                   PRINT *
(,5                2  /2X»DECIM.«L POINT  MUST BE  IN  FIELD*)
               <*6  READ(CIT,<«9iITEM
               1.9  FORMAT (IX,7A10.A9)
                   IF(EOFICIT)) 35.51
               51  READICIT,53)INDEX,NA
50             53  FORMAT(9X,I3,6X,I3>
                   KA=KCONT=KCONT*1 $ MPX(KA)=NA  t  MVAR(KA)=INDEX
                   IF(KCONT.GT.ll)  GO TO  1020
                   DO 55 K=l,«
                   LTITLE(KA,K)=ITEM(K)
55             55  CONTINUE
                   REAO(CIT,57)(XOB(KA,K),K=1,NA)
               57  FORMAT!1X,6F13.0/1IX,6F13.0))

-------
      PROGRAM REGRES     7<»/7l»   OPT*1                            FTN 
60                 CO TO 1(6
               59  PRINT 60
               60  FORMAT(2X*TYPE IN INDEX  OF  VARIA8LE-(1-11)*>
                   KCONT=KA = KCONTU t  IF(KCONT.GT.11)  GO TO 1020
                   READ*,INDEX
65                 PRINT 65
               65  FORMAT(ZX*TYPE IN TITLE  OF  VARIABLE*)
                   READ 67,
               67  FORMAT<7A10,ft2>
70                 MVAR 95,80
               80  JX=JXH
                   XOB(KA,JX)=TEMPX
                   GO TO 75
               85  FORMAT(1X*INDEX = »I3,6X,I3)
 80             90  FORMAT(1X,6F13.6/(1X,6F13.6))
               95  NPX(KA)=JX
                   HRITE(IXR,85)INDEX, JX
                   HRITEUXR,90> (XOBCKA.K) ,K=i,JX)
                   GO TO 35
              100  PRINT 102
              102  FORMAT(2X*ARE  ALL VARIABLES ENTERED TO BE IN ANALYSIS WITHOUT*
                  1  /2X»TRANSFORMS OR RANKING-YES OR NO*)
                   READ  30,ITEST
                   IF(ITEST.NE.KTEST)  G.O  TO 10<(
 90                 DO 103  K=1,KCONT
                   KRANK(K)=MVAR(K>
                   ITRANS(K)=5ROUT
              103  CONTINUE
                   KNUM=KCONT
 95                 GO TO 160
              10
-------
             PROGRAM  REGRES     7I./71.   OPT = 1                            FTN i».3*P3BO       75/02/2B.  13.13.13.       PAGE


       115            135   KRANK(KNUM)*KVAR(KA)
                           PRINT lf.0
                      lltO   FORMAT (2X»ENTER TRANSFORM OR  (CR>»)
                           READ l
                           GO  TO 153
                      11.9   IFCJTEST. NE.378) GO TO 153
       130                 PRINT 151
                      151   FORMAT(2X»ENTER DEGREE OF POLYNOMIAL*)
                           READ'.IDEG
                           EXPO(KA)=IDEG
                      153   PRINT 155
       135            155   FORMAT(?X'ENTER RANKING  INDEX(HIGH,LOH OR  »)
                           READ 157,IRANK(KA)
                           IF(EOF(5LINPUT))156,158
                      156   IRANK(KA) =
a = 1, KN - FK FA GO TO "tO
-------
    FUNCTION  CONGAM
                         7"./7<»   OPT = 1
                                                                   FTN  . SEVERITY  GETULS
                               7
-------
          FUNCTION  COSGAM      7i*/7<«   OPT = l                            FTN  i».Z»P380       75/03/25. 09.12.31.       PAGE
CARC US. SEVERITY   GETMLS    DIAGNOSIS OF PROBLFM
      16     I                BSSIC EXTFRMAL OR INTRINSIC FUNCTION CALLED  WITH  ViRONG TYPE ARGUMENT.


          FUNCTION COMSM     7I./71.   OPT = I                            FTN 
-------
         FUNCTION  COS01M
                                                                      FTN
                                                                             + P380
                                                                                         75/03/25. 09.12.31.
                                                                                                                   PAGE
       SYMBOLIC  REFERENCE  MSP
ENTRY
<.
PC IHTS
CONGA*
VARIABLES SN
0
175
153
163
173
0
167
155
16".
15!.
172
FILE

EXTE=>

INLI'I

ALF
GC
CONGAM
F8
FOFX
IH
' K
KSH
N
PI
TEST
NAHES
OUTPUT
NJLS
FXIT
E FijNCTIC'IS
ABS


TYPE
RFAL
REAL
REAL
REAL
PFAL
INTEGER
INTEGER
INTEGER
INTEGER
REAL
REAL
MOCE
F«T
TYPE

TYPE
REAL


RELOCATION
F.p.
ARRAY



UNITS







APGS
0
ARGS
1 INTRIN
                                                     160
                                                     161
                                                     171
                                                     170
                                                       1
                                                     17".
                                                     165
                                                     162
                                                     156
                                                     157
                                                     166
                                                        ALF1
                                                        COMP
                                                        FA
                                                        FK
                                                        IR
                                                        JB
                                                        KM
                                                        HARK
                                                        NCP
                                                        SAVE
                                                        X
                                                          SIN
                         REAL
                         REAL
                         REAL
                         REAL
                         INTEGER
                         INTEGER
                         INTEGER
                         INTEGER
                         INTEGER
                         RFAL
                         REAL
                                                                    RFAL
                                        UNITS
                                                                               1 LIBRARY
STATElEf.T
132
 37
105
126
       10
       19
       1.0
       100
C01MON OLCCKS
       UMTS
                LENGTH
 16
 30
 65
107
5
IS
20
50
 6?  9
li»2  18
  0  30
116  60
                                                                                                FMT
STBTISTICI
  PROGRAM LFNGTh                2058      133
  CH LABELED CCKM3N LENGTH        28        Z

-------
INCOMPLETE BETA  FUNCTION  AND  INVERSE
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
.43
.52
.56
,60
.64
.68
.72
.76
.30
.34
.88
.92
.96
1.00
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
.48
,52
.56
.60
.64
.68
.72
.76
.80
.84
.88
.92
.96
1.00
.5 AND E
BETA (X)
.12B1884
.1825549
.2251989
.2619798
.2951673
.3259320
.3549785
.3827767
.4096655
.4359058
.4617105
.4872642
.5127358
,5382895
.5640942
.5903345
.6172233
.6450215
.6740660
.704332?
.7330202
.7748011
.8174451
.8718116
1.0000000
1.0 AND E
BETA (XJ
.0202041
.0408337
.0619163
.0834849
.1055728
.1232202
.1514719
,1753789
.2000000
.2254033
.2516685
,,2738897
.3071797
.3366750
,3675445
,4000000
.4343146
.4708497
.5101021
.5527864
.6000000
.6535698
.7171573
.soooooo
1,0000000
= .5
INVERSE
.0400000
. 0800000
. 1200000
.1600000
.2000000
.2400000
.2800000
. 3200000
. 3600000
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
,6400000
.6300000
.7200000
.7600000
. 8000000
. 3400000
. 8800000
,9200000
.9600000
1.0000000
.5
INVERSE
.0400000
.0300000
.1200000
. 1600000
.2000000
.2^00000
.2800000
.3200000
.3600000
,4000000
.4400000
.4300000
.5200000
,5599999
,6000000
.6400000
.5300000
.7200000
. 7600000
.8000000
. 3400000
88800000
.9200000
.9600000
1.0000000

XC ERROR TERM
-.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
. 0000000
.0000000
-.0000000
.0000000
-.0000000
.0000000
.0000 000
.0000000
-.0000000
-.0000000
-.0000000
-.0000000
-.0000000
.0000000
0.0000000

XC ERROR TERM
-.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
.0000000
.0000000
.0000000
-.OOCQOOO
.0000000
-.0000000
. 0000000
.0000001
-.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
-.0000000
.0000000
-.0000000
.0000000
o.ooooooo
               105

-------
INCOMPLETE BETA FUNCTION  AND  INVERSE
A =
X
.04
.08
.12
.16
.20
.2k
.28
.32
.36
• 40
.44
.43
.52
.56
.60
.54
.53
.72
• 76
.80
.34
.83
.92
.96
1.00
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
.43
• 52
.56
.60
• 54
.68
.72
.76
.80
.34
.38
.92
.96
1.00

1.5 AND B
BETA (X)
.0034369
.0098443
.0 183220
.0285911
.0405193
.0540424
.0691369
.0858087
.1040 880
.1240270
.1457008
.1692090
.1946808
.2222798
.2522156
.28^7571
.3202555
.3591301
.4021786
.4501849
.5046317
.5679242
.6447346
.7470601
1.0000000
2.0 AND 8
BETA (X)
.0006082
.0024670
.0056319
.0101636
.0161301
.0236066
,0326779
.0434395
.0560000
.0704840
.0870356
.1053233
.1270464
.1509441
.1773078
.2030000
.2419815
.2303556
.323940S
.3739010
.4320000
.5011694
.5870496
.7040CQO
1.0000000

= .5
INVERSE
.0400000
. 0800000
. 1200000
.1600000
.2000000
.2400000
.2800000
,3200000
.3600000
.4000000
.4400000"
.4300000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
.3400000
.3800000
.9200000
.9599999
1, 0000000
= .5
INVERSE
. 0400000
,0300000
.1200000
,1600000
.2000000
.2400000
.2800000
.3199999
.3600000
.4000000
.4400000
.4300001
.5200000
.5600000
.6000000
.6400000
.6800000
. 7200000
.7600000
.8000000
.3400000
.8300000
.9200000
.9600000
1.0000000
106

XC ERROR TERM
-. 0000000
-.0000000
-.0000000
-.0000000
-.0000300
-.0000000
-.0000000
. ooooooo
-.0000000
-.ooooooo
-.0000000
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
.0000001
o.ooooooo

XC ERROR TERM
-.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
.0000001
-.ooooooo
-.0000000
-.ooooooo
-•OQUOOQl
.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
-.0000000
.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
,0000000
-.ooooooo
.ooooooo
0.0000000


-------
INCOMPLETE BETA FUNCTION AND INVERSE
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
.43
.52
.56
.60
• 64
.63
.72
.76
.30
.8**
.38
.92
.96
1.00
A =
X
.Oc*
.08
.12
• 16
.20
.24
.23
.32
.36
.40
.44
.48
.52
.56
.60
.64
.68
.72
.76
.80
.34
.83
.92
.96
1.00
K
2.5 AND E
BETA (X)
.0001102
.0006330
.0017718
.003&963
.0065663
.0105400
.0157798
.0224556
.0307494
.0408594
.Q530046
.0674314
.0844217
.1043029
.1274641
.1543774
.1856300
.2219762
.2644212
.3143727
.3739340
.4465564
.5388054
.6672192
1.0000000
3.0 AND 8
BETA (X)
.0000203
.0001650
.0005662
.0013651
.0027137
.0047762
.0077312
.0117740
.0171200
.0240082
.0327067
.0435194
.0567944
.0729370
.0924263
.1158400
.1438917
.1774888
.2178289
.2665697
.3261600
.4005719
.4972754
.6343800
1.0000000

= ,5
INVERSE
.0400000
. 0800001
.1200000
.1600000
.2000000
.2400001
.2800000
. 3200000
.3600000
.4000000
.4400000
.4800000
.5199999
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
.8400000
.8800000
.9200000
.9600000
1.0000000
.5
INVERSE
.0400000
.0300000
.1200000
.1599999
.2000000
.2400000
.2300000
.3200000
,3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6800000
.7199999
.7600001
.8000000
.3400000
.8800000
.9200000
.9600000
1. 0000000
107

XC ERROR TERM
-. 0000000
-.0000001
-.0000000
.0000000
-.0000000
-.0000001
.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000001
-.0000000
-.0000000
-.0000000
.0000 000
. ooooooo
-.0000000
-.0000000
-. ooooooo
.ooooooo
-.ooooooo
.ooooooo
0.0000000

XC ERROR TERM
-.ooooooo
-.ooooooo
.ooooooo
.0000001
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.0000 000
.0000001
-.0000001
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
.ooooooo
o.ooooooo


-------
INCOMPLETE BETA FUNCTION AND INVERSE
A -
X
.04
.09
.12
.16
.20
.24
.28
.32
.36
.40
.44
.43
.52
.56
.60
.64
.68
.72
.76
.80
.34
.33
.92
.96
1.00
A =
X
.04
.03
.12
.16
.20
.24
.28
.32
.36
.40
.44
.43
.52
.55
.60
.64
.63
.72
.76
.30
.34
.83
.92
.96
1.00

3.5 AND B
BETA (X)
.0000038
.0000435
.0001330
.0005098
.0011338
.0021676
.0038273
.0062372
.00-56279
,0l42««58
.0203755
.0233483
.0385539
.0514492
.0675834
.0876230
.1123938
.1429467
.1806648
.2274529
.2861052
.3611135
.4608415
.6059013
1.0000000
4.0 AND B
flETA(X)
.0000007
.0000116
.0000596
.0001920
.0004776
.0010101
.0019103
.0033299
.0054560
.0085163
.0127S61
.0185978
.0263519
.0365338
.0497356
.0666880
.0883074
.1157637
.1506247
.1950155
.2520720
.3268003
.4284484
.5795840
1.0000000

.5
INVERSE
. 0400000
. 0300000
.1200000
.1600000
.2000000
.2400000
.2800000
. 3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.5300000
.7200000
.7600000
.3000000
. 3400000
.8800000
.9200000
.9600000
1. 0000000
.5
INVERSE
. 0400000
. 0800000
.1200000
.1600000
.2000000
.2400000
.2300000
.3200000
.3599999
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
, 3400000
.3799999
.9200000
.9600000
1.0000000
108

XC ERROR TERH
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000 000
.0000 000
-.0000000
. ooooooo
-.0000000
-.0000000
.ooooooo
-.0000000
.ooooooo
o.ooooooo

XC ERROR TERM
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.0000001
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.0000 000
.ooooooo
-.ooooooo
.0000000
-.ooooooo
-.ooooooo
.0000001
-.ooooooo
.ooooooo
o.ooooooo


-------
INCOMPLETE BETA FUNCTION AND INVERSE
A =
X
.04
.08
.12
• 16
.20
.24
.28
.32
.36
.'+0
.44
.43
• 52
.56
.60
• 64
.68
.72
.76
.80
.8%
.88
.92
.96
1.00
A =
X
.04
.08
.12
.16
.20
• 2k
.23
.32
.36
.40
.44
.43
.52
.56
.60
• 64
.63
.72
• 76
.80
.84
.88
.92
.96
1.00

4.5 AND B
BETA (X)
.0000001
.0000031
.0000196
.0000728
.0002025
.0001+691*
.0009593
.0017887
.0031104
.0051211
.0030697
.0122691
.0181100
.0260794
.0367877
.0510034
.0697075
.0941742
.1261034
.1678508
.2228685
.2966651
.3993615
.5554455
1.0000000
5.0 AND B
8ETA(X)
.0000000
.0000003
.0000065
.0000277
.0000863
.0002192
.0004842
.0009656
.0017813
.0030941
.0051167
.0031307
.0125005
.0186962
.0273229
.0391629
.0552348
.0768851
.1059339
.1449276
.1976173
.2699963
.3730427
.5331354
1.0000000

.5
INVERSE
.0400000
. 0800001
.1199999
.1599999
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
.6400001
.6800000
.7200000
.7600000
.3000000
. 8400001
.8800000
.9200000
.9600000
1.0000000
= .5
INVERSE
NOT DEFINED
.0800000
.1200000
.1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.5000000
.6400000
.6800000
.7200000
.7600000
.8000000
. 8400000
.3800000
.9200000
.9600000
1.0000000
109

XC ERROR TERM
-.0000000
-.0000001
.0000001
.0000001
-.0000000
•0000000
.0000000
-.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000001
.0000000
-.0000000
.0000000
-.0000000
-.0000001
.0000000
-.0000000
.0000000
0.0000000

XC ERROR TERM
NOT DEFINED
-.0000000
.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
o.ooooooo


-------
INCOMPLETE BETA FUNCTION AND INVERSE
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
.43
.52
.56
.60
.64
.68
.72
.76
.80
.34
.83
.92
.96
1.00
A =
X
.04
.03
.12
.16
.20
.24
.23
.32
.36
.40
.44
.43
.52
.56
.60
.64
.63
.72
.76
.80
.34
.88
.92
.96
1.00
5.5 AND B
BETA (X)
.0000000
.0000002
.0000021
.0000106
.0000369
.0001023
.0002454
.0005234
.0010243
.0018767
.0032568
.0054094
.0086603
.0134509
.0203632
.0301709
.0439060
.0629593
.0892442
.1254670
.1756517
.2462522
.3*490844
.5123899
1.0000000
6.0 AND B
BETA (X)
.0000000
.0000001
.0000007
.0000041
.0000159
.0000484
.0001248
.0002846
.0005914
.0011421
.0020796
.0036090
.0060131
.0097060
.0152201
.0233084
. 0 349S44
.0516885
.0753654
.1088643
.1564496
.2250075
.3271668
.49300-37
1.0000000
- .5
INVERSE
NOT DEFINED
.0800000
. 1200000
. 1600000
.2000000
.2400000
.2300000
. 3200001
,3600000
.4000000
.4400000
.4799999
.5200000
.5600000
.6000000
.6400000
.6300000
.7200000
.7600000
.3000000
.3400000
.8800000
.9200000
,9600000
1.0000000
.5
INVERSE
NOT DEFINED
NOT DEFINED
.1200000
.1500000
.2000000
.2399999
.2300000
.3200000
.3600000
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
.6400000
.6300000
.7200000
.7600000
.8000000
.8400000
.8800000
.9200000
.9599999
1.0000000
                            XC  ERROR TERM
                            NOT  DEFINED
                              -.0000000
                               .0000000
                              -.0000000
                              -.0000000
                               .0000000
                               .0000000
                              -.0000001
                               .0000000
                              -.0000000
                               .OOOOflOO
                               .0000001
                              -.0000000
                               .0000000
                              -.0000000
                               .0000 000
                               .0000000
                              -.0000000
                               .0000000
                              -.0000000
                               .0000000
                               .0000000
                              -.0000000
                               .0000000
                              0.0000000
                            XC   ERROR  TERM
                            NOT  DEFINED
                            NOT  DEFINED
                               .0000000
                             -.0000000
                             -.0000000
                               .0000001
                             -.0000000
                               .0000000
                             -.0000000
                             -.0000000
                               .0000000
                             -.0000000
                             -.0000000
                               .0000000
                             -.0000000
                               .0000000
                               .0000 000
                             -.0000000
                               .0000000
                             -.0000000
                               .0000000
                               .0000000
                             -.0000000
                               .0000001
                             0.0000000
                110

-------
INCOMPLETE BETA FUNCTION AND  INVERSE
A =
X
.0^
.03
.12
.16
.20
. 24*
.23
.32
.36
.4*0
.4*4*
.4*3
.52
.56
.60
»6*f
.68
.72
.76
.30
. 34*
.83
.92
.96
1.00
A =
X
.0/4
.03
.12
.16
.20
.2**
-23
.32
.36
.4*0
.4*4*
.4*3
.52
.56
.60
• 6
-------
INCOMPLETE BETA  FUNCTION AND INVERSE
A -
X
.04
.08
.12
.16
.20
.2k
.23
.32
.36
.40
.44
.43
• 52
.56
.60
.64
.68
.72
.76
.80
.34
.S3
.92
.96
1.00
A =
X
.04
.08
.12
.15
.20
.24
.23
.32
.36
.40
.44
.43
.52
.56
.60
• 54
.69
.72
.76
.80
.84
.88
.92
.96
1.00
7.5 ANC 6
BETA (X)
.0000000
.0000000
.0000000
.0000002
.0000013
.0000051
.0000167
.0000465
.0001155
.0002614
.0005497
.0010882
.0020490
,0036986
.0064427
.0108397
.0179443
.0289497
.0459122
.0718797
.1116377
.1731612
.2713245
.4415161
1.0000000
3.0 ANC 8
OETA (X)
.0000000
.0000000
.0000000
.0000001
.0000006
.0000024
.0000086
.0000255
.0000672
.0001605
.0003542
.0007326
.0014361
.0026913
.0048549
.0084795
.0144114
.0239405
.0390405
.0627720
.1000251
.1590616
.2554269
.4262064
1.0000000
.5
INVERSE
NOT DEFINED
NOT DEFINED
NOT DEFINED
.1600000
.2000000
.2400001
.2800000
.3200000
.3600000
.4000000
.4400000
.4300000
.5200000
.560000,0
.6000000
.6400000
.6300000
.7200000
. 7600000
.8000000
. 8400000
.8300000
.9200000
.9600000
1. 0000000
.5
INVERSE
NOT DEFINED
NOT DEFINED
NOT DEFINED
NOT DEFINED
.2000000
.2400000
.2800000
. 3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.5400000
.6800000
.7200000
, 7500000
.8000000
. 3400000
. 8800000
.9200000
.9600000
1.0000000

XC ERROR TERM
NOT DEFINED
NOT DEFINED
NOT DEFINED
-.0000000
-.0000000
-.0000001
.0000000
.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
.0000 000
-.0000000
-.0000 000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
-.0000000
o.ooooooo

XC ERROR TERM
NOT DEFINED
NOT DEFINED
NOT DEFINED
NOT DEFINED
-.0000000
.0000000
.0000000
,0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
-.0000000
o.ooooooo
                 112

-------
INCONPLETE BETA FUNCTION AND INVERSE
A =
X
.04
.03
.12
.16
.20
.24
.28
.32
.36
.40
.44
.43
.52
.56
.60
.64
.68
.72
.75
.80
.34
.88
.92
.96
1.00
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
.48
.52
.56
.60
• 6*f
.68
.72
.76
.80
.84
.88
.92
.96
1.00
3.5 AND B
BETA(X)
.0000000
.0000000
.0000000
.0000000
.0000002
.0000012
. 0000 Gki*
.0000140
.0000392
.QQOOC88
.0002286
.0004940
.0010084
.0019616
.0036641
.0066125
.0115903
.0193247
.0332395
.0548836
.0897189
.1462538
.2406614
.4116811
1.0000000
9.0 AND 8
BETA (X)
.0000000
.0000000
.0000000
.0000000
.0000001
.0000006
.0000023
.0000077
.0000229
.0000608
.0001477
.0003335
.0007088
.0014314
.0027688
.0051629
.009332^
.0164358
.0283323
.0480375
.0805539
.1345^63
.2269203
.397873-0
1.0000000
.5
INVERSE
NOT DEFINED
NOT DEFINED
NOT DEFINED
NOT DEFINED
.2000000
.2400000
.2800000
. 3200000
.3600000
.4000000
.4400000
.4300000
.5200001
.5599999
.6000000
.5400000
.5800000
. 7200000
.7600000
.8000000
. 8400000
.8800000
.9200000
.9600000
1.0000000
.5
INVERSE
NOT DEFINED
NOT DEFINED
NOT DEFINED
NOT DEFINED
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
.6400000
.6300000
.7200000
.7600000
.8000000
.8400000
.8800000
.9200000
.9600000
1.0000000
                            XC  ERROR TERM
                            NOT DEFINED
                            NOT DEFINED
                            NOT DEFINED
                            NOT DEFINED
                              -.0000000
                               .0000000
                              -.0000000
                               .0000000
                               .0000000
                              -.0000000
                               .0000000
                               .0000000
                              -.0000001
                               .0000001
                              -.0000000
                               .0000 000
                              -.0000000
                              -.0000000
                               .0000000
                              -.0000000
                               .0000000
                              -.0000000
                              -.0000000
                              -.0000000
                              o.ooooooo
                            XC  ERROR TERM
                            NOT DEFINED
                            NOT DEFINED
                            NOT DEFINED
                            NOT DEFINED
                              -.0000000
                               .0000000
                               .0000000
                               ,0000000
                               .0000000
                              -.0000000
                               .0000000
                               .0000000
                               .0000000
                              -.0000000
                              -.0000000
                               .0000000
                              -.0000000
                              -.0000000
                               .0000000
                              -.0000000
                               .0000000
                              -.0000000
                              -.0000000
                               .0000000
                              o.ooooooo
                 113

-------
INCOMPLETE BETA FUNCTION  AND INVERSE
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
.48
.52
.56
.60
.64
.68
.72
.76
.30
.34
.83
.92
.96
1.00
A =
X
.04
.08
.12
.16
.20
.24
.23
.32
.35
.40
.44
.48
.52
.56
.60
.64
.68
.72
.76
.30
.34
.88
.92
.96
1.00
1.0 AND 8 -
BETA (X)
.0400000
.0800000
.1200000
.1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
.3400000
.8300000
.9200000
.9600000
1.0000000
1.5 AND 8 =
BETA (X)
.0030000
.0226274
.0415692
.0640000
.0394427
.1175755
.1481621
.1810193
.2160000
.2529822
.2918630
.3325538
.3749773
.4190656
.4647530
.5120000
.5607424
.6109403
.6625526
.7155418
.7693727
.8255132
.8824330
.9406041-
1.0000000
1.0
INVERSE
. 0400000
.0800000
.1200000
. 1600000
.2000000
.2400000
.2800000
. 3200000
.360000-0
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
.8400000
.8300000
.9200000
.9600000
1.0000000
1.0
INVERSE
. 0400000
. 0800000
.1199999
.1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
.6400000
.6799999
.7200000
.7600000
.8000000
.3400000
.3800000
.9200000
.9600000
1.0000000

XC ERROR TERM
-.0000000
-.OOOOOOO
. ooooooo
.OOOOOOO
.ooooooo
.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
.ooooooo
.0000 000
-.ooooooo
.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
.ooooooo
.ooooooo
0.0000000

XC ERROR TERM
-.ooooooo
-.ooooooo
.0000001
-.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
.ooooooo
. ooooooo
-.ooooooo
.ooooooo
.0000001
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
0.0000000
                  114

-------
INCOMPLETE BETA  FUNCTION  AND INVERSE
A =
X
.04
.03
.12
.16
.20
.2k
.28
.32
.36
.40
.44
.<+3
.52
.55
.60
.64
.68
.72
.76
.30
.64
.88
.92
.96
1.00
A =
X
.0^
.03
.12
.16
.20
.24
.28
.32
.36
.40
.*»4
.43
.52
.56
.60
.64
.68
.72
.76
.30
.Bit
.88
.92
.96
1.00
2,0 AND B
BETA (X)
.0016000
.0061+000
.0144000
.0256000
.0400000
.0576000
.0784000
.1021+000
.1296000
.1600000
.1936000
.2304000
.2704000
.3136000
.3600000
.4096000
.4624000
.5134000
.5776000
.6400000
.7056000
.7744000
.8464000
.9216000
1.0000000
2.5 AND B
BETA(X)
.0003200
.0018102
.0049833
.0102400
.0178385
.0232181
.04lt»854
.0579262
.0777600
.1011929
.1284197
.1596258
.1949882
.2346768
.2783548
.3276800
.38130^8
.4398770
.5035400
.572«*334
.6466931
.7264516
.811833^
.9029799
1.0000000
1.0
INVERSE
.0400000
. 0800000
.1200000
.1600000
.2000000
.2^00000
.2300000
.3200000
.3600000
.4000000
.«+400000
.4300000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7500000
.8000000
. 3400000
.8800000
.9200000
.9599999
1.0000000
= 1.0
INVERSE
. 0400000
. 0800001
.1200000
.1600000
.2000000
.2400000
.2300000
.3200000
.3600001
.4000000
.4400000
.4800001
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
. 8000000
. 3399999
.8300000
.9200000
.9600000
1.0000000

XC ERROR TERM
-.0000000
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
-.0000000
-.OQOOOOO
-.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000000
.0000000
.0000001
0.0000000

XC ERROR TERM
-.0000000
-.0000001
-.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000000
-.0000001
-.0000000
-.0000000
-.0000001
.0000000
-.0000000
-.0000000
-.0000 000
-.0000000
.0000000
-.0000000
-.0000000
.0000001
-.0000000
.0000000
-.0000000
o.ooooooo
                 115

-------
INCOMPLETE BETA FUNCTION AND  INVERSE
A =
X
.04*
.03
.12
.16
.20
.24*
.23
.32
.36
.1*0
.4*4*
.4*3
.52
.56
.60
.64*
.68
.72
.76
.80
.84*
.88
.92
.96
1.00
A =
X
.04*
.03
.12
.16
.20
.2k
.23
.32
.36
.4*0
.4*4*
.4*3
.52
.56
.60
.64*
.63
.72
.76
.80
.34*
.88
.92
.96
1.00

