U.S. DEPARTMENT OF COMMERCE
National Technical Information Service
PB-270 922
TRACE ELEMENTS IN COAL: OCCURRENCE AND
DISTRIBUTION
H, J, GLUSKOTER, ET AL
ILLINOIS STATE GEOLOGICAL SURVEY
URBANA, ILLINOIS
JUNE 1977
.
-------
V I nvironmunt.il i'i
f H'r Ot R«'V.tlllll .11
PB 270 922
EPA-600/7-77-064
?n June 1977
TRACE ELEMENTS IN COAL:
OCCURRENCE AND DISTRIBUTION
Interagency
Energy-Environment
Research and Development
Program Report
n REPRODUCED BY
.JATIOkJAI
NATIONAL TECHNICAL
INFORMATION SERVICE
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S.
Environmental Protection Agency, have been grouped into seven series.
These seven broad categories were established to facilitate further
development and application of environmental technology. Elimination
of traditional grouping was consciously planned to foster technology
transfer and a maximum interface in related fields. The seven series
are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT
RESEARCH AND DEVELOPMENT series. Reports in this series result from
the effort funded under the 17-agehcy Federal Energy/Environment
Research and Development Program. These studies relate to EPA's
mission to protect the public health and welfare from adverse effects
of pollutants associated with energy systems. The goal of the Program
is to assure the rapid development of domestic energy supplies in an
environmentally compatible manner by providing the necessary
environmental data and control technology. Investigations include
analyses of the transport of energy-related pollutants and their health
and ecological effects; assessments of, and development of, control
technologies for energy systems; and integrated assessments of a wide
range of energy-related environmental issues.
REVIEW NOTICE
This report has been reviewed by the participating Federal
Agencies, and approved for publication. Approval does not
signify that the contents necessarily reflect the views and
policies of the Government, nor does mention of trade names
or commercial products constitute endorsement or recommen-
dation for use.
This document is available to the public through the National Technical
Information Service, Springfield, Virginia 22161.
-------
TECHNICAL REPORT DATA
fPlcase read Inttmctlons on Ifit reverse before completing}
1. REPORT NO.
EPA-800/7-77-064
3. RECIPIENT'S ACCESSION NO.
4 T1TLEANOSUBTPTLE TRACE ELEMENTS IN COAL:
Occurrence and Distribution
5. REPORT DATE
June 1977
6. PERFORMING ORGANIZATION CODE
7 .AUTHORS) H.J.Gluskoter, R.R.Ruch, W. G. Miller,
R.A.Cahill, G. B.Dreher, and J.K.Kuhn
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Illinois State Geological Survey
Urbana, Illinois 61801
10. PROGRAM ELEMENT NO.
EHB529
11. CONTRACT/GRANT NO.
68-02-1472
1J. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
13. TYPE Of REPORT AND PERIOD COVERED
Final; 6/74-6/76
14. SPONSORING AOENCY CODE
EPA/600/13
is. SUPPLEMENTARY NOTES T.ERL-RTP project officer for this report is William J. Rhodes,
Mail Drop 61, 919/549-8411 Ext 2851.
16.ABSTRACT,^ report gives results of chemical analyses of whole coal samples, bench
samples (vertical), and washed coal samples. Most of the samples were from the
Illinois Basin, but other U.S. coal producing areas are also represented. In addition
to the standard analyses of coal parameters, approximately 60 elements were also
analyzed. Statistical analysis of the whole coal samples data indicates that elemental
concentrations tend to decrease from the Eastern to Western coals: elements with the
greatest variation are identified with the discrete mineral matter; those with the least,
with the organic matter. The bench samples indicated wide variations in elemental
concentrations within a single coal seam: the greatest differences were found in the
top and bottom of the seam. The trace elements were classified into four organic
affinity groups, based on the analytical data: organic, intermediate-organic,
intermediate-inorganic, and inorganic.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
t>. IDENTIFIERS/OPEN ENDED TERMS
c. COSATi Field/Croup
Pollution
Coal
Chemical Analysis
Chemical Elements
Concentration (Composition)
Pollution Control
Trace Elements
Elemental Concentra-
tions
Organic Affinity
13B
08G.21D
07D
D7B
18. DISTRIBUTION STATEMENT
Unlimited
19. SECURITY CLASS I This Rtfon)
Unclassified
7O. SECURITY CLASS IThispagei
Unclassified
72. PRICE
/»)
EPA Form 2220-1 (9-73)
-------
EPA-600/7-77-064
June 1977
TRACE ELEMENTS IN COAL:
OCCURRENCE AND DISTRIBUTION
by
H.J. Gluskoter. R.R. Ruch, W.G. Miller,
R.A. Cahill. G.B. Dreher, and J.K. Kuhn
Illinois State Geological Survey
Urbana, Illinois 61801
Contract No. 68-02-1472
Program Element No. EHB529
EPA Project Officer William J. Rhodes
Industrial Environmental Research Laboratory
Office of Energy, Minerals, and Industry
Research Triangle Park, N.C. 27711
Prepared for
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Research and Development
Washington, O.C. 20460
-------
TRACE ELEMENTS IN COAL
OCCURRENCE AND DISTRIBUTION
H. J. Gluskoter, R. R. Ruch, W. G. Miller,
R. A. Cahill, G. B. Draher, and J. K. Kuhn
ABSTRACT
Chemical analyaes of 172 whole ooal samples, HO (5 sets) bench
samples (vertical segments of the seam), and 64 (9 sets) washed ooal
samples (separated by specific gravity methods) have been made by the
Illinois State Geological Survey. One hundred and fourteen of the 172
whole coal samples were from the Illinois Basin, as were all of the
bench samples and 5 of the 9 sets of washed coals. The remaining
samples were from other coal-producing areas of the United States.
Elements determined by chemical analyses were aluminum (Al),
antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B),
bromine (Br), cadmium (Cd), calcium (Ca), carbon (C), cerium (Ce),
cesium (Ca), chlorine (Cl), chromium (Cr), cobalt (Co), copper (Cu),
dysprosium (Dy), europium (Eu), fluorine (F), gallium (Ga), germanium
(Ge), gold (Au), hafnium (Hf), hydrogen (H), indium (In), iodine (I),
iron (Fe), lanthanum (La), lead (Pb), lutetium (Lu), magnesium (Mg),
manganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), nitrogen
(N), oxygen (0), phosphorus (P), potassium (K), rubidium (Rb),
samarium (Sm), scandium (Sc), selenium (Se), silicon (Si), silver
(Ag), sodium (Na), strontium (Sr), sulfur (S), tantalum (Ta), terbium
(Tb), thallium (Tl), thorium (Th), tin (Sn), titanium (Ti), tungsten
(W), uranium (U), vanadium (V), ytterbium (Yb), zinc (Zn), and
zirconium (Zr). In addition to the 60 elements, the samples were
analyzed for the standard ooal parameters. Analytical methods included
neutron activation analyaes, atomic absorption speotroaoopy, X-ray
fluorescence speotroaoopy, optical emission spectroscopy, and ion
selective electrode analyaes.
Statistical analyses of this large quantity of data on whole coal
samples have allowed for many generalizations to be drawn including:
1. Elemental concentrations tend to be highest in coals
from the Appalachians, lowest in coals of the western United
States, and intermediate in ooals from the Illinois Basin.
2. Elements that have the largest ranges in
concentrations are those that are found in distinct mineral
phases in the coals; elements with narrow ranges are often
those found in organic combination in coal.
iii
-------
3. Only four elements are, on the average, present in
coals in concentrations significantly greater than the
clarke of those elements (average ooncentration in the
earth's crust). These are boron, chlorine, selenium, and
arsenic. Not all are concentrated in each of the samples
analyzed from the three geographic groups (eastern U.S.,
western U.S., and the Illinois Basin).
1. Most of the elemental concentrations in coals are
lower than the clarke of the elements.
5. Boron is concentrated only in the coala of the
Illinois Basin; possibly the presence of boron represents a
greater marine influence during and Immediately following
the time of the coal swamp in the basin.
Generalizations from the statistical analyses of the analytioal
data from five bench seta -from the Illinois Basin include the
following:
1. Wide variations in elemental concentrations are
present between benches of a single coal sampled.
2. Although elements may be concentrated within any
bench of a coal, concentrations are more commonly observed
at the top and/or bottom of the coal seam.
3. Germanium is concentrated in the top and bottom
benches of four of the five bench sets.
4. Most elements occur in significantly higher
concentrations in the fine-grained sedimentary rocks
associated with the coal (roof shales, underolays, and
partings) than in the coal.
An index of organic affinity of the elements was calculated from
cumulative curves (washability curves) of the data determined on
specific gravity fractions of the washed ooals. Elements have been
classified as "organic", "Intermediate-organic", "intermediate-
inorganic", and "inorganic", on the basis of value of the organic
affinity index. Coals of the Illinois Basin are quite similar in this
regard. The following generalizations are suggested:
1. Germanium, beryllium, boron, and antimony are
classified within the organic group in all samples.
Germanium has the highest value of organic affinity in each
coal.
2. Zinc, cadmium, manganese, arsenic, molybdenum, and
iron are within the inorganic group in all four samples.
3. A number of metals including cobalt, nickel, copper,
chromium, and selenium have organic affinities within the
intermediate categories. This suggests a partial
contribution from sulfide minerals in the coal but also
suggests the presence of these elements in organometallic
compounds, as chelated species, or as adsorbed cations.
iv
-------
CONTENTS
Page
Abstract iii
Introduction 1
Acknowledgments x
Type and source of coal samples 7
Analyses of whole coal samples 10
Analytical data 10
Statistical analyses of data 10
Enrichment of elements in coal 69
Analyses of bench samples 72
Analyses of washed coals 38
Methods of analyses 88
Displaying washability data . . 103
Organic and inorganic affinities of the elements 107
Introduction 107
Calculation of organic affinities 108
Discussion of organic affinities . . . ; 110
Summary and conclusions 119
References 123
APPENDIX 127
Methods of analysis 127
Introduction 127
Neutron activation analysis 128
INAA procedures 128
Radiochemical separation procedure for mercury 131*
Neutron activation analysis of tellurium 131*
Neutron activation analysis of thallium ... 135
Emission spectrochemical analysis 135
Direct-reading spectrometer procedures 138
3.1* meter Ebert spectrometer procedure 138
Special refinements of optical emission procedures 139
Atomic absorption analysis
Flame atomic absorption analytical procedures
Graphite furnace procedures
X-ray fluorescence of whole coal
Summary of methods
Elements determined by two or more analytical methods
References ,.. 150
Index 151
-------
FIGURES
Page
1 - Coal fields of conterminous United^States shoving regional
designations used in the text 3
2 - Elements reported in this study indicated by diagonal lines
on the periodic table . k
3 - Distribution .of silver in coals analyzed 59
k - Distribution of arsenic in coals analyzed 59
5 - Distribution of boron in coals analyzed . 59
6 - Distribution of barium in coals analyzed 59
7 - Distribution of beryllium in coals analyzed 59
8 - Distribution of bromine in coals analyzed 59
9 - Distribution of cadmium in coals analyzed 60
10 - Distribution of cerium in coals analyzed . . ,. 60
11 - Distribution of cobalt in coals analyzed 60
12 - Distribution of chromium in coals analyzed 60
13 - Distribution of cesium in coals analyzed 60
Ik - Distribution of copper in coals analyzed .... . 60
15 - Distribution of dysprosium in coals analyzed 61
16 - Distribution of europium in coals analyzed 6l
17 - Distribution of fluorine in coals analyzed 6l
18 - Distribution of gallium in coals analyzed 6l
19 - Distribution of germanium in coals analyzed 6l.
20 - Distribution of hafnium in coals analyzed 6l
21 - Distribution of mercury in coals analyzed 62
22 - Distribution of iodine in coals analyzed 62
23 - Distribution of indium in coals analyzed 62
2k - Distribution of lanthanum in coals analyzed 62
25 - Distribution of lutetium in coals analyzed 62
26 - Distribution of manganese in coals analyzed 62
27 - Distribution of molybdenum in coals analyzed 63
28 - Distribution of nickel in coals analyzed 63
29 - Distribution of phosphorus in coals analyzed 63
30 - Distribution of lead in coals analyzed 63
31 - Distribution of rubidium in coals analyzed 63
32 - Distribution of antimony in coals analyzed 63
33 - Distribution of scandium in coals analyzed 6k.
3k - Distribution of selenium in coals analyzed .6k
35 - Distribution of samarium in coals analyzed -•;' - 6k-
36 - Distribution of tin in coals analyzed 6k
37 - Distribution of strontium in coals analyzed 6k
38 - Distribution of tantalum in coals analyzed 6k
39 - Distribution of terbium in coals ,analyzed 65
ko - Distribution of thorium in coals analyzed 65
Hi - Distribution of thallium in coals analyzed 65
k2 - Distribution of uranium in coals analyzed 65:.
k3 - Distribution of vanadium in coals analyzed 65
kk - Distribution of tungsten in coals analyzed 65
vi
-------
FIGURES (continued)
Page
^5 - Distribution of ytterbium in coala analyzed 66
U6 - Distribution of zinc in coala analyzed 66
1*7 - Distribution of zirconium in coals analyzed 66
U8 - Distribution of aluminum in coals analyzed 66
kg - Distribution of calcium in coals analyzed 66
50 - Distribution of chlorine in coals analyzed 66
51 - Distribution of iron in coals analyzed 6?
52 - Distribution of potassium in coals analyzed 67
53 - Distribution of magnesium in coals analyzed 67
5*t - Distribution of sodium in coals analyzed 67
55 - Distribution of silicon in coals analyzed 67
56 - Distribution of titanium in coals analyzed 67
57 - Distribution of organic sulfur in coals analyzed 68
58 - Distribution of pyritic sulfur in coals analyzed 68
59 - Distribution of sulfate sulfur in coals analyzed 68
60 - Distribution of total sulfur in coals analyzed 68
6l - Distribution of high-temperature ash in coals analyzed . . 68
62 - Distribution of low-temperature ash in coals analyzed ... 68
63 - Distribution of bromine in coals of bench set 3 83
6k - Distribution of uranium, molybdenum, and vanadium in coals
of bench set 1 83
65 - Distribution of antimony in coals from bench sets 1, 2, 3,
It, and 5 8U
66 - Distribution of germanium in coals from bench sets 1, 2, 3,
It, and 5 85
67 - Distribution of associated elements in bench sets: calcium
and manganese in bench set 1; phosphorus and fluorine in
bench set 2; and total sulfur and arsenic in bench set U 86
68 - Concentration of barium, cerium, and silicon in coals and
associated strata of bench set U 87
69 - Germanium in specific gravity fractions of a sample from
the Davis Coal Member
70 - Bromine in specific gravity fractions of a sample from the
Pittsburgh No. 8 coal from West Virginia 105
71 - Chromium in specific gravity fractions of a sample from the
Blue Creek coal from Alabama 105
72 - Arsenic in specific gravity fractions of a sample from the
Blue Creek coal from Alabama 106
73 - Low-temperature ash in specific gravity fractions of a
sample from the Pocahontas No. k coal from West Virginia 106
7*t - Washability curve of sulfur in specific gravity fractions
of a sample from the Herrin (No. 6) Coal Member .... 106
75 - Washability curves for zinc in specific gravity fractions
of a sample from the Herrin (No. 6) Coal Member .... 109
76 - Washability curves for bromine in specific gravity frac-
tions of a sample from the Blue Creek coal from Alabama 111
vii
-------
FIGURES (continued)
Page
77 - Washability curves for copper in specific gravity fractions
of a sample from the Davis Coal Member Ill
78 - Organic affinity index for total sulfur and ratio of organic
sulfur to total sulfur in eight washed coal samples . . . 112
A - Schematic of instrumental neutron activation system .... 129
TABLES
1 - Abbreviations used in text and tables 6
2 - Identification of whole coal samples analyzed 8
3 - Trace elements in whole coal samples 12
h - Major and minor elements in whole coal samples 28
5 - Proximate analyses of whole coal samples 32
6 - Ultimate analyses of whole coal samples 31*
7 - Sulfur analyses of whole coal samples 36
8 - Mean analytical values for llU whole coal samples from the
Illinois Basin coal field 1+2
9 - Mean analytical values for 23 whole coal samples from the
eastern United States M
10 - Mean analytical values for 28 whole coal samples from the
western United States **6
11 - Linear regression (least square) correlation coefficients of
analytical determination on llU coal samples from the
Illinois Basin coal field ^8
12 - Elements enriched in coals 71
13 - Identification of bench samples analyzed 73
Ik - Elements in bench samples 71*
15 - Major and minor elements in bench samples 78
16 - Proximate analyses of bench samples 79
17 - Ultimate analyses of bench samples . . . 79
18 - Sulfur analyses of bench samples 80
19 - Identification of laboratory-prepared washed coal samples . 90
20 - Trace elements in laboratory-prepared washed coal samples . 92
21 - Major and minor elements in laboratory-prepared washed
coal samples 99
22 - Proximate analyses of laboratory-prepared washed coal
samples 100
23 - Ultimate analyses of laboratory-prepared washed coal samples 101
2^4 - Sulfur analyses of laboratory-prepared washed coal samples . 102
25 - Organic affinity of parameter determined in laboratory-
prepared washed coal samples
26 - Organic affinity of elements in laboratory-prepared washed
coal samples from the Illinois Basin 116
viii
-------
TABLES (continued)
Page
A - Comparison of values for NBS SRM 1632 130
B - Detection limits and nuclear properties of isotopes used
for the analysis of coal 132
C - Synthetic coal ash base 136
D - Coal ash standards 136
E - Spectroscopic parameters 137
F - Experimental parameters and results for OE-P and OE-DR . .
G - Flame atomic absorption parameters
H - HGA-2000 analytical conditions
I - Comparison of results for Cd, Te, and Tl in NBS SRM 1632 .
J - Analytical procedures used to determine trace element
values in whole coal and bench samples
K - Analytical procedures used to determine trace element
values in float-sink samples
ix
-------
ACKNOWLEDGMENTS
The extensive program of coal sampling, analyses, and data
interpretation on which this publication is based was performed under
Contract No. 68-02-02U6, Contract 68-02-1472, Grant No. R-800059, and
Grant H-BOH^OS from the Fuel Process Branch, Industrial Environmental
Research Laboratory, Environmental Protection Agency, Research
Triangle Park, North Carolina. The contracts and grants were arranged
through and administered by the University of Illinois; the work was
performed by the Illinois State Geological Survey. The financial
support for these investigations from the U.S. Environmental
Protection Agency is gratefully acknowledged. We are also grateful to
the coal companies in the Illinois Basin and in other parts of the
United States for their cooperation in allowing us to collect samples
from their mines. In addition to those listed as authors of this
report, major contributions to the study were made by a number of
chemists and geologists on the staff of the Illinois State Geological
Survey. We wish to acknowledge the following colleagues for their
assistance and to express our sincere gratitude for their efforts:
L. R. Camp, F. L. Kiene, J. K. Frost, R. T. Graoon, S. D. Hampton, J. R.
Hatch, L. ft. Henderson, R. A. Keogh, L. E. Kohlenberger, P. C.
Lindahl, P. M. Santoloquido, J. A. Schleicher, N. F. Shimp, J. D.
Steele, G. D. Strieker and Josephus Thomas, Jr. In addition, we wish
to thank the Computing Services Office of the University of Illinois,
especially Ed DeWan, for their assistance in the preparation of this
computer generated manuscript.
-------
TRACE ELEMENTS IN COAL
OCCURRENCE AND DISTRIBUTION
H. J. Gluskotor, R. R. Rueh, W. G. Miller,
R. A. Cahill, G. B. Dr»h«r, and J. K. Kuhn
INTRODUCTION
Within recent years the general publio and the scientific
community have become increasingly 'aware of the problems of energy and
environment that directly affect the activities of people in the
United States. The problems are not separate and distinct, but rather
are associated intimately with each other. To maintain a standard of
living similar to that which has evolved in the United States will
require the increased development of a domestic source of energy. To
preserve the quality of life to which everyone aspires will
necessitate production of that energy in an environmentally acceptable
manner.
Coal is the most abundant fossil fuel resource in the United
States (Simon and Malhotra, 1976). Energy from coal will continue to
be extracted in the "normal" way by direct combustion in steam boilers
and generation of electricity. However, extensive research is being
done to find efficient methods of producing clean and easily handled
gaseous and liquid fuels from ooal. Coal is composed not only of those
elements generally considered to be organic (C, H, 0, and N), which
are utilized in converting coal to synthetic fuels, but it is
extremely heterogeneous and contains significant quantities of
"inorganic" elements. These inorganic elements are associated
primarily with individual mineral phases in the coal. The term
"mineral matter" is often used to refer to all the inorganic
constituents of coal.
Mineral matter, including major, minor, and trace elements,
composes a significant proportion of coal. It is difficult to
precisely measure the quantity of mineral matter in coal. For the
purposes of this study the amount of radio-frequency low-temperature
ash produced in a radio-frequency asher at temperatures below 150°C
(Gluskoter, 1965b; Rao and Gluskoter, 1973) will be assumed to equal
Note: Trace Elements in Coa.l : Occurrence and Distribution, Gluskoter et al., has
also been published in 1977 as Circular 1*99 by the Illinois State Geological
Survey, Urbana, IL 6l801.
-------
the mineral matter of the coal. In the ooal samples reported in this
study, the mineral matter ranges from 3.8 percent to 31.7 percent with
a mean value of 15.3 percent. Before the significance of this
proportion of the coal can be intelligently assessed, accurate
determinations of the various elements contained in the ash must be
made.
The Illinois State Geological Survey has had a continuing
research effort on the chemistry of coal for nearly seventy years.
Within the past six years, efforts have been concentrated on the
analyses of coal for trace elements. These efforts have resulted in a
number of publications, including: Ruch et al., 1971, 1973, 1974;
Gluskoter and Lindahl, 1973; Gluskoter, 1975; Frost et al., 1975; Kuhn
et al., 1975; and Dreher and Sohleicher, 1975.
During the period 1972-1976, these efforts were partially
supported by the U.S. Environmental Protection Agency. This report
summarizes all the analytical data 'collected during the period of that
support. In part, it duplicates material in previous publications (for
example, Ruoh et al., 1973, 1974).
The initial effort (Ruch et al., 1973,1974) involved a
comprehensive characterization of 101 coals of the United States, most
of which were from the Illinois Basin. The initial study included
development and refinement of specific chemical and mineralogical
methods of analysis, new methods for sample pretreatment,
volatilization studies, and more efficient methods for treatment of
the data. The study laid the foundation for many geochemical
conclusions, but also indicated the necessity for further work.
The present project is concerned with the analyses of 71
additional U.S. coals, more than half of which are from the eastern
and western coal-producing areas; the remainder are from the Illinois
Basin (fig. 1). The study also includes 40 bench samples (vertical
segments within a coal seam) representing five geologically different
environments from the Illinois Basin, and 32 float-sink samples
(gravity fraction separations) from five coals that are geographically
widely separated and that differ significantly both geologically and
chemically.
The scope of the work was extended in this study to include the
determinations of 23 additional elements, many of which had not had
their distributions in coal characterized previously. These analyses
were made possible by advances in analytical methods, especially by
the acquisition of a high-resolution detector for instrumental neutron
activation analysis (INAA). The 71 whole coal samples, the 40 bench
samples, and the 32 washed coal samples were analyzed for these 23
additional elements, as were twenty-five samples from the Herrin (No.
6) Coal Member of Illinois, selected from the group of 101 coals
previously analyzed.
-------
600 MILES
EASTERN SAMPLES ^
MID-CONTINENT SAMPLES
ILLINOIS BASIN
SAMPLES
S, *• . / t
^ -s * ( ,\
Anthracite and semianthracite
Bituminous (undiff.)
Low —volatile bituminous
Medium-and high —volatile bituminous
Subbituminous and lignite (undiff.)
113 Lignite
x Isolated occurrence of coal of unknown extent
A— Anthracite B— Bituminous
S— Subbituminous L— Lignite
Fig. 1 - Coal fields of conterminous United States showing regional designations used in the text.
U)
-------
' 58'
''/?/<
90-;
Th;
XXX?
59
Pr
91
Pa
60
Nd
/9^/.
W
'XXX?
61
Pm
93
Np
I* '61 '•
Sm
y//y
94
Pu
/63'
'XXX
64
Gd
'65 /
Tb;
-------
(volatile matter, fixed carbon), and ultimate analyses (C, H, N, 0).
In addition, during the project, useful techniques were developed for
instrumental neutron activation analysis with a Ge(Li) detector (INAA)
and for atomic absorption spectrometry (AA) using a graphite furnace
excitation source (see appendix).
The appendix includes: 1) the techniques used to prepare the
samples for chemical analyses; 2) the analytical methods developed for
determination of many of the trace elements in coal; 3) a discussion
of the results obtained by two or more analytical methods for the same
element; and 4) summary tables listing the analytical techniques used
in the determination of the elements reported in the body of the
report.
The total amount of data in this report is very
large—approximately 20,000 determinations. Complete geologic
interpretation of these data is beyond the scope of this report.
However, some partial statistical analyses of the chemical analytical
data have been completed. For each element the data on whole coal
samples have been analyzed statistically for arithmetic mean,
geometric mean, range, and standard deviation. The data have also been
tested for linear relationships among the elements, and a matrix of
correlation coefficients is presented. Elemental concentrations of the
coals analyzed have been compared to the average concentrations of the
elements in the earth's crust (clarke values). Concentrations of
elements in coals from the eastern and the western coal fields of the
United States have been compared .to concentrations of those elements
in coals of the Illinois Basin. Chemical analytical data determined on
bench samples have been analyzed similarly; the distribution of the
elements in individual benches of a coal are shown as histograms on
which the benches are scaled as to thickness and non-coal partings are
shown.
An additional set of analytical values was determined on a series
of "washed" coal samples. These samples were separated into specific
gravity fractions and each fraction was analyzed for most of the same
major, minor, and trace elements as were the whole coal samples. The
results of the analyses of these samples are of special value for two
reasons. First, the rasults demonstrate which of the elements can be
removed from the coals by specific gravity techniques and the amount
of each element that can be so removed. Second, such data can indicate
the mode of ocourrenoe of on element in the coal, whether it is in
organic or in inorganic combination and, if in inorganic combination,
can suggest with which group of minerals it is most likely to be
associated.
A number of tables of data, all of which are computer generated,
are included in this report. Table 1 lists all the abbreviations that
were necessarily used in those tables, and thereby appreciably reduces
the number of footnotes needed in the individual tables..
-------
TABLE 1—-ABBREVIATIONS USED IN TEXT AND TABLES
A angstrom unit
AA Atomic absorption
ACS American Chemical Society
ADL Air-dry loss
ASTM American Society for Testing and Materials
B Bench sample
BCUKA British Coal Utilization Research Association
Btu British Thermal Units
C Column sample
CDC Composite drill core'sample
CFC Composite face channel sample
CGB Composite grab sample
cm Centimeters
DC Drill core sample
EPA United States Environmental Protection Agency
F float fraction
PC Face channel sample
FIXC Fixed carbon
FS Float-sink fraction
g gamma
GB Grab sample
Ge-Li Lithium drifted germanium (detector)
HTA High-temperature ash
hVAB High volatile A bituminous
HVBB High volatile B bituminous
HVC8 High volatile C bituminous
in inch
INAA Instrumental Neutron Activation Analysis
ISE Ion-Selective Electrode
kg kilogram
LTA Low-temperature ash
LVB Low volatile'bituminous
mg milligram
ml milliliter
MO IS Moisture, as received
MVB Medium volatile bituminous
NAA Neutron Activation Analysis
NBS National Bureau of Standards
OE-DR Optical Emission-Direct Reading
OE-P Optical Emission-Photograpnio
ORS Organic sulfur
ppra parts per million
PXS Pyritio Sulfur
RM Run of mine sample
S Sink fraction
SBA Sub-bituminous - A
SBB Sub-bituminous - B
SBC Sub-bituminous - C
STD ' Standard deviation
SUS Sulfate sulfur
SXRF Sulfur by X-ray Fluorescence
TOS Total sulfur
U mlcro-
USbM United States Bureau of Mines
USliS United States Geological Survey
VOL Volatile matter
W Washed sample
XHF X-ray Fluorescence
-------
TYPE AND SOURCE'OF COAL SAMPLES
Chemical analyses of 172 whole coal samples were made for this
study. One hundred thirty-five of the samples were face-channel or
composite face-channel samples collected, in nearly all cases, in coal
mines by Illinois State Geological Survey personnel. Each face-channel
sample was cut by hand with a pick and represented the full height of
the coal, excluding only mineral bands, partings, or nodules more than
one centimeter (3/8 in.) thick. This procedure follows a longstanding
practice at the Illinois State Geological Survey and is based on a
technique described by Holmes (1911) in which mineral bands greater
than three-eighths inch (1 cm) in thickness were excluded. Generally,
three face-channel samples were collected in each mine, but in some
mines less were collected because of local conditions. The face
channel samples were crushed to pass a one-eighth inch (0.32 cm)
screen, combined into a composite sample, and then riffled to the
desired quantity.
The coal sample was comminuted further to 20 mesh (740 urn),
*40 mesh (420 ym), 60 mesh (250 pm), 100 mesh (149pm), or finer,
depending on the analytical technique to be applied. In all cases, the
sample was subdivided into aliquots by riffle-type sample splitters or
by quartering the sample. The parts are considered representative of
the original coal sample. Those samples ground between 20 mesh and 100
mesh were ground with a Pitchford Selective Particle Size Grinder. The
grinder employed a reciprocating cylinder that was filled with steel
balls and was continuously flushed with compressed air. Finer particle
sizes were obtained by various other mechanical and hand methods (see
appendix).
Table 2 is an index of all the whole coal samples reported upon
in this study. For each coal the analysis number ("C" number), state
or origin, bed name or other descriptive term, rank of the coal, and
sample type are listed. We recognize the difficulty in analyzing data
from coal samples of different types. Therefore, ail samples are
treated in as similar a manner as possible. For example, drill core
samples (DC) were carefully described and mineral bands or partings
over one centimeter thick were excluded, following the same procedure
as for face-channel samples (FC and CFC). Run of mine samples (RM), a
few samples of washed coals (W), and a few face channel samples were
provided by coal companies and by state and federal agencies. We are
grateful for the assistance of those companies and agencies and assume
that the samples are representative of the coal produced at the mines
that were sampled.
The coal analysis number, the letter "C" followed by five digits,
is the single unique number assigned to a sample that has had any
chemical analysis. It is the basis on which the samples are ordered in
the data tables, thus it will be necessary to refer to table 2 for
identification of those samples.
-------
TABLE 2—IDENTIFICATION OF WHOLE COAL SAMPLES ANALYZED
ANALYSIS
NUMBER
C12059
C12495
C12831
C129*2
C13039
C13016
C13324
C13133
C13464
C13B5*
C13975
C13983
C 13895
Cl*19*
C1*57*
C14609
C1*613
C 1*630
C1«6*6
C1U650
C11664
C14721
C1*735
C1*774
C1*796
C 1*970
C14962
C15012
C 15038
C15079
C151'7
C15125
C15208
C15231
C15263
C15273
C15331
C1538*
C15418
CIS* 32
C15*36
C15**8
C15*56
STATE
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
INDIANA
INDIANA
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
INDIANA /
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ORIGIN
HERRIN (NO. 6)
HARRISBURG (NO. 5)
HERRIN (NO. 6)
HERRIN (NO. 6)
SEELYVILLE (III)
SPRINGFIELD (V)
HERRIN (NO. 6)
HERRIN (NO. 6)
HERRIN (NO. 6)
REYNOLDSBURG
HERRIN (NO. 6)
HARRISBURG (NO. 5)
HERRIN (NO. 6)
HARBLSBURG (NO. 5)
HERRIN (NO. 6)
HARRISBURG (NO. 5)
HERRIN (NO. 6)
HERRIN (NO. 6)
COLCHESTER (NO. 2)
COLCHESTER (NO. 2)
KERHIK (NO. 6)
HERRIN (NO. 6)
HARRISBURG (NO. 5)
HAHHISBIHC (NO. 5)
hARRISBURG (NO. 5)
HERRIN (NO. 6)
HERRIN (NO. 6)
HARRISBURG (NO. 5)
HERRIN (NO. 6)
' HERRIN (NO. 6)
HERRIN (NO. 6)
HARRISBURG (NO. 5)
HARRISBURG (NO. 5)
HERRIN (NO. 6)
COLCHESTER (NO. 2)
DANVILLE (NO. 7)
SUMMUM (NO. 4)
HARRISBURG (NO. 5)
DANVILLE (VII)
HERRIN (NO. 6)
HERRIN (NO. 6)
HARRISBURG (NO. 5)
HERRIN (NO. 6)
RANK
(ASTM)
HVCB
HVCB
HVBB
HVCB
HVBB
HVBB
HVAB
HVBB
HVCB
HVAB
HVBB
HVCB
HVCB
HVAB
HVCB
HVBB
HVCB
HVCB
HVCB
HVCB
HVBb
HVCB
HVBB
HVBB
HVBB
HVCB
HVCB
HVBB
HVBB
HVCB
HVCB
HVCB
HVCB
HVCB
HVCB
HVCB
HVAB
HVCB
HVCB
HVCB
HVCB
HVBB
HVCB
SAMPLE
TYPE
CFC
CFC
CFC
FC
CFC
CFC
DC
DC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
FC
CFC
CFC
CFC
CFC
ANALYSIS
NUMBER
C 15*96
C15566
C15678
C15717
C15791
C 15061)
C15872
C15943
C15944
C 15999
C16030
C16139
C16264
C 16265
C16317
C 16*08
C16501
C16543
C16564
C16729
C16741
C16787
C16919
C16993
C17001
C17016
C17045
C17046
C170»7
C17053
C17054
C17089
C17092
C17095
C17096
C17097
C17098
C17099
C17215
C17243
C17244
CV7245
C17246
STATE
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS '
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ARIZONA
MONTANA
MONTANA
ILLINOIS
COLORADO
ILLINOIS
OHIO
Ohio
UTAH
COLORADO
PENNSYLVANIA
PENNSYLVANIA
ILLINOIS
OHIO
OHIO
OHIO
h. VIRGINIA
ORIGIN
SUMMUM (NO. 14)
COLCHESTER (NO. 2)
ROCK ISLAND (NO. 1 )
UERRIN (NO. 6)
HERRIN (N0.6)
HERKIN (NO. 6)
HERRIN (N0.6)
DAVIS
DEKOVEN
HEhRlN (N0.6)
UERRIN (N0.6)
HERRIN (N0.6)
HARRISBURG (NO. 5)
HERRIN (NO. 6)
HERRI* (N0.6)
CHAPEL (NO. 8)
HERRIN (NO. 6)
HERRIN (N0.6)
sumuM (NO.*)
UARRISBURG (NO. 5)
HERRIN (N0.6)
ABBOTT FORMATION
NEW BURNSIDE
HBRRIN (N0.6)
HARRISBURO (MO. 5)
HERRIN (NO. 6)
BLACK MESA FIELD
ROSEBUD SEAM
MCKAY SEAM
DANVILLE (NO. 7)
NUCLA SEAM
REYNOLDSBURG
MIDDLE GTTAJOilNG
PITTSBURG 8
WASATCH PLATEAU
MADGE
LOWER KITTANNING
PITTSBURG 8
OPDYKE
ME1GS CREEK
LOWER FREEPORT
PITTSBURG 8
HERNS HAW
RANK
(ASTO)
HVCB
HVCB
HVCB
HVCB
HVBB
HVBB
HVCB
HVAB
HVAB
HVbB
hVAB
HVCB
HVCB
HVCB
HVCB
HVAB
HVBB
HVCB
HVCB
HVBB
HVCB
HVBB
HVBB
HVBB
HVBB
HVCB
HVCB
SBC
SBC
HVCB
HVCB
HVBB
HVCB
HVCB
HVCB
HVCB
HVBB
HVBB
HVCB
HVCB
HVBB
HVCB
HVBB
SAMPLE
TYPE
CFC
CFC
CFC
CFC
CFC
CFC
CFC
DC
DC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
C
CFC
C
RM
RM
RM
CFC
RH
CFC
RM
RM
RM
RM
RM
RM
CFC
RM
RM
W
W
-------
ANALYSIS
NUMBER
C 17276
C17279
C17303
C17304
C17305
C17307
C17309
C17601
C17721
C17970
C17984
C17968
C18009
C18040
C18044
C18304
C18320
C18349
C18350
C18351
C18355
C 18368
C183&9
C18392
C18395
C18398
c 10101
C1b404
C1«407
C18408
cib4u
C16415
C18419
C18421
C18433
C16436
C18437
C18440
C18441
C18444
C18445
C18446
C18449
STATE
ILLINOIS
ILLINOIS
PENNSYLVANIA
INDIANA
KENTUCKY
MISSOURI
ARIZONA
ILLIKOIS
ILLINOIS
NBS 1631
ILLINOIS
ILLINOIS
NBS 1630
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
KENTUCKY
KENTUCKY
KENTUCKY
KENTUCKY
KENTUCKY
KENTUCKY
KENTUCKY
KENTUCKY
KENTUCKY
KENTUCKY
KENTUCKY
ILLINOIS
N. DAKOTA
N. DAKOTA
N. DAKOTA
N. DAKOTA
N. DAKOTA
MONTANA
MONTANA
MONTANA
MONTANA
ORIGIN
HERRIN (NO. 6)
HERKIN (NO. 6)
PITTSBURG 8
SEELYVILLE (III)
9
USBM MIXED COAL
BLACK MESA FIELD
DAVIS
SPRINGFIELD (NO. 5)
NAT. BUREAU STAN.
SPRINGFIELD (NO.S)
SPRINGFIELD (NO.S)
•AT. BUREAU STAN.
SPRINGFIELD (NO. 5)
HERRIH (NO. 6)
DEKOVEH
HERRIK (NO. 6)
DEKOVEN
DEKOVBN
DAVIS
NEW BURNSIDE
HERRIN (NO. 6)
11
9
9
11
12
9
11
12
9
11
12
DANVILLE (N0.7)
FT. UNION FORMATION
FT. UNION FORMATION
FT. UNION FORMATION
FT. UNION FORMATION
FT. UNION FORMATION
FT. UNION FORMATION
FT. UNION FORMATION
POWDER RIVER BASIN
POWDER RIVER BASIN
RANK
(ASTM)
HVCB
HVCB
HVCB
HVCB
HVCB
HVCB
HVAB
HVCB
HVBB
HVBB
HVCB
HVCB
HVAB
HVBB
HVAB
HVAB
HVAB
HVAB
HVCB
HVCB
HVCb
hVBB
HVCB
HVCB
HVBb
HVBB
HVCB
HVCB
HVBB
HVBB
HVCB
LIGNITE
LIGNITE
LIGNITE
LIGNITE
LIGNITE
LIGKITE
SBB
SBC
SBB
SAMPLE
TYPE
CFC
FC
H
W
RM
W
RM
CFC
CFC
NBS
CFC
CFC
NBS
CFC
CFC
CFC
CFC
FC
FC
FC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
CFC
FC
CFC
CFC
CFC
CDC
CFC
CFC
FC
FC
FC
CFC
FC
FC
CPC
ANALYSIS
NUMBER
C 18450
C18451
C16454
C18457
C18458
C18462
C18463
C18464
C18465
C1B493
C18560
C18572
C18573
C18571
C18581 -
C18590
C1B594
C18684
C18685
C18689
C18693
C18697
C18701
C1B816
C18820
C 1882 4
C18825
C18829
C18830
C18831
C18832
ClbU33
C1b837
C188D1
C18844
C18848
C18849
C18853
C18657
C1B992
C18993
C19000
STATE
WYOMING
WYOMING
WYOMING
WYOMING
WYOMING
WYOMING
WYOMING
WYOMING
WYOMING
ILLINOIS
ILLINOIS
IOWA
IOWA
IOWA
ILLIBOIS
KENTUCKY
KEMTUCKY
INDIANA
INDIANA
INDIANA
INDIANA
INDIANA
INDIANA
MONTANA
W. VIRGINIA
ALABAMA
ALABAMA
ALABAMA
TENNESSEE
TENNESSEE
TENNESSEE
TENNESSEE
KENTUCKY
W. VIRGINIA
PENNSYLVANIA
ALABAMA
ALABAMA
W. VIRGINIA
ILLINOIS
ARIZONA
ARIZONA
ARIZONA
ORIGIN
POWDER RIVER BASIN
POWDER RIVER BASIN
GREEN RIVER BASIN
UANNA BASIN
HAHNA BASIN
HAHNA BASIN
BANNA BASIN
GREEN RIVER BASIN
GREEN RIVER BASIN
HERRIN (N0.6)
HERRIN (NO. 6)
CHEROKEE GROUP
CHEROKEE GROUP
CHEROKEE GROUP
CASEYV1LLE FM
9
9
HYMERA (VI)
DANVILLE (VII)
SPRINGFIELD (V)
SPRINGFIELD (V)
SPRINGFIELD (V)
SPRUSCFIELD (V)
BULL MOUNTAIN FIELD
POCOHONTAS HO. 4
JOHNSON SEAM
CLEMENTS SEAM
CLEMENTS SEAM
PEEWEE SEAM
RED ASH COAL
RED ASH COAL
FROZEN HEAD COAL
WINIPREDE COAL
PITTSBURGH 16
PITTSBURGH 18
BLUE CREEK SEAM
MARY LEE SEAM
PITTSBURGH »8
HERRIN (N0.6)
BLACK MESA FIELD
BLACK MESA FIELD
BLACK MESA FIELD
RANK
(ASTM)
SBC
SBB
SBC
SBB
HVCB
SBA
SBA
SBb
SBC
HVCB
HVCB
HVCB
HVCB
HVCB
HVAB
HVBB
HVBB
HVBB
HVBB
HVBB
HVBB
HVBB
HVBB
SBA
LVB
MVB
MVB
HVAB
HVAB
HVAB
HVAB
HVAB
HVAB
HVAB
HVAB
MVB
MVB
HVAB
HVBB
HVBB
HVBB
HVBB
SAMPLE
TYPE
FC
CB
CFC
CGB
FC
CFC
GB
FC
GB
CDC
C
CFC
FC
GB
FC
RM
CFC
CFC
FC
CFC
CFC
CFC
CFC
CFC.
CFC
CFC
FC
CFC
FC
B
B
FC
CFC
CFC
CFC
CFC
FC
CFC
FC
FC
FC
CFC
\0
-------
10
ANALYSES OF WHOLE COAL SAMPLES
Analytical Data:
The results of the chemical analyses of the 172 coal samples are
given in tables 3 through 7. All analyses in this report are given on
the "whole coal" basis and not as a percentage of ash. Table 3 lists
the results of the analyses for 45 trace elements, all reported in
parts per million (ppm). Table 1 shows the determinations of the major
and minor elements on the same coals, reported in percent (%). The
standard coal analyses (%), proximate (51), ultimate (50, and heating
value (btu/lb), are given in tables 5 and 6. In addition, table 6
contains the low-temperature ash values as well as the
high-temperature ash values for each coal,? reported in percent ($).
Table 7 contains the results of the analyses for varieties of sulfur
and two total sulfur determinations, one by the standard ASTM method
and the other by X-ray fluorescence spectroscopy. Analytical methods
used in determining the reported values are given in the Appendix
(table J).
Statistical Analyses of Data:
Analytical data from the whole coal samples were grouped by
geographic origin of the samples (fig. 1). There were 114 samples from
the Illinois Basin, 29 samples from the western coal-producing areas,
and 23 samples from eastern United States (Appalachian coals). This
total of 166 samples is six less than the number reported in tables 3
through 7. Two National Bureau of Standards (NBS) samples were omitted
from the compilations, as were three samples from Iowa, and one sample
from Missouri (western interior region). These last four were omitted
because they do not by themselves constitute a valid statistical
sampling of the Western Interior Basin. Recent publications that
include many more data on coals from the western interior region are
by Swanson et al., 1976; Hatch, Avcln, Wedge and Brady, 1976; and
Wedge et al., 1976.
(Text continued on page 38)
-------
11
Tables 3, **, 5, 6, and 7 follow on
pages 12 through 37. Samples are listed
by sample number (for example, C15^96).
Identification of samples may be made
by referring to table 2 on pages 8 and
9. Table 1 on page 6 lists abbrevia-
tions used in the tables.
-------
TABLE 3—TRACE ELEMENTS IN WHOLE COAL SAMPLES
(parts per million, moisture-free, whole coal "basis)
SAMPLE
AC
BA
C 12059
C12495
C12831
C12942
C 13039
C 13046
C13324
C13433
C 13464
C 13854
C 13895
C13975
C13963
C14194
C 14574
C 14609
C14613
C 14630
C 14646
C 14650
C 14684
C14721
C14735
C14774
C 14796
C 14838
C 14970
C 14962
C15012
C 15038
C15079
C15117
C15125
C 15208
C15231
C15263
C15278
C15331
C 15384
C15418
C15432
C 154 36
C15448
C15456
0.04
0.02
0.03
0.03
0.02
0.02
BE
Bft
CD
CE
CO
CR
CS
CU
8.6
5.5
4.2
4.2
3.0
8.0
8.1
6.5
4.0
4.0
1.9
6.2
3.3
9.1
3.2
56
4.0
1.0
5.7
66
4.1
4.6
7.3
4.5
28
4.0
2.1
2.3
32
5.9
1.3
3-1
1.2
17
2.3
73
5.6
19
7.4
2.3
5.1
3-2
4.1
2.2
160
110
100
110
160
65
93
110
130
120
120
15
58
140
66
130
82
120
70
110
18
200
190
160
79
120
170
160
220
130
180
43
10
180
170
160
260
5.0
52
75
33
41
76
70
230
97
230
39
86
2.3
1.1
1.4
0.80
2.4
1.8
0.90
0.80
1.8
0.70
1.5
1.2
1.2
1.1
2.2
0.90
0.80
1.2
2.7
2.1
0.80
1.4
.2
.8
.2
.1
.6
.0
.3
1.0
1.8
3.9
.6
.1
0.80
3.0
.5
.1
.2
2.3
2.5
1.8
1.6
1.4
17
12
17
11
11
11
14
20
17
19
16
11
16
15
10
17
16
22
12
9.0
21
17
33
11
22
13
16
11
16
12
9.5
6.0
10
11
12
13
13
11
11
19
15
16
12
13
20
<0.60
<0.40
<0.50
<0.40
<0.40
1.1
0.30
24
<0.10
9.0
.11
0.50
1.6
14
<0.30
2.1
14
<0.50
8.7
0.18 12
1.8
0.80
7.2
<0.40
<0.40
<0.40
C0.40
1.0
0.80
17
2.4 12
5.0
<0.50
8.0
3.8
<0.30
0.70
<0.40
<0.30
7.8
7.5
1.0
0.42 15
10
2.0
4.0
5.0
5.0
10
6.0
6.0
7.0
18
2.5
5.0
5.0
6.0
3.0
9.0
15
8.0
9.0
28
4.0
9.0
6.0
3.0
4.0
7.0
7.0
5.0
13
11
7.0
8.0
2.0
5.0
3.0
11
5.0
9.0
8.0
22
6.0
3.0
6.0
4.0
21
8.0
7.0
16
14
7.0
12
12
60
11
15
27
12
14
13
9.0
14
13
10
6.0
12
16
26
8.0
20
12
10
9.0
9.0
12
33
19
18
11
15
7.0
9.0
14
14
14
15
35
10
20
26
12
6.0
14
16
12
10
10
1.5 10
5.0
1.0 12
1.0 14
9.0
9.0
0.70 12
12
16
0.80 11
30
28
1.0 8.0
10
9.0
8.0
33
10
13
9.0
10
12
1.4 22
0.70 17
0.50 8.0
10
0.80 12
44
8.0
20
10
13
0.60 14
0.90 18
12
1.4 11
-------
TABLE 3—Continued
SAMPLE
AC
AS
BA
BE
BH
CD
CE
CO
CR
CS
CU
C15496
C15566
C15678
C15717
C15791
C15868
C15872
C15943
C15944
C15999
C16030
C16139
C16264
C16265
C16317
C1W06
C16501
C16543
C16564
C16729
C16741
C16787
C16919
C16993
C17001
C17016
C17015
C17046
C17047
C17053
C17054
C17089
C17092
C17095
C17096
C17097
C1709B
C17099
C17215
C17243
C17244
C17245
C17246
15
93
7.5
1.9
30
1.5
1.1
3.4
37
3.1
5.5
4.5
9.6
10
27
57
8.7
8.2
5.5
32
4.3
20
17
8.0
9.4
3.3
1.2
1.2
2.5
5.8
0.70
22
14
6.7
0.50
0.50
27
19
20
13
25
35
5.1
130
120
140
160
91
100
170
33
38
82
34
150
140
100
«9
110
140
75
130
12
31
81
37
200
30
92
84
150
39
37
83
45
140
9.0
38
130
78
59
68
9.0
88
67
50
200
110
120
80
750
69
48
48
3.2
2.5
.9
.2
.4
.0
.7
3.4
4.0
1.5
2.7
1.0
3.0
2.7
2.8
0.90
0.70
2.4
2.6
.0
.1
.8
.2
.3
.6
.2
.60
.0
.1
.5
.4
0.50
1.5
0.90
0.40
0.80
1.1
0.60
4.0
1.4
1.6
1.4
2.6
16
10
11
22
20
31
18
18
17
11
17
10
14
52
15
11
15
9.0
23
14
9.0
22
19
17
16
9.0
7.0
20
25
13
10
12
8.0
12
23
19
13
17
13
11
17
14
26
22
0.90
0.40
8.7
<0.30
11
9.0
<0.30
0.40
18
15
7.6
2.7
<0.40
13
<0.40
<0.40
65 8.6
9.2
<0.40
1.1
<0. 30
<0.30
11
1.3
O.J6 7.4
<0.60
<0.40
<0.40
<0.40
<0.40
<0.20
<0.60
<0.50
<0.20
<0.40
<0.50
<0.40
<0.60
<0.60
<0.40
<0.40
<0.20
4.0
3«
11
4.0
10
8.0
11
6.0
14
8.0
12
5.0
2.0
15
8.0
17
9.0
8.0
5.0
10
5.0
18
20
5.0
8.0
3.0
2.0
2.0
2.0
4.0
2.0
4.0
5.0
8.0
1.0
2.0
7.0
10
7.0
20
33
28
16
9.0
4.0
6.0
27
25
12
19
8.0
13
18
25
24
16
20
26
7.0
10
18
9.0
12
20
16
16
16
30
12
8.0
5.0
7.0
12
6.0
12
14
16
7.0
5.0
18
11
13
16
23
10
12
12
26
11
1.0 10
14
0.70 13
1.2 18
12
26
1.2 15
1.1 18
0.80 14
10
14
1.0 20
16
12
1.0 16
10
9.0
0.60 16
27
19
0.90 12
8.0
1.1 12
12
18
15
8.0
16
6.0
22
12
11
10
26
15
14
20
28
12
26
NOTE: Samples listed by sample number (C-number).
cation of samples.
