U.S. Environmental Protection Agency  Industrial Environmental Research
Office of Research and Development  Laboratory
                Research Triangle Park, N.C. 27711
         MECHANISM AND KINETICS OF
         THE FORMATION OF NOX
         AND OTHER
         COMBUSTION POLLUTANTS:
         Phase I. Unmodified Combustion
         Interagency
         Energy-Environment
         Research and Development
         Program Report

-------
                       RESEARCH REPORTING  SERIES
Research reports of the Office of  Research and Development, U.S.
Environmental Protection Agency, have  been grouped into seven series.
These seven broad categories were  established to facilitate further
development and application of environmental technology.  Elimination
of traditional grouping was consciously  planned to foster technology
transfer and a maximum interface in  related fields.  The seven series
are:

     1.  Environmental Health Effects  Research
     2.  Environmental Protection  Technology
     3.  Ecological Research
     4.  Environmental Monitoring
     5.  Socioeconomic Environmental Studies
     6.  Scientific and Technical  Assessment Reports (STAR)
     7.  Interagency Energy-Environment  Research and Development

This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT
RESEARCH AND DEVELOPMENT series.   Reports in this series result from
the effort funded under the 17-agency  Federal Energy/Environment
Research and Development Program.  These studies relate to EPA's
mission to protect the public health and welfare from adverse effects
of pollutants associated with energy systems.  The goal of the Program
is to assure the rapid development of  domestic energy supplies in an
environmentally—compatible manner by  providing the necessary
environmental data and control technology.  Investigations include
analyses of the transport of energy-related pollutants and their health
and ecological effects; assessments  of,  and development of, control
technologies for energy systems; and integrated assessments of a wide
range of energy-related environmental  issues.

                            REVIEW NOTICE

This report has been reviewed by the  participating Federal
Agencies, and approved for publication. Approval does not
signify that the contents necessarily reflect the views and
policies of the Government, nor does  mention of trade names
or commercial products constitute endorsement or recommen-
dation for use.
This document is available to the public  through  the National Technical
Information Service, Springfield, Virginia   22161.

-------
                                    EPA- 600/7- 76- 009a

                                    August 1976
        MECHANISM AND KINETICS

      OF  THE  FORMATION  OF  NO
                                       X

AND OTHER  COMBUSTION  POLLUTANTS

      PHASE I.  UNMODIFIED COMBUSTION
                       by

          V.S. Engleman and W. Bartok

     Exxon Research and Engineering Company
                   P. O. Box 8
            Linden, New Jersey 07036


             Contract No. 68-02-0224
              ROAPNo. 21BCC-013
           Program Element No. 1AB014


      EPA Project Officer:  W. Steven Lanier

    Industrial Environmental Research Laboratory
     Office of Energy, Minerals, and Industry
        Research Triangle Park, NC 27711


                  Prepared for

  U.S. ENVIRONMENTAL PROTECTION AGENCY
        Office of Research and Development
              Washington, DC 20460

-------
                          TABLE OF CONTENTS

                                                                      Page
    FOREWORD	    i
    SUMMARY	    1
1.  INTRODUCTION	    2
2.  EXPERIMENTAL PROCEDURES AND RESULTS	    3
    2.1  Jet-Stirred Combustor 	    3
    2.2  The Multiburner	   16
         2.2.1  The Multiburner Furnace	   16
         2.2.2  Burner Design	   18
         2.2.3  Sampling and Gas Analysis	   22
         2.2.4  Data Reduction	   22
         2.2.5  Results for Premixed Flames	  .   27
         2.2.6  Results for Diffusion Flames	,- . .  .  .   31
3.  THEORETICAL CALCULATIONS .	   37
    3.1  Equilibrium Calculations on Premixed Flames . 	   37
    3.2  Survey of Coupled NO /Combustion Kinetics 	   37
                             X
    3.3  Kinetics Calculations 	   44
    3.4  Results of Theoretical Calculations for Methane/Air ....   61
         3.4.1  80% Stoichiometric Air	   61
         3.4.2  100% Stoichiometric Air	   62
         3.4.3  120% Stoichiometric Air	   66
    3.5  Discussion	   66
    3.6  Reactions of Importance at the Interface Between the
         Branching Zone and the Relaxation Zone	   69
    3.7  Comparison of Theoretical Calculations with
         Experimental Results	   72
4.  CONCLUSIONS	   74
APPENDIX A - MASTER LIST OF REACTIONS FOR 25 ALLOWED SPECIES ....   A-l
APPENDIX B - CROSS INDEX OF REACTIONS FOR 25 SPECIES	   B-l
APPENDIX C - KINETIC DATA ANALYSIS FOR JET-STIRRED COMBUSTOR ....   C-l
APPENDIX D - NO/NO  PLOTS	   D-l
                  X
APPENDIX E - CO/C02/HC/02 DATA PLOTS	   E-l
APPENDIX F - DATA LISTINGS	   F-l

-------
                                 - 1 -
                               FOREWORD
          This report summarizes the results of Phase I of a study on
the "Definition of the Mechanism and Kinetics of the Formation of NOX
and Other Pollutants under Normal and Combustion Modification Conditions".
This study was conducted by Exxon Research and Engineering Company under
Contract 68-02-0224 funded by the Environmental Protection Agency.

          The helpful comments and suggestions of Messrs. W. S. Lanier,
G. B. Martin, and D. W. Pershing, project officers for this contract,
are gratefully acknowledged.  The skillful assistance of Messrs. F. D. Remyn
and R. M. Buono in conducting the laboratory portion of this program is
also acknowledged.

-------
                                  -  1  -
                                SUMMARY
          The objective of this study was to investigate the mechanism
and kinetics of the formation of NOX and other pollutants in combustion.
A combined experimental and theoretical study was undertaken for this
purpose.  This report covers Phase I, the study of combustion under
unmodified conditions and calculations using the best available kinetic
data from the literature.

          A jet-stirred combustor was used to extend the range and accuracy
of data taken in previous studies.  Since precise measurements of
concentrations and temperatures are critical to allow meaningful results
in combustion calculations for a well-stirred reactor, additional studies
on the combustion of hydrogen, carbon monoxide, methane, and propane
with air were made.  These studies of coupled combustion/pollutant
formation indicated substantial heat loss from a conventional stirred
reactor and the need for the development of an adiabatic stirred combustor.

          A furnace capable of studying combustion under adiabatic
conditions (called the multiburner because it was designed for multifuel
firing capability in the same combustion zone) was further refined for
these studies.  This unit is an electrically-heated furnace with a
zirconia muffle tube that is capable of attaining temperatures up to
about 2500°K.  Premixed flames of the flat-flame and focused-flame type
as well as laminar and turbulent diffusion flames were studies using
methane and propane as fuels.  These studies included both adiabatic
and heat-loss conditions.  In addition, a few runs were made with wall
temperatures above the adiabatic flame temperatures.

          Both stirred reactor and plug flow calculations were made.
Stirred reactor calculations indicated the need for more detailed
kinetics in hydrocarbon-air combustion for the prediction of NOX formation.
Plug flow calculations (with kinetic data available from the literature
at the time) indicated strong coupling between combustion reactions and
NOX formation in the flame zone.  However, since no reaction rate data
were available to test the direct coupling between hydrocarbon fragments
and nitrogenous species, further elucidation of the kinetics is required
to determine the importance of such reactions for NOX formation.

-------
                                 - 2 -
                           1.   INTRODUCTION
          Under Contract No. 68-02-0224, sponsored by the Environmental
Protection Agency, Exxon Research and Engineering Company conducted a
study to relate the kinetics and mechanism of pollutant formation reactions
and those of hydrocarbon reactions.  The emphasis in this program was
placed on NOX formation and destruction reactions as they relate to
hydrocarbon combustion.  This program was performed in two phases.  This
report covers the work in Phase I which included studies of unmodified
combustion in a non-adiabatic stirred combustor and a plug flow combustor
capable of adiabatic operation.  Preliminary kinetics calculations based
on the most complete kinetic data available from the literature at the
time were also conducted in Phase I.  Phase II, which is covered in a
companion report, included experimental studies of modified combustion in
a plug flow system as well as studies in a newly developed adiabatic
stirred combustor.  Kinetics calculations, using updated literature
information as well as estimates for potentially important reactions not
available from the literature, were also performed.

          The purpose of these studies was to provide further understanding
of the coupling between combustion reactions and pollutant formation (with
emphasis on NOX) leading to the capability to perform accurate predictive
calculations on complex combustion systems.  The ultimate aim of this and
other fundamental combustion research studies being conducted for the
Combustion Research Branch of the Industrial Environmental Research
Laboratory of EPA is developed control technology for stationary sources.

          Clearly, in a practical system, there will be interactions
among chemistry, fluid mechanics and heat transfer.  However, without
an understanding of the basic chemistry of combustion, agreement between
theory and experiment in a particular case may be fortuitous and will not
allow application of the same theory to a new system.  Thus, the theory
becomes merely an empirical correlation.  These studies on the chemistry
of combustion/pollutant formation were therefore undertaken, in order to
progress towards a theory of general applicability to a wide variety of
combustion systems.  These studies were oriented toward studying combustion
under idealized conditions, either controlled by chemical kinetics or
with minimum, or well-defined fluid mechanic and heat transfer interactions.

-------
                                  -  3  -
                 2.  EXPERIMENTAL PROCEDURES AND RESULTS
          Two experimental devices were used In the experimental portion
of this study:  (1) the jet-stirred combustor—non-adiabatic stirred
reactor capable of operating under kinetically-limited combustion conditions
and (2) the multiburner—plug flow reactor, with interchangeable burners,
capable of operating under adiabatic conditions.  This section covers the
experimental portion of the study, while the theoretical considerations
will be discussed in the following section.

2.1  Jet-Stirred Combustor

          The jet-stirred combustor used in this program is a modification
of the Longwell-Weiss reactor (2-1) with hemispherical geometry.  This
device was selected because it has been used extensively in fluid mechanic
and combustion modeling and because the combustion rates are limited by
chemical kinetics as opposed to transport effects (2-2) .  The apparatus
used was described in the Final Report for the preceding program (conducted
under Contract No. CPA 70-90, Reference 2-3) whose purpose was to investigate
the basic factors affecting nitric oxide formation in the combustion of
fossil fuels.  The reactor (Figure 2-1) consists of an outer shell of
fire-brick shaped as two halves of a sphere three inches in diameter.
The upper hemisphere is solid with the exception of the hole through which
the reactants are brought to the injector.  The lower hemisphere is
hollowed out to a reaction zone of 1.5 inch diameter.  The insulating
shell has twenty-five holes of 0.125 inch diameter, through which the
burned mixture exits.

          Fuel and air are metered separately through calibrated rotameters,
preheated to the desired inlet temperature and then mixed before entering
the combustor.  The temperature of the fuel/air stream is measured
immediately before injection.  The fuel-air mixture enters the reaction
zone through a stainless steel injector which is a hemisphere into which
are drilled forty radial holes of 0.020 inch diameter.  The reactants
enter the reaction zone as small sonic jets which stir the reactor
contents and produce a mixture of essentially uniform temperature and
composition in a characteristic time which is short compared with the
average residence time.  The combustion experiments were conducted at
atmospheric pressure with a range of residence times from 1-1/2 to 4
milliseconds.
2-1  Longwell, J. P. and Weiss, M. A., Ind. Eng. Chem. 47, 1634  (1955).

2-2  Hottel, H. C., Williams, G. C., and Miles, G- A., Eleventh  Symposium
     (International) on Combustion, p. 771, The Combustion Institute, 1967.

2-3  Bartok, W., Engleman, V. S., and del Valle, E. G., Laboratory Studies
     and Mathematical Modeling of NOX Formation in Combustion Processes,
     Final Report EPA Contract CPA 70-90, December 1971.

-------
                       - 4 -
                     FIGURE 2-1
      SCHEMATIC OF THE JET-STIRRED COMBUSTOR
      INCONEL SPHERE
  FIRE BRICK
   INJECTOR
THERMOCOUPLE
PRE-MIXED AIR AND
  FUEL INLET
                                        FIRE-BRICK
                                 WATER-COOLED PROBE

-------
                                  -  5  -


          Gas temperatures were measured up to temperatures slightly in
excess of 2000°K with a Pt/Pt-10% Rh thermocouple 0.010 inches diameter.
Radiation corrections were found to be negligible because of the intense
stirring in the combustion zone (see Appendix C).  Duplicate runs were
made with silica coated and uncoated thermocouples in selected cases to
check for catalytic effects on temperature measurements.  No measurable
differences were found.  The thermocouple was movable so that traverses
could be taken during a run.  It was found that the temperatures were
quite uniform throughout the reaction zone although slightly cooler in
the immediate vicinity of the injector sphere and in the immediate
vicinity of the outer wall when the thermocouple was drawn back into its
port.

          The combustion gases were sampled through a water-cooled
stainless steel probe, 0.125 inches outside diameter and 0.033 inches
inside diameter similar to that used by Longwell and Weiss (2-1).  The
probe was placed through a port in the shell of the combustor.  The
quenched gases were pumped through a diaphragm pump to the combustion
gas analyzers.  The most important species analysis in this study was
the measurement of NOX concentrations.  During the preceding program
(CPA 70-90, Reference 2-3) these analyses were performed primarily with
the Envirometrics Multigas Analyzer although cross-checks were made with
the DuPont Photometric NOX analyzer.  During the present program
(68-02-0224) a Thermo Electron Chemiluminescence Analyzer was used and
the results of both programs served as cross-checks of the data.  Care
had to be taken when using the Envirometrics analyzer in the presence
of CO, although since the response time to CO is slower than the response
time to NOX, CO concentrations of up to 5-10% could be handled with
minimum interference by cyclic sampling/purge techniques which took
advantage of the different response times for NOX and for CO.

          The hydrogen was Linde extra dry grade with a stated minimum
purity of 99.95%, the carbon monoxide was Matheson C.P. grade with a
stated minimum purity of 99.5% and the propane was Matheson C.P. grade
with a stated minimum purity of 99.0%.  The air was Baker dry grade
manufactured by mixing nitrogen and oxygen with a typical argon concentration
of 450 ppm.  The oxygen concentration of each cylinder was measured and
was generally found to be 21.0%.

          Precise experimental measurements of concentrations and temperature
are extremely critical for achieving meaningful results in combustion
calculations for a well-stirred reactor.  To assure the precise nature
of the measurements made in the preceding program (reference 2-3) and
to extend those measurements to include those parameters necessary for
kinetic calculations for the assessment of the importance of combustion
intermediates in coupled combustion/pollutant formation, further studies
were made with the jet-stirred combustor for hydrogen, carbon monoxide,
methane, and propane.

          Temperature measurements for methane/air combustion are shown
in Figures 2-2 and 2-3.  Figure 2-2 shows temperature vs. mixture ratio
with the solid line being the same one indicated in reference 2-3.  The
dotted line is the extension of this line to fuel-rich conditions with
the peak indicated at about 90% stoichiometric air.  In reference 2-3
temperature measurements were taken only under fuel lean conditions at
these flow rates.  An indication of the temperature uniformity within the

-------
                           - 6 -

                          FIGURE 2-2
      TEMPERATURE AS A FUNCTION OF MIXTURE RATIO
         JET-STIRRED COMBUSTOR / METHANE - AIR
H
W
W
   2000
   1900
   1800
   1700
    1600
       50
O

                  FROM REFERENCE 2-3
                                J	L
           100

PERCENT STOICHIOMETRIC AIR
                                                150
                          FIGURE 2-3


  TEMPERATURE PROFILES AT REPRESENTATIVE STOICHIOMETRIES
         JET-STIRRED COMBUSTOR / METHANE - AIR
EH
<
tf
    2000
   1900
   1800
   1700
   1600
              .0--°	O	O	
                                                 0
   a
           •a

         .A.. A.
0.25
                           0.50
                           M
                           Vo,
                     0.75
                                   % ST AIR


                                      73

                                      123
 n
'[]
                                      65

                                     141
                                     163
1.00
                                           1.25

-------
                                  - 7 -


jet-stirred combustor with methane is given in Figure 2-3.  Temperature
is plotted against (r/Ro)3} a normalized volumetric parameter, indicating
the portion of the reactor volume at a given temperature.  It can be
seen that the temperatures are quite uniform throughout the combustor.
Near the injector sphere the temperature apparently drops off but this
is probably caused by a combination of convective cooling by the cool
inlet jets in the vicinity of the injector sphere and radiative cooling
of the thermocouple bead by the injector sphere.  The temperatures used
for kinetics calculations are indicated by the horizontal dashed lines.

          The NOX emissions from the jet-stirred combustor with methane/air
are indicated in Figure 2-4.  It should be noted that peak NQx formation
occurs under slightly fuel-rich conditions.  These data were measured
with a Thermo-electron NO/NCx chemiluminescence analyzer and are in very
good agreement with the results obtained in reference 2-3 using Envirometrics
electrochemical analyzers and a DuPont photometric analyzer.

          The oxygen results were  obtained with a polarographic oxygen
analyzer.  They are shown  in Figure  2-5 and compare  favorably with  those
reported in reference 2-3 which were  taken with a paramagnetic oxygen
analyzer.  The results  are in good agreement with calculated values  of
residual oxygen in a well-stirred  combustor.

          The effect of the water-cooled sampling probe on  the temperature
of the  jet-stirred combustor is dramatic if species  probe traverses  are
attempted.  As  long as  the probe  is  outside the volume of the reactor
(up  to  a position flush with the wall) the temperature in the reactor
remains fairly constant.   As the  probe enters  the reaction  zone, the
temperature begins to drop, and it drops more  than 100 K by the time
the  probe is three fourths of the  way to the center  of the  reactor.   This
is illustrated in Figure 2-6 for which the uncooled  thermocouple probe
was  held in a fixed position while the cooled  species sampling probe was
inserted into  the reactor.

          Temperature measurements for carbon  monoxide/air  combustion are
shown in Figures 2-7 and 2-8.  Figure 2-7 shows temperature vs. mixture
ratio with the  solid line  being the  one calculated on a theoretical
basis as indicated in the  paper presented at the Fourteenth Combustion
Symposium and shown in  Appendix C.   The data have been extended on  the
fuel rich side beyond the  data available at the time of writing the
Combustion Symposium papert  The  temperature uniformity in  the combustion
zone for carbon monoxide air is also good as indicated in Figure 2-8.
The  temperatures used for  kinetics calculations are  indicated by the
horizontal dashed lines.

          The NOX emissions for CO/air are shown in  Figure  2-9 and  were taken
with a  chemiluminescence analyzer.   The agreement with the  results  reported
in reference 2-3 is quite  good on the lean side.  There is  some disagreement
under fuel rich conditions between 50 and  65%  stoichiometric air but
the  present results should be considered more  reliable because the  CO
content in the exhaust  exceeds 10%.   That high a concentration is difficult
to eliminate as an interference with the NOX Paristor  (even with  the
special cyclic  sampling techniques developed  (2-3))  when  the NOX  level
is below 50 ppm; the chemiluminescent analyzer does  not have  such a CO
interference.

-------
                            FIGURE 2-4
w
<
W


ra
§
 x
O
OS
W
O



O
75
      50
25
      10
         50
               NO  AS A FUNCTION OF MIXTURE RATIO

             JET-lTIRRED COMBUSTOR / METHANE - AIR
               O
                  O
                  O

6
          50                  100                  150


                     PERCENT STOICHIOMETRIC AIR


                            FIGURE 2-5


               OXYGEN AS A FUNCTION OF MIXTURE RATIO

               JET-STIRRED COMBUSTOR / METHANE - AIR
                                                       u
                                      O
               o  .o Q"°.   I
                                 1 - 1 _ 1 _ 1
                      100                   150



                PERCENT STOICHIOMETRIC AIR

-------
                             - 9 -
                          FIGURE 2-6
           EFFECT OF WATER-COOLED SAMPLING PROBE POSITION
                ON JET-STIRRED COMBUSTOR TEMPERATURE
o
EH
S
O
o
w

EH

W
w
H
     1800
     1700
     1600
                 EXHAUST PORTS
                                             COMBUSTOR—*-
               _-o	o	
THERMOCOUPLE MAINTAINED
IN FIXED POSITION AT
r/fe0 = l.,00	,	
                                      'NORMAL
                                      [SAMPLING
                                      POSITION
            INJECTOR »
         250
                  200
                150
100
50
0
                      COOLED PROBE POSITION
                        (ARBITRARY UNITS)

-------
                                 - 10 -
                                FIGURE 2-7
               TEMPERATURE AS A FUNCTION OF MIXTURE RATIO
              JET-STIRRED COMBUSTOR / CARBON MONOXIDE - AIR
w

EH
          2100
          200(_
          1900
          180C-
          1700-
CALCULATED TEMPERA
TURE (SEE APPENDIX C)
                 1    1    1    1
                                     1    1    1    1
                                                          I    1
              50                 100                  150

                       PERCENT STOICHIOMETRIC AIR

                               FIGURE 2-8

                 TEMPERATURE PROFILES IN JET-STIRRED AT
    REPRESENTATIVE STOICHIOMETRIES COMBUSTOR / CARBON MONOXIDE - AIR
O
O
m
tf
W

2100

2000
1900
1800
1700



si-
j
•3




A
D i
n ~
/•o--0 	 ° 	 o 	 c
o'
0'
1 1 1
PERCENT
STOICHIO-
METRIC
AIR
» 117
J 53
1^.
)^ 142

0 0.25 0.50 0.75 1.00 1.25
, ^ 3

-------
AS MEASURED
PH

&
NO
X
OXYGEN (PERCENT
co
01
o
o
-^
01
^
O
M
01
                      - 11 -


                      FIGURE 2-9



         NOX AS A FUNCTION OF MIXTURE RATIO


   JET-STIRRED COMBUSTOR / CARBON MONOXIDE - AIR

   f
                                        o
                        1
         50
                      100                  150


             PERCENT STOICHIOMETRIC AIR




                      FIGURE 2-10
        OXYGEN AS A FUNCTION OF MIXTURE RATIO

   JET-STIRRED COMBUSTOR / CARBON MONOXIDE - AIR
10
  -    O  EXPERIMENTAL


        	 THEORETICAL (SEE APPENDIX
  50
                             100                   150



                    PERCENT STOICHIOMETRIC AIR

-------
                                 - 12  -


          The oxygen concentration is shown In Figure 2-10 and is in
good agreement with theoretical calculations indicated by the solid line.

          Careful temperature probing of the reaction zone was accomplished
and a study of the effect of preheat on NOX formation was undertaken for
propane.  Data were also taken with hydrogen fuel for better characterization
of the flame temperature vs. mixture ratio for this system in the jet-stirred
combustor, and to obtain more accurate NOX measurements under extremely lean
and extremely rich conditions.

          The NOX measurements for the propane-air system are presented
in Figure 2-11.  The agreement with data taken previously is good in the
case of no preheat.  The NOX peak appears to occur on the slightly
fuel-rich size (at about 90% stoichiometric air).

          The results for preheat in Figure 2-11 indicate only a slight
effect on NOX formation.  However, temperature measurements show that
only at 150% stoichiometric air conditions did the combustion temperature
reflect fully the nominal amount of preheat.  At 135% stoichiometric
air the difference in combustion temperatures was only half of the
preheat and there was no difference in combustion temperatures under fuel
rich conditions.  This lack of recovery of prehat temperature in the
combustion zone is directionally consistent with adiabatic equilibrium
calculations in which higher preheat causes dissociation at high temperatures
and some of the sensible heat is converted to latent heat.  At 150%
stoichiometric air the difference of about 100°C in combustion temperature
results in a NOX increase by more than a factor of two.  This behavior
is in line with theoretical predictions of well-stirred reactor performance.

          Temperature and oxygen measurements for the propane/air system
are shown in Figure 2-12.  The difference between theoretical adiabatic
well-stirred reactor temperatures and experimentally increased temperatures
indicates a heat loss on the order of 30-40 cal./sec. over the conditions
studied.  The measured oxygen concentrations match the calculated oxygen
concentrations for a well-stirred reactor operating at the measured
temperatures.

          Probing of combustor temperature profiles showed that temperatures
were quite uniform in the jet-stirred combustor for propane-air.  The
temperatures are plotted in Figure 2-13 against (r/Ro)3.  As discussed
before, this parameter represents the fraction of total volume in a
given zone of the combustor.  The temperatures were found to be quite
uniform throughout the combustor from the vicinity of the injector to
within a short distance of the wall.  Temperature probing was performed
both with bare metal thermocouples and with thermocouples coated with
silica.  Because of the intense stirring and the apparent lack of catalytic
effects on the thermocouples under the conditions studied, no difference
was observed between the measurements obtained with coated and uncoated
thermocouples.

          Measurements were also made in the hydrogen-air system.  The
measurements were made under fuel-rich conditions around 40% stoichiometric
air and under fuel lean conditions between 140% and 250% stoichiometric
air.  The chemiluminescence analyzer permits more accurate analysis of
combustion gases at low NOX levels than we were able to achieve during
the previous investigation (2-3) which employed Envirometrics electro-
chemical analyzers.

-------
                         - 13 -
                       FIGURE 2-11
  N<>  FORMATION IN JET-STIRRED COMBUSTOR (PROPANE/AIR)
                                                    '••
    X
Q
W

B
03
<
W
 X
           150
100
           50''li.
            O1,
              -\Q
              I- NEAR
                BLOWOUT

              k/
                                           - NO PREHEAT


                                        D - "WITH PRE-

                                               HEAT

                                             (SEE TEXT).
              50
                    100
150
                   PERCENT STOICHIOMETRIC AIR

-------
                            - 14 -
                              FIGURE 2-12
                   TEMPERATURE AND OXYGEN LEVELS
                            PROPANE - AIR
w
E-i

W
W
H
         2200 L
         2100 L-
         2000 I—
1900 (-
               ADIABATI
               WELL-ST
               REACTOR
              EXPERIMENTAL
                              100                 150

                     PERCENT STOICHIOMETRIC AIR

-------
                                  15 -
                                FIGURE 2-13
             TEMPERATURE PROFILES IN JET-STIRRED COMBUSTOR

                               PROPANE - AIR
U
o
tt
o
H
 — «-n — -D-— --Q 	 ~ -n
j
B ^
-o
^. ••._-•_„-.•.. —
* 1 1 1
% ST AIR
nc
95
^ 120
1
60
150
           0
              0.25
0.50
0.75
1.00
1.25

-------
                                 - 16  -
          Calculations were performed to show that the jet-stirred
combustor operates as a well-stirred reactor for "clean" combustion
systems (hydrogen and carbon monoxide) and calculations have been performed
on propane to test a quasi-global combustion model for calculations of
NOX formation.  The results (2-4) of this study are reported in Appendix C.
The calculations have been valuable to our current program to point out
critical areas for experimentation and further kinetic studies.  As
discussed in detail in Appendix C, the theoretical analysis based on a
simplified quasi-global approach failed to produce predicted NOX
concentrations in agreement with the experimental results for the
propane/air system.  This lack of agreement was particularly pronounced
under fuel-rich conditions.  Therefore, it was concluded that the
investigation should be broadened to a detailed treatment of the kinetic
data and also, that further experimental results should be obtained under
conditions which eliminated heat loss as well as mixing limitations for
comparison in theoretical predictions.

2.2  The Multiburner

          Studies in the multiburner were undertaken to allow investigation
of combustion reactions with well-controlled heat loss.  The multiburner
was operated as a flow reactor for this portion of this study with both
hot and cold walls.  The multiburner studies conducted indicated the
need for the development of a new combustor capable of behavior as a
well-stirred reactor under adiabatic conditions.  These complementary
studies with stirred reactors and flow reactors provide data on a range
of conditions from well-mixed combustion controlled by chemical kinetics
to diffusion flames controlled by fluid mechanics.

     2.2.1  The Multiburner Furnace

          The multiburner  (so-called because it was designed to burn gas,
oil or coal in the same idealized combustion zone) is an electrically-
heated furnace with a zirconia muffle tube that is capable of attaining
temperatures up to about 2500°K.  The furnace is shown schematically in
Figure 2-14.  The furnace heating zone has tungsten mesh heating elements
and molybdenum radiation shields and is purged with gettered argon to
extend furnace component lifetimes.  High temperature gasketing for the
furnace is composed of zirconia felt.  Temperatures inside the furnace
are monitored with tungsten-rhenium thermocouples which also serve as
the input to the temperature controller for the furnace when operating
in the automatic mode.  Wall temperatures can also be monitored by optical
pyrometry through three sight ports provided in the side of the furnace.
The power supply is a 25 KVA AC unit which is also equipped with a thermal
watt converter for input to the controller in cases where it is desirable
to control power input rather than strictly the temperature of the furnace.
The controller on the power supply is also capable of operating in a
"manual" mode, in which case current input to the furnace is controlled.
2-4  Engleman, V.  S.,  Bartok,  W.,  Longwell,  J.  P.,  and Edelman, R. B.,
     Fourteenth Symposium (International)  on Combustion,  p.  755, The
     Combustion Institute,  1973.

-------
                         FIGURE" 2-14
                      MULTIBURNER FURNACE
 SEAL
SEAL
                                                        MOLYBDENUM
                                                          RADIATION
                                                          SHIELDS
                                                        WATER-
                                                         COOLED
                                                         JACKET

                                                         TUNGSTEN-
                                                          HEATING
                                                          ELEMENT
                                                        STABILIZED
                                                         ZIRCONIA
                                                        MUFFLE TUBE

-------
                                 - 18 -
          The muffle tube in the furnace has a heated length of 15
inches and the "constant temperature section" of the heated zone is
uniform within + 10°C under combustion operation conditions.  The muffle
tube is quite stable at high temperatures and can be exposed to varying
thermal environments in the temperature range above 1300°C.  However,
extreme care must be exercised in heating up and cooling down the furnace
since the zirconia is most sensitive to thermal shock in the temperature
range around 900°C.

          The multiburner can be operated with the combustion zone wall
temperature at any desired level and at the extremes it can either be
used to add heat to the combustion zone or, if desired,  to remove heat.
Thus, the multiburner can operate- with all of the flexibility of a
laboratory combustor without the high heat loss generally found in
small scale devices.  This permits the use of the multiburner under
combustion conditions that would not be possible with the typical
small scale combustor.

     2.2.2  Burner Design

          The burners used in this part of the study were designed to
be simple examples of the following types of burners:

          •  premixed flat flame
          •  premixed focused flame
          •  diffusion  flame - with interchangeable fuel nozzles

The  simple design  of each of these burners (shown in Figures 2-15, 16
and  17) was aimed  at ease of comparison with analytical calculations.
Each of the burners was readily interchangeable with the others because
they were all built into the same size water jacket, which served to
maintain constant  burner temperatures during combustion experiments.
Even though the burners produced three different basic flame types,
the  total burner face area, through which combustion gases pass, was
maintained constant for all three types.

          The flat flame burner has a porous stainless steel disc across
its  face which provides a flat velocity profile for the combustion gases
entering the furnace.  The gases are mixed immediately before entering
the  burner body and pass through a pair of mixing/calming plates before
exiting through the porous disc.  A diagram of the flat flame burner
is given in Figure 2-15.

          The premixed  focused flame burner used in this study is char-
acteristic of a commercial gas furnace burner; the burner has a single
center hole and eight pilot holes to stabilize the flame.  As in the
flat flame burner, the  fuel and air are mixed immediately before entering
the  burner body and pass through mixing plates before exiting from the
burner face.  A diagram of the premixed focused flame is given in
Figure 2-16.

-------
                             _ 1 Q _

                          FIGURE 2-15

                       FLAT FLAME BURNER
POROUS  S.S. DISC
   WATER-COOLED
       TUBE
                                              FLOW STRAIGHTENERS
                                             WATER-COOLING JACKET
   GAS FLOW CHA
                                                     WATER INLET
       PREMEXED
       GAS INLET
                                                WATER OUTLET
                            WATER INLET

-------
                               - 20 -

                             FIGURE 2-16
                   PREMKED FOCUSED FLAME BURNER
                                                   FLAME ARRESTOR
                                               WATER COOLING JACKET
GAS FLOW CHANNEL
                                                         WATER INLET

                                                     FLAME ARRESTOR
PREMIXED GAS
     UNIT

-------
                         - 21 -
                       FIGURE 2-17
                DIFFUSION FLAME BURNER
                                           FLOW STRAIGHTENERS
                                         WATER COOLING JACKET
                                                  WATER INLET
AIR INLET
                             \
                               FUEL INLET

-------
                                — 22 —
          The diffusion flame burner is of the concentric type with the
fuel flowing through the inner tube and the air flowing through the outer
one.  Two types of fuel injector were tested; one with a single fuel
jet and the other with an orifice plate containing six 0.020 inch
diameter holes covering the fuel jet to produce turbulence and increase
mixing.  The latter, called the "stabilized" diffusion burner was found
to give better performance.  The single fuel jet burner was tested in
two different configurations; one in which the fuel jet diameter was
kept constant when  changing fuels from methane to propane allowing the
velocities to change between the fuels, and one in which the fuel velocity
was kept constant for the two fuels by changing the fuel jet diameter.
A diagram of the diffusion flame burner is given in Figure 2-17.

     2.2.3  Sampling and Gas Analysis

          Combustion gas samples were extracted through a cooled quartz
probe  drawn to a nozzle tip.  The sampling probe was cooled to 65 C to
prevent water condensation in the probe.  The Teflon sampling lines were
also heated to prevent water condensation before the water knockout.  The
sample touched only quartz and Teflon lines until it was cooled sufficiently
to prevent further  reaction at which point stainless steel lines were used.

          The combustion gases were analyzed for NO and NOx with a
Thermoelectron Model 10A Chemiluminescence analyzer.  The analysis for
NO is  accomplished  directly while the analysis for NOx is accomplished
by converting N0£ (and under certain conditions other nitrogenous
compounds) to NO and then analyzing for NO.

          Analyses  for CO and C02 were performed with two MSA 303 Analyzers,
both of the NDIR type.  Stacked cells each with a dual range switch allowed
full scale ranges from 0.1% to 15% for CO and from 0.5% to 25% for C02-

          Oxygen analysis was performed with a Beckman Model 742
polarographic oxygen analyzer with full scale ranges from 1% to 25%.

          Hydrocarbon analyses were performed with a Beckman Model 400
flame  ionization analyzer with full scale ranges calibrated from 50 ppm
to 5%  hydrocarbon as methane.

     2.2.4  Data Reduction

          Experimental data as taken were coded onto computer input forms
and were reduced to measured species concentrations by a data reduction
program.  The data  produced in this phase of the program are presented
in the Appendix.  A further subroutine can also be called to plot the
results on a printer plot.  The data plots are also found in the Appendix.

          A summary of runs completed in this phase is presented as
Table  2-1.  The table is divided into three sections; section A covers
the cold wall tests, section B the hot wall tests on premixed flames,
and section C the hot wall tests on diffusion flames.  For each of the
runs in the table fuel type,  burner type,  firing rate, mixture ratio,
and type of probing are given.  Wall temperature is shown for the hot
wall tests.  The experimental findings on premixed flames are discussed
in Section 2.2.5 and the findings on diffusion flames are discussed in
Section 2.2.6.

-------
TABLE  2-1

A. Cold
Run No.

101


102

103

104

105
106
107
108
109

110

111
112
113
114
116

119


141
* I/O =
AX =
RD =

Wall Tests
Fuel Type

Propane


Propane

Propane

Propane

Methane
Methane
Methane
Methane
Methane

Methane

Methane
Methane
Methane
Methane
Methane

Propane


Methane
Input/Output
Axial
Radial
SUMMARY OF RUNS

Burner Type

Flat Flame


Flat Flame

Flat Flame

Flat Flame

S. Diff**
S. Diff
S. Diff
S. Diff
S. Diff

S. Diff

Flat Flame
Focused Flame
Focused Flame
Focused Flame
Flat Flame

Flat Flame***


Flat Flame
MADE WITH MULTIBURNER (PHASE I)

Firing Rate
SCFM Air
0.854


0.546

0.546

0.546

2.172
2.172
2.172
2.172
0.264

0.264

0.546
2.067
2.067
2.067
0.481

2.094


0.481

Mixture Ratio
% Stoich Air
83
98
120
101
106
103
122
94
83
101
101
120
120
107
128
145
86
104
96
115
76
119
80
110
132
88
101

Probing*

I/O
I/O
I/O
AX
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
RD
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
** Stabilized Diffusion
*** High

Velocity Flame

(Lifted)



                                                                        1-0
                                                                        OJ

-------
           TABLE 2-1  (CONTINUED)


SUMMARY OF RUNS MADE WITH MULTIBURNER (PHASE I)
B. Hot Wall Tests - Premixed Flames
Run No. Fuel Type Burner Type Firing Rate Mixture Ratio
SCFM Air % Stolen Air
115 Methane Flat Flame 0.481 161
141
60
117 Methane Flat Flame 0.481 161
119
80
118 Propane Flat Flame 0.481 161
61
120 Propane Focused Flame 0.481 156
121 Propane Focused Flame 0.481 125
101
101
82
117
78
95
117
95
78
101
130 Methane Flat Flame 0.481 140
131 Methane Flat Flame 0.481 120
78
111
101
Probing
RD
RD
RD
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
Wall
Temp.
°C
1703
1853
1783
1703
1703
2098
1723
1838
1768
2068
2068
2138
2138
2068
2068
2068
2138
2138
2138
2138
1858
2043
2043
2138
2218
                                                                                      I

                                                                                      N3
                                                                                      -C-

-------
           TABLE 2-1 (CONTINUED)




SUMMARY OF RUNS MADE WITH MULTIBURNER (PHASE I)
B. Hot Wall
Run No.
131(cont)






132
133

134

135
136
137
138
139
140
Tests - Premixed Flames (cont'd)
Fuel Type
Me thane






Methane
Methane

Me thane

Propane
Propane
Propane
Propane
Methane
Me thane
Burner Type
Flat Flame






Focused Flame
Focused Flame

Focused Flame

Focused Flame
Focused Flame
Focused Flame
Focused Flame
Focused Flame
Focused Flame
Firing Rate
SCFM Air
0.481






0.481
2.094

0.481

0.481
2.094
2.094
0.481
0.481
2.094
Mixture Ratio
% Stolen Air
111
120
131
140
151
91
80
160
160
140
140
65
139
141
121
121
120
120
Probing
I/O
I/O
I/O
I/O
I/O
I/O
I/O
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
AX/RD
Wall
Temp.
°C
2218
2218
2218
2218
2218
2218
2218
1713
1713
1863
1858
1873
1898
1883
2068
2068
2043
2048

-------
           TABLE 2-1 (CONTINUED)

SUMMARY OF RUNS MADE WITH MULTIBURNER  (PHASE  I)
C. Hot Wall Tests - Diffusion Flames
Run No.
122
123


124





125
126
127

128

129
Fuel Type
Methane
Methane


Me thane





Propane
Propane
Propane

Methane

Methane
Burner Type
S.
s.


S.





s.
s.
s.

Large

S.
Diff
Diff


Diff





Diff
Diff
Diff

Single Hole

Diff
Firing Rate
SCFM Air
2
2


2





2
2
2

2

2
.094
.094


.094





.094
.094
.094

.094

.094
Mixture Ratio Probing
% Stoich Air
160
140
120
80
160
140
120
100
80
100
160
141
114
80
160
140
140
AX/RD
AX/RD
AX/RD
AX/RD
I/O
I/O
I/O
I/O
I/O
AX
AX/RD
AX/RD
AX/RD
AX
AX/RD
AX/RD
RD
Wall
Temp.
°C
1723
1863
2048
2098
2228
2228
2228
2228
2228
2228
1698
1883
2143
2143
1713
1863
1863
                                                                                    I
                                                                                    N>

-------
                                 - 27  -
     2-2.5  Results for Premixed Flames

          Species profiles have been obtained for premixed flames of
methane-air and propane-air in the multiburner with hot and cold walls.
Two types of premixed flames were studied:  (1) the flat flame in which
the flame zone is flat across the burner face and the flame is essentially
one-dimensional, and (2) the shaped flame which is more representative of
premixed furnace burners although much more complex than the flat flame
in a fluid mechanical sense.  The cold-wall runs are listed in Table 2-1(B).
The data listings for these runs are presented in Appendix F.  The NOX
plots for the individual runs are presented in Appendix D and the plots
for CO/C02/HC/02 are presented in Appendix E.  A summary of the types of
data obtained on premixed flames will be presented in this section while
the comparisons with theoretical calculations will be discussed in
Section 3.

          Centerline species profiles (CO, C02, 02, NO and NOX) for a  -
premixed flat flame of methane/air at 104% stoichiometric air are presented
in Figure 2-18.  While the hydrocarbons are not plotted in this figure,
about 20,000 ppm were measured within 0.05 inches of the burner face,
but the concentration had dropped off to 70 ppm at 0.10 inches, and to
essentially zero at 0.50 inches.  The oxygen profile drops rapidly from
about 7% within 0.05 inches to about 2.4% at 0.10 inches, and to 1.5% at
1 inch, settling at about 0.8% at greater distances.  It was not possible
to probe close enough to the burner face to permit observation of the
increasing portion of the CO profile, but the decreasing portion is
plotted from a distance of 0.1 inches outward with only minor concentrations
of CO measurable after 5 inches.  The C02 concentration increases rapidly,
reaching 90% of its ultimate value within 0.5 inches of the burner face.
The NOx plot exhibits substantial curvature in the region up to about
two inches from the burner face and increases only gradually thereafter.

          It is interesting to note that the NO measurements are only
about 2/3 of the NOX measurements up to one inch and about 3/4 of the NOX
measurements up to two inches.  At 10 inches the NO is about 90% of the
NOX=  There are a number of possible interpretations for this early N02
peak.*  One possible interpretation is that during the quenching process
in the probe, a portion of the oxygen atoms combine with the NO to form
N02-  Calculations indicate that, with instantaneous quenching to 300°K
and assuming no heterogeneous reactions, 100 ppm of NO and 1000 ppm of
oxygen atoms react to form 38 ppm of N02 and 62 ppm of NO (allowing all
possible reactions between species containing nitrogen and oxygen but
ignoring species containing carbon or hydrogen).  Such a calculation,
while oversimplified by the idealized quenching and limitation of species,
should still be somewhat conservative because of the probable underestimation
of oxygen atom concentration in the flame zone.
   Cernansky, N. P., and Sawyer, R. F., "NO and N02 Formation in a Turbulent
   Hydrocarbon/Air Diffusion Flame", Fifteenth Symposium (International)
   on Combustion, The Combustion Institute, Pittsburgh, 1974; Merryman, E. L.
   and Levy, A., "Nitrogen Oxide Formation in Flames:  The Roles of N0£ and
   Fuel Nitrogen", Fifteenth Symposium; Fenimore, C. P., "Ratio of Nitrogen
   Dioxide to Nitric Oxide in Fuel-Lean Flames", Combustion & Flame,
   volume 1, page 85, 1975.

-------
             FIGURE 2-18
PREMDCED FLAT FLAME (METHANE / Am)

      104% STOICHIOMETRIC AIR
                                                                W
                                                                u
                                                                tf
                                                                w
                                                                 
-------
                                -  29  -
          To give an idea of the results of NO probing at other
stoichiometries, premixed flat flame data for methane/air are plotted
in Figure 2-19.  At each stoichiometry on this plot, curvature can be
observed in the first inch or so from the burner face.  As the stoichiometry
changes from 111% stoichiometric air to 160% stoichiometric air, the
temperature drop is sufficient to decrease post-flame NOX formation
despite increasing oxygen concentrations.  This factor is accentuated
by the unheated walls.  At 104% stoichiometric air, NOX is formed more
rapidly near the burner face, but the concentration flattens out after
about two inches so that the concentration at seven inches from the
burner face is lower than that for 111% stoichiometric air.  The
combination of lower oxygen concentration in the post-flame zone and the
temperature drop caused by heat losses result in this lower post-flame
concentration.

-------
                 - 30 -
                 FIGURE 2-19
   PREMISED FLAT FLAME (METHANE/AIR)
250 r
                          111% STOIC H. AIR
 0
   0                5                 10




            DISTANCE FROM BURNER (IN)

-------
                                 -  31  -
          Heated walls  change  the post-flame picture,  as would be  expected.
With the walls maintained  at the adiabatic  flame  temperature  at  each
stoichiometry, peak NOX concentrations  at 500-msec  residence  time  are
observed at 100% stoichiometric air as  shown in Figure 2-20.  NOX  concentra-
tions appear to approach zero  at about  70%  and at 150% stoichiometric  air
when the walls are maintained  adiabatic.  However,  if  the walls  are
maintained at a constant temperature  of 2220°K, only minor  differences
are noted on the fuel rich side (very little post-flame NOX formation)  while
major differences appear under fuel lean conditions.  Because of the sub-
stantial concentrations  of oxygen present under fuel lean conditions, the
high temperature encourages the formation of post-flame NOX and rather than
dropping off, the NO  levels increase on the fuel lean side, approaching
2000 ppm at 1507o stoichiometric air and 500 msec residence time.  This
indicates that if substantial  air preheat were used, high NO  levels would
result on the fuel lean side.  However, high preheat on the fuel rich side
does not have the same  effect  in a premixed flame.  With interstage heat
removal to allow burnout at lower temperatures, after  a fuel-rich first
stage, the NO  levels resulting from high-temperature,  high-oxygen operation
would be avoided.

     2.2.6  Results for Diffusion Flames

          Limited data  were taken with  diffusion  flames to investigate
their behavior under a  variety of heat  loss conditions.  Some investigations
were also made into the effect of fuel  jet velocity on NOX formation.

          The detailed  data and centerline species plots are presented
in the Appendix.  Only  illustrative highlights will be covered in this
section.  Under adiabatic wall conditions (wall temperature maintained
at the adiabatic flame  temperature) the NO concentrations as a function
of stoichiometry are similar to those for premixed flames far downstream
of the burner face.  In Figure 2-21 it  can be seen that methane/air exhibits
a peak NO level of 1000 ppm at 100% stoichiometric air for 150 msec residence
time for adiabatic wall condition.  Adiabatic flame temperatures vary with
stoichiometry.  At 100% stoichiometric  air, the adiabatic flame temperature
is about 2220°K, while  at  60%  stoichiometric air  it is 1784°K and at 160%
stoichiometric air it is 1709°K for methane/air combustion.  With the walls
heated to 2220K, the higher oxygen level at higher excess air causes more
rapid post-flame NO formation at a constant temperature.  For a residence
time of 150 msec,  peak NOX is shifted from 100% stoichiometric air  to 1201
stoichiometric air when  the walls are maintained at 2200K.   As the  residence
time is increased further towards the 500 msec residence time used  with the
flat flame (with walls  at 2220°K),  the peak would shift toward leaner
mixtures,  and the diffusion flame NO curve in Figure 2-21 would look more
and more like the flat-flame NO curve in Figure 2-20.

          A comparison between the NOX  levels for turbulent diffusion
flames of methane/air and propane/air with adiabatic walls is illustrated
in Figure 2-22.  The NOX levels for propane/air are somewhat higher which
could be attributed in part to the higher adiabatic equilibrium temperature
for propane/air and in part to differences in flame chemistry.  The curves
are similar in shape and behavior.

-------
                      - 32 -
                    FIGURE 2-20

          PREMIXED FLAT FLAME (METHANE/AIR)
   2500
   2000
Q
W

CQ

H
   1500
CM
   1000
    500
          ADIABATIC
         _OR 2220°K
         WALL TE
      Q
                            ADIABATIC WALL
       60     80     100     120      140"     160

                PERCENT STOICHOMETRIC AIR
                                                     180

-------
                    - 33 -
                   FIGURE 2-21

    TURBULENT DIFFUSION FLAME (METHANE/AIR)
   1500
g  1000
CQ
<
W
PH


Q   500
     0
WALL = 2220°K
                   ADIABATIC
                     WALL
       60      80     100     120     140      160

               PERCENT STOICHIOMETRIC AIR
              180

-------
                 - 34 -
                  FIGURE 2-22
         TURBULENT DIFFUSION FLAME
1500
  0
           80       100     120     140      160



            PERCENT STOICHIOMETRIC AIR
180

-------
                                 -  35  -
          A comparison of results for different fuel jet velocity and
induced turbulence yields some interesting results.  Three types of fuel
jets were used in the same basic burner,  All fuel jets had strictly
axial injection with no induced swirl.  The fuel jet of the stabilized
burner had a 0.250 inch inside diameter which was covered with an end-plate
with six 0.020 inch holes drilled in a circular pattern.  The fuel jet
of the large single hole burner had a 0.250 inch inside diameter fuel
jet with no end plate and the small single hole burner had 0.156 inch
inside diameter fuel jet with no end plate.  The latter two fuel jets
were sized so  that the velocity of the methane from the large jet matched
the velocity of the propane  from the small jet at the same stoichiometry.

          Table 2-2 shows that for methane/air under excess air conditions
the stabilized jet yields lower NO  results than either the large single
hole or  small  single hole burners and the results drop off more rapidly as
the excess air level is increased.  This is probably caused by the rapid
breakup  of the multiple individual jets, resulting in behavior similar to
that found in  a premixed flame.  For the small single hole fuel nozzle the
measured NOX levels are essentially independent of excess air levels on an
"as measured"  basis.  This behavior seems to indicate that the fuel jet from
this burner maintains its integrity for a long distance downstream so that
stoichiometry  plays a smaller role in NO  level.
                                        X

           Propane/air  gives  higher NOX levels  than methane/air  for  the
stabilized jet and for  the  small  single hole,  as expected  from  the  higher
 flame  temperature.   But the  large single  hole  burner  gives much lower NO
levels than either of  the  other  two burners.   This fuel/jet combination
gives  the  lowest  jet velocity  and may  provide  an explanation  for the
results  since  in  this  case,  the  fuel velocity  is smaller than the air
velocity.   The low velocity  fuel  jet would  cause lack of penetration of
the  fuel into  the air  stream and  recirculation of the surrounding air jet
to mix with  the fuel stream  near  the burner  face.  This could cause
locally  fuel  rich combustion to yield  results  similar to that of staged
combustion.  This subject was  not pursued extensively at this time  since
the major  objective of  this  study was  the understanding of the  chemistry
rather than  the fluid mechanics.  However, it is noted as a possible area
for  future investigation.

-------
                                    TABLE 2-2
                          DIFFUSION FLAME NO/NO  MEASUREMENTS
                                               NO/NOX, ppm
                     	Methane	          	Propane	
                     Percent Stoichlometric Air          Percent Stoichiometric Air
   Burner              120       130       140            110       125        150
Stabilized           30/35     16/18      5/10                    55/60      25/30
(6 Hole)

Large                40/45     25/30     15/20                    35/37      10/15
Single Hole

Small                45/55     45/50     40/45            68      60/65      48/50
                                                                                                       i
                                                                                                       u>
                                                                                                       ON
Measurements taken after 100 msec residence time.                                                      ,
Velocity of methane from large single hole burner matches velocity of propane
small single hole burner at same stoichiometry.  Air velocity constant.

-------
                                 -  37  -
                       3.  THEORETICAL CALCULATIONS
          Theoretical calculations have been undertaken to obtain com-
parisons between experimental data obtained under well-defined conditions
and detailed chemical kinetics calculations.  In addition, consideration
has been given to the significance of chemical reactions for which data
are available and the potential significance of reactions for which data
are not available.  This section contains a discussion of the thermochemical
and kinetic calculations that have been performed thus far.

3.1  Equilibrium Calculations on Premixed Flames

          Equilibrium calculations have been performed using the NASA
CEC71 computer program with the thermochemical information from the
JANAF Thermochemical Tables, Second edition (NSRDS-NBS 37).  Equilibrium
compositions for the adiabatic flame temperature at one atmosphere for fuel/
air compositions with initial conditions of 298°K at  one  atmosphere have been
calculated for methane/air, propane/air, hydrogen/air, and carbon monoxide/
air.  The information is presented in Tables 3-1 through 3-4.  Only species
for which concentrations exceeded 5 ppm are included in the tables;  species
considered in the calculations that did not exceed 5 ppm are listed at the
bottom of the table.  Input air is considered to be dry and to contain
appropriate percentages of argon and carbon dioxide.

3.2  Survey of Coupled N0x/Combustion Kinetics

          A survey of kinetic data for methane/air combustion was initiated
during this phase of the study.  The status of the study at the end of this
phase is described below.  An updated version of the survey will be found  in
Reference 3-1.

          The 25 species considered along with those species eliminated from
primary consideration are listed in Table 3-5 along with the factors that
went into making the species selections.  The reactions included in this
portion of the study were those involving the 25 primary species for which
experimental or theoretical information was available in the literature.
A prescreening of the literature indicated that such information existed for
142 reactions.  Thus, these reactions were numbered from 1 to 142* on an
interim basis.  During the detailed reaction data accumulation it was
determined that there was not sufficient information in the literature to
yield a numerical estimate for some of these reactions (although the informa-
tion on some of them was sufficient to ascertain that the rates were slow).
It was also decided not to maintain separate headings for unimolecular
reactions of differing order.  Thus, numerical data were available only on
127 of the 142 reactions of the interim list.
3-1  Engleman, V. S., Survey and Evaluation of Kinetic Data on Reactions
     in Methane/Air Combustion, EPA-600/2-76-003, January, 1976.

*  This interim numbering differs from the final numbering system in
   Reference 3-1 which runs from 1 to 322.  A cross-reference will be
   found in Appendix A.