3.0 AND B
BETA (X)
.000064*0
.0005120
.0017230
.004*0960
.0080000
.013824*0
.0219520
.0327680
.04*66560
.064*0000
.035184*0
.1105920
.14*06080
.1756160
.2160000
.26214*%Q
.314*4*330
.3732t*SO
.4*389760
.5120000
.592704*0
.63H*720
.7786880
.834*7360
1.0000000
3.5 AND 8
BETA (X)
.0000128
.0001t*«*8
.0005986
.0016384*
.0035777
.0067723
.0116159
.0135364*
.0279936
.04,04*772
.056504*7
.0766204*
.1013939
.1314*190
.1673129
.2097152
.2592873
.3167114*
.3826904*
.4*5794*67
.54*32222
.6392774*
.74*68913
.8663607-
1.0000000

1.0
INVERSE
. Ot*00000
. 0800000
. 1200000
.1600000
.2000000
.24*00000
.2800000
.3200000
.360000-0
.t*000000
.4*4*00000
.4*800000
.5200000
.5600000
.6000000
.64,00000
.6800000
.7200000
. 7600000
.8000000
.34*00000
.8800000
.9200000
.9600000
1.0000000
1.0
INVERSE
.04*00000
.0800000
.1200000
.1600000
.2000000
.24*00000
.^SOOOOO
. 3200000
.3600000
.4*000000
.4*4*00000
.4*800000
.5200000
.5600001
.6000000
.64*00000
.6300000
.7200000
.7600000
.8000000
. 34*00000
.3800000
.9200000
.9600000
1.0000000
116

XC ERROR TERM
-.0000000
-.0000000
,0000000
.0000000
-.0000000
.0000000
,0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
-.0000000
-. 0000 000
-.0000000
.0000000
-.0000000
-.0000000
-.0000 000
-.0000000
.0000000
-.0000000
o.ooooooo

XC ERROR TERM
-.0000000
-.0000000
. ooooooo
-.0000000
-.ooooooo
.0000000
. 0000000
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.0000001
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
-.0000000
-.ooooooo
.ooooooo
-.ooooooo
0.0000000


-------
INCOMPLETE 9ETA FUNCTION AND INVERSE
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
.43
.52
.56
.60
• 64
.68
.72
.76
.80
.Stt
.88
.92
.96
1.00
A =
X
.o«f
.03
.12
.16
.20
.24
.23
.32
.36
.40
.44
.43
.52
.56
.60
.64
.68
.72
.76
.80
.84
.88
.92
.96
1.00
4.0 AND B
BETA (X)
.0000026
.0000410
.0002074
•0006554
.0016000
.0033178
.0061466
.0104858
.0167962
.0256000
.0374810
.0530842
.0731162
.0983450
.1296000
.1677722
.2138138
.2687386
.3336218
.4096000
.4978714
.5996954
.7163930
.8493466
1.0000000
4.5 AND B
BETA (X)
.0000005
.0000116
.0000713
.0002621
.0007155
.0016254
.0032525
.0059316
.0100777
.0161909
.0248621
.0367773
.0527243
.0735946
.1003877
.1342177
.1763153
.2230322
.2908447
.3663574
.4563056
.5625641
.6871400
.8321863
1.0000000
1.0
INVERSE
.0400000
. 0800000
. 1200000
.1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4400001
.4300000
.5200000
.5600000
.6000000
.6400000
.6800000
. 7199999
.7600000
.3000000
.3400000
.8800000
.9200000
.9600000
1.0000000
= 1.0
INVERSE
. 0400000
.0800000
.1199999
.1600000
,2000000
.2400000
,2800000
.3200000
.3600000
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
,6400000
.6800000
.7200000
.7600000
. 8000000
.8400000
.8800000
.9200000
.9600000
1.0000000

XC ERROR TERM
-.0000000
-.0000000
.0000000
. 0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000000
-.0000001
.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000001
-.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
o.ooooooo

XC ERROR TERM
-.0000000
-.0000000
.0000001
.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
o.ooooooo
                117

-------
INCOMPLETE BETA FUNCTION AND INVERSE
A =
X
.Oft
.03
.12
.16
.20
.2k
.28
.32
.36
.40
.44
.43
.52
.56
.60
.64
.68
.72
.76
.30
.84
.83
.92
.96
1.00
A =
X
.04
.08
.12
.16
.20
.2k
.23
.32
.36
,40
.44
.48
.52
.56
.60
.64
.68
.72
.76
.30
.84
.88
.92
.96
1.00
5.0 AND B
BETA (X)
.0000001
.0000033
.0000249
.0001049
.0003200
.0007963
.0017210
.0033554
.0060466
.0102400
.0164C16
.0254904
.0380204
.0550732
.0777600
.1073742
.1453934
.1934S18
.2535525
.3276800
.4132119
.5277319
.6590815
.8153727
1.0000000
5.5 AND B
BETA (X)
.0000000
.0000009
.0000086
.0000/419
.0001431
.0003901
.0009107
.0018981
.0036280
.0064763
.0109393
.0176533
.0274169
.0412130
.0602326
.0858993
.1198944
.1641832
.2210420
.2930859
.3832976
.4950564
.6321688
.7988988
1.0000000
1.0
INVERSE
. 0400000
. 0800000
.1200000
.1600000
.2000000
.2400000
.2800000
.3200000
.36 00 '000
.4000000
.4400000
.4300000
.5200000
.5600000
.5000000
,6400000
.6800000
.7200000
.7600000
, 8000000
.3400000
.8800000
,9199999
.9600000
1,0000000
= 1.0
INVERSE
NOT DEFINED
.0800000
.1200000
.1600000
.2000000
.2400000
.2800000
,3200000
.3600000
.4000000
,4400000
.4800000
.5200000
.5600000
.6000000
.6400001
.6800000
.7200000
.7600000
.3000000
.3400000
.3800000
.9200000
.9600000
1. 0000000

XC
-
-


-


-

-


-

-
-

-

-
-


-
0

XC
NOT
-

—
-


-

_


_

-
_

-

-
-

-

0
                                ERROR TERM
                                0000000
                                0000000
                                0000 000
                                0000000
                                ooooooo
                                0000000
                                ooooooo
                                ooooooo
                                ooooooo
                                ooooooo
                                013 0 0 0 0 0
                                ooooooo
                                ooooooo
                                ooooooo
                                ooooooo
                                0000 000
                                ooooooo
                                ooooooo
                                ooooooo
                                ooooooo
                                ooooooo
                                ooooooo
                                0000001
                                ooooooo
                              0.0000000
                                ERROR  TERM
                                DEFINED
                               .0000000
                               .ooooooo
                               .ooooooo
                               .ooooooo
                               .ooooooo
                               .ooooooo
                               .ooooooo
                               .ooooooo
                               .ooooooo
                               .ooooooo
                               .ooooooo
                               .ooooooo
                               .ooooooo
                               .ooooooo
                               .0000 001
                               .ooooooo
                               .ooooooo
                               .ooooooo
                               .ooooooo
                               .ooooooo
                               .ooooooo
                               .0000000
                               .ooooooo
                               .ooooooo
                118

-------
INCOMPLETE BETA FUNCTION AND INVERSE
A s
X
.0**
.03
.12
.16
.20
• 2it
.28
.32
.36
.40
.44
,48
.52
.56
.60
.64
.68
.72
.76
.30
.34
.88
.92
.96
1.00
A =
X
.04
.08
.12
.15
.20
.24
.23
.32
.36
.kQ
.1*1*
.43
.52
.56
.60
.64
.63
.72
.76
.80
.Bit
.88
.92
.96
1.00

6.0 AND 8
BETA (X)
.0000000
.0000003
.0000030
.0000168
.0000640
.0001911
.0004819
.0010737
.0021768
.0040960
.0072563
.0122306
.0197706
.0303410
.0456560
.0687195
.0938675
,1393141
.1926999
.2621440
.3512930
.4644041
.6063550
.7827578
1.0000000
6.5 AND 6
•BET A(X)
.0000000
.0000001
.0000010
.0000067
.0000236
.0000936
.0002550
.0006074
.0013061
.0025905
.0043133
.003(4736
.0142563
.0230793
.0351396
.0549756
.0 315282
.1132119
.1679919
.2344637
.3219700
.4356496
.5315953
.7669429
1.0000000

1.0
INVERSE
NOT DEFINED
. 0300000
.1200000
.1600000
.2000000
.2400000
.2800000
.3200001
.3599999
.4000000
.4400000
.4799999
.5200000
,5600000
.5000000
.6400000
.6300000
.7200000
.7600000
.3000000
.3400000
.3300000
.9200000
.9600000
1.0000000
= 1.0
INVERSE
NOT DEFINED
NOT DEFINED
.1200000
. 1600000
.2000000
.2400000
.2300000
.3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6300000
.7200000
. 7600000
. 3000000
.3400000
.8800000
.9200000
.9600000
1.0000000
119

XC ERROR TERM
NOT DEFINED
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000001
.0000001
-.0000000
.0000000
.0000001
-.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000000
.0000000
0.0000000

XC ERROR TERM
NOT DEFINED
NOT DEFINED
-.0000000
-.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000000
.0000000
.0000 000
-.0000000
.0000000
-. ooooooo
-.0000000
.ooooooo
-.ooooooo
.ooooooo
0.0000000


-------
INCOMPLETE BETA FUNCTION AND  INVERSE
A =
X
.04
.08
,12
.16
.20
.24
.23
.32
.36
.40
.44
.48
.52
.56
.60
.64
.63
.72
.76
.30
.84
.88
.92
.96
1.00
A =
X
.04
.03
.12
.16
.20
.24
.23
.32
.36
.40
.44
.48
.52
.56
.60
.64
.63
.72
.76
.30
.84
.83
.92
.96
1.00

7.0 AND 8
BETA(X)
.0000000
.0000000
.0000004
.0000027
.0000123
.0000459
.0001349
.0003436
,0007836
.0016384
.0031923
.0058707
.0102807
.0172709
.0279936
.0439805
.0672299
.1003061
.1464519
.2097152
.2950903
.4086756
.5578466
.7514475
1.0000000
7.5 AND 8
BETA (X)
.0000000
.0000000
.0000001
.0000011
.0000057
.0000225
.0000714
.0001944
.0004702
.0010362
.0021178
.0040673
.0074135
.0129244
.0216837
.0351844
.0554392
.0851126
.1276738
.1875750
.270t»548
.3833717
.5350677
.7362652
1.0000000

1.0
INVERSE
NOT DEFINED
NOT DEFINED
.1200000
. 1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6300000
.7200000
.7600000
.3000000
.8400001
.8799999
.9200000
.9600000
1.0000000
= 1.0
INVERSE
NOT DEFINED
NOT DEFINED
.1200000
.1600000
.2000000
.2400000
.2800000
.3200000
.3600001
.4000000
.4399999
.4800001
.5200000
.5600000
.6000000
.6400000
.6300000
.7200000
.7600000
.8000000
.8400000
.8800000
.9200000
.9600000
1. 0000000
120

XC ERROR TERM
NOT DEFINED
NOT DEFINED
-.0000000
-.0000000
-.0000000
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
-.9000000
-.0000000
.0000000
-.0000000
.0000 000
.0000 000
-.0000000
.0000000
-.0000000
-.0000001
.0000001
-.QQOOOOO
.0000000
0.0000000

XC ERROR TERM
NOT DEFINED
NOT DEFINED
-.0000000
-.0000000
-.0000000
-.0000000
-.0000000
.0000000
-.0000001
-.0000000
.0000001
-.0000001
-.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
o.ooooooo


-------
INCOMPLETE BETA FUNCTION  AND  INVERSE
A =
X
.04
.03
.12
.16
.20
.24
.28
.32
.36
.40
,1+k
.48
.52
.56
.60
.64
.68
.72
.76
.30
.84
.83
.92
.96
1.00
A =
X
.04
.03
.12
.16
.20
.2k
.23
.32
.36
.40
.44
.48
.52
.56
.60
.64
.63
.72
.76
.30
.84
.83
.92
.96
1.00
8.0 AND B
BETA (X)
.0000000
.0000000
.0000000
.0000004
.0000026
.0000110
.0000378
.0001100
.0002821
.0006554
.0014048
.0028179
.0053*«60
.0096717
.0167962
.0281475
.0457163
.0722204
.1113035
.1677722
,21*78759
.3596345
.5132189
.7213896
l.OOOOOOQ
3.5 AND B
BETA (X)
.0000000
.0000000
.0000000
.0000002
.0000011
.000005
-------
INCOMPLETE BETA FUNCTION  AND  INVERSE
A -
X
.04*
.08
.12
.16
.20
.2k
.23
.32
.36
.4*0
.4*t*
.4*3
.52
• 56
.60
.64*
.68
.72
.76
.30
.84*
.33
.92
.96
1.00
A =
X
.04*
.03
.12
.16
.20
,2k
.23
.32
.35
.
-------
INCOMPLETE BETA FUNCTION AND INVERSE
A =
X
.04
.08
.12
.16
.20
,2k
.23
.32
.36
.40
• 44
.48
.52
.56
.60
.64
.68
.72
.76
.80
.84
.88
.92
.96
1.00
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
.48
.52
.56
.60
.64
.68
.72
.76
.80
.84
.88
.92
.96
1.00

2.0 AND B
BETA (X)
.0029597
.0116750
.0258945
.0453578
.0697957
.0989284
.1324648
.1701013
.2115200
.2563872
.3043511
.3550390
.4080543
.4629721
.5193338
.5766400
.6343i,Q<3
.6918229
.7483884
.80322&0
.8553600
.9035594
.9461467
.9804800
1.0000000
2.5 AND B
BETA(X)
.0006425
.0035806
.0097159
.0196290
.0337287
.0523023
.0755397
.1035476
.1363570
.1739276
.2161499
.2623445
.3137606
.3685713
.4268677
.4881494
.5518112
.6171235
.6832036
.7489718
.8130781
.8737710
.9286247
.9738084
1.0000000

1.5
INVERSE
. 0400000
.0800000
.1200000
.1600000
.2000000
.2400000
.2800001
.3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6800000
,7200000
.7600000
.8000000
.8400000
.8300000
.9199999
.9600000
1.0000000
1.5
INVERSE
. 0400000
.0800000
.1200000
,1600000
.2000000
.2400000
.2800000
.3199999
.3600000
.^000000
,4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
.8400000
.8800000
.9200000
.9600000
1.0000000
123

XC ERROR TERM
-.0000000
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
-.0000001
.0000000
-.000,0000
-.0000000
.0000000
-.0000000
.0000000
. 0000000
-.0000000
.0000000
-.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000001
.0000000
o.ooooooo

XC ERROR TERN
-.0000000
-. 0000000
-.0000000
. 0000000
-.0000000
-.0000000
.0000000
.0000001
-.0000000
-.0000000
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000 000
.0000000
-.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
0.0000000


-------
INCOMPLETE BETA FUNCTION AND INVERSE
A =
X
.04
.08
.12
.16
.20
.2k
.28
.32
.36
.1+0
.44
.43
.52
.56
.60
.64
.63
.72
• 76
.80
.Sit
.88
.92
.96
1.00
A =
X
.04
.03
.12
.16
.20
,2k
.28
.32
.36
.40
.44
.43
.52
.56
.60
• 64
.63
.72
.76
.30
.34
.38
.92
.96
1.00
3.0 AND B
BETA (X)
.0001379
.0010858
.0036056
,0084039
.0161301
.0273727
.0^26566
.0624388
.0871040
.1169598
.1522302
.1930488
.2394496
.2913567
.3435708
.4107520
.4773972
.5473094
.6210541
.6958948
.7706880
.8432009
.9102370
.9666560
1.0000000
3.5 AND B
BETA (X)
.0000293
.0003265
.0013269
.0035688
.0076528
.0142151
.0239071
.0373765
.0552504
.0781185
.1065162
.1409067
.1816614
.2290376
.2331540
.3439599
.4111977
.4343540
.5625943
.6446680
.7237624
.8122521
.8912020
.9590921
1.0000000
= 1.5
INVERSE
.0400001
. 0800000
.1200000
.1500000
.2000000
.2400000
.2799999
. 3200000
.3600000
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
.6399999
.6800000
.7200000
.7600000
.8000000
.3400000
.8800000
.9200000
.9600000
1.0000000
1.5
INVERSE
.0400000
.0800000
.1200000
.1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
. 3400000
.8800000
,9200000
.9600000
1.0000000
                            XC  ERROR TERM
                              -.0000001
                              -.0000000
                               .0000000
                               .0000000
                              -.0000000
                               .0000000
                               .0000001
                              -.0000000
                               .0000000
                              -.0000000
                              -.0000000
                               .0000000
                               .0000000
                              -.0000000
                              -.0000000
                               .0000 001
                              -.0000 000
                               .0000000
                               . ooooooo
                               .0000000
                               .0000000
                               ,0000000
                               .ooooooo
                               .0000000
                              0.0000000
                            XC   ERROR  TERM
                             -.ooooooo
                             -.ooooooo
                               .ooooooo
                             -.0000000
                             -.ooooooo
                               .ooooooo
                               .ooooooo
                             -.ooooooo
                               .ooooooo
                             -.ooooooo
                             -.ooooooo
                               .ooooooo
                               .ooooooo
                             -.ooooooo
                             -.ooooooo
                             -.0000 000
                             -.0000 000
                               .ooooooo
                             -.ooooooo
                             -.ooooooo
                             -.ooooooo
                               .ooooooo
                               .ooooooo
                               .ooooooo
                             0.0000000
                124

-------
INCOMPLETE BETA FUNCTION AND  INVERSE
A =
X
.0'*
.08
.12
.16
.20
.2*»
.28
.32
.36
.<*Q
.M*
.^8
.52
.56
.60
• 61*
.68
.72
.76
.30
.8*t
.88
.92
.96
1.00
A =
X
.0^
.08
.12
.16
.20
• 2*
.28
.32
.36
.tfO
• kk
.1*8
.52
.56
.60
.6*
.68
.72
.76
.30
• 8*
.88
.92
.96
1.00
**.0 AND B =
BETA (X) °
.0000062
.0000975
.000^852
.0015059
.0036081
.0073371
.0133193
.0222^i»8
.Q3tt3^93
.0518937
.Q7MM5
.10233*t3
.1371627
.179231*6
.2290367
.2868890
.3528885
.1*268380
.5081511
.5957189
.6877091*
.7812328
.8716939
.9511731
1.0000000
tf.5 AND 8 =
BETA(X)
.0000013
.0000290
.0001765
.0006321
.0016926
.Q03768£»
.00738*7
.0131768
.0218808
.031*3200
.0513862
.07**0152
.1031567
.1397360
.18/4607i»
.238^956
.3019208
.3751037
.^578365
.5^*930^6
.6f»7819t«
.7503817
.85135it3
.9f,29«462
1.0000000
1.5
INVERSE
.OffOOOOO
. 0800000
.1200000
.1600000
.2000000
.2^+00000
.2799999
.3200000
.3600000
.JfOOOOOO
.'t^OOOOO
.^800000
.5200000
.5600001
.6000000
,5^00000
,6800001
.7200000
.7600000
.8000000
.HttOOOOO
.8800000
.9200000
.9599999
1.0000000
1.5
INVERSE
.0^00000
.0800000
.1200000
.1600000
.2000000
.2399999
.2800000
.3200000
.3599999
,<*000000
.^00001
,^800000
.5200000
.5600000
.6000000
.6^00000
.6300000
,7200000
.7600000
.8000000
.8'* 00 000
.8800001
.9200000
.9600000
1.0000000

XC ERROR TERM
-.0000000
-.0000000
•0000000
.0000000
-.0000000
.0000000
.0000001
-.0000000
•0000000
-.0000000
-.0000000
.0000000
-.0000000
-.0000001
-.0000000
-.0000000
-.0000001
.0000000
-.0000000
-.0000000
.0000000
-.0000000
.0000000
.0000001
o.ooooooo

XC ERROR TERM
-.0000000
-.0000000
. 0000000
.0000000
-.0000000
.0000001
-.0000000
-.0000000
.0000001
-.0000000
-.0000001
.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000 000
.0000000
-.0000000
-.0000000
.0000000
-.0000001
.0000000
.0000000
0.0000000
                125

-------
INCOMPLETE BETA FUNCTION AND INVERSE
A =
X
.04
.03
.12
.16
.20
.24
.28
.32
.36
.40
.44
.48
.52
.56
.60
.64
.63
.72
.76
.30
.84
.83
.92
.96
1.00
A =
X
.04
.03
.12
.16
.20
.2k
.23
.32
.36
.40
• 44
.43
.52
.56
.60
.64
.68
.72
.76
.80
.84
.33
.92
.96
1.00
5.0 AND B
BETA (X)
.0000003
.0000086
.0000639
.0002642
.0007907
.0019275
.0040780
.0077749
.0136861
.0226139
.0354376
.0533484
.0773249
.1035977
.1483512
.1977076
.2576393
.3288512
.4116190
.5055606
.6092947
.7198845
.8318013
.9344516
1.0000000
5.5 AND B
BETA(X)
.0000001
.0000025
.0000231
.0001101
.0003681
.0009825
.0022**^
.00if5?25
.0085330
.Olt»8541
.02^337
.0383397
.0577935
.08^1706
.1139098
.163^987
.2193561
.287703*4
.36937ft3
.i»6«f537l
.5722726
.6898862
.8116332
.92572^0
1.0000000
1.5
' INVERSE
.0^00000
.0300000
.1200000
.1600000
.2000000
.2^00000
.2300000
.3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
.8400000
. 8800000
.9200000
.9600000
1.0000000
= 1.5
INVERSE
NOT DEFINED
.0800000
.1200000
.1599999
.2000000
.2400000
.2799999
.3200000
.3500000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6800000
.7199999
.7600000
.8000000
.8400000
.3800000
.9200000
.9600000
1.0000000

XC ERROR TERM
-. 0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
. 0000 000
. ooooooo
-. ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
0.0000000

XC ERROR TERM
NOT DEFINED
-.OOOOOOO
.ooooooo
.0000001
-.ooooooo
.ooooooo
.0000001
-.ooooooo
.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
.0000001
-.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
0.0000000
                126

-------
INCOMPLETE BETA  FUNCTION AND INVERSE
A =
X
.0**
.08
.12
.16
.20
.2<+
.28
.32
.36
.<»0
.*+**
,tf3
.52
.56
.60
,6
.0000000
.0000002
.0000030
.0000189
.0000791
.0002532
.0006743
.0015688
.0032909
.0063598
.0114965
.0196537
.0320680
,0502251
.0759076
.1111373
.1531081
.2190545
.2960312
.3905581
.5030442
.631810*4
.7712653
.907687-6
1.0000000

1.5
INVERSE
NOT DEFINED
. 0800000
. 1200000
. 1600000
.2000000
.2«+00000
.2799999
. 3200001
. 3600000
.ffOOOOOO
.
-------
INCOMPLETE BETA FUNCTION  AND INVERSE
A =
X
.04
.03
.12
.16
.20
.2k
.28
.32
.36
.40
.4 4
.43
.52
.56
.60
.64
.63
.72
.76
.80
.34
.83
.92
.96
1.00
A -
X
.04
.03
.12
.16
.20
.24
.23
.32
.36
.40
.44
.48
.52
.56
.60
.54
.63
.72
.76
.30
.84
.38
.92
-96
1.00
7.0 AND 8
BETA (X)
.0000000
.0000001
.0000011
.0000073
.0000365
.0001281
.0003683
.0009158
.0020371
.0041482
.0078614
.0140344
.0238163
,0386879
.0604847
.0913938
.1339081
.1907133
.2644744
.3574607
.4709052
.6038853
.7511948
.8984295
1.0000000
7.5 AND 8
BETAfX)
.0000000
.0000000
.0000004
.0000032
.0000163
.0000647
.0002008
.0005336
.0012586
.0027008
.0053663
.0100020
.0176589
.0297534
.0481217
.0750481
.1132557
.1658251
.2360026
.3268225
.4404191
.5767725
.7312700
.8890407
1.0000000
= 1.5
INVERSE
NOT DEFINED
NOT DEFINED
.1200000
.1600000
.2000000
.2400000
.2799999
.3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
.3400000
.8800000
.9200000
.9600000
1.0000000
1.5
INVERSE
NOT DEFINED
NOT DEFINED
.1200000
.1600000
.2000000
.2400000
.2800000
. 3200000
.3600000
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
.6400000
.6300000
.7200000
.7600000
.8000000
.8400000
. 8800000
.9200000
.9600000
1. 0000000

XC ERROR TERM
NOT DEFINED
NOT DEFINED
-.0000000
.0000000
-.0000000
-.0000000
.0000001
. ooooooo
-.0000000
-.ooooooo
.0000000
-.0000000
-.ooooooo
.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
.0000000
-.ooooooo
-.ooooooo
,0000000
.ooooooo
.ooooooo
o.ooooooo

XC ERROR TERM
NOT DEFINED
NOT DEFINED
-.OOOOOOO
.OOOOOOO
-.ooooooo
-.OOOOOOO
.ooooooo
.ooooooo
-.ooooooo
-.0000000
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
.0000000
.0000 000
-.ooooooo
.0000000
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
0.0000000
                 128

-------
INCOMPLETE BETA FUNCTION  AND  INVERSE
A =
X
.0**
.03
.12
.16
.20
.24
.23
.32
.36
.40
.44
.48
.52
.56
.60
.6«*
*68
.72
.76
.30
.84
.88
.92
.96
1.00
A =
X
.04
.03
.12
.16
.20
,2k
.28
.32
.36
.40
.44
.1+8
.52
• 56
.60
.64
.68
.72
.76
.80
,84
.83
.92
.96
1.00
3.0 AND B
BETA (X)
.0000000
.0000000
.0000001
.0000013
.0000077
.0000326
.0001093
.0003104
.000776**
.0017556
.003657**
.0071174
.0130738
.0228494
.0382328
.0615447
.0956691
.1440169
.2103703
.2985229
•4115644
.550506*4
.711533**
.8795405
1.0000000
3.5 AMD B
-BETA(X)
.0000000
.0000000
.0000000
.0000005
.0000036
.000016*t
.000059*+
.0001803
.0004782
.0011396
.0021*892
.0050578
.0096666
.0175250
.0303386
.0504113
.0807227
.1249450
.1873394
.2724347
.3843071
.5251103
.6920213
.8699463
1.0000000
1.5
INVERSE
NOT DEFINED
NOT DEFINED
.1200000
.1600000
.2000000
.2^00000
.2800000
.3200000
.36000.00
.4000000
.4400000
.4800000
.5200000
.5600000
.&OOOQOO
.6400000
.6800000
.7200000
.7600000
.3000000
.8400000
.8800000
.9200000
.9600000
1.0000000
- 1.5
INVERSE
NOT DEFINED
NOT DEFINED
NOT DEFINED
.1600000
.2000000
.2400000
.2300000
.3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
.8400000
. 8800000
.9200000
.9600000
1.0000000

XC ERROR TERM
NOT DEFINED
NOT DEFINED
.0000000
.0000000
-•OQOOOOO
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
.0000 000
.0000 000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
o.ooooooo

XC ERROR TERM
NOT DEFINED
NOT DEFINED
NOT DEFINED
-.0000000
-.0000000
.0000000
.0000000
.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
. ooooooo
-.0000000
o.ooooooo
                 129

-------
INCOMPLETE BETA FUNCTION AND INVERSE
A =
X
.0«»
.08
.12
.16
.20
.2
-------
INCOMPLETE BETA FUNCTION  AND  INVERSE
A =
X
.04
.03
.12
.16
.20
.24
.28
.32
.36
• 40
.44
.43
.52
.58
.60
.64
.68
.72
-76
.80
.3%
.88
.92
.96
1.00
A =
X
• 04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
.48
.52
.56
.60
.64
.63
.72
.76
.30
.84
.88
.92
.96
1.00
2.5 AND 8
BETA (X)
.0010880
.0059736
.0159626
.0317440
.0536656
.0 818326
.1161591
.1564007
.2021760
.2529822
.3082073
.3671393
.4289741
.1*928212
.5577096
.6225920
.6863437
.7477909
.8056640
.8586501
.9053703
. 9443871
.9742060
.9932779
1.0000000
3.0 AND B
BETA (X)
.0002*483
.0019251
.0062899
.0144179
.0272000
.Ott53t«27
.0693683
.09961£t7
.1362355
.1792000
.2282931
.2831155
.3^30835
.^07^291
.tf752000
.5452595
.6162867
.6867763
.7550387
.3192000
.8772019
.9268019
.9655731
.99090«»3
1.0000000
2,0
INVERSE
.0^00000
.0800000
.1200000
.1599999
.2000000
.2^00000
.2300000
.3200000
.3600'OQO
.ffOOOOOO
.^399999
.ttSOOOOO
.5200000
.5600000
.6000000
.&i»00000
.6800000
.7200000
.7600000
.8000000
.aifooooo
,8800000
.9200000
.9600000
i.ooqoooo
2.0
INVERSE
.0400001
. 0800000
.1200000
.1500000
.2000000
.2^00000
.2800000
.3200000
.3600001
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7599999
. 3000000
.8400000
.8800000
.9200000
.9600000
1.0000000

