United States      Industrial Environmental Research  EPA-600/7-78-094
Environmental Protection   Laboratory          June 1978
Agency         Research Triangle Park NC 27711
CEA
Variable-Throat
Venturi Scrubber
Evaluation

Interagency
Energy/Environment
R&D Program Report

-------
Research reports of the Office of Research and Development, U.S. Environmental Protec-
tion Agency, have been grouped into nine series. These nine broad categories were
established to  facilitate further development and application of environmental tech-
nology. Elimination of traditional grouping was consciously planned to foster technology
transfer and a maximum interface in related fields. The nine series are:

          1. Environmental Health Effects Research
          2. Environmental Protection Technology
          3. Ecological Research
          4. Environmental Monitoring
          5. Socioeconomic Environmental Studies
          6. Scientific and Technical Assessment Reports (STAR)
          7. Interagency Energy-Environment Research and Development
          8. "Special" Reports
          9. Miscellaneous Reports

This report has been assigned to the ENVIRONMENTAL PROTECTION TECHNOLOGY
series. This series describes research performed to develop and demonstrate instrumen-
tation, equipment, and methodology to repair or prevent environmental degradation from
point and non-point sources of pollution. This work provides the new or improved tech-
nology required for the control and treatment of pollution sources to meet environmental
quality standards.
           This report has been reviewed by the U.S. Environmental
           Protection Agency, and approved for publication.  Approval
           does not signify that the contents necessarily reflect the
           views and policy of the Agency, nor does mention of trade
           names or  commercial products constitute endorsement or
           recommendation for use.
          This document is available to the public through the National Technical Informa-
          tion Service, Springfield, Virginia 22161.

-------
                                    EPA-600/7-78-094
                                             June 1978
CEA Variable-Throat Venturi
       Scrubber Evaluation
                     by

                Joseph D. McCain

             Southern Research Institute
             2000 Ninth Avenue, South
             Birmingham, Alabama 35202
              Contract No. 68-02-1480
            Program Element No. EHE624A
           EPA Project Officer: Dale L Harmon

        Industrial Environmental Research Laboratory
         Office of Energy, Minerals, and Industry
           Research Triangle Park, NC 27711
                  Prepared for

       U.S. ENVIRONMENTAL PROTECTION AGENCY
          Office of Research and Development
              Washington, DC 20460

-------
                       TABLE OF CONTENTS
                                                            Page No,

ABSTRACT                                                      ii

CONCLUSIONS                                                    1

INTRODUCTION                                                   3

DISCUSSION                                                     6

APPENDICES

   A - Manufacturer's Description of the Scrubber             37

   B - Cascade Impactor Data                                  49


                        LIST OF FIGURES

 1    Simplified scrubber flow diagram                         4

 2    Average inlet particle.size distribution from           17
      cascade impactor data on a cumulative percent
      by mass basis

 3    Average outlet particle size distribution from          ^
      cascade impactor data on a cumulative percent
      by mass basis

 4    Average inlet particle size distribution on a           i9
      cumulative mass concentration basis from cascade
      impactor data

 5    Average outlet particle size distribution on a          20
      cumulative mass concentration basis from cascade
      impactor data

 6    Average inlet particle size distribution on a           21
      differential mass basis from cascade impactor
      data

 7    Average outlet particle size distribution on a          22
      differential mass basis from cascade impactor
      data

 8    Fractional efficiency curve on an aerodynamic           23
      particle diameter basis for the CEA variable
      throat venturi scrubber operating at a. venturi
      pressure drop of  48 cm (19 in.) w.c.
                               111

-------
 9    Inlet size distribution on a cumulative concen^         26
      tration by number basis from electrical mobility
      and optical methods

10    Outlet size distribution on a cumulative concen-        27
      tration by number basis from electrical mobility
      and optical methods

11    Fractional efficiencies based on electrical             28
      mobility and optical methods shown on a "physical"
      diameter basis.  Also shown are fractional effi-
      ciencies from the cascade impactor data on a basis
      of Stoke"s diameters.

12    Relative changes in outlet concentrations of fine       30
      particulates resulting from changing the venturi
      pressure drop over the range from 31 cm to 51 cm
      w.c. (12.25 to 20.0 in.)

13    Opacity changes in the combined effluent from three     31
      scrubber modules resulting from varying the venturi
      pressure drop of one of the modules from 31 cm to
      51 cm w.c. (12.2 to 22.44 in.) while holding the
      pressure drops of the other two modules constant at
      48 cm and 49 cm (18.9 to 19.29 in.)  respectively

14    Comparison of the performance of the CEA variable        34
      throat venturi scrubber with several types of con-
      ventional scrubbers using the "cut diameter" method
      described by Calvert (1974)  J.  APCA,  24:929).

Al    The Montana Power Company - Puget Sound Power and        38
      Light Colstrip Units 1 & 2 (360 MW each) flue gas
      cleaning system

A2    Colstrip scrubber module                                 39
                         LIST OF TABLES

 1    Scrubber design parameters                               8

 2    CEA variable throat venturi scrubber test inlet
      mass data                                               10

 3    CEA variable throat venturi scrubber test outlet
      mass data                                               11

 4    CEA variable throat venturi scrubber efficiencies
      from mass train data                                    12

 5    Comparison of mass train and impactor catches           13
                                IV

-------
 6    Estimated particulate emissions, Ibs/MMBTU              16

 7    Plant and scrubber operating data during primary        32
      test period

 8    Colstrip Power Plant scrubber SOz removal               35
      efficiency

Al    Emission test results - EPA method                      43

A2    Fuel and ash as described in specifications             44

A3    Scrubber availability vs. plant load                    45

Bl    Inlet impactor blank run data                           50

B2    Outlet impactor blank run data                          51

B3    Inlet impactor data                                     52

B4    Outlet impactor data                                    65

-------
                            SECTION I



                           CONCLUSIONS





     This evaluation was one of a series of studies being con-



ducted by the Industrial Environmental Research Laboratory of



the Environmental Protection Agency to identify and test novel



devices which are capable of high efficiency collection of



particulates.  The test methods used may not have been consis-



tent with compliance-type methods, but were state-of-the-art



techniques for measuring mass and fractional efficiency using



standard mass train and inertial, electrical, and optical methods.








     The overall collection efficiency of the CEA variable throat



venturi scrubber, determined by conventional (Method 17) tech-



niques on a pulverized coal fired power boiler producing particu-



late having a mass median diameter of about 20 ym, ranged from



99.12 to 99.50 during three days of testing.  The venturi pres-



sure drop ranged from 44.5 cm w.c. to 48.3 cm w.c.  Measured



fractional efficiencies were about 5% at 0.06 ym, 25% at 0.1 ym,



40% at 0.20 ym, 50% at 0.5 ym, 98.4% at 1.0 ym, and 99.99% at



2 ym.  The system energy usage during the tests was approximately



7200 joules/DNCM.  SOz collection efficiency ranged from 76.5%



to 85.6%.

-------
     A comparison of the performance of the CEA scrubber with
that of conventional scrubbers of various types is shown in
Figure 14.

     The results of this comparison indicate that the scrubber
tested performed about the same as a well designed conventional
venturi scrubber operating at the same pressure drop.

-------
                            SECTION II



                           INTRODUCTION





     This report presents results of tests conducted by Southern



Research Institute to determine the capability of  the C.E.A.  varia-



ble throat venturi scrubber to collect fine particles.  The



goals of the tests were to determine the overall mass effici-



ency and the fractional efficiency of  the scrubber when opera-



ting under normal conditions in controlling the emissions  from



a pulverized coal fired power boiler.







     Figure 1 is a schematic of the power boiler and scrubber



systems showing the inlet and outlet sampling locations.   The



tests were conducted on one of the three identical scrubber



modules which are operated in parallel to control  SOa and  par-



ticulate emissions from the power boiler.  The three modules



are independently controlled with respect to liquor flows  and



venturi pressure drop.  Pressure drops across the  Venturis are



regulated by adjusting the position of the "plumb  bob" shown



in Figure 1, thereby increasing or decreasing the  cross section-



al area of the venturi throat.  Throughout these tests, with



the exception of one brief period, the pressure drop across the



venturi on the module being tested was held at 46  ± 2 cm w.c..



Gas temperatures at the scrubber inlet ranged from 129°C to

-------
                    BUTTERFLY ISOLATION DAMPER
                                                         -PLUMB BOB DRIVE
                                                                                                                     STACK
      INLET
      TEST
      PLANE

FLUE GAS
FROM AIR
PREHEATER
AND BOILER
                                                   FROM PLANT FIRE WATER SYSTEM
                                              EMERGENCY COOLING SPRAY
                                                 PLUMB BOB
                                                                            CLEAN FLUE GAS
                            CLEANING SPRAY

                          MIST ELIMINATORS
                                                C*J< FROM SEAL WATER SUPPLY
                                                                 MIST ELIMINATOR UNDERSPRAY
           EFFLUENT v>
           BLEED    CV
                                                                                                                 GUILLOTINE
                                                                                                                 SHUT-OFF
    SO2 ABSORPTION SPRAY
                                                                TRAY UNDERSPRAY,
                                                                    ALKALI
                                                                    SYSTEM
                                                                                               O O DRAFT FAN
                                                RECYCLE TANK
                                                                                                     POND RETURN
      EFFLUENT
      TANK
                       RECYCLE PUMPS
                          SCRUBBER VESSEL  SEAL POT < WASH TRAY
                                                    Q RECYCLE TANK
                      kcv
               WASH TRAY
WASH TRAY     POND
RECYCLE PUMP
AND SPARE
                                                                                                                        OUTLET
                                                                                                                        TEST PLANE
                                                                                                                  WASH TRAY
                                                                                                                  POND RETURN PUMP
                                                                                                                  AND SPARE
                                                                     NOTE:  VALVES SHOWN ARE MAJOR CONTROL, BLOCK VALVES IN SYSTEM
EFFLUENT PUMP v\^_-- f\-^ — ^
AND SPARE
                                     FLYASH POND
                                 ASH POND PUMP
                                 AND SPARE
                                                 Figure 1. Simplified scrubber flow diagram.

-------
137°C.  The scrubber exit gas temperatures ranged from 57°C  to



60°C and temperatures at the outlet test plane ranged from 94°C



to 99°C.  The temperature rise between the scrubber exit  and



the outlet mass sampling location results from a flue gas re-



heat system and the action of the fan, both of which are  loca-



ted between the scrubber outlet and the sampling plane.   The



gas flow handled by the scrubber throughout the tests was



approximately 130 DNCM/sec (280,000 DSCFM).







     Testing took place on May 17, 18, 19, and 20, 1977,  with



some preliminary testing on May 16.  Except for a brief period



on May 20, the unit was operated at relatively constant condi-



tions of gas flow and pressure drop.  A planned series of tests



at other pressure drops was cancelled because of a forced shut-



down of the unit being tested which resulted from malfunctions  in



the turbine and boiler.

-------
                           SECTION III



                            DISCUSSION






     A total of four measurement techniques were used during



the tests.  These were:   (1) electrical mobility techniques us-



ing a Thermosystems Model 3030 Electrical Aerosol Analyzer for



determining concentration and size distribution on a number basis



for particles having sizes between 0.01 ym and 0.3 Mm,  (2) op-



tical techniques to determine concentrations and size distri-



butions for particles  having diameters between approximately



0.5 ym and 2.0 um,  (3) inertial techniques using cascade  impac-



tors for determining concentrations and size distributions on



a mass basis for particles having sizes between approximately



0.5 iam and 5.0 Mm, and  (4) standard mass train (Method  17) mea-



surements for determining total inlet and outlet mass loadings



and emission rates.








Description of the Scrubber



     The scrubber, which was illustrated in Figure 1, is  made



up in a modular fashion with three modules required for treat-



ing the flue gases from each of the station's 360 MW units.



Each module is comprised of a variable throat venturi section



for particulate and sulfur dioxide collection followed  by a



spray type absorption  section for further sulfur dioxide  removal.

-------
The spray type absorber is followed by a wash tray for reducing



the concentration of suspended and dissolved solids in the en-



trained liquors and is followed in turn by a chevron type mist



eliminator.  A reheater is used between the scrubber and the



induced draft fan to prevent condensation downstream of the



scrubber, and to raise the temperature of the exhaust gases



from the scrubber to that necessary for obtaining sufficient gas



buoyancy for discharge through the stack.  The venturi sections



have a designed pressure drop range of 30.5 cm (12 in.) to



50.8 cm  (20 in.)  w.c. with a nominal operating pressure drop



of 43 cm (17 in.) w.c..  Design L/G rates are 2.0 fc/m3  (15 gal/



1000 CF) in the venturi section and 2.41 S,/m3 (18 gal/1000 CF)



in the absorber section.








     High alkali metal oxides content in the fly ash permitted



the scrubber to be designed to use a recirculating slurry of



flyash for S02 removal.  The system operates with a slurry having



a pH of 5.0 to 5.6 containing 12 percent solids by weight.  The



pH is controlled by the addition of small amounts of lime as



required.  The scrubber design parameters are given in Table



1.  A more complete description of the scrubber is given in



Appendix A.

-------
                             Table 1

  Design  Parameters  For  The CEA Variable  Throat  Venturi  Scrubber
                      (Colstrip Application)
Venturi Pressure Drop
Venturi L/G

Absorption Spray L/G

% suspended solids in
 recirculating slurry, by weight
Residence time in the recycle tank
Gas velocity in mist eliminator zone
Wash tray pressure drop
Mist eliminator pressure drop
Reheat pressure drop
Total system pressure drop
  (including reheat)
Total scrubber pressure drop
  (less reheat)
 43.2 cm w.c. (17 in.)
 2 a/m  (15 gal/1000 ACF,
          saturated)
 2.41 fc/m  (18 gal/1000 ACF,
          saturated)

 12%
 8 minutes
 2.65 m/sec  (8.7 ft/sec)
 9.65 cm w.c. (3.8 in.)
 2.5 cm w.c.   (lin.)
 5.6 cm w.c.   (2.2 in.)
64.8 cm w.c.   (25.5 in.)

55.4 cm w.c.   (21.8 in.)

-------
Method 17 Results and Overall Collection Efficiencies



     Method 17 data were obtained on four days of testing with



the first days' test intended as a preliminary run rather than



an actual data run.  However, the preliminary run data appears



to be sufficiently useful as to warrant its inclusion in this



report.  Including the preliminary run, a total of 6 pairs of



inlet and outlet tests were performed.




     The data obtained by Method 17 are summarized in Tables



2 and 3.  The overall collection efficiencies for each of the



pairs of tests are given in Table 4.  Two values are shown for



the outlet mass loadings for tests 3, 4, 5, and 6 in Table 3



and for the efficiencies calculated for those tests in Table



4.  The reasons for the two sets of values are based on the in-



formation contained in Table 5, which shows the values for the



particulate catches in the outlet Method 17 data and correspon-



ding outlet impactor data.  The catch data for each run is bro-



ken down into two components, the material caught in the nozzle



and that which passed through the nozzle and was caught down-



stream of it.




     The Method 17 runs and the impactor runs were made using



virtually identical "buttonhook" nozzles and at very nearly the



same flow rates (isokinetic at all points for the Method 17 runs



and near isokinetic fixed flow rates for the impactor runs).  The



sampling times differed slightly; most of the Method 17 times were



96 min while most of the impactor sampling times were 80 minutes.



Note that the weights for the material caught downstream of the

-------
                             Table 2

                 CEA  Variable Throat Venturi Test
                         Inlet Mass Data
  Run
Number

Date

Time

Moisture, %

Gas Tempera-
 ture, °C
Volumetric
  Flow, m3/sec
        ACFM

Volumetr ic
  Flow, DNCM/s
        DSCFM

Concentration,
  grams/ACM

Concentration ,
  grams/DNCM

Isokinetic, %
   1*       2*

5-16-77  5-17-77

1715     1455

10.30    11.62
134
274
132
269
208.6    201.3
442,000  426,500
116.5    110.3
247,700  233,600
2.0184   2.8325


3.6145   5.1701

107.62   105.85
          5-18-77

          1235

          10.25
129
265
           4        5        6**

          5-18-77  5-19-77  5-19-77

          1545     0825     1245

          10.87    11.86    12.26
129
264
137
278
133
272
          233.9     236.9    238.8    227.6
          495,500   502,000  506,000  482,300
          131.9     132.9    130.1    124.4
          279,500   281,500  275,600  263,500
          3.3097    3.4820   3.5145   3.5829


          5.8663    6.2079   6.4512   6.5546

          104.23     108.62  103.79   103.56
* Used points for 10 ft^ stack
**Test cut short by 3 points  (6 minutes) due to boiler shutdown.
                               10

-------
                             Table 3

                   CEA Variable Throat Venturi
                     Outlet Mass Train Data
Run
Number
Data
Time
Moisture, %
Gas Temperature,
°C
oF
Volumetric
Flow, M3/s
ACFM
Volumetric
Flow, DNM3/s
DSCFM
Concentration,
mg/ACM Raw
Corrected**
Concentration,
mg/DNCM Raw
Corrected**

1*
5-16-77
1700
14.01
r
99.4
211

194.9
413,000

118.4
250,800

26.09
26.09

42.79
42.79

2
5-17-77
1315
19.45

94.4
202

224.8
476,200

128.4
171,100

25.86
25.86

45.31
45.31

3
5-18-77

17.37

96.1
205

238.9
506,200

140.0
196,700

75.97
19.66

129.75
33.58

4
5-18-77
1500
16.53

96.1
205

273.8
579,300

162.1
343,500

63.39
21.52

106.87
36.28

5
5-19-77
0830
18.70

96.1
205

237.8
503,800

137.3
290,900

68.42
24.23

118.31
41.90

6
5-19-77
1300
18.15

96.1
205

239.3
507,000

139.3
295,200

44.62
19.23

76.66
33.04
Isokinetic,  %   105.71    113.99    106.40   106.76   103.91   104.66

* Nozzle changed in middle of test.   One traverse point omitted.
**For explanation of corrected concentrations see text.
                                 11

-------
                              Table 4

      CEA  Variable  Throat Venturi  Scrubber Efficiencies From
                         Mass Train Data
Run No.          Date          Efficiency (%)          Revised**
                                                    Efficiency  (%)

  1*           5-16-77             98.82                  98.82
  2*           5-17-77             99.12                  99.12
  3            5-18-77             97.79                  99.43
  4            5-18-77             98.28                  99.42
  5      .      5-19-77             97.18                  99.35
  6            5-19-77             98.83                  99.50

* Calculated efficiencies for runs 1 and 2 are probably not reliable
  because of the sampling errors noted in Tables 2 and 3.

