United States Industrial Environmental Research EPA-600/7-78-094
Environmental Protection Laboratory June 1978
Agency Research Triangle Park NC 27711
CEA
Variable-Throat
Venturi Scrubber
Evaluation
Interagency
Energy/Environment
R&D Program Report
-------
Research reports of the Office of Research and Development, U.S. Environmental Protec-
tion Agency, have been grouped into nine series. These nine broad categories were
established to facilitate further development and application of environmental tech-
nology. Elimination of traditional grouping was consciously planned to foster technology
transfer and a maximum interface in related fields. The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports
This report has been assigned to the ENVIRONMENTAL PROTECTION TECHNOLOGY
series. This series describes research performed to develop and demonstrate instrumen-
tation, equipment, and methodology to repair or prevent environmental degradation from
point and non-point sources of pollution. This work provides the new or improved tech-
nology required for the control and treatment of pollution sources to meet environmental
quality standards.
This report has been reviewed by the U.S. Environmental
Protection Agency, and approved for publication. Approval
does not signify that the contents necessarily reflect the
views and policy of the Agency, nor does mention of trade
names or commercial products constitute endorsement or
recommendation for use.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-600/7-78-094
June 1978
CEA Variable-Throat Venturi
Scrubber Evaluation
by
Joseph D. McCain
Southern Research Institute
2000 Ninth Avenue, South
Birmingham, Alabama 35202
Contract No. 68-02-1480
Program Element No. EHE624A
EPA Project Officer: Dale L Harmon
Industrial Environmental Research Laboratory
Office of Energy, Minerals, and Industry
Research Triangle Park, NC 27711
Prepared for
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Research and Development
Washington, DC 20460
-------
TABLE OF CONTENTS
Page No,
ABSTRACT ii
CONCLUSIONS 1
INTRODUCTION 3
DISCUSSION 6
APPENDICES
A - Manufacturer's Description of the Scrubber 37
B - Cascade Impactor Data 49
LIST OF FIGURES
1 Simplified scrubber flow diagram 4
2 Average inlet particle.size distribution from 17
cascade impactor data on a cumulative percent
by mass basis
3 Average outlet particle size distribution from ^
cascade impactor data on a cumulative percent
by mass basis
4 Average inlet particle size distribution on a i9
cumulative mass concentration basis from cascade
impactor data
5 Average outlet particle size distribution on a 20
cumulative mass concentration basis from cascade
impactor data
6 Average inlet particle size distribution on a 21
differential mass basis from cascade impactor
data
7 Average outlet particle size distribution on a 22
differential mass basis from cascade impactor
data
8 Fractional efficiency curve on an aerodynamic 23
particle diameter basis for the CEA variable
throat venturi scrubber operating at a. venturi
pressure drop of 48 cm (19 in.) w.c.
111
-------
9 Inlet size distribution on a cumulative concen^ 26
tration by number basis from electrical mobility
and optical methods
10 Outlet size distribution on a cumulative concen- 27
tration by number basis from electrical mobility
and optical methods
11 Fractional efficiencies based on electrical 28
mobility and optical methods shown on a "physical"
diameter basis. Also shown are fractional effi-
ciencies from the cascade impactor data on a basis
of Stoke"s diameters.
12 Relative changes in outlet concentrations of fine 30
particulates resulting from changing the venturi
pressure drop over the range from 31 cm to 51 cm
w.c. (12.25 to 20.0 in.)
13 Opacity changes in the combined effluent from three 31
scrubber modules resulting from varying the venturi
pressure drop of one of the modules from 31 cm to
51 cm w.c. (12.2 to 22.44 in.) while holding the
pressure drops of the other two modules constant at
48 cm and 49 cm (18.9 to 19.29 in.) respectively
14 Comparison of the performance of the CEA variable 34
throat venturi scrubber with several types of con-
ventional scrubbers using the "cut diameter" method
described by Calvert (1974) J. APCA, 24:929).
Al The Montana Power Company - Puget Sound Power and 38
Light Colstrip Units 1 & 2 (360 MW each) flue gas
cleaning system
A2 Colstrip scrubber module 39
LIST OF TABLES
1 Scrubber design parameters 8
2 CEA variable throat venturi scrubber test inlet
mass data 10
3 CEA variable throat venturi scrubber test outlet
mass data 11
4 CEA variable throat venturi scrubber efficiencies
from mass train data 12
5 Comparison of mass train and impactor catches 13
IV
-------
6 Estimated particulate emissions, Ibs/MMBTU 16
7 Plant and scrubber operating data during primary 32
test period
8 Colstrip Power Plant scrubber SOz removal 35
efficiency
Al Emission test results - EPA method 43
A2 Fuel and ash as described in specifications 44
A3 Scrubber availability vs. plant load 45
Bl Inlet impactor blank run data 50
B2 Outlet impactor blank run data 51
B3 Inlet impactor data 52
B4 Outlet impactor data 65
-------
SECTION I
CONCLUSIONS
This evaluation was one of a series of studies being con-
ducted by the Industrial Environmental Research Laboratory of
the Environmental Protection Agency to identify and test novel
devices which are capable of high efficiency collection of
particulates. The test methods used may not have been consis-
tent with compliance-type methods, but were state-of-the-art
techniques for measuring mass and fractional efficiency using
standard mass train and inertial, electrical, and optical methods.
The overall collection efficiency of the CEA variable throat
venturi scrubber, determined by conventional (Method 17) tech-
niques on a pulverized coal fired power boiler producing particu-
late having a mass median diameter of about 20 ym, ranged from
99.12 to 99.50 during three days of testing. The venturi pres-
sure drop ranged from 44.5 cm w.c. to 48.3 cm w.c. Measured
fractional efficiencies were about 5% at 0.06 ym, 25% at 0.1 ym,
40% at 0.20 ym, 50% at 0.5 ym, 98.4% at 1.0 ym, and 99.99% at
2 ym. The system energy usage during the tests was approximately
7200 joules/DNCM. SOz collection efficiency ranged from 76.5%
to 85.6%.
-------
A comparison of the performance of the CEA scrubber with
that of conventional scrubbers of various types is shown in
Figure 14.
The results of this comparison indicate that the scrubber
tested performed about the same as a well designed conventional
venturi scrubber operating at the same pressure drop.
-------
SECTION II
INTRODUCTION
This report presents results of tests conducted by Southern
Research Institute to determine the capability of the C.E.A. varia-
ble throat venturi scrubber to collect fine particles. The
goals of the tests were to determine the overall mass effici-
ency and the fractional efficiency of the scrubber when opera-
ting under normal conditions in controlling the emissions from
a pulverized coal fired power boiler.
Figure 1 is a schematic of the power boiler and scrubber
systems showing the inlet and outlet sampling locations. The
tests were conducted on one of the three identical scrubber
modules which are operated in parallel to control SOa and par-
ticulate emissions from the power boiler. The three modules
are independently controlled with respect to liquor flows and
venturi pressure drop. Pressure drops across the Venturis are
regulated by adjusting the position of the "plumb bob" shown
in Figure 1, thereby increasing or decreasing the cross section-
al area of the venturi throat. Throughout these tests, with
the exception of one brief period, the pressure drop across the
venturi on the module being tested was held at 46 ± 2 cm w.c..
Gas temperatures at the scrubber inlet ranged from 129°C to
-------
BUTTERFLY ISOLATION DAMPER
-PLUMB BOB DRIVE
STACK
INLET
TEST
PLANE
FLUE GAS
FROM AIR
PREHEATER
AND BOILER
FROM PLANT FIRE WATER SYSTEM
EMERGENCY COOLING SPRAY
PLUMB BOB
CLEAN FLUE GAS
CLEANING SPRAY
MIST ELIMINATORS
C*J< FROM SEAL WATER SUPPLY
MIST ELIMINATOR UNDERSPRAY
EFFLUENT v>
BLEED CV
GUILLOTINE
SHUT-OFF
SO2 ABSORPTION SPRAY
TRAY UNDERSPRAY,
ALKALI
SYSTEM
O O DRAFT FAN
RECYCLE TANK
POND RETURN
EFFLUENT
TANK
RECYCLE PUMPS
SCRUBBER VESSEL SEAL POT < WASH TRAY
Q RECYCLE TANK
kcv
WASH TRAY
WASH TRAY POND
RECYCLE PUMP
AND SPARE
OUTLET
TEST PLANE
WASH TRAY
POND RETURN PUMP
AND SPARE
NOTE: VALVES SHOWN ARE MAJOR CONTROL, BLOCK VALVES IN SYSTEM
EFFLUENT PUMP v\^_-- f\-^ — ^
AND SPARE
FLYASH POND
ASH POND PUMP
AND SPARE
Figure 1. Simplified scrubber flow diagram.
-------
137°C. The scrubber exit gas temperatures ranged from 57°C to
60°C and temperatures at the outlet test plane ranged from 94°C
to 99°C. The temperature rise between the scrubber exit and
the outlet mass sampling location results from a flue gas re-
heat system and the action of the fan, both of which are loca-
ted between the scrubber outlet and the sampling plane. The
gas flow handled by the scrubber throughout the tests was
approximately 130 DNCM/sec (280,000 DSCFM).
Testing took place on May 17, 18, 19, and 20, 1977, with
some preliminary testing on May 16. Except for a brief period
on May 20, the unit was operated at relatively constant condi-
tions of gas flow and pressure drop. A planned series of tests
at other pressure drops was cancelled because of a forced shut-
down of the unit being tested which resulted from malfunctions in
the turbine and boiler.
-------
SECTION III
DISCUSSION
A total of four measurement techniques were used during
the tests. These were: (1) electrical mobility techniques us-
ing a Thermosystems Model 3030 Electrical Aerosol Analyzer for
determining concentration and size distribution on a number basis
for particles having sizes between 0.01 ym and 0.3 Mm, (2) op-
tical techniques to determine concentrations and size distri-
butions for particles having diameters between approximately
0.5 ym and 2.0 um, (3) inertial techniques using cascade impac-
tors for determining concentrations and size distributions on
a mass basis for particles having sizes between approximately
0.5 iam and 5.0 Mm, and (4) standard mass train (Method 17) mea-
surements for determining total inlet and outlet mass loadings
and emission rates.
Description of the Scrubber
The scrubber, which was illustrated in Figure 1, is made
up in a modular fashion with three modules required for treat-
ing the flue gases from each of the station's 360 MW units.
Each module is comprised of a variable throat venturi section
for particulate and sulfur dioxide collection followed by a
spray type absorption section for further sulfur dioxide removal.
-------
The spray type absorber is followed by a wash tray for reducing
the concentration of suspended and dissolved solids in the en-
trained liquors and is followed in turn by a chevron type mist
eliminator. A reheater is used between the scrubber and the
induced draft fan to prevent condensation downstream of the
scrubber, and to raise the temperature of the exhaust gases
from the scrubber to that necessary for obtaining sufficient gas
buoyancy for discharge through the stack. The venturi sections
have a designed pressure drop range of 30.5 cm (12 in.) to
50.8 cm (20 in.) w.c. with a nominal operating pressure drop
of 43 cm (17 in.) w.c.. Design L/G rates are 2.0 fc/m3 (15 gal/
1000 CF) in the venturi section and 2.41 S,/m3 (18 gal/1000 CF)
in the absorber section.
High alkali metal oxides content in the fly ash permitted
the scrubber to be designed to use a recirculating slurry of
flyash for S02 removal. The system operates with a slurry having
a pH of 5.0 to 5.6 containing 12 percent solids by weight. The
pH is controlled by the addition of small amounts of lime as
required. The scrubber design parameters are given in Table
1. A more complete description of the scrubber is given in
Appendix A.
-------
Table 1
Design Parameters For The CEA Variable Throat Venturi Scrubber
(Colstrip Application)
Venturi Pressure Drop
Venturi L/G
Absorption Spray L/G
% suspended solids in
recirculating slurry, by weight
Residence time in the recycle tank
Gas velocity in mist eliminator zone
Wash tray pressure drop
Mist eliminator pressure drop
Reheat pressure drop
Total system pressure drop
(including reheat)
Total scrubber pressure drop
(less reheat)
43.2 cm w.c. (17 in.)
2 a/m (15 gal/1000 ACF,
saturated)
2.41 fc/m (18 gal/1000 ACF,
saturated)
12%
8 minutes
2.65 m/sec (8.7 ft/sec)
9.65 cm w.c. (3.8 in.)
2.5 cm w.c. (lin.)
5.6 cm w.c. (2.2 in.)
64.8 cm w.c. (25.5 in.)
55.4 cm w.c. (21.8 in.)
-------
Method 17 Results and Overall Collection Efficiencies
Method 17 data were obtained on four days of testing with
the first days' test intended as a preliminary run rather than
an actual data run. However, the preliminary run data appears
to be sufficiently useful as to warrant its inclusion in this
report. Including the preliminary run, a total of 6 pairs of
inlet and outlet tests were performed.