-------
                                             TABLE 3-1

                   EQUILIBRIUM COMPOSITION OF PRODUCTS IN METHANE/AIR COMBUSTION

                                              P=l ATM

                                      INITIAL TEMP. = 298°K
PCT STOICH AIR
TEMP, DEC K
60
1784
80
2097
100
2226
120
2045
140
1861
160
1709
PRODUCTS
AR
CO
C02
H
H2
H20
NO
N02
N2
0
OH
02
PRODUCT MOLE FRACTIONS
0.00709
0.09824
0.03488
0.00011
0.11459
0.15114
0.00000
0.00000
0.59395
0.00000
0.00001
0.00000
0.00787
0.05328
0.05757
0.00057
0.03529
0.18548
0.00006
0.00000
0.65948
0.00000
0.00036
0.00001
0.00837
0.00898
0.08541
0.00039
0.00364
0.18296
0.00197
0.00000
0.70061
0.00021
0.00286
0.00459
0.00856
0.00086
0.07955
0.00004
0.00037
0.15890
0.00333
0.00000
0.71569
0.00016
0.00197
0.03057
0.00867
0.00011
0.06969
0.00000
0.00006
0.13859
0.00264
0.00000
0.72502
0.00005
0.00082
0.05434
0.00875
0.00002
0.06165
0.00000
0.00001
0.12261
0.00183
0.00000
0.73195
0.00001
0.00033
0.07285
MOLE FRACTION LESS THAN 0.000005
                                              CN
                                             CN2  C2
C(S)   C     CH    CH2  CH20    CH3     CH4
C2H    C2H2  C2H4  C2N  C2N2    C20     C3    C302  C4   C5
HCM    HCO   HNO   H02  H20(S)  H20(L)  H202  N     NH   NH2
NH3
N2C   N2H4  N20  N204
                                                                                                                U)
                                                                                                                00

-------
                                             TABLE 3-2

                   EQUILIBRIUM COMPOSITION OF PRODUCTS IN PROPANE/AIR COMBUSTION

                                              P=l ATM

                                      INITIAL TEMP.  = 298°K
PCT STOICH AIR
TEMP DEC K
60
1822
80
2140
100
2254
120
2076
140
1888
160
1732
PRODUCTS
AR
CO
C02
H
H2
H20
NO
N02
N2
0
OH
02
PRODUCT MOLE FRACTIONS
0.00728
0.12308
0.04098
0.00013
0.09554
0.12281
0.00000
0.00000
0.61016
0.00000
0.00001
0.00000
0.00805
0.06366
0.07233
0.00065
0.02699
0.15342
0.00010
0.00000
0.67431
0.00001
0.00047
0.00002
0.00852
0.01183
0.10341
0.00042
0.00316
0.14841
0.00232
0.00000
0.71307
0.00028
0.00301
0.00555
0.00870
0.00132
0.09667
0.00005
0.00037
0.12285
0.00366
0.00000
0.72702
0.00020
0.00205
0.03111
0.00879
0.00017
0.08471
0.00001
0.00037
0.11232
0.00291
0 .00000
0.73510
0.00006
0.00086
0.05501
0.00886
0.00003
0.07484
0.00000
0.00001
0.09926
0.00201
0.00000
0.74096
0.00002
0.00034
0.07367
MOLE FRACTION LESS THAN  0.000005
                                             CN
CN2  C2
C(S)  C     CH    CH2  CH20    CH3     CH4
C2H   C2H2  C2H4  C2N  C2N2    C20     C3     C302   C4   C5
HCN   HCO   HNO   H02  H20(S)  H20(L)  H202   N      NH   NH2
NH3   N2C   N2H4  N20  N204

-------
                           TABLE 3-3

EQUILIBRIUM COMPOSITION OF PRODUCTS IN HYDROGEN/AIR COMBUSTION

                            P=l ATM

                    INITIAL TEMP. = 298°K
PCT STOICH AIR
TEMP, DEC K
60
2183
80
2349
100
2383
120
2216
140
2037
160
1884
PRODUCTS
AR
CO
C02
H
H2
H20
NO
N02
N2
0
OH
02
MOLE
C(S)
C2
C5
NH2
0.00625
0.00016
0.00005
0.00219
0.1866,
0.28061
0.00004
0.00000
0.52359
0.00000
0.00045
0.00000
FRACTIONS LESS THAN 0.000005
C CH CH2 CH20 CH3
C2H C2H2 C2H4 C2N C2N2
HCN HCO HNO H02 H20(S)
NH3 N2C N2H4 N20 N204
PRODUCT MOLE
0.00707
0.00013
0.00009
0.00349
0.07954
0.31478
0.00038
0.00000
0.59194
0.00007
0.00239
0.00012

CH4 CN
C20 C3
H20(L) H202

FRACTIONS
0.00762
0.00005
0.00019
0.00181
0.01534
0.32991
0.00260
0.00000
0.63717
0.00055
0.00687
0.00483

CN2 CO
C302 C4
N NH


0.00792
0.00001
0.00024
0.00029
0.00223
0.29115
0.00453
0.00000
0.66067
0.00049
0.00539
0.02707






0.00810
0.00000
0.00026
0.00004
0.00044
0.25801
0.00404
0.00000
0.67661
0.00020
0.00272
0.04957






0.00824
0.00000
0.00026
0.00001
0.00010
0.23054
0.00308
0.00000
0.68872
0.00007
0.00127
0.06770





                                                                                              o
                                                                                              I

-------
                                             TABLE  3-4

               EQUILIBRIUM  COMPOSITION  OF  PRODUCTS IN  CARBON MONOXIDE/AIR COMBUSTION
P=l ATM
INITIAL TEMP. = 298°K

PCT STOICH AIR
TEMP, DEC K
PRODUCTS
AR
CO
C02
NO
N02
N2
0
02

60
2306

0.00626
0.18884
0.28016
0.00052
0.00000
0.52382
0.00009
0.00031

80
2417
PRODUCT MOLE
0.00704
0.09379
0.30186
0.00292
0.00000
0.58815
0.00070
0.00555

100
2384
FRACTIONS
0.00754
0.04226
0.29690
0.00511
0.00000
0.62909
0.00106
0.01804

120
2285

0.00787
0.01582
0.27914
0.00589
0.00000
0 . 65 637
0.00083
0.03407

140
2151

0.00809
0.00472
0.25497
0.00545
0.00000
0.67485
0.00044
0.05148

160
2009

0.00824
0.00124
0.23023
0.00442
0.00000
0.68785
0.00018
0.06785
MOLE FRACTION LESS THAN 0.000005

C(S)  C  CN  CN2  C2   C2N   C2N2  C20  C3  C302
C4    C5 N   N2C  N20  N204

-------
                            -  42  -
                           TABLE 3-5




SPECIES CONSIDERED FOR KINETICS SURVEY ON METHANE/AIR COMBUSTION
SPECIES
C
CH
CHN
CHO
CH2
CH20
CH3
CH30
CH4
CN
CNO
CO
C02
C2
C2H
C2H2
C2H3
C2H4
C2H5
C2H6
C20
C4
C5
PRIMARY

X
X
X
X
X
X
X
X
X

X
X









SECONDARY
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X


LOG K
AT 2000
-10
-10
-2
+3
-8
+1
-5

-3
-6

+7
+10
-12
-6
-3

-5


-1
-10
-15
-14
FACTORS INCLUDED IN
CONSIDERATION
possible role in soot formation
hydrocarbon radical
possible role in prompt NO
stable radical
hydrocarbon radical
combustion intermediate
hydrocarbon radical
possible role in ignition
starting material
possible role in prompt NO
possible role in NO/HC interaction
combustion product
combustion product
possible role in soot formation
C2 intermediates possibly
important for
fuel rich combustion of
methane or higher
hydrocarbons
J
difficult to form from CO
"^possible role in soot formation
/more likely from higher
J hydrocarbons

-------
       - 43 -
TABLE 3-5 (CONTINUED)
SPECIES
H
HN
HNO
HO
H02
H2
H2N
H2N2
H20
H202
H3N
H3N2
H4N2
N
NO
N02
N03
N2
N20
N204
N205
0
02
Oq
PRIMARY
X
X
X
X
X
X


X




X
X
X

X
X


X
X

SECONDARY
X
X
X
X
X
X
X

X
X
X


X
X
X
X
X
X


X
X
X
LOG K
AT 2000K
-3
-8
-5
0
-3
0
-6
-12
44

-5

-14
-9
-2
-4
-10
0
-6
-15
-18
-3
0
-7
FACTORS INCLUDED IN
CONSIDERATION
combustion intermediate
possible role in prompt NO
possible role in prompt NO
combustion intermediate
combustion intermediate
combustion product
possible intermediate
not likely for methane/air
combustion product
possible role in ignition
possible role fuel rich
not likely for methane/air
not likely for methane/air
important role NO formation
of prime interest
oxidation of NO
higher oxidation state of NO
starting material
possible role in prompt NO
not likely for methane/air
not likely for methane/air
combustion intermediate
starting material
possible role in ignition

-------
                                -  44  -
          The interim recommended rates for the reactions used in this
portion of the study are included here as Table 3-6.  More up-to-date
recommendations will be found in Reference 3-1.  All reactions included
in the table are covered by rate constants and/or comments.  The rates
are also calculated for temperatures of 300°, 1500°, and 2500°K in the
direction indicated (F for forward and R for reverse).  Where five asterisks
appear in the comments section, only limited estimates are available and
should be regarded with caution.  It should be realized that recommended
rates are evolutionary.  As further kinetic and thermochemical data become
available, recommendations require updating.  Thus, any recommended rates
should be considered as subject to further evaluation.

          Additional reactions can be written involving these species in
unimolecular and bimolecular reactions, some of which could prove to be
significant in the mechanism of methane combustion with pollutant
formation.  Thus, a listing has been made of all the possible unimolecular
and bimolecular reactions among 25 species in the methane/air combustion
system.  The listing (Appendix A) contains notations indicating the type of
reaction for those included in the survey.  An evaluation of the potential
importance of each of these reactions in methane combustion will be found
in Reference 3-1.  The 322 reactions in this "master list" are numbered
both with their interim reaction numbers, where applicable, and sequentially,
with "X" numbers which cross-reference this list to the complete survey in
Reference 3-1.

3.3  Kinetics Calculations

          Kinetics calculations during this phase of the program were
performed using the version of the CKAP* program  modified for use on an
IBM 370 computer.  Difficulties  were  encountered  in  attempting to
prevent negative concentrations in plug-flow cases.  The rate of disappearance
of hydrocarbons is so rapid as their concentrations approach zero that
concentrations of these substances frequently go negative instead of
leveling off near zero.  By taking special care with step size control and
relative error criterion, the problem could be alleviated in most cases.

          The initial set of calculations for reaction screening and data
comparisons have been run under isothermal conditions at the adiabatic flame
temperature in the region between 80 and 120% stoichiometric air at atmo-
spheric pressure.  The isothermal approach offers a number of advantages:
computer time is shortened, screening is facilitated since the rate para-
meters are held constant, and ignition is easily accomplished.  Additional
runs have been made for the case of adiabatic ignition.**  These runs
indicate the same qualitative behavior as the isothermal runs and basically
similar proportions of reaction intermediates are computed, even though the
absolute concentrations are not identical for the two cases.
*    Supplied by EPA for use in this program.  Developed for detailed kinetic
     analysis by Ultrasystems under EPA contract 68-02-0220.

**   Such runs were accomplished by allowing a small amount of initial
     reaction to occur at high temperature.  After a temperature rise of
     about 200°K, the system was dropped back to the lower temperature
     (initial temperature + temperature rise) and ignition was allowed to
     proceed.

-------
         RECOMMENDED RATES


          REACTION

 IF.  CH + CRN = CH2 +  CN


 2F.  CH + CHO = CH2 +  CO


 3Ft  CH + CH20 =  CH2 + CHO


 4F.  CH + CH3 * CH2 +  CH2


 5F.  CH + CH4 - CH2 +  CH3


 6F.  CH + C02 = CHO +  CO


 7F.  CH + H  = CH2



 8F.  CH + H  + M = CH2  + M


 9R.  CH2 + N a CH + HN


10F.  CH + HN = CN + H2




11F.  CH + HNO = CH2 +  NO
         TABLE 3-6

    INTERIM RECOMMENDED RATES

           1500-2500K.      9/30/73
               C          COMMENTS

              8.   #****      NOTE B.
                   BASED  ON  Tl  (J-P)
              1.   *****      NOTE B.
                   BASED  ON  Tl  (J-P)

              4.   *****      NOTE B.
                   BASED  ON  Tl  (J-P)
              5.   *****      NOTE B.
                   BASED  ON  Tl  (J-P)

              6,   *****      NOTE 8.
                   BASED  ON  Tl  (J-PI

              6.   *****      NOTE A*
                   BASED  ON  Tl  (EST)

              0.   BASED  ON  Tl  (EST)
                   USE  THIRD ORDER
                   SEE  8F.

                   NO DATA
                        WILL  ESTIMATE
11.8   0.67  4.0.5  *****      NOTE A.
                   BASED  ON  MS  (J-P)

                   NO  DATA
                   PROBABLY  SLOW
                   9R  FASTER THAN 10F
                   31R  FASTER THAN 10R
LOG A    B

 11.5   0.6


 10.5   0.7


 11.0   0.7


 11.1   0.7


 11.4   0.7


 10.0   0.5


 11.7   0.5
11.8   0.5
                     *****     NOTE A.
                     BASED ON Tl (EST)
       TEMP*  KELVIN
 300   1500    2000   2500
          LOG K
 7.2   12.2    12.6   12.8
11.5   12.6    12.7   12.8
 9.8   12.6    12.9    13.0
 9.2   12.6    12.9    13.0
 8.8   12.7    13.1    13.3
 6.9   10.7    11.0    11.2
12.9   13.3    13.4    13.4
                                           -16.0     8.0    9.6   10.5
13.0   13.4    13.5    13.5
                              Ln
                               I
      NOTE A - BEST ESTIMATE AVAILABLE,  USE WITH CAUTION
      NOTE B - ONLY ESTIMATE AVAILABLE,  USE WITH CAUTION
      NOTE C - LIMITED EXPERIMENTAL DATA AVAILABLE, USE WITH CAUTION

-------
         RECOMMENDED RATES


          REACTION           LOG A

12F. CH -t- HO = CHO + H         11.7


13R. CH2 + 0 = CH + HO


14F. CH + HO = CO + H2




15F. CH + H02 = CHO + HO       11.7


16F. CH + H02 = CH2 + 02       10.0


17R. CH2 + H = CH + H2


18R. CH2 + HO = CH + H20


19F. CH + N = CN + H


20F. CH -t- NO = CHO + N


21F. CH -i- N2 = CHN + N


22F. CH + 0 = CO + H           11.7


23F. CH + 0 + M « CHO + M      16.
     TABLE 3-6  (CONTINUED)

           1500-2500K     9/30/73
        B      C         COMMENTS

       0.5   10.   *****     NOTE A.
                   BASED ON Tl (EST)
11.3   0.7   26.
*****     NOTE B.
BASED ON M8 (J-P)

NO DATA
PROBABLY SLOW
13R FASTER THAN 14F
14R UNFAVORABLE
       0.5    6.   *****     NOTE A.
                   BASED ON Tl !EST)

       0.5   15.   *****     NOTE B.
                   BASED ON Tl (EST)
11.5   0.7   26,
11.7   0.5
*****     NOTE B.
BASED ON M8»T1 (J-P)

*****     NOTE A.
BASED ON Tl (EST)

NO DATA
    WILL ESTIMATE

NO DATA
PROBABLY SLOW

NO DATA
SPIN FORBIDDEN
       0.5    4.   *****     NOTE A.
                   BASED ON Tl (EST)

      •0.5    0.   *****     NOTE A.
                   BASED ON Tl (EST)
                              TEMPt KELVIN
                        300   1500   2000   2500
                                 LOG K
                        5.7   11.8   12.3   12.5
-5.9    9.7   10.8    11.4
 8.6   12.4   12.7    12.9


 0.3    9.4   10.0    10.4


 •5.7    9.9   11.0    11.6


 8.6   12.4   12.7    12.9
                        10.0    12.7    12.9   13.0
                        14.8    14.4    14.3   14.3
                                                     i
                                                     j^

-------
28Rt CH3  +  CN  =  CHN  +  CH2
29R. CH4  +  CN  =  CHN  +  CH3
30R. CHO  +  CN  =  CHN  +  CO
31F. CHN  +  H  =  CN  +  H2
32F. CHN  +  HO  =  CN  +  H20
33R. CN  +  HN  =  CHN  +  N
34R. CN +  HNO  =  CHN  +  NO
LOG A    B      C

 11.7   0.5    6.
         RECOMMENDED RATES


          REACTION

24F. -CH + 02 = CHO + 0


25F. CH + 02 = CO + HO


26R. CN + H + M = CHN + M      16.5   -0.5


27R. CH20 + CN =  CHN + CHO     11.1    0.7
     TABLE 3-6  (CONTINUED)

           1500-2500K      9/30/73
11.0   0.7
11.5   0.7
11.3   0.5
       0.7   18.
11.3   0.6
11.0   0.5
11.6   0.5
      COMMENTS

*****     NOTE A.
BASED ON Tl (EST)

NO DATA
PROBABLY SLOW

*****     NOTE A.
BASED ON Tl (EST)

*****     NOTE A.
BASED ON Tl U-P)

*****     NOTE A.
BASED ON Tl (J-P)

*****
BASED ON Tl (J-P)
 XPT 100X J-P 300K
 REQUIRE A=13.5 OR
 REQUIRE E=0.

*****     NOTE A.
BASED ON Tl (EST)

*****     NOTE B.
BASED ON Tl (J-P)

*****     NOTE A.
BASED ON Tl (J-P)

*****     NOTE A.
BASED ON Tl (EST!

*****     NOTE A.
BASED ON Tl (EST)
                                                 TEMP* KELVIN
                                           300   1500   2000   2500
                                                    LOG K
                                           8.6   12.4   12.7   12.9
                                          15.3   14.9   14.8   14.8
                                          10.6   12.9   13.1   13.2
                                           10.5    12.8    13.0    13.1
                                            9.6    13.0    13.3    13.4
                                           12.5    12.9    13.0    13.0
                                            0.0    11.0    11.7    12.2
                                            9.1    12.5    12.7    12.9
                                            10.8    12.3    12.4    12.5
                                            12.8    13.2    13.3    13.3
                                                                          -j
                                                                          i

-------
                                   TABLE 3-6 (CONTINUED)
         RECOMMENDED RATES


          REACTION

35F. CHN + 0 = CN + HO
LOG A

 11.5
38F. CHO + CH2 = CH3 + CO
40F. CHO + CH3 = CH4 + CO
42R. CH2 + 0 = CHO + H
 B

0.7
36F. CHO +M=CO+H+M      20.4  -1.5
37F. CHO + CHO = CH20  +  CO     11.2    0.5
 10.5   0.7
39F. CHO + CH3 = CH2 + CH20    11.2    0.7
 11.5   0.5
41F. CHO + CH4 = CH20 + CH3    11.9
 11.7
0.6


0.5
            1500-2500K     9/30/73
  C         COMMENTS

17.   *****     NOTE B.
      BASED ON Tl (J-P)

16.8  SRI  ESTIMATE 4/11/73
      BASED ON HINSHELWOOO
      -LINDEMANN THEORY
       XPTL REF B65  GIVES
       A=12.3»B=0.5»E=29.
       NOT SENSITIVE XPT

 0.   *****     NOTE A«
      BASED ON Tl (EST)

 1.   *****     NOTE A.
      BASED ON Tl (J-P)

 A,   *****     NOTE B.
      BASED ON Tl (J-P)

 0.   *****     NOTE A.
      BASED ON Tl (EST)

 9.   *****     NOTE B.
      BASED ON Tl (J-P)
44F. CHO + H = CO + H2
 10.5   1.
 4t
43R. CH20 + M = CHO + H + M    33.9   -4.5    87.
*****     NOTE A.
BASED ON Tl (EST)

SRI ESTIMATE 4/11/73
BASED ON HINSHELWOOD
-LINDEMANN THEORY

SRI ESTIMATE 4/6/73
 REF Tl ESTIMATES
 A=12.2»B=0.5»E=0.
                              TEMPt KELVIN
                        300   1500   2000   2500
                                 LOG K
                        0.8   11.2   12.0   12«4
                                            4.4   13.2   13.6    13.8
                                           12.4   12.8   12.9    12.9
                                   11.5   12.6   12.7    12,
                                           10.0   12.8    13.1    13.2
                                   12.7   13.1    13.2    13.2
                                            6.8    12.5    12.9    13.2
10.0   12.7   12.9   13.0
                                          -40.6    6.9     9.5    11.0
                                    13.0    13.7    13.8    13.9
                                                                                                      00
                                                                                                      I

-------
         RECOMMENDED RATES


          REACTION           LOG A

45F. CHO + NO = CH20 + NO      11.5
46R. CH20 + 0 = CHO + HO
TABLE 3-6 (CONTINUED)

      1500-2500K      9/30/73
          C          COMMENTS

         0.    *****     NOTE A.
              BASED ON Tl (EST)
47F. CHO + HO  « CO + H20
48R. CH20  +  H  =  CHO  +  H2
49R. CH20  +  HO  =  CHO  +  H20
50F. CHO  +  N  =  CO  +  HN
51F. CHO  +  NO  =  CO  -f  HNO
52F. CHO  +  0  =  CO  +  HO
53F. CH2 +  CH4  =  CHS  +  CH3     12.1    0.7
54F. CH2 +  HNO  =  CH3  +  NO
11.3   1.     4.4  BASED ON D22»N7»M27
                   USING B = 1
                   FIT MODIF ARRHENIUS
                    D22 BEST HI T
                    N7 & M27 BEST LO T

10.5   1.     0.   SRI ESTIMATE 4/6/73
                   XPT 14. AT 2000K
                    OTHER ESTS 12.5
                    AT 2000K

10.1   1.     3.2  BASED ON W32
                   USING 8=1
                   NO DATA ABOVE 1000K

 9.5   1.     1.   SRI ESTIMATE 4/6/73
                   AGREES WITH REF Tl

11.3   0.5    2.   *****     NOTE A.
                   BASED ON Tl (EST)

11.3   0.5    2.   *****     NOTE A.
                   BASED ON Tl (EST)

11.5   1.     0.5  SRI ESTIMATE 3/28/73
                    OTHER ESTS 12.8

             20.   *****     NOTE A.
                   BASED ON Tl (J-P)

11.8   0.5    0.   *****     NOTE A.
                   BASED ON Tl (EST)
                                                 TEMP, KELVIN
                                           300   1500   2000    2500
                                                    LOG K
                                          12.7   13.1   13.2    13.2
                                     10.6   13.8   14.1   14.3
                                     13.0   13.7   13.8   13.9
                                     10.2   12.8   13.1   13.2
                                     11.2   12.5   12.7   12.8
                                     11.1    12.6   12.7   12.8
                                     11.1    12.6   12.7   12.8
                                     13.6   14.6   14.7   14.9
                                     -0.7   11.4   12.2   12.7
                                     13.0   13.4   13.5   13.5

-------
                                     TABLE 3-6 (CONTINUED)
          RECOMMENDED RATES


           REACTION

 55F. CH2 + HO = CH3 + 0


 56R« CH3 + H = CH2 + H2


 57R. CH3 + HO = CH2 + H20


 58F. CH2 + 02 = CH20 + 0


 59R. CH3 + 0 = CH20 + H
LOG
A
1500-2500K 9/30/73
B C COMMENTS
300
TEMP.
1500
KELVIN
2000
2500
LOG K
11.

11.

10.

11.
7

3

8

7
0.5

0.7

0.7

0.5
6.

3.

2.

7.
*****
BASED ON
*****
BASED ON
*****
BASED ON
*****
NOTE A.
Tl (EST)
NOTE B.
Tl (J-P)
NOTE B.
Tl (J-P)
NOTE A.
8

10

11

7
.6

.8

.1

.8
12

13

12

12
.4

.1

.7

• 3
12.7

13.3

12.9

12.6
12.9

13.4

13.0

12.8
                               12.3    0.5
991R. CH30 + M a CH20 + H + M  40.6  -7.5
       BASED ON Tl (EST)

 -0.3  BASED ON M25»D22
       USING B - 0.5
        M25 LO T» 022 HI  T

 22.6  SRI  ESTIMATE 4/11/73
       BASED ON HINSHELWOOD
       -LINDEMANN THEORY
        NOTE A.
 60R. CH3 + 02 = CH20 + HO
                               13.5
 30,
      BASED ON D22
      SRI RECOMMENDS
         C = 30
       D22 GIVES C=10
      FOUR CENTER
                             13.8   13.9   14.0   14.0
                                                                          5.6   13.5   13.4   13.1
-8.4     9.1    10.2    10.9
 61R. CH4 + M = CHS + H + M    15.

                               17.3
                                      0.

                                      0.
104
62F. CH3 + HNO = CH4 + NO
                               11.7   0.5
      BASED ON H32
      FIRST ORDER
87.5  BASED ON H32
      SECOND ORDER
       RECENT XPT

 0.   *****     NOTE A.
      BASED ON Tl (EST)
•60.8    -0.2     3.6    5.9

-46.4     4.6     7.7    9.7



 12.9    13.3    13.4   13.4
                                                                                                        Ol
                                                                                                        o

-------
         RECOMMENDED RATES


          REACTION

63R. CH4 + 0 = CH3 + HO
TABLE 3-6  (CONTINUED)

      1500-25QOK      9/30/73
                              LOG A    B      C         COMMENTS

                               10.    1.     8.   BASED ON W25»H25
                                                  USING B = 1.
 64F.  CHS + H02 = CH4 + 02     11.0   0.5
 65R.  CH4 + H = CH3 * H2       10.7   1.
 66R. CH4 + HO = CH3 + H20     13.5   0.
992F. CHS + 02 = CH30 + 0       9.4    1,
 67F. CN + NO = CO + N2        11.5   0.
993F. CN + 0 = CO + N          12.    0,
 68F. CN + 02 = CO + NO        11.5   0.
 69F. CO + HNO = C02 + HN       11.0   0.5
 70F. CO + HO = C02 + H         9.6   0.5
                                             6.    *****      NOTE A.
                                                  BASED  ON  Tl  (EST)

                                            10.    BASED  ON  W30
                                                  USING  B = 1.
                                                   AGREES W/ OTHER
                                                   XPT AND  EVAL

                                             5.    BASED  ON  W31
                                                  EVAL 300-2000K
                                                  AGREES G18»  300-500K,

                                            28.5   SRI ESTIMATE 4/11/73
                                                  BASED  ON  EARLIER EST
                                                  USING  B = 1.

                                             0.    *****      NOTE C.
                                                  BASED  ON  B78 (XPT)

                                             0.    BASED  ON  B78» R5
                                                  ASSUME C  = 0
                                                  DATA 300-700K

                                             0.    *****      NOTE C.
                                                  BASED  ON  B86 (XPT)
                                                  UPPER  LIMIT

                                             7.    *****      NOTE A.
                                                  BASED  ON  Tl  (EST)

                                             0.    BASED  ON  TRANS STATE
                                                  PARAMETERS H = -1»
                                                  S = -30»  CP  = -3
                                                  LOG K  = 11.  AT 300K
                                                  BETTER FIT TO DATA
                                                  WITH A=5.9fB=2.»C=-l
                                            TEMP* KELVIN
                                      300   1500   2000   2500
                                               LOG K
                                      6.6   12.0   12.4   12.7
                                      7.9   11.7   12.0   12.2
                                      5.9   12.4   12.9   13.2
                                      9.9   12.8   13.0   13.1
                                     -8.9    8.4    9.6   10.3
                                     11.5   11.5    11.5   11.5
                                     12.0   12.0   12.0   12.0
                                     11.5   11.5   11.5   11.5
                                      7.1   11.6   11.9   12.1
                                     10.8   11.2   11.3   11.3
                                                                   Ol
                                                                   I-1

-------
                                    TABLE 3-6 (CONTINUED)
         RECOMMENDED RATES


          REACTION

71F. CO + H02 = C02 + HO



72R. C02 + H2 = CO + H20


73R. C02 + N = CO + NO




74F. CO -f N02 = C02 + NO


75F. CO + N20 = C02 + N2


76R. C02 = CO + 0


77R. C02 +M=CO+0+M




78F. CO + 02 = C02 + 0



79R. H2+M=H+H+M



80F. H + HN = H2 + N


LOG A

11.


9.0

11.3



12.5


11.0
1500-2500K. 9/30/73

B C COMMENTS 300

0. 10.5 SRI ESTIMATE 9/11/73 3.4
REF Lll RECOMMENDS
A=12. »B=0.»C=16.5
0.5 15. ***** NOTE A. -0.7
BASED ON Tl (EST)
0.5 25. BASED ON Tl -5.7
WITH HIGHER C
PROBABLY SLOW
SPIN FORBIDDEN
0. 30. BASED ON B47» J6 -9.4
LIMITED OLD DATA

0. 23. ***** NOTE C. -5.8

TEMP» KELVIN
1500 2000 2500
LOG K,
9.5 9.9 10,1


8.4 9.0 9.4

9.2 10.2 10.8



8.1 9.2 9.9

Ul
7.6 8.5 9.0 i
                   BASED ON L9 (XPT)

                   USE THIRD BODY
                   SEE 77R.

15.    0.   100.   BASED ON C26» 01
                   COMPLEX REACTION
                   SLOW DISSOCIATION
                   RECENT DATA

13.    0.    60.   BASED ON D22
                   MINIMUM E=50
                   HI T DATA FAIR AGRMT

14.3   0.    96.   BASED ON B88
                   M = AR
                   BEST RECENT EVAL

11.8   0.5    8.   SRI ESTIMATE
                   QPR NO. 2. 2/15/73
                   BASED ON TRANS STATE
                   PARAMETERS H = 7.
                   S = -22» CP = -3
-57.9    0.4    4.1    6.3
-30.7    4.3    6.4    7.8
-55.6    0.3    3.8     5.9
  7.2   12.2   12.6    12.8

-------
                                    TABLE 3-6  (CONTINUED)
         RECOMMENDED RATES


          REACTION

81F. H + HNO = HN + HO


82F. H + HNO = H2 + NO


83F. H + HO = H2 + 0


84R. H20 +M=HO+H+M




85F. H + H02 = HO + HO


86F. H + H02 = H2 + 02


87F. H + H02 = H20 +  0




88R. HO +  H2 = H  + H20


89F.H+N+M=HN+M


90R. HN +  0  = H + NO
LOG A

 11.3


 13.


  9.9


 15.5




 14.4


 13.4


 13.0
        B

       0.5


       0*
       0.


       0.
            1500-2500K     9/30/73
   C         COMMENTS

 13.   *****     NOTE A.
       BASED ON Tl (EST)

  2.5  BASED ON H3 1
       FIT DATA 200-2000K

  7.   BASED ON B88
       CRIT EVAL 400-2000K

105.   BASED ON B88
       M = N2
       CRIT EVAL 2000-6000K
       DIFFICULT TO STUDY

  1.9  BASED ON B88
       CRIT EVAL 290-800K

  0.7  BASED ON 888
       CRIT EVAL 290-800K
  13.4   0.
              1.    BASED ON Lll
                   EVAL 300-1000K.
                   LOWER THAN REC B88
                   12.9 AT 293K

              5.2  BASED ON B88
                   EVAL, AGREES XPT

16.5  -0.5    0.    *****     NOTE A.
                   BASED ON Tl 
-------
         RECOMMENDED RATES


          REACTION

91R. HO + N = H + NO
92F.H+NO+M= HNO  + M
93R. HNO + 0 = H + N02
94F. H + N02 = HO + NO
95R. HN + N * H + N2
96F. H + N20 = HN + NO
97R. HNO + N = H + N20
       TABLE  3-6 (CONTINUED)

            1500-2500K     9/30/73
LOG A    B

 11.8   0.5
 16.3   Oi
 10.7   0.5
 14.5   0.
 11.8   0.5
 11.0   0.5
 10.7   0.5
  C         COMMENTS

 8.   SRI  ESTIMATE
      QPR  NO. 2» 2/15/73
      BASED ON TRANS STATE
      PARAMETERS H = 7
      S =  -22» CP = -3
      K =  13.5 AT 320K
      BASED ON REF C8
      WOULD REQUIRE C = 0
      ALSO USE C=0 FOR SCR
      GIVES 13.45 AT 2000K

 0.   BASED ON C20. HlO
      AT 300K
      USING B = 0» C * 0
      M =  H2
      DATA 200-700K INDIC
      SLIGHT NEGATIVE E

 0.   *****     NOTE A.
      BASED ON Tl (EST)

 1.5  BASED ON B90
      300-600K
      NO DATA ON REVERSE

 0.   SRI  ESTIMATE
      QPR  NO. 2* 2/15/73
      BASED ON TRANS STATE
      PARAMETERS H = -1
      S =  -22» CP = -3

30.   *****     NOTE A.
      BASED ON Tl (EST)

 3.   *****     NOTE A.
      BASED ON Tl (EST)
       TEMP. KELVIN
 300   1500   2000   2500
          LOG K
 7.2   12.2   12.6   12.8
16.3   16.3   16.3   16.3
11.9   12.3   12.4   12.4
13.4   14.3   14.3   14.4
13.0   13.4   13.5   13.5
-9.6    8.2    9.4    10.1
 9.8   11.9    12.0    12.1
                                                                                                       Ul

                                                                                                       I

-------
                                     TABLE 3-6  (CONTINUED)
          RECOMMENDED RATES


           REACTION           LOG A    B

 98F.  H + N20 = HO + N2        13.9   0.


 99F.  H+0+M=HO+M       15.9   0.



100R.  HO + 0 - H + 02          13.4   0.
1500-2500K
9/30/73
10IF. H + 02 + M - H02  + M      15.2    0,
102F. HN -i- HN a H2 + N2
103F. HN + HO = H2 +  NO
104F. HN + HO = H20 •*•  N         11.7    0.5
105R. HNO + N = HN +  NO         11.0    0.5
106F. HN + N02  = HNO  +  NO       11.3    0.5
107F. HN + N20  = HNO  +  N2       11.0    0.5
    C         COMMENTS

  15.   BASED ON 890
        CRIT EVAL 700-2500K

   0.   BASED ON S30
        LIMITED DATA
        REF B88 GIVES NO REC

   0.   BASED ON B88» W31
        NOTE  REF 688 REC'S
        FOR 100F. A= 14.4.
        B = 0.» C = 16.8
        CRIT EVAL 300-2000K

   1.   BASED ON B88
        M = AR

        FOUR CENTER
        PROBABLY SLOW
        D8 GIVES 14 AT 2000K,
        BAHN CITES 13 FROM
        REF M8 (ERROR)

        FOUR CENTER
        PROBABLY SLOW

   2.   *****     NOTE A.
        BASED ON Tl (EST)

   2.   *****     NOTE A.
        BASED ON Tl (EST)

   5.   ****      NOTE A.
        BASED ON Tl (EST)

   3.   *****     NOTE A*
        BASED ON Tl (EST)
                       TEMP*  KELVIN
                 300   1500    2000    2500
                          LOG  K
                 3.0   11.7    12.3    12.6
                15.9   15.9    15.9    15.9
                13.4   13.4    13.4    13.4
                14.5   15.1   15.1    15.1
                11.5   13.0   13.1    13.2
                10.8   12.3   12.4    12.5
                 8.9   12.2    12.4    12.6
                10.1   12.2    12.3    12.4
                                                                                                        Ul
                                                                                                        Ui

-------
          RECOMMENDED RATES
      TABLE  3-6 (CONTINUED)

            1500-2500K     9/30/73
           REACTION

108F. HN + 0 = HO + N
109F. HN + 0 + M = HNO + M
110R. HNO + 0 = HN + 02
111R. H02 + N = HN + 02
113F. HNO + HO = H20 + NO
114F. HNO + NO = HO + N20
115F. HNO + 0 = HO + NO
ll6Rt H2 + 02 = HO + HO
LOG A    B

 11.8   0.5
 16.0  -0.5
 11.0   0.5
 11,
Oi
112R. HO + N + M = HNO + M     15.0  -0.5
 14.0
 12.
0.
0.
        c

       8.
0.
1.
 12.3   0.    26<




 11.7   0.5    0,


 12.4   0.    39.
      COMMENTS

SRI ESTIMATE
QPR NO. 2, 2/15/73
BASED ON TRANS STATE
PARAMETERS H = 7»
S = -22» CP * -3

*****     NOTE A.
BASED ON Tl (EST)

*****     NOTE A.
BASED ON Tl (EST)

*****     NOTE C.
BASED ON K25 (XPT)
LOWER LIMIT

*****     NOTE A.
BASED ON Tl (EST)

BASED ON H31
SRI ESTIMATE 3/28/73

BASED ON W23
REEXAMINATION OF
EXISTING H2-NO DATA
1000-1300K

*****     NOTE A.
BASED ON Tl (EST)

BASED ON R2
1400-2500K
REF B88 INDICATES
R2 PROBABLY VALID
BUT MAKES NO REC
                                   TEMP, KELVIN
                             300   1500   2000   2500
                                      LOG K,
                             7.2   12.2   12.6   12.8
                                   14.8   14.4   14.3    14.3
                                    7.1   11,6   11.9    12.1
                            11.0   11.0   11.0   11.0
                                           13.8   13.4   13.3    13.3
14.0   14.0   14.0   14.0
11.3   11,9   11.9   11.9

-6.6    8.5    9.5   10.0
                                   12.9   13.3    13.4    13.4
                                  -16.0    6.7     8.1     9.0
                                                                                                        I
                                                                                                       Ul

-------
          RECOMMENDED RATES


           REACTION

117F. HO + HO = H20 + 0


118F. HO + H02 = H20 + 02




119F. HO + NO = H02 + N


120R. H02 + NO = HO + N02



121R. H02 + M = HO + 0 + M


122R. H02 + 0 = HO + 02



123F. H2 + N02 = H20 + NO


124R. N2+M=N+N+M


125F. N + NO = N2 + 0
      TABLE 3-6 (CONTINUED)

            1500-2500K     9/30/73
LOG A    B      C

 12.8   0.     1.


 13.    0.     1.
 12,
 15.6  -1.5   64.
 13.7   0,
 21.6  -1.6  225,
 13.2   0.

 11.8   0.5
0.

0.
           COMMENTS          300

     BASED ON B88           12.1
     EVALUATION 300-2000K
     BASED ON Lll
     H37 INDIC 14 AT 300K
     B88 SUGGESTS 12.8 AS
     LOWER LIMIT AT 300K

     NO DATA
         WILL ESTIMATE

     SRI ESTIMATE 3/28/73
     LOWER THAN J12.N6
     WITHIN LIMITS Lll

     SRI ESTIMATE 4/6/73
     NO VALID DATA (888)

     BASED ON Lll
     300-1000K
     LIMITED INFO

     SLOW
     K=3.5 AT 700K

     BASED ON B90
     M = N2
                              TEMP* KELVIN
                              1500   2000    2500
                                 LOG K
                              12.7   12.7    12.7
                       12.3   12.9   12.9    12.9
                        9.8   11.6   11.7   11.7
                      -34.7    1.5    3.7    4.9
                       13.0   13.6   13.6   13.6
                     -146.3  -16.3   -8.3   -3.5
BASED ON B90           13.2
CRITICAL EVALUATION
SRI ESTIMATE           13.0
QPR NO. 2» 2/15/73
BASED ON TRANS STATE
PARAMETERS H = -1»
S = -22« CP = -3
13.2   13.2   13.2

13.4   13.5   13.5
                                                                         I
                                                                         Ul

-------
                                     TABLE 3-6 (CONTINUED)
          RECOMMENDED RATES


           REACTION

126Ft N 4- NO 4- M = N20 + M




127F. N 4- N02 = NO + NO
            1500-2500K
128F. N 4- N02 = N2 4- 0 + 0
129F. N 4- N02 = N2 + 02
130F. N 4- N02 = N20 + 0
131F. N 4- N20 «= NO + N2
132R
133F. N 4- 02 = NO 4- 0
LOG A
 12.6
 12.2



 12.0



 12.7


  8.7
      10.
 20.6  -Ii5  150.
                                            148,
                   9/30/73
                  COMMENTS
                             NOT LIKELY
                             GOES TO
            STABILIZ
            PROBABLY
            N2 4- 0
            S30-NO EVIDENCE
     BASED ON P10
     USING B = 0» C =
     B90 INDICATES
     P10 UPPER LIMIT
     PROB 2.5X LOWER

     BASED ON P10
     USING B = 0» C *(
     UPPER LIMIT
            BASED ON P10
            USING B - 0» C
            PROBABLY UPPER
                                                                  = 0
                                                                  LIMIT
            BASED
            USING
           ON
           B
         P10
        = 0»
  9*8

 11.8
1.

0.5
6.3
                                              8.
*#*##
BASED ON B19 (SEL)

BASED ON B90
M = AR» N2» 02
CAUTION RECOMMENDED
RASED ON M26» M « AR
(0) FORMATION MEAS.

BASED ON B90
EVALUATION 300-3000K
SRI ESTIMATE
QPR NO. 2» 2/15/73
BASED ON TRANS STATE
PARAMETERS H = 7,
S = -22. CP * -3
                                   TEMP* KELVIN
                             300   1500   2000   2500
                                      LOG K,
                                   12.6   12.6   12.6    12.6
                                   12.2   12.2    12.2    12»2
                            12.0   12.0   12.0    12.0
 12.7   12.7   12.7   12.7
                             1.4    7.2     7.6
                       7.8
-92.4   -6.0   -0.7    2.4


-93.7   -7.5   -2.1    1.2


  7.7   12.1   12.4    12.6

  7.2   12.2   12.6    12.8
                                                                                                        i

                                                                                                        00

-------
                                     TABLE 3-6  (CONTINUED)
          RECOMMENDED RATES


           REACTION

134F. NO + NO = N2 + 02
135R. N20 + 0 * NO + NO
136F. NO + N02 = N20 +  02
137F. NO + N20  = N02  +  N2
138R. N02  +M=NO+0+M
139R. N02  +  0  =  NO  +  02
 140R. N20
 141R. N20  +  0  *  N2  +  02
142Rt 02+M=0+0+M
LOG A    B
 14.0   0*
 12.0

 12.3



 16.0



 13.



 14.



 14.
 18.4
 19.4
 0*

 0.
 0*
-1.
-1.
            1500-2500K     9/30/73
   C          COMMENTS

       SPIN FORBIDDEN
       PROBABLY SLOW
       OLD DATA DID NOT
       MEASURE THIS RX
       ACTUALLY MEAS 135F

 28.    BASED ON B90
       EVAL 1200-2000K
       SAME RATE AS 141R

       NO TRANSITION STATE
       NO EXPTL EVIDENCE
 60.    BASED ON B19 (EST)

 40.    BASED ON K30
       USING A = 12.3
       NO RECENT DATA

 65.    BASED ON B90» T4
       M = AR* 02
       1400-2400K

  1.    BASED ON B53
       CRIT EVAL 300-600K
       NO HI T DATA

 50.    APPROXIMATE
       COVERS LIMITED DATA
       IN 1500-2500K RANGE

 28.    BASED ON B90
       REC 1200-2000K
       SAME RATE AS 135R

118.7  BASED ON J4» M = AR
118.7  BASED ON J4i M = 02
       CRITICAL EVALUATION
       WIDE TEMP RANGE
       1000-8000K FOR 02
       300-15000K FOR AR
                                           TEMP» KELVIN
                                     300   1500   2000    2500
                                              LOG K
                                    -6.4    9.9   10.9    11.6
-31»7    3.3    5.4    6.8

-16.8    6.5    7.9    8.8



-31.4    6.5    8.9   10.3



 12.3   12.9   12.9   12.9



-22.4    6.7    8.5    9.6
-6.4
 -70.6
 -69.6
         9.9
        •2.1
        -1.1
                                                  10.9
2.1
3.1
                                                                 11.6
4.6
5.6
                                                                                                        I
                                                                                                        Ul

-------
                                 - 60 -
          In the screening studies, reactions could be eliminated  for  one
of three reasons:

          1.  The reaction itself is too slow to play a major
              role for any species.

          2.  The reaction is part of a loop which merely returns
              its starting material.

          3.  A species involved in the reaction is of no
              importance in either combustion or pollutant
              formation.

These practical considerations must be handled with some caution since
reaction elimination based on species could vary with the goals of the
screening procedure.  For example, calculations oriented primarily toward
heat release and combustion efficiency could easily ignore NO forming
reactions since these reactions play a very small role in that respect.
At peak NO formation rate, the NO forming reactions are involved in only
about 0.017= of the 0 atom appearance or disappearance reactions.  Since NO is
of prime interest in these calculations,  such reactions must be carefully
retained.  On the other hand,  since soot is not likely to form in methane/air
combustion unless substantial concentrations of hydrocarbons remain at the
end of the combustion zone,  reactions precursor to soot formation can probably
be ignored with a fair degree of safety as long as calculations are restricted
to the region of 807o-1207o stoichiometric air at atmospheric pressure.

          While progress toward the definition of a "minimum reaction set"
is an ultimate goal it is more important initially to appreciate the chemistry
of the coupled reactions.  With 322 possible unimolecular and bimolecular
reactions which can be written for the 25 species in the kinetics survey,
it is entirely possible that some reaction beyond those 142 reactions for
which rate information was reported in the literature might be of importance.
While many of the reactions not reported in the literature are not elementary
reactions an evaluation of the potential importance of each of the remaining
reactions will be undertaken as a step towards the complete evaluation of
the combustion/pollutant formation mechanism for the 25 species considered.

-------
                                 - 61 -
 3.4  Results of Theoretical Calculations for Methane/Air

           Screening calculations have been performed,  using the interim
 (September 1973) recommended rates for the kinetics survey, to gain insight
 into the major reaction paths and major reactions in the coupled combustion/
 pollutant formation for methane/air.  The interim rates have since been
 superseded by the recommended rates given in Reference 3-1 but the results
 obtained from these calculations are instructive for the overall features
 uncovered.  However, the reader should be aware that the quantitative details
 would be different if the revised rates were used and that the reaction set
 used for these calculations was not complete.  Therefore potentially impor-
 tant paths for NO  formation have been omitted from these calculations.
                  x
           Most of the calculations were accomplished under isothermal con-
 ditions at the adiabatic flame temperature as discussed earlier.  These iso-
 thermal calculations result in temperatures and reaction rates in the early
 combustion zone which are higher than those observed experimentally.  There-
 fore, the calculations indicate a hydrocarbon burnout rate which is more
 rapid than for the case of an adiabatic flame.  However, the essential
 features of the combustion are preserved as indicated by comparison with
 calculations of adiabatic ignition from room temperature.  The concentrations
 calculated for the intermediates remain basically the same.  The concentra-
 tion levels are sufficiently close for screening purposes although the over-
 shoots tend to reach higher concentrations (but for shorter times) in the
 isothermal case.


          Concentrations of selected species as a function of time for plug
flow reaction at stoichiometries of 80%, 100% and 120% stoichiometric air
are given in Tables 3-7, 3-8 and 3-9 respectively.  It should be emphasized
that these are only preliminary calculations based on the limited number
of reactions reported in the literature.  Such calculations are highly
informative but must be followed by more complete calculations for further
elucidation.  The reaction times selected for  these  tables are illustrative
of some of the zone divisions to be discussed  in Section 3.5.   At this  point
a discussion of the species concentrations  themselves  will be  presented.

     3.4.1  80% Stoichiometric Air

          In Table 3-7 for 80% stoichiometric air, the first  column of
concentrations indicates the initial conditions corresponding to zero time.
After 35 psec (assuming no ignition delay) the methane is essentially gone.
The CO has built up to essentially its maximum concentration  and some of
the CO has already reacted to form C02.  Before CO reaches its peak,
substantial concentrations of hydrocarbon intermediates  as well as CHO and
CH20 are observed but these have dropped off by the time  CO has peaked.
Concentrations of the radical intermediates H, HO, and 0  reach their peaks
at about the same time as CO, with H being 1.2 mole %, HO being  1.1% and
0 being 0.4%.  Molecular hydrogen has also reached a high level  (2.3%)
although water is much higher at 18.0%.  NO has not yet  formed to a
substantial extent, being on the order of 0.2 ppm but its rate of formation,

-------
                                 - 62 -
as indicated in Table 3-7,  is quite high.  Two species (N and N02) present
in very low concentrations have quite different orders of importance.
Atomic nitrogen plays a major role in NO formation* through N + 02 and
N + OH and it is formed almost exclusively by the reaction N2 + 0 —> NO + N.
Thus N concentration is essentially determined by the 0 concentration.
On the other hand, N02 never builds up to any substantial extent in the
combustion zone and, almost as quickly as it is formed, it returns to NO.

          After 600 psec CO and C02 have almost reached their ultimate
concentrations.  Species H, HO and 0, while having decreased in concentration,
are still substantially above their equilibrium values.  The concentrations
of H2 and H20 have essentially leveled off while NO is still increasing
but at a much slower rate.

          After 4.6 msec, species concentrations remain fairly constant,
and although 0 and N atom concentrations are still somewhat above equilibrium,
they are not high enough to cause substantial incremental NO formation.

     3.4.2  100% Stoichiometric Air

          Table 3-8 summarizes the kinetics calculations for 100%
Stoichiometric air.  After 12 psec (no ignition delay) methane has
disappeared and CO has reached its peak.  Some of the CO has already reacted
to C02-  Concentration of H2 has reached 2% and H20 has reached 13.6%.
Atomic nitrogen is over 0.1 ppm, a high mole fraction for this intermediate,
while NO has just started to form, being slightly in excess of 1 ppm.
Molecular oxygen has dropped from its initial concentration of 19% to
about 4% on its way to 0.5%.  The rate of NO formation, at this point, is
extremely high (320,000 ppm/sec) but is dropping off quite rapidly as the
concentration of oxygen atom decreases.  By the time 300 ysec have elapsed
the rate of NO formation has dropped to 90,000 ppm/sec and about 50 ppm of
NO has formed.

          After 10 msec, CO and C02 concentrations have leveled off at
about 1% and 8% respectively.  The concentrations of radical intermediates
have dropped off to within 150% to 200% of their equilibrated values and
the NO formation rate has dropped off to 7,000 ppm/sec.  The calculated
concentration of 200 ppm represents an average formation rate of 20,000
ppm/sec, compared to an average formation rate of 150,000 ppm/sec up to
0.3 msec, and an average formation rate of 5,500 ppm/sec up to 100 msec.
At the 100 msec point the instantaneous formation rate has dropped to less
than 4,000 ppm/sec.  The rapid initial formation of NO, even though probably
overpredicted because of the high initxai temperature, bears many resemblances
to what might be called "prompt NO"  (3-2) .
*  It should be noted that recommended rates were not available at the
   time of these calculations for additional reactions, which are potentially
   important for NO formation.  Therefore, the inferences made here should
   be regarded as preliminary and subject to further refinement.

(3^2)  Fenimore, C. P., 13th Symposium (International) on Combustion,
       p. 373, The Combustion Institute,  1971.

-------
                                          - 63 -
                                       TABLE 3-7



          KINETIC  CALCULATIONS  FOR  PLUG  FLOW CH./AIR  COMBUSTION AT  807»  STOICH AIR
                                             —4	

                                       T = 2097°K

Species
CH4
CO
C02
H
HO
H2
H20
N
NO
N02
0
°2

d(NO)
dt
Branching Zone
t = 0
11.6%
—
—
—
—
—
—
—
—
--
—
18.6%

—
35 y sec
14 ppm
9.4%
1.3%
1.2%
1.1%
2.3%
18.0%
_2
2.7 x 10 ppm
0.2 ppm
-4
10 ppm
0.4%
1.4%

32,000 ppm/sec
Relaxation Zone
600 \i sec
—
5.4%
5.7%
0.4%
0.2%
3.5%
18.3%
_2
1.0 x 10 ppm
4 . 8 ppm
10 ppm
0.02%
0.04%

1,600 ppm/sec
4.6 msec
—
5.3%
5.8%
0.07%
0.05%
3.5%
18.6%
1.6 x 10 ppm
5 . 7 ppm
10 ppm
0.0007%
0.002%

59 ppm/sec
Post-Flame Zone
10 msec
—
5.3%
5.8%
0.06%
0.04%
3.5%
18.6%
1.2 x 10 ppm
5 . 9 ppm
5 x 10 ppm
0.0004%
0.001%

36 ppm/sec
Note:  See Section 3-5 for discussion of "zones".

-------
                                          -  64  -
                                        TABLE  3-8




          KINETIC CALCULATIONS FOR PLUG FLOW  CH./AIR COMBUSTION AT  100% STOICH AIR




                                        T =  2222°K

Species
CH4
CO
C°2
H
HO
H2
H20
N
NO
N02
0
°2

d(NO)
dt
Branching Zone
t = 0
9.5%
—
—
—
—
—
—
—
—
—
—
19.0%

—
12 y sec
5 x 10~ ppm
7.7%
1.1%
2.0%
2.0%
2.0%
13.6%
0 . 11 ppm
1 . 4 ppm
0.0004 ppm
1.4%
4.1%

320,000 ppm/sec
Relaxation Zone
300 y sec
—
3.1%
6.1%
0.7%
1.1%
1.4%
16.1%
0.06 ppm
49 ppm
0.02 ppm
0.4%
1.9%

90,000 ppm/sec
.10 msec
—
1.0%
8.4%
0.06%
0.4%
0.4%
18.2%
0.02 ppm
200 ppm
0.04 ppm
0.03%
0.6%

7,000 ppm/sec
Post-Flame Zone
100 msec
—
0.8%
8.6%
0.04%
0.3%
0.3%
18.4%
0.01 ppm
550 ppm
0.09 ppm
0.02%
0.5%

3,700 ppm/sec
Note:  See Section 3.5 for discussion of "zones".

-------
                                           - 65 -
                                        TABLE 3-9




          KINETIC CALCULATIONS FOR  PLUG FLOW CH,/AIR COMBUSTION AT  1207, STOICH AIR
                              ——	—	4	



                                        T = 2044°K

Species
CH4
CO
co2
H
HO
H2
H20
N
NO
N02
0
°2

d(NO)
dt
Branching Zone
t = 0
8.0%
—
—
—
—
—
—
—
—
—
—
19.3%

—
12 y sec
8 ppm
6.7%
0.8%
1.6%
1.6%
1.3%
12.2%
0.02 ppm
0 . 3 ppm
—
1.5%
6.3%

85,000 ppm/sec
Relaxation Zone
900 u sec
. —
0.9%
7.1%
0.2%
0.7%
0.4%
15.1%
0.008 ppm
22 ppm
—
0.2%
3.6%

12,000 ppm/sec
40 msec
—
0.09%
7.9%
0.004%
0.2%
0.04%
15.9%
0.0009 ppm
86 ppm
—
0.02%
3.2%

1,000 ppm/sec
Post-Flame Zone
500 msec
—
0.08%
7.9%
0.004%
0.2%
0.04%
15.9%
0.0009
483 ppm
—
0.02%
3.2%

900 ppm/sec
Note:  See Section 3.5 for discussion of "zones".

-------
                                 - 66 -
     3.4.3  120% Stoichiometric Air

          At 120% Stoichiometric air (Table 3-9) the basic features of
the concentration profiles are the same as with lower air supply, except
that the N atom concentrations are lower and NO is produced more slowly.
At the 12 ysec point it can be seen that the concentrations of H, HO, and 0
are almost the same as in the 100% Stoichiometric air case, yet the N atom
concentration is lower by a factor of 5.  As will be discussed later,
N atoms are produced primarily by the reaction N£ + 0 	^ NO + N which
has a 75 kcal activation energy and, therefore, proceeds more slowly at
2044°K than it does at 2222°K.  By the same token, NO is produced more
slowly, and again its concentration is lower by a factor of 4 to 5 throughout.
If the temperature were increased to 2222°K, one might expect more rapid NO
formation at 120% Stoichiometric air than at 100% Stoichiometric air.
Indeed, this is observed experimentally (see Section 3.5).

 3.5   Discussion

           Theoretical calculations  based  on the  recommended  rates  from
 the  kinetics  survey of methane  combustion indicate  that,  at  all mixture
 ratios studied,  the combustion  process  under plug flow  conditions  can be
 divided into  three zones.   For  identification  and convenience, these zones
 will be called the branching  zone,  the  relaxation zone  and the post-flame
 zone.   The basic charapteristics  of each  zone  are as  follows:  (it should
 be noted that the reaction  times, provided  for reference would vary with the
 temperature profile.   The  features  discussed are valid  for the general
 combustion case.)

      (1)   The Branching Zone  (10-100 ysec duration  following  ignition
           delay,  if any):

           -  is the zone in which the hydrocarbon is  consumed.