**For explanation of revised efficiencies see text.
                               12

-------
                              Table 5

           Comparison Of Mass Train and Impactor Catches
(All  catch weights in milligrams,  adjusted to equal sampling times)


      Date          16       17       18       19       20

      Item         	Catch  Weight	


   Method 17
   Nozzle         .37      1.52    59.53     45.65
                                    50.99     26.99

   Impactor
     Nozzle                 2.74     3.66      .0.44     0.67
                            2.58     1.83      0.55     0.27
                            6.81     2.15      1.27     1.61

   Method 17
   Filter       31.6      25.6     19.5      23.4
                                    24.7      18.7

 Impactor
 Substrates
 and  Filter      29.56     14.83    14.60     16.28    17.71
                           38.64    21.43     17.78    14.62
                           52.41    22.52     19.97    20.51
                                13

-------
nozzles are quite consistent for each system and are rather close



in average value when adjusted to the same sampling time.  Further-



more, the nozzle catch weights for the impactors were consistently



about 0.5 to 3.0 mg.  This agrees well with the Method 17 nozzle




catch weights for the first two days of sampling.  On the other




hand, the nozzle catch weights for the Method 17 runs on the third



and fourth days of testing were very much higher than those of



the impactors and the previous two days' Method 17 results.





     It was thus concluded that the nozzle washes for the Method



17 tests on the third and fourth days of testing were somehow



contaminated and that they should be omitted from the analysis.



The corrected Method 17 results and the corrected overall mass



efficiencies shown in Tables 2 and 4 are based on the Method



17 filter catches to which nominal nozzle catch weights have



been added.  These nominal nozzle catch weights were based on



the impactor nozzle catch weights.  These corrected results



are believed to be fairly reliable values of the Method 17 outlet



tests.  The overall collection efficiency of the scrubber on



this source under the conditions of operation tested is thus



found to be approximately 99.4 percent.




     Although the total combined emissions from the three scrub-




ber modules used for SO  and particulate removal from the Unit
                       A


1 flue gases were not measured, estimates of these emissions



can be made by assuming that the three modules were performing




identically and were processing equal gas volumes.-  If these
                                 14

-------
assumptions are made one can estimate the particulate emissions



in terms of pounds of particulate per million BTU thermal input.



Such estimates were made for the data from the tests on 5/17,



5/18 and 5/19 and the results are shown in Table 6.








Cascade Impactor Results





     Inertial sizing was accomplished using modified Brink im-



pactors for inlet measurements.and University of Washington Mark



III impactors for outlet measurements.  Sampling was done in



both cases at near isokinetic flow rates, thus errors due to



deviations from isokinetic sampling should be of little conse-



quence.  All impactors used in this program were calibrated at



SoRI using the methods described in EPA publications 600/2-76-



280 and 600/2-77-004.








     The impactor data are summarized in Figures 2 through 8.



Figures 2 and 3 present averaged inlet and outlet size distri-



butions, respectively, on a cumulative percentage  (by mass) basis



versus aerodynamic particle diameter.  Figures 4 and 5 show the



same data on a cumulative mass concentration basis and Figures



6 and 7 show the data on a differential mass basis.  Figure 8



shows the fractional efficiency curve as a function of aerody-



namic particle diameter as derived from the inlet and outlet data



that were presented in the previous figures.  The fractional



efficiency curve is shown in the following section as a function



of Stoke's diameter together with the efficiency curves derived






                               15

-------
                                           Table  6

                          Estimated Particulate Emissions,  Ibs/MMBTU
Date
Unit Load
   MW
5/17
5/18
5/18
5/19
5/19
  330
  350
  355
  355
  355
MMBTU/hour    Module C    Corrected*    Emissions
              Gas Flow    Mass  Loading,   Ibs/hour
               DSCFM     grains/DSCF    Module C
   3100
   3290
   3340
   3340
   3340
272000
297000
343000
291000
295000
0.0198
0.0147
0.0159
0.0183
0.0144
46.16
37.42
46.75
45.65
36.41
  Combined
  Estimated
    Total
  Emissions,
   Ibs/hour
(=3x module  c
   emissions)

    138.5
    112.3
    140.2
    136.9
    109.2
                          Total
                         Emissions,
                         Ib/MMBTU
0.045
0.034
0.042
0.041
0.033
*For explanation of corrected mass loadings see text.

-------





h-
1
Ld
Q.
>
M
i
1—
li




99.99:
99*B-
99.5-:
99^
98-^
95:
90^
80^
70 \
50i
4Oi
30 \
20 i
si
li
0.5:
0.1-=
0.05^
n_ni -










r o****
: *
: *
L * • •
: **
i a
I ^»
I 	 1 — I MINI 	 1 	 1 — I i i ii i-l 	 1 i i i i ml
10
rl
10P
101
           AERODYNAMIC  DIAMETER  (MICROMETERS)
  Figure 2.  Average inlet particle size distribution from cascade impactor
          data on a cumulative percent by mass basis.
                       11

-------
  99-99T
    99. B-
h-
U
Q_

LJ
 98

 95
 90

 80
 70
 50
 40
 30
 BO

 10
   5

   E
   1
0.5
O.E
    0.01
          10
rl
          <—I  I I Hill	II II HIM	1  I  I I  MM|
                                 101
                   AERODYNAMIC DIAMETER (MICROMETERS)
          Figure 3. Average outlet particle size distribution from cascade impactor
                data on a cumulative percent by mass basis.
                             18

-------
                                                              ^lO1
CD




'LQ





a
en
en
Ld


M
                           H-
44-
        icr1            10°             lo1


                   AERODYNAMIC  DIAMETER  (MICROMETERS)
                                                                       a:
                                                                       LQ
                            M
                            a


                            §

                            ,cn




                            id

                            M

                            ,<
         Figure 4. Average inlet particle size distribution on a cumulative mass

                 concentration basis from cascade impactor data.

-------
    IDS:
    103::
LD
z     P
a  10s
a
en
i
Ld

   10
       "1
        10
           "1
                                                                    fa
                                                                    CD
                                                      a
                                                      a

                                                      S

                                                            -ID"3
                                                              10
H	1  I I  Mill	H	1  II llll|	1	1  I MINI
          10°
1O1
                 AERODYNAMIC DIAMETER  (MICROMETERS)
        Figure 5.  Average outlet particle size distribution on a cumulative mass
                concentration basis from cascade impactor data.
                                   20

-------
    105-
m

a
    103-
a
a

a
        10
rl
I  I I  I Hl|	1—I  I  I I  )ll|	1—I  I  I I  lll|
       10°            101            105

AERODYNAMIC  DIAMETER  (MICROMETERS)
      Figure 6. Average inlet particle size distribution on a differential mass basis
             from cascade impactor data.
                             21

-------
ffl  ID1::
l__l
§
a
   10
rl
               ,.'***',
                            I
       10
    rl
 i  i i  mil	1—i  i  i tmj	1—i  i i  mil
       10°            101           10*

AERODYNAMIC DIAMETER (MICROMETERS)
       Figure 7. Average outlet particle size distribution on a differential mass basis
              from cascade impactor data.
                           22

-------
M
bJ
       lOVr
       101::
       IQP::
      io~H
      10
          5
                      PEtsETRATIOM-EFFICIENCY
                                              T  0.0
                                              -90.0
          10
rl
   H—I I  I Mill	1—I  I  I MH|	1—I  I I MM
1CP
101
                                                                    Id
                                                                    M
                                                                    u
                                                                    \-
                                                                    UJ
                                                                    OL
                                   99.99
                AERODYNAMIC DIAMETER  (MICROMETERS)
        Figure 8.  Fractional efficiency curve on an aerodynamic particle diameter basis
               for the CEA variable throat venturi scrubber operating at a venturi
               pressure drop of 48 cm (19 in.) w.c..
                                   23

-------
from the ultrafine particulate data.  The scrubber was operating



at a venturi pressure drop of about 48 cm w.c. throughout the



impactor test periods.








Ultrafine Particulate Data





     Measurements of the concentration and size distribution



of ultrafine particulates were made using a Thermosystems Model



3030 Electrical Aerosol Analyzer (EAA) and a Royco Model 241



Optical Single Particle Counter.







     The EAA provides size distribution and concentration data



on a number basis for particles having diameters between approxi-



mately 0.01 yM and 0.3 yM.  The optical counter provides similar,



data in the range from approximately 0.3 to 2 yM.  Both instru-



ments require extensive sample dilution and conditioning when



used to sample flue gases.  The sample extraction and dilution



system used in these tests is described in a forthcoming EPA



report on Contract 68-02-2114, Task VIII.  Dilution factors



of about 150:1 were used at both the inlet and outlet during



these tests.







     In order to insure that condensation effects were minimal,



and that the particles were dry as measured, the diluent air



was dried and filtered, and diffusional dryers were utilized



in the lines carrying the diluted samples to the instruments.
                               24

-------
     Because only one set of instruments and dilution system



was available it was not possible to obtain simultaneous  inlet



and outlet data for the ultrafine particulates.  The system



was first installed at the scrubber inlet and  all inlet data



was obtained on May 17.  The equipment was then moved to  the



outlet and outlet data were obtained on May 19 and 20.  For



the purposes of calculating fractional efficiencies the assump-



tion was made that the process was sufficiently stable that



the inlet data, as obtained above, were a valid representation



of that which would have obtained during the time the outlet



measurements were made.








     Inlet data were obtained with the optical counter in two



size channels—0.35 to 0.60 pM and 0.60 to 2.0 yM.  However,



an instrument malfunction resulted in outlet data being obtain-



ed only in the 0.6 to 2.0 yM size interval with this method.








     Inlet size distributions on a cumulative  concentration



by number basis are shown in Figure 9.  Outlet size distri--



butions on a similar basis are shown in Figure 10 for the



normal scrubber operating condition (48 cm w.c. venturi pres-



sure drop).   Figure ri shows the fractional efficiencies  for



ultrafine particles.  Also shown in Figure 11  are the frac-



tional efficiencies as a function of Stoke1s diameter, obtained



from the impactor data.
                               25

-------
        "
     10
       13
n
 E

 Z
 Q

 6
 z


 o
 I-

 cc
 i-
 z
 01
 O

 o
 o

 CC
 111
 00
     1012
O
     10"
    1010
                • EAA

                D ROYCO
        10'2                        10'1


                    LOWER SIZE LIMIT, micrometers
                                                              10°
 Figure 9. Scrubber inlet particle size distribution from electrical

           aerosol analyser and Royco optical particle counter data.
                                26

-------
                8     8
n
 E

 2
 Q
-     13
•
o
 o
 c
 8
 o
 o
 CO
 ^
 D
 2
 LU
 D
 O
     io
     1012
     10"
        10
          r2
      10-
                       LOWER SIZE LIMIT, micrometers
10°
    Figure 10.  Scrubber outlet particle size distribution  from electrical
               aerosol analyser data.
                                   27

-------
              PENETRATIDN-E
ILT-

101:
Z-
.
a
M
1-
Ld
H 10°-
PERCENT
i i iiii
•i o~2_
-A A A 3
A A
«
^^^D ™
•
A .
•
•
,_ -
A •
. •
. ^ *
! * '
.
.
o
: A EAA T 1
'• O IMPACTORS A
i — i i i mil 	 1 — i i i mil 	 JIM mil 	 1 — i i i lili


-90.0
U
i- Z
h Ld
r U
M
u_
r99.0[}]
PERCENT
- qq . qq
 " 10"E       10"1      10°  A      101       102

    PARTICLE  DIAMETER  (MICROMETERS)

Figure 11.  Fractional efficiencies based on electrical mobility and optical methods
        shown on a "physical" diameter basis. Also shown are fractional
        efficiencies from the cascade impactor data on a basis of Stoke 's diameters.
                            28

-------
     The scrubber was operated at venturi pressure drops of



31, 36, 41, 46, and 51 cm w.c. for a brief period at each con-



dition on May 21, during which time the outlet concentrations



were monitored with the EAA and the optical counter.  No sig-



nificant concentration changes were noted in the EAA data over



this range of pressure drops, however, the optical counter data



did show significant changes.  In the 2 yM to 4 yM size inter-



val, a 50% reduction in concentration was obtained by increas-



ing the venturi pressure drop from 31 to 51 cm w.c. and a 35%



reduction in concentration occurred in the 0.6 ym to 2.0 ym



particle diameter range.  These relative concentration changes



are shown in Figure 12.








     Stack gas opacity measurements of the combined effluent



from the three parallel modules showed a dramatic reduction



in opacity when the module C venturi pressure drop was taken



up to 51 cm w.c. as illustrated in Figure 13.  (Modules A and



B were being operated at constant venturi pressure drops of



49 cm and 48 cm w.c., respectively during this time).







     Table 7 summarizes the scrubber operating conditions through-



out the test period.  The liquid to gas ratio in the venturi



portion of the scrubber during the tests was typically about



3.3 8,/DNCM.                                           .
                               29

-------
    14
    12
Z
cc.

H   10
LU
O
2
O
O
LU
-J   8
UJ   °
EC
                                                  \
                                                      •\
                                                        X
                                      • CH 1  x 1000.55- 1.8 Aim         N
                                      ACH2  x 10 1.8 - 4.1 Aim             \
     25            30             35            40            45             50


                          VENTURI PRESSURE DROP, C.M. W.C.
          Figure 12.  Relative outlet particulate concentrations in two size
                      ranges as functions of venturi pressure drop.
                                         30

-------




', percent
?-
O
O



20
O
m
CO
LU
i
rs, MODUI
D
u! 10
LL
Ul
Q
LU
5
0
O
I I I I I I I



•
- • •
•
• • •

I I I I I I I
25
30         35         40         45        50

      MODULE C VENTURI PRESSURE DROP. C.M. W.C.
         Figure 13. Opacity of combined emissions from three scrubber
                   modules as a function of venturi pressure drop of one
                   module with the remaining two modules operating at
                   fixed pressure drops of approximately 48 cm W.C.
                                   31

-------
                                                                   Table 7

                                                       Scrubber Operating Conditions
             Measured Gas Flow,
                  DNCM/s
                                                              Temperatures,
                                                                                                                 Liquor Flows, S-pm
Date


5/17
5/18
5/18
5/19
5/19
5/20
5/20
Unit Load,
MW

330
350
355 .
355
355
290
348
Inlet


110
132
133
130
124
(106)
(127) "•
Outlet


128
140
162
137
139
(113)
(136)
Plumb Bob
Position,
%- o£ Travel
54
58
62
61
61
53
65
Ventur i
A P,
cm w.c.
44.5
46.4
46.4
46.4
47.0
45.7
45.1
Scrubber
Inlet

132
129
129
131 -
133
129
129
Scrubber
Outlet
*
60
58
57
59
57
56
52
Reheat
Outlet

79
78
78
78
74
82
82
Fan
Outlet

94
96
96
96
96
93
93
Upper
Spray

15900
15000
18200
17600
17500
17800
17600
Middle
Spray

10200
9370
11360
10790
10600
10600
11700
Absorption
Spray

22700
24400
19870
24600
24200
25700
25000
Mist Film
Under
Spray
570
570
570
625
625
530
570
Wash Tray
Under
Spray
1170
1060
1170
1170
1190
1170
950
Wash Tray
Feed

3600
2900
2800
3220
2840
3220
3220


5/17
5/18
5/18
5/19
5/19
5/20
5/20
Liquor
pH
4.3
4.7
4.7
4.7
4.6
N.A.
N.A.
% Suspended
Solids
11.4
15.2
16.4
14.3
13.4
N.A.
N.A.
Based on partial traverse and scaling from previous days.

-------
     The performance of the CEA variable throat venturi scrubber



is compared with the performance of several types of conventional



scrubbers, including conventional venturi scrubbers, in Figure



14 using the "cut diameter" method described by Calvert (1974)



J. APCA, 24:929.  This method is based on the idea that the



most significant single parameter to define the performance



of a scrubber is the particle diameter for which the collec-



tion efficiency is 0.5 (50%).
         concentrations and collection efficiencies were also



measured during the test program.  Results of these measurements



are given in Table 8, from which it can be seen that typically



the S02 collection efficiency is about 80%.
                                33

-------
U)
          4.0
          3.0
           2.0
E
a.
 U
•0°"  1.0
DC
HI
t   0-8
E

°   0.6

    0.5


    0.4
D
U
U

<
       a
       o
       uj   0.3
          0.2
           0.1
                          1.5
                                                   PRESSURE DROP, inches H2O

                                                5   6   7  8 9  10       15    20
                                                                                        30
                                                                                                     40
                                               50 60
                                80   100
                            0.25
                                                       I    I   I   I   I   I
                                                                                                        I
                                                                              la, 1b  SIEVE PLATE SCRUBBERS
                                                                              2a. 2b  VENTURI SCRUBBERS
                                                                              3      IMPINGEMENT PLATE
                                                                              4      PACKED COLUMN
                                                                              +      CEA SCRUBBER  OPERATING
                                                                                     POINT
                                                             I
                                                                            I
                                                                                                     I
                                                                                                          I
                                     0.5
                                                0.8
1.0              2.0

 POWER, hp/1000 acfm
                                  I    I    I
                                                          I
                                                                    I
3.0          5.0
                               I   till
8.0   10
                                                                                                                   r
                                                                                                                          2a
                                         7  8  9 10
                                                          20
                                                                   30
                                  70    90100
                                200
                  300
                                                          PRESSURE DROP, cm H2O
                                    Figure 14.  Comparison of the CEA variable throat venturi scrubber
                                               performance with that of other conventional scrubbers,
                                               after Calvert (1974) JAPCA 24:929.