XC ERROR TERM
-.0000000
-.0000000
-.QOOOOOO
.0000001
-.0000000
-.0000000
.0000000
.0000000
-.0000000
-.0000000
.0000001
-.0000000
.0000000
.0000000
.0000000
.0000 000
.0000 000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
0.0000000

XC ERROR TERM
-.0000001
-.0000000
.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
-.0000001
-.0000000
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
iQOOOOOO
-.0000 000
.0000000
.0000001
•ooooooo
.QOOOOOO
.ooooooo
.ooooooo
.ooooooo
o.ooooooo
                 131

-------
INCOMPLETE BETA FUNCTION  AND  INVERSE
A =
X
.04
.03
.12
.16
.20
.24
.28
.32
.36
.40
.44
.43
.52
.56
.60
.64
.63
.72
.76
.80
.84
.88
.92
.96
1.00
A =
X
• 04
.03
.12
.16
.20
.2k
.23
.32
.36
.40
• 44
.43
.52
.56
.60
.6*+
.68
.72
.76
.80
.84
.83
.92
.96
1.00

3.5 AND B
BETA(X)
.0000558
.0006111
.0024423
.0064553
.0135953
.0247868
.0408880
.0626530
.0906993
.1254792
.1672533
.2160695
.2717356
.3333042
.4015509
.4739564
.5496890
.6270886
.7041503
.7785094
.8474266
.9077739
.9560209
.9882212
1.0000000
4.0 AND B
BETA (X)
.0000124
.0001917
.0009373
.0028574
.0067200
.0134038
.0233487
.0390070
.0597943
.0870400
.1214383
.1634992
.2134S92
,2714321
.3369600
.4093641
.4874954
.5697257
.6538986
.7372800
.8165090
.3375491
.9456387
.9352420
1.0000000

2.0
INVERSE
.0400000
.0300000
.1200000
.1600000
,2000000
.2400000
.2800000
.3200000
. 3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6300000
.7200000
.7600000
.3000000
.8400000
.8799999
.9200000
.9600000
1.0000000
2.0
INVERSE
.0400000
.0800000
. 1200000
.1600000
.2000000
.2400000
.2300000
.3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
. 8399999
.3800000
.9200000
.9600000
1 .0000000
132

XC ERROR TERM
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000000
.0000000
.0000000
,0000000
. 0000000
.0000001
.0000000
.0000000
o.ooooooo

XC ERROR TERM
-.0000000
-.0000000
. 0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
-.0000000
-.0000000
-.0000 000
.0000000
-.0000000
.0000000
.0000001
.0000000
.0000000
.0000000
0.0000000


-------
INCOMPLETE BETA FUNCTION  AND  INVERSE
A =
X
.04*
.08
.12
.16
.20
.21*
.28
.32
.36
.4*0
.i*t»
.4+8
.52
.56
.60
.6*+
.63
.72
.76
.30
.8^*
.33
.92
.96
1.00
A =
X
.04*
.08
.12
.16
.20
,2k
.23
.32
.36
.4*0
.<+«»
.^ 3
.52
.56
.60
• 64*
.63
.72
.76
.80
.34*
.33
.92
.96
1.00
<+.5 AND 6
BETA (X)
.0000027
.0000595
.0003563
.0012530
.0032915
.007184+1
.0137901*
.024*0825
.0391015
.0599062
.087514*4*
.1228378
.1666104*
.2193120
.2810856
.3516504+
.4+302094*
.5153528
.604*9570
.6960790
.734*84,74+
.86634+37
.934»51Q(*
.9819798
1.0000000
5.0 AND 8
BETA (X)
.0000006
.0000182*
.00013«t4«
.0005^53
.0016000
.0033221
.0079168
.014+764*0
.0253953
.04*09600
.0626682
.0917294*
.129269'*
.176234*2
.2332500
,3006«i77
.3730227
.4*64*3302
.5573156
.6553600
.7527G15
,9i*i*37ll
.922714*1
.9734*4*72
i.ooooooo
2.0
INVERSE
. 04*00000
.0800000
.1200000
.1600000
.2000000
.24*00000
.2300000
.3200000
,3600000
.4*000000
.4*4*00000
. 4*800000
.5200000
,5600001
.6000000
.64*00000
.6800000
.7200000
.7600000
,8000000
.84*00000
.3300000
.9200000
.9600000
1.0000000
= 2.0
INVERSE
. 04*00000
.0300000
.1200000
.1600000
.2000000
.24*00000
.2800001
.3200000
.3600000
.4*000000
.4* <*00000
.4*799999
.5200000
.5600000
.6000000
.64*00000
.6300001
.7200000
.7600000
.3000000
. 34*00000
. 8800000
.9200000
.9599999
1.0000000

XC ERROR TERM
-.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000000
-.0000001
-.0000000
-.0000000
-.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
o.ooooooo

XC ERROR TERM
-.0000000
-.0000000
. ooooooo
-.0000000
-.ooooooo
.0000000
-.0000001
-.ooooooo
.ooooooo
-.ooooooo
.ooooooo
.0000001
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
-.0000001
.ooooooo
-.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.0000001
o.ooooooo
                 133

-------
INCOMPLETE BETA  FUNCTION AND INVERSE
A =
X
.0^
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
.43
.52
.56
.60
.64
.63
.72
.76
.80
.34
.38
.92
.96
1.00
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
.48
.52
.56
.60
.64
.63
• 72
.76
.30
.84
.33
.92
.96
1.00
5.5 AND B
BETA (X)
.0000001
.0000056
.0000503
.0002357
.0007728
.0020207
.00^5170
.0089971
.0163984
.0278^83
.0446324
.0631419
.0997975
.1409484
.1927444
.2559801
.3309036
.4170253
.5128174
.6154804
.7205994
.8217937
.9103231
.9746566
1.0000000
6.0 AND B
BETA (X)
.0000000
.0000017
.0000188
.0001013
.0003712
.0010625
.0025637
.0054546
.0105356
.0188416
.0316375
.0503900
.0767100
.1122612
.1586304
.2171535
.2836930
.3733617
.4701878
.5767168
.6835441
.7937750
.8974054
.9706197
1.0000000
2.0
INVERSE
. 0400000
. 0800000
.1200000
.1600000
.2000000
.2400000
.2800000
. 3200000
.3600000
.4000000
.4400000
,4300000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
. 7600000
.3000000
. 3400000
.8800000
.9200000
.9600000
1.0000000
2.0
INVERSE
NOT DEFINED
.0800000
.1200000
.1600000
.2000000
.2400000
.2300000
.3200000
.3&00000
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
.6400000
.6300000
.7200000
.7600000
.3000000
.8400000
. 8800000
.9200000
.9600000
1.0000000

XC ERROR TERM
-.0000000
-.0000000
. 0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
-.0000000
•ooooooo
.0000000
.0000000
.0000000
0.0000000

XC ERROR TERM
NOT DEFINED
-.0000000
.0000000
.0000000
-.0000000
.0000000
.0000000
-.ooooooo
.0000000
-.ooooooo
.ooooooo
.ooooooo
-.0000000
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
.ooooooo
0.0000000
                 134

-------
INCOMPLETE BETA  FUNCTION  AND  INVERSE
A =
X
.0**
.08
.12
.16
.20
«2£f
.28
.32
.36
.z*0
»i*k
»k9
,52
.56
.60
,6<+
.6S
.72
.76
.30
.8%
.88
.92
.96
1.00
A =
X
.Ok
.03
.12
.16
.20
.2k
.28
.32
.35
.<*0
»kk
.k6
.52
.56
.60
,6*f
.68
.72
.76
.80
.8^
.83
.92
.96
1.00
6.5 AND B
BETA (X)
.0000000
.0000005
.0000070
«,0000«»3«4
.0001775
.0005561
.001^8*4
.0032921
.0067393
.0126936
.0223337
• 03711** l»
.0587380
.0890860
.1301025
.183618**
.2511069
.3333576
.2*300593
.5392781
.6568187
.775i»56*»
«33**Q2%8
»96&3t»80
1,0000000
7.0 AND B
.BETA(X)
.0000000
-.0000002
.0000026
.0000185
.00008^5
.0002899
,,0008150
.0019791
.Q0*t29*»%
.0035197
.0157085
.0272^00
.0^«f8239
.07014655
,1063757
e15^8112
92l782ft8
^2969061
8392^S12
^5033165
,6255915
.7519631
,8702«,Q7
.9613528
1.0000000
2,0
INVERSE
NOT DEFINED
• 0300000
,1199999
. 1600000
,2000000
«2399999
92800QOO
.3200001
B3599999
.^000000
»%4QOOQQ
.JfSOOOOO
85200000
.5600000
,6000000
S6^00000
^6300000
,7199999
.7600000
. 3000000
, SJiOOOOO
. 8800000
.9200000
®9&OOOOQ
1* 0000000
= 2.0
INVERSE
NOT DEFINED
S0800000
^1200000
.1600000
82000000
a2«400000
S2800000
83200000
,,3600000
s^000000
.itffOOOOQ
e^800000
.5200000
B5&QOQOO
.6000000
86^00001
s&800000
,7200000
,7600000
,8000000
. 8^00000
S8300000
.9199999
.9600000
1.0000000

XC ERROR TERM
NOT DEFINED
~»0000000
.0000001
.0000000
-.0000000
sQOOOQOl
-«ooooooo
-eOOQOQQi
^0000001
-«ooooooo
.0000000
.= 0000000
-,,0000000
.0000000
~«0000000
-^ooooooo
*ooooooo
.0000001
-*QQOOOOO
-4,0000000
SQOOOGOO
-.0000000
.0000000
BOOOOOOQ
o.ooooooo

XC ERROR TERM
NOT DEFINED
-sQQOOQOQ
-.OOOOOOO
-.0000000
-9OQOOOQQ
-»OQOOOOO
.0000000
^ooooooo
-.0000000
-,0000000
*OQOQOQQ
-.0000000
-.0000000
.0000000
-aOOOOOOO
-.0000001
^ooooooo
-.0000000
-.0000000
-. ooooooo
.0000000
-.ooooooo
.0000001
.0000000
o.ooooooo
                 135

-------
INCOMPLETE BETA FUNCTION AND INVERSE
A =
X
.04
.03
.12
.16
.20
.2k
.23
.32
.36
.40
.44
.48
.52
.56
.60
.64
.63
.72
.76
.80
.84
.33
.92
.96
1.00
A =
X
.04
.03
.12
.16
.20
.24
.28
.32
.36
.40
.44
.43
.52
.56
.60
.fit*
.63
.72
.76
.30
.34
.33
.9?
.96
1.00

7.5 AND E
SETA (X)
.0000000
.0000000
.0000009
.0000073
.0000401
.0001505
.0004569
.0011856
.0027271
.0056992
.0110128
.0199299
.0341022
.0555749
.0857350
.1301822
.183/4932
.2638490
.3574863
.4689374
.5950005
.7284062
.8561083
,9571447
1.0000000
8.0 AND a
BETA (X)
.0000000
.0000000
.0000003
.0000033
.0000189
.0000779
.0002554
.0007081
.0017265
.0038011
.0076984
.0145405
.0258745
.0437162
.0705439
.1092123
.1627501
.2339941
.3250062
.4362076
.5651570
.7048837
.8416790
.9522342
1.0000000

2.0
INVERSE
NOT DEFINED
NOT DEFINED
.1200000
.1600000
.2000000
.2400000
.2300000
.3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5599999
.6000000
.6400000
.6799999
.7200000
, 7600000
.8000000
.8400000
.8300000
.9199999
.9600000
1.0000000
= 2.0
INVERSE
NOT DEFINED
NOT DEFINED
.1200000
.1600000
.2000000
.2400000
.2800000
. 3200000
.3600001
.4000000
.4399999
.4300000
.5200000
.5600000
.6000000
.6400000
.5800000
.7200000
.7600000
.3000000
, 3400000
.8800000
.9200000
.9600000
1.0000000
136

XC ERROR TERM
NOT DEFINED
NOT DEFINED
-.0000000
.0000000
-. ooooooo
-.0000000
.0000000
.ooooooo
-.0000000
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.0000001
-.ooooooo
.0000 000
.0000001
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
.0000001
.ooooooo
o.ooooooo

XC ERROR TERM
NOT DEFINED
NOT DEFINED
.OOOOOOO
.OOOOOOO
-.ooooooo
.ooooooo
.ooooooo
.ooooooo
-.0000001
-.ooooooo
.0000001
-.ooooooo
- .ooooooo
.ooooooo
-.ooooooo
.ooooooo
.0000 000
-.ooooooo
.ooooooo
-.ooooooo
-.0000000
-.ooooooo
. 0. 0 0 0 0 0 0
.noooooo
0.0000000


-------
INCOMPLETE BETA FUNCTION  AND  INVERSE
A =
X
.04
.08
.12
.16
.20
.2k
.28
.32
.36
.4*0
.1*1*
.43
.52
.56
.60
.64
.63
.72
.76
.30
.84
.88
,92
.96
1.00
A =
X
• 04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
.48
.52
.56
.60
.64
.68
.72
.75
.30
.84
.38
.92
.96
1.00

8.5 AND 6
BETA (X)
.0000000
.0000000
.0000001
.0000014
.0000089
.0000402
.00011*23
.0094217
.0010901
.0025284
.0053675
.0105816
.0195836
.0343065
.0572451
.091t,231
.1402390
.2071300
.2949777
.4051620
.5361495
.6814815
,8270006
.9471315
1,0000000
9.0 AND 8
8ETA(X)
,0000000
.0000000
.0000000
.0000006
.00000^2
.0000207
.0000791
.0002505
.0006865
.0016777
.0037335
.0076828
.01^7891
.02636^2
.Oi»6357^
.0763810
.1206179
.1830354
.2673064
.3753096
.5080464
.6582750
.3121175
.9413462
1.0000000

2.0
INVERSE
NOT DEFINED
NOT DEFINED
. 1200000
.1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
.6400000
,6800000
.7200000
.7600000
,3000000
.3400000
,8300000
.9200000
.9600000
1.0000000
2.0
INVERSE
NOT DEFINED
NOT DEFINED
NOT DEFINED
. 1600000
,2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4400000
.4800000
,5200000
.5600000
.5000000
,6400000
.6300000
.7200000
.7600000
.3000000
.8400000
. 3800000
.9200000
.9600000
1.0000000
137

XC ERROR TERM
NOT DEFINED
NOT DEFINED
. ooooooo
-.0000000
-.ooooooo
.0000000
.ooooooo
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
.0000000
-.ooooooo
.ooooooo
-.ooooooo
• 0000 000
.0000000
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
.ooooooo
0.0000000

XC ERROR TERM
NOT DEFINED
NOT DEFINED
NOT DEFINED
-.0000000
-.ooooooo
.ooooooo
.0000000
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.0000000
.ooooooo
-.0000000
. ooooooo
.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
.ooooono
o.ooooooo


-------
INCOMPLETE BETA FUNCTION  AND  INVERSE
A =
X
.04
.03
.12
.16
.20
.24
.23
.32
.36
.40
.44
.48
.52
.56
.60
.6ft
.63
.72
.76
.30
.34
.88
.92
.96
1.00
A =
X
.04
.08
.12
.16
.20
,2k
.23
.32
.36
.40
• 44
.43
.52
.56
.60
.6**
.68
.72
.76
.80
.34
.33
.92
.95
1.00

2.5 AND B
BETA (X)
.0016645
.0090042
.0236^74
.0463959
.0771837
.1157809
.1615941
.2138329
.271531,8
.3336096
.3938727
.4660741
.5339259
.6011273
.6663904
.7284652
.7861671
.8384059
.8842191
.9223113
.9536041
.9763026
.9909953
.9933355
1.0000000
3.0 AND 0
BETA (X)
.0004013
.0030625
.0098465
.0222001
.0411741
.0674439
.1013313
• lt»28268
.191613t«
.?if70<=20
.303ff076
.37tf%778
.fff»tt0233
.3156008
.5876390
.653f+781
.726£»1«»6
.7897521
.3£*63603
.8962£»6(+
.9366««51
.9671370
.9873232
.9976218
1.0000000

2.5
INVERSE
.OitOOOOO
. 0300000
.1200000
. 1600000
.2000000
.2^00000
.2800000
.3200000
.3600000
.ffOOOOOO
.^00000
, ^ 8 0 0 0 0 0
.5200000
.5600000
.6000000
.6400000
.6300000
.7200000
.7600000
.3000000
.8t,00000
.8300000
.9200000
.9600000
1.0000000
= 2.5
INVERSE
. 0400000
. 0800000
.1200001
.1600000
.2000000
.2400001
.2300000
.3199999
.3600000
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
.8400000
. 3300000
.9200000
.9600000
1. 0000000
138

XC ERROR TERM
-. 0000000
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
. 0000000
-.0000000
-.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
. 0000 000
.0000 000
. ooooooo
.0000000
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
0.0000000

XC ERROR TERM
-.ooooooo
-.0000000
-.0000001
.0000000
-.ooooooo
-.0000001
.ooooooo
.0000001
-.ooooooo
-.ooooooo
-.ooooooo
-iOOOOOOO
.0000000
.ooooooo
.ooooooo
. ooooooo
.ooooooo
.0000000
.0000000
.ooooooo
.0000000
.0000000
.ooooooo
.ooooooo
0.0000000


-------
INCOMPLETE BETA FUNCTION AND INVERSE
A -
X
.04
.03
.12
.16
.20
.24
.23
.32
.36
.40
• 44
.48
.52
.56
.50
.64
.68
.72
.76
.30
.84
.83
.92
.96
l.QO
A =
X
.0**
.03
.12
.16
.20
.24
.23
.32
.36
.40
.44
.43
.52
.56
.60
.64
.68
.72
• 76
.80
.34
.33
.92
.96
1.00

3.5 AND B
BETA (X)
.0000947
.001020?
.0040114
.0104212
.0215599
.0335909
.0624595
.0938425
.1331127
.1303149
.2351530
.2969370
.3643390
.4374079
.5130959
.5900434
.6661770
.7392714
.3070292
.8671827
.9176295
.9566165
.9830123
.9967658
1.0000000
4.0 AND B
-RET A {X)
.0000220
.0003347
.0016085
.0048169
.0111213
.0217623
.0379626
.0608310
.0912844
.1299730
.1772186
.2329632
.2967302
.3675997
.4441981
.5247060
.6068862
.6331361
.7655701
.3361409
.3963154
.9448235
.9780729
.9957633
1.0000000

2.5
INVERSE
. 0400000
. 0800000
.1200000
.1600000
.2000000
.2400000
.2300000
.3200000
.3600000
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
.6400001
.6800000
.7200000
.7600000
.8000000
.8400000
. 8300000
.9200000
.9599999
1.0000000
2.5
INVERSE
. 0400000
.0800000
. 1200000
.1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.3000000
. B400000
. 8800000
.9200000
.9599999
1. 0000000
139

XC ERROR TERM
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
-.0000001
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000001
0.0000000

XC ERROR TERM
-.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000 000
.0000000
. ooooooo
.0000000
.ooooooo
.0000000
.ooooooo
.0000001
o.ooooooo


-------
INCOMPLETE BETA FUNCTION AND  INVERSE
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
.1*8
.52
.56
.60
.64
.68
.72
.76
.80
.34
.83
.92
.96
1.00
A =
X
.0^
.08
.12
.16
.20
.24
.23
.32
.36
.40
.44
.43
.52
.56
.60
.64
.63
.72
.75
.30
.34
.33
.92
.96
1.00

ft. 5 AND 8
BETA (X)
.0000050
.0001083
.0006366
.0021984
.0056660
.0121258
.0228056
.0389898
.0619243
.0927180
.1322436
. 18101*17
.2392315
.3064323
.3317005
.4634862
.5496150
.6373044
.7232229
.8036071
.374459S
.9313683
.9725197
.9946130
1.0000000
5.0 AND 8
8ETA (X)
.0000011
.0000347
.0002493
.0009927
.0028563
.0066880
.0135657
.0247529
.0416215
.0655576
.0973493
.1395635
,1914156
.2536333
.3253593
.4069866
.4951272
.5875363
.6306213
.7700249
.3503121
.9173352
.9663712
.9933113
1.0000000

2,5
INVERSE
.0400001
. 0300000
.1200000
.1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
.6400000
.5800000
.7200000
. 7600000
.3000000
. 3400000
.8800000
.9200000
.9600000
1.0000000
2.5
INVERSE
.0400000
.0300000
.1200000
.1600000
.2000000
.2400000
.2800000
.3200000
.359999-9
.4000000
.4400000
,4300000
.3200000
.5600000
.6000000
.6400000
.6300000
.7200000
.7600000
. 3000000
.8400000
. 3300000
.9200000
.9600000
1 . 0000000
140

XC ERROR TERM
-.0000001
-.0000000
. ooooooo
.0000000
-.ooooooo
.0000000
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
. ooooooo
-.ooooooo
-.ooooooo
.0000 000
-.ooooooo
. ooooooo
. ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
0.0000000

XC ERROR TERM
-. ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.0000-001
-.ooooooo
-.ooooooo
.ooooooo
-. ooooooo
-.ooooooo
-.ooooooo
-.0000 000
-.0000 000
.OOQOOOO
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.0000000
O.QOOOOOO


-------
INCOMPLETE BETA FUNCTION  AND  INVERSE
A =
X
.01*
.03
.12
.16
.20
• 2i»
.23
.32
.36
.1*0
.1*1*
.1*8
.52
.56
.60
.61*
.63
.72
.76
.30
.81%
.83
.92
.96
1.00
A =
X
.0**
.08
.12
.16
.20
.2**
.23
.32
.36
.1*0
«ifl*
.1*8
.52
.56
.60
.61*
.63
.72
.76
.80

.88
.92
.96
1.00
5.5 AND B
BETA (X)
.0000003
.0000110
.0000967
.000i*i«i*2
.0011+277
•0036569
.0080015
.0155860
.0277539
.01*59996
.0718701
.1068366
.15211*36
.2086371
.276581*2
.3551*907
.1*1*39321
.5391*162
.6382993
.7357931
.8261099
.9028305
.95961*88
.9918571*
1.0000000
6.0 AND 8
BETA{X}
.0000001
.0000035
.0000372
.0001972
.0007080
.001981*6
.001*6852
.0 0971*1*1*
.0183793
.0320615
.0521*500
.0812821
.1202230
.1706753
.2335551
.30901*1*0
.3963322
,1*93371*9
.5966929
.701261*2
,8005765
.886951*9
.9523760
.9902506
1.0000000
= 2.5
INVERSE
.01*00000
. 0300000
.1200000
.1600000
.2000000
.21*00000
.2800000
.3200000
.3600000
.<*OOOGOO
. 1*1*00 ooo
.1*799999
.5200000
.5600000
.6000000
.61*00000
.6800000
.7200000
.7600000
.3000000
.81*00000
.8800000
.9200000
.9600000
1.0000000
= 2.5
INVERSE
NOT DEFINED
.0800000
.1200000
.1600000
.2000000
.21*00000
.2300000
.3200000
.3600000
.1*000000
. 1*1*00 000
.1*800000
.5200000
.5600000
.6000000
.61*00000
.6800001
.7200000
.7600000
.8000000
.81*00000
.3300000
.9200000
.9600000
1.0000000

XC ERROR TERM
-.0000000
-.0000000
.0000000
.0000000
-•ooooooo
.0000000
.0000000
-.ooooooo
.0000000
-.0000000
.ooooooo
.0000001
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
.ooooooo
.QOOOOOO
.ooooooo
.ooooooo
.0000000
0.0000000

XC ERROR TERM
NOT DEFINED
-.OOOOOOO
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.0000000
.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
-.0000 001
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
o.ooooooo
                 141

-------
INCOMPLETE BETA  FUNCTION AND INVERSE
A =
X
.04
.03
.12
.16
.20
,2k
.23
.32
.36
.1*0
.44
.48
.52
.56
.60
.64
.68
.72
.76
.80
.84
.38
.92
.96
1.00
A =
X
.04
.08
.12
.16
.20
.2k
.28
.32
.36
.40
.44
.48
.52
.56
.60
.64
.68
.72
.76
.80
.34
.88
.92
.96
1.00
6.^ AND 8
BETA (X)
.0000000
.0000011
.0000142
.0000870
.0003488
.0010701
.0027259
.0060543
.0120976
.0222157
.0380609
.0615041
.0945073
.1389358
.1963136
.267523**
.3524684
.4497149
.5561549
•6667461
.7744194
.3703031
.9445781
,9834907
1.0000000
7.0 AND 8
.-SET A (X)
.0000000
.0000003
.OOQ005<*
.0000381
.0001708
.0005736
.0015770
.0037409
.0079203
.0153135
.0274804
.0463133
.0739478
.1126008
.1643269
.2306899
.3123565
.4036297
.5169605
.6325035
.7478291
.8529866
.9362815
.9365778
1.0000000
2.5
INVERSE
NOT DEFINED
. 0800000
.1199999
. 1600000
.2000000
.2400000
.2800000
.3200001
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
.8399999
.8300000
.9200000
.9600000
1.0000000
2.5
INVERSE
NOT DEFINED
. 0800000
.1200000
.1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4400000
,4800000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
.3400000
.8800000
.9200000
.9600000
1.0000000

XC ERROR TERH
NOT DEFINED
-.0000000
, 0000001
.0000000
-.0000000
.0000000
-.0000000
-.0000001
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000 000
. ooooooo
.0000000
-.0000000
.0000000
.0000001
.ooooooo
.0000000
.ooooooo
0.0000000

XC ERROR TERM
NOT DEFINED
-.OOOOOOO
-.ooooooo
,0000000
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.0000000
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
0.0000000
                 142

-------
INCOMPLETE BETA FUNCTION  AND  INVERSE
A -
X
. 0'+
.08
.12
.16
.20
»2k
.28
.32
.36
.**0
.****
.*»3
.52
.56
.60
»6«f
.68
.72
-76
.80
.3**
.88
.92
.96
1.00
A =
X
• Q*f
.08
.12
.16
.20
.2k
.28
.32
.36
.**0
.<4*+
.i+8
.52
.55
.60
.S*f
.63
.72
.76
.30
.3*+
.33
.92
.96
1.00
7,5 AND E
BETA (X)
.0000000
.0000001
.0000020
.0000166
.0000832
.0003060
.0009078
.0023002
.0051606
.0105068
.0197519
.03*47230
.0576201
.0908956
.1370368
.1982323
.275920**
.3702257
.*t79318it
,598761*+
.7209793
.8350838
.927513*+
.981*5127
1.0000000
8.0 AND B
BETA (X)
.0000000
.0000000
.0000008
.0000072
.GOQO*tO**
.OQOl62i»
.0005203
.001*4082
.0033*482
.0071788
. Q1M395
.G2593U
.0*4^7233
.0731102
.1133393
.1697976
,2*»30165
.33^5381
.*4*433788
.565707*4
. 69i+0267
.8166839
.9133016
.9822963
1.0000000
2.5
INVERSE
NOT DEFINED
. 0800001
. 1200000
.1600000
.2000000
,2*+00000
.2800000
. 3200000
.3600000
.*tOOOOOO
.*t*400000
.*t300000
.5200000
.5600000
.6000000
,6*+00000
.6300000
.7199999
.7600000
.8000000
. 3*400000
.8300000
.9200000
.9600000
1.0000000
2.5
INVERSE
NOT DEFINED
NOT DEFINED
.1200001
.1600000
.2000000
.2t»00001
.2800000
.3200000
.360000-0
,*4000000
.*4*400000
.^300000
.520,0000
.5599999
.6000000
.6*t00001
.6300000
.7199999
.7600000
. 3000000
.8'+00000
. 8300000
.9200000
.9600000
1.0000030

XC ERROR TERM
NOT DEFINED
-.0000001
-.0000000
-.0000000
-.0000000
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000 000
.0000001
-.0000000
-.0000000
.0000000
.0000000
.0000000
.0000000
o.ooooooo

