U.S. DEPARTMENT OF COMMERCE
                                   National Technical Information Service
                                    PB-270 922
TRACE  ELEMENTS IN COAL:   OCCURRENCE AND
DISTRIBUTION
H, J,  GLUSKOTER, ET  AL
ILLINOIS  STATE GEOLOGICAL SURVEY
URBANA,  ILLINOIS
JUNE 1977
                                                                         .

-------
V I nvironmunt.il i'i
f H'r Ot R«'V.tlllll .11
                                   PB  270 922
   EPA-600/7-77-064
?n  June 1977
       TRACE ELEMENTS IN COAL:
       OCCURRENCE AND DISTRIBUTION
       Interagency
       Energy-Environment
       Research and Development
       Program Report


n                REPRODUCED BY
               .JATIOkJAI
               NATIONAL TECHNICAL
               INFORMATION SERVICE

-------
                       RESEARCH REPORTING SERIES
Research reports of the Office of Research and  Development, U.S.
Environmental Protection Agency,  have been grouped  into seven series.
These seven broad categories were established to  facilitate further
development and application of environmental technology.  Elimination
of traditional grouping was consciously planned to  foster technology
transfer and a maximum interface  in related fields.  The seven series
are:

     1.  Environmental Health Effects Research
     2.  Environmental Protection Technology
     3.  Ecological Research
     4.  Environmental Monitoring
     5.  Socioeconomic Environmental Studies
     6.  Scientific and Technical Assessment Reports (STAR)
     7.  Interagency Energy-Environment Research  and Development

This report has been assigned to  the INTERAGENCY  ENERGY-ENVIRONMENT
RESEARCH AND DEVELOPMENT series.   Reports in this series result from
the effort funded under the 17-agehcy Federal Energy/Environment
Research and Development Program.  These studies  relate to EPA's
mission to protect the public health and welfare  from adverse effects
of pollutants associated with energy systems.   The  goal of the Program
is to assure the rapid development of domestic  energy supplies in an
environmentally  compatible manner by providing the necessary
environmental data and control technology. Investigations include
analyses of the transport of energy-related pollutants and their health
and ecological effects; assessments of, and development of, control
technologies for energy systems;  and integrated assessments of a wide
range of energy-related environmental issues.

                            REVIEW NOTICE

This report has been reviewed by the participating Federal
Agencies, and approved for publication.  Approval does not
signify that the contents necessarily reflect the views and
policies of the Government, nor  does mention  of trade names
or commercial products constitute endorsement  or recommen-
dation for use.
This document is available to the public  through  the National Technical
Information Service, Springfield, Virginia  22161.

-------
                                TECHNICAL REPORT DATA
                          fPlcase read Inttmctlons on Ifit reverse before completing}
1. REPORT NO.
 EPA-800/7-77-064
                                                       3. RECIPIENT'S ACCESSION NO.
4 T1TLEANOSUBTPTLE TRACE ELEMENTS IN COAL:
 Occurrence and Distribution
            5. REPORT DATE
             June 1977
                                                       6. PERFORMING ORGANIZATION CODE
7 .AUTHORS) H.J.Gluskoter, R.R.Ruch, W. G. Miller,
 R.A.Cahill, G. B.Dreher,  and J.K.Kuhn
                                                       8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
 Illinois State Geological Survey
 Urbana, Illinois 61801
            10. PROGRAM ELEMENT NO.
              EHB529
            11. CONTRACT/GRANT NO.

              68-02-1472
1J. SPONSORING AGENCY NAME AND ADDRESS
 EPA, Office of Research and Development
 Industrial Environmental Research Laboratory
 Research Triangle Park, NC 27711
            13. TYPE Of REPORT AND PERIOD COVERED
              Final; 6/74-6/76	
            14. SPONSORING AOENCY CODE
              EPA/600/13
is. SUPPLEMENTARY NOTES T.ERL-RTP project officer for this report is William J. Rhodes,
Mail Drop 61, 919/549-8411 Ext 2851.
16.ABSTRACT,^ report gives results of chemical analyses of whole coal samples, bench
samples (vertical), and washed coal samples. Most of the samples were from the
Illinois Basin, but other U.S.  coal producing areas are also represented.  In addition
to the standard analyses of coal parameters, approximately 60 elements were also
analyzed.  Statistical analysis of the whole coal samples data indicates that elemental
concentrations tend to decrease from the Eastern to Western  coals: elements with the
greatest variation are identified with the discrete mineral matter; those with the least,
with the organic  matter. The bench samples indicated wide  variations in elemental
concentrations within a single coal seam: the greatest differences were  found in the
top and bottom of the seam. The trace elements were classified into four organic
affinity groups, based on the analytical data: organic,  intermediate-organic,
intermediate-inorganic, and inorganic.
17.
                             KEY WORDS AND DOCUMENT ANALYSIS
                DESCRIPTORS
                                          t>. IDENTIFIERS/OPEN ENDED TERMS
                         c. COSATi Field/Croup
 Pollution
 Coal
 Chemical Analysis
 Chemical Elements
 Concentration (Composition)
 Pollution Control
 Trace Elements
 Elemental Concentra-
   tions
 Organic Affinity
13B
08G.21D
07D
D7B
18. DISTRIBUTION STATEMENT

 Unlimited
19. SECURITY CLASS I This Rtfon)
Unclassified
7O. SECURITY CLASS IThispagei
Unclassified
                         72. PRICE
                                                                             /»)
EPA Form 2220-1 (9-73)

-------
                                          EPA-600/7-77-064
                                                 June 1977
     TRACE ELEMENTS  IN COAL:
OCCURRENCE AND DISTRIBUTION
                          by

                  H.J. Gluskoter. R.R. Ruch, W.G. Miller,
                  R.A. Cahill. G.B. Dreher, and J.K. Kuhn

                   Illinois State Geological Survey
                     Urbana, Illinois 61801
                     Contract No. 68-02-1472
                   Program Element No. EHB529
                 EPA Project Officer William J. Rhodes

                Industrial Environmental Research Laboratory
                 Office of Energy, Minerals, and Industry
                  Research Triangle Park, N.C. 27711
                        Prepared for

                U.S. ENVIRONMENTAL PROTECTION AGENCY
                  Office of Research and Development
                     Washington, O.C. 20460

-------
            TRACE  ELEMENTS  IN  COAL

       OCCURRENCE AND  DISTRIBUTION


               H. J. Gluskoter, R. R. Ruch, W. G. Miller,
               R. A. Cahill, G. B. Draher, and J. K. Kuhn
                             ABSTRACT
     Chemical analyaes of 172 whole ooal samples, HO  (5  sets)  bench
samples  (vertical  segments of the seam),  and 64 (9 sets) washed ooal
samples (separated by specific gravity methods) have been made by  the
Illinois  State Geological Survey. One hundred and fourteen of the 172
whole coal samples were from the Illinois Basin, as were  all  of  the
bench  samples  and  5  of  the  9 sets of  washed coals. The remaining
samples were from other coal-producing areas of the United States.

     Elements determined by  chemical  analyses  were  aluminum  (Al),
antimony  (Sb),  arsenic (As), barium (Ba), beryllium (Be), boron (B),
bromine (Br), cadmium (Cd), calcium (Ca),   carbon  (C),   cerium  (Ce),
cesium  (Ca),  chlorine (Cl), chromium (Cr), cobalt (Co),  copper (Cu),
dysprosium (Dy), europium (Eu), fluorine (F), gallium (Ga),  germanium
(Ge),  gold  (Au), hafnium (Hf), hydrogen (H), indium (In), iodine (I),
iron (Fe), lanthanum (La), lead (Pb), lutetium (Lu),  magnesium  (Mg),
manganese (Mn),  mercury (Hg), molybdenum  (Mo), nickel  (Ni), nitrogen
(N), oxygen  (0),  phosphorus   (P),   potassium  (K),  rubidium  (Rb),
samarium  (Sm),  scandium (Sc),  selenium  (Se), silicon  (Si), silver
(Ag), sodium (Na), strontium (Sr), sulfur (S), tantalum (Ta),  terbium
(Tb),  thallium  (Tl),  thorium (Th),  tin (Sn), titanium (Ti), tungsten
(W), uranium  (U),  vanadium  (V),  ytterbium  (Yb),  zinc (Zn),  and
zirconium (Zr).  In  addition  to  the  60 elements, the  samples were
analyzed for the standard ooal parameters.  Analytical methods included
neutron  activation  analyaes,  atomic  absorption speotroaoopy, X-ray
fluorescence speotroaoopy,  optical  emission  spectroscopy,  and  ion
selective electrode analyaes.

     Statistical analyses of this large quantity of data on whole coal
samples have allowed for many generalizations to be drawn  including:

          1. Elemental  concentrations tend to be highest in coals
     from the Appalachians, lowest in coals of the western United
     States, and intermediate in ooals from the Illinois Basin.

          2.  Elements   that   have   the  largest   ranges   in
     concentrations  are those that are found in distinct  mineral
     phases in the coals; elements with narrow ranges are  often
     those found in organic combination in coal.

                               iii

-------
           3. Only  four elements are, on the average,  present  in
      coals   in  concentrations  significantly  greater  than  the
      clarke  of  those  elements   (average  ooncentration  in  the
      earth's  crust).  These  are  boron, chlorine, selenium, and
      arsenic. Not  all are concentrated in  each  of  the  samples
      analyzed   from  the  three  geographic groups (eastern U.S.,
      western U.S., and the Illinois Basin).

           1. Most  of the elemental concentrations  in  coals  are
      lower than the clarke of the elements.

           5. Boron is concentrated  only  in  the  coala  of  the
      Illinois  Basin; possibly the presence of boron represents a
      greater marine influence during  and  Immediately  following
      the time of the coal swamp in the basin.

      Generalizations from the statistical analyses of  the  analytioal
data  from   five   bench  seta  -from  the  Illinois  Basin  include the
following:

           1. Wide  variations  in  elemental  concentrations  are
      present between benches of a single coal sampled.

          2. Although elements may  be  concentrated  within  any
      bench  of  a  coal, concentrations are more commonly observed
      at the  top and/or bottom of the coal seam.

          3. Germanium is concentrated  in  the  top  and  bottom
      benches of four of the five bench sets.

          4.  Most  elements  occur   in   significantly   higher
      concentrations   in   the   fine-grained  sedimentary  rocks
      associated with  the  coal  (roof  shales,  underolays,  and
      partings) than in the coal.

      An index of organic affinity of the elements was calculated  from
cumulative  curves  (washability  curves)  of  the  data determined on
specific gravity fractions of the washed  ooals.   Elements  have  been
classified   as    "organic",    "Intermediate-organic",  "intermediate-
inorganic", and "inorganic",  on the basis  of  value  of  the  organic
affinity  index. Coals of the Illinois Basin are quite similar in this
regard.  The following generalizations are suggested:

          1.   Germanium,   beryllium,   boron,  and  antimony   are
     classified   within   the  organic  group  in  all  samples.
     Germanium has the highest value of organic affinity in  each
     coal.

          2.  Zinc,  cadmium,  manganese,  arsenic,   molybdenum,  and
     iron are within the inorganic group in all four  samples.

          3.  A number of metals including cobalt, nickel,  copper,
     chromium,   and  selenium  have organic affinities within the
      intermediate    categories.    This    suggests    a    partial
     contribution   from  sulfide   minerals  in  the coal but also
     suggests the  presence of these  elements  in  organometallic
     compounds,  as chelated species,  or as adsorbed cations.
                                 iv

-------
                             CONTENTS
                                                                  Page
Abstract	iii
Introduction 	  1
Acknowledgments  	  x
Type and source of coal samples	7
Analyses of whole coal samples	10
   Analytical data	10
   Statistical analyses of data	10
Enrichment of elements in coal	69
Analyses of bench samples  	 72
Analyses of washed coals 	 38
   Methods of analyses	88
   Displaying washability data	  .  .   103
Organic and inorganic affinities of the elements 	   107
   Introduction  	   107
   Calculation of organic affinities 	   108
   Discussion of organic affinities  .  .  .  ;	110
Summary and conclusions  	   119
References	123

APPENDIX	127
Methods of analysis	127
   Introduction  	   127
Neutron activation analysis  	   128
   INAA procedures	128
   Radiochemical separation procedure for mercury	131*
   Neutron activation analysis of tellurium	131*
   Neutron activation analysis of thallium ... 	   135
Emission spectrochemical analysis  	   135
   Direct-reading spectrometer procedures  	   138
   3.1* meter Ebert spectrometer procedure	138
   Special refinements of optical emission procedures  	   139
Atomic absorption analysis 	
   Flame atomic absorption analytical procedures 	
   Graphite furnace procedures	
X-ray fluorescence of whole coal	
Summary of methods	
Elements determined by two or more analytical methods  	
References	,..   150
Index	151

-------
                                FIGURES

                                                                  Page

 1 - Coal fields of conterminous United^States shoving regional
        designations used in the text	    3
 2 - Elements reported in this study indicated by diagonal lines
        on the periodic table	  .    k
 3 - Distribution .of silver in coals analyzed 	   59
 k - Distribution of arsenic in coals analyzed  	   59
 5 - Distribution of boron in coals analyzed	  .   59
 6 - Distribution of barium in coals analyzed 	   59
 7 - Distribution of beryllium in coals analyzed  	   59
 8 - Distribution of bromine in coals analyzed  	   59
 9 - Distribution of cadmium in coals analyzed  	   60
10 - Distribution of cerium in coals analyzed	 .  .  ,.   60
11 - Distribution of cobalt in coals analyzed 	   60
12 - Distribution of chromium in coals analyzed 	   60
13 - Distribution of cesium in coals analyzed	60
Ik - Distribution of copper in coals analyzed .... 	  .   60
15 - Distribution of dysprosium in coals analyzed	61
16 - Distribution of europium in coals analyzed 	   6l
17 - Distribution of fluorine in coals analyzed 	   6l
18 - Distribution of gallium in coals analyzed  	   6l
19 - Distribution of germanium in coals analyzed	6l.
20 - Distribution of hafnium in coals analyzed  	   6l
21 - Distribution of mercury in coals analyzed  	   62
22 - Distribution of iodine in coals analyzed 	   62
23 - Distribution of indium in coals analyzed	62
2k - Distribution of lanthanum in coals analyzed  	   62
25 - Distribution of lutetium in coals analyzed 	   62
26 - Distribution of manganese in coals analyzed  	   62
27 - Distribution of molybdenum in coals analyzed 	   63
28 - Distribution of nickel in coals analyzed 	   63
29 - Distribution of phosphorus in coals analyzed 	   63
30 - Distribution of lead in coals analyzed	63
31 - Distribution of rubidium in coals analyzed 	   63
32 - Distribution of antimony in coals analyzed 	   63
33 - Distribution of scandium in coals analyzed 	   6k.
3k - Distribution of selenium in coals analyzed	.6k
35 - Distribution of samarium in coals analyzed	-•;'  - 6k-
36 - Distribution of tin in coals analyzed	   6k
37 - Distribution of strontium in coals analyzed  	   6k
38 - Distribution of tantalum in coals analyzed 	   6k
39 - Distribution of terbium in coals ,analyzed	65
ko - Distribution of thorium in coals analyzed	65
Hi - Distribution of thallium in coals analyzed	   65
k2 - Distribution of uranium in coals analyzed	   65:.
k3 - Distribution of vanadium in coals analyzed 	   65
kk - Distribution of tungsten in coals analyzed 	   65
                                   vi

-------
                          FIGURES (continued)

                                                                  Page

^5 - Distribution of ytterbium in coala analyzed 	   66
U6 - Distribution of zinc in coala analyzed	   66
1*7 - Distribution of zirconium in coals analyzed 	   66
U8 - Distribution of aluminum in coals analyzed  	   66
kg - Distribution of calcium in coals analyzed 	   66
50 - Distribution of chlorine in coals analyzed	   66
51 - Distribution of iron in coals analyzed	   6?
52 - Distribution of potassium in coals analyzed 	   67
53 - Distribution of magnesium in coals analyzed 	   67
5*t - Distribution of sodium in coals analyzed  	   67
55 - Distribution of silicon in coals analyzed	   67
56 - Distribution of titanium in coals analyzed  	   67
57 - Distribution of organic sulfur in coals analyzed  	   68
58 - Distribution of pyritic sulfur in coals analyzed  	   68
59 - Distribution of sulfate sulfur in coals analyzed  	   68
60 - Distribution of total sulfur in coals analyzed  	   68
6l - Distribution of high-temperature ash in coals analyzed  .  .   68
62 - Distribution of low-temperature ash in coals analyzed ...   68
63 - Distribution of bromine in coals of bench set 3	   83
6k - Distribution of uranium, molybdenum, and vanadium in coals
        of bench set 1	   83
65 - Distribution of antimony in coals from bench sets 1, 2, 3,
        It, and 5	   8U
66 - Distribution of germanium in coals from bench sets 1, 2, 3,
        It, and 5	   85
67 - Distribution of associated elements in bench sets:  calcium
        and manganese in bench set 1; phosphorus and fluorine in
        bench set 2; and total sulfur and arsenic in bench set  U   86
68 - Concentration of barium, cerium, and silicon in coals and
        associated strata of bench set U	   87
69 - Germanium in specific gravity fractions of a sample from
        the Davis Coal Member	
70 - Bromine in specific gravity fractions of a sample from the
        Pittsburgh No. 8 coal from West Virginia	105
71 - Chromium in specific gravity fractions of a sample from the
        Blue Creek coal from Alabama	105
72 - Arsenic in specific gravity fractions of a sample from the
        Blue Creek coal from Alabama	106
73 - Low-temperature ash in specific gravity fractions of a
        sample from the Pocahontas No.  k coal from West Virginia  106
7*t - Washability curve of sulfur in specific gravity fractions
        of a sample from the Herrin (No. 6) Coal Member  ....  106
75 - Washability curves for zinc in specific gravity fractions
        of a sample from the Herrin (No. 6) Coal Member  ....  109
76 - Washability curves for bromine in specific gravity frac-
        tions of a sample from the Blue Creek coal from Alabama   111

                                  vii

-------
                          FIGURES (continued)

                                                                  Page

77 - Washability curves for copper in specific gravity fractions
        of a sample from the Davis Coal Member	Ill
78 - Organic affinity index for total sulfur and ratio of organic
        sulfur to total sulfur in eight washed coal samples . .  .  112

 A - Schematic of instrumental neutron activation system  ....  129


                                TABLES

 1 - Abbreviations used in text and tables	    6
 2 - Identification of whole coal samples analyzed  	    8
 3 - Trace elements in whole coal samples 	   12
 h - Major and minor elements in whole coal samples	   28
 5 - Proximate analyses of whole coal samples 	   32
 6 - Ultimate analyses of whole coal samples	   31*
 7 - Sulfur analyses of whole coal samples  	   36
 8 - Mean analytical values for llU whole coal samples from the
        Illinois Basin coal field	   1+2
 9 - Mean analytical values for 23 whole coal samples from the
        eastern United States 	   M
10 - Mean analytical values for 28 whole coal samples from the
        western United States 	   **6
11 - Linear regression (least square) correlation coefficients of
        analytical determination on llU coal samples from the
        Illinois Basin coal field 	   ^8
12 - Elements enriched in coals	   71
13 - Identification of bench samples analyzed 	   73
Ik - Elements in bench samples	   71*
15 - Major and minor elements in bench samples  	   78
16 - Proximate analyses of bench samples	   79
17 - Ultimate analyses of bench samples . .  .	   79
18 - Sulfur analyses of bench samples 	   80
19 - Identification of laboratory-prepared washed coal samples  .   90
20 - Trace elements in laboratory-prepared washed coal samples  .   92
21 - Major and minor elements in laboratory-prepared washed
        coal samples	   99
22 - Proximate analyses of laboratory-prepared washed coal
        samples	100
23 - Ultimate analyses of laboratory-prepared washed coal samples  101
2^4 - Sulfur analyses of laboratory-prepared washed coal samples  .  102
25 - Organic affinity of parameter determined in laboratory-
        prepared washed coal samples	
26 - Organic affinity of elements in laboratory-prepared washed
        coal samples from the Illinois Basin	116

                                  viii

-------
                         TABLES (continued)

                                                                 Page

A - Comparison of values for NBS SRM 1632	130
B - Detection limits and nuclear properties of isotopes used
       for the analysis of coal	132
C - Synthetic coal ash base	136
D - Coal ash standards	136
E - Spectroscopic parameters  	   137
F - Experimental parameters and results for OE-P and OE-DR  .  .
G - Flame atomic absorption parameters  	
H - HGA-2000 analytical conditions	
I - Comparison of results for Cd,  Te, and Tl in NBS SRM 1632  .
J - Analytical procedures used to determine trace element
       values in whole coal and bench samples	
K - Analytical procedures used to determine trace element
       values in float-sink samples 	
                                  ix

-------
                          ACKNOWLEDGMENTS

     The extensive  program  of  coal  sampling,  analyses,  and  data
interpretation  on which this publication is based was performed under
Contract No. 68-02-02U6, Contract 68-02-1472, Grant No. R-800059,  and
Grant  H-BOH^OS from the Fuel Process Branch, Industrial Environmental
Research  Laboratory,  Environmental   Protection   Agency,   Research
Triangle  Park, North Carolina. The contracts and grants were arranged
through and administered by the University of Illinois; the  work  was
performed  by  the  Illinois  State  Geological  Survey. The financial
support  for  these  investigations  from   the   U.S.   Environmental
Protection  Agency is gratefully acknowledged. We are also grateful to
the coal companies in the Illinois Basin and in  other  parts  of  the
United  States for their cooperation in allowing us to collect samples
from their mines.  In addition to  those  listed  as  authors  of  this
report,  major  contributions  to  the  study were made by a number of
chemists and geologists on the staff of the Illinois State  Geological
Survey.  We  wish  to  acknowledge  the following colleagues for their
assistance and to express our sincere gratitude for their efforts:
L. R. Camp, F. L. Kiene, J. K. Frost, R. T. Graoon, S. D. Hampton, J. R.
Hatch, L. ft. Henderson,  R.   A.  Keogh,  L.  E.  Kohlenberger,  P.   C.
Lindahl,  P.  M.   Santoloquido,  J.  A. Schleicher, N. F. Shimp, J. D.
Steele, G. D. Strieker and Josephus Thomas, Jr. In addition,  we  wish
to  thank the Computing Services Office of the University of Illinois,
especially Ed DeWan, for their assistance in the preparation  of  this
computer generated manuscript.

-------
                  TRACE ELEMENTS IN COAL

              OCCURRENCE AND DISTRIBUTION


                     H. J. Gluskotor, R. R. Rueh, W. G. Miller,
                     R. A. Cahill, G. B. Dr»h«r, and J. K. Kuhn



                             INTRODUCTION
     Within  recent  years  the  general  publio  and  the   scientific
community have become increasingly 'aware of the problems of energy and
environment that directly affect  the  activities  of  people   in   the
United  States. The problems are not separate and distinct,  but rather
are associated intimately with each other. To maintain a standard  of
living  similar  to  that  which has evolved in the United  States  will
require the increased development of a domestic source of  energy.   To
preserve   the   quality  of  life  to  which  everyone  aspires  will
necessitate production of that energy in an environmentally acceptable
manner.

     Coal is the most abundant fossil  fuel  resource  in  the   United
States  (Simon  and Malhotra,  1976). Energy from coal will  continue to
be extracted in the "normal" way by direct combustion in steam  boilers
and  generation  of  electricity. However, extensive research is being
done to find efficient methods of producing clean and  easily   handled
gaseous and liquid fuels from ooal. Coal is composed not only of those
elements generally considered to be organic (C,  H,  0,  and   N),  which
are  utilized  in  converting  coal  to  synthetic  fuels,   but it is
extremely  heterogeneous  and  contains  significant   quantities    of
"inorganic"   elements.    These   inorganic  elements  are   associated
primarily with  individual  mineral  phases  in  the  coal.  The  term
"mineral  matter"  is  often  used  to  refer  to  all  the  inorganic
constituents of coal.

     Mineral matter,  including  major,  minor,   and  trace  elements,
composes  a  significant  proportion  of  coal.   It  is  difficult   to
precisely measure the quantity of mineral  matter  in  coal.  For   the
purposes  of  this study the amount of radio-frequency low-temperature
ash produced in a radio-frequency asher at  temperatures below 150°C
(Gluskoter,  1965b;  Rao and Gluskoter, 1973) will  be assumed to equal
Note:  Trace Elements  in Coa.l :  Occurrence and Distribution, Gluskoter et al.,  has
      also been published in 1977 as Circular 1*99 by the Illinois State Geological
      Survey,  Urbana, IL  6l801.

-------
 the mineral  matter  of  the  coal.  In  the ooal  samples  reported   in   this
 study, the mineral  matter  ranges  from 3.8  percent  to 31.7  percent  with
 a mean  value  of   15.3  percent.   Before  the  significance   of   this
 proportion   of  the  coal  can  be  intelligently  assessed,   accurate
 determinations of the  various elements contained in  the  ash   must  be
 made.

     The  Illinois  State  Geological  Survey  has  had  a continuing
 research  effort  on   the  chemistry of coal for nearly seventy years.
 Within the past six years,  efforts  have  been  concentrated  on  the
 analyses  of coal for  trace elements. These efforts  have resulted  in a
 number of publications, including:  Ruch  et  al.,  1971,   1973,  1974;
 Gluskoter and Lindahl, 1973; Gluskoter, 1975; Frost  et al., 1975;  Kuhn
 et al., 1975; and Dreher and Sohleicher, 1975.

     During  the  period   1972-1976,  these  efforts  were   partially
 supported  by  the  U.S.   Environmental Protection Agency. This report
 summarizes all the analytical data 'collected during  the period of  that
 support. In  part, it duplicates material in previous  publications  (for
 example, Ruoh et al.,  1973, 1974).

     The  initial  effort  (Ruch  et  al.,   1973,1974)    involved   a
 comprehensive characterization of 101 coals of the United States, most
 of which were from the Illinois  Basin.  The  initial  study   included
 development  and  refinement  of  specific  chemical  and mineralogical
 methods  of   analysis,    new   methods   for   sample   pretreatment,
 volatilization  studies,   and  more efficient methods for treatment of
 the  data.  The  study  laid  the   foundation  for  many   geochemical
 conclusions, but also  indicated the necessity for  further work.

     The  present  project  is  concerned  with  the  analyses  of  71
additional  U.S.   coals,    more than half of which  are from the eastern
and western coal-producing areas; the remainder are  from the  Illinois
Basin  (fig.  1).  The  study also includes 40 bench samples (vertical
 segments within a coal seam) representing five geologically  different
environments  from  the  Illinois  Basin,  and  32   float-sink samples
 (gravity fraction separations) from five coals that are geographically
widely  separated  and that differ significantly both geologically and
chemically.

     The scope of the work was extended in this study to  include  the
determinations  of  23  additional elements,  many of which had not had
their distributions in coal characterized previously.  These  analyses
were  made  possible  by advances in analytical methods,  especially by
the acquisition of a high-resolution detector for instrumental neutron
activation  analysis   (INAA).   The 71 whole coal samples,  the 40 bench
samples,  and the 32 washed coal samples were  analyzed  for  these  23
additional  elements,  as were twenty-five samples from the Herrin  (No.
6) Coal Member of Illinois, selected  from  the  group  of  101  coals
previously analyzed.

-------
                                                                                            600 MILES
                         EASTERN SAMPLES ^
                                               MID-CONTINENT SAMPLES
                                                              ILLINOIS  BASIN
                                                                 SAMPLES
                                              S,   *•    .   /   t
                                               ^	-s  *    (   ,\
     Anthracite and semianthracite
     Bituminous  (undiff.)

     Low —volatile  bituminous

     Medium-and high —volatile bituminous

     Subbituminous and lignite (undiff.)
113 Lignite
 x  Isolated occurrence of coal of unknown extent
   A— Anthracite      B— Bituminous
   S— Subbituminous  L— Lignite
Fig.  1 - Coal fields  of conterminous United States  showing regional designations used  in the  text.
                                                                                                                     U)

-------
' 58'
''/?/<

90-;
Th;
XXX?
59
Pr

91
Pa
60
Nd

/9^/.
W
'XXX?
61
Pm

93
Np
I* '61 '•
Sm
y//y

94
Pu
/63'
'XXX



64
Gd



'65 /
Tb;

-------
(volatile  matter,  fixed carbon), and ultimate analyses (C, H, N, 0).
In addition, during the project, useful techniques were developed  for
instrumental neutron activation analysis with a Ge(Li) detector (INAA)
and for atomic absorption spectrometry (AA) using a  graphite  furnace
excitation source (see appendix).

     The appendix includes: 1) the  techniques  used  to  prepare  the
samples for chemical analyses; 2) the analytical methods developed for
determination of many of the trace elements in coal; 3)  a  discussion
of the results obtained by two or more analytical methods for the same
element; and 4) summary tables listing the analytical techniques  used
in  the  determination  of  the  elements  reported in the body of the
report.

     The   total   amount   of   data   in   this   report   is   very
large—approximately    20,000   determinations.   Complete   geologic
interpretation of these data is  beyond  the  scope  of  this  report.
However,  some partial statistical analyses of the chemical analytical
data have been completed. For each element  the  data  on  whole  coal
samples   have   been  analyzed  statistically  for  arithmetic  mean,
geometric mean, range, and standard deviation. The data have also been
tested  for  linear  relationships among the elements, and a matrix of
correlation coefficients is presented. Elemental concentrations of the
coals analyzed have been compared to the average concentrations of the
elements in the  earth's  crust  (clarke  values).  Concentrations  of
elements in coals from the eastern and the western coal fields of  the
United States have been compared .to concentrations of  those  elements
in coals of the Illinois Basin. Chemical analytical data determined on
bench samples have been analyzed similarly; the  distribution  of  the
elements  in  individual  benches of a coal are shown as histograms on
which the benches are scaled as to thickness and non-coal partings are
shown.

     An additional set of analytical values was determined on a series
of  "washed"  coal samples. These samples were separated into specific
gravity fractions and each fraction was analyzed for most of the  same
major,  minor,  and trace elements as were the whole coal samples. The
results of the analyses of these samples are of special value for  two
reasons.  First,  the rasults demonstrate which of the elements can be
removed from the coals by specific gravity techniques and  the  amount
of each element that can be so removed. Second, such data can indicate
the mode of ocourrenoe of on element in the coal,  whether  it  is  in
organic  or in inorganic combination and, if in inorganic combination,
can suggest with which group of minerals  it  is  most  likely  to  be
associated.

     A number of tables of data, all of which are computer  generated,
are  included in this report. Table 1 lists all the abbreviations that
were necessarily used in those tables, and thereby appreciably reduces
the number of footnotes needed in the individual tables..

-------
  TABLE 1—-ABBREVIATIONS USED IN TEXT AND TABLES
A             angstrom unit
AA            Atomic absorption
ACS           American Chemical Society
ADL           Air-dry loss
ASTM          American Society for Testing and Materials
B             Bench sample
BCUKA         British Coal Utilization Research Association
Btu           British Thermal Units
C             Column sample
CDC           Composite drill core'sample
CFC           Composite face channel sample
CGB           Composite grab sample
cm            Centimeters
DC            Drill core sample
EPA           United States Environmental Protection  Agency
F             float fraction
PC            Face channel sample
FIXC          Fixed carbon
FS            Float-sink fraction
g             gamma
GB            Grab sample
Ge-Li         Lithium drifted germanium (detector)
HTA           High-temperature ash
hVAB          High volatile A bituminous
HVBB          High volatile B bituminous
HVC8          High volatile C bituminous
in            inch
INAA          Instrumental Neutron Activation  Analysis
ISE           Ion-Selective Electrode
kg            kilogram
LTA           Low-temperature ash
LVB           Low volatile'bituminous
mg            milligram
ml            milliliter
MO IS          Moisture,  as received
MVB           Medium volatile bituminous
NAA           Neutron Activation Analysis
NBS           National Bureau of Standards
OE-DR         Optical Emission-Direct Reading
OE-P          Optical Emission-Photograpnio
ORS           Organic sulfur
ppra           parts per million
PXS           Pyritio Sulfur
RM            Run of mine sample
S             Sink fraction
SBA           Sub-bituminous - A
SBB           Sub-bituminous - B
SBC           Sub-bituminous - C
STD  '         Standard deviation
SUS           Sulfate sulfur
SXRF          Sulfur by X-ray Fluorescence
TOS           Total sulfur
U             mlcro-
USbM          United States Bureau of Mines
USliS          United States Geological Survey
VOL           Volatile matter
W             Washed sample
XHF           X-ray Fluorescence

-------
                    TYPE AND SOURCE'OF COAL SAMPLES

     Chemical analyses of 172 whole coal samples were  made  for  this
study.  One  hundred  thirty-five  of the samples were face-channel or
composite face-channel samples collected, in nearly all cases, in coal
mines by Illinois State Geological Survey personnel. Each face-channel
sample was cut by hand with a pick and represented the full height  of
the coal, excluding only mineral bands, partings, or nodules more than
one centimeter (3/8 in.) thick. This procedure follows a  longstanding
practice  at  the  Illinois  State Geological Survey and is based on a
technique described by Holmes (1911) in which  mineral  bands  greater
than  three-eighths inch (1  cm) in thickness were excluded. Generally,
three face-channel samples were collected in each mine,  but  in  some
mines  less  were  collected  because  of  local  conditions. The face
channel samples were crushed to  pass  a  one-eighth  inch  (0.32  cm)
screen,  combined  into  a  composite  sample, and then riffled to the
desired quantity.

     The coal sample was  comminuted  further  to  20 mesh  (740  urn),
*40 mesh  (420 ym),  60  mesh  (250 pm), 100 mesh (149pm), or finer,
depending on the analytical  technique to be applied. In all cases, the
sample was subdivided into aliquots by riffle-type sample splitters or
by quartering the sample. The parts are considered  representative  of
the original coal sample. Those samples ground between 20 mesh and 100
mesh were ground with a Pitchford Selective Particle Size Grinder. The
grinder  employed  a reciprocating cylinder that was filled with steel
balls and was continuously flushed with compressed air. Finer particle
sizes  were obtained by various other mechanical and hand methods (see
appendix).

     Table 2 is an index of  all the whole coal samples  reported  upon
in  this  study.  For each coal the analysis number ("C" number), state
or origin,  bed name or other descriptive term, rank of the  coal,  and
sample  type are listed. We  recognize the difficulty in analyzing data
from coal samples of  different  types.  Therefore,  ail  samples  are
treated  in  as  similar a manner as possible. For example, drill core
samples (DC) were carefully  described  and mineral bands  or  partings
over  one centimeter thick were excluded, following the same procedure
as for face-channel samples  (FC and CFC). Run of mine samples (RM),   a
few  samples  of washed coals (W), and a few face channel samples were
provided by coal companies and by state and federal agencies.  We  are
grateful for the assistance  of those companies and agencies and assume
that the samples are representative of the coal produced at the  mines
that were sampled.

     The coal analysis number, the letter "C" followed by five digits,
is  the  single  unique  number  assigned to a sample that has had any
chemical analysis. It is the basis on which the samples are ordered in
the  data  tables,  thus  it will be necessary to refer to table 2 for
identification of those samples.

-------
TABLE 2—IDENTIFICATION OF WHOLE COAL SAMPLES ANALYZED
ANALYSIS
NUMBER
C12059
C12495
C12831
C129*2
C13039
C13016
C13324
C13133
C13464
C13B5*
C13975
C13983
C 13895
Cl*19*
C1*57*
C14609
C1*613
C 1*630
C1«6*6
C1U650
C11664
C14721
C1*735
C1*774
C1*796
C 1*970
C14962
C15012
C 15038
C15079
C151'7
C15125
C15208
C15231
C15263
C15273
C15331
C1538*
C15418
CIS* 32
C15*36
C15**8
C15*56
STATE
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
INDIANA
INDIANA
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
INDIANA /
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ORIGIN
HERRIN (NO. 6)
HARRISBURG (NO. 5)
HERRIN (NO. 6)
HERRIN (NO. 6)
SEELYVILLE (III)
SPRINGFIELD (V)
HERRIN (NO. 6)
HERRIN (NO. 6)
HERRIN (NO. 6)
REYNOLDSBURG
HERRIN (NO. 6)
HARRISBURG (NO. 5)
HERRIN (NO. 6)
HARBLSBURG (NO. 5)
HERRIN (NO. 6)
HARRISBURG (NO. 5)
HERRIN (NO. 6)
HERRIN (NO. 6)
COLCHESTER (NO. 2)
COLCHESTER (NO. 2)
KERHIK (NO. 6)
HERRIN (NO. 6)
HARRISBURG (NO. 5)
HAHHISBIHC (NO. 5)
hARRISBURG (NO. 5)
HERRIN (NO. 6)
HERRIN (NO. 6)
HARRISBURG (NO. 5)
HERRIN (NO. 6)
' HERRIN (NO. 6)
HERRIN (NO. 6)
HARRISBURG (NO. 5)
HARRISBURG (NO. 5)
HERRIN (NO. 6)
COLCHESTER (NO. 2)
DANVILLE (NO. 7)
SUMMUM (NO. 4)
HARRISBURG (NO. 5)
DANVILLE (VII)
HERRIN (NO. 6)
HERRIN (NO. 6)
HARRISBURG (NO. 5)
HERRIN (NO. 6)
RANK
(ASTM)
HVCB
HVCB
HVBB
HVCB
HVBB
HVBB
HVAB
HVBB
HVCB
HVAB
HVBB
HVCB
HVCB
HVAB
HVCB
HVBB
HVCB
HVCB
HVCB
HVCB
HVBb
HVCB
HVBB
HVBB
HVBB
HVCB
HVCB
HVBB
HVBB
HVCB
HVCB
HVCB
HVCB
HVCB
HVCB
HVCB
HVAB
HVCB
HVCB
HVCB
HVCB
HVBB
HVCB
SAMPLE
TYPE
CFC
CFC
CFC
FC
CFC
CFC
DC
DC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
FC
CFC
CFC
CFC
CFC
ANALYSIS
NUMBER
C 15*96
C15566
C15678
C15717
C15791
C 15061)
C15872
C15943
C15944
C 15999
C16030
C16139
C16264
C 16265
C16317
C 16*08
C16501
C16543
C16564
C16729
C16741
C16787
C16919
C16993
C17001
C17016
C17045
C17046
C170»7
C17053
C17054
C17089
C17092
C17095
C17096
C17097
C17098
C17099
C17215
C17243
C17244
CV7245
C17246
STATE
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS '
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ARIZONA
MONTANA
MONTANA
ILLINOIS
COLORADO
ILLINOIS
OHIO
Ohio
UTAH
COLORADO
PENNSYLVANIA
PENNSYLVANIA
ILLINOIS
OHIO
OHIO
OHIO
h. VIRGINIA
ORIGIN
SUMMUM (NO. 14)
COLCHESTER (NO. 2)
ROCK ISLAND (NO. 1 )
UERRIN (NO. 6)
HERRIN (N0.6)
HERKIN (NO. 6)
HERRIN (N0.6)
DAVIS
DEKOVEN
HEhRlN (N0.6)
UERRIN (N0.6)
HERRIN (N0.6)
HARRISBURG (NO. 5)
HERRIN (NO. 6)
HERRI* (N0.6)
CHAPEL (NO. 8)
HERRIN (NO. 6)
HERRIN (N0.6)
sumuM (NO.*)
UARRISBURG (NO. 5)
HERRIN (N0.6)
ABBOTT FORMATION
NEW BURNSIDE
HBRRIN (N0.6)
HARRISBURO (MO. 5)
HERRIN (NO. 6)
BLACK MESA FIELD
ROSEBUD SEAM
MCKAY SEAM
DANVILLE (NO. 7)
NUCLA SEAM
REYNOLDSBURG
MIDDLE GTTAJOilNG
PITTSBURG 8
WASATCH PLATEAU
MADGE
LOWER KITTANNING
PITTSBURG 8
OPDYKE
ME1GS CREEK
LOWER FREEPORT
PITTSBURG 8
HERNS HAW
RANK
(ASTO)
HVCB
HVCB
HVCB
HVCB
HVBB
HVBB
HVCB
HVAB
HVAB
HVbB
hVAB
HVCB
HVCB
HVCB
HVCB
HVAB
HVBB
HVCB
HVCB
HVBB
HVCB
HVBB
HVBB
HVBB
HVBB
HVCB
HVCB
SBC
SBC
HVCB
HVCB
HVBB
HVCB
HVCB
HVCB
HVCB
HVBB
HVBB
HVCB
HVCB
HVBB
HVCB
HVBB
SAMPLE
TYPE
CFC
CFC
CFC
CFC
CFC
CFC
CFC
DC
DC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
C
CFC
C
RM
RM
RM
CFC
RH
CFC
RM
RM
RM
RM
RM
RM
CFC
RM
RM
W
W

-------
ANALYSIS
NUMBER
C 17276
C17279
C17303
C17304
C17305
C17307
C17309
C17601
C17721
C17970
C17984
C17968
C18009
C18040
C18044
C18304
C18320
C18349
C18350
C18351
C18355
C 18368
C183&9
C18392
C18395
C18398
c 10101
C1b404
C1«407
C18408
cib4u
C16415
C18419
C18421
C18433
C16436
C18437
C18440
C18441
C18444
C18445
C18446
C18449
STATE
ILLINOIS
ILLINOIS
PENNSYLVANIA
INDIANA
KENTUCKY
MISSOURI
ARIZONA
ILLIKOIS
ILLINOIS
NBS 1631
ILLINOIS
ILLINOIS
NBS 1630
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
KENTUCKY
KENTUCKY
KENTUCKY
KENTUCKY
KENTUCKY
KENTUCKY
KENTUCKY
KENTUCKY
KENTUCKY
KENTUCKY
KENTUCKY
ILLINOIS
N. DAKOTA
N. DAKOTA
N. DAKOTA
N. DAKOTA
N. DAKOTA
MONTANA
MONTANA
MONTANA
MONTANA
ORIGIN
HERRIN (NO. 6)
HERKIN (NO. 6)
PITTSBURG 8
SEELYVILLE (III)
9
USBM MIXED COAL
BLACK MESA FIELD
DAVIS
SPRINGFIELD (NO. 5)
NAT. BUREAU STAN.
SPRINGFIELD (NO.S)
SPRINGFIELD (NO.S)
•AT. BUREAU STAN.
SPRINGFIELD (NO. 5)
HERRIH (NO. 6)
DEKOVEH
HERRIK (NO. 6)
DEKOVEN
DEKOVBN
DAVIS
NEW BURNSIDE
HERRIN (NO. 6)
11
9
9
11
12
9
11
12
9
11
12
DANVILLE (N0.7)
FT. UNION FORMATION
FT. UNION FORMATION
FT. UNION FORMATION
FT. UNION FORMATION
FT. UNION FORMATION
FT. UNION FORMATION
FT. UNION FORMATION
POWDER RIVER BASIN
POWDER RIVER BASIN
RANK
(ASTM)
HVCB
HVCB
HVCB
HVCB
HVCB

HVCB
HVAB
HVCB

HVBB
HVBB

HVCB
HVCB
HVAB
HVBB
HVAB
HVAB
HVAB
HVAB
HVCB
HVCB
HVCb
hVBB
HVCB
HVCB
HVBb
HVBB
HVCB
HVCB
HVBB
HVBB
HVCB
LIGNITE
LIGNITE
LIGNITE
LIGNITE
LIGNITE
LIGKITE
SBB
SBC
SBB
SAMPLE
TYPE
CFC
FC
H
W
RM
W
RM
CFC
CFC
NBS
CFC
CFC
NBS
CFC
CFC
CFC
CFC
FC
FC
FC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
FC
CFC
CFC
CFC
CDC
CFC
CFC
FC
FC
FC
CFC
FC
FC
CPC
ANALYSIS
NUMBER
C 18450
C18451
C16454
C18457
C18458
C18462
C18463
C18464
C18465
C1B493
C18560
C18572
C18573
C18571
C18581 -
C18590
C1B594
C18684
C18685
C18689
C18693
C18697
C18701
C1B816
C18820
C 1882 4
C18825
C18829
C18830
C18831
C18832
ClbU33
C1b837
C188D1
C18844
C18848
C18849
C18853
C18657
C1B992
C18993
C19000
STATE
WYOMING
WYOMING
WYOMING
WYOMING
WYOMING
WYOMING
WYOMING
WYOMING
WYOMING
ILLINOIS
ILLINOIS
IOWA
IOWA
IOWA
ILLIBOIS
KENTUCKY
KEMTUCKY
INDIANA
INDIANA
INDIANA
INDIANA
INDIANA
INDIANA
MONTANA
W. VIRGINIA
ALABAMA
ALABAMA
ALABAMA
TENNESSEE
TENNESSEE
TENNESSEE
TENNESSEE
KENTUCKY
W. VIRGINIA
PENNSYLVANIA
ALABAMA
ALABAMA
W. VIRGINIA
ILLINOIS
ARIZONA
ARIZONA
ARIZONA
ORIGIN
POWDER RIVER BASIN
POWDER RIVER BASIN
GREEN RIVER BASIN
UANNA BASIN
HAHNA BASIN
HAHNA BASIN
BANNA BASIN
GREEN RIVER BASIN
GREEN RIVER BASIN
HERRIN (N0.6)
HERRIN (NO. 6)
CHEROKEE GROUP
CHEROKEE GROUP
CHEROKEE GROUP
CASEYV1LLE FM
9
9
HYMERA (VI)
DANVILLE (VII)
SPRINGFIELD (V)
SPRINGFIELD (V)
SPRINGFIELD (V)
SPRUSCFIELD (V)
BULL MOUNTAIN FIELD
POCOHONTAS HO. 4
JOHNSON SEAM
CLEMENTS SEAM
CLEMENTS SEAM
PEEWEE SEAM
RED ASH COAL
RED ASH COAL
FROZEN HEAD COAL
WINIPREDE COAL
PITTSBURGH 16
PITTSBURGH 18
BLUE CREEK SEAM
MARY LEE SEAM
PITTSBURGH »8
HERRIN (N0.6)
BLACK MESA FIELD
BLACK MESA FIELD
BLACK MESA FIELD
RANK
(ASTM)
SBC
SBB
SBC
SBB
HVCB
SBA
SBA
SBb
SBC
HVCB
HVCB
HVCB
HVCB
HVCB
HVAB
HVBB
HVBB
HVBB
HVBB
HVBB
HVBB
HVBB
HVBB
SBA
LVB
MVB
MVB
HVAB
HVAB
HVAB
HVAB
HVAB
HVAB
HVAB
HVAB
MVB
MVB
HVAB
HVBB
HVBB
HVBB
HVBB
SAMPLE
TYPE
FC
CB
CFC
CGB
FC
CFC
GB
FC
GB
CDC
C
CFC
FC
GB
FC
RM
CFC
CFC
FC
CFC
CFC
CFC
CFC
CFC.
CFC
CFC
FC
CFC
FC
B
B
FC
CFC
CFC
CFC
CFC
FC
CFC
FC
FC
FC
CFC
\0

-------
10

                     ANALYSES OF WHOLE COAL SAMPLES



 Analytical Data:
      The results of the chemical analyses of the  172 coal samples  are
 given  in tables 3 through 7. All analyses in this report are given on
 the "whole coal" basis and not as a percentage of ash. Table  3  lists
 the  results  of  the  analyses for 45 trace elements, all reported in
 parts per million (ppm). Table 1 shows the determinations of the major
 and  minor  elements  on  the same coals, reported in percent (%). The
 standard coal analyses (%), proximate (51), ultimate (50,  and  heating
 value  (btu/lb),  are  given  in  tables 5 and 6. In addition, table 6
 contains   the   low-temperature   ash   values   as   well   as   the
 high-temperature  ash  values  for each coal,? reported in percent ($).
 Table 7 contains the results of the analyses for varieties  of  sulfur
 and  two  total sulfur determinations, one by the standard ASTM method
 and the other by X-ray fluorescence spectroscopy.  Analytical  methods
 used  in  determining  the  reported  values are given in the Appendix
 (table J).

 Statistical Analyses of Data:
      Analytical data from the  whole  coal  samples  were  grouped  by
 geographic origin of the samples (fig. 1). There were 114 samples from
 the Illinois Basin, 29 samples from the western coal-producing  areas,
 and  23  samples  from eastern United States (Appalachian coals). This
 total of 166 samples is six less than the number reported in tables  3
 through 7.  Two National Bureau of Standards (NBS) samples were omitted
 from the compilations, as were three samples from Iowa,  and one sample
 from  Missouri (western interior region). These last four were omitted
 because they do not  by  themselves  constitute  a  valid  statistical
 sampling  of  the  Western  Interior  Basin.  Recent publications that
 include many more data on coals from the western interior  region  are
 by  Swanson  et  al.,   1976;   Hatch, Avcln, Wedge and Brady, 1976; and
 Wedge et al.,  1976.

                          (Text continued on page 38)

-------
                                                     11
     Tables 3, **, 5, 6, and 7 follow on
pages 12 through 37. Samples are listed
by sample number (for example, C15^96).
Identification of  samples may be  made
by referring to table 2 on pages 8  and
9.    Table 1 on page 6 lists abbrevia-
tions used in the tables.