-------
                           Table 8

                    Colstrip  Power Plant
               Scrubber S02 Removal Efficiency


  Date          Inlet S02          Reheater Outlet          S02 Removal
              Concentration      S02  Concentration          Efficiency
                  (ppm)                 (ppm)                   (%)

5-17-77            658                   130                   80.2
5-18-77            525                   103                   80.4
5-19-77            553                   130                   76.5
5-20-77            625                    90                   85.6
                                35

-------
                   APPENDIX A




MANUFACTURER'S DESCRIPTION OF SCRUBBER OPERATION
                         36

-------
 APPENDIX A.  DESCRIPTION OF THE CEA VARIABLE THROAT VENTURI
        SCRUBBER:  COLSTRIP FLUE GAS CLEANING SYSTEM*
     The flue gas cleaning system  (Figure 1) now  in operation

on the two Colstrip 360 MW units is unique  in that a wet scrub-

bing system is used for both particulate and S02  control and

captured ash provides the alkalinity for the S02  removal.



     The system currently installed on the  two 360 MW Units

1 and 2 is illustrated in Figures Al and A2.  The hot flue gas

leaving the boiler is cooled in the heat recovery air heater

and enters the flue gas scrubbing system at about 300°F.  Each

scrubber module, as shown in simplified drawing in Figure A2,

consists of a downflow venturi scrubber centered  within an

upflow spray tower contactor.  The venturi  is equipped with

a variable throat to maintain constant pressure drop at vari-

able loads.  In the venturi the scrubbing liquid  is finely dis-

persed by the high velocity flue gas and serves to efficiently

wet and trap the particulate fly ash.  In the spray tower the

gas contacts a recycle spray of absorption  slurry.  The slurry

from the venturi and the spray contacter is collected and held

in the base of the scrubber and recirculated at an L/G rate
     *Taken from a paper by C. Grimm, J. Z. Abrams, W. W.  Leffmann,
I. A. Raben, and C. Lamatia.  Presented at the 1977 National Meet-
ing of the AIChE.


                                37

-------
                                        THE MONTANA POWER CO. PUGET SOUND POWER & LIGHT
                                        2 - 360 MW COLSTRIP UNITS 1 & 2
OJ
00
                                                                MERGENCY WATER

                                                                    LUMB BOB
                                                                  jxj-SEAL WATER
                                                                     SUPPLY
                                       FLYASH POND
                             FIGURE A1. THE MOTANA POWER CO. - PUGET SOUND AND LIGHT
                                        COLSTRIP UNITS 1 AND 2 - (360 MW EACHJ FLUE GAS CLEANING SYSTEM.

-------
                               RECYCLE HOLD-UP TANK
                               8 MINUTES TURNOVER
FIGURE A2. COLSTRIP SCRUBBER MODULE.
                  39

-------
of 15 (gal/1000 ft3) for the venturi and  18  (gal/1000  ft3)  for
the absorber spray.  An agitator in the scrubber base  serves  to
maintain suspension of the fly ash and solid  reaction  products.
Slurry is bled from the recycle to maintain a 12%  suspended
solids concentration.  Slaked quick lime  is added  as lime  slurry
only if needed to augment the fly ash alkali  and maintain  the
desired slurry pH.
     Each scrubber module is designed to clean 120 MW of equiva-
lent gas flow under normal conditions and 144 MW under emer-
gency conditions.  (i.e., when one module is down, the two  in
operation will clean the amount of flue gas generated at 80%
of boiler design load.)


     The treated gas leaving the spray section passes through
the water wash tray which serves to trap and dilute the entrain-
raent.  The gas leaving the washtray passes through a chevron
demister followed by a mesh pad demister and leaves the absorp-
tion section water-saturated and cooled to the saturation tem-
perature of about 120°F.


     To preclude condensation in the fan and stack, and improve
the gas buoyancy, the cooled gas from the scrubber is reheated
50. to 75°F by a steam-heated exchanger.  The warmed gas then
passes through the dry induced draft fans and is discharged
to the atmosphere from the top of a 500 foot stack.
                                40

-------
     As shown in Figure Al the slurry discharged from the absorp-



tion loop is passed to an intermediate retention pond where



the solids settle and from which the clarified water is returned



to the absorption system.  At intermittent intervals (currently



only during the warm summer months), a floating dredge is used



to reclaim the settled solids from the intermediate settling



pond and transport them as a 30% slurry by pipeline to the re-



motely located permanent disposal pond.  Decanted water  (super-



nate) from the disposal pond is returned, also intermittently,



through the same slurry pipeline to the intermediate pond for



recycle to the absorption system.  No stabilization of the



sludge is required and a closed water loop is maintained.







     Fresh water is added to the absorption system in an amount



equivalent to that evaporated into the warm gas stream plus



that retained in the waste sludge.  This fresh makeup water



is introduced to the system as dilution water for minimizing



the calcium saturation level in the mist eliminator washwater.



This washwater is trapped by and withdrawn from the washtray



and circulated to a small pond where entrained solids are sepa-



rated.  A portion of the water from this pond is returned and



used to wash the undersurface of the washtray.  Another portion



of the flow is diluted with the fresh makeup water, and used



for bottom wash of the mist eliminator.
                                41

-------
     The scrubber has been free of scale while the pH of the




recycle liquid remains in the expected range.  Corrosion prob-




lems in the reheater and demister plugging have not been ex-



perienced with the installation.








     EPA method stack emission tests have been run numerous



times on both units during 1976.  Table Al shows the results



of sulfur dioxide, particulate and NO  tests along with the
                                     A


requirements of the NSPS, the vendor's scrubber guarantee, and



the results as projected from pilot plant experience;  Table



A2 contains data on the fuel and ash specifications and this



may be compared with coal data contained in Table Al.  The test



data are for emission only - no inlet measurements have been



made.  The results over the first year of plant operation agree



well with the pilot plant data.  The test data show the plant



emissions are well below the guarantee and the federal stan-



dards .








     Table A3 compares scrubber availability and plant load



for the two units during the time period September 1975 through



December 1976.  Note the definition of scrubber availability



below the table.  These generating plants have no bypass capa-



bility around the air pollution control system.
                                42

-------
                                                      Table Al

                                        Emission Test Results - EPA Method
1.  Required by NSPS (358 MW)
2.  Scrubber Guarantee (358 MW)
3.  Projected from Pilot Plant (358 MW)
    a)   0.78%S (760 PPM), 8.19% Ash
    b)   1.0%S (965 PPM),  12.58% Ash
4.  UNIT 1 TESTS:

                     COAL AS RECD.
                                              LB/HR

                                              4063
                                              3386

                                              1394
                                              2071
                                 S02

                                 PPM

                                 510
                                 425

                                 185
                                 260
                               LB/MMBtu

                                  1.2
                                  1.0

                                  0.41
                                  0.61
                                 LB/HR

                                  339
                                  207

                                  130
                                  184
                              PARTICULATE

                              LB/MMBtu

                                 0.10
                                 0.06

                                  .038
                                  .054
                                 %OPAC

                                  20
                                  20
                                  20
                                  NO
                                    x

                                 LB/HR

                                  2370
                                    (1)

                                  2370
                                  2370
                             LB/MMBtu

                                 0.7
                                 (1)

                                 0.7
                                 0.7
                %Sul.
                         %Ash
                                  Btu/LB.
2/76
4/76
7/76
9/76
12/76
353
210
184
186
223
0.83
0.71
0.64
0.62
0.94
9.03
7.79
8.49
7.93
8.54
8638
8861
8807
8633
8394
1464
420
241
255
898
197
87
52
56
154
0.44
0.21
0.14
0.14
0.43
90.1
57.3
53.6
60.5
67.2
.027
.029
.031
.035
.032
                                                                                                        10
                                                                                                        14
                                                                                                        15
                                                                                                        11
                                                                                                        15
                                                                                 (3)
                                                                                 (2)
                                                                                 (2)
                                                                                 (2)
                                                                                 (2)
                                                                                880
                                                                                738
                                                                                695
                                                                                646
                                                                                662
                                                                                0.26
                                                                                0.38
                                                                                0.40
                                                                                0.37
                                                                                0.31
                0.56
                0.59
                0.64
7.96
7.86
7.87
8368
8484
8690
1231
 664
 780
178
 83
 98
0.39
0.21
0.25
1.  NO  Emissions guaranteed by boiler supplier only, equal to NSPS.
2.  Avg. EDC monitor opacity.
3.  Qualified observer.
 83.4
 85.9
105.7
.028
.028
.034
                                                                                                                11
                                                                                                                10
                                                                                                                16
(2)
(2)
(2)
862
934
784
0.28
0.30
0.25

-------
                                 Table A2

                        Fuel And Ash As Described
                            In Specifications
        COAL:                        Average, As Received

         Moisture                   23.87%
         Volatile Matter            28.59%
         Fixed Carbon               38.96%
         Ash                         8.59%  (Max. 12.58%, Min. 6.1%)
         Heating Value               8843 Btu/lb. (Min. 8162 Btu/lb.)
         Sulfur                      .777%  (Max. 1.0% Min. 0.4%)

        ASH:   (Estimated composition, sulfur trioxide-free basis)
Si02
A1203
Ti02
Fe203
CaO
MgO
Na20
K20
P205
(balance
41.60%
22.42%
0.79%
5.44%
21.90%
4.95%
0.31%
0.13%
0.41%
unidentified)
Later fly ash data varies slightly from above as follows:

        LEACHED IN H20 (1% Fly Ash)

         pH                         11.8
         Conductivity                4.150
         Total Dissolved Solids     930 ppm
         Calcium                    396 ppm
         Magnesium                    0 ppm
         Chloride                    15 ppm
         Sulfate  (S04=)              30 ppm

        LEACHED IN HC1

         % Acid insolubles (Si02)   57.59
         % Calcium as CaO           22.00
         % Magnesium as MgO          1.27
         % Aluminum As A1203         15.59
         % Iron as Fe203             4.97
         % Sulfate as SO^            0.71
         % Carbonate as C03          0.70
                                     44

-------
                                 Table A3

                          Scrubber Availability
                              Vs. Plant Load
  UNIT

Sept. 1975
Oct.
Nov.
Dec.
Jan. 1976
Feb.
Mar.
Apr.
May
Jun.
Jul.
Aug.
Se t.
Oct.
Nov.
Dec.
              Monthly Capacity
                 Factor %
 0.5
19.4
42.2
59.9
63.8
65.4
57.0
49.9
26.0      1.3
 0.0     23.2
28.0     19.5
37.8     13.0
64.5     64.6
73.1     77.0
55.6     79.7
67.2     82.3
                   No. Days
                   On Line
 3
19
24
30
28
26
24
28
14
 0
20
23
30
30
30
31
 3
16
13
10
30
31
30
31
                Avg. MW
                for Days
                On Line
 50
139
203
239
265
273
277
219
210
  0
167
194
239
281
225
249
 66
171
180
162
232
298
303
297
                         Scrubber
                       Availability %
90.0
98.0
97.6
74.2
96.8

93.2
94.7
88.6
79,
62,
73.8
100.0
 99.7
 98.7
 95.8
 98.3
 90.3
 94.7
 92.5
Note:  Scrubber availability = total module hours available divided by
       three times the number of hours in month.  May through August
       base is days in operation because of extended scheduled outages.
                                     45

-------
              Development  Of  The  Process  Concept






     The successful operation of the Colstrip system as described



above represents the culmination of an extensive development



program carried out jointly by the architect engineer, Bechtel



Power Corp., the scrubber system supplier, Combustion Equip-



ment Associates, Inc. (CEA),  and the power plant owners, Mon-



tana Power Company and Puget Sound Power & Light Company.








     Previous experience with Colstrip coal at the J. E. Corrette



Station in Billings was limited to particulate removal only,



and this was effected by use of an electrostatic precipitator.



This experience revealed serious problems in performance which



were attributed to the high resistivity characteristics of the



low-sulfur coal.







     A study was made by Bechtel of the possible options for



meeting particulate and S02 removal standards.  The owners chose



a design level of 1.0 Ibs. of S02 /MM Btu - less than the NSPS



level of 1.2, and substantially below the state requirements.







     A detailed chemical analysis of the fly ash (see Table



2) revealed that it contained alkali metal oxides in an amount



theoretically sufficient to react with and adsorb the sulfur



dioxide produced by the coal combustion.  Laboratory experiments



simulating absorption condtions revealed that this alkalinity
                               46

-------
was only usable under low pH absorption conditions  (<5.6).



It also revealed that absorption under these low pH conditions



would result in extensive oxidation of the absorbed S02 produc-



ing calcium sulfate rather than calcium sulfite as  the predomi-



nant reaction product.








     Continued laboratory tests were conducted by Bechtel to



determine the process conditions under which the alkalinity



of the fly ash could be utilized while at the same  time accommo-



dating the scaling potential of the calcium sulfate.  The con-



ditions selected were a pH of 5 to 5.6, low enough  for alkali



utilization and high enough for adequate SOa absorption capa-



bility.  The other, and perhaps the key operating factor, was



the use of a high level of suspended solids in the  absorption



slurry (12 to 15% by weight, of which some 3-4% is  calcium sul-



fate formed in the absorption).  This provided a high concentra-



tion of calcium sulfate seed crystals to promote desupersatura-



tion.  A long residence time for the recycle slurry in a stirred



tank external to the scrubber was also proposed to  ensure alkali



utilization and to provide crystallization of calcium sulfate



under controlled and non-scaling conditions.  A slurry holdup



of 8-10 hours was selected based on bleed rate.







     The above two conditions, i.e., low slurry pH  and long



contact with the oxygen-containing flue gas, provided substan-
                               47

-------
tially complete oxidation.  This high oxidation was shown to



improve the disposal characteristics of the waste sludge pro-



duced.
                                48

-------
 APPENDIX B




IMPACTOR DATA
        49

-------
                           Table  Bl

                Inlet  Impactor  Blank  Run  Data


Date                   5/17     5/18     5/19     5/20     5/17
Run No.                 5        9         16     20       Control
Flow rate, afcpm       1.36     1.33      1.33   1.44          0
Sample duration,
   minutes             30       30         30     30          0

Stage/Weight gain
           mg

      0                0.10     0.04      0.08   0.06        0.05
      1                0.12     0.10      0.07   0.04        0.05
      2                0.12     0.07      0.01   0.10        0.07
      3                0.13     0.03      0.06   0.05        0.04
      4                0.09     0.05      0.06   0.05        0.04
      5                0.07     0.06      0.00   0.07        0.03
      6                0.08    -0.01      0.04   0.10        0.09
      F                0.06     0.14      0.16   0.11        0.06


 Substrates were acid washed Reeve Angel 934 AH glass fiber
 filter media.  Prepared in accordance to the procedures spe-
 cified in EPA Report 600/7-700-060.
2
 This control run was handled identically in all respects to
 blank runs with the exception that no gas was actually pulled
 through the impactor and thus represents a measure of the
 weighing precision.
                                50

-------
                           Table  B2

               Outlet Impactor Blank Run Data


Date                       5/17       5/18       5/19       5/20
Run No.                     5          9          11         16
Flowrate, a8,pm             14         14          11         11
Sample duration, minutes   80         80          80         80


Stage/Weight Gain,
          mg

       1                   0.02       1.102       0.19      0.282
       2                  -0.02       0.09        0.02      0.06
       3                  -0.02       0.15        0.09      0.04
       4                   0.05       0.10        0.17      0.03
       5                   0.07       0.10        0.05      0.03
       6                   0.09       0.13        0.09      0.08
       7                   0.06       0.11        0.03      0.05
       F                   0.06       0.04        0.11      0.17


 Substrates were stainless steel shim stock coated with Apiezon
 H grease.
2
 Outliers
                               51

-------
  CPPI-P?  s-17-77  PORT-US   1US7                                  INI.FT SAMPI.K    MODIFIED BRINK CASCADE  IMPACTOR  NUMBER - C



  TMPACTOR FLQ.-WATF » o.t>39 ACFM               IMPACTOR TEMPERATURE a  ??o.o F = is?.? c              SAMPLING  DURATION  *   30,oo HIM




  IMPACTOR PRESSURE DROP = 1.7 in. OF HG       STACK TFMPF.RATURF =  ?7o,o F = 132.2 c



  ASSUMED PAHMCI E DF»ISITY f 2.30 G*/CU.CM'.     STACK PRESSURE = ss.on IN. OF HG     MAX. PARTICLE DIAMETER  e    53.3 MICROMETERS



  GAS COMPOSITION fPEHCENT)           C02 t 1U.6?          CO s  0.00           N? c 70.?1          02  »   2,18            H20 • 13,00



  CAIC. MASS LOADING s S.190RF-01 GR/ACF             9.52fe<»E-ni GR/DNCF             1.1878E+OT MG/ACM              2.1801E+OJ




  IMPACTOR STAKE                            rvc        so        si        ss        33        so        ss         36     FILTER



  STAGE IMPIE* NUMBER                         1?3«5«>789




  D50 (MICROMfTRRS)                       9,65      S.flS      3.18       1,99      l.S?      0.63      0,«5       0,20