XC ERROR TERM
NOT DEFINED
NOT DEFINED
-.0000001
. 0000000
-.0000000
-.0000001
-.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000001
-.0000000
-.0000 001
.0000 000
.0000001
-.0000000
-.0000000
.0000000
.0000000
.0000000
.0000000
o.ooooooo
               143

-------
INCOMPLETE BETA FUNCTION  AND INVERSE
A =
X
.04
.03
.12
.16
.20
.24
.23
.32
.36
.40
.44
.48
.52
.56
.60
.64
.68
.72
.76
.30
.84
.88
.92
.96
1.00
A =
X
.Off
.03
.12
.16
.20
.21*
.23
.32
.36
.40
.44
.48
.52
.56
.60
.64
.63
.72
.76
.30
.8^
.83
.92
.96
1.00
3.5 AND B
BETA (X)
.0000000
.0000000
.0000003
.0000031
.0000195
.0000859
.0002970
.0008587
.0021639
.0048864
.0100848
.0192971
.0346024
.0536125
.0943575
.1450168
.2134571
.3015471
.4092434
.5334960
.6671118
.7978870
.9086741
.9799300
1.0000000
9.0 AND B
BETA (X)
.0000000
.0000000
.0000001
.0000013
.0000094
.0000453
.0001689
.0005218
.0013936
.0033147
.0071639
.0143133
.0266652
.0468439
.0779524
.1235195
.1870245
.2711898
.3769714
.5022511
.6403589
.7737579
.3936537
.9774154
1.0000000
2.5
INVERSE
NOT DEFINED
NOT DEFINED
.1200000
.1600000
.2000000
.2400000
.2300000
. 3200000
.3600000
.4000000
.4399999
.4300000
.5200000
.5600000
.6000000
.6400000
.6799999
.7200000
.7600001
.8000000
.3400000
.3800000
.9200000
.9600000
1. 0000000
2.5
INVERSE
NOT DEFINED
NOT DEFINED
.1200000
. 1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6300000
,7200000
.7600000
. 3000000
.8400000
.3800000
.9200000
.9600000
1. 0000000

XC ERROR TERM
NOT DEFINED
NOT DEFINED
.0000000
.0000000
-.0000000
.0000000
.0000000
. ooooooo
.0000000
-.ooooooo
.0000001
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
.0000 000
. 0000 001
-.ooooooo
-.0000001
-.0000000
-.ooooooo
-.ooooooo
. ooooooo
.ooooooo
o.ooooooo

XC ERROR TERM
NOT DEFINED
NOT DEFINED
.OOOOOOO
.OOOOOOO
-.ooooooo
.OOOOOOO
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
.ooooooo
. ooooooo
-.ooooooo
.ooooooo
-.ooooooo
.ooooooo
-.0000000
.ooooooo
.ooooooo
0.0000000
                 144

-------
INCOMPLETE BETA FUNCTION  AND  INVERSE
A ~
X
.04
.03
.12
.16
.20
• 2k
.28
.32
.36
.40
.44
.48
.52
.56
.50
.64
.68
.72
.76
.30
.84
.88
.92
.96
1.00
A =
X
.04
.08
.12
.16
.20
• 2k
.28
.32
.36
.40
.44
.48
.52
.56
.60
.64
.68
.72
.76
.80
.84
.88
.92
.96
1.00
3.0 AND B
BETA (X)
.0006022
.0045253
.0143189
.031758?
.0579200
.0932512
.13764*78
.1905263
.2508973
.3174*400
.3835753
.4625400
.537*4600
. 611i*2i»7
.6825600
.7491027
.8094737
.8623522
.9067488
,9<*2Q80G
.9682A13
.9856811
.9951*71+7
.9993C78
1.0000000
3.5 AND 8
BETA (X)
.0001487
.0015764
.0060928
.0155592
.0316269
.0555915
.0883088
.1301513
.1809954
.2402319
.3067978
.3792249
.4557046
.5341656
.6123651
.6879917
.7587733
.8226263
.8777337
.9227626
.9569t»02
.9802680
.9936642
.9991436
1.0000000
3.0
INVERSE
. 0400000
.0300000
.1200001
.1600000
.2000000
.2<*00000
.2800000
.3200000
.3600000
.4000000
.4400000
.4799999
.5199999
.5600000
.6000000
.6400000
.6300000
.7199999
.7599999
.3000000
.8400000
.3800000
.9200000
.9600000
1,0000000
3.0
INVERSE
.0400000
.0800000
,1200000
.1600000
.2000000
.2400000
.2799999
.3200000
.3600001
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.3000000
.8399999
. 3800000
.9200000
.9600000
1.0000000

XC ERROR TERM
-.0000000
-«ooooooo
-.0000001
.0000000
-•ooooooo
-.0000000
.0000000
.0000000
-.ooooooo
-.0000000
.ooooooo
.0000001
.0000001
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.0000001
.0000001
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
0.0000000

XC ERROR TERM
-.ooooooo
-.0000000
.0000000
-.ooooooo
-.ooooooo
.ooooooo
.0000001
-.0000000
-.0000001
-.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.0000001
.ooooooo
.ooooooo
.ooooooo
o.ooooooo
                145

-------
INCOMPLETE BETA FUNCTION  AND  INVERSE
A =
X
.04
.03
.12
.16
.20
.24
.23
.32
.36
.40
.44
.48
.52
.56
.60
.64
.68
.72
.76
.80
.84
.83
.92
.96
1.00
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
.43
.52
.55
.60
.64
.68
.72
.76
.80
.84
.88
.92
.96
1.00

4.0 AND B =
BETA (X)
.0000360
.0005384
.0025431
.0074816
.0169600
.0325671
.0557124
.0874932
.128591**
.1792000
.2389786
.3070383
.3819583
.4618279
.5443200
.6267968
.7064407
.7804168
.8460648
.9011200
.9439641
.9739053
.9914879
.9938316
1.0000000
4.5 AND B =
BETA (X)
.0000086
.0001809
.0010447
.0035420
.0089536
.0138019
.0346555
.0580245
.0901833
.1320365
.1839991
.2459036
.3169394
,3956300
.4798533
.5669088
.6536362
.7365897
.8122711
.8774259
.9294054
.9655977
.9389319
.9934574
l.OOOOOQO
146
3.0
INVERSE
.0400000
.0800000
.1200000
.1600000
.2000000
.2400000
.2300000
.3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.3000000
.8399999
.3300000
.9200000
.9500000
1. 0000000
3.0
INVERSE
.0400001
.0300000
.1200000
.1600000
.2000000
.2400000
.2799999
. 3200000
.3600000
.4000000
.4400000
.4300000
,5200000
.5600000
' .6000000
.6400000
.6800000
.7200000
. 7600000
.3000000
. 8400000
.8799999
.9200000
.9500000
1. 0000000

                            XC   ERROR  TERM
                             -.0000000
                             -.0000000
                               .0000 000
                             -.0000000
                             -.0000000
                               .0000000
                               .0000000
                             -.0000000
                               .0000000
                             -.0000000
                             -.0000000
                             -.0000000
                               .0000000
                             -.0000000
                             -.0000000
                               .ooooooo
                               .0000 000
                               .ooooooo
                               .ooooooo
                               .ooooooo
                               .0000001
                               .ooooooo
                               ,0000 000
                               .ooooooo
                             o.oqooooo
                           XC  ERROR TERM
                             -.9000001
                             -..ooooooo
                              .ooooooo
                              .ooooooo
                             -.ooooooo
                              .ooooooo
                              .0000001
                             -.ooooooo
                              .ooooooo
                             -.ooooooo
                             -.ooooooo
                              .ooooooo
                              . oooonoo
                             -.ooooooo
                             -.ooooooo
                             -.ooooooo
                              .ooooooo
                              .ooooooo
                              .0000000
                              .ooooooo
                              .ooooooo
                              .0000001
                              .ooooono
                              .ooooooo
                             0.0000000

-------
INCOMPLETE BETA  FUNCTION  AND INVERSE
A =
X
.Of*
.08
.12
.16
.20
.24
.28
.32
.36
.40
.kk
.t*Q
.52
.56
.60
.6%
.68
.72
• 76
.30
.84
.83
.92
.96
1.00
A =
X
.0%
.03
.12
.16
.20
.24
.23
.32
.36
.40
.44
.43
.52
.56
.60
.64
.63
.72
.76
.30
.84
.38
.92
.96
1.00
5.0 AND B
BETA{X)
.0000020
.0000600
.0004234
.0016551
.0046720
.0107209
.0212996
.0380373
.0625^62
.0962560
.1402448
.1950 779
.2606679
.3361667
.4199040
.5093831
.6013469
.6919265
.7768850
.8519680
.913374S
.9583612
.9859860
.9980162
1.0000000
5.5 AND 8
BETA (X)
.0000005
.0000196
.0001697
.0007647
.0024099
.0060481
.0129558
.0246859
.0429610
.0695236
.1059537
.1534675
.2127113
.2335701
.3650098
.(+5^97^5
.550363*+
.6<*71117
.7^0^022
.8250365
.895956^
.9£»92212
.9326^32
.9975051
1.0000000
= 3.0
INVERSE
. OitOOOOO
.0800000
.1200000
.1600000
.2000000
.2399999
.2800000
.3200000
.3600000
.UOOQOOO
.^00000
.^300000
.5200000
.5600000
.6000000
.o*»QQOOO
.5300000
.7200000
.7600000
.8000000
.Sit 00 000
.8300000
,9199999
.9600000
1. 0000000
= 3.0
INVERSE
.0^+00000
. 0300000
.1200000
.1599999
.2000000
.2400000
.2300000
.3200000
.3600000
.4000000
.4400001
. Jf 8 0 0 0 0 0
.5200000
.5600000
.£000000
.6399999
.6300000
.7200000
.7600000
.3000000
.8400000
. 3300000
.9199999
.9600000
1. 0000000

XC ERROR TERM
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000001
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
. 0000000
-.0000000
-.0000000
. 0000 000
-.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000001
.0000000
o.aoooooo

XC ERROR TERM
-.0000.000
-.0000000
.0000000
.0000001
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000001
.9000000
-.0000000
--OOOOQOO
-.0000000
. ooooooi
-.QQGQOOQ
. ooooooo
.0000000
.0000000
.0000000
.ooooooo
.0000011
.ooooooo
o.oocoooo
                147

-------
INCOMPLETE BETA FUNCTION  AND  INVERSE
A =
X
.04
.03
.12
.16
.20
.24
.23
.32
.36
.40
.44
.48
.52
.56
.60
.64
.63
.72
.76
.30
.84
.83
.92
.96
1.00
A =
X
.04
.03
.12
.16
.20
.24
.23
.32
.36
.40
.44
.48
.52
.56
.60
.64
.68
.72
.76
.80
.84
.83
.92
.96
1.00

6.0 AND 8 =
BETA (X)
.0000001
.0000064
.0000673
.0003499
.0012314
.0033805
.0078097
.0158811
.0292594
.0498074
.0794247
.1193402
.1723681
.2376483
• 3153^6
.4041805
.5012977
.6027284
.7032777
.7969178
.8774020
.9392108
.9788995
.9969203
1,0000000 1
6.5 AND e =
BETA (X)
.0000000 NOT
.0000020
.0000265
.0001583
.000&240
.0018742
.0046704
.0101381
.0197791
.0354256
.0591265
.0929639
.1333041
.1979971
.2710469
.3572563
.4546013
.5592605
.6659199
.7678851
.8577280
.9233694
.9747537
.9962588
1.0000000 1
148
3.0
INVERSE
, 0400001
. 0800000
.1200000
.1600000
.2000000
.2400000
.2799999
. 3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6300000
.7200000
. 7600000
.8000000
.8400000
.8800000
.9199999
.9600000
.0000000
3.0
INVERSE
DEFINED
. 0300000
.1199999
.1600000
.2000000
.2400000
.2300000
.3200000
. 3500000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
.8400000
.3300000
.9200000
.9600000
.0000000


XC ERROR TERM
-.0000001
-.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000001
-.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000 000
-.0000 000
. 0000000
.0000000
. ooooooo
.0000000
.ooooooo
.0000001
,0000000
0.0000000

XC ERROR TERM
NOT DEFINED
-.0000000
.0000001
-.0000000
-.ooooooo
.0000000
.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
.0000000
.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
-.0000 000
.ooooooo
. ooooooo
. ooooooo
.ooooooo
. ooooooo
,0000000
.ooooooo
o.ooooooo


-------
INCOMPLETE BETA FUNCTION  AND  INVERSE
A =
X
.04
.08
.12
.16
.20
• 2k
.23
.32
.36
.40
• 44
.48
.52
.56
.60
.64
.68
.72
.76
.30
.84
.33
.92
.96
1.00
A =
X
.04
.03
.12
.16
.20
.24
.23
.32
.36
.40
.44
.43
• 52
.56
.60
• 54
.63
.72
.76
.30
.34
.88
.92
.96
1.00
7.0 AND B
8ETA(X)
.0000000
.0000007
.0000103
.0000715
.0003139
.0010316
.0027735
.0064277
.0132818
.0250348
.0437436
.0716881
.1111469
.1640878
.2317870
.3144075
.4105864
.5170982
.6286889
.7381975
.8371123
.9167411
.97020&8
.9955176
1.0000000
7.5 AND B
8ETA(X)
.0000000
.0000002
.0000040
.0000320
.0001568
.0005642
.0016367
.0040504
.0088658
.0175898
.0321828
.0549862
.0885472
.1353313
.1973221
.2755288
.3694467
.4765453
.5918960
.7080955
,315o916
.9043738
.9652621
.9946942
1.0000000
= 3.0
INVERSE
NOT DEFINED
.0800000
.1200000
. 1600000
.2000000
.2400000
.2300000
.3200001
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6800001
.7200000
.7600000
.8000000
. 8400000
.3800000
.9200000
.9600000
1.0000000
3.0
INVERSE
NOT DEFINED
.0800001
.1200000
.1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.JfOOOOOO
.4400000
.4300000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.3000000
.3400000
.8800000
.9200000
.9600000
1.0000000

XC ERROR TERM
NOT DEFINED
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000001
. ooooooo
-.0000000
.ooooooo
.0000000
-.ooooooo
. ooooooo
-.ooooooo
-.ooooooo
-.0000001
.ooooooo
-.ooooooo
.0000000
.0000000
.ooooooo
.ooooooo
.ooooooo
0.0000000

XC ERROR TERM
NOT DEFINED
-.0000001
-.ooooooo
.ooooooo
-.ooooooo
-.0000000
.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
.0000000
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.0000000
.ooooooo
.ooooooo
.ooooooo
o.ooooooo
               149

-------
INCOMPLETE BETA  FUNCTION AND INVERSE
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
.i+O
.44
.43
.52
.56
.60
.64
.58
.72
.76
.80
.34
.88
.92
.96
1.00
A =
X
.04
,08
.12
.16
.20
.24
.28
.32
.36
.40
.«t 4
.43
.52
.56
.60
.64
.63
.72
.75
.30
.34
.88
.92
.96
L.OO
8.0 AND 6
BETA (X)
.0000000
.0000001
.0000015
.00001*42
.0000779
.0003063
.0009605
.0025384
.0053364
.0122946
.0235583
.0419713
.0702161
.11112*43
.1672898
.2405373
.3312783
.4378290
.5558051
.6777995
.7935995
.8913182
.9599246
.9937863
1.0000000
3.5 AND e
8ETA(X)
.0000000
.0000000
.0000006
.0000063
.0000385
.0001660
.0005608
.0015829
.0038893
.0085529
.0171662
.0318958
.0554447
.0903304
.1412913
.2092507
.2961002
.4011090
.5206356
,6
-------
INCOMPLETE BETA  FUNCTION  AND INVERSE
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.ttk
.48
.52
.56
.60
.64
.68
.72
.76
.80
.84
.83
.92
.96
1.00
A =
X
.04
.03
.12
.16
.20
.24
.23
.32
.36
.40
.44
.43
.52
.56
.60
.6**
.63
.72
.76
.80
.34
. 33
.92
.96
1.00
9.0 AND 8
BETA(X)
.0000000
.0000000
.0000002
.0000028
.0000189
.000089**
.0003259
.0009326
.0025585
.0059245
.0124564
.0241413
.0436112
.0740499
.1139168
.1814410
.2638673
.3664868
.4865654
.6174015
.7479110
.8633530
,9431000
.9917087
1.0000000
3.5 AND B
8ETA(X)
.0002203
.0022981
.0037361
.0219231
.0438115
.0756422
.1179749
.1706364
.2327766
.3029507
.3792263
.4593106
.5406394
.6207737
.6970493
.7672234
.8293636
.3820251
.9243573
.9561835
.9780669
.9912639
.9977019
.9997797
l.OOOOOOQ
= 3.0
INVERSE
NOT DEFINED
NOT DEFINED
.1200000
.1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4399^99
.4300000
.5200000
.5600000
.6000000
,6400001
.6300000
.7199999
.7600000
.3000000
. 8400000
„ 8799999
.9200000
.9600000
l.OOQOOOO
3.5
INVERSE
.0400000
. 0800000
.1.200000
.1599999
.2000000
.2400000
.2300000
.3199999
.3600000
.4000000
.4400900
.4300000
.5199999
.5600000
.6000000
.6400000
.6800000
.7200000
. 7600090
,8000000
.3400000
,3300000
.9200000
,9600000
1,0000000

XC ERROR TERM
NOT DEFINED
NOT DEFINED
.0000000
.0000000
-.0000000
.0000000
.0000000
.0000000
.0000000
-.0000000
.0000001
-.0000000
-.0000000
.0000000
-.0000000
-.0000 001
.0000000
.0000001
-.0000000
-.0000000
.0000000
.0000001
.0000000
.0000000
0.0000000

XC ERROR TERM
-.0000000
-.0000000
.0000000
.0000001
-.0000000
.0000000
.0000000
.9000001
-.0000000
-.0000000
.0000000
-.0000000
.0000001
.0000000
.0000000
.0000 noo
.0000000
.noooooo
.0000001
. 0 0 0 0 0 0 0
.0000000
.0000009
.0000090
.0000000
0.0000000
                151

-------
INCOMPLETE  BF.TA  FUNCTION AND  INVERSE
A =
X
.04
.08
.12
.16
.20
.24
.23
.32
.36
.40
.44
.48
.52
.56
.60
.54
.63
.72
.76
.80
.84
.33
.92
.96
1.00
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
.43
.52
.56
.60
.64
.68
.72
.76
.80
.34
.88
.92
.96
1.00
4.0 AND B
BETA (X)
.0000554
.0008148
.0037833
.0109353
.02i»3445
.0458824
. 0769977
.1185560
.1707450
.2330378
.3042096
.3824026
.4652335
.5499371
.6335401
.7130571
.7857007
.8490958
.9014873
.9419266
.9704207
.9330178
.9967956
.9996878
1.0000000
4.5 AND B
8ETA(X)
.0000137
.0002835
.0016036
.0053559
.0132951
.0273697
.0494530
.0811167
.1234311
.1768110
.2409160
.3146107
.3959896
.4824635
.5709099
.6578780
.7398441
.3135034
.8760855
.9256723
.9614393
.9841365
.9956874
.9995730
1.0000000
3.5
INVERSE
. 0400000
. 0300000
. 1200000
.1600000
.2000000
.2400000
.2300000
.3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6399999
.6800000
.7199999
.7600000
.8000000
,8400000
.8300000
.9200000
.9600000
1. 0000000
3.5
INVERSE
. 0400000
. 0300000
.1200000
.1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4400000
.4800001
.5200000
.5599999
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
. 3400000
.8300000
.9200000
.9600000
1 .0000000

XC ERROR TERM
-. 0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
-. 0000000
.0000000
-.0000000
-.0000000
-.0000000
. ooooooo
-.0000000
.0000000
.0000 001
.0000 000
. 0000001
.ooooooo
.0000000
.ooooooo
.ooooooo
.0000000
.ooooooo
O.OOOOQOO

XC ERROR TERM
-.0000000
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
-.0000001
.ooooooo
.0000001
.ooooooo
.0000 000
.ooooooo
. ooooooo
. ooooooo
.ooooooo
.ooooooo
.ooooooo
. ooooooo
.ooooooo
o.ooooooo
                152

-------
INCOMPLETE BETA  FUNCTION AND INVERSE
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
• 40
.44
.43
.52
.56
.60
.64
.68
.72
.76
.80
.34
.88
.92
.96
1.00
A =
X
.04
.03
.12
.15
.20
.24
.23
.32
.36
.40
.44
.48
.52
.56
.60
.64
.63
.72
.76
.30
.84
.83
.92
.96
1.00
5.0 AND 8
B£TA(X)
.0000033
.0000971
.0006733
.0025836
.0071543
.0160946
.0313267
.0547699
.0331060
.1325496
.1886478
.2561263
.3338009
.4195659
.5104673
.6028717
.6927172
.7753592
.8434796
.9075463
.9512833
.9795959
.9943616
.9994327
1.0000000
5.5 AND 8
BETA(X)
.0000008
.0000328
.0002781
.0012301
.0033011
.0093480
.0196079
.0365558
.0621977
.0983242
.1462503
.2065682
.2789436
.3619799
.4531796
.5490186
.6451523
.7367590
.8190168
.8876964
.9398290
.9743798
.9923043
.9992644
1.0000000
- 3.5
INVERSE
. 0400000
. 0800000
.1199999
.1599999
.2000000
.2400000
.2300000
.3200000
.3600000
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
.8400000
.8800000
.9200000
.9600000
1.0000000
3.5
INVERSE
.0400000
.0300000
.1200000
,1600000
.2000000
.2400000
.2800001
.3200000
.3600000
.4000000
.4400000
.£^800000
.5200000
.5600000
.6000000
.6400000
.6300000
.7200000
.7600000
.3000000
, 3400000
. 8800000
,9200000
.9600000
1. 0000000

XC ERROR TERM
-.0000000
-.0000000
.0000001
.0000001
-.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
0.0000000

XC ERROR TERM
-.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000001
-.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
-.0000000
.0000 000
.0000 000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
o.ooooooo
                153

-------
INCOMPLETE BETA  FUNCTION AND INVERSE
A =
X
.04
.03
.12
.16
.20
.24
.28
.32
.36
.40
.44
.48
.52
.56
.60
.64
.63
.72
.76
.80
.84
.88
.92
.96
1.00
A =
X
.04
.03
.12
.16
.20
.24
.23
.32
.36
.40
.44
.48
.52
.56
.60
.64
.68
.72
.76
.80
.84
.38
.92
.96
1.00
6.0 AND B
BETA (X)
.0000002
.0000109
.0001135
.0005790
.0019973
.0053710
.0121448
.0241525
.0434809
.0722568
.1123770
.1652073
.2312835
.3100540
.3997027
.4970937
.5973740
.6967636
.7880508
.3662899
.9271702
.9684790
.9910023
.9990655
1.0000000
6.5 AND 8
BETA (X)
.0000000
.0000036
.0000459
.0002699
.0010393
.0030568
.0074529
.0158148
.0301336
.0526591
.0856642
.1311349
.1904142
.2638405
.3504332
.4476303
.5514935
.6563866
.7559300
.8435064
.9133635
.9613912
.9889462
.9S88334
1.0000000
3.5
INVERSE
.0400000
.0300000
. 1200000
. 1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4400001
,4800000
.5200000
.5600000
.6000000
.6400000
.6800001
.7200000
.7600000
. 3000000
.8399999
.8800000
.9200000
.9600000
1. 0000000
3.5
INVERSE
NOT DEFINED
.0800000
.1200000
.1600000
.2000000
.2400000
.2300000
.3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
. 7600000
. 3000000
.3400000
. 3800000
.9200000
.9600000
1. 0000000

XC ERROR TERM
-.0000000
-.0000000
, ooooooo
-.0000000
-.ooooooo
.0000000
.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.0000001
.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
-.0000 001
.ooooooo
.ooooooo
.ooooooo
.0000001
.ooooooo
.ooooooo
.ooooooo
0,0000000

XC ERROR TERM
NOT DEFINED
-.OOOOOOO
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
o.ooooooo
                154

-------
INCOMPLETE BETA  FUNCTION  AND  INVERSE
A =
X
.0*4
.08
.12
.16
.20
,2k
.29
.32
.36
.**0
• *+**
.*t8
.52
.56
.60
.6*4
.68
.72
.76
.80
.8**
.83
.92
.96
1.00
A =
X
.0*4
.08
.12
.16
.20
.2*4
.23
.32
.36
.^0
.*4*4
.**3
.52
.56
.60
• 6<*
.63
.72
.76
.30
.8*4
.83
.92
.96
1.00
7.0 AND B
BETA(X)
.0000000
.0000012
.000018**
• Q00i2**7
.0005361
.0017250
.00*45360
.0102727
.0207221
.0380908
.Q6**83<+9
.103382*4
.155762**
.223171+6
.305552(4
.*401188**
.5065081*
.6160861
.7229391
.8195326
.898*4757
.95*46199
.9866251
.9985659
1.0000000
7.5 AND B
8ETA(X)
.0000000
.000000**
.0000073
.0000571
.00027****
.0009662
.002740*1
,00662*49
.01**1509
.0273677
.0*487533
.0810007
.1266730
.1877*»f+7
.26507*46
.3578791
.*4633101
.5762616
.6895<»32
.79*»557**
.3325820
.9**667**3
,98**0316
.9932606
1.0000000
3.5
INVERSE
NOT DEFINED
.0800000
.1200000
.1600000
.2000000
.2*»00000
.2800000
.3200001
.3600000
.*400000Q
.*4**OOQOQ
.**800000
.5200000
.5600000
.6000000
.6**OOQOO
.6800000
. 7200000
.7599999
.8000000
.8**00000
. 8800000
.9200000
.9600000
1.0000000
3.5
INVERSE
NOT DEFINED
. 0800001
.1200000
.1600000
.2000000
.2**00000
.2799999
.3200000
.3600000
,**000000
.*»**00000
.**800000
.5200000
.5600000
.6000000
.6**00000
.6800000
.7200000
.7600000
.8000000
. 8**00000
. 8799999
.9200000
.9600000
1.0000000

XC ERROR TERM
NOT DEFINED
-.0000000
-.0000000
-.0000000
-.0000000
-.0000000
-.0000000
-.0000001
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
-.0000 000
.0000000
.0000001
.0000000
.0000000
.0000000
.0000000
.0000000
0.0000000

XC ERROR TERM
NOT DEFINED
-.0000001
-.0000000
-.0000000
-.0000000
-.0000000
.0000001
.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
-.0000000
.0000000
. ooooooo
.0000000
.ooooooo
.0000001
.ooooooo
.ooooooo
o.ooooooo
                155

-------
INCOMPLETE BETA  FUNCTION AND INVERSE
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
»40
.44
.43
.52
.56
.60
.64
.68
.72
• 76
.30
.34
.83
.92
.96
1.00
A =
X
.04
.03
.12
.16
.20
.21*
.23
.32
.36
.40
.44
.48
.52
.56
.60
.64
.63
.72
.75
.30
.84
.33
.92
.96
1.00
8.0 AND 8
BETA (X)
.0000000
.0000001
.0000029
.0000260
.0001395
.0005375
.0016447
.0042448
.0096028
.0195436
.0364455
.0631079
.1024660
.1571463
.2233371
.3178877
.4221910
.5372527
.6558825
.7687675
.3657633
.9380682
.9811592
.9979152
1.0000000
8.5 AND 8
BETA(X)
.0000000
.0000000
.0000011
.0000118
.0000705
.0002972
.0009811
.0027039
.0064792
.0138789
.0270939
.0439148
.0824791
.1309266
.1967878
.2812486
.3333571
.4993415
.6222712
.7423451
.8431068
.9288198
.9730030
.9975274
1.0000000
3.5
INVERSE
NOT DEFINED
. 0300000
. 1200001
.1600000
.2000000
.2400000
.2800001
.3200000
.3600000
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
. 3400000
.8800000
.9200000
.9600000
1.0000000
3.5
INVERSE
NOT DEFINED
NOT DEFINED
.1200000
.1600000
.2000000
.2400000
.2800000
. 3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6300000
.7200000
. 7600000
.3000000
. 8400000
. 3800000
.9200000
.9600000
1. 0000000

XC ERROR TERM
NOT DEFINED
-.0000000
-.0000001
.0000000
-.0000000
-.0000000
-.0000001
.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-, ooooooo
.0000000
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
0.0000000

XC ERROR TERM
NOT DEFINED
NOT DEFINED
.OOOOOOO
-.OOOOOOO
-.ooooooo
.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.0000000
.ooooooo
-.0000000
-.ooooooo
.0000 000
.ooooooo
-.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
o.ooooooo
               156