Refer to table 2 for Identlfi-
-------
TABLE 3—Continued
SAMPLE
AC
AS
BA
BE
BR
CD
CE
CO
CR
CS
CD
C 17278
C17279
C17303
C17304
C17305
C 17307
C17309
C17601
C17721
C17970
C17984
C17988
C 10009
C 15040
C 18044
C 18304
C18320
C18349
C18350
C18351
C16355
C1&368
C18389
C1&392
C1b395
C1t)39tt
cibioi
C1B404
C 18107
C 18108
C1B411
C18415
C18419
C18421
C18433
C18436
C18137
C18440
C 18111
C18411
C 18445
C18446
C1d119
0.08
0.06
0.03
0.04
0.02
0.02
0.02
0.02
0.04
0.02
0.02
0.04
0.02
0.02
0.06
0.02
0.02
0.03
0.04
0.03
0.07
0.04
0.02
0.04
0.03
0.02
0.02
0.01
2.3
3-0
6.7
4.8
9.3
1.3
5.0
66
5.7
61
47
19
3-6
4.6
5-4
2.0
7.8
6.8
3.4
63
2.7
i.b
3-0
4.3
11
57
14
3.1
4.5
15
4.5
3.9
11
2.7
9.6
9.8
1.8
2.5
2.5
0.77
0.31
1.0
5.0
130
60
66
17
33
110
13
60
63
5.0
130
150
68
230
88
68
55
51
210
120
110
110
120
110
110
150
84
99
110
96
150
100
78
73
41
100
61
91
23
32
100
41
110
43
43
21
70
76
73
80
66
17
350
50
do
160
80
53
110
130
940
500
460
500
910
1600
500
: 650
600
1.1
1.1
1.3
3.4
2.6
1.2
0.20
1.4
2.4
1.7
1.4
0.90
1.0
0.80
1.0
2.2
1.1
3-8
1.3
1.4
3-0
1.0
1.8
1.6
1.4
1.4
2.4
0.85
2.6
1.2
1.8
2.9
1.3
1.8
0.22
0.55
0.70
0.55
0.12
0.18
0.20
<0. 10
<0.10
13
9-0
23
. 13
11
7.0
1.0
14
18
20
18
17
29
12
13
16
13
10
10
6.5
14
1.8
1.9
2.1
0.80
1.0
1.3
2.0
5.0
1.8
2.7
0.63
0.60
8.3
1.5
1.7
1.9
1.0
1.8
1.7
1.6
1.4
0.90
0.60
<0.20
0.70
0.90
11
<0.20
5.0
0.60
<0.40
1.5
1.2
<0.20
1.4
1.5
<0.40
0.30
9.3
<0.10
4.4
0.80
0.30
<0.30
<0.30
<0.30
<0.10
<0.30
0.20
<0.10
0.70
0.30
<0.10
<0.20
0.20
<0.10
<0. 10
<0.10
<0. 10
<0.10
<0.10
<0.10
<0.20
<0.10
10
13
23
13
12
23
8.0
27
13
10
15
16
23
12
20
25
13
16
30
24
9.7
3.3
4.9
8.5
5.9
11
12
7.2
2.8
5.0
4.0
12
12
17
43
7.0
16
6.0
11
9.0
9.0
6.0
4.0
8.0
3-8
3.8
5.1
2.5
2.8
9.1
3.1
3.6
2.4
2.3
4.0
7.4
2.0
3.5
5.0
2.2
5.1
4.4
3-4
0.90
1.1
1.0
0.80
0.80
1.0
0.80
0.80
0.71
10
29
18
30
16
22
5.0
12
12
22
10
10
8.0
8.0
13
20
46
12
20
16
22
24
20
16
17
25
27
29
22
48
19
27
52
32
8.0
17
13
6.0
12
6.0
7.0
7.0
7.0
1.2
1.0
2.2
1.5
0.80
1.7
0.90
3.6
1.6
1.1
1.5
1.7
2.4
1.8
• 1.8
3.4
1.3
2.0
2.3
3.2
0.02
0.09
0.30
0.06
0.10
0.03
0.06
0.07
0.14
13
13
11
30
16
61
22
11
14
23
11
10
16
7.0
10
23
8.4
21
23
27
13
12
11
7.0
6.1
11
16
20
7.8
13
6.1
14
10
11
3.7
5.4
4.8
3.1
6.1
3.6
5.9
9.1
10
-------
TABLE 3—Continued
SAMPLE
BA
BE
Bfl
CD
CE
CO
CR
CS
CU
C 18450
C18451
C 18454
C18457
Clb45B
C 18*62
Cl64b3
C1b464
C10465
C 18*93
C 18560
C18572
C18573
C 18571
C18581
C 18590
C18594
C18664
C 18685
C 18689
C18693
C 18697
C18701
C18B16
C 18820
C 18821
C 16825
C 18829
C 18830
C18831
C18632
C18833
C1bb37
C1bB4l
Clbbll
C 18848
C1b8<9
C18853
C18b57
C 18992
C18993
c 19000
0.03
0.03
0.05
0.01
0.02
0.01
0.04
0.03
0.02
0.03
0.03
0.04
0.06
0.04
0.08
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.06
0.02
0.02
0.02
0.01
0.02
0.04
0.03
0.01
0.02
0.02
0.02
0.01
0.01
0.01
0.82
1.4
0.40
1.2
1.7
3-9
7.2
1.7
1.5
32
3.1
4.6
43
19
120
8.1
8.4
15
34
11
7.0
6.1
6.1
5.3
15
22
100
46
17
12
42
2.7
55
3.2
15
1.6
95
2.5
2.3
1.0
0.50
1.0
28
35
16
18
49
25
74
6b
230
200
110
130
110
13
150
140
180
140
130
120
130
66
12
5.0
6.0
41
57
70
44
38
13
120
48
15
13
97
35
58
37
360
480
460
460
220
430
370
160
160
110
54
95
92
130
140
81
130
61
34
34
55
48
63
460
220
180
220
400
130
420
130
180
170
72
87
230
260
93
61
270
220
270
0.15
0.14
0.27
0.31
0.13
0.30
0.36
0.34
0.09
2.2
1.4
2.9
2.4
1.6
2.0
0.65
0.70
2.5
1.8
1.4
2.1
2.3
3.7
0.49
0.88
1.7
1.8
1.4
0.73
2.0
1.6
1.8
1.8
0.66
0.58
0.68
1.2
0.23
1.0
0.56
0.79
0.39
1.7
1.5
1.2
0.90
0.70
1.2
0.50
2.5
2.0
7.0
3.5
2.6
3.3
3.2
27
13
9.6
2.7
3.7
2.4
2.1
2.5
3.2
0.52
22
1.7
7.5
1.4
10
19
24
13
0.71
10
18
2.5
2.1
13
5.1
0.70
1.0
0.90
<0.10
<0.10
<0.10
<0.10
<0.10
<0. 10
<0.20
<0.20
<0.10
0.40
<0.10
<0.10
0.80
3.4
<0.30
<0.30
<0.10
<0.20
0.70
<0.10
<0.10
0.20
0.60
<0.20
<0.10
<0.20
<0. 10
<0.10
<0.10
<0.10
<0.10
<0.20
<0.10
<0. 10
<0.10
<0. 10
<0.20
<0.10
0.20
<0.10
<0.10
<0.10
14
6.5
8.6
4.6
20
30
25
19
21
16
25
12
21
15
46
to
10
9.0
».9
6.4
10
8.2
10
13
33
25
26
29
19
27
16
32
27
15
11
30
42
11
7.9
9.1
3.2
6.0
1.8
1.4
1.3
0.60
1.2
2.8
3.1
2.0
6.5
6.8
5.5
6.2
13
3.7
8.7
2.8
2.1
5.9
3.6
3.0
3.0
1.7
3.7
2.1
7.0
6.8
8.5
9.5
5.8
10
».9
7.8
3.5
3.3
1.9
9.4
6.4
1.5
3.0
2.6
0.71
0.85
11
9-0
9.0
6.0
14
20
15
15
12
20
21
26
40
30
42
20
25
20
10
14
23
18
19
10
17
16
24
21
14
12
90
22
22
15
15
21
31
11
19
7.0
2.4
3.5 .
0.05
0.20
0.08
0.16
0.80
0.20
3.8
O.bO
1.2
0.90
2.0
0.80
0.90
0.70
3.6
1.2
0.80
1.7
0.70
0.90
1.4
1.3
1.3
0.30
1.9
1.2
5.0
2.6
1.3
' 0.40
1.4
2.1
1.7
1.0
0.90
2.3
6.2
0.68
1.6
0.70
0.04
0.11
12
10
9-2
3.2
6.1
23
18
16
7.9
20
13
8.1
39
12
27
6.6
5.2
15
21
9.5
12
13
14
19
20
30
27
27
12
20
12
13
20
5.1
15
12
23
5.5
8.1
7.3
3-1
4.7
NOTE: Samples listed by sample number (C-number).
cation of samples.
Refer to table 2 for identlfi-
-------
TABLE 3—Continued
SAMPLE
C 12059
C12495
C12831
C12942
C 13039
C 13046
C 13324
C13433
C 13*64
C 13854
C 13895
C 13975
C13983
C14194
C14574
C14609
C14613
C 14630
C14646
C 14650
C 14684
C14721
C14735
C14774
C 14796
C 14838
C 14970
C 14982
C15012
C 15030
C15079
C15117
C15125
C 15208
C15231
C15263
C15278
C15331
C15384
C15418
C15432
C15436
C1544B
C 15456
DI EU
0.90 0.30
1.0 0.30
1.0 0.20
1.3 0.30
1.1 0.30
0.80 0.20
1.2 0.20
1.5 0.30
0.50 0.10
1.0 0.20
0.70 0.20
0.90 0.20
1.1 0.20
F
51
42
51
52
140
37
44
75
59
52
69
51
52
58
42
70
51
52
55
33
63
60
52
42
110
47
44
54
56
68
58
51
54
52
76
41
60
49
55
46
58
51
140
100
GA
3-6
1.9
4.5
1.9
3.9
1.7
2.4
1.6
2.9
2.7
3.2
3.0
2.2
1.8
2.8
2.3
2.8
2.6
4.8
2.3
2.5
3.5
1.7
2.2
6.0
3.5
3.7
2.6
2.4
2.5
3.7
4.4
2.0
2.0
3.4
3.5
2.4
2.6
3.0
4.1
2.8
2.4
2.9
3.4
CE
9.0
9.0
6.0
<1.0
6.0
10
5.0
3.0
<1.0
4.0
4.0
4.0
5.0
7.0
11
6.0
2.0
2.0
14
22
<1.0
3.0
6.0
12
3.0
6.0
<1.0
2.0
5.0
1.0
14
12
18
<1.0
4.0
22
9.0
9.0
5.0
11
12
7.0
U.O
1.0
HF
0.60
0.50
0.40
0.30
0.50
0.50
0.80
0.40
0.30
0.40
0.30
0.20
0.60
t
KG I IH LA
0.52
0.09
0.23
0.12
0.06
0.27
0.31
0.22
0.21 <1.0 <0. 10 8.2
0.60
0.17 3.3 0.17 7.0
0.08 1.1 0.10 8.1
0.04
0.13
0.22 1.4 <0.10 11
0.12
0.18
0.09 2.2 0.18 6.7
0.27
0.16
0.18 2.8 0.20 7.5
0.32
0.22
0.28
0.38
0.22
0.14
0.19
0.10
0.11
0.35 3.0 0.18 8.8
0.32 1.2 0.20 9.1
0.21 <1.0 <0.20 3.3
0.10
0.19 1.9 0.22 5.3
0.22
0.39
0.19
0.16
1.6
0.10 <1.0 <0.10 6.4
0.21 1.5 0.14 4.3
0.07
0.09 0.5" 0.17 6.0
LU
0.10
0.08
0.06
0.06
0.07
0.05
0.10
0.09
0.06
0.06
0.07
0.04
0.09
f
HN
87
86
28
53
32
46
19
23
68
6.0
57
53
26
160
17
52
26
25
«2
18
32
65
22
100
43
HO
72
41
83
42
81
91
170
180
45
12
78
28
62
11
160
22
32
25
ON
-------
TABLE 3—Continued
SAMPLE
EU
GA
CE
HF
HC
IN
LA
LU
KM
C 15496
C 15566
C 15678
C15717 1.0
C15791
C 15868 1.1
C15672 1.1
C 159*3
C 15944
C15999 1.2
C 16030 1.8
C16139 0.70
C16264
C 16265
C16317 1.1
C 16*08
C16501
C165*3 0.80
C 16564
C 16729
C167*1 0.90
C16767
C 169 19
C16993 1.3
C17001
C17016 0.90
C 170*5
C 170*6
C 170*7
C17053
C1705*
C 17089
C 17092
C 17095
C 17096
C 17097
C1709U
C 17099
C17215
C172*3
C 172*4
C 172*5
C172*6
*3
46
30
0.20 96
58
0.20 6*
0.20 50
51
60
O.*0 bl
0.10 58
0.20 *5
69
42
0.20 52
83
54
0.20 46
39
48
0.20 44
145
55
0.30 61
44
0.20 68
78
42
52
41
63
61
130
90
50
110
72
67
40
71
88
51
50
2.6
7.5
1.7
2.4
2.8
2.8
3.5
2.8
3.6
3-5
4.3
3-6
4.3
4.1
4.2
2.7
3.1
3.8
2.6
2.6
3.3
3.6
2.9
3.7
2.0
3.6
4.4
3.5
3.4
2.4
2.4
3.7
4.4
3.2
1.6
3.7
5.5
2.9
5.2
3.6
3.9
3-0
4.6
28
43
10
1.0
5.0
2.0
13
6.0
6.0
2.0
7.0
4.0
15
26
12
2.0
<1.0
14
20
6.0
6.0
3.0
5.0
<1.0
8.0
7.0
2.0
3.0
2.0
10
2.0
1.0
6.0
0.0
1.0
3-0
<1.0
1.0
11
4.0
<1.0
5.0
2.0
0.12
0.49
0.10
0.40 0.08 2.2 0.14 4.6
0.12
0.30 0.08 3.5 0.09 6.1
0.60 0.23 1.2 0.11 5.4
0.05
0.37
0.50 0.14 2.1 <0.10 12
0.40 0.14 3.3 0.23 9.5
0.30 0.10 <1.0 0.07 6.0
0.24
0.17
0.60 0.10 2.7 0.04 5.0
0.30
0.12
0.50 0.41 <1.0 0.03 6.1
0.12
0.07
0.30 0.15 5.8 0.18 6.1
0.22
0.16
0.40 0.15 2.2 0.23 9.3
0.50
0.50 0.12 1.4 0.07 4.3
0.02
0.09
0.07
0.10
0.02
1.1
0.15
0.13
0.04
0.02
0.28
0.16
0.08
0.16
0.46
0.26
0.08
66
90
44
0.06 50
23
0.06 43
0.10 180
15
10
0.11 13
0.08 17
0.07 63
21
67
0.10 71
13
22
0.08 92
170
76
0.08 72
7.0
9.0
0.07 60
22
0.05 38
22
100
88
77
16
16
55
27
<8.0
12
14
\6
63
48
29
12
9.0
NOTE: Samples listed by sample number (C-number).
cation of samples.
Refer to table 2 for identlfi-
-------
TABLE 3—Continued
SAMPLE
EU
GE
HP
HG
IN
UU
07278
07279
07303
C1730U
07305
07307
07309
O7601
07721
C17970
07984
07980
O6009
08040
C 10044
C18304
c 18320
c 18319
C 18350
O9351
C1B355
C18368
C18389
C18392
00395
C 10398
OolOl
Ot>404
Oo407
C 10406
C18411
C16415
O0419
O6421
00433
08436
08437
O6440
Ob441
C16444
O&445
O84U6
Oo449
0.80
t.3
0.91
1.1
1.5
i .1
0.78
0.72
0.98
0.66
0.85
1.0
1.3
0.52
0.74
2.0
0.68
1.2
1.4
1.2
0.41
0.61
0.55
0.46
0.37
0.36
0.38
0.22
0.39
0.20
0.33
0.27
0.23
0.49
0.40
0.26
0.34
0.18
0.13
0.20
0.22
0.36
0.15
0.22
0.56
0.19
0.21
0.37
0.27
0.10
0.07
0.09
0.13
0.07
0.11
0.11
0.80
0.10
78
78
52
70
83
91
39
80
88
61
74
66
25
60
64
120
120
120
140
110
97
110
85
98
65
80
91
57
97
130
98
78
140
88
38
19
42
63
35
64
67
67
50
2.6
2.4
4.2
4.9
2.2
4.0
1.6
2.1
2.2
4.5
2.3
2.1
1.1
1.7
3.1
2.6
2.5
2.4
0.00
3.2
3.5
2.8
3.9
2.3
2.3
3-8
5.0
3-6
5.1
4.7
3-0
4.3
4.3
4.3
0.90
2.3
3.0
4.2
1.9
1.7
1.5
0.80
1.1
5.0
5.0
2.0
1.0
8.0
9.0
2.0
6.0
7.0
2.0
5.0
5.0
1.0
2.0
<1.0
2.0
<2.0
3.6
1.7
3-2
3-3
<1.0
6.8
5.2
6.2
3.6
11
4.2
2.8
<2.0
10
6.0
1.8
8.6
0.80
0.95
0.10
0.40
0.10
0.50
0.40
<0.10
<0.10
0.50
0.80
0.95
1.1
0.28
0.74
0.13
0.83
0.41
0.66
0.43
0.48
0.61
0.39
0.42
1.5
0.36
0.55
0.88
0.72
1.2
0.38
0.37
0.92
0.52
1.1
1.2
0.46
0.34
0.1t>
0.16
0.14
0.10
0.24
0.18
0.06
0.05
0.10
0.18
0.13
0.09
0.14
0.03
0.04
0.10
0.13
0.13
0.11
0.11
0.20
0.12
0.18
0.14
0.13
0.16
0.16
0.22
0.09
0.12
0.28
0.11
0.12
0.14
0.07
0.06
0.12
0.04
0.16
0.12
0.03
0.04
0.13
1.3
2.3
0.66
1.2
<0.40
<0.40
1.9
0.69
0.60
1.7
0.67
0.40
0.24
0.59
<1.0
0.34
1.1
0.36
<1.0 •
<0.40
<0.30
0.71
0.33
0.43
0.84
0.95
0.51
0.57
<0.50
0.10
0.15
0.13
0.02
0.28
0.09
0.10
0.17
0.11
0.09
0.06
0.12
0.18
0.14
0.17
0.17
0.10
0.11
0.19
0.21
<0.01
<0.05
0.25
0.11
0.08
0.07
<0.01
0.11
<0.02
6.6
5.6
5.8
3-2
2.7
6.1
7.2
7.1
4.5
4.1
5.1
6.1
11
4.3
8.5
10
4.2
5.8
10
6.9
3-3
2.0
2.7
5.7
3-7
2:3
1.8
2.5
0.05
0.19
0.12
<0.02
<0.03
0.06
0.08
0.15
0.14
0.05
0.07
0.10
0.13
0.09
0.11
0.18
0.04
0.04
0.13
0.15
0.06
0.05
<0.01
<0.03
<0.02
<0.02
<0.02
0.04
0.05
25
25
12
74
56
110
6.0
17
10
39
21
62
6.0
93
34
42
69
49
210
140
36
32
17
25
70
22
14
30
19
53
28
24
52
110
70
44
33
66
64
86
120
6.2
14
-------
TABLE 3—Continued
SAMPLE
DY
EU
GA
GE
HF
HC
IN
LU
HN
C 18*50
C 16451
C 181154
C 16*57
C 18*58
C 18*62
C 10*63
C 18*64
C 18*65
C 18*93
C 18560
C18572
C16573
C1857*
C18581
C 18590
C 18594
C 18684
C 18685
C 18689
C 16693
C 18697
C18701
C18616
C16820
C 1882 4
C 18625
C 18829
C 18830
C 18831
C 16832
C 18833
C18837
C18841
C188**
C18848
C 108*9
C18853
C18857
C 16992
C 18993
C 19000
0.66
0.60
0.52
0.51
0.36
1.3
1.1
1.0
0.53
1.2
1.2
1.3
2.8
1.3
3.3
1.0
0.76
1.*
0.90
0.65
1.0
1.0
1.0
0.93
2.0
2.*
3.2
3-5
1.4
2.6
2.1
3.5
2.4
1.5
0.83
2.1
3.5
0.74
0.57
1.1
0.54
0.65
0.22
0.17
0.1*
0.10
0.16
0.42
0.39
0.33
0.24
0.32
0.26
0.38
0.92
0.56
0.87
0.2*
0.17
0.25
0.18
0.22
0.27
0.25
0.30
0.1*
0.47
0.65
0.73
0.78
0.47
0.65
0.«5
0.67
0.49
0.26
0.19
0.4*
0.92
0.16
0.19
0.20
0.07
0.15
46
59
52
47
55
120
140
85
120
58
93
73
110
94
70
110
39
54
45
29
58
48
40
32
63
50
94
81
120
130
110
140
130
100
61
93
150
72
77
80
42
52
1.6
0.80
1.5
0.80
2.4
2.9
3.8
6.5
2.4
3.7
2.4
3.6
4.1
2.9
10
4.2
2.1
5.0
3.1
2.5
2.0
2.7
3.1
4.3
4.0
7.4
11
9.0
6.0
6.2
«.3
11
9.5
4.3
3.2
6.3
10
3.2
2.7
3.1
1.3
2.3
<0.10
<0.20
<1.0
0.20
0.10
0.30
0.30
1.0
0.80
10
14
18
10
9.8
3.0
3.4
2.9
14
2.2
7.5
6.9
8.0
7.8
0.10
<0.10
<0.90
<0.40
<0.20
<0.10
2.4
5.0
1.8
0.30
1.4
0.50
0.60
<0.20
0.20
3.2
<0.70
2.6
0.10
0.77
0.40
1.0
0.26
0.84
1.1
1.3
0.87
1.2
0.59
1.1
0.35
0.60
0.5*
1.1
0.58
0.46
0.*5
0.31
0.4*
0.40
0.37
0.40
0.86
.3
.7
.4
0.95
0.75
.5
.0
.3
.2
0.73
0.66
1.2
2.2
0.58
0.69
0.80
0.5*
0.64
0.63
0.07
0.05
0.06
0.04
0.10
0.08
0.12
0.07
0.23
0.23
0.15
0.20
0.32
0.17
0.22
0.18
0.18
0.10
0.18
C.20
0.14
0.15
0.19
0.22
0.15
0.»7
0.33
0.16
0.13
0.23
0.09
<0.05
0.08
0.16
0.39
0.1*
0.13
0.1*
0.05
0.05
0.0*
0.47
0.98
<0.20
<0.20
<0.20
<0.30
0.47
<0.30
<0.30
4.0
1.2
<0.20
6.5
2.1
1*
1.1
1.7
<0.80
1.2
<1.0
<1.0
0.30
0.40
<1.0
2.6
1.7
2.0
<1.0
0.87
2.0
4.9
1.6
0.33
1.1
1.5
1.3
1.9
0.70
0.34
<0.50
<0.70
0.61
0.07
0.06
0.03
0.22
0.19
0.1*
0.17
0.12
<0.02
0.22
0.09
0.29
0.36
0.43
0.56
<0.01
0.15
0.12
0.27
0.63
0.10
0.17
0.33
0.14
0.21
0.22
0.29
0.35
0.13
0.17
0.18
0.24
0.37
0.16
0.17
0.32
0.27
0.21
0.07
0.13
0.06
0.16
4.3
3.1
4.3
2.4
5.6
11
13
9.3
8.5
9.5
6.1
5.0
15
6.0
20
9.1
4.7
6.0
*.6
5.1
5.7
6.1
7.1
6.5
20
18
17
19
14
15
10
20
19
8.7
7.2
18
23
6.1
5.7
9.*
3.3
6.0
0.07
0.03
<0.02
0.06
0.11
<0.03
0.43
0.10
<0.03
0.08
<0.02
0.07
0.11
0.13
0.24
0.09
0.05
0.15
0.08
0.44
0.10
0.06
0.09
0.09
0.18
0.25
0.33
0.32
0.12
• 0.29
0.39
0.40
0.22
0.08
0.04
0.13
0.31
0.07
0.10
0.11
0.14
0.08
41
23
38
46
26
48
26
150
220
86
60
300
130
270
11
33
55
40
48
80
48
37
30
31
1*
2.7
10
24
3.0
2.*
9.2
4.2
4.6
20
11
13
61
12
48
1.6
6.6
1.4
NOTE: Samples listed by sample number (C-number).
cation of samples.
Refer to table 2 for identifi-
-------
TABLE 3—Continued
ro
o
SAWPLt
MO
NI
PB
RB
SB
SC
SE
SM
SN
SR
TA
C 12059
C12331
C129<<2
C 1-039
C130"<6
C 13324
C13433
C13*6li
C 13854
C 13895
C13975
C13933
C14194
C1457*
C14609
C14613
C 14630
CI4o<«6
C 1*650
C1468*
C 14721
C14735
C1477U
C14796
C14S38
C 14970
C 1*982
C15012
C15030
C 15079
C15117
CT5125
C 15206
C15231
C 15263
C15270
C15331
C 15381
CI5H18
CJ5432
C15436
C15"UB
C15156
11
6.0
11
8.0
4.0
6.0
29
3.0
11
8.0
4.0
16
18
2.0
5.0
2.0
2.0
5.0
3.0
4.0
19
7.0
3.0
9.0
6.0
15
9.0
5.0
11
6.0
7.0
4.0
9.0
2.0
5.0
14
9.0
<1.0
<1.0
10
24
13
32
10
14
14
15
11
16
21
16
22
12
26
14
25
18
24
25
23
16
36
12
17
17
9.0
21
16
13
14
27
36
34
25
10
16
16
40
8.0
15
16
68
36
20
26
14
21
29
49
25
120
48
53
<10
26
80
11
260
160
55
140
•"
40
18
23
DO
29
320
66
22
42
10
53
41
28
<10
30
28
24
68
24
<10
100
21
28
160
12
40
6.0
7-0
20
10
8.0
3«
14
10
11
6.0
18
16
45
50
110
12
21
25
180
11
11
52
28
24
5.0
5.0
6.0
59
12
120
210
24
12
6.0
96
9.0
100
40
18
18
5.0
10
7.0
20
15
12
10
13
14
17
11
9.0
10
7.0
13
20
1.4
0.60
0.30
0.50
0.40
1.2
0.50
1.0
1.2
1.1
0.20
0.50
0.50
0.40
1.4
2.4
0.80
0.70
2.8
3-7
0.20
0.70
1.6
0.90
0.80
0.30
0.30
0.40
1.2
0.40
2.6
2.5
0.70
1.8
0.30
5.7
0.20
2.7
2.6
4.4
2.0
0.40
0.30
0.40
2.9
2.1
2.6
1.9
2.5
2.0
2.5
3.3
1.5
2.1
2.4
1.4
2.7
3-2
1.3
1.3
1.6
1.7
2.2
2.1
1.4
2.4
0.40
2~.0
1.8
1.9
1.5
.4
. .1
.7
.7
.7
.1
1.2
1.4
3.0
1.9
1.7
1.0
1.7
1.9
2.1
1.3
2.8
1.8
1.1
2.5
1.6
2.0
0.90
2.5
1.6
0.70
1.5
1.6
3.2
1.8
1.5
1.0
1.0
1.4
1.2
0.80
1.1
1.4
0.40
,
0.80
0.80
0.80
1.0
22
51
30
7.0
<0.40
<0.30
<0.30
<0.20
<0.20
3.0
<0.20
4.0
3.0
2.0
3.0
4.0
3.0
31
27
20
130
33
39
32
31
40
28
00
51
26
0.20
0.20
0.20
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.20
-------
TABLE 3—Continued
SAMPLE
HO
HI
PB
RB
SB
SC
SE
SM
SN
SR
NOTE: Samples listed by sample number (C-number).
cation of samples.
Refer to table 2 for Identlfl-
TA
C 15*96
C 15566
C 15676
C15717
C 15791
C 15668
C 15872
C15943
C 15944
C 15999
C 16030
C16139
C 16264
C16265
C16317
C 16408
C16501
C16543
C 16564
C 16729
C16741
CJ6787
C16919
C 16993
C17001
C17016
C17045
C17046
C 17047
C 17053
C17054
C17069
C 17092
C 17095
C 17096
C 17097
C 17098
C 17099
C17215
C17243
C17244
C17245
C 17246
<1.0
6.0
10
14
2.0
3-0
12
3-0
3.0
15
19
14
5.0
10
9.0
6.0
6.0
15
9.0
4.0
12
<2.0
-------
TABLE 3—Continued
ro
ro
HO
NI
PB
Rfi
SB
SC
SE
SM
SN
SR
Ti
C 17278
C17279
C17303
C 17304
C 17305
C 17307
C 17309
C 17601
C 17721
C 17970
C 17984
C 17988
C 18009
C 16040
C 18044
C 18304
C 18 320
C18349
C18350
C18351
C16355
C18366
C 183«9
C 18392
C18395
C18398
C18401
C 18404
C18407
C18408
C 18411
C18415
C18419
C 18421
C18433
C 184 36
C18437
C18440
C18441
C 18444
C 18445
C 18446
C 16449
20
20
1.0
5.0
11
14
2.0
7.0
2.0
5.0
3.0
3.0
2.0
6.0
7.0
3.0
7.0
5.0
13
2.0
10
6.0
10
9.0
8.0.
1 1
4.0
12
10
2.0
13
9.0
2.0
2.0
0.10
2.0
2.0
0.40
0.70
0.70
2.0
<0. 10
2.0
16
16
20
24
11
80
5.0
33
21
20
24
22
10
8.0
25
13
18
16
12
11
23
15
13
10
8.3
13
40
16
12
17
10
14
18
15
3.1
5.6
5.3
3.8
5.3
2.2
2.6
1.6
3.1
31
31
100
130
71
250
130
120
340
120
150
110
17
42
31
200
52
49
170
60
81
25
30
59
45
88
76
32
110
130
64 '
65
130
60
200
33
27
100
88
120
90
430
92
5.0
5.0
7.0
7.0
11
100
4.0
52
40
23
120
87
4.0
4.0
10
22
4.0
10
4.8
46
42
5.4
4.2
2.8
3.2
3.3
12
3.5
5.1
3.3
1:1
4.3
17
4.1
1.1
2.0
5.5
4.2
4.0
2.4
<0.70
0.95
16
22
24
17
<2.0
22
10
42
29
12
31
23
34
20
27
40
26
32
42
44
1.8
1.7
1.9
1.3
<3.0
<1.0
<1.0
0.0
0.30
0.60
0.40
0.90
0.60
1.6
1.2
0.30
0.80
1.5
3-0
2.3
1.2
0.60
0.40
0.40
0.31
0.54
0.55
0.70
0.30
1.4
0.28
0.13
0.61
0.81
0.18
3-7
0.72
0.10
0.17
1.4
0.45
0.26
0.33
0.20
0.75
0.72
0.70
0.23
0.50
0.47
0.23
0.44
2.3
3.4
3-6
3.1
1.7
3.2
3.1
3-7
2.6
1.4
1.8
3.1
4.2
1.8
2.6
4.6
1.9
2.9
4.1
3.7
.5
.0
.8
.2
0.70
.3
.4
.0
.0
1.4
1.8
1.3
2.7
2.6
2.9
1.2
1-.8
1.5
2.6
1.4
1.7
2.0
1.7
2.2
3.3
4.0
3.1
2.6
2.4
2.4
2.8
1.6
1.6
1.6
1.7
2.6
1.9
1.3
3.2
2.3
1.5
2.4
2.2
1.4
0.40
1.1
1.4
1.2
1.5
1.3
0.74
0.87
1.0
/
1.4
1.4
1.0
1.8
1.5
0.90
1.5
0.90
0.60
0.90
1.2
1.6
0.80
1.4
2.3
0.60
1.1
1.9
1.5
0.50
0.30
0.50
0.50
0.45
0.47
0.50
0.22
0.39
5.0
5.0
4.0
10
6.0
<0.20
<0.40
<0.30
<0.30
<0.40
1.0
<0.30
0.29
<0.20
<0.30
<0.20
<0.30
<0.20
<0.20
<0.50
<0.30
<0.30
<0.50
<0.40
<0.30
<0.20
<0.20
<0.20
<0.20
<0.30
<0.20
<0.10
<0. 10
35
87
40
36
40
50
44
3*
13
17
26
110
39
14
25
50
11
41
45
500
»30
380
240
470
420
95
400
390
0.30
0.12
0.26
0.13
0.11
0.15
o.i-
0.25
0.12
0.10
0.14
0.14
0.18
0.11
0.12
0.29
0.13
0.16
0.28
0.21
0.18
0.05
0.06
0.17
0.08
0.17
0.16
0.08
0.04
-------
TABLE 3—Continued
SIMPLE
HO
HI
PB
RB
SB
SC
SE
SH
SR
NOTE: Samples listed by sample number (C-number).
cation of samples.
Refer to table 2 for identifi-
TA
C 18150
C18451
C 18454
C 18457
C18458
C 18162
C18463
C 18*61
C18465
C1b193
C 18560
C 18572
C 18573
C1B574
C 18581
C 18590
C 18591
C 18681
C 18685
C 18689
C18693
C 18697
C18701
C18816
C 18820
C 18821
C 18825
C 18829
C18830
C18831
C1B632
C 16833
C 16837
C 188*1
C18811
C1884U
C188«9
C1B853
C 16857
C 10992
C18993
c 19000
0.10
0.20
0.20
0.70
1.0
1.0
0.10
0.30
0.10
5.0
18
21
10
23
0.30
11
8.0
13
8.0
9.0
11
11
7.0
<0. 10
9.0
3.0
22
22
0.90
1.0
0.80
<0.10
<0.10
0.10
0.70
0.30
0.20
1.0
5.0
<0.10
<0.10
<0.10
1.8
1.1
3.9
2.9
3.0
6.8
9.5
6.1
18
21
21
18
51
16
37
12
7.9
24
7.6
13
15
15
15
8.5
12
11
18
22
15
19
25
28
12
6.3
6.1
11
16
6.7
13
1.6
2.5
1.5
150
110
37
16
110
510
280
150
19
97
50
62
200
86
70
53
22
20
77
27
17
20
50
76
26
62
11
100
220
1500
15
120
130
59
68
190
13
39
31
28
11
120
t.3
<0.80
2.1
<1.0
2.2
5.0
9.0
5.0
2.0
37
<1.0
66
79
11
13
<2.3
<1.0
3.9
<0.80
3.6
<1.0
2.3
6.6
1.0
<1.6
7.6
3.1
<1.5
3.3
2.5
1.2
3.0
1.1
3.0
3-9
12
5.8
<1.0
<1.0
1.6
<0.90
<0.70
<1.0
1.1
<2.0
1.9
8.5
13
29
9-0
12
15
23
8.0
21
17
16
17
17
18
7.2
10
20
19
15
1.5
16
10
13
30
18
9.0
25
28
21
13
10
18
63
9.8
22
6.0
1.1
1.2
0.20
0.18
0.71
0.19
0.31
0.39
0.67
0.76
0.35
1.9
0.19
0.20
1.8
0.33
3.7
3-3
1.7
0.72
0.17
0.69
1.5
1.1
0.35
3.5
1.6
2.6
7.7
3.3
0.81
1.1
1.6
0.90
1.1
0.25
0.27
0.82
3.7
0.31
0.12
1.0
0.51
0.35
2.1
0.90
1.0
0.50
2.1
1.5
3.9
3.9
2.3
2.8
1.1
1.5
3.3
3.5
7.7
2.3
1.5
5.6
1.9
1.2
1.8
1.5
1.8
1.8
3.0
7.0
7.6
5.0
3.8
6.8
9.3
7.0
1.2
2.6
1.8
1.3
7.2
1.6
3.2
2.1
1.2
1.3
2.3
0.60
1.4
1.1
1.1
2.1
2.7
2.1
2.2
1.1
1.3
2.5
1.0
2.1
3.1
7.1
1.3
2.2
1.8
1.7
3.1
2.2
2.6
2.1
5.8
5.0
8.1
5.8
6.0
5.1
5.9
5.0
4.2
1.1
2.1
3.0
2.1
1.6
3.6
1.5
1.7
1.6
0.70
0.72
0.72
0.15
0.76
0.36
0.73
1.4
0.81
1.5
0.86
1.1
3-7
2.0
2.7
1.1
0.68
1.2
0.83
0.86
1.5
1.1
1.3
2.7
2.7
3.0
3.8
2.1
3.5
2.2
3-3
2.8
1.5
1.0
2.8
4.3
0.87
0.92
1.2
0.37
0.77
<0.20
11
<0.20
<0.20
<0.20
<0.30
<0.50
<0.40
<0.30
2.4
<0.10
<0.50
<0.60
<0.50
<0.50
<0.30
<0.30
<0.30
2.8
<0.20
0.48
<0.20
<0.20
<0.20
<0.30
<0.30
<0.40
5.6
<0.20
<0.20
0.43
<0.40
3.6
0.73
0.77
0.50
<0.60
0.46
<0.30
<0.30
<0.10
<0.20
200
120
94
190
100
280
470
160
93
96
28
42
35
34
72
16
19
26
25
16
14
17
19
240
120
28
45
170
110
550
50
110
110
110
130
130
50
130
38
160
130
200
0.11
0.08
0.17
0.05
0.16
0.26
0.29
0.33
0.26
0.12
0.25
0.10
0.13
0.09
0.22
0.26
0.13
0.17
0.07
0.10
0.12
0.10
0.12
0.16
0.12
0.29
0.29
0.15
0.17
0.20
0.17
0.28
0.32
0.77
0.15
1.1
0.45
0.13
0.13
0.22
0.07
0.10
to
to
-------
TABLE 3—-Continued
ro
SAMPLE TB TH TL U V W 1TB ZN ZR
c i2osy
C12495
C12S31
C12912
C 13039
C 13016
C13321
C13133
C 13161
C 13851
C 13895
C13975
C13983
C1U191
C1«57U
C 14609
C14613
C14630
C11616
C1U650
Cl-Soi
C14721
C11735
C14774
C11796
C11838
C 11970
C 11982
C15012
C15038
C 15079
C15117
C15I25
C15208
C15231
C 15263
C15278
C1533'
C15361
C.15413
C1.5132
c 15136
C15H8
C 15156
0.20 2.3
0.10 2.2
0.10 2.2
0.20 1.6
0.01 2.0
* . 7
3.3
0.20 2.1
0.10 1.1
0.10 1.8
0.10 1.6
0.10 1.2
0.10 2.1
0.96
0.61
0.36
0.36
0.26
C.11
1.2
0.93
0.16
0.70
0.31
0.97
0.67
1.7
0.50
0.70
0.80
1.0
0.10
1.3
1.1
0.90
1.3
0.70
3.3 ..
2.6
«3
20
31
16
37
31
38
28
50
20
17
32
29
78
18
27
34
32
33
22
20
28
76
27
35
28
19
31
31
32
55
27
35
31
34
23
27
31
47
38
32
47
32
26
1.0
0.50
0.50
0.20
0.40
0.30
0.04
0.40
0.70
0.60
0.40
0.40
0.60
0.80
0.40
0.50
0.50
0.60
0.30
0.60
0.70
0.40
0.40
0.50
0.30
0.60
3200
17
22
99
10
29
330
52
33
19
32
40
17
480
300
66
330
60
46
930
30
270
170
960
63
49
23
150
ISO
99
46
160
620
40
290
430
140
58
33
97
140
370
340
14
61
26
53
33
82
100
19
65
25
120
54
16
16
79
110
40
83
48
22
91
30
83
27
68
44
36
25
28
28
42
22
130
40
45
-------
TABLE 3—Continued
SIMPLE
TB
Tti
TL
IB
Z«
ZR
C15»96
C15566
C15678
C15717 1.8
C15791
C 15568 0.10 2.0
C15872 2.2
C 159*3
C 159*4
C15999 0.20 2.8
C 16030 0.20 2.1
C16139 0.10 1.6
C 16264
C 16265
C163H 0.20 2.1
C1640U
C 16501
C165*3 0.20 2.2
C 16564
C 16729
C16741 0.10 1.4
C 16787
C16919
C 16993 0.20 2.0
C17001
C17016 1.5
C170»5
C17046
C 170»7
C 17053
C 1705*
C17089
C 17092
C 17095
C 17096
C 17097
C 17098
C 17099
C17215
C 17243
C 17241
C 17245
C17246
22
19
16
0.68 4.5 15
26
0.12 <0.50 22
0.64 1.4 12
21
36
0.53 1.0 36
0.63 2.2 28
0.76 2.2 16
22
34
0.46 4.0 32
31
27
0.46 1.7 32
33
40
0.52 1.8 42
26
40
1.3 0.80 54
62
0.93 1.2 20
26
14
18
25
20
20
42
46
11
14
52
38
46
28
49
24
28
810
220
200
0.50 0.40 47
260
1.1 0.40 190
0.80 0.60 310
25
160
0.40 0.70 800
1.0 0.70 1600
1.8 0.40 89
160
13
0.50 0.70 2700
26
22
0.40 0.60 5300
570
24
0.40 0.40 290
20
21
1.4 0.50 43
170
2.0 0.40 41
7.0
12
10
36
12
20
40
26
13
7.0
35
27
46
31
32
30
22
47
84
24
22
60
31
88
39
52
20
120
120
47
83
12
70
31
170
41
42
30
74
25
43
48
8.0
NOTE: Samples listed by sample number (C-number).
for identification of samples.
Refer to table 2
ro
\j\
-------
TABLE 3—Continued
ro
CP\
SAMPLE
TB
TH
TL
YB
ZN
ZR
C1727b
C 17279
C17303
C17301
C 17305
C 17307
C 17309
C17601
C17721
C 17970
C17984
C 17988
C 18009
C 18040
C 18044
C 18304
C18320
C 18349
C 18350
C 18351
C18355
C 18360
C 18389
C 18392
C 18395
C1»39b
C18401
C 18404
C 18407
C 18406
C 18411
C18415
C 18419
C18421
C 18433
C 18436
CT8437
C18440
C 18441
C 18444
C 18445
C 18446
C 18449
0.10
0.35
0.34
0.50
0.37
0.47
0.28
0.38
0.26
0.30
0.23
0.10
0.19
0.19
0.06
0.08
2.3 1.3
1.8
3.8
1.7
1.5
2.3
1.2
3.1
1.9
1.2
2.0
2.2
3.5
1.7
1.8
3.9
2.6
2.1
2.6
4.3
2.2
0.82
1.0
2.7
1.6
3-1
2.9
0.90
0.62
1.7
1.1
1.8
0.95
1.1
0.90
.4
.5
.3
.1
.6
2.0
1.5
0.63
2.5
1.3
2.2
1.5
0.94
2.8
0.96
0.74
1.7
1.0
0.88
0.80
1.1
0.30
<1.0
30
30
46
39
39
40
17
31
25
50
31
28
24
27
33
26
37
12
12
14
12
23
17
30
25
25
3*
11
28
43
11
28
22
4.8
7.7
7.3
6.6
6.8
6.2
6.0
7.7
11
2.1
0.82
0.48
1.3
1.3
1.0
0.09
0.47
0.46
0.43
0.54
0.39
0.31
0.66
0.47
0.58
0.50
0.60
0.54
0.25
0.40
0.90
1.0
1.1
0.24
0.55
0.79
0.20
0.76
0.40
0.65
0.66
0.60
0.93
0.58
0.64
0.77
0.46
0.33
0.35
0.52
0.86
0.35
O.V7
0.92
0.41
0.55
0.72
0.70
0.52
0.26
0.31
0.55
0.16
0.29
0.28
0.20
0.13
100
90
21
100
95
1400
15
61
14
42
340
270
6.0
150
71
31
75
530
37
180
170
92
28
39
21
56
63
120
21
110
68
17
30
90
3.0
4.0
4.0
0.40
<0.30
2.0
4.0
2.0
2.0
56
56
70
40
26
62
21
34
44
5*
39
19
24
24
33
28
36
24
34
30
28
31
66
1
5.1
33
26
- 36
14
22
16
16
28
12
14
-------
TABLE 3—Concluded
SAMPLE
C 18450
C 18451
C18454
C 13457
C1845B
C18462
C 18463
C 18464
C18465
C1B493
C 18560
C 18572
C18573
C16574
C18581
C 18590
C 18594
C18684
C16685
C 18689
C18693
C 18697
C18701
C1B016
C 18820
C 18824
C 18825
C18829
C18830
C1883I
C 18832
C 18833
C 18837
C 18841
C16844
C 18846
C 18849
C 18853
C 18857
C 18992
C 18993
C 19000
TB
0.36
0.17
0.09
0.50
0.23
0.58
0.20
0.32
0.32
0.45
0.45
0.67
0.32
0.65
0.18
0.17
0.32
0.17
0.08
0.15
0.11
0.13
0.17
0.26
0.35
0.63
0.42
0.36
0.63
0.41)
0.36
0.31
0.14
0.10
0.22
0.42
0.06
0.10
0.17
0.07
0.10
TH TL
1.9
1.0
1.5
0.67
3.8
5.4
5.7
4.4
2.4
1.3
3.6
1.4
3-1
1.7
5.1
1.6
1.3
1.7
0.71
0.88
1.4
1.2
1.3
3.0
5.9
5.4
4.6
5.1
2.6
1.8
2.2
6.1
6.7
2.9
2.4
5.4
9.0
2.2
1.4
2.1
0.75
1.4
U
0.76
<0.30
0.75
0.56
2.1
2.4
2.3
2.5
1.0
0.94
1.9
4.9
3.4
6.1
1.7
4.6
2.1
1.2
0.34
0.31
1.3
0.86
1.0
1.0
1.1
2.9
2.1
2.0
1.7
1.9
1.2
1.6
1.9
0.73
0.40
0.92
2.2
0.42
0.84
1.5
<1.0
<0.70
V
14
15
6.9
5.4
12
43
35
40
19
24
36
17
41
23
59
90
39
27
21
14
18
17
17
9.9
22
»7
55
29
34
25
33
40
33
26
25
54
73
14
18
16
5.4
7.1
U
0.13
0.31
0.58
0.28
0.44
0.73
0.79
0.66
0.36
Q-71
0.59
0.36
0.68
0.64
2.3
4.2
0.82
2.1
0.68
1.3
1.1
1.1
0.77
0.71
0.47
1.3
1.0
0.63
0.65
0.79
0.73
0.51
1.1
0.36
0.60
0.36
1.0
0.22
0.45
3.3
1.0
1.2
TB
0.43
0.33
0.34
0.26
0.40
0.52
0.78
0.67
0.48
0.59
0.84
0.67
0.84
0.83
1.5
0.37
0.38
0.80
0.44
0.32
0.48
0.61
0.43
0.61
0.73
0.83
1.1
0.90
0.70
1.2
0.90
1.2
0.85
0.42
0.28
0.92
1.4
0.18
0.27
0.41
0.18
0.24
ZN
3-0
10
3.0
16
5.0
17
15
5.0
10
94
43
23
220
650
14
35
19
56
70
16
36
37
54
5.0
11
120
19
39
14
6.0
16
21
14
14
11
2.0
24
6.0
38
5.0
5.0
7.0
ZR
22
16
44
16
13
30
26
24
20
32
32
20
62
44
42
50
31
51
32
28
30
32
37
60
35
70
43
62
26
65
32
40
48
49
33
57
88
31
30
32
34
24
NOTE: Samples listed by sample number (C-number).
for identification of samples.
Refer to table 2
-------
28
TABLE k—MAJOR AND MINOR ELEMENTS IN WHOLE COAL SAMPLES
(percent moisture-free whole coal basis)
SAMPLE
AL
CA
CL
FE
MG
NA
SI
TI
C12059
C 12495
C12831
C12942
C 13039
C 13046
C13324
C13133
C13464
C 13854
C 13895
C13975
C13983
C14191
C11571
C 14609
C14613
C 146 30
C14646
C 14650
C146&4
C14721
C14735
C147Y4
C14796
C14836
C14970
C14982
C15012
C15030
C 15079
C15H7
C15125
C1520B
C1b'23l
C15263
C1527B
C15331
C15304
C15410
C 15432
C 1b43b
C1rj448
C1i>456
1.29
0.73
1.20
1.16
1.18
0.71
1.11
1.01
1.18
0.60
1.29
1.39
1.11
0.97
1.20
1.05
1.41
1.31
1.20
0.63
1.11
1.04
1.08
1.00
1.38
1.31
1.00
1.40
1.15
1.20
3.04
1.31
1.01
0.94
1.36
1.01
1.13
0.04
1.04
1.53
1.55
1.27
2.77
1.38
0.62
0.89
0.93
1.68
0.87
0.65
0.27
0.30
0.50
0.38
0.50
0.70
0.63
2.18
0.30
0.94
0.45
0.54
0.49
0.53
0.54
0.66
0.78
1.31
0.46
0.73
O.oO
0.97
1.07
0.68
0.52
0.76
1.76
1 .60
0.90
0. 10
0.82
0.67
0.61
0.05
1.14
0.24
0.48
0.67
0.03
0.13
0.28
0.20
0.37
0.23
0.31
0.48
0.37
0.30
0.04
0.02
0.02
0.15
0.09
0.16
0.54
0.43
0.04
0.02
0.11
0.02
0.33
0.02
0.03
0.16
0.14
0.09
0.09
0.11
0.01
0.01
0.02
0.21
0. 14
0.02
0. 11
0. 16
0.23
0.03
0. 19
0. 11
0.03
0.01
1.71
2.63
1.50
2.15
2.07
2.10
2.02
1.42
2.70
1.90
2.60
1.70
2.69
2.42
1.30
1.91
1.09
0.80
2.84
4.06
1.70
1.75
1.96
1.71
0.89
1.78
1.72
1.58
1.92
1.22
2.90
2.40
1.70
1.87
1.70
?.65
1.65
2.42
2.69
1.00
1.20
1.30
2.68
1.70
0.14
0.10
0.16
0.17
0.12
0.11
0.17
0.16
0.17
0.04
0.16
0.20
0.17
0.16
0.15
0.16
0.17
0.17
0.17
0.08
0.15
0.15
0.15
0.14
0.27
0.16
0.13
0.17
0.17
0.21
0.24
0.16
0.14
0.11
0.17
0.14
0.17
0.19
0.17
0.30
0.13
0.17
0.13
0.20
0.04
0.04
0.04
0.05
O.Q2
0.04
0.05
0.05
0.06
0.03
0.04
0.05
0.04
0.17
0.04
.0.06
0.04
0.04
0.05
0.02
0.02
0.03
0.03
0.05
0.06
0.06
0.03
0.06
0.04
0.04
0.11
0.05
0.04
0.01
0.07
0.04
0.05
0.01
0.11
0.06
0.03
0.06
0.05
0.05'.
0.065
0.089
0.060
0.022
0.149
0.078
0.045
0.041
0.200
0.009
0.040
0.020
0.033
0.011
0.040
0.016
0.145
0.090
0.018
0.005
0.100
0.021
0.098
0.025
0.026
0.138
0.096
0.072
0.017
0.034
0.030
0.020
0.050
0.119
0.100
0.014
0.048
0.018
0.036
0.028
0.100
0.120
0.020 .
0.030.-.
2.18
2.24
2.45
2.48
1.80
1.97
2.20
1.95
2.65
0.58
2.77
2.81
2.67
2.55
1.91
1.99
2.59
2.31
2.09
1.07
2.10
2.00
2.68
2.60
2.08
3.03
1.89
2.89
2.52
2.65
4.63
2.17
2.78
2.50
2.87
1.65
2.17
2.04
2.56
3.27
3.12
2-79,
. '?-.77. ".
- :^7P/-
0.06
0.04
0.06
0.07
0.06
0.04
0.06
0.06
0.05
0.02
0.06
0.07
0.07
0.06
0.06
0.07
0.08
0.07
0.06
0.04
0.06
0.06
0.06
0.05
. 0.08
0.08
0.05
0.06
0.07
0.07
0.15
0.07
0.06
0.05
0.06
0.05
0.06
0.05
0.06
0.09
•.-.0.09
•'•'••!'.0v06
'"-':"' 6:67
'•-.._ 0.07
-------
TABLE U—Continued
29
SAMPLE
AL
CA
CL
FE
MO
SI
TI
C15196
C15566
C 15678
C15717
C15791
C 15868
C15872
C15913
C 15911
C 15999
c 16030
C16139
C16261
C. 16265
C16317
ClblOB
C16501
C16513
C 16561
C16729
C16711
C 16787
C16919
C 16993
C17001
C17016
C17015
C17016
C17017
C17053
C17051
C17089
C17092
C17095
C17096
C17097
C17098
C 17099
C17215
C17213
C 17211
C17215
C 17210
1.01
0.13
0.66
1.30
1.50
1.30
1.65
1.11
1.28
1.57
1.23
1.33
0.92
1.12
.12
.02
.32
.51
.05
.02
.10
.07
.3"
.05
0.86
1.10
1.76
1.71
1.63
1.15
2.23
0.67
1.18
2.16
0.72
1.82
2.66
1.53
1.91
1.75
1.81
1.21
1.11
0.12
0.93
1.02
1.91
0.11
0.91
1.32
0.11
0.11
0.21
0.21
0.71
0.56
1.28
0.73
0.23
0.72
2.67
0.37
1.23
1.09
0.21
0.18
0.63
0.82
0.13
1.11
1.65
1.19
1.01
0.60
0.39
0.87
0.30
0.93
0.62
0.35
0.25
0.69
0.76
0.30
0.11
0.11
0.02
0.01
0.02
0.02
0.52
0.18
0.01
0.28
0.31
0.07
0.17
0.17
0.01
0.02
0.11
0.10
0.13
0.02
0.03
0.39
0.12
0.19
0.15
0.12
0.27
0.15
0.01
0.02
0.01
0.17
0.03
0.21
0.37
0.01
0.03
0.02
0.07
0.08
0.02
0.05
0.22
0.10
0.19
1.92
2.81
3.00
1.80
1.36
0.15
2.00
2.19
2.19
1.90
2.10
1.80
2.05
1.86
1.70
3.51
1.99
1.50
3.87
2.12
1.60
1.73
1.14
2.60
2.76
3.50
0.19
0.60
1.23
2.31
0.51
0.68
2.32
2.15
0.18
0.31
1.06
2.01
3.17
2.53
1.79
2.60
0.51
0.15
0.06
0.01
0.11
0.20
0.15
0.16
0.18
0.18
0.23
0.21
0.15
0.15
0.12
0.18
0.13
0.16
0.11
0.16
0.15
0.17
0.15
0.21
0.20
0.11
0.13
0.06
0.11
0.12
0.18
0.08
0.08
0.12
0.27
0.02
0.12
0.32
0.15
0.20
0.27
0.29
0.15
0.15
0.01
0.01
0.03
0.05
0.06
0.03
0.09
0.01
0.01
0.05
0.05
0.06
0.01
0.06
0.05
0.03
0.01
0.01
o.ou
0.01
0.01
0.02
0.01
0.07
0.02
0.05
0.09
0.23
0.25
0.05
0.03
0.02
0.02
0.07
0.03
0.09
0.06
0.01
0.07
0.09
0.05
0.01
0.02
0.018
0.022
0.030
0.030
0.110
0.100
0.020
0.017
0.010
0.020
0.020
0.110
0.051
0.019
0.020
0.007
0.119
0.010
0.037
0.033
0.020
0.016
0.018
0.030
0.018
0.130
0.027
0.020
0.019
0.082
0.013
0.001
0.061
0.023
0.200
0.028
0.030
0.028
0.038
0.035
0.036
0.023
0.022
2.21
0.88
0.91
2.79
2.56
2.38
2.72
2.09
2.01
3.01
2.17
2.95
1.92
2.25
2.18
1.11
2.61
2.16
2.88
2.27
2.11
1.61
2.38
3.17
2.08
2.66
3.11
3.09
3.10
2.30
3.10
0.71
1.80
1.50
1.99
3.32
3.91
2.52
3.11
3.83
3.20
2.51
1.81
0.06
0.02
0.02
0.06
0.07
0.06
0.07
0.07
0.07
0.08
0.07
0.06
0.05
0.06
0.07
0.05
0.06
0.08
0.08
0.06
0.07
0.08
0.08
0.12
0.06
0.06
0.08
0.06
0.06
0.05
0.13
0.03
0.06
0.11
0.06
0.06
0.15
0.08
0.10
0.08
0.10
0.06
0.08
-------
30
TABLE U*—Continued
SAMPLE AL CA CL FE K NG NA SI TI
C17270
U7279
C17303
C17304
C 17305
C17307
C17309
C17601
C17721
C17970
C17V84
C17988
C 16009
C18040
C1804J4
C18304 .
