&EPA
          United States      Industrial Environmental Research  EPA-600/7-78-152
          Environmental Protection  Laboratory          July 1978
          Agency        Research Triangle Park NC 27711
Optimization
of Design
Specifications for
Large Dry Cooling
Systems

Interagency
Energy/Environment
R&D Program Report

-------
                  RESEARCH REPORTING SERIES


 Research reports of the Office of Research and Development, U.S. Environmental
 Protection Agency, have been grouped into nine series. These nine broad cate-
 gories were established to facilitate further development and application of en-
 vironmental  technology Elimination of traditional grouping was consciously
 planned to foster technology transfer and a maximum interface in related fields.
 The nine series are:

    1. Environmental Health Effects Research

    2. Environmental Protection Technology

    3. Ecological Research

    4. Environmental Monitoring

    5. Socioeconomic Environmental Studies

    6. Scientific and Technical Assessment Reports (STAR)

    7. Interagency  Energy-Environment Research and Development

    8. "Special" Reports

    9. Miscellaneous Reports

This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT
RESEARCH  AND DEVELOPMENT series. Reports in this series result from the
effort  funded under the 17-agency  Federal Energy/Environment Research and
Development Program. These studies relate to EPA's mission to protect the public
health and welfare from adverse effects of pollutants associated with energy sys-
tems.  The goal of the Program is to assure the rapid development of domestic
energy supplies in an environmentally-compatible manner by providing the nec-
essary environmental data and control technology. Investigations include analy-
ses of the transport of energy-related pollutants and their health and ecological
effects; assessments  of, and development of, control technologies  for energy
systems;  and integrated assessments of a wide'range of  energy-related environ-
mental issues.
                        EPA REVIEW NOTICE
This report has been reviewed by the participating Federal Agencies, and approved
for  publication. Approval does not signify that the contents necessarily reflect
the  views and policies of the Government, nor does mention of trade names or
commercial products  constitute endorsement or recommendation  for use.

This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.

-------
                                          EPA-600/7-78-152
                                                    July 1978
Optimization  of Design  Specifications
     for Large  Dry Cooling  Systems
                             by

            Tzvi Rozenman, James M. Fake, and Joseph M. Pundyk

                    PFR Engineering Systems, Inc.
                    4676 Admiralty Way, Suite 832
                   Marina del Rey, California 90291
                      Contract No. 68-03-2215
                    Program Element No. EHE624A
                  EPA Project Officer: Theodore G. Brna

               Industrial Environmental Research Laboratory
                 Office of Energy, Minerals, and Industry
                   Research Triangle Park, NC 27711
                          Prepared for

               U.S. ENVIRONMENTAL PROTECTION AGENCY
                  Office of Research and Development
                      Washington, DC 20460

-------
                            ABSTRACT

     This report describes the methodology and the results of a study
to optimize the design specifications of dry cooling systems for fossil
power plants of the 1000 MWe size.   The entire cooling system from the
turbine flange outward, i.e., condenser, dry tower modules and recircu-
lating system, is designed employing a random combination of design
variables.  The optimization consists of a search for the combination
of design variables which will result in the lowest incremental cost
of generating electricity in the plant.  For each combination of var-
iables, the total annual capital and operating costs are determined.
The capital cost is evaluated in detail taking into account all stages
from procurement to complete erection and installation.   The operating
cost includes the equivalent capital and energy cost for auxiliaries,
penalties associated with loss of capacity at high air ambient temper-
atures, and various aspects of cooling system operating and maintenance
costs.  The cost base used is January 1976.

     The search for the optimum combination of variables employs a multi-
component, non-linear, constrained optimization technique.  Rigorous heat
transfer equations were used to evaluate the performance of the condenser
and the dry cooling modules at different site ambient temperatures.

     All the thermal and mechanical design variables of the components
of the cooling system were analyzed.  These include design.ambient air
temperature, condenser TTD (terminal temperature difference), cooling
range, and ITD (initial temperature difference).  An important part of
the study consists of analyzing the effect of the dry tower module de-
sign specification on the annual cost of the cooling system.  The tower
module design was not fixed but varied in the optimization procedure.
The module variables were tube length, number of rows, pass arrangement
and fan motor power.  The tube employed for the tower was the overlapped,
wound finned-tube of 1 in. in base diameter having 10 fins/in.

     The analysis was carried out for conceptual power plants located in
5 different sites in the continental U.S.  Two turbine types, combined
with either surface condenser or jet condenser,  were studied.  Economic
factors such as fuel costs, capacity factors, and energy and capacity
charges were used as parameters in the evaluation.

     The results of the study are presented in this report in both
graphical and tabular form.  The results indicate that the cost of
dry cooling systems is affected by all the design variables and that
simplified assumptions may lead to erroneous conclusions.
                                11

-------
                            CONTENTS
Abstract                                                       ii
Figures                                                        vi
Tables                                                       viii
Acknowledgment                                                  x
1.  Introduction                                                1
2.  Summary                                                     4
3.  Conclusions                                                 5
4.  Interaction and Rating of Plant Components                  6
    4.1  System Thermal Interaction                             6
    4.2  Turbine Selection                                     10
    4.3  Condenser Selection                                   11
         4.3.1  Jet Condenser                                  11
         4.3.2  Surface Condenser                              12
    4.4  Mechanical Draft Dry Tower                            13
         4.4.1  Tube Length                                    13
         4.4.2  Number of Rows                                 15
         4.4.3  Number of Tube Passes                          15
         4.4.4  Fan Power                                      17
         4.4.5  Dry Tower Design and Rating                    17
         4.4.6  Combined System Performance                    19
    4.5  Dry Tower Piping System                               20
         4.5.1  Distribution System                            20
    4.6  Piping Pressure Drop                                  21
         4.6.1  Surface Condenser Pumping Head                 21
                                m

-------
                       CONTENTS (cont'd.)

         4.6.2  Direct Contact Condenser Pumping Head          21
    4.7  Dry Cooling Tower Structure                           26
5.   Economic Model and Optimization                            27
    5.1  General Approach                                      27
    5.2  Cost Analysis                                         29
         5.2.1  Cooling System Capital Cost                    30
         5.2.2  Cooling System Penalties and Operating Costs   31
    5.3  Optimization Methodology                              33
6.   Results and Discussion                                     48
    6.1  Computer Output                                       48
    6.2  Effect of Site on Cost of Dry Cooling                 53
    6.3  Effect of Turbine Type                                53
    6.4  Effect of Condenser Type                              54
    6.5  Effect of Economic Factors                            56
    6.6  Effect of Tube Configuration                          56
    6.7  Effect of Tube Length                                 57
    6.8  Effect of Summer Hours                                58
    6.9  Effect of ITD                                         60
    6.10 Effect of Range                                       60
References                                                     87
Appendices
    A.   Curves showing the heat rate and heat rejected vs.
         back pressure for the turbines used in this study    A-l
    B.   Description of the multicomponent optimization
         technique used in this study                         B-l

-------
                  CONTENTS (cont'd.)

C.   Flow chart of the dry tower optimization program      C-l
D.   Ambient temperature profiles for the sites studied
     in this work                                          D-l
E.   Sample computer output for an optimal  system          E-l
F.   Table of SI conversions                               F-l
G.   Heat transfer and pressure drop calculations          G-l
H.   Program input                                         H-l
I.   Program listing                                       1-1

-------
                             FIGURES
Number                                                        Page
4.1       Schematic diagram of a dry cooling system              7
4.2       The relations hop between temperatures in the
          cooling system components                              9
4.3       Surface condenser design procedure                    14
4.4       Four-row, round fin staggered module arrangement      16
4.5       Four-row, two-pass heat exchanger arrangement         16
4.6       Water distribution system                             22
4.7       Schematic of return piping type 1 and supply piping
          type 3                                                23
4.8       Schematic of return piping type 2 and supply piping
          type 4                                                23
4.9       Schematic of return piping type 3 and supply piping
          type 1                                                24
4.10      Schematic of return piping type 4 and supply piping
          type 2                                                24
5.1       Fan control curve                                     34
5.2       Total annual cost for a nominal 1000 MWe fossil -
          fueled plant at Casper, WY                            37
5.3       Total annual cost for a nominal 1000 MWe fossil-
          fueled plant at Atlanta, GA                           33
5.4       Total annual cost for a nominal 1000 MWe fossil-
          fueled plant at Phoenix, AZ                           39
5.5       Total annual cost for a nominal 1000 MWe fossil -
          fueled plant at Phoenix, with ITD fixed at 60°F       40
5.6       Total annual cost for a nominal 1000 MWe fossil-
          fueled plant at Phoenix, with ITD fixed at 30°F       41
5.7       Cost for a nominal 1000 MWe fossil-fuel plant at
          Phoenix, at $100/KWe: 6-row, 2-pass tube config-
          uration                                               43

-------
                        FIGURES (cont'd.)
Number                                                        Page
5.3       Cost for a nominal 1000 MWe fossil-fuel plant at
          Phoenix, at $500/KWe: 6-row, 2~pass tube config-
          uration                                              44
5.9       Cost for a nominal 1000 MWe fossil-fuel plant at
          Phoenix, at $100/KWe: 4-row, 2-pass tube config-
          uration                                              45
5.10      Cost for a nominal 1000 MWe fossil-fueled plant
          at Phoenix, for varying tube length and ITD          46
5.11      Cost for a nominal 1000 MWe fossil-fueled plant
          at Phoenix, for varying tube length and fixed ITD    47
6.1       Total annual cost for various fuel cost and tur-
          bine type - Casper                                   55
6.2       Total annual cost for various ITDs - Phoenix         61
6.3       Total annual cost for various ITDs - Casper          62
6.4       Total annual cost for various ranges - Phoenix       63
6.4       Total annual cost for various ranges - Casper        64

A.I       Gross plant heat rate with a conventional turbine
          in fossil fuel units                                 A-2
A.2       Gross plant heat rate with a modified conventional
          turbine in fossil fuel units                         A-3
A.3       Gross plant heat rate with a high back pressure
          turbine in fossil fuel units                         A-4
A.4       Net heat rejected for modified conventional tur-
          bines in fossil fuel units                           A-5
A.5       Net heat rejected for high back pressure turbines
          in fossil fuel units                                 A-6
C.I       Flow chart of cooling system optimization            C-2
D.I       Temperature duration curves for Casper and Phoenix   D-2
D.2       Temperature duration curves for Atlanta, Burling-
          ton, and Bismarck                                    D-3
                                VI 1

-------
                             TABLES
Number                                                         Page
4-1       Representative cooling system head losses            25
6-1       Cost summary of mechanical draft dry cooling
          tower system                                         49
6-2       Tower parameter summary                              50
6-3       Cost factor breakdown in millions of dollars         52
6-4       Effect of site on total annual cost                  66
6-5       Effect of turbine type - Casper and Phoenix          67
6-6       Effect of turbine type - Casper                      68
6-7       Effect of condenser type - Casper                    69
6-8       Effect of fixed charge rate, capacity penalty,
          and energy penalty for fuel cost of $.75/MMBTU       70
6-9       Effect of fixed charge rate, capacity penalty,
          and energy penalty for fuel cost of $1.50/MMBTU      71
6-10      Effect of tube configuration - Casper                72
6-11      Effect of tube configuration - Phoenix               73
6-12      Effect of tube configuration - comparison at
          Casper and Phoenix                                   74
6-13      Effect of tube length - Casper                       75
6-14      Effect of tube length - Phoenix with modified
          conventional turbine                                 76
6-15      Effect of tube length - Phoenix with high back
          pressure turbine                                     77
6-16      Effect of changing number of summer hours not
          exceeded - Casper                                    73
6-17      Effect of changing number of summer hours not
          exceeded - Phoenix with modified conventional
          turbine                                              79
                                vm

-------
                        TABLES (cont'd.)

Number                                                         Page

6-18      Effect of changing number of summer hours not
          exceeded - Phoenix with high back pressure turbine   80

6-19      Effect of ITDs of 30-45°F - Casper                   81

6-20      Effect of ITDs of 50-70°F - Casper                   82

6-21      Effect of ITDs of 30-40°F - Phoenix                  83

6-22      Effect of ITDs of 45-60°F - Phoenix                  84

6-23      Effect of range - Phoenix                            85

6-24      Effect of range - Casper                             86
E-l       Input for 1000 MWe modified conventional  steam
          turbine                                              E-2

E-2       Sample computer output of surface condenser
          design                                               E-3

E-3       Sample computer output of dry tower tube  bundle
          design                                               E-4

E-4       Sample computer output of dry tower piping cost
          summary                                              E-5

E-5       Sample computer output of optimum dry tower
          design                                               E-6

E-6       Computer output of summary of final dry tower
          designs for a sample case                            E-7

F-l       SI conversions for terms in British units            F-2
                                IX

-------
                         ACKNOWLEDGMENT

PFR Engineering Systems,  Inc.,  wishes  to acknowledge the contributions
and assistance of Mr.  James  P.  Chasse, formerly of the USEPA Thermal
Pollution Branch, Corvallis, OR,  and Dr. Theodore G, Brna of USEPA1s
Industrial Environmental  Research Laboratory at Research Triangle Park,
NC, to the development and completion  of this report.

-------
                            SECTION 1

                          INTRODUCTION
     The restrictions on the use of water resources for power plant
cooling in the United States have generated wide interest in dry cooling
towers.  This has served as an impetus, both in government agencies and
private industry, for the development of performance and economic data
on these systems.  The unique features and the economic characteristics
of dry towers have been well documented in the literature (1-5).

     The major operating characteristic of dry cooling systems is their
sensitivity to the fluctuation of the ambient temperatures.   This sen-
sitivity creates special problems of loss in generating capacity at high
ambient temperatures and freezing hazards at low temperatures.  The out-
standing economic feature is their high capital cost - an order of mag-
nitude higher than evaporative towers.  In addition, dry towers possess
unique maintenance and logistic problems which arise from their overall
size and multiplicity of units; i.e., modules, fans, piping, structural
elements, etc.

     Dry towers also introduced a new degree of complexity into the
methodology of cooling system optimization.  The high price  of both the
capital investment and the penalties due to loss of generating capacity
requires careful consideration of all the interactions among the design
variables.  The a priori selection of some variables, such as design
air temperature or fan size, might restrict the optimal solution and
lead to a costlier design.  An optimal design is defined as  the right
combination of system operating and design variables which will result
in the lowest cost of producing electricity.  This combination may in-
clude subsystems, such as finned tube modules or piping, that may not
be optimal according to some limited thermodynamic criteria  but one
which will evolve in the design producing the final lowest unit energy
cost.  This can be recognized from the fact that dry towers  include
large numbers of modules requiring a large space.  Considerations of
structure, piping, distribution system, maintenance, manufacturing and
erection techniques will produce cost factors which can be evaluated
only in the context of the overall capital and operating costs.

     The "heart"of the dry tower system is the set of modules of finned
tubes supported by a suitable structure with large diameter axial fans
inducing air flow across the tubes.  Finned tubes come in different
shapes, forms and sizes, differing also in their metallurgy and manufac-
turing methods (6).  These differences produce unique heat transfer and
flow resistance characteristics.  Modules are constructed by assembly
of the tubes into a supporting structure with proper manifolding and
headers for the inlet and outlet piping connection.  The manufacturing
and assembly techniques and the thermal and flow characteristics of the

-------
module have a dominant role in the total cost of the cooling system,
and are therefore appropriately mentioned in the introductory comments.
Most existing commercial dry towers have finned tubes which are also
extensively used for air coolers in the petrochemical industry.  Much
knowledge of dry tower technology is founded in the petrochemical in-
dustry's air cooler experience.

     The strong interaction that exists among plant components in the
operation and performance of the power plant dry tower requires imme-
diate understanding.  The work performed by the turbine is dependent
upon the efficiency of the cooling system, which in turn depends upon
the difference in temperature between the saturated steam at the tur-
bine exhaust and the ambient air.  A rise in dry bulb temperature re-
sults in a corresponding rise in turbine back-pressure and lower tur-
bine output.  This decrease is also accompanied by an increase in the
amount of heat that must be absorbed in the tower.  Thus, a change in
ambient dry bulb air temperature changes the plant operation to a new
point where the total heat rejected from the turbine again equals that
absorbed by the ambient air flowing in the tower.

     These variations in plant operating conditions are dependent on
turbine operating conditions and the thermal performance of the cooling
system.  For a 1000 MWe modified conventional steam turbine operating
at 14.5 in. Hg absolute back pressure (see Appendix F for conversions
to SI units.  British units are used throughout this report since most
dry cooling tower literature employs British units), a 1.5°F increase
in steam temperature at the condenser corresponds  to a 3.4 MWe decrease
in turbine output.  Thus the performance of the cooling system compo-
nents must be accurately evaluated in order to correctly represent the
performance of the turbine.

     An objective of this project is to evaluate the system components
on the basis of heat transfer and fluid flow relationships that accu-
rately represent plant performance instead of using approximate over-
all empirical formulas.  The performance of the cooling system (sur-
face condenser, piping, and dry tower modules) is  a function of the
design variables.  These variables include pumping and fan power, water
flow rate and tube velocity, tube diameter and length, number of tube
rows and tube pass arrangement.  The major objective of this work is to
study the effect of the above design variables on  the performance and
the cost of dry towers.

     The cost of the dry tower is very much a function of its design.
The capital cost is a function of specific module  design, number of
modules, and construction, assembly and piping cost.  The operating
costs are strongly dependent on fan and pumping power and the operation
of the turbine which is in turn dependent on the design variables.  The
study of the effect of design variables on total cost of employing dry
towers cannot be accomplished without accurate and detailed analysis of
all the components of the system.  It was thus also within the scope of
this project to develop cost analyses of dry towers which would include

-------
a detailed cost breakdown of all stages of procuring and constructing
the dry tower.  This approach differs from previous works in which
standard designs with standard generalized cost functions were em-
ployed.

     The search for the lowest cost dry tower within the wide range
of design variables and cost factors requires an advanced "search"
scheme.  An optimization procedure was developed which searches for
an optimum bounded by nonlinear constraints.  This multivariable
scheme selects the combination of design variables which leads to
the lowest cost of owning and operating a dry tower in a power plant.
The effect of the design and cost variables on overall cost are
studied through a sensitivity analysis.

     The objectives and scope of this work are summarized as follows:

     1.  Application  of a general methodology for multivariable op-
         timization

     2.  Application of accurate rating methods for cooling system
         components

     3.  Application of accurate and detailed cost analyses for the
         cooling system

     4.  Study of the effect of dry tower design variables on the
         total evaluated cost of dry towers

-------
                            SECTION 2

                             SUMMARY
     This report presents the results of an extensive computer analysis
of the design and cost variables of a dry cooling system for 1000 MWe
fossil fuel  power plants.  A computer program was developed which designs
and cost estimates the dry tower components and searches for the optimal
system (defined as: system with lowest total  annual  cost).

     The dry tower system evaluated is of the indirect type in which cool-
ing water is circulated between the condenser and air-cooled modules.  Both
surface condensers and direct jet condensers are being considered in this
study as well as the selection of either the "high back pressure" turbine
or the "modified conventional" turbine.  The design methodology of the dry
cooled system components does not restrict the components to preset fixed
designs, but rather varies the mechanical configuration in a search for an
optimal design.  Condenser variables such as tube length and diameter, tube
velocity and number of shells are evaluated together with circulating sys^
tern flow conditions, piping design, dry tower modules, tube length, number
of rows and passes, and fan power.  Such design considerations require a
multidimensional non-linear search technique which is incorporated in the
program.  For any  intermediate design, the performance of the dry cooling
system is evaluated for the ambient temperature fluctuation and load vari-
ation at the site.  This is carried out with the aid of rigorous methods
based on the principles of fluid flow and heat transfer that predict the
performance more accurately than any approximate or simplified methods.
Such  rigorous methods are required to predict accurately the variation of
plant output with  the fluctuation in ambient temperatures.

The economic cost  analysis is based on a constant demand of electricity
according to the load duration specified, and on the average plant capa-
city  factor.  When the demand cannot be met due to deteriorated performance
at high ambient temperatures, it is assumed that the supplemental power will
come  from either peaking gas turbines or built-in expended plant capacity.
In both alternatives the extra capacity and energy penalties are added
to the capital cost of the cooling system.  Other penalty costs include the
cost  of the  incremental  steam supply system and fuel cost for the turbines
as compared with a "standard" low pressure turbine that provides design
capacity at  2.5 in. Hg absolute.
     The dry tower designs were evaluated for 5 sites and assumed January
1976 construction start-up.  Basic economic factors were parametrically
varied and the results are illustrated in tabular and graphical forms.

-------
                             SECTION 3

                            CONCLUSIONS
1.    The annual cost of a dry cooling system for power plants is
     dependent on all the operational and design variables of the
     cooling system.  A search for an optimal design would be best
     carried out by investigating the combination of all variables
     which will lead to lowest annual cost.  The methodology util-
     ized in this work removes many of the uncertainties associated
     with simplified approximate methods.

2.    The computer analysis has shown that there exist several com-
     binations of system variables which will result in lowest an-
     nual cost of cooling systems.  The availability of several
     unique optimal systems can provide leeway for configuration
     of design preferences.  However, deviation of one or more
     variables from the values of the optimal combinations may
     result in higher cost.

3.    Ambient site temperature fluctuations are of great significance
     to tower design, and therefore cost.  Both the maximum temperature
     of the site and the annual temperature duration curve contribute
     to the effect on design and cost.

4.    Fuel cost has an important effect on the total annual cost and the
     design variables.  The difference in dry tower cost for a "high back
     pressure" turbine and a "modified conventional" turbine used at the
     same site is primarily a function of fuel cost.  As the fuel cost
     increased the dry tower combined with the "modified conventional"
     turbine became cheaper than a dry tower combined with a "high back
     pressure" turbine.  This is because the incremental fuel cost of
     the high back pressure turbine erodes the advantage of the tower's
     lower capital cost and energy penalties.  For relatively low fuel
     cost and sites with relatively hot climates, the "high back pressure'
     turbine design is cheaper.

5.    The use of jet condensers results in reduced annual cost of about
     $200,000 as compared with a system utilizing surface condensers for
     a unit fuel cost of $0.75/MMBTU.  The jet condenser requires higher
     pumping power, and for higher fuel cost the difference between the
     cost of systems with surface condensers becomes negligible as com-
     pared with the direct jet condenser system.

-------
                            SECTION 4

           INTERACTION AND RATING OF PLANT COMPONENTS
     The indirect dry cooling system, which is being studied, consists
of the low pressure turbine, a surface or direct contact condenser,
cooling water piping system, and the dry tower.  Figure 4.1 shows the
system in a schematic diagram.  A description of each element follows
in the succeeding sections.

4.1  System Thermal Interaction

     The selection and design of a heat rejection system for a power
plant is a complex process involving many variables.  Economic, envi-
ronmental, and engineering considerations among others constitute both
the guidelines and constraints.  Even though the final decision on a
system does not evolve from pure analytical considerations, the more
quantified the interactions among the variables, the less ambiguous
and uncertain will be the final decision.  This is the basic approach
that PFR is advancing in this project.

     Figure 4.1 shows a schematic diagram of a portion of a plant equipped
with a dry cooling tower.  Steam from the turbine flows to a condenser,
and the condensate is pumped to feedwater heaters for reheat.  The cooling
water absorbs the  latent heat from the steam and then is cooled in the
cooling tower.  This is the basic cooling water recirculating system that
is considered in this project.

     In the closed cooling system utilizing dry towers, the heat from
the condensed steam is rejected to atmospheric air.   The plant output
is affected by the interaction of all the system components in this
heat rejection process. The term "interaction" refers here to the effects
that the changes in operating conditions in one component of the system
have on the performance of the other components.  This interaction will
essentially determine the power output at each ambient temperature.

     The power output is a function of the condenser pressure or steam
saturation temperature.  The condenser pressure is determined by the
ability of the condenser to transfer the latent heat of steam to the
cooling water.  This is a typical heat transfer process depending on
water flow rate and inlet temperature and size of the condenser.

     The water inlet temperature is in turn a function of the tower per-
formance which is determined by tower design and ambient dry bulb temper-
ature.

-------
      L.P. TURBINE
                               GENERATOR
             SURFACE CONDENSER
TO FEEDWATER HEATERS
                                                                                            DRY TOWER
                     Figure 4.1.    Schematic Diagram of a Dry Cooling  System.

-------
     The relationship between ambient dry bulb temperature and the sat-
uration steam temperature (as shown in Figure 4.2) can be expressed as:

     TS = TORY + TAPP + TRANG + TTD                            (4-1)

where,

     TS    = saturation steam temperature.

     TORY  = the ambient dry bulb temperature,

     TAPP  = the difference between cold water temperature leaving the
             tower and ambient dry bulb temperature, and is a function
             of cooling tower performance.

     TRANG = the cooling water temperature rise in the condenser which
             is identical to the cooling range in the tower.

     TTD   = the terminal temperature difference in the condenser be-
             tween the steam saturation and the exit (cooling water)
             temperature.

     The ITD (initial temperature difference) in the dry tower is the
difference between the temperature of cooling water leaving the conden-
ser and the ambient dry bulb temperature.  It is thus equal to the com-
bination of the range and approach:

     ITD = TAPP + TRANG                                        (4-2)

     Equation (4-2) expresses only the characteristic of the cooling
tower and is insufficient in describing the system.  The complementing
equation is derived from the turbine heat rate - back pressure perfor-
mance curve provided by the turbine manufacturer.  This varies with the
type and design of the turbine and can be generally expressed as:

     QREJ = function (TS, type of turbine, load)               (4-3)

     The matching of the heat rejected from the turbine expressed by
Equation (4-3) with the heat absorbed (and rejected to the air) in the
cooling tower will provide the operating point of the plant and thus
the net power output.

     The temperature range and approach and the terminal temperature
difference in the condenser are thermal characteristics of the turbine
and cooling system components.  These thermal characteristics and the
interactions among them are determined by the design of the components
and are evaluated in the following sections.
                                 8

-------
      CONDENSER
     PIPING
DRY TOWER
 TS, STEAM
    X
                  TTD
T
i
  WATER                         RANGE, AIR
                                     (
TS   = TURBINE EXHAUST TEMPERATURE
TTD  = TERMINAL TEMPERATURE DIFFERENCE FOR CONDENSER
ITD  = INITIAL TEMPERATURE DIFFERENCE FOR DRY TOWER
TORY = AMBIENT DRY BULB DESIGN TEMPERATURE
Figure 4.2.    The Relationship Between Temperatures in the Cooling System Components.

-------
4.2  Turbine Selection

     Two major characteristics of turbines will affect the selection
of a turbine for a specific plant:

     1.  Heat rate at the design point

     2.  Shape of the heat rate - back pressure curve

     The heat rate at the design point expresses the heat input per
unit power output for the turbine at the design back pressure.  This
is the corresponding back pressure at which the turbine will generate
the nominal design power output.  This heat rate will affect the total
steam flow through the turbine and the size of the steam supply sys-
tem required for the nominal  turbine output.   A turbine can be selec-
ted to provide the nominal design power output at any back pressure.
However, since the heat rate at the design point increases with in-
creasing design back pressures, more steam will be required to deliver
the nominal design load.  For example, a turbine designed to deliver
1000 MWe at 8 in. Hg absolute back pressure will require approximately
7 percent more steam flow than a turbine delivering its rated 1000 MWe
at 3.5 in. Hg absolute, assuming both turbines have the same inlet con-
ditions and turbine efficiencies.

     The fuel cost for delivering identical power would be quite dif-
ferent for these two turbines.  Considering a gross heat rate of 8941
BTU/KW-HR for the 3.5 in. Hg absolute conventional turbine, the heat
rate for an 8 in. Hg absolute turbine would  be 9576 BTU/KW-HR.  Assu-
ming a fuel cost of $1.00/MMBTU, the difference in fuel cost would be
.635 mills/KW-HR.  For a 1000 MWe plant operating 6000 hours, the an-
nual cost differential would be $3.81 million in favor of the lower
heat rate operation.  This example emphasizes the effect of heat rate
at the design point on operating cost.

     The shape of the turbine heat rate versus back pressure curve is
also significant in that it affects both the fuel economy and loss in
generating capacity when the turbine operates at back pressures above
the design back pressure.  The shape of this curve will be determined
by the exhaust cross-sectional area, size of last row blades, exhaust
Mach number, and various other factors.

     Two turbine designs were selected for this study.  The first one
was a modified conventional turbine which was capable of producing
1000 MWe at 3.5 in. Hg absolute exhaust pressure but was allowed to
exhaust as high as 15 in. Hg absolute.  The second turbine was a high
back pressure turbine which was capable of producing 1000 MWe at 8 in.
Hg absolute and was also allowed to operate up to 15 in. Hg absolute.'
Both full load and partial load data for these turbines are available
from the General Electric Company (7).  Appendix A shows the heat rate
performance of the conventional, modified conventional, and high back
pressure turbines.  Also, this appendix shows the heat rejected as a


                                10

-------
function of the back pressure for the modified conventional and high
back pressure turbines.  These performance graphs, combined with steam
properties, can be curve-fitted to analytical expressions or tabular
values as a function of condensing temperature, TS.  For each load
percentage, two analytical expressions can be derived from curve fit-
ting:

     QREJ = function (TS, type turbine, load)                 (4-3)

     PGEN = function (TS, type turbine, load)                 (4-4)

     Equation (4-3) expresses the total heat rejected, QREJ, as a
function of steam temperature, and Equation (4-4) expresses the cor-
responding net power generated, PGEN, at that exhaust steam temper-
ature, TS.  As TS increases, QREJ also increases but PGEN decreases.
It should always be borne in mind that QREJ, PGEN, and TS are not
fixed but vary with ambient temperature.

4.3  Condenser Selection

     The condenser component of the cooling system determines the
terminal temperature difference, TTD, between the hot water leaving
the condenser and the steam saturation temperature.  Both the direct
contact, jet- type condensers and surface condensers were studied in
this work.

4.3.1  Jet Condenser

     The jet condenser was developed specifically for dry tower ap-
plication, and there exist several reports that outline its design
and performance characteristics (8, 9).  In the jet condenser, water
is sprayed through multiple nozzles into a core of flowing steam.
Under ideal mixing conditions no temperature difference exists be-
tween the hot water and the saturated steam.  Early reports on jet
condensers quoted a 0.5°F terminal temperature difference.  How-
ever, in a recent report of an installation in the Soviet Union (10),
a temperature difference of 2 F was noted.  This temperature differ-
ence varied somewhat with the heat load.  In the present study, the
TTD in the jet condenser at full design heat load was set to 2°F.  At
other loads, the TTD was set proportional to the heat rejected accor-
ding to:
      (TTD) -  (2.0)    £Jj                                     (4-5)

where,

      QREJD =  the design rejected heat load.

      QREJ  =  the variable heat load.
                                11

-------
     TTD   = the terminal temperature difference in the jet condenser
             at the corresponding heat load, QREJ.

     The jet condenser design will  also affect the circulating water
pumping power through the spray nozzle pressure drop.  This is explained
in more detail in Section 4.6 in the discussion on piping.  The pressure
drop through the nozzles was assumed fixed at 13 ft.  of water.

4.3.2  Surface Condenser

     The design and the performance of surface condensers are a function
of both the flow conditions and the mechanical construction.  Tube side
velocity, tube diameter and length, number of passes, etc., are all im-
portant variables.  Since the reduction in back pressure is of prime im-
portance in dry cooling systems, multiple pressure condensers are employed.
The basic design equations for a single pressure condenser, or for each
individual pressure compartment in a multiple pressure condenser, can be
written as follows:
     QREJ  =  (MCp)water (TRANG)
                                             (4-6)
     QREJ  =  (U) (AC) (TRANG)/ ln(l + TEM}G)
                                             (4-7)
where,
     QREJ
           water
     TRANG


     U

     TTD
     AC
= the total  heat rejected in a single pressure condenser
  or the heat rejected per compartment in a multipressure
  condenser.

= the product of water flow rate and  specific heat.

= the overall condenser range or the  compartment range
  for a multipressure condenser.

= the overall heat transfer coefficient based on area AC.

= either the overall  terminal temperature difference or
  the temperature difference between  the saturated steam
  and the exit water  temperature from each multipressure
  condenser compartment.

= the condenser surface area or the compartment surface
  area.
     In a multipressure condenser, the overall  heat rejected is equal to
the sum of the heat rejected in each compartment.   The overall  TTD/is
the difference between the saturation temperature   (corresponding to
the average of the compartment pressures) and the  last compartment
water exit temperature.  Equations (4-6) and (4-7) show that for any
given combination of specified TTD, TRANG, and  waterflow rate there
exist multiple designs which will provide the same product (U)  (AC).
                                12

-------
These designs can employ different tube diameter and length and also dif-
ferent  flow velocities.  Normally, the flow velocity is around 7 ft/sec
and it rarely deviates from a range of 6 - 8 ft/sec.  An optimal selection
of design variables for the surface condenser is the one which has the
smallest effect on the cooling system tota], evaluated cost.  This cost is
affected by the capital cost of th,e condenrser and by the operating cost
of pumping the water through •the^'condenser.  The operating cost consists
of both the extra capacity and energy charges for the pumping power.  The
prediction of the performance of the condenser  involves a procedure which
is somewhat different from the design, since for a given condenser both
its range and TTD will vary as a function of the heat load.  A flow dia-
gram for the condenser design procedure is given in Figure 4.3,

4.4  Mechanical Draft Dry Tower

     In a mechanical draft tower the finned tubes are assembled into bundles
with common inlet and exit headers.  The  bundles are in widths commensurate
with the shipping requirement, no wider than 14.5 ft.  The shipped bundles
are assembled in the field into bays or modules which are served by one or
more fans through common plenum chambers.  A sufficient number of modules
to satisfy the  heat transfer requirement  of the plant is arranged in the
dry tower.  Water is circulated through the modules via a main piping sys-
tem and distribution manifolds.  Illustrations  of the general layout of dry
towers are given in vendors' publications (11,  12) and are not depicted
here.  The finned tube used in this study is, the helically-wound, L-shaped,
footed fin.  The tube base diameter is 1  in. with the fin diameter being
2% in. and fins spaced 10 fins/in.  These tubes are arranged in an equi-
lateral triangular pitch with %-in. clearance between fins.  The tubes are
inclined to facilitate drainage.

     The cooling system of a power plant  incorporating modules of various
design was optimized, and the effects of  these  designs on total evaluated
cost were studied.  The following design  specifications were used as vari-
ables:

      1.  Tube  length

      2.  Number of rows

      3.  Number of passes

     4.  Fan  power


4.4.1  Tube Length

     The module tube  length affects several  aspects of the  dry  tower.
The longer  the  tubes,  the fewer the number  of modules required  for  a
specified heat  load.  This will result  in towers with a  shorter  longi-
                                  13

-------
           START


     Input  TTD, TRANG
           QREJ
     Water  Inlet  Temp.
   Select  Tube  Diameter
      Water Velocity
          ondenser
           Shell
           Type?
Single Pressure
              Multipressure
 Select Fraction  Heat  Load
    Each Compartment
    Calc.  Range  and  ITD
    in each  compartment
  Calculate U and surface
 in each  compartment (AREQ)
            Has
       Surface Area
         Converged
                           Calculate
                            U, AREQ
                                               Calc.  No.  Tubes
                                                 Tube Length
                                             Calc.  Pressure Drop
                                              and Pumping Power
                    Calc. Condenser Capital
                      and Operating Costs
                                              No/lowest"
                                                  Possible
Figure 4.3.   Surface Condenser Design Procedure.
                        14

-------
tudina] length and with cheaper piping.  The cost of unit surface
area per module is cheaper when longer tubes are used.  The disad-
vantage of longer tubes lies in increased shipping and handling ex-
penses.  Longer tubes also require increased structure height to
provide adequate flow conditions for the induced air.  In some cases
modules with different tube lengths will accomodate fan sizes that
result in increased efficiency.  The tube length variation in this
study ranged between 40 and 80 ft.

4.4.2  Number of Rows

     The number of rows in a module is a major design variable which
affects both the capital and operating cost of the dry tower.  The
number of rows pertains to the number of tubes per unit module width
in the direction of air flow.  Figure 4.4 shows a schematic diagram
of a module constructed with 4 rows.    Modules with  more  rows  have
higher surface area and less piping and ground area.  Also, the cost
of module unit surface area decreases with the increase in number of
rows.  However, the resistance to air flow and, hence, the required
fan power increases as the number of rows increases.  Also, the in-
crease in number of rows results in heavier modules requiring stronger
supporting structure.  Thus, the number of rows has several offsetting
effects on both the cost of the module and the fan power.  In this
work, the dry tower analysis was made with modules having either 4,
5 or 6 rows.

4.4.3  Number of Tube Passes

     The number of passes pertains to the configuration of water flow
path through the module.  In  a single-pass module, the water is dis-
tributed in the inlet header to all the tubes in the module and exits
through another header situated at the other end of the tubes.  In a
2- pass module,  water is distributed from the inlet heater to half
of the tubes, flows to the other end of the tube, and turns to flow
in the other half before exiting at the same end as the inlet.  Fig-
ure 4.5 illustrates schematically a module with  2  passes.

     The number of passes has several effects on the mechanical de-
sign and the performance of dry towers.  The pass configuration is
achieved by constructing the header with proper partition plates
which divide the header into pass compartments.  These partition
plates are welded in the header and increase the cost of the module.
The piping system design and layout is affected by the pass number.
With an even number of passes, the water enters and exits the module
on the same side.  The main feed and return pipes as well as the dis-
tribution manifolds are all located on one side of the module, re-
quiring greater care for proper layout and construction design.  With
an odd number of passes the feed and return piping are located on
opposite ends of the module length.
                                15

-------
                                    A  A A
                       AIR FLOW
Figure 4.4.    Four-Row, Round Fin Staggered Module Arrangement.
A
                                     t    t
                             AIR FLOW
 Figure 4.5.    Four-Row, Two-Pass Heat Exchanger Arrangement.
                               16

-------
     The number of passes also affects the thermal and hydraulic per-
formance of the module.  When the number of rows and tubes and the flow
rate remain unchanged, increasing the number of passes will propor-
tionally increase the tube flow velocity.  This will result in an
increase in the tube-side heat transfer coefficient but also will
increase the pumping power because of the increase in the tube-side
pressure drop.  Furthermore, increasing the number of passes increases
the mean temperature difference (MTD) of the module and hence in-
creases the effectiveness of the module.

4.4.4  Fan Power

     The characteristics of the fans in dry cooling modules may pro-
vide added degrees of freedom in their design and operation.  The
heat rejection capability of a module with a fixed configuration in-
creases with the increase in fan power.  A dry tower may have few
modules with "powerful" fans inducing high velocity, high volume air
flow, or it may have many of the same size modules with less power-
ful fans.  In either case, the total design heat load of the tower
remains unchanged.  For a specified design heat rejection and ITD,
the total fan power requirement decreases with an increase in the
number of modules of a given surface area.  Thus, there exist num-
erous alternatives for a dry tower design based on the number of
modules and the associated fan power.

     The fans employed in dry towers are large diameter axial fans.
A characteristic of these fans is that they induce a large air flow
rate under a low pressure drop, less than 1.0 in. water.  The fans
may have between 4 and 12 blades rotating at tip speeds of 12,000
ft/min or less.  Fan performance is described by characteristic
curves which present the delivered air flow rate as a function of
flow resistance (pressure drop) and fan speed.  The mechanical ef-
ficiency of the fan, defined as the conversion of motor power to
actual power delivered to the air, is also a function of the oper-
ating conditions of the fan.  The fan selection for a dry tower is
a major design variable and affects both the performance and capital
and operating costs of the dry tower.  The selection of the optimized
fan for the cooling tower was made according to the method described
by Monroe (13).

4.4.5  Dry Tower Design and Rating

     The design and rating of dry tower modules involve the calcu-
lation of internal tube-and air-side heat transfer coefficients and
pressure drops  and mean temperature difference.  These variables
are dependent on either the specific module design or fan power, or
both, as explained in the previous sections.  Data for the heat
transfer process in dry cooling modules are available in published
reports (6).  The performance of mechanical draft towers is evalu-
ated by the procedures established in Kays and London (14) as ex-
plained in Appendix G.
                                17

-------
     The heat rejection capability of a dry tower is expressed as:

     QTOW = (N)mod(ITD) (MCp)mod(P)                           (4-3)

where,

     Mmod     = tne number °f identical modules.

     (MCp)moc| = the product of air flow rate and specific heat of air
                in a module.

     P        = the heat exchanger effectiveness, ratio of air temp-
                erature rise to ITD for (MCp)al> < (MCp)water.

     ITD      = the initial temperature difference between the hot
                water and ambient air.

     The (MCp)a-jr is primarily dependent on fan power.  The effective-
ness, P, is a function of the number of heat transfer units, NTU; the
capacity ratio, R; and the flow and pass arrangement.  The NTU and R
are defined as follows:
     NTU = (u)  (A)                                           (4-9)
     R   = (ICP)air                                           (4-10)
           (MCp)water

where,

     U        = the overall heat transfer coefficient based on area A.

     A        = the total finned- tube heat transfer area.

     U is a function of the tube-and air-side coefficients, tube wall
conductance, and the fouling resistances.  The tube-side coefficient
is primarily a function of the circulating water flow velocity.  The
relation between P, NTU, and R for crossflow is given graphically by
Kays and London (14) and has been analytically formulated into PFR's
computer program.  Equations describe the relation between the ITD and
the heat rejected.  This relationship is quite complex and is dependent
on the effectiveness and the air and water flow rates.

     In the design and performance evaluation of the dry tower, the
actual heat transfer characteristics are calculated for specified con-
ditions.   Total flow resistance across the dry module is used to cal-
culate fan power.  The pressure drop inside the tubes is used along
with all  other losses of the water distribution system to calculate
pumping power.
                                18

-------
4.4-6  Combined System Performance

     The performance of each component of the cooling system (i.e.,
condenser, piping, cooling tower) is coupled to other components
through the heat rate vs. back pressure characteristics of the tur-
bine.  The combined system performance is determined by the inter-
action of the individual components which are linked through their
thermal performance.  Equations  (4-3) through (4-10) form the link
between turbine back pressure and ambient air temperature.  These
can be summarized as follows:

     QREJ = function (TS, load)  = turbine heat rejected       (4-3)

     PGEN = function (TS, load)  = turbine power output        (4-4)

     QTOW = (N)mod(ITD)(MCp)mod(P) = tower heat rejected      (4-8)

     TS   = TORY + ITD + TTD = steam saturation temperature   (4-1)

     ITD  = TRANG + TAPP = initial temperature difference in
            the tower                                         (4-2)

     These equations describe the thermal interaction between the
various components of the cooling system.  For any given ambient
temperature, TORY, the above equations will determine TS and thus
the turbine power output, PGEN.  The above equations also estab-
lish the number of independent variables that are sufficient to
describe the system.  For a dry  tower module of specified design
(i.e., fixed tube diameter and material, number of rows and num-
ber of passes), there are  6  variables that describe the system.
They are: ITD, TTD, TRANG, TS, tube length, and fan power per module.
The optimum design will be the one in which the right combination of
the above variables will lead to the lowest incremental cost of pro-
ducing electricity.

     It is conceivable that different combinations of design varia-
bles will lead to several low incremental costs within a ± 1.0 percent
differential from each other.  This is a common result when optimizing
a cost which is a function of multivariables.  For example, a design
with few modules with "powerful" fans may have the same cost (within
± 1.0 percent) of a design consisting of a large number of modules
and smaller fan power.  However, these designs may differ by plot area
or actual length of piping.  Such differences may point to a prefer-
ence of one design over the other simply on the basis of construction
logistics and maintenance problems which may not be reflected by the
cost factor.  In reviewing the various design combinations which pro-
duce the lowest incremental bus-bar cost, it is thus possible to
select the best design which conforms to the particular conditions
of a specific project.
                                19

-------
4.5  Dry Tower Piping System

     The piping system consists of carbon steel pipes arranged above
ground to provide equal water flow to each tube module.  The main sup-
ply and return lines are designed with appropriate valving to bypass
the dry cooling towers and to isolate the circulating pumps and water
recovery turbines.  In addition, storage tanks with fill pumps, val-
ving and fill piping are included to facilitate easy draining or fil-
ling of the dry tower.  All piping includes expansion joints to relieve
any thermal expansion.  In general, all pipes are standard wall and
designed for a water velocity between 8 and 12 ft/sec.

     As much shop work as possible is done in order to reduce the
amount of expensive field work that is needed.  The assumptions that
were used in this work are:

     1.  Pipes below or equal to 4 ft. in diameter are made in 40-ft.
         lengths with 2 lengths butt-welded together in the shop.

     2.  Pipes between 4 and 8 ft. in diameter are made in 12-ft.
         lengths with 4 lengths butt-welded together in the shop.

     3.  Pipes between 8 and 12 ft. in diameter are made in 12-ft.
         lengths with 2 lengths butt-welded together in the shop.

4.5.1  Distribution System

     Cooling water is pumped from the main condenser to the dry tower
which is located 500 ft. away.  The supply line enters perpendicularly
at the middle of the tower and branches in both directions to supply
water along the entire length of the tower.  At each bay (3 tube
bundles with a common header) a feeder line rises to a bay distribu-
tion manifold.  The feeder lines are adequately valved in order to
shut off water flow to the entire bay.  The bay distribution manifold
then distributes the water to the inlet headers of the  3 tube
bundles.  In order to keep piping costs at a minimum, the size of the
supply and return lines reduce in size as the water flow rate decreases
along the length of the tower.  The return scheme is identical to the
supply scheme.

     Four possibilities exist as to the general layout depending on
the total water flow rate and the number of tube passes.  With an
even number of passes, the supply line runs down the middle of the
tower, and there are  2  return lines also running down the middle
on either side of the supply line.  With an odd number of passes
there are  2  supply lines which run along both sides of the tower.
A single return line runs down the middle of the tower.  In addition,
a large water flow rate might necessitate supply and return lines
larger than 12 ft. in diameter.  In this case,  2  supply and 2
return lines are needed.  This would change the piping arrangement
slightly at the entrance to the tower for both the even and the odd


                                20

-------
number of tube pass situations.  Figure  4.6 is a schematic drawing of
the piping for an even number of passes.  Figures 4.7 through 4.10 de-
pict all 4 possibilities for the return and supply piping.

4.6  Piping Pressure Drop

     The pressure drop of the piping system is calculated by determining
the loss through each section of the piping, taking into account losses
from valves and elbows.  By changing the supply and return line pipe dia-
meter to keep the water velocity nearly constant, there will be no momen-
tum losses or maldistribution in the system.  Figures 4.7 through 4.10
denote the various piping diameters with numbers.  The total pumping head
depends on the type of condenser.

4.6.1  Surface Condenser Pumping Head

     For a surface condenser the pumping head is the sum of the tube bundle,
supply and return piping, and condenser losses.  Normally the pressure
drop of the supply and return lines is the  smallest component of the total
pumping head.  The dry tower tube-side and  the condenser pressure drop are
of the same order of magnitude as shown in Table 4.1.

     The major constraint is to ensure that the operating pressure for the
condenser does not exceed the limit of the  waterbox design pressure.

4.6.2  Direct Contact Condenser Pumping Head

     In a direct contact condenser the cooling water mixes with the steam
turbine exhaust.  It is thus of prime importance to prevent ambient air
from leaking  into the circulating system.   The hazard of leakage exists
due to the vacuum conditions in the condenser which is now part of the
cooling water circulation loop.  To prevent this hazard, the water cir-
culating pump raises the pressure so that the water in the piping system
is above atmospheric pressure.  The pumping conditions are such that at
the highest point (about ground level) in the circulating system, the pres-
sure is 3 ft. above atmospheric.  Hydraulic turbines are placed upstream
of the spray  nozzles to recover part of the head delivered by the pump
while reducing the cooling water pressure to the conditions in the jet
condenser.

     The pump must overcome the head difference between the top of the
condenser where  the water is sprayed and the bottom of the condenser where
the liquid water level is.  In addition, the pump must overcome the spray
nozzle drop,  the tube bundle loss, and the  return and supply piping losses.
For a 1000 MWe plant, the total pumping head is approximately 140 ft. of
water.  The drop across the recovery turbine will be about 75 ft., 80 per-
cent of which can be recovered while producing useful power.
                                  21

-------
ro
no
                                                                              DISTRIBUTION

                                                                                MANIFOLD
                                            RETURN

                                              LINE
                                      Figure 4.6.   Water Distribution System.

-------
                                 ©
                               ©
TO OTHER HALF OF TOWER
                                 ©
                               ©
             Return  Type  1  -  Even  number of  passes, one line to power plant
             Supply  Type  3  -  Odd number of passes, one line from power plant
                      Figure  4.7.    Schematic  of  Return Piping Type 1
                                    and  Supply Piping Type 3.
       TO OTHER
     HALF OF TOWER
                                 ©
©
                 <$)
©
                                 ©
                                ©
                             0)
             Return Type 2 - Even number of passes, two lines to power plant
             Supply Type 4 - Odd number of passes, two lines from power plant
                      Figure 4.8.   Schematic of Return Piping Type 2
                                    and Supply Piping Type 4.
    Note:  Circled number refer to pipe diameter numbers used for computer
           output.  See Table E.4.
                   J
G     I
                                    23

-------
        TO OTHER
   HALF OF TOWER

          Return Type 3
          Supply Type 1
Odd number of passes, one line to power plant
Even number of passes, one line from power plant
                  Figure 4.9.    Schematic of Return Piping  Type 3
                                and Supply Piping Type 1.
     TO OTHER
HALF OF TOWER I 
-------
     TABLE 4-1.    REPRESENTATIVE COOLING SYSTEM HEAD  LOSSES*

Supply Lines and
Distribution Piping
Tube Bundle
Return Piping
Condenser Head
Condenser Spray Nozzles
Condenser Tubes
Recovery Turbine or
Throttling Valve
Total Pumping Head
Head Recovered by
Recovery Turbine
Net Pumping Head Penalty
Surface
Condenser
6.5
25.0
6.5
___
—
17.0
—
55.0
—
55.0
Jet Condenser or
Direct Contact
Condenser with
Recovery Turbine
6.5
25.0
6.5
14.0
13.0
—
75.0
140.0
60.0
80.0
direct Contact
Condenser without
Recovery Turbine
6.5
25.0
6.5
14.0
13.0
—
75.0
140.0
—
140.0
* in ft. of water
                                25

-------
     The main advantage of the direct jet condenser is in the lower
TTD as compared to a surface condenser.  However, the pumping power
is higher for the direct jet condenser.  For a 1000 MWe fossil plant,
the direct jet condenser will require about 2.5 MWe more pumping
power.  Table 4.1 demonstrates representative differences in pumping
heads for the different types of condensers.

4.7  Dry Cooling Tower Structure

     The horizontal tube modules must be sufficiently elevated to
allow proper distribution of air flow to all modules.  The height of
the structure varies as a function of module design and air flow rate.

     The structure must be designed to support the module weight and
various wind and live load conditions.  The supporting structure for
the dry cooling tower is a steel braced system with bracings in all
3 planes.  In addition to the transverse, horizontal and longitudinal
steel bracing systems, a network of I-beams and columns forms the
main structure which supports the weight of the tower;  the founda-
tions for these columns consist of 3-foot-deep reinforced concrete.
The structure is designed for Seismic Zone 3 with a roof live load
of 40 lb/ft2.  Thus, the tower structure would satisfy building
codes almost anywhere in the United States.

     Proper site preparation is performed; it includes 3-foot-deep
excavation, compaction, and grading.  The site is cleared and pre-
pared for an additional 30 ft. on both sides of the tower, and a
paved road is constructed down one side for easy accessibility to
the entire tower.
                                26

-------
                             SECTION  5

                 ECONOMIC MODEL AND  OPTIMIZATION
     As discussed in the previous section, a cooling tower is a com-
plex system whose size is dependent on many interrelated variables
and whose operation affects the production of electricity in a plant.
A rational application of these towers involves optimization schemes
in which cost is the main factor to consider.

5.1  General Approach

     Much work  has  been  done  in trying to optimize  the design of large,
mechanical  draft cooling towers.  These  studies  ((I), (2),  (3), (4))
used approximate relations  for the  heat  transfer  process in the tower
and simplified  generalized  cost functions.   Furthermore, the optimi-
zation was  performed by  varying only  1,  or at most,   2  variables
while fixing  the other variables arbitrarily.  Rozenman  and Pundyk  (15)
discuss  these points in  detail.

     In  this work the optimization  of the dry  tower is based on the
following principles and procedures:

     1.   All  independent variables  that  define and  affect  the design
          and  operating conditions of the cooling  tower are included
          in the optimization  scheme.  These  are:

          a.   Design ambient dry air temperature
          b.   ITD of the  tower
          c.   TTD of the  condenser
          d.   Cooling water  temperature range
          e.   Overall number of modules
          f.   Fan power
          g.   Tube length, number of rows, and  number of  passes

     2.   Rigorous heat transfer and pressure drop calculations are
          made for each design at the different ambient temperatures
          to determine the plant performance  and assess operating
          cost (see  Appendix G).

     3.   The  capital cost of  the cooling system  is  evaluated for all
          the  components  of  the system with detailed cost breakdown
          of all stages of procuring and  constructing the dry tower.

     4.   An advanced, nonlinear, constrained rnu Hi variable optimiza-
          tion scheme is  used  to find the lowest evaluated  cost of
          the cooling system (see Appendix B).
                                 27

-------
     The cost of the cooling system is an incremental cost to the
entire cost of the power plant.  The cost of the turbine will not
vary, however.  The turbine capital cost was assumed constant during
the optimization process and was not included as part of the incre-
mental cost.  The optimization objective is to design the heat re-
jection system which will result in the smallest incremental annual
cost for producing the electricity.  The annual cost is composed of
the amortized capital cost (fixed rate charges) and the total oper-
ating cost.

     The major capital cost components of the heat rejection system
are:

     1.  Condenser

     2.  Cooling tower

     3.  Piping system (pumps, piping, valves, etc,)

     4.  Land

     The major component of the direct operating cost is the fuel
cost.

     As discussed before, the response of the heat rejection system
components to changes in ambient temperature gives rise to variation
in the following factors:

     1.  Turbine back pressure

     2.  Auxiliary power requirements

     An increase in turbine back pressure will cause a reduction in
plant output because of the heat rate increase.  Various schemes are
suggested  (22) to overcome the corresponding loss in capacity.  These
schemes may require extra capital and energy expenditures.  The re-
sulting incremental costs are significant and must be evaluated in
any optimization program.

     Auxiliary power is required for the pumps and fans.  The auxili-
ary power  can be provided by an incremental plant capacity increase
or through the same source that makes up the loss in capacity, such
as a gas turbine or an enlarged plant.

     It is evident, then, that in addition to their cost, cooling
towers affect the performance of the entire power cycle.  Thus, the
optimization is a study of the combined effect of many variables in
a plant.  A true optimization will result from a scheme in which the
design and operating variables are freely combined to provide a cool-
ing tower system with the lowest incremental bus-bar cost of produ-
cing electricity for a given size plant in an assigned geographical
                                28

-------
area.  The interaction of variables is determined by the thermal and
flow characteristics of each component in the plant as explained in
Section 4.

     The approach to optimization is to:

     1.  Identify the minimum number of variables that can be inde-
         pendently changed

     2.  Evaluate their interaction by rating methods described in
         Section 4

     3.  'Determine the total annual incremental cost for each inter-
         action

     4.  Employ multivariable search techniques to arrive at a com-
         bination of variables  producing the lowest cost.  The search
         technique is the Box Complex Method (16) and is explained in
         detail in Appendix  B.

5.2  Cost Analysis

     The study  is made on a  1000 MWe fossil fuel plant, 2400 psig,
1000°F/1000°F,  located in assigned geographical areas.  Two alternate
turbine designs are chosen for  the plant - the high back pressure tur-
bine and the modified conventional turbine.  The heat rate and heat
rejection of these turbines  are shown in Appendix A.  Five locations
within the continental U.S.  were  chosen.  These  are:

     1.  Phoenix, Arizona

     2.  Casper, Wyoming

     3.  Bismarck, North Dakota

     4.  Atlanta, Georgia

     5.  Burlington, Vermont

     The annual dry bulb temperature duration curves for the above
sites  are given in Appendix  D.

     The plant  is a summer peaking, base load plant with an average
capacity factor of 0.75.  The capacity is distributed over the year
as  follows:

     100  percent  load - July, August, September

     75  percent  load  - The  rest of the year except April

     Shut-down        - April
                                 29

-------
     The objective is to design an optimum dry cooling system which
will result in the lowest incremental bus-bar cost of producing the
electricity in the plant.  The accounting method used here reflects
actual plant operation and practice.  The base plant under consider-
ation is viewed as the best source of power.  Under all  conditions
the steam turbine is modulated until the demand load is  achieved.
If the demanded load cannot be achieved, then the power must be ac-
quired elsewhere.  This outside power is assessed through capacity
and energy penalties according to the price scheme selected a priori.

     For a comparative analysis of all the variables considered in
this study, the annual cost of each cooling system is determined by
evaluating economic costs of penalties for the various components
of the cooling system.  These costs include the capital  investment,
penalties associated with loss of capacity at higher ambient condi-
tions, and various cooling system operating costs.

5.2.1  Cooling System Capital Cost

     The capital cost of the cooling system includes equipment and con-
struction costs for the total cooling system from the turbine flange
onward.  This includes the cooling tower, the condenser, the circula-
ting water system, and the indirect charges for the cooling system.

     The dry tower cost was evaluated in detail, taking  into account
all the stages from procurement to the complete erection and instal-
lation.  Because of the logistics involved with the various compo-
nents of the tower and expenses incurred in field installation, the
construction is based on a modular basis in which shop fabrication
is maximized.  The cost breakdown includes the following:

     1.  Cost of fabricated finned-tube bundles with proper headers,
         nozzles, and support plates prepared for shipping.  The
         width of the bundle is between 12 and 14 ft. and the bundle
         may have 4 to 6 rows with a tube length up to 80 ft.

     2.  Cost of fabricated sections for the plenum and  recovery
         stack.  These sections are shipped to the construction site
         for installation.

     3.  Cost of the fans, fan motors, and gearboxes.  The fans may be
         up to 40 ft. in diameter and have between 4 and 12 blades per
         fan.

     4.  Cost of shipping the above items

     5.  Cost of support structure.  The cost includes the structural
         steel fabrication and erection, site preparation, foundation,
         walkways and ladders, field and shop labor, and miscellaneous
         painting.
                                30

-------
     6.   Cost of erection of modules and fans.   The shipped bundles
         are set and aligned on the support structure and combined
         together with the plenum chamber,   The fans, motors,  gear-
         boxes,  and recovery stacks are installed, and the fans  are
         balanced and tested.  All  labor and material costs, as  well
         as support crane costs are included.

     7.   Cost of pumping system.  Costs of circulating water pumps
         and drives, water recovery turbines, pump and water recovery
         turbine foundation are included.

     8.   Cost of electrical substation and  cabling.  Labor and material
         costs, including conduit and cable  for connecting the  power to
         the fan motors and pump motors,, incremental  transformer and
         station service cost are included.

     9.   Cost of piping system.  Costs of material  and labor for  main
         water supply and return piping, material  and labor for  module
         inlet and outlet manifold and feeder line, fill  and bypass
         lines,  valving, expansion joints,  controls,  and  storage tanks
         are included.

     10. Cost of condensers and installation

     The annualized cost for the cooling system investment is  equal
to the capital cost multiplied by the fixed charge rate.   The  capital
cost was obtained by summing up the 10 costs enumerated above.

5.2.2  Cooling System Penalties and Operating Costs

     The plant equipped with a dry tower cooling system will incur
cost penalties due to the fact that power output is reduced at ele-
vated ambient temperature.  A requirement for supplemental power will
occur whenever the turbine output is below its design load at the bus-
bar.  This requirement for supplemental power will require additional
expenditures for capacity and energy.

     Capacity penalty is the cost of providing the capability to ob-
tain the power that is lost due to the poor performance of dry cooling
towers during hot ambient conditions.  Other than purchasing excess
capacity from other utilities, the simplest method is to erect a gas-
turbine on site to provide the power during hot peaking conditions.  A
second method is to charge this capacity at the price of the next base
loaded plant to be built in the system.  The rationale here is that
the next plant in question will underperform.  Another method is to
expand the plant under consideration to supply the loss in power.  This
study uses a cost of $100/KWefor installed gas turbine capacity and
$500/KWefor installed capacity of a new plant.

     Another capital expense arises from the fact that steam turbines
for dry cooling towers are designed with slightly more steam flow than
                                31

-------
conventional turbines.  This is due to the fact that higher back pres-
sures are experienced and the exhaust flow area is decreased.  The
modified conventional 1000 MWe turbine uses approximately 73,000 Ib/hr
of additional steam.  The steam supply system could be expanded to pro-
vide this at a cost of about $750,000.  For the high back pressure tur-
bine, an additional 513,000 Ib/hr of steam is needed and would cost
approximately $5.4 million for the steam generator.

     Energy penalty is the cost of producing that electrical energy
that is lost due to poor dry cooling tower performance.  It was assumed
that gas turbine generated energy would cost 40 mills/KW-HR, but at
ambient temperatures below 82°F energy could be bought from the system
at 20 mills/KW-HR.  This type of energy penalty is referred to as "40/20"
on subsequent tables and figures.  If the energy penalty is assessed
on building the next plant slightly larger, a cost of 10 mil ls/KVJ-HR
is used regardless of ambient temperature.  This type of energy penalty
is referred to as "10/10" on subsequent tables and figures.

     Special consideration must be given to penalties due to cooling
system auxiliaries.  This pertains to the power drawn by the fans and
the recirculating pumps.  This auxiliary power reduces the power avail-
able at the bus-bar for the load demand, and its cost is considered as
an additional penalty cost.  There exist  2  ways to supplement the
auxiliary power required to power the fans and the circulating pumps.
The first way is to consider the auxiliary power to be a penalty loss
similar to loss of capability at high temperature.  Thus, the auxiliary
power can be drawn from the same source as the loss in capability at
high temperatures with the corresponding charges for capacity and pen-
alty.  The second way is to recognize that the auxiliary power require-
ment would be of long duration and would be required even at low anbient
temperatures.  In this case the base plant capacity is expanded to sup-
ply the required auxiliaries.  In such a case the capital and energy
charges of the auxiliaries will use base plant cost factors.

     There exist several considerations unique to dry tower application
which will influence the choice of power for cooling system auxiliaries.
If the yearly load demand is such that the plant will  operate in the
part load mode for a fraction of the year, the auxiliary power can be
generated without plant expansion.  For example, when the yearly load
profile is 100 percent load for summer months and 75 percent load for
the rest of the year, the auxiliary power can be provided at the 75
percent load requirement by simply overfiring the existing plant such
that the power generated would be the auxiliary plus required bus-bar
power.   The cost penalty for this case will not include expanded plant
capacity capital cost but will include incremental fuel cost that is
charged for generating the auxiliary power.  For the full load summer
period, the auxiliary power penalty can be charged using gas turbine
cost factors.

     Another factor which influences the choice of the source for aux-
iliaries is the potential for fan control.  In dry cooled systems ap-


                                32

-------
proximately 75 percent of the auxiliary power requirement is for the
fans, and the other 25 percent is the water pumping power.  As the
ambient temperature decreases, the performance of the dry tower in-
creases and the back pressure is reduced.  However, below a back pres-
sure of about 5 in. Hg absolute the heat rate curve for a high back
pressure turbine is almost flat, and little gain in power output is
achieved with the reduction in back pressure.  Thus, it would be more
economical to maintain a constant back pressure and reduce fan power
as the ambient temperature is reduced.  A constant back pressure is
reached below which the extra turbine power gained from a decrease in
back pressure is less than the power saved by reducing the auxiliary
fan power.  A typical curve of fan-controlled power reduction as a
function of ambient temperature is given in Figure 5.1.  This figure
shows that fan control begins at an ambient temperature of 73°F with
the fan power decreasing rapidly with a further decrease in ambient
temperature.  At a temperature of 50°F the required fan power is only
10 MWe as compared to the design requirement of 25 MWe.  This potential
for fan control is unique to dry towers using non-conventional turbines.
This behavior is contrary to conventional turbines with wet towers in
which the reduction in back pressure as the ambient temperature de-
creases is used as a means to increase power production.

     The above behavior would indicate that considering the source for
auxiliary power requirement as identical to the source for loss in capa-
city at high ambient temperature (i.e., gas turbines) has economic merit
by saving the cost for increased incremental base plant capacity.  This
method of accounting for auxiliary penalty, which uses gas turbine gen-
erated power, was used throughout this work.  In some cases, however, a
comparison was made between results obtained with the above accounting
method and the method which provides for increased base plant capacity
for auxiliaries.

5.3  Optimization Methodology

     The general flow diagram for the optimization procedure is given
in Appendix C.  The steps in the optimization codes are as follows:

     1.   Input

     2.  Design the cooling system,  i.e., dry tower, circulating water
         system and condenser on the basis of a combination of design
         variables

     3.  Calculate capital cost of the system

     4.  Determine plant performance with the change in annual ambient
         temperature over the annual cycle

     5.  Calculate capital and energy costs for cooling system auxiliaries
         and  loss in generating capacity, employing fan control  and  extra
         firing when advantageous
                                  33

-------
SITE
CONDENSER TYPE
TURBINE TYPE
FIXED CHARGE RATE
FUEL COST ($/MMBTU)
CAPACITY COST ($/KWe)
ENERGY COST (MILLS/KW-HR)
CASPER
SURFACE
MOD.CONV.
.20
.75
100
40/20***
TUBE CONFIGURATION        = 6R2P *
CAPACITY FACTOR           = .914
SUMMER HOURS NOT EXCEEDED = 10  **
TUBE LENGTH (FT)          - 80
ITD (OF)                  = 49.9
RANGE (°F)                = 23
HOURS ABOVE 82°F AMBIENT  = 440  *
  25 -
  20 -
O)
  15 --

-------
     6.   Calculate total fuel cost

     7.   Determine total incremental bus-bar cost of the cooling
         system

     8.   Employ the box inulticomponent optimization search scheme
         to generate a new set of design variables that will  lead
         to total cost

     9.   Stop when the combination of variables that will  result
         in lowest total cost has been found

     10. Print the optimum results

     The first step involves the determination of the program input.
This is described in detail in Appendix H.

     The second step involves the selection of random combinations of
design variables consisting of heat load, ITD, range, TTD, tube length,
and number of modules.  The program iterates to find the right approach
velocity which will satisfy the heat transfer characteristics of the
modules.  The module design is described in Section 4.4.  A suitable
fan design is selected and total fan power is calculated.

     The third step involves the design of the condenser,  intercon-
necting piping, pumping power, pumps, storage tank controls and valves,
and all other auxiliary equipment of the cooling water system.  The
capital cost of all the components is then evaluated as well  as the
costs for shipping, structures and foundations, erection and  construc-
tion, and electrical connections.

     The fourth step involves the evaluation of the plant performance
with the changes in the ambient temperatures.  The highest ambient tem-
perature for penalty calculations is determined from the annual temper-
ature duration curve.  In most calculations, the temperature  at the
site which was equaled  or  exceeded 29 hours a year ^equivalent to 1
percent of the 4 warmest months) was taken as the highest ambient tem-
perature.  For each combination of ambient temperature and the time
occurrence (number of hours), the program calculates plant performance
by matching heat rejected from the tower with the heat load of the tur-
bine.  Heat transfer calculations are performed to find the turbine
back pressure for each given ambient temperature.  At each ambient tem-
perature a check is made to determine whether fan control  is  economical
and whether the demanded load is less than 100 percent.  If demanded
load is 100 percent of the design load for the turbine and the turbine
output is less than this load, the energy penalty is calculated.  If
the demanded load is below 100 percent, a search is made for a turbine
operating point which produces the demanded load plus auxiliary power.
In addition to the fuel consumption energy penalty, the replacement
capacity penalty is calculated.
                                35

-------
     After evaluating the performance over the entire year, the pro-
gram calculates and sums the fuel  cost, energy penalty cost, replace-
ment capacity cost, capital  and operating costs, the total annual
cost and the total incremental  bus-bar cost of the cooling system.
The program then utilizes the "Box" multicomponent optimization
search scheme, generates a new set of independent variables and
repeats the entire process.   The calculation stops when a combin-
ation of design variables is found which leads to the lowest total
evaluated cost.

     As was evident in the analysis, there exist many combinations of
the design variables which will result in a cooling system with identi-
cal total annual cost.  Since the cost is a function of 6 variables,
it cannot be represented simply as a graph on a 2-dimensional  plot.
The effect of design variables  on the cost was investigated by tabu-
lating all the cost points for the combinations of all variables.  No
graphs can be plotted since the functional variation on a 2-dimensional
plot is not easily discernible.

Figures 5.2 to 5.4 show how the annual cost may vary with the ITD.
The points on the figures are the annual costs for cooling systems
designed with a random combination of design variables.  Each point
represents the annual cost of the cooling system with a different
combination of ITD, range, fan  power, number of modules, TTD, and
ambient temperature.  No meaningful curves can be plotted through
the points.  For any given fixed ITD, the annual cost may vary as
much as $3-4 million (vertical  distance between high and low points),
depending on the combination of design variables.  It is evident
that the points are distributed in a domain of ITDs in which the
cost reaches a minimum but no single point is the absolute minimum;
there exist several points with different ITD and identical cost.
This indicates that other design variables, such as fan power and
range, may have compensating effects on the total annual cost.  Fig-
ures 5.2 to 5.4 indicate that the ITD cannot serve as the only in-
dependent variable that will determine the optimum design of a cool-
ing system.  For example, Figure 5.3 shows the cost analysis for the
Atlanta site with the lowest cost as $15.6 million.  The lowest cost
corresponded to an ITD of 49.5°F.   However, for that ITD there exist
other points which show the cost to be $16.6 million.  The difference
stems from slight changes in design ambient air temperature, temper-
ature range, condenser TTD, number of tower modules and fan power.

     Figures 5.5 and 5.6 show the variations of annual cost with range/
ITD for the Phoenix site.  The ITD was kept fixed at 60°F for Figure
5.5 and 30°F for Figure 5.6.  Large variations in cost are evident from
these figures.  The lowest point tends to be between ratios of 0.4 and
0.6.  However, for a given range/ITD ratio the price can vary by about
$1 million (vertical distance on the graphs).  This indicates that no
single optimum range/ITD ratio exists but that the ratio is a function
of the other independent design variables.
                                36

-------
SITE                        =  CASPER
CONDENSER TYPE              =  SURFACE
TURBINE TYPE                =  MOD.CONV,
FIXED CHARGE RATE           -  .20
FUEL COST ($/MMBTU)         =1.50
CAPACITY COST  ($/KWe)       =  100
ENERGY COST  (MILLS/KW-HR)   -  40/20
COST BASE                   -  JAN.  1976
TUBE CONFIGURATION        = 6K2P
TUBE LENGTH (FT)          - 80
CAPACITY FACTOR           = .75
SUMMER HOURS NOT EXCEEDED = 29
ITD (°F)
RANGE (°F)
HOURS ABOVE 82°F AMBIENT  = 440
TOTAL GENERATION (MW-HR)  - 6,570,000
  20000-r
   19000—
   18000—
3
c
c:
to
4J
o
8  17000-j
o
   16000-
   15000-
        I

       +
                                               o

                                               o
         o o
         o
                                       <>           o

                                       00    °      ° °
                                          r,  O   O
                                                  o o
                  O O o
               o
                    o

                O   00

               00   O
   o o o g °
      000

     0°
                                                        -.0
                                                     o
                                                       o
                                                       o
   14000
     30


Figure 5.2.
-M—r-
 40
                                         50
                                       ITD  -  °F
                60
                    Total  Annual Cost for a Nominal 1000 MWe
                    Fossil-Fueled Plant at Casper, WY.
70
                                 37

-------
SITE - ATLANTA
CONDENSER TYPE - SURFACE
TURBINE TYPE = MOD.CONV.
FIXED CHARGE RATE - .20
FUEL COST ($/MMBTU) = .75
CAPACITY COST ($/KWe) = 100
ENERGY COST (MILLS/KW-HR) = 40/20
COST BASI
21000-
20000-



19000-
o 18000"
o
o
<— 1
^»-
1
in
o
° 17000-
"fO
3
^
<
r— -
ra
-M
° 16000-
i cnnn
I = JAN. 1976


o
o
o




o

o
Q
0 0
0 0 0
0
o
"~ ° o
{•<

c
~ c
c
c
c
~-J. ..._L—4— -U-.U--J 	 L -J .
                      TUBE CONFIGURATION
                      TUBE LENGTH  (FT)
                      CAPACITY  FACTOR
                      SUMMER  HOURS NOT EXCEEDED
                      ITD (OF)
                      RANGE (OF)
                      HOURS ABOVE 82°F AMBIENT
                      TOTAL GENERATION (MW-HR)
                                                             6R2P
                                                             80
                                                             .75
                                                             29
                                                             733
                                                             6,570,000
                      o
                     o o
                                  o  °o
                                            o    o
                                         o    ° o
                               o o
                                  o o
                                      o o
                      o o
                   oo o    o   o
                         o  ° o  o
                    o °°oO  o°°
                                 o  o

                    o
                    0
      30
Figure  5.3.
t-f— t~"h"h-H- H   h-l  I-  -I   I
        40             50
                    ITD - OF
-]- f
60
 Total Annual Cost for a Nominal  1000 MWe
 Fossil-Fueled Plant at Atlanta,  GA.
                                               o
                                               o
                                               o
•f-4- \
      70
              38

-------
SITE
CONDENSER TYPE
TURBINE TYPE
FIXED CHARGE RATE
FUEL COST ($/MMBTU)
CAPACITY COST ($/KWe)
ENERGY COST (MILLS/KW-HR)
COST BASE
   23000'
   225004-
       = PHOENIX    TUBE CONFIGURATION
       = SURFACE    TUBE LENGTH (FT)
       = MOD.CONV.  CAPACITY FACTOR
       = .20        SUMMER HOURS NOT EXCEEDED  -
       = .75        ITD (°F)
       = 100        RANGE (°F)
       = 40/20      HOURS ABOVE 32°F AMBIENT   =
       = JAN. 1976  TOTAL GENERATION (MW-HR)   =
                                                                   6R2P
                                                                   80
                                                                   .75
                                                                   29
                                                                   2760
                                                                   6,570,000
   22000-
o
o
o
   21500-1
5  21000^
                                                       o
                                                       o
   20500-
             •4 -
              35
      Figure 5.4.
                                         8
                                                  o
                                                  o
                                               8
4-4—h-f-4-4--I--4-4-f	I-- -1	4-rL—M-
         40             45             50
                  ITD - op

 Total Annual Cost for a Nominal 1000 Mwe
 Fossil-Fueled Plant at Phoenix, AZ.
                               39

-------
SITE
CONDENSER TYPE
TURBINE TYPE
FIXED CHARGE RATE
FUEL COST ($/MMBTU)
CAPACITY COST ($/KWe)
ENERGY COST (MILLS/KW-HR)
COST BASE
                        = PHOENIX    TUBE CONFIGURATION        = 6R2P
                        = SURFACE    TUBE LENGTH (FT)          = 80
                        - MOD.CONV.  CAPACITY FACTOR           =  .75
                        = .20        SUMMER HOURS NOT EXCEEDED = 29
                        - .75        ITD (°F)                  = 60
                        = 500        RANGE (op)                = —
                        = 10/10 *    HOURS ABOVE 82°F AMBIENT  = 2760
                        - JAN, 1976  TOTAL GENERATION (MW-HR)  = 6,570,000
   30000 +
   29000--
   28000-
o 27000
o
-p
i/i
o
<_>
 c
 c
   26000—
 (0
   25000—
24000-^— H—|—
            .3
                    r
                                        * See page 32 for definition
                          o o
                          0 0
                             o    o  o
                                 o

                                                      o  o
                        o          o o    o     Q   o
                       0     o 0°   o       oo
                        O          O  o     °

                                       o °   °  °o  o
                                ,j 0 O  O      0 ,,   o  O
                                       ° »  C)   O    8 <>
                                               11 °
                                             o
-t--t-t-~l
                                     Range/ITD
                                                            • 6
       Figure 5.5.
                   Total  Annual  Cost  for  a  Nominal  1000  MWe  Fossil-Fueled
                   Plant  at  Phoenix,  with ITD  fixed at 60°F.
                                40

-------
SITE
CONDENSER TYPE
TURBINE TYPE
FIXED CHARGE RATE
FUEL COST ($/MMBTU)
CAPACITY COST ($/KWe)
ENERGY COST (MILLS/KW-HR)
COST BASE
- PHOENIX
- SURFACE
= MOD.CONV
= .20
= .75
= 500
= 10/10
                                      TUBE CONFIGURATION        = 6R2P
                                      TUBE LENGTH              = 80
                                      CAPACITY FACTOR          = .75
                                      SUMMER HOURS NOT EXCEEDED - 29
                                      ITD (OF)                 = 30
                                      RANGE (°F)
                                      HOURS ABOVE 82°F AMBIENT
                                       2760
= JAN.  1976  TOTAL GENERATION (MW-HR)   = 6,570,000
   30000 —
   29000 -t
 g 28000
 I/I
 o
_  27000 -f
rO
   26000 -
                    O
                    o
                     o    o
                                          o    o
                                           o
                     o
                       o
                  o  o
                     o o
                              o  o
                                 o
                                     O o
   25000 J—I--I—M—tH--"M-H	I—4-4~-t  -f--f---l--4—I--4-+--I—1-
                .3             -4             .5             .6             .7
                                     Range/ITD

        Figure 5 6.   Total  Annual  Cost for a Nominal  1000  MWe  Fossil-Fueled
                     Plant at Phoenix, with ITD fixed at 3QOF.
                                41

-------
     Figures 5.7 and 5.8 show the effect of auxiliary power pumping
and fan power on the total  annual cost.  Wide variation of cost with
auxiliary power is evident with no specific trend.  Figure 5.7 is
for the Phoenix site using a gas turbine for supplying loss in capa-
city (capacity cost $100 KWe, energy cost 40/20 mills/KW-HR).   The
figure shows that the total annual cost is sensitive to the auxiliary
power; deviations of ± 3 MWe from the lowest point result in an in-
crease of about $0.5 million.  Figure 5.8 is for the Phoenix site
using an expanded plant for supplemental capacity (capacity cost
$500/KWe, energy cost 10/10 mills/KW-HR).  The cost is less sensitive
to auxiliary power but the annual cost is about $3 million higher
than the cost of Figure 5.7.

     Figure 5.9 shows similar results for the Phoenix site using a
module design of 4 rows and 2 passes as compared to the 6-row, 2-pass
design in the previous graph.  Again wide variation in cost is evident
but the spread is over a wider range of auxiliary power as compared
with the results of Figure 5.7.

     Figures 5.10 and 5.11 show the possible variations of the annual
cost with the tube length of the module.  Tube lengths of 40,  60, 70
and 80 ft. were used.  The variation in annual cost can range  up to
$6 million for a fixed tube length and a random combination of design
variables.  These cost variations are based on ITD ranging between
30°F and 70°F and range/ITD between 0.35 and 0.65.  In observing the
variations in cost, it was evident that the lowest cost occurred in
the ITD range of 41-43°F.  For ITDs closer to 30°F or 70°F the annual
cost was higher.  Figure 5.11 shows the variation in total annual
cost with the ITD fixed in a range of 41-43°F.  Variations of  up to
$3 million are evident in the cost.  However, the lowest cost  was ob-
tained with a module using 80-ft. long tubes.

     Two major conclusions stem from the above results:

     1.  The total annual evaluated cost is dependent on all the
         variables of the cooling system.  No single variable  domi-
         nates the cost, and setting some variables as fixed values
         can lead to non-optimal results.

     2.  Several combinations of design variables exist which  will
         result in the lowest total annual evaluated cost.  No
         unique combination gives this cost since some variables
         tend to have compensatory effects on the cost.

     Optimal combinations will lead to the lowest annual cost.  The
next section describes the results and parametric analysis using the
optimal results.
                                42

-------
SITE
CONDENSER TYPE
TURBINE TYPE
FIXED CHARGE  RATE
FUEL COST ($/MMBTU)
CAPACITY COST ($/KWe)
ENERGY COST (MILLS/KW-HR)
COST BASE

   21700 --


   21600 --


   21500 --


   21400 --


   21300--


   21200
8  21100 —
o
 1  21000 —
 in
 O

,- 20900 —
 ro
   20800 4-


   20700


   20600 -f
   20500
                          =  PHOENIX    TUBE CONFIGURATION
                          =  SURFACE    TUBE LENGTH (FT)
                          =  MOD.CONV.  CAPACITY  FACTOR
                          =  .20        SUMMER HOURS NOT EXCEEDED
                          =  .75        ITD (°F)
                          =  100        RANGE (6F)
                          =  40/20      HOURS ABOVE 32°F AMBIENT
                          =  JAN, 1976  TOTAL GENERATION (MU-HR)
                        6R2P
                        80
                        .75
                        10
                        2760
                        6,570,000
                                  o
                                  o
   o    o
                               o
                             O o
                                  ou      o
                                       o
                                        o  o
                                       0°
                                 o
                                o o
o      o
  o
    o
                                  O  0
                                                         0 0
            f-i-T-t^-l-t-^^^-±HH---1---T-±--H--H-H--t
           20
                          25            30            35
                               Auxiliary Power - MWe
                                                                    40
        Figure 5 7    Cost for a  Nominal 1000 MWe  Fossil-Fueled Plant at
                     Phoenix, at $100/KWe: 6-Row,  2-Pass Tube Configuration
                               43

-------
SITE = PHOENIX TUBE CONFIGURATION = 6R2P
CONDENSER TYPE = SURFACE TUBE LENGTH (FT) = 80
TURBINE TYPE = MOD.CONV, CAPACITY FACTOR = -75
FIXED CHARGE RATE = .20 SUMMER HOURS NOT EXCEEDED = 29
FUEL COST ($/MMBTU) = .75 ITD (OF) - 40
CAPACITY COST ($/KWe) = 500 RANGE (OF)
ENERGY COST (MILLS/KW-HR) = 10/10 HOURS ABOVE 82°F AMBIENT = 2760
COST BASE = JAN, 1976 TOTAL GENERATION (MW-HR) = 6,570,000
30000 -



29000 -





28000 -

o 27000
0
•*£>
(

1/1
° 26000
„

° 25000




o/ir\nn

o
~ 0
0
~" o
o
o
"" 0 0
o ° o
o
, 0 °
o
o
0 ° 0
0
— o
o o o
0 0 o 0
0 O °
— o
o
0 0
° 8 ° °
— ° ° o o o o°°°
0 ° 0 0 ° 0 o
o
0 ° 8 o OQ o
0 0
	 o o
o o o o o o
00°
o o *-b ° °o
o o o
o
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 — w«_ _^«__ . i — — — — — — -~- I 	 -4 	 I I — -— H — - — 4 	 1-— 	 J — . 	 1— — 1 1 1 1
      20
Figure 5.8.
          Auxiliary Power - MWe

Cost for a Nominal  1000 MWe Fossil-Fueled Plant at
Phoenix at $500/KWe: 6-Row, 2-Pass  Tube Configuration,
                        44

-------
SITE = PHOENIX TUBE CONFIGURATION = 4R2P
CONDENSER TYPE = SURFACE TUBE LENGTH (FT) = 80
TURBINE TYPE = MOD.CONV. CAPACITY FACTOR - .75
FIXED CHARGE RATE = .20 SUMMER HOURS NOT EXCEEDED = 10
FUEL COST ($/MMBTU) = .75 ITD (°F)
CAPACITY COST ($/KWe) - 100 RANGE (OF)
ENERGY COST (MILLS/HW-HR) = 40/20 HOURS ABOVE 82°F AMBIENT = 2760
COST BASE = JAN. 1976 TOTAL GENERATION (MW-HR) = 6,570,000
22100-

22000-


21900-

21800-

21700-

21600-

0 21500-
o
o
, — 1
7 21400-
to
° 21300-
ra
| 21200-
as
£21100-
21000-
?nqnn -

o o
°0
o
0 0

o
o
_ o o
o

o ° o 0
o
— o
o
o
— o
0 0 ° ° 0
~~ o
0 ° 0
— o o 0 o
- °
0 00
— o
0 ° 0 0
o o ° o °
°oo°0° o0
9. 00 0 ° °
° ° 0 0
0 0
i — O O O
0 0 ° 00
0 ° o
i I . 1 ° 1 1 1 1 1 1 J 	 l_ L_L
   20
Figure 5.9.
    25             30
          Auxiliary Power - MWe
35             40
Cost for a Nominal 1000 MWe Fossil-Fueled Plant at
Phoenix at $100/KWe: 4-Row, 2-Pass  Tube Configuration.
                        45

-------
SITE                       = PHOENIX
CONDENSER TYPE             = SURFACE
TURBINE TYPE               = MOD.CONV.
FIXED CHARGE RATE          = .20
FUEL COST ($/MMBTU)        = .75
CAPACITY COST ($/KWe)      = 500
ENERGY COST (MILLS/KW-HR)  = 10/10
COST BASE                  = JAN, 1976
              TUBE CONFIGURATION
              TUBE LENGTH (FT)
              CAPACITY FACTOR
              SUMMER HOURS NOT EXCEEDED
              ITD (°F)
              RANGE (6F)
              HOURS ABOVE 32°F AMBIENT
              TOTAL GENERATION (MW-HR)
= 6R2P

= .75
= 29
= 30-70

= 2760
= 6,570,000
 o
 o
 o
     30000 --
     29000 --
     28000-
 I   270004-
 c
 £   26000 --
     25000--
     24000
                             t
                              t
                                                t
                          40
      60
Tube Length - Ft.
                              80
    100
           Figure 5.10.
Cost for a Nominal  1000 MWe Fossil-Fueled Plant at
Phoenix for Varying Tube Length and ITD.
                                 46

-------
SITE                       = PHOENIX
CONDENSER TYPE             = SURFACE
TURBINE TYPE               = MOD.CONV.
FIXED CHARGE RATE          = .20
FUEL COST ($/MMBTU)        = .75
CAPACITY COST ($/KWe)      = 500
ENERGY COST (MILLS/KW^HR)  = 10/10
COST BASE                  = JAN. 1976
  30000
  29000
                TUBE CONFIGURATION
                TUBE LENGTH (FT)
                CAPACITY FACTOR
                SUMMER HOURS NOT  EXCEEDED
                ITD (°F)
                RANGE (°F)
                HOURS ABOVE 82°F  AMBIENT
                TOTAL GENERATION  (MW-HR)
                                - 6R2P

                                = .75
                                = 29
                                = 41-43

                                - 2760
                                = 6,570,000
  28000 4-
 o
 o
 o
 4-1
 l/l
  27000 _|_
 °26000

 03
 £25000
                        o
                        o
o
o
o
o
o
o
o
  24000 J	f-4
      o
      o
      o
      o
      o
      o
      o
      o
      o
      o
      o
                        40
o
o
o
o

o
o
o
o
o
                                                      o
                                                      o
o

o

o

o

o
o
o
o
o
o
     60
Tube Length - Ft.
                              80
                                                                     100
            Figure 5.11.
  Cost  for  a  Nominal  1000 MWe  Fossil -Fueled Plant
  at  Phoenix  for  Varying Tube  Length and Fixed  ITD.
                                 47

-------
                            SECTION 6

                     RESULTS AND DISCUSSION
     The final  result in the computer analysis is a printout of 13
possible best designs which represent the optimal design within a
variation in cost of ± 0.5 percent.   Implicit in these results is
the fact that there exist several  designs which will  provide the
lowest cost of the cooling system.

6.1  Computer Output

     Table 6-1 shows a sample computer output of the cost components
for a dry cooling system designed for Atlanta, Georgia.  A modified
conventional turbine with a multipressure surface condenser was used.
The dry tower was designed with modules consisting of 6-row, 2-pass,
80-ft. long tubes.  The cost base is January, 1976, using a fixed
charge rate of 20 percent.  The cost summary in Table 6-1 is for the
13 cases differing in the number of modules, fan and pumping pov/er,
design ambient air conditions, and other parameters as depicted in
Table 6-2.

     The first column of Table 6-1 is the total capital cost of the
dry tower structure.  This cost includes cost of modules and fans,
erection and installation, and support structure.  The second column
is the incremental cost of overhead and maintenance for the cooling
system which was taken as 0.05 mills/KW-HR.  The third column is
entitled "pipe cost," which consists of the cost of the recircula-
ting system including piping, distribution manifolds, controls, pumps,
storage tanks, etc.  Next come the capacity and energy penalties.
Note that the auxiliary power requirement charges were included as
part of the penalty cost using gas turbine plant capital and energy
charges.  The sixth column is the total yearly fuel cost for the
plant.  The base fuel cost for this case was $0.75/MMBTU.  The sev-
enth column is the incremental fuel  cost expressing the increase in
fuel cost of the dry tower turbine as compared with the conventional
turbine.  This also includes the fuel cost for overfiring the plant
at part load to provide the power for auxiliaries.  This incremental
fuel cost was calculated from the cumulative difference between the
heat rate of the plant at the ambient temperatures of the site and a
base heat rate.  This base heat rate is as follows:

     1.  8887 BTU/KW-HR @ 100 percent load.

     2.  9021 BTU/KW-HR @  75 percent load.

     3.  9396 BTU/KW-HR @  50 percent load.
                                48

-------
        TABLE 6-1.    COST SUMMARY  OF  MECHANICAL  DRAFT  DRY  COOLING TOWER SYSTEM
**THE FOLLOWING SHOWS ANNUAL COSTS IN  THOUSANDS OF DOLLARS FOR THE OPTIMIZED DESIGNS OF THE BOX COMPLEX**

1
2
J
4
5
6
7
8
9
10
11
u
li
1
TUBE
MODULE
COST
4961 .0
50=44,9
5352.6
5504.0
-1851.5
5520.0
5251.6
5215.6
4826.6
5108.7
5252.6
5504.0
5569.5
2
HEAT
REJECT
0 + H
528. 5
528.8
529.5
529. 9
528. S
529.5
529.9
528.8
J28.4
529.5
528.8
529.8
529.5
3
PIPE
COST
1605.4
1681 .4
1729. /
1819.8
151S.O
1740.5
1755.2
1727.5
1546,2
1691.1
Io47.4
1829.0
1778.1
•4
C4PC
PEN.
1371.5
1809.2
1707.1
1592. i
H2&.0
Io95.9
1668. 5
1747.4
1927.2
1769.2
1779.1
1597.8
164J.5
2
ENERGY
PEN.
4755,2
5616.7
5550.5
5072,1
5906.8
5555.0
5299.0
5450.5
5905,9
5541.0
5544.5
5122.0
5184.4
6
ANNUAL
FUEL
cosr
45569.7
45552.9
45559.2
45528.9
45589.2
45559.5
45556.6
45552.6
45585.9
4S559.5
45555.2
45551.4
45550,*,
7
IfltH.
FUtL
COST
1144.9
1128.1
1114. a
1104.0
1 164.4
1114.4
1151.8
1107.8
1161,1
1154.7
1110,4
1106.5
1105.7
8 9
HATEH
COND, HECVRr
COST PJ3B.
782.0
790.7
826.7
862.6
766.4
815,5
844.4
814.1
768,7
797.4
770.1
855.4
854.2
0.0
0.0
0.0
0.0
0,0
o.o
0.0
0.0
0,0
0.0
0.0
0.0
0.0
10
EJTC.
SUb-
ST4T.
156.8
141.9
14J.6
145. a
159,6
146.7
151.0
158.0
158.4
148.6
142,6
145.6
H2.2
11
INTTTST
DURING
CONST-?
916.2
957.0
969.9
1017.9
888, 1
980,5
978,5
965.2
891.9
947.5
^55.1
1017.8
995.5
12
MTTL
PER
KWH
2,591
2,588
2.577
2.585
2. i86
2.588
2. i77
2.587
2,591
2.586
2. 192
2.592
2. 576
.U
TOTAL
cosr
15711,5
15687,6
15615,6
I5o58,5
15o74.2
I568b,9
15619,5
15682.8
15706,5
I5o77.5
15718,5
15715,9
15ol2.
-------
                                           TABLE 6-2.   TOWER PARAMETER SUMMARY
en
o






1
2
3
a
5
6
7
6
9
10
11
12
13

DESIGN
HEAT
DUTY
MMBTU/HR
1
a7!7.8
4735.6
4717.5
4717.5
4717. H
4727,5
4717. 4
4733.0
4717.7
4721 .4
4762.1
4753,2
4718.2

TTD


°F
2^
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5,0
5.0
5.0
5.0
5.0
5.0

MAX.
BACK
PRES.
in.Hg
3_
8,4
3.1
7.7
7.2
8,6
7.5
7.3
8.0
8.6
7.7
8.0
7.2
7.5

FAN
HP


4
159.
1 7b.
166.
160.
172.
178.
191,
149,
177.
199.
170.
159.
158.