           -  the hydrocarbon  goes primarily to CO and H20 although some
              C02  and  H2 are formed  in this zone.

           -  the  most important feature of this  zone  is that  the radical
              intermediates  such as  0, H,  HO, etc.,  build up  to extremely
              high concentrations  and N atoms are substantially in excess
              of  equilibrium although at low absolute  concentrations.

           -  the  individual intermediates  do not appear to reach maximum
              concentrations at precisely  the same time, but  the point at
              which methane  concentration  has reached  a  low level (on the
              order of 1 ppm)  coincides roughly with the peak  concentrations
              of  the intermediates.

           -   because  of the short times involved, the NO concentration at
              the  end  of the branching zone is quite low (on  the order of
              1 ppm) but the rate  of NO formation is at  its peak because
              of the high concentrations of the intermediates.

           -  while  very little NO is produced in this zone,  it is the high
              concentrations of intermediates which  set  the stage for rapid
             NO formation and, therefore,  the kinetic details of this zone
             are  extremely  important.

-------
                            - 67 -
(2)   The Relaxation Zone (5-50 msec duration):

     -  is the zone in which the concentrations of intermediates
        approach their ultimate values at the specified temperature.

     -  the end of this zone is more difficult to define because the
        approach to equilibrium is asymptotic.  However, the precise
        definition is not critical since it is an arbitrary
        separation to distinguish this zone from the post-flame
        zone in which intermediates have essentially reached
        equilibrium.  One possible definition of the end of the
        zone is the point at which intermediate concentrations
        (0, OH, H, N) have reached, e.g., 200% (or 150% or 110%)
        of their equilibrium values.  Another definition might
        involve the rate of change of concentration of these
        intermediates .

      -  in this zone, the rapid formation of NO  takes  place.
         However,  the stage has already been set  by the high
         concentrations of intermediates produced in the branching
         zone.

         the primary NO forming reactions in this zone, using  the
         preliminary rate survey, appear to be N£ + 0,  N + 02  and
         N + HO.  However, the concentrations of  these  species
         are not yet equilibrated in this zone.  Thus,  the rate of
         formation of NO can be substantially higher than that
         predicted by classical Zeldovich kinetics.

      -  even without "prompt NO" reactions, which may  involve
         nitrogeneous species other than atomic and molecular
         nitrogen, the high concentrations of intermediates do
         result in very rapid or "prompt" NO formation.

      -  it is still worth searching for "prompt  NO" reactions.
         The master set of 322 reactions includes several reactions
         for which rate data are currently unavailable.  An evaluation
         of the potential importance of each of the 322 reactions would
         provide a starting point for a further screening effort.
         With reasonable estimates for the resulting set, the screening
         framework would provide a basis for the evaluation of reactions
         of importance.

      -  the formation of N atoms in these calculation is found to
         result almost exclusively from the reaction N2 + 0 = NO + N.
         The destruction of N atoms is primarily through NO forming
         reactions N + 02 = NO + 0 and N + HO = NO + H.  Other N-forming
         reactions should be sought in the extension of this kinetics
         survey.

      -  the formation of 0 atoms is found to result almost exclusively
         from the reaction H + 02 = HO + 0.

-------
                              - 68 -
          the formation of H atoms is found to result, in good part,
          from the reaction CO + HO = C02 + H.  The destruction of H
          atoms occurs, in good part, through the reaction H + 02 =
          HO + 0.

       -  HO is formed in the H + 0? reaction and destroyed in CO + HO
          (although not exclusively).

       -  to summarize the nature of the rapid NO formation observed
          in kinetic calculations using the preliminary rate survey:

          +  the NO formed depends primarily on the concentrations of
             N and 0 atoms.

          4-  N atom formation depends on the 0 atom concentration
             through N£ + 0 = NO + N.  N atom destruction depends
             on HO + N = NO + H and N + 02 = NO + 0.

          +  0 atom formation depends on the H atom concentration
             through H + 02 = HO + 0.  0 atom destruction is
             primarily through reaction with CHO at the branching/
             equilibration interface and through reaction with
             ^0 at the equilibration/post flame interface.

          +  the H atom formation depends on the CO and HO concen-
             trations through CO + HO = CO, + H.  Destruction of
             H atoms occurs through recombination with HO and CHO
             and by the H + C>2 reaction.

          +  the initial concentrations of CO, HO, H and 0 in the
             equilibration zone are determined by reactions occurring
             in the branching zone.

     (3)  The Post-Flame Zone (50 usec and beyond):

          -  the concentrations of intermediates are either equilibrated,
             or nearly so, and the modified Zeldovich treatment (including
             steady state assumptions) is a good approximation of the
             behavior in this zone.

          The above observations lead one back to questions about a quasi-
global approach in which the hydrocarbon can partially oxidize in one step
and the intermediates can burn out in a detailed manner.  The behavior of
the hydrocarbon in the branching zone, at first glance, appears to be
quasi-global in nature.  Hydrocarbon reacts very rapidly to produce CO and
H20 before a substantial concentration of NO is produced.  However, in
addition to CO and ^0, the hydrocarbon disappearance results in the
appearance of high concentrations of other reactive intermediates.

          In the Fourteenth Symposium (International) on Combustion, a
paper by Engleman _et_ al. (3-3) demonstrated that while CO and H2 combustion
in a jet-stirred combustor could be modeled by detailed kinetics, a
quasi-global model for propane was not adequate to predict NO formation.
The global hydrocarbon step in that mechanism was
3-3  V. S. Engleman, W. Bartok, J. P. Longwell, and R. B. Edelman,
     Fourteenth Symposium (International) on Combustion, p. 755,
     The Combustion Institute (1973).

-------
                                 - 69 -
           (I)          HC + 02      >  CO + H2


The CO and H2 were  then  allowed  to  complete combustion by  a  detailed mech-
anxsm   It appears  from  detailed modeling that  the  global  hydrocarbon step
is actually

           (II)    HC + 02      >  CO + H20 + (reactive intermediates)
                                             (H, HO, H2,  0)

In global step I an approximation to the true picture is made by assuming
all the hydrogen in the hydrocarbon goes through H2, a species which can
participate actively in branching reactions.

          Thus, the quasi-global mechanism for hydrocarbon combustion
achieves an approximation of the overshoot of equilibrium by making the
assumption that the hydrocarbon is converted in one step to CO and H£
(see Appendix C).  The H2 then participates in branching reactions which
produce high concentrations of intermediates similar to those found in
detailed calculations.  However, detailed calculations indicate that the
actual mechanism produces high concentrations of active intermediates
while the hydrocarbon is converted  to CO and ^0 (see Tables 3-7, 3-8,
and 3-9 for species concentrations  at the end of the branching zone).
These calculations  indicate that the quasi-global mechanism does not
adequately predict  the overshoot.

3.6  Reactions of Importance at  the Interface
     Between the Branching Zone  and the Relaxation  Zone

           The interface between  the branching zone  and the relaxation
zone is an extremely important region from the standpoint of rapid formation
of NO in the flame  zone.  This interface has been defined in a previous
section as the location where certain combustion intermediates have reached
their peak concentrations.  Reactions of importance for formation and
destruction of these intermediates  and for NO will  be discussed in this
section.   It should be reiterated here (and will be discussed further in
the next section) that the events which occur within the branching zone
are very important  for the establishment of the high concentrations of
intermediates.  The screening that has been done thus far has been more
concerned with determining controlling reactions and less concerned with
the absolute magnitude of rate constants or the concentrations predicted
by the calculations.  However, the balance among the reactants, intermediates,
products has been of major concern, since the relative concentrations help
determine  the magnitude and direction of the individual reactions.

          At the end of the branching zone, NO is just barely starting
to form in ppm level concentrations.  At this point the concentrations
of intermediates are high and the rate of NO formation is at its peak.
It is instructive to consider some  of the important reactions at this point.
It should be emphasized that while  the comments in  this section are based
on detailed calculation using a  large number of reactions, not all possible
reactions have been included because rate information was unavailable in

-------
                                 - 70 -
some cases.  The inclusion of "prompt NO" reactions  in  these  calculations
could result in changes in the NO mechanism under  specific  conditions.*
Most of the observations discussed below, however, are  expected to be valid.

          At the point where carbon monoxide starts  to  be destroyed more
rapidly than it is being produced, the primary destruction  reaction is

                         CO + HO	> C02 + H

which accounts  for  70-80% of its destruction.  This  reaction  also produces
most of the H at this point although  within the  branching zone most of the
H  comes from hydrocarbon fragments.

          The H atoms, at this point, are being  destroyed by  the reaction


                          H + 0   •  »  HO + 0

which  accounts  for  40-50% of its destruction  and also produces essentially
all of  the  0  atoms.   H  is also  being destroyed  (25-30%) by
                        CO + H + M  	*•  CHO + M
 and (10-15%)  by
                         H + H20  —>•  HO +
           The 0 atoms, as indicated above are formed entirely* * by


                          H + 02  -	  »  HO + 0


 at the interface, and are destroyed (45-50%) by


                         CHO + 0  •*•••>  CO + HO


 and  (25-35%) by***


                          KLO + 0  —*-  HO -1- HO
 *    "Prompt NO" reactions,  in this context,  are those involving hydrocarbon
      fragments which result in production of N atoms; e.g. CH + N~ ->N.

 **   In the branching zone itself,  some 0 atoms are formed by HO + HO ->H-0 4- 0.

***  In  part  of  the branching zone  this reaction is  a  producer  of  oxygen  atoms.

-------
                                 - 71 -
          Based on calculations which do not consider the role of hydrocarbon
fragments in the production of N atoms, the following observations are noted.
While 0 atoms are extremely important for the production of NO, the NO
reactions are relatively unimportant in determining 0 atom concentrations.
NO reactions account for less than 1% of the total 0 atom production and
destruction.  The main NO-producing reaction at the interface is

                          N2 + 0 •- >-  NO  + N


 which produces about half of the NO and essentially  all of  the N  atoms.
 The reaction
                          N + 0   	>•  NO + 0
 produces 25-30% of the NO and the reaction


                          HO + N  -—».  H + NO
  produces about 20% of the NO at the interface.   It will  be  noted  that  all
  of the NO reactions also involve N atoms.   In fact the N atoms  are pro-
  duced and destroyed by these reactions almost exclusively.  More  than  99%
  of the N atoms are produced by
                             N2 + 0 = N + NO


  while about 60% of the N is destroyed by


                           N + 02  ——^  NO + 0


  and 40% is destroyed by


                           HO + N  "'  »•  H + NO

  Using only the reactions for which rate data are available, at one point
  within the branching zone as much as 25% of N atoms are destroyed by
  reactions with hydrocarbon fragments to produce CRN and CN.  These species
  do not react directly to produce NO, but produce either N atoms or N2
  molecules through subsequent reactions.  However, the main N atom reactions
  for production and destruction in these calculations were those involving NO.

-------
                                -  72 -
3.7  Comparison of Theoretical Calculations
     with Experimental Results	

          The comparisons between theoretical calculations discussed
in Section 3.4 and the experimental results discussed in Section  3 are
encouraging.  As expected, because of the artificial constraints  placed
on the temperature in the theoretical calculations, the NO levels for
the plug-flow simulation of the flat flame are somewhat overpredicted.
However, at this point it is not certain whether the overpredictions are
more a result of the high temperatures early in the calculations  or because
the rate constants used for NO formation reactions may be too high.  The
latter interpretation is favored by the fact that the theoretical
overprediction continues to be observed in the post-flame zone.   The
temperature profile used for reaction screening may have a less dramatic
effect than initially expected because the major portion of the reactions
involving heat release are completed before substantial NO has formed.

          The  theoretical-experimental comparisons under stoichiometric or
 excess  air  conditions are the closest.  Under fuel rich conditions, NO con-
 centrations  are underpredicted.  These underpredictions could be  caused by
 the  lack of  reactions between hydrocarbon fragments and molecular nitrogen,
 or the high  rate of disappearance of active oxygen-containing intermediates.
The  high rate  of disappearance of both hydrocarbon species and oxygen-
 containing  intermediates would be caused by the use of isothermal conditions
 in the  combustion  zone where experimentally the temperature is increasing
 from room temperature to  flame temperature.

          Under stoichiometric air conditions, plug flow calculations
overpredict experimentally measured concentrations of NO in the post-flame
zone by  about a factor of two.  Theoretical calculations indicate 700 ppm
at 150 msec while  only 350 ppm are measured; 1200 ppm are calculated at
300 msec while 600 ppm are measured.  In the post-flame zone the  rate of
NO formation between 200 and 500 msec is measured to be 1500 ppm/sec while
the calculated rate is about 3000 ppm/sec.  The comparison between theory
and experiment, on a preliminary basis, indicate that a reduction of the
NO formation rate  constants by a factor of two could bring theory in line
with experiment.  However, additional theoretical analysis is required
before such reductions may be considered permissible.

          A similar picture is obtained at 120 percent stoichiometric air.
Experimental measurements at 40 msec indicate concentrations in the 40-50
ppm range while calculations indicate about 90 ppm.  Measurements indicate
concentrations of about 170 ppm at 500 msec while calculations indicate
about 480 ppm.  The rate of NO formation is measured to be about  400 ppm/sec
between 300 and 500 msec while calculations indicate about 900 ppm/sec.

          Under fuel rich conditions experimental measurements indicate
a very rapid formation of NO in the flame zone and essentially a  zero
net formation rate thereafter.  Calculations indicate a similar behavior,
with essentially all the NO formed in the relaxation zone, and little or
none in the branching or post-flame zones.  However, the levels of NO formed
experimentally are much higher than those calculated in the screening

-------
                                -  73 -
studies.  This is likely to be caused, in part, by the overly rapid calculated
depletion of methane and oxygen in the branching zone because of the high
temperature assumed.  However, another possible explanation is because of
the lack of reactions involving hydrocarbons in NO formation in these
calculations.  This possibility will  be pursued further in Phase II of this
study.  Measured NO formation in the  flame zone is on the order of 60 ppm,
while the calculated value is on the  order of 6 ppm.

-------
                                - 74 -
                            4.  CONCLUSIONS


1.  The survey of 142 reactions appearing in the literature for 25
    species in the Clfy/air system resulted in recommended rates for
    127 reactions to be used for reaction screening.  Since 322 reactions
    could be postulated for these 25 species, additional attention is
    needed to determine if any of these additional reactions could be
    important.

2.  Reaction screening using only these 127 reactions or smaller subsets
    indicates that between 80% and 120% stoichiometric air for methane
    combustion:

    -  NO formation rate is controlled primarily by oxygen atom
       concentration.
    -  Oxygen atom concentrations are substantially above equilibrium
       in the branching zone before significant NO has formed.

    -  Oxygen atom concentrations have peaked before significant NO
       has formed.
    -  Oxygen atom concentration controls formation of N atoms which
       participate in NO reactions.  N atom destruction results in NO
       formation by N + OH and N + 0 .
    -  While reaction screening for the 127 reaction set has not uncovered
       reactions other than N£ + 0 which might produce N atoms in the
       branching zone, it is still worth pursuing the search for other
       N-forming reactions that might occur in the branching zone.  Such
       reactions might produce more substantial overshoots of N atom
       concentrations which could provide more rapid NO formation early
       in the flame zone.

3.  Reaction screening from the 127 reaction set has resulted in narrowing
    down the number of reactions that need be considered for NO formation
    under the conditions studied.  Caution must be exercised not to
    extrapolate these conclusions outside the range studied without
    rechecking the calculations under the new conditions.  Further
    screening will be required when other reactions from the 322 reaction
    set (25 species) are tested for importance.

4.  As additional reactions are studied or estimated the minimum set
    of reactions may change:

    -  The new reaction may be added to the set by itself if it
       provides a new path between two important intermediates
       (can affect any zone).

    -  The new reaction may result in the rapid destruction of an
       intermediate as it is formed, preventing overshoot from occurring.
       In that case the minimum set would be reduced by eliminating
       reactions of that intermediate (branching zone).

       The new reaction may result in rapid production of an intermediate
       in the branching zone and corresponding overshoot in its concentration.
       Thus, a new intermediate may play a role in NO formation - possibly
       HN, CHN or CN (branching zone).

-------
                                   75 -
5.  Premixed flat and focused flames as well as laminar and turbulent
    diffusion flames have been studied in the multiburner under both
    cold-and hot-wall conditons:

    -  The burners appeared to behave as idealized examples of the
       types they represented.  Concentrations and temperature profiles
       have been measured in these flames.

    -  Under certain conditions the curvature in NO formation
       (non-linear extrapolation back to the origin) could be measured.

6.  Comparisons of isothermal plug-flow calculations at the adiabatic
    flame temperature with experimental data indicate:

    -  NO formation is overpredicted by a factor of two in both the
       flame zone and post-flame zone for fuel-lean combustion and in
       the post-flame zone for stoichiometric air conditions.  NO formation
       is underpredicted for fuel rich combustion by an order of magnitude.

       +  Overprediction in the post flame zone under fuel lean conditions,
          where intermediates other than NO have reached essentially
          equilibrium concentrations, indicate that the controlling NO
          formation rate, N£ + 0 = NO + N, should be reduced by a factor
          of two.  (This reaction has a high activation energy and
          therefore temperature uncertainty must be taken into account.)

       +  The possible interaction between hydrocarbon species and
          nitrog'e'rious species should be investigated to determine their
          possible role under fuel-rich conditions.

    -  Extremely high concentration gradients are predicted by the plug
       flow calculations which do not include diffusion effects.  In a
       real system, such concentration gradients would be smoothed
       somewhat by diffusion.

    -  For the purpose of the present study that concerns itself with the
       chemistry of combustion and pollutant formation reactions,  it would
       be desirable to eliminate diffusion effects from the experimental
       system.  To achieve that goal, the development of an adiabatic
       sti-rr«d-combust-or is indicated.  Development of this combustor type
       which incorporates the principles of mixing in the jet-stirred
       combustor and adiabatic operation in the multiburner will be
       discussed in the report on Phase II of this contract study.

-------
                                A-l
                           APPENDIX A
1.
2*
3.
 •
4.
 5.
 6.
 8.

 9l
10.
  .
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A   *
A 11.
A   .
A   .
A 12.
A 13.
A   .
A 14.
A 15.
A 16.
A   .
A   .
A   .
A 17.
A   .
A
A
A
A
A
A
A 19.
A   .
A 20.
A
A
A
A
A
A
A
A 21.
A   .
A   .
A   .
A   .
A 23.
A 22.
  .
18.
  .
  .
  .
  .
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
4-
4-
4-
4-
4-
4-
+
4-
•f
4-
+
4-
+
4-
•f
+
+
+
+
+
•f
+
•«•
4-
+
-t-
+
4-
-f
4-
4-
+
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
+
+
4-
4-
4-
4-
4-
4-
4-
CHN
CHO
CH20
CH20
CH3
CH30
CH30
CH30
CH4
C02
H
HN
HN
HN
HNO
HNO
HNO
HNO
HNO
HO
HO
HO
HO
H02
H02
H02
H02
H02
H2
H2
H20
H20
H20
H20
H20
N
N
NO
NO
NO
NO
N02
N02
N02
N02
NO?
N2
N2
N20
N20
N20
0
0










4- M










4- M







4- M




4- M
4- M















4- M

REACTIONS FOR 2!
CH2
CH2
CHO
CH3
CH2
CHO
CH2
CH4
CH2
CHO
CH2
CHN
CH2
CN
CHN
CHO
CH2
CH20
CN
CHO
CH2
CH20
CO
CHO
CH2
CH20
CO
C02
CH2
CH3
CHO
CH2
CH20
CH3
CH30
CHN
CN
CHN
CHO
CN
CO
CHN
CHO
CN
CO
C02
CHN
CN
CHN
CHO
CN
CHO
CO
4-
+
4-
4-
•f
•f
4-
+
+
"f

4-
4-
•f
4-
4-
•f
4-
4-
+
•f

4-
4-
4-
-f
4-
4-
4-

4-
+
4-
4-


4-
4-
•f
4-
-f
4-
4-
4-
•f
4-
4-
4-
4-
+
4-

+
CN
CO
CH2
CO
CH2
CH3
CH20
CO
CH3
CO

H
N
H2
HO
HN
NO
N
H20
H
0

H2
HO
02
0
H20
H2
H

H2
HO
H
0


H
0
N
HO
HN
02
NO
H02
HNO
HN
N
HN
NO
N2
HNO

H










+ M










+ M







•f M




-t- M
+ M















4- M

H-0 EXCHANGE

0 TRANSFER
H TRANSFER
H-0 EXCHANGE
                                                N TRANSFER
                                                N TRANSFER
                                                0 TRANSFER

                                                (HO) TRANSFER
                                                H-N EXCHANGE
                                                (HO) ADDITION
                                                (HO) TRANSFER
                                                H-0 EXCHANGE
                                                C-H EXCHANGE

                                                (H2) ADDITION
                                                0 TRANSFER

                                                (HO) TRANSFER
                                                (H2) TRANSFER
                                                (H20) ADDITION
                                                N ADDITION

                                                N TRANSFER

                                                H-N EXCHANGE
                                                H-0 EXCHANGE
                                                N TRANSFER
                                                0 TRANSFER
                                                H-N EXCHANGE
                                                H-0 EXCHANGE
                                                C-N EXCHANGE

                                                H-N EXCHANGE
                                                N TRANSFER
                                                0 TRANSFER
                                                H-N EXCHANGE
                                                                      X
                                                                      X
                                                                      X
                                                                      X
                                                                      X
                                                                      X
                                                                      X
                                                                      X
                                                                      X
1
2
3
4
5
6
7
8
9
                     X 10
                     X 11
                     X 12
                     X 13
                     X 14
                     X 15
                     X 16
                     X 17
                     X 18
                     X 19
                     X 20
                     X 21
                     X 22
                     X 23
                     X 24
                     X 25
                     X 26
                     X 27
                     X 28
                     X 29
                     X 30
                     X 31
                     X 32
                     X 33
                     X 34
                     X 35
                     X 36
                     X 37
                     X 38
                     X 39
                     X 40
                     X 41
                     X 42
                     X 43
                     X 44
                     X 45
                     X 46
                     X 47
                     X 48
                     X 49
                     X 50
                     X 51
                     X 52
                     X 53

-------
                      A-2
MASTER LIST OF REACTIONS FOR 25 ALLOWED SPECIES
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
24.
25.
.
26.
27.
28.
.
29.
30.
.
31.
.
.
,
.
,
.
32.
.
.
*
.
.
.
.
»
.
33.
.
34.
.
.
35.
.
.
.
.
»
36.
,
37.
38.
.
.
39.
40.
.
.
.
41.
42.
43.
44.
CH
CH
CH
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHN
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
+ 02
+ 02
-t- 02

+ CHO
+ CH2
+ CH20
+ CH3
+ CO
+ H
+ H
+ HN
+ HNO
+ HNO
+ HO
+ HO
+ HO
+ HO
+ H02
+ H02
+ H02
+ H2
+ H2
+ H20
-»• H20
+ H20
+ H20
+ N
+ NO
+ NO
"»- N02
+ 0
4- 0
+ 0
+ 02
+ 02
+ 02
4- 02

-t- CHO
+ CHO
+ CH2
+ CH20
+ CH20
+ CH3
+ CH3
+ CH30
+ CH30
+ CH4
+ CH4
+ H
+ H
+ H
     + M
       M
=
=
3
=
=
=
S
E
=
=
=
=
=
=
=
3
=
S
=
=
=
=
=
£
=
=
=
s
=
=
=
=
s
=
=
=
=
=
=
=
=
=
s
=
=
=
=
s
=
s
=
=
=
CHO
CO
C02
CN
CH20
CH3
CH30
CH4
CHO
CH2
CN
CH2
CH2
CH20
CHO
CH2
CH20
CN
CHO
CH2
CH20
CH2
CH3
CH2
CH20
CH3
CH30
CN
CHO
CN
CHO
CHO
CN
CO
CHO
CN
CO
C02
CO
CH2
CH20
CH3
CH3
CH30
CH2
CH4
CH20
CH4
CH2
CH20
CH2
CH20
CO
4- 0
+ HO
+ H
+ H
+ CN
+ CN
+ CN
+ CN
+ CN
4- N
+ H2
-t-. ,\2
+ N20
+ N2
+ HN
+ NO
4- N
4- H20
+ HNO
4- N02
+ NO
+ HN
4- N
+ HNO
4- HN
+ NO
4- N
+ HN
+ N2
+ HNO
+ N20
•f N
+ HO
+ HN
+ NO
4- H02
+ HNO
-t- HN
+ H
+ C02
+ CO
+ CO
+ C02
+ CO
4- CH20
+ CO
+ CH20
4- C02
+ CH30
+ CH3
-t- 0

-t- H2
                           4- M
+ M
                                    C TRANSFER
                                    H TRANSFER
H-N EXCHANGE

H-N EXCHANGE
H-N EXCHANGE
N-(HO) EXCHANGE
N-0 EXCHANGE
H-N EXCHANGE
N-(HO) EXCHANGE

N-0 EXCHANGE
H-N EXCHANGE
N-(HO) EXCHANGE
H-N EXCHANGE
N-(H2) EXCHANGE
H-N EXCHANGE
N-(HO) EXCHANGE
N-(H2) EXCHANGE
CH TRANSFER

N-0 EXCHANGE

N-0 EXCHANGE
N-0 EXCHANGE

O-(HN) EXCHANGE
N-0 EXCHANGE
H TRANSFER
O-(HN) EXCHANGE
C TRANSFER

H-0 EXCHANGE
                                    H-0 EXCHANGE
                                    H TRANSFER
                                    H TRANSFER
                                    H-0 EXCHANGE
                                    H-0 EXCHANGE
                           4- M
X 54
X 55
X 56
X 57
X 58
X 59
X 60
X 61
X 62
X 63
X 64
X 65
X 66
X 67
X 68
X 69
X 70
X 71
X 72
X 73
X 74
X 75
X 76
X 77
X 78
X 79
X 80
X 81
X 82
X 83
X 84
X 85
X 86
X 87
X 88
X 89
X 90
X 91
X 92
X 93
X 94
X 95
X 96
X 97
X 98
X 99
X100
X101
X102
X103
X104
X105
X106

-------
                      A-3
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
*
*
*
*
45.
•
46*
47.
.
.
.
.
48.
.
.
*
49.
*
.
.
50.
.
51.
•
.
*
52.
.
.
.
.
.
53.
.
.
.
.
54.
.
.
55.
.
.
.
.
56.
.
.
57.
.
.
.
*
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CH2
CH2
CH2
CH2
CH2
CH2
CH2
CH2
CH2
CH2
CH2
CH2
CH2
CH2
CH2
CH2
CH2
CH2
CH2
CH2
CH2
CH2
CH2
+
+
+
+
•f
+
•+•
+
•*•
+
+
+
+
•f
+
+
•f
+
+
+
•f
+
+
+
+
•f
•f
+
+
4-
+
•f
•f
+
+
•f
•f
•f
+
+
+
•f
+
•f
+
•f
•f
+
•f
+
+
•f
•f
HN
HN
HN
HNO
HNO
HO
HO
HO
HO
H02
H02
H2
H2
H2
H2
H20
H20
H20
H20
N
N
NO
NO
NO
N02
N2
0
0
02
02
CH20
CH30
CH4
C02
H
HN
HNO
HNO
HNO
HO
HO
HO
H02
H02
H02
H2
H2
H20
H20
H20
H20
NO
N
MASTER LIST OF REACTIONS FOR 25 ALLOWED SPECIES
                                    H-0 EXCHANGE
                                    H TRANSFER
                                    N-(HO) EXCHANGE
                                    H-O EXCHANGE
                                    H-0 EXCHANGE
                                    H-O EXCHANGE
                                    H TRANSFER
                                    H-0 EXCHANGE
                                    H-0 EXCHANGE
     + M
     + M
       M
       M
=
=
s
=
=
s:
a
=
E
S
=
r
=
=
s
=
s
ss
=
=
=
=
=
=
s
=
sz
=
=
=
s
=
=
=
X
s
=
s
=
=
=
s
=
=
S5
s
s
r
=
s
c
3
=
CH?
CH20
CN
CH2
CH20
CH2
CH20
CO
C02
CH20
C02
CH2
CH20
CHS
CH30
CH2
CH20
CH3
CH30
CN
CO
CN
CO
C02
C02
CN
CO
C02
CO
C02
CH4
CH20
CH3
CH20
CHS
CHS
CH20
CHS
CH30
CH20
CHS
CH30
CH20
CHS
CH30
CH3
CH4
CH20
CH3
CH30
CH4
CH20
CN
+ NO
+ N
+ H20
+ N02
+ NO
+ 02
+ 0
+ H20
+ H2
+ 02
+ H20
+ HO
+ H
+ 0

+ H02
+ HO
+ 02
+ 0
+ HO
+ HN
+ H02
+ HNO
+ HN
+ HNO
+ HNO
+ HO
+ H
+ H02
+ HO
+ CO
+ CHS
+ CHS
+ CO

+ N
+ HN
+ NO
+ N
+ H
+ 0

+ HO
+ 02
+ 0
+ H

+ H2
+ HO
+ H
+ 0
+ N
+ H2
+ M
0-(H2) EXCHANGE
(H2) ADDITION
H-0 EXCHANGE

0-(H2) EXCHANGE
(H2) TRANSFER
N-(HO) EXCHANGE

N-(HO) EXCHANGE

H-0 EXCHANGE
H-0 EXCHANGE
N-(HO) EXCHANGE

H-0 EXCHANGE
H TRANSFER
H-0 EXCHANGE

-------
                      A-4
A
A .
A
A .
A .
A 58.
A .
A .
A .
A
A
A 59.
A991.
A .
A .
A .
A .
A 60.
A .
A .
A .
A .
A .
A .
A .
A .
A .
A .
A .
A .
A .
A 61.
A •
A
A 62.
A .
A 63.
A .
A 64.
A 65.
A .
A 66.
A .
A .
A .
A .
A992.
A .
A
A .
A
A .
A .
CH2
CH2
CH2
CH2
CH2
CH2
CH2
CH2
CH20
CH20
CH20
CH20
CH20
CH20
CH20
CH20
CH20
CH20
CH20
CH20
CH20
CH20
CH20
CH20
CH20
CH20
CH20
CH20
CH20
CH20
CH3
CH3
CH3
CH3
CH3
CH3
CH3
CH3
CH3
CH3
CH3
CH3
CH3
CH3
CH3
CH3
CH3
CH30
CH30
CH30
CH30
CH30
CH30
+ NO
+ N02
+ N20
+ 0
+ 0
+ 02
+ 02
+ 02

+ CH20
+ CH4
+ H
+ H
+ HN
+ HN
+ HNO
+ HNO
+ HO
+ HO
+ H02
+ H2
+ H2
+ H2
+ H20
+ H20
+ H20
+ N
+ 0
+ 0
+ 02
+ C02
+ H
+ HN
+ HNO
+ HNO
+ HO
+ HO
+ H02
+ HO?
+ H2
+ H20
+ H20
+ NO
+ N02
+ N20
+ 0
+ 02
+ H
+ HN
+ HNO
+ HO
+ H2
+ H20
MASTER LIST OF REACTIONS  FOR  25  ALLOWED  SPECIES
N-1H2) EXCHANGE
0 TRANSFER
0 TRANSFER
0 ADDITION
0-(H2) EXCHANGE
     -f M
     + M
     + M
     + M
     + M
=
=
=
=
=
=
-
=
=
=
=
=
:=
a
=
a
=
=
=
=
=
=
=
=
=
s;
=
a
=
=
=
=
3
=
=
3
=
S
£
=
=
a
s
=:
s
s
=
a
=
=
=
=
=
CN
CH20
CH20
CH20
CO
CH20
CO
C02
CO
CH4
CHS
CH3
CH30
CHS
CH30
CH3
CH30
CH3
CH30
CH30
CH3
CH30
CH4
CH3
CH30
CH4
CN
CO
C02
C02
CH30
CH4
CH4
CH30
CH4
CH30
CH4
CH30
CH4
CH4
CH30
CH4
CH30
CH30
CH30
CH30
CH30
CH4
CH4
CH4
CH4
CH4
CH4
+ H20
+ NO
+ N2

+ H2
+ 0
+ H20
+ H2
+ H2
+ C02
+ CH30
+ 0

+ NO
+ N
+ N02
+ NO
i- 02
+ 0
+ 02
+ HO
+ H
+ 0
-I- H02
+ HO
+ 02
+ H20
+ H20
+ H2
+ H20
+ CO

+ N
+ HN
+ NO
* H
+ 0
+ HO
+ 02
+ H
-I- H2
+ HO
+ N
+ NO
+ N2

+ 0
+ 0
+ NO
+ N02
+ 02
+ HO
+ H02
  M
+ M
+ M
  M
0-(H2! EXCHANGE
C TRANSFER
(H2) ELIMINATION

-------
                      A-5
MASTER LIST OF REACTIONS FOR 25 ALLOWED SPECIES
A •
A t
A .
A 67.
A *
A .
A993.
A 68.
A .
A 69.
A 70.
A 71.
A 72.
A 73.
A 74.
A 75.
A 77.
A 78.
A 79.
A 80.
A 81.
A 82.
A
A 83.
A 84.
A 85.
A 86*
A 87.
A 88.
A 89.
A 90.
A 92.
A 91.
A .
A 93.
A 94.
A .
A 95.
A 96.
A 97.
A 98.
A 99.
A100.
A101.
A102.
A .
A .
A103.
A104.
A .
A .
A .
A
CN
CN
CN
CN
CN
CN
CN
CN
CN
CO
CO
CO
CO
CO
CO
CO
CO
CO
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
HN
HN
HN
HN
HN
HN
HN
HN
HN
+ HO
+ H02
+ HO?
+ NO
+ N02
+ NO?
4- 0
4- 02
4- 02
+ HNO
+ HO
+ HO?
+ H20
4- NO
4- N02
+ N20
4- 0
-t- 02
4- H
4- HN
+ HNO
+ HNO
4- HNO
+ HO
+ HO
+ H02
+ H02
+ H02
4- H20
4- N
+ NO
4- NO
+ NO
4- N02
+ N02
4- NO?
* N02
+ N2
4- N20
4- N20
-f- N20
4- 0
+ 02
-t- 02
4- HN
4- HNO
-t- HNO
4- HO
4- HO
4- H02
4- H02
4- H02
4- H20
     + M
       M
     + M
     + M
     + M
a
a
s
a
=
a
=
s
=
s
=
s
=
=
=
s
=
a
X
=
s
3
=
=
=
S
a
s
a
s
s
=
=
s
=
=
^
=
Si
=
y
=
s
=
s
=
=
=
c
s:
=
s
=
CO
CO
C02
CO
CO
C02
CO
CO
C02
C02
C02
C02
C02
C02
C02
C02
C02
C02
H2
H2
HN
H2
H20
H2
H20
HO
H2
H20
HO
HN
HN
HNO
HO
HN
HNO
HO
H02
HN
HN
HNO
HO
HO
HO
H02
H2
H2
H20
H2
H20
HNO
H2
H20
HNO
-I- HN
+ HNO
+ HN
+ N2
+ N20
* N2
.+ N
+ NO
+ N
+ HN
+ H
+ HO
+ H2
4- N
4- NO
+ N2

4- 0

+ N
+ HO
4- NO
4- N
4- 0

4- HO
4- 02
4- 0
4- H2

4- 0

4- N
4- 02
4- 0
4- NO
4- N
4- N
4- NO
4- N
4- N2

4- 0

4- N2
4- N20
4- N2
4- NO
4- N
4- HO
4- N02
4- NO
4- H2
















4- M

4- M





4- M




4- M

4- M









4- M

4- M









                                    N-0 EXCHANGE
                                    N-0 EXCHANGE
                                    C-H EXCHANGE

                                    N-0 EXCHANGE
                                    C-N EXCHANGE
                                    N-0 EXCHANGE

                                    C TRANSFER
                                    H-N EXCHANGE
                                    N TRANSFER
                                    H-N EXCHANGE
                                    H-N EXCHANGE
                                    H-N EXCHANGE
                                    0 TRANSFER
                                    H-N EXCHANGE
                                    H-0 EXCHANGE
                                    0 TRANSFER
X213
X214
X215
X216
X217
X218
X219
X220
X221
X222
X223
X224
X225
X226
X227
X228
X229
X230
X231
X232
X233
X234
X235
X236
X237
X238
X239
X240
X241
X242
X243
X244
X245
X246
X247
X248
X249
X250
X251
X252
X253
X254
X255
X256
X257
X258
X259
X260
X261
X262
X263
X264
X265

-------
                      A-6
A105.
A
A106.
A
A
A107.
A109.
A108.
A110.
A .
Alll.
A112.
A .
A
A113.
A .
A t
All*.
A .
A .
A115.
A .
A .
A
A116.
A117.
A118.
A .
A119.
A120.
A .
A121.
A122.
A .
A123.
A .
A *
A .
A124.
A125.
A126.
A127.
A129.
A130.
A131.
A132.
A133.
A .
A134.
A135.
A136.
A137.
A138.
HN
HN
HN
HN
HN
HN
HN
HN
HN
HN
HN
HNO
HNO
HNO
HNO
HNO
HNO
HNO
HNO
HNO
HNO
HNO
HNO
HNO
HO
HO
HO
HO
HO
HO
HO
HO
HO
H2
H2
H2
H2
H2
N
N
N
N
N
N
N
N
N
N
NO
NO
NO
NO
NO
+ NO
+ NO
+ NO?
+ N02
+ N02
+ N20
+ 0
+ 0
+ 02
+ 02
+ 02

+ HNO
4- HO
+ HO
+ H02
+ N
+ NO
4- NO
+ N02
4- 0
+ 0
+ 02
+ 02
+ HO
4- HO
+ H02
+ H20
+ NO
+ N02
+ N20
+ 0
+ 02
4- NO
-i- N02
+ N20
+ 0
+ 02
+ N
+ NO
+ NO
+ N02
+ N02
+ N02
+ N20
+ 0
4- 02
+ 02
+ NO
4- NO
4- N02
+ N20
+ 0






4- M




4- M



















4- M




4- M

4- M

4- M




4- M

4- M




4- M
MASTER LIST OF REACTIONS  FOR  25  ALLOWED SPECIES
                                     H-N EXCHANGE

                                     N-0 EXCHANGE
                                     H-N EXCHANGE
HNO
HO
HNO
HO
H02
HNO
HNO
HO
HNO
HO
H02
HO
H20
H2
H20
H20
HO
HO
H02
H02
HO
H02
HO
H02
H2
H20
H20
H02
H02
H02
H02
H02
H02
H20
H20
H20
H20
H20
N2
N2
N20
NO
N2
N20
NO
NO
NO
N02
N2
N20
N20
N02
N02
-i- N
+ N2
+ NO
+ N20
+ N2
-t- N2

4- N
-t- 0
+ NO
+ N
•+• N
+ N20
-t- N02
4- NO
* N02
+ N2
+ N20
+ N2
+ N20
+ NO
+ N
4- N02
+ NO
+ 02
4- 0
+ 02
+ H2
4- N
+ NO
+ N2

+ 0
4- N
4- NO
+ N2

t- 0

4- 0

-»• NO
+ 02
+ 0
+ N2

+ 0

4- 02
4- 0
-i- 02
-»• N2

                           + M
                           4- M
                           4- M
                             M
                           4- M
                             M
                           -»•  M
                                     H-0  EXCHANGE
                                    H-N  EXCHANGE
                                    H-0  EXCHANGE

                                    H-0  EXCHANGE
                                    N TRANSFER

                                    N-0  EXCHANGE
                                    H-N  EXCHANGE

                                    N-0  EXCHANGE
                                    H-0  EXCHANGE
                                    H TRANSFER
                                    H-0 EXCHANGE
                                    0 TRANSFER
0 TRANSFER

0 TRANSFER
(H2> ADDITION
0 TRANSFER
N ADDITION
 X266
 X267
 X268
 X269
 X270
 X271
 X272
 X273
 X274
 X275
 X276
 X277
 X278
 X279
 X280
 X281
 X282
 X283
 X284
 X285
 X286
 X287
 X288
 X289
 X290
 X291
 X292
 X293
 X294
 X295
 X296
 X297
 X298
 X299
 X300
 X301
 X302
 X303
 X304
 X305
 X306
X307
X308
X309
X310
X311
X312
X313
X314
X315
X316
X317
X318

-------
                      A-7
A139t  NO   + 02
A140.  N2   -i-O    + M
A141.  N2   + 02
A142.  0    +0    + M
MASTER LIST OF REACTIONS  FOR  25  ALLOWED SPECIES

                       0
= NO?
= N20         + M
= N20  + 0
= 02          + M
X319
X320
X321
X322

-------
                                  B-l
                              APPENPIX B
                CROSS-INDEX OF REACTIONS FOR 25 SPECIES
          As an aid to seeking competitive reactions between the same
species or reactions between a given species and competitive partners,
a complete sorting of the reactions for each species is provided in
this section.  For example, if one were seeking reactions to break the
NsN bond in molecular nitrogen, all the reactions of N2 are listed to-
gether.  If one were seeking reactions to produce N atoms, all the
reactions involving N atoms are listed together.  These lists are also
useful in determining the probable relative importance of competing
reactions as well as determining whether the relative rates used for
competing reactions are reasonable.

          The species covered in this Appendix are:

                      CH                     HN

                      CHN                    HNO
                      CHO                    HO

                      CH2                    HO 2

                      CH2°                   H2
                      CH3                    H20
                      CH 0                   N
                      CH4                    NO

                      CN                     NO
                      CO                     N
                      H                      0

                                             0,

-------
B-2
REACTI
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
ONS OF CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
4-
4-
4-
4-
4-
+
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
CHN
CHO
CH20
CH20
CH3
CH30
CH30
CH30
CH4
C02
H 4- M
HN
HN
HN
HNO
HNO
HNO
HNO
HNO
HO
HO
HO 4- M
HO
H02
H02
= CH2
= CH2
= CHO
= CH3
= CH2
= CHO
= CH2
= CH4
= CH2
= CHO
» CH2
= CHN
= CH2
= CN
= CHN
« CHO
= CH2
= CH20
= CN
= CHO
= CH2
= CH20
= CO
= CHO
= CH2
+ CN
+ CO
+ CH2
4- CO
+ CH2
+ CH3
* CH20
+ CO
* CH3
+ CO

+ H
* N
* H2
4- HO
4- HN
+ NO
+ N
+ H20
4- H
4- 0

* H2
+ HO
* 02
                             M
                          4-  M

-------
                    B-3
REACTIONS OF CH




A 26.  CH   + H02          = CH20 «• 0




A 27.  CH   + H02          = CO   + H20




A 28.  CH   + H02          » C02  + H2




A 29.  CH   •»• H2           = CH2  + H




A 30.  CH   + H2   + M     * CH3         * M




A 31.  CH   + H20          « CHO  + H2




A 32.  CH   + H20          « CH2  * HO




A 33.  CH   + H20          = CH20 * H




A 34.  CH   * H20          = CH3  + 0




A 35.  CH   + H20  * M     = CH30        «• M




A 36.  CH   + N    + M     = CHN         + M




A 37.  CH   + N            = CM   + H




A 38.  CH   + NO           » CHN  •*• 0




A 39.  CH   + NO           = CHO  + N




A 40.  CH   + NO           = CN   + HO




A 41.  CH   + NO           « CO   + HN




A 42.  CH   + N02          « CHN  * 02



A 43.  CH   + N02          « CHO  + NO




A 44.  CH   + ,N02          = CN   + H02




A 45.  CH   + N02          = CO   + HNO




A 46.  CH   •»• N02          » C02  + HN




A 47.  CH   + N2           « CHN  * N




A 48.  CH   * N2           = CN   + HN




A 49.  CH   + N20          = CHN  + NO




A 50.  CH   + N20          = CHO  + N2

-------
                    B-4
REACTIONS OF CH




A 51.  CH   + N20          » CM   + HNO




A 52.  CH   + 0    + M     = CHO         «• M




A 53.  CH   + 0            » CO   * H




A 54.  CH   + 02           = CHO  * 0




A 55.  CH   + 02           'CO   * HO




A 56.  CH   + 02           = C02  + H

-------
                     B-5
REACTIONS  OF  CHM




C 36.  CHN         + M




A 57.  CHN         + M




B  1.  CHN 4- CH




A 58.  CHN * CHO




A 59.  CHN * CH2




A 60.  CHN + CH20




A 61.  CHN 4- CH3




A 62.  CHN + CO




C 12.  CHN 4- H




A 63.  CHN 4- H




A 64.  CHN + H




A 65.  CHN 4- HN




A 66.  CHN * HNO




A 67.  CHN + HNO




C 15.  CHN 4- HO




A 68.  CHN 4- HO




A 69.  CHN * HO




A 70.  CHN 4 HO




A 71.  CHN 4- HO




A 72.  CHN * H02




A 73.  CHN 4- H02




A 74.  CHN 4- H02




A 75.  CHN 4- H2




A 76.  CHN 4- H2




A 77.  CHN 4 H20
CH   +  N




CN   +  H




CH2  *  CN




CH20 4-  CN




CH3  +  CN




CH30 +  CN




CH4  +  CN




CHO  4-  CN




CH   -f  HN




CH2  *  N




CN   4-  H2




CH2  4-  N2




CH2  4-  N20




CH20 4-  N2




CH   4-  HNO




CHO  4-  HN




CH2  4-  NO




CH20 4-  N




CN   4  H20




CHO  4-  HNO




CH2  4-  N02




CH20 +  NO




CH2  4  HN




CH3  *  N




CH2  4-  HNO
4- M




4- M

-------
                    B-6
REACTIONS OF CHN




A 78.  CHN  + H20          = CH20 * HN




A 79.  CHN  + H20          = CH3  + NO




A 80.  CHN  + H20          = CH30 + N




C 47.  CHN  + N            = CH   + N2




A 81.  CHN  + N            = CN   + HN




C 49.  CHN  + NO           = CH   * N20




A 82.  CHN  + NO           = CHO  + N2




A 83.  CHN  + NO           = CM   + HNO




A 84.  CHN  + N02          = CHO  + N20




C 38.  CHN  +0            = CH   + NO




A 85.  CHN  +0            = CHO  + N




A 86.  CHN  -i-O            = CN   + HO




A 87.  CHN  +0            = CO   + HN




C 42.  CHN  +02           = CH   + N02




A 88.  CHN  + 02           = CHO  + NO




A 89.  CHN  +02           = CN   + H02




A 90.  CHN  +02           = CO   + HNO




A 91.  CHN  +02           = C02  + HN

-------
B-7
REACTI
C 52.
A 92.
B 2.
B 58.
A 93.
A 94.
C 3.
A 95.
A 96.
A 97.
C 6.
A 98.
A 99.
A100.
A101.
A102.
A103.
C 62.
C 10.
C 20.
A104.
A105.
A106.
C 16.
C 68.
ONS OF C
CHO
CHO
CHO +
CHO +
CHO +
CHO +
CHO +
CHO +
CHO +
CHO +
CHO +
CHO +
CHO +
CHO +
CHO +
CHD «•
CHO +
CHO +
CHO +
CHO +
CHO +
CHO +
CHO +
CHO +
CHO +
HO
+ M
+ M
CH
CHN
CHO
CHO
CH2
CH2
CH20
CH20
CH3
CH3
CH3
CH30
CH30
CH*
CH4
CN
CO
H
H
H + M
H
HN
HN

= CH
= CO
= CH2
= CH20
= CH2
= CH20
* CH
= CH3
= CH3
= CH30
= CH
= CH2
- CH4
» CH20
= CH4
= CH2
= CH20
= CHN
* CH
- CH
« CH2
= CH20
= CO
* CH
= CHN

* 0
+ H
+ CO
* CM
* C02
+ CO
+ CH20
+ CO
* C02
+ CO
* CH30
+ CH20
+ CO
+ CH20
+ C02
•»• CH30
+ CH3
* CO
* C02
+ HO
* 0

+ H2
+ HNO
+ HO
                         M




                         M
                         M

-------
REACTIONS OF CHO
                    B-8
A107.
A108.
A109.
C 72.
A110.
Alii.
C 24.
A112.
A113.
All*.
A115.
A116.
A117.
C 31.
A118.
A119.
A120.
A121.
A122.
A123.
A124.
A125.
C 39.
C 85.
A126.
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHD
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
CHO
-t- HN
+ HN
* HN
+ HNO
+ HNO
+ HNO
+ HO
+ HO
+ HO
+ HO
+ HO
+ H02
+ H02
+ H2
+ H2
+ H2
+ H2
-»• H2 + M
+ H20
+ H20
+ H20
+ H20
•»• N
* N
+ N
= CH2
= CH20
= CN
= CHN
= CH2
= CH20
= CH
= CH2
= CH20
= CO
= C02
= CH20
= C02
= CH
= CH2
= CH20
= CH3
= CH30
= CH2
= CH20
» CH3
= CH30
= CH
= CHN
= CN
+ NO
+ N
+ H20
+ H02
+ N02
•»• NO
+ H02
+ 02
+ 0
+ H20
•f H2
+ 02
-»• H20
+ H20
••- HO
* H
+ 0

+ H02
+ HO
•»• 02
+ 0
+ NO
•»• 0
+ HO
                                            M

-------
                    B-9
REACTIONS OF CHO




A127.  CHO  + N            = CO   •»> HN




C 43.  CHO  + NO           = CH   + N02




C 88.  CHO  + NO           = CHN S- 02




A128.  CHO  * NO           = CN   + H02




A129.  CHO  + NO           » CO   + HNO




A130.  CHO  + NO           = C02  •*• HN




A131.  CHO  + N02          « C02  * HNO




C 50.  CHO  * N2           = CH   + N20




C 82.  CHD  + N2           « CHN  + NO




A132.  CHO  * N2           = CN   + HNO




C 84.  CHO  * ,M20          « CHN  + N02




C 54.  CHO  +0            = CH   + 02




A133.  CHO  * 0            « CO   + HO




A134.  CHO  * 0            = C02  + H




A135.  CHO  -1-02           = CO   * H02




A136.  CHO  +02           = C02  + HO

-------
B-10
REACTIONS OF CH2




C 11.  CH2




B 59.  CH2




D  3.  CH2




B 95.  CH2




C  5.  CH2




C  7.  CH2




C 98.  CH2




A137.  CH2




C  9.  CH2




C102.  CH2




A138.  CH2




A139.  CH2




C  1.  CH2




C  2.  CH2




C



A




C 29.  CH2




A1<»1.  CH2




C 75.  CH2




A142.  CH2




C 77.  CH2




A143.  CH2




A144.  CH2




A145.  CH2




C 32.  CH2  +• HO

4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
+
4-
4-
4-
4-
4-
4-
4-
4-
4- M
CHN
CHO
CHO
CH2
CH20
CH20
CH20
CH3
CH30
CH30
CH4
CN
CO
C02
C02
H
H * M
HN
HN
HNO
HNO
HNO
HNO
HO
= CH
= CH3
- CH
« CH3
= CH
= CH
= CHO
= CH4
= CH
= CHO
= CH20
= CH3
= CH
= CH
= CHO
= CH20
= CH
= CH3
= CHN
= CH3
= CHN
= CH20
= CH3
= CH30
= CH
4-
4-
4-
4-
4-
+
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-

4-
4-
4-
4-
4-
4-
4-
H
CN
CH20
CO
CH3
CH30
CH3
CO
CH4
CH4
CH3
CH3
CHN
CHO
CHO
CO
H2

H2
N
H20
HN
NO
N
H20
                       M
                       M

-------
                     B-ll
REACTIONS OF CH2




C118.  CH2  4-  HO




A146.  CH2  4-  HO




A147.  CH2  +  HO




A148.  CH2  4-  HO




C122.  CH2  4-  H02




A149.  CH2  4-  H02




A150.  CH2  +  H02




A151.  CH2  4-  H02




A152.  CH2  4-  H2




A153.  CH2  4-  H2




A154.  CH2  4-  H20




A155.  CH2  4-  H20




A156.  CH2  +  H20




A157.  CH2  *  H20




C 13.  CH2  +  N




C 63.  CH2  4-  N




A158.  CH2  4-  N




C 17.  CH2  4-  NO




C 69.  CH2  4-  NO




C107.  CH2  +  NO




A159.  CH2  4-  NO




A160.  CH2  4-  NO




C 73.  CH2  4-  N02




CHO.  CH2  4-  N02




A161.  CH2  4-  N02
        = CHO  4- H2




        = CH20 4- H




        = CH3  + 0




4- M     = CH3D        4-  M




        = CHO  4- H20




        = CH20 4- HO




        = CH3  4- 02




        = CH30 4- 0




        = CH3  4- H




4- M     = CH4         +  M




        = CH20 4- H2




        = CH3  4- HO




        = CH30 4- H




        = CH4  4- 0




        = CH   4- HN




        = CHN  4- H




        = CN   * H2




        = CH   4- HNO




        = CHN  4- HO




        = CHO  4 HN




        = CH20 4 N




        = CN   * H20




        = CHN  * H02




        = CHO  4- HNO




        = CH20 4 NO

-------
B-12
REACTIONS OF CH2




C 65.  CH2  •*• N2




C 66.  CH2  + N20




A162.  CH2  + NI20




C 21.  CH2  + 0




C104.  CH2  «• 0




A163.  CH2  +0




A164.  CH2  + 0




C 25.  CH2  + 02




C112.  CH2  + 02




A165.  CH2  + 02




A166.  CH2  + 02




A167.  CH2  + 02
M
CHN  + HM




CHN  + HNO




CH20 + N2




CH   •«• HO




CHO  + H




CH20




CD   * H2




CH   •»• H02




CHO  •»• HO




CH20 -»• 0




CO   -»- H20




C02  + H2
M

-------
                     B-13
REACTIONS OF CH20



C 22.  CH20



C105.  CH20



C163.  CH20



A168.  CH20



B  3.  CH20



B  4.  CH20



B 60.  CH20



B 96.  CH20



B 97.  CH20



0  7.  CH20



0 98.  CH20



B137.  CH20



C100.  CH20



A169.  CH20



C103.  CH20



C138.  CH20



A170.  CH20



C 58.  CH20



C 94.  CH20



C140.  CH20



C 33.  CH20



C119.  CH20 + H



C146.  CH20



A171.  CH20



A172.  CH20
+• M
+ M
4- M
+ M
+ CH
+ CH
* CHN
+ CHO
* CHO
+ CH2
+ CH2
+ CH2
+ CH20
4- CH20
* CH3
+ CH3
* CH4
+ CN
4- CO
+ CO
* H
4- H
4- H
4- H
4- H + M
= CH
= CHO
= CH2
= CO
= CHO
= CH3
= CH30
= CH3
= CH30
= CH
» CHO
- CH4
= CHO
= CH4
= CHO
= CH2
= CH3
= CHN
= CHO
= CH2
= CH
= CHO
= CH2
» CH3
= CH30
*
4-
4-
4-
*
*
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
*
4-