The data obtained by Method 17 are summarized in Tables
2 and 3. The overall collection efficiencies for each of the
pairs of tests are given in Table 4. Two values are shown for
the outlet mass loadings for tests 3, 4, 5, and 6 in Table 3
and for the efficiencies calculated for those tests in Table
4. The reasons for the two sets of values are based on the in-
formation contained in Table 5, which shows the values for the
particulate catches in the outlet Method 17 data and correspon-
ding outlet impactor data. The catch data for each run is bro-
ken down into two components, the material caught in the nozzle
and that which passed through the nozzle and was caught down-
stream of it.
The Method 17 runs and the impactor runs were made using
virtually identical "buttonhook" nozzles and at very nearly the
same flow rates (isokinetic at all points for the Method 17 runs
and near isokinetic fixed flow rates for the impactor runs). The
sampling times differed slightly; most of the Method 17 times were
96 min while most of the impactor sampling times were 80 minutes.
Note that the weights for the material caught downstream of the
-------
Table 2
CEA Variable Throat Venturi Test
Inlet Mass Data
Run
Number
Date
Time
Moisture, %
Gas Tempera-
ture, °C
Volumetric
Flow, m3/sec
ACFM
Volumetr ic
Flow, DNCM/s
DSCFM
Concentration,
grams/ACM
Concentration ,
grams/DNCM
Isokinetic, %
1* 2*
5-16-77 5-17-77
1715 1455
10.30 11.62
134
274
132
269
208.6 201.3
442,000 426,500
116.5 110.3
247,700 233,600
2.0184 2.8325
3.6145 5.1701
107.62 105.85
5-18-77
1235
10.25
129
265
4 5 6**
5-18-77 5-19-77 5-19-77
1545 0825 1245
10.87 11.86 12.26
129
264
137
278
133
272
233.9 236.9 238.8 227.6
495,500 502,000 506,000 482,300
131.9 132.9 130.1 124.4
279,500 281,500 275,600 263,500
3.3097 3.4820 3.5145 3.5829
5.8663 6.2079 6.4512 6.5546
104.23 108.62 103.79 103.56
* Used points for 10 ft^ stack
**Test cut short by 3 points (6 minutes) due to boiler shutdown.
10
-------
Table 3
CEA Variable Throat Venturi
Outlet Mass Train Data
Run
Number
Data
Time
Moisture, %
Gas Temperature,
°C
oF
Volumetric
Flow, M3/s
ACFM
Volumetric
Flow, DNM3/s
DSCFM
Concentration,
mg/ACM Raw
Corrected**
Concentration,
mg/DNCM Raw
Corrected**
1*
5-16-77
1700
14.01
r
99.4
211
194.9
413,000
118.4
250,800
26.09
26.09
42.79
42.79
2
5-17-77
1315
19.45
94.4
202
224.8
476,200
128.4
171,100
25.86
25.86
45.31
45.31
3
5-18-77
17.37
96.1
205
238.9
506,200
140.0
196,700
75.97
19.66
129.75
33.58
4
5-18-77
1500
16.53
96.1
205
273.8
579,300
162.1
343,500
63.39
21.52
106.87
36.28
5
5-19-77
0830
18.70
96.1
205
237.8
503,800
137.3
290,900
68.42
24.23
118.31
41.90
6
5-19-77
1300
18.15
96.1
205
239.3
507,000
139.3
295,200
44.62
19.23
76.66
33.04
Isokinetic, % 105.71 113.99 106.40 106.76 103.91 104.66
* Nozzle changed in middle of test. One traverse point omitted.
**For explanation of corrected concentrations see text.
11
-------
Table 4
CEA Variable Throat Venturi Scrubber Efficiencies From
Mass Train Data
Run No. Date Efficiency (%) Revised**
Efficiency (%)
1* 5-16-77 98.82 98.82
2* 5-17-77 99.12 99.12
3 5-18-77 97.79 99.43
4 5-18-77 98.28 99.42
5 . 5-19-77 97.18 99.35
6 5-19-77 98.83 99.50
* Calculated efficiencies for runs 1 and 2 are probably not reliable
because of the sampling errors noted in Tables 2 and 3.
**For explanation of revised efficiencies see text.
12
-------
Table 5
Comparison Of Mass Train and Impactor Catches
(All catch weights in milligrams, adjusted to equal sampling times)
Date 16 17 18 19 20
Item Catch Weight
Method 17
Nozzle .37 1.52 59.53 45.65
50.99 26.99
Impactor
Nozzle 2.74 3.66 .0.44 0.67
2.58 1.83 0.55 0.27
6.81 2.15 1.27 1.61
Method 17
Filter 31.6 25.6 19.5 23.4
24.7 18.7
Impactor
Substrates
and Filter 29.56 14.83 14.60 16.28 17.71
38.64 21.43 17.78 14.62
52.41 22.52 19.97 20.51
13
-------
nozzles are quite consistent for each system and are rather close
in average value when adjusted to the same sampling time. Further-
more, the nozzle catch weights for the impactors were consistently
about 0.5 to 3.0 mg. This agrees well with the Method 17 nozzle
catch weights for the first two days of sampling. On the other
hand, the nozzle catch weights for the Method 17 runs on the third
and fourth days of testing were very much higher than those of
the impactors and the previous two days' Method 17 results.
It was thus concluded that the nozzle washes for the Method
17 tests on the third and fourth days of testing were somehow
contaminated and that they should be omitted from the analysis.
The corrected Method 17 results and the corrected overall mass
efficiencies shown in Tables 2 and 4 are based on the Method
17 filter catches to which nominal nozzle catch weights have
been added. These nominal nozzle catch weights were based on
the impactor nozzle catch weights. These corrected results
are believed to be fairly reliable values of the Method 17 outlet
tests. The overall collection efficiency of the scrubber on
this source under the conditions of operation tested is thus
found to be approximately 99.4 percent.
Although the total combined emissions from the three scrub-
ber modules used for SO and particulate removal from the Unit
A
1 flue gases were not measured, estimates of these emissions
can be made by assuming that the three modules were performing
identically and were processing equal gas volumes.- If these
14
-------
assumptions are made one can estimate the particulate emissions
in terms of pounds of particulate per million BTU thermal input.
Such estimates were made for the data from the tests on 5/17,
5/18 and 5/19 and the results are shown in Table 6.
Cascade Impactor Results
Inertial sizing was accomplished using modified Brink im-
pactors for inlet measurements.and University of Washington Mark
III impactors for outlet measurements. Sampling was done in
both cases at near isokinetic flow rates, thus errors due to
deviations from isokinetic sampling should be of little conse-
quence. All impactors used in this program were calibrated at
SoRI using the methods described in EPA publications 600/2-76-
280 and 600/2-77-004.
The impactor data are summarized in Figures 2 through 8.
Figures 2 and 3 present averaged inlet and outlet size distri-
butions, respectively, on a cumulative percentage (by mass) basis
versus aerodynamic particle diameter. Figures 4 and 5 show the
same data on a cumulative mass concentration basis and Figures
6 and 7 show the data on a differential mass basis. Figure 8
shows the fractional efficiency curve as a function of aerody-
namic particle diameter as derived from the inlet and outlet data
that were presented in the previous figures. The fractional
efficiency curve is shown in the following section as a function
of Stoke's diameter together with the efficiency curves derived
15
-------
Table 6
Estimated Particulate Emissions, Ibs/MMBTU
Date
Unit Load
MW
5/17
5/18
5/18
5/19
5/19
330
350
355
355
355
MMBTU/hour Module C Corrected* Emissions
Gas Flow Mass Loading, Ibs/hour
DSCFM grains/DSCF Module C
3100
3290
3340
3340
3340
272000
297000
343000
291000
295000
0.0198
0.0147
0.0159
0.0183
0.0144
46.16
37.42
46.75
45.65
36.41
Combined
Estimated
Total
Emissions,
Ibs/hour
(=3x module c
emissions)
138.5
112.3
140.2
136.9
109.2
Total
Emissions,
Ib/MMBTU
0.045
0.034
0.042
0.041
0.033
*For explanation of corrected mass loadings see text.
-------
h-
1
Ld
Q.
>
M
i
1—
li
99.99:
99*B-
99.5-:
99^
98-^
95:
90^
80^
70 \
50i
4Oi
30 \
20 i
si
li
0.5:
0.1-=
0.05^
n_ni -
r o****
: *
: *
L * • •
: **
i a
I ^»
I 1 — I MINI 1 1 — I i i ii i-l 1 i i i i ml
10
rl
10P
101
AERODYNAMIC DIAMETER (MICROMETERS)
Figure 2. Average inlet particle size distribution from cascade impactor
data on a cumulative percent by mass basis.
11
-------
99-99T
99. B-
h-
U
Q_
LJ
98
95
90
80
70
50
40
30
BO
10
5
E
1
0.5
O.E
0.01
10
rl
<—I I I Hill II II HIM 1 I I I MM|
101
AERODYNAMIC DIAMETER (MICROMETERS)
Figure 3. Average outlet particle size distribution from cascade impactor
data on a cumulative percent by mass basis.
18
-------
^lO1
CD
'LQ
a
en
en
Ld
M
H-
44-
icr1 10° lo1
AERODYNAMIC DIAMETER (MICROMETERS)
a:
LQ
M
a
§
,cn
id
M
,<
Figure 4. Average inlet particle size distribution on a cumulative mass
concentration basis from cascade impactor data.
-------
IDS:
103::
LD
z P
a 10s
a
en
i
Ld
10
"1
10
"1
fa
CD
a
a
S
-ID"3
10
H 1 I I Mill H 1 II llll| 1 1 I MINI
10°
1O1
AERODYNAMIC DIAMETER (MICROMETERS)
Figure 5. Average outlet particle size distribution on a cumulative mass
concentration basis from cascade impactor data.
20
-------
105-
m
a
103-
a
a
a
10
rl
I I I I Hl| 1—I I I I )ll| 1—I I I I lll|
10° 101 105
AERODYNAMIC DIAMETER (MICROMETERS)
Figure 6. Average inlet particle size distribution on a differential mass basis
from cascade impactor data.
21
-------
ffl ID1::
l__l
§
a
10
rl
,.'***',
I
10
rl
i i i mil 1—i i i tmj 1—i i i mil
10° 101 10*
AERODYNAMIC DIAMETER (MICROMETERS)
Figure 7. Average outlet particle size distribution on a differential mass basis
from cascade impactor data.
22
-------
M
bJ
lOVr
101::
IQP::
io~H
10
5
PEtsETRATIOM-EFFICIENCY
T 0.0
-90.0
10
rl
H—I I I Mill 1—I I I MH| 1—I I I MM
1CP
101
Id
M
u
\-
UJ
OL
99.99
AERODYNAMIC DIAMETER (MICROMETERS)
Figure 8. Fractional efficiency curve on an aerodynamic particle diameter basis
for the CEA variable throat venturi scrubber operating at a venturi
pressure drop of 48 cm (19 in.) w.c..
23
-------
from the ultrafine particulate data. The scrubber was operating
at a venturi pressure drop of about 48 cm w.c. throughout the
impactor test periods.
Ultrafine Particulate Data
Measurements of the concentration and size distribution
of ultrafine particulates were made using a Thermosystems Model
3030 Electrical Aerosol Analyzer (EAA) and a Royco Model 241
Optical Single Particle Counter.
The EAA provides size distribution and concentration data
on a number basis for particles having diameters between approxi-
mately 0.01 yM and 0.3 yM. The optical counter provides similar,
data in the range from approximately 0.3 to 2 yM. Both instru-
ments require extensive sample dilution and conditioning when
used to sample flue gases. The sample extraction and dilution
system used in these tests is described in a forthcoming EPA
report on Contract 68-02-2114, Task VIII. Dilution factors
of about 150:1 were used at both the inlet and outlet during
these tests.
In order to insure that condensation effects were minimal,
and that the particles were dry as measured, the diluent air
was dried and filtered, and diffusional dryers were utilized
in the lines carrying the diluted samples to the instruments.
24
-------
Because only one set of instruments and dilution system
was available it was not possible to obtain simultaneous inlet
and outlet data for the ultrafine particulates. The system
was first installed at the scrubber inlet and all inlet data
was obtained on May 17. The equipment was then moved to the
outlet and outlet data were obtained on May 19 and 20. For
the purposes of calculating fractional efficiencies the assump-
tion was made that the process was sufficiently stable that
the inlet data, as obtained above, were a valid representation
of that which would have obtained during the time the outlet
measurements were made.
Inlet data were obtained with the optical counter in two
size channels—0.35 to 0.60 pM and 0.60 to 2.0 yM. However,
an instrument malfunction resulted in outlet data being obtain-
ed only in the 0.6 to 2.0 yM size interval with this method.