-------
                 TABLE 3—TRACE ELEMENTS  IN WHOLE COAL SAMPLES
              (parts per million, moisture-free, whole coal "basis)
SAMPLE
        AC
                           BA
C 12059
C12495
C12831
C12942
C 13039
C 13046
C13324
C13433
C 13464
C 13854
C 13895
C13975
C13963
C14194
C 14574
C 14609
C14613
C 14630
C 14646
C 14650
C 14684
C14721
C14735
C14774
C 14796
C 14838
C 14970
C 14962
C15012
C 15038
C15079
C15117
C15125
C 15208
C15231
C15263
C15278
C15331
C 15384
C15418
C15432
C 154 36
C15448
C15456








0.04

0.02
0.03


0.03


0.02


0.02























                                 BE
                                       Bft
                                              CD
                                                    CE
                                                          CO
                                                                 CR
                                                                       CS
                                                                              CU
8.6
5.5
4.2
4.2
3.0
8.0
8.1
6.5
4.0
4.0
1.9
6.2
3.3
9.1
3.2
56
4.0
1.0
5.7
66
4.1
4.6
7.3
4.5
28
4.0
2.1
2.3
32
5.9
1.3
3-1
1.2
17
2.3
73
5.6
19
7.4
2.3
5.1
3-2
4.1
2.2

160
110
100
110
160
65
93
110

130
120
120
15

58
140
66
130

82
120
70
110
18
200
190
160
79
120
170
160
220
130
180


43
10
180


170
160








260

5.0
52


75


33


41









76
70
230

97





230
39

86
2.3
1.1
1.4
0.80
2.4
1.8
0.90
0.80
1.8
0.70
1.5
1.2
1.2
1.1
2.2
0.90
0.80
1.2
2.7
2.1
0.80
1.4
.2
.8
.2
.1
.6
.0
.3
1.0
1.8
3.9
.6
.1
0.80
3.0
.5
.1
.2
2.3
2.5
1.8
1.6
1.4
17
12
17
11
11
11
14
20
17
19
16
11
16
15
10
17
16
22
12
9.0
21
17
33
11
22
13
16
11
16
12
9.5
6.0
10
11
12
13
13
11
11
19
15
16
12
13
20
<0.60
<0.40
<0.50
<0.40
<0.40
1.1
0.30
24
<0.10
9.0
.11
0.50
1.6
14
<0.30
2.1
14
<0.50
8.7
0.18 12
1.8
0.80
7.2
<0.40
<0.40
<0.40
C0.40
1.0
0.80
17
2.4 12
5.0
<0.50
8.0
3.8
<0.30
0.70
<0.40
<0.30
7.8
7.5
1.0
0.42 15
10
2.0
4.0
5.0
5.0
10
6.0
6.0
7.0
18
2.5
5.0
5.0
6.0
3.0
9.0
15
8.0
9.0
28
4.0
9.0
6.0
3.0
4.0
7.0
7.0
5.0
13
11
7.0
8.0
2.0
5.0
3.0
11
5.0
9.0
8.0
22
6.0
3.0
6.0
4.0
21
8.0
7.0
16
14
7.0
12
12
60
11
15
27
12
14
13
9.0
14
13
10
6.0
12
16
26
8.0
20
12
10
9.0
9.0
12
33
19
18
11
15
7.0
9.0
14
14
14
15
35
10
20
26
12
6.0
14
16
12
10
10
1.5 10
5.0
1.0 12
1.0 14
9.0
9.0
0.70 12
12
16
0.80 11
30
28
1.0 8.0
10
9.0
8.0
33
10
13
9.0
10
12
1.4 22
0.70 17
0.50 8.0
10
0.80 12
44
8.0
20
10
13
0.60 14
0.90 18
12
1.4 11

-------
                                           TABLE  3—Continued
SAMPLE
          AC
                   AS
                                    BA
                                            BE
                                                     BH
                                                             CD
                                                                      CE
                                                                              CO
                                                                                       CR
                                                                                               CS
                                                                                                        CU
C15496
C15566
C15678
C15717
C15791
C15868
C15872
C15943
C15944
C15999
C16030
C16139
C16264
C16265
C16317
C1W06
C16501
C16543
C16564
C16729
C16741
C16787
C16919
C16993
C17001
C17016
C17015
C17046
C17047
C17053
C17054
C17089
C17092
C17095
C17096
C17097
C1709B
C17099
C17215
C17243
C17244
C17245
C17246
15
93
 7.5
 1.9
30
 1.5
 1.1
 3.4
37
 3.1
 5.5
 4.5
 9.6
10
27
57
 8.7
 8.2
 5.5
32
 4.3
20
17
 8.0
 9.4
 3.3
 1.2
 1.2
 2.5
 5.8
 0.70
22
14
 6.7
 0.50
 0.50
27
19
20
13
25
35
 5.1
130
120
140
160
 91
100
170
 33
 38
 82
 34
150
140

100
 «9
110

140
 75
130
 12
 31
 81
 37
200
 30
 92
 84
150
 39
 37
 83
 45

140
  9.0
 38
130
 78
 59
 68
  9.0



88

67
50


200
110
120


80


750


69


48

48
















3.2
2.5
.9
.2
.4
.0
.7
3.4
4.0
1.5
2.7
1.0
3.0
2.7
2.8
0.90
0.70
2.4
2.6
.0
.1
.8
.2
.3
.6
.2
.60
.0
.1
.5
.4
0.50
1.5
0.90
0.40
0.80
1.1
0.60
4.0
1.4
1.6
1.4
2.6
16
10
11
22
20
31
18
18
17
11
17
10
14
52
15
11
15
9.0
23
14
9.0
22
19
17
16
9.0
7.0
20
25
13
10
12
8.0
12
23
19
13
17
13
11
17
14
26
22
0.90
0.40
8.7
<0.30
11
9.0
<0.30
0.40
18
15
7.6
2.7
<0.40
13
<0.40
<0.40
65 8.6
9.2
<0.40
1.1
<0. 30
<0.30
11
1.3
O.J6 7.4
<0.60
<0.40
<0.40
<0.40
<0.40
<0.20
<0.60
<0.50
<0.20
<0.40
<0.50
<0.40
<0.60
<0.60
<0.40
<0.40
<0.20
4.0
3«
11
4.0
10
8.0
11
6.0
14
8.0
12
5.0
2.0
15
8.0
17
9.0
8.0
5.0
10
5.0
18
20
5.0
8.0
3.0
2.0
2.0
2.0
4.0
2.0
4.0
5.0
8.0
1.0
2.0
7.0
10
7.0
20
33
28
16
9.0
4.0
6.0
27
25
12
19
8.0
13
18
25
24
16
20
26
7.0
10
18
9.0
12
20
16
16
16
30
12
8.0
5.0
7.0
12
6.0
12
14
16
7.0
5.0
18
11
13
16
23
10
12
12
26
11
1.0 10
14
0.70 13
1.2 18
12
26
1.2 15
1.1 18
0.80 14
10
14
1.0 20
16
12
1.0 16
10
9.0
0.60 16
27
19
0.90 12
8.0
1.1 12
12
18
15
8.0
16
6.0
22
12
11
10
26
15
14
20
28
12
26
    NOTE:   Samples  listed by  sample number (C-number).
            cation  of samples.
                                                Refer to table  2 for Identlfi-

-------
                                    TABLE  3—Continued
SAMPLE
         AC
                AS
                              BA
                                     BE
                                            BR
                                                   CD
                                                          CE
                                                                 CO
                                                                         CR
                                                                                CS
                                                                                       CD
C 17278
C17279
C17303
C17304
C17305
C 17307
C17309
C17601
C17721
C17970
C17984
C17988
C 10009
C 15040
C 18044
C 18304
C18320
C18349
C18350
C18351
C16355
C1&368
C18389
C1&392
C1b395
C1t)39tt
cibioi
C1B404
C 18107
C 18108
C1B411
C18415
C18419
C18421
C18433
C18436
C18137
C18440
C 18111
C18411
C 18445
C18446
C1d119





0.08
0.06
0.03
0.04
0.02
0.02
0.02
0.02
0.04
0.02
0.02
0.04
0.02
0.02
0.06
0.02
0.02
0.03
0.04
0.03
0.07
0.04
0.02
0.04
0.03
0.02
0.02
0.01
2.3
3-0
6.7
4.8
9.3
1.3
5.0
66
5.7
61
47
19
3-6
4.6
5-4
2.0
7.8
6.8
3.4
63
2.7
i.b
3-0
4.3
11
57
14
3.1
4.5
15
4.5
3.9
11
2.7
9.6
9.8
1.8
2.5
2.5
0.77
0.31
1.0
5.0
130
60
66
17
33
110
13
60
63
5.0
130
150
68
230
88
68
55
51
210
120
110
110
120
110
110
150
84
99
110
96
150
100
78
73
41
100
61
91
23
32
100




41
110
43
43
21
70
76
73
80
66
17
350
50
do
160
80
53
110
130
940
500
460
500
910
1600
500
: 650
600
1.1
1.1
1.3
3.4
2.6
1.2
0.20
1.4
2.4
1.7
1.4
0.90
1.0
0.80
1.0
2.2
1.1
3-8
1.3
1.4
3-0
1.0
1.8
1.6
1.4
1.4
2.4
0.85
2.6
1.2
1.8
2.9
1.3
1.8
0.22
0.55
0.70
0.55
0.12
0.18
0.20
<0. 10
<0.10
13
9-0
23
. 13
11
7.0
1.0
14
18
20
18
17
29
12
13
16
13
10
10
6.5
14
1.8
1.9
2.1
0.80
1.0
1.3
2.0
5.0
1.8
2.7
0.63
0.60
8.3
1.5
1.7
1.9
1.0
1.8
1.7
1.6
1.4
0.90
0.60
<0.20
0.70
0.90
11
<0.20
5.0
0.60
<0.40
1.5
1.2
<0.20
1.4
1.5
<0.40
0.30
9.3
<0.10
4.4
0.80
0.30
<0.30
<0.30
<0.30
<0.10
<0.30
0.20
<0.10
0.70
0.30
<0.10
<0.20
0.20
<0.10
<0. 10
<0.10
<0. 10
<0.10
<0.10
<0.10
<0.20
<0.10
10




13
23
13
12
23
8.0
27
13
10
15
16
23
12
20
25
13
16
30
24
9.7
3.3
4.9
8.5
5.9
11
12
7.2
2.8
5.0
4.0
12
12
17
43
7.0
16
6.0
11
9.0
9.0
6.0
4.0
8.0
3-8
3.8
5.1
2.5
2.8
9.1
3.1
3.6
2.4
2.3
4.0
7.4
2.0
3.5
5.0
2.2
5.1
4.4
3-4
0.90
1.1
1.0
0.80
0.80
1.0
0.80
0.80
0.71
10
29
18
30
16
22
5.0
12
12
22
10
10
8.0
8.0
13
20
46
12
20
16
22
24
20
16
17
25
27
29
22
48
19
27
52
32
8.0
17
13
6.0
12
6.0
7.0
7.0
7.0
1.2




1.0
2.2
1.5
0.80
1.7
0.90
3.6
1.6
1.1
1.5
1.7
2.4
1.8
• 1.8
3.4
1.3
2.0
2.3
3.2
0.02
0.09
0.30
0.06
0.10
0.03
0.06
0.07
0.14
13
13
11
30
16
61
22
11
14
23
11
10
16
7.0
10
23
8.4
21
23
27
13
12
11
7.0
6.1
11
16
20
7.8
13
6.1
14
10
11
3.7
5.4
4.8
3.1
6.1
3.6
5.9
9.1
10

-------
                                    TABLE  3—Continued
SAMPLE
                              BA
                                     BE
                                            Bfl
                                                   CD
                                                          CE
                                                                 CO
                                                                        CR
                                                                               CS
                                                                                       CU
C 18450
C18451
C 18454
C18457
Clb45B
C 18*62
Cl64b3
C1b464
C10465
C 18*93
C 18560
C18572
C18573
C 18571
C18581
C 18590
C18594
C18664
C 18685
C 18689
C18693
C 18697
C18701
C18B16
C 18820
C 18821
C 16825
C 18829
C 18830
C18831
C18632
C18833
C1bb37
C1bB4l
Clbbll
C 18848
C1b8<9
C18853
C18b57
C 18992
C18993
c 19000
0.03
0.03
0.05
0.01
0.02
0.01
0.04
0.03
0.02
0.03
0.03
0.04
0.06
0.04
0.08
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.06
0.02
0.02
0.02

0.01
0.02
0.04
0.03
0.01
0.02
0.02
0.02
0.01
0.01
0.01
0.82
1.4
0.40
1.2
1.7
3-9
7.2
1.7
1.5
32
3.1
4.6
43
19
120
8.1
8.4
15
34
11
7.0
6.1
6.1
5.3
15
22
100
46
17
12
42
2.7
55
3.2
15
1.6
95
2.5
2.3
1.0
0.50
1.0
28
35

16
18
49
25
74
6b
230
200
110
130
110
13
150
140
180

140
130
120
130
66
12
5.0
6.0
41
57
70
44
38
13
120
48
15
13
97

35
58
37
360
480
460
460
220
430
370
160
160
110
54
95
92
130
140
81
130
61
34
34
55
48
63
460
220
180
220
400
130
420
130
180
170
72
87
230
260
93
61
270
220
270
0.15
0.14
0.27
0.31
0.13
0.30
0.36
0.34
0.09
2.2
1.4
2.9
2.4
1.6
2.0
0.65
0.70
2.5
1.8
1.4
2.1
2.3
3.7
0.49
0.88
1.7
1.8
1.4
0.73
2.0
1.6
1.8
1.8
0.66
0.58
0.68
1.2
0.23
1.0
0.56
0.79
0.39
1.7
1.5
1.2
0.90
0.70
1.2
0.50
2.5
2.0
7.0
3.5
2.6
3.3
3.2
27
13
9.6
2.7
3.7
2.4
2.1
2.5
3.2
0.52
22
1.7
7.5
1.4
10
19
24
13
0.71
10
18
2.5
2.1
13
5.1
0.70
1.0
0.90
<0.10
<0.10
<0.10
<0.10
<0.10
<0. 10
<0.20
<0.20
<0.10
0.40
<0.10
<0.10
0.80
3.4
<0.30
<0.30
<0.10
<0.20
0.70
<0.10
<0.10
0.20
0.60
<0.20
<0.10
<0.20
<0. 10
<0.10
<0.10
<0.10
<0.10
<0.20
<0.10
<0. 10
<0.10
<0. 10
<0.20
<0.10
0.20
<0.10
<0.10
<0.10
14
6.5
8.6
4.6
20
30
25
19
21
16
25
12
21
15
46
to
10
9.0
».9
6.4
10
8.2
10
13
33
25
26
29
19
27
16
32
27
15
11
30
42
11
7.9
9.1
3.2
6.0
1.8
1.4
1.3
0.60
1.2
2.8
3.1
2.0
6.5
6.8
5.5
6.2
13
3.7
8.7
2.8
2.1
5.9
3.6
3.0
3.0
1.7
3.7
2.1
7.0
6.8
8.5
9.5
5.8
10
».9
7.8
3.5
3.3
1.9
9.4
6.4
1.5
3.0
2.6
0.71
0.85
11
9-0
9.0
6.0
14
20
15
15
12
20
21
26
40
30
42
20
25
20
10
14
23
18
19
10
17
16
24
21
14
12
90
22
22
15
15
21
31
11
19
7.0
2.4
3.5 .
0.05
0.20
0.08
0.16
0.80
0.20
3.8
O.bO
1.2
0.90
2.0
0.80
0.90
0.70
3.6
1.2
0.80
1.7
0.70
0.90
1.4
1.3
1.3
0.30
1.9
1.2
5.0
2.6
1.3
' 0.40
1.4
2.1
1.7
1.0
0.90
2.3
6.2
0.68
1.6
0.70
0.04
0.11
12
10
9-2
3.2
6.1
23
18
16
7.9
20
13
8.1
39
12
27
6.6
5.2
15
21
9.5
12
13
14
19
20
30
27
27
12
20
12
13
20
5.1
15
12
23
5.5
8.1
7.3
3-1
4.7
  NOTE:  Samples listed by sample  number (C-number).
         cation of samples.
Refer to table 2 for identlfi-

-------
TABLE 3—Continued
SAMPLE
C 12059
C12495
C12831
C12942
C 13039
C 13046
C 13324
C13433
C 13*64
C 13854
C 13895
C 13975
C13983
C14194
C14574
C14609
C14613
C 14630
C14646
C 14650
C 14684
C14721
C14735
C14774
C 14796
C 14838
C 14970
C 14982
C15012
C 15030
C15079
C15117
C15125
C 15208
C15231
C15263
C15278
C15331
C15384
C15418
C15432
C15436
C1544B
C 15456
DI EU








0.90 0.30

1.0 0.30
1.0 0.20


1.3 0.30


1.1 0.30


0.80 0.20









1.2 0.20
1.5 0.30
0.50 0.10

1.0 0.20





0.70 0.20
0.90 0.20

1.1 0.20
F
51
42
51
52
140
37
44
75
59
52
69
51
52
58
42
70
51
52
55
33
63
60
52
42
110
47
44
54
56
68
58
51
54
52
76
41
60
49
55
46
58
51
140
100
GA
3-6
1.9
4.5
1.9
3.9
1.7
2.4
1.6
2.9
2.7
3.2
3.0
2.2
1.8
2.8
2.3
2.8
2.6
4.8
2.3
2.5
3.5
1.7
2.2
6.0
3.5
3.7
2.6
2.4
2.5
3.7
4.4
2.0
2.0
3.4
3.5
2.4
2.6
3.0
4.1
2.8
2.4
2.9
3.4
CE
9.0
9.0
6.0
<1.0
6.0
10
5.0
3.0
<1.0
4.0
4.0
4.0
5.0
7.0
11
6.0
2.0
2.0
14
22
<1.0
3.0
6.0
12
3.0
6.0
<1.0
2.0
5.0
1.0
14
12
18
<1.0
4.0
22
9.0
9.0
5.0
11
12
7.0
U.O
1.0
HF








0.60

0.50
0.40


0.30


0.50


0.50









0.80
0.40
0.30

0.40





0.30
0.20

0.60
t
KG I IH LA
0.52
0.09
0.23
0.12
0.06
0.27
0.31
0.22
0.21 <1.0 <0. 10 8.2
0.60
0.17 3.3 0.17 7.0
0.08 1.1 0.10 8.1
0.04
0.13
0.22 1.4 <0.10 11
0.12
0.18
0.09 2.2 0.18 6.7
0.27
0.16
0.18 2.8 0.20 7.5
0.32
0.22
0.28
0.38
0.22
0.14
0.19
0.10
0.11
0.35 3.0 0.18 8.8
0.32 1.2 0.20 9.1
0.21 <1.0 <0.20 3.3
0.10
0.19 1.9 0.22 5.3
0.22
0.39
0.19
0.16
1.6
0.10 <1.0 <0.10 6.4
0.21 1.5 0.14 4.3
0.07
0.09 0.5" 0.17 6.0
LU








0.10

0.08
0.06


0.06


0.07


0.05









0.10
0.09
0.06

0.06





0.07
0.04

0.09
f
HN
87
86
28
53
32
46
19
23
68
6.0
57
53
26
160
17
52
26
25
«2
18
32
65
22
100
43
HO
72
41
83
42
81
91
170
180
45
12
78
28
62
11
160
22
32
25
                                                                ON

-------
                                    TABLE 3—Continued
SAMPLE
                EU
                              GA
                                     CE
                                            HF
                                                   HC
                                                                  IN
                                                                         LA
                                                                                LU
                                                                                       KM
C 15496
C 15566
C 15678
C15717 1.0
C15791
C 15868 1.1
C15672 1.1
C 159*3
C 15944
C15999 1.2
C 16030 1.8
C16139 0.70
C16264
C 16265
C16317 1.1
C 16*08
C16501
C165*3 0.80
C 16564
C 16729
C167*1 0.90
C16767
C 169 19
C16993 1.3
C17001
C17016 0.90
C 170*5
C 170*6
C 170*7
C17053
C1705*
C 17089
C 17092
C 17095
C 17096
C 17097
C1709U
C 17099
C17215
C172*3
C 172*4
C 172*5
C172*6
*3
46
30
0.20 96
58
0.20 6*
0.20 50
51
60
O.*0 bl
0.10 58
0.20 *5
69
42
0.20 52
83
54
0.20 46
39
48
0.20 44
145
55
0.30 61
44
0.20 68
78
42
52
41
63
61
130
90
50
110
72
67
40
71
88
51
50
2.6
7.5
1.7
2.4
2.8
2.8
3.5
2.8
3.6
3-5
4.3
3-6
4.3
4.1
4.2
2.7
3.1
3.8
2.6
2.6
3.3
3.6
2.9
3.7
2.0
3.6
4.4
3.5
3.4
2.4
2.4
3.7
4.4
3.2
1.6
3.7
5.5
2.9
5.2
3.6
3.9
3-0
4.6
28
43
10
1.0
5.0
2.0
13
6.0
6.0
2.0
7.0
4.0
15
26
12
2.0
<1.0
14
20
6.0
6.0
3.0
5.0
<1.0
8.0
7.0
2.0
3.0
2.0
10
2.0
1.0
6.0
0.0
1.0
3-0
<1.0
1.0
11
4.0
<1.0
5.0
2.0
0.12
0.49
0.10
0.40 0.08 2.2 0.14 4.6
0.12
0.30 0.08 3.5 0.09 6.1
0.60 0.23 1.2 0.11 5.4
0.05
0.37
0.50 0.14 2.1 <0.10 12
0.40 0.14 3.3 0.23 9.5
0.30 0.10 <1.0 0.07 6.0
0.24
0.17
0.60 0.10 2.7 0.04 5.0
0.30
0.12
0.50 0.41 <1.0 0.03 6.1
0.12
0.07
0.30 0.15 5.8 0.18 6.1
0.22
0.16
0.40 0.15 2.2 0.23 9.3
0.50
0.50 0.12 1.4 0.07 4.3
0.02
0.09
0.07
0.10
0.02
1.1
0.15
0.13
0.04
0.02
0.28
0.16
0.08
0.16
0.46
0.26
0.08
66
90
44
0.06 50
23
0.06 43
0.10 180
15
10
0.11 13
0.08 17
0.07 63
21
67
0.10 71
13
22
0.08 92
170
76
0.08 72
7.0
9.0
0.07 60
22
0.05 38
22
100
88
77
16
16
55
27
<8.0
12
14
\6
63
48
29
12
9.0
    NOTE:  Samples listed by sample number (C-number).
           cation of samples.
Refer to table 2 for identlfi-

-------
                                  TABLE  3—Continued
SAMPLE
               EU
                                    GE
                                           HP
                                                  HG
                                                                IN
                                                                             UU
07278
07279
07303
C1730U
07305
07307
07309
O7601
07721
C17970
07984
07980
O6009
08040
C 10044
C18304
c 18320
c 18319
C 18350
O9351
C1B355
C18368
C18389
C18392
00395
C 10398
OolOl
Ot>404
Oo407
C 10406
C18411
C16415
O0419
O6421
00433
08436
08437
O6440
Ob441
C16444
O&445
O84U6
Oo449

0.80













t.3
0.91
1.1
1.5
i .1
0.78
0.72
0.98
0.66
0.85
1.0
1.3
0.52
0.74
2.0
0.68
1.2
1.4
1.2
0.41
0.61
0.55
0.46
0.37
0.36
0.38
0.22
0.39

0.20













0.33
0.27
0.23
0.49
0.40
0.26
0.34
0.18
0.13
0.20
0.22
0.36
0.15
0.22
0.56
0.19
0.21
0.37
0.27
0.10
0.07
0.09
0.13
0.07
0.11
0.11
0.80
0.10
78
78
52
70
83
91
39
80
88
61
74
66
25
60
64
120
120
120
140
110
97
110
85
98
65
80
91
57
97
130
98
78
140
88
38
19
42
63
35
64
67
67
50
2.6
2.4
4.2
4.9
2.2
4.0
1.6
2.1
2.2
4.5
2.3
2.1
1.1
1.7
3.1
2.6
2.5
2.4
0.00
3.2
3.5
2.8
3.9
2.3
2.3
3-8
5.0
3-6
5.1
4.7
3-0
4.3
4.3
4.3
0.90
2.3
3.0
4.2
1.9
1.7
1.5
0.80
1.1
5.0
5.0
2.0
1.0
8.0
9.0
2.0
6.0
7.0
2.0
5.0
5.0
1.0
2.0
<1.0
2.0
<2.0
3.6
1.7
3-2
3-3
<1.0
6.8
5.2
6.2
3.6
11
4.2
2.8
<2.0
10
6.0
1.8
8.6
0.80
0.95
0.10
0.40
0.10
0.50
0.40
<0.10
<0.10

0.50













0.80
0.95
1.1
0.28
0.74
0.13
0.83
0.41
0.66
0.43
0.48
0.61
0.39
0.42
1.5
0.36
0.55
0.88
0.72
1.2
0.38
0.37
0.92
0.52
1.1
1.2
0.46
0.34
0.1t>
0.16
0.14
0.10
0.24
0.18
0.06
0.05
0.10
0.18
0.13
0.09
0.14
0.03
0.04
0.10
0.13
0.13
0.11
0.11
0.20
0.12
0.18
0.14
0.13
0.16
0.16
0.22
0.09
0.12
0.28
0.11
0.12
0.14
0.07
0.06
0.12
0.04
0.16
0.12
0.03
0.04
0.13

1.3













2.3
0.66
1.2
<0.40
<0.40
1.9
0.69
0.60
1.7
0.67
0.40
0.24
0.59
<1.0
0.34
1.1
0.36
<1.0 •
<0.40
<0.30
0.71
0.33
0.43
0.84
0.95
0.51
0.57
<0.50

0.10













0.15
0.13
0.02
0.28
0.09
0.10
0.17
0.11
0.09
0.06
0.12
0.18
0.14
0.17
0.17
0.10
0.11
0.19
0.21
<0.01
<0.05
0.25
0.11
0.08
0.07
<0.01
0.11
<0.02

6.6













5.6
5.8
3-2
2.7
6.1
7.2
7.1
4.5
4.1
5.1
6.1
11
4.3
8.5
10
4.2
5.8
10
6.9
3-3
2.0
2.7
5.7
3-7
2:3
1.8
2.5

0.05













0.19
0.12
<0.02
<0.03
0.06
0.08
0.15
0.14
0.05
0.07
0.10
0.13
0.09
0.11
0.18
0.04
0.04
0.13
0.15
0.06
0.05
<0.01
<0.03
<0.02
<0.02
<0.02
0.04
0.05
25
25
12
74
56
110
6.0
17
10
39
21
62
6.0
93
34
42
69
49
210
140
36
32
17
25
70
22
14
30
19
53
28
24
52
110
70
44
33
66
64
86
120
6.2
14

-------
                                     TABLE 3—Continued
SAMPLE
         DY
                EU
                              GA
                                     GE
                                            HF
                                                   HC
                                                                  IN
                                                                                LU
                                                                                       HN
C 18*50
C 16451
C 181154
C 16*57
C 18*58
C 18*62
C 10*63
C 18*64
C 18*65
C 18*93
C 18560
C18572
C16573
C1857*
C18581
C 18590
C 18594
C 18684
C 18685
C 18689
C 16693
C 18697
C18701
C18616
C16820
C 1882 4
C 18625
C 18829
C 18830
C 18831
C 16832
C 18833
C18837
C18841
C188**
C18848
C 108*9
C18853
C18857
C 16992
C 18993
C 19000
0.66
0.60
0.52
0.51
0.36
1.3
1.1
1.0
0.53
1.2
1.2
1.3
2.8
1.3
3.3
1.0
0.76
1.*
0.90
0.65
1.0
1.0
1.0
0.93
2.0
2.*
3.2
3-5
1.4
2.6
2.1
3.5
2.4
1.5
0.83
2.1
3.5
0.74
0.57
1.1
0.54
0.65
0.22
0.17
0.1*
0.10
0.16
0.42
0.39
0.33
0.24
0.32
0.26
0.38
0.92
0.56
0.87
0.2*
0.17
0.25
0.18
0.22
0.27
0.25
0.30
0.1*
0.47
0.65
0.73
0.78
0.47
0.65
0.«5
0.67
0.49
0.26
0.19
0.4*
0.92
0.16
0.19
0.20
0.07
0.15
46
59
52
47
55
120
140
85
120
58
93
73
110
94
70
110
39
54
45
29
58
48
40
32
63
50
94
81
120
130
110
140
130
100
61
93
150
72
77
80
42
52
1.6
0.80
1.5
0.80
2.4
2.9
3.8
6.5
2.4
3.7
2.4
3.6
4.1
2.9
10
4.2
2.1
5.0
3.1
2.5
2.0
2.7
3.1
4.3
4.0
7.4
11
9.0
6.0
6.2
«.3
11
9.5
4.3
3.2
6.3
10
3.2
2.7
3.1
1.3
2.3
<0.10
<0.20
<1.0
0.20
0.10
0.30
0.30
1.0
0.80
10
14
18
10
9.8
3.0
3.4
2.9
14
2.2
7.5
6.9
8.0
7.8
0.10
<0.10
<0.90
<0.40
<0.20
<0.10
2.4
5.0
1.8
0.30
1.4
0.50
0.60
<0.20
0.20
3.2
<0.70
2.6
0.10
0.77
0.40
1.0
0.26
0.84
1.1
1.3
0.87
1.2
0.59
1.1
0.35
0.60
0.5*
1.1
0.58
0.46
0.*5
0.31
0.4*
0.40
0.37
0.40
0.86
.3
.7
.4
0.95
0.75
.5
.0
.3
.2
0.73
0.66
1.2
2.2
0.58
0.69
0.80
0.5*
0.64
0.63
0.07
0.05
0.06
0.04
0.10
0.08
0.12
0.07
0.23
0.23
0.15
0.20
0.32
0.17
0.22
0.18
0.18
0.10
0.18
C.20
0.14
0.15
0.19
0.22
0.15
0.»7
0.33
0.16
0.13
0.23
0.09
<0.05
0.08
0.16
0.39
0.1*
0.13
0.1*
0.05
0.05
0.0*
0.47
0.98
<0.20
<0.20
<0.20
<0.30
0.47
<0.30
<0.30
4.0
1.2
<0.20
6.5
2.1
1*
1.1
1.7
<0.80
1.2
<1.0
<1.0
0.30
0.40
<1.0
2.6
1.7
2.0
<1.0
0.87
2.0
4.9
1.6
0.33
1.1
1.5
1.3
1.9
0.70
0.34
<0.50
<0.70
0.61
0.07
0.06
0.03
0.22
0.19
0.1*
0.17
0.12
<0.02
0.22
0.09
0.29
0.36
0.43
0.56
<0.01
0.15
0.12
0.27
0.63
0.10
0.17
0.33
0.14
0.21
0.22
0.29
0.35
0.13
0.17
0.18
0.24
0.37
0.16
0.17
0.32
0.27
0.21
0.07
0.13
0.06
0.16
4.3
3.1
4.3
2.4
5.6
11
13
9.3
8.5
9.5
6.1
5.0
15
6.0
20
9.1
4.7
6.0
*.6
5.1
5.7
6.1
7.1
6.5
20
18
17
19
14
15
10
20
19
8.7
7.2
18
23
6.1
5.7
9.*
3.3
6.0
0.07
0.03
<0.02
0.06
0.11
<0.03
0.43
0.10
<0.03
0.08
<0.02
0.07
0.11
0.13
0.24
0.09
0.05
0.15
0.08
0.44
0.10
0.06
0.09
0.09
0.18
0.25
0.33
0.32
0.12
• 0.29
0.39
0.40
0.22
0.08
0.04
0.13
0.31
0.07
0.10
0.11
0.14
0.08
41
23
38
46
26
48
26
150
220
86
60
300
130
270
11
33
55
40
48
80
48
37
30
31
1*
2.7
10
24
3.0
2.*
9.2
4.2
4.6
20
11
13
61
12
48
1.6
6.6
1.4
  NOTE:  Samples listed by sample number (C-number).
         cation of samples.
Refer to table 2 for identifi-

-------
                                    TABLE 3—Continued
                                                                                                               ro
                                                                                                               o
SAWPLt
         MO
                NI
                              PB
                                      RB
                                             SB
                                                    SC
                                                           SE
                                                                  SM
                                                                          SN
                                                                                 SR
                                                                                        TA
C 12059
C12331
C129<<2
C 1-039
C130"<6
C 13324
C13433
C13*6li
C 13854
C 13895
C13975
C13933
C14194
C1457*
C14609
C14613
C 14630
CI4o<«6
C 1*650
C1468*
C 14721
C14735
C1477U
C14796
C14S38
C 14970
C 1*982
C15012
C15030
C 15079
C15117
CT5125
C 15206
C15231
C 15263
C15270
C15331
C 15381
CI5H18
CJ5432
C15436
C15"UB
C15156
11
6.0
11
8.0
4.0
6.0
29
3.0
11

8.0
4.0
16
18
2.0
5.0
2.0
2.0
5.0

3.0
4.0
19
7.0
3.0
9.0
6.0
15
9.0
5.0
11
6.0
7.0
4.0
9.0
2.0
5.0
14
9.0
<1.0
<1.0
10
24
13
32
10
14
14
15
11
16
21
16
22
12
26
14
25
18
24
25
23
16
36
12
17
17
9.0
21
16
13
14
27
36
34
25
10
16
16
40
8.0
15
16
68
36
20
26
14
21
29
49
25
120
48
53
<10
26
80
11
260
160
55
140
•"
40
18
23
DO
29
320
66
22
42
10
53
41
28
<10
30
28
24
68
24
<10
100
21
28
160
12
40
6.0
7-0
20
10
8.0
3«
14
10
11
6.0
18
16
45
50
110
12
21
25
180
11
11
52
28
24
5.0
5.0
6.0
59
12
120
210
24
12
6.0
96
9.0
100
40
18
18
5.0
10
7.0


20

15
12


10


13


14









17
11
9.0

10





7.0
13

20
1.4
0.60
0.30
0.50
0.40
1.2
0.50
1.0
1.2
1.1
0.20
0.50
0.50
0.40
1.4
2.4
0.80
0.70
2.8
3-7
0.20
0.70
1.6
0.90
0.80
0.30
0.30
0.40
1.2
0.40
2.6
2.5
0.70
1.8
0.30
5.7
0.20
2.7
2.6
4.4
2.0
0.40
0.30
0.40


2.9

2.1
2.6


1.9


2.5


2.0









2.5
3.3
1.5

2.1





2.4
1.4

2.7
3-2
1.3
1.3
1.6
1.7
2.2
2.1
1.4
2.4
0.40
2~.0
1.8
1.9
1.5
.4
. .1
.7
.7
.7
.1
1.2
1.4
3.0
1.9
1.7
1.0
1.7
1.9
2.1
1.3
2.8
1.8
1.1
2.5
1.6
2.0
0.90
2.5
1.6
0.70
1.5
1.6
3.2
1.8


1.5

1.0
1.0


1.4


1.2


0.80









1.1
1.4
0.40
,
0.80





0.80
0.80

1.0
22
51
30
7.0

<0.40

<0.30
<0.30


<0.20


<0.20
3.0

<0.20



4.0



3.0


2.0






3.0
4.0


3.0



31

27
20


130


33


39









32
31
40

28





00
51

26


0.20

0.20
0.20


0.10


0.10


0.10









0.10
0.10
0.10

0.10





0.10
0.10

0.20

-------
                                    TABLE 3—Continued
SAMPLE
         HO
                HI
                              PB
                                     RB
                                            SB
                                                    SC
                                                           SE
                                                                  SM
                                                                         SN
                                                                                SR
  NOTE:   Samples  listed  by  sample  number (C-number).
         cation of samples.
Refer to table 2 for Identlfl-
                                                                                       TA
C 15*96
C 15566
C 15676
C15717
C 15791
C 15668
C 15872
C15943
C 15944
C 15999
C 16030
C16139
C 16264
C16265
C16317
C 16408
C16501
C16543
C 16564
C 16729
C16741
CJ6787
C16919
C 16993
C17001
C17016
C17045
C17046
C 17047
C 17053
C17054
C17069
C 17092
C 17095
C 17096
C 17097
C 17098
C 17099
C17215
C17243
C17244
C17245
C 17246
<1.0
6.0
10
14
2.0
3-0
12
3-0
3.0
15
19
14
5.0
10
9.0
6.0
6.0
15
9.0
4.0
12
<2.0

-------
                           TABLE 3—Continued
                                                                                                     ro
                                                                                                     ro
HO
       NI
                     PB
                            Rfi
                                   SB
                                           SC
                                                  SE
                                                         SM
                                                                SN
                                                                       SR
                                                                              Ti
C 17278
C17279
C17303
C 17304
C 17305
C 17307
C 17309
C 17601
C 17721
C 17970
C 17984
C 17988
C 18009
C 16040
C 18044
C 18304
C 18 320
C18349
C18350
C18351
C16355
C18366
C 183«9
C 18392
C18395
C18398
C18401
C 18404
C18407
C18408
C 18411
C18415
C18419
C 18421
C18433
C 184 36
C18437
C18440
C18441
C 18444
C 18445
C 18446
C 16449
20
20
1.0
5.0
11
14
2.0
7.0
2.0
5.0
3.0
3.0
2.0
6.0
7.0
3.0
7.0
5.0
13
2.0
10
6.0
10
9.0
8.0.
1 1
4.0
12
10
2.0
13
9.0
2.0
2.0
0.10
2.0
2.0
0.40
0.70
0.70
2.0
<0. 10
2.0
16
16
20
24
11
80
5.0
33
21
20
24
22
10
8.0
25
13
18
16
12
11
23
15
13
10
8.3
13
40
16
12
17
10
14
18
15
3.1
5.6
5.3
3.8
5.3
2.2
2.6
1.6
3.1
31
31
100
130
71
250
130
120
340
120
150
110
17
42
31
200
52
49
170
60
81
25
30
59
45
88
76
32
110
130
64 '
65
130
60
200
33
27
100
88
120
90
430
92
5.0
5.0
7.0
7.0
11
100
4.0
52
40
23
120
87
4.0
4.0
10
22
4.0
10
4.8
46
42
5.4
4.2
2.8
3.2
3.3
12
3.5
5.1
3.3
1:1
4.3
17
4.1
1.1
2.0
5.5
4.2
4.0
2.4
<0.70
0.95

16













22
24
17
<2.0
22
10
42
29
12
31
23
34
20
27
40
26
32
42
44
1.8
1.7
1.9
1.3
<3.0
<1.0
<1.0
0.0
0.30
0.60
0.40
0.90
0.60
1.6
1.2
0.30
0.80
1.5
3-0
2.3
1.2
0.60
0.40
0.40
0.31
0.54
0.55
0.70
0.30
1.4
0.28
0.13
0.61
0.81
0.18
3-7
0.72
0.10
0.17
1.4
0.45
0.26
0.33
0.20
0.75
0.72
0.70
0.23
0.50
0.47
0.23
0.44

2.3













3.4
3-6
3.1
1.7
3.2
3.1
3-7
2.6
1.4
1.8
3.1
4.2
1.8
2.6
4.6
1.9
2.9
4.1
3.7
.5
.0
.8
.2
0.70
.3
.4
.0
.0
1.4
1.8
1.3
2.7
2.6
2.9
1.2
1-.8
1.5
2.6
1.4
1.7
2.0
1.7
2.2
3.3
4.0
3.1
2.6
2.4
2.4
2.8
1.6
1.6
1.6
1.7
2.6
1.9
1.3
3.2
2.3
1.5
2.4
2.2
1.4
0.40
1.1
1.4
1.2
1.5
1.3
0.74
0.87

1.0
/












1.4
1.4
1.0
1.8
1.5
0.90
1.5
0.90
0.60
0.90
1.2
1.6
0.80
1.4
2.3
0.60
1.1
1.9
1.5
0.50
0.30
0.50
0.50
0.45
0.47
0.50
0.22
0.39


5.0
5.0




4.0
10


6.0


<0.20
<0.40
<0.30
<0.30
<0.40
1.0
<0.30
0.29
<0.20
<0.30
<0.20
<0.30
<0.20
<0.20
<0.50
<0.30
<0.30
<0.50
<0.40
<0.30
<0.20
<0.20
<0.20
<0.20
<0.30
<0.20
<0.10
<0. 10

35













87
40
36
40
50
44
3*
13
17
26
110
39
14
25
50
11
41
45
500
»30
380
240
470
420
95
400
390

0.30













0.12
0.26
0.13
0.11
0.15
o.i-
0.25
0.12
0.10
0.14
0.14
0.18
0.11
0.12
0.29
0.13
0.16
0.28
0.21
0.18
0.05
0.06
0.17
0.08
0.17
0.16
0.08
0.04

-------
                                   TABLE 3—Continued
SIMPLE
         HO
                HI
                              PB
                                     RB
                                            SB
                                                    SC
                                                           SE
                                                                  SH
                                                                                SR
  NOTE:  Samples listed by sample number (C-number).

         cation of samples.
Refer to table 2 for identifi-
                                                                                        TA
C 18150
C18451
C 18454
C 18457
C18458
C 18162
C18463
C 18*61
C18465
C1b193
C 18560
C 18572
C 18573
C1B574
C 18581
C 18590
C 18591
C 18681
C 18685
C 18689
C18693
C 18697
C18701
C18816
C 18820
C 18821
C 18825
C 18829
C18830
C18831
C1B632
C 16833
C 16837
C 188*1
C18811
C1884U
C188«9
C1B853
C 16857
C 10992
C18993
c 19000
0.10
0.20
0.20
0.70
1.0
1.0
0.10
0.30
0.10
5.0
18
21
10
23
0.30
11
8.0
13
8.0
9.0
11
11
7.0
<0. 10
9.0
3.0
22
22
0.90
1.0
0.80
<0.10
<0.10
0.10
0.70
0.30
0.20
1.0
5.0
<0.10
<0.10
<0.10
1.8
1.1
3.9
2.9
3.0
6.8
9.5
6.1
18
21
21
18
51
16
37
12
7.9
24
7.6
13
15
15
15
8.5
12
11
18
22
15
19
25
28
12
6.3
6.1
11
16
6.7
13
1.6
2.5
1.5
150
110
37
16
110
510
280
150
19
97
50
62
200
86
70
53
22
20
77
27
17
20
50
76
26
62
11
100
220
1500
15
120
130
59
68
190
13
39
31
28
11
120
t.3
<0.80
2.1
<1.0
2.2
5.0
9.0
5.0
2.0
37
<1.0
66
79
11
13
<2.3
<1.0
3.9
<0.80
3.6
<1.0
2.3
6.6
1.0
<1.6
7.6
3.1
<1.5
3.3
2.5
1.2
3.0
1.1
3.0
3-9
12
5.8
<1.0
<1.0
1.6
<0.90
<0.70
<1.0
1.1
<2.0
1.9
8.5
13
29
9-0
12
15
23
8.0
21
17
16
17
17
18
7.2
10
20
19
15
1.5
16
10
13
30
18
9.0
25
28
21
13
10
18
63
9.8
22
6.0
1.1
1.2
0.20
0.18
0.71
0.19
0.31
0.39
0.67
0.76
0.35
1.9
0.19
0.20
1.8
0.33
3.7
3-3
1.7
0.72
0.17
0.69
1.5
1.1
0.35
3.5
1.6
2.6
7.7
3.3
0.81
1.1
1.6
0.90
1.1
0.25
0.27
0.82
3.7
0.31
0.12
1.0
0.51
0.35
2.1
0.90
1.0
0.50
2.1
1.5
3.9
3.9
2.3
2.8
1.1
1.5
3.3
3.5
7.7
2.3
1.5
5.6
1.9
1.2
1.8
1.5
1.8
1.8
3.0
7.0
7.6
5.0
3.8
6.8
9.3
7.0
1.2
2.6
1.8
1.3
7.2
1.6
3.2
2.1
1.2
1.3
2.3
0.60
1.4
1.1
1.1
2.1
2.7
2.1
2.2
1.1
1.3
2.5
1.0
2.1
3.1
7.1
1.3
2.2
1.8
1.7
3.1
2.2
2.6
2.1
5.8
5.0
8.1
5.8
6.0
5.1
5.9
5.0
4.2
1.1
2.1
3.0
2.1
1.6
3.6
1.5
1.7
1.6
0.70
0.72
0.72
0.15
0.76
0.36
0.73
1.4
0.81
1.5
0.86
1.1
3-7
2.0
2.7
1.1
0.68
1.2
0.83
0.86
1.5
1.1
1.3

2.7
2.7
3.0
3.8
2.1
3.5
2.2
3-3
2.8
1.5
1.0
2.8
4.3
0.87
0.92
1.2
0.37
0.77
<0.20
11
<0.20
<0.20
<0.20
<0.30
<0.50
<0.40
<0.30
2.4
<0.10
<0.50
<0.60
<0.50
<0.50
<0.30
<0.30
<0.30
2.8
<0.20
0.48
<0.20
<0.20
<0.20
<0.30
<0.30
<0.40
5.6
<0.20
<0.20
0.43
<0.40
3.6
0.73
0.77
0.50
<0.60
0.46
<0.30
<0.30
<0.10
<0.20
200
120
94
190
100
280
470
160
93
96
28
42
35
34
72
16
19
26
25
16
14
17
19
240
120
28
45
170
110
550
50
110
110
110
130
130
50
130
38
160
130
200
0.11
0.08
0.17
0.05
0.16
0.26
0.29
0.33
0.26
0.12
0.25
0.10
0.13
0.09
0.22
0.26
0.13
0.17
0.07
0.10
0.12
0.10
0.12
0.16
0.12
0.29
0.29
0.15
0.17
0.20
0.17
0.28
0.32
0.77
0.15
1.1
0.45
0.13
0.13
0.22
0.07
0.10
to
to

-------
                      TABLE 3—-Continued
                                                                                                 ro
SAMPLE    TB     TH     TL      U      V      W       1TB      ZN     ZR
c i2osy
C12495
C12S31
C12912
C 13039
C 13016
C13321
C13133
C 13161
C 13851
C 13895
C13975
C13983
C1U191
C1«57U
C 14609
C14613
C14630
C11616
C1U650
Cl-Soi
C14721
C11735
C14774
C11796
C11838
C 11970
C 11982
C15012
C15038
C 15079
C15117
C15I25
C15208
C15231
C 15263
C15278
C1533'
C15361
C.15413
C1.5132
c 15136
C15H8
C 15156


0.20 2.3

0.10 2.2
0.10 2.2


0.20 1.6


0.01 2.0


* . 7









3.3
0.20 2.1
0.10 1.1

0.10 1.8





0.10 1.6
0.10 1.2

0.10 2.1


0.96

0.61
0.36


0.36


0.26


C.11









1.2
0.93
0.16

0.70





0.31
0.97

0.67


1.7

0.50
0.70


0.80


1.0


0.10









1.3
1.1
0.90

1.3





0.70
3.3 ..

2.6
«3
20
31
16
37
31
38
28
50
20
17
32
29
78
18
27
34
32
33
22
20
28
76
27
35
28
19
31
31
32
55
27
35
31
34
23
27
31
47
38
32
47
32
26


1.0

0.50
0.50


0.20


0.40


0.30









0.04
0.40
0.70

0.60





0.40
0.40

0.60


0.80

0.40
0.50


0.50


0.60


0.30









0.60
0.70
0.40

0.40





0.50
0.30

0.60
3200
17
22
99
10
29
330
52
33
19
32
40
17
480
300
66
330
60
46
930
30
270
170
960
63
49
23
150
ISO
99
46
160
620
40
290
430
140
58
33
97
140
370
340
14
61
26
53
33
82

100
19
65
25
120
54
16
16

79
110

40
83
48
22

91
30
83
27
68
44
36
25
28
28

42
22
130
40



45

-------
                       TABLE  3—Continued
SIMPLE
         TB
                Tti
                       TL
                                                   IB
                                                          Z«
                                                                 ZR
C15»96
C15566
C15678
C15717 1.8
C15791
C 15568 0.10 2.0
C15872 2.2
C 159*3
C 159*4
C15999 0.20 2.8
C 16030 0.20 2.1
C16139 0.10 1.6
C 16264
C 16265
C163H 0.20 2.1
C1640U
C 16501
C165*3 0.20 2.2
C 16564
C 16729
C16741 0.10 1.4
C 16787
C16919
C 16993 0.20 2.0
C17001
C17016 1.5
C170»5
C17046
C 170»7
C 17053
C 1705*
C17089
C 17092
C 17095
C 17096
C 17097
C 17098
C 17099
C17215
C 17243
C 17241
C 17245
C17246
22
19
16
0.68 4.5 15
26
0.12 <0.50 22
0.64 1.4 12
21
36
0.53 1.0 36
0.63 2.2 28
0.76 2.2 16
22
34
0.46 4.0 32
31
27
0.46 1.7 32
33
40
0.52 1.8 42
26
40
1.3 0.80 54
62
0.93 1.2 20
26
14
18
25
20
20
42
46
11
14
52
38
46
28
49
24
28
810
220
200
0.50 0.40 47
260
1.1 0.40 190
0.80 0.60 310
25
160
0.40 0.70 800
1.0 0.70 1600
1.8 0.40 89
160
13
0.50 0.70 2700
26
22
0.40 0.60 5300
570
24
0.40 0.40 290
20
21
1.4 0.50 43
170
2.0 0.40 41
7.0
12
10
36
12
20
40
26
13
7.0
35
27
46
31
32
30
22
47

84

24

22
60
31
88
39

52

20

120
120


47
83
12

70
31

170


41

42
30
74
25
43




48
8.0
NOTE:   Samples listed by sample  number (C-number).

       for identification of  samples.
Refer to table 2
                                                                                                  ro
                                                                                                  \j\

-------
                       TABLE 3—Continued
                                                                                                  ro
                                                                                                  CP\
SAMPLE
         TB
                TH
                       TL
                                                   YB
                                                          ZN
                                                                 ZR
C1727b
C 17279
C17303
C17301
C 17305
C 17307
C 17309
C17601
C17721
C 17970
C17984
C 17988
C 18009
C 18040
C 18044
C 18304
C18320
C 18349
C 18350
C 18351
C18355
C 18360
C 18389
C 18392
C 18395
C1»39b
C18401
C 18404
C 18407
C 18406
C 18411
C18415
C 18419
C18421
C 18433
C 18436
CT8437
C18440
C 18441
C 18444
C 18445
C 18446
C 18449

0.10













0.35
0.34
0.50
0.37
0.47

0.28




0.38

0.26


0.30

0.23
0.10



0.19
0.19
0.06
0.08

2.3 1.3













1.8
3.8
1.7
1.5
2.3
1.2
3.1
1.9
1.2
2.0
2.2
3.5
1.7
1.8
3.9
2.6
2.1
2.6
4.3
2.2
0.82
1.0
2.7
1.6
3-1
2.9
0.90
0.62

1.7













1.1
1.8
0.95
1.1
0.90
.4
.5
.3
.1
.6
2.0
1.5
0.63
2.5
1.3
2.2
1.5
0.94
2.8
0.96
0.74
1.7
1.0
0.88
0.80
1.1
0.30
<1.0
30
30
46
39
39
40
17
31
25
50
31
28
24
27
33
26
37
12
12
14
12
23
17
30
25
25
3*
11
28
43
11
28
22
4.8
7.7
7.3
6.6
6.8
6.2
6.0
7.7
11

2.1













0.82
0.48
1.3
1.3
1.0
0.09
0.47
0.46
0.43
0.54
0.39
0.31
0.66
0.47
0.58
0.50
0.60
0.54
0.25
0.40
0.90
1.0
1.1
0.24
0.55
0.79
0.20
0.76

0.40













0.65
0.66
0.60
0.93
0.58
0.64
0.77
0.46
0.33
0.35
0.52
0.86
0.35
O.V7
0.92
0.41
0.55
0.72
0.70
0.52
0.26
0.31
0.55
0.16
0.29
0.28
0.20
0.13
100
90
21
100
95
1400
15
61
14
42
340
270
6.0
150
71
31
75
530
37
180
170
92
28
39
21
56
63
120
21
110
68
17
30
90
3.0
4.0
4.0
0.40
<0.30
2.0
4.0
2.0
2.0
56
56

70

40

26


62

21

34
44
5*
39
19
24
24
33
28
36
24
34
30
28
31
66
1
5.1
33
26
- 36
14
22
16
16
28
12
14

-------
                      TABLE 3—Concluded
SAMPLE
C 18450
C 18451
C18454
C 13457
C1845B
C18462
C 18463
C 18464
C18465
C1B493
C 18560
C 18572
C18573
C16574
C18581
C 18590
C 18594
C18684
C16685
C 18689
C18693
C 18697
C18701
C1B016
C 18820
C 18824
C 18825
C18829
C18830
C1883I
C 18832
C 18833
C 18837
C 18841
C16844
C 18846
C 18849
C 18853
C 18857
C 18992
C 18993
C 19000
TB
0.36
0.17
0.09
0.50
0.23
0.58

0.20
0.32
0.32
0.45
0.45
0.67
0.32
0.65
0.18
0.17
0.32
0.17
0.08
0.15
0.11
0.13
0.17
0.26
0.35
0.63
0.42
0.36
0.63
0.41)
0.36
0.31
0.14
0.10
0.22
0.42
0.06
0.10
0.17
0.07
0.10
TH TL
1.9
1.0
1.5
0.67
3.8
5.4
5.7
4.4
2.4
1.3
3.6
1.4
3-1
1.7
5.1
1.6
1.3
1.7
0.71
0.88
1.4
1.2
1.3
3.0
5.9
5.4
4.6
5.1
2.6
1.8
2.2
6.1
6.7
2.9
2.4
5.4
9.0
2.2
1.4
2.1
0.75
1.4
U
0.76
<0.30
0.75
0.56
2.1
2.4
2.3
2.5
1.0
0.94
1.9
4.9
3.4
6.1
1.7
4.6
2.1
1.2
0.34
0.31
1.3
0.86
1.0
1.0
1.1
2.9
2.1
2.0
1.7
1.9
1.2
1.6
1.9
0.73
0.40
0.92
2.2
0.42
0.84
1.5
<1.0
<0.70
V
14
15
6.9
5.4
12
43
35
40
19
24
36
17
41
23
59
90
39
27
21
14
18
17
17
9.9
22
»7
55
29
34
25
33
40
33
26
25
54
73
14
18
16
5.4
7.1
U
0.13
0.31
0.58
0.28
0.44
0.73
0.79
0.66
0.36
Q-71
0.59
0.36
0.68
0.64
2.3
4.2
0.82
2.1
0.68
1.3
1.1
1.1
0.77
0.71
0.47
1.3
1.0
0.63
0.65
0.79
0.73
0.51
1.1
0.36
0.60
0.36
1.0
0.22
0.45
3.3
1.0
1.2
TB
0.43
0.33
0.34
0.26
0.40
0.52
0.78
0.67
0.48
0.59
0.84
0.67
0.84
0.83
1.5
0.37
0.38
0.80
0.44
0.32
0.48
0.61
0.43
0.61
0.73
0.83
1.1
0.90
0.70
1.2
0.90
1.2
0.85
0.42
0.28
0.92
1.4
0.18
0.27
0.41
0.18
0.24
ZN
3-0
10
3.0
16
5.0
17
15
5.0
10
94
43
23
220
650
14
35
19
56
70
16
36
37
54
5.0
11
120
19
39
14
6.0
16
21
14
14
11
2.0
24
6.0
38
5.0
5.0
7.0
ZR
22
16
44
16
13
30
26
24
20
32
32
20
62
44
42
50
31
51
32
28
30
32
37
60
35
70
43
62
26
65
32
40
48
49
33
57
88
31
30
32
34
24
NOTE:   Samples listed by sample number (C-number).
       for  identification of samples.
Refer to table 2

-------
28
        TABLE k—MAJOR AND MINOR ELEMENTS  IN WHOLE COAL SAMPLES
               (percent moisture-free whole  coal basis)
 SAMPLE
         AL
CA
CL
                               FE
                             MG
                                                      NA
                                                             SI
                                                                    TI
C12059
C 12495
C12831
C12942
C 13039
C 13046
C13324
C13133
C13464
C 13854
C 13895
C13975
C13983
C14191
C11571
C 14609
C14613
C 146 30
C14646
C 14650
C146&4
C14721
C14735
C147Y4
C14796
C14836
C14970
C14982
C15012
C15030
C 15079
C15H7
C15125
C1520B
C1b'23l
C15263
C1527B
C15331
C15304
C15410
C 15432
C 1b43b
C1rj448
C1i>456
1.29
0.73
1.20
1.16
1.18
0.71
1.11
1.01
1.18
0.60
1.29
1.39
1.11
0.97
1.20
1.05
1.41
1.31
1.20
0.63
1.11
1.04
1.08
1.00
1.38
1.31
1.00
1.40
1.15
1.20
3.04
1.31
1.01
0.94
1.36
1.01
1.13
0.04
1.04
1.53
1.55
1.27
2.77
1.38
0.62
0.89
0.93
1.68
0.87
0.65
0.27
0.30
0.50
0.38
0.50
0.70
0.63
2.18
0.30
0.94
0.45
0.54
0.49
0.53
0.54
0.66
0.78
1.31
0.46
0.73
O.oO
0.97
1.07
0.68
0.52
0.76
1.76
1 .60
0.90
0. 10
0.82
0.67
0.61
0.05
1.14
0.24
0.48
0.67
0.03
0.13
0.28
0.20
0.37
0.23
0.31
0.48
0.37
0.30
0.04
0.02
0.02
0.15
0.09
0.16
0.54
0.43
0.04
0.02
0.11
0.02
0.33
0.02
0.03
0.16
0.14
0.09
0.09
0.11
0.01
0.01
0.02
0.21
0. 14
0.02
0. 11
0. 16
0.23
0.03
0. 19
0. 11
0.03
0.01
1.71
2.63
1.50
2.15
2.07
2.10
2.02
1.42
2.70
1.90
2.60
1.70
2.69
2.42
1.30
1.91
1.09
0.80
2.84
4.06
1.70
1.75
1.96
1.71
0.89
1.78
1.72
1.58
1.92
1.22
2.90
2.40
1.70
1.87
1.70
?.65
1.65
2.42
2.69
1.00
1.20
1.30
2.68
1.70
0.14
0.10
0.16
0.17
0.12
0.11
0.17
0.16
0.17
0.04
0.16
0.20
0.17
0.16
0.15
0.16
0.17
0.17
0.17
0.08
0.15
0.15
0.15
0.14
0.27
0.16
0.13
0.17
0.17
0.21
0.24
0.16
0.14
0.11
0.17
0.14
0.17
0.19
0.17
0.30
0.13
0.17
0.13
0.20
0.04
0.04
0.04
0.05
O.Q2
0.04
0.05
0.05
0.06
0.03
0.04
0.05
0.04
0.17
0.04
.0.06
0.04
0.04
0.05
0.02
0.02
0.03
0.03
0.05
0.06
0.06
0.03
0.06
0.04
0.04
0.11
0.05
0.04
0.01
0.07
0.04
0.05
0.01
0.11
0.06
0.03
0.06
0.05
0.05'.
0.065
0.089
0.060
0.022
0.149
0.078
0.045
0.041
0.200
0.009
0.040
0.020
0.033
0.011
0.040
0.016
0.145
0.090
0.018
0.005
0.100
0.021
0.098
0.025
0.026
0.138
0.096
0.072
0.017
0.034
0.030
0.020
0.050
0.119
0.100
0.014
0.048
0.018
0.036
0.028
0.100
0.120
0.020 .
0.030.-.
2.18
2.24
2.45
2.48
1.80
1.97
2.20
1.95
2.65
0.58
2.77
2.81
2.67
2.55
1.91
1.99
2.59
2.31
2.09
1.07
2.10
2.00
2.68
2.60
2.08
3.03
1.89
2.89
2.52
2.65
4.63
2.17
2.78
2.50
2.87
1.65
2.17
2.04
2.56
3.27
3.12
2-79,
. '?-.77. ".
- :^7P/-
0.06
0.04
0.06
0.07
0.06
0.04
0.06
0.06
0.05
0.02
0.06
0.07
0.07
0.06
0.06
0.07
0.08
0.07
0.06
0.04
0.06
0.06
0.06
0.05
. 0.08
0.08
0.05
0.06
0.07
0.07
0.15
0.07
0.06
0.05
0.06
0.05
0.06
0.05
0.06
0.09
•.-.0.09
•'•'••!'.0v06
'"-':"' 6:67
'•-.._ 0.07

-------
                             TABLE U—Continued
                                                                         29
SAMPLE
AL
        CA
CL
FE
                                                MO
                                                       SI
TI
C15196
C15566
C 15678
C15717
C15791
C 15868
C15872
C15913
C 15911
C 15999
c 16030
C16139
C16261
C. 16265
C16317
ClblOB
C16501
C16513
C 16561
C16729
C16711
C 16787
C16919
C 16993
C17001
C17016
C17015
C17016
C17017
C17053
C17051
C17089
C17092
C17095
C17096
C17097
C17098
C 17099
C17215
C17213
C 17211
C17215
C 17210
1.01
0.13
0.66
1.30
1.50
1.30
1.65
1.11
1.28
1.57
1.23
1.33
0.92
1.12
.12
.02
.32
.51
.05
.02
.10
.07
.3"
.05
0.86
1.10
1.76
1.71
1.63
1.15
2.23
0.67
1.18
2.16
0.72
1.82
2.66
1.53
1.91
1.75
1.81
1.21
1.11
0.12
0.93
1.02
1.91
0.11
0.91
1.32
0.11
0.11
0.21
0.21
0.71
0.56
1.28
0.73
0.23
0.72
2.67
0.37
1.23
1.09
0.21
0.18
0.63
0.82
0.13
1.11
1.65
1.19
1.01
0.60
0.39
0.87
0.30
0.93
0.62
0.35
0.25
0.69
0.76
0.30
0.11
0.11
0.02
0.01
0.02
0.02
0.52
0.18
0.01
0.28
0.31
0.07
0.17
0.17
0.01
0.02
0.11
0.10
0.13
0.02
0.03
0.39
0.12
0.19
0.15
0.12
0.27
0.15
0.01
0.02
0.01
0.17
0.03
0.21
0.37
0.01
0.03
0.02
0.07
0.08
0.02
0.05
0.22
0.10
0.19
1.92
2.81
3.00
1.80
1.36
0.15
2.00
2.19
2.19
1.90
2.10
1.80
2.05
1.86
1.70
3.51
1.99
1.50
3.87
2.12
1.60
1.73
1.14
2.60
2.76
3.50
0.19
0.60
1.23
2.31
0.51
0.68
2.32
2.15
0.18
0.31
1.06
2.01
3.17
2.53
1.79
2.60
0.51
0.15
0.06
0.01
0.11
0.20
0.15
0.16
0.18
0.18
0.23
0.21
0.15
0.15
0.12
0.18
0.13
0.16
0.11
0.16
0.15
0.17
0.15
0.21
0.20
0.11
0.13
0.06
0.11
0.12
0.18
0.08
0.08
0.12
0.27
0.02
0.12
0.32
0.15
0.20
0.27
0.29
0.15
0.15
0.01
0.01
0.03
0.05
0.06
0.03
0.09
0.01
0.01
0.05
0.05
0.06
0.01
0.06
0.05
0.03
0.01
0.01
o.ou
0.01
0.01
0.02
0.01
0.07
0.02
0.05
0.09
0.23
0.25
0.05
0.03
0.02
0.02
0.07
0.03
0.09
0.06
0.01
0.07
0.09
0.05
0.01
0.02
0.018
0.022
0.030
0.030
0.110
0.100
0.020
0.017
0.010
0.020
0.020
0.110
0.051
0.019
0.020
0.007
0.119
0.010
0.037
0.033
0.020
0.016
0.018
0.030
0.018
0.130
0.027
0.020
0.019
0.082
0.013
0.001
0.061
0.023
0.200
0.028
0.030
0.028
0.038
0.035
0.036
0.023
0.022
2.21
0.88
0.91
2.79
2.56
2.38
2.72
2.09
2.01
3.01
2.17
2.95
1.92
2.25
2.18
1.11
2.61
2.16
2.88
2.27
2.11
1.61
2.38
3.17
2.08
2.66
3.11
3.09
3.10
2.30
3.10
0.71
1.80
1.50
1.99
3.32
3.91
2.52
3.11
3.83
3.20
2.51
1.81
0.06
0.02
0.02
0.06
0.07
0.06
0.07
0.07
0.07
0.08
0.07
0.06
0.05
0.06
0.07
0.05
0.06
0.08
0.08
0.06
0.07
0.08
0.08
0.12
0.06
0.06
0.08
0.06
0.06
0.05
0.13
0.03
0.06
0.11
0.06
0.06
0.15
0.08
0.10
0.08
0.10
0.06
0.08