C 18320
C 18349
C16350
C18351
C1&355
C18368
C1B389
C10392
C1U395
C 18398
C18401
cie^on
C 181407
CI»i40B
C18411
C1b415
C18419
C16421
C 16433
C18U36
C18437
C18440
ClbHUl
C18444
C18445
C18416
C184J49
1.11
1.11
1.11
1.72
1.25
2.37
0.73
1.16
1.21
2.21
1.11
1.16
0.53
1.11
1.65
1.10
1.60
0.81
0.64
1.00
0.93
1.40
1.00
1.00
0.93
1.20
1.70
0.94
1.10
2.20
1.10
1.20
2.00
1.30
0.65
0.31
0.47
0.89
0.52
0.73
0.99
0.42
0.51
0.31
0.31
2.57
0.52
1.18
1.16
2.17
0.17
0.21
0.70
0.37
1.22
0.07
1.86
0.49
0.1B
0.88
0.33
1.20
2.04
0.21
0.62
0.31
0.07
1.10
0.80
0.13
0.42
0.21
0.47
0.32
0.42
0.35
0.77
2.00
2.00
2.90
1.70
2.40
3.80
2.10
1.50
1.30
0.07
.0.07
.0.12
0.02
0.03
0.06
0.02
0.16
0.31
0.10
0.20
0.30
0.22
0.03
0.02
0.26
0.10
0.20
0.20
0.05
0.14
0.06
0.02
0.02
0.07
0.22
0.02
0.03
0.05
0.01
0.07
0.01
0.03
0.26
0.02
0.01
0.03
0.02
0.02
0.01
0.02
0.02
0.01
2.24
2.80
0.93
2.05
2.54
3.07
0.55
2.38 .
1.69
1.11 .
1.66
1.56
1.04
1.59
1.64
2.10
1.40
2.60
2.40
1.90
3.20
1.60
2.30
1.70
1.10
2.10
1.30
2.10
1.60
1.70
2.30
1.90
2.00
1.80
0.60
0.60
0.50
0.50
0.40
0.50
0.30
0.30
0.50
0.18
0.18
0.13
0.21
0.22
0.43
0.02
0.18
0.21
0.33
0.17
0.17
0.08
0.15.
0.20
-.0.13
0.19
0.13
0.13
0.21
0.12
0.20
0.15
• 0.18
0.17
0.17
0.25
0.15
0.18
0.52
0.16
0.18
0.38
0.27
0.01
0.03
0.07
0.03
0.03
0.01
0.01
0.01
0.01
0.05
0.05
0.01
0.06
0.05
0.10
0.07
0.01
0.05
0.11
0.03
0.01
0.02
0.05
0.06
0.04
0.07
0.04
0.06
0.06
0.05
0.06
0.04
0.05
0.05
0.05
0.07
0.01
0.05
0.11
0.05
0.04
0.10
0.07
0.26
0.18
0.22
0.21
0.26
O.ft
0.19
0.07
0.04
0.116
0.120
0.022
0.021
0.024
0.072
0.089
0.013
0.071
0.039
0.016
0.027
0.032
0.020
0.015
0.020
0.090
0.030
0.030
0.030
0.020
0.040
0.010
0.020
0.030
0.020
0.020
0.010
0.030
0.080
0.010
0.020
0.030
0. 150
0.420
0.370
0.460
0.330
0.100
0.020
0.010
0.270
0.270
3.13
3.13
2.01
3.21
2.63
6.09
1.25
2.21
2.07
3.92
2.07
2.30
0.72
2.77
3.43
2.00
3.20
1.60
1.80
2.70
1.10
2.90
1.20
2.20
1.90
2.10
2.70
1.10
1.10
4.40
2.10
2.00
4.70
2.60
1.00
0.58
0.99
1.30
0.71
1.10
1.33
0.38
0.53
0.07
0.07
0.07
0.07
0.06
0.08
0.05
0.06
0.07
0.11
0.07
0.07
0.05
0.05
0.08
0.06
0.07
0.04
0.03
0.05
0.05
0.07
0.05
0.06
0.06
0.06
0.08
0.05
0.06
0.10
0.06
0.06
0.09
0.06
0.04
0.02
0.03
0.02
0.02
0.04
0.05
0.04
0.05
-------
31
TABLE l|—Concluded
SAMPLE AL CA CL FE K MO NA SI TI
C18450
018451
C18454
C18457
018458
C18462
C18463
C18464
C18465
C18493
C 18560
C18572
CUJ573
C16574
C16581
C 18590
C 16594
C186BU
C 16685
C16689
C16693
C 16697
C16701
C16816
C 16820
C16824
C18625
C 18829
C 18830
C18831
C18832
C 18833
C 18837
C16841
C18844
C18848
C 18849
C18853
C18857
C 16992
C18993
C19000
0.49
0.52
0.70
0.36
0.60
1.50
2.00
1.60
1.10
1.40
1.40
0.85
1.70
0.90
2.80
1.20
0.94
1.10
0.76
0.93
0.99
1.10
1.04
1.50
1.40
2.00
1.90
2.10
1.50
1.20
1.30
2.30
2.10
1.20
1.20
1.90
3.10
1. 10
1.10
1.20
0.72
1.40
1.80
1.50
0.84
3.30
2.00
0.99
1.30
3.40
3.10
0.91
0.51
2.70
0.63
2.20
0.12
0.28
0.80
0.29
0.01
0.86
0.56
0.18
0.27
0.83
0.56
0.10
0.09
0.23
0.34
0.69
0.30
0.27
0.15
0.53
0.55
0.35
0.42
0.65
0.48
o.eo
0.44
0.46
0.01
0.02
0.04
0.02
0.03
0.01
0.02
0.02
0.03
0.15
0.05
0.01
0.02
0.02
0.17
0.15
0.13
0.04
0.04
0.04
0.03
0.03
0.05
0.01
0.74
0.03
0.04
0.04
0.17
0.27
0.23
0.15
0.02
0.80
0.13
0.02
0.01
0.10
0.07
0.03
0.13
0.12
0.30
0.40
0.40
0.30
0.30
0.70
1.00
0.40
1.20
2.50
2.60
2.70
3.70
3.20
2.00
1.90
1.90
2.30
2.90
1.50
2.60
2.00
1.90
0.60
0.90
0.70
2.20
2.40
0.90
1.20
1.20
0.50
1.40
1.70
1.10
0.70
1.60
1.60
2.20
0.50
0.50
0.40
0.01
0.03
0.01
0.02
0.05
0.10
0.32
0.10
0.07
0.18
0.13
0.07
0.22
0.10
0.56
0.26
0.16
0.17
0.10
0.12
0.16
0.17
0.16
0.03
0.21
0.12
0.45
0.42
0.23
0.06
0.28
0.40
0.35
0.19
0.13
0.28
0.68
0.09
0.17
0.07
0.01
0.02
0.12
0.10
0.09
0.12
0.13
0.13
0.20
0.17
0.15
0.06
0.06
0.05
0.07
0.05
0.07
0.05
0.04
0.06
0.03
0.04
0.05
0.05
0.04
0.10
0.06
0.03
0.07
0.09
0.06
0.04
0.06
0.08
0,05
0.04
0.04
0.05
0.15
0.04
0.05
0.07
0.07
0.07
0.600
0.160
0.100
0.010
0.010
0.010
0.040
0.010
0.010
0.100
0.040
0.020
0.030
0.020
0.020
0.080
0.070
0.020
0.020
0.030
0.040
0.010
0.020
0.020
0.070
0.020
0.030
0.030
0.040
0.010
0.020
0.040
0.040
0.060
0.030
0.030
0.050
0.060
0.100
0.170
0.040
0.150
0.55
0.69
1.80
0.71
0.86
2.30
4.70
3.10
2.10
2.70
3.20
1.50
3.60
1.80
4.00
3.10
2.10
2.20
1.30
1.70
1.90
2.10
1.90
1.90
2.50
3.00
3.10
2.90
2.10
1.00
2.10
3.50
3.10
2.30
1.90
2.80
6.30
1.80
2.80
2.40
0.38
0.71
0.05
0.05
0.06
0.02
0.04
0.10
0.07
0.07
0.05
0.07
0.06
0.03
0.05
0.03
0.11
0.07
0.07
0.07
0.03
0.06
0.05
0.06
0.07
0.07
0.12
0.12
0.09
0.08
0.08
0.05
0.05
0.13
0.16
0.06
0.08
0.15
0.15
0.06
0.06
0.07
0.04
0.06
-------
SAMPLE
TABLE 5—PROXIMATE ANALYSES OF WHOLE COAL SAMPLES
(percent of whole coal except for Btu values)
ACL
HOIS
VOL
FIHC
ASH
BTU
C12C59
C 12*95
C12631
C129*2
c 13039
c 13016
C133Z"
C13"33
C 13*61
c 13051
C13&95
C13975
C 13963
C14194
C14574
C 1*609
C14613
C 14630
C14646
C 1*650
C1468*
C14721
CK735
C 1*774
C 1*796
C14B3B
C1«970
c 11902
C15012
C15038
C15079
C15117
C15125
C 15208
C15231
C 15263
C1527B
C15331
C153M
C1541S
C15432
C15436
C15*«8
C15456
11.50
8.70
5.60
7.90
6.30
7.50
6.00
4.70
2.10
5.10
6.80
7.40
3.10
10.20
5.50
7.10
7.10
10.80
12. 10
6.00
7.90
5.30
1.40
5.90
11.80
12.20
8.40
3.80
6.30
12.60
13.30
12.80
12.00
7.90
10.50
9.50
2.20
2.80
9.30
11.50
9-50
5.60
5.90
18.00
13.10
7.90
10.70
10.20
11.40
4.00
8.70
9.50
4.20
10.50
9.70
9.90
1.20
13-50
7.80
10.70
10.40
12.90
14.50
. 8.50
10.80
7.00
. 4.60
7.90
'14.40
1«.70
10.90
5.20
7.70
14.70
17.30
15.60
14,70
10.80
13.90
11.90
4.' 10
4.10
15.10
16.50
14.60
8.70
9.30
40.70
42.50
38.00
37.10
43.70
43.10
37.60
36.60
38.10
40.40
12.60
36.60
40.50
31.90
43.60
36.30
38.20
36.40
44.50
s2. jC
38.20
38.60
39.40
42.10
34-30
43.30
10.30
40.50
37.20
35.40
38. 10
40.70
43.00
41.70
42.10
41.00
13-50
38.40
36.90
35.10
40.00
44.40
40.20
40.50
49. 10
46.30
51.50
50.30
45.40
46.00
51.00
54.00
49.20
55.00
44.50
51.80
48.90
54.60
49.00
53-20
52.70
55.00
44.50
;r.6i
51.80
51.80
48.50
45.10
55.40
44.60
48.10
46.90
51.30
54.10
46.60
45.70
44.00
43.50
45.50
51.00
45.50
47.30
50.90
54.70
47.80
45.50
47.10
47.10
10.20
10.70
10.50
12.60
10.90
10.90
11.40
9.40
12.70
4.60
12.90
11.60
10.60
13.50
7.40
10.50
9.10
8.60
11.00
5.50
10.00
9.60
12.10
12.80
10.30
12.10
11.60
12.60
11.50
10.50
15.30
13.00
13.00
14.80
12.40
8.00
11.00
14.30
12.20
10.20
12.20
10.10
12.70
12.40
12616
12466
12895
12621
12927
13096
12779
13060
14362
12303
12729
12736
12973
13480
13137
13027
13162
12829
12951
12934
12547
12724
12485
13000
12465
12419
12255
12873
13005
11900
12074
12220
11973
12222
13102
12630
12387
12997
12438
12442
12390
12274
SAMPLE
ADL
HOIS
VOL
FIXC
ASH
BTU
C 15496
C15566
C 15678
C15717
C 15791
C15868
C 15872
C15943
C 159*4
C 15999
C 16030 •
C16139
C16264
C 16265
C16317
C 164 08
C 16501
C16543
C 165 64
C 16729
C 167*1
C 16787
C16919
C 16993
C 17001
C 17016
C 17045
C 17046
C17M7
C 17053
C1705*
C 17089
C 17092
C 17095
C 17096
C 17097
C 17098
C 17099
C17215
C 17243
C 17244
C17245
C 17246
10.70
9.00
13.20
8.60
7.10
5.60
10.10
1.80
1.60
4.10
1.90
10.50
13.60
15.60
7.20
3.90
5.70
9.40
7.30
4.50
12.00
*.*0
6.30
4.10
16.70
8.90
6.20
14.70.
11.20
14.80
10.80
9.20
10.20
15.80
3.10
2.90
7.30
3.20
13-70
15.80
18.20
13.00
5.30
2.80
17.00
12.50
7.60
16.00
6.70
9.10
5.50
5.90
8.40
7.10
24.40
25.00
12.80
5.40
6.80
2.00
4.10
8.90
1.10
1.50
10.60
2.40
1.50
1.60
1.00
45.50
43.50
44.10
42.30
33.80
36.80
42.00
37.70
37.10
38.00
37.70
41.20
43.30
41.40
39.40
37.00
38.30
43.00
45.80
37.00
43.30
32.00
35.00
39.50
39.40
44.90
49.60
52.70
46.40
32.80.
38.20
36.70
45.20
45.60
18.90
39.90
43.40
37.80
35.50
37.70
34.10
45.30
46.40
45.60
45.50
53.90
54.30
43.50
51.80
53.00
49.60
50.30
44.70
44.30
49.10
48.60
51.80
51.40
45.10
41.20
50.80
43.80
61.00
55.70
48.70
47.50
41.50
34.60
35.40
42.50
54.90
47.00
45.00
47.10
43.50
65.40
49.00
41.30
46.20
51.70
51.70
59.70
9.20
10.10
10.80
12.20
10.30
8.90
14.50
10.50
9.90
12.40
12.00
14.10
12.40
9.50
12.00
11.20
10.30
11.90
10.00
12.20
12.90
7.10
8.20
16.00
1 1 .80
13.10
13.60
15.80
11.90
11.10
12.30
14.80
18.30
7.70
10.80
15.70
11.10
15.30
16.00
12.70
10.50
6. 10
12996
13042
12952
12449
13008
13290
12109
13392
13517
12*70
13140
12050
12480
12810
12400
12990
12980
12380
12920
12728
12*55
13794
13280
11562
129*7
12850
11908
U)
ro
-------
SAMPLE
AM.
HOIS
VOL
FIXC
ASH
BTU
SAMPLE
AOL
MIS
VOL
PIXC
ASH
BTU
C 17278
C 17279
C17303
C 17304
C 17305
C 17 307
C 17309
C 17601
C17721
C17970
C 17984
C 17988
C 18009
C 180*0
C 18044
C 18304
C 18120
C 183*9
C 18350
C 18351
C 18355
C 18368
C183B9
C 18392
C 18395
ClS39b
C18401
C 18404
C 18407
C1B408
C18411
C16415
CW419
C 18421
C18»33
C 18*36
C 18*37
C 184*0
C 18*41
C 18444
C 18445
C 18446
C 184*9
9.60
9.10
10.30
4.60
4.*0
7.60
8.80
7.80
2.40
2.30
2.50
3.40
7.00
6.60
5.70
4.00
5.00
6.20
4.90
4.90
4.80
7.20
5.60
5.20
22.60
22.00
30.90
12.60
16.00
21.30
17.10
24.50
14.00
13.80
13.30
1.60
2.60
3.10
2.20
6.20
1.60
12.20
6.70
6. 10
0.40
9.*0
10.70
2.40
9.80
3.80
3.90
4.20
4.90
11.00
12.60
11.00
9.00
10.90
'?:J8
8.20
10.20
TO. 50
a. so
8.20
7.80
30.60
28.90
37.00
19.40
24.70
29.20
22.90
28.70
21.50
43.60
43.60
36.10
41.30
37.90
36.30
44.70
36.30
38.90
36.30
37.10
40.90
39. *0
40.50
38.70
44.40
42.20
39.40
39.70
39.80
42.20
42.10
41.00
40.90
Io6:18
41.70
37.60
37.20
41.20
36.60
41.40
42.50
46.00
*5.90
39.70
39.70
42.50
41.40
43.70
44.00
46.10
44.40
57-30
45.70
48.60
37.90
48.80
52.70
53.10
54.50
52.20
46.70
48.20
48.60
47.60
45.30
44.00
45.30
49.60
47.00
49.30
48.50
49.00
50.10
53.00
W.90
50.40
44.40
53.00
51.60
46.90
45.10
45.50
45.70
44.00
50.50
50.50
48.40
51.10
52.20
51.90
10.30
11.90
6.70
13.00
13.30
35.80
6.60
11.10
8.00
9.20
10.50
2.20
12.40
12.40
10.90
13.80
10.30
13.90
15.30
10.70
13-20
8.50
9.50
10.00
9.10
10.30
9.70
7.90
18.00
9.80
7.20
16.50
13.50
12.00
8.30
10.10
9.80
9.80
9.10
7.50
4.10
4.20
12510
12254
13112
13324
13276
13087
12*56
12348
13182
12094
13321
12849
12*95
13167
12198
13138
13176
12823
12840
12716
12915
13257
11579
12759
13213
11782
12069
10453
10902
10711
10967
10412
10490
11733
12447
12205
C16450
C 18451
C 18454
C 18457
C 18458
C 18462
C 18463
C 18464
C 18*65
C 18493
C 18560
C 18572
C 18573
C18574
C 18581
C 18590
C 1859*
C186B*
C 18685
C 18689
C 18693
C 18697
C 18701
C 18816
C 18820
C 18*24
t 18825
C 18829
C 18830
C 18831
C 16832
C«833
C18«37
C 18841
C 18544
C 18848
C 18849
C 18853
C 18857
C 18992
C 18993
C 19000
18.20
14.10
15.20
10.40
4.90
5.70
6.50
10.40
14.80
11.40
7.20
11.10
9.10
7.80
6.00
5.60
0.70
.80
.00
.30
.10
.00
.00
.30
0.90
0.50
0.80
0.60
0.50
0.80
11.90
4.50
7.70
4.60
26.50
20.60
20.80
18.60
11.20
12.40
12.90
17.30
20.90
4.50
9.10
13.00
11.50
9.90
0.50
8.50
8.20
4.40
4.60
5.60
3.70
4.00
3.70
13.20
1.90
3.20
6.60
3.20
3.30
3.20
3.10
3.60
2.90
2.30
2.40
1.90
1.90
2.40
14.40
8.20
10.30
8.90
49.20
45.40
40.90
48.90
44.20
45.30
43.70
46.10
46.70
38.20
41.60
43.40
33.70
41.80
27.40
38.30
39.70
39.00
42.30
39.30
41.80
41.80
41.00
38.70
16.60
24.70
23.80
34.80
38. .60
40.80
36.80
3*. 70
35.10
42.50
35.70
20.00
18.30
38.70
39.80
44.30
45.20
43.00
43.80
48.90
49.40
44.80
49.00
44.60
35.90
38.00
41.90
50.20
42.00
39.70
41.60
38.70
52.90
48.20
49.10
49.30
49.50
51.60
46.50
48.70
49.10
52.30
71.90
62.80
61.00
48.90
52.50
51.90
54.00
51.40
51.50
47.30
56.00
68.40
56.60
52.20
46.30
45.50
50.40
50.00
7.00
5.70
9.70
6.30
6.80
10.20
20.40
15.90
11.50
11.60
16.50
16.90
24.70
19.50
19.70
13.60
11.20
11.70
8.20
9.10
11.70
9.50
9.90
9.00
11.50
12.50
15.20
16.30
8.90
7.30
9.30
13-90
13.40
10.20
8.30
11.70
25.10
9.10
13.90
10.20
4.40
7.00
11880
12035
10786
11688
12424
11474
10191
10084
10533
12284
1171*
11637
99*0
11115
12302
12273
12693
12454
13069
12936
12571
12988
12943
12095
13763
13528
12606
12266
13516
13589
13370
12588
12855
13155
13816
13628
1137*
13*97
12082
12122
12901
12*75
;iOTE: See table 1 for abbreviations; see table 2 for identification of samples.
All values are on a moisture-free whole coal basis except for air dry
loss (ADL) and moisture (HOIS).
U)
OJ
-------
TABLE 6—ULTIMATE ANALYSES OF WHOLE COAL SAMPLES
(percent, moi-sture-free, whole coal basis)
SAMPLE
HTA
LTA
C 12059
C 12*95
C12831
C 129*2
C 13039
C 13046
C 13324
C 13*33
C 13464
C13854
C13U95
C1397S
C 13983
C14194
C1457*
C14609
C14613
C 1*630
C 11461)6
C14650
C 14684
C14721
C14735
C1477*
C 1*796
C 14838
C14970
C14982
C15012
c 15038
C 15079
C15117
C15125
C 15208
C15231
C 15263
C 15278
C15331
C15384
C15*18
C15432
c 151:36
C1544B
C 15456
69.98
72.16
69.91
71.26
70. 13
70.76
73.33
64.06
79. 9"
67.81
71. 16
70.76
72.28
7*. 72
73.20
73.42
73.72
71.70
72.73
74.49
68.25
71. 18
70.31
74.60
69.49
69.25
68.57
71.86
73.76
66.24
67.44
68. 6H
67.18
68.09
73.24
69.87
68.23
71.94
71.01
70.58
68.97
68.88
69.23
4.9* 1
4.99 1
5.00 1
5.64 1
5.13 1
4.85 1
5.09 1
4.55
5.76
4.79
5.19
5.30
5.07
5.68
5.22
5.31
«.8l
5.43
5.*7
5.13
*.67
5.15
4.»1
5.16
4.98
4.85
4.88
5.11
5.1*
4.88
5.00 (
4.99
5.01
5J>1
5.3*
4.92
5.0*
5.06
4.82
4.63
5.12
5.10
4.72
.20
.55
.49
.16
.39
.30
.39
.09
.83
.26
.47
.26
.33
.34
.20
.62
.60
.18
.29
.48
.19
.02
.19
.52
.27
.10
.15
1.34
.33
.04
).93
.07
.43
.43
.37
.54
.42
.70
.46
.70
1.39
1.35
1.54
8.87
8.22
7.13
7.05
7.48
7.45
7.71
13.52
5.98
8.64
6.10
7.81
4.15
8.74
7.06
9.16
10.09
5.96
6.24
6.18
12.9*-
6.58
7.09
7.05
7.91
8.90
9.03
7.10
7.67
8.54
8.82
8.72
7.55
8.71
8.97
8.76
5.46
5.19
11.33
9.16
11.08
7.08
7.64
10.20
10.66
10.48
12.55
10.85
10.88
11.34
9.45
12.71
4.56
12.90
11.54
10.61
13.54
7.34
10.40
9.06
6.60
10.91
9.46
9.9*
9.62
12.06
12.82
10.33
12.10
11.65
12.67
11.42
10.56
15.31
13.60
13.07
14.77
12.45
7.92
10.93
14.26
12.21
10.21
12.19
10.11
12.64
12.42
18.05
23.53
14.08
17.55
14.29
16.18
14.78
11.10
17.60
3.82
18.71
16.29
16.92
17-25
10.36
12.65
10.69
10.42
18.60
14.44
12.31
13.78
16.51
18.48
12.62
15.47
15.68
14.94
15.98
13.39
20.66
15.88
19.07
20.0*
15.41
12.85
12.41
16.68
16.40
10.15
13.97
14.49
17.77
15.37
SAMPLE
HTA
LTA
C15496
C15566
C 15678
C15717
C15791
C 15668
C 15872
C15943
C15944
C 15999
C 16030
C16139
C 16264
C 16265
C 16317
C16408
C16501
C 16543
C16564
C 16729
C16741
C 16787
C16919
C16993
C17t>01
C17016
C17045
C 17046
C17047
C17053
C 17054
C 17089
c 17092
C 17095
C17096
C 17097
c 17098
C17099
C17215
C17243
C17244
C17245
C 17246
72.06
72.33
71.49
69.11
72.92
75.13
67.70
74.53
74.92
69.«9
71.96
66.25
68.99
71.79
69.97
71.21
72.06
68.71
70.61
71.23
69.53
77.72
75.43
64.57
71.57
62.49
65.83
63.32
66.26
71.06
72.57
64.65
62.66
73.84
67.75
64.16
65.30
65.27
70.47
70.62
80.14
5.13 1
4.86 1
4.98
.76 1
.96 1
.90
.63 1
.05
.09
.54
.83
.59
.68
.97
.58
.91
5.08
5.07
5.22
4.66
».9l
4.81
4.93
4.19
5.03
4.55
4.73 (
4.08 (
4.26 (
5.06
4.58
4.55
4.45 (
5.79
4.76
4.79
5.02
4.70
4.81
4.91
5.29
.36
.43
.15
.11
.75
.52
.04
.27
.44
.27
.35
.23
.14
.11
.25
.35
.56
.11
.18
.42
.10
.43
.50
.39
.»»
.07
).96
).90
).91
.33
.06
.05
>.94
.23
.46
.95
.60
.00
.18
.07
.29
8.56
6.41
6.73
8.68
8.15
8.77
8.51
4.27
5.44
8.96
6.44.
9.01
7.94
9.43
8.95
6.43
8.61
10.02
9.18
7.36
8.02
7.32
8.67
9.67
6.00
12.96
14.36
14.79
15.37
7.70
8.77
10.34
9.4*.
10.79
14.64
16.03
8.6*
8.75
8.12
9.22
6.22
9.22
10.12
10.29
12.15
10.3*
8.83
14.44
10.55
9.91
12.43
11.92
14.08
12.53
9.50
12.00
11.20
10.32
11.94
10.01
12.16
12.89
7.06
8.24
16.04
11.79
13.09
13.65
15.83
11.92
11.08
12.27
3.28
14.76
18.27
7.72
10.83-
15.67
11.10
15.27
16.02
12.72
10.53
6.15
12.31
14.81
14.78
17.71
12.9*
10.56
19-69
13.41
14.59
15.09
14.26
18.89
15.87
14.56
17.89
16.61
15.55
16.19
17.13
14.01
15.73
17.26
11.80
20.65
16.02
19.*9
22.65
14.86
16.5*
13.95
14.01
6.17
21.18
22.26
7.79
15.19
18.33
14.61
21.9*
21.32
15.92
14.56
7.57
-------
SAMPLE
HTA
LTA
SAMPLE
HTA
LTA
C17278
C17279
C17303
C17304
C17305
C 17307
C 17309
C17601
CV7721
C 17970
C179&4
C17988
C 18009
C 18040
C18044
C 18304
C 18320
C 18349
C 18350
C18351
C 18355
C18368
C 18389
C18392
C 18395
C 18398
C 18401
C 18404
C 18407
C1B408
C18411
C 184 15
C18419
C18421
C1B433
C 18436
C 18437
C 18440
C 18441
C 18444
C 18445
C 18146
C 18449
68.04
78.01
67.07
66.86
55.23
70.99
70.91
73.49
7».20
73.*6
70.27
63.18
71.93
65.51
69.78
69.69
69.40
72. «9
67.69
72.20
71.75
71.54
70.50
71.87
70.85
73.05
64.38
70.52
72.97
64.93
67.01
61.79
65.67
62.54
65.33
62.69
63.54
68.84
71.12
70.18
4.90
5.26
5.10
4.94
4.03
5.05
5.01
4.81
4.99
5.00
4.93
4.99
5.25
5.40
5.09
•*.96
4.92
5.27
4.72
4.83
5.19
5.16
5.12
1.81
4.85
5.18
».73
4.81
5.13
4.42
5.33
3.89
4.61
4.59
4.26
*.3B
3.84
4.59
5.02
4.84
1.36
1.29
1.20
1.15
0.78
1.01
1.26
1.46
1.84
1.81
1.38
1.39
1.17
0.94
1.24
1.18
1.18
1.25
1.08
1.14
1.39
1.35
1.24
1.»9
1.24
1. 11
1.18
1.14
1.14
1.11
1.06
0.73
0.88
0.83
0.89
0.91
0.85
0.88
0.91
0.97
8.52
7.49
9.52
9.26
7.64
15.98
7.95
9.98
7.72
7.10
7.17
14.36
6.51
10.66
8. £6
4.86
5-22
5-06
9.40
8.77
8.76
8.43
9.51
9.60
9.10
9.22
6.11
9.11
9.«7
8.9*
9.63
20.24
19.65
21.23
19.18
21.71
21.89
17.35
18.51
19.14
11.95
6.66
12.98
13.29
25.85
6.56
11.06
8.00
14.22
9.16
10.47
3-83
12.40
12.37
10.90
13.78
10.31
13.85
15.31
10.71
13-17
6.48
9.48
10.00
9.06
10.31
9.72
7.91
17.98
9.60
7.21
16.49
13.46
12.00
8.27
10.05
9.84
9.84
9.10
7.50
4.11
4.16
14.05
8.53
16.25
17.26
31.70
7.90
14.35
10.99
15.36
10.66
14.24
4.50
15.40
17.48
14.46
16.77
14.82
17.85
19.19
14.91
16.45
13.82
12.39
12.64
12.89
12.50
12.31
9.82
21.82
16.49
11.16
24.25
16.47
13.58
12.99
12.47
14.73
11.5*
15.15
10.22
7.00
6.16
C 18450
C18451
C18454
C 18157
C 18 158
C 16462
1 18463
C 18*64
C 18*65
C 18493
C1B560
C 18572
C18573
C18574
C 18581
C 18590
C1859*
C 18684
C 18685
C 18689
C 18693
C 18697
C16701
C18816
C 18820
C 18824
C 18825
C 18829
C 18830
C16831
C 18832
C 18833
C 18837
C18841
C18844
C 188*8
C 18849
C 18853
C 18857
C 18992
C 18993
C 19000
68.50 .12 (
70.35 .81
64.95 .84
69.48 .70 (
71.05 .1*
65.28 .87
59.03 .09
58.42 .31 <
62.77 .85 (
68.99 .61
63.94 .50 (
64.45 .80 (
54.62 .16 (
62.51 .60 (
72.77 .49
67.49 5.16
71.17 5.08
70.35 5.62
70.36 5.09
71.88 5.68
68.37 5.77
72.19 5.8*
73.*9 5.35
69.62 5.07
79.89 4.10
71.3* 5.00
72.60 «.T6 •
68.29 *.83
75.20 5.16
74.98 5.98
7».50 5.12
70.75 5.37
71.52 5.04
73.01 5.01
77.17 5.12
78.52 «.*1
65.42 3.98
75.53 5.16
68.22 5.98
68.96 5.28
73.96 5.*3
71.57 5.15
).87
1.02
.05
).80
.23
.35
1.19
).59
).6l
.20
).9*
).86
).94
).85
.41
.35
.36
.41
.31
.48
.25
.19
.32
.05
.15
.29
.40
.3*
.70
.81
.70
.77
.5*
.04
.43
.45
.39
.53
.11
.32
.19
.38
18.22
17.50
19.90
18.19
15-40
17.09
14.35
20.11
19.65
11.69
7.71
6.95
7.70
4.64
8.47
7.02
7.09
10.38
8.57
7.54
7-22
6.43
14.26
2.61
8.79
4.27
5.39
17.94
17.23
8.00
7.*9
6.62
5.68
5.62
3.42
2.48
5.27
5.75
13.51
14.27
14.33
7.04
5.72
9.68
6.3*
6.77
10.16
20.40
15.88
11.48
11.62
16.46
16.89
24.71
19.52
19.71
13.55
11.17
11.67
6.20
9.12
11.66
9.52
9.92
9.00
11.46
12.53
IS. 23
16.3*
8.90
7.30
9.30
13.90
13.39
10.2*
8.32
11.65
25.12
9.11
13.92
10.19
4.44
6.97
8.25
5.75
10.38
8.21
7.2*
16.48
25.68
20.94
13.77
13.40
20.37
23.43
34.04
27.18
21.72
17.17
14.03
15.64
11.50
11.42
15.88
14.08
12.77
10.64
12.90
14.67
18.65
17.77
11.04
10.03
11.69
16.42
16.19
14.50
10.40
12.67
28.03
11.91
17.44
12.39
4.69
8.75
U)
NOTE: Refer to table 1 for abbreviations -and to table 2 for identification of
samples.
-------
SAMPLE
ORS
TABLE 7—SULFUR ANALYSES OF WHOLE COAL SAMPLES
(percent, moisture-free whole coal basis)
PYS
sus
TOS
SIRP
C 12059
C 12495
C12831
C 129*2
C 13039
C 13046
C 13324
C13433
C 1346>
0.99
2.n
2.26
1.12
1.96
1.69
2.27
1.60
3.78
2.13
0.54
0.98
1.37
2.56
2.36
0.06
0.03
0.12
0.01
0.01
0.02
0.01
0.67
0.02
0.01
0.02
0.08
0.04
0.04
0.01
0.02
0.04
0.11
0.02
0.03
0.02
0.02
0.02
0.03
0.04
0.01
0.02
0.01
0.07
0.08
0.01
0.07
0.03
0 04
0.10
0.06
0.14
0.02
0.05
0.07
0.12
0.06
3.14
4.35
2.60
3.92
4.02
4.69
4.30
3.03
4.04
1.93
4.57
2.51
4.27
3.63
2.18
2.92
1.43
1.22
4.83
4.81
2.79
3.73
4.01
3.68
1.34
4.25
4.25
3.70
3.H
1.53
3.98
4.20
3.45
4.06
4.31
3.16
3.35
5.59
3.90
0.98
1.71
3.33
4.94
4.45
3.55
4.47
2.70
3.87
3.96
4.23
3.37
1.87
4.08
2.18
4.55
2.34
4.27
3.18
2.18
2.35
1.35
1.23
4.34
4.27
2.46
3.24
3.43
3.74
1.44
3.96
4.13
3.37
2.59
1.32
3.15
3.74
3.40
3.66
4.12
2.58
3.27
4.23
3.63
0.79
1.34
4.63
4.43
3.26
SAMPLE
ORG
PYS
SUS
TOS
SXRF
C15496
C 15566
C 15678
C 157 17
C 15791
C 15868
C 15872
C 15943
C 15914
C 15999
C 16030
C16139
C 16264
C 16265
C16317
C 16408
C16501
C16543
C 16564
C 16729
C16741
C 16787
C16919
C 16993
C 17001
C17016
C17045
C17046
C 17047
C 17053
C 17054
C170B9
C 17092
C 17095
C 17096
C17097
C 17098
C 17099
C17215
C17243
C 17244
C17245
C 17216
2.34
1.12
2.10
2.56
0.72
0.56
1.82
1.26
0.91
1.44
1.60
2.46
2.14
1.94
1.95
1.07
1.15
1.91
2.10
0.83
1.96
0.54
0.37
1.50
1.51
2.59
0.31
0.56
0.70
1.78
0.49
0.56
1.41
1.12
0.40
0.46
0.46
1.01
1.41
1.32
0.69
1.05
0.74
1.26
3.3«
3.21
1.59
1.14
0.29
1.81
3.02
2.27
1.79
1.87
2.27
2.33
1.22
0.97
3.78
1.21
1.20
1.67
?.30
1.54
1.10
0.76
1.75
2.62
2. 87
0.10
0.53
1.16
1.97
0.31
2.37
2.59
0.24
0.07
1.01
1.82
2.67
2.41
1.85
2.39
0.19
0.05
0.05
0.05
0.04
0.02
0.05
0.05
0.02
0.08
0.04
0.11
0.05
0.04
0.33
0.05
0.01
0.04
0.03
0.0»
0.05
0.03
0.10
0.90
0.02
0.10
0.02
0.03
0.02
0.02
0.03
0.16
0.19
o'.os
0.02
0.05
0.21
0.10
0.42
0.12
0.24
0.02
3-67
1.85
5.36
4.19
1.88
0.85
3.68
4.33
3.20
3.31
3.51
4.84
4.52
3.20
3-25
4.90
2.37
3-15
3.80
3-n
3-55
1.66
1.23
4.15
4.14.
5.84
0.44
1.11
1.88
3-77
0.83
0.56
3-94
1.20
0.69
0.55
1.53
3.04
4.18
4.15
2.66
3.68
0.96
3.94
4.70
4.83
4.11
1.49
0.88
3.29
2.99
3.48
3.04
3.20
4.01
4.47
3.53
3.22
3.24
2.79
3.32
4.48
2.48
3.63
1.60
1.05
3.07 .
3.49
5.40
0.54
0.80
0.96
4.00
0.87
0.88
3.96
2.94
0.68
0.57
0.92
2.33
2.88
3.21
1.82
2.85
1.23
UJ
-------
SAMPLE
ORC
PIS
sus
TOS
SXRF
SAMPLE
ORG
PIS
SUS
TOS
SXRF
C1727B
C17279
C17303
C173M
C 17305
C17307
C 17309
C 17601
C 17721
C17970
C1798*
C 17988
C 18009
C 18040
C180**
C 1830*
C 16320
c 18349
C18350
C18351
C18355
C 18360
C 18389
C 18392
C 18395
C 18398
C 18401
C 18*04
C 18*07
C 18*08
C18*11
C 18415
C18419
C 18*21
C 18*33
C 18*36
C 18*37
C1B**0
C 18*41
C 18*44
C 18445
C 18*46
C 18449
3.20
3.09
0.75
2.09
1.4*
1.8*
0.34
1.28
0.88
0.57
0.80
0.72
2.11
1.85
1.55
1.83
1.81
2.15
1.21
0.93
2.08
2.01
.58
.99
.39
.90
.70
.84
.71
.57
1.88
1.54
1.45
1.13
0.68
0.71
0.47
0.36
0.64
0.60
0.31
0.56
1.47
1.95
0.48
1.52
2.00
3-65
0.06
2.35
1.37
1.50
1.35
0.27
1.74
1.85
2.63
1.83
2.88
3.46
2.72
3.76
1.8*
2.46
1.81
1.28
1.84
0.83
2.31
1.60
1.64
2.77
2.08
2.40
1.64
0.13
0.20
0.01
0.01
0.08
0.07
0.23
0.01
0.13
0. 18
0.18
0.06
0.51
1.06
0.98
0.01
0.18
0.01
0.01
0.01
0.08
0.01
0.01
0.07
0.05
0.03
0.04
0.03
0.03
0.02
0.11
0.04
0.26
0.34
0. 18
0.22
0.08
0.26
0.28
0.12
0.16
0.42
0.09
0.05
0.02
0.03
0.03
0.09
0.02
0.01
0.02
4.8*
5.22
1.29
».13
«.50
6.*7
0.12
3.81
2.26
2.09
2.17
1.07
3.86
3.71
«.25
3.71
*.72
5.6*
3.96
«.72
3.9*
*.58
3.*3
3-52
*.57
1.92
«.2«
3.52
3.62
*.62
*.09
«.10
3.51
••.35
0.92
0.7*
0.51
0.*7
0.79
0.8*
0.3*
0.72
5.03
1.*6
3.83
3.61
4.02
0.5*
3.18
2.01
1.25
1.92
1.95
1.37
2.85
3.29
3.15
3.*3
«.*8
5.27
3.82
. 4.70
3.86
*.70
3.67
3.52
4.46
1.87
3.89
3.50
3.42
4.69
3.81
4.18
3.4*
1.25
0.95
0.92
0.5*
0.53
0.6*
0.76
0.40
0.78
C 18150
C1B451
C 18454
C 18*57
C 18458
C 18462
C 18463
C 18*64
C 18465
C 18493
C 18560
C 18572
C 18573
C1857*
C18581
C 18590
C1859*
C 16684
C 18685
C 18689
C 18693
C 18697
C 18701
C18816
C 18820
C1882*
C 18825
C 18829
C 18830
C 18831
C 18832
C18833
C 18837
C 188*1
0188*4
C 188*8
C 188*9
C 18853
C 16857
C 16992
C 18993
C 19000
0.52
0.56
0.30
0.25
0.28
0.91
0.44
0.62
0.58
0.78
1.87
1.94
1.97
2.30
0.45
1.35
1.63
1.29
1.69
1.52
2,05
1.93
1.69
0.45
0.51
0.54
0.58
1.11
0.58
0.96
0.79
0.66
0.63
2.51
1.16
0.50
0.35
1.42
2.42
0.62
0.56
0.52
0.09
0.01
0.05
0.17
0.12
0.32
0.45
0.03
0.02
1.07
4.56
3.60
5.01
4.87
2.35
2.58
2.49
2.51
2.91
1.49
3.21
2.02
1.92
0.54
0.26
0.43
1.03
2.60
0.36
0.66
0.58
0.06
1.24
2.48
1.14
0.04
1.21
1.87
2.51
0.10
0.14
0.08
0.04
0.03
0.22
0.07
0.01
0.01
0.07
0.05
0.05
0.04
0.02
0.52
0.91
0.72
0.02
0.05
0.08
0.06
0.06
0.05
0.15
0.08
0.08
0.01
0.03
0.01
0.13
0.09
0.09
0.01
0.02
0.03
0.03
0.03
0.01
0.07
0.10
0.09
0.02
0.6*
0.59
0.58
0.50
0.11
1.24
0.95
0.69
0.65
1.86
6.«5
6.06
7.88
7.88
2.61
3.98
4.20
3.86
4.66
3.06
5.»1
«.03
3.69
1.00
0.80
0.98
1.7*
3.80
1.03
1.65
1.38
0.72
1.90
5.02
2.33
0.55
1.62
3.«0
5.02
0.71
0.72
0.61
0.69
0.66
0.58
0.49
0.52
1.20
0.75
0.66
0.60
1.70
6.52
5.85
8.02
7.48
2.66
3.62
3.89
3.95
«.51
3.20
5.25
3.80
3.60
0.85
0.95
.07
.57
.58
.16
.82
.19
0.95
1.67
4.81
2.16
0.74
1.67
3-76
*.85
0.77
0.85
0.76
NOTE: Refer to table 1 for abbreviations and to table 2 for Identification of
samples.
to
-------
38
As a first step In. the statistical analyses of the data,
geometric means, arithmetic means, standard deviations, and ranges
(minimum and maximum values) were calculated for each of the
analytical parameters. The results of these calculations are
summarized in tables 8 through 10. Because determinations for all
variables were not reported for all samples (see appendix), a
missing-data statistical analysis oomputer program, adapted from Davis
(1971) and IBM (1970), was used in this study. This oomputer program
identified the missing data and omitted them when calculating the
statistical values.
Trace element concentrations of Cd, Ge, I, In, Lu, Mo, P, Pb, Rb,
Sn, Sr, and U were reported in some samples as "less-than" values. A
less-than value represents the identification of the presence of an
element in a particular sample at a concentration below the limit of
quantitative accuracy but above zero. The effect of these less-than
values on the statistical parameters shown in tables 8 through 10 was
discussed in a previous publication (Ruch et al., 1971, p. 16). It was
concluded that the differences in mean values calculated in three
different ways, 1) using the less-than value as an accepted value, 2)
using one-half the less-than value, or 3) using zero, had little
effect on the statistics except in those oases where the less-than
values were a major proportion of the total sample population. The
statistics reported in tables 8 through 10 are calculated by using the
reported less-than value as the "true value" «0.3 equal to 0.3)«
Summary statistics are not shown for those cases where the less-than
values compose a significant part of the total population (for example
Sn in all samples and Cd in samples from the eastern and the western
United States).
Histograms of the distribution of trace, minor, and major
elements and of the high-temperature and low-temperature ashes are
given in figures 3 through 62. The data for 165 of the 172 coal
samples are plotted on the histograms (omitting a weathered coal
sample C17089, the two NBS samples, and the four samples from Iowa
and Missouri) so that the three geographic groups may be
differentiated. The data from the Illinois Basin coals are plotted as
vertically striped bars, those from the western United States as
horizontally striped bars, and those from the eastern United States as
unpatterned bars. The horizontal axis is divided into class intervals
and the vertical axis represents the number of samples in each class.
Those samples whose values are beyond the last regular class interval
are plotted following a break in the abscissa and are identified with
a plus sign ( + ).
Geometric means are included in tables fa, 9, and 10 and are used
to compare data from the three regions. The geometric mean was
calculated by taking the logarithm of e.ioh analytical value, summing
the logarithms, dividing the sum by the total number of values and
obtaining the antilogarlthm of the result. The arithmetic mean was
-------
39
calculated by summing the data and dividing the sum by the number of
samples. For comparison of samples, geometric means are preferred to
arithmetic means because the extremely high values (often the result
of epigenetio mineralization within the coal) are less of an influence
on the geometric mean value than on the arithmetic mean. Therefore,
the geometric mean more closely approximates the value that would be
expected in an unknown sample (Swanson et al.t 1976; Miesch, 1967;
Davis, 1974; and McCammon, 1975).
From the statistical analyses of the data shown on tables 8, 9,
and 10 a number of interesting observations can be made. However,
caution is necessary in making interpretations,based on tables 9 and
10. Only 23 samples from the eastern United States made up the total
population on table 9, and only 29 samples from the western United
States made up the total population on .table 10. Tables 9 and 10 are
included so that they may be compared with the much larger population
of 114 samples from the Illinois Basin that were used to prepare
table 8. Several of these observations follow:
1. In coals from the Illinois Basin, elements that have
relatively large ranges and standard deviations larger than
their arithmetic means include As, Ba, Cd, I, Pb, Sb, and
Zn. The standard deviation for Sb is also larger than the
mean for Sb in both the eastern and western coals analyzed.
Several of these elements have been identified in the
sulfide fraction of the mineral matter. The mineral
sphalerite contains Zn and Cd, galena contains Pb, some
pyrites contain As and perhaps Sb, and Ba has been
identified within the mineral barite. Data obtained from the
determinations of these elements generally present a skewed
pattern as can b© seen in histograms of their distributions
(figures 4, 6, 9, 22, 30, 32 and 46).
2. In ooalo from the Illinois Basin,elements that have
relatively narrow ranges and standard deviations less than
one-half the arithmetic mean include B, Be, Ga, F, Se, V,
Ni, Al, Fe, Si, Ti, K, Mg and many of the rare earth
elements. This list of elements includes those generally
thought to be, at least in part, in organic combination and
those elements that occur in the silicate minerals. These
elements display a more or less normal distribution of
analytical values (figs. 5, 7, 18, 17, 34, 43, 28, 48, 51,
56, 52 and 53).
3. In general, elemental concentrations tend to be
highest in coals from the Appalachian Basin (eastern
samples), lowest in coals from the western United States
(western samples) and intermediate in amount in coals from
the Illinois Basin. This is true with the following
-------
1)0
elements: As, Ce, Co, Cr, Cs, Cu, Dy, Eu, F, Ga, Hg, I, In,
La, Lu, Rb, Sb, So, Se, Sm, V, Yb, Al, Cl, S, and Ti.
H. Western coals sampled have the highest
concentrations (maximum geometric mean values) for only five
of the elements determined, Ba, P, Sr, Ca, and Na.
5. Coals from the Illinois Basin have the highest
concentrations (maximum geometric mean values) of B, Be, Br,
Cd, Ge, Mn, Ni, Pb, Zn, Fe, and S.
Coefficients resulting from the correlation of each parameter
with every other parameter in coals from the Illinois Basin (111
samples) are given in Table 11. Several geochemioal associations are
apparent in these correlation coefficients and although most of them
were mentioned by Ruch et al., 1971, they are repeated here.
n • .
1, The highest value of a positive Correlation
coefficient is for Zn and Cd (0.94 for coals of the Illinois
Basin). Zinc occurs in coals of the Illinois Basin in the
mineral sphalerite (ZnS) (Gluskoter et al., 1973; and Hatch,
Gluskoter, and Lindahl, 1976) . Cadmium is found in solid
solution in the sphalerite in concentrations as high as 65
ppm (Gluskoter and Lindahl, 1973; and Hatch, Gluskoter, and
Lindahl, 1976). The ' sphalerite in coal is epigenetically
deposited along cleats and in clastic clay dikes (Cobb and
Russell, 1976). Barium, which occurs as the mineral barite
(BaSOi,), is also closely correlated with zinc and cadmium.
The occurrence of barite in amounts large enough to be
identified with the sphalerite in the coals has only been
observed in a few instances. However, there does seem to be
a geographical and statistical correlation between Ba and
the cations in sphalerite, which suggests a common control
of their deposition. The correlation coefficient of Ba:Zn is
0.72 and BarCd is 0.87.
2. The elements of the following group have positive
correlations with each other: As, Co, Ni, Pb, and Sb. These
elements are commonly found 'in nature as sulfides and are
included among the chaloophile elements (elements which have.
a strong affinity for sulfur). Germanium is positively
correlated with many ohaloophile elements in the Illinois
Basin coals.
3. The elements classified as lithophile, which
generally occur in the earth's crust as alumino-silioate
minerals, have mutually positive correlations in coals.
These elements are Si, Ti, Al, and K. A positive correlation
of Mg with the lithophile elements also exists, but these-
correlations are not as strong as those between the above
four elements.
-------
1*1
**. There is a positive correlation of 0.65 between Mn
and Ca; In coals of the Illinois Basin, Mn does not
correlate as well with any other element. Manganese commonly
substitutes for Ca in oaloite (CaC03) and is presumed to be
in that combination in coals.
5. Sodium and Cl have a positive correlation of 0.48 in
the Illinois Basin samples. A similar correlation between
chlorine and total alkalies waa reported by Gluskoter and
Rees (1961) and, in part, the correlation can be attributed
to the deposition of Na and Cl in coals by saline ground
water (Gluskoter, 1965a; and Gluskoter and Ruoh, 1971).
6. Many of the rare earth elements have high positive
correlations with other rare earth elements. This may be
real, a result of the chemical similarity of these elements,
or the correlation may, in part, be an artifact of the
analyses.
(Text continued on page 69)
-------
1*2
TABLE 8—MEAN ANALYTICAL VALUES FOR llU WHOLE COAL SAMPLES
FROM THE ILLINOIS BASIN COAL FIELD
til erne nt
AU
A3
b
BA
Be.
BR
CD
Ct
CU
CR
CS
CU
DY
EU
r*
CA
Gt,
HF
HG
I
IN
U
LU
MN
MO
Nl
f
ea
Rb
Sfa
st
S£
Sh
SN
SK
TA
Tb
Arithmetic
Mean
0.03 ppm
11 ppm
110 ppm
100 ppn
1 . 7 ppm
13 Ppm
2.2 ppm
11 ppm
7.3 ppm
16 ppm
1.4 ppn
11 ppm
1 . 1 ppm
0.26 ppm
67 ppm
3.2 ppm
6.9 ppm
0.51 ppm
0.2 ppm
1.7 ppm
0.16 ppm
6.8 ppm
0.09 ppm
53 ppm
H.I ppm
21 ppm
64 ppm
32 ppm
1V ppm
1.3 ppm
2.7 ppm
2.2 ppm
1.2 ppm
3.8 ppm
35 ppm
0.15 ppm
0.22 ppm
Geometric
Mean
0.03 PPm
7 . 1 ppm
yt) ppm
75 ppm
l.b ppn
10 ppo
0.59 ppm
12 ppn
6 . 0 ppm
16 ppn
1.2 ppn
13 ppm
1 . 0 ppm
0.25 ppm
63 ppo
3.0 ppo
1 . 8 ppm
0.19 ppo
0.16 ppm
1.2 ppm
0.13 ppo
6.1 ppa
O.OB ppm
DO ppm
6.2 ppm
19 ppm
15 ppm
15 ppm
17 ppm
0.61 ppm
2 . 5 ppm
2.0 ppm
1 . 1 ppm
0.91 ppm
30 ppm
0.11 ppm
0.16 ppm
Minimum
0.02
1.0
12
5.0
0.5
0.6
0.1
4.1
2.0 .
4.0
0.5
5.0
0.5
0.1
29
o.e
1.0
0.13
0.03
0.24
0.01
2.7
0.02
6.0
0.3
7.6
10
O.b
2.0
0.1
1.2
O.M
0.1
0.2
10
0.07
0.01
Maximum
O.OB
120
230
750
4.0
52
65
46
3*
60
3.6
44
3-3
0.87
140
10
43
1.5
1.6
11
0.63
20
0.44
210
29
6b
340
220
46
8.9
7.7
7.7
3- a
51
130
0.3
0.65
Standard
Deviation
0.02
20
50
110
0.02
7.4
7.4
7.5
5.3
9.7
0.73
6.6
0.42
0.12
26
1.2
6.4
0.25
0.19
2.0
0.11
2.B
0.06
41
5.1
10
60
42
y.9
1.4
1.1
1.0
0.55
B.tt
23
0.06
0.14
Number
Samples
37
113
99
56
113
113
93
56
113
113
56
113
56
56
113
113
113
56
113
56
56
56
56
113
ill
113
113
113
5b
113
56
113
56
60
56
56
41
Number
Less Than
Values
43
11
13 .