  MASS (MILI TGRAMSJ                      21.73      1.02      1.93       a.TO      0.16      3.73      1.30       0.21      0,15



  MG/DNCM/STAGF                           1.23F+03  5.79E»Ol  l.09E*02   ?,67E»02  2.37E*02  2.12E+02  7,38E>01   1,19E*01



  CUM, PERCENT OF MASS SMALLER THAN 050  «tt,21     U1.59     36.6fl     20,57     13.80      U.26      0,92       0,39




  CUM. (MG/ACM) SMALLER THAN 050          5.2SE+02  0.90F+02  «.35E*02   2.92E+02  l,fcOE+02  5.0<>E*01  1,10E4.01   a,57e+00



  CUM, (MG/ONCM)  SMALLER THAN 050         9,60E*02  9.07E+02  7.99E*02   5.36C*02  3.02E+02  9.29E*01  2,01E*01   B.OOE+00




  CUM, (CR/ACF) SMALLER THAN 050          2.29E-01  2.16E-01  l'.90F.-oi   1.28F-01  7.18E-02  2.21E-02  0.60F-03   2.00E-03



  CUM. fSR/ONCF)  SMALLER THAN 050         0,?lE-01  3.96P-01  S.19E-01   2.30E-01  1.32E-01  0.06E-02  8.H1E-03   5.67C-03



  GEO. MEAN DIA.  CMIC"OMETERS)            ?.37E+01  7,51F*00  0.31E+00   2,51E*00  1.70E*00  9.78F.«OJ  5.35E-01   S.05E-01  l,«5E»Ol



  DM/HLOGO (MG/DNCM)                      1.S8E + 03  2.67E-f02  fl'.l3F*02   1.31E*03  2.01E«03  3.56E»02  "S.lflE + OZ   3,49E*01  2.83E + 01



  ON/DLOGO (NO. PARTTCLFS/ONCMJ           9.82E+07  t5,22E+OR  0.27E+09   6,86F+10  3.18E+11  0.92E+11  2.79E»12   1.01B+12  7,71E*1S






AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION



  D50 (MICROMETERS)                      10.63      8.93      O.Bfl       3,08      ?,36      1.01      0,70       O.Sfc



  GEO. MEAN OIA.  (MirRnMETERS)            3.60E»01  l.l«E*Ol  6.60F+00   3,87E+00  2.69F+00  1.50F+00  8,67E»01   5.20E-01  2.58E-01



  OM/DLOGD (MG/D^C")                      1.58E403  2.70E*02  0.16E+02   1,33E»OJ  2.05E+03  5.76ff02  5,50E*02   3,86E*01  2,63E*Ol



  nN/DLOGO (NO. PARTJCLES/DNCM)           6,£l/?E*n7  3.05F + OR  2.77F + 09   «,39F*10  2.00E»11  2.99E*11  1.61P + 12   S,22E*11  3,l5Ftl2








NORMAL (ENGINEFRING STArJDAHDl CONDITIONS ARE ?.\ OE'G C  AMD 760MM HG.



  SQUARE ROOTS OF PSJ BY STARK                      0.322     0.32.2      0.3S1     O.JB8     0.330     0,350     0,273



  HOLE DTAMETfPS  HY STAGF (CENT T MF TER5)             0.3658    0 ,?.UHf>     0.17?0    0.1360    O.OB96    0,0719    0,0589

-------
  CPPI-03   5-17-77   pnHT-01    15«S
  IMPACTOR  FLO"R'1E  c  O.dbO  ACFM
  TMpacTpR  HRF:SSURF  DROP  =  ?.« TN.  nF  HK
  ASSUMED PARTICLE  OFNSITY  s i?.30  GM/CU.CM'.
                                                                    fNLF T SAHPi F    MODIFIED HRINK CASCADE  IMPACTOR  NUM8F.R - 0
                                               IMPACTOR TEMPERATURE -  ?70.0 F e 15?,? C               SAMPLING  DURATION s  10,00 MIN
                                               STACK TF.MPERATIJRF =  270.0 F = 112.?. c
                                                STACK PRESSURE = 25. 
-------
CPPT-Oh  S-18-77  ^OPT-UU   I JSO
IMPACTOR FI.OURAU  r o.o«7 ACFM
IMPACTOR P»FRSl">F  OKHP s ?.5 IM, nF MG
ASSUMED PANTint. DENSITY B i>'.3o GM/CU.C".
GAS COMPOSITION fPERCENT)           CO? = 13.
CALC. MASS IOAHTNG = 1.I71IE+00 GR/ACF
IMPACTOR STAT.F                           TYC
STAGE INDE" NUMBER                         1
DSO (MICROMETERS)                        8.83
MASS (MILLIGRAMS)                       ft3,U7
                                                                    TNLFT S4MPLE    MODIFIED FtRINK CASCADE IMPACTOR  NUMBER  »  D
                                               IMPACTOR TEMPERATURE =  2?o.o r = na.? c              SAMPLING DURATION  •   10,00
                                               STACK rf.MprRATl.iRF e  270.0 F s 132.2 C
                                                STICK PRESSURE = ?s,so in, OF HG     MAX. PARTICLE DIAMFTER •   58.3  MICROMETERS
                 CO =  0.00
           2.0Ri"F+00 GR/ONf.F
            SO        SI         52
             2J«
          5.13      2.90       1.87
          -5.20      3.«1      25.66
« 71.67
?.6798F«03
S3
5
1.26 0.
3.06 4.

MG/
34
6
54
49
02 8 u.75

SS
7
0.40
0.95

4.
36
8
0.11
0.21
                                                                                                                          H20  • 10.50
                                                                                                                  a.7666E+03
                                                                                                                          FILTER
                                                                                                                           0.09
                                                  2.0«E*02   0.31E*Ol
                                                  1.17       0.28       0,08
l.o«E»03  9.53E+02  8.67E*OP  ?.21E«02  l.«UE*02  3.HE*01   7.55E+00   2,?6E+00
1.93E+03  I.69E+03  1.54E+03  3.9«E+02  2.57E*02  5.59E+01   1.30E+01   «.03E*00
fl,73E-ni  U.16E-01  3.79F-01  9.67E-02  6.31E-02  1.37£«02   3.30C-03   9.89E-0«
  MG/DNCM/STAGE                            2.8HE+03  ?.36E+02  1.55E+02  1.16E*03
  CUM.  PERCENT OF MASS SMALLER THAN D50  «0.aj     35.55     32. 3
-------
       CPPI-07  S-1H-77  P()Pr-CO   nn?                                   INLET  SAMPLE    MODIFIED RRINK CASCADE IMPACTOR NUMBF.R - B



       IMPACTOR FI.OWRATF = o.nJu »CFK                JMPACTOR  TF.MPERATURE  =   ?70.o F = 13?.? C              SAMPLING DURATION *  30,00

       IMPACTOR PHKSSUWF PROP =  r.j IM, nF HC        STACK  TEMPERA TURF.  s   aro.o  F : 132,2 c

       ASSUMED PARTTCLF nFNSitr  = 2.30 r.t'/r.u.tw'.      STACK  PRESSURE  =  25. so  IN. OF HG     MAX. PAHTICLE DIAMETFR •   58.3 MICROMETERS

       GAS COMPOSITION  CPFRCENT)           CO?  ~  13. 2B           CO  =  0.00            N2 = 71.67          02 e  « . 7S           M20 =  10.30

       CALC. MASS LOADING = «.6a8?t-ftl CR/ACF              fl.232*E-01 GP/ONCF             1.0S  STAOf.                       0.:<22     0.322     0.3«9     0.330      0.302      0.3US      0,175

        MOLE  DIAMETERS  R*  STAGE  (CENTIMETERS)              O.Tfelfl    0.2flia    0.1737    0.1366     0.0918     0.0719     0,0566

-------
  CPPI-PH  5-IS-77  PORT-D3   11«6                                  I^LET SAMP[_f    MODIFIED  HRINK  CASCADE  IMPACTOR NUMBER - C



  TMPACTOR FLQWKATE = o.ous ACFM               IMPACTOR TEMPERATURE =  270.0 F a  132.? c               SAMPLING DURATION s  30,00




  IMPACTOR PPf.SSHRF nROP = ?.3 T'N. nF HG       STACK Tt'MPFRA Tl 'RE =  270.0 F s 132. ?_ C



  ASSUMED P4RTTCLF PFMSITY a ?. <0 GM/CU.fM.     STACK PRESSURE = ?5.50 IN. OF HG     MAX. PARTICLE  DIAMETER =   58,3 MICROMFTERS



  GAS COMPOSITION rPFRCE^JT)           CO? = 13.28          CO «  0.00           N2 a 71. 67           02 «   fMG/ONCM)                      3.U5E+03  1.26E+03  9.33E+02   3.39E*03  a.2feE»03   6.97E+02  3.37E+0?  1.6TF*01  2,6«E*Ol



  ON/OLOGD CNn. PARTICLES/DNCM)            2,3flE*08  3.05E+09  l'.20E*10   2.20E+11  8,tf3E+ll   7.85C*11  2.38E+12
AERODYNAMIC OIAMETFRS ARE CALCULATED MERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS  DEFINITION



  050 (MICROMETERS)                      13,65      8.33      «.5fl      ?.86       2,19       0.9<4      0,6fl      0,32



  GEO. MFAN DIA. (MTCROMfTERS)         .   3.U7F.+01  1.07E+01  6.15F+00  3.61E+00   2.50E+00   l.«3E+00  7.99E-01  a.70F"01  2.29E-01



  DM/OLOGO (MG/DNCM)                      3.15E+05  l.28Et03  9.«2E*05  3,««E+03     7.73E+09  l.flOF+11   5.30E+11   U.73C+11  I.36F+12  5.07Ptll  «.?6r*l2
NORMAL (FMGINFFP^G STANPAKO) COMDITInNS ARF 21 DEC C  AND 760MM HG .




  SQUARE ROOTS nF PSI BY STAGT.                      0.322     0.32?      0.351      0.3R9      0,3"40     0,350     0,273




  HOLE OIAMETFRS HY STAtiE (CENTIMETERS)             0.3^58    0.?U60     0', 1 72«     0.1360     0.0896    0.0719    O.OSB9

-------
     tn  s-in-77  pppT-d    t«u
IMPACTHR FLOWRATF = o.nub  ACFM
IMPACTPR PRESSURE npnp = 2.3 IN. nF HC
ASSUMF.P PARTICLE PFMSITV = 2.3P KM/CM. CM.
                                                                    INLET SAMPI.K    MODIFIED BRINK CASCADE IMPACTOR NUMHFR  .  c
                                               IMPACTOR TFMPFR^TURF =  270.0 F » H2.2 c              SAMPLING DURATION  .   30.00  MI*
                                               STACK TFMPFRATURF  s  270.0 F x 132.2 C
                                                STACK PRESSURE =  25. SO IN. OF Hi;     MAX. PARTICLE. DIAMETER =   5«.3  MICROMETERS
6*8 COMPOSITION (PERCENT!
CALC. MASS IPADINf, = I.B176E
IMPACTOR STAGE
STAGE INOTX NIJMHFP
050 (HICRHMETfRS)
MASS (MILLIGRAMS)
MG/DNCM/8TAGE
CUM. PFBCENT OF MASS SMALLER THAN 050  21.33
CUM. (MG/ACM) SMALLER THAN D5n
CUM. (MG/ONCM, SMALLER THAN MO
CUM. (GR/ACF) SMALLER THAN 050
CUM. (6R/DNCF, SMALLFM THAN 050
6EO. MEAN DIA. (MICROMETERS)
OM/OLOGO (MG/ONCM)
ON/DLOGD (NO. PARTICLES/ONCM,
C02 « H.2R
GR/ACF
CYC
1
P.90
12*.^

v.2^;
so
2
5.45
H.76
CO = 0.00
><>F + 00 GW/DNCF
SI
3
2. OS
6.P5


S2
a
1.85
8.5«
                             N2 3 7,.6T
                                 Sj
                                                                                                                        H?0 3 10.30
                                                                                                                 7.3980F*03 MC/DNCM
                                                                                                                 96      F:UTER

                                                                                                                  R
15.63
                                                                                                               0.16       0.20
                                                                                                               T.53F*00  9,fllF*00
                                                                                                               0.13
                                                                                                    02 .  «.75
                                                                                               MG/ACM
                                                                                              SU        S5
                                                                                     5         67
                                                                                  t < a ,      0<58      0>al
                                                                                  U.79      3.79      Q.90
                                                              3.22F.»02  U.02F.*02  2.25E»02  1.76E»02
                                                             11.53      6.18      3.17      0.79      0.23
                                          fl.R7E*02  6.59E*0?  «.90E*02  2.57E+0?  I.3JE+02  3.29E*01  9.«OE*00   5.22E«00
                                          I.5BE.03  1.17E*OJ  8.53E*02  «.57E+02  2.3UE+02  5.85E*01  |.6TE*0|   9.29E*00
                                          3.«eE-01  2.88F-01  2. 106-01  1.12E-01  5.76F..Q2  |.aaE.02  a.HE.OS   2.28E-01
                                          6.90E-01  5.I2E-01  3.73E-01  2.00E-01  1.02E-01  ?.56E-02  7.30E-03   «.06E-03
                                          ?.29Ef01  7.00F.+00  4.01E+00  2.S«E+00  1.61E*00  9.02F-01  «.B9F-Ol   2.71E-01   1.26F-01
                                          7,?7E*03  1.89E*03  1.21E*03  1.97E*03  l.»OE*OJ  fl.63E*02  2.88E*02   2.05E+01   3.13E*01
                                          5.0^E*08  U.5BE+09  1.56EMO  1.29E*11  3.77EM1  5.?4E*11  2.0«E+12   8.58e*ll   1.31E»13

            DIAMETERS ARE CALCULATED HERF ACCORDING TO THE TASK GROUP ON LUNG OYNAMJCS DEFINITION
  050 (MICRnMETFRS)                       ,,.M      8>3?      fl-5(,      ?§B6      2>,,      „_„      0>6e       0>J2
  GEO.  MEAN DIA.  (MICPOMETERS)            5. i F M 0  8.20F.«io  ?.37E*11  3.15EM1  1.I7EM2   «.2RE*11   S.03EM2
NORMAL (ENGIMFFRTNG .STANHARD) CONDITIONS. 4RF. 21 OtG C  ANO 760MM HG.
  SQUARE  ROOTS nF PST  Rr STAPE                      0.32?     O.JJ2     0.351     0.388     0.330      0.350      0.2T3
  HOLE DUMETtRS RY STAGE (CE"T IMF TEHS )              O.JfaSfi    0.2065    0.1/20.    0.1360    0.0896     0.0719     0.0589

-------
  CPPI-11   5-1P-77   PfiRT-C^   1850                                  TMLET SAMPtF    MODIFIED BRINK  CASCADE  I*PACTOR NUMHFH - B




  TMPACTOR  FLOWRATF  =  0.0?9 ACFn               IMPACTOR TEMPFR4TUKF a  ?70.0 F = 13?.2 C               SAMPLING DURATION =  50.00 MIN




  IMpArTnw  PRESSURE  DPPP =  0.9 I". OF HC,       STACK TF.MPFRATIJRF =  ?70.o F = 132.2 c




  ASSUMED  PARTTCLF  PF.NSITY  s 2'.SP CM/CM.CM.     STACK PRESSURE = 25,50 IN. OF HG     MAX. PARTICLE  DTAMF.TER °   58.3 MICROMETERS




  GAS  COMPOSITION fPFRCENT)           C02 s 13,26          CO e  0.00           N2 = 71.67           02 «   U.75           H?0 • 10.30




  CALC.  MASS  LOADING * 7.2288E-01 RR/ACF             1.28S9F+00 GR/ONCF             1.65U2F+03  MG/ACM              ?.9«?3F+05 MG/ONCM




  TMPATTOR  STAT.E                            CVC        SO        SI        32        S3        S«         S5         36     FILTER




  STAGE  INDEX NU^RFR                         12SU56789




  05fl  CMJCROMFTERS)                       11.?"      6.7S      3.63      2.36      1.52       0.71       0.5a       0.13




  MASS (Mil I.IGPAHS1                       ?h,97      1.70      2.OS      2.27      3,«3       2.6«       0,85       0.19      0.09




  MG/DNCM/STARf                           2,OOE*03  1.26E*02  1.52E+02  1.68F*0?  2.55E+02   l.«»6E«02  6.31E*01  1,U1E«01  6,66E*00




  CUM. PFRCENT OF MASS SMALLER THAN 050  32,SP     28.66     23.56     17.03  1.62E-03




  CUM. (GR/DNCF)  SMAlLf THAN 050         NC*»)                      2.81E+03  5.69E+02  5.6«E*02  9.03E*02  1.33E*03   5.95F*02  3.?5E»0?  ?,?ie*01  2.?2f»0l




  DN/DLOGD  fNn. PARTICLES/DNCM)           1.38F-+06  7.00E+OB  3.«6E»09  ?.99F»10  1.62E*lt   a.39E»ll  1.83E*12  1,OSE*12  2,72E*1S






AERORYNAMIC DIAMETERS ARF CALCULATED HF.RE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION




  D50  (MICRUMFTF.RR1                       17.13      10,30      S.5fe      3.6fl      2.36       1.1«       O.S7       0.2J




  GEO, MEAN DIA.  (MtcPHMFTfRS)            3.89E+01  1,33F*0|  7.57E+00  a.50E*00  2.93E+00   1.6«f*00  9.97F-01  0.52E-01  1.65E-01




                                          2.8lF+Oi  5.72E*02  5.68E*02  9.15E*02  1..35E+03   6.16E*02  5.57E+02  2.06E*01  2.22E+01




                                          o.tpE + 07  u.b»E + np  Z.SOE + O1'  1.<'2F. + 1P  1.03E+11   ?.68F*11  1.07F + 12  5.08E*ll