-------
30
                              TABLE U*—Continued
SAMPLE    AL      CA      CL      FE       K        NG       NA      SI      TI
C17270
U7279
C17303
C17304
C 17305
C17307
C17309
C17601
C17721
C17970
C17V84
C17988
C 16009
C18040
C1804J4
C18304 .
C 18320
C 18349
C16350
C18351
C1&355
C18368
C1B389
C10392
C1U395
C 18398
C18401
cie^on
C 181407
CI»i40B
C18411
C1b415
C18419
C16421
C 16433
C18U36
C18437
C18440
ClbHUl
C18444
C18445
C18416
C184J49
1.11
1.11
1.11
1.72
1.25
2.37
0.73
1.16
1.21
2.21
1.11
1.16
0.53
1.11
1.65
1.10
1.60
0.81
0.64
1.00
0.93
1.40
1.00
1.00
0.93
1.20
1.70
0.94
1.10
2.20
1.10
1.20
2.00
1.30
0.65
0.31
0.47
0.89
0.52
0.73
0.99
0.42
0.51
0.31
0.31
2.57
0.52
1.18
1.16
2.17
0.17
0.21
0.70
0.37
1.22
0.07
1.86
0.49
0.1B
0.88
0.33
1.20
2.04
0.21
0.62
0.31
0.07
1.10
0.80
0.13
0.42
0.21
0.47
0.32
0.42
0.35
0.77
2.00
2.00
2.90
1.70
2.40
3.80
2.10
1.50
1.30
0.07
.0.07
.0.12
0.02
0.03
0.06
0.02
0.16
0.31
0.10
0.20
0.30
0.22
0.03
0.02
0.26
0.10
0.20
0.20
0.05
0.14
0.06
0.02
0.02
0.07
0.22
0.02
0.03
0.05
0.01
0.07
0.01
0.03
0.26
0.02
0.01
0.03
0.02
0.02
0.01
0.02
0.02
0.01
2.24
2.80
0.93
2.05
2.54
3.07
0.55
2.38 .
1.69
1.11 .
1.66
1.56
1.04
1.59
1.64
2.10
1.40
2.60
2.40
1.90
3.20
1.60
2.30
1.70
1.10
2.10
1.30
2.10
1.60
1.70
2.30
1.90
2.00
1.80
0.60
0.60
0.50
0.50
0.40
0.50
0.30
0.30
0.50
0.18
0.18
0.13
0.21
0.22
0.43
0.02
0.18
0.21
0.33
0.17
0.17
0.08
0.15.
0.20
-.0.13
0.19
0.13
0.13
0.21
0.12
0.20
0.15
• 0.18
0.17
0.17
0.25
0.15
0.18
0.52
0.16
0.18
0.38
0.27
0.01
0.03
0.07
0.03
0.03
0.01
0.01
0.01
0.01
0.05
0.05
0.01
0.06
0.05
0.10
0.07
0.01
0.05
0.11
0.03
0.01
0.02
0.05
0.06
0.04
0.07
0.04
0.06
0.06
0.05
0.06
0.04
0.05
0.05
0.05
0.07
0.01
0.05
0.11
0.05
0.04
0.10
0.07
0.26
0.18
0.22
0.21
0.26
O.ft
0.19
0.07
0.04
0.116
0.120
0.022
0.021
0.024
0.072
0.089
0.013
0.071
0.039
0.016
0.027
0.032
0.020
0.015
0.020
0.090
0.030
0.030
0.030
0.020
0.040
0.010
0.020
0.030
0.020
0.020
0.010
0.030
0.080
0.010
0.020
0.030
0. 150
0.420
0.370
0.460
0.330
0.100
0.020
0.010
0.270
0.270
3.13
3.13
2.01
3.21
2.63
6.09
1.25
2.21
2.07
3.92
2.07
2.30
0.72
2.77
3.43
2.00
3.20
1.60
1.80
2.70
1.10
2.90
1.20
2.20
1.90
2.10
2.70
1.10
1.10
4.40
2.10
2.00
4.70
2.60
1.00
0.58
0.99
1.30
0.71
1.10
1.33
0.38
0.53
0.07
0.07
0.07
0.07
0.06
0.08
0.05
0.06
0.07
0.11
0.07
0.07
0.05
0.05
0.08
0.06
0.07
0.04
0.03
0.05
0.05
0.07
0.05
0.06
0.06
0.06
0.08
0.05
0.06
0.10
0.06
0.06
0.09
0.06
0.04
0.02
0.03
0.02
0.02
0.04
0.05
0.04
0.05

-------
                                                                          31
                            TABLE  l|—Concluded
SAMPLE     AL      CA      CL      FE      K       MO      NA      SI      TI
C18450
018451
C18454
C18457
018458
C18462
C18463
C18464
C18465
C18493
C 18560
C18572
CUJ573
C16574
C16581
C 18590
C 16594
C186BU
C 16685
C16689
C16693
C 16697
C16701
C16816
C 16820
C16824
C18625
C 18829
C 18830
C18831
C18832
C 18833
C 18837
C16841
C18844
C18848
C 18849
C18853
C18857
C 16992
C18993
C19000
0.49
0.52
0.70
0.36
0.60
1.50
2.00
1.60
1.10
1.40
1.40
0.85
1.70
0.90
2.80
1.20
0.94
1.10
0.76
0.93
0.99
1.10
1.04
1.50
1.40
2.00
1.90
2.10
1.50
1.20
1.30
2.30
2.10
1.20
1.20
1.90
3.10
1. 10
1.10
1.20
0.72
1.40
1.80
1.50
0.84
3.30
2.00
0.99
1.30
3.40
3.10
0.91
0.51
2.70
0.63
2.20
0.12
0.28
0.80
0.29
0.01
0.86
0.56
0.18
0.27
0.83
0.56
0.10
0.09
0.23
0.34
0.69
0.30
0.27
0.15
0.53
0.55
0.35
0.42
0.65
0.48
o.eo
0.44
0.46
0.01
0.02
0.04
0.02
0.03
0.01
0.02
0.02
0.03
0.15
0.05
0.01
0.02
0.02
0.17
0.15
0.13
0.04
0.04
0.04
0.03
0.03
0.05
0.01
0.74
0.03
0.04
0.04
0.17
0.27
0.23
0.15
0.02
0.80
0.13
0.02
0.01
0.10
0.07
0.03
0.13
0.12
0.30
0.40
0.40
0.30
0.30
0.70
1.00
0.40
1.20
2.50
2.60
2.70
3.70
3.20
2.00
1.90
1.90
2.30
2.90
1.50
2.60
2.00
1.90
0.60
0.90
0.70
2.20
2.40
0.90
1.20
1.20
0.50
1.40
1.70
1.10
0.70
1.60
1.60
2.20
0.50
0.50
0.40
0.01
0.03
0.01
0.02
0.05
0.10
0.32
0.10
0.07
0.18
0.13
0.07
0.22
0.10
0.56
0.26
0.16
0.17
0.10
0.12
0.16
0.17
0.16
0.03
0.21
0.12
0.45
0.42
0.23
0.06
0.28
0.40
0.35
0.19
0.13
0.28
0.68
0.09
0.17
0.07
0.01
0.02
0.12
0.10
0.09
0.12
0.13
0.13
0.20
0.17
0.15
0.06
0.06
0.05
0.07
0.05
0.07
0.05
0.04
0.06
0.03
0.04
0.05
0.05
0.04
0.10
0.06
0.03
0.07
0.09
0.06
0.04
0.06
0.08
0,05
0.04
0.04
0.05
0.15
0.04
0.05
0.07
0.07
0.07
0.600
0.160
0.100
0.010
0.010
0.010
0.040
0.010
0.010
0.100
0.040
0.020
0.030
0.020
0.020
0.080
0.070
0.020
0.020
0.030
0.040
0.010
0.020
0.020
0.070
0.020
0.030
0.030
0.040
0.010
0.020
0.040
0.040
0.060
0.030
0.030
0.050
0.060
0.100
0.170
0.040
0.150
0.55
0.69
1.80
0.71
0.86
2.30
4.70
3.10
2.10
2.70
3.20
1.50
3.60
1.80
4.00
3.10
2.10
2.20
1.30
1.70
1.90
2.10
1.90
1.90
2.50
3.00
3.10
2.90
2.10
1.00
2.10
3.50
3.10
2.30
1.90
2.80
6.30
1.80
2.80
2.40
0.38
0.71
0.05
0.05
0.06
0.02
0.04
0.10
0.07
0.07
0.05
0.07
0.06
0.03
0.05
0.03
0.11
0.07
0.07
0.07
0.03
0.06
0.05
0.06
0.07
0.07
0.12
0.12
0.09
0.08
0.08
0.05
0.05
0.13
0.16
0.06
0.08
0.15
0.15
0.06
0.06
0.07
0.04
0.06

-------
SAMPLE
                         TABLE  5—PROXIMATE ANALYSES OF WHOLE COAL SAMPLES

                         (percent of whole  coal except for Btu values)
        ACL
               HOIS
                      VOL
                            FIHC
                                   ASH
                                          BTU
C12C59
C 12*95
C12631
C129*2
c 13039
c 13016
C133Z"
C13"33
C 13*61
c 13051
C13&95
C13975
C 13963
C14194
C14574
C 1*609
C14613
C 14630
C14646
C 1*650
C1468*
C14721
CK735
C 1*774
C 1*796
C14B3B
C1«970
c 11902
C15012
C15038
C15079
C15117
C15125
C 15208
C15231
C 15263
C1527B
C15331
C153M
C1541S
C15432
C15436
C15*«8
C15456
11.50
8.70
5.60
7.90
6.30
7.50

6.00
4.70
2.10
5.10
6.80
7.40
3.10
10.20
5.50
7.10
7.10
10.80
12. 10
6.00
7.90
5.30
1.40
5.90
11.80
12.20
8.40
3.80
6.30
12.60
13.30
12.80
12.00
7.90
10.50
9.50
2.20
2.80
9.30
11.50
9-50
5.60
5.90
18.00
13.10
7.90
10.70
10.20
11.40
4.00
8.70
9.50
4.20
10.50
9.70
9.90
1.20
13-50
7.80
10.70
10.40
12.90
14.50
. 8.50
10.80
7.00
. 4.60
7.90
'14.40
1«.70
10.90
5.20
7.70
14.70
17.30
15.60
14,70
10.80
13.90
11.90
4.' 10
4.10
15.10
16.50
14.60
8.70
9.30
40.70
42.50
38.00
37.10
43.70
43.10
37.60
36.60
38.10
40.40
12.60
36.60
40.50
31.90
43.60
36.30
38.20
36.40
44.50
s2. jC
38.20
38.60
39.40
42.10
34-30
43.30
10.30
40.50
37.20
35.40
38. 10
40.70
43.00
41.70
42.10
41.00
13-50
38.40
36.90
35.10
40.00
44.40
40.20
40.50
49. 10
46.30
51.50
50.30
45.40
46.00
51.00
54.00
49.20
55.00
44.50
51.80
48.90
54.60
49.00
53-20
52.70
55.00
44.50
;r.6i
51.80
51.80
48.50
45.10
55.40
44.60
48.10
46.90
51.30
54.10
46.60
45.70
44.00
43.50
45.50
51.00
45.50
47.30
50.90
54.70
47.80
45.50
47.10
47.10
10.20
10.70
10.50
12.60
10.90
10.90
11.40
9.40
12.70
4.60
12.90
11.60
10.60
13.50
7.40
10.50
9.10
8.60
11.00
5.50
10.00
9.60
12.10
12.80
10.30
12.10
11.60
12.60
11.50
10.50
15.30
13.00
13.00
14.80
12.40
8.00
11.00
14.30
12.20
10.20
12.20
10.10
12.70
12.40
12616
12466
12895
12621
12927
13096
12779
13060

14362
12303
12729
12736
12973
13480
13137
13027
13162
12829
12951
12934
12547
12724
12485
13000
12465
12419
12255
12873
13005
11900
12074
12220
11973
12222
13102
12630
12387
12997

12438
12442
12390
12274
                                                          SAMPLE
                                                                  ADL
                                                                         HOIS
                                                                                VOL
                                                                                      FIXC
                                                                                             ASH
                                                                                                    BTU
C 15496
C15566
C 15678
C15717
C 15791
C15868
C 15872
C15943
C 159*4
C 15999
C 16030 •
C16139
C16264
C 16265
C16317
C 164 08
C 16501
C16543
C 165 64
C 16729
C 167*1
C 16787
C16919
C 16993
C 17001
C 17016
C 17045
C 17046
C17M7
C 17053
C1705*
C 17089
C 17092
C 17095
C 17096
C 17097
C 17098
C 17099
C17215
C 17243
C 17244
C17245
C 17246
10.70
9.00
13.20
8.60
7.10
5.60
10.10
1.80
1.60
4.10
1.90
10.50
13.60
15.60
7.20
3.90
5.70
9.40
7.30
4.50
12.00
*.*0
6.30

4.10
16.70



8.90








6.20




14.70.
11.20
14.80
10.80
9.20
10.20
15.80
3.10
2.90
7.30
3.20
13-70
15.80
18.20
13.00
5.30
2.80
17.00
12.50
7.60
16.00
6.70
9.10
5.50
5.90
8.40
7.10
24.40
25.00
12.80
5.40

6.80
2.00
4.10
8.90
1.10
1.50
10.60
2.40
1.50
1.60
1.00
45.50
43.50
44.10
42.30
33.80
36.80
42.00
37.70
37.10
38.00
37.70
41.20
43.30
41.40
39.40
37.00
38.30
43.00
45.80
37.00
43.30
32.00
35.00

39.50
39.40
44.90
49.60
52.70
46.40
32.80.

38.20
36.70
45.20
45.60
18.90
39.90
43.40
37.80
35.50
37.70
34.10
45.30
46.40
45.60
45.50
53.90
54.30
43.50
51.80
53.00
49.60
50.30
44.70
44.30
49.10
48.60
51.80
51.40
45.10
41.20
50.80
43.80
61.00
55.70

48.70
47.50
41.50
34.60
35.40
42.50
54.90

47.00
45.00
47.10
43.50
65.40
49.00
41.30
46.20
51.70
51.70
59.70
9.20
10.10
10.80
12.20
10.30
8.90
14.50
10.50
9.90
12.40
12.00
14.10
12.40
9.50
12.00
11.20
10.30
11.90
10.00
12.20
12.90
7.10
8.20
16.00
1 1 .80
13.10
13.60
15.80
11.90
11.10
12.30

14.80
18.30
7.70
10.80
15.70
11.10
15.30
16.00
12.70
10.50
6. 10
12996
13042
12952
12449
13008
13290
12109
13392
13517
12*70
13140
12050
12480
12810
12400
12990
12980
12380
12920
12728
12*55
13794
13280
11562
129*7




12850








11908




                                                                                                             U)
                                                                                                             ro

-------
SAMPLE
         AM.
                HOIS
                        VOL
                               FIXC
                                       ASH
                                              BTU
                                                                 SAMPLE
                                                                          AOL
                                                                                  MIS
                                                                                         VOL
                                                                                                 PIXC
                                                                                                        ASH
                                                                                                                BTU
C 17278
C 17279
C17303
C 17304
C 17305
C 17 307
C 17309
C 17601
C17721
C17970
C 17984
C 17988
C 18009
C 180*0
C 18044
C 18304
C 18120
C 183*9
C 18350
C 18351
C 18355
C 18368
C183B9
C 18392
C 18395
ClS39b
C18401
C 18404
C 18407
C1B408
C18411
C16415
CW419
C 18421
C18»33
C 18*36
C 18*37
C 184*0
C 18*41
C 18444
C 18445
C 18446
C 184*9
9.60
9.10






10.30

4.60
4.*0

7.60
8.80

7.80
2.40
2.30
2.50
3.40
7.00
6.60
5.70
4.00
5.00
6.20
4.90
4.90
4.80
7.20
5.60
5.20

22.60
22.00
30.90
12.60
16.00
21.30
17.10
24.50
14.00
13.80
13.30
1.60
2.60
3.10
2.20
6.20
1.60
12.20

6.70
6. 10
0.40
9.*0
10.70
2.40
9.80
3.80
3.90
4.20
4.90
11.00
12.60
11.00
9.00
10.90
'?:J8
8.20
10.20
TO. 50
a. so
8.20
7.80
30.60
28.90
37.00
19.40
24.70
29.20
22.90
28.70
21.50
43.60
43.60
36.10
41.30
37.90
36.30
44.70
36.30
38.90

36.30
37.10

40.90
39. *0
40.50
38.70
44.40
42.20
39.40
39.70
39.80
42.20
42.10
41.00
40.90
Io6:18
41.70
37.60
37.20
41.20
36.60
41.40
42.50
46.00
*5.90
39.70
39.70
42.50
41.40
43.70
44.00
46.10
44.40
57-30
45.70
48.60
37.90
48.80
52.70
53.10

54.50
52.20

46.70
48.20
48.60
47.60
45.30
44.00
45.30
49.60
47.00
49.30
48.50
49.00
50.10
53.00
W.90
50.40
44.40
53.00
51.60
46.90
45.10
45.50
45.70
44.00
50.50
50.50
48.40
51.10
52.20
51.90
10.30
11.90
6.70
13.00
13.30
35.80
6.60
11.10
8.00

9.20
10.50
2.20
12.40
12.40
10.90
13.80
10.30
13.90
15.30
10.70
13-20
8.50
9.50
10.00
9.10
10.30
9.70
7.90
18.00
9.80
7.20
16.50
13.50
12.00
8.30
10.10
9.80
9.80
9.10
7.50
4.10
4.20
12510
12254





13112
13324

13276
13087

12*56
12348
13182
12094
13321
12849
12*95
13167
12198
13138
13176
12823
12840
12716
12915
13257
11579
12759
13213
11782
12069
10453
10902
10711
10967
10412
10490
11733
12447
12205
C16450
C 18451
C 18454
C 18457
C 18458
C 18462
C 18463
C 18464
C 18*65
C 18493
C 18560
C 18572
C 18573
C18574
C 18581
C 18590
C 1859*
C186B*
C 18685
C 18689
C 18693
C 18697
C 18701
C 18816
C 18820
C 18*24
t 18825
C 18829
C 18830
C 18831
C 16832
C«833
C18«37
C 18841
C 18544
C 18848
C 18849
C 18853
C 18857
C 18992
C 18993
C 19000
18.20
14.10
15.20
10.40
4.90
5.70
6.50
10.40
14.80
11.40
7.20
11.10
9.10
7.80

6.00
5.60







0.70
.80
.00
.30
.10
.00
.00
.30
0.90
0.50
0.80
0.60
0.50
0.80
11.90
4.50
7.70
4.60
26.50
20.60
20.80
18.60
11.20
12.40
12.90
17.30
20.90
4.50
9.10
13.00
11.50
9.90
0.50
8.50
8.20
4.40
4.60
5.60
3.70
4.00
3.70
13.20
1.90
3.20
6.60
3.20
3.30
3.20
3.10
3.60
2.90
2.30
2.40
1.90
1.90
2.40
14.40
8.20
10.30
8.90
49.20
45.40
40.90
48.90
44.20
45.30
43.70
46.10
46.70
38.20
41.60
43.40
33.70
41.80
27.40
38.30
39.70
39.00
42.30
39.30
41.80
41.80
41.00
38.70
16.60
24.70
23.80
34.80
38. .60
40.80
36.80
3*. 70
35.10
42.50
35.70
20.00
18.30
38.70
39.80
44.30
45.20
43.00
43.80
48.90
49.40
44.80
49.00
44.60
35.90
38.00
41.90
50.20
42.00
39.70
41.60
38.70
52.90
48.20
49.10
49.30
49.50
51.60
46.50
48.70
49.10
52.30
71.90
62.80
61.00
48.90
52.50
51.90
54.00
51.40
51.50
47.30
56.00
68.40
56.60
52.20
46.30
45.50
50.40
50.00
7.00
5.70
9.70
6.30
6.80
10.20
20.40
15.90
11.50
11.60
16.50
16.90
24.70
19.50
19.70
13.60
11.20
11.70
8.20
9.10
11.70
9.50
9.90
9.00
11.50
12.50
15.20
16.30
8.90
7.30
9.30
13-90
13.40
10.20
8.30
11.70
25.10
9.10
13.90
10.20
4.40
7.00
11880
12035
10786
11688
12424
11474
10191
10084
10533
12284
1171*
11637
99*0
11115
12302
12273
12693
12454
13069
12936
12571
12988
12943
12095
13763
13528
12606
12266
13516
13589
13370
12588
12855
13155
13816
13628
1137*
13*97
12082
12122
12901
12*75
   ;iOTE:   See table 1 for abbreviations;  see table 2 for  identification of samples.
           All values are on a moisture-free whole coal basis  except for air  dry
           loss (ADL) and moisture  (HOIS).
U)
OJ

-------
                        TABLE 6—ULTIMATE ANALYSES OF WHOLE COAL SAMPLES
                           (percent, moi-sture-free, whole coal basis)
SAMPLE
                                  HTA
                                        LTA
C 12059
C 12*95
C12831
C 129*2
C 13039
C 13046
C 13324
C 13*33
C 13464
C13854
C13U95
C1397S
C 13983
C14194
C1457*
C14609
C14613
C 1*630
C 11461)6
C14650
C 14684
C14721
C14735
C1477*
C 1*796
C 14838
C14970
C14982
C15012
c 15038
C 15079
C15117
C15125
C 15208
C15231
C 15263
C 15278
C15331
C15384
C15*18
C15432
c 151:36
C1544B
C 15456

69.98
72.16
69.91
71.26
70. 13
70.76
73.33
64.06
79. 9"
67.81
71. 16
70.76
72.28
7*. 72
73.20
73.42
73.72
71.70
72.73
74.49
68.25
71. 18
70.31
74.60
69.49
69.25
68.57
71.86
73.76
66.24
67.44
68. 6H
67.18
68.09
73.24
69.87
68.23
71.94
71.01
70.58
68.97
68.88
69.23

4.9* 1
4.99 1
5.00 1
5.64 1
5.13 1
4.85 1
5.09 1
4.55
5.76
4.79
5.19
5.30
5.07
5.68
5.22
5.31
«.8l
5.43
5.*7
5.13
*.67
5.15
4.»1
5.16
4.98
4.85
4.88
5.11
5.1*
4.88
5.00 (
4.99
5.01
5J>1
5.3*
4.92
5.0*
5.06
4.82
4.63
5.12
5.10
4.72

.20
.55
.49
.16
.39
.30
.39
.09
.83
.26
.47
.26
.33
.34
.20
.62
.60
.18
.29
.48
.19
.02
.19
.52
.27
.10
.15
1.34
.33
.04
).93
.07
.43
.43
.37
.54
.42
.70
.46
.70
1.39
1.35
1.54

8.87
8.22
7.13
7.05
7.48
7.45
7.71
13.52
5.98
8.64
6.10
7.81
4.15
8.74
7.06
9.16
10.09
5.96
6.24
6.18
12.9*-
6.58
7.09
7.05
7.91
8.90
9.03
7.10
7.67
8.54
8.82
8.72
7.55
8.71
8.97
8.76
5.46
5.19
11.33
9.16
11.08
7.08
7.64
10.20
10.66
10.48
12.55
10.85
10.88
11.34
9.45
12.71
4.56
12.90
11.54
10.61
13.54
7.34
10.40
9.06
6.60
10.91
9.46
9.9*
9.62
12.06
12.82
10.33
12.10
11.65
12.67
11.42
10.56
15.31
13.60
13.07
14.77
12.45
7.92
10.93
14.26
12.21
10.21
12.19
10.11
12.64
12.42
18.05
23.53
14.08
17.55
14.29
16.18
14.78
11.10
17.60
3.82
18.71
16.29
16.92
17-25
10.36
12.65
10.69
10.42
18.60
14.44
12.31
13.78
16.51
18.48
12.62
15.47
15.68
14.94
15.98
13.39
20.66
15.88
19.07
20.0*
15.41
12.85
12.41
16.68
16.40
10.15
13.97
14.49
17.77
15.37
                                                       SAMPLE
                                                                                          HTA
                                                                                                LTA
C15496
C15566
C 15678
C15717
C15791
C 15668
C 15872
C15943
C15944
C 15999
C 16030
C16139
C 16264
C 16265
C 16317
C16408
C16501
C 16543
C16564
C 16729
C16741
C 16787
C16919
C16993
C17t>01
C17016
C17045
C 17046
C17047
C17053
C 17054
C 17089
c 17092
C 17095
C17096
C 17097
c 17098
C17099
C17215
C17243
C17244
C17245
C 17246
72.06
72.33
71.49
69.11
72.92
75.13
67.70
74.53
74.92
69.«9
71.96
66.25
68.99
71.79
69.97
71.21
72.06
68.71
70.61
71.23
69.53
77.72
75.43
64.57
71.57
62.49
65.83
63.32
66.26
71.06
72.57

64.65
62.66
73.84
67.75

64.16
65.30
65.27
70.47
70.62
80.14
5.13 1
4.86 1
4.98
.76 1
.96 1
.90
.63 1
.05
.09
.54
.83
.59
.68
.97
.58
.91
5.08
5.07
5.22
4.66
».9l
4.81
4.93
4.19
5.03
4.55
4.73 (
4.08 (
4.26 (
5.06
4.58

4.55
4.45 (
5.79
4.76

4.79
5.02
4.70
4.81
4.91
5.29
.36
.43
.15
.11
.75
.52
.04
.27
.44
.27
.35
.23
.14
.11
.25
.35
.56
.11
.18
.42
.10
.43
.50
.39
.»»
.07
).96
).90
).91
.33
.06

.05
>.94
.23
.46

.95
.60
.00
.18
.07
.29
8.56
6.41
6.73
8.68
8.15
8.77
8.51
4.27
5.44
8.96
6.44.
9.01
7.94
9.43
8.95
6.43
8.61
10.02
9.18
7.36
8.02
7.32
8.67
9.67
6.00
12.96
14.36
14.79
15.37
7.70
8.77

10.34
9.4*.
10.79
14.64

16.03
8.6*
8.75
8.12
9.22
6.22
9.22
10.12
10.29
12.15
10.3*
8.83
14.44
10.55
9.91
12.43
11.92
14.08
12.53
9.50
12.00
11.20
10.32
11.94
10.01
12.16
12.89
7.06
8.24
16.04
11.79
13.09
13.65
15.83
11.92
11.08
12.27
3.28
14.76
18.27
7.72
10.83-
15.67
11.10
15.27
16.02
12.72
10.53
6.15
12.31
14.81
14.78
17.71
12.9*
10.56
19-69
13.41
14.59
15.09
14.26
18.89
15.87
14.56
17.89
16.61
15.55
16.19
17.13
14.01
15.73
17.26
11.80
20.65
16.02
19.*9
22.65
14.86
16.5*
13.95
14.01
6.17
21.18
22.26
7.79
15.19
18.33
14.61
21.9*
21.32
15.92
14.56
7.57

-------
SAMPLE
                                       HTA
                                              LTA
                                                                SAMPLE
                                                                                                        HTA
                                                                                                               LTA
C17278
C17279
C17303
C17304
C17305
C 17307
C 17309
C17601
CV7721
C 17970
C179&4
C17988
C 18009
C 18040
C18044
C 18304
C 18320
C 18349
C 18350
C18351
C 18355
C18368
C 18389
C18392
C 18395
C 18398
C 18401
C 18404
C 18407
C1B408
C18411
C 184 15
C18419
C18421
C1B433
C 18436
C 18437
C 18440
C 18441
C 18444
C 18445
C 18146
C 18449

68.04
78.01
67.07
66.86
55.23
70.99
70.91
73.49

7».20
73.*6

70.27
63.18
71.93
65.51
69.78
69.69
69.40
72. «9
67.69
72.20
71.75
71.54
70.50
71.87
70.85
73.05
64.38
70.52
72.97
64.93
67.01
61.79
65.67
62.54
65.33
62.69
63.54
68.84
71.12
70.18

4.90
5.26
5.10
4.94
4.03
5.05
5.01
4.81

4.99
5.00

4.93
4.99
5.25
5.40
5.09
•*.96
4.92
5.27
4.72
4.83
5.19
5.16
5.12
1.81
4.85
5.18
».73
4.81
5.13
4.42
5.33
3.89
4.61
4.59
4.26
*.3B
3.84
4.59
5.02
4.84

1.36
1.29
1.20
1.15
0.78
1.01
1.26
1.46

1.84
1.81

1.38
1.39
1.17
0.94
1.24
1.18
1.18
1.25
1.08
1.14
1.39
1.35
1.24
1.»9
1.24
1. 11
1.18
1.14
1.14
1.11
1.06
0.73
0.88
0.83
0.89
0.91
0.85
0.88
0.91
0.97

8.52
7.49
9.52
9.26
7.64
15.98
7.95
9.98

7.72
7.10

7.17
14.36
6.51
10.66
8. £6
4.86
5-22
5-06
9.40
8.77
8.76
8.43
9.51
9.60
9.10
9.22
6.11
9.11
9.«7
8.9*
9.63
20.24
19.65
21.23
19.18
21.71
21.89
17.35
18.51
19.14

11.95
6.66
12.98
13.29
25.85
6.56
11.06
8.00
14.22
9.16
10.47
3-83
12.40
12.37
10.90
13.78
10.31
13.85
15.31
10.71
13-17
6.48
9.48
10.00
9.06
10.31
9.72
7.91
17.98
9.60
7.21
16.49
13.46
12.00
8.27
10.05
9.84
9.84
9.10
7.50
4.11
4.16
14.05

8.53
16.25
17.26
31.70
7.90
14.35
10.99
15.36
10.66
14.24
4.50
15.40
17.48
14.46
16.77
14.82
17.85
19.19
14.91
16.45
13.82
12.39
12.64
12.89
12.50
12.31
9.82
21.82
16.49
11.16
24.25
16.47
13.58
12.99
12.47
14.73
11.5*
15.15
10.22
7.00
6.16
C 18450
C18451
C18454
C 18157
C 18 158
C 16462
1 18463
C 18*64
C 18*65
C 18493
C1B560
C 18572
C18573
C18574
C 18581
C 18590
C1859*
C 18684
C 18685
C 18689
C 18693
C 18697
C16701
C18816
C 18820
C 18824
C 18825
C 18829
C 18830
C16831
C 18832
C 18833
C 18837
C18841
C18844
C 188*8
C 18849
C 18853
C 18857
C 18992
C 18993
C 19000
68.50 .12 (
70.35 .81
64.95 .84
69.48 .70 (
71.05 .1*
65.28 .87
59.03 .09
58.42 .31 <
62.77 .85 (
68.99 .61
63.94 .50 (
64.45 .80 (
54.62 .16 (
62.51 .60 (
72.77 .49
67.49 5.16
71.17 5.08
70.35 5.62
70.36 5.09
71.88 5.68
68.37 5.77
72.19 5.8*
73.*9 5.35
69.62 5.07
79.89 4.10
71.3* 5.00
72.60 «.T6 •
68.29 *.83
75.20 5.16
74.98 5.98
7».50 5.12
70.75 5.37
71.52 5.04
73.01 5.01
77.17 5.12
78.52 «.*1
65.42 3.98
75.53 5.16
68.22 5.98
68.96 5.28
73.96 5.*3
71.57 5.15
).87
1.02
.05
).80
.23
.35
1.19
).59
).6l
.20
).9*
).86
).94
).85
.41
.35
.36
.41
.31
.48
.25
.19
.32
.05
.15
.29
.40
.3*
.70
.81
.70
.77
.5*
.04
.43
.45
.39
.53
.11
.32
.19
.38
18.22
17.50
19.90
18.19
15-40
17.09
14.35
20.11
19.65
11.69
7.71
6.95
7.70
4.64

8.47
7.02
7.09
10.38
8.57
7.54
7-22
6.43
14.26
2.61
8.79
4.27
5.39
17.94
17.23
8.00
7.*9
6.62
5.68
5.62
3.42
2.48
5.27
5.75
13.51
14.27
14.33
7.04
5.72
9.68
6.3*
6.77
10.16
20.40
15.88
11.48
11.62
16.46
16.89
24.71
19.52
19.71
13.55
11.17
11.67
6.20
9.12
11.66
9.52
9.92
9.00
11.46
12.53
IS. 23
16.3*
8.90
7.30
9.30
13.90
13.39
10.2*
8.32
11.65
25.12
9.11
13.92
10.19
4.44
6.97
8.25
5.75
10.38
8.21
7.2*
16.48
25.68
20.94
13.77
13.40
20.37
23.43
34.04
27.18
21.72
17.17
14.03
15.64
11.50
11.42
15.88
14.08
12.77
10.64
12.90
14.67
18.65
17.77
11.04
10.03
11.69
16.42
16.19
14.50
10.40
12.67
28.03
11.91
17.44
12.39
4.69
8.75
                                                                                                                         U)
   NOTE:   Refer to table  1  for abbreviations -and  to table 2 for  identification of
          samples.

-------
SAMPLE
        ORS
                   TABLE 7—SULFUR ANALYSES  OF WHOLE COAL SAMPLES
                      (percent, moisture-free whole coal basis)
               PYS
                     sus
                            TOS
                                  SIRP
C 12059
C 12495
C12831
C 129*2
C 13039
C 13046
C 13324
C13433
C 1346>
0.99
2.n
2.26
1.12
1.96
1.69
2.27
1.60
3.78
2.13
0.54
0.98
1.37
2.56
2.36

0.06
0.03
0.12
0.01
0.01
0.02
0.01
0.67

0.02
0.01
0.02
0.08
0.04
0.04
0.01
0.02
0.04
0.11
0.02
0.03
0.02
0.02
0.02
0.03
0.04
0.01
0.02
0.01
0.07
0.08
0.01
0.07
0.03
0 04
0.10
0.06
0.14
0.02
0.05
0.07
0.12
0.06
3.14
4.35
2.60
3.92
4.02
4.69
4.30
3.03
4.04
1.93
4.57
2.51
4.27
3.63
2.18
2.92
1.43
1.22
4.83
4.81
2.79
3.73
4.01
3.68
1.34
4.25
4.25
3.70
3.H
1.53
3.98
4.20
3.45
4.06
4.31
3.16
3.35
5.59
3.90
0.98
1.71
3.33
4.94
4.45
3.55
4.47
2.70
3.87
3.96
4.23
3.37
1.87
4.08
2.18
4.55
2.34
4.27
3.18
2.18
2.35
1.35
1.23
4.34
4.27
2.46
3.24
3.43
3.74
1.44
3.96
4.13
3.37
2.59
1.32
3.15
3.74
3.40
3.66
4.12
2.58
3.27
4.23
3.63
0.79
1.34
4.63
4.43
3.26
                                                  SAMPLE
                                                          ORG
                                                                 PYS
                                                                        SUS
                                                                              TOS
                                                                                     SXRF
C15496
C 15566
C 15678
C 157 17
C 15791
C 15868
C 15872
C 15943
C 15914
C 15999
C 16030
C16139
C 16264
C 16265
C16317
C 16408
C16501
C16543
C 16564
C 16729
C16741
C 16787
C16919
C 16993
C 17001
C17016
C17045
C17046
C 17047
C 17053
C 17054
C170B9
C 17092
C 17095
C 17096
C17097
C 17098
C 17099
C17215
C17243
C 17244
C17245
C 17216
2.34
1.12
2.10
2.56
0.72
0.56
1.82
1.26
0.91
1.44
1.60
2.46
2.14
1.94
1.95
1.07
1.15
1.91
2.10
0.83
1.96
0.54
0.37
1.50
1.51
2.59
0.31
0.56
0.70
1.78
0.49
0.56
1.41
1.12
0.40
0.46
0.46
1.01
1.41
1.32
0.69
1.05
0.74
1.26
3.3«
3.21
1.59
1.14
0.29
1.81
3.02
2.27
1.79
1.87
2.27
2.33
1.22
0.97
3.78
1.21
1.20
1.67
?.30
1.54
1.10
0.76
1.75
2.62
2. 87
0.10
0.53
1.16
1.97
0.31

2.37
2.59
0.24
0.07
1.01
1.82
2.67
2.41
1.85
2.39
0.19
0.05
0.05
0.05
0.04
0.02

0.05
0.05
0.02
0.08
0.04
0.11
0.05
0.04
0.33
0.05
0.01
0.04
0.03
0.0»
0.05
0.03
0.10
0.90
0.02
0.10
0.02
0.03
0.02
0.02
0.03

0.16
0.19
o'.os
0.02
0.05
0.21
0.10
0.42
0.12
0.24
0.02
3-67
1.85
5.36
4.19
1.88
0.85
3.68
4.33
3.20
3.31
3.51
4.84
4.52
3.20
3-25
4.90
2.37
3-15
3.80
3-n
3-55
1.66
1.23
4.15
4.14.
5.84
0.44
1.11
1.88
3-77
0.83
0.56
3-94
1.20
0.69
0.55
1.53
3.04
4.18
4.15
2.66
3.68
0.96
3.94
4.70
4.83
4.11
1.49
0.88
3.29
2.99
3.48
3.04
3.20
4.01
4.47
3.53
3.22
3.24
2.79
3.32
4.48
2.48
3.63
1.60
1.05
3.07 .
3.49
5.40
0.54
0.80
0.96
4.00
0.87
0.88
3.96
2.94
0.68
0.57
0.92
2.33
2.88
3.21
1.82
2.85
1.23
UJ

-------
SAMPLE
         ORC
                 PIS
                        sus
                                TOS
                                        SXRF
                                                          SAMPLE
                                                                   ORG
                                                                           PIS
                                                                                   SUS
                                                                                           TOS
                                                                                                  SXRF
C1727B
C17279
C17303
C173M
C 17305
C17307
C 17309
C 17601
C 17721
C17970
C1798*
C 17988
C 18009
C 18040
C180**
C 1830*
C 16320
c 18349
C18350
C18351
C18355
C 18360
C 18389
C 18392
C 18395
C 18398
C 18401
C 18*04
C 18*07
C 18*08
C18*11
C 18415
C18419
C 18*21
C 18*33
C 18*36
C 18*37
C1B**0
C 18*41
C 18*44
C 18445
C 18*46
C 18449
3.20
3.09
0.75
2.09
1.4*
1.8*
0.34
1.28
0.88

0.57
0.80
0.72
2.11
1.85
1.55
1.83
1.81
2.15
1.21
0.93
2.08
2.01
.58
.99
.39
.90
.70
.84
.71
.57
1.88
1.54
1.45
1.13
0.68
0.71
0.47
0.36
0.64
0.60
0.31
0.56
1.47
1.95
0.48
1.52
2.00
3-65
0.06
2.35
1.37

1.50
1.35
0.27
1.74
1.85
2.63
1.83
2.88
3.46
2.72
3.76
1.8*
2.46
1.81
1.28
1.84
0.83
2.31
1.60
1.64
2.77
2.08
2.40
1.64
0.13
0.20
0.01
0.01
0.08
0.07
0.23
0.01
0.13
0. 18
0.18
0.06
0.51
1.06
0.98
0.01
0.18
0.01

0.01
0.01
0.08
0.01
0.01
0.07
0.05
0.03
0.04
0.03
0.03
0.02
0.11
0.04
0.26
0.34
0. 18
0.22
0.08
0.26
0.28
0.12
0.16
0.42
0.09
0.05
0.02
0.03
0.03
0.09
0.02
0.01
0.02
4.8*
5.22
1.29
».13
«.50
6.*7
0.12
3.81
2.26

2.09
2.17
1.07
3.86
3.71
«.25
3.71
*.72
5.6*
3.96
«.72
3.9*
*.58
3.*3
3-52
*.57
1.92
«.2«
3.52
3.62
*.62
*.09
«.10
3.51
••.35
0.92
0.7*
0.51
0.*7
0.79
0.8*
0.3*
0.72
5.03

1.*6
3.83
3.61
4.02
0.5*
3.18
2.01
1.25
1.92
1.95
1.37
2.85
3.29
3.15
3.*3
«.*8
5.27
3.82
. 4.70
3.86
*.70
3.67
3.52
4.46
1.87
3.89
3.50
3.42
4.69
3.81
4.18
3.4*
1.25
0.95
0.92
0.5*
0.53
0.6*
0.76
0.40
0.78
C 18150
C1B451
C 18454
C 18*57
C 18458
C 18462
C 18463
C 18*64
C 18465
C 18493
C 18560
C 18572
C 18573
C1857*
C18581
C 18590
C1859*
C 16684
C 18685
C 18689
C 18693
C 18697
C 18701
C18816
C 18820
C1882*
C 18825
C 18829
C 18830
C 18831
C 18832
C18833
C 18837
C 188*1
0188*4
C 188*8
C 188*9
C 18853
C 16857
C 16992
C 18993
C 19000
0.52
0.56
0.30
0.25
0.28
0.91
0.44
0.62
0.58
0.78
1.87
1.94
1.97
2.30
0.45
1.35
1.63
1.29
1.69
1.52
2,05
1.93
1.69
0.45
0.51
0.54
0.58
1.11
0.58
0.96
0.79
0.66
0.63
2.51
1.16
0.50
0.35
1.42
2.42
0.62
0.56
0.52
0.09
0.01
0.05
0.17
0.12
0.32
0.45
0.03
0.02
1.07
4.56
3.60
5.01
4.87
2.35
2.58
2.49
2.51
2.91
1.49
3.21
2.02
1.92
0.54
0.26
0.43
1.03
2.60
0.36
0.66
0.58
0.06
1.24
2.48
1.14
0.04
1.21
1.87
2.51
0.10
0.14
0.08
0.04
0.03
0.22
0.07
0.01
0.01
0.07
0.05
0.05
0.04
0.02
0.52
0.91
0.72
0.02
0.05
0.08
0.06
0.06
0.05
0.15
0.08
0.08
0.01
0.03
0.01
0.13
0.09
0.09
0.01
0.02

0.03
0.03
0.03
0.01
0.07
0.10
0.09

0.02

0.6*
0.59
0.58
0.50
0.11
1.24
0.95
0.69
0.65
1.86
6.«5
6.06
7.88
7.88
2.61
3.98
4.20
3.86
4.66
3.06
5.»1
«.03
3.69
1.00
0.80
0.98
1.7*
3.80
1.03
1.65
1.38
0.72
1.90
5.02
2.33
0.55
1.62
3.«0
5.02
0.71
0.72
0.61
0.69
0.66
0.58
0.49
0.52
1.20
0.75
0.66
0.60
1.70
6.52
5.85
8.02
7.48
2.66
3.62
3.89
3.95
«.51
3.20
5.25
3.80
3.60
0.85
0.95
.07
.57
.58
.16
.82
.19
0.95
1.67
4.81
2.16
0.74
1.67
3-76
*.85
0.77
0.85
0.76
   NOTE:  Refer  to table 1 for abbreviations and  to table 2  for Identification of
          samples.
to

-------
 38
      As a   first  step  In. the  statistical  analyses  of  the  data,
geometric   means,  arithmetic  means,  standard deviations, and ranges
(minimum  and  maximum  values)  were  calculated  for  each  of   the
analytical   parameters.   The   results  of  these  calculations  are
summarized  in tables 8 through   10.  Because  determinations  for  all
variables   were  not  reported   for  all  samples  (see  appendix),  a
missing-data statistical analysis oomputer program, adapted from Davis
(1971)  and IBM (1970), was used in this study. This oomputer program
identified  the missing data and  omitted  them  when  calculating  the
statistical values.

      Trace  element concentrations of Cd, Ge, I, In, Lu, Mo, P, Pb, Rb,
Sn,   Sr,  and U were reported in some samples as "less-than" values. A
less-than value represents the identification of the  presence  of  an
element  in a particular sample at a concentration below the limit of
quantitative accuracy but above  zero. The effect  of  these  less-than
values  on  the statistical parameters shown in tables 8 through 10 was
discussed in a previous publication (Ruch et al., 1971, p. 16). It was
concluded   that  the  differences  in  mean values calculated in three
different ways, 1) using the less-than value as an accepted value,  2)
using one-half  the  less-than  value,  or  3) using zero, had little
effect on the statistics except  in those  oases  where  the  less-than
values  were  a  major  proportion of the total sample population. The
statistics  reported in tables 8  through 10 are calculated by using the
reported  less-than  value  as   the  "true value" «0.3 equal to 0.3)«
Summary statistics are not shown for those cases where  the  less-than
values compose a significant part of the total population (for example
Sn in all samples and Cd in samples from  the eastern and the  western
United States).

     Histograms  of  the  distribution  of  trace,   minor,  and  major
elements  and  of  the  high-temperature and low-temperature ashes are
given in figures 3 through 62.  The  data  for  165  of  the  172  coal
samples  are  plotted  on  the   histograms  (omitting a weathered coal
sample  C17089, the two NBS samples, and the four  samples  from  Iowa
and   Missouri)   so   that   the   three  geographic  groups  may  be
differentiated. The data from the Illinois Basin coals are plotted  as
vertically  striped  bars,  those  from  the  western United States as
horizontally striped bars, and those from the eastern United States as
unpatterned  bars.  The horizontal axis is divided into class intervals
and the vertical axis represents the number of samples in each  class.
Those  samples  whose values are beyond the last regular class interval
are plotted following a break in the abscissa and are identified  with
a plus sign ( + ).

     Geometric  means are included in tables fa,  9,  and 10 and are  used
to  compare  data  from  the  three  regions.  The  geometric mean was
calculated  by taking the logarithm of e.ioh analytical  value,   summing
the   logarithms,   dividing  the  sum by the total number of values and
obtaining the antilogarlthm of the result.  The  arithmetic  mean  was

-------
                                                                     39


calculated  by  summing the data and dividing the sum by the number of
samples. For comparison of samples, geometric means are  preferred  to
arithmetic  means  because the extremely high values (often the result
of epigenetio mineralization within the coal) are less of an influence
on  the  geometric  mean value than on the arithmetic mean. Therefore,
the geometric mean more closely approximates the value that  would  be
expected  in  an  unknown  sample (Swanson et al.t 1976; Miesch, 1967;
Davis, 1974; and McCammon, 1975).

     From the statistical analyses of the data shown on tables  8,  9,
and  10  a  number  of  interesting observations can be made. However,
caution is necessary in making interpretations,based on tables  9  and
10.  Only 23 samples from  the eastern United States made up the total
population on  table 9,  and only  29 samples from  the western United
States made up the total population on .table 10.  Tables 9 and 10 are
included so that they may be compared with the much  larger population
of  114 samples from  the Illinois Basin  that  were used  to  prepare
table 8.  Several of these observations follow:

          1. In coals from the Illinois Basin, elements that have
     relatively  large ranges and standard deviations larger than
     their arithmetic means include As, Ba, Cd,  I,  Pb,  Sb,  and
     Zn.  The  standard  deviation for Sb is also larger than the
     mean for Sb in both the eastern and western coals  analyzed.
     Several  of  these  elements  have  been  identified  in the
     sulfide  fraction  of  the  mineral  matter.   The   mineral
     sphalerite  contains  Zn  and  Cd,  galena contains Pb, some
     pyrites  contain  As  and  perhaps  Sb,  and  Ba  has   been
     identified within the mineral barite. Data obtained from the
     determinations of these elements generally present a  skewed
     pattern  as can b© seen in histograms of their distributions
     (figures 4, 6, 9, 22, 30, 32 and 46).

          2. In ooalo from the Illinois Basin,elements that  have
     relatively  narrow  ranges and standard deviations less than
     one-half the arithmetic mean include B, Be, Ga,   F,  Se,  V,
     Ni,  Al,  Fe,  Si,  Ti,  K,  Mg  and  many of the rare earth
     elements.  This list of  elements  includes  those  generally
     thought  to be, at least in part, in organic combination and
     those elements that occur in the  silicate  minerals.   These
     elements  display  a  more  or  less  normal distribution of
     analytical values (figs. 5, 7,  18, 17, 34,  43,  28,  48,  51,
     56, 52 and 53).

          3. In general,  elemental  concentrations  tend  to  be
     highest   in  coals  from  the  Appalachian  Basin  (eastern
     samples),   lowest  in coals from  the  western United States
     (western  samples)  and intermediate in amount in coals from
     the  Illinois  Basin.  This  is  true  with  the   following

-------
1)0
     elements:  As, Ce, Co, Cr, Cs, Cu, Dy, Eu, F, Ga, Hg, I, In,
     La, Lu, Rb, Sb, So, Se, Sm, V, Yb, Al, Cl, S, and Ti.

          H.   Western   coals   sampled   have    the    highest
     concentrations (maximum geometric mean values) for only five
     of the elements determined, Ba, P, Sr, Ca, and Na.

          5. Coals from  the  Illinois  Basin  have  the  highest
     concentrations (maximum geometric mean values) of B, Be, Br,
     Cd, Ge, Mn, Ni, Pb, Zn, Fe, and S.

     Coefficients resulting from the  correlation  of  each  parameter
with  every  other  parameter  in  coals  from the Illinois Basin (111
samples) are given in Table 11. Several geochemioal  associations  are
apparent  in  these correlation coefficients and although most of them
were mentioned by Ruch et al., 1971, they are repeated here.
                                             n •             .
          1,  The  highest  value  of  a   positive   Correlation
     coefficient is for Zn and Cd (0.94 for coals of the Illinois
     Basin). Zinc occurs in coals of the Illinois  Basin  in   the
     mineral sphalerite (ZnS) (Gluskoter et al., 1973; and Hatch,
     Gluskoter, and Lindahl, 1976) . Cadmium  is  found  in  solid
     solution  in  the sphalerite in concentrations as high as 65
     ppm (Gluskoter and Lindahl, 1973;  and Hatch,  Gluskoter,   and
     Lindahl,  1976).   The ' sphalerite  in coal is epigenetically
     deposited along cleats and in clastic clay dikes  (Cobb   and
     Russell,  1976).   Barium, which occurs as the mineral barite
     (BaSOi,), is also closely correlated with zinc  and  cadmium.
     The  occurrence  of  barite  in  amounts  large enough to be
     identified with the sphalerite in the coals  has  only  been
     observed  in a few instances.  However, there does seem to be
     a geographical and statistical correlation  between  Ba   and
     the  cations  in sphalerite,  which suggests a common control
     of their deposition.  The correlation coefficient of Ba:Zn is
     0.72 and BarCd is 0.87.

          2.  The elements  of the following  group  have  positive
     correlations  with each other: As, Co, Ni, Pb, and Sb. These
     elements are commonly found 'in nature as  sulfides  and   are
     included among the chaloophile elements (elements which  have.
     a strong  affinity  for  sulfur).   Germanium  is  positively
     correlated  with  many  ohaloophile elements  in the Illinois
     Basin coals.

          3.   The  elements  classified  as   lithophile,   which
     generally  occur   in   the  earth's crust as alumino-silioate
     minerals,  have  mutually  positive  correlations  in  coals.
     These elements are Si, Ti,  Al,  and K.  A positive  correlation
     of Mg with  the lithophile  elements also  exists,   but these-
     correlations   are   not  as  strong  as  those between the above
     four  elements.

-------
                                                                1*1
     **. There is a positive correlation of 0.65  between  Mn
and  Ca;  In  coals  of  the  Illinois  Basin,  Mn  does not
correlate as well with any other element. Manganese commonly
substitutes  for Ca in oaloite (CaC03) and is presumed to be
in that combination in coals.

     5. Sodium and Cl have a positive correlation of 0.48 in
the  Illinois  Basin  samples. A similar correlation between
chlorine and total alkalies waa reported  by  Gluskoter  and
Rees  (1961) and, in part, the correlation can be attributed
to the deposition of Na and Cl in  coals  by  saline  ground
water (Gluskoter, 1965a; and Gluskoter and Ruoh, 1971).

     6. Many of the rare earth elements have  high  positive
correlations  with  other  rare  earth elements. This may be
real, a result of the chemical similarity of these elements,
or  the  correlation  may,  in  part,  be an artifact of the
analyses.