Inlet size distributions on a cumulative concentration
by number basis are shown in Figure 9. Outlet size distri--
butions on a similar basis are shown in Figure 10 for the
normal scrubber operating condition (48 cm w.c. venturi pres-
sure drop). Figure ri shows the fractional efficiencies for
ultrafine particles. Also shown in Figure 11 are the frac-
tional efficiencies as a function of Stoke1s diameter, obtained
from the impactor data.
25
-------
"
10
13
n
E
Z
Q
6
z
o
I-
cc
i-
z
01
O
o
o
CC
111
00
1012
O
10"
1010
• EAA
D ROYCO
10'2 10'1
LOWER SIZE LIMIT, micrometers
10°
Figure 9. Scrubber inlet particle size distribution from electrical
aerosol analyser and Royco optical particle counter data.
26
-------
8 8
n
E
2
Q
- 13
•
o
o
c
8
o
o
CO
^
D
2
LU
D
O
io
1012
10"
10
r2
10-
LOWER SIZE LIMIT, micrometers
10°
Figure 10. Scrubber outlet particle size distribution from electrical
aerosol analyser data.
27
-------
PENETRATIDN-E
ILT-
101:
Z-
.
a
M
1-
Ld
H 10°-
PERCENT
i i iiii
•i o~2_
-A A A 3
A A
«
^^^D ™
•
A .
•
•
,_ -
A •
. •
. ^ *
! * '
.
.
o
: A EAA T 1
'• O IMPACTORS A
i — i i i mil 1 — i i i mil JIM mil 1 — i i i lili
-90.0
U
i- Z
h Ld
r U
M
u_
r99.0[}]
PERCENT
- qq . qq
" 10"E 10"1 10° A 101 102
PARTICLE DIAMETER (MICROMETERS)
Figure 11. Fractional efficiencies based on electrical mobility and optical methods
shown on a "physical" diameter basis. Also shown are fractional
efficiencies from the cascade impactor data on a basis of Stoke 's diameters.
28
-------
The scrubber was operated at venturi pressure drops of
31, 36, 41, 46, and 51 cm w.c. for a brief period at each con-
dition on May 21, during which time the outlet concentrations
were monitored with the EAA and the optical counter. No sig-
nificant concentration changes were noted in the EAA data over
this range of pressure drops, however, the optical counter data
did show significant changes. In the 2 yM to 4 yM size inter-
val, a 50% reduction in concentration was obtained by increas-
ing the venturi pressure drop from 31 to 51 cm w.c. and a 35%
reduction in concentration occurred in the 0.6 ym to 2.0 ym
particle diameter range. These relative concentration changes
are shown in Figure 12.
Stack gas opacity measurements of the combined effluent
from the three parallel modules showed a dramatic reduction
in opacity when the module C venturi pressure drop was taken
up to 51 cm w.c. as illustrated in Figure 13. (Modules A and
B were being operated at constant venturi pressure drops of
49 cm and 48 cm w.c., respectively during this time).
Table 7 summarizes the scrubber operating conditions through-
out the test period. The liquid to gas ratio in the venturi
portion of the scrubber during the tests was typically about
3.3 8,/DNCM. .
29
-------
14
12
Z
cc.
H 10
LU
O
2
O
O
LU
-J 8
UJ °
EC
\
•\
X
• CH 1 x 1000.55- 1.8 Aim N
ACH2 x 10 1.8 - 4.1 Aim \
25 30 35 40 45 50
VENTURI PRESSURE DROP, C.M. W.C.
Figure 12. Relative outlet particulate concentrations in two size
ranges as functions of venturi pressure drop.
30
-------
', percent
?-
O
O
20
O
m
CO
LU
i
rs, MODUI
D
u! 10
LL
Ul
Q
LU
5
0
O
I I I I I I I
•
- • •
•
• • •
I I I I I I I
25
30 35 40 45 50
MODULE C VENTURI PRESSURE DROP. C.M. W.C.
Figure 13. Opacity of combined emissions from three scrubber
modules as a function of venturi pressure drop of one
module with the remaining two modules operating at
fixed pressure drops of approximately 48 cm W.C.
31
-------
Table 7
Scrubber Operating Conditions
Measured Gas Flow,
DNCM/s
Temperatures,
Liquor Flows, S-pm
Date
5/17
5/18
5/18
5/19
5/19
5/20
5/20
Unit Load,
MW
330
350
355 .
355
355
290
348
Inlet
110
132
133
130
124
(106)
(127) "•
Outlet
128
140
162
137
139
(113)
(136)
Plumb Bob
Position,
%- o£ Travel
54
58
62
61
61
53
65
Ventur i
A P,
cm w.c.
44.5
46.4
46.4
46.4
47.0
45.7
45.1
Scrubber
Inlet
132
129
129
131 -
133
129
129
Scrubber
Outlet
*
60
58
57
59
57
56
52
Reheat
Outlet
79
78
78
78
74
82
82
Fan
Outlet
94
96
96
96
96
93
93
Upper
Spray
15900
15000
18200
17600
17500
17800
17600
Middle
Spray
10200
9370
11360
10790
10600
10600
11700
Absorption
Spray
22700
24400
19870
24600
24200
25700
25000
Mist Film
Under
Spray
570
570
570
625
625
530
570
Wash Tray
Under
Spray
1170
1060
1170
1170
1190
1170
950
Wash Tray
Feed
3600
2900
2800
3220
2840
3220
3220
5/17
5/18
5/18
5/19
5/19
5/20
5/20
Liquor
pH
4.3
4.7
4.7
4.7
4.6
N.A.
N.A.
% Suspended
Solids
11.4
15.2
16.4
14.3
13.4
N.A.
N.A.
Based on partial traverse and scaling from previous days.
-------
The performance of the CEA variable throat venturi scrubber
is compared with the performance of several types of conventional
scrubbers, including conventional venturi scrubbers, in Figure
14 using the "cut diameter" method described by Calvert (1974)
J. APCA, 24:929. This method is based on the idea that the
most significant single parameter to define the performance
of a scrubber is the particle diameter for which the collec-
tion efficiency is 0.5 (50%).
concentrations and collection efficiencies were also
measured during the test program. Results of these measurements
are given in Table 8, from which it can be seen that typically
the S02 collection efficiency is about 80%.
33
-------
U)
4.0
3.0
2.0
E
a.
U
•0°" 1.0
DC
HI
t 0-8
E
° 0.6
0.5
0.4
D
U
U
<
a
o
uj 0.3
0.2
0.1
1.5
PRESSURE DROP, inches H2O
5 6 7 8 9 10 15 20
30
40
50 60
80 100
0.25
I I I I I I
I
la, 1b SIEVE PLATE SCRUBBERS
2a. 2b VENTURI SCRUBBERS
3 IMPINGEMENT PLATE
4 PACKED COLUMN
+ CEA SCRUBBER OPERATING
POINT
I
I
I
I
0.5
0.8
1.0 2.0
POWER, hp/1000 acfm
I I I
I
I
3.0 5.0
I till
8.0 10
r
2a
7 8 9 10
20
30
70 90100
200
300
PRESSURE DROP, cm H2O
Figure 14. Comparison of the CEA variable throat venturi scrubber
performance with that of other conventional scrubbers,
after Calvert (1974) JAPCA 24:929.
-------
Table 8
Colstrip Power Plant
Scrubber S02 Removal Efficiency
Date Inlet S02 Reheater Outlet S02 Removal
Concentration S02 Concentration Efficiency
(ppm) (ppm) (%)
5-17-77 658 130 80.2
5-18-77 525 103 80.4
5-19-77 553 130 76.5
5-20-77 625 90 85.6
35
-------
APPENDIX A
MANUFACTURER'S DESCRIPTION OF SCRUBBER OPERATION
36
-------
APPENDIX A. DESCRIPTION OF THE CEA VARIABLE THROAT VENTURI
SCRUBBER: COLSTRIP FLUE GAS CLEANING SYSTEM*
The flue gas cleaning system (Figure 1) now in operation
on the two Colstrip 360 MW units is unique in that a wet scrub-
bing system is used for both particulate and S02 control and
captured ash provides the alkalinity for the S02 removal.
The system currently installed on the two 360 MW Units
1 and 2 is illustrated in Figures Al and A2. The hot flue gas
leaving the boiler is cooled in the heat recovery air heater
and enters the flue gas scrubbing system at about 300°F. Each
scrubber module, as shown in simplified drawing in Figure A2,
consists of a downflow venturi scrubber centered within an
upflow spray tower contactor. The venturi is equipped with
a variable throat to maintain constant pressure drop at vari-
able loads. In the venturi the scrubbing liquid is finely dis-
persed by the high velocity flue gas and serves to efficiently
wet and trap the particulate fly ash. In the spray tower the
gas contacts a recycle spray of absorption slurry. The slurry
from the venturi and the spray contacter is collected and held
in the base of the scrubber and recirculated at an L/G rate
*Taken from a paper by C. Grimm, J. Z. Abrams, W. W. Leffmann,
I. A. Raben, and C. Lamatia. Presented at the 1977 National Meet-
ing of the AIChE.
37
-------
THE MONTANA POWER CO. PUGET SOUND POWER & LIGHT
2 - 360 MW COLSTRIP UNITS 1 & 2
OJ
00
MERGENCY WATER
LUMB BOB
jxj-SEAL WATER
SUPPLY
FLYASH POND
FIGURE A1. THE MOTANA POWER CO. - PUGET SOUND AND LIGHT
COLSTRIP UNITS 1 AND 2 - (360 MW EACHJ FLUE GAS CLEANING SYSTEM.
-------
RECYCLE HOLD-UP TANK
8 MINUTES TURNOVER
FIGURE A2. COLSTRIP SCRUBBER MODULE.
39
-------
of 15 (gal/1000 ft3) for the venturi and 18 (gal/1000 ft3) for
the absorber spray. An agitator in the scrubber base serves to
maintain suspension of the fly ash and solid reaction products.
Slurry is bled from the recycle to maintain a 12% suspended
solids concentration. Slaked quick lime is added as lime slurry
only if needed to augment the fly ash alkali and maintain the
desired slurry pH.
Each scrubber module is designed to clean 120 MW of equiva-
lent gas flow under normal conditions and 144 MW under emer-
gency conditions. (i.e., when one module is down, the two in
operation will clean the amount of flue gas generated at 80%
of boiler design load.)
The treated gas leaving the spray section passes through
the water wash tray which serves to trap and dilute the entrain-
raent. The gas leaving the washtray passes through a chevron
demister followed by a mesh pad demister and leaves the absorp-
tion section water-saturated and cooled to the saturation tem-
perature of about 120°F.
To preclude condensation in the fan and stack, and improve
the gas buoyancy, the cooled gas from the scrubber is reheated
50. to 75°F by a steam-heated exchanger. The warmed gas then
passes through the dry induced draft fans and is discharged
to the atmosphere from the top of a 500 foot stack.
40
-------
As shown in Figure Al the slurry discharged from the absorp-
tion loop is passed to an intermediate retention pond where
the solids settle and from which the clarified water is returned
to the absorption system. At intermittent intervals (currently
only during the warm summer months), a floating dredge is used
to reclaim the settled solids from the intermediate settling
pond and transport them as a 30% slurry by pipeline to the re-
motely located permanent disposal pond. Decanted water (super-
nate) from the disposal pond is returned, also intermittently,
through the same slurry pipeline to the intermediate pond for
recycle to the absorption system. No stabilization of the
sludge is required and a closed water loop is maintained.
Fresh water is added to the absorption system in an amount
equivalent to that evaporated into the warm gas stream plus
that retained in the waste sludge. This fresh makeup water
is introduced to the system as dilution water for minimizing
the calcium saturation level in the mist eliminator washwater.
This washwater is trapped by and withdrawn from the washtray
and circulated to a small pond where entrained solids are sepa-
rated. A portion of the water from this pond is returned and
used to wash the undersurface of the washtray. Another portion
of the flow is diluted with the fresh makeup water, and used
for bottom wash of the mist eliminator.
41
-------
The scrubber has been free of scale while the pH of the
recycle liquid remains in the expected range. Corrosion prob-
lems in the reheater and demister plugging have not been ex-
perienced with the installation.
EPA method stack emission tests have been run numerous
times on both units during 1976. Table Al shows the results
of sulfur dioxide, particulate and NO tests along with the
A
requirements of the NSPS, the vendor's scrubber guarantee, and
the results as projected from pilot plant experience; Table
A2 contains data on the fuel and ash specifications and this
may be compared with coal data contained in Table Al. The test
data are for emission only - no inlet measurements have been
made. The results over the first year of plant operation agree
well with the pilot plant data. The test data show the plant
emissions are well below the guarantee and the federal stan-
dards .
Table A3 compares scrubber availability and plant load
for the two units during the time period September 1975 through
December 1976. Note the definition of scrubber availability
below the table. These generating plants have no bypass capa-
bility around the air pollution control system.