HO
H
0
H2
CH2
CO
CN
C02
CO
CH30
CH3
CO
CH30
C02
CH4
CH30
CH30
CHO
CHO
C02
H20
H2
HO
0

4- M
+ M
4- M
* M




















4- M

-------
                     B-14
REACTIONS OF CH20




C 78.  CH20 + HN




C143.  CH20 + HN




A173.  CH20 + HN




A174.  CH20 * HN




A175.  CH20 + HNO



A176.  CH20 + HNO




C123.  CH20 + HO




C149.  CH20 + HO




A177.  CH20 + HO




A178.  CH20 + HO




A179.  CH20 + H02




C154.  CH20 + H2




A180.  CH20 + H2




A181.  CH20 + H2




A182.  CH20 «• H2




A183.  CH20 * H20



A184.  CH20 * H20




A185.  CH20 * H20




C 18.  CH20 + N




C 70.  CH20 + N




C108.  CH20 * N




C159.  CH20 + N




A186.  CH20 + N




C 74.  CH20 •»• NO




Clll.  CH20 + NO
= CHN  + H20




= CH2  * HNO




= CH3  + NO




= CH30 * N




= CH3  + N02




= CH30 + NO




» CHO  + H20




= CH2  + H02




= CH3  + 02




= CH30 * 0




= CH30 * 02




= CH2  + H20




= CH3  * HO




« CH30 * H




= CH4  •«• 0




= CH3  * H02




= CH30 + HO




= CH4  * 02




= CH   + HNO




= CHN  + HO




= CHO  + HN




= CH2  + NO




= CN   * H20




= CHN  + H02




= CHO  •»• HMO

-------
                     B-15







REACTIONS OF CH20




C161.  CH20 + NO           = CH2  * N02




C 67.  CH20 + N2           = CHN  * HNO




C162.  CH20 * N2           = CH2  * N20




C 26.  CH20 +0            = CH   + H02




C113.  CH20 +0            = CHO  «• HO




C165.  CH20 +0            = CH2  + 02




A187.  CH20 +0            = CO   * H20




A188.  CH20 +0            = C02  + H2




C116.  CH20 +02           = CHO  + H02




A189.  CH20 +02           = C02  + H20

-------
                     B-16
REACTIONS OF CH3




C 30.  CHS




C141.  CH3




B  5.  CH3




B 61.  CH3




D  6.  CH3



B 98.  CH3




B 99.  CH3




D  9.  CH3




0103.  CH3




D138.  CH3




C139.  CH3




C170.  CH3




C 59.  CH3




C  4.  CH3




C 95.  CH3




C 96.  CH3




A190.  CH3




C152.  CH3  +• H




A191.  CH3




A192.  CH3  * HN




A193.  CH3




A194.  CH3




C155.  CH3  -»• HO




C180.  CH3




A195.  CH3


4-
4-
4-
-f
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4- M
4- M
CH
CHN
CHO
CHO
CHO
CH2
CH20
CH20
CH3
CH30
CN
CO
CO
C02
C02
H
H + M
HN
HNO
HNO
HO
HO
HO
= CH
= CH2
= CH2
» CH4
= CH
= CH2
= CH4
= CH
= CHO
= CH2
= CH2
= CH20
» CHN
= CH
» CHO
= CHO
= CH30
= CH2
= CH4
« CH4
* CH30
= CH4
= CH2
» CH20
= CH30
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-

4-
4-
4-
4-
4-
4-
H2 + M
H + M
CH2
CN
CH30
CH20
CO
CH4
CH4
CH30
CH4
CH4
CH2
CH20
CH2
CH20
CO
H2
4- M
N
HN
NO
H20
H2
H

-------
                      B-17
REACTIONS OF CH3




A196.  CH3  4- HO




C183.  CH3  4- H02




A197.  CH3  + H02




A198.  CH3  4- H02




A199.  CH3  4- H2




A200.  CH3  + H20




A201.  CH3  + H20



C 76.  CH3  4- N




C142.  CH3  4- N




C 79.  CH3  * NO




C144.  CH3  4- NO




C173.  CH3  4- NO




A202.  CH3  4- NO




C175.  CH3  4- N02




A203.  CH3  4- N02




A204.  CH3  4- N20




C 34.  CH3  * 0




C120.  CH3  4- 0




C147.  CH3  4- 0




C171.  CH3  * 0




A205.  CH3  4- 0




C124.  CH3  + 02




C150.  CH3  * 02




C177.  CH3  4- 02




A206.  CH3  + 02
CH4  + 0




CH20 + H20




CH30 + HO




CH4  + 02




CH4  + H




CH30 + H2




CH4  •«• HO




CHN  4- H2




CH2  4- H.M




CHN  4- H20




CH2  4- HNO




CH20 4- HN




CH30 4- N




CH20 4- HNO




CH30 + NO




CH30 4- N2




CH   + H20




CHO  4- H2




CH2  4- HO




CH20 * H




CH30




CHO  4- H20




CH2  4- H02




CH20 4- HO




CH30 4- 0

-------
                     B-18
REACTIONS OF CH30




C 35.  CH30




C121.  CH30




C148.  CH30




C172.  CH30




C205.  CH30




B  6.  CH30 * CH




B  7.  CH30




B  8.  CH30 4- CH




B100.  CH30




B101.  CH30




D102.  CH30




B138.  CH30




D170.  CH30




C 60.  CH30




C 97.  CH30




C190.  CH30




C156.  CH30




C181.  CH30 4- H




C195.  CH30




A207.  CH30




C193.  CH30




A208.  CH30




A209.  CH30




C184.  CH30




C197.  CH30
+ M
4- M
+ M
4- M
4- M
4- CH
+ CH
+ CH
4- CHO
+ CHO
4- CH2
+ CH2
4- CH3
4- CN
4- CO
4- CO
4- H
4- H
4- H
4- H
4- HN
4- HN
4- HNO
4- HO
4- HO
= CH
» CHO
= CH2
= CH20
= CH3
= CHO
= CH2
= CH4
= CH20
= CH4
= CHO
» CH20
= CH20
= CHN
= CHO
= CH3
= CH2
» CH20
= CH3
= CH4
= CH3
= CH4
= CH4
= CH20
= CH3
4- H20 +
4- H2 4-
4- HO +
4- H +
4-0 4-
4- CH3
4- CH20
4- CO
4- CH20
+ C02
4- CH4
4- CH3
+ CH4
4- CH20
4- CH20
4- C02
4- H20
4- H2
4- HO
4- 0
4- HNO
4- NO
4- N02
4- H20
4- H02
M
M
M
M
M





















-------
                     B-19
REACTIONS OF CH30



A210.  CH30



C200.  CH30



A211.  CH30



A212.  CH30



C 80.  CH30 4- N



C145.  CH30



C174.  CH30



C202.  CH30



C176.  CH30



C203.  CH30




C20*.  CH30



C125.  CH30 + 0



C151.  CH30 * 0



C178.  CH30



C206.  CH30



C179.  CH30
+ HO
+ H2
+ H2
+ H20
+ N
* N
+ N
+ N
* NO
+ NO
+ N2
+ 0
* 0
* 0
+ 0
+ 02
= CH4 •»•
= CH3 +
= CH4 4-
= CH4 4-
= CHN +
= CH2 +
= CH20 +
= CH3 +
= CH20 *
» CH3 *
= CH3 *
= CHO «•
= CH2 +
» CH20 *
= CH3 +
= CH20 +
02
H20
HO
H02
H20
HMO
HN
NO
HNO
N02
N20
H20
H02
HO
02
H02

-------
                     B-20
REACTIONS OF




C153.  CH4




C191.  CH4




B  9.  CH4




B102.  CH4




8103.  CH4



B139.  CH4




B170.  CH4




C 61.  CH4




C  8.  CH4




C 99.  CH4




C137.  CH4




C101.  CH4




C169.  CH4




C199.  CH4




C201.  CH4




C211.  CH4




C212.  CH4




C192.  CH4




C194.  CH4




C208.  CH4




C209.  CH4




C157.  CH4




C182.  CH4




C196.  CH4




C207.  CH4
4- M
4- M
+ CH
+ CHO
* CHO
+ CH2
+ CH20
+ CN
••• CO
+ CO
+ CO
•«• C02
+ C02
4- H
-»• HO
+ HO
+ H02
+ N
+ NO
+ NO
* N02
+ 0
+ 0
+ 0
+ 0
» CH2 +
= CH3 +
= CH2 +
» CH2 +
= CH20 *
= CH3 4-
= CH3 +
= CHN +
= CH +
= CHO +
* CH2 +
« CHO +•
= CH20 *
= CH3 +
» CH3 +
« CH30 +
= CH30 +
- CH3 +
= CH3 +
= CH30 +
= CH30 +
= CH2 4-
= CH20 •»•
= CH3 +
= CH30 4-
H2 + M
H 4- M
CH3
CH30
CH3
CHS
CH30
CH3
CH30
CH3
CH20
CH30
CH20
H2
H20
H2
H20
HN
HNO
HN
HNO
H20
H2
HO
H

-------
REACTIONS OF CH4




C185.  CH4  * 02           = CH20 + H20




C198.  CH4  +02           = CH3  + H02




C210.  CH4  +02           = CH30 + HO

-------
                    B-22
REACTIONS OF CN




D 62.  CN   * CHO          = CHN  «• CO




D  1.  CN   + CH2          « CH   * CHN




D 58.  CN   «• CH20         = CHN  + CHO




D 59.  CN   * CH3          = CHN  * CH2




D 60.  CN   + CH30         » CHN  + CH20




0 61.  CN   + CH4          = CHN  «• CH3




C 37.  CN   + H            « CH   * N




C 57.  CN   + H    + M     = CHN         + M




C 48.  CN   * HN           = CH   * N2




C 81.  CN   * HN           - CHN  + N




C 51.  CN   «• HNO          = CH   * N20




C 83.  CN   * HNO          = CHN  + NO




C132.  CN   * HNO          » CHO  + N2




C 40.  CN   + HO           = CH   * NO




C 86.  CN   + HO           = CHN  + 0




C126.  CN   + HO           = CHO  + N




A213.  CN   + HO           = CO   + HN




C 44.  CN   + H02          = CH   * N02




C 89.  CN   * H02          = CHN  + 02




C128.  CN   + H02          = CHO  + NO




A214.  CN   + H02          = CO   + HNO




A215.  CN   + H02          = C02  + HN




C 14.  CN   + H2           = CH   * HN




Z 64.  CN   + H2           = CHN  + H




C158.  CN   -»• H2           » CH2  + N

-------
                    B-23







REACTIONS OF CN




C 19.  CN   + H20          = CH   + HMO




C 71.  CN   + H20          = CHN  •»• HO




C109.  CN   * H20          « CHO  * HM




C160.  CN   + H20          = CH2  + NO




C186.  CN   + H20          = CH20 + N




A216.  CN   + NO           = CO   + N2




A217.  CN   + N02          = CO   + N20




A218.  CN   •»- M02          = C02  + N2




A219.  CN   + 0            * CO   + N




A220.  CN   + 02           » CO   + NO




A221.  CN   + 02           = C02  * N

-------
B-24
REACTI
B
D
D
D
62.
10.
2.
94.
D140.
0
D
0
4.
95.
97.
D190.
D
D
8.
99.
0137.
C
c
C
c
c
53.
92.
41.
87.
127.
C213.
C
c
c
c
45.
90.
129.
214.
A222.
C
C
55.
133.
ONS OF CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
CHN
CHO
CH2
CH20
CH20
CH3
CH3
CH30
CH30
CH4
CH4
CH4
H
H + M
HN
HN
HN
HN
HNO
HNO
HNO
HNO
HNO
HO
HO
= CHO
= CH
= CH
= CHO
= CH2
= CH
= CHO
= CHO
= CH3
= CH
= CHO
= CH2
= CH
= CHO
= CH
= CHN
= CHO
= CN
= CH
= CHN
= CHO
= CN
= C02
= CH
= CHO
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-

4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
CN
C02
CHO
CHO
C02
CH20
CH2
CH20
C02
CH30
CH3
CH20
0

NO
0
N
HO
N02
02
NO
H02
HN
02
0
                           4-  M

-------
B-25
REACT!
A223.
C135.
A224.
C 23.
C106.
C164.
0166.
C 27.
C114.
C166.
C187.
A225.
C219.
C220.
A226.
A227.
C216.
C217.
A228.
A229.
A230.
ONS
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
CO
OF CO
4- HO
+ H02
* H02
+• H2
+ H2
+ H2
* H2 4- M
+ H20
* H20
* H20
«• H20
* H20
4- N
+ NO
+ NO
+ N02
+• N2
+• N20
+• N20
4-0 + M
+ 02

= C02
= CHO
= C02
= CH
= CHO
» CH2
« CH20
« CH
= CHO
= CH2
= CH20
= C02
= CN
= CN
= C02
« C02
= CN
= CN
» C02
= C02
= C02

+ H
4- 02
+ HO
* HO
* H
+ 0

+ H02
4- HO
+ 02
+ 0
+ H2
+ 0
+ 02
+ N
+ NO
+ NO
* N02
+ N2

* 0
                           M
                           M

-------
                    B-26
REACTIONS OF C02




C229.  C02




B 10.  C02  4 CH




0 93.  C02  4- C




B140.  C02  4- C




D 96.  C02  4 C



8190.  C02  4 C




D101.  C02  4- C




D169.  C02  4 C




C 56.  C02  4- H



C134.  C02  4 H




C223.  C02  4 H




C 46.  C02




C 91.  C02  4 HN




C130.  C02




C215.  C02  4 HN




C222.  C02




C131.  C02



C136.  C02




C224.  C02  4 HO




C 28.  C02




C115.  C02  4 H2




C167.  C02




C188.  C02




C225.  C02




C117.  C02

4
4
4-
4
4
4
+
4
4
4
*
4
*
4
+
4
+
4
+
4
+
+
+
+
4 M
CH
CH2
CH2
CH3
CH3
CH4
CH4
H
H
H
HN
HN
HN
HN
HN
HNO
HO
HO
H2
H2
H2
H2
H2
H20
= CO
« CHO
= CHO
= CH20
= CHO
= CH30
= CHO
= CH20
» CH
= CHO
» CO
= CH
= CHN
« CHO
= CM
= CO
= CHO
* CHO
= CO
« CH
= CHO
= CH2
= CH20
= CO
= CHO
4 0
4 CO
4- CHO
4 CO
4- CH20
4 CO
4 CH30
4 CH20
4- 02
* 0
4 HO
4 N02
4 02
4 NO
4 H02
4 HNO
4 N02
4 02
4 H02
4 H02
4- HO
4 02
4 0
4 H20
4 H02
4 M

-------
                    B-27








REACTIONS OF C02




C189.  C02  + H20          = CH20 + 02




C221.  C02  * N            = CM   + 02




C226.  C02  + N            = CO   * NO




C227.  C02  +1*40           = CO   * N02




C218.  C02  + N2           = CM   * N02




C228.  C02  + N2           » CO   * N20




C230.  C02  +0            = CO   * 02

-------
B-28
REACTI
B 11.
D 12.
B 63.
B 64.
D 20.
B104.
BIOS.
B106.
D 29.
B141.
D 33.
D119.
0146.
B171.
B172.
0152.
B191.
0156.
0161.
0195.
B207.
0199.
D 37.
D 57.
D 53.
DNS
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
OF H
+ CH + M
+ CHN
+ CHN
* CHN
+ CHO
+ CHO
+ CHO + M
+ CHO
+ CH2
+ CH2 + M
+ CH20
+ CH20
+ CH20
+ CH20
+ CH20 + M
+ CH3
+ CH3 + M
+ CH30
+ CH30
+ CH30
+ CH30
* CH4
* CN
«• CN * M
+ CO

= CH2
= CH •»•
= CH2 «•
= CN •»•
= CH *
= CH2 +
» CH20
= CO +
= CH +
= CH3
= CH +
= CHO +
= CH2 +
= CHS *
= CH30
= CH2 +
= CH4
« CH2 *
= CH20 +
» CH3 +
= CH4 *
= CH3 +
= CH +
= CHN
= CH *

» PI
HN
N
H2
HO
0
+ M
H2
H2
+ M
H20
H2
HO
0
+ M
H2
+ M
H20
H2
HO
0
H2
N
+ M
0

-------
B-29
REACTI
D 92.
D 56.
0134.
D223.
A231.
A232.
A233.
A234.
A235.
A236.
A237.
A238.
A239.
A240.
A241.
A242.
A243.
A244.
A245.
A246.
A2
-------
                    B-30
REACTIONS OF H




A252.  H    + M20           « H,MO  + N




A253.  H    + N20           = HO   + N2




A254.  H    +0    + M      =HO          + M




A255.  H    +02            = HO   + 0




A256.  H    + 02   * M      * H02         + M

-------
B-31
REACTI
C242.
B 12.
B 13.
B 14.
B 65.
0 16.
0 68.
B107.
B108.
B109.
0 75.
B142.
D 78.
D143.
B173.
B174.
B192.
D193.
B208.
D 46.
D 81.
D 41.
D 87.
D127.
0213.
ONS OF HN
HN
HN
HN
HN
HN
HN
HN
HN
HN
HN
HN
HN
HN
HN
HN
HN
HN
HN
HN
HN
HN
HN
HN
HN
HN
4 M
* CH
+ CH
+• CH
4 CHN
4 CHO
* CHO
+ CHO
+ CHO
* CHO
+ CH2
* CH2
* CH20
4 CH20
* CH20
4 CH20
* CH3
4 CH30
4 CH30
4 CN
4 CN
+ CO
+ CO
+ CO
* CO
= H
= CHN
= CH2
* CN
= CH2
= CH
= CHN
* CH2
= CH20
= CN
» CHN
= CH3
= CHN
= CH2
= CH3
= CH30
« CH4
= CH3
= CH4
= CH
* CHN
« CH
= CHN
= CHO
= CN
4- N + M
4 H
+ N
* H2
* N2
+ HNO
+ HO
* NO
* N
+ H20
4- H2
+ N
«• H20
* HNO
4- NO
4 N
4 N
4 HNO
4 NO
4 N2
4 N
4 NO
4 0
4 N
4 HO

-------
                     B-32







REACTIONS OF HN




D 46.  HN   + C02           =  CH    +  N02




D 91.  HN   + C02           =  CHN   +  02




0130.  HN   + C02           =  CHO   +  NO




D215.  HN   + C02           =  CM    +  H02




D222.  HN   -i- C02           =  CO    +  HNO




B232.  HN   + H             =  H2    +  N




A257.  HN   •»• HN            =  H2    •»•  N2




A258.  HN   + HNO           =  H2    +  N20




A259.  HN   + HNO           =  H20   +  N2




C233.  HN   + HO            =  H     +  HNO




A260.  HN   + HO            =  H2    +  NO




A261.  HN   + HO            =  H20   +  N




A262.  HN   + H02           »  HNO   +  HO




A263.  HN   + H02           =  H2    +  N02




A264.  HN   + H02           =  H20   *  NO




A265.  HN   + H20           =  HNO   +  H2




C250.  HN   + N             =  H     +  N2




C251.  HN   + NO            =  H     +  N20




A266.  HN   + NO            =  HNO   +  N




A267.  HN   + NO            =  HO    +  N2




A268.  HN   -f N02           =  HNO   +  NO




A269.  HN   + N02           =  HO    +  N20




A270.  HN   + N02           =  H02   +  N2




A271.  HN   + N20           =  HNO   +  N2




C243.  HN   •»• 0             =  H     +  NO

-------
                     B-33
REACTIONS OF HN




A272.  HN   + 0    + M     = HNO         * M




A273.  HN   + 0            = HO   + N




C246.  HN   + 02           « H    * N02




A274.  HN   + 02           = HMO  * 0




A275.  HN   + 02           = HO   + NO




A276.  HN   + 02           = H02  * N

-------
                     B-34
REACTIONS OF HNO




C2^4.  HNO




C272.  HNO




A277.  HNO




B 15.  HNO  * CH




B 16.  HND




B 17.  HNO  * CH




B 18.  HNO  + CH




B 19.  HNO




B 66.  HNO




B 67.  HNO




D 72.  HNO




B110.  HNO




Bill.  HNO




D 77.  HNO




B143.  HNO




B144.  HNO



4-
4-
4-
4-
*
4-
4-
4-
4-
4-
4-
4-
+
4-
4-
4-
4-
4-
4-
4-
4-
4-
4- M
4- M
4- M
CH
CH
CH
CH
CH
CHN
CHN
CHO
CHO
CHO
CH2
CH2
CH2
CH2
CH20
CH20
CH3
CH3
CH30
CN
CN
CN
= H
= HN
= HO
= CHN
= CHO
= CH2
= CH20
= CN
* CH2
= CH20
= CHN
= CH2
= CH20
= CHN
» CH20
« CH3
= CH30
= CH3
= CH30
» CH30
= CH4
= CH4
= CH
= CHN
= CHO
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
+
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
NO + M
0 4- M
N * M
HO
HN
NO
N
H20
N20
N2
H02
N02
NO
H20
HN
NO
N
N02
NO
HN
NO
N02
N20
NO
N2

-------
                     B-35







REACTIONS OF HNO




D 45.  HNO  4- CO            » CH   + N02




D 90.  HNO  4- CO            = CHN  + 02




D129.  HNO  + CO            = CHO  + NO




0214.  HNO  4- CO            = CM   4- H02




8222.  HNO  * CO            = C02  + HN




0131.  HNO  + C02           = CHO  4 N02




B233.  HNO  * H             * HN   4- HO



B234.  HND  4- H             = H2   + NO




B235.  HNO  + H             = H20  + N




B258.  HNO  * HN            = H2   4 N20




B259.  HNO  * HN            = H20  + N2




A278.  HNO  * HNO           = H20  + N20




C262.  HNO  4- HO            = HN   4- H02




A279.  HNO  + HO            = H2   4- N02




A280.  HNO  4- HO            * H20  4- NO




A281.  HNO  4- H02           = H20  4- N02




C265.  HNO  4- H2            = HN   4- H20




C252.  HNO  4- N             » H    + N20




C266.  HNO  4- N             = HN   4 NO




A282.  HNO  4 M             = HO   4 N2




C268.  HNO  4- NO            = HN   4- N02




A283.  HNO  4- MO            = HO   + N20




A284.  HNO  4- NO            = H02  4 N2




A285.  HNO  4- N02           = H02  4- N20




C271.  HNO  4- N2            = HN   4- N20

-------
                     B-36







REACTIONS OF HNO




C247.  HNO  +0            = H     -»-  N02




C274.  HNO  +0            « HN    +  02




A286.  HNO  * 0            = HO    +  NO




A287.  HNO  +0            = H02   +  N




A288.  HNO  +02           = HO    +  N02




A289.  HNO  +02           = H02   +  NO

-------
B-37
REACTI
C254.
B 20.
B 21.
B 22.
B 23.
D 15.
B 68.
B 69.
B 70.
B 71.
0 24.
B112.
B113.
B114.
8115.
D 32.
0118.
B146.
B147.
B148.
0123.
0149.
B177.
B178.
0155.
ONS
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
OF HO
4- M
+ CH
+• CH
4- CH 4- M
4- CH
* CHN
* CHN
+ CHN
+ CHN
+ CHN
4- CHO
* CHO
4- CHO
4- CHO
4- CHO
+ CH2
+ CH2
4- CH2
4- CH2
4- CH2 4- M
4- CH20
4- CH20
4- CH20
4- CH20
4- CH3

= H 4-
= CHO* 4-
= CH2 *
» CH20
= CO 4-
= CH 4-
= CHO 4-
= CH2 4-
= CH20 4-
= CN 4-
= CH +
= CH2 *
= CH20 4-
« CO +
= C02 4-
= CH 4-
= CHO 4-
= CH20 4-
= CH3 4-
= CH30
= CHO 4-
= CH2 4-
= CH3 4-
= CH30 4-
» CH2 4-

0
H
0

H2
HNO
HN
NO
N
H20
H02
02
0
H20
H2
H20
H2
H
0

H20
H02
02
0
H20
                        + M

-------
B-38
REACTIONS OF HO
0180.
B195.
B196.
0184.
0197.
B210.
0201.
0211.
D 40.
0 86.
0126.
B213.
0 55.
0133.
B223.
0136.
0224.
B236.
B237.
0233.
B260.
B261.
0262.
B279.
B280.
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
+
+
4-
4-
4-
4-
4-
4-
4-
+
•f
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
4-
CH3
CH3
CH3
CH30
CH30
CH30
CH4
CH4
CN
CM
CN
CN
CO
CO
CO
C02
C02
H
H 4- M
HN
HN
HN
HNO
HNO
HNO
= CH20
= CH30
= CH4
= CH20
= CH3
= CH4
= CH3
= CH30
= CH
= CHN
* CHO
= CO
= CH
= CHO
= C02
= CHO
= CO
= H2
- H20
*•* W
= H2
= H20
= HN
= H2
» H20
4-
4-
4-
4-
4-
4-
4-
4-
4-
4"
4-
4-
4-
4-
4-
4-
4-
4-

4-
4-
4-
4-
4-
4-
H2
H
0
H20
H02
02
H20
H2
NO
0
N
HN
02
0
H
02
H02
0

HNO
NO
N
H02
N02
NO
                          4-  M

-------
                     B-39
REACTIONS OF HO
C238.
A290.
A291.
A292.
C241.
A293.
C245.
C273.
C277.
C248.
C275.
C286.
A294.
0288.
A295.
C253.
C267.
C282.
C269.
C283.
A296.
C255.
A297.
A298.
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
HO
4- HO
* HO
+ HO
+ H02
4- H2
* H20
4- N
+ N
4- N •*• M
4- NO
* NO
4- NO
* NO
4- N02
4- N02
4- N2
4- N2
+ N2
4- N20
4- N20
4- N20
4- 0
4-0 * M
4- 02
« H
= H2
= H20
= H20
= H
= H02
« H
= HN
= HNO
= H
= HN
= HNO
= H02
= HNO
= H02
= H
» HN
« HNO
= HN
= HNO
= H02
= H
= H02
= H02
4- H02
4- 02
4- 0
4- 02
4- H20
4- H2
4- NO
4- 0

4- N02
4- 02
4- 0
4- N
+ 02
4- NO
4- N20
4- NO
+ N
4- N02
4- NO
4- N2
4- 02

4- 0
                                            M
                                            M

-------
B-40
REACTI
C256.
C297.
B 24.
B 25.
B 26.
B 27.
B 28.
B 72.
B 73.
B 74.
B116.
B117.
D122.
B149.
B150.
B151.
B179.
D183.
B197.
B198.
D212.
D 44.
D 89.
0128.
8214.
ONS OF
H02
H02
H02
H02
H02
H02
H02
H02
H02
H02
H02
H02
H02
H02
H02
H02
H02
H02
H02
H02
H02
H02
H02
H02
H02
H02
4- M
*• M
+ CH
+ CH
+ CH
+ CH
«• CH
+ CHN
* CHN
* CHN
+ CHO
+ CHO
+ CH2
* CH2
+ CH2
* CH2
* CH20
+ CH3
+ CH3
* CH3
«• CH4
+ CN
+ CN
«• CN
* CN

= H *
= HO «•
= CHO +
= CH2 +
= CH20 +
= CO +
= C02 +
= CHO *
= CH2 +
« CH20 «•
= CH20 +
= C02 +
* CHO +
= CH20 +
= CH3 +
= CH30 +
» CH30 +
= CH20 +
» CH30 +
= CH4 +
» CH30 *
« CH +
= CHN +
= CHO +
» CO «•

02 + M
0 * M
HO
02
0
H20
H2
HNO
N02
NO
02
H20
H20
HO
02
0
02
H20
HO
02
H20
N02
02
NO
HNO

-------
                     B-41
REACTIONS OF H02




B215.  H02  + CN




D135.  H02  * CO




B224.  H02  + CO




8238.  H02  + H




8239.  H02  + H




B240.  H02  + H




8262.  H02  + HN




8263.  H02  + HN




B264.  H02  + HN




8281.  H02  + HN




B292.  H02  + HO




C293.  H02  * H2
C276.  H02  + N




C287.  H02  + N




C294.  H02  + N
C298.  H02  +0
+
+
+
+
+
+
+
*
+
*
+
*
•»•
*
+
+
*
+
*
+
+
+
+
CN
CO
CO
H
H
H
HN
HN
HN
HNO
HO
H2
N
N
N
N
NO
NO
N2
N2
N2
N20
0
= C02
* CHO
= C02
= HO
= H2
« H20
= HNO
= H2
= H20
= H20
= H20
= HO
« H
= HN
= HNO
» HO
« HNO
= HO
= HN
= HNO
= HO
* HNO
= HO
+ HN
* 02
+ HO
4 HO
+ 02
* 0
+ HO
+ N02
+ NO
* N02
+ 02
-»• H20
+ N02
* 02
* 0
* NO
+ 02
* N02
+ N02
* NO
* N20
+ N02
+ 02

-------
B-42
REACTI
C231.
B 29.
B 30.
B 75.
B 76.
0 31.
B118.
B119.
B120.
B121.
B152.
B153.
0154.
B180.
B181.
B182.
B199.
0200.
B211.
0 14.
0 64.
0158.
D 23.
0106.
0164.
ONS OF H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
+ M
4- CH
+ CH 4- M
4- CHN
4- CHN
+ CHO
4- CHO
+ CHO
* CHO
4- CHO 4- M
4- CH2
4- CH2 4- M
+ CH20
4- CH20
4- CH20
4- CH20
4- CH3
4- CH30
4- CH30
4- CN
4- CN
4- CN
4- CO
4- CO
4- CO
= H
= CH2
= CH3
= CH2
= CH3
= CH
= CH2
= CH20
= CH3
= CH30
= CH3
= CH4
= CH2
= CH3
= CH30
= CH4
» CH4
= CH3
= CH4
= CH
= CHN
= CH2
» CH
= CHO
= CH2
4-
4-

4-
4-
4-
4-
4-
4-

4-

4-
4-
4-
4-
4-
4-
4-
4-
+
4-
4-
4-
4-
H
H

HN
N
H20
HO
H
0

H

H20
HO
H
0
H
H20
HO
HN
H
N
HO
H
0
                            4-  M
                            4-  M
                               M
                            4-  M

-------
B-43
REACTI
D168.
D 28.
D115.
D167.
D188.
D225.
D265.
D241.
D293.
C232.
C234.
C260.
A299.
C263.
C279.
A300.
C257.
C258.
A301.
C236.
A302.
C239.
C290.
A303.
3NS OF H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
H2
4-
4-
4-
4-
4-
4-
4-
4-
*
4-
4-
4-
4-
4-
4-
4-
*
4-
4-
4-
4-
+
*
+.
CO + M
C02
C02
C02
C02
C02
HNO
HO
H02
N
NO
NO
NO
N02
N02
N02
N2
N20
N20
0
0 * M
02
02
02
* CH20
= CH 4-
= CHO *
= CH2 +
= CH20 +
= CO +
= HN *
= H +
= HO +
= H +
= H +
= HN *
= H20 +
= HN +
= HNO *
= H20 +
= HN •«•
= HN +
= H20 +
= H •«•
= H20
» H *
= HO *
= H20 +

H02
HO
02
0
H20
H20
H20
H20
HN
HNO
HO
N
H02
HO
NO
HN
HNO
N2
HO

H02
HO
0
                         M

-------
                     B-44
REACTIONS OF H20




C237.  H20         + M




C302.  H20         * M




B 31.  H20  + CH




B 32.  H20  «• CH




B 33.  H20  + CH



B 34.  H20  * CH




B 35.  H20  + CH   + M




B 77.  H20  + CHN




B 78.  H20  + CHN




B 79.  H20  + CHN




B 80.  H20  * CHN




B122.  H20  * CHO




B123.  H20  + CHO




B124.  H20  + CHO




B125.  H20  * CHO




B154.  H20  + CH2




B155.  H20  + CH2




B156.  H2D  + CH2




B157.  H20  + CH2




B183.  H20  + CH20




B184.  H20  + CH20




B185.  H20  + CH20




B200.  H20  * CH3




B201.  H20  -i- CH3




B212.  H20  + CH30
= H    * HO   + M




= H2   +0    •«• M




= CHO  + H2




= CH2  * HO




= CH20 * H




« CH3  «• 0




= CH30        + M




= CH2  + HNO




= CH20 * HN




= CH3  + NO




= CH30 •«• N




= CH2  «• H02




= CH20 + HO




= CH3  + 02




= CH30 + 0




= CH20 + H2




= CH3  + HO




= CH30 + H




= CH4  «• 0




= CH3  + H02




» CH30 * HO




= CH4  + 02




= CH30 * H2




= CH4  + HO




= CH4  + H02

-------
                     B-45
REACTIONS OF H20




D 19.  H20  * CN




D 71.  H20  + CN




D109.  H20  + CN




0160.  H20  + CN




D186.  H20  + CN




0 27.  H20  * CO




Oil*.  H20  + CO




D166.  H20  + CO




0187.  H20  + CO




B225.  H20  + CO




0117.  H20  + C0




0189.  H20  + C0




82*1.  H20  + H




B265.  H20  4- HN




B293.  H20  + HO




C235.  H20  * N




C261.  H20  * N




C299.  H20  +• N




C264.  H20  + NO




C280.  H20  4- NO




C300.  H20  * NO




C281.  H20  + N0




C259.  H20  4- N2




C301.  H20  4- N2
*
*
+
+
+
4-
+
+
+
4-
+
*
*
+•
+
4-
•*•
4-
4-
4-
4-
4-
4-
4-
4-
CN
CN
CN
CN
CN
CO
CO
CO
CO
CO
C02
C02
H
HN
HO
N
N
N
MO
NO
NO
N02
N2
N2
N20
= CH
= CHN
= CHO
= CH2
* CH20
= CH
= CHO
= CH2
= CH20
» C02
= CHO
= CH20
« HO
= HNO
= H02
* H
= HN
= H2
* HN
= HNO
= H2
= HNO
= HN
= H2
» HNO
4- HNO
4- HO
4- HN
4- NO
4- N
4- H02
+ HO
4- 02
4- 0
4- H2
4- H02
4- 02
4- H2
4- H2
4- H2
4- HNO
4- HO
4- NO
4- H02
4- HO
4- N02
4- H02
4- HNO
4- N20
4- HNO

-------
                     B-46







REACTIONS OF H2Q




C240.  H20  +0             »  H     +  H02




C291.  H20  +0             =  HO    +  HO




C303.  H20  +0             «  H2    +  02




C292.  H20  +02            *  HO    •*•  H02

-------
B-47
REACTI
B 36.
B 37.
D 47.
B 81.
D 39.
D 85.
B126.
B127.
D 13.
D 63.
B158.
D 18.
D 70.
D108.
D159.
B186.
D 76.
0142.
D 80.
D145.
D174.
D202.
D192.
D219.
D221.
ONS
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
OF N
4- CH 4- M
* CH
-i- CHN
4- CHN
* CHO
+ CHO
4- CHO
4- CHO
* CH2
4- CH2
4- CH2
4- CH20
4- CH20
4- CH20
4- CH20
4- CH20
4- CHS
4- CH3
* CH30
4- CH30
4- CH30
4- CH30
4- CH4
+ CO
4- C02

= CHN
= CN
« CH
= CN
= CH
= CHN
« CN
= CO
= CH
= CHN
= CN
= CH
= CHN
= CHO
= CH2
= CN
= CHN
= CH2
= CHN
= CH2
= CH20
= CH3
= CH3
= CN
= CN


4- H
4- N2
4- HN
4- NO
4- 0
4- HO
4- HN
4 HN
4- H
4- H2
4- HNO
4- HO
4- HN
4- NO
4- H20
4- H2
4-. HN
4- H20
4- HNO
4- HN
4- NO
4- HN
4- 0
4- 02
                          M

-------
B-48
REACT
0226.
B242.
0250.
0252.
0266.
B282.
0245.
0273.
0277.
0249.
0276.
0287.
0294.
0232.
0235.
0261.
0299.
A304.
A305.
A306.
A307.
A308.
A309.
A310.
A311.
IONS
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
OF SI
+ C02
* H + M
+ HN
+ HNO
+ HNO
+ HNO
+ HO
+ HO
+ HO + M
+ H02
+ H02
+ H02
+ H02
+ H2
+ H20
+ H20
+ H20
+ N + M
+ NO
+ NO * M
+ N02
+ N02
+ N02
* N20
+ 0 + M

= CO
= HN
= H
= H
= H.M
= HO
= H
= HN
= HNO
= H
= HN
= HNO
= HO
= H
= H
= HN
= H2
= N2
= N2
= N20
= NO
= N2
= N20
« NO
= NO

* NO
-I- M
+ N2
+ N20
* NO
+ N2
+ NO
* 0
+ M
+ N02
+, 02
+ 0
+ NO
+ HN
+ H>40
+ HO
+ NO
+ M
* 0
+ M
+ NO
* 02
+ 0
+ N2
•»• M

-------
                     B-49
REACTIONS OF M




A312.  N    +02            =  NO    +  0




A313.  N    + 02    *  M      =  N02          +  M

-------
B-50
REACT!
C311.
B 38.
B 39.
B 40.
B 41.
D 49.
B 82.
B 83.
D 43.
D 88.
B128.
B129.
B130.
D 17.
D 69.
D107.
B159.
B160.
0 74.
Dill.
D161.
D 79.
D144.
D173.
B202.
ONS
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
OF NO
+ M
+ CH
+ CH
+ CH
+ CH
+ CHN
+ CHN
+ CHN
+ CHO
* CHO
+ CHO
+ CHO
+ CHO
+ CH2
+ CH2
+ CH2
-i- CH2
+ CH2
+ CH20
+ CH20
+ CH20
+ CH3
+ CH3
+ CH3
+ CH3

= N
= CHN
= CHO
= CN
« CO
= CH
= CHO
» CN
= CH
= CHN
= CN
= CO
= C02
» CH
= CHN
= CHO
= CH20
= CN
= CHN
= CHO
= CH2
= CHN
= CH2
« CH20
= CH30

+ 0
* 0
* N
+ HO
+ HN
+ N20
+ N2
+ HNO
+ N02
+ 02
+ H02
+ HNO
+ HN
+ HNO
+ HO
+ HN
•»• N
+ H20
+ H02
+ HNO
+ N02
+ H20
* HNO
•»• HN
* N
                           M

-------
B-51
REACTIONS OF NO




0176.  NO




D203.  NO




0194.  NO




0208.  NO




B216.  NO




0220.  NO




B226.  NO




0227.  NO




B243.  NO




B244.  NO




B245.  NO




0251.  NO




B266.  NO




B267.  NO




0268.  NO




B283.  NO




B284.  NO




0248.  NO




0275.  NO




0286.  NO




B294.  NO




0289.  NO




0295.  NO




0234.  NO




0260.  NO
* CH30
* CH30
+ CH4
«• CH4
+ CN
* CO
+ CO
+ C02
4- H
4- H + M
+ H
+ HN
4- HN
+ HN
+ HNO
+ HNO
* HNO
+ HO
+ HO
* HO
4- HO
* H02
4- H02
* H2
4- H2
= CH20 +
= CH3 4-
= CH3 +
= CH30 +
= CO +•
= CN 4-
= C02 4-
= CO *
= HN 4-
= HNO
» HO +
= H 4-
= HNO 4-
= HO 4-
= HN +
= HO •«•
= H02 +
= H 4-
= HN *
= HNO +
= H02 +
= HNO *
= HO +
= H +
= HN *
HNO
N02
HNO
HM
N2
02
N
N02
0

N
N20
N
N2
N02
N20
N2
N02
02
0
N
02
N02
HNO
HO
                      M

-------
                     B-52
REACTIONS OF NO




B299.  NO




D264.  NO




D280.  NO




D300.  NO




B305.  NO



B306.  NO




C307.  NO




A314.  NO




A315.  NO




A316.  NO




C310.  NO



A317.  NO




C312.  NO




A318.  NO




A319.  NO
+ H2
+ H20
* H20
* H20
+ N
+ N + M
+ NO
+ NO
+ NO
+ N02
* N2
* N20
+ 0
+ 0 * M
+ 02
= H20
* HN
= HNO
= H2
= N2
= N20
= N
= N2
= N20
* N20
= N
= N02
= N
» NQ2
= N02
+ N
+ H02
+ HO
* N02
+ 0
+ M
+ N02
+ 02
+ 0
+ 02
+ N20
+ N2
+ 02
+ M
+ 0

-------
                     B-53
REACTIONS OF ,M02
C313.  N02
C318.  N02
B 42.  N02
B 43.  N02
B 44.  N02
B 45.  N02
B 46.  N02
B 84.  N02
B131.  N02
D 73.  N02
DUO.  N02
B161.  N02
     \
0175.  N02
B203.  N02
0209.  N02
B217.  N02
B218.  N02
B227.  N02
8246.  N02  + H
B247.  N02
B248.  N02
B249.  N02
B268.  N02  * HN
B269.  N02
8270.  N02
+ M
+ M
+ CH
* CH
+ CH
+ CH
+ CH
* CHN
+ CHO
+ CH2
+ CH2
+ CH2
+ CH3
* CH3
* CH4
* CN
+ CN
+ CO
+ H
* H
* H
+ H
+ HN
+ HN
«• HN
= N
= NO
= CHN
= CHO
= CN
= CO
= C02
= CHO
= C02
= CHN
= CHO
= CH20
= CH20
= CH30
» CH30
= CO
» C02
» C02
= HN
= HNO
= HO
= HD2
= HNO
= HO
= H02
+ 02 «• M
+ 0 •»- M
+ 02
+ NO
+ H02
+ HNO
+ HN
* N20
+ HNO
+ H02
•«- HNO
* NO
+ HNO
* NO
* HNO
+ N20
•»• N2
+ NO
+ 02
* 0
+ NO
* N
+ NO
* N20
* N2

-------
                     B-54







REACTIONS OF N02




8285.  N02  + HNO          = H02  + N20




0288.  N02  + HO           = HNO  * 02




B295.  N02  + HO           = H02  + NO




D263.  N02  + H2           = HN   + H02




D279.  N02  + H2           = HNO  + HO




B300.  N02  + H2           = H20  * NO




D281.  N02  + H20          = HNO  * H02




B307.  N02  * N            = NO   + NO




B308.  N02  «• N            = N2   * 02




8309.  N02  + N            * N20  + 0




B316.  N02  + NO           = N20  + 02




C317.  N02  + N2           = NO   + N20




C319.  N02  +0            = NO   * 02

-------
B-55
REACTI
C304.
B 47.
B 48.
0 50.
0 82.
B132.
D 65.
D 67.
0162.
0204.
0216.
0218.
0228.
B250.
0271.
0253.
0267.
0282.
0270.
0284.
0296.
0257.
0259.
0301.
0310.
ONS
N2
N2
N2
N2
N2
N2
N2
N2
N2
N2
N2
N2
N2
N2
N2
N2
N2
N2
N2
N2
N2
N2
N2
N2
N2
OF ,M2
4- M
4 CH
* CH
+ CHO
4 CHO
4 CHO
4 CH2
4 CH20
* CH20
4 CH30
4- CO
* C02
+ C02
4- H
4- HNO
4 HO
4 HO
+ HO
4 H02
4- H02
4- H02
4- H2
4- H20
+ H20
+ NO

= N
= CHN
« CN
* CH
- CHN
* CN
« CHN
» CHN
» CH2
= CH3
* CN
= CN
= CO
= HN
« HN
= H
= HN
* HNO
» HN
= HNO
= HO
= HNI
= HN
= H2
= N

4- N
4 N
4 HN
4 N20
4- NO
4- HNO
4 HN
4 HNO
4 N20
* N20
4 NO
4- N02
4- N20
4 N
4 N20
4 N20
4 NO
4 N
4 N02
4 NO
4 N20
4 HM
4 HNO
4 N20
4- N20
                          M

-------
                     B-56
REACTIONS OF N2




D317.  N2   «• N02           =  NO    *  N20




C305.  N2   + 0             =  N     *  NO




A320.  N2   * 0    + M      =  N20          *  H




C308.  N2   * 02            =  N     +  N02




C314.  N2   4- 02            =  NO    +  NO




A321.  N2   + 02            =  N20   +  0

-------
                     B-57
REACTIONS OF



C306.  N20



C320.  N20



B 49.  N20



B 50.  N20



B 51.  N20



D 84.  N20



D 66.  N20



B162.  N20



B204.  N20



D217.  N20



B228.  N20



B251.  N20



B252.  N20



B253.  N20



B271.  N20



0269.  N20



D283.  N20



B296.  N20



0285.  N20



D258.  N20



B301.  N20



D278.  N20



B310.  N20



8317.  N20



C309.  N20
N20
4- M
4- M
4 CH
4 CH
4 CH
* CHO
+ CH2
4 CH2
4 CH3
4- CO
4 CO
4- H
4- H
4- H
4- HN
4- HO
4- HO
4 HO
4 H02
4- H2
4- H2
4- H20
4- N
4 NO
4 0
= N
= N2
= CHN
= CHO
» CN
- CHN
= CHN
= CH20
= CH30
= CN
= C02
= HN
» HMO
« HO
= HNO
» HN
= HNO
= H02
= HNO
» HN
* H20
= HNO
* NO
= N02
= N
4- NO * M
+ 0 + M
4- NO
+ N2
4- HNO
4- N02
4- HNO
4- N2
4- N2
* N02
4- N2
4- NO
4- N
4- N2
4 N2
4- N02
4 NO
4 N2
4 N02
4 HNO
4 N2
4 HNO
4 N2
4 N2
4 N02

-------
                     B-58







REACTIONS OF ^20




C315.  N2Q  + 0            = NO   + NO




C321.  N20  +0            * N2   + 02




C316.  N20  +02           = NO   + N02

-------
B-59
REACT!
B 52.
B 53.
D 38.
B 85.
B 86.
B 87.
D 54.
B133.
B134.
D 21.
D104.
B163.
B164.
D 26.
D113.
D165.
B187.
B188.
D 34.
0120.
D147.
D171.
B205.
D125.
0151.
ONS
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
OF 0
+ CH + M
+ CH
* CHN
+ CHN
-i- CHN
+ CHN
+ CHO
+ CHO
* CHO
* CH2
+ CH2
+ CH2 + M
* CH2
+ CH20
+ CH20
+ CH20
+ CH20
+ CH20
+ CH3
+ CH3
+ CH3
+ CH3
+ CH3 + M
+ CH30
•»• CH30

= CHO
= CO *
= CH +
» CHO +
= CN +
= CO +
= CH +
= CO +
= C02 *
= CH +
= CHO +
= CH20
= CO +
= CH +
= CHO *
= CH2 *
= CO +
= C02 *
- CH +
= CHO +
= CH2 +
= CH20 +
= CH30
= CHO *
= CH2 +

•»• M
H
NO
N
HO
HN
02
HO
H
HO
H
* M
H2
H02
HO
02
H20
H2
H20
H2
HO
H
* M
H20
H02

-------
B-60
REACTI
0178.
0206.
0157.
0182.
0196.
0207.
B219.
B229.
0230.
B254.
D243.
B272.
B273.
0247.
0274.
B286.
B287.
0255.
B297.
0298.
0236.
B302.
0240.
0291.
0303.
ONS
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
OF 0
+ CH30
4- CH30
4- CH4
4- CH4
4- CH4
+ CH4
+ CN
4- CO * M
+ C02
4- H * M
4- HN
4- HN + M
4- HN
4- HNO
+ HNO
4- HNO
4- HNO
4- HO
4- HO + M
4- H02
4- H2
4- H2 + M
4- H20
4- H20
4- H20

- CH20
= CH3
= CH2
= CH20
= CH3
= CH30
= CO
= C02
= CO
= HO
= H
= HNO
= HO
= H
= HN
= HO
= H02
= H
= H02
= HO
= H
= H20
= H
= HO
= H2

4- HO
4- 02
4- H20
4- H2
4- HO
4- H
4- N

4- 02

4- NO

4- N
4- N02
+ 02
4- NO
4- N
4- 02

+ 02
4- HO

4- H02
+ HO
+ 02
                             M
                             M
                          «•  M
                             M
                             M

-------
                     B-61
REACTIONS OF 0




                                          +M
                                            M
B311.
0312.
B318.
D319.
0305.
B320.
0309.
0315.
0321.
A322.
0
0
0
0
0
0
0
0
0
0
+ M + M
+ NO
+ NO + M
+ N02
+ N2
+ M2 + M
+ N20
«• N20
+ N20
+ 0 * M
= NO
= N
= N02
* NO
= N
= N20
= N
= NO
* N2
= 02

+ 02

* 02
+ NO

+ NO
+ NO
+ 02

                                          + M
                                          +M

-------
B-62
REACT
C322.
B 54.
B 55.
B 56.
D 42.
B 88,
B 89.
B 90.
B 91.
B135.
B136.
0 25.
0112.
B165.
B166.
B167.
0116.
B189.
0124.
0150.
0177.
B206.
0179.
0185.
0198.
IONS
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
OF 02
+ M
-i- CH
+ CH
+ CH
+ CHN
+ CHN
+ CHN
* CHN
* CHN
* CHO
+ CHO
+ CH2
+ CH2
* CH2
+ CH2
+ CH2
+ CH20
+ CH20
+ CH3
+ CH3
+ CH3
+ CH3
* CH30
* CH4
+ CH4

= 0
= CHO
= CO
= C02
= CH
« CHO
= CN
= CO
« C02
= CO
= C02
= CH
= CHO
= CH20
= CO
• C02
= CHO
= C02
= CHO
= CH2
* CH20
= CH30
= CH20
= CH20
= CH3

* 0
+ 0
* HO
•»• H
* N02
+ NO
+ H02
+ HNO
* HN
+ H02
+ HO
* H02
+ HO
* 0
+ H20
+ H2
+ H02
+ H20
+ H20
4- H02
* HO
* 0
+ H02
* H20
+ H02
                          M

-------
                     B-63





REACTIONS OF 02




0210.  02   * CH4          = CH30 * HO




B220.  02   * CN           = CO   + NO




B221.  02   + CN           = C02  + N




B230.  02   + CO           = C02  + 0




B255.  02   + H            = HO   + 0




B256.  02   * H    + M     = H02         + M




0246.  02   + HN           » H    «• N02




B274.  02   + HN           = HMO  + 0




8275.  02   * HN           = HO   + NO




B276.  02   * HN           = H02  + N




B288.  02   * HNO          = HO   * N02




B289.  02   + HNO          = H02  * NO




B298.  02   + HO           » H02  + 0




0239.  02   + H2           » H    + H02




D290.  02   + H2           » HO   * HO




B303.  02   * H2           = H20  + 0




D292.  02   + H20          = HO   + H02




B312.  02   + N            * NO   + 0




B313.  02   + N     * M     * N02         * M




B319.  02   + NO           = N02  * 0




D308.  02   + N2           = N    + N02




D314.  02   * N2           = NO   + NO




B321.  02   + N2           - N20  + 0




D316.  02   * N20          « NO   + N02

-------
                                   C-l
                               APPENDIX C
             KINETIC DATA ANALYSIS FOR JET-STIRRED COMBUSTOR
          As an approach to testing kinetic models which couple nitric oxide
formation to combustion reactions, the jet-stirred combustor was used to
study NOX formation under kinetically controlled combustion conditions.
The experimental data were compared with kinetic calculations performed by
General Applied Science Laboratories for a well-stirred reactor.  The agree-
ment between theory and experiment was quite good for the combustion of
hydrogen/air and carbon monoxide/air for which detailed mechanisms were
used.  A quasi-global mechanism for the combustion of propane/air resulted
in substantial underprediction of NOX formation.  The results described here
were presented at the Fourteenth Combustion Symposium (C-l).

          The kinetic mechanism used in this study is based on a building-
block approach.  The mechanism for hydrogen combustion is the basic ele-
ment.  Additional reactions are included for carbon monoxide combustion
and a rate-limited global step for hydrocarbon reaction to carbon monoxide
and hydrogen is included to handle hydrocarbon combustion.  The overall
mechanism for hydrocarbon combustion is based upon a "quasi-global" con-
cept originally developed to represent the combustion characteristics of a
variety of hydrocarbon fuels (C-2).  The reactions for the oxidation of nitro-
gen are included in the model and are coupled to the combustion reactions
through common intermediates.

          The mechanism for hydrogen combustion, given in Table C-1A, con-
sists of four exchange reactions and four dissociation/recombination
reactions.  The values of the rates for these reactions were taken, when
available, from Reference (C-3).

          Three reactions were added for carbon monoxide combustion
(Table C-1B); the carbon monoxide exchange reactions with hydroxyl radical
and molecular oxygen, and the dissociation/recombination reaction leading
to carbon dioxide.

          The global step for hydrocarbon consumption

                    C H  + £ 09 —» 7 H  + nCO
                     n m   22     z  /

is assigned a rate of
                       Q                      1/2       _o
              5.52 x 108 T exp(-12400/T)(CnHm)   (0,,) (p) U'

in accordance with Reference (C-2), as noted above.

          The principal reactions for the formation of nitric oxide  in this
study were the Zeldovich exchange reactions

                           0 + N2 = N -1- NO


                    kf = 1.36 x 1014 exp(-3770Q/T)

-------
                                                 TABLE C-l
RATE PARAMETERS FOR KINETIC MODEL
kf = ATb exp(-E/RT)
REACTION A
b E/R Ref
A. Hydrogen Combustion
1 1
OH + H. = H00 + H 2.19 x 10
2 2
12
OH = OH = 0 + H20 5.75 x 10
13
0 + H2 = H + OH 1.74 x 10
14
H + 02 = 0 + OH 2.24 x 10
16
0 + H + M=0+M Ix 10
14
0+0+M=02+M 9.38 x 10
15
H + H + M = H+M 5x10
17
H + OH + M = H20 + M 1 x 10

0 2590 C-3


0 393 C-3

0 4750 C-3
n
0 8450 C-3 ^

0 0 C-4

0 0 C-5

0 0 C-4

0 0 C-3
B. Carbon Monoxide Combustion (additional reactions)
11
CO + OH = H + C0? 5.6 x 10
12

0 543 C-3

CO + 0, = CO  + 0
      £•     £*


CO + 0 + M = C02 + M
3 x 10


1.8 x 10
                                                                    0


                                                                   -1
25000


 2000
C-6


C-7
Reverse reaction rate, k  , is obtained from kf and the equilibrium constant, K .

-------
                                   C-3
and
                             NO + 0 = 02 + N

                       kf = 1.55 x 109 T exp(-19450/T)
The values for the rate constants were taken from Reference  (C-3) .  Other re
actions involving nitric oxide such as
and

                             NO + 02 = N02 + 0

as well as NO oxidation reactions of interest in atmospheric studies are
available in the model (C-2) for completeness but are not important under the
conditions of this study.  The reaction (C-8)

                              N + OH = NO + H
                                          1 "}
                                k = 4 x 10

was not included in the basic calculations; however, under fuel rich condi-
tions where H and OH concentrations became substantial, additional calcula-
tions including this reaction were made to test its importance.