                  (Text continued on page 69)

-------
1*2
     TABLE 8—MEAN ANALYTICAL VALUES FOR llU WHOLE COAL SAMPLES
                 FROM THE ILLINOIS BASIN COAL FIELD
til erne nt
AU
A3
b
BA
Be.
BR
CD
Ct
CU
CR
CS
CU
DY
EU
r*
CA
Gt,
HF
HG
I
IN
U
LU
MN
MO
Nl
f
ea
Rb
Sfa
st
S£
Sh
SN
SK
TA
Tb
Arithmetic
Mean
0.03 ppm
11 ppm
110 ppm
100 ppn
1 . 7 ppm
13 Ppm
2.2 ppm
11 ppm
7.3 ppm
16 ppm
1.4 ppn
11 ppm
1 . 1 ppm
0.26 ppm
67 ppm
3.2 ppm
6.9 ppm
0.51 ppm
0.2 ppm
1.7 ppm
0.16 ppm
6.8 ppm
0.09 ppm
53 ppm
H.I ppm
21 ppm
64 ppm
32 ppm
1V ppm
1.3 ppm
2.7 ppm
2.2 ppm
1.2 ppm
3.8 ppm
35 ppm
0.15 ppm
0.22 ppm
Geometric
Mean
0.03 PPm
7 . 1 ppm
yt) ppm
75 ppm
l.b ppn
10 ppo
0.59 ppm
12 ppn
6 . 0 ppm
16 ppn
1.2 ppn
13 ppm
1 . 0 ppm
0.25 ppm
63 ppo
3.0 ppo
1 . 8 ppm
0.19 ppo
0.16 ppm
1.2 ppm
0.13 ppo
6.1 ppa
O.OB ppm
DO ppm
6.2 ppm
19 ppm
15 ppm
15 ppm
17 ppm
0.61 ppm
2 . 5 ppm
2.0 ppm
1 . 1 ppm
0.91 ppm
30 ppm
0.11 ppm
0.16 ppm
Minimum
0.02
1.0
12
5.0
0.5
0.6
0.1
4.1
2.0 .
4.0
0.5
5.0
0.5
0.1
29
o.e
1.0
0.13
0.03
0.24
0.01
2.7
0.02
6.0
0.3
7.6
10
O.b
2.0
0.1
1.2
O.M
0.1
0.2
10
0.07
0.01
Maximum
O.OB
120
230
750
4.0
52
65
46
3*
60
3.6
44
3-3
0.87
140
10
43
1.5
1.6
11
0.63
20
0.44
210
29
6b
340
220
46
8.9
7.7
7.7
3- a
51
130
0.3
0.65
Standard
Deviation
0.02
20
50
110
0.02
7.4
7.4
7.5
5.3
9.7
0.73
6.6
0.42
0.12
26
1.2
6.4
0.25
0.19
2.0
0.11
2.B
0.06
41
5.1
10
60
42
y.9
1.4
1.1
1.0
0.55
B.tt
23
0.06
0.14
Number
Samples
37
113
99
56
113
113
93
56
113
113
56
113
56
56
113
113
113
56
113
56
56
56
56
113
ill
113
113
113
5b
113
56
113
56
60
56
56
41
Number
Less Than
Values






43









11


13 .
6

3

6

7
6
1




32
2



-------
TABLE 8—Continued
Element
TH
TL
U
V
W
Kb
ZN
ZR
AL
CA
CL
FE
K
MG
NA
SI
TI
AOL
M01S
VOL
F1XC
ASH
bTU/LB
0
H
N
0
HTA
LTA
ORS
PYS
SUS
TOS
SXRF
Arithmetic Ceoaetrlo Minimum
Mean Mean
2.1 ppa 1.9 ppa O.T1
0.66 ppa 0.59 ppa 0.12
1.5 ppn 1.3 ppa 0.31
32 ppm 29 ppa 1 1
O.B2 ppa 0.63 ppB 0.04
0.56 ppa 0.53 ppn 0.27
250 ppa 87 ppm 10
47 ppm 41 ppa 12
1.2 ^ 1.2
0.67 » 0.51
O.It
2.0
0.17
0.05
0.05
2.4
0.06
7.3
9.4
40
49
11
12712
70
5.0
1.3
8.2
11
15
1.6
2.0
0.08
1.9
0.16
0.05
0.03
2.3
0.06
6.4
8.1
40
49
11
12702
70
5.0
1.3
8.0
11
15
1.4
1.8
0.1 » 0.05
3.6 * 3.1
3-1 » 3.2
0.43
0.01
0.01
0.45
0.04
0.01

0.56
0.02
1.4
0.5
27
41
4.6
11562
62
4.2
0.93
4.2
3.3
3.8
0.37
0.29
0.01
0.56
0.79
Maxlaua
5.1
1.3
4.6
90
4.2
1.5
5300
130
3.0
2.7
0.54
4.1
0.56
0.17
0.2
4.7
0.15
17
18
46
61
20
14362
80
6.0
1.6
14
20
24
3.2
4.6
1.1
6.4
6.5
Standard
Deviation
0.87
0.31
0.93
13
0.69
0.21
650
27
0.39
0.48
0.13
0.63
0.07
0.02
0.04
0.7
0.02
3.1
1.3
3.1
3.6
2.3
470
3.0
0.31
0.19
1.8
2.5
3.3
0.6
0.78
O.l6
1.1
1.1
Number Nuaber
Staples Leu Than
Values
56
25
56 1
113
56
56
113
88
113
113
113
113
113
113
113
113
113
98
112
111
111
112
107
110
110
110
109
112
112
112
111
109
113
112

-------
TABLE 9—MEAN ANALYTICAL VALUES FOR 23 WHOLE COAL SAMPLES
              FROM THE EASTERN UNITED STATES
                (Appalachian coal fields)
tleoent
AC
AS
b
bA
Bfc
BH
• CD
CD
CO
CR
CS
CU
DY
EU
F
CA
Gc
Ht
HG
1
IN
LA
Lu
MN
MO
Ml
t-
PB
Kb
SB
SC
Sfi
Sh
SN
SR
TA
TB
Arithmetic
Mean
0.02 ppm
2b ppra
12 ppo
200 ppm
1 . 3 ppm
12 ppm
0.21 ppm
25 ppm
9.B ppm
20 ppm
2.0 ppm
IB ppm
2 . 3 ppm
0.52 ppm
89 ppm
5.7 ppm
1 . 6 ppm
1 . 2 ppm
0.20 ppm
1 . 7 ppm
0.23 ppm
15 ppm
0.22 ppm
IB ppn
1.6 ppo
15 ppm
150 ppm
5.9 ppm
22 ppn
1 . 6 ppn
5.1 ppm
1.0 ppm
2.6 ppm
2.0 ppm
130 ppm
0.33 ppra
0.31 ppn
Geometric
Mean
0.02 ppm
15 ppm
28 ppm
170 ppm
1 . 1 ppm
B . 9 ppm
0.19 ppm
23 ppm
7.6 ppo
18 ppm
1 . 6 ppm
16 ppm
2.0 ppm
0.17 ppo
81 ppm
5.2 ppm
0.87 ppm
1 . 1 ppm
0.17 ppm
1 . 1 ppm
0.22 ppm
14 ppm
0.18 ppm
12 ppm
1 . B ppm
11 ppm
B1 ppm
1 . 7 ppm
1* ppm
1 . 1 ppm
1 . 5 ppm
3.1 ppm
2.1 ppa
0.97 ppm
100 ppm
0.26 ppm
0.28 ppm
Hlnlmlm
0.01
1.8
5.0
72
0.23
0.71
0.10
11
1.5
10
0.40
5.1
0.74
0.16
50
2.9
0.10 ,
0.58
0.05
0.33
0-13
6.1
0.04
2.4
0.10
6.3
15
1.0
9.0
0.25
1.6
1.1
0.87
0.20
2B
0.12
0.06
Maximum
0.06
100
120
420
2.6
26
0.60
42
33
90
6.2
30
3-5
0.92
150
11
6.0
2.2
0.47
4.9
0.37
23
0.40
61
22
28
1500
1tt
63
7.7
9-3
8.1
4.3
8.0
550
1.1
0.63
Standard
Deviation
0.01
27
32
110
0.56
7.6
0.1(1
9.1
7. a
16
1.6
7.3
0.94
0.22
31
2.6
1.7
0.45
0.12
1.1
o.oe
5.3
0.12
16
6.3
5.7
300
4.0
15
1.7
2.4
2.0
1.0
2.4
130
0.28
0.17
Number Number
Samples Le*a Than
Values
13
23
23
14
23
23
23 23
14
23
23
14.
23
14
14
23
23
23 9
14
23 1
14 1
14
14
14
23
23 3
23
23
23 3
14
23
14
23
14
19 7
14
14
14

-------
TABLE 9—Continued
blement
Th
TL
U
V
W
YB
ZN
ZR
AL
CA
CL
FE
K
MG
NA
SI
TI
AUL
M01:i
VOL
F1XC
ASH
BTU/U)
C
H
N
0
HTA
LTA
OHS
PYS
sus
TOS
SXHP
Arithmetic Geooetrio Minloim
Mean Mean
4.5 ppa 4.0 ppe 1.6

1.5 ppa 1.3 ppa 0.40
38 ppa 35 ppa -14
0.69 ppa 0.62 ppa 0.22
0.83 ppa 0.73 ppa 0.18
25 ppm 19 ppa 2.0
45 ppa 41 ppa 8.0
1.7
0.47
0.17
1.5
0.25
0.06
0.04
2.8
0.09
1.2
2.7
?3
55
12
13111
72
4.9
1.3
8.0
12
15
0.92
1.3
0.10
2.3
2. 1
1.6
0.34
0.10
1.3
0.21
0.05
0.03
2.6
0.09
0.99
2.4
32
54
12
13093
72
4.9
1.3
7.0
12
15
0.82
O.bl
0.06
1.9
1.B
1.1
0.09
0.01
0.50
0.06
0.02
0.01
1.0
0.05
0.50
1.0
17
45
6.1
11374
63
4.0
0.9<*
2.5
6.2
7.6
0.35
0.04
0.01
0.55
0.74
Maxinua
9.0

2.9
73
1.2
1.4
120
88
3.1
2.6
0.80
2.6
0.6B
0.15
0.08
6.3
0.16
4.0
6.8
42
72
25
13816
80
6.0
1.8
IB
25
28
2.5
2.6
0.42
5.0
4.8
Standard
Deviation
2.1

0.73
14
0.31
0.35
24
18
0.56
0.51
0.21
0.69
0.14
0.03
0.02
1.1
0.04
0.89
1.5
0.0
7.2
4.3
696
5.3
0.4*
0.27
»-3
4.3
4.9
0.48
0.91
0.10
1.3
1.1
N unbar huober
Saaples Leaa Than
Values
14

14
23
14
14
23
19
23
23
23
23
23
23
23
23
23
14
23
23
23
23
14
22
22
22
22
23
23
23
23
22
23
23

-------
k6
          TABLE 10—MEAN ANALYTICAL VALUES  FOR 28  WHOLE COAL SAMPLES
                        FROM THE WESTERN UNITED STATES
t lenient
AC
AS
b
BA
b£
BR
CD
CE
CO
CR
CS
CU
01
EU
K
CA
GE
Hf
HG
1
IN
LA
LU
hN
MO
Nl
H
PS
RB
SB
SC
St
SK
SN
SN
TA
Tb
Arithmetic
Mean
0.03 ppm
2.3 ppm
56 ppm
500 ppm
O.lb ppm
1.7 ppm
0.18 ppm
11 ppm
1 . 6 ppra
9.0 ppm
0.12 ppm
10 ppm
0.63 ppm
0.20 ppm
62 ppm
2.5 ppm
0.91 ppm
0.70 ppm
0.09 ppm
0.52 ppm
0. 10 ppm
5.2 ppra
0.07 ppm
19 ppm
2.1 ppm
5 . 0 ppm
130 ppm
3.1 ppm
1 . 6 ppm
0.5t) ppm
1 . 8 ppm
1 . 1 ppm
0.61 ppm
1.9 ppm
260 ppm
O.lb ppm
0.21 ppm
Geometric
Mean
0.02 ppm
1 . 5 ppm
IB ppm
130 ppo
0.35 ppm
2.1 ppo
0.15 ppm
9 . 1 ppm
1 . 5 ppm
0.1 ppm
0.16 ppo
8.5 ppo
0.57 ppm
0.16 ppo
57 ppo
2.1 ppo
0.50 ppo
0.70 ppo
0.07 ppm
O.lb ppm
0.07 ppm
1.5 ppm
0.05 ppm
28 ppm
0.59 ppm
1.1 ppm
82 ppo
2.6 ppm
2.1 opm
0.15 ppm
1.5 ppm
1.3 ppm
0.56 ppm
0.1 'i ppm
£20 ppm
0. 1? ppm
0.17 ppm
Minlaum
0.01
0.31
16
160
0.10
0.50
0.10
2.8
0.60
2.4
0.02
3.1
0.22
0.07
19
0.80
0.10
0.26
0.02
0.20
0.01
l.B
0.01
1.1
0.10
1.5
10
0.70
0.30
0.18
0.50
0.10
0.22
0.10
93
0.01
O.Ob
Maximum
0.07
9.8
110
1600
1.4
25
0.60 '
30
7.0
20
3.8
23
1.1
O.BO
110
6.5
3.0
1.3
0.63
1.0
0.25
13
0.13
220
30
16
510
9.0
29
3-5
U.b
2.7
1. li-
IS
500
0.33
0.58
Standard
Devlatlor
0.02
2.6
32
320
0.3*
7.3
0.13
U.O
1.5
4.2
0.82
5.9
0.32
0.17
26
1.4
0.92
0.33
0.11
0.25
0.07
3.0
0.09
49
5.b
3.2
130
2.3
6.b
0.61
1. 1
0.59
0.29
3-B
110
0.08
0.15
Number
i Samples
' 22
29
27
22
29
29
29
22
29
29
22
29
22
22
29
29
29
22
29
22
22
22
22
29
29
29
29
29
22
29
22
29
21
26
22
22
18
Number
Less Than
Values




2

29









6


11
5

b
l
b


5
b




21




-------
TABLE 10—-Continued
Element Arithmetic Geonetrio Hiniaua
Mean Mean
TH 2.3 PPB KB ppn 0.62
TL
U 1.2 ppB 0.99 ppa 0.30
V 14 ppm 12 ppB 4.6
h 0.75 ppB 0.58 ppa 0.13
KB 0.38 PPB 0.3* ppa 0.13
ZN 7.0 ppa 5.0 ppa 0.30
ZR 33 ppa 26 ppa 12
AL 1.0 0.88
CA 1.7 1.5
CL 0.03 0.02
tE 0.53 0.19
K 0.05 0.03
HG 0.11 0.12
NA 0.14 0.06
SI 1.7 1.3
TI 0.05 0.05
ADL 14 12
HOIS 18 16
VOL 44 44
F1XC 46 46
ASH 9.6 » 8.9
BTU/LB 11409 11377
C 67 t 67
H 4.7 4.6
N 1.0 0.98
0 17 17
HTA 9.6 8.9
LTA 12 11
ORS 0.53 0.50
PYS 0.19 0.10
SUS 0.04 0.03
TOS 0.76 0.70
SXRF 0.73 » 0.70
0.31
0.44
0.01
0.30
0.01
0.03
0.01
O.J6
0.02
4.5
4.1
33
35
4.1
10084
56
3.8
0.59
8.6
4.1
4.7
0.25
0.01
0.01
0.34
0.40
Hazlaua
5.7

2.5
43
3.3
0.78
17
170
2.2
3.B
0.13
1.2
0.32
0.39
0.60
4.7
0.13
31
37
53
55
20
12901
74
5.8
1.5
22
20
26
1.1
1.2
0.22
1.9
1.2
Standard
Deviation
1.5

0.65
10
0.65
0.17
4.9
J1
0.56
0.93
0.03
0.24
0.06
0.09
0.16
1.2
0.02
7.3
8.9
3.8
5.3
3.7
872
4.2
0.46
0.22
3.2
3.7
5.1
0.19
0.2M
0.04
0.33
0.20
Nuabar Nuaber
Saaplea Leas Than
Values
22

22
29
22
22
29
26
29
29
29
29
29
29
29
29
29
21
29
29
29
29
22
29
29
29
29
29
29
29
29
27
29
29

-------
 U8
                                 TABLE 11—
I.FNKAIi HKCHiCVJlOU (l,KA:;T  LXJUAKl!:) CORRELATION COKFFJ CIENT:; OF ANALYTICAL
         NATION ON Jl'i COAL  SAMPLES FROM THE ILLINOIS BASIN COAL KIKLM
    AC    AS
                   BA    BE    BR    CD    CE    CO   CR   CS   CU    DY    EU
AG
AS
B
BA
6E
BR
CD
CE
CO
CR
CS
CU
DK
EU
F
GA
GE
HF
HG
I
IN
LA
LU
HN
MO
NI
P
PB
R9
SB
SC
St
iM
3N
SR
TA
Tb
TH
TL
U
V
W
Yh
1.00
0.38
-0.26
0.36
0.02
0.41
-0.02
0.56
0.28
0.51
0.10
0.39
0.66
0.65
0.39
0.37
-0.19
0.60
-0.18
0.49
0.26
0.46
0.31
0.07
-0.40
0.38
0.40
0.27
0.34
0. 19
0.57
0.22
0.62
-0.03
0-39
0. 5t>
0.59
0.58
0.61
0.06
0.33
0.04
U.M'
0.38
1.00
-0.37
0.13
0.17
0.10
-0.03
0.44
0.44
-0.09
0.33
0.42
0.56
0.56
-0.06
0.40
0.30
0.13
0.04
0.64
0.43
0.56
0.30
-0.16
-0.28
0.42
0.26
0.52
0.28
0.60
0.57
-0.05
0.31
-0.00
0.23
0.05
0.55
0.33
-0.09
0.03
-0.04
0. ib
O.'.H
-0.26
-0.37
1.00
0.04
0.01
-0.33
-0.01
-0.22
-0.27
0.05
-0.04
-0.23
-0.43
-0.50
-0.02
-0.01
0.20
-0.02
0.00
-0.31
-0.16
-0.32
-0.08
0.23
0.12
-0.11
-0.26
-0.30
-0.08
-0.04
-0.21
0.04
-0.35
0.06
-0.10
-0.01.
-0.25
-0.09
0.22
0. 14
-0.12
-0.03
-O.PW
0.36
0.13
0.04
1.00
0.12
-0.00
0.87
0.10
0.28
0.18
0.06
-0.02
-0.01
0.05
-0.09
0.17
0.31
0.05
0.43
-0.02
-0.13
0.17
0.03
0.11
0.10
0.25
-0.13
0.04
0.02
0.29
0.18
-0.00
-0.02
-0.08
-0.06
0.23
0.03
0.21
-0. 14
0.08
0.20
-0. 10
O.?1
0.02
0.17
0.01
0.12
1.00
-0.03
0.20
-0.01
0.19
-0.01
-0.05
0.41
0.21
0.10
-0.11
0.33
0.47
-0.05
0.02
0.01
0.03
0.11
-0.01
0.01
-0.14
0.22
0.03
0.32
-0.06
0.29
0.20
-0.06
0.03
-0.00
0.05
-0.26
0.24
-0.07
0.01
-0.05
-0.15
-0.17
o . :'(i
0.41
0.10
-0.33
-0.00
-0.03
1.00
0.01
0.01
0.29
-0.14
-0.27
0.06
0.27
0.19
-0.22
0.01
0.07
-0.09
0.08
0.55
0.07
0.23
-0.10
-0.03
-0.10
0.23
0.09
0.19
-0.27
0.10
O.OE
-0.11
0. 1 1
0.26
0.11
0.01
-0.04
0.12
-0.37
0. 16
0.29
0.15
0.1;'
-0.02
-0.03
-0.01
0.87
0.20
0.01
1.00
-0.14
0.04
'0.06
•0.14
0.11
'0.09
-0.09
-0.14
0.01
0.27
-0.02
0.10
-0.03
-0.21
-0.06
-0.09
0.19
0.09
0.12
-0.14
0.09
-0.23
0.16
0.03
-0.01
-0.20
0.26
-0.09
0.11
-0.05
0.00
-0.48
0.03
-0.01
-0.09
0.02
0.56
0.44
-0.22
0.10
-0.01
0.01
-0.14
1.00
0.20
0.61
0.82
0.20
0.65
0.73
0.45
0.58
-0.19
0.69
-0.07
0.37
0.24
0.67
0.28
-0.15
-0.31
0.15
0.22
0.05
0.79
0.16
0.75
0.05
0.56
-0.11
0.30
0.54
0.73
0.83
0.12
0.08
0.18
-0.01
0.76
0.28
0.44
-0.27
0.28
0.19
0.29
0.04
0.20
1.00
-0.24
-0.00
0.36
0.45
0.31
-0.26
0.19
0.39
0.08
0.32
0.36
0.03
0.45
0.06
-0.16
-0.15
0.69
0.01
0.55
-0.05
0.53
0.46
-0.14
0.18
0.04
0.01
0.12
0.16
0.29
-0.16
0.02
0.03
-0.06
0.49
0.51
-0.09
0.05
0.18
-0.01
-0.14
-0.06
0.61
-0.24
1.00
0.55
0.02
0.33
0.37
0.31
0.28
-0.22
0.45
-0.06
0.11
0.07
0.35
0.21
-0.01
0.06
-0.01
0.01
-0.20
0.53
-0.09
0.45
0.33
0.34
-0.23
0.11
0.51
0.25
0.54
0.44
0.28
0.30
-0.02
0 . HI)
0.40
0.33
-0.04
0.06
-0.05
-0.27
-0.14
0.82
-0.00
0.55
1.00
0.06
0.45
0.54
0.47
0.52
-0.16
0.72
-0.11
0.12
0.16
0.43
0.36
-0.21
-0.23
0.01
0.04
-0.16
0.92
-0.01
0.70
0.12
0.43
-0. 16
0.11
0.56
0.64
0.77
0.45
0.11
0.07
0.02
0.60
0.39
0.42
-0.23
-0.02
0.41
0.06
0.11
0.20
0.36
0.02
0.06
1.00
0.50
0.46
0.01
0.40
0.27
0.17
0.03
0.37
0.20
0.22
0.05
-0.01
-0.19
0.42
0.14
0.38
-0.07
0.40
0.35
0.06
0.22
0.06
0.24
-0.13
0.57
0.15
0.18
-0.15
-0.08
0.05
0.4H
0.66
0.56
-0.43
-0.01
0.21
0.27
-0.09
0.65
0.45
0.33
0.45
0.50
1.00
0.87
0.16
0.70
-0.06
0.46
-0.04
0.64
0.42
0.73
0.25
-0.10
-0.24
0.40
0.30
0'.29
0.40
0.29
0.74
0.02
0.65
0.09
0.35
0.30
0.63
0.60
0.10
0.03
0.25
0.23
O.B1
0.65
0.56
-0.50
0.05
0.10
0.19
-0.09
0.73
0.31
0.37
0.54
0.46
0.87
1.00
0.31
0.58
-0.25
0.48
-0.11
0.55
0.47
0.74
0.34
-0.04
-0.30
0.26
0.34
0.13
0.45
0.21
0.69
0.09
0.71
0.03
0.36
0.39
0.68
0.58
0.06
-0.07
0.15
0.21
O.B3
0.39
-0.06
-0.02
-0.09
-0.11
-0.22
-0.14
0.45
-0.26
0.34
0.47
0.01
0.16
0.31
1.00
0.06
-0.36
0.52
-0.18
-0.17
-0.19
-0.00
-0.04
-0.05
0.01
-0.18
0.38
-0.25
0.45
-0.25
0.31
0.19
0.2B
-0.13
0.14
0.43
0.55
0.36
0. 19
0.18
-0.02
0.05
0.31

-------
                                                                           1*9
                         TABLE 11—Continued
AC     AS    B    BA    BE    Bfl    CD    CE    CO    CR    CS    CU    DK    EU
ZN
ZR
AL
CA
CL
FE
K
MG
MA
SI
TI
AOL
(CIS
VOL
FIXC
ASH
BTU
C
H
N
0
HTA
LTA
ORS
ftS
sus
TOS
SXRF
-0.03
0.25
0.60
-0.13
0.19
-0.10
0.55
O.H5
0.14
0.16
0.414
-0.01
-0.22
-0.44
-0.06
0.51
-0.24
-0.19
-0.23
-0.14
0.10
0.51
0.38
-0.26
-0.04
0.07
-0.14
-0.23
0.01
-0.17
-0.02
-0.17
0.03
0.19
0.15
-0.13
-0.24
-0.22
-0.04
-0.06
-0.15
-0.31
0.29
-0.05
0.21
0.30
-0.06
0.27
-0.15
-0.06
-0.08
-O.U5
0.16
-0.07
-0. 14
-0.18
-0.06
-0.10
0.17
0.14
-0.34
0.01
-0.17
0.05
0.33
0.24
0.03
0.68
0.56
0.54
-0.52
0.11
-0.52
-0.50
0.02
-0.40
0.51
0.15
0.16
0.52
-0.07
-0.10
0.23
0.31
0.72
0.59
0.23
0.44
-0.08
-0.20
0.11
0.03
0.13
0.17
0.21
0.11
0.36
-0.04
-0.07
0.10
-0.17
-0.11
-0.15
-0.04
0.26
0.11
0.08
-0.07
-0.30
0.06
-0.24
-0.21
0.20
-0.05
0.05
-0.21
-0.27
0.25
-0.00
-0.06
-0.23
-0.13
0.07
0.14
0.07
0.28
-0.17
-0.12
0.15
0.08
0.11
-0.17
-0.01
-0.07
0.01
0.02
0.08
0.09
0.10
0.13
0.03
0.23
0.06
0.09
0.39
-0.16
-0.04
-0.10
0.12
0.04
0.09
0.06
0.05
-0.24
0.28
-0.11
0.23
0.30
-0.14
0.23
-0.04
-0.10
-0.06
-0.27
-0.29
-0.15
-0.36
-0.37
0.94
0.28
0.03
0,39
-0.16
-0.02
-0.10
-0.08
-0.05
-0.00
0.06
0.14
0.29
0.23
-0.19
-0.02
-0.06
-0.05
0.02
-0.12
0.11
-0.01
0.05
.0.12
-0.13
-0.06
-0.04
0.04
-0.12
0.15
0.56
-0.17
0.06
-0.07
0.7»
0.49
0.00
0.46
0.33
-0.41
-0.25
-0.63
0.15
0.48
-0.26
-0.14
-0.34
-0.18
0.14
0.47
0.3«
-0.30
0.04
0.15
-0.10
-0.09
0.09
0.12
-0.07
-0.10
0.06
0.17
-0.09
-0.20
-0.21
-0.22
-0.08
0.01
-0.02
-0.23
0.33
-0.22
0.36
0.32
-0.02
0.24
-0.11
-0.20
-0.16
-0.40
0.00
0.04
-0.20
-0.25
0.01
0.01
0.44
-0.11
-0.07
-0.10
0.56
0.41
0.23
0.47
0.34
-0.08
-0.02
-0.19
-0.10
0.41
-0.41
-0.39
-0.21
-0.31
0.29
0.40
0.31
0.10
-0.07
0.32
0.05
0.10
-0.15
0.06
0.44
-0.21
-0.15
-0.03
0.70
0.51
-0.02
0.36
0.24
-0.31
-0.19
-0.41
0.01
0.40
-0.30
-0.21
-0.10
-0.25
0.07
0.40
0.30
-0.07
0.11
0.15
0.07
0.10
0.18
0.01
0.12
-0.15
-0.16
0.19
0.12
-0.03
-0.20
-0.08
0.06
0.09
-0.03
-0.06
0.05
-0.00
0.11
0.13
-0.02
-0.04
-0.10
0.03
0.12
-0.19
0.12
0.01
-0.01
-0.03
-0.03
0.08
0.55
-0.20
0.06
0.04
0.74
0.41
-0.18
0.40
0.40
-0.25
-0.37
-0.59
0.11
0.50
-0.17
0.01
-0.27
0.05
-0.14
0.50
0.35
-0.35
'0.06
0.02
-0.13
-0.16
-0.07
0.16
0.46
-0.16
0.09
0.03
0.75
0.39
-0.10
0.38
0.29
-0.40
-0.44
-0.62
0.10
0.54
-0.18
-0.03
-0.25
0.02
-0.20
0.54
0.36
-0.35
0.10
0.01
-0.10
-0.12
-0.16
-0.17
0.28
-0.10
-0.04
-0.06
0.32
• 0.23
0.01
0.21
0.08
-0.31
-0.20
-0.09
-0.09
0.26
-0.16
-0.22
-0.09
-0.22
-0.03
0.25
0.15
0.08
0.16
0.10
0.17
0.16

-------
50
                               TABLE  11—Continued
    CA    GE    HF    KG    I     IN    LA    LU    HN    MO    NI    P    PB    RB    SB
AC
AS
B
BA
BE
BR
CD
CE
CO
CR
CS
CU
or
EU
F
CA
CE
HF
HG
I
IN
LA
LU
HN
MO
NI
P
Pb
RB
Sti
SC
st:
SM
SN
SR
TA
TB
TH
TL
U
V
W
YB
0.37
0.10
-0.01
0.17
0.33
0.01
0.01
0.58
0.19
0.28
0.52
0.10
0.70
0.58
0.08
1.00
0.22
0.32
0.17
0.60
0.32
0.75
0.27
-0. 16
-0. 18
o.io
0.07
0. 17
0.52
0.3H
0.75
0.05
0.45
-0.05
0.15
0.27
O.IH
0.55
0. 19
0. 15
I). 11
0.23
0.59
-0.19
0.30
0.20
0.31
0.17
0.07
0.27
-0. 19
0.39
-0.22
-0.16
0.27
-0.06
-0.25
-0.36
0.22
1.00
-0.12
0.18
-0.09
-0.07
-0.09
-0.03
0.21
-0.00
0.12
-0. IB
0.52
-0. 17
O.bt)
0.02
-0. 16
-0.32
0. 17
-0.06
-0.26
-0.03
0.01
-0.06
-0.01
-O.OB
-0. 12
0.03
0.60
0.13
-0.02
0.05
-0.05
-0.09
-0.02
0.69
0.08
0.15
0.72
0.17
0.16
0.18
0.52
0.32
-0.12
1.00
-0.05
0.16
0.01
0.33
0.26
-0.06
-0.27
0.03
0. 12
-0.01
0.62
Q.Ot,
0.61
0.21
0.35
-0. 12
0. 16
0.51
0.71
0.68
0.28
0.02
0. 19
0.06
0.51
-0.18
0.01
0.00
0.13
0.02
0.08
0.10
-0.07
0.32
-0.06
-0.11
0.03
-0.01
-0.11
-0.18
0.17
0.18
-0.05
1.00
0.01
-0.03
0.09
-0.01
-0.13
-0.09
0.10
0. 11
0. 17
-0. lb
0.31
-0.02
-0.12
-0. 11
-0.01
0.01
-0.09
0.03
0.05
0.29
-0.01
O.Ot)
-0.06
0.01
0.19
0.61
-0.31
-0.02
0.01
0.55
-0.03
0.37
0.36
0.11
0.12
0.37
0.61
0.55
-0.17
0.60
-0.09
0.16
0.01
1.00
0.15
0.61
0.20
-0.16
-0.17
0.11
0.0
-------
                                                                            51
                         TABLE 11—Continued
GA    GE    HF    KG    I     IN    LA    LU   MN    MO    NI    P    PB    RB    SB
IN
ZR
AL
CA
CL
FE
K
MC
NA
SI
TI
ADL
HOIS
VOL
FIXC
ASH
BTU
C
H
N
0
HTA
L.TA
ORS
PYS
SUS
TOS
SXRF
0.05
0.06
0.11
-0.21
-0.21
-o.o4
0.50
0. 14
-0.10
0.16
0.32
0. 11
0.01
-0.21
0.03
0.22
-0.16
-0.04
-0. 19
-0.03
0. 17
0.20
0.13
-0. 11
-0.07
0.07
-0. 12
-0.07
0.23
-0.10
-0.11
0.07
-0.31
0.29
-0.23
-0.09
-0.19
-0.19
-0.12
0.10
0.36
0.37
-0.21
-0.12
0.03
0.07
0.09
-0.11
-0.05
-0.09
0.03
0.07
0.11
-0.09
0. 11
0. 18
-0.01
0.22
0.51
-0.11
-0.07
0.06
0.63
0.54
0.03
0.51
0.31
-0.17
-0.15
-0.31
-0.20
0.56
-0.11
-0.39
-D.20
-0.29
0.01
0.56
0.17
-0.05
0.17
0.02
0.10
0.06
0.12
0.03
-0.08
-0.12
-0.05
-0.17
-0.02
-0.09
-0.13
-0.15
-0.05
0.08
0. 16
-0.09
0.15
-0.13
0.13
0.11
-0.01
0. 10
0.08
-0.25
-0.29
-0.25
-0.11
-0.05
-0.29
-0.25
0.02
0.07
0.18
-0.10
0.21
-0.00
0.16
0.03
-0.07
0.28
0.36
0.19
-0.21
-0.56
0.22
0.3«
-0.05
0.18
-0.29
0.15
0.01
0.3"
0.19
-0.35
-0.08
-0.13
-0.26
-0.26
-0.21
-0.13
0.19
-0.11
-0.01
-0.01
0.31
0.08
-0.16
0.05
0.17
-0.01
-0.37
-0.37
0.23
0.11
-0.01
0.19
0.06
0.19
-0.10
0. 11
-0.01
-0.21
-0.06
-0.07
-0.16
-0.16
-0.04
0.21
0.65
-0.29
0.01
-0.05
0.71
0.31
-0.04
0.49
0.57
-0.06
-0.16
-0.70
0.30
0.41
-0.22
0.04
-0.25
0.13
0.08
0.41
0.21
-0.48
-0.17
0.08
-0.36
-0.40
-0.06
0.06
0.21
-0.10
-0.10
-O.f3
0.35
0.18
-0.11
0.08
0.20
-0.01
-0.20
-0.37
0.22
0.13
-0.07
0.05
0.21
0.07
0.01
0.13
0.02
-0.18
-0.12
0.02
-0.18
-0.17
0.15
-0.13
-0.06
0.65
-0.18
0.08
-0.13
0.24
0.09
0.18
-0.04
0.17
0.19
0.24
-0.46
0.39
-0.37
-0.33
-0.12
-0.23
-0.05
0.39
0.40
0.23
0.01
0.03
0.14
0.17
0.18
0.20
0.05
0.11
-0.21
0.33
-0.21
0.14
-0.02
0.06
-0.09
-0.06
-0.04
0.21
-0.28
0.15
-0.20
-0.27
-0.03
-0.28
-0.12
0.19
0.22
0.52
0.33
0.01
0.52
0.49
0.18
-0.02
0.22
-0.16
-0.07
-0.07
0.13
0.03
-0.17
0.06
0.24
0.18
0.18
-0.31
0.28
-0.03
0.09
0.17
-0.20
0.16
0.06
-0.03
-0.07
-0.40
-0.16
-0.08
-0.33
-0.35
-0.16
-0.15
0.10
-0.22
0.11
-0.16
0.16
0.02
-0.14
-0.10
0.06
-0.12
-0.16
-0.18
0.23
-0.11
0.22
0.19
0.00
0.09
-0.03
-0.17
-0.23
-0.32
-0.10
0.02
-0.26
-0.30
0.14
-0.09
-0.09
0.01
-0.00
0.24
-0.12
-0.12
-0.30
-0.21
-0.01
0.06
0.05
-0.09
0.10
-0.03
0.15
0.21
-0.02
0.04
-0.27
-0.05
-0.04
-0.26
0.16
-0.11
-0.06
-0.10
-0.21
0.01
0.41
-0.25
-0.13
-0.04
0.67
0.46
-0.01
0.34
0.24
-0.27
-0.17
-0.43
0.11
0.30
-0.24
-0.16
-0.15
-0.25
0.13
0.30
0.27
-0.05
0.06
0.22
0.05
0.07
0.17
-0.04
-0.05
-0.06
-0.14
0.16
0.01
-0.11
-0.18
-0.13
-0.02
0.19
0.16
-0.05
0.06
-0.05
0.06
0.14
-0.04
0.12
-0.03
-0.05
-0.05 .
-0.25
0.04
-0.04
-0.11
-0.13

-------
                          TABLE 11—Continued
SC    SE    SM    SN     SR    TA    TB    TH    TL    U     V    W     Yb    ZN    ZR
AG
AS
B
BA
BE
BR
CD
CE
CO
CR
CS
a
DY
EU
P
GA
GE
HF
HG
I
IN
LA
LU
MN
MO
NI
P
PB
RB
SB
SC
SE
S*1
SN
SR
TA
TB
TH
TL
I
V
W
KB
0.57
0.57
-0.21
0. 18
0.20
0.08
. 0.03
x 0.75
0.46
0.45
0.70
0.35
0.74
0.69
0.31
0.75
0.02
0.64
-0.02
0.43
0. 16
0.64
0.31
-0. 11
-0.23
0.40
0. 10
0. 18
0.61
0.26
1.00
0. 11
0.50
-0.03
0.26
0.51
0.72
0.73
0.00
0.08
0.20
0. 12
0.83
0.22
-0.05
0.04
-0.00
-0.06
-0. 11
-0.01
0.05
-0.14
0.33
0.12
0.06
0.02
0.09
0.19
0.05
-0.16
0.24
-0.12
0.06
-0.17
0.04
0.01
-0.01
0.18
0.01
-0.02
-0. 13
0.09
-0.00
0.11
1.00
0.01
-0. 17
-0. 10
0.33
0.13
0. 10
0. 14
0.38
0.38
0.18
0.07
0.62
0.31
-0.35
-0.02
0.03
0.11
-0.20
0.56
0. 18
0.31
0.13
0.22
0.65
0.71
0.28
0.15
-0.32
0.35
-0. 11
0.27
0.32
0.61
0.21
-0.07
-0.33
0.20
0.38
0. 12
0.11
0.12
0.50
0.01
1 .00
0.68
0.26
0.41
0.45
0.44
0.44
-0.03
0.28
0.2?
0.56
-0.03
-0.08
0.06
-0.08
-0.00
0.26
0.26
-0.11
0.04
-0.23
-0.16
0.06
0.09
0.03
-0.13
-0.05
0.17
-0.12
-0.01
0.07
0.10
0. 14
-0.08
0.15
-0.01
0.02
-0.10
0.02
-0. 11
-0.05
-0.03
-0.17
0.68
1.00
-0.05
0. 10
-0.07
-0.04
0.72
-0.13
0.16
0. 12
-0.05
0.39
0.23
-0.10
-0.06
0.05
0. 11
-0.09
0.30
0.01
0.11
0.11
0.24
0.35
0.36
0. 11
0.15
-0.06
0.16
0.01
0.25
0.11
0.31
0.06
-0.11
-0.32
0.01
0.64
0. 12
0.13
0. 10
0.26
-0.10
0.26
-0.05
1.00
0.01
0.38
0. 14
-0.08
-0.04
-0.08
-0. 12
0.24
0.36
0.05
-0.04
0.23
-0.26
0.01
0. 11
0.54
0.12
0.51
0.56
-0.13
0.30
0.39
0.43
0.27
-0.26
'0.51
-0.09
0.03
-0.10
0.42
0.12
-0.19
0.07
0.10
-0.03
-0.20
0.51
-0.08
0.51
0.33
0.41
0. 10
0.01
1.00
0.24
0.62
0.25
0. 17
0.33
0.31
0.39
0.59
0.55
-0.25
0.03
0.24
-0.04
-0.05
0.73
0.16
0.25
0.64
0.57
0.63
0.68
0.55
0.44
-0.03
0.74
0.03
0.35
0.13
0.38
0.11
0.04
-0.20
0.13
0.27
0.10
0.56
0.26
0.72
0.13
0.15
-0.07
0.38
0.21
1.00
0.60
0.22
0.02
0.02
0.17
0.76
0.58
0.33
-0.09
0.21
-0.07
0.12
0.00
0.83
0.29
0.51
0.77
0.15
0.60
0.58
0.36
0.55
0.01
0.68
0.05
0.32
0.12
0.57
0.22
-0.07
-0.16
0.32
0.02
0.15
0.70
0. 16
0.73
0. 10
0.11
-O.O'i
o.n
0.6,-?
O.ju
1.00
0.2(1
0. 1«
0.30
-0.07
0.70
0.61
-0.09
0.22
-0.14
0.01
-0.37
-0.18
0.12
-0.16
0.14
0.45
0.18
0.10
0.06
0.19
0.19
-0.06
0.28
0.29
-0.16
0.20
0.07
0.02
-0.10
0.43
-0.01
-0.19
0.19
0.46
-0.03
0.00
0.14
0.44
0.72
-0.08
0.25
0.22
0.20
1.00
0. 18
0.49
0.46
0.03
0.06
0.03
0.14
0.08
-0.05
0.16
0.03
0.08
0.02
0.28
0.11
-0.15
0\03
-0.07
0.18
0.15
-0.01
0.02
-0.01
0.03
-0.25
-0.03
-0. 11
-0.13
0.36
0.07
-0.08
-0.03
0. 16
0.21
0.08
0.38
-0.03
-0.13
-0.04
0.17
0.02
0. 18
0. 18
1.00
0.55
0.23
0.03
0.33
-0.04
-0.12
0.20
-0.15
0.29
-0.01
0.18
0.03
0.30
0.07
-0.08
0.25
0.15
-0.02
0.11
-0.08
0.19
0.06
0.32
-0.05
0.38
0.00
0.05
0.25
0. 12
-0.06
0.02
0.09
0.11
0.20
0.38
0.26
0. 16
-0.08
0.33
0.02
0.30
0.49
0.55
1.00
0.13
0.16
0.09
0.16
-0.03
-0.10
-0.17
0.15
-0.09
-0.01
-0.06
-0.02
0.02
0.05
0.23
0.21
0.05
0.23
-0.12
0.06
-0.06
0. 19
0.06
0. 14
0. 12
-0.05
0.17
0.01
-0.08
-0.17
-0.01
0. 18
0. 12
0.48
0.22
0.12
-0.12
0.31
0. 17
-0.07
0.46
0.23
0.43
1 .00
0.09
0.66
0.58
-0.29
0.21
0.26
0.12
0.02
0.76
0.49
•0.46
0.60
0.48
0.81
0.83
0.31
0.59
0.03
0.54
0.01
0.43
0.30
0.61
0.27
0.07
-0.15
0.40
0.23
0.24
0.47
0.34
0.83
0.07
0.56
-0.05
0.21
0.39-
0.76:
0.70
0.03
0.03
0.16
0.09
1.00
-0.03
0.01
-0.06
0.72
0.20
0.03
0.91
-0.12
0.09
0.01
-0.15
0.18
-0.03
-0.07
-0.16
0.05
0.23
-0.04
0.12
0.02
-0.21
-0.04
-0.06
0.15
0.18
0.18
-0.16
0.14
-0.21
0.17
0.08
-0.00
• -0. 16
0.20
-9 -'08
.'••0',iJ4;
'-0:04
0.03
-0.22
0.19
0.04
-0.12
0.07
0.25
-0.17
-0.10
0.59
-0.05
0.23
0.28
0.15
0.12
0.01
0.06
0.01
0.08
0.16
-0.17
0.06
-0.10
0.22
0.03
0.07
-0.13
0.24
0.06
-0.13
0.20
-0.02
-0.15
-0.09
0.01
-0.04
0.20
-0.03
0. 16
-0.01
-0.09
••0.43
-0.13
0.22
0.06
0.03
0.24
0.05
0. 19

-------
                                                                         53
                        TABLE 11—Continued
SC    SE    SM    SN    SR    T»    TB    TH    TL    U    V     W     YB    ZN    ZR
ZN
ZR
AL
CA
a
FE
K
MC
NA
SI
TI
AOL
HOIS
VOL
FIXC
ASH
BTU
C
H
H
0
HTA
LTA
ORS
PY3
SUS
TOS
SXRF
O.OB
0.20
0.54
-0.15
-0.01
0.05
0.6B
0.43
-0. 11
0.13
0.37
-0.22
-0.20
-0.60
0.07
0.5*
-0.33
-0.13
-0.23
-0.11
-0.05
0.51
0.10
-0.32
0. 11
0.05
-0.07
-0.08
-0.00
-0.03
0.20
-0.06
-0.03
0.06
0. 16
0.08
0.13
0.23
0.10
-0.00
-0.05
-0.01
-0.22
0.40
-0.32
-0.31
-0.07
-0.21
-0.06
0.37
0.36
0. 11
0.29
0.05
0.27
0.23
-0. 16
0.16
0.30
-0.18
0.01
0.11
0.60
0.17
-0.07
0.11
0.16
-0.33
-0.38
-0.57
0.12
0.19
-0.31
-0.23
-0.31
0.01
0.01
0.19
0.37
-0.25
-0.00
0.52
-0.05
-0.15
0.20
-0.01
-0.11
0.23
0.08
0.20
-0.19
-0.11
0.21
0.03
0.05
0.26
0.25
0.23
-0.15
0.01
-0.16
-0.11
-0.11
0.00
0.06
0.05
0.31
0.03
0.05
0. IB
0.06
0.05
-0.08
-0.09
0.15
-0.03
0.21
-0.03
0. 19
0.08
0.07
0.08
0.02
0.06
-0.11
-0.08
0.06
0.01
0.10
0.13
0.07
-0.06
0.01
0.01
-0.06
-0.15
-0. HI
-0.01
-0.18
-0.18
0.01
0.13
0.36
-0.09
-0.02
-0.02
0.51
0.39
0.21
0.56
0.28
-0.30
-0.07
-0.32
-0.13
0.50
-0.48
-0.11
-0.29
-0.08
0.06
0.50
0.16
-0.02
0.10
0.20
0.09
0.00
-0.01
-0.13
0.32
-0.06
-0.03
0.27
0.17
0.13
-0.30
0.17
0.08
-0.46
-0.16
-0.37
-0.01
0.16
-0.05
-0.08
-0.23
-0.30
-0.13
0.16
0.35
-0.27
0.11
-0.06
0.15
0.17
0.03
0.22
0.69
-0.01
0.01
-0.09
0.69
0.55
O.OK
0.59
0.18
-0.18
0.02
-0.51
-0.01
0.57
-0.15
-0.28
-0.37
-0.22
0.13
0.57
0.15
-0.17
-0.02
0.17
-0.08
-0.12
-0.22
0.06
0.25
-0.28
-0.31
0.78
0.32
0.61
0.19
0.56
0.41
0.29
-0.06
0.30
-0.53
0.61
-0.71
-0.76
-0.35
-0.37
0.30
0.62
0.68
0.62
0.62
0.52
0.76
0.66
0. 19
0.03
0.05
0.09
-0.05
-0.10
0.12
0.13
0.12
0.13
0.02
-0.03
0. 16
0.06
-0.17
0.11
-0.19
-0.17
-0.14
-0.15
0.12
0.11
0.16
0.26
-0.01
0.10
0.11
0.18
0.01
0.21
0.34
0.11
0.09
-0.00
0.33
0.39
0.13
0.18
0.42
-0.05
0.01
-0.31
0.03
0.39
-0.29
-0.22
-0.24
0.02
0.03
0.10
0.33
-0.07
-0.06
0.15
-0.05
-0.10
-0.12
0.05
-0.03
-0. 14
0.11
0.20
0.18
-0.01
0.18
0.12
0.03
-0.01
-0.33
-0.21
-0.01
0.25
-0.11
-0.17
-0.03
0.15
0.01
0.25
0.23
0.03
0.23
0.02
0.20
0.09
0.07
0. 19
0.50
-0.12
0.03
0.09
0.62
0.16
-0.15
0.36
0.29
-0.30
-0.29
-0.56
0.04
0.53
-0.23
-0.12
-0.31
-0.14
-0.04
0.53
0.40
-0.33
0.16
0.05
-0.05
-0.06
1.00
0.19
0.03
0.31
-0.14
-0.06
-0.08
-0.05
-0.07
-0.01
0.04
0.08
0.25
0.11
-0.11
-0.01
-0.06
-0.02
-0.05
-0.10
0.06
0.00
0.08
0. 10
-0.16
-0.02
-0.07
0.01
0. 19
1.00
0.11
0.06
0.12
0.13
0.01
0.09
0.17
0.16
0.12
0.04
0.04
-0.01
0.01
0.01
-0.02
-0.05
-0.13
0.07
0.05
0.04
0.12
0.08
-0.08
0.05
-0.02
-0.02

-------
                            TABLE 11—Continued
AL     CA    CL    FE    K     MG    NA    SI     TI   ADL   MOIS   VOL    FIXC  ASH    BTU
AC
AS
B
BA
BE
BR
CD
CE
CO
CR
CS
CU
DY
EU
F
CA
GE
HF
HG
I
IN
LA
LU
HN
MO
NI
P
PB
RB
SB
SC
SE
SM
SN
SR
TA
TB
TH
TL
U
V
H
KB
0.60
-0.02
0.17
0.23
0.05
0.06
0.03
0.56
-0.07
0.44
0.44
0.12
0.55
0.1)6
0.28
O.M1
-0. 11
0.51
-O.OB
O.US
0. 19
0.65
0.24
-0.06
0.05
0.22
0. 10
-0.09
0.11
-0.05
0.54
0.20
0.30
-0. 11
0.15
0.36
0.32
0.69
0.25
0.05
0.34
-0.03
0.50
-0.13
-0.17
0. 11
0.41
-0.21
0.09
0.39
-0.17
-0.10
-0.11
-0.21
-0.15
-0.20
-0.16
-0.10
-0.21
0.07
-0.11
-0.12
-0.10
-0.11
-0.29
-0. 10
0.65
0.11
-0.16
-0.22
0.01
-0.25
-0.06
-0.15
-0.06
-o. ia
0.23
-0.03
-0.09
-0.06
-0.01
-0.28
0.09
0. 11
-0.11
-0.12
0.19
0.03
-0.31
-0.08
-0.27
0.39
-0.16
0.06
0.06
-0.07
-0.15
-0.16
0.06
0.09
-0.01
-0.21
-0.31
-0.07
-0.05
0.21
-0.01
0.01
-0.10
-0.18
-0.21
-0.07
0.11
-0.00
-0.13
-0. 11
-0.01
-0.03
o.oi
0.08
0.21
-0.0?
-0.03
0.01
-0.31
-0.05
0.09
0.11
0.03
-0.10
0.19
0.01
-0.20
0.25
-0.16
-0.02
-0.07
0.17
-0. 10
-0.03
0.19
0.01
0.03
-0.06
-0.01
0.29
0.06
-0.17
-0.00
-0.01
-0.05
-0.13
0.08
0.33
-0.07
-0.16
0.21
-0.01
0. 16
0.05
0.06
0. 11
0.20
-0.03
-0 . Oi!
0.27
-0.09
0.78
-0. 1C
-0.00
0.20
0.09
0.55
0.15
-0.17
0.11
-0.00
-0.01
-0.10
0.71
-0.09
0.56
0.70
0.12
0.71
0.75
0.32
0.50
-0.23
0.63
-0.02
0.16
0.31
0.71
0.35
-0.13
-0.21
0.13
0.16
-0.12
0.67
0.01
0.68
0.16
0.60
-0.19
0.19
0.51
0.17
0.69
0.32
0.12
0.33
0.18
0.62
0.15
-0.13
0.05
0.03
-0.06
-0. 10
-0.08
0.19
-0.20
0.11
0.51
-0.03
0.11
0.39
0.23
0.14
-0.09
0.51
-0.09
0.03
0.08
0.31
0.18
0.21
0.11
0.03
0.02
-0.12
0.16
-0. 11
0.13
0.08
0.17
-0.11
0.08
0.39
0.13
0.55
0.61
0.13
0.39
-0.01
0.16
0.11
-0.21
0.33
0.13
-0.23
0.12
-0.05
0.00
-0.21
0.23
-0.02
-0.20
-0.18
-0.10
0.01
-0.10
-0.19
0.03
-0.13
-0.07
-0.16
-0.01
-0.11
0.09
-0.02
-0.17
-0.11
-0.30
-0.01
-0.18
-0.11
0.13
-0.07
0.21
0.07
0.21
-0.30
0.01
0.19
0.12
0.13
0.18
-0.15
0.16
-0.22
0.21
0.17
-0.13
0.01
-0.00
0.46
-0.22
0.17
0.36
-0.08
0.40
0.38
0.21
0.16
-0.18
0.54
-0.15
0.28
0.05
0.49
0.08
0.18
0.06
0.06
-0.10
-0.21
0.34
-0.13
0.43
0.23
0.11
0.01
O.Oti
0.56
0. 17
0.59
0.56
0.13
0.18
0.1^
0.36
0.14
-0.01
0.03
0.21
0.07
0.09
0.06
0.33
-0.08
0.34
0.24
0.06
0.40
0.29
0.08
0.32
-0.12
0.34
-0.05
0.36
0.17
0.57
0.20
-0.04
-0.09
0.24
0.06
-0.01
0.24
-0.02
0.37
0. 10
0.46
0.05
0.02
0.28
0.08
0.48
0.41
0.02
0.12
0.03
0.29
-0.01
-0.06
0.68
0.11
0.11
0.06
0.14
-0.41
0.01
-0.08
-0.31
0.09
-0.25
-0.40
-0.31
0.11
0.40
-0.17
0.08
0.19
-0.01
-0.06
-0.04
0.17
-0.06
0.18
-0.12
0.06
-0.27
0. 19
-0.22
-0.00
-0.33
0.26
0.06
-0.30
-0.46
-0.18
0.29
-0.03
-0.05
-0.01
-0.30
-0.22
-0.15
0.56
0.36
0.07
0.05
0.29
-0.25
-0.02
-0.02
-0.19
-0.03
-0.37
-0.44
-0.20
0.01
0.38
-0.15
0.16
-0.21
-0.37
-0.16
-0.20
0.19
-0.04
0.18
-0.16
0.05
-0.17
0.16
-0.20
-0.05
-0.38
0.25
-0.11
-0.07
-0.46
0.02
-0.06
0. 16
0.01
-0.33
-0.29
-0.41
-0.31
0.51
-0.04
0.28
-0.24
0.23
-0.63
-0.23
-0.19
-0.41
-0.06
-0.59
-0.62
-0.09
-0.21
0.37
-0.34
-0.09
-0.56
-0.37
-0.70
-0.37
0.24
0.21
-0.31
-0.18
-0.09
-0.43
-0.05
-0.60
-0.01
-0.57
0.?3
-0.08
-0.32
-0.37
-0.51
0.30
0.06
-0.31
-0.21
-0.56
-0.08
0.29
-0.52
-0.07
-0.17
0.28
-0.19
0.15
0.33
-0.10
0.01
0.05
0.11
0.10
-0.09
0.03
-0.21
-0.20
0.15
0.22
0.23
0.30
0.22
-0.16
-0.28
0.28
0.23
0.10
0.11
0.06
0.07
-.0.22
0.12
-0.15
0.06
-0.13
-0.01
-0.01
-0.53
-0.17
0.03
-0.01
0.01
0.51
-0.05
0.11
0.10
-0.12
-0.11
-0.02
0.48
-0.22
0.41
0.40
-0.00
0.50
0.54
0.26
0.22
-0.12
0.56
-0.13
0.34
0.14
0.41
0.13
0.39
0.15
-0.03
-0.11
-0.03
0.30
-0.05
0.54
0.40
0.49
0.01
0.01
0.50
0.16
0.57
0.61
0.11
0.39
0.25
0.53
-0.24
0.21
-0.52
-0.17
0.15
0.23
-0.06
-0.26
0.36
-0.41
-0.30
0.11
-0.17
-0.18
-0.16
-0.16
0.03
-0.41
0.13
-0.05
-0.01
-0.22
-0.07
-0.37
-0.20
0.09
0.22
0.15
-0.24
0.06
-0.33
-0.32
-0.34
-0.16
0.10
-0.48
-0.05
-0.45
-0.71
-0.19
-0.29
-0.11
-0.23

-------
                                                                              55





                          TABLE 11—Continued
AL     CA    CL    FE    K     hG    NA    SI    TI    AOL    HOIS  VOL    FiXC   ASH   BTU
ZN
If,
AL
CA
CL
FE
K
HG
NA
SI
TI
ADL
M01S
VOL
FIXC
ASH
BTU
C
H
N
0
HTA
LTA
OHS
PJS
SUS
TOS
SXHf
0.03
0.11
1 .00
-0.10
-0.13
-0.11
0.65
0.18
O.OS
0.76
0.77
0.15
0.11
-0.30
-0.06
0.18
-0.16
-0.33
-0.29
-0.08
0.30
0.50
0.37
0.00
-0.23
0.05
-0. 12
-0.15
0.31
0.06
-0.10
1.00
-0.07
-0.11
-0.21
0.13
0.05
0.09
-0.11
0.11
O.lb
0.12
-O.J9
0.30
-0.26
-0.19
-0.10
-0.13
-0.12
0.29
0.27
0.19
-0.09
-0.01
0.05
0.05
-0.11)
0.12
-0.13
-0.07
1.00
-0.26
-0.09
-0.18
O.'i48
-0.13
-0.07
-0.29
-0.27
-0.3«
0.11
-0.19
0.37
0.35
-0.01
0.41
-0.12
-0.21
-0.30
-0.12
-0.19
-o.ob
-0.37
-0.11
-0.06
0.13
-0.11
-0.11
-0.26
1.00
-0.21
0.02
-0.11)
-0.10
-0.12
0.07
-0.13
0.20
-0.34
0.17
-0.07
-0.26
0.03
-0.27
-0.19
0.22
0.12
0.3)
0.72
0.16
0.70
0.62
-O.Otl
0.01
0.65
-0.21
-0.09
-0.21
1.00
0.49
0.01
0.68
0.64
-0.18
-0.16
-0.50
0.10
0.50
-0.37
-0.20
-0.2B
-0.00
0.17
0.52
0.31
-0. 19
-0.21
0.17
-0.19
-0.21
-0.05
0.09
0.18
0.13
-0.18
0.02
0.49
1.00
-0.01
0.58
0.44
-0.06
-0.05
-0.26
-0.08
0.47
-0.3H
-0.34
-0.19
-0.16
0.04
0.19
0.37
0.09
-0.07
0.18
0.05
0.05
-0.07
0.17
0.09
0.05
0.48
-0.14
0.01
-0.01
1.00
0.27
0.04
0.27
0.24
0.12
-0.20
0.14
-0.28
-0.28
-O.OS
-0.01
0.30
0.17
0.11
0.18
-0.22
0.06
-0.02
0.02
-0.01
0.16
0.76
0.09
-0.13
-0.10
0.68
0.58
0.27
1.00
0.76
0.12
0.10
-0.23
-0.26
0.70
-0.72
-0.59
-0.41
-0.14
0.30
0.73
0.60
0.16
-0.22
0.16
0.00
-0.03
0.04
0.12
0.77
-0.11
-0.07
-0.12
0.64
0.44
0.04
0.76
1.00
0.11
0.07
-0.40
0.10
0.40
-0.41
-0.25
-0.31
0.04
0.25
0.44
0.32
-0.13
-0.34
0.14
-0.24
-0.30
O.OB
0.04
0.15
0.11
-0.29
0.07
-0.18
-0.06
0.27
0.12
0.11
1.00
O.U2
0.40
-0.36
0.08
-0.36
-0.33
-0.05
-0.31
0.41
O.OB
0.14
0.33
-0.11
-0.08
0.10
0.14
0.25
0.04
0.11
0.18
-0.27
-0.13
-0.16
-0.05
0.24
0.10
0.07
0.82
1.00
0.44
-0.35
-0.05
-0.32
-0.20
-0.10
-0.20
0.35
-0.04
0.06
0.30
-0.24
-0.14
-0.03
0.06
0.14
-0.04
-0.30
0.12
-0.34
0.2B
-0.50
-0.26
0.12
-0.23
-0.40
0.40
0.44
1.00
-0.77
-0.12
-0.16
-0.27
0.25
-0.32
0.09
-0.12
0.03
0.67
0.20
-0.02
0.49
0.58
-0.11
0.01
-0.06
-0.29
0.11
-0.31
0.10
-0.08
-0.20
-0.26
0.10
-0.36
-0.35
-0.77
1.00
-0.54
0.67
0.69
0.04
0.49
-0.04
-0.54
-0.54
-0.74
-0.37
-0.07
-0.66
-0.60
-0.01
0.04
0.48
0.30
-0.19
0.17
0.50
0.47
0.14
0.70
0.40
0.00
-0.05
-0.12
-0.54
1.00
-0.83
-0.74
-0.41
-0.33
-0.04
1.00
0.81
0.25
0.30
0.21
0.38
0.29
-O.Ob
-0.02
-0.46
-0.26
0.37
-0.07
-0.37
-0.38
-0.28
-0.72
-0.41
-0.38
-0.32
-0.16
0,67
-0.83
1.00
0.91
0.39
0.41
-0.29
-0.84
-0.74
-0.46
-0. 14
-0.32
-0.38
-0.33