FAN
MW


5^
17
19
19
19
18
20
22
17
18
21
19
19
18

PUMP
MW -


e_
6
6
b
7
5
6
6
6
5
6
5
7
7

WRT
MW


7
0
0
0
0
0
0
0
0
0
0
0
0
3

AUX.
MW


8
23.0
24.8
25.3
26.0
24.1
26,5
28.3
23.2
23.6
27.4
25.0
25.9
2«.7

RNG/
ITD


9
.53
.5V
.52
.51
,54
.54
.52
.51
.54
.55
.56
.51
.50

ITD


OF
10
53,2
51.5
49.3
47,1
53,7
48,6
47,7
50.7
53.9
49.9
51,0
47,3
48.4
* PRES.
AIR
SIDE

in.H20
11
,b3
.66
,bb
.63
.67
.67
.70
.60
,66
.70
.66
.63
.61
DROP
TUBE
SIDE

psi
12
9.3
9.4
10,0
10.2
9.3
9.4
10.5
9.7
9.3
9.4
8.2
10.2
10. a
                            Note:  All  parameters, are  for  the entire  dry  cooling  tower,  except  for

                                   column 4 which is the horsepower per fan.

-------
     non           corresP°nd  to  the  conventional steam turbine
at 3.0, 2.0, and 1.0  in. Kg absolute back pressure, respectively.

     The eighth column  is the  total  cost of  the condenser including
material and installation.  This  is  followed by the cost items of
the water recovery turbine when jet  condensers are employed.  The
tenth column is the cost of electrical work  for connecting the power
to the fans and uses  a  portion of the transformer switch yard.
The interest during construction  is  the  last item before the mills/
KW-HR and the total annual evaluated cost items.  Mills/KW-HR is the
total annual cost divided by total power produced; this expresses
the total annual evaluated cost of the dry cooling system of the
plant per unit of power produced.

     Table 6-2 shows  the design conditions corresponding to the 13
designs shown in Table  6-1.  Note that the TTD of the surface con-
denser was optimized  at the lowest allowable TTD.  Column 3 of Table
6-2 shows the possible  variation  in  maximum  back pressure for differ-
ent designs with identical cost.  The back pressure range is between
7.2 and 8.6 in. Hg absolute.   The column entitled ITD shows the op-
timal ITD for the various 13 designs.  The results in this column
show also the variation in the design ITD for an optimum.  In this
case the range of ITD is between  53.9 and 47.1°F.  Additional out-
put showing the design  information for the optimal case is given
in Appendix E.

     A demonstration  of cost breakdown of the cooling system compo-
nents is given in Table 6-3 which shows  the  optimum cost for Casper,
Wyoming.  This table  shows the piping system as a major cost compo-
nent in the dry tower due primarily  to the requirement of distribu-
tion manifolds and general field  labor.

     A parametric study was prepared to  evaluate the effect of design
and economic factors  on the dry tower annual evaluated cost.  As was
shown in Tables 6-1 and 6-2, the  optimal analysis results in a complex
of 13 best designs, all within ±  0.5 percent tolerance.  Any of the
alternate 13 best designs can  serve  as the optimal design.  The results
of the parametric study are presented in a tabular form as shown in
Tables 6-4 through 6-24.  The  design and cost information is grouped
in the table for easy identification and interpretation of the results.

     Few items in the parametric  tables  (see Tables 6-4 - 6-24) require
explanation.  The tube  configuration item, first line on the right side
of the table, corresponds to the  number  of rows and number of passes of
the tube modules.  This is designated with 2 digits and 2 letters.  The
letter R refers to rows and the letter P refers to passes.  The symbol
6R2P refers to a tube module configuration of 6 rows and 2 passes.  The
item "SUMMER HOURS NOT  EXCEEDED," also placed on the right side of the
table, pertains to the  number  of  hours on the temperature probability
curve of the site that  corresponds to the maximum temperature used for
the calculation of capacity and energy penalties.  The numbers of hours
                                 51

-------
    TABLE 6-3.   COST FACTOR BREAKDOWN IN MILLIONS OF DOLLARS^
Cost of tube modules                           $ 15.500
Cost of fans and motors                           4,280
Cost of shipping                                  0.745
Cost of structure                                 2-3J5
Cost of erection and installation                 1.930
SUB-TOTAL (dry tower and cooling air)           $ 24.800       $ 24.00


Cost of condenser                              $  4.140
Cost of piping, manifolds,  and pumps              4,050
Cost of controls, valving                         2.760
Cost of storage tank and pit                      1.330
Cost of shipping                                  0.170
SUB-TOTAL (cooling water)                      $ 12.450       $ 12.45
Cost of added steam supply                     $  0,750
Cost of electrical substation & cabling           0.700
Cost of auxiliary wet tower                       0.300
SUB-TOTAL (energy & capacity penalties)         $  1.750       $  1.75


Cost of interest during construction
  (11.9 percent of sum of above subtotals)      $  4.640       $  4.54


TOTAL CAPITAL COST                                            $ 43.54
* Cost base: January 1976
                                52

-------
and the corresponding maximum temperature are selected somewhat arbit-
rarily by designers of cooling towers.

     The total annual cost in thousands of dollars is the first item
of the results in the body of the tables.  This is followed by the
major cost items of the dry cooling systems..  Cost items such as in-
terest during construction,, cost of additional steam supply, etc. are
not shown in the tables.  The design variables of the optimal tower
are shown in the third  body  of information on the lower part of each
table.  The item "MAX LOSS IN GENERATION (MWe)" shows the loss in
capacity at the highest temperature combined with the total auxiliary
power required.

6.2  Effect of Site on Cost of Dry Cooling

     Table 6-4 shows the cost summary of dry cooling systems employed
for power plants located at 5 sites within the continental U.S.  De-
sign and cost information  is  grouped in the table for easy identifi-
cation and interpretation of the results.  The tube configuration of
the modules consists of 6 rows with 2 passes (6R2P), and the tubes
are 30 ft. long.  The highest ambient temperature used for penalty
assessment was selected as the temperature that is not exceeded 29
hours during the summer.

     Table 6.4 shows the strong effect which the location has on the
cost of the dry cooling system.  The annual cost of a dry cooling
system located in Burlington, Vermont, is $7.5 million less expensive
than a system located in Phoenix, Arizona.  This is evident from the
different weather conditions at the two sites.  The Phoenix site has
a maximum ambient temperature (occurring no more than 29 hours in the
summer) of 109.5°F, whereas Burlington's similar maximum temperature
is only 88.2°F.  Furthermore, the Phoenix site has over 2760 hours
when the temperature is above 82°F as compared with 176 hours in
Burlington.  Both the maximum temperature at the site and the area
under the annual temperature duration curve affect the cost of the
dry tower.

     Table 6-4 indicates that the cost of piping is a major component
in the cost of the dry  tower.  The cost of piping is about double the
cost of the surface condenser.  This stems from the fact that the
large number of dry tower modules requires an extensive piping and
distribution system.

6.3  Effect of Turbine  Type

     Table 6-5 shows the results of the analysis for plants employing
either the high back pressure or the modified conventional turbine.
Both the Casper and the Phoenix sites were studied.  The results of
Table 6-5 were computed with a fuel cost of $0,75/MMBTU,  Table  6-5
shows that for this fuel cost the use of a high back pressure tur-
bine results in a cheaper incremental cost for  the dry tower cooling
                                 53

-------
system.  The difference in cost between the two turbines is dependent
on the site weather conditions.  For the Casper site the use of the
high back pressure turbine results in a dry cooling system which is
about $600,000/year cheaper than the modified conventional turbine.
For the Phoenix site the difference in cost is about $3.3 million/
year in  favor  of  the   high  back  pressure  turbine.   Table 6-5
shows that the modified conventional turbine uses much less fuel,
i.e., the incremental fuel cost is much lower.  However, this savings
is nullified by the higher capital cost and higher energy and capacity
penalties.  The difference in dry tower cost for the 2 turbines for
the same site is primarily a function of the fuel cost.  Thus, the
fuel cost, if different for sites compared, may significantly affect
the conclusions drawn from the computed results.

     Table 6-6 shows the total cost of the dry tower systems for both
alternate turbines as a function of fuel  cost for the Casper site.   As
the fuel cost increases, fuel savings begin to play a more dominant
role and the modified conventional turbine becomes cheaper than the
high back pressure turbine.  Notice that when the unit fuel cost is
$1.50/MMBTU, the trend is reversed, i.e., the high back pressure tur-
bine is more expensive than the modified  conventional  turbine by
about $1.23 million/year.  At a fuel cost of $1.50/MMBTU, the capital
cost and energy penalties are still higher for a modified conventional
turbine but the incremental fuel cost is  about $4 million lower in  cost
than for the high back pressure turbine.   The results in Tables 6-5
and 6-6 are shown graphically in Figure 6.1 which shows the effect  of
unit fuel cost on dry tower systems for the 2 turbines.  Figure 6.1
shows that for the Casper site the break-even fuel cost is slightly
over $1.00/MMBTU.

     The high back pressure turbines seem quite attractive for hot
climates and sites with low fuel costs.  The capital  cost of the high
back pressure turbine here was assumed to be the same as the cost of
a conventional  turbine.  However, the cost of the design modification
for the operation of the turbine at high  back end temperatures may
outweigh the advantages of smaller energy penalties.

6.4  Effect of Condenser Type

     Both surface condensers and direct contact condensers were studied
for the Casper site with either a modified conventional turbine or  a
high back pressure turbine.  Table 6-7 indicates that the use of a  sur-
face condenser would cost approximately $200,000/year above the cost
of a jet condenser.  Basically, this is due to the fact that a surface
condenser has about a 3°F higher TTD than a direct contact condenser
and requires an equivalently lower ITD tower design.   Thus, the capital
costs are higher for a system with a surface condenser,  if a modified
conventional turbine is used, this difference in the TTD will also  re-
sult in higher penalties for the design with the surface condenser.
This is not necessarily so for a high back pressure turbine, since'its
heat rate curve is much flatter, and a 3°F rise in saturation tempera-


                                54

-------
C-ITE                       = CASPER
CONDENSER TYPE             = SURFACE
TURBINE TYPE
FIXED CHARGE RATE          = ,20
FUEL COST ($/MMBTU)
CAPACITY COST ($/KWe)      = 100
ENERGY COST (MILLS/KW-HR)  = 40/20
             TUBE CONFIGURATION        = 6R2P
             CAPACITY FACTOR           = .75
             SUMMER HOURS NOT EXCEEDED - 29
             TU1£ LENGTH (FT)          =80
             HOURS ABOVE 82°F AMBIENT  = 440
  18000 H-
  17500 -5-
  17000 -f
  16500 -4-
o
  16000

 ?15500 -4-
 ro
 ^
 C

<15000
  14500 H
  14000
                .75
             Figure 6,1,
   1.00          1.25

 Fuel Cost - $/MMBTU
1.50
                                                                           1.75
Total Annual Cost for Various Fuel Cost
and Turbine Type - Casper.
                                55

-------
ture is not quite as significant.

     Another noteworthy observation about Table 6-7 is that the in-
cremental  fuel  cost is lower for the system with a surface condenser.
This results from the higher pumping power required for a direct con-
tact system (on the order of 2,5 MWe).   Additional fuel must be_con-
sumed to power the pumps.  This difference is especially significant
at part loads when fan control  occurs.   Therefore, an increase in the
fuel cost could make the systems with surface condensers cheaper.

6.5  Effect of Economic Factors

     A parametric analysis was  performed to evaluate the effect of
economic factors on the cost of dry towers.  The analysis was per-
formed for the Casper site using a modified conventional turbine and
a surface condenser.  Results are shown in Tables 6-8 and 6-9 for
unit fuel  cost of $0.75/MMBTU and $1.50/MMBTU respectively.  Two
fixed charge rates, 15 percent and 20 percent, were used, and  2
methods of accounting for penalties were employed.

     Tables 6-8 and 6-9 show that the higher fixed charge rate re-
sults in a more expensive dry tower system,  When the loss in capa-
city was replaced by gas turbine generation, the annual cost for a
0.20 fixed charge rate was about 20 percent higher than the annual
cost with a 0.15 fixed charge rate.  However, if replacement power
came  from a new plant, the increase in cost from a fixed charge
rate of 0.15 to one of 0.20 was nearly 30 percent.  Therefore, the
magnitude of the effect of raising the fixed charge rate depended
on how the penalties were assessed.

     The results in Tables 6-8 and 6-9 show that assessing penalties
using a new fossil plant with a capacity cost of $500/KWe and an en-
ergy cost of 10 mills/KW-HR results in much more expensive plant op-
eration than when using a gas turbine plant with $100/KWe and 40/20
mills/KW-HR energy charges.  For a fixed charge rate of 0.20, the
difference in cost is about $5 million/year more when penalties re-
quire an expanded fossil plant.  This difference remains essentially
unchanged whether the fuel cost is $0.75/MM3TU or $1.50/MMBTU,  The
reason for this difference is that the increased capital cost of the
new plant far outweighs its savings in energy cost.  The optimized
dry cooling system for the expanded plant tends to be considerably
bigger; i.e., more modules are needed than for the dry cooling sys-
tem using gas turbines, and higher auxiliary cost and energy require-
ments result.  This results in one beneficial effect in that the maxi-
mum back pressure for the expanded plant is considerably lower than
the maximum back pressure of the plant using gas turbines for peaking,

6.6  Effect of Tube Configuration

     The effect of the number of rows and passes of the dry cooling
tower tube modules on the total annual cost is surprisingly small.
                                56

-------
A careful look at the results in Tables 6-10, 6-11, and 6-12 shows the
importance of optimizing the tower design for each set of conditions.

     The first situation studied was for the Casper site with replace-
ment power coming from gas turbines»  The tube configurations used
were: 6-row, 2-passi 5-row, 2-pass; 4-row, 2-pass; and 4-row, 1-pass.
These results are shown in Table 6-10,  The difference in total annual
cost for all the designs was under $200,000, which is slightly over
a 1 percent change.  In fact, the  2  cheaper designs, 6R2P and 4R2P,
are only $5,000 apart.  This occurs because the optimization procedure
searches for the combination of design variables for the lowest cost.
The 6-row, 2-pass design requires a lower number of modules with fewer
piping components and smaller ground plot area than do the other con-
figurations studied.

     Table 6-11 shows the summary of the tube module configuration
analysis for the Phoenix site using an expanded plant for replacement
power ($500/KWe, 10/10 mills/KU-HR).  The table shows almost identical
cost for all 2-pass  configurations.  However, the 6-row, 2-pass tower
requires 92 modules  as compared with 124 modules for the 4-row, 2-pass
design.  The 4-row,  1-pass configuration is about $350,000 more ex-
pensive than the 2-pass arrangements.

     Table 6-12 shows the effect of the penalty charges on the cost
with different tube  configurations.  For the Casper site with an ex-
panded plant for replacing lost capacity, the 4-row, 2-pass design
is about $200,000 cheaper.  However, for the Phoenix site with gas
turbines used for replacing lost power, the 4-row, 2-pass design is
about $350,000 more  expensive.

     Conclusions similar to those for the effect of tube configuration
on cost follow from  consideration of other design variables, such as
fuel cost, fixed charge rate, etc.  A different fuel cost, for example,
could produce different results.

     It seems that the savings  in pumping costs for  1-pass designs
is outweighed by the increased  piping costs and reduced heat transfer
capabilities.  For the 2-pass designs, the number of rows is not a
major consideration.  Designs, with 6 rows are probably more desirable
since they require less plot area and fewer fans and modules.  Above
6 rows, standard-size fans do not provide the necessary air flow, and
schemes involving large diameter fans or sharing fans between bays
would have to be employed,

6.7  Effect  of Tube  Length

     The effect of tube  length  was studied by choosing  three different
situations  and optimizing  the design  using 40-,  50-, 70-, and 80-ft.
tubes.   The  general  trend was a decrease  in  total annual  cost with  an
increase in  tube  length.  Tube  lengths  above 80  ft. were  not studied
because  of  uncertainties  in  shipping  procedures.   In all  3  cases,
                                   57

-------
the 70-ft.  design was slightly more expensive than the 60-ft. design.
This was due to the fact that shipping costs are higher for lengths
greater than 60 ft., and for tube lengths over 60 ft. a single fan
per bay can no longer provide the required air flow.  Thus, 2 fans
per bay are required which increases the module cost and auxiliary
power.  Eighty-ft. tubes provide the economy of size over smaller
designs and permit use of more efficient, larger fans in the design
optimization.

     Tables 6-13, 6-14 and 6-15 demonstrate these effects.  For the
Casper site with a modified conventional turbine and replacement ca-
pacity and energy coming from a gas turbine, there is a $1.1 million
annual advantage of the 80- over the 40-ft. tubes.  As the tube length
increases, less modules are needed.  This permits lower ITD designs
using fewer modules with corresponding lower costs for piping, capa-
city, and energy penalties.

     Table 6-15 shows the Phoenix site with a high back pressure tur-
bine and penalties coming from a gas turbine.  For this case the tur-
bine heat rate curve is flatter, and the capacity and energy costs
play a less significant role.  The savings from 80-ft. to 40-ft.  tubes
($1.1 million) are primarily due to the reduced module and piping
costs that arise from fewer numbers of modules.

     For Phoenix with a modified conventional turbine and penalties
coming from a new plant,  the cost difference is $1.3 million per
year.  As tube length increases, there are less modules and lower
ITDs.  This lowers the piping, capacity, and energy charges.

     For the cases studied, it is evident that 80-ft. tubes are the
most economical.  The fact that they have an increased pressure drop
is insignificant compared with the high costs of modules, and the
amount of power required for the fans.  Longer tubes should be studied
to examine whether their increased handling and shipping costs are
offset by their savings in other piping costs and whether their total
cost is lower than that of shorter tubes.

6.8  Effect of Summer Hours

     The  "SUMMER HOURS NOT EXCEEDED"  is a term used to de-
termine how many of the hottest hours at a particular site can be
ignored.  Using the hottest temperature ever recorded to calculate
capacity replacement, for instance, unfairly penalizes the dry cool-
ing tower system.  These high temperatures occur for short periods
of time, and the power plant most probably will not see their effect
due to the time constant of the plant.  A commonly used rule is the
10-hour rule.  In this rule, the hottest 10 hours of the year are
ignored, and the highest temperature which is exceeded during those
10 hours is used for capacity replacement calculations and for energy
penalties for the 10-hour duration.   Another method is to use 1 per-
cent of the 4 hottest months which corresponds to 29 hours.  A third
                                58

-------
method used in this  study had  2,5  percent  of  the  4  hottest months,
which is 72 hours.

     Table 6-16 shows  the effect of  going  from  the  10-  to 29-hour
rule for the Casper  site with  a modified conventional turbine.  There
was only a 1.4 F difference  in the maximum ambient  temperature, but
for the case when  penalties  are made up by a  new  plant  this can be
significant.  Since  a  new, expanded  plant  has relatively high capa-
city penalties, any  reduction  in turbine back pressure  results in
lower cost.  Thus, the 29-hour case  was $350,000  cheaper per year
than the 10-hour case.  The  decrease in the highest ambient temper-
ature allowed a decrease  in  back pressure  and a large reduction in
the capacity penalty.   It required more modules and fans to do this,
but the increased  capital costs were compensated  by the ability to
use a lower capacity replacement.  When the penalties come from a
gas turbine, the effect is not as  drastic  since capacity replacement
is relatively cheaper.  The  reduction in the  highest ambient temper-
ature simply allows  a  slight reduction in  water flow rate and fan
power.  This increases the ITD and reduces the  capital  costs.  The
29-hour case saved only $5,000 per year.

     The same type of  study  was conducted  for Phoenix with a modi-
fied conventional  turbine; it  is shown in  Table 6-17.   The differ-
ence in the maximum  ambient  temperature from  10 hours to 29 hours
was 2.4°F.  As in  the  Casper case, when penalties come  from a new
plant a savings occurs which is almost entirely due to  the reduc-
tion in capacity penalty.  For Phoenix this amounted to $650,000
annually.  For penalties  coming from a gas turbine  the  effect is
much less  drastic.   The savings was  only $40,000  annually.  As in
the Casper case, the fan  power and water flow rate  decreased allow-
ing a higher ITD and lower capital costs.   It was interesting to
note that  due to the large number  of hours that the ambient is
above 32°F at Phoenix, the energy  penalty  increased for the 29-hour
case.  This occurred because of the  higher design ITD which offset
some of the capital  savings.

     Table 6-18 shows  the Phoenix  site with a high  back pressure tur-
bine and with 10,  29,  and 72 hours that are not exceeded.  Penalties
come from  a gas turbine.  The  effect is small due to the flatness of
the turbine heat rate  curve  and the  fact that gas turbine capacity
replacement is cheap.   In going from 10 hours to  72 hours, there was
a 4.1°F difference in  maximum  ambient temperature;  yet, the savings
was only $190,000  annually.  As the  number of summer hours not ex-
ceeded increases at  a  given  site,  the ITD  also  increases, thus re-
ducing the total annual cost.  For 29 hours this  substantially lowered
the capital costs  and  accrued  large  energy penalties during the many
hours that the ambient was above 82°F. For 72  hours the optimum schem-2
decreased  the capital  costs  less drastically  and  incurred slight in-
creases in energy  penalties.
                                 59

-------
     The effect of the number of summer hours not exceeded, which a
designer selects as a basis to calculate penalties, can be a signifi-
cant factor in determining the total annual cost of a dry cooling
tower.  This cost depends on the type of turbine, penalty scheme,
and climatic conditions.

6.9  Effect of ITD

     The effect of ITD on an optimal design was studied by fixing the
ITD at a specific value and finding the combination of other design
variables which would produce the lowest cost for the specific ITD.
Two sites were analyzed.  The results for the Casper site with gas
turbines are shown in Tables 6-19 and 6-20; the results for the Phoenix
site with expanded plant for penalty assessments are shown in Tables
6-21 and 6-22.  For both sites the total annual cost has a minimum
point at a specific value of ITD.  This is shown in Figures 6.2 and
6.3.  Each point on these curves is an optimized point for that par-
ticular ITD.  Any deviation of auxiliary power, range, etc., from
those that are given in the tables could result in higher costs for
that ITD.

     The effect of ITD is obvious from looking at the tables.  As
the ITD increased the capital costs decreased, but the penalties
increased.  When the ITD increased, the number of modules and aux-
iliary power decreased while the maximum back pressure and loss in
generation increased.

     For the Phoenix case there was a $2.8 million annual increase
from the optimum design ITD of 40°F to an ITD of 60°F.  It is note-
worthy that a deviation of 5°F from the optimum design ITD gave a
penalty of over $300,000/year.

     For the Casper case the optimum ITD was approximately 53°F.
The corresponding cost was nearly $4.2 million cheaper than for a
design ITD of 30°F, and a 5°F deviation from the optimum cost less
than $200,000/year.  Notice that the Casper curve is flatter near
the optimum than the Phoenix curve.  Casper was less sensitive be-
cause of its  lower  capacity replacement charge.

     The choice for the design ITD can have a large effect on the
annual cost.  In addition, its optimum value is dependent on the site-
related variables, penalty scheme, and economic parameters.  These
will also determine the shape of the ITD curve.

6.10 Effect of Range

     The study of the effect of range was similar to the study of ITD,
and range was shown to be a significant factor.  The results are pre-
sented in Figures 6.4 and 6.5.  Again, it must be remembered that each
point is optimized for the conditions stated.
                                60

-------
SITE                       =  PHOENIX
CONDENSER TYPE             =  SURFACE
TURBINE TYPE               =  MOD,COM/.
FIXED CHARGE RATE          =  .20
FUEL COST ($/MMBTU)        =  .75
CAPACITY COST ($/KWe)      =  500
ENERGY COST (MILLS/KW-HR)  =  10/10
TUBE CONFIGURATION
CAPACITY FACTOR
SUMMER HOURS NOT EXCEEDED
TUBE LENGTH (FT)
HOURS ABOVE 82°F AMBIENT
COST BASE
6R2P
.75
29
80
2760
JAN. 1976
   28000-1-
   27000
o
o
o
 1  260004-
10
o
03
  25000
  24000
                                               50
                      60
                                 ITD - °F
        Figure 6.2.    Total Annual Cost for Various ITDs - Phoenix,
                                61

-------
 SITE                        =  CASPER
 CONDENSER  TYPE              =  SURFACE
 TURBINE  TYPE                =  MOD,CONV.
 FIXED  CHARGE  RATE           =  .20
 FUEL COST  ($/MMBTU)         =  .75
 CAPACITY COST ($/KWe)       =  100
 ENERGY COST  (MILLS/KW-HR)   =  40/20
           TUBE  CONFIGURATION         ' 6R2P
           CAPACITY  FACTOR            = .75
           SUMMER HOURS  NOT  EXCEEDED = 29
           TUBE  LENGTH (FT)           = 80
           HOURS ABOVE 82°F  AMBIENT   - 440
           COST  BASE                 = JAN. 1976
   19000 --
   18000--
  17000--
o
o
o
1/1
o
r- 16000--
CO
3
(0
•t-J
o
  15000--
              30
40             50

    ITD - °F
                                                           60
70
          Figure 6.3.   Total Annual Cost for Various  ITDs  -  Casper.
                                62

-------
SITE                       =  PHOENIX
CONDENSER TYPE             =  SURFACE
TURBINE TYPE               =  MOD,CONV
FIXED CHARGE RATE          =  ,20
FUEL COST ($/MMBTU)        =  .75
CAPACITY COST  ($/KWe)      =  500
ENERGY COST (MILLS/KW-HR)  =  10/10
          TUBE CONFIGURATION         =  6R2P
          CAPACITY FACTOR           -  .75
          SUMMER HOURS NOT EXCEEDED  =  29
          TUBE LENGTH (FT)          =  80
          HOURS ABOVE 82°F AMBIENT  =  2750
          COST BASE                 =  JAN.  1976
   26500
   26000 -r-
   25500 -T-
 o
 o
 o
 3 25000-
 c
 •=c
 CO
 o 24500-
   24000
               15
20             25
   Range  -  °F
                                                             30
35
        Figure 6.4.   Total Annual Cost for Various Ranges - Phoenix
                                  63

-------
SITE                       = CASPER
CONDENSER TYPE             = SURFACE
TURBINE TYPE               = MOD,CONV,
FIXED CHARGE RATE          = ,20
FUEL COST ($/MMBTU)        = .75
CAPACITY COST ($/KWe)      = 100
ENERGY COST (MILLS/KW-HR)  = 40/20
           TUBE  CONFIGURATION        = 6R2P
           CAPACITY  FACTOR           = .75
           SUMMER HOURS  NOT EXCEEDED = 29
           TUBE  LENGTH  (FT)          =80
           HOURS ABOVE  82°F AMBIENT  = 440
           COST  BASE                 = JAN. 1976
  16500- -
  16000 __
o
o
o
£15500-
o
ra
3
C
4J
O
  15000--
               15
20             25
   Range - °F
30
35
        Figure 6.5.   Total Annual Cost for Various Ranges - Casper.
                                64

-------
     The Phoenix case with a modified conventional turbine and penal-
ties coming from a new plant can be found  in Table 6-23,  It is inter-
esting to note that changing the range did not alter the number of
modules.  Changing the range did affect the water flow rate, however.
As the range increased, the water flow rate dropped and resulted in
smaller piping and condenser costs and larger ITDs.  The larger ITD
caused higher capacity and energy penalties since back pressure and
loss in generation increased.

     The trend of increasing penalties with decreasing capital costs
resulted in a minimum total annual cost at a range of 20°F.  At this
point the total cost was  $2 million less than that for an optimum
design for a range of 35°F.

     The Casper site with a modified  conventional turbine and penal-
ties coming from a gas turbine exhibited the same trend as the Phoenix
case.  The results are presented  in Table  6-24.  For Casper the range
curve was much flatter and  had a minimum annual  cost at a range near
26°F.  This represented a cost that was almost $1.2 million/year
lower than for a tower designed for a range of 15°F.
                                 65

-------
        TABLE 6-4.   EFFECT OF SITE ON TOTAL ANNUAL COST

SITE                      = 	        TUBE CONFIGURATION        = 6R2P
TURBINE TYPE              = MOD.CONV.    CONDENSER TYPE            = SURFACE
FIXED CHARGE RATE         = .20         TUBE LENGTH (FT)          = 80
FUEL COST ($/MMBTU)       = ,75         CAPACITY FACTOR           = .75
CAPACITY COST ($/KWe)     = 100         SUMMER HOURS NOT EXCEEDED = 29
ENERGY COST (MILLS/KW-HR) = 40/20       HOURS ABOVE 82°F AMBIENT  = 	
COST BASE                 = JAN. 1976    TOTAL GENERATION (MW-HR)  = 6,570,000

NOTE: ALL COSTS ARE ANNUALIZED.

TOTAL COST ($1000)                 20522   15612   14869   14593    12817

SITE                              PHOENIX ATLANTA CASPER BISMARCK BURLINGTON

HOURS ABOVE 82°F AMBIENT            2760     783     440     415      176

AMBIENT EXCEEDED BY 29 HOURS (°F)  109.5    95.3    93.1    96.1     88.2
MODULE COST ($1000)
PIPING COST ($1000)
CONDENSER COST ($1000)
CAPACITY PENALTY ($1000)
ENERGY PENALTY ($1000)
INCREMENTAL FUEL COST ($1000)
ANNUAL FUEL COST ($1000)
NUMBER OF MODULES
TOTAL FAN POWER (MWe)
TOTAL AUXILIARY POWER (MWe)
MAXIMUM BACK PRESSURE (in. Hg)
MAXIMUM LOSS IN GENERATION (MWe)
TTD (Op)
ITD (OF)
RANGE (°F)
5594
1964
990
2293
6612
1316
45541
80
21
29.0
9.7
114.7
5.1
43.9
21
5370
1778
854
1644
3184
1106
45331
76
18
24.7
7.5
82.2
5.0
48.4
24
4961
1661
828
1828
3014
968
45192
72
18
24.4
8.2
91.4
5.0
53.9
26
4846
1652
844
1872
2815
959
45184
68
21
28.1
8.1
93.6
5.0
50.6
25
4268
1420
730
1798
2181
944
45169
60
17
22.4
8.2
89.9
5.2
58.8
31
                                66

-------
TABLE 6-5.   EFFECT OF TURBINE TYPE - CASPER AND PHOENIX
SITE = 	 TUBE CONFIGURATION
TURBINE TYPE = - — CONDENSER TYPE
FIXED CHARGE RATE, = .20 TUBE LENGTH (FT)
FUEL COST ($/MMBTU) = .75 CAPACITY FACTOR
CAPACITY COST ($/KWe) = 100 SUMMER HOURS NOT EXCEEDED =
ENERGY COST (MILLS/KN-HR) = 40/20 HOURS ABOVE 82°F AMBIENT =
COST BASE = JAN. 1976 TOTAL GENERATION (MW-HR) =
NOTE: ALL COSTS ARE ANNUALIZED.
TOTAL COST ($1000)
TURBINE TYPE
SITE
MODULE COST ($1000)
PIPING COST ($1000)
CONDENSER COST ($1000)
CAPACITY PENALTY ($1000)
ENERGY PENALTY ($1000)
INCREMENTAL FUEL COST ($1000)
ANNUAL FUEL COST ($1000)
NUMBER OF MODULES
TOTAL FAN POWER (MWe)
TOTAL AUXILIARY POWER (MWe)
MAXIMUM BACK PRESSURE (in. Hg)
MAXIMUM LOSS IN GENERATION (MWe)
TTD (°F)
ITD (°F)
RANGE (OF)
HOURS ABOVE 82°F AMBIENT

14255
HIGH B.P.
CASPER
4645
1465
717
833
1059
2963
47188
68
18
23.1
10.4
41.7
5.7
64.3
33
440

14869
MOD.CONV.
CASPER
4961
1661
828
1828
3014
968
45192
72
18
24.4
8.2
91.4
5.0
53.9
26
440

17193
HIGH B.P.
PHOENIX
4660
1684
875
1268
2930
3146
47371
68
19
27.1
12.4
63,4
5.1
55.9
25
2760
= 6R2P
= SURFACE
= 80
= .75
= 29
= 6,570,000

20522
MOD.CONV.
PHOENIX
5594
1964
990
2293
6612
1316
45541
80
21
29.0
9.7
114.7
5.1
43.9
21
2760
                            67

-------
TABLE 6-6.    EFFECT OF TURBINE TYPE  -  CASPER
SITE = CASPER TUBE CONFIGURATION
TURBINE TYPE = 	 CONDENSER TYPE
FIXED CHARGE RATE = .20 TUBE LENGTH (FT)
FUEL COST ($/MMBTU) = 	 CAPACITY FACTOR
CAPACITY COST ($/KWe) = 100 SUMMER HOURS NOT EXCEEDED <
ENERGY COST (MILLS/KW-HR) = 40/20 HOURS ABOVE 82°F AMBIENT
COST BASE = JAN. 1976 TOTAL GENERATION (MW-HR) ••
NOTE: ALL COSTS ARE ANNUAL I ZED.
TOTAL COST ($1000)
TURBINE TYPE HIGH
FUEL COST ($/MMBTU)
MODULE COST ($1000)
PIPING COST ($1000)
CONDENSER COST ($1000)
CAPACITY PENALTY ($1000)
ENERGY PENALTY ($1000)
INCREMENTAL FUEL COST ($1000)
ANNUAL FUEL COST ($1000)
NUMBER OF MODULES
TOTAL FAN POWER (MWe)
TOTAL AUXILIARY POWER (MWe)
MAXIMUM BACK PRESSURE (in. Hg)
MAXIMUM LOSS IN GENERATION (MWe)
TTD (OF)
ITD (°F)
RANGE (OF)

17165
B.P.
1.50
4611
1462
730
858
1013
5931
94381
68
14
19,9
10.9
42.9
5.2
66.6
33

15936
MOD.CONV.
1.50
4812
1620
815
1918
3194
1950
90400
68
17
23.6
8.6
95.9
5.2
55.5
26

15198
HIGH B.P.
1.00
4359
1454
722
977
1192
3965
62932
64
15
20.7
11.5
48.8
5.3
68.9
34
= 6R2P
= SURFACE
= 80
= .75
= 29
= 440
= 6,570,000

15236
MOD.CONV.
1.00
5026
1739
879
1759
2871
1328
60294
72
18
25.3
7.9
88.0
5.1
52.2
23
                      68

-------
TABLE 6-7.   EFFECT OF CONDENSER TYPE - CASPER
TMDDTMr TVDC = CASPER TUBE CONFIGURATION
TURBINE TYPE = — - CONDENSER TYPE
FIXED CHARGE RATE = .20 TUBE LENGTH (FT)
FUEL COST (5/MMBTU) = .75 CAPACITY FACTOR
CAPACITY COST ($/KWe) = 100 SUMMER HOURS NOT EXCEEDED =
ENERGY COST (MILLS/KW-HR) = 40/20 HOURS ABOVE 82°F AMBIENT =
COST BASE = JAN. 1976 TOTAL GENERATION (MW-HR) =
NOTE: ALL COSTS ARE ANNUAL I ZED.
TOTAL COST ($1000)
CONDENSER TYPE
TURBINE TYPE
MODULE COST ($1000)
PIPING COST ($1000)
CONDENSER COST ($1000)
CAPACITY PENALTY ($1000)
ENERGY PENALTY ($1000)
INCREMENTAL FUEL COST ($1000)
ANNUAL FUEL COST ($1000)
NUMBER OF MODULES
TOTAL FAN POWER (MWe)
TOTAL AUXILIARY POWER (MWe)
MAXIMUM BACK PRESSURE (in. Hg)
MAXIMUM LOSS IN GENERATION (MWe)
TTD (OF)
ITD (°F)
RANGE (OF)

14869
SURFACE
MOD.CONV.
4961
1661
828
1828
3014
968
45192
72
18
24.4
8.2
91.4
5.0
53.9
26

14600
JET
MOD.CONV.
4896
1675
721
1751
2856
1051
45276
72
17
26.3
7.7
87.6
2.0
57.3
27

14255
SURFACE
HIGH B.P.
4645
1465
717
833
1059
2963
47188
68
18
23.1
10.4
41.7
5.7
64.3
33
6R2P
80
.75
29
440
6,570,000

14072
JET
HIGH B.P.
4302
1450
738
834
1109
3056
47281
64
17
24.0
10.3
41.7
2.0
67.1
32
                       69

-------
TABLE 6-8.    EFFECT OF FIXED CHARGE RATE,  CAPACITY PENALTY,  AND ENERGY
             PENALTY FOR FUEL COST OF $.75/MMBTU
SITE = CASPER
TURBINE TYPE = MOD.CONV
TUBE CONFIGURATION
CONDENSER TYPE
FIXED CHARGE RATE = 	 TUBE LENGTH (FT)
FUEL COST ($/MMBTU) = .75 CAPACITY FACTOR
CAPACITY COST ($/KWe) = 100 SUMMER HOURS NOT
ENERGY COST (MILLS/KW-HR) = 40/20 HOURS ABOVE 82°F
COST BASE = JAN. 1976 TOTAL GENERATION
NOTE: ALL COSTS ARE ANNUAL I ZED.
TOTAL COST ($1000)
FIXED CHARGE RATE
CAPACITY COST ($/KWe)
ENERGY COST (MILLS/KW-HR)
MODULE COST ($1000)
PIPING COST ($1000)
CONDENSER COST ($1000)
CAPACITY PENALTY ($1000)
ENERGY PENALTY ($1000)
INCREMENTAL FUEL COST ($1000)
ANNUAL FUEL COST ($1000)
NUMBER OF MODULES
TOTAL FAN POWER (MWe)
TOTAL AUXILIARY POWER (MWe)
MAXIMUM BACK PRESSURE (in. Hg)
MAXIMUM LOSS IN GENERATION (MWe)
TTD (°F)
ITD (°F)
RANGE (°F)

19661 15264
.20 .15
500 500
10/10 10/10
6294 4518
2168 1485
1028 702
6613 5458
680 727
1005 949
45230 45174
92 88
21 17
29.2 24.3
6.0 6.8
66.1 72.8
5.2 5.1
42.4 47.0
19 22

EXCEEDED
AMBIENT
(MW-HR)

14869
.20
100
40/20
4961
1661
828
1828
3014
968
45192
72
18
24.4
8.2
91.4
5.0
53.9
26
= 6R2P
= SURFACE
= 80
= .75
= 29
= 440
= 6,570,000

12253
.15
100
40/20
3962
1329
674
1262
2726
967
45192
76
17
23.9
7.7
84.2
5.1
51.7
24
                               70

-------
TABLE 6-9.   EFFECT OF FIXED CHARGE RATE, CAPACITY PENALTY  AND ENERGY
             PENALTY FOR FUEL COST OF $1.50/MMBTU
SITE = CASPER TUBE CONFIGURATION = 6R2P
TURBINE TYPE = MOD.CONV. CONDENSER TYPE = SURFACE
FIXED CHARGE RATE = 	 TUBE LENGTH (FT) = 80
FUEL COST (S/IWIBTU) =1,50 CAPACITY FACTOR = 75
CAPACITY COST ($/KWe) = 100 SUMMER HOURS NOT EXCEEDED = 29
ENERGY COST (MILLS/KW-HR) = 40/20 HOURS ABOVE 82°F AMBIENT = 440
COST BASE - JAN. 1976 TOTAL GENERATION (MW-HR) = 6,570,000
NOTE: ALL COSTS ARE ANNUALIZED.
TOTAL COST ($1000)
FIXED CHARGE RATE
CAPACITY COST ($/KWe)
ENERGY COST (MILLS/KW-HR)
MODULE COST ($1000)
PIPING COST ($1000)
CONDENSER COST ($1000)
CAPACITY PENALTY ($1000)
ENERGY PENALTY ($1000)
INCREMENTAL FUEL COST ($1000)
ANNUAL FUEL COST ($1000)
NUMBER OF MODULES
TOTAL FAN POWER (MWe)
TOTAL AUXILIARY POWER (MWe)
MAXIMUM BACK PRESSURE (in. Hg)
MAXIMUM LOSS IN GENERATION (MWe)
TTD (°F)
ITD (°F)
RANGE (OF)

20526
.20
500
10/10
6204
2006
976
6956
706
1865
90314
88
21
27.9
6.4
69.6
5.0
44.5
23

16206
.15
500
10/10
4388
1475
747
5475
769
1930
90380
84
21
28.4
6.6
73.0
5.2
45.7
21

15936
.20
100
40/20
4812
1620
815
1918
3194
1950
90400
68
17
23.6
8.6
95.9
5.2
55.5
26

13197
.15
100
40/20
3924
1246
637
1339
2912
1826
90276
76
18
23.3
3.1
89.3
5.0
53.6
27
                                71

-------
TABLE 6-10.    EFFECT OF TUBE CONFIGURATION  -  CASPER
SITE = CASPER TUBE CONFIGURATION
TURBINE TYPE = MOD.CONV, CONDENSER TYPE = SURFACE
FIXED CHARGE RATE = .20 TUBE LENGTH (FT) =80
FUEL COST (S/MMBTU) = .75 CAPACITY FACTOR = .75
CAPACITY COST ($/KWe) = 100 SUMMER HOURS NOT EXCEEDED = 10
ENERGY COST (MILLS/KW-HR) = 40/20 HOURS ABOVE 82°F AMBIENT = 440
COST BASE = JAN, 1976 TOTAL GENERATION (MW-HR) = 6,570,000
NOTE: ALL COSTS ARE ANNUALIZED,
TOTAL COST ($1000)
TUBE CONFIGURATION
MODULE COST ($1000)
PIPING COST ($1000)
CONDENSER COST ($1000)
CAPACITY PENALTY ($1000)
ENERGY PENALTY ($1000)
INCREMENTAL FUEL COST ($1000)
ANNUAL FUEL COST ($1000)
NUMBER OF MODULES
TOTAL FAN POWER (MWe)
TOTAL AUXILIARY POWER (MWe)
MAXIMUM BACK PRESSURE (in. Hg)
MAXIMUM LOSS IN GENERATION (MWe)
TTD (°F)
ITD (°F)
RANGE (°F)

14945
6R2P
4979
1702
872
1842
2921
996
45221
72
21
28.1
8,0
92,1
5.0
51.5
24

15136
5R2P
4665
1422
698
2229
3674
928
45153
76
17
22,3
9.9
111.5
5.1
60.0
34

14940
4R2P
4776
1528
737
2056
3338
941
45166
88
19
25.3
9,0
102.8
5.2
56.0
31

15054
4R1P
4506
1850
968
1964
3184
976
45201
80
22
28.6
8.4
98.2
5.4
52.9
19
                        72

-------
TABLE 6-11.   EFFECT OF TUBE CONFIGURATION - PHOENIX
SITE = PHOENIX TUBE CONFIGURATION
TURBINE TYPE = MOD.CONV. CONDENSER TYPE = SURFACE
FIXED CHARGE RATE = .20 TUBE LENGTH (FT) =80
FUEL COST ($/MMBTU) = .75 CAPACITY FACTOR = 75
CAPACITY COST ($/KWe) = 500 SUMMER HOURS NOT EXCEEDED = io
ENERGY COST (MILLS/KW-HR) = 10/10 HOURS ABOVE 82°F AMBIENT = 2760
COST BASE = JAN. 1976 TOTAL GENERATION (MW-HR) = 6,570,000
NOTE: ALL COSTS ARE ANNUAL I ZED.
TOTAL COST ($1000)
TUBE CONFIGURATION
MODULE COST ($1000)
PIPING COST ($1000)
CONDENSER COST ($1000)
CAPACITY PENALTY ($1000)
ENERGY PENALTY ($1000)
INCREMENTAL FUEL COST ($1000)
ANNUAL FUEL COST ($1000)
NUMBER OF MODULES
TOTAL FAN POWER (MWe)
TOTAL AUXILIARY POWER (MWe)
MAXIMUM BACK PRESSURE (in. Hg)
MAXIMUM LOSS IN GENERATION (MWe)
TTD (°F)
ITD (°F)
RANGE (°F)

25205
6R2P
6317
2128
996
11205
1478
1219
45444
92
21
28.7
9.5
112,1
5.0
40.9
20

25167
5R2P
6372
2096
914
11252
1479
1202
45426
104
19
27.2
9.6
112.5
5.1
41.7
22

25193
4R2P
6651
2163
936
10905
1425
1207
45432
124
20
29,1
9.2
109.0
5.0
40.0
21

25543
4R1P
6295
2405
1059
11180
1482
1214
45439
116
22
29.5
9.4
111.8
5.1
40.9
17
                         73

-------
TABLE 6-12.
EFFECT OF TUBE CONFIGURATION - COMPARISON
AT CASPER AND PHOENIX
oiic. - — — -•
TURBINE TYPE = MOD.t
FIXED CHARGE RATE = .20
FUEL COST ($/MMBTU) = .75
rflDAPTTV rn^T ($./K\>if*'\ — 	 .-•
CMCDPV PACT ^MTI 1 C IV\/l\W-nK )
COST BASE « JAN.
NOTE: ALL COSTS ARE ANNUAL I ZED
SITE
TOTAL COST ($1000)
TUBE CONFIGURATION
CAPACITY COST ($/KWe)
ENERGY COST (MILLS/KW-HR)
MODULE COST ($1000)
PIPING COST ($1000)
CONDENSER COST ($1000)
CAPACITY PENALTY ($1000)
ENERGY PENALTY ($1000)
INCREMENTAL FUEL COST ($1000)
ANNUAL FUEL COST ($1000)
NUMBER OF MODULES
TOTAL FAN POWER (MWe)
TOTAL AUXILIARY POWER (MWe)
MAXIMUM BACK PRESSURE (in. Hg)
MAXIMUM LOSS IN GENERATION (MWe)
TTD (°F)
ITD (°F)
RANGE (OF)
HOURS ABOVE 82°F AMBIENT
1 UUI- V,
:ONV. CONDEN
TUBE L
CAPACI
SUMMER
HOURS
1976 TOTAL
CASPER
20016
6R2P
500
10/10
6125
2054
923
7375
736
982
45207
88
20
28.2
6.6
73.8
5.4
44.4
21
440
• unr iuur\n i a. uii
ISER TYPE
.ENGTH (FT)
TY FACTOR
: HOURS NOT EXCEEDED
ABOVE 82°F AMBIENT
GENERATION (MW-HR)
CASPER
19823
4R2P
500
10/10
5879
1890
852
7734
753
951
45176
108
20
27.6
6.9
77.3
5.0
46.3
25
440
PHOENIX
20564
6R2P
100
40/20
5926
2017
960
2334
6257
1270
45495
84
21
29.7
9,8
116.7
5.2
42.0
20
2760
= SURFACE
= 80
= .75
= 10
= 6, .570 ,000
PHOENIX
20918
4R2P
100
40/20
5728
1982
879
2471
6773
1322
45547
104
21
29.7
10.3
123.5
5.3
44.6
23
2760
                          74

-------
TABLE 6-13.   EFFECT OF TUBE LENGTH - CASPER
SITE = CASPER TUBE CONFIGURATION = 6R2P
TURBINE TYPE = MOD.CONV. CONDENSER TYPE = SURFACE
FIXED CHARGE RATE - .20 TUBE LENGTH (FT)
FUEL COST (S/MMBTU) = .75 CAPACITY FACTOR = .75
CAPACITY COST ($/KWe) = 100 SUMMER HOURS NOT EXCEEDED =29
ENERGY COST (MILLS/KW-HR) = 40/20 HOURS ABOVE 82°F AMBIENT = 440
COST BASE = JAN, 1976 TOTAL GENERATION (MW-HR) = 6,570,000
NOTE: ALL COSTS ARE ANNUALIZED,
TOTAL COST ($1000)
TUBE LENGTH (FT)
MODULE COST ($1000)
PIPING COST ($1000)
CONDENSER COST ($1000)
CAPACITY PENALTY ($1000)
ENERGY PENALTY ($1000)
INCREMENTAL FUEL COST ($1000)
ANNUAL FUEL COST ($1000)
NUMBER OF MODULES
TOTAL FAN POWER (MWe)
TOTAL AUXILIARY POWER (MWe)
MAXIMUM BACK PRESSURE (in. Hg)
MAXIMUM LOSS IN GENERATION (MWe)
TTD (°F)
ITD (°F)
RANGE (°F)

15991
40
4988
1823
874
2077
3591
990
45215
124
20
25.8
9.0
103.9
5.0
57.5
23

15286
60
4924
1757
886
1920
3203
971
45196
92
18
24.2
8.5
96,0
5.0
55.6
24

15452
70
5200
1668
789
1927
3277
955
45180
80
19
25.2
8.5
96.3
5.1
58.0
28

14869
80
4961
1661
828
1828
3014
968
45192
72
18
24.4
8.2
91.4
5.0
53.9
26
                      75

-------
TABLE 6-14.
EFFECT OF TUBE LENGTH - PHOENIX
WITH MODIFIED CONVENTIONAL TURBINE
SITE = PHOENIX TUBE CONFIGURATION = 632P
TURBINE TYPE - MOD.CONV. CONDENSER TYPE = SURFACE
FIXED CHARGE RATE - .20 TUBE LENGTH (FT)
FUEL COST ($/MMBTU) = .75 CAPACITY FACTOR = .75
CAPACITY COST ($/KWe) = 500 SUMMER HOURS NOT EXCEEDED = 29
ENERGY COST (MILLS/KW-HR) - 10/10 HOURS ABOVE 82°F AMBIENT = 2760
COST BASE - JAN. 1976 TOTAL GENERATION (MW-HR) = 6,570,000
NOTE: ALL COSTS ARE ANNUAL I ZED.
TOTAL COST ($1000)
TUBE LENGTH (FT)
MODULE COST ($1000)
PIPING COST ($1000)
CONDENSER COST ($1000)
CAPACITY PENALTY ($1000)
ENERGY PENALTY ($1000)
INCREMENTAL FUEL COST ($1000)
ANNUAL FUEL COST ($1000)
NUMBER OF MODULES
TOTAL FAN POWER (MWe)
TOTAL AUXILIARY POWER (MWe)
MAXIMUM BACK PRESSURE (in. Hg)
MAXIMUM LOSS IN GENERATION (MWe)
TTD (OF)
ITD (°F)
RANGE (°F)

25869
40
6433
2468
1058
11061
1591
1319
45544
164
21
29.9
9.3
110.6
5.2
42.6
17

25048
60
6518
2299
1005
10607
1488
1222
45447
120
19
27.1
9.1
106.1
5.1
41.8
19

25097
70
6200
2200
1032
10962
1558
1283
45508
96
19
28,5
9.3
109.6
5.0
42.5
18

24549
80
6224
2185
1008
10526
1480
1264
45489
88
20
29.2
8.9
105.3
5.1
40.7
19
                      76

-------
TABLE 6-15.   EFFECT OF TUBE LENGTH - PHOENIX
              WITH HIGH BACK PRESSURE TURBINE
SITE = PHOENIX TUBE CONFIGURATION = 6R2P
TURBINE TYPE = HIGH B,P. CONDENSER TYPE = SURFACE
FIXED CHARGE RATE = .20 TUBE LENGTH (FT)
FUEL COST ($/MMBTU) = .75 CAPACITY FACTOR = .75
CAPACITY COST ($/KWe) = 100 SUMMER HOURS NOT EXCEEDED = 29
ENERGY COST (MILLS/KW-HR) = 40/20 HOURS ABOVE 82°F AMBIENT = 2760
COST BASE = JAN. 1976 TOTAL GENERATION (MW-HR) = 6,570,000
NOTE: ALL COSTS ARE ANNUALIZED.
TOTAL COST ($1000)
TUBE LENGTH (FT)
MODULE COST ($1000)
PIPING COST ($1000)
CONDENSER COST ($1000)
CAPACITY PENALTY ($1000)
ENERGY PENALTY ($1000)
INCREMENTAL FUEL COST ($1000)
ANNUAL FUEL COST ($1000)
NUMBER OF MODULES
TOTAL FAN POWER (MWe)
TOTAL AUXILIARY POWER (MWe)
MAXIMUM BACK PRESSURE (in. Hg)
MAXIMUM LOSS IN GENERATION (MWe)
TTD (°F)
ITD (°F)
RANGE (°F)

18280
40
5575
2032
861
1248
2717
3066
47291
140
17
23.6
12.7
62.4
5.2
56.6
26

17601
60
5028
1938
988
1213
2614
3107
47332
92
17
23.8
12.5
60.7
5.2
55.6
22

17614
70
5180
1746
871
1274
2794
3062
47287
80
16
21.9
13.1
63.7
5.0
58.1
27

17193
80
4660
1684
875
1268
2930
3146
47371
68
19
27.1
12.4
63.4
5.1
55.9
25
                       77

-------
TABLE 6-16.   EFFECT OF CHANGING NUMBER OF SUMMER HOURS
              NOT EXCEEDED - CASPER
SITE = CASPER TUBE CONFIGURATION = 6R2P
TURBINE TYPE = MOD.CONV. CONDENSER TYPE = SURFACE
FIXED CHARGE RATE = .20 TUBE LENGTH (FT) = 80
FUEL COST ($/MMBTU) = .75 CAPACITY FACTOR = .75
CAPACITY COST ($/KWe) = 	 SUMMER HOURS NOT EXCEEDED = 	
ENERGY COST (MILLS/KW-HR) = 	 HOURS ABOVE 82°F AMBIENT = 440
COST BASE - JAN. 1976 TOTAL GENERATION (MW-HR) = 6,.570,000
NOTE: ALL COSTS ARE ANNUAL I ZED.
TOTAL COST ($1000)
SUMMER HOURS NOT EXCEEDED
CAPACITY COST ($/KWe)
ENERGY COST (MILLS/KW-HR)
MODULE COST ($1000)
PIPING COST ($1000)
CONDENSER COST ($1000)
CAPACITY PENALTY ($1000)
ENERGY PENALTY ($1000)
INCREMENTAL FUEL COST ($1000)
ANNUAL FUEL COST ($1000)
NUMBER OF MODULES
TOTAL FAN POWER (MWe)
TOTAL AUXILIARY POWER (MWe)
MAXIMUM BACK PRESSURE (in. Hg)
MAXIMUM LOSS IN GENERATION (MWe)
TTD (°F)
ITD (°F)
RANGE (°F)
HIGHEST AMBIENT TEMPERATURE (°F)

20016
10
500
10/10
6125
2054
923
7375
736
982
45207
88
20
28.2
6.6
73.8
5.4
44.4
21
94.5

19661
29
500
10/10
6294
2168
1028
6613
680
1005
45230
92
21
29,2
6.0
66.1
5.2
42.4
19
93.1

14945
10
100
40/20
4979
1702
872
1842
2921
996
45221
72
21
28.1
8.0
92.1
5.0
51.5
24
94.5

14869
29
100
40/20
4961
1661
828
1828
3014
968
45192
72
18
24.4
8.2
91.4
5.0
53.9
26
93.1

-------
TABLE 6-17.   EFFECT OF CHANGING NUMBER OF SUMMER HOURS NOT EXCEEDED -
              PHOENIX WITH MODIFIED CONVENTIONAL TURBINE
SITE = PHOENIX TUBE CONFIGURATION = 6R2P
TURBINE TYPE = MOD.CONV. CONDENSER TYPE = SURFACE
FIXED CHARGE RATE = .20 TUBE LENGTH (FT) = 80
FUEL COST ($/MMBTU) = .75 CAPACITY FACTOR = 75
CAPACITY COST ($/KWe) = 	 SUMMER HOURS NOT EXCEEDED = 	
ENERGY COST (MILLS/KW-HR) = 	 HOURS ABOVE 82°F AMBIENT = 440
COST BASE « JAN. 1976 TOTAL GENERATION (MW-HR) = 6, .570 ,000
NOTE: ALL COSTS ARE ANNUAL I ZED.
TOTAL COST ($1000)
SUMMER HOURS NOT EXCEEDED
CAPACITY COST ($/KUe)
ENERGY COST (MILLS/KW-HR)
MODULE COST ($1000)
PIPING COST ($1000)
CONDENSER COST ($1000)
CAPACITY PENALTY ($1000)
ENERGY PENALTY ($1000)
INCREMENTAL FUEL COST ($1000)
ANNUAL FUEL COST ($1000)
NUMBER OF MODULES
TOTAL FAN POWER (MWe)
TOTAL AUXILIARY POWER (MWe)
MAXIMUM BACK PRESSURE (in. Hg)
MAXIMUM LOSS IN GENERATION (MWe)
TTD (°F)
ITD (°F)
RANGE (op)
HIGHEST AMBIENT TEMPERATURE (OF)

25205
' 10
500
10/10
6317
2128
996
11205
1478
1219
45444
92
21
28.7
9.5
112.1
5.0
40.9
20
111.9

24549
29
500
10/10
6224
2185
1008
10526
1480
1264
45489
88
20
29.2
8,9
105.3
5.1
40.7
19
109.5

20564
10
100
40/20
5926
2017
960
2334
6257
1270
45495
84
21
29,7
9.8
116.7
5.2
42.0
20
111.9

20522
29
100
40/20
5594
1964
990
2293
6612
1316
45541
80
21
29.0
9,7
114.7
5.1
43.9
21
109.5
                                79

-------
TABLE 6-18.   EFFECT OF CHANGING NUMBER OF SUMMER HOURS  NOT EXCEEDED -
              PHOENIX WITH HIGH BACK PRESSURE TURBINE
SITE = PHOENIX TUBE CONFIGURATION = 6R2P
TURBINE TYPE = HIGH B.P. CONDENSER TYPE = SURFACE
FIXED CHARGE RATE = .20 TUBE LENGTH (FT) =80
FUEL COST ($/MMBTU) = .75 CAPACITY FACTOR = .75
CAPACITY COST ($/KWe) = 100 SUMMER HOURS NOT EXCEEDED
ENERGY COST (MILLS/KW-HR) = 40/20 HOURS ABOVE 82°F AMBIENT =2760
COST BASE = JAN. 1976 TOTAL GENERATION (MW-HR) = 6,570,000
NOTE: ALL COSTS ARE ANNUAL I ZED.
TOTAL COST ($1000)
SUMMER HOURS NOT EXCEEDED
HIGHEST AMBIENT TEMPERATURE (°F)
MODULE COST ($1000)
PIPING COST ($1000)
CONDENSER COST ($1000)
CAPACITY PENALTY ($1000)
ENERGY PENALTY ($1000)
INCREMENTAL FUEL COST ($1000)
ANNUAL FUEL COST ($1000)
NUMBER OF MODULES
TOTAL FAN POWER (MWe)
TOTAL AUXILIARY POWER (MWe)
MAXIMUM BACK PRESSURE (in. Hg)
MAXIMUM LOSS IN GENERATION (MWe)
TTD (OF)
ITD (°F)
RANGE (op)

17260
10
111.9
5301
1792
858
1174
2340
3075
47300
76
19
26.1
12.0
58.7
5.0
52.5
26

17193
29
109.5
4660
1684
875
1268
2930
3146
- 47371
68
19
27.1
12.4
63,4
5.1
55.9
25

17069
72
107.8
5026
1707
822
1131
2636
3084
47309
72
17
23,6
12.0
56.5
5.2
56.6
28
                               80

-------
TABLE 6-19.   EFFECT OF ITDs OF 30-45°F - CASPER
SITE - CASPER TUBE CONFIGURATION = 6R2P
TURBINE TYPE = MOD.CONV. CONDENSER TYPE = SURFACE
FIXED CHARGE RATE = .20 TUBE LENGTH (FT) = 80 '
FUEL COST ($/MMBTU) = .75 CAPACITY FACTOR = 75
CAPACITY COST ($/KWe) = 100 SUMMER HOURS NOT EXCEEDED = 29
ENERGY COST ( MILLS/ KW-HR) = 40/20 HOURS ABOVE 82°F AMBIENT = 440
COST BASE = JAN. 1976 TOTAL GENERATION (MW-HR) = 6,570,000
NOTE: ALL COSTS ARE ANNUALIZED,
TOTAL COST ($1000)
ITD (°F)
MODULE COST ($1000)
PIPING COST ($1000)
CONDENSER COST ($1000)
CAPACITY PENALTY ($1000)
ENERGY PENALTY ($1000)
INCREMENTAL FUEL COST ($1000)
ANNUAL FUEL COST ($1000)
NUMBER OF MODULES
TOTAL FAN POWER (MWe)
TOTAL AUXILIARY POWER (MWe)
MAXIMUM BACK PRESSURE (in. Hg)
MAXIMUM LOSS IN GENERATION (MWe)
TTD (°F)
RANGE (°F)

19030
30
9008
2864
1087
1123
1581
1033
45258
128
36
45.9
4.3
56.2
5.5
16

17225
35
7426
2481
1054
1202
1953
1030
45254
108
31
41.0
4.9
60.1
5.2
17

16040
40
6423
2223
1018
1318
2109
1041
45266
92
25
34.8
5,7
65.9
5.3
18

15264
45
5775
1963
944
1472
2336
998
45223
84
22
30.2
6.5
73.6
5.1
21
                        81

-------
TABLE 6-20.   EFFECT OF ITDs OF 50-70°F - CASPER
SITE = CASPER TUBE CONFIGURATION = 6R2P
TURBINE TYPE = MOD.CONV. CONDENSER TYPE = SURFACE
FIXED CHARGE RATE = .20 TUBE LENGTH (FT) = 80
FUEL COST ($/MMBTU) - .75 CAPACITY FACTOR = .75
CAPACITY COST ($/KWe) = 100 SUMMER HOURS NOT EXCEEDED = 29
ENERGY COST (MILLS/KW-HR) = 40/20 HOURS ABOVE 82°F AMBIENT = 440
COST BASE = JAN. 1976 TOTAL GENERATION (MW-HR) = 6,570,000
NOTE: ALL COSTS ARE ANNUAL I ZED.
TOTAL COST ($1000)
ITD (°F)
MODULE COST ($1000)
PIPING COST ($1000)
CONDENSER COST ($1000)
CAPACITY PENALTY ($1000)
ENERGY PENALTY ($1000)
INCREMENTAL FUEL COST ($1000)
ANNUAL FUEL COST ($1000)
NUMBER OF MODULES
TOTAL FAN POWER (me)
TOTAL AUXILIARY POWER (MWe)
MAXIMUM BACK PRESSURE (in. Hg)
MAXIMUM LOSS IN GENERATION (MWe)
TTD (°F)
RANGE (OF)

14955
50
5252
1766
865
1686
2737
979
45204
76
20
27.4
7.4
84.3
5.2
24

15173
60
4491
1555
782
2127
3689
997
45221
64
18
24.5
9.3
106.4
5.1
28

15907
70
4106
1398
714
2552
4661
1027
45252
60
16
21,5
11.3
127.6
5.2
34
                        82

-------
TABLE 6-21.   EFFECT OF ITDs OF 30-40°F - PHOENIX
SITE = PHOENIX TUBE CONFIGURATION = 6R2P
TURBINE TYPE = MOD.CONV. CONDENSER TYPE = SURFACE
FIXED CHARGE RATE = .20 TUBE LENGTH (FT) =80
FUEL COST (S/MMBTU) - .75 CAPACITY FACTOR = .75
CAPACITY COST ($/KWe) = 500 SUMMER HOURS NOT EXCEEDED = 29
ENERGY COST (MILLS/KW-HR) = 10/10 HOURS ABOVE 82°F AMBIENT = 2760
COST BASE = JAN. 1976 TOTAL GENERATION (MW-HR) = 6,570,000
NOTE: ALL COSTS ARE ANNUALIZED,
TOTAL COST ($1000)
ITD (OF)
MODULE COST ($1000)
PIPING COST ($1000)
CONDENSER COST ($1000)
CAPACITY PENALTY ($1000)
ENERGY PENALTY ($1000)
INCREMENTAL FUEL COST ($1000)
ANNUAL FUEL COST ($1000)
NUMBER OF MODULES
TOTAL FAN POWER (MWe)
. TOTAL AUXILIARY POWER (MWe)
MAXIMUM BACK PRESSURE (in. Hg)
MAXIMUM LOSS IN GENERATION (MWe)
TTD (°F)
RANGE (°F)

25795
30
8830
2832
1169
8363
1165
1135
45360
128
28
38.1
6.6
83.6
5.0
16

24807
35
7222
2515
1083
9387
1298
1256
45481
104
24
34.1
7.6
93.9
5.1
17

24489
40
6564
2194
957
10225
1435
1216
45441
96
21
29,3
8.6
102.3
5.0
20
                          83

-------
TABLE 6-22.   EFFECT OF ITDs OF 45-60°F - PHOENIX
SITE = PHOENIX TUBE CONFIGURATION = 6R2P
TURBINE TYPE = MOD.CONV. CONDENSER TYPE = SURFACE
FIXED CHARGE RATE = .20 TUBE LENGTH (FT) =30
FUEL COST ($/MMBTU) = .75 CAPACITY FACTOR = -75
CAPACITY COST ($/KWe) = 500 SUMMER HOURS NOT EXCEEDED = 29
ENERGY COST (MILLS/KW-HR) = 10/10 HOURS ABOVE 82°F AMBIENT = 2760
COST BASE - JAN. 1976 TOTAL GENERATION (MW-HR) = 6,570,000
NOTE: ALL COSTS ARE ANNUAL I ZED.
TOTAL COST ($1000)
ITD (°F)
MODULE COST ($1000)
PIPING COST ($1000)
CONDENSER COST ($1000)
CAPACITY PENALTY ($1000)
ENERGY PENALTY ($1000)
INCREMENTAL FUEL COST ($1000)
ANNUAL FUEL COST ($1000)
NUMBER OF MODULES
TOTAL FAN POWER (MWe)
TOTAL AUXILIARY POWER (MWe)
MAXIMUM BACK PRESSURE (in. Hg)
MAXIMUM LOSS IN GENERATION (MWe)
TTD (°F)
RANGE (°F)

24749
45
5926
1946
923
11294
1624
1257
45482
84
20
26,8
9.7
112.9
5.0
23

25291
50
5648
1851
881
12132
1781
1276
45501
80
18
24.9
10.5
121,3
5.0
26

27338
60
5073
1548
733
14794
2238
1375
45600
72
14
19.4
13.4
147,9
5,0
32
                        84

-------
TABLE 6-23.   EFFECT OF RANGE - PHOENIX
SITE = PHOENIX
TURBINE TYPE = MOD.CONV.
FIXED CHARGE RATE = .20
FUEL COST ($/MMBTU) = .75
CAPACITY COST ($/KWe) = 500
ENERGY COST (MILLS/KW-HR) = 10/10
COST BASE = JAN, 1976
NOTE: ALL COSTS ARE ANNUAL I ZED,
TOTAL COST ($1000)
RANGE (°F)
MODULE COST ($1000)
PIPING COST ($1000)
CONDENSER COST ($1000)
CAPACITY PENALTY ($1000)
ENERGY PENALTY ($1000)
INCREMENTAL FUEL COST ($1000)
ANNUAL FUEL COST ($1000)
NUMBER OF MODULES
TOTAL FAN POWER (MWe)
TOTAL AUXILIARY POWER (MWe)
MAXIMUM BACK PRESSURE (in. Hg)
MAXIMUM LOSS IN GENERATION (MWe)
TTD (°F)
ITD (°F)

24951
15
6480
2597
1201
9929
1390
1329
45554
92
21
32.6
8.2
99.3
5.0
37.7
TUBE CONFIGURATION = 6R2P
CONDENSER TYPE = SURFACE
TUBE LENGTH (FT) = 80
CAPACITY FACTOR = .75
SUMMER HOURS NOT EXCEEDED = 29
HOURS ABOVE 82°F AMBIENT = 2760
TOTAL GENERATION (MW-HR) = 6,570,000

24491
20
6317
2128
1001
10445
1487
1241
45466
92
24
32.1
8.6
104,5
5.0
39.9

24914
25
6317
1939
828
11135
1616
1257
45482
92
23
29.4
9.3
111.3
5.1
43,3

25437
30
6378
1772
745
11773
1733
1242
45467
92
23
27,8
10.0
117.7
5,1
45.9

26487
35
6273
1696
707
12905
1919
1238
45463
92
18
22.2
11.4
129.0
5.0
51.2
                   85

-------
TABLE 6-24.   EFFECT OF RANGE - CASPER
SITE = CASPER
TURBINE TYPE = MOD.CONV.
FIXED CHARGE RATE = .20
FUEL COST ($/MMBTU) - .75
CAPACITY COST ($/KWe) = 100
ENERGY COST (MILLS/KW-HR) = 40/20
COST BASE = JAN. 1976
NOTE: ALL COSTS ARE ANNUAL I ZED.
TOTAL COST ($1000)
RANGE (°F)
MODULE COST ($1000)
PIPING COST ($1000)
CONDENSER COST ($1000)
CAPACITY PENALTY ($1000)
ENERGY PENALTY ($1000)
INCREMENTAL FUEL COST ($1000)
ANNUAL FUEL COST ($1000)
NUMBER OF MODULES
TOTAL FAN POWER (MWe)
TOTAL AUXILIARY POWER (MWe)
MAXIMUM BACK PRESSURE (in. Hg)
MAXIMUM LOSS IN GENERATION (MWe)
TTD (°F)
ITD (°F)

16089
15
4986
2279
1146
1718
2927
1281
45506
72
18
33.4
7.1
85.9
5.1
48.5
TUBE CONFIGURATION = 6R2P
CONDENSER TYPE = SURFACE
TUBE LENGTH (FT) = 80
CAPACITY FACTOR = .75
SUMMER HOURS NOT EXCEEDED = 29
HOURS ABOVE 82°F AMBIENT = 440
TOTAL GENERATION (MW-HR) = 6,570,000

15145
20
5060
1895
962
1695
2794
1058
45282
72
20
29.7
7.3
84.8
5.1
49.4

14934
25
4914
1840
834
1840
3077
981
45206
72
19
26.3
8.1
92.0
5.1
53.5

14972
30
5091
1547
746
1899
3167
924
45149
72
19
24.0
8.5
95.0
5.0
55.5

15370
35
4961
1444
673
2143
3686
915
45140
72
17
21.1
9.7
107.0
5.1
60.3
                  86

-------
                           REFERENCES
1.   Rossie, J. and E. A. Cecil.  Research on Dry-Type Cooling Towers
    for Thermal Electric Generation, Parts I and II.  EPA Report,
    Water Pollution Control Research Series 16130 EES.  November,
    1970.

2.   United Engineers and Constructors, Inc.  Heat Sink Design and
    Cost Study for Fossil and Nuclear Power Plants.  WASH-1360.  Phila-
    delphia, PA.  December, 1974.

3.   Sebald, J.G.  Report on Economics of LWR and HTGR Nuclear Power
    Plants with Evaporative and Dry Cooling Systems Sited in the United
    States.  GAI Report No. 1869.  Gilbert Associates, Inc.  Reading,
    PA.  June, 1975.

4.   Andeen, B. R. and L. R. Glicksman.  Dry Cooling Towers for Power
    Plants.  Report #DSR73047-1.  Department of Mechanical Engineering,
    M.I.T., Cambridge, MA.  February 1, 1972.

5.   Larinoff, M. W.   Dry Cooling Tower Power Plant Design Specifica-
    tions and Performance Characteristics.  In: Proceedings of the ASME
    (Heat Transfer Division) Winter Annual Meeting (Dry and Wet/Dry
    Cooling Towers for Power Plants).  November 11-15, 1973.  New York,
    NY.  PP. 57-75.

6.   PFR  Engineering Systems, Inc.  Heat Transfer and Pressure Drop Char-
    acteristics of Dry Tower Extended Surfaces, Parts I and II.  Pre-
    pared for The Dry Cooling Tower Program, Battelle Pacific Northwest
    Laboratories.  National Technical Information Service, Springfield,
    VA,  BNWL-PFR 7-100 and BNWL-PFR 7-102.  March, 1976.

7.   Private Communications (telephone and letters) between R. D. Mitchell
    of R. W. Beck and James Fake of PFR Engineering Systems.  May-June,
    1976.

8.   Heeren, H. and L. Holly.  Air Cooling for Condensation and Exhaust
    Heat Rejection in Large Generating Stations.  In: Proceedings of
    the  American Power Conference.  Chicago, IL.  April,  1970..  PP.  579-594.

9.   Heller, L. Wet/Dry Hybrid Condensing System.  In: Proceedings of the
    ASME (Heat Transfer Division) Winter Annual Meeting (Dry and Uet/Dry
    Cooling Towers for Power Plants).  November 11-15, 1973.  New York,
    NY.  PP. 85-98.
                                87

-------
10.  Report of the United States of America Dry and Dry/Wet Cooling Tower
    Delegation Visit to the Union of Soviet Socialist Republics, May 26 -
    June 7, 1975.  ERDA (RRD Engineering & Technology Engineering .Compo-
    nents Development Branch).  ERDA-105.  Washington, D.C.

11.  Smith, E. C. and M. W. Larinoff.  Power Plant Siting Performance and
    Economics with Dry Cooling Tower Systems.  In: Proceedings of the
    American Power Conference.  Chicago, IL.  April, 1970.  PP. 544-572.

12.  The Marley Company.  Dry Cooling Towers for Large Power Installations.
    Mission, KS.  1972.

13.  Monroe, R. C.   Fans Key to Optimum Cooling Tower Design.  Oil and
    Gas Journal.  May 17, 1974.  PP. 52-56.

14.  Kays, W. M. and A. L. London.  Compact Heat Exchangers.  Second Edition,
    McGraw-Hill Book Company.  New York, NY.  1964.

15.  Rozenman, T. and J. M. Pundyk.  Design Considerations in the Optimization
    of Dry Cooling Towers.  In:  Proceedings of the Workshop on Dry Cooling
    Systems.  Franklin Institute Research Laboratories.  Philadelphia, PA.
    July, 1975.  PP. 13-1 - 13-8.

16.  Box, M. J.  A New Method of Constrained Optimization and a Comparison
    with Other Methods.  Computer Journal.  Vol. No. 8.  1965. PP. 42-52.

17.  Stevens, R. A. et al.  Mean Temperature Differences in One-, Two- and
    Three-Pass Cross Flow Heat Exchangers.  Transactions of the ASME.  Vol.
    79.  1957.  PP. 287-297.

18. Lawrence, A. E. and T. K. Sherwood.  Industrial and Engineering Chemistry.
    Vol. 23.  1931.  PP. 301-309.

19. Schmidt, T. E.  Improved Methods for Calculation of Heat Transfer on
    Finned Tubes (in German).  Kaltetechnik.  Vol. 18.  No. 4.  1966.
    PP.  135-138.

20.  Sieder, E. N. and G. E. Tate.  Industrial and Engineering Chemistry.  Vol.
    28.  No. 12.  1936.  PP. 1429-1436.

21. Moody, L. F.  Transactions of the ASME.  Vol. 66.  1944.  P. 671.

22. Fryer, B.C.  A Review and Assessment of Engineering Economic Studies of
    Dry  Cooled Electrical Generating Plants.  Battelle Pacific Northwest
    Laboratories.  Richmond, WA  BNWL-1976.  March, 1976.

23.  Briggs and Young.  Chemical Engineering Progress Symposium Series. Vol.
    59.  No. 41.  1963.  P. 1.

24.  Crane Company.  Flow of Fluids Through Valves, Fittings, and Pipe.  Tech.
    Paper 410.

-------
                     APPENDIX A
Curves showing the heat rate and heat rejected vs,
back pressure for the turbines used in this study.
                         A-l

-------
Note:
            1000 MWe CONVENTIONAL TURBINE
              (FOR STUDY PURPOSES ONLY)

Turbine has net heat rate of 8047 BTU/KW-HR at 3.5  in. Hg  absolute.
Heat rates assume 10 percent stack losses.
   13000 --
   12000 - -
CO
 tO
CZ.
 
    11000 --
    10000 - -
    9000 - -
                                                      25%  LOAD
                              Back  Pressure  -  in.  Hg.

       Figure A.I.   Gross  Plant  Heat  Rate with  a  Conventional  Turbine
                    in  Fossil  Fuel  Units.
                                A-2

-------
              1000 MWe MODIFIED  CONVENTIONAL TURBINE
                     (FOR STUDY PURPOSES ONLY)
Note:  Heat Rates are  calculated  from ratios which are based on a
       conventional turbine  at  3.5  in.  Hg absolute with 8047 BTU/
       KW-HR net.  Heat  rates assume 10 percent stack losses.
   15000 -
   14000 - -
   13000
 CO
  1 12000
 0)
 to
 cc
 (O
 O)
   11000
 (C

 D-

 10
 to
 O
 s-
 CD.
   10000 - -
    9000 -'
                                                           25% LOAD
          0    1
    Figure A.2.
2   3   4   5   6   7   8   9   10  11  12  13  14  15


          Back Pressure - in. Hg


Gross Plant Heat Rate with a Modified Conventional  Turbine
in Fossil Fuel Units.
                                 A-3

-------
Note:
          1000 MWe HIGH BACK PRESSURE TURBINE

               (FOR STUDY PURPOSES ONLY)



Heat Rates are calculated from ratios which are  based  on  a

conventional turbine at 3.5 in. Hg absolute with 8047  BTU/

KW-HR net.  Heat rates assume 10 percent stack losses.
  15000
   14000 - -
   13000 - -
 ,  12000 - -
 O)
 to
 a:
 re
 +j
 c
 ro
   11000 --
 to
 in
 O

 eg
   10000 - -
    9000 - -
                                                            25% LOAD
         0    1
    Figure A.3.
                   45678910


                    Back Pressure - in. Hg
12  13  14  15
           Gross Plant Heat Rate with a High Back Pressure

           Turbine in Fossil Fuel Units.
                                 A-4

-------
Note:
      1000 MWe MODIFIED CONVENTIONAL TURBINE
             (FOR STUDY PURPOSES ONLY)

Based on conventional  turbine at 3.5 in.  Hg  absolute with a
net heat rate of 8047 BTU/KW-HR.
    6.14-
    5.2--
01
O
 X

cc
    4.3--
•o
 0)
    3.4 —
 OJ
    2.5 —
    1.6--
                                            FULL LOAD
                                              75% LOAI
                                              50% LOAD
                                                25% LOAD
        0    1    2    3   4   5   6   7   8   9   10  11  12  13  14

                          Back Pressure - in, Hg

 Figure  A.4.    Net Heat Rejected for Modified Conventional Turbines
               in Fossil Fuel Units.
                                A-5

-------
Note:
        1000 MWe HIGH BACK PRESSURE TURBINE

               (FOR STUDY PURPOSES ONLY)


Based on conventional turbine at 3.5 in. Hg  absolute  with  a

net heat rate of 8047 BTU/KW-HR.
   6.1
    5.2  --

••->
034
    J • "
 
-------
                  APPENDIX B
Description of the multicomponent optimization
         technique used in this study.
                       B-l

-------
The Multicomponent Optimization

     The basic method of optimization for the dry cooling tower sys-
tem is the M.J. Box Complex Method (16).  This method is a sequential
search technique that was chosen due to the nature of the non-linear,
constrained variables that make up the cost function of a cooling
tower system.  In addition, the Box Method requires a fewer number of
cost calculations as compared with the factorial, "shotgun", or uni-
variate methods.  The basic Box procedure was employed, but some modi-
fications were implemented to better accomodate the dry cooling tower
project.

     The Box Method minimizes a function,
by finding the optimum combination of the independent variables.  The
independent variables along with certain implicit variables are subject
to the following constraints:

     Gk < Xk < Hk        k = 1, 2, 3, 	M

The lower and upper constraints, Gk and Hk, are either constants or
functions of the independent variables.  The implicit variables,
through XM, are dependent functions of the independent variables.

     The procedure is as follows:

     1.  Randomly pick an initial complex of points such that all
         constraints are satisfied.  Each point is a set of the in-
         dependent variables and a complete design, rating, and
         costing of the cooling tower is performed for each point.

     2.  Find the jtn point in the complex with the highest cost
         function and replace it with a new point.  The new point
         is found by:

                               - *ij)                         (B-l)

         where Xj is the centroid of the ith independent variable
         and a is an expansion factor which is greater than 1.  For
         this study a value of 2 was used for a.  The centroid is
         the average of the ith independent variable of all the
         points, excluding the point that is being replaced.

         Check to see if all the independent variables of the new
         point satisfy their respective constraints.  If an explicit
         constraint is violated, that particular variable is placed
         a small distance, 6, from the boundary.  If an implicit con-
         straint is violated, the variable is moved half of the dis-
         tance to its centroid.
                                B-2

-------
     4.   If the point repeats as the one with the highest cost function,
         then all  of the independent variables are moved half of the dis-
         tance to  their centroids.

     5.   This procedure continues until there is no further reduction of
         the cost  function.  The criterion for termination depends on the
         user.

     The cooling tower design is characterized by N = 6 independent vari-
ables (the number  of tube rows and passes is fixed for a given design).
They are:

     Q     = the heat rejected in the cooling tower.

     ITD   = the difference between the ambient temperature and the hot
             water temperature entering the cooling tower.

     RANGE = the difference between the temperature of the water entering
             and the temperature of the water leaving the cooling tower.

     TL    = length of the tubes.

     TN    = number of tubes for the entire cooling tower.

     TTD   = the difference between the saturation temperature of the steam
             in the condenser and the temperature of the water leaving the
             condenser.

     The constraints used for the cooling tower variables are as follows:

     QMIN   <   Q   < QMAX

     ITDMIN <   ITD  < ITDMAX

     RNGMIN < RANGE < MIN(RNGMAX, ITD)

     TLMIN  <   TL   < TLMAX

     TNMIN  <   TN   < TNMAX

     TTDMIN <   TTD  < TTDMAX

     The minimum and maximum values used for this study depended on what
 case was being  studied.  In general, Q varied from 4678 MMBTU/HR up to
 5401 MMBTU/HR.  ITD varied from  20°F up to 8QOF.  TL varied from 40 ft.
 up  to 80 ft.  TN varied  from 50,000 tubes up to 200,000 tubes.  Finally,
 TTD varied from 2°F up to 15°F.

     In addition to the  6 independent variables, the Box  procedure must
 constrain the 2 dependent variables, air-side and tube-side velocity.
                                B-3

-------
When a dependent variable constraint is violated, the value of TN or
TL is changed such that the dependent variable rests on the limit.   If
the tube-side velocity constraint is violated, the value of TN is
changed.  If air-side velocity constraint is violated, the value of
TL is changed.  The criterion for an optimal solution is for all the
points to have cost functions that lie within a specified tolerance
of each other and continue to do so for a specified number of iter-
ations.
                                B-4

-------
          APPENDIX C
      Flow Chart of the
Dry Tower Optimization Program.
               C-l

-------
    NO
                         INPUT
                    (See Appendix  H)
                SET NO.  PASSES,  NO.  ROWS
                   SET Q  DESIGN,  ITD,
                  RANGE,  TUBE LENGTH,
                     NO.  TUBES, TTD
                ITERATE ON AIR VELOCITY
              UNTIL NTU ASSUMED CONVERGES
                   TO NTU CALCULATED
    ARE ALL
VARIABLES  WITHIN
  CONSTRAINTS
                (CALCULATE AP TUBESIDE
                           AP AIR

                      DETERMINE:
                     NO.  FANS
                     NO.  BLADES
                     FAN  DIAMETER
                     FAN  POWER
Figure C.I.    Flow Chart of Cooling System Optimization,
                          C-2

-------
  DESIGN INTERCONNECTING PIPING
         CONDENSER
         STORAGE TANKS
         CIRCULATING PUMPS
         VALVE SIZES
         FILL PUMPS
         PUMP & FAN MOTORS
         WATER RECOVERY TURBINE
     DETERMINE PUMPING POWER!
CALCULATE COST OF COOLING SYSTEM
  FANS       MOTORS
  MODULES    GEARBOXES
  VALVES     PIPING
  CONDENSER  STORAGE TANKS
  PUMPS      CONTROLS
  PLENUMS    WATER RECOVERY TURBINE
       CALCULATE COST OF:
         STRUCTURE
         ERECTION
         FOUNDATIONS
         CONSTRUCTION
         SHIPPING
         ELECTRICAL CABLING
FIND PLANT PERFORMANCE WITH ANNUAL
 CHANGES IN AMBIENT TEMPERATURES
    FIND HIGHEST SITE AMBIENT
  TEMPERATURE WHICH IS EXCEEDED
  	29 HOURS A YEAR	
       Figure C.I (cont'd.)
                C-3

-------
         CONVERGE ON PLANT
          OPERATING POINT
CALCULATE POWER OUTPUT OF PLANT AT
THE SPECIFIED AMBIENT TEMPERATURE
                                    REDUCE AUXILIARY POWER
                                   BY USING FAN CONTROL AND
                                   FIND NEW OPERATING POINT
      IS
BACK PRESSURE
LOW ENOUGH FOR
 FAN CONTROL
                 IS
           DEMANDED LOAD
             LESS THAN
               100%
                               COMPUTE AND
                               ACCUMULATE
                              ENERGY  PENALTY
     FIND TURBINE FIRING RATE
     AND NEW OPERATING POINT
     TO PRODUCE DEMANDED LOAD
       PLUS AUXILIARY POWER
           COMPUTE AND
    ACCUMULATE FUEL CONSUMPTION
      Figure C.I (cont'd.).


                C-4

-------
                                                  CALCULATE CAPITAL COST
                                                  OF REPLACEMENT CAPACITY
  SELECT NEXT
AMBIENT TEMP.
       IS
  AMBIENT THE
    HIGHEST
      HAS
LOWEST AMBIENT
 BEEN REACHED
                   DETERMINE TOTAL BUS-BAR COST
                     THIS IS COST FUNCTION TO
                             OPTIMIZE
                                                  GET NEW SET OF INDEPENDENT
                                                  VARIABLES USING BOX OPTI-
                                                    MIZATION SEARCH METHOD
                     Figure C.I (cont'd.)
                               C-5

-------
            APPENDIX D
   Ambient Temperature Profiles
for the Sites Studied in this Work.
                 D-l

-------
 0    1000    2000    3000    4000    5000    6000    7000    8000 8760
       Cumulative Time  that  Temperature  is Exceeded  -  Hr

Figure D.I.    Temperature  Duration Curves  for Casper and Phoenix.
                          D-2

-------
-40
          1000   2000   3000   4000   5000   6000   7000   8000   8760
          Cumulative Time  that Temperature is Exceeded - Hr
  Figure D.2.
Temperature Duration Curves for Atlanta, Burlington
and Bismarck.
                             D-3

-------
      APPENDIX E
Sample Computer Output
for an Optimal System.
           E-l

-------
TABLE E-l.    INPUT FOR 1000 MWe MODIFIED CONVENTIONAL STEAM TURBINE
**THE FIRST
***THE LAST
4 COLUMNS A^E
4 COLUMNS ARE
HEAT RATE- BTU/KW-HR
HEAT REJECT - MMBTU/HR
-LOAD*

8P -
• •
2.0
2*5
3,0
3.5
4.0
4.5
5.0
S.5
6.0
6.5
7.0
7.5
8.0
S.5
9.0
9.5
10,0
10.5
11.0
11.5
12.0
18.5
13.0
13.5
14.0
14, S
15,0
uoo
in. Hg
8935.
8957.
8990,
9031.
9084.
9146.
9218.
9294,
9372.
9444,
9516,
956fa.
965?.
9785.
9791.
9858.
9926,
9994.
10060.
10126.
10191.
10255.
10319.
1038?.
10446,
10509.
10573.
.75

9057,
909fl,
9149,
9225,
9522.
9425,
9527,
9625.
9719,
9810.
9900.
9988.
10073.
10159.
10242.
10326,
10409,
10491,
10570,
10654.
10737.
10815.
10893,
10971.
11049.
11127.
11205.
.50

9560,
9647.
9789,
9936.
10067,
10196,
10323.
10403,
10570.
10688,
10804.
10915.
11027,
11138,
11249,
11361,
11471,
1 1583,
Il69a,
11806,
11917.
12023,
12139.
12250,
12362.
12473,
12585,
.25

10448,
10648.
10905.
11127.
11305,
11461.
11616.
11761.
11917,
120/2,
12229.
12384.
12540.
12695*
12851,
13008,
13163,
13319,
13474.
13631.
13786.
13942.
14097.
14253.
14409,
14565,
14721,
1,00

4678.
4feB7,
4699,
4714,
4735.
4758.
478<1,
4811.
4839,
4864,
4889.
4912.
49J5,
me,
4980.
5001,
5023.
5044,
S064.
5084,
5103,;
$122.
5141.
51S9.
5177,
5195,
5218.
,75

4620.
3630.,
3646.
3667.
3694.
3721.
3748.
3773.
3797,
3620.
3841.
3863,
3682.
3902.
3921.
394Q.
39S8.
3976,
3993.
4010.
4027.
4043.
4059.
4074.
4089,
4105,
4119,
,50

2698.
2714.
2739,
2765,
2787.
2808.
2829.
2841.
2867.
2885,
2902.
2918.
2934.
2949.
2964,
2979.
2994.
3007,
3021.
3035,
3048,
3062.
3075.
3087,
3100,
3112.
3124.
,25

1595,
1612,
1633.
1650.
1664.
1675.
1686.
1696,
1707.
1717.
1727.
1737.
1746.
1756.
1765.
1774.
1782,
1791.
1799.
1807,
1815.
1823.
1830,
1837.
1845.
1852.
1859,
MINIMUM SACK  PRESSURE AT ABOVE LQAO$
       3.60    2.90   2.00   2.00

COMPARATIVE MEAT  RATE AT ABOVE UQAD8
        E  INCREMEMTAL FJEL COST
      8887.   9021,  9396,  9827,
                                       TO
                           E-2

-------
                              TABLE E-2.    SAMPLE COMPUTER OUTPUT OF  SURFACE  CONDENSER DESIGN
                •«  STtAM CONDITIONS
                   TOTAL FLOW LEAVING
                   SATURATION Tt«P.
                   SATURATION PRESSURE
   4.967
  121.89 DEG.F
    i.6J IN. HG
      2.253  WMHG/HH
      49.94 OtG.C
      12289  H/M2
                   MULT(PRESSURE  DESIGN
                              SATURATION   OVER.    FRAC.
                          Prt.«-.->.«}*i TEMP-v  COEFF.   DUTY
                   ZONE  1     2.88   111.6  498.61    .45
                        a     4.)8   129.3  si).98    .55
                     'F      *F     "f
                   INLET   TEMP,
                   TEMP.   RANGE  LMTO
                    92.6    10.9   14,9
                   10).5    13.4   17.8
m
 i
co
                **  CIRCULATING MAUR  CONDITIONS
                   FLO*  RATE             19U.486
                   TEMP.ENTERING           92.5b OEG.F
                   TE^P.LEAVING          116.8? DEG.F
                *•  OVERALL  PERFORMANCE
                   HEAT  DUTY
                   MEAN  IE^P.DIFF.
                   CLEANINESS  FACTOR
4719.003 MMBTU/HR
   16.1J OEG.F
                         88.173  MMKti/HR
                          33.64  OEG.C
                          47.16  OEG.C
   H8ST', 169  MMKCAL/HH
       9.07  OEG.C
.850
                *•  DESIGN RESTRAINTS
                   TU8E  SIDE  VELOCITY  FT/SEC       6.00
                   TUdE  SIDE  PRESSURE  03QP  PSI
                   TUBE  LENGTH  FT                 20,00
                   SATURATION PRESSURE,IN. HG Aba   2.00
                               MAXIMUM
                                  7.00
                                 15.00
                                 80.00
                                 15.00
                »«  DESIGN   PARAMETERS
                   PLATE  MATERIAL   CARUON STEEL
                   TUBE  MATERIAL   CA4BQN STEEL
                   TUBE     GAUGE             16.
                 DESIGN  TUBE INFORMATION
       NO.OF  "40.OF  TUBE SIDE
              OVERALL
TOTAL
COST  ESTIMATED
NO.
O.D LENGTH
NUlbER TUBE SHELL PRESS VELOC.
PASSES SES. DROP

-------
                              TABLE  E-3.    SAMPLE  COMPUTER  OUTPUT OF DRY  TOWER TUBE BUNDLE  DESIGN
            TOT4L  IN3ULLED  COST f>t=>
  «1" COOLER  COST

1*69" 7,270.
-------
TABLE E-4.    SAMPLE  COMPUTER OUTPUT OF DRY  TOWER  PIPING COST SUMMARY
        * BAY  PIPING
         1,  INLET  FEEDER  LINE
         2.  OUTLET FEEDER LINE
         3.  INLET  HEADER
         4.  OUTLET HEADER

             PIPING/BAY
               76.  BAYS
        8 SUPPLY  PIPINGUYPE 1)
         t.
         2.
         3.
         4.
         5.
         6.
        C RETURN PIP1NGCTYPE i)
          1
          2
          J
          4
          5
          6
        0 FILL LINES

        E BYPA33 LINES

        F VALVINGUN3TALLED)
          1.  8AY CONTROL
          2.  CONO. PUMP ISOLATION
          5.  RECVRY TURBINE ISO.
          4,  8YPA33
          5.  FILL PUMP ISOLATION
          6.  FILL DRAIN
        C PUMP3UN3TALLEO)
       '  1.   5  82700. GPM CONO,
          2.   1   10000 CPM FILL

        H STORAGE TANKCINSTALLED)
           4  -  120701. GAL TANKS

        I CONTHOL3(IN3TALLEO)
        J NITROGEN BLANKETING
        « SHIPMENT OF PIPING
DIAMETER
(IN)
15,25
lb.25
10.14
10.14

114,00
78.00
23. 2S
72.00
60.00
78.00

114.00
60.00
17.25
43.00
ai.oo
76.00

I1?. 25
114.00
IS. 25
114.00
114,00
114.00
19.25
19.25




TOTAL
($)
4582.
3496.
3<»9.
SYSTEM
TOTAL

1242558,

720444.