NORMAL (ENGINEERING STANDARP1 CONDITIONS APE ?1 DEC r  AND 760MM HG,




  SQUARE ROOTS OF PSI BY STARE                      n.?2?     0.3??     0.3«<9     O.J30      0.30?     0.3US     0.1T5




  HOLF DIAMETERS  HY STAGE  (CENT I ME TF.RS )             0.3618    O.?uiu    0,'737    0.1366     0.0<>18     0.0719    0.0566

-------
       CPPI-13   5-19-77   PfiPT-01    1015                                   INI.FT SAMPLE    MODIFIED BRINK CASCADE  IMPACTOR NUMBFR • C

       IMPACTOR  FLPHRATE  =  0.050  ACF*                IMPACTOK TEHPERATII»F =  ?70.0 F s  15?.? C               SAMPLING  DURATION a  JO,00

       IMPACTOR  PRFSSURF  DROP  s z'.e  IN,  OF  HG        STACK TEMPERATURE c  ??o.o F s 13?.? c

       ASSUME" PARTICLE PENSITY =  2.40 GM/CU.C"'.      STACK  PRFSSURF  r 25.69 IN. OF HG     MAX. PARTICLE DIAMETER  f    "58.3 MICROMETERS

       GAS COMPOSITION  (PFRCE«JT1            CO?  e  1'i.on           CO s  n.OO           N2 = 70.7          7          8«

       H50  (MICROMETERS)                        6.ah       5.12      2.77      1,73       1.32      O.SU       0.38       0,16

       MASS  (MILLIGRAMS)                       59.3U       7.<>8      6.67      9.93       5.23      U.97       P.9B       0,55      0.36

       MC/DMCM/STAGf                            ?,SUE*03  3.«2E»02  2.86E+02  fl,25E»02   2.20E+02  2.13E*02   a,20E+01   1,50E*01  l.5«E»01

       CUM.  PERCENT OF  MASS SMALLER  THAN 050   38,06      29,7U     22.77     12. 50          6.7UE-01  5.26E-01  4.03E-01  2.20E-01   1.23E-01  3.12E-02   1.31E-0?   6.69E-03
O
       GEO,  MF.AN OIA,  (MICROMETERS)             2.22E+01  6.58E+00  3.76E+00  2.19E*00   l.SlE»00  8,«3E-01   U.55E-01   2,«6E-Ot  1.12E-01

       OM/OLOGO  (MG/DNCM)                       3.03E*03  1.57E+03  1.07E403  2,08E»03   1.88E*03  5.50E«02   E.81F+02   3,906*01  5,12E»01

       ON/DLOGP  (NO.  PARTTCLES/ONCM)           2,30F*08  U.57F.+09  1.67E+10  1.65E+11   4.5«E*11  7.62E»11   2,«9E*12   2.18E+12  3,06E*!3


      AERODYNAMIC OIAMETFP8 ARE CALCULATED HF»F ACCORDING TO THE TASK GROUP ON  LUNG DYNAMICS DEFINITION

       D50  (MTCROMETERS)                       1?,f>?       7.B2      0.26      2.68       2.05      0.87       0,6«       0,29

       GEO.  MEAN niA.  (MICROMETERS)             3.37E + 01  I.OOE + Ol  5.77E + in  3,38F.tOO   ^.35F»00  t.3
-------
  CPPI-1U   S-10-7?   P.'jHT-C?   105?                                   Th4|.FT  SAMPLE     MQOIFJFO BRINK CASCADE IMpACTOR NOMBfR  •  0




  IMPACTOR FLO*RATF = n.nUS ACFM               I*PACTOR TFHPERATURF:  =  270.0  F  a  13?. J C               SAMPLING DURATION  a   30.00




  JMPACTOR PRFSSURF OWOP = ?'. 3 In. OF Hf.       STACK TFMPfRATuRF =   270.0  F = 132.2 C




  ASSUMED  Pi\RTTClF  nFNSl'Y = ?'. 30 GM/CU.f>.     STACK P&TSSURE  = ?5.69 IN, OF HG      MAX.  PARTICLF DIAMETF.R «   5B.3 MlCROMETfPS




  GAS  COMPOSITION (PFRCEHT)           CO? = la.on          CO =  0.00           N?  a 70,79          0? =  ?.7l           H30  «  12.50




  CALC.  MASS lOAni^r, = 1.7fel7F+nn GR/ACF             J.1923E+00 CR/DNCF              U.O%hOF+03 MG/ATM             T.^OSOEtOl  MG/ONCH




  IMPACTOR STAGE                           CVC        S«        SI         S3         S5        S«        35        86     FILTER




  STAGF.  JMDfX NUMBER                         12^«56789




  050  (MICROMETERS)                       fl.Ql      5.1R      2.05       J.89       1.27      O.S5      0 , « 1      0.11




  MASS (MILLIGRAMS)                     M?.un      T.OS      6.63       5.HU       2.6?      2.99      O.BU      0.19       O.ia




  MG/ONCM/STAGf                           6.30Et03  1.88E+02  3.15F+02   2.7PF.+02   1.27E+02  1.U2E+02  4.00E+01  9.04E+00  h.66E*00




  CUM. PERCENT OF MASS SMALLER THAN 050  in.9.2«E*tl  1.P5E+IS
                    STANDARD) rOND! TIONS  *RF ?1  DFG  C   ANn  760MM  HG.




  SOUARE ROOTS nF PST RY STAGF                       n.3??      0.3?2     O.iaf,     0.3SU     n.297     0.337      0.22fc




  HOLE OIAMETEPS HY STAGF- < CENT I MF. T F«S )              0.3560     O.?uh1     0.177B    0.13ISR    0.0^37    0.0739     O.OS50

-------
CPPI-15  S-l9-7f  onH]-n?   iisn
IMPACTOR FLUWRATC r n.na? ACFM
IMPACTOR pRFSSi'RF nnnp = ?.a IM, np nn
        PAR1ICIF DFNSITV = 2.JO GM/Ct.l.O.
                                                                    tNLFT SAMPLE     Mnr>TFIEr>  RWINK  CASCADE IMPACTOR NUMBER •• B
                                               IMPACTOR TFMPEPMURE =  a?o,o F  =  132.2  c               SAMPLING DURATION B  30,00 HI*
                                               STACK. TF^PFRATUT =  270.0 F =  ii?.?  C
                                                STACK PHF SSllRF r 2S.h<> IN. OF  WC      MAX.  PARTKLE  OIAMETfR =   58.5 MICROMETERS
C.AS COMPOSITION (PFKCENT)
CALC. MASS i.OAniNr, = i
IMPACTOP ST»RE
STAGE INDEX NUMBFR
050 (MJCROMFTFRS)
MASS (MILUIRRAMSJ
C02
K R / A c F




= 1U.OO

CYC
i
8.79
99. ?9
CO
2.5035F. + I
SO
2
5.23
3.U9
= n.oo
10 GR/DNCF
SI
3
2.80
5.1?


S2
II
1.81
7.01
                                                                               N2 = 7fl.7q
                                                                                   3.
                                                                                   53
                                                                                    5
                                                                                 1.16
                                                                                 5.3fe
                                                                                                     02 3  ?.7l
                                                                                                MG/ACM
                                                                                               s«         ss
                                                                                                <>7
                                                                                             0.53       O.ao
                                                                                             3.82       1.16


H20 •
12.50
5,7?8">E + 03 MG/ONCh


0
0
36
8
.07
.21
FILTER
9

0,08




                                          a.59E+03  1,ME*02  2.37F+02   3.26E+02   ?.«flF+02   l.77E*02  5.36E*01  9.71E+00  3.70E+00
  CUM.  PERCPNT OF MASS SMALLER THAN nso  20,93     18.15     1«'.07       s,«7       «.2o       i.ts       o,23      0.06
CUM. (MG/ACM5 S
CUM. (MG/DNCM) SMALLE" THAN 050
CUM. (KR/ACF5 SMALLER THAN 050
CUM. (GH/ONCF) SMALLER THAN D50
GEO. MEAN DIA.
DM/OLOGO
ON/DLOGO
                                          6.fe?E+02  5.7UE+0?  U.45E»02  2.6flt+02   1.33E*02   3.65E*01   7,31E»00  2.02EtOO
                                          1.20E+03  1.0UF*03  8'.06E*02  U.85F+02   2.10E+02   6.b2E»01   1,32F*01  3.65E*00
                                          2.R9E-01  2.51E-01  1.9SE-OI  1.17E-01   5.R1E-02   1.60E-02   3.1"»C-03  8.81E«0«
                                          5.2UE-01  0.50E-01  3.52E-01  2.12F-01   1.05E«01   ?.8<>E"02   5.78f-0%  1.59F-03
                                          ?,?hE*01  6.786*00  3.S3E*00  2.?5F»00   l.«5f+00   7.85E-01   «,58E-01  1.72E-01  5,Z7E»02
                                          5.59E»03  7.17E+02  P.72E+02  1.73E*03   1.27E«03   5.21E*02   «,18E*02  1.3aE*01  1.23E*01
                                          u.OOE+08  1.91Et09  1.29F*10  I.ZSEMI   3.«7F+11   fl.96E»ll   3.61E*12
AERODYNAMIC OIAMETfRS ARF. CALCULATED HERF ACCORDING TO THE TASK GROUP  ON  LUNG  DYNAMICS DEFINITION
  D50 fMICROMETERS)                      13.32      7.99       «.3?      ?,81       1.81      n.8b      0,65      0,15
  GEO. MFAN DIA. fMir.PO«ETERS)            3.U3E+01  1.03E+OJ   5.fl6E*00 3.«8E+00   2.2feE*00  1.25F+00  7.SOE-01  3.13E-01   1.06E-01
  DM/OLOGO (MG/DNCMJ                      5.59E*13  7.27E+02   8.81F+0? 1.76F*n3   l,ilF*03  5.U5E*02  a.52E*02  1,51E»01   l,?3E*ftl
  DN/OLOGO TNO. PARTTCLES/OHCM5           ?.6aE+rt8  l.?6E*09   fi.^UFfng 7.99E+10   2.I7E+11  5.55E*11  P.05E+12  9.a6E»ll   1.99EM3
NORMAL (FNGINEFRlMG STANHAP-n) CnNnlTTO'JS ARl 21 OEG C  AND  760HH  HG .
  SQUARE ROOTS OF PSI BY STAGF                      n.i??      0.3?2      0.309      0.3JO     0.302     0.3/45     0.175
  HOLF r.TAMETERS BY STAKF (CFNT jMf TF PS )             0.361B     n.2«l«     0,1737     0.1366    0.0918    0,0719    0,0566

-------
CPP1-17  5-PO-77  P11PT-C3   11^0
IMPACTOH FLO*HATF = o.o«5 ACFM
IMPACTOR PRESSMHF DROP = 2.J IN. OF HG
ASSUMED PARTICLE DFNSITY = ?.i<> GM/CU.CM.
                                                                    TNI. FT SAMPLE    MnniFIFD BRINK CASCADE  IHPACTOR  NUMBER  - 0
                                               IMPALTHR TEMPERATURE =  370.0 F = 132.2 c              SAMPLING  DURATION  a   jo.oo MIN
                                               STACK TfMPLRiTuRF =  ?70.0 F = 13?. 2 C
                                                STACK  PPFSSIIHF = ?«i.6o T*. OF MG     MAX. PARTICLE DIAMETER  »    58.3 MICROMETERS
GAS COMPOSITION (PFRCENT)
CAI.C. MASS LOADING s 8.10pnE-01 GB/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
050 (MICROMfTERS)
MASS (MILLIGRAMS)
MG/ONCM/STAGE
CUM. PF.RCENT OF MASS SMALLFR THAN DSD
CUM. (HG/ACMl SMALLER THAW 050
CUM. fMG/DNCM) SMALLER THAN D50
CUM. (GR/ACF) SMALLFR THAN D50
CUM. CCR/DNCF) SMALLER THAN 050
GEO. MEAN DIA. (MICROMETERS)
DM/DLOGO (MG/OWCM)
ON/PLOGD (NO. PARTICLES/ONCM)
12.70          CO s  n.OO
         1.05S9F+00 GH/ONCF
                                                                              N2 s 72, hB           02
                                                                                  1.8550E+03 MQ/ACM
                                                                                                          2.H2            H20  » 1J.80
                                                                                                                   l.-«31SFt03  MC/ONCM


p
«7
?
CYC SO
I 2
,9U 5,19
,1? a.1"
,23Et03 2.3JE+0


2
3
2 1
SI
3
'."«
.06
.15E+02


1
h
3
S2 S3
« 5
,<»0 1.2B
.57 5.2U
.01E+02 2,flflF+0


0
2
2 1
SU       1.99       ft. 89       0.6P       0.21
  GEO.  MEAN DIA. (MICROMETERS-)            J,U6h+01  1.0«E*01   5.9BF»OP  3.6«E*00   2.«2E*00   1.33E+00   7.78E-01   3.81E-01   1.51E-01
  DM/DLOGD (MG/DNCM) -                     2.7qE*03  l.nOE+03  5.90E+0?  1.62E*03   l.«7E+03   O.OOE*02   6.15E+02   8.43E+00   2.0«C»Ol
           (NO. PAPTlrl.FS/DNCM)           1.26F + 08  1.71F*09  5.?7F. + np  6,U1E*10   l.9flE*ll   3.?3E + 11   2,fl9E*12
NORMAL (ENGINEERING STANDARD) CONDITIONS APF 21 DEG C  AND 760M* HG.
  SQUARE ROOTS OF PST BY STAGF                      ft. 132     0.32?     0.116     0.35"      0.297      0,317      0.226
  HOLE DlAMf.TfPS HY STAGE ( CENT I Mf TFRS )              0.3ShO    0.2U6)    0.177fl    0.1368     0.0937     0.07S9    0.0550

-------
so
2
6.20
?.02
SI
^
3.37
2.67
S?
tt
2.11
«.71
S3
5
1.61
".23
34
6
0.67
3.16
S5
7
0.09
1.03
36
8
0.23
0.11
  CPP1-IP   s-?"-77   PDRT-D3    12*13                                   TNLFT SAMPLE    MODIFIED  KHINK  CASCADE  IMPACTOR  NUMBER - C




  IMPACTOP  FLDUPATF  =  0,035  ACFM               JMPACTHP TEMPERATURE =  ?70.o F =  13?.? C               SAMPI ING  DURATION s  30.00




  IMPACTOW  PRESSURE  DPOP  s  )'.3  IN.  OF Mi;       STACK TF MPER A Tl.lRf =  ?70.0 F -  Ii2.? C




  ASSUMED  PARTICLE  OF.NSITY  =  ?'.jn  GM/T'I.O.      STACK PHPSSURF = ?5.h<» IN, OF  HG     MAX. PARTICLE  DTAMFTER  =    se.i MiCROMf.TtRS




  GAS  COMPOSITION  fPFRCt'NT)            Cn2 =  12.70          CO s  0.00           N2 c 7?.hfl           02 s   2,8?            H20 a 11,80




  CALC.  MASS  LOADING o 7.9?S2t-01  GR/ACF             l.«230F + 00 GR/ONCF             1.8M6E*03  MQ/ACM              J,25«>«E + 03




  IMRAr.TnR  STAGE                            CYC        SO        SI        S?        S3        S«         55         36     FILTER




  9TAGF.  INDEX NIIMBFH                         ]         2         %         a         5          6          7          8         9




  050  fMlCROHFTEHS)                       10. ?1




  MASS (MILLIGRAMS)                       3«. «8      ?.
-------
  CPPI-1V   ^-20.77   Pfipr.C'l    1320                                   TNLFT SAMPt F    MODIFIED BRINK CASCADE  IMPACTOR  NUMBER  - B




  IMPACTOR  FLOWP.ATF  s  n,osi  *CF%               IMPACTCIR TCMPEKAT'IRE =  270.0 F = 13?.2 C              SAMPLING  DURATION  c   30.00 MJN




  TMPACTOR  PRFSSURF  r>RDP = 2.9 IH,  nF HG       STACK TF"PFRATi|Rp r  270,0 F = 132.? C




  ASSUMFrt PARTICLE  DENSITY = ?.'.30 GM/r.'l.rM.      STACK PRESSURE = 25.69 IN. OF HG     MAX. PARTICLE DTAMFTER =    58.3 MICROMETERS




  GAS COMPOSITION (PERCENT)            C02 =  1?.70          CO =  0.00           N2 a 72.68          02 =  2.82           H20 * J1.60




  C4LC.  MASS LOADING c 2.59Jfef+00 Gfl/ACF             U.2980F+00 GR/DNCF             S.U77aE+03 MG/ACM              9.8552F»03 MG/ONCM




  IMPACTOR  STAGE                           CYC        so        si        S2        53        s«        ss         st    FILTER




  STAGF  INRIX NUMRFR                         123U56789




  050 fMICROMETFRS)                        S.ai      "5.00      2.67      1,73      1.10      0.50      0.37       0.07




  MASS (MILLIGRAMS)                      187.a9     13.10     12.69     1U.69      a.Ufl      a.50      0.92       0.20      0.21




  MG/ONCM/STAGE                           7,85E+03  5,«8E+02  5.31E+02  6.15E+02  1.86E+02  1.88E*02  3.85E*01   8.3TC*00  8.79E«00




  CUM. PERCENT OF MASS SMALLER THAN 050  21,30     15.RO     10.U8      U.31      2.U5      0.56      0.17       0.09




  CUM, (MG/ACM) SMALLER THAN OSO          1.17E+03  8.66F+02  5.7«E+02  2.16E*02  1.3UE+02  3.06E+01  9,a3E+00   fl.8JF«00




  CUM. (MG/DNCM) SMALLER THAN 050         2.10E+03  1.55E+03  1.03E+03  «.2«E»02  2.U1E+02  5.fl9E»01  1.69E+01   8,67E*00




  CUM. tGR/ACF) SMALLER THAN 050          5.10E-01  3.78E-01  2.51E-01  1.03E-01  5.86E-02  l.3«E»02  0.12C-03   2.11E-OJ




  CUM. (GR/DNCF) SMALLER THAN 050         9.16F-01  6.79E-01  fl.50E-01  1.85F-01  1.05E-01  2.aOE-02  7,«OE-03   3.T9E-OJ




  CEO. MEAN DIA. (MICROMETERS)            ?.2lEf01  6.«8E*00  3.66E*00  2.15EtOO  1.3BE»00  7.05E-01  a.32E-01   1.57E-01  0.69E-08




  DM/OLOCO  (KS/ONCH)                      9,?3E»01  2.H3E+03  1.95E+03  3.26E+03  9.52E+02  5.51E+02  2.9SE»0?   1.12E*01  2.92E»01




  UN/DLOGD  (NO. PARTICLES/DNCM)           7,iaF+08  7,aoE+09  3.32E+10  2,72E*11  2.99E*11  l.ltE*12  3.03E+12   2.J9E+12  2.35E+18






AERODYNAMIC DIAMETERS  ARF CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION




  050 (MICROMFTERS)                       12.75      7.60      a'.ll      2.68      1.73      0.82      0,62       0.13




  GEO. MEAN DJA. (MICROMETERS)            J.^EtOl  9.87E+00  S.61E»00  3.32E+00  2.15E+00  1.19E+00  7.11E-01   ?.89E-01  9.S3E-02




  DM/DLOGD  (MG/ONCM) .                    9.33F+OS  ?.«7E+03  1.97E+03  3.31E+03  9.76E*02  5.78C*02  3.20E+02   1.26C»01  2,98E»Of




  •DN/DLOGO  (NO. PAPTTrL£S/1>orM)           a.7lF+OB  U.90E+09  2.10E+10  1.73E+11  1.87E+H  6.57E*11  1.70F+12   1,OOE*12  6,uaE*13








NORMAl (FNGINFERING  STANDAPni CONDITIONS ARE ?1 DEC C  AND 760MM HG.