-------
56
                               TABLE  11—Continued
                                    HTA   LTA   ORS   PYS   SUS   TOS   SXRF
AC
AS
B
BA
BE
BR
CD
CE
CO
CR
CS
CU
DY
EU
f
CA
CE
HF
HG
I
IN
LA
LU
UN
MO
NI
p
PB
RB
SB
SC
5E
SM
SN
SR
TA
ra
TH
TL
U
V
W
YB
-0.19
0.30
-0.50
-0.11
0.08
0.30
-0.05
-0.114
0.32
-0.39
-0.21
0.13
0.01
-0.03
-0.22
-0.01
0.07
-0.39
0.11
o.ib
0. 19
0.04
0.05
-0.33
-0.27
0.17
0.19
0.21
-0. 16
0.11
-0.13
-0.314
-0.23
-0.11
0.13
-0.11
-O.OB
-0.28
-0.76
-0.17
-0.22
-0.17
-0.12
-0.23
-0.06
0.02
-0.15
0.11
-0.14
0.02
-0.31
-0.02
-0.21
-0.10
-0.02
-0.27
-0.25
-0.09
-0.19
0.09
-0.20
-0.01
-0.29
0.06
-0.25
0.21
-0.12
-0.03
-0.20
0.00
-0.02
-0.15
-0.01
-0.23
-0.07
-0.31
-0. 11
0.07
-0.29
-0.23
-0.37
-0.35
-0.11
-0.21
-0.03
-0.31
-0.11
0.27
-0.10
-0.01
-0.17
0.23
-0.12
-0.16
0.21
-0.31
-0.25
-0.01
0.05
0.02
-0.22
-0.03
-0.11
-0.29
0.10
0.15
0.19
0.13
0.07
-0.23
-0.28
0.16
0.09
0.04
-0.25
0. 12
-0.11
-0.21
0.01
0.00
-0.06
-0.08
-0.30
-0.22
-0.37
-0.15
0.02
0.15
-0.11
0. 10
-0.15
0.51
0.26
-0.01
-0.01
0.11
0.11
-0.11
0.29
0.07
-0.10
-0.11
-0.20
-0.03
0.17
-0.05
0.01
O.Ob
O.OI
-0.10
0.08
0.01
-0.05
-0.12
0.06
-0.03
-0.27
0.13
-0.03
-0.05
-0.06
0.01
0.06
0.01
0.06
-0.13
0.13
0.30
0.12
0.03
0.01
-0.01
0.51
-0.06
0.15
0.11
-0.07
-0.10
-0.01
0.17
-0.20
0.40
0.10
0.03
0.50
0.51
0.25
0.20
-0.09
0.56
-0.25
0.34
0.11
O.M1
0.13
0.39
0.19
-0.03
-0.17
-0.05
0.30
-0.05
0.5U
0.37
0.19
0.05
0.01
0.50
0.16
0.57
0.62
0.11
0.10
0.25
0.53
0.38
-0.08
0.16
0.08
0.01
-0.08
0.05
0.34
-0.16
0.31
0.30
0.12
0.35
0.36
0.15
0.13
0.03
0.47
-0.29
0.19
-0.01
0.21
0.02
0.40
0.22
-0.07
-0.23
-O.OU
0.27
-0.05
0.10
0.3b
0.37
0.3M
-O.Ob
O.ib
0.3b
0.1r>
0.68
0.16
0.33
0.2)
O.lo
-0.26
-0.15
0.52
-0.07
0.02
-0.27
0.12
-0.30
-0.10
0.10
-0.07
-0.19
-0.35
-0.35
0.08
-0.14
0.07
-0.05
-0.25
-0.35
-0.21
-0.46
-0.16
0.23
0.52
-0.40
-0.32
-0.26
-0.05
-0.25
-0.32
0.14
-0.25
0.03
-0.15
-0.02
-0.27
-0.17
0.62
0.26
-0.07
0.03
-0.33
-0.04
0.16
-0.07
-0.30
0.08
-0.29
-0.13
0.04
0.00
-0.07
0.11
0.12
0.06
0.10
0.16
-0.07
0.11
0.17
-0.11
-0.08
-0.06
-0.17
-0.12
0.01
0.33
-0.16
-0.10
0.16
0.06
0.04
0.11
0.29
-0.00
0.05
-0.14
0. 10
0.41
-0.02
0.62
-0.01
-0.06
0.23
0.16
0.07
-0.07
-0.10
0.06
0.09
-0.15
-0.06
0.15
0.04
0.32
0.15
0.01
0.02
0.01
0.10
0.07
-0.09
0.02
-0.05
-0.13
-0.07
0.08
0.02
0.03
0.04
-0.08
0.02
-0.11
0.22
-0.04
0.05
0.05
0.52
0.18
-0.01
0.20
-0.06
0.17
0.52
0.10
0.15
0.02
0.05
-0. 14
-0. 11
0.23
-0.21
0.10
-0.36
-0.04
tO.10
-0.20
0.05
0.07
-0.01
-0.13
-0.10
0.17
-0.12
0.11
0.10
-0.29
-0.26
-0.16
-0.36
-0.18
0.11
0.52
-0.33
-0.26
-0.06
0.05
-0.11
-0.07
0.27
-0.05
0.06
-0.18
0.09
0.15
-0.08
0.76
0.14
-0.05
0.20
-0.05
-0.23
-0.18
0.31
-0.21
0.13
-0.37
0.04
-0.09
-0.25
0.10
0.10
-0.03
-0.16
-0.12
0.16
-0.07
0.18
0.06
-0.25
-0.26
-0.16
-0.40
-0.17
.0.17
0.49
-0.35
-0.30
-0.10
0.07
-0.13
-0.08
0.23
-0.15
0.05
-0.18
0.00
0.17
-0.12
0.66
0.18
-0.10
0.09
-0.06

-------
TRACE  ELEMENTS IN  COAL






  TABLE 11—Concluded
         HTA   LTA   ORS   PYS   SUS   TOS    SXRF
ZN
ZR
AL
CA
CL
f't
K
MG
NA
SI
Tl
ADL
HOIS
'VOL
FIXC
ASH
BTU
C
H
N
0
HTA
LTA
ORS
PIS
SUS
TOS
SXRF
-0.02
-0.05
-0.33
-0. 19
0.35
-0.26
-0.20
-0.31
-0.28
-0.59
-0.25
-0.33
-0.'20
-0.27
0.69
-0.74
0.91
1.00
0.37
0.5C
-0.145
-0.71
-0.70
-0.57
-0.28
-0.37
-0.55
-0.51
-0.05
-0.13
-0.29
-0.10
-0.01
0.03
-0.28
-0.19
-0.05
-0.11
-0.31
-0.05
-0.10
0.25
0.01
-0.11
0.39
0.37
1.00
0.08
-0.31
-0.12
-0.38
-0.01
0.05
-0.21
-0.01
0.06
-0.10
0.07
-0.08
-0.13
0.11
-0.27
-0.00
-0.16
-0.01
-0. 11
0.01
-0.31
-0.20
-0.32
0.19
-0.33
0.11
0.50
0.08
1.00
-0.17
-0.33
-0.13
-0.56
-0.32
-0.16
-0.51
-0.57
0.06
0.05
0.30
-0.12
-0.12
-0.19
0.17
0.01
0.30
0.30
0.25
0.11
0.35
0.09
-0.01
-0.01
-0.29
-0.15
-0.31
-0.17
1.00
-0.01
-0.01
0.12
-0.10
0.25
-0. 18
-0.09
0.00
0.04
0.50
0.29
-0.21
0.22
0.52
0.49
0.17
0.73
0.11
0.08
-0.01
-0.12
-0.51
1.00
-0.81
-0.71
-0.12
-0.33
-0.01
1.00
0.83
0.31
0.30
0.21
0.13
0.31
0.08
0.12
0.37
0.27
-0.30
0.12
0.31
0.37
0. 11
0.60
0.32
0. 11
0.06
0.03
-0.5*
0.81
-0.71
-0.70
-0.38
-0.13
-0.01
0.83
1.00
0.38
0.10
0.19
0.52
0.18
0.10
0.08
0.00
0.19
-0.12
0.31
-0.19
0.09
0.18
0.16
-0.13
0.33
0.30
0.67
-0.71
0.25
-0.46
-0.57
-0.01
-0.56
0.12
0.31
0.38
1.00
0.25
0.12
0.71
0.78
-0.16
-0.08
-0.23
-0.09
-0.19
0.72
-0.21
-0.07
-0.22
-0.22
-0.34
-0.11
-0.24
0.20
-0.37
0.30
-0.11
-0.28
0.05
-0.32
-0.40
0.30
0.40
0.25
1.00
-0.06
0.83
0.70
-0.02
0.05
0.05
-0.01
-0.08
0.16
0.17
0.16
0.06
0.16
0. 11
-0.08
-0.14
-0.02
-0.07
0.21
-0.32
-0.37
-0.21
-0.16
0.25
0.21
0.19
0.12
-0.06
1.00
0.17
0.12
-0.07
-0.02
-0.12
0.05
-0.37
0.70
-0.19
0.05
-0.02
0.00
-0.24
0.10
-0.03
0.49
-0.66
0.38
-0.38
-0.55
-0.01
-0.54
-0.18
0.43
0.52
0.74
0.83
.0.17
1.00
0.92
0.01
-0.02
-0.15
0.05
-0.41
0.62
-0.21
0.05
0.02
-0.03
-0.30
0.11
0.06
0.58
-0.68
0.29
-0.33
-0.51
0.06
-0.57
-0.09
0.34
0.48
0.78
0.70
0.12
0.92
1.00

-------
58
                             Figures  3-62

                 In figures 3  through 62,  the data from
            the eastern United States  are plotted as un-
            patterned "bars, those from the Illinois Basin
            as  vertically striped bars,   and those from
            the  western United States  as   horizontally
            striped "bars.

-------
                                                                          59
  36
UJ


I  30
   0.000
         O.OW
               0.013   0.013
                RG   (PPM)
                          0.098
                                0.120
 Fig. 3 - Distribution of silver  in
          coals  analyzed.
Fig.
                                                                         60.0
        -  Distribution of  arsenic
          in coals analyzed.
                                                       200     MO
                                                        en  IPPMI
 Fig. 5 - Distribution of boron in
          coals  analyzed.
Fig. 6 - Distribution of barium in
         coals  analyzed.
                Bt   1PPW
 Fig. 7 -  Distribution of beryllium
           in  coals analyzed.
Fig. 8  - Distribution of bromine
          in coals analyzed.

-------
6o
              2.0    3.0
                CO   (PPM)
                                                 10.0
                                                       20.0
                                                             30.0
                                                                   UO.O
                                                                         SO.O
Fig. 9  -  Distribution of cadmium
          in coals analyzed.
                 CE  (PPM)
Fig.  10 - Distribution of cerium
           in coals analyzed.
              12.0    ta.o
                CO  (PPMI
Fig. 11  - Distribution of cobalt
           in coals  analyzed.
38
30
20
IS
10
S

0
0.

i
1

|


0 12

i if
•
mm
IfliL
liiBnni mm
IJlimjIIP^THTTI (TTfn Illlll nr^fl fMII « 1 1
o n'.o 36.0 tta'.o sb.b .
en (PPM)
 Fig. 12  - Distribution of chromium
            in coals analyzed.
              2.0    3.0
                CS  IPPM)
                          u.o
                                s.o
                                           0.0
                                                 10.0
                                                                   uo.o
                                                                         SO.O
Fig. 13  -  Distribution of cesium
           in coals  analyzed.
               20.0    30.0
                 CU  IPPN)
Fig. 1^4  - Distribution  of copper
           in coals analyzed.

-------
  0.00
        0.80
              1.20    i.eo
                OT  IPPMI
                                                                         1.00
Fig. 15  -  Distribution of  dyspro-
           sium in coals analyzed.
                                        Fig.  16 - Distribution of europium
                                                  in coals  analyzed.
Fig. 17 -  Distribution of  fluorine
           in coals analyzed.
                                        • JO
                                        fc «
                                          II

                                          I

                                          0
                                           0.0
                                                        on
                                                             7.2
                                                                  9.6
                                                                        IZ.O
                                       Fig.  18 - Distribution of gallium
                                                  in coals  analyzed.
                JBfi
  o.o
        t.o
              it.o    ta.o    ».o    ».b •
               CE  (PPM)
Fig. 19 -  Distribution of  germani-
           um in couls analyzed.
                                           0.00
                                       Fig.  20 - Distribution of hafnium
                                                  in coals analyzed.


-------
 Fig.  21 - Distribution  of mercury     Fig. 22 - Distribution of iodine
           in coals  analyzed.                    in  coals analyzed.
  0.000   0.100
             0.200   0.300
               IN  (PPM)
                                                                      M.O
 Fig. 23 - Distribution of indium
           in coals  analyzed.
                                                      LR  (PPH)
Fig. 2U -  Distribution of lanthanum
           in coals analyzed.
 0.000   O.OM   0.1M   O.MO   O.itO
                                                     M     M
                                                      MN  (PPM)
                                                                 IZS
                                                                       ISO
Fig. 25 - Distribution of lutetium   Fig.  26 - Distribution of manganese
          in  coals analyzed.                    in coals  analyzed.

-------
                                                                        63

  0.0    6.0    II.O   11.0    H.O    ».0
               W   IPPH)
Fig. 27 - Distribution of molyb-
          denum in coals analyzed,
                                                                   •
                                           Distribution of nickel
                                           in coals analyzed.
                                                                      100 •
Fig. 29 - Distribution  of phospho-   Fig. 30 - Distribution of lead in
          rus in coals  analyzed.                coals analyzed.
  0.0
Fig.
31 - Distribution of rubidium
     in coals analyzed.
Fig. 32 - Distribution of antimony
          in coals analyzed.

-------
6U
              H.O     (.0
               SC  (PPM)
Fig. 33 -  Distribution of scandium    Fig.
           in coals analyzed.
          8    3.1    1.6     6.14
                 SC  (PPM)
          Distribution of selenium
          in coals  analyzed.
               SM  (PPMI
Fig. 35 - Distribution of samarium
          in coals  analyzed.
                                                              •
                                                2.0
                                                     1.0
                                                           6.0
                                                                 8.0
                                                       an
                                                                       10.0
Fig. 36 - Distribution of tin in
          coals  analyzed.
     37 - Distribution of strontium   Fig.  38 - Distribution of  tantalum
          in  coals  analyzed.                    in coals analyzed.

-------
                                                                       65
  o.oo
        o.it
               n
                              0.10
                                         •.i
Fig, 39 - Distribution of terbium
          in coals analyzed.
                                      Fig. 1*0 - Distribution of thorium
                                                In coals analyzed.
Fig. Ul - Distribution of thallium   Fig. k2 - Distribution of uranium
          in coals  analyzed.                    in coals analyzed.
Fig. 1*3 - Distribution of vanadium    Fig.  Ul* - Distribution of tungsten
          in coals analyzed.                    in coals analyzed.

-------
66
  0.00
Fig.
                                                                       1000
        - Distribution of ytterbium  Fig. U6 - Distribution of zinc  in
          in  coals analyzed.                    coals analyzed.
 K


 X-


 15


 10-


 5 •


 0
     1

Fig.
              80     120
               in   IPPMI
                               iOO
                                          0.00
                                                      1.20    1.80
                                                       RL   IXI
        - Distribution of zirconium  Fig.  U8 - Distribution of aluminum
          in  coals  analyzed.                    in coals  analyzed.
  0.00
Fig.
              1.60   2.10
               Cfl   (XI
        - Distribution of calcium
          in  coals analyzed.
Fig. 50 -  Distribution of chlorine
           in  coals analyzed.

-------
                                                                             67
    0.0
          i.o
                i.o     s.o
                 FE  (X)
                                             0.00

  Fig. 51 - Distribution  of iron in
            coals analyzed.
Fig.  52 - Distribution of potassium
           in coal* analyzed.
I
   0.000
         0.080

               0.180   O.MO
                 NC   1X1
                           0.310
                                  O.MO
                                             0.000
                      0.1
                     (X)
                                                                      I. HO   0.100 •
 Fig.  53 - Distribution of magnesium    Fig.  51* - Distribution of  sodium
            in coals analyzed.                       in coals analyzed.
    0.0
          I.O
                t.o
                            1.0
                      9.0
                 SI   IX)
  Fig. 55 -  Distribution of silicon
             in coals analyzed.
                                             0.000
                                                                     0.1*0
                                                                            0.200
          0.010   0.0*0   0.120
                  TI  (Zl
 Fig. 56 -  Distribution of titanium
            in coals analyzed.

-------

   20

   1 •
    0.00   O.M    1.2«    1.92   MS   S.20  •
                 ORS  IX)
 Fig.  57 - Distribution of organic
            sulfur in coals analyzed.
                                         in  at
                                            a)
                                                  1.0
                                                                    1.0
                                                                          s.o
                t.O     3.0
                 PTS  IX)
Fig.  58  - Distribution  of pyritic
           sulfur in  coals analyzed.
               0.200   0.300
                 sus m
                           o.uoo
                                 o.soo •
 Fig.  59  - Distribution  of sulfate
            sulfur in coals analyzed.
                                                                     S.6
                                                                           7.0
                  70S (X)
 Fig. 60 -  Distribution  of total
            sulfur in coals analyzed.
   us

a  «•
S  35

fe  28
  0.0

Fig.
                     21. C
                           rt.o
                                 3S.O
                     .
       6l - Distribution of high-
            temperature ash in  coals
            analyzed.
                                            o.o
                                                                          38.0
F.ig. 62  -  Distribution  of low-
           temperature ash in coals
           analyzed.

-------
                                                                     69


                    ENRICHMENT OP ELEMENTS IN COAL
     The average concentration of an element in the earth's  cruat  la
termed the "olarke." Clarke and Washington, 1924, wore among the first
of  the geoohemista to attempt  to  make  calculations  of  this  type.
Although  there  are a number of difficulties in accurately estimating
the clarke  of  an  element,  it  is  worthwhile   to   compare   the
concentrations  of  elements  in ooal with the olarke. This comparison
gives  an  indication  of  the  efficacy  of  the  sum  total  of  the
coal-forming  processes  in  "fixing"  various  elements in coals. The
clarke values used in this report are taken from  those  published  by
Taylor, 1961, and by Tureklan and Wedepohl, 1964.

     Enrichment values were  calculated  by  comparing  the  geometric
means  for  the  various elements with the olarkes for those elements.
Enrichment values  were  determined  for  coals  of  the  three  major
coal-producing  areas  defined  previously. Ruoh et al., (1974) listed
only those elements that were enriched or  depleted  by  at  least  an
order   of   magnitude   relative   to  the  arithmetic  mean  of  the
concentration of an element in coals they analyzed. Only  a  very  few
elements  are  found  to  be  concentrated  in  coals; thus the use of
geometric means reduces the influence of a few very high values on the
data.  Table 12 lists all those elements in coals that are found to be
enriched by a factor of six or more. A factor of six was chosen  as  a
matter of convenience and no special significance should be attributed
to  it.

     Only four elements are listed on table 12, no more than three for
any  one of the three major areas sampled. Apparently, on the average,
very few elements are found to be concentrated in  coals  relative  to
the clarke values. Boron, chlorine, end selenium are enriched in coals
from the Illinois Basin; arsenic, chlorine, and selenium, in coals  of
eastern  United  States;  and  selenium,  in  coals  of western United
States. Individual samples may be enriched in elements other than  the
four   listed   above.   Such   enrichments  probably  indicate  local
mineralization and are not representative of the coals in general.

     Boron is concentrated in the coals of the Illinois Basin, but not
in the coals of eastern and western United States.  A number of workers
have used the B concentration in sediments and sedimentary rooks as an
indicator  of  paleosalinity  of the environment in which the sediment
was originally deposited (Couch, 1971). Greatly  oversimplified,  when
the  technique is used, it is assumed that the relative concentrations
of B in sediments and sedimentary rooks are directly dependent on  the
salinity   of  the  water  in  which  the  sediments  were  deposited;
therefore,  marine sediments contain more B than  nonmarine  sediments.
However,   the  interpretation of B paleosalinity from even a carefully
controlled  set of samples is difficult. The set  of  samples  reported
upon here was not specifically collected and was not specially treated

-------
70
 for  boron  analyses. The moat obvious  interpretation to  be  made  from
 the   observation  that  B is concentrated in the coals of the Illinois
 Basin and  not  in the coals from eastern and western United  States  is
 that   the  Illinois  Basin  coals  were deposited in waters that had a
 higher salinity (more brackish or more marine.) than did the waters  in
 which the other coals were deposited. In general, this interpretation
 agrees with other interpretations  based  on  other  criteria  of  the
 environments   of  deposition  of  the  various coals. The coals of the
 Illinois Basin are  generally  more  closely  associated  with  marine
 strata than   are  the  coals  in the Appalachians (eastern) or in the
 Rocky Mountain (western) areas (Wanless  et  al.,  1969;  and  Weimer,
 1970).

      Chlorine  is concentrated in coals from  the  Illinois  Basin  and
 from   eastern  United  States,  but  not  in coals from western United
 States. Distribution of chlorine in coals of the  Illinois  Basin  has
 been   investigated  by  Gluskoter and Rees, 1964; Gluskoter, 1967; and
 Gluskoter  and Ruch, 1971. In general, the chlorine content of coals in
 the   Illinois  Basin increases with depth of the coal. Coals currently
 being mined by surface methods are low in  chlorine  (less  than  0.04
 percent)   and  coals  mined at the greatest depths contain the highest
 chlorine (0.4  to 0.6 percent). Therefore, the mean concentrations  may
 be  influenced  by  the  distribution of samples.'This may be the case
 with  the samples from eastern United States, where many of  the  coals
 were   sampled  in  deep mines. The population of samples is larger for
 the Illinois Basin; however, if any bias is present in  the  sampling,
 it would probably be a bias towards lower chlorine values.

      The observed correlation of chlorine and depth to the coal bed is
 not   a  primary  correlation,  but  it is the result of an increase in
 salinity of  ground  water  with  greater  depth  (Gluskoter,   1965a)...
 Gluskoter  and Ruch, 1971, concluded that the presence of hali.te (NaCl)
 in coal accounted for only a portion of the total chlorine present  in
 coals  from  the  Illinois  Basin  and  that  weakly bound chlorine in
 organic combination was a likely mode of occurrence.

      Selenium is the third element found to be enriched  in  coals  of
 the Illinois Basin. It is also enriched in coals of the eastern United
 States and is the only element that is enriched (at  least  six  times
 the clarke) in coals sampled in western United States. Selenium is the
most  strongly enriched of all the elements,  with enrichment  factors of-
26,  40,   and  68,   in  western,   Illinois	Basin,   and eastern coals,
respectively.  Selenium content of nine  laboratory-prepared    (washed)
 coals is discussed later in  this report.  Those data are interpreted to
 show selenium in both organic and inorganic combination in  coals.   We
would  suggest that at least a portion of the selenium in the  coal may
 be inherited directly from  the  Se  concentrated  by  plants   in  the
original coal swamp.  A few analyses of peats from the Okefenokee swamp
 in  Georgia  (Arthur Cohen,     personal  communication)  do  show   Se
concentrations  of  the same magnitude as those reported for the coals
 in Table 12.

-------
     Arsenic  is  found to be enriched in the samples of  coals from  the
eastern  United   States.  In  general,  arsenic is associated with the
sulfide-rioh  fraction of the ooal and most likely is  in solid solution
in  the  ferrous disulfides in ooal: pyrite and maroaaite.  The samples
of ooal from  eastern United States that were washed in  the   laboratory
prior to analyses do suggest this mode of occurrence  for arsenic.

     In  coals   from  all  three   areas   moat   of    the    elemental
concentrations   are   lower than the olarke of the elements.  A value of
six times the clarke was used in classifying those  elements  enriched
in  coals.  If a value of one-sixth the olarke is used  to define those
elements depleted in coals the following are depleted in coals of  the
Illinois  Basin:   Al, Ca, Cr, F, Hf, K, Lu, Mg, Mn, Na,  P,  So, Si, Sr,
Ta, and Ti. All  of the other elements determined are  within the  range
of   one-sixth    to   six  times  the  olarke.  In  general,   elemental
concentrations are  generally  lower  in  coals  from  western  United
States;  therefore  more elements are depleted relative  to  the olarke.
In addition to most  of  those  elements  listed  for  ooals  from  the
Illinois  Basin   other elements depleted in western coals are, Be, Ce,
Co, Ca, Bu, Fe,  Ga,  La,  Ni, Rb, Sm, V, Yb, and Zn.
                 TABLE 12—ELEMENTS ENRICHED IN COALS
Illinois Basin
 (114 saaples)
                         Element     Ebriohaent     Mean Value     Clarke
                                      Factor        In Coal
                            B          9.5         95 ppm        10 ppa

                           Cl          6.0         600 ppa       130 ppa>

                           Se         40           2.0 ppai        .05 ppa>
Eastern United States
 (23 saaples)
Western United States
 (29  saaples)
Aa          6.2          15 ppa         1.6 ppm

Cl          7.7        1000 ppn       130 pp»

Se         68            3.4 PP«        .05 pps>




Se         26            1.3  PP"       .05 pp»
  NOTE:  Includes only those elements  that have a geometric mean concentration six
        tines the Clarke.

-------
72


                       ANALYSES OF BENCH SAMPLES
      The  variation  of  ohemical  elements  vertically within a  coal   bed
 has   been  investigated   by  analyses of "bench  samples" of coal. This
 series of five  sample  sets has  been collected  by  sampling  the  coal
 seam  in   vertical  segments  or   "benches".  Normally,  the rook unit
 immediately overlying  the coal  also was  sampled, as was the  underolay
 (or   other seat  rock),  and any  rock parting more than three-eighths
 inch  (one centimeter)  thick within the seam. Each bench  of  coal  was
 analyzed   for   the  full range of chemical elements, and several of the
 associated  rock units  were also extensively analyzed  chemically.  The
 analytical  methods  used  were  the same as those used to analyze the
 whole coal  samples  and are described in  the appendix.

     Five sets of benches were  sampled and analyzed in this study. All
 of  the five sets are  from the  Herrin (No. 6) Coal Member in Illinois.
 The sample  sites were  selected  to  provide  a  range  of  geological
 settings   and  geochemical  characteristics of the coals. Samples were
 taken from  areas of high-sulfur coal  and  from  areas  of  low-sulfur
 coal, from  underground mines and from strip mines, and from areas with
 marine  roof  rocks  and  areas  with  nonmarine  strata   immediately
 overlying the coal. The five sample sites are separated geographically
 by as much  as 305 kilometers (190  miles); and no two sites are  closer
 than  40  kilometers (25 miles). In this  discussion the five sites will
 be identified by numbers 1 through 5.

     The  thickness of  each bench sample  is given in  table  13-  Coals
 sampled   ranged  from  143 cm (56  in) to 307 cm (121 in) in thickness.
 The negative values shown in the table are the sampled thicknesses  of
 the  roof   strata.  The  top  of the coal was taken as a datum and was
 given the value of zero in each case. Those instances in  which  roof,
 floor,  or  rock  partings  were   collected are noted in table 13. The
 noncoal units that were analyzed chemically have  an  analysis  number
 listed in table 13.

     The results of the chemical analyses  of  40  bench  samples  are
 given  in   tables  14  through  18.  All results are reported on a whole
 coal basis  as was done for the  172 whole coal samples, table 14  lists
 the  results  of  the  analyses for trace elements;  table 15,  the major
and minor element determinations;  tables 16 and 17,  the standard  coal
 parameters;  and  table  18,   the  rerults  of  analyses for total and
 varieties of sulfur.

                         (Text continued on page 8?)

-------
                                                                                           73
            TABLE 13—IDENTIFICATION  OF BENCH SAMPLES  ANALYZED
ANALYSIS   STATE
 NUMBIR
ORIGIN
                SAMPLE
               nicntss
                 (CM)
                — BBHCH SBT
C- 18552
C- 18553
C-18554
C-18555
C- 16556
C- 18557
C-18558
C-18559

••••»•
C-1UT01
C- 18705
C- 18706
C-18707
C. 18708
C- 16709
C-18710
C- 187 IT
••••••*

tICIItt
C-18728
C- 18729
C-18730
C-187J1
C-18732
•••••••
C- 18733
»••••*

C- 18806
C- 18807
C- 18808
C- 18809
C-18810
C-18811
C-18812
C-18813
C-18814
fc-18815

C- 18982
C- 18983
C-1898*
C-18965
C- 18986
••••!••
C-18987
C-189M
C- 18989
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLttOIS
ILLINOIS
—
ILLIMOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
IUINOIS
ILLINOIS
ILLINOIS
ILLINOIS
—
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLIH01S
ILLINOIS
ILLINOIS
ILLINOIS
—
ILLINOIS
ILLIMOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLIMOIS
ILLINOIS
—
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
HBRRIN (NO. 6)
BIRBIN (NO. 6)
HBRRIN (NO. 6)
HBRRIN (NO. 6)
HBRRIN (NO. 6)
HURIN (NO. 6)
HBRRIN (NO. 6)
WRRIN (NO. 6)
BBNCH SRT 2 ~
HBRRIN (NO. 6)
HBRRIN (NO. 6)
HBRRIN (N0.6)
HBRRIN (NO. 6)
HBRRIN (NO. 6)
HBRRIN (NO. 6)
HBRRIN (NO. 6)
KBRRIN (NO. 6 5
BBRRIN (NO. 6)
KBRRIN (NO. 6)
BBKH SBT 3 —
HBRRIN (NO. 6)
HBRRIN (NO. 6)
HBRRIN (NO. 6)
HERRIN (NO. 6)
HSRRIN (NO. 6)
KBRRIH (SO. 6)
HBRRIN (JJ0.5)
NBRRIN (i<0.6)
HBRRIN (NO. 6)
BBttCH SST 4 —
HSRRIN (K0.6)
HBHHIH (NO. 6)
HBRRIN (NO. 6)
HBRRIi! (BO. 6)
USRRIN (NO. 6)
HBRRIN (NO. 6)
HBRRIN (NO. 6)
HERRIN (NO. 6)
HERRIN (HO. 6)
HBRRIN (K0.6)
BUICH SBT 5 —
HBRRIH (NO. 6)
KBRRIN (NO. 6)
HBRRIN (NO. 6)
KBRRIN (NO. 6)
HURIN (NO. 6)
HBRRIN (NO. 6)
HURIN (NO. 6)
KBRRIN (NO. 6)
WRRIN (NO. 6)
                                       -10.2
                                         0.0
                                        10.2
                                        3*. 3
                                        81.3
                                       m.3
                                       1M.8
                                       180.3
                                       102.9
                                       218.»
-   0.0
-  10.2
                      81.3
                     m.3
                     1M.6
                     180.}
                     162.9
                     218.4
                     228.6
                                       -10.2 -  0.0
                                         0.0 -  10.2
                                        10.2 -  M-3
                                        48.3 - 109.2
                                       109.2 - 208.3
                                       206.3 - 248.9
                                       248.9 - 251.0
                                       254.0 - 307.3
                                       30T.3 - 317.5
                                        -10.2
                                          0.0
                                         34.3
                                         36.8
                                         72.4
                                         76.2
                                        106.7
                                        166.6
                                        170.2
                                        200.7
                                        -15.2
                                          0.0
                                         25.4
                                         35.6
                                         54.9
                                         73.2
                                         T9.J
                                        109.7
                                        143.3
                        0.0
                       34.3
                       36.8
                       72.4
                       76.2
                      106.7
                      166.6
                      170.2
                      200.7
                      210.9
                        0.0
                       25.4
                       35.6
                       54.9
                       73.2
                       79.3
                      109.7
                      143.3
                      156.0
                               LIHKSTONB ROOT - SAMPLED, NOT AJtALIZBD
            SHALB PARTING (BLUB BUD)

            UntRCLAT - UHFUD, NOT ANALIXBB



            SHALB ROOT - SAMPLBO, NOT ANALIXBD
                               SHALB PARTING - SAMPLBO, NOT ANALTXBD

                               UNMRCLAT - 3AMPLBD,  NOT ANALUBD



                                SHALC ROOT
            SHALB PARTING (BLOB BAND)

            UNDBRCLAT



            SHALB ROOT




            3UALB PARTING - NOT SAMFLBO


            UNDBRCLAX
NOTE:   Sampleo are listed by analysis nuabcra on tables lU  through  18.

-------
                       TABLE lit—ELEMENTS IN BENCH SAMPLES
               (parts per million,  moisture-free whole coal basis)
SAMPLE
              AS
                           BA
                                 BE
                                        BR
                                              CD
                                                     CE
                                                           CO
                                                                  CR
                                                                        CS
                                                                              CU
C18552
C1b553
C18554
C 18555
C 18556
C18557
C18558
C18559
C18704
C18705
C18706
C 18707
C18708
C18709
C18710
C18711
C18728
C 18729
C18730
C18731
C18732
C18733
C 18806
C 18807
C 18808
C18809
C18810
C16811
C18812
C18813
C18814
oasis
C 18982
Cl89dj
C 10981
C18985
C 18986
C18987
C18988
C 18989
0.08
0.02
0.02
0.06
0.06
0.03
0.02
0.014
0.06
0.01
0.02
0.06
0.02
0.02
0.08
0.03
0.01
0.02
0.02
0.01
0.01
0.05
0.614
0.06
0.03
0.02
0.05
0.02
0.02
0.15
0.03
<0.07
0.08
0.26
0. 16
O.OIl
0.08
0.01
0.03
0.08
2.2
2.6
2.4
1.2
1.1
5.3
2.7
3-7
8.1
3.5
3.0
1.7
1.3
2.6
2.7
2.2
0.50
<1.0
1.5
<1.0
1.1
2.8
17
3-7
1 1
0.30
1.5
2.7
0.90
6.4
5.9
4.0
2b
1-3
1 .2
3-9
1.0
7.8
13
11
110
180
160
190
180
170
230
220
260
170
200
180
190
180
6.5
210
75
110
78
110
130
1*10
110
130
24
100
120
180
190
230
210
160
74
120
150
150
81
180
180
160
58
35
26
86
65
67
10
62
1500
280
70
160
50
95
140
640
26
48
31
10
19
43
910
1)4
23
3"
120
18
83
900
23
190
780
3"
ui
36
20
75
100
800
0.71
0.88
0.64
0.10
0.70
1.1
1.8
1.5
0.70
0.68
0.77
0.80
1.0
1.1
1.8
2.1
1.9
1.6
1.1
0.30
0.56
0.80
1.1
0.73
1.3
0.51
0.12
0.62
0.95
1.2
2.0
1.1
1.5
1.6
1.8
2.0
2.1
2.'0
1.6
2.3
3.6
3.2
2.1
2.9
1.9
2.5
8.5
10
1.6
4.8
5.8
5.4
6.6
3.0
1.3
7.0
24
25
23
21
22
23
2.3
1.3
1.7
1.2
1.2
1.1
1.7
<1.0
1.2
O.O
1.1
3.0
3.8
3.4
3.5
3.2
3.2
<1.0
0.60
<0.10
<0.20
<0.10
<0.10
<0.30
<0.20
<0.20
<0.30
0.30
0.40
<0.20
<0.20
<0.10
1.9
6.5
<0.10
<0. 10
<0.10
<0.10
<0.10
<0.10
11
0.70
<0.10
<0.10
<0.40
<0.20
<0.20
<0.60
<0.20
<0.60
<0.60
0.10
0.10
0.10
0.10
0. 10
0.10
<0.60
17
8.2
10
17
14
11
4.9
13
20
4.6
5.9
16
6.7
21
51
13
2.5
6.7
5.1
19
11
33
90
7.1
O.O
1.9
19
6.0
10
490
12
210
100
4.7
1.5
5-1
2.5
8.6
15
77
2.4
1.8
1.4
2.8
2.9
6.3
3.1
4.8
3.8
1.4
2.0
2.0
2.5
3.0
5.3
5.4
6.7
7.5
4.6
3.2
6.7
15
16
2.0
1.6
1.4
1.9
2.7
3.1
27
8.5
11
21
1.2
1.1
2.0
2.5
10
6.1
16
19
13
12
24
27
34
17
32
41
8.0
40
35
14
32
50
28
6.0
19
9.0
14
24
16
440
31
9-0
10
40
15
26
80
16
150
67
7.0
9.0
11
13
23
26
92
0.70
1.0
0.50
1.4
1.3
1.1
0.40
1.0
2.3
1.0
1.0
2.4
1.1
2.4
5.1
1.0
0.30
0.50
0.80
0.80
1.8
0.90
9.1
1.1
<0.10
1.0
3-4
1.2
2.2
15
0.60
17
11
1.2
1.3
1.1
0.30
1.6
2.3
14
5.4
4.4 '
4.8
7.9
8.2
6.1
7.6
14
24
3-5
28
23
7.1
64
73
16
6.6
15
31
22
9-1
8.7
78
6.0
5.4
2.9
14
5.8
7.8
.31
8.4
18
19
5.9
5.0
18
9.2
12
15
19

-------
                                  TABLE Ik—Continued
                                                                                    75
SAMPLE
         DY
                EU
                              QA
                                     OB
                                            HP
                                                   KG
                                                                  IN
                                                                         LA
                                                                                LU
                                                                                       HN
C18552
C18553
C 18554
C 18555
C 18556
C18557
C1855B
C18559
C18704
C18705
CJS706
C18707
C 18708
C18709
C18710
C18711
C1872B
C18729
C18730
C18731
C1B732
C18733
C1B806
C 18807
C 18808
C 18809
C18810
C18811
C18812
C18813
C1B814
C18815
C 18982
C18983
C 18981*
Cl89b5
C18986
C 18987
C189S8
C189U9
0.14
0.47
0.64
0.91
1.0
0.93
0.97
1.0
0.76
0.25
0.57
.0
.0
.1
.3
.4
0.33
0.57
0.30
0.50
1.7
1.0
7.2
0.54
0.17
0.63
1.5
1.0
1.2
3.8
1.2
5.5
3.7
0.42
0.61
0.86
0.82
1.3
1.1
4.7
0.11
0.13
0.21
0.29
0.38
0.29
0.22
0.26
0.33
0.12
0.14
0.25
0.20
0.23
0.87
0.31
0.06
0.26
0.14
0.16
0.32
0.31
2.4
0.16
0.06
0.16
0.47
0.23
0.32
1.1
0.22
1.7
1.6
0.08
0.09
0.11
0.11
0. 16
0.21
1.3
140
78
59
85
110
110
74
93
270
48
70
85
81
140
100
60
19
31
27
36
75
48
5700
120
110
65
160
81
140
620
66
2500
1100
36
50
42
16
47
90
880
2.3
2.1
2.3
3.7
4.0
4.8
1.8
3.3
3.5
1.1
1.9
3.4
3.4
2.8
1.3
5.0
3.2
1.2
1.3
2.6
7.0
2.9
17
2.3
1.7
2.5
6.5
2.6
3.8
30
4.3
26
18
3.5
3.6
3.9
4.3
1.3
5.7
22
16
0.60
0.10
<0.10
<0.20
<0.20
9.0
14
26
1.4
0.60
<0.20
<0. 10
0.50
0.50
14
21
10
2.8
0.30
0.20
5.3
<0.70
2.4
<0.20
<0.10
<0. 10
<0. 10
<0.10
0.80
7.6
<0.80
<0.80
14
9.0
10
13
7.8
12
<0.70
0.32
0.32
0.31
0.85
0.69
0.85
0.23
0.59
0.64
0.22
0.20
0.63
0.35
0.58
1.1
0.46
0.14
0.12
0.22
0.25
0.82
0.38
3.5
0.28
0.03
0.37
1.3
0.55
0.94
4.4
0.40
4.7
6.2
0.39
0.4M
0.57
0.43
• 0.97
1.5
9.2
0.37
0.13
0.07
0.16
0.13
0.22
0.19
0.16
0.15
0.07
0.09
0.09
0.11
0.16
0.43
0.15
0.04
0.09
0.06
0.07
0.04
0.11
0.64
0.28
0.17
0.09
0.12
0.09
0.10
0.12
0.17
0.06
0.17
0.26
0.15
0.13
0.12
0.14
0.17
0.09
1.7
1.6
2.4
1.9
0.64
<1.0
0.0
<2.0
<1.0
1.9
1.1
0.0
<1.0
0.97
0.0
0.0
3.1
1.9
1.5
1.7
1.7
1.9
O.O
<0.50
0.41
0.93
1.0
0.96
1.2
<2.0
0.3*
0.0

2.7
2.7
4.0
4.4
H.2
3.1
<5.0
0.76
0.84
0.69
0.20
<0.02
0.23
<0.10
<0.10
0.14
<0.10
0.04
<0.10
0.15
0.11
0.15
0.17
0.14
<0.10
<0.10
<0.10
0.15
<0.10
0.0
0.04
<0.10
<0.10
0.09
0.17
0.17
0.17
0.13
0.58
<0.10
0.12
<0.10
0.13
0.04
0.04
0.04
0.11
3.2
3.5
6.1
7.1
6.7
4.6
3.8
8.8
9.4
2.8
2.8
8.5
4.7
7.4
35
6.7
1.1
1.7
3.4
5.2
11
7.1
68
4.2
1.5
3.3
22
4.7
6.8
150
3.0
47
41
2.6
3.0
3.4
1.1
5.4
9.1
35
0.11
0.05
0.04
0.12
0.08
0.12
0.06
0.11
0.08
0.05
0.02
0.08
0.04
0.09
<0.01
0.12
0.02
0.07
<0.05
0.07
0.17
0.17
0.65
0.08
<0.01
0.06
0.12
0.07
0.12
0.49
0.12
0.59
0.50
0.03
- 0.03
0.07
0.06
0.10
0.11
0.48
52
38
30
28
140
90
51
62
150
150
130
67
80
64
70
150
34
250
9.7
83
36
59
100
13
16
14
13
20
19
270
60
86
600
58
93
33
24
38
50
140
   NOTE:   Samples listed by sample number (C-number).
          cation of samples.
Refer to table 13 for identifl-

-------
  76
                                  TABLE  Ik—-Continued
SAMPLE
         MO
                NI
                              PB
                                     RB
                                            SB
                                                   SC
                                                          SG
                                                                 SM
                                                                        SN
                                                                                SR
                                                                                       TA
C18552
C18553
C 18551
C 16555
C18556
C18557
C1855b
C18559
C18701
C18705
C18706
C18707
C 18708
C18709
C18710
C18711
C18728
C18729
C18730
C18731
C1B732
C18733
C18806
C18807
C18808
C18B09
C18810
C1B811
C1BB12
C1S813
CltJSlI
C18815
C18982
C18983
0189814
C 18985
C18986
C18987
C18963
C18989
19
27
12
2.0
1.0
18
22
19
36
22
18
3.0
2.0
2.0
58
11
0.70
0.60
<0.10
<0.20
<0.30
3.0
71
i(8
141
8.0
<0. 10
14.0
O.UO
<0.20
17
<0.30
<0.20
19
13
8.0
10
5.0
1.0
<0.20
16
7.0
14.6
13
7.6
ID
18
26
23
5.1
21
20
7.6
18
12
26
51
27
12
7.0
18
MS
iio
16
2.7
5.6
9.7
6.6
8.9
62
38
>4l4
6C
22
15
11
11
20
26
51
99
17
23
11
20
10
29
41
570
13
12
31
30
220
17
32
25
39
33
60
12
23
5100
230
15
22
10
26
51
29
52
110
12
23
7.8
15
8.6
9.1
60
100
1.6
<1.0
<0.70
<1.0
<1.0
<3.0
<2.0
3.6
11
<2.0
<0.90
<3.0
<1.0
3.6
21
<2.0
9.2
6.0
11
11
12
13
6.0
<0.71
<2.0
<0.60
<1.0
<1.0
<2.0
19
22
9.2
89
17
12
31
27
31
98
29
14
16
6.4
21
24
22
7.7
19
32
10
8.8
17
11
23
58
13
3.7
6.4
7.8
10
15
13
150
12
<5.0
8.0
20
12
25
120
<3.0
340
200
13
11
13
<1.0
17
35
230
2.3
0.45
0.27
0.33
0.21
0.22
0.11
0.27
0.65
0.39
0.36
0.28
0.17
0.51
0.56
0.26
12
3.9
0.55
0.61
0.42
3-3
6.6
3.1
0.79
0.54
0.20
0.20
<0. 10
0.65
0.28
1.2
3.5
1.7
1.1
0.88
0.64
1.1
2.5
2.3
1.6
1.4
1.5
3.4
3.6
3.9
1.0
2.5
2.7
1.5
1.1
2.1
1.6
2.5
3.0
2.6
1.6
2.3
0.90
2.7
4.4
4.0
19
2.1
0.50
2.3
5.0
3.0
4.6
1.5
3.8
27
16
1.3
1.6
1.9
3.1
4.7
4.9
20
3.8
2.3
1.7
1.7
1.3
2.7
1.2
1.5
2.4
1.2
1.4
3.0
1.4
1.3
6.1
2.5
0.76
1.2
1.2
2.3
1.5
3.6
57
5.8
2.4
1.3
2.7
2.7
2.6
10
3.2
6.0
9.8
2.2
1.8
2.0
2.5
3-9
3.8
5.7
1.7
0.60
0.90
1.2
1.6
1.0
0.80
1.1
1.7
0.55
0.68
1.5
0.82
<1.0
4.6

0.21

0.43

1.3

14
1.5
0.34
1.1
4.1
1.3
1.7



7.2
0.48
0.47
0.52
0.46
0.68
1.1
5.4
<0.20
<0.30
<0.20
<0.30
<0.40
4.0
0.90
<0.40
<0.40
<0.20
0.16
<0.40
<0.30
<0.40
9.5
<0.40
<0.07
<0.20
0.92
1.2
<0.30
<0.20
<2.0
<0.20
7.6
0.35
0.71
1.5
0.98
2.1
3.8
<2.3
<2.2
<0.20
<0.20
0.33
<0.10
<0.30
<0.40
<2. 1
50
21
21
30
35
17
12
42
37
30
22
47
36
36
54
37
23
23
29
40
42
27
180
25 '
32
37
42
18
24
970
18
180
270
17
17
16
7.0
21
24
150
0.07
0.07
0.09
0.17
0.16
0.15
0.05
0.11
0.14
0.06
0.06
0.19
0.10
0.14
0.40
0.10
0.02
0.11
0.05
0.21
0.12
0.24
0.81
0.01
<0.01
0.07
0.28
0.13
0.16
2.9
0.15
2.5
0.46
0.06
0.07
0.03
0.02
0.06
0.10
<0.50

-------
                      TABLE lU—Concluded
                                                                      77
SAMPLE
        TB
               TH
                      TL
                                                 TB
                                                        ZN
                                                               ZH
C 18552
C18553
C 18551
C18555
C 18556
C 18557
C 18558
C 18559
C 18701
C 18705
C18706
C 18707
C18708
C 18709
C18710
C18711
C18728
C18729
C18730
C1873'
C18732
C18733
C16806
C 18807
C1880B
C18809
C18810
C18S11
C18812
C18813
Cl88l<4
C18815
C189B2
C18983
C 18984
C 18985
C18986
C18987
C 16986
C 18989
0.07
0.08
0.12
0.19
0.21
0.19
0.10
0.17
<0.20
0.06
0.08
0.12
0.08
0.17
0.57
0.21
0.08
0.21
0.10
0.13
0.13
0.19
1.2
0.07
0.10
0.10
0.14
0.13
0.15
0.68
0.19
1.0
1.8
0.07
0.09
0.20
0.18
0.27
0.32
1.4
1.5
1.3
1.4
3.1
2.8
3.7
3.0
2.1
2.0
0.50
0.70
2.1
1.6
2.3
1.7
1.9
0.11
0.62
0.72
2.1
1.0
2.8
8.5
0.71
0.11
0.81
3-3
1.2
2.1
28
2.1
24
19
1.0
1.2
1.9
1.5
3-9 .
5.0
21
28
0.70
0.40
0.80
0.80
0.70
0.40
2.0
7.5
<1.0
<1.0
1.3
<1.0
1.0
<1.0
<1.0
<0.20
<1.0
0.40
O.O
0.60
0.70
UM
12
0.20
0.20
0.80
0.50
0.90
3.2
0.60
4.1
13
3.8
1.3
0.60
0.60
1.0
1.3
3.0
76
9.8
12
22
27
26
11
39
37
10
12
25
26
26
35
23
9.*
6.6
11
16
3»
26
400
65
9.0
17
46
20
39
61
22
99
64
12
13
23
24
45
44
100
1.2
0.96
0.55
0.58
0.25
0.64
0.57
0.44
0.56
0.42
0.43
0.46
0.40
0.33
1.3
0.40
0.25
0.10
0.46
0.50
0.39
0.18
0.40
0.60
0.14
0.28
0.35
0.27
0.30
2.2
0.21
1.3
0.97
0.13
0.37
0.19
0.24
0.22
0.23
1.7
0.48
0.32
0.3t
0.55
0.65
0.53
0.45
0.70
0.45
<0.14
0.17
0.50
0.26
0.43
0.67
0.79
0.14
0.49
0.17
0.50
0.39
0.95
2.7
0.26
0.04
0.24
0.70
0.3*
0.41
3.6
0.97
3-6
2.2
0.13
0.16
0.25
0.25
0.42
0.52
2.3
41
6.0
6.0
5.0
22
14
94
41
20
64
17
35
19
32
40
3700
50
540
13
380
67
140
290
100
36
13
2.0
6.0
12
0.0
11
1.0
<2.0
240
13
10
5.0
6.0
8.0
3.0
26
15
20
40
50
46
26
45
49
12
17
53
36
46
110
42
8.3
6.5
11
23
36
20
140
20
16
16
78
34
42
160
31
220
160
18
20
24
19
38
56
210

-------
78
           TABLE 15—MAJOR AND MINOR ELEMENTS  IN BENCH SAMPLES
                (percent,  moisture-free whole  coal basis)
 SAMPLE
          AL
                  CA
CL
FE
                                                 MG
                                                         NA
                                       SI
                                                                        TI
C 18552
C18553
C18551
C18555
C 18556
C18557
C 18558
C18559
C18701
C18705
C18706
C18707
C18708
C18709
C18710
C18711
C18728
C1872S
C18730
.C18731
C18732
C18733
C18806
C18807
C18808
C18809
C18810
C1881 1
C18812
C18813
C18811
C18815
C1«982
C18983
CKJ981
C18985
C18986
C18987
C18988
C18989
0.72
0.89
0.92
1.80
1.70
1.60
0.89
1.50
1.70
0.61
0.72
1.80
1.30
1.80
1.30
1.20
0.38
0.51
0.69
0.99
1.90
1.10
6.90
0.82
0.29
0.83
1.50
1.20
1.60
11.00
0.81
6.00
5.30
0.79
0.91
1 .00
0.51
1.50
2.30
0.89
1.20
0.87
0.63
0.63
1.60
0.67
0.32
0.51
1.00
1.10
1.00
0.57
0.61
0.55
0.07
1.00
0.33
1.10
0.17
0.91
0.22
0.59
2.10
0.31
0.30
0.11
0.17
0.55
0.26
0.10
1.00
0.26
2.30
0.18
0.80
0.33
0.11
0.35
0.29
0.23
0.06
0.05
0.05
0.01
0.03
0.01
0.01
0.01
0.11
0.11
0.15
0.15
0.17
0.12
0.03
0.12
0.52
0.18
0.19
0.50
0.17
0.19
0.01
0.02
0.01
0.01
0.03
0.02
0.03
0.01
0.01
0.02
0.01
0.12
0.12
0.13
0.13
0. 11
0.09
0.02
0.60
1.60
1.30
0.80
1.20
3.30
3.00
2.50
1.60
1.80
2.20
1.50
1.20
1.90
5.10
2.90
0.20
0.80.
0.30
0.20
0.10
0.60
1.30
1.80
6.10
0.50
0.80
1.80
1.00
0.90
3.30
1.10
1.30
0.90
1.10
1.20
1.20
1.10
1.80
1.10
0.16
0.11
0.06
0.22
0.25
0.15
0.12
0.22
0.33
0.10
0.07
0.18
0.15
0.20
0.11
0.11
0.01
0.07
0.08
0.12
0.21
0.13
2.20
0.17
0.01
0.10
0.12
0.13
0.26
0.66
0.10
1.20
2.10
0.16
0.11
0.13
0.03
0.17
0.11
3.80
0.05
0.05
0.03
0.06
0.07
0.06
0.01
0.06
0.16
0.01
0.01
0.07
0.06
0.09
0.17
0.06
0.03
0.06
0.05
0.05
0.09
0.07
0.65
0.05
0.05
0.05
0.12
0.05
0.10
0.22
0.06
0.81
0.75
0.01
0.05
0.01
0.03
0.05
0.15
0.88
0.020
0.020
0.010
0.030
0.030
0.030
0.020
0.010
0.180
0.100
0.100
0.150
0.110
0.110
0.160
0.110
0.100
0.120
0.130
0.120
0.110
0.120
0.610
0.050
0.030
0.010
0.110
0.050
0.060
0.360
0.010
0.660
0.550
0.030
0.010
0.010
0.030
0.050
0.070
0.120
1.60
2.00
1.70
3.10
3-90
3.30
3.50
3.10
1.30
1.30
1.60
3.80
2.80
3.90
7.70
2.10
0.66
0.95
1.30
1.80
3.80
2.30
15.00
1.50
0.61
1.70
7.50
2.10
3.10
17.00
1.80
18.10
13.00
1.50
1.70
1.80
0.75
2.20
1.20
18.00
0.01
0.01
0.01
0.09
0.07
0.06
0.01
0.06
0.07
0.03
0.03
0.10
0.07
0.08
0.09
0.05
0.03
0.03
0.05
0.07
0.07
0.06
0.11
0.03
0.01
0.01
0.16
0.03
0.09
0.21
0.01
0.19
0.12
0.05
0.05
0.06
0.02
0.08
0.10
0.20
NOTE:  Samples listed by  sample number  (C-nuraber).
       cation of samples.
                       hefer to table  1} for identifi-

-------
TABLE  16—PROXIMATE ANALYSES  OF BENCH SAMPLES
(percent of whole  coal except for Btu values)
TABLE  1?—ULTIMATE ANALYSES  OF BENCH  SAMPLES
  (percent, moisture-free whole coal  basis)
  SAMPLE
           ACL
                 HOIS
                        VOL
                               FIIC
                                     ASH
                                            BTU
                                                             SAMPLE
                                                                                                HTA
                                                                                                      LTA
C18552
C 18553
C18551
C 18555
C18556
C 18557
C18558
C 18559
C18704
C 18705
C18706
C18707
C 18708
C 18709
C18710
C18711
C18728
C 18729
C18730
C18731
C18732
C18733
C 18806
C 18807
C 18808
C 18809
C18810
C18811
C18812
C18813
C18B1H
C18815
c 18982
C18983
C1B984
C 18985
C18986
C 18987
C18988
C18989
6.80
5.30
7-70
8.30
8.20
7.00
8.90
8.20














2.70
5.60
11.60
6.30
5.30
8.40
6.70
2.90
7.20
10.30
2.40
14.50
10.20
15-30
13-40
14.90
14.20
4.90
8.90
7.50
9.80
10.30
10.20
9.20
11.10
10.20
10.70
7.10
9.80
9.60
6.90
9.60
3.60
10.50
8.30
8.60
8.90
5.20
5.00
5.20
5.50
9.80
13-70
10.30
8.80
12.30
10.70
5.70
11.10
14.80
0.70
1.70
3.30
1.TO
2.30
1.70
1.70
1.70
45.20
43-90
44.60
42.10
42.00
39.70
41.60
40.30
38.20
40.60
39.70
37.10
38.00
38.70
25.70
39.00
35.70
35.00
34.70
35.00
3*1.30
37.40
12.60
39.30
20.20
40.80
29.60
36.70
37.40
10.10
37.30
6.30








47.20
46.10
44.60
44.80
41.30
HO. 60
45.60
43.70
44.70
50.40
49.50
48.10
50.40
44.80
18.30
45.70
61.90
59.10
61.20
57.30
53-20
50.20
7.80
53.70
58.40
53. »0
45.10
52.40
50.20
3.30
48.10
1.50








7.50
9.90
8.70
13-10
16.70
19.70
12.80
16.00
17.10
9.00
10.80
14.90
11.60
16.50
56.00
15.30
2.40
5.90
4.10
7.70
12.40
12.40
79-60
7.00
21.40
5.80
25.30
10.90
12.30
86.70
14.60
92.20
80.00
6.50
8.10
7.90
4.50
10.20
17.70
85.20
13306
12712
12947
12305
11856
11172
123*8
11781
11604
12749
12196
11751
12316
11505
4264
11416
14042
13556
13802
13256
125*1
13194
2356
13117
10582
13215
10202
12242
12186
621
11762
264








C 18552
C18553
C1855*
C18555
C18556
C 18557
C 18558
C18559
C18704
C 18705
C 18706
C18707
C18708
C 18709
C1B710
C18711
C18728
C 18729
C18730
C18731
C 18732
C18733
C 18806
C18807
C 18808
C 18809
C18810
C18811
C18812
C18813
C 18814
C18815
C18982
C189B3
C 18984
C18985
C 18966
C 18987
C 18988
C18989
73-19
70.06
72.52
68.12
66.18
60.27
67.67
64.39
64.52
70.90
68.40
65.56
69-57
63-37
27-02
64. M
79-24
77.41
77.97
76.01
71.62
74.66
13-85
73-64
63-02
73-75
57-74
69-39
66.62
4.47
66.69
3-17








5.84
5.11
5.28
4.87
5.06
4.48
4.73
4.79
5. OS
5.B8
5.13
5.16
5-10
4.53
1.89
«.91
5.29
5.19
5.49
5.43
4.92
5.31
1.82
5.20
3.M
5.70
3.92
4.80
4.87
1.35
4.11
0.98








1.05
1-15
1.09
1.06
1.02
0-94
0.96
1.00
1.03
1.21
1.04
1.06
1.18
1-03
0.37
1.10
1-73
1.64
1-63
1.63
1.40
1.57
0.47
1.25
0.45
1-36
1.07
1.3*
1.24
0.15
1.15
0.14








9.74
9.39
8.43
9-45
6.82
6.53
6.89
7-35
7.64
8.38
9.36
9 -26
8.53
9-55

7.29
10.13
9.02
10.14
8.56
9-15
5-33
2.01
9-23
0.0
11.18
9-50
9.13
10.14
5.64
6.46
2.58








7.51
9.95
8.71
13-08
16.71
19.67
12.82
16.00
17.09
9.03
10.78
14.87
11.57
16.49
56.01
15.30
2.43
5.90
4.07
7.72
12.44
12.37
79-62
7.03
21.42
5.76
25.31
10.88
12-35
86.66
14.63
92.24
60.00
6.50
8.10
7.90
4.50
10.20
17.70
85.20
9.24
14.34
10.23
14.80
20.69
26.52
16.64
21.24
21.69
11.57
13-24
19.53
15.16
20.78
74.68
21.14
3-29
6.77
5.04
8.19
13-60
9.16
65.63
10.29
31-7*
8.59
29.25
14.13
14.83

19.19


7.95
11.43
10.06
6.30
13-20
21.30
21.69
   NOTE:  Abbreviations are listed in table 1 and identlfioation of samples are in table  13.
         moisture-free whole coal basis except for air dry loss (ADL)  and moisture (MOIS).
                             All values  are on a

-------
80
               TABLE  18—SULFUR ANALYSES OF BENCH  SAMPLES
               (percent,  moisture-free, whole coal basis)
             SAMPLE
ORS
PYS
SUS
TOS
                                                         SXRF
C18552
C18553
C18554
C 18555
C18556
C18557
C18558
C18559
C18704
C 18705
C18706
C18707
C18708
C18709
C18710
C18711
018728
C18729
C18730
C18731
C18732
C18733
C1o806
C16807
C 18808
C18809
C18810
C18811
C18812
C18813
C18814
C18815
C18982
C18983
C18984
C 18985
C18986
C18987
C18988
C18989
2.30
2.41
2.19
2.45
2.35
1.45
1.77
1.94
3.08
2.73
2.63
2.22
2.70
2.68
2.14
2.85
1.13
0.55
0.52
0.60
0.42
0.40
0.24
1.87
0.54
1.91
1.35
2.10
1.84
0.19
0.92
0.02
0.26
1.86
1.89
1.70
1.84
1.66
1.48
0.0
0.37
1.92
1.48
0.94
1.86
6.63
5.15
4.52
1.32
1.74
2.51
1.70
1.24
2.15
21.99
3.45
0.02
0.28
0.18
0.03
0.02
0.31
1.86
1.75
15.18
0.33
1.10
2.32
0.92
1.33
5.91
0.80
2.41
0.84
1.05
1.25
1.16
1.43
2.12
0.92

0.01
0.01
0.01

0.03
0.01
0.01
0.23
0.13
0.15
0.15
0.11
0.20
0.81
0.65
0.01
0.02
0.01
0.02
0.02
0.06
0.12
0.03
0.23
0.01
0.02
0.04
0.03
0.20
0.13
0.08
0.09
0.02
0.05
0.02
0.04
0.06
0.06
0.05
2.67
4.34
3.98
3.40
4.22
8.11
6.93
6.47
4.64
4.61
5.29
4.07
4.05
5.03
24.94
6.96
1.17
0.85
0.70
0.65
0.46
0.76
2.22
3.65
15.95
2.24
2.47
4.46
2.79
1.73
6.95
0.90
2.75
2.75
3.00
2.97
3.04
3.15
3.65
0.96
2.60
4.30
4.32
3.23
3.81
8.23
6.97
6.47
4.65
4.81
4.88
3.87
3.78
3.88

6.63
1.04
0.94
0.86
0.74
0.60
0.99
1.77
3.85

2.47
2.50
4.24
2.90
1.64
6.84
0.85
2.85
3.03
3.12
3.04
3.47
3.15
3.66
0.42
              NOTE:  Refer  to tabla 1 for abbreviations; refer to
                    table  U for identlfioation of  samples.