867757,
59070,
27175,

1021892.
1328050.
20000.
14M3M.
1911245.
13350.
18S199.
                                                            8890271,
                    *NOTE: See Figure 4.7 for a description of the supply and return
                          piping and what the type and numbers refer to.
                                     E-5

-------
  TABLE E-5.    SAMPLE  COMPUTER  OUTPUT OF  OPTIMUM  DRY TOWER DESIGN
         •• PRINTOUT OF OPTIMUM OESION GENERATED  BY  THE  PFR  OPTIMIZATION PROGRAM
          1  SIZE 15- UQ5- 6-HORIZONTAL  tNOUCEO  NBU»^>» I      JOOO  M* DOSSIL FUEL
          2  SURFACE/UNIT EXT/BARE  MOSISMS./  1881158. I  SITE     ATLANTA GEORGIA
          3  HEAT EXCHANGED / *TO   a7l8.2«0l/  1«>.95     I  TURBINE   MODIFIED CONV.
          «  HATE EXT/BAHE/CLEAN     5.84/125.70/135,94 I  CONOEN3R         SURFACE
         •• TUBE 310E  ••
                    *•  PWQCESS  4NO PERFORMANCE DATA PER UNIT  ••
5 FLUID CIRCULATED CC
6 TOTAL FLUID
7 LIQUID
8 TEMPERATURE
9 PRESSURE
10 PRESSURE DROP SPEC./CALC.
JNOEN. HATER
(H-LB/HR)
(M«LB/HR)
(DEG.F)
(PSIA)
(P3I)
ENTERING
194385. 5«5
194185.545
lit. 9
26 . 38
0.00
LEAVING

194385,545
92.6
16.00
10.38
         •• AIR 3IOE »•
         It AIR/UNIT (M-LS/HR)  652321.86
         1£ AIR/FAN     (ACFM) 10tt«J59.02
       t 13 FACE VEL    C3FPM)    576,7UO
         1<4 MASS V (LU/HR-FT2)   3088.8/9
                                   TEMP,  IN/OUT    (OEG.F)    b«.5/   98.fe
                                   ALTITUDE           (FT)          1050.
                                   STATIC  D.P..CALC.   
-------
TABLE E-6.   COMPUTER OUTPUT OF SUMMARY OF FINAL DRY TOWER DESIGNS  FOR A SAMPLE CASE
***  THE FQuUQrtlNG ARE THE OPTIMIZED DESIGNS GENERATED 8T THE BOX  METHOD
  THEY  MAKE UP  THE COMPLEX AT  THE END OF  THE OPTIMIZATION PROCEDURE ***

1
2
3
4
5
6
7
8
9
10
11
12
13
2 ^
B P
A A
Y N
72 2
72 2
76 2
80 2
72 2
76 2
76 2
76 2
68 2
72 2
76 2
80 2
76 2
8UND FAN BARE
«DTH ID SURF, •
AREA
FT FT FT**2
14.
14.
14,
14.
14.
14,
14.
14,
i ->»
15.
la.
la ,
15.
52.
32.
32.
32.
32.
52.
32.
32.
32,
32.
32.
32.
32.
1729345,
1755747,
1825420.
1921494,
1676541.
1853289.
1825420,
1825420.
1683141,
1782149.
1825420.
192149U.
1881158.
TUBE ]
NO,
395
399
393
393
381
399
393
393
405
405
393
393
405
[NFORMATION
UGH TEMPS. VEU» FLOW
FT Iht>F°Ur FPS MMLB/HR
30
80
80
80
80
80
80
80
80
80
80
80
80
117
I2t
117
117
117
119
117
12$
117
118
126
124
117
89,
93.
91*
93*
88,
93.
92.
9a,
88.
90.
97.
100.
93.
4.7 168.39
4.8 172.20
4.9 185.18
5*a 196.55
4.7 162.84
4.8 181.71
5.0 189.68
4.8 181.38
4>7 163.40
4*7 ..173. 97.
a. a 166.94
5.0 198.20
5.0 19a.39
* AIRS
TEMPS,
64
69
67
70
63
70
69
69
63
68
75
77
69
96
100
97
99
95
99
98
101
95
97
105
106
99
IDE
VEU
FPM
586
604
596
587
610
607
624
572
602
624
601
586
577
INFO, *
FUQrt
MMLB/HR
609,46
637.94
653.81
678.68
615,64
676.55
684.87
627.73
609.09
668.47
660.09
677.58
652.32
 *NOTE: The above designs correspond to the costs given in  Table 6-1.

-------
  APPENDIX F
   Table of
SI Conversions.
        F-l

-------
      TABLE  F-l.   SI CONVERSIONS  FOR TERMS  IN BRITISH  UNITS
TO OBTAIN

J
Kg
Kg/sec
Kg/m2-sec
m
m/sec
m3
m3/sec
m3/sec
N/m2
N/m2
N/m2
W
W/m2-°K
W
MULTIPLY

BTU

lyhr
lbm/hr-ft2
ft
ft/min
gal
gal/min
ft3/min
psi
ft H20
in. Hg
BTU/hr
BTU/hr-ft2-°F
hp
                                                    B_Y

                                                 1055.06
                                                     .45359
                                                    1.2600 x  10-"
                                                    1.3562 x  10"3
                                                     .30484
                                                     .50800 x  10"2
                                                    3.7854 x  10"3
                                                    6.3091 x  10-5
                                                    4.7196 x  10"*
                                                 6894.6
                                                 2989.0
                                                 3385.3
                                                    3.4122
                                                    5.6783
                                                  745.71
OTHER:
To obtain °K:
     T(K) = 273 + 5/9 (T(F)  -  32}
                                F-2

-------
          APPENDIX G
         Heat Transfer
and Pressure Drop Calculations,
               G-l

-------
HEAT TRANSFER AND PRESSURE DROP CALCULATIONS

     The heat transfer method used in this program utilizes the effective-
ness - NTU approach to heat exchanger design as developed by Kays and London
(14).  In this method, the heat load is expressed by the following equation:

     Q = (MCp)air  (ITD)(P)                                    (G-l)

where,

     Q        = the total heat load transferred in the heat exchanger.

     (MCp)air= the product of air flow rate and specific heat of air.

     ITD      = the initial temperature difference between the incoming
                hot water and the ambient air.

     P        = thermal effectiveness.

     The number of transfer units and capacity ratio, R, are nondimensional
numbers which characterize the heat exchanger by its design variables.  In
the  equations used here, it is assumed that (MCp)water  is greater than
(MCp)air.
     NTU  =         _                                        (4-9)
                                                               (4-10)
              (MCp)water
     U  is the overall heat transfer coefficient based on the outside finned
 surface  area.

     For a heat exchanger with "countercurrent" (counterflow) or "cocurrent"
 (parallel) flow configuration, the relationship between P, R, and NTU can be
 formulated in closed form by integration.  Analytical expressions for the
 above  relationship are given by Kays and London (14).  For a cross flow con-
 figuration with both tube-side and air-side in the "unmixed" flow condition,
 the  relationship cannot be expressed in analytical form.  It can be solved
 numerically  by the method of Stevens et al (17).  In this program, a numer-
 ical procedure has been incorporated into a subroutine that calculates the
 effectiveness, P, for a specified NTU and R.

     The overall coefficient, U, is calculated as the reciprocal of the sum
 of all  the individual resistances to heat transfer:

     U  = 1.0/d.O/HAIR + RAOI/HIN + RFIN + RTOT)                (Q-2)
                                G-2

-------
where,
     HAIR = the air-side heat  transfer  coefficient  based on total finned
            surface area.
     RAOI = the ratio of finned  surface to  inside tube  surface.
     HIN  = the water- or  tube-side  heat transfer coefficient.
     RFIN = the fin resistance
     RTOT = the sum of the resistances  due  to tube  wall conductance and
            inside and outside tube  fouling,  all based  on  the  finned tube
            area.
     The air-side coefficient, HAIR, was calculated on  the basis of the
 Briggs  and Young  (23) correlation:
      HAIR =  0.904 (KA)  (REA)0-718  (PRAV)0-333                  (6-3)
 where,
      KA   =  the thermal  conductivity of the air in BTU/hr-ft2-op.
      DO   =  the outside  tube diameter in in.
      REA  =  the air- side Reynolds  number.
      PRAV =  the air-side Prandtl  number.
 The Reynolds number was  calculated as:
      REA = (DO)(GA)                                           (G-4)
            (29. 04) (MA)
 where,
      GA   =  the air-side mass velocity in lbm/hr-ft2.
      MA   =  the air viscosity in Op.
 The air-side mass velocity was calculated as:
                                                               (G-5)
 where ,
      W2   = the total air-side flow rate in Ibm/hr.
      AMIN = the minimum air-side free flow area transverse to air flow
             in ft2.
                                G-3

-------
The Prandtl number was calculated as:
     PRAV = (2.42)(MA)(CPA)              ,,    '               (G-6)
where,    ;, .,.:,  -...,'.
     CPA  = the air heat capacity in BTU/lbm-°F.
     The water- or tube-side coefficient, HIN, was calculated from the
correlation of Lawrence and Sherwood (18):
     HIN  = 0.7 (gjL) (REW)0-7 (PR)0'5                         (6-7)

where,
     KW"   = the thermal conductivity of water in BTU/hr-ft2-°F.
     DI   = the inside tube diameter in in.
     REW  = the tube-side Reynolds number.
     PR   = the tube-side Prandtl number.
The Reynolds number was calculated as:
     REW =  (DI)(GW)                                          (6-8)
           (29.04)(MW)
where,
     GW   = the tube-side mass velocity in lbm/hr-ft2.
     MW   = the water viscosity  in Cp.
The tube-side mass velocity was  calculated as:
     GW = Wl                                                  (G.9)
where,
     Wl   = the total tube-side  flow rate in lbm/hr.
     AT   = the inside cross-sectioned area of all tubes  in a single  tube
            pass in ft2.
The Prandtl number was calculated as:
     PR =  (2.42)(MW)(CPW)                                    •' (6-10)
                KW
where,                                                ,
     CPW  = the water heat capacity in BTU/lbm-°F.
                               G-4

-------
     The fin resistance, RFIN, is a function of fin height and thickness
and thermal conductivity of the fin  and was calculated by the method de-
veloped by Schmidt (19).  The sum of the inside and outside tube fouling
factors in this study was assumed to be 0.005 hr-ft-°F/BTU, which is the
value used by industry for relatively clean conditions.  The tube wall
resistance was calculated using a value of 26 BTU/hr-ft-°F for the tube
thermal conductivity.

     The air-side friction loss was determined by using the following
correlation which was developed at PFR Engineering Systems, Inc.:

     DELP = (f)(GA)2(N)     (2.68 x HT10)                    ,G in
            (GC)(DENA)                                        (    J

where,

     f    = the dimensionless friction factor.

     N    = the number of tube rows in the direction of air flow.

     GC   = the dimensional gravitational constant of  32.2 lbm-ft/lbf-sec2.

     DENA = the air  density at average temperature in  lbm/ft3.

     DELP = the pressure drop in psi.

     The friction factor as developed by PFR  is a function of Reynolds
number, tube geometry, and tube pitch.  The friction factor was defined
as:

     f = (6.03)(REA)-°-21t5(^I)"0-872(^I)0-515(RAOR)°-lt30      (G-12)

where,

     PT   = the tube pitch transverse to air  flow in in.

     PL   = the tube pitch in the direction of  air flow in in.

     RAOR = the ratio of total outside finned surface  area to the out-
            side surface area of the  bare tube.

     In addition to  the tube bundle friction  loss, the program calculates
three additional pressure losses.   Each  loss  uses the  actual density  cor-
rected for altitude  and temperature at the  position  in the bundle-  The
momentum loss  accounts for contraction and  expansion  into  and out of  the
dry  cooling tower as well as the loss caused  by the  increase  in  air  tem-
perature as air is  heated, producing  a higher leaving  velocity.  The  cal-
culation of the total pressure loss also  incorporates  the  dynamic velocity
head to find  the loss incurred in accelerating  the air from  zero velocity
to the approach velocity and incurred due to  the  area  change  at  the  fan.
Finally, the  program calculates the  loss  due  to flow through  the fan  guards
                                6-5

-------
and inlet louvers.  The equations for these additional pressure losses can
be found in Kays and London (14).  The program uses a value of 1.8 for the
louver loss coefficient, 1.1 for the fan guard loss coefficient, and 4.5
for the dynamic velocity head loss coefficient.  The use of these loss co-
efficients is defined in Kays and London (14).

     The tube-side pressure drop is calculated by assuming commercial cir-
cular pipe with fouling and using the Fanning friction formulation.  The
Fanning equation for flow loss in a tube is:

     DELPN = U)(f1so)(GW)2(L)      (1.286 x KT8)            (G-13)

             (GC)(DENW)(DI)

where,

     DELPN = the pressure drop in psi.

     L     = the total length of tube in ft.

     fiso  = the dimensionless isothermal Fanning friction factor.

     DENW  = the water density at average temperature in lbm/ft3.

          = the Sieder-Tate (20) correction factor for bulk to wall
             property variation.

     Both fiso and <(> are defined differently depending on whether or not
the flow  is laminar, in transition, or turbulent.  The expressions for
fiso were found by fitting curves to the 3 zones of the Moody (21) chart
and dividing by 4 to determine the Fanning friction factor.

     To determine the total dry cooling tower pressure drop, in addition
to the tube-side friction loss, the program calculates the inlet nozzle
loss using a loss coefficient, k, of 1.0; the inlet header contraction
loss using a k of 1.5; the turn-around loss between passes using a k of
1.5; the  outlet header expansion loss using a k of .25, and the outlet
nozzle loss using a k of 0.5.  The pressure drop for each of these losses
is:
      DEL  =         _                                (G_14)
            (DENW) (1.20 x 1011)

where,

      DEL  = the pressure loss in psi.

      k    = the loss coefficient.

For  the nozzle losses, GW is calculated based on the inside cross-sectional
area  of the nozzle.
                               G-6

-------
     The pressure losses due to the rest of the circulating system have
been discussed in detail in earlier sections.  The return and supply
piping losses were determined by converting all straight lengths, elbows,
valves, etc. to equivalent lengths in pipe diameters L/D.  The sum of
all the L/Ds was used  in equation G-13 assuming an average DENW and GW
and a constant value of 0.00275 for the product of fiso and <|>.  No loss
coefficients were used  in calculating these pressure losses.  The values
used for the L/Ds of the elbows, valves, etc. can be found in Crane (24)
The program  actually sums up each pipe, elbow, valve, etc. that is con-
tained  in the circulating system.  Thus, the elements that are included
in the  determination of the pressure drop will depend heavily on the de-
sign of the  system as described in earlier sections.
                                 6-7

-------
            APPENDIX H
Program Input and Program Listing,
                 H-l

-------
PROGRAM INPUT
     The input data required for the Dry Cooling Tower Optimization
Program includes an alphanumeric description of the case, the temper-
ature-load profile of the site, site-related design information, para-
meters for the economic evaluation, and steam turbine performance char-
acteristics.  These data are read from standard 80-column computer
cards.  Integer variables must be right justified and real variables
require a decimal point.  An explanation of each card is given below.
1.  Card No. 1
Col. 1-2
Col. 3-22
01 (Card Number)
Case description
Col. 23-37   Geographical location or site
Col. 38-52   Turbine type
Col. 53-67   Condenser type
Variable Name

KNO
BARB(1)-BARB(4)
BARB(5)-BARB(7)
BARB(8)-BARB(10)
BARB(11)-BARB(13)
2.  Card No.
Col.  1-2
Col.  3-7
Col.  8-9
Col.  10-14
Col.  15-19
 Col.  20-25
 Col.  26-29

 Col.  30-33
02                                KNO
Tube inclination in degrees
from the horizontal               ANGI
Number of tube bundles in
parallel in each bay              ZBUP
Number of fins/in.                ZNFI
The distance in in. between
centers of adjacent tubes in
a row perpendicular to the
air flow direction                PTI
Altitude of site in ft.           HALT
Fixed charge rate of base plant
expressed as a decimal fraction   COST(2)
Cost in mills/KW-HR of energy
penalty when energy penalty is
maximum                           COST(6)
                                H-2

-------
                                               Variable Name

Col. 34-36   Number of tube rows per bundle    ZTRD

Col. 37-40   Number of tube passes per bundle  ZTPD
3.  Card No. 3
Col. 1-2

Col. 3-8


Col. 9-13

Col. 14-17
Col. 18-21
Col. 22-25
Col. 26-28


Col. 29-31
Col. 32-37

Col. 38-39
03
KNO
Maximum allowable tube length in
ft.                               TLMAX

Minimum allowable ITD in °F       TITDN

Decimal fraction used to deter-
mine when to stop the optimiza-
tion procedure  (The procedure
stops when all designs in the
Box Complex have total costs
whose ratios are 1.0 ± TOL.
Computational time increases
as this tolerance is decreased)   TOL

Box optimization expansion factor,
«  (See discussion on Box proce-
dure.  Recommended value is 2.0)  ALF
Decimal fraction of distance be-
tween constraint boundary and
centroid to place independent
variable when constraint is vio-
lated (See discussion on Box pro-
cedure.  Recommended value is
.01)
Maximum number of iterations
allowed in Box procedure
                                               DELT
ITRMX
Number of consectutive iterations
which will occur that satisfy
the tolerance (card 3, col. 14)
before execution stops            NITR

Nominal plant capacity in MWe     BCAPC

Number of ambient air tempera-
tures to be used (Max. of 20)     NATTR
                                 H-3

-------
                                               Variable Name
Col. 40-44   Cost in $/KWe for capacity re-
             placement                         CAPCST

Col. 45-48   Minimum allowable TTD in °F
             {Usually 2.0 degrees for direct
             contact condensers and 5.0
             degrees for surface condensers)   TTDMN

Col. 49-52   Maximum allowable TTD in °F       TTDMX
4.  Card No.

Col. 1-2

Col. 3-5
Col. 6-9

Col. 10-16

Col. 17-23

Col. 24-30
 Col.  31-37


 Col.  38-44


 Col.  45-51


 Col.  52-58
4

04                                KNO

Fixed charge rate for capacity
replacement expressed as a
decimal fraction   (In most
cases this will be the same as
the fixed charge rate for the
base plant)                       AFCR2

Base plant fuel cost in $/MMBTU   FLCST

Maximum allowable number of tubes TNMAX

Minimum allowable number of tubes TNMIN

Base heat rate in BTU/KW-HR for
load 1   (This is the base heat
rate with which to compare the
dry tower plant.  Incremental fuel
is calculated using this base.  To
use total fuel as a dry tower cost
component, input zero.  This heat
rate corresponds to load 1 (card
11, Col. 6) only)                 BHTRT(l)

Base heat rate in BTU/KW-HR for
load 2                            BHTRT(2)

Base heat rate in BTU/KW-HR for
load 3                            BHTRT(3)

Base heat rate in BTU/KW-HR for
load 4                            BHTRT(4)

Base heat rate in BTU/KW-HR for
load 5                            BHTRT(5)
                                H-4

-------
                                               Variable Name
Col. 59-65   Base heat rate in BTU/KW-HR for
                  6                            BHTRT(6)
5.  Card No. 5

Col. 1-2     05                                KNO

Col. 3-7     Maximum allowable air approach
             velocity in ft/min at standard
             conditions    (Recommended maxi-
             mum is 700 ft/min)                VAMAX

Col. 8-12    Minimum allowable air approach
             velocity in ft/min   (Recom-
             mended minimum  is 350 ft/min)     VAMIN

Col. 13-16   Maximum allowable tube-side flow
             velocity in ft/sec   (Recommended
             maximum is 9  ft/sec)              VWMAX

Col. 17-20   Minimum allowable tube-side flow
             velocity in ft/sec   (Recommended
             minimum is 2  ft/sec)              VVIMIN

Col. 21-25   Maximum allowable cooling range
             in °F                             RNGMX

Col. 26-30   Minimum allowable cooling range
             in °F                             RNGMN

Col. 31-35   Maximum allowable ITD in °F       TITDX

Col. 36-39   Minimum allowable tube  length in
             ft.                               TLMIN

Col. 40-43   Maximum allowable flow  velocity
             for the piping  system in ft/sec
             (Recommended  maximum is 12.5
             ft/sec)                           VX

Col. 44-47   Minimum allowable flow  velocity
             for the piping  system in ft/sec   VN

Col. 48-51   Installed cost  of direct conden-
             ser in. $/lb/hr  of steam flow
             (Zero  indicates a surface conden-
             ser is being  used)                CONCT
                                 H-5

-------
                                               Variable Name
Col. 52-57   Total installed capital cost
             of extra steam supply system
             in millions of dollars            STMCT

Col. 58-62   Ambient air temperature in °F
             above which maximum energy pen-
             alty cost is used   (Usually
             82QF is used)                     CUTMP

Col. 63-67   Cost in mills/KW-HR (Penalty
             when the energy penalty is
             minimum)                          SHELP
6.  Card No. 6

Col. 1-2     06                                KNO

Col. 3-7     Maximum allowable bundle width
             in ft.   (This is usually set
             by shipping limitations and is
             a maximum of 14.5 ft.)            WBMAX

Col. 8-12    Maximum allowable inside diameter
             in in. for piping system   (Maxi-
             mum is 144 in.)

Col. 13-14   Maximum allowable number of fan
             blades   (Minimum is 8)           MXFBL

Col. 15-18   Maximum allowable fan diameter
             in ft.   (Minimum is 24 ft.)      FDMAX

Col. 19-23   Distance in ft. from power plant
             to dry cooling towers             DPPCT

Col. 24-27   Distance in ft. from direct con-
             tact condenser water level to
             ground level   (If water level
             is above ground level, input a
             negative value)                   CWTLV

Col. 28-31   Distance in ft. from direct con-
             tact condenser spray nozzle level
             to ground level   (If spray noz-
             zles are above ground level, in-
             put a negative value)             SPRHT
                                H-6

-------
Col. 32-36



Col. 37-42


Col. 43-46



Col. 47-49



Col. 50-52



Col. 53-57
Col. 58-61
Pressure drop across direct con-
tact condenser spray nozzles in
ft. of water

Maximum shipping length in ft.
for piping

Back pressure in in. Hg absolute
at which steam turbine produces
nominal power

Efficiency of cooling tower cir-
culating pumps   (Usually it is
about  .89)

Overall efficiency of water re-
covery turbine   (Usually it is
about  .8)

Installed cost of water recovery
turbine in $/KWe   (Input zero
if no water recovery turbine is
desired)

Operating and maintenance cost
in mills/KW-HR for the incremen-
tal 0  & M attributable to the
heat rejection system
                                               Variable Name
SPRNZ
SCPMP
PBPHT
CPEFF
WTEFF
                                               CWRTI
                                               EBPOM
7.  Card No. 7
Col.  1-2

Col.  3-7
Col. 8-13
07
KNO
First ambient air temperature in
°F used to rate cooling tower
(The first temperature must be the
highest ambient temperature and
the remaining ambients must be de-
creasing; this is a requirement
for this program)                 ATTR(l)
Number of hours per year that
first ambient air temperature
occurs
                                               DATTR(l)
                                H-7

-------
                                               Varible Name

Col. 14-17   Load factor as decimal fraction
             of nominal turbine power for de-
             termining the plant output desired
             during the first ambient air tem-
             perature                          PLDFT(l)

Col. 18-22   Second ambient air temperature    ATTR(2)

Col. 23-28   Number of hours per year for
             second ambient air temperature    DATTR(2)

Col. 29-32   Load factor for second ambient
             air temperature                   PLDFT(2)

Col. 33-37   Third ambient air temperature     ATTR(3)

Col. 38-43   Number of hours per year for
             third ambient air temperature     DATTR(3)

Col. 44-47   Load factor for third ambient
             air temperature                   PLDFT(3)

Col. 48-52   Fourth ambient air temperature    ATTR(4)

Col. 53-58   Number of hours per year for
             fourth ambient air temperature    DATTR(4)

Col. 59-62   Load factor for fourth ambient
             air temperature                   PLDFT(4)

Col. 63-67   Fifth ambient air temperature     ATTR(5)

Col. 68-73   Number of hours per year for
             fifth ambient air temperature     DATTR(5)

Col. 74-77   Load factor for fifth ambient
             air temperature                   PLDFT(5)
8.  Card No. 8

Col. 1-2     08

Col. 3-77    Same as card No. 7 for ambient
             air temperatures No. 6 through
             No. 10   (Columns 3-7 are for
             ATTR(6), etc.)
KNO
                                H-8

-------
9.  Card No. 9

Col. 1-2     09

Col. 3-77    Same as card No. 7 for ambient
             air temperatures No. 11 through
             No. 15   (Columns 3-7 are for
             ATTR(ll), etc.)


10. Card No. 10

Col. 1-2     10

Col. 3-77    Same as card No. 7 for ambient
             air temperatures No. 16 through
             No. 20   (Columns 3-7 are for
             ATTR(16), etc.)
                                               Variable Name
                                  KNO
                                  KNO
11. Card No.

Col. 1-2

Col. 3-4



Col. 5



Col. 6-8



Col. 9-11



Col. 12-14

Col. 15-17


Col. 18-20

Col. 21-23
11

11
KNO
Number of turbine back pressures
to be used to input turbine in-
formation   (Maximum is 28)       NBKPR

Number of turbine loads to be
used to input turbine informa-
tion   (Maximum is 6)             NLODS

Turbine load No. 1 as a decimal
fraction of nominal turbine
power                             XLDFT(l)

Back pressure in in. Hg absolute
where fan control starts for load
1                                 BPMNM(l)
Turbine load 2
XLDFT(2)
Back pressure in in. Hg absolute
for fan control for load 2        BPMNM(2)
Turbine load 3
XLDFT(3)
Back pressure in in. Hg absolute
for fan control for load 3        BPMNM(3)
                                H-9

-------
Col. 24-26   Turbine load 4

Col. 27-29   Back pressure in in. Hg absolute
             for fan control for load 4

Col. 30-32   Turbine load 5

Col. 33-35   Back pressure in in. Hg absolute
             for fan control for load 5

Col. 36-38   Turbine load 6

Col. 39-41   Back pressure in in. Hg absolute
             for fan control for load 6

Col. 42-45   Back pressure No. 1 in in. Hg
             absolute   (The first back pres-
             sure for which turbine informa-
             tion will be input)

Col. 46-49   Back pressure No. 2 in in. Hg
             absolute   (The second back
             pressure for which turbine in-
             formation will be input)

Col. 50-53   Back pressure No. 3 in in. Hg
             absolute   (The third back pres-
             sure for which turbine informa-
             tion will be input)

Col. 54-57   Back pressure No. 4 in in. Hg
             absolute   (The fourth back
             pressure for which turbine in-
             formation will be input)

Col. 58-61   Back pressure No. 5 in in. Hg
             absolute   (The fifth back pres-
             sure for which turbine informa-
             tion will be input)

Col. 62-65   Back pressure No. 6 in in. Hg
             absolute   (The sixth back pres-
             sure for which turbine informa-
             tion will be input)

Col. 66-69   Back pressure No. 7 in in. Hg
             absolute   (The seventh back
             pressure for which turbine in-
             formation will be input)
Variable Name

XLDFT(4)


BPMNM(4)

XLDFT(5)


BPMNM(5)

XLDFT(6)


BPMNM(6)




BP(1)




BP(2)




BP(3)




BP(4)




BP(5)




BP(6)




BP(7)
                                H-10

-------
                                               Variable Name
Col. 70-73   Back pressure No. 8 in in, Hg
             absolute   (The eighth back
             pressure for which turbine in-
             formation will be input)          BP(8)

Col. 74-77   Back pressure No. 9 in in. Hg
             absolute   (The ninth back pres-
             sure for which turbine informa-
             tion will be input)               BP(9)
12. Card No. 12

Col. 1-2     12                                KNO

Col. 3-78    Back pressures No. 10 through
             No. 28  (One back pressure is     BP(10)
             placed in every 4 columns)        BP(28)


13. Card No. 13

Col. 1-2     13                                KNO

Col. 3-7     Heat rate in BTU/KW-HR of plant
             for load 1 at back pressure No. 1 HTRTD(1,1)

Col. 8-11    Heat rejected in MMBTU/hr by
             steam turbine for load 1 at
             back pressure No. 1               HTRJD(l.l)

Col. 12-16   Heat rate in BTU/KW-HR for load
             1 at back pressure No. 2          HTRTD(2,1)

Col. 17-20   Heat rejected for load 1 at back
             pressure No. 2                    HTRJD(2,1)

Col. 21-25   Heat rate in BTU/KW-HR for load
             1 at back pressure No. 3          HTRTD(3,1)

Col. 26-29   Heat rejected for load 1 at back
             pressure No. 3 in MMBTU/hr        HTRJD(3,1)
     Continue until all back  pressures  are done for  load 1.  Then im-
mediately start  load 2 at back  pressure number 1.  Do  this until all
loads at all back pressures are entered.  Each card  should start with
                                H-ll

-------
the card number in columns 1 and 2 and contain data in column 3 through
column 74.   Use as many cards as needed, until all  back pressures and
loads are entered.  Do not start a new card when starting a new load,
but repeat the same sequence begun for load 1 while using the remaining
usable columns on the partially completed card before going to a new
card.
                                H-12

-------
  APPENDIX I
Program Listing.
    1-1

-------
 I
ro
       PROGRAM MAINA(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)                  00010
C  ***  DRY  COOLING TOWER OPTIMIZATION COMPUTER PROGRAM                      00020
C  ***  DEVELOPED BY PFR ENGINEERING SYSTEMS,INC.                             00030
C  »**  LOS  ANGELES, CALIFORNIA                                              00040
C  ***  JANUARY,  1977                                                        OOO50
C  ***  AUTHORS - T2VI  ROZENMAN,  JAMES M.  FAKE,  JOSEPH M.  PUNDYK             00060
C  ***                                                                       00070
C  ***  COMMON  VARIABLES USED                                                00080
c  ***  PERMANENT INTEGER                                                    00090
       COMMON  NFO,KGO,KNTRO.KNTR1,NSUM,NPAGE,DAY(2),PI                      00100
       COMMON  KCI,KER,KERR(20),KFIN,KREG,LAIC,LSUP,MM,NP,NR,NT1,NT2,NTP,    00110
      1NTR,NTT,ABARE,AFAN,AMIN,APLOT,APPR,ASBUN,ASTOT,AXAV,AXPP(20),CP(2)   00120
     2,DEN(2),DEN12(2,2) , DENFN,DENLZ(7),DBW,DEO,DFH,DFR,DFS,DFT.DKL,       00130
     3DLSP,DLTE.DLTO,DLTS,DNZ(2),DTI,DTIM,DTF,DTO,DTT.PL.PT                00140
       COMMON  DPAD.DPAF,DPAM,DPAW,DPF(10),DPI,DPNZ(2),DPT,DPTA,DPTF,        00150
     1 DPTOT(2),POUT(2) ,PTUB,RV2,GAMAX,GT,HPFNC,HAIR,HTS,UBARE,UCLN,UTOT,   00160
     20(2),QDUT.QTOT.RFI,RFIN,RFTOT,RTOT,RTW,TAV(2),TIN(2),TOUT(2),TT(8)   00170
     3,TWALL,TDtTW,TMTD,TK(2),VAPP,VNZ(2),VT,DFAN,TLTE,AOF,V ISLZ(7),       00180
     4VIS(2),VIS12(2,2),VISW,W(2),WAPF,WB(2),WLQ(2)                        00190
       COMMON  ANG{3),CFH(3),CFP(3),CFR,CKBSC,CKFNG,CKHSC,CKLOV,CKSTC,F,      00200
     1FALT,FINEF,FFF,FSUM1OCL(4),ODL(4)IOKL(4),OML(4),OMV(4),P,PRAN(2),    00210
     2PRALZ(7),R,RAOI,RAOR,RARAF,RAPMX,REA(2),RE12(2,2),RFNPL,RPT.TLA,      00220
     3XREX,ZMP,ZNF,ZNTP,ZNTR,ZNTT,ZTPP(20).ZTPPA                            00230
       COMMON  ZTRD.ANGI,ZBYP,ZBUP,ZBUS,ZFAN,DFANI,DLOV,ZNFI,PTI,TKT,TKF,    00240
     1WD(2),VAPPI,TAMB,HALT,C319,TIND(2),TOUTD(2).RFD.PSD,TTMIN,OD(7),      00250
     2CARD7(6),DNZI(2).PDI,CFNG,CHSC,CLOV,CBSC,PRSTC,RFAIR,RFCT,ZNOZ(2),   00260
     3RASPC,ZTPD,ZNTD,COST(7),SSUM(16,30),ISUM(13,30),PRICE(2,21)           00270
       CALL  START                                                            00280
  100  CONTINUE                                                              00290
  200  CALL  BOX                                                              00300
C OPTM CONTROLS FINAL  OUTPUT  PRINTOUTS AND ALT.SOLUTIONS                   00310
  300 CALL OUTPT                                                            00320
  400  STOP                                                                  00330
       END                                                                   00340
                    SUBROUTINE  ACCOST(TSTS,NTT,NTR,NTP,DTI,DTD,NFPIN,DSL,DST.DHEDW.DL,    00350
                   1 DTN1I,DTN10,N001I,N0010,DTN2I,DTN20,N002I.N0020,ZBUP,ZFAN,DFAN,      00360
                   2 N8LD,NMOT,HPMOT,NBPU,DHSTR,KNTR1,CTTOT,CSTOR,DFH,DFT )                00370
                    AIR  COOLER  COST  CALCULATION                                           00380
                    COMMON/FAN/EFFAN,NBLAD,HPMSP                                          00390
                    DIMENSION CASEO)                                                     00400
                    DIMENSION TRATY1O),  T«ATY2(3),  TRATY3O), TRATY(3)                   00410

-------












c
c
c
C_— _
c ** *

c *•*

c ***

c *» +












_— -
c
c
c
c
c
c
c
c
c
c
c

c
c
DIMENSION FANTY(2),FANTY1(2),FANTY2(2),FANTY3(2)
DIMENSION ERT1(7), ERT2(7), ERT3(7), ERT(7)
DATA CASE /4HDRY ,4HTQWE,4HR 1/
DATA ERT1 / 4HSHOP.4H ERE.4HCT I .4HNDUC, 4HED D , 4HRAFT , 4HUNI T /
DATA ERT2 / 4HSHOP.4H ERE.4HCT F,4HORCE,4HD DR.4HAFT ,4HUNIT /
DATA ERT3 / 4HFIEL.4HD ER.4HECT ,4HUNIT,4H , 4H , 4H /
DATA FANTY1/4HPERM.4H FIX/
DATA FANTY2/4HMAN. ,4H ADJ/
DATA FANTY3/4HAUT0.4H VAR/
DATA TRATY1 / 4HDIRE.4HCT 0.4HRIVE /
DATA TRATY2 / 4HV-BE.4HLT ,4H /
DATA TRATY3 / 4HGEAR.4HBOX ,4H /




GENERAL ADMINISTRATION COST FACTOR IS ASSUMED AS 1.15
DATA GAFAC/1 . 15/
MATERIAL ESCALATION FACTOR IS ASSUMED 1.05
DATA ESCAL/1 .OS/
LABOR OVERHEAD FACTOR IS ASSUMED AS 2.0
DATA OVHDL/2.0/
COST OF ALUMINUM STRIP IS .80 $/LB
DATA CFIN/.8/
DATA CPLM1 .CPLL1/.25, .5/
DATA DENCS.DENAL/.2833, -0975/
DATA TSTOP,TSBOT,TSIDE,TBACK,TSPP/5*0.75/
DATA CUTT,CUTL,WLDT.WLDL,CHOLE,CASS/2.0,5.0,3.0,5.0,0.65,0.2/
DATA CTM.CTIB1 , DEN/0. 25 , 0.33 , 0 .2B33/
DATA KTUBE.KFIN/0,0/
DATA CTPG1 , ASPG1 / 1.0, 0.5 /
DATA CTUMT/ 3.0 /
DATA TSPLM /0.09/
DATA IDFAN/3/
DATA MORPM/3600/
NBPU = NUMBER OF BAYS IN PARALLEL PER UNIT
NBUP = NUMBER OF BUNDLES IN PARALLEL PER BAY
HPMOT = MOTOR HORSEPOWER
NFAN = NUMBER OF FANS PER BAY
DFAN = FAN DIAMETER (FT)
NBLD = NUMBER OF BLADES PER FAN
FPLM = COST INDEX FOR INSTALLING PLENUM BASED ON PLENUM MATERIAL
CPLM1 = UNIT COST FOR PLENUM MATERIAL ($/LB)
TSPLM = THICKNESS OF PLENUM (INCH)
NMOT = NUMBER OF MOTORS PER BAY

DLTTK=(DTO+DTI)/2.
IF THE NUMBER OF FINS PER INCH NFPIN IS NOT AN INTEGER
RUN WITH THE INTEGERS ABOVE AND BELOW TO CALCULATE THE
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
f\ f\ c "7 n
OOb '0
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
AH *7 7rt
UU f l \J
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00690
00900
00910

-------
 c
 c
 c
     COST  OF  THE  FINNED TUBES,  THEN  TAKE  AVERAGE VALUE
       ZTT=NTT
       ZTP=NTP
       NFAN=ZFAN+.01
       ZBPU=NBPU
       ZBLD=NBLD
       ZMOT=NMOT
       Z001I=N001I
       Z0010=N0010
       Z002I=N002I
       Z0020=N0020
 C
 c
 c
c
c
c
c
c
c
c
c
c
c
c
c
c
   •  CALCULATE  THE  FRONT  HEADER  COST,  KTYPE=1
     KTYPE=1
     CALL  HEAD(NTT,NTR,NTP,DSL,DST,DHEDW,DTI,DTO,TSTS,TSTOP,TSBOT,TSIDE
   1 ,TBACK,TSPP,DEN,CTM,CUTT,CUTL,WLDT,WLDL,CHOLE,DTN1I,DTN10,CTPG1 ,AS
   2PG1.KTYPE.CTHF.CTCUTF.CTWLDF.CTTPGF.CTFH.SLABF.SMATF.DIF.HIF.DWOF,
   3DHOF,DDOF,NPPF,NPPB)

	  CALCULATE  THE  BACK HEADER COST, KTYPE=2
     KTYPE=2
     CALL  HEAD(NTT,NTR,NTP,DSL,DST,DHEDW,DTI,DTO,TSTS,TSTOP,TSBOT,TSIDE
   1,TBACK,TSPP,DEN,CTM,CUTT,CUTL,WLDT,WLDL,CHOLE(DTN2I,DTN20,CTPG1 ,AS
   2PG1,KTYPE,CTHB,CTCUTB,CTWLD8,CTTPGB,CTBH,SLABS,SMATB,DIB,HIB,DWOB,
   3DHOB,DDOB,NPPF,NPPB)


	  CALCULATE  THE  COST OF  TUBE  BUNDLES,  INCLUDING ASSEMBLING

     CALL  BUNDLE(ZTT,DL,DHOF,DDOF,DDOB,DHEOW,CTIB1,WLDL,WLDT,CTUMT,KTUB
   1E,KFIN,NFPIN,DDIB,WTIB,DLIB,CTUB1,CTUBE,CTUBA,CTUBW,CTBUN,CTIB,WLD
   2IB,SLABT,SMATT,SUPPM,SUPPL,SUPP,DTO,DLTTK,DFH,DFTtWTUBF,CTUB,CFlN)


	  NOZZLE COST 	

     CALCULATE  THE  COST FOR  INSTALLING AN  INLET NOZZLE ON  FRONT  HEADER
     CALL NOZZLE(DTN1I.CTNZI1)

     CALCULATE  THE  COST FOR  INSTALLING AN  OUTLET NOZZLE ON  FRONT  HEADER
    CALL NOZZLE(DTN10,CTNZ01)

    CALCULATE  THE  COST FOR  INSTALLING AN  OUTLET NOZZLE ON  BACK  HEADER
    CALL NOZZLE(DTN20,CTNZ02)

     TOTAL COST FOR THE NOZZLES
     CTNOZ=Z001I*CTNZI1+ZOalO«CTNZ01+Za020«CTNZ02
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01 040
01050
01060
01070
01080
01090
01 100
01 110
01 120
01 130
01 140
01 150
01 160
01 170
01 180
01 1 90
01200
01210
01220
01230
01240
01250
01260
01270
01280
01 290
01300
01310
01 320
01330
01340
01350
01360
01370
01380
01390
01400
01410

-------
 I
Ol
              C
              c
              C
              c
              c
              c
              c
              c
              c
              c
              c
                    CTNOZ=CTNOZ*ZBUP
	 CALCULATE THE COST OF PLENUM
    CALL PLENUM(NFAN,DFAN,DL,DHEDW,TSPLM,DENCS,CPLM1.CPLL1.CTPLNI,PLMTL
   1.PLLAB.ZBUP)

	 CALCULATE FANS COST
    CALL FAN(NFAN,OFAN,NBLO,IDFAN,CFAN1.CTFAN)

	 CALCULATE MOTORS COST
*** SPECIFY MOTORS IN 25 HP  INCREMENTS
    XI=HPMOT/25.
    I = XI
    1=1*25+25
    HPMSP=I
    CALL MOTOR(NMOT,MORPM.HPMSP,CMOT1,CTMOT)

	 CALCULATE TRANSMISSION COST
    CALL TRANS(NMQT,HPMSP,CTRAN,TRANC)

	 CALCULATE ERECTION COST
    CALL EXSTP(ZBUP,NBLD,NFAN,ZBPU,CERCT)

    CTACS=CTPLM+CTFAN+CTMOT+TRANC+CTNOZ
    CTACO=CTACS*ZBPU
	 CALCULATE STRUCTURE COST
    ASSUME STEEL INDEX IS U.S. AVERAGE  AND ROOF  LIVE  LOAD OF 40  LB/FT2
    DATA STLAD.RLL/0.,40./
    TUBWT=WTUBF
    CALL STRUCT(NTT,TUBWT,DL,DHEDW,RLL,DHSTR,STLAD,ZBUP.ZBPU.CTSTR)

	 SHIPPING COST IS 5.50 S/CWT BELOW 60 FEET AND 5.00 S/CWT ABOVE 60
	 ASSUME MODULES WEIGH 1.4 TIMES THE  TUBE WEIGHT AS IN STRUCT
    WSHIP=WTUBF*DL*ZTT*ZBUP*ZBPU*1.4
    CSHIP=WSHIP*.025
    IF(DL.GT.60. )CSHIP=VKSHIP*.05
     TOTAL  LABOR COST —
     CTLAB=SLABF+SLABB+SLABT
     CTLAB=CTLAB*ZBUP*ZBPU+PLLAB*ZBPU
     TOTAL  MATERIAL COST 	
     CTMAT=SMATF+SMATB+SMATT
     CTMAT=CTMAT*ZBUP*ZBPU+PLMTL*ZBPU
 01420
 01430
 01440
 01450
 01460
 01470
 01480
 01490
 01500
 01510
 01520
 01530
 01540
 01550
 01560
 01570
 01580
 01590
 01600
 01610
 01620
 01630
 01640
 01650
 01660
 01670
 01680
 01690
 01 700
 01710
 01720
 01 730
 01 740
 01750
 01760
 01770
 01 780
 01790
 01800
 01810
 01820
 01830
 01840
 01850
 01860
01870
01880
01E90
01900
01910

-------
 c
 c
 c  ***
 c
 c  == =
 c
 c
 c  == =
 c  «**
MINIMUM COST IS
CTACP=CTACO-ZBPU*CTPLM

TOTAL BASE COST FOR THE AIR COOLER ($) = = =
CTOT=GAFAC*(CTMAT*ESCAL+CTLAB*OVHDL+CTACP)
C
C	
c
c
   10
c
c
c
TOTAL FIRM PRICE FOR THE AIR COOLER ($) = = =
CALCULATE PROFIT FACTOR AS FUNCTION OF TOTAL COST
IF(CTOT-725.£06)4,4,2
FPROF=1.4-.044*ALOG10(CTOT)
GO TO 6
FPROF=1.01
CONTINUE
CTTOT=CTOT*FPROF

CSTOR=CTTOT
CTTOT = CTTOT-f-CERCT+CTSTR+CSHlP
IF(KNTR1.EO.O)GO TO 300

PRINT OUT FINAL RESULTS 	
WRITE(6,10)
FORMAT(1H1.55X.15HAIR COOLER COST)
      NTRAN=NMOT
      NBUP=ZBUP+.01
      NBUNT=NBUP*NBPU
  403 DO 430 1=1,7
  430 ERT(I)=ERT3(I)
  404 CONTINUE
C
C
      IF (HPMOT.GT.7.5) GO TO 445
      DO 441 1=1,3
  441 TRATY(I)=TRATY1(I)
      GO TO 452

  445 CONTINUE
      IF (HPMOT.GT.20.0) GO TO 449
      DO 446 1 = 1 ,3
  446 TRATY(I)=TRATY2(I)
      GO TO 452

  449 DO 450 1=1,3
01920
01930
01940
01 950
01960
01 970
01 980
01990
02000
02010
02020
02030
02040
02050
02060
02070
02080
02090
02100
021 10
02120
02130
02140
02150
02160
02170
02180
02190
02200
02210
02220
02230
02240
02250
02260
02270
02280
02290
02300
02310
02320
02330
02340
02350
02360
02370
02380
02390
02400
02410

-------
  450 TRATY(I)=TRATY3(I)
  452 CONTINUE
C
      GO TO (432,434,436),  IDFAN
  432 DO 433 1=1,2
  433 FANTY(I)=FANTY1(I)
      GO TO 438
  434 DO 435 1=1,2
  435 FANTY(I)=FANTY2(I)
      GO TO 438
  436 DO 437 1=1,2
  437 FANTY(I)=FANTY3(I)
  438 CONTINUE
   55 CONTINUE
      CC=CSTOR+CERCT+CSHIP+CTSTR
      WRITE(6,57)CC
   57 FORMAT(1HO,29HTOTAL  INSTALLED  COST  PER  UNIT,23X,F12.2,2H $)
   68 CONTINUE
C
C
C 	 PRINT OUT DESIGN  INFORMATION 	
C
   63 WRITE(6,66)
   66 FORMAT(/,2X,132(1H-),/)
   69 CONTINUE
      WRITE(6,60)
   60 FORMAT(48X,31HHEAT EXCHANGER DESIGN VARIABLES,/)
      WRITE(6,62)  (CASE(I),  1=1.3),  (ERT(I),  1=1,7)
   62 FORMAT(1H .2X.7HCASE ID,18X,3A4,31X,7A4)
      WRITE<6,64)  NBPU.NBUNT
   64 FORMAT(1H .2X.23HNO.  OF  BAYS IN PARALLEL,11X,13,31X,34HNO. OF  BUND
     1LE SECTIONS  IN  PARALLEL,15)
      WRITE(6,70)
   70 FORMAT(1H ,1X,132(1H-))
      WRITE(6,75)
   75 FORMAT(1H ,2X,*TU8E  BUNDLE  INFORMATION*,/)
      WRITE(6,80)  DL.DSL
   80 FORMAT(1H ,7X,*BUNDLE LENGTH (FT)*,5X,F12.2,28X,*LONGITUDINAL  PITC
     1H*,4X,*(INCH)*,2X,F14.4)
      WRITE(6,85)  NTT.DST
   85 FORMAT(1H  ,7X,*TOTAL NUMBER OF TUBES  *,I 9,31X,*TRANSVERSE   PITCH
     1     (INCH)   *,F14.4)
       WRITE(6.90)  NTR.DTI
   90  FORMAT(1H  ,7X,*NUMBER  OF TUBE  ROWS
      1TER  (INCH)   *,F12.2)
       WRITE(6,91)  NTP.DTO
   91  FORMAT* 1H  ,7X,*NUMBER  OF TUBE  PASSES
      1TER  (INCH)   *,F12.2,/)
       IF  (KTUBE)  92,92,94
   92  WRITE(6,93)DFH
*,I9.31X,*TUBE INSIDE  DIAME
*,I9,31X,*TUBE OUTSIDE DIAME
 02420
 02430
 02440
 02450
 02460
 02470
 02480
 02490
 02500
 02510
 02520
 02530
 02540
 02550
 02560
 02570
 02580
 02590
 02600
 02610
 02620
 02630
 02640
 02650
 02660
 02670
 02680
 02690
 02700
 02710
 02720
 02730
 02740
 02750
 02760
 02770
 02780
 02790
 02800
 02810
 02820
 02830
 02840
 02B50
 02860
02870
02880
02690
02900
02910

-------
CO
  93  FORMAT(1H  ,7X,9HTUBE  TYPE,11X,17HROUND WELDED C.S.,26X,1OHFIN HEIG   02920
    1HT.12X,                                                              02930
    16H(INCH),9X,F7.4)                                                    02940
     GO  TO  96                                                             02950
  94  WRITE(6,95)DFH                                                       02960
  95  FORMAT(8X,9HTUBE  TYPE.9X,19HROUND  SEAMLESS C.S.,26X,1OHFIN  HEIGHT,   02970
    112X,                                                                 02980
    16H(INCH),9X,F7.4)                                                    02990
  96  CONTINUE                                                             03000
     IF  (KFIN)  97,97,99                                                   03010
  97  WRITE(6,98)DFT                                                       03020
  98  FORMAT(8X,9HFIN   TYPE,9X,14HALUMINUNI  L FIN.31X,                      03030
    113HFIN THICKNESS,9X,                                                 03040
    16H(INCH),9X,F7.4)                                                    03050
     GO  TO  101                                                            03060
  99  WRITE(6,100JDFT                                                      03070
 100  FORMAT(SX,9HFIN   TYPE,9X,14HALUMINUM  G FIN.31X,                      03080
    113HFIN THICKNESS,9X,                                                 03090
    16H(INCH),9X,F7.4)                                                    03100
 101  CONTINUE                                                             03110
     ZFPIN=NFPIN                                                          03120
     WRITE(6,102)ZFPIN,WTUBF                                              03130
 102  FORMATMH  .7X.20HNO.  OF  FINS  PER INCH,8X,F4.1,31X,30HWEIGHT OF  FIN   03140
    1 AND TUBE  (LB/FT),7X,F6.3)                                           03150
     WRITE(6,70)                                                          03160
 226  CONTINUE                                                             03170
     WRITE(6,230)                                                         03180
 230  FORMAT(1H  ,2X,20HMECHANICAL  EQUIPMENT)                               03190
     WRITE(6,232)(FANTY(I),I=1,2),MORPM,(TRATY(I),I=1,2)                  03200
 232  FORMAT(4X,9HFAN TYPE..14X,2A4,8X,11HMQTOR  TYPE.,5X,3HA/C,16,         03210
   14H RPM.6X,18HTRANSMISSION  TYPE . ,6X , 3A4)                              03220
     WRITE(6,236) NFAN,NMOT,NTRAN                                         03230
 236  FORMAT(1H  ,7X,BHNO./BAY.,13X,12,18X,8HNO./BAY.,13X,12,19X,8HNO./BA   03240
   1Y..13X.I2)                                                           03250
     WRITE(6,238) DFAN.HPMQT                                              03260
 238  FORMAT(8X,13HDIAMETER  (FT),7X,F6.2,12X,11HPOWER/MOTOR,               03270
   112H -OPERATING ,F6.2)                                                03280
     WRITE(6,240)NBLD,HPMSP                                               03290
240  FORMAT(8X,13HNO.BLADES/FAN,8X,12,26X.12H  -INSTALLED  ,F6.2)           03300
     WRITE(6,70)                                                          03310
     WRITE(6,242) DHSTR                                                   03320
242  FORMAT(1H  ,2X.21HSTRUCTURE HEIGHT  (FT),13X,F6.2)                     03330
     WRITE(6,70)                                                          03340
300  RETURN                                                               03350
     END                                                                  03360

-------
I
ID
      SUBROUTINE BOX
      COMMON/EPA/TNMIN,TNMAX,TSAT(21),COSTT(21), X(10,21),XC(10),VAMAX ,
     1VAMIN.VWMAX,VWMIN,XN,XP ,SUBCL,OMIN,OMAX,PITCH,DI A,
     2RNGMX,RNGMN,TLMIN,TLMAX,TITDX,TITDN,TSATA,TSATZ,XHEAT(21)
      COMMON IDUM,KGO,IDUM1(4),DUMP(3),IDUMW(34),DUMW(SB),
     1 DTIM,DUME1 ( 4 ) , PT , DUMM( 1 07) , FALT , DUME2 ( 74 ) , ZTRD, ANGI , DUME3 ,
     2ZBUP,DUME4(4),ZNF I ,PT1,DUME7(5),TAMB.HALT,C319,DUME9(4),RFC,
     3DUME10(18),CFNG,CHSC,CLOV,CBSC,PRSTC,RFAIR,RFCT,ZNOZ(2),DUME11,
     4ZTPD,DUNIE12,COST(7),DUIVIE14(912)
      COMMON/PEN/ATTR(20),DATTR(20),AMBTPT(20).BCAPC,NATTR,CAPCST,CMAIN,
     1MACC,AFCR2,XLVL,FLCST1CAPBS,PLDFT(20),STMCT,CUTMP,SHELP,BHTRT(6)
      COMMON/STIN/XLDFT(6),BP(28),HTRTD(28t6),HTRJD(2B,6),NLODS,NBKPR
     1 ,PLOAD.BPMNM(6) ,TPMNM(6)
      COMMON/JUMP/JAKE,TINMX,N002I,DTN2I,N001I,NFPIN,N0020.N0010
      COMMON/JAN7/WBMAX,PBPMN,TBPMN,CPEFF,WTEFF,PBPHT,EBPOM,PPOM,CWRTI,
     1SCPMP,CCPMP,FDMAX,MXFBL,SPRNZ,SPRHT,CWTLV,DPPCT,PDMAX,CONCT
      COMMON/PIPE/XDIA(20),XLGT(20),NN1,NN2.XTOWR,PLNMH,TTTBH,VX,VN
     1,VAVE
      COMMON/BCKPR/BCKMN,BCKMX
      COMMON/FAST/STOW(3)
      COMMON/SCOND/TTDMN,TTDMX,TISUM(21 )
      COMMON/CASED/BARB(13)
      READ(5,7)KNO,(BARB(I),I=1,13)
C *** READ CARD LEFT FROM ORIGINAL  AC  INPUT
      READ(5,3)KNO,ANGI,ZBUP,ZNFI,PTI,HALT,COST(2),COST(6),ZTRD,ZTPD
      ZNOZ(1)=2.
      ZNOZ(2)=2.
      NP = ZTPD-l-0.01
      NTR=ZTRD+0.01
      CALL INPUT

      SET  VARIABLES

      STOW(1)=0.
      STOW(2)=0.
      STOW(3)=0.
      N=6
      JAKE=1
      CALL EXINI
      IF(KGO-1)2,2,300
     2 CALL GEOM1
      PITCH=PT
      DIA=DTIM
 C *** CALC FALT - CORRECTION  TO  AIR DENSITY
      IF(HALT-4000.0)4,4,6
     4 FALT=1 .-3.4E-5*HALT
      GO  TO  9
     6 FALT=.985-3.025E-5*HALT
     9 CONTINUE
              C
              C
              C
 03370
 03380
 03390
 03400
 03410
 03420
 03430
 03440
 03450
 03460
 03470
 03480
 03490
 03500
 03510
 03520
 03530
 03540
 03550
 03560
 03570
 03580
 03590
 03600
 03610
 03620
 03630
 03640
 03650
 03660
 03670
 03680
 03690
 03700
 03710
 03720
 03730
 03740
 03750
 03760
 03770
 03780
 03790
 03800
 03810
03820
03830
03840
03850
03860

-------
              c
              c
      READ INPUT
 i
H->
o
  100 READ(5,150)KNO,TLMAX,TITDN,TOL,ALF,DELT,ITRMX,NITR,BCAPC,
     1NATTR.CAPCST,TTOMN.TTDMX
      READ(5,225)KNO,AFCR2,FLCST,TNMAX,TNMIN,(BHTRT(I) ,1 = 1,6)
      READ(5,230)KNO,VAMAX,VAIYUN,VWMAX,VWMIN,RNGMX,RNGMN,TITDX,TLMIN,
     1VX,VN,CONCT,STMCT,CUTMP,SHELP
C *** DETERMINE AVERAGE DESIGN VELOCITY FOR PIPING
      VAVE=.5*(VX+VN)
      READ(5,240)KNO,WBMAX,PDMAX,MXF8L,FDMAX,DPPCT,CWTLV,SPRHT,SPRNZ,
     1SCPMP.PBPHT,CPEFF.WTEFF.CWRTI,EBPOM
      DO 110 M=1,4
      MM=1-t-(M-1 )*5
      MMM=MM+4
  110 READ(5,250)KNO,((ATTR(I),DATTR(I),PLDFT(1)),I=MM,MMM)
      READ(5,325)KNO,NBKPR,NLODS,((XLDFT(I),BPMNM(I)),1=1,6),(BP(I),1=1,
     19)
      READ(5,350)KNO,(BP(I),I*10,28)
      d=1
  112 LSRT=1
  114 LEFT=NBKPR-LSRT-H
      IF(LEFT)116,116,118
  116 d = d + 1
      IF(J-NLODS)112,112,124
  118 J1=J
      I1ST=LSRT
      IF(LEFT-8)122,120,120
  120 I1END=LSRT-l-7
      LSRT=LSRT+B
  121 READ(5,375)KNOf((HTRTD(I,J1),HTRdD(I,d1)),I=I1ST,I1END)
      GO TO 114
  122 I1END=NBKPR
      IF ( ( d-t-1 ) -N LODS) 1 26,126,123
  123 LSRT=NBKPR+1
      GO TO 121
  126 d2=d+1
      I2ST=1
      MADD=8-LEFT
      IF(MADD-NBKPR)128,130,130
  128 I2END=MADD
      d = J2
      LSRT=MADD+1
      GO TO 132
  130 I2END=NBKPR
      IF((d+2)-NLODS)135,135,131
  131  LSRT=NBKPR+1
      d = d2
  132 READ(5,375)KNO,((HTRTD(I,d1),HTRdO(I,d1)),I=I1ST,I1END),
     1                ((HTRTD(I.J2),HTRdD(I,d2)),I=I2ST,I2END)
      GO TO 114
03870
0388C
03890
03900
03910
03920
03930
03940
03950
03960
03970
03980
03990
04000
04010
04020
04030
04040
04050
04060
04070
04080
04090
04100
041 10
04120
04130
04140
04150
04160
04170
04180
04190
04200
04210
04220
04230
04240
04250
04260
04270
04280
04290
04300
04310
04320
04330
04340
04350
04360

-------
135 J3=J+2
    I3ST=1
    I3END=MADD-NBKPR
    J = J3
    LSRT=I3END+1
    REAO(5,375)KNO,((HTRTDd.vM),HTRJD(I,J1 )),1 = 11 ST,11 END),
   1                ((HTRTD(I,J2),HTRJD(I.J2)),I=I2ST,I2END),
   2               ((HTRTD(I,J3),HTROO(I,J3)),1=I3ST,I3END)
    GO TO 114
124 CONTINUE
    WRITE(6,199)ANGI,ZBUP,ZNFI,PTI.HALT.COST(2).COST(6)
125 WRITE(6,200)TLMAX,TITDN,TOL,ALF,DELT,ITRNIX,NITR,NP,NTR,BCAPC,
   1NATTR.CAPCST
    WRITE(6,175)AFCR2,FLCST,TNMAX,TNMIN,
    WRITE(6,igOJVAMAX.VAMlN.VWMAX.VWMlN,
   1.VX.VN.CONCT.STMCT.CUTMP.SHELP
    WRITE(6,195)WBMAX,POMAX.MXFBL,FDMAX,DPPCT,CWTLV,SPRHT,SPRNZ,SCPMP,
                     .CWRTI.EBPOM
                                          , TTDMN.TTDMX
                                          , RNGMX.RNGMN.TITDX.TLMIN
     1PBPHT,CPEFF,WTEFF,
      Q1 1=0.
      01=0.
      CMAIN=0.
      WRITE(6.270)
      DO 140 1=1,NATTR
      WRITE(6,275)ATTR(I).PLDFT(I),DATTR(I)
      Q1=Q1+DATTR(I)
      01 1=01 1+DATTR(I)*PLDFT( I )
C *** FIND APPROX. AVERAGE WEIGHTED  ANNUAL POWER COST  IN MILLS/KW
      IF(PLDFT(I)-.999)139,136,136
  136 IF(ATTR(I)-CUTMP)137,137,13B
  137 CMAIN = CNIAIN+DATTR( I)*SHELP
      GO TO 140
  138 CMAIN=CMAIN+DATTR(I)*CDST(6)
      GO TO 140
C *** ASSUME A HEAT RATE OF 9000 AT  PART  LOAD
  139 CMA1N=CMAIN+DATTR(I)*FLCST*9.
  140 CONTINUE
      01 1=011/8760.
      WRITE(6,276)01,011
      WRITE(6,400)NLODS,NLODS,(XLDFT(I),I=1.NLODS),(XLDFT( I ) ,1 = 1 .NLODS)
      WRITE(6,425)
      DO 500  1=1.NBKPR
      WRITE(6,450)BP(I),(HTRTD(I,J),d=1,NLODS).(HTRJD(I,J),J=1,NLODS)
  500 CONTINUE
      WRITE(6,475)(BPMNM(I),I=1,NLODS)
      WRITE(6,480)(BHTRT(I),I=1,NLODS)
C *** CONVERT HEAT REJECT  TO  INTERNAL   AND  FIND QMIN  AND QMAX
      K = 0
      BCKMN=50.
      DO 40 1=1,NLODS
      IF(BPMNM(I).LT.BCKMN)BCKMN=BPMNM(I)
 04370
 04380
 04390
 04400
 04410
 04420
 04430
 04440
 04450
 04460
 04470
 04480
 04490
 04500
 04510
 04520
 04530
 04540
 04550
 04560
 04570
 04580
 04590
 04600
 04610
 04620
 04630
 04640
 04650
 04660
 04670
 04680
 04690
 04700
 04710
 04720
 04730
 04740
 04750
 04760
 04770
 04780
 04790
 04800
 04B10
 04820
04830
04E40
04850
04860

-------
I
(-•
PO
       TPMNM(I)=TSL(BPMNM(I))
       IF(XLDFT(I)-.9999)25,20,20
    20 K=I
    25 DO 40 0=1,NBKPR
       HTRJD(0,I)=HTRJD(J,I)*1.E+06
    40 CONTINUE
       IF(K.EO.O)WRITE(6,105)
       IF(HTRJD(1,K)-HTRJD(NBKPR,K))50,50,60
    50 CONTINUE
       QMAX=HTRJD(NBKPR,K)
       BCKMX=BP(NBKPR)
       TINMX=TSL(BP(NBKPR))
       GO TO 70
    60 CONTINUE
       QMAX=HTRJD(1,K)
       BCKMX=BP(1)
       TINMX=TSL(BP(1))
    70 CONTINUE
       ICOUNT=0
       PMAX=1.
       PMIN=.05
       XN=NTR

       XA1=VAMAX*PITCH*5./XN
       XA2=VAMIN*PITCH*5./XN
       XW1=VWMAX*19.635*01A**2/XP
       XW2=VWMIN*19.635*DIA**2/XP
C ***  MIN.  DESIGN 0  IS  WHEN FAN  CONTROL  NORMALLY  WOULD  START
       CALL  QTURB(QMIN,TPMNM(K),XLDFT(K),2)
   85  ICOUNT=ICOUNT+1
C ***  LOWEST POSSIBLE INLET AND  OUTLET WATER  TEMPERATURES
       Q1=QMIN*1.000001
       CALL  QTURB(01,TLIW.1.,1)
       TLIW=TLIW-TTDMX+459.67
       TLOW=AMAX1(32.+459.67.TLIW-RNGMX)
C ***  HIGHEST POSSIBLE  INLET AND OUTLET  WATER  TEMPERATURES
       01=QMAX*.999999
       CALL  QTURB(Q1,THIW,1.,1)
       THIW=THIW-TTDMN+459.67
       THOW=THIW-RNGMN
C ***  LOWEST AND HIGHEST POSSIBLE  INLET  AIR TEMPERATURES
       TLIA=AMAX1(409.67.TLIW-TITOX)
       THIA=THIW-TITON
C ***  PHYSICAL PROPERTIES AT LOWEST  AVERAGE WATER TEMPERATURE
       TAV=.5*(TLIW+TLOW)
       TAV=TAV-459.67
       CALL  PPAUT1(TAV,CPLW,DENW,D1,D3,KODE)
C ***  PHYSICAL PROPERTIES AT HIGHEST AVERAGE WATER  TEMPERATURE
       TAV=.5*(THIW+THOW)
       TAV=TAV-459.67
04870
04880
04890
04900
04910
04920
04930
04940
04950
04960
04970
04980
04990
05000
05010
05020
05030
05040
05050
05060
05070
05080
05090
05100
05110
05120
05130
05140
05150
05160
05170
05180
05190
05200
05210
05220
05230
05240
05250
05260
05270
05280
05290
05300
05310
05320
05330
05340
05350
05360

-------
      CALL PPAUT1(TAV,CPW.DENLW,D1,D3,KODE)                                 05370
C *** PHYSICAL PROPERTIES  AT  LOWEST  INLET  AIR TEMPERATURE                  05380
      CALL PPROP(TLIA,14.7,2,DENA,D3,CPLA,D4,05,0,2)                        05390
C *** PHYSICAL PROPERTIES  AT  HIGHEST  INLET AIR TEMPERATURE                 05400
      CALL PPROP(THIA,14.7,2,DENLA,D3,CPA,04,05,0,2)                        05410
      TT=THIW-459.67                                                        05420
      TTT=TT-32.                                                            05430
C *** TEMPORARILY 00 NOT ALLOW  AN  ITD  DESIGN THAT WILL CAUSE BACK          05440
C *** PRESSURE TO EXCEED MAXIMUM AT  HOTTEST AMBIENT.   EVENTUALLY THE       05450
C *** PROGRAM MUST RECOGNIZE  THIS  CONDITION AND REDUCE TURBINE LOAD.       05460
      TITDX=AMIN1(TT+50..TITDX,(TINMX-TTDMX-ATTR(1)-3.))                   05470
      RNGMX=AMIN1(TTT.RNGMX)                                                05480
C                                                                           05490
C *** TIGHTEN UP CONSTRAINTS  IF POSSIBLE                                    05500
C                                                                           05510
      TNMIN1=QMIN/RNGMX/DENW/XW1/CPW                                        05520
      TNMIN=AMAX1(TNMIN.TNMIN1)                                             05530
      TNMAX1=QMAX/RNGMN/DENLW/XW2/CPLW                                     05540
      TNMAX=AMIN1(TNMAX,TNMAX1)                                             05550
      RNGMX2=TNMAX1*RNGMN/TNMIN                                             05560
      RNGMN2=TNMIN1*RNGMX/TNMAX                                             05570
      RNGMX=AMIN1 (RNGMX,RNGMX2 )                                             05580
      RNGMN=AMAX1(RNGMN,RNGMN2)                                             05590
      QMAX4=CPW*RNGMX*XW1*DENW*TNMAX                                        05600
      QMIN4=CPLW*RNGMN*XW2*DENLW*TNMIN                                     05610
      QMAX=AMIN1(QMAX.QMAX4)                                                05620
      QMIN=AMAX1(QMIN.QMIN4)                                                05630
      PMAX1=CMAX/CPLA/TITDN/XA2/DENLA/TLMIN/TNMIN                          05640
      PMIN1=QNIIN/CPA/TITDX/XA1/DENA/TLMAX/TNMAX                            05650
      PMAX=AMIN1(PMAX1,PMAX)                                                05660
      PMIN=AMAX1(PMIN1,PMIN)                                                05670
      TITOX2=PMAX1*TITDN/PMIN                                              05680
      TITDN2=PMIN1*TITDX/PMAX                                              05690
      TITDX=AMIN1(TITDX,TITDX2)                                             05700
      TITDN=AMAX1(TITDN.TITDN2)                                             05710
      PITDMN=TITDN2*PMAX                                                    05720
      PITDMX=TITDX2*PMIN                                                    05730
      PITDN2=PMIN*TITDN                                                     05740
      PITDX2=PMAX*TITDX                                                     05750
      PITDN1N = AMAX1 (PITDMN, PITDN2)                                           05760
      PITDMX=AMIN1(PITDMX.PITDX2)                                           05770
      TLMAX2=QMAX/CPLA/XA2/PITDMN/DENLA/TNMIN                              05780
      TLMIN2=QMIN/CPA/XA1/PITDMX/DENA/TNMAX                                 05790
      TLMIN=AMAX1(TLMIN.TLMIN2)                                             05800
      TLMAX=AMIN1(TLMAX.TLMAX2)                                             05810
      TNMIN2=TLMIN2*TNMAX/TLMAX                                             05820
      TNMAX2=TLMAX2*TNMIN/TLMIN                                             05830
      TNMIN=AMAX1(TNMIN,TNMIN2)                                             05840
      TNMAX=AMIN1(TNMAX,TNMAX2)                                             05850
      RNGMX3=CPA*PITDMX     *XA1»DENA*TLMAX/CPLW/XW2/DENLW                   05860

-------
       RNGMN3=CPLA*PITDMN    *XA2*DENLA*TLMIN/CPW/XW1/DENW                  05870
       RNGMN=AMAX1(RNGMN,RNGMN3)                                            05880
       RNGMX=AMIN1(RNGMX,RNGMX3)                                            05890
       PMAX2=RNGMX/RNGMN3*PITDMN/TITDN                                      05900
       PMIN2=RNGMN/RNGMX3*PITDMX/TITDX                                      05910
       PMIN=AMAX1(PMIN,PMIN2)                                               05920
       PMAX=AMIN1(PMAX,PMAX2)                                               05930
       TITDX3=PMAX2*TITDN/PMIN                                              05940
       TITDN3=PMIN2*TITDX/PMAX                                              05950
       TITDX=AMIN1(TITDX.TITDX3)                                            05960
       TITDN=AMAX1(TITDN,TITON3)                                            05970
       PITDN3=PMIN*TITDN                                                    05980
       PITDX3=PMAX*TITDX                                                    05990
       PITDMN=AMAX1(PITOMN.PITDN3)                                          06000
       PITDMX=AMINt(PITDMX.PITDX3)                                          06010
       TLMIN3=CPLW*RNGMN*XW2*DENLW/CPA/PITDMX/XA1/DENA                      06020
       TLMAX3=CPW*RNGMX*XW1*DENW/CPLA/PITDMN/XA2/DENLA                      06030
       TLMINUAMAX1(TLMIN.TLMIN3)                                            06040
       TLMAX=AMIN1(TLMAX.TLMAX3)                                            06050
       QMAX5=CPA*PITDMX     *XA1*DENA*TLMAX*TNMAX                            06060
       OMIN5=CPLA*PITDMN    *XA2*DENLA*TLMIN*TNNIIN                          06070
       OMAX=AMIN1(QMAX.OMAX5)                                               06080
       QMIN=AMAX1(OMIN.OMIN5)                                               06090
C                                                                           06100
C  ***  CHECK  FOR  INCONSISTANCIES IN CONSTRAINTS                             06110
C                                                                           06120
       IF(PMIN.GT.(PMAX+.01))GO TO 322                                      06130
       IF(RNGMN.GT.(RNGMX+1.))GO TO 305                                     06140
       IF(TITDN.GT.(TITDX-M .))GO TO 310                                     06150
       IF(TLMIN.GT.(TLMAX-I-.3))GO TO 315                                     06160
C                                                                           06170
       IF(TNMIN.GT.(1.005*TNMAX))GO TO 320                                   06180
C                                                                           06190
C  *«*  SEE  IF QMIN AND QMAX  CAN BE FURTHER  CONSTRAINED                      06200
       ZRN=32.+TTDMN+RNGMN                                                   06210
       CALL QTURB(QMIN3,ZRN,1.,2)                                            06220
       OMIN=AMAX1(QMIN.QMIN3)                                                06230
C  ***  RUN THROUGH CONSTRAINTS  ONCE MORE                                     06240
       IF(ICOUNT.EQ.1)GO TO  85                                               06250
C  ***  SET WIN AND MAX SATURATION  TEMPERATURES                              06260
       Q1=QMIN*1.000001                                                      06270
       CALL QTURB(Q1,TSATA,1.,1)                                             06280
       01=QMAX*.999999                                                       06290
       CALL OTURB(Q1,TSATZ,1.,1)                                             06300
       IF(QMIN.GT.(1.001*OMAX))GO  TO 321                                     06310
C                                                                           06320
C      CALL SUBROUTINE TO PERFORM  BOX OPTIMIZATION                          06330
C                                                                           06340
       CAUL NldBOX(TOL,ALF,DELT,ITRMX,NITR,N)                                 06350
C                                                                           06360

-------
 I
I—>
CJ1
105 FORMAT(///,33H CAUTION. NO LOAD OF  1. WAS  INPUT)                      06370
  3 FORMAT(12,F5.0,F2.0,2F5.0,F6.0,2F4.0,F3.0,F4.0)                       06380
  7 FORMAT(12,13A5)                                                       06390
150 FORMAT(I2,F6.2,F5.2,F4.2,2F4.2,2I3,F6.1,12,F5.1 ,2F4.1 )                06400
175 FORMAT(9X,42HAFCR2  FLCST   TNMAX    TNMIN   TTDMN  TTDMX,/,6X,         06410
   12F7.2,1X,2F9.0,2F6.1,/)                                               06120
190 FORMAT(9X.48HVAMAX VAMIN  VWMAX VWMIN RNGMX  RNGMN  TITDX TLMIN,        06430
   138H   VX    VN   CONCT  STMCT CUTMP  SHELP,/,8X,2F6.1 ,1X ,8F6.1,        06440
   22F7.2.F6.1,F6.2,/)                                                    06450
195 FORMAT(9X.49HWBMAX PDMAX  MXFBL FOMAX DPPCT  CWTLV  SPRHT SPRNZ  ,       06460
   137HSCPMP PBPHT  CPEFF  WTEFF CWRTI  EBPOM,/,8X,F6.2,F6.1,15,F8.1,      06470'
   2F6.0.2F6.1,F6.2.2F6.1,2F7.3,F6.1,F6.3,//)                             06480
199 FORMAT(1H1,1X.38HINPUT: ANGI   ZBUP   ZNFI   PTI    HALT  ,              06490
   111HCOST2 C05T6,/,7X,F6.1 . F7.0,F7.1 ,F4.1,F7.0,F6.2,F6.1,/)             06500
200 FQRMAT(9X,37HTLMAX  TlTDN  TOL   ALF   DELT   ITRMX,                   06510
   133H NITR NP NTR BCAPC  NATTR  CAPCST,/,7X,2F7.2,F6.3,F5.1,F7.3,       06520
   2I6,I5,I4,I3,F7.0,I5,F10.1,/)                                          06530
225 FQRMAT(12,F3.1,F4.2,8F7.0)                                            06540
230 FORMAT!12,2F5.1,2F4.1,3F5.1,3F4.1,F4.2,F6.3,F5.1 ,F5.2 )                06550
240 FORMAT(I2,F5.2,F5.1,12,F4.1,F5.0,2F4.1,F5.2,F6.0,F4.1,2F3.1,F5.1,     06560
   1F4.1)                                                                 06570
250 FORMAT(I2,5(F5.1,F6.1,F4.2))                                          06580
270 FORMAT(1X,26HTEMPERATURE - LOAD PROFILE,/,1X,26(1H-),/,              06590
   120H   TEMP  LOAD  HOURS)                                              06600
275 FORMAT(1X,F6.1,F6.2,F7.0)                                             06610
276 FORMAT(15X,5H	,/,14X,F6.0,12H  TOTAL HOURS,//,14X,F6.3,            06620
   112H LOAD  FACTOR)                                                      06630
325 FORMAT(2I2,I 1 ,12F3.2.9F4.0)                                           06640
350 FQRMAT(12,19F4.0)                                                     06650
375 FORMAT(I2,8(F5.0,F4.0))                                               06660
400 FORMAT(1H1,42X,11(1H+),27H STEAM TURBINE INFORMATION  ,11(1H*),//,     06670
   113H **THE FIRST ,I1,22H COLUMNS ARE  HEAT RATE./.13H  ***THE  LAST  ,     06680
   211,24H COLUMNS ARE HEAT REJECT,/,7H  -LOAD-,/,5X,18F7.2)              06690
425 FORMAT(/,4H  BP./.4H  —)                                             06700
450 FORMAT(1X.F4.1,18F7.0)                                                06710
475 FORMAT(/,37H MINIMUM  BACK PRESSURE AT ABOVE  LOADS,/,5X,9F7.2)         06720
480 FORMAT(/,40H COMPARATIVE HEAT RATE AT ABOVE  LOADS  TO,/,              06730
   132H DETERMINE  INCREMENTAL FUEL COST,/,5X,6F7.0)                       06740
300 CONTINUE                                                              06750
    GO TO 600                                                             06760
305 WRITE(6,306)RNGMN,RNGMX                                               06770
306 FORMAT(///,8H  RNGMN=  ,E12.5,8H RNGMX* ,E12.5)                         06780
    GO TO 322                                                             06790
310 WRITE(6,311)TITDN,TITDX                                               06800
311 FORMAT(///,8H  TITDN=  ,E12.5,8H TITDX= ,E12.5)                         06810
    GO TO 322                                                             06820
315 WRITE(6,316)TLMIN,TLMAX                                               06830
316 FORMAT(///,8H  TLMIN=  ,E12.5,8H TLMAX= .E12.5)                         06840
    GO TO 322                                                            06850
319 FORMAT(///,8H  TNMIN=  .E12.5.8H TNMAX= .E12.5)                         06860

-------
                 320  WRITE(6,319)TNMIN,TNMAX
                     GO  TO  322
                 321  WRITE(6,323)QMIN,QMAX
                 322  WRITE(6,312)
                 323  FORMAT(///,8H   QMINs  .E12.5.8H   QMAX =  ,E12.5)
                 312  FORMAT(///,45H  BOX CANNOT  PROCEED.  CASE  IS  OVER  CONSTRAINED)
                 600  TAMB=0.0
                     RETURN
                     END
06870
06880
06890
06900
06910
06920
06930
06940
06950
i
h-»
cn
                    SUBROUTINE  BUNDLE(ZTT,01,DHOF,DDOF,DDOB,DHEDW,CTIB1 ,WLDL,WLDT,CTUM
                    1T,KTUBE,KFIN,NFPIN,DDIB,WTIB,DUB,CTUB1,CTUBE,CTUBA,CTUBW,CTBUN,CT
                    2IB,WLDIB,SLABT,SMATT,SUPPM,SUPPL,SUPP,DTO,DLTTKtDFH,DFT,WTUBF,CTUB
                    3.CFIN)
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

*** INPUT

ZTT
DL
DHOF
DDOF
DDOB
DHEDW
CTIB1
WLDL
WLDT
CTUMT
KTUBE
KFIN
NFPIN

*** OUTPUT

DDIB
WTIB
DLIB
CTUB1
CTBUN
SUPP
SLABT
SMATT


VARIABLES ***

= NTT, TOTAL NUMBER OF TUBES
= TUBE BUNDLE LENGTH (FT)
= OUTSIDE HEIGHT OF FRONT HEADER (INCH)
= OUTSIDE DEPTH OF FRONT HEADER (INCH)
= OUTSIDE DEPTH OF BACK HEADER (INCH)
= BUNDLE WIDTH (INCH)
= UNIT COST FOR I-BEAM ($/LB)
=WELDING LABOR COST ($/HR)
= WELDING SPEED (WIN/INCH)
= TUBE ASSEMBLING LABOR COST ( $/HR )
= 0 FOR WELDED TUBE, 1 FOR SEAMLESS TUBE
= 0 FOR L FIN, 1 FOR G FIN
= NUMBER OF FINS PER INCH

VARIABLES ***

= I-BEAM DEPTH (INCH)
= UNIT WEIGHT OF I-BEAM (LB/FT)
= LENGTH OF I-BEAM (FT)
= UNIT TUBE COST ($/FT)
= TOTAL COST FOR THE TUBE BUNDLE SECTION ($)
= COST FOR SUPPORTS ($)
= TOTAL LABOR COST FOR THE BUNDLE ($)
= TOTAL MATERIAL COST FOR THE BUNDLE ($)

06960
06970
06980
06990
07000
07010
07020
07030
07040
07050
07060
07070
07080
07090
07100
071 10
07120
07130
07140
07150
07160
07170
07180
07190
07200
07210
07220
07230
07240
07250
07260
07270

-------
c
C     COST OF TUBE MATERIAL
C *** CALL TUBEF TO CALCULATE COST OF ANY TYPE OF BARE OR  FINNED  TUBES
C *** (DATA AS OF APRIL,1976)
      CALL TUBEF(KTUBE,KFIN,NFPIN.DTO.OLTTK,DFH,DFT,WTUBE,WFIN,WTUBF,
     1ATUBE,BFIN,CTUB1.CTUB.CFIN)
      CTUBE=ZTT*DL*CTUB1
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
 c
 c
 c
 c
 c
 c
   ASSEMBLING  COST  ($)

   BUNDLE  ASSEMBLING REQUIRES TWO MAN,  15 MINUTES TO MOUNT ONE TUBE
   ONTO THE  TUBE SHEETS
   CTUMT=3.0 $/HR
   ASSEMBLING  COST  IS PROPORTIONAL TO BUNDLE LENGTH
   ASSUME   1.0 HR FOR 80 FT,   0.5 HR FOR 40 FT TUBE LENGTH

   CTUBA=2.0*ZTT*(0.75*OL)/60.0*CTUMT

   BUNDLE  MELDING REQUIRES ONE MAN 15 MINUTES TO WELD ONE TUBE
   END ONTO A  HOLE
   CTUBW=2.0*ZTT*15.0/60.0*WLDL

   CTBUN=CTUBE+CTUBA+CTUBW
   THERE ARE TWO I-BEAMS TO SUPPORT THE BUNDLES
   DHO=DHOF

   IF (DHO-AINT(DHQ)) 60,60,70

60 CONTINUE
   DDIB=AINT(OHO)
   GO TO 80

70 CONTINUE
   DDIB = AINT(DHO)-M .0

80 CONTINUE

   USE THE SPECIFICATIONS OF (( AMERICAN STANDARD CHANNELS ))
   HERE CONFINE THE DEPTH OF I-BEAM IN THE RANGE OF 9 TO 18 FT

   WTIB  = UNIT WEIGHT OF I-BEAM (LB/FT)

   IF(DDIB-8.)82,82,84
82 CONTINUE
   WTIB=1.567*(DDIB-3.)+4.
   GO TO 200
84 CONTINUE
07280
07290
07300
07310
07320
07330
07340
07350
07360
07370
07380
07390
07400
07410
07420
07430
07440
07450
07460
07470
07480
07490
07500
07510
07520
07530
07540
07550
07560
07570
07580
07590
07600
07610
07620
07630
07640
07650
07660
07670
07680
07690
07700
07710
07720
07730
07740
07730
07750
07770

-------
 I
(—»
00
     IF  (DDIB-9.0) 90,90,100
 90  CONTINUE
     WTIB=13.4
     GO  TO 200
100  CONTINUE
     IF  (DDIB-10.0) 110,110,120
110  CONTINUE
     WTIB=15.3
     GO  TO 200
120  CONTINUE
     IF  (DDIB-12.0) 130,130,140
130  CONTINUE
     WTIB=20.7
     GO  TO 200
140  CONTINUE
     IF  (DDIB-15.0) 150,150,160
150  CONTINUE
     WTIB=33.9
     GO  TO 200
160  CONTINUE
     IF  (DDIB-18.0) 170,170,180
170  CONTINUE
     WTIB=42.7
     GO  TO 200
180  CONTINUE
***  HERE THE I-BEAM DEPTH EXCEEDS THE AMERICAN CHANNELS SPECS.
***  SO WTIB IS ESTIMATED BY EXTRAPOLATION
     WTIB=3.31*(DDIB-10.J+15.3
             C
             c
             C
             c
             c
             c
             c
             c
             c
             c
             c
             c
             c
             c
             c
200 CONTINUE

    LENGTH OF I-BEAM (FT)
    DLIB=DL+(DDOF+DDOB)/12.0

    WEIGHT OF I-BEAM (LB)
    WTIB1=WTIB*DLIB

    WEIGHT FOR TWO I-BEAMS (LB)
    WTIB2=WTIB1*2.0

    I-BEAM MATERIAL COST ($)
    CTIB=CTIB1*WTIB2

    I-BEAM WELDING COST ($)
    WLDIB=2.0*(DDOF+DDOB)*WLDL*WLDT/60.0
    EVERY 6 FT ALONG THE BUNDLE LENGTH, THERE ARE TUBE SPACERS,
    TUBE KEEPERS AND SUBE SUPPORTS
    TO CALCULATE DETAILED MATERIAL AND LABOR COST OF THE SUPPORTS,
07780
07790
07800
07810
07820
07830
07840
07850
07860
07870
07880
07890
07900
07910
07920
07930
07940
07950
07960
07970
07980
07990
08000
08010
08020
08030
08040
08050
08060
08070
08080
08090
08100
081 10
08120
08130
08140
08150
08160
08170
08180
08190
08200
08210
08220
08230
08240
08250
08260
08270

-------
c
c
c
c
c
c
c
c
c
    SUPPORTS DIMENSIONS MUST BE GIVEN

    HERE, ASSUME THAT THE COST FOR EVERY 6 FT SUPPORTS  IS  CTSP1  ($)
    CTSP1 IS PROPORTIONAL TO BUNDLE WIDTH
    AK=0.5
    CTSP1=AK*DHEDW

    ISUPP=INT(DL)/6
    IF (DL/6.0-FLOAT(ISUPP)) 202,202,204
202 CONTINUE
    I5UPP=ISUPP-1
204 CONTINUE

    SUPPM=CTSP1*FLOAT(ISUPP)

    ASSUME THE ASSEMBLING COST FOR TUBE SUPPORTS  IS  THE  SAME  FOR
    SUPPORTS MATERIALS
    SUPPL=SUPPM

    SUPP=CTIB+WLDIB+SUPPM+SUPPL

    SLABT=CTUBA+CTUBW+WLDIB+SUPPL
    SMATT=CTUBE+CTIB+SUPPM
400 CONTINUE
    RETURN
    END
 08280
 08290
 08300
 08310
 08320
 08330
 08340
 08350
 08360
 08370
 08380
 08390
 08400
 08410
 08420
 08430
 08440
 08450
 08460
 08470
 08480
 08490
 08500
 08510
 08520
 08530
 C
 C
 C
 C
     SUBROUTINE  CENT(J ,N , KN,JHIGH)
     COMMON/EPA/TNMIN,TNMAX,TSAT(21),COSTT(21),X(10,21),XC(10),VAMAX,
    1VAMIN,VWMAX,VWMIN,XN,XP,SUBCL,QMIN,QMAX,PITCH,DI A,
    2RNGMX,RNGMN,T LMIN,TLMAX,TITDX,TI TON

     THIS  SUBROUTINE  CALCULATES  THE CENTROID. OF  THE KN POINTS
     ONLY  POINT  J IS  NOT  INCLUDED.

     NN=KN-1
     XNK=NN
     IF(JHIGH.NE.O) GO  TO 350
     DO 100 1=1,N
     XC(I)=0.
 100 CONTINUE
     DO 200 1=1,KN
08540
06550
08560
OB570
08580
08590
08600
08610
08620
08630
08640
08650
08660
08670
08680

-------
                     DO 200  11 = 1 ,N
               c
               c
               c
               c
               c
200 CONTINUE
    DO 300 1=1 ,N
    XC(I)=(XC(I)-X(I,J))/XNK
300 CONTINUE
    GO TO 500

    IF THE CENTROID HAS BEEN CALCULATED FOR A PREVIOUS CASE,
    THE NEW ONE IS SIMPLY THE OLD CENTROID LESS THE J POINT
    WITH THE JHIGH POINT ADDED BACK IN.