-------
INCOMPLETE BETA  FUNCTION AND INVERSE
A =
X
.04
.03
.12
.16
.20
.24
.28
.32
.36
,40
.44
.48
.52
.56
,60
,64
.68
.72
.76
.80
.31*
.88
.92
.96
1.00
A =
X
.04
.08
.12
.16
.20
.2**
.28
.32
.36
.40
.44
.48
.52
.56
.60
.64
.68
.72
.76
.80
.34
.83
.92
.96
1.00
9.0 AND G
BETA (X)
.0000000
.0000000
.0000004
.0000053
.0000354
.0001634
.0005821
.0017131
.0043489
.0098063
.0200506
.0377350
.0660912
.1036154
.1685133
.2479152
.3469377
.4627551
.5889439
.7154642
.8296990
.9189509
.9745591
.9970952
1.0000000
4.0 AND B
BETA(X)
.0000813
.0011763
.0053693
.0152503
.0333440
.0616955
.1015962
.1534344
.2166517
.2897920
.3706237
.4563199
.5436801
.6293763
.7102080
,7833£»33
.8465656
.8984038
.9333045
.9666560
,9847«»97
.9946307
.9938237
.9999187
1.0000000
- 3.5
INVERSE
NOT DEFINED
NOT DEFINED
.1200000
. 1600000
.?000000
.2400000
.2300000
. 3200000
.3500000
.4000000
.4400000
.*»8QQQOQ
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
.8400000
.8800000
.9200000
.9599999
1.0000000
= 4.0
INVERSE
.0400000
.0800000
.1200000
.1600000
,2000000
.2400000
.2300000
.3200000
.3600001
,4000000
.^399999
.4800000
.5200000
.5600000
.5000000
.6400000
.6800000
,7200000
.7600000
.8000000
, 8400000
.8300000
.9200000
.9600000
1.0000000

XC ERROR TERM
NOT DEFINED
NOT DEFINED
.0000000
.0000000
-•ooooooo
-0000000
.0000000
. ooooooo
.0000000
-.0000000
.ooooooo
-.0000000
-.0000000
.ooooooo
-.ooooooo
-.ooooooo
.0000000
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
•ooooooo
.0000001
0.0000000

XC ERROR TERM
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
-.0000001
-.ooooooo
.0000001
-.ooooooo
.0000000
.ooooooo
.ooooooo
. 0000 000
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
o.ooooooo
                 157

-------
INCOMPLETE BETA  FUNCTION AND INVERSE
ft =
X
.04
.08
.12
.16
.20
,2k
.23
.32
.36
.40
.44
.1*8
.52
.56
.60
.64
.63
.72
.76
.30
.34
.83
.92
.96
1.00
A =
X
.04
.03
.12
.16
.20
.24
.28
.32
.36
.40
.44
.43
.52
.56
.60
.64
.68
.72
.76
.80
.84
.88
.92
.96
1.00
if. 5 AND B =
BETA (X)
.0000207
.0004228
.0023572
.0077030
.0187815
.0379325
.0672052
.1080324
.1610168
.2258059
,3010672
.3845578
.4732815
.5637198
.6521187
.7343104
.8085455
.8708067
. 92007*+ 4
.9560096
.9795188
.992662**
.9983649
,9998851
1.0000000
5.0 AND B =
BETA (X)
.0000052
.0001*493
.0010169
.0038303
.QiQ40&<*
.0229548
.0437826
.0749644
.1130242
.1736704
.2416115
.3204741
.4078342
.5003641
.5940 664
.6847209
.7680957
.8405901
.8995638
.9437184
.9733297
.9902784
.9977967
.9998426
i.noooooo
4.0
INVERSE
. 0400000
. 0800000
.1200000
.1600000
.2000000
.2400000
.2300000
.3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6800000
. 7200000
.7600000
.8000000
.8400000
.8799999
.9200000
.9600000
1.0000000
4*0
INVERSE
.0400000
.0800001
.1199999
.1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4400000
.4800001
.5200000
.5600000
.6000000
.6400000
.6800000
.7199999
.7600000
.8000000
.8400000
.8800000
.9200000
.9600000
1. 0000000

XC ERROR TERM
-.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
.0000000
-. 0000000
.0000000
-.0000000
-.0000000
-.0000000
.0000000
.0000000
.0000000
. 0000 000
.0000000
. ooooooo
. ooooooo
.ooooooo
.ooooooo
.0000001
.ooooooo
.ooooooo
0.0000000

XC ERROR TERM
-.ooooooo
-.0000001
.0000001
.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.0000000
.ooooooo
-.ooooooo
-.0000000
-.0000001
.ooooooo
.ooooooo
.ooooooo
.ooooooo
. 0000 000
.0000001
.ooooooo
.ooooooo
.000000,0
.ooooooo
.ooooooo
.ooooooo
0.0000000
                158

-------
INCOMPLETE BETA FUNCTION AND  INVERSE
A =
X
.04
.03
.12
.16
.20
.24
.28
.32
.36
.40
.44
.43
.52
.56
.60
.64
.68
.72
.76
.80
.34
.88
.92
.96
1.00
A =
X
.04
.03
.12
.16
.20
.2k
.23
.32
.36
.40
.44
,43
.52
.56
.60
.64
.68
.72
.76
.30
.34
.83
.92
.95
1.00

5.5 AND B -
BETA (X)
.0000013
.0000519
.0004322
.0018757
.0056843
.0137004
.0231456
.0513568
.0354611
.1320365
.1913036
.2643908
.3482078
.4404540
.5372751
.6340695
.7259272
.8031721
.8769531
.9298150
.9661552
.9874494
.9971072
.9997899
1.0000000
6.0 AND 8 =
BETA (X)
.0000003
.0000178
.0001813
.0009068
.0030664
.0030784
.0178821
.0347877
.0612147
.0993526
.1507869
.2161445
.2948105
.3847691
.t,326097
.5837263
.6827203
.7739888
.8524552
.9143533
.9579813
.9841503
.9962849
.9997257
1.0000000
159
4.0
INVERSE
. 0400000
. 0800000
. 1200000
. 1600000
.2000000
.2400000
.2800000
. 3200000
.3600000
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
.6400000
.6800000
.7199999
.7599999
.8000000
. 3400000
.8300000
.9200000
.9600000
1.0000000
4.0
INVERSE
.0400000
. 0300000
.1200000
Cl&OOQOO
.2000000
. 2 4 0 0 0 0 0
.2300000
.3200000
.3600000
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
.6400000
.6300000
.7200000
.7600000
. 8000000
. 3400000
.3300000
.9200000
.9599999
1. 0000000


XC ERROR TERM
-.0000000
-.0000000
.0000000
. ooooooo
-.0000000
.ooooooo
-.0000000
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
.ooooooo
. ooooooo
.0000001
.0000001
.0000000
.0000000
.ooooooo
.0000000
.ooooooo
0.0000000

XC ERROR TERM
-.ooooooo
-.ooooooo
,0000000
.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.0000001
0.0000000


-------
INCOMPLETE BETA FUNCTION AND  INVERSE
A =
X
.Off
.03
.12
.16
.20
• 2tf
.23
.32
.36
.tfO
.£f<+
.%8
.52
.56
.60
.6%
.68
.72
.76
.30
.8tf
.83
.92
.95
1.00
A =
X
.04
.03
.12
.16
.20
.2*f
.23
.32
.36
.*tO
• <*<+
.^8
.52
.56
.60
.6
-------
INCOMPLETE BETA  FUNCTION  AND  INVERSE
A -
X
.04
.03
.12
.16
.20
.24
.23
.32
.36
»40
.44
.48
.52
.56
.60
.64
.68
.72
.76
.80
.84
.83
.92
.96
1.00
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
.43
.52
.56
.60
.64
.68
.72
»75
.80
.34
.83
.92
.96
1.00

7.5 AND 8
BETA (X)
.0000000
.000000?
.0000125
.0000962
.000452?
.0015593
.0043266
.,0102193
.0213070
.0401318
.0697243
.1127123
.1713036
.2464586
.33739'31
.44122^0
.5523130
.6651360
.7700469
.8595623
.9275034
.9712£*15
.9929144
.9994505
1.0000000
3.0 AND B
BETA (X)
.0000000
.0000002
.0000051
.0000448
.0002352
.0008867
.0026526
.0056870
.0147609
.0292815
.0531634
.0395181
.1411628
.2099895
.2962343
.3981P72
,51iO£«27
.6230749
.7
-------
INCOMPLETE BETA FUNCTION  AND  INVERSE
A =
X
.04
.08
.12
.16
.20
.21+
.28
.32
.36
.40
.44
.43
.5?
.56
,60
.64
.68
.72
.76
.30
.34
.88
.92
.96
1.00
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
.48
.52
.56
.60
.64
.63
.72
.76
.30
.84
.88
.92
.96
1.00
8.5 AND E
BETA (X)
.0000000
.0000001
.0000020
.0000207
.0001213
.0005005
.0016152
.0043465
.0101597
.0212045
.0402918
.0706377
.1156913
.1730042
.2539560
.3577136
.4706649
.5912085
.7101882
.8171516
.9024614
.9600077
.9898173
.9991341
1.0000000
9.0 AND 8
•BETA (X)
.0000000
.0000000
.0000008
.0000095
.0000622
.0002807
.0009774
.0028080
.0069513
.0152673
.0303675
.0555222
.0943380
.1501761
.2253373
.3201202
.4319466
.5548303
.6795133
.7945639
.888&315
.9535873
.9879882
.9990218
1.0000000
*».o
INVERSE
NOT DEFINED
NOT DEFINED
.1200000
.1500000
.2000000
.2^00001
.2800000
.3200000
.3600000
. ff 0 0 0 0 0 0
.^OQOQO
.if799999
.5200000
.5600000
.6000000
.6^00000
.6300000
.7200000
.7600000
.8000000
. 8399999
. 8800000
.9200000
.9600000
1.0000000
= %.o
INVERSE
NOT DEFINED
NOT DEFINED
.1200000
.1600000
.2000000
,2*400000
.2800000
.3200000
.3600000
.4000000
,4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
.3400000
.8800000
.9200000
.9600000
1. 0000000

XC ERROR TERM
NOT DEFINED
NOT DEFINED
. 0000000
.0000000
-.0000000
-.0000001
.0000000
.0000000
-.0000000
-.0000000
. ooooooo
.0000001
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
. ooooooo
.ooooooo
.ooooooo
.0000001
.ooooooo
.ooooooo
.ooooooo
o.ooooooo

XC ERROR TERM
NOT DEFINED
NOT DEFINED
.OOOOOOO
.OOOOOOO
-.ooooooo
.OOOOOOO
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
o.ooooooo
              162

-------
INCOMPLETE BETA FUNCTION AND  INVERSE
A =
X
.0*f
.03
,12
.16
.20
.2ff
.28
.32
.36
,*fO
.***»
.52
.56
.60
.6*+
.63
.72
.76
.30
.8%
.83
.92
.96
1.00
A =
X
.0*»
.03
.12
.16
.20
.2k
.23
.32
.35
.1*0
.*+*+
.i»3
.52
.56
.60
.6*4
.63
.72
.76
.30
. 3<+
.33
.92
.96
1.00
**.5 AND 3
BETA (X)
.0000302
.0006058
.0033192
.0106607
.0255017
.0505*405
.0878253
.133*4093
.2021599
.2777228
.3626291
^lll^l
.6373709
.7222772
.7978*401
.8615907
.91217*47
.9**9*4595
.97***f933
.9893393
.9966803
.99939^2
.9999698
1.0000000
5.0 AND 6
BETA (X)
.0000073
.0002201
.001*4731
.005*4*472
.Cl£»52l6
. 0 31*+l*4l
.0537293
.0985090
.1518561
.2136323
.2976060
.3860105
.1^5025*4*4
,575Qil*f
.6637036
.7539831
.828207*4
.8888528
.93*t306*4
.966*4 3UO
.9357306
.995*4772
.9991600
.999957*4
1.0000000
*f.5
INVERSE
. ooooooo
. 0800000
.1200000
.1600000
.2000000
.2*400000
.2300000
.3200000
.3600000
,*4000000
.*»*400000
.5200000
.5600000
.6000000
,6*tOOOQO
.6300000
.7200000
,7600000
.3000000
.8^00000
. 3800000
.9200000
.9600000
1. OOOOOOO
*4.5
INVERSE
,0*+00000
. 0800001
.1199999
.1600000
.2000000
.2*400000
.2799999
.3200000
.3600000
.
-------
INCOMPLETE BETA FUNCTION  AND  INVERSE
A =
X
.04
.03
.12
.16
.20
,24
.23
.32
.36
.40
• kit
.48
.52
.56
.60
.64
.68
.72
.76
.80
.84
.33
.92
.96
1.00
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
.43
.52
.56
.50
.64
.63
.72
.76
.30
.34
.33
.92
.96
1.00
5.5 AND 8
BETA (X)
.0000020
.0 000786
.0006430
.0027390
.0081t,12
.0192342
.0337038
.0691489
.1125840
.1700836
.2414569
.3251063
.41BO&12
.5161989
.6146382
.7032644
.7923305
.8630584
.9131533
.9571380
.9814177
.9940047
.9988670
.9999416
1.0000000
6.0 AND 8
BETA(X)
a0000005
.0000277
.0002767
.0013579
.0045021
.0116214
.0251885
.0479466
.0824959
.1308270
,1938778
.2711929
.3607484
.4539901
.5611032
.6615029
.7545007
.8350678
.8995850
.9464452
.9763610
.9922374
.9985074
.9999217
1.0000000
= 4.5
INVERSE
.0400000
.0800000
.1200000
.1,600001
.2000000
.2399999
.2300000
.3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
. 3400000
. 8300000
.9200000
.9600000
1. 0000000
= 4.5
INVERSE
. 0400000
. 0300000
. 1200000
.1600000
.2000000
.2400000
.2300000
.3200000
.360000.0
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
.6400000
.5800000
.7200000
.7600000
, 3000000
. 8400000
.8800000
.9200000
. 9600000
1 .0000000

XC ERROR TERM
-.0000000
-.0000000
.0000000
-.0000001
-.0000000
.0000001
-.0000000
-. ooooooo
.0000000
-.0000000
-.ooooooo
.0000000
. ooooooo
. ooooooo
.ooooooo
.0000 000
.0000 000
.ooooooo
. ooooooo
.ooooooo
.0000000
.ooooooo
.ooooooo
.ooooooo
o.ooooooo

XC ERROR TERM
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.0000000
.ooooooo
.0000000
-.ooooooo
.ooooooo
.0000 000
.0000 000
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.0000000
o.ooooooo
               164

-------
INCOMPLETE BETA FUNCTION  AND  INVERSE
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
• 4 3
.52
.56
.60
• 64
.68
.72
.76
.80
.8**
.88
.92
.96
1.00
A =
X
• 04
.03
.12
.16
.20
.24
.28
.32
.36
.40
• 44
• 48
.52
.56
.60
.64
.68
.72
.76
.30

.88
.92
.96
1.00
6.5 AND B
BETA (X)
.0000001
.0000096
.0001175
.0 00&&49
.0021*597
.0069393
•0162045
.0328817
.0598158
.0996289
•1542130
•2242411
.3087906
•4051612
.5089562
•&144541
.7152626
.8051903
.8792197
.9344117
.9705290
.9901511
.9980733
.9998973
1.0000000
7.0 AND 8
BETA(X)
.0000000
.0000033
.0000 494
.0003220
.0013293
.0041001
.0103187
.0223283
.0 429607
.0751853
.1216138
.1839314
.2623551
.3552313
.<*588829
.5677897
.6751432
.7737530
.8572020
.9210627
.9638993
.9877233
.9975568
.9998675
1.0000000
4.5
INVERSE
.01*00000
.0800000
. 1200000
.1600000
.2000000
.2400000
.2800000
.3200000
.3600000
,4000000
. ***» 00 001
.^300000
.5200000
.5600000
.6000000
.6400000
.6800000
.7199999
.7600000
.8000000
. 8400 000
.8800000
.9200000
.9600000
1. 0000000
4.5
INVERSE
NOT DEFINED
.0800000
.1200000
.1600000
.2000000
.2400000
.2800000
.3200000
.360000.0
.4000000
. 4400 000
.4800000
.5199999
.5600000
.6000000
.6400000
.6300000
.7200000
.7599999
. 3000000
. 3400 000
. 3799999
.9200000
.9600000
1.0000000

XC ERROR TERM
-.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000001
.0000000
.0000000
-.0000000
-.0000 000
.0000 000
.0000000
.0000001
.0000000
.00000(30
.0000000
.0000000
.0000000
.0000000
0.0000000

XC ERROR TERM
NOT DEFINED
-.0000000
-.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
,0000000
-.0000000
.0000000
.0000000
.0000001
-.0000000
-.0000000
-.0000000
.0000 000
.0000000
.0000001
.0000000
.0000000
.0000001
.0000000
.0000000
0.0000000
               165

-------
INCOMPLETE 3ETA FUNCTION  AND INVERSE
A =
X
.04
.03
.12
.16
.20
• 2k
.28
.32
.36
.40
.44
.48
.52
.56
.60
.64
.68
.72
.76
.30
.84
.88
.92
.96
1.00
A =
X
.04
.03
.12
.16
.20
.24
.23
.32
.36
.40
.44
.48
.52
.56
.60
.64
.68
.72
.76
.30
.34
.83
.92
.96
1.00
7.5 AND 8
BETA (X)
,0000000
.0000011
.0000205
.0001544
.0007115
.0023997
.0065104
.0150271
.0305903
.0562722
.0951556
. 1497561
.2213741
.3094930
.4114036
.5220871
.6346378
.7410902
.8336973
.9064403
.9564575
.9849339
.9969500
.9998318
1.0000000
3.0 AND 8
8ETA(X)
.0000000
.0000004
.0000085
.0000734
.0003775
«0013925
.0040734
.0100315
.0216116
.0413003
.0739195
.1211032
.1856083
.2680739
.3668846
.4778250
.5941^85
.7075329
.8033854
.8906036
.9431976
.9817647
.9962450
.9997894
1.0000000
4.5
INVERSE
NOT DEFINED
.0300001
.1200000
. 1600000
.2000000
.2400000
.2300000
. 3200001
.3600000
.4000000
.4400000
.4800000
.5200000
.5600001
.6000 000
.6400000
.6799999
.7200000
.7600000
.8000000
.8400000
,8799999
.9200000
.9600000
1. 0000000
4.5
INVERSE
NOT DEFINED
.0300000
.1200000
.1600000
.2000000
.2400000
.2300000
.3200000
.3600000
.4000000
,4400000
.4800000
.5200000
.5600000
.6000000
.6399999
.6800000
.7200000
.7600000
.8000000
. 8400000
.8300000
.9200000
.9600000
1.0000000

XC ERROR TERM
NOT DEFINED
-.0000001
-.0000000
-.0000000
-.0000000
-.0000000
-.0000000
-.0000001
.0000000
-.0000000
.0000000
.0000000
-.0000000
-.0000001
-.0000000
.0000 000
.0000 001
.0000000
.0000000
.0000000
.0000000
.0000001
.0000000
.0000000
0.0000000

XC ERROR TERM
NOT DEFINED
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
.0000001
-.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
0.0000000
                166

-------
INCOMPLETE BETA FUNCTION AND INVERSE
A =
X
,04
.08
.12
.16
.20
.24
.23
.32
.36
.40
.44
.48
.52
.56
.60
.64
.63
.72
.76
.SO
.84
.83
.92
.96
1.00
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
.48
.52
.56
.60
.64
.68
.72
.76
.80
.84
.83
.92
.96
1.00

8.5 AND B
BETA (X)
.0000000
.0000001
.0000035
.0000346
.0001987
.0008018
.0025293
.0066473
.0151592
.0308362
.0570439
.0973187
.1547045
.2309266
.3255573
.4353353
.5542280
.6734006
.7829551
.873&217
.9391214
.9732002
.9954342
,9997396
l.OOOQOOO
9.0 AND B
BETA (X)
.0000000
.0000000
.0000014
.0000162
.0001038
.0004534
.0015597
.0043750
.0105635
.0226039
.0437529
.0777517
.1232401
.1979122
. ?375361
.3950574
.5150750
.6339951
.7560994
.8555753
.9292379
.9742270
.9945101
.9996317
1.0000000

= 4.5
INVERSE
NOT DEFINED
. 0800000
.1200000
,1600000
.2000000
.2400000
.2300000
.3200000
.3600000
.4000000
.4400000
.4300000
.5200000
.5600000
.6000000
.6400000
.6300001
.7200000
.7600000
,8000000
. 8400000
.3300000
,9200000
.9600000
1.0000000
= 4.5
INVERSE
NOT DEFINED
NOT DEFINED
. 1200000
.1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4400000
.4799999
.5200000
.5600000
.6000000
.6400000
.6300000
.7200000
,7600000
.8000000
. 3400000
.8300000
.9200000
.9600000
1,0000000
167

XC ERROR TERM
NOT DEFINED
-.0000000
,0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
. OOOOOQO
-.0000000
-.0000000
-.0000001
.0000000
.0000000
.0000000
.0000000
.0000000
,0000000
.0000000
o.ooooooo

XC ERROR TERM
NOT DEFINED
NOT DEFINED
.0000000
-.0000000
-.0000000
.0000000
.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000001
-.0000000
.0000000
-.0000000
-.OOQOOOO
-.0000 000
.GOOOQQO
.OOQ010C
.0000000
.0000000
.0000000
.QQQOOOQ
.0000000
O.OOOOOOQ


-------
INCOMPLETE BETA FUNCTION  AND INVERSE
A =
X
.04
.08
.12
.16
.20
.24
.23
.32
.36
.40
.44
.43
.52
.56
.60
.64
.68
.72
.76
.80
.34
.88
.92
.96
1.00
A =
X
.04
.03
.12
.16
.20
.24
.28
.32
.36
.40
.44
.48
.52
.56
.50
.64
.68
.72
.76
.30
.84
.88
.92
.96
1.00
5.0 AND 6
BETA (X)
.0000113
,0003136
.0020615
.0074S47
.0195814
.0415503
.0761583
.1251852
.1890360
.2655677
.3551*423
.4508361
.5491139
.6448577
.7334323
.81096^0
.87481^3
.9238^17
.958^it97
.980^186
.9925153
.9979385
.999686tt
.9999887
1.0000000
5.5 AND B
BETA(X)
.0000029
.00011<*9
.0009230
.0038587
.0112506
.0260588
.0513861
.0898962
.1^32612
.2117f»04
.2939650
.3869611
.<+86<*i<»3
.5871«tO^
.6837007
.7710771
.3<*53106
.90it0031
.9t»659^1
.9743tf58
.9900092
.9971976
.9995661
• 99998U
1.0000000
= 5.0
INVERSE
. OfiOOOOO
. 0800001
.1200000
.1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.ftOOOOOO
,^00000
.4800000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
. 3400000
.8800000
.9199999
.9600000
1.0000000
= 5.0
INVERSE
.0400000
.0800000
.1200000
,1600000
.2000000
.2399999
.2800000
.3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
,6000000
.6400000
.6300000
.7200000
.7600000
.3000000
.8400000
.8800000
.9199999
.9600000
1. 0000000

XC ERROR TERM
-.0000000
-.0000001
.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
-.0000000
.0000000
.0000000
.0000000
.0000 000
.0000000
.0000000
.0000000
.0000000
,0000000
.0000000
.0000001
.0000000
o.ooooooo

XC ERROR TERM
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000001
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
-.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000001
.0000000
0,0000000
                168

-------
INCOMPLETE BETA FUNCTION AND INVERSE
A =
X
.04
,03
.12
,16
.20
.24
.28
.32
.36
.40
.44
.48
.52
.56
.60
.64
.68
.72
.76
.80
.84
.88
.92
.96
1.00
A -
X
.Off
.08
.12
.16
.20
,2k
.23
.32
.36
.40
.44
.48
.52
.56
.60
.64
.68
.72
.76
.80
.84
.88
.92
.96
1.00
6.0 AND B
BETA (X)
.0000007
.0000^15
.0004069
.0019593
.0063694
.0161116
.0341994
.0637149
.1072304
.1662386
.2407033
.3288205
.4270483
.5304187
,6331033
.7291585
.8133446
.8818829
,9330110
.9672065
.9869899
.9952839
.9994143
.9999782
1.0000000
6.5 AND B
BETA (X)
,0000002
.0000147
.0001769
.0009815
.0035589
.0098356
.0224834
.0446299
.0793658
.1291332
.1951471
.2768707
.3718236
.4756587
.5825339
.6858833
.7793242
.8576558
.9177247
.9589624
.9834168
.9951771
.9992263
.9999707
1.0000000
5.0
INVERSE
. 0400000
.0300000
.1200000
. 1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6799899
.7200000
.7600000
. 3000000
.8400000
.8300000
.9199999
.9600000
1.0000000
- 5.0
INVERSE
.0400000
.0800000
. 1200000
.1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
,4400000
,4800000
,5200000
.5600000
.6000000
.6399999
,6800000
.7200000
.7600000
.3000000
.8400000
.8800000
.9200000
.9600000
1.0000000

XC ERROR TERM
-.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
. ooooooo
.0000001
.ooooooo
.0000000
.ooooooo
.ooooooo
.0000000
.0000001
.ooooooo
o.ooooooo

XC ERROR TERM
-.ooooooo
-.ooooooo
. ooooooo
.ooooooo
-.ooooooo
.ooooooo
.0000000
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
. ooooooo
-.ooooooo
.ooooooo
.0000001
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.0000000
0.0000000

-------
INCOMPLETE BFTA FUNCTION AND INVERSE
A =
X
.04
.08
.12
.16
.20
.24
.23
.32
.36
.40
•44
.48
.52
.56
.60
.64
.68
.72
.76
.80
.84
.83
.92
.96
1.00
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
.43
.52
.56
.60
.64
.68
.72
.76
.80
.34
.88
.92
.96
1.00

7.0 ANC B
BETA (X)
.0000000
.0000052
.0000760
.0004853
.0019654
.0059361
.0146187
.0309308
. 0581470
.0993526
.1567813
.2311679
.3212530
.423&090
.5327742
.6418S92
.7436783
.8315324
.9007887
.9495904
.9792542
.9933572
.9989970
.9999614
1.0000000
7.5 AND B
BETA (X)
.0000000
.0000018
.0000323
.0002379
.0010739
.0035460
.0094105
.0212307
.0422081
.0757644
.1249104
.1915033
.2755766
.3748107
.4844800
.5978059
.7068406
.8037502
.8822820
.9390824
.9744715
.9923048
.9987213
.9999499
1.0000000

- 5.0
INVERSE
NOT DEFINED
.0800000
. 1200000
.1600000
.2000000
.2400000
.2300000
.3200000
.3600000
.4000000
.4400001
.4800000
.5200000
.5600000
.6000000
.6400000
.6800000
.7200000
.7600000
.8000000
.8400000
.8800000
.9200000
.9600000
1.0000000
5.0
INVERSE
NOT DEFINED
. 0800001
.1200000
.1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4400000
.4300000
.5199999
.5600000
.6000000
.6400000
.6800000
.7199999
.7600000
.8000000
.3400000
.8800000
.9200000
.9600000
1.0000000
170

XC ERROR TERM
NOT DEFINED
-.0000000
-.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000001
.0000000
. ooooooo
-.0000000
.0060000
. ooooooo
.0000 000
.ooooooo
. ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
0.0000000

XC ERROR TERM
NOT DEFINED
-.0000001
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
.ooooooo
.ooooooo
.0000001
-.ooooooo
-.ooooooo
.ooooooo
.0000 000
.0000001
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
o.oooonoo


-------
INCOMPLETE BETA FUNCTION AND INVERSE
A =
X
.04
.08
.12
.16
.20
.2k
,2%
.32
.36
.40
.44
.43
.52
.56
.60
.64
.68
.72
.76
.80
.34
.88
.92
.96
1.00
A =
X
• 04
.03
.12
.16
.20
.24
.28
.32
.35
.40
.44
.43
.52
.56
.60
,6k
.63
.72
.76
.30
.31*
.83
.92
.96
1.00

8.0 AND B
BETA (X)
.0000000
.0000006
.0000 136
.0001153
.0005812
.0020935
.0060031
.0144450
.0303799
.0573099
.0987553
.1575100
.2348123
.329616**
.4381782
.5541413
.66923*49
.7745643
.8623060
.9274445
.9690432
.9905014
.9983933
.9999360
1.0000000
8.5 AND 8
BETA(X)
.0000000
.0000002
.0000057
.0000554
.0003119
.001231J,
.0037979
.0097495
.0216971
.0430234
.0775240
.1286816
.1983315
.2332153
.39^2704
.5113727
.6312644
.7442385
.8409795
.9146^62
.9629^99
.9834292
.9930090
.9999193
1.0000000