-------
                                                                     81


     Because coal  in most respects  is a heterogenous material,  wide
variations  in  content  of  trace elements in individual benches were
expected, and  in general  that was the finding. However,  in  several
bench sets some elements occur uniformly throughout the bed. Among the
more uniform distributions observed is that of bromine in bench set  3
(fig.  63).  The  rare  earth elements also exhibit relatively uniform
distributions in the bench sets analyzed. Figure 63  and  all  of  the
histograms  of  bench  samples  represent  the total coal seam and are
drawn with the proportional thickness of each bench plotted along  the
ordinate  and  the  concentration  of  the  elements plotted along the
abscissa. The top of the coal seam, or the rock  above  the  seam,  is
plotted at the top of each figure.

     The  expected  variability  in  trace  element  distribution   is
apparent  in  figure  61.  The three elements U, Mo, and V have a wide
distribution range and all are concentrated in the uppermost bench  of
this  sample set. Although maximum concentration of elements may occur
in any of the benches of the coal bed, the top and/or  bottom  benches
appear to be the preferred sites. The concentration of antimony in the
uppermost bench of four samples sets and in the  bottommost  bench  of
the  fifth  is  represented  in  figure  65. The maximum concentration
within the coal bed is in either the  top  or  bottom  bench  of  each
sample  set.  Still  higher amounts of antimony were obtained from the
rock units associated with the coals.

     Distribution of germanium in the bench sets is  shown  in  figure
66.  The pattern is distinct and consistent in bench sets 1 through U,
and less well defined in bench set 5. The germanium content of the top
bench  and/or  that of the bottom bench are greater than the germanium
content of the other benches in all five sample sets. Earlier efforts,
(Ruch  et al., 1971*, and Gluskoter, 1975) and those of Zubovic (1966),
demonstrated that germanium is primarily associated with  the  organic
fraction  of  the  coals  in  Illinois  and  not in the mineral matter
fraction. This and the observation that the germanium is  concentrated
at  the  boundaries  of  the coal bed, the top and the bottom, suggest
that the germanium was introduced into the coal bed after  burial  and
thus  its  origin  is not related to conditions in the swamps in which
the coal was formed. Rather, the germanium was  transported  into  the
coal  bed in solution and was assimilated by the coal when geochemical
conditions within the coal bed were favorable for the removal  of  the
germanium  from  the  solutions.  The  horizontal  boundaries (top and
bottom) of the bed were necessarily in contact  with  those  solutions
before  the  innermost  parts  of  the  bed.  Zubovio   et al., (1961)
presents a different interpretation for the concentration of  elements
at  the  top and the bottom of the coal beds in the Illinois Basin. He
attributes these concentrations to "greater  availability  of  mineral
matter and mineral- rich solutions toward the beginning and end of the
interval of accumulation of the plant debris that  eventually  becomes
coal."  (Zubovic et al., 1964,  p.  B35). He also stated the belief that

-------
82
 coals  near the  margin of the basin of deposition   would   have   a  more
 heterogenous vertical  distribution   of  elements because  of  variable
 conditions of weathering and erosion  in  the border land.

     Bench sets 1,  2,  3,  and 4  are from  locations  in  south  central and
 southwestern Illinois  and bench set 5 is from  the  northwestern part of
 the  coal  basin  and  is  interpreted  to  have been closer  to   the  basin
 margin.   The germanium  distribution  is  somewhat more uniform  in bench
 set  5  than in the other  four bench sets;  the Ge content is  of  the same
 order  of  magnitude  as  that of the  other  bench  sets.

     Elements that  were  observed to be closely related in face channel
 samples   of  coals  are,   as expected,  also closely  correlated in the
 individual  benches.   Examples  of this   are  shown  by  calcium  and
 manganese in bench  set 1,  phosphorus   and fluorine  in bench  set  2,  and
 sulfur and arsenic  in  bench  set  4 (fig.   67)•  Calcium  and   Mn  are
 associated in the mineral calcite, P  and  F in  the  mineral apatite,  and
 S and  As  in the mineral   pyrite.   Elements that   occur  in  coals as
 discrete   mineral phases  have wide ranges in concentrations  in  benches
 as they do in whole coal  samples.  For  example, Zn,  which occurs  as  the
 mineral sphalerite  (ZnS),  ranges from  1?  ppm to 4100  ppm in  benches of
 set  2. The ratio of the highest concentration  of  an  element   in   the
 benches   to  the lowest concentration of that element  in the  benches is
 a measure  of  the range of an  element within a  bench   set.   This   ratio
 commonly   has  the  value of  3  to  7 or 8.  The  ratio is much  higher  for
 zinc in bench set 2 where it  is more than  200. The  other elements  that
 are  generally  found  concentrated in individual benches and  often at
 the  top and/or  the bottom of  the bed also  have high ratios.  Germanium
 in bench  sets 1 through 4 has values of 24  to  260; Mo in all five  sets
 has  a  range  ratio of 18 to 480; and Cl in   bench  sets  1   and   4  has
 values of  70  and 60 for this ratio.

     In general, elements that have low values of  the  ratio  showing
 range  in   concentration  of  an element  in a single  bench set  include
 boron and  bromine.  Values of the ratio  of  1.5  and  less   for   these
 elements are  found in several but  not in  all the bench sets. Bench set
 4 has a value of 1  for B and bench set 1  has a value of 5  for Br.

     The roof shale, underclay, and a clay parting  (blue   band)  were
 analyzed,  as  well  as the seven  benches of coal in bench set 4. Roof
 and floor were  also analyzed in bench set  5, and a clay parting   (blue
 band) was analyzed in bench set 2.  Many elements including Ag,  Ba, Cd,
Co,  Cr, Cs, Cu,  F,  Ga, Hf, La, Mn,  Sc, Se, Sm,  Sr, Th, V,  Yb,  Zr,  K,
Mg,   Si,  Na, and most of the rare earth elements that were determined,
occur in significantly higher concentrations in  most  of   these  rock
 units than in the coals.  Examples of concentrations of the elements in
 the strata associated with the coal are given in the  illustrations  of
 concentrations  of  barium,  cerium,  and  silicon in bench set 4  (fig.
 68).

                         (Text continued on page 88)

-------
                                         8ft  IPPM)
                               u  0  I   II  II  X  »  It
                            0.0
                            10.1
       Fig.  63 - Distribution of bromine  in  coals of bench  set 3.
          U   (PPNI
0   «  I   H  It  X ft  It
                                                                  HO  IPPHI
                                                         o  '   111  n  it  a  w lit



101. •













1





J


















I
0.0

svo
E
r
a.
H














-














1

1














j
















ji v, » n i)
1 ' i





D




- 101. •
r
I



















i










Fig. 6U -  Distribution of  uranium, molybdenum, and vanadium in coals of
           bench set 1.

-------
               0.0 1.0 .'.0
                                                          0.0 0. I  0.7 0.3 O.i  O.S  0.6  O.t
            IH. t

            210.0
                           Bench set 1
                                                       0.0

                                                       \ti.i
                                                                      Bench set 2
                          SB  (PPm
              0  ?  J  5  7  9  10  II
           0.0
           10.;
              L_J
                           Bench set 3
           sa  
-------
                                                                                         85
                           GE  IPPMI
                0   1   I   I   I]  IJ  II  il
            0.0

            II.)
          s,.,,
          r
          8
            IU.J

            III.I

            IM. I
            210.1
                             Bench set 1
0.0
10.1
               u   ip
             ii  is  it
                Bench set 2
            0.0
            10.7
                           CE
                            Bench set 3
                                                         -10.1
                                                         *.!
                                                                        a  
                 Bench set 4
            7S.4
            n.i
                        c   e   10  i;  n
                            Bench set 5
        ^V^ Cloy»tone

        I    1 Cool
Fig. 66 -  Distribution  of germanium in coals  from bench sets  1,  2t  3,
             and 5.

-------
86
                             CD  IXI
                  0.0  1.0  1.0  3.0 1.0 5.0  6.0  7.0
               0.0

               IJ.7
              IU.J


              1(7.1
              IN. I
              110.•
             NN  IPPHI  UIO?I
   o.o o.; o.« o.s  o.e  i.o  1.2  i.«
0.0

1J.7
IU.?


197.8
IN. I
110.1
                           f   IPPMI IX10 * I
                 0.0 0.8 I.I 1.1  t.i  1.1  H.I !.)
             F   (PPHHXIO'l
   0.0 O.V  O.I  I.I  I.ft  1.9 ?.3 2.7








' ' f





I




I
y
r
B











1







• 10.7

3U.S
72.it
i
a
166.6
1 ]ciaystone ^ ,
a ?I0.9
Cool

'M



rrrr-
tt


}




0


12.11
§
in. a
310.1 \

s^y^/fy^fytfyfyffifyft




/////A
Fig.  67 -  Distribution of associated elements  in bench  sets:   Calcium
            and  manganese  in bench set 1;  phosphorus  and fluorine  in
            bench set  2; and total sulfur  and  arsenic in  bench  set  'i.

-------
                                                                                        87
                   BA   IPPH)  1X10 » I
       0.0  I.}  2.7 H.O  5.1  1.7  O.I  9.u
   -10.2
   0.0
   72.1

 £ IOS.7
 a
200.7
210.9
                                                                         CE   (PPW  1X10*1
                                                             0.0 0.7  I.H  2.1 >.l  3.5 4.2  1.9
                                                         -10.2
                                                         0.0
                                                            73.»
                                                            »0.7
                                                            210.9
                    SI  IXI
       0   ]   e  9   12  IS  16  21
   200.7
   210.1
                                                                I    I Cool
Fig.  68 -  Concentration of barium, cerium, and silicon  in coals  and as-
             sociated strata  of bench set k.

-------
88

                       ANALYSES OF WASHED COALS



                         Methods of Analyses
     Many of the coals mined in the  United  States  are  "washed"  or
"cleaned"  prior  to  delivery  to  the  consumer.  Cleaning  involves
reducing the content of ash and sulfur  of  the  coal  by  removing  a
portion  of  the  mineral matter associated with the coal. Because the
specific gravities of the minerals in coal are from two to four  times
greater than that of the coal, most coal-cleaning techniques involve a
specific gravity separation. Data on the washability of Illinois coals
and  a  description  of  the  techniques  used  have been published by
Helfinstine et al., (1970) and Helfinstine et al.f (1971,1974).

     Nine samples  of  coals  were  separated  into  specific  gravity
fractions  and  were  analyzed  for most of the same major,  minor, and
trace elements as were the 172 whole coals.  The  gravity  separations
were,  in  each  case,  made  on  a three-eighths inch by 28 mesh size
fraction obtained by crushing the coal to less than three-eighths inch
(1 cm) and then screening it. All separations of 1.60 specific gravity
and below were made in an appropriate mixture of perchloroethylene and
naphtha.  The  separations  at a specific gravity of approximately 2.8
were made in bromoform or in bromoform that contained a  small  amount
of  ethyl  alcohol.  Three coals were each separated into six specific
gravity fractions in the perchloroethylene and naphtha;  the  heaviest
of  each  of  these  six  fractions (1.60 sink) was separated into two
parts in bromoform. Five of the coals were washed to a maximum gravity
of only 1.60. One coal was also separated in the perchloroethylene and
naphtha but only two fractions were  analyzed,  one  with  a  specific
gravity of less than 1.25 and one with a specific gravity greater than
1.60. The results of the analyses for Cl and I in the washed coals are
not given, because relatively large amounts of these elements may have
been added to the coals from the washing media.

     Five of the coals that were washed were from the Illinois  Basin,.
one  each from the Davis Coal Member, the DeKoven Coal Member, arid the
Colchester (No. 2) Coal Member, and two were from the Herrin  (No.  6)
Coal Member. Three of the samples were from the eastern coal fields;  a
sample of the Blue Creek bed, Alabama; the Pocahontas No. 4  bed,  West
Virginia;  and  the Pittsburgh No. 8 bed, West Virginia. The remaining
sample was from the Black Mesa  Field  in  Arizona.  The  samples  are
identified  and the percent of the raw coal in each washed fraction is
given in Table 19.

-------
                                                                    89


     Results  of  the  determinations  of   trace   elements  of   the
laboratory-prepared  coals  are given in table 20; the major and minor
elements  in table 21; the standard coal analyses  in  tables  22  and
23;  and  the  varieties  of sulfur in table 21. Samples are listed in
order of increasing specific gravity. Those samples identified  as  to
their  size  distribution (for example, three-eighths inch by 28 mesh)
are "whole coal," or the sample prior to washing. The analyses of  the
28  mesh  by  zero  fraction is also given, although this fraction was
removed from the coal prior to washing to avoid the difficulties  that
are  encountered  when  attempts  are  made  to  wash  fine  coal.  No
significantly different concentrations of elements in the 28  mesh  by
zero  fraction are observed when compared to the three-eighths inch by
28 mesh fraction.


                       (Text continued on page 103)

-------
90
  TABLE 19—IDENTIFICATION OF LABORATORY-PREPARED WASHED  COAL SAMPLES
ANALYSIS
NUMBER

C- 18562
C-18563
C-18564
C-18565
C-18566
C-18567

C-18869
C-18878
C-18879
C-18880
C-18881
C-18882

C-18890
C-18891
C-18883
C-18884
C-18885
C-18886
C- 18887

C-18892
C-16893
C-18894
C-18895
C-18896
C-18897
C-18898

C-19014
C-19009
C-19010
C-19011
C-19012
C-19013
STATE

ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS

ALABAMA
ALABAMA
ALABAMA
ALABAMA
ALABAMA
ALABAMA

W VIRGINIA
W VIRGINIA
W VIRGINIA
W VIRGINIA
W VIRGINIA
W VIRGINIA
W VIRGINIA

W VIRGINIA
W VIRGINIA
W VIRGINIA
W VIRGINIA
W VIRGINIA
W VIRGINIA
W VIRGINIA

ARIZONA
ARIZONA
ARIZONA
ARIZONA
ARIZONA
ARIZONA
ORIGIN
— FLOAT-SINK SET 1
HER R IN (NO. 6)
HERRIN (NO. 6)
HERRIN (NO. 6)
HERHIN (NO. 6)
HERRIN (NO. 6)
HERRIN (NO. 6)
~ FLOAT-SINK SET 2
BLUE CREEK
BLUE CREEK
BLUE CREEK
BLUE CREEK
BLUE CREEK
BLUE CREEK
~ FLOAT-SINK SET 3
POCAHONTAS f4
POCAHONTAS f4
POCAHONTAS #4
POCAHONTAS f4
POCAHONTAS #4
POCAHONTAS #4.
POCAHONTAS 14
— FLOAT-SINK SET 4
PITTSBURGH f8
PITTSBURGH f8
PITTSBURGH 18
PITTSBURGH f8
PITTSBURGH *8
PITTSBURGH 18
PITTSBURGH *8
— FLOAT-SINK SET 5
BLACK MESA FIELD
BLACK MESA FIELD
BLACK MESA FIELD
BLACK MESA FIELD
BLACK MESA FIELD
BLACK MESA FIELD
SPECIFIC
GRAVITY
FRACTION
—
28M X 0
1.29 F
1.33 FS
1.40 FS
1.60 FS
1.60 S
—
28M X 0
1.30 F
1.32 FS
1.40 FS
1.60 FS
1.60 S
—
3/8 X 28M
28M X 0
1.30 F
1.33 FS
1.40 FS
1.59 FS
1.59 S
--
3/8 X 28M
28M X 0
.29 F
.32 FS
.40 FS
.59 FS
.59 S
~
28M X 0
1.28 F
1.30 FS
1.40 FS
1.60 FS
1.60 S
PERCENT
OF
RAW COAL


31.3
25.9
18.6
12.5
8.7


25.3
20.5
36.0
11.8
6.4



24.7
25.3
25.0
14.1
10.9



33-8
20.9
25.7
13.5
6.1


25.0
26.J
40.8
6.9
1.0
    NOTE:   Samples arc listed by analysis numbers on tables 20 through 24,

-------
                                                                        91
                        TABLE  19—Concluded
ANALYSIS
NUMBER

C-18090
C-18094
C-18095
C-18095
C- 18097
C-18098
C-18099
C-18106
C-18107

C-18092
C-18100
C-18105

C-18133
C-18134
C-18135
C-18136
C-18137
C-18138
C-18139
C-18140
C-18141
C-18142

C-18121
C-18122
C-18123
C-18124
C-18125
C-18126
C-18127
C-18128
C-18129
C-1&130
STATE

ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS

ILLINOIS
ILLINOIS
ILLINOIS

ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS

ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ORIGIN
— FLOAT-SINK SET 6
DAVIS
DAVIS
DAVIS
DAVIS
DAVIS
DAVIS
DAVIS
DAVIS
DAVIS
— FLOAT-SINK SET 7
DEKOVEN
DEKOVEN
DEKOVEN
— FLOAT-SINK SET 8
COLCHESTER (NO. 2)
COLCHESTER (NO. 2)
COLCHESTER (NO. 2)
COLCHESTER (NO. 2)
COLCHESTER (NO. 2)
COLCHESTER (NO. 2)
COLCHESTER (NO. 2)
COLCHESTER (NO. 2)
COLCHESTER (NO. 2)
COLCHESTER (NO. 2)
— FLOAT-SINK SET 9
HERRIN (NO. 6)
HERRIN (NO. 6)
HERRIN (NO. 6)
HERRIN (NO. 6)
HERRIN (NO. 6)
HERRIN (NO. 6)
HERRIN (NO. 6)
HERRIN (NO. 6)
HERRIN (NO. 6)
HERRIN (NO. 6)
SPECIFIC
GRAVITY
FRACTION
—
3/8 X 28M
1.28 F
1.30 FS
1.32 FS
1.40 FS
1.60 FS
1.60 S
2.89 FS
2.89 S
--
3/8 X 28M
1.29 F
1.60 S
—
3/8 X 28M
28M X 0
1.25 F
1.26 FS
1.30 FS
1.40 FS
1.60 FS
1.60 S
2.89 FS
2.89 S
~
3/8 X 28H
28M X 0
1.25 F
1.29 FS
1.33 FS
1.1)0 FS
1.60 FS
1.60 S
2.89 FS
2.89 S
PERCENT
OF
RAW COAL


25.9
19.5
19.7
19.3
7.2
8.5
3.8
4.8


19.4
9.0



28.2
23.6
27.6
10.6
3.2
6.8
3.6
3.2



36.1
17. 4
14.7
9.3
6.9
15.6
12.7
2.9
NOTE:   Samples are listed by analysis numbers on tables  20 through 24,

-------
 92
    TABLE  20—TRACE ELEMENTS IN LABORATORY-PREPARED WASHED COAL  SAMPLES
             (parts per million, moisture-free, whole coal basis)
[AMPLE   AC     AS
                         BA     BB    BR    CD     CE     CO     CR     CS
                                                                          CU
C 18090
C18091
C18095
C 18096
C18097
C18098
C 18099
C18106
C18107
C 18092
C1S100
C1B105
C18133
C18131
C18135
C1B136
C18137
C1813B
C18139
ClttlUO
CI6111
C 181 12
C18121
C1B122
C18123
C18121
C18125
C18126
C18127
C18128
C IB 129
C16130
C 18562
C1B563
C1856U
C18565
C1B566
C18567
C188B9
Clb87b
C1BB79
8.7
0.70
1.1
1.5
14.1
12
61
31
80
15
2.9
180
110
B3
11
22
17
99
180
630
350
1100
15
11
0.90
1.1
2.3
1.3
5.8
58
23
210
0.04 6.0
0.02 2.0
0.02 2.0
0.02 2.0
0.03 3.0
0.12 50
0.02 1.0
0.01 0.10
0.01 0.50
22
29
35
32
31
27
1.0
36
3.0
21
35


90
70
100
170
100
96
tz
58

91
110
90
120
190
88
73
80
88

170 80
81 10
110 10
200 80
110 110
82 170
5.0 190
2.0 120
1.0 160
3.0
2.8
3.0
3.1
2.8
2.6
1.8
3.7
1.7
1.8
7.0
7.1
1.5
3.2
2.6
3.2
3.2
3.1
3.1
7.0
3.3
5.2
2.2
2.5
2.3
3.0
3.0
3.2
3.1
3.2
1.6
1.7
0.68 8.0
0.81 21
0.76 1.0
0.75 1.0
0.85 7.0
1.9 91
0.67 2.0
0.17 2.5
•0.51 2.3
1.7
0.10
0.20
0.20
0.10
0.50
20
2.1
36
0.60
0.10
2.1
17
20
0.10
0.20
0.10
1.2
11
3»0
89
710
6.1
3.2
0.20
0.20
0.20
0.10
0.70
27
1.8
150
0.30 13
<0.10 7.0
<0. 10 9.0
<0.20 13
<0.10 28
1.1 130
<0. 10 33
<0. 10 20
<0.10 29
3.0
2.0
3.0
1.0
5.0
3.0
8.0
10
22
6.0
12
19
10
8.0
5.0
6.0
8.0
16
15
IB
11
12
5.0
5.0
2.0
3.0
5.0
6.0
5.0
19
20
29
3.2
2.3
2.7
3.5
3.2
7.0
7.5
7.8
9.3
10
7.0
9.0
10
13
23
21
27
70
15
15
11
18
10
1.0
1.0
5.0
12
18
mo
81
12
32
25
8.0
12
16
25
33
71
59
31
11
28
25
31
30
92
17
11
11
11
1.0
6.0
7.0
12
17
18
23
15
11
7.0
17
35
31
13
17
20
38
69
110
110
180
23
25
5.0
7.0
10
16
25
65
61
89
0.90 19
0.50 5.0
0.80 7.0
1.5 9.0
2.7 9.0
2.8 19
2.1 13
0.50 10
0.80 11

-------
                               TABLE  20—Continued
                                                                                   93
SAMPLt
        AC
               AS
                             BA
                                    BE
                                          B«
                                                 CD
                                                        CE
                                                               CO
                                                                      CR
                                                                            CS
                                                                                   CU
C18bBO
c 18881
ci8B«2
C 18890
C16691
C18883
C16864
C 18865
C18886
C 18887
C18892
C18893
C18894
C18895
C 18896
C18897
C18898
C 19009
C19010
C190I1
C19012
C19013
C19014
0.01
0.02
0.01)
0.03
0.03
0.02
0.01
0.02
O.OM
0.10
0.02
0.02
0.02
0.01
0.01
0.02
0.05
0.01
<0.01
0.01
0.03
0.05
0.02'
0.1)0
1.0
13
11
11
1.0
2.0
4.0
9.0
80
5.0
6.0
1.0
2.0
6.0
7.0
15
0.50
0.50
1.0
2.0
13
2.0
3.0
5.0
20
12
16
4.0
8.0
12
16
37
140
65
62
98
120
76
76
38
42
36
24
35
41
200
300
600
180
190
130
130
140
280
320
66
64
50
50
60
60
230
240
250
260
420
350
540
0.63
0.60
1.8
1.0
1.0
1.0
1.1
0.94
1.0
2.4
0.84
0.68
0.35
0.58
1.0
1.5
1.3
0.41
0.32
0.59
0.90
0.60
0.48
1.9
1.4
0.50
25
29
28
27
32
23
9.0
8.0
14
7.0
8.0
7.0
8.0
6.0
1.4
1.6
2.0
3.0
1.5
1.2
<0.10
0.30
0.80
<0.10
<0.10
<0.10
<0.10

-------
                                TABLE  20—Continued
SAMPLE    DY     tU     F      G*      GE      HF      HG      I       IN      LA     LU     KM
C 18090
C18091
C18095
C 18096
C18097
C 18096
C18099
C18106
C18107
C 18092
C18100
C18105
C18133
C18131
C18135
C18136
C18137
C1813&
C18139
C18110
C18111
C18112
C18121
C18122
C18123
C18121
C18125
C18126
C 18 127
C18128
C1D129
C18130
C18562 0.70 0.31
C18563 0.30 0.15
C18561 1.1 0.20
C18565 1.0 0.27
C18566 1.2 0.31
C1tJ5o7 1. 1 0.60
Cl
-------
                                 TABLE 20—Continued
                                                                                   95
SAMPLE
        DI
               EU
                             OA
                                   GE
                                          HP
                                                 HO
                                                               IN
                                                                      LA
                                                                            LU
C 18880
C188B1
C 18882
C18890
C18891
C18883
C18884
C18885
C 18686
C 18887
C 18892
C18893
C 18891
C18895
C 18396
C 18897
C 18898
C 19009
C19010
C19011
C19012
C19013
C 190 11
2.6
3.1
1.1
2.1
1.5
1.1
1.4
2.1
3.2
5.0
1.1
1.0
0.70
0.70
1.2
1.6
2.8
0.50
0.80
0.80
1.3
1.2
0.70
0.52
0.71
1.3
0.16
0.39
0.22
0.28
0.31
0.58
1.3
0.21
0.20
0.13
0.16
0.24
0.28
0.64
0.07
0.08
0.16
0.37
0-34
0.12
6.0
8.0
22
5.0
4.0
2.0
2.0
4.0
5.0
15
4.0
4.0
2.0
3.0
4.0
5.0
14
1.0
1.0
3.0
7.0
11
2.0
0.10
0.20
0.50
<0.10
0.70
0.10
<0.10
<0.10
0.20
0.40
1.1
1.4
o.eo
1.3
3.6
2.4
0.70
<0.10
<0.10
<0.10
0.30
3.0
<0. 10
1.6
3.1
6.5
1.6
1.0
0.30
0.40
0.80
2.7
5.7
0.60
0.50
0.30
0.30
0.40
0.50
3.5
0.40
0.40
1.1
3.1
2.3
0.90
0.03
0.03
0.05
0.14
0.15
0.06
0.04
0.09
0.15
0.78
0.14
0.15
0.05
o.oa
0.14
0.30
0.27
0.01
0.02
0.03
0.07
0.31
0.06
17
21
40
18
14
7.0
8.0
12
23
70
8.0
7.0
4.0
5.0
6.0
7.0
36
3.0
3.0
6.0
13
18
5.0
0.13
0.18
0.51
0.10
0.26
0.05
0.06
0.08
0.23
0.29
0.11
0.07
0.03
0.05
0.12
0.12
0.40
0.04
0.04
0.06
0.15
0.10
0.06
7.0
41
160
19
34
5.4
7.4
15
28
54
28
67
12
14
20
36
110
2.5
3-8
5.6
13
23
9.4
  NOTE:   Samples listed by sample number (C-number).
         cation of samples.
Refer to table 19 for Identifl-

-------
 96
                                 TABLE 20—Continued
SAMPLE    HO     Nl     P      PB     RB      SB      SC      SE      SM      SN      SR     TA
C 18090
C18094
C18095
C 18096
C 18097
C1809B
C18099
C18106
C18107
C18092
C18100
C18105
C18133
cieu4
C1B135
C1B136
C18137
C18138
C1B139
C18140
C18141
C1U142
C18121
C18122
C18123
C16124
C18125
C18126
C18127
C1812B
C18129
C18130
C1B562
C18563
C16564
C18565
C 10566
C 18567
C18889
cia«7a
C1BB79
9.0
2.0
1.0
1.0
3-0
10
61
21
220
12
3.0
140
11
12
2.0
<4.0
a.o
15
20
110
34
150
11
13
5.0
7.0
8.0
9.0
12
28
11
220









19
9.0
1>4
16
20
19
16
33
141
17
18
38
10
30
16
20
26
17
60
120
98
110
38
29
9.0
10
15
21
25
77
76
100
11
8.0
8.0
10
10
27
1 1
10
12
7.0
13
17
21
30
22
25


85
81
170
28
23
21
25
21
21
21
14


39
61

12
15
19
21
100


65
22
19
29
55
1100
170
160
250
130
12
17
19
10
100
990
390
1500
130
15
880
240
180
81
120
210
320
150
750
630
910
110
100
13
14
25
42
58
530
210
2200
4.5 16
1.2 7.0
1.7 14
2.1 24
3.2 42
11 35
4.6 21
2.5 4.0
2.8 10
0.50
0.30
0.30
0.40
0.50
0.90
1.0
3.6
1.2
0.50
0.60
0.80
4.5
3.4
3-9
6.0
3.5
14
16
11
18
13
1.9
1.9
1.2
l.t
1.3
1.6
1.6
4.2
2.8
12
0.71 4.4
0.50 1.5
0.30 2.1
0.30 2.7
0.40 3.8
1.4 7.1
0.67 4.4
0.35 2.4
0.50 3.0
2.4
1.6
1.7
1.6
2.1
3.2
6.4
5.4
7.2
1.5
2.1
5.8
1.4
1.1
0.80
0.90
1.2
2.1
3.1
3.5
3.7
3.1
3.4
3-7
l.l
1.2
1.8
2.8
3.5
8.8
6.8
21
2.0 1.4 0.60 67
<1.0 0.70 0.12 24
2.0 1.0 0.20 23
3.0 1.1 0.32 23
5.0 1.7 0.54 32
10 5.7 1.6 290
2.5 2.3 2.2 130
1.5 1.5 0.40 78
2.0 2.0 0.14 140
































0.40
0.10
0.10
0.20
0.40
0.60
0.20
0.10
0.10

-------
                                TABLE 20—Continued
                                                                                   97
SAMPLE
        NO
               HI
                                    RB
                                          SB
                                                 SC
                                                        SB
                                                                            SR
                                                                                   T»
cibbtto
C18881
C 18882
C18890
C18891
C188B3
C1688U
C 18885
C 18886
C18887
C18892
C18893
C18894
C18895
C18896
C 18897
C1889B
C19009
O9010
C19011
C19012
C19013
C19014
11
8.0
12
12
U
12
10
9.0
9.0
21
6.0
6.0
3.0
1.0
7.0
9.0
21
1.6
1.6
1.8
2.3
8.1
2.2
270
250
1000
32
26
21
16
39
11
100
56
87
32
35
67
95
no
110
130
130
53
300
130
3.6
6.4
9.2
5.1
5.5
1.6
1.6
1.0
9.8
16
3.0
3.0
2.0
3.1
1.7
5.7
7.0
0.90
0.60
1.7
5.5
29
12
17
51
170
15
19
0.0
<1.0
6.0
26
66
11
6.0
5.0
5.0
9.0
7.0
69
<1.0
<1.0
<1.0
7.0
13
3.0
0.50
0.70
1.9
1.3
1.3
0.50
0.60
1.1
2.1
2.4
0.20
0.30
0.10
0.20
0.30
0.30
0.95
0.16'
0.19
0.40
0.42
0.36
1.2
4.0
6.6
16
3.2
2.7
1.2
1.5
2.5
5.8
7.6
2.4
2.0
1.0
1.5
2.4
2.5
10
0.80
0.80
1.6
3.»
2.0
1.3
3.0
5.0
7.0
6.0
4.0
2.0
2.0
4.0
9.0
15
2.0
1.5
0.50
1.0
1.9
2.0
5.0
1.0
2.0
2.5
4.7
5.5
2.0
2.6
3-5
6.1
2.7
1.9
1.0
1.3
2.0
3.3
8.7
1.2
1.1
0.60
0.80
1.1
1.3
5.2
0.30
0.30
0.80
1.8
2.3
0.60
0.27
0.44
1.4
0.31
0.42
0.86
0.08
0.20
0.46
1.4
0.3i
3.6
<0.09
1.8
4.8
3.6
1.4
<0.08
0.09
0.20
0.50
1.3
5.4
160
130
130
110
180
85
80
81
120
140
74
120
73
75
63
50
130
130
190
190
290
190
190
0.20
0.40
1.0
0.30
0.20
0.06
0.07
0.10
0.50
0.90
0.20
0.10
0.05
0.07
0.20
0.20
0.70
0.04
0.04
0.10
0.40
0.30
0.10
  NOTE:  Samples listed by sample number (C-number).
         cation of samples.
Refer to table 19 for identlfi-

-------
98
                              TABLE 20—Concluded
        SAMPLE
                 Tb
                       TH
                              TL
                                                         YB
                                                                ZN
                                                                       ZR
C18090
C18091
C18095
C18096
C18097
C18098
C18099
C18106
C1B107
C18092
C18100
C18105
C1B133
C18131
C1B135
C18136
018137
C18138
C18139
ciaiio
cibin
U8112
C18121
C18122
C1B123
C18121
C18125
C18126
C18127
C18128
C18129
C18130
C 18562
C18563
C18561
C18565
C 18566
C 18567
C 18889
C18878
C18879
C 18860
C188B1
C18882
C 18890
C18891
C1B883
C18881
C1BBB5
C188B6
C 18887
C18892
C18893
C18891
C 18895
C 18896
C 16897
C 18898
c 19009
C19010
C19011
C19012
C19013
C19011


0.10
0.3C
0.10
0.50
0.60
1.1
0.50
0.10
0.20
0.30
0.50
0.60 '
1.2
0.21
0.30
0.09
0. 10
0.30
0.20
1.0
0.08
0.07
0.20
0.10
0.30
0. 10
2
1
2
2
1
6
3
1
2
3.
7.
13
5.
3.
0.
1
2
10
15
1,
1 .
0.
0.
1 ,
1 ,
8.
0.
0.
2.
5.
5.
1 .
.7
.2
.0
.3
.3
.0
.1
.6
.3
.7
. 1

1
,7
.97
.3
.9


.5
.1
.57
.87
, 1
,2
2
63
69
1
9
1
^
2
1
2
1
1
5
1
1
1
i
1
3
2
1
0
0
1
2
1
0
<0
<0
0
0
0
1
0
0
1
2
1
0
.9
.6
.7
.0
.3
.7
.6
.0
.0
.6
.7
.5
.0
.1
.10
.60
.5
.1
.1
.50
.50
.50
.70
.70
.60
.6
.50
.50
.7
.2
.5
.10
20
13
13
18
35
90
26
29
78
26
3-0
58
17
20
8.0
9.0
11
32
36
16
52
11
32
39
16
20
26
31
38
72
60
85
31
38
37
39
39
11
57
37
11
53
70
100
1b
11
It
21
39
6fr
8^
2?
1 u
1 1
It'
2"
3i'
8>
HI
1L'
11
11
2?
2(1


0
0
0
b
0
2
0
0
0
0
0
0
1
3
0





0
0
0
0
0
0


.50
.59
• 36
.12
.73
.1
.65
.16
.51
.65
.61
.68
.1
.3
.18





.10
.10
.26
.50
.61
.26
3
7
1
0.90
0.30
0.50
0.50
0.70
2.1
0.60
0.30
0.10
0.60
0.90
1.7
0.70
0.50
0.30
0.30
0.10
0.90
1.1
0.10
0.30
0.10
O.ZO
0.10
0.10
1.2
0.20
0.20
0.30
0.60
0.10
0.20
270
31
37
11
56
120
2500
150
5000
120
51
130
1800
1900
13
11
23
120
670
12000
7800
0000
600
310
7.0
9.0
12
15
11
3100
570
5000 .
60
6.0
7.0
10
21
250
6.0
1.0
2.0
5.0
6.0
22
5.0
8.0
3.0
8.0
8.0
15
19
13
11
1.0
7.0
15
16
30
6.0 '
3.0
3.0
1.0
36
2<>
1.0
1.0
2.0
1.0
1.0
12
IB
IB
17
6.0
2.0
19
2.0
1.0
1.0
2.0
3.0
6.0
9.0
11
11
20
12
10
1.0
2.0
1.0
7.0
8.0
32
21
11
19
27
11
57
100
63
30
19
12
96
150
110
56
16
18
12
120
380
11
30
18
21
10
51
210
11
12
10
120
80
31
       NOTK:  Samplas listed by sample number (C-number).
              19 for identification of samples.
Refer to table

-------
                                                          99
TABLE 21—MAJOR AND MINOR ELEMENTS IN LABORATORY-
          PREPARED WASHED COAL SAMPLES
    (percent, moisture-free whole coal basis)
SAMPLE
C16090
C16091
C 18095
C 18096
C 18097
C 18098
C18099
C18106
C18107
C 18092
C18100
C18105
C18133
C18134
C18135
C18136
C18137
C18136
C1ti139
C18140
C18141
C18H2
C18121
C16122
C18123
C18124
C18125
C 18 126
C18127
C18128
C18129
C18130
C 18562
C18563
C18564
C18565
C 18566
018567
C 18889
C18878
C 18879
C 18880
C18B81
C18882
C 18890
C18&91
ClS8d3
C1B8B4
C188B5
018886
C 18887
C18892
C18893
C 18894
C18895
C18896
C 18897
C18698
C 19009
C19010
C19011
C19012
C19013
C19014
AL
0.91
0.13
0.51
0.77
1.28
2.23
1.39
4.21
0.23
1.21
0.53
1.50
0.61
1.15
0.26
0.26
0.38
0.87
2.00
3.05
6.19
0.33
2.67
3.21
0.11
0.52
0.84
M3
2.92
9.50
11.90
1.93
1.99
0.60
1.04
1.63
2.50
5.81
1.62
0.79
1.26
1.B8
3-11
7.76
1.62
1.33
0.37
0.54
1.21
2.79
7.53
1.21
1.06
0.55
0.73
0.82
1.32
6.00
0.32
0.36
0.89
2.12
3.58
0.85
CA
0.21
0.21
0.17
0.11
0.73
0.53
0.11
0.19
0.24
0.11
0.18
0.03
0.10
1.16
0.07
0.07
0.07
0.08
0.16
1.53
7.85
0.70
0.56
0.79
0.06
0.05
0.06
0.06
0.12
3.20
1.27
0.11
2.73
0.18
0.20
0.18
0.12
2.61
0.72
0.10
0.12
0.11
0.50
1.00
0.39
1.06
0.18
0.18
0.31
0.55
1.06
0.39
1.16
0.21
0.22
0.22
0.33
1.71
0.79
0.81
0.96
1.99
2.19
1.26
a rs
2.70
0.51
0.83
1.04
1.39
2.00
26.10
8.92
34.80
2.98
0.86
6.64
3.03
2.84
1.19
1.54
2.40
3.10
3-72
21.20
16.00
29.70
1.72
1.16
0.54
0.72
1.07
1.61
1.69
9.88
5.19
35.10
1.70
0.70
1.00
1.40
2.10
14.00
0.60
0.30
0.35
0.40
0.80
2.60
0.80
1.00
0.50
0.70
0.90
0.90
2.20
1.60
1.70
0.50
1.20
2.10
3.40
6.20
0.35
0.35
0.40
0.50
1.30
0.60
K
0.11
0.06
0.09
0.12
0.23
0.37
0.07
0.25

0.18
0.08
0.31
0.08
0.09
0.05
0.05
0.06
0.11
0.26
0.36
0.76

0.25
0.?6
0.06
0.09
0.12
0.20
0.36
1.20
1.44
0.07
0.15
0.08
0.14
0.20
0.23
0.33
0.20
0.06
0. 10
0.18
0.41
1.50
0.21
0.23
0.02
0.03
0.10
0.32
1.10
0.12
0.11
0.05
0.07
0.10
0.12
0.86
0.01
0.01
0.01
0.04
0.13
0.03
HO
0.04
0.02
0.02
0.03
0.04
0.06
0.17


0.01
0.0
0.01
0.0
0.0
0.0
0.0
0.0
0.0
0.01
0.01


0.01
0.01
0.0
0.0
0.0
0.01
0.01
0.03


0.09
0.03
0.06
0.08
0.11
0.33
0.05
0.01
0.04
0.03
0.08
0.49
0.06
0.07
0.02
0.03
0.06
0.09
0.25
0.05
0.07
0.03
0.02
0.03
0.04
0.21
0.07
0.07
0.07
0.12
0.11
0.06
NA
0.010
0.010.
0.010
0.010
0.020
0.02C
0.020

0.020
0.020
0.010
0.010
0.010
0.020
0.008
0.006
0.060
0.010
0.020
0.020


0.040
0.060
0.020
0.020
0.020
0.040
0.050
0.140

0.040
0.030
0.020
0.030
0.030
0.040
0.080
0.030
0.010
0.020
0.030
0.060
0.190
0.070
0.070
0.020
0.040
0.080
0.100
0.140
0.050
0.090
0.030
0.030
0.040
0.040
0.230
0.160
0.160
0.160
0.170
0.140
0.160
31
2.11
0.77
1.16
1.58
2.80
5.51
3.62
8.27

2.02
0.78
2.63
1.05
1.69
0.49
0.56
0.77
1.53
3.44
5.31
11.40

4.16
4.49
0.59
0.87
1.45
2.52
4.98
19.40
23.20
2.89
3.02
1.25
2.21
3.44
5.51
12.30
2.16
0.89
1.44
2.38
4.04
16.20
2.80
2.03
0.39
0.64
1.59
4.31
18.50
2.20
1.83
0.80
1.16
1.54
2.37
14.00
0.40
0.46
1.47
4.54
19.60
1.50
TI
0.06
0.04
0.05
0.06
0.09
0.12
0.04
0.11

0.07
0.04
0.04
0.03
0.03
0.03
0.03
0.03
0.05
0.07
0.10
0.19

0.11
0.11
0.03
0.05
0.06
0.09
0.13
0.56
0.65
0.09
0.06
0.04
0.06
0.08
0.10
0.26
0.13
0.06
0.10
0.15
0.22
0.49
0.13
0.10
0.04
0.05
0.10
0.19
0.63
0.06
0.05
0.03
0.04
0.05
0.06
0.65
0.03
0.03
0.06
0.13
0.46
0.06

-------
SAMPLE
             TAtfLi t'd— PROXIMATE ANALYSES  OF LABORATORY-PREPAEED WASHED COAL SAMPLES

                           (percent of whole coal  except for  Btu values)
        AOL
               HOIS    VOL     FIXC    ASH
                                          BTU
C18090 1.90
C18094
C 18095
C 18096
C 18097
C1809B
C 18099
C1&106
C18107
C 18092 2.40
C18100
C18105
C18133 10.90
018134
C18135
C18136
C18137
C18138
C18139
C 18 140
C18141
C18112
C16121 11.30
C18122
C18123
C18124
C18125
C18126
C18127
C18128
C18129
C18130
C 18562
C18563
018564
C 18565
C 18566
C 18567
C 18889
C 18878
C 18879
2.70
1.30
1.30
2.10
1.3C
l.CO
0.80
3. 1C
0.60
3-20
1.10
0.10
13. ic
12.00
11.90
9-90
9.50
9.10
5.00
1.50
4.40
0.30
12.90
10.80
9.90
10.50
7.30
5.10
3.70
2.10
1.00
0.20
7.10
6.90
6.70
6.10
4.10
1.60
2.20
1.10
1.50
36.10








38.00


"1.50









37.80









38.50
43.70
43-30
41.50
37.50
24.00
20.90
21.90
21.60
51.00








48.60


47.40









41.50









41.00
51.90
48.70
45.40
40.60
14.90 .
69.10
75.10
73.90
10.90








13.40


11.00









20.70









20.60
4.40
8.00
13.10
21.90
61. 10
10.00
3.00
4.50
13311








12745


12740









11256









10837
13397
11060
12022
10595
3849
14007
15198
14724
                                                          SAMPLE    ADL
                                                                          HOIS    VOL
                                                                                       FIXC    ASH
                                                                                                     BTU
C 18880
C18881
C 18882
C18890
C18691
C18883
C188B4
C 18885
C18886
C 18887
C 18892
C18893
C18894
C16B95
C18896
C 18897
C 18896
C 19009
C19010
C19011
C19012
C19013
C19014
1.70
1.70 .
1.90
1.80
2.10
1.80
1.90
2.00
1.90
2.00
2.30
2.80
2.40
2.30
2.60
1.80
2.30
9.40
9.60
9.10
11.10
2.00
9.60
19.20
16.50
13.80
15.90
17.60
17.50
17.30
16.00
15.10
12.10
42.90
39.30
45.50
45.40
43.00
39.10
22.80
45.60
44.20
42.50
36.70
25.30
42.00
72.40
66.40
32-00
71.60
72.50
61.10
80.40
77.70
66.70
30.60
46.30
48.50
51.20
49.30
48.00
44.30
23.70
51.50
52.50
50.60
43.90
21.50
50.60
8.40
17.10
54.10
12.50
9.90
1.40
2.30
6.30
18.20
57.40
10.80
12.20
3.20
5.30
9.00
16.60
53-50
2.90
3.30
6.90
19.40
53.20
7.40
14171
12686
6387
13678
13444
15404
15158
14540
12536
5785
13186
12963
14382
14046
13441
121«5
5762
13115
13040
12454
10633
5758
12408
o
o
                                                          NOTE:  Refer to table  1 for abbreviations;  refer

                                                                 to table 19 for Identification of  samples.

-------
SAMPLE
            TABLE  23—ULTIMATE ANALYSES OF LABORATORY-PREPARED WASHED  COAL SAMPLES
                            (percent, moisture-free whole  coal basis)
                                  HTA
                                         LTA
C 18090
C18094
C 18095
C 16096
C 18097
C16098
C18099
C18106
C18107
C18092
C16100
C18105
C18133
CI8134
C18135
C18136
C18137
CI8138
C18139
C18140
C18141
C18112
C18121
C18122
C18123
C18124
C18125
C18126
C1B127
C18128
C18129
C18130
C18562 56.74 4.73
C16563 74.57 5.66
C18561 71.60 5.46
C18565 67.29 5.02
C18566 59.80 1.34
C 18567 28.52 1.62
C18889 79.97 1.38
C18878 86.53 1.77
C18879 81.19 4.14
10.90
3.00
3.90
5.40
9.10
19-80
51.40
39.20
61.00
13.40
5.40
49.80
11.00
16.60
2.60
3.50
5-00
10.50
21.70
56.50
46.90
65.00
20.70
23.60
3.10
3.70
6.10
11.20
21.90
72.80
75.20
65.60
1.02 14.40 23.23
1.39 ll.lfr 4.37
1.35 10.45 7.97
1.11 9.73 13-09
1.20 7.85 21.90
0.36 61.13
1.61 3.57 9-99
1.70 3.46 2.98
1.55 4.99 4.49
15.80
3.61
5.66
6.67
12.74
23.06
73.53
47.76
92.66
15.73
4.79
74.07
15.57
20.15
3-56
6.30
9-48
16.21
28.75
78.20
60.14
99-61
26.28
28.23
3.83
5.01
8.18
14.86
25.92
88.40
86.02
98.71
25.17
6.10
9.81
17.62
26.48
77.80
11.38
3.76
6.15
                                                        SAMPLE
                                                                                           HTA
                                                                                                 LTA
C 18880
CI8881
C 18882
C18890
C18891
C 1888 3
08881
C 18885
C 18886
C 18887
C 18892
C 18893
C1889"
C18895
C 18896
C18897
C1&8»8
c 19009
C19010
C19011
C19012
C19013
C 190 1«
81.76
73.11
12.54
79.65
80.01
89.39
87.88
81.13
71.00
31.70
72.56
72.57
79.55
77.52
71.46
67.30
31.52
71.33
71.21
71.38
62.80
31.66
71.89
1.27
3.81
2.68
.37
.15
.76
.17
.31
3.91
2.20
5.11
1.72
5.71
5.67
5.39
1.66
2-13
5.3T
5.16
5.15
4.13
2.56
5.16
.51
.13
0.69
.16
.08
-39
-30
1.12
0.98
0.50
1.22
1.03
1.52
1.31
1.20
0.95
0.53
1.29
1.37
1.14
1.10
0.66
1.32
3.55
4.07

1.60
1.00
2.16
3.13
3.15
2.18
3.62
5.12
5.03
6.87
6.47
4.67
2.22
1.90
15.68
15.12
14.82
12.00
8.11
13.46
8.38
17.09
54.13
12.54
9.86
1.38
2-33
6-32
18.24
57.36
10.83
12.18
1.21
5.28
8.97
16.61
53-49
2.90
3.31
6.94
19-13
53.18
7.45
9.71
19.76
59.75
13-73
12.44
1.93
3.39
7.75
20.50
64.58
13.96
15.38
3.89
7.87
11.87
22.43
63.79
4.03
4-37
7.87
22.72
79.67
9.20
                                                        NOTE:  Refer to table 1 for abbreviations; refer
                                                               to table 19 for identification of samples.