6
3
6
7
6
1
32
2
-------
TABLE 8—Continued
Element
TH
TL
U
V
W
Kb
ZN
ZR
AL
CA
CL
FE
K
MG
NA
SI
TI
AOL
M01S
VOL
F1XC
ASH
bTU/LB
0
H
N
0
HTA
LTA
ORS
PYS
SUS
TOS
SXRF
Arithmetic Ceoaetrlo Minimum
Mean Mean
2.1 ppa 1.9 ppa O.T1
0.66 ppa 0.59 ppa 0.12
1.5 ppn 1.3 ppa 0.31
32 ppm 29 ppa 1 1
O.B2 ppa 0.63 ppB 0.04
0.56 ppa 0.53 ppn 0.27
250 ppa 87 ppm 10
47 ppm 41 ppa 12
1.2 ^ 1.2
0.67 » 0.51
O.It
2.0
0.17
0.05
0.05
2.4
0.06
7.3
9.4
40
49
11
12712
70
5.0
1.3
8.2
11
15
1.6
2.0
0.08
1.9
0.16
0.05
0.03
2.3
0.06
6.4
8.1
40
49
11
12702
70
5.0
1.3
8.0
11
15
1.4
1.8
0.1 » 0.05
3.6 * 3.1
3-1 » 3.2
0.43
0.01
0.01
0.45
0.04
0.01
0.56
0.02
1.4
0.5
27
41
4.6
11562
62
4.2
0.93
4.2
3.3
3.8
0.37
0.29
0.01
0.56
0.79
Maxlaua
5.1
1.3
4.6
90
4.2
1.5
5300
130
3.0
2.7
0.54
4.1
0.56
0.17
0.2
4.7
0.15
17
18
46
61
20
14362
80
6.0
1.6
14
20
24
3.2
4.6
1.1
6.4
6.5
Standard
Deviation
0.87
0.31
0.93
13
0.69
0.21
650
27
0.39
0.48
0.13
0.63
0.07
0.02
0.04
0.7
0.02
3.1
1.3
3.1
3.6
2.3
470
3.0
0.31
0.19
1.8
2.5
3.3
0.6
0.78
O.l6
1.1
1.1
Number Nuaber
Staples Leu Than
Values
56
25
56 1
113
56
56
113
88
113
113
113
113
113
113
113
113
113
98
112
111
111
112
107
110
110
110
109
112
112
112
111
109
113
112
-------
TABLE 9—MEAN ANALYTICAL VALUES FOR 23 WHOLE COAL SAMPLES
FROM THE EASTERN UNITED STATES
(Appalachian coal fields)
tleoent
AC
AS
b
bA
Bfc
BH
• CD
CD
CO
CR
CS
CU
DY
EU
F
CA
Gc
Ht
HG
1
IN
LA
Lu
MN
MO
Ml
t-
PB
Kb
SB
SC
Sfi
Sh
SN
SR
TA
TB
Arithmetic
Mean
0.02 ppm
2b ppra
12 ppo
200 ppm
1 . 3 ppm
12 ppm
0.21 ppm
25 ppm
9.B ppm
20 ppm
2.0 ppm
IB ppm
2 . 3 ppm
0.52 ppm
89 ppm
5.7 ppm
1 . 6 ppm
1 . 2 ppm
0.20 ppm
1 . 7 ppm
0.23 ppm
15 ppm
0.22 ppm
IB ppn
1.6 ppo
15 ppm
150 ppm
5.9 ppm
22 ppn
1 . 6 ppn
5.1 ppm
1.0 ppm
2.6 ppm
2.0 ppm
130 ppm
0.33 ppra
0.31 ppn
Geometric
Mean
0.02 ppm
15 ppm
28 ppm
170 ppm
1 . 1 ppm
B . 9 ppm
0.19 ppm
23 ppm
7.6 ppo
18 ppm
1 . 6 ppm
16 ppm
2.0 ppm
0.17 ppo
81 ppm
5.2 ppm
0.87 ppm
1 . 1 ppm
0.17 ppm
1 . 1 ppm
0.22 ppm
14 ppm
0.18 ppm
12 ppm
1 . B ppm
11 ppm
B1 ppm
1 . 7 ppm
1* ppm
1 . 1 ppm
1 . 5 ppm
3.1 ppm
2.1 ppa
0.97 ppm
100 ppm
0.26 ppm
0.28 ppm
Hlnlmlm
0.01
1.8
5.0
72
0.23
0.71
0.10
11
1.5
10
0.40
5.1
0.74
0.16
50
2.9
0.10 ,
0.58
0.05
0.33
0-13
6.1
0.04
2.4
0.10
6.3
15
1.0
9.0
0.25
1.6
1.1
0.87
0.20
2B
0.12
0.06
Maximum
0.06
100
120
420
2.6
26
0.60
42
33
90
6.2
30
3-5
0.92
150
11
6.0
2.2
0.47
4.9
0.37
23
0.40
61
22
28
1500
1tt
63
7.7
9-3
8.1
4.3
8.0
550
1.1
0.63
Standard
Deviation
0.01
27
32
110
0.56
7.6
0.1(1
9.1
7. a
16
1.6
7.3
0.94
0.22
31
2.6
1.7
0.45
0.12
1.1
o.oe
5.3
0.12
16
6.3
5.7
300
4.0
15
1.7
2.4
2.0
1.0
2.4
130
0.28
0.17
Number Number
Samples Le*a Than
Values
13
23
23
14
23
23
23 23
14
23
23
14.
23
14
14
23
23
23 9
14
23 1
14 1
14
14
14
23
23 3
23
23
23 3
14
23
14
23
14
19 7
14
14
14
-------
TABLE 9—Continued
blement
Th
TL
U
V
W
YB
ZN
ZR
AL
CA
CL
FE
K
MG
NA
SI
TI
AUL
M01:i
VOL
F1XC
ASH
BTU/U)
C
H
N
0
HTA
LTA
OHS
PYS
sus
TOS
SXHP
Arithmetic Geooetrio Minloim
Mean Mean
4.5 ppa 4.0 ppe 1.6
1.5 ppa 1.3 ppa 0.40
38 ppa 35 ppa -14
0.69 ppa 0.62 ppa 0.22
0.83 ppa 0.73 ppa 0.18
25 ppm 19 ppa 2.0
45 ppa 41 ppa 8.0
1.7
0.47
0.17
1.5
0.25
0.06
0.04
2.8
0.09
1.2
2.7
?3
55
12
13111
72
4.9
1.3
8.0
12
15
0.92
1.3
0.10
2.3
2. 1
1.6
0.34
0.10
1.3
0.21
0.05
0.03
2.6
0.09
0.99
2.4
32
54
12
13093
72
4.9
1.3
7.0
12
15
0.82
O.bl
0.06
1.9
1.B
1.1
0.09
0.01
0.50
0.06
0.02
0.01
1.0
0.05
0.50
1.0
17
45
6.1
11374
63
4.0
0.9<*
2.5
6.2
7.6
0.35
0.04
0.01
0.55
0.74
Maxinua
9.0
2.9
73
1.2
1.4
120
88
3.1
2.6
0.80
2.6
0.6B
0.15
0.08
6.3
0.16
4.0
6.8
42
72
25
13816
80
6.0
1.8
IB
25
28
2.5
2.6
0.42
5.0
4.8
Standard
Deviation
2.1
0.73
14
0.31
0.35
24
18
0.56
0.51
0.21
0.69
0.14
0.03
0.02
1.1
0.04
0.89
1.5
0.0
7.2
4.3
696
5.3
0.4*
0.27
»-3
4.3
4.9
0.48
0.91
0.10
1.3
1.1
N unbar huober
Saaples Leaa Than
Values
14
14
23
14
14
23
19
23
23
23
23
23
23
23
23
23
14
23
23
23
23
14
22
22
22
22
23
23
23
23
22
23
23
-------
k6
TABLE 10—MEAN ANALYTICAL VALUES FOR 28 WHOLE COAL SAMPLES
FROM THE WESTERN UNITED STATES
t lenient
AC
AS
b
BA
b£
BR
CD
CE
CO
CR
CS
CU
01
EU
K
CA
GE
Hf
HG
1
IN
LA
LU
hN
MO
Nl
H
PS
RB
SB
SC
St
SK
SN
SN
TA
Tb
Arithmetic
Mean
0.03 ppm
2.3 ppm
56 ppm
500 ppm
O.lb ppm
1.7 ppm
0.18 ppm
11 ppm
1 . 6 ppra
9.0 ppm
0.12 ppm
10 ppm
0.63 ppm
0.20 ppm
62 ppm
2.5 ppm
0.91 ppm
0.70 ppm
0.09 ppm
0.52 ppm
0. 10 ppm
5.2 ppra
0.07 ppm
19 ppm
2.1 ppm
5 . 0 ppm
130 ppm
3.1 ppm
1 . 6 ppm
0.5t) ppm
1 . 8 ppm
1 . 1 ppm
0.61 ppm
1.9 ppm
260 ppm
O.lb ppm
0.21 ppm
Geometric
Mean
0.02 ppm
1 . 5 ppm
IB ppm
130 ppo
0.35 ppm
2.1 ppo
0.15 ppm
9 . 1 ppm
1 . 5 ppm
0.1 ppm
0.16 ppo
8.5 ppo
0.57 ppm
0.16 ppo
57 ppo
2.1 ppo
0.50 ppo
0.70 ppo
0.07 ppm
O.lb ppm
0.07 ppm
1.5 ppm
0.05 ppm
28 ppm
0.59 ppm
1.1 ppm
82 ppo
2.6 ppm
2.1 opm
0.15 ppm
1.5 ppm
1.3 ppm
0.56 ppm
0.1 'i ppm
£20 ppm
0. 1? ppm
0.17 ppm
Minlaum
0.01
0.31
16
160
0.10
0.50
0.10
2.8
0.60
2.4
0.02
3.1
0.22
0.07
19
0.80
0.10
0.26
0.02
0.20
0.01
l.B
0.01
1.1
0.10
1.5
10
0.70
0.30
0.18
0.50
0.10
0.22
0.10
93
0.01
O.Ob
Maximum
0.07
9.8
110
1600
1.4
25
0.60 '
30
7.0
20
3.8
23
1.1
O.BO
110
6.5
3.0
1.3
0.63
1.0
0.25
13
0.13
220
30
16
510
9.0
29
3-5
U.b
2.7
1. li-
IS
500
0.33
0.58
Standard
Devlatlor
0.02
2.6
32
320
0.3*
7.3
0.13
U.O
1.5
4.2
0.82
5.9
0.32
0.17
26
1.4
0.92
0.33
0.11
0.25
0.07
3.0
0.09
49
5.b
3.2
130
2.3
6.b
0.61
1. 1
0.59
0.29
3-B
110
0.08
0.15
Number
i Samples
' 22
29
27
22
29
29
29
22
29
29
22
29
22
22
29
29
29
22
29
22
22
22
22
29
29
29
29
29
22
29
22
29
21
26
22
22
18
Number
Less Than
Values
2
29
6
11
5
b
l
b
5
b
21
-------
TABLE 10—-Continued
Element Arithmetic Geonetrio Hiniaua
Mean Mean
TH 2.3 PPB KB ppn 0.62
TL
U 1.2 ppB 0.99 ppa 0.30
V 14 ppm 12 ppB 4.6
h 0.75 ppB 0.58 ppa 0.13
KB 0.38 PPB 0.3* ppa 0.13
ZN 7.0 ppa 5.0 ppa 0.30
ZR 33 ppa 26 ppa 12
AL 1.0 0.88
CA 1.7 1.5
CL 0.03 0.02
tE 0.53 0.19
K 0.05 0.03
HG 0.11 0.12
NA 0.14 0.06
SI 1.7 1.3
TI 0.05 0.05
ADL 14 12
HOIS 18 16
VOL 44 44
F1XC 46 46
ASH 9.6 » 8.9
BTU/LB 11409 11377
C 67 t 67
H 4.7 4.6
N 1.0 0.98
0 17 17
HTA 9.6 8.9
LTA 12 11
ORS 0.53 0.50
PYS 0.19 0.10
SUS 0.04 0.03
TOS 0.76 0.70
SXRF 0.73 » 0.70
0.31
0.44
0.01
0.30
0.01
0.03
0.01
O.J6
0.02
4.5
4.1
33
35
4.1
10084
56
3.8
0.59
8.6
4.1
4.7
0.25
0.01
0.01
0.34
0.40
Hazlaua
5.7
2.5
43
3.3
0.78
17
170
2.2
3.B
0.13
1.2
0.32
0.39
0.60
4.7
0.13
31
37
53
55
20
12901
74
5.8
1.5
22
20
26
1.1
1.2
0.22
1.9
1.2
Standard
Deviation
1.5
0.65
10
0.65
0.17
4.9
J1
0.56
0.93
0.03
0.24
0.06
0.09
0.16
1.2
0.02
7.3
8.9
3.8
5.3
3.7
872
4.2
0.46
0.22
3.2
3.7
5.1
0.19
0.2M
0.04
0.33
0.20
Nuabar Nuaber
Saaplea Leas Than
Values
22
22
29
22
22
29
26
29
29
29
29
29
29
29
29
29
21
29
29
29
29
22
29
29
29
29
29
29
29
29
27
29
29
-------
U8
TABLE 11—
I.FNKAIi HKCHiCVJlOU (l,KA:;T LXJUAKl!:) CORRELATION COKFFJ CIENT:; OF ANALYTICAL
NATION ON Jl'i COAL SAMPLES FROM THE ILLINOIS BASIN COAL KIKLM
AC AS
BA BE BR CD CE CO CR CS CU DY EU
AG
AS
B
BA
6E
BR
CD
CE
CO
CR
CS
CU
DK
EU
F
GA
GE
HF
HG
I
IN
LA
LU
HN
MO
NI
P
PB
R9
SB
SC
St
iM
3N
SR
TA
Tb
TH
TL
U
V
W
Yh
1.00
0.38
-0.26
0.36
0.02
0.41
-0.02
0.56
0.28
0.51
0.10
0.39
0.66
0.65
0.39
0.37
-0.19
0.60
-0.18
0.49
0.26
0.46
0.31
0.07
-0.40
0.38
0.40
0.27
0.34
0. 19
0.57
0.22
0.62
-0.03
0-39
0. 5t>
0.59
0.58
0.61
0.06
0.33
0.04
U.M'
0.38
1.00
-0.37
0.13
0.17
0.10
-0.03
0.44
0.44
-0.09
0.33
0.42
0.56
0.56
-0.06
0.40
0.30
0.13
0.04
0.64
0.43
0.56
0.30
-0.16
-0.28
0.42
0.26
0.52
0.28
0.60
0.57
-0.05
0.31
-0.00
0.23
0.05
0.55
0.33
-0.09
0.03
-0.04
0. ib
O.'.H
-0.26
-0.37
1.00
0.04
0.01
-0.33
-0.01
-0.22
-0.27
0.05
-0.04
-0.23
-0.43
-0.50
-0.02
-0.01
0.20
-0.02
0.00
-0.31
-0.16
-0.32
-0.08
0.23
0.12
-0.11
-0.26
-0.30
-0.08
-0.04
-0.21
0.04
-0.35
0.06
-0.10
-0.01.
-0.25
-0.09
0.22
0. 14
-0.12
-0.03
-O.PW
0.36
0.13
0.04
1.00
0.12
-0.00
0.87
0.10
0.28
0.18
0.06
-0.02
-0.01
0.05
-0.09
0.17
0.31
0.05
0.43
-0.02
-0.13
0.17
0.03
0.11
0.10
0.25
-0.13
0.04
0.02
0.29
0.18
-0.00
-0.02
-0.08
-0.06
0.23
0.03
0.21
-0. 14
0.08
0.20
-0. 10
O.?1
0.02
0.17
0.01
0.12
1.00
-0.03
0.20
-0.01
0.19
-0.01
-0.05
0.41
0.21
0.10
-0.11
0.33
0.47
-0.05
0.02
0.01
0.03
0.11
-0.01
0.01
-0.14
0.22
0.03
0.32
-0.06
0.29
0.20
-0.06
0.03
-0.00
0.05
-0.26
0.24
-0.07
0.01
-0.05
-0.15
-0.17
o . :'(i
0.41
0.10
-0.33
-0.00
-0.03
1.00
0.01
0.01
0.29
-0.14
-0.27
0.06
0.27
0.19
-0.22
0.01
0.07
-0.09
0.08
0.55
0.07
0.23
-0.10
-0.03
-0.10
0.23
0.09
0.19
-0.27
0.10
O.OE
-0.11
0. 1 1
0.26
0.11
0.01
-0.04
0.12
-0.37
0. 16
0.29
0.15
0.1;'
-0.02
-0.03
-0.01
0.87
0.20
0.01
1.00
-0.14
0.04
'0.06
•0.14
0.11
'0.09
-0.09
-0.14
0.01
0.27
-0.02
0.10
-0.03
-0.21
-0.06
-0.09
0.19
0.09
0.12
-0.14
0.09
-0.23
0.16
0.03
-0.01
-0.20
0.26
-0.09
0.11
-0.05
0.00
-0.48
0.03
-0.01
-0.09
0.02
0.56
0.44
-0.22
0.10
-0.01
0.01
-0.14
1.00
0.20
0.61
0.82
0.20
0.65
0.73
0.45
0.58
-0.19
0.69
-0.07
0.37
0.24
0.67
0.28
-0.15
-0.31
0.15
0.22
0.05
0.79
0.16
0.75
0.05
0.56
-0.11
0.30
0.54
0.73
0.83
0.12
0.08
0.18
-0.01
0.76
0.28
0.44
-0.27
0.28
0.19
0.29
0.04
0.20
1.00
-0.24
-0.00
0.36
0.45
0.31
-0.26
0.19
0.39
0.08
0.32
0.36
0.03
0.45
0.06
-0.16
-0.15
0.69
0.01
0.55
-0.05
0.53
0.46
-0.14
0.18
0.04
0.01
0.12
0.16
0.29
-0.16
0.02
0.03
-0.06
0.49
0.51
-0.09
0.05
0.18
-0.01
-0.14
-0.06
0.61
-0.24
1.00
0.55
0.02
0.33
0.37
0.31
0.28
-0.22
0.45
-0.06
0.11
0.07
0.35
0.21
-0.01
0.06
-0.01
0.01
-0.20
0.53
-0.09
0.45
0.33
0.34
-0.23
0.11
0.51
0.25
0.54
0.44
0.28
0.30
-0.02
0 . HI)
0.40
0.33
-0.04
0.06
-0.05
-0.27
-0.14
0.82
-0.00
0.55
1.00
0.06
0.45
0.54
0.47
0.52
-0.16
0.72
-0.11
0.12
0.16
0.43
0.36
-0.21
-0.23
0.01
0.04
-0.16
0.92
-0.01
0.70
0.12
0.43
-0. 16
0.11
0.56
0.64
0.77
0.45
0.11
0.07
0.02
0.60
0.39
0.42
-0.23
-0.02
0.41
0.06
0.11
0.20
0.36
0.02
0.06
1.00
0.50
0.46
0.01
0.40
0.27
0.17
0.03
0.37
0.20
0.22
0.05
-0.01
-0.19
0.42
0.14
0.38
-0.07
0.40
0.35
0.06
0.22
0.06
0.24
-0.13
0.57
0.15
0.18
-0.15
-0.08
0.05
0.4H
0.66
0.56
-0.43
-0.01
0.21
0.27
-0.09
0.65
0.45
0.33
0.45
0.50
1.00
0.87
0.16
0.70
-0.06
0.46
-0.04
0.64
0.42
0.73
0.25
-0.10
-0.24
0.40
0.30
0'.29
0.40
0.29
0.74
0.02
0.65
0.09
0.35
0.30
0.63
0.60
0.10
0.03
0.25
0.23
O.B1
0.65
0.56
-0.50
0.05
0.10
0.19
-0.09
0.73
0.31
0.37
0.54
0.46
0.87
1.00
0.31
0.58
-0.25
0.48
-0.11
0.55
0.47
0.74
0.34
-0.04
-0.30
0.26
0.34
0.13
0.45
0.21
0.69
0.09
0.71
0.03
0.36
0.39
0.68
0.58
0.06
-0.07
0.15
0.21
O.B3
0.39
-0.06
-0.02
-0.09
-0.11
-0.22
-0.14
0.45
-0.26
0.34
0.47
0.01
0.16
0.31
1.00
0.06
-0.36
0.52
-0.18
-0.17
-0.19
-0.00
-0.04
-0.05
0.01
-0.18
0.38
-0.25
0.45
-0.25
0.31
0.19
0.2B
-0.13
0.14
0.43
0.55
0.36
0. 19
0.18
-0.02
0.05
0.31
-------
1*9
TABLE 11—Continued
AC AS B BA BE Bfl CD CE CO CR CS CU DK EU
ZN
ZR
AL
CA
CL
FE
K
MG
MA
SI
TI
AOL
(CIS
VOL
FIXC
ASH
BTU
C
H
N
0
HTA
LTA
ORS
ftS
sus
TOS
SXRF
-0.03
0.25
0.60
-0.13
0.19
-0.10
0.55
O.H5
0.14
0.16
0.414
-0.01
-0.22
-0.44
-0.06
0.51
-0.24
-0.19
-0.23
-0.14
0.10
0.51
0.38
-0.26
-0.04
0.07
-0.14
-0.23
0.01
-0.17
-0.02
-0.17
0.03
0.19
0.15
-0.13
-0.24
-0.22
-0.04
-0.06
-0.15
-0.31
0.29
-0.05
0.21
0.30
-0.06
0.27
-0.15
-0.06
-0.08
-O.U5
0.16
-0.07
-0. 14
-0.18
-0.06
-0.10
0.17
0.14
-0.34
0.01
-0.17
0.05
0.33
0.24
0.03
0.68
0.56
0.54
-0.52
0.11
-0.52
-0.50
0.02
-0.40
0.51
0.15
0.16
0.52
-0.07
-0.10
0.23
0.31
0.72
0.59
0.23
0.44
-0.08
-0.20
0.11
0.03
0.13
0.17
0.21
0.11
0.36
-0.04
-0.07
0.10
-0.17
-0.11
-0.15
-0.04
0.26
0.11
0.08
-0.07
-0.30
0.06
-0.24
-0.21
0.20
-0.05
0.05
-0.21
-0.27
0.25
-0.00
-0.06
-0.23
-0.13
0.07
0.14
0.07
0.28
-0.17
-0.12
0.15
0.08
0.11
-0.17
-0.01
-0.07
0.01
0.02
0.08
0.09
0.10
0.13
0.03
0.23
0.06
0.09
0.39
-0.16
-0.04
-0.10
0.12
0.04
0.09
0.06
0.05
-0.24
0.28
-0.11
0.23
0.30
-0.14
0.23
-0.04
-0.10
-0.06
-0.27
-0.29
-0.15
-0.36
-0.37
0.94
0.28
0.03
0,39
-0.16
-0.02
-0.10
-0.08
-0.05
-0.00
0.06
0.14
0.29
0.23
-0.19
-0.02
-0.06
-0.05
0.02
-0.12
0.11
-0.01
0.05
.0.12
-0.13
-0.06
-0.04
0.04
-0.12
0.15
0.56
-0.17
0.06
-0.07
0.7»
0.49
0.00
0.46
0.33
-0.41
-0.25
-0.63
0.15
0.48
-0.26
-0.14
-0.34
-0.18
0.14
0.47
0.3«
-0.30
0.04
0.15
-0.10
-0.09
0.09
0.12
-0.07
-0.10
0.06
0.17
-0.09
-0.20
-0.21
-0.22
-0.08
0.01
-0.02
-0.23
0.33
-0.22
0.36
0.32
-0.02
0.24
-0.11
-0.20
-0.16
-0.40
0.00
0.04
-0.20
-0.25
0.01
0.01
0.44
-0.11
-0.07
-0.10
0.56
0.41
0.23
0.47
0.34
-0.08
-0.02
-0.19
-0.10
0.41
-0.41
-0.39
-0.21
-0.31
0.29
0.40
0.31
0.10
-0.07
0.32
0.05
0.10
-0.15
0.06
0.44
-0.21
-0.15
-0.03
0.70
0.51
-0.02
0.36
0.24
-0.31
-0.19
-0.41
0.01
0.40
-0.30
-0.21
-0.10
-0.25
0.07
0.40
0.30
-0.07
0.11
0.15
0.07
0.10
0.18
0.01
0.12
-0.15
-0.16
0.19
0.12
-0.03
-0.20
-0.08
0.06
0.09
-0.03
-0.06
0.05
-0.00
0.11
0.13
-0.02
-0.04
-0.10
0.03
0.12
-0.19
0.12
0.01
-0.01
-0.03
-0.03
0.08
0.55
-0.20
0.06
0.04
0.74
0.41
-0.18
0.40
0.40
-0.25
-0.37
-0.59
0.11
0.50
-0.17
0.01
-0.27
0.05
-0.14
0.50
0.35
-0.35
'0.06
0.02
-0.13
-0.16
-0.07
0.16
0.46
-0.16
0.09
0.03
0.75
0.39
-0.10
0.38
0.29
-0.40
-0.44
-0.62
0.10
0.54
-0.18
-0.03
-0.25
0.02
-0.20
0.54
0.36
-0.35
0.10
0.01
-0.10
-0.12
-0.16
-0.17
0.28
-0.10
-0.04
-0.06
0.32
• 0.23
0.01
0.21
0.08
-0.31
-0.20
-0.09
-0.09
0.26
-0.16
-0.22
-0.09
-0.22
-0.03
0.25
0.15
0.08
0.16
0.10
0.17
0.16
-------
50
TABLE 11—Continued
CA GE HF KG I IN LA LU HN MO NI P PB RB SB
AC
AS
B
BA
BE
BR
CD
CE
CO
CR
CS
CU
or
EU
F
CA
CE
HF
HG
I
IN
LA
LU
HN
MO
NI
P
Pb
RB
Sti
SC
st:
SM
SN
SR
TA
TB
TH
TL
U
V
W
YB
0.37
0.10
-0.01
0.17
0.33
0.01
0.01
0.58
0.19
0.28
0.52
0.10
0.70
0.58
0.08
1.00
0.22
0.32
0.17
0.60
0.32
0.75
0.27
-0. 16
-0. 18
o.io
0.07
0. 17
0.52
0.3H
0.75
0.05
0.45
-0.05
0.15
0.27
O.IH
0.55
0. 19
0. 15
I). 11
0.23
0.59
-0.19
0.30
0.20
0.31
0.17
0.07
0.27
-0. 19
0.39
-0.22
-0.16
0.27
-0.06
-0.25
-0.36
0.22
1.00
-0.12
0.18
-0.09
-0.07
-0.09
-0.03
0.21
-0.00
0.12
-0. IB
0.52
-0. 17
O.bt)
0.02
-0. 16
-0.32
0. 17
-0.06
-0.26
-0.03
0.01
-0.06
-0.01
-O.OB
-0. 12
0.03
0.60
0.13
-0.02
0.05
-0.05
-0.09
-0.02
0.69
0.08
0.15
0.72
0.17
0.16
0.18
0.52
0.32
-0.12
1.00
-0.05
0.16
0.01
0.33
0.26
-0.06
-0.27
0.03
0. 12
-0.01
0.62
Q.Ot,
0.61
0.21
0.35
-0. 12
0. 16
0.51
0.71
0.68
0.28
0.02
0. 19
0.06
0.51
-0.18
0.01
0.00
0.13
0.02
0.08
0.10
-0.07
0.32
-0.06
-0.11
0.03
-0.01
-0.11
-0.18
0.17
0.18
-0.05
1.00
0.01
-0.03
0.09
-0.01
-0.13
-0.09
0.10
0. 11
0. 17
-0. lb
0.31
-0.02
-0.12
-0. 11
-0.01
0.01
-0.09
0.03
0.05
0.29
-0.01
O.Ot)
-0.06
0.01
0.19
0.61
-0.31
-0.02
0.01
0.55
-0.03
0.37
0.36
0.11
0.12
0.37
0.61
0.55
-0.17
0.60
-0.09
0.16
0.01
1.00
0.15
0.61
0.20
-0.16
-0.17
0.11
0.0
-------
51
TABLE 11—Continued
GA GE HF KG I IN LA LU MN MO NI P PB RB SB
IN
ZR
AL
CA
CL
FE
K
MC
NA
SI
TI
ADL
HOIS
VOL
FIXC
ASH
BTU
C
H
N
0
HTA
L.TA
ORS
PYS
SUS
TOS
SXRF
0.05
0.06
0.11
-0.21
-0.21
-o.o4
0.50
0. 14
-0.10
0.16
0.32
0. 11
0.01
-0.21
0.03
0.22
-0.16
-0.04
-0. 19
-0.03
0. 17
0.20
0.13
-0. 11
-0.07
0.07
-0. 12
-0.07
0.23
-0.10
-0.11
0.07
-0.31
0.29
-0.23
-0.09
-0.19
-0.19
-0.12
0.10
0.36
0.37
-0.21
-0.12
0.03
0.07
0.09
-0.11
-0.05
-0.09
0.03
0.07
0.11
-0.09
0. 11
0. 18
-0.01
0.22
0.51
-0.11
-0.07
0.06
0.63
0.54
0.03
0.51
0.31
-0.17
-0.15
-0.31
-0.20
0.56
-0.11
-0.39
-D.20
-0.29
0.01
0.56
0.17
-0.05
0.17
0.02
0.10
0.06
0.12
0.03
-0.08
-0.12
-0.05
-0.17
-0.02
-0.09
-0.13
-0.15
-0.05
0.08
0. 16
-0.09
0.15
-0.13
0.13
0.11
-0.01
0. 10
0.08
-0.25
-0.29
-0.25
-0.11
-0.05
-0.29
-0.25
0.02
0.07
0.18
-0.10
0.21
-0.00
0.16
0.03
-0.07
0.28
0.36
0.19
-0.21
-0.56
0.22
0.3«
-0.05
0.18
-0.29
0.15
0.01
0.3"
0.19
-0.35
-0.08
-0.13
-0.26
-0.26
-0.21
-0.13
0.19
-0.11
-0.01
-0.01
0.31
0.08
-0.16
0.05
0.17
-0.01
-0.37
-0.37
0.23
0.11
-0.01
0.19
0.06
0.19
-0.10
0. 11
-0.01
-0.21
-0.06
-0.07
-0.16
-0.16
-0.04
0.21
0.65
-0.29
0.01
-0.05
0.71
0.31
-0.04
0.49
0.57
-0.06
-0.16
-0.70
0.30
0.41
-0.22
0.04
-0.25
0.13
0.08
0.41
0.21
-0.48
-0.17
0.08
-0.36
-0.40
-0.06
0.06
0.21
-0.10
-0.10
-O.f3
0.35
0.18
-0.11
0.08
0.20
-0.01
-0.20
-0.37
0.22
0.13
-0.07
0.05
0.21
0.07
0.01
0.13
0.02
-0.18
-0.12
0.02
-0.18
-0.17
0.15
-0.13
-0.06
0.65
-0.18
0.08
-0.13
0.24
0.09
0.18
-0.04
0.17
0.19
0.24
-0.46
0.39
-0.37
-0.33
-0.12
-0.23
-0.05
0.39
0.40
0.23
0.01
0.03
0.14
0.17
0.18
0.20
0.05
0.11
-0.21
0.33
-0.21
0.14
-0.02
0.06
-0.09
-0.06
-0.04
0.21
-0.28
0.15
-0.20
-0.27
-0.03
-0.28
-0.12
0.19
0.22
0.52
0.33
0.01
0.52
0.49
0.18
-0.02
0.22
-0.16
-0.07
-0.07
0.13
0.03
-0.17
0.06
0.24
0.18
0.18
-0.31
0.28
-0.03
0.09
0.17
-0.20
0.16
0.06
-0.03
-0.07
-0.40
-0.16
-0.08
-0.33
-0.35
-0.16
-0.15
0.10
-0.22
0.11
-0.16
0.16
0.02
-0.14
-0.10
0.06
-0.12
-0.16
-0.18
0.23
-0.11
0.22
0.19
0.00
0.09
-0.03
-0.17
-0.23
-0.32
-0.10
0.02
-0.26
-0.30
0.14
-0.09
-0.09
0.01
-0.00
0.24
-0.12
-0.12
-0.30
-0.21
-0.01
0.06
0.05
-0.09
0.10
-0.03
0.15
0.21
-0.02
0.04
-0.27
-0.05
-0.04
-0.26
0.16
-0.11
-0.06
-0.10
-0.21
0.01
0.41
-0.25
-0.13
-0.04
0.67
0.46
-0.01
0.34
0.24
-0.27
-0.17
-0.43
0.11
0.30
-0.24
-0.16
-0.15
-0.25
0.13
0.30
0.27
-0.05
0.06
0.22
0.05
0.07
0.17
-0.04
-0.05
-0.06
-0.14
0.16
0.01
-0.11
-0.18
-0.13
-0.02
0.19
0.16
-0.05
0.06
-0.05
0.06
0.14
-0.04
0.12
-0.03
-0.05
-0.05 .
-0.25
0.04
-0.04
-0.11
-0.13
-------
TABLE 11—Continued
SC SE SM SN SR TA TB TH TL U V W Yb ZN ZR
AG
AS
B
BA
BE
BR
CD
CE
CO
CR
CS
a
DY
EU
P
GA
GE
HF
HG
I
IN
LA
LU
MN
MO
NI
P
PB
RB
SB
SC
SE
S*1
SN
SR
TA
TB
TH
TL
I
V
W
KB
0.57
0.57
-0.21
0. 18
0.20
0.08
. 0.03
x 0.75
0.46
0.45
0.70
0.35
0.74
0.69
0.31
0.75
0.02
0.64
-0.02
0.43
0. 16
0.64
0.31
-0. 11
-0.23
0.40
0. 10
0. 18
0.61
0.26
1.00
0. 11
0.50
-0.03
0.26
0.51
0.72
0.73
0.00
0.08
0.20
0. 12
0.83
0.22
-0.05
0.04
-0.00
-0.06
-0. 11
-0.01
0.05
-0.14
0.33
0.12
0.06
0.02
0.09
0.19
0.05
-0.16
0.24
-0.12
0.06
-0.17
0.04
0.01
-0.01
0.18
0.01
-0.02
-0. 13
0.09
-0.00
0.11
1.00
0.01
-0. 17
-0. 10
0.33
0.13
0. 10
0. 14
0.38
0.38
0.18
0.07
0.62
0.31
-0.35
-0.02
0.03
0.11
-0.20
0.56
0. 18
0.31
0.13
0.22
0.65
0.71
0.28
0.15
-0.32
0.35
-0. 11
0.27
0.32
0.61
0.21
-0.07
-0.33
0.20
0.38
0. 12
0.11
0.12
0.50
0.01
1 .00
0.68
0.26
0.41
0.45
0.44
0.44
-0.03
0.28
0.2?
0.56
-0.03
-0.08
0.06
-0.08
-0.00
0.26
0.26
-0.11
0.04
-0.23
-0.16
0.06
0.09
0.03
-0.13
-0.05
0.17
-0.12
-0.01
0.07
0.10
0. 14
-0.08
0.15
-0.01
0.02
-0.10
0.02
-0. 11
-0.05
-0.03
-0.17
0.68
1.00
-0.05
0. 10
-0.07
-0.04
0.72
-0.13
0.16
0. 12
-0.05
0.39
0.23
-0.10
-0.06
0.05
0. 11
-0.09
0.30
0.01
0.11
0.11
0.24
0.35
0.36
0. 11
0.15
-0.06
0.16
0.01
0.25
0.11
0.31
0.06
-0.11
-0.32
0.01
0.64
0. 12
0.13
0. 10
0.26
-0.10
0.26
-0.05
1.00
0.01
0.38
0. 14
-0.08
-0.04
-0.08
-0. 12
0.24
0.36
0.05
-0.04
0.23
-0.26
0.01
0. 11
0.54
0.12
0.51
0.56
-0.13
0.30
0.39
0.43
0.27
-0.26
'0.51
-0.09
0.03
-0.10
0.42
0.12
-0.19
0.07
0.10
-0.03
-0.20
0.51
-0.08
0.51
0.33
0.41
0. 10
0.01
1.00
0.24
0.62
0.25
0. 17
0.33
0.31
0.39
0.59
0.55
-0.25
0.03
0.24
-0.04
-0.05
0.73
0.16
0.25
0.64
0.57
0.63
0.68
0.55
0.44
-0.03
0.74
0.03
0.35
0.13
0.38
0.11
0.04
-0.20
0.13
0.27
0.10
0.56
0.26
0.72
0.13
0.15
-0.07
0.38
0.21
1.00
0.60
0.22
0.02
0.02
0.17
0.76
0.58
0.33
-0.09
0.21
-0.07
0.12
0.00
0.83
0.29
0.51
0.77
0.15
0.60
0.58
0.36
0.55
0.01
0.68
0.05
0.32
0.12
0.57
0.22
-0.07
-0.16
0.32
0.02
0.15
0.70
0. 16
0.73
0. 10
0.11
-O.O'i
o.n
0.6,-?
O.ju
1.00
0.2(1
0. 1«
0.30
-0.07
0.70
0.61
-0.09
0.22
-0.14
0.01
-0.37
-0.18
0.12
-0.16
0.14
0.45
0.18
0.10
0.06
0.19
0.19
-0.06
0.28
0.29
-0.16
0.20
0.07
0.02
-0.10
0.43
-0.01
-0.19
0.19
0.46
-0.03
0.00
0.14
0.44
0.72
-0.08
0.25
0.22
0.20
1.00
0. 18
0.49
0.46
0.03
0.06
0.03
0.14
0.08
-0.05
0.16
0.03
0.08
0.02
0.28
0.11
-0.15
0\03
-0.07
0.18
0.15
-0.01
0.02
-0.01
0.03
-0.25
-0.03
-0. 11
-0.13
0.36
0.07
-0.08
-0.03
0. 16
0.21
0.08
0.38
-0.03
-0.13
-0.04
0.17
0.02
0. 18
0. 18
1.00
0.55
0.23
0.03
0.33
-0.04
-0.12
0.20
-0.15
0.29
-0.01
0.18
0.03
0.30
0.07
-0.08
0.25
0.15
-0.02
0.11
-0.08
0.19
0.06
0.32
-0.05
0.38
0.00
0.05
0.25
0. 12
-0.06
0.02
0.09
0.11
0.20
0.38
0.26
0. 16
-0.08
0.33
0.02
0.30
0.49
0.55
1.00
0.13
0.16
0.09
0.16
-0.03
-0.10
-0.17
0.15
-0.09
-0.01
-0.06
-0.02
0.02
0.05
0.23
0.21
0.05
0.23
-0.12
0.06
-0.06
0. 19
0.06
0. 14
0. 12
-0.05
0.17
0.01
-0.08
-0.17
-0.01
0. 18
0. 12
0.48
0.22
0.12
-0.12
0.31
0. 17
-0.07
0.46
0.23
0.43
1 .00
0.09
0.66
0.58
-0.29
0.21
0.26
0.12
0.02
0.76
0.49
•0.46
0.60
0.48
0.81
0.83
0.31
0.59
0.03
0.54
0.01
0.43
0.30
0.61
0.27
0.07
-0.15
0.40
0.23
0.24
0.47
0.34
0.83
0.07
0.56
-0.05
0.21
0.39-
0.76:
0.70
0.03
0.03
0.16
0.09
1.00
-0.03
0.01
-0.06
0.72
0.20
0.03
0.91
-0.12
0.09
0.01
-0.15
0.18
-0.03
-0.07
-0.16
0.05
0.23
-0.04
0.12
0.02
-0.21
-0.04
-0.06
0.15
0.18
0.18
-0.16
0.14
-0.21
0.17
0.08
-0.00
• -0. 16
0.20
-9 -'08
.'••0',iJ4;
'-0:04
0.03
-0.22
0.19
0.04
-0.12
0.07
0.25
-0.17
-0.10
0.59
-0.05
0.23
0.28
0.15
0.12
0.01
0.06
0.01
0.08
0.16
-0.17
0.06
-0.10
0.22
0.03
0.07
-0.13
0.24
0.06
-0.13
0.20
-0.02
-0.15
-0.09
0.01
-0.04
0.20
-0.03
0. 16
-0.01
-0.09
••0.43
-0.13
0.22
0.06
0.03
0.24
0.05
0. 19
-------
53
TABLE 11—Continued
SC SE SM SN SR T» TB TH TL U V W YB ZN ZR
ZN
ZR
AL
CA
a
FE
K
MC
NA
SI
TI
AOL
HOIS
VOL
FIXC
ASH
BTU
C
H
H
0
HTA
LTA
ORS
PY3
SUS
TOS
SXRF
O.OB
0.20
0.54
-0.15
-0.01
0.05
0.6B
0.43
-0. 11
0.13
0.37
-0.22
-0.20
-0.60
0.07
0.5*
-0.33
-0.13
-0.23
-0.11
-0.05
0.51
0.10
-0.32
0. 11
0.05
-0.07
-0.08
-0.00
-0.03
0.20
-0.06
-0.03
0.06
0. 16
0.08
0.13
0.23
0.10
-0.00
-0.05
-0.01
-0.22
0.40
-0.32
-0.31
-0.07
-0.21
-0.06
0.37
0.36
0. 11
0.29
0.05
0.27
0.23
-0. 16
0.16
0.30
-0.18
0.01
0.11
0.60
0.17
-0.07
0.11
0.16
-0.33
-0.38
-0.57
0.12
0.19
-0.31
-0.23
-0.31
0.01
0.01
0.19
0.37
-0.25
-0.00
0.52
-0.05
-0.15
0.20
-0.01
-0.11
0.23
0.08
0.20
-0.19
-0.11
0.21
0.03
0.05
0.26
0.25
0.23
-0.15
0.01
-0.16
-0.11
-0.11
0.00
0.06
0.05
0.31
0.03
0.05
0. IB
0.06
0.05
-0.08
-0.09
0.15
-0.03
0.21
-0.03
0. 19
0.08
0.07
0.08
0.02
0.06
-0.11
-0.08
0.06
0.01
0.10
0.13
0.07
-0.06
0.01
0.01
-0.06
-0.15
-0. HI
-0.01
-0.18
-0.18
0.01
0.13
0.36
-0.09
-0.02
-0.02
0.51
0.39
0.21
0.56
0.28
-0.30
-0.07
-0.32
-0.13
0.50
-0.48
-0.11
-0.29
-0.08
0.06
0.50
0.16
-0.02
0.10
0.20
0.09
0.00
-0.01
-0.13
0.32
-0.06
-0.03
0.27
0.17
0.13
-0.30
0.17
0.08
-0.46
-0.16
-0.37
-0.01
0.16
-0.05
-0.08
-0.23
-0.30
-0.13
0.16
0.35
-0.27
0.11
-0.06
0.15
0.17
0.03
0.22
0.69
-0.01
0.01
-0.09
0.69
0.55
O.OK
0.59
0.18
-0.18
0.02
-0.51
-0.01
0.57
-0.15
-0.28
-0.37
-0.22
0.13
0.57
0.15
-0.17
-0.02
0.17
-0.08
-0.12
-0.22
0.06
0.25
-0.28
-0.31
0.78
0.32
0.61
0.19
0.56
0.41
0.29
-0.06
0.30
-0.53
0.61
-0.71
-0.76
-0.35
-0.37
0.30
0.62
0.68
0.62
0.62
0.52
0.76
0.66
0. 19
0.03
0.05
0.09
-0.05
-0.10
0.12
0.13
0.12
0.13
0.02
-0.03
0. 16
0.06
-0.17
0.11
-0.19
-0.17
-0.14
-0.15
0.12
0.11
0.16
0.26
-0.01
0.10
0.11
0.18
0.01
0.21
0.34
0.11
0.09
-0.00
0.33
0.39
0.13
0.18
0.42
-0.05
0.01
-0.31
0.03
0.39
-0.29
-0.22
-0.24
0.02
0.03
0.10
0.33
-0.07
-0.06
0.15
-0.05
-0.10
-0.12
0.05
-0.03
-0. 14
0.11
0.20
0.18
-0.01
0.18
0.12
0.03
-0.01
-0.33
-0.21
-0.01
0.25
-0.11
-0.17
-0.03
0.15
0.01
0.25
0.23
0.03
0.23
0.02
0.20
0.09
0.07
0. 19
0.50
-0.12
0.03
0.09
0.62
0.16
-0.15
0.36
0.29
-0.30
-0.29
-0.56
0.04
0.53
-0.23
-0.12
-0.31
-0.14
-0.04
0.53
0.40
-0.33
0.16
0.05
-0.05
-0.06
1.00
0.19
0.03
0.31
-0.14
-0.06
-0.08
-0.05
-0.07
-0.01
0.04
0.08
0.25
0.11
-0.11
-0.01
-0.06
-0.02
-0.05
-0.10
0.06
0.00
0.08
0. 10
-0.16
-0.02
-0.07
0.01
0. 19
1.00
0.11
0.06
0.12
0.13
0.01
0.09
0.17
0.16
0.12
0.04
0.04
-0.01
0.01
0.01
-0.02
-0.05
-0.13
0.07
0.05
0.04
0.12
0.08
-0.08
0.05
-0.02
-0.02
-------
TABLE 11—Continued
AL CA CL FE K MG NA SI TI ADL MOIS VOL FIXC ASH BTU
AC
AS
B
BA
BE
BR
CD
CE
CO
CR
CS
CU
DY
EU
F
CA
GE
HF
HG
I
IN
LA
LU
HN
MO
NI
P
PB
RB
SB
SC
SE
SM
SN
SR
TA
TB
TH
TL
U
V
H
KB
0.60
-0.02
0.17
0.23
0.05
0.06
0.03
0.56
-0.07
0.44
0.44
0.12
0.55
0.1)6
0.28
O.M1
-0. 11
0.51
-O.OB
O.US
0. 19
0.65
0.24
-0.06
0.05
0.22
0. 10
-0.09
0.11
-0.05
0.54
0.20
0.30
-0. 11
0.15
0.36
0.32
0.69
0.25
0.05
0.34
-0.03
0.50
-0.13
-0.17
0. 11
0.41
-0.21
0.09
0.39
-0.17
-0.10
-0.11
-0.21
-0.15
-0.20
-0.16
-0.10
-0.21
0.07
-0.11
-0.12
-0.10
-0.11
-0.29
-0. 10
0.65
0.11
-0.16
-0.22
0.01
-0.25
-0.06
-0.15
-0.06
-o. ia
0.23
-0.03
-0.09
-0.06
-0.01
-0.28
0.09
0. 11
-0.11
-0.12
0.19
0.03
-0.31
-0.08
-0.27
0.39
-0.16
0.06
0.06
-0.07
-0.15
-0.16
0.06
0.09
-0.01
-0.21
-0.31
-0.07
-0.05
0.21
-0.01
0.01
-0.10
-0.18
-0.21
-0.07
0.11
-0.00
-0.13
-0. 11
-0.01
-0.03
o.oi
0.08
0.21
-0.0?
-0.03
0.01
-0.31
-0.05
0.09
0.11
0.03
-0.10
0.19
0.01
-0.20
0.25
-0.16
-0.02
-0.07
0.17
-0. 10
-0.03
0.19
0.01
0.03
-0.06
-0.01
0.29
0.06
-0.17
-0.00
-0.01
-0.05
-0.13
0.08
0.33
-0.07
-0.16
0.21
-0.01
0. 16
0.05
0.06
0. 11
0.20
-0.03
-0 . Oi!