          The most crucial experimental measurements for this study were
the mixture ratios, the reaction temperatures and the concentrations of NOX.
The mixture ratios could be determined to + 2% with calibrated rotameters.
The reaction temperatures could be determined to + 10°K with consideration
given to radiant heat losses and reproducibility.  The nitrogen oxide mea-
surements could be made to + 2 ppm with either the Enviometrics or Du Pont
analyzers (a Thermo Electron chemiluminescent analyzer now in use in our
laboratory can give results better than + 1 ppm) .  Cross-checks have been
run with these instruments in selected experiments.

          The temperatures for the calculations were determined in the
following manner.  The measured temperatures were compared to the calculated
heat losses in a well-stirred reactor at the measured temperature.  The
heat loss was converted to an overall heat transfer coefficient

                          H = mC(To -Tn)/(Tm-Ta)

where C is dQ/dT, To is the temperature of a well-stirred reactor operating
without heat losses, Tm is the measured temperature, and Ta is the ambient
temperature.  The heat transfer coefficients so determined were averaged
and the average value was used to calculate a smoothed temperature curve
through the data.  These temperatures were given by

                          T = (HT  + mCT )/(H + mC)
                                 a      o

-------
                                   C-4
The calculated temperature was found to be relatively insensitive to the
actual value of the heat transfer coefficient with a 10% difference in H
corresponding to about a 10°K difference in temperature.  Because of this
insensitivity to H, it was decided to assume a constant H for all cases.
This method of temperature determination allows the calculations to be
performed at pre-selected mixture ratios while utilizing all the temperature
measurements for a given combustion system.  Furthermore, in cases where
the combustion temperature exceeded the limits of measurement for a Pt/Pt
10% Rh thermocouple (2040°K), the heat transfer coefficient was used to
determine the experimental temperature.  The measured (open symbols) and
calculated (solid symbols) values of the combustion temperatures for hydrogen
carbon monoxide and propane, respectively, with air are shown in Figure C-l.

          The measurements of NOX for the three fuel/air combinations were
taken at mixture ratios ranging between about 50% and 160% stoichiometric
air.  Temperatures were measured, where possible, simultaneously with
species measurements.  The NOX measurements are believed to be within the
2 ppm error limits previously stated, with the exception of the hydrogen
data between 75% and 105% stoichiometric air, where the temperatures were
above those allowable for continuous operation of the combustor.  The
uncertainty within this range of mixture ratios for hydrogen/air is assigned
at + 20% because of the shortened duration of testing at a given setting.
The results for the three fuel/air combinations are presented in Table C-2.

          The NOX results for hydrogen/air are shown in Figure C-2.  The
experimental results are reported on an "as measured" basis with water
removed to a 1% concentration.  The calculated results plotted in the same
Figure were also corrected for water removal.  The agreement between the
measured values and calculated values is good, with the calculated values
slightly higher than the experimental on the fuel-lean side and slightly
below the experimental on the fuel-rich side.

          The results for carbon monoxide/air are shown in Figure C-3.  To
aid combustion, hydrogen was added to the combustion zone at a constant
rate amounting to about 1% (volume) of the carbon monoxide rate at 150%
stoichiometric air and about 0.5% at 85% stoichiometric air.  Although the
carbon monoxide was "moist", the correction for water is negligible.  The
agreement between the experimental and calculated values of NOX is quite
remarkable considering the state of knowledge of the combustion reactions
and the temperature sensitivity of the NOX formation rates.

          The agreement between the experimental values and the calcula-
tions is less satisfactory for propane/air (Figure C-4).  The calculations
under-predict the measurements by about a factor of four on the lean side
and about an order of magnitude on the rich side.  As will be discussed
later, since the mechanism used for propane combustion depends on the
mechanisms of hydrogen and carbon monoxide combustion, it is significant
that these values are low.

-------
                              C-5
                           FIGURE C-l
2000
5
>
H
TEMPERATURE (K

1500
REACTOR TEMPERATURES
I 1 1 i ill ! | I
/'^
- / - \
/ A
-/" -~A\°Q •
- / ^\j
/ \ V
A7 \ \^
- /& N \ (^
& \ \°
N V -
Q - HYDROGEN \ LJ
-Q - CARBON MONOXIDE &
/\- PROPANE
i i i i ii — i 	 J — 1 	 1
            50               100               150
                   PERCENT STOICHIOMETRIC AIR

FIGURE C-l - REACTOR TEMPERATURES FOR HYDROGEN/AIR, CARBON
           MONOXIDE/AIR AND PROPANE/AIR IN THE JET-STIRRED
           COMBUSTOR. OPEN SYMBOLS INDICATE EXPERIMENTAL
           TEMPERATURES.  SOLID SYMBOLS INDICATE TEMPERATURES
           AT WHICH CALCULATIONS WERE MADE.

-------
                                  C-6
                               TABLE C-2

           COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS
                     FOR THE JET-STIRRED COMBUSTOR
   Per Cent
Stoichiometric
     Air
 Temperature
(calc from H)
     (k)
  NOX
measured
 (ppm)
                       Reaction Volume = 14.5 cm
   NOX
calculated
  (ppm)
Fuel:  Hydrogen Air rate:  0.70 I/sec  T  =
                    300°K
60
65
65
70
70
75
77
85
90
99
105
111
120
135
140
150
162
190
2030
2080
2080
2120
2120
2165
2180
2210
2210
2175
2140
2090
2000
1880
1830
1730
1640

1.5
13
15
20
20
25
35
34
60
45
70
40
40
16
7
	 3
0
0
Fuel:  Carbon Monoxide
Air Rate 0.61 I/sec T  = 450°K
76
76
85
87
87
98
105
118
120
135
146
150


2100
2100
2100
2080
2030
1965
1960
1870
1820
1805
80
110
—
118
120
97
—
80
—
—
20
—


140



105

70
30

16

-------
       C-7
TABLE C-2 (Cont'd)
Per Cent
Stoichiometric
Air

Fuel: Propane
52
60
60
60
71
71
78
78
85
87
87
87
99
99
105
111
111
111
120
131
131
135
150
155
155
Temperature
(calc from H)
(k)
Reaction Volume =
Air Rate =0.61 I/sec T =

1800
1800
1800
1900
1900
1965
1965
2010
2015
2015
2015
2005
2005
1970
1925
1925
1925
1840
1750
1750
1715
1600
1570
1570
NOX
measured
(ppm)
14.5 cm
300°K
7
49
50
55
100
102
118
119
—
120
120
110
105
90
—
70
60
50
—
40
29
—
—
8
6
NOX
calculated
(ppm)




1





13





30



11


3
1



-------
                                 C-8
          150
      I  100
      CO
      PH
      a.

      O* 50
      55
           0
                               FIGURE C-2
                             HYDROGEN - AIR
                                      D - EXPERIMENTAL


                                       • - CALCULATED
      D
                    n
                      D


                     D
                                  D
             50
         100                150

PER CENT STOICHIOMETRIC AIR
                               -B-
FIGURE C-2 - COMPARISON OF EXPERIMENTAL AND THEORETICAL CONCEN-

            TRATIONS OF NO  IN THE JET-STIRRED COMBUSTOR FOR

            HYDROGEN/AIR. A

-------
                                C-9
         150
                             FIGURE C-3
                      CARBON MONOXIDE - AIR

Q
g 100
W
1
s
0* 50
0
i • i i | i 	 i 	 i 	 	 1 	 1 	 1 	
• O - EXPERIMENTAL
• - CALCULATED
V*Ti
\~~J
o
o
o o
•
_ —
•
o. -
1 1 II 1 1 11 1 J 	 1 	
           50
          100                 150

PER CENT STOICHIOMETRIC AIR
FIGURE C-3 -COMPARISON OF EXPERIMENTAL AND THEORETICAL CONCEN-
           TRATIONS OF NOjj IN THE JET-STIRRED COMBUSTOR FOR
           CARBON MONOXIDE/AIR.

-------
                             C-10
                          FIGURE C-4
                       PROPANE - Am
L— i
o
0
1
§
"x 50
55

^
0
/\- EXPERIMENT AI
A - CALCULATED
A A
A
A
A
//N \ /\
A
A
* 	 A , i ,
           50                100                150

                PER CENT STOICHIOMETRIC AIR


FIGURE C-4 -COMPARISON OF EXPERIMENTAL AND THEORETICAL
           CONCENTRATIONS OF NOx IN THE JET-STIRRED COMBUSTOR
           FOR PROPANE/AIR.

-------
                                  C-ll
          The results of the calculations for hydrogen and carbon monoxide
combustion with air indicate that nitric oxide formation can be predicted
with good accuracy, even in a flame zone, provided the concentrations of
combustion intermediates can be calculated.  The NOX values are under-pre-
dicted using a quasi-global treatment for propane.  It should be stressed
that the values for the rate constants used in this study were pre-selected
and were not adjusted to give best fit to the data.  The purpose of this
study was not to determine rate constants but to test the capabilities of
kinetic modeling and validate the use of the jet-stirred combustor for
testing kinetic models.

          In the mechanisms used for this study, the reactions of primary
importance for nitric oxide formation are the exchange reactions of the
Zeldovich mechanism.  However, the concentration of the oxygen atoms is not
assumed to be in equilibrium with molecular oxygen; it is determined by the
detailed kinetic mechanism.  In fact, in the intensely backmixed system
with chain branching reactions occurring throughout the combustion zone,
the oxygen atom concentration can be substantially above that in equilibrium
with the molecular oxygen concentration.

          "Superequilibrium" oxygen atom concentrations have been a matter
of discussion in the recent literature.  In the case of this study, that
term is not unambiguous. There are two "types" of equilibrium concentra-
tions for oxygen atoms that can be considered.  One is a "total" equilibrium
concentration calculated by minimization of free energy of the total system;
the other is a "partial" equilibrium concentration determined by combining
the measured or calculated molecular oxygen concentration with the equili-
brium constant for oxygen dissociation.  In a well-stirred reactor, fresh
reactants are continuously mixed with products in the combustion zone.
Thus the concentration of molecular oxygen is above the value for total
equilibrium, especially under fuel-rich conditions where the concentration
of molecular oxygen can exceed the total equilibrium concentration by
orders of magnitude.  For the purpose of this discussion the partial
equilibrium oxygen atom concentration will be used as the reference point.

          Thus, under fuel-lean conditions, the well-stirred reactor
calculations indicate that oxygen atom concentrations exceed the partial
equilibrium value by up to a factor of 12 for hydrogen and up to a factor
of 100 for propane.  Under fuel-rich conditions (60% stoichiometric air)
the oxygen atom concentrations exceed those calculated from K(02) •*•'^ by
a factor of 1.2 for hydrogen and about a factor of 50 for propane.  The
calculated concentrations of molecular and atomic oxygen are shown in
Figure C-5.

          The discussion of "superequilibrium" oxygen concentrations has an
interesting extension under fuel-rich conditions for propane-air combustion
in the jet-stirred combustor.  The concentrations of nitric oxide observed
experimentally at 60% stoichiometric air are more than an order of magnitude
above those that would be calculated if the system were in "total"

-------
                               C-12
   §
   »—i
   E-i
   U
fc

W

O
      10
        -1
       10
         -2
       10
         -3
       10
        -4
                            FIGURE C-5
                CALCULATED OXYGEN CONCENTRATIONS
            50
                                        MOLECULAR
                                          OXYGEN
                                         —r
                                         ATOMIC
                                         OXYGEN
                                   HYDROGEN
                                — CARBON MONOXIDE;
                                __ PROPANE

                                  ,i.l.
                          100               150

                 PER CENT STOICHIOMETRIC AIR
FIGURE C-5 -  CALCULATED CONCENTRATIONS OF MOLECULAR AND ATOMIC
             OXYGEN IN THE JET-STIRRED COMBUSTOR FOR HYDROGEN,
             CARBON MONOXIDE AND PROPANE COMBUSTION.

-------
                                   C-13
equilibrium at the specified temperature.  However, since both molecular
and atomic oxygen are also above their "total" equilibrium concentrations
by five and four orders of magnitude respectively under fuel rich conditions,
there is still a driving force to produce more nitric oxide.  The model does
predict an NO level above that for "total" equilibrium at 60% stoichiometric
air for propane but still under-predicts the observed level by about an order
of magnitude.  Thus, if a plug flow reactor were placed in series with the
jet-stirred combustor and sufficient residence time at combustion tempera-
ture were allowed for the combustion gases to approach equilibrium, the
concentration of nitric oxide would decrease to approach equilibrium.

          In the case of hydrogen and carbon monoxide combustion, the ex-
change reactions of the Zeldovich mechanism (coupled to the combustion
reactions which determine the oxygen atom concentrations) appear to be
adequate for the prediction of nitric oxide formation.  Under fuel rich
conditions for hydrogen, the measured values are somewhat higher  than the
predictions suggesting that additional reactions may be required in the
model.  In fact, when the reaction


                             N + OH = NO + H


was included for hydrogen combustion under rich conditions, the formation
of NO increased by up to 20%.  The inclusion of this reaction in the propane
mechanism had about the same percentage effect under fuel-rich conditions.

          As discussed earlier, a quasi-global mechanism was used for pro-
pane combustion.  In this quasi-global mechanism, the hydrocarbon is oxidized
in a rate-limited single step to carbon monoxide and hydrogen, and the com-
bustion of these intermediates is then described by the same mechanism as
was used for carbon monoxide and hydrogen combustion.  While substantial
oxygen atom concentrations are predicted by the model, the predictions for
nitric oxide formation fall below the measured values by about a factor of
four under lean conditions and about a factor of ten under rich conditions.

          Alternatives to the quasi-global approach to propane combustion
coupled to the Zeldovich exchange reactions are possible.  A more complete
mechanism for propane combustion might lead to better agreement between
calculations and experiments.  Intermediates in the combustion mechanism
might alter the balance of atomic oxygen and atomic nitrogen and such inter-
mediates certainly exist throughout the reaction zone of the jet-stirred
combustor.  However, under fuel-rich conditions for propane, it does not
appear likely that changes in oxygen atom concentration would be sufficient
to account for an order of magnitude in NOX production.  Thus, the influence
of additional reactions directly involved in the formation of NO or perhaps
in the formation of readily oxidizable nitrogenous intermediates cannot be
dismissed at this time.  One must, however, exercise great caution to avoid
adjusting parameters to fit existing data.  Reactions which have little

-------
                                   C-14
significance in the overall combustion scheme may be of importance in NO
formation under specific conditions.  The valuation of the reactions signi-
ficant for the characterization of gross combustion phenomena is a formidable
task by itself.  The numerous additional reactions which may be significant
under specific conditions for the formation of parts per million of nitric
oxide presents even more difficult problems.  The jet-stirred reactor data
will provide a comparison point for parametric studies of the reaction
rates included in the kinetics evaluation described elsewhere in this report.

          The comparison of NOX concentrations between experiment and cal-
culation for the case of hydrogen/air combustion in the jet-stirred combustor
indicates that the mechanism of coupled combustion and NOX formation is
fairly well determined.  Under fuel-rich conditions the inclusion of the
reaction

                           N 4- OH = NO + H


in addition to the Zeldovich exchange reactions improves the agreement
between theory and experiment.

          Good agreement is also found in the case of carbon monoxide/air
combustion.  In both the hydrogen and carbon monoxide cases, substantial
oxygen atom concentrations are calculated and accounting for their presence
is apparently sufficient to allow prediction of nitric oxide formation.

          For propane/air combustion, although substantial oxygen atom con-
centrations are also predicted, the use of a quasi-global mechanism for
hydrocarbon combustion results in underprediction of nitric oxide by about
a factor of four under fuel-lean conditions and about an order of magnitude
under fuel-rich conditions.  It is not clear at present whether a more de-
tailed combustion mechanism would resolve the differences or whether
additional reactions for the formation of nitric oxide are required.  How-
ever, it does not seem likely that an order of magnitude difference under
fuel rich conditions could be resolved by changes in oxygen atom concentra-
tion alone.  It is clear that a quasi-global approach, which has been found
to be useful for the representation of combustion characteristics of a
variety of hydrocarbon fuels, is not adequate for the prediction of nitric
oxide formation.

          In the jet-stirred combustor under fuel-rich conditions with
propane, the nitric oxide concentrations can be above those calculated
for total equilibrium at the specified mixture ratio.  This NO "overshoot"
can be understood in terms of the model, in part by the "superequilibrium"
concentrations of molecular and atomic oxygen in a well-stirred reactor
under fuel-rich conditions.  These "superequilibrium" molecular oxygen
concentrations are caused by the continuous mixing of fresh reactants with
products in the reaction zone.

-------
                                   C-15
          The jet-stirred combustor, operated in a manner that approaches
a well-stirred reactor, provides highly non-equilibrium behavior in a well-
defined system and, therefore, provides a severe test for any kinetic model.
As kinetic mechanisms become more complex, critical evaluation of the
component reactions becomes increasingly important.  The coupling of kinetic
modeling with sophisticated fluid mechanic and heat transfer modeling is
ultimately required for application to pollutant formation in practical
combustion systems.

-------
                                   C-16
                                REFERENCES
C-l  Engleman, V. S., Bartok, W., Longwell, J. P., and Edelman, R. B.,
     Fourteenth Symposium (International) on Combustion, p. 755, The
     Combustion Institute (1973).

C-2  Edelman, R. and Fortune, 0., "A Quasi-Global Chemical Kinetic Model
     for the Finite Rate Combustion of Hydrocarbon Fuels," AIAA Paper 69-86,
     Seventh Aerospace Sciences Meeting, 1969.

C-3  Baulch, D. L., et al.,  "Critical Evaluation of Rate Data for
     Homogeneous, Gas-Phase  Reactions of Interest in High-Temperature
     Systems," Nos. 1-5, Department of Physical Chemistry, The University,
     Leeds, England.

C-4  Moretti, G. , AIM J. _3, 223 (1965).

C-5  Amman, P. R. and Timmins, R. S., AIChE J. 12, 956 (1966).

C-6  Brokaw, R. S., Eleventh Symposium (International) on Combustion,
     p. 1063, The Combustion Institute, 1967.

C-7  Carnicom, M. L., "Reaction Rates for High Temperature Air with Carbon
     and Sodium Impurities," Sandia Laboratories, SC-R-68-1797, May 1968.

C-8  Campbell, I. M. and Thrush, B. A., Trans. Faraday Soc. 64, 1265 (1968).

-------
                          '- NO
                                    D-l


                                 APPENDIX D


                                NO/NO  PLOTS
                                     X
                                           - NO
                                                     x
         Run Number  101,  Premixed Flat Flame Burner (Laminar), Propane Fuel,

         Stolchiometric Air,  Cold Wall
    250
Q  200
0)


CO
cd
 CO
 cd
O
25
    150
     100
      50
          60
                80
100
                                              120
                                                     140
                                                                       160
                         Percent Stoichiometric Air
       Run Number  102,  Premixed Flat Flame Burner (Laminar),  Propane Fuel,
       106% Stoichiometric Air, Cold Wall
 CO
 cd
 CO
 cd
 I
 ex,
     125
     100  —
75  —
      50  —
      25
                                   4           6


                            Axial Distance (Inches)

-------
                                    D-2
0)
M
3
CO
«


I

W
cd
o
23
      Run Number 103, Premixed Flat Flame  Burner (Laminar), Propane Fuel,

      103% Stoichiometric Air, Cold Wall
     125
     100   -
 75  -
       50   -
       25
                       246



                            Axial Distance (Inches)
                                                                   10
        Run Number  103,  Premixed Flat Flame Burner (Laminar), Propane Fuel,

        122%  Stoichiometric Air, Cold Wall
 0)

 t-l


 CO

 tfl


 I


 CO

 cfl
 e
 ft
 D,
O
25
     125
     100
75
50
      25
                                   J_
                                                I
                                   4           6



                            Axial Distance (Inches)
                                                                   10

-------
                                    D-3
          Run Number  104,  Premixed Flat Flame Burner (Laminar), Propane Fuel,

              Stoichiometric Air,  Cold Wall
-o

-------
                                   D-4
I

03
CO
t
o
g;
        Run Number 105, Stabilized Diffusion Flame Burner  (Turbulent),

        Methane Fuel, 101% Stoichiometric Air, Cold Wall
    125
    100
     75
     50
     25
                    D

                    • •

                    D
                                                                       >M
                                  I
                                 4             6



                          Axial Distance  (Inches)
                                                  10
         Run Number 106, Stabilized Diffusion Flame Burner  (Turbulent),

         Methane Fuel, 101% Stoichiometric Air, Cold Wall
 CO
 cfl

 I

 CO
 tfl
 p.
o
25
    125
    100
     75
     50
     25
246



      Axial Distance  (Inches)
                                                                      10

-------
V)
(0


I


CO
18
e
a
PL.
i
    125
     100
      75
      50
      25
                                    D-5
               Run Number 108,  Stabilized Diffusion Flame Burner (Turbulent),

               Methane Fuel,  120%  Stoichiometric Air, Cold Wall
                      _L
                                s
                246


                     Axial Distance  (Inches)
                                                                        10
      Run Number 109, Stabilized Diffusion Flame Burner  (Laminar), Methane

      Fuel,  107% Stoichiometric Air, Cold Wall
CD

CO


I


CO
CO
e
PL.
ft
i
     125
     100
      75
      50
25  -
                                  4            6


                           Axial Distance  (Inches)

-------
to
n)

-------
                                    D-7

        Run Number HO, Stabilized Diffusion  Flame  Burner  (Laminar),  Methane
        Fuel,  86% Stoichiometric Air,  Cold Wall
T)
0)
CO
cfl
    125
    100
     75
 I   50
 p.
O
a
     25
                                   I
                                           I
                                   4           6

                            Axial Distance (Inches)
                                                                   10
       Run Number 111, Premixed Flat Flame Burner  (Laminar), Methane  Fuel,
       104% Stoichiometric Air, Cold Wall
    125
    100
 S   75
 cn
 t
 ex
 i
50
     25
                                                                        10
                            Axial Distance  (Inches)

-------
                                    D-8
3
to
cd

I
o.
o
2!
 3
 01
 cd
 CO
 ct!
 a
 a.
      Run Number  112, Premixed Furnace Burner (Turbulent), Methane Fuel,

      96% Stoichiometric  Air,  Cold Wall
    125
    100
75
     50
     25
                      .D.
                                   I
                                  4             6


                           Axial Distance (Inches)
                                                                    10
       Run Number 113, Premixed  Furnace Burner (Turbulent), Methane Fuel,
       115% Stoichiometric Air,  Cold Wall
     125
     100
      75
      50
      25  -
                                                                       10
                           Axial Distance (Inches)

-------
                                     D-9


        Run Number 114, Premixed Furnace Burner (Turbulent), Methane Fuel,

        76% Stoichiometric Air,  Cold Wall
•a
0)
CO
(fl

I
 S
 a
 a,
i
      125
      100
       75
       50
       25
                                    4             6



                            Axial Distance  (Inches)
                                                                    10
 s
 3
 CO
 cfl
 I
o
25
        Run Number 116, Premixed Flat Flame Burner (Laminar), Methane Fuel,

        119% Stoichiometric Air, Cold Wall
     125
     100
75
      50
25
•g:
                                                                         10
                            Axial Distance  (Inches)

-------
                                     D-10


        Run Number 116,  Premixed Flat Flame Burner  (Laminar),  Methane Fuel,

        80% Stoichiometric Air, Cold Wall
T)
0)
l-i
3
CO
ed
cu
6

to
efl
t
&,
i
      125
      100
75
50
       25
                                   _L
                                         _L
                                    4             6


                            Axial Distance (Inches)
                                                                  10
        Run Number 117,  Premixed Flat Flame Burner  (Laminar), Methane Fuel,
        161% Stoichiometric Air, Hot Wall 1430C
 M
 n)
 E
 0.
 ex
     125
     100
      75
      50
      25
                                    4             6


                            Axial Distance (Inches)
                                                                  10

-------
                                   D-ll



       Run Number 117,  Premixed Flat Flame Burner (Laminar),  Methane Fuel,
       119% Stoichiometric Air, Hot Wall 1430C
-a
0)
M

CO
n)

I
e
CX.
P-
    125
    100
75
50
     25
       fp°-
      pV
                     >D<
                                       'D

                                       ••
                                  I
                                          I
                                 4            6

                          Axial Distance  (Inches)
                                                                   10
       Run Number 117,  Premixed Flat Flame Burner (Laminar), Methane Fuel,

       80% Stoichiometric Air,  Hot Wall 1825C
 13
 0)
 ^

 01
 cfl
 CO
 
-------
                                   D-12
•a
(U
)j

ca
n)
ai
e

03
Cfl
I
P.
i
       Run Number 118, Premixed  Flat  Flame Burner (Laminar), Propane Fuel,

       61% Stoichiometric Air, Hot Wall 1565C
    125
    100
75
50
     25
      •
                                   I
                                           I
                                   4             6

                           Axial  Distance (Inches)
                                                                   10
        Run Number 119,  Premixed Flat Flame Burner  (Turbulent), Propane

        Fuel,  110% Stoichiometric Air, Cold Wall
13
0)
 05
 td
i
    125
    100
     75
     50
      25
             a—a
                                                _L
                                   4            6


                            Axial Distance (Inches)
                                                                    10

-------
                                    D-13


        Run Number 119, Premixed Flat Flame Burner  (Turbulent),  Propane

        Fuel,  132% Stoichiometric Air, Cold Wall
    125
    100
     75
     50
     25
                                 _L
                                 4            6



                           Axial Distance  (Inches)
                                                                  10
       Run Number  119,  Premixed Flat Flame Burner (Turbulent),  Propane

       Fuel, 88% Stoichiometric Air, Cold Wall
"d

-------
                                  D-14


      Run Number 120, Premixed  Furnace Burner (Laminar), Propane Fuel,

      156% Stoichiometric Air,  Hot  Wall 1495C
W
(8

s

Ifl
cfl
I
ft
                           Axial Distance (Inches)
       Run Number 121, Premixed Furnace Burner (Laminar), Propane Fuel,

       Stoichiometric Air, Hot Wall
 •n
 0)
 M

 w
 ca

 I

 to
 (X)
 S
 ft
 ft
     250
200  -
150  -
     100
      50  -
         60
                 80           100           120


                    Percent  Stoichiometric Air
                                                            140
160

-------
                                   D-15



       Run Number 122, Stabilized Diffusion Flame  Burner (Turbulent),

       Methane Fuel, 160% Stoichiometric Air, Hot  Wall 1450C
CO
CO
C8
a,
a
o
53
     125
     100  -
      75  -
50  -
      25  -
                                                                        10
                           Axial Distance  (Inches)



 Run Number 123,  Stabilized  Diffusion Flame Burner (Turbulent),

 Methane Fuel, 140%  Stoichiometric Air,  Hot Wall 1590C
     125
-d
3
CO
(fi
0)
e
I
     100  -
75  -
      50  -
      25  -
                                  4             6


                           Axial Distance  (Inches)
                                                                 10

-------
                                    D-16
0)
M

03
cd

I

03
tfl
o
a
     Run Number 123, Stabilized Diffusion  Flame Burner (Turbulent),

     Methane Fuel, 120% Stoichiometric Air, Hot Wall 1775C
      250
      200 -
150 -
      100 -
                      246



                           Axial Distance  (Inches)
                                                                  10
        Run Number 123, Stabilized Diffusion Flame Burner  (Turbulent),

        Methane Fuel, 80% Stoichiometric Air, Hot Wall 1825C
T3

-------
                                    D-17



       Run Number 124,  Stabilized Diffusion Flame Burner (Turbulent),

       Methane Fuel,  Stoichiometric Air,  Hot Wall
   1250
          60
80           100         120



     Percent Stoichiometric Air
140
160
        Run Number 125, Stabilized Diffusion Flame Burner  (Turbulent),

        Propane Fuel, 160% Stoichiometric Air, Hot Wall 1425C
    250
    200    -
-a
0)
M


3   150
CO
ca


B*   100
a
P.
i
     50    -
                                  4           6



                            Axial Distance (Inches)

-------
                                     D-18
         Run Number 126, Stabilized Diffusion  Flame Burner (Turbulent),

         Propane Fuel, 141% Stoichiometric Air,  Hot Wall 1610C
T3
01
M
3
U]
CS
0)



CO
n)
e
P<
o.
o
2
      500
      400
 300
 200
      100
                                    4             6


                             Axial  Distance (Inches)
                                                                   10
          Run Number 127, Stabilized Diffusion Flame Burner  (Turbulent),

          Propane Fuel, 114% Stoichiometric Air, Hot Wall 1870%
 Cl)
 N
 3
 w
 cd

 1

 CD
 CO
 ex
 o.
    1000
     800
600
     400
     200
                             Axial  Distance (Inches)

-------
01
S-l
CO
nj
I
a
&
ft
                                    D-19

       Run Number 127, Stabilized Diffusion Flame Burner  (Turbulent),
       Propane Fuel, 80% Stoichiometric Air, Hot Wall  1870C
     500
     400
300
200
     100
         0            24            6            8            10

                            Axial Distance  (Inches)

        Run Number  127,  Stabilized  Diffusion Flame Burner (Turbulent),
        Propane Fuel, Stoichiometric Air,  Hot Wall
   1250
   1000   -
-o
cu

5   750
n»
I
CO
cfl
    500   —
    250   —
         60
                80          100           120

                     Percent Stoichiometric Air
                                                           140
160

-------
3
CD
CO
QJ



W
cd
B
ft
ft
O
a
                                    D-20
       Run Number  128,  Stabilized Diffusion Flame Burner (Turbulent),

       Methane Fuel,  140% Stoichiometric Air, Hot Wall 1590C
     125
     100
 75
      50
      25
                        /      y
                                  4             6


                            Axial Distance  (Inches)
                                                                  10
         Run Number 128,  Stabilized Diffusion Flame Burner  (Turbulent)

         Methane Fuel,  160% Stoichiometric Air, Hot Wall 1440C
    125
 0)
 \-t
 D
 CO
 tfl

 I

 CO
 tfl
 6
 ft
 ft
O
3
    100   —
75
     50   -
                                   4             6


                            Axial  Distance (Inches)

-------
T3
 0)
 (-1

 CO
 ta
 01


 CO
 cd
i
                                    D-21


       Run Number  130,  Premixed Flat Flame Burner  (Laminar),  Methane
       Fuel,  140%  Stoichiometric Air, Hot Wall 1585C
    125
    100
75
     50
     25
                                                                         10
                            Axial Distance (Inches)
       Run Number  131,  Premixed Flat Flame Burner (Laminar), Methane
       Fuel, 120%  Stoichiometric Air, Hot Wall 1770C
 3
 CO
 c«

 I

 CO
 cd
t
OH
O
13
     125
     100
 75
      50
      25
                                 4            6


                           Axial Distance  (Inches)
                                                                   10

-------
3
en
cs

I
ex
o.
                                   D-22


      Run Number  131,  Premixed Flat Flame Burner (Laminar), Methane

      Fuel,  78% Stoichiometric Air, Hot Wall 1770C
     125
     100
75
      50
      25
                                               _L
       u  0           2           4            6            8


                           Axial Distance  (Inches)



       Run Number 131, Premixed Flat Flame Burner  (Laminar),  Methane

       Fuel, 111% Stoichiometric Air, Hot  Wall 1865C
                                                                   10
p.


o
    250
    200   -
TJ
0)
a   150

I
    100   -
     50   -
                                  4             6



                            Axial Distance (Inches)
                                                                 10

-------
                                   D-23

      Run Number  131,  Prefixed Flat Flame Burner (Laminar), Methane
      Fuel, Stoichiometric  Air,  Hot Wall
M

01
cd
(0
CO
o
a
   2000
   1600   -
   1200   -
    800   -
     400   -
         60
               80          100           120


                   Percent Stoichiometric Air
140
160
        Run Number 132, Premixed Furnace  Burner  (Laminar),  Methane Fuel,
        160% Stoichiometric Air, Hot Wall 1440C
co
CO
CO
cfl
a,
a.
     125
     100
75
      50
      25
                                  4            6


                           Axial Distance  (Inches)
                                                                  10

-------
                                    D-24



        Run Number 133, Premixed  Furnace Burner (Turbulent), Methane

        Fuel, 140% Stoichiometric Air,  Hot Wall 1590C
•o

-------
                                    D-25


         Run Number 135, Premixed Furnace Burner  (Laminar),  Propane Fuel,
         139% Stoichiometric Air, Hot Wall 1625C
0)
M
3
CO
ta
01
a

CO
C8
    125
    100
75
     50
     25
                                    4            6


                           Axial Distance (Inches)
                                                                   10
        Run Number 136, Premixed  Furnace Burner  (Turbulent),  Propane
        Fuel, 141% Stoichiometric Air,  Hot  Wall  1610C
3
(fl
cd
a
a.
a
i
     125
     100
      75
 50
      25
                              4            6


                      Axial Distance  (Inches)
                                                                       10

-------
                                    D-26


       Run Number  137,  Premtxed Furnace Burner (Turbulent), Propane
       Fuel,  121%  Stoichiometric Air, Hot Wall 1795C
T3
a)
S-l
3
01
cfl

I

CO
to
P.
a,
     125
     100  -
  75   -
      50  -
      25  -
                                   4             6


                           Axial Distance  (Inches)
                                                                    10
       Run Number 138, Premised Furnace  Burner  (Laminar),  Propane Fuel

       121% Stoichiometric Air, Hot Wall 1795C
-a

-------
                                    D-27
        Run Number 139, Premixed Furnace Burner (Laminar), Methane Fuel,

        120% Stolchiometric Air, Hot Wall 1770C
'O

-------
                                  D-28

       Run Number 141, Premlxed Flat Flame Burner  (Laminar),  Methane
       Fuel, 101% Stoichiometric Air, Cold Wall
    125
    100
CD
3
CD
CO
g   75

CO
    50
    25
         VF

         r
                 ,D.
i
i
                                4            6

                          Axial Distance (Inches)
                                      10

-------
                                         E-l
                                      APPENDIX E
                                CQ/C02/HC/02 DATA PLOTS
       Run Number 102, Premixed flat Flame Burner (Laminar),  Propane Fuel,
       106% Stoichiometric Air, Cold Wall
       Normalized Species Concentrations   C02/15, CO/5, 02/10,  HC/5
       Legend - Carbon Dioxide=D, Carbon Monoxide=M, Oxygen=0, Hydrocarbon=H
      IDE  -1
 0)
 o
       9E  -1
       8E  -1
       7E  -1
                      *
                      D
                      *
                      *
*     t
.     D
•     *
•     •
                      »      »
                      t      •
N
•H
i-H
td
o
•H
4->
cd
(U
       6E  -1
       4E -1
        2E -1
                      i
                      0
                                             ,0,
                      •
                      M
        OE -1
                               Axial Distance (Inches)
                                   .M
                                   in F   o

-------
                                     E-2
    Run Number 103, Premixed Flat Flame Burner (Laminar),  Propane Fuel
    103% Stolchiometric Air, Cold Wall
    Normalized Species Concentrations  C02/15, CO/5, 02/10,  HC/5
    Legend - Carbon Dioxide = D, Carbon Monoxide = M, Oxygen = 0,  Hydrocarbon = H
    iOE -1
             •      •
             >      •
     9F -1   	
             •      tftftftftftftftftD
             ftOftftftftftftft**

     8E -1	
             *••     *••»••*•
             •      «•*••»••••
             *•••••••>.•
g            •<•«•••••«
a)
o
»   7E  -1
a)            •      •
*
T3
a)            •      •
N            .
•H            •      •
3    6E -1   	


§            •      '
             *      *
§
Tj    5E -1   	
c            *
o            •
o            •
0    4E -1   .
             •     •••***••••
             *••••••••*•
             •     •••••••*••
             •     ftftftftftt.tftft
     3E -1	«....
             •     *•••••••••
             •     ••••••••••
             •     ••••*•••••
             •     *•••«••*•*
     2E -1	
             •     •*••••••*•
             •     ••••••••••
             •     *••••**•••
             •     ••••*****•
     IE -1   	M	
             •     0**ft*ft«(««
             •     •»••••>*••
             •     ••••••ftftftO
             •     ••••(ft...*
     OE -1   	H	.........M
             0     1     2     3     i>     5     6     7      8     910EO

                            Axial Distance (Inches)

-------
                                     E-3
     Run Number 103,  Premixed Flat Flame Burner (Laminar),  Propane Fuel, 122%
     Stoichiometric Air,  Cold Wall
     Normalized Species Concentrations  C02/15, CO/5, 02/10,  HC/5
     Legend - Carbon Dioxide=D,  Carbon Monoxide=M, Oxygen=0,  Hydrocarbon=H
     IDE -1
      9E -1
      8E  -1
§     7E  -1
CJ

-------
                                     E-4

     Run Number 104,  Premixed Flat Flame  Burner (Laminar),  Propane Fuel,
     94% Stoichiometric Air, Cold Wall
     Normalized Species Concentrations C02/15, CO/5, 02/10, HC/5
     Legend - Carbon  Dioxide=D, Carbon Monoxide=M, Oxygen=0, Hydrocarbon=H
     10E  -1	
              «.(•*.«•••*


              .**•••*••*«
      9E  -1	
      8E -1	
              •     ««•*****«
              .ODD     *     .     .     «     .      *     •     .
              D     .     .     .......
              ..........
      7E -1
•««••><«•»

              ....      .......
              ..*..*«....
      3E -1	
              .
      2E -1   .
      IE -1   0,
              0	
              HO 0 .     .     .     .     .     .      .     .     .     .
      OE -1   HH.C.O	,.0
              0     1     2     3     4     5     6      7     8     910EO

                             Axial Distance (Inches)

-------
                                E-5
Run Number 104, Premixed Flat Flame Burner (Laminar), Propane Fuel,
83% Stoichiometric Air, Cold Wall
Normalized Species Concentrations  C02/15, CO/5, 02/10, HC/5
Legend - Carbon Dioxide=D, Carbon Monoxide=M, Oxygen=0, Hydrocarbon=H
iUC. — J.



9E -1




8E -1



"v
§ 7E -1
o •*•
0)

•0
0)
N
TH^I
H 6E -1

0
^
c
3 5E -1
*n -/i— •«••*
*•••••••
• ••••••*

• ••••••*
• •••*••*
• ••••**•
• •*•«*••

• ••••••*
• *••••**
• ft..****
• **•••*•


• •••••••
• ••••ft. •
• . . . * . • D
*•••••*•

• •••••••
........
• *••••••
*•••••*•

........

• •••••••

• •••••*•

• ••••••*

««»>••*•
• •••••••
• ••*•***
*••**•**
	
«••*••••
«•••••••
• .»»>••«
• •••••••
• *••••**
***•••••
• •**••••
». *•••*•
........
«••••••*
• ••••*••

3 4 5 6 7 8 910EO
                          Axial Distance (Inches)

-------
                                   E-6

   Run Number 105, Stabilized Diffusion Flame Burner (Turbulent), Methane
   Fuel, 101% Stoichiometric Air, Cold Wall
   Normalized Species Concentrations  C02/15, CO/5,  02/10, HC/5
   Legend - Carbon Dioxide=D, Carbon Monoxide=M,  OxygenO, Hydrocarbon=H
    10F  -1   	
              •     ••**••*•**
              <••••*•••«•
              •     ••***••••*
              •     *•••••*•**
     9E  -1	
              **••**••••«
              •     •*•••*••••
              *•*•••*.*•*
     8E  -1   	•	
              •     »*•••*
              .     *     •     •      •     •     •
              •     *     •     ....
w             •••••••••
g     7E -1   	
£             .««.      ••••••
,55             .     .     .     .      .     D     .     .     .      .
T3             •»•••«****
N             ,..•••«•••
3    6E -1
«
              •      •••••..**•
§             .......»»••
3             «•«••••••••
c             •••••»...••
°     5E -1
1-1
«             ••••«**
£l             •«*•**.
§             •»••••*
c             ••*••**
3     4E -1   	
      3E -1	
              •      •«««•*•••»
              •      •.•••**.**
      2E -1
      IE -1   	M	
              ..*•*......
              •      •••*•••••     M
              •      ••••••••*•
              •      ••••Hftftftft*
      OE -1	0	...0
              0      1     2     3     4    5     6     7     8     910EO

                           Axial Distance  (Inches)

-------
                                     E-7



    Run Number  106,  Stabilized Diffusion Flame Burner (Turbulent),  Methane

    Fuel,  101%  Stoichiometric Air, Cold Wall

    Normalized  Species Concentrations  C02/15, CO/5, 02/10, HC/5

    Legend - Carbon  Dioxide=D, Carbon Monoxide=M, Oxygen=0, Hydrocarbon=H
    10E  -1
     9E  -1
     BE  -1
§    7E  -1
V-i
cu
•o
0)
N
     6E  -1
ts
o
      5E -1
c
0)
      3E  -1
      2E -1
      IE  -1
**•»••»
• ••••••
• •••••*
**»••**
• •**••»
• *»«•*•
• *•*•*.
**•••••
• «•••••
• «•*•*•
• *•(•**
• ••••••
* * * • * • D «
• * . . . 0 .
*******
*•****•
**•••*•
• •*•*••

• ••••••
• •••••*
• •••*•*
• • • t * • *

• *•••*•
*•*•>*•
* • • * t * *
*•**••*

. « . , M * *
• ••••••
. • * . D . t •
	 M •
• •••»••
• ••••••
. • * . M . * *
• *•****
*••••••
. . D . . • •
..... H .
• ••••••
«•••••«••• M4«..««»Q«0««»«0«0»««»«
• * • t
• • * *
• • • •
• * • •
• • • *
• • * •
• * • *
• • • *
• • • •
• • • *
• • • •
. . . D
• * • *
• . • •
• * t •
* • * •
• • • •
» t * •
* • • *
• • * *
* * * *
* • • •

* * • •
• * * •
t • * •
• • • •

* • * *
• • • *
* * • •
* * *
. . • .
t • • *
• t * *
• • • •
* * * t
• * * *
• i • *
. . . M
••••••••••••••«»»0
              0     1      2     3     4     5     6     7     8     910EO


                             Axial Distance  (Inches)

-------
                                    E-8



     Run Number  108,  Stabilized Diffusion Flame Burner (Turbulent), Methane

     Fuel,  120%  Stoichiometric Air, Cold Wall

     Normalized  Species Concentrations  C02/15, CO/5, 02/10, HC/5

     Legend -  Carbon  Dioxide=D, Carbon Monoxide=M, Oxygen=0, Hydrocarbon=H



     10E -1
      9E -1
      8E -1
*i     7E -1
V4
 *
• < * *
7 8 9 10 E 0
                              Axial Distance (Inches)

-------
                                     E-9


      Run Number 109, Stabilized Diffusion Flame Burner (Laminar),  Methane

      Fuel, 107% Stoichiometric Air, Cold Wall

      Normalized Species Concentrations  C02/15, CO/5, 02/10,  HC/5

      Legend - Carbon Dioxide=D, Carbon Monoxide=M, Oxygen=0,  Hydrocarbon=H
 g
 o
 fc
 
-------
                                E-10

Run Number 109, Stabilized Diffusion Flame Burner (Laminar), Methane
Fuel, 128% Stoichiometric Air, Cold Wall
Normalized Species Concentrations   C02/15, CO/5, 02/10, HC/5
Legend - Carbon Dioxide=D, Carbon Monoxide=M,  OxygenO,  Hydrocarbon=H
ft ft ft ft * *
• *••••
. 0 . . . *
» H • • • *

• » M . * *
• *•••»
M
• • H . • i


* H* . . . .
4j ft ft ft ft ft ft
U ft ft ft ft ft ft
£ 	
_. • * * * • *
Q> • • • • • *

i ::::?:
o ••••••

B • 	

•f-|
« . . . H . .
M . . . . . .
g . * D . . .
u • « • • • •
C • • ft • • •


. M . . . .
. * . . M .
. . . . . 0
• «•••»

• * » • • *
* • * • • *
• • • » • •
• D . . . •

• » * . 0 .
• * 0 . . .
» * . 0 . .

* D. . . . .
. « . * « M
• * • • H *
. M 	

012345
. . . • •
• • • • •
* • • • *
• • • • *

. * • • •
• • * * *
• • • • •
* • • • •

* • * * •
• » * • «
• • • • •
* • * • *
• * • • •
• • • * •
• • • • *

• * • • •

. . . . 0
* * • * D

* • * * *
• • • • •
• * • • »
• • • • •



• * * • •
• • • • *
• • • • •
* • • • *

. . . . »
* • • • •
* • * * •
* • • * •

* * * • *
* • • * •
• • • • •

• * • * «
* * • • •
* * * * •
• • • • •

6 7 8 9 10
                                                                     10 E   0


                        Axial Distance (Inches)

-------
                                       E-ll



      Run Number  110,  Stabilized Diffusion Flame Burner (Laminar),  Methane

      Fuel,  145%  Stoichiometric Air, Cold Wall

      Normalized  Species  Concentrations   C02/15, CO/5, 02/10,  HC/5

      Legend -  Carbon  Dioxide=D, Carbon Monoxide=M, Oxygen=0, Hydrocarbon=H
4J


S

O

M
01
13
 * *
	
* < * * *
* * * * *
* * • * >
. . . . 0
	
ft ft ft 1 ft
ft ft ft ft ft
ft ft ft ft ft
ft ft ft ft ft
ft ft ft ft ft
ft ft ft ft ft
ft ft ft ft ft
ft ft ft ft ft
ft ft ft ft ft
* . . * D
• « • • •
	
	
• • • • •
• • * * *
• • • * •
• • * • •
• • • • •
• • * * •
. . . • .
• • • * •
• • • • •
• • » • •
* • * • •
* • * • •
• • • * •
* • • * •
• • • • •
                                     .M,

                                      5
                                                                        • M
                                                                        10 E   0
                              Axial Distance (Inches)

-------
                                E-12
Run Number 110, Stabilized Diffusion Flame Burner (Laminar),  Methane
Fuel, 86% Stoichiometric Air, Cold Wall
Normalized Species Concentrations   C02/15, CO/5, 02/10,  HC/5
Legend - Carbon Dioxide=D, Carbon Monoxide=M,  Oxygen=0, Hydrocarbon=H
• ••*••»
ft ft ft ft ft • •
ft ft ft ft ft * ft
ft ft ft ft ft ft *

• •*••••
ft ft ft ft ft * *
. . . . H * •
* » • • • * *

• * • • • * •
• * • • • • •
• * * » » * *
S 	


a 	
Q> »•••«••
_, *******
g 	

1 	
§ 	 H .
g, ftftftftftO*
_, •(•••**

3 	
H •••••••
g 	
o •••••••
* * * * D * »
• • . . 0 » «
* • • * • • *
* . * D . . .

• • • • • • *
»*•••••
• • • * * • •
	 0 .

* • • • • * •
• • * * * • *
*••**••
* * • * • * •

• • • • • • *
• « « « « « *
» • • • • » •

. . *
* * *
• • •
» • *

.
• • *
. • •
• • *

• • •
< • •
* * •
• • •


• * *
• * •
• • •
• • •

* • *
• * «
• • •
• • •

.
« • •
« • •
. .
* * *
* • •
• • *
• « *

• * •
• * *
* * *
• * *

• • •
• * •
• • •
• • *

• • *
• • •
, « (

.
•
•
*

.
*
•
*

.
•
•
*


•
•
•
•

D
*
«

.
*
•
H

•
*
,

.
.
.
*

,
0
•
*

*
*
,

       0     1      2      3      4      5      6      7      8      910EO

                         Axial Distance (Inches)

-------
                                   E-13

    Run Number 111, Premixed Flat Flame Burner (Laminar), Methane Fuel,
    104% Stoichiometric Air, Cold Wall
    Normalized Species Concentrations   C02/15,  CO/5, 02/10, HC/5
    Legend - Carbon Dioxide=D, Carbon Monoxide=M, Oxygen=0, Hydrocarbon=H


    10E -1   	,	


             **•*«»•••••
             *••*•••••••
     9E -1	

             ***••***•**
             *»»••*«**••

     BE -i	!.........!....!...*!..**!....!
             ...........
             ...........
             •     ••ftODftftftftD
Q            ..     D    D    .......
g    IE -1	,	
g            OD.    .    .......
£            .   D	
TJ            ...........
0)
N            *•*•*...•••
3    6E -1   	

g            ........

a            ...»     «     •     »     •
2    5E -I	
3)            •*••***««••
tJ            *•••*••••••
§            «•••»»«•«»•
g            D	
3    4E -1   •....	
             H    «     .     .     .     .     .     .     .     .     .

             M    ..........
             •    ••««•»•»••
     3E -1	
             ...........


             •    ••*»»•••••

     2E -1	
             *    .     «     •     •     .     •     .     •     •     .
             ,0.     .     .     «     •     •     •     •     •     •
             .    0	•
             .  M .     0     •     •     •     •     •     •
     IE -1   	0....0	
             	0	
                  M	0
             .    .     M     ........
             ...MM......
     OE -1   «•ftH.Hft»•»H....H....H...«M.*••««................. »M
             0    l     2     3     4     5     6     7     8     910EO
                          Axial Distance (Inches)

-------
      Run Number  112,  Premlxed Furnace Burner (Turbulent), Methane Fuel,

      96% Stoichiometric Air, Cold Wall

      Normalized  Species Concentrations   C02/15, CO/5, 02/10, HC/5

      Legend - Carbon  Dioxide=D, Carbon Monoxide*=M, Oxygen=0, Hydrocarbon=H
1
-
 c
 o
•H
4J
 tO
 S-i
4J
 a
 0)

 8
 o
o
    IDE  -1
     9E  -1
     8E  -1
      7E -1
      6E -1
      5E -1
      4E -1
      3E -1
      2E -1
      IE -1
      OE -1
.
ft
ft
•
ft
ft
ft
•
•
ft
f
,
ft
ft
ft
ft
ft
ft
.M
.D
•
.0
•
*
•
*
*
*
•
•
»
,
•
•
•

.H
•
•
•

0
• • • • * •
• • • • • •
• * • • • •
• « • • • •
• • • • • *
* * • • * •
• * • * * •
*>•••*
• • • • • *
* • * • • •
• ..DO.
. . D . . .
. D . . . .
* • • • • •
	
* • • * * •
* • • • • *
D « < . . .
D * • • • • •
* * • • * *
• • • * • •
M . . . . . .
M • . . . *
* * • • • •
0 . . . . .
• « • • • *
0 » * * . i «
ft ft ft ft ft ft
ft ft ft ft ft ft
ft ft ft ft ft ft
ft ft ft ft ft ft
• M . . . .
* 0 • • • •
* * M . . .
. . . 0 . ,

* • • • * •
H * . . . . .
H . . M M .
* * * • * *

123456
. . • •
. • « •
• • • •
* • * •
. * . .
• • • •
. • • •
. . ft
. !
. . . D
• • * *
• • • •
» • * *
* * » •
• • * *
* • • *
• • * •
» * * *
.
» • • *
• • • •
• • • •
• • * *
• • • *
• * • *
• * * *
.
* • * •
» • • •
• » * *
* • * •
* * • *
• • * •
* * • *
• * • •

* • • •
* • * *
* • • •
* * * *

7 8 91-0
                              Axial Distance (Inches)

-------
                                 E-15

Run Number 113, Premixed Furnace Burner (Turbulent), Methane Fuel
115% Stoichlometric Air, Cold Wall
Normalized Species Concentrations   CC-2/15, CO/5, 02/10, HC/5
Legend - Carbon Dioxide=D, Carbon Monoxide=M, Oxygen=0, Hydrocarbon=H
*•**•••
*•*•*••
• • ft ft ft ft ft
• * t ft ft ft ft

• • ft ft ft * ft
• • ft ft ft ft ft
• * ft ft ft ft ft
• «•*•»•

ft ft ft ft ft ft ft
• ft ft ft ft * ft
**•••••
ft ft ft ft ft ft ft

| . 0 	
fl)
° *!(«•«*
8 » 0 . . . . . .
.0 0 . . , . .

•H ftftDftftft*
cd •••••••
H D ••••(•
o
55 o * . . . . »
o .DDOOOOft
•H
*J • ••••••
cd
M ftDftftftftftft
§ •*****•


o »»**••*
CJ
**•*•«*
• ••«•**
«»«••••
. M . • • • • *
•M « « • • • •
• » * * * * *
«•*••*•
«•••••*
* * • • • • *
• ••••••
• ••*•*•
... • • • «
.H H M • • • •
*•••**•
H . . M • • •
• •
• •
• •
* *

• *
• «
» •
• *

• *
• •
* •
• •

• •

• *
• *
» *

• •
• *
* *

* •
• •

* •

• •
• »


• *

• •
* •
• *
• *
» •
• *
• •
• •
• *
* *
• •
• •
• •
• *
• •
•
•
•
•

•
•
*
*

•
•
*
*

*

*
*
*

*
•
•

•
•

*

*
•


*

•
•
•
*
*
•
•
•
•
»
•
*
»
*
*
*
•
*
•

*
•
•
•

*
•
*
*

•

*
•
•

•
•
•

•
0

»

•
•


*

•
*
•
•
•
*
•
*
*
*
»
•
*
*
*
                                                                   10  E  0
                         Axial Distance (Inches)

-------
S
o
M
0>
PM


H
N
g
O
z
O
1-1
J-)
CO
M
4-1
C
                                      E-16



       Run Number 114, Premlxed Furnace  Burner  (Turbulent),  Methane Fuel,

       76% Stoichiometric Air, Cold Wall

       Normalized Species Concentrations   C02/15,  CO/5,  02/10,  HC/5

       Legend - Carbon Dioxide=D, Carbon Monoxide=M,  Oxygen=0, Hydrocarbon=H
• M « . . . M •
<*.«••*
• •••••*
.......
*••••••
.......
• •••**«
.<•••«•
• •»••»•

00000*0
0000000
000*000
• ••••••

• • • 0 * 0 0
• *•***•
0 • 0 0 • 0 0
. . . . . D .
* . D . « • • *
• *•«***
*»...«.
« 0 , . • . . •
.......
ODD .
.......
...*...

• «•«•>•
*»*•...
*...*••
.......

*«««««>
C ......
H 	
.......

• • 0 « . . . .
i . H « • * * •
• »•«...
• ••«*•*

0123456
0
0
*
0
0
0
•
0
0

0
0
0
*

0
0
0
0
0
0
0
0
.
0
0
0

0
•
0
0

0
0
0
•

0
.
.
.

7
. * *
. . .
. • •
* • •
» • •
* • •
• * •
• • •
• • *

* • •
• • »
* * *
* * *

* • •
. » •
. . D
• * •
* * »
• * •
...
. • •
• • •
» • •
• * *
* . *

. . .
* * *
* . *
. * •

* * •
• • •
• . *
» * *

. • •
. * *
• * *
• • H

8 9 10 E 0
                                Axial Distance (Inches)

-------
                                 E-17


Run Number 116, Premixed Flat Flame Burner (Laminar), Methane Fuel,
119% Stoichiometric Air, Cold Wall
Normalized Species Concentrations   C02/15, CO/5, 02/10, HC/5
Legend - Carbon Dioxide=D, Carbon Monoxide=M, Oxygen=0, Hydrocarbon=H

* • • ft
* * ft ft
• ft ft ft
• ft ft ft

• • » ft
• • ft ft
• • ft ft
• • ft ft

* * ft ft
• ft ft ft
* * ft ft
£ ....