  SQUARE ROOTS nF PSI  BY STAGF                      0.^2?     0.32?     0.3a9     0.330     0.30?     0.3«5     0,175




  MOLl' DlAMFTfRS BY  STAGE CCFN r IMFTf.«S)             0.161B    0.2aiu    0,1-737    0.1366    0.0918    0,0719     O.OS66

-------
Ul
 CPPO-3   5-17-77
 IMPACTOR FLOWPAIE  s  o.5ho  ACFM
 IMPACTPR PRFSSURF  OPOP  =  i'.«  IN.  OF
 »SSU«En PARTlCLt DFMSITV  =  2.JO
 GAS  COMPOSITION  fPFPCENT)            CO?
 CALC, MASS  LOAniNR =  1.1603E-02  GR/ACF
 IMRACTOR STAGt
 STAGE  INDEX NUMHFR
 D50  (MlrROMETE«5)
 MASS (MILLIGRAMS)
 MG/DSCM/ST»GE
 CUM, PERCENT OF  MASS SMALLER  THAN 050
 CUM. (MG/ACM)  SMAl LtP THAN 050
 CUM, (MG/DNCM)  SMAILE"  THAN 050
 CUM. (GR/ACF)  SMALLER THAN D50
 CUM. (SR/DNCF)  SMALLER  THAN 050
 GEO, MEAN  DJA.  (MICROMETERS)
 ON/DLOCD  (MG/DNCM)
 ON/DLOGD  fNO.  PARTICLES/ONCM)

4EBOOVNAMIC  DIAMETERS ARE CALCULATED HERE
 030  (MICROMETERS)
 GEO. MFAN  DIA.  (MICROMETERS)
 DM/DLOGD  (MG/D^'CM)
  DN/DLOGO  (NO.  PARTTCLES/DNCM)
                                                                          OUTLFT  SAMPLF    U.  OF  U.  MARK  III  SOURCE  TEST IMPACTOR NQ. - A
                                                     IMPACTOR  TEMPERATURE  =   202.0  r  =   94.4  c               SAMPLING DURATION e  60,00
                                                     STACK  TEMPfRiTlJHE  =   202.0  F  =  1U.U  C
                                                     STACK PRKSSURF  r  ?h.50  IN.  OF Ht;      MAX.  PARTICLF  OIAMF.TEH »   «0.2 MICROMETERS
                                               =  1?.00
N? = 64.52          02 «  4.03
    2.6644F+01 MG/AfM
                                                   SI
                                                   1
                                                  7.33
                                                  2.?*
S4
4
14
42
S5
5
0.72
2.42
S6
6
0.00
6,34
87
7
0.17
5,99
FILTER
8

16,36
                 CO =  0.00
           2.0123E-02 GR/DMCF
              S2        S3
              2         3
            7,3?      3.27
            0.00      0.0!
  3.12F+00  n.OOE-01  1.3BF-02  5.BOE-01  3.34E+00  H,76E*00  8.27E»00   2.26E»01
 93.31      93,31     93.28     92.0«     84.88     66.12     48.00
  2.19E + 01  ?.,U9E + 01  2.49F + 01  2.4bF+01  2.26E + 01  1.76E + 01  1.29E»Oi
  4.30E+01  U,30E»Ol  4.30E+01  «.2UE*01  3.91E+01  3.04E+01  2.23E+01
  1.09E-02  1.09E-02  1.09E-02  1.07E-02  9.88E-03  T.70F-03  5.64t«03
  1.86E-02  1.B8E-02  1.8BE-02  1.85E-02  1.71E-02  1.33E-02  9.74E-03
  1.72E*OI  7.33E+00  4.89E+00  1.93E^OQ  9.05E-01  5.33E-01  2.5TE-01   1.18E-01
  fl.22E*00  O.OOE-01  3.95E-02  1.27E+00  1.65E*01  3,40E*01  2.20C*01   T.SOEfOl
  6.93E+05  O.OOF-01  2.BOE*05  l.a6E*Ofl  1.85E+10  1.86E*11  1.07E*12   3.82E*13

ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
 11.17      11.15      5.01      1.7B      1.13      0.65      0.30
  P.61E+01  1.12E+01  7.U7E+00  2.99F»00  1.02E*00  H.58E-01  4.39E-01   2.10E-01
  F*07  1.14F. + 10  1,09E»11  5,50E»11   1.50F + 13
M20 a 19.15
      NORMAl  (ENGINFERJNG  STANn«9[))  CnNDTTInNS  ARF  21  DF.G C  AND 760MM Hf,.
        SOUAPF  ROOTS  OF  PSI  B^  STARE              0.1««     0.3^0     0.371     0.271     0.30fl     0,373      0.3U9
        HOLE  nTAMfTfRS  RV  STAGE (CENH*F.TF HS)      1.R237    O.S768    0.2501    0.0806    O.OS?«    0.0333     0.021S

-------
Ch
         s-17-7/  prjpr-.s    isis
IMPACTPR FLMWHATF = o..43o »CFM
         pRtssi'RF IIHOP = 0.5 IN. OF MR
        PABTTCI E nFNSTTV r ?.3n GM/LU.r
GAS COWPOSTTInN  fPFRCENT)           CO?
CALC. MASS LOATTNG = 2.79UE.O? GR/ACF
IMPACTOR STAGE
STAGE
D50
MASS
MG/OSCM/STAGF
CUM, PERCENT or  *ASS SMALLER THAN  oso
CUM. (MG/ACM1 SMALLER THAN 050
CUM. CMG/DNCMJ 8MALLER TH** 050
CUM. (GR/ACF5 SMALLER THAN 050
CUM. (GP/nNCF) SMALLER THAN 050
GEO. MEAN OIA. (MICROMETERS)
DM/DLOGD  tHG/ONCM)
          (NO. PARTTCLES/DNCM)
                                                                          OIITLFT SAMPLF   II. OF w. MARK  IIT  SOURCF  TEST  IMPACTOR NO, • C
                                                              ThMPF.RATIIRf =  ?02.0 F =  9«,u c               SAMPLING  DURATION a  32,00
                                                     STACK  TFMPFKATURF  =  ?0?,0 F =  90.'J C
                                                      STACK  PHFSSURf  s  2A.SO IN. OF HG     MAX. PARTICLE DIAMETER  =   SO.? MTCROMFTERS
                                                =  12.00
                                                                                      N? s 6«.52
                                                                                          6.387«E*01
                                                                                                           02  s   u.03
                                                    SI
                                                    1
                                                  o.5f>
                                                  2.35
su
a
1 ,80
0,1 tt
ss
5
0.9(1
3.U5
S6
6
0.66
3.90
S7
7
0.21
2.88
                ens  n.oo
          U.8PU2E-02 GR/DNCF
             S?        S3
             2         3
           9.83      U. IB
           o.n?      o.ni
 1.38E»01  1.17F-01  S.R6F-02  1.05F+00   2.02E+01   2.28E*01   1.69F. + 01  3.70E*01
87.70     87.59     87. 5«     86,60      68.53      18.12     33. 0«
 5.60E+01  5.59E+01  5.59E+01  5.53E+01   U.3SF+01   S.07E+01   2.11E+01
 9.68E*01  9.67F»01  9.66E+OJ  9,5fef+oi   7.57E*01   5.31E+01   3.65E*01
 2.U5E-02  2.««E-02  2.««E-02  2,«2F.-02   1.91E-02   l,3at-02   9,?2E-03
 «.23E-02  U.23E-0?  a.22F-02  1.1BE-02   3.31E-02   ?.32E-02   1..59E.02
 1.96E+01  9.71E+00  6.U1F+00  2.75F+00   1.30E*00   7.88E»01   a.OlE-01  1.72E-OJ
 2.21E+01 -l.nuE«01  l.SflE-01  2,89F*00   7.16E+01   1.«8E*02   5.90F+01  1.25E*02
 2.«3E+Ob -9.0!Et06  U.97E*0C5  1.16E+08   2.69E*10   ?.51Ettl   5.02E+11
        H?O s  19.as
 1.1039F. + 02 MG/DNC*
FILTER
   a
      AERODYNAMIC  OIAMfTFRS  ARE CALCULATED HF.RE
        050  (MICROMETERS)
        GEO.  MEAN  DIA.  (MICROMETERS)
       . DM/DL060  (MG/DNCM) .
        ON/Dl.OGn  (NO.  PARTICLES/DNCMl
                                         ACCnRPING TO THt  TASK GPnUP ON LONG DYNAMICS
                                          1«.58      tU.96       6.39      ?.7«      l.«8       1,05       O.U2
                                           2.98F»0) ^1 .U8F + 01   9.78E*00  «,22F»00  2.03E + 00   l,21E + nO   6.60F-01   2,9flE-01
                                           2.22E»01  «l,n«E+01   1.58E-01  2,9?E+00  7.33F+01   1,5«E+02   «.?OE»01   1.23E+02
                                           1.60F+06  -h,17E+06   3.21E+05  7.aaF+07  1.68E+10   1.53E+M   2.79E+11   9,22E*12
      NORMAL  fFNGINFFRlMP-  STANOAROl  COMDITtn*S »PE 21 DEC C  AND 760MM HG,
        SQUARE  ROOTS  OF  PSI  BY  STAGF              0.1««     0.33"     0.371      0.320      0.295      0.36J     0.312
        HOLE  OIAHFTF.HS BY  STAUE t CE^ II Hf TF.H51     1.8237    O.S87a    0.2«S9     0,0807     0.053?     0,0376    0,02bO

-------
  CPPO-6    5-IB-77   POP1-1,?   1335
  IMPACTOR  FLOWRATF  =  0,310  ACFM
  IMPACTOR  PRFSSURF  nROP  =  0'.«  IN,  np  HG
  ASSUMED HARTicir.  OFWSITY  =  2.30  GH/CU.CM'.
                                                                  INLFT SAMPLE    LI. PF w. NIAHK  III  SOUHCH  TFST  IMPACTOR  NO.  • A

                                             IMPACTOR UMPERATURE :  205.0 P =  96.1 C               SAMPLING  DURATION m   80.00 MIN

                                             STACK TFMPEHftTURE *  2fl5.0 F a  96.1 C
                                              STACK PKPSSHRE = ?6,66 IN. OF HG     WAX. PARTICLE  DIAMfTFR  •
GAS COMPOSITION (PERCENT)           CO? e 11.79
CAIC. MASS lOAniNr, = 9.i??5E-oj GR/ACF
IMPACTOR STAGE                              si
STAGE INDEX NUMBER                          1
050 (MTCROMKTEP5)                         9.95
MASS (MILLIGRAMS)                         3.06
MG/OSCM/STAGF
CUM. PERCENT OF MASS SMALLER THAN 050
CUM. (MG/ACM) SMALLER THAN 050
CUM. (MR/DNcM) SMALLER THAN oso
CUM. (GR/ACF) SMALLER THAN DSO
CUM. (GR/ONCF) SMALLER THAN 050
GEO. MEAN DIA. (MICROMETERS)
DM/DL060  (MG/DNCM)
DN/DLOGD  (NO. PARTICLES/ONCM)
      CO =  0.00

1.5269E-02 GR/DNT.F
   52        S3

   2         3
 9.94      ti.Ub
 0.00      0.00
                                                                                N2 = 67.69          02 s  5.57
                                                                                    a.0875E+01 MG/ACM
00.2 MICROMETERS
         H20 a If
35
S
t .00
0.02
Rh
6
0.58
1.37
37
7
0.?6
2.67
FILTER
8

7.5«
                                                                          0.00
                                                      O.OOE-01  O.OOE-01  O.OOE-01  0.83E-0?  3.31E+00  6.U5F»00   1.82E+01
                                           79.13     79.13     79.13     79.13   ,  78.99     69.65     51.U3
                                            1.65F*01   1.65F+01  1,65E*01  1.65F>01  1.65E+01  l.a5E»01  1.07E*01
                                            ?.76E*01   2.76E+01  2.76E+01  2.76E+01  2,76E*Ol  2,U3E*01  l.«OE»01
                                            7.22E-03  7.22E-03  7.22E-03  7.22E-03  7.21E-03  6.35E-03  tt.69E.01
                                            1.2IE-02  1.21E-02  1.21F-02  1.21E-02  1.21E-02  1.06E-02  7.65E-03
                                            ?.OOE*01   9.95E*00  6.66E*00  2.65E*00  1 .26E + 00  7.61E-01  3.91E-01   1.87E-01
                                            1.22E+01   O.OOE-01  O.OOE-01  O.OOE-01  2,«6C-01  1,3BP*01  1.90F+01   fc.05E*01
                                            1.27E+06  O.OOE-01  O.OOE-01  O.OOE-01  1.02E+08  2.60E+10  2.65E+11   7.67E*12
AERODYNAMIC OIAMETF.RS ARF CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
  050 (MICROMETERS)                        15.15     15.1?      6.fll      2,«tt       1.57       0.92       0.05
  GEO. MEAN DIA. (MICROMETERS)              3.0«E*01  1.51E*OJ  1.0IE*Ol  a.O«F.*00   1.96F*00   1,20E*00   6.U3E-01   .3.17E-01
  DM/DLOGD (MG/HNCM)                        1.P2F+01  O.OOE-01  O.OOE-01  O.OOE-01   2.52E-01   l.a3E+01   2.06E+01   6.05C*01
  nN/OLOGD (NO. PARTTCLES/DNCM)             B.32F+05  O.OOE-01  O.OOF-01  O.OOF-01   6.U1F+07   1.57E+10   1.U8E+11   3.6«E*12
NORMAL (ENGINEERING STANDARD)  CONDITIONS APE 21 OEG C  AND 760HM HG.
  SQUARE  ROOTS OF PSI BY STAGE              n.tUU     0.330     0.371     0.271     O.JOP      0.373      0.3U9
  HOLE niAMF.TERs HY STAGE  (CENTIMETERS)     1.H237    o.576«    n.25oi    o.oson    o.os2«     0.0333     0.0215

-------
(Tl
00
  CPPO-7    S-lfl-7/   PORT-0.5   1331
  IHPACTOR  FLOKP«TF  =  O.«50  ACFM
  IMPACTOR  P»F_SSURF  DROP  =  0.9 IN.  nF  HG
  ASSUMED PAHtrci.fi DFMSITY  =  a'.io  GP/CU.CM
  GAS  COMPOSITION  fPFRCENT)            C02
  CALC.  MASS  LOADING = 6.709UE-03  GR/ACF
  IMPACTOR  STAGE
  STAGE  INDEX NUMBFR
  oso  CMICROMF.TERS)
  MASS (MILLIGRAMS)
  MG/OSCM/.8TAGE
  CUM, PERCENT OF  MASS SMALLER THAN oso
  CUM. CMG/ACM)  SMALLER THAN D50
  CUM. tMG/DNcM)  SMALLER  THAN 050
  CUM. (GR/ACF)  SMALLER THAN 050
  CUM. (GR/ONCF)  SMALLFR  THAN n50
  6EO. MEAN OIA.  (MICROMETERS)
  OM/OLOGO  (MG/ONCM)
  DN/OLOGD  (NO.  PARTICLE8/DNCM)