42
-------
Table Al
Emission Test Results - EPA Method
1. Required by NSPS (358 MW)
2. Scrubber Guarantee (358 MW)
3. Projected from Pilot Plant (358 MW)
a) 0.78%S (760 PPM), 8.19% Ash
b) 1.0%S (965 PPM), 12.58% Ash
4. UNIT 1 TESTS:
COAL AS RECD.
LB/HR
4063
3386
1394
2071
S02
PPM
510
425
185
260
LB/MMBtu
1.2
1.0
0.41
0.61
LB/HR
339
207
130
184
PARTICULATE
LB/MMBtu
0.10
0.06
.038
.054
%OPAC
20
20
20
NO
x
LB/HR
2370
(1)
2370
2370
LB/MMBtu
0.7
(1)
0.7
0.7
%Sul.
%Ash
Btu/LB.
2/76
4/76
7/76
9/76
12/76
353
210
184
186
223
0.83
0.71
0.64
0.62
0.94
9.03
7.79
8.49
7.93
8.54
8638
8861
8807
8633
8394
1464
420
241
255
898
197
87
52
56
154
0.44
0.21
0.14
0.14
0.43
90.1
57.3
53.6
60.5
67.2
.027
.029
.031
.035
.032
10
14
15
11
15
(3)
(2)
(2)
(2)
(2)
880
738
695
646
662
0.26
0.38
0.40
0.37
0.31
0.56
0.59
0.64
7.96
7.86
7.87
8368
8484
8690
1231
664
780
178
83
98
0.39
0.21
0.25
1. NO Emissions guaranteed by boiler supplier only, equal to NSPS.
2. Avg. EDC monitor opacity.
3. Qualified observer.
83.4
85.9
105.7
.028
.028
.034
11
10
16
(2)
(2)
(2)
862
934
784
0.28
0.30
0.25
-------
Table A2
Fuel And Ash As Described
In Specifications
COAL: Average, As Received
Moisture 23.87%
Volatile Matter 28.59%
Fixed Carbon 38.96%
Ash 8.59% (Max. 12.58%, Min. 6.1%)
Heating Value 8843 Btu/lb. (Min. 8162 Btu/lb.)
Sulfur .777% (Max. 1.0% Min. 0.4%)
ASH: (Estimated composition, sulfur trioxide-free basis)
Si02
A1203
Ti02
Fe203
CaO
MgO
Na20
K20
P205
(balance
41.60%
22.42%
0.79%
5.44%
21.90%
4.95%
0.31%
0.13%
0.41%
unidentified)
Later fly ash data varies slightly from above as follows:
LEACHED IN H20 (1% Fly Ash)
pH 11.8
Conductivity 4.150
Total Dissolved Solids 930 ppm
Calcium 396 ppm
Magnesium 0 ppm
Chloride 15 ppm
Sulfate (S04=) 30 ppm
LEACHED IN HC1
% Acid insolubles (Si02) 57.59
% Calcium as CaO 22.00
% Magnesium as MgO 1.27
% Aluminum As A1203 15.59
% Iron as Fe203 4.97
% Sulfate as SO^ 0.71
% Carbonate as C03 0.70
44
-------
Table A3
Scrubber Availability
Vs. Plant Load
UNIT
Sept. 1975
Oct.
Nov.
Dec.
Jan. 1976
Feb.
Mar.
Apr.
May
Jun.
Jul.
Aug.
Se t.
Oct.
Nov.
Dec.
Monthly Capacity
Factor %
0.5
19.4
42.2
59.9
63.8
65.4
57.0
49.9
26.0 1.3
0.0 23.2
28.0 19.5
37.8 13.0
64.5 64.6
73.1 77.0
55.6 79.7
67.2 82.3
No. Days
On Line
3
19
24
30
28
26
24
28
14
0
20
23
30
30
30
31
3
16
13
10
30
31
30
31
Avg. MW
for Days
On Line
50
139
203
239
265
273
277
219
210
0
167
194
239
281
225
249
66
171
180
162
232
298
303
297
Scrubber
Availability %
90.0
98.0
97.6
74.2
96.8
93.2
94.7
88.6
79,
62,
73.8
100.0
99.7
98.7
95.8
98.3
90.3
94.7
92.5
Note: Scrubber availability = total module hours available divided by
three times the number of hours in month. May through August
base is days in operation because of extended scheduled outages.
45
-------
Development Of The Process Concept
The successful operation of the Colstrip system as described
above represents the culmination of an extensive development
program carried out jointly by the architect engineer, Bechtel
Power Corp., the scrubber system supplier, Combustion Equip-
ment Associates, Inc. (CEA), and the power plant owners, Mon-
tana Power Company and Puget Sound Power & Light Company.
Previous experience with Colstrip coal at the J. E. Corrette
Station in Billings was limited to particulate removal only,
and this was effected by use of an electrostatic precipitator.
This experience revealed serious problems in performance which
were attributed to the high resistivity characteristics of the
low-sulfur coal.
A study was made by Bechtel of the possible options for
meeting particulate and S02 removal standards. The owners chose
a design level of 1.0 Ibs. of S02 /MM Btu - less than the NSPS
level of 1.2, and substantially below the state requirements.
A detailed chemical analysis of the fly ash (see Table
2) revealed that it contained alkali metal oxides in an amount
theoretically sufficient to react with and adsorb the sulfur
dioxide produced by the coal combustion. Laboratory experiments
simulating absorption condtions revealed that this alkalinity
46
-------
was only usable under low pH absorption conditions (<5.6).
It also revealed that absorption under these low pH conditions
would result in extensive oxidation of the absorbed S02 produc-
ing calcium sulfate rather than calcium sulfite as the predomi-
nant reaction product.
Continued laboratory tests were conducted by Bechtel to
determine the process conditions under which the alkalinity
of the fly ash could be utilized while at the same time accommo-
dating the scaling potential of the calcium sulfate. The con-
ditions selected were a pH of 5 to 5.6, low enough for alkali
utilization and high enough for adequate SOa absorption capa-
bility. The other, and perhaps the key operating factor, was
the use of a high level of suspended solids in the absorption
slurry (12 to 15% by weight, of which some 3-4% is calcium sul-
fate formed in the absorption). This provided a high concentra-
tion of calcium sulfate seed crystals to promote desupersatura-
tion. A long residence time for the recycle slurry in a stirred
tank external to the scrubber was also proposed to ensure alkali
utilization and to provide crystallization of calcium sulfate
under controlled and non-scaling conditions. A slurry holdup
of 8-10 hours was selected based on bleed rate.
The above two conditions, i.e., low slurry pH and long
contact with the oxygen-containing flue gas, provided substan-
47
-------
tially complete oxidation. This high oxidation was shown to
improve the disposal characteristics of the waste sludge pro-
duced.
48
-------
APPENDIX B
IMPACTOR DATA
49
-------
Table Bl
Inlet Impactor Blank Run Data
Date 5/17 5/18 5/19 5/20 5/17
Run No. 5 9 16 20 Control
Flow rate, afcpm 1.36 1.33 1.33 1.44 0
Sample duration,
minutes 30 30 30 30 0
Stage/Weight gain
mg
0 0.10 0.04 0.08 0.06 0.05
1 0.12 0.10 0.07 0.04 0.05
2 0.12 0.07 0.01 0.10 0.07
3 0.13 0.03 0.06 0.05 0.04
4 0.09 0.05 0.06 0.05 0.04
5 0.07 0.06 0.00 0.07 0.03
6 0.08 -0.01 0.04 0.10 0.09
F 0.06 0.14 0.16 0.11 0.06
Substrates were acid washed Reeve Angel 934 AH glass fiber
filter media. Prepared in accordance to the procedures spe-
cified in EPA Report 600/7-700-060.
2
This control run was handled identically in all respects to
blank runs with the exception that no gas was actually pulled
through the impactor and thus represents a measure of the
weighing precision.
50
-------
Table B2
Outlet Impactor Blank Run Data
Date 5/17 5/18 5/19 5/20
Run No. 5 9 11 16
Flowrate, a8,pm 14 14 11 11
Sample duration, minutes 80 80 80 80
Stage/Weight Gain,
mg
1 0.02 1.102 0.19 0.282
2 -0.02 0.09 0.02 0.06
3 -0.02 0.15 0.09 0.04
4 0.05 0.10 0.17 0.03
5 0.07 0.10 0.05 0.03
6 0.09 0.13 0.09 0.08
7 0.06 0.11 0.03 0.05
F 0.06 0.04 0.11 0.17
Substrates were stainless steel shim stock coated with Apiezon
H grease.
2
Outliers
51
-------
CPPI-P? s-17-77 PORT-US 1US7 INI.FT SAMPI.K MODIFIED BRINK CASCADE IMPACTOR NUMBER - C
TMPACTOR FLQ.-WATF » o.t>39 ACFM IMPACTOR TEMPERATURE a ??o.o F = is?.? c SAMPLING DURATION * 30,oo HIM
IMPACTOR PRESSURE DROP = 1.7 in. OF HG STACK TFMPF.RATURF = ?7o,o F = 132.2 c
ASSUMED PAHMCI E DF»ISITY f 2.30 G*/CU.CM'. STACK PRESSURE = ss.on IN. OF HG MAX. PARTICLE DIAMETER e 53.3 MICROMETERS
GAS COMPOSITION fPEHCENT) C02 t 1U.6? CO s 0.00 N? c 70.?1 02 » 2,18 H20 • 13,00
CAIC. MASS LOADING s S.190RF-01 GR/ACF 9.52fe<»E-ni GR/DNCF 1.1878E+OT MG/ACM 2.1801E+OJ
IMPACTOR STAKE rvc so si ss 33 so ss 36 FILTER
STAGE IMPIE* NUMBER 1?3«5«>789
D50 (MICROMfTRRS) 9,65 S.flS 3.18 1,99 l.S? 0.63 0,«5 0,20
MASS (MILI TGRAMSJ 21.73 1.02 1.93 a.TO 0.16 3.73 1.30 0.21 0,15
MG/DNCM/STAGF 1.23F+03 5.79E»Ol l.09E*02 ?,67E»02 2.37E*02 2.12E+02 7,38E>01 1,19E*01
CUM, PERCENT OF MASS SMALLER THAN 050 «tt,21 U1.59 36.6fl 20,57 13.80 U.26 0,92 0,39
CUM. (MG/ACM) SMALLER THAN 050 5.2SE+02 0.90F+02 «.35E*02 2.92E+02 l,fcOE+02 5.0<>E*01 1,10E4.01 a,57e+00
CUM, (MG/ONCM) SMALLER THAN 050 9,60E*02 9.07E+02 7.99E*02 5.36C*02 3.02E+02 9.29E*01 2,01E*01 B.OOE+00
CUM, (CR/ACF) SMALLER THAN 050 2.29E-01 2.16E-01 l'.90F.-oi 1.28F-01 7.18E-02 2.21E-02 0.60F-03 2.00E-03
CUM. fSR/ONCF) SMALLER THAN 050 0,?lE-01 3.96P-01 S.19E-01 2.30E-01 1.32E-01 0.06E-02 8.H1E-03 5.67C-03
GEO. MEAN DIA. CMIC"OMETERS) ?.37E+01 7,51F*00 0.31E+00 2,51E*00 1.70E*00 9.78F.«OJ 5.35E-01 S.05E-01 l,«5E»Ol
DM/HLOGO (MG/DNCM) 1.S8E + 03 2.67E-f02 fl'.l3F*02 1.31E*03 2.01E«03 3.56E»02 "S.lflE + OZ 3,49E*01 2.83E + 01
ON/DLOGO (NO. PARTTCLFS/ONCMJ 9.82E+07 t5,22E+OR 0.27E+09 6,86F+10 3.18E+11 0.92E+11 2.79E»12 1.01B+12 7,71E*1S
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
D50 (MICROMETERS) 10.63 8.93 O.Bfl 3,08 ?,36 1.01 0,70 O.Sfc
GEO. MEAN OIA. (MirRnMETERS) 3.60E»01 l.l«E*Ol 6.60F+00 3,87E+00 2.69F+00 1.50F+00 8,67E»01 5.20E-01 2.58E-01
OM/DLOGD (MG/D^C") 1.58E403 2.70E*02 0.16E+02 1,33E»OJ 2.05E+03 5.76ff02 5,50E*02 3,86E*01 2,63E*Ol
nN/DLOGO (NO. PARTJCLES/DNCM) 6,£l/?E*n7 3.05F + OR 2.77F + 09 «,39F*10 2.00E»11 2.99E*11 1.61P + 12 S,22E*11 3,l5Ftl2
NORMAL (ENGINEFRING STArJDAHDl CONDITIONS ARE ?.\ OE'G C AMD 760MM HG.