5.0
INVERSE
NOT DEFINED
. 0800000
. 1200000
.1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4400000
.4300000
,5200000
.5600000
.6000000
.6400000
.6799999
.7200000
.7600000
.8000000
. 3400000
.8800000
.9200000
.9600000
1.0000000
5.0
INVERSE
NOT DEFINED
. 0800000
,1200000
.1600000
.2000000
.2400000
.2800000
.3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
, f-, 000000
.6400000
.6799999
.7200000
.7599999
. 3000000
.8400000
.3800000
.9200000
.9600000
1.0000000
171

XC ERROR TERM
NOT DEFINED
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
.0000000
-.0000000
.0000000
.0000000
-.0000000
-.0000000
-.0000000
-. ooooooo
.0000001
.0000000
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
0.0000000

XC ERROR TERH
NOT DEFINED
-.OOOOOOO
.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
.0000 000
.0000 001
. DOOOOOO
. ooooooi
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.0000000
0.0000000


-------
INCOMPLETE BETA FUNCTION AND INVERSE
A =
X
.04
.03
.12
.16
.20
• 2k
.28
.32
.36
.40
.44
.43
.52
.56
• 60
.64
.63
.72
.76
.60
.84
.88
.92
.96
1.00
A =
X
.04
.08
.12
.16
.20
• 2k
.23
.32
.36
.40
.44
.48
.52
.56
.60
.64
.68
.72
.76
.30
• 6k
.33
.92
.96
1.00

9.0 AND 8
n E T A ( x )
.0000000
.0000001
.0000023
.000026*4
.0001660
.0007170
.0023846
.0065319
.0153856
.0320843
.0601+581
.1044764
,1673846
.2506627
.3530418
.4698937
.5933026
.7130388
.8184357
.9008694
.9561774
.9860717
.9975614
.9998994
1.0000000
5.5 AND B
BETA(X)
.0000042
.0001630
.0012853
.0052740
.0150 855
.0342613
.0662141
.1134756
.1770787
.2561949
.3430884
.4483860
.5516140
.6519116
.7438051
.8229213
.8865244
.9337859
.9657337
.9849145
.9947260
.9937147
.9998370
.9999958
1.0000000

5.0
INVERSE
NOT DEFINED
NOT DEFINED
.1200000
. 1600000
.2000000
.2400000
.2300000
.3200000
.3600000
.4000000
.4400000
,4800000
.5200000
.5600000
.6000000
.6400000
.6300000
.7200000
.7600000
.3000000
.8400000
,8800000
.9200000
.9600000
1. 0000000
= 5.5
INVERSE
.0400000
. 0800000
.1200000
.1600000
.2000000
.2400000
.2300000
.3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5599999
.6000000
.6400000
.6300000
.7200000
.7600000
.8000000
.8400000
.8300000
.9200000
.9600000
1.0000000
172

XC ERROR TERM
NOT DEFINED
NOT DEFINED
. ooooooo
.0000000
-.ooooooo
.0000000
-.OOOOOOO
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
-.0000 000
. 0000000
.ooooooo
. ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
Q.OOOOOOO

XC ERROR TERM
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
.0000001
,0000000
.ooooooo
.0000 000
.0000000
.ooooooo
•ooooooo
.ooooooo
.ooooooo
.ooooooo
,0000000
o.ooooooo


-------
INCOMPLETE BETA FUNCTION AND INVERSE
A =
X
.Q<*
.03
.12
.16
.20
.21*
.29
.32
.36
.1*0
.<+«f
.1*3
.52
.55
.50
.61*
.63
.72
.76
.80
.81*
.33
.92
.96
1.00
A =
X
.Qi*
.08
.12
.16
.20
.21*
.28
.32
.36
.1*0
.1*1*
.1*3
.52
.55
.60
.61*
.68
.72
.76
.80
.31*
.83
.92
.96
1.00

6.0 AND B
BETA (X)
.0000011
.0000602
.0005798
.0027392
.0037326
.021&t*97
.01*5011*8
.082101*3
.1352096
.2050159
.2902298
.38751*11*
.%9i939i*
.5973352
.6973970
.7861*539
,8603108
.9168210
.9560953
.9802886
.9929765
.9932562
.99977«*8
,999991*1
1.0000000
6.5 AND 6
BETA(X)
.0000003
.0000219
.0002577
.0011*021*
.OQi*98f*8
.013^966
.0302072
.0586717
.102030^
.1622553
.2395182
.3313306
,^350588
.5^331415
.6i+9365&
.7^78732
.8317207
.8977792
.9<»£»97Jt2
.97^81^0
,99035«*6
.9976871
.9996959
.9999913
1.0000000

- 5.5
INVERSE
.0^00000
.0800000
.1200000
.1600000
.2000000
.2^00000
.2300000
.3200000
.3600000
.1*000000
.f*«fOOOOO
.(+800000
.5200000
.5600000
.6000000
.&<*00000
.6800000
.7200000
.7600000
.8000000
.8399999
. 8799999
.9200000
.9599999
1.0000000
- 5.5
INVERSE
.01*00000
. 0800000
.1200000
.1600000
.2000000
.21*00000
.2300000
.3200000
.3600000
»tf 000000
.<+ 1*00000
,1*300000
,5200000
,5600000
.6000000
.5^00000
,6800000
.7200000
,7600000
, 3000000
, 3399999
,3800000
.9200000
.9599999
1.0000000
173

XC ERROR TERM
-.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
-.0000000
-.0000000
-.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000001
.0000001
.QOOOOOO
.0000001
o.ooooooo

XC ERROR TERM
-.0000000
-.0000000
•0000000
-.0000000
-.0000 000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
.0000000
.0000000
.0000000
,0000000
.0000000
.0000001
.0000000
.0000000
.0000001
o.ooooooo


-------
INCOMPLETE BETA FUNCTION AND  INVERSE
A =
X
,01*
.03
.12
-15
.20
.2*4
.28
.32
.36
.tfO
.*4*4
.*43
.52
.56
.60
.6*4
.68
.72
.76
.30
.3*4
.83
.92
.96
1.00
A =
X
.Of*
.03
.12
.16
.20
.2*4
.23
.32
.36
.**0
.*4*4
.**3
.52
.56
.60
.6*4
.63
.72
.76
.30
.8**
.38
.92
.96
1.00

7.0 AND 8
BETA (X)
.0000001
.0000079
.0001130
.0007087
.0028100
.0033120
.0200336
.0*41*4566
.0761703
.1271175
.19580*48
.23166*42
.3817390
.*4908095
.601991**
.70773*t8
.8010572
.3767620
.9323613
. 968*4*43**
.98332*41
.9969923
.999597*4
.9999890
1.0000000
7.5 AND 8
BETA (X)
.0000000
.0000028
.00001,90
.00035**!
.0015661
.0050630
.0131i»55
.0239'?3'+
.0563087
.098665**
.1536751
.2371519
.332ft902
.
-------
INCOMPLETE BETA FUNCTION AND  INVERSE
A =
X
.04
.08
.12
.16
.20
.24
.28
.32
.36
.40
.44
.48
.52
.56
• 60
.64
.63
.72
.76
.30
• 84
.83
.92
.96
1.00
A =
X
.04
.03
.12
.16
.20
.24
.23
.32
.36
.40
• 44
.43
.52
.56
.60
.64
.63
.72
.76
.30
.34
.83
.92
.95
1.00

3.0 AND 6
SETA (X)
.0000000
.0000010
.0000210
.0001750
.0008640
.0030532
.0035423
.0200 876
.041252?
.0759272
.1275491
.1931725
.2875963
.3928058
.5079487
.6249673
.7343624
.8293778
.9027270
.9528754
.9819039
.9951650
.9993292
.9999810
1.0000000
3.5 AND B
BETA (X)
.0000000
.0000003
.0000039
.0000857
.000^722
.0018245
.0055013
.0137980
.0299730
.0579679
.1017616
.1644336
.2471531
.7432599
.4629114
.5333564
.7000378
.8033647
.3857^27
.9436358
.9779543
.9940019
.9991529
.999975-6
1.0000000

5.5
INVERSE
NOT DEFINED
. 0300000
.1200000
. L600000
.2000000
.2400000
.2300000
,3200001
.3600-000
.4000000
.4400000
.4799999
.SlSqcgg
.5600000
.6000000
.6400000
.6800000
.7200000
,7600000
.8000000
.3400000
. 8800000
.9200000
.9600000
1.0000000
5.5
INVERSE
NOT DEFINED
.0300000
. 1200000
.1500000
.2000000
.2400000
.2300000
.3200000
.3600000
.4000000
.2+400000
.4800000
.5200000
.5600000
.6000000
.6400000
.6300000
.7200000
. 7600000
.8000000
.8400000
. 3800000
.9200000
.9600000
1. 0000000
175

XC ERROR TERM
NOT DEFINED
-.0000000
-.0000000
-.0000000
-.0000000
- .0000000
.0000000
-.0000001
.0000000
-.0000000
.0000000
.0000001
.0000001
-. ooooooo
-.0000000
. 0000 000
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.ooooooo
.0000000
.ooooooo
.ooooooo
0.0000000

XC ERROR TERM
NOT DEFINED
-.OOOOOOO
. 0 0 0.0 0 0 0
-.ooooooo
-.ooooooo
-.ooooooo
,0000000
.ooooooo
-.ooooooo
-.ooooooo
.ooooooo
.ooooooo
-.ooooooo
-.ooooooo
-.ooooooo
.0000 000
.0000 000
.ooooooo
.ooooooo
.ooooooo
.QOOOOOO
.ooooooo
. ooooooo
.ooooooo
o.ooooooo


-------
INCOMPLETE BETA  FUNCTION AND INVERSE
A =
X
.0*4
.08
.12
.16
.20
.2**
.25
.32
.36
.40
.44
.48
.52
.56
.60
.64
.68
.72
.76
.80
.84
.83
.92
.96
1.00
9.0 AND 8
3ETA (X)
.0000000
.0000001
.0000038
.0000416
.0002559
.0010811
.0035143
.0094030
.0216116
.0439332
.0306232
.1355537
.2111053
.307052&
.4197835
.5421997
.6645304
.7760707
.8675364
.9334155
.973«+773
.9926524
.9989437
.9999690
1.0000000
5.5
INVERSE
NOT DEFINED
. 0800000
.1200000
.1600000
.2000000
.2400001
.2800000
. 3200000
.3600000
.4000000
.4400000
.4800000
.5200000
.5600000
,6000000
.6400000
.6800000
.7199999
.7600000
.8000000
.8400000
.3300000
.9199999
.9600000
1.0000000

XC ERROR TERM
NOT DEFINED
-.0000000
.0000000
.0000000
-.0000000
-.0000001
.0000000
.0000000
-.0000000
-.0000000
.0000000
.0000000
-.0000000
.0000000
-.0000000
-.0000 000
-.0000000
.0000001
.0000000
.0000000
.0000000
.0000000
.0000001
.0000000
o.ooooooo
               176

-------
             PEARSON'S  INCOMPLETE GAMMA FUNCTION

In the field of hydrology the incomplete gamma function is an

extensively used tool for the analyses of flood frequencies and

also in the study of time series.


An excellent discussion of the use of the incomplete gamma function

as related to flood frequency analyses is found in the American

Society of Civil Engineers Transactions. Volume 87, Paper No.  1532,

by H. Alden Foster, dated 1924.


The use of the incomplete gamma function can be found in various

papers concerning stochastic techniques in time series analyses.


The discussion that follows in the subsequent narrative will be

limited to an electronic computer application for the solution of

the incomplete gamma function.


The expression generally given for Pearson's Incomplete Gamma Function

is as follows:
                          u
                               tV' dt '
       where:  x = u /p+1
               a = p+1    or  p = a-1


                                  177

-------
The expression of the probability function for the solution of a

random variable having a value £ x from a gamma function is:


                      i a    /
          p(* 1 x) = FTTT  J  t3'1 £~bt dt, x ^ o
                                     t3'1 dt
                         r(a) J
which is often written as:
          P(x <_ x) = |- —~ r(a, b-x)
     where "a" and "b" are distribution parameters and r is the

incomplete gamma function.


     T(a) is the complete gamma function.


The purpose of this electronic computer application is to design a

portable program for the calculation of the incomplete gamma function

under five conditions (five algorithms).
                              oo
          r(A,x) = T(A,x) = /  JTU i/""1 du
Condition 1 - if A = 0
     then:
     r(O.x) = T(O.x) = -   Y + £n (x) +
                                 178

-------
Condition 2 -  if A - -N for some positive integer N

     then:



  r(-N,x) = r(-N,x)  =  zE (x)  _ rx  f1  .(-I)3 j !
                                                XJ+1
Condition 3  -  if  x = 0
                          00

    r(A,0) =  r(A,0)  =   t^ £~U uA-l du  -  T(A)

                       J0
Condition 4  -  if A^O and  x < MA I  + 1
                                  CO

    r(A,x) = r(A,x)  =  F(A)  - XA  V
                                  L—i
     (-x)n
    (A+n)n!
n=o
Condition 5 - if A^O X  >   Ul + 1
               -x   A    1    1  - A   2  - A   2_
     r(A,x) = £   XA    XT    1+      1+    X+
The electronic computer  application  is a stand alone set of subroutines

or functions.  The discussion of these various subroutines follows in the


subsequent narrative.



PROGRAM GAMINT

This program is simply a little driver that was used to generate values


of Pearson's  Incomplete Gamma Function in terms of "u" and "p" for


comparison with the Tables.
                                  179

-------
The variable name A is A in T(A,x) and the variable name




X is X in F(A,x).  The variable name U is the transform X = U  v'T+l




and the variable name P is the transform P = A-l.









The variable name COX is T(A) and CONGAM(A) is the function name used




for the solution of the complete gamma.









FUNCTION GAMMA  (A.X)




In the function labeled GAMMA the arguments A and X are identical to




those described in the previous narrative concerning the  five




conditions.









The label EULERS is used to store Euler's constant, which is y is the




previous narrative.









It is in the function (FORTRAN terminology) that the various tests




are made to determine which condition of algorithm will be used in




the solution of the gamma distribution.









Several comments have been included to aid in describing  the afore-




mentioned tests.









FUNCTION SMLGAM (A.X)




The function labeled SMLGAM is used to calculate the sum  of the




following series:
                                180

-------
      S(a,x) =
                n=k
                      (-x)n
                     (a+n)n!
                n=o
      where k =  30  provided  enough terms  in the  series  such that:
         S  (a,x)  -  S__,  (a,x)
          n   '  '    n+1
< 1 x 10
        ,-15
This series expansion was  used  for the  solution of Condition 1,

i.e. T(0,X).  The  series expansion was  also used  in the solutions

of Conditions 2 and  4.



The arguments labeled A and X are  self-explanatory.



The label EPSLON represents the absolute difference of the sums

n and n+1 in the criteria  for the  series truncation.



All other labels included  in  this  function labeled SMLGAM are by design

self-explanatory.



The series is shown  in  Reference 1, Chapter 6, Series Developments -

6.5.29, page 262.



FUNCTION CONTER (A.X)

The function labeled CONTER is  used for the solution of the following

continued fraction:
                                  181

-------
                l_  1-A  2-A  2_

                X+  1+   1+   X+
   where:  X > 0  and  A  < <»







This series is used as part of the solution for Condition 5. All



labels have been designed to be self-explanatory.







The continued fraction is shown in Reference 1, Chapter 6, 6.5.31,



page 263.







The arguments A and X are self-explanatory.







FUNCTION CONGAM (ALF)



The function labeled CONGAM is used for the solution of the complete



gamma which is often called Euler's Integral.  The expression for



the complete gamma is as follows:




                00


       r(z) =  /   t2"1 A"' dt
              
-------
      r(z)r(i-z) =  - zr(-z)r(z)  = n esc nz




where the fundamental identity for CSC  IIZ = I/sin HZ.





The following polynomial approximation  along with the  above recurrence


and reflection  formulas are shown in Reference 1, Chapter  6, pages 256


and 257.



     T(x+l)  = X! =  1 + b,x + b X  + ... + bDX8 + e(x)
                               2            o



where:  0 <_ X <_ |   and j e (x) £ 3 x 10~7




The coefficients for the above polynomial are:
      b   =   -0.577191652       b  =  -0.756704078
       1                         5

      b   =    0.988205891       b  =   0.482199394
       2                         6

      b3  =   -0.897056937       b? =  -0.193527818


      b,  =    0.918206857       b. =   0.035868343
       It                         o
All  labels  are self-explanatory as well as the  argument ALF.





FUNCTION  GAMNEG (MINUSN,X)


The  function GAMNEG is used for the solution of Condition  2.  It


might  be  well to reiterate  the expression for Condition 2.
                                  183

-------
                N-l

  r  K oo  - «-* y   (-»j .1'   i
!  L   i          £—>    „}+!     J
     r(-N,x) =       NI
     where:  E (X) =  /  £ Xt t~n dt = Xn ^ r(l-n,x)
              n      J
     or:

                       r°°
             E (x) =  /  £~xt t"1 dt = x° r(o,x) = r(x)
              -*-      vV
                      1



which is easily recognized as the complete gamma function.





The argument labeled MINUSN is A = -N for some positive integer N.





The expressions as shown above can be found in Reference 1, Chapter 6.





All labels used in the function labeled GAMNEG are self-explanatory.





Error Messages


The error  messages are program-generated and are written on the file


OUTPUT.  The error messages were designed to minimize the system-


generated error messages.
                                  184

-------
                            REFERENCES
1.  Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, U.S. Department of Commerce, National Bureau
of Standards, Applied Mathematics Series 55, Issued June 1964,
Fourth Printing, December 1965.
                                  185

-------
            PROGR«f GAMINT     7<»/7<»   0"! = !                            FTN 4.2+P390        75/03/17.  09.57.05


                         PROGRAM GflMINTlINPUT, OUTPUT, INOAT,OUT A,TAPE5=INOftT,
                        I  TAPE6=OUTA)
                         COMMON / ARLE /  COT,  CIT,  COX
                         INTEGER  COT  , CIT
        5                 CIT = 5
                         COT = 6
                         P = 0. 0
                      10 U = 0.0
M                        WRITE (COT  ,  20)
oo      10              30 FORMAT (1H1,  8X  )
^                        DO 100  K = 1, 30
                         U = U + l.E-1
                         X = U * SORT  (P  *•  1.0  )
                         A = P t 1.0
       15                 COX = 0.0
                         COX = CONGAM  (A)
                         REF = 0.0
                         REF -  COX  -  GAMMA  (A,X)
                         REF = REF   /  COX
       20                 WRITE ! COT , 50  ) U  ,  P  ,  REF
                      50 FORMAT t 8X,  t,HU  =   ,  3X  ,  F10.6 »  8Xf «»HP =   , 3X , F10.6  t
                        1   .       8X, 9HI(U,P>  =      ,  E19.12  )
                     100 CONTINUE
                         P = P * 5-E-l
       35                 IF 1 P . GE.  10.5  >   CALL  EXIT
                         GO TO 10
                         END

-------
          PROGRAM GAMINT
                                     OPT=1
                                        FTN
                                                                                         75/03/17.  09.57.05.
       SYMBOLIC REFERENCE MAP  (R = l)
ENTRY POINTS
1021i»  GAMINT
                                                                                                  PAGE
VARIABLES SN
10315 A
0 COT
10313 K
10316 REF
FILE NAMES
1*102 INDAT
MQ2 TAPE5
EXTERNALS
CONGAM
GAMMA
STATEMENT LABELS
10220 10
0 100
TYPE
REAL
INTEGER
INTEGER
REAL
REAL
MODE
TYPE
REAL
REAL

RELOCATION
ABLE
0 INPUT
611»3 TAPE6
ARGS
1
2
102
                                                       1  CIT
                                                       2  COX
                                                   10311  P
                                                   10312  U
                                      INTEGER
                                      REAL
                                      REAL
                                      REAL
                                                                                       ABLE
                                                                                       ABLE
                                                              61«»3   OUTA
                                                                    OUTPUT
                                                          EXIT
                                                          SQRT
                                      REAL
                                                       FMT
                                                                               1  LIBRARY
                                                                                 10276   50
                                                                                                FMT
COMMON  BLOCKS
        ABLE
                 LENGTH
STATISTICS
  PROGRAM LENGTH
  BUFFER LENGTH
  CM LABELED COMMON LENGTH
  1138
1020^8
    38
                                          75
                                        i«228
                                           3

-------
    FUNCTION  GAMMA       7u/7k   OPT = I                            FTN <..2+P390       75/03/17.  09.57.05.


                   FUNCTION  GAMMA JA,X)
                   COMMON / ABLE / COT, CIT ,cox                                             P&GE      i
                   INTEGER COT,CIT
                   GAMMA  = 0.0
 5                 EULEPS = 5. 7721566<4<301533E-1
                   IF  (A.EO.0.0.AND.X.EQ.0.0) GO TO  500
                   UPDATE = 0.0
                   IF  ( A.LT. 0.0) GO TO 
-------
        FUNCTION GAHMA
                                      OPT =
                                                                     FTN <».2+P380
                                                                                         75/03/17.  09.57.05.
      SYMBOLIC REFERENCE  MAP
                                                                                                 PAGE
ENTRY POINTS
    l»  GAMMA

VARIABLES
    0  A
    0  COT
  13<»  CRP
  131  GAMMA
  136  NS
    0  X

EXTERNALS
        EXP
        SHLGAM
SN  TYPE
   REAL
   INTEGER
   REAL
   REAL
   INTEGER.
   REAL

     TYPE
   REAL
   REAL
   REAL
INLINE FUNCTIONS   TYPE
       ABS       REAL

STATEMENT LABELS
   21  1
   53  30
  100  60
  112  SCO
COMMON BLOCKS
       ABLE
                 LENGTH
                      3
       RELOCATION
            F.P.
           ABLE
                                      F.P.
ARGS
  1 LIBRARY
  1 LIBRARY
  Z

ARGS
  1  INTRIN
1
2
132
135
133



CIT
COX
EULERS
NP
UPDATE
CONTFR
GAMNEG
SQ.RT
INTEGER
REAL
REAL
INTEGER
REAL
REAL
REAL
REAL
                                                                                        ABLE
                                                                                        ABLE
                                                                              2
                                                                              2
                                                                              1 LIBRARY
                                           35
                                           65
                                          101
                                                10
                                                <*0
                                                70
                                                                      51
                                                                      70
                                                                    107
                                                             20
                                                             50
                                                             80
 STATISTICS
   PROGRAM LENGTH               1373
   CM LABELED COMMON LENGTH       38
                                         95
                                          3

-------
         FUNCTION  SMLGAM      74/7<»   0°T = 1                            FTN  f».2«-P3SO        75/03/17. 09.57.06.


                       FUNCTION   SMLGAM  (A ,X >
                       COMMON  /  OSLE  /  COT, CIT,  cox                                              PAGE     i
                       INTEGER  COT  ,  CIT
                 C     SET  INITIBL VALUES FOR SERIES EXPANSION  I.E. N  =  0  (6.5.39)
      5                SMLGAM  =  0.0
                       IF  (A.NE.0.0)   SMLGAM = 1.0 / A
                       ANUM  =  X
                       PNEXT  = 0.0
                       FACTN  = 1.0
     10                SIGN  =  1.0
                       EPSLON  =  0.0
                       DENOH  =0.0
                       DO  10  K =  1,  30
                       PN  =  K
_    15                SIGN  =  -  SIGN
g                      OFNOM  =  At PN
                       FACTN  = FACTN  »  PN
                       TERM   = 0.0
                       TFRM   =  ( SIGN   * ANUM )  / (OENOM * FACTN  >
     30                EPSLON  =  ABS  (TERM)
                       IF  (EPSLON. LE.l.E-15)   GO  TO  100
                       SMLGAM  =  SMLGAM  + TERM
                       ANUM  =  ANUM *  X
                    10 CONTINUE
     25                WRITE  (COT ,  20)   EPSLON , A , X
                    20 FORMATUH1, BX,  35HSERIES  FOR SMLGAM DID NOT CONVERGE  /
                      1    3X,   9HEFSLON =  ,  £19.12 ,l»X,«fHA = ,E 19.13 ,
-------
         FUNCTION SMLGAM
     OPT =
                                                                      FTN
                                                         75/03/17-  09.57.06.
       SYMBOLIC REFERENCE MftP  (R  1)
                                                                                                  PAGE
ENTRY POINTS
    <*  SKLGAM
VARIABLES SN
o A
1 CIT
2 COX
106 EPSLON
110 K
103 PNEXT
101 SMLGAM
0 X
EXTERNALS
EXIT
INLINE FUNCTIONS
A OS
TYPE RELOCATION
REAL F.P.
INTEGER A3LE
REAL ABLE
REAL
INTEGER
REAL
REAL
REAL F.P.
TYPE ARCS
0
TYPE ARCS
REAL 1 INTRIN
 STATEMENT LABELS
     0  10

 COMMON BLOCKS   LENGTH
        ABLE          3

 STATISTICS
   PROGRAM LENGTH
   CM LABELED COMMON LENGTH
           102  ANUM
             0  COT
           107  OENCM
                FACTN
                PN
                SIGN
                TERM
                                                     111
                                                     105
                                                     1-12
                                    REAL
                                    INTEGER
                                    REAL
                                    REAL
                                    REAL
                                    REAL
                                    REAL
                                                                                         ABLE
            6<»  20
                        FMT
                                                    5««  100
1178
  38
79
 3

-------
    FUNCTION  CONTFR     7<»/7<*   OPT = I                            FTN 
-------
         FUNCTION CONTFR
                             7
-------
     FUNCTION COKGAM
                         71./7I,
                                                                  FTN   , K =  1,8 )   =   -0.577191652 , 0.988205691 ,
  1   -0.397056937   ,  0.918206857 ,   - 0.75670<»078  , 0. <<8219939
-------
    FUNCTION CONG&M
                 OPT =
                                                                 FTN 4.3+P380
60
65
70
   FOFX = 1.0
   GO TO 60
t»0 J3 = 3
   FOFX = 0.0
50 FOFX = FOFX *
   FOFX = FOFX »
   JB = J3 - 1
   IF (JO.GT.O)
   FOFX = FOFX *
                                                                      75/03/17. 09.57.07.


                                                                               PflGE     Z
                                 GCCJB)
                                 X
                  GO TO 50
                  1.0
 60  CONGftM = FOFX * FB
    IF (Mft»K .EQ. 2 ) CONGflM = CONGAM / X
    IF (  KSU .EQ. 2 >  GO TO 19
100  RETURN
    END

-------
          FUNCTION CONGAM     7unt>   O»T = I                            FTN  it.2+P38Q        75/02/17.  09.57.07.



CARD NR. SEVERITY  DETAILS    DIAGNOSIS OF PROBLEM



      17    I               BASIC EXTERNAL OR  INTRINSIC FUNCTION  CALLED  WITH  WRONG  TYPE  ARGUMENT.







                                                                                                  PAGE     3

-------
              FUNCTION  CONGAM
                                                                           FTN
                                                                        75/03/17.  09.57.07.
            SYMBOLIC  REFERENCE  MRP
     ENTRY POINTS
         
-------
     FUNCTION GAMNEG     7W7«i    QPT = 1                            FTN  («.24-P380       75/03/17.  09.57.08.


                   FUNCTION GAMNEG
-------
          FUNCTION  GflMNEG     7<4/Ti   OPT = 1                            FTN «t.2+P380        75/03/17. 09.57.08.





CftRO NR. SEVERITY   DETAILS    DIAGNOSIS OF PROBLEM                                                 PAGE      2




       3     I                CONSTANT TOO LONG.  HIGH  ORDER DIGITS RETAINED, BUT SOME  PRECISION LOST.

-------
         FUNCTION GAMNEG
                                      OPT=1
                                                                      FTN
                                                        75/03/17.  09.57.08.
       SYMBOLIC REFERENCE MAP  (R=i)
ENTRY POINTS
    i*  GAMNEG
                                                                                                 PAGE
VARIABLES SN




O
o

64
67
63
0
66
72
70
EULERS
FACTJ
GAMNEO
MINUSN
NLESS1
SUM
XTERM
EXTERNALS






INLINE

ALOG
SMLGAK
FUNCTIONS
FLOAT
TYPE
REAL
REAL
REAL
INTEGER
INTEGER
REAL
REAL
TYPE
REAL
REAL
TYPE
REAL







ARGS
1 L
2
ARGS
1
RELQi







IBRARY


INTRIN
                                       P.P.
STATEMENT LABELS
   17  1

STATISTICS
  PROGRAM LENGTH
76B
         62
75
74
71
65
73
0
E1X
FACTN
J
N
SIGN
X
REAL
REAL
INTEGER
INTEGER
REAL
REAL
                                                          EXP
                                   REAL
                           INACTIVE
                                                                                         F.P.
1 LIBRARY
                                                    32   3

-------
u
u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

IT

u

u

u

u
u
u
r

~

r

=

=

=

=

=

=

=

=

=

=

=

=

=

=

—

=

r:

=

—

3

=

=

=

_
=
_
1
1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1
•

*

.