350 DO 400 1=1 ,N
    XC(I)=XC(I)+(X(I.JHIGH)-X(I,J))/XNK
400 CONTINUE
500 CONTINUE
    RETURN
    END
08690
08700
08710
08720
08730
08740
08750
08760
08770
08780
08790
08800
08810
08320
08830
08840
08850
08860
ro
O
                     SUBROUTINE  CFIXM(VALUE,VAMIN,VAMAX,RESET,KERN,KERRO,NERC)             08870
              C  ***  LIMITS  VALUES OF  INPUT  DATA  AND STORES  GREY  ERROR  MESSAGE  CODES       08880
                     DIMENSION KERRO(I)                                                    08890
                     IF  (VALUE-VAMAX)  10,20,20                                             08900
                  10  IF  (VAMIN-VALUE)  100,15,15                                            08910
                  15  VALUE=RESET                                                           08920
                     GO  TO 100                                                             08930
                  20  VALUE=RESET                                                           08940
                     CALL ERORG  (NERC,KERRO,KERN)                                          08950
                 100  RETURN                                                                08960
                     END                                                                  08970

-------
     SUBROUTINE CHANL(NFO.ZBYP,VALVE.NPUMP,PPGPM,PUMPC,IXNL,PUMPF,VFILL
    1,TANKC,CONTR,BLANN,SHIPCO,CAPIP,NTANK,INML)
     COMMON/BCK/XIYICST(20),PIPDM(20),XSHOP(20),FIELD(20),EXJOT(20)
     DIMENSION MPRNT(44),VALVE(1)
     DATA MPRNT/10HINLET  FEED.10HER  LINE
                10HINLET
                10H
                10H
                10H
                10H
                10H
                10H
                10HBAY
1 ,
2,
3,
4,
5,
6,
7,
B,
9.
1 ,
2/
         HEAD.10HER
             ,10H
             ,10H
             ,10H
             ,10H
             ,10H
             ,10H
       CONTR0.10HL
10HRECVRY TUR.10HBINE ISO.
10HFILL PUMP .10HISOLATION
.10HOUTLET FEE,
,10HOUTLET HEA,
,10H
,10H
,10H
, 10H
,10H
,10H
.10HCOND. PUMP,
.10HBYPASS ,
.10HFILL DRAIN,
10HDER LINE
10HDER
10H
10H
1 OH
1 OH
10H
10H
10H ISOLATION
10H
10H
1000 FORMAT(1H1,20X,9(1H*),38H    BACK-TO-BACK DRY TOWER PIPING COST ,
    112HBREAKDOWN    ,9(1H*),//,31X,30HDIAMETER    TOTAL       SYSTEM,/,
    233X,4H(IN),19X,5HTOTAL,/,13H A  BAY  PIPING,17X,20(1H-))
1025 FORMAT(3X,11,2H.  , 2A10,6X,F7.2,F11 .0)
1075 FORMAT(39X,2X,9H	,/,6X,1OHPIPING/BAY,23X,F11 .0 ,/,7X ,
    1F4 0 5H BAYS,34X,F11.0,/,16H B  SUPPLY  PIPING,6H(TYPE .11,1H))
5025 FORMAT139X.2X.9H	,/.39X,2F11.0,//,16H C RETURN PIPING,
    16H(TYPE ,11,1H))
5075 FORMAT (39X.2X.9H	,/,39X,2F1 1 .O,/)
6000 FORMAT(13H  D  FILL  LINES,19X,F7.2,2F11.0,/)
6010 FORMATJ15H  E  BYPASS  LINES,17X,F7.2,2F11.0,//, 1 8H F VALVING(INSTALL
    13HED) )
6030 FORMAT(3X, 11 ,2H.  , 2A10,6X , F7.2,F11 .0)
6040 FORMAT(4*X,9(1H-),/,39X,2F11.O,/)
6050 FORMAT(19H  G  PUMPS(INSTALLED),/,6H    1
                                           I2.F8.0.10H GPM COND..13X
     1 2F11  0 /  6H    2.  ,I2,1BH    10000  GPM FILL , 13X , 2F11 .0 , /)
6060 FORMAT(26H  H  STORAGE  TANK(INSTALLED),/,1X,I 4,2H -,F9.0,
     110H GAL TANKS,13X,2F11.O,/)
6070 FORMAT(26H  I  CONTPBLSCINSTALLED)     .13X.2F11.0)
6080 FORMAT(26H  J  N'TRQCLN BLANKETING     .13X.2F11.0)
6090 FORMAT(26H  K  SHIPMENT OF  PIPING     .13X.2F11.0)
6250 FORMAT(52X,9(1H-) ,/,50X,F11.0)
2010 WRITE!NFO,1000)
     TOTOX=0.
     DO  1050 1=1,4
     TOTO=XMCST ( I )+XSHOP( I )+FIELD( I )

     i°ITElNFO?1025')°,MPRNT(2*I-1),MPRNT(2*I),PIPDM(I),TOTO
1050 CONTINUE
     TTOV=ZBYP*TOTOX
     VgRITE(NF0.1075)TOTOX,ZBYP,TTOV,INML
     TOTOX=0.
 08980
 08990
 09000
 09010
 09020
 09030
 09040
 09050
 09060
 09070
 09080
 09090
 09100
 091 10
 09120
 09130
 09140
 09150
 09160
 09170
 09180
 09190
 09200
 09210
 09220
 09230
 09240
 09250
 09260
 09270
 09280
 09290
 09300
 09310
 09320
 09330
 09340
 09350
 09360
 09370
 09380
 09390
 09400
 09410
 09420
 09430
 09410
09450
09460
09470

-------
     TOTOX=TOTOX+TOTO                                                     09480
     WRITE(NFO,1025)I,VPRNT(2*H-7),MPRNT(2«.H.8),PIPDM(H-4),TOTO           09490
5000 CONTINUE                                                             09500
     WRITE(NFO,5025)TOTOX.TOTOX.INML                                      09510
     TOTOX=0.                                                             0952°
     DO 5050 1 = 1,6                                                        09"0
     TOTO = XMCST(I-HO)+XSHOP(I-MO) + FIELD(I + 10)+EXJOT(I + 10)                 09540
     TOTOX=TOTOX+TOTO                                                     09550
     WRITE(NFO,1025)I.MPRNT(2*1+19),MPRNT(2*1+20),PIPDM(I+10),TOTO        09560
5050 CONTINUE                                                             09570
     WRITE(NFO,5075)TOTOX,TOTOX                                           09580
     TOTO=XMCST(17)+XSHOP(17)+FIELD(17)+EXJOT(17)                         09590
     WRITE(NFO,6000)PIPDM(17),TOTO,TOTO                                   09600
     TOTO=XMCST(18)+XSHOP(18)+FIELD(18)+EXJOT(18)                         09610
     WRITE(NFO,6010)PIPDM(l6),TOTO,TOTO                                   09620
     TOTOX=0.                                                             09630
     DO 6020 1=1,6                                                        09640
     TOTOX=TOTOX+VALVE(I)                                                 09650
     J=5                                                                  09660
     IF(I.E0.1)d=1                                                        0967°
     IF(I.GT.4)J=17        '                                               0968°
     WRITE(NFO,6030)I,MPRNT(2*I+31),MPRNT(2»H-32),PIPDM(U),VALVE(I)       09690
6020 CONTINUE                                                             09700
     WRITE(NFO,6040)TOTOX,TOTOX                                           09710
     WRITEfNFO 6050}NPUMP,PPGPM,PUMPC,PUMPC,IXNL,PUMPF,PUMPF              09720
     WRITE(NFO.6060)NTANK,VFILL,TANKC,TANKC                               09730
     WRITE(NFO,6070)CONTR,CONTR                                           09740
     WRITE(NFO,6080)BLANN,BUANN                                           09750
     WRITE(NFO.6090JSHIPCO,SHIPCO                                         09760
     WRITE(NFO,6250)CAPIP                                                 09770
     RETURN                                                               0978°
     END                                                                  0979°
     SUBROUTINE CONST(J.DELT)                                              09800
     COMMON/EPA/TNMIN,TNMAX,TSAT(21),COSTT(21),X(10,21),XC(10),VAMAX,      09810
    1VAMIN,VWMAX,VWMIN,XNfXP,SUBCL,OMIN,QMAX.PITCH,DIA,                   09820
    2RNGMX,RNGMN,TLMIN,TLMAX,TITDX,TITDN,TSATA,TSATZ,XHEAT(21)            09830
     COMMON/SCOND/TTDMN.TTDMX,TISUM(21)                                    09840
                                                                          09850
     THIS SUBROUTINE DETERMINES IF POINT J IS WITHIN CONSTRAINTS          09860
     IF IT IS NOT,IT IS MOVED A SMALL PERCENTAGE,DELT,OF THE DISTANCE     09870
     FROM THE BOUNDARY  TO THE CENTROID                                    09880

-------
ro
co
IF(X(1,J).LT.TSATA)X(1,d)=TSATA-DELT*(TSATA-XC(1))
IF(X(1,J).GT.TSATZ)X(1,J)=TSATZ-DELT*(TSATZ-XC(1 ))
TSAT(J)=X(1,0)
CALL QTURB(XHEAT(J),TSAT(d),1,,2)
IF(X(6td).LT.TTDMN)X(6,J) = TTDMX-DELT*(TTDMX-XC(6))
SUBCL=X(6,J)
TITD=AMIN1(TITDX,(TSAT(J)-SUBCL+50.))
IF(X(2,J).LT.TITDN)  X(2,J)=TITON  -DELT*(TITDN  -XC(2))
IF(X(2,d).GT.TITD)   X(2.J)=TITD    -DELT*ABS(TITD   -XC(2))
IF(X(3,d).LT.RNGMN)  X(3,J)=RNGMN-DELT*(RNGMN-XC(3))
RNG=AMIN1(RNGMX,X(2,d)*.99,(TSAT(d)-SUBCL~32.))
IF(X(3,J).GT.RNG)    X(3,J)=RNG    -DELT*ABS(RNG  -XC{3))
IF(X(4,J).LT.TLMIN) X(4,J)=TLMIN-DELT*(TLMIN-XC(4))
IF(X(4,d).GT.TLMAX) X(4,J)=TLMAX-DELT+(TLMAX-XC(4))
IF(X(5,d).LT.TNMIN) X(5,J)=TNMIN-DELT*(TNMIN-XC(5))
IF(X(5,d).GT.TNWAX) X(5,J)=TNMAX-DELT*(TNMAX-XC(5))
RETURN
END
                                                                                         09890
                                                                                         0990Q
                                                                                         09910
                                                                                         09920
                                                                                         09930
                                                                                         09940
                                                                                         09950
                                                                                         09960
                                                                                         09970
                                                                                         09980
                                                                                         09990
                                                                                         10000
                                                                                         10010
                                                                                         10020
                                                                                         10030
                                                                                         10040
                                                                                         10050
                                                                                         10060
                                                                                         10070
                                                                                         10080
                   SUBROUTINE COSTER(J,VAIR . VH20,KKILL)                                  10090
                   COMMON/EPA/TNMIN,TNMAX,TSAT(21),COSTT(21),X(10,21),XC(10).VAMAX,      10100
                  1VAMIN,VWMAX,VWMIN,XN,XP,SUBCL,OMIN,QMAX,PITCH,DIA,                    10110
                  2RNGMX,RNGMN,TLMIN,TLMAX,TITDX,TI TON,TSATA,TSATZ,XHEAT(21)             1 0120
                   COMMON NFO,KGO,KNTRO,KNTR1,NSUM,NPAGE,DAY(2),PI                       10130
                   COMMON KCI,KER,KERR(20),IDUM6(4),MM,IDUM8(4),NTP,IDUM9,NTT            10140
                   COMMON DUMW(32),DEN12(2,2),DUMW2(8),DBW,DUMWW(9).DLTS,                10150
                  1DNZ(2),DUME22(2),                                                     10160
                  1DTF,DUME5(3),PT.DUME6(28),HPFNC,DUMW1(7).ODUT,DUMM(8),TIN(2),         10170
                  2TOUT(2),DUME7(14),VAPP,DUME1(3),OFAN,DUME4(2),V ISLZ(7) ,DUME3(7),      10180
                  3W(2),DUME8(98),ZBYP,ZBUP,DUMB 10,ZFAN,DFANI.DLOV.DUME12(4),WD(2),      10190
                  4VAPPI,DUME15(3),TIND(2),TOUTD(2),DUME16(3),QD(7),DUME17(6),           10200
                  5DNZI(2),DUME19(11),ZTPD,ZNTD,COST(7)                                  10210
                   COMMON SSUM(16,30) ,ISUM(13,30),PRICE(2,21 )                            10220
                   COMMON/TRACE/SSSUM(9),IISUM(3)                                        10230
                   COMMON/PEN/ATTR(20),DATTR(20),AMBTPT(20),BCAPC,NATTR,CAPCST,CMAIN,    10240
                  1MACC,AFCR2,XLVL,FLCST,CAPBS,PLDFT(20),STMCT,CUTMP,SHELP,BHTRT(6)      10250
                   COMMON/STIN/XLDFT(6),BP(28),HTRTD(2B,6),HTRJD(28,6).NLODS.NBKPR       10260
                  1 ,PLOAD,BPMNM(6) ,TPMNM(6)                                              10:'70
                   COMMON/JUMP/JAKE,TINMX,N002I.DTN2I,N001I,NFPIN,N0020,N0010            10280
                   COMMON/GOFAN/KFANG                                                    10290

-------
 I
ro
       COMMON/PIPE/XDIA(20),XLGT(20),NN1,NN2,XTOWR,PLNMH,TTTBH,VX,VN        10300
      1 .VAVE                                                                10310
       COMMON/HEAD/TOPHD,WRTHD,DPCON,SPDP,RTDP                              10320
       COMMON/JAN7/WBMAX,PBPMN,TBPMN,CPEFF.WTEFF.PBPHT,EBPOM,PPOM,CWRTI,     10330
      1SCPMP,CCPMP,FDMAX,MXFBL,SPRNZ,SPRHT,CWTLV,DPPCT,PDMAX,CONCT           10340
       COMMON/PR5UM/XPRIC(12,21)                                             10350
       COMMON/PERFO/AUXMW(20,21),TURMW(20,21),ZLOAD(20,21)                   10360
       COMMON/PASIT/TBUCK                                                   10370
       COMMON/SCOND/TTDMN,TTDMX,TISUM(21)                                    10380
       COMMON/BCKPR/BCKMN.BCKMX                                             10390
       COMMON/SCRAT/CLFAC,KMETL,KGAGE,CITEM(10,15).GTITD                    10400
       DIMENSION EKW(10),G5LOD(10)                                           10410
 C *** SET DATA FOR  SURFACE CONDENSER  DESIGN                                10420
 c **   KCOND - is MULTIPRESSURE  CODE- I=SINGLE  PRESS,   2=  TWO PRESSURE      10430
 C **   SET TUBE METAL  CODE FOR CARBON  STEEL (KMETL=9)                        10440
 C **   SET CODE NO.  OF TUBE SHEET METAL USING  CARBON  STEEL   MN=2             10450
 C **   SET THE GAGE  OF THE TUBE TO  BWG=16,  THICK  OF  .065 INCH  (KGAGE=5)      10460
 C **   CPLB =  COST/LB  OF CONDENSER  TUBES-IF ZERO,ESTIMATE  IS MADE           10470
 C *** IN SCSBP                                                             10480
 C *** SET ACCELERATION DUE TO GRAVITY                                      10490
 C *** DPMAX = MAX.  PRESSURE DROP IN  PSI                                     10500
 C *** CLMIN - MIN.  ALLOWABLE  TUBE  LENGTH  FOR  DESIGN  ONLY                    10510
 C *** VMIN -  MIN. ALLOWABLE TUBE VELOCITY                                   10520
 C *** VMAX -  MAX. ALLOWABLE TUBE VELOCITY                                   10530
 C *** SET CLEANINESS  FACTOR - CLFAC                                         10540
       DATA KCOND,MN/2.2/                                                    10550
       DATA CPLB,GC,DPMAX,CLMIN,VMIN,VMAX/0.,32.2,15.,20.,6.,7./             10560
 C                                                                          10570
 C     THIS SUBROUTINE FINDS THE  OBJECT FUNCTION  FOR  THE J  POINT.  THE       10580
 C    OBJECT  FUNCTION IS  THE  TOTAL COST OF THE DRY COOLING TOWER SYSTEM     10590
 C                                                                          10600
      NSUM=J                                                                10610
      COLWS=TBUCK                                                           10620
 C  *** COOLING TOWER DESIGN IS BASED ON 100 PCT.  TURBINE LOAD                10630
      PLOAD=1.0                                                             10640
      KMETL=9                                                              10650
      KGAGE=5                                                              10660
      CLFAC=.85                                                             10670
      BPLKW=BCAPC*1000.                                                     10680
C  «"** DESIGN  BUNDLES  TO BE AS CLOSE TO MAXIMUM WIDTH AS POSSIBLE           10690
C  *** ALLOW 2  INCHES  ON EACH  SIDE  FOR STRUCTURE  AND  .0625  INCHES ON        10700
C  *** EACH  SIDE CLEARANCE FROM WALL TO TUBE                                10710
      WTDAV=WBMAX*12.-4.125-DTF+PT                                         10720
C  **» FIND  NUMBER OF  TUBES/BUNDLE                                           10730
      ZNTZ=AINT(WTDAV/PT)*XN                                                10740
C  *** STAGGERED BUNDLE HAS FEWER TUBES                                     10750
      ZNTZ = ZNTZ-AINT((XN-i-.Ol)/2.)                                           10760
C  *** FIND  TOTAL NUMBER OF BUNDLES                                         10770
      ZBYP = AINT(X(5,J)/ZNTZ-.001)-H .0                                      10780
C  «** MAKE  NUMBER OF  BUNDLES  A MULTIPLE OF 4  SO  THAT  BACK-TO-BACK          10790

-------
 I
ro
en
C *** PIPING CAN ENTER  IN THE MIDDLE.
      ZZBYP=AMOD(ZBYP,4.*ZBUP)
      IF(ZZBYP.GT..001)ZBYP=ZBYP-ZZBYP+4.*ZBUP
C *«* MAKE ACTUAL  TUBES/BUNDLE AN EVEN MULTIPLE OF  XN
      ZNTD = AINT(X(5,d)/ZBYP-.001)-M .0
C *** IF ZZ IS ZERO THEN YOU DO  NOT HAVE  TO  INCREASE 2NTD
      ZNNN=ZNTD+AINT((XN+.01)/2.)
      ZZ=AMOD(ZNNN,XN)
      IF(ZZ-.001)7,7,4
    4 IF(ZZ-XN/2.)5,6,6
    5 ZNTD=ZNTD-ZZ
      GO TO 8
    6 ZNTD=ZNTD+XN-ZZ
C *** CHECK THAT BUNDLE  IS STILL WITHIN WIDTH LIMITATIONS
    8 IF(PT*(1.+FLOAT(INT((ZNTD-.01)/XN)))-WTDAV)7,7,9
    9 ZNTD=ZNTD-XN
C *** CALCULATE ACTUAL  NUMBER OF TUBES
    7 X5NEW=ZBYP*ZNTD
C *** MAKE ZBYP THE NUMBER OF BAYS
      ZBYP=ZBYP/ZBUP
C *** PUT TEMPERATURES  IN DEGREE RANKING
      T*TSAT(J)-SUBCL
      TIND(1)=TCONV(T,1,1)
      TIND(2)=TIND(1)-X(2,J)
      TOUTDd )=TIND(1)-X(3,J)
C *** DETERMINE CP OF  WATER BASED ON AVERAGE TEMPERATURE
      T=.5*(TIND(1)+TOUTD(1))
      T=T-459.67
      CALL PPAUT1(T,CP,DEN,D1,D3,KODE)
C
C *** FIND WATER VELOCITY IN  FT/SEC,
      VH20=XHEAT(J)*XP/X(3,0)/X(5,J)/19.635/DIA**2/CP/DEN
C »** SET KKILL
C »** CHECK IF WATER  VELOCITY IS WITHIN  LIMITS
      KKILL=0
       IF(VH20-(VWMAX+.01))  20,20,10
C *** WATER VELOCITY  IS TOO HIGH
    10 KKILL=1
      GO  TO 100
    20  IF(VH20-(VWMIN-.01))  30,40,40
C *** WATER VELOCITY  IS TOO LOW
    30 KKILL=2
      GO  TO 100
    40 X(5,J)=X5NEW
C •*+  SET UP  VARIABLES TO MAKE COMPATABLE WIITH AC  PROGRAM.
C *** ONCE  VARIABLES  ARE SET  CALL  SUBROUTINE SUPER TO FIND VAIR
       KCI=2
       DLOV=X(4,J)
      WD(1)=XHEAT(0)/X(3,0)/CP
       KFANG=0
 10800
 10810
 10820
 10830
 10840
 10850
 10860
 10870
 10880
 10890
 10900
 10910
 10920
 10930
 10940
 10950
 10960
 10970
 10980
 10990
 11000
 11010
 1 1020
 1 1030
 1 1040
 11050
 11060
 11070
 1 10BO
 11090
 11100
 11110
 1 1 120
 1 1 130
 11 140
 1 1 150
 1 1 160
 11 170
 11 180
 11 190
 11200
 11210
 11220
 1 1230
 1 1 240
 11250
 1 1260
 11270
1 1 280
1 1290

-------
       CALL SUPER
 C  +** IF KGO=2 THEN KILL THE PROGRAM.  THIS CAN  BE DONE  BY  SETTING
 C  **« NPAGE=TOO,  SINCE THE MAXIMUM NUMBER OF OUTPUT  PAGES  IS  200
       IF(KGO-1)  60,60,50
    50 NPAGE=200
       GO TO 100
 C  +»* IF KER=11  THEN THE AIR-SIDE VELOCITY WAS TOO HIGH.  SET VAIR
 C  *** AN ARBITRARY VALUE ABOVE MAX. AIR VELOCITY
    60 I FI f.'M. EQ.O )GO TO 80
       DO 65 I=1,MM
       IFf KERR( I ) -11) 65,70,65
    65 CONTINUE
       GO TC 80
    70 V AIR= ,-iivlAX* 1.15
       KKI Li_ = 3
       GO  TG  100
    80
C  **-
C  ***

c  + **
    92
   94
C **-
   96
  * * *
   98
   95
  IF  AIR  VELOCITY,  VAIR,  IS OUTSIDE MAXIMUM AND MINIMUM VELOCITY
  THEN  RETURN  WITHOUT CALCULATING COST
  IFI VAIR-( VAMAX-t-. 01 ) )  94,94,92
  AIR VELOCITY IS  TOO HIGH
  KKILL=3
  MM = C
  GO  TO  100
  IF(VAIR-(VAMIN-.01 ) )  96,98,98
  AIR VELOCITY IS  TOO
 GO TO  100
 FOR INITIAL  COMPLEX  DO NOT
 IF( I ISUM( 1 ) . GT .0 )GO  TO 95
 IF( VAI3.GT . 1 010. 1GO  TO 92
 CALL OUT?E  TO  PERFORM  BUNDLE
 CALL OUTPE
 COS fT i  J ) rSSSl-'.K 8 I
 TISUV  J IrSUBCL
                                  LET VAIR GO ABOVE  1000  FPM
                                    AND FAN COST CALCULATION
C
C
c ***
  102
 ADD IN CAPITAL COST  OF  INCREASING STEAM SUPPLY SYSTEM  (INSTALLED)
 XPRIC ! 6. J 1 =STMCT»1 .E06*COST( 2)
 COSTT' J ) =COSTT( J )+XPRlC(6, J)
 IP CCNCT  is ZERO  ASSUME  A  SURFACE CONDENSER is USED
 IF< CQNCT-. 001) 102, 102, 103
 CALL SCDES(VMIN,VMAX,CLMIN,TLMAX,SSSUM(2t ,SSUM( 1 2 , J ) , W( 1 ) , KMETL ,
1 KGA3E . vs ,GC, PI ,KCOND,CLFAC,DPMAX,CPLB,TSAT t j ) , BCKMX , BCKMN.DPCON,
2DAY(1>.C1TEM,KNTR1 , CPEF F , CMA I N , AFCR2 , CAPCST , COST ( 2 ) )
 DPCON=CITEM( 1,10)
 SET FIRST GUESS TO BE  USED  IN  RATING ROUTINES
 GTITD=SUBCL
1 1 300
11310
1 1 320
1 1 330
1 1 340
1 1 350
1 1 360
1 1 370
1 1 3»iO
1 1 390
1 MOO
11410
1 M20
 1 430
 1 440
 1450
 1 460
 1 470
 1 480
 1 490
 1500
 1510
1 1520
1 1 530
1 1 540
11550
1 1 560
1 1 570
1 1580
1 1590
1 1600
11610
1 1 620
1 1 630
1 1 640
1 1650
11660
1 1 670
1 16RO
1 1690
1 1 700
11710
1 1 720
1 1 730
1 1 740
11750
1 1 760
1 1 770
11780
1 1 790

-------
ro
                103
              C ***
              c ***

                104
              C ***
              C
              c ***
              c * * *
              c
              c ***
              c
              c ***
              c ***
              c ***
              c
              c ***
              c ** *
              c ***
              c »**
XPRIC(7,d)=CITEM(1, 14)*1000.*COST(2)
GO TO 104
CONTINUE
ADD IN CONDENSER COST BASED ON DESIGN STEAM  FLOW  (USE  LATENT
HEAT FOR 18 INCHES HG) CONCT IS INSTALLED COST.
XPRIC(7,d)=CONCT*QDUT/985.*COST(2)
CONTINUE
COSTT(d)=COSTT(d)+XPRIC(7,d)
CALL GEOM2(CAPIP)
ADD IN COST OF PI PING,PUMPS,VALVES,ETC.
XPRIC(1,d)=CAPIP*COST(2)
COSTT(d)=COSTT(d)+XPRlC(1,d)

CALL DPPIP TO DETERMINE AUX. POWER AT DESIGN POINT
CALL DPPIP
HPPMP=W(1)/60.*TOPHD/CPEFF/33000.
HPWRT=W(1)*WRTHD*WTEFF/8.82/3600./DENl2(2,1)
HPP=HPPMP-HPWRT
DUMX1=HPPMP*.0007457
DUMX2=HPWRT*.0007457
DUMX3=.0007457*ZFAN*ZBYP*HPFNC
ISUM(2,d)=DUMX1+.49
ISUM(7,d)=DUMX2+.49
ISUM(11,d)=DUMX3+.49
SSUM(13,NSUM)=.0007457*(HPP+ZFAN*ZBYP*HPFNC)
ADD IN 200 KW INSTALLED CAPACITY  IN CASE EVAP. TOWER IS NEEDED
SSUM( 13.NSUM)=SSUM(13,NSUM)-t-.2

ADD IN COST OF WATER  RECOVERY TURBINES. USE  INSTALLED  COST/KW
XPRIC(8,J)=CWRTI*.7457*HPWRT*COST(2)
COSTT(J)=COST T(J)+XPRIC < 8, d )

ADD IN INSTALLED COST OF  ELECTRICAL SUBSTATION AND TRANSMISSION
LINES. OVERHEAD LINES ARE 27 DOLLARS/FOOT. ASSUME SUBSTATION
IS AT POWER PLANT
CAUX=580000.*SQRT(SSUM(13,NSUM)/20.)
CAUX = CAUX-t-27.*1 . 1 5* ( DPPCT-«-ZBYP/2 . *SSUM( 3 , NSUM ) *ZBUP )
XPRIC(9,d)=CAUX+COST(2)
COSTT(d)=COSTT(J)+XPRIC(9,d)

ADD IN 12 PCT. FOR INTEREST DURING CONSTRUCTION
XPRIC(10,d)=.12*COSTT(d)
COSTT(d)=COSTT(d)+XPRlC(10,d)
IF OPTIMIZATION IS THROUGH, DO NOT RUN OFF-DESIGN PERFORMANCE
IF(KNTR1.EQ.1) GO  TO  100
ADD THE  FOLLOWING  SECTION TO FIND OFF DESIGN PERFORMANCE.
SET VARIABLES  NEEDED BY  SUPER
KCI = 1
WD(1)*W(1)
VAPPI=VAPP
 11800
 11810
 11820
 11830
 1 1840
 11850
 11860
 1 1870
 1 1880
 11890
 11900
 11910
 11920
 11930
 11940
 11950
 11960
 11970
 11980
 11990
 12000
 12010
 12020
 12030
 12040
 12050
 12060
 12070
 12080
 12090
 12100
 12110
 12120
 12130
 121 40
 12150
 12160
 12170
 1 2180
 12190
 12200
 12210
 12220
12230
12240
12250
12260
122 70
12280
12290

-------
       DLOV=VISLZ(1)                                                         12300
       ZTPD=NTP                                                             12310
       ZNTD=NTT                                                             12320
       DNZI(1)=DNZ(1)                                                        12330
       DNZI(2)=DNZ(2)                                                        12340
       DFANI=DFAN                                                           12350
       JAKE=3                                                                12360
       KREEP=0                                                              12370
 C *** SET ENERGY PENALTY TO ZERO                                            12380
       ENPEN=O.O                                                            12390
       PRICE(2,J)=0.                                                         12400
       ANNFL=0.0                                                            12410
       YFUEL=0.0                                                            12420
 C *** CALL SUPER TO  FIND ITD                                               12430
       DO 200  1=1,NATTR                                                      12440
 C *** IF COST IS ALREADY HIGHER THAN  IT  WAS  BEFORE,  THEN DO NOT BOTHER      12450
 C *** TO RUN  OFF-DESIGN  PERFORMANCE.  THIS  WILL MAKE  THE TOTAL COST          12460
 C *** WRONG SINCE THE  PENALTY  COST  HAS NOT BEEN  FULLY DETERMINED. ALSO      12470
 C *** THE CAPACITY COST  MAY BE BASED  ON  THE  PREVIOUS COSTER CALL.           12480
       IF(IISUM(1))107,107,105                                               12490
   105 IF((COSTT(d)+ENPEN+YFUEL+PRICE(2,J))-COLWS)107,107,201                12500
   107 CONTINUE                                                             12510
       KREEP=I                                                               12520
 C                                                                          12530
 C *** SET  PLANT LOAD AND NOMINAL OUTPUT  FOR  THAT  LOAD                       12540
       XLOAD=PLDFT(I)                                                        12550
       PLOAD=XLOAD                                                          12560
       TBXXX=GRS(XLDFT,1.TPMNM,1,PLOAD.NLODS,XXXX)                           12570
 c *** PLANT OUTPUT is COMPARED AGAINST LOAD  DEMANDED - NOT THE OUTPUT       12580
 C *** OF AN EQUIVALENT WET  TOWER PLANT                                      12590
       XPLKW=BPLKW*XLOAD                                                     12600
 C *** SET  HOURS AT THIS  CONDITION                                           12610
       HRS=DATTR(I)                                                          12620
       IINCL=0                                                               12630
       NRLOD=1                                                               12640
       PTOL=50.                                                              12650
       BOTP=.7*XLOAD                                                         12660
       TOPP=1.                                                                12670
       TIND(2)=ATTR(I)+459.67                                                12680
C ***  IF  LAST  AMBIENT HAD FAN  CONTROL AND NEW AMBIENT IS LOWER WITH A       12690
C ***  LOWER LOAD, THEN START FAN CONTROL  IMMEDIATELY                        12700
       IF(I.EQ.tJGO TO 109                                                   12710
       IF(OFAN.EQ.O)GO TO  109                                                12720
       IF(ATTR(I).LT.ATTR(I-1).AND.XLOAD.LT.(FLOAD+.0001))GO TO 115          12730
  109  JFAN=0                                                                1274Q
       FLOAD=PLOAD                                                           12750
C ***  IF AMBIENT  IS BELOW CUTOFF FOR  FAN CONTROL, START FAN CONTROL         12760
       IF(ATTR(I).LT.(TBXXX-SUBCL-SSSUM(9)))GO TO  115                        12770
  110  CONTINUE                                                              12780
       KFANG=1                                                                12790

-------
      CALL SUPER
C *** START CONTINUOUS FAN CONTROL WHEN TIN(1) GOES  BELOW  MINIMUM
C *** ALLOWABLE TEMPERATURE.
C *** SEE IF TIN(1) IS WITHIN 2 DEGREES
      IF((TIN(1)+2.)-(T BXXX-SUBC1+459.67))11A,150,1 50
  11 4 MM=0
  115 CONTINUE
      CALL QTURB(QFANC,TBXXX,PLOAD,2)
C *** IF CONCT IS ZERO THEN ASSUME A SURFACE CONDENSER  IS  USED
      IF(CONCT-.001)120,120,130
  120 CALL SCMPR(TBXXX,QFANC,W(1),CLFAC,KMETL,KGAGE,BCKMX,BCKMN,
     ICITEMd .11),CITEM(1,4),CITEM(1,13),GTITD,CITEM(1,15),TIND(1),
     2TOUTD(1 ))
      SUBCL=TBXXX-TIND(1)
      GTITD=SUBCL
      TIND(1)=TIND(1)+459.67
      TOUTD(1)=TOUTD(1)+459.67
      GO TO  140
   130 CONTINUE
C  *** FOR JET COND. ASSUME TTD  IS PROPORTIONAL TO  0
      SUBCL=QFANC*TISUM(J)/SSUM(8,J)/1.E06
      TIND(1)=TBXXX+459.67-SUBCL
C  *** CONVERGE ON CP
      L0=1
      CPX=1.
   133 TOUTD(1)=TIND(1)-QFANC/W(1)/CPX
      XX=.5*(TOUTD(1)+TIND(1))
      CP1 = 1.191328-7.002932E-4*XX+6.3408E-7*XX*XX
      IF(ABS(1.-CP1/CPX)-.004)140,140,135
   135 IF(LO-5)137,140,140
   137 LQ=LQ+1
      CPX=CP1
      GO TO 133
   140 CONTINUE
      TOUTD(2)=0.
      KCI = 2
      KFANG=0
 C «»* KFANG INDICATES FAN  CONTROL FOR  THIS PLOAD
 C »**  JFAN INDICATES  ANY FAN  CONTROL  FOR  THIS  AMBIENT
 C ***  FLOAD IS  LOAD FAN  CONTROL STARTED FOR THIS AMBIENT
       IF(JFAN.EQ.O)FLOAD=PLOAD
       JFAN=1
       IF(PLOAD.GT.FLOAD)FLOAD=PLOAD
       VAPSTR=VAPP
       VAPPI=0.
       QD(1)=0.
       CALL SUPER
       KCI = 1
       VAPPI=VAPSTR
   150 CONTINUE
 12800
 12810
 12820
 12830
 12840
 12850
 12860
 12870
 12880
 12890
 12900
 12910
 12920
 12930
 12940
 12950
 12960
 12970
 12980
 12990
 13000
 13010
 13020
 13030
 13040
 13050
 13060
 13070
 13080
 13090
 13100
 13110
 13120
 13130
 13140
 13150
 13160
 13170
 13180
 13190
 13200
 13210
13220
 13230
13240
13250
13260
13270
13280
 13290

-------
co
o
              C  ***

              C
              c  ***
C ** *


C ** *

C
C ***
C ** *

  151
  152
C
C ** *

C ***

  154

C
c ***
  159
C ***
               160
             C ***
             c ***
               162
             C
             C ** *
             c ** *
             c ***
               163

               164
             C
             C ***
 DETERMINE  TOTAL  KW  FOR  FANS
 TOTKW=ZFAN*ZBYP*HPFNC*.7457

 FIND  PUMP  HEAD  IN FEET  OF WATER AND CALCULATE HP
 CALL  DPPIP
 HPPMP=W(1)/60.*TOPHD/CPEFF/33000.
 APPLY  POWER  FROM WATER  RECOVERY TURBINE TO PUMPING POWER
 HPWRT = W(1)*WRTHD*WTEFF/8.82/3600./DEN12 (2,1)
 HPP=HPPMP-HPWRT
 ADD PUMPING  KW ON TO  FAN KW
 TOTKW=TOTKW+HPP*.7457

 IF EVAP.  TOWER  IS NEEDED FOR AUX. COOLING, ADD 200 KW TO
 OPERATE TOWER PUMP  AND  FAN
 IF((TOUT(1)-459.67)-95.)152,152,151
 TOTKW=TOTKW+200.
 CONTINUE

 DETERMINE  KW FOR TURBINE AND FIND DIFFERENCE FROM  BASE PLANT KW
 TZZ=TIN(1)+SUBCL
 HEAT  RATE  RATIO  IS  BASED ON NOMINAL BACK PRESSURE INPUTTED
 CALL  HTURB(TZZ,HRATO,PLOAD,HRTBS,PBPHT)
 TURKW=BPLKW*PLOAD/HRATO
 DELKW=XPLKW-TURKW

 FIND  TURBINE HEAT RATE
 HRTRB=HRATO*HRTBS
 DETERMINE  IF PLANT  OUTPUT IS CLOSE ENOUGH TO DEMANDED OUTPUT
 EZ=TURKW-TOTKW-XPLKW
 IF(ABS(EZ) .GT.PTODGO TO 180
 IF(I-1)162,162,165
 CALCULATE  CAPACITY  PENALTY AT HIGHEST AMBIENT TEMPERATURE AND
 STORE MAXIMUM KW PENALTY FOR TURBINE AND AUXILLARIES
 TOTMX=TOTKW
 SSUM(6,J) = PSL(TZZ-459.67)
 DELMX=DELKW
 DKWMX=TOTMX+DELMX
 CPPEN=DKWMX*AFCR2*CAPCST
 COSTT(J)=COSTT(J)+CPPEN

 EVAP.  TOWER FOR  AUX.  COOLING IS ASSUMED TO COST 300000. DOLLARS
 INSTALLED. THE HEAT LOAD FOR THE AUX. COOLING IS INCLUDED IN
QTURB  AS PART OF 10 PCT. STACK LOSS
 XPRIC(11,J)=0.
 IF((TOUT(1)-459.67)-95.)164,164,163
 XPRIC(ll.d)=300000.*COST(2)
COSTT(0)=COSTT(J)+XPRIC(11,J)
CONTINUE

 ADD UP INCREMENTAL  FUEL COST - COMPARE TO DEMANDED LOAD AT THE
13300
13310
13320
13330
13340
13350
13360
13370
13380
13390
13400
13410
13420
13430
13440
13450
13460
13470
13480
13490
13500
13510
13520
13530
13540
13550
13560
13570
13580
13590
13600
13610
13620
13630
13640
13650
13660
13670
13680
13690
13700
13710
13720
13730
13740
13750
13760
13770
13780
13790

-------
I
co
C *** HEAT RATE  INPUTTED  FOR  THIS  PURPOSE
C *** IT IS POSSIBLE TO GET CREDIT AT  PART  LOAD CONDITIONS
  165 BHTR=GRS(XLDFT,1 , BHTRT , 1 .XLOAD.NLODS , XXXX )
      ANN=HRS*FLCST*1.E-06
      ANN1=ANN*HRTRB*TURKW
      ANNFL=ANNFL+ANN1
      YFUEL=YFUEL+ANN1-ANN*BHTR»XPLKW
C *** ADD UP 0+M CHARGES  FOR  HEAT  REJECTION SYSTEM
      PRICE(2.J)=PRIC£(2,J)+EBPOM*HRS*TURKW*1.E-03
  168 CONTINUE
      ZLOAD(I,d)=PLOAD
      AUXMW
-------
              C *** POWER CAN COME FROM SYSTEM
                194 ENPEN=ENPEN+HRS*SHELP*PPPWR/1000.
                    GO TO 160
                200 CONTINUE
                201 CONTINUE
              C *** RESET VARIABLES SO THAT OPTIMIZATION CAN CONTINUE
                    KCI = 2
                    DFANI=0.
                    TOUTD(2)=0.
                    ONZI(1)=0.
                    DNZI(2)=0.
                    VAPPI=0.
                    OD(1)=0.0
              C *** ADD ENERGY  PENALTY TO TOTAL COST
                    COSTT(J)=COSTT(J)+ENPEN+YFUEL+PRICE(2,J)
 l
CO
ro
101
100
SSSUM(8)=COSTT(J)*1,
XPRIC(2,J)=CPPEN
XPRIC(3,J)=ENPEN
XPRIC(4,J)=COSTT(J)
XPRIC(5,J)=YFUEL
XPRIC(12,J)=ANNFL
CONTINUE
RETURN
END
                                        E-03
14300
14310
14320
14330
14340
14350
14360
14370
14380
14390
14400
14410
14420
14430
14440
14450
14460
14470
14480
14490
14500
14510
14520
14530
14540
                    SUBROUTINE  DPAIR                                                      14550
             C  ***  CALC.  OF  AIR  SIDE  PRESSURE DROP-EXCEPT  FOR FRICTION CALC.  BY DPFRA   14560
                    COMMON NFO,KGO,KNTRO,KNTR1,NSUM.NPAGE,DAY(2),PI                       14570
                    COMMON KCI,KER,KERR(20),KFIN,KREG,LAIC,LSUP,MM,NP,NR,NT1.NT2.NTP,     14580
                  1NTR.NTT.ABARE,AFAN.AMIN,APLOT,APPR,ASBUN,ASTOT,AXAV,AXPP(20),CP(2)   14590
                  2,DEN(2),DEN12(2.2),DENFN,DENLZ(7),DBW,DEO,DFH,DFR,DFS,DFT,DKL,        14600
                  3DLSP,DLTE.DLTO,DLTS,DNZ(2),DTI,DTIM,DTF,DTO,OTT,PL,PT                 14610
                    COMMON DPAD,DPAF,DPAM,OPAW,DPF(10),DPI,DPNZ(2),DPT,DPTA,DPTF,        14620
                  1DPTOT(2),POUT(2),PTUB,RV2,GAMAX,GT.HPFNC,HA IR,NTS,U8ARE,UCLN,UTOT,   14630
                  20(2),QDUT,QTOT,RFI.RFIN,RFTOT,RTOT,RTW,TAV(2),TIN(2),TOUT(2),TT(8)   14640
                  3,TWALL,TD,TW,TMTD,TK(2),VAPP,VNZ(2),VT,DFAN,TLTE,AOF,V ISLZ(7),        14650
                  4VIS(2),VIS12(2,2),VISW,W(2),WAPF,WB(2),WLQ(2)                         14660
                    COMMON ANG(3),CFH(3),CFP(3),CFR,CKBSC.CKFNG.CKHSC,CKLOV,CKSTC,F,      14670
                  1FALT,FINEF,FFF,FSUM,OCL(4),ODL(4),OKL(4),OML(4),OMV(4),P,PRAN(2),     14680
                  2PRALZ(7),R,RAOI,RAOR,RARAF,RAPMX,REA(2),RE12(2,2),RFNPL,RPT,TLA,      14690
                  3XREX,ZMP,ZNF,ZNTP,ZNTR,ZNTT,ZTPP(20).ZTPPA                           14700

-------
CO
CO
      COMMON ZTRD,ANGI,2BYP,ZBUP,ZBUS,ZFAN,DFANI,DLOV,ZNFI,PTI,TKT.TKF,     14710
     1WD(2),VAPPI,TAMB,HALT,C319,TIND(2),TOUTD(2),RFD.PSD,TTWIN,QD(7),      14720
     2CARD7(6),DNZI(2),PDI.CFNG.CHSC,CLOV,CBSC,PRSTC.RFAIR,RFCT,ZNOZ(2),    14730
     3RASPC,ZTPD,ZNTD,C05T(7),SSUM(16,30),ISUM(13,30),PRICE(2,21)           14740
      COMMON/FAN/EFFAN.NBLAD.HPMSP                                          14750
      COMMON/JUMP/dAKE,TINMX,N002I,OTN2I.N001I,NFPIN,N0020,N0010           14760
      COMMON/GOFAN/KFANG                                                    14770
      COMMON/JAN7/WBMAX,PBPMN,TBPMN,CPEFF,WTEFF,PBPHT,EBPOM,PPOM,CWRTI,     14780
     1SCPMP.CCPMP,FDMAX,MXFBL,SPRNZ,SPRHT,CWTLV.DPPCT,PDMAX.CONCT           14790
      TAV(2)=0.5*(TIN(2)+TOUT(2))                                           14800
C *** HORSE POWER AND  EFFICIENCY WILL NOT CHANGE  AT OFF-DESIGN  AMBIENTS     14810
C *** LOUVERS WILL CONTROL  THE  PRESSURE  DROP  TO REMAIN  THE  SAME  AS         14820
C *** AMBIENTS INCREASE.                                                    14830
      IF(KFANG.EQ.1)GO TO  400                                               14840
C *** FOR DESIGN, FAN  SHOULD  BE  SIZED FOR COLD  AMBIENT  - NOT  DESIGN         14850
C *** AMBIENT.  THIS FAN DESIGN  TEMP  IS  INPUTTED  AS TAMB                    14860
      IF(JAKE.EQ.3)GO  TO 19                                                 14870
C *** STORE VARIABLES  THAT  WILL  MOMENTARILY BE  CHANGED  TO  DESIGN FAN        14880
      STJ1=VIS(2)                                                           14890
      STJ2=DEN(2)                                                           14900
      STJ3=REA(2)                                                           14910
      STJ4=TIN(2)                                                           14920
      STJ5=TOUT(2)                                                          14930
      STvJ6 = TAV(2)                                                           14940
      LLIT=0                                                                14950
      TIN(2)=519.67                                                         14960
C *** ASSUME  AT FAN DESIGN TEMPERATURE,  AIR TEMP  RISE  IS ABOUT 40  DEGREE    14970
      TOUT(2)=TIN(2)+40.                                                    14980
      TAV(2)=.5*(TIN(2)+TOUT(2))                                            14990
      T=TAV(2)-459.67                                                       15000
      DEN(2)=FALT/TAV(2)*39.68863                                           15010
      VIS( 2) = .00905-1-1 . 191E-04*(T+200. )**.775                                15020
      REA(2)=GAMAX*DFR/VIS(2)/29.06                                         15030
    19 CONTINUE                                                              15040
      CALL DPFRA(VIS(2),0,TAV(2),DFR,DEN(2),CFP,DKL,1,ZNTR,                 15050
      1  GAMAX,DPAF,REA(2) )                                                   15060
      TR=TOUT(2)/TIN(2)                                                     15070
      DENAP=0.075*530./TIN(2)*FALT                                          15080
      RV2=DENAP*(VAPP  /60.0)**2/(64.34*144.0)                               15090
 C                                                                           15100
 C  ***  IF ZFAN AND DFAN HAVE NOT  BEEN  SET, DO  SO NOW                         15110
 C                                                                           15120
      GO TO  (31,31,49).JAKE                                                15130
 C  *** START WITH  2  FANS/BAY OR  4 FANS/BAY                                   15140
    31 ZFAN=2.                                                               15150
      HORSE=1.E10                                                          15160
       IF(ZBUP.LT.1.1)ZFAN=4.                                                15170
 C  »** SET LARGEST DIAMETER FAN  THAT  MAY  BE USED.  ALLOW  .5 FEET CLEARANCE    15180
 C  ***  BETWEEN THE FAN  BELLS.  BELL  DIA.  IS  1.2 OF  THE  FAN DIAMETER           15190
    35 DFAN=AMIN1(FDMAX,DBW/12.*ZBUP/1.2,(DLTE/12./ZFAN/1.2-.5/1.2))+        15200

-------
 I
CO
      1.9999                                                                15210
 C  ***  FIND NEXT  SMALLER  FAN                                                15220
   39  IT=DFAN-.999                                                         15230
       IF(IT-14)46,46,44                                                    15240
   44  IF((-1)**IT)45,46,46                                                 15250
   45  IT=IT-1                                                              15260
   46  DFAN=IT                                                              15270
 C  ***  CALCULATE  FAN  AREA BY  SUBTRACTING  HUB  BLOCKAGE(HUB DIA=.3*DFAN)      15280
       AFAN=ZFAN*.7B54«.91*DFAN**2                                          15290
       RFNPL=AFAN/(APPR*ZBUP)                                               15300
 C  ***  SET MAXIMUM NUMBER OF  BLADES                                         15310
       NBLAD=MXFBL                                                         15320
 C  ***  SET 24  FOOT FAN  AS MINIMUM SIZE                                      15330
       IF(DFAN.LT.23.5)GO TO  242                                            15340
   49  R2=AMAX1(1.0,1.0/RFNPL**2)                                           15350
       S2=RAPMX**2                                                         15360
   64  CKINP=0.5-0.4*RFNPL                                                 15370
   66  CKD=1.0+TR*(R2-1.O+CKINP)                                            15380
   70  DPAD=CKD*RV2                                                         15390
       HRECV=RV2*TR*R2+.3                                                  15400
       DPAD=AMAX1(0.0,DPAD-HRECV)                                           15410
   78  CONTINUE                                                             15420
       CKM=(TR-1.0)*(1.0+S2)                                                15430
       DPAM=CKM*RV2                                                         15440
   100  CKFNG=0.25*R2*TR                                                     15450
   144  CKLOV=1.8                                                            15460
       DPAW=RV2*(CKFNG+CKLOV)                                               15470
 C  ***  FLOW PER  FAN  IS  EVALUATED                                            15480
       WAPF=W(2)/(ZBYP*ZFAN)                                                15490
   190  DENFN=DENAP/TR                                                       15500
   200  QA=WAPF/DENFN                                                        15510
 C  ***  TOTAL STATIC DROP  IS SUM OF ACCESSORY,FRICTION AND MOMENTUM CHANGE   15520
 C  ***  THE FRICT.  DPAF  IS CORRECTED  BY  BUNDLE  IN SERIES BY CERRECTING NTR   15530
       DPTOT(2)=DPAF+DPAW+DPAM                                              15540
       D1=(DPTOT(2)+DPAD)*100.0                                             15550
 C  ***  FIND FAN  EFFICIENCY AND HORSE  POWER REQUIRED                         15560
 C  *»*  IF KFANG=0  AND JAKE=3  THEN WE HAVE FAN CONTROL.  USE  THE  FAN        15570
 C  ***  EQUATION WITH DESIGN EFFICIENCY                                      15580
       IF(JAKE.EQ.2)GO TO 201                                               15590
       HPFNC=D1*QA/EFFAN/1.378168E06                                        15600
       GO TO 270                                                            15610
  201  XBLAD=NBLAD                        .                                  15620
       FLCFM=QA/60.E03                                                      15630
       PD11=D1*.27673                                                       15640
C ***  ASSUME 12000 TIP SPEED                                               15650
       DATA VTIPA/12000./                                                   15660
       CALL FANCON(Z1,Z2,Z3,K4,Z5,KSTEP,Z4,EFFAN.HPFNC.OFAN,DENFN,          15670
     1       FLCFM.PD11,NBLAD,VTIPA,Z6)                                    15680
C ***  USE GEAR BOX EFFICIENCY OF .97 AND MOTOR  EFFICIENCY OF  .93           15690
       EFFAN=EFFAN«.97*.93                                                  15700

-------
co
en
      HPFNC=HPFNC/.97/.93                                                   15710
c                                                                           15720
C *** IF LLIT=1 THEN IT IS GOING THROUGH ONCE MORE  AT  THE  OPTIMUM DESIGN   15730
      IF(LLIT)215,215,255                                                   15740
  215 IF(KSTEP)240,220,242                                                  15750
C *** CHECK IF HORSE POWER IS SMALLER THAN  PREVIOUS HORSE  POWERS            15760
C *** AND TRY NEXT FAN DIAMETER OR NEXT NUMBER OF BLADES                    15770
  220 IF(HPFNC*ZFAN-HORSE)230,244,244                                       15780
  230 HORSE=HPFNC*2FAN                                                      15790
      DFANL=DFAN                                                            15800
      NBLDD=NBLAD                                                           15310
      ZFANL=ZFAN                                                            15820
      EFFNL=EFFAN                                                           15830
      AFANL=AFAN                                                            15840
      RFNLL=RFNPL                                                           15850
      GO TO 244                                                            .15860
C *** IF STALL CONDITIONS(KSTEP=-2) OCCUR,  THEN  DECREASE THE  FAN            15870
C *** DIAMETER.   IF SMALLER  FAN  IS INDICATED(KSTEP=-1)  THEN DECREASE        15880
C *** THE NUMBER  OF BLADES(TO A MINIMUM OF  8) OR DECREASE  THE FAN DIA.      15890
  240 IF(KSTEP.EQ.(-2))GO TO 39                                             15900
  244 IF(NBLAD-8)39,39,241                                                  15910
  241 NBLAD=NBLAD-1                                                         15920
      GO TO 201                                                             15930
C *** IF BIGGER FAN IS  INDICATED(KSTEP=-H )DECREASE  NUMBER  OF  FANS          15940
C *** PROVIDED THAT NUMBER OF BLADES  IS AT  MAXIMUM                          15950
  242 IF(NBLAD.LT.MXFBL)GO TO 39                                            15960
      IF(ZFAN-1.5)250,250,245                                               15970
  245 ZFAN=ZFAN-1.0                                                         15960
      GO TO 35                                                              15990
C *** RESET OPTIMUM VARIABLES                                               16000
  250 HPFNC=HORSE/ZFANL                                                     16010
      DFAN=DFANL                                                            16020
      NBLAD=NBLDD                                                          16030
      ZFAN=ZFANL                                                            16040
      EFFAN=EFFNL                                                          16050
      AFAN=AFANL                                                            16060
       RFNPL=RFNLL                                                          16070
 C *** GO  THROUGH  ONCE  MORE AT THE OPTIMUM DESIGN(LLIT=1)                    16080
       LLIT=1                                                                16090
 C *** USE  BIGGEST AND  MOST FANS  IF NO FAN IS SUITABLE                       16100
       IF(HORSE-.9E10)49.49,31                                               16110
  255 CONTINUE                                                             16120
 C *** CHECK  THAT  A SUITABLE  COMBINATION OF  FAN SIZE AND NUMBER              16130
 C *** OF  FANS HAS BEEN FOUND                                               16140
       IF(HORSE -.9E10)270,270,260                                           16150
  260  CONTINUE                                                             16160
 C  ***  USE  FAN EQUATION WITH  EFFICIENCY OF  .5                                16170
       EFFAN=.5                                                             16130
       HPFNC=D1*QA/EFFAN/1.378168E06                                         16190
  270  WAPF=QA/60.0                                                         16200

-------
              C *** STORE THE INLET SPECIFIED AIR SIDE STATIC DP - SHOULD BE IN PSI      16210
                400 CONTINUE                                                             16220
              C *** RESTORE VARIABLES THAT WERE DISTURBED TO DESIGN FAN                  16230
                    IF(JAKE.NE.2)GO TO 450                                               16240
                    VIS(2)=STJ1                                                          16250
                    DEN(2)=STJ2                                                          16260
                    REA(2)=STJ3                                                          16270
                    TIN(2)=STJ4                                                          16280
                    TOUT(2)=STJ5                                                         16290
                    TAV(2)=STJ6    •                                                     16300
                450 CONTINUE                                                             16310
                    RETURN                                                               16320
                    END                                                                  16330
 i
<*>                  SUBROUTINE DPFRA (VISAV,KFINP,TAV,DFR.DENAV,CFP.DKL,KFIN,ZNTR.       16340
                   1 GAMAX.DPFA.REAF)                                                    16350
              C *** CALCULATE AIR SIDE PRESSURE DROP,BUNDLE. IN PSI                      16360
                    DIMENSION CFP(3)                                                     16370
              C *** GENERALIZED EQUATIONS START HERE                                     16380
                 50 DPFA=1.0                                                             16390
                    CN=CFP(2)                                                            16400
              C *** FOR FIN TUBES CHECK FOR TRANSITIONAL FLOW,KAYS AND LONDON            16410
                 60 IF (REAF*DKL/DFR-1000.0) 70,80,80                                    16420
                 70 CN=-0.4                                                              16430
                    DPFA=(1000.0*DFR/DKL)**.155                                          16440
                 80 DPFA =CFP(1)*REAF**CN *DPFA                                          16450
                    DPFA=DPFA *GAMAX**2 *8.33E-12 *ZNTR /DENAV                           16460
                200 RETURN                                                               16470
                    END                                                                  16480

-------
 I
CO
      SUBROUTINE DPPIP                                                      16490
C *** THIS ROUTINE DETERMINES  THE HEAD ON  A  PUMP  AND  THE  HEAD ON A         16500
C *** WATER RECOVERY TURBINE TO MAINTAIN A 3 FEET ABOVE ATMOSPHERIC HEAD   16510
C *** IN THE COIL. IT DOES THIS BY  DETERMINING  THE PRESSURE  DROP OF THE    16520
C *** PIPING BY ADDING UP L/D  AS DESIGNED  IN GEOM2. ASSUME  A CONSTANT      16530
C *** FRICTION FACTOR OF  .011  AND A  CONSTANT AVERAGE  VELOCITY.  PUMP        16540
C *** SUCTION LOSSES ARE  IGNORED.                                           16550
C *** DUE TO TAPERED SUPPLY AND RETURN LINES AND  VALVING,  THERE IS NO      16560
C *** MOMENTUM LOSS OR MALDISTRIBUTION                                      16570
      COMMON NFO,KGO,KNTRO.KNTR1,NSUM,NPAGE,DAY<2),PI                       16580
      COMMON KCI,KER,KERR(20) ,KFIN.KREG,LA 1C,LSUP,MM.NP,NR,NT 1 .NT2.NTP,    16590
     1NTR.NTT,ABARE,AFAN,AMIN,APLOT,APPR,ASBUN,ASTOT.AXAV,AXPP(20),CP(2)   16600
     2,DEN(2),DEN12(2,2).DENFN.DENLZ(7),DBW.DEQ,DFH,DFR,DFS,DFT,DKL,        16610
     3DLSP,DLTE,DLTO,DLTS,DNZ(2),DTI,DTIM,DTF,DTO,DTT,PL,PT                 16620
      COMMON DPAD,DPAF,DPAM.DPAW,DPF(10),DPI,DPNZ(2),DPT,DPTA,DPTF,         16630
     1DPTOT(2),POUT(2),PTUB,RV2,GAMAX,GT,HPFNC,HAIR,HTS,UBARE,UCLN ,UTOT,   16640
     20(2),QDUT.QTOT.RFI,RFIN,RFTQT,RTOT,RTW,TAV(2),TIN(2),TOUT(2),TT(8)   16650
     3,TWALL,TD,TW,TMTD,TK(2),VAPP,VNZ(2),VT,DFAN,TLTE,AOF,VISLZ(7),        16660
     4VIS(2),VIS12(2,2),VISW,W(2),WAPF,WB(2),WL(J(2)                         16670
      COMMON ANG(3),CFH(3),CFP(3),CFR.CKBSC.CKFNG.CKHSC,CKLOV,CKSTC,F,      16680
     1FALT.FINEF,FFF,FSUM,OCL(4),ODL(4),OKL(4),OML(4),OMV(4),P,PRAN(2),    16690
     2PRALZ(7),R.RAOI,RAOR,RARAF,RAPMX,REA(2),RE12(2,2),RFNPL,RPT,TLA,      16700
     3XREX,ZMP,ZNF,ZNTP,ZNTR,ZNTT,ZTPP(20),ZTPPA                            16710
      COMMON ZTRD.ANGI,ZBYP,ZBUP,ZBUS,ZFAN,DFANI,DLOV,ZNFI,PTI,TKT,TKF,    16720
     1WD(2).VAPPI,TAMB,HALT,C319,TIND(2),TOUTD(2),RFD.PSD,TTMIN.QD(7),      16730
     2CARD7(6),DNZI(2),PDI,CFNG,CHSC,CLOV,CBSC,PRSTC,RFAIR,RFCT,ZNOZ(2),    16740
     3RASPC,ZTPD,ZNTD,COST(7),SSUM(16,30),ISUM(13,30),PRICE(2,21)           16750
      COMMON/EPA/DUM1(270),SUBCL,DUM2(10)                                   16760
      COMMON/PIPE/XDIA(20),XLGT(20),NN1,NN2,XTOWR,PLNMH,TTTBH,VX,VN         16770
     1,VAVE                                                                 16780
      COMMON/HEAD/TOPHD,WRTHD,DPCON,SPDP,RTDP                              16790
      COMMON/JAN7/WBMAX,PBPMN.TBPMN,CPEFF,WTEFF,PBPHT,EBPOM,PPOM,CWRTI,     16800
     1SCPMP,CCPMP,FDMAX,MXFBL,SPRNZ,SPRHT,CWTLV,DPPCT,PDMAX,CONCT           16810
      COMMON/JUMP/JAKE,DUV7(7)                                              16820
       IF(JAKE.EQ.3)GO TO 36                                                 16830
       SPSUM=0.                                                              16840
       RTSUM=0.                                                              16850
C ***  SUM UP SUPPLY  L/D                                                     16860
       DO  10  1=1,10                                                          16870
       IF(XDIA(I)-.001)20,20,5                                               16880
     5  SPSUM= SPSUM+XLGT(I)/XDIA(I)                                          16890
    10  CONTINUE                                                              16900
    20  SPDP=SPSUM*VAVE**2*1.70775E-04                                        16910
C ***  SUM UP RETURN  L/D                                                     16920
       DO  30  1=11,20                                                         16930
       IF(XDIA(I)-.001)35,35,25                                             16940
    25  RTSUM=RTSUM+XLGT(I)/XDIA(I)                                           16950
    30  CONTINUE                                                              16960
    35  RTDP=RTSUM*VAVE**2*1.70775E-04                                        16970
C ***  PRESSURE  DROP  IN CONDENSER SPRAY NOZZLES  IS  SPRNZ                     16980

-------
 C *** FIND DISTANCE BETWEEN TOP OF  COIL  AND SPRAY  NOZZLES
       CILHT=XTOWR+SPRHT
    36 CONTINUE
       IF(CONCT-.001)70,70,37
    37 CONTINUE
 C *** FIND JET CONDENSER PRESSURE  IN  FEET  OF WATER
       CONPR=PSL(TIN(1)+SUBCL~459.67)*1.133
 C *** FIND WATER RECOVERY TURBINE HEAD  IN  FEET
 C *** NECESSARY TO KEEP COIL PRESSURIZED
       X=SPRNZ+CONPR-CILHT+RTDP
       IF(CWRTI-.0001)40, 40,50
 C *** EXRT IS THE EXTRA HEAD NEEDED TO KEEP COIL PRESSURIZED
 C *** THAT MUST BE THROTTLED IN THE RETURN LINE
 C *** WHEN THERE IS NO  WATER RECOVERY TURBINE
    40 EXRT=36.9-X
       EXRT=AMAX1(0.0,EXRT)
       WRTHD=0.0
       GO TO 60
    50 WRTHD=3.+33.9-X
       WRTHD=AMAX1(O.O.WRTHD)
       EXRT=0.0
    60 CONTINUE
 C *** TOTAL PUMP  HEAD  IN FEET
       TOPHD=SPRNZ+DPTOT(1)*2-3066+WRTHD+CWTLV+SPDP+EXRT-SPRHT+RTDP
       GO TO 75
 C *»* FIND PUMP HEAD  IN FEET WITH SURFACE  CONDENSER
    70 WRTHD=0.
       TOPHD=2.3066*(DPTOT(1)+DPCON)+SPDP+RTDP
    75 CONTINUE
       RETURN
       END
                                                                      16990
                                                                      17000
                                                                      17010
                                                                      17020
                                                                      17030
                                                                      17040
                                                                      17050
                                                                      17060
                                                                      17070
                                                                      17080
                                                                      17090
                                                                      17100
                                                                      17110
                                                                      17120
                                                                      17130
                                                                      17140
                                                                      17150
                                                                      17160
                                                                      17170
                                                                      17180
                                                                      17190
                                                                      17200
                                                                      17210
                                                                      17220
                                                                      17230
                                                                      17240
                                                                      17250
                                                                      17260
                                                                      17270
                                                                      17280
                                                                      17290
C ** *
C ***
C ***
   10
   15
SUBROUTINE DPSEN(DTI,DL,ICLG,GT,RE,GOSW,DEN,RVIS,DP,FF)
CALCULATES TUBESIDE SINGLE-PHASE PRESSURE DROP - COMMERCIAL  PIPE
OR DRAWN TUBING WITH FOULING
PROPERTY VARIATION CORRECTION FACTOR - SIEDER +•  TATE
PHI = 1.0
                  30, 8,30
IF (  ICLG ~ 1 )
VR  = 1./RVIS
IF (RE - 2000.)
IF (RE - 4000.)
PHI » VR«*.25
                         15,10,10
                         25,20,20
17300
17310
17320
17330
17340
17350
17360
17370
17380
17390

-------
 I
CO
IO
                    GO TO 30
                 20 PHI s VR**.14
                    GO TO 30
                 25 PRO = 2.0 -  0.0005*RE
                    PHI = VR**.25*PRO  + VR**.14*(1.-PRO)
              C *** ISOTHERMAL FRICTION FACTOR
                 30 CONTINUE
                 35 IF (RE - 1380.)    55,55,40
                 40 IF (RE - 4000.)    60,60,70
              C ***       HAGEN-POISEUILLE
                 55 FIS = 16./RE
                    GO TO 75
                 60 FIS = 0.0116
                    GO TO 75
              C ***       WILSON-MC.ADAMS-SELTZER
                 70 FIS = .0035  +  .264/RE**.42
              C *** FANNING FRICTION FACTOR AND PRESSURE DROP
                 75 FF  s FIS+PHI
                    DP  = 0.333E-10  *  DL*GT**2*FF/(DTI*DEN)
                    RETURN
                    END
17400
17410
17420
17430
17440
17450
17460
17470
17480
17490
17500
17510
17520
17530
17540
17550
17560
17570
17580
17590
17600
                    SUBROUTINE  DPTUB                                                      i76io
              C *** CALCULATES  PROCESS SIDE PRESSURE DROPS IN THE EXCHANGER              17620
              C *** OVERALL  CASE                                                          17630
                    COMMON NFO,KGO,KNTRO,KNTR1,NSUM,NPAGE,DAY(2),PI                       17640
                    COMMON KCI,KER,KERR(20).KFIN.KREG,LAIC,LSUP,MM,NP,NR,NT1,NT2,NTP,     17650
                    1NTR,NTT,ABARE,AFAN,AMIN,APLOT,APPR,ASBUN,ASTOT,AXAV,AXPP(20),CP(2)   17660
                    2,DEN(2),DEN 12(2,2),DENFN,DENLZ(7),DBW,DEO,DFH,DFR,DFS,DFT,DKL,        17670
                    3DLSP,DLTE,DLTO,DLTS,DNZ(2),DTI,DTIM,DTF,DTO,DTT,PL,PT                 17680
                    COMMON DPAD.DPAF,DPAM,DPAW,DPF(10),DP I,DPNZ(2) ,DPT,DPTA,DPTF,         17690
                    1DPTOT(2).POUT(2),PTUB,RV2,GAMAX,GT,HPFNC,HAIR,HTS,UBARE,UCLN,UTOT,   17700
                    20(2),ODUT,OTOT,RFI,RFIN,RFTOT,RTOT,RTW,TAV(2),TIN(2),TOUT(2),TT(8)   17710
                    3,TWALL,TD,TW,TMTD,TK(2),VAPP,VNZ(2),VT,DFAN,TLTE,AOF,VISLZ(7),        17720
                    4VIS(2),VIS12(2,2),VISW,W(2),WAPF,WB<2),WL(J(2)                        17730
                    COMMON ANG(3),CFH(3),CFP(3),CFR,CKBSC,CKFNG,CKHSC,CKLOV,CKSTC,F,      17740
                    1FALT,FINEF,FFF,FSUM,OCL(4),ODL(4),DKL(4),OML(4),OMV(4),P,PRAN(2),     17750
                    2PRALZ(7).R.RAOI,RAOR,RARAF,RAPMX,REA(2),RE12(2,2),RFNPL,RPT,TLA,      17760
                    3XREX,ZMP,ZNF,ZNTP,ZNTR,ZNTT,ZTPP(20).ZTPPA                            17770
                    COMMON ZTRD.ANGI,ZBYP,ZBUP,ZBUS,ZFAN,DFANI,DLOV.ZNFI.PTI.TKT.TKF,     17780
                    1WD(2),VAPPI,TAMB,HALT,C319,TIND(2),TOUTD(2),RFD,PSD,TTMIN,OD(7),      17790
                    2CARD7(6),DNZI(2),PDI,CFNG,CHSC,CLOV,CBSC,PRSTC,RFAIR,RFCT,ZNOZ(2),    17800

-------
                   3RASPC,ZTPD,ZD,COST(7),SSUM(16,30),ISUM(13,30),PRICE(2,21)             17810
                    NQZ=1                                                                 17820
                    XP=NTP                                                               17830
                    KCLG=1                                                               17840
                    ZLL=DLTO                                                             17850
              C *** CALCULATE TUBE PRESSURE DROP                                         17860
                 90 TB=(TT(NQZ)+TT(NQZ+1))*.5                                            17870
                    TC=.5*(TIN(2)+TOUT(2))                                                17880
                    TW=TB-(TB-TC)*UTOT*RAOI/HTS                                          17890
                    DENT=DENLZ(NQZ)                                                       17900
                    CALL PPVIS(TW,KCLG,VISW,VI5B,OMV,OML)                                 17910
                    VISB=VISLZ(NQZ)                                                       17920
                    RVIS=VISB/VISW                                                       17930
                130 RE=DTI*GT/(29.*VISB)                                                  17940
                    CALL DPSEN(DTI,ZLL,KCLG.GT,RE,0.,DENT,RVIS,DPF(NQZ),FFF)              17950
              C *** CALCULATE INLET  HEADER  CONTRACTION                                   17960
                    DPTA1=1.5*GT**2/(1-2E11*DEN12(1,1))                                   17970
              C *** CALCULATE OUTLET HEADER EXPANSION                                     17980
                    DPTA3=.25*GT**2/(1.2E11*DEN12(2,1))                                   17990
              C *** CALCULATE RETURN HEADER LOSS                                         18000
_                  DPTA2=1.5*GT**2/(1.2E11*DENT)                                         18010
i             C *** TOTAL  LOSSES OF  HEADERS                                              18020
O                  DPTAS=DPTA1+(XP-1.)*DPTA2+DPTA3                                      18030
              C *** TOTAL  TUBE LOSSES                                                     18040
                    DPTF = XP*DPF(1 )                                                        18050
              C *** TOTAL  PRESSURE DROP                                                   18060
                    DPT=DPTF+DPTAS                                                        18070
                    DPTA=DPTAS                                                           18080
              C *** SIZE AND CALC. PRESS. DROP IN  OUTLET NOZZLE                           18090
                    CALL NOZCT(DNZI,DNZ,WB(1)/ZNOZ(2),VNZ,DEN12,0.0   ,DPNZ,DBW,0.0,2)     18100
              C *** RESET  TUBE SIDE  PHYS.PROP.  TO  AVG.  TEMP.                              18110
                    TAV(1)=0.5*(TIN(1)+TOUT(1))                                           18120
                    CALL PPV1S(TAV(1).1,VIS(1),DUM1,OMV,OML)                              18130
                    REA(1)=GT*DTI/(29.0*VIS(1))                                           18140
                    DPTOT(1)=ZBUS«(DPT+DPNZ(1)+DPNZ(2))                                   18150
                430 AX=AXPP(NTP)                                                          18160
                440 VT=WB(1)/(AX*DEN12(1,1)*3600.)                                        18170
                500 RETURN                                                               16180
                    END                                                                   18190

-------
      SUBROUTINE ERORF(KER,KERR,KGO,MM)
C *** SETS PERMANENT ERRORS
      DIMENSION KERR(1)
      KX=MM+1
      KXX=MM+2
      IF (KER) 200,200,20
   20 IF (MM-1) 40,40,30
C *** IF LAST TWO ERRORS ARE SAME WITH NEW KER DO NOT STORE
   30 IF (KER-KERR(MM)) 40,32,40
   32 IF (KER-KERR(MM-1)) 40,90 ,40
   40 MM=MM+1
      IF (MM-20) 50,50,150
   50 KERR(MM)=KER
C *** MINOR ERRORS FROM 1 TO 49 - MAJOR ERRORS .GE.50 SET KGO=2
   90 IF (KER-49) 100,100,150
  100 KER=0
      GO TO 200
  150 KGO=2
  200 RETURN
      END
18200
18210
18220
18230
18240
18250
18260
18270
18280
18290
18300
18310
18320
18330
18340
18350
18360
18370
18380
18390
       SUBROUTINE  ERORG  (N.KERRO,KER)
       DIMENSION KERRO(1)
       IF  (N-20) 10,20,20
    10 NxN+1
       KERRO(N)=KER
    20 RETURN
       END
18400
18410
18420
18430
18440
18450
18460

-------
      SUBROUTINE EXCON                                                      16470
C *** CALCULATES TOTAL CONDENSING AREA AND DESUPERHEATING/SUBCOOLING        18480
C *** AREA AS REQUIRED USING OVERALL METHOD                                 18490
      COMMON NFO,KGO,KNTRO,KNTR1,NSUM,NPAGE,DAY(2),PI                       18500
      COMMON KCI,KER,KERR(20).KFIN.KREG,LA 1C,LSUP,MM,NP,NR,NT1,NT2,NTP,     18510
     1NTR,NTT,ABARE,AFAN,AMIN,APLOT.APPR.ASBUN,ASTOT,AXAV,AXPP(20),CP(2)    18520
     2,DEN(2),DEN 12(2,2),DENFN,DENLZ(7),DBW,DEO,DFH,DFR,DPS,DFT,DKL,        18530
     3DLSP,DLTE,DLTO,DLTS,DNZ(2),DTI,DTIM,DTP,DTO,DTT,PL,PT                 18540
      COMMON DPAD,DPAF,DPAM,DPAW,DPF(10),DPI,DPNZ(2),DPT,DPTA.DPTF,         18550
     1DPTOT(2),POUT(2),PTUB,RV2.GAMAX,GT,HPFNC,HAIR,HTS,UBARE,UCLN,UTOT,    18560
     20(2),ODUT,QTOT,RFI,RFIN,RFTOT,RTOT,RTW,TAV(2),TIN(2),TOUT(2),TT(8)    18570
     3,TWALL.TD,TW,TMTD,TK(2),VAPP,VNZ(2),VT,OFAN,TLTE,AOF,VISLZ(7),        18580
     4VIS(2),VIS 12(2,2).VISW,W(2),WAPF,WB(2),WLQ(2)                         18590
      COMMON ANG(3),CFH(3),CFP(3),CFR,CKBSC,CKFNG,CKHSC,CKLOV,CKSTC,F,      18600
     1FALT,FINEF,FFFfFSUM,OCL(4),ODL(4),OKL(4),OML(4),OMV ( 4),P,PRAN(2),     18610
     2PRALZ(7),R,RAOI,RAOR,RARAF,RAPMX.REA(2),RE12(2,2),RFNPL,RPT,TLA,      18620
     3XREX,ZMP,ZNF,ZNTP,ZNTR,ZNTT,ZTPP(20).ZTPPA                            18630
      COMMON ZTRD.ANGI,ZBYP,ZBUP,ZBUS,ZFAN,DFANI,DLOV.ZNFI,PTI,TKT,TKF,     18640
     1WD(2),VAPPI,TAMB,HALT,C319,TIND(2),TOUTD(2),RFD.PSD,TTMIN,QD(7),      18650
     2CARD7(6),DNZI(2),PDI.CFNG.CHSC.CLOV,CBSC,PRSTC,RFAIR,RFCT,ZNOZ(2),    18660
     3SPC,ZTPD,ZD,COST(7)ISSUM(16,30),ISUM(13,30),PRICE(2,21)               18670
      FSUMrO.O                                                              18680
      GT=WB(1)/AXAV                                                         18690
C *** SENSIBLE CASE CALC. START HERE                                        18700
      PRAN(1)=PRALZ(1)                                                      18710
      CALL UOSEN(1)                                                         18720
      IF (KER)  550,550,590                                                  18730
  550 CALL MTDOV(TD,NP,NTR,1,1.0,KER,P,R,TNU1,LPMT,TMTD,F,0.0)              18740
      IF (KER)  560,560,590                                                  18750
  560 OTOT  =UTOT  *ASTOT*TMTD                                              18760
      FSUM=ODUT/OTOT                                                        18770
  590 RETURN                                                                18780
      END                                                                   18790
      SUBROUTINE  EXINI                                                       18800
  ***  INITIALIZES VARIABLES USED IN COMMON WHICH MAY BE PRESET BY  INPUT     18810
      COMMON NFO,KGO,KNTRO,KNTR1,NSUM,NPAGE,DAY(2),PI                       18820
      COMMON KCI,KER,KERR(20),KFIN.KREG,LAIC,LSUP,MM,NP,NR,NT 1.NT2.NTP,     18830
     1NTR,NTT.ABARE,AFAN,AMIN,APLOT,APPR.ASBUN,ASTOT,AXAV,AXPP(20),CP(2)    18840
     2.DEN(2).DEN12(2,2),DENFN,DENLZ(7).DBW,DEO,DFH,DFR.DFS,DFT,DKL,        18850
     3OLSP,DLTE,OLTO,DLTS,DNZ(2),DTI,DTIM,DTP,DTO,DTT,PL,PT                 18860
      COMMON DPAD,DPAF,DPAM,DPAW,DPF(10),DPI,DPNZ(2),DPT.DPTA,DPTF,         18870

-------
     1DPTOT(2),POUT(2),PTUB,RV2,GAMAX,GT,HPFNC,HAIR,HT5,UBARE,UCLN,UTOT.    18880
     2Q(2),QDUT,QTOT,RFI,RFIN,RFTOT,RTOT,RTW,TAV(2),TIN(2),TOUT(2),TT(8)    18890
     3,TWALL,TD,TW,TMTD,TK(2),VAPP,VNZ(2),VT,DFAN,TLTE,AOF,V ISLZ(7 ) ,        18900
     4VIS(2),VIS12(2,2),VISW,W(2),WAPF,WB(2),WLQ(2)                         18910
      COMMON ANG(3),CFH(3),CFP(3),CFR,CKBSC,CKFNG,CKHSC,CKLOV.CKSTC,F,      18920
     1FALT,FINEF,FFF,FSUM,OCL(4),ODL(4),OKL(4),OML(4),OMV(4) ,P,PRAN(2),     18930
     2PRALZ(7),R,RAOI.RAOR,RARAFtRAPMX,REA(2),RE12(2,2),RFNPL,RPT . TLA,      18940
     3XREX,ZMP,ZNF,ZNTP,ZNTR,ZNTT,ZTPP(20).ZTPPA                            18950
      COMMON ZTRD,ANGI.ZBYP,ZBUP,ZBUS,ZFAN,DFANI,DLOV,ZNFI,PTI,TKT,TKF,     18960
     1WD(2).VAPPI,TAMB,HALT,C319,TIND(2),TOUTD(2),RFD,PSD,TTMIN,00(7),      18970
     2CARD7(6),DNZI(2),PDI.CFNG.CHSC,CLOV,CBSC,PRSTC,RFAIR,RFCT,ZNOZ(2),    18980
     3RASPC,ZTPD,ZNTD.COST(7),SSUM(16,30),ISUM(13,30),PRICE(2,21)           18990
      COMMON/JUMP/JAKE,TINMX.N002I,DTN2I,N001I,NFPIN,N0020,N0010           19000
  803 FORMAT(9H   KER = ,20(13,1H,))                                        19010
      DFAN=DFANI                                                            19020
      ZNTT=ZNTD                                                             19030
C *** PRINT OUT ANY ERRORS                                                  19040
      IF(MM)802,802,801                                                     19050
  801 WRITE(NF0.803)(KERR(I),1=1,MM)                                        19060
      IF(MOD(KNTRO,5).NE.O)KNTRO=KNTRO+1                                    19070
  802 CONTINUE                                                              19080
C *** RESET ERROR VARIABLES FOR  NEXT POINT.  AS  SUPER  IS CALLED             19090
C *** AGAIN AND AGAIN THESE VARIABLES MUST  BE  RESET                         19100
      DO 810  1=1,20                                                         19110
  810 KERR(I)=0                                                             19120
      KER=0                                                                 19130
      KGO=1                                                                 19140
      MM=0                                                                  19150
 1001 CONTINUE                                                              19160
      DO 12 J=1,2                                                           19170
      TIN(J)  = T1ND  (J)                                                      19180
      TOUT(J)rTOUTD(J)                                                      19190
      DNZ(J)=DNZ1(J)                                                        19200
    12 W( J)=WD(J)                                                            19210
      TD=TIN(1)-TIN(2)                                                      19220
      VAPPsVAPPI                                                            19230
      DPTOT(1)=0-0                                                          19240
       IF(JAKE.NE.1)GO TO  91                                                 19250
      ZNTR=ZTRD                                                             19260
      ZNTP=ZTPD                                                             19270
      NTP=ZNTP+0.01                                                         19280
      NTR = ZNTR-t-0.01                                                         19290
      ANG(1)=ANGI*PI/1BO.                                                   19300
      ANG(2)=SIN(ANG(1))                                                    19310
      ANG(3)=COS(ANG(1 ))                                                    19320
       PT=PTI                                                                19330
    91 CONTINUE                                                              19340
      ZVP=ZBUP*ZBYP                                                         19350
      TT(1)=TIN(D                                                         19360
   400 CONTINUE                                                             19370

-------
       RETURN
       END
                                                                          19380
                                                                          19390
 C
 c  ***
 c  ***
 c
 c  ***
 c
 c
 c
 c
 c
 c  ***
 c
 c
c ***
c ***
c ** +
c ***
c ** *
c ***
c ***
c
c ***
      SUBROUTINE  EXSTP(ZBUP,NBLD,NFAN,ZBPU,CERCT)

      THIS  SUBROUTINE  ESTIMATES  THE COST OF ERECTING THE COOLING
      TOWER ON  THE  STRUCTURE

      INPUT VARIABLES  ***
      ZBUP  = NUMBER OF  BUNDLES  PER BAY
      NBLD  = NUMBER OF  BLADES PER FAN
      NFAN  = NUMBER OF  FANS  PER BAY
      2BPU  = NUMBER OF  BAYS  PER UNIT
     OUTPUT VARIABLE  ***
     CERCT = ERECTION  COST  ($)

     ZBLD=NBLD
     ZFAN=NFAN
     ASSUME 1600 DOLLARS TO SET AND ALIGN EACH BUNDLE
     C1=1600.*ZBUP
     ASSUME 1120 DOLLARS TO INSTALL PLENUM
     C2=1120.
     ASSUME 640 DOLLARS TO  INSTALL FAN AND 40 DOLLARS TO BALANCE
     EACH BLADE
     C3=(40.*ZBLD+640.)*ZFAN
     ASSUME 880 DOLLARS FOR INSTALLING RECOVERY STACK
     C4=880.*ZFAN
     ASSUME 320 DOLLARS FOR ELECTRICAL HOOK-UP OF FAN
     C5=320.*ZFAN
     ASSUME 240 DOLLARS TO TEST FAN
     C6=240.*ZFAN
     ASSUME 2.5 FACTOR FOR CONTINGENCIES
     CERCT=2.5*ZBPU*(C1+C2+C3+C4+C5+C6)
1000 RETURN
     END
19400
19410
19420
19430
19440
19450
19460
19470
19480
19490
19500
19510
19520
19530
19540
19550
19560
19570
19580
19590
19600
19610
19620
19630
19640
19650
19660
19670
19680
19690
19700
19710
19720
19730

-------
en
    SUBROUTINE FAN(NFAN,DFAN,NBLD,IDFAN.CFAN1.CTFAN)

*** THIS SUBROUTINE CALCULATES THE COST FOR PURCHASING A  FAN

*** INPUT VARIABLES ***
    DFAN  = FAN DIAMETER (FT)
    NBLD  = NUMBER OF BLADES PER FAN
    IDFAN = FAN TYPE IDENTIFICATION
            1 FOR PERMANENTLY FIXED
            2 FOR MANUAL ADJUSTABLE
            3 FOR AUTOMATIC VARIABLE

*** OUTPUT VARIABLE ***
    CFAN1 = COST FOR ONE FAN ($)

    ZFAN=NFAN
    ZBLD=NBLD
    IF (IDFAN-2) 100,200,200

100 CONTINUE
    GO TO 400
    INFORMATION FOR THE COST OF FIXED-BLADES  TYPE FANS NOT AVAILABLE
    AT PRESENT TIME.


    COST CALCULATION FOR MANUAL ADJUSTABLE OR AUTOMATIC ADJUSTABLE FAN
200 CONTINUE
    FOR  FAN DIAMETER GREATER THAN 20 FT, THE  COST IS CALCULATED BASING
    ON THE COST OF 28 FT FAN

    IF (DFAN-20.0) 210,240,240
210 CONTINUE
    THI  INFORMATION FOR COST OF FAN UNDER 20  FT IS NOT AVAILABLE NOW
    HERE CALCULATION IS BASED ON THE EXTRAPLOTAION OF THE >20FT FANS
                 240 CONTINUE
                     WHEN DFAN=28 FT,  THE COST IS
                     CF28=409.2*ZBLD+300.3

                     IF (DFAN-28.0) 270,270,280
                 270 CONTINUE
                     CFAN1=CF28*(1-0/(1 .0+0.071*(2B.O-DFAN)/2.0))
                     GO TO 285

                 280 CONTINUE
                     CFAN1=CF28*(1.0+0.088*(DFAN-28.0)/2.0)

                 285 CONTINUE
                     IF (IDFAN-2) 400,400,300
 19740
 19750
 19760
 19770
 19780
 19790
 19800
 19810
 19820
 19830
 19840
 19850
 19860
 19870
 19880
 19890
 19900
 19910
 19920
 19930
 19940
 19950
 19960
 19970
 19980
 19990
 20000
 20010
 20020
 20030
 20040
 20050
 20060
 20070
 20080
 20090
 20100
 201 10
 20120
 20130
 20140
 20150
 20160
 20170
 20180
 20190
 20200
20210
20220
20230

-------
  300 CFAN1=CFAN1+250.0*ZBLD                                               20240
C     FOR FANS WITH AUTOMATIC ADJUSTABLE BLADES, ADD EXTRA COST AT 250$    20250
C     PER BLADE                                                            20260
C                                                                          20270
  400 CONTINUE                                                             20280
      CTFAN=ZFAN*CFAN1                                                     20290
C                                                                          20300
      RETURN                                                               20310
      END                                                                  20320
      SUBROUTINE FANCON(CFMB,rTPB,BETA,KODE.HPB,KSTEP,TPS,EFF,HPA,SIZEA.   20330
      1DENA,CFMA,FTPA,NB,VTIPA,RPMA)                                        20340
      DIMENSION BLANG(9),TP(9),HP(9)                                       20350
      KODE = 0                                                             20360
      TPS = 0.0                                                            20370
      HPA = 0.0                                                            20380
      KSTEP = 0                                                            20390
      BETA = 0.0                                                           20400
      EFF = 0.0                                                            20410
      J = 0                                                                20420
      DENB = 0.075                                                         20430
      VTIPB = 12000.                                                       20440
      SIZES = 28.0                                                         20450
      INC = 4                                                              20460
      ISTART = 2                                                           20470
    4 IF(NB-8)15,5,6                                                       20480
    5 INC = 2                                                              20490
      ISTART = 6                                                           20500
      IB = 3                                                               20510
      GO TO 100                                                            20520
    6 IF(NB-9)15,7,8                                                       20530
    7 CONTINUE                                                             20540
      ISTART = 6                                                           20550
      IB = 4                                                               20560
      GO TO 100                                                            20570
    8 IF(NB-10}15,9,10                                                     20580
    9 IB = 5                                                               20590
      GO TO 100                                                            20600
   10 IF(NB-11)15,12,13                                                    20610
   12 SIZEB = 30.0                                                         20620
      IB = 6                                                               20630
      GO TO 100                                                            20640

-------
   13
   14

   15
   16
  100
C ***
  103
  104

  105

  106

  107
  110

  120
  130
C ** *
  140
   ** *
   150
   160
   200
 C  ***
 C
   250

   *»*
   260
 IF(NB-12)15,14,15
 IB =  7
 GO TO 100
 WRITE(6.16)
 FORMAT(31H  THERE  IS NO  DATA  FOR  THIS CASE)
 CONTINUE
 FAN  LAWS BELOW  ALLOW US TO EXTRAPOLATE TO ANY FLOW,  SIZE OR RPM
 VRATIO  = VTIPA/VTIPB
 RPMB  =  VTIPB/(SIZEB*3.14159)
 RPMA  =  VTIPA/(SIZEA*3.14159)
 CFMB  =  ((SIZEB/SIZEA)**2)*CFMA *VRATIO
 FTPS  =  FTPA  *(DENB/DENA)*(VRATIO**2)
 IB=IB-2
 00 200  IX  =  ISTART.22.1NC
 J =  d + 1
 I =  J
 BLANG(I) =  IX
 GO T0(103,104,105,106,107),IB
 CALL  FDPNB8(CFMB,TP(I),BLANG(I),NB,KEXDP)
 GO TO 110
 CALL  FDPNB9(CFMB,TP(I),BLANG(I)
 GO TO 110
 CALL  FDPNB10(CFMB,TP( I ) ,
 GO TO 110
 CALL  FDPNB11(CFMB.TP(I)
 GO TO 110
 CALL FDPNB12(CFMB,TP(I),BLANG(I),NB,KEXDP)
 CONTINUE
 IF(TP(I)-1.£-9)200,200,120
 IF(FTPB-TP(I))130,130,160
 IF(KODE)150,150,140
 CALC BETA-THE INTERPOLATED VALUE OF BLADE ANGLE ONLY  IF KODE=1
 BETA = ((FTPB-TP(I-1))/(TP(I)-TP(I-1)))*(BLANG(I)-BLANG(I-1))  +
1BLANG(1-1)
 GO  TO 250
 SET  THE LOWEST  VALUE OF BLADE ANGLE -INDICATES SMALLER FAN  NEEDED
 BETA = BLANG(I)
 KSTEP = -1
 GO  TO 1000
 KODE = 1
 CONTINUE
 AT  THIS POINT AN ERROR MUST BE SET BECAUSE  THE FAN CHARACTERISTICS
 DO  NOT SUIT THE SIZE UNDER DISCUSSION .  STEP UP TO NEXT FAN  SIZE.
 KSTEP = 1
 BETA = 22.0
 GO  TO 1000
 CONTINUE
 IF(J-1 )260,260,270
 d MUST BE  GREATER THAN 1
 WRITE(6,400)
       .NB.KEXDP)
BLANG(I),NB,KEXDP)

BLANG(I),NB.KEXDP)
 20650
 20660
 20670
 20680
 20690
 20700
 20710
 20720
 20730
 20740
 20750
 20760
 20770
 20780
 20790
 20800
 20810
 20820
 20830
 20840
 20850
 20860
 20870
 20880
 20890
 20900
 20910
 20920
 20930
 20940
 20950
 20960
 20970
 20980
 20990
 21 000
 21010
 21020
 21 030
 21040
 21050
 21060
 21070
 21 080
21090
21 100
21 110
21 120
21 130
21 140

-------
 I
-p>
00
      GO TO 1000
  270 CONTINUE
C »** FIND THE FAN HORSEPOWER WHICH  SUITS THE CFMB AND BETA  FOUND  ABOVE
C *** CONVERT BACK TO  FAN UNDER CONSIDERATION
      GO T0(303,304,305,306,307),IB
  303 CALL FHPNB8(CFMB,HP(J-1),BLANG(J-1),NB.KEXHP)
      CALL FHPNB8(CFMB,HP(d),BLANG(J).NB.KEXHP)
      GO TO 310
  304 CALL FHPNB9(CFMB,HP(J-1),BLANG(J-1).NB.KEXHP)
      CALL FHPNB9(CFMB,HP(J),BLANG(J),NB.KEXHP)
      GO TO 310
  305 CALL FHPNB10(CFMB,HP(J-1),BLANG(J-1).NB.KEXHP)
      CALL FHPNB10(CFMB,HP(d),BLANG(J).NB.KEXHP)
      GO TO 310
  306 CALL FHPNB11(CFMB,HP(d-1),BLANG(J-1).NB.KEXHP)
      CALL FHPNB11(CFMB,HP(J).BLANG(J).NB.KEXHP)
      GO TO 310
  307 CALL FHPNB12(CFMB,HP(J-1),BLANG(J-1).NB.KEXHP)
      CALL FHPNB12(CFMB,HP(d),BLANG(J).NB.KEXHP)
  310 CONTINUE
      HPB =((BETA-BLANG(d-1))/(BLANG(J)-BLANG(J-1)))*(HP(J)-HP(J-1)) +
     1HP(J-1 )
C ** *
      CONVERT BACK  TO  FAN  UNDER  CONSIDERATION
      HPA = HPB *((SIZEA/SIZEB)**2)*(DENA/DENB)*(VRATIO**3)
      EFF = (CFMB*1000.0*FTPB)/(6356.0*HPB)
C *** MAKE SOME CHECKS  TO  DETERMINE  IF  FAN  IS NEAR  STALL  POINT
C *** FOR THE BETA  BLADE ANGLE FIND  IF  THE  DP IS  LOWERED  AS  THE  CAPACITY
C     IS LOWERED BY  10  PERCENT
      CFM = .90*CFMB
C *** IF LOWER HP THEN  WE  ARE ENTERING  STALL REGION
      GO 10(313,314,315.316,317),IB
  313 CALL FDPNB8(CFM,TP(J),BLANG(J),NB,K)
      CALL FDPNB8(CFM,TP(J-1),BLANG(J-1),NB.K)
      GO TO 320
  314 CALL FDPNB9(CFM,TP(J),BLANG(J),NB,K)
      CALL FDPNB9(CFM,TP(J-1).BLANG(d-1),NB,K)
      GO TO 320
  315 CALL FDPNB10(CFM.TP(J),BLANG(J),NB,K)
      CALL FDPNB10(CFM,TP(J-1).BLANG(J-1),NB,K)
      GO TO 320
  316 CALL FDPNB11(CFM.TP(J).BLANG(J),NB,K)
      CALL FDPNB11(CFM.TP(J-1),BLANG(J-1),NB,K)
      GO TO 320
  317 CALL FDPNB12(CFM,TP(d),BLANG(J),NB,K)
      CALL FDPNB12(CFM,TP(J-1),BLANG(d-1),NB,K)
  320 CONTINUE
  400 FORMAT(38H  SOMETHING  IS WRONG,J=1  AT THIS  POINT)
      TPS=((BETA-BLANG(d-1))/(BLANG(J)-BLANG(d-1)))*(TP(J)-TP(J-1))  +
     1TP(J-1)
      IF(TPS-FTPB)550,550,1000
21 150
21 160
21 170
21 180
21 190
21200
21210
21220
21230
21240
21250
21260
21270
21280
21290
21 300
21310
21 320
21330
21340
21350
21360
21370
21380
21390
21400
21410
21420
21 430
21 440
21450
21460
21470
21480
21490
21 500
21510
21520
21530
21540
21550
21560
21570
21580
21590
21600
21610
21620
21630
21640

-------
  550 KSTEP = -2
 1000 CONTINUE
      RETURN
      END
21650
21660
21670
21680
      SUBROUTINE FDPNB8(CFM,DP.ANGLE,NB,KEXDP)                              21690
C *** THIS SUBROUTINE CALCULATES  FAN  TOTAL PRESSURE DROP-GIVEN THE BLADE   21700
C *** ANGLE AND FLOW -FOR 8 BLADES  -28FT.  FAN                              21710
      KEXDP = 0                                                             21720
      IF(NB-6)7,7,8                                                         21730
    7 CONTINUE                                                              21740
    8 IF(NB-8)9,9,11                                                        21750
   11 GO TO 3000                                                            21760
    9 CONTINUE                                                              21770
 2001 IF(ANGLE-6.01)2002,2002,2007                                          21780
 2002 IF(CFM-840.)2003,2003,2004                                            21790
 2003 DP =-8.0294E-4 *CFM +1.0744                                          21800
      GO TO 3000                                                            21810
 2004 IF(CFM-1045.)2005,2005,2006                                          21820
 2005 DP =-9.512E-4 *CFM +1.199                                             21830
 2006 KEXDP = 6                                                             21840
C *** EQUATION GOOD FROM 840  TO 1045                                        21850
      GO TO 3000                                                            21860
 2007 IF(ANGLE-8.01)2008,2008,2013                                          21870
 2008 IF(CFM -830.)2009,2009,2010                                          21880
 2009 DP =-7.838E-4 *CFM +1.1905                                            21890
      GO TO 3000                                                            21900
 2010 IF(CFM -1172.)201 1 .2011 .2012                                          21910
 2011 DP = -8.246E-4 *CFM +1.2244                                          21920
C *** EQUATION GOOD FROM 830  TO 1172                                        21930
 2012 KEXDP = 8                                                             21940
      GO TO 3000                                                            21950
 2013 IF(ANGLE-10.01)2014,2014,2019                                        21960
 2014 IF(CFM -1090.)2015,2015,2016                                          21970
 2015 DP =-7.672E-4 *CFM +1.3163                                            21980
      GO TO 3000                                                            21990
 2016 IF(CFM -1280.)2017,2017,2018                                          22000
 2017 DP =-9.474E-4 *CFM +1.513                                             22010
 2018 KEXDP =10                                                             22020
C *»* EQUATION GOOD FROM 1090 TO  1280                                      22030
      GO TO 3000                                                            22040
 2019 IF(ANGLE-12.01)2020,2020,2027                                        22050

-------
en
o
  2020 IF(CFM -900.0)2021 ,2021,2022
  2021 DP =-5.1E-4 *CFM +  1.237
       GO TO 3000
  2022 IF(CFM -1130. )2023,2023,2024
  2023 DP = -7.74E-4  *CFM  +1.4745
       GO TO 3000
  2024 IF(CFM -1400.)2025,2025,2026
  2025 DP =-B.89E-4 *CFM + 1.6044
  2026 KEXDP = 12
 C *** EQUATION GOOD  FROM  1130  TO 1400
       GO TO 3000
  2027 IF(ANGLE- 14.01)2028,2028,2039
  2028 IF(CFM -800.)2029,2029,2030
  2029 DP =-2.033E-4*CFM +1.1017
       GO TO 3000
  2030 IF(CFM-900.)2031,2031,2032
  2031 DP =-6.4E-4*CFM +1.451
       GO TO 3000
  2032 IF(CFM-1Q30.)2033,2033,2034
  2033 DP =-4.23E-4*CFM +1.2558
       GO TO 3000
  2034 IF(CFM-1200.)2035,2035,2036
  2035 DP =-7.06E-4 *CFM +1.5471
       GO TO 3000
  2036 IF(CFM -1540.)2037,2037,2038
  2037 DP =-7.647E-4  *CFM  +1.61765
  2033 KEXDP =  14
C ***  EQUATION  GOOD  FROM  1200  TO 1500
       GO TO 3000
  2039 IF(ANGLE  -16.01)2040,2040,2049
  2040  IF(CFM-1110.)2041,2041,2042
  2041  DP =-3.9E-4  *CFM  +  1.2917
       GO TO 3000
  2042  IF(CFM -  1250.)2043,2043,2044
  2043  DP =-5.714E-4  *CFM +1.4943
       GO TO  3000
  2044  IF(CFM -1430.)2045,2045,2046
  2045  DP  =-7.22E-4*CFM  +1.6828
       GO  TO  3000
  2046  IF(CFM-1625.)2047,2047,2048
  2047  DP  =-8.21E-4 *CFM +  1.8233
  2048  KEXDP  = 16
C ***  EQUATION GOOD  FROM 1430  TO 1625
       GO  TO  3000
 2049  IF(ANGLE-18.01)2050,2050,2069
 2050  IF(CFM -600.)2051,2051,2052
  2051  DP  =-0.001*CFM  +1.02
       GO  TO  3000
  2052  IF ( CFNI-750. ) 2053, 2053 ,2054
  2053  DP  =  0.96
22060
22070
22080
22090
22100
221 10
22120
22130
22140
22150
22160
22170
22180
22190
22200
22210
22220
22230
22240
22250
22260
22270
22280
22290
22300
22310
22320
22330
22340
22350
22360
22370
22380
22390
22400
22410
22420
22430
22440
22450
22460
22470
22480
22490
22500
22510
22520
22530
22540
22550