SQUARE ROOTS OF PSJ BY STARK 0.322 0.32.2 0.3S1 O.JB8 0.330 0,350 0,273
HOLE DTAMETfPS HY STAGF (CENT T MF TER5) 0.3658 0 ,?.UHf> 0.17?0 0.1360 O.OB96 0,0719 0,0589
-------
CPPI-03 5-17-77 pnHT-01 15«S
IMPACTOR FLO"R'1E c O.dbO ACFM
TMpacTpR HRF:SSURF DROP = ?.« TN. nF HK
ASSUMED PARTICLE OFNSITY s i?.30 GM/CU.CM'.
fNLF T SAHPi F MODIFIED HRINK CASCADE IMPACTOR NUM8F.R - 0
IMPACTOR TEMPERATURE - ?70.0 F e 15?,? C SAMPLING DURATION s 10,00 MIN
STACK TF.MPERATIJRF = 270.0 F = 112.?. c
STACK PRESSURE = 25.
-------
CPPT-Oh S-18-77 ^OPT-UU I JSO
IMPACTOR FI.OURAU r o.o«7 ACFM
IMPACTOR P»FRSl">F OKHP s ?.5 IM, nF MG
ASSUMED PANTint. DENSITY B i>'.3o GM/CU.C".
GAS COMPOSITION fPERCENT) CO? = 13.
CALC. MASS IOAHTNG = 1.I71IE+00 GR/ACF
IMPACTOR STAT.F TYC
STAGE INDE" NUMBER 1
DSO (MICROMETERS) 8.83
MASS (MILLIGRAMS) ft3,U7
TNLFT S4MPLE MODIFIED FtRINK CASCADE IMPACTOR NUMBER » D
IMPACTOR TEMPERATURE = 2?o.o r = na.? c SAMPLING DURATION • 10,00
STACK rf.MprRATl.iRF e 270.0 F s 132.2 C
STICK PRESSURE = ?s,so in, OF HG MAX. PARTICLE DIAMFTER • 58.3 MICROMETERS
CO = 0.00
2.0Ri"F+00 GR/ONf.F
SO SI 52
2J«
5.13 2.90 1.87
-5.20 3.«1 25.66
« 71.67
?.6798F«03
S3
5
1.26 0.
3.06 4.
MG/
34
6
54
49
02 8 u.75
SS
7
0.40
0.95
4.
36
8
0.11
0.21
H20 • 10.50
a.7666E+03
FILTER
0.09
2.0«E*02 0.31E*Ol
1.17 0.28 0,08
l.o«E»03 9.53E+02 8.67E*OP ?.21E«02 l.«UE*02 3.HE*01 7.55E+00 2,?6E+00
1.93E+03 I.69E+03 1.54E+03 3.9«E+02 2.57E*02 5.59E+01 1.30E+01 «.03E*00
fl,73E-ni U.16E-01 3.79F-01 9.67E-02 6.31E-02 1.37£«02 3.30C-03 9.89E-0«
MG/DNCM/STAGE 2.8HE+03 ?.36E+02 1.55E+02 1.16E*03
CUM. PERCENT OF MASS SMALLER THAN D50 «0.aj 35.55 32. 3
-------
CPPI-07 S-1H-77 P()Pr-CO nn? INLET SAMPLE MODIFIED RRINK CASCADE IMPACTOR NUMBF.R - B
IMPACTOR FI.OWRATF = o.nJu »CFK JMPACTOR TF.MPERATURE = ?70.o F = 13?.? C SAMPLING DURATION * 30,00
IMPACTOR PHKSSUWF PROP = r.j IM, nF HC STACK TEMPERA TURF. s aro.o F : 132,2 c
ASSUMED PARTTCLF nFNSitr = 2.30 r.t'/r.u.tw'. STACK PRESSURE = 25. so IN. OF HG MAX. PAHTICLE DIAMETFR • 58.3 MICROMETERS
GAS COMPOSITION CPFRCENT) CO? ~ 13. 2B CO = 0.00 N2 = 71.67 02 e « . 7S M20 = 10.30
CALC. MASS LOADING = «.6a8?t-ftl CR/ACF fl.232*E-01 GP/ONCF 1.0S STAOf. 0.:<22 0.322 0.3«9 0.330 0.302 0.3US 0,175
MOLE DIAMETERS R* STAGE (CENTIMETERS) O.Tfelfl 0.2flia 0.1737 0.1366 0.0918 0.0719 0,0566
-------
CPPI-PH 5-IS-77 PORT-D3 11«6 I^LET SAMP[_f MODIFIED HRINK CASCADE IMPACTOR NUMBER - C
TMPACTOR FLQWKATE = o.ous ACFM IMPACTOR TEMPERATURE = 270.0 F a 132.? c SAMPLING DURATION s 30,00
IMPACTOR PPf.SSHRF nROP = ?.3 T'N. nF HG STACK Tt'MPFRA Tl 'RE = 270.0 F s 132. ?_ C
ASSUMED P4RTTCLF PFMSITY a ?. <0 GM/CU.fM. STACK PRESSURE = ?5.50 IN. OF HG MAX. PARTICLE DIAMETER = 58,3 MICROMFTERS
GAS COMPOSITION rPFRCE^JT) CO? = 13.28 CO « 0.00 N2 a 71. 67 02 « fMG/ONCM) 3.U5E+03 1.26E+03 9.33E+02 3.39E*03 a.2feE»03 6.97E+02 3.37E+0? 1.6TF*01 2,6«E*Ol
ON/OLOGD CNn. PARTICLES/DNCM) 2,3flE*08 3.05E+09 l'.20E*10 2.20E+11 8,tf3E+ll 7.85C*11 2.38E+12
AERODYNAMIC OIAMETFRS ARE CALCULATED MERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
050 (MICROMETERS) 13,65 8.33 «.5fl ?.86 2,19 0.9<4 0,6fl 0,32
GEO. MFAN DIA. (MTCROMfTERS) . 3.U7F.+01 1.07E+01 6.15F+00 3.61E+00 2.50E+00 l.«3E+00 7.99E-01 a.70F"01 2.29E-01
DM/OLOGO (MG/DNCM) 3.15E+05 l.28Et03 9.«2E*05 3,««E+03 7.73E+09 l.flOF+11 5.30E+11 U.73C+11 I.36F+12 5.07Ptll «.?6r*l2
NORMAL (FMGINFFP^G STANPAKO) COMDITInNS ARF 21 DEC C AND 760MM HG .
SQUARE ROOTS nF PSI BY STAGT. 0.322 0.32? 0.351 0.3R9 0,3"40 0,350 0,273
HOLE OIAMETFRS HY STAtiE (CENTIMETERS) 0.3^58 0.?U60 0', 1 72« 0.1360 0.0896 0.0719 O.OSB9
-------
tn s-in-77 pppT-d t«u
IMPACTHR FLOWRATF = o.nub ACFM
IMPACTPR PRESSURE npnp = 2.3 IN. nF HC
ASSUMF.P PARTICLE PFMSITV = 2.3P KM/CM. CM.
INLET SAMPI.K MODIFIED BRINK CASCADE IMPACTOR NUMHFR . c
IMPACTOR TFMPFR^TURF = 270.0 F » H2.2 c SAMPLING DURATION . 30.00 MI*
STACK TFMPFRATURF s 270.0 F x 132.2 C
STACK PRESSURE = 25. SO IN. OF Hi; MAX. PARTICLE. DIAMETER = 5«.3 MICROMETERS
6*8 COMPOSITION (PERCENT!
CALC. MASS IPADINf, = I.B176E
IMPACTOR STAGE
STAGE INOTX NIJMHFP
050 (HICRHMETfRS)
MASS (MILLIGRAMS)
MG/DNCM/8TAGE
CUM. PFBCENT OF MASS SMALLER THAN 050 21.33
CUM. (MG/ACM) SMALLER THAN D5n
CUM. (MG/ONCM, SMALLER THAN MO
CUM. (GR/ACF) SMALLER THAN 050
CUM. (6R/DNCF, SMALLFM THAN 050
6EO. MEAN DIA. (MICROMETERS)
OM/OLOGO (MG/ONCM)
ON/DLOGD (NO. PARTICLES/ONCM,
C02 « H.2R
GR/ACF
CYC
1
P.90
12*.^
v.2^;
so
2
5.45
H.76
CO = 0.00
><>F + 00 GW/DNCF
SI
3
2. OS
6.P5
S2
a
1.85
8.5«
N2 3 7,.6T
Sj
H?0 3 10.30
7.3980F*03 MC/DNCM
96 F:UTER
R
15.63
0.16 0.20
T.53F*00 9,fllF*00
0.13
02 . «.75
MG/ACM
SU S5
5 67
t < a , 0<58 0>al
U.79 3.79 Q.90
3.22F.»02 U.02F.*02 2.25E»02 1.76E»02
11.53 6.18 3.17 0.79 0.23
fl.R7E*02 6.59E*0? «.90E*02 2.57E+0? I.3JE+02 3.29E*01 9.«OE*00 5.22E«00
I.5BE.03 1.17E*OJ 8.53E*02 «.57E+02 2.3UE+02 5.85E*01 |.6TE*0| 9.29E*00
3.«eE-01 2.88F-01 2. 106-01 1.12E-01 5.76F..Q2 |.aaE.02 a.HE.OS 2.28E-01
6.90E-01 5.I2E-01 3.73E-01 2.00E-01 1.02E-01 ?.56E-02 7.30E-03 «.06E-03
?.29Ef01 7.00F.+00 4.01E+00 2.S«E+00 1.61E*00 9.02F-01 «.B9F-Ol 2.71E-01 1.26F-01
7,?7E*03 1.89E*03 1.21E*03 1.97E*03 l.»OE*OJ fl.63E*02 2.88E*02 2.05E+01 3.13E*01
5.0^E*08 U.5BE+09 1.56EMO 1.29E*11 3.77EM1 5.?4E*11 2.0«E+12 8.58e*ll 1.31E»13
DIAMETERS ARE CALCULATED HERF ACCORDING TO THE TASK GROUP ON LUNG OYNAMJCS DEFINITION
050 (MICRnMETFRS) ,,.M 8>3? fl-5(, ?§B6 2>,, „_„ 0>6e 0>J2
GEO. MEAN DIA. (MICPOMETERS) 5. i F M 0 8.20F.«io ?.37E*11 3.15EM1 1.I7EM2 «.2RE*11 S.03EM2
NORMAL (ENGIMFFRTNG .STANHARD) CONDITIONS. 4RF. 21 OtG C ANO 760MM HG.