« ....
0 ....
PU «...
rrt ft ft ft ft
g . . D .


S ....
5 • • • *
c . . . .

£ .0 0 0 0 .
h * * • .
§ ....


• • • •
* * • •
M . * .
* • » >

• • • *
* ...
....

• • • .
* ...
... *
.M . . .
HM M . . .

0123

	
• • • • • •
• •»•••
• * * » • •

.... • *
• * ... •
..*••*
**••••

......
......
......
.»*••*


» • • * * •

* *
* • * • • •
. D ... .

..*•••
• * . * * .
*•*••>
• • • * . .

. 0 . .. .
• • « * • *
. * . . * *
* . • ...

......
.*••*•
• * • ...
• ... » .
......
• *».*.
• .....
. . . . . .
* • ....
• *••<•
• * • ...
*• ....
. • • • • .
• • • • » »

456789

.
.
.
.

.
*
*
«

.
•
*
•


•


»
D

.
•
.
•

0
•
.
•

•
•
»
•
.
.
•
•
.
*
'
•
*
.

10
                                                                  10  E   0

                        Axial Distance (Inches)

-------
                                   E-18
8'
u
•o
cm«=H



   10E -1
    9E  -:
    8E  -1
7E -]
6E  -1
    5E  -1
    -1
    3E  -1
    2E -1
     IE -!
    OE -]
» * »
a a a
a a a
a a a
a M M
a M a a
aM a
a a a


a a a
a a a
D a a
a a a
M a
a a a
a a a
.D a a
aD D D a
. . D
a a a
a • a
a a a
• a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
0 a a

0 1 2
a a a
a a a
a a *
a a a
a a •
• t a
a a a
a a a

a a M
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a D
a a a
a a a
a a •
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a
a a a

345
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

6
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

7
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

8
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
*
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

9
a
a
a
a
a
a
a
a

a
a
a
M
a
.
a
D
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

10 E
                            Axial Distance  (Inches)

-------
                                     E-19
     Run Number 117,  Premixed Flat Flame Burner (Laminar), Methane Fuel,

     161% Stoichiometric Air, Hot Wall 1430C

     Normalised Species Concentrations   C02/15, CO/5,  02/10, HC/5

     Lagancl - Carbon Dioxide=D, Carbon Monoxide=M, Oxygen=0, Hydrocarbon**
    10E -1
     9E -1
     BE  -1
0)
o

o
S5
s-/

C

3
•u
n)
g
o
     6E  -1
     5E-'
     4E  -1
     3E  -1
     2E  -1
      IE  -1
     OE  -1
     7E  -1  H
*
*
*
*

*
«
*
*
*
•
•
•


.H
•
•
.
t
*
.H
*
*
,
•
*
•
*
•
.
t
•
.D
,
*
.M
• D
.M
• rl
M
*
*
•
• •••••••
*•**••*•
»•••••••
• *••*«••

*•••*•••
*••••«••
*•**••»•
• *««««.«
*•••••••
*•••**••
• •«*««««
»•••••••

• .......
........
*»•••**•
. .......
*•••*»••
»»......
• «•••••>
• **••«•*
*••*»••*
........
ODD 	
. . t . D . .
........
........
........
........
........
...*•*.*
........
....***.
........
........
........
..««*•«>
*.*...*.
....*»*.
..*•«««•
M ........
.
.
.
.

.
.
.
•
.
*
*
*

.
.
*
.
.
»
.
•
,
.
.
.
.
*
•
.
.
.
.
.
.
•
.
*
.
•
•
*
•
.
.
.

,
.
.
•
.
.
.
«

,
«
*
.
.
•
.
.
.
.
.
•
.
.
*
•
.
*
.
*
.
.
.
.
.
*
•
.
                                                                       10 E  0
                              Axial Distance (Inches)

-------
                                     E-20
     Run Number 117, Premlxed Flat Flame Burner  (Laminar), Methane Fuel,
     119% Stoichiometric Air, Hot Wall  1430C
     Normalized Species Concentrations   C02/15, CO/5, 02/10, HC/5
     Lagend - Carbon Dioxide=D,  Carbon  Monoxide=M, Oxygen=O, Hydrocarbon*
   10E  -1
                   ft     ft
                   ft     ft
     9E -1

-------
                                     E-21
    Run Number 117, Premixed Flat Flame Burner  (Laminar), Methane Fuel,

    80% Stoichiometric Air, Hot Wall 1825C

    Normalized Species Concentrations   O>2/15, CO/5, 02/10, HC/5

    Legend - Carbon Dioxide-D, Carbon Monoxide-M, Oxygen-0, Hydrocarbon**
   10E -1
1
0

ft
 n

 I
 C

5



I
4-1
 a
 M


i
 o

 o;
o
ft ft
ft ft
ft ft
. M M
* *
• •
* *
* »
• *
* *
• t
• •
• •
.DO
• t
• *
• *
• •
• •
• •
* t
• •
• •
• •
• •
* •
• *
• •
• *
• •
* *
0 1
*•**••*••
• ****••*•
*•»*••••*
»••*»•*•*
*••*••*•*
. . . M . . . . .
*•*••••*•
*••*•**•*
*•*»•*•*•
• ••*»••*•
• *••»*•**
• **•*»•*•
**•*«»*••
• •*•*•*•*
• *•**•*•*
. • . D * * . * •
• •••***••
*•*»••*••
• *•**•**•
• *•***•**
*********
• ••*•••*»
• ••*•***»
*•***•••*
• ••*•*•*•
• •«••**••
*«•*••**•
,)••**•*•
• •*•*•*»*
• ••••••••
.••••*•*•
.••«••*•*
• •••****•
. . . ***** *
23456789 10
                                                                        10 E   0
                             Axial Distance (Inches)

-------
                                      E-22
      Run Number 118,  Premixed Flat Flame Burner (Laminar),  Propane Fuel,
      161% Stoichiometrlc Air, Hot Wall 1450C
      Normalized Species Concentrations   C02/15, CO/5,  02/10,  HC/5
      Lagend - Carbon  Dioxide™D, Carbon Monoxide*^, Oxygen=0, Hydrocarbon=H
o
id
o
&
a
o
§
o
CJ
     10E -1
      9E -1
      8E -1
      7E -1
      6E -1
      5E -1
         -1
      3E -1
      2E -1
      IE -1
      OE —1
                   .0.
•
•
•
t
.
*
•
t
,
H
•
• H
*
•
•
*
*
*
»
*

.
•
•
•
.
t
*
*
.
*
•
*
.
t
•
*

.D
• M
M
D

0
• *•*•**•
* ... 0 ...
.. ..••••
• •••••••
• «••»•••
***•*»**
• *••••••
*••••••»
*»**•**•
• •••«•••
..»«•«••
	
»*<•••«*
• ••>••••
• •••••••
• •>«»*•>
*•>««•«*
........
........
.*.»**..

. D 	
«»«.D...
i.....*.
*•••**•*
H* t • t * t • •
• •••*»••
• <*«•««•
• ....«..
D* • • . • • . .
• »««•«••
• ••«*•»*
(•*.«>..
• *•«•*••
*•••***•
• •«.....
• <««•«<«

• •.«•...
*•••****
*••***••
• ••***••

12345678
• *
• *
* *
• •
• *
• *
• *
* •
* *
* •
• •
• *
* *
* >
• .
• *
. .
• i
• »
* i

* t
i *
• *
* •
• *
• *
* •
• *
. .
• *
* *
• *
f .
. .
* t
• *

» *
, ,
t •
t •

9 10
                                                                       10EO
                              Axial Distance (Inches)

-------
                                      E-23
"d

-------
                                   E-24


      Run Number 119, Premixed Flat Flame Burner (Turbulent), Propane Fuel,
      110% Stoichiometric Air, Cold Wall
      Normalized Species Concentrations   C02/15, CO/5, 02/10, HC/5
      Lagend - Carbon Dioxide=D, Carbon Monoxide=M, Oxygen-0, Hydrocarbon=H

     10E -1	
             •     *••*•***»•
             •     ••*•••*•••
             »«*««««*•••
             «*•«««*«*••
      9E -1	
             »»*••*•••••
             ««.«••«««»«
             «*•«.*«««•*
             •     «•«..      •««**
      8E -1	D..........	D
             ...D.......
             •     •Dt.     ......
             .   D D     .     •     .     •      •     .     *     •      •
             DD    *     *	      *
IT     7E -1	

-------
                                 E-25
 Run Number 119, Premlxed Flat Flame Burner (Turbulent), Propane Fuel,
 132% Stoichiometric Air, Cold Wall
 Normalized Species Concentrations   C02/15,  CO/5, 02/10, HC/5
 Legend - Carbon Dioxide=D, Carbon Monoxlde=M, Oxygen«0, Hydrocarbon-H
§
u
111
N
H
fl)
U
4J
§
O

I
10E -1
 9E  -1
 8E  -1
 7E  -1
 6E  -1
 5E  -1
 4E  -1
  3E -1
  2E -1
  IE -1
 OE -1
•
•
*
•
•
•
•
•
•
•
*
*
•
00
•
*

DD
•
•
•
•
•
•
t
•
*
t
•
•
•
•
•
*
MM
•
•
*
•
t
t
••••««
**••*»
*•**••
• ****•
• **•**
*••••*
*•***•
*•*•*•
• *••••
*•••••
«••««•
* • » • • •
0 • » t • * *
• D D • D •
• ••*••
0 * • * t •

• 00.**
D * * * * 0 »
*•••*•
******
• *••*•
*••*••
*«•**•
• ••••*
******
• ••«*•
*•••*•
• ••**•
****••
**•••*
• **•*•
******
******
*•••*•
M « • • • •
******
******
• •***•
t M * * * *
H H * * * * •
• * * *
• * * *
• * * *
* * * *
* * * *
* * * *
* * * *
• * * *
• * * *
• * * *
• * * *
• * * *
* * * *
* * * D
• * * *
• • • •

• * * *
. . • 0
• • • »
* * * *
* * • •
* * * *
• • • •
• * * *
• * * *
* * * *
• • • •
• * * *
* * * *
* * * *
* * * *
* * * *
* * * *
• * * *
• * * *
* * * *
* * * *
* * * *
* * * *
* * * *
                              ,M.
                               3
,M<
 5
                      234567

                          Axial Distance (Inches)
.M
10 E

-------
                                      E-26



      Run Number 119,  Premixed Flat Flame Burner (Turbulent), Propane Fuel,

      88% Stoichiometric Air,  Cold Wall

      Normalized Species Concentrations   C02/15, CO/5, 02/10, HC/5
      Legend - Carbon Dioxide=D,  Carbon Moapxide=M, Oxygen=0, Hydrocarbon=H


     10E -1   	*.*•»	«i	•«
§
y
o
S3
O
o
*••*»••
**•**••
*.««.**
• ••••**

• »•»*«•
• »••***
• *•••*•
• ••»•••

*««««*•
. t • M « . .
« t . • . M .
• • M • « * •

. M .....
.*..***
*•««*«*
. M . . . . . *
•M » . . . . .
.*....*
M * .....
.......
. i . . . t *
......*
«•<««•»
«*«««»•
.......
.......
....**.
.......

.......
. t . . * * *
.....*•
.*.....

.*...**
.*...*.
.......
• •««••«

• «««•*•
*......
DD D D D D . D .
* 0 0 0 ...

0123456
. * * *
. . * •
. . • •
« . • .

* . * .
. * • .
«...
....

....
. . • .
. • . .
....

. . . M
. . * .
. * * *
....
....
....
. • . .
....
. • . .
....
....
....
....
....
....
....

. . . .
....
....
. • * .

• * * .
• . . .
....
. t * .

* * * .
* * • .
. • . D
• • « .

7 8 9 10
                               Axial Distance (Inches)

-------
§
•H
4J
ed
M
u

§

G
O
u
                                    E-27



     Run Number 120, Premixed Furnace Burner  (Laminar), Propane Fuel,

     156%  Stoichiometric Air, Hot Wall 1495C

     Normalized Species Concentrations   C02/15, CO/5, 02/10, HC/5

     Legend  - Carbon Dioxide=D, Carbon Monoxide=M, Oxygen=O, Hydrocarbon-*!




      10E  -1   ...0.0	0	,
       9E -1
       8E -1
£      7E -1

S
o
2      6E -1
       5E  -1
       3E -1
       2E  -1
       IE  -1
       OE  -1
•
*
•
•
.
•
•
.
.
H
*
•


•
•
.
*
*
.
.
,
*
*
.
.
i
.H
.D
*
.
.
*
.D
.M
•
•
D
MM
•
.

0
* ...
• • * .
* ...
* ...
* ...
* * * *
• ...
* ...
....
• ...
• ...
• • * .

....
....
• ...
• ...
....
• ...
t * . .
....
D D . . .
• D * •
• ...
....
....
«...
* ...
* ...
«...
«...
* ...
. • • •
«...
• ...
....
•
• * * *
* ...
• « • •
...»

1234
..... 0
......
*.*.*.
• •••••
......
......
......
«••*•«
......
......
* . . i . .
*...*•

......
......
......
......
......
......
......
......
......
D * . . . D
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
• *....
......
......

5 6 7 8 9 10 E
                             Axial Distance (Inches)

-------
                                       E-28



       Run Number 122,  Stabilized Diffusion Flame Burner (Turbulent), Methane

       Fuel,  160% Stoichiometric Air, Hot Wall 1450C

       Normalized Species  Concentrations   C02/15, CO/5, 02/10, HC/5

       Legend - Carbon  Dioxide-D, Carbon Monoxide=*M, Oxygen=0, Hydrocarbon=H
I

Hi
•o
0>
     10E  -1
      9E  -I
      BE  -1
      7E  -1
      6E  -1
o     5E  -1
•H

-------
                                  E-29
Run Number 123, Stabilized Diffusion Flame Burner (Turbulent), Methane
Fuel, 140% Stoichiometric Air, Hot Wall 1590C
Normalized Species Concentrations   C02/15, CO/5, 02/10, HC/5
Legend - Carbon Dioxide-D, Carbon Monoxide=M, Oxygen=0 , Hydrocarbon=H
• •
• •
• *
• •

* •
• *
• t
• •

* t
t »
• *
/•N • •

fl)
0 • •
ti
1) • *
* t .
•o
$ * t
N AE-1 	 	
« • •
C * •
o
53 • *
O
• t

u . «
(I)
M * *
4J
c • •
•**
• *D*****0

• i*««**0*
• ••**»••*
»««Mt»»«»
**••****•

• ••**•••*
«M«»«Ot««
• t*******
»••••••••
t********
«iO<*»*<*
• ••••*»*•
»•*••*•»•

(*••«*••»
«•••*•**•
«•»••*••*
,,.»tM»««
• •••*•**•
«••*•***•
,.ti«t»M«
(••f****M
2 3456789 10
                         Axial Distance (Inches)

-------
                                     E-30
     Run Number 123,  Stabilized Diffusion Flame Burner (Turbulent), Methane
     Fuel, 120% Stoichiometric Air, Eot Wall 1775C
     Normalized Species Concentrations   C02/15, CO/5, 02/10, HC/5
     Lagend - Carbon  Dioxide=D, Carbon Monoxide=M, Oxygen-0, Hydrocarbon=I&
««««
• (*•••*••
«>••<•«•»
.H .......
. . * M . . . . .
.........
...*...**
.........
.........
.........

. M .......
.........
.........
* * * D . * . . *
.........
. . D . . . . * *
*•<«•••*.
	
.........
.....M...
.........
. .
........ 0
....... 0 *
.........
.D .......
.........
. . 0 . . 0 . . .
*.....*..
.......M.
. . . 0 . . . . M
• ......•*
* • . H . . . . .
• •*».....
                                                      i H i
                                                       7
                                                                  • HI
                                                                   9
i.H  .
 10 E   0
                             Axial Distance (Inches)

-------
                                    E-31
     Run Number  123, Stabilized Diffusion Flame Burner (Turbulent), Methane

     Fuel,  80% Stoichiometric Air, Hot Wall 1825C

     NennalSzed  Species Concentrations   COa/15, CO/5, 02/10, HC/5

     Legand - Carbon Dioxide-D, Carbon Monoxide-M,  Oxygen=0, Hydrocarbon-H
§
o
"3
N
e
o
•H
•U
a
w
o
o
    10E -1
     9E  -1
     8E  -1
     7E  -1
     6E  -1
     5E  -1
     4E  "
     3E  -1
     2E  -1
     IE  -1
     OE  -1
*••••••••
• • • . M . . . .
••••**••*
•••••••••
•*••**•••
•*•*•••••
• • . H . . . . .
**•••*•••
• •*••••••
• • • . H . . . .
• •••t****
• *««•«««•
• •••*•**•
• »•••••••
» * • • 0 • • . *
• •««•••*«

• •***••••
**••»••»•
• ***•••**
• *******•

• •*«..*««
• *««..«••
• »*******
• ***•••••

• •*•*•*••
...... D . .
• •««•««.«
	 0 ...
	 0 ...
• «<*«<«*.
. * . . D • • • •
...... H * .
«••«•*•*•
.«•<««•*•
. . * 0 	
• ••••••••
...... 0 « •
....... H .
.....*•••
....... 0 .
. .
. .
. .
. .
. ,
. .
. (
. .
. .
. .
* .
. .
, .
. *
. .
. .

. .
• .
. •
. .

. .
. .
. .
. 4

* .
• .
. .
*
.
. (
• .
*
. .
. •
. .
. .
. .
* .
. .
• 0
                                                                       10EO
                             Axial Distance (Inches)

-------
                                      E-32
      Run Number  125, Stabilized Diffusion Flame Burner  (Turbulent), Propane
      Fuel,  1602  Stoichiometric Air, Hot Wall 1425C
      Normalized  Species Concentrations   C02/15, CO/5,  02/10, HC/5
      Legend - Carbon Dioxide=D, Carbon Monoxide=M, Oxygen«0,

     10E  -1
      9E  -1
      BE  -1
a
•*
• ••••••»•
. 0 	
	
• •••••»**
«**.«••»*
....... M .
• * • 0 ... . .
• • 0 • . . . . M
.........
• ••••••*•
» ........
                                                       M
                                                       7
                                                                   iH.ftft.H
                                                                    9   10  E  0
                              Axial Distance (Inches)

-------
                                   fi-33
    Run Number  126, Stabilized Diffusion Flame Burner (Turbulent),  Propane

    Fuel,  141%  Stoichiometric Air, Hot Wall 1610C

    normalized  Species Concentrations   C02/15, CO/5, 02/10, HC/5

    L«g«nd - Carbon Dioxide«=D, Carbon Monoxide=M, Oxygen=0,  Hydrocarbon=H
   10E -1
    9E -1
    8E -1
    7E -1
a
ai
u
h
0)
CM
O
O
%   6E  -1
4-1

2
4J

§
        -1
    4E  -1
        -1
    IE  -1
•
•
•
•
.
•
•
•
.
*
*
•
.
•
•
•
*
•
•
•

.
•
•
,

.
,
.
•
*
t
•
•
,
t
,
•
*
•
•
*
• »••••••
**••••**
***•***•
**H**«tt
• «•<•••>
• *•*•*•»
t • • H t * . •
• *•••*•»
• «««•«••
*•*•*•**
*««••••«
**••»»*•
• »*<••••
*«•«•««<
« • * » H . • •
*•••••••
• «*..•••
• *•••* D •
• *•••••!
* • • • * » • »

. . • • • D * .
• •*•*•••
...*••••
««•«••••

• ••§••••
*.«*•»••
• •••••••
. • • D » • • •
• »•••••»
. . D . . H . .
• *••••»•
(*•*»•••
...... 0 .
• »•*••**
• •***•**
. . . . • 0 . .
, . . . 0 . H .
• •••••••
• •«•••••
• •••••••
• .
• •
* .
* *
* *
• •
* *
* *
. .
« •
« •
* .
* *
. D
* •
* *
• *
• •
* *
* •

. .
• •
* .
• «


• t
• 0
* »
• *
• •
• •
* *
.
• •
* •
* *
• *
• •
• *
* *
    OE  -1   	H
             0      1     2     T>     4     5     6     7     8     910EO



                           Axial Distance (Inches)

-------
                                    E-34


    Run Number 127, Stabilized Diffusion Flame Burner  (Turbulent), Propane

    Fuel, 114% Stoichiometric Air,  Hot Wall  1870C

    Normalized Species Concentrations    C02/15, CO/5, 02/10, EC/5

    Legend - Carbon Dioxide=D, Carbon Monoxide=M, OxygenO, Hydrocarbon*H
a)
u
PM
£
a
o
iH
4J
rt
l-l
4J


1
C
O
U
    10E -1
     9E -1
     8E -1
     7E  -1
     6E  -1
     5E  -1
     4E  -1
     3E  -1
     2E  -1
     IE  -1
     OE  -1
• «
* t
» »
* •
* •
* •
* •
• •
• *
* t
• *
* «
. .
* *
• *
* (
. .
t •
* t
* •

• *
• •
• *
* f

• *
* *
• *
•
. .
1 t
t •
, ,
• •
* *
• •
. .
• •
* (
* •
0 1
**••(•*••
««•«««««*
«•«•••••*
*•••*•••*
• ••*••***
• ••*••*•*
• H.**»...
• •••••»*•
.........
...*..*..
**...***.
*....*.*.
• ««*..«*D
..**..**.
.........
*..*...«.
..... D ...
.........
.0 	
.........

• ••D.*...
.........
.....*...
.........


.........
.........
.........
.«....***
*D.......
.........
........0
«««H<«»««
*....**..
.........
*
-------
                                      E-35
     Run Number 127, Stabilized Diffusion Flame Burner (Turbulent),  Propane

     Fuel, 80% Stoichiometric Air, Hot Wall 1870C

     Normalized Species Concentrations   C02/15, CO/5, 02/10,  HC/5

     Legend - Carbon Dioxide=D, Carbon Monoxide8"]*,  Oxygen^O, Hydrocarbon=H
    10E  -1
     9E  -1
     8E  -1
*?   7E -1

8-
o
K

-------
                                   E-36
  Run Number 128,  Stabilized  Diffusion Flame Burner (Turbulent), Methane
  Fuel, 160% Stoichiometric Air, Hot Wall 1440C
  Normalized Species Concentrations   C02/15, CO/5, 02/10, HC/5
  Leg«ad - Carbon Dioxide=D,  Carbon Monoxide=M, Oxygen=0, Hydrocarbon=H
   10E -1
    9E -1
    8E -1
4-1

f   7E -1
•8
N
I
    6E -1
    5E -1
a
d
a
a
    3E  -:
    2E  -]
    IE -1
    OE  -1
ft ft
ft ft
ft ft
• •
ft ft
ft ft
ft ft
ft ft
ft ft
ft ft
ft t
ft ft

ft ft
ft ft
ft ft
ft ft
, ,
ft ft
ft ft
ft ft

ft ft
ft ft
ft ft
• *
ft .
ft ft
ft ft
ft 1
ft ft
• •
ft ft
ft ft
ft ft
ft ft
ft ft
• •
ft ft
ft ft
t ft
• •
0 1
• ••••••ft*
• ••*•••*•
• •••••••ft
ft********
****•»•••
• *••***•*
****•*»••
• *••*•*••
• ..**•*».
**•••••••
• •*****•»
ft********

»*•••*•»•
*••****»•
• ••*•*•*•
0 	
• MftftftftfttO
	 0 * . .
• •ftftftftftO*
• •***•»••

. * M . • * . D •
* . . D . * * . .
. . D 	 	
• 	
*•••**••*
. . . M * . « • .
. D . . . . . . .
	
***•*•••*
• ••••••••
• ••••••••
• • . * * M * * *
**•*•*•*»
• •H*ft*ftt«
• ••*•*•••
• ••••** M .
• •*•*••* M
• •**•*•••
• • . H . * . , .
• **••***•
2 3 4 5 6 7 8 910EO
                          Axial Distance (Inches)

-------
                                     E-37
•u


3
•o

-------
                                     E-38
0)
N
    Run Number 130, Premlxed Flat Flame  Burner  (Laminar), Methane Fuel,

    140% Stoichlometric Air, Hot Wall 1585C

    Normalized Species Concentrations   C0£/15, CO/5, 02/10, HC/5

    Legend - Carbon Dioxide=D,  Carbon Monoxide=*M, Oxygen»0, Hydrocarbon=H
    10E -1
      9E -1
      8E -1
g     7E -1

o
N-
****ftft*********»«**>M
      OE -1

                               3     4     5     6     7     8     910EO



                             Axial Distance  (Inches)

-------
                                       E-39
      ™*.     Premlxed Flat Flaffie Burner  (Laminar), Methane Fuel,
     120% Stolchiometrlc Mr, Hot Wall 1770C

     Normalized Species Concentrations   C02/15, CO/5, 02/10, HC/5

     Legend - Carbon Dioxide-D, Carbon Monoxide=M, Oxygen=0, Hydrocarbon-H
    10E -1
8
o
M
0)
PU

•o
M*********M»***********************M

 3     4     5     6     7     8     910EO
                            Axial Distance (Inches)

-------
                                   E-40
     Run Number  131, Premlxed Flat  Flame Burner (Laminar), Methane Fuel,
     78% Stolchlometric Air, Hot Wall 1770C
     Normalized  Species Concentrations   C02/15, CO/5,  02/10, HC/5
     Legend -  Carbon Dioxide=D,  Carbon Monoxide=M,  Oxygen=0, Hydrocarbon«H
   10E -1
    9E -1
    8E -1
    7E -1
o
FM
•a
i«*»t>«*H**>************»»****it«H
            0     1     2     3     4     5    6     7     8     910EO

                            Axial Distance (Inches)

-------
                                     E-41
     Run Number 131, Premised Flat Flame Burner (Laminar), Methane Fuel,
     111% Stoichlometrlc Air, Hot Wall 1865C
     Normalized Species Concentrations   C02/15, CO/5, 02/10, HC/5
     Legend - Carbon Dioxide=D, Carbon Monoxide=M, Oxygen=0, Hydrocarbon^H
   IDE  -1
 g
 o
o
a
o
2
.u

-------
                                      E-42
       Run Number  131, Premixed Flat Flame Burner (Laminar),  Methane Fuel,

       101% Stoichiometric Air, Hot Wall 1945C
       Normalized  Species Concentrations   C02/15, CO/5,  02/10,  HC/5
       Legend -  Carbon Dioxide=D, Carbon Monoxide=M, Oxygen=0, Hydrocarbon=H
a

-------
                                     E-43



      Run Number  132, Premised Furnace Burner (Laminar), Methane Fuel,

      160% Stoichiometric Air, Hot Wall 1440C

      Normalized  Species Concentrations   C02/15, CO/5, 02/10,  HC/5

      Legend -  Carbon Dioxide=D, Carbon Monoxide=M, Oxygen=0, Hydrocarbon=H
a)
o
01


H
o
a)
M
4-1
ti

-------
                                    E-44



        Run Number 133, Premixed  Furnace Burner (Turbulent), Methane Fuel,

        160% Stoichiometric Air,  Hot Wall 1440C

        Normalized Species Concentrations   C02/15,  CO/5,  02/10, HC/5

        Legend - Carbon Dioxide=D, Carbon Monoxide=M,  Oxygen=0, Hydrocarbon=H
y
M
     10E  -1
      9E  -1
      8E  -1
      7E  -1
•O
0>

.2     6E  -1
§     5E  -1
•H
a
0)

g     4E  -1
*
t
•
*

,
*
•
•
.
•
•
•
*
t
»
t
.
«
•
•
,
*
*
*

*
*
.
*

*
•
•
«

.
*
*
*

t
*
•
•
*
•
t
t

*
.
*
*
*
*
t

*
t
•
*
t
•
*
*
*
•
•
,

1
•
*
*

.
*
•
I

*
*
t
*

.
*
D
*
*
•
*
•

t
.
•
*
.
t
*
*
,
H
*
•
*
*
•
*
.
•
*
*

.
a
«
*

.
*
*
*

.
*
*
,

•
.
M
*
* • • »
* • § *
• » « •
• * * *

. 0 .
• « • •
• * • •
* • * *
* * i *
• • * «
• * * *
* * * •
* • * •
* • * •
* • • i
* * • *
tt*«
* • * *
* * * *
* * * *

• • • •
* * * *
• * * *

* . D * *
* • * *
* H D . .
* * * *

* D * * *
* * * *
• D » » «
• * * *

• * * *
* * * *
* * * *
. H . .

M MMM. * .
* M . *
. . M . .
* * * *
* * * *
* * * *
* * * *
* * * *

* * * *
. * * 0
• * * *
* * * *
* * * *
* * * *
• * • *
* * * *
. . . .
• * * *
• * * •
• * * •
* * • *
• • * •
* • • •
* * * *
• * * *
• • * *
* * * *
* * • *

* • • •
• * * •
* • * *
* • * *

• * * •
* * * *
* • * *
• * * •

* * * *
* • • *
* * * •
• * * *

* • • *
• • • *
* • • *
• * * *
       3E  -1
       2E  -1
       IE  -1
      OE  -1   	M	.....M.......	........M

               0     1     2     3     4     5     6     7     8     910EO




                               Axial Distance  (Inches)

-------
                                     E-45
      Run Number 133, Premixed Furnace Burner (Turbulent), Methane Fuel,
      140% Stoichiometrlc Air, Hot Wall 1590C
      Normalized Species Concentrations   C02/15,  CO/5, 02/10, HC/5
      Legend - Carbon Dioxide=D, Carbon Monoxide=M, Oxygen=0, Hydrocarbon=H

0)
o
§

-------
                                      E-46
       Run Number 134,  Prefixed Furnace Burner (Laminar),  Methane Fuel,

       140% Stoichiometric Air, Hot Wall 1585C

       Normalized Species Concentrations   C02/15,  GO/5,  02/10, HC/5

       Legend - Carbon  Dioxide=D,  Carbon Monoxide=M,  Oxygen=0,  Hydrocarbon=H
    IDE  -1
a
01
u
M
- A


AC ^1
*r u 4t







?E -1
£. L. ifc



IE -1




OE -1

*
*
•
*

.
•
*
«

*
•
*
,


•
•
«

•
•
•
•

,
D
•
•
.
•
•
*
•
*
•
•

.
«
*
•

•
•
•
M
H.
0
* * •
i « *
* » •
• * *

* * *
* • •
* • *
• * »

• • •
. 0 0
ft ft ft
0 • .

ft ft ft
ft ft ft
ft ft ft
ft ft ft

ft ft ft
ft ft ft
ft ft ft
ft ft ft

t ft ft
ODD
* . .
* • •
• * •
• * •
* • •
* • »
. * .
* * *
* * •
* * *

* * •
* • •
• • •
* • •

• « •
• * •
* • •
* * •
• •ftMftftftftMftftftftMft*
1 2 3
* * * • • *
« * • • • *
. * • • • *
* * • • • *

. . • * • *
* « • • • *
* • * * * •
**•»••

• • * * * •
0 0 . . . .
• > • • • •
• • * * • •

• • • * * *
• • * • * •
• • • • * •
• * * * * *

. . . . . *
• * * • * *
• * • * • •
* < • • • «

» « * • • •
0 • * • * *
* D * • • *
* * * • • •
• * * * • •
• * * • • *
• * * * * *
• • * • • •
* • • • • *
• * • * « •
• » • * * •
• * * • • •

• * • • • *
* • • » • *
. • * * • •
• * * * * *

• * • * • *
* * » * • *
• • * * • •
• * * « * *
••Mftft**M*ft*ftft***ft**ftftftftft*ftftft*
456789
*
*
•
•

.
*
*
*

,
*
0
*

*
•
*
•

.
•
*
•

*
,
D
•
*
*
•
•
.
•
*
*

.
•
•
•

*
•
.
t
...M
10
                               Axial Distance (Inches)

-------
                                E-47



 Run Number 134, Premixed Furnace Burner (Laminar), Methane Fuel,

 65% Stoichiometric Air, Hot Wall 1600C

 Normalized Species Concentrations   C02/15,  CO/5, 02/10, HC/5

 Legend - Carbon Dioxide=D, Carbon Monoxide=M,  Oxygen=0, Hydrocarbon=H
a
01
o
M
0)
PH


"S
N
•H



I
a
o
•rl
4-1
td
M
4J



§


o
o
10E  -1
 9E  -1
 8E  -1
 7E  -1
 6E  -1
  5E ..
 4E -1
  3E -1
  2E -1
  IE -1
 OE -1
ft ft
ft t
« ft
ft ft
ft
* ft
ft ft
• •
ft ft
ft ft
ft ft
• •
ft .
ft ft
ft t
ft ft
ft .
ft 1
ft ft
ft ft
ft ft
ft ft
* ft
ft *
ft ft
ft ft
ft ft
ft ft
t t
ft t
ft •
•
ft ft
ft ft
ft ft
ft ft
ft ft
ft ft
t t
t
• •«**•*•
• *•***•*
• <•*•***
• •••(••ft
*»•••**(
• •••**•*
. H 	
*«*•••**
• ••*•••*
. * H * * . . •
• •**••••
• *••••*•
• •••«••*
• •*••••*
* * «H» • • • •
• •••••••
• **•*•••
• •***•»•
. M 	
.
**••***•
• »••••••
**•*••*•
• *•»•*••
• *•*•**•
• *••••••
. . . 0 . . . . •
*••*••••
• ••••*••
. . . D D . D . .
. * . H • • • •
. D . . . • *
........
. . 0 	
• •»•*•••
..*•••••
...OH...
..*.*•••
	 H .
. . . 0 . 0 . *
•
*
«
*
*
t
*
•
*
*
•
•
.
•
•
*
*
*
•
•
*
*
*
•
•
»
*
*
*
D
*
•
«
•
•
•
•
»
•
0
                                                                        '•H

                                                                         10 E  0
                         Axial Distance (Inches)

-------
0)
o
                                     E-48
     Run Number 135, Premixed Furnace aurner  (Laminar), Propane Fuel,
     139% Stoichlometric Air, Hot Wall 1625C
     Normalized Species Concentrations  C02/15, CO/5, 02/10,  HC/5
     Legend - Carbon Dioxide«D,  Carbon Monoxide=M, Oxygen=0, Hydrocarbon=H
o
o
    10E -1
      9E -1
      8E -1
      7E -1
      6E -1
5     5E -1
(0
M

g     4E -1
      3E -1
      2E -1
      IE -1
ft ft ft ft ft ft ft
• **•*••
ft ft ft ft ft ft ft
ft t ft ft ft ft *
***•••*
ft ft ft ft ft ft ft
. . . 0. . . .
ft ft ft ft ft ft ft
ft ft ft ft ft ft ft
. » . 0 0 0 «
• ••••»•
ft ft ft ft ft • •
* . H . . * •
• * « • • * *
» • « • • • •
• • • • • • »
• • • • • * *
• * • • • * *
• • * * * t •
> » • • • » •

• » * • • * *
• ft.*D* • * •
* « * • • * •
• • • • • • *
• * • • • • •
. . . D . . . .
• . . H . . • •
• • • • • * •
• • • • • * *
• ft • • • » *
.0 . . * .
• • • > * • •
• . . . . . •
• • D • • * *
• • * • • « *
	
. . *M MH. . . .
M . .
. . M. . . .
• • • • • * *
• * • *
• • • •
• * * *
. * • •
.
• » » •
« • • •
. . » .
. . • 0
• • • •
• • • .
.
• • * *
• • • •
• • * •
• • * *
. . . .
* • * •
• * * *
* • • •

* . D
• • * *
* * * •
. .
• • • •
• • * •
. • • •
• * * •
• * * *
• * • *
* * • •
* • • *
* • * *
• » • •
• • * •
• * • •
• * * *
• • • •
• • * *
• * • *
      OE -1	M....M....M..*	M
              0     1     2     3     4     5    6     7     8     910EO


                            Axial Distance (Inches)

-------
                                      E-49




      Run Number 136,  Premlxed Furnace Burner (Turbulent),  Propane Fuel,

      141% Stoichiometric Air, Hot Wall 16 IOC

      Normalized Species Concentrations   C02, CO/5,  02/10,  HC/5

      Legend - Carbon  Dioxide=D, Carbon Monoxide=M,  Oxygen=0, Hydrocarbon=H
    10E -1
     9E -1
     8E -1
S    7E -1
0)
y
•o
0)
N    , r   ,
•H    6E -1
§    5E  -1
2
4J

g
o

§    4E  -1
u
     3E  -1
     2E  -1
««*«••«.
**«•«««*
•4.0.....
••••••••
• »••*»•*
• »•••«••
• «»*••*•
*»«o.,,«


* . . . 0 . .
««««««»•
• « • • 0. * • •
* * H » * * • •
. . . * 0 0 . .
*•«.•>«*
«.««•<.<
»•»••»«•
* * * • D D . .
• «»«•»••
. ... D. ...

«**D«**«
*»...*.*
***«••*•


. . . D. . . . .
. . . D 	
	
. . . H. • * * *
««*.*•**
• •••••*•
• «••••••
. . .MM. . . • •
. . M. . .
..MM....
**•««••»
. . . .M . * * *
. . . . M . • • •
. . . . HM. . • •
... HM ...
* • «
...
...
.
...
...
...
...

...
...
...
...
...
. • 0
...
. . .
...
...
. * D
. . .
• . .
...
...
...

. . .
...
• . *
. . .
...
. . .
...
...
. . *
. . .
. . .
. . .
. * *
• . •
. . .
. . .
     IE  -1
     OE  -1  	H....M	M

             0     1     2     3     4     5     6     7     8     910EO




                              Axial Distance (Inches)

-------
                             E-50

Run Number  137, Premixed Furnace Burner  (Turbulent), Propane Fuel,
121% Stolchlometric Air, Hot Wall 1795C
Normalized  Species Concentrations   C02/15, CO/5, 02/10,  HC/5
Legend - Carbon Dloxlde=D, Carbon Monoxide=M, Oxygen=0,  Hydrocarbon=H

• •«••*•
• »••***
**•••••

• <*•*<*
ft ft ft ft ft ft ft
• t ft ft ft ft *
ft ft ft ft ft ft ft

ft ft ft ft ft * ft
ft ft ft ft ft ft ft
. « . . . D .
"£• . • . D D . .

g D 	
0)
PH • * . . . • •
13 ••*••••
H>**ftHftftft«Hftft*ftHft>ftft*ftftft*ftftftft*ft**ftftftftft»ftM
        0     1     2     3     4     5     6     7     8     910EO

                       Axial Distance (Inches)

-------
                                  E-51

    Run Number 138, Premixed Furnace Burner (Laminar),  Propane Fuel,
    121% Stoichiometric Air, Hot Wall 1795C
    Normalized Species Concentrations   C02/15, CO/5, 02/10, HC/5
    Legend - Carbon Dioxide=D,  Carbon Monoxide=M, OxygenO, Hydrocarbon=H
0)
o
•a
g
•rt
4-1
a
0)
a
o
    IDE -1
     9E -1
     8E -1
     7E  -1
     6E  -1
     5E  -1
     4E  -1
     3E  -1
     2E  -1
      IE  -1
* * 4 4
* * 4 4
* 4 4 ft
4 * ft ft
• * 4 4
* * 4 4
* * 4 4
* 4 4 4
* * * 4
* * ft 4
0 . . .
44*4
* * 4 4
* 4 DD D D
* D D 4 4
* 4 0 4

* 4 404
4*40
4*44
4*44
4 ft ft ft
ft 4 4 4
4444
4444
4444
4444
4444
4444
• 4 4 4
4444
4 * * 4
4 * ft •
4*44
4444
ft * • 4
4444
4444
4*44
M * . .
• * «
ft 4 4
444
444
4 4 4
444
444
444
444
444
444
444
444
4*4
4 D 4
4 4 ft

ft ft 4
4 0 4
444
444
444
444
444
ft ft 4
4 4 ft
ft ft ft
ft ft ft
ft ft ft
ft ft ft
ft ft ft
ft ft •
ft ft •
ft ft ft
ft ft 4
444
ft ft •
ft 4 4
444
44*
4
ft
ft
ft
ft
ft
ft
ft
4
4
4
4
4
4
4
4

4
4
4
4
4
4
4
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
4
4

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
4
4
4
4
4
4
4
4
4
4
4
4
*
4

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
ft
4
4
D

4
4
0
4
4
4
4
4
4
4
4
4
4
4
4
ft
ft
ft
ft
4
ft
ft
ft
              ft     M   M 4     ft
     OE  -1   H.44.H44H.KM.M.M
              0123
                                           ft      ft     ft     ft      ft      ft
                                          i :"••«••«••••••««•••••••••• M
                                           5      6     7     8      910EO
                             Axial Distance (Inches)

-------
                                 E-52
Run Number 139, Premlxed Furnace Burner (Laminar), Methane Fuel,
120% Stoichiometric Air, Hot Wall 1770C
Normalized Species Concentrations   C02/15, CO/5, 02/10, HC/5
Legend - Carbon Dioxide=D, Carbon Monoxide=M, Oxygen=0, Hydrocarbon=H












x-x
JJ
c
0)
o
0)
FM

(U
N
•H
fH
I
O
\^X

P
O
•H
^ i
to
^
•U
(3
(U
o
a
o
*->





















IUC



9E
7 Imp.



8E




7E





6E





5E
-X i—




4E




3E




2E




IE




OE

-i



-1




-1




-1





-1





-i
J.




-1




-1




-1




-1




-1

•
•
*
•

•
*
t
•

•
•
*
•

•

*
•
D

•
•
*

•


*
•
•
0

•
•
*
*

•
•
•
ft

*
•
•
•

•
•
(/
•
H. ..
0
*
•
•
*

t
»
•
t

*
i
*
•

»

*
,
D

•
•
*

*


t
*
0
*

•
*
*
•

.
*
•
*

*
•
•
•

*
*
«
M
• H*
1
»
*
•
•

•
•
•
•

•
•
»
•

•

•
,
D .
n
•
•
•

*


§
0 0
•
•

•
*
t
*

.
•
»
•

t
•
*
•

•
•
•
M .
.H.M.
2
•
•
•
•

•
•
•
*

•
•
•
•

t

•
,
.


.
,

•


•
0
•
•

•
•
•
•

•
•
•
*

•
*
*
*

•
>
•
•
• • • M • <
3
ft
*
•
•

•
•
*
•

t
*
*
•

*

•
*
*

•
*
*

•


*
*
•
ft

»
•
ft
ft

ft
ft
ft
ft

•
ft
ft
ft

ft
ft
ft
ft
t • * • •
4
•
•
•
•

*
*
*
*

*
t
•
•

f

•
*
D

•
•
•

•


•
0
•
•

•
•
•
•

•
•
•
*

t
*
•
•

•
•
•
•
• • »M • • i
5
ft
•
ft
ft

ft
ft
ft
ft

ft
ft
ft
ft

ft

ft
ft
ft

ft
ft
ft

ft


ft
ft
ft
ft

•
ft
ft
ft

ft
ft
ft
ft

•
ft
ft
ft

ft
ft
,
,
9 • ft ft
6
»
•
•
•

•
*
•
•

•
•
*
•

•

•
•
•

•
•
•

•


•
•
•
•

•
•
•
*

•
•
•
•

•
•
•
•

•
•
.
.
• • * t • •
7
•
•
•
•

•
*
•
*

•
•
•
•

•

•
•
•

*
t
•

•


•
•
*
*

•
•
*
»

•
*
•
*

*
•
*
*

*
•
.
,
••••••
8
*
»
•
•

•
*
•
•

•
»
*
•

t

•
•
*

*
•
*

•


•
*
•
•

•
•
•
•

•
•
§
•

•
•
•
•

*
•
*
•
« • » •
9
*
•
*
•

*
•
»
•

•
•
•
»

t

•
•
•

•
D
•

«


t
•
0
»

•
•
•
•

•
•
t
•

•
•
•
•

•
•
•
•
• «M
10
                                                                     10 E   0

                         Axial Distance (Inches)

-------
                               E-53


Run Number 140, Premixed Furnace Burner (Turbulent),  Methane Fuel,
120% Stoichiometric Air, Hot Wall 1775C
Normalized Species Concentrations   C02/15, CO/5,  02/10,  HC/5
Legend - Carbon Dioxide=D, Carbon Monoxlde^-M,  Qxygen=0, Hydrocarbon=H

* * * ft ft ft ft
•••**••
• * * ft ft ft ft


• • ft ft ft ft ft
• • ft ft ft ft ft
*•**•»•

• ft ft ft ft ft ft
»*•*•*•
^ *•••*..
4J
(3 •••••••

j[j •*•»**•
GU
m •*••••(
"3 •••••••
£ . . D D . D .

jjj D D . . . * .
,g •••*•••
^ » . . . . . *
o »*•••••
o •••••••


* •••••••
s • ' 	
v •••«•••
0 ••«••••
§ 00 	

• * • •
• * * •
* • • *
• • * *

• « « •
• • * *
• • * •
• • • •

• * * •
• • • •
• • • •
• • • •

* • * •
* * » •
• • • *
. . . D

• • * *
• • • •
• * * •
• • • •



* • • »
. . * .
* • • ft

. . • •

                          0     .     0     .     .      .      .     0
                          ft     ft     •
         •      •••**
3E  -1
2E  -1
• •ft******
«•••*••*•
• ft*******
M * 	 * *
(*•••**••
• ••*••**•
• ••*••••»
• •*****•*

. . M 	
. . . M . * * * *
..... M . . .
, .
• •
• •
• •
» *
• *
• •
• •
.
• •
* •

IE  -1  H
OE  -1
         0      1     2     3     4     5     6     7     8     910EO

                         Axial Distance (Inches)

-------
                              E-54
Run Number 141, Premixed Flat Flame Burner (Laminar), Methane Fuel,
101% Stoichiometric Air, Cold Wall
Normalized Species Concentrations   C02/15, CO/5, 02/10, HC/5
Legend - Carbon Dioxide=D, 'Carbon Monoxide=M, Oxygen=0, Hydrocarbon=H
f ft ft ft ft ft •
• *••••*
• ft ft ft ft ft ft

• »*••*«
ft ft ft ft ft ft ft
ft ft ft ft ft ft ft

ft ft ft ft ft ft ft
ft • ft ft ft ft ft
• * . D . >Dft *
•£ » • D • • • • •
 • • *
• • • *
» * * «
* * • •
• • * •
. . * .
• . • •
• • • »
* • • •
* • • t
• * » «
• • » •
.
* * * •
* » • »
* * t •
. . . M .
7 8 9 10
                        Axial Distance (Inches)

-------
              APPENDIX F

              DATA LISTINGS

      RUN NUMBER   101
 PREMIXtD FLAT  FLAME BURNER
          PROPANE
WALL-COLD    AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.036
0.030
0.043
0.036
O.C36
AIR
FLOW
(CFM)
0.854
0.854
0.854
C.S54
0.854
PCT
STOIC
AIR
9S.3
119*4
83.0
9 3 . 3
98.3
AXIAL
DIST
(IN)
10.00
10.00
10.00
10.00
10.00
RADIAL WALL
DIST TEMP
( IN) (C)
0.00
0.00
0.00
0.00
0.00
NO

(PPM)
145
50
72
145

NOX
(PPM)

57



02
(PCT)
0.06
3.40
0.04
O.C5
0.05
CO
(PCT)
0.707
0.003
4.510

0.599
CC2 HC
(PCT) (PPM)
13.79
11.73
10.73

13.79

-------
      RUN NUMBER  102
 PREFIXED FLAT FLAME BURNER
          PROPANE
WALL-COLD   AIR PREHEAT-NONE
FUEL
FLOW
(CF'-n
0.071
0.021
0.021
0.022
0.022
0.022
0.0?1
0.071
0.071
0.021
0 . C ? 1
C.C71
0.021
0.021
0.021
0.071
0.021
0.071
0.021
0.071
0.071
0.021
0.021
AIR
FLOW
(CFM>
0.546
0.5^6
0.546
0.546
0.546
0.546
0.546
0.546
0.546
C.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
PCT
STOIC
AIR
106.1
106.1
106.1
100.7
100.7
100.7
106.1
106.1
106.1
106.1
106.1
106.1
106.1
105.1
106.1
106.1
106.1
106.1
106.1
106.1
106.1
106.1
106.1
AXIAL
DIST
(IN)
10.05
5.05
1.05
1.05
0.40
0.30
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
RADIAL
DIST
(IN)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.20
0.40
0.60
0.80
-0.80
-0.60
-0.40
-0.20
0.00
0.00
0.20
0.40
0.60
0.80
1.00
-0.80
WALL
TEMP
(C)























               NO

              (PPM)

                 98
                 88
                 75
                 88
                 50
                 40
                 63
                 74
                 65
                 en
                 88
                 92
                 87
                 70
                 62
                 66
                103
                105
                106
                106
                100
                103
                103
 NOX

(PPM)

  101
   98
   98
  108
   65
   58
   87
   80
   75
   85
   95
   97
   92
   80
   70
   83
  110
  107
  108
  107
  103
  107
  105
02
(PCT)
1.15
1.10
1.20
0.43
0.53
0.54
1..40
1.35
1.25
1.20
1.50
1.80
1.40
1.25
1.30
1.45
1.30
1.40
1.35
1.55
2.25
1.75
2.10
CO
(PCT)
0.003
0.024
0.389
1 .068
1.269
1.328
0.466
0.258
0.079
C.01S
0.008
0.005
0.010
0.036
0.159
0.209
0.003
0.003
0.003
0.003
0.003
0.003
0.003
CC2
(PCT)
13.01
13.01
12.50
12.50
12.50
12.24
12.50
12.50
13.01
13.27
13.27
13.01
13.27
13.27
12.75
12.75
13.01
12.75
12.75
12.50
12.50
12.24
12.24
 HC
< PPM
    2.
    3.
    2.
    2.
    2.
    2.
   25.
   10.
    6.
    5.
    4.
    4.
    4.
    3.
    3.
    3.
    2.
    2.
    2.
    2.
    2.
    2.
    2.
to

-------
      RUN NUMBER  102 CONT
 PREMIXED FLAT FLAME BURNER
          PROPANE
WALL-COLD   AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.071
0.021
0.021
0.021
AIR
FLOW
(CFM)
0.546
0.546
0.546
0.546
PCT
STOIC
AIR
106.1
106.1
106.1
106.1
AXIAL
DIST
(IN)
10.00
10.00
10.00
10.00
RADIAL WALL
DIST TEMP
(IN) (C)
-0.60
-0.40
-0.20
0.00
NO

(PPM)
106
99
101
101
NOX

(PPM)
108
102
103
103
02

(PCT)
1.50
1.40
1.60
1.70
CO

(PCT)
0.003
0.003
0.003
0.003
C02

(PCT)
12.75
12.75
12.75
12.75
HC

(PPM)
2.
2.
2.
2.
                                                                  u>

-------
                                       RUN NUMBER  103
                                  PREMIXED FLAT FLAME BURNER
                                           PROPANE
                                 WALL-COLD   AIR PREHEAT-NONE


FUEL    AIR     PCT     AXIAL  RADIAL   WALL    NO      NOX     02       CO       C02      HC
FLOW    FLOW    STOIC   DIST    DIST    TEMP
(CFM)   (CFM)   AIR     (IN)    (IN)    (C)     (PPM)    (PPM)    (PCT)    (PCT)    (PCT)    (PPM)

0.021   0.546   106.1   10.00    0.00            103      108    1.10    0.003    12.75        2.
0.022   0.546   103.4   10.00    0.00            108      116    0.38    0.007    13.01        3.
0.022   0.546   103.4   10.00    1.00            111      118    0.83    0.005    13.01        1.
C.022   0.546   103.4   10.00    0.80            106      113    1.30    0.004    12.50        1.
0.022   0.546   103.4   10.00    0.60            113      118    0.75    0.004    12.75        1.
0.022   0.546   103.4   10.00    0.40            113      120    0.55    0.005    13.01        1.
O.C?2   0.546   103.4   10.00    0.20            115      119    0,50    0.006    13.27        1.
0.322   0.546   1C3.4   10.00   -0.80            113      120    1.30    0.004    12.75        1.
0.022   0.546   103.4   10.00   -0.60            115      120    0.60    0.004    13.01        1.
0.022   0.546   103.4   10.00   -0.40            113      120    0.50    0.005    13.01        1.
O.C72   0.546   103.4   10.00   -0.20            111      118    0.60    0.005    13.01        1.
0.022   0.546   103.4   10.00    0.00            111      118    0.50    0.006    13.27        1.
0.022   0.546   103.4     1.00    0.00             60       90    1.10    0.352    12.24        1,
0.022   0.546   103.4     1.00    1.00             88       95    1.25    0.016    13.01        1.
0.022   0.546   103.4     1.00    0.80             «5      100    0.80    0.026    13.27        1.
0.022   0.546   103.6     1.00    0.60             65       77    0.70    0.113    13.27        1.
C.OP2   0.546   103.4     1.00    0.40             62       85    0.75    0.337    12.75        1.
0.022   0.546   103.4     1.00    0.20             76      108    0.85    0.028    12.50        1.
0.022   0.546   103.4     l.OC   -0.80             97      100    1.20    0.009    13.01        2.
0.022   0.54-6   1C3.4     1.00   -0.60             93       98    0.35    0.036    13.27        3.
C.022   0.546   103.4     l.CO   -0.40             67       80    0.45    0.199    13.27        1.
0.022   0.546   103.4     1.00   -0.20             75       95    0.75    0.455    12.50        1.
0.022   0.546   103.4     1.00    0.00             75       95    0.73    0.464    12.50        1.

-------
                                       RUN NUMBER   103 CONT
                                  PREMIXED FLAT FLAME BURNER
                                           PROPANE
                                 WALL-COLD   AIR PREHEAT-NONE


FUEL    AIR     PCT     AXIAL  RADIAL   WALL    NO      NOX      02       CO       C02     HC
FLOW    FLOW    STOIC   DIST    DIST    TEMP
(CFM)   (CFM)   AIR     (IN)    (IN)    (C)     (PPM)   (PPM)    (PCT)    (PCT)    (PCT)    (PPM)

C.018   0.546   122.0     1.00    0.00             45       60     4.00    0.075    10.98        1.
0.013   0.546   122.0     1.00    0.20             40       54     3.90    0.072    11.23        2»
0.01S   0.546   122.0     1.00    0.40             47       55     3.90    0.059    10.98        1.
0.018   0.546   122.0     1.00    0.60             38       43     3.90    0.025    11.23        1.
0.018   0.546   122.0     1.00    0.80             42       43     4.00    0.004    11.48        1.
0.013   0.546   122.0     1.00    1.00             41       45     4.20    0.003    11.48        1.
0.018   0.546   122.0     1.00   -0.80             43       46     4.00    0.005    11.48        1.
0.018   0.546   122.0     1.00   -0.60             37       42     3.90    0.006    11.48        1.
0.018   0.546   122.0     LOO   -0.40             31       39     3.95    0.020    11.23        1.
0.013   0.546   122.0     1.00   -0.20             37       42     3.95    0.072    10.98        1.
0.0-18   0.546   122.0   10.00    0.00             50       50     3.90    C.OC3    10.98        1.    f
0.018   0.546   122.0   10.00    0.20             50       51     4.00    0.003    11.23        1.    w
0.019   0.546   122.0   10.00    0.40             49       50     4.00    0.003    10.93        1.
O.C1S   0.546   12?.0   10.00    0.60             50       51     4.20    0.002    11.23        1.
0.018   0.546   1?2«0   10.00    0.80             47       48     4.60    0.002    10.73        1.
0.018   0.546   122.0   10.00    1.00             46       47     4.70    0.002    10.98        3.
0.018   0.546   122.0   10.00   -0.60             45       46     5.00    0.002    10.73        3.
C.018   0.546   122.0   10.00   -0.60             49       50     4.30    0.003    11.23        2.
0.013   0.546   122.0   10.00   -0.40             49       50     4.20    0.003    11.23        3.
0.018   0.546   122.0   10.00   -0.20             50       51     4.10    0.003    11.23        8.
0.013   0.546   122.0     5.00    0.00             39       48     4.00    0.005    11.23        9.
0.01S   0.546   122.0     2.00    0.00             36       45     4.10    0.031    10.98        3.
0.018   0.546   122.0     1.00    0.00             31       37     4.20    0.066    10.73        5.