-------
      TABLE  2U—SULFUR  ANALYSES  OF LABORATORY-PREPARED WASHED COAL SAMPLES

                      (percent, moisture-free whole coal basis)
SAMPLE
        ORS
               PYS
                      sus
                            TOS
                                   SXRF
C 18090
C 16094
C18095
C 18096
C 18097
C 18098
C 18099
C18106
C18107
C 18092
C18100
C18105
C18133
C 18 131
C18135
C18136
C18137
C18138
C18139
C18140
C18141
C 18 112
C18121
C18122
C18123
C18124
C18125
C18126
C18127
C1B128
C18129
C18130
C 18562
C 18563
C 18564
C 18565
C 18566
C 18567
C 18869
C 18878
C 18879
1.17
1.20
1.19
1.21
1.26
1.11
0.02
2-03
1.24
0.76
0.96
0.24
.27
.28
.19
.00
.03
.16
0.96
0.01
0.01
0.01
.70
.56
.60
.61
.47
.26
.43
0.61
0.30
0.01
2.01
2.37
2.34
2.26
1.88
0.52
0.46
0.52
0.59
3-25
0.40
0.45
0.62
1.04
2.47
29.26
9.09
44.23
4.73
1.52
31.20
4.38
4.79
0.78
1.09
2.08
3.98
6.84
27.46
12.94
45.81
2.23
2.17
0.46
0.57
0.97
1.75
2.13
9.90
1.44
42.96
2.20
0.47
0.81
1.47
2.93
19.51
0.03
0.03
0.03
0.01





0.10
0.10
0.15
0.01
0.01
0.15
0.03
0.04
0.20
0.02
0.03
0.06 .
0.08
0.15
0.13
0.04
0.03
0.04
0.02
0.02
0.03
0.03
0.03
0.08
0.31
0.12
0.10
0.01
0.01
0.04
0.07
0.13
0.01
0.01
0.01
4.43
1.60
1.64
1.83
2.30
3.59
29.39
11.23
45.42
5.50
2.49
31.60
5.68
6.11
1.98
2.11
3.14
5.19
7.88
27.62
13.08
45.86
3.96
3.76
2.07
2.20
2.46
3.04
3.60
10.59
2.05
43.09
4.32
2.85
3.16
3.77
4.88
20.15
0.49
0.56
0.63
4.27
1.67
1.73
1.75
2.20
3-43



5.31
2.53

5.68
6.24
2.17
2.40
3-21
4.97
7.56



3.81
3.62
2.0*
2.07
2.58
3.1'
3.52



4.31
2.90
3.22
3.55
4.40

0.57
0.66
0.59
                                                   SAMPLE
                                                           ORG
                                                                  PYS
                                                                         SUS
                                                                                IOS
                                                                                       SXRP
C 18880
C18881
C 18882
C 18890
C1B891
C 18883
C 18884
C 18885
C 18886
C 18887
C 18892
C18893
C18894
C 18895
C 18896
C 18897
C 18898
C 19009
C19010
C19011
C19012
C19013
C19014
0.50
0.41
0.07
0.18
0.58
0.59
0.53
0.56
0.36
0.09
2.41
2.09
2.66
2.56
2.63
2.42
0.41
0.40
0.46
0.49
0.38
0.14
0.67
0.03
0.04
0.19
0.17
0.18
0.03
0.05
0.10
0.26
1.42
2.40
2.29
0.46
1.15
2.66
5.80
6.60
0.03
0.02
0.07
0.16
0.68
0.04
0.01
0.01
0.02
0.04
0.10
0.01
0.01
0.01
0.06
0.10
0.03
0.09
0.01
0.01
0.02
0.04
0.11
0.01
0.01
0.01
0.01
0.01
0.01
0.53
0.46
0.28
0.68
0.87
0.62
0.59
0.67
0.68
1.61
4.83
«-»7
3-12
3-72
5.30
8.26
7.13
0.43
0.49
0.57
0.54
0.83
0.72
0.69
0.41

0.93
0.95
0.73
0.77
0.87
0.81

4.61
4.36
3.01
3.74
5.08
8.07

0.42
0.55
0.83
0.59

0.85
                                                   NOTE:  Refer to  table for abbreviations;

                                                          refer to  table 19 for identifica-

                                                          tion of samples.
O
ro

-------
                                                                    103


                      Displaying Washability  Data
      The  float-sink,  or   waahability,   data   oan  be  displayed   as
washability    curves   and   as  histograms.  Washability  curves  and
histograms for a  series of  elements are shown in  figures  69  through
71. The  figures are presented in order of increasing tendencies of the
elements to be oonoentrated  in  the  heavier  fractions  (decreasing
organic  affinity). The washability curve  is a type of cumulative curve
from  which the expected concentration  of an   element  at  any  given
recovery  rate of a coal oan be read assuming the separation was based
on specific gravity differences. Therefore, the abscissa is  "recovery
of  float  coal   in  percent" and should  be applicable to any specific
gravity  separation without  regard to the  medium in which it is done or
the   method  used. The raw  ooal concentration of an element is read at
the 100-percent recovery point;  the  concentration  in  the  cleanest
coals (moat free  of mineral matter) is read at  the low recovery end of
the ourve  (20  to  30-percent recovery).

      Figure 69 shows the  washability  curve  and  the  histogram  for
germanium  in  a  sample from the Davis Coal Member. The negative slope
of the curve indicates that germanium is   oonoentrated  in  the  clean
ooal  fractions.  This  is  also  apparent  from  the  histogram.  The
histogram  also   indicates  that  there   is  higher  concentration  of
germanium  in  the 1,60 to  >2.79 specific  gravity fraction than in the
>2.79 specific gravity fraction. Apparently, a  greater portion of  the
germanium  is concentrated with the clay minerals than with the sulflde
minerals that  compose the majority of the  >2.79 sink fraction.

      An  element that is uniformly distributed in the various fractions
of  the washed coal will have a washability curve with a slope of zero
(flat); washing such a coal will have no effect on  the  concentration
of  the  element  in  the   clean  ooal.   An  example  of  this type of
distribution is shown  by   the  washability  ourve  and  histogram  of
bromine  for  a sample from the Pittsburgh No.  8 ooal in West Virginia
(fig. 70),

      A positive slope of the washability ourve  shows that the  element
is concentrated in the inorganic (mineral matter) portion of the ooal.
The more   strongly  associated  the  element  is  with  the  inorganic
fraction,  the  steeper is  the slope of the ourve. Washability data on
Cr in a  sample from the Blue Creek ooal in Alabama give a  washability
curve with a positive slope but the ourve  does not approach the origin
(fig. 71), rather when extended the curve intercepts the  ordlnate  at
approximately  10  ppm.

      A ourve with a  steeper  positive  slope  is  obtained  when  the
washability  data  for  As in the same ooal (Blue Creek seam,  Alabama)
are plotted (fig.  72). Apparently,  arsenic is more strongly associated
with  the  mineral  matter  fraction  of the ooal than is chromium.  We
would expeot that it is present in solid solution in the iron  sulfide
minerals.

-------
 101*
       The  waahability curve for the low-temperature  ash  of  a  sample
  from  the  Pocahontas No.  4 seam in West Virginia is shown in figure 73.
  This  coal washes readily to produce a  relatively  "clean"  coal  with
  fairly high  recovery.  Elements such as arsenic, which have washability
  curves that  are steeper  than that for the low-temperature aah  (LTA) are
  even  more easily removed by washing than is the "average" aah.

       Sulfur   is  present  in  coals  in  both  organic  and  inorganic
  combination;   the  standard analyses report the varieties of sulfur as
  sulfate sulfur, pyritic  sulfur,  and organic sulfur. In a  sample  from
  the   Herrin   (No.  6) Coal in Illinois, the washability curve for total
  sulfur shows  the contribution froip both organic and  inorganic  sulfur
  (fig.  74).   The sulfur  content  decreases rather rapidly in the washed
  coal  as   that   part   that   is   concentrated   in   the   heavier
  mineral-matter-rich  portion  (inorganic  sulfur) is removed,  but then
  the curve flattens because the lighter  coal  fractions  also  contain
  appreciable amounts of sulfur (organic sulfur).
I
~ S 7
                                     10.0


                                     6.6
                                   I 5l?
                                   I
                                   E 14.3

                                   &
                                     2.9
                                                                    n
                                          1.28  1.29  1.31  l.<40   1.60  2.
                                                 Specific gravity fraction
                                                     Davit Coal
Fig. 69 - Germanium in specific gravity  fractions  of a sample from the
          Davis Coal Member.   Left:  waahability curve.  Right:  distrib-
          ution of germanium  in individual  fractions.

-------
                                                                           105
   O     20    40    Mi     M'I
             Pl'Cinl r.cor.'T
        PtMiburgPi No B S«am. Witt Virginia
 li?  140  139  H59
 Specific grdvilr 'motion
burgh Me • J#«*. *MI Virfllni.
Fig.  70 - Bromine in specific gravity fractions of a sample from the
           Pittsburgh No.  8  coal from West Virginia.  Left:  washability
           curve.   Right:  distribution of bromine in individual  fractions,
/(I
60
r
f
, «0
i

" 50
JO
"'





























.11








I
jj













i
1



...
           >u« Cfttl Stom.
                                                           i >0  i 5?  i «O  * 6O  M 60
                                                               Sp'Cil-c Qravilr t>ociion
                                                              ftw« Ctttk S«0*n. »lo*0mo
 Fig.  71 - Chromium in specific gravity fractions of a  sample from the
            Blue  Creek coal  from Alabama.  Left:   washability curve.
            Right:   distribution of  chromium  in individual fractions.

-------
 106
  SO  JO 40  40  60 70  HO 90  IOO
       FVCfnl rKOvr'r
     Blu« C'«». Sfom. Aiaboffio
                                                              f"1  r-i	L_L_
                                                              "M  140  I6O  »i
                                                              SpKif
                                                     i
                                                           -,  r-,  fl
                                                              (33
                                                              Sp*cc grovitr froctien
                                                              WHoi No 4 Sffom, Wnt V
Fig.
73 - Low-temperature ash in  specific gravity fractions of a sample
     from the Pocahontas No.  4  coal from  West Virginia.   Left:
     washability curve,  fcight:   distribution of low-temperature
     ash in individual fractions.
 3,9
 i 9
 10
        SULFUR (total)
                             Fig. 7l» -  Washability  curve of  sulfur in
                                        specific  gravity fractions of
                                        a sample  from the Herrin (No.
                                        6) Coal Member.
             1O    b<>
            Percent recovery
           Herrin (No. 6) Cool
                             I
                             IOI)

-------
                                                                    107


           ORGANIC  AND  INORGANIC AFFINITIES OF THE ELEMENTS


                             Introduction
     Washability  curves  and  histograms  of  washability  data   are
effective  means  of  depicting the mode of combination of elements in
coal; they indicate whether  the  elements  are  associated  with  the
organic  or  inorganic  fractions  of the coal. However, more than 350
sets of washability curves and histograms would be needed  to  display
the washability data given in tables 20 through 24. Therefore, we have
attempted to quantify the information presented on the curves and have
produced an "organic affinity" index.

     The concept of an organic or inorganic affinity for  elements  in
coal  is  not  original  in  this  report.  Dr. V. M. Goldsohmidt, who
pioneered modern investigations of trace elements in coals, identified
trace  elements  in  inorganic  combination with minerals in coals. He
also postulated the occurrence of metal organic complexes in coal; the
observed  concentrations  of  vanadium,  molybdenum,  and  nickel were
attributed to the presence of such complexes (Goldschmidt, 1935).

     Nicholls  (1968)  approached  this  problem   by   plotting   the
analytical  data  for the concentration of a single element in coal or
in coal ash against the ash content of the coal. Diagrams depicting  a
number  of  such points for a single coal seam, or for a group of coal
seams in a single geographic area,  were  Interpreted  for  degree  of
inorganic  or  organic  affinity  of  the  element. Nicholls concluded
(1968, p. 283):

     "...one  element,  boron,  is  largely,   almost   entirely,
     associated   with   the  organic  fraction  in  coals;  some
     elements,  such as barium, chromium, cobalt, lead,  strontium,
     and  vanadium are, in the majority of oases, associated with
     the inorganic fraction; and a third group including  nickel,
     gallium,   germanium,    molybdenum,   and   copper,  may  be
     associated with either or both fractions."

Nicholls then subdivided the third group into hieke1 and copper, which
are  in  inorganic combination when found in large concentrations, and
into gallium, germanium, and molybdenum, which are largely in  organic
combination when found in large concentrations.

     Horton and Aubrey (1950) handpicked  pure  vitrain  samples  from
coals  and  separated the samples into five different specific gravity
fractions.  They then analyzed these fractions for 16  minor  elements.
They  concluded  that  for  the  three  vitrains  that  were  studied,
beryllium,  germanium, vanadium, titanium, and boron  were  contributed
almost  entirely by the inherent (organically combined) mineral matter
and that manganese, phosphorus,  and  tin  were  associated  with  the
adventitious (inorganically combined) mineral matter.

-------
108
     A  much  more  ambitious  series   of   investigations   of   the
organic-inorganic  affinities of trace metals in coals were undertaken
and were reported on by Zubovic and co-workers at the U.S.  Geological
Survey  (Zubovic, 1960, 1966, 1976; and Zubovic et al., 1960, 1961). In
the more recent of these articles  Zubovic  (1966,  1976)  listed  the
following  15 elements in decreasing order of percent organic affinity:
Ge (87), Be (82), Ga (79), Ti (78), B (77), V (76), Ni (59), Cr  (55),
Co (53), Y (53), Mo (10), Cu (3*0, Sn (27), La (3), and Zn (0).

     Zubovic (1976, p. 50) then related the ranking of the elements in
the  table of organic affinity to the complexing ability of the metals
with organic ligands; he suggested that the metals having high organic
affinities in coal are present as chelates.

     Huoh, Gluskoter, and Shimp (197*0 and Uluskoter (1975)  published
tables  of  organic  affinities  for  21  elements  determined on four
samples of Illinois coals that had been washed in the laboratory.  The
elements  were  listed  in  decreasing  order of organic affinity,  but
numerical values were not given for the index.  The analytical  results
on which those organic affinities were based are included in tables 20
through 21. Washability data  for  up  to  53  elements  and  10  coal
parameters  from  five  additional  coals  are  also included in those
tables.
                  Calculation of Organic Affinities
     The washability data are summarized in  table  25  and  numerical
values  for  organic  affinity  have  been assigned. The value for the
organic  affinity  index  for  a  specific  element  is  obtained   by
calculating  the  area beneath the washability curve. This calculation
is done on a curve that has been drawn to a predetermined and constant
scale  (normalized)  and  on  a curve which has been adjusted for that
part of the mineral matter that is inseparable from the lightest  coal
fraction.

     The curves are normalized by  calculating  a  scale  factor  then
multiplying the  ordinate  values  by that factor. The scale factor is
obtained by dividing the value at 100  percent  recovery  (V)  by  the
number  of centimeters in the Y axis. V is not necessarily the maximum
value. A unit area is obtained by  determining  the  area  (in  square
centimeters)  of  the  square  formed  by  the  points  (0,0),  (0,V),
(100$,V),  and (100$,0). To normalize the curve,  the  area  under  the
curve is divided by the area of the square.

     Examples of "standard"  and  "adjusted"  washability  curves  are
given in figures 75,  76 and 77. These three sets of curves were chosen
to demonstrate the method of calculating  organic  affinities  and  to
provide  a  visual  basis  for  comparison  of the numerical values of
organic affinities in table 25.

-------
                                                                     109
      Both unadjusted (standard) and adjusted,  normalized  washability
 curves for zinc in a sample of Herrin (No. 6) Coal are given in figure
 75. In the standard (unadjusted) washability  curve  the  extrapolated
 ordinate  intercept  is  approximately  H.5  ppm.  The  adjusted curve
 intercepts the ordinate at zero and the curve reaches  the  zero  zinc
 value  at  approximately 90 percent recovery (90 on the abscissa). The
 adjusted cumulative curve was constructed after the  following  value,
 "F,"  was  subtracted  from  each  of  the  5 datum points used in the
 calculation:
F = LTA(Light)
    LTA(1.60 S)
Zn(l.60 S) =      x
            77-80
                                           250 ppm = 19.6 ppm
                LTA (Light) is percent low-temperature ash in
           the lightest float fraction.
                LTA (1.60 S) is percent low-temperature ash
           in 1.60 sink fraction.
                Zn (l.6o S) is zinc concentration in 1.60
           sink fraction (ppm)

 If the value of a datum point is negative after "F" is subtracted from
 the reported concentration, the value is then taken to be zero.

      A fourth order polynomial curve is drawn to  best  fit  the  data
 points  and  the  area  under  the  curve  is  calculated.  The entire
 normalized area of the graph  is  defined  as  the  value  "1.00."  An
 element  which is removed, to any degree, from the clean coal fraction
 by washing the coal has a value less than 1.00; for example, see Zn in
 figure  75.   The  organic  affinity of zinc in that sample is 0.08, an
 extremely low value, indicating that the  element  is  present  almost
 entirely in the mineral matter fraction.
                                                         .,*, IN06I Cool
Fig. 75 - Washability curves for zinc  in specific  gravity fractions of a
          sample from the Herrin (No.  6) Coal Member.   Left:   standard
          washability curve.  Right:   adjusted washability curve.

-------
110
     It is possible for an element to have an organic affinity greater
than   1.00,  as  in the case for bromine in a sample of the Blue Creek
Coal from Alabama  (fig. 76). Both standard  and  adjusted  washability
curves  for  Br  are  shown in figure 76. The lighter specific gravity
fractions of the coal contain larger amounts of Br  than  the  heavier
fractions   rich   in  mineral-matter.  Bromine  is  an  element  which
generally has a  high  organic  affinity  index—in  this  case  1.20.
Standard  and  adjusted curves are nearly identical, inasmuch as there
is only a minor contribution from the inseparable  mineral  matter  to
the total bromine  content. The organic affinity index is an open-ended
scale. The upper limit is only dependent upon the  difference  between
the  extrapolated  Y intercept and V (the concentration of the element
in the coal prior  to washing).

     A number of metals have washability curves  intermediate  between
those  elements  that  are  generally  concentrated  in  the inorganic
fraction (such as  zinc) and those that are concentrated in the organic
fraction  (such  as  bromine).  Washability  curves  for  copper, both
standard and adjusted, are given for a sample of coal from  the  Davis
bed  in  Illinois  in  figure  77.   The  adjusted curve intersects the
ordinate at a lower value than does the standard curve. But even  with
the  removal  of  a  hypothetical  amount  of  copper contained in the
inseparable mineral matter there is still  an  appreciable  amount  of
copper  left  in   the cleanest coal fractions. The organic affinity of
copper in this sample is 0.56.
                   Discussion of Organic Affinities
     Organic affinities for most of the determined elements are  given
for eight sets of washed coal samples in table 25. Four of the samples
are from the Illinois Basin, three are from the Appalachians, and  one
is from Arizona. One sample from the Illinois Basin is not included in
the table of organic affinities (table  25)  because  the  sample  was
separated into only two fractions, and organic affinities could not be
calculated on those limited data.

     Organic affinities have  not  been  calculated  for  all  of  the
elements  determined  because  the concentrations of a few elements in
some of the  washed  fractions  were  below  the  limits  of  accurate
detection.  The concentrations of the elements in the whole sample, as
calculated from the recombination of the concentrations in the  washed
fractions, are also given in table 25.

-------
                                                                       Ill
     • 0 ?0  10 «0  SO 60  /<» HO  90 100
         fliw* Or** Srom. wtii v»gm.o
                                                00 4	r-	.
                                                 0  '0  20 30  «0 M  60 '0  80 90 '00
Fig. 76 - Washability curves for bromine  in  specific gravity fractions
          of a  sample from the Blue Creek coal  from Alabama.  Left:
          standard washability curve.  Right:   adjusted washability curve.
Fig. 77 - Washability  curves for copper in specific  gravity fractions of
          a sample  from  the Davis Coal Member.  Left:   standard washability
          curve.  Right:   adjusted waahability curve.

-------
112
      varieties or sulfur  (pyritic sulfur, organic sulfur, and  sulfate
sulfur)  as well as total sulfur have been determined on all fractions
of  the washed coal samples. Content of sulfate sulfur is very low  and
generally does not make a significant contribution to the total sulfur
content of a fresh coal sample.  If  the  analyses  for  varieties  of
sulfur were precise and accurate, if our measurements of the amount of
coal  in  each  washability  fraction  were  accurate,  and   if   the
measurements  of  the  amount of low-temperature ash were accurate, we
would then expect a perfect correlation between  organic  affinity  of
total  sulfur  and percent of organic sulfur in the total sulfur. This
relationship is shown for eight coals in figure 78. The  agreement  is
good  and  is  well  within the analytical error for determining those
factors mentioned above. We were  fortunate  because  the  sample  set
analyzed has a wide range of organic affinities for total sulfur (0.12
to  1.08) and the organic  sulfur  contribution  to  the  total  sulfur
content also has a wide range (22 percent to 92.5 percent).
    1.00-
  .To.eoH
    0.60-
  o
  |0.40H
    0.20-
    0.00
                                                wv
                                                              AZ
10    20    30    40    50    60
                Organic sulfur
                                                 70
80
90
100
                               Total sulfur
                                           X 100
Fig. 78 - Organic affinity index for total sulfur  and ratio  of  organic
          sulfur to total sulfur in eight washed coal samples.

-------
                                                                    113
     On the basis of the calculated organic affinities,  the  elements
in each of the eight samples may be divided into four groups: organic,
intermediate-organic, intermediate-inorganic, and inorganic. They  are
listed  in these groups in table 26. The elements were placed in these
groups in a somewhat arbitrary manner and not strictly on the basis of
the value for organic affinity. The actual values that lie immediately
above and below the cutoff points for  the  different  catagories  are
shown. In general, the groups are divided as follows: organic, greater
than 0.67;  intermediate-organic,  0.50  through  0.66;  intermediate-
inorganic, 0.3*4 through 0.49; and inorganic, less than 0.33.

     The four coals from the Illinois Basin are much more  similar  to
each other with regard to organic affinities than they  are similar to
the coals from other areas.  The following  are generalizations appli-
cable to the four samples of Illinois coals:

          1. Ge, Be, B, and Sb are classified within the  organic
     group in all samples.

          '2. Ge has the highest organic affinity in each oase.

          3. Zn, Cd, Mn, As, Mo, and  Fe  are  in  the  inorganic
     group in all four samples.

          4. Zn  and  As  have  consistently  the  lowest  values
     observed (0.08 to 0.09).

          5. A number of metals including Co, Ni, Cu, Cr, and  Se
     are  intermediate  in  value. This characteristic suggests a
     partial contribution from sulfide minerals in the coal,  but
     also  suggests the presence of organometallic compounds that
     contain these elements, or the presence of chelated  species
     and/or adsorbed cations.

     The number of generalizations decreases when  organic  affinities
from the three coals from Appalachia and the one coal from Arizona are
considered.

          1. Be, Ge, and B are among  the  elements  with  higher
     organic  affinity  in  most of the caaes. However, Ge has an
     organic affinity of 0.10 (very inorganic) in the sample from
     Arizona  and  B  is relatively inorganically combined in the
     sample from Alabama (organic affinity = 0.32).

          2. Bromine was determined in one sample of  the  Herrin
     (No.  6)  Coal  from  Illinois  and in the four samples from
     outside the Illinois Basin. The organic affinity for Br  was
     placed in the "organic" group in all five coals.

                       (Text continued on page 118)

-------
Ill*
        TABLE 25—ORGANIC  AFFINITY  OF PARAMETER DETERMINED
            IN  LABORATORY-PREPARED  WASHED COAL SAMPLES
Float-Sink Set l
HA C
A3
b
Ba
Be
Br
Cd
Ce
Co
Cr
Cs
Cu
Dy
Eu
Ca
Ge
hf
Hg
La
Lu
Mn
Nl
f
Pb
Kb
Sb
Sc
Se
So
Sn
Sr
Ta
Tb
Th
U
V
W
Kb
Zn
Zr
Al
Ca
Ke
K
Mg
Na
SI
Tl
TOS
LTA
42
9
35
6
3
37
39
11
e
25
12
7
15
35
1
20

42
111
39
10
42
26
21
5
16
28
27
34
37
23

18
2
14

25
42
19
28
42
39
16
32
13
28
21
23
33
O.Ot)
0.76
0.15
0.90
0.04
0.10
0.09
0.74
0.80
0.42
0.64
0.85
0.59
0.15
2.02
0.47

0.08
0.60
0.09
0.75
0.06
0.26
0.44
0.98
0.55
0.2b
0.34
0.18
0.10
0.43

0.49
1.38
0.99

0.42
0.08
0.48
0.28
O.Ob
0.09
0.55
0.27
0.62
0.28
0.44
0.43
0. 19
6.30
126.67
97.35
0.89
12.20
0.23
21.70
3.15
33.60
1.24
7.98
0.99
0.27
6.53
1.76
0.64

12.522
0.08
46.33
10.27
120.43
2.62
18.79
0.46
2.65
2.91
1.41
0.36
47.70
0.20

2.42
3.12
38.57

0.60
30.39
37.87
1.60 I
0.43
2.24
0.16
0.08
0.03
3.40
0.08
4.86
17.99
Float-Sink Sat 2
R A C
44
31
19
10
1

18
3
22
42
7
7
17
19
2
30

12
28
44
5
19
14
42
17
27
24
15

7
33
15
31
13
11
6
25
36
23
32
3»
29
40
41
37
39
26
4
37
0.07
0.32
0.62
0.77
1.20

0.63
1.10
0.60
0.10
0.79
0.79
0.61
0.62
1.11
0.43

0.75
0.51
0.07
1.00
0.62
0.67
0.10
0.64
0.53
0.58
0.66

0.79
0.33
0.66
0.42
0.72
0.76
0.83
0.55
0.24
0.59
0.39
0.32
0.44
0.13
0.11
0.22
0.20
0.54
1.08
0.22
1.64
3.65
208.43
0.64
1.99

35.10
7.48
18.40
2.46
13.48
2.39
0.51
6.53
0.21
1.76

17.03
0.14
18.37
10.66
279.55
3.84
25.95
0.57
4.45
2.90
2.52

127.21
0.23
0.50
3.86
1.46
5*.67
0.61
0.59
4.56
51.50
1.99 *
0.22
0.55
0.23
0.06
0.08
2.88
0.15
0.53
11.81
Float-Sink Set 3
R A C
47
26
8
5
2

23
1
32
13
15
12
14
22
9
39
35
29
21
30
3
10
33
44
17
23
26
26

4
37
17
37
30
15
7
12
20
41
39
19
11
46
33
23
1)4
36
6
42
0.09
0.46
0.77
0.88
1.09

0.49
1.21
0.38
0.15
0.56
0.60
0.57
0,50
0.69
0.24
0.32
0.41
0.51
0.40
1.01
0.68
0.37
0.13
0.55
0.49
0.45
0.46

0.90
0.28
0.55
0.28
0.40
0.56
0.80
0.60
0.53
e. 19
0.24
0.54
0.66
0.12
0.37
0.49
0.13
0.29
0.84
0.17
11.74
12.30
171.36
1.16
25.97

27.31
5.58
14.44
1.56
26.92
2.15
0.4}
1.3»
0.15
1.38
0.15
17.63
0.11
16.79
11.30
31.30
4.93
12.86
1.11
2.95
4.90
2.49

94.20
0.23
0.47
4.37
1.41
36.41
0.70
0.53
8.95
77.35
1.74 t
0.37
0.89
0.20
0.07
0.06
3.28
0.14
0.74
13.20
Float-Sink Set 4
R A C
38
3
5
13
2

28
14
27
15
18
8
11
15
9
35
19
19
35
24
22
6
10
42
24
29
29
19
24
1
39
31
40
4
17

32
22
35
32
15
34
13

11
13
46
7
41
0.27
0.82
0.75
0.53
0.98

0.38
0.51
0.39
0.10
0.15
0.66
0.3*
0.50
0.62
0.29
0.14
0.14
0.29
0.10
0.13
0.71
0.61
0.20
0.10
0.37
0.37
0.14
0.40
1.03
0.26
0.35
0.23
0.78
0.47

0.33
0.43
0.29
0.33
0.50
0.30
0.15

0.54
0.15
0.08
0.70
0.22
4.16
86.92
61.90
0.78
7.28

7.92
2.60
14.80
0.71
5.20
1.08
0.23
3.86
1.83
0.55
0.13
7.08
0.09
23.15
6.33
50.56
3.73
10.20
0.25
2.22
1.44
1.15
2.21
70.91
0.15
0.22
1.32
0.67
22.22

0.31
10.66
40.67
1.09 \
0.32
1.80
0.13

0.05
2.08
0.08
4.74
12.93
NOTIC:   "R" - ranking of  parameter by organlo affinity.
       "A" - calculated  organic affinity.
       "C" - concentration  of parameter at  100 percent recovery  (a calcu-
            lated raw coal basis).
       See table 1 for other1 abbreviations.

-------
                                                                      115

                          TABLE 25—Concluded
        Float-Sink Set 5    Float-Sink Set 6     Float-Sink Set 8     Float-Sink Set 9
         RAC       RAC       RAC        RA
As
B
Ba
Be
Br
ca
Ce
Co
Cr
Cs
Cu
Dy
Eu
Ca
Ge
Hf
hg
La
Lu
Hn
Ho
Nl
P
Pt>
Rb
Sb
Sc
Se
SB
Sn
Sr
Ta
Tb
Th
U
V
U
Kb
Zn
Zr
Al
Ca
F«
K
MS
Na
SI
Tl
TOS
LTA
13
1
5
13
10

21
9
'25
16
16
114
2"4
37
146
32
1)1
23
16
28

8
3
15
38
19
20
22
31
40
10
31
25
36
27
17
28
15

33
31
12
6
30
H
2
44
39
6
42
0.09
1.06
0.92
0.81
0.83

0.62
0.85
0.5"4
0.06
0.71
0.78
0.55
0.35
0.06
0.11
0.20
0.57
0.71
0.51

O.b9
0.98
0.07
0.3<
0.66
0.63
0.60
0.15
0.27
0.83
0.37
0.51
0.36
0.53
0.72
0.51
0.75

0.12
0.37
0.66
0.90
0.49
0.95
1.01
O.OB
0.31
0.90
0.12
0.93
37.214
261.31
0.50
1.81

10.07
0.83
1.59
0.11
14.17
0.76
0.13
2.33
0.11
0.84
0.03
5.06
0.06
5.0*

1.79
123.63
1.75
1.53
0.29
1.32
2.18
0.63
0.17
181.36
0.09
0.15
1.66
1.12
ID. 42
0.20
0.27

31.78
0.72 \
0.38
0.39
0.01
0.07
0.16
1.33
0.05
0.51
7.73
21
2

3

21

8
6

15


8
1

21


17
21
11
4
21

6

5







13


21
18
IK
8
21
11


16

20
19
0.08
1.06

1.03

0.08

0.66
0.68

0.56


0.66
1.25

0.08


0.36
0.08
0.61
0.75
0.08

0.68

0.71







0.60


0.08
0.26
0.58
0.08
0.08
0.61


0.50

0.12
0.17
7.53
28.88

2.80

1.92

3.75
11.18

8.65


2.86
6.98

0.27


17.82
7.39
17.31
20.89
108.89

0.16

2.21







21.67


257.70
4.60
0.89 *
0.38
3.13
0.13


1.98

1.29
13.72
22
1)

3

21)

7
21

1U


4
1

18


214
22
12
2
13

6

8







10


214
17
16
24
20
11

9
15

18
21
0.09
0.81

0.84

0.08

0.64
0.08

0.39


0.81
1.16

0.20


0.08
0.09
0.51
1.00
0.42

0.68

0.63







0.53


0.08
0.31
0.33
0.08
0.22
0.52

0.56
0.37

0.29
0.19
81.05
107.00

3.31

23.65

8.43
14.82

28.98


2.60
25.18

0.24


21.29
13.19
31.20
21.79
207.07

6.23

1.33







15.09


22.29
3.16
0.61 %
0.38
3.25
0.09

0.03
1.12

4.60
13-06
24
2

3

26

13
12

15


7
1

14


26
8
11
16
24

4

10







5


26
19
22
26
18
19

9
23
17
6
21
0.09
0.90

0.86

0.08

0.33
0.35

0.24


0.53
1.24

0.32


0.08
0.49
0.37
0.18
0.09

0.69

0.39







0.56


0.08
0.15
0.12
0.08
0.16
0.15

0.44
0.11
0.17
0.55
0.13
10.75
107.00

2.80

1.13

5.85
23.01

17.85


3.79
11.78

0.18


66.35
10.23
22.88
23.32
101.39

1.73

2.75







30.09


498.36
7.49
2.18 %
0.55
2.29
0.29

0.04
4.18
0.13
3.67
20.42
NOTE:  "R" - ranking of parameter by organlo affinity.
       "A" - calculated organic  affinity.
       "C" - concentration  of  parameter at 100 percent recovery (a calcu-
             lated raw coal basis.)
       See table  1 for other abbreviations.

-------
116
         TABLE  26—ORGANIC  AFFINITY  OF  ELEMENTS  IN  LABORATORY-
                      PREPARED WASHED COAL SAMPLES
Float-Sink Set 1 Float-Sink Set 2 Float-Sink Set 3 Float-Sink Set 4
Ge
U
Br
V
Sb
Be
Dy





.85
Cr .bO
B
hi
Co
Cu
Na
Lu
Eu
K
Sc
.55
Th .19
Zr
Hf
Rb
Tl
Ta
S
Ca
Yb
Sm


.31
Pb .2b
Se
Al
SI
Mg
LTA
Sn
Ba
Ga
Cd
Sr
Co
Fe
Mn
Aa
La
P
Zn
Ca
Br
Ge
Co
S
Nl
W
Cu
Dy
Sr
Be
V
La
U .72
Pb .67
Sm
Tb
tu
Sb
Ce
Ba
Ga
P

.65
Cr .60
Zr
Se
Yb
Tl
Sc
Lu
Ke
Hf
Th
Al

.39
Ta .33
B
Ca
Zn
Na
LTA
SI
K
Mg
Ca
Rb
Mn
Aa






Co
Br
Nl
Sr
Be
S
V
Ba
Ge
P
Fa

.66
Dy .60
Yb
Eu
Cu
V
Sb
Tb
Ca
Zn
Lu
Ga .50
Ce .49
Sc
Na
B
Sm
Se
La
Mn
U
Cr
Pb
Mg
• 37
Hg .32
Tl
Ta
Th
Hf
Al
Zr
LTA
Ca
Rb
SI
K
Aa






Sr
Br
B
U
Ba
P
S
Dy
Ge



.62
Pb .61
Eu
Na
Be
Co
Oa
Ca
V


.17
Cu .15
Hg
La
So
Nl
Zn
Sb
Sn
Mn
Cr
Ce
Sc
Tb .35
Yb .33
Al
Fe
Hf
Lu
Zr
Aa
Ta
Th
LTA
Rb
K
SI
cs
Tl









Organic












Intermediate-Organic










Intarcadiate-Inorganlo












Inorganic














-------
                                                                            117

                            TABLE 26—Concluded
Float-Sink Set 5 Float-Sink Sat 6 Float-Sink S«t 8 Float-Sink Set 9
B
Na
P
Mg
Ba
Fe
S
Nl
Co
Br
Sr
Ca
Be
Dy
Kb
Cu
V
Lu
Sb .66
So .63
Ce
S«
La
Eu
Cr
ib
U
Hn
W .51
K .149
Sn
hf
Zr
Ta
Al
Th
Ca .35
Hb .3"
Tl
Sn
Hg
LTA
Aa
Si
Pb
Cs
Ge




Ge
B
Be
P
Se
Sb
Cr











.68
Co .66
Ga
Ca
Nl
K
V



.60
Al i5»
Cu
SI
Mn



• 36
Zr .26
LTA
S
Aa
Cd
Hg
Ho
Pb
'in
Ft




Ge
P
Be
B
Ga













.81
Sb .66
Co
Se
Na
V
K
Nl


.51
Pb .HZ
Cu
SI
Al
Zr
S
Hg
.29
F« .22
LTA
As
Mo
Cd
Cr
Hn
Zn
Ca





G«
B
Be
Sb














.69
V .56
S
Oa
No





.19
Na .11
Se
Nl
Cr
Co
He
Cu
.214
P .18
Tl
Fa
Zr
K
LTA
Al
. SI
Al
Pb
Cd
Hn
Zn
Ca





Organlo

















Intcrmadlate-Organio








Interaedlate- Inorganic









Inorganic

•






NOTE:   Grouped in k  catagories:  organic, intermediate-organic,  Intermediate-
       Inorganlo, inorganic.  Values for the Indices of organic  affinity  sep-
       arating classes arc  indicated.

-------
118


           3. Arsenic is the only one  of  the  usually  inorganic
      elements  that  was classified in the inorganic group in all
      of the coal samples studied.

           4. Cesium was not determined in all  samples.  However,
      cesium  was  among  the  elements  with  the  lowest organic
      affinities  in  four  of  five  samples  in  which  it   was
      determined.  It was in the intermediate-organic group in the
      fifth sample.

           5. Uranium was classed among the  organic  elements  in
      three  of  the  five  washed  coal  samples  in which it was
      determined and was in the  intermediate  categories  in  the
      remaining two sets.

      The observed relationships of the elements, as expressed by their
organic  affinities, have not suggested any geochemioal anomalies. The
elements grouped as ^organic"  are  those  that  are  often  found  in
organic  combination  in  natural  materials.  These  elements include
several that have been identified in organic combination in  coals  by
previous  workers (Horton and Abernathy, 1950; Ratynakiy et al., 1966;
Zubovic, 1966, 1976).  Also,  a  number  of  elements  that  have  not
generally  been  determined  on  coal  samples  in  the past have been
determined, reported upon, and are Included in the  table  of  organic
affinities.  Examples of such elements include the lanthanides and the
rare  earths.

      The elements grouped as "inorganic"  are  those  that  have  been
identified in coals in discrete mineral phases: As, Zn, Cd, and Fe, as
sulfides; and Mn, in carbonates. Although Cs has not  been  identified
directly  in  coal,  it  is  generally  readily adsorbed in the atomic
lattice of clay minerals and presumably is present  in  the  coals  in
this  manner.

      It is significant that we cannot make many generalizations on the
basis  of  the analyses of eight coals from the three widely separated
areas: the Appalachian Basin, the  Illinois  Basin,  and  Arizona.  If
information  is  desired  on  the  mode of occurrence of elements in a
particular coal sample, it will probably be necessary to separate that
coal  into  specific  gravity  fractions  and  to analyze it for those
elements, or to otherwise make those determinations.  On the  basis  of
the   five  sets  of  washability  samples  analyzed  from Illinois, an
estimate of the organic and inorganic affinities of  the  elements  in
other coals from the Illinois Basin is likely to be more accurate than
a similar estimate made on coals from outside of the area.

      Although an element may be listed among those  with  the  highest
organic  affinities,   its occurrence in inorganic combination in coals
is  not  precluded,  boron,   which  is  among  those   found  in   hifch
concentrations  in  the  cleanest coal fractions, is  known to occur in

-------
                                                                    119


amounts up to 200 ppm in the clay mineral illite from  Illinois  coals
(Bohor  and  Gluskoter,1973).  Similarly,  a portion of those elements
usually concentrated in  the  high  specific  gravity  fractions  (low
organic affinity) may also be in organic combination.

     Concentration of an element in the heavier fractions  shows  that
element  to  be  in  inorganic  combination. In the cases in which the
final separation was done in bromoform (2.89 s.g.), we  can  postulate
further on the mode of occurrence of certain elements. Si, Ti, Al, and
K. are concentrated in the gravity fraction from 1.60 to 2.89  and  are
less  abundant  in  the  gravity  fraction  greater  than  2.89. These
elements are found associated with each other in  the  clay  minerals,
but not in the heavier sulfide minerals.
                       SUMMARY AND CONCLUSIONS
     Extensive chemical analyses  on  172  "whole  coal  samples",  40
"bench"  samples  and  64  "washed" coal samples have been done at the
Illinois State Geological Survey. As many as  71  determinations  have
been  made  on  a  single sample. Analytical methods used were: atomic
absorption  spectrosoopy  (flame  and   graphite   furnace),   neutron
activation    analyses    (instrumental    and   with   radio-chemical
separations),  optical  emission  spectrometry  (direct   reader   and
photographic),  X-ray fluorescence speotrometry (wavelength dispersive
and  energy  dispersive),  and  ion  selective   electrode   analyses.
Discussions of the analytical methods are given in the Appendix.

     Chemical elements determined are Al, Sb, As,  Ba, Be, B,  Br,  Cd,
Ca,  C,  Ce,  Cs,  Cl, Cr, Co, Cu, Dy, Eu, F, Ga, Ge, Au, Hf, H, In, I,
Fe, La, Pb, Lu, Mg, Mn, Hg,  Mo, Ni, N, 0, P, K, Rb, Sm,  Sc,  Se,  Si,
Ag, Na, Sr, S, Ta, Tb, Tl, Th, Sn, Ti, W, Ut V, Yb, Zn, and Zr. Normal
coal parameters reported on the samples are moisture,  low-temperature
ash,  high-temperature  ash,   total' sulfur,  sulfate  sulfur, organic
sulfur, pyritic sulfur, calorific value, free-swelling index, Gieseler
plasticity,  water  soluble chlorine, proximate analyses, and ultimate
analyses.

     Of the 172 whole coal samples analyzed, 114 are from the Illinois
Basin,   29  are  from coal areas in western United States, 23 are from
eastern (Appalachian) coal fields, 4 are from midcontinent coals,  and
the remaining two  are "standard" coal samples. Statistical analyses of
the chemical data  elicited a   number  of  observations  including  the
following:

          1.  Elements  that   have  relatively  large  ranges  in
     concentration  and that  have standard deviations larger than
     the arithmetic means (for example,  As, Ba, Cd,  I,  Pb,  Sb,
     and Zn) include those that are found in coals within sulfate

-------
120
      and sulfide minerals or those that would be expected  to  be
      found  in  that  association. Elements that occur in organic
      combination  or  that  are  contained  within  the  silicate
      minerals have narrow ranges and smaller standard deviations.
      Many of the silicate minerals are thought to be emplaoed  in
      the  coal  very  early  in  the  period of coal formation as
      detrital or as syngenetlc minerals. The  sulfides  and  some
      sulfates,  although syngenetio in part, have a major portion
      emplaced in the coal by epigenetic mineralization.

           2. In general,  elemental  concentrations  tend  to  be
      highest in coals from eastern United States, lowest in coals
      from western United States, and  intermediate  in  value  in
      coals from the Illinois Basin.

           3. Many elements are positively  correlated  with  each
      other  in  coals.  The most highly correlated are Zn:Cd (r =
      0.91* for coals of the Illinois Basin). Chalcophile  elements
      (As, Co, Ni, Pb, and Sb) are all mutually correlated, as are
      the  lithophile  elements  (Si,  Ti,  Al,  and   K).   Other
      significant correlations are Ca:Mn (r = 0.65) and Na:Cl (r =
      0.18).

      The average concentration of an element in the earth's  crust  is
 its  olarke  value.  The geometric mean value for each minor and trace
 element was compared to the clarke for that element. Only four of  the
 elements  determined  were enriched in the coals by a factor of six or
 more relative  to  the  olarke.  Boron,  chlorine,  and  selenium  are
 enriched  in  coals  of  the  Illinois  Basin;  arsenic, chlorine, and
 selenium are enriched in coals of eastern United States; and  selenium
 is the only element enriched in coals of western United States.

      The enrichment of selenium in coals may represent a  contribution
 from  the plants that formed the coal. Selenium occurs in amounts well
 in excess of the olarke in all coals analyzed and has been reported in
 like  amounts  in modern peats. Boron has been used as an Indicator of
 paleosalinity in sedimentary rocks. It is concentrated relative to the
 clarke only in the coals of the Illinois Basin and probably represents
 a higher salinity of the waters in the coal swamp  or  of  the  waters
 that covered the peat as the swamp was drowned.

      Only four elements were found to be enriched in coal by a  factor
 of  six  times  the clarke or greater. A larger number of elements are
 depleted in coals (one-sixth the olarke value or less).  Those elements
 depleted in coals of the Illinois Basin are: Al, Ca, Cr, P, Hf, K, Lu,
 Mg, Mn, Na, P, Sc, Si, Sr, Ta, and  Tl.  All  of  the  other  elements
 determined are within the range of one-sixth to six times the olarke.

      A series of five  sample  sets  (10  samples)  was  collected  by
 sampling  the  coal  seam in vertical segments or benches.  All five of

-------
                                                                   121


 the  bench  sets were from the Herrin  (Mo. 6) Coal Member  in  Illinois.
 Elemental    distributions  were  quite  variable  within  bench  sets,
 although the rare  earth  elements   and  bromine  tended  to  be  more
 uniformly  concentrated.

     Clements often concentrated in the top or bottom benches  of  the
 coal  include U, Mo, V, Sb, and Ge. The concentration of Ge in the top
 and  bottom benches  of  four  of  the  five  bench  sets  analyzed  is
 striking.   This   concentration  and  the  demonstrated  affinity  of
 germanium  for the  organic  portion  of  the  coal  suggest  that  the
 germanium   was   introduced  into  the  coal  seam  after  burial  by
 circulating solutions. Those solutions  were  necessarily  in  contact
 with  the  horizontal  boundaries  of  the coal seam before the center
 parts of the seam; the  change  in  geochemical  conditions  at  those
 boundaries allowed for the assimilation of the germanium by the ooal.

     Rock units immediately associated with the  coals  (roof  shales,
 underclays,  and  partings) were analyzed with some of the bench sets,
 Most elements are found  in  significantly  higher  concentrations  in
 these  rock  units  than in the coals. Those elements Include: Ag, Ba,
 Cd, Co, Cr, Cs, Cu, F, Ga, Hf, La, Mn, So, Se, Sm, Sr, Th, V, Yb,  Zr,
 K, Mg, Si,  Na, and most of the rare earth elements.

     Nine coal samples were separated into specific gravity  fractions
 (washed)  and  were  analyzed  for most of the major, minor, and trace
 elements, as were the 172 whole coals. A total of  64  washed  samples
 were  studied.   Five of the washed coals were from the Illinois Basin,
 three were from widely separated areas in eastern coal fields, and one
 was  from Arizona. The float-sink or washability data for the elements
 may be shown as washability curves and  as  histograms.   The  mode  of
 occurrence  of  an element, whether it is inorganically or organically
 combined in the coal,  may be interpreted from the washability curves.

     A value for the organic affinity of the elements has been defined
 by  normalizing the washability curves, removing from them a component
 that represents the contribution from the inseparable mineral  matter,
 and  then calculating the area under the washability curve. This value
 ranges from 0.08 to 2.02 for the  elements  determined  in  the  coals
 analyzed.

     Clements within a single washed coal set of analyses  are  placed
 in    one   of   the   following   four   groups:   1)   organic,   2)
 intermediate-organic,  3) intermediate-inorganic, and 4)  inorganic.  The
 four samples from the Illinois Basin on which these  organic affinities
were  calculated  are  quite   similar   to   one   another;   several
generalizations can be made from them:

          1. Ge,  Be,  B,  and Sb  are  classified  in   the  organic
     group in all samples;  Ge haa the highest organic affinity in
     all four instances.

-------
122
           2. in, Cd, Mn, As, Mo, and  Fe  are  in  the  inorganic
      group in  all four samples; Zn and As consistently have the
      lowest values.

           3. A number of metals including Co, Ni, Cu, Cr, and Se,
      have  organic affinities that place them in the intermediate
      categories. This suggests that these metals are  present  in
      coals  as  organoraetallic compounds, chelated species, or as
      adsorbed cations.

      The number of generalizations that can be  drawn  decreases  when
organic  affinities of coals from other parts of the United States are
considered. However, Ge, B, and Br generally are  among  the  elements
with  the  highest organic affinities. Arsenic, in all cases, is among
the elements with the lowest organic affinities.  The  variability  in
organic  affinities  between  coals  of eastern United States, western
United States, and the Illinois Basin is  sufficiently  large  that  a
prediction  of the value of organic affinity of an element in a sample
that  is yet to be analyzed is, very likely, imprecise.

      The statistical analyses of the chemical analytical data that are
given  here and the observations made are a first step in the complete
geochemical analyses of those data. Currently in progress are  further
statistical   analyses,   areal   and  stratigraphic  mapping  of  the
distribution  of  the  elements,  and  correlation  of  the  elemental
distributions  with  mineral  matter  analyses  and  other  geological
features of the coal basin.

-------
                                                                   123
                              REFERENCES

Bohor, B. F.,, and H. J. Gluskoter, 1973, Boron in illite as a paleo-
        salinity indicator of Illinois coals:  Journal of Sedimentary
        Petrology, v. 43, no. 4, p. 945-956.

Clarke, F. W., and H. S. Washington, 1924, The composition of the
        earth's crust:  U.S. Geological Survey Professional Paper 127,
        117 p.

Cobb, J. C., and S. J. Russell, 1976, Sphalerite mineralization in coal
        seams of the Illinois Basin:  Geological Society of America,
        Abstracts with Programs, 'v. 8, no. 6, p. 816.

Couch, E. L., 1971, Calculations of paleosalinities from boron and clay
        mineral data:  American Association of Petroleum Geologists
        Bulletin, v. 55, p. 1829-1837.
Davis, J. C., 1973, Statistics and data analysis in geology:  New York,
        John Wiley and Sons, 550 p.
Dreher, G. B., and J. A. Schleicher, 1975, Trace elements in coal by
        optical emission spectroscopy, in Babu, S.  P., editor, Advances
        in Chemistry Series:  Washington, D.C., American Chemistry
        Society, no. 141, p. 35-47.

Frost, J. K., P. M. Santoliquido, L. R. Camp, and R. R. Ruch, 1975,
        Trace elements in coal by neutron activation analysis with
        radiochemical separations, in Babu, S. P.,  editor, Trace
        Elements in Fuel:  Washington, D.C., American Chemical Society,
        Advances in Chemistry Series No. 141, p. 84-97.

Gluskoter, H. J., 1965a, Composition of ground water associated with
        coal in Illinois and Indiana:  Economic Geology, v. 60,
        p. 614-620.
Gluskoter, H. J., 1965b, Electric low-temperature ashing of bituminous
        coal:  Fuel, v. 44, p. 285-291.
Gluskoter, H. J., 1967, Chlorine in coals of the Illinois Basin:
        Transactions, Society of Mining Engineers,  American Institute
        Mining Engineers, v. 238, p. 373-379.
Gluskoter, H. J., 1975, Mineral matter and trace elements in coal, in
        Babu, S. P., editor, Trace Elements in Fuel:  Washington, D.C.,
        American Chemical Society, Advances in Chemistry Series No. 141,
        p. 1-22.
Gluskoter, H. J., J. R. Hatch, and P. C. Lindahl, 1973, Zinc in coals
        of the Illinois Basin:  Geological Society  of America,
        Abstracts with Programs, v. 5, no. 7, p. 637.
Gluskoter, H. J., and P. C. Lindahl, 1973, Cadmium:   Mode of occurrence
        in Illinois coals:   Science, v. 181, no. 4096, p. 264-266.

Gluskoter, H. J., and 0. W. Rees, 1964, Chlorine in Illinois coal:
        Illinois Geological Survey Circular 372, 23 p.

-------
Gluskoter, H. J., and R. R. Ruch, 1971, Chlorine and sodium in Illinois
        coals as determined by neutron activation analyses:  Fuel,
        v. 50, no. 1, p. 65-76.

Gluskoter, H. J., and J. A. Simon, 1968, Sulfur in Illinois coals:
        Illinois State Geological Survey Circular 432, 28 p.

Goldschmldt, V. M., 1935, Rare elements in coal ashes:  Industrial and
        Engineering Chemistry, v. 27, no. 9, p. 1100-1102.

Hatch, J. R., M. J. Avcin, W. K. Wedge, and L. L. Brady, 1976,
        Sphalerite in coals from southeastern Iowa, Missouri, and
        southeastern Kansas:  U.S. Geological Survey, Open file report
        76-796, 26 p.

Hatch, J. R., H. J. Gluskoter, and P. C. Lindahl, 1976,  Sphalerite in
        coals from the Illinois Basin:  Economic Geology, v. 71,
        no. 3, p. 613-624.
Helfinstine, R. J., N. F. Shimp, J. A. Simon, and M. E.  Hopkins, 1971,
        Sulfur reduction of Illinois coals—Washability  studies.
        Part 1:  Illinois Geological Survey Circular 462, 44 p.
Helfinstine, R. J., N. F. Shimp, M. E. Hopkins, and J. A. Simon, 1974,
        Sulfur reduction of Illinois coals—Washability  studies.
        Part 2:  Illinois Geological Survey Circular 484, 32 p.

Helfinstine, R. J., J. A. Simon, N. F. Shimp, and M. E.  Hopkins, 1970,
        Sulfur reduction of Illinois coals—Washability  tests:
        Illinois Geological Survey Environmental Geology Note 34, 12 p.
Holmes, J. A., 1911, The sampling of coal in the mine:  U.S. Bureau
        Mines Technical Paper 1, 18 p.

Horton, L., and K. V. Aubrey, 1950, The distribution of  minor elements
        in vitrain:  Three vitrains from the Barnsley seam: London,
        Journal of the Society of Chemical Industry, v.  69, suppl.
        no. 1, p. S41-S48,(revised).
IBM Corporation, 1970, System/360 Scientific Subroutine  Package,
        Version III, Programmers manual, Program number  360A-CM-03X,
        Manual number GH20-0205-4:  White Plains, NY: IBM Corporation,
        454 p.

Kuhn, J. K., W. F. Harfst, and N. F. Shimp, 1975, X-Ray  fluorescence
        analysis of whole coal, in Babu, S. P., editor,  Washington,
        D.C., American Chemical  Society, Advances in Chemistry Series
        no. 141, p. 66-73.
McCammon, R. B., editor, 1975, Concepts in Geostatistlcs:  New York,
        Springer-Verlas, 168 p.
Miesch, A. T., 1967, Methods of computation for estimating geochemical
        abundance:  U.S. Geological Survey Bulletin 574-B, 15 p.

-------
                                                                    125

Nicholls, G. D., 1968, The geochemistry of coal-bearing strata, in
        Murchison, D.,and T. S. Westell, editors, Coal and Coal-bearing
        Strata: American edition, New York, American Elsevier,
        p. 269-307.

Rao, C. P., and H. J. Gluskoter, 1973, Occurrence and distribution of
        minerals in Illinois coals:  Illinois Geological Survey
        Circular 476, 56 p.

Ratynskiy, V. M., T. I. Sendul'skaya, and M. Y. Shpirt, 1973, Chief
        mode of entry of germanium into coal, ±n Weber, J.N.E., editor,
        Geochemistry of Germanium: Stroudsburg, Pennsylvania, Dowden,
        Hutchinson, and Ross, p. 426-428.

Rook, H. L., T. E. Gills, and P. D. LaFleur, 1971, Method for determina-
        tion of mercury in biological materials by neutron activation
        analysis:  Analytical Chemistry, v. 44, no. 7, p. 1114-1117.
Ruch, R. R., H. J. Gluskoter, and E. J. Kennedy, 1971, Mercury content
        of Illinois coals:  Illinois Geological Survey Environmental
        Geology Note 43, 15 p.

Ruch, R. R., H. J. Gluskoter, and N. F. Shimp, 1973, Occurrence and
        distribution of potentially volatile trace elements in coal:
        An interim report:  Illinois Geological Survey Environmental
        Geology Note 61, 43 p.

Ruch, R. R., H. J. Gluskoter, and N. F. Shimp, 1974, Occurrence and
        distribution of potentially volatile trace elements in coal:
        A final report:  Illinois State Geological Survey Environmental
        Geology Note 72, 96 p.
Simon, J. A., and R. Malhotra, 1976, Place of coal in the total energy
        needs of the United States:  Illinois State Geological Survey
        Illinois Minerals Note 63, 14 p.
Swanson, V. E., J. H. Medlin, J. R. Hatch, S. L. Coleman, G. H. Wood,
        Jr., S. D. Woodruff, and R. T. Hildebrand, 1976, Collection,
        chemical analysis, and evaluation of coal samples in 1975:
        U.S. Geological Survey, Open file report 76-468, 503 p.

Taylor, S. R., 1964, Abundance of chemical elements in the continental
        crust:  A new table:  Geochimica et Cosmochimica Acta, v.  28,
        no. 8, p. 1273-1285.
Turekian, K. K., and K. H. Wedepohl, 1964, Distribution of elements in
        some major units of the earth's crust:  Geological Society of
        America Bulletin, v. 72, no. 2, p. 175-191.

Wanless, H. R., J.  R. Baroffio, and P.  C.  Prescott, 1969,  Conditions of
        deposition of Pennsylvanian coal beds in Dapples,  E.  C., and
        M. E.  Hopkins,  editors, Environments of coal deposition, GSA
        Special Paper 114:   Boulder, Colorado, Geological Society  of
        America, p.  105-142.

-------
126

 Wedge,  W.  K.,  D.M.S.  Bhatia,  and A.  W.  Rueff,  1976,  Chemical analyses
         of selected Missouri  coals and  some statistical implications:
         Missouri Department of Natural  Resources,  Geological Survey
         Report of Investigations 60, 40 p.

 Weimer, R. J., 1970,  Upper cretaceous of Rocky Mountain Region,  in
         Morgan,  J.  P.,  editor. Deltaic  sedimentation,  modern and
         ancient:  Society of  Economic Paleontologists  and Mineralogists
         Special Publication No. 15,  p.  270-292.

 Zubovic, P.,  1960,  Minor element content of coal from  Illinois Beds 5
         and 6  and their correlatives in Indiana and  western Kentucky:
         U.S.  Geological Survey, open file report,  79 p.

 Zubovic, Peter,  1966, Physiochemical properties of certain minor
         elements as controlling factors of  their distribution in coal,
         in Gould, R.  F., editor, Coal science:  Washington, D.C.,
         American Chemical Society Publications, Advances in Chemistry
         Series,  no. 55, p. 221-246.
 Zubovic, Peter,  1976, Geochemistry of trace elements in coal, in Ayer,
         F. A., compiler, Symposium proceedings:  Environmental aspects
         of fuel conversion technology,  II:   (December  1975), Washington,
         D.C.,  U.S.  Environmental Protection Agency,  Environmental
         Protection Technology Series EPA-600/2-76-149.  1976.
 Zubovic, P.,  T.  Stadnichenko, and N. B. Sheffey,  1960,  The association
         of minor elements with organic  and  inorganic phases of coal:
         U.S.  Geological Survey Professional Paper  400-B, p.  B84-B87.