SQUARE ROOTS nF PST Rr STAPE 0.32? O.JJ2 0.351 0.388 0.330 0.350 0.2T3
HOLE DUMETtRS RY STAGE (CE"T IMF TEHS ) O.JfaSfi 0.2065 0.1/20. 0.1360 0.0896 0.0719 0.0589
-------
CPPI-11 5-1P-77 PfiRT-C^ 1850 TMLET SAMPtF MODIFIED BRINK CASCADE I*PACTOR NUMHFH - B
TMPACTOR FLOWRATF = 0.0?9 ACFn IMPACTOR TEMPFR4TUKF a ?70.0 F = 13?.2 C SAMPLING DURATION = 50.00 MIN
IMpArTnw PRESSURE DPPP = 0.9 I". OF HC, STACK TF.MPFRATIJRF = ?70.o F = 132.2 c
ASSUMED PARTTCLF PF.NSITY s 2'.SP CM/CM.CM. STACK PRESSURE = 25,50 IN. OF HG MAX. PARTICLE DTAMF.TER ° 58.3 MICROMETERS
GAS COMPOSITION fPFRCENT) C02 s 13,26 CO e 0.00 N2 = 71.67 02 « U.75 H?0 • 10.30
CALC. MASS LOADING * 7.2288E-01 RR/ACF 1.28S9F+00 GR/ONCF 1.65U2F+03 MG/ACM ?.9«?3F+05 MG/ONCM
TMPATTOR STAT.E CVC SO SI 32 S3 S« S5 36 FILTER
STAGE INDEX NU^RFR 12SU56789
05fl CMJCROMFTERS) 11.?" 6.7S 3.63 2.36 1.52 0.71 0.5a 0.13
MASS (Mil I.IGPAHS1 ?h,97 1.70 2.OS 2.27 3,«3 2.6« 0,85 0.19 0.09
MG/DNCM/STARf 2,OOE*03 1.26E*02 1.52E+02 1.68F*0? 2.55E+02 l.«»6E«02 6.31E*01 1,U1E«01 6,66E*00
CUM. PFRCENT OF MASS SMALLER THAN 050 32,SP 28.66 23.56 17.03 1.62E-03
CUM. (GR/DNCF) SMAlLf THAN 050 NC*») 2.81E+03 5.69E+02 5.6«E*02 9.03E*02 1.33E*03 5.95F*02 3.?5E»0? ?,?ie*01 2.?2f»0l
DN/DLOGD fNn. PARTICLES/DNCM) 1.38F-+06 7.00E+OB 3.«6E»09 ?.99F»10 1.62E*lt a.39E»ll 1.83E*12 1,OSE*12 2,72E*1S
AERORYNAMIC DIAMETERS ARF CALCULATED HF.RE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
D50 (MICRUMFTF.RR1 17.13 10,30 S.5fe 3.6fl 2.36 1.1« O.S7 0.2J
GEO, MEAN DIA. (MtcPHMFTfRS) 3.89E+01 1,33F*0| 7.57E+00 a.50E*00 2.93E+00 1.6«f*00 9.97F-01 0.52E-01 1.65E-01
2.8lF+Oi 5.72E*02 5.68E*02 9.15E*02 1..35E+03 6.16E*02 5.57E+02 2.06E*01 2.22E+01
o.tpE + 07 u.b»E + np Z.SOE + O1' 1.<'2F. + 1P 1.03E+11 ?.68F*11 1.07F + 12 5.08E*ll
NORMAL (ENGINEERING STANDARP1 CONDITIONS APE ?1 DEC r AND 760MM HG,
SQUARE ROOTS OF PSI BY STARE n.?2? 0.3?? 0.3«<9 O.J30 0.30? 0.3US 0.1T5
HOLF DIAMETERS HY STAGE (CENT I ME TF.RS ) 0.3618 O.?uiu 0,'737 0.1366 0.0<>18 0.0719 0.0566
-------
CPPI-13 5-19-77 PfiPT-01 1015 INI.FT SAMPLE MODIFIED BRINK CASCADE IMPACTOR NUMBFR • C
IMPACTOR FLPHRATE = 0.050 ACF* IMPACTOK TEHPERATII»F = ?70.0 F s 15?.? C SAMPLING DURATION a JO,00
IMPACTOR PRFSSURF DROP s z'.e IN, OF HG STACK TEMPERATURE c ??o.o F s 13?.? c
ASSUME" PARTICLE PENSITY = 2.40 GM/CU.C"'. STACK PRFSSURF r 25.69 IN. OF HG MAX. PARTICLE DIAMETER f "58.3 MICROMETERS
GAS COMPOSITION (PFRCE«JT1 CO? e 1'i.on CO s n.OO N2 = 70.7 7 8«
H50 (MICROMETERS) 6.ah 5.12 2.77 1,73 1.32 O.SU 0.38 0,16
MASS (MILLIGRAMS) 59.3U 7.<>8 6.67 9.93 5.23 U.97 P.9B 0,55 0.36
MC/DMCM/STAGf ?,SUE*03 3.«2E»02 2.86E+02 fl,25E»02 2.20E+02 2.13E*02 a,20E+01 1,50E*01 l.5«E»01
CUM. PERCENT OF MASS SMALLER THAN 050 38,06 29,7U 22.77 12. 50 6.7UE-01 5.26E-01 4.03E-01 2.20E-01 1.23E-01 3.12E-02 1.31E-0? 6.69E-03
O
GEO, MF.AN OIA, (MICROMETERS) 2.22E+01 6.58E+00 3.76E+00 2.19E*00 l.SlE»00 8,«3E-01 U.55E-01 2,«6E-Ot 1.12E-01
OM/OLOGO (MG/DNCM) 3.03E*03 1.57E+03 1.07E403 2,08E»03 1.88E*03 5.50E«02 E.81F+02 3,906*01 5,12E»01
ON/DLOGP (NO. PARTTCLES/ONCM) 2,30F*08 U.57F.+09 1.67E+10 1.65E+11 4.5«E*11 7.62E»11 2,«9E*12 2.18E+12 3,06E*!3
AERODYNAMIC OIAMETFP8 ARE CALCULATED HF»F ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
D50 (MTCROMETERS) 1?,f>? 7.B2 0.26 2.68 2.05 0.87 0,6« 0,29
GEO. MEAN niA. (MICROMETERS) 3.37E + 01 I.OOE + Ol 5.77E + in 3,38F.tOO ^.35F»00 t.3
-------
CPPI-1U S-10-7? P.'jHT-C? 105? Th4|.FT SAMPLE MQOIFJFO BRINK CASCADE IMpACTOR NOMBfR • 0
IMPACTOR FLO*RATF = n.nUS ACFM I*PACTOR TFHPERATURF: = 270.0 F a 13?. J C SAMPLING DURATION a 30.00
JMPACTOR PRFSSURF OWOP = ?'. 3 In. OF Hf. STACK TFMPfRATuRF = 270.0 F = 132.2 C
ASSUMED Pi\RTTClF nFNSl'Y = ?'. 30 GM/CU.f>. STACK P&TSSURE = ?5.69 IN, OF HG MAX. PARTICLF DIAMETF.R « 5B.3 MlCROMETfPS
GAS COMPOSITION (PFRCEHT) CO? = la.on CO = 0.00 N? a 70,79 0? = ?.7l H30 « 12.50
CALC. MASS lOAni^r, = 1.7fel7F+nn GR/ACF J.1923E+00 CR/DNCF U.O%hOF+03 MG/ATM T.^OSOEtOl MG/ONCH
IMPACTOR STAGE CVC S« SI S3 S5 S« 35 86 FILTER
STAGF. JMDfX NUMBER 12^«56789
050 (MICROMETERS) fl.Ql 5.1R 2.05 J.89 1.27 O.S5 0 , « 1 0.11
MASS (MILLIGRAMS) M?.un T.OS 6.63 5.HU 2.6? 2.99 O.BU 0.19 O.ia
MG/ONCM/STAGf 6.30Et03 1.88E+02 3.15F+02 2.7PF.+02 1.27E+02 1.U2E+02 4.00E+01 9.04E+00 h.66E*00
CUM. PERCENT OF MASS SMALLER THAN 050 in.9.2«E*tl 1.P5E+IS
STANDARD) rOND! TIONS *RF ?1 DFG C ANn 760MM HG.
SOUARE ROOTS nF PST RY STAGF n.3?? 0.3?2 O.iaf, 0.3SU n.297 0.337 0.22fc
HOLE OIAMETEPS HY STAGF- < CENT I MF. T F«S ) 0.3560 O.?uh1 0.177B 0.13ISR 0.0^37 0.0739 O.OS50
-------
CPPI-15 S-l9-7f onH]-n? iisn
IMPACTOR FLUWRATC r n.na? ACFM
IMPACTOR pRFSSi'RF nnnp = ?.a IM, np nn
PAR1ICIF DFNSITV = 2.JO GM/Ct.l.O.
tNLFT SAMPLE Mnr>TFIEr> RWINK CASCADE IMPACTOR NUMBER •• B
IMPACTOR TFMPEPMURE = a?o,o F = 132.2 c SAMPLING DURATION B 30,00 HI*
STACK. TF^PFRATUT = 270.0 F = ii?.? C
STACK PHF SSllRF r 2S.h<> IN. OF WC MAX. PARTKLE OIAMETfR = 58.5 MICROMETERS
C.AS COMPOSITION (PFKCENT)
CALC. MASS i.OAniNr, = i
IMPACTOP ST»RE
STAGE INDEX NUMBFR
050 (MJCROMFTFRS)
MASS (MILUIRRAMSJ
C02
K R / A c F
= 1U.OO
CYC
i
8.79
99. ?9
CO
2.5035F. + I
SO
2
5.23
3.U9
= n.oo
10 GR/DNCF
SI
3
2.80
5.1?
S2
II
1.81
7.01
N2 = 7fl.7q
3.
53
5
1.16
5.3fe
02 3 ?.7l
MG/ACM
s« ss
<>7
0.53 O.ao
3.82 1.16
H20 •
12.50
5,7?8">E + 03 MG/ONCh
0
0
36
8
.07
.21
FILTER
9
0,08
a.59E+03 1,ME*02 2.37F+02 3.26E+02 ?.«flF+02 l.77E*02 5.36E*01 9.71E+00 3.70E+00
CUM. PERCPNT OF MASS SMALLER THAN nso 20,93 18.15 1«'.07 s,«7 «.2o i.ts o,23 0.06
CUM. (MG/ACM5 S
CUM. (MG/DNCM) SMALLE" THAN 050
CUM. (KR/ACF5 SMALLER THAN 050
CUM. (GH/ONCF) SMALLER THAN D50
GEO. MEAN DIA.
DM/OLOGO
ON/DLOGO
6.fe?E+02 5.7UE+0? U.45E»02 2.6flt+02 1.33E*02 3.65E*01 7,31E»00 2.02EtOO
1.20E+03 1.0UF*03 8'.06E*02 U.85F+02 2.10E+02 6.b2E»01 1,32F*01 3.65E*00
2.R9E-01 2.51E-01 1.9SE-OI 1.17E-01 5.R1E-02 1.60E-02 3.1"»C-03 8.81E«0«
5.2UE-01 0.50E-01 3.52E-01 2.12F-01 1.05E«01 ?.8<>E"02 5.78f-0% 1.59F-03
?,?hE*01 6.786*00 3.S3E*00 2.?5F»00 l.«5f+00 7.85E-01 «,58E-01 1.72E-01 5,Z7E»02
5.59E»03 7.17E+02 P.72E+02 1.73E*03 1.27E«03 5.21E*02 «,18E*02 1.3aE*01 1.23E*01
u.OOE+08 1.91Et09 1.29F*10 I.ZSEMI 3.«7F+11 fl.96E»ll 3.61E*12
AERODYNAMIC OIAMETfRS ARF. CALCULATED HERF ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
D50 fMICROMETERS) 13.32 7.99 «.3? ?,81 1.81 n.8b 0,65 0,15
GEO. MFAN DIA. fMir.PO«ETERS) 3.U3E+01 1.03E+OJ 5.fl6E*00 3.«8E+00 2.2feE*00 1.25F+00 7.SOE-01 3.13E-01 1.06E-01
DM/OLOGO (MG/DNCMJ 5.59E*13 7.27E+02 8.81F+0? 1.76F*n3 l,ilF*03 5.U5E*02 a.52E*02 1,51E»01 l,?3E*ftl
DN/OLOGO TNO. PARTTCLES/OHCM5 ?.6aE+rt8 l.?6E*09 fi.^UFfng 7.99E+10 2.I7E+11 5.55E*11 P.05E+12 9.a6E»ll 1.99EM3
NORMAL (FNGINEFRlMG STANHAP-n) CnNnlTTO'JS ARl 21 OEG C AND 760HH HG .
SQUARE ROOTS OF PSI BY STAGF n.i?? 0.3?2 0.309 0.3JO 0.302 0.3/45 0.175
HOLF r.TAMETERS BY STAKF (CFNT jMf TF PS ) 0.361B n.2«l« 0,1737 0.1366 0.0918 0,0719 0,0566
-------
CPP1-17 5-PO-77 P11PT-C3 11^0
IMPACTOH FLO*HATF = o.o«5 ACFM
IMPACTOR PRESSMHF DROP = 2.J IN. OF HG
ASSUMED PARTICLE DFNSITY = ?.i<> GM/CU.CM.
TNI. FT SAMPLE MnniFIFD BRINK CASCADE IHPACTOR NUMBER - 0
IMPALTHR TEMPERATURE = 370.0 F = 132.2 c SAMPLING DURATION a jo.oo MIN
STACK TfMPLRiTuRF = ?70.0 F = 13?. 2 C
STACK PPFSSIIHF = ?«i.6o T*. OF MG MAX. PARTICLE DIAMETER » 58.3 MICROMETERS
GAS COMPOSITION (PFRCENT)
CAI.C. MASS LOADING s 8.10pnE-01 GB/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
050 (MICROMfTERS)
MASS (MILLIGRAMS)
MG/ONCM/STAGE
CUM. PF.RCENT OF MASS SMALLFR THAN DSD
CUM. (HG/ACMl SMALLER THAW 050
CUM. fMG/DNCM) SMALLER THAN D50
CUM. (GR/ACF) SMALLFR THAN D50
CUM. CCR/DNCF) SMALLER THAN 050
GEO. MEAN DIA. (MICROMETERS)
DM/DLOGO (MG/OWCM)
ON/PLOGD (NO. PARTICLES/ONCM)
12.70 CO s n.OO
1.05S9F+00 GH/ONCF
N2 s 72, hB 02
1.8550E+03 MQ/ACM
2.H2 H20 » 1J.80
l.-«31SFt03 MC/ONCM
p
«7
?
CYC SO
I 2
,9U 5,19
,1? a.1"
,23Et03 2.3JE+0
2
3
2 1
SI
3
'."«
.06
.15E+02
1
h
3
S2 S3
« 5
,<»0 1.2B
.57 5.2U
.01E+02 2,flflF+0
0
2
2 1
SU 1.99 ft. 89 0.6P 0.21
GEO. MEAN DIA. (MICROMETERS-) J,U6h+01 1.0«E*01 5.9BF»OP 3.6«E*00 2.«2E*00 1.33E+00 7.78E-01 3.81E-01 1.51E-01
DM/DLOGD (MG/DNCM) - 2.7qE*03 l.nOE+03 5.90E+0? 1.62E*03 l.«7E+03 O.OOE*02 6.15E+02 8.43E+00 2.0«C»Ol
(NO. PAPTlrl.FS/DNCM) 1.26F + 08 1.71F*09 5.?7F. + np 6,U1E*10 l.9flE*ll 3.?3E + 11 2,fl9E*12
NORMAL (ENGINEERING STANDARD) CONDITIONS APF 21 DEG C AND 760M* HG.