-------
      RUN
 PREMIXED

WALL-COLO
NUMBER  103 CONT
FLAT FLAME BURNER
PROPANE
  AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.018
0 . 0 1 S
0.0 IS
0.013
0.01S
0.018
0.013
0.018
0.018
0.018
AIR
FLOW
(CFM)
0.546
0.552
0.552
0.55?
0.552
0.552
0.546
0.546
0.546
0.546
PCT
STOIC
AIR
122.0
123.3
123.3
123.3
123.3
123.3
122.0
122.0
122.0
122.0
AXIAL
DIST
(IN)
1.00
1.00
1.00
1.00
1.00
l.OC
1.00
1.00
1.00
1.00
RADIAL WALL
DIST TEMP
(IN) 1C)
0.20
0.80
0.60
1.00
0.40
-0.20
-0.20
-0.40
-0.20
-0.30
NO

(PPM)
32
31








                       NOX

                      (PPM)

                         36
                         35
02
(PCT)
4.20
4.40
4.30
4.60
4.30
4.30
3.90
3.90
3.90
3.90
CO
(PCT)
0.073
0.005
0.014
0.004
0.046
0.044
0.066
0.023
0.060
0.042
C02
(PCT)
10.98
10.98
10.98
10.98
10.98
10.98
10.98
10.98
10.98
10.98
                                              HC
                                             (PPM)
                                                           7.
                                                           7.
                                                           7.
                                                           7.
                                                           8.
                                                           7.
                                                           7.
                                                           7.
                                                           7.
                                                                i
                                                                cy.

-------
      RUN NUMBER
 PREMIXED FLAT FLAME BURNER
          PROPANE
WALL-COLD   AIR PREHEAT-NONE
FUEL
FLOW
(CFv>
0 . 0 1 B
C . 0 1 8
C.018
0.018
C.0-18
C.018
0.013
O.C18
c.ois
o.oi a
0.0-13
0.024
C.024
0.024
0.074
0.024
0.0?4
C.024
0.024
0.024
0.024
0.024
0.024
AIR
FLOW
(CFM)
0.546
0.546
0.546
0.546
0.546
C.546
0.546
0.546
0.546
0.546
C.546
0.546
0.546
0.546
C.546
C.546
0.546
C.546
0.546
0.546
0.546
0.546
0.546
PCT
STOIC
AIR
122.0
122.0
1 2 ? . 0
122.0
122.0
122.0
122.0
122.0
122.0
122.0
122.0
93.5
93.5
93.5
93.5
Q3.5
93.5
93.5
93.5
93.5
93.5
93.5
93.5
AXIAL
DIST
(IN)
1.00
l.CO
1.00
1.00
1.00
1.00
l.CO
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
l.CO
1.00
1.00
1.00
1.00
0.70
RADIAL
DIST
(IN)
0.00
-0.80
-0.60
-0.40
-0.20
0.00
0.20
0.40
0.60
O.PO
l.OC
1.00
0.80
0.60
0.40
0.2.0
0.00
-0.20
-0.40
-0.60
-0.80
0.00
0.00
WALL
TEMP
(O























               NO
              I PPM)
                 32
                 63
                 65
                 60
                 72
                 93
                 78
                 70
                 60
                 67
                 69
                 77
                 73
 NOX
(PPM)
   41
02
(PCT)
3.90
4.50
4.10
3.95
3.97
3.90
4.00
4.05
4.00
4.20
4.60
C.15
0.05
0.03
0.04
0.03
0.07
0.05
0.03
0.04
0.23
0.08
0.09
CO
(PCT)
0.076
0.004
0.006
0.018
O.C55
0.079
0.073
0.046
0.016
0.006
C.CC4
1.927
2.012
2.012
2.273
2.724
2.632
2.362
2.099
1.927
1.421
2.451
2.451
C02
(PCT)
10.73
10.98
10.98
10.98
10.73
10.73
10.49
10.73
10.98
10.98
10.73
12.75
12.24
12.24
11.99
11.23
11.48
11.48
11.99
12.50
12.75
11.48
11.48
 HC
(PPM)
    1.
    1.
    2.
    2.
    2.
    2.
    2.
    2.
    2.
    2.
    2.
    3.
    3.
    4.
    4.
    4.
    4.
    4.
    4.
    4.
    4.
    4.
    4*

-------
      RUN NUMBER  104 CONT
 PREMIXED FLAT FLAME BURNCR
          PROPANE
WALL-COLD   AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.024
C * 0 2 4
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.324
0.024
0.024
0.024
0.024
0.024
0.027
O.C27
0.027
0.027
0.027
0.027
0.027
AIR
FLOW
(CFM)
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
C.546
0.546
0.546
0.546
0.546
0.546
PCT
STOIC
AIR
93.5
93.5
93.5
93.5
93.5
93.5
93*5
93.5
93.5
93.5
93.5
93.5
93.5
93.5
93.5
93.5
83.2
83.2
83.2
83.2
R3.2
P.3.2
83.2
AXIAL
DIST
( IN)
0.50
0.30
0.20
0.10
0.05
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
RADIAL WALL
DIST TEMP
(IN) ( C >
0.00
0.00
0.00
0.00
0.00
0.00
0.20
0.40
0.60
0.80
1.00
-0.80
-0,60
-0.40
-0.20
0.00
C.OO
0.20
0.40
0.60
0.80
1.00
-0.80
NO

(PPM)
65
55
48
38
20
84
83
81
80
70
66
63
80
63
86
86
61
62
64
64
55
56
49
 NOX
(PPM)
02
(PCT5
0.16
0.24
0.27
0.46
1.00
0.03
0.03
0.08
0.10
0.50
0.50
0.80
0.20
0.07
0.04
0.03
0.03
0.03
0.04
0.09
0.40
0.38
0.70
CO
(PCT)
2.451
2.451
2.541
2.632
3.007
1.757
] .841
1.757
1.672
1.337
1.421
1*421
1 .588
1.757
1.757
1.757
4.274
4.274
4.153
4.274
3.824
4.045
3.824
C02
(PCT)
11.48
11.48
11.48
11.23
10.49
12.75
12.24
12.24
12.24
12.24
12.24
12.24
12.24
12.24
11.99
11.99
9.99
10.24
10.24
10.24
10.24
10.24
9.99
                                                       HC

                                                      (PPM)

                                                          4.
                                                          4.
                                                          4.
                                                         80.
                                                       1200.
                                                          2.
                                                          2.
                                                          2.
                                                          2.
                                                          2.
                                                          2.
                                                          2.
                                                          2.
                                                          2.
                                                          2.
                                                          2.
                                                          2.
                                                          2.
                                                          2«
                                                          2.
                                                          2.
                                                          2.
                                                          2.

-------
      RUN NUMBER  104 CONT
 PREMIXED FLAT FLAME BURNER
          PROPANE
WALL-COLD   AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.0?7
0.027
0.027
C.027
0.027
0.027
0.027
0.027
0.027
0.027
AIR
FLOW
(CFM)
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
PCT
STOIC
AIR
83.2
83.2
83.2
83.2
P3.2
83.2
R3«2
83.2
83.2
83.2
83.2
83.2
83.2
83.2
83.2
83.2
83.2
83.2
83.2
83.2
83.2
83.2
83.2
AXIAL
DIST
(IN)
10.00
10.00
10.00
10.00
10.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.70
0.50
0.30
0.20
0.10
0.00
0.05
0.10
RADIAL
DIST
( IN)
-0.60
-0.40
-0.20
0.00
0.00
0.20
0.40
0.60
0.80
1.00
-0.80
-0.60
-0.40
-0.20
0.00
0.00
0.00
c.oo
0.00
o.oo
-0.20
-0.20
-0.20
WALL
TEMP
(C)























               NO

              (PPM)

                 65
                 66
                 65
                 65
                 63
                 68
                 67
                 56
                 54
                 51
                 54
                 63
                 50
                 65
                 66
                 62
                 59
                 55
                 52
                 46
                 14
                 25
                 51
 NOX

(PPM)
02
(PCT)
0.18
0.05
0.03
0.02
0.01
0.01
0.01
0.01
0.05
0.17
C.20
0.04
0.02
0.02
0.03
0.03
0.03
0.04
0.05
0.18
3.60
1.75
0.08
CO
(PCT)
4.045
4.158
4.158
4.274
4.882
4.882
5.011
4.391
4.158
3.824
3.933
4.158
4.391
4.756
5.011
4.756
4.756
4.756
4.632
4.632
4.274
4.632
4.510
C02
(PCT)
10.24
10.24
10.24
10.24
9.51
9.51
9.51
10.24
10.73
11.23
10.98
10.49
10.24
9.51
9.51
9.75
9.51
9.51
9.75
9.51
7.60
8.54
9.75
HC
(PPM)
2.
2.
2.
1.
1.
1.
2.
10.
15.
15.
4.
5.
4.
1.
1*
1.
1.
1.
1.
600.
20000.
8500.
550.
                                          *i

-------
      RUN NUMBER  105
 STABILIZED DIFFUSION BURNER
          METHANE
WALL-COLD   AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.2?5
0.225
0.225
C.225
0.225
0.225
0.225
0.225
0.225
C.225
0.?25
0 . 2 ? 5
0.225
0.225
0.225
0.725
0.225
AIR
FLOW
(CFM)
2.172
2.172
2.172
2.172
2.172
2.172
2.172
2.172
2.172
2.172
2.172
2.172
2.172
2.172
2.172
2.372
2.172
PCT
STOIC
AIR
101.2
10] .2
101.2
101.2
101.2
101,2
101.2
101 .2
101 .2
101.2
30] .?
101.2
101.2
101,2
101.2
101.2
101.2
AXIAL
DIST
( IN)
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
1U.OO
5.00
5.00
5.00
5.00
5.00
5.00
RADIAL WALL
DIST TEMP
(IN) < C )
-0.03
0.80
0.60
0.40
0.20
0.00
-0.20
-0.40
-0.60
-0.80
-0.86
0.00
0.20
0.00
0.20
0.40
0.60
NO

(PPM)
40
28
31
33
35
34
33
33
30
26
27
25
22
37
35
28
23
                       NOX

                      (PPM)

                         44
                         33
                         35
                         38
                         41
                         41
                         47
                         41
                         38
                         34
                         34
                         33
                         30
                         46
                         42
                         35
                         27
02
(PCT)
0.05
0.08
0.07
0.05
0.05
0.04
0.04
0.04
0.05
0.06
0.07
0.05
0.06
1.25
3.50
2.60
4.00
CO
(PCT)
0.304
0.017
0.045
0.147
0.204
0.304
0.285
0,304
0.190
0.073
0.050
0.501
0.501
1.689
1.039
0.493
0.109
C02
(PCT)
11.23
10.73
10.73
10.98
10.98
10.98
10.98
10.98
10.73
10. 9B
10.98
9.99
10.24
9.99
10.24
10.24
9.75
 HC

(PPM)

    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
    1.
  900.
  300.
  400.
  110.
   20.
   20.

-------
      RUN NUMBER  106
 STABILIZED DIFFUSION BURNER
          METHANE
WALL-COLD   AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.225
0.725
0.225
0.225
0.225
0.225
0.225
0.225
0.225
0.225
0.225
0.225
0.225
AIR
FLOW
(CFM)
2.172
2.172
2.172
2.172
2.172
2.172
2.172
2.172
2.172
2.172
2.172
2.172
2.172
PCT
STOIC
AIR
101.2
101.2
101.2
101.2
101.2
101.2
101.2
101.2
101.2
101.2
101.2
101.2
101.2
AXIAL
DIST
( IN)
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
5.40
5.00
4.00
3.50
2.00
RADIAL WALL
DIST TEMP
(IN) (C)
0.00
0.20
0.40
0.60
-0.60
-0.40
-0.20
0.00
0.00
0.00
0.00
0.00
0.00
NO

(PPM)
39
36
34
26
34
36
49
40
33
33
2
1
0
NOX

(PPM)
48
43
38
35
41
46
45
44
39
49
19
9
1
02 CO

(PCT) (PCT)
0.151
0.089
0.046
0.020
0.102
0.124
0.143
0.131
1.068
1.537
1.387
0.707
0.031
C02

(PCT)
10.73
10.49
10.49
10.24
10.49
10.49
10.73
10.73
10.24
9.99
5.97
3.54
0.84
HC

( PPM )
1.
1.
1.
1.
1.
1.
1.
1 .
200.
2000.
25000.
25000.
25000.

-------
      RUN NUMBER  107
 STABILIZED DIFFUSION BURNER
          METHANE
WALL-COLD   AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.
0.
0.
0.
0.
C.
0.
189
189
189
189
189
189
189
AIR
FLOW
(CFM)
2.
2.
2.
2.
2.
2.
2 »
172
172
172
172
172
172
172
PCT
STO
A
i
1
1
1
I
I
I
IK
20
20
20
20
?G
20
20
I
C
AX
DI
IAL
ST
( IN)
•
»
«
•
•
*
*
4
4
4
4
4
4
4
10
10
10
10
10
10
10
.00
.00
.00
.00
.00
.00
.00
RADIAL WALu
DIST TEMP
( I
0
0
0
0
-0
-0
-0
N ) 1C)
.00
.20
.40
.60
.60
.40
• 20
               NO

              (PPM)

                 21
                 19
                 17
                 17
                 18
                 20
                 20
 NOX

(PPM)

   27
   23
   21
   21
   24
   27
   23
02
(PCT)
6.10
6.45
6.55
7.00
6.50
6.10
5.80
CO
(PCT)
0.006
0.005
0.003
0.004
0.009
0.009
0.009
 C02

(PCT)

 8.30
 8.54
 8.30
 3.07
 8.30
 8.54
 8.54
 HC

(PPM)
    0.
    0.
    0.
   13.
    0.
    0.
    0.

-------
      RUN NUMBER  108
 STABILIZED DIFFUSION BURNER
          METHANE
WALL-COLD   AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.189
0.189
0.189
0.129
0.1 fi9
0 . 1 R 9
0.189
0.1 89
0.189
0.1-39
0.189
0.189
0.189
0.189
0,1 P.9
0.189
0.189
0.189
0.1S9
0.189
AIR
FLOW
(CFM)
2.172
2.172
2.172
2.172
2.172
2.172
2.172
2.172
2.172
2. 172
2.172
2.172
2.172
2.172
2.172
2.172
2.172
2.172
2.172
2.172
PCT
STOIC
AIR
120.4
120.4
120.4
120.4
120.4
1?0.4
120.4
120.4
120.4
120.4
120.4
1?0.4
120.4
120.4
120.4
120.4
120. 4
120.4
120.4
120.4
AXIAL
DIST
( IN)
10.00
5.00
5.50
5.50
5.50
5.50
5.50
5.50
5.50
5.50
5.00
4.50
4.00
3.50
3.00
2.00
1.00
1.00
1.00
1.00
RADIAL
DIST
(IN)
0.00
0.00
0.00
0.20
0.40
0.60
-0.60
-0.40
-0.20
0.00
0.00
.0.00
0.00
0.00
0.00
0.00
0.00
0.20
0.10
0.30
WALL
TEMP
(C)




















               NO

              (PPM)

                 20
                 23
                 33
                 30
                 24
                 16
                 25
                 22
                 27
                 34
                 23
                 14
                  7
                  2
                  2
                  2
                  0
                  0
                  0
                  0
NOX
(PPM)
26
36
46
39
28
24
27
33
36
37
33
24
14
6
3
1
1
1
1
1
02

-------
                                       RUN NUMBER  109
                                  STABILIZED DIFFUSION BURNER
                                           METHANE
                                 WALL-COLD   AIR PREHEAT-NONE
FUEL
FLOW
(CFM)

0.026
0*026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
O.G26
0.026
0.026
0.026
C.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
AIR
FLOW
(CFM)

0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
PCT
STOIC
AIR

106.5
106.5
106.5
106.5
106.5
106.5
106.5
106.5
106.5
106.5
106.5
106.5
106.5
106.5
106.5
106.5
106.5
106.5
106.5
106.5
106.5
106.5
106.5
AXIAL
DIST
( IN)

10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
 5.00
 5.00
 5.00
 5.00
 5.00
 5.00
 5.00
 5.00
 4.00
 3.00
 2.00
 1.00
 0.80
 0.60
 0.40
RADIAL
 DIST
 (IN)

  0.00
  0.20
  0.40
  0.60
 -0.60
 -0.40
 -0.20
  0.00
  0.00
  0.20
  0.40
  0.60
 -0.60
 -0.40
 -0.20
  0.00
  0.00
  0.00
  0.00
  0.00
  0.00
  0.00
  0.00
WALL
TEMP
 NO

(PPM)

   35
   42
   40
   42
   33
   31
   35
   28
   26
   28
   35
   23
   13
   17
   20
   26
   27
   12
   13
    7
    8
    6
    6
NOX
(PPM)
47
48
50
47
42
41
43
41
38


48
47
42
40
43
42
43
43
51
19
12
11
9
02
(PCT)
1.50
l.SO
2.20
2.50
2.20
1.80
1.80
1.50
1.40

0.90
2.30
3.70
3.40
3.00
2.50
1.90
2.40
2.75
5.90
17.25
17.25
17.00
16.00
CO
(PCT)
0.116
0.131
0.063
0.095
0.219
0.172
0.194
0.285
2.362

3.007
1.211
0.493
0.273
0.446
0.844
1.597
1.973
3.403
2.724
0.181
0.181
0.209
0.066
C02
(PCT)
4.56
10.49
9.99
10.24
9.99
10.24
10.49
10.49
9.02

8.78
9.26
9.02
9.26
9.26
9.51
9.26
8.78
4.64
5.15
0.73
0.72
0.61
1.33
HC
( PPM )
500.
250.
100.
100.
500.
250.
1000.
1000.
12500.
hrf
20000. i
5000. £
1500.
1000.
2250.
3500.
10000.
15000.
39000.
41500.
40000.
41500.
41500.
41500.

-------
      RUN NUMBER  109
 STABILIZED DIFFUSION
          METHANE
WALL-COLD   AIR PREHfj
FUEL
F LOW
(CFM)
0.0?6
0.021
0.021
0.021
O.C21
0.021
0.021
0.021
0.021
0.0-21
0.0? 1
0.021
0.021
0.021
0.021
O.C21
0.021
C.C21
0.021
0.021
0.021
0.0?1
0.021
AIR
FLOW
(CFM)
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.26^
0.264
0.2.64
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
PCT
STOIC
AIR
106.5
127.6
127.6
127.6
127.6
127.6
127.6
127.6
127.6
127.6
127.6
127.6
127.6
127.6
127.6
127.6
127.6
127.6
127.6
1?7.6
127.6
127.6
127.6
AXIAL
DIST
( IN)
0.20
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
4.00
3.00
2.00
1.00
o.so
0.60
RADIAL WALL
DIST TEMP
(IN) ( C )
0.00
0.00
0.20
0.40
0.60
-0.60
-0.40
-0.20
0.00
0.00
0.20
0.40
0.60
-0.60
-0.40
-0.20
0.00
0.00
0.00
0.00
0.00
0.00
0.00
NO

(PPM)
6
65
63
63
62
' 63
64
63
64
64
61
54
52
51
52
64
59
54
34
10
7
3
3
CONT
BURNER
J-NONE
NOX
(PPM)
8
66
65
65
64
65
65
65
67
70
65
61
58
57
62
67
68
68








02
(PCT)
16.50
5.80
5.70
5.50
6.15
6.05
5.65
5.85
5.50
3.50
'+.65
5.70
6.40
5.70
5.20
3.95
3.50
1.70
1.15
1.35
9.50
17.00
10.50



CO
(PCT)
0.116
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.291
0.245
C.095
0.016
0.022
0.095
0.245
C.352
1.783
4.158
4.391
1.909
0.120
1.387
C02
(PCT)
1.21
8.54
7.83
8.04
7.73
7.52
7.83
8.04
7.93
8.87
8.35
8.14
7.62
7.83
8.14
8.56
8.98
8.66
7.42
6.59
3.15
1.09
2.48
HC
(PPM)
43500.
0.
0.
0.
0.
0.
0.
0.
0.
50.
75.
15.
0.
0.
25.
100.
50.
2500.
24400.
41500.
46500.
38500.
49000.
                                                                 in

-------
      RUN NUMBER  109 CONT
 STABILIZED DIFFUSION BURNER
          METHANE
WALL-COLD   AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.021
0.021
AIR
FLOW
(CFM)
0.264
0.264
PCT
STOIC
AIR
127.6
127.6
AXIAL
DIST
( IN)
0.40
0.20
RADIAL
DIST
( IN)
2.70
2.70
WALL
TEMP
(C)

NO
(PPM)
3
3
NOX
(PPM)
7
7
02
(PCT)
16.50
16.00
CO
(PCT)
0.078
0.172
C02
(PCT)
1.37
1.21
HC
(PPM)
38000
44000

-------
      RUN NUMBER  110
 STABILIZED DIFFUSION BURNER
          METHANE
WALL-COLD   AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.019
0.019
0.019"
0.019
0.019
0.019
0 . 0 1 9
0.019
0.019
0.019
0.019
0.019
0.019
0.019
0.019
0.019
0.019
0.019
0.019
0.019
0.019
0.019
0.019
AIR
FLOW
(CFM)
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
C.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
PCT
STOIC
AIR
144.5
1*4.5
144.5
144.5
144.5
144.5
144 .5
144.5
144.5
144.5
144.5
1 44 . 5
1*4.5
1*4.5
1*4.5
144.5
144.5
14*. 5
144.5
144.5
1*4.5
144.5
144.5
AXIAL
DIST
(IN)
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
3.00
4.00
3.00
2.00
•1.00
0.30
C.60
0.40
RADIAL WALL
DIST TEMP
(IN) (C)
0.00
0.20
0.40
0.60
-0.60
-0.40
-0.20
0.00
0.00
0.20
0.40
0.60
-0.60
-0.40
-0.20
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
NO

(PPM)
61
63
63
61
60
63
62
61
30
33
45
44
56
54
56
55
62
46
27
14
8
4
4
NOX

(PPM)
64
64
64
63
62
64
64
65
35
44
52
51
60
61
64
67
73

57
47
42
11
10
02

(PCT)
7.65
8.00
8.30
8.20
8.40
7.70
7.65
7.40
6.40
6.70
7.50
8.30
7.60
7.20
6.60
5.90
4.20
2.15
3.80
8.70
16.75
16.50
16.25
CO

(PCT)
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.030
0.026
0.013
0.004
0.004
0.005
0.009
0.016
0.331
2.912
3.302
2.451
0.250
0.131
0.172
C02

(PCT)
7.21
7.10
6.79
6.79
6.59
6.79
7.10
6.90
7.42
7.42
7.00
6.79
6.90
7.10
6.38
7.83
8.77
8.35
6.48
4.34
1.46
1.17
1.59
HC

(PPM)
0.
0.
0.
0.
0.
0.
0.
0.
5.
0.
0.
0.
0.
0.
0.
0.
0.
2500.
30000.
43000.
36000.
39000.
37500.

-------
      RUN NUMBER  110 CONT
 STABILIZED DIFFUSION BURNER

          METHANE
WALL-COLD   AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.019
0.032
0.032
0.032
C.032
0.032
0.032
0.032
0.032
0.032
0,032
0.032
0.032
0.032
0.032
0.032
0.032
0.032
0.032
AIR
FLOW
(CFM)
0.264
C.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
0.264
PCT
STOIC
AIR
144.5
P6.0
36.0
86.0
86.0
86.0
86.0
86.0
86.0
86. 0
86.0
86.0
86.0
F,6.0
86.0
86.0
86.0
86*0
86.0
AXIAL
DIST
( IN)
0.20
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
4.00
3.00
RADIAL WALL
DIST TEMP
(IN) !O
0.00
0.00
0.20
0.40
0.60
-0.60
-0.40
-0.20
0.00
0.00
0.20
0.40
0.60
-0.60
-0.40
-0.20
0.00
0.00
c.oo
NO

(PPM)
3
19
21
20
14
12
13
14
18
8
13
33
22
13
15
20
16
12
10
NOX
(PPM)
9
40
43
43
43
38
41
44
37
36
43
44
44
41
43
48
49
36
31
02
(PCT)
16.00
1.65
1.^8
1.50
1.75
2.75
2.25
1.75
1.65
2.80
1.60
2.30
2.90
2.10
2.40
2.20
2.30
3.70
5.00
CO
(PCT)
0.079
2.724
2.070
7.070
1.973
1.814
1.909
2.005
1.973
3.104
2.541
1.537
1.476
1.446
1.417
1.567
2.037
3.506
3.007
C02
(PCT)
0.30
8.35
8.35
3.14
8.25
7.93
8. 14
8.25
8.25
6.18
7.93
8.35
8.14
S.46
8.14
8.46
8.04
5.77
4.85
HC
(PPM)
44000.
25000.
17500.
17500.
16500.
18500.
20000.
23000.
21000.
40000.
31000.
12000.
13000.
1^000.
15000.
15000.
28000.
42500.
45000.
                                                                  I
                                                                  1-1
                                                                  00

-------
      RUN NUMBER  111
 PREMIXED FLAT FLAME BURNER
          METHANE
WALL-COLD   AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.054
0.054
G.054
O.C54
0.054
0.054
0.054
C.054
0.054
0.054
0.054
0.054
0.054
0.054
O.C54
0.054
C.C54
0.054
0.054
0.054
0.054
0.054
0.054
AIR
FLOW
(CFM)
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
C.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
0.546
C.546
0.546
0.546
0.546
PCT
STOIC
AIR
104.3
104.3
104.3
1C4.3
104.3
104.3
104.3
104.3
104.3
104.3
104.3
104.3
104.3
104.3
104.3
104*3
1 04 . 3
104.3
104.3
104.3
104.3
104.3
104.3
AXIAL
DIST
(IN)
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
4.00
3.00
2.00
1.00
0.50
0.00
0.10
RADIAL
DIST
( IN)
C.OO
0.20
0.40
0.60
-0.60
-0.40
-0.20
0.00
0.00
0.20
0.40
0.60
-0.60
-0.40
-0.20
o.oo
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
WALL
TEMP
1C)























               NO
              (PPM;
                 83
                 83
                 84
                 84
                 74
                 75
                 78
                 77
                 70
                 67
                 67
                 68
                 70
                 64
                 72
                 76
                 69
                 76
                 71
                 58
                 40
                  6
                 16
 NOX

(PPM)

   88
   90
   90
   89
   78
   81
   84
   84
   82
   79
   74
   78
   77
   74
   82
   87
   74
   91
   87
   79
   62
   15
   26
02
(PCT)
0.78
0.65
0.80
0.90
1.25
1.15
0.70
0.66
0.74
0.69
0.65
0.79
0.83
0.83
0.85
0.84
0.95
1.10
1.20
1.50
1.60
6.80
2.40
CO
(PCT)
0.004
0.003
0.003
0.003
0.003
0.003
0.004
0.004
0.037
0.026
0.018
0.008
0.008
0.015
0.026
0.025
0.054
0.099
0.163
0.311
0.626
1.720
1.597
C02
(PCT)
10.98
11.23
10.98
10.98
10.73
10.98
10.98
10.98
10.98
11.23
11.23
10.98
11.23
11.23
10.98
10.98
10.98
10.73
10.73
10.24
9.99
6.44
8.78
HC
(PPM)
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5'.
5.
5.
5.
5.
5.
19000.
70.

-------
      RUN NUMBER  112
   PREMIXED FURNACE BURNER
          METHANE
WALL-COLD   AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.225
0.225
0.-225
C.225
0.225
0.225
0.225
0.225
0.225
C . 2-2 5
0.225
0.225
0.225
0.225
0.225
0.225
0.225
0.225
0 . ?. 2 5
0.225
0.225
0.225
0.225
AIR
FLOW
(CFM)
2.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
PCT
STOIC
AIR
96.3
96.3
96.3
96.3
96.3
96.3
96.3
96.3
96.3
96.3
96.3
96.3
96.3
96.3
96.3
96.3
96.3
96.3
96.3
96.3
96.3
96.3
96.3
AXIAL
OIST
( IN)
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
4.00
3.00
3.00
2.00
1.00
0.50
0.25
RADIAL WALL
DIST TEMP
(IN) ( C !
0.00
0.20
0.40
0.60
-0.60
-0.40
-0.20
0.00
0.00
-0.20
-0.40
-0.60
0.60
0.40
0.20
0.00
0.00
0.00
-0.17
-0.17
-0.17
-0.17
-0.17
NO

(PPM)
33
32
32
33
32
32
32
32
27
26
26
26
31
23
27
25
21
18
17
11
6
6
7
NOX

(PPM)
37
38
37
38
37
37
37
37
37
38
37
37
37
37
37
37
35
35
36
33
27
27
32
02

(PCT)
1.05
1.00
1.00
0.95
0.95
1.00
1.00
1.00
1.10
1.10
1.10
1.10
1.00
0.9.5
1.00
1.05
1.15
1.20
1.35
1.60
3.55
3.20
4.35
CO

(PCT)
0.008
0.008
0.007
0.007
0.003
0.003
0.008
0.008
0.155
0.181
0.155
0.106
0.028
0.053
0.106
0.151
0.229
0.324
0.653
0.872
2.135
2.168
2.646
C02

(PCT)
10.98
10.98
10.98
10.98
10.98
10.98
10.98
10.98
10.73
10.73
10.73
10.73
10.98
10.98
10.73
10.73
10.73
10.49
10.24
9.99
8.07
7.83
7.13
HC

(PPM)
2.
2.
2.
2.
2.
2.
2.
2.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
13.
2500.
3500.
4250.

-------
      RUN NUMBER  112 CONT
   PREMIXED FURNACE BURNER
          METHANE
WALL-COLD   AIR PREHEAT-NONE
FUEL
FLOW
ICFM)
0.225
0.225
AIR
FLOW
(CFM)
2.C67
2.067
PCT
STOIC
AIR
96.3
96.3
AXIAL
DIST
(IN)
0.00
-0.20
RADIAL
DIST
( IN)
-0.17
-0.17
WALL
TEMP
(C)

NO
(PPM)
10
11
NOX
(PPM)
33
34
02
(PCT)
1.80
1.35
CO
(PCT)
1.567
1.182
C02
(PCT)
9.75
10.24
HC
(PPM)
200.
21.
                                                                  to

-------
      RUN NUMBER  113
   PREMIXED FURNACE BURNER
          METHANE
WALL-COLD   AIR PREHEAT-NONE
FUEL
FLOW
(CFM>
0.189
0.169
C . 1 0 9
0.189
0.1R9
C.1R9
0.1R9
C . 1 B 9
0.189
C . 1 R 9
0.189
0.189
0.189
0 . 1 fl 9
0.139
C . 1 ?. 9
0 .189
0.19 9
0 . 1 3 9
C . 1 S 9
0.189
0.189
C.189
0.189
AIR
FLOW
(CFMJ
2.067
2.067
2. 067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
7.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
2.067
PCT
STOIC
AIR
114.6
114.6
114.6
11^.6
114.6
114.6
114.6
1 1 4 . 6
114.6
114.6
114.6
114.6
114.6
114.6
114.6
114.5
114.6
114.6
114.6
114.6
114.6
114.6
114.6
114.6
AXIAL
DIST
( IN)
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
5. no
5.00
5.00
5.00
5.00
5.00
5.00
5.00
4.00
3.00
2.00
1.00
0.75
0.50
0.25
0.00
RADIAL WALL
DIST TEMP
(IN) CO
0.00
0.20
0.40
0.60
-0.60
-0.40
-0.20
0.00
0.00
0.20
0.40
0.60
-0.60
-0.40
-0.20
0.00
o.oo
0.00
0.00
0.00
0.00
0.00
0.00
0.00
NO

(PPM)
12
11
12
11
11
11
11
11
9
9
9
9
9
9
9
9
8
6
^
2
2
2
3
3
NOX

(PPM)
13
13
13
12
12
13
12
12
12
12
11
11
11
11
12
12
12
12
12
10
10
11
12
12
02

(PCT!
4.95
4.85
4.95
4.90
4.80
4.90
4.80
4.85
4.85
4.80
4. SO
4.80
4.80
4.80
4.80
4.80
4.80
4.80
4.90
6.20
6.80
6.50
6.20
5.30
CO

(PCT)
0.004
0.004
0.003
0.002
0.002
0.003
0.003
0.002
0.012
0.010
0.008
0.005
0.006
0.009
0.012
0.013
0.033
0.085
0.262
1.476
1.506
1.387
1.269
0.983
C02

(PCT)
9.26
9.02
9.02
9.02
9.02
9.02
9.02
9.02
9.02
9.02
9.02
9.02
9.02
9.02
9.02
9.02
9.02
9.02
8.78
7.13
6.67
7.13
7.36
8.07
HC

(PPM)
2.
2.
2.
2.
2.
2.
2.
2.
2 • h3
2 . to
2.
2.
2.
2.
2.
2.
2.
2.
45.
3500.
5500.
5000.
3250.
1200.

-------
      RUN NUMBER  114
   PREMIXED FURNACE BURNER
          METHANE
WALL-COLD   AIR PREHEAT-NONE
FUEL
FLOW

-------
      RUN NUMBER  115
 PREMIXED FLAT FLAME BURNER
          METHANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.031
0.031
0.031
C.031
0.035
C.035
0.035
0.035
0.035
0 . 0 H 4
G.OS4
0.084
0.084
0.034
AIR
FLOW
(CFM)
0.481
0.4S1
C.4R1
0.481
0.481
0.481
C.481
0.481
0.431
0.481
C.4S1
0.481
0.481
0.481
PCT
STOIC
AIR
161.0
161.0
161.0
161.0
140.7
140.7
140.7
140.7
140.7
60. C
60.0
60.0
60.0
60.0
AXIAL
DIST
( IN)
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
RADIAL
DIST
(IN)
0.00
-O.?0
-0.40
-0.60
-0.60
-0.40
-0.20
-0.20
0.00
0.00
-0.20
-0.40
-0.60
-0.20
WALL
TEMP
(C)
1430
1430
1430
1430
15BO
1580
1580
1580
1580
1510
1510
1510
1510
1510
NO

(PPM)
2
2
2
2
12
13
14
13
13
2
2
2
2
2
NOX

(PPM)
2
2
2
2
13
14
15
15
15





02

(PCT)
9.40
9.40
9.30
9.10
6.90
7.00
7.10
7.10
7.10
0.03
0.03
0.03
0.03
0.03
CO

(PCT)
0.002
0.002
0.002
0.003
0.003
0.004
0.004
0.005
0.004
8.380
8.380
8.186
7.996
8.380
C02

(PCT)
5.87
5.97
5.87
5.77
6.69
6.79
6.90
6.90
6.90
4.24
4.14
4.04
4.04
4.14
HC

(PPM)
8.
B.
7.
7.
6.
6.
6.
6.
6.
1000.
780.
1050.
1550.
900.
                                                                NJ

-------
                                       RUN NUMBER  116
                                  PREMIXED FLAT FLAME BURNER
                                           METHANE
                                 WALL-COLD   AIR PREHEAT-NONE


FUEL    AIR     PCT     AXIAL  RADIAL   WALL    NO      NOX     02      CO       C02      HC
FLOW    FLOW    STOIC   DIST    DIST    TEMP
tCFM)   (CFM)   AIR     (IN)    (IN)    (C)     (PPM)    (PPM)    (PCT)    (PCT)    (PCT)    (PPM)

0.042   0.481   119.2   10.00    0.00             24      25    4.90    0.002     9.26        0.
0.042   0.481   119.2   10.00   -0.20             23      24    4.88    0.002     9.26        0.
0.042   0.481   119.2   10.00   -0.40             23      24    4.90    0.002     9.26        0.
0.042   0.481   119.2   10.00   -0.60             23      24    5.05    0.002     9.02        0.
0.042   0.481   119.?    5.00   -0.6C             21      22    4.90    0.002     9.26        0.
0.042   0.481   119.2    5.00   -0.40             21      23    4.88    0.002     9.26        0.
0.042   0.6.81   119.2    5.00   -0.20             21      23    4.90    0.003     9.26        0.
0.042   0.481   119.2    5.00    0.00             21      24    4.90    0.002     9.26        1.
0.042   0.431   119.2    2.00    0.00             21      25    4.88    0.019     9.26        1.    *j
0.042   0.481   119.2    1.00    0.00             18      23    4.90    0.034     9.02        0.    s>
0.042   0.481   119.2    0.70    0.00             16      21    4.90    0.048     9.02        0.    w
O.C42   0.481   119,2    0.50    0.00             13      19    4.95    0.067     9.02        1.
0.042   0.481   119.2    0.30    0.00              9      15    4.90    0.131     9.02        0.

  042    0.481    119.2     0.20     0.00               7       13     5.00   0.168     9.02        1.
0.04?    0.481    119.?     0.10     0.00               2       10     6.00   1.659     7.36     I25o!
0.063    C.481     80.2     0.10     0.00             40             0.27   3.302    10.73      200.
O.C63    0.4S1     80.2     0.20     0.00             48             0.07   4.045     8  78        5
0.063    0.481     80.2     0.30     O.OC             51             0.06   4.158     8.54        I'
0.063    0.481     80.2     0.50     0.00             55             0.05   4.274     8.54        *
0.063    C.431     80.2     0.70     0.00             55             0.06   4.274     8.54        \*
0.063    0.481     80.2     1.00     O.OC             57             0.05   4.391     8.30        4
0.063    0.481     80.2     2.00     0.00             59             0.05   4.391     8.07        4!
0.063    0.481     80.2     5.00     0.00             56             0.05   3.933     8  78        3

-------
      RUN NUMBER  116  CON
 PREFIXED FLAT FLAME BURNER
          METHANE
WALL-COLD   AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.063
0.063
0.063
0.063
0.063
0.063
0.063
AIR
FLOW
(CFM)
0.4R1
0.481
0.4R1
0.481
0.481
0.481
0.481
PCT
STOIC
AIR
80.2
80.2
80. 2
00.2
80.?
80.2
80.2
AXIAL
DIST
(IN)
5.00
5.00
5.00
10.00
10.00
10.00
10.00
RADIAL WALL
DIST TEMP
(IN) ( C )
-0.20
-0.40
-0.60
-0.60
-0.40
-0.20
o.oc
NO

(PPM)
54
53
51
49
52
54
54
                       NOX
                      (PPM)
02
(PCT)
0.04
0.05
0.05
0.14
0.07
0.06
0.05
CO
(PCT)
3.824
3.610
3.506
3.403
3.506
3.506
3.610
 C02

(PCT)

 9.02
 9.26
 9.51
 9.26
 9.26
 9.26
 9.26
 HC
(PPM)
                                                          1.
                                                          1.
                                                          1.
                                                          1.
                                                          1.
                                                          1.
                                                          1.
                                                                 i
                                                                 to

-------
      RUN NUMBER  117
 PREMIXED FLAT FLAME BURNER
          METHANE
WALL-HOT    AIR PRE.HEAT-NONE
FUEL
FLOW
(CFM)
0.031
C.C31
0.031
0.031
0.031
0.031
0.031
0.031
C.031
0.031
0.031
0.042
0.042
0.042
0.042
0.042
0.042
0.042
0.042
0.042
0.042
0.042
0.042
AIR
FLOW
(CFM)
0.431
0.481
0.481
0.481
0.431
0.481
0.481
0.481
0.481
0.481
0.481
0.481
0.481
0.481
0 . 4 fi 1
0.481
0.481
0.481
0.431
0.481
0.481
0.481
0.481
PCT
STOIC
AIR
161.0
161.0
161.0
161.0
161.0
161.0
161.0
161.0
161.0
161.0
161.0
119.2
1 1. 9 . 2
119.2
119.2
119.2
119.2
119.2
119.2
119.2
119. 2
119.2
119.2
AXIAL
DIST
( IN)
5.00
5.00'
5.00
5.00
2.00
1.00
0.70
0.50
0.30
0.20
0.10
0.10
0.20
0.30
0.50
0.70
1.00
2.00
5.00
5.00
5.00
5.00
5.00
RADIAL
DIST
( IN)
-0.20
0.00
-0.40
-0.60
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
0.00
-0.40
-0.60
C.CO
WALL
TEMP
(C)
1430
1430
1430
1430
1430
1430
1430
1430
1430
1430
1430
1430
1430
1430
1430
1430
1430
1430
1430
1430
1430
1430
1430
NO

(PPM)
3
3
3
3
3
3
3
2
1
0
0
4
9
13
21
26
29
33
32
32
29
26
32
NOX

(PPM)
4
5
4
4
5
5
4
4
2
1
1
12
20
26
33
37
40
43
42
41
38
33
41
02

(PCT)
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
14.00
13.50
17.00
5.75
4.75
4.75
4.70
4.65
4.60
4.60
4.50
4.50
4.55
4.60
4.65
CO

(PCT)
0.002
0.001
0.001
0.001
0.000
0.003
0.000
0.057
0.653
0.466
0.361
1 . 8 4 5
0.239
0.172
0.106
0.057
0.050
0.028
0.010
0.011
0.008
0.004
0.010
C02

(PCT)
6.38
6.38
6.28
6.28
6.48
6.48
6.48
6.48
3.31
1.92
1.25
6.79
3.35
8.46
8.46
8.46
8.46
8.46
8.46
8.35
8.35
8.35
8.35
HC

(PPM)
0*
0.
0.
0.
0.
0.
0.
o.
26000.
330CC.
35000.
800.
26.
14.
L> .
2.
3.
2.
2.
1.
1.
1.
1.

-------
      RUN NUMBER  117 CONT
 PREMIXED FLAT FLAME BURNER
          METHANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.042
0.042
0.042
0.042
0.042
0.042
0.0^2
0.042
0.042
0.042
0.04?
0.042
0.042
0.063
0.063
0.063
0.063
AIR
FLOW
(CFM)
0.481
0.481
0.481
0.481
0.481
0.431
0.481
0.481
0.431
0.481
0.481
0.481
0.481
0.481
0.481
0.481
0.481
PCT
STOIC
AIR
119.?
119.2
119.2
119.?
119.?
319.2
J 19.2
119.2
119.2
119.2
119.2
119.?
119.?
fiO.2
80.?
80.?
80.2
AXIAL
DIST
(IN)
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
2.00
1.00
0.50
0.50
1.00
5.00
5.00
RADIAL
DIST
(IN)
0.00
0.00
0.00
0.00
o.oo
0.00
0.00
-0.20
-0.40
-0.60
-0.60
-0.60
-0.60
-0.20
-0.20
-0.20
0.00
WALL
TEMP
(C)
1480
1530
1580
1630
1680
1730
1780
1780
1780
1780
1780
1780
1780
1825
1825
1825
1825
NO

(PPM)
33
32
35
36
37
39
40
40
38
37
23
17
14
62
63
60
57
NOX

(PPM)
42
43
45
46
47
50
52
52
49
48
29
24
19




02

(PCT)
4.66
4.69
4.70
4.70
4.72
4,. 70
4.75
4.80
4.77
4.75
4.70
4.57
4.30
0.07
0.06
0.06
0.06
CO

(PCT)
0.011
0.012
0.013
0.015
0.016
0.017
0.019
0.019
0.018
0.016
0.009
0.007
0.004
4.158
4.158
3.933
3.933
C02

(PCT)
8.35
8.35
8.35
8.35
8.35
8.25
8.25
8.25
8.25
8,14
6.04
7.83
7.31
7.83
7.83
7.73
7.62
HC

(PPM)
1.
1.
1.
2.
3.
3.
3.
2.
2 . HrJ
2 . to
2.
2.
2.
3-
3.
2.
2.

-------
      RUN NUMBER  118
 PREFIXED FLAT FLAME BURNER
          PROPANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.033
0.033
0.033
0.0?3
0.033
0.033
C.033
0.033
0*033
AIR
FLOW
(CFM)
0.4R1
0.481
0.481
0.481
0.481
0.481
0.481
0.481
0.481
0.481
0.431
0.481
0*481
0.481
0.4R1
0.481
0.481
0.4R1
0.481
0.481
0.481
0.481
PCT
STOIC
AIR
161.1
161.1
161.1
161.1
161.1
161.1
161.1
161.1
161.1
161.1
161.1
161 .1
161.1
60.8
60. S
60.8
60.fi
60.8
60.8
60.8
60.3
60.8
AXIAL
DIST
(IN)
5.00
5.00
5.00
5.00
2.00
1.00
0.50
0.25
0.10
O.JO
0.10
0.10
0.10
0.10
0.25
0.50
1.00
2.00
5.00
5.00
5.00
5.00
RADIAL
DIST
(IN)
0.00
-0.20
-0.40
-0.60
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.40
-0.60
0.00
WALL
TEMP
(C)
1450
1450
1450
1450
1450
1450
1450
1450
1450
1475
1500
1525
1565
1565
1565
1565
1565
1565
1565
1565
1565
1565
NO

(PPM)
4
3
3
3
3
2
1
0
0
0
0
0
0
1
33
39
43
46
45
40
33
48
NOX

(PPM)
5
5
4
4
4
4
3
1
1
0
0
0
0









02

(PCT)
9.55
9.60
9.50
9.30
10.25
10.00
13.75
17.50
19.50
19.00
19.00
18.75
18.70
10.25
0.08
0.08
0.08
0.07
0.07
0.07
0.07
0.07
CO

(PCT)
0.002
0.002
0.002
0.002
0.003
0.004
0.473
0.250
0.155
0.168
0.17?
0.190
0.199
4,756
10.539
10.539
10.539
10.304
10.074
9.848
9.408
10.074
C02

(PCT)
7.13
6.90
6.90
6.67
7.13
7.36
4.14
1.17
0.43
0.61
0.63
0.67
0.70
2.38
5.05
4.95
4.95
4.95
4.85
4.75
4.75
4.85
HC

(PPM)
0.
0.
0.
0.
2.
1.
19500.
36500.
38000. *f
37500. N>
37500. *
37500.
37500.
42500.
4500.
650.
185.
90.
34.
75.
100.
13.

-------
      RUN
 PREMIXED

WALL-COLD
NUMBER  119
FLAT FLAME BURNER
PROPANE
  AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.079
0.079
0..079
C.079
C.079
0.079
0.079
0.079
0.079
0.079
C.079
0.079
0.079
0.079
C.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
0.066
AIR
FLOW
(CFM)
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
PCT
STOIC
AIR
110.2
110.2
110.2
110.2
110.2
110.2
110.2
110.2
110.2
110.2
110.2
110.2
110.2
110.2
131.3
131. 8
131.8
131.8
131.8
131.8
131.8
131.8
131.8
AXIAL
DIST
(IN)
10.00
10.00
10.00
10.00
5.00
5.00
5.00
5.00
3.00
2.00
1.00
0.50
0.25
0.10
0.10
0.25
0.50
1.00
2.00
3.00
5.00
5.00
5.00
RADIAL WALL
DIST TEMP
(IN) ( C )
0.00
-0.20
-0.40
-0.60
-0.60
-0.40
-0.20
0.00
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
0.00
-0.40
NO

(PPM)
15
16
15
15
14
13
13
12
10
7
5
4
3
2
0
1
1
1
2
3
3
3
3
                       NOX

                      (PPM)

                         19
                         18
                         18
                         18
                         18
                         18
                         19
                         19
                         18
                         17
                         16
                         16
                         15
                         13
                          5
                          5
                          5
                          5
                          5
                          5
                          5
                          5
                          5
02
(PCT)
2.15
2.15
2.20
2.15
2.25
2.27
2.30
2.25
2.37
2.60
2.95
3.40
3.55
3.70
6.70
6.65
6.80
6.30
5.80
5.75
5.70
5.68
5.65
CO
(PCT)
0.005
0.005
0.005
0.005
0.026
0.044
0.076
0.124
0.234
0.344
0.599
0.734
0.734
0.680
0.762
0.844
1.011
0.653
0.151
0.046
0.015
0.013
0.008
C02
(PCT)
11.99
12.24
11.99
11.99
11.99
11.99
11.99
11.99
11.73
11.48
11.23
10.98
10.73
10.73
8.78
8.78
8.54
9.02
9.75
9.99
9.99
9.75
9.99
                                             HC

                                            (PPM)

                                                0.
                                                0.
                                                0.
                                                2.
                                                0.
                                                2.
                                                1.
                                                2.
                                                2.
                                                2.
                                               15.
                                               13.
                                                2.
                                                2.
                                               50.
                                              200.
                                             1500.
                                             1200.
                                              100.
                                                5.
                                                3.
                                                2.
                                                2*

-------
      RUN NUMBER  119 CONT
 PREMIXEO FLAT FLAME BURNER
          PROPANE
WALL-COLD   AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.066
0.066
0..066
0.066
0.066
0.009
0.099
0.099
C.099
C.099
0.0^9
0.099
0.099
0.399
0.099
0.099
C.C99
0.099
0.099
AIR
FLOW
(CFM)
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
PCT
STOIC
AIR
131.8
131.8
131.8
131.8
131.8
S8.0
PH.O
88.0
88.0
88.0
Sfi.O
82.0
38.0
88.0
88.0
88.0
°8.0
88.0
88.0
AXIAL
DIST
(IN)
5.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
5.00
5.00
5.00
5.00
3.00
2.00
1.00
0.50
0.25
c.io
RADIAL WALL
DIST TEMP
(IN) (C)
-0.60
-0.60
-0.40
-0.20
0.00
0.00
-0.20
-0.40
-0.60
-0.60
-0.40
-0.20
0.00
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
NO

(PPM)
3
4
4
4
4
30
30
30
30
29
30
31
32
31
31
29
28
27
25
                       NOX

                      (PPM)

                          5
                          5
                          6
                          5
                          5
02 '
(PCT)
5.65
5.68
5.66
5.60
5.60
0..08
0.08
0.08
O.OS
0.08
o.oa
0.09
0.09
0.1.1
0.13
0.22
0.32
0.37
0.40
CO
(PCT)
0.004
0.003
0.003
0.002
0.003
3.403
3.403
3.403
3.506
3.610
3.610
3.716
3.824
3.824
3.610
3.403
3.104
2.912
2.724
 C02

(PCT)

 9.99
 9.99
 9.99
 9.99
 9.99
 0.5S
 0.58
 0.58
 0.57
 0.57
 0.56
 0.56
 0.56
 0.56
 0.56
 0.57
 0.58
 0.60
 0.60
 HC

(PPM)

    2.
    2.
    0.
    0.
    0.
    2.
    2.
    1.
    1.
    2.
    1.
    1.
    1.
   10.
   35.
   80.
   35.
    3.
    1.
                                                                **!
                                                                I
                                                                CO
                                                                I-1

-------
      RUN NUMBER  120
   PREMIXED FURNACE BURNER
          PROPANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.012
0.012
0.012
0.012
0.012
0.012
0.012
0.012
C . 0 1 2
0 . 0 1 2
0.012
0.012
0.012
0.012
0.012
AIR
FLOW
(CFM)
0.481
0.481
0.4B1
0.481
0.481
0.481
0.481
0.481
0.481
0.481
0.481
0.431
0.481
0.481
0.481
PCT
STOIC
AIR
155.5
155.5
155.5
155.5
155.5
155.5
155.5
] 5b.5
155.5
155.5
155.5
155.5
155.5
155.5
155.5
AXIAL
DIST
( IN)
10.00
10.00
10.00
10.00
5.00
5.00
5.00
5.00
2 . 00
1.00
0.70
0.50
0.30
0.20
0.10
RADIAL
DIST
(IN)
0.00
-0.20
-0.40
-0.60
-0.60
-0.40
-0.20
0.00
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
WALL
TEMP
(C)
1495
1495
1495
1495
1495
1495
1495
1495
1495
1495
1495
1495
1495
1495
1495
NO
(PPM)
4
4
4
4
3
3
3
3
2
3
3
2
1
0
0
NOX
(PPM)
5
5
5
4
3
3
3
3
3
3
3
3
2
1
0
02
(PCT)
9.80
9.85
9.80
9.80
9.70
9.75
10.00
10.00
10.50
10.00
10.00
10.00
13.50
16.00
18.50
CO
(PCT)
0.003
0.003
0.003
0.004
0.003
0.003
0.003
0.003
0.003
0.005
0.008
0.019
0.844
0.256
0.285
C02
tPCT)
6.90
6.90
6.79
6.90
6.69
6.90
6.90
7.00
7.00
7.31
7.31
7.31
4.65
2.76
1.17
HC
(PPM)
3.
4.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
17000.
35000.
38000.
                                                                to

-------
      RUN NUMBER  121
   PREMIXED FURNACE BURNER
          PROPANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.020
0.020
0.024
C . 0 1 7
0.025
0.021
C.C17
0.021
0.025
0.020
AIR
FLOW
(CFM)
0.431
0 . 43 1
0.481
C.4R1
0.481
0.481
0.481
0.481
0.481
0.481
0.481
0.481
0.481
0.481
C.4S1
0.481
0.481
PCT
STOIC
AIR
124.9
124.9
124.9
124.9
124.9
174.9
124.9
100.6
100.6
a i.o
117.0
78.2
95.2
117.0
95.2
78.2
100.6
AXIAL
DIST
( IN)
10.00
10.00
10.00
10.00
5.00
5.00
5.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
RADIAL
DIST
( IN)
-0.20
0.00
-0.40
-0.60
-0.60
-0.40
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
WALL
TEMP
(C)
1795
1795
1795
1795
1795
1795
1795
1795
1865
1865
1795
1795
1795
1865
1865
1865
1865
NO

(PPM)
100
98
125
160
52
55
55
182
240
70
145
64
135
235
158
65
255
NOX

(PPM)
115
108
140
175
63
64
65
192
253

150

138
255
160

260
02

(PCT)
4.75
4.80
4.80
4.80
4.80
4.82
4.90
0.70
0.70
0.09
3.50
0.10
0.11
3.60
0.14
0.10
0.70
CO

(PCT)
0.037
0.036
0.039
0.037
0.020
0.023
0.021
0.190
0.256
5.693
0.052
6.444
1.476
0.071
1.357
6.444
0.262
C02

(PCT)
10.49
10.49
10.24
10.24
10.24
10.49
10.49
12.75
12.75
3.66
11.23
7.93
12.24
10.98
12.50
8.54
12.75
HC

(PPM)
5.
5.
5.
5.
4.
4.
5.
4.
4. tij
4. u>
2. w
3.
2.
3.
3.
3.
2.