0.27
-0.09
0.78
-0. 1C
-0.00
0.20
0.09
0.55
0.15
-0.17
0.11
-0.00
-0.01
-0.10
0.71
-0.09
0.56
0.70
0.12
0.71
0.75
0.32
0.50
-0.23
0.63
-0.02
0.16
0.31
0.71
0.35
-0.13
-0.21
0.13
0.16
-0.12
0.67
0.01
0.68
0.16
0.60
-0.19
0.19
0.51
0.17
0.69
0.32
0.12
0.33
0.18
0.62
0.15
-0.13
0.05
0.03
-0.06
-0. 10
-0.08
0.19
-0.20
0.11
0.51
-0.03
0.11
0.39
0.23
0.14
-0.09
0.51
-0.09
0.03
0.08
0.31
0.18
0.21
0.11
0.03
0.02
-0.12
0.16
-0. 11
0.13
0.08
0.17
-0.11
0.08
0.39
0.13
0.55
0.61
0.13
0.39
-0.01
0.16
0.11
-0.21
0.33
0.13
-0.23
0.12
-0.05
0.00
-0.21
0.23
-0.02
-0.20
-0.18
-0.10
0.01
-0.10
-0.19
0.03
-0.13
-0.07
-0.16
-0.01
-0.11
0.09
-0.02
-0.17
-0.11
-0.30
-0.01
-0.18
-0.11
0.13
-0.07
0.21
0.07
0.21
-0.30
0.01
0.19
0.12
0.13
0.18
-0.15
0.16
-0.22
0.21
0.17
-0.13
0.01
-0.00
0.46
-0.22
0.17
0.36
-0.08
0.40
0.38
0.21
0.16
-0.18
0.54
-0.15
0.28
0.05
0.49
0.08
0.18
0.06
0.06
-0.10
-0.21
0.34
-0.13
0.43
0.23
0.11
0.01
O.Oti
0.56
0. 17
0.59
0.56
0.13
0.18
0.1^
0.36
0.14
-0.01
0.03
0.21
0.07
0.09
0.06
0.33
-0.08
0.34
0.24
0.06
0.40
0.29
0.08
0.32
-0.12
0.34
-0.05
0.36
0.17
0.57
0.20
-0.04
-0.09
0.24
0.06
-0.01
0.24
-0.02
0.37
0. 10
0.46
0.05
0.02
0.28
0.08
0.48
0.41
0.02
0.12
0.03
0.29
-0.01
-0.06
0.68
0.11
0.11
0.06
0.14
-0.41
0.01
-0.08
-0.31
0.09
-0.25
-0.40
-0.31
0.11
0.40
-0.17
0.08
0.19
-0.01
-0.06
-0.04
0.17
-0.06
0.18
-0.12
0.06
-0.27
0. 19
-0.22
-0.00
-0.33
0.26
0.06
-0.30
-0.46
-0.18
0.29
-0.03
-0.05
-0.01
-0.30
-0.22
-0.15
0.56
0.36
0.07
0.05
0.29
-0.25
-0.02
-0.02
-0.19
-0.03
-0.37
-0.44
-0.20
0.01
0.38
-0.15
0.16
-0.21
-0.37
-0.16
-0.20
0.19
-0.04
0.18
-0.16
0.05
-0.17
0.16
-0.20
-0.05
-0.38
0.25
-0.11
-0.07
-0.46
0.02
-0.06
0. 16
0.01
-0.33
-0.29
-0.41
-0.31
0.51
-0.04
0.28
-0.24
0.23
-0.63
-0.23
-0.19
-0.41
-0.06
-0.59
-0.62
-0.09
-0.21
0.37
-0.34
-0.09
-0.56
-0.37
-0.70
-0.37
0.24
0.21
-0.31
-0.18
-0.09
-0.43
-0.05
-0.60
-0.01
-0.57
0.?3
-0.08
-0.32
-0.37
-0.51
0.30
0.06
-0.31
-0.21
-0.56
-0.08
0.29
-0.52
-0.07
-0.17
0.28
-0.19
0.15
0.33
-0.10
0.01
0.05
0.11
0.10
-0.09
0.03
-0.21
-0.20
0.15
0.22
0.23
0.30
0.22
-0.16
-0.28
0.28
0.23
0.10
0.11
0.06
0.07
-.0.22
0.12
-0.15
0.06
-0.13
-0.01
-0.01
-0.53
-0.17
0.03
-0.01
0.01
0.51
-0.05
0.11
0.10
-0.12
-0.11
-0.02
0.48
-0.22
0.41
0.40
-0.00
0.50
0.54
0.26
0.22
-0.12
0.56
-0.13
0.34
0.14
0.41
0.13
0.39
0.15
-0.03
-0.11
-0.03
0.30
-0.05
0.54
0.40
0.49
0.01
0.01
0.50
0.16
0.57
0.61
0.11
0.39
0.25
0.53
-0.24
0.21
-0.52
-0.17
0.15
0.23
-0.06
-0.26
0.36
-0.41
-0.30
0.11
-0.17
-0.18
-0.16
-0.16
0.03
-0.41
0.13
-0.05
-0.01
-0.22
-0.07
-0.37
-0.20
0.09
0.22
0.15
-0.24
0.06
-0.33
-0.32
-0.34
-0.16
0.10
-0.48
-0.05
-0.45
-0.71
-0.19
-0.29
-0.11
-0.23
-------
55
TABLE 11—Continued
AL CA CL FE K hG NA SI TI AOL HOIS VOL FiXC ASH BTU
ZN
If,
AL
CA
CL
FE
K
HG
NA
SI
TI
ADL
M01S
VOL
FIXC
ASH
BTU
C
H
N
0
HTA
LTA
OHS
PJS
SUS
TOS
SXHf
0.03
0.11
1 .00
-0.10
-0.13
-0.11
0.65
0.18
O.OS
0.76
0.77
0.15
0.11
-0.30
-0.06
0.18
-0.16
-0.33
-0.29
-0.08
0.30
0.50
0.37
0.00
-0.23
0.05
-0. 12
-0.15
0.31
0.06
-0.10
1.00
-0.07
-0.11
-0.21
0.13
0.05
0.09
-0.11
0.11
O.lb
0.12
-O.J9
0.30
-0.26
-0.19
-0.10
-0.13
-0.12
0.29
0.27
0.19
-0.09
-0.01
0.05
0.05
-0.11)
0.12
-0.13
-0.07
1.00
-0.26
-0.09
-0.18
O.'i48
-0.13
-0.07
-0.29
-0.27
-0.3«
0.11
-0.19
0.37
0.35
-0.01
0.41
-0.12
-0.21
-0.30
-0.12
-0.19
-o.ob
-0.37
-0.11
-0.06
0.13
-0.11
-0.11
-0.26
1.00
-0.21
0.02
-0.11)
-0.10
-0.12
0.07
-0.13
0.20
-0.34
0.17
-0.07
-0.26
0.03
-0.27
-0.19
0.22
0.12
0.3)
0.72
0.16
0.70
0.62
-O.Otl
0.01
0.65
-0.21
-0.09
-0.21
1.00
0.49
0.01
0.68
0.64
-0.18
-0.16
-0.50
0.10
0.50
-0.37
-0.20
-0.2B
-0.00
0.17
0.52
0.31
-0. 19
-0.21
0.17
-0.19
-0.21
-0.05
0.09
0.18
0.13
-0.18
0.02
0.49
1.00
-0.01
0.58
0.44
-0.06
-0.05
-0.26
-0.08
0.47
-0.3H
-0.34
-0.19
-0.16
0.04
0.19
0.37
0.09
-0.07
0.18
0.05
0.05
-0.07
0.17
0.09
0.05
0.48
-0.14
0.01
-0.01
1.00
0.27
0.04
0.27
0.24
0.12
-0.20
0.14
-0.28
-0.28
-O.OS
-0.01
0.30
0.17
0.11
0.18
-0.22
0.06
-0.02
0.02
-0.01
0.16
0.76
0.09
-0.13
-0.10
0.68
0.58
0.27
1.00
0.76
0.12
0.10
-0.23
-0.26
0.70
-0.72
-0.59
-0.41
-0.14
0.30
0.73
0.60
0.16
-0.22
0.16
0.00
-0.03
0.04
0.12
0.77
-0.11
-0.07
-0.12
0.64
0.44
0.04
0.76
1.00
0.11
0.07
-0.40
0.10
0.40
-0.41
-0.25
-0.31
0.04
0.25
0.44
0.32
-0.13
-0.34
0.14
-0.24
-0.30
O.OB
0.04
0.15
0.11
-0.29
0.07
-0.18
-0.06
0.27
0.12
0.11
1.00
O.U2
0.40
-0.36
0.08
-0.36
-0.33
-0.05
-0.31
0.41
O.OB
0.14
0.33
-0.11
-0.08
0.10
0.14
0.25
0.04
0.11
0.18
-0.27
-0.13
-0.16
-0.05
0.24
0.10
0.07
0.82
1.00
0.44
-0.35
-0.05
-0.32
-0.20
-0.10
-0.20
0.35
-0.04
0.06
0.30
-0.24
-0.14
-0.03
0.06
0.14
-0.04
-0.30
0.12
-0.34
0.2B
-0.50
-0.26
0.12
-0.23
-0.40
0.40
0.44
1.00
-0.77
-0.12
-0.16
-0.27
0.25
-0.32
0.09
-0.12
0.03
0.67
0.20
-0.02
0.49
0.58
-0.11
0.01
-0.06
-0.29
0.11
-0.31
0.10
-0.08
-0.20
-0.26
0.10
-0.36
-0.35
-0.77
1.00
-0.54
0.67
0.69
0.04
0.49
-0.04
-0.54
-0.54
-0.74
-0.37
-0.07
-0.66
-0.60
-0.01
0.04
0.48
0.30
-0.19
0.17
0.50
0.47
0.14
0.70
0.40
0.00
-0.05
-0.12
-0.54
1.00
-0.83
-0.74
-0.41
-0.33
-0.04
1.00
0.81
0.25
0.30
0.21
0.38
0.29
-O.Ob
-0.02
-0.46
-0.26
0.37
-0.07
-0.37
-0.38
-0.28
-0.72
-0.41
-0.38
-0.32
-0.16
0,67
-0.83
1.00
0.91
0.39
0.41
-0.29
-0.84
-0.74
-0.46
-0. 14
-0.32
-0.38
-0.33
-------
56
TABLE 11—Continued
HTA LTA ORS PYS SUS TOS SXRF
AC
AS
B
BA
BE
BR
CD
CE
CO
CR
CS
CU
DY
EU
f
CA
CE
HF
HG
I
IN
LA
LU
UN
MO
NI
p
PB
RB
SB
SC
5E
SM
SN
SR
TA
ra
TH
TL
U
V
W
YB
-0.19
0.30
-0.50
-0.11
0.08
0.30
-0.05
-0.114
0.32
-0.39
-0.21
0.13
0.01
-0.03
-0.22
-0.01
0.07
-0.39
0.11
o.ib
0. 19
0.04
0.05
-0.33
-0.27
0.17
0.19
0.21
-0. 16
0.11
-0.13
-0.314
-0.23
-0.11
0.13
-0.11
-O.OB
-0.28
-0.76
-0.17
-0.22
-0.17
-0.12
-0.23
-0.06
0.02
-0.15
0.11
-0.14
0.02
-0.31
-0.02
-0.21
-0.10
-0.02
-0.27
-0.25
-0.09
-0.19
0.09
-0.20
-0.01
-0.29
0.06
-0.25
0.21
-0.12
-0.03
-0.20
0.00
-0.02
-0.15
-0.01
-0.23
-0.07
-0.31
-0. 11
0.07
-0.29
-0.23
-0.37
-0.35
-0.11
-0.21
-0.03
-0.31
-0.11
0.27
-0.10
-0.01
-0.17
0.23
-0.12
-0.16
0.21
-0.31
-0.25
-0.01
0.05
0.02
-0.22
-0.03
-0.11
-0.29
0.10
0.15
0.19
0.13
0.07
-0.23
-0.28
0.16
0.09
0.04
-0.25
0. 12
-0.11
-0.21
0.01
0.00
-0.06
-0.08
-0.30
-0.22
-0.37
-0.15
0.02
0.15
-0.11
0. 10
-0.15
0.51
0.26
-0.01
-0.01
0.11
0.11
-0.11
0.29
0.07
-0.10
-0.11
-0.20
-0.03
0.17
-0.05
0.01
O.Ob
O.OI
-0.10
0.08
0.01
-0.05
-0.12
0.06
-0.03
-0.27
0.13
-0.03
-0.05
-0.06
0.01
0.06
0.01
0.06
-0.13
0.13
0.30
0.12
0.03
0.01
-0.01
0.51
-0.06
0.15
0.11
-0.07
-0.10
-0.01
0.17
-0.20
0.40
0.10
0.03
0.50
0.51
0.25
0.20
-0.09
0.56
-0.25
0.34
0.11
O.M1
0.13
0.39
0.19
-0.03
-0.17
-0.05
0.30
-0.05
0.5U
0.37
0.19
0.05
0.01
0.50
0.16
0.57
0.62
0.11
0.10
0.25
0.53
0.38
-0.08
0.16
0.08
0.01
-0.08
0.05
0.34
-0.16
0.31
0.30
0.12
0.35
0.36
0.15
0.13
0.03
0.47
-0.29
0.19
-0.01
0.21
0.02
0.40
0.22
-0.07
-0.23
-O.OU
0.27
-0.05
0.10
0.3b
0.37
0.3M
-O.Ob
O.ib
0.3b
0.1r>
0.68
0.16
0.33
0.2)
O.lo
-0.26
-0.15
0.52
-0.07
0.02
-0.27
0.12
-0.30
-0.10
0.10
-0.07
-0.19
-0.35
-0.35
0.08
-0.14
0.07
-0.05
-0.25
-0.35
-0.21
-0.46
-0.16
0.23
0.52
-0.40
-0.32
-0.26
-0.05
-0.25
-0.32
0.14
-0.25
0.03
-0.15
-0.02
-0.27
-0.17
0.62
0.26
-0.07
0.03
-0.33
-0.04
0.16
-0.07
-0.30
0.08
-0.29
-0.13
0.04
0.00
-0.07
0.11
0.12
0.06
0.10
0.16
-0.07
0.11
0.17
-0.11
-0.08
-0.06
-0.17
-0.12
0.01
0.33
-0.16
-0.10
0.16
0.06
0.04
0.11
0.29
-0.00
0.05
-0.14
0. 10
0.41
-0.02
0.62
-0.01
-0.06
0.23
0.16
0.07
-0.07
-0.10
0.06
0.09
-0.15
-0.06
0.15
0.04
0.32
0.15
0.01
0.02
0.01
0.10
0.07
-0.09
0.02
-0.05
-0.13
-0.07
0.08
0.02
0.03
0.04
-0.08
0.02
-0.11
0.22
-0.04
0.05
0.05
0.52
0.18
-0.01
0.20
-0.06
0.17
0.52
0.10
0.15
0.02
0.05
-0. 14
-0. 11
0.23
-0.21
0.10
-0.36
-0.04
tO.10
-0.20
0.05
0.07
-0.01
-0.13
-0.10
0.17
-0.12
0.11
0.10
-0.29
-0.26
-0.16
-0.36
-0.18
0.11
0.52
-0.33
-0.26
-0.06
0.05
-0.11
-0.07
0.27
-0.05
0.06
-0.18
0.09
0.15
-0.08
0.76
0.14
-0.05
0.20
-0.05
-0.23
-0.18
0.31
-0.21
0.13
-0.37
0.04
-0.09
-0.25
0.10
0.10
-0.03
-0.16
-0.12
0.16
-0.07
0.18
0.06
-0.25
-0.26
-0.16
-0.40
-0.17
.0.17
0.49
-0.35
-0.30
-0.10
0.07
-0.13
-0.08
0.23
-0.15
0.05
-0.18
0.00
0.17
-0.12
0.66
0.18
-0.10
0.09
-0.06
-------
TRACE ELEMENTS IN COAL
TABLE 11—Concluded
HTA LTA ORS PYS SUS TOS SXRF
ZN
ZR
AL
CA
CL
f't
K
MG
NA
SI
Tl
ADL
HOIS
'VOL
FIXC
ASH
BTU
C
H
N
0
HTA
LTA
ORS
PIS
SUS
TOS
SXRF
-0.02
-0.05
-0.33
-0. 19
0.35
-0.26
-0.20
-0.31
-0.28
-0.59
-0.25
-0.33
-0.'20
-0.27
0.69
-0.74
0.91
1.00
0.37
0.5C
-0.145
-0.71
-0.70
-0.57
-0.28
-0.37
-0.55
-0.51
-0.05
-0.13
-0.29
-0.10
-0.01
0.03
-0.28
-0.19
-0.05
-0.11
-0.31
-0.05
-0.10
0.25
0.01
-0.11
0.39
0.37
1.00
0.08
-0.31
-0.12
-0.38
-0.01
0.05
-0.21
-0.01
0.06
-0.10
0.07
-0.08
-0.13
0.11
-0.27
-0.00
-0.16
-0.01
-0. 11
0.01
-0.31
-0.20
-0.32
0.19
-0.33
0.11
0.50
0.08
1.00
-0.17
-0.33
-0.13
-0.56
-0.32
-0.16
-0.51
-0.57
0.06
0.05
0.30
-0.12
-0.12
-0.19
0.17
0.01
0.30
0.30
0.25
0.11
0.35
0.09
-0.01
-0.01
-0.29
-0.15
-0.31
-0.17
1.00
-0.01
-0.01
0.12
-0.10
0.25
-0. 18
-0.09
0.00
0.04
0.50
0.29
-0.21
0.22
0.52
0.49
0.17
0.73
0.11
0.08
-0.01
-0.12
-0.51
1.00
-0.81
-0.71
-0.12
-0.33
-0.01
1.00
0.83
0.31
0.30
0.21
0.13
0.31
0.08
0.12
0.37
0.27
-0.30
0.12
0.31
0.37
0. 11
0.60
0.32
0. 11
0.06
0.03
-0.5*
0.81
-0.71
-0.70
-0.38
-0.13
-0.01
0.83
1.00
0.38
0.10
0.19
0.52
0.18
0.10
0.08
0.00
0.19
-0.12
0.31
-0.19
0.09
0.18
0.16
-0.13
0.33
0.30
0.67
-0.71
0.25
-0.46
-0.57
-0.01
-0.56
0.12
0.31
0.38
1.00
0.25
0.12
0.71
0.78
-0.16
-0.08
-0.23
-0.09
-0.19
0.72
-0.21
-0.07
-0.22
-0.22
-0.34
-0.11
-0.24
0.20
-0.37
0.30
-0.11
-0.28
0.05
-0.32
-0.40
0.30
0.40
0.25
1.00
-0.06
0.83
0.70
-0.02
0.05
0.05
-0.01
-0.08
0.16
0.17
0.16
0.06
0.16
0. 11
-0.08
-0.14
-0.02
-0.07
0.21
-0.32
-0.37
-0.21
-0.16
0.25
0.21
0.19
0.12
-0.06
1.00
0.17
0.12
-0.07
-0.02
-0.12
0.05
-0.37
0.70
-0.19
0.05
-0.02
0.00
-0.24
0.10
-0.03
0.49
-0.66
0.38
-0.38
-0.55
-0.01
-0.54
-0.18
0.43
0.52
0.74
0.83
.0.17
1.00
0.92
0.01
-0.02
-0.15
0.05
-0.41
0.62
-0.21
0.05
0.02
-0.03
-0.30
0.11
0.06
0.58
-0.68
0.29
-0.33
-0.51
0.06
-0.57
-0.09
0.34
0.48
0.78
0.70
0.12
0.92
1.00
-------
58
Figures 3-62
In figures 3 through 62, the data from
the eastern United States are plotted as un-
patterned "bars, those from the Illinois Basin
as vertically striped bars, and those from
the western United States as horizontally
striped "bars.
-------
59
36
UJ
I 30
0.000
O.OW
0.013 0.013
RG (PPM)
0.098
0.120
Fig. 3 - Distribution of silver in
coals analyzed.
Fig.
60.0
- Distribution of arsenic
in coals analyzed.
200 MO
en IPPMI
Fig. 5 - Distribution of boron in
coals analyzed.
Fig. 6 - Distribution of barium in
coals analyzed.
Bt 1PPW
Fig. 7 - Distribution of beryllium
in coals analyzed.
Fig. 8 - Distribution of bromine
in coals analyzed.
-------
6o
2.0 3.0
CO (PPM)
10.0
20.0
30.0
UO.O
SO.O
Fig. 9 - Distribution of cadmium
in coals analyzed.
CE (PPM)
Fig. 10 - Distribution of cerium
in coals analyzed.
12.0 ta.o
CO (PPMI
Fig. 11 - Distribution of cobalt
in coals analyzed.
38
30
20
IS
10
S
0
0.
i
1
|
0 12
i if
•
mm
IfliL
liiBnni mm
IJlimjIIP^THTTI (TTfn Illlll nr^fl fMII « 1 1
o n'.o 36.0 tta'.o sb.b .
en (PPM)
Fig. 12 - Distribution of chromium
in coals analyzed.
2.0 3.0
CS IPPM)
u.o
s.o
0.0
10.0
uo.o
SO.O
Fig. 13 - Distribution of cesium
in coals analyzed.
20.0 30.0
CU IPPN)
Fig. 1^4 - Distribution of copper
in coals analyzed.
-------
0.00
0.80
1.20 i.eo
OT IPPMI
1.00
Fig. 15 - Distribution of dyspro-
sium in coals analyzed.
Fig. 16 - Distribution of europium
in coals analyzed.
Fig. 17 - Distribution of fluorine
in coals analyzed.
• JO
fc «
II
I
0
0.0
on
7.2
9.6
IZ.O
Fig. 18 - Distribution of gallium
in coals analyzed.
JBfi
o.o
t.o
it.o ta.o ».o ».b •
CE (PPM)
Fig. 19 - Distribution of germani-
um in couls analyzed.
0.00
Fig. 20 - Distribution of hafnium
in coals analyzed.
-------
Fig. 21 - Distribution of mercury Fig. 22 - Distribution of iodine
in coals analyzed. in coals analyzed.
0.000 0.100
0.200 0.300
IN (PPM)
M.O
Fig. 23 - Distribution of indium
in coals analyzed.
LR (PPH)
Fig. 2U - Distribution of lanthanum
in coals analyzed.
0.000 O.OM 0.1M O.MO O.itO
M M
MN (PPM)
IZS
ISO
Fig. 25 - Distribution of lutetium Fig. 26 - Distribution of manganese
in coals analyzed. in coals analyzed.
-------
63
0.0 6.0 II.O 11.0 H.O ».0
W IPPH)
Fig. 27 - Distribution of molyb-
denum in coals analyzed,
•
Distribution of nickel
in coals analyzed.
100 •
Fig. 29 - Distribution of phospho- Fig. 30 - Distribution of lead in
rus in coals analyzed. coals analyzed.
0.0
Fig.
31 - Distribution of rubidium
in coals analyzed.
Fig. 32 - Distribution of antimony
in coals analyzed.
-------
6U
H.O (.0
SC (PPM)
Fig. 33 - Distribution of scandium Fig.
in coals analyzed.
8 3.1 1.6 6.14
SC (PPM)
Distribution of selenium
in coals analyzed.
SM (PPMI
Fig. 35 - Distribution of samarium
in coals analyzed.
•
2.0
1.0
6.0
8.0
an
10.0
Fig. 36 - Distribution of tin in
coals analyzed.
37 - Distribution of strontium Fig. 38 - Distribution of tantalum
in coals analyzed. in coals analyzed.
-------
65
o.oo
o.it
n
0.10
•.i
Fig, 39 - Distribution of terbium
in coals analyzed.
Fig. 1*0 - Distribution of thorium
In coals analyzed.
Fig. Ul - Distribution of thallium Fig. k2 - Distribution of uranium
in coals analyzed. in coals analyzed.
Fig. 1*3 - Distribution of vanadium Fig. Ul* - Distribution of tungsten
in coals analyzed. in coals analyzed.
-------
66
0.00
Fig.
1000
- Distribution of ytterbium Fig. U6 - Distribution of zinc in
in coals analyzed. coals analyzed.
K
X-
15
10-
5 •
0
1
Fig.
80 120
in IPPMI
iOO
0.00
1.20 1.80
RL IXI
- Distribution of zirconium Fig. U8 - Distribution of aluminum
in coals analyzed. in coals analyzed.
0.00
Fig.
1.60 2.10
Cfl (XI
- Distribution of calcium
in coals analyzed.
Fig. 50 - Distribution of chlorine
in coals analyzed.
-------
67
0.0
i.o
i.o s.o
FE (X)
0.00
Fig. 51 - Distribution of iron in
coals analyzed.
Fig. 52 - Distribution of potassium
in coal* analyzed.
I
0.000
0.080
0.180 O.MO
NC 1X1
0.310
O.MO
0.000
0.1
(X)
I. HO 0.100 •
Fig. 53 - Distribution of magnesium Fig. 51* - Distribution of sodium
in coals analyzed. in coals analyzed.
0.0
I.O
t.o
1.0
9.0
SI IX)
Fig. 55 - Distribution of silicon
in coals analyzed.
0.000
0.1*0
0.200
0.010 0.0*0 0.120
TI (Zl
Fig. 56 - Distribution of titanium
in coals analyzed.
-------
20
1 •
0.00 O.M 1.2« 1.92 MS S.20 •
ORS IX)
Fig. 57 - Distribution of organic
sulfur in coals analyzed.
in at
a)
1.0
1.0
s.o
t.O 3.0
PTS IX)
Fig. 58 - Distribution of pyritic
sulfur in coals analyzed.
0.200 0.300
sus m
o.uoo
o.soo •
Fig. 59 - Distribution of sulfate
sulfur in coals analyzed.
S.6
7.0
70S (X)
Fig. 60 - Distribution of total
sulfur in coals analyzed.
us
a «•
S 35
fe 28
0.0
Fig.
21. C
rt.o
3S.O
.
6l - Distribution of high-
temperature ash in coals
analyzed.
o.o
38.0
F.ig. 62 - Distribution of low-
temperature ash in coals
analyzed.
-------
69
ENRICHMENT OP ELEMENTS IN COAL
The average concentration of an element in the earth's cruat la
termed the "olarke." Clarke and Washington, 1924, wore among the first
of the geoohemista to attempt to make calculations of this type.
Although there are a number of difficulties in accurately estimating
the clarke of an element, it is worthwhile to compare the
concentrations of elements in ooal with the olarke. This comparison
gives an indication of the efficacy of the sum total of the
coal-forming processes in "fixing" various elements in coals. The
clarke values used in this report are taken from those published by
Taylor, 1961, and by Tureklan and Wedepohl, 1964.
Enrichment values were calculated by comparing the geometric
means for the various elements with the olarkes for those elements.
Enrichment values were determined for coals of the three major
coal-producing areas defined previously. Ruoh et al., (1974) listed
only those elements that were enriched or depleted by at least an
order of magnitude relative to the arithmetic mean of the
concentration of an element in coals they analyzed. Only a very few
elements are found to be concentrated in coals; thus the use of
geometric means reduces the influence of a few very high values on the
data. Table 12 lists all those elements in coals that are found to be
enriched by a factor of six or more. A factor of six was chosen as a
matter of convenience and no special significance should be attributed
to it.
Only four elements are listed on table 12, no more than three for
any one of the three major areas sampled. Apparently, on the average,
very few elements are found to be concentrated in coals relative to
the clarke values. Boron, chlorine, end selenium are enriched in coals
from the Illinois Basin; arsenic, chlorine, and selenium, in coals of
eastern United States; and selenium, in coals of western United
States. Individual samples may be enriched in elements other than the
four listed above. Such enrichments probably indicate local
mineralization and are not representative of the coals in general.
Boron is concentrated in the coals of the Illinois Basin, but not
in the coals of eastern and western United States. A number of workers
have used the B concentration in sediments and sedimentary rooks as an
indicator of paleosalinity of the environment in which the sediment
was originally deposited (Couch, 1971). Greatly oversimplified, when
the technique is used, it is assumed that the relative concentrations
of B in sediments and sedimentary rooks are directly dependent on the
salinity of the water in which the sediments were deposited;
therefore, marine sediments contain more B than nonmarine sediments.
However, the interpretation of B paleosalinity from even a carefully
controlled set of samples is difficult. The set of samples reported
upon here was not specifically collected and was not specially treated
-------
70
for boron analyses. The moat obvious interpretation to be made from
the observation that B is concentrated in the coals of the Illinois
Basin and not in the coals from eastern and western United States is
that the Illinois Basin coals were deposited in waters that had a
higher salinity (more brackish or more marine.) than did the waters in
which the other coals were deposited. In general, this interpretation
agrees with other interpretations based on other criteria of the
environments of deposition of the various coals. The coals of the
Illinois Basin are generally more closely associated with marine
strata than are the coals in the Appalachians (eastern) or in the
Rocky Mountain (western) areas (Wanless et al., 1969; and Weimer,
1970).
Chlorine is concentrated in coals from the Illinois Basin and
from eastern United States, but not in coals from western United
States. Distribution of chlorine in coals of the Illinois Basin has
been investigated by Gluskoter and Rees, 1964; Gluskoter, 1967; and
Gluskoter and Ruch, 1971. In general, the chlorine content of coals in
the Illinois Basin increases with depth of the coal. Coals currently
being mined by surface methods are low in chlorine (less than 0.04
percent) and coals mined at the greatest depths contain the highest
chlorine (0.4 to 0.6 percent). Therefore, the mean concentrations may
be influenced by the distribution of samples.'This may be the case
with the samples from eastern United States, where many of the coals
were sampled in deep mines. The population of samples is larger for
the Illinois Basin; however, if any bias is present in the sampling,
it would probably be a bias towards lower chlorine values.
The observed correlation of chlorine and depth to the coal bed is
not a primary correlation, but it is the result of an increase in
salinity of ground water with greater depth (Gluskoter, 1965a)...
Gluskoter and Ruch, 1971, concluded that the presence of hali.te (NaCl)
in coal accounted for only a portion of the total chlorine present in
coals from the Illinois Basin and that weakly bound chlorine in
organic combination was a likely mode of occurrence.
Selenium is the third element found to be enriched in coals of
the Illinois Basin. It is also enriched in coals of the eastern United
States and is the only element that is enriched (at least six times
the clarke) in coals sampled in western United States. Selenium is the
most strongly enriched of all the elements, with enrichment factors of-
26, 40, and 68, in western, Illinois Basin, and eastern coals,
respectively. Selenium content of nine laboratory-prepared (washed)
coals is discussed later in this report. Those data are interpreted to
show selenium in both organic and inorganic combination in coals. We
would suggest that at least a portion of the selenium in the coal may
be inherited directly from the Se concentrated by plants in the
original coal swamp. A few analyses of peats from the Okefenokee swamp
in Georgia (Arthur Cohen, personal communication) do show Se
concentrations of the same magnitude as those reported for the coals
in Table 12.
-------
Arsenic is found to be enriched in the samples of coals from the
eastern United States. In general, arsenic is associated with the
sulfide-rioh fraction of the ooal and most likely is in solid solution
in the ferrous disulfides in ooal: pyrite and maroaaite. The samples
of ooal from eastern United States that were washed in the laboratory
prior to analyses do suggest this mode of occurrence for arsenic.
In coals from all three areas moat of the elemental
concentrations are lower than the olarke of the elements. A value of
six times the clarke was used in classifying those elements enriched
in coals. If a value of one-sixth the olarke is used to define those
elements depleted in coals the following are depleted in coals of the
Illinois Basin: Al, Ca, Cr, F, Hf, K, Lu, Mg, Mn, Na, P, So, Si, Sr,
Ta, and Ti. All of the other elements determined are within the range
of one-sixth to six times the olarke. In general, elemental
concentrations are generally lower in coals from western United
States; therefore more elements are depleted relative to the olarke.
In addition to most of those elements listed for ooals from the
Illinois Basin other elements depleted in western coals are, Be, Ce,
Co, Ca, Bu, Fe, Ga, La, Ni, Rb, Sm, V, Yb, and Zn.
TABLE 12—ELEMENTS ENRICHED IN COALS
Illinois Basin
(114 saaples)
Element Ebriohaent Mean Value Clarke
Factor In Coal
B 9.5 95 ppm 10 ppa
Cl 6.0 600 ppa 130 ppa>
Se 40 2.0 ppai .05 ppa>
Eastern United States
(23 saaples)
Western United States
(29 saaples)
Aa 6.2 15 ppa 1.6 ppm
Cl 7.7 1000 ppn 130 pp»
Se 68 3.4 PP« .05 pps>
Se 26 1.3 PP" .05 pp»
NOTE: Includes only those elements that have a geometric mean concentration six
tines the Clarke.
-------
72
ANALYSES OF BENCH SAMPLES
The variation of ohemical elements vertically within a coal bed
has been investigated by analyses of "bench samples" of coal. This
series of five sample sets has been collected by sampling the coal
seam in vertical segments or "benches". Normally, the rook unit
immediately overlying the coal also was sampled, as was the underolay
(or other seat rock), and any rock parting more than three-eighths
inch (one centimeter) thick within the seam. Each bench of coal was
analyzed for the full range of chemical elements, and several of the
associated rock units were also extensively analyzed chemically. The
analytical methods used were the same as those used to analyze the
whole coal samples and are described in the appendix.
Five sets of benches were sampled and analyzed in this study. All
of the five sets are from the Herrin (No. 6) Coal Member in Illinois.
The sample sites were selected to provide a range of geological
settings and geochemical characteristics of the coals. Samples were
taken from areas of high-sulfur coal and from areas of low-sulfur
coal, from underground mines and from strip mines, and from areas with
marine roof rocks and areas with nonmarine strata immediately
overlying the coal. The five sample sites are separated geographically
by as much as 305 kilometers (190 miles); and no two sites are closer
than 40 kilometers (25 miles). In this discussion the five sites will
be identified by numbers 1 through 5.
The thickness of each bench sample is given in table 13- Coals
sampled ranged from 143 cm (56 in) to 307 cm (121 in) in thickness.
The negative values shown in the table are the sampled thicknesses of
the roof strata. The top of the coal was taken as a datum and was
given the value of zero in each case. Those instances in which roof,
floor, or rock partings were collected are noted in table 13. The
noncoal units that were analyzed chemically have an analysis number
listed in table 13.
The results of the chemical analyses of 40 bench samples are
given in tables 14 through 18. All results are reported on a whole
coal basis as was done for the 172 whole coal samples, table 14 lists
the results of the analyses for trace elements; table 15, the major
and minor element determinations; tables 16 and 17, the standard coal
parameters; and table 18, the rerults of analyses for total and
varieties of sulfur.
(Text continued on page 8?)
-------
73
TABLE 13—IDENTIFICATION OF BENCH SAMPLES ANALYZED
ANALYSIS STATE
NUMBIR
ORIGIN
SAMPLE
nicntss
(CM)
— BBHCH SBT
C- 18552
C- 18553
C-18554
C-18555
C- 16556
C- 18557
C-18558
C-18559
••••»•
C-1UT01
C- 18705
C- 18706
C-18707
C. 18708
C- 16709
C-18710
C- 187 IT
••••••*
tICIItt
C-18728
C- 18729
C-18730
C-187J1
C-18732
•••••••
C- 18733
»••••*
C- 18806
C- 18807
C- 18808
C- 18809
C-18810
C-18811
C-18812
C-18813
C-18814
fc-18815
C- 18982
C- 18983
C-1898*
C-18965
C- 18986
••••!••
C-18987
C-189M
C- 18989
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLttOIS
ILLINOIS
—
ILLIMOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
IUINOIS
ILLINOIS
ILLINOIS
ILLINOIS
—
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLIH01S
ILLINOIS
ILLINOIS
ILLINOIS
—
ILLINOIS
ILLIMOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLIMOIS
ILLINOIS
—
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
HBRRIN (NO. 6)
BIRBIN (NO. 6)
HBRRIN (NO. 6)
HBRRIN (NO. 6)
HBRRIN (NO. 6)
HURIN (NO. 6)
HBRRIN (NO. 6)
WRRIN (NO. 6)
BBNCH SRT 2 ~
HBRRIN (NO. 6)
HBRRIN (NO. 6)
HBRRIN (N0.6)
HBRRIN (NO. 6)
HBRRIN (NO. 6)
HBRRIN (NO. 6)
HBRRIN (NO. 6)
KBRRIN (NO. 6 5
BBRRIN (NO. 6)
KBRRIN (NO. 6)
BBKH SBT 3 —
HBRRIN (NO. 6)
HBRRIN (NO. 6)
HBRRIN (NO. 6)
HERRIN (NO. 6)
HSRRIN (NO. 6)
KBRRIH (SO. 6)
HBRRIN (JJ0.5)
NBRRIN (i<0.6)
HBRRIN (NO. 6)
BBttCH SST 4 —
HSRRIN (K0.6)
HBHHIH (NO. 6)
HBRRIN (NO. 6)
HBRRIi! (BO. 6)
USRRIN (NO. 6)
HBRRIN (NO. 6)
HBRRIN (NO. 6)
HERRIN (NO. 6)
HERRIN (HO. 6)
HBRRIN (K0.6)
BUICH SBT 5 —
HBRRIH (NO. 6)
KBRRIN (NO. 6)
HBRRIN (NO. 6)
KBRRIN (NO. 6)
HURIN (NO. 6)
HBRRIN (NO. 6)
HURIN (NO. 6)
KBRRIN (NO. 6)
WRRIN (NO. 6)
-10.2
0.0
10.2
3*. 3
81.3
m.3
1M.8
180.3
102.9
218.»
- 0.0
- 10.2
81.3
m.3
1M.6
180.}
162.9
218.4
228.6
-10.2 - 0.0
0.0 - 10.2
10.2 - M-3
48.3 - 109.2
109.2 - 208.3
206.3 - 248.9
248.9 - 251.0
254.0 - 307.3
30T.3 - 317.5
-10.2
0.0
34.3
36.8
72.4
76.2
106.7
166.6
170.2
200.7
-15.2
0.0
25.4
35.6
54.9
73.2
T9.J
109.7
143.3
0.0
34.3
36.8
72.4
76.2
106.7
166.6
170.2
200.7
210.9
0.0
25.4
35.6
54.9
73.2
79.3
109.7
143.3
156.0
LIHKSTONB ROOT - SAMPLED, NOT AJtALIZBD
SHALB PARTING (BLUB BUD)
UntRCLAT - UHFUD, NOT ANALIXBB
SHALB ROOT - SAMPLBO, NOT ANALIXBD
SHALB PARTING - SAMPLBO, NOT ANALTXBD
UNMRCLAT - 3AMPLBD, NOT ANALUBD
SHALC ROOT
SHALB PARTING (BLOB BAND)
UNDBRCLAT
SHALB ROOT
3UALB PARTING - NOT SAMFLBO
UNDBRCLAX
NOTE: Sampleo are listed by analysis nuabcra on tables lU through 18.
-------
TABLE lit—ELEMENTS IN BENCH SAMPLES
(parts per million, moisture-free whole coal basis)
SAMPLE
AS
BA
BE
BR
CD
CE
CO
CR
CS
CU
C18552
C1b553
C18554
C 18555
C 18556
C18557
C18558
C18559
C18704
C18705
C18706
C 18707
C18708
C18709
C18710
C18711
C18728
C 18729
C18730
C18731
C18732
C18733
C 18806
C 18807
C 18808
C18809
C18810
C16811
C18812
C18813
C18814
oasis
C 18982
Cl89dj
C 10981
C18985
C 18986
C18987
C18988
C 18989
0.08
0.02
0.02
0.06
0.06
0.03
0.02
0.014
0.06
0.01
0.02
0.06
0.02
0.02
0.08
0.03
0.01
0.02
0.02
0.01
0.01
0.05
0.614
0.06
0.03
0.02
0.05
0.02
0.02
0.15
0.03
<0.07
0.08
0.26
0. 16
O.OIl
0.08
0.01
0.03
0.08
2.2
2.6
2.4
1.2
1.1
5.3
2.7
3-7
8.1
3.5
3.0
1.7
1.3
2.6
2.7
2.2
0.50
<1.0
1.5
<1.0
1.1
2.8
17
3-7
1 1
0.30
1.5
2.7
0.90
6.4
5.9
4.0
2b
1-3
1 .2
3-9
1.0
7.8
13
11
110
180
160
190
180
170
230
220
260
170
200
180
190
180
6.5
210
75
110
78
110
130
1*10
110
130
24
100
120
180
190
230
210
160
74
120
150
150
81
180
180
160
58
35
26
86
65
67
10
62
1500
280
70
160
50
95
140
640
26
48
31
10
19
43
910
1)4
23
3"
120
18
83
900
23
190
780
3"
ui
36
20
75
100
800
0.71
0.88
0.64
0.10
0.70
1.1
1.8
1.5
0.70
0.68
0.77
0.80
1.0
1.1
1.8
2.1
1.9
1.6
1.1
0.30
0.56
0.80
1.1
0.73
1.3
0.51
0.12
0.62
0.95
1.2
2.0
1.1
1.5
1.6
1.8
2.0
2.1
2.'0
1.6
2.3
3.6
3.2
2.1
2.9
1.9
2.5
8.5
10
1.6
4.8
5.8
5.4
6.6
3.0
1.3
7.0
24
25
23
21
22
23
2.3
1.3
1.7
1.2
1.2
1.1
1.7
<1.0
1.2
O.O
1.1
3.0
3.8
3.4
3.5
3.2
3.2
<1.0
0.60
<0.10
<0.20
<0.10
<0.10
<0.30
<0.20
<0.20
<0.30
0.30
0.40
<0.20
<0.20
<0.10
1.9
6.5
<0.10
<0. 10
<0.10
<0.10
<0.10
<0.10
11
0.70
<0.10
<0.10
<0.40
<0.20
<0.20
<0.60
<0.20
<0.60
<0.60
0.10
0.10
0.10
0.10
0. 10
0.10
<0.60
17
8.2
10
17
14
11
4.9
13
20
4.6
5.9
16
6.7
21
51
13
2.5
6.7
5.1
19
11
33
90
7.1
O.O
1.9
19
6.0
10
490
12
210
100
4.7
1.5
5-1
2.5
8.6
15
77
2.4
1.8
1.4
2.8
2.9
6.3
3.1
4.8
3.8
1.4
2.0
2.0
2.5
3.0
5.3
5.4
6.7
7.5
4.6
3.2
6.7
15
16
2.0
1.6
1.4
1.9
2.7
3.1
27
8.5
11
21
1.2
1.1
2.0
2.5
10
6.1
16
19
13
12
24
27
34
17
32
41
8.0
40
35
14
32
50
28
6.0
19
9.0
14
24
16
440
31
9-0
10
40
15
26
80
16
150
67
7.0
9.0
11
13
23
26
92
0.70
1.0
0.50
1.4
1.3
1.1
0.40
1.0
2.3
1.0
1.0
2.4
1.1
2.4
5.1
1.0
0.30
0.50
0.80
0.80
1.8
0.90
9.1
1.1
<0.10
1.0
3-4
1.2
2.2
15
0.60
17
11
1.2
1.3
1.1
0.30
1.6
2.3
14
5.4
4.4 '
4.8
7.9
8.2
6.1
7.6
14
24
3-5
28
23
7.1
64
73
16
6.6
15
31
22
9-1
8.7
78
6.0
5.4
2.9
14
5.8
7.8
.31
8.4
18
19
5.9
5.0
18
9.2
12
15
19
-------
TABLE Ik—Continued
75
SAMPLE
DY
EU
QA
OB
HP
KG
IN
LA
LU
HN
C18552
C18553
C 18554
C 18555
C 18556
C18557
C1855B
C18559
C18704
C18705
CJS706
C18707
C 18708
C18709
C18710
C18711
C1872B
C18729
C18730
C18731
C1B732
C18733
C1B806
C 18807
C 18808
C 18809
C18810
C18811
C18812
C18813
C1B814
C18815
C 18982
C18983
C 18981*
Cl89b5
C18986
C 18987
C189S8
C189U9
0.14
0.47
0.64
0.91
1.0
0.93
0.97
1.0
0.76
0.25
0.57
.0
.0
.1
.3
.4
0.33
0.57
0.30
0.50
1.7
1.0
7.2
0.54
0.17
0.63
1.5
1.0
1.2
3.8
1.2
5.5
3.7
0.42
0.61
0.86
0.82
1.3
1.1
4.7
0.11
0.13
0.21
0.29
0.38
0.29
0.22
0.26
0.33
0.12
0.14
0.25
0.20
0.23
0.87
0.31
0.06
0.26
0.14
0.16
0.32
0.31
2.4
0.16
0.06
0.16
0.47
0.23
0.32
1.1
0.22
1.7
1.6
0.08
0.09
0.11
0.11
0. 16
0.21
1.3
140
78
59
85
110
110
74
93
270
48
70
85
81
140
100
60
19
31
27
36
75
48
5700
120
110
65
160
81
140
620
66
2500
1100
36
50
42
16
47
90
880
2.3
2.1
2.3
3.7
4.0
4.8
1.8
3.3
3.5
1.1
1.9
3.4
3.4
2.8
1.3
5.0
3.2
1.2
1.3
2.6
7.0
2.9
17
2.3
1.7
2.5
6.5
2.6
3.8
30
4.3
26
18
3.5
3.6
3.9
4.3
1.3
5.7
22
16
0.60
0.10
<0.10
<0.20
<0.20
9.0
14
26
1.4
0.60
<0.20
<0. 10
0.50
0.50
14
21
10
2.8
0.30
0.20
5.3
<0.70
2.4
<0.20
<0.10
<0. 10
<0. 10
<0.10
0.80
7.6
<0.80
<0.80
14
9.0
10
13
7.8
12
<0.70
0.32
0.32
0.31
0.85
0.69
0.85
0.23
0.59
0.64
0.22
0.20
0.63
0.35
0.58
1.1
0.46
0.14
0.12
0.22
0.25
0.82
0.38
3.5
0.28
0.03
0.37
1.3
0.55
0.94
4.4
0.40
4.7
6.2
0.39
0.4M
0.57
0.43
• 0.97
1.5
9.2
0.37
0.13
0.07
0.16
0.13
0.22
0.19
0.16
0.15
0.07
0.09
0.09
0.11
0.16
0.43
0.15
0.04
0.09
0.06
0.07
0.04
0.11
0.64
0.28
0.17
0.09
0.12
0.09
0.10
0.12
0.17
0.06
0.17
0.26
0.15
0.13
0.12
0.14
0.17
0.09
1.7
1.6
2.4
1.9
0.64
<1.0
0.0
<2.0
<1.0
1.9
1.1
0.0
<1.0
0.97
0.0
0.0
3.1
1.9
1.5
1.7
1.7
1.9
O.O
<0.50
0.41
0.93
1.0
0.96
1.2
<2.0
0.3*
0.0
2.7
2.7
4.0
4.4
H.2
3.1
<5.0
0.76
0.84
0.69
0.20
<0.02
0.23
<0.10
<0.10
0.14
<0.10
0.04
<0.10
0.15
0.11
0.15
0.17
0.14
<0.10
<0.10
<0.10
0.15
<0.10
0.0
0.04
<0.10
<0.10
0.09
0.17
0.17
0.17
0.13
0.58
<0.10
0.12
<0.10
0.13
0.04
0.04
0.04
0.11
3.2
3.5
6.1
7.1
6.7
4.6
3.8
8.8
9.4
2.8
2.8
8.5
4.7
7.4
35
6.7
1.1
1.7
3.4
5.2
11
7.1
68
4.2
1.5
3.3
22
4.7
6.8
150
3.0
47
41
2.6
3.0
3.4
1.1
5.4
9.1
35
0.11
0.05
0.04
0.12
0.08
0.12
0.06
0.11
0.08
0.05
0.02
0.08
0.04
0.09
<0.01
0.12
0.02
0.07
<0.05
0.07
0.17
0.17
0.65
0.08
<0.01
0.06
0.12
0.07
0.12
0.49
0.12
0.59
0.50
0.03
- 0.03
0.07
0.06
0.10
0.11
0.48
52
38
30
28
140
90
51
62
150
150
130
67
80
64
70
150
34
250
9.7
83
36
59
100
13
16
14
13
20
19
270
60
86
600
58
93
33
24
38
50
140
NOTE: Samples listed by sample number (C-number).
cation of samples.
Refer to table 13 for identifl-
-------
76
TABLE Ik—-Continued
SAMPLE
MO
NI
PB
RB
SB
SC
SG
SM
SN
SR
TA
C18552
C18553
C 18551
C 16555
C18556
C18557
C1855b
C18559
C18701
C18705
C18706
C18707
C 18708
C18709
C18710
C18711
C18728
C18729
C18730
C18731
C1B732
C18733
C18806
C18807
C18808
C18B09
C18810
C1B811
C1BB12
C1S813
CltJSlI
C18815
C18982
C18983
0189814
C 18985
C18986
C18987
C18963
C18989
19
27
12
2.0
1.0
18
22
19
36
22
18
3.0
2.0
2.0
58
11
0.70
0.60
<0.10
<0.20
<0.30
3.0
71
i(8
141
8.0
<0. 10
14.0
O.UO
<0.20
17
<0.30
<0.20
19
13
8.0
10
5.0
1.0
<0.20
16
7.0
14.6
13
7.6
ID
18
26
23
5.1
21
20
7.6
18
12
26
51
27
12
7.0
18
MS
iio
16
2.7
5.6
9.7
6.6
8.9
62
38
>4l4
6C
22
15
11
11
20
26
51
99
17
23
11
20
10
29
41
570
13
12
31
30
220
17
32
25
39
33
60
12
23
5100
230
15
22
10
26
51
29
52
110
12
23
7.8
15
8.6
9.1
60
100
1.6
<1.0
<0.70
<1.0
<1.0
<3.0
<2.0
3.6
11
<2.0
<0.90
<3.0
<1.0
3.6
21
<2.0
9.2
6.0
11
11
12
13
6.0
<0.71
<2.0
<0.60
<1.0
<1.0
<2.0
19
22
9.2
89
17
12
31
27
31
98
29
14
16
6.4
21
24
22
7.7
19
32
10
8.8
17
11
23
58
13
3.7
6.4
7.8
10
15
13
150
12
<5.0
8.0
20
12
25
120
<3.0
340
200
13
11
13
<1.0
17
35
230
2.3
0.45
0.27
0.33
0.21
0.22
0.11
0.27
0.65
0.39
0.36
0.28
0.17
0.51
0.56
0.26
12
3.9
0.55
0.61
0.42
3-3
6.6
3.1
0.79
0.54
0.20
0.20
<0. 10
0.65
0.28
1.2
3.5
1.7
1.1
0.88
0.64
1.1
2.5
2.3
1.6
1.4
1.5
3.4
3.6
3.9
1.0
2.5
2.7
1.5
1.1
2.1
1.6
2.5
3.0
2.6
1.6
2.3
0.90
2.7
4.4
4.0
19
2.1
0.50
2.3
5.0
3.0
4.6
1.5
3.8
27
16
1.3
1.6
1.9
3.1
4.7
4.9
20
3.8
2.3
1.7
1.7
1.3
2.7
1.2
1.5
2.4
1.2
1.4
3.0
1.4
1.3
6.1
2.5
0.76
1.2
1.2
2.3
1.5
3.6
57
5.8
2.4
1.3
2.7
2.7
2.6
10
3.2
6.0
9.8
2.2
1.8
2.0
2.5
3-9
3.8
5.7
1.7
0.60
0.90
1.2
1.6
1.0
0.80
1.1
1.7
0.55
0.68
1.5
0.82
<1.0
4.6
0.21
0.43
1.3
14
1.5
0.34
1.1
4.1
1.3
1.7
7.2
0.48
0.47
0.52
0.46
0.68
1.1
5.4
<0.20
<0.30
<0.20
<0.30
<0.40
4.0
0.90
<0.40
<0.40
<0.20
0.16
<0.40
<0.30
<0.40
9.5
<0.40
<0.07
<0.20
0.92
1.2
<0.30
<0.20
<2.0
<0.20
7.6
0.35
0.71
1.5
0.98
2.1
3.8
<2.3
<2.2
<0.20
<0.20
0.33
<0.10
<0.30
<0.40
<2. 1
50
21
21
30
35
17
12
42
37
30
22
47
36
36
54
37
23
23
29
40
42
27
180
25 '
32
37
42
18
24
970
18
180
270
17
17
16
7.0
21
24
150
0.07
0.07
0.09
0.17
0.16
0.15
0.05
0.11
0.14
0.06
0.06
0.19
0.10
0.14
0.40
0.10
0.02
0.11
0.05
0.21
0.12
0.24
0.81
0.01
<0.01
0.07
0.28
0.13
0.16
2.9
0.15
2.5
0.46
0.06
0.07
0.03
0.02
0.06
0.10
<0.50
-------
TABLE lU—Concluded
77
SAMPLE
TB
TH
TL
TB
ZN
ZH
C 18552
C18553
C 18551
C18555
C 18556
C 18557
C 18558
C 18559
C 18701
C 18705
C18706
C 18707
C18708
C 18709
C18710
C18711
C18728
C18729
C18730
C1873'
C18732
C18733
C16806
C 18807
C1880B
C18809
C18810
C18S11
C18812
C18813
Cl88l<4
C18815
C189B2
C18983
C 18984
C 18985
C18986
C18987
C 16986
C 18989
0.07
0.08
0.12
0.19
0.21
0.19
0.10
0.17
<0.20
0.06
0.08
0.12
0.08
0.17
0.57
0.21
0.08
0.21
0.10
0.13
0.13
0.19
1.2
0.07
0.10
0.10
0.14
0.13
0.15
0.68
0.19
1.0
1.8
0.07
0.09
0.20
0.18
0.27
0.32
1.4
1.5
1.3
1.4
3.1
2.8
3.7
3.0
2.1
2.0
0.50
0.70
2.1
1.6
2.3
1.7
1.9
0.11
0.62
0.72
2.1
1.0
2.8
8.5
0.71
0.11
0.81
3-3
1.2
2.1
28
2.1
24
19
1.0
1.2
1.9
1.5
3-9 .
5.0
21
28
0.70
0.40
0.80
0.80
0.70
0.40
2.0
7.5
<1.0
<1.0
1.3
<1.0
1.0
<1.0
<1.0
<0.20
<1.0
0.40
O.O
0.60
0.70
UM
12
0.20
0.20
0.80
0.50
0.90
3.2
0.60
4.1
13
3.8
1.3
0.60
0.60
1.0
1.3
3.0
76
9.8
12
22
27
26
11
39
37
10
12
25
26
26
35
23
9.*
6.6
11
16
3»
26
400
65
9.0
17
46
20
39
61
22
99
64
12
13
23
24
45
44
100
1.2
0.96
0.55
0.58
0.25
0.64
0.57
0.44
0.56
0.42
0.43
0.46
0.40
0.33
1.3
0.40
0.25
0.10
0.46
0.50
0.39
0.18
0.40
0.60
0.14
0.28
0.35
0.27
0.30
2.2
0.21
1.3
0.97
0.13
0.37
0.19
0.24
0.22
0.23
1.7
0.48
0.32
0.3t
0.55
0.65
0.53
0.45
0.70
0.45
<0.14
0.17
0.50
0.26
0.43
0.67
0.79
0.14
0.49
0.17
0.50
0.39
0.95
2.7
0.26
0.04
0.24
0.70
0.3*
0.41
3.6
0.97
3-6
2.2
0.13
0.16
0.25
0.25
0.42
0.52
2.3
41
6.0
6.0
5.0
22
14
94
41
20
64
17
35
19
32
40
3700
50
540
13
380
67
140
290
100
36
13
2.0
6.0
12
0.0
11
1.0
<2.0
240
13
10
5.0
6.0
8.0
3.0
26
15
20
40
50
46
26
45
49
12
17
53
36
46
110
42
8.3
6.5
11
23
36
20
140
20
16
16
78
34
42
160
31
220
160
18
20
24
19
38
56
210
-------
78
TABLE 15—MAJOR AND MINOR ELEMENTS IN BENCH SAMPLES
(percent, moisture-free whole coal basis)
SAMPLE
AL
CA
CL
FE
MG
NA
SI
TI
C 18552
C18553
C18551
C18555
C 18556
C18557
C 18558
C18559
C18701
C18705
C18706
C18707
C18708
C18709
C18710
C18711
C18728
C1872S
C18730
.C18731
C18732
C18733
C18806
C18807
C18808
C18809
C18810
C1881 1
C18812
C18813
C18811
C18815
C1«982
C18983
CKJ981
C18985
C18986
C18987
C18988
C18989
0.72
0.89
0.92
1.80
1.70
1.60
0.89
1.50
1.70
0.61
0.72
1.80
1.30
1.80
1.30
1.20
0.38
0.51
0.69
0.99
1.90
1.10
6.90
0.82
0.29
0.83
1.50
1.20
1.60
11.00
0.81
6.00
5.30
0.79
0.91
1 .00
0.51
1.50
2.30
0.89
1.20
0.87
0.63
0.63
1.60
0.67
0.32
0.51
1.00
1.10
1.00
0.57
0.61
0.55
0.07
1.00
0.33
1.10
0.17
0.91
0.22
0.59
2.10
0.31
0.30
0.11
0.17
0.55
0.26
0.10
1.00
0.26
2.30
0.18
0.80
0.33
0.11
0.35
0.29
0.23
0.06
0.05
0.05
0.01
0.03
0.01
0.01
0.01
0.11
0.11
0.15
0.15
0.17
0.12
0.03
0.12
0.52
0.18
0.19
0.50
0.17
0.19
0.01
0.02
0.01
0.01
0.03
0.02
0.03
0.01
0.01
0.02
0.01
0.12
0.12
0.13
0.13
0. 11
0.09
0.02
0.60
1.60
1.30
0.80
1.20
3.30
3.00
2.50
1.60
1.80
2.20
1.50
1.20
1.90
5.10
2.90
0.20
0.80.