*

.

.

*

.

1.

1.

1.

1.

J- *

1.

1.

1.

1.

1.

d. »

2.

2.

2.

a.

2.

2.

2.

2.
2.
3.
.100000000
100000
.100000000
200000
. 100000000
300000
.100000000
<«Q 0000
.100000000
500000
.100000000
600000
.100000000
700000
. 100000000
800000
.100000003
900000
. 100000000
000000
.100000000
1QOOUO
. 1000COOCO
?coooo
.100000000
300000
.100000000
'*OOCOO
. ionoooooo
500003
.100000000
600000
.100000000
700000
.100000000
800000
. 100000000
900000
.100000000
000000
.100000000
130000
.100000000
2COOOO
.100000000
300000
.1000 00000
^00000
. 100000000
500000
.100000000
600000
.100000000
700000
.100000000
800000
.100000000
900000
.100000000
000000
OOOE+01
p =
OODE«-Q1
p =
OOOE+01
p =
QOOE+Ol
p =
OOOE+01
p =
QOOE+Ol
p =
OOOE4-01
p =
OOOF+01
p =
OOOE4-Q1
p =
QOOE+01
p =
OOOE+01
p =
OOOEf 01
p =
OOOE+01
p =
DOOE+01
p =
OOQE+01
P =
OOOE+01
P =
QOOEtOl
p =
OOOE+01
P =
OOOE^Ol
P ~-
OOOE+01
P =
OOOE+01
P -
OOOE+Q1
p =
OOOE+01
P =
OOOE+-01
P =
ODOE+Q1
P =
OOOEtOl
P =
OOOF+Oi
P =
OOOEf 01
P =
OOOE+01
P =
OOOE+01
P =
0
0

0

0

0

0

0

0

0

0

0

G

0

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0
0
.000000
.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

. 000000

. 000000

.000000

.000000

.000000

.000000

.000000

.000000
.000000
.000000
I
I

I

I

r

I

I

r

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I
I
(U,P)
CU,P>

(U,P)





(U,P)

(U,P)

!U,P)

(U,P)

(U,P)

(U,P)

(U,P)

(U,P)

(U,P)

(U,P)

(U,P)

(U,P)

(UiP)

(U,P)



(U,P)

(U,P)

(U,P)

(U,P)

(UfP)

(U»P)

(UiP)
(U,P)
(U,P>
=

_

_

=

—

=

-

—

—

=

•=

=

=

=

=

=

=

=

=

~

=

~

-

—

=

~

=
=
=
                          .9516253196<*OE-01




                          .181269246922E+00



                          .259181779318E+00
                          .550671035e83E+00
                          .632120558829E-I-00




                          .6671289163Q2E+00




                          .698805788088E+00
                          .753^03036058E+00




                          .776 86 9839 85 2E tOO




                          .798103<*82Q05E + 00
                          .83t(70111l778E + 00




                          .850i«313S0777EtOO
                           8775'*357l7'*7EtOO




                           8891968i*1638E + 00
                          -917915001376E*00



                          -925726421786E+00
                          .939189937375E+00
                          .950212931632E+00
201

-------

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u
1
=
1
-
1
=
1
=
1
=•
1
=
1
=
1
=
1
=
1
r
1
=
1
=
1
=
1
=
1
=
1
=
1
=
1
=
1
=
1
r
1
=
1
=
1
=
1
=
1
=
1
=
1
=
1
=
1
. 15000000QOQOE + 01
*

»

,

*

.

,

*
10UOOO
.150000000
200000
.150000000
3000DO
. 15QQCOOOQ
<• 0 0 0 0 0
.150000000
500000
. i -y a c o o o o o
600001
.150000000
70 COOO
P =
OOOE+01
P ~
OOOE+01
P =
0 0 0 F + 0 1
P -
0 0 U E + 0 1
o r
QOOE+01
P =
ooor+oi
p- =
.500000

.500000

.500000

.500000

.500000

-500000

.500000
I

I

I

I

I

I

I
(U



.P)

«p>

,P)

fp)

,p>

.P)
=

=

=

=

=

=

=
. 150000000 OOOE+01
.

.

I.

1.

1.

1.

1.

1.

1,

1.

1.

1.

z.

2.

2.

2.

2.

2.

2.

2.

2.

? o o o o a
. 113000000
900COO
.150000000
0 0 0 0 0 0
. 150000000
100003
. 150000300
200003
. 150000000
300000
. 150000000
<»OOQOO
.150000000
500000
. 150000000
f, 0 0 0 0 0
. 150000COO
700000
.150000000
800000
. 150000000
900000
.1500 00000
000003
.150000000
100000
. 150000000
200000
.150000000
300000
.150000000
'.OOOOO
. 150000000
500000
.150000000
600000
.150000000
700000
.150000000
800000
.150000000
= 2.900000
1
=

3.
.150000000
000000
p =
OOQE+01
P =
oooe+oi
p =
QOOE+01
p -
OOOE+01
p =
OOOE+01
p =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
o -
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P r
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
DOOE+01
P =
OOOE+01
P =
.500000

.500000

.500000

-500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I


,p>

,P)

»p>

,p>

»p>

,p>

=

=

=

=

=

=

=

=

=

=

(U,P) =

(U

(U

(U

(U

(U

(U


.P)

,p>

,P)

,P)

.P)

,P)


=

=

=

=

=

=

(U,P) =

(U

(U


IP>

»P)


=

s

(U,P) =

(U

(U

,p>

,P)

X

=
                         299738381032E-01




                         7889t»87698<*5E-01
                         19385939(»269E + 00



                         252921.188106E + 00




                         3107175<46602E + 00
                         5155113(,6563E + 00




                         55832&751971E+00
                        .635932093263E+00
                        . 7296759034)07^ + 00



                        ,75572250057<»E + 00



                        .779i*55223e88E + 00
                        .869150157^05E+00




                        .8823'»0663108E + 00
                        .905011906389E+00




                        .91«»712379103E + 00
                        .93132959«»803E + 00
202

-------
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u -
u =
u =
u =
u -
•

.

*

*

.

.

.

.

.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

2.

2.

2.

2.

2.

2.

2.

2.

2.

2.

3.
.200000000000E+01
100000 P =
.200000000000E+01
200000 P =
.2000000QOOOOE+01
300000 P =
.2000COOOOOOOE+01
KOODOO P =
. 20QOOOOOOOOOE+01
500000 P =
.2000000000006+01
600000 P =
.200000000000E+01
700000 P =
. 200000000000E+01
800003 o =
.200000000000E+01
900000 P =
.200000000000E+01
000000 P =
.200000000000E+01
100000 P =
.2000COOOOOOOE+01
200000 P =
.200000000 OOOE + 01
300000 ? =
.200COOOOO OOOE + 01
t»OOOQO P =
.20000000QOOOE+01
500003 P =
.200000000000E+01
600000 P =
.200000000000E+01
700000 P =
.200000000000E+01
300000 P =
. 200000000 OOOE + 01
900000 P =
.200000000 OOOE + 01
000000 P =
.2000000000008+01
100000 P =
.200COOOOOOOOE+01
200000 P =
.200000000 QOOE + 01
3000CO P =
.200000000000E+01
400QQO P =
. 200000000000 E+ 01
500000 P =
.200000000 OOOE + 01
600000 P =
.200000000000E+01
700000 P =
.200000000000E+01
800000 P =
.200000000000E+01
900000 P =
.20QOOOOOQOOOE+01
000000 P =
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

. 000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000
I (U,P)

I (U,P)

I (U,P)

I (U,P)

I (U,P)

I(U,P)

I (U,P)

I (U,P)

I(U,P)

KU,P)

I (U,P)

I (U,P)

I (U,P)

I (U,P)

I (U,P)

I (U,P>

I(U,P)

I(U,P)

I (U,P)

I (U,P)

I tU,P)

I (U,P)

I (U,P)

I (U,P)

I (U,PJ

I (U,P)

I fU,P>

I(U,P)

I (U,P)

I fU,P)


_

_

_

_

-

=

=

=

=

=

=

=

=

=

•=

=

=

=

=

=

s

X

-

—

=

-

=

=

~
 .910S35957631E-02



 .332005779085E-01



 .681736779589E-01



 . 110736531* 
-------
u
u
u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u
Z
Z
2
Z
-
Z
=
2
=
Z
-
Z
—
Z
=
2
=
2
=
2
=
2
=
2
—
2
=
Z
-
Z
=
2
=
2
=
2
=
2
—
Z
-
2
=
2
=
2
=
2
=
2
=
2
=
2
=
2
=
.250000000
.100000
.250000000
.200000
.250000000
.300000

.

.

.

.

.

.

1.

<40

50

60

70

80

90

.2500
0000
.2500
0000
.2500
0000
.2500
0000
.2500
0000
.2500
0000
.2500
00000

00000

00000

00000

00000

00000

00000
000000
OOOE+C1
P r
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
QQOE+01
P =
OOOE+Q1
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
1
1
1

1

1

1

1

1

1

1
.500000
.500000
.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000
I
I

I

I

I

I

I

I

I
(U
(U

(U

(U

(U

(U


,p>

,p>

,p>

.P)

,p>

,P)

,p>

,p>
.250000000000E+01
1.

1.

1.
10

20

30
0000
.2500
0000
.2500
0000

00000

00000

.250000000
1.

1.

1.

1.

1.
40

50

63

70

80
0000
.2500
0000
.2500
0000
.2500
0000
.2500
0000

00000

00000

00000

00000

P —
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+Q1
P =
OOOE+01
P =
OOOE+01
o =
OOOE+01
P =
1

1

1

1

1

1

1

1
.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000
I

I

I

I

I

I

I

I
tu

{U



»p>

,P)

,p>

*P)

*p>

,p>

»P)
.2500000QQQQOE+01
1.

2.

2.

2.

2.

2.

2.

2.
90

00

0000
.2500
0000
.2500

00000

oooou
100000

20

.2500
0000
.2500
00000

00000
300000

<»0

.2500
0000
.2500
00000

oooon
500003

.2500
00000
600000
.250000000
2.
70
0000

.250000000
2.

2.
80

0000
.2500

ooooc
900000
.250000000
3.
00
0000

P =
OOOE+01
p =
OOOF+01
P =
OOOE+01
P =
OOOE+Q1
P =
OOOE+01
P =
QOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
1

1

1

1

1

1

1

1

1

1

1

1
.500000

.500000

,500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000
I

I

I

I

I

I

I

I

I

I

I

I
(U

(U

(U

(U

(U

(U

(U

(U

(U

(U

(U

(U
,p>

,P)

fp>

,p>

»p>

,p>

,P)

,p>

,p J

*p>

,p>

,p>
                         .13530925«»562E-01




                         .33if0227<»9229E-01
                         .96'*792350«(08E-01
                         .1811300W716E+00



                         .228002727155E+00
                         .325016350121E*00



                         ,373357<»72183E*00
                         .510316000298E+00




                         .55201060t»088E*00




                         .591355'*227&8E + 00




                         .628251Q46803E+OQ




                         •662659268538E+00




                         .69<»59056981«»E+00




                         .724093339562E+00




                         -7512J,(,710060E + 00




                         .77&H.2867613E*00




                         .798900679612E+00
                         .855578270898E+00
                         .897550263227E+00
204

-------
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
. 300000000000E+01
.100000 P =
. 3000000000QOE+01
.200000 P =
. 3 0 0 0 0 0 0 0 0 0 0 0 E + 0 1
.300000 P =
.300000000 oooe+oi
.^00000 P =
. 3 0 0 0 0 0 0 0 0 0 0 0 E + 0 1
.500000 P =
.300000000000E+01
.600000 P =
.3000000000nOE*01
.700000 P =
. 300000000000E+01
.800000 P r
.300000000000E*01
-900000 P =
.3000000000QOEf 01
1.000000 P =
. 300000000000E+01
1.100000 P =
.300000000000E+01
1.200000 P =
.300000000000E+01
1.300000 P =
.300000000 OQOE + 01
1.^00000 P =
.300000000000E+01
1.500GOO P =
. 300000000 OOOE + 01
1.600000 P =
. 300000000 OOOE+01
1.700000 P =
.300QOOOOQOOOE*01
1.800009 P =
.300000000000Ef01
1.900000 P =
.3000QOOOOOOOE+01
2.000000 P =
.300000000 OOOE + 01
2.100000 P =
.3DOOOOOOOOOOE+01
2. .200000 P =
. 3 0 0 0 0 0 0 0 0 0 0 0 E + 0 1
2.300COO P =
.303000000000E+01
2.^00000 P =
.3000COOOOOOOE+01
2.50000Q P =
. 30QOOOOOOOOOE+01
2.600000 ° =
.300000000 OOQE + 01
2.700000 P =
. 300000000 OOOE + 01
2.800000 P =
.300000000000E+01
2.900000 P =
.300000000000E+01
3.000000 P =

2.000000

2.000000

2.000000

2.000000

2.000000

2.000000

2.000000

2.000000

2.000000

2.000000

2.000000

2.000000

2.000000

2.000000

2.000000

2.000000

2.000000

2.000000

2.000000

2.000000

2 .000000

2.000000

2.000000

2.000000

2.000000

2.000000

2.000000

2.000000

2.000000
2.000000

I (U P)

I (U P)
*
I (U,P)

I (U.P)

I (U.P)

I(U.P)

I (U,P)

KU.P)

I(U.P)

I (U.P)

I (U.P)

I (U.P)

I (U,P)

I (U.P)

I (U.P)

I (U.P)

I (U.P)

I (U.P)

I (U.P)

I(U.P)

I (U.P)

I (U.P)

I (U.P)

I (U.P)

I (U.P)

KU.P)

I (U.P)

I (U.P)

I (U.P)
1(0, P)
.760958139«,02E-03



.535529738S63E-02




.15918679'»226E-01




.33273908M63E-01



.57379S362723E-01




.87657ll7i»908E-01
.1630<»2885807E + 00




.20606299'fl't7E + 00
                                                                .297698778525E+00
.391105180196E+00




.^36775596703E+00
                                                                .523572561332E*00
.60265i*33355«tE+00




.6387t,2017683E+00




.672i*61970338E+00




.703303901366E+00




.732796928359E + 00




.759501079600E<-00




.783999902269E+00




.80639«»13«,801E*00




,82679637221QE*00




,8'»5326636151E*00




.862108753689E+00




.877267'«i»7376E+00




.8909260i*2158E + 00
                                       205

-------
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
. 350000000000E+01
.

.

.

.

.

m

m

.

,

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

2.
100000
.350000000
200000
. 350000000
300000
.3=51000000
^OOOOT
.350000000
590000
. 350000000
600000
, 3SQOCOOOO
70000(1
.350000000
800000
.350000000
900000
.350000000
000000
.350000000
100000
.350000000
200000
.350000000
300000
.350000000
1,00000
. 350000000
500000
.350000000
600000
.350000000
700000
. 350000000
SOOOOO
.350000000
900000
.350000000
000000
P =
OOOE+01
P =
OQOE+Q1
P =
oooe+oi
p =
OOOF+01
p =
000£*-01
P =
QOOE+01
p =
0 0 0 E * 0 1
p =
OOOE+Q1
p =
OOOE*Q1
P =
OOOE-i-01
P =
OOOE+01
P =
OOOE4-01
p =
OOOE+Q1
P =
OOOE+01
P =
OOOE+01
P =
OQOE+01
P =
OOOE^Ol
P =
OOOE+01
P =
OOOE+-01
P =
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500 000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

,500000

.500000
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
(U

(U

.P)

»P)

a

=



.P)

»p>

,p>

,P)

,p>

,p»

,P)


=

•s

-

-

-

•=

=

=

(U,P) =

(U

(U

(U

(U

(U

(U

(U

(U

,P)

.P)

»p>

.P)

»P)

»p>

,p>

.P)

•=

=

=

=

=

=

=

=
.35QOOOQOOOOOE+01
2.
100GOO
p =
2
.500000
I
(U
»p>
-
.35 0000000 000 E *01
2.

2.

2.

2.

2.

2.

2.

2.
200000
.350000000
300000
.350000000
400000
.350000000
500000
.350000000
600000
.350000000
700000
.350000000
800000
.350000000
900000
P =
030E+01
P -
OOOE4-01
P ~
OOOE*01
P =
OOOE+01
P =
OODE+01
P =
OOOE*01
P =
OOOE+01
P =
2

2

2

2

2

2

2

2
.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000
I

I

I

I

I

I

I

I
(U

(U

(U

(U

(U

(U

(U



»p>

,p>
-

=

=

=

=

=

=

=
.350000000000E+01
3.
000000
p =
2
.500000
I
tU,PJ =
.210631087S28E-03



.206380282799E-02



.73966S2'«?'»!»OE-02



.175750353806E-01
         /


.33357612969^E-01



.5i»9539*»58<=37E-01



.821398303100E-01



 114381038707E+00
.190993899399E+00



.233655561592E*00



 27807761111. 7E + 00



,323<«63213192E«-00



 36909((925eOOE*00
.50169»,339172E + 00



-5**301«*98067'.E + OQ



.582395i*75985E-t-00



.6l96532D9i(99EtOO



.65'f67117073QE+00



,687388'»3873eE4-00



.717791012611E*00
                                                               .771780115975E*00
 817159708082E+00



 8368672735i»OE*00
                                                                87089756
-------
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u  =
u  =
u =
u =
u =
U =
u =
u =
u =
u =
u  -
u =
u =
u =
u =
 .100000         P  =
     .i»OOQQOGOOOOOE + 01
 .200000         P  =
     .'fOOOGOOOOOOOE + Ol
 .300000         P  =
     .^OOOQOOOOQOQE+Ol
 .1*00000         P  =
 .500000         P  =
     . 4 o o o o o o o o o o o E + a i
 .600000         P  =
     .«*Q3QOQQOQ QOQE+01
 .700000         P  =
     .'.OOOOOOQQOnOE + Ol
 .800000         P  =
     . <«flOQ 00000 QOOE + Oi
 -900000         P  =
     -t*OOOOOOOQOOOE<-01
1.000000         P  =
     .ttOOQOQOOQ 09QE+01
1.100000         P  =
     .<*QOQQQOOQ OQQE+01
1.200000         P  =
     . (4 0 D 0 0 0 0 0 0 0 0 0 E * 0 1
1.300000         P  =
     .uOOOaaOOOOOQE+Ol
1.400000         P  -
     .VJOOOOOOaOOOE + 01
1.500003         P  -
     .JfQOOQQOOO QQOE+01
1.600000         P  =
     . ^ 0 0 0 0 0 0 0 0 0 0 0 E + 0 1
1.700000         P  =
     .^00000000 OQOE+Ql
1.800000         P  -
     .t»OOOQOOOOOOO£f 01
1.900000         P  =
     . 
I (U,P(
I (U,P)
I (U,P)
I (U,P)
I 
I (U,P)
I (U,P)
I (U,P)
I (U,P)
I (U,P)
I 
I IU,P)
I (U,P)
I (U,P)
I (U.P)
I P>
I tU,P)
.776251376209E-03

.335806885325E-02

-907985780015E-02

.189381568762E-01

.337689681857E-01

.537252503631E-01

.788134872297E-01

.10870839<»709E + 00

.1<»2376539501E + 00

,1806'.7578297E+00

.221277088'36'tE + OO

.263998355615E+00
.352768111218E+00

.397'»8027559'»E + 00
,<>8if 78388953i«E + 00

.5265151567i,OE + 00

.56652S879633E+00
                                                                .705770083603E+00
.76193'<501277E + 00

.786708981566E+00

.809377590658E+00

,830Q3711333
-------

u

u

u

u

u

u

u

u

u

u

u

u

u

u

LI

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=
4

4

4

k

u

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

'-4

4

4

it

tt

4

4




















1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3
.450000000
. 100DOO
.450000000
.200000
.450000000
.300000
.450000000
.400000
.450000000
.500000
.450000000
.600000
.450000000
.709000
.450000000
.800000
.((50000000
.900000
.450000000
.000000
.450000000
. 100000
.450000000
.200000
.450000000
.300000
.450000000
.400000
.450000000
-500000
.450000000
.600000
-450000000
.700000
.450000000
. 600CCO
.450000000
.900000
.450000000
.000000
.450000000
.100000
.450000000
.200000
.4300 00000
.300000
.4500 00000
.400003
.450000000
.500000
-450000000
.600000
.450000000
.700000
.450000000
.800000
.450000000
.900000
.450000000
.000000
OCOE+01
P =
OOOE+01
P =
OOOE+01
p z
OOOE+01
p =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P ~
OOOE+01
P =
OOOE+01
P =
OOOE+Q1
P =
U 0 0 E + 0 1
P =
QOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOQF+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P —
OQOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P •=
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

.500 COO

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500000

.500 000

.500000

.500000

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

(U

(U

(U



,P)

,p>

»P)

,p>

»p>

»P)

fp)

»p>

»p>

»P)

»p»

tp>

»p>

,p>

tp>

»p>

tp>

IP)

IP)

»p>

»p>

tp>

»P)

.P)

»p>

,p>

tp>

.P)


=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

(U»P) =
                         -l
-------
u =
u =
u =
u =
u -
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u -
u =
u =
u =
u =
u =
     •SOaoOQOOOOOQE+Ql
 .100000        P  =
     .500000000 OOOE+01
 .200000        p  =
     .500000QQOOOQE+Q1
 .30000!)        P  =
     .5000000000QQE+Q1
 .^OOOOO        P  =
     • 500000000 OOOE + 01
 .500000        P  =
     .5QQQCOOOO OOOEtQl
 -600000        P  =
     . 5 o o o o o o o o o a o E * o i
 .700000        P  =
     .5000000000 aOE + 01
 .HOODOO        P  =
     .500000000 OOOEtOl
 .900000        P  =
     .530000000(IOOE*01
1.000000        P  =
     •5QOQQOOOOOOOEtOi
1,100000        P  =
     .5onoooooooooE+ai
1.200000        P  =
     .500000000 QOOE*01
1.300000        P  =
     .500000000 OOOEtOl
1.1(00000        P  =
     -500000000QOOE+01
1.500000        P  =
     . 5 0 0 0 C 0 0 0 0 0 0 0 E * 01
1.600000        P  =
     .500000000000E.4-01
1.700000        P  =
     -500QOOOQOOOOE+Q1
1.800000        P  =
     . 5 o o o o o o o o a o a E + o i
1.900000        P  =
     .500000000000E4-01
2.000000        P  =
     .5000QOOOOQOOE4-01
2.100000        P  =
     -500QOOOOOOOQE+01
2.200000        P  =
     .500000000 OOOE*01
2.300000        P  =
     .5000 00000 OOOE + 01
2.400000        P  =
     .500000000 OOOEtOl
2.500000        p  =
     .5oaoooooQoaa£+ot
2.600000        P  =
     .50000QOOOQOQE+01
2.700000        P  =
     . 5 0 0 0 0 0 0 0 0 0 0 0 E 4- 01
2.800000        P  -
     .500000000 OOOE + 01
2.900000        P  =
     .5000UOOOOOOOE+01
3.000000        p  =
4.000000
4.000000
4.000000
4.000000
4.000000
4.000000
4.000000
4.000000
4.000000
4.000000
4.000000
4.000000
4.000000
4.000000
4.000000
4.000000
4.000000
4.000000
4.000000
4.000000
4.000000
4.000000
(,.000000
4.000000
4.000000
/». 000000
4.000000
4.000000
4.000000
4.000000
I (U,P)
I 
I (U,P)
I (U,P)
I (U,P)
I (U,P)
I (U,P)
I (U,P)
I (U,P)
I !U,P)
I (U,P)
I (U,P)
I (U,P)
I (U,P)
I (U,P)
I (U,P)
I (U,P)
I (U,P)
I (0,P)
I (U,P)
I(U,P>
I (U,P)
nu,p>
I (U,P)
I !U,P)
KU,P>
I (U,P)
I(U,P)
I (U,P)
I(U,P)
.386844019810E-05

.102902325551E-03

.650256682216E-03

.228277528583E-02

•581027876S42E-02

.120726954337E-01

.218160Q22451E-01

.356062979064E-01

.537343137798E-01

.764545346626E-01

.103500033500E+00

.134614223283E+00

.169341354500E+00

-207119987525E*00

.247324853°32E+00

.289304351590E4-00

.332412099248E*00

.376031941197E+QO

-419596467617E-fOO

.462599555919E+00

.504603692355E+00

.545242948257E+00

.584222503152E+00

,621315551034E*00

.656358367091E+00

.689244149514E*00

.719916208315E+00

.74836C907630E+00

.774600695374E+00

.798687457631E+00
                                       209

-------
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U

U

U

U

U

U

U

U

U

U

U

U

U

U

U
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
=
5
=
5
=
5
=
5
=
5
=
5
=
5
=
5
=
5
=
5
z
5
=
5
=
5
=
.
1.
1.
1.
1.
1.
1.
1.

1.
.550000000000E+01
100000 P =
.550000000000E+01
200000 P =
.5500COOOO OOOE + 01
300000 P =
-550000000000E+01
if 0 0 0 0 0 P =
-5500COOOOOOOE+01
500030 P =
.553000000000E+01
600000 P =
.553000000000E+01
700000 P =
.5500000QOQOOE+01
800000 P =
.550000000 OOOE + 01
900000 P =
.550000000000E+01
000000 P =
-550000000000E+01
100000 P =
.550000000000E+01
200000 P =
-550000000 OOQF + 01
300000 P =
.550000000 OOOE + 01
ifOoono p =
-550000000 OOOE + 01
500000 P =
.550000000000E+01
600000 P =
.5500
700000
00000

.550000000
1.

1.

2.

2.
800000
.5500
900000
.5500
000000
.5500
100000

00000

00000

00000

.550000000
2.
?00000

.550000000
2.

2.
300000
.5500
ifOOOOO

00000

.550000000
2.
500000

.550000000
2.

2.

2.

2.
600000
.5500
700000
.5500
800000
.5500
900000

ooooc

00000

00000

.550000000
3.
000000

OOOE+01
p •=
OOOE+01
p =
OOOE+01
p =
OQOE+01
P =
OOOE+01
P •=
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P ~
OOOE+01
P =
OOOE+Q1
P =
OQOE+01
P =
OOOE+01
P =
if .500000
if .500000
if .500000
if .500000
if .500000
if .500000
if. 500000
if .500000
if .500000
if .500000
if. 500000
if .500000
if .500000
if .500000
if .500000
if. 500000

if .500000

if .500000

if. 500000

if .500000

if .500000

if .500000

if .500000

if .500000

if. 500000

if. 500000

if .500000

if. 500000

«f. 500000

it .500000
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
(U»P) =
(U,P) =
 =
(U,P) =
(U,P) =
(U,P) =
(U,P) =
(U,P> =
(U,P) =
(U,P) =
(U,P) =
(U,P) =
(U,P) =
(U,P) =
(U,P) =
(U,P) =

 =

(U

P)

=

•=

=

=

=
                        .9790529«f9357E-06



                        .3638565
-------
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
.
.600000000
100000
.600000000
200000
OOOE+Q1
P =
OOOE+01
P =
5
5
.000000
.000000
I
I
(U,P) =
(U,P) =
.6000COOOOOOOE+01
*

.

.

*

.
300000
.600000000
i»00000
.6000 00000
500000
.600000000
600000
.600000000
700000
p =
OOOE+01
P =
OOOE+01
P =
030E+01
P =
OOOE+Q1
P =
5

5

5

5

5
.000

.000

000

000

.000000

.000

.000

000

000
I

I

I

I

I
(U

IU


»P)

»p>


_

_

(U,P) =

(U

(U

»P)

,P)

-

3
.600000QOOQQOE+01
.

.

1.

1.

1.

1.

1.

1.

1.

1.

1,

1.

2.

2.

2.

2.

2.

2.

2.
2.

2.

2.