-------
 I
en
      GO TO 3000
 2054 IF(CFM-900.)2055,2055,2056
 2055 DP=0.00012*CFM +0.87
      GO TO 3000
 2056 IF(CFM -1000.)2057,2057,2058
 2057 DP = 0.978
      GO TO 3000
 2058 IF(CFM-1090.)2059,2059,2060
 2059 DP =-3.11E-4  *CFM +1.2891
      GO TO 3000
 2060 IF(CFM -1200.)2061,2061,2062
 2061 DP =-3.64E-4  *CFM + 1.3468
      GO TO 3000
 2062 IF(CFM-1330.)2063,2063,2064
 2063 DP =-5.39E-4  *CFM +1.55621
      GO TO 3000
 2064 IF(CFM - 1500.)2065,2065,2066
 2065 DP=-7.06E-4  * CFM +1.779
      GO TO 3000
 2066 IF(CFM-1710.)2067,2067,2068
 2067 DP=-8.10E-4  *CFM +1.9353
 2068 KEXDP =18
C *** EQUATION GOOD FROM  1500 TO 1710
      GO TO 3000
 2069 IF(ANGLE-20.01)2070,2070,2079
 2070 IF(CFM-1370.)2071,2071,2072
 2071 DP=-3.33E-4  *CFM +1.3667
      GO TO 3000
 2072 IF(CFM-1470.)2073,2073,2074
 2073 DP=-5E-4 *CFM +1.595
      GO TO 3000
 2074 IF(CFM-1610.)2075,2075,2076
 2075 DP =-7.143E-4 »CFM +  1.91
      GO TO 3000
 2076 IF(CFM-1770.)2077,2077,2078
 2077 DP =-1.25E-3  *CFM + 2.7725
 2078 KEXDP = 20
C *** EQUATION GOOD FROM  1610 TO 1770
      GO TO 3000
 2079 IF(ANGLE-22.01)2080,2080,3000
 2080 IF(CFM-600.)2081,2081,2082
 2081 DP = -0.00015*CFM +1.05
      GO TO 3000
 2082 IF(CFM-850.)2083,2083,2084
 2083 DP = 0.96
      GO TO 3000
 2084 IF(CFM -1100.)2085,2085,2086
 2085 DP =0.00016*CFM +0.824
      GO TO 3000
 2086 IF(CFM -1250.)2087,2087,2088
 22560
 22570
 22580
 22590
 22600
 22610
 22620
 22630
 22640
 22650
 22660
 22670
 22680
 22690
 22700
 22710
 22720
 22730
 22740
 22750
 22760
 22770
 22780
 22790
 22800
 22810
 22820
 22830
 22840
 22850
 22860
 22870
 22830
 22890
 22900
 22910
 22920
 22930
 22940
 22950
 22960
 22970
 22980
 22990
 23000
 23010
23020
23030
23040
23050

-------
 I
CJ1
               2087  DP =0.000067* CFM +  0.9267
                     GO TO 3000
               2088  IF(CFM -1350.)2089,2089,2090
               2089  DP=-0.0001*CFM +  1.135
                     GO TO 3000
               2090  IF(CFM -1450.)2091 ,2091 ,2092
               2091  DP=-0.0002*CFM +  1.27
                     GO TO 3000
               2092  IF(CFM -1530.)2093,2093,2094
               2093  DP =-0.0005  *CFM  +  1.705
                     GO TO 3000
               2094  IF(CFM -1650.)2095,2095,2096
               2095  DP = -0.00065 *CFM  + 1.9345
                     GO TO 3000
               2096  IF(CFM -1770.)2097,2097,2098
               2097  DP = -0.00085*CFM +2.2645
                     GO TO 3000
              C ***  EQUATION GOOD FROM  1650  TO 1770
               2098  KEXDP =22
               3000  DP =AMAX1(0.0,DP)
                     RETURN
                     END
23060
23070
23080
23090
23100
23 110
23120
23130
23140
23150
23160
23170
23180
23190
23200
23210
23220
23230
23240
23250
23260
23270
                    SUBROUTINE  FDPNB9(CFM,DP,ANGLE,NB,KEXDP)                             23280
              C *** THIS SUBROUTINE CALCULATES  FAN  TOTAL  PRESSURE DROP-GIVEN  THE  BLADE   23290
              C *** ANGLE AND FLOW-CFM -FOR 9 BLADES -12000  FPM-136 RPM.28FT.  FAN       23300
              C *** DP - IS THE CORRECTED  TOTAL  PRESSURE  DROP,INCH OF H20                23310
              C *** CFM - IS THE ACTUAL  FLOW RATE  IN 10E3 CUBIC  FOOT PER MINUTE          23320
              C *** HP - CURVE HP WHICH  MUST BE  CORRECTED FOR  DENSITY RATIO.THE EFFECT   23330
              C *** OF ALTITUDE,AND SPEED  FACTOR. CURVE IS  BASED ON 12000  FT/MIN  TIP     23340
              C »** SPEED                                                                23350
                    KEXDP=0                                                              23360
                    IF(ANGLE-6.01)35,35,80                                               23370
                 35 IF(CFM-750.)40,40,45                                                 23380
                 40 DP=-8.E-4*CFM+1.125                                                  23390
                    GO TO 600                                                            23400
                 45 IF(CFM-900.)50,50,55                                                 23410
                 50 DP=-9.66666E-4*CFM+1.25                                              23420
                    GO TO 600                                                            23430
                 55 IF(CFM-1050.)60,60,58                                                23440
                 58 KEXDP=6                                                              23450
                 60 DP=-1.16666E-3*CFM+1.43                                              23460

-------
en
CO
C »** EQUATION GOOD FROM  900  TO  1050
      GO TO 600
   80 IF(ANGLE-10.01)85,85,170
   85 IF(CFM-1040)90,90,95
   90 DP=-B.38888E-4*CFM+1.44944
      GO TO 600
   95 IF(CFM-1180.)100,100,105
  100 DP=-1.01428E-3*CFM+1.63185
      GO TO 600
  105 IF(CFM-1285.)110,110,108
  108 KEXDP=10
  110 DP = -1 .20952E-3*CFM-t-1 .86224
C *** EQUATION GOOD FROM  1180 TO 1285
      GO TO 600
  170 1F(ANGLE-14.01)175,175,260
  175 IF(CFM-730.)180,180,185
  180 DP=-8.69565E-5*CFM+1.09347
      GO TO 600
  185 IF(CFM-900.)190,190,195
  190 DP=-4.11765E-4+CFM+1.33059
      GO TO 600
  195 IF(CFM-1150.)200,200,205
  200 DP=-6.8E-4*CFM+1.5720
      GO TO 600
  205 IF(CF!VI-155B. )210,210,208
  208 KEXDP=14
  210 DP = -8.45588E-4*CFM-M .76242
 C *** EQUATION GOOD FROM 1150 TO 1558
      GO TO 600
  260  IF(ANGLE-18.01)325,325,390
  325  IF(CFM-740.)330,330,335
  330 DP=1.05
      GO TO 600
  335  IF(CFM-930.)340,340,345
  340  DP=1.31579E-4*CFM+0.95263
       GO TO 600
  345  IF(CFM-1010.)350.350,355
  350  DP = -6.25E-5*CFM-t-1 . 13312
       GO TO 600
   355  IF(CFM-1 190.)360,360,365
   360  DP=-3.38888E-4*CFM+1.41228
       GO TO 600
   365 IF
-------
en
  390 IF(ANGLE-22.01)410,410i600
  410 IF(CFM-840.)420,420,425
  420 DP = -4.41176E-5*CFM-M .07206
      GO TO 600
  425 IF(CFM-1170.)430,430,435
  430 DP=2.12121E-4*CFM+0.85682
      GO TO 600
  435 IF(CFM-1360.)440,440,445
  440 DP=-2.63158E-5+CFM+1.13579
      GO TO 600
  445 IF(CFM-1490. )450,450,455
  450 DP=-3.84615E-4*CFM+1.62307
      GO TO 600
  4S5 IF(CFM-1630.)460,460,465
  460 DP=-6.78571E-4*CFM+2.06107
      GO TO 600
  465 IF(CFM-1770.)470,470,468
  468 KEXDP=22
  470 DP=-9.28571E-4*CFM+2.46857
C *** EQUATION GOOD FROM  1630 TO 1770
C *** NEVER ALLOW THE PRESSURE DROP TO BE LESS THAN ZERO
  600 DP=AMAX1(0.0,DP)
      RETURN
      END
23970
23980
23990
24000
24010
24020
24030
24040
24050
24060
24070
24080
24090
24100
241 10
24120
24130
24140
24150
24160
24170
24180
24190
24200
                     SUBROUTINE  FDPNB10(CFM,DP,ANGLE,NB,KEXDP)
              C  ***  THIS  SUBROUTINE CALCULATES FAN TOTAL PRESSURE DROP-GIVEN THE BLADE
              C  ***  ANGLE AND  FLOW -CFM-FOR  10 BLADES -12000FPM -136RPM -28FT. FAN
                     KEXDP = 0
                     IF(ANGLE-2.01)15,15,100
                  15  IF(CFM-700.)20,20,25
                  20  DP = -1.125E-3*CFM+1. 1025
                     GO TO 600
                  25  IF(CFM-840.)30,30,28
                  28  KEXDP=2
                  30  DP=-1-39285E-3*CFM+1.2899
              C  ***  EQUATION GOOD FROM 700 TO 840
                     GO TO 600
                 100  IF(ANGLE-6.01)105,105,200
                 105  IF(CFM-BOO.)110,110,115
                 110  DP=-9.44444E-4*CFM+1.28055
                     GO TO 600
                                                                           24210
                                                                           24220
                                                                           24230
                                                                           24240
                                                                           24250
                                                                           24260
                                                                           24270
                                                                           24280
                                                                           24290
                                                                           24300
                                                                           24310
                                                                           24320
                                                                           24330
                                                                           24340
                                                                           24350
                                                                           24360
                                                                           24370

-------
 I
en
tn
  115 IF(CFM-960.)120.120,125
  120 DP=-1.09375E-3*CFM+1.4
      GO TO 600
  125 IF(CFM-1070.)130,130,128
  128 KEXDP=6
  130 DP=-1.36363E-3*CFM+1.65909
C *** EQUATION GOOD FROM 960 TO 1070
      GO TO 600
  200 IF(ANGLE-10.01)205,205,300
  205 IF(CFM-730.)210,210,215
  210 DP=-6.25E-4*CFM+1.37625
      GO TO 600
  215 IF(CFM-920.)220,220,225
  220 DP=-8.94736E-4*CFM+1.57315
      GO TO 600
  225 IF(CFM-1310.)230,230,228
  228 KEXDP=10
  230 DP = -1 .12820E-3*CFM-H .78795
C *** EQUATION GOOD FROM 920 TO 1310
      GO TO 600
  300 IF(ANGIE-14.01)305,305,400
  305 IF(CFM-770.)310,310,315
  310 DP=-2.22222E-4*CFM+1.26111
      GO TO 600
  315 IF(CFM-970.)320.320,325
  320 DP = -4.5E-4*CFM+1 .4365
      GO TO 600
  325 IF(CFM-1200.)330.330,335
  330 DP=-7.82608E-4*CFM+1 .75913
      GO TO 600
  335 IF(CFM-1580.)340,340,338
  338 KEXDP=14
  340 DP=-9.73684E-4*CFM+1.98842
C *** EQUATION GOOD FROM  1200  TO  1580
      GO TO 600
  400  IF(ANGLE-18.01)405,405,500
  405  IF(CFM-700.)410,410,415
  410 DP=-6.0E-5*CFM-H .2
      GO TO 600
  415  IF(CFM-950.)420,420,425
  420 DP=1.2E-5*CFM+1.1496
      GO TO 600
  425  IF(CFM-1100.)430,430,435
  430  DP=-1.53333E-4*CFM+1.30666
      GO TO 600
  435  IF(CFM-1250.)440,440,445
  440  DP=-4.53333E-4*CFM+1.63666
       GO TO 600
  445  IF(CFM-1440.)450,450,455
  450  DP=-7.36842E-4*CFM+1.99105
 24380
 24390
 24400
 24410
 24420
 24430
 24440
 24450
 24460
 24470
 24480
 24490
 24500
 24510
 24520
 24530
 24540
 24550
 24560
 24570
 24580
 24590
 24600
 24610
 24620
 24630
 24640
 24650
 24660
 24670
 24680
 24690
 24700
 24710
 24720
 24730
 24740
 24750
 24760
 24770
 24780
 24790
 24800
 24810
 24820
 24830
24840
24850
24860
24870

-------
 I
en
01
      GO TO 600
  455 IF(CFM-1600.)460,460,465
  460 DP=-1.OE-3*CFM+2.37
      GO TO 600
  465 IF(CFM-1770.)470,470,468
  468 KEXDP=18
  470 DP=-1.11764E-3*CFM+2.55823
C *** EQUATION GOOD  FROM 1600 TO 1770
      GO TO 600
  500 IF(ANGLE-22.01)505,505,600
  505 IF(CFM-800.)510.510,515
  510 DP=-8.33333E-5*CFM+1.19666
      GO TO 600
  515 IF(CFM-1100.)520,520,525
  520 DP=2.33333E-4*CFM+0.94333
      GO TO 600
  525 IF(CFM-1300.)530,530,535
  530 DP=2.5E-5*CFM+1.1725
      GO TO 600
  535 IF(CFM-1420.)540,540,545
  540 DP=-2.25E-4*CFM+1.4975
      GO TO 600
  545 IF(CFM-1570.)550,550,555
  550 DP=-6.2E-4*CFM+2.0584
      GO TO 600
  555 IF(CFM-1770.)560,560,558
  558 KEXDP=22
  560 DP=-9.25E-4*CFM+2.53725
C *** EQUATION GOOD  FROM 1570 TO 1770
  600 DP=AMAX1(0.0,DP)
      RETURN
      END
24880
24890
24900
24910
24920
24930
24940
24950
24960
24970
24980
24990
25000
25010
25020
25030
25040
25050
25060
25070
25080
25090
25100
251 10
25120
25130
25140
25150
25160
25170
25180
25190
                    SUBROUTINE  FDPNB11(CFM,DP,ANGLE,NB.KEXDP)                             25200
             C «**  THIS  SUBROUTINE  CALCULATES FAN TOTAL PRESSURE DROP-GIVEN THE BLADE   25210
             C ***  ANGLE  AND  FLOW-CFM-FOR 11BLADES -12000FPM  -127RPM -30FT. FAN         25220
                    KEXDP=0                                                               n!o^«
                    IF(ANGLE-2.01)15,15.100                                              25240
                 15  IF(CFM-800.)20,20,25                                                  25250
                 20  DP=-8.5E-4*CFM+.95                                                    25260
                    GO TO 600                                                             25270
                 25  1F(CFM-955.)30,30.28                                                  25280

-------
I
CJ1
   28 KEXDP=2
   30 DP=-9.6774E-4*CFM+1.04419
C *** EQUATION GOOD FROM 800 TO 955
      GO TO 600
  100 IF(ANGLE-6.01)105,105,200
  105 IF(CFM-1280.)110,110,108
  108 KEXDP=6
  110 DP=-7.72058E-4*CFM+1.22823
C *** EQUATION GOOD FROM 600 TO 1280
      GO TO 600
  200 IF(ANGLE-10.01)205.205,300
  205 IF(CFM-800.)210,210,215
  210 DP=-4.5E-4*CFM+1.25
      GO TO 600
  215 IF(CFM-1300.)220,220,225
  220 DP=-6.6E-4*CFM+1.418
      GO TO 600
  225 IF(CFM-1560.)230,230,228
  228 KEXDP=10
  230 DP=-8.07692E-4*CFM+1.61
C **+ EQUATION GOOD FROM 1300 TO  1560
      GO TO 600
  300 IF(ANGLE-14.01)305.305,400
  305 IF(CFM-900.)310,310,315
  310 DP=-5.E-5*CFM+1.1
      GO TO 600
  315 IF(CFM-1100.)320,320,325
  320 DP=-3.25E-4*CFM+1.3475
      GO TO 600
  325 IF(CFM-1300.)330,330,335
  330 DP = -5.5E-4*CFM-H .595
      GO TO 600
  335 IF(CFM-1870.)340,340,338
  338 KEXDP=14   14
  340 DP=-6.0526E-4*CFM+1.66684
 C *** EQUATION GOOD  FROM  1300 TO  1870
      GO  TO 600
  400  IF(ANGLE-18.01)405,405,500
  405  IF(CFM-1300.)410,410,415
  410 DP=1.42857E-5*CFM+1 .09
      GO  TO 600
  415  IF(CFM-1450.)420,420,425
  420  DP=-2.33333E-4*CFM+1.41333
       GO  TO  600
  425  IF(CFM-1600.)430,430,435
  430  DP=-4.E-4*CFM+1.655
       GO  TO  600
  435 IF(CFM-1870.)440,440,438
   438 KEXDP=18
   440 DP*-5.E-4*CFM*1.815
25290
25300
25310
25320
25330
25340
25350
25360
25370
25380
25390
25400
25410
25420
25430
25440
25450
25460
25470
25480
25490
25500
25510
25520
25530
25540
25550
25560
25570
25580
25590
25600
25610
25620
25630
25640
25650
25660
25670
25680
25690
25700
25710
25720
25730
25740
25750
25730
25770
25780

-------
 I
en
              C  ***  EQUATION  GOOD  FROM 1600  TO  1870
                    GO TO  600
                500  IF(ANGLE-22.01)505,505,600
                505  IF(CFM-1000.)510,510,515
                510  DP=1.75E-4*CFM+.935
                    GO TO  600
                515  IF(CFM-1400.)520,520,525
                520  DP=1.25E-4*CFM+.985
                    GO TO  600
                525  IF(CFM-1600.)530,530,535
                530  DP=-5.E-5*CFM+1 .23
                    GO TO  600
                535  IF(CFM-1870.)540,540,538
                538  KEXDP=22
                540  DP=-2.96296E-4*CFM+1.62407
              C  ***  EQUATION  GOOD  FROM 1600  TO  1870
                600  DP=AMAX1(.0,DP)
                    RETURN
                    END
25790
25800
25810
25820
25830
25840
25850
25860
25870
25880
25890
25900
25910
25920
25930
25940
25950
25960
25970
                   SUBROUTINE  FDPNB12(CFM,DP,ANGLE,NB,KEXDP)                            25980
             C *** THIS SUBROUTINE CALCULATES  FAN  TOTAL  PRESSURE DROP-GIVEN  THE  BLADE   25990
             C *** ANGLE AND FLOW -CFM-FOR  12  BLADES -12000FPM -136RPM -28FT.  FAN       26000
                   KEXDP=0                                                              26010
                   IF(ANGLE-2-01)35,35,100                                              26020
                35 IF(CFM-720.)40,40,45                                                 26030
                40 DP=-1.31818E-3*CFM+1.29909                                           26040
                   GO TO 600                                                            26050
                45 IF(CFM-860.)50,50,48                                                 26060
                48 KEXDP=2                                                              26070
                50 DP=-1.60714E-3+CFM+1.50714                                           26080
             C *** EQUATION GOOD FROM 720 TO 860                                        26090
                   GO TO 600                                                            26100
               100 IF(ANGLE-6.01)105,105,200                                            26110
               105 IF(CFM-900.)110,110,115                                              26120
               110 DP=-1.14285E-3*CFM+1.54357                                           26130
                   GO TO 600                                                            26140
               115 IF(CFM-1000.)120,120,125                                             26150
               120 DP=-1.45E-3*CFM+1.82                                                 26160
                   GO TO 600                                                            26170
               125 IF(CFNI-1095.)130,130,128                                             26180
               128 KEXDP=6                                                              26190

-------
en
  130 DP=-1.57894E-3*CFM+1.94894
C *** EQUATION GOOD FROM  1000  TO  1095
      GO TO 600
  200 IF(ANGLE-10.01)205,205,300
  205 IF(CFM-750.)210,210,215
  210 DP=-7.5E-4*CFM+1 .6175
      GO TO 600
  215 IF(CFM-850.(220,220,225
  220 DP = -9.5E-4*CFM-H .7675
      GO TO 600
  225 IF(CFM-1000.)230,230,235
  230 DP=-1.2E-3*CFM+1.98
      GO TO 600
  235 IF(CFM-1340.)240,240,238
  238 KEXDP=10
  240 DP=-1.32353E-3+CFM+2.10353
C *** EQUATION GOOD FROM  1000  TO  1340
      GO TO 600
  300 IF(ANGLE-14.01)305,305,400
  305 IF(CFM-750.)310,310,315
  310 DP=-2.4E-4*CFM+1.45
      GO TO 600
  315 IF(CFM-940.)320,320,325
  320 DP=-5.26315E-4*CFM+1.66473
      GO TO 600
  325 IF(CFM-1100.)330,330,335
  330 DP=-8.125E-4*CFM+1.93375
      GO TO 600
  335 1F(CFM-1300.)340,340,345
  340 DP = -1 .E-3*CFM-»-2. 14
      GO TO 600
  345 IF(CFM-1630.)350,350,348
  348 KEXDP=14
  350 DP=-1.0909E-3*CFM+2.25818
 C **+ EQUATION  GOOD FROM  1300  TO  1630
      GO  TO 600
  400  IF(ANGLE-18.01)405,405,500
  405  1FICFM-650.)410,410,415
  410  DP = -1.33333E-4+CFM-H .42666
       GO TO 600
   415  IF(CFM-800.)420,420.425
   420  DP=1,03333E-4*CFM+1.27283
       GO TO 600
   425  IF(CFM-1000.)430,430,435
   430  DP = -7.75E-5*CFM+1 .4175
       GO TO 600
   435 IF(CFM-1150.)440,440,445
   440 DP = -3.33333E-4*CFM-H .67333
       GO TO 600
   445 IF(CFM-1300.)450,450,455
26200
26210
26220
26230
26240
26250
26260
26270
26280
26290
26300
26310
26320
26330
26340
26350
26360
26370
26380
26390
26400
26410
26420
26430
26440
26450
26460
26470
26480
26490
26500
26510
26520
26530
26540
26550
26560
26570
26580
26590
26600
26610
26620
26630
26640
26650
26660
26670
26680
26690

-------
 I

O
  450  DP=-6.66666E-4*CFM+2.05666
       GO  TO  600
  455  IF(CFM-1500.)460,460,465
  460  DP=-9.5E-4*CFM+2.425
       GO  TO  600
  465  IF(CFM-1760.)470,470,468
  468  KEXDP=18
  470  DP=-1.15384E-3+CFM+2.73076
C ***  EQUATION GOOD  FROM  1500 TO  1760
       GO  TO  600
  500  IF(ANGLE-22.01)505,505,600
  505  IFICFM-950.)510.510,515
  510  DP=1.33
       GO  TO  600
  515  IF(CFM-1240.)520,520,525
  520  DP=2.41379E-4*CFM+1.10068
       GO  TO  600
  525  IF(CFM-1350.)530,530,535
  530  DP=-9.0909E-5*CFM+1.51272
       GO  TO  600
  535  IF(CFM-1460.)540,540,545
  540  DP=-4.54545E-4*CFM+2.00363
       GO  TO  600
  545  IF(CFM-1600.)550,550,555
  550  DP=-7.8571E-4*CFM+2.48714
       GO  TO  600
  555  IF(CFM-1770.)560,560,558
  558  KEXDP=22
  560  DP=-1.11764E-3*CFM+3.01823
C ***  EQUATION GOOD FROM  1600 TO  1770
  600  DP=AMAX1(0.0,DP)
       RETURN
       END
26700
26710
26720
26730
26740
26750
26760
26770
26780
26790
26800
26810
26820
26830
26840
26850
26860
26870
26880
26890
26900
26910
26920
26930
26940
26950
26960
26970
26980
26990
27000
27010
27020
                    SUBROUTINE  FHPNB8(CFM,HP,ANGLE,NB.KEXHP)                             27030
             C ***  THIS  SUBROUTINE CALCULATES FAN HORSPOWER-GIVEN THE BLADE ANGLE       27040
             C ***  AND FLOW-CFM -FOR 8 BLADES ,2BFT.  FAN                                27050
                    KEXHP =  0                                                             27060
                    IF(ANGLE-6.01)1001,1001,1010                                         27070
              1001  IF(CFM -650.)1002,1002,1003                             .             27080
              1002  HP =  -0.00667«CFM +82.335                                            27090
                    GO TO 3OOO                                                            27100

-------
 1003 IF(CFM -790.J1004,1004,1005
 1004 HP =-0.05714* CFM +115.14
      GO TO 3000
 1005 IF(CFM - 940.)1006,1006,1007
 1006 HP =-0.08* CFM + 133.2
      GO TO 3000
 1007 IF(CFM -1150.)1008,1008,1009
 1008 HP = -0.0619* CFM +116.19
 1009 KEXHP =6
C *** EQUATION GOOD FROM 940 TO 1150
      GO TO 3000
 1010 IF(ANGLE -8.01)1011,1011,1020
 1011 IF(CFM -800.)1012,1012,1013
 1012 HP = 90.0
      GO TO 3000
 1013 IF(CFM - 940.)1014,1014, 1015
 1014 HP = -0.0357 *CFM +  118.57
      GO TO 3000
 1015 IF(CFM -1070.)1016,1016,1017
 1016 HP =-0.0769* CFM +157.31
      GO TO 3000
 1017 IF(CFM -1170.)1018.1018,1019
 1018 HP =-0.125  *CFM +208.75
 1019 KEXHP =  8
C *** EQUATION GOOD FROM 1070 TO 1170
      GO TO 3000
 1020 IF(ANGLE -10.01)1021,1021,1034
 1021 IF(CFM -740.)1022,1022,1023
 1022 HP =0.02632  *CFM + 90.53
      GO TO 3000
 1023 IF(CFM -850. )1024,1024,1025
 1024 HP =  110.0
      GO TO 3000
 1025  IF(CFM -950. )1026M026,1027
 1026 HP =-0.02  *CFM +  127.0
      GO TO 3000
 1027  IF(CFM -1100.)1028,1028,1029
 1028 HP =-0.05333 *CFM  +  158.67
      GO TO 3000
 1029  IF(CFM -1200.)1030,1030,1031
 1030 HP =  -0.1  *CFM +210.0
      GO  TO 3000
 1031  IF(CFM -1280.)1032,1032,1033
 1032 HP  =-0.1625 *CFM  + 285-
 C  **' EQUATION GOOD FROM 1200 TO 1280
 1033  KEXHP =  10
      GO  TO 3000
 1034  IF(ANGLE-1 2.01)1035,1035 ,1046
 1035  IF(CFM -910.)1036,1036,1037
  1036 HP  =0.04167*CFM +97.083
 271 10
 27120
 27130
 27140
 27150
 27160
 27170
 27180
 27190
 27200
 27210
 27220
 27230
 27240
 27250
 27260
 27270
 27280
 27290
 27300
 27310
 27320
 27330
 27340
 27350
 27360
 27370
 27380
 27390
 27400
 27410
 27420
 27430
 27440
 27450
27460
 27470
 27480
 27490
27500
27510
 27520
27530
27540
27550
27560
275'70
275.30
27590
27600

-------
en
no
       GO  TO  3000
  1037  IF(CFM -1000.)1038,1038,1039
  1038  HP  =135.0
       GO  TO  3000
  1039  IFfCFM -1130.)1040,1040,1041
  1040  HP  =-0.03846*CFM  +173.46
       GO  TO  3000
  1041  IF(CFM -1260.)1042,1042,1043
  1042  HP  =-0.07692*CFM  +  216.9
       GO  TO  3000
  1043  IF(CFM-1400.)1044,1044,1045
  1044  HP  =-0.125  *CFM + 277.5
C  ***  EQUATION GOOD  FROM  1260  TO 1400
  1045  KEXHP  = 12
       GO  TO  3000
  1046  IF(ANGLE-14.01)1047,1047,1060
  1047  IF(CFM-900.)1048.1048,1049
  1048  HP  =0.07069*CFM + 93.88
       GO  TO  3000
  1049  IF(CFM-980.)1050,1050,1051
  1050  HP  =0.03125  *CFM  +129.38
       GO  TO  3000
  1051  IF(CFM -11 10.)1052,1052,1053
  1052  HP  =160.0
       GO  TO  3000
  1053  IF(CFM -1250.)1054,1054,1055
  1054  HP  = -0.05*CFM +  215.5
       GO  TO  3000
 1055  IFfCFM -1350.)1056,1056,1057
 1056  HP  =-0.08*CFM + 253.
       GO  TO  3000
 1057  IF(CFM -1530.)1058,1058,1059
 1058 HP  =-0.09722 *CFM + 276.25
C ***  EQUATION GOOD FROM  1350 TO 1530
 1059 KEXHP  = 14
      GO  TO  3000
 1060  IF(ANGLE -16.01)1061,1061,1072
 1061  IFfCFM -1100.)1062,1062,1063
 1062 HP =0.059375*CFM +  119.69
      GO TO 3000
 1063 IF(CFM-1180.)1064,1064,1065
 1064 HP = 185.0
      GO TO 3000
 1065 IFfCFM -1290.)1066,1066,1067
 1066 HP =-0.04545*CFM -t-238.64
      GO TO 3000
 1067 IF(CFM -1400.)1068,1068,1069
 1068 HP =-0.06818*CFM -t- 267.96
      GO TO 3000
 1069  1F(CFM -1600.)1070,1070,1071
27610
27620
27630
27640
27650
27660
27670
27680
27690
27700
27710
27720
27730
27740
27750
27760
27770
27780
27790
27800
27810
27820
27830
27840
27850
27860
27870
27880
27890
27900
27910
27920
27930
27940
27950
27960
27970
27980
27990
28000
28010
28020
28030
28040
28050
28060
28070
28080
28090
28100

-------
00
 1070 HP =-0.0975 *CFM +309.
C *** EQUATION GOOD FROM 1400 TO 1600
 1071 KEXHP = 16
      GO TO 3000
 1072 IF(ANGLE-18.01)1073,1073,1086
 1073 IF(CFM -900.)1074,1074,1075
 1074 HP =0.065*CFM +136.5
      GO TO 3000
 1075 IF(CFM -1 190.)1076,1076,1077
 1076 HP =0.0517  *CFM + 148.45
      GO TO 3000
 1077 IF(CFM -1270.)1078,1078,1079
 1078 HP = 210.0
      GO TO 3000
 1079 IF(CFM -1370.)1080,1080,1081
 1080 HP =-0.025  *CFM + 241.75
      GO TO 3000
 1081 IF(CFM - 1500.)1082,1082,1083
 1082 HP =-0.05769*CFM  +286.54
      GO TO 3000
 1083 IF(CFM -1700.)1084,1084,1085
 1084 HP =-0.085*CFM  +  327.5
 C  *** EQUATION GOOD FROM  1500 TO 1700
 1085 KEXHP  =18
      GO TO  3000
 1086  IF(ANGLE -  20.01)1087,1087,1098
  1087  IF(CFM  -1450.)1088,1088,1089
  1088  HP = 0.04444  *CFM +  173.06
       GO  TO  3000
  1089  IF(CFM -1500.)1090,1090,1091
  1090  HP  = 237.5
       GO  TO  3000
  1091  IF(CFM -1600.)1092,1092,1093
  1092  HP  = -0.025 *CFM +275.
       GO TO 3000
  1093 IF(CFM -1680.)1094,1094,1095
  1094 HP = -0.0625 *CFM + 335.
       GO TO 3000
  1095 IF(CFM - 1740.)1096,1096,1097
  1096 HP = -0.1   * CFM + 398
 C *** EQUATION GOOD FROM 1680 TO 1740
       GO TO 3000
  1097 KEXHP =20
  1098 IF(ANGLE-22.01)1099,1099,3000
  1099 IF(CFM -1000.)2000,2000,2001
  2000 HP =0.024  *CFM +208.
       GO TO 3000
  2001 IF(CFM -1510.)2002,2002,2003
  2002 HP = 0.0745  *CFM + 157.50
       GO TO 3000
281 10
28120
28130
28140
28 1 50
28 1 60
28170
28180
28190
28200
28210
28220
28230
28240
28250
28260
28270
28280
28290
28300
28310
28320
28330
28340
28350
28360
28370
28380
28390
28400
28410
28420
28430
28440
28450
28460
28470
28480
28490
28500
28510
28520
28530
28540
28550
28560
28570
285 JO
28590
28600

-------
  2003 IF(CFM -1650.)2004,2004,2005
  2004 HP = 270.0
       GO TO 3000
  2005 IF(CFM -1770.)2006,2006,2007
  2006 HP =-0.054l67*CFM + 359.4
 C *** EQUATION GOOD FROM 1650 TO 1770
       GO TO 3000
  2007 KEXHP =22
 C *** NEVER ALLOW THE HP TO BE LESS THAN ZERO
  3000 HP = AMAXI(O.O.HP)
       RETURN
       END
28610
28620
28630
28*40
28650
28660
28670
28680
28690
28700
28710
28720
       SUBROUTINE  FHPNB9(CFM,HP,ANGLE,NB,KEXHP)                              28730
 C ***  THIS SUBROUTINE CALCULATES FAN HORSEPOWER-GIVEN  THE  BLADE ANGLE       28740
 C ***  AND FLOW-CFM -FOR 9 BLADES,12000 FPM-  136  RPM.28FT.  FAN              28750
 C ***  DP - IS THE CORRECTED TOTAL  PRESSURE DROP,INCH OF  H20                28760
 C ***  CFM -  IS THE ACTUAL FLOW RATE  IN 10E3  CUBIC  FOOT PER MINUTE           28770
 C ***  HP-CURVE HP WHICH MUST  BE  CORRECTED  FOR  DENSITY  RATIO,THE EFFECT      28780
 C ***  OF ALTITUDE,AND SPEED FACTOR.  CURVE  IS BASED ON  12000 FT/MIN TIP      28790
 C ***  SPEED                                                                 28800
       KEXHP=0                                                              28810
       IF(ANGLE-6.01)35,35,100                                              28820
   35  IF(CFM-680.)40,40,45                                                  28830
   40  HP=1 .66666E-2*CFM-t-78. 66666                                           28840
       GO TO  600                                                             28850
   45  IF(CFM-800.)50,50,55                                                  28860
   50  HP=-4.16666E-2*CFM+118.33328                                          28870
       GO TO  600                                                             28880
   55  IF(CFM-940.)60,60,65                                                  28890
   60  HP=-7.85714E-2*CFM+147.85711                                          28900
       GO TO  600                                                             28910
   65  IF(CFM-1050.)70,70,68                                                 28920
   68  KEXHP=6                                                               28930
   70  HP=-1.72727E-1*CFM+236.36335                                          28940
C ***  EQUATION GOOD FROM  940  TO  1050                                        28950
       GO TO  600                                                             28960
  100  IF(ANGLE-10.01)105,105,200                                           28970
  105  IF(CFM-710.)110,110,115                                               28980
  110  HP=4.28571E-2*CFM+94.57143                                           28990
       GO TO  600                                                             29000
  115  IF(CFM-8BO.)120,120,125                                               29010

-------
on
 120  HP=5.88235E-3*CFM+120.82352
     GO TO 600
 125  IF(CFM-1020.(130,130,135
 130  HP=-3.57142E-2*CFM+157.42848
     GO TO 600
 135  IF(CFM-1170.)140,140,145
 140  HP = -1.26666E-1*CFM+250.2
     GO TO 600
 145  IF(CFM-1285.)150,150,148
 148  KEXHP=10
 150  HP=-1.913Q4E-1*CFM+325-82608
 ***  EQUATION GOOD FROM 1170 TO 1285
     GO TO 600
 200  IF(ANGLE-14.01)205,205,300
 205  IF(CFM-770.)210,210,215
 210  HP=8.88B8BE-2*CFM+105.55555
     GO TO 600
 215 IF(CFM-940.)220,220,225
 220 HP=5.2941E-2*CFM+133.23529
     GO TO 600
 225 IF(CFM-1080.)230,230,235
 230 HP=7.14285E-3+CFM+176.28571
     GO TO 600
 235 IF(CFM-1230. )240 ,240,245
 240 HP=-4.66666E-2*CFM+234.4
     GO TO 600
 245 IF(CFM-1380.)250,250,255
 250 HP=-8.66666E-2*CFM+283.6
     GO TO 600
 255 IF(CFM-1565.)260.260,258
 258 KEXHP=14
 260 HP=-1.56756E-1*CFM+380-32432
; *** EQUATION GOOD FROM 1380  TO 1565
     GO TO 600
 300  IF(ANGLE-18.01)305,305,400
 305  IF(CFM-850.)310,310,315
 310 HP=8.28571E-2+CFM+172.57143
     GO TO 600
 315 IF(CFM-1050.)320,320,325
 320 HP = 5.5E-2*CFM-H96.25
      GO TO 600
 325 IF(CFM-1200.)330,330,335
 330 HP=6.66666E-3*CFNH-247.
      GO TO 600
  335 IF(CFM-1370.)340,340,345
  340 Hpr-5.2941 1E-2*CFIVH-318.52941
      GO TO 600
  345 IF(CFM-1530.)350,350,355
  350 HP=-1.125E-1*CFM+400.125
      GO TO 600
29020
29030
29040
29050
29060
29070
29080
29090
29100
291 10
29120
29130
29140
29150
29160
29170
29180
29190
29200
29210
29220
29230
29240
29250
29260
29270
29280
29290
29300
29310
29320
29330
29340
29350
29360
29370
29380
29390
29400
29410
29420
29430
29440
29450
29460
29470
29480
29490
29500
29510

-------
                 355 IF(CFM-1770.)360,360,358
                 358 KEXHP=18
                 360 HP=-1.45833E-1*CFM+451.12499
               C *** EQUATION GOOD FROM 1530  TO 1770
                     GO TO  600
                 400 IF
-------
CTl
      GO TO 600
  125 IF(CFIY!-1065. )130,130,12B
  128 KEXHP=6
  130 HP=-1.75757E-1*CFM+245.18181
C *** EQUATION GOOD FROM 900  TO  1065
      GO TO 600
  200 IF(ANGLE-10.01)205,205,300
  205 IF(CFM-850.)210,210,215
  210 HP=2.10526E-2*CFM+122.10526
      GO TO 600
  215 IF(CFM-1050.)220.220,225
  220 HP=-5.0E-2*CFM+182.5
      GO TO 600
  225 IF(CFM-1190.)230,230,235
  230 HP = -1 .78571 E-1*CFM+317.5
      GO TO 600
  235 IF(CFM-1310.)240,240,238
  238 KEXHP=10
  240 HP = -2.91 666E-1+CFM+452.08333
C *** EQUATION GOOD FROM 1190 TO 1310
      GO TO 600
  300 IF(ANGIE-14.01)305,305,400
  305 IF(CFM-1050.)310,310,315
  310 HP=3.63636E-2*CFM+161.81818
      GO TO 600
  315 IF(CFM-1260.)320,320,325
  320 HP=-4.76190E-2*CFM-t-250.
      GO TO 600
  325 IF(CFM-1580.)330,330,328
  328 KEXHP=14
  330 HP=-1.5625E-1*CFM+386.875
C *** EQUATION GOOD FROY 1260 TO 1580
      GO TO 600
  400 IF(ANGLE-18.01)405,405,500
  405 IF(CFM-1200.)410,410,415
  410 HP=5.42857E-2*CFM+212.85714
      GO TO 600
  415 IF(CFM-1400.)420,420,425
  420 HP=-4.0E-2*CFM+326.
      GO TO 600
  425 IF(CFM-1770. )430,430,42B
  428 KEXHP=18
  430 HP = -1 .67567E-1+CFM+504.59459
 C *** EQUATION GOOD  FROM  1400 TO 1770
      GO TO 600
  500  IF(ANGLE-22.01)505,505,600
  505  IF(CFM-1300.)510,510,515
  510 HP=6.0E-2*CFM+270.
      GO TO  600
  515  IF(CFM-1600.)520,520.525
 29930
 29940
 29950
 29960
 29970
 29980
 29990
 30000
 30010
 30020
 30030
 30040
 30050
 30060
 30070
 30080
 30090
 30100
 301 10
 30120
 30130
 30140
 30150
 30160
 30170
 30180
 30190
 30200
 30210
 30220
 30230
 30240
 30250
 30260
 30270
 30280
 30290
 30300
 30310
 30320
 30330
 30340
 30350
 30360
 30370
 30380
 30390
30400
30410
30420

-------
                 520 HP=-4.0E-2*CFM+400.
                     GO TO 600
                 525 IF(CFM-1770.)530,530,528
                 528 KEXHP=22
                 530 HP=-1.23529E-1*CFM+533.64705
               C *** EQUATION GOOD FROM 1600 TO 1770
                 600 HP=AMAX1(0.0,HP)
                     RETURN
                     END
                                                                            30430
                                                                            30440
                                                                            30450
                                                                            30460
                                                                            30470
                                                                            30480
                                                                            30490
                                                                            30500
                                                                            30510
 i
o>
CO
       SUBROUTINE  FHPNB11(CFM,HP,ANGLE,NB,KEXHP)                             30520
 C  **«  THIS  SUBROUTINE  CALCULATES FAN TOTAL  HORSPOWER  -GIVEN  THE  BLADE       30530
 C  ***  ANGLE AND  FLOW-CFM-FOR  11 BLADES -12000FPM  -127RPM  -30FT. FAN          30540
       K£XHP=0                                                               30550
       IF(ANGLE-2.01)5,5,100                                                 30560
     5  IF(CFM-800.)10,10,15                                                  30570
    10  HP=-5.E-2*CFM+100.                                                    30580
       GO  TO 600                                                             30590
    15  IF(CFM-955.)20,20,18                                                  30600
    18  KEXHP=2                                                               30610
    20  HP=-1.29032E-1*CFM+163.2258                                          30620
 C  ***  EQUATION GOOD  FROM  800  TO  955                                         30630
       GO  TO 600                                                             30640
   100  IF(ANGLE-6.01)105,105,200                                             30650
   105  IF(CFM-900.)110,110,115                                               30660
   110  HP=2.E-2*CFM+92.                                                      30670
       GO  TO  600                                                             30680
   115  IF(CFM-1100.)120.120,125                                              30690
   120  HP=-2.5E-2*CFM+132.5                                                  30700
       GO  TO  600                                                             30710
   125  IF(CFM-1280.)130,130,128                                              30720
   128  KEXHP=6                                                               30730
   130  HP=-1 .38888E-1*CFM-t-257. 77777                                          30740
C  ***  EQUATION GOOD  FROM  1100 TO  1280                                      30750
       GO  TO  600                                                             30760
  200  IF(ANGLE-10.01)205,205,300                                            30770
  205  IF(CFM-900.)210,210,215                                               30780
  210  HP=6.66666E-2*CFM+100.                                                30790
       GO  TO  600                                                             30800
  215  IF(CFM-1400.)220,220,225                                              30810
  220  HP=-4.4E-2*CFM+199.6                                                  30820
       GO  TO  600                                                             30830

-------
 I
en
10
  225 IF(CFM-1565.)230,230,228
  228 KEXHP=10
  230 HP=-1.69696E-1*CFM+375.57575
C *** EQUATION GOOD FROM 1400 TO  1565
      GO TO 600
  300 IF(ANGLE-14.01)305,305,400
  305 IF(CFM-1100.)310,310,315
  310 HP=6.6E-2*CFM+147.4
      GO TO 600
  315 IF(CFM-1400.)320,320,325
  320 HP=-3.33333E-3*CFM+223.66666
      GO TO 600
  325 IF(CFM-1700.)330,330,335
  330 HP=-6.33333E-2*CFM+307.66666
      GO TO 600
  335 IF(CFM-1870.)340,340,338
  338 KEXHP=14
  340 HP=-1.47058E-1+CFM+450.
C *** EQUATION GOOD FROM 1700 TO  1870
      GO TO 600
  400 IF(ANGLE-18.01)405,405t500
  405 IF(CFM-1200.)410,410,415
  410 HP=9.83333E-2*CFM+185
      GO TO 600
  415 IF(CFM-1500.)420,420,425
  420 HP=5.66666E-2*CFM+235.
      GO TO 600
  425 IF(CFM-1700.)430,430,435
  430 HP=-4.E-2*CFM+380.
      GO TO 600
  435  IF(CFM-1870.)440,440.438
  438 KEXHP=18
  440 HP=-1.E-1*CFM+482.
 C *** EQUATION GOOD FROM  1700  TO  1870
      GO  TO 600
  500  IF(ANGLE-22.01)505,505,600
  505  IF(CFM-1400.)510,510,515
  510 HP=7.E-2*CFM+268.
       GO  TO 600
  515  IF(CFM-1870.)520,520,518
  518  KEXHP=22
  520  HP=2.97B7E-2*CFM+324.29787
 C  ***  EQUATION GOOD FROM  1400  TO  1870
   600  HP=AMAX1(0.0,HP)
       RETURN
       END
30840
30850
30860
30870
30880
30890
30900
30910
30920
30930
30940
30950
30960
30970
30980
30990
31000
31010
31020
31030
31040
31050
31060
31070
31080
31090
31 100
31 1 10
31 120
31 130
31 140
31 150
31 160
31 170
31 180
31 190
31200
31210
31220
31230
31240
31250
31260
31270
31280
31290

-------
--J
o
               c  ***
               c  ***
    15
    20

    25
    28
    30
 C  ** *

   100
   105
   110

   115
   120

   125
   128
   130
 C  ** +

   200
   205
   210

   215
   220

   225
   230

  235
  238
  240
C ***

  300
  305
  31P

  315
  320

  325
  330
 SUBROUTINE  FHPNB12(CFM,HP,ANGLE,NB,KEXHP)                             31300
 THIS  SUBROUTINE  CALCULATES  FAN  TOTAL  HORSPOWER  -GIVEN  THE  BLADE       31310
 ANGLE AND  FLOW -CFM-FOR 12  BLADES  -12000FPM -136RPM  -28FT.  FAN        31320
 KEXHP=0                                                               31330
 IF(ANGLE-2.01)15,15,100                                              31340
 IF(CFM-700.)20,20,25                                                  31350
 HP=-2.5E-2*CFM+77.5                                                   31360
 GO  TO 600                                                             31370
 IF(CFM-860.)30,30,28                                                  31380
 KEXHP=2                                                               31390
 HP=-9.375E-2*CFM+125.625                                             31400
 EQUATION GOOD FROM 700  TO 860                                         31410
 GO  TO 600                                                             31420
 IF(ANGLE-6.01)105,105,200                                             31430
 IF(CFM-800.)110,110,115                                              31440
 HP = -2 . 17391E-2*CFM-M32.39130                                          31450
 GO  TO 600                                                             31460
 IF(CFNI-950. ) 120, 120,125                                              31470
 HP=-1.33333E-1*CFM+221.66666                                          31480
 GO  TO 600                                                             31490
 IF(CFM-1090.)130,130,12B                                             31500
 KEXHP=6                                                               31510
 HP=-2.5E-1*CFM+332.5  '                                                31520
 EQUATION GOOD FROM 950  TO 1090                                        31530
 GO  TO 600                                                             31540
 IF(ANGLE-10.01)205,205,300                                            31550
 IF(CFM-900.)210,210,215                                              31560
 HP=-9.375E-3*CFM+173.4375                                             31570
 GO  TO  600                                                             31580
 IF(CFM-1050.)220,220,225                                             31590
 HP=-1.E-1*CFM+255.                                                    31600
 GO TO  600                                                             31610
 IF(CFM-1200.)230,230,235                                             31620
 HP=-1.8E-1*CFM+339.                                                   31630
 GO TO 600                                                             31640
 IF(CFM-1340.)240,240,238                                             31650
 KEXHP=10                                                              31660
HP=-3.07142E-1*CFM+491.57142                                          31670
 EQUATION GOOD FROM 1200  TO  1340                                       31680
GO TO 600                                                             31690
 IF(ANGLE-14.01)305,305,400                                            31700
 IF(CFM-1000.)310,310,315                                             31710
HP=3.4E-2*CFM+206.                                                    31720
GO TO 600                                                             31730
 IF(CFM-1200.)320,320,325                                             31740
HP=-5.E-2*CFM+290.                                                    31750
GO TO 600                                                             31760
 IF(CFM-1300.)330,330,335                                             31770
 HP=-1.1E-1*CFM+362.                                                   31780
 GO TO 600                                                             31790

-------
  335 IF(CFM-1630.)340,340,338                                              31800
  338 KEXHP=14                                                              31810
  340 HP=-2.0909E-1*CFM+490.81818                                           31820
C *** EQUATION GOOD FROM 1300 TO 1630                                       31830
      GO TO 600                                                             31840
  400 IF(ANGLE-18.01)405,405,500                                            31850
  405 IF(CFM-1000.)410,410,415                                              31860
  410 HP=4.E-2*CFM+300.                                                     31870
      GO TO 600                                                             31880
  415 IF(CFM-1270.)420,420,425                                              31890
  420 HP=340.                                                               31900
      GO TO 600                                                             31910
  425 IF(CFM-1400.)430,430,435                                              31920
  430 HP=-1.E-1*CFM+467.                                                    31930
      GO TO 600                                                             31940
  435 IF(CFM-1550.)440,440,445                                              31950
  440 HPr-i .93333E-1*CFM-»-597. 66666                                          31960
      GO TO 600                                                             31970
  445 IF(CFM-1760.)450,450,44B                                              31980
  448 KEXHP=18                                                              31990
  450 HP*-2.66666E-1*CFM+711.33333                                          32000
C *** EQUATION GOOD FROM 1550 TO 1760                                       32010
      GO TO 600                                                             32020
  500 IF(ANGLE-22.01)505,505,600                                            32030
  505 IF(CFM-800.)510.510,515                                               32040
  510 HP=-1.66666E-2*CFM+398.33333                                          32050
      GO TO 600                                                             32060
  515 IF(CFM-1100.)520,520,525                                              32070
  520 HP=8.33333E-2*CFM+318.33333                                           32080
      GO TO 600                                                             32090
  525 IF(CFM-1460.)530,530.535                                              32100
  530 HP=410                                                                32110
      GO TO 600                                                             32120
  535 IF(CFM-1770.)540,540,538                                              32130
  538 KEXHP=22                                                              32140
  540 HPs-1.12903E-1*CFM+574.83870                                          32150
C »** EQUATION GOOD FROM 1460 TO 1770                                       32160
  600 HP=AMAX1(0.0,HP)                                                      32170
      RETURN                                                                32180
      END                                                                   32190

-------
 I
~vl
no
       SUBROUTINE GEOM1
       DIMENSION XT(3),B2IL(4,4),B2ST(4,4),XNIL(4,4),XNST(4,4),
      1 CROWI(10),CROWS(10)
       COMMON NFO,KGO,KRO,KNTR1,NSUM,NPAGE,DAY(2),PI
       COMMON KCI,KER.KERR(20),KFIN,KREG,LAIC,LSUP.MM,NP,NR,NT1,NT2,NTP,
      1NTR.NTT,ABARE,AFAN,AMIN,APLOT,APPR,ASBUN,ASTOT,AXAV, AXPP(20),CP( 2)
      2,DEN(2),DEN12(2,2).DENFN,DENLZ(7),DBW,DEO,DFH,DFR,DFS,DFT,DKL,
      3DLSP,DLTE,DLTO,DLTS,DNZ(2),DTI,DTIM,DTF,DTO,DTT,PL,PT
       COMMON DPAD,DPAF,DPAM.DPAW,DPF(10).DPI,DPNZ(2),DPT,DPTA,DPTF,
      1DPTOT(2),POUT(2),PTUB,RV2,GAMAX,GT,HPFNC,HAIR,HTS,DBA RE,UCLN,UTOT,
      20(2),QDUT,QTOT,RFI.RFIN.RFTOT,RTOT,RTW,TAV(2),TIN(2),TOUT(2),TT(8)
      3,TWALL,TD,TW,TMTD,TK(2),VAPP,VNZ(2),VT,DFAN,TLTE,AOF,VISLZ(7),
      4VIS(2),VIS12(2,2),VISW,W(2),WAPF,WB(2),WLO(2)
       COMMON ANG(3),CFH(3),CFP(3),CFR,CKBSC,CKFNG,CKHSC,CKLOV,CKSTC,F,
      1FALT,FINEF,FFF,FSUM,OCt(4),ODL(4),OKL(4),OML(4),OMV(4),P.PRAN(2),
      2PRALZ(7),R,RAOI,RAOR,RARAF,RAPMX,REA(2),RE12(2,2),RFNPL,RPT,TLA,
      3XREX,ZMP,ZNF,ZNTP,ZNTR,ZNTT,ZTPP(20),ZTPPA
       COMMON ZTRD.ANGI,ZBYP,ZBUP,ZBUS,ZFAN,DFANI,DLOV,ZNFI,PTI,TKT,TKF,
      1WD(2),VAPPI,TAMB,HALT,C319,TIND(2),TOUTD(2),RFD.PSD,TTMIN,OD(7),
      2CARD7(6),DNZI(2),PDI,CFNG,CHSC,CLOV,CBSC,PRSTC,RFAIR,RFCT,ZNOZ(2),
      3RASPC.ZTPD,ZNTD,COST(7),SSUM(16,30),ISUM(13,30),PRICE(2,21)
       COMMON/JUMP/JAKE,TINMX,N002I,DTN2I,N001I,NFPIN,N0020,N0010
       COMMON/PIPE/XDIA(20),XLGT(20),NN1,NN2,XTOWR,PLNMH,TTTBH,VX,VN
      1,VAVE
       DATA CROWI/  0.68,.75,.83,.89,.92,.95,.97,.98,.99,1.O/,
      1     CROWS/  0.64,.80,.87,.90,.92,.94,.96,.98,.99,1.O/
       DATA XT/1.35,1.75,2.SO/,B2ST/.518,.505,.519,.522,.451,.460,.452,
      1  .488,.404,.416..482,.449,.310,.356,.440,.421/.B2IL/  .348,.275.
      2  .100,.0633,.367,.250,.101,.0678,.418,.299,.229,.198,.290,.357,
      3  .374, .286/,  XNST/.556,.554,.556,.562,.568,.562,.568,.568,.572,
      4  .568,.556,.570,.592,.580,.562,.574/,XNIL/.592,.608,.704,.752,
      5  .586,.620,.702,.744,.570,.602,.632,.648,.601,.584,.581,.608/
                            BUNDLE  AND  TUBE  DESIGN CHANGE
                            BUNDLE  DESIGN  CHANGE  ONLY
                            NO CHANGE
C *** OAKE=1
C *** JAKE=2
C *** JAKE=3
C
   40 DLTO=DLOV*12.0
      GO T0(45,236,2000),JAKE
   45 CONTINUE
      NP=AMIN1(20.0,ZNTP)+0.01
      NR=AMIN1(20.,ZNTR)+0.01
   50 DTO=1.0
   70 DTT=0.083
   80 DTIM=DTO-2.0*DTT
      DTI=DTIM
      DFR=DTO
C +** FINNED TUBE  DIMENSIONS
  110 ZNF=ZNFI
      IF (ZNFI-.0001)  112,112,114
32200
32210
32220
32230
32240
32250
32260
32270
32280
32290
32300
32310
32320
32330
32340
32350
32360
32370
32380
32390
32400
32410
32420
32430
32440
32450
32460
32470
32480
32490
32500
32510
32520
32530
32540
32550
32560
32570
32580
32590
32600
32610
32620
32630
32640
32650
32660
32670
32680
32690

-------
 I
-«J
CO
  112 ZNF=10.0                                                              32700
  114 CONTINUE                                                              32710
  116 DFH=0.625                                                             32720
  120 DFT=0.018                                                             32730
  122 DEQ=DFR+ZNF*DFT*DFH*2.0                                               32740
      DTF=DFR+2.0*DFH                                                       327^0
C *** CHECK IF FIN THICK. AND  FINS/INCH  ARE  REASONABLE                      32760
      IF (DFT*ZNF-1.0)  140,130,130                                          32770
  130 ZNFI=0.0                                                              32780
      GO TO 112                                                             32790
  140 RAOR=1.0+2.0*ZNF*DFH*(1.0+(DFH+DFT)/DFR)                              32800
  150 AOF=RAOR*PI*DFR/12.0                                                  32810
  160 DFS=1.0/ZNF-DFT                                                       32820
      AR=PI*DFR/12.0*(1.0-ZNF*DFT)                                          32830
      RARAF=AR/(AOF-AR)                                                     32840
      CFR=DFH/12.0*SQRT(24.0/(TKF*DFT))                                     32850
      CFR=CFR*(1.0+0.5*DFT/DFH)*(1.0+0.35*ALOG(1.0+2.0*DFH/DFR))            32860
C *** TUBE  PITCH,  TRANSVERSE  AND  LATERAL  TO  FLOW                            32870
  224 PL=.5*PT/.5774                                                        32B80
      SMAX=15000.                                                           32890
      OHGT=ZNTR*PL+DTO                                                     32900
      DLTS=DHGT*SQRT(2.5*.75*PDI/SMAX)                                      32910
      DTSMN=.75                                                             32920
      DLTS=AMAX1(DLTS,DTSMN)*2.0                                            32930
      RPT=PT/DFR                                                            32940
c »** CALC. TUBE RESISTANCE                                                 32950
      RAOI=AOF/(PI*DTIM/12.0)                                               32960
      RFI=AOF/(2.0*PI*TKF)*ALOG(DFR/DTO)                                    32970
      RTW=AOF/(2.0*PI*TKT)+ALOG(DTO/DTIM)+RFI                               32980
      RFTOT=.0005*RAOI                                                     32990
      RTOT=RFTOT+RTW                                                        33000
C *** FIND  TIP-TO-TIP  BUNDLE  HEIGHT                                         33010
      TTTBH=(PL*{ZNTR-1.)+DTF)/12.                                          33020
C *** SET  UP  SOME  BUNDLE  COST  INFORMATION NEEDED  BY ACCOST                  33030
      N002I=0                                                              33040
      DTN2I=0.                                                              33050
      N001I=ZNOZ(1)                                                         33060
      NFPIN=ZNF                                                             33070
       IF((-1 ) + *NTP)710,710,720                                             33080
  710 N0010=0                                                              33090
      N0020=ZNOZ(2)                                                         33100
      GO TO 730                                                             33110
  720 NOOtO=ZNOZ(2)                                                         33120
      N0020=0                                                              33130
  730 CONTINUE                                                             33140
  234 TLA=ATAN(.5*PT/PL)*57.3                                              33150
 C *** CALC. EFFECTIVE  BUNDLE  WIDTH.  ALLOW 2IN.  FOR STRUCT.  EACH SIDE.       33160
  236 CONTINUE                                                             331?o
  240 Z=ZNTT/ZNTR                                                           33180
       NT1=Z                                                                33,90

-------
                    IF (ABS(Z-FLOAT(NT1))-0.0001) 244,244,242                            33200
                242 NT1=NT1-M
                244 Z=NT1
                    DBW=PT*Z
              C *** STAGGERED ARRANGEMENT
                250 CLER=DBW-((0.5+FLOAT(NT1-1))* PT+DTF)-.03125
              C *** TUBE COUNT EQUATIONS - PER BUNDLE
                309 IF (CLER+.0001) 314,320,320
                314 NT2=NT1-1
                    GO TO 326
              C *** IN-LINE ARRANGEMENT
                320 NT2=NT1
                326 NTT=0                                                                33320
                    DO 350 1=1,NR                                                        33330
                    IF ((-1)**I) 330,340,340
                330 NTT=NTT+NT1
                    GO TO 350
                340 NTT=NTT+NT2                                                          33370
                350 CONTINUE
                354 NT2=NTT
_              356 NTT=ZNTT+0.01
i               410 ZTPPA=ZNTT/ZNTP
^              436 NTTP=NTT/NTP
                    DO 450 1=1,NP
                450 ZTPP(I)=NTTP
                460 NTOV=NTT-NTP*NTTP
                464 IF (NTOV) 500,500,470
                470 DO 480  1 = 1 ,NP
                    ZTPP(I)=ZTPP(I)+1.0
                    NTOV=NTOV-1
                    IF (NTOV) 500,500,480
                480 CONTINUE                                                             33510
                    GO TO 464                                                            33520
                500 CONTINUE                                                             33530
              C  *** TUBE  SPACER  WIDTH ASSUMMED 2 IN.-USED EVERY 6 FT.                    33540
                650 DLSP=2*IFIX(DLTO/71.9-1.0)                                           33550
                    DLTE=DLTO-DLSP-DLTS                                                  33560
              C  *** CALC. APPROAC AREA/BUND.  (APPR), PLOT AREA/BAY (APLOT), AND MIN.     33570
              C  *** CROSSFLOW AREA (AMIN)                                                33580
                    APPR=DLTE*DBW/144.0                                                  33590
                    AMIN=APPR*(PT-DEQ)/PT                                                33600
                    RAPMX=AMIN/APPR                                                      33610
              C  *** SURFACE  AREA CALCULATION                                              33620
                    ASBUN=ZNTT*DLTE*AOF/12.0                                              33630
                    ASTOT =  ASBUN * ZBUS * ZBUP * ZBYP                                   33640
              C  *** CALC. TUBE SIDE CROSSFLOW AREAS                                      33650
                    AX=PI*(DTI/12.0)**2*0.25                                              33660
                    DO 800 1*1,NP                                                        33670
                    AXPP(I)=AX*ZTPP(I)                                                    33680
                800 CONTINUE                                                             33690

-------
CJ1
                     AXAV=AX*ZTPPA
               C  ***  SET  UP CONSTANTS FOR AIR SIDE HT AND DP RELATIONS
               1040  IF(JAKE.EQ.2)GO TO 1500
               1072  PLP=PL/COS(TLA*.01745)
                     C = 1 .0
               1080  CFP(1)=6.03/RPT**.8715*RAOR**0.43 *(PT/PLP)**.515 *C
                     CFP(2)=-0.245
                     DKL=4.0*PT*PL*(
                     CONTINUE
                     BRIGGS AND YOUNG
 1086
 1206
C ** *
 1260
                      .0-DEQ /PT)/(RAOR*PI*DFR)
                                     .0-0.3/ZNTR)*1..05
     CFH(1)=0.1378*12
     CFH(2)=0.718
1302 CFH(3)=       (1
1500 CONTINUE
     CALL ERORF  (KER,KERR.KGO.MM)
2000 RETURN
     END
GEOMETRY PARAMETERS
0/DFR*(DFS/DFH)**0.296
33700
33710
33720
33730
33740
33750
33760
33770
33780
33790
33800
33810
33820
33830
33840
33850
33860
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
*» *
** *
** *
*+ *
* + *
** *
** *
** *
** •*
** *
** *
«t» *
** *
** *
** *
** *
** *
** *
** *
** *
** *
** *
***
n
w
A
PC
SI
A!
PC
TC
A!
p;
If

Tl
Tl

1
2
3
4
5
6
7
8
                     SUBROUTINE GEOM2(CAPIP)
                     THIS ROUTINE DESIGNS THE COOLING TOWER PIPING AND CONVERTS ALL
                     VALVES AND FITTINGS INTO EQUIVALENT LENGTHS.   THE DESIGN FOLLOWS
                     A LINE FROM A SINGLE PUMP TO THE LAST TOWER BAY AND BACK TO THE
                     POWER PLANT.  THE LOSSES FROM CONTRACTIONS AND EXPANSIONS IN THE
                     SUPPLY AND RETURN LINES ARE IGNORED.  THE COOLING TOWERS ARE
                     ASSUMED TO LAY PERPENDICULAR TO THE PIPING RUNNING TO AND FROM THE
                     POWER PLANT WITH THE PIPING ENTERING AT THE MIDDLE OF THE COOLING
                     TOWERS. THE BAYS ARE ARRANGED IN A BACK-TO-BACK SCHEME.
                     ASSUME ALL PIPES ARE STANDARD WALL AND THAT INLET AND OUTLET
                     PIPE SIZES ARE THE SAME. BREAK UP SUPPLY AND RETURN LINES
                     INTO 4 DIFFERENT SIZES.
                     THE OUTPUT ARRAYS ARE XDIA AND XLGT, BOTH IN INCHES
                     THESE ARRAYS ACCOUNT FOR THE FOLLOWING LOSSES:
                         POWER PLANT TO COOLING TOWERS
                         COOLING TOWER TO SUPPLY LINE
                         TURN INTO SUPPLY LINE AND FIRST LENGTH OF SUPPLY
                         SECOND LENGTH OF SUPPLY LINE
                         THIRD LENGTH OF SUPPLY LINE
                         FOURTH LENGTH OF SUPPLY LINE
                         INLET FEEDER LINE LOSS
                         TURN INTO INLET HEADER AND HEADER LOSS
                                                           LINE
                                                                          33870
                                                                          33880
                                                                          33890
                                                                          33900
                                                                          33910
                                                                          33920
                                                                          33930
                                                                          33940
                                                                          33950
                                                                          33960
                                                                          33970
                                                                          33980
                                                                          33990
                                                                          34000
                                                                          34010
                                                                          34020
                                                                          34030
                                                                          34040
                                                                          34050
                                                                          34060
                                                                          34070
                                                                          34030
                                                                          34030
                                                                          34100

-------
 C *** 9 = TURN OUT OF INLET HEADER TO BUNDLE INLET NOZZLE                  34110
 C *** 10= 0.                                                               34120
 C *** 11= TURN FROM BUNDLE OUTLET NOZZLE INTO OUTLET HEADER                34130
 C *** 12= LOSS IN OUTLET HEADER AND TURN OUT OF HEADER                     34140
 C *** 13= OUTLET FEEDER LINE LOSS                                          34150
 C *** 14= FOURTH LENGTH OF RETURN LINE                                     34160
 C *** 15= THIRD LENGTH OF RETURN LINE                                      34170
 C *** 16= SECOND LENGTH OF RETURN LINE                                     34180
 C *** 17= FIRST LENGTH OF RETURN LINE AND TURN OUT OF RETURN LINE          34190
 C *** 18= RETURN LINE TO BOUNDARY OF COOLING TOWER                         34200
 C *** 19= COOLING TOWER TO POWER PLANT                                     34210
 C »** 20= 0.                                                               34220
       COMMON/BCK/XMCST(20),PIPDM(20),XSHOP(20),FIELD(20),EXJOT(20)         34230
       COMMON NFO,KGO,KNTRO,KNTR1,NSUM,NPAGE,DAY(2),PI                      34240
       COMMON KCI,KER,KERR(20),KFIN.KREG,LA 1C,LSUP,MM,NP,NR,NT1,NT2,NTP,    34250
      1NTR.NTT,ABARE,AFAN,AMIN,APLOT,APPR,AS8UN,ASTOT,AXAV,AXPP(20),CP(2)   34260
      2,DEN(2),DEN12(2,2),DENFN,DENLZ(7),DBW.DEO,DFH,DFR,DFS,DFT,DKL,       34270
      3DLSP,DLTE,DLTO,DLTS,DNZ(2),DTI , DTIM,DTF,DTO,DTT,PL,PT                34280
       COMMON DPAD,DPAF,DPAM,DPAW,OPF(10),DPI,DPNZ(2),DPT.DPTA,DPTF,        34290
      1DPTOT(2),POUT(2) ,PTUB,RV2,GAMAX,GT,HPFNC,HA IR,HTS,UBARE,UCLN,UTOT,   34300
      20(2),QDUT,QTOT,RFI,RFIN,RFTOT,RTOT,RTW,TAV(2),TIN(2),TOUT(2),TT(8)   34310
      3,TWALL.TD,TW,TMTD,TK(2) , VAPP,VNZ(2) , VT , DF AN , T LT E , AOF , V I SLZ ( 7 ) ,       34320
      4VIS(2),VIS12(2,2),VISW,W(2),WAPF,WB(2),WLQ(2)                         34330
       COMMON ANG(3),CFH(3).CFP(3),CFR,CKBSC,CKFNG,CKHSC,CKLOV.CKSTC,F,     34340
      1FALT,FINEF, FFF , FSUM ,OCL ( 4 ) ,ODL(4),OKL(4).OM|_(4) , OMV ( 4 ) , P,PRAN(2) ,    34350
      2PRALZ(7).R.RAOI,RAOR,RARAF,RAPMX,REA(2),RE12(2.2),RFNPL,RPT,TLA,     34360
      3XREX,ZMP,ZNF,ZNTP,ZNTR,ZNTT,ZTPP(20),ZTPPA                            34370
       COMMON ZTRD.ANGI,ZBYP,ZBUP,ZBUS,ZFAN,DFANI,DLOV.ZNFI,PTI,TKT,TKF,    34380
      1WD(2),VAPPI,TAMB,HALT,C319,TIND(2),TOUTD(2),RFD,PSD,TTMIN,QD(7),     34390
      2CARD7(6),DNZI(2),PDI,CFNG,CHSC,CLOV,CBSC,PRSTC,RFAIR,RFCT.ZNOZ(2),   34400
      3RASPC,ZTPD,ZNTD,COST(7),SSUM(16,30),ISUM(13,30).PR ICE(2,21)          34410
       COMMON/PIPE/XDIA(20),XLGT(20),NN1,NN2,XTOWR,PLNMH,TTTBH,VX,VN        34420
      1.VAVE                                                                 34430
       COMMON/JAN7/WBMAX,PBPMN,TBPMN,CPEFF,WTEFF,PBPHT,EBPOM,PPOM,CWRTI,    34440
      1SCPMP,CCPMP,FDMAX,MXFBL,SPRNZ,SPRHT,CWTLV,DPPCT,PDMAX,CONCT          34450
       COMMON/CONTL/CSTOR,INML,D(13)                                         34460
       DIMENSION  GPMD(3),PUMPD(3),VALVE(6),DIARR(20),VLARR(20)              34470
C ***  ARRAY  OF COSTS OF  BUTTERFLY  VALVES (1976 PRICES)                      34480
       DATA VLARR/  700.00,  1500.0,  3000.0, 4500.0, 6700.0,                   34490
      1             8000.0,  10200.,  12200.,  15800., 19300.,                   34500
      2             25800.,  27300.,  30000.,  32800., 38000.,                   34510
      3             41500.,  47900.,  54100.,  58000., 85000./                   34520
C *** ARRAY OF PIPE  SIZES  (INCHES)                                          34530
      DATA DIARR/4.026,8.071,12.09,17.25,23.25,29.25,35.25,42.,48.,54.,    34540
      1             60.. 66., 72., 78.,  84.,  90., 96.,  108., 114.,  144./     34550
C *** COST OF THE  3  CIRC.  PUMPS  WITH  PUMP DRIVES  WITHOUT WATER RECOVERY    34560
C *** TURBINES (1976  PRICES)                                                34570
      DATA PUMPD/265610.,355220.,520810./                                  34580
C •** CAPACITIES OF  THE  3  CIRCULATING  PUMPS  USED  IN GPM                     34590
       DATA GPMO/82700.,110300.,165400./                                     34600

-------
C
c ***
c ***
c »**
c »**
c ***
c

c ***


c ***
c ***
   100
   ** *
   ** *
 c
 c  ***
 c
PIPES BELOW 48 INCH DIAMETER HAVE PROPORTIONATELY MORE  MACHINING
AND PIPES ABOVE 48 HAVE THICKER WALLS. AS  A  RESULT  ALL  PIPES WORK
OUT TO A COST OF 2. DOLLARS/FOOT/DIAMETER  INCH
USE SHOP JOINT COST OF 4 DOLLARS/DIAMETER  INCH
USE FIELD JOINT LABOR AS 24 DOLLARS/HOUR
DATA BIGPI ,SMPIP.SJ,FJ/2.,2. ,4. ,24./

XDIA(10)=0.
XDIA(20)=0.
CALCULATE THE VARIOUS PIPE SIZES USED  IN THE  PIPING DESIGN
D(6)=D(5)/1 .414
D(7)=SQRT(W(1)/ZBYP*2./DEN12(1 , 1 )/VN/19.635)
D(8)=D(5)* .6124
D( 10)=D(7)/1 .414
ASSUME 10000 GPM FILL LINES
D(1 1 )=SQRT( 1 0000. /VX/2. 448)
D(12)=D(5)*.433
D( 13)=D(5)/2.828
D( 1 )=D(10)*SQRT( VN/VAVE)
D(2)=D(1 )/1 .414
D(3)=DNZ(1 )
D(4)=DNZ(2)
FIND PIPE SIZES
DO 100 1=1,13
IF(I.EQ.3.0R.I.EQ.4)GO TO  100
CALL NOZID(0. ,1 . £08, D( I ) , IDUM, DUM, 0 )
CONTINUE
SET CODE  FOR NECESSARY ARRANGEMENT
FIND STANDARD  LENGTH  FOR SUPPLY AND RETURN LINES
STLGT=ZBUP*(DBW+4. )*(ZBYP-4.
 FIND  LENGTHS  AND  DIAMETERS  TO  USE  FOR  PRESSURE DROP CALCULATIONS

 XDIA( 1 )=D(5)
 XDIA(2)=D(6)
 XLGT(2)=0.
 XLGT(3)=STLGT
 XDIA(4)=D(7)
 XLGT(4)=STLGT
 XDIA(5)=D(B)
 XLGT(5)=STLGT
 XDIA(6)=D(9)
 XLGT(6)=STLGT
 XDIA(7)=D( 1 )
 XLGT(7) = 195.*XDIA(7)-M2.*XTOWR
 XDIA(8)=D(2)
 XLGT(8)=90.*XDIA(8)+(DBW+4.)*(ZBUP/2.-.5/ZNOZ(1 ) )
 XDIA(9)=D(3)
 XLGT(9)=135.*XDIA(9)
 34610
 34620
 34630
 34640
 34650
 34660
 34670
 34680
 34690
 34700
 34710
 34720
 34730
 34740
 34750
 34760
 34770
 34780
 34790
 34800
 34810
 34820
 34830
 34840
 34850
 34860
 34870
 34880
 34890
 34900
 34910
 34920
 34930
 34940
 34950
 34960
 34970
 34980
 34990
 35000
 35010
 35020
 35030
 35040
 35050
 35060
 35070
35030
35090
35100

-------
00
     XDIA(11)=D(4)
     XLGT(11) = 120.*XDIA(11 )
     XDIA(12)=D(2)
     X LGT(12)=60.* XDIA(12) + (DBW+4.)*(ZBUP/2.-.5/ZNOZ( 2) )
     XDIA(13)=D(1)
     XLGT(13) = 180.*XDIA(13)-M2.*XTOWR
     XLGT(14)=STLGT
     XDIA(14)=D(13)
     XLGT(15)=STLGT
     XDIA(15)=D(12)
     XLGT(16)=STLGT
     XDIA(16)=D(10)
     XLGT(17)=STLGT
     XDIA(17)=D(9)
     XLGT(18)=0.
     XDIA(18)=D(6)
     GO TO (130,140,150,160),INML
 130 XLGT(1)=DLTO+120.*XDIA(1)+12.*DPPCT
     XDIA(3)=XDIA(2)
     XLGT(3)=XLGT(3)+90.*XDIA(3)
     XLGT(17)=XLGT(17)+60.*XDIA{17)
     GO TO 300
 140 XDIA(1)=D(6)
     XLGT(1) = DI_TO+120.*XDIA(1)+12.*DPPCT
     XDIA(3)=XDIA(2)
     XLGT(3)=XLGT(3)+20.*XDIA(3)
     XOIA(1B)=D(9)
     GO  TO 300
 150 XLGT<1)=120.*XDIA(1)-M2 . *DPPCT
     XDIA(2)=D(9)
     XLGT(2)=170.*XDIA(2)
     XDIA(3)=XDIA(2)
     XDIA(17)=D(6)
     XLGT(18)=140.*XDIA(18)
     GO  TO 300
 160  XDIA(1)=D(6)
     XLGT( 1) = 120.*XDIA(1 )-H2.*OPPCT
     XDIA(2)=D(9)
     XLGT(2)=80.*XDIA(2)+2.*OLTO
     XDIA(3)=XDIA(2)
     XLGT(3)=XLGT(3)+20.*XDIA(3)
     XDIA(17)=D(6)
     XLGT(17)=XLGT(17)+20.*XDIA(17)
300  CONTINUE
     XDIA(19)=XOIA(1)
     XLGT(19)=XLGT(1)
     IF(INML.LT.3)GO TO 305
     XDIA(4)=D(10)
     XDIA(5)=D(12)
     XDIA(6)=D(13)
351 10
35120
35130
35140
35150
35160
35170
35180
35190
35200
35210
35220
35230
35240
35250
35260
35270
35280
35290
35300
35310
35320
35330
35340
35350
35360
35370
35380
35390
35400
35410
35420
35430
35440
35450
35460
35470
35480
35490
35500
35510
35520
35530
35540
35550
35560
35570
35580
35590
35600

-------
    XLGT(13)=XLGT(13)+20.*XDIA(13)
    XDIA(14)=D(9)
    XDIA(15)=D(8)
    XDIA(16)=D(7)
    XLGT(19)=XLGT(19)+DLTO
    GO TO 306
305 CONTINUE
    XLGT(7) = X LOT(7) + 72.+20.*XDIA(7)
    XLGT(18)=100.*XDIA(18)
    CONTINUE

    FIND MATERIAL COSTS  FOR ALL  PIPELINES
        INLET FEEDER  LINE
        OUTLET FEEDER  LINE
        INLET HEADER
        OUTLET HEADER
        SUPPLY LINE NUMBER  1
        SUPPLY LINE NUMBER  2
        SUPPLY LINE NUMBER  3
        SUPPLY LINE NUMBER  4
        SUPPLY LINE NUMBER  5
    10= SUPPLY LINE NUMBER  6
    11= RETURN LINE NUMBER  1
    12= RETURN LINE NUMBER  2
    13= RETURN LINE NUMBER  3
    14= RETURN LINE NUMBER  4
    15= RETURN LINE NUMBER  5
    16= RETURN LINE NUMBER  6
    17= FILL LINES
    18= BYPASS LINES

    PIPRA=BIGPI/SMPIP
    XMCST( 1 )=XTOWR-t-.4*D( 1 )
    PIPDM(1)=D(1)
    PIPDM(2)=D(1)
    XMCST(3)=D(2)*SMPIP*(DBW+4.)/12.*(ZBUP-1 ./ZNOZ(1))
    PIPDM(3)=D(2)
    PIPDM(4)=D(2)
    XMCST(4)=XMCST(3)*(ZBUP-1./ZNOZ(2))/(ZBUP-1./ZN02(1))
    XMCST(5)=DPPCT
    PIPDM(5)=XDIA(1)
    STNRD=STLGT*2./12.
    XMCST(6)=STNRD
    PIPDM(6)=XDIA(3)
    XLZ=STNRD
    IF( INML.GT.2)XLZ=2.*STNRD
    DO  600  1=7,9
    XMCST(I)=XDIA(I-3)*XLZ*SMPIP
    PIPDM(I)=XDIA(I-3)
600 CONTINUE

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
306

** *
** *
** *
** *
** *
* * *
*+ *
** *
** *
** *
+ **
** *
** *
***
** *
«* *
** *
** *
***
Cl

F
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
 35610
 35620
 35630
 35640
 35650
 35660
 35670
 35680
 35690
 35700
 35710
 35720
 35730
 35740
 35750
 35760
 35770
 35780
 35790
 35800
 35810
 35820
 35830
 35840
 35850
 35860
 35870
 35880
 35890
 35900
 35910
 35920
 35930
 35940
 35950
 35960
 35970
 35980
 35990
 36000
 36010
 36020
 36030
 36040
 36050
 36060
 36070
 360'iO
 36090
36100

-------
                     XMCST(10)=0.                                                          36110
                     PIPDM(10)=D(6)                                                        36120
                     XMCST(11)=DPPCT+DLTO/12.                                              36130
                     PIPDM(11)=XDIA(1)                                                     36140
                     XLZ=STNRD                                                            36150
                     1F(INML.LT.3)XLZ=2.*STNRD                                            36160
                     XMCSTf12)=XLZ                                                        36170
                     PIPOM(12)=XDIA(17)                                                    36180
                     DO 700  1=13,15                                                        36190
                     XMCST(I)=SMPIP*XLZ*XDIA(29-I)                                         36200
                     PIPDM(I)=XDIA(29-I)                                                   36210
                 700 CONTINUE                                                             36220
                     XMCST(16)=0.                                                          36230
                     PIPDMf16)=D(6)                                                        36240
                     XMCST(17)=2.*DPPCT*SMPIP*D(11)                                        36250
                     PIPDM(17)=0(11)                                                       36260
                     PIPD.V!( 18) = PIPDM(5)                                                    36270
                     XMCST( 18)=4.*PIPDIV1(18)/12.*SIVIPIP*PIPDM(18)                            36280
                     XMCST(2)=XMCST(1)                                                     36290
                     GO 10(550.575,625,650),INML                                          36300
_,               550 XMCST( 1 )=XMCST( 1 )+6.+.4*0(1 )                                          36310
 i                    XMCST(5)=XMCST(5)+DLTO/12.                                            36320
g                   XMCST(12)=XMCST(12)+4.*.4*0(9)                                        36330
                     XMCSK16)=4.*.4*D(6)*SMPIP*D(6)                                       36340
                     GO TO 675                                                             36350
                 575 XMCST(1)=XMCST(1)+6.+.4*0(1)                                          36360
                     XMCST(5)=2.*(XMCST(5)+DLTO/12.)+2.*.4*0(6)                            36370
                     XMCST(11)=2.*XMCST(11 )                                                36380
                     XMCST(12)=XMCST(12)+.4*10.*D(9)                                       36390
                     XWCST(17)=2.*XMCST(17)                                                36400
                     XMCST(18)=2.*XMCST(1B)                                                36410
                     GO TO 675                                                             36420
                 625  XMCST(2)=XMCST(2)+.4*D(1)                                             36430
                     XMCST(6)=2.*XMCST(6)+8.*.4*D(9)                                       36440
                     XMCST(10)=D(6)+SMPIP*(2.*DLTO/12.+.4*D(6))                            36450
                     XMCST(12)=XMCST(12)+4.*.4*0(6)                       •                 36460
                     GO TO 675                                                             36470
                650  XMCST(2)=XMCST(2)+.4*D(1)                                             36480
                     XMCST(5)=2.*XMCST(5)                                                  36490
                     XMCST(6)=2.*XMCST(6)+10.*.4*D(9)+4.*DLTO/12.                          36500
                     XMCST(11)=2.*XMCST(11)+2.*.4*D(6)                                     36510
                     XMCST(17)=2.*XMCST(17)                                                36520
                     XMCST(18)=2.*XMCST(18)                                                36530
                675  CONTINUE                                                              36540
                     XMCST(1)=XMCST(1 )*D(1 )*SMPIP                                          36550
                     XMCST(2)=XMCST(2)*D(1)*SMPIP                                          36560
                     XMCST(5)=XMCST(5)*SMPIP*XDIA(1)                                       36570
                     XMCST(6)=XMCST(6)*SMPIP*XDIA(3)                                       36580
                     XMCST(11)«XMCST(11 )*XOlA(1)*SMPIP                                     36590
                     XMCST(12)=XMCST(12)*SMPIP*XDIA(17)                                    36600

-------
 I
c»
      WPING=0.0                                                             36610
      00 710 1=1,18                                                         36620
C *** 10 PCT. ADDED TO MATERIAL  FOR WELD  NECKS,ETC.                         36630
      XMCSTII)=1.1*XMCST(I)                                                 36640
      IF(PIPDM(I).GT.48.01)GO TO 708                                        36650
C *** ASSUME PIPE THICKNESS OF  .375 INCHES  AND  FIND  VOLUME  OF  PIPE METAL   36660
      VPING=XMCST(I)+37.699/PIPDM(I)/SMPIP*(.375**2+.375*PIPDM(I))         36670
      GO TO  709                                                             36680
C *** ASSUME PIPE THICKNESS OF  .5  INCH AND  FIND  VOLUME  OF  PIPE METAL       36690
  708 VPING=XMCST(I)*37.699/PIPDM(I)/SMPIP*(.5**2+.5*PIPDM(I))             36700
      XMCST(I)=XMCST(I)+PIPRA                                               36710
  709 IF(I.LE.4)VPING=ZBYP*VPING                                            36720
      WPING=WPING+VPING                                                     36730
  710 CONTINUE                                                              36740
C *** TO CALCULATE TOTAL  PIPING  WEIGHT USE  .2833 LB/IN3                    36750
      WPING=WPING*.2833                                                     36760
C *** FIND PIPING SHIPPING COST  BY ASSUMING 5.00 $/CWT                      36770
      SHIPCO=WPING*.05                                                      36780
C                                                                           36790
C *** FIND SHOP LABOR  FOR  ALL PIPING                                        36800
C                                                                           36810
      XSHOP(1)=SJ*D(1)                                                      36820
      XSHOP(2)=XSHOP(1)                                                     36830
      TEMY=D(1)+6.*D(2)                                                     36840
      XSHOP(3)=SJ*(TEMY + 2.*D(3)*ZNOZ(1 )*ZBUP)                               36850
      XSHOP(4)=SJ*(TEMY+2.*D(4)*ZNOZ(2)*ZBUP)                               36860
      TEMY=ZBYP/2.*D(1)                                                     36870
      XSHOP(5)=D(5)*SJ                                                      36880
      XSHOP(6)=SJ*(TEMY+14.*D(9))                                           36890
      XSHOP(7)=2.*D(7)                                                      36900
      XSHOP(8)»=SJ*TEVY                                                      36910
      XSHQP(9)=XSHOP(8)                                                     36920
      XSHOP(10>=0.                                                          36930
      XSHOP(11)=XSHOP(5)                                                    36940
      XSHOP(13)=4.*D(10)                                                    36950
      XSHOP(14)=XSHOP(8)                                                    36960
      XSHOP(15)=XSHOP(14)                                                   36970
      XSHOP(16)=0.                                                          36980
      XSHOP(17)=0.                                                          36990
      XSHOP(18)=0.                                                          37000
      GO  T0(725,750,775,800),INML                                           37010
  725 XSHOP(1)=2.*XSHOP(1)                                                  37020
      XSHOP(6)=SJ*(TEMY+4.*D(6))                                            37030
      X5HOP(12)=11.*D(9)                                                    37040
      XSHOP<16)=SJ*9.*D(6)                                                  37050
      GO  TO  840                                                             37060
  750 XSHOP(1)=2.*XSHOP(1)                                                  37070
      XSHOP(5)=0.                                                           37080
      XSHOP(6)=SJ*(TEMY+2.*D(6))                                            37090
      XSHOP(11)=D(6)*SJ«2.                                                  37100

-------
                775
                eoo
                840
     XSHOP(12)
     GO  TO  840
     XSHOP<2)=
     XSHOP(7)=
     XSHOP(10)
     XSHOP(12)
     XSHOP(13)
     GO  TO  840
     XSHOP(2)=
     XSHOP(5)=
     XSHOP(7)=
     XSHOP(11 )
     XSHOP(12)
     XSHOP(13)
     CONTINUE
     XSHOP(7)=
     XSHOP(12)
     XSHOP(13)
              c
              c  ***
              c
 :16.*D(9)

2.*XSHOP(2)
4.*D(10)
=SJ*7.*D(6)
=7.*D(6)
=2,*D(7)

2.*XSHOP(2)
D(6)*SJ
4.*D(10)
= 0.
=2.*D(6)
=2.*D(7)

SJ*(XSHOP(7)+TEMY)
=Sd*(XSHOP(12)+TEMY)
=SO*(XSHOP(13)+TEMY)
 l
00
ro
     FIND  FIELD  LABOR  FOR  ALL  PIPING

     FIELD(1)=FJ*(1.4+1.6*D(1))
     FIELD(2) = FIELD(1 )
     IF( lrm-3)860,870,870
860  FIELDd )=2.*FIELDd)
870  CONTINUE
     IF(XTOWR-SCPMP)890,890,880
880  XTRA=AINT(XTOWR/SCPMP-.01)*FJ*(1.4+1.6*0(1))
     F1ELD(1)=FIELD(1)+XTRA
     FIELD(2)=FIELD(2)+XTRA
890  FIELD(3)=ZBUP*ZNOZ(1)*Fd*(1.4+1.6*0(3))
     FIELD(4)=ZBUP*ZNOZ(2)*FJ*(1.4+1.6*0(4))
     DO  900  1=5,18
     EXdOT(I)=0.
     FIELD(I)=0.
900  CONTINUE
     FIELD(18)=FJ*4.*(1.4+1.6*PIPDM(18))
     GO  T01910,920,930,940),INML
910  FIELD(6)=2.*FJ*(1.4+1.6*0(6))
     FIELD)11)=FJ*(1.4+1.6*0(5))
     FIELD(12)=FJ*(1.4+1.6*0(9))*5.
     FIELD(16)=FIELD(6)
     GO  TO 950
920  FIELD(5)=FJ*(1.4+1.6*0(6))*2.
     FIELD(11)=FIELD(5)
     FIELDd2)=FJ*(1.4+1,6*D(9))*6.
     FIELD(18)=2.*FIELD(18)
     GO  TO 950
930  FIELD(6)=FJ*(1.4+1.6*0(9))*6.
     FIELD(10)=FJ*(1.4+1.6*0(6))
37 110
37120
37130
37140
37150
37160
37170
37180
37190
37200
37210
37220
37230
37240
37250
37260
37270
37280
37290
37300
37310
37320
37330
37340
37350
37360
37370
37380
37390
37400
37410
37420
37430
37440
37450
37460
37470
37480
37490
37500
37510
37520
37530
37540
37550
37560
37570
37580
37590
37600

-------
CO
CO
                940
                950
              C
              c ***
              c ***
              C
                960
                970
                975
                 976
                 978
                 980
                 985
                 990
                1000
               C ***

               C
               c ***
FIELD(12)=3.*FIELD(10)
GO TO 950
FIELD(6)=FJ*(1.4+1.6*0(9))*6.
FIELD(11)=FJ*(1.4+1.6*D(6))*2.
FIELD(18)=2.*FIELD(18)
CONTINUE

ALL LONG PIPES MUST HAVE  ADDITIONAL  FIELD  JOINTS,  SHOP JOINTS,
AND EXPANSION JOINTS DUE  TO  THEIR  LENGTH

DO 1000 1=5,15
IF(I-5)960,960,970
LENG=DPPCT
IF(INML.LT.3)LENG= LENG+D LTD/1 2.
PIECE=1.
IF((-1)**INML.GT.O)PIECE=2.
GO TO  990
IF(I-11)975,980,985
IF(I.NE.10)GO TO  976
IF(INML.NE.3)GO TO 1000
LENG=2.*DLTO/12.
PIECE=1.
GO TO  990
IF(I.NE.6)GO  TO 978
IF(INML.NE.4)GO TO 978
LENG=DLTO/12.
PIECE=4.
CALL  PIPDIV(PIPDM(I),LENG,PIECE,SCPMP,FJ,SJ,I)
LENG=STLGT/12.
PIECE=2.
 IF(INML.GT.2)PIECE=4.
GO TO  990
 LENG=DPPCT+DLTO/12.
 PIECE=1.
 IF( (-1 )**INML.GT.0)PIECE=2.
GO  TO  990
 LENG=STLGT/12.
 PIECE=2.
 IF(INML.LT.3)PIECE*4.
 CALL PIPDIV(PIPDM(I),LENG,PIECE,SCPMP,FJ,SJ , I )
 CONTINUE
 LENG=DPPCT
 PIECE=2.
 IF<(-1)**INML.GT.0)PIECE=4.
 CALL PIPDIV(PIPDM(17),LENG,PIECE,SCPMP,FJ,SJ,17)
 XNL=PIECE/2.
 ASSUME 1  FILL PUMP PER  LINE  AT  20000 DOLLARS  FOR  PUMP  AND DRIVE
 PUMPF=20000.*XNL
 CALCULATE COST OF CONDENSATE PUMPS
 37610
 37620
 37630
 37640
 37650
 37660
 37670
 37680
 37690
 37700
 37710
 37720
 37730
 37740
 37750
 37760
 37770
 37780
 37790
 37800
 37810
 37820
 37830
 37840
 37850
 37860
 37870
 37880
 37890
 37900
 37910
 37920
 37930
 37940
 37950
 37960
 37970
 37980
 37990
 38000
38010
38020
 38030
38040
38050
38060
38070
38030
38090
38100