SQUARE ROOTS OF PST BY STAGF ft. 132 0.32? 0.116 0.35" 0.297 0,317 0.226
HOLE DlAMf.TfPS HY STAGE ( CENT I Mf TFRS ) 0.3ShO 0.2U6) 0.177fl 0.1368 0.0937 0.07S9 0.0550
-------
so
2
6.20
?.02
SI
^
3.37
2.67
S?
tt
2.11
«.71
S3
5
1.61
".23
34
6
0.67
3.16
S5
7
0.09
1.03
36
8
0.23
0.11
CPP1-IP s-?"-77 PDRT-D3 12*13 TNLFT SAMPLE MODIFIED KHINK CASCADE IMPACTOR NUMBER - C
IMPACTOP FLDUPATF = 0,035 ACFM JMPACTHP TEMPERATURE = ?70.o F = 13?.? C SAMPI ING DURATION s 30.00
IMPACTOW PRESSURE DPOP s )'.3 IN. OF Mi; STACK TF MPER A Tl.lRf = ?70.0 F - Ii2.? C
ASSUMED PARTICLE OF.NSITY = ?'.jn GM/T'I.O. STACK PHPSSURF = ?5.h<» IN, OF HG MAX. PARTICLE DTAMFTER = se.i MiCROMf.TtRS
GAS COMPOSITION fPFRCt'NT) Cn2 = 12.70 CO s 0.00 N2 c 7?.hfl 02 s 2,8? H20 a 11,80
CALC. MASS LOADING o 7.9?S2t-01 GR/ACF l.«230F + 00 GR/ONCF 1.8M6E*03 MQ/ACM J,25«>«E + 03
IMRAr.TnR STAGE CYC SO SI S? S3 S« 55 36 FILTER
9TAGF. INDEX NIIMBFH ] 2 % a 5 6 7 8 9
050 fMlCROHFTEHS) 10. ?1
MASS (MILLIGRAMS) 3«. «8 ?.? 2.67
-------
CPPI-1V ^-20.77 Pfipr.C'l 1320 TNLFT SAMPt F MODIFIED BRINK CASCADE IMPACTOR NUMBER - B
IMPACTOR FLOWP.ATF s n,osi *CF% IMPACTCIR TCMPEKAT'IRE = 270.0 F = 13?.2 C SAMPLING DURATION c 30.00 MJN
TMPACTOR PRFSSURF r>RDP = 2.9 IH, nF HG STACK TF"PFRATi|Rp r 270,0 F = 132.? C
ASSUMFrt PARTICLE DENSITY = ?.'.30 GM/r.'l.rM. STACK PRESSURE = 25.69 IN. OF HG MAX. PARTICLE DTAMFTER = 58.3 MICROMETERS
GAS COMPOSITION (PERCENT) C02 = 1?.70 CO = 0.00 N2 a 72.68 02 = 2.82 H20 * J1.60
C4LC. MASS LOADING c 2.59Jfef+00 Gfl/ACF U.2980F+00 GR/DNCF S.U77aE+03 MG/ACM 9.8552F»03 MG/ONCM
IMPACTOR STAGE CYC so si S2 53 s« ss st FILTER
STAGF INRIX NUMRFR 123U56789
050 fMICROMETFRS) S.ai "5.00 2.67 1,73 1.10 0.50 0.37 0.07
MASS (MILLIGRAMS) 187.a9 13.10 12.69 1U.69 a.Ufl a.50 0.92 0.20 0.21
MG/ONCM/STAGE 7,85E+03 5,«8E+02 5.31E+02 6.15E+02 1.86E+02 1.88E*02 3.85E*01 8.3TC*00 8.79E«00
CUM. PERCENT OF MASS SMALLER THAN 050 21,30 15.RO 10.U8 U.31 2.U5 0.56 0.17 0.09
CUM, (MG/ACM) SMALLER THAN OSO 1.17E+03 8.66F+02 5.7«E+02 2.16E*02 1.3UE+02 3.06E+01 9,a3E+00 fl.8JF«00
CUM. (MG/DNCM) SMALLER THAN 050 2.10E+03 1.55E+03 1.03E+03 «.2«E»02 2.U1E+02 5.fl9E»01 1.69E+01 8,67E*00
CUM. tGR/ACF) SMALLER THAN 050 5.10E-01 3.78E-01 2.51E-01 1.03E-01 5.86E-02 l.3«E»02 0.12C-03 2.11E-OJ
CUM. (GR/DNCF) SMALLER THAN 050 9.16F-01 6.79E-01 fl.50E-01 1.85F-01 1.05E-01 2.aOE-02 7,«OE-03 3.T9E-OJ
CEO. MEAN DIA. (MICROMETERS) ?.2lEf01 6.«8E*00 3.66E*00 2.15EtOO 1.3BE»00 7.05E-01 a.32E-01 1.57E-01 0.69E-08
DM/OLOCO (KS/ONCH) 9,?3E»01 2.H3E+03 1.95E+03 3.26E+03 9.52E+02 5.51E+02 2.9SE»0? 1.12E*01 2.92E»01
UN/DLOGD (NO. PARTICLES/DNCM) 7,iaF+08 7,aoE+09 3.32E+10 2,72E*11 2.99E*11 l.ltE*12 3.03E+12 2.J9E+12 2.35E+18
AERODYNAMIC DIAMETERS ARF CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
050 (MICROMFTERS) 12.75 7.60 a'.ll 2.68 1.73 0.82 0,62 0.13
GEO. MEAN DJA. (MICROMETERS) J.^EtOl 9.87E+00 S.61E»00 3.32E+00 2.15E+00 1.19E+00 7.11E-01 ?.89E-01 9.S3E-02
DM/DLOGD (MG/ONCM) . 9.33F+OS ?.«7E+03 1.97E+03 3.31E+03 9.76E*02 5.78C*02 3.20E+02 1.26C»01 2,98E»Of
•DN/DLOGO (NO. PAPTTrL£S/1>orM) a.7lF+OB U.90E+09 2.10E+10 1.73E+11 1.87E+H 6.57E*11 1.70F+12 1,OOE*12 6,uaE*13
NORMAl (FNGINFERING STANDAPni CONDITIONS ARE ?1 DEC C AND 760MM HG.
SQUARE ROOTS nF PSI BY STAGF 0.^2? 0.32? 0.3a9 0.330 0.30? 0.3«5 0,175
MOLl' DlAMFTfRS BY STAGE CCFN r IMFTf.«S) 0.161B 0.2aiu 0,1-737 0.1366 0.0918 0,0719 O.OS66
-------
Ul
CPPO-3 5-17-77
IMPACTOR FLOWPAIE s o.5ho ACFM
IMPACTPR PRFSSURF OPOP = i'.« IN. OF
»SSU«En PARTlCLt DFMSITV = 2.JO
GAS COMPOSITION fPFPCENT) CO?
CALC, MASS LOAniNR = 1.1603E-02 GR/ACF
IMRACTOR STAGt
STAGE INDEX NUMHFR
D50 (MlrROMETE«5)
MASS (MILLIGRAMS)
MG/DSCM/ST»GE
CUM, PERCENT OF MASS SMALLER THAN 050
CUM. (MG/ACM) SMAl LtP THAN 050
CUM, (MG/DNCM) SMAILE" THAN 050
CUM. (GR/ACF) SMALLER THAN D50
CUM. (SR/DNCF) SMALLER THAN 050
GEO, MEAN DJA. (MICROMETERS)
ON/DLOCD (MG/DNCM)
ON/DLOGD fNO. PARTICLES/ONCM)
4EBOOVNAMIC DIAMETERS ARE CALCULATED HERE
030 (MICROMETERS)
GEO. MFAN DIA. (MICROMETERS)
DM/DLOGD (MG/D^'CM)
DN/DLOGO (NO. PARTTCLES/DNCM)
OUTLFT SAMPLF U. OF U. MARK III SOURCE TEST IMPACTOR NQ. - A
IMPACTOR TEMPERATURE = 202.0 r = 94.4 c SAMPLING DURATION e 60,00
STACK TEMPfRiTlJHE = 202.0 F = 1U.U C
STACK PRKSSURF r ?h.50 IN. OF Ht; MAX. PARTICLF OIAMF.TEH » «0.2 MICROMETERS
= 1?.00
N? = 64.52 02 « 4.03
2.6644F+01 MG/AfM
SI
1
7.33
2.?*
S4
4
14
42
S5
5
0.72
2.42
S6
6
0.00
6,34
87
7
0.17
5,99
FILTER
8
16,36
CO = 0.00
2.0123E-02 GR/DMCF
S2 S3
2 3
7,3? 3.27
0.00 0.0!
3.12F+00 n.OOE-01 1.3BF-02 5.BOE-01 3.34E+00 H,76E*00 8.27E»00 2.26E»01
93.31 93,31 93.28 92.0« 84.88 66.12 48.00
2.19E + 01 ?.,U9E + 01 2.49F + 01 2.4bF+01 2.26E + 01 1.76E + 01 1.29E»Oi
4.30E+01 U,30E»Ol 4.30E+01 «.2UE*01 3.91E+01 3.04E+01 2.23E+01
1.09E-02 1.09E-02 1.09E-02 1.07E-02 9.88E-03 T.70F-03 5.64t«03
1.86E-02 1.B8E-02 1.8BE-02 1.85E-02 1.71E-02 1.33E-02 9.74E-03
1.72E*OI 7.33E+00 4.89E+00 1.93E^OQ 9.05E-01 5.33E-01 2.5TE-01 1.18E-01
fl.22E*00 O.OOE-01 3.95E-02 1.27E+00 1.65E*01 3,40E*01 2.20C*01 T.SOEfOl
6.93E+05 O.OOF-01 2.BOE*05 l.a6E*Ofl 1.85E+10 1.86E*11 1.07E*12 3.82E*13
ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
11.17 11.15 5.01 1.7B 1.13 0.65 0.30
P.61E+01 1.12E+01 7.U7E+00 2.99F»00 1.02E*00 H.58E-01 4.39E-01 2.10E-01
F*07 1.14F. + 10 1,09E»11 5,50E»11 1.50F + 13
M20 a 19.15
NORMAl (ENGINFERJNG STANn«9[)) CnNDTTInNS ARF 21 DF.G C AND 760MM Hf,.
SOUAPF ROOTS OF PSI B^ STARE 0.1«« 0.3^0 0.371 0.271 0.30fl 0,373 0.3U9
HOLE nTAMfTfRS RV STAGE (CENH*F.TF HS) 1.R237 O.S768 0.2501 0.0806 O.OS?« 0.0333 0.021S
-------
Ch
s-17-7/ prjpr-.s isis
IMPACTPR FLMWHATF = o..43o »CFM
pRtssi'RF IIHOP = 0.5 IN. OF MR
PABTTCI E nFNSTTV r ?.3n GM/LU.r
GAS COWPOSTTInN fPFRCENT) CO?
CALC. MASS LOATTNG = 2.79UE.O? GR/ACF
IMPACTOR STAGE
STAGE
D50
MASS
MG/OSCM/STAGF
CUM, PERCENT or *ASS SMALLER THAN oso
CUM. (MG/ACM1 SMALLER THAN 050
CUM. CMG/DNCMJ 8MALLER TH** 050
CUM. (GR/ACF5 SMALLER THAN 050
CUM. (GP/nNCF) SMALLER THAN 050
GEO. MEAN OIA. (MICROMETERS)
DM/DLOGD tHG/ONCM)
(NO. PARTTCLES/DNCM)
OIITLFT SAMPLF II. OF w. MARK IIT SOURCF TEST IMPACTOR NO, • C
ThMPF.RATIIRf = ?02.0 F = 9«,u c SAMPLING DURATION a 32,00
STACK TFMPFKATURF = ?0?,0 F = 90.'J C
STACK PHFSSURf s 2A.SO IN. OF HG MAX. PARTICLE DIAMETER = SO.? MTCROMFTERS
= 12.00
N? s 6«.52
6.387«E*01
02 s u.03
SI
1
o.5f>
2.35
su
a
1 ,80
0,1 tt
ss
5
0.9(1
3.U5
S6
6
0.66
3.90
S7
7
0.21
2.88
ens n.oo
U.8PU2E-02 GR/DNCF
S? S3
2 3
9.83 U. IB
o.n? o.ni
1.38E»01 1.17F-01 S.R6F-02 1.05F+00 2.02E+01 2.28E*01 1.69F. + 01 3.70E*01
87.70 87.59 87. 5« 86,60 68.53 18.12 33. 0«
5.60E+01 5.59E+01 5.59E+01 5.53E+01 U.3SF+01 S.07E+01 2.11E+01
9.68E*01 9.67F»01 9.66E+OJ 9,5fef+oi 7.57E*01 5.31E+01 3.65E*01
2.U5E-02 2.««E-02 2.««E-02 2,«2F.-02 1.91E-02 l,3at-02 9,?2E-03
«.23E-02 U.23E-0? a.22F-02 1.1BE-02 3.31E-02 ?.32E-02 1..59E.02
1.96E+01 9.71E+00 6.U1F+00 2.75F+00 1.30E*00 7.88E»01 a.OlE-01 1.72E-OJ
2.21E+01 -l.nuE«01 l.SflE-01 2,89F*00 7.16E+01 1.«8E*02 5.90F+01 1.25E*02
2.«3E+Ob -9.0!Et06 U.97E*0C5 1.16E+08 2.69E*10 ?.51Ettl 5.02E+11
H?O s 19.as
1.1039F. + 02 MG/DNC*
FILTER
a
AERODYNAMIC OIAMfTFRS ARE CALCULATED HF.RE
050 (MICROMETERS)
GEO. MEAN DIA. (MICROMETERS)
. DM/DL060 (MG/DNCM) .