3.
800000
.600000000
900000
.600000000
000000
.600000000
100000
.600000000
200000
.600000000
300000
. 600000000
^00000
.600000000
500000
.600000000
600000
.600000000
700000
.600000000
800000
.600000000
900000
.6000 00000
OQQOOO
.600000000
100000
.600000000
200000
.600000000
300000
.600000000
<*OOC03
.600000000
500000
.600000000
600000
.600000000
700000
.600000000
800000
.600000000
900000
.600000000
000000
P =
OOQE+01
P =
030E+01
P =
OOQE+Qi
P =
OOOE+01
P =
QOOE+01
P =
OOOE+01
P -
OOOE+01
P =
OQOE+01
P =
OOOE+Q1
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOQE+01
P =
OOOE+01
P =
OQOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OQOE+01
P =
OOOE+01
P =
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

5

5
.000

.000

.000

000

000

000

.000000


.000000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000
.000

.000


000

000

000

000

000

000

000

000

000

000

000

000

000

000
000

000

.000000

.000

000
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I

I
(U,P) =

(U

(U

(U

(U

tu

(U



.P)

,p>

,p>

»P)

,p>

,p>

.p)

.p)

.p)

,P)

»p>

tp>

,p>

,p>

1P>

,P)


•^

s

=

•=

=

=

=

=

=

=

~

=:

-

—

=

—

-

(U,P) =


tp>

tP5
_

=

_

=
.126«f02101121E-0«»



.11699<*872936E-03



.53/,70265'»689E-03



.1660929588
-------
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
.650000000
.100000
.650000000
.200000
.650000000
.300-000
.650000000
.400000
.650000000
.500000
-650000000
.600000
.650000000
.700000
.650000000
.800000
.6500 00000
.900000

1.

1.

1.

00

10

20
.6500
0000
.6500
0000
.6500
0000
00000

00000

00000

.650000000
1.
300000
.650000000
1.

1.

1.

1.
to

50

0000
.6500
0000
.6500

00000

00000
600000

.6500
00000
700000
.650000000
1.

1.

2.
80

0000
.6500

00000
900000

00
.6500
0000
00000

.650000000
2.

2.
10

20
0000
.6500
0000

00000

.650000000
2.

2.
30

40
0000
.6500
0000

00000

-650000000
2.
50
0000

.650000000
2.

2.

2.

2.

3.
60

70

0000
.6500
0000
.6500

00000

00000
800000

90

00
.6500
0000
.6500
0000
00000

00000

OOOE+01
p =
OOOE+01
p -
OQOE+01
p =
QOOF+01
p -
OOOE+01
p =
OOOE+01
p =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
p =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
p =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOOE+Q1
P =
OOOE+01
P =
OOOE+01
P -
OOOE+01
P =
OOOE+01
P =
OOOE+01
P =
OOQE+01
P =
OOOE+01
P =
5
5
5
5
5
5
5
5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
.500
.500
.500
.500
.500
.500
.500
.500
.500

.500

.500

.500

.500

.500

.500

.500

.500

.500

.500

.500

.500

.500

.500

.500

.500

.500

.500

.500

.500

.500
000
000
000
000
000
000
000
000
000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000

000
I
I
I
I
I
I
I
I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
(U,P) =
(U,P) =
(U,P) =
(U,P) =
(U,P) =
(U,P) =
(U,P) =
(U,P) =
(U,P) =

(U

(U

(U

(U

(U

(U



»p>

,P)

,P)

»p>

.P)

.P)

tp)

,p>

tp>

.p)

.P)

»p»

tp)


=

=

=

=

=

=

=

=

-r

=

=

=

=

35

(U,P) =

(U

(U

(U

(U



,p>

»P)

tp)

,p>


35

35

=

=

35

(U.P) =
.i»3191(,08556lE-05




.484215690064E-04




.252709108807E-03




.867891594198E-03




.Z28844395138E-02




.503010315961E-02




.968081719702E-02




 168389772730E-01




.27051848572i(E-01




.407637429051E-01




 582786609896E-01




 797418033012E-01




.105133281349E+00




.134279649810E+OQ




.166872381584E+00
.240647152284E+00




.280784142559E+00



.322334688795E+00




 364730566839E+00
.491740254226E+00




 532504573858H+00



.571872068340E+00




.6Q9570161251E+00




.645387818=58E+00



.679172063379E+QO




.710S23131816E+00
                                      212

-------
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u  =
u  =
u  =
u =
u =
u  =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
.700000000000E+Q1
.100000 P =
.700000000000E+01
.200000 P =
.700000000 OOOE+01
.300000 P =
.700000000000E+01
.1*00000 P =
,700000000000E+01
.500000 P =
.700000000 QOOE+01
.600000 P =
.700000000 OOOE+01
.700000 P =
. 7 0 0 0 0 0 0 0 0 0 0 0 E * 0 1
.800000 P =
•700000000000E*01
.900000 P =
.70000000QOOQE+01
1.000000 P =
.70000000QOQOE-t-01
1.100000 P =
. 7000 00000 OOOE + 01
1.200000 P =
.70000000QOOOE+Q1
1.300000 o =
.7000000000aOE*01
l.^OOOOO P =
.7000000COOOOE+01
1.500000 P =
.70QOOOOOOOOQE+01
1.600000 P =
.700000000000E+01
1.700000 P =
.700000000 OOOE + 01
1.800000 P =
.7QOOOOOOOOOOE+01
1.900000 P =
.700000000000E*01
2.000000 P =
.70QOOOOQOOOOE4-01
2.100000 P =
.70QOOOOOOOOOE+Q1
2.200000 P =
. 7 0 0 0 0 0 0 0 0 0 0 0 E * 0 1
2.300000 P =
.700000000 OOOE + 01
2. (,00000 P =
•700000000000E+01
2.500000 P =
.700000000 OOOE + 01
2.600000 P =
.700000000 QOOE + 01
2.700000 P =
.700000000000E+01
2.800000 P =
.700000000000E+01
2.900000 P =
.700000000 OOOE + 01
3.000000 P =

6.000000

6.000000

6.000000

6.000000

6. 000000

6.000000

6.000000

6.000000

6.000000

6.000000

6.000000

6.000000

6.000000

6.000000

6.000000

6.000000

6.000000

6.000000

6.000000

6.000000

6.000000

6.000000

6.000000

6.000000

6.000000

6.000000

6.000000

6.000000

6.000000

6.000000

I (U P)

I 

I (U,P)

I 
-------
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U -
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
U =
. 75000QOOOOOQE+01
.100000 P =
.750000000000E+01
.200000 P =
.750000000000E+01
.300000 P =
.750000000000E+01
.£,00000 P =
.750000000000E+01
.500000 P =
.750000000000E+01
.600000 P =
. 750000000000E + 01
.700000 P =
.7500000000QQE+01
.800000 P =
.7500000000QOE+01
.900000 P =
.750000000 OOOE + 01
1.000000 P =
.750000000 OOOE + 01
1.100000 P =
.750000000000E+01
1.200000 o =
.7500000000QOE+01
1.300000 P =
. 750000000 OOOE + 01
l.AOOOOO P =
.750000000000E+01
1.500000 P =
. 750000000 QOOE + 01
1.600000 P =
.750000000QOOE+01
1.700000 P =
.750000000000E+01
1.300000 P =
.750000000 OOOE + 01
1.900000 P =
. 750000000 OOOE+01
2.000000 P =
.75QOOOOQOOOOE+01
2.100000 ° =
.750000000000E+01
2.200000 P =
.750000000000E+01
2.300000 °=
.750000000000E+01
2.1*00000 P =
.75QOOOOOOOOOE+01
2,500000 P =
.750000000000E+01
2.600COO P =
.750000QOOOOOE+Q1
2.700000 P =
.750000000 OOOE + 01
2. 8 D 0000 P =
. 750000000000E+01
2.900000 P =
.750000000 OOOE + 01
3. 030000 P -

6.500000

6.500000

6.500000

6.500000

6.500000

6.500000

6.500000

6.500000

6.500000

6.500000

6.500000

6.500000

6-500000

6.500000

6.500000

6.500000

6.500000

6.500000

6.500000

6.500000

6.500000

6.500000

6.500000

6.500000

6.500000

6.500000

6.500000

6.500000

6.500000

6.500000

I(U,P)

I (U,P)

I(UfP)

I (U,P)

I (U,P)

I 

I (U,P>

I 

I (U,P)

I (U,P)

I (U,P)

I (U,P>

I (U,P)

I (U,P)

I (U,P)

I (U,P)

I (U,P)

I (U,P5

I (U,P)

I(U,P)

I(U,P>

I 
-------
U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U
8
S
=
8
=
8
=
8
=
8
=
8
=
8
=
8
=
8
=
3
=
8
=
8
=
8
=
8
=
8
=
6
=
3
=
8
=
8
=
8

8
—
8

8

8

8

8

8

8

8

w

*

.

*

.

.

.

•

*

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

2.

2.

2.

2.

2.

2.

2.

2.

2.

2.

3.
.800000QOOOOOE+01
100000 P =
.BOOOOOOOOOOOEtOl
200000 P =
. 8 0 0 0 0 0 0 0 Q 0 0 0 E +• 0 1
300-000 P =
. 800000000000E+D1
KOODOO P =
. 300QQOQOOOOQE + 31
500000 P =
. 8000QOOOOOOOE+Q1
600CCO P =
.800000000 OOOE+01
700000 p =
.300 0003 GO 000 E + 01
800000 P =
.800000000000E+01
90000Q P =
.8300QOOOOOOOE+01
000000 P =
.300 OQOOOOQOQE + 01
100000 P -
. 8000000000QOE4-01
200000 P =
.8COOOOOOQQOOE+01
300003 P =
. 3000000000QOE*-01
1400000 P =
. 800000QQOQOQE+01
500000 P =
.SOOOOOOOOOOOEtOl
600000 P =
. BOOOOOOOOOOOE-t-01
7,00000 P =
. SOOOOOOOOOOOE+01
300000 P =
.80000QQOOOOOE+01
900000 P =
.800000000 OOOE + 01
000000 P =
. 800000000000 E +01
100000 P =
. S 0 0 0 0 0 0 0 0 0 0 0 E + 0 1
200000 P =
. 3000QOOOOOOOE+01
300000 P =
. 800000000QOQE+01
itOOOOO P =
. 8000GQOOOQOQE+01
500000 P =
.600000000000 E+Qi
600000 P =
. 800000000000E+01
700000 P =
.800000000000E+01
800GOO P =
. 300000000QOOF*01
900000 p =
. S 0 0 0 0 0 0 0 0 0 ", 0 E + 0 1
000000 p =
7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7
.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

. 000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
(U,

(U,

(U,



P)

P)

P)

P)

P)

P)

P)

P)

P)

P)

p )


_

_

_

_

_

_

=

r

=

=

=

=

=

=

=

=

=

~

=

=

»

—

=

-

_

—

=

~

=
                        .790365332265E-09




                        -1575£*60330£,1E-06
                        -1UQ90387*|96E-03




                        • 383375315i(36E-03




                        .10293't515699E-02




                        .23l,5928£t6l91E-02




                        .'»71S75691890E-02




                        .8603*»8352718E-02




                        .li»i*916267066E-01




                        .228698123597E-01




                        .3<*17857367i»2E-01




                        •487759757958E-01




                        .669097S97290E-01




                        .88700208272'tE-Ol




                        .lHtl33505735E+00




                        .143065783032E-I-00




                        .1752350S4615E+00




                        .2102797H613E+00
                        .28718%5393D3E+00
                        .369765296527E+00
                        .i«53866811178E<-00
                         535760617712E+00
215

-------
U =
U =
3
U =
D
o
U =
0
o
U =
3
U =
U =
U =
U =
U =
U =
s
U =
3
U =
U =
s
U =
u -
a
o
u =
s
u =
u =
u =
u =
8
U =
U =
u =
u =
u =
u =
8
U =
U =











1
1

1

1
1

1
1
1

1
4
2
2

2
2
2
2
2
2

2
2
U =
               .350000000QQOE+01
           .100000         P =
               .85000000QOOOE+01
           .200000         P =
               .150000000 OOOE + 01
           .300000         P =
               .850000300 OOOE + 01
           .KOODOO         P =
               . 85Q000000010E4-01
           .500000         P =
               .850000QOOQOOE+01
           .600000         P =
               . B'JOOOOOOOQOOE + Ol
           .700000         P =
               .85000000Q OOOE + 01
           .300000         P=
               .85000000000OE+01
           .900000         P =
               .850000000000^*01
          1.000000         P =
               .8500000000QOE+01
          1.100000         P =
               . 850000000000F*-01
          1.200000         P =
               .850000000000E+01
            300000         P =
               .85000000000QE+01
          l.*»0 0000         P =
               . 850000000000E + 01
          1.500000         P =
               . 850000000000E4-01
          1.600 COO         P =
               .850000000000E*01
          1.700000         P =
               . 850 OOQOOOOOQF-t-01
           .830000         P =
               .850000000 OQOE + 01
           .900000         P =
               .850000000000E+01
           .000000         P =
               .S5300000000QE+01
          2.100000         P =
               .350000000000Et01
          2.200000         P =
               .850 000000 OOOE + 01
          2.300003         P =
               . S500QOOOOOOOE+-01
          2.1*00000         P =
               .850000000000E*01
          2.500000         P=
               .85000QOOOOOOE+01
          2.600000         P =
               .350000000 OQOE + 01
            700000         P =
               .850000000000E+01
            800000         P =
               .BSOOCOOOOOOOE+Ol
          2.900000         P =
               . 350000000000E-I-01
          3.oocoao         P =
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
7.500000
I (U
I (U
I(U
I (U
I (U
I tU
I (U
I (U
I (U
I (U
I (U
I(U
I (U
I (U
I (U
I (U
I (U
I (U
I (U
r tu
I (U
I (U
I (U
I (U
I(U
I (U
I(U
I (U
I (U
I (U
.182095837£(i»9E-09

,508
-------
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =



















1

1

1

1

1

1

1
1

1

1

2

2

2

2

2

2

2
2

2
2
3

*

»

*

*

*

*

*

•

*

.

*

•

*

»

*

•
.

•

•

•

•

•

*

•

*

*
*

•
*
•
.90000000QOOOE*ai
100000 P =
.9Q0000000030E+Q1
200000 P =
.900000000030E+01
300000 P =
.900000000000E+01
£.00000 P =
.90000000000QE+01
500000 P =
.900000000000E+01
600000 P =
. 9 0 0 0 0 0 0 0 0 G 0 0 E + 0 1
700000 P =
.gaooooooaoooEtoi
800000 P =
. g o o o o o o o o o o o F *• o i
900COO P =
.900000000QQOE*01
000000 P =
.goaoooaoooooE+oi
100000 P =
.900000000000E+01
200000 P =
.900000300000E+01
300000 P =
-goooooooooooEtoi
KOODOO P =
.900000000000E+01
500000 P -
.goooooaoooooE+oi
600000 P =
700000 P =
.900000000000E+Q1
800000 P =
.90QOOOOOQOOOE+01
900000 P =
.90000000DQOOE+01
000000 P =
.90000000QOOOE+01
100000 P =
.gOOOOQOOOOOOE-t-01
200000 P =
.90QOOOOOOOQDE+01
300000 P =
. 9 o o a o o o o o a a o E + o i
KOODOO P =
.900000000000E+01
500000 P =
.900000000000E+01
600000 P =
.90000QOOOOOOE+01
700000 P =
. 900000000000E+01
800000 P =
,903000000000Et01
90 0000 P ~
„ 9 0 0 0 0 0 0 D 0 0 0 0 E + 0 1
000000 P "

8

8

8

8

8

8

8

S

8

8

8

8

8

3

8

8
8

8

8

8

8

8

8

8

8

8
8

8
8
8

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000
.000000

.000000

. 000000

.000000

.000000

.000000

.OOOODO

.000000

.000000

.000000
.000000

.000000
.000000
.000000

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I

I

I

I

I

I

I

I
I

I
I
I



(U.P)

tu

(U

(U


9

t

f


P)

P)

P)

(U,P)

(U

(U

(U


P)

P)
P)
P)
.162Q825S106i)E-07



.<*7658<433Q22SE-06




.<«858828706&<
-------
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u =
u  =
u =
u =
u =
u =
u =
u =
u =
u =
u =
.95300COOOOOOEi-Oi
.100003 P =
-950000000000E+01
.200000 P =
.950000000000E+01
.300.000 P =
.950000000000E+01
.^00000 P -
.950000000000E+01
.500000 P =
.950000QOOOOOE+Q1
.600000 P =
.950000000000E+01
.700000 P =
.950000000000E4-01
.800000 P =
.950000000000E+01
.900000 P =
.950000000000E+01
1.000000 P =
-950000QOOOOOE+01
1.100000 P=
• 950000000000E4-01
1.200000 P =
.9500000COQOOE+01
1.300000 P =
.95QOOOOOOOOOE+01
1. (.00000 P =
.9500000QOQOQE4-01
1.500000 P =
.9500QOOOQOOOE4-Q1
1.600000 P -
. 950000000000E+01
1.700000 P =
.950000000000E+01
1.300000 P =
.950000000000E+01
1.900000 P =
.950QOOOOOOOOE+01
2.000000 P =
.95QOOOOOOOOOE*01
2. 100000 ' P =
.950000000000E+Q1
2.200000 P =
.950000000000E+01
2.300000 P =
.950000000000E+01
2.^00000 P =
- 950000000000E+01
2.500003 P =
.950000000000E+-01
2.600000 P =
.950000000000Et01
2.700000 P -
.950000000000E+01
2.800000 P =
.953000000000E+01
2.900000 P =
.950000000000E+01
3.0QOOOO P =

8.500000

8.500000

3.500000

8.500000

3.500000

8.500000

8.500000

8.500000

3.500000

3.500000

8-500000

8.500000

8.500000

8.500000

8.500000

8.500000

8.500000

8.500000

8.500000

8.500000

8.500000

8.500000

8.500000

3.500000

8.500000

8.500000

3.500000

8.500000

3.500000

8.500000

I (U,P)

I (U,P)

I (U,P)

I (U,P)

I (U,P)

I (U,P)

I (U,P)

I (U,P)

I (U,P)

I (U,P)

I (U,P)

I (U,P>

I 

I (U,P)

I (U tP)

I (U,P)

I (U,P)

I (U,P)

I (U,P)

I (U»P )

I (U»P)

I (UtP)

I (U,P)

I (U,P)

I (U,P)

I (U,P)

I (U,P)

I (U,P)

I (U»P )
 182230370527E-06




 212613666528E-05
                                                                1900't3<*09319E-03
.1ZOO'»83029Q1E-02




.2<(918917288'fE-02



.i*70663152170E-02
 13'>67966'«669E-01



.2086987801J,OE-01



 308'»50131107E-01




 «»37568782255E-01



.598904»753377E-01



 79<«312002035E-01
 128907291095E+00




 158639053029E+00
                                                               .22679l£t25522E + 00
                                                                303860'»95071E + 00
                                                                .«<27765966896E
                                                                .510250812672E+00
                                        218

-------
u
u
u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u
10
10
10
10
•=
10
•=
10
2S
10
=
10
=
10
=
10
=
10
=
10
=
10
=
10
=
10
=
10
=
10
=
10
=
10
=
10
=
10
=
10
=
10

10

10

10

10

10

10

10

.100000000000E+02
.100000 P =
.1QOQOOOOOOOOE+02
.200000 P =
.1QOOOOOOQOQOE*02
.300000 P =
9.000000
9.000000
9.000000
I (U.P)
T fll.Pl
.10000000000QE+02 '
*

•

•

*

.

.

1.

1.

1.

1.

1.

1.
KOODOO
.100000000
500000
. 100000000
600000
.100000000
700000
.100000000
800000
. 100000000
900000
.100000000
000000
. 100000000
100000
.100000000
200000
.100000000
300000
.100000000
KOODOO
.100000000
500000
P =
OODE+02
P =
OOOE+02
P =
OOOE-t-02
P =
OQOE+02
P =
OQOE+02
P =
OQQE*02
P =
OQOE*02
P =
QQOE*02
P =
OOCE+02
P =
OOOE+02
P =
OOOE+02
P =
9

9

9

9

9

9

9

9

9

9

9

9
.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000
I

J

J

I

I

I

I

I

I

I

I

I
(U.P)

(U

(U

(U

(U

(U

(U

(U

(U


,p)

»p)

.P)

.P)

.P)

.P)

.P)

.P)

(U.P)

(U

(U

.P)

,P)
.100000000QOOE+02
1.

1.

1.

1.

z.

2.

2.

2.

2.

2.

2.

2.
600000
.100000000
700000
. 100000000
800000
.100000000
900000
.100000000
000000
.100000000
100000
.100000000
200000
.100000000
300000
. 100000000
1*00000
.100000000
500000
.100000000
600000
.100000000
700000
P =
OQOE*02
P =
QQOE+02
P =
OOOE+02
P =
OOOE*02
P "
OOOE+02
P =
OOOE-»-02
P =
OOOE*02
P =
OOOE+02
P =
OQOE+02
P = •
OOQE*02
P =
OOOE*02
P =
9

9

9

9

9

9

9

9

9

9

9

9
.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000
I

I

I

I

I

I

I

I

I

I

I

I
(U

(U

(U

(U

(U

(U

(U

(U

,p>

,p>

,P)

.P)

,P)

,P)

.P)

,p>

(U.P)

(U


,p>

(U,P>

(U

.P)
.100000000000E+02
2.
300000
P =
9
.000000
.100DOOOQOOQOE+Q2
2.

3.
900000
.100000000
000000
P =
OOOE+02
P =
9

9
.000000

.000000
I

I

I
(U

(U

(U
,p)

»P'

.P)
                         .206357913123E-11
                         •689125630505E-07



                         .9203636735(»6E-06



                         .6<«51860't5=92E-05



                         .3009((6'«25'i92E-Ot,



                         .1060060625'«9E-03



                         .30410379
-------
  10           . 1050COOOOOOOE + Q2
U =        .100000         P =
  10           .105000000000E+02
U =        .200000         P =
  10           . 105000000000E + 02
U =        .300000         P =
  10           .105000000000E+02
U =        .KOODOO         P =
  10           .1050000000QOE+02
U =        .500000         P =
  10           .105000000000E+02
U =        .600000         P =
  10           .105000000OOOE+Q2
U =        .700000         P =
  10           .105000000OOOE+02
U =        .800000         P =
  10           -1050000QOOOOE+02
U =        .900000         P =
  10           . 105000000QOQE+02
U =       1.000000         P =
  10           .io5aoooaooooE+o2
u =       i.iooooo         P =
  10           . 105000000OOQE + 02
U =       1.200000         P =
  10           .10500000QOOOE+02
U =       1.300000         P =
  10           . 105000000 OOOE-i-02
U =       1.1*00000         P =
  10           . 105000000OOOE + 02
U =       1.500000         P =
  10           .105000000OOOE+02
U =       1.600000         P =
  10           .105000000000E+02
U =       1.700000         P =
  10           .105000000QOOE+02
U =       1.800000         P =
  10           .105000000000E+02
U =       1.900000         P =
  10           .1050000000OOE+02
U =       2.000000         P =
  10           .10500COOOOOQE+02
U =       2.100000         P =
  10           .10500QQOOQOOE+02
U =       2.200000         P =
  10           .105000000QOOE+02
U =       2.300000         P =
  10           .1050000000000*02
U =       2.^00000         P =
  10           .105000000OOOE+02
U =       2.500000         P =
  10           .105000000OOOE+02
U =       2.600000         P =
  10           .105000000OOOE+02-
U =       2.700000         P =
  10           .105000000000E+02
U =       2.800000         P =
  10           .105000000OOOE + 02
U =       2.900000         P =
  10           .105000000000E+02
U =       3. 000000         P =
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
9.500000
I(U,P)
I (UiP)
I (U,P)
I 
I (U,P)
I (U,P)
I (U,P)
I (U,P)
I (U,P)
I (U,P)
I (U,P)
I 1379E-01

.262910218696E-01

 37550'«2'«2656E-01

 5178'«9235£22E-01

.692321793600E-01
 ll'»220818023E + 00
 1723««6636386E + 00

.20582'«7i»7571E+00

.2(»1795'»12ei3E+00

 2798376'«7117E+00
                                       220

-------

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u
11
•S:
11
=
11
r
11
ts
11
=
11
zr
11
=
11
r:
11
=
11
=
11
=
11
=
11
=
11
=
11
=
11
•=
11
=
11
=
11
=
11
=
11

11

11

11

11

11

11

11

11

. 1100COOOOOOOE*02


















1

1

1

1

1

1

1

1

1

1
.100000
.110000000
.200000
.110000000
.300000
.110000000
.*«Q 0000
.110000000
.500000
. 110000000
.500000
.110000000
.700000
.110000000
.800000
.110000000
.900000
.1130 00000
.000000
.110000000
.100000
.110000000
.200000
.110000000
.300000
.110000000
.f»00003
.110000000
.500000
.110000000
.600000
.110000000
.700000
.110000000
.800000
.110000000
.900000
p =
OOOE+02
p =
OOQE+02
p =
OOOE*02
p =
QOOE*02
p =
OOOE+Q2
p =
OOOE+02
P =
OOOE+02
P =
OOOE+02
P =
QQOEt02
p =
OOOE*02
P =
0 0 0 E -i- 0 2
P =
OOOE+02
P =
OQOE*02
P =
OQOE+02
P -
OOOE+02
P =
OOQEtOZ
P =
OOOE+02
p =
OOOE*02
P =
10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10
.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.oonooo

.000000

.000000
I

I

I

I

I

I

I

I

I

I

I

1

I

I

I

1

I

I

I
(U,P>

(U,P)

(U,P)

(UtP)

(UfP)

(U,P)


-------
                                    TECHNICAL REPORT DATA
                             (Please read Instructions on the reverse before completing)
 1, REPORT NO.
  EPA-600/2-77-179d
                                                             3. RECIPIENT'S ACCESSiON>NO.
 4. TITLE AND SUBTITLE
 PREDICTION  OF MINERAL QUALITY  OF IRRIGATION  RETURN
 FLOW, VOLUME  IV, Data Analysis Utility Programs
                                                             5. REPORT DATE
                                                               August 1977  issuing date
                                                             6. PERFORMING ORGANIZATION CODE
 7. AUTHOR(S)
                                                             8. PERFORMING ORGANIZATION REPORT NO.
 9. PERFORMING ORGANIZATION NAME AND ADDRESS

  Bureau of Reclamation
  Engineering and Research Center
  Denver,  Colorado  80225
                                                            10. PROGRAM ELEMENT NO.

                                                               1HB617
                                                            11. CONTRACT/GRANT NO.

                                                              EPA-IAG-D4-0371
12. SPONSORING AGENCY NAME AND ADDRESS
  Robert  S.  Kerr Environmental Research  Lab. - Ada,  OK
  Office  of Research  and  Development
  U.S.  Environmental  Protection Agency
  Ada.  Oklahoma   74820	
                                                             13. TYPE OF REPORT AND PERIOD COVERED
                                                                Final
                                                             14. SPONSORING AGENCY CODE

                                                                EPA/600/15
 15. SUPPLEMENTARY NOTES
   VOLUMES I, II, III,  V  (EPA-600/2-77-179a thru 179c,  179e)
 16. ABSTRACT
   The development  and evaluation of modeling capability to  simulate and predict the
   effects of irrigation on the quality  of return flows are  documented in  the five
   volumes of this  report.   The report contains two different modeling packages which
   represent different levels of detail  and sophistication.   Volumes I, II  and IV
   pertain to the model package given in Volume III.  Volume V contains the more
   sophisticated model.   User's manuals  are included in Volumes III and V.
 17.
                                 KEY WORDS AND DOCUMENT ANALYSIS
                   DESCRIPTORS
                                               b.lDENTIFIERS/OPEN ENDED TERMS
                                                                         C.  COSATI Field/Group
   Mathematical Model,  digital simulation,
   scheduling, Irrigated land, Evapotrans-
   piration, Agriculture, Agronomy,  water
   pollution, water loss
                                                Irrigation Return Flow
   02 C/D
 3. DISTRIBUTION STATEMENT

   RELEASE TO PUBLIC
                                              19. SECURITY CLASS (This Report)
                                                Unclassified
21. NO. OF PAGES
         230
                                               20. SECURITY CLASS (This page)
                                                 Unclassified
                                                                           22. PRICE
EPA Form 2220-1 (9-73)
                                            222
                                                                      * U.S. GOVERNMENT PRINTING OFFICE: 1977— 757-056/6548

-------