-------
      RUN NUMBER  122
 STABILIZED DIFFUSION BURNER
          METHANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.137
0.137
0.137
0.137
0.137
0.137
0.137
0.137
0.137
0.1-37
0.137
0.137
0.137
0.137
0.137
AIR
FLOW
(CFM)
2.094
2.094
2.094
2.094
2.094
2.C94
2.094
2.094
2.094
2.094
2.094
2.C94
2.094
2.094
2.094
PCT
STOIC
AIR
159.7
159.7
159.7
159.7
159.7
159,7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
AXIAL
DIST
( IN!
15.00
10.00
5.00
3.00
4.00
6.00
7.00
5.00
5.00
5.00
5.00
4.00
4.00
4.00
4.00
RADIAL
DIST
(IN)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
-0.20
-0.40
-0.60
-0.60
-0.40
-0.20
0.00
WALL
TEMP
(O
1450
1450
1450
1450
1450
1450
1450
1450
1450
1450
1450
1450
1450
1450
1450
NO

( PPM )
64
75
63
3
40
72
72
70
55
43
30
12
24
30
40
NOX

(PPM)
82
96
83
25
59
89
95
90
80
67
43
31
48
55
60
02

(PCT)
7.80
6.90
2.80
9.80
3.60
4.50
5.40
3.20
3.70
5.60
8.30
8.85
5.70
4.30
3.60
CO

(PCT)
0.003
0.028
1.597
2.646
2.472
0.546
0.258
1.357
1.039
0.361
0.104
0.219
0.789
1.814
2.506
C02

(PCT)
6.07
7.52
8.56
4.14
7.21
8.46
8.14
8.56
8.46
7.93
6.69
6.38
7.42
7.93
7.42
HC

(PPM)
8.
6.
175.
42000.
7500.
25.
5.
200.
250.
300.
150.
3000.
4500.
7500.
7500.
                                                                I
                                                                10

-------
      RUN NUMBER  123
 STABILIZED DIFFUSION BURNER
          METHANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
C.137
0.157
0.157
0.157
0.157
0.157
0.157
0.157
0.157
0.1-57
0.157
0.157
0.157
0.157
C.157
0.157
0.157
0.157
0.157
0.183
0.183
0.183
0.183
AIR
FLOW
(CFM)
2.094
2.094
2.094
2.094
2.094
2.094
2. 094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
PCT
STOIC
AIR
159.7
119.9
139.9
139.9
139.9
139.9
139.9
139.9
139.9
139.9
139.9
139.9
139.9
139.9
139.9
139.9
139.9
139.9
139.9
119. a
119.8
119.8
119.8
AXIAL
DIST
(IN)
15.00
15.00
10.00
5.00
4.00
3.00
4.00
4.00
4.00
4.00
5.00
5.00
5.00
5.00
7.00
9.00
9.00
9.00
9.00
15.00
10.00
7.00
5.00
RADIAL
DIST
(IN)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
-0.20
-0.40
-0.60
-0.60
-0.40
-0.20
0.00
0.00
0.00
-0.20
-0.40
-0.60
0.00
0.00
0.00
0.00
WALL
TEMP
(C)
1440
1590
1590
1590
1590
1590
1590
1590
1590
1590
1590
1590
1590
1590
1590
1590
1590
1590
1590
1775
1775
1775
1775
NO

(PPM)
40
130
120
70
35
0
35
28
30
24
38
53
59
60
95
110
110
100
90
415
265
155
72
NOX

(PPM)
55
155
155
95
57
17
54
51
52
46
58
75
80
80
120
135
130
125
110
475
315
190
90
02

(PCT)
8.25
5.85
5.20
2.00
2.50
12.50
2.65
2.85
3.40
5.60
6.30
3.80
2.50
2.10
3.70
4.85
4.95
5.25
5.95
3.70
2.80
1.60
0.79
CO

(PCT)
0.009
0.037
0.106
2.186
2.912
1.841
2.817
2.632
1.757
0.455
0.190
0.955
1.357
1.845
0.573
0.151
0.143
0.120
0.079
0.143
0.359
1.783
3.716
C02

(PCT)
6.69
7.93
8.35
8.56
7.73
3.05
7.73
7.62
8.04
7.62
7.42
8.46
8.66
8.56
8.66
8.25
8.25
8.14
7.93
8.87
9.08
8.87
7.93
HC

(PPM)
5*
6.
6.
500.
5500.
35000.
6500.
7500.
3850.
1750.
35.
100.
250.
500.
5.
5.
5.
5.
5.
5.
5.
60.
1650.
                                                               Ul

-------
      RUN NUMBER  123 CONT
 STABILIZED DIFFUSION BURNER
          METHANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.183
0.183
0.1B3
C.1B3
0 . 1 R 3
0.183
0 . 1 P 3
0.183
0.133
0.163
0.1S3
o.ias
0 . 1 S 3
0. 1«3
0.275
C.275
G.275
0.275
0.275
0 . ? 7 5
0.275
0.275
0.275
AIR
FLOW
(CFM)
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2*094
2.094
2.094
2.094
2.094
2.094
PCT
STOIC
AIR
119.8
119.8
119.8
119.8
119.8
119.8
119.8
119.8
119.8
119.8
119.8
119.8
119.8
1 1 9 . «
79.9
79.9
79.9
79.9
79.9
79.9
79.9
79.9
79.9
AXIAL
DIST
(IN)
4.00
3.00
4.00
4.00
4.00
4.00
5.00
5.00
5.00
5.00
9.00
9.00
9.00
9.00
15.00
10.00
7.00
5.00
4.00
3.00
5.00
5.00
5.00
RADIAL
DIST
(IN)
0.00
0.00
0.00
-0.20
-0.40
-0.60
-0.60
-0.40
-0.20
0.00
0.00
-0*20
-0.40
-0.60
0.00
0.00
0.00
0.00
0.00
0.00
0.00
-0.20
-0.40
WALL
TEMP
(C)
1775
1775
1775
1775
1775
1775
1775
1775
1775
1775
1775
1775
1775
1775
1825
1825
1825
1825
1825
1825
1825
1825
1825
NO

(PPM)
30
0
32
29
41
32
50
65
65
66
210
210
200
200
110
100
71
8
0
0
9
5
20
NOX
(PPM)
67
24
58
56
63
57
75
87
82
80
240
240
240
240









02
(PCT)
1.60
9.25
1.50
1.60
1.45
4,30
5.20
2.00
1.00
0.82
2.55
2.65
2.90
3.45.
0.11
0.11
0.20
2*90
6.50
11.75
2.70
3.30
1.85
CO
(PCT)
4.510
2.912
4.510
4.391
3.104
0.899
0.440
1.783
3.506
3.933
0.599
0.599
0.493
0.304
6.444
6.444
6.765
6.287
4.756
2.451
6.931
6.134
5.984
C02
(PCT)
6.90
3.25
6.90
7.10
8.14
8. 14
7.73
8.56
8.04
7.73
9.08
9.08
8.98
8.87
6.28
6.07
5.87
4.65
3.54
1.98
4.65
4.34
5.46
HC
(PPM)
10000.
37500.
10000.
9000.
3000.
250.
25.
300.
1500.
2250.
6.
5.
5.
5.
5.
50.
3500.
30000.
38500.
42500.
29000.
32000.
20000.

-------
      RUN NUMBER  123 CONT
 STABILIZED DIFFUSION BURNER
          METHANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.275
C.275
0.775
0.275
0.275
0.275
C.275
C.275
0.275
0.2-75
AIR
FLOW
(CFM)
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
PCT
STOIC
AIR
79.9
79.9
79.9
79.9
79.9
79.9
79.9
79.9
79.9
79.9
AXIAL
DIST
(IN)
5.00
6.00
6.00
6.00
6.00
6.00
10.00
10.00
10.00
10.00
RADIAL
DIST
( IN)
-0.60
-0.60
-0.40
-0.60
-0.20
0.00
0.00
-0.20
-0.40
-0.60
WALL
TEMP
(C)
1825
1825
1825
1825
1825
1825
1825
1825
1825
1825
NO NOX

(PPM) (PPM)
65
93
56
87
32
38
91
92
93
94
02
(PCT)
0.77
0.28
0.7?
0.31
1.05
0.83
0.11
0.11
0.11
0.11
CO
CPCT)
4.158
4.882
6.287
5.276
6.931
6.931
6.444
6.444
6.287
6.287
C02
(PCT)
7.42
7.10
5.87
6.79
5.25
5.36
6.07
6.07
6.18
6.18
HC
(PPM)
4500.
2250.
10000.
3000.
14000.
11500.
50.
45.
50.
50.

-------
                                       RUN NUMBER  124
                                  STABILIZED DIFFUSION BURNER
                                           METHANE
                                 WALL-HOT    AIR PREHEAT-NONE


FUEL    AIR     PCT     AXIAL  RADIAL   WALL    NO      NOX     02      CO      C02     HC
FLOW    FLOW    STOIC   DIST    DIST    TEMP
(CFM)   (CFM)   AIR     (IN)    (IN)    (C)    (PPM)   (PPM)   (PCT)    (PCT)    (PCT)    (PPM)
0.137
0.157
0.183
0.219
0.?75
0.219
0.219
2.094
2.094
2.094
2.094
2.094
2.094
2.094
159.7
139.9
119.8
100.0
79.9
100.0
100.0
15.00
15.00
15.00
15.00
15.00
15.00
10.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1955
1955
1955
1955
1955
1955
1955
300
520
1200
990
140
920
410
350
630
1300
1000

920
420
7.50
6.00
3.30
0.43
0.17
0.39
0.47
0.049
0.092
0.256
1*845.
6.603
1.927
2.273
7.36
8.07
9.51
9.99
6.44
9.75
9.51
2.
4.
5.
5.
4.
4.
4.
                                                                                                  I
                                                                                                  w
                                                                                                  00

-------
      RUN NUMBER  125
 STABILIZED DIFFUSION BURNER
          PROPANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.055
0.055
0.055
0.055
0.055
0.055
0.055
0.055
0.055
0 . C 5 5
0.055
0.055
0.055
C.C55
C.C55
0.055
0.055
0.055
AIR
FLOW
(CFM)
2.094
2 .094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
PCT
STOIC
AIR
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
AXIAL
DIST
( IN)
15.00
10.00
7.00
5.00
4.00
3.00
4.00
4*00
4.00
4.00
5.00
5.00
5.00
5.00
9.00
9.00
9.00
9.00
RADIAL
DIST
( IN)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
-0.20
-0.40
-0.60
-0.60
-0.40
•-0.20
O.CO
0.00
-0.20
-0.40
-0.60
WALL
TEMP
(C)
1425
1425
1425
1425
1425
1425
1425
1425
1425
1425
1425
1425
1425
1425
1425
1425
1425
1425
NO

(PPM)
200
200
160
100
55
15
52
62
63
39
49
R3
100
90
185
170
145
105
NOX

(PPM)
235
230
190
120

35

88
95
65
72
115
125
112
210
200
170
130
02

(PCT)
7.10
5.45
3.30
1.25
0.87
2.40
0.87
1.80
5.20
10.25
11.00
6.90
2.95
1.40
5.10
6.20
7.90
9.90
CO

(PCT)
0.043
0.381
2.168
5.412
7.627
7.627
7.448
5.142
2.099
0.331
0.181
1.211
3.104
5.412
0.734
0.352
0.172
0.049
C02

(PCT)
9.02
9.51
9.99
8.54
7.13
5.75
7.13
8.30
8.30
6.18
5.K7
7.83
8.66
8.14
9.19
8.66
7.73
6.59
HC

(PPM)
7.
8.
250.
5000.
17500.
37500.
17500.
7500.
1250. ^
350. ^
225. ^
225.
1500.
5000.
25.
13.
10.
8.

-------
      RUN NUMBER  126
 STABILIZED DIFFUSION BURNER
          PROPANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.062
0 .062
O.C62
.0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.062
AIR
FLOW
(CFM)
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
PCT
STOIC
AIR
140.7
140.7
140.7
140.7
140.7
140.7
] 4 0 . 7
140.7
140.7
140.7
140.7
140.7
140.7
140.7
140.7
140.7
140.7
140.7
AXIAL
DIST
(IN)
15.00
10.00
7.00
5.00
4.00
3.00
5.00
5.00
5.00
5.00
6.00
6.00
6.00
6.00
10.00
10.00
10.00
10.00
RADIAL
DIST
( IN)
0.00
0.00
0.00
o.oo
0.00
0.00
0.00
-0.20
-0.40
-0.60
-0.60
-0.40
-0.20
0.00
0.00
-0.20
-0.40
-0.60
WALL
TEMP
(C)
1610
1610
1610
1610
1610
1610
1610
1610
1610
1610
1610
1610
1610
1610
1610
1610
1610
1610
NO

(PPM)
440
325
165
59
16
6
54
76
81
49
71
120
130
105
355
355
320
280
NOX

(PPM)
495
350
195
110
67
90
150
160
380
380
350
305
02

(PCT)
4.95
3.45
1.75
0.90
1.95
5.00
0.90
2.35
7.40
13.00
12.25
8.00
3.30
1.25
3.55
4.55
6.45
8.80
CO

(PCT)
0.374
1.973
5.142
8.380
8.985
7.448
8.380
5.551
1.659
0.151
0.190
1.387
4.158
6.765
1.783
1.269
0.573
0.181
C02

(PCT)
9.99
9.75
8.30
5.97
4.85
3.84
6.07
7.31
7.00
4.55
4.35
6.90
7.83
7.31
9.99
9.51
8. 54
7.36
HC

(PPM)
2 .
£. •
75.
4500.
32500.
42500.
46000.
32500.
12500.
1250.
1 bO.
i «V W *
50.
450.
4250.
13000.
100.
•at; .
j -* .
?0 .
£. \J 9
9.

-------
      RUN NUMBER  127
 STABILIZED DIFFUSION BURNER
          PROPANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.077
0.077
0.077
0.077
0.077
0.077
C.077
0.077
0.077
0.0-77
0.077
0.077
0.109
0.109
0.109
0.109
0.109
0. 109
AIR
FLOW
(CFM)
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
PCT
STOIC
AIR
114.0
114.0
114.0
114.0
114.0
114.0
114.0
114.0
114.0
114.0
114.0
114.0
00.4
80.4
80.4
80.4
80.4
80.4
AXIAL
DIST
( IN)
15.00
10.00
7.00
5.00
4.00
3.00
5.00
5.00
5.00
5.00
6.00
6.00
5.00
10.00
15.00
7.00
4.00
15.00
RADIAL
DIST
(IN)
0.00
0.00
0.00
0.00
0.00
o.co
0.00
-0.20
-0.40
-0.60
-0.60
-0.40
-0.00
0.00
0.00
0.00
0.00
0.00
WALL
TEMP
(C)
1870
1870
1870
1870
1870
1870
1870
1870
1870
1870
1870
1870
1870
1870
1870
1870
1870
1870
NO

(PPM)
975
535
255
98
47
12
95
140
195
150
275
280
22
370
800
175
30
900
NOX

(PPM)
1030
570
275





203
180
290
300






02

(PCT)
1.95
1.75
1.10
0.55
0.88
5.50
0.57
1.20
4.60
8.30
6.80
3.90
1.65
0.25
0.35
0.61
5.30
0.30
CO

(PCT)
1.476
2.472
5.142
7.810
8.779
6.931
7.810
5.412
5.412
0.172
0.181
1.506
9.848
8.578
6.765
7.272,.
7.627
6.931
C02

(PCT)
10.98
10.24
8.78
7.13
5.98
4.04
6.79
8.04
8.56
7.73
8.04
9.08
4.24
6.48
7.31
6.79
3.54
6.90
HC

(PPM)
7.
35.
1250.
8500.
25000.
42500.
8000.
2750.
100.
20.
15.
75.
41000.
1750.
25.
12500.
50000.
50.
                                                             .e-

-------
      RUN NUMBER  128
   DIFFUSION FLAME BURNER
          METHANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.137
0.137
0.137
0.137
0.137
0.137
0.137
0.137
0.137
G.137
0.137
0.137
0.137
0.137
0.137
C.137
0.137
0.137
0.157
0.157
0.157
0.157
0.157
AIR
FLOW
(CFM)
2.094
2.094
2.C94
?.094
2.094
2*094
2.094
2.094
2. 094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
PCT
STOIC
AIR
159.7
159.7
159.7
159.7
159.7
159,7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
139.9
139.9
139.9
139.9
139.9
AXIAL
DIST
(IN)
15.00
10.00
7.00
5.00
4.00
3.00
4.00
4.00
4.00
4.00
5.00
5.00
5.00
5.00
9.00
9.00
9.00
9.00
15.00
10.00
7.00
5.00
4.00
RADIAL
DIST
( IN)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
-0.20
-0.40
-0.60
-0.60
-0.40
--0.20
0.00
0.00
-0.20
-0.40
-0.60
0.00
0.00
0.00
0.00
0.00
WALL
TEMP
(C)
1440
1440
1440
1^40
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1590
1590
1590
1590
1590
NO

(PPM)
75
66
49
30
18
6
17
9
5
3
4
3
17
28
62
45
26
14
165
95
58
34
19
NOX

(PPM)
93
86
76
61
53
36
52
37
23
16
17
27
43
61
87
63
43
27
195
130
92
71
57
02

(PCT)
5.80
5.80
5.60
5.10
4.75
6.30
4.95
8.80
12.50
14.50
14.00
11.75
9.00
5.35
5.50
8.25
11.00
13.00
3.80
4.45
5.10
3.95
4.30
CO

(PCT)
0.124
0.413
1.125
1.783
2.403
2.912
2.335
0.927
0.267
0.120
0.089
0.172
0.464
1.720
0.626
0.229
0.057
0.032
0.789
1.328
1.597
2.788
3.203
C02

(PCT)
8.07
7.60
7.36
6.90
6.67
5.05
6.38
5.56
4.14
2.95
3.05
4.24
5.66
6.79
7.21
6.07
5.05
3.84
7.83
7.10
6.79
6.48
6.07
HC

(PPM)
5.
35.
400.
2000.
8500.
35000.
8500.
3500.
2750.
2750.
1750.
1400.
1250.
2250.
75.
145.
225.
250.
6.
125.
800.
9000.
21000.

-------
      RUN NUMBER  128 CONT
   DIFFUSION FLAME BURNER
          METHANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
C.157
0.157
0.157
C.157
0.157
0.157
0.157
0.157
0.157
0 . i 5 7
C.157
0. 157
0.157
0.157
AIR
FLOW
(CFM)
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2,094
2.094
2.094
2.094
2.094
2.094
PCT
STOIC
AIR
139.9
139.9
139.9
139.9
139.9
139.9
139.9
139.9
13V. 9
139.9
139.9
139.9
139.9
139.9
AXIAL
DIST
( IN)
3.00
5.00
5.00
5.00
5.00
6.00
6.00
6.00
6.00
10.00
1C. 00
10.00
10.00
10.00
RADIAL
DIST
( IN)
0.00
0.00
-0.20
-0.40
-0.60
-0.60
-0.40
-0.20
0.00
0.00
-0.60
-0.40
'0.20
0.00
WALL
TEMP
(C)
1590
1590
1590
1590
1590
1590
1590
1590
1590
1590
1590
1590
1590
1590
NO

(PPM)
6
33
20
11
6
9
19
33
43
80
16
23
38
0
NOX

(PPM)
37
70
54
33
22
24
41
60
83
110
28
38
57

02

(PCT)
6.55
4.50
8.50
12.50
15.00
14.25
11. DO
8.50
4.40
2.30
12.75
12.75
11.00
8.30
CO

(PCT)
3.104
2.541
1.068
0.239
0.071
0.059
0.172
1.153
2.302
2.017
C.C38
0.037
0.074
0.262
C02

(PCT)
4.24
6.48
5.36
4. 14
2.85
3.15
4.34
5.77
6.69
7.52
3.05
3.64
5.05
6.18
HC

( PPM )
42500.
8000.
3500.
1500.
7500.
900.
750.
750.
900.
6.
350.
350.
150.
175.











•n
i
j>
UJ





-------
      RUN NUMBER  129
 STABILIZED DIFFUSION BURNER
          METHANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.157
0.157
0..157
0.157
0.157
0.157
0.157
0. 137
0.157
AIR
FLOW
(CFM)
2.094
2.C94
2.094
2.094
2.094
2.094
2.094
2.094
2.094
PCT
STOIC
AIR
139.9
139.9
139.9
139.9
139.9
139.9
139,9
139.9
139.9
AXIAL
DIST
( IN)
15.00
10.00
15,00
15.00
15.00
15.00
15.00
15.00
15.00
RADIAL
DIST
(IN)
0.00
0.00
0.00
-0.20
-0.40
-0.60
0.20
0.40
0.60
WALL
TEMP
(O
1590
1590
1590
1590
1590
1590
1590
1590
1590
NO

(PPM)
145
145
130
140
135
130
145
130
140
NOX

(PPM)
173
180
160
150
160
155
160
150
155
02

(PCT)
7.20
6.60
7.30
7.55
7.70
7.50
6.90
7.20
6.95
CO

(PCT)
0.020
0.072
0.017
0.017
0.016
0.016
0.021
0.018
0.021
C02

(PCT)
7.00
7.21
6.90
6.79
6.69
6.79
7.00
6.90
7.00
HC

(PPM)
1.
1.
2.
1.
1.
0.
0.
0.
0.

-------
      RUN
 PREMIXED

WALL-HOT
NUMBER  130
FLAT FLAME BURNER
METHANE
  AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
C.035
0.035
C.935
0.035
C.035
0.035
0.035
C.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
0.035
C.035
0.035
AIR
FLOW
(CFM)
0.481
0.481
0.481
0.4R1
0.481
0.481
0.481
0.481
0.4R1
C.481
0.431
0.481
0.4R1
C.4S1
0.481
0.481
C.4S1
0.481
PCT
STOIC
AIR
140.4
140.4
140.4
140. 4
140.4
140.4
140.4
140.4
140.4
140.4
140.4
140.4
140.4
140.4
140.4
140.4
140. 4
14C.4
AXIAL
DIST
(IN)
15.10
15.10
15.10
15.10
10.10
10.10
10.10
10.10
5.10
5.10
5-10
5.10
3. 10
2.10
1.10
0.10
C.60
0.35
RADIAL
DIST
! IN)
0.00
-0.20
-0.40
-0.60
-0.60
-0.40
-0.20
0.00
0.00
-0.20
-0.40
-0.60
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
WALL
TEMP

-------
      RUN NUMBER  131
 PREMIXED FLAT FLAME BURNER
          METHANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.042
0.042
0.042
0.042
0.042
0.042
0.042
0 .042
0.042
0.042
0.042
0.0^2
0.042
0.042
0.042
0.0/i2
0.042
0.042
0.042
0.042
0.065
0.065
0.065
AIR
FLOW
(CFM!
0.481
0.431
0.431

0.481
0.401
0.481
0.481
0.481
0.431
0.431
0.431
0.431
0.4S1
0.481
0.431
0.481
0.481
0.481
0.481
0.481
0.481
0.481
PCT
STOIC
AIR
120.1
120.1
1?0.1

1?0.1
170.1
1?0.1
170.1
170.1
170.1
120.1
170.1
170.1
170.1
120.1
170.1
170.1
120, 1
120.1
120.1
77.5
77.5
77.5
AXIAL
DIST
( IN)
15.10
15.10
15.10
15.10
10.10
10.10
10.10
10.10
5.10
5.10
5.10
5.10
3. 10
2.10
1.10
0. 10
0.05
0.35
0.60
0.85
15.10
15.10
15.10
RADIAL
DIST
( IN)
0.00
-0.20
-0.40
-0.60
-0.60
-0.40
-0.20
0.00
0.00
-0.20
-0.40
-0.60
-0.20
-0.20
-0.20
-0.70
-0.20
-0.20
-0.20
-0.20
0.00
-0.20
-0.40
WALL
TEMP
(C)
1770
1770
1770
1770
1770
1770
1770
1770
1770
1770
1770
1770
1770
1770
1770
1770
1770
1770
1770
1770
1770
1770
1770
NO

(PPM)
150
150
160
165
110
100
85
80
58
60
55
53
57
52
40
4
2
17
25
32
57
57
55
NOX

(PPM)
170
170
180
190
120
115
100
100
72
74
69
65
70
68
54
19
14
31
38
45



02

(PCT)
4.00
4.00
3.95
3.95
4.00
4.00
4.05
4.00
4.15
4.10
4.10
4.10
4.20
4.25
4.30
4.60
5.00
4.40
4.35
4.35
0.17
0.17
0.17
CO

(PCT)
0.028
0.030
0.029
0.026
0.024
0.026
0.025
0.026
0.021
0.020
0.019
0.017
0.028
0.040
0.056
0.374
1.476
0.120
0.085
0.060
6.444
6.134
6.287
C02

(PCT)
8.14
8.25
8.14
8.14
8.14
8.04
8.14
8.14
8.35
8.25
8. 14
8.14
8.46
8.46
8.46
8.04
7.52
8.46
8.46
8.46
5.77
5.77
5.77
HC

(PPM)
10.
15.
20.
28.
17.
6.
2.
2.
"> ***
2 * i
2 » CT\
2.
2.
2.
1.
1.
1.
7500.
4.
3.
2.
16.
15.
38.

-------
      RUN NUMBER  131 COMT
 PREMIXEO FLAT FLAME BURNER
          METHANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFX)
0.065
0.065
C.065
C.065
0.065
0.065
C.065
0.065
0.065
C.065
O.C65
C . 0 6 5
0.065
O.C65
C.O&5
C .CAS
0.045
0.045
0.045
0.045
0.045
0.0&5
0.045
AIR
FLOW
(CFM)
0.481
C.4R1
0.481
0.481
0.481
0.4fll
0.481
0.481
0.431
0.481
0.481
0*481
0.481
0.481
C.481
C . 4 8 1
C.431
0.481
0.481
0.431
0.431
0.431
0.481
PCT
STOIC
AIR
77.5
77.5
77.5
77.5
77.5
77.5
77.5
77.5
77.5
77.5
77.5
77.5
77.5
77.5
77.5
110. 7
110.7
110.7
110.7
110.7
110.7
110.7
110.7
AXIAL
DIST
(IN)
15.10
10.10
10.10
10.10
10.10
5.10
5. 10
5.10
5.10
3.10
2.10
1.10
0.10
0.35
C. 15
15.10
15.10
15.10
15.10
10.10
10.10
10.10
10.10
RADIAL
DIST
( IN!
-0.60
-0.60
-0.40
-0.20
0.00
0.00
-0.20
-0.40
-0.60
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
O.CO
-0.20
-0.40
-0.60
-0.60
-0.40
-0.20
0.00
WALL
TEMP
(O
1770
1770
1770
1770
1770
1770
1770
1770
1770
1770
1770
1770
1770
1770
1770
1865
1065
1865
1865
1865
1865
1865
1865
NO

(PPM)
55
59
61
62
62
67
69
68
66
70
71
71
23
62
55
390
400
430
450
23?
210
175
170
NOX

(PPM)















430
440
480
490
270
250
210
200
02

(PCT)
0.17
0.17
0.17
0.17
0.17
C.17
0.17
0.17
0.17
0.17
0.17
0.18
2.65
0.19
0.20
1.95
1.90
1.90
1.S5
1.90
1.90
2.00
2.00
CO

(PCT)
6.134
5.984
5.984
5.984
6.134
6.134
6.134
5.984
5.934
6.287
6.444
6.444
5.837
6.287
6.134
0.113
0.102
0.106
0.099
0.073
0.071
0.077
0.078
C02

(PCT)
5.66
5.56
5.66
5.66
5.66
5.77
5.77
5.66
5.56
5.87
5.97
5.97
4.95
6.18
6.18
8.77
8.66
8.56
8.56
8.35
8.35
8.46
8.66
HC

(PPM)
43.
20.
4.
3.
2.
2.
2.
2.
2 .
2 .
2.
2.
14000.
15.
40.
15.
25.
55.
65.
55.
33.
4.
3.

-------
      RUN
 PREFIXED

WALL-HOT
NUMBER  131 CONT
FLAT FLAME BURNER
METHANE
  AIR PREHEAT-NONE
FUEL
FLOW
(CFV)
0.045
0.045
0.045
0.045
0.045
0.045
0.045
0.045
0.045
0.050
0.050
0 . 0 0 0
0.050
0.05 C
.050
.050
.050
.050
0.045
0.042
0.03S
0.035
0.033
AIR
FLOW
(CFM)
0.481
0.481
C.4S1
0.481
0.481
0.481
0.481
0.481
0.481
0.481
C.481
0.481
0.481
C.4S1
0.431
0.481
0.481
0.481
0.481
0.481
0.481
0.431
0.481
PCT
STOIC
AIR
110.7
110.7
110.7
110.7
110.7
110.7
110.7
110.7
110.7
100.3
100.8
100.3
100.3
100.8
ioc. a
100.8
100.8
100.8
110.7
1 ? 0 . 1
131.0
140.4
151.3
AXIAL
DIST
(IN)
5.10
5.10
5.10
5.10
3.10
2.10
1.10
0,10
0.25
15.10
15.10
10.10
10.10
5.10
15.10
15.10
15*10
15.10
15.10
15.10
15.10
15.10
15.10
RADIAL
DIST
(IN)
0.00
-0.20
-0.40
-0.60
-0.20
-0.20
-0.20
-0.20
-0.20
-0.20
-0.60
-0.60
-0.20
-0.20
0.00
-0.20
-0.40
-0.60
-0.20
-0.20
-0.20
-0.20
-0.20
WALL
TEMP
(C)
1865
1865
1865
1865
1865
1865
1865
1865
1865
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
NO

(PPM!
100
110
100
95
95
80
60
5
15
800
920

565
310
775
810
900
945
1425
1530
1725
1750
1800
NOX

(PPM)
135
130
130
120
120
110
90
25
35
840
950

62 C
390
830
865
960
980
1500
1750
1900
1975
2025
02

(PCT)
2.10
2.10
2.10
2.05
2.20
2.25
2.30
2.70
2.60
0.83
0.77
0.84
0.93
1.00
0.80
0.80
0.80
0.75
2.45
3.60
5.10
6.15
7.30
CO

(PCT)
0.059
0.060
0.055
Oi050
0.076
0.092
0.147
0.734
0.267
0.285
0.298
0.250
0.245
0.181
0.304
0.304
0.291
0.291
0.124
0.092
0.066
0.054
0.043
C02

(PCT)
8.87
8.77
8.66
8.46
9.08
9.19
9.75
9.26
9.51
9.26
9.26
9.26
9.51
9.75
9.75
9.02
8.78
9.02
8.07
7.63
6.79
6.38
5.77
HC

(PPM)
2.
2.
1.
1.
1.
2.
2.
2.
2.
27.
40.
26.
17.
4.
10.
13.
13.
12.
10.
10.
10.
10.
10.
                                                                00

-------
      RUN NUMBER  131 CONT
 PREMIXED FLAT FLAME BURNER
          METHANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFMJ
0.055
C.063
AIR
FLOW
(CFM)
0.481
0.481
PCT
STOIC
AIR
90. 8
79.9
AXIAL
DIST
( IN)
15.10
15.10
RADIAL
OIST
UN)
-0.20
-0.20
WALL
TEMP
(C>
1945
1945
NO
(PPM)
210
90
NOX
(PPM)
230
90
02
(PCT)
0.25
0.25
CO
(PCT)
2.369
5.142
C02
(PCT)
7.52
5.66
HC
(PPM)
9.
15.

-------
      RUN NUMBER  132
   PREMIXED FURNACE BURNER
          METHANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.031
0.031
0.031
0.031
0.031
0.031
0 . C 3 1
0.031
0.031
0.031
O.C31
0.031
C.031
AIR
FLOW
(CFM)
0.481
0.481
0.481
0.^81
0.481
0.481
C.4P1
0.4.°1
0.481
0.491
0.481
0.481
0.481
PCT
STOIC
AIR
159.5
159.5
159.5
159.5
159.5
159.5
15°. 5
159.5
159.5
159.5
159.5
159.5
159.5
AXIAL
DIST
( IN)
15.00
10.00
5.00
3.00
2.00
1.00
4.00
3.50
3.35
15.00
15.00
15.00
15.00
RADIAL
DIST
(IN)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
-o.?o
-0.40
-0.60
WALL
TEMP
(0
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
NO

(PPM)
2
1
1
0
0
0
1
0
0
1
1
1
1
NOX

(PPM)
2
2
2
1
1
0
2
2
1
2
2
2
2
02

(PCT)
8.80
a. so
8.80
12.00
17.00
18.00
9.05
9.70
10.25
8.95
8.95
8.90
8.90
CO

(PCT)
0*002
0.003
0*002
0.304
0.076
0*010
0.022
0.155
0.219
0.003
0.003
0.002
0*003
C02

(PCT)
5.66
5.77
5.77
3.84
1.46
0.81
5.66
5.15
4.85
5.66
5.66
5.66
5.66
HC

(PPM)
0.
13.
17.
15000.
33000.
345CO.
350.
4000.
7000.
25.
15.
10.
11.











m
i
Ul
o



-------
      RUN NUMBER  133
   PREMIXED FURNACE BURNER
          METHANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.137
0.137
0.137
0.137
0.137
0.137
0.137
0.137
0.137
0.1-37
0 . 1 37
0.137
0.137
0.137
C.137
0. 157
0.157
0.157
0.157
0.157
0.157
0.157
C.157
AIR
FLOW
(CFM)
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.09^
2.094
2.094
2.094
2.094
2.094
2.094
2. 094
2.094
2.094
2.094
2.094
2.094
2.094
PCT
STOIC
AIR
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159.7
159. 7
159.7
159,7
159.7
139.9
139.9
139.9
139.9
139.9
139.9
139.9
139.9
AXIAL
DIST
( IN)
15.00
10.00
5.00
4.00
3.00
2.00
1.00
3.50
4.50
15.00
15.00
15.00
15.00
3.75
3.35
15.00
15.00
15.00
15.00
10.00
5.00
4.00
3.00
RADIAL
DIST
(IN)
0.00
c.oo
0.00
0.00
0.00
0.00
0.00
0.00
o.oo
c.oo
-0.20
-0.40
-O.60
0.00
0.00
-0.60
-o.^c
-0.20
0.00
0.00
0.00
0.00
0.00
WALL
TEMP
(C)
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1590
1590
1590
1590
1590
1590
1590
1590
NO

(PPM)
2
2
1
0
0
0
0
0
0
2
2
2
2
0
0
7
7
7
7
6
5
5
0
NOX

(PPM)
3
3
3
2
1
1
0
2
2
3
3
3
3
2
2
10
10
9
10
8
7
7
6
02

(PCT)
8.65
8.70
8.80
10.00
13.75
16.00
18.00
11.50
9.00
8.70
8.70
8.70
8.60
10.50
12.25
6.60
6.60
6.60
6.60
6.60
6.65
6.65
7.30
CO

(PCT)
0.003
0.003
0.042
0.285
0.413
0.185
0.031
0.413
0.151
0.003
0.003
0.003
0.003
0.359
0.429
o.ooe
0.007
o.ooa
0.008
0.008
0.010
0.021
0.285
C02

(PCT )
5.97
5.87
5.87
5.15
3.05
1.64
0.69
4.14
5.66
5.97
5.97
5.97
5.97
4.44
3.74
6.90
6.90
6.90
6.90
6.90
6.90
6.90
6.38
HC

(PPM)
0.
0.
400.
6000.
25000.
33500.
35000.
15500.
2100.
25.
22.
16.
11.
10000.
17500.
2.
2.
2.
2.
2.
1.
15.
2500.

-------
      RUN NUMBER  133 CONT

   PREFIXED FURNACE BURNER

          METHANE

WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
1CFM)
0.157
0.157
0.157
C.157
0.157
C.157
AIR
FLOW
(CFM)
2.094
2.094
2.094
2.094
2.094
2.094
PCT
STOIC
AIR
139.9
139.9
139.9
139.9
139.9
139.9
AXIAL
DIST
( IN)
2.00
1.00
3.50
2.50
2.75
2.25
RADIAL
DIST
( IN!
0.00
0.00
0.00
0.00
0.00
0.00
WALL
TEMP
(C)
1590
1590
1590
1590
1590
1590
NO

(PPM)
0
0
2
0
0
0
NOX

(PPM)
3
1
6
4
5
3
02

(PCT)
13.25
17.00
6.60
9*35
8.00
11.00
CO

(PCT)
0.816
0.163
0*073
0.789
0*546
Ci844
C02

(PCT!
3.05
1.01
6.90
5.05
5.87
3.94
HC

( PPM)
30000.
36000.
350.
12000.
6000.
22500.
                                                                 I
                                                                Ui
                                                                ro

-------
      RUN NUMBER  134
   PREMIXED FURNACE BURNER
          METHANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFV)
0.035
0.035
0.035
0.035
0.035
0 . C 3 5'
0.035
0.035
O.C35
0.0-35
0.035
0.035
0.077
C.C77
0.077
0.077
0.077
0 .077
0.077
C.077
C.077
0.077
0.077
AIR
FLOW
(CFM)
0.481
0.481
0.481
0.431
c.4£i
0.481
0 . 4 P 1
0.481
0.481
0.4R1
0.481
0.4? 1
0.481
C.4P1
0.481
0.4P1
0 . 4 ° 1
0.481
0.481
0.481
0.481
0.481
0.481
PCT
STOIC
AIR
140.4
140.4
140.4
140.4
140.4
14Q.4
140. 4
140.4
140.4
140.4
140.4
140.4
65.3
65.3
65.3
65.3
65.3
65.3
65.3
65.3
65.3
65.3
65.3
AXIAL
DIST
(IN)
15.00
15.00
15.00
15.00
10.00
5.00
4.00
3.00
2.00
1.00
0.00
-0.05
15.00
15.00
15.00
15.00
10.00
5.00
4.00
3.00
4.50
7.50
6.00
RADIAL
OIST
! IN)
0.00
-0.20
-0.40
-0.60
0.00
0.00
0.00
0.00
0.00
0.00
0.00
o.oo
0.00
-0.20
-0.40
-0.60
O.CO
0.00
0.00
0.00
0.00
o.oo
0.00
WALL
TEMP
(C)
1585
1585
1585
1585
1585
1585
1585
1585
1585
1585
15«5
1565
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
NO

(PPM)
10
10
9
9
6
4
3
3
3
2
2
1
1
1
1
1
0
0
0
0
0
0
0
NOX

(PPM)
12
12
12
12
8
6
5
5
5
5
5
5











02

(PCT)
7.40
7.40
7.35
7.35
7.40
7,50
7.50
7.50
7.50
7.25
7.10
7.10
0.24
0.24
0.24
0.24
0.24
0.71
7.10
12.75
3.50
0.23
0.23
CO

(PCT)
0.003
0.003
0.004
0.004
0.003
0.003
0.005
0.007
0.019
0.029
0.063
0.068
9.194
9.194
9.194
9.194
8.985
8.186
5.276
2.724
6.765
8.779
8.578
C02

(PCT)
6.59
6.43
6.59
6.59
6.69
6.69
6.79
6.79
6.79
6.90
7.00
7.10
4. 14
3.64
3.84
3.84
3.94
3.94
2.46
1.41
3.25
3.94
4.04
HC

( PPM )
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
8.
5.
4.
3.
500.
12000.
37500.
42000.
32000.
2100.
4500.
                                                                Ui

-------
      RUN NUMBER  135
   PREMIXED FURNACE BURNER
          PROPANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.014
0.014
0 . 01 4
0.014
0.014
0.014
0.014
0.014
0 . 0 1 4
0.014
0.014
0.014
AIR
FLOW
(CFM)
0.481
C .API
0.461
0.481
0 . A ? 1
0.481
0.481
0.481
0.4B1
0.4S1
0.431
0.481
PCT
STOIC
AIR
133.8
133.8
n« .=>
133. 8
133. S
133 .3
1 3 S . 3
13. ".8
1 3 S . 8
1 3 ?- « 8
138.8
138.8
AXIAL
DIST
(IN)
15.00
15.00
15.00
15.00
10.00
5.00
4.00
3*00
2.00
2.50
2.75
2.25
RADIAL
DIST
( IN)
0.00
-0.20
-0.40
-0.60
0.00
0.00
C.OO
0.00
0.00
0.00
0.00
0.00
WALL
TEMP
(C)
1625
1625
1625
1625
1625
1625
1625
1625
1625
1625
1625
1625
NO

(PPM)
13
14
16
17
6
3
3
2
0
0
0
0
NOX

(PPM)
18
19
21
22
8
5
5
5
1
3
4
1
02

(PCT)
7.70
7.70
7.70
7.70
7.75
7.70
7.70
7.70
16.00
11.00
8.50
13.50
CO

(PCT)
0.008
0.008
0.007
0.008
0.006
0.004
0.004
0.030
0.291
0.421
0.229
0.438
C02

(PCT)
7.42
7.42
7.31
7.31
7.31
7.42
7.42
7.42
2.37
5.36
6.79
3.64
HC

( PPM )
0.
0.
0.
0.
0.
0.
0.
200.
34000.
17000.
4000.
30000.

-------
      RUN NUMBER  136
   PREMIXED FURNACE BURNER
          PROPANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CF.vj
0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.062
AIR
FLOW
(CFM)
2.094
2.094
2.094
2.094
2.094
2.C94
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
PCT
STOIC
AIR
140.7
140.7
140.7
140.7
140.7
140.7
140.7
140.7
140.7
140.7
140.7
140.7
140.7
140.7
140.7
AXIAL
DIST
(IN)
15.00
15.00
15.00
15.00
10.00
5.00
4.00
3.00
2.00
2.50
3.25
3.50
3.75
2.75
2.90
RADIAL
DIST
( IN)
0.00
-0.20
-0.40
-0.60
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
WALL
TEMP

1610
1610
1610
1610
1610
1610
1610
1610
1610
1610
1610
1610
1610
1610
1610
NO

(PPM)
12
12
12
12
9
7
6
0
0
0
1
1
2
0
0
NOX

(PPM)
15
15
15
16
13
11
10
6
2
4
6
6
7
3
4
02

(PCT)
6.50
6.50
6.50
6.45
6.65
6.60
6.60
fi.25
14.75
11 .25
8.00
7.50
7.20
10.50
9.50
CO

(PCT)
0.012
0.013
0.012
0.014
0.011
0.019
0.055
0. 707
0.734
0.899
0.352
0.267
0.172
0.899
0.762
C02

(PCT)
8.25
8.25
8.25
8.25
8. 14
8.25
8.25
7.00
3.05
5.05
7.62
7.52
7.73
5.35
5.87
HC

(PPM)
9.
8.
5.
5.
3.
2.
75.
7000.
34000.
25000.
4000.
2500.
1000.
18000.
l^OOO.
                                                                 I
                                                                Ul

-------
RUN NUMBER 137
PREMIXED FURNACE BURNER
PROPANE
WALL-HOT AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
C.072
0.072
C.07?
0.072
0.072
0.072
0.072
0.072
0.072
0.072
0.072
0.072
AIR
FLOW
(CFM)
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
PCT
STOIC
AIR
120.9
120.9
IPO. 9
170.9
120.9
170.9
170.9
120. 9
170.9
120.9
IPO. 9
120.9
AXIAL
DIST
(IN)
15.00
15.00
15.00
15.00
15.00
10.00
5.00
4.00
3.00
2.00
1.00
0.00
RADIAL
DIST
(IN)
0.00
-0.20
-0.40
-0.60
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
WALL
TEMP
(C)
1795
1795
1795
1795
1795
1795
1795
1795
1795
1795
1795
1795
NO

(PPM)
74
72
72
73
69
43
24
19
16
9
5
1
NOX

(PPM)
91
91
92
94
90
63
37
24
21



 02       CO      C02     HC

(PCT)    (PCT)    (PCT)    (PPM)

 3.80    0.063    10.98        3.
 3.85    0.060    10.98        2.
 3.85    0.064    10.73        2.
 3.85    0.062    10.98        4.
 3.85    0.062    10.98        3.
 3.85    0.054    10.98        3.
 3.95    0.091    10.98        1.
 4.10    0.151    10.73        1.
 4.30    0.245    10.73        1.   f
 4.50    0.374    10.49        2.   £
 4.80    0.626    10.24       15.
 5.70    1.537     9.02      100.

-------
      RUN NUMBER  138
   PREMIXED FURNACE BURNER
          PROPANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFM)

C.016
0.016
O.C16
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
AIR
FLOW
(CFM)

0.481
0.4*1
0.4P1
o.48i
0.481
0.481
0 . 4 « 1
0.481
0.481
0.481
0.481
0.481
0.481
PCT
STOIC
ATR
'~ « * >
170.8
170.3
120.8
170.8
12C.B
120.8
120.S
170.3
170.3
120.8
170. e
120.8
120.8
AXIAL
DISf
t T M 1
V i >* I
15.00
15.00
15.00
15.00
10.00
5.00
3.00
1.00
0.00
2.00
2.50
2.75
1.50
RADIAL
OIST
/ T fc i t
(IN)
0.00
-0.70
-0.40
-0.60
o.cc
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
WALL
TEMP
(C)
1795
1795
1795
1795
1795
1795
1795
1795
1795
1795
1795
1795
1795
NO
(PPM)
200
170
160
160
70
10
8
4
2
7
7
7
6
NOX
(PPM)
240
210
200
200
95
20
16
11
6
13
13
14
12
02
(PCT)
5.20
5.20
5.20
5.20
5.40
5.55
5.70
6.40
7.40
5.95
5.85
5.95
6.20
CO
(PCT)
0.028
0.024
0.025
0.025
0.016
0.012
0.024
0.139
0.239
0.043
0.030
0.035
0.064
C02
(PCT)
9.26
9.26
9.26
9.26
9.26
9.51
9.75
9.51
9.02
9.75
9.75
9.75
9.51
HC
(PPM)
2.
2.
4.
5.
2.
2.
1.
1.
50.
1.
1.
1.
1.


N
i
Ul
•vj

-------
      RUN NUMBER  139
   PREMIXED FURNACE BURNER
          METHANE
WALL-HOT    AIR PREHEAT-NONE
FUEL
FLOW
(CFM)
0.042
0.042
0.042
.0.062
0.042
0.042
0.042
0.042
0.042
0.042
0.042
AIR
FLOW
(CFK)
0.481
0.481
0.431
0.481
C.481
C . 4 8 1
0.481
0.451
0.481
0.481
0.481
PCT
STOIC
AIR
1?0.1
120.1
1/0.1
120.1
120.1
1 ? 0 . 1
120.1
120.1
12C.1
120.1
120.1
AXIAL
DIST
(IN)
15.00
15.00
15.00
15.00
10.00
5.00
3.00
1.00
0.00
2.00
1.50
RADIAL
DIST
( IN)
0.00
-0.20
-0.40
-0.60
0.00
0.00
0.00
0.00
0.00
o.co
0.00
WALL
TEMP
(C)
1770
1770
1770
1770
1770
1770
1770
1770
1770
1770
1770
NO

(PPM)
95
95
100
105
31
12
11
10
7
11
10
                       NOX     02      CO      C02     HC

                      (PPM)   (PCT)    (PCT)    (PCT)    (PPM)

                        120    4.25   0.019    8.54        5.
                        120    4.25   0.017    8.30        6.
                        130    4.20   0.021    8.30        8.
                        130    4.20   0.021    8.30        8.
                         43    4.35   0.010    8.54        2.
                         23    4.60   0.012    9.26        1.
                         21    4.60   0.022    9.02        1.
                         20    4.50   0.116    9.26        1.
                         18    4.30   0.172    9.26        1.     ^
                         19    4.60   0.039    9.02        1.     ^
                         19    4.60   0.060    9.26        1.     °°

-------
      RUN NUMBER  140
   PREMIXED FURNACE BURNER
          METHANE
WALL-HOT    AIR PREHEAT-NONE
FUFL
FLOW
(CFM)
0.133
0.183
0.1-83
0.183
0.183
0.1 = 3
0.183
0.183
0.1S3
C.1S3
AIR
FLOW
(CFM)
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
2.094
PCT
STOIC
AIR
119.8
119.8
119.8
119.8
119.8
119.8
119.8
119.8
119.8
119. S
AXIAL
DIST
(IN)
15.00
15.00
15.00
15.00
10.00
5.00
3.00
2.00
1.00
0.00
RADIAL
DIST
(IN)
0.00
-0.20
-0.40
-0.60
0.00
0.00
0.00
0.00
0.00
0.00
WALL
TEMP
(C)
1775
1775
1775
1775
1775
1775
1775
1775
1775
1775
NO

(PPM)
45
47
49
49
31
19
15
10
4
2
NOX

(PPM)
66
67
69
70
47
31
29
26
22
18
02

(PCT)
3.75
3.75
3.70
3.70
3.75
3.80
3.90
4.00
4.30
4.25
CO

(PCT)
0.045
0.045
0.044
0.045
0.038
0.063
0.135
0.291
1.011
1.068
C02

(PCT)
9.26
9.26
9.26
9.26
9.26
9.26
9.26
9.26
8.78
8.78
HC

(PPM)
7.
7.
6.
6.
5.
3.
2.
3.
200.
5000.

-------
                                       RUN NUMBER   141
                                  PREMIXED FLAT FLAME BURNER
                                           METHANE
                                 WALL-COLD   AIR PREHEAT-NONE


FUEL    AIR     PCT     AXIAL  RADIAL   WALL    NO      NOX      02       CO       C02     HC
FLOW    FLOW    STOIC   DIST    DIST    TEMP
(CFM)   (C.FM)   AIR     (IN)    (IN)    (O     (PPM)    (PPM)    (PCT)    (PCT)    (PCT)   (PPM)

0.050   0.481   100.8   12.60    0*00             47       43     0.53    0.219    10.98       5.
0.050   0.481   100.8   12.60    0.20             49       49     0.36    0.181    11.23       5.
O.D50   C.481   100.8   12.60    0.40             49       49     0.35    0.190    11.48       4.
O.C50   C.481   100.S   12.60    C.60             49       49     0.32    0.172    11.99       4.
O.C5C   C.AS1   100.3    9.60    0.60             49       49     0.30    0.163    11.48       4.
0.050   0.431   100.3    9.60    0.^0             49       49     0.31    0.151    11.23       4.
0.050   0.481   100.8    9.60    0.20             49       49     0.26    0.139    11.£-8       3.
C.050   0.491   100.9    9.60    0.00             50       51     0.26    0.143    11.23       3.
0.050   0.481   100.3    4-.60    0.20             55       56     0.45    0*181    11.23       4.   ?
C.050   0.481   100.8    2.60    0.20             57       60     0.66    0.324    10.98       4.   o
0.050   0.4P1   100.8    1.60    0.20             49       60     0.79    0.599    10.73       4.
0.050   0.431   100.3    0.60    0.20             40       5C     1.00    0.789    10.49       4.
0.050   0.481   100.8    0.30    0.20             23       35     1.20    0.983    10.24       4.
0.050   0.481   100.8    0.20    0.20             16       29     1.25    1.125     9.99      25.

-------
                         	G-l	

                                TECHNICAL R'EPORT DATA
                          (Please read Jiiztructioiis on the reverse before completing)
 1. REPORT NO.
  EPA-600/7-76-009a
                           2.
                                                     3. RECIPIENT'S ACCESSION NO.
 4. T,TLE AND SUBTITLE MECHANISM AND KINETICS OF THE
 FORMATION OF NOx AND OTHER COMBUSTION
 POLLUTANTS; Phase I.  Unmodified Combustion
                                                     5. REPORT DATE
                                                       August 1976
                                                     6. PERFORMING ORGANIZATION CODE
 7. AUTHOR(S)
                                                      8. PERFORMING ORGANIZATION REPORT NO
 V.S. Engleman and W.  Bartok
                                                      GRU. 2DJAM. 76
 9. PERFORMING OR9ANIZATION NAME AND ADDRESS
 Exxon Research and Engineering Co.
 P. O.  Box 8
 Linden, New Jersey  07036
                                                     10. PROGRAM ELEMENT NO.
                                                     1AB014; ROAP 21BCC-013
                                                     11. CONTRACT/GRANT NO.

                                                     68-02-0224
 12. SPONSORING AGENCY NAME AND ADDRESS
 EPA, Office of Research and Development
 Industrial Environmental Research Laboratory
 Research Triangle Park, NC 27711
                                                     13. TYPE OF REPORT AND PERIOD COVERED
                                                     Phase I Final; 4/73-2/74
                                                     14. SPONSORING AGENCY CODE
                                                      EPA-ORD
15. SUPPLEMENTARY NOTES Project officer for
Ext 2432, Mail Drop 65.
                                         repOrt is W.S.  Lamer ,  919/549-8411
 16• ABSTRACT Tne repOrt gjves Phase I results of an investigation of the mechanisms and
 kinetics of the formation of NOx and other combustion pollutants. It gives results of
 experimental investigations of unmodified combustion and supporting theoretical cal-
 culations. The  combustion of hydrogen, carbon monoxide, methane, and propane
 with air in a jet-stirred combustor (JSC) was studied to facilitate the assessment of
 coupled combustion/pollutant formation. The JSC tests also extended the range and
 accuracy of data taken in  previous studies. Experiments also included a flow reactor
 capable of accepting multiple burner types and operating with selected wall tempera-
 ture. Premixed flat and focused flames, as  well as laminar and turbulent diffusion
 flames, were studied in the flow reactor using methane and propane fuels.  The tests
 included heat-loss and adiabatic conditions and a limited number of wall heat
 addition cases. Stirred reactor calculations, supporting the experimental program,
 indicated the need for more detailed kinetics in hydrocarbon/air combustion before
 NOx formation  can be predicted.  Similarly, plug flow calculations indicated strong
 coupling between combustion reactions , specie diffusion, and NOx formation in the
 flame zone. Further kinetic data on reactions between hydrocarbon fragments and
 nitrogenous species is required to properly assess the importance of those inter-
 actions inNOx  formation.	   	
17.
                             KEY WORDS AND DOCUMENT ANALYSIS
                DESCRIPTORS
                                          b.IDENTIFIERS/OPEN ENDED TERMS
                                                                 c. COSATI Field/Group
 Air Pollution
 Reaction Kinetics
 Combustion
 Nitrogen Oxides
 Methane
 Propane
                    Hydrogen
                    Carbon Monoxide
                    Mathematical Models
                    Diffusion Flames
Air Pollution Control
Stationary Sources
Well Stirred Reactor
Plug Flow Reactor
Unmodified Combustors
13B
07D
21B
07B
07C
12A
 B. DISTRIBUTION STATEMENT

 Unlimited
                                         19. SECURITY CLASS (This Report)
                                         Unclassified
                                                                  21. NO. OF PAGES
                          310
                                         20. SECURITY CLASS (This page)
                                         Unclassified
                                                                 22. PRICE
EPA Form 2220-1 (9-73)

-------