0.30
0.20
0.10
0.60
1.30
1.80
6.10
0.50
0.80
1.80
1.00
0.90
3.30
1.10
1.30
0.90
1.10
1.20
1.20
1.10
1.80
1.10
0.16
0.11
0.06
0.22
0.25
0.15
0.12
0.22
0.33
0.10
0.07
0.18
0.15
0.20
0.11
0.11
0.01
0.07
0.08
0.12
0.21
0.13
2.20
0.17
0.01
0.10
0.12
0.13
0.26
0.66
0.10
1.20
2.10
0.16
0.11
0.13
0.03
0.17
0.11
3.80
0.05
0.05
0.03
0.06
0.07
0.06
0.01
0.06
0.16
0.01
0.01
0.07
0.06
0.09
0.17
0.06
0.03
0.06
0.05
0.05
0.09
0.07
0.65
0.05
0.05
0.05
0.12
0.05
0.10
0.22
0.06
0.81
0.75
0.01
0.05
0.01
0.03
0.05
0.15
0.88
0.020
0.020
0.010
0.030
0.030
0.030
0.020
0.010
0.180
0.100
0.100
0.150
0.110
0.110
0.160
0.110
0.100
0.120
0.130
0.120
0.110
0.120
0.610
0.050
0.030
0.010
0.110
0.050
0.060
0.360
0.010
0.660
0.550
0.030
0.010
0.010
0.030
0.050
0.070
0.120
1.60
2.00
1.70
3.10
3-90
3.30
3.50
3.10
1.30
1.30
1.60
3.80
2.80
3.90
7.70
2.10
0.66
0.95
1.30
1.80
3.80
2.30
15.00
1.50
0.61
1.70
7.50
2.10
3.10
17.00
1.80
18.10
13.00
1.50
1.70
1.80
0.75
2.20
1.20
18.00
0.01
0.01
0.01
0.09
0.07
0.06
0.01
0.06
0.07
0.03
0.03
0.10
0.07
0.08
0.09
0.05
0.03
0.03
0.05
0.07
0.07
0.06
0.11
0.03
0.01
0.01
0.16
0.03
0.09
0.21
0.01
0.19
0.12
0.05
0.05
0.06
0.02
0.08
0.10
0.20
NOTE: Samples listed by sample number (C-nuraber).
cation of samples.
hefer to table 1} for identifi-
-------
TABLE 16—PROXIMATE ANALYSES OF BENCH SAMPLES
(percent of whole coal except for Btu values)
TABLE 1?—ULTIMATE ANALYSES OF BENCH SAMPLES
(percent, moisture-free whole coal basis)
SAMPLE
ACL
HOIS
VOL
FIIC
ASH
BTU
SAMPLE
HTA
LTA
C18552
C 18553
C18551
C 18555
C18556
C 18557
C18558
C 18559
C18704
C 18705
C18706
C18707
C 18708
C 18709
C18710
C18711
C18728
C 18729
C18730
C18731
C18732
C18733
C 18806
C 18807
C 18808
C 18809
C18810
C18811
C18812
C18813
C18B1H
C18815
c 18982
C18983
C1B984
C 18985
C18986
C 18987
C18988
C18989
6.80
5.30
7-70
8.30
8.20
7.00
8.90
8.20
2.70
5.60
11.60
6.30
5.30
8.40
6.70
2.90
7.20
10.30
2.40
14.50
10.20
15-30
13-40
14.90
14.20
4.90
8.90
7.50
9.80
10.30
10.20
9.20
11.10
10.20
10.70
7.10
9.80
9.60
6.90
9.60
3.60
10.50
8.30
8.60
8.90
5.20
5.00
5.20
5.50
9.80
13-70
10.30
8.80
12.30
10.70
5.70
11.10
14.80
0.70
1.70
3.30
1.TO
2.30
1.70
1.70
1.70
45.20
43-90
44.60
42.10
42.00
39.70
41.60
40.30
38.20
40.60
39.70
37.10
38.00
38.70
25.70
39.00
35.70
35.00
34.70
35.00
3*1.30
37.40
12.60
39.30
20.20
40.80
29.60
36.70
37.40
10.10
37.30
6.30
47.20
46.10
44.60
44.80
41.30
HO. 60
45.60
43.70
44.70
50.40
49.50
48.10
50.40
44.80
18.30
45.70
61.90
59.10
61.20
57.30
53-20
50.20
7.80
53.70
58.40
53. »0
45.10
52.40
50.20
3.30
48.10
1.50
7.50
9.90
8.70
13-10
16.70
19.70
12.80
16.00
17.10
9.00
10.80
14.90
11.60
16.50
56.00
15.30
2.40
5.90
4.10
7.70
12.40
12.40
79-60
7.00
21.40
5.80
25.30
10.90
12.30
86.70
14.60
92.20
80.00
6.50
8.10
7.90
4.50
10.20
17.70
85.20
13306
12712
12947
12305
11856
11172
123*8
11781
11604
12749
12196
11751
12316
11505
4264
11416
14042
13556
13802
13256
125*1
13194
2356
13117
10582
13215
10202
12242
12186
621
11762
264
C 18552
C18553
C1855*
C18555
C18556
C 18557
C 18558
C18559
C18704
C 18705
C 18706
C18707
C18708
C 18709
C1B710
C18711
C18728
C 18729
C18730
C18731
C 18732
C18733
C 18806
C18807
C 18808
C 18809
C18810
C18811
C18812
C18813
C 18814
C18815
C18982
C189B3
C 18984
C18985
C 18966
C 18987
C 18988
C18989
73-19
70.06
72.52
68.12
66.18
60.27
67.67
64.39
64.52
70.90
68.40
65.56
69-57
63-37
27-02
64. M
79-24
77.41
77.97
76.01
71.62
74.66
13-85
73-64
63-02
73-75
57-74
69-39
66.62
4.47
66.69
3-17
5.84
5.11
5.28
4.87
5.06
4.48
4.73
4.79
5. OS
5.B8
5.13
5.16
5-10
4.53
1.89
«.91
5.29
5.19
5.49
5.43
4.92
5.31
1.82
5.20
3.M
5.70
3.92
4.80
4.87
1.35
4.11
0.98
1.05
1-15
1.09
1.06
1.02
0-94
0.96
1.00
1.03
1.21
1.04
1.06
1.18
1-03
0.37
1.10
1-73
1.64
1-63
1.63
1.40
1.57
0.47
1.25
0.45
1-36
1.07
1.3*
1.24
0.15
1.15
0.14
9.74
9.39
8.43
9-45
6.82
6.53
6.89
7-35
7.64
8.38
9.36
9 -26
8.53
9-55
7.29
10.13
9.02
10.14
8.56
9-15
5-33
2.01
9-23
0.0
11.18
9-50
9.13
10.14
5.64
6.46
2.58
7.51
9.95
8.71
13-08
16.71
19.67
12.82
16.00
17.09
9.03
10.78
14.87
11.57
16.49
56.01
15.30
2.43
5.90
4.07
7.72
12.44
12.37
79-62
7.03
21.42
5.76
25.31
10.88
12-35
86.66
14.63
92.24
60.00
6.50
8.10
7.90
4.50
10.20
17.70
85.20
9.24
14.34
10.23
14.80
20.69
26.52
16.64
21.24
21.69
11.57
13-24
19.53
15.16
20.78
74.68
21.14
3-29
6.77
5.04
8.19
13-60
9.16
65.63
10.29
31-7*
8.59
29.25
14.13
14.83
19.19
7.95
11.43
10.06
6.30
13-20
21.30
21.69
NOTE: Abbreviations are listed in table 1 and identlfioation of samples are in table 13.
moisture-free whole coal basis except for air dry loss (ADL) and moisture (MOIS).
All values are on a
-------
80
TABLE 18—SULFUR ANALYSES OF BENCH SAMPLES
(percent, moisture-free, whole coal basis)
SAMPLE
ORS
PYS
SUS
TOS
SXRF
C18552
C18553
C18554
C 18555
C18556
C18557
C18558
C18559
C18704
C 18705
C18706
C18707
C18708
C18709
C18710
C18711
018728
C18729
C18730
C18731
C18732
C18733
C1o806
C16807
C 18808
C18809
C18810
C18811
C18812
C18813
C18814
C18815
C18982
C18983
C18984
C 18985
C18986
C18987
C18988
C18989
2.30
2.41
2.19
2.45
2.35
1.45
1.77
1.94
3.08
2.73
2.63
2.22
2.70
2.68
2.14
2.85
1.13
0.55
0.52
0.60
0.42
0.40
0.24
1.87
0.54
1.91
1.35
2.10
1.84
0.19
0.92
0.02
0.26
1.86
1.89
1.70
1.84
1.66
1.48
0.0
0.37
1.92
1.48
0.94
1.86
6.63
5.15
4.52
1.32
1.74
2.51
1.70
1.24
2.15
21.99
3.45
0.02
0.28
0.18
0.03
0.02
0.31
1.86
1.75
15.18
0.33
1.10
2.32
0.92
1.33
5.91
0.80
2.41
0.84
1.05
1.25
1.16
1.43
2.12
0.92
0.01
0.01
0.01
0.03
0.01
0.01
0.23
0.13
0.15
0.15
0.11
0.20
0.81
0.65
0.01
0.02
0.01
0.02
0.02
0.06
0.12
0.03
0.23
0.01
0.02
0.04
0.03
0.20
0.13
0.08
0.09
0.02
0.05
0.02
0.04
0.06
0.06
0.05
2.67
4.34
3.98
3.40
4.22
8.11
6.93
6.47
4.64
4.61
5.29
4.07
4.05
5.03
24.94
6.96
1.17
0.85
0.70
0.65
0.46
0.76
2.22
3.65
15.95
2.24
2.47
4.46
2.79
1.73
6.95
0.90
2.75
2.75
3.00
2.97
3.04
3.15
3.65
0.96
2.60
4.30
4.32
3.23
3.81
8.23
6.97
6.47
4.65
4.81
4.88
3.87
3.78
3.88
6.63
1.04
0.94
0.86
0.74
0.60
0.99
1.77
3.85
2.47
2.50
4.24
2.90
1.64
6.84
0.85
2.85
3.03
3.12
3.04
3.47
3.15
3.66
0.42
NOTE: Refer to tabla 1 for abbreviations; refer to
table U for identlfioation of samples.
-------
81
Because coal in most respects is a heterogenous material, wide
variations in content of trace elements in individual benches were
expected, and in general that was the finding. However, in several
bench sets some elements occur uniformly throughout the bed. Among the
more uniform distributions observed is that of bromine in bench set 3
(fig. 63). The rare earth elements also exhibit relatively uniform
distributions in the bench sets analyzed. Figure 63 and all of the
histograms of bench samples represent the total coal seam and are
drawn with the proportional thickness of each bench plotted along the
ordinate and the concentration of the elements plotted along the
abscissa. The top of the coal seam, or the rock above the seam, is
plotted at the top of each figure.
The expected variability in trace element distribution is
apparent in figure 61. The three elements U, Mo, and V have a wide
distribution range and all are concentrated in the uppermost bench of
this sample set. Although maximum concentration of elements may occur
in any of the benches of the coal bed, the top and/or bottom benches
appear to be the preferred sites. The concentration of antimony in the
uppermost bench of four samples sets and in the bottommost bench of
the fifth is represented in figure 65. The maximum concentration
within the coal bed is in either the top or bottom bench of each
sample set. Still higher amounts of antimony were obtained from the
rock units associated with the coals.
Distribution of germanium in the bench sets is shown in figure
66. The pattern is distinct and consistent in bench sets 1 through U,
and less well defined in bench set 5. The germanium content of the top
bench and/or that of the bottom bench are greater than the germanium
content of the other benches in all five sample sets. Earlier efforts,
(Ruch et al., 1971*, and Gluskoter, 1975) and those of Zubovic (1966),
demonstrated that germanium is primarily associated with the organic
fraction of the coals in Illinois and not in the mineral matter
fraction. This and the observation that the germanium is concentrated
at the boundaries of the coal bed, the top and the bottom, suggest
that the germanium was introduced into the coal bed after burial and
thus its origin is not related to conditions in the swamps in which
the coal was formed. Rather, the germanium was transported into the
coal bed in solution and was assimilated by the coal when geochemical
conditions within the coal bed were favorable for the removal of the
germanium from the solutions. The horizontal boundaries (top and
bottom) of the bed were necessarily in contact with those solutions
before the innermost parts of the bed. Zubovio et al., (1961)
presents a different interpretation for the concentration of elements
at the top and the bottom of the coal beds in the Illinois Basin. He
attributes these concentrations to "greater availability of mineral
matter and mineral- rich solutions toward the beginning and end of the
interval of accumulation of the plant debris that eventually becomes
coal." (Zubovic et al., 1964, p. B35). He also stated the belief that
-------
82
coals near the margin of the basin of deposition would have a more
heterogenous vertical distribution of elements because of variable
conditions of weathering and erosion in the border land.
Bench sets 1, 2, 3, and 4 are from locations in south central and
southwestern Illinois and bench set 5 is from the northwestern part of
the coal basin and is interpreted to have been closer to the basin
margin. The germanium distribution is somewhat more uniform in bench
set 5 than in the other four bench sets; the Ge content is of the same
order of magnitude as that of the other bench sets.
Elements that were observed to be closely related in face channel
samples of coals are, as expected, also closely correlated in the
individual benches. Examples of this are shown by calcium and
manganese in bench set 1, phosphorus and fluorine in bench set 2, and
sulfur and arsenic in bench set 4 (fig. 67)• Calcium and Mn are
associated in the mineral calcite, P and F in the mineral apatite, and
S and As in the mineral pyrite. Elements that occur in coals as
discrete mineral phases have wide ranges in concentrations in benches
as they do in whole coal samples. For example, Zn, which occurs as the
mineral sphalerite (ZnS), ranges from 1? ppm to 4100 ppm in benches of
set 2. The ratio of the highest concentration of an element in the
benches to the lowest concentration of that element in the benches is
a measure of the range of an element within a bench set. This ratio
commonly has the value of 3 to 7 or 8. The ratio is much higher for
zinc in bench set 2 where it is more than 200. The other elements that
are generally found concentrated in individual benches and often at
the top and/or the bottom of the bed also have high ratios. Germanium
in bench sets 1 through 4 has values of 24 to 260; Mo in all five sets
has a range ratio of 18 to 480; and Cl in bench sets 1 and 4 has
values of 70 and 60 for this ratio.
In general, elements that have low values of the ratio showing
range in concentration of an element in a single bench set include
boron and bromine. Values of the ratio of 1.5 and less for these
elements are found in several but not in all the bench sets. Bench set
4 has a value of 1 for B and bench set 1 has a value of 5 for Br.
The roof shale, underclay, and a clay parting (blue band) were
analyzed, as well as the seven benches of coal in bench set 4. Roof
and floor were also analyzed in bench set 5, and a clay parting (blue
band) was analyzed in bench set 2. Many elements including Ag, Ba, Cd,
Co, Cr, Cs, Cu, F, Ga, Hf, La, Mn, Sc, Se, Sm, Sr, Th, V, Yb, Zr, K,
Mg, Si, Na, and most of the rare earth elements that were determined,
occur in significantly higher concentrations in most of these rock
units than in the coals. Examples of concentrations of the elements in
the strata associated with the coal are given in the illustrations of
concentrations of barium, cerium, and silicon in bench set 4 (fig.
68).
(Text continued on page 88)
-------
8ft IPPM)
u 0 I II II X » It
0.0
10.1
Fig. 63 - Distribution of bromine in coals of bench set 3.
U (PPNI
0 « I H It X ft It
HO IPPHI
o ' 111 n it a w lit
101. •
1
J
I
0.0
svo
E
r
a.
H
-
1
1
j
ji v, » n i)
1 ' i
D
- 101. •
r
I
i
Fig. 6U - Distribution of uranium, molybdenum, and vanadium in coals of
bench set 1.
-------
0.0 1.0 .'.0
0.0 0. I 0.7 0.3 O.i O.S 0.6 O.t
IH. t
210.0
Bench set 1
0.0
\ti.i
Bench set 2
SB (PPm
0 ? J 5 7 9 10 II
0.0
10.;
L_J
Bench set 3
sa
-------
85
GE IPPMI
0 1 I I I] IJ II il
0.0
II.)
s,.,,
r
8
IU.J
III.I
IM. I
210.1
Bench set 1
0.0
10.1
u ip
ii is it
Bench set 2
0.0
10.7
CE
Bench set 3
-10.1
*.!
a
Bench set 4
7S.4
n.i
c e 10 i; n
Bench set 5
^V^ Cloy»tone
I 1 Cool
Fig. 66 - Distribution of germanium in coals from bench sets 1, 2t 3,
and 5.
-------
86
CD IXI
0.0 1.0 1.0 3.0 1.0 5.0 6.0 7.0
0.0
IJ.7
IU.J
1(7.1
IN. I
110.•
NN IPPHI UIO?I
o.o o.; o.« o.s o.e i.o 1.2 i.«
0.0
1J.7
IU.?
197.8
IN. I
110.1
f IPPMI IX10 * I
0.0 0.8 I.I 1.1 t.i 1.1 H.I !.)
F (PPHHXIO'l
0.0 O.V O.I I.I I.ft 1.9 ?.3 2.7
' ' f
I
I
y
r
B
1
• 10.7
3U.S
72.it
i
a
166.6
1 ]ciaystone ^ ,
a ?I0.9
Cool
'M
rrrr-
tt
}
0
12.11
§
in. a
310.1 \
s^y^/fy^fytfyfyffifyft
/////A
Fig. 67 - Distribution of associated elements in bench sets: Calcium
and manganese in bench set 1; phosphorus and fluorine in
bench set 2; and total sulfur and arsenic in bench set 'i.
-------
87
BA IPPH) 1X10 » I
0.0 I.} 2.7 H.O 5.1 1.7 O.I 9.u
-10.2
0.0
72.1
£ IOS.7
a
200.7
210.9
CE (PPW 1X10*1
0.0 0.7 I.H 2.1 >.l 3.5 4.2 1.9
-10.2
0.0
73.»
»0.7
210.9
SI IXI
0 ] e 9 12 IS 16 21
200.7
210.1
I I Cool
Fig. 68 - Concentration of barium, cerium, and silicon in coals and as-
sociated strata of bench set k.
-------
88
ANALYSES OF WASHED COALS
Methods of Analyses
Many of the coals mined in the United States are "washed" or
"cleaned" prior to delivery to the consumer. Cleaning involves
reducing the content of ash and sulfur of the coal by removing a
portion of the mineral matter associated with the coal. Because the
specific gravities of the minerals in coal are from two to four times
greater than that of the coal, most coal-cleaning techniques involve a
specific gravity separation. Data on the washability of Illinois coals
and a description of the techniques used have been published by
Helfinstine et al., (1970) and Helfinstine et al.f (1971,1974).
Nine samples of coals were separated into specific gravity
fractions and were analyzed for most of the same major, minor, and
trace elements as were the 172 whole coals. The gravity separations
were, in each case, made on a three-eighths inch by 28 mesh size
fraction obtained by crushing the coal to less than three-eighths inch
(1 cm) and then screening it. All separations of 1.60 specific gravity
and below were made in an appropriate mixture of perchloroethylene and
naphtha. The separations at a specific gravity of approximately 2.8
were made in bromoform or in bromoform that contained a small amount
of ethyl alcohol. Three coals were each separated into six specific
gravity fractions in the perchloroethylene and naphtha; the heaviest
of each of these six fractions (1.60 sink) was separated into two
parts in bromoform. Five of the coals were washed to a maximum gravity
of only 1.60. One coal was also separated in the perchloroethylene and
naphtha but only two fractions were analyzed, one with a specific
gravity of less than 1.25 and one with a specific gravity greater than
1.60. The results of the analyses for Cl and I in the washed coals are
not given, because relatively large amounts of these elements may have
been added to the coals from the washing media.
Five of the coals that were washed were from the Illinois Basin,.
one each from the Davis Coal Member, the DeKoven Coal Member, arid the
Colchester (No. 2) Coal Member, and two were from the Herrin (No. 6)
Coal Member. Three of the samples were from the eastern coal fields; a
sample of the Blue Creek bed, Alabama; the Pocahontas No. 4 bed, West
Virginia; and the Pittsburgh No. 8 bed, West Virginia. The remaining
sample was from the Black Mesa Field in Arizona. The samples are
identified and the percent of the raw coal in each washed fraction is
given in Table 19.
-------
89
Results of the determinations of trace elements of the
laboratory-prepared coals are given in table 20; the major and minor
elements in table 21; the standard coal analyses in tables 22 and
23; and the varieties of sulfur in table 21. Samples are listed in
order of increasing specific gravity. Those samples identified as to
their size distribution (for example, three-eighths inch by 28 mesh)
are "whole coal," or the sample prior to washing. The analyses of the
28 mesh by zero fraction is also given, although this fraction was
removed from the coal prior to washing to avoid the difficulties that
are encountered when attempts are made to wash fine coal. No
significantly different concentrations of elements in the 28 mesh by
zero fraction are observed when compared to the three-eighths inch by
28 mesh fraction.
(Text continued on page 103)
-------
90
TABLE 19—IDENTIFICATION OF LABORATORY-PREPARED WASHED COAL SAMPLES
ANALYSIS
NUMBER
C- 18562
C-18563
C-18564
C-18565
C-18566
C-18567
C-18869
C-18878
C-18879
C-18880
C-18881
C-18882
C-18890
C-18891
C-18883
C-18884
C-18885
C-18886
C- 18887
C-18892
C-16893
C-18894
C-18895
C-18896
C-18897
C-18898
C-19014
C-19009
C-19010
C-19011
C-19012
C-19013
STATE
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ALABAMA
ALABAMA
ALABAMA
ALABAMA
ALABAMA
ALABAMA
W VIRGINIA
W VIRGINIA
W VIRGINIA
W VIRGINIA
W VIRGINIA
W VIRGINIA
W VIRGINIA
W VIRGINIA
W VIRGINIA
W VIRGINIA
W VIRGINIA
W VIRGINIA
W VIRGINIA
W VIRGINIA
ARIZONA
ARIZONA
ARIZONA
ARIZONA
ARIZONA
ARIZONA
ORIGIN
— FLOAT-SINK SET 1
HER R IN (NO. 6)
HERRIN (NO. 6)
HERRIN (NO. 6)
HERHIN (NO. 6)
HERRIN (NO. 6)
HERRIN (NO. 6)
~ FLOAT-SINK SET 2
BLUE CREEK
BLUE CREEK
BLUE CREEK
BLUE CREEK
BLUE CREEK
BLUE CREEK
~ FLOAT-SINK SET 3
POCAHONTAS f4
POCAHONTAS f4
POCAHONTAS #4
POCAHONTAS f4
POCAHONTAS #4
POCAHONTAS #4.
POCAHONTAS 14
— FLOAT-SINK SET 4
PITTSBURGH f8
PITTSBURGH f8
PITTSBURGH 18
PITTSBURGH f8
PITTSBURGH *8
PITTSBURGH 18
PITTSBURGH *8
— FLOAT-SINK SET 5
BLACK MESA FIELD
BLACK MESA FIELD
BLACK MESA FIELD
BLACK MESA FIELD
BLACK MESA FIELD
BLACK MESA FIELD
SPECIFIC
GRAVITY
FRACTION
—
28M X 0
1.29 F
1.33 FS
1.40 FS
1.60 FS
1.60 S
—
28M X 0
1.30 F
1.32 FS
1.40 FS
1.60 FS
1.60 S
—
3/8 X 28M
28M X 0
1.30 F
1.33 FS
1.40 FS
1.59 FS
1.59 S
--
3/8 X 28M
28M X 0
.29 F
.32 FS
.40 FS
.59 FS
.59 S
~
28M X 0
1.28 F
1.30 FS
1.40 FS
1.60 FS
1.60 S
PERCENT
OF
RAW COAL
31.3
25.9
18.6
12.5
8.7
25.3
20.5
36.0
11.8
6.4
24.7
25.3
25.0
14.1
10.9
33-8
20.9
25.7
13.5
6.1
25.0
26.J
40.8
6.9
1.0
NOTE: Samples arc listed by analysis numbers on tables 20 through 24,
-------
91
TABLE 19—Concluded
ANALYSIS
NUMBER
C-18090
C-18094
C-18095
C-18095
C- 18097
C-18098
C-18099
C-18106
C-18107
C-18092
C-18100
C-18105
C-18133
C-18134
C-18135
C-18136
C-18137
C-18138
C-18139
C-18140
C-18141
C-18142
C-18121
C-18122
C-18123
C-18124
C-18125
C-18126
C-18127
C-18128
C-18129
C-1&130
STATE
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ILLINOIS
ORIGIN
— FLOAT-SINK SET 6
DAVIS
DAVIS
DAVIS
DAVIS
DAVIS
DAVIS
DAVIS
DAVIS
DAVIS
— FLOAT-SINK SET 7
DEKOVEN
DEKOVEN
DEKOVEN
— FLOAT-SINK SET 8
COLCHESTER (NO. 2)
COLCHESTER (NO. 2)
COLCHESTER (NO. 2)
COLCHESTER (NO. 2)
COLCHESTER (NO. 2)
COLCHESTER (NO. 2)
COLCHESTER (NO. 2)
COLCHESTER (NO. 2)
COLCHESTER (NO. 2)
COLCHESTER (NO. 2)
— FLOAT-SINK SET 9
HERRIN (NO. 6)
HERRIN (NO. 6)
HERRIN (NO. 6)
HERRIN (NO. 6)
HERRIN (NO. 6)
HERRIN (NO. 6)
HERRIN (NO. 6)
HERRIN (NO. 6)
HERRIN (NO. 6)
HERRIN (NO. 6)
SPECIFIC
GRAVITY
FRACTION
—
3/8 X 28M
1.28 F
1.30 FS
1.32 FS
1.40 FS
1.60 FS
1.60 S
2.89 FS
2.89 S
--
3/8 X 28M
1.29 F
1.60 S
—
3/8 X 28M
28M X 0
1.25 F
1.26 FS
1.30 FS
1.40 FS
1.60 FS
1.60 S
2.89 FS
2.89 S
~
3/8 X 28H
28M X 0
1.25 F
1.29 FS
1.33 FS
1.1)0 FS
1.60 FS
1.60 S
2.89 FS
2.89 S
PERCENT
OF
RAW COAL
25.9
19.5
19.7
19.3
7.2
8.5
3.8
4.8
19.4
9.0
28.2
23.6
27.6
10.6
3.2
6.8
3.6
3.2
36.1
17. 4
14.7
9.3
6.9
15.6
12.7
2.9
NOTE: Samples are listed by analysis numbers on tables 20 through 24,
-------
92
TABLE 20—TRACE ELEMENTS IN LABORATORY-PREPARED WASHED COAL SAMPLES
(parts per million, moisture-free, whole coal basis)
[AMPLE AC AS
BA BB BR CD CE CO CR CS
CU
C 18090
C18091
C18095
C 18096
C18097
C18098
C 18099
C18106
C18107
C 18092
C1S100
C1B105
C18133
C18131
C18135
C1B136
C18137
C1813B
C18139
ClttlUO
CI6111
C 181 12
C18121
C1B122
C18123
C18121
C18125
C18126
C18127
C18128
C IB 129
C16130
C 18562
C1B563
C1856U
C18565
C1B566
C18567
C188B9
Clb87b
C1BB79
8.7
0.70
1.1
1.5
14.1
12
61
31
80
15
2.9
180
110
B3
11
22
17
99
180
630
350
1100
15
11
0.90
1.1
2.3
1.3
5.8
58
23
210
0.04 6.0
0.02 2.0
0.02 2.0
0.02 2.0
0.03 3.0
0.12 50
0.02 1.0
0.01 0.10
0.01 0.50
22
29
35
32
31
27
1.0
36
3.0
21
35
90
70
100
170
100
96
tz
58
91
110
90
120
190
88
73
80
88
170 80
81 10
110 10
200 80
110 110
82 170
5.0 190
2.0 120
1.0 160
3.0
2.8
3.0
3.1
2.8
2.6
1.8
3.7
1.7
1.8
7.0
7.1
1.5
3.2
2.6
3.2
3.2
3.1
3.1
7.0
3.3
5.2
2.2
2.5
2.3
3.0
3.0
3.2
3.1
3.2
1.6
1.7
0.68 8.0
0.81 21
0.76 1.0
0.75 1.0
0.85 7.0
1.9 91
0.67 2.0
0.17 2.5
•0.51 2.3
1.7
0.10
0.20
0.20
0.10
0.50
20
2.1
36
0.60
0.10
2.1
17
20
0.10
0.20
0.10
1.2
11
3»0
89
710
6.1
3.2
0.20
0.20
0.20
0.10
0.70
27
1.8
150
0.30 13
<0.10 7.0
<0. 10 9.0
<0.20 13
<0.10 28
1.1 130
<0. 10 33
<0. 10 20
<0.10 29
3.0
2.0
3.0
1.0
5.0
3.0
8.0
10
22
6.0
12
19
10
8.0
5.0
6.0
8.0
16
15
IB
11
12
5.0
5.0
2.0
3.0
5.0
6.0
5.0
19
20
29
3.2
2.3
2.7
3.5
3.2
7.0
7.5
7.8
9.3
10
7.0
9.0
10
13
23
21
27
70
15
15
11
18
10
1.0
1.0
5.0
12
18
mo
81
12
32
25
8.0
12
16
25
33
71
59
31
11
28
25
31
30
92
17
11
11
11
1.0
6.0
7.0
12
17
18
23
15
11
7.0
17
35
31
13
17
20
38
69
110
110
180
23
25
5.0
7.0
10
16
25
65
61
89
0.90 19
0.50 5.0
0.80 7.0
1.5 9.0
2.7 9.0
2.8 19
2.1 13
0.50 10
0.80 11
-------
TABLE 20—Continued
93
SAMPLt
AC
AS
BA
BE
B«
CD
CE
CO
CR
CS
CU
C18bBO
c 18881
ci8B«2
C 18890
C16691
C18883
C16864
C 18865
C18886
C 18887
C18892
C18893
C18894
C18895
C 18896
C18897
C18898
C 19009
C19010
C190I1
C19012
C19013
C19014
0.01
0.02
0.01)
0.03
0.03
0.02
0.01
0.02
O.OM
0.10
0.02
0.02
0.02
0.01
0.01
0.02
0.05
0.01
<0.01
0.01
0.03
0.05
0.02'
0.1)0
1.0
13
11
11
1.0
2.0
4.0
9.0
80
5.0
6.0
1.0
2.0
6.0
7.0
15
0.50
0.50
1.0
2.0
13
2.0
3.0
5.0
20
12
16
4.0
8.0
12
16
37
140
65
62
98
120
76
76
38
42
36
24
35
41
200
300
600
180
190
130
130
140
280
320
66
64
50
50
60
60
230
240
250
260
420
350
540
0.63
0.60
1.8
1.0
1.0
1.0
1.1
0.94
1.0
2.4
0.84
0.68
0.35
0.58
1.0
1.5
1.3
0.41
0.32
0.59
0.90
0.60
0.48
1.9
1.4
0.50
25
29
28
27
32
23
9.0
8.0
14
7.0
8.0
7.0
8.0
6.0
1.4
1.6
2.0
3.0
1.5
1.2
<0.10
0.30
0.80
<0.10
<0.10
<0.10
<0.10
-------
TABLE 20—Continued
SAMPLE DY tU F G* GE HF HG I IN LA LU KM
C 18090
C18091
C18095
C 18096
C18097
C 18096
C18099
C18106
C18107
C 18092
C18100
C18105
C18133
C18131
C18135
C18136
C18137
C1813&
C18139
C18110
C18111
C18112
C18121
C18122
C18123
C18121
C18125
C18126
C 18 127
C18128
C1D129
C18130
C18562 0.70 0.31
C18563 0.30 0.15
C18561 1.1 0.20
C18565 1.0 0.27
C18566 1.2 0.31
C1tJ5o7 1. 1 0.60
Cl
-------
TABLE 20—Continued
95
SAMPLE
DI
EU
OA
GE
HP
HO
IN
LA
LU
C 18880
C188B1
C 18882
C18890
C18891
C18883
C18884
C18885
C 18686
C 18887
C 18892
C18893
C 18891
C18895
C 18396
C 18897
C 18898
C 19009
C19010
C19011
C19012
C19013
C 190 11
2.6
3.1
1.1
2.1
1.5
1.1
1.4
2.1
3.2
5.0
1.1
1.0
0.70
0.70
1.2
1.6
2.8
0.50
0.80
0.80
1.3
1.2
0.70
0.52
0.71
1.3
0.16
0.39
0.22
0.28
0.31
0.58
1.3
0.21
0.20
0.13
0.16
0.24
0.28
0.64
0.07
0.08
0.16
0.37
0-34
0.12
6.0
8.0
22
5.0
4.0
2.0
2.0
4.0
5.0
15
4.0
4.0
2.0
3.0
4.0
5.0
14
1.0
1.0
3.0
7.0
11
2.0
0.10
0.20
0.50
<0.10
0.70
0.10
<0.10
<0.10
0.20
0.40
1.1
1.4
o.eo
1.3
3.6
2.4
0.70
<0.10
<0.10
<0.10
0.30
3.0
<0. 10
1.6
3.1
6.5
1.6
1.0
0.30
0.40
0.80
2.7
5.7
0.60
0.50
0.30
0.30
0.40
0.50
3.5
0.40
0.40
1.1
3.1
2.3
0.90
0.03
0.03
0.05
0.14
0.15
0.06
0.04
0.09
0.15
0.78
0.14
0.15
0.05
o.oa
0.14
0.30
0.27
0.01
0.02
0.03
0.07
0.31
0.06
17
21
40
18
14
7.0
8.0
12
23
70
8.0
7.0
4.0
5.0
6.0
7.0
36
3.0
3.0
6.0
13
18
5.0
0.13
0.18
0.51
0.10
0.26
0.05
0.06
0.08
0.23
0.29
0.11
0.07
0.03
0.05
0.12
0.12
0.40
0.04
0.04
0.06
0.15
0.10
0.06
7.0
41
160
19
34
5.4
7.4
15
28
54
28
67
12
14
20
36
110
2.5
3-8
5.6
13
23
9.4
NOTE: Samples listed by sample number (C-number).
cation of samples.
Refer to table 19 for Identifl-
-------
96
TABLE 20—Continued
SAMPLE HO Nl P PB RB SB SC SE SM SN SR TA
C 18090
C18094
C18095
C 18096
C 18097
C1809B
C18099
C18106
C18107
C18092
C18100
C18105
C18133
cieu4
C1B135
C1B136
C18137
C18138
C1B139
C18140
C18141
C1U142
C18121
C18122
C18123
C16124
C18125
C18126
C18127
C1812B
C18129
C18130
C1B562
C18563
C16564
C18565
C 10566
C 18567
C18889
cia«7a
C1BB79
9.0
2.0
1.0
1.0
3-0
10
61
21
220
12
3.0
140
11
12
2.0
<4.0
a.o
15
20
110
34
150
11
13
5.0
7.0
8.0
9.0
12
28
11
220
19
9.0
1>4
16
20
19
16
33
141
17
18
38
10
30
16
20
26
17
60
120
98
110
38
29
9.0
10
15
21
25
77
76
100
11
8.0
8.0
10
10
27
1 1
10
12
7.0
13
17
21
30
22
25
85
81
170
28
23
21
25
21
21
21
14
39
61
12
15
19
21
100
65
22
19
29
55
1100
170
160
250
130
12
17
19
10
100
990
390
1500
130
15
880
240
180
81
120
210
320
150
750
630
910
110
100
13
14
25
42
58
530
210
2200
4.5 16
1.2 7.0
1.7 14
2.1 24
3.2 42
11 35
4.6 21
2.5 4.0
2.8 10
0.50
0.30
0.30
0.40
0.50
0.90
1.0
3.6
1.2
0.50
0.60
0.80
4.5
3.4
3-9
6.0
3.5
14
16
11
18
13
1.9
1.9
1.2
l.t
1.3
1.6
1.6
4.2
2.8
12
0.71 4.4
0.50 1.5
0.30 2.1
0.30 2.7
0.40 3.8
1.4 7.1
0.67 4.4
0.35 2.4
0.50 3.0
2.4
1.6
1.7
1.6
2.1
3.2
6.4
5.4
7.2
1.5
2.1
5.8
1.4
1.1
0.80
0.90
1.2
2.1
3.1
3.5
3.7
3.1
3.4
3-7
l.l
1.2
1.8
2.8
3.5
8.8
6.8
21
2.0 1.4 0.60 67
<1.0 0.70 0.12 24
2.0 1.0 0.20 23
3.0 1.1 0.32 23
5.0 1.7 0.54 32
10 5.7 1.6 290
2.5 2.3 2.2 130
1.5 1.5 0.40 78
2.0 2.0 0.14 140
0.40
0.10
0.10
0.20
0.40
0.60
0.20
0.10
0.10
-------
TABLE 20—Continued
97
SAMPLE
NO
HI
RB
SB
SC
SB
SR
T»
cibbtto
C18881
C 18882
C18890
C18891
C188B3
C1688U
C 18885
C 18886
C18887
C18892
C18893
C18894
C18895
C18896
C 18897
C1889B
C19009
O9010
C19011
C19012
C19013
C19014
11
8.0
12
12
U
12
10
9.0
9.0
21
6.0
6.0
3.0
1.0
7.0
9.0
21
1.6
1.6
1.8
2.3
8.1
2.2
270
250
1000
32
26
21
16
39
11
100
56
87
32
35
67
95
no
110
130
130
53
300
130
3.6
6.4
9.2
5.1
5.5
1.6
1.6
1.0
9.8
16
3.0
3.0
2.0
3.1
1.7
5.7
7.0
0.90
0.60
1.7
5.5
29
12
17
51
170
15
19
0.0
<1.0
6.0
26
66
11
6.0
5.0
5.0
9.0
7.0
69
<1.0
<1.0
<1.0
7.0
13
3.0
0.50
0.70
1.9
1.3
1.3
0.50
0.60
1.1
2.1
2.4
0.20
0.30
0.10
0.20
0.30
0.30
0.95
0.16'
0.19
0.40
0.42
0.36
1.2
4.0
6.6
16
3.2
2.7
1.2
1.5
2.5
5.8
7.6
2.4
2.0
1.0
1.5
2.4
2.5
10
0.80
0.80
1.6
3.»
2.0
1.3
3.0
5.0
7.0
6.0
4.0
2.0
2.0
4.0
9.0
15
2.0
1.5
0.50
1.0
1.9
2.0
5.0
1.0
2.0
2.5
4.7
5.5
2.0
2.6
3-5
6.1
2.7
1.9
1.0
1.3
2.0
3.3
8.7
1.2
1.1
0.60
0.80
1.1
1.3
5.2
0.30
0.30
0.80
1.8
2.3
0.60
0.27
0.44
1.4
0.31
0.42
0.86
0.08
0.20
0.46
1.4
0.3i
3.6
<0.09
1.8
4.8
3.6
1.4
<0.08
0.09
0.20
0.50
1.3
5.4
160
130
130
110
180
85
80
81
120
140
74
120
73
75
63
50
130
130
190
190
290
190
190
0.20
0.40
1.0
0.30
0.20
0.06
0.07
0.10
0.50
0.90
0.20
0.10
0.05
0.07
0.20
0.20
0.70
0.04
0.04
0.10
0.40
0.30
0.10
NOTE: Samples listed by sample number (C-number).
cation of samples.
Refer to table 19 for identlfi-
-------
98
TABLE 20—Concluded
SAMPLE
Tb
TH
TL
YB
ZN
ZR
C18090
C18091
C18095
C18096
C18097
C18098
C18099
C18106
C1B107
C18092
C18100
C18105
C1B133
C18131
C1B135
C18136
018137
C18138
C18139
ciaiio
cibin
U8112
C18121
C18122
C1B123
C18121
C18125
C18126
C18127
C18128
C18129
C18130
C 18562
C18563
C18561
C18565
C 18566
C 18567
C 18889
C18878
C18879
C 18860
C188B1
C18882
C 18890
C18891
C1B883
C18881
C1BBB5
C188B6
C 18887
C18892
C18893
C18891
C 18895
C 18896
C 16897
C 18898
c 19009
C19010
C19011
C19012
C19013
C19011
0.10
0.3C
0.10
0.50
0.60
1.1
0.50
0.10
0.20
0.30
0.50
0.60 '
1.2
0.21
0.30
0.09
0. 10
0.30
0.20
1.0
0.08
0.07
0.20
0.10
0.30
0. 10
2
1
2
2
1
6
3
1
2
3.
7.
13
5.
3.
0.
1
2
10
15
1,
1 .
0.
0.
1 ,
1 ,
8.
0.
0.
2.
5.
5.
1 .
.7
.2
.0
.3
.3
.0
.1
.6
.3
.7
. 1
1
,7
.97
.3
.9
.5
.1
.57
.87
, 1
,2
2
63
69
1
9
1
^
2
1
2
1
1
5
1
1
1
i
1
3
2
1
0
0
1
2
1
0
<0
<0
0
0
0
1
0
0
1
2
1
0
.9
.6
.7
.0
.3
.7
.6
.0
.0
.6
.7
.5
.0
.1
.10
.60
.5
.1
.1
.50
.50
.50
.70
.70
.60
.6
.50
.50
.7
.2
.5
.10
20
13
13
18
35
90
26
29
78
26
3-0
58
17
20
8.0
9.0
11
32
36
16
52
11
32
39
16
20
26
31
38
72
60
85
31
38
37
39
39
11
57
37
11
53
70
100
1b
11
It
21
39
6fr
8^
2?
1 u
1 1
It'
2"
3i'
8>
HI
1L'
11
11
2?
2(1
0
0
0
b
0
2
0
0
0
0
0
0
1
3
0
0
0
0
0
0
0
.50
.59
• 36
.12
.73
.1
.65
.16
.51
.65
.61
.68
.1
.3
.18
.10
.10
.26
.50
.61
.26
3
7
1
0.90
0.30
0.50
0.50
0.70
2.1
0.60
0.30
0.10
0.60
0.90
1.7
0.70
0.50
0.30
0.30
0.10
0.90
1.1
0.10
0.30
0.10
O.ZO
0.10
0.10
1.2
0.20
0.20
0.30
0.60
0.10
0.20
270
31
37
11
56
120
2500
150
5000
120
51
130
1800
1900
13
11
23
120
670
12000
7800
0000
600
310
7.0
9.0
12
15
11
3100
570
5000 .
60
6.0
7.0
10
21
250
6.0
1.0
2.0
5.0
6.0
22
5.0
8.0
3.0
8.0
8.0
15
19
13
11
1.0
7.0
15
16
30
6.0 '
3.0
3.0
1.0
36
2<>
1.0
1.0
2.0
1.0
1.0
12
IB
IB
17
6.0
2.0
19
2.0
1.0
1.0
2.0
3.0
6.0
9.0
11
11
20
12
10
1.0
2.0
1.0
7.0
8.0
32
21
11
19
27
11
57
100
63
30
19
12
96
150
110
56
16
18
12
120
380
11
30
18
21
10
51
210
11
12
10
120
80
31
NOTK: Samplas listed by sample number (C-number).
19 for identification of samples.
Refer to table
-------
99
TABLE 21—MAJOR AND MINOR ELEMENTS IN LABORATORY-
PREPARED WASHED COAL SAMPLES
(percent, moisture-free whole coal basis)
SAMPLE
C16090
C16091
C 18095
C 18096
C 18097
C 18098
C18099
C18106
C18107
C 18092
C18100
C18105
C18133
C18134
C18135
C18136
C18137
C18136
C1ti139
C18140
C18141
C18H2
C18121
C16122
C18123
C18124
C18125
C 18 126
C18127
C18128
C18129
C18130
C 18562
C18563
C18564
C18565
C 18566
018567
C 18889
C18878
C 18879
C 18880
C18B81
C18882
C 18890
C18&91
ClS8d3
C1B8B4
C188B5
018886
C 18887
C18892
C18893
C 18894
C18895
C18896
C 18897
C18698
C 19009
C19010
C19011
C19012
C19013
C19014
AL
0.91
0.13
0.51
0.77
1.28
2.23
1.39
4.21
0.23
1.21
0.53
1.50
0.61
1.15
0.26
0.26
0.38
0.87
2.00
3.05
6.19
0.33
2.67
3.21
0.11
0.52
0.84
M3
2.92
9.50
11.90
1.93
1.99
0.60
1.04
1.63
2.50
5.81
1.62
0.79
1.26
1.B8
3-11
7.76
1.62
1.33
0.37
0.54
1.21
2.79
7.53
1.21
1.06
0.55
0.73
0.82
1.32
6.00
0.32
0.36
0.89
2.12
3.58
0.85
CA
0.21
0.21
0.17
0.11
0.73
0.53
0.11
0.19
0.24
0.11
0.18
0.03
0.10
1.16
0.07
0.07
0.07
0.08
0.16
1.53
7.85
0.70
0.56
0.79
0.06
0.05
0.06
0.06
0.12
3.20
1.27
0.11
2.73
0.18
0.20
0.18
0.12
2.61
0.72
0.10
0.12
0.11
0.50
1.00
0.39
1.06
0.18
0.18
0.31
0.55
1.06
0.39
1.16
0.21
0.22
0.22
0.33
1.71
0.79
0.81
0.96
1.99
2.19
1.26
a rs
2.70
0.51
0.83
1.04
1.39
2.00
26.10
8.92
34.80
2.98
0.86
6.64
3.03
2.84
1.19
1.54
2.40
3.10
3-72
21.20
16.00
29.70
1.72
1.16
0.54
0.72
1.07
1.61
1.69
9.88
5.19
35.10
1.70
0.70
1.00
1.40
2.10
14.00
0.60
0.30
0.35
0.40
0.80
2.60
0.80
1.00
0.50
0.70
0.90
0.90
2.20
1.60
1.70
0.50
1.20
2.10
3.40
6.20
0.35
0.35
0.40
0.50
1.30
0.60
K
0.11
0.06
0.09
0.12
0.23
0.37
0.07
0.25
0.18
0.08
0.31
0.08
0.09
0.05
0.05
0.06
0.11
0.26
0.36
0.76
0.25
0.?6
0.06
0.09
0.12
0.20
0.36
1.20
1.44
0.07
0.15
0.08
0.14
0.20
0.23
0.33
0.20
0.06
0. 10
0.18
0.41
1.50
0.21
0.23
0.02
0.03
0.10
0.32
1.10
0.12
0.11
0.05
0.07
0.10
0.12
0.86
0.01
0.01
0.01
0.04
0.13
0.03
HO
0.04
0.02
0.02
0.03
0.04
0.06
0.17
0.01
0.0
0.01
0.0
0.0
0.0
0.0
0.0
0.0
0.01
0.01
0.01
0.01
0.0
0.0
0.0
0.01
0.01
0.03
0.09
0.03
0.06
0.08
0.11
0.33
0.05
0.01
0.04
0.03
0.08
0.49
0.06
0.07
0.02
0.03
0.06
0.09
0.25
0.05
0.07
0.03
0.02
0.03
0.04
0.21
0.07
0.07
0.07
0.12
0.11
0.06
NA
0.010
0.010.
0.010
0.010
0.020
0.02C
0.020
0.020
0.020
0.010
0.010
0.010
0.020
0.008
0.006
0.060
0.010
0.020
0.020
0.040
0.060
0.020
0.020
0.020
0.040
0.050
0.140
0.040
0.030
0.020
0.030
0.030
0.040
0.080
0.030
0.010
0.020
0.030
0.060
0.190
0.070
0.070
0.020
0.040
0.080
0.100
0.140
0.050
0.090
0.030
0.030
0.040
0.040
0.230
0.160
0.160
0.160
0.170
0.140
0.160
31
2.11
0.77
1.16
1.58
2.80
5.51
3.62
8.27
2.02
0.78
2.63
1.05
1.69
0.49
0.56
0.77
1.53
3.44
5.31
11.40
4.16
4.49
0.59
0.87
1.45
2.52
4.98
19.40
23.20
2.89
3.02
1.25
2.21
3.44
5.51
12.30
2.16
0.89
1.44
2.38
4.04
16.20
2.80
2.03
0.39
0.64
1.59
4.31
18.50
2.20
1.83
0.80
1.16
1.54
2.37
14.00
0.40
0.46
1.47
4.54
19.60
1.50
TI
0.06
0.04
0.05
0.06
0.09
0.12
0.04
0.11
0.07
0.04
0.04
0.03
0.03
0.03
0.03
0.03
0.05
0.07
0.10
0.19
0.11
0.11
0.03
0.05
0.06
0.09
0.13
0.56
0.65
0.09
0.06
0.04
0.06
0.08
0.10
0.26
0.13
0.06
0.10
0.15
0.22
0.49
0.13
0.10
0.04
0.05
0.10
0.19
0.63
0.06
0.05
0.03
0.04
0.05
0.06
0.65
0.03
0.03
0.06
0.13
0.46
0.06
-------
SAMPLE
TAtfLi t'd— PROXIMATE ANALYSES OF LABORATORY-PREPAEED WASHED COAL SAMPLES
(percent of whole coal except for Btu values)
AOL
HOIS VOL FIXC ASH
BTU
C18090 1.90
C18094
C 18095
C 18096
C 18097
C1809B
C 18099
C1&106
C18107
C 18092 2.40
C18100
C18105
C18133 10.90
018134
C18135
C18136
C18137
C18138
C18139
C 18 140
C18141
C18112
C16121 11.30
C18122
C18123
C18124
C18125
C18126
C18127
C18128
C18129
C18130
C 18562
C18563
018564
C 18565
C 18566
C 18567
C 18889
C 18878
C 18879
2.70
1.30
1.30
2.10
1.3C
l.CO
0.80
3. 1C
0.60
3-20
1.10
0.10
13. ic
12.00
11.90
9-90
9.50
9.10
5.00
1.50
4.40
0.30
12.90
10.80
9.90
10.50
7.30
5.10
3.70
2.10
1.00
0.20
7.10
6.90
6.70
6.10
4.10
1.60
2.20
1.10
1.50
36.10
38.00
"1.50
37.80
38.50
43.70
43-30
41.50
37.50
24.00
20.90
21.90
21.60
51.00
48.60
47.40
41.50
41.00
51.90
48.70
45.40
40.60
14.90 .
69.10
75.10
73.90
10.90
13.40
11.00
20.70
20.60
4.40
8.00
13.10
21.90
61. 10
10.00
3.00
4.50
13311
12745
12740
11256
10837
13397
11060
12022
10595
3849
14007
15198
14724
SAMPLE ADL
HOIS VOL
FIXC ASH
BTU
C 18880
C18881
C 18882
C18890
C18691
C18883
C188B4
C 18885
C18886
C 18887
C 18892
C18893
C18894
C16B95
C18896
C 18897
C 18896
C 19009
C19010
C19011
C19012
C19013
C19014
1.70
1.70 .
1.90
1.80
2.10
1.80
1.90
2.00
1.90
2.00
2.30
2.80
2.40
2.30
2.60
1.80
2.30
9.40
9.60
9.10
11.10
2.00
9.60
19.20
16.50
13.80
15.90
17.60
17.50
17.30
16.00
15.10
12.10
42.90
39.30
45.50
45.40
43.00
39.10
22.80
45.60
44.20
42.50
36.70
25.30
42.00
72.40
66.40
32-00
71.60
72.50
61.10
80.40
77.70
66.70
30.60
46.30
48.50
51.20
49.30
48.00
44.30
23.70
51.50
52.50
50.60
43.90
21.50
50.60
8.40
17.10
54.10
12.50
9.90
1.40
2.30
6.30
18.20
57.40
10.80
12.20
3.20
5.30
9.00
16.60
53-50
2.90
3.30
6.90
19.40
53.20
7.40
14171
12686
6387
13678
13444
15404
15158
14540
12536
5785
13186
12963
14382
14046
13441
121«5
5762
13115
13040
12454
10633
5758
12408
o
o
NOTE: Refer to table 1 for abbreviations; refer
to table 19 for Identification of samples.
-------
SAMPLE
TABLE 23—ULTIMATE ANALYSES OF LABORATORY-PREPARED WASHED COAL SAMPLES
(percent, moisture-free whole coal basis)
HTA
LTA
C 18090
C18094
C 18095
C 16096
C 18097
C16098
C18099
C18106
C18107
C18092
C16100
C18105
C18133
CI8134
C18135
C18136
C18137
CI8138
C18139
C18140
C18141
C18112
C18121
C18122
C18123
C18124
C18125
C18126
C1B127
C18128
C18129
C18130
C18562 56.74 4.73
C16563 74.57 5.66
C18561 71.60 5.46
C18565 67.29 5.02
C18566 59.80 1.34
C 18567 28.52 1.62
C18889 79.97 1.38
C18878 86.53 1.77
C18879 81.19 4.14
10.90
3.00
3.90
5.40
9.10
19-80
51.40
39.20
61.00
13.40
5.40
49.80
11.00
16.60
2.60
3.50
5-00
10.50
21.70
56.50
46.90
65.00
20.70
23.60
3.10
3.70
6.10
11.20
21.90
72.80
75.20
65.60
1.02 14.40 23.23
1.39 ll.lfr 4.37
1.35 10.45 7.97
1.11 9.73 13-09
1.20 7.85 21.90
0.36 61.13
1.61 3.57 9-99
1.70 3.46 2.98
1.55 4.99 4.49
15.80
3.61
5.66
6.67
12.74
23.06
73.53
47.76
92.66
15.73
4.79
74.07
15.57
20.15
3-56
6.30
9-48
16.21
28.75
78.20
60.14
99-61
26.28
28.23
3.83
5.01
8.18
14.86
25.92
88.40
86.02
98.71
25.17
6.10
9.81
17.62
26.48
77.80
11.38
3.76
6.15
SAMPLE
HTA
LTA
C 18880
CI8881
C 18882
C18890
C18891
C 1888 3
08881
C 18885
C 18886
C 18887
C 18892
C 18893
C1889"
C18895
C 18896
C18897
C1&8»8
c 19009
C19010
C19011
C19012
C19013
C 190 1«
81.76
73.11
12.54
79.65
80.01
89.39
87.88
81.13
71.00
31.70
72.56
72.57
79.55
77.52
71.46
67.30
31.52
71.33
71.21
71.38
62.80
31.66
71.89
1.27
3.81
2.68
.37
.15
.76
.17
.31
3.91
2.20
5.11
1.72
5.71
5.67
5.39
1.66
2-13
5.3T
5.16
5.15
4.13
2.56
5.16
.51
.13
0.69
.16
.08
-39
-30
1.12
0.98
0.50
1.22
1.03
1.52
1.31
1.20
0.95
0.53
1.29
1.37
1.14
1.10
0.66
1.32
3.55
4.07
1.60
1.00
2.16
3.13
3.15
2.18
3.62
5.12
5.03
6.87
6.47
4.67
2.22
1.90
15.68
15.12
14.82
12.00
8.11
13.46
8.38
17.09
54.13
12.54
9.86
1.38
2-33
6-32
18.24
57.36
10.83
12.18
1.21
5.28
8.97
16.61
53-49
2.90
3.31
6.94
19-13
53.18
7.45
9.71
19.76
59.75
13-73
12.44
1.93
3.39
7.75
20.50
64.58
13.96
15.38
3.89
7.87
11.87
22.43
63.79
4.03
4-37
7.87
22.72
79.67
9.20
NOTE: Refer to table 1 for abbreviations; refer
to table 19 for identification of samples.