 Zubovic, P.,  T.  Stadnichenko, and N, B. Sheffey,  1961,  The association
         of minor element associations in coal  and  other carbonaceous
         sediments:   U.S. Geological  Survey  Professional Paper 424-D,
         Article  411,  p. D345-D348.

 Zubovic, P.,  T.  Stadnichenko, and N. B. Sheffey, 1964, Distribution of
         minor elements in coal beds of  the Eastern Interior region:
         U.S.  Geological Survey Bulletin 1117-B, 41 p.

-------
                             APPENDIX
                          METHODS OF ANALYSIS
                             Introduction

     The methods  used  in  this  project  were  instrumental  neutron
activation   analysis   (INAA),   neutron   activation  analysis  with
radiochemical separation (NAA-RC),  optical  emission  spectroohemical
analysis—direct  reading  (OE-DR)  and  photographic  (OE-P),  atomic
absorption analysis—flame (AA) and  graphite  furnace  (AA-G),  X-ray
fluorescence analysis (XRf), and ion-selective electrode (ISE).

     Methods  developed  and  used  in  the   initial   project   (EPA
68-02-0246) were detailed in the reports made on that project (Ruch et
al., 1973i 1971*). In general, the same multi-element  method  approach
was  continued  with  refinements and substitutions in most analytical
disciplines.

     In particular, for INAA a new higher resolution Ge(Li)  detector,
coupled  with  a  1096-channel  analyzer  system, replaced the Nal(Tl)
detector and MOO-channel analyzer. This greatly  increased  the  scope
and  capability  of  NAA  for  the  analysis  of coal and coal-derived
materials for  trace  elements,  and  fewer  radiochemical  separation
procedures were required.

     Both emission spectrochemical procedures were updated and refined
through  further  optimization  of exposure times, preparation of more
suitable standards, and more extensive data processing.

     Atomic absorption analysis was employed essentially aa previously
reported.  One  refinement  was the use of new electrodeless discharge
lamps (EDL's). Toward the latter part of this contract period, a  more
sensitive  graphite  furnace  excitation  technique was  developed,  and
preliminarily evaluated for the determination of Cd, Tl,  and Te.

                                  127

-------
128
     The X-ray fluorescence, ion-selective electrode  procedures,  and
conventional ASTM coal analysis methods used were essentially the same
as those reported previously (Ruch et al., 1973, 197*0.

     Development of energy-dispersive X-ray fluorescence  analysis  of
coal was begun during the project. The instrumentation consisted of an
americiura-241  excitation  source;  secondary   targets   of   copper,
molybdenum,   tin  and  dysprosium;  and  a  Si(Li)  detector  with  a
1000-channel analyzer.

     It was estimated that the average relative standard deviation for
any  technique was in the range of 10 to 20 per cent for most elements
concerned.
                      NEUTRON ACTIVATION ANALYSIS
     Nondestructive neutron  activation  analysis,  coupled  with  the
high-resolution    Ge(Li)    detector,    allowed   the   simultaneous
determination of a large number (38) of trace elements in  whole  coal
to  the ppb level. The technique significantly increased the scope and
capability  of  trace  element  analysis  in  coal  and   coal-derived
materials.  The  technique eliminated the necessity for time-consuming
radiochemical separations in the determinations of  such  elements  as
As,  Sb, Br, Ga, and Se, as previously required when counting with the
Nal(Tl) detector.

     Comparison of INAA data obtained  in  this  laboratory  with  the
published data on NBS 1632, the Trace Elements in Coal standard (Table
A), indicates generally good agreement and acceptable precision.
                            INAA Procedures
     Approximately 1 gram of whole coal was  weighed  into  two-fifths
dram  polyethylene  vials,  was  heat sealed, and was activated in the
THIGA MKII reactor at the  University  of  Illinois.  The  irradiation
times,  the  decay interval, the count interval, the nuclide observed,
and limits of detection for the elements determined are shown in Table
b.  Irradiation  and  counting  times  were  chosen  to  optimize  the
determination of certain elements. All samples  were  compared  to  an
irradiated  raultielemental  standard, which was composed of a solution
of reagent-grade materials evaporated onto Whatman 41  filter  papers.
In  addition  to the prepared standards, a sample of NBS-1632 standard
reference coal  was  occasionally  analyzed  in  order  to  check  the
accuracy  of the data in comparison to accepted literature values. The
counting system is shown schematically in Figure A. Data reduction was
accomplished  with  the  IBM  360  facilities  at  the  University  of
Illinois.

-------
                                                           129
            Ge(Li) Detector
              3^0 Amplifier
        NS TOO
        Pluse Height Analyser
        1*096 Memory
   Tape Control
                                  Visual Readout
                                  Peak Integration
   Wangco Mod 7
   Tape Deck
A - Sche.'iiuitai: of  instrumental  neutron  activation system.

-------
TABII A—COMPARISON OF VALUES FOR NBS SRM 1632
ppm
Na
K J
Kb
Cs
Be
Mg >
Ca \
Sr
Ba
F
Cl
Br
I
Al »
Si J
5 t
So
Tl
V
Cr
Mn
Fe »
Co
Ni
Cu
Zn
Ga
Ge
A3
Canili
?,52 +. 31
2oCC +_ 300
22. d ± 1.8
! .8 +_ 0.3



155 + 6
385 + 10

860 + 51
18.8 » 2.1
3.3 ±. 0.1



3.1 +. 0.3


17.6 + 2
12.8 ». 2.1
0.93 + 0.08
5-5 + 0.3
16 + 5

31 + 9
5.3 + 0.5

6.2 +_ 1.3
Ondov :;.i.£.
Ill +_
0.25 +.
21 ±
1.1 +.

0.21 «
0.20 +.
161 +.
352 +

890 +.
19.3 +

1.85 ±


3-7 +
1010 «
36 ±
19.7 ±
13 +
0.81 +
5.7 +.
18 +.

30 +.


6.5 ±
20
0.03
2
0. '
i ' . 5 ',
0.05
0.05
16
30

125
1.9
2.6 « 0.2
0.13
(3.2)

0.3
110 isOO'r
3 35 + 3
0.9 20.2 + 0.5
1 tC- + •
0.01 O.b7 » 0.03
0.1 (6)
1 15 «. '
18 «. 2
10 37 _» u


1.1 5.9 +. 0.6
Chattopaday .
351 +. 30


0.35 +. 0.01

0. 16 +. 0.015

1.33 +. 3.1
311 +. 20

930 + 18





3-58 * 0.35
973 + 50
33.9 +. 3.0
21.6 » 2.1
17 * 1.1
0.869 +. 0.011
5.5 + 0.1
13.5 +. 1.2

37.5 + 2.8


5.75 + 0.37
Shtebley
370
0.35
19
2.55

0.096
0.107
93
337

750
20
2.78
1.57



1312
36
19
38
0.752
5.16

11. 1

5.1
70
5.9
*. 33
+ 0.036
+ 1.9
+. 0.06

+ 0.025
7 0.056
+. 9.2
+ 12

+ 75
± 3
+ 0.38
+ 0.15



_ 150
4
0.8
~ 2.6
_ 0.012
7 0.15

± 0.9

+ 0.8
± 5
±0.5
Millard
u 10.
2900.
21.
2.6».



129.
280.





3.92

1.1


20.6
16.
0.903
6.2






Naiikarni
3J7 +. 32
0.276 + 0.023
16.3 +. 3.7
1.32+0.11

0.15 » 0.03
0.«3 +. 0.02
1.02 + 0.05
311 ». 25

915 +. 35
15.2 + 1.1
6.63 +. 1.2
1 . 7 c +. O.jl


3.50 » 0.08
839 + 172
32.7 +. 3.1
18.9 + 2.2
' 10.3+6.9
0.89 +" 0.06
5.13 +. 0.57
12.1 ». 0.7

32 + 3


1.61 + 0.32
I^GS ORNL

''•33


: .7
v) . 1 1
i). 70


51.
1000.
20.

2.2 1



1 100.
50.
22.
3V.
1.11
1 1.
20.
23.
1?.
".5
'<• .0
5.7
325
0.266








890
19

1.72


3.7

37
17
11
0.78






1.5
+ 6
+0.002








+ 125
+. 1

+. 0.09


± 0.3

+ 3
± 1
.+ 1
+. 0.02






i 0.1

-------
r r"
Se
Ir
A;
ir.
5-
c-
Y
la
Ce
Nd
So
£u
Gd
Ta
Dy
Ifb
Lu
Tn
t.'
~a
m
Aj
hg
PS
T *,
e
-
=
Car
:•<

10. fc
20.1

1.6
C.36


1-59
0.71
0.13
3.5
; . ic
0.21
C.c7
<






:11 Indov
• 1.7
^ 3. c

* j. -
i 3.7

± 0.2
± 0.03


» 0. 16
i 0.09
•. 0.03
i 0.6
- O.J
. 0.02
i 0.20
3.C01






3."
C.06
0.20

10.7
19.5

1.7
0.33

0.23

0.7
0.11
3.2
0.96
0.21
0.75







i. '"*
± C

t_ '
* 1

*. o
*. o

1 0

* 0
± o
i. 0
i 0
T o
» 0







N.B.5. Chattopaday.
2 2.9 - 0.3 3.03 * 0.28
1.56 ± 0.11
0.20 » 0.02
03 «. '. ) 1.05 *. 0. 1
;.:;<• o.c 3 0.20 7 0.02
12 0.23 ± 0.02
10.2 i 1.0
3 3.09 ± 0.26

2


2
01

05

1
1
2 (3.0)
05
2"
17

0.12 » 0.02 0.1
30 ± 9 32.1 i. 1.8
0.59 i 0.03 0.51 ± 0.06
«0.1) 1.02


Shiebley
3.0
125
6."

n.3
17.3
6.1
1-3
0.31

- .33
0.85
0.55
0.«16
3.1
0.92
0.36
1.9
O.K6
0.95



2. I'd

* 0.5
± 0.01
*. 20
*. '-6

» 3
*. o
± 1
t 0
*. o

^ ;
*. o
* 0
* 0
±.0
» 0
± o
* 0
± o
*. o



*. o


3
9
5
19
037


06
01
017
2
05
02t!
b
OUb
09



27

Mlllard
2.2

11-3
20.
10.7
0.7
0.1
2.5
0.5
1.1
0.8
0.1
3.2
1.1
0.3



23-



0.3
Nadkarnl ISGS ORNL
2.1" i
3.06 ±

' .89 »
19.7 i

1.66 ±
0.37 +
3.62 +
0.10 •»
1.38 *
0.69 »
0.12 «
1.28 *
0.89 ».



0.23 *





O.Oo 2.b 3-2*. 0,3
5.0
10.
1.1 3-

0. 15
0.56

0.16
0.02
0.35
0.02
0.09
0.01
0.005
0.06
0.02



0.02 0.18 0.51*0. 17





 13.
118.

-------
132
            TABLE B—DETECTION LIMITS AND NUCLEAR PROPERTIES
                OF ISOTOPES USED FOR THE ANALYSIS OF COAL
Element
Na

Cl

K

So

Cr

Mn

Fe

Fe

Co

Ni

Zn

Zn

Ua

As

Se

Br

Rb

-••

Mo

*S

Cd
laotope
Produced
21
Na
38
Cl
12
K
16
Sc
51
Cr
56
Mn
59
Fe
51
Mn
60
Co
58
Co
65
Zn
69
Zn
72
Ca
76
As
75
Se
82
Br
86
RD
«7m
Sr
99
Mo
1 10m
AR
1 1'.l
Cd
Half
Life
15 hr

37 mln

12.1 hr

83.8 day

27.8 day

258 hr

15 day

291 day

5.26 yr

71 day

215 day

13.8 hr

11.2 hr

26.1 hr

120 day

35.3 hr

•Jti.7 day

2.8 hr

07 hi-

253 day

VJ hr
Cross
Section
(barns)
0.53

0.10

1.2

13

17

13.3

1. 1

0.1

37

0.2

0.5

0. 1

5.0

1.5

30

3-0

0.7

'•3

0. If,

3.S

0-i
Counting
Period*
A, B.C

A

B, C

D

D

A, B

D

D

D

D

D

B, C

B, C

C

0

B, C

D

A, B

C

U

C
Major
gamma-rays
utilized
(keV)
1368

1612

1525

889, 1120

320

816, 1811

1099, 1292

835

1173. 1333

810

1115

139

831, 630

559, 657

136, 261

551, 777

1079

388

ill

657, 937

528
Lloit of
Detection
(ppo)
0.5

20

30

0.01

1

0.1

200

1000

0.5

5.0

5.0

50

0.5

0.2

0.1

0.5

1.0

5.0

5.0

1.0

5.0
Average
Relative
Standard
Deviation
5

15

10

5

10

5

10

15

5

30

30

25

15

20

is

20

20

10

20

30

50

-------
                                                               133
                TABLE B—Continued
Element
In
Sb
Sb
I
Ca
Ba
Ba
La
Ce
Sm
iiu
til
Tb
Dy
Yb
Yb
Ln
III'
Tn
Isotope Half
Produced Life
116m
In 51 min
122
Sb 2.7 day
121
Sb 60.3 day
128
I 25 mln
131
C3 2.05 yr
131
Ba 12 day
139
Ba 83 rain
110
La 10.2 hr
ill
Ce 33 day
-Sm 17 hr
152
Ku 9.3 hr
Eu 12.5 yr
160
Tb 72 day
165
Dy 2.35 hr
175
Yb 1.2 day
169
Yb 32 day
177
Lu 6.V day
181
Hf 12.5 day
T;i M', ,|ay
Cross
Section
(barns)
160
6.5
2.5
6.2
31
8.8
0.35
8.9
O.b
;MO
i!BOO
5900
16
700
55
5500
2100
10
.•1
Counting
Period*
B
C
D
A
D
C, D
A, B
C
D
C
A, B, C
D
D
A, 8
C
D
C
D
L
Major Limit of
gamma-rays Detection
utilized (ppo)
(keV)
117, 1097 0.01
561 0.2
1691 0.1
113 0.5
797,569 0.05
196, 216 30
166 200
1596, 187, 329 0. 1
115 0.5
103 0.05
122, 311, 963 0. 10
1108 0.05
879, 1178 0.05
95, 361, 633 0.1
396, 282 0.5
198, 110 0.1
208 0.05
181, 133 0.05
155, 2'S' , 1.^1 0.01
Average
Relative
Standard
Deviation
30
20
10
25
15
10
20
5
15
5
5
5
to
10
25
10
15
15
10
Ib7
  W   .'<.« lir
                        It, C

-------
Ij't
                          TABLE  B—Concluded
Klement Isotope Half Cross Counting
Produced Life Section Period*
(barns)

Major
gamma-rays
utilized
(keV)
Limit of
Detection
(ppm)

Average
Relative
Standard
Deviation
          196
    Au
    Tn
            Au
          233
            Pa
65 hr


27 day
                          99
                                           1411
                                           312
0.01


0.2
10


10
239
U Np 56 hr 2.7 C
* COUMI irm
IV Hod l:—.idiatlnn r'lux ( n.cm"?.seo"2 )
A 15 min 3.0 x 10'2
li 15 min 2.0 x 1012
C 2 hr 'l.l X 1012
0 2 hr 'I. 1 x ]0'2
277,
Decay
Interval
30 min
3 lir
21 hr
30 day
22B 0. 1 20
Count
Interval
300 sco
2000-3000 gee
1000-7000 sec
6-10 hr
            Radiochemical Separation  Procedure for Mercury

      Instrumental neutron activation  analysis was not satisfactory for
 the   determination  of  Hg  at the levels usually found in whole coals
 (0.01  to  0.50  pprn).  Hence,  use  of  the  radiochemical  procedure
 described  by  Ruch  et al.,  (197^),  a method previously modified from
 that of Rook, Gills and LaFleur (1971), was continued. This  procedure
 differed  from  that  of  Rook, Gills, and LaFleur (1971), in that the
 combustion products, including  Hg,  were  collected  in  a  cold-trap
 cooled by dry ice instead of liquid nitrogen.
                Neutron Activation Analysis of Tellurium
      Tellurium cannot be determined in coal  by  instrumental  neutron
 activation analysis because tellurium has poor nuclear characteristics
 for analysis and normally occurs only in such small amounts  (0.02  to
 0.1  ppm)   that  interferences from other isotopes present prevent its
 detection.

-------
                                                                    135


      A  radiocheraical separation procedure was proposed  involving  the
decay   of   ^I'fe   to   131I after irradiation of the coal-ash.  I3lj wa3
collected by solvent extraction and its activity  was  measured.  From
standards,  the  limit  of detection of Te was estimated at 0.1 to O.U
ppm. The results were corrected for the 131I produced  by  fission  of
235u—sometimes a  serious interference. Because the expected levels of
Te in coal appeared to be about the same as the detection limits,  the
procedure • did  not hold sufficient promise to be pursued. It would be
possible to lower  the limit of detection by  increasing  the  time  of
irradiation  from  the normal two hours to 10 to 20 hours. This was not
practical. At present, other methods such as AA (graphite furnace) and
nondispersive XRF  are being investigated.

               Neutron Activation Analysis of Thallium
     A radiochemical separation procedure was developed  to  determine
Tl  in  coal-ash. The method involves sodium hydroxide fusion, sulfide
precipitation, solvent extraction, and final precipitation of Til with
counting  for  204-pi done on the precipitate. The technique was rather
lengthy since 201*T1 emits  only  beta  activity.  The  measurement  is
susceptible  to  interference  from  even  very  low  amounts of other
radioactivity. The limit of detection with a 20-hour  irradiation  was
only  2  ppm  Tl  in  whole coal, thus the procedure is inadequate and
impractical for the expected range of 0.1 to 1 ppm Tl in coal.
                  EMISSION SPECTROCHEMICAL ANALYSIS
     Preparation of high-temperature (500°C) coal-ash was described in
detail  in  Huch  et  al.,   (197^),,  p.  60-65. Two grams of coal were
weighed into a used silica crucible'and were dried. The dried coal was
ashed  in  the  covered  crucible at 500°C for approximately 20 hours,
with occasional mixing with a platinum wire. The cooled,  weighed  ash
was  ground  until  homogeneous  in  a mullite mortar and pestle, then
dried at 110°C for a few hours.

     A set of synthetic standards was prepared by  using  the  average
concentrations  of  Si, Al, Ca, Fe, K, Mg and Na, and by using average
per cent for high-temperature ash; the average values were taken  from
tiL>  previously  analyzed Illinois coals. The concentration values were
calculated to their oxide or carbonate equivalents on the  ash  basis,
the  type  of  calculation  depending upon the expected combination of
each element in high-temperature coal ash. These  concentrations  were
then  normalized  to  100  per  cent. The selected compounds and their
concentrations are listed in Table C.

     Ten grams of the mixture  were  prepared  and  were  mixed  in  a
mixer-mill for one hour in an alumina ceramic container.

-------
136
     Portions of this coal-ash  base were then mixed   with  amounts  of
Si02-  and   AlaOa-based Spex Time-Saver Standards, which contain  1000,
333, 100, 33,  and 10 ppm of the 49 trace elements of   Spex  Mix   1000
(Spex  Industries,   Inc.,  Box   798,  Metuchen, NJ 08bHO) such that the
Si02'-Al203  concentration ratio  was equal to 2.22. The amount  of  each
Spex Mix standard used is shown in Table D.

                    TABLE C—SYNTHETIC COAL ASH BASE
                   Coopound
                              Percent of Total Coal Ash Base (W/W)
                    SiO
                    Al 0
                     2 3

                    CaCO
                    Fe 0
                     2 3

                    K CO
                     2  3

                    MgO

                    Na CO
                     2  3
«0. 30


18. 11


11.59


23.19


 2.20


 0.63

 0.9"
                         Total
                                     99.99}
                       TABLE D—COAL ASH STANDARDS
Designation
CA-1
CA-i
CA-3
CA-H
CA-5
CA-6
Coal Ash Standard
Final Concentration
(ug/go)
133
100
33.3
10
10
1.0
Weight of Coal
Ash Base
dag)
667.0
900.0
900.0
900.0
900.0
900.0
Spex Standard
Concentration
(ug/gm)
1000
1000
333
100
33
10
Weight SIO
2
Spex Standard

-------
                                                                              137
       The  mixture  used  for  loading  the   spectrometer    electrodes
 consisted  of   40 mg of sample or  standard, 10  mg of  spectroscopically
 pure  Ba(NU3)2,  and  150 mg  of SP-2X graphite powder. These  were  mixed
 together  on   a Wig-L-Bug  shaker for 60  seconds in a  2.5^ cm in length
 by 1.27  cm in  diameter plastic vial containing  two plastic   balls   .32
 cm  in   diameter.  This  mixture   was  then weighed in the appropriate
 amounts  for loading  into electrodes. The spectroscopic parameters  used
 are listed in  Table  E.
                      TABLE E—SPECTROSCOPIC PARAMETERS
Instrument

Arc current (D.C. )
Arc Uap
Exposure time
Jarrell-Ash
3.14 m Ebert
spectrograph
10A
14 mm
80 sec.
Jarrell-Aah
.75 m direct reading
spectrometer
t5A
6 ma
65 aac.
Jarrell-Aah
.75 B direct reading
spectrometer
7.5A
baa
30-10 aec.
Atmosphere and flow rate


Sample electrode



Counter electrode


Electrode charge

Entrance slit width

Photographic plate and
  developer

Step sector


Internal standard
801 argon,  20) oxygen
at HI SCFH

National L-3903
under-cut
National SP-1009


20 mg

10 urn

SA-1
D-19

6 step, 2: I ratio
80) argon, 20) oxygen
at 10 SCFH

National L-3979
thin-wall crater
National L-1036
(ASTM C-1)

15 mg

10 urn
80) argon, 20) oxygen
at 10 SCFH

National L-4006
necked crater 3/16
inch diameter

National L-1036
(ASTM C-1)

10 ag

10 urn
                                           Fe, variable Internal
                                           standard
bxil slit width
                                           50 urn
                                                                  50 urn

-------
138


                Direct-Reading Spectrometer Procedures
     Time-intensity curves  were  run  by  the  use  of  standards  to
determine  the  proper  exposure  time for the desired spectral lines.
After the exposure time was determined, more standards were  arced  to
establish  a  calibration  curve for each element desired and to apply
the proper electronic corrections to each element readout module.  The
data   received   from   the  instrument  were  relative  intensities,
standardized by using a spectral line  resulting  from  variable,  but
known, concentrations of iron. Usually, four electrodes were arced for
each sample.

     The coordinates of each point  used  in  an  element  calibration
curve  were  treated  by  least  squares  regressions to determine the
coefficients  of  the  first  or  second  degree  equation  that  best
described the particular calibration curve. By the use of the relative
intensity  data  for  unknown  samples  and  the   calibration   curve
coefficients,  the  concentration  of  each  desired  element  in  the
electrode sample was calculated by the  use  of  a  computer  program.
These  results  were  calculated  to  the whole coal basis.  The means,
standard deviations, and relative standard deviations calculated,  and
the  final  results  were  printed out. The computer program has saved
approximately 30 percent of  the  time  that  was  formerly  taken  to
complete the analysis and data treatment of coal-ash samples.
               3.1*  Meter Ebert Spectrograph Procedure
     When using the photographic  instrument,  time-intensity  studies
were  again  performed  to  attain  the  optimum exposure time for the
determination of 14 elements in the same sample mixture by the use  of
one analysis program.

     The same sample and standard mixtures were used for  photographic
and  for direct-reading spectroscopy. The percent transmittance values
of the analytical lines were determined by standard densitometry.

     A computer program was written to speed  the  data  handling  for
this  procedure.  One portion of the program was used to determine the
relative  intensity  of  a  spectral  line  from  its  percentage   of
transmittance  and the corresponding spectral step. A herter-Driffield
(h-U) emulsion  calibration  plot  was  used  for  this  procedure  by
plotting  the percentage of transmittance versus exposure step number.
An inverted logarithmic abscissa  was  overlain  on  the  step  number
abscissa  and a relative intensity of 1.00 at 50 percent transmittance
was arbitrarily assigned.  Because the H-D plot was sigmoid,  and to our
knowledge  there  was  no  single equation that describes this type of

-------
                                                                   139
 curve well, a  spline  function  routine  was  used  for  mathematical
 fitting.   Data  points for the H-D plot were spaced every 2 percent of
 transmittance. The curve  fitting routine determined which interval  to
 use  for  the unknown percent of transmittance value, fitted a quadratic
 equation  to the interval  from the calibration data, and calculated the
 resulting relative  intensity  of  the  unknown  spectral  line.  The
 relative  intensity was then handled in a manner similar to  that  used
 for  the direct-reader data. That is, the relative intensity of a given
 unknown spectral line was operated upon by  the  coefficients  of  the
 respective element calibration curve to determine the concentration in
 the  electrode mixture and then to determine the concentration  in  the
 whole  coal.  Two electrodes per sample were arced in the photographic
 method. The computer programming step saved about 50  percent  of  the
 time for  analysis of a sample for 14 elements.

     Table F' lists the  elements  determined,  the  method  used,  the
 detection  limit,  the  concentration  range, and the average relative
 standard  deviations for elements in whole coals in this study.

           Special Refinement of Optical Emission Procedures

     1. A new method for the determination of thallium was  sought  by
 both  direct-reading and photographic optical emission spectroscopy.  A
 photomultiplier was installed in the direct reader and aligned for the
 Tl  I  3775.72 A line. Standards were arced to determine a calibration
 curve using the same procedures as described previously. The detection
 limit  found  for  these  parameters  was 33Mg/gm in ash.  Thallium was
 sought in several coal-ash samples but was not detected.

     Standards  were  arced  for   photographic   detection,   and   a
 calibration curve was drawn for the T1 I 2768 line. The sample mixture
 and arcing conditions were  the  same  as  described  previously.  The
 detection  limit was 33ug/gm in the ash, but the sensitivity was good.
 Again, thallium was  sought  in  several  coal  samples  but  was  not
 detected.

     An  optical    emission  (direct-reading)  spectrometry  procedure
 for thallium determination in  coal-ash  was  investigated  and  found
applicable.  The  high-temperature ash (HTA) of a coal was  mixed 1:1 by
weight with a 20 percent sodium chloride - 80 percent graphite mixture
 (sodium  chloride  catalog   1352  and  SP-2-X  grade  graphite,   Spex
 Industries, Inc.,  Box 798, Metuchen, NJ 088UO) in  polystyrene  vials,
 1/2  inch in diameter by 1 inch deep, containing 2 methacrylate balls,
 1/ti inch  in diameter.  Then the vials were placed in  a  Wig-L-Bug  and
agitated for one  minute.

     Next, 10 mg  of the charge mixture was weighed and was loaded into
each  of  three  necked  crater  electrodes  (3/16  inch  in diameter,
National type L-4006,  Spex Industries,  Inc.).  The  counter  electrode
 (1/b  inch  in  diameter,  National type L-4036,  Spex Industries,  Inc.)
and  sample  electrode  were  then  placed  in  the  arc  stand  of  a
Jarrell-Ash Model  750  Atomcounter.

-------
14U






    TABLE F—EXPERIMENTAL PARAMETERS AND RESULTS FOR OE-P AND OE-DR
Element
Ag
b
Be
Cd
Co
Cr
Cu
Ge
Mn
Mo
Ni
Pb
Sr
Tl
V
Zn
Zr
Wavelength
(A)
3280.7
2496.8
(2nd order)
2318.6
3131.07
2288.0
3«53.5
3153-5
1251.3
2813-25
3271.0
3271.0
2651.2
3039.1
2605.7
3U0.3
3170.3
3411.8
3111.8
1057.8
2833.1
1607.3
3775.7
3181.0
3185.1
2138.6
3315.0
3392.0
3392.0
Method
OE-P
OE-D
OE-D
OE-P
OE-D
OE-D
OE-P
OE-D
OE-P
OE-D
OE-P
OE-D
OE-P
OE-P
OE-D
OE-P
OE-D
OE-P
OE-D
OE-P
OE-D
OE-D
OE-D
OE-P
OE-D
OE-P
OE-D
OE-P
Concentration Range
Whole Coal (ug/gn)
0.01 -
5 -
0.1 -
0.15 -
<0.1 -
0.9 -
0.1 -
2 -
1.6 -
2 -
3.0 -
<0.1 -
<0.35 -
1.1 -
<0. 1 -
<0. 11 -
2 -
1.3 -
<1 -
1.0 -
11 -
. i -
5 -
3.8 -

-------
                                                                   lUl
     The sample was arced until it  was  visually  apparent  that  the
alkali metal vapor phase of the arc had significantly decreased. While
the sample was arcing the "instantaneous" response signal from the  T1
3775  photomultiplier tube was recorded on a strip chart recorder. The
resulting strip chart peak (approximately 3 to  8  seconds  after  arc
ignition) was measured and was compared to a calibration curve derived
from synthetic coal-ash standards (Tables C and D) where  peak  height
vs. concentration in microgram per gram was plotted on log-log paper.
     2. A carrier distillation method for molybdenum was attempted  by
the  use  of photographic detection. The coal-ash standards were mixed
into a matrix of Si02 containing 10 percent Ga2C>3 as a  carrier.  This
method was found to be unsatisfactory.


     3. Photographic plates were sprayed with  a  solution  of  sodium
salicylate  in  absolute ethanol and were allowed to dry. It was hoped
that the sodium salicylate would increase the sensitivity of the  SA-1
plates  to  the  ultraviolet region by fluorescing under UV radiation.
Sodium salicylate fluoresces in the blue region, a  very  satisfactory
wavelength  region  for  the  SA-1  emulsion.  However, when standards
containing 333 ppm to 3.3 ppm cadmium were  arced,  no  spectral  line
could  be  detected  at  CD  I  2288A, even for the high concentration
standards.
                      ATOMIC ABSORPTION ANALYSIS

                Flame Atomic Absorption Analytical Procedures

     Atomic absorption (AA) methods were used for the determination of
Cd,  Cu,  Ni,  Pb,  and Zn in low-temperature ashed fractions of whole
coal, bench, and float-sink samples. The analytical procedures used in
this  study  were  those  reported  by  Ruch et al., (1974) with a few
modifications. The methods are summarized below.

     Atomic absorption measurements were made using  a  Perkin-  Elmer
Model 306 Atomic Absorption Spectrophotometer. Absorbance signals were
recorded on a strip chart recorder. An air-acetylene  flame  was  used
with  a 4 inch in length single-slot flat-head burner. Standard single
element  hollow  cathode  lamps  were  used  for  all   elements   but
occasionally  Cd  and  Pb  electrodeless  discharge  lamps  were used.
Corrections   for   non-atomic   background   absorption   were   made
simultaneously by use of a deuterium arc background corrector.

     All reagents used were ACS certified reagent grade chemicals, and
standard  stock  solutions  were  prepared  from high purity metals or
compounds.  The calibration standards were prepared from diluted  stock
solutions  that contain the following matrix materials: 1$ V/V HQ% HF,
1.n$ V/V aqua regia (1:3:1; HN03-HCL-H20), and W> W/V H3B03.

-------
1*42
      Approximately 0.1  g of low-temperature ashed  sample,   previously
dried at 110°C for several hours, was  transferred to  a  60 ml or 125 ml
linear polyethylene  screw-cap bottle.  The sample was  wetted with 1  ml
of   1:1  distilled HC1  and was dried in a steam bath. The dried sample
was  then wetted with 0.7 ml aqua regia and 0.5 ml of  HP was added. The
bottle  was  capped   tightly  and  was  placed  on  a  steam  bath for
approximately two hours.  After the bottle was removed from  the  steam
bath   and  was  allowed  to cool, 10 ml of a 50 g/1 HsBOa  solution was
added.   The  dissolved   sample  was  transferred  to  a  50  ml  Pyrex
volumetric  flask, was  diluted to volume with deionized water,  and was
returned to the bottle  for storage.
     The  flame absorption  analytical conditions are presented in Table
G.  In  the  case  of Zn,  where solution  concentrations were  sometimes
large enough to  cause   a   departure   from  linearity  in   a   plot  of
absorbance versus concentration, the burner was rotated from  its usual
parallel  orientation in  order to decrease the sensitivity,  and thereby
overcome   the necessity  for sample dilution. Final concentrations were
calculated by solving for  concentration in a least squares  constructed
calibration   curve   of   absorbance   versus  concentration.  A  new
calibration curve was calculated for each set of analyses.
     The  relative standard   deviation  was   estimated
percent or less for the determinations discussed.
                                       to  average   10
              TABLE G—FLAME ATOMIC  ABSORPTION PARAMETERS
       Lamp  Current   Wave-   Silt    Burner     Typical    Solution      Detection
           or Power  length   (run)    Position   Sensitivity  Concentration   Limits In
                    (no)                 (ppm/O.OOtM Abs)  Range (ppm)   Ash (ppo)
      Cd HCL   6ma


      Cd EDL   5w


      Cu HCL   lOoa


      Nl HCL   iBma


      Pb HCL   lOma


      Pb EDL   11V


      Zn HCL   15ma


      Zn HCL   15ma
228.8


228.8


324.7


232.0


283.3


217.0


213.9


213.9
0.7   parallel


0.7   parallel


0.7   parallel


0.2   parallel


0.7   parallel


0.7   parallel


0.7   parallel
                           0.7   up to 30
                                from
                                parallel
0.023     0.003 to 1.8      1.5


0.015     0.002 to 1.2      1
0.07
0.1
0.5
0.16
0. 11
0.005 to 4
0.007 to 3.5
0.03 to 20
0.02 to 6.5
0.001 to 0.8
2.5
3.5
15
10
2
                                           0.2
                        0.8.to 10

-------
                     Graphite Furnace Procedures
     Because low-temperature ash samples often have concentrations  of
cadmium,  which  were  undetectable  by  flame  atomic absorption, and
because of the need for analytical methods for  the  determination  of
tellurium  and  thallium,  the  use  of  flameless  atomic  absorption
spectrometry  was  investigated.  The  major  advantage   offered   by
flameless  atomization  schemes such as the graphite tube atomizer was
that the sensitivities and detection limits  are  often  100  to  1000
times  better  than  with  flame atomization for most metals. This was
due, to a large extent, to the greatly Increased residence time of the
atomic  vapor  in  the optical path and also to the total sample being
available for absorption. The major disadvantages in this method  were
that  it was more subject to severe interferences and that it was much
more time consuming than flame methods.

     The  flameless  atomizer  used  in  this  Investigation   was   a
Perkin-Elmer  HGA-2000  Graphite  Furnace  used  in conjunction with a
Perkin-Elmer Model 306 Atomic Absorption Spectrophotometer.  Absorbance
signals were recorded on a strip chart recorder. Corrections for broad
band absorption were made with a deuterium arc  background  corrector.
Electrodeless  discharge  lamps  were  used for tellurium and thallium
determinations, and a hollow cathode lamp was used for cadmium.

     Low temperature ash samples were prepared  in  exactly  the  same
manner  as  the  flame  atomic  absorption  procedures.  These methods
appeared to be quite adequate for the  determination  of  cadmium  and
tellurium,  but  severe  matrix interferences were found to be present
for thallium, as will be discussed later. To compensate for any matrix
interferences  that  might  occur in the determinations, the method of
standard additions was used  for  all  three  elements.  The  standard
additions  were  made directly into the furnace following the addition
of the sample solution. The analytical conditions developed  for  this
study are summarized in Table H.

     The determination of cadmium by the use of the  graphite  furnace
is  relatively  straightforward  with only minor matrix interferences.
Good absorbance signals were obtained  over  a  range  of  atomization
temperatures  from  1800°C  to  2300°c with maximum absorbance between
2000°C and 2100°C. Broad band absorption was relatively  small  (0.075
absorbance  units)  even at charring temperatures as low as 150°C, and
the maximum charring temperature, without Cd atomization,  was  900°C.
An examination of Table 1 shows that the accuracy for Cd determination
by this method was high, and the agreement with other published values
for  NBS  Standard  Ueference  Material  1632  was  Rood. The relative
standard deviation was approximately 5 percent.

     The determination of tellurium with the graphite furnace was also
relatively  straightforward,  although  there were sone interferences.

-------
ikk
                          TABLE H—HGA-2000  ANALYTICAL
                                     CONDITIONS
Element
Source
Current or Power
Wavelength (no)
Slit (no)
Purge gas/flow (1/mln)
Drying time (sec)
0
Drying temperature ( C)
Charring tine (sea)
o
Charring temperature ( C)
Atomlzatlon time (sea)
o
Atomlzatlon temperature ( C)
Background correction

Typical sensitivity
(pg/.OOHU Abs)
Typical detection limit (ppn)
(ash, 20 ul sample)
Cd
HCL
8nA
228.6
0.7
Ar/1.2
30

150
20

300
8

2000
D
2
2.5

0.05

Te
EDL
7.2w
21M.3
0.2
Ar/1.2(lnterrupt)
30

150
20

too
8

2500
D
2
21

1.0

Tl
EDL
5.Bw
276.8
0.7
Ar/1.2
30

150
20

300
8

2300
0
2
260

5.0

                   TABLE  I—COMPARISON OF RESULTS  FOR Cd,
                           Te, AND Tl  IN NBS SRM 1632
                      SOURCE
                                      Cd
                                                 Te
                                                          Tl
                  NBS                 0.19±0.03

                  Klein, et al. (1975)    0.31

                  Chattopadhyay (1971)    0.20i.0.02

                  I'll is sliuly            0.21^0.01
 1.02

0.5
         0.59^0.03
         0.51*0.06
                  ( )  Informational valuo

-------
The beat absorbance signals were obtained at atomization  temperatures
above 2400°C. Broad-band absorption was also relatively small, even at
temperatures as low as 150°C, and  the  maximum  charring  temperature
before  any  loss  of Te was approximately 900°C. It was observed that
the sample matrix, including the reagents  used, in  the  dissolution,
impart  an  enhancement  of  nearly  40  per  cent  in the peak-height
absorbance and is accompanied by a narrowing of  the  absorbance  peak
relative  to  the  same  concentration  of  Te  in a one per cent HNOa
matrix. It was not determined whether the areas under  the  two  peaks
were equivalent.

     Tellurium was approximately one tenth as sensitive as Cd. In  the
samples  analyzed  in  this  study, it was often difficult to reliably
differentiate the absorbance peak from the baseline. At these  low  Te
levels, the precision was poor.

     Thallium was subject to very severe matrix interferences that, if
left  unimproved, rendered thallium nearly undetectable in the sample.
In  an  examination  of  the  contributions  of  reagents   to   these
interferences,  it was found that the HC1 in the aqua regia was one of
the major contributors.  Tl  in  a  one  percent  HC1  matrix  has  an
absorbance  of  only  two per cent of that found in a one percent HNC>3
matrix. The absorbance was improved to only 30 per cent for  a  0.0001
per cent HC1 matrix. Such interference by HC1 for Tl has been observed
by Welcher et al. (197^), and Fuller (1976). The present study  showed
that matrices containing one per cent HsBOa and one per cent HF reduce
Tl absorbance by nearly 50 per cent.

     In  attempting  to  overcome  HC1  interference,  Fuller   (1976)
suggested  the  addition  of  one  per  cent (v/v) h^SOit as a means of
improving sensitivity and observed that HaSOi, was more effective  than
HNOa  for  samples  with very simple matrices. For the low-temperature
ash matrix used in this study, the reverse was observed;  concentrated
HNO-j  was found to be the most effective in removing the interference.
It was also observed in this study that the simple addition of HN03 to
the  sample  was  not  as  effective as drying the sample first in the
graphite tube, and then adding the HNOs. Such a procedure resulted  in
a  thallium absorbance for the sample-reagent matrix that was about 50
per cent of that observed in the HN03 matrix alone.

     The cause of this chloride  interference  has  been  suggested  by
Fuller to be due to the possible formation of a volatile chloride when
using HC1, leading to a loss of thallium before  atomization.  It  was
observed  in  the present study that if thallium was volatilized, then
no greater than 50 percent of it was lost during  a  drying  stage  at
150°C  for  30  sec,  as  is  shown  by  the effectiveness of the HNO.i
addition after  the  samples  were  dried.  Continuous  monitoring  of
thallium atomization losses during drying and charring stages has thus
far shown no loss. It woul-1  appear  that  the  chloride  interference
mechanism  was  more  complex  than  that  suggested  by Fuller. These
interferences were not investigated thoroughly, but  further  work  i3
continuing.

-------
11*6


               X-RAY  FLUORESCENCE  ANALYSIS  OF  WHOLE COAL
      X-ray  fluorescence determinations were made on whole coal for As,
Br,  Pb,  Zn, Cu, Ni,  P,»C1, S, V, Mg, Ca, Fe, Ti, Al, and Si. A Philips
vacuum spectrometer  equipped with a  Mark  I  solid-state  electronics
panel was used for all analyses.

      A 3KW  chromium  X-ray tube was used and  the  procedures  were  as
described   by  Ruch  et  al.  (1973,  1971). Further discussion of the
methods was presented by Kuhn et al. (1975). The only  change  in  the
procedure   has  been  the use of a new diffracting crystal with better
sensitivity for the elements determined. A T1AP crystal  replaced  the
EDDT  crystal  for the determination of elements in the periodic table
from  Na through Si.

      Whole  coal was used for the preparation of samples  for  analysis
and all results are given on the dry whole coal basis.

      As  detailed  in  the  previous  report,  the  observed  relative
standard  deviations  for elements determined by this technique ranged
from 0.35 to 8.U percent.
                          SUMMARY OF METHODS
     Tables J and K summarize those analytical methods the results  of
which  were  finally  incorporated into the final values for elemental
composition of whole coal, bench samples, and float-sink  samples.  In
general,  the  same  techniques  were  applied to whole coal and bench
samples.  However,  the  varying  matrix  of  the  float-sink  samples
required different analytical procedures in some cases.

     When an element was determined by two or more  methods,  all  the
results  were  not  necessarily  used to calculate the "most probable"
concentration. It was suspected that results for some  elements  by  a
particular  method  might  be  biased  because  of  interferences. For
example, it was known that in XRF, matrix effects inhibit the accurate
determination of some trace elements,  and in INAA the determination of
some elements is  susceptible to interference caused by  the fact that
the measured isotope is also produced   by a nuclear reaction involving
a second element.
        ELEMENTS DETERMINED BY TWO OR MORE ANALYTICAL METHODS
     The following comments summarize observations and decisions where
an element was determined by two or more methods.

-------
       TABLE  J—ANALYTICAL  PROCURES  USED
          TO  DITZP-XINE  TRACE ELEMENT VALUES
          IN  WHOLZ COAL ALT) EENC>: SAMPLES
                         TABLE  K—ANALYTICAL  PROCEDURES USED TO  DETERMINE
                             TRACE ELEMENT VALUES  IN FLOAT-SINK SAMPLES
     Element
RS, Cs,  Ea, Ga, In, As,
Sb. Se,  I, So. Hf, Ta,
W, La, Ce, So, EL, It,
Dy, Lu,  Th, U. n>, Uu;

Na, K, cr, Fe

Cl

Mg, Ca,  #1, Si, P, Tl

Be, C«,  Zr

Cr, Co,  *)

Ag, Sn

M, Zn

Hg

B

Pb

Sr

F

V

Cu

Mn

Cd
                                      Procedure
IN'AA




INAA, XRF

INAA, XRF, ASTM

XRF

OE-P, OE-DR

OE-P, OE-DR, INAA

OE-P

OE-P, OE-DR, AA, XRF

NAA(Rc)

OE-DR

OE-P, AA

OE-DR, INAA

ISE

OE-P, OE-DR, XRF

OE-P, OE-DR, AA

OE-P, INAA

AA, OE-DR
Element.
Na, RS, Cs, Ba, Ga, Aa,
Sb, Se, Sc, Hf, Ta, La,
Ce, So, Eu, Tb, Dy, Lu
Th, U, *b
K, br
Fe, He, la, Al, Si, P,
Ti, Ci
be, Zr
Ag, Sn
Cr, Co
Cu, Ni
«e,
B
Pb
Sr
V
Zn
Mn
Cd
Procedure
INAA



INAA, XRF
XRF

OE-P, OE-DR
OE-P
OE-P, OE-DR, INAA
OE-P, OE-DR, AA
NAA(Rc)
OE-DR
OE-P, AA
OE-DR, INAA
OE-P, OE-DR, XRF
AA, OE-P, OE-DR, XRF
OE-P, INAA
AA, OE-DR
                                                                                                                              cr
                                                                                                                              -1

-------
1U8


     Beryllium- OE-P and OE-DR data were  in good  agreement  and  were
averaged.

     Bromine - Average of INAA and XRF  data.  Agreement  between  the
methods  was good for moderate to high values. For the low values INAA
data  were  preferentially  used  because  the  technique  had  better
sensitivity.

     Cadmium - Average of AA and OE-DR data. Where there was a  choice
of lower limits or a choice between lower limits and a real value, the
AA value was usually  chosen.  In  general,  the  agreement  was  good
between  the  two  techniques.  The recently developed OE-DR procedure
proved to be very effective.

     Chlorine - Average of INAA, XRF, and ASTM data. In  general,  the
XRF  values  were  slightly  higher  and the INAA values were slightly
lower than the ASTM data. Only  XRF  data  were  used  for  float-sink
samples.

     Chromium - Average of INAA, OE-DR, and OE-P data. Agreement among
the  three methods was good. In a few instances, INAA appeared to have
a high bias.

     Cobalt - INAA, OE-P, and OE-DR data were in excellent  agreement.
Results by these methods were averaged.

     Copper - Average of AA, OE-P, and OE-DR  data.  In  general,  the
agreement   was  good.  The  XRF  data  were  excluded  because  of  a
consistently high bias.
     Germanium - Average of OE-P and OE-DR data. In those cases  where
an uncertainty arose, the Ofcl-DR results were usually chosen.

     Iron - Average of INAA and XRF data. The agreement was only  fair
between the two methods. The INAA data tended to have a high bias in a
number of samples. Only the XHF data  were  used  for  the  float-sink
samples.

     Lead - Average of OE-P and AA data. In those cases where a choice
of limits existed, the AA results were usually chosen. In general, the
two sets of data were in good agreement. Since LTA  (150°C)  was  used
for  AA,  and  since  HTA  (500°C)  was  used  for OE-P, this confirms
previous findings that Pb appears to be quantitatively retained in the
high-temperature ash sample.

     Manganese - Average of INAA and OE-P data  with  good  agreement.
Samples C-18820 through C-19000 are based on OE-P results only.

-------
     Molybdenum - Average of INAA, OE-P, and OE-DR data. The INAA data
occasionally  tended  to  have  a  high  bias at the lower values. The
agreement among the three techniques was only fair. The XRF data  were
not used since they were neither consistent nor comparable.

     Nickel - Average of AA, OE-P, OE-DR, and XRF data. The  agreement
was  generally  good  among  the  four  techniques  with  XRF  results
occasionally being excluded for having a high bias.

     Potassium - Average of INAA and XHF data. Agreement was good  for
the  two  techniques.  Only  the  INAA  data  were  used for clay- and
rock-type samples in the bench sets.

     Sodium - Average of INAA and XRF data. Agreement was very good at
moderate to high concentrations. At the lower concentrations INAA data
were chosen because of greater sensitivity. Only the  INAA  data  were
used for float-sink samples.

     Strontium - Average of OE-DR and INAA data.  The  methods  agreed
well   in   the   low   to   intermediate  concentrations;  at  higher
concentrations, the INAA results were usually used.

     Vanadium - Average of XRF, OE-DR, and OE-P data  with  only  fair
agreement.  Some  INAA  results  were  obtained on several samples for
confirmation.

     Zinc - Average of AA, OE-P, OE-DR, and XRF  data.  The  agreement
among  the four techniques was only fair owing to inhomogeneity of the
samples for Zn. INAA results were not considered because of resolution
problems.

     Zirconium - Average of OE-P and OE-DR data with good agreement.

-------
150
                              REFERENCES

Chattopadhyay, A., and Jervis, R. E., 1971*, Multielement determination
       in market-garden soils by instrumental photon activation anal-
       ysis:  Analytical Chemistry, v. 1*6, no. 12, p. 1630-1639.

Fuller, C. W., 1976, The effect of acids on the determination of thal-
       lium by atomic absorption spectrometry with a graphite furnace:
       Analytica Chimica Acta, v. 8l, p. 199-202.

Klein, D. H., A. W. Andren, J. A. Carter, J. F. Emery, C. Feldman,
       W. Fulkerson, W. S. Lyon, J. C. Osle, Y. Talmi, R. I. Van Hook,
       and N. Bolton, 1975> Pathways of thirty-seven trace elements
       through a coal-fired power plant:  Environmental Science and
       Technology, v. 6, no. 10, p. 973-979-

Welcher, G. G., 0. H. Kriese, and J. Y. Marks, 197^, Direct determina-
       tion of trace quantities of lead, bismuth, selenium, tellurium,
       and thallium in high temperature alloys by non-flame atomic ab-
       sorption spectrometry:  Analytical Chemistry, v. U6, no. 9,
       p. 1227-1231.
           (Additional references are listed on pages .123 to  126.)

-------
                                             5NDEX
AA	127, lUl
Accuracy	128
Acknowledgment 	  x
Adsorbed cations	113, 122
Ag	82, 121
Al	39. UO, 71, 119, 120
Alumino-silicate mineral 	 UO
Analytical methods 	  k, 127
     AA	 ll»l
     AA-G	1U3
     INAA	128
     NAA-RC	13U, 135
     XHF	128, 1U6
     XRF, energy-dispersive  	 128
     XRF, ISE	128
Apatite	82
Arithmetic mean	38, 39, 69, 119
As	39, UO, 69, 71, 82,  103,
                         113, 118,  120, 122, 128
ASTM	128

fl   ... 39, UO, 69, 82, 107, 113,  118, 120, 122
Ba	39, UO, 82, 119, 121
Barite	39, UO
Be	39, UO, 71,  107, 113, 121
Bench samples	-2, 72, 120, 121
Blue band	82
Blue Creek coal	88, 103, 110
Br	UO, 81, 82, 103, 110,  113, 122, 128
Ca	UO.  Ul,  71,
Culcite  ,	  .
Carbonate	  .  .  .
Cd	39, UO, 82, 113, 116,  120,
Ce	
Chalcophilc elements 	  39,  UO,
Chclated species 	    108,
Cl	Ul,  69.
Clarke	  .  69,
Clay minerals	103,
Co  UO, Ug, 82, 86, 113, 119, 120,  122,
Coal forming process	  .
Colchcater Coal Member 	
Composite sample 	
Contract number  	  ..
Correlation    	Uo,
Cr	71, 82, 103,  113,
Cu	71, 82,
Cu	82, 107, HO,  113,
Cumulative curve 	
 62, 120
  Ul, 82
 . . 118
122, 127
  71, 82
 71, 120
113, 122
 70, 120
 71, 120
118, 119
125, 127
  69, 81
 . .  86
 ... 7
 ... x
 Ul,' 120
120. 122
118, 121
121, 128
     103
Uuvlii coal Member	88,  110
DoKoven Coal Member	88
Depleted elements	  .  69,  71,  120
Uttritttl minerals  	  120
Drill core aanple	...7
             Eastern coals ..... 39, 69, 70, 71, 88, 10U,
                                110,  113, 118, 119. 120,  121
             Enrichsd elements .......  69, 70, 71.  120
             EPA .................  2, 5,  127
             Eu  ....................   71

             F ............   39. UO. 82, 120,  121
             Face channel sample ...........  7,  82
             Fe  .........  39,  UO,  71. 113, 116,  122
             Float-sink  . .  . . .  ....... 2, 103,  121

             Ga  .........  39,  71,  82, 107, 121,  128
             Oe  .   UO, 81, 82, 103,  107, 108, 113, 121,  122
             Geometric mean  ......  ...... 38,  120
             Grant  number  ................  x
             Gravity fraction  ....  ..........  2
             Ground vater  ........  .....  Ul,  70

             Halite  ..................   70
             Herrin Coal Meatier  .....   72, 88, 10U,  113
             Hf  .............   71, 82, 120,  121
             Hg  ....................  13U
J .............. ..  .  .  39, UO,  119
IBM 360 ..................  128
Illinois Basin coals  . 39. UO.  Ul,  69, 70,  71,
                81, 88, 110, 113,  118, 119,  120
Illite  ..................  119
IHAA  ................   127,  128
Inorganic affinity  .........   107,  108
Inorganic element*   1, 113, 116,  119, 121,  122
Instrumentation
     I8AA ............  127, 128,  13U
     HAA-RC ...........  127, 13U,  135
     XRF  .................  128
Interferences, HAA-RC ...........  13U
Intermediate-Inorganic elements  .  .  .   113,  121
Intermediate-organic element* ....   113,  121
Ion-selective electrode (ISE) ....   127,  128

K ...... . . 39, UO, 71, 82,  119, 120,  121

La  ................  71, 82,  121
Lanthanide  ................  116
Less-than value ........  ......   38
Limits of detection ..... »  .  110, 128,  135
Lithophile elements .......... Uo,  120
LOT- temperature uh (LTA) .....  1, 10U,  112
Lu  .................. 71,  120

MarcMlte .................   71
Nf  ...........  39, 71. 82, 120.  121
Mineral Batter  . 1, 39. 81, 88, 103,  10U. 107,
                             109,  110. 119,  121
Mineral*  ........   39,  UO,  82, 88.  120
Mn  .  UO, Ul, 82, 107, 113, 118,  120, 121,  122

-------
 152
                                      IHDEX (continued)
Mo	81. 107. 113. 121. 122

Ha	bO. bl, 71, 82, 120. 121
HAA-RC	127
Neutron activation analyse*  127, 128, 13)1, 13$
Hi  ....  39. bo, 71. 107. 108. 113, 120. 128
Ho. 2 Coal	88
Ho. 6 Coal	72, 88, lOb, 113
Normalised area	109

OK-DR	127, 338, 139
OE-P	127, 138, 139
Optical emission analyse*  	  127
Organic affinity  103, 107. 108,  109,  110, 112,
                             113, 118. 121, 122
Organic elements	113, 118, 121
Organic sulfur	lOb, 112
Organometallic compounds .  .  107, 108, 113, 122

P	1*0, 71. 82, 107, 120
Paleosalinlty	69, 70, 120
Partings	72. 82, 121
Pb	39, bO, 119, 120
Peat	70, 120
Pittsburgh No. 8 coal	88, 103
Pocahonta* No. b coal	88, lOb
Precision	128
Proximate analyses	1)
Pjrite	39, 71,  82
Pyritic sulfur	10U, 112

Range	39, 82, 119, 120
Rare earths	39.  bl, 81, 82, 118, 121
Rb	71
Roof shales	82, 121
Run of mice samples	7

S	140, 82, lOll, 112
Salinity	Ill, 70, 120
Sample preparation 	 7, 128
Sample size	7,  39
Sampling	7
Sb . .  . .  39. 1*0, 81, 113.  119, 120, 121, 128
Sc	71, 82. 120. 121
8«  . .  39, 69, 70, 82, 113, 120, 121, 122, 128
Seat rook	Y2
81	39, to, 71, 82, 119, 120, 121
Sillcat* minerals  	  39, 120
8a	71, 82, 121
8n	108
8p«olflo gravity separation  ... 88, 107, 119
Sphalerite	39. bo.  82
Splitting of sample  	   7
8r	bo, 71. 62, 120, 121
Standard deviation .	39, 119
Standards	127, 128
Sulfate minerals	119, 120
Sulfate sulfur . . .	lOb, 112
Bulflde minerals . . bo. 71, 103, 113. 119. 120
Syngenetic minerals  ..... 	   120

Ta	71, 120
Total sulfur	112
Te	127," 13b, 135
•m  	  82, 121
Tl	39. to, 71, 108, 119, 120
Tl	120, 127, 135
TRIOA HKII reactor 	  128

U	81, 118, 121
U •> B • Ar A • •••••••••••••••••   X
Ultimate analyses	b
Undsrclays	72, 82. 121

V   .	39, 81, 82, 107, 108, 121

Washablllty ourrw ....  103,  lOb, 107,  108,
                                  109, 110, 121
Washed coals	5, 7, 71, 88, 110. 121
HMtern coal* 39, bo, 69, 70, 71, 113, 118, 121

X-ray fluorescence analysis (ZRF) 127, 128, lb6

Yb	71, 82. 121

Zn  . . . .  39, bO, 71, 82, 108,  109, 110.  113,
                             118, 119, 120, 122
Zr	: .  . . .  82, 121

-------