-------
 I
CO
 C                                                                          38110
       GPMSL=W(1)/XNL/DEN12(1,1)/8.021                                       38120
       PUMPC=1.E11                                                           38130
       DO 1500 1=1,3                                                        38140
       IPUMP=IFIX(GPMSL/GPMD(I))+1                                           38150
       PUMP I=FLOAT(IPUMP)*PUMPD(I)                                           38160
       IF(PUMPI-PUMPC)1300,1500,1500                                        38170
  1300 PUMPC=PUMPI                                                           seiso
       NPUMP=IRUMP                                                           38190
       PPGPM=GPMD(I)                                                        38200
  1500 CONTINUE                                                             38210
       PUMPOPUMPC*XNL                                                       38220
       IXNL=XNL                                                             38230
       NPUMP=NPUMP*IXNL                                                     38240
 C *** FIND COST OF  BUTTERFLY  VALVES                                        38250
 C *** VALVE(OI) =  EACH BAY  HAS 2  CONTROL VALVES                             38260
 C *** VALVE(02) =  EACH SUPPLY LINE HAS 2 CONDENSATE  PUMP ISOLATION VALVE    38270
 C *** VALVE(03) =  EACH RETURN LINE HAS 2 RECOVERY  TURB.  ISOLATION VALVES    38280
 C *** VALVE104) =  EACH PAIR OF LINES HAS 3  BYPASS  VALVES                   38290
 C *** VALVEI05) =  EACH SUPPLY FILL LINE HAS 2  FILL PUMP  ISOLATION VALVES    38300
 C *** VALVE(06) =  EACH RETURN FILL LINE HAS 2  FILL DRAIN VALVES            38310
       VALVE(1)=2.*Z8YP*GRS(DIARR,1,VLARR,1,D(1),20.JDUM)                   38320
       VLVCT=GRS(DIARR,1,VLARR,1,PIPDM(5),20,JDUM)*XNL                      38330
       VALVE!2)=2.*VLVCT                                                     38340
       VALVE(3)=0.                                                           38350
       IF(CWRTI.LE..05)GO  TO 1600                                            38360
       VALVE(3)=VALVE(2)                                                     38370
  1600 VALVE(4)=3.*VLVCT                                                     38380
       VLVCT=GRS(DIARR,1.VLARR,1,PIPDM(17),20,JDUM)*XNL                      38390
       VALVE(5)=2.*VLVCT                                                     38400
       VALVE(6)=VALVE(5)                                                     38410
 C  *** CALCULATE STORAGE  TANK  VOLUME  BASED ON 1.5 CAPACITY FACTOR            38420
 C  *** TANKS  MUST HOLD  THE TUBE AND FEEDER LINE VOLUME PLUS EXTRA  1.5 TO     38430
 C  ***  ACCOUNT  FOR HEADERS AND OTHER  ABOVE GROUND PIPING. ASSUME            38440
 C  ***  RETURN AND SUPPLY  LINES NEED NOT  BE COMPLETELY  DRAINED.               38450
       VFILL=DLTO*ZBYP*ZBUP*FLOAT(NTT)*.7854*DTIM**2                         38460
       VFILL=VFILL+.7854*0(1)**2*XTOWR*ZBYP*12.*2.                           38470
       VFILL=1.5*VFILL/231.                                                  38480
C  ***  ASSUME TANKS  ARE 40 FEET LONG  AND 3/8  INCHES THICK.  COST  IS          38490
C  ***  1.10 $/LB  INSTALLED WITH AN  EXTRA 2.25 S/GAL FOR THE PIT.            38500
C  ***  ASSUME MAXIMUM TANK SIZE OF  150000 GALLONS.                           38510
       NTANK=VFILL/150000.-H                                                 38520
       XTANK=NTANK                                                           38530
       VFILL=VFILL/XTANK                                                     38540
C  ***  SEE NOTEBOOK  FOR DERIVATION  OF FORMULAS                               38550
       DTANKA=ACOS(1.-VFILL/250673.96)                                       38560
       DTANK=80."COS(DTANKA/3.+4.18879)+40.                                  38570
       WTANK=16.02*(240.2*DTANK+7.4-DTANK**2)                                38580
       TANKC=XTANK*(1.1*WTANK+2.25*VFILL)                                    38590
C  ***  ADD IN SHIPMENT  COST  OF  TANKS  AT  5.00  S/CWT                           38600

-------
00
en
      SHIPCO=SHIPCO+.05*WTANK*XTANK                                         38610
C *** ASSUME CONTROLS ARE 9  PCT. OF  BUNDLE  COST                             38620
      CONTR=.09*CSTOR                                                       38630
C *** ASSUME 13350 DOLLARS FOR NITROGEN  BLANKETING                         38640
      BLANN=13350.                                                          38650
C *** FIND TOTAL COST OF PIPING SYSTEM                                      38660
      CAPIP=PUMPF+PUMPC+TANKC+CONTR+BLANN                                   38670
      DO 1800 1=1,4                                                         38680
      CAPIP=CAPIP+ZBYP*(XMCST(I)+XSHOP(I)+FIELD(I))+VALVE(I)                38690
 1800 CONTINUE                                                              38700
      CAPIP=CAPIP+VALVE(5)+VALVE(6)                                         38710
      DO 1900 1=5,18                                                        38720
      CAPIP=CAPIP+XMCST(I) + XSHOP(I)+FIELD(I)+EXiJOT(I)                       38730
 1900 CONTINUE                                 -                            38740
      CAPIP = CAPIP-i-SHIPCO                                                    38750
      NN1=IXNL                                                              38760
      NN2=NN1                                                               38770
      IF(KNTR1.EQ.O)GO  TO 5000                                              38780
      CALL CHANL(NFO,2BYP,VALVE,NPUMP.PPGPM,PUMPC,IXNL,  PUMPF.VFILL,        38790
     1TANKC,CONTR,BLANN,SHIPCO,CAPIP,NTANK,INML)                            38800
 5000 CONTINUE                                                              38810
      RETURN                                                                38820
      END                                                                   38830
       FUNCTION GRS  (X,NDX,Y,NDY,XV,N.NRANGE)

       THIS  FUNCTION INTERPOLATES BETWEEN  THE  POINTS  OF  AN  ARRAY

               ARRAY OF  POINTS ON ABSCISSA
               ARRAY OF  POINTS ON ORDINATE
               INCREMENT BETWEEN POINTS  IN  THE  X  ARRAY
               INCREMENT BETWEEN POINTS  IN  THE  Y  ARRAY
               VALUE OF  X TO FIND FUNCTION  FOR
               NUMBER  OF POINTS  IN  ARRAYS
               INDICATES EXTRAPOLATION

       DIMENSION  X(1),Y(1),DX(3),DY(3),YP(2)
       NRANGE=0
 C ***  CHECK IF XV  LIES OUTSIDE RANGE
       IF((XV+.001).LT.X(1).AND.(XV+.001).LT.X(1+NDX*(N-1 )))NRANGE = -1
       IF(XV.GT. (X( 1+NDX*(N-1 ) ) + .001 ) .AND.XV.GT. ( X( 1 )+. 001 ) )NRANGE=1
 C ••«  IF X  IS DECREASING CHANGE  SIGN  OF  NRANGE
C
c
c
c
c
c
c
c
c
c
c

THIS Fl

X
Y
NDX
NDY
XV
N
NRANGE

                                                                                         38840
                                                                                         38850
                                                                                         38860
                                                                                         38870
                                                                                         38880
                                                                                         38890
                                                                                         38900
                                                                                         38910
                                                                                         38920
                                                                                         38930
                                                                                         38940
                                                                                         38950
                                                                                         38960
                                                                                         38970
                                                                                         38980
                                                                                         38990
                                                                                         39000
                                                                                         39010

-------
 I
00
              C ***
                  1
                  2
                  4

                 10
              C ***
              C *+*
                 11

                 20
              C ***
                 30
              C  ***
              C  ***
                 40

                 50
C
C ***
C ***
C
   55
 IF(X(1 ).GT.X(1+NDX*(N-1 ) ) )NRANGE= (-1 )*NRANGE
 IF(NRANGE.NE.O)GO  TO 11
 DO  10  I=2,N
 11=1
 FIND XV  BETWEEN  I  AND 1-1  POINTS
 IF( ABS(XV-X( 1+NDX*( 1-2) ) ) . LT . .001 )GO  TO  4
 IF(XV-X(1+NDX*(1-2)))1 ,4,2
 IF(XV-X(1+NDX*( 1-1 ) ) )10,70,20
 IF(XV-X( 1+NDX*( 1-1 ) ) )20,70,10
 11=1-1
 GO  TO  70
 CONTINUE
 IF  XV  IS OUTSIDE RANGE  USE  LAST 3  OR  FIRST  3  POINTS  DEPENDING
 ON  WHETHER OR  NOT  X  IS  DECREASING  OR  INCREASING
 I=N
 IF(NRANGE.EQ. (-1 ) ) 1 = 1
 IF(I.GT.2)GO TO  30
 IF  XV  IS ON  LOW  END  USE  FIRST  3 POINTS
 N1=3
 N2=2
 N3=1
 NP=3
 GO  TO  55
 IF(I.LT.N)GO TO 40
 IF XV  IS ON HIGH END  USE  LAST  3 POINTS
 NP=3
 GO TO  50
 USE 4  POINTS - 2 ON EITHER  SIDE OF  XV
 NP=4
 N4=I+1
 N1=I-2
 N2=I-1
 N3=I

 THE FOLLOWING FORMULAS WERE EXTRACTED FROM  PAGE  75 OF  *CALCULATION
OF PROPERTIES OF STEAM* BY MCCLINTOCK AND SILVESTRI
   60
DX<1 )=
DY(1 )=
DX(2)
DY(2)=
R=(XV-
YP(1 )=
IF(NP.
GRS=Y(
GO TO
DX(3)=
DY(3)=
YP(2)
                          X(1+NDX*(N2-1))-X(1+NDX*(N1-1 ))
                          Y(1+NDY*(N2-1 ) )-Y( 1+NDY* (N1-1 ))
                          X(1+NDX*(N3-1))-X(1+NDX*(N2-1 ))
                          Y(1+NDY*(N3-1 ) )-Y ( 1+NDY* (N2-1 ) )
                          X(1+NDX*(N2-1)))/DX(2)
                          (DY( 1 )*DX(2)**2+DY(2)*DX(1 ) **2 )/(DX( 1 ) * ( DX( 1 )+DX(2)) )
                          EQ.4)GO TO 60
                          H-NOY*(N2-1 ) )+R* ( YP( 1 )+R*(DY(2 )-YP( 1 )))
                          100
                          X(1+NDX*(N4-1))-X(H-NDX*(N3-1 ))
                          Y(1-»-NDY*(N4-1 ) )-Y ( 1 +NDY* ( N3-1 ) )
                           DY(2)*DX(3)**2+OY(3)*DX(2)**2)/(DX(3)*(OX(2)-t.DX(3) ))
                          1+NDY* (N2-1 ) )+R* ( YP( 1 ) + R* { 3 . *DY(2 ) -2 . *YP( 1 )-YP ( 2 )+R* ( YP( 1 )•*•
39020
39030
39040
39050
39060
39070
39080
39090
39100
39110
39120
39130
39140
39150
39160
39170
39180
39190
39200
39210
39220
39230
39240
39250
39260
39270
39280
39290
39300
39310
39320
39330
39340
39350
39360
39370
39380
39390
39400
39410
39420
39430
39440
39450
39460
39470
39480
39490
39500
39510

-------
                   1YP(2)-2.*DY(2))))
                    GO TO 100
                 70 GRS=Y(1+NDY*(II-1
                100 RETURN
                    END
                                                              39520
                                                              39530
                                                              39540
                                                              39550
                                                              39560
i
00
                    SUBROUTINE HEAD(NTT.NTR,NTP,DSL,DST,DHEDW,DTI,DTO,TSTS,TSTOP,TSBOT
                   1,TSIDE,TBACK,TSPP,DEN.CTM,CUTT,CUTL,WLDT,WLDL,CHOLE,DTNZI,OTNZO,CT
                   2PG1.ASPG1,KTYPE.CTH.CTCUT.CTWLD.CTTPG.CTOTH.SLAB.SMAT.DHEDD.DHEDH.
                   3DWO,DHO,DDO,NPPF,NPPB)
TOTAL NUMBER OF TUBES
NUMBER OF TUBE ROWS
NUMBER OF TUBE PASSES
LONGITUDINAL PITCH (INCH)
TRANSVERSE PITCH (INCH)
BUNDLE WIDTH (INCH)
TUBE INSIDE DIAMETER (INCH)
TUBE OUTSIDE DIAMETER  (INCH)
THICKNESS OF TUBE SHEET (INCH)
THICKNESS OF TOP PLATE (INCH)
THICKNESS OF BOTTOM PLATE (INCH)
THICKNESS OF SIDE PLATE (INCH)
THICKNESS OF BACK PLATE (INCH)
THICKNESS OF PASS PARTITION (INCH)
METAL DENSITY (LB/IN3)
COST OF METAL SHEET ($/LB)
CUTTING SPEED (WIN/INCH)
CUTTING LABOR COST ($/HR)
WELDING SPEED (MIN/INCH)
WELDING LABOR COST ($/HR)
HOLE CUTTING COST (S/4INCH THICKNESS)
INLET NOZZLE DIAMETER  (INCH)
OUTLET NOZZLE DIAMETER (INCH)
NUMBER OF INLET NOZZLES
NUMBER OF OUTLET NOZZLES
1 FOR FRONT HEADER.  2 FOR BACK HEADER
PLUG COST (S/PLUG)
PLUG ASSEMBLING COST ($/PLUG)
c
c ***
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

INPUT

NTT
NTR
NTP
DSL
DST
DHEDW
DTI
DTO
TSTS
TSTOP
TSBOT
TSIDE
TBACK
TSPP
DEN
CTM
CUTT
CUTL
WLDT
WLDL
CHOLE
DTNZI
DTNZO
NNZI
NNZO
KTYPE
CTPG1
ASPG1

 39570
 39580
 39590
 39600
 39610
 39620
 39630
 39640
 39650
 39660
 39670
 39680
 39690
 39700
 39710
 39720
 39730
 39740
 39750
 39760
 39770
 39780
 39790
 39800
 39810
 39820
 39830
 39840
 39850
 39860
 39870
 39880
39890
399DO
39910
39920

-------
I
CO
CO
c
c
c
c
c
c
c
c
c
c
c
c
c
c



c
c
c
*** OUTPUT

CTOTH =
SLAB =
SMAT =
DHEDD =
DHEDH =
DWO =
DHO
DDQ
NPPF =
NPPB =


ZTT=NTT
ZTR=NTR
ZTP=NTP


* BUNDLE
VARIABLES ***

TOTAL COST FOR THE HEADER ($)
TOTAL LABOR COST FOR THE HEADER ($)
TOTAL MATERIAL COST FOR THE HEADER ($)
INSIDE LENGTH OF HEADER (INCH)
INSIDE HEIGHT OF HEADER (INCH)
OUTSIDE WIDTH OF THE HEADER (INCH)
OUTSIDE HEIGHT OF THE HEADER (INCH)
OUTSIDE DEPTH OF THE HEADER (INCH)
NUMBER OF PASS PARTITIONS IN FRONT HEADER
NUMBER OF PASS PARTITIONS IN BACK HEADER







HEIGHT = NUMBER OF ROWS * LONGITUDINAL PITCH
DHEDH=ZTR*DSL
c
c

c
c


CALCULATE "HE CROSSFLOW AREA OF TUBES IN A PASS
APASS=3

SET THE
. 14 iG/4.0*ZTT/ZTP*DTI**2

AREA OF THE HEADER DHEDW*DHEDD=APASS/2 . 0 ,
DHED1=APASS/2.0/DHEDW
C
C




             C
             c
                                                                        THEREFORE
   IF(OTNZI-DTNZO)  1,1,2
 1  DTNOZ=DTNZO
   GO TO 3
 2  DTNOZ=DTNZI
 3  CONTINUE

   DHED2=DTNOZ*1 .2

   IF (DHED1-DHED2) 4,4,6
4  DHEDD=DHED2
  GO TO 8
6 DHEDD=DHED1
8 CONTINUE
             c
             c *
             c
             c
     = OHEDW-t-2.0*TSIDE
  DHO=DHEDH+TSTOP+TSBOT
  DDO=OHEDD+TSTS+TBACK

  FROM THE NUMBER OF TUBE PASSES NTP,  FIGURE  OUT  THE  NUMBER  OF
  PASS PARTITIONS IN FRONT HEADER AND  BACK  HEADER
                                                                                         39930
                                                                                         39940
                                                                                         39950
                                                                                         39960
                                                                                         39970
                                                                                         39980
                                                                                         39990
                                                                                         40000
                                                                                         40010
                                                                                         40020
                                                                                         40030
                                                                                         40040
                                                                                         40050
                                                                                         40060
                                                                                         40070
                                                                                         40080
                                                                                         40090
                                                                                         40100
                                                                                         401 10
                                                                                         40120
                                                                        401
                                                                        401
                                                                        401
                                                                        40'
   30
   40
   50
   60
401 70
40180
40190
40200
40210
40220
40230
40240
40250
40260
40270
40280
40290
40300
40310
40320
40330
40340
40350
40360
40370
40380
40390
40400
40410
40420

-------
             c
             c
oo
              C
              C
              C
              C
              C
              c
              c
              c
              c
              c
              c
              c
              c
              c
              c
              c
              c
              c
              c
    NPPF  = NUMBER OF PASS PARTITIONS IN FRONT HEADER
    NPPB  = NUMBER OF PASS PARTITIONS IN BACK  HEADER
    NPPF=NTP/2
    ZPPF=NPPF
    IF (ZTP/2.0-2PPF) 10,10,20
 10 CONTINUE
    NPPB=NPPF-1
    GO TO 30

 20 CONTINUE
    NPPB=NPPF

 30 CONTINUE
    IF (KTYPE-1) 50,50,40
 40 CONTINUE
    NPP=NPPB
    GO TO 60

 50 CONTINUE
    NPP=NPPF

 60 CONTINUE
    ZPP=NPP
--- WEIGHT CALCULATIONS ---

    TUBE SHEET (LB)
    WTTS=DHEDW*DHEDH*TSTS*DEN

    TOP PLATE (LB)
    WTOP=(DHEDW+2.0*TSIDE)*(DHEDD+TSTS+TBACK)*TSTOP*DEN

    BOTTOM PLATE  (LB)
          (DHEDW-»-2.0*TSIDE)*(DHEDD+TSTS+TBACK)*TSBOT*D£N
    TWO SIDE PLATES  ( LB)
    WSIDE=2.0*DHEDH*(DHEDD+TSTS+T8ACK)*TSIDE*DEN

    BACK PLATE
    WBACK=DHEDW*DHEDH*TBACK*DEN

    PASS PARTITION  (LB) — HORIZONTAL
    WTPP=DHEDW*DHEDO*TSPP*DEN*ZPP

    TOTAL WEIGHT OF  THE HEADER (LB)
    WTOT=WTTS+WTOP+WTBOT+WSIDE+WBACK+WTPP

    ADD 5(  TO TOTAL  WEIGHT
    WTOT=WTOT*1 .05
 40430
 40440
 40450
 40460
 40470
 40480
 40490
 40500
 40510
 40520
 40530
 40540
 40550
 40560
 40570
 40580
 40590
 40600
 40610
 40620
 40630
 40640
 40650
 40660
 40670
 40680
 40690
 40700
 40710
 40720
 40730
 40740
 40750
 40760
 40770
 40780
 40790
 40800
 40810
 40820
 40830
 40840
 40850
 40860
40870
40880
40890
40900
40910
40920

-------
 I
10
O
c
c
c
c
c
c
c
c
c
             c
             c
             c
             c
             c
             c
             c
             c
             c
               **  COST OF  THE  HEADER  PLATES  ($)
                   CTH=CTM*WTOT
	  LABOR COST 	

     (((CUTTING)))
     EACH PLATE HAS  FOUR  SIDES —• CUTTING + FINISHING

     PLTS=2.0*(DHEDW+DHEDH)
     PLTOP=2.0*(DHEDW+2.0*TSIDE+DHEDD+TSTS+TBACK)
     PLBOT=PLTOP
     PSIDE=2.0*2.0*(DHEDH+DHEDD+TSTS+TBACK)
     PBACK=PLTS
     PLPP=2.0*ZPP*(DHEDW+DHEDD)
     PLTOT=PLTS+PLTOP+PLBOT+PSIDE+PBACK+PLPP
     SIDE CUTTING COST  ($)
     CTSD=PLTOT*CUTT/60.0*CUTL

     HOLE CUTTING COST  ($)
     FOR BUNDLE TUBES + REMOVABLE PLUGS
     CTHL=ZTT*CHOLE

 *   CHECK IF  THERE  IS  ANY ADDITIONAL COST FOR CUTTING HOLES ON THE
 *   BACK HEADER

     IF (KTYPE-1) 80,80,70
 70  CONTINUE
     PLUGS ON  BOTH THE  FRONT AND BACK HEADER
     IF (2.0*TSTS+2.0*TBACK-4.0) 72,72,80
 72 CONTINUE
    CTHL=0.0

 80 CONTINUE

«»   TOTAL CUTTING COST ($)
    CTCUT=CTSD+CTHL
      (((WELDING)))
      EACH PASS PARTITION HAS EIGHT WELDS (4 LONG, 4 SHORT)
           = 8.0*DHEDH+2.0*2.0*((DHEDD+DHEDW)*2.
     1 PP*2 . 0*2 . 0* ( DHEDW+DHEDD )

      TOTAL WELDING COST
      CTWLD=PLWLD*WLDT*WLDL/60.0
40930
40940
4095O
40960'
40970
40980
40990
41000
41010
41020
41030
41040
41050
41060
41070
41080
41090
41 100
41110
41 120
41130
41 140
41 150
41 160
41 170
41 180
41 190
41200
41 210
41 220
41230
41 240
41250
41260
41270
41280
41290
41300
41310
41320
41330
41340
41350
41360
41370
41330
41 390
41400
41410
41420

-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
	 PLUGS COST 	
    PLUG MATERIAL COST
    CMTPG=ZTT*CTPG1
    PLUG ASSEMBLING  COST
    CASPG=ZTT*ASPG1
    TOTAL COST FOR PLUGS
    CTTPG=CASPG+CMTPG
    TOTAL  LABOR COST  FOR  THE  HEADER
    SLAB=CTCUT+CTWLD+CASPG
    TOTAL  MATERIAL  COST  FOR THE HEADER
    SMAT=CTH+CMTPG
    TOTAL  BASE  COST  FOR THE  HEADER
    CTOTH=CTH+CTCUT+CTWLD+CTTPG

    RETURN
    END
41430
41440
41450
41460
41470
41480
41490
41500
41510
41520
41530
41540
41550
41560
41570
41530
41590
41600
41610
41620
41630
41640
41650
41660
41670
       SUBROUTINE  HTAIR(GAMAX,DFR,VISAV,REAV,CONAV,PRAV,HAIR,CFH.CFR,       41680
      1RARAF,FINEF,RFIN)                                                     41690
       DIMENSION CFH(3)                                                     41700
 C  ***  INDUCED DRAFT,SMOOTH FIN CORRELATION                                 41710
       REAV=GAMAX*DFR/(29.0*VISAV)                                           41720
 C  ***  BRIGGS AND  YOUNG CORRATION,  HIGH FIN TUBES                           41730
    80  HAIR=CFH(1)*CONAV*REAV**CFH(2)  *PRAV*».333                           41740
   155  CH=CFH(3)                                                             41750
   190  HAIR=CH*HAIR                                                         41760
       HA1=HAIR                                                             41770
       FINEF=CFR*SQRT(HA1 )                                                   41780
       FINEF=TANH(FINEF)/FINEF                                               41790
       RFIN=1.0/HA1*(1.0-FINEF)/(RARAF+FINEF)                                41800
   300  RETURN                                                               41810
       END                                                                  41820

-------
I
10
ro
       SUBROUTINE HTURB(T,H,XLOAD.HTRT,BBP)                                  41830
 C *** GIVEN T IN DEGREES RANKINE THIS SUBROUTINE CALCULATES A HEAT RATE    41840
 C *** RATIO,H.   THE BASE HEAT RATE.HTRT.IS THE HEAT RATE WHEN THE          41850
 C *•* TURBINE IS AT A NOMINAL LOAD OF XLOAD WITH A BACK PRESSURE           41860
 C *** OF BBP INCHES OF MERCURY                                             41870
 C                                                                          41880
       COMMON ID1,KGO,105(4),D1(3),102,KER,KERR(20),ID3(4),MM,104(7),        41890
      102(1218)                                                              41900
       COMMON/STIN/XLDFT(6),BP(28),HTRTO(28,6),HTRJO(28,6),NLODS,NBKPR      41910
      1,PLOAD,BPMNM(6),TPMNM(6)                                             41920
       COMMON/BCKPR/BCKMN.BCKWX                                             41930
       COMMON/FAST/STOW(3)                                                   41940
       DIMENSION X(4),N(7),Y(4)                                             41950
       N1=0                                                          .        41960
 C-                                                                          41970
 C *** CHANGE T  TO DEGREES  F                                                 41980
       TT=TCONV(T,1,2)                                                      41990
 C *** FROM  T FIND EXHAUST  PRESSURE IN INCHES-HG  ABS.                        42000
       BBPP=PSL(TT)                                                          42010
 C *** MAKE  SURE BBPP IS WITHIN BACK PRESSURE RANGE                         42020
       I F( BBPP. LT.BCKMN)BBPP=:BCKMN+. 00001                                    42030
       IF(BBPP.GT.BCKMX)BBPP=BCKMX-.00001                                    42040
       LOOP=1                                                                42050
 C *** SET ALL EXTRAPOLATION  INDICATORS  TO ZERO                             42060
     3 DO 5  1=1,7                                                           42070
     5 N(I)=0                                                               42080
       NP=3                                                                  42090
 C *** SEE IF  XLOAD  LIES WITHIN THE RANGE  OF XLDFT                          42100
       IF( (XLOAD+.001 ) . LT.XLDFT(NLODS) .AND. ( XLOAD-t-. 001 ) . LT . XLDFT ( 1 ))      42110
      1N(1)=-1                                                               42120
       IF(XLOAD.GT.(XLDFT(1)+.001)  .AND.XLOAD.GT.(XLDFT(NLODS)+.001)  )      42130
      1N(1)=1                                                                42140
       IF(XLDFT(1).GT.XLDFT(NLODS))N(1)=(-1)*N(1)                           42150
       IF(N(1).NE.O)GO TO 11                                                 42160
C  ***  FIND  XLOAO  BETWEEN I AND 1-1  POINTS                                  42170
      DO 10  I=2,NLODS                                                      42180
       IZ=I                                                                  42190
       IF(ABS(XLOAD-XLDFT(I-1)).LT..002)GO TO 4                             42200
      IF(XLOAD-XLDFT(I-1))1,4.2                                             42210
     1 IF(XLOAD-XLDFT(I))10,70,20                                            42220
     2 IF(XLOAD-XLDFT(I))20,70,10                                            42230
     4 IZ=I-1                                                                42240
      GO TO 70                                                              42250
   10 CONTINUE                                                              42260
C *** IF XLOAD  IS OUTSIDE RANGE OF XLDFT  USE LAST 3 OR  FIRST  3 POINTS      42270
C *** DEPENDING ON WHETHER OR  NOT  XLDFT IS  DECREASING OR INCREASING         42280
   11 I=NLODS                                                               42290
      IF(N(1).EQ.(-1))I=1                                                   42300
   20 IF(1.GT.2)GO TO 30                                                   42310
C  *»« IF XLOAD  IS  ON LOW END  USE  FIRST 3 POINTS.  IF IT IS ON HIGH  END    42320

-------
BBPP
BBPP
 NBKPR
 NBKPR
,NBKPR
                                      ,N(2))
                                      ,N( 3 ))
                                      ,N(4))
I
VO
GO
C *** USE LAST 3 POINTS.   OTHERWISE USE 4 POINTS - 2 ON EITHER SIDE
C *** OF XLOAD
      N1=3
      N2=2
      N3=1
      GO TO 50
   30 IF(I.EQ.NLODS)GO  TO  40
      NP = 4
      N4-I+1
   40 N1 = I~2
      N2=I-1
      N3-I
      GO TO 50
   45 IF(N1 .EQ.O)GO  TO  70
C **« FIND  THE HEAT  RATES(CORRESPONDING TO THE BACK PRESSURE) OF THE
C *** 3 OR  4  LOADS THAT ARE  NEAR XLOAD
   50 X(1)=GRS(BP,1,HTRTD(1,N1),1,BBPP,
      X(2)=GRS(BP,1 ,HTRTD(1 ,N2),
      X(3)=GRS(BP,1 ,HTRTD(1,N3),
      Y(1 ) = XLDFT(N1)
      Y(2)=XLDFT(N2)
      Y(3) = XLDFT(N3)
      IF(NP.EQ.3)GO  TO  55
      Y(4)=XLDFT(N4)
      X(4)=GRS(BP,1,HTRTD(1,N4),1 , BBPP .NBKPR ,N( 7 ) )
   55 CONTINUE
C *** FIND  THE HEAT  RATE FOR XLOAD
      HTRT=GRS(Y,1 ,X,1 , XLOAD , NP ,N( 5 ) )
      GO  TO 100
   70 HTRT=GRS(BP,1,HTRTD(1,IZ),1, BBPP,
C *** SET MINOR  ERROR IF EXTRAPOLATION
  100 DO  200  11 = 1 ,7
       IF(N(II))250,200,250
  200 CONTINUE
      GO  TO 300
  250  KER=22
      CALL  ERORF(KER,KERR,KGO,MM)
 C ***  SEE IF  BOTH  HEAT  RATES HAVE BEEN CALCULATED
  300  IF(LOOP.EQ.2)  GO  TO 400
 C ***  FIND  BASE  HEAT RATE
       H = HTRT
                320
                340

                350
                                                                                          42330
                                , NBKPR, N(6))
                                 OCCURRED
BBPP=BBP
NO NEED TO RECALCULATE HTRT IF BASE CONDITIONS HAVE NOT CHANGED
I F(ABS(XLOAD-STOW(1))-. 002)320, 320, 350
IF(ABS(BBP-STOW(2))-. 01)340, 340, 350
HTRT = STOW(3)
GO TO 400
STOW(1)=XLOAD
STOW(2)=BBP
                                                                                           ,~
                                                                                          4235°
                                                                                          4236°
                                                                                          4237°
                                                                                          4238°
                                                                                          424°
                                                                                          4245°
                                                                                          42460
                                                                                          42470
                                                                                          42480
                                                                                          42490
                                                                                          42500
                                                                                          42510
                                                                                         42560
                                                                                         42570
                                                                                         42590
                                                                                         42600
                                                                                         42610
                                                                                         42620
                                                                                         42630
                                                                                         4264°
                                                                                         42690
                                                                                         42700
                                                                                         42710
                                                                                         42760
                                                                                         42770
                                                                                         42780

-------
                     GO  TO  45
                400  H=H/HTRT
                     STOW(3)=HTRT
                     RETURN
                     END
                                                                           42830
                                                                           42840
                                                                           42850
                                                                           42860
                                                                           42870
vo
-pa
      SUBROUTINE ICHEK
C *** CHECKS INPUT DATA FOR CONSISTENCY
C *** LIMITATION OF INPUT DATA
      DIMENSION KERRO(20)
      COMMON NFO,KGO,KNTRO,KNTR1,NSUM,NPAGE,DAV(2),PI
      COMMON KCI,KER,KERR(20),KFIN,KREG,LAIC,LSUP,MM,NP,NR,NT11NT2,NTP,
     1NTR,NTT,ABARE.AFAN,AMIN,APLOT,APPR,ASBUN,ASTOT,AXAV,AXPP(20),CP(2)
     2,DEN(2).DEN 12(2,2),DENFN,DENLZ(7),DBW.OEQ,DFH,DFR,DFS,DFT,DKL,
     3DLSP,DLTE,DLTO,DLTS,DNZ(2),DTI,DTIM,DTF,DTO,DTT,PL,PT
      COMMON DPAD,DPAF,DPAM,DPAW,DPF(10),DPI,DPNZ(2),DPT,DPT A,DPTF,
     1DPTOTI2),POUT(2) .PTUB,RV2,GAMAX,GT,HPFNC,HAIR,HTS.UBARE,UCLN .UTOT,
     20(2).QDUT,QTOT.RFI,RFIN,RFTOT,RTOT,RTW,TAV(2),TIN(2),TOUT(2),TT(8)
     3,TWALL,TD.TW,TMTD,TK(2),VAPP,VNZ(2),VT,DFAN,TLTE.AOF,VISLZ<7).
     4VIS(2),VIS12(2,2),VISW,W(2),\rtAPF,WB(2),WLQ(2)
      COMPTON ANG(3),CFH(3),CFP(3),CFR,CKBSC,CKFNG,CKC,CKLOV,CKSTC,F.
     1 FALT,FINEF,FFF,FSUM,OCL(4),ODL(4),OKL(4),OML(4),OMV(4),P,PRAN(2),
     2PRALZ(7),R,RAOI,RAOR,RARAF,RAPMX,REA(2),RE12(2,2),RFNPL,RPT,TLA,
     3XREX.ZMP,ZNF,ZNTP,ZNTR,ZNTT,ZTPP(20).ZTPPA
      COMMON ZTRD.ANGI ,ZBYP,ZBUP,ZBUS,ZFAN,DFANI,DLOV,ZNFI ,PTI,TKT , TKF,
     1WD(2),VAPPI,TAMB,HALT,C319,TIND(2),TOUTD(2),RFD,PSD,TTMIN,OD(7),
     2CARD7I6),DNZI(2),PDI,CFNG,CHSC,CLOV,CBSC,PRSTC,RFAIR,RFCT,ZNOZ(2),
     3RASPC,ZTPD,ZNTD,COST(7),SSUM(16,30),ISUM(13,30),PRICE(2,21)
 9010 FORMAT (1H1)
 9020 FORMAT(47HO MINOR ERRORS FOUND IN INPUT DATA (CALCULATION,
     1  13H CONTINUES)--/7X,10(14,1H,)/7X,10(14,1H,»
 9030 FORMAT(48HO  MAJOR ERRORS FOUND IN INPUT DATA (CALCULATION,
     1  9H  STOPS)--/7X,10(14,1H,)/7X,10(14,1H,))
      NERC=0
                    MM=0
                    CALL CFIXM(ZTRD
                    CALL CFIXM(ANGI
                    CALL CFIXM(ZBYP
                    CALL CFIXM(ZBUP
                    CALL CFIXM(ZBUS
                    ZTPMX=IFIX(DLOV/19.99)+1
                    CALL CF1XM(ZFAN  ,  0.001  ,10.1
                        0.001 ,99.0   ,4.0
                       -0.001 ,90.01  ,0.0
                       .001 ,1000. ,1 .0,110,K-ERRO,NERC)
                        0.001 ,10.01  ,1.0
                        0.001 ,4.01   ,1.0
                                      .ZTPMX
, 104.KERRO.NERC)
.107.KERRO.NERC)

.111.KERRO.NERC)
, 112,KERRO.NERC)

.113,KERRO.NERC)
42880
42890
42900
42910
42920
42930
42940
42950
42960
42970
42980
42990
43000
43010
43020
43030
43040
43050
43060
43070
43080
43090
43100
43110
43120
43130
43140
43150
43160
43170
43180
43190
43200
43210
43220
43230

-------
     CALL CFIXM(PTI   ,-0.001  ,20.0    ,0.0
     CALL CFIXM  (TKT    , 0.001   ,500.0   ,26.0
                         0.001   ,500.0
     CALL CFIXM (TKF
     CALL CFIXM(COST(2),.001  ,1 . E5
     DO 10 1=1,2
     CALL CFIXM(ZNOZ(1),  0.01,10.0
  10  CONTINUE
     KCI=2
 356  NTP=ZTPD+0.01
 740  IF (ZIMTD*ZNTR-0.01 )  746,746,742
 742  IF (ZNTD-ZNTR) 743,746,746
 743  ZNTD=ZNTR
     CALL ERORG(NERC,KERRO,902)
 746  CONTINUE
 748  IF (ZNTD-0.01) 750,750,760
 750  CALL ERORF (105,KERR,KGO,MM)
 760  IF (DLOV-0.01) 770,770,780
 770  CALL ERORF (201,KERR,KGO,MM)
 780  CONTINUE
1006  GO TO 1080
1020  CALL ERORF(102,KERR,KGO,MM)
     GO TO 1100
1080  IF (TIND(1)*TOUTD(1)*WD(1)
    1 1020,1020,1100
1100  CONTINUE
     IF (NERC+MM)    9000,9000,8000
8000  CONTINUE
8400  IF (NERC)      8600,8600,8500
8500  WRITE(NFO,9020) (KERRO(I),1=1,NERC)
8600  IF (MM)        9000,9000,8800
8800 WRITE(NFO,9030) (KERR(I),1*1,MM)
9000 RETURN
     END
   ,110.0
,100.0

,1.0
   ,212,KERRO,NERC)
,215,KERRO,NERC)
,216,KERRO,NERC)
 ,915,KERRO,NERC)

 ,1+816,KERRO,NERC)
                                      *TIND(2)-0.1 )
43240
43250
43260
43270
43280
43290
43300
43310
43320
43330
43340
43350
43360
43370
43380
43390
43400
43410
43420
43430
43440
43450
43460
43470
43480
43490
43500
43510
43520
43530
43540
43550
43560
      SUBROUTINE ICONV
C »** INPUT UNIT CONVERSION
      DIMENSION IFN(6)
      COMMON IDUM(6),RDUM(3),IDUMW(34),DUMW(246),DUMYD(60),DUM1(912)
      DATA IFN/16,19.20,21,22,25/
      KIN=1
C *** CONVERSION OF TEMPERATURES TO ABSOLUTE
      DO 10 1=1,6
                                                                          43570
                                                                          43580
                                                                          43590
                                                                          43600
                                                                          43610
                                                                          43620
                                                                          43630
                                                                          43640

-------
                     II = IFN( I )
                  10  DUMYD(II)=TCONV(DUMYD(II),KIN,1)
               C  ***  CONVERSION  OF  U.S.  UNITS TO INTERNAL COMPATIBLE
                     DUMYD(13)=DUMYD(13)*1.OE3
                     DUMYD(14)=DUMYD(14)*4.5E3
                     DO  220  1=1,7
                 220  DUMYD(1+25)=DUMYD(1+25)* 1.OE6
                 900  RETURN
                     END
                                                                           43650
                                                                           43660
                                                                           43670
                                                                           43680
                                                                           43690
                                                                           43700
                                                                           43710
                                                                           43720
                                                                           43730
 i
<£>
CTv
      SUBROUTINE INPUT                                                     43740
C *** S/R INITA CONTROLS DATA HANDLING                                     43750
      COMMON NFO,KGO,KNTRO,KNTR1,NSUM,NPAGE,DAY(2),PI                      43760
      COMMON KCI,KER,KERR(20),KFIN.KREG,LAIC,LSUP.MM,NP,NR,NT1,NT2.NTP,    43770
     1NTR.NTT.ABARE,AFAN.AMIN,APLOT,APPR,ASBUN,ASTOT,AXAV,AXPP(20),CP(2)   43780
     2,DEN(2).DEN12(2,2).DENFN,DENLZ(7),DBW,DEO,DFH,DFR,DFS,DFT,DKL,       43790
     3DLSP.DLTE,DLTO,DLTS,DNZ(2),DTI,DTIM,DTF,DTO,DTT,PL,PT                43800
      COMMONPAD,DPAF,DPAM,DPAW,DPF(10).DPI,DPNZ(2).DPT.DPTA.DPTF,          43810
     1DPTOTI2),POUT(2),PTUB,RV2,GAMAX,GT,HPFNC,HAIR,HTS,UBARE,UCLN,UTOT,   43820
     20(2),QDUT,QTOT,RFI, RFIN.RFTOT,RTOT,RTW,TAV(2),T1N(2),TOUT(2),TT(8)   43830
     3,TWALL,TO,TW,TMTD,TK(2),VAPP,VNZ(2),VT,DFAN,TLTE,AOF,VISLZ(7),       43840
     4VIS(2),VIS12(2,2),VISW,W(2),WAPF,WB(2),WLO(2)                        43850
      COMMON ANG(3),CFH(3),CFP(3),CFR,CKBSC,CKFNG,CKHSC,CKLOV,CKSTC,F,     43860
     1FALT,FINEF,FFF,FSUM,OCL(4),ODL(4),OKL(4),OML(4) ,OMV(4 ) ,P.PRAN(2),    43870
     2PRALZI7),R,RAOI,RAOR,RARAF,RAPMX,REA(2),RE12(2,2),RFNPL,RPT,TLA,     43880
     3XREX,Ziyp,ZNF,ZNTP,ZNTR,ZNTT,ZTPP(20),ZTPPA                           43890
      COMMON ZTRD.ANGI,ZBYP,ZBUP,ZBUS,ZFAN,DFANI,DLOV,ZNFI,PTI.TKT.TKF,    43900
     1WD(2),VAPPI,TAMB,HALT,C319,TIND(2),TOUTD(2),RFD,PSD,TTMIN.QD(7),     43910
     2CARD7(6).DNZI{2),PDI,CFNG,CHSC,CLOV,CBSC,PRSTC,RFAIR,RFCT,ZNOZ(2),   43920
     3RASPC,ZTPD,2NTD,COST(7),SSUM(16,30),ISUM(13,30),PRICE(2,21)          43930
   10  CALL  IREAD                                                           43940
 200  CONTINUE                                                              43950
      CALL  ICONV                                                           43960
      CALL  ICHEK                                                           43970
      IF  (KGO-1)  300,300,10                                                 43980
 300  CALL PPCON                                                           43990
 1000  RETURN                                                                44000
      END                                                                  44010

-------
      SUBROUTINE  I READ                                                      44020
      COMMON IDUM1,KGO,IDUM2(4),DUM(3),IDUM4(34),DUM1(246),RON2(60),       44030
     1DUM3(912)                                                             44040
   20 KGO=1                                                                 44050
      RON2(25)=32.                                                          44060
      RON2(41)=50.                                                          44070
      RON2(8)=60.                                                           44080
      RON2(20)=93.                                                          44090
      RON2(19)=156.                                                         44100
      RON2(21)=131.                                                         44110
      RON2(13)=179130.                                                      44120
      RON2(53)=270.                                                         44130
  900 RETURN                                                                44140
      END                                                                   44150
C
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
      SUBROUTINE MJBOX(TOL,ALF,DELT,ITRMX,NITR,N)

-------
              c
              c
              c
              c
              c
              c
              c
              c
vo
CO
              c
              C
              C
 VAMAX=  MAXIMUM  AIR  VELOCITY  -  FT/MIN                                44430
 VAMIN=  MINIMUM  AIR  VELOCITY  -  FT/MIN                                44440
 VWMAX=  MAXIMUM  WATER  VELOCITY  -  FT/SEC                               44450
 VWMIN=  MINIMUM  WATER  VELOCITY  -  FT/SEC                               44460
 CPW=    SPECIFIC HEAT  OF  WATER                                        44470
 CPA=    SPECIFIC HEAT  OF  AIR                                          44480
 DENW=   DENSITY  Of WATER                                              44490
 DENA=   DENSITY  OF AIR                                               44500
 COMMON/EPA/TNMIN,TNMAX,TSAT(21),COSTT(21),X(10,21),XC(10),VAMAX,     44510
 1VAMIN,VWMAX,VWMIN,XN,XP,SUBCL,QMIN,QMAX,PITCH,DIA,                    44520
 2RNGMX,RNGMN.TLMIN,TLMAX,TITDX,TITDN                                   44530
 3,TSATA,T5ATZ,XHEAT(21)                                                44540
 COMMON/SCOND/TTDMN,TTDMX,TISUM(21)                                    44550
 COMMON NFO,KGO,KNTRO,KNTR1,NSUM,NPAGE,DAY(2),PI                       44560
 COMMON KCI,KER,KEfirR(20),KFINIKREGtLAIC,LSUP,MM,NP,NR,NTl,NT2,NTP,    44570
 1NTR,NTT,ABARE,AFAN,AMIN,APLOT,APPR,ASBUN,ASTOT,AXAV,AXPP(20).CP(2)   44580
 2.DEN(2),DEN12(2,2),DENFN,DENLZ(7),DBW,DEO,DFH,DFR,DPS,DFT,DKL,       44590
 3DLSP,DLTE,DLTO,DLTS,DNZ(2),DTI,DTIM,DTF,DTO,DTT,PL,PT                44600
 COMMON DPAD,DPAF,DPAM,DPAW,DPF(10),DPI,DPNZ(2),DPT,DPTA,DPTF,        44610
 1DPTOT(2),POUT(2),PTUB,RV2.GAMAX.GT,HPFNC,HAIR,HTS,UBARE,UCLN,UTOT,   44620
 20(2).QDUT.QTOT.RFI,RFIN,RFTOT,RTOT,RTW,TAV(2),TIN(2),TOUT(2),TT(8)   44630
 3,TWALL,TD,TW,TMTD,TK(2),VAPP,VNZ(2)tVT,DFAN,TLTE,AOF,VlSLZ(7),       44640
 4VIS(2),VIS12(2,2),VISW,W(2),WAPF,WB(2),WLQ(2)                         44650
 COMMON ANG(3),CFH(3),CFP(3),CFR,CKBSC,CKFNG,CKHSC,CKLOV,CKSTC,F,     44660
 1 FALT, FINEF, FFF , F SUM, OCL ( 4 ) , DDL ( 4 ) , OK L( 4 ) , OM[_( 4 ) , OMV ( 4 ) ,P,PRAN(2) ,    44670
 2PRALZ(7),R.RAOI,RAOR,RARAF,RAPMX,REA(2),RE12(2,2),RFNPL,RPT,TLA,     44680
3XREX,ZMP,ZNF,ZNTP,ZNTR,ZNTT,ZTPP(20),ZTPPA                            44690
 COMMON ZTRD,ANGI,ZBYP,ZBUP,ZBUS,ZFAN,DFANI.DLOV.ZNFI,PTI,TKT,TKF,    44700
 1WD(2),VAPPI,TAMB,HALT,C319,TIND(2),TOUTD(2),RFD,PSD,TTMIN,00(7),     44710
2CARD7(6),DNZI(2),PDI,CFNG,CHSC,CLOV,CBSC,PRSTC,RFAIR,RFCT,ZNOZ(2),   44720
3RASPC,ZTPD,ZNTD.COST(7), SSUM( 1 6,30) , ISUM( 1 3, 30),PRICE(2,21)           44730
 COMMON/PAS IT/TBUCK                                                    44740
 COMMON/TRACE/SSSUM(9),HSUM(3)                                        44750
 DIMENSION XLOW(10),XHIGH(10)                                          44760
                                                                       44770
 SET NUMBER OF POINTS IN COMPLEX,KN                                    44780
                                                                       44790
 KN = 2*N-M                                                               44800
 ICHCK=0                                                                44810
 NSUM=1                                                                 44820
 LJCNT=0                                                                44830
 IISUM(1)=0                                                            44840
 IISUV(2)=1                                                             44850
 IISUM(3)=1                                                             44860
 TBUCK=0.                                                               44870
 ITR=0                                                                  44880
 JHIGH=0                                                                44890
 ITRCT=0                                                                44900
 LJ=1                                                                   44910
 0*1                                                                   44920

-------
C
C
C
C
C ** *

  100
C
C
C
C
C
C
C
C
C
C
  150
  160
  175
SET UP ORIGINAL COMPLEX,DETERMINE OBJECT FUNCTIONS
AND FIND d.THE POINT WITH THE HIGHEST VALUE

CALL SETUP(d.KN,Ld)
ITRCT=1
LdSTR=Ld
LIMIT THE NUMBER OF OUTPUT PAGES TO 200
IF(NPAGE.GE.200) GO TO 312
MULT=1

IF HIGHEST POINT,J, HAS REPEATED THEN MOVE d  1/2 THE
DISTANCE TO THE CENTROlD

IF(d.NE.dHIGH) GO TO 200
MULT=0

IF THE SAME POINT HAS BEEN MOVED TOWARDS THE  CENTROlD  5  TIMES,  IT
IS ALMOST EQUAL TO THE CENTROlD. THUS THE CENTROlD  IS  EITHER  THE
WORST CASE OR VIOLATES THE IMPLICIT CONSTRAINTS. SET WORST  POINT
EQUAL TO BEST POINT.

IF(ICC.LT.5) GO TO 175
DO 160 M=1,N
X(M,d)=X(M,LJ)
CONTINUE
ICC = 0
GO TO 305
CALL MOVIT(N,J)
ICC=ICC+1
GO TO 305
C
C
C
  200
 C
 C
 C
 C
   300
   305
 C
 C
 C
CALCULATE CENTROIDS OF ALL POINTS EXCEPT J IF J HAS
NOT REPEATED AS  THE HIGHEST POINT
CALL CENT(d,N,KN,JHIGH)

IF HIGHEST  POINT,d, HAS NOT REPEATED THEN MOVE
d IN THE NORMAL  FASHION

ICC = 0
dHIGH=d
TBUCK=COSTT(d)
DO 300  IX=1,N
X(IX,d)=XC(IX)+ALF*(XC(IX)-X(IX,d))
CONTINUE
CONTINUE

CHECK  TO SEE  IF  NEW POINT SATISFIES CONSTRATINTS

CALL CONST(d.DELT)
 44930
 44940
 44950
 44960
 44970
 44980
 44990
 45000
 45010
 45020
 45030
 45040
 45050
 45060
 45070
 45080
 45090
 45100
 451 10
 45120
 45130
 45140
 45150
 45160
 45170
 45180
 45190
 45200
 45210
 45220
 45230
 45240
 45250
 45260
 45270
 45280
 45290
 45300
 45310
 45320
 45330
 45340
 45350
 45360
 45370
 45380
45390
45400
45410
45420

-------
o
o
               c
               c
               c
               c
c
C     CALCULATE OBJECT FUNCTION FOR NEW POINT
C
  310 CONTINUE
      IISUM(1)=ITRCT
      IISUM(2)=LJ
      IISUM(3)=J
      CALL COSTER(J,VAIR,VH20,KKILL)
C *** LIMIT THE NUMBER OF OUTPUT PAGES TO 200
      IF(NPAGE.LT.200) GO TO 315
  312 WRITE(6,7)
      GO TO 1000

      IF WATER VELOCITY IS NOT BETWEEN WIN AND MAX FT/SEC,  SET
      NUMBER OF TUBES SUCH THAT WATER VELOCITY IS ON BOUNDARY.

  315 IF(KKILL) 380,380,317
  317 GO T0(319.320,340,345) KKILL
  319 V=VWMAX
      GO TO 330
  320 V=VWMIN
  330 X(5,J)=VH20/V*X(5,J)
      GO TO 310

      IF AIR VELOCITY IS  NOT BETWEEN MIN AND MAX FT/MIN,  SET TUBE
      LENGTH SUCH THAT AIR VELOCITY IS ON BOUNDARY.  IF DOING THAT
      VIOLATES TUBE LENGTH CONSTRAINT, MOVE THE POINT 1/2 THE
      DISTANCE TO THE CENTROID

  340 V=VAMAX
      GO TO 350
  345 V=VAMIN
  350 TL=VAIR/V*X(4,J)
      IF(TL.GT.TLMAX.OR.TL.LT.TLMIN) GO TO 150
      X(4,J)=TL
      GO TO 310
  380 LJ=LJSTR
      J=JHIGH

      FIND  LOWEST  OBJECT  POINT,LJ,  AND HIGHEST
      OBJECT  POINT,J

      DO 600  1=1,KN
      IF(COSTT(I).GT.COSTT(J))  GO  TO 400
      IF(COSTT(I).LT.COSTT(LJ))  GO TO 500
      GO TO 600
  400 J=I
      GO TO 600
  500 LJ=I
  600 CONTINUE
              C
              C
              c
              c
              c
              c
              c
              c
              c
              c
45430
45440
45450
45460
45470
45480
45490
45500
45510
45520
45530
45540
45550
45560
45570
45580
45590
45600
45610
45620
45630
45640
45650
45660
45670
45680
45690
45700
45710
45720
45730
45740
45750
45760
45770
45780
45790
45800
45810
45820
45830
45840
45850
45860
45870
45880
45890
45900
45910
45920

-------
      ITRCT=ITRCT+1
C *** IF LOW POINT REPEATS  FOR  15 ITERATIONS NO PROGRESS IS BEING
C *** MADE. THE OBJECT  FUNCTION GRADIENT IS FLAT.  TRY TO INCREASE
C *** ALF SO AS TO THROW  SOLUTIONS OUT OF THE FLAT REGION.
      IF(LJSTR.NE.LJ) GO  TO 660
      IF(LJCNT.GT.IS) GO  TO 640
      LJCNT=LJCNT+1
      GO TO 690
      ALF=ALF*1.05
      GO TO 670
      LJSTR=LJ
      LJCNT=0
      CONTINUE

      SEE  IF  LOW  AND HIGH OBJECT POINTS ARE
      WITHIN  CONVERGENCE  TOLERANCE

      IF((COSTT(J)/COSTT(LJ)-1.).LE.TOL) GO TO 700
  640

  660
  670
  690
C
C
C
C

C
C

  692
  694
   696
   698
 C
 C
 C
 C
IF(ICHCK)692,692,698
IF(COSTT(J)/COSTT(LJ)-TOL-1.005)694,694,698
ICHCK=1
DO 696 IVAR=1,N
XLOWIIVAR)= X(IVAR,1)
XHIGH( IVAR)=X(IVAR,1 )
DO 696 IPT=2,KN
IF(X(1VAR,IPT).LT.XLOW(IVAR))XLOW(IVAR)=X(IVAR,IPT)
IF(X(IVAR,IPT).GT.XHIGH(IVAR))XHIGH(IVAR)=X(IVAR,IPT)
CONTINUE
TSATA = AMAX1(TSATA,XLOW( 1 ))
TSATZ=AMIN1(TSATZ.XHIGH ( 1 ))
TITDN=AMAX1(TITDN,XLOW(2))
TITDX = AMIN1(TITDX,XHIGH(2) )
RNGMN=ftMAXl (RNGMN,X LOW(3))
RNGMX=AM1N1(RNGMX,XHIGH(3))
TLMIN=AMAX1(TLMIN,XLOW(4))
T|_MAX = AMIN1(TLMAX.XHIGH( 4))
TNMIN=AMAX1(TNMIN.XLOW(5))
TNMAX=AMIN1(TNMAX,XHIGH(5))
TTDMN=AMAX1(TTDMN,XLOW ( 6))
TTDMX=AMIN1(TTDMX,XHIGH(6))
CONTINUE

SET CONSECUTIVE ITERATION COUNTER BACK TO ZERO
IF A NEW  POINT CAME OUT LOW ENOUGH TO CAUSE TOL VIOLATION

IF(JHIGH.EQ.LJ) ITR=0
GO TO 800
 45930
 45940
 45950
 45960
 45970
 45980
 45990
 46000
 46010
 46020
 46030
 46040
 46050
 46060
 46070
 46080
 46090
 46100
 461 10
 46120
 46130
 46140
 46150
 46160
 461 70
 46180
 46190
 46200
 46210
 46220
 46230
 46240
 46250
 46260
 46270
 46280
 46290
 46300
 46310
 46320
 46330
 46340
 46350
 46360
 46370
 46380
46390
 464 JO
46410
 46420

-------
C     SEE IF NUMBER OF SUCCESSFUL CONSECUTIVE ITERATIONS
C     EQUALS THE NUMBER REQUIRED
C
  700 IF(NITR.GT.ITR) GO TO 725
      IF(COSTT(d).GT.TBUCK)GO TO 100
C *** CALL COSTER AGAIN TO MAKE Ad PRINT OUT THE DESIGN WITH
C *** THE LOWEST COST FUNCTION. SET KNTR1 TO KILL OFF-DESIGN PERFORMANCE
      KNTR1=1
      SUBCL=X(6,LJ)
      CALL COSTER(LJ,VAIR,VH20,KKILL)
      GO TO 750
C *** INCREMENT THE CONSECUTIVE ITERATION COUNTER IF A NEW POINT
C *** IS TO BE WORKED ON NEXT
  725 IF(J.NE.JHIGH) ITR=ITR+1
      GO TO 800

      SET MULT=2 TO PRINT LAST ITERATION

  750 MULT=2
      NSUM=KN
      GO TO 1000

      SEE IF MAXIMUM NUMBER OF ITERATIONS HAS BEEN EXCEEDED

  800 IFflTRCT.GE.ITRMX)   GO TO 900
      IF(MULT.EQ.2) GO TO 1000
      GO TO  100
  900 WRITE(6,6)

      PRINT  LAST ITERATION

      GO TO  750
 1000 CONTINUE
    6 FORMAT(/,62H  BOX METHOD DID NOT CONVERGE IN SPECIFIED NUMBER OF IT
     1ERATIONS)
    7 FORMAT(///,38H  PROGRAM EXCEEDED 200 PAGES OF OUTPUT)
      RETURN
      END
C
C
C
C
C
C
C
C
C
46430
46440
46450
46460
46470
46480
46490
46500
46510
46520
46530
46540
46550
46560
46570
46580
46590
46600
46610
46620
46630
46640
46650
46660
46670
46680
46690
46700
46710
46720
46730
46740
46750
46760
46770
46780
46790
46800

-------
o
GO
              C
              c ***
              C
              c ***
              c
              c
              c
              c ***
              c
              c
 1200

 1800

 2700
 3600
C
    1

c ***

c
c
SUBROUTINE MOTOR(NMOT.MORPM.HPMOT,CMOT1,CTMOT)

THIS SUBROUTINE CALCULATES THE COST FOR PURCHASING A MOTOR

INPUT VARIABLES ***
MORPM = MOTOR RPM
HPMQT = MOTOR HORSEPOWER

OUTPUT VARIABLE ***
CMOT1 = MOTOR COST ($)

ZMOT=NMOT

INDEX=MORPM/900
GO TO (1200,1800,2700,3600),INDEX

CMOT1=10.827*HPMOT+197.325
GO TO 1
CMOT1=9.777*HPMOT+1B8.57
GO TO 1
CONTINUE
CMOT1=6.627*HPMOT+162.3

CONTINUE
CTMOT=ZMOT*CMOT1
ADD  10 PCT. FOR SHIPPING TO MANUFACTURER
CTMOT=1.1*CTMOT
                     RETURN
                     END
45810
46820
46830
46840
46850
46860
46870
46880
46890
46900
46910
46920
46930
46940
46950
46960
46970
46980
46990
47000
47010
47020
47030
47040
47050
47060
47070
47080
47090
47100
471 10
               C
               C
               C
               C
      WAMIN,VWMAX,VWMIN,XN,XP,SUBCL,QMIN,QMAX,PITCH,DIA,
      2RNGMX,RNGMN,T LMIN,T LMAX.TITDX,TI TON

       THIS  SUBROUTINE MOVES  POINT J 1/2 THE DISTANCE
       TO  THE CENTROID

       DO  100 1 = 1 ,N
                                                                     47120
                                                                     47130
                                                                     47140
                                                                     47150
                                                                     47160
                                                                     47170
                                                                     47180
                                                                     471'iO
                                                                     47200
                                                                     47210

-------
                 100  CONTINUE
                     RETURN
                     END
                                                                           47220
                                                                           47230
                                                                           47240
O
-p.
       SUBROUTINE  MTDOV  (TOT,NP,NR.MSW.CMIX,KER,PA,R1.XNTU1,LPMT,TMTD,FT,
      1  COCUR)
 C ***  CALCULATION OF  LMTD, NTU,  f,  R,  AND  P.
 C ***  CMIX=1  ASSUME UNMIXED-UNMIXED.  IF  CMIX=0  THEN  MIXED-UNMIXED.
       DIMENSION XNR(IO),PNR(10),TB(20)
 C ***  SET  TO  MATRIX OF  N  X N
       SN=.1
       2NTP=NP
    12  P=PA*R1
       R=1.0/R1
    63  IF  (P-1.0)  70,64,64
    64  KER=70
       GO  TO 482
 C ***  IF  R CLOSE  TO ONE CORRECT  EQ.
    70  IF  (ABS(R-1.0)-.001) 72,80,80
    72  DELT=P/(1.0-P)
       GO TO 90
 C ***  DELT IS  THE NTU FOR TRUE COUNTERCURRENT FLOW
    80  DELT=ALOG((1.0-P)/(1.0~P*R))/(R-1.0)
    90  CONTINUE
    92  CONTINUE
 C  *** NEWTON RAPHSON CONVERGENCE TECHNIQUE  STARTS HERE
   100 XNR( 1 ) = . 1
      XNR(2)=DELT
   120  LPMT=1
   130 XNTU=XNR(LPMT)
C *** MULTIPLE PASS CORRECTION
  140 XNTA=XNTU/ZNTP
C *** UNMIXED-UNMIXED RELATIONS,1 PASS - AFTER  STEVENS  - 20X20 MATRIX
  180 XNTA=XNTA*SN
      XR=XNTA/(1,0+.5»(1.0+R)*XNTA)
      TH2=0.0
      DO 182 1=1,10
  182 TB(I)=0.0
      DO 200 d=1,10
                184
                    DO 190 1=1,10
                    IF (1-1) 184,184,186
                    TA»1.0
47250
47260
47270
47280
47290
47300
47310
47320
47330
47340
47350
47360
47370
47380
47390
47400
47410
47420
47430
47440
47450
47460
47470
47480
47490
47500
47510
47520
47530
47540
47550
47560
47570
47580
47590
47600
47610
47620

-------
 I
I—'
o
  186 DT=(TA-TB(I))*XR
      TA=TA-DT
  190 TB(I)=TB(I)+DT*R
  200 TH2=TH2+TA*SN
      PN=1.0-TH2
  206 IF  (NP-2)  210,260,260
  210 PNR(LPMT)=P-PN
C *** CALL N/R  CONV. S/R
  220 CALL NRCON  (LPMT,XNR,PNR,KER,71,1.E-4,K,10)
      IF  (K-1)  130,400,500
C *** CORRECT ONE  PASS  P  FOR  ANY  NUMBER  OF PASSES
  260 CONTINUE
  262 IF  (ABS(R-1.0)-0.001) 270,270,280
  270 PN=(ZNTP*PN)/(1 .0+(ZNTP-1 .0)*PN)
      GO  TO 210
  280 PN=((1-0-PN*R)/(1,0-PN))**NP
      PN=(PN-1.0)/(PN-R)
      GO  TO 210
  400 CONTINUE
  450 TMTD=TDT*P/XNTU
  482 PA=P*R
  490 R1=1.0/R
  500 RETURN
      END
                                    47630
                                    47640
                                    47650
                                    47660
                                    47670
                                    47680
                                    47690
                                    47700
                                    47710
                                    47720
                                    47730
                                    47740
                                    47750
                                    47760
                                    47770
                                    47780
                                    47790
                                    47800
                                    47810
                                    47820
                                    47830
                                    47840
                                    47850
                                    47860
       SUBROUTINE  NOZCT  (DNZI,DNZ,WNZ,VNZ,DEN,PNZMX,DPNZ,DBW,CTPA,I)
C  ***  CONTROLS  SIZING OF  TUBE  SIDE NOZZLES
       COMMON/PIPE/XDIA(20),XLGT(20),NN1,NN2,XTOWR,PLNMH,TTTBH,VX,VN,VAVE
       DIMENSION DNZI(1 ),DNZ(1 ) ,VNZ(1 ) ,DPNZ(1),DEN(4),VKTN(2)
       DATA  VKTN/1.0.0.5/
       DPMAX=.1
       IF (DNZI(I)-.01)  20,20,30
    20  IF (1-1 )  22,22,120
C  ***  ESTIMATE  NOZZLE SIZE  FROM AVERAGE
    22  ONZ(I )=.4*SQRT(WNZ/(VAVE*DEN(I)*3.
       CALL  NOZID  (CTPA,DBW    ,DNZ(D,N,
    30  VNZ(I)=WNZ       *.04/(.7854*DNZ(I)**2*DEN(I))
       RV2N=DEN(I)*VNZ(I)**2
       DPNZ(I)=VKTN(I)*RV2N/(144.0*64.34)
    60  IF (DNZI(I)-.01)  70,200,200
    70  IF (DPNZ(I)     -DPMAX)  200,200,100
   100  IF (DNZ(I)-DNZMX+.01) 105,200,200
 ALLOWABLE  WATER  VELOCITY
, 14159))
     DNZMX,0)
                                                                                           47870
                                                                                           47880
                                                                                           47890
                                                                                           47900
                                                                                           47910
                                                                                           47920
                                                                                           47930
                                                                                           47940
                                                                                           47950
                                                                                           47960
                                                                                           47970
                                                                                           47980
                                                                                           47990
                                                                                           48000
                                                                                           48010
                                                                                           48020
                                                                                           48030

-------
   105  N=N+1
       CALL  NOZID  (CTPA,DBW,DNZ(I),N,DNZMX,1)
       GO  TO  30
C  ***  IF  DENSITIES  ARE  WITHIN  15  PCT.  LET  OUTLET  =INLET
   120  IF(ABS(DEN(2)/DEN(1)-1.)-.15)140,140,22
   140  DNZ(I)=DNZ(I-1)
       GO  TO  30
   200  RETURN
       END
                                                                                         48040
                                                                                         48050
                                                                                         48060
                                                                                         48070
                                                                                         48080
                                                                                         48090
                                                                                         48100
                                                                                         481 10
                                                                                         48)20
 I
H-'
O
       SUBROUTINE  NOZID  (CTPA,DBW.DNZ,N,DNZMX,KSTEP)                         48130
       DIMENSION DNZA(20)                                                    48140
       DATA  DNZA/1.049.2.069,3.068,4.026,5.047,6.065,8.071,10.136,12.09,     48150
      1          13.25,15.25,17.25,19.25,21.25,23.25,25.25,29.25,33.25,      48160
      2          35.25,41.O/                                                 48170
       NMAX=20                                                               48180
C ***  LOOK  UP ON  NOZZLE  SIZE                                                48190
       IF  (KSTEP-1)  5.45,45                                                 48200
    5  X=0.8*DBW/(1.0+CTPA)                                                  48210
   30  DNZMX=X*DBW                                                           48220
C *** CHECK  IF PIPE DIAMETER  IS ALREADY TOO LARGE FOR  TABLE                 48230
       IF(DNZ-DNZA(NMAX)/.97)31,31,41                                        48240
   31 DO 40  J=1,NMAX                                                        48250
      N=J                                                                   48260
      IF (DNZA(N)/DNZ-.97) 40,50,50                                         48270
   40 CONTINUE                                                              48280
C *** LET PIPE GO UP BY  INCREMENTS OF 6 INCHES TO A MAXIMUM  OF  15  FEET      48290
   41  DNZY=42.                                                              48300
      DO 43 J=1,21                                                          48310
      IF(DNZY/DNZ-.97)42,44,44                                              48320
   42 DNZY=DNZY+6.                                                          48330
   43 CONTINUE                                                              48340
   44 DNZ=DNZY                                                              48350
      GO TO 90                                                              48360
   45 IF (N-NMAX)  50,60,60                                                  48370
   50  DNZ=DNZA(N)                                                            48380
      GO TO 70                                                              48390
   60  DNZ=DNZ+4.0                                                           48400
   70 IF (DNZ-DNZMX)  90,90,80                                               48410
   80 DNZ=DNZMX                                                             48420
   90 RETURN                                                                48430
      END                                                                   48440

-------
c
c +* *
c ***
c ***
c ***
c
c
c ***
c
c
c ***
c
c
c
c  $
c
c  *
   10
c
c   *
    20
    30
    34
    40
    45

    50
SUBROUTINE NOZZLE(DTNOZ,CTNOZI)
THIS SUBROUTINE GIVES THE INFORMATION OF INSTALLING COST
FOR A CARBON STEEL NOZZLE WITH WELD NECK FLANGE
PRESSURE  150 PSI
NOMINAL DIAMETER  2.4 	 24.2 INCH
INPUT VARIABLE ***
DTNOZ = NOMINAL NOZZLE DIAMETER (INCH)

OUTPUT VARIABLE ***
CTNOZ1 = COST FOR INSTALLING ONE NOZZLE ($)

CTNOZ1=0.
IF(DTNOZ.LT..001)GO TO 50
IF (DTNOZ.GT.24.2) GO TO 40

NOMINAL DIAMETER IN RANGE  13.8— 24.2 INCH
IF (DTNOZ.LE.13.8) GO TO 10
CTNOZ1=168.0+21.73*(DTNOZ-13.8)
GO TO 50

NOMINAL DIAMETER IN RANGE  8.2 — 13.8 INCH
IF (DTNOZ.LE.8.2) GO TO 20
CTNOZ1=78.0-M6.07*(DTNOZ-8.2)
GO TO 50

NOMINAL DIAMETER IN RANGE  2.4 — 8.2 INCH
IF (DTNOZ.LT.2.4) GO TO 30
CTNOZ1=16.0+10.69*(DTNOZ-2.4)
GO TO 50

WRITE(6,34)
FORMAT(1H ,*NOZZLE DIAMETER  TOO SMALL FOR COST ESTIMATION*)
GO TO 50

WRITE(6,45)
FORMAT(1H ,*NOZZLE DIAMETER  TOO LARGE FOR COST ESTIMATION*)

CONTINUE
RETURN
END
 48450
 48460
 48470
 48480
 48490
 48500
 48510
 48520
 48530
 48540
 48550
 48560
 48570
 48580
 48590
 48600
 48610
 48620
 48630
 48640
 48650
 48660
 48670
 48680
 48690
 48700
 48710
 48720
 48730
 48740
 48750
 48760
 48770
 48780
 48790
 48800
 48810
 48820
 48830
 48840
48850
48860
48870

-------
 :  ***
 :  ***
 :  ***

    1 0

    20
    30
    40
    46

    50
    53

    54
 1000
    55
                     SUBROUTINE  NRCON  (NR.X,Y,KER,KERNO,TOL,KODE,NX)
                     NEWTON-RAPHSON  PROCEDURE
                     DIMENSION  X(1 ) ,Y( 1 )
                     IF  KODE=0,1,2  THEN  CONTINUE,  CONVERGED,  ERROR  EXIT  RESP.
                     IF  KODE  IS  SET  TO  100  FROM OUTSIDE   THEN
                     NEGATIVE VALUES OF  X ARE  ALLOWED
                     IF  (ABS(Y(NR))-TOL)  10,10,20
                     KODE=1
                     GO  TO  100
                     IF  (NR-  1)  90,90,30
                     IF  (NR-NX)  50,40,40
                     KODE=2
                     KER=KERNO
                     GO  TO  100
                     IF  (ABS(Y(NR)/Y(NR-1)-1
)-1.E-8)  53,53,54
o
00
                     X(NR+1 )=(X(NR)+X(NR-1 ) )*.5
                     GO  TO  1000
                     X(NR+1)=X(NR)-Y(NR)*(X(NR)-X(NR-1))/(Y(NR)-Y(NR-1))
                     IF(NR-3)66, 55.55
                     J1=0
                     Y1=-1 ,
             E6
       Y2 = + 1.E6
       DO 60  JJ=1,NR
       IF (Y(JJ)    )  56,56,57
   56  IF (Y(JJJ-Y1)  60,58,58
   57  IF (Y(JJ)-Y2)  59,59,60
   58  Y1=  Y(JJ)
       J1=    JJ
       GO TO  60
   59  Y2=  Y(JJ)
       J2=    JJ
   60  CONTINUE
C ***  SET  LOK=1
       LOK = 0
       IF(Y(NR)-Y1+1.E-8)1250,1200,1200
 1200  IF(Y(NR)-Y2-1.E-8)1275,1275,1250
 1250  LOK=1
 1275  CONTINUE
       IF (J1 ) 66,66,61
   61  IF (J2) 66,66,62
   62  IF (X(NR+1 )-X(J1 | )  64,65,63
C ***  CHECKS MADE HERE  TO DETERMINE  IF  NEW GUESS
C ***  TWO PRIOR  GUESSES  WHICH  WERE NEC.  AND POS.
   63  IF(X(NR+1)-X(J2) ) 1100,65,65
   64  IF(X(NR-H )-X(J2) 165,65,1100
C **+  IF NEW GUESS IS  TOO CLOSE  TO PRIOR
C ***  OF NEWTON-RAPHESON  EQ.  AT  66 BELOW
 1100  IF(ABS(X(NR+1)/X(NR)-1 .0)-TOL*0. 1 ) 1 1 1 0 , 1 1 1 0 , 66
 1110  IF(ABS(X(NR)/X(NR-1)-1.0)-TOL*0.1)1120,1120,66
                              WHEN THE  Y RETURNED  IS  NO  LONGER  BETWEEN  Yt  AND Y2
                                                                IS  BETWEEN THE BEST
                                                       GUESS  THEN  USE  AVG.  INSTEAD
48880
48890
48900
48910
48920
48930
48940
48950
489GO
48970
48980
48990
49000
49010
49020
49030
49040
40050
49060
49070
49080
49090
491 00
491 10
49120
491 30
49140
491 50
491 60
491 70
491 80
491 90
49200
49210
49220
49230
49240
49250
49260
49270
49280
49290
49300
49310
49320
49330
49340
49350
49360
49370

-------
 I
I—I
o
               c  ** -
                1 120
               C  * * *
               c  * * *
                  65
                  66
                  67
                  70
               C  ** *
                  80
                  82
                  84

                  90

                 100
 TWO GUESSES
,  ERRORS
.5
WHICH PRODUCED THE
IF GUESSES ARE  TOO  CLOSE  AND LOK=1  THEN ASSUME CONVERGENCE
IF(LOK-1 )65,10,10
EQ. BELOW USES  AVG.  OF
CLOSEST NEG. AND  POSIT.
X(NR-M )=(X(J1 )+X(J2))*.
IF (KODE-100) 67,80,67
IF (X(NR+1)  ) 70,70,80
X(NR+1)=X(NR)*.5
SKIP CHECK IF X(NR-1)  IS  ZERO
IF(ABS(X(NR-1))-1.£-20)90,90,82
IF(ABS(X(NR)/X(NR-1)-1.0)-TOL*1
KODE=3
GO TO 46
KODE=0
NR=NR+1
RETURN
END
         .E-6)84,84,90
493RO
19390
49400
494 10
49420
49430
49440
49450
49460
49470
49480
49490
49500
49510
49520
49530
49540
                     SUBROUTINE  OCONV{KODE,KODE1)
               c *** OUTPUT UNIT  CONVERSION
               C **' KODE=1   CONVERT  FROM  INTERNAL
               C *** KODE=2   CONVERT  FROM
               C *** KODE=3   CONVERT  FROM
               C *** KODE=4   CONVERT  FROM
                     COMMON IDUM(6|,RDUM(3
                     IF(K3DE-2(100,100,300
               C *** INTERNAL TO  U.S.
                 100 DUr,1W( 86) =DUMW(86 ) *27. 73
                     DUMWI79)=DUMd(79)*27.73
                     DO 110 LL=149,155
                 110 DUMW(LL)=DUMW(LL)*1.E-3
                     DUMW(151)=DUMW(151)+1.E3
                     DO 120 LL=101,102
                 120 DUMW( LL)=DUMW(  LL)*1.E~6
                     DO 130 LL=108,124
                 130 DUMWI LL)=TCONV(DUMW(LL),1,2)
                     GO TO 900
               C *** U.S.  TO  INTERNAL
                 300 DUMW(86)=DUMW(861/27.73
                     DUMW(79)=DUMW(79)/27.73
                     DO 310 LL=149,155
                 310 DUMW(LL)=DUMW(LL)* 1.E3
         TO U.S. UNITS
INTERNAL TO S.I. UNITS
U.S. TO INTERNAL UNITS
S.I. TO INTERNAL UNITS
,IDUMW(34),DUMW(246),DUMYD(60),DUM(912)
                                   49550
                                   49560
                                   49570
                                   49580
                                   495'JO
                                   49600
                                   49610
                                   49620
                                   49630
                                   49640
                                   49650
                                   49660
                                   49670
                                   4M6HQ
                                   4 9 () J 0
                                   4^700
                                   4971 0
                                   49720
                                   49730
                                   49740
                                   49750
                                   49760
                                   49770
                                   49780

-------
                     DUMW(151)=DUMW(151)*1.E-3
                     DO 320 LL=101,102
                 320 DUMW( LL)=DUMW( LL)/1.E-6
                     DO 330 LL=108,124
                 330 DUMW( LL)=TCONV(DUMW(LL),1,1)
                     GO TO 900
                 900 RETURN
                     END
                                                                             49790
                                                                             49800
                                                                             4981 0
                                                                             49820
                                                                             49830
                                                                             49840
                                                                             49850
                                                                             49860
 I
i—•
i—'
O
       SUBROUTINE OUTFA (KOT,KOT1)                                           49870
C  ***  FINAL PRINTOUT (PART-1)                                               49880
       DIMENSION UUTEM(2,2),UUMF(3,2),UUPRA(2,2),UUPR(2,2),UUDRT(2,3),       49890
      1UUDIR(3,3),ISIZE(3),BARR(3)                                           49900
       COMMON NFO,KGO,KNTRO,KNTR1,NM,NPAGE,DAY(2),PI                         49910
       COMMON KCI,KER,KERR(20),KFIN,KREG,LAIC,LSUP.MM,NP,NR,NT1,NT2,NTP,     49920
      1NTR,NTT,ABARE,AFAN.AMIN,APLOT,APPR, ASBUN.ASTOT,AXAV,AXPP(20) ,CP(2)   49930
      2,DEN(2),DEN12(2,2),DENFN,DENLZ(7),DBW,DEO,DFH,OFR,DFS,DFT,DKL,        49940
      3DLSP,DLTE,DLTO,DLTS,DNZ(2),DTI,DTIM,DTF,DTO,DTT,PL,PT                 49950
       COMMON DPAD,DPAF,DPAM,DPAW,DPF(10),DPI,DPNZ(2),DPT,Df'TA.DPTF,         49960
      1DPTOT(2),POUT(2),PTUB,RV2,GAMAX,GT,HPFNC,HAIR,HTS,UBARE,UCLN,UTOT,   49970
      20(2),QDUT.QTOT,RFI,RFIN,RFTOT,RTOT,RTW.TAV(2),TIN(2),TOUT(2),TT(8)   49980
      3,TWALL,TD.TW,TMTD,TK(2),VAPP,VNZ(2),VT,DFAN,TLTE,AOF,VlSLZ(7)r        49990
      4VIS(2),VIS12(2,2),VISW,W(2),WAPF,WB(2),WLQ(2)                         50000
       COMMON ANG(3),CFH(3),CFP(3),CFR,CKBSC,CKFNG,CKHSC,CKLOV,CKSTC,F,     50010
      1FALT,FINEF,FFF,FSUM,OCL(4),ODL(4),OKL(4),OML(4),OMV(4),P,PRAN(2),     50020
      2PRAL2(7),R,RAOI,RAOR,RARAF,RAPMX.REA(2),RE12(2,2),RFNPL,RPT,TLA,     50030
      3XREX.ZMP.ZNF,ZNTP,ZNTR,ZNTT,ZTPP(20),ZTPPA                            50040
       COMMON ZTRD,ANGI,ZBYP,ZBUP,ZBUS.ZFAN,DFANl, DLOV,ZNFI.PTI.TKT.TKF,     50050
      1WD(2),VAPPI,TAIVIB,HALT,C3191TIND(2),TOUTD(2),RFD,PSD,TTMIN,OD(7),     50060
     2CARD7(6),DNZI(2) ,PDI,CFNG,CHSC,CLOV,CBSC,PRSTC,RFA IR,RFCT,ZNOZ(2)  ,   50070
     3RASPC,ZTPD,2NrD,COST(7) ,SSUM(16,30) , ISUM(13,30) , PR ICE(2,21 )           50080
       COMMON/CASED/BARB(13)                                                  50090
C ***  DATA  FOR  OUTPUT  ALPHANUMERIC  INFO.                                    50100
       DATA  UUTEM/4H(DEG,4H.F) ,4H(DEG,4H.C) /,                              50110
     3 UUMF/3H(M-,3HLB/,3HHR),3H    ,3H(KG,3H/S)/,  UUPRA/3H(PS,3HI A),        50120
     43H(K-,3HPA)/,UUPR/3H (P,3HSI),3H(K-,3HPA)/                            50130
       DATA  UUDRT/4H  FOR,3HCED,4HINDU,3HCED,4HNATU,3HRAL/,                   50140
     1 UUDIR /2HHa,4HRIZa,4HNTAL,2H  ,4HINCL,4HINED,2H   ,4HVERT,4HICAL/,   50150
     1BARR/4HCOND.4HEN.W.4HATER/                                            501 60
 1100  FORMAT(72H1**  PRINTOUT OF OPTIMUM  DESIGN GENERATED  BY  THE  PFR  OPTI   50170
     1MIZATION  PROGRAM,/)                                                    50180
 1105  FORMAT(4H 	,17(4H	))                                              50190

-------
1110 FORMAT( 8H   1  SIZE , I 3, 1H-,I 4, 1H-, I 2, 1H-,A 2 , 2A4, 1X,A4,A3 ,              50200
    15H N3U=,I3,6H  I     ,4A5,/,25H  2 SURFACE/UNIT  EXT/BARE , F1 1 . 0 , 1H/,     50210
    2F9.0.11H I  SITE     , 3A5,/,25H   3  HEAT  EXCHANGED  /  'vl T D  ,F11.4,        50220
    31H/,F6.2.3X,11H  I  TURBINE ,3A5,/,25H  4 RATE EXT/BARE/CLEAN   ,        50230
    4r:7.2, 1H/, F6.2, 1H/, F6.2, 1 1H  I CONDENSR , 3A5 )                            50240
1120 FORMAT(47H  **  TUBE  SIDE   +*     **  PROCESS  AND  PERFORMANCE,            50250
    117H DATA PER UNIT  *t,/,20H   5 FLUID CIRCULATED,8X,3A4 , 1 OX,            50260
    222HENTERING        LEAVING,/, 15H  6  TOTAL FLUID, 15X,3 A3 , F19.3 , /,       50270
    312H  7   LIQUID,18X,3A3,5X,2F14.3)                                     50280
1130 FORMAT(15H   8  TEMPERATURE,17X,2A4,4X,2(5X,F9.1),/,                    50?90
    133H  9 PRESSURE                      , 2A3,11X , F8 . 1 , F14. 1 ,/,            50300
    233H 10 PRESSURE  DROP SPEC./CALC.    ,2A3,12X,F7.2,1H  .F13.2,/,        50310
    32H -,35(2H—))                                                         50320
     KFI=2                                                                  50330
     NBUT=ZBUS*ZBUP*ZBYP+O.01                                               50340
     IF (ANG(1)-0.27)  4,5,5                                                 50350
   4 KANG=1                                                                 503'.0
     GO TO 8                                                                50370
   5 IF (AMG(1)-1.47)  6,6,7     •                                            503UO
   6 KANG=2                                                                 50390
     GO TO 8                                                                50400
   7 KANG=3                                                                 50410
   8 CONTINUE                                                               50420
     ISIZEl 1 ) = (DBW+4.0 1/12.0 + 0.5                                           50430
     ISIZE(2)=NTT                                                           50440
     ISIZE(3)=NTR                                                           50450
 220 CONTINUE                                                               504GO
 400 WPITE(NFO,1100)                                                        50470
     WRITE(NFO,1105)                                                        50480
     WRITE!NFO, 1 1 10)  ( I SIZE( I) ,I = 1 ,3) ,(UUDIR( I ,KANG) , I = 1 ,3) ,               50490
    1  (UUDRT(I ,KFI ) ,1 = 1 ,2),NBUT,(BARB(I) , 1 = 1 ,4) , ASTOT , ABARE ,               50500
    2(BARB(I),I=5,7),QDUT,TMTD,(BARB(I),I=8,10),UTOT,UBARE,UCLN,           50510
    3(BARB!I),1=11,13)                                                      50520
     WRITE!NFO,1105)                                                        50530
     WRITE (NFO, 1 120)(BARR( I ) ,1 = 1  ,3) ,  ( ULJMF ( I , KOT ) ,I = 1.3),W(1),              50540
    1 (UUMF( I ,KOT) ,1 = 1 ,3),WLO(1),WLO(2)                                      50550
     WRITE(NFO, 1130){UUTEM(I,KOT) ,I = 1,2),TIN(1) , TOUT(1 ),                   50560
    1(UUPRA(I,KOT),I=1,2),PTUB,POUT(1),(UUPR(I,KOT),I=1,2),PSD,DPTOT(1)    50570
 500 RETURN                                                                 50580
     END                                                                    50590

-------
 I
I—•
I—•
CO
      SUBROUTINE OUTFB  IKOT.KQT1)
C **+ FINAL PRINTOUT  (PART-2)
      DIMENSION AOUT1(5,2),AOUT2(5,2)
      DIMENSION UUAR(2,2),UUTEM(2,2) ,UUPR(2,2) ,UUAFR(2 , 2 ) .
     1 UUDP(2 2) ,UUSV(2,2) ,UUL1(2) ,UUL2(2) ,UUFLX(3,2) ,UUMF(3,2),
     2UUPWR(2,2),UUHDR(2,5),UULAY(2,2),UUTUB(2,21,UUL3(2),UUFIN(2,3),
     3UOTYP(3,3)
      COMMON NFO,KGO,KNTRO.KNTR1,NSUM,NPAGE,DAr'(2),PI
      COMMON KCI ,KER,KERR(20) ,KFIN,KREG, LAIC,LSUP,MM,NP,NR,NT1 .NT2.NTP,
     1NTR,NTT,ABARE,AFAN,AMIN,APLOT,APPR,ASBUN,ASTOT,AXAV,  AXPP(20) ,CP(2)
     2,DEN(2),DEN12(2,2) , DENFN,DENLZ(7) .DBW.DEQ.DFH.DFR.DFS.DFT.DKL,
     3DLSP,DLTE,DLTO,DLTS,DNZ(2),DTI,DTIM,DTF,DTO,DTT,PL,PT
      COMMON DPAD,DPAF,DPAM,DPAW,DPF(10),DPI,DPNZ(2),DPT,DPTA,DPTF,
     1DPTOT(2) POUT(2),PTUB,RV2,GA',lAX,GT,HPFNC,HAIR,HTS,UBARE,UCLN,UTaT,
     2Q(2) .QDUT.QTOT.RFI,RFIN,RFTOT,RTOT,RTW,TA V(2} ,TIN(2)  ,TOUT(2) .TT(8)
     3,TWAIL,TD,TW,TMTD,TM2) ,VAPP,VN2(2) , VT , DF AN , TLT E , AOF , V I SLZ ( 7 ) ,
     4VISf2),VIS12(2,2),VISW,W(2),WAPF,W3(2),WLQ(2)
      COMMON ANG(3),CFH(3),CFP(3),CFR.CKBSC,CKFNG,CKHSC,CKLOV,CKSTC.F.
     1FALT,FINEF,FFF,FSUM,OCL(4) ,ODL(4) ,OKL(4) ,OML(4) ,OMV(4) ,P,PRAN(2) ,
     2FRALZI7),R,RAOI.RAOR,RARAF,RAPMX,REA(2),RE 12(2,2) ,RFNPL,RPT,TLA,
     3XREX,ZMP,ZNF,ZNTP.ZNTR.ZNTT,ZTPP(20),ZTPPA
      COMMON ZTRD.ANGI,ZBYP,ZBUP,ZBUS,ZFAN,DFANI,DLOV,ZNFI,PTI.TKT,TKF,
     1WD(2),VAPPl,TAMB,HALT,C319,TIND(2),TOUTD(2),RFD,PSD,TTMIN,QD(7),
     2CARD7(6) DNZI(2),PDI,CFNG,CHSC,CLOV,CB5C,PR5TC,RFAIR,RFCT,ZNOZ(2),
     3RASPC.ZTPD,ZNTD,COST(7),SSUM(16,30) , I SUM(13,30) ,PR 1CE(2,21 )
      COMMON/FAN/EFFAN.NBLAD.HPMSP
  *** DATA
      DATA
     1
     2
     3
      DATA
FOR OUTPUT
AOUT1/4H
      4H
AOUT2/4H
      4H
UUAR/3H(FT
 ALPHANUMERIC
 S.4HTATI,4HC
 D , 4HRAFT,4H
 S.4HTATI,
 D.4HRAFT,
,2H2),3H
                                                            ,4HALC.
                                                            ,4HQD.
                                                            ,4HPEC.
                                                            .4HAIL.
                                                              3H
                               INFO.
                               D. ,4HP. ,C
                              HEA.4HD.RE
                           4HC D.,4HP.,S
                           4H HEA.4HD.AV
                           M.2H2)/,
1  UUTEM/4H(DEG.4H.F)  ,4H(DEG,4H.C) /,
2UUAFR/3H(AC,3HFM),3H(M3,3H/S)/,
4 UUPR/3H  (P.3HSI),3H(K-,3HPA)/,UUMF/3H(M-,3HLB/,3HHR)
5 3H/S)/
 DATA UUDP/4H(IN-,4HH20),4H(K-P,4HA)  /, UUSV/3H(SF,3HPM)
1 3H (M.3H/S)/,  UUL1/4H(FT),4H  (M)/, UUL2/4H(IN) , 4H(MM ) /,
2 UUFLX/4H  (LB,4H/HR-,4HFT2),4H   (,4HKG/S,4H-M2)/,
3UUPWR/3H  (H.3HP)  ,
4 3H (K.3HW) /,  UUL3/3HIN.,3H M./
 DATA UUHDR/4H     ,4HPLUG,4H   C,4HOVER,4H  B0.4HNNET
1.4HMANI.4HFOLD/,  UULAY/4HSTAG,4HGERD,4H IN-,4HLINE/,
24HLAIN.4H   FI.4HNNED/,
                        4H SLO,4HTTED,4HSERR,4HATED/,
                        4HIGHT.4H    ,4H  U-,4HTUBE,4H
                                                                                  ,3H(KG,
     3 UUFIN/ 4H  SM.4HOOTH,
     4 UOTYP /4H     .4HSTRA,
     5 4HRPEN.4HTINE/
 1170 FORMAT(23HO**  PROGRAM
                                                                           4HWELD.4H-BOX
                                                                           UUTUB/4H    P,
                                                                            SE,
                                           MESSAGES  -  ,10(13,1H,))
                1175  FORMATM5H ** AIR SIDE  **,/,13H  11  AIR/UNIT , 3A3 , F1 1 . 2 , 8H   TEMP.
                    110H IN/OUT   .2A4.F6.1 .1H/.F6.1 ,/,11H 12 A IR/FAN,5X,2A3,F11 .2,
50600
50610
50620
50630
50640
50G50
50660
50670
50600
50690
50700
50710
50720
50730
50740
50750
50760
50770
50780
50790
50800
50810
50820
50830
50840
50B50
50860
50870
50880
50890
50900
50910
50920
50930
50940
50950
50960
50970
50980
50990
51000
51 010
51 020
51 030
51040
51050
51 060
51070
51 080
51090