-------
TABLE 2U—SULFUR ANALYSES OF LABORATORY-PREPARED WASHED COAL SAMPLES
(percent, moisture-free whole coal basis)
SAMPLE
ORS
PYS
sus
TOS
SXRF
C 18090
C 16094
C18095
C 18096
C 18097
C 18098
C 18099
C18106
C18107
C 18092
C18100
C18105
C18133
C 18 131
C18135
C18136
C18137
C18138
C18139
C18140
C18141
C 18 112
C18121
C18122
C18123
C18124
C18125
C18126
C18127
C1B128
C18129
C18130
C 18562
C 18563
C 18564
C 18565
C 18566
C 18567
C 18869
C 18878
C 18879
1.17
1.20
1.19
1.21
1.26
1.11
0.02
2-03
1.24
0.76
0.96
0.24
.27
.28
.19
.00
.03
.16
0.96
0.01
0.01
0.01
.70
.56
.60
.61
.47
.26
.43
0.61
0.30
0.01
2.01
2.37
2.34
2.26
1.88
0.52
0.46
0.52
0.59
3-25
0.40
0.45
0.62
1.04
2.47
29.26
9.09
44.23
4.73
1.52
31.20
4.38
4.79
0.78
1.09
2.08
3.98
6.84
27.46
12.94
45.81
2.23
2.17
0.46
0.57
0.97
1.75
2.13
9.90
1.44
42.96
2.20
0.47
0.81
1.47
2.93
19.51
0.03
0.03
0.03
0.01
0.10
0.10
0.15
0.01
0.01
0.15
0.03
0.04
0.20
0.02
0.03
0.06 .
0.08
0.15
0.13
0.04
0.03
0.04
0.02
0.02
0.03
0.03
0.03
0.08
0.31
0.12
0.10
0.01
0.01
0.04
0.07
0.13
0.01
0.01
0.01
4.43
1.60
1.64
1.83
2.30
3.59
29.39
11.23
45.42
5.50
2.49
31.60
5.68
6.11
1.98
2.11
3.14
5.19
7.88
27.62
13.08
45.86
3.96
3.76
2.07
2.20
2.46
3.04
3.60
10.59
2.05
43.09
4.32
2.85
3.16
3.77
4.88
20.15
0.49
0.56
0.63
4.27
1.67
1.73
1.75
2.20
3-43
5.31
2.53
5.68
6.24
2.17
2.40
3-21
4.97
7.56
3.81
3.62
2.0*
2.07
2.58
3.1'
3.52
4.31
2.90
3.22
3.55
4.40
0.57
0.66
0.59
SAMPLE
ORG
PYS
SUS
IOS
SXRP
C 18880
C18881
C 18882
C 18890
C1B891
C 18883
C 18884
C 18885
C 18886
C 18887
C 18892
C18893
C18894
C 18895
C 18896
C 18897
C 18898
C 19009
C19010
C19011
C19012
C19013
C19014
0.50
0.41
0.07
0.18
0.58
0.59
0.53
0.56
0.36
0.09
2.41
2.09
2.66
2.56
2.63
2.42
0.41
0.40
0.46
0.49
0.38
0.14
0.67
0.03
0.04
0.19
0.17
0.18
0.03
0.05
0.10
0.26
1.42
2.40
2.29
0.46
1.15
2.66
5.80
6.60
0.03
0.02
0.07
0.16
0.68
0.04
0.01
0.01
0.02
0.04
0.10
0.01
0.01
0.01
0.06
0.10
0.03
0.09
0.01
0.01
0.02
0.04
0.11
0.01
0.01
0.01
0.01
0.01
0.01
0.53
0.46
0.28
0.68
0.87
0.62
0.59
0.67
0.68
1.61
4.83
«-»7
3-12
3-72
5.30
8.26
7.13
0.43
0.49
0.57
0.54
0.83
0.72
0.69
0.41
0.93
0.95
0.73
0.77
0.87
0.81
4.61
4.36
3.01
3.74
5.08
8.07
0.42
0.55
0.83
0.59
0.85
NOTE: Refer to table for abbreviations;
refer to table 19 for identifica-
tion of samples.
O
ro
-------
103
Displaying Washability Data
The float-sink, or waahability, data oan be displayed as
washability curves and as histograms. Washability curves and
histograms for a series of elements are shown in figures 69 through
71. The figures are presented in order of increasing tendencies of the
elements to be oonoentrated in the heavier fractions (decreasing
organic affinity). The washability curve is a type of cumulative curve
from which the expected concentration of an element at any given
recovery rate of a coal oan be read assuming the separation was based
on specific gravity differences. Therefore, the abscissa is "recovery
of float coal in percent" and should be applicable to any specific
gravity separation without regard to the medium in which it is done or
the method used. The raw ooal concentration of an element is read at
the 100-percent recovery point; the concentration in the cleanest
coals (moat free of mineral matter) is read at the low recovery end of
the ourve (20 to 30-percent recovery).
Figure 69 shows the washability curve and the histogram for
germanium in a sample from the Davis Coal Member. The negative slope
of the curve indicates that germanium is oonoentrated in the clean
ooal fractions. This is also apparent from the histogram. The
histogram also indicates that there is higher concentration of
germanium in the 1,60 to >2.79 specific gravity fraction than in the
>2.79 specific gravity fraction. Apparently, a greater portion of the
germanium is concentrated with the clay minerals than with the sulflde
minerals that compose the majority of the >2.79 sink fraction.
An element that is uniformly distributed in the various fractions
of the washed coal will have a washability curve with a slope of zero
(flat); washing such a coal will have no effect on the concentration
of the element in the clean ooal. An example of this type of
distribution is shown by the washability ourve and histogram of
bromine for a sample from the Pittsburgh No. 8 ooal in West Virginia
(fig. 70),
A positive slope of the washability ourve shows that the element
is concentrated in the inorganic (mineral matter) portion of the ooal.
The more strongly associated the element is with the inorganic
fraction, the steeper is the slope of the ourve. Washability data on
Cr in a sample from the Blue Creek ooal in Alabama give a washability
curve with a positive slope but the ourve does not approach the origin
(fig. 71), rather when extended the curve intercepts the ordlnate at
approximately 10 ppm.
A ourve with a steeper positive slope is obtained when the
washability data for As in the same ooal (Blue Creek seam, Alabama)
are plotted (fig. 72). Apparently, arsenic is more strongly associated
with the mineral matter fraction of the ooal than is chromium. We
would expeot that it is present in solid solution in the iron sulfide
minerals.
-------
101*
The waahability curve for the low-temperature ash of a sample
from the Pocahontas No. 4 seam in West Virginia is shown in figure 73.
This coal washes readily to produce a relatively "clean" coal with
fairly high recovery. Elements such as arsenic, which have washability
curves that are steeper than that for the low-temperature aah (LTA) are
even more easily removed by washing than is the "average" aah.
Sulfur is present in coals in both organic and inorganic
combination; the standard analyses report the varieties of sulfur as
sulfate sulfur, pyritic sulfur, and organic sulfur. In a sample from
the Herrin (No. 6) Coal in Illinois, the washability curve for total
sulfur shows the contribution froip both organic and inorganic sulfur
(fig. 74). The sulfur content decreases rather rapidly in the washed
coal as that part that is concentrated in the heavier
mineral-matter-rich portion (inorganic sulfur) is removed, but then
the curve flattens because the lighter coal fractions also contain
appreciable amounts of sulfur (organic sulfur).
I
~ S 7
10.0
6.6
I 5l?
I
E 14.3
&
2.9
n
1.28 1.29 1.31 l.<40 1.60 2.
Specific gravity fraction
Davit Coal
Fig. 69 - Germanium in specific gravity fractions of a sample from the
Davis Coal Member. Left: waahability curve. Right: distrib-
ution of germanium in individual fractions.
-------
105
O 20 40 Mi M'I
Pl'Cinl r.cor.'T
PtMiburgPi No B S«am. Witt Virginia
li? 140 139 H59
Specific grdvilr 'motion
burgh Me • J#«*. *MI Virfllni.
Fig. 70 - Bromine in specific gravity fractions of a sample from the
Pittsburgh No. 8 coal from West Virginia. Left: washability
curve. Right: distribution of bromine in individual fractions,
/(I
60
r
f
, «0
i
" 50
JO
"'
.11
I
jj
i
1
...
>u« Cfttl Stom.
i >0 i 5? i «O * 6O M 60
Sp'Cil-c Qravilr t>ociion
ftw« Ctttk S«0*n. »lo*0mo
Fig. 71 - Chromium in specific gravity fractions of a sample from the
Blue Creek coal from Alabama. Left: washability curve.
Right: distribution of chromium in individual fractions.
-------
106
SO JO 40 40 60 70 HO 90 IOO
FVCfnl rKOvr'r
Blu« C'«». Sfom. Aiaboffio
f"1 r-i L_L_
"M 140 I6O »i
SpKif
i
-, r-, fl
(33
Sp*cc grovitr froctien
WHoi No 4 Sffom, Wnt V
Fig.
73 - Low-temperature ash in specific gravity fractions of a sample
from the Pocahontas No. 4 coal from West Virginia. Left:
washability curve, fcight: distribution of low-temperature
ash in individual fractions.
3,9
i 9
10
SULFUR (total)
Fig. 7l» - Washability curve of sulfur in
specific gravity fractions of
a sample from the Herrin (No.
6) Coal Member.
1O b<>
Percent recovery
Herrin (No. 6) Cool
I
IOI)
-------
107
ORGANIC AND INORGANIC AFFINITIES OF THE ELEMENTS
Introduction
Washability curves and histograms of washability data are
effective means of depicting the mode of combination of elements in
coal; they indicate whether the elements are associated with the
organic or inorganic fractions of the coal. However, more than 350
sets of washability curves and histograms would be needed to display
the washability data given in tables 20 through 24. Therefore, we have
attempted to quantify the information presented on the curves and have
produced an "organic affinity" index.
The concept of an organic or inorganic affinity for elements in
coal is not original in this report. Dr. V. M. Goldsohmidt, who
pioneered modern investigations of trace elements in coals, identified
trace elements in inorganic combination with minerals in coals. He
also postulated the occurrence of metal organic complexes in coal; the
observed concentrations of vanadium, molybdenum, and nickel were
attributed to the presence of such complexes (Goldschmidt, 1935).
Nicholls (1968) approached this problem by plotting the
analytical data for the concentration of a single element in coal or
in coal ash against the ash content of the coal. Diagrams depicting a
number of such points for a single coal seam, or for a group of coal
seams in a single geographic area, were Interpreted for degree of
inorganic or organic affinity of the element. Nicholls concluded
(1968, p. 283):
"...one element, boron, is largely, almost entirely,
associated with the organic fraction in coals; some
elements, such as barium, chromium, cobalt, lead, strontium,
and vanadium are, in the majority of oases, associated with
the inorganic fraction; and a third group including nickel,
gallium, germanium, molybdenum, and copper, may be
associated with either or both fractions."
Nicholls then subdivided the third group into hieke1 and copper, which
are in inorganic combination when found in large concentrations, and
into gallium, germanium, and molybdenum, which are largely in organic
combination when found in large concentrations.
Horton and Aubrey (1950) handpicked pure vitrain samples from
coals and separated the samples into five different specific gravity
fractions. They then analyzed these fractions for 16 minor elements.
They concluded that for the three vitrains that were studied,
beryllium, germanium, vanadium, titanium, and boron were contributed
almost entirely by the inherent (organically combined) mineral matter
and that manganese, phosphorus, and tin were associated with the
adventitious (inorganically combined) mineral matter.
-------
108
A much more ambitious series of investigations of the
organic-inorganic affinities of trace metals in coals were undertaken
and were reported on by Zubovic and co-workers at the U.S. Geological
Survey (Zubovic, 1960, 1966, 1976; and Zubovic et al., 1960, 1961). In
the more recent of these articles Zubovic (1966, 1976) listed the
following 15 elements in decreasing order of percent organic affinity:
Ge (87), Be (82), Ga (79), Ti (78), B (77), V (76), Ni (59), Cr (55),
Co (53), Y (53), Mo (10), Cu (3*0, Sn (27), La (3), and Zn (0).
Zubovic (1976, p. 50) then related the ranking of the elements in
the table of organic affinity to the complexing ability of the metals
with organic ligands; he suggested that the metals having high organic
affinities in coal are present as chelates.
Huoh, Gluskoter, and Shimp (197*0 and Uluskoter (1975) published
tables of organic affinities for 21 elements determined on four
samples of Illinois coals that had been washed in the laboratory. The
elements were listed in decreasing order of organic affinity, but
numerical values were not given for the index. The analytical results
on which those organic affinities were based are included in tables 20
through 21. Washability data for up to 53 elements and 10 coal
parameters from five additional coals are also included in those
tables.
Calculation of Organic Affinities
The washability data are summarized in table 25 and numerical
values for organic affinity have been assigned. The value for the
organic affinity index for a specific element is obtained by
calculating the area beneath the washability curve. This calculation
is done on a curve that has been drawn to a predetermined and constant
scale (normalized) and on a curve which has been adjusted for that
part of the mineral matter that is inseparable from the lightest coal
fraction.
The curves are normalized by calculating a scale factor then
multiplying the ordinate values by that factor. The scale factor is
obtained by dividing the value at 100 percent recovery (V) by the
number of centimeters in the Y axis. V is not necessarily the maximum
value. A unit area is obtained by determining the area (in square
centimeters) of the square formed by the points (0,0), (0,V),
(100$,V), and (100$,0). To normalize the curve, the area under the
curve is divided by the area of the square.
Examples of "standard" and "adjusted" washability curves are
given in figures 75, 76 and 77. These three sets of curves were chosen
to demonstrate the method of calculating organic affinities and to
provide a visual basis for comparison of the numerical values of
organic affinities in table 25.
-------
109
Both unadjusted (standard) and adjusted, normalized washability
curves for zinc in a sample of Herrin (No. 6) Coal are given in figure
75. In the standard (unadjusted) washability curve the extrapolated
ordinate intercept is approximately H.5 ppm. The adjusted curve
intercepts the ordinate at zero and the curve reaches the zero zinc
value at approximately 90 percent recovery (90 on the abscissa). The
adjusted cumulative curve was constructed after the following value,
"F," was subtracted from each of the 5 datum points used in the
calculation:
F = LTA(Light)
LTA(1.60 S)
Zn(l.60 S) = x
77-80
250 ppm = 19.6 ppm
LTA (Light) is percent low-temperature ash in
the lightest float fraction.
LTA (1.60 S) is percent low-temperature ash
in 1.60 sink fraction.
Zn (l.6o S) is zinc concentration in 1.60
sink fraction (ppm)
If the value of a datum point is negative after "F" is subtracted from
the reported concentration, the value is then taken to be zero.
A fourth order polynomial curve is drawn to best fit the data
points and the area under the curve is calculated. The entire
normalized area of the graph is defined as the value "1.00." An
element which is removed, to any degree, from the clean coal fraction
by washing the coal has a value less than 1.00; for example, see Zn in
figure 75. The organic affinity of zinc in that sample is 0.08, an
extremely low value, indicating that the element is present almost
entirely in the mineral matter fraction.
.,*, IN06I Cool
Fig. 75 - Washability curves for zinc in specific gravity fractions of a
sample from the Herrin (No. 6) Coal Member. Left: standard
washability curve. Right: adjusted washability curve.
-------
110
It is possible for an element to have an organic affinity greater
than 1.00, as in the case for bromine in a sample of the Blue Creek
Coal from Alabama (fig. 76). Both standard and adjusted washability
curves for Br are shown in figure 76. The lighter specific gravity
fractions of the coal contain larger amounts of Br than the heavier
fractions rich in mineral-matter. Bromine is an element which
generally has a high organic affinity index—in this case 1.20.
Standard and adjusted curves are nearly identical, inasmuch as there
is only a minor contribution from the inseparable mineral matter to
the total bromine content. The organic affinity index is an open-ended
scale. The upper limit is only dependent upon the difference between
the extrapolated Y intercept and V (the concentration of the element
in the coal prior to washing).
A number of metals have washability curves intermediate between
those elements that are generally concentrated in the inorganic
fraction (such as zinc) and those that are concentrated in the organic
fraction (such as bromine). Washability curves for copper, both
standard and adjusted, are given for a sample of coal from the Davis
bed in Illinois in figure 77. The adjusted curve intersects the
ordinate at a lower value than does the standard curve. But even with
the removal of a hypothetical amount of copper contained in the
inseparable mineral matter there is still an appreciable amount of
copper left in the cleanest coal fractions. The organic affinity of
copper in this sample is 0.56.
Discussion of Organic Affinities
Organic affinities for most of the determined elements are given
for eight sets of washed coal samples in table 25. Four of the samples
are from the Illinois Basin, three are from the Appalachians, and one
is from Arizona. One sample from the Illinois Basin is not included in
the table of organic affinities (table 25) because the sample was
separated into only two fractions, and organic affinities could not be
calculated on those limited data.
Organic affinities have not been calculated for all of the
elements determined because the concentrations of a few elements in
some of the washed fractions were below the limits of accurate
detection. The concentrations of the elements in the whole sample, as
calculated from the recombination of the concentrations in the washed
fractions, are also given in table 25.
-------
Ill
• 0 ?0 10 «0 SO 60 /<» HO 90 100
fliw* Or** Srom. wtii v»gm.o
00 4 r- .
0 '0 20 30 «0 M 60 '0 80 90 '00
Fig. 76 - Washability curves for bromine in specific gravity fractions
of a sample from the Blue Creek coal from Alabama. Left:
standard washability curve. Right: adjusted washability curve.
Fig. 77 - Washability curves for copper in specific gravity fractions of
a sample from the Davis Coal Member. Left: standard washability
curve. Right: adjusted waahability curve.
-------
112
varieties or sulfur (pyritic sulfur, organic sulfur, and sulfate
sulfur) as well as total sulfur have been determined on all fractions
of the washed coal samples. Content of sulfate sulfur is very low and
generally does not make a significant contribution to the total sulfur
content of a fresh coal sample. If the analyses for varieties of
sulfur were precise and accurate, if our measurements of the amount of
coal in each washability fraction were accurate, and if the
measurements of the amount of low-temperature ash were accurate, we
would then expect a perfect correlation between organic affinity of
total sulfur and percent of organic sulfur in the total sulfur. This
relationship is shown for eight coals in figure 78. The agreement is
good and is well within the analytical error for determining those
factors mentioned above. We were fortunate because the sample set
analyzed has a wide range of organic affinities for total sulfur (0.12
to 1.08) and the organic sulfur contribution to the total sulfur
content also has a wide range (22 percent to 92.5 percent).
1.00-
.To.eoH
0.60-
o
|0.40H
0.20-
0.00
wv
AZ
10 20 30 40 50 60
Organic sulfur
70
80
90
100
Total sulfur
X 100
Fig. 78 - Organic affinity index for total sulfur and ratio of organic
sulfur to total sulfur in eight washed coal samples.
-------
113
On the basis of the calculated organic affinities, the elements
in each of the eight samples may be divided into four groups: organic,
intermediate-organic, intermediate-inorganic, and inorganic. They are
listed in these groups in table 26. The elements were placed in these
groups in a somewhat arbitrary manner and not strictly on the basis of
the value for organic affinity. The actual values that lie immediately
above and below the cutoff points for the different catagories are
shown. In general, the groups are divided as follows: organic, greater
than 0.67; intermediate-organic, 0.50 through 0.66; intermediate-
inorganic, 0.3*4 through 0.49; and inorganic, less than 0.33.
The four coals from the Illinois Basin are much more similar to
each other with regard to organic affinities than they are similar to
the coals from other areas. The following are generalizations appli-
cable to the four samples of Illinois coals:
1. Ge, Be, B, and Sb are classified within the organic
group in all samples.
'2. Ge has the highest organic affinity in each oase.
3. Zn, Cd, Mn, As, Mo, and Fe are in the inorganic
group in all four samples.
4. Zn and As have consistently the lowest values
observed (0.08 to 0.09).
5. A number of metals including Co, Ni, Cu, Cr, and Se
are intermediate in value. This characteristic suggests a
partial contribution from sulfide minerals in the coal, but
also suggests the presence of organometallic compounds that
contain these elements, or the presence of chelated species
and/or adsorbed cations.
The number of generalizations decreases when organic affinities
from the three coals from Appalachia and the one coal from Arizona are
considered.
1. Be, Ge, and B are among the elements with higher
organic affinity in most of the caaes. However, Ge has an
organic affinity of 0.10 (very inorganic) in the sample from
Arizona and B is relatively inorganically combined in the
sample from Alabama (organic affinity = 0.32).
2. Bromine was determined in one sample of the Herrin
(No. 6) Coal from Illinois and in the four samples from
outside the Illinois Basin. The organic affinity for Br was
placed in the "organic" group in all five coals.
(Text continued on page 118)
-------
Ill*
TABLE 25—ORGANIC AFFINITY OF PARAMETER DETERMINED
IN LABORATORY-PREPARED WASHED COAL SAMPLES
Float-Sink Set l
HA C
A3
b
Ba
Be
Br
Cd
Ce
Co
Cr
Cs
Cu
Dy
Eu
Ca
Ge
hf
Hg
La
Lu
Mn
Nl
f
Pb
Kb
Sb
Sc
Se
So
Sn
Sr
Ta
Tb
Th
U
V
W
Kb
Zn
Zr
Al
Ca
Ke
K
Mg
Na
SI
Tl
TOS
LTA
42
9
35
6
3
37
39
11
e
25
12
7
15
35
1
20
42
111
39
10
42
26
21
5
16
28
27
34
37
23
18
2
14
25
42
19
28
42
39
16
32
13
28
21
23
33
O.Ot)
0.76
0.15
0.90
0.04
0.10
0.09
0.74
0.80
0.42
0.64
0.85
0.59
0.15
2.02
0.47
0.08
0.60
0.09
0.75
0.06
0.26
0.44
0.98
0.55
0.2b
0.34
0.18
0.10
0.43
0.49
1.38
0.99
0.42
0.08
0.48
0.28
O.Ob
0.09
0.55
0.27
0.62
0.28
0.44
0.43
0. 19
6.30
126.67
97.35
0.89
12.20
0.23
21.70
3.15
33.60
1.24
7.98
0.99
0.27
6.53
1.76
0.64
12.522
0.08
46.33
10.27
120.43
2.62
18.79
0.46
2.65
2.91
1.41
0.36
47.70
0.20
2.42
3.12
38.57
0.60
30.39
37.87
1.60 I
0.43
2.24
0.16
0.08
0.03
3.40
0.08
4.86
17.99
Float-Sink Sat 2
R A C
44
31
19
10
1
18
3
22
42
7
7
17
19
2
30
12
28
44
5
19
14
42
17
27
24
15
7
33
15
31
13
11
6
25
36
23
32
3»
29
40
41
37
39
26
4
37
0.07
0.32
0.62
0.77
1.20
0.63
1.10
0.60
0.10
0.79
0.79
0.61
0.62
1.11
0.43
0.75
0.51
0.07
1.00
0.62
0.67
0.10
0.64
0.53
0.58
0.66
0.79
0.33
0.66
0.42
0.72
0.76
0.83
0.55
0.24
0.59
0.39
0.32
0.44
0.13
0.11
0.22
0.20
0.54
1.08
0.22
1.64
3.65
208.43
0.64
1.99
35.10
7.48
18.40
2.46
13.48
2.39
0.51
6.53
0.21
1.76
17.03
0.14
18.37
10.66
279.55
3.84
25.95
0.57
4.45
2.90
2.52
127.21
0.23
0.50
3.86
1.46
5*.67
0.61
0.59
4.56
51.50
1.99 *
0.22
0.55
0.23
0.06
0.08
2.88
0.15
0.53
11.81
Float-Sink Set 3
R A C
47
26
8
5
2
23
1
32
13
15
12
14
22
9
39
35
29
21
30
3
10
33
44
17
23
26
26
4
37
17
37
30
15
7
12
20
41
39
19
11
46
33
23
1)4
36
6
42
0.09
0.46
0.77
0.88
1.09
0.49
1.21
0.38
0.15
0.56
0.60
0.57
0,50
0.69
0.24
0.32
0.41
0.51
0.40
1.01
0.68
0.37
0.13
0.55
0.49
0.45
0.46
0.90
0.28
0.55
0.28
0.40
0.56
0.80
0.60
0.53
e. 19
0.24
0.54
0.66
0.12
0.37
0.49
0.13
0.29
0.84
0.17
11.74
12.30
171.36
1.16
25.97
27.31
5.58
14.44
1.56
26.92
2.15
0.4}
1.3»
0.15
1.38
0.15
17.63
0.11
16.79
11.30
31.30
4.93
12.86
1.11
2.95
4.90
2.49
94.20
0.23
0.47
4.37
1.41
36.41
0.70
0.53
8.95
77.35
1.74 t
0.37
0.89
0.20
0.07
0.06
3.28
0.14
0.74
13.20
Float-Sink Set 4
R A C
38
3
5
13
2
28
14
27
15
18
8
11
15
9
35
19
19
35
24
22
6
10
42
24
29
29
19
24
1
39
31
40
4
17
32
22
35
32
15
34
13
11
13
46
7
41
0.27
0.82
0.75
0.53
0.98
0.38
0.51
0.39
0.10
0.15
0.66
0.3*
0.50
0.62
0.29
0.14
0.14
0.29
0.10
0.13
0.71
0.61
0.20
0.10
0.37
0.37
0.14
0.40
1.03
0.26
0.35
0.23
0.78
0.47
0.33
0.43
0.29
0.33
0.50
0.30
0.15
0.54
0.15
0.08
0.70
0.22
4.16
86.92
61.90
0.78
7.28
7.92
2.60
14.80
0.71
5.20
1.08
0.23
3.86
1.83
0.55
0.13
7.08
0.09
23.15
6.33
50.56
3.73
10.20
0.25
2.22
1.44
1.15
2.21
70.91
0.15
0.22
1.32
0.67
22.22
0.31
10.66
40.67
1.09 \
0.32
1.80
0.13
0.05
2.08
0.08
4.74
12.93
NOTIC: "R" - ranking of parameter by organlo affinity.
"A" - calculated organic affinity.
"C" - concentration of parameter at 100 percent recovery (a calcu-
lated raw coal basis).
See table 1 for other1 abbreviations.
-------
115
TABLE 25—Concluded
Float-Sink Set 5 Float-Sink Set 6 Float-Sink Set 8 Float-Sink Set 9
RAC RAC RAC RA
As
B
Ba
Be
Br
ca
Ce
Co
Cr
Cs
Cu
Dy
Eu
Ca
Ge
Hf
hg
La
Lu
Hn
Ho
Nl
P
Pt>
Rb
Sb
Sc
Se
SB
Sn
Sr
Ta
Tb
Th
U
V
U
Kb
Zn
Zr
Al
Ca
F«
K
MS
Na
SI
Tl
TOS
LTA
13
1
5
13
10
21
9
'25
16
16
114
2"4
37
146
32
1)1
23
16
28
8
3
15
38
19
20
22
31
40
10
31
25
36
27
17
28
15
33
31
12
6
30
H
2
44
39
6
42
0.09
1.06
0.92
0.81
0.83
0.62
0.85
0.5"4
0.06
0.71
0.78
0.55
0.35
0.06
0.11
0.20
0.57
0.71
0.51
O.b9
0.98
0.07
0.3<
0.66
0.63
0.60
0.15
0.27
0.83
0.37
0.51
0.36
0.53
0.72
0.51
0.75
0.12
0.37
0.66
0.90
0.49
0.95
1.01
O.OB
0.31
0.90
0.12
0.93
37.214
261.31
0.50
1.81
10.07
0.83
1.59
0.11
14.17
0.76
0.13
2.33
0.11
0.84
0.03
5.06
0.06
5.0*
1.79
123.63
1.75
1.53
0.29
1.32
2.18
0.63
0.17
181.36
0.09
0.15
1.66
1.12
ID. 42
0.20
0.27
31.78
0.72 \
0.38
0.39
0.01
0.07
0.16
1.33
0.05
0.51
7.73
21
2
3
21
8
6
15
8
1
21
17
21
11
4
21
6
5
13
21
18
IK
8
21
11
16
20
19
0.08
1.06
1.03
0.08
0.66
0.68
0.56
0.66
1.25
0.08
0.36
0.08
0.61
0.75
0.08
0.68
0.71
0.60
0.08
0.26
0.58
0.08
0.08
0.61
0.50
0.12
0.17
7.53
28.88
2.80
1.92
3.75
11.18
8.65
2.86
6.98
0.27
17.82
7.39
17.31
20.89
108.89
0.16
2.21
21.67
257.70
4.60
0.89 *
0.38
3.13
0.13
1.98
1.29
13.72
22
1)
3
21)
7
21
1U
4
1
18
214
22
12
2
13
6
8
10
214
17
16
24
20
11
9
15
18
21
0.09
0.81
0.84
0.08
0.64
0.08
0.39
0.81
1.16
0.20
0.08
0.09
0.51
1.00
0.42
0.68
0.63
0.53
0.08
0.31
0.33
0.08
0.22
0.52
0.56
0.37
0.29
0.19
81.05
107.00
3.31
23.65
8.43
14.82
28.98
2.60
25.18
0.24
21.29
13.19
31.20
21.79
207.07
6.23
1.33
15.09
22.29
3.16
0.61 %
0.38
3.25
0.09
0.03
1.12
4.60
13-06
24
2
3
26
13
12
15
7
1
14
26
8
11
16
24
4
10
5
26
19
22
26
18
19
9
23
17
6
21
0.09
0.90
0.86
0.08
0.33
0.35
0.24
0.53
1.24
0.32
0.08
0.49
0.37
0.18
0.09
0.69
0.39
0.56
0.08
0.15
0.12
0.08
0.16
0.15
0.44
0.11
0.17
0.55
0.13
10.75
107.00
2.80
1.13
5.85
23.01
17.85
3.79
11.78
0.18
66.35
10.23
22.88
23.32
101.39
1.73
2.75
30.09
498.36
7.49
2.18 %
0.55
2.29
0.29
0.04
4.18
0.13
3.67
20.42
NOTE: "R" - ranking of parameter by organlo affinity.
"A" - calculated organic affinity.
"C" - concentration of parameter at 100 percent recovery (a calcu-
lated raw coal basis.)
See table 1 for other abbreviations.
-------
116
TABLE 26—ORGANIC AFFINITY OF ELEMENTS IN LABORATORY-
PREPARED WASHED COAL SAMPLES
Float-Sink Set 1 Float-Sink Set 2 Float-Sink Set 3 Float-Sink Set 4
Ge
U
Br
V
Sb
Be
Dy
.85
Cr .bO
B
hi
Co
Cu
Na
Lu
Eu
K
Sc
.55
Th .19
Zr
Hf
Rb
Tl
Ta
S
Ca
Yb
Sm
.31
Pb .2b
Se
Al
SI
Mg
LTA
Sn
Ba
Ga
Cd
Sr
Co
Fe
Mn
Aa
La
P
Zn
Ca
Br
Ge
Co
S
Nl
W
Cu
Dy
Sr
Be
V
La
U .72
Pb .67
Sm
Tb
tu
Sb
Ce
Ba
Ga
P
.65
Cr .60
Zr
Se
Yb
Tl
Sc
Lu
Ke
Hf
Th
Al
.39
Ta .33
B
Ca
Zn
Na
LTA
SI
K
Mg
Ca
Rb
Mn
Aa
Co
Br
Nl
Sr
Be
S
V
Ba
Ge
P
Fa
.66
Dy .60
Yb
Eu
Cu
V
Sb
Tb
Ca
Zn
Lu
Ga .50
Ce .49
Sc
Na
B
Sm
Se
La
Mn
U
Cr
Pb
Mg
• 37
Hg .32
Tl
Ta
Th
Hf
Al
Zr
LTA
Ca
Rb
SI
K
Aa
Sr
Br
B
U
Ba
P
S
Dy
Ge
.62
Pb .61
Eu
Na
Be
Co
Oa
Ca
V
.17
Cu .15
Hg
La
So
Nl
Zn
Sb
Sn
Mn
Cr
Ce
Sc
Tb .35
Yb .33
Al
Fe
Hf
Lu
Zr
Aa
Ta
Th
LTA
Rb
K
SI
cs
Tl
Organic
Intermediate-Organic
Intarcadiate-Inorganlo
Inorganic
-------
117
TABLE 26—Concluded
Float-Sink Set 5 Float-Sink Sat 6 Float-Sink S«t 8 Float-Sink Set 9
B
Na
P
Mg
Ba
Fe
S
Nl
Co
Br
Sr
Ca
Be
Dy
Kb
Cu
V
Lu
Sb .66
So .63
Ce
S«
La
Eu
Cr
ib
U
Hn
W .51
K .149
Sn
hf
Zr
Ta
Al
Th
Ca .35
Hb .3"
Tl
Sn
Hg
LTA
Aa
Si
Pb
Cs
Ge
Ge
B
Be
P
Se
Sb
Cr
.68
Co .66
Ga
Ca
Nl
K
V
.60
Al i5»
Cu
SI
Mn
• 36
Zr .26
LTA
S
Aa
Cd
Hg
Ho
Pb
'in
Ft
Ge
P
Be
B
Ga
.81
Sb .66
Co
Se
Na
V
K
Nl
.51
Pb .HZ
Cu
SI
Al
Zr
S
Hg
.29
F« .22
LTA
As
Mo
Cd
Cr
Hn
Zn
Ca
G«
B
Be
Sb
.69
V .56
S
Oa
No
.19
Na .11
Se
Nl
Cr
Co
He
Cu
.214
P .18
Tl
Fa
Zr
K
LTA
Al
. SI
Al
Pb
Cd
Hn
Zn
Ca
Organlo
Intcrmadlate-Organio
Interaedlate- Inorganic
Inorganic
•
NOTE: Grouped in k catagories: organic, intermediate-organic, Intermediate-
Inorganlo, inorganic. Values for the Indices of organic affinity sep-
arating classes arc indicated.
-------
118
3. Arsenic is the only one of the usually inorganic
elements that was classified in the inorganic group in all
of the coal samples studied.
4. Cesium was not determined in all samples. However,
cesium was among the elements with the lowest organic
affinities in four of five samples in which it was
determined. It was in the intermediate-organic group in the
fifth sample.
5. Uranium was classed among the organic elements in
three of the five washed coal samples in which it was
determined and was in the intermediate categories in the
remaining two sets.
The observed relationships of the elements, as expressed by their
organic affinities, have not suggested any geochemioal anomalies. The
elements grouped as ^organic" are those that are often found in
organic combination in natural materials. These elements include
several that have been identified in organic combination in coals by
previous workers (Horton and Abernathy, 1950; Ratynakiy et al., 1966;
Zubovic, 1966, 1976). Also, a number of elements that have not
generally been determined on coal samples in the past have been
determined, reported upon, and are Included in the table of organic
affinities. Examples of such elements include the lanthanides and the
rare earths.
The elements grouped as "inorganic" are those that have been
identified in coals in discrete mineral phases: As, Zn, Cd, and Fe, as
sulfides; and Mn, in carbonates. Although Cs has not been identified
directly in coal, it is generally readily adsorbed in the atomic
lattice of clay minerals and presumably is present in the coals in
this manner.
It is significant that we cannot make many generalizations on the
basis of the analyses of eight coals from the three widely separated
areas: the Appalachian Basin, the Illinois Basin, and Arizona. If
information is desired on the mode of occurrence of elements in a
particular coal sample, it will probably be necessary to separate that
coal into specific gravity fractions and to analyze it for those
elements, or to otherwise make those determinations. On the basis of
the five sets of washability samples analyzed from Illinois, an
estimate of the organic and inorganic affinities of the elements in
other coals from the Illinois Basin is likely to be more accurate than
a similar estimate made on coals from outside of the area.
Although an element may be listed among those with the highest
organic affinities, its occurrence in inorganic combination in coals
is not precluded, boron, which is among those found in hifch
concentrations in the cleanest coal fractions, is known to occur in
-------
119
amounts up to 200 ppm in the clay mineral illite from Illinois coals
(Bohor and Gluskoter,1973). Similarly, a portion of those elements
usually concentrated in the high specific gravity fractions (low
organic affinity) may also be in organic combination.
Concentration of an element in the heavier fractions shows that
element to be in inorganic combination. In the cases in which the
final separation was done in bromoform (2.89 s.g.), we can postulate
further on the mode of occurrence of certain elements. Si, Ti, Al, and
K. are concentrated in the gravity fraction from 1.60 to 2.89 and are
less abundant in the gravity fraction greater than 2.89. These
elements are found associated with each other in the clay minerals,
but not in the heavier sulfide minerals.
SUMMARY AND CONCLUSIONS
Extensive chemical analyses on 172 "whole coal samples", 40
"bench" samples and 64 "washed" coal samples have been done at the
Illinois State Geological Survey. As many as 71 determinations have
been made on a single sample. Analytical methods used were: atomic
absorption spectrosoopy (flame and graphite furnace), neutron
activation analyses (instrumental and with radio-chemical
separations), optical emission spectrometry (direct reader and
photographic), X-ray fluorescence speotrometry (wavelength dispersive
and energy dispersive), and ion selective electrode analyses.
Discussions of the analytical methods are given in the Appendix.
Chemical elements determined are Al, Sb, As, Ba, Be, B, Br, Cd,
Ca, C, Ce, Cs, Cl, Cr, Co, Cu, Dy, Eu, F, Ga, Ge, Au, Hf, H, In, I,
Fe, La, Pb, Lu, Mg, Mn, Hg, Mo, Ni, N, 0, P, K, Rb, Sm, Sc, Se, Si,
Ag, Na, Sr, S, Ta, Tb, Tl, Th, Sn, Ti, W, Ut V, Yb, Zn, and Zr. Normal
coal parameters reported on the samples are moisture, low-temperature
ash, high-temperature ash, total' sulfur, sulfate sulfur, organic
sulfur, pyritic sulfur, calorific value, free-swelling index, Gieseler
plasticity, water soluble chlorine, proximate analyses, and ultimate
analyses.
Of the 172 whole coal samples analyzed, 114 are from the Illinois
Basin, 29 are from coal areas in western United States, 23 are from
eastern (Appalachian) coal fields, 4 are from midcontinent coals, and
the remaining two are "standard" coal samples. Statistical analyses of
the chemical data elicited a number of observations including the
following:
1. Elements that have relatively large ranges in
concentration and that have standard deviations larger than
the arithmetic means (for example, As, Ba, Cd, I, Pb, Sb,
and Zn) include those that are found in coals within sulfate
-------
120
and sulfide minerals or those that would be expected to be
found in that association. Elements that occur in organic
combination or that are contained within the silicate
minerals have narrow ranges and smaller standard deviations.
Many of the silicate minerals are thought to be emplaoed in
the coal very early in the period of coal formation as
detrital or as syngenetlc minerals. The sulfides and some
sulfates, although syngenetio in part, have a major portion
emplaced in the coal by epigenetic mineralization.
2. In general, elemental concentrations tend to be
highest in coals from eastern United States, lowest in coals
from western United States, and intermediate in value in
coals from the Illinois Basin.
3. Many elements are positively correlated with each
other in coals. The most highly correlated are Zn:Cd (r =
0.91* for coals of the Illinois Basin). Chalcophile elements
(As, Co, Ni, Pb, and Sb) are all mutually correlated, as are
the lithophile elements (Si, Ti, Al, and K). Other
significant correlations are Ca:Mn (r = 0.65) and Na:Cl (r =
0.18).
The average concentration of an element in the earth's crust is
its olarke value. The geometric mean value for each minor and trace
element was compared to the clarke for that element. Only four of the
elements determined were enriched in the coals by a factor of six or
more relative to the olarke. Boron, chlorine, and selenium are
enriched in coals of the Illinois Basin; arsenic, chlorine, and
selenium are enriched in coals of eastern United States; and selenium
is the only element enriched in coals of western United States.
The enrichment of selenium in coals may represent a contribution
from the plants that formed the coal. Selenium occurs in amounts well
in excess of the olarke in all coals analyzed and has been reported in
like amounts in modern peats. Boron has been used as an Indicator of
paleosalinity in sedimentary rocks. It is concentrated relative to the
clarke only in the coals of the Illinois Basin and probably represents
a higher salinity of the waters in the coal swamp or of the waters
that covered the peat as the swamp was drowned.
Only four elements were found to be enriched in coal by a factor
of six times the clarke or greater. A larger number of elements are
depleted in coals (one-sixth the olarke value or less). Those elements
depleted in coals of the Illinois Basin are: Al, Ca, Cr, P, Hf, K, Lu,
Mg, Mn, Na, P, Sc, Si, Sr, Ta, and Tl. All of the other elements
determined are within the range of one-sixth to six times the olarke.
A series of five sample sets (10 samples) was collected by
sampling the coal seam in vertical segments or benches. All five of
-------
121
the bench sets were from the Herrin (Mo. 6) Coal Member in Illinois.
Elemental distributions were quite variable within bench sets,
although the rare earth elements and bromine tended to be more
uniformly concentrated.
Clements often concentrated in the top or bottom benches of the
coal include U, Mo, V, Sb, and Ge. The concentration of Ge in the top
and bottom benches of four of the five bench sets analyzed is
striking. This concentration and the demonstrated affinity of
germanium for the organic portion of the coal suggest that the
germanium was introduced into the coal seam after burial by
circulating solutions. Those solutions were necessarily in contact
with the horizontal boundaries of the coal seam before the center
parts of the seam; the change in geochemical conditions at those
boundaries allowed for the assimilation of the germanium by the ooal.
Rock units immediately associated with the coals (roof shales,
underclays, and partings) were analyzed with some of the bench sets,
Most elements are found in significantly higher concentrations in
these rock units than in the coals. Those elements Include: Ag, Ba,
Cd, Co, Cr, Cs, Cu, F, Ga, Hf, La, Mn, So, Se, Sm, Sr, Th, V, Yb, Zr,
K, Mg, Si, Na, and most of the rare earth elements.
Nine coal samples were separated into specific gravity fractions
(washed) and were analyzed for most of the major, minor, and trace
elements, as were the 172 whole coals. A total of 64 washed samples
were studied. Five of the washed coals were from the Illinois Basin,
three were from widely separated areas in eastern coal fields, and one
was from Arizona. The float-sink or washability data for the elements
may be shown as washability curves and as histograms. The mode of
occurrence of an element, whether it is inorganically or organically
combined in the coal, may be interpreted from the washability curves.
A value for the organic affinity of the elements has been defined
by normalizing the washability curves, removing from them a component
that represents the contribution from the inseparable mineral matter,
and then calculating the area under the washability curve. This value
ranges from 0.08 to 2.02 for the elements determined in the coals
analyzed.
Clements within a single washed coal set of analyses are placed
in one of the following four groups: 1) organic, 2)
intermediate-organic, 3) intermediate-inorganic, and 4) inorganic. The
four samples from the Illinois Basin on which these organic affinities
were calculated are quite similar to one another; several
generalizations can be made from them:
1. Ge, Be, B, and Sb are classified in the organic
group in all samples; Ge haa the highest organic affinity in
all four instances.
-------
122
2. in, Cd, Mn, As, Mo, and Fe are in the inorganic
group in all four samples; Zn and As consistently have the
lowest values.
3. A number of metals including Co, Ni, Cu, Cr, and Se,
have organic affinities that place them in the intermediate
categories. This suggests that these metals are present in
coals as organoraetallic compounds, chelated species, or as
adsorbed cations.
The number of generalizations that can be drawn decreases when
organic affinities of coals from other parts of the United States are
considered. However, Ge, B, and Br generally are among the elements
with the highest organic affinities. Arsenic, in all cases, is among
the elements with the lowest organic affinities. The variability in
organic affinities between coals of eastern United States, western
United States, and the Illinois Basin is sufficiently large that a
prediction of the value of organic affinity of an element in a sample
that is yet to be analyzed is, very likely, imprecise.
The statistical analyses of the chemical analytical data that are
given here and the observations made are a first step in the complete
geochemical analyses of those data. Currently in progress are further
statistical analyses, areal and stratigraphic mapping of the
distribution of the elements, and correlation of the elemental
distributions with mineral matter analyses and other geological
features of the coal basin.
-------
123
REFERENCES
Bohor, B. F.,, and H. J. Gluskoter, 1973, Boron in illite as a paleo-
salinity indicator of Illinois coals: Journal of Sedimentary
Petrology, v. 43, no. 4, p. 945-956.
Clarke, F. W., and H. S. Washington, 1924, The composition of the
earth's crust: U.S. Geological Survey Professional Paper 127,
117 p.
Cobb, J. C., and S. J. Russell, 1976, Sphalerite mineralization in coal
seams of the Illinois Basin: Geological Society of America,
Abstracts with Programs, 'v. 8, no. 6, p. 816.
Couch, E. L., 1971, Calculations of paleosalinities from boron and clay
mineral data: American Association of Petroleum Geologists
Bulletin, v. 55, p. 1829-1837.
Davis, J. C., 1973, Statistics and data analysis in geology: New York,
John Wiley and Sons, 550 p.
Dreher, G. B., and J. A. Schleicher, 1975, Trace elements in coal by
optical emission spectroscopy, in Babu, S. P., editor, Advances
in Chemistry Series: Washington, D.C., American Chemistry
Society, no. 141, p. 35-47.
Frost, J. K., P. M. Santoliquido, L. R. Camp, and R. R. Ruch, 1975,
Trace elements in coal by neutron activation analysis with
radiochemical separations, in Babu, S. P., editor, Trace
Elements in Fuel: Washington, D.C., American Chemical Society,
Advances in Chemistry Series No. 141, p. 84-97.
Gluskoter, H. J., 1965a, Composition of ground water associated with
coal in Illinois and Indiana: Economic Geology, v. 60,
p. 614-620.
Gluskoter, H. J., 1965b, Electric low-temperature ashing of bituminous
coal: Fuel, v. 44, p. 285-291.
Gluskoter, H. J., 1967, Chlorine in coals of the Illinois Basin:
Transactions, Society of Mining Engineers, American Institute
Mining Engineers, v. 238, p. 373-379.
Gluskoter, H. J., 1975, Mineral matter and trace elements in coal, in
Babu, S. P., editor, Trace Elements in Fuel: Washington, D.C.,
American Chemical Society, Advances in Chemistry Series No. 141,
p. 1-22.
Gluskoter, H. J., J. R. Hatch, and P. C. Lindahl, 1973, Zinc in coals
of the Illinois Basin: Geological Society of America,
Abstracts with Programs, v. 5, no. 7, p. 637.
Gluskoter, H. J., and P. C. Lindahl, 1973, Cadmium: Mode of occurrence
in Illinois coals: Science, v. 181, no. 4096, p. 264-266.
Gluskoter, H. J., and 0. W. Rees, 1964, Chlorine in Illinois coal:
Illinois Geological Survey Circular 372, 23 p.
-------
Gluskoter, H. J., and R. R. Ruch, 1971, Chlorine and sodium in Illinois
coals as determined by neutron activation analyses: Fuel,
v. 50, no. 1, p. 65-76.
Gluskoter, H. J., and J. A. Simon, 1968, Sulfur in Illinois coals:
Illinois State Geological Survey Circular 432, 28 p.
Goldschmldt, V. M., 1935, Rare elements in coal ashes: Industrial and
Engineering Chemistry, v. 27, no. 9, p. 1100-1102.
Hatch, J. R., M. J. Avcin, W. K. Wedge, and L. L. Brady, 1976,
Sphalerite in coals from southeastern Iowa, Missouri, and
southeastern Kansas: U.S. Geological Survey, Open file report
76-796, 26 p.
Hatch, J. R., H. J. Gluskoter, and P. C. Lindahl, 1976, Sphalerite in
coals from the Illinois Basin: Economic Geology, v. 71,
no. 3, p. 613-624.
Helfinstine, R. J., N. F. Shimp, J. A. Simon, and M. E. Hopkins, 1971,
Sulfur reduction of Illinois coals—Washability studies.
Part 1: Illinois Geological Survey Circular 462, 44 p.
Helfinstine, R. J., N. F. Shimp, M. E. Hopkins, and J. A. Simon, 1974,
Sulfur reduction of Illinois coals—Washability studies.
Part 2: Illinois Geological Survey Circular 484, 32 p.
Helfinstine, R. J., J. A. Simon, N. F. Shimp, and M. E. Hopkins, 1970,
Sulfur reduction of Illinois coals—Washability tests:
Illinois Geological Survey Environmental Geology Note 34, 12 p.
Holmes, J. A., 1911, The sampling of coal in the mine: U.S. Bureau
Mines Technical Paper 1, 18 p.
Horton, L., and K. V. Aubrey, 1950, The distribution of minor elements
in vitrain: Three vitrains from the Barnsley seam: London,
Journal of the Society of Chemical Industry, v. 69, suppl.
no. 1, p. S41-S48,(revised).
IBM Corporation, 1970, System/360 Scientific Subroutine Package,
Version III, Programmers manual, Program number 360A-CM-03X,
Manual number GH20-0205-4: White Plains, NY: IBM Corporation,
454 p.
Kuhn, J. K., W. F. Harfst, and N. F. Shimp, 1975, X-Ray fluorescence
analysis of whole coal, in Babu, S. P., editor, Washington,
D.C., American Chemical Society, Advances in Chemistry Series
no. 141, p. 66-73.
McCammon, R. B., editor, 1975, Concepts in Geostatistlcs: New York,
Springer-Verlas, 168 p.
Miesch, A. T., 1967, Methods of computation for estimating geochemical
abundance: U.S. Geological Survey Bulletin 574-B, 15 p.
-------
125
Nicholls, G. D., 1968, The geochemistry of coal-bearing strata, in
Murchison, D.,and T. S. Westell, editors, Coal and Coal-bearing
Strata: American edition, New York, American Elsevier,
p. 269-307.
Rao, C. P., and H. J. Gluskoter, 1973, Occurrence and distribution of
minerals in Illinois coals: Illinois Geological Survey
Circular 476, 56 p.
Ratynskiy, V. M., T. I. Sendul'skaya, and M. Y. Shpirt, 1973, Chief
mode of entry of germanium into coal, ±n Weber, J.N.E., editor,
Geochemistry of Germanium: Stroudsburg, Pennsylvania, Dowden,
Hutchinson, and Ross, p. 426-428.
Rook, H. L., T. E. Gills, and P. D. LaFleur, 1971, Method for determina-
tion of mercury in biological materials by neutron activation
analysis: Analytical Chemistry, v. 44, no. 7, p. 1114-1117.
Ruch, R. R., H. J. Gluskoter, and E. J. Kennedy, 1971, Mercury content
of Illinois coals: Illinois Geological Survey Environmental
Geology Note 43, 15 p.
Ruch, R. R., H. J. Gluskoter, and N. F. Shimp, 1973, Occurrence and
distribution of potentially volatile trace elements in coal:
An interim report: Illinois Geological Survey Environmental
Geology Note 61, 43 p.
Ruch, R. R., H. J. Gluskoter, and N. F. Shimp, 1974, Occurrence and
distribution of potentially volatile trace elements in coal:
A final report: Illinois State Geological Survey Environmental
Geology Note 72, 96 p.
Simon, J. A., and R. Malhotra, 1976, Place of coal in the total energy
needs of the United States: Illinois State Geological Survey
Illinois Minerals Note 63, 14 p.
Swanson, V. E., J. H. Medlin, J. R. Hatch, S. L. Coleman, G. H. Wood,
Jr., S. D. Woodruff, and R. T. Hildebrand, 1976, Collection,
chemical analysis, and evaluation of coal samples in 1975:
U.S. Geological Survey, Open file report 76-468, 503 p.
Taylor, S. R., 1964, Abundance of chemical elements in the continental
crust: A new table: Geochimica et Cosmochimica Acta, v. 28,
no. 8, p. 1273-1285.
Turekian, K. K., and K. H. Wedepohl, 1964, Distribution of elements in
some major units of the earth's crust: Geological Society of
America Bulletin, v. 72, no. 2, p. 175-191.
Wanless, H. R., J. R. Baroffio, and P. C. Prescott, 1969, Conditions of
deposition of Pennsylvanian coal beds in Dapples, E. C., and
M. E. Hopkins, editors, Environments of coal deposition, GSA
Special Paper 114: Boulder, Colorado, Geological Society of
America, p. 105-142.