AERODYNAMIC DIAMETERS ARE CALCULATED HERE
  D50  (MICROMETERS)
  GEO. MEAN DIA.  (MICROMETERS)
  DW/DLOGD  (MG/ONCM)
  ON/01.OGD  (NO.  PAPTICLES/DNCM)
                                                                          INLFT  SAMPLE     U.  OF  K.  MARK III SOURCE TEST IMPACTOR NO, - 0
                                                     JMPACTOH  TfMptRATURE  =   205.0  F  s   96.1  f.               SAMPLING DURATION =  78.00
                                                     STACK  TFMPERaTtlRF.  *   2nS.O  F  «  96.1  C
                                                      ST4CK  PRFSSURE  =  26.6iS  IN.  OF HG      MAX.  PARTIClF  DIAMFT£R =
                                                =  11.79
N2 r 67.69          02 a  3.57
    1.5353E+01 MG/ACM
                                                    SI
                                                    I
                                                  fl.2tt
                                                  2.10
sa
u
1,49
0.04
S5
5
0.78
0 ,UH
S6
6
0,08
1.1"
S7
7
0.18
4.16
40.2 MICROMETERS
         H?0 B 16.95
  2.5698E*01 MO/DNCH
 FILTER
    8
                                   T.29
                 co  =  o.oo
           1'. 1230F-02 GR/ONCF
              S2        SI
              2         3
            H.18      3.71
            0.00      0.00
  3.58E»00  O.OOE-01  O.OOE-Ol  6.S3E-02  9.19E-OI  2,03f*00  7.106*00   1.24E+01
 86.24     66.24     86. 24     89,96     62. A3     75.03     47.77
  1.32E+01  1.52F«Ol  1.32E+01  1.32E+01  1.27E*01  1.15E+01  7.33E«00
  2.22F»01  2,22E*01  2.22E*01  2.21E*01  2.13E*01  1.9JE»01  1.23E+01
  5.79E-03  5.79F-03  5.79E-03  5.77F.-03  5.56F-03  5.03E-03  3.2lE«05
  9.68E-OJ  9.6AE-03  9.6»E«03  9.66E-Of  9.30E-05  8.03E-03  ?.3feE-03
  1.82E+01  6.21E+00  5.51F*00  2.35C+00  1.08E*00  6.08F-01  2.90E.01   1.25E-C1
  5.21E+00  O.OOE-01  O.OOE.Ol  1,736-01  2.89F+00  9.52E+00  1.66E»Ot   «.13E+01
  7.17E + 05  O.OOE-01  O.OOE-01  1.10F.*07  1.92E*09  3.S1E*10  5.6lE*H   1.7aE*13

ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
 12. "55     12.45      5,67      2.31      1.23      0,77      0.31
  2.77E+01  1.25E+01  8,U1E*00  3.62E+00  1.68E+00  9.71E-01  4.91E.01   2.22E-01
  S.22E*00  n.OOE-01  O.OOE-01  1.75E-01  2.97C*00  1.00F*01  1.82F+01   fl.t3E»01
  4.71E + OS  O.nOE-01  O.OOF.-01  7.03F + 06  1.19F + 09  2.09EMO  2.9aE+ll   7.23C*12
      NORMAL  (F.NGINEERING  STANDARD)  CONnTTInNS  APE 21  DEC C  AND 76QHM HG.
        SQUARE  ROOTS  nF  PSI  BY  STAGF               0.1««      0.330     O.J71     0.319     0.321     0,389      O.JS4
        HOLT  DlAHFTFRS BY  STAGE  fCE^TJMfTFRS1      1.8237    0.57U3    0.2512    0.0793    0.0«95    0,0330     0.0229

-------
     I    S-18-77
IMPACTOR FLTI^RATE a o,«)o
IMPACTOP PRFSSUPF npoP = 0.8 IN. OF HG
ASSUMED P»RTICIE DENSITY = ^.jo GM/CU.O
GAS COMPOSITION (PERCENT)           CO?
CALC. MASS LOADING = 9.3569E-03 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER

MASS (MILLIGRAMS)
MG/DSCM/STAGE
CUM, PERCFNT OF MASS SMALLER THAN DSO
CUM. CMR/ACM) SMALLER THAN 050
CUM, (MG/ONCM) SMALLER THAN 050
CUM, (GR/ACF) SMALLER THAN 050
CUM. (GR/DNCF) SMALLER THAN D50
GEO. MEAN DIA. CMJCROMETERS)
                                                                          SAf Pi E    II. OF w, MARK Til SnUHCF TFST  IMPACTOR  NO,  -  C
                                                        TE.WPEKATUPF =  205.0 F =  9h.i c              SAMPLING DURATION »   7e,oo
                                               STACK TKMPhRAUlRF =  205.0 F a  96.1 C
                                                SUCK PRESSURE = ?h.6h IN. OF HG     MAX. PARTTClE DIAMETER =    aO.2  MICROMETERS
= 11.79
N2 s 67,69          02
    ?,i«i2E*oi MG/ACM
                                                                                                          3.57
                                              SI
                                              1
                                            A.64
                                            1 .83
SO
li
1.62
0.1U
' S5
S
0.8U
0.3H
S6
6
0,58
2.67
S7
7
0.21
6.73
                                  7.56
  DN/DLOGD (NO.  PARTICLES/DNCMI
                CO B  0.00
          1.5662E-02 GR/DNT.F
             S?        S3
             2         3
           8.87      3.7h
           0.00      O.Pfi
 3.«3E+Oo  O.OOE-01  1.50E-01  2.62F.-01  7.12E-01  5.00E+00   1.26E*01   1,«2E*01
90.56     90.56     90.15     89.a5     B7.U7      73,70      3B.99
 1.9UE + 01  1.9UE + 01  1.93E + 01  1.91F. + 01  l.B7E*01  1.5BE + 01   8.35E + 00
 3.25F+01  3.25F*01  3.23E*01  3.20E+01  3.13E*01  2.6«E«-01   l.«OE*01
 fl.«7E-03  8,a7E-OS  B.aUE.03  8.37F.-03  8.1BE-03  6.90E-03   3.65E-03
 1.A2E-02  1.02E-02  1.41E-02  l.aOE-02  1.3TC-02  1.I5E-02   fe.llE-03
 1.B6E+01  8.76E+00  5.78E+00  2.«7F*00  1.17E+00  7.01E-01   3.50E-01   1.4BE-OJ
 5.1«E+00  O.OOE-01  U.03E-01  7.16E-01  2.50E+00  3,17E*01   2,B3E*01   tt,TOE*01
 6.59E*05  O.OOE-01  1.73E+06  3.95E+07  1.31E+09  7,63E*10   5,«9E*M   1.2lE»13
        H20 • 16.95
 3.5B39F+01 MG/DNCH
FILTE"
   B
AERODYNAMIC OIAMETFBS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
  050 fMITROMETFRS)                         13.lh     13.50      5.7h      2,50       1.3?      0.93       0.16
  GEO,  MEAN DIA.  (MICROMETERS)               2.83E+01  1.33E+01  R.8?F+00  3.POE+OC   1.82E+00  1.11E+00   5.B2E-01   2.57E-01
  OM/OLOOn (MG/DNCM)                         5.I5E*00  O.OOE-01  fl.05F-01  7.25E-01   2.57E4.QO  ?,31E+01   3.07E+01   «.70C+01
  DN/DLOGn (Nfi.  PARTICLES/ONCM)             «.33E*05  O.OOE-P1  1.13F+06  2.53E+07   8.13E*08  a,61F»lfi   ?.9BE*11   5.3JE+12
NORMAL (EMGINFFWING STANnARO) CONOTTIONS iRE ?1 DFG C  AND 76QMW HP,.
  SQUARE ROOTS Of PSI  BY STAGE              n.KIU     n.^10     0.^7)     0.320      0.295      0,363      0.312
  HOLF DIAMETERS BY S1AGF (CFNTIMETFHS)      1.8237    0.5B7U    0.2«59    0,0807     0.0532     0.0376     0.0260

-------
fPpp-10  5-1"-77  PORT-?    1059
IMPACTOR FLO^WATT s o.^?o ACFM
IMPACTOR PRESSI'kF DROP = O.b IN, OF" HG
ASSUMED PAKTICI I- nCNSl'Y = ?.^n KM/CU.CM'.
GAS COMPOSITION (PERCENT)           CH2  =
CALC. MASS LEADING 3 8.nSJfll-03 RR/ACF
IMPACTDR STAGE
STAGE INDEX Nl'KBFR

MASS (MILLIGRAMS)
MG/DSCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN 050
CUM. (MG/ACM) SMALLER THAN 050
CUM, (MQ/ONcM) SMALLER THAN 050
CUM, (GR/ACF) SMALLER THAN 050
CUM, (GR/ONCF) SCALIER THAN D50
GEO, MEAN DJA.  (MICROMETERS)
                                                                    INLET SAMPIF    u. OF «.  MARK  TII  SOURCT  TEST IMPACIOR NO. .
                                               IMPACTOR TPMRERATIIRT s  205.0 F s  96.i r.               SAMPLING DURATION «  BO.OO
                                               STACK TrMPF:RATliRF a  205.0 F *  at>.\ C
                                                STACK PRFSSllRE • ?*>,69 IN, OF HG      MAX. PARTICLF  DIAMETfR e   ao,2 MICROMETERS
11 .59          CO f  0.00
         \ .3705E.-0? GR/PNCF
            S?        S3
            2         3
          9.76      fl.38
          o.oo      o.on
                                              SI
                                              1
                                            9.77
      N2 s 66.01
          1,fl«30E+Ol
  $H        S5        S6
  u         5         6
1.55      0.98      0.57
0.00      0.00      1.70
                                                                                                     02
ti.OQ           H20 B 18.00
        3.I361E+01 MG/DNCM
       FILTER
          8
  DN/DLOGD (NO, PART TCI.ES/DNCM)

AERODYNAMIC DIAMETERS ARE CALCULATED HERE
  D50 fMJCROMETEPS)
  GEO. MEAN DIA. (MICROMETFRS)
  DM/DLOGD (MG/ONCM) .
  DN/DLOGO (NO. PARTICLES/DNCM)
                                                                 S7
                                                                 7
                                                              0.26
                                                              2.R5       B.36
  1.07F+00  n.OOE-01   O.OOF-01  O.OOE-01  O.OOE-01  U.OOE+00  6.7BE+00   1.99E*Ol
 96.63     96.63     96.63     96.63     96.63     83,91      62.57
  1.78E+01  1.78E+01   1.7BE+01  1.7HF+01  1.78F+01  1.55E+01  I.ISE^OI
  3.03E*01  3.03E+01   3.03E+01  3.03F+0)  3.03E+01  2.63F+01  1.96E*01
  7.78E-03  7.7SE-03   7.7BE-OJ  7.76E-03  7.7«E-03  6.T6E-03  5.00E-05
  1.32E-02  1.32F.02   1.32E-02  1.32F-02  1.32C-02  1.1SE-02  8.58F.OJ
  1.9HF+01  9.76E+00   6.53E+00  2.60E+00  J.23E+00  7,a6E-01  3.B2E.01   1.83E-OI
  1.70E*00  n.OOE-01   O.OOE-01  O.OOE-01  O.OOE-01  l,66r+01  1,99F»01   6.6lE*01
  1.86E+05  O.dOF-01   O.OOE-01  O.OOE-«1  O.OOE-01  3,37E»10  2.97F*M   9.01E+12

ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
 1U.87     I
-------
         S-19-77
TMPACTOR FLOWPATF K 0.3SO ACFM
IMPACTOR PRESSURE H»nP s 0.5 IN. DF HG
ASSUMED PARTICLE nFNSlTY = 2'.3o GM/r.n.r.M.
GAS COMPOSITION (PERCENT)           C02 =
CALC. MASS Ll'AOING c R.11S5E-03 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DSCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN 050
CUM, (MC/ACM) SMALlER THAN 050
CUM. (MG/ONCM) SMALLER THAN D50
CUM. (GR/ACF) SMALLER THAN 050
CUM. (GR/oNrF) SMALLFR THAN n%o
GEO. MFAN DIA.
DH/DLOGD
          (NO. PARTTCLES/DNCM)
                                                                    INlfT SAMPlE    U. OF W, MARK III SOURCF TEST  1MPACTOK  NO.  *  C
                                               IMPACTPR TEMPERATURE =  aob.O F =  96.1 c              SAMPLING DURATION  s   80,00  MIN
                                               STACK  TEMPERATURE  =  ?os.o F s  <»6.i r
                                                STACK  PRESSURE =  ?h.6t> IN, OF Hf,     MAX. PARTICLF DIAMETER =   aO,2  MICROMETERS
                                                                                                                         H20  •  18.00
                                                                                                                   3.1613E+01  MG/ONCM
                                                                                                                 FILTER
                                                                                                                    8
.59

SI
1
30
28
CO
1.3M5F-I
S2
2
9.59
n.oo
a 0.00
)2 GR/ONCF
S3
3
a. 07
n.oo


30
a
1.76
o.oa
"I? e 66.01
1 .H578E+01
55
5
0.92
o.ia
02
MG/ACM
S6
6
0.60
l.?3
= ".

S7
7
0.23
6.19
                                                                                                                   6.as
                                            6.09E-01   O.OOF-01  O.OOE-01  8.70F-02  3.05F-01  2.68E+00   1.35F*01   1,09E*01
                                           98.10     98.10     98.10     97.83     96.B6     88,93     a6,50
                                            1.B2E+01   1.82E+01  1.82E+01  1.B2E+01  l.BOF+01  1.6aE*01   S,6aE+00
                                            3.10E*01   3.10E+01  3.JOE+01  3.09E*01  3.06E*01  2.BOE+01   I,a7f+01
                                            7.96E-03  7.96E-03  7.96E-03  7,9aE-03 - 7.87E-03  7.19F-03   J.78E-03
                                            1.36E-02  1.36F-02  1.36E-02  1.35E-02  1.3flE-02  1.22F-0?   6.a2C-03
                                            1.9UF+01  9,a6E400  6.25E»00  2.67E+00  1.27E*00  7,66E»01   3.8BE-01   1.66E-01
                                            9.61E-OI   O.OOE-Ol  O.OOC-01  2.38E-01  l,0ae+00  1,7?E*01   3.09E+01   «,«5C»01
                                            1.10F+05  O.OOE-Ol  O.OOE-01  1.03F»07  a,39E+Ofi  3.19F+10   a,aOE+ll   8,97E*12

AERODYNAMIC DIAMFTFRS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG  DYNAMICS  DEFINITION
  D50 (MICROMETERS)                        1U.21     10.59      6,23      2,71      l.au      1,02       O.ao
  GEO. MEAN DIA. (MICROMFTF.RS)               P.90E + 01  1.00E + 01  9.5JE*00  a.HF + 00  1.97E + 00  l.21E*00   6.UOE.01   2,8«E-Ot
  DM/DLOGD (MG/DNCM)                        9.63E-01  O.OOE-Ol  fl.OOP-01  2,aiF-01  1.10E*00  1,79E*01   3.3aE*01   
-------
M
  CPPfJ-13  S-19-77  Pf)PT-U,5  1057
  IMPACTOR FLOKRATF  = o.uso ACFM
  IMPACTOR PRESSURE  DM/OP = O.H IN. OF HG
  ASSUMED PARTICLE DENSITY = 2'.JO GM/f.U.O
  GAS COMPOSITION (PFPCENT)           CO?
  CALC. MASS LOADING = 7.6bjut-03 GR/ACF
  IMPACTOR STAGE
  STAGE
  050
  MASS (MILLIGRAMS)
  MG/OSCM/STAGE
  CUM, PFRCE^T OF MASS SMALLER THAN 050
  CUM, (MG/ACM) SMALLER THAN 050
  CUM, (MG/DNCM) SMALLER THAN D50
  CUM, (GR/ACF) SMALLER THAN 050
  CUM. (GP/DNCF) SMALLER THAN D50
  SCO, MEAN DIA. (MICROMETERS)
  OM/DLOBO (NG/ONCM)
  ON/DLOOO (NO. PARTICLES/ONCMJ

AERODYNAMIC DIAMETERS ARE CALCULATED HERF
  050  (MICROMETERS)
  GEO, MEAN oiA. (MICROMETERS)
  OM/DLOGD (MG/DNCM)
  DN/DLOGD (N0. PAPTICIES/DNCM)
                                                                          INLET  SAMPLF.     u.  OF  w.  MARK in SOURCE TEST IMPACTOH NO, «• o
                                                     IMPACTOR  TIMPERATURF  =   205.0  F  =   96.i  c               SAMPLING DURATION •  ao.oo
                                                     STACK  TEMPERATURE  =   ?n5.o  F  =  96.t  c
                                                      STACK  PRFSSMRF  =  ?*>.6O  IN,  OF HG      MAX.  PARTICLE DIAMfTFR =   U0.2 MICROMPTER8
                                                                                                                                   MG/DNCM




1
0


so
a
,53
,.00
N2 = 66.01
1 .751UF+
S5
5
0.80
0.26
02
01 MG/ACM
S6
6
0,49
3.3«
« «,00

S7
7
0.18
3.92

2.980
FILTER
8

H.65
=11.50          CO =  0.00
           1.3023F-0? GR/DNTF
    si        sa        si
    1         2         3
  H.02      P.35      3,79
  O.fl"      0.00      0.00
  1.58E+00  O.OOE-01  0,OOF.01  O.OOF-01  fl.60E-01  5.91E+00   6.9«E+00   1.53E»01
 9U.78     90.78     9«.78     94.78     93.26     73,68      50,70
  1.66E+01  1.66E^01  1.66E+ni  1.66E*01  1.6JE+01  1,29E*01   P.88E+00
  2.82E+01  2.82E«01  2.82E+01  2.82E+01  2.7BE*01  2,20E*01   1.51E+01
  7.25F-03  7.25E-03  7.25E-03  7.25E-03  7.iaC-03  5.64E-03   3.88E.03
  1.23E-02  1.23E-02  1.23E-02  1.23E-02  1.21E-02  9.60E-03   6.60E-03
  1.8UE+01  8.38E»00  5.62E+00  2.aOF+00  1.10E+00  6.23E-01   2.99E-01   1.30E-01
  P.32E+00  O.OOE-01  O.OOE-01  O.OOE-01  1.63E+00  2,79E»01   1.63E*01   5.09E+01
  3.10F*05  O.OOF-01  O.OOF-01  O.OOE-01  1.01E+09  9,56C*10   5.05E*H   1.93E«13

ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
 12.81     12.71      5.79      2.36      1,25      0.79       0.32
  2.79E+01  1.28E*01  8.58E+00  3.70E+00  1.72E+00  9.9UF-01   5,05E»01   2.29P-01
  2.33E+00  O.OOE-01  O.OOE-01  O.OOE-01  1.67E*00  2.93F+01   1.79E+01   5,0<»E*01
  ?.03E+05  fl.OOF-ni  O.OOF.Ol  O.OOE-OJ  6,26E*08  5,70F»10   ?,67F;*11   8.14E+12
NORMAL (ENGINFFRTNG STANOAPD) CnNDITinNS APt 21 OEG C  AND 760MM HG.
  SQUARE WOnTS OF PST BY STAGE              O.lta     0.330     0.371     0 , 3 1 9      0.321      0,389
  HOLE DJAMFTERS HY STAC.F (CE^T IME Tf RS )     1.8r>37    O.STIS    0.2512    0.07<>3     0.0a95     0,0330
                                                                                                              -0.0>29

-------
        U  5-PO-77   PpRT-S,r,   i i 5S
  IMPACTOR FLOKRATF  t  0.3UO ACFM
  IMpAr.TOR PRESSUBF  pwriP  =  o.s  IN,  OF  nr;
  ASSUMFO PAHTICIK nFNSTTY  =  2.30 GM/CU.CM.
                                                                   TNI.FT  SAMPLt     U.  OF  W.  MAHK  HI  SOURCE  TEST  IMPACTOR NO, - C
                                             IMPACTOR TEMPERATURE  =  205.0 F  =   96.i  c               SAMPLING  DURATION s  ao.oo MIN
                                             STACK TEMPF.HATllRf =   205,0  F =   96.)  C
                                              STACK PRFSSUWt = 26.6R IN. OF HG      MAX.  PARTICLE  DIAMETER  a   «0.2 MICROMETERS
                                              31
                                              1
                                            9.53
                                            0.<5S
GAS COMPOSITION fpFWCENT)           CO? « 11.37
CALC. MASS LfAPJMG = 8.317hf.-03 GR/ACF
IMPACTOP STAGF
STAGE INDF.X NUMBER
D50 (MICROMETERS)
MASS (MILLIGRAMS)
MG/OSCM/STAGF
CUM. PERCENT OF MASS SMALLER THAN 050
CUM. .(MG/Af-M) SMALLER THAN 030
CUM. (MG/O^CH) SMALLER THAN D5n
CUM. (GR/ACF) 8MALLE" THAN D50
CUM. (GR/ONCF) SMAILE" THAN 050
GEO. MEAN DIA, (MICROMETERS)
DN/OLOGD  (MG/ONCM)
ON/OLOGD  (NO. PARTICLES/DNCM)
      CO a  O.OQ
1.3722F-02 GR/ONCF
   S?        S3
   2         3
 9.78      «.1ft
 0.00      0.02
e 68,37
                                                                                                    02 s  U.Ub
                                                                                               MG/ACM
su
U
1.79
0.00
ss
s
0.90
0.16
S6
6
0.66
2.20
S7
7
0.24
5.02
        H20 o 15.80
 s.i«oor+oi
FILTER
   a

 6.71
                                            1.19E+00  O.OOE-01  a.l«E-02  O.OOF-01  3.07E-01  U.78E+00   1.09E»01   1,«6E*01
                                           96.25     96,25     96.11     96.11     95.02     80,01     U5.77
                                            I.83E+01  1.B5E+01  1.B3C+01  1,83E*01  1.81E+01  1.52E+01   8.71E*00
                                            3.02E+01  3.02E+01  3.02E»01  3.02E*Ot  2,98E*01  2.51E+01   l.aaE*01
                                            8.01E-03  8.01E-05  7.99E-03  7.99E-03  7.90E-03  6.66E-05   3.81E.03
                                            1.32E-»02  1.32F.02  1.32E-0?  1.32E-02  1.30E-02  1.10E-02   6.28E-03
                                            1.96E*01  9.66E+00  6.38E+00  2.73E+00  1.30E*00  7.83E-01   3.97E-01   1.70E-01
                                            1.91E400  O.OOE.01  1.17E«01  O.OOE-01  1.23E*00  3.09E+01   2.5lC»01   a,8«e*01
                                            2.11E*05  O.OOE-01  3.7«E*05  O.OOE-01  4.70E+08  5.3UE+10   3.32E*11   8.1lP*12
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
  D50 (MICROMETERS)                         la.51     Ifl.flO      h.36      2,77       l.«7       1,00       0.01
  CEO. MEAN DIA.  (MICROMETERS)              2.97E*01  l.«7E+01  9.73E+00  1.19E+00   2.01E+00   1,2«E*00   6.55E-01   2,91E»Ol
           (MG/DNCM)                         1.91E*00  O.OOE-01  1.17E-01  O.OOE-01   1.26F+00   3.21E*01   2.7lE*01   a,8aC*Ol
           fNO. PAPTICLES/ONCMj             I.39F+05  O.OOF-01  2.a«E*05  O.onF-0)   2.9UE+08   3,?5E+10   1.8«F*11   3,7«E*12
NORMAL (ENGINFfRING STANDARD) CONDITIONS ARF 21 DEG C  AND 76QMM HG,
  SQUARE  ROOTS OF PSI BY STARF.              0.1«T I MfTFRS)      1.8237    0,5H7«    0.2US9    0.0807     0.0532     0.0376     0.0260

-------
  CPPO-15   S-pn-77   POW1-?     HUG
  IMPACTOR  FLOKRATF  »  P,2<»6  ACF^
  IMPACTOR  PRESSUPF  r>RDP  =  O.U  IN.  nF  Mr.
  ASSUMF.D PARTICLE  nFMSITY  s ?'. SO  GM/C.II . T M .
                                                                  TNLF.T SAMPLE    U. OF W.  MARK  III  SOURCE  TEST IMPACTOR NO, • A
                                                      TE.MpfRATI.IRF. =  ?OS.O F =  96.1 C               SAMPLING  DURATION a  90.00 MIN

                                             STACK TEMPERATURE =  P05.0 F =  96.1 C
                                              STACK PRESSURE. = ?6.6fl IN, OF HR     MAX. PARTICLE  DTAMETFR  a   00.2 MICROMETERS
                                              SI
                                              1
                                           in. 22
                                            0.18




1
0


so
0
.62
.02
N2 = 68.37
1.7fc67F+
85
5
1.03
0.01
02
01 MG/ACM
S6
6
0,60
?.ll
• 1,46

87
7
0.27
2.8B
H20 s 15. SO
2.9|o6F+oi MG/DNCM
FILTER
8

8,65
                                                           CO =  0.00
                                                     1.2737E-02 GP/'JNCF
                                                        S2        S3
                                                        ?         3
                                                     10,21      0,58
                                                      0.07      0.00
                                            3.82E-01   1.09E-01   O.OOE-01  0.20E-02  2.12E-02  0.08E»00  6.1lE»00   1.80E*01
                                           98.71     96,20     98,20     98.06     97,99     82.81     62.14
                                            1.7«F*01   1.7UE4-01   1.7«E*01  1.73F. + 01  1.736*01  1,06E*01  1.10E+01
                                            2.88E*01   2.86E+01   ?.86E+01  2,66E*01  2.86E*01  2,OJE*01  1.8lE*01
                                            7.62E-05   7.58EoOS   7b98E-05  7.57E-03  7,57e-03  6.40E-03  fl.BOE-03
                                            1.26E-02   1.25E-02  1.25E-02  1.2SE-02  1.25E-02  1.05E-02  7.91E-OS
                                            2.03E+01   1.02E+01   6.80E*00  2.73E*00  l.29E*00  7.80E-01  O.OOE-01   1.90E-01
                                            6.02E-01   2.19E+02  O.OOE-01  9.02E-02  1.08C.OJ  1.87Et01  1.82E*01   fc.lOEtOl
                                            6.00E+OU   1.71E+OB   O.OOE-01  3.86F.*06  4.10E+07  3,23E*10  2.29F»11   6.96F+12

AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
  D50 .(MICROMETERS)                         15.55     15.53      7.00      2.51      1.61      0.95      0.06
  GEO.  MEAN DIA. (MicROMETFPS)              3.08F+01   1.55E+01   l.OUE+01  0.19E+00  2.01E*00  1.20E*00  6.62E-01   3.27E-01
           (MG/ONCM)  ,                       6.««F-01   2.19E+02  O.OOE.01  9.53E-02  1.11E-01  1.95E+01  1.96E»01   6.10E*01
           (NO. PARTIcLES/DNCMi             «.21E*Oa   1.12E+08  O.OOF-01  2.0BE*06  2.60E+07  1.96E»10  1.28E+11   3.3JE»t?
CAS COMPOSITION fPFRCENT)           CO? * 11.57
CALC. MASS LOADING = 7.7206E-03 GR/ACF
IMPACTOR S.TAGF.
STAGE INDEX MIMBFR
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/OSCM/STAGE
CUM. PFRCENT OF MASS SMALLER THAN 050
CUM. (MG/ACM) SMALLER THAN D50
CUM, (MG/DNCM) SMALLER THAN D50
CUM, (OR/ACF) SMALLER THAN 050
CUM, (GR/RNCF) SMALLER THAN 050
GCO, MEAN OIA. (MICROMETERS)
OM/OLOGO (MG/ONCM)
         (NO. PARTICLES/ONCMJ
NORMAl  (EMGINEtMlNn STANDARD) CONDITIONS ARE ?1 DEC C  AND 760MM HG.
  SQUARE ROOTS OF PS! BY STAGE              0.1UU     0.3JO     0.371     0.271      0.308      0.373      0.309
  HOLE  DIAMETERS BY STAGF (CENTIMMF.RS)     1.8237    0.576B    0.2^01    0,0808     0.052a     0.0333     0.0205

-------
Ln
  CPPO-17  S-30-77   PIIHT-H.S   11U7
  IMPACTOW FLOWRATE  =  n.«i? ACFM
  IMPACTOR PRESSURE  HROP  =  0.8  IN.  OF  HG
  ASSUHFO PARTICIF nFMslTY  i  2'.3o  GM/r.u.r.'
  GAS  COMPOSITION  (PERCENT)            CO?
  CALC.  MASS  LOAOIHG = 8.2192E-03  GR/ACF
  IMPACTOR STAGE
  STAGE  INDEX NUMHER
  050
  MASS
  MG/D9CM/STAGE
  CUM, PERCENT OF  MASS SMALLER  THAN oso
  CUM. (MG/ACM5  SMALLER THAN  DSO
  CUM, tMG/DNCM)  SMALLER  THAN nso
  CUM. (GR/ACF5  SMALLER THAN  D50
  CUM, (GR/DNCF)  SMALLER  THAN 050
  6EO. MEAN  DIA.  (MICROMETERS)
  OM/OLOGD  (MG/ONCM)
  DN/OLOGD  (NO.  PARTICLES/ONCM)

AERODYNAMIC  DIAMETERS ARE CALCULATED HF.RE
  050  (MICROMETERS)
  GEO, MEAN  DIA.  (MlCROMfT£RS)
  OM/OLOGD  (MG/DNCM) .
  ON/DLOGD  (NO.  PARTICLES/ONCM)
                                                                         INLET SAMPLE    U. OF w. MAHK  III SOURCE. TEST  IMPACTOR  NO,  -  D
                                                    IMPACTOR TEMPERATI'RF =  ?05.0 F »  96.) C              SAMPL1NR  DURATION  s   BO,00  MlN
                                                    STACK TEMPFRATlJRF =  ?05.0 F =  9h.l C
                                                     STACK PRESSUWE = 2h.6fi IN, OF HG     MAX. PARTICLE  DIAMETER  «    00.2  MICROMETERS
                                                 1 I.37
                                                   SI
                                                   1
                                                 8.59
                                                 1.36
  so
  0
1.56
0.10
N2 = 68.S7
    1.fl80flF+01
      55        36
      S         6
    0.81      0,50
    0.26      3.60
02 *  0,06
  S7
  7
0.19
3.81
        M30 = 15.80
 3.1028E+01 MG/DNCM
FILTER
   6
              6.60
                 CO  =   0.00
           1.J5S9F-0?  GR/DNCF
              S2         SJ
              2         5
            6.5?       3.86
            0.00       0.00
  P.OOE+00   O.OOE-01  O.OOE-01  2.07E-01  U.59E-01  6,36E*00  6.73E+00  l.S3E*Ot
 93.36     92,36      02.36     91.58     90.12     69.90     08.51
  1.70E+01   l.TOE+01  1.7«E*01  1.72E+01  1.69E+01  1.31E*01  9,12E*00
  ?.87f»01   2.87E+01  2.H7E+01  2.80E+01  2.80E+01  2.17E+01  1.51E+01
  7.59E-03   7.59E.OJ  7,59t-03  T.53E-03  7.01E«OJ  5.T5E-OJ  3.996-03
  I.25F»02   1.25E-02  1.25F-02  l.?OE-02  1.22E.OZ  9,a8E-03  6.?flE-OJ
  1.86E*01   8.55E*00  5.7«E*00  2.abE+00  1.13E*00  6.37E-01  3.07F-01  1.33E-01
  3.56r+00   O.OOE-01  O.OOE«01  6.27E-01  1.62E*00  3,01f*01  1.59E*01  5.07E*01
  U.6UE+05   O.OOF-01  O.OOE-01  3,52E*07  9.U5E+06  9.6UEMO  a.56E»ll  1,77E*13

ACCORDING TO THE  TASK GRflUP ON LUNG DYNAMICS DEFINITION
 13.07     12.97       5.91      2,81      l.?8      O.B1      0.33
  2.82E4'01   1.30E+01  B.76E+00  3.78F+00  1.76E+00  l,02E»nO  S.16E-01  2.34E-01
  3.59E+00   O.OOE-01  O.OOE-01  6.35E-01  1.67E*00  3,lfcE*81  1.7«E»01  5.07f*01
  3.05E+05   O.OOE-01  O.OOE-01  2.25E+07  S.87E+08  5.76E+10  2.02F+H  7.53e»»2
      NORMAL  (ENGINEF.RIMG  STANDARD) CONDITIONS  ARF  ?\  DEC  C   AND  76QHM  HG,
        SOUARfc  ROOTS  OF  PSI  BY  STAGt              fl.l«U      0,330     0,371      0.319     0.321      O.J89     0.35«
        HOLE  DIAMETERS BY  STAGE  (CENTIMETEPS>     1.8237     0.5703     n,?5i2    0.0793    0,0095    o,0330    0.0229

-------
                                TECHNICAL REPORT DATA
                         (Please read Inunctions on the reverse before completing)
1. REPORT NO.
 EPA-600/7-78-094
                           2.
                                3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
 CEA Variable-Throat Venturi Scrubber Evaluation
                                5. REPORT DATE
                                 June 1978
                                                      6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)

Joseph D. McCain
                                8. PERFORMING ORGANIZATION REPORT NO.
                                  SORI-EAS-78-348
                                     3765-SR
9. PERFORMING ORGANIZATION NAME AND ADDRESS
 Southern Research Institute
 2000 Ninth Avenue, South
 Birmingham, Alabama  35202
                                                      10. PROGRAM ELEMENT NO.
                                E HE 62 4 A
                                11. CONTRACT/GRANT NO.

                                68-02-1480
12. SPONSORING AGENCY NAME AND ADDRESS
 EPA, Office of Research and Development
 Industrial Environmental Research Laboratory
 Research Triangle Park, NC  27711
                                13. TYPE OF R,EPORT AND PERIOD COVERED
                                Final; 5/77-12/77
                                14. SPONSORING AGENCY CODE
                                 EPA/600/13
is.SUPPLEMENTARY NOTES iERL_RTp project officer is Dale  L.  Harmon, Mail Drop 61, 919/
 541-2925.
is. ABSTRACT
              repOrf- giv6s detailed results of fractional and overall mass efficiency
 tests of a Combustion Equipment Associates (CEA) variable -throat venturi scrub-
 ber.  The tests were performed on a full-scale scrubber used for controlling
 particles and SOx emissions from a pulverized- coal-fired utility boiler. Total flue
 gas particulate mass concentrations were determined at the scrubber inlet and
 outlet by conventional techniques. Inlet and outlet particulate concentrations as
 functions of size were determined on a mass basis using cascade impactors for
 sizes from about 0. 3 to 5 micrometers , and on a number basis for sizes
 smaller than about 1 micrometer using optical and electrical mobility techniques.
 The report describes the scrubber,  measurement methods, inlet and outlet size
 distribution data, and fractional efficiencies.
17.
                             KEY WORDS AND DOCUMENT ANALYSIS
                DESCRIPTORS
                                          b.IDENTIFIERS/OPEN ENDED TERMS
                                            :. COSATI Field/Group
 Pollution
 Dust Control
 Gas Scrubbing
 Venturi Tubes
 Scrubbers
 Coal
Boilers
Measurement
Efficiency
Pollution Control
Stationary Sources
Particulates
13B

07A,13H
14B
131
21D
13A
13. DISTRIBUTION STATEMENT

 Unlimited
                    19. SECURITY CLASS (This Report)
                    Unclassified
                        21. NO. OF PAGES
                         81
                    20. SECURITY CLASS (This page)
                    Unclassified
                                            22. PRICE
EPA Form 2220-1 (9-73)
                                         76

-------