-------
     212H   ALTITUDE  ,9X , A4,7X,F7.0./,16H  13  FACF.  VEL    ,2 A3,F11 .3,5A4,    51100
     32X,2A4,F9.4,/,10H  14 MASS  V,3A4,F1 1 .3,5A4,2X,2A4,F9.4 )                 51110
 1176 FORMAT (2H -,35(2H—))                                                   51120
 1180 FORMAT(54H  ** CONSTRUCTION INFO.  PER  BUNDLE    DESIGN  PRESSURE    ,     51130
     1 2A3, F1 2. 1 , / , 18H  15  BUNDLE  WIDTH  , A4 ,-SX , F 7 . 2 , 1 OH   NO.   TUF3E ROWS      51140
     2,I3,15H  TUBE PASSES   ,I3,/,22H 16 NO.  BUNDLES  PARA  ,12,7H SERIES    51150
     3,I2t27H   TUBE  INCLINATION  (DEC.),3X,F9.1,/,16H 17 NO. BAYS     ,     51160
     45HPARA  ,13,7H SER I ES,12,14H   HEADER  TYPE , 17X,2A4 )                     51170
 1190 FDRMAT(/,31H  **  TUBE AND FIN INFORMATION  **,/,14H  18  MO. TUBES/,      51180
     16HBUNDLE.7X,16,12H    TUBE  TYPE , 3X,3A4.4X,2A4,/, 14H  19 TUBE OD/ID,     51190
     23X,A4,F6.3,1H/,F5.3,14H    TUBE LAYOUT,F5- 0,8H  DEGREES,4X,2A4 ,/,       51200
     317H 20  FIN  OD/THICK  ,A4 , F6.3,1H/,F5.3,23H    PITCH-  TRANSVERSE    ,     51210
     4A4,F12.4,/,18H  21  NO.  FINS PER  ,A3,5X,F7.2,8X,15H- LONG1TUD.     ,    51220
     5A4,F12.4)                                                               51230
 2000 FORMAT(21H  22 TUBE  LENGTH-OVRL ,A4,F8.3,17H    FINNING FACTOR,F22.3    51240
     1./.3H 23,12X,6H-EFF.  ,A4,F8.3,14H    FIN  SURFACE,17X,2A4,/,4H 24  ,     51250
     217HTUBE SHEET THICK.,A4,F8.1,23H   TOTAL  SPACER LENGTH   ,A4,F12.1)     51260
 2010 FORMAT!/,20H  +*  FAN  EQUIPMENT **,/,16H  25  NO.  FANS/BAY,14X,I 3,        51270
     118H   POWER/FAN, (EFF=,F3.2,1H) ,2A3,F11 .2,/, 16H  26  FAN DIAMETER,5X,    51280
     2A4,F8.3,22H  POWER/FAN,SPEC.    ,2A3,F11.2,/,16H  27  AREA RATIO- ,    51290
     311H   FAN/FACE,F6.3,12H    PLOT AREA,1 OX,A3,A2,F12.2,/,9H 28 AREA ,    51300
     418HRATIO- X-SECT/FACE,F6.3.15H   ASPECT  RATIO,F24.3)                   51310
      KHED=1                                                                  51320
      KFIN=2                                                                  51330
      KCTL=1                                                                  51340
      KCBU=1                                                                  51350
      DPI=0.0                                                                51360
      XAOF=(DBW+4.0)/12.0                                                    51370
      NFAN=ZFAN+0.01                                                          51300
      NBUP=ZBUP+0.01                                                          51390
      NBUS = ZBUS4-0 . 01                                                          51400
      NBYP = ZBYP-l-0 . 01                                                          51410
C *** FOR NOW SET NUMBER OF  BAYS IN SERIES  EQUAL  TO  1                        51420
      N3YS=1                                                                  51430
      KFINS=1                                                                 51440
      KNAT=1                                                                  51450
  200 WRITE!NFO,1175)(UUMF(I , KOT ) ,I = 1,3),W(2),lUUTEIVI(l,KOT),I = 1,2),          51460
     1  TIN(2),TOUT(2),(UUAFR(I ,KOT) , I = 1 ,2) ,WAPF,UUL1 (KOT) , V ISLZ(2 ) ,          51470
     2  (UUSV(I,KOT),I = 1,2),VAPP,(AOUT1(K,KNAT),K = 1,5), (UUDPl I ,KQT ) ,1 = 1 ,2    514HO
     3),DPTOT(2),(UUFLX(I ,KOT ) ,1 = 1 ,3) ,GAMAX, (AOUT2(K,KNAT) ,K = 1 ,5) ,           51490
     4  (UUDP(I,KOT),1=1,2),DPI                                               51500
      WRITE!NFO,1176)                                                         51510
      WRITE!NFO,1180)(UUPR(I,KOT),I=1,2),DPTA,UUL1(KOT),XAOF,NTR,NTP,       51520
     1NBUP,NBUS,ANGI,NBYP,NBYS,(UUHDR(I,KHED),I=1,2)                         51530
      WRITE(NFO, 1 190)NTT, (UOTYP(I,KCBU),I=1,3),(UUTUB(I,KFIN),I=1,2),       51540
     1UUL2(KOT),DTO,DTIM,TLA,                                                 51550
     1 (UULAY(I.KCTL) ,1 = 1 ,2) ,UUL2(KOT) ,DTF,DFT,UUL2(KOT) ,PT,UUL3(KOT) ,       51560
     2ZNF,UUL2(KOT),PL                                                       51570
      WRITE(NFO,2000)  UUL1(KOT)  , V ISLZ(1 ) ,RAQR,   UUL1 (KOT),TLTE,              51580
     1(UUFIN(I.KFINS),1=1,2),UUL2(KOT),DLTS,UUL2(KOT),DLSP                   51590

-------
      WRITE(NFO,2010)NFAN,EFFAN,(UUPWR(I,KOT),I=1,2),HPFNC,UUL1(KOT),       51600
      1DFAN,(UUPWR(I,KOT) , 1 = 1 ,2),HPMSP   ,RFNPL,(UUAR(I,HOT),1 = 1.2),APLOT    51610
      2.RAPMX.RASPC                                                           51620
  430 IF(MM)490,490,440                                                      51630
  440 WRITE  (NF0.1170)  (KERR(I),I=1,MM)                                      51640
C *** STORE  VALUES  FOR  SUMMARY  OUTPUT                                       51650
  490 CONTINUE                                                               51660
      IF  (KGO-1)  550,550,510                                                 51670
  510 ISUM(01,NSUM)=99                                                       51680
      X=MM                                                                   51690
      M=AMIN1(10.0.X)                                                        51700
      ISUM(02,NSUM)=M                                                        51710
      DO  520  1 = 1 ,M                                                           51720
  520 ISUM(I+2,NSUM)=KERR(I)                                                 51730
  550 CONTINUE                                                               51740
      NPAGE=NPAGE+1                                                          51750
      RETURN                                                                 51760
      END                                                                   51770
      SUBROUTINE  OUTPE                                                       51780
C *** ROUTINE CALCULATES  THE  COMMON VARIABLES NECESSARY FOP OUTPUT          51790
      COMMON NFO,KGO.KNTRO.KNTR1,NSUM,NPAGE,DAV(2),PI                       51800
      COMMON KCI,KER,KERR(20),KFIN,KREG,LAIC,LSUP,MM,NP,NR,NT1,NT2,NTP,     51810
     1NTR,NTT,ABARE,AFAN,AMIN,APLQT,APPR,ASBUN,ASTOT,AXAV,AXPP(20),CP(2)    5I820
     2,DEN(2),DEN12(2,2),DENFN,DENLZ(7),DBW,DEQ,DFH,DFR,DFS,DFT,DKL,        51830
     3SP,DLTE,DLTO,DLTS,DNZ(2),DTI,DTIM,DTF,DTO,DTT,PL,PT                   51840
      COMMON DPAD,DPAF,DPAM,DPAW,DPF(10),DPI,DPNZ(2),DPT,DPTA,DPTF,         51850
     1DPTOT(2),POUT(2),PTUB,RV2.GAMAX.GT,HPFNC.HAIR,HTS,UBAPE,UCLN,UTOT,    51860
     2Q(2),QDUT,OTOT,RFI,RFIN.RFTOT,RTOT,RTW,TAV(2),TIN(2),TOUT(2),TT(8)    51870
     3.TWALL.TD,TW,TMTD,TK(2) ,VAPP,VNZ(2).VT,DFAN,TLTE,AOF,VISLZ(7),        51880
     4VIS(2),V1S12(2,2),VISW,W(2),WAPF,WB(2),WI-Q(2)                          51890
      COMMON ANG(3),CFH(3).CFP(3),CFR,CKBSC,CKrNG.CKHSC,CKLOV,CKSTC,F,      51 900
     1FALT,FINEFfFFF,FSUM,OCL(4),ODL(4),OKL(4),OML(4),OMV(4),P,PRAN(2),     51910
     2PRALZ(7),R,RAOI,RAOR,RARAF,RAPMX1REA(2).RE12(2,2),RFNPL,RPT,TLA,      51920
     3XREX,ZMP,ZNF,ZNTP,ZNTR,ZNTT,ZTPP(20),ZTPPA                            51930
      COMMON ZTRD,ANGI ,ZBYP,ZBUP,ZBUS,ZFAN,DFANI ,DLOV,'ZNF I . PT 1 , TKT , TKF ,     51940
     1WD(2),VAPPI,TAMB,HALT,C319,TIND(2),TOUTD(2),RFD,PSD,TTMIN,OD(7),      51950
     2CARD7(6),DNZI(2),PDI,CFNG,CHSC,CLOV,CBSC,PRSTC.RFAIR,RFCT,ZNOZ(2),    51960
     3RASPC,ZTPD,ZNTD,CQST(7) ,SSUM(16,30) ,ISUM(13,30) ,PR ICE(2,21)           51970
      COMMON/TRACE/SSSUM(9),IISUM(3)                                        51980
      COMMON/PEN/ATTRf 20),DATTR(20) ,AMBTPT(20),BCAPC.NATTR,CAPCST,CMAIN,    51990
     1MACC,AFCR2,XLVL,FLCST.CAPBS,PLDFT(20),STMCT,CUTMP,SHELP,BHTRT(6)      52000

-------
      COMMON/FAN/EFFAN,NBLAD,HPMSP
      COMMON/PIPE/XDIA(20),XLGT(20),NN1,NN2,XTOWR,PLNMH,TTTBH,VX,VN
     1 , VAVE
      COMMON/JUMP/JAKE,TINMX,NOD2I,DTN2I,NOQ1I,NFPIN,N0020,N0010
      COMMON/CONTL/CSTOR,INML,D(13)
      COVMON/JAN7/DUM(12),IDUM,DUM2(4),PDMAX.DUM3
      ABARE=ASTOT/RAOR
      IFIKNTR1.EO.O)GO TO  600
  100 TLTE=DLTE/12.0
      IF (KGO-2) 120,1 10,110
  110 TMTD=0.0
      UBARE=0.0
      GO TO 500
  120 CONTINUE
  160 HT5=RAOI/(1.0/UTOT-(RTOT+RFIN+1.0/HAIR))
  220 CONTINUE
  280 UCLN=RAOR/(1.0/UTOT-RFTOT)
      UBARE=UTOT*RAOR
      XREX=(1 .O/FSUM-1 . 0)*100.0
      J=1
      DO 290 1=1,2
  290 RE12(1..J)=REA(J)*VIS(J)/VIS12(I,J)
      TT2=TOUT(1)
  306 TWALL=TT2-UTOT*RAOI*(TT2-TIN(2))/HTS
  308 TD=1.0/(1.0/HTS+0.5*(RTW-RFI))
      DT1=TIN(1)-TOUT(2)
      TO=TIN(1)-UTOT/TD*DT1
  500 WLQI 1 )=W(1 )
      WLO(2)=W(1)
  600 CONTINUE
C *** SET  UP VARIABLES AND CALL  ACCOST  FOR BUNDLE COST
      NBPU=ZBYP+.01
      NMOT=ZFAN+.01
      DHEDW=DBW+4.
      IF( (-1 )**NTP)710,710,720
      DTN10=0.
      GO TO  730
      DTN10=DNZ(2)
      CONTINUE
  710

  720
  730
C
C * * *
c ***

C ***
c * * *
ASSUME VELOCITY ENTERING THE SIDES OF THE  BUNDLE  EQUALS  VAPP
AND CALCULATE THE HEIGHT OF THE TOWER
XTOWR=W(2)/ZBYP/ZBUP*12./VAPP/DBW/60./.075
FIND 2 OF THE PIPE SIZES TO BE USED  IN GEOM2
D(5) = SCJRT(W(1 )/OEN12(1 ,1 )/VX/19.635)
D(9)=D(5)/2.
SET PIPING ARRANGEMENT  CODE FOR GEOM2
INML=1
IF(D(5) .GT.PDMAX)INML = 2
IF(((-1)**NTP).LT.O)INML=INML+2
 52010
 52020
 52030
 52010
 52050
 52060
 52070
 52080
 52090
 521 00
 52 MO
 521 20
 52130
 52140
 52150
 52160
 521 70
 52 180
 52 190
 52200
 52210
 52220
 52230
 52240
 52250
 52260
 52270
 52280
 52290
 52300
 52310
 52320
 52330
 52340
 52350
 52360
 52370
 52380
 52390
 52400
 52410
52420
52430
52440
52450
52460
52470
52480
52490
52500

-------
C **+ ADD 1/2 OF  SUPPLY  LINE  DIAMETER TO TOWER HEIGHT TO INSURE THAT
C *** PIPE DOES NOT  SIGNIFICANTLY  INTERFERE WITH AIR FLOW
      IF(INML.GT.2)XTOWR=XTOWR+D(9)/24.
      CALL ACCOST(DLTS,NTT,NTR,NTP,DTIM,DTO,NFPIN.PL,PTtDHEDW,DLOV,
     1 DNZ(1),DTN10,N001I,NQOlO,DTN2I,DNZ(2),N002I,N0020,2BUP,2FAN,DFAN,
     2 NBLAD.NMOT,HPFNC,NBPU,XTOWR,KNTR1 ,CTTOT,CSTOR,DFH,DFT )
      PRICEI1,NSUM)=CTTOT*COST(2)
      STOTS=PRICE(1,NSUM)
  800 CONTINUE
      IF(KNTR1.EQ.O)GO  TO  850
C *** TRANSFORM INPUT  DATA FOR  UNIT  CONVERSION
      VISLZI2)=HALT
      DPTA=PDI
      APLOT=ZBYP*ZBUP*(DLOV+DNZ( 1 )* . 2 ) * ( DBW+4 . 0 ) / 1 2 . 0
C *** CORRECT THE PLOT  AREA FOR THE  INCLINATION  OF THE TUBES
C     ANG(3)  IS THE  COSINE(ANGI)
      APLOT=APLOT*ANG(3)
  850 CONTINUE
      VISLZ(1)=DLOV
      ISUM(09,NSUM)
      ISUM( 1 0,
      I SUM(12,
      ISUM( I 3,
      SSUM(03,
      SSUM(04,
.01
.01
.01
,0)/12.0
ZFAN+0.
ZBYP+0.
NTT
DLOV+0.
(DBW+4.
DFAN
ABARE
ODUT*1
VAPP
HPFNC
TCONV(TOUT(1),1,2)
DPTOT(2)*27.73
DPTOT(1)
                             . E-6
        ,NSUM)
        ,NSUM)
        ,NSUM)
        ,NSUM)
        ,NSUM)
SSUM(05,NSUP/I)
SSUM(08,NSUM)
SSUM(1O.NSUM)
SSUM(11,NSUM)
SSUM(12,NSUM)
SSUM(15,NSUM)
SSUM(16,NSUM)
SSSUM(1)=ASTOT*1.E~03
S3SUM I2) = TCONV(TIN(1 ) , 1 ,2)
SSSUMf3)=VT
SSSUM(4)=W(1)*1.E-06
SS3UM(5)=TCONV(TIN(2),1,2)
SSSUM(6)=TCONV(TOUT(2),1,2)
SSSUP/K 7)=W(2) *1 . E-06
SSSUM(8)=STOTS
SSSUM(9)=TIN(1)-TIN(2)
SSUM(14,NSUM)=(SSSUM(2)-SSUM(12,NSUM))/SSSUM(9)
ISUM(5,NSUM)=SSSUM(5)-t-.49
ISUM(6,NSUM)=SSSUM(6)+.49
I SUM(3,NSUM)=VAPP+.49
ISUM(4,NSUM)=SSSUM(2)+.49
SSUM(1 ,NSUM)=VT
SSUM(2,NSUM)=SSSUM(4)
SSUM(9,NSUM)=SSSUM(7)
SSUM(7,NSUM)=SSSUM(9)
52510
52520
52530
52:>40
52550
52560
52570
52580
52590
52GOO
52610
52620
52630
52040
52650
52060
52670
52680
52690
52700
52710
52720
52730
52740
52750
52760
52770
52780
52790
52800
52810
52820
52830
52840
52850
52860
52870
52880
52890
52900
52910
52920
52930
52940
52950
52960
52970
52980
52990
53000

-------
      RETURN
      END
                                                                       53010
                                                                       53020
      SUBROUTINE  OUTPT
C *** CONTROLS  THE  FINAL AND SUMMARY OUTPUTS  A'JD  CALL  OPTIM(IZER)
      COMMON NFO,KGO,KNTRO,KNTR1,NSUM,NPAGE,DA«'(2).PI
      COMMON KCI ,KER,KERR(20) , KFIN.KREG, LA 1C , LSL'P , MM , NP ,NR , NT 1 .NT2.NTP,
     1NTR,MTT,ABARE,AFAN,AMIN,APLOT,APPR,ASBUN,ASTOT,AXAV,AXFP|20),CP(2)
     2,DEN(2).DEN12(2.2),DENFN,DENLZ(7),DBW,DE':.DFH.DrRlDFS,DFT,DKL,
     3DLSP.DLTE,DLTO,DLTS,DriZ(2),DTI , DT I M , DT F , D TO , DT T , PL , P T
      COMMON DPAD,DPAF,DPAM,DPAW,DPF(10),DPI,D-NZ(2),DPT,DPTA,DPTF,
     1DPTOT(2),POUT(2),PTUB,RV2,GAMAX,GT,HPFNC,HAIR,HTS.UBARE.UCLN.UTOT,
     2QI2) ,ODUT,OTOT,RFI ,RFIN,RFTOT ,RTOT,RTW,TA V(2) , TIN(2) ,TOUT(2)  ,TT(8)
     3,TWALL,TD,TW,TMTD,TK(2) ,VAPP,VNZ(2) ,VT,DFAN,TLTE,AOF,V ISLZ(7),
     4VIS(2t.VIS12(2,2),VISW,W(2),WAPF,WB(2),WLQ(2>
      COMMON ANG(3),CFH(3),CFP(3),CFR,CKBSC,CKFNG,CKHSC,CKLOV,CKSTC,F,
     1FALT,FINEF,FFF,FSUM,OCL(4) ,ODL(4),OKL(4) ,OML(4) ,OMV ( 4)tP,PRAN(2),
     2PRALZI7),R,RAOI,RAOR,RARAF,RAPMX,REA(2),RE12(212),RFNPL,RPT,TLA,
     3XREX.ZWP.ZNF,ZNTP,ZNTR,ZNTT,ZTPP(20) ,ZTPPA
      COMMON ZTRD.ANGI ,ZBYP,ZBUP,ZBUS,ZFAN,DFAN I,DLOV,ZNFI ,PTI ,TKT,TKF,
     1WDI2) .VAPPI ,TAMB,HALT,C319,TIND(2) ,TOUTD(2),RFD,PSD,TTMIN,QD(7),
     2CARD7I6)  DNZI(2),PDI,CFNG,CHSC,CLOV,CBSC,PRSTC.RFAIR,RFCT,ZNOZ(2),
     3RA5Pc!zTPD,ZNTD.COST(7),SSUM(16,30) ,ISUM(13.30),PR 1CE(2,21 )
      KOT=1
  100
  250
  500
  61 0
  700
  1000
  6000
KOT1=KOT
CALL OCONV
CALL
CALL
CALL
CALL
(KOT, 1 )
(KOT,KOT1)
(KOT.KOT1)
(KOT+2, 1  )
     OUTFA
     OUTFB
     OCONV
     OWARN
CALL SECOND(TYM1)
TYMEL=TYM1-DAY(2)
DAY(2)=TYM1
WRITE!NFO,6000)TYMEL
CALL OUTSM
CONTINUE
RETURN
FORMAT(21HO*** CASE EXECUTED
END
                              IN,F8.2,5H SEC. )
 53030
 53040
 53050
 530GO
 53070
 53080
 53090
 53100
 531 10
 53120
 53130
 53140
 531 50
 531 60
 53170
 53100
 53190
 53200
 53210
 53220
 53230
 53240
 53250
 53200
 53270
 53280
 53290
 53300
 53310
 53320
 53330
53340
53350
53360
53370
53380

-------
00
 SUBROUTINE OUTPUT ( WTDUM , TTIN , TOUT , C LFAC , VMI N , VMAX , TLMI N , TLMAX , TSAT
1 , QDUM.CITEM.CNEW.NPAGE, DAY , DPMAX , T LM , DPTOT ,PSAT.PS1,PS2,KCOND1
1 KMETL ,MN, BWG,
2TS1 , TS2.TLM1 ,TLM2,U01 ,U02,TR1 ,TR2,FRAC,FRAC2,TIN2,PSMIN,PSMAX)
 DIMENSION CNEW( 1 5) ,CITEM( 10, 15)
 DIMENSION TUBEM( 13,2),SHETM(6,2)
 DATA  TUBEM/7H   ADMI.7H ARSENI.7H    ALUM.7H  ALUM.  ,7H  ALUM.  ,
                                ,7H CARBON, 7H  410  ST.7H  304 ST,
                                ,7HCAL CU .7HINUM    .7HBRASS
                                .7HCU  -  NI.7H  STEEL  .7HAINLESS,
    1  7H   MUNTZ.
    2  7H  316  ST.
    3  7HBRONZE  ,
    4  7HAINLESS,
                              7H  90/10
                              7H    TITA
                              7H  METAL
                              7HAINLESS
                  DATA SHETM/7H  MUNTZ
                 1 7H 90/10  ,7H METAL
                 2 7HCU - NI/
,7H  70/30
.7HRALTY
,7HCU  - NI
,7HNIUM    /
,7H  CARBON,7H
                                       304 ST.7H 316 ST.7H  ALUM.
                          7H STEEL ,7HAINLESS,7HAINLESS,7HBRONZE
     WCONV(W)  =  W/2.505
     OCONV(Q1)  =  Q1/3-968
     TCON(T)=(T-32.17)/1 .8
     PCONV(P)  =  P *  0.03452
     Q=QDUM/1.E6
     WT=WTDUM/1.E6
     WTS  =  0/950.0
     WT1  =  WCONV(WT)
     WTS1  = WCONV(WTS)
     OC1  =  QCONV(Q)
     TC1=TCON(TTIN)
     TC2=TCON(TOUT)
     TC3=TCON(TSAT)
     DP1  =  PCONV(DPTOT)
     PSAT1  =  PCONV(PSAT)
     PS11  = PCONV(PS1 )
     PS21  = PCONV(PS2)
     TLMC  = TLM/1.8
     WRITE(6,900)
     WRITE(6,910)WTS,WTS1,TSAT,TC3,PSAT,PSAT1
     IF(KCOND-2)150,100.150
100  WRITE(6,925)PS 1 ,TS1 ,U01 ,FRAC,TTIN,TR1 , TLM1 TPS2,TS2,U02,FRAC2,TIN2,
   1TR2,TLM2
150  CONTINUE
     WRITE(6.920)WT,WT1 ,TTIN,TC1 ,TOUT,TC2,0,QC1 ,TLM,TLMC,CLFAC
     WRITE(6,930)VMIN,VMAX,DPMAX,TLMIN,TLMAX,PSMIN,PSMAX
     WRITE(6,940)(SHETM(MN,I) ,1 = 1,2),(TUBEM(KMETL,I) ,1 = 1,2) ,BWG
     DO 600  1 = 1 ,10
     IF(CITEM(I,1).GT..99E30)GO  TO  700
600  WRITE(6,950)CITEM(1,6),CITEM(I,4),CITEM(I,5),CITEM(I,3),CITEM(I,2)
   1 ,CITEM(I,12),CITEM(I,10),CITEM(I,7),CITEM( I,9),CITEM(I , 11),
   2CITEM(I,1)  ,CITEM(I,8)
700  CONTINUE
900  FORMAT(36H1** SURFACE CONDENSER DESIGN         ,/)
910  FORMAT(22HO»* STEAM  CONDITIONS  ,/,
   1        22H    TOTAL  FLOW LEAVING,3X,F7.3,8H MMLB/HR,8X,F7.3,8H MMK
53390
53400
53410
53420
53430
53440
53450
53460
53470
53480
53490
53500
53510
53520
53530
53540
53550
535GO
53570
53580
53590
53600
53610
53620
53630
53640
53650
53660
53670
53680
53690
53700
53710
53720
53730
53740
53750
53760
53770
53780
53790
53800
5381 0
53820
53830
53840
53850
53860
53870
53880

-------
   2G/HR./.26H     SATURATION TEMP.
   3.C,/,  26H     SATURATION PRESSURE
   4CM2,/  )
920 FORMAT(32HO**  CIRCULATING WATER CONDITIONS,/,
   1        15H     FLOW  RATE  ,10X,    F7.3, 8H MMLB/HR,8X,F7.3,8H MMKG/
   2HR,/,  26H     TEMP.ENTERING
   3.C,/,  26H     TEMP.LEAVING
   4.C,///,26H  **  OVERALL  PERFORMANCE
                                         ,F6.2,6H DEC.F,11X.F6.2,GH  DEG
                                         ,F6.2,6H IN HG,1 1X , F6.2,7H  KG/
                                         .F6.2.6H DEG.F,11X,F6.2,6H DEG
                                         ,F6.2,6H DEG.F,11X,F6.2,6H DEG
                   HEAT  DUTY  ,8X,
                                      F9.3.10H MMBTU/HR  ,5X,F8.3,10H  MM
   5       15H
   6KCAL/HR,/,
   7       26H    MEAN  TEMP.DIFF.        .F6.2.6H DEG.F,11X,F6.2,6H  DEG
   8.C./,  22H    CLEANINESS FACTOR , 21X , F5.3,//)
925 FORMAT(26HO** MULTI PRESSURE DESIGN  ,/,
                              SATURATION   OVER.
                            PRESS.   TEMP.
   1
           56H
       ,    62H
       LMTD,/,
           10H
           10H
                                           COEFF.
                           FRAC.
                           DUTY
                 INLET
                 TEMP.
TEMP.
RANGE
                   ZONE  1,F8.2,F8.1,F8.2.F6.2,2F8.1.F7.1,/,
930 FORMAT(67HO**  DESIGN  RESTRAINTS
   1AXIMUM
   2       29H
   3       31H
   4       1 9H
   5       30H
                   ZONE  2,F8.2,F8.1,F8.2,F6.2,2F8.1,F7.1
                                               MINIMUM
                                                         //)
                   TUBE SIDE VELOCITY FT/SEC,4X,F6.2,17X,F6.2,/,
                   TUBE SIDE PRESSURE DROP PS I ,25X,F6.2,/ ,
                   TUBE LENGTH FT.,14X,F6.2,17X,F6.2,/,
                   SATURATION PRESSURE, IN HG , -IX , F5 .  2 , 1 8X , F5 . 2 , // )
940 FQRMAT(25HO**  DESIGN    PARAMETERS  , / , 19H    PLATE MATERIAL  ,2A7,
   1/.19H     TUBE   MATERIAL ,2A7,/,19H    TUBE     GAUGE  .F14.0,//,
   1       56H   DESIGN  TUBE INFORMATION      NO.OF  NO.OF  TUBE  SIDE
                            TOTAL    COST.11H
   2,
   3
   4,
   5
   6,
           26H
           56H
           26H.
           56H
           26H
                 OVERALL
                   NO.
                  COEFF.
                 SERVICE
                      ESTIMATED,/,
O.D  LENGTH  NUMBER  TUBE   SHELL
   SURFACE  M-$  ,11H  TOTAL     ,/,
                   PRESS VELOC
    AREA
     PASSES  SER.    DROP
,14H   WEIGHT(TONS))
950  FORMAT(F7.0,F7.3,F7.1,F9.0,F7.0,F6.0,F7.3,F6.1,F10.3,F11.1,F7.0,
    1F9.0)
     RETURN
     END
 53890
 53900
 53910
 53920
 53930
 53940
 53950
 53960
 53970
 53930
 53990
 54000
 5401 0
 54020
 54030
 540-10
 54050
 540GO
 54070
 54080
 54090
 541 00
 541 10
 54 1 20
 54130
 54 1 40
 54150
 54160
 54170
 54180
 54190
54200
54210
54220
54230
54240

-------
      SUBROUTINE OUTSM                                                      54250
      COMMON NFO,KGO,KNTRO,KNTR1,NSUM,NPAGE,DAY(2).PI                       54260
      COMMON KCI,KER.KERP(20),KFIN,KREG,LAIC,LSUP . f.'M , MP , NR , NT 1 , NT2 , NTP ,     54270
     1NTR,NTT,ABARE,AFAN,AMIN,APLOT,APPR,ASBUN,ASTOT,AXAV,AXPP(20),CP(2)   54280
     2,DEN(2),DEN12(2,2) . DENFN,DENLZ(7) .DBW.DEQ.DFH.DFR.DFS.DFT.DKL.       54290
     3DLSP,DLTE,DLTO,DLTS,DNZ(2),DTI,DTIM,DTF.OTQ,DTT,PL,PT                 54300
      COMMON DP AD , DPAF , DP AM . DRAW , DP F (10),DPI,DPNZ(2),DPT,DPTA,DPTF,         54310
     1DPTOT(2),POUT(2),PTUB,RV2.GAMAX.GT,HPFNC,HAIR,HTS,UBARE,UCLN,UTOT,   54320
     20(21 ,QDUT.QTOT.RFI ,RFIN,RFTOT,RTOT,RTW,TAV(2),T1N(2) ,TOUT(2!,TT(8)   54330
     3,TWALL,TD.TW,TMTD,TK(2).VAPP,VNZ(2),VT,DFAN,TLTE,AOF,V1SLZ(7),       54340
     4VIS(2),VIS12(2,2),VISW,W(2),WAPF,WBl2),WLO(2)                         54350
      COMMON ANGCSJ.CFHOJ.CFPOJ.CFR.CKBSC.CKFNG.CKHSC.CKLOV.CKSTC.F,     54360
     1FALT,FINEF,FFF,FSUM.OCL(4),ODL(4),OKL(4),Or(-L(4) . CMV ( 4 ),P,PRAN(2),     54370
     2PRALZ<7),R,RAai,RAOR,RARAF,RAPMX,REA(2),F
-------
                   411H   FUEL
                   547HFUEL   COND.  RECVRY  SUB-   DURING    PER   TOTAL,/,5X,
                   511HCOST    0+M,
                   655H    COST   PEN.   PEN.
                   726HSTAT.  CONSTR    KWH
                                 COST     COST
                              COST,/,1X,97(1H-)
COST
TURB.
              2030  FORrvlAT(ix.I2.5F7.1,F10.1,5F7.1,F7.3,F8.1)
                    IF  (NSUM)  1000,1000,350
               350  KOT=1
                    WRITEINFO, 25)
               600  WRITE(NFO, 200)
                    DUM = 0
                    DO 30
                          J=1
                 30
i
i—>
ro
                                           , SSUM(14.K),SSUM(7,K) ,SSUM(15,K) ,SSUM(16.K)
               NATTR
                   J)*DATTR( J)
              000 . *BCAPC
    WRITE! NFO, 220)
    DO 640 K=1 ,NSUM
    WRITEINFQ,240)K, ISUM( 10,K),ISUM(9,K), (SSUM( I,K).I=3,5),
    1 ( I SUM! I, K), 1 = 12, 13) ,ISUM(4,K) , SSUM( 12,K) , (SSUM( I. K), 1 = 1, 2).
    2( ISUMI I ,K) , 1=5.6) . ISUM(3,K) ,SSUM(9,K)
640 CONTINUE
    WRITE(NFO, 260)
    DO 680 K=1 .NSUM
    WRITE(NFO,280)K.SSUM(8,K),TISUM(K) ,SSUM(6,K) , SSUM( 1 1 , K ) , I SUM( 1 1 , K )
    1 ,ISUM( 2,K ) ,
    2   ISUMI7.K) ,SSUM( 13,K) ,
680 CONTINUE
    NPAGE=NPAGE+1
    OUTPUT   COST OF AIR COOLER -  AREA«COST ( 1 ) +HP*COST ( 2 ) =TOT A L
    WRITE(NFO,2000)
    WRITE(NFO,2010)
     DO  930 K = 1 , NSUM
     CHP=PRICE( 2,K)*1
     CSA=PRICE( 1 ,K)*1
     DUM1 =\PRIC(4,K)*1000. /DUM
     DO  925 1=1 ,12
     CA( I )=XPRIC( I ,K) + 1  .E-3
     WRITE(NFO,2030)K,CSA,CHP,(CA(I),I=1 ,3) ,CA( 12) ,CA(5)
    1 (CA( I  ) , 1=7 , 10) ,OUM1 ,CA(4)
 930 CONTINUE
     WR I TE( NFO. 1 100)
     DO  1 900 K=1 , NATTR
     IF(K.EQ.7)WRITE(NFO,2000)
     WRITE(NFO,1200)ATTR(K),PLDFT(K)
     WRITE  (NFO, 1300) (ZLOAD(K, I ) , 1=1 ,NSUM)
     DO  1800 1=1 ,NSUM
     AUXMW( K, I ) =AUXMW( K , I )*1  . E-03
     TURMW( K, I )=TURMW( K , I )*1  . E-03
1800 CONTINUE
     WRITE( NFO, 1400) ( AUXMW(K, I ) , 1=1 ,NSUM)
     WRITE  (NFO, 1 500) (TURMWfK, I) , 1=1 ,NSUM)
                800
                **+
                910
                920
                925
                                     . E-3
                                     .E-3
 54750
 54760
 54770
 547BO
 54790
 54800
 54810
 54820
 54830
 54840
 54850
 54660
 54870
 54880
 54890
 54900
 54910
 54920
 54930
 54940
 54950
 54960
 54970
 54980
 54990
 55000
 55010
 55020
 55030
 55040
 55050
 55060
 55070
 55080
 55090
 55 1 00
 551 10
 551 20
 55130
 55140
 55150
55160
 55 170
551 80
551 90
55200
55210
55220
55230
55240

-------
                1900 CONTINUE                                                              55250
                1100 FORMAT(///,52H **• OFF DESIGN PERFORMANCE OF THE OPTIMIZED  DESIGNS    55260
                    1.19H IN THE BOX COMPLEX,/,37H TURBINE FIRING RATE.MW,AND AUXILIARY    55270
                    2.34H MW ARE GIVEN FOR EACH AMBIENT ***,/)                             55280
                1200 FORMAT(/,7H  TAMB=,F6.1.16H  DEMANDED LOAD=,F6.3)                     55290
                1300 FORMAT(6H LOAD .21F6.3)                                               55300
                1400 FORMAT(6H A.  MW.21F6.1)                                               55310
                                  MW.21F6.0)                                               55320
                                                                                           55330
                                                                                           55340
                                                                                           55350
 1500 FORMAT(6H T
 1000 NSUM=0
      RETURN
      END
ro
ro
      SUBROUTINE OWARN                                                      55360
C *«* PRINT OUT WARNING AND ERROR MESSAGES                                  55370
      DIMENSION IWARN(20)                                                   55380
      COMMON NFO.KGO,KNTRO,KNTR1,NSUM,NPAGE,DAV(2),PI                       55390
      COMMON KCI,KER.KERR(20) ,KFIN.KREG, LA 1C , LSUP , t,VJ\, NIP , NR , NT 1 .NT2.NTP,    55400
     1NTR.NTT.ABARE,AFAN,AMIN,APLOT.APPR,ASBUN,ASTOT,AXAV.AXPP(20),CP(2)   55410
     2,DEN(2).DEN 12(2.2 I,DENFN.DENLZ(7),DBW,DEQ,DFH,DFR,DFS,OFT,DKL,        55420
     3DLSD,DLTE.DLTO.DLTS,DNZ(2).DTI,DTIM,DTP,DTO.DTT.PL,PT                 55430
      COMMON DPAD.DPAF , DPAM , DP AW , DPF ( 10),DPI,D(1'JZ(2),DPT,DPTA.DPTF,        55440
     1DPTOT(2),POUT(2),PTUB,RV2,GAMAX.GT,HPFNC,HA IR,NTS,U6ARE,UCLN,UTOT,   55450
     20(2),QDUT.QTOT.RFI,RFIN,RFTOT,RTOT,RTW,TAV(2),TIN(2),TOUT(2),TT(8)   55460
     3,TWALL,TD,TW,TMTD,TK(2),VAPP,VNZ(2),VT,DFAN,TLTE,AOF,V1SLZ(7|,        55470
     4VIS(2),ViSl2(2.2),VISWfW(2),WAPF,WB(2),WLC/<2)                         55480
      COMMON ANG(3),CFHI3),CFP(3),CFR.CKBSC,CKFNG,CKHSC,CKLOV.CKSTC,F,      55490
     1FALT,F1NEF,FFF,FSUM,OCL(4),ODL(4),OKL(4),OML(4),OMV(4).P,PRAN(2),    55500
     2PRALZ(7).R.RAOI.RAOR,RARAF.RAPMX,RE A(2),RE12(2,2),RFNPL,RPT,TLA,      55510
     3XREX,Zr,'P,ZNF.ZNTP,ZNTR,ZNTT,ZTPP(20 ),ZTPPA                            55520
      COMMON ZTRD.ANGI,ZBYP,ZBUP,ZBUS,ZFAN,DFANI.DLOV.ZNFI,PTI,TKT,TKF,    55530
     1WD(2),VAPPI.TAMB,HALT,C319,TIND(2J,TOUTD(2),RFD,PSD,TTMIN,QD(7),      55540
     2CARD7(6),DNZI<2) ,PDI,CFNG.CHSC,CLOV.CBSC,PRSTC,RFAIR, RFCT.ZNOZ(2) ,   55550
     3RASPC,ZTPD.ZNTD.COST(7),SSUM(16.30),I SUM(13,30),PR ICE(2,21 )          55560
 1000 FORMAT(1H1)                                                            55570
 1001  FORMAT(4H ***.17(4H****))                                             55580
 1002 FORMAT<20H I   WARNING MESSAGES,/4H  I   ,4(4H	),/2H I)              55590
 1003 FORMAT(55H I   MINOR CALCULATION ERRORS  /  PROGRAM EXECUTION CONTIN,   55600
     1  3HUES/2H I/47H I  NO.   S/R   ERROR  DESCRIPTION  / ACTION  TAKEN ./    55610
     2 13H I  	,2X.B(4H	),/2H  I)                                 55620
 1004 FORMAT(54H I   MAJOR CALCULATION ERRORS  /  PROGRAM EXECUTION STOPS.    55630
     1  /2H I/51H I   NO.  S/R   ERROR DESCRIPTION  /  SUGGESTED ACTION ,/     55640
     2 13H I  	,2X.9(4H	),/2H  I)                                 55650

-------
ro
CO
              2001  FQF?MAT(55H  I   TUBE FLUID PASSED THROUGH  TRANSITION ZOME / IF OVER,
                   1 9HALL  CASE ,/
                   2 60H  I   RERUN WITH STEPWISE OPTION  TO  INSURE  REASONABLE RESULTS.,
                   3 /2H  I)
              2009  FORMATI23H  I   SPEC. TUBE COUNT OFtI5,24H /  BUNDLE DOES NOT AGREE,
                   1 5H W1TH./23H I   CALCULATED VALUE OF,15,
                   2 30H  /  BUNDLE.   PROGRAM USED SPEC../2H  I)
              2010  FORMAT(44H  I   FAN TO FACE AREA RATIO  LESS  THAN .35 /   /
                   1        44H  I   CHECK FAN RING I.D. AND  NO.  BUNDLES/BAY. / 2H I)
              2011  FORMAT(70H  I   FAN DIAMETER EXCEEDS  BUNDLE  WIDTH!S) OR FAN/FACE ARE
                   1A  EXCEEDS  0.7./44H I  BAY MAY BE SHARED  B/  MORE THAN ONE UNIT. /
                   2 52H  I   AIR  DYNAMIC PRESSURE DROP MAY  BE OVER PREDICT ED./2H I)
              2012  FORMATO7H  I   PCT. UNDERDESIGN IS CONSERVATIVE.  / ,
                   1 60H  I   RECOMMEND RERUN TO FIND OUTLET  TEMP (CARD 1  ITEM 1=4)  /
                   2   2H  I )
                                  DANGER OF FREEZING OR SOL IDIFICATI ON./2H 2)
                                   2  UOCON  CONV. METHOD  FAILED  IN COLBURN-HOUGEN/ U,
2013 FORMAT(41H  I
3002 FORMAT(55H  I
    1 8HSED WARD  ,/2H  I)
3005 FORMAT(55H  i    5   QQUAL
    1 15H/  CALCULATES  DX  ,
    2 /2H  I , 13X.20HPROPORTIONAL TO DQ.
                                             CP AND HFG  NOT  CONSISTENT WITH T-Q CURVE,
                                                        ,/2H  I )
3006 FQRMAT(57H  I
    1 D      /56H  I
    2       /56H  I
    3       /  2H  I)
3007 FORMAT(55H  I
     I 6HE  USED
                                      EXINI
                                   7  OBALN
                               ,/2H I)
                              THE VAPOR  PRESSURE  CURVE HAS BEEN ADJUSTS
                              TO AGREE WITH  ENTERING FLOW CONDITIONS
                              (DEW  POINT,  PCT.  NON-COND.,  INLET PRESS.)

                              CONV.  TO CALC,  AVG.  CP FAILED/ LAST VALU,
               3008 FORMAT(55H I   8  QPROF  CONV. METHOD  FAILED/  LAST  VALUE USED
                   1  /2H I,13X.31HCHECK INPUT VAPOR  PRESSURE  DATA   ,/2H I)
               3011 FORMAT(55H I  11  SUPER  REQUIRED  AIR  VELOCITY  EXCEEDS  3000 FPM/ ,
                   1  17HCASE TERMINATED     ,/2H  I)
               3013 FORMAT(55H I  13  HTSEN  CONV. FAILED  IN  CALC.  COEF.  FOR VERTICAL,
                   1  17H TUBES IN LAMINAR   /2H I , 1 3X , 5HF LOW .  , ,/2H  I)
               3016 FORMAT(55H I  16  EXINI  SPECIFIED  INLET  PRESSURE  DIFFERS BY MORE,
                   1        17H THAN 5 PCT.  FROM/
                   2        55H I             CALCULATED  VALUE  OBTAINED  FROM CONSIDERI,
                   3        17HNG VAPOR PRESSURE/
                   4       55H I
                   5        2H I)
               3017 FORMAT(56H I
                   1      /4BH I
               3018 FORMAT(55H I
                   1      /32H I
               3019 FORMAT(74H I
                               AND ENTERING QUALITY / LARGER VALUE  USED/
                    17  EXINI
                    18  GEOM1

                    19  DPAIR
                              CALC. DEW  POINT  TEMP.  EXCEEDS INLET TEMP.
                              /  INLET  TEMP.  RESET  TO  DEW  POINT../2H I)
                              SPEC. AND  CALC.  BUNDLE  WIDTH  DIFFER /
                              CALC. VALUE  USED. ,/2H  I )
                              AIRSIDE  STATIC DP  IS HIGH.  IF AXIAL FAN U
    1SED.THE FAN EFFIC./ 2H  I,13X,56HUSED  MAY  BE HIGH.  /  CHECK  FAN PERF
    20R. AND EFFIC. CURVES.)
3020 FORMAT(60H I  20  QBALN  GIVEN DUTY AND CALC. TUBE SIDE DUTY DIFFE
    1R BY,/73H I              MORE THAN 50  PCT. /   GIVEN DUTY SET  TO ZER
    20 AND CASE CONT.  , /2H  I)
3021 FORMAT (54H I  21  CHANL  OP. CONVERGENCE FAILED/RESULTS SHOULD S,
 55660
 55670
 55680
 55090
 55700
 55710
 55720
 55730
 557-10
 55750
 55760
 55770
 55780
 55790
 55800
 55810
 55820
 55830
 55840
 55850
 55060
 55870
 55880
 55890
 55900
 55910
 55920
 55930
 55940
 55950
 55960
 55970
 55980
 55^90
 56000
 56010
 56020
 56030
 56040
 56050
 56060
 56070
 56080
 56090
56100
561 10
561 20
56130
561 40
56150

-------
 3022
 3023
 3050

 3062
 3064

 3065

 3069
 3070
 3071
 3072
118HTILL BE REASONABLE, /
 FORMAT(37H I  22  HTURB
 FORMAT(37H I  23  QTURB
 FORMAT(55H i  50  SUPER
1  14H EXTREME TEMP.   ,/2H
 FORMAT(38H I  62
 FORMAT(55H I  64
1  11HHAN 50 PCT.
 FORMAT(55H I  65
1  16HITY SPEC
 FORMAT(46H
 FORMAT(48H
 FORMAT(49H
 FORMAT(QGH
1 FROM CALC.
    OBALN
    QSALN
    /2H I)
    UOSEN
SHOULD /2H
69  PZONE
70  MTDOV
    MTDOV
    EXINI
           2H I)
           EXTRAPOLATION OCCURRED,/2H  !)
           EXTRAPOLATION OCCURRED,/2H  I)
           CONV. FOR PERFORMANCE  FAILED.
           I ,13X.8HPROFILE.   ,/2H  I)
           TEMPERATURE CROSS  FOUND   ,/2H
           HOT AND COLD CALC.  DUTY  DIFFER
71
72
 3073  FORMAT(93H  I
     1 CALC.  VALUE
 3075  FORMAT(46H
 3097  FORMAT(63H
     1PECIFED/2H
 3098  FORMAT(51H
     1 /2H  I , 13X.33HTEMP.
       XAOF =(DBW+4.0J/12.0
       MMC = 1
       NWARN=0
       IF (KGO-2)  500,100,500
C ***  HEADING
  100  IF (NWARN)  110,110,120
  110  IF (MM    )  900,900,120
  120  WRITE  (NFO,1000)
C ***  WARNING MESSAGES
       IF (NWARN)  300,300,200
  200  WRITE  (NFO,1001)
       WRITE  (NFO,1002)
       DO 299  1=1,NWARN
       IF (IWARN(I)-  1)  299,210,212
  210  WRITE  (NFO,2001}
  212  CONTINUE
  22G  IF (IWARN(I)-  9)  299,227,228
  227  WRITE  (NFO,2009)  NTT.NT2
  228  IF ( IWARNf I )-10)  299,229,230
  229 WRITE  (NFO,2010)
  230  IF (IWARN(I)-11)  299,231,232
  231 WRITE  (NFO,2011)
  232  IF (IWARN(I)-12)  299,233,234
  233 WRITE  (NFO,2012)
  234  IF (IWARN(I)-13)  299,235,236
  235  WRITE  (NFO,2013)
  236  CONTINUE
  299  CONTINUE
              WALL TEMP. CONV.  FAILED  REFERI
              I,13X,23HBE CLOSER  TO  WALL  TEt
              NTU CONIV.  FAILED/ REPORT  TO P
              PROBABLE TEMPERATURE CROSS  FOI
              CONV. METHOD  FAILED/ REPORT Tl
             DESUPERHEAT ZONE  DUTY DIFFERS I
VALUE/ CHECK CPV AND PROCESS./2H  I)
   73  EXINI  SUBCOOL ZONE  DUTY DIFFERS BY !
  / CHECK CPL AND PROCESS./2H  I)
   75  EXCON  NTU CONV.  FAILED/ REPORT  TO P
   97  PPAUT  AUTOMATIC  PROPERTY  CODE  (CARD
  13X,25HNOT INCLUDED IN DATA  BANK/2H  I)
   98  PPROP  TEMP. INPUT LESS  THAN   .1  RANI
          AIR  LESS THAN 200 RANKINE  ,/2H



MAY BE TOO,

I)
} BY MORE T,

UNCE VISCOS,
/IP. , /2H I )
FR./2H I)
JND. ,/2H I )
D PFR ,/2H I )
BY 50 PCT.

50 PCT. FORM

FR./2H I)
6 ITEM 1 ) S


-------
ro
On
: **+
  300
  306
  308

  309
  31 0

  311

  312

  313
  316
  317
  322
  323
  324
  325
  32G
  327
  323
  331
  33-1
  335
  338
  343
  344
  345
  346
  347
  343
  349
 6000
 6010
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027

: ***
  350
  352
                 354
                     MINOR ERROR MESSAGES
                     IF (  MM        )  400,400,306
                     IF (  KERR(1)-50)  308,309,309
                     WRITE (NFO, 1001 )
                               , 1003)
                               , MM
WRITE (NFO,
DO 399 1 = 1  ,
NWARN= 1-1
IF (NWARN)
DO 312 J = 1  ,NWARN
IF (KERR(I  )-KERR( J))  312,399,312
CONTINUE
IF (  KERR(  1 )-50)
IF(KERR( I )-2)399,
WRITE (NFO, 3002)
IF(KERR(I)-5)399,322,323
WRITE (NF0.3005J
IF (  KERR(  I )- 6)
WRITE (NFO, 3006)
IF (  KERRI  I )- 7)
WRITE (NFO, 3007)
IF (  KERRI  I )- 8)
WRITE (NFO, 3008)
IF(KERR( I )-11 )399,
WRITE (NFO, 301 1 )
IF(KERR( I 1-13)399,338,343
WRITE (NFO, 3013)
IF (  KF.RR(  I )-1 6)
WRITE (NF0.3016)
IF (  KERR(  I )-17)
WRITE (NFO, 3017)
IF (  KERR(  I )~1 8)
WRITE (NFO, 3018)
IF (  KERR(  I )-19)
WRITE (NFO, 3019)
IF (KERR(I)-20)
WRITE! NFO,  3020)
IF (KERR(I)-21) 399,6022,6023
WRITE (NFO, 3021 )
IF(KERR( I (-22)399,6024,6025
WRITE! NFO,  3022)
IF( KERRI I (-23)399,6026,6027
WRITE! NFO,  3023)
CONTINUE
IF (  KERRI  I)-50)  399,350,350
MAJOR ERROR MESSAGES
IF (MMC         )  354,354,352
WRITE (NFO, 1001 )
WRITE (NFO, 1004)
MMC=-1
IF (  KERR(I)-50)  399,355,356
                                      313,313,311
                                      313,350,350
                                     ,316,317
399,324,325

399.326,327

399,328,331

, 334,335
                                      399,344,345

                                      399,346,347

                                      399,348,349

                                      399,6000,6010

                                     399,6020,6021
  56660
  56b70
  SGGfiO
  5()o90
  5G700
  56710
  56720
  56730
  56740
  56750
  56760
  56770
  56780
  56790
  S6800
  56H10
 56820
 56030
 56940
 56850
 56860
 56870
 568RO
 56890
 56900
 56910
 56920
 56930
 56940
 56950
 56060
 56970
 56'.iBO
 56990
 57000
 57010
 57020
 57030
 57040
 57050
 57060
 57070
 57000
 57090
 57100
 57 110
 57120
 57130
571 40
57150

-------
                                      362,361,362

                                      364,363,364

                                      366,365,366

                                      368,367,368

                                      370,369,370

                                      372,371,372
no
01
  355  WRITE  (NF0.3050)
  356  IF(KERR(I)-62)360,359,360
  359  WRITE  (NF0.3062)
  360  IF  ( KERR( I )-64)
  361  WRITE  (NF0.3064)
  362  IF  ( KERR(I )-65)
  363  WRITE  (NFO,3065)
  364  IF  ( KERR(I)-69)
  365  WRITE  (NF0.3069)
  366  IF  ( KERR(I)-70)
  367  WRITE  (NF0.3070)
  368  IF  ( KERR(I)-71)
  369  WRITE  (NF0.3071)
  370  IF  ( KERR(I)-75)
  371  WRITE  (NF0.3075)
  372  IF(KERR(I)-97)380,379,380
  379  WRITE  (NFO,3097)
  380  IF  (KERR(I)-93)  382,381,382
  381  WRITE  (NF0.3098)
  382  IF  (KERR(I)-72)  384,383,384
  383  WRITE!NFO,3072)
  384  IF  (KERR(I)-73)  386,385,386
  385  WRITEfNFO,3073)
  386  CONTINUE
  399  CONTINUE
  400  WRITE  (NFO,1001)
       GO  TO  900
C ***  WARNING MESSAGES  ARE SET HERE
  500  CONTINUE
C ***  TRANSITION  ZONE  CHECK  FOR  SENSIBLE
  502  IF  (RE12(1 ,1 )-2000. ) 520,520,503
  503  IF  (RE12(2,1 )-1.OE4) 504,520,520
  504  NWARN=NWARN+1
       IWARNf NWARN) = 1
  520  CONTINUE
C ***  TUBE COUNT  DISCREPANCY
  570  IF  (NTT-NT2-NTR)  572,572,574
  572  IF  (NT2-NTT-NTR)  580,580,574
  574  NWARN-NWARN+1
       IWARN(NWARN)=9
C ***  SMALL  FAN/FACE
  580  IF  (RFNPL-.35)
  582  NWARN=NWARN-H
       IWARN(NWARN)=10
C ***  FAN DIA. EXCEED  BUND.  WIDTH.
  590  IF  (ZBUP*ZBYP-1.1)   592,600,600
  592  IF  (DFAN-XAOF*ZBUP)  594,596,596
  594  IF  (RFNPL-.7)        600,596,596
  596  NWARN=NWARN+1
       IWARN(NWARN)=11
                                                        CASES
                                   AREA RATIO
                                     582,582,590
571 60
57 170
57 1 80
57 190
57200
57210
57220
57230
57240
57250
57260
57270
572HO
57290
57300
57310
57320
57330
57340
57350
57360
57370
57380
57390
57400
57410
57420
57430
57440
57450
57460
57470
57480
57490
57500
57510
57520
57530
57540
57550
57560
57570
57580
57590
57600
57610
57620
57630
57640
57650

-------
  600 CONTINUE
  602 IF  (KCI -  1   )    610,604,610
  604 IF  (XREX+10.0)    606,610,610
  606 NWARN=NWARN+1
      IWARN(NWARN)=12
C *** FREEZING/SOLIDIFICATION
  610 IF  (TWALL-TTMIN-5.)  615,620,620
  615 NWARN=NWARN+1
      IWARN(NWARN)=13
  620 CONTINUE
      GO  TO  100
  900 RETURN
      END
                                                                       57660
                                                                       57670
                                                                       57680
                                                                       57G90
                                                                       57700
                                                                       57710
                                                                       57720
                                                                       57730
                                                                       57740
                                                                       57750
                                                                       57760
                                                                       57770
                                                                       57780
C  ** *
c  ***
 c  ** *
    1 0
    20
    30
 SUBROUTINE PIPDIVID,L.XMT,TLMAX,FJ,Sd,I)

              PIPE DIAMETER IN INCHES
              LENGTH OF PIPE IN FEET
              NUMBER OF PIECES
              MAXIMUM SHIPPABLE LENGTH IN FEET
              FIELD LABOR RATE IN DOLLARS/HR
              COST OF SHOP JOINT IN DOLLARS/DIAMETER  INCH
              SUBSCRIPT OF ARRAY
              ADDS A FIELD JOINT EVERY TLMAX FEET  TO  FIELD!I)
              ADDS A SHOP JOINT EVERY 48 OR 12 FT. TO  XSHOP(I)
              ADDS AN EXPANSION JOINT EVERY 110  FEET  TO  EXJOT( I )
 COMMON/BCK/XMCST(20),PIPDM(20),XSHOP(20),FIELD(20),EXJOT(20)
 DIMENSION EJARR(20),DIARR(20)
 ARRAY OF PIPE SIZES (INCHES)
 DATA DIARR/4.026,8.071,12.09,17.25,23.25,29.25,35.25,42.,48.,54.,
1             60., 66., 72., 78., 84., 90.,  96.,  108.,  114.,  144./
 ARRAY OF COSTS FOR EXPANSION JOINTS
 DATA EJARR/ 134.00, 234.00, 321.00, 508.00,
1             922.00, 1150.0, 2200.0, 3250.0,
             4500.0, 5300.0, 6100.0, 7500.0,
                             16800.
C
c
c
c
c
c
c
c
c
c
** *
+ * *
** +
** *
** *
* * +
** *
** *
+ * *
** *
GIVEN
D
L
XMT
TLMAX
FJ
SJ
I
THIS ROUTI

2
3            11100., 13000.,
 IF(D-48.01 )10,20 ,20
 F=TLMAX
 S=AMIN1(TLMAX,48.)
 GO TO 40
 IF(D-96.01)30,35,35
 F = AMIN1(TLMAX,48. )
1976 PRICES)
       850.00,
       3850.0,
       9300.0,
       28000./
                                           18000.
 57790
 57BOO
 57810
 57820
 57830
 57810
 57850
 57860
 57870
 57880
 57890
 57900
 57910
 57920
 57930
 579-10
 57950
 57960
 57970
 57980
 57990
 56000
 58010
 58020
 58030
 58040
58050
58060

-------
                     S=AMIN1(TLMAX,12.)
                     GO TO 40
                  35 F=AMIN1(TLMAX,24. )
                     S=AMIN1(TLMAX,12.)
                  40 XNO=AINT(L/F-.01)
                     FIELD(I)=FIELD(I)+FJ*(XN°+1.)*XMT*(1.4+1.6*0)
                     XNO=XNO*AINT(F/S-.01)+AINT((L-XNO*F)/S-.01)
                     XSHOP( I )=XSHOP( I )+SJ*XNO*XMT*D
                     XNO=AINT(L/110.-.01)
                     EXJOT(I)=XNO*XMT*GRS(DIARR,1,EJARR.1, D,20,JDUM)+EXJOT(I)
                     RETURN
                     END
                                                                          58070
                                                                          58C80
                                                                          58090
                                                                          501 00
                                                                          58110
                                                                          581 20
                                                                          58130
                                                                          58140
                                                                          58 150
                                                                          58160
                                                                          58170
                                                                          58180
00
               C
               C
               C
               C
               C
               C
               C
               C
               C
               C
               C
               C
               C
               C
               C
               C
               C

               C
               C
              C
              C
     SUBROUTINE  PLENUM(NFAN,DFAN.DL,DHEDW,TSPLM.DENCS.CPLM1,CPLL1.CTPLM
    1 , PLMTL,PLLAB.ZBUP)
     CDMMON/PIPE/XDIA(20),XLGT(20),NN1,NN2,XTOWR.PLNMH,TTTBH,VX,VN,VAVE

***  THIS  SUBROUTINE  COMPUTES THE INSTALLED COST FON PLENUM
***  INPUT  VARIABLES  ***
     DFAN   =  FAN  DIAMETER (FT)
     DL     =  BUNDLE  LENGTH (FT)
     DHEDW  =  BUNDLE  WIDTH (INCH)
     TSPLM  =  THICKNESS  OF PLENUM  (INCH)
     DEN    =  DENSITY  OF PLENUM  METAL (LB/INCH3)
     CPLM1  =  UNIT  COST  FOR PLENUM METAL  (S/LB)
     FPLM   =  INSTALLED  COST INDEX (BASED ON MATERIAL COST)
     NFAN   =  NUMBER  OF  FANS PER  BAY
     ZBUP   =  NUMBER  OF  BUNDLES  IN PARALLEL PER BAY

***  OUTPUT VARIABLE  ***
     CTPLM  =  INSTALLED  COST FOR  PLENUM ($)
     ZFAN=NFAN

***  BASE PLENUM HEIGHT ON 45 DEGREE DISPERSION ANGLE
     PLNMH=AMAX1((DHEDW/12.*ZBUP-DFAN)/2.,(DL/ZFAN-DFAN)/2.)
     DHPLM=PLNMH

     SIDE PLENUM AREA  (FT2)
     SIDEA=2.0*(DL+OHEDW*ZBUP/12.)*DHPLM
50 1 90
58200
58210
58220
58230
58P40
58250
58260
58270
58280
58290
58300
58310
58320
58330
58340
58350
58360
58370
58380
58390
58400
58410
58420
58430
58440
58450
58460
58470

-------
ro
              C
              C

              C
              C

              C
              C

              C
              C

              C
              C
TOP PLENUM AREA (FT2)
TOPA=DL*DHEDW*Z8UP/12.-ZFAN*3.1416+(DFAN/2.)*
PLENUM WEIGHT (LB)
WTPLM=DENCS*TSPLM*(SIDEA+TOPA)* 144.
PLENUM MATERIAL COST ($)
PLMTL=CPLM1*WTPLM
PLENUM INSTALLED  LABOR COST
PLLAB=CPLL1*WTPLM
PLENUM INSTALLED  COST
CTPLM=PLMTL+PLLAB
                    RETURN
                    END
584RO
58490
58500
5851 0
58520
50530
58540
58550
58560
58570
58580
58590
58600
58610
58620
58630
58640
58650
                     FUNCTION  PNLIM(AMIN,AMAX,AFUNC)
              C  ***  FUNCTION  LIMITS  AFUNC  BETWEEN  AMIN  AND AMAX
                     PNLIM=AFUNC
                     IF  (AFUNC-AMIN)  10,10,20
                  10  PNLIM=AMIN
                     GO  TO 50
              C  ***  IF  AMAX IS  LESS  THAN AMIN JUST SET  PNLIM  TO  AFUNC
                  20  IF  (AMAX-AMIN)  50,50,30
                  30  IF  (AFUNC-AMAX)  50,50,40
                  40  PNLIM=AMAX
                  50  RETURN
                     END
                                                                      58660
                                                                      58670
                                                                      58680
                                                                      58690
                                                                      58700
                                                                      58710
                                                                      58720
                                                                      58730
                                                                      58740
                                                                      58750
                                                                      58760
                                                                      58770

-------
co
o
      SUBROUTINE  PPAUT
C *** FILL  IN AUTOMATIC  PHYSICAL  PROPERTY  CONSTANTS
      DIMENSION AP(16),AP001(16)
      COMMON NFO,KGO,KNTRO,KNTR1 ,NSUM,NPAGE,DAY(2) ,PI
      COMMON KCI,KER,KERR(20),KFIN,KREG.LAIC,LSUPtMM,NP,NR,NT1,NT2.NTP,
     1NTR.NTT.ABARE,AFAN,AMIN,APLOT,APPR.ASBUN,ASTOT,AXAV.AXPP(20).CP(2)
     2,DEN(2) DEN 12(2,2 ) , DENFN,DENLZ(7),DBW,DE9.DFH,DFR.DFS,DFT,DKL,
     3DLSP,DLTE,DLTO,DLTS,DNZ(2),DTI,DTIM,DTF,OTO,DTT,PL,PT
      COMMON DPAD,DPAF,DPAM,DPAW,DPF(10),DPI,D"NZ(2l,DPT,OPTA,OPTF,
     1DPTOT(2),POUT(2),PTUB.RV2.GAMAX.GT,HPFNC,HAIR,HTS,UBAME.UCLN.UTOT,
     20(2)  QDUT.QTOT.RFI,RFIN.RFTOT,RTOT,RTW,T,VIS12(2,2).VISW,W(2),WAPF,WB(2),WLQ(2)
      COMMON ANG(3) ,CFH(3),CFP(3) , CF R , CKBSC , CKTNG , CKHSC , CK LClV, CKSTC , F ,
     1FALT,FINEF.FFF,FSUM,OCL(4),ODL<4) ,OKL{4),OMLI4) .OMV<4 I .P,PRAN(2),
     2PRALZ(7),R,RAOI,RAOR,RARAF,RAPMX,REA(2),RE12(2,2),RFNPL,RPT,TLA,
     3XREX,ZMP,ZNF,ZNTP,ZNTR,ZNTT,ZTPP(20).ZTPPA
      COMMON ZTRD,ANGI,ZBYP,ZBUP,ZBUS,ZFAN,DFANI ,DLOV , ZNFI ,PTI,TKT.TKF,
     1WD<2).VAPPI,TAMB,HALT,C319,TIND(2),TOUTD(2),RFD,PSD,TTMIN,OD(7),
     2CARD7I6),ONZI(2),PDI, CFNG,CHSC,CLOV,CBSC,PRSTC.RFAIR.RFCT,ZNDZ(2),
     3RASPC,ZTPD,ZNTD,COST(7) ,SSUM(16,30) ,ISUM( 13 , 30 ) ,PR 1CE(2 , 21 )
C *** AATER (STEAM)  CONSTANTS  FOLLOW*ODL,ML,KL,CL,MV,KV,CV,HF,SI,VP,PC,T
      DATA  4P001/  53.34,4.40127E-02.-5.1085E-05,0.0,  -2.953 ,-470.81 ,
                    1  1 .074932E6.0.0,
                    2  6.341E-7.0.0/
                     DO 100 K=1,16
                 100 AP(K)=AP001(K)
                     DO 400 K=1,4
                     ODL(K)    =AP(K)
                     OML(K)    =AP(K+4)
                     OKLfK)    =AP(K*8)
                     OCL(K)    =AP(K+12)
                 400 CONTINUE
                 500 RETURN
                     END
                          -.17134,1.527E-3.-1.021E-6.0.0.  1.191.-7.0E-4.
58780
58790
5BHOO
5BBIO
58U20
58830
SOB-10
58850
58BGO
58870
5H830
5B690
58900
5891 0
58920
58930
58940
58950
58960
58970
58980
58990
59000
59010
59020
59030
59040
59050
59060
59070
59080
59090
59100
59110
59120
                     SUBROUTINE PPAUT1(TF,CPL,DENL.TKL,VISL.KODE)
               C  ***  THIS SUBROUTINE CALCULATES WATER -STEAM  PHYSICAL PROPERTIES
               C      T = TEMPERATURE DEG.R
               C      CPL = HEAT CAPACITY OF WATER  IN BTU/LB/F
               C      DENL = DENSITY OF WATER  IN LB/FT3
               C      VISL = VISCOSITY OF WATER IN  CENTIPOISES
                                                                            59130
                                                                            591 40
                                                                            59150
                                                                            59160
                                                                            591 70
                                                                            59180

-------
              c
              c
             n                                                               59190
        -F ° 460.0                                                         59200
      T2 = T*T                                                               5921°
      CPL = 1.191328 -  7.002932E-4*T + 6.3408E-7+T2                         59220
      DENL = 53.34 + 4.40127E-2*T  -5.1085E-5*T2                             59230
      VI5L = EXP(-2.953 -470.81/T  + 1074932./(T2))                          59240
      ALL THE ABOVE PROPERTIES ARE VALID FOR TEMPERATURES FROM 460  TO       59250
      1030 DEG.R                                                             59260
      RETURN                                                                 5927°
      END                                                                    5928°
i
i—>
OJ
      SUBROUTINE  PPCON                                                       59290
C *** ESTABLISH PHYSICAL  PROPERTY  CONSTANT DETERM. FROM INPUT DATA          59300
      COMMON NFO,KGO,KNTRO,KNTR1,NSUM,NPAGE.DAY(2),PI                       59310
      COMMON KCI,KER,KERR(20) ,KFIN,KREG,LAIC,LSUP.MM,NP,NR,NT1 ,NT2,NTP,     59320
     1NTR.NTT.ABARE,AFAN,AMIN,APLOT,APPR.ASBUN,ASTOT,AXAV,AXPP(20),CP(2)    59330
     2,DEN(2),DEN12(2,2) ,DENFN,DENLZ(7) , DBW , DEC) , DFH , DFR , DF S . DFT , OK L ,        59340
     3DLSP.DLTE,DLTO,DLTS,DNZ(2),DTI,DTIM,DTF,010,DTT,PL,PT                 59350
      COMMON DPAD,DPAF,DPAM,DPAW,DPF(10) ,DPI,DFNZ(2) ,DPT,DPT A,DPTF.         593GO
     1DPTOT(2) POUT(2),PTUB,RV2,GAMAX,GT,HPFNC,HAIR,HTS,UBARE,UCLN,UTOT,    59370
     20(2) QDUT QTOT.RFI ,RFIN,RFTOT,RTOT,RTw,TAV(2) ,TIN(2) ,TOUT(2) ,TT(8)    59300
     3 TWALL TD'TW,TMTD,TK(2),VAPP,VNZ(2),VT,DFAN,TLTE,AOF,VISLZ(7),        59390
     4VIS(2),VIS12(2,2),VISW,W(2),WAPF,WB(2).WLO(2)                          59-^00
      COMMON ANG(3),CFH(3),CFP(3),CFR,CKBSC,CKFNG,CKHSC,CKLOV,CKSTC.F,      59410
     1FALT FINEF  FFF,FSUM,OCL(4),DDL(4) ,OKL(4),OML(4) ,OMVI 4) ,P,PR AN(2),     59420
     2PRALZ17) R,RAOI,RAOR,RARAF,RAPMX,REA(2),RE 12(2.2),RFNPL,RPT.TLA,      59430
     3XREX.ZMP.ZNF,ZNTP,ZNTR,ZNTT.ZTPP(2.0) ,ZTPPA                            59440
      COMMON ZTRD.ANGI,ZBYP,ZBUP,ZBUS,ZFAN,DFANI,DLOV,ZNFI,PTI,TKT,TKF,     59450
     1WD(2) PPI TAMB,HALT,C319,TIND(2),TOUTD(2),RFD,PSD,TTMIN,OD(7),        59460
     2CARD7(6) DNZI(2),PDI,CFNG,CHSC,CLOV,CBSC,PRSTC,RFAIR,RFCT,ZNOZ(2),    59470
     3RASPC,ZTPD,ZNTD,COST(7),SSUM(16,30) , ISUM( 13,30 ) ,PRICE(2 , 21 )           59480
C *** SET AUTOMATIC DATA  HERE                                                59490
   10 CALL PPAUT                                                             c95°S
  300 CONTINUE                                                               59510
 1000 RETURN                                                                 59520
      END                                                                    5953°

-------
                    SUBROUTINE  PPDEN  (T,PZ,ZV,AVMW,DENL,DENV,KCLG,DDL)
              C *** CALC.  VAPOR  AND LIQUID DENSITY ,LB/FT3
                    DIMENSION ODL(4)
                 10 DENL=ODL(1)+OOL(2)*T+ODL(3)*T*T
                200 RETURN
                    END
                                                                             59540
                                                                             59550
                                                                             59560
                                                                             59570
                                                                             59580
                                                                             59590
CO
ro
       SUBROUTINE  PPROP  (TZ,PZ,KCLG,DENA,V ISA,CPA,TKA,PV.KODE,J)             59600
C ***  CALC.  PHYSICAL PROPERTIES                                             59610
       COMMON NFO,KGO,KNTRO,KNTR1,NSUM,NPAGE,DAY(2),PI                        59620
       COMMON KCI,KER,KERR(20),KFIN,KREG,LA1C,LSUP,MM,NP,NR,NT1,NT2,NTP,     59630
      1NTR,NTT,ABARE,AFAN,AMIN,APLOT,APPR,ASBUN,ASTOT,AXAV,AXPP(20),CP(2)    59640
      2,DEN(2).DEN12(2,2) , DENFN,DENLZ(7),DBW,DEQ,DFH,DFR,DFS,DFT,DKL,        59650
      3DLSP,DLTE,DLT01DLTS,DNZ(2),DTI,DTIM,DTF,DTO.DTT,PL,PT                 59660
       COMMON DPAD,DPAF,DPAM,DPAW,DPF(10),DDI,DPNZ(2),DPT,OPTA,DPTF,         59670
      1DPTQT(2),POUT(2),PTUB,RV2,GAMAX,GT, HPFNC.HA1R,HTS , UBARE,UCLN,UTOT,    59600
      20(2) ,QDUT,OTOT,RFI,RFIN,RFTOT,RTOT,RTW,TAV(2) , TIN(2) ,TOUT(2) ,TT(8 )    59690
      3,TWALL,TD,TW,TIVITD,TK(2) ,VAPP,VNZ(2),VT,DFAN,TLTE,AOF,V1SLZ(7),        59700
      4VIS(2),VIS12(2,2),VISW,W(2),WAPF,WB(2),WLQ(2)                          59710
       COMMON ANG(3) ,CFH(3),CFP(3),CFR,CKBSC,CKFNG,CKHSC,CKLOV,CKSTC,F,      59720
      1FALT,FINEF,FFF,FSl!M,OCL(4),ODL(4),OKL(4),OML(4), OMV (4).P.PRAN(2),     59730
      2PRALZ(7),R,RAOI,RAOR,RARAF,RAPMX,RE A(2) ,RE12(2,2),RFNPL,RPTtTLA,      59740
      3XREX,ZMP,ZNF,ZNTP,ZNTR,ZNTT,ZTPP(20),ZTPPA                            59750
       COMMON ZTRD,ANGI,ZBYP,ZBUP,ZBUS,ZFAN,DFANI, DLOV,ZNF1,PTI,TKT,TKF,     59760
      1WD(2),VAPPI,TAMB,HALT,C319,TIND(2),TOUTD(2),RFD,PSD,TTMIN,OD(7),      59770
      2CARD7(6),DNZI (2) ,PDI,CFNG,CHSC,CLOV,CBSC,PRSTC,RFAIR,RFCT,ZNOZ(2) ,    59780
      3RASPC,ZTPD,ZNTD,COST(7),SSUM(16,30) ,ISUM(13,30) , PR ICE(2 , 21 )           59790
       IF (TZ-.1)  10,10,20                                                    59800
   10  KER=98                                                                59810
       GO TO  500                                                              59820
C ***  CHECK  PREVENTS EXTRAPOLATION OF PROPERTIES PAST THE  REF.  VALUES       59830
   20  CONTINUE                                                               59840
 1020  T=TZ                                                                   59850
   21  IF(J-1 )70,70 ,24                                                        59860
C ***  AIR PROPERTIES CHECKED  FROM -100F TO 400F (APPLY  TO  DRY  AIR,LOW P)    59870
   24  T = PNLIM(200. ,900. ,TZ)                                                  59880
   40  X=T-459.7                                                              59890
       DENA=PZ*28.97/(T*10.73)*FALT                                          59900
       VISA = 0.00905+1.191E-4*(X+200.)* + 0.775                                 59910
       CPA = 0.2401 457+2. 48709E-7*X-t-2. 990712E-8*X*X                            59920
       TKA=6.915297E-3+7.384478E-5*(X+200.)**.8376137                        59930
       GO TO  240                                                              59940

-------
                 70 CONTINUE
                    CALL PPDEN(T ,P2, .1 ,.1 ,DENA,DD,KCLG,QDL)
                    CALL PPVIS(T,KCLG,VISA,VV,OMV,OML)
                    T2=T*T
                    CPA=OCL(1)+OCL(2)*T+OCL(3)+T2
                    TKA=OKL(1 )+OKL(2)*T+OKL(3)*T2
                    PRAN(J)=2.42*CPA*VISA/TKA
                    GO TO 400
                240 PRAN(J)=2.42*CPA*VISA/TKA
                400 CONTINUE
                500 RETURN
                    END
                                                                            59950
                                                                            59960
                                                                            59970
                                                                            59980
                                                                            59990
                                                                            60000
                                                                            60010
                                                                            60020
                                                                            60030
                                                                            60040
                                                                            60050
                                                                            60060
oo
co
      SUBROUTINE PPVIS (T,KCLG,V ISL,VISV,OMV,OML)
C *** CALC. VAPOR AND LIQUID VISCOSITY, CENTI-POISE
      DIMENSION OMV(4),OML(4)
   10 VISL=EXP(OML(1 )+OML(2)/T+OIVIL(3)/T**2)
  200 RETURN
      END
60070
60080
60090
60100
601 10
60120
                     FUNCTION  PSL(T)
              C  ***  GIVEN  T IN  DEGREES  F  TO  FIND  PRESSURE  IN  INCHES-HG
                     DATA A,B,C,D/3.2437814,5.86826E-03,1.1702379E-08,2.1878462E-03/
                     TC=(T-32.)/1.8+273.16
                     X=647.27-TC
                     RATIO=X/TC*(A+B*X+C*X**3)/(1.+D*X)*2.3026
                     P=3206.2/EXP(RATIO)
                     PSL=2.036*P
                     RETURN
                     END
60
60
60
GO
60
60
30
40
50
60
70
80
60190
60200
60210
60220

-------
 I
I—>
co
       SUBROUTINE  QBALN
C ***  CALC.  OF  HEAT DUTY FROM GIVEN INFORMATION
       COMMON NFO,KGO,KNTRO,KNTR1 ,N5UM , NPAGE , DAY ( 2) , PI
       COMMON KCI.KER KERR ( 20 ) , KFIN , KREG , LA 1C , LSL'P ,MM , NP , NR , NT 1 , NT2 , NTP ,
      1NTR.NTT,ABARE,AFAN,AIVI[N,APLOT,APPR, ASBUN, ASTOT, AXAV, AX°P(20) ,CP(2)
      2,DEN(2) ,DEN12(2,2l , DENFN , DENLZ ( 7 ) , DBW , DEO . DFH , DFR , DF S , RFT , DKL .
      3DLSP,DLTE,DLTO,OLTS,DNZ(2),DTI,DTIM,DTF,DTO,DTT,PL,PT
       COMMON DPAD,DPAF,DPAM,DPAW,DPF(10) ,DPI ,D^4Z(2I  ,DPT,DPTA,DPTF,
      1DPTOTI2)  POUT(2), PTUB , RV2 . GAMAX , GT , HPFNC , HA I R , HTS , UBAKE . UCLN , UTOT ,
      20(2)  QDUT QTOT.RFI.RFIN,RFTOT,RTOT,RTjJ,TAV(2) ,TIN(2) , TO'JT ( 2 ) ,TT(8)
      3,TWALL,TD,TW.TMTD,TK(2) ,VAPP,VNZ(2) , VT , DF AN , T LT E . AOF , V I SLZ ( 7 ) ,
      4VIS(2) VIS1 2(2,2 ) , VISW, W(2) , WAPF ,WB( 2) ,WLO( 2)
       COMMON ANG(3) ,CFH( 3 ) . CFP ( 3) , CFR , CKBSC , CKFNG . HSC , CKLOV . CKSTC , F ,
      1FALT,FINEF,FFF,FSUM,OCL(4) , OD L ( 4 ) , OK L ( 4 ) , OML ( 4 ) , OMV ( 4 ) , P,PRAN(2) ,
      2PRALZ17) ,R,RAOI.RAOR,RARAF,RAPMX,REA(2) ,RE12(2,2) , RFN P L , RPT , T LA ,
      3XREX,ZMP,ZNF,ZNTP,ZNTR,ZNTT,ZTPP(20) ,ZTPPA
       COMMON ZTRD.ANGI , ZBYP , ZBUP , ZBUS , ZF AN , DFAN I  , DLOV.ZNFI ,PT1,TKT,TKF,
      1WD(2)  VAPPI,TAMB,HALT,C319,TIND(2) ,TOUTD(2) , RFD , PSD , T TMIN , OD ( 7 ) ,
      2CARD7(6)  DNZI(2) , PDI , CFNG , CHSC , CLOV , CBSC , PRSTC , RFAI R , R FCT , ZNOZ ( 2 ) ,
      3RASPC,ZTPD,ZNTD,COST(7),SSUM(16,30) , ISUM( 1 3 , 30 ) . PRICE ( 2 , 21 )
       LAIC=0
     6  TT(2)=TOUT(1 )
       IF  (KCI-2)  30,36.30
C ***  CALC.  THE AIR SIDE FLOW RATE
   30  IF  (WD(2)-0.001 ) 36,36,40
   36  W(2)=VAPP*4.500*APPR*ZMP
   40  DO  80  J=1 ,2
       IF  (TOUT(J)-O.D 42,42,46
   42  TOUT) J)=TIN( J)
   46  TAV( d)=0.5*(TIN( J )+TOUT ( d ) )
   70  CALL  PPROP(TAVfJ) ,14.70, J.DEN(d) ,VIS(J),CP(J),TK(J),PV, 0,0)
   80  CONTINUE
       IF  (KER)  200,200,1000
C ***  FIND  DUTY  FROM TOUT,  KODE=0
C ***  CALC.  THE  PROPERIES FOR EACH ZONE GIVEN  IN  INPUT  ONLY  ONCE
  200  CONTINUE
       L=1
  210  T=.5*(TT(1 )+TT(2))
       CALL  PPROP(T,1 . ,1 ,DENLZ(1),VISLZ(1 ) , CPD , TKD, PV , 0 , 1 )
       IF  (KER)  1212,1212,1000
 1212  CONTINUE
  230  DO  260  J=L,2
  250  Q( J)=W( J)*CP( J)*ABS(TIN(J)-TOUT(J) )
  260  CONTINUE
  270  IF  (QD(1 )-1 .OE-6)  280,280,272
  272  CONTINUE
  274  QDUT=QD(1 )
C ***  CHECK  IF  GIVEN DUTY  AGREES  WITH T/S DUTY TO  WITHIN  50  PCT .
  278  IF  (ABS(Q(1)/QDUT-1.0>-.5)  290,290,279
C ***  RESET  GIVEN  DUTY TO ZERO    AND SET  MINOR ERROR 20
  ™
60240
60250
602GO
60270
60280
60290
60300
60310
60320
60330
60340
60350
60360
60370
60380
60390
60400
60410
60420
60440
60450
60460
60470
60480
60490
60500
60510
60520
60530
60540
60550
60560
60570
60580
60590
60600
60610
60620
60630
60640
60650
60660
60670
60680
60690
60700
60710
60720

-------
co
en
 279 QD(1 )=0.0                                                              60730
     KER=20                                                                 60740
     CALL  ERORF(KER,KERR,KGO,MM)                                           60750
 280 CONTINUE                                                              60760
 290 CONTINUE                                                              60770
 320 K=1                                                                    60780
     J=2                                                                    60790
 400 IF  (QD(1)-1.E-6) 410,410,440                                          60800
 410 CONTINUE                                                              60810
 430 QDUT=W(K)*CP(K)*ABS(TIN(K)-TOUT(K))                                   60820
 440 0(1)=ODUT                                                              60830
     Q(2)=QDUT                                                              60840
 446 CONTINUE                                                              60850
 472  T=TAV(J)                                                              608f>0
      LAIC=LAIC+1                                                            60870
 480  TOUT(J)=TIN(J)+QDUT/(W(J)*CP(d))                                      60800
 492  TftV(J(=0.5*(TIN(J)+TOUT(J))                                           60890
      IF (ABS(T/TAV(J)-1 .0)-0.001 )  500,500,494                              60900
  494  CALL PPROP(TAV(d),14.70,J,DEN(J),VIS(J),CP(J),TK(J),PV.O.d)          60910
      IF (KER) 495,495,1000                                                 60920
  495  PRALZ(1}=PRAN(1)                                                      60930
      IF (LAIC-20) 472,472,497                                              60940
  497  KER = 7                                                                 60950
  498  CALL ERORF (KER.KERR,KGO,MM)                                          60960
  500  CONTINUE                                                              60970
C ***  CHECK FOR IMPOSSIBLE TEMPERATURE  OVERLAPS                             609HO
  510  IF (TOUT(1)-TIN(1)) 520,520,570                                       60990
  520  IF (TIN(2)-TOUT(2)) 530,530,570                                       61000
  530  CONTINUE                                                              61010
C ***  COCURRENT TEMP. CONSISTENCY  CHECKS                                   61020
  538  IF (TIN(2)~TOUT(1 ) ) 540,570,570                                       61030
  540  IF(TOUT(2)-TIN(1)(580,570,570                                        61040
C ***  COMPARE DUTY VALUES CALC.                                             61050
  570  KER=62                                                                61060
      GO TO 1000                                                            61070
C ***  SET UP  THE INLET.OUTLET,AVG,PROPERTIES                                61080
  580  DO 700  0=1 ,2                                                          61C90
      DO 700  1=1,2                                                          61100
      T=TINIJ)                                                              61110
      IF (1-2) 594,590,594                                                  61120
  590  T=TOUT(J)                                                              61130
  594  CALL PPROP(T,14.70,J,DEN12(I,J),VIS12(I ,J) ,CPD,TKD.PV,1 ,J)           61140
      IF (KER) 600,600,1000                                                 61150
  600  CONTINUE                                                              61160
  700  CONTINUE                                                              61170
C *»*  CALC. INLET NOZZLE PRESSURE  DROP                                      61180
      WB(1)=W(1)/ZMP                                                        61190
      CALL NOZCT(DNZI,DNZ,WB(1 )/ZNOZ(1 ),VNZ,DEN12,0.0   ,DPNZ,DBW,0.0,1)    61200
C ***  NTU BASED ON AIR  SIDE                                                 61210
      P=(TOUT(2)-TIN(2))/TD                                                 61220

-------
                    R=(TIN(1)-TOUT(1))/(TOUT(2)-TIN(2))                                   61230
                    TT(2)=TOUT(1)                                                         61240
              : *** COMPARE  APPR. VELOCITY  WITH  SPEC.  VALUE                              61250
                870 IF (KCI-2)  880,930,880                                                61260
                880 VT=W(2)/(4.5*APPR*ZMP)                                                61270
                    IF (VAPPI-0.01)  920,920,890                                           61200
                890 \IR=( VT/VAPP-1 .0 ) *100.0                                                61290
                    IF (ABS(VR)-  5.0)  930,900,900                                         61300
                900 WRITE  (NF0.2010)  VR                                                   61310
                    IF (ABS(VR)-150.0) 920,904,904                                        61320
                904 KER=64                                                                61330
                    GO TO  930                                                             61340
                920 VAPP=VT                                                               61350
                930 CONTINUE                                                              61360
               1000 RETURN                                                                61370
               2010 FORMAT (/51H  WARNING  ***  AIR APPROACH VELOCITY CALC.  DIFFERS BY,     61380
                   1 F8.0.16H  PCT.  FROM SPEC.)                                            61390
                    END                                                                   61400
GO
Oi
                    SUBROUTINE QTURB(0,SAT,XLOAD,NCODE)                                   61410
              C                                                                           61420
              C     IF NCODE=1 FIND  SAT GIVEN  (J  AND  XLOAD                                 61430
              C     IF NCODE=2 FIND  0 GIVEN  SAT  AND  XLOAD                                 61440
              C     XLOAD - TURBINE  LOAD  FACTOR                                           61450
              C     SAT   - SATURATION TEMPERATURE  IN  DEGREES  F OF TURBINE EXHAUST       61460
              CO- HEAT REJECT OF  THE STEAM TURBINE                              61470
                    COMMON IDUM.KGO, IDUM1(4) ,D1(3) , IDUM2.KER,KERR(20),ID1(4),MM,ID2(7)   61480
                   1,D2(1218)                                                             61490
                    COMMON/STIN/XLDFT(6),BP(28),HTRTD(28,6),HTRJD(28,6).NLODS.NBKPR      61500
                   1,PLOAD,BPMNM(6),TPMNM(6)                                              61510
                    COMMON/BCKPR/BCKMN.BCKMX                                              61520
                    DIMENSION X(4) ,N(7) ,Y(4) ,Z(28)                                        61530
                    IF(NCODE-1)90,90,80                                                   61540
                 80 BBPP=PSL(SAT)                                                         61550
              C *** MAKE  SURE BBPP  IS WITHIN BACK PRESSURE  RANGE                         61560
                    IF(BBPP.LT.BCKMN)BBPP=BCKMN+.00001                                    61570
                    IF(BBPP.GT.BCKMX)BBPP=BCKMX-.00001                                    61580
                 90 CONTINUE                                                              61590
                  3 DO 5  1=1,7                                                            61600
                  5 N(I)=0                                                                61610
                    NP=3                                                                   61620
              C *** SEE IF XLOAD LIES WITHIN THE  RANGE OF XLDFT                          61630

-------
I
I—>
CO
      IF( (XLOAD-f .001 )  . LT.XLDFT(NLODS) . AND. (XLOAD+.001 )  . LT . XLDFT ( 1 ))
     1N(1)=-1
      IF(XLOAD.GT.(XLDFT(1 ) + .001 )  .AND.X LOAD.GT.(XLDFT(NLODS) + .001 )  )
     1N(1)=1
      IF(XLDPT(1 ) .GT.XLDFT(NLODS))N(1 ) = (-1 )*N(1 )
      IF(N(1).NE.O)GO TO 11
C *** FIND  XLOAD  BETWEEN I  AND 1-1 POINTS
      DO  10  1=2,NLODS
      IZ=I
      IF(ABS(XLOAD-XLDFT(1-1)).LT..002)GO  TO 4
      IF(XLOAD-XLDFT(1-1))1,4,2
     1 IF(XLOAD-XLDFT(I))10,70,20
     2 IF(XLOAD-XLDFT(I))20,70,10
     4 IZ=I-1
      GO  TO  70
   10 CONTINUE
C *** IF  XLOAD  IS OUTSIDE  RANGE OF XLDFT USE LAST  3  OR  FIRST  3 POINTS
C *** DEPENDING ON WHETHER  OR  NOT  XLDFT IS  DECREASING OR  INCREASING
   11 I=NLODS
      IF(N(1 ) .EQ. (-1 ))1 = 1
   20 IF(I.GT.2)GO TO 30
C *** IF  XLOAD  IS  ON LOW  END  USE  FIRST 3  POINTS.   IF IT  IS ON HIGH END
C *** USE LAST  3  POINTS.  OTHERWISE USE 4  POINTS -  2 ON EITHER SIDE
C *** OF  XLOAD
      N1 =1
      N2 = 2
      N3 = 3
      GO  TO 50
   30 IF(I.EQ.NLODSJGO TO  40
      NP = 4
      N4=I+1
   40 N1=I-2
      N2=I-1
      N3=I
C *** STORE  LOADS IN Y ARRAY
   50 Y(1 ) = XLDFT(N1 )
      Y(2 ) = XLDFT(N2)
      Y(3)=XLDFT(N3)
      IF(NP.EQ.4)Y(4)=XLDFT(N4)
      GO  TO  ( 100,200),NCODE
C + ** FOR NCODE=1  FIND THE  HEAT REJECT CORRESPONDING TO XLOAD
C *** FDR EACH  BACK PRESSURE AND STORE IN  Z ARRAY
  100 DO  125  K=1.NBKPR
      Z(K)=GRS(Y,1,HTRJD(K,N1), 28,X LOAD,NP,N(2) )
  125 CONTINUE
      BBPP = GRS(Z,1 ,BP,1 ,0,NBKPR,N(3))
  150 SAT=TSL(BBPP)
      GO  TO  300
C *** FDR NCODE=2  FIND  THE  HEAT REJECT  CORRESPONDING TO SAT FOR  EACH
C *** LOAD  AND  STORE  IN  X  ARRAY
 61640
 61650
 61600
 61070
 61 680
 61690
 61700
 61710
 61 720
 61 730
 61 740
 61 760
 61 760
 61 770
 61 780
 61 790
 61 800
 61810
 61820
 61830
 61 840
 61 850
 61 Si.'O
 61 H70
 61 8BO
 61890
 61 900
 61 910
 61 920
 61930
 61 940
 61950
 61 960
 61 970
 61 9BO
 61 990
 62000
 620 10
 62020
 62030
 62040
 62050
 620GO
62070
62080
62090
621 00
621 10
621 20
62130

-------
CO
CO
  200 CONTINUE
      X(1)=GRS(BP,1,HTRJD(1.N1),1,BBPP,NBKPR,
      X(2)=GRS(BP,1,HTRJD(1,N2),1,BBPP,NBKPR.
      X(3)=GRS(BP,1,HTRJD(1,N3),1,BBPP,NBKPR.
      IF(NP.EQ.4)X(4) = GRS(BP,1,HTR.JD(1,N4),1,
C *** FIND 0 CORRESPONDING  TO  XLOAD
      0=GR5(Y,1,X,1,XLOAD,NP,N(6))
      GO TO 300
   70 I=IZ
      GO TO (225,250),NCODE
  225 BBPP=GRS(HTRJD(1,I),1,BP,1,Q,NBKPR,N(7))
      GO TO 150
  250 CONTINUE
      0 = GRS(BP,1 ,HTRJD(1 ,1) ,1 ,BBPP,NBKPR,N(7 ) )
C *** SET MINOR ERROR IF  EXTRAPOLATION OCCURRED
  300 DO 400 1=1,7
      IF(N(I))450,400,450
  400 CONTINUE
      GO TO 500
  450 KER=23
      CALL ERORF(KER,KERRtKGO,MM)
  500 RETURN
      END
                                                            N(2) )
                                                            N(3) )
                                                            N(4) )
                                                            BBPP,NBKPR,N(5) )
62140
62150
62 I GO
621 70
62180
62 1 ^0
62200
6221 0
62220
62230
62240
62250
62260
62270
62280
62290
62300
62310
62320
62330
62340
62350
62360
                     FUNCTION RNUM(DUMMY)                                                  62370
              C  ***  THIS  FUNCTION USES THE LEHMER MULTIPLICATION  CONGINENTIAL METHOD     62380
              C  ***  OF  GENERATING PSUEDO RANDOM NUMBERS.  IT  IS  BASED  ON A MODULUS        62390
              C  ***  OF  60  BITS/WORD FOR THE CDC6000 SERIES COMPUTER.                      62400
                     COMMON/RAND/SEED,XMODU,XNUM                                           62410
                  10  WIX=XNUM*SEED                                                         62420
                     XNUM=AMOD(WIX,XMODU)                                                  62430
                     RNUM=XNUM/XMODU                                                       62440
                     RETURN                                                                62450
                     END                                                                   62460

-------
 SUBROUTINE SCDES(VMIN,VMAX,TLMIN,TLMA,TOUT,TTIN,WT,KMETL,KGAGE,
1MN,GC,PI,KCOND,CLFAC,DPMAX,CPLI,TSAT.PSMAX,PSMIN.DPTOT,DAY,CITEM,
2KNTR1,CPEFF,CMAIN,AFCR2,CAPCST,AFCR1)
 COMMON IDUM.KGO, IDUM1(4) ,01(3) , IDUM2 , KER,KERR(20) ,ID1 (4) ,MM,ID2(7)
1 ,D2(1218)
 DIMENSION CNEW(15),CITEM(10,15)
 DIMENSION DTOA(5) ,DTTHA(7) ,BWGA(7)
                       S/R  FOR  STEAM SURFACE CONDENSER
                       1 .0,1.125,1 .25/
                       .035,.049,.065,.083,.109/
                       ,18.,16.,14.,12./
      THIS
      DATA
      DATA
      DATA
                          S/R  IS A DESIGN
                          DTOA/0.75,0.875,
                          DTTHA/ .022, .028,
                          BWGA/24.,22. ,20.
i
i—"
OJ
      TLMAX=80.
C     DEFINE  INITIAL  TEMP.  DIFF.
      TITD =  TSAT  - TTIN
C     DEFINE  TERMINAL TEMP.  DIFF.
      TTD = TSAT - TOUT
C     DEFINE  TEMP.  RISE
      TR = TOUT -  TTIN
      TLM = TR/ALOG(TITD/TTD)
C     CALCULATE HEAT  DUTY
C *** CALCULATE WATER PROPERTIES AT AVG. TEMP.
      TTAV =  0.5*(TTIN +  TOUT)
      X=TTAV+460.
      CP=1 .191328-7.002932E-4*X+6.3408E-7*X*X
      0  = WT  * CP  * TR
      CALL PPAtfTI (TTIN,CP,DEN,TKL,VIS,KODE)
      DO 10  1=1,10
   1 0 CITEM(1,1)  = 1 .E30
      M= 0
C *+* IF DPMAX,VMAX,VMIN,TLMAX,AND TLMIN NOT GIVEN,SET TO HIGH DEFAULT
C *** VALUE
      IF(DPMAX.LT.01) DPMAX =  20.0
      IF(VM1N.LT.01 )  VMIN = 3.0
      IF(VMAX.LT.01 )  VMAX = 12.0
      IF(TLMIN.LT.01) TLMIN =  20.0
      IF(TLMAX.LT.01) TLMAX =  80.0
      KOUNT=0
C     WR1TE(6,BOO)
C *** ONLY ALLOW  1 SHELL  IN SERIES TO SAVE TIME
C *** DO 700  NSER=1 ,2
      NSER=1
      ZNS  =  NSER
C     LOOP FOR NO. OF PASSES
C *** ONLY ALLOW  1 TUBE  PASS TO SAVE TIME
C **« DO 600  NP=1,2
      NP=1
      IF(KCOND -  2)90,70,90
   70 IF(NP-2)90,80,90
   80 IF(NSER-1(90,600,90
   90 CONTINUE
                                                                             62470
                                                                             62-100
                                                                             62490
                                                                             62500
                                                                             62510
                                                                             62520
                                                                             62530
625('.,0
62B70
625HO
62590
62600
62610
62620
62630
62640
62650
62660
62670
62680
62690
62700
62710
62720
62730
62740
62750
62760
62770
627HO
62790
62t!00
62810
62820
62830
62840
62850
62860
62870
62880
62890
62900
62910
62920
62930
62940
62950
62960