-------
126
Wedge, W. K., D.M.S. Bhatia, and A. W. Rueff, 1976, Chemical analyses
of selected Missouri coals and some statistical implications:
Missouri Department of Natural Resources, Geological Survey
Report of Investigations 60, 40 p.
Weimer, R. J., 1970, Upper cretaceous of Rocky Mountain Region, in
Morgan, J. P., editor. Deltaic sedimentation, modern and
ancient: Society of Economic Paleontologists and Mineralogists
Special Publication No. 15, p. 270-292.
Zubovic, P., 1960, Minor element content of coal from Illinois Beds 5
and 6 and their correlatives in Indiana and western Kentucky:
U.S. Geological Survey, open file report, 79 p.
Zubovic, Peter, 1966, Physiochemical properties of certain minor
elements as controlling factors of their distribution in coal,
in Gould, R. F., editor, Coal science: Washington, D.C.,
American Chemical Society Publications, Advances in Chemistry
Series, no. 55, p. 221-246.
Zubovic, Peter, 1976, Geochemistry of trace elements in coal, in Ayer,
F. A., compiler, Symposium proceedings: Environmental aspects
of fuel conversion technology, II: (December 1975), Washington,
D.C., U.S. Environmental Protection Agency, Environmental
Protection Technology Series EPA-600/2-76-149. 1976.
Zubovic, P., T. Stadnichenko, and N. B. Sheffey, 1960, The association
of minor elements with organic and inorganic phases of coal:
U.S. Geological Survey Professional Paper 400-B, p. B84-B87.
Zubovic, P., T. Stadnichenko, and N, B. Sheffey, 1961, The association
of minor element associations in coal and other carbonaceous
sediments: U.S. Geological Survey Professional Paper 424-D,
Article 411, p. D345-D348.
Zubovic, P., T. Stadnichenko, and N. B. Sheffey, 1964, Distribution of
minor elements in coal beds of the Eastern Interior region:
U.S. Geological Survey Bulletin 1117-B, 41 p.
-------
APPENDIX
METHODS OF ANALYSIS
Introduction
The methods used in this project were instrumental neutron
activation analysis (INAA), neutron activation analysis with
radiochemical separation (NAA-RC), optical emission spectroohemical
analysis—direct reading (OE-DR) and photographic (OE-P), atomic
absorption analysis—flame (AA) and graphite furnace (AA-G), X-ray
fluorescence analysis (XRf), and ion-selective electrode (ISE).
Methods developed and used in the initial project (EPA
68-02-0246) were detailed in the reports made on that project (Ruch et
al., 1973i 1971*). In general, the same multi-element method approach
was continued with refinements and substitutions in most analytical
disciplines.
In particular, for INAA a new higher resolution Ge(Li) detector,
coupled with a 1096-channel analyzer system, replaced the Nal(Tl)
detector and MOO-channel analyzer. This greatly increased the scope
and capability of NAA for the analysis of coal and coal-derived
materials for trace elements, and fewer radiochemical separation
procedures were required.
Both emission spectrochemical procedures were updated and refined
through further optimization of exposure times, preparation of more
suitable standards, and more extensive data processing.
Atomic absorption analysis was employed essentially aa previously
reported. One refinement was the use of new electrodeless discharge
lamps (EDL's). Toward the latter part of this contract period, a more
sensitive graphite furnace excitation technique was developed, and
preliminarily evaluated for the determination of Cd, Tl, and Te.
127
-------
128
The X-ray fluorescence, ion-selective electrode procedures, and
conventional ASTM coal analysis methods used were essentially the same
as those reported previously (Ruch et al., 1973, 197*0.
Development of energy-dispersive X-ray fluorescence analysis of
coal was begun during the project. The instrumentation consisted of an
americiura-241 excitation source; secondary targets of copper,
molybdenum, tin and dysprosium; and a Si(Li) detector with a
1000-channel analyzer.
It was estimated that the average relative standard deviation for
any technique was in the range of 10 to 20 per cent for most elements
concerned.
NEUTRON ACTIVATION ANALYSIS
Nondestructive neutron activation analysis, coupled with the
high-resolution Ge(Li) detector, allowed the simultaneous
determination of a large number (38) of trace elements in whole coal
to the ppb level. The technique significantly increased the scope and
capability of trace element analysis in coal and coal-derived
materials. The technique eliminated the necessity for time-consuming
radiochemical separations in the determinations of such elements as
As, Sb, Br, Ga, and Se, as previously required when counting with the
Nal(Tl) detector.
Comparison of INAA data obtained in this laboratory with the
published data on NBS 1632, the Trace Elements in Coal standard (Table
A), indicates generally good agreement and acceptable precision.
INAA Procedures
Approximately 1 gram of whole coal was weighed into two-fifths
dram polyethylene vials, was heat sealed, and was activated in the
THIGA MKII reactor at the University of Illinois. The irradiation
times, the decay interval, the count interval, the nuclide observed,
and limits of detection for the elements determined are shown in Table
b. Irradiation and counting times were chosen to optimize the
determination of certain elements. All samples were compared to an
irradiated raultielemental standard, which was composed of a solution
of reagent-grade materials evaporated onto Whatman 41 filter papers.
In addition to the prepared standards, a sample of NBS-1632 standard
reference coal was occasionally analyzed in order to check the
accuracy of the data in comparison to accepted literature values. The
counting system is shown schematically in Figure A. Data reduction was
accomplished with the IBM 360 facilities at the University of
Illinois.
-------
129
Ge(Li) Detector
3^0 Amplifier
NS TOO
Pluse Height Analyser
1*096 Memory
Tape Control
Visual Readout
Peak Integration
Wangco Mod 7
Tape Deck
A - Sche.'iiuitai: of instrumental neutron activation system.
-------
TABII A—COMPARISON OF VALUES FOR NBS SRM 1632
ppm
Na
K J
Kb
Cs
Be
Mg >
Ca \
Sr
Ba
F
Cl
Br
I
Al »
Si J
5 t
So
Tl
V
Cr
Mn
Fe »
Co
Ni
Cu
Zn
Ga
Ge
A3
Canili
?,52 +. 31
2oCC +_ 300
22. d ± 1.8
! .8 +_ 0.3
155 + 6
385 + 10
860 + 51
18.8 » 2.1
3.3 ±. 0.1
3.1 +. 0.3
17.6 + 2
12.8 ». 2.1
0.93 + 0.08
5-5 + 0.3
16 + 5
31 + 9
5.3 + 0.5
6.2 +_ 1.3
Ondov :;.i.£.
Ill +_
0.25 +.
21 ±
1.1 +.
0.21 «
0.20 +.
161 +.
352 +
890 +.
19.3 +
1.85 ±
3-7 +
1010 «
36 ±
19.7 ±
13 +
0.81 +
5.7 +.
18 +.
30 +.
6.5 ±
20
0.03
2
0. '
i ' . 5 ',
0.05
0.05
16
30
125
1.9
2.6 « 0.2
0.13
(3.2)
0.3
110 isOO'r
3 35 + 3
0.9 20.2 + 0.5
1 tC- + •
0.01 O.b7 » 0.03
0.1 (6)
1 15 «. '
18 «. 2
10 37 _» u
1.1 5.9 +. 0.6
Chattopaday .
351 +. 30
0.35 +. 0.01
0. 16 +. 0.015
1.33 +. 3.1
311 +. 20
930 + 18
3-58 * 0.35
973 + 50
33.9 +. 3.0
21.6 » 2.1
17 * 1.1
0.869 +. 0.011
5.5 + 0.1
13.5 +. 1.2
37.5 + 2.8
5.75 + 0.37
Shtebley
370
0.35
19
2.55
0.096
0.107
93
337
750
20
2.78
1.57
1312
36
19
38
0.752
5.16
11. 1
5.1
70
5.9
*. 33
+ 0.036
+ 1.9
+. 0.06
+ 0.025
7 0.056
+. 9.2
+ 12
+ 75
± 3
+ 0.38
+ 0.15
_ 150
4
0.8
~ 2.6
_ 0.012
7 0.15
± 0.9
+ 0.8
± 5
±0.5
Millard
u 10.
2900.
21.
2.6».
129.
280.
3.92
1.1
20.6
16.
0.903
6.2
Naiikarni
3J7 +. 32
0.276 + 0.023
16.3 +. 3.7
1.32+0.11
0.15 » 0.03
0.«3 +. 0.02
1.02 + 0.05
311 ». 25
915 +. 35
15.2 + 1.1
6.63 +. 1.2
1 . 7 c +. O.jl
3.50 » 0.08
839 + 172
32.7 +. 3.1
18.9 + 2.2
' 10.3+6.9
0.89 +" 0.06
5.13 +. 0.57
12.1 ». 0.7
32 + 3
1.61 + 0.32
I^GS ORNL
''•33
: .7
v) . 1 1
i). 70
51.
1000.
20.
2.2 1
1 100.
50.
22.
3V.
1.11
1 1.
20.
23.
1?.
".5
'<• .0
5.7
325
0.266
890
19
1.72
3.7
37
17
11
0.78
1.5
+ 6
+0.002
+ 125
+. 1
+. 0.09
± 0.3
+ 3
± 1
.+ 1
+. 0.02
i 0.1
-------
r r"
Se
Ir
A;
ir.
5-
c-
Y
la
Ce
Nd
So
£u
Gd
Ta
Dy
Ifb
Lu
Tn
t.'
~a
m
Aj
hg
PS
T *,
e
-
=
Car
:•<
10. fc
20.1
1.6
C.36
1-59
0.71
0.13
3.5
; . ic
0.21
C.c7
<
:11 Indov
• 1.7
^ 3. c
* j. -
i 3.7
± 0.2
± 0.03
» 0. 16
i 0.09
•. 0.03
i 0.6
- O.J
. 0.02
i 0.20
3.C01
3."
C.06
0.20
10.7
19.5
1.7
0.33
0.23
0.7
0.11
3.2
0.96
0.21
0.75
i. '"*
± C
t_ '
* 1
*. o
*. o
1 0
* 0
± o
i. 0
i 0
T o
» 0
N.B.5. Chattopaday.
2 2.9 - 0.3 3.03 * 0.28
1.56 ± 0.11
0.20 » 0.02
03 «. '. ) 1.05 *. 0. 1
;.:;<• o.c 3 0.20 7 0.02
12 0.23 ± 0.02
10.2 i 1.0
3 3.09 ± 0.26
2
2
01
05
1
1
2 (3.0)
05
2"
17
0.12 » 0.02 0.1
30 ± 9 32.1 i. 1.8
0.59 i 0.03 0.51 ± 0.06
«0.1) 1.02
Shiebley
3.0
125
6."
n.3
17.3
6.1
1-3
0.31
- .33
0.85
0.55
0.«16
3.1
0.92
0.36
1.9
O.K6
0.95
2. I'd
* 0.5
± 0.01
*. 20
*. '-6
» 3
*. o
± 1
t 0
*. o
^ ;
*. o
* 0
* 0
±.0
» 0
± o
* 0
± o
*. o
*. o
3
9
5
19
037
06
01
017
2
05
02t!
b
OUb
09
27
Mlllard
2.2
11-3
20.
10.7
0.7
0.1
2.5
0.5
1.1
0.8
0.1
3.2
1.1
0.3
23-
0.3
Nadkarnl ISGS ORNL
2.1" i
3.06 ±
' .89 »
19.7 i
1.66 ±
0.37 +
3.62 +
0.10 •»
1.38 *
0.69 »
0.12 «
1.28 *
0.89 ».
0.23 *
O.Oo 2.b 3-2*. 0,3
5.0
10.
1.1 3-
0. 15
0.56
0.16
0.02
0.35
0.02
0.09
0.01
0.005
0.06
0.02
0.02 0.18 0.51*0. 17
13.
118.
-------
132
TABLE B—DETECTION LIMITS AND NUCLEAR PROPERTIES
OF ISOTOPES USED FOR THE ANALYSIS OF COAL
Element
Na
Cl
K
So
Cr
Mn
Fe
Fe
Co
Ni
Zn
Zn
Ua
As
Se
Br
Rb
-••
Mo
*S
Cd
laotope
Produced
21
Na
38
Cl
12
K
16
Sc
51
Cr
56
Mn
59
Fe
51
Mn
60
Co
58
Co
65
Zn
69
Zn
72
Ca
76
As
75
Se
82
Br
86
RD
«7m
Sr
99
Mo
1 10m
AR
1 1'.l
Cd
Half
Life
15 hr
37 mln
12.1 hr
83.8 day
27.8 day
258 hr
15 day
291 day
5.26 yr
71 day
215 day
13.8 hr
11.2 hr
26.1 hr
120 day
35.3 hr
•Jti.7 day
2.8 hr
07 hi-
253 day
VJ hr
Cross
Section
(barns)
0.53
0.10
1.2
13
17
13.3
1. 1
0.1
37
0.2
0.5
0. 1
5.0
1.5
30
3-0
0.7
'•3
0. If,
3.S
0-i
Counting
Period*
A, B.C
A
B, C
D
D
A, B
D
D
D
D
D
B, C
B, C
C
0
B, C
D
A, B
C
U
C
Major
gamma-rays
utilized
(keV)
1368
1612
1525
889, 1120
320
816, 1811
1099, 1292
835
1173. 1333
810
1115
139
831, 630
559, 657
136, 261
551, 777
1079
388
ill
657, 937
528
Lloit of
Detection
(ppo)
0.5
20
30
0.01
1
0.1
200
1000
0.5
5.0
5.0
50
0.5
0.2
0.1
0.5
1.0
5.0
5.0
1.0
5.0
Average
Relative
Standard
Deviation
5
15
10
5
10
5
10
15
5
30
30
25
15
20
is
20
20
10
20
30
50
-------
133
TABLE B—Continued
Element
In
Sb
Sb
I
Ca
Ba
Ba
La
Ce
Sm
iiu
til
Tb
Dy
Yb
Yb
Ln
III'
Tn
Isotope Half
Produced Life
116m
In 51 min
122
Sb 2.7 day
121
Sb 60.3 day
128
I 25 mln
131
C3 2.05 yr
131
Ba 12 day
139
Ba 83 rain
110
La 10.2 hr
ill
Ce 33 day
-Sm 17 hr
152
Ku 9.3 hr
Eu 12.5 yr
160
Tb 72 day
165
Dy 2.35 hr
175
Yb 1.2 day
169
Yb 32 day
177
Lu 6.V day
181
Hf 12.5 day
T;i M', ,|ay
Cross
Section
(barns)
160
6.5
2.5
6.2
31
8.8
0.35
8.9
O.b
;MO
i!BOO
5900
16
700
55
5500
2100
10
.•1
Counting
Period*
B
C
D
A
D
C, D
A, B
C
D
C
A, B, C
D
D
A, 8
C
D
C
D
L
Major Limit of
gamma-rays Detection
utilized (ppo)
(keV)
117, 1097 0.01
561 0.2
1691 0.1
113 0.5
797,569 0.05
196, 216 30
166 200
1596, 187, 329 0. 1
115 0.5
103 0.05
122, 311, 963 0. 10
1108 0.05
879, 1178 0.05
95, 361, 633 0.1
396, 282 0.5
198, 110 0.1
208 0.05
181, 133 0.05
155, 2'S' , 1.^1 0.01
Average
Relative
Standard
Deviation
30
20
10
25
15
10
20
5
15
5
5
5
to
10
25
10
15
15
10
Ib7
W .'<.« lir
It, C
-------
Ij't
TABLE B—Concluded
Klement Isotope Half Cross Counting
Produced Life Section Period*
(barns)
Major
gamma-rays
utilized
(keV)
Limit of
Detection
(ppm)
Average
Relative
Standard
Deviation
196
Au
Tn
Au
233
Pa
65 hr
27 day
99
1411
312
0.01
0.2
10
10
239
U Np 56 hr 2.7 C
* COUMI irm
IV Hod l:—.idiatlnn r'lux ( n.cm"?.seo"2 )
A 15 min 3.0 x 10'2
li 15 min 2.0 x 1012
C 2 hr 'l.l X 1012
0 2 hr 'I. 1 x ]0'2
277,
Decay
Interval
30 min
3 lir
21 hr
30 day
22B 0. 1 20
Count
Interval
300 sco
2000-3000 gee
1000-7000 sec
6-10 hr
Radiochemical Separation Procedure for Mercury
Instrumental neutron activation analysis was not satisfactory for
the determination of Hg at the levels usually found in whole coals
(0.01 to 0.50 pprn). Hence, use of the radiochemical procedure
described by Ruch et al., (197^), a method previously modified from
that of Rook, Gills and LaFleur (1971), was continued. This procedure
differed from that of Rook, Gills, and LaFleur (1971), in that the
combustion products, including Hg, were collected in a cold-trap
cooled by dry ice instead of liquid nitrogen.
Neutron Activation Analysis of Tellurium
Tellurium cannot be determined in coal by instrumental neutron
activation analysis because tellurium has poor nuclear characteristics
for analysis and normally occurs only in such small amounts (0.02 to
0.1 ppm) that interferences from other isotopes present prevent its
detection.
-------
135
A radiocheraical separation procedure was proposed involving the
decay of ^I'fe to 131I after irradiation of the coal-ash. I3lj wa3
collected by solvent extraction and its activity was measured. From
standards, the limit of detection of Te was estimated at 0.1 to O.U
ppm. The results were corrected for the 131I produced by fission of
235u—sometimes a serious interference. Because the expected levels of
Te in coal appeared to be about the same as the detection limits, the
procedure • did not hold sufficient promise to be pursued. It would be
possible to lower the limit of detection by increasing the time of
irradiation from the normal two hours to 10 to 20 hours. This was not
practical. At present, other methods such as AA (graphite furnace) and
nondispersive XRF are being investigated.
Neutron Activation Analysis of Thallium
A radiochemical separation procedure was developed to determine
Tl in coal-ash. The method involves sodium hydroxide fusion, sulfide
precipitation, solvent extraction, and final precipitation of Til with
counting for 204-pi done on the precipitate. The technique was rather
lengthy since 201*T1 emits only beta activity. The measurement is
susceptible to interference from even very low amounts of other
radioactivity. The limit of detection with a 20-hour irradiation was
only 2 ppm Tl in whole coal, thus the procedure is inadequate and
impractical for the expected range of 0.1 to 1 ppm Tl in coal.
EMISSION SPECTROCHEMICAL ANALYSIS
Preparation of high-temperature (500°C) coal-ash was described in
detail in Huch et al., (197^),, p. 60-65. Two grams of coal were
weighed into a used silica crucible'and were dried. The dried coal was
ashed in the covered crucible at 500°C for approximately 20 hours,
with occasional mixing with a platinum wire. The cooled, weighed ash
was ground until homogeneous in a mullite mortar and pestle, then
dried at 110°C for a few hours.
A set of synthetic standards was prepared by using the average
concentrations of Si, Al, Ca, Fe, K, Mg and Na, and by using average
per cent for high-temperature ash; the average values were taken from
tiL> previously analyzed Illinois coals. The concentration values were
calculated to their oxide or carbonate equivalents on the ash basis,
the type of calculation depending upon the expected combination of
each element in high-temperature coal ash. These concentrations were
then normalized to 100 per cent. The selected compounds and their
concentrations are listed in Table C.
Ten grams of the mixture were prepared and were mixed in a
mixer-mill for one hour in an alumina ceramic container.
-------
136
Portions of this coal-ash base were then mixed with amounts of
Si02- and AlaOa-based Spex Time-Saver Standards, which contain 1000,
333, 100, 33, and 10 ppm of the 49 trace elements of Spex Mix 1000
(Spex Industries, Inc., Box 798, Metuchen, NJ 08bHO) such that the
Si02'-Al203 concentration ratio was equal to 2.22. The amount of each
Spex Mix standard used is shown in Table D.
TABLE C—SYNTHETIC COAL ASH BASE
Coopound
Percent of Total Coal Ash Base (W/W)
SiO
Al 0
2 3
CaCO
Fe 0
2 3
K CO
2 3
MgO
Na CO
2 3
«0. 30
18. 11
11.59
23.19
2.20
0.63
0.9"
Total
99.99}
TABLE D—COAL ASH STANDARDS
Designation
CA-1
CA-i
CA-3
CA-H
CA-5
CA-6
Coal Ash Standard
Final Concentration
(ug/go)
133
100
33.3
10
10
1.0
Weight of Coal
Ash Base
dag)
667.0
900.0
900.0
900.0
900.0
900.0
Spex Standard
Concentration
(ug/gm)
1000
1000
333
100
33
10
Weight SIO
2
Spex Standard
-------
137
The mixture used for loading the spectrometer electrodes
consisted of 40 mg of sample or standard, 10 mg of spectroscopically
pure Ba(NU3)2, and 150 mg of SP-2X graphite powder. These were mixed
together on a Wig-L-Bug shaker for 60 seconds in a 2.5^ cm in length
by 1.27 cm in diameter plastic vial containing two plastic balls .32
cm in diameter. This mixture was then weighed in the appropriate
amounts for loading into electrodes. The spectroscopic parameters used
are listed in Table E.
TABLE E—SPECTROSCOPIC PARAMETERS
Instrument
Arc current (D.C. )
Arc Uap
Exposure time
Jarrell-Ash
3.14 m Ebert
spectrograph
10A
14 mm
80 sec.
Jarrell-Aah
.75 m direct reading
spectrometer
t5A
6 ma
65 aac.
Jarrell-Aah
.75 B direct reading
spectrometer
7.5A
baa
30-10 aec.
Atmosphere and flow rate
Sample electrode
Counter electrode
Electrode charge
Entrance slit width
Photographic plate and
developer
Step sector
Internal standard
801 argon, 20) oxygen
at HI SCFH
National L-3903
under-cut
National SP-1009
20 mg
10 urn
SA-1
D-19
6 step, 2: I ratio
80) argon, 20) oxygen
at 10 SCFH
National L-3979
thin-wall crater
National L-1036
(ASTM C-1)
15 mg
10 urn
80) argon, 20) oxygen
at 10 SCFH
National L-4006
necked crater 3/16
inch diameter
National L-1036
(ASTM C-1)
10 ag
10 urn
Fe, variable Internal
standard
bxil slit width
50 urn
50 urn
-------
138
Direct-Reading Spectrometer Procedures
Time-intensity curves were run by the use of standards to
determine the proper exposure time for the desired spectral lines.
After the exposure time was determined, more standards were arced to
establish a calibration curve for each element desired and to apply
the proper electronic corrections to each element readout module. The
data received from the instrument were relative intensities,
standardized by using a spectral line resulting from variable, but
known, concentrations of iron. Usually, four electrodes were arced for
each sample.
The coordinates of each point used in an element calibration
curve were treated by least squares regressions to determine the
coefficients of the first or second degree equation that best
described the particular calibration curve. By the use of the relative
intensity data for unknown samples and the calibration curve
coefficients, the concentration of each desired element in the
electrode sample was calculated by the use of a computer program.
These results were calculated to the whole coal basis. The means,
standard deviations, and relative standard deviations calculated, and
the final results were printed out. The computer program has saved
approximately 30 percent of the time that was formerly taken to
complete the analysis and data treatment of coal-ash samples.
3.1* Meter Ebert Spectrograph Procedure
When using the photographic instrument, time-intensity studies
were again performed to attain the optimum exposure time for the
determination of 14 elements in the same sample mixture by the use of
one analysis program.
The same sample and standard mixtures were used for photographic
and for direct-reading spectroscopy. The percent transmittance values
of the analytical lines were determined by standard densitometry.
A computer program was written to speed the data handling for
this procedure. One portion of the program was used to determine the
relative intensity of a spectral line from its percentage of
transmittance and the corresponding spectral step. A herter-Driffield
(h-U) emulsion calibration plot was used for this procedure by
plotting the percentage of transmittance versus exposure step number.
An inverted logarithmic abscissa was overlain on the step number
abscissa and a relative intensity of 1.00 at 50 percent transmittance
was arbitrarily assigned. Because the H-D plot was sigmoid, and to our
knowledge there was no single equation that describes this type of
-------
139
curve well, a spline function routine was used for mathematical
fitting. Data points for the H-D plot were spaced every 2 percent of
transmittance. The curve fitting routine determined which interval to
use for the unknown percent of transmittance value, fitted a quadratic
equation to the interval from the calibration data, and calculated the
resulting relative intensity of the unknown spectral line. The
relative intensity was then handled in a manner similar to that used
for the direct-reader data. That is, the relative intensity of a given
unknown spectral line was operated upon by the coefficients of the
respective element calibration curve to determine the concentration in
the electrode mixture and then to determine the concentration in the
whole coal. Two electrodes per sample were arced in the photographic
method. The computer programming step saved about 50 percent of the
time for analysis of a sample for 14 elements.
Table F' lists the elements determined, the method used, the
detection limit, the concentration range, and the average relative
standard deviations for elements in whole coals in this study.
Special Refinement of Optical Emission Procedures
1. A new method for the determination of thallium was sought by
both direct-reading and photographic optical emission spectroscopy. A
photomultiplier was installed in the direct reader and aligned for the
Tl I 3775.72 A line. Standards were arced to determine a calibration
curve using the same procedures as described previously. The detection
limit found for these parameters was 33Mg/gm in ash. Thallium was
sought in several coal-ash samples but was not detected.
Standards were arced for photographic detection, and a
calibration curve was drawn for the T1 I 2768 line. The sample mixture
and arcing conditions were the same as described previously. The
detection limit was 33ug/gm in the ash, but the sensitivity was good.
Again, thallium was sought in several coal samples but was not
detected.
An optical emission (direct-reading) spectrometry procedure
for thallium determination in coal-ash was investigated and found
applicable. The high-temperature ash (HTA) of a coal was mixed 1:1 by
weight with a 20 percent sodium chloride - 80 percent graphite mixture
(sodium chloride catalog 1352 and SP-2-X grade graphite, Spex
Industries, Inc., Box 798, Metuchen, NJ 088UO) in polystyrene vials,
1/2 inch in diameter by 1 inch deep, containing 2 methacrylate balls,
1/ti inch in diameter. Then the vials were placed in a Wig-L-Bug and
agitated for one minute.
Next, 10 mg of the charge mixture was weighed and was loaded into
each of three necked crater electrodes (3/16 inch in diameter,
National type L-4006, Spex Industries, Inc.). The counter electrode
(1/b inch in diameter, National type L-4036, Spex Industries, Inc.)
and sample electrode were then placed in the arc stand of a
Jarrell-Ash Model 750 Atomcounter.
-------
14U
TABLE F—EXPERIMENTAL PARAMETERS AND RESULTS FOR OE-P AND OE-DR
Element
Ag
b
Be
Cd
Co
Cr
Cu
Ge
Mn
Mo
Ni
Pb
Sr
Tl
V
Zn
Zr
Wavelength
(A)
3280.7
2496.8
(2nd order)
2318.6
3131.07
2288.0
3«53.5
3153-5
1251.3
2813-25
3271.0
3271.0
2651.2
3039.1
2605.7
3U0.3
3170.3
3411.8
3111.8
1057.8
2833.1
1607.3
3775.7
3181.0
3185.1
2138.6
3315.0
3392.0
3392.0
Method
OE-P
OE-D
OE-D
OE-P
OE-D
OE-D
OE-P
OE-D
OE-P
OE-D
OE-P
OE-D
OE-P
OE-P
OE-D
OE-P
OE-D
OE-P
OE-D
OE-P
OE-D
OE-D
OE-D
OE-P
OE-D
OE-P
OE-D
OE-P
Concentration Range
Whole Coal (ug/gn)
0.01 -
5 -
0.1 -
0.15 -
<0.1 -
0.9 -
0.1 -
2 -
1.6 -
2 -
3.0 -
<0.1 -
<0.35 -
1.1 -
<0. 1 -
<0. 11 -
2 -
1.3 -
<1 -
1.0 -
11 -
. i -
5 -
3.8 -
-------
lUl
The sample was arced until it was visually apparent that the
alkali metal vapor phase of the arc had significantly decreased. While
the sample was arcing the "instantaneous" response signal from the T1
3775 photomultiplier tube was recorded on a strip chart recorder. The
resulting strip chart peak (approximately 3 to 8 seconds after arc
ignition) was measured and was compared to a calibration curve derived
from synthetic coal-ash standards (Tables C and D) where peak height
vs. concentration in microgram per gram was plotted on log-log paper.
2. A carrier distillation method for molybdenum was attempted by
the use of photographic detection. The coal-ash standards were mixed
into a matrix of Si02 containing 10 percent Ga2C>3 as a carrier. This
method was found to be unsatisfactory.
3. Photographic plates were sprayed with a solution of sodium
salicylate in absolute ethanol and were allowed to dry. It was hoped
that the sodium salicylate would increase the sensitivity of the SA-1
plates to the ultraviolet region by fluorescing under UV radiation.
Sodium salicylate fluoresces in the blue region, a very satisfactory
wavelength region for the SA-1 emulsion. However, when standards
containing 333 ppm to 3.3 ppm cadmium were arced, no spectral line
could be detected at CD I 2288A, even for the high concentration
standards.
ATOMIC ABSORPTION ANALYSIS
Flame Atomic Absorption Analytical Procedures
Atomic absorption (AA) methods were used for the determination of
Cd, Cu, Ni, Pb, and Zn in low-temperature ashed fractions of whole
coal, bench, and float-sink samples. The analytical procedures used in
this study were those reported by Ruch et al., (1974) with a few
modifications. The methods are summarized below.
Atomic absorption measurements were made using a Perkin- Elmer
Model 306 Atomic Absorption Spectrophotometer. Absorbance signals were
recorded on a strip chart recorder. An air-acetylene flame was used
with a 4 inch in length single-slot flat-head burner. Standard single
element hollow cathode lamps were used for all elements but
occasionally Cd and Pb electrodeless discharge lamps were used.
Corrections for non-atomic background absorption were made
simultaneously by use of a deuterium arc background corrector.
All reagents used were ACS certified reagent grade chemicals, and
standard stock solutions were prepared from high purity metals or
compounds. The calibration standards were prepared from diluted stock
solutions that contain the following matrix materials: 1$ V/V HQ% HF,
1.n$ V/V aqua regia (1:3:1; HN03-HCL-H20), and W> W/V H3B03.
-------
1*42
Approximately 0.1 g of low-temperature ashed sample, previously
dried at 110°C for several hours, was transferred to a 60 ml or 125 ml
linear polyethylene screw-cap bottle. The sample was wetted with 1 ml
of 1:1 distilled HC1 and was dried in a steam bath. The dried sample
was then wetted with 0.7 ml aqua regia and 0.5 ml of HP was added. The
bottle was capped tightly and was placed on a steam bath for
approximately two hours. After the bottle was removed from the steam
bath and was allowed to cool, 10 ml of a 50 g/1 HsBOa solution was
added. The dissolved sample was transferred to a 50 ml Pyrex
volumetric flask, was diluted to volume with deionized water, and was
returned to the bottle for storage.
The flame absorption analytical conditions are presented in Table
G. In the case of Zn, where solution concentrations were sometimes
large enough to cause a departure from linearity in a plot of
absorbance versus concentration, the burner was rotated from its usual
parallel orientation in order to decrease the sensitivity, and thereby
overcome the necessity for sample dilution. Final concentrations were
calculated by solving for concentration in a least squares constructed
calibration curve of absorbance versus concentration. A new
calibration curve was calculated for each set of analyses.
The relative standard deviation was estimated
percent or less for the determinations discussed.
to average 10
TABLE G—FLAME ATOMIC ABSORPTION PARAMETERS
Lamp Current Wave- Silt Burner Typical Solution Detection
or Power length (run) Position Sensitivity Concentration Limits In
(no) (ppm/O.OOtM Abs) Range (ppm) Ash (ppo)
Cd HCL 6ma
Cd EDL 5w
Cu HCL lOoa
Nl HCL iBma
Pb HCL lOma
Pb EDL 11V
Zn HCL 15ma
Zn HCL 15ma
228.8
228.8
324.7
232.0
283.3
217.0
213.9
213.9
0.7 parallel
0.7 parallel
0.7 parallel
0.2 parallel
0.7 parallel
0.7 parallel
0.7 parallel
0.7 up to 30
from
parallel
0.023 0.003 to 1.8 1.5
0.015 0.002 to 1.2 1
0.07
0.1
0.5
0.16
0. 11
0.005 to 4
0.007 to 3.5
0.03 to 20
0.02 to 6.5
0.001 to 0.8
2.5
3.5
15
10
2
0.2
0.8.to 10
-------
Graphite Furnace Procedures
Because low-temperature ash samples often have concentrations of
cadmium, which were undetectable by flame atomic absorption, and
because of the need for analytical methods for the determination of
tellurium and thallium, the use of flameless atomic absorption
spectrometry was investigated. The major advantage offered by
flameless atomization schemes such as the graphite tube atomizer was
that the sensitivities and detection limits are often 100 to 1000
times better than with flame atomization for most metals. This was
due, to a large extent, to the greatly Increased residence time of the
atomic vapor in the optical path and also to the total sample being
available for absorption. The major disadvantages in this method were
that it was more subject to severe interferences and that it was much
more time consuming than flame methods.
The flameless atomizer used in this Investigation was a
Perkin-Elmer HGA-2000 Graphite Furnace used in conjunction with a
Perkin-Elmer Model 306 Atomic Absorption Spectrophotometer. Absorbance
signals were recorded on a strip chart recorder. Corrections for broad
band absorption were made with a deuterium arc background corrector.
Electrodeless discharge lamps were used for tellurium and thallium
determinations, and a hollow cathode lamp was used for cadmium.
Low temperature ash samples were prepared in exactly the same
manner as the flame atomic absorption procedures. These methods
appeared to be quite adequate for the determination of cadmium and
tellurium, but severe matrix interferences were found to be present
for thallium, as will be discussed later. To compensate for any matrix
interferences that might occur in the determinations, the method of
standard additions was used for all three elements. The standard
additions were made directly into the furnace following the addition
of the sample solution. The analytical conditions developed for this
study are summarized in Table H.
The determination of cadmium by the use of the graphite furnace
is relatively straightforward with only minor matrix interferences.
Good absorbance signals were obtained over a range of atomization
temperatures from 1800°C to 2300°c with maximum absorbance between
2000°C and 2100°C. Broad band absorption was relatively small (0.075
absorbance units) even at charring temperatures as low as 150°C, and
the maximum charring temperature, without Cd atomization, was 900°C.
An examination of Table 1 shows that the accuracy for Cd determination
by this method was high, and the agreement with other published values
for NBS Standard Ueference Material 1632 was Rood. The relative
standard deviation was approximately 5 percent.
The determination of tellurium with the graphite furnace was also
relatively straightforward, although there were sone interferences.
-------
ikk
TABLE H—HGA-2000 ANALYTICAL
CONDITIONS
Element
Source
Current or Power
Wavelength (no)
Slit (no)
Purge gas/flow (1/mln)
Drying time (sec)
0
Drying temperature ( C)
Charring tine (sea)
o
Charring temperature ( C)
Atomlzatlon time (sea)
o
Atomlzatlon temperature ( C)
Background correction
Typical sensitivity
(pg/.OOHU Abs)
Typical detection limit (ppn)
(ash, 20 ul sample)
Cd
HCL
8nA
228.6
0.7
Ar/1.2
30
150
20
300
8
2000
D
2
2.5
0.05
Te
EDL
7.2w
21M.3
0.2
Ar/1.2(lnterrupt)
30
150
20
too
8
2500
D
2
21
1.0
Tl
EDL
5.Bw
276.8
0.7
Ar/1.2
30
150
20
300
8
2300
0
2
260
5.0
TABLE I—COMPARISON OF RESULTS FOR Cd,
Te, AND Tl IN NBS SRM 1632
SOURCE
Cd
Te
Tl
NBS 0.19±0.03
Klein, et al. (1975) 0.31
Chattopadhyay (1971) 0.20i.0.02
I'll is sliuly 0.21^0.01
1.02
0.5
0.59^0.03
0.51*0.06
( ) Informational valuo
-------
The beat absorbance signals were obtained at atomization temperatures
above 2400°C. Broad-band absorption was also relatively small, even at
temperatures as low as 150°C, and the maximum charring temperature
before any loss of Te was approximately 900°C. It was observed that
the sample matrix, including the reagents used, in the dissolution,
impart an enhancement of nearly 40 per cent in the peak-height
absorbance and is accompanied by a narrowing of the absorbance peak
relative to the same concentration of Te in a one per cent HNOa
matrix. It was not determined whether the areas under the two peaks
were equivalent.
Tellurium was approximately one tenth as sensitive as Cd. In the
samples analyzed in this study, it was often difficult to reliably
differentiate the absorbance peak from the baseline. At these low Te
levels, the precision was poor.
Thallium was subject to very severe matrix interferences that, if
left unimproved, rendered thallium nearly undetectable in the sample.
In an examination of the contributions of reagents to these
interferences, it was found that the HC1 in the aqua regia was one of
the major contributors. Tl in a one percent HC1 matrix has an
absorbance of only two per cent of that found in a one percent HNC>3
matrix. The absorbance was improved to only 30 per cent for a 0.0001
per cent HC1 matrix. Such interference by HC1 for Tl has been observed
by Welcher et al. (197^), and Fuller (1976). The present study showed
that matrices containing one per cent HsBOa and one per cent HF reduce
Tl absorbance by nearly 50 per cent.
In attempting to overcome HC1 interference, Fuller (1976)
suggested the addition of one per cent (v/v) h^SOit as a means of
improving sensitivity and observed that HaSOi, was more effective than
HNOa for samples with very simple matrices. For the low-temperature
ash matrix used in this study, the reverse was observed; concentrated
HNO-j was found to be the most effective in removing the interference.
It was also observed in this study that the simple addition of HN03 to
the sample was not as effective as drying the sample first in the
graphite tube, and then adding the HNOs. Such a procedure resulted in
a thallium absorbance for the sample-reagent matrix that was about 50
per cent of that observed in the HN03 matrix alone.
The cause of this chloride interference has been suggested by
Fuller to be due to the possible formation of a volatile chloride when
using HC1, leading to a loss of thallium before atomization. It was
observed in the present study that if thallium was volatilized, then
no greater than 50 percent of it was lost during a drying stage at
150°C for 30 sec, as is shown by the effectiveness of the HNO.i
addition after the samples were dried. Continuous monitoring of
thallium atomization losses during drying and charring stages has thus
far shown no loss. It woul-1 appear that the chloride interference
mechanism was more complex than that suggested by Fuller. These
interferences were not investigated thoroughly, but further work i3
continuing.
-------
11*6
X-RAY FLUORESCENCE ANALYSIS OF WHOLE COAL
X-ray fluorescence determinations were made on whole coal for As,
Br, Pb, Zn, Cu, Ni, P,»C1, S, V, Mg, Ca, Fe, Ti, Al, and Si. A Philips
vacuum spectrometer equipped with a Mark I solid-state electronics
panel was used for all analyses.
A 3KW chromium X-ray tube was used and the procedures were as
described by Ruch et al. (1973, 1971). Further discussion of the
methods was presented by Kuhn et al. (1975). The only change in the
procedure has been the use of a new diffracting crystal with better
sensitivity for the elements determined. A T1AP crystal replaced the
EDDT crystal for the determination of elements in the periodic table
from Na through Si.
Whole coal was used for the preparation of samples for analysis
and all results are given on the dry whole coal basis.
As detailed in the previous report, the observed relative
standard deviations for elements determined by this technique ranged
from 0.35 to 8.U percent.
SUMMARY OF METHODS
Tables J and K summarize those analytical methods the results of
which were finally incorporated into the final values for elemental
composition of whole coal, bench samples, and float-sink samples. In
general, the same techniques were applied to whole coal and bench
samples. However, the varying matrix of the float-sink samples
required different analytical procedures in some cases.
When an element was determined by two or more methods, all the
results were not necessarily used to calculate the "most probable"
concentration. It was suspected that results for some elements by a
particular method might be biased because of interferences. For
example, it was known that in XRF, matrix effects inhibit the accurate
determination of some trace elements, and in INAA the determination of
some elements is susceptible to interference caused by the fact that
the measured isotope is also produced by a nuclear reaction involving
a second element.
ELEMENTS DETERMINED BY TWO OR MORE ANALYTICAL METHODS
The following comments summarize observations and decisions where
an element was determined by two or more methods.
-------
TABLE J—ANALYTICAL PROCURES USED
TO DITZP-XINE TRACE ELEMENT VALUES
IN WHOLZ COAL ALT) EENC>: SAMPLES
TABLE K—ANALYTICAL PROCEDURES USED TO DETERMINE
TRACE ELEMENT VALUES IN FLOAT-SINK SAMPLES
Element
RS, Cs, Ea, Ga, In, As,
Sb. Se, I, So. Hf, Ta,
W, La, Ce, So, EL, It,
Dy, Lu, Th, U. n>, Uu;
Na, K, cr, Fe
Cl
Mg, Ca, #1, Si, P, Tl
Be, C«, Zr
Cr, Co, *)
Ag, Sn
M, Zn
Hg
B
Pb
Sr
F
V
Cu
Mn
Cd
Procedure
IN'AA
INAA, XRF
INAA, XRF, ASTM
XRF
OE-P, OE-DR
OE-P, OE-DR, INAA
OE-P
OE-P, OE-DR, AA, XRF
NAA(Rc)
OE-DR
OE-P, AA
OE-DR, INAA
ISE
OE-P, OE-DR, XRF
OE-P, OE-DR, AA
OE-P, INAA
AA, OE-DR
Element.
Na, RS, Cs, Ba, Ga, Aa,
Sb, Se, Sc, Hf, Ta, La,
Ce, So, Eu, Tb, Dy, Lu
Th, U, *b
K, br
Fe, He, la, Al, Si, P,
Ti, Ci
be, Zr
Ag, Sn
Cr, Co
Cu, Ni
«e,
B
Pb
Sr
V
Zn
Mn
Cd
Procedure
INAA
INAA, XRF
XRF
OE-P, OE-DR
OE-P
OE-P, OE-DR, INAA
OE-P, OE-DR, AA
NAA(Rc)
OE-DR
OE-P, AA
OE-DR, INAA
OE-P, OE-DR, XRF
AA, OE-P, OE-DR, XRF
OE-P, INAA
AA, OE-DR
cr
-1
-------
1U8
Beryllium- OE-P and OE-DR data were in good agreement and were
averaged.
Bromine - Average of INAA and XRF data. Agreement between the
methods was good for moderate to high values. For the low values INAA
data were preferentially used because the technique had better
sensitivity.
Cadmium - Average of AA and OE-DR data. Where there was a choice
of lower limits or a choice between lower limits and a real value, the
AA value was usually chosen. In general, the agreement was good
between the two techniques. The recently developed OE-DR procedure
proved to be very effective.
Chlorine - Average of INAA, XRF, and ASTM data. In general, the
XRF values were slightly higher and the INAA values were slightly
lower than the ASTM data. Only XRF data were used for float-sink
samples.
Chromium - Average of INAA, OE-DR, and OE-P data. Agreement among
the three methods was good. In a few instances, INAA appeared to have
a high bias.
Cobalt - INAA, OE-P, and OE-DR data were in excellent agreement.
Results by these methods were averaged.
Copper - Average of AA, OE-P, and OE-DR data. In general, the
agreement was good. The XRF data were excluded because of a
consistently high bias.
Germanium - Average of OE-P and OE-DR data. In those cases where
an uncertainty arose, the Ofcl-DR results were usually chosen.
Iron - Average of INAA and XRF data. The agreement was only fair
between the two methods. The INAA data tended to have a high bias in a
number of samples. Only the XHF data were used for the float-sink
samples.
Lead - Average of OE-P and AA data. In those cases where a choice
of limits existed, the AA results were usually chosen. In general, the
two sets of data were in good agreement. Since LTA (150°C) was used
for AA, and since HTA (500°C) was used for OE-P, this confirms
previous findings that Pb appears to be quantitatively retained in the
high-temperature ash sample.
Manganese - Average of INAA and OE-P data with good agreement.
Samples C-18820 through C-19000 are based on OE-P results only.
-------
Molybdenum - Average of INAA, OE-P, and OE-DR data. The INAA data
occasionally tended to have a high bias at the lower values. The
agreement among the three techniques was only fair. The XRF data were
not used since they were neither consistent nor comparable.
Nickel - Average of AA, OE-P, OE-DR, and XRF data. The agreement
was generally good among the four techniques with XRF results
occasionally being excluded for having a high bias.
Potassium - Average of INAA and XHF data. Agreement was good for
the two techniques. Only the INAA data were used for clay- and
rock-type samples in the bench sets.
Sodium - Average of INAA and XRF data. Agreement was very good at
moderate to high concentrations. At the lower concentrations INAA data
were chosen because of greater sensitivity. Only the INAA data were
used for float-sink samples.
Strontium - Average of OE-DR and INAA data. The methods agreed
well in the low to intermediate concentrations; at higher
concentrations, the INAA results were usually used.
Vanadium - Average of XRF, OE-DR, and OE-P data with only fair
agreement. Some INAA results were obtained on several samples for
confirmation.
Zinc - Average of AA, OE-P, OE-DR, and XRF data. The agreement
among the four techniques was only fair owing to inhomogeneity of the
samples for Zn. INAA results were not considered because of resolution
problems.
Zirconium - Average of OE-P and OE-DR data with good agreement.
-------
150
REFERENCES
Chattopadhyay, A., and Jervis, R. E., 1971*, Multielement determination
in market-garden soils by instrumental photon activation anal-
ysis: Analytical Chemistry, v. 1*6, no. 12, p. 1630-1639.
Fuller, C. W., 1976, The effect of acids on the determination of thal-
lium by atomic absorption spectrometry with a graphite furnace:
Analytica Chimica Acta, v. 8l, p. 199-202.
Klein, D. H., A. W. Andren, J. A. Carter, J. F. Emery, C. Feldman,
W. Fulkerson, W. S. Lyon, J. C. Osle, Y. Talmi, R. I. Van Hook,
and N. Bolton, 1975> Pathways of thirty-seven trace elements
through a coal-fired power plant: Environmental Science and
Technology, v. 6, no. 10, p. 973-979-
Welcher, G. G., 0. H. Kriese, and J. Y. Marks, 197^, Direct determina-
tion of trace quantities of lead, bismuth, selenium, tellurium,
and thallium in high temperature alloys by non-flame atomic ab-
sorption spectrometry: Analytical Chemistry, v. U6, no. 9,
p. 1227-1231.
(Additional references are listed on pages .123 to 126.)
-------
5NDEX
AA 127, lUl
Accuracy 128
Acknowledgment x
Adsorbed cations 113, 122
Ag 82, 121
Al 39. UO, 71, 119, 120
Alumino-silicate mineral UO
Analytical methods k, 127
AA ll»l
AA-G 1U3
INAA 128
NAA-RC 13U, 135
XHF 128, 1U6
XRF, energy-dispersive 128
XRF, ISE 128
Apatite 82
Arithmetic mean 38, 39, 69, 119
As 39, UO, 69, 71, 82, 103,
113, 118, 120, 122, 128
ASTM 128
fl ... 39, UO, 69, 82, 107, 113, 118, 120, 122
Ba 39, UO, 82, 119, 121
Barite 39, UO
Be 39, UO, 71, 107, 113, 121
Bench samples -2, 72, 120, 121
Blue band 82
Blue Creek coal 88, 103, 110
Br UO, 81, 82, 103, 110, 113, 122, 128
Ca UO. Ul, 71,
Culcite , .
Carbonate . . .
Cd 39, UO, 82, 113, 116, 120,
Ce
Chalcophilc elements 39, UO,
Chclated species 108,
Cl Ul, 69.
Clarke . 69,
Clay minerals 103,
Co UO, Ug, 82, 86, 113, 119, 120, 122,
Coal forming process .
Colchcater Coal Member
Composite sample
Contract number ..
Correlation Uo,
Cr 71, 82, 103, 113,
Cu 71, 82,
Cu 82, 107, HO, 113,
Cumulative curve
62, 120
Ul, 82
. . 118
122, 127
71, 82
71, 120
113, 122
70, 120
71, 120
118, 119
125, 127
69, 81
. . 86
... 7
... x
Ul,' 120
120. 122
118, 121
121, 128
103
Uuvlii coal Member 88, 110
DoKoven Coal Member 88
Depleted elements . 69, 71, 120
Uttritttl minerals 120
Drill core aanple ...7
Eastern coals ..... 39, 69, 70, 71, 88, 10U,
110, 113, 118, 119. 120, 121
Enrichsd elements ....... 69, 70, 71. 120
EPA ................. 2, 5, 127
Eu .................... 71
F ............ 39. UO. 82, 120, 121
Face channel sample ........... 7, 82
Fe ......... 39, UO, 71. 113, 116, 122
Float-sink . . . . . ....... 2, 103, 121
Ga ......... 39, 71, 82, 107, 121, 128
Oe . UO, 81, 82, 103, 107, 108, 113, 121, 122
Geometric mean ...... ...... 38, 120
Grant number ................ x
Gravity fraction .... .......... 2
Ground vater ........ ..... Ul, 70
Halite .................. 70
Herrin Coal Meatier ..... 72, 88, 10U, 113
Hf ............. 71, 82, 120, 121
Hg .................... 13U
J .............. .. . . 39, UO, 119
IBM 360 .................. 128
Illinois Basin coals . 39. UO. Ul, 69, 70, 71,
81, 88, 110, 113, 118, 119, 120
Illite .................. 119
IHAA ................ 127, 128
Inorganic affinity ......... 107, 108
Inorganic element* 1, 113, 116, 119, 121, 122
Instrumentation
I8AA ............ 127, 128, 13U
HAA-RC ........... 127, 13U, 135
XRF ................. 128
Interferences, HAA-RC ........... 13U
Intermediate-Inorganic elements . . . 113, 121
Intermediate-organic element* .... 113, 121
Ion-selective electrode (ISE) .... 127, 128
K ...... . . 39, UO, 71, 82, 119, 120, 121
La ................ 71, 82, 121
Lanthanide ................ 116
Less-than value ........ ...... 38
Limits of detection ..... » . 110, 128, 135
Lithophile elements .......... Uo, 120
LOT- temperature uh (LTA) ..... 1, 10U, 112
Lu .................. 71, 120
MarcMlte ................. 71
Nf ........... 39, 71. 82, 120. 121
Mineral Batter . 1, 39. 81, 88, 103, 10U. 107,
109, 110. 119, 121
Mineral* ........ 39, UO, 82, 88. 120
Mn . UO, Ul, 82, 107, 113, 118, 120, 121, 122
-------
152
IHDEX (continued)
Mo 81. 107. 113. 121. 122
Ha bO. bl, 71, 82, 120. 121
HAA-RC 127
Neutron activation analyse* 127, 128, 13)1, 13$
Hi .... 39. bo, 71. 107. 108. 113, 120. 128
Ho. 2 Coal 88
Ho. 6 Coal 72, 88, lOb, 113
Normalised area 109
OK-DR 127, 338, 139
OE-P 127, 138, 139
Optical emission analyse* 127
Organic affinity 103, 107. 108, 109, 110, 112,
113, 118. 121, 122
Organic elements 113, 118, 121
Organic sulfur lOb, 112
Organometallic compounds . . 107, 108, 113, 122
P 1*0, 71. 82, 107, 120
Paleosalinlty 69, 70, 120
Partings 72. 82, 121
Pb 39, bO, 119, 120
Peat 70, 120
Pittsburgh No. 8 coal 88, 103
Pocahonta* No. b coal 88, lOb
Precision 128
Proximate analyses 1)
Pjrite 39, 71, 82
Pyritic sulfur 10U, 112
Range 39, 82, 119, 120
Rare earths 39. bl, 81, 82, 118, 121
Rb 71
Roof shales 82, 121
Run of mice samples 7
S 140, 82, lOll, 112
Salinity Ill, 70, 120
Sample preparation 7, 128
Sample size 7, 39
Sampling 7
Sb . . . . 39. 1*0, 81, 113. 119, 120, 121, 128
Sc 71, 82. 120. 121
8« . . 39, 69, 70, 82, 113, 120, 121, 122, 128
Seat rook Y2
81 39, to, 71, 82, 119, 120, 121
Sillcat* minerals 39, 120
8a 71, 82, 121
8n 108
8p«olflo gravity separation ... 88, 107, 119
Sphalerite 39. bo. 82
Splitting of sample 7
8r bo, 71. 62, 120, 121
Standard deviation . 39, 119
Standards 127, 128
Sulfate minerals 119, 120
Sulfate sulfur . . . lOb, 112
Bulflde minerals . . bo. 71, 103, 113. 119. 120
Syngenetic minerals ..... 120
Ta 71, 120
Total sulfur 112
Te 127," 13b, 135
•m 82, 121
Tl 39. to, 71, 108, 119, 120
Tl 120, 127, 135
TRIOA HKII reactor 128
U 81, 118, 121
U •> B • Ar A • ••••••••••••••••• X
Ultimate analyses b
Undsrclays 72, 82. 121
V . 39, 81, 82, 107, 108, 121
Washablllty ourrw .... 103, lOb, 107, 108,
109, 110, 121
Washed coals 5, 7, 71, 88, 110. 121
HMtern coal* 39, bo, 69, 70, 71, 113, 118, 121
X-ray fluorescence analysis (ZRF) 127, 128, lb6
Yb 71, 82. 121
Zn . . . . 39, bO, 71, 82, 108, 109, 110. 113,
118, 119, 120, 122
Zr : . . . . 82, 121
------- |