-------
       Z N P -  N P
 C  ***  ONLY  DO 3 MIDDLE TUBE DIAMETERS TO SAVE TIME
 C  ***  DO 500 1=1,5
       DO 500 1=2,4
 C  ***  SET STARTING VELOCITY TO MAXIMUM-VSTART = VMAX
 C  ***  VT -  TUBE SIDE VELOCITY BASED ON INLET CONDITIONS
       VT =  VMAX
       DTO =  DTOA(I)
       DTTH  = DTTHA(KGAGE)
       BWG =  BWGA(KGAGE)
       DTI =  DTO - 2. * DTTH
       KCOUN  = 0
       DELV  = 0.5
       KER = 0
       DPTOT  = 0.0
       COST  = 0.0
       SCCT  = 0.0
       CST =  0.0
 C  ***  AX =  AREA BASED ON THE INSIDE DIA.  OF TUBE
       AX =.7854 *(DTI/12.0)**2
 C  ***  CA LCULATE NO. OF  TUBES
   100  CONTINUE
 C  ***  IDN =  DESIGN NUMBER
       KOUNT  = KOUNT  + 1
       IDN =  KOUNT
 C  +**  NT -  NO.OF TUBES PER SHELL BASED ON INLET VELOCITY.VT
       NT =  WT/((VT*3600./ZNP)*AX*DEN)
       ZNT =  NT
 C  ***  CALCULATE CROSS-SECTIONAL AREA
       AXT =  AX *  ZNT/ZNP
       GT = WT/AXT
 C  ***  CALCULATE TUBE SIDE REYNOLDS NO.
       RE = GT *  DTI/(29.0*VIS)
 C      CALCULATE SURFACE  AREA PER UNIT LENGTH
       ASL =  ZNT  *  PI * DTO/12.0 * ZNS
 C  ***  CALL UCOND  TO  CALCULATE OVERALL COEFFICIENT
       CALL UCOND(VT.UCLN,DTO,TTIN,KMETL,KGAGE,UBASE,FTEMP,FMETL)
       UO = CLFAC  + UCLN
       IF(KCOND-1)120,120,130
C      CALCULATE  AREA REQUIRED
C  *+*  SINGLE  PRESSURE CONDENSER
   120  AREO =  0/(UO * TLM)
       GO TO  150
C  ***  MULTIPRESSURE  CONDENSER
   130  CALL SCDSMP(TSAT,TUN,TOUT,VT,Q,    WT , DTO , KMET L , KGAGE ,
     1CLFAC.TS1,TS2,PS1.PS2.AZ1,AZ2,Q1,Q2,AREQ,FRAC,PSMAX,PSMIN,
     2TLM.TLM1,TLM2,TR1,TR2,U01,U02,TIN2,FRAC2)
C      WRITE(6,900)
   150  KCOUN  =  KCOUN  + 1
       IF(KCOUN-20)200,300,300
62970
62980
62990
63000
630 10
63020
63030
63040
63050
63060
63070
63080
63090
63 1 00
631 10
631 20
63130
63140
63150
63160
631 70
63180
631 90
63200
63210
63220
63230
63240
632bO
63260
63270
63200
63290
63300
63310
63320
63330
63340
63*350
63360
63370
63380
63390
63400
63410
63420
63430
63440
63450
63460

-------
  200 CONTINUE                                                               63470
C     CALCULATE   TUBE  LENGTH  REQUIRED                                       63400
      TLREQ =r AREQ/ASL                                                       63490
C     MAKE TLREQ  A  ROUND  FIGURE - UPWARD                                    63500
      K = TLREQ + 0.5                                                        63510
      TL = K                                                                 635PO
C *** CHECK TO SEE  IF  TUBE  LENGTH IS LESS THAN WIN. LENGTH REQUIRED         63530
      IF(TL-TLM1N)210,225,225                                               63540
C *+* IF LESS,SET ERROR  CODE  AND EXIT                                       63550
C     SET ERROR CODE                                                         63560
  210 KER=2                                                                  635/0
      GO TO 400                                                              63580
C     CHECK TO SEE  IF  TUBE  LENGTH GREATER THAN TLMAX                        63590
  225 IF(TL-TLMAX)250,250,230                                               63600
C     IF GREATER, REDUCE  TUBE SIDE VELOCITY BY 0.5                          63610
  230 VT = VT - DELV                                                         C3620
C     CHECK TO SEE  IF  TUBE  SIDE VELOCITY IS LESS THAN VMIN                  63630
      IF(VT-VMIN)235,100,100                                                 63640
C     IF LESS  .EXIT OTHERWISE CONTINUE                                      63G50
C     SET ERROR CODE                                                         63G60
  235 KER=3                                                                  63670
      GO TO 400                                                              636HO
  250 CONTINUE                                                               63690
C     CALCULATE  TOTAL  SURFACE AREA                                          63700
      ASTOT =  TL  *  ASL                                                      63710
      DL =  12.0  * TL                                                         63720
C     CALCULATE  TOTAL  PRESSURE DROP                                         63730
      CALL  DPSEN(DTI,DL,0,GT,RE,0.,DEN,DUM1,DP,DUM2)                        63740
      DPTOT =  (2.0*DEN *VT**2/(2.0*GC)/144.0   +DP)*ZNP                     63750
      DPTOT =  DPTOT *  ZNS                                                   63760
C *** CALCULATE  CONDENSER COST BY CALLING SCSBP                             63770
      CALL  SCSBP(DTQ,DTI ,KMETL.MN.T L.SCCT,CST,COST,NT,PR,KCOND,WTOTL,       63780
      IKER.ZNS.CSTPB.CPLI)                                                    63790
C *+* TOTAL COST  OF CONDENSER AND TUBES                                     63800
      GO  TO 400                                                              63810
  300 CONTINUE                                                               63820
 C     SET  ERROR  CODE                                                         63830
      KER=1                                                                  63840
  400 CONTINUE                                                               63850
C     WRITE(6,1000)NP,NT,DTO,TL,TLREQ,VT,UCLN,UD,DPTOT.COST,ASTOT,KCOUN.    63860
C     1KERR.NSER,SCCT,CST,IDN                                                 63870
C     M =  M +  1                                                              63890
       IF(M-50)410,405,405                                                   63890
  405 WRITE(6,800)                                                           63900
      M =  0                                                                  63910
  410 CONTINUE                                                               63920
       IF(VT.LT.VMIN)  GO  TO 419                                              63930
       IF(VT.GT.VMAX)  GO  TO 419                                              63940
       IF(DPTOT.GT.DPMAX)  GO TO 419                                          63950
       IF(KER)415,415,500                                                    63960

-------
  415 CONTINUE
      CNEW(14)=COST
C *** DETERMINE  KW  FOR  PUMP  POWER  FOR CONDENSER
      XKW=WT*DPTOT/CPEFF/1151142.
C *** FIND  CAPITAL,CAPACITY,  AND OPERATING COST.  CMAIN IS THE
C *** AVERAGE WEIGHTED  COST  OF  POWER PER  KW PER YEAR
      COST =1000. *COST*AFCR1+XKW*CAPCST*AFCR2+XK'*'*CMAIN/1000.
      COST=COST/1000.
      CNEW(1)
      CNEW(2)
      CNEWI3)
      CNEWI4)
      CNEW(5)
      CNEW(7)
      CNEWI8)
      CNEW(9)  =
      CNEW(10) =
          COST
          NP
          NT
          DTO
          TL
          ION
          VT
          WTOTL/2000.0
          UO
            DPTOT
  41 9
C ***

C ** *
C +* *
  420
C ** *
  430
  500
  600
  700
CNEW(!1) = ASTOT
CNEW(12) = NSER
CNEW(13)=GT
CNEW(15)=FRAC
CALL  STORE(3,15,CITEM,CNEW)
CONTINUE
CHECK IF TOTAL  PRESSURE  DROP  GREATER  THAN  MAX.  PRESSURE DROP
1F(DPTOT-DPMAX)420,420,430
IF PRESSURE DROP  GREATER,REDUCE  THE VELOCITY
OTHERWISE CHECK TO  SEE  IF VELOCITY  LESS  THAN VMIN
IF IVT-VMIN)500,500,430
IF LESS THAN OR EQUAL,CONTINUE OTHERWISE REDUCE THE VELOCITY
VT = VT - DELV
GO BACK AND RECALCULATE  NT
GO TO 100
CONTINUE
CONTINUE
CONTINUE
IF(CITEM(1
                 1).GT,
                      ,99E30)CALL ERORF ( KER,KERR,KGO,MM)
    IF(KNTR1-1)750,710,750
710 CONTINUE
    PSAT=PSL(TSAT)
    CALL OUTPUT(WT.TTIN,TOUT,CLFAC,VMIN,VMAX,TLMIN,TLMAX,TSAT,0,
   1CITEM,CNEW,NPAGE,DAY,DPMAX.TLM,DPTOT,PSAT,PS 1 ,PS2,KCOND,
   1KMETL,MN,BWG,
   2TS1.TS2.TLM1,TLM2,U01.U02.TR1,TR2,FRAC,FRAC2,TIN2,PSMIN,PSMAX)
750 CONTINUE
800 FORMAT(128H1  NP   NT     DTO    TL     TLREQ  VT    UCLN    UO
   1DP         COST     ASTOT     KCOUN  KERR  NSER   SCCT     CST
   2IDN     )
    RETURN
    END
                                                                          63970
                                                                          63980
                                                                          63990
                                                                          64000
                                                                          6401 0
                                                                          64020
                                                                          64030
                                                                          64040
                                                                          64050
                                                                          64060
                                                                          64070
                                                                          64080
                                                                          64090
                                                                          64 1 00
                                                                          64 1 1 0
                                                                          64120
                                                                           64'
                                                                           64
                                                                           64
                                                                           64
                                                                           64'
                                                                           64'
                                                                           64
    30
    40
    50
    60
    70
   180
   1 90
64200
64210
64220
64230
64240
64250
64260
64270
64280
64290
64300
64310
64320
64330
64340
64350
64360
64370
64380
64390
64400
64410
64420
64430
64440
,64450
64460

-------
-pa
GO
      SUBROUTINE  SCDSMPITSAT,TTIN,TOUT,VT,QDUT,WT,DTO,KMETL,KGAGE,          64470
     1CLFAC.TS1.TS2.PS1,PS2,AZ1,AZ2,Q1,Q2IAREQ,FRAC,PSIVIAX,PSMIN,            64480
     2TLM,T LM1 ,TLM2.TR1 ,TR2.U01 ,U02,TIN2,FRAC2)                             64490
C *** TH15  S/R IS  A  DESIGN ROUTINE  FOR MULTI PRESSURE CONDENSER              64500
      COMMON  IDUM.KGO, IDUM1(4),D1(3) , IDUM2 , KER,KERR(20 ) ,ID1 (4),MM, ID2(7 )    64510
     1 .D2(1218)                                                              64520
      DIMENSION Y(10),TS(10)                                                 64530
      PSAT  =  PSL(TSAT)                                                       64540
      KODEFR  = 0                                                             64550
C *** SET FRAC CONVERGENCE COUNTER                                           645GO
      LFRAC =  0                                                              64570
C *+* INITIAL  VALUE  OF  FRAC                                                 64580
      FRAC  =  0.5                                                             64590
C *** SET AREQ TO HIGH  VALUE  SO IT  PASSES CHECK AT STATEMENT 590  LATER      64600
      AREQ  =  1 . E30                                                          64'? 1 0
C *** SET INCREMENT  FOR FRAC                                                 64620
      DELFR =  0.01                                                          64630
C *** FRAC  CONVERGENCE  LOOP STARTS  HERE                                     64640
   50 LFRAC =  LFRAC  + 1                                                     64650
      AREQ1 =  AREQ                                                          64660
C *** CALC. ZONE  ONE HEAT DUTY                                               64670
      01  =  FRAC  * OOUT       ^                                               64-580
      CALL  PPAUT1(TTIN,CP,DEN,TKL,VISL.KODE)                                64690
C **•* CALC. OUTLET TEMP.  FROM ZONE  ONE -EQUALS INLET TEMP.  TO ZONE  TWO      64700
      TOUT1 =  Q1/(WT *  CP) +•  TTIN                                           64710
C *** CALC. OVERALL  COEFFICIENT FOR ZONE ONE                                64720
      CALL  UCOND(VT.UCLN.DTO,TTIN,KMETL,KGAGE,UBASE,FTEMP.FMETL)            64730
      U01 = CLFAC *  UCLN                                                    64740
C +** SET ZONE ONE OUTLET TEMP.  EQUAL TO ZONE INLET TEMP.                   64750
      TIN2  =  TOUT1                                                          64760
      X=TIN2+460.                                                            64770
      DEN2=53.34+4.40127E-2+X-5.1085E-5+X*X                                 64780
      VT2 = VT *  DEN/DEN2                                                   64790
C **+ CALC. ZONE  TWO OVERALL  COEFFICIENT                                    64BOO
      CALL  UCOND(VT2,UCLN,DTO.TIN2,KMETL,KGAGE,UBASE,FTEMP,FMETL)           64810
      U02 = CLFAC *  UCLN                                                    64820
C *** FIRST GUESS FOR STEAM TEMP. TO ZONE ONE-SET COUNTER FOR               64830
C     NEWTON-RAPHSON CONVERGENCE  ROUTINE                                    64840
      NR  =  1                                                                 64850
      TS( 1 )=(TOUT1+TSAT )/2.                                                 648i,0
C *** MAIN  LOOP  ON TS1  STARTS HERE                                           64870
  100  IF(NR-2)130,110,130                                                   64800
  110  IF(Y(1))115,120,120                                                   64890
  115 TS(2)=(TSAT+TS(1))/2.                                                 64900
      GO  TO 130                                                              64910
  120 TS(2) = (TOUT1+TS(1 ))/2.                                                 64920
  130 TS1=TS(NR)                                                             64930
      TITD1 = TS1  -  TTIN                                                    64940
      TTD1  =  TS1  - TOUT1                                                     64950
      TLM1  =(TOUT1-TTIN)/ALOG(TITD1/TTD1)                                   64960

-------
 c  ***
       CALC .
       AZ1  =
       PS1  =
       P52  =
       TS2  =
       TITD2
       TTD2 =
ZONE ONE
Q1/(TLMt
P5L(TS1 )
(2. * PSAT
TSL(PS2)
= TS2 - TIN2
 TS2 -  TOUT
SURFACE
+ U01 )
                 AREA
   -PS1
       TLM2 = (TOUT- TIN2)/ALOG(TITD2/TTD2)
 C  *+*  CALC.  ZONE TWO SURFACE AREA
       AZ2  =  QD'JT *(1.0 - FRAC)/(U02 * TLM2)
       V(NR )  = 1.0 - AZ1/AZ2
 C      WRITE(6,1000)TS1 ,TS2,AZ1,AZ2,Y(NR),NR
       CALL NRCON(NR,TS,Y,KER,28,.01,KODE,10)
       IF(KODE-1)100,160,150
   150  CALL ERORF(KER,KERR,KGO,MM)
   160  CONTINUE
 C  ***  CALC.  AREA REQUIRED FOR CONDENSER
       AREQ = AZ1 + AZ2
 C  **+  DONT ALLOW FRAC .LT.  .45
       IF(FRAC-.45)700,700,340
 C  ***  FIRST  ITERATION IN FRAC LOOP-SKIP THE PRESSURE  CHECKS
   340  IF(LFRAC-11590,590,350
   350  IF(KODEFR-1)400,700,400
   400  IF(PS1  - PSMIN)500,550,550
   500  FRAC = FRAC + DELFR
       KODEFR = 1
       GO TO  50
   550  IF(PS2 - PSMAX)590,590,500
   590  IF(AREQ -  AREQ1)600,700,500
   600  FRAC = FRAC - DELFR
       GO TO  50
   700  CONTINUE
       TLM  =  0.5*(TLM1  +TLM2)
       TR1  =  TIN2 - TTIN
       TR2  =  TOUT - TIN2
       FRAC2  =1.0- FRAC
C      WRITE(6,900)TS1,T52,PS1,PS2,AREQ,AZ1,AZ2,FRAC.NR
       RETURN
       END
64970
64980
64rJ'»0
65000
65010
65020
65030
65040
65050
650GO
65070
65080
65090
                                                                65
                                                                65
                                                                65
                                                                65
                                                                65
                                                          00
                                                          10
                                                          20
                                                          30
                                                          40
                                                                65 50
                                                                65
                                                                65
                                                          60
                                                          70
                                                                65100
                                                                651 90
                                                                65200
                                                                65210
                                                                65320
                                                                65230
                                                                65240
                                                                65250
                                                                65260
                                                                65270
                                                                65280
                                                                65290
                                                                65300
                                                                65310
                                                                65320
                                                                65330
                                                                65340
                                                                65350

-------
 I
I—>
en
      SUBROUTINE  SCMPR(  TSAT,QTOT,WT,CLFAC,KMETL,KGAGE,PSMAX , PSMIN , ASTOT   65360
     1,DTO,GT,GTITD,FRAC,TQUT,TTIN)                                         65370
      COMMON  IDUM.KGD, IDUM1 (4) , D1(3 ) , IDUM2 , KER,KERR(20 ) . ID1 (4 ) ,MM,ID2(7)   65380
     1.02(1218)                                                              65390
C *** RATING  OF MULT I-PRESSURE  CONDENSERS                                   65400
      DIMENSION T(10),Y(10)                                                  65410
C *** INPUT  ITEMS ARE-                                                       65420
C     PSAT -  AVG.  SATUTATION PRESSURE AT STEAM  INLET                        65430
C     QTOT -  TOTAL HEAT  TO BE REJECTED BY  SURFACE CONDENSER                 654-10
C     WT - TOTAL  WATER  FLOW  RATE  LB/HR                                     65450
C     GT - WATER  MASS  VELOCITY  IN TUBES ,LB/HR-FT2                          654GO
C     ASTOT  - TOTAL OUTSIDE  SURFACE AREA ,FT2                               65470
      TAV  =  0.0                                                              65480
C *** ASURF  - SURFACE  AREA PER  ZONE                                         65490
      ASURF  = ASTOT *  0.5                                                   65500
      PSAT =  PSL(TSAT)                                                       65510
      NR = 1                                                                 65520
C *** FIRST  GUESS                                                           65530
      T(1)=GTITD                                                             65540
c *** MAIN LOOP  TO CONV. ON  STEAM TEMP.,TSI.STARTS  HERE                     es5bo
   90 TTD = TI,NR)                                                              65560
      TOUT=TSAT-TTD                                                         65570
      CPAV = 1.0                                                             65580
C **+  INITIALIZE  COUNTER FOR CONVERGENCE                                    65590
       LQ = 0                                                                65600
C *** TR - WATER  TEMP.  RANGE                                                65610
  100  TR = QTOT/(CPAV  *  WT)                                                  65G20
       LQ = LQ +  1                                                           65630
       TTIN=TOUT-TR                                                          65640
       TAV1 = TAV                                                             R5650
 C ***  CALC.  CIRCULATING WATER AVG.  TEMP.                                    65660
       TAV  =  0.5  * (TTIN + TOUT)                                             65670
       X=TAV+460.                                                             65680
       CPAV=1.191328-7.002932E-4+X+6.3408E-7+X*X                             65690
 C ***  CONVERGE ON AVG.  HEAT  CAPACITY  ,CPAV                                  65700
       IF(ABS(1.-TAV1/TAV)-.001)150,150,120                                  65710
  120 IFUQ  - 5)100,150,150                                                  65720
  150 TOUT1  =(QTOT * FRAC)/(WT * CPAV) + TTIN                               65730
 C ***  CONVERGE ON CORRECT CP                                                65740
       X=.5*(TOUT1+TTIN)+460.                                                65750
       CP1=1.191328-7.002932E~4*X+6.3408E~7*X*X                              65700
       IF(ABS(1.-CPAV/CP1)-.004)158,158,155                                  65770
  155 LQ=LO+1                                                               657RO
       IF(LO-10)156,158,158                                                  65700
  156 CPAV=CP1                                                              65800
       GO  TO   150                                                              65810
  158 CONTINUE                                                              65820
 C +** FIRST  ZONE  RATING                                                     65B30
 C ***  CALC.  PERF. OF ZONE ONE - FIND STEAN TEMP..TS1                        65840
       CALL SCRATG(TTIN,WT,U01 ,ASURF,    TS1,TOUT 1,01 ,GT,PS 1 ,VT,             65850

-------
                    1KMETL,KGAGE,CLFAC,DTO,TR1)
               C ***  SET ZONE ONE OUTLET WATER TEMP. EQUAL  TO  ZONE  TWO  INLET
                     TIN2 = TOUT1
               C ***  SECOf.D ZONE RATING
               C **+  CALC.  PERF. OF ZONE TWO - FIND STEAM TEMP.  ,TS2
                     CALL SCRATG(TIN2,WT,U02,ASURF,     TS2,TOUT,Q2,GT,PS2 , VT,
                    1KMETL,KGAGE,CLFAC,DTO.TR2)
                     PSAV = (PS1 + PS2) * 0.5
                     Y(NR)  =(1.0 - PSAT/PSAV)
               C     WRITE(6,1200)TTIN,TOUT,TS1,TS2.NR,Y
                     KODE=100
                     CALL NRCON(NR,T,Y,KER,29,.007,KODE,10)
                     IF(KODE-1)160,200,190
                 160  IF(NR-2)180,180,90
                 180  T(2)=  TTD/(1.-Y(1))
                     GO TO  90
                 190  CALL ERORF(KER,KERR,KGO,MM)
                 200  CONTINUE
                     RETURN
                     END
65060
65870
65080
65890
65900
65 '.11 0
65920
65930
65'T'10
65950
65960
65970
65930
65990
66000
6601 0
66020
66030
66040
66050
 I
I—»
cr>
                     SUBROUTINE  SCRATG(TTIN,WT,UO,ASURF,    TSTM,TOUT,QZ,QT , PSTM,VT,
                    1KMETL.KGAGE,CLFAC,DTO,TR)
              C ***  THIS  S/R  RATES THE  PERFORM. OF A ZONE IN MULT I-PRESSURE SURF.
              C **+  CONDENSER
              C ***  INPUT  ITEMS ARE -
              C      TTIN  -  CIRCULATING  WATER INLET TEMP.
              C      WATER MASS  VELOCITY IN TUBES,  LB/HR-FT2
                     CALL  PPAUT1(TTIN,CPL,DEN,TKL.VISL,KODE)
              C ***  VELOCITY  ENTERING THIS ZONE OF CONDENSER ,FT/SEC
                     VT =  GT/(3600.  *  DEN)
              C *"*  CALC. OVERALL  CLEAN COEFF.  FOR THIS ZONE
                     CALL  UCOND(VT,UCLN,DTO,TTIN,KMETL,KGAGE,UBASE,FTEMP,FMETL)
                     UO =  CLFAC  * UCLN
              C ***  CALC. NTU OF THIS ZONE
                     XNTU  =  UO *  ASURF/(WT  *  CPL)
                     XK =  EXP(XNTU)
                     R = 1.0 -(1.0/XK)
              C ***  CALC. RANGE- TR IN  THIS  ZONE
                     TR =  TOUT - TTIN
              C ***  CALC. ITD IN THIS ZONE
                     TITO  =  TR/R
66060
66070
66080
66090
66 1 00
66
66
66
66
66
66
66
66
66
10
20
30
40
50
60
70
80
90
66200
66210
66220
66230
66240
66250
66260

-------
              C  ***  CALC.  STEAM SAT.  TEMP.  IN THIS ZONE.TSTM
                    TSTM = TTIN + TITO
              C  ***  CALC.  STEAM SAT.  PRESSURE IN THIS ZONE.PSTM
                    PSTM = PSL(TSTM)
                    RETURN
                    END
66270
66280
66290
66300
66310
66320
I
I—>
-pa


C
C
C
C
C








C
C
C
C
















SUBROUTINE SCSBP ( DTD , DT I , KMET L ,MN , T L , SCCT ,CST,COST,NT,PR,KCOND,
1\»ITOTL,KERR,ZNS,CSTPB,CPLI)
*** THIS SUBROUTINE CALCULATES THE SURFACE CONDENSER SHELL BASE PRISE
*** KMETL - TUBE MATERIAL CODE
*** NT = NO. OF TUBES
DTO = TUBE DIAMETER IN FT.
PR = SHELL BASE PR ICE , DOLLARS
DIMENSION FMM(24,6)
DIMENSION DENN( 1 3 ) ,CPL( 13)
DIMENSION KDENA(6)
DATA DENN/ .308, . 323, .099, .301 , .295, .303,. 323,. 323,. 2833,. 280,. 290,
1 .290, . 163/
DATA CPL/1. 44. 1.5. 1.0,1. 50, 3. 2,2. 21, 1.71,2. 11,1. 47, 2. 94, 2. 94, 2. 94,
16. 62/
DATA KDENA/6 ,9, 1 1 , 1 2,5,7/
*** KMETL = CODE NO. OF TUBE MATERIAL
1 ^ADMIRALTY; 2 ^ARSENICAL CU ; 3 = AL.; 4 =AL. BRASS; 5 -AL. BRONZE
6 =MUNTZ: 7 =90/10 CU-NI; 8 =70/30 CU-NI; 9 =CARBQN STEEL;
10 =410 S/S; 11 =304 S/S; 12 =316 S/S; 13 =TITANUM
DATA FVM/0 .0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
10. 0, 0. 0, 0. 0, 0. 0, 0. 0, 0. 0, 0. 0, 0. 0,0. 0.0.0,-. 056,-. 072, - . 08B , - . 061,
2-. 078, -.09 5, -.06 6, -.084, -.102, -.070, -.090, -.110, -.075, -.08 6, -.117,
3- 082 - 1 04 , - . 1 26 . - . 087 ,-. 1 1 0 , - . 1 33 , - . 089 , - . 1 1 2 , -. 1 36 , . OOH , . 009
4. 009, .010,. 010, .010,. 011, .011, .011. .012, .012, .012, .01 3, .013, .013,
5.014, .014, .014, .015, .015, .015, .016, .016, .016, .054, .059, .064, .061 ,
6.066, .071 , .067, .072, .077, .072, .077, .082 , .079, .083, .087, .058, .092,
7. 096, . 094, . 097, . 100, . 101, . 104, .107, .117,. 147, .177,. 130, .167, .204,
8. 143, .183, .223, .153, .196, .239, .170, .213, .256, .190, .233. .276, .206,
9. 250, . 294, . 216, . 267, . 311, . 069, . 08 1,. 093, .077,. 091, .105,. 086, .099,
A. 1 12, .092, .106, .120, .101 ,.114, .127, .113, .127, .141..122..136, .150,
A. 130, . 144, . 158/
KERR = 0
FM = 0.0
PR = 0.0
PI = 3.141592654
66330
66340
66350
66360
66370
66380
66390
66 ''.00
6641 0
66420
66430
66440
66450
66400
66470
664HO
66490
66500
66510
66520
60530
66540
66550
66560
66570
66580
66590
66600
66610
66620
66630
66640
66650
66660
66670

-------
-p.
CO
C *** TUBE SHEET DENSITY, LB/CU.INCH                                         66680
      KDENTS = KDENA(MN)                                                    66690
      DENTS = DENN(KDENTS)                                                  66700
C *** CALCULATE LENGTH  CORRECTION  FACTOR  TO  BE  APPLIED TO BASE PRICE       66710
C *** FCL = LENGTH CORRECTION  FACTOR                                        66720
C *** TL = TUBE LENGTH  IN  FT.                                               66730
C *** SET WIN. AND MAX.  LENGTH  FOR COSTING S/R  ONLY                         66740
      TLMIN = 20.0                                                          66750
      TLMAX = 110.0                                                         66760
      IF(TL - TLMIN)400,32 ,32                                               66770
   32 IF(TL - TLMAX)40,40,400                                               66780
   40 FCL = 0.01544*TL  +0.57111                                             66790
C **+ OBTAIN TUBE SHEET  MATERIAL FACTOR  PER  WESTINGHOUSE                   66800
C +** NT = NO. OF TUBES                                                     66810
      ZNT = NT                                                              66820
C **+ iVIN - MATERIAL CODE -  1 =MUNTZ ;  2=CARBON STEEL:  3=STAINLESS 304;       6G830
C *** 4 = STAINLESS 316; 5  = ALUMINUM BRONZE; 6 =90-10 COPPER NICKEL       66840
C *** BASE PRICES INCLUDE MUNTZ METAL TUBE SHEET  WITH A THICKNESS EQUAL    668bO
C     TO THE TUBE DIAMETER  PLUS 1/8IN. THE MATERIAL  FACTOR IS TO           66860
C     CHANGE THE STANDARD  THICKNESS MUNTZ METAL TUBE  SHEET TO A STANDARD   66870
C     THICKNESS TUBE SHEET  OF  A DIFFERENT MATERIAL.                         66880
C *** FM = MATERIAL FACTOR                                                  66890
C *** ADD MULTIPLIER FOR OVER  50000 TUBES-USE 50000  AS BASE AND            66900
C *** INCREASE BY 5( FOR EACH  10000                                         66910
      FMULT = 1.0                                                           66920
      IF(NT-50000)17,17,16                                                  66930
   17 IF(NT-40000)2,1,1                                                     66940
    1 K = 25                                                                66950
      GO TO 20                                                              66960
    2 IF(NT-30000)4,3,3                                                     66970
    3 K = 22                                                                66980
      GO TO 20                                                              66990
    4 IF(NT-20001)6,5,5                                                     67000
    5 K = 19                                                                67010
      GO TO 20                                                              67020
    6 IF(NT-15001)8,7,7                                                     67030
    7 K = 16                                                                67040
      GO TO 20                                                              67050
    8 IF(NT-12501)10,9,9                                                    67060
    9 K = 13                                                                67070
      GO TO 20                                                              67080
   10 IF(NT-10001)12,1 1 , 11                                                  67090
   1 1  K = 1 0                                                                67100
      GO TO 20                                                              671 10
   12 IF(NT-8001)14,13,13                                                   67120
   1 3 K  = 7                                                                 67130
      GO TO 20                                                              67140
   14 K = 4                                                                 67150
      GO TO 20                                                              67160
   16 K = 25                                                                67170

-------
      FM'JLT = (ZNT-5E4)  *  1.05E-4
   20 IF(DTO-0.880)21,21,22
   21 K = K-3
      GO TO 30
   22 IF(DTO-1.125)23,23,24
   23 K = K-2
      GO TO 30
   24 CONTINUE
   25 K = K-1
   30 FM = FKMIK.MN)  *  FMULT
C *** CALCULATE SHELL BASE PRICE IN DOLLARS -PR
      IF(DTO-0.750)45,45,50
   45 PR = 7.6958333  + ZNT  +  97125.0
C     EQUATION  GOOD  FROM 6000 TO 30000
      GO TO  100
   50 IFIDTO-O.380)55,55,60
   55 PR = 8.794123  *2NT + 102235.29
C     EQUATION  GOOD  FROM 6000 TO 40000
      GO TO  100
   60  IF(DTO-1.05)65,65,70
   65  PR =  10.836364  *ZNT  +  102181.82
C      EQUATION  GOOD  FROM 6000 TO 50000
       GO TO  100
   70  IF(DTO-1.13)75,75,80
   75  PR =  12.954545  *ZNT  +  103272.73
C      EQUATION  GOOD  FROM 6000 TO 50000
       GO TO  100
   BO  PR =  15.223256  *ZNT  +  102237.21
C      EQUATION  GOOD  FROM 7000 TO 50000
   100  CONTINUE
C      CALCULATE WT./FT.   -WPF LB/FT.
       WPF  =  (DTO**2-DTI**2)*PI/4.0 *1 2 . 0 *DENN(KMETL)
C      DEFINE COST PER LB    -CPLB
C  ***  CHECK  TO  SEE IF COST/LB IS GIVEN AS INPUT
C      IF GIVEN  CONTINUE OTHERWISE USE CPL ARRAY
C      DEFINE TOTAL COST OF TUBES  -CST
       CSTPB  = CPLI
       IF(CPLI-.0001 )110, 110,120
       CSTPB  = CPL(KMETL)
       CONTINUE
       ADD  G  AND A FACTOR OF
       CST  =  1.15  *(WPF  * TL
  1 1 0
  120
C ** *

c ***

  125
C *+*
c * + *
  126

C * * *
                      15 PERCENT TO TUBE COST(GENERAL  ACCOUNTING)
      i . ,D -vwrr -  iL * CSTPB * ZNT)
KCOND - KODE FOR TYPE OF CONDENSER-1=SINGLE PRESSURE,2=MULTI-PRESS
IF(KCOND - 1)130,130,125
IF(ZNS-1.1)126,126,128
FMF = MULTIPRESSURE CONDENSER FACTOR
ONE CONDENSER
FMF = 0.08
GO TO 200
TWO CONDENSERS IN SERIES
 67 1 BO
 671 QO
 67200
 67210
 67220
 67230
 67240
 67250
 67260
 67270
 67280
 67290
 67300
 67310
 67320
 67330
 67340
 67350
 67360
 67370
 67380
 67390
 67400
 67410
 67420
 67430
 67440
 67450
 674GO
 67470
 67480
 67490
 67500
 67510
 67520
 67530
 67540
 67550
 67560
 67570
 67580
 67590
67600
67610
67620
67630
67640
67650
67660
67670

-------
CJ1
o
   128 FMF = 0.073                                                           67680
       GO TO 200                                                             67690
   130 FMF = 0.0                                                             67700
   200 CONTINUE                                                              67710
 C  *** HERE WE ADD 0.8 TO THE CORRECTION FACTORS TO ACCOUNT  FOR THE          67720
 c  **+ FOLLOWING - WATER BOX TYPE FACTOR                                     67730
 c  +** METHOD OF ATTACHMENT FACTOR                                           57740
 C  **+ WATER BOX DESIGN PRESSURE FACTOR                                      67750
 C  *** SHELL AND TUBE SUPPORT ALTERNATE MATERIAL FACTOR                      67760
 C  *** CONDENSATE DEPTH FACTOR                                               67770
 c  *** SHELL AND WATER BOX PREPARATION FACTORS                               67780
 C  *** ACCF - ACCESSORIES FACTOR TO ACCOUNT FOR ALL OF THE ABOVE             67790
       ACCF = 0.8         "                                                   67800
 C  *** ADD 1.22*PR TO BASE PRICE FOR EXTRAS AND INCLUDE DISCOUNT             67810
 C      MULTIPLIER =0.88 OF FEB 1976                                          67820
 C  *** SCCT IS COST OF CONDENSER AFTER APPLYING ALL THE FACTORS              67830
       SCCT = 1.22 *(PR MFM +FCL + FMF +ACCF))                               67840
 C  *** DETERMINE COST OF CONDENSER INSTALLATION                              67850
 C  *** CINSTL = COST OF INSTALLATION                                         67860
 C  *** CINSTL IS ASSUMED EQUAL TO 2 * CONDENSER BASE PRICE                   67870
       CINSTL = 2-0 + PR                                                     67880
 C  **+ COST = TOTAL COST IN THOUSANDS OF DOLLARS-COMPRISES OF THE            67890
 C  **+ CONDENSER SHELL BASE PR ICE(SCCT) ,COST OF TUBES(CST),AND COST OF       67900
 C  *** INSTALLATION-CINSTL        "                                           67910
       COST = (SCCT + CST + CINSTL)* ZNS/1000.0                              67920
 C  *** CALCULATE TOTAL WEIGHT OF TUBES                                       67930
       WTUBE = WPF * TL '  ZNT                                                67940
 C  *** ASSUME TUBE SHEET THICKNESS =DTO+1/8INCH.  = DTS                       67050
       DTS  = DTD + 0.125                                                     67960
 C  *** ASSUME TUBE SHEET AREA =  5+AREA OF  TUBES = ATS                        67970
       ATS  = 5.0 +ZNT + PI/4.0 * DTO**2                                       67980
 C  **+  CALCULATE WEIGHT OF TUBE  SHEETS                                       67990
       WTSHT = ATS * DTS * 2.0 + DENTS                                       68000
 C  *+*  WTS  =WEIGHT OF TUBE SUPPORTS,ASSUME FACE AREA SAME AS TUBE  SHEET      68010
 C  ***  ZNTS= NO.OF TUBE SUPPORTS-ASSUME  EVERY 3FT.                           6B020
       ZNTS  =  IFIX(TL/3.0-0.5)                                                68030
 C  ***  THICKNESS OF TUBE SUPPORTS =.625  INCH AND MATERIAL OF CARBON STEEL    68040
       WTS  =  ZNTS  * .625 *ATS *  .2833                                        68050
 C  ***  ESTIMATE  TOTAL WEIGHT  OF  CONDENSER  PER SHELL                          68060
       WTOTL  =  1.50 *(WTUBE+WTSHT+WTS)                                       68070
       GO TO  800                                                             68080
C  ***  TUBE  LENGTH IS OUTSIDE SPECIFIED  LIMITS -SET ERROR CODE -4            68090
  400  KERR  =  4                                                               68100
  800  RETURN                                                                 68110
       END                                                                    68120

-------
                    SUBROUTINE  SETUP(J,KN,LJ)
                    COMMON/EPA/TNMIN,TNMAX,TSAT(21 ) ,C05TT(21 ) ,X(10,21 ),XC(10),VAMAX
                   1VAMIN,VWMAX,VWMIN,XN,XP,SUBCL,QMIN,QMAX,PITCH,DIA,
                   2RNGMX,RNGMN,TLMIN,TLMAX,TITDX,TITDN,TSATA,TSATZ,XHEAT(21)
                    COMMON IDUMW(2),KNTRO,IDUM(2),NPAGE,DAY(2).DUMP,IDUM1(34)
                    COMMON DUME(171),FALT,DUME2(1040)
                    COMMON/ RAND/SEED , X.MODU , XNUM
                    COMMON/SCOND/TTDMN,TTDMX,TISUM(21)
              C ++* SET UP RANDOM NUMBER CONSTANTS
                    SEED=567.*19.
                    XMODU = 2.*+60+1 .
                    XNUM=5.*+13
                    A = 0.
                    DO  100 1 = 1 ,KN
              C
              C
 i
i—>
on
      SET UP ORIGINAL COMPLEX OF  KN  POINTS
   30 X(1,I)=TSATA+RNUM(A)*(TSATZ-TSATA)
      TSAT( I )=X(1,1)
      CALL QTUR6(XHEAT(I),TSAT(I),1.,2)
      X(6,I }=TTDMN+RNUM(A)*(TTDMX-TTDMN)
      SUBCL=X(6,I)
      T1NTO=TSAT(I)-SUBCL
      TITD=AMIN1(TINTO+50..TlTDX)
      IQGO=0
      IRAE=0
      KKILL=0
      NOUE = 0
      IUEE=0
C *** CHECK FOR ITD  INCONSISTANCIES
      IF(TITDN-TITD)11 , 1 1 ,30
   11 CONTINUE
      XI  2, I )=TITDN + RNUVl( A ) * ( T ITD-T I TON )
   12 RNG=AMIN1(RNGMX,X(2,I)+.99,TINTO-32. )
C *** CHECK FOR RANGE  INCONSISTANCIES
      IF(RNGMN-RNG)36,36,33
   33 IQGO=IQGO+1
      IF(IOGO-15)34,34,30
C *** INCREASE  ITD BY  10  DEGREES
   34 X(2,I)=X(2,I)+10.
C **+ CHECK THAT ITD WAS  NOT INCREASED  TOO MUCH
      IF(X(2,I)-TITD)l2,12,30
C *** IF RANGE  ALREADY  HAS A VALUE  TRY  YO USE IT
   36 IF(IRAE)38,38,37
   37 IF(X(3,I).GE.RNGMN.AND.X(3,I)-LE.RNG)GO TO 39
   38 IRAE=1
      X(3,I)=RNGMN+RNUM(A)*(RNG-RNGMN)
   39 CONTINUE

C     CALCULATE WIN  AND MAX  TN  BY ALLOWING WATER VELOCITY OF 2-10  FPS
C
 681 30
 681 40
 68150
 68 160
 68 1 70
 68 1 80
 68 190
 68200
 68210
 68220
 68230
 68240
 68250
 682GO
 68270
 68280
 68290
 68.^00
 68310
 68320
 68330
 68340
 6H350
 68360
 68370
 68380
 68390
 68400
 684 10
 68'120
 68430
 68440
 68450
 68460
 68470
 6B')80
68490
68500
68510
685?0
68530
68 540
68550
68560
68570
68580
68590
68600
68610
68620

-------
en
ro
 C *** CALCULATE AVERAGE WATER  TEMPERATURE  AND  FIND PHYSICAL PROPERTIES     68630
       TAV = T INTO-X(3, I )/2.                                                   FHfj-lO
       CALL PPAUT1(TAV,CPW,DENW.D1,D3,KODE)                                  68650
       TN1=XHEAT(I)*XP/X(3,I )/DIA**2/CPW/DENW/1 96.35                        68 '..hO
       TN2=XHEAT(I)*XP/X(3,I)/DIA**2/CPW/DENW/39.27                         68670
       TNN=AMAX1(TNMIN,TN1)                                                  68680
       TNX = A"/1IN1 ( TNMAX , TN2)                                                  68690
 C **+ CHECK THAT  MIN AND MAX FOR  NUMBER  OF  TUBES  IS CONSISTANT             68700
       IF(TNN-TNX)27,27,20                                                   68710
    20 IQGO=IQGO+1                                                           68720
       IFIIQGQ.GT.i5)co TO 30                                                68730
 C *** SEE IF  MIN  NUMBER OF  TUBES  CAN  BE  LOWERED  BY INCREASING RANGE        68740
       IF(TN1-TNMIN)21 .21 ,25                                                 68750
 C *** SEE IF  MAX  NUMBER OF  TUBES  CAN  BE  INCREASED BY DECREASING RANGE      68760
    21  IF(TN2-TNMAX)22,30.30                                                 68770
    22 X(3, I )=X(3, I )-5.                                                       68780
 C *** SEE IF  RANGE  WAS DECREASED  TOO  MUCH                                   68790
       IF(X(3,I)-RNGMN)30,39,39                                              68800
    25 X(3, I )=X(3. D+5.                                                       68810
 C *** SEE IF  RANGE  WAS INCREASED  TOO  MUCH                                   68820
       IF(X(3,I)-RNG)39.39,26                                                68830
 C ***  IF  MAX  RANGE  DEPENDED ON ITD THEN  INCREASE  ITD                       68840
    26 IF( R'JG-X(2 , I ) )34,34,30                                                68850
 C ** +  IF  NUMBER OF  TUBES HAS A VALUE  TRY TO USE  IT                         68860
    27  IF(NOUE)29,29,28                                                       68870
    28  IF(X(5.I).GE.TNN.AND.X(5,I).LE.TNXJGO TO 90                          68880
    29 NOUE=1                                                                 68890
       X(5, I )=TNN + RNUM{A ) *(TNX-TNN)                                          68900
    90  CONTINUE                                                               68910
 C                                                                            68920
 C      CALCULATE MIN  AND  MAX TL BY ALLOWING  AIR VELOCITY OF 100-1000 FPM    68930
 C      AND BY  ASSUMING P=.01-1.                                               68940
 C                                                                            68950
 C  +**  DETERMINE AIR  PHYSICAL PROPERTIES  BASED ON  AIR INLET TEMPERATURE     66960
       TAV=TINTO-X(2,IJ+459.67                                               68970
       T=TAV-459.67                                                           68980
       DENA=FALT/TAV*39.68B63                                                68990
       CPA=.2401457+2.48709E-7*T+2.990712E-8*T*T                             69000
       TL1=XHEAT(I)*XN/X(2,I)/X(5,I)/PITCH/CPA/DENA/5000.                    69010
       TL2=XHEAT(I)*XN/X(2,I)/X(5,I)/PITCH/CPA/DtNA/5.                       69020
       TLN=AMAX1(TLMIN,TL1)                                                  69030
       TLX=AMIN1(TLMAX,TL2)                                                  69040
C ***  SEE IF  TUBE LENGTH MIN AND MAX  IS  CONSISTANT                         69050
       IF(TLN-TLX)31,31,32                                                   69060
   32  IQGO=IQGO+1                                                            69070
       IF(IQGO.GT.15)GO  TO 30                                                69080
C ***  SEE IF MAX  TUBE  LENGTH CAN  BE INCREASED BY  DECREASEING NUMBER OF     69090
C **+  TUBES                                                                 69100
       IF(TL2-TLMAX)91,92,92                                                 69110
   91  X(5.I)=X(5,I)/1.15                                                    69120

-------
U1
GO
              C *** SEE IF NUMBER  OF  TUBES WAS DECREASED TOO MUCH
                    IF(X(5.I)-TNN)93,90,90
                 93 IF(KKI LL.NE.0)GO  TO 30
              C *** SEE IF WIN  NUMBER OF TUBES CAN BE LOWERED  BY  INCREASING RANGE
                    IF(TN1-TNMIN130,30,25
              C *** SEE IF WIN  TUBE  LENGTH CAN BE DECREASED BY  INCREASING NUMBER OF
              C *** TUBES
                 92 IF(TL1-TLMIN)30,30,94
                 94 X(5,I)=X(5.I)+1.15
              C *++ SEE IF NUMBER  OF  TUBES WAS INCREASED TOO MUCH
                    IF(X(5 , I ). LE.TNX)GO TO 90
                    IF(KKILL.NE.0)GO  TO 30
                    SEE IF MAX  NUMBER OF TUBES CAN BE INCREASED BY  DECREASING RANGE
                    IF(TN2-TNMAX)22.30,30
                    IF TUBE  LENGTH ALREADY HAS A VALUE TRY TO  USE  IT
                    IF( IUEE)98,98,95
                    IF(X(4 , I).LE.TLX.AND.X(4,I).GE.TLN)GO TO 40
                    IUEE=1
                    X(4,I )=TLN+RNUM(A)*(TLX-TLN)
C ** *

c ***
   31
   95
   98

C
C
C
   40
c ** *

c
c
c
c

   42
               C
               C
               C
               C
               C
               C
FIND OBJECT FUNCTION

CALL COSTER( I , VA I R , VH20 , KKI L L )
LIMIT THE NUMBER OF OUTPUT PAGES TO  200
IF(NPAGE.GE.200) GO TO  200

SEE IF WATER VELOCITY IS BETWEEN WIN  AND  MAX  FT/SEC.   IF IT IS NOT
SET NUMBER OF TUBES Sufcn THAT WATER  VELOCITY  IS  ON  BOUNDARY.

IF(KKILL) 75,75,42
IQGO= IQGO-t-1
IF( IQGO.GT. 15)GO TO 30
GO TO (94,91 ,55, 60) ,KKILL

SEE IF AIR VELOCITY IS  BETWEEN MIN AND MAX  FT/MIN
IF IT IS NOT, SET  TUBE  LENGTH SUCH THAT AIR VELOCITY  IS ON
 BOUNDARY.  IF DOING THAT VIOLATES TUBE LENGTH  CONSTRAINT,
TRY TO CHANGE ITD.
    55 X(4,I)=X(4,11*1.15
       IF(X(4,I)-TLX)40,40,56
    56 IF(TL2-TLMAX)30,30,57
 C  *** SET TUBE  LENGTH TO MAX
    57 X(4, I )=TLMAX
       GO TO  34
    60 X(4,I)=X(4,I)/1.15
       IF(X(4,I)-TLN)61,40,40
    61  IF(TL1-TLMIN)62,30,30
    62 X(4,I)=TLMIN
 C  *** SET TUBE  LENGTH TO MIN
                                            AND INCREASE  ITD
                                            AND DECREASE  ITD
 691 30
 691 40
 691 50
 69160
 691 70
 69180
 691 00
 69200
 69210
 69220
 69230
 69240
 69250
 69260
 69270
 69280
 69290
 69300
 69310
 69320
 69330
 69340
 69350
 69360
 69370
 69380
 69390
 69400
 69410
 69420
 69430
 69440
 69450
 69460
 69470
 69480
 69490
69500
69510
69520
 69530
 69540
69550
69560
69570
69580
69590
69600
69610
69620

-------
 I
h-«
Ul
                     X(2,I)=X(2,I)-10.
                     IF(X(2,I(-TITDN)30, 12,12
                  75  CONTINUE
                     SEE  IF  COST IS HIGHER OR LOWER THAN PREVIOUS COSTS
                     IF(COSTT(I).LE.COSTT(d)) GO TO 85
                     J=I
                     GO  TO  100
                 85  IF(COSTT(I).GE.COSTT(L>J)) GO TO 100
                     LJ=I
                 100  CONTINUE
                 200  CONTINUE
                     RETURN
                     END
69030
69640
69650
69660
69G70
69680
69690
69700
69710
69720
69730
69740
69750
69760
69770
                     SUBROUTINE  START                                                       69780
                     COMMON  NFO,KGO,KNTRO,KNTR1 , NSUM , NP AGE , DA r'( 21 , PI                       697"0
                     COMMON  KCI,KER,KERR(20),KFIN,KREG,LAIC,LSUP,MM,NP,NR,NT1.NT2.NTP,     69800
                    1NTR,rjTT,ABARE,AFAN,AMIN,APLOT,APPR,ASBUN,ASTOT,AXAV,AXPP(20),CP(2)    69810
                    2,DEN(2),DEN12(2,2),DENFN,DENLZ(7),DBW,DEO,DFH,DFR,DFS,OFT,DKL,        69820
                    3DLSP,DLTE,DLTO,DLTS,DNZ(2),DTI,DTIM,DTF,DTO,DTT,PL,PT                 69830
                     COMMON  DPAD.DPAF,DPAM,DPAW,DPF(10),DPI,DPNZ(2),DPT,DPTA,DPTF,         69840
                    1DPTOT(2),POUT(2),PTUB,RV2,GAMAX,GT,HPFNC,HAIR,HTS,UBARE,UCLN,UTOT,    69850
                    2Q(2),QDUT.QTOT,RKI,RFIN,RFTOT,RTOT,RTW,TAV(2),TIN(2),TOUT(2),TT(8)    69860
                    3.TWALL.TD,TW,TMTD,TK(2),VAPP,VNZ(2),VT,DFAN,TLTE,AOF,VISLZ(7),        69870
                    4VISI2),VIS12(2,2>,VISW,W(2),WAPF,WB(2),WLQ(2)                         69HHO
                     COMMON  ANG(3),CFH(3),CFP(3),CFR,CKBSC,CKFNG,CKHSC.CKLOV.CKSTC.F,      69890
                    1FALT,FINEF,FFF,FSUM,OCL(4),ODL(4),OKH4),OML(4),OMV(4),P,PRAN(2),     69900
                    2PRALZ(7),R,RAOI,RAOR,RARAF,RAPMX,REA(2),RE12(2,2),RFNPL,RPT,TLA,      69910
                    3XREX,ZMP,ZNF,ZNTP,ZNTR,ZNTT,ZTPP(20).ZTPPA                            69920
                     COMMON  ZTRD,ANGI ,ZBYP,ZBUP,ZBUS,ZFAN,DFANI ,DIOV,ZNFI ,PTI,TKT,TKF,     69930
                    1WD(2),VAPPl,TAMB,HALT,C319,TIND(2),TOUTD(2),RFD,PSD,TTMIN,OD(7),      69940
                    2CARD7(6),DNZI(2),PDI,CFNG,CHSC,CLOV,CBSC,PRSTC.RFAIR,RFCT,ZNOZ(2),    69950
                    3RASPC,ZTPD,ZNTD,COST(7),SSUM(16,30) , ISUM(13,30),PRICE(2,21)           69960
                     CALL  SECOND(DAY(2))                                                    69970
                     CALL  ZEROA                                                             69980
                     PI=3.14159                                                             69990
                     KGO=1                           -                                       70000
                     KNTR1=0                                                               70010
                     KNTRO=0                                                               70020
                     NPAGE=1                                                                70030

-------
                    NFO = 6
                    NSUM=0
                    RETURN
                    END
                                                                       70040
                                                                       70050
                                                                       70060
                                                                       70070
on
en
              C ** +
              c
              C
              c ***
              c
              c
              c
              c  ** *
                  1 0
                 100
              c  ***
              c  * * *
                 200
              c  ***
                 240
              c  ***
              c
               c  ** *
               c
                 300
               c  ***
                 350
SUBROUTINE STORE(NMAX,ITEM,CITEM,CNEW)
DIMENSION CNEW(15) , CITEM(10,15)
THIS S/R LOOKS AT  A  NEW  ARRAY  OF ITEMS  AND  CHECKS IF THE NEW ARRA
SHOULD BE ADDED  INTO  THE  CITEMS  MATRIX.  THE CITEM MATRIX IS
ARRANGED IN ASCENDING  ORDER  DETERMINED  BY CITEM(I.I)  SLOT
INPUT VARIABLES  ******
ITEM - NO. OF  ITEMS  TO  BE STORED FROM CNEW INTO CITEM
NMAX - NO.OF STORAGE  ITEMS  FOR  FIRST DIMENSION IN CITEM(NMAX,ITEM)
CNEW(NITEM) NEW  ARRAY  TO BE  INTEGRATED  INTO CITEM
DO  100 1=1,NMAX
CHECK IF CNEW(1)  IS  LOWER THAN  CITEM(I,1)
IF(CNEW(1 )-CITEM(I,1 ))10, 100,100
HAVE FOUND THAT  CNEW  SHOULD  BE  INTEGRATED INTO THE N  SLOT OF CITEM
N =  1
GO  TO 200
CONTINUE
AT  THIS  POINT-THE  CNEW(1)  IS  HIGHER THAN ANY VALUE IN CITEM(I,1)
GO  TO 500
INTEGRATE CNEW INTO  CITEM INTO  N SLOT
CONTINUE
IF  N=NMAX DONT HAVE  TO  PUSH  ANYBODY BACK-JUST GO TO FILL-UP AT 350
IFIN-NMAX)240,350,500
CON FINUE
FIRST PUSH
SET  UP THE
K=NMAX-N
DO  300 d  =
DO  300 1=1,
                LAST  SLOT WHEN  PUSHING BACK
EVERYONE
VALUE OF
         BACK ONE SLOT
         K THE FIRST SLOT
                                      TO START  AT  FROM  THE  BACK
                                1
                               ,K
                                THE
                                  ITEM
INFORMATION WILL BE DESTROYED
                                  = CITEM(L,d)
START FROM
SO THAT NO
L=NMAX-I
CITEMt L-t-1 , d)
CONTINUE
NOW INTEGRATE CNEW INTO N SLOT OF C I TEM( N , I TEM )
CONTINUE
DO 400 d = 1 , ITEM
CITEM(N.d)  = CNEW(d)
 70080
 70090
 701 00
 701 10
 701 20
 70130
 70 1 40
 701 50
 701 60
 701 70
 70 180
 70190
 70200
 70210
 70220
 70230
 70240
 70250
 70? GO
 70270
 70280
 70290
 70300
 70310
70.320
70330
70340
70350
70360
70370
70380
70390
70400
7041 0
70420
70430
70440

-------
   400  CONTINUE
   500  RETURN
       END
                                                                          70450
                                                                          70460
                                                                          70470
 I
(—«
tn
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
    SUBROUTINE  STRUCT(NTT.TUBKT.ZL,DHEDW,RLL,HTSTR,STLAD,ZBUP,ZBPU,
   1CTSTR)

**« THIS SUBROUTINE  ESTIMATES  THE COST  FOR THE STRUCTURE.  INCLUDING
»«* GRADING,PAVING,FOUNDATION  -f  STEEL COST.

*** INPUT VARIABLES  •**
    DL    = BUNDLE LENGTH  (FT)
    DHEDW = BUNDLE WIDTH   (INCH)
    NTT   = TOTAL NUMBER OF  TUBES
    TUBWT =r UNIT WEIGHT OF TUBE  (LB/FT)
    RLL   = ROOF LIVE  LOAD (LB/FT2)
    HTSTR = STRUCTURE  HEIGHT  (FT)
    STLAD = INDEX FOR  STEEL  COST ADJUSTMENT
    ZBUP  = NUMBER OF  BUNDLES  PER BAY
    ZBPU  = NUMBER OF  BAYS PER UNIT

*** OUTPUT VARIABLE  ***
    CTSTR = STRUCTURE  COST ($)
    ZTTrNTT
    DL=ZL«2.

    THE ONLY DATA AVAILABLE  is  FOR  WIND LOAD = 35 PSF, so ASSUME THE
    WIND LOAD IS NEAR 35 PSF

    CHECK THE WIND MAP  FOR ROOF  LIVE  LOAD.  IF LL>20PSF, USE LL=40PSF
    DATA. IF LL)20PSF,  USE LL=12PSF DATA.

    CHECK THE TABLE FOR STEEL PRICE MODIFICATION, INPUT THE ADJUSTMENT
    INDEX  STLAD
    TOTAL WEIGHT OF  TUBES
    TTUWT=ZTT*TUBWT«DL
    WEIGHT OF ONE BUNDLE SECTION
70480
70490
70500
70510
70520
70530
70540
70550
70560
70570
70580
70590
70600
70610
70620
70530
70640
70650
70650
70670
70680
70690
70700
70710
70720
70730
70740
70750
70760
70770
70780
70790
70800
70810
70820
70830
70840
70850

-------
C
c

C
c
c
c
c
c
c
c
c
 c
 c
 c
 c
 c
 c

 c

 c
   ACWT1=1.4+TTUWT

   WEIGHT PER UNIT AIR  COOLER,  NOT INCLUDING STRUCTURE
   ACWT=ACWT1+ZBUP+ZBPU

   PRETEND AS A 45 FT WIDE  UNIT,  SO THAT THE WEIGHT  IN  1000 LB IS
   WT452 = ACWT*(45.0 * 120.0*12.0/DHEDW/DL/ZBUP/ZBPU)/1000.0
   WT456=ACWT*(45.0*160.0*12.0/DHEDW/DL/ZBUP/ZBPU)/1000.0

   DIFFERENT CALCULATIONS  FOR  DIFFERENT ROOF LIVE  LOADS
   IF (RLL-20.0)  10,10,20

10 CONTINUE
   W*L*H  = 45*120*30
   CTWT1=23.047*(WT452-268.0)+33510.0
   W+L*H  = 45*120*50
   CTWT2=23.125*(WT452-268.0)+37650.0
   W+L'H  = 45*160*50
   CTWT3=36.8235*(WT456-358.0)+42240.0
   W*L»H  = 45*160+70
   CTWT4=36.8235+(WT456-358.0)+49190.0
   GO TO  30

20 CONTINUE
   CTWT1=25.625*(WT452-268.0)+37360.0
   CTWT2=26.40625*(WT452-268.0)+41410.0
   CTWT3=37.4705*(WT456-358.0)+49200.0
   CTWT4=36.8235*(WT456-358.0)+56460.0

30 CONTINUE

    INTERPOLATE STRUCTURE HEIGHT
   W*L  -  45*120
   CTHT1 =(CTWT2-CTWT1 ) /20- 0*(HTSTR-30.0)+CTWT1
   W*L  =  45*160
   CTHT2=(CTWT4-CTWT3)/20.0*(HTSTR-50.0)+CTWT3

    INTERPOLATE STRUCTURE LENGTH
    IF  (DL-120.0)  32,32,34

32 CONTINUE
   CTSTB=(CTHT1-6000.0)/!20.0*DL+6000.0
   GO  TO  36

34 CONTINUE
   CTSTB=(CTHT2-CTHT1)/40-0*(DL-120.0)+CTHT1

36 CONTINUE
   CTSTB=CTSTB*DHEDW/540.0*ZBUP
 70860
 70870
 70880
 70890
 70'.'00
 7091 0
 70920
 70930
 70940
 70950
 709<">0
 70970
 70980
 70990
 71 000
 71010
 71 020
 71 030
 71 040
 71 050
 71 OGO
 71 070
 71 080
 71 090
 71 100
 71110
 71 120
 71 130
 71140
 71 150
 71 160
 71170
 71 180
 71 190
 71 200
 71210
 71 220
 71 ?30
 71 240
 71 250
71 2GO
71 270
 71 2 HO
71 290
71 300
 71310
71 320
71 330
 71 340
 71 350

-------
c
c
c ***
                     STEEL COST  ADJUSTMENT
                     ADJUST=0.87*CTSTB*STLAD/100.0
                     CTSTR=CTSTB+ADJUST

                     CTSTR=CTSTR*ZBPU/2.
                     ADD  11 PCT.  TO  INCLUDE GALVANIZING(ADDITIONAL 120 S/TON)
                     CTSTR=1.11*CT5TR
                     RETURN
                     END
71 360
71370
71 380
71 390
71400
71410
71420
71 430
71440
71450
 I
I—I

-------
I
I—'
en
C *** ENTER  ERROR  NO.  IN DATA STATEMENT  WHICH  ARE NOT PERMANENT             71770
      DATA KERNO/64,62,70,71,98,79/                                          71780
      TOL=.005                                                                71790
      LSUP1=0                                                                 71800
      CALL EX INI                                                              71810
      IF  (KGO-1)  10,10,500                                                   71«?0
   1 0 CALL GEOM1                                                              71830
   30 LSUP=1                                                                  71840
      IF(KCI-2)36,80,120                                                     71850
C *** SET UP PARAMETERS TO GUESS TIN(1)                                      71860
C *** MAKE THE  FIRST GUESS FOR ITD SLIGHTLY  HIGHER THAN THE DESIGN  ITD      71870
   36 S(1)=57./SSSUM(9)                                                      71800
      ZTIN2 = TCONV(TIN(2) , 1 ,2)                                                71890
C *+* GIVEN  THE SATURATION TEMPERATURE,  QTURB  FINDS THE                     71900
C **+ HEAT REJECT OF THE TURBINE.                                            71910
    38 TTT--ZTIN2 + 60./S( LSUP)                                                  71920
       IF(TTT-250.)40,39,39                                                   71930
    39 TTT=250.                                                                71940
      S(LSUP)=60./(250.-ZTIN2)                                               71950
    40 CONTINUE                                                                "1950
 C  ***  IF TTT CONVERGES  ABOVE  TINMX THEN  SUBROUTINE COSTER SHOULD            71970
 C  **+  CHECK  AND ADJUST  PLOAD                                                 71980
       CALL  QTURB(OREJ,TTT,PLOAD.2)                                           71990
       OD(1)=QREJ                                                             72000
 C  ***  SET MM=0 IN CASE  PREVIOUS  ITERATION  HAD  KER=23 FROM QTURB. THIS       72010
 C  ***  WILL  ALSO DELETE  RECORD  OF SOME  ERRORS IN QBALN FROM LAST  TIME       72020
       IVM-0                                                                    72030
 C  ***  IF CONCT IS ZERO  THEN ASSUME A SURFACE CONDENSER IS USED              72040
       IFfCONCT-.001)44,44,46                                                 72050
    44 CALL  SCMPR(TTT,QREJ,W(1 ), CLFAC,KMETL,KGAGE,BCKMX,BCKMN,                72060
      1CITEMM,11),CITEM(1,4),CITEM{1,13),GTITD,CITEM(1,15),TIN(1),          72070
      2TOUT(1))                                                               72080
       SUBCL=TTT-TIN(1)                                                       72090
       GTITD=SUBCL                                                            72100
       TD = TIN(1  (-ZTIN2                                                        721 10
       TIN! 1  I =TIN(1 (+459.67                                                   72 I 20
       TOUT(  1 )=TOUT(1 ) + 459.67                                                 72130
       TT( 1 )  = TIN( 1 )                                                           72140
       GO TO  120                                                              72150
 C  +** FDR JET COND. ASSUME  TTD IS  PROPORTIONAL TO 0                         72160
    46 SUBCL=QREJ*X(6,NSUM)/SSUM(B,NSUM)/1.E06                                72170
       TIN(1  )=TTT-SUBCL                                                       72180
       TIN( 1  ) =TCONV(TIN(1 ) , 1 ,1 )                                               72190
 C  *** THE ITD  IS CONSTANTLY CHANGING.  TD MUST  BE SET FOR USE                72200
       TD=TIN(1)-TIN(2)                                                       72210
       TT(1 )  = TIN( 1 )                                                           72220
 C  *** CONVERGE ON CORRECT  CP                                                 72230
       LQ=1                                                                    72240
       CPX=1.                                                                 72250
    45 TOUT(1)=TIN(1)-QREd/W(1)/CPX                                           72260

-------
       XX=.5"(TIN(1)+TOUT(1))
       CP1=OCL( 1 )+OCL(2)*XX+OCL(3)*XX*XX
       IF(ABS(1.-CP1/CPX)-.004)48,48,47
   47  IF(LQ-5)49,48,48
   49  LQ = LQ-M
 I
i—»

O
                 48

                 80
                 90
              C **-
                100
                110
                1 1 2
  115
  120
  123
  124
C ***
  185
  187
c ***
C *
  193

  194

  195
  196

  197
  198

  199

  200

  21 0
                        90,90,100
                       112, 112,115
                                                   LOWER THAN DESIGN VAPP
                                                        , HA I R , CFH , C FR ,
 GO TO 45
 CONTINUE
 GO TO 120
 IF (VAPPI-. 1 )
 5(1 ) = 1 .
 IN FAN CONTROL MAKE GUESS FOR VAPP  SLIGHTLY
 IF(JAKE.PQ.3)5(1)=721./SSUM(10,NSUM)
 GO TO 110
 S(11=650./VAPP
 IF(S(LSUP)-.350;
 KER=11
 CALL  ERORF(KER,KERR,KGO,MM)
 GO TO 500
 VAPP=650./S(LSUP)
 CALL  05ALN
 I Fi. KE<5 )  124 , 124, 193
 GAMAX=VAPP /RAPMX*4.5
 CALCULATE AIRSIDE HEAT TRANSFER COEFFICIENT
 CALL  HTAIR(GAMAX,DFR,VIS(2),REA(2),TK(2),PRAN(2i
1RARAF,FINEF, RFIN)
 HAIRD=HAIR
 RFIND=RFIN
 CALL  EXCON
 IF  IKGO-2) 187,500,187
 IF(KER)  210,210,193
 CHECK HERE FOR ERRORS FOUND IN QBALN.PPROP,  AND  MTDOV  CAUSED BY
 POOR  GUESS FROM SUPER
 DO  194  1=1,6
 IF  (KER-KERNO(I)) 194,195,194
 CONTINUE
 GO  TO 200
 IF  (LSUP-1)  196,196,197
 S(1 )=SI1 )* .5
 GO TO 198
 S( LSUP ) = (S( LSUP)-t-S( LSUP-1 ) )*.5
 LSUP1=LSUP1+1
 IF  (LSUP1-20)199,200,200
 KER = 0
 GO TO 240
 CALL  ERORF (KER,KERR,KGO,MM)
 GO TO 500
 E(LSUP)=FSUM-1.
 LSUP1=0
 IF(LSUP-2)228,230,230
72270
72280
72290
72300
72310
72320
72330
72340
72350
72360
72370
72380
72390
72400
72410
72420
72430
72440
72450
72460
72470
72480
72490
72500
72510
72520
72530
72540
72550
72560
72570
72580
72590
72600
72610
72620
72630
72640
72650
72660
72670
72680
72690
72700
72710
72720
72730
72740
72750
72760

-------
                                     THEN DO NOT CALL DPAIR  OR  DPTUB
C **' SIMPLE  ITERATION  USED FOR SECOND QUESS
  220 5(2)=5(11/FSUM
  230 CONTINUE
      CALL IMRCON(LSUP,S,E,KER,50,TOL,K,20)
      IF(K-1 )  240 , 250,234
  234 CALL ERORF(KER.KERR,KGO,MM)
      GO  TO  500
  240 IF(KCI-2)38,110 , 120
C *** END OF  SUPER  HEAT TRANSFER LOOP
C *** CALCULATE  PRESSURE DROPS
C *** IF  KKILL IS  TO BE SET IN COSTER
  250 IF(JAKE.EQ-3)GO TO 260
C *** FOR INITIAL  COMPLEX DO NOT LET VAPP GO ABOVE  1000  FPM
      IF(IISUM(1).GT.O)GO TO 251
      IF(VAPP-1010.)251,251,500
  251 CONTINUE
      IF(VAPP-(VAMAX+.01 ) ) 255,255,500
  255  IF(VAPP-(VAMIN-.01))500,250,260
  260 CALL  DPAIR
      HAIR  =HAIRD
      RFIN  =RFIND
  270 CALL  DPTUB
  500  CONTINUE
  2000  RETURN
       END
72770
72780
72790
72800
72810
72820
72830
728'40
72850
728^0
72870
72080
72890
72900
72910
72920
72930
72940
72950
72960
72970
72980
72990
73000
73010
    FUNCTION TCONV(T,KUNIT,KDIR)
*** TCONV CONVERTS TEMPERATURES TO ABSOLUTE AND VICEVERSA
*** KUNIT=1 - U.S. UNITS  , KUNIT=2 - S.I. UNITS
**+ KDIl?=1 - TO ABSOLUTE  , KDIR = 2 - FROM ABSOLUTE
«** IF THE TEMPERATURE IS ZERO (=0.0), IT REMAINS ZERO
    TCONV=0.0
    IF (ABS(T)-1.OE-6) 100,10,10
 10 KGO=2*KUNIT-2+KDIR
    GO TO  (20,30,40,50) , KGO
 20 TCONV=T+459.67
    GO TO  100
 30 TCONV=T-459.67
    GO TO  100
 40 TCONV=(T+273.15)*1.8
    GO TO  100
 50 TCONV=T/1.8-273.15
                                                                             73020
                                                                             73030
                                                                             73040
                                                                             73050
                                                                             73060
                                                                             73070
                                                                             730HO
                                                                             73090
                                                                             73100
                                                                             731 10
                                                                             731 20
                                                                             731 30
                                                                             73140
                                                                             73150
                                                                             73160
                                                                             73170

-------
                 100  RETURN
                     END
                                                                            73180
                                                                            73190
CTi
ro
C
C
C
C
C
C
C
C
C

C
C
C
C
              C
              C
              C
              C
              C

              C
              C
    SUBROUTINE TRANS(NMOT,HPMOT,CTRAN,TRANC)

*** THIS PROGRAM CALCULATE THE COST FOR  POWER  TRANSMISSION

*** INPUT VARIABLE ***
    HPMOT = MOTOR HORSEPOWER

*** OUTPUT VARIABLE ***
    CTRAN = COST FOR ONE TRANSMISSION ($)

    ZMOT=NMOT
    MOTOR HORSEPOWER ON7.5 ,USE DIRECT MOTOR DRIVE
                    7.5N20.0 USE V-BELT
                    20.ON   USE GEARBOX

    IF (HPMOT-7.5) 10,10,20
 10 CONTINUE
    DIRECT MOTOR DRIVE
    THE COST IS SMALL.   NEGLECT.
    CTRAN=0.0
    GO TO 300

 20 CONTINUE
    IF (HPMOT-20.0) 30,30,40
 30 CONTINUE
    V-BELT DRIVE
    DATA  NOT AVAILABLE NOW. USE THE EXTRAPOLATION OF  GEAR  BOX

 40 CONTINUE
    GEARBOX DRIVE

    INDEX=INT(HPMOT)/25+1
    IF(INDEX.GT.8)GO TO 250
    GO TO (25,50,75,100,125,150,175,200) INDEX
 25 CTRAN=41.6*HPMOT
    GO TO 300
 50 CTRAN = 47.6*(HPMOT-25.0)-M040.0
    GO TO 300
 75 CTRAN=66:8*(HPMOT-50.0)+2230.0
                                                                                           73200
                                                                                           73210
                                                                                           73220
                                                                                           73230
                                                                                           73240
                                                                                           73250
73270
732BO
73290
73300
73310
73320
73330
73340
73350
73360
73370
73380
73390
73400
73410
73420
73430
73440
73450
73460
73470
73480
73490
73500
73MO
73520
73530
73540
73550
73560
73570
73580

-------
                    GO TO 300
                100 CTRAN=64.0+IHPMOT-75.0)+3900.0
                    GO TO 300
                125 CTRAN=33.6*(HPMOT-100.0)+5500.0
                    GO TO 300
                150 CTRAN=22.4+(HPMOT-125.0)+6340.0
                    GO TO 300
                175 CTRAN^12.*(HPMOT-150.J+6900.
                    GO TO 300
                200 CTRAN=12.*(HPMOT-175.)+7200.
                    GO TO 300
                250 CTRAN=12.*(HPMOT-200.)+7500.
              C
                300 CONTINUE
                    TRANC=ZMOT*CTRAN
              C *** ADO  10 PCT. FOR SHIPPING  TO  MANUFACTURER
                    TRANC=1.1*TRANC
              C
              C
                    RETURN
                    END
                                                                      73590
                                                                      73600
                                                                      736 10
                                                                      73620
                                                                      73630
                                                                      73640
                                                                      73650
                                                                      73660
                                                                      73670
                                                                      73680
                                                                      73690
                                                                      73700
                                                                      73710
                                                                      73720
                                                                      73730
                                                                      73740
                                                                      73750
                                                                      73760
                                                                      73770
                                                                      73780
                                                                      73790
oo
               C
               C
               C
               C
               C
FUNCTION TSL(PP)

FROM PP IN INCHES OF MERCURY, FIND THE SATURATION TEMPERATURE IN
DEGREES F. TAKEN FROM PAGE 44 OF *CALCULATIONS OF PROPERTIES OF
STEAM*  BY MCCLINTOCK AND SILVESTRI
                     DIMENSION B(6),T(6)
                     DATA  B/1.52264683,-.682309518,.164114952,-2.02321649E-03,
                    1-1 . 92391111E-03.-5.74549419E-04/
               C ***  DO  NOT ALLOW PP TO GO ABOVE THE CRITICAL POINT OR
               C ***  BELOW THE FREEZING POINT
                     IF(PP.LT..2)PP=.2
                     IF(PP.GT.6530.)PP=6530.
                     T(1 ) = 1 .
                     P=PP/2.036
                     T(2)=(ALOG(3529.05823/P)**0.4-1.46047125)/(-1 .089944)
                     Y = 2. *T(2)
                     W=B(1 )+T(2)*B(2)
                     DO  2  N=3,6
                     T(N)=Y*T(N-1 )-T(N-2)
73800
73810
73320
73830
73840
73850
73060
73870
73880
73B'»0
73900
73910
73920
73930
73940
73950
73960
73970
73980
73990

-------
                   2  W=W+T(N)*B(N)
                     TSL=1 .8*(647.3/W-273.l5)+32.
                     RETURN
                     END
74000
74010
74020
74030
                     SUBROUTINE  TUBEF(KTUBE,KFIN,NFPIN,DTO,DLTTK,DFH,DFT,WTUBE,WFIN,WTU
                    1BF,ATUBE,BFIN,CTUB1,CTUB,CFIN)
Ol
-P.
c
c ** *
c
c ** *
c ** *
c
c ** *
c
c
c
c
c
c
c
c
c
c
c
c ** +
c
c
c
c
c
c
c
c ** *
c
c
c
c
c
c
c
THIS SUBROUTINE CALCULATES THE COST OF TUBE AND FIN IN $/FT
DATA DENCS.DENAL/.2833, -0975/
DENSITY OF CARBON STEEL IS 0.2833 LB/IN3
DENSITY OF ALUMIMUN STRIP IS 0.0975 LB/IN3
INPUT VARIABLES ***
KTUBE =

KFIN =


NFPIN =
DTO
DLTTK =
DFH
DFT

TUBE CODE. 0 FOR WELDED TUBE
1 FOR SEAMLESS TUBE
FIN CODE. 0 FOR L-FINNED TUBE
1 FOR G-FINNED TUBE
2 FOR EXTRUDED -FIN TUBE
NUMBER OF FINS PER INCH
TUBE OUTSIDE DIAMETER (INCH)
TUBE WALL THICKNESS (INCH)
FIN HEIGHT (INCH)
FIN THICKNESS (INCH)

OUTPUT VARIABLES ***

WTUBE =
WFIN =
WTUBF =
CTUB1 =


INTERNAL

DENCS =
DENAL =
CFIN =
CTUB =
FOVHD =
DSLEV =

CARBON STEEL TUBE WEIGHT (LB/FT)
ALUMIMUN FIN STRIP WEIGHT (LB/FT)
TUBE AND FIN WEIGHT (LB/FT)
COST FOR TUBE AND FIN PER UNIT LENGTH ($/FT)


VARIABLES ***

CARBON STEEL DENSITY (LB/IN3)
ALUMINUM DENSITY (LB/IN3)
COST FOR ALUMIMUN FIN STRIP ($/LB)
COST FOR CARBON STEEL TUBE ($/LB)
OVERHEAD FACTOR FOR TUBE AND FIN
FIN SLEEVE THICKNESS (INCH)
74040
74050
74060
74070
74080
74090
74100
741 10
74120
74130
74140
74150
74160
74170
74180
74190
74200
74210
74220
74230
74240
74250
74260
74270
74280
74290
74300
74310
74320
74330
74340
74350
74360
74370
74380
74390
74400

-------
I
1—>
CT^
Ul
              C
              C
              C
              C
              C

              C
               C
               C

               C
               C
    ZFPIN=NFPIN
    IF (KFIN-1)  5,6,7

	 L-FINNED  TUBE
  5 DSLEV=DFT
    FOVHD=1.0
    GO TO 8

	 G-FINNED  TUBE
  6 DSLEV^O.O
    FOVHD=1.2
    GO TO 8

	 EXTRUDED  FIN TUBE
  7 DSLEV=0.0
    FOVHD=1.4

  8 CONTINUE

    DTI=DTO-2.0*DLTTK
    DFR = DTO-i-2. 0+DSLEV
    DOF=DFR+2. 0*DFH

    CARBON  STEEL TUBE WEIGHT PER  FOOT  (LB)
    WTUBE=3.1416/4.0*(DTO**2-DTI**2)*12.0*DENCS

     ALUM1MUN FIN STRIP WEIGHT PER  FOOT  (LB)
    WFIN=(3.1416/4.0*(DOF**2~DFR**2)*DFT*ZFPIN*12.0+3.1416/4.0*(DFR** 2
    1      -DTO»*2)*12.0)   *DENAL

    WTUBF=WTUBE+WFIN
               C
               C
                     IF (KTUBE-1) 10,20,20
                 *** SA-214  WELDED TUBE.
                  10 CTUB=0.7008
                     GO TO 30
 *** SA-179  SEAMLESS TUBE.
  20 CTUB=1 .376

  30 CONTINUE

     TUBE COST
     ATUBE=WTUBE*CTUB
     FIN COST
     BFIN=WFIN*CFIN
                                  .PRICE  AS  OF  APRIL,  1976
                                                  , PRICE  AS  OF  APRIL,  1976
74410
74420
74430
74440
74450
74460
74470
74480
74490
74500
74510
74520
74530
74540
74550
745GO
74570
74580
74590
74600
7461 0
74620
74630
74G40
74650
74660
74670
74680
74690
74700
7471 0
74720
74730
74740
74750
74760
74770
74780
74790
74800
748 I 0
748?0
74830
74840
74850
74860
74070
74880
74890
74900

-------
              c
              C     COST/FT = ( WFIN*CFIN + WTUBE*CTUBE ) * FOVHD
                    CTUB1=(WFIN*CFIN+WTUBE*CTUB) * FOVHD
              C +** MARK-UP FACTOR IS NOT USED HERE, BUT WILL BE USED LATER
              C
                    RETURN
                    END
                                                                           74910
                                                                           74920
                                                                           74930
                                                                           74940
                                                                           74950
                                                                           74960
                                                                           74970
CT>
cr>
C
C
C
C
C
C
C
C
C
c
c
c
c
c
c
c
              c
              c
              c
     SUBROUTINE UCONDt VT,UCLN,DTO,TTIN,KMETL,KGAGE,UBASE,FTEMP,FMETL)     74980
     DIMENSION AMETL(7,13)                                                74990
***  FOLLOWING VARIABLES ARE  INPUT                                        75000
***  VT =  TUBE SIDE VELOCITY  FT/SEC.                                      75010
***  DTO = TUBE OD INCH.                                                  75020
***  TTIN  = TUBE SIDE  WATER INLET TEMP. DEG.F                             75030
***  KMETL = CODE NO.  OF METAL -N0.1 TO 13                                75040
***  KGAGE = GAGE NO.  OF METAL -N0.1 TO 7                                 75050
***  FOLLOWING VARIABLES APE  OUTPUT                                       75060
***  UCLN  = OVERALL HT. COEF. FOR NEW CLEAN TUBES CORRECTED FOR VARIOUS   75070
***  MATERIALS, GAUGES AND INLET WATER TEMPERATURES.                      75080
***  UBASE = HT. COEF. BASED  ON C*SQRT(VT) AND ON NEW CLEAN TUBES         75090
***  FTEMP r CORECTION FACTOR FOR INLET WATER TEMP.
***  FMETL = CORRECTION FACTOR FOR METAL AND GAUGE
***  CALC.  OVERALL CONDENSING COEF.  FOR SURFACE CONDENSERS USING HEI
***  METHODS -6TH EDITION -1970
***  FOLLOWING IS TABLE ST-1   PAGE 4 OF HEI, REF. IBID,TUBE METAL
*** CORRECTION TO CLEAN COEF.                                            75 50
    DATA AMETL/1 .06, 1 .04,1 .02,1.0, .96, .92, .87 ,
               1 .06,1 . 04,1.02,1.0,.96, .92,
               1 .06,1 .04,1.02,1.0,.96, .92,
                               1 .03,1 .02,1.00,.97,.94,
                               1.03,1.02,
                                         90 ,
                                         90,
.87,
.87,
.84,
.84.
                         1.00,.97,.94,
               1 .03,1 .02,1 .00,.97,
               0.99,0.97,0.94,.90,
               0.93,0.90,0.87,.82,
               1.00,0.98,0.
               0.88,0.85,0.
               0.83,0.79,0.75,.69,.63,.56,.49,
               0.78,0.76,0.74,.69,.65,.60,.54,
               0.85,0.81,0.77,.71,.65,.56,.50/
            KGAGE   BWG   DTTH
              1       24   .022
              2      22   .028
                                                  .94,.90,.84,
                                                  .85,.80,.74,
                                                  .77,.71,.64,
                                          ,95,.91,.86,.80,.74,
                                          .82,.76,.70,.65,.59,
                                                                                         75
                                                                                         75
                                                                                         75
                                                                                         75
                                                                                         75
                                                                                         75
                                                                                         75
                                  00
                                  10
                                  20
                                  30
                                  40
                                                                              60
                                                                              70
75180
75190
75200
75210
75220
75230
75240
75250
75260
75270
752BO
75290
75300
75310

-------
I
I—'
CTl
              C
              c
              C
              C
              c
              c
              c
  ***
  +**
          3
          4
          5
          6
          7
                       20
                       18
                       16
                       14
                       12
.035
. 049
.065
.083
. 109
C ***
  1 1 0

  120
C ***
  130

C ***
  140

  150
C +**
C ***

  21 0
                 220
                 230

                 240
                 250

                 260
                 270
                 ***
                 ***
                                                  OD TUBES
                                              1/4 IN. OD TUBES
FIRST CALCULATE UBASE  HT.  COEF.  FOR SURFACE COND. USING  ABOVE
METHODS FIG. SF-2  PAGE 5
IF(DTO-.BO) 1 10,1 1 0 , 120
CONSTANT FOR 5/8 AND 3/4  IN.  OD  TUBES
C = 267.
GO TO 150
IF(DTO-1 . 1 ) 130, 1 30, 140
CONSTANT FOR 7/8 AND  1.0  IN.
C = 263.
GO TO 150
CONSTANT FOR 1  1/8 AND 1
C = 259.
GO TO 150
UBASE = C  * SQRT(VT)
CALC. TEMP. CORRECTION FACTOR USING ABOVE METHODS
BELOW IS A CURVE  FIT  OF FIG.  SF-2 PAGE 5 OF ABOVE
IF(TTIN-50 . )210, 210,220
FTEMP = TTIN *  . 013 +  .16
FTEMP=AMAX1 ( .576 , FTEMP)
GO TO 270
IF( TTIN-70. )230,230,240
FTEMP = TTIN *  .0095 + .335
GO TO 270
IF( TTIN-100. )250 ,250,260
FTEMP = TTIN *  .00333 + .7669
GO TO 270
FTEMP = 0.002*TTIN + 0-9
CONTINUE
 LOOK-UP OF TUBE METAL CORRECTION FACTOR FROM TABLE ST-1  PAGE  4
OF ABOVE
 FMETL = AMETL(KGAGE.KMETL)
UCLN  =  UBASE »  FTEMP * FMETL
RETURN
END
75320
75330
75340
75350
75360
75370
75380
75390
75400
75410
75420
75430
75440
75450
75460
75470
75480
75490
75500
75510
75520
755.10
75540
75550
75560
75570
75580
75590
75GOO
75610
75620
75630
75640
75650
75660
75670
75680
75690
75700

-------
O1
00
      SUBROUTINE UOSENIKCLGI                                                75710
C *** CALC. OVERALL SENSIBLE HEAT TRANSFER AND PRESSURE DROP                75720
      COMMON NFO.KGO,KNTRO,KNTR1,NSUM,NPAGE,DAY(2),PI                       75730
      COMMON KCI ,KER.KERR(20) ,KFIN.,KREG, LAIC.LSUP,MM,NP.NR,NT1 ,NT2,NTP,     75740
     1NTR,NTT.ABARE,AFAN,AMIN,APLOT,APPR,ASBUN,ASTOT,AXAV,AXPP(20),CP(2)    75750
     2,DEN(2)iDEN12(2,2) , DENFN,DENLZ(7),D5W,DEQ,DFH,DFR,DFS,DFT,DKl,        75760
     3DLSP,DLTE.DLTO,DLTS,DNZ(2),DTI,DTIM,DTF,DTO,DTT,PL,Pr                 75770
      COMMON DPAD,DPAF,DPAM,DPAW,DPF(10),DPI,DPNZ(2),DPT,DPTA,DPTF,         75780
     1DPTOT(2) POUT(2), PTUB,RV2,GArvlAX,GT ,HPFNC,HAIR,HTS ,UBARE,UCLN,UTOT ,    75790
     20(2) ,QDUT,QTOT,RFI,RFIN,RFTOT,RTOT,RTW,TAV(2 ) ,T I N(2> ,TOUT(2 ) ,TT(8 )    75BOO
     3,TWALL,TD.TW,TMTD,TK(2).VAPP,VNZ(2).VT,DFAN,TLTE,AOF,VISLZ<7),        75610
     4VIS(2),VIS12(2,2),VISW,W(2),WAPF,WB(2),WLQ(2)                         75820
      COMMON ANG(3),CFH(3),CFP(3).CFR,CKBSC,CKFNG,CKHSC.CKLOV.CKSTC,F,      75830
     1FALT,FINEF,FFF,FSUM,OCL(4),QDL(4),OKL(4),CML(4),OMV(4),P.PRAN(2>,     75840
     2PRALZI7),R,RAOI,RAOR,RARAF,RAPMX,REA(2),RE12(2,2),RFNPL,RPT,TLA,      75850
     3XREX,ZMP.ZNF,ZNTP,ZNTR,ZNTT,ZTPP(20),ZTPPA                            75860
      COMMON ZTRD.ANGI,ZBYP.ZBUP,Z8US,ZFAN,DFANI,DLOV,ZNFI,PTI,TKT,TKF,     75870
     1WD(2) VAPPI,TAMB,HALT,C319,TIND(2),TOUTD(2),RFD,PSD,TTM1N,QD(7),      75880
     2CARD7(6),DNZI(2) ,PDI,CFNG,CHSC,CLOV,CBSC,PRSTC,RFAIR,RFCT,ZNOZ( 2) ,    75890
     3RASPC,ZTPD,ZNTD,COST(7),5SUM(16,30),ISUM(13,30),PRICE(2,21)           75900
      REA(1)=GT *DTI/(29.0*VIS(1 ))                                          75910
      HTS=.058*REA(1)**.7*PRAN(1)**.5*TK(1)*12.0/DTI                        75920
   80 UTOT =1.0/(1.0/HA1R+RAOI/HTS  +RTOT+RFIN)                              75930
  200 CONTINUE                                                              75940
  500 RETURN                                                                75950
      END                                                                   75960
                    SUBROUTINE ZEROA
                    COMMON IDUMP(6),DUMP(3),IDUMW(34),DUMW(246),DUM(972)
                    DO 10 1 = 1 ,34
                 10 IDUMW(I)=0
                    DO 20 1=1,246
                 20 DUMW(I)=0.0
                    DO 30 1=1,60
                 30 DUM(I)=0.0
                    RETURN
                    END
                                                                            75970
                                                                            75980
                                                                            75990
                                                                            76000
                                                                            76010
                                                                            76020
                                                                            76030
                                                                            76040
                                                                            76050
                                                                            76060

-------
                                TECHNICAL REPORT DATA
                          (Please read Initnictions on the reverse before completing)
 . REPORT NO.
 EPA-600/7-78-152
                                                     3. RECIPIENT'S ACCESS I Of* NO.
   ri_E AND SUBTITLE
Optimization of Design Specifications for Large Dry
 Cooling Systems
                                                     5. REPORT DATE
                                                      July 1978
                                                     6. PERFORMING ORGANIZATION CODE
  AUTHOR(S)
Tzvi Rozenman, James M. Fake, and Joseph M.
   Pundyk	
                                                      8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
PFR Engineering Systems, Inc.
4676 Admiralty Way, Suite 832
Marina del Key. California  90291
                                                     10. PROGRAM ELEMENT NO.
                                                      EHE624A
                                                     11. CONTRACT/GRANT NO.

                                                     68-03-2215
 12. SPONSORING AGENCY NAME AND ADDRESS
 EPA, Office of Research and Development
 Industrial Environmental Research Laboratory
 Research Triangle Park, NC 27711
                                                     13. TYPE OF REPORT AND PERIOD COVERED
                                                     Final;  6/75-6/78       	
                                                     14. SPONSORING AGENCY CODE
                                                       EPA/600/13
 is.SUPPLEMENTARY NOTES IERL-RTP project officer is Theodore G. Brna.  Mail Drop 61,
 919/541-2683.
  . ABSTRACT The rep0r|- presents a methodology for optimizing design specifications of
 large, mechanical-draft,  dry cooling systems.  A  multivariate,  nonlinear, constrai-
 ned optimization technique searches for the combination of design variables to deter-
 mine the cooling system with the lowest annual cost.  Rigorous formulations are used
 in calculating heat transfer and fluid flow. All thermal and mechanical design var-
 iables of the cooling system components are analyzed. Thermal variables include
 ambient air temperature, condenser terminal temperature difference, cooling range,
 and initial temperature difference. Module variables  are tube length, number of rows
 and passes, and fan power. The methodology employs a  computer program with ma-
 jor computational blocks written as subroutines. The program optimizes  dry towers
 with either surface condensers or direct-contact jet condensers. Results of detailed
 parametric and sensitivity analyses are presented. The  relationships of design var-
 iables , major components, site variables, and utility economic factors to incremen-
 tal annual costs are examined for 1000  MWe fossil fuel plants at five U.S. sites.
 Results , presented in both graphs and tables , show that  all design variables affect
 cooling system cost.
                             KEY WORDS AND DOCUMENT ANALYSIS
                 DESCRIPTORS
 Pollution
 Cooling Systems
 Cooling Towers
 Design Criteria
 Engineering Costs
 Condensers
                     Turbines
                     Heat Transfer
                     Fluid Flow
                                          b.IDENTIFIERS/OPEN ENDED TERMS
Pollution Control
Stationary Sources
                                                                 c. COSATI 1-icld/Group
13 B
13A      20M
07A, 131 20D
14A
3. DISTRIBUTION STATEMENT
 Unlimited
                                          19. SECURITY CLASi
                                          Unclassified
                                                                     313
                                         20. SECURITY CLASS (This page)
                                         Unclassified
                                                                  22. PRICE
EPA Form 2220-1 (9-73)
                                       1-169

-------