ON/Dl.OGn (NO. PARTICLES/DNCMl
ACCnRPING TO THt TASK GPnUP ON LONG DYNAMICS
1«.58 tU.96 6.39 ?.7« l.«8 1,05 O.U2
2.98F»0) ^1 .U8F + 01 9.78E*00 «,22F»00 2.03E + 00 l,21E + nO 6.60F-01 2,9flE-01
2.22E»01 «l,n«E+01 1.58E-01 2,9?E+00 7.33F+01 1,5«E+02 «.?OE»01 1.23E+02
1.60F+06 -h,17E+06 3.21E+05 7.aaF+07 1.68E+10 1.53E+M 2.79E+11 9,22E*12
NORMAL fFNGINFFRlMP- STANOAROl COMDITtn*S »PE 21 DEC C AND 760MM HG,
SQUARE ROOTS OF PSI BY STAGF 0.1«« 0.33" 0.371 0.320 0.295 0.36J 0.312
HOLE OIAHFTF.HS BY STAUE t CE^ II Hf TF.H51 1.8237 O.S87a 0.2«S9 0,0807 0.053? 0,0376 0,02bO
-------
CPPO-6 5-IB-77 POP1-1,? 1335
IMPACTOR FLOWRATF = 0,310 ACFM
IMPACTOR PRFSSURF nROP = 0'.« IN, np HG
ASSUMED HARTicir. OFWSITY = 2.30 GH/CU.CM'.
INLFT SAMPLE LI. PF w. NIAHK III SOUHCH TFST IMPACTOR NO. • A
IMPACTOR UMPERATURE : 205.0 P = 96.1 C SAMPLING DURATION m 80.00 MIN
STACK TFMPEHftTURE * 2fl5.0 F a 96.1 C
STACK PKPSSHRE = ?6,66 IN. OF HG WAX. PARTICLE DIAMfTFR •
GAS COMPOSITION (PERCENT) CO? e 11.79
CAIC. MASS lOAniNr, = 9.i??5E-oj GR/ACF
IMPACTOR STAGE si
STAGE INDEX NUMBER 1
050 (MTCROMKTEP5) 9.95
MASS (MILLIGRAMS) 3.06
MG/OSCM/STAGF
CUM. PERCENT OF MASS SMALLER THAN 050
CUM. (MG/ACM) SMALLER THAN 050
CUM. (MR/DNcM) SMALLER THAN oso
CUM. (GR/ACF) SMALLER THAN DSO
CUM. (GR/ONCF) SMALLER THAN 050
GEO. MEAN DIA. (MICROMETERS)
DM/DL060 (MG/DNCM)
DN/DLOGD (NO. PARTICLES/ONCM)
CO = 0.00
1.5269E-02 GR/DNT.F
52 S3
2 3
9.94 ti.Ub
0.00 0.00
N2 = 67.69 02 s 5.57
a.0875E+01 MG/ACM
00.2 MICROMETERS
H20 a If
35
S
t .00
0.02
Rh
6
0.58
1.37
37
7
0.?6
2.67
FILTER
8
7.5«
0.00
O.OOE-01 O.OOE-01 O.OOE-01 0.83E-0? 3.31E+00 6.U5F»00 1.82E+01
79.13 79.13 79.13 79.13 , 78.99 69.65 51.U3
1.65F*01 1.65F+01 1,65E*01 1.65F>01 1.65E+01 l.a5E»01 1.07E*01
?.76E*01 2.76E+01 2.76E+01 2.76E+01 2,76E*Ol 2,U3E*01 l.«OE»01
7.22E-03 7.22E-03 7.22E-03 7.22E-03 7.21E-03 6.35E-03 tt.69E.01
1.2IE-02 1.21E-02 1.21F-02 1.21E-02 1.21E-02 1.06E-02 7.65E-03
?.OOE*01 9.95E*00 6.66E*00 2.65E*00 1 .26E + 00 7.61E-01 3.91E-01 1.87E-01
1.22E+01 O.OOE-01 O.OOE-01 O.OOE-01 2,«6C-01 1,3BP*01 1.90F+01 fc.05E*01
1.27E+06 O.OOE-01 O.OOE-01 O.OOE-01 1.02E+08 2.60E+10 2.65E+11 7.67E*12
AERODYNAMIC OIAMETF.RS ARF CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
050 (MICROMETERS) 15.15 15.1? 6.fll 2,«tt 1.57 0.92 0.05
GEO. MEAN DIA. (MICROMETERS) 3.0«E*01 1.51E*OJ 1.0IE*Ol a.O«F.*00 1.96F*00 1,20E*00 6.U3E-01 .3.17E-01
DM/DLOGD (MG/HNCM) 1.P2F+01 O.OOE-01 O.OOE-01 O.OOE-01 2.52E-01 l.a3E+01 2.06E+01 6.05C*01
nN/OLOGD (NO. PARTTCLES/DNCM) B.32F+05 O.OOE-01 O.OOF-01 O.OOF-01 6.U1F+07 1.57E+10 1.U8E+11 3.6«E*12
NORMAL (ENGINEERING STANDARD) CONDITIONS APE 21 OEG C AND 760HM HG.
SQUARE ROOTS OF PSI BY STAGE n.tUU 0.330 0.371 0.271 O.JOP 0.373 0.3U9
HOLE niAMF.TERs HY STAGE (CENTIMETERS) 1.H237 o.576« n.25oi o.oson o.os2« 0.0333 0.0215
-------
(Tl
00
CPPO-7 S-lfl-7/ PORT-0.5 1331
IHPACTOR FLOKP«TF = O.«50 ACFM
IMPACTOR P»F_SSURF DROP = 0.9 IN. nF HG
ASSUMED PAHtrci.fi DFMSITY = a'.io GP/CU.CM
GAS COMPOSITION fPFRCENT) C02
CALC. MASS LOADING = 6.709UE-03 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBFR
oso CMICROMF.TERS)
MASS (MILLIGRAMS)
MG/OSCM/.8TAGE
CUM, PERCENT OF MASS SMALLER THAN oso
CUM. CMG/ACM) SMALLER THAN D50
CUM. tMG/DNcM) SMALLER THAN 050
CUM. (GR/ACF) SMALLER THAN 050
CUM. (GR/ONCF) SMALLFR THAN n50
6EO. MEAN OIA. (MICROMETERS)
OM/OLOGO (MG/ONCM)
DN/OLOGD (NO. PARTICLE8/DNCM)
AERODYNAMIC DIAMETERS ARE CALCULATED HERE
D50 (MICROMETERS)
GEO. MEAN DIA. (MICROMETERS)
DW/DLOGD (MG/ONCM)
ON/01.OGD (NO. PAPTICLES/DNCM)
INLFT SAMPLE U. OF K. MARK III SOURCE TEST IMPACTOR NO, - 0
JMPACTOH TfMptRATURE = 205.0 F s 96.1 f. SAMPLING DURATION = 78.00
STACK TFMPERaTtlRF. * 2nS.O F « 96.1 C
ST4CK PRFSSURE = 26.6iS IN. OF HG MAX. PARTIClF DIAMFT£R =
= 11.79
N2 r 67.69 02 a 3.57
1.5353E+01 MG/ACM
SI
I
fl.2tt
2.10
sa
u
1,49
0.04
S5
5
0.78
0 ,UH
S6
6
0,08
1.1"
S7
7
0.18
4.16
40.2 MICROMETERS
H?0 B 16.95
2.5698E*01 MO/DNCH
FILTER
8
T.29
co = o.oo
1'. 1230F-02 GR/ONCF
S2 SI
2 3
H.18 3.71
0.00 0.00
3.58E»00 O.OOE-01 O.OOE-Ol 6.S3E-02 9.19E-OI 2,03f*00 7.106*00 1.24E+01
86.24 66.24 86. 24 89,96 62. A3 75.03 47.77
1.32E+01 1.52F«Ol 1.32E+01 1.32E+01 1.27E*01 1.15E+01 7.33E«00
2.22F»01 2,22E*01 2.22E*01 2.21E*01 2.13E*01 1.9JE»01 1.23E+01
5.79E-03 5.79F-03 5.79E-03 5.77F.-03 5.56F-03 5.03E-03 3.2lE«05
9.68E-OJ 9.6AE-03 9.6»E«03 9.66E-Of 9.30E-05 8.03E-03 ?.3feE-03
1.82E+01 6.21E+00 5.51F*00 2.35C+00 1.08E*00 6.08F-01 2.90E.01 1.25E-C1
5.21E+00 O.OOE-01 O.OOE.Ol 1,736-01 2.89F+00 9.52E+00 1.66E»Ot «.13E+01
7.17E + 05 O.OOE-01 O.OOE-01 1.10F.*07 1.92E*09 3.S1E*10 5.6lE*H 1.7aE*13
ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
12. "55 12.45 5,67 2.31 1.23 0,77 0.31
2.77E+01 1.25E+01 8,U1E*00 3.62E+00 1.68E+00 9.71E-01 4.91E.01 2.22E-01
S.22E*00 n.OOE-01 O.OOE-01 1.75E-01 2.97C*00 1.00F*01 1.82F+01 fl.t3E»01
4.71E + OS O.nOE-01 O.OOF.-01 7.03F + 06 1.19F + 09 2.09EMO 2.9aE+ll 7.23C*12
NORMAL (F.NGINEERING STANDARD) CONnTTInNS APE 21 DEC C AND 76QHM HG.
SQUARE ROOTS nF PSI BY STAGF 0.1«« 0.330 O.J71 0.319 0.321 0,389 O.JS4
HOLT DlAHFTFRS BY STAGE fCE^TJMfTFRS1 1.8237 0.57U3 0.2512 0.0793 0.0«95 0,0330 0.0229
-------
I S-18-77
IMPACTOR FLTI^RATE a o,«)o
IMPACTOP PRFSSUPF npoP = 0.8 IN. OF HG
ASSUMED P»RTICIE DENSITY = ^.jo GM/CU.O
GAS COMPOSITION (PERCENT) CO?
CALC. MASS LOADING = 9.3569E-03 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
MASS (MILLIGRAMS)
MG/DSCM/STAGE
CUM, PERCFNT OF MASS SMALLER THAN DSO
CUM. CMR/ACM) SMALLER THAN 050
CUM, (MG/ONCM) SMALLER THAN 050
CUM, (GR/ACF) SMALLER THAN 050
CUM. (GR/DNCF) SMALLER THAN D50
GEO. MEAN DIA. CMJCROMETERS)
SAf Pi E II. OF w, MARK Til SnUHCF TFST IMPACTOR NO, - C
TE.WPEKATUPF = 205.0 F = 9h.i c SAMPLING DURATION » 7e,oo
STACK TKMPhRAUlRF = 205.0 F a 96.1 C
SUCK PRESSURE = ?h.6h IN. OF HG MAX. PARTTClE DIAMETER = aO.2 MICROMETERS
= 11.79
N2 s 67,69 02
?,i«i2E*oi MG/ACM
3.57
SI
1
A.64
1 .83
SO
li
1.62
0.1U
' S5
S
0.8U
0.3H
S6
6
0,58
2.67
S7
7
0.21
6.73
7.56
DN/DLOGD (NO. PARTICLES/DNCMI
CO B 0.00
1.5662E-02 GR/DNT.F
S? S3
2 3
8.87 3.7h
0.00 O.Pfi
3.«3E+Oo O.OOE-01 1.50E-01 2.62F.-01 7.12E-01 5.00E+00 1.26E*01 1,«2E*01
90.56 90.56 90.15 89.a5 B7.U7 73,70 3B.99
1.9UE + 01 1.9UE + 01 1.93E + 01 1.91F. + 01 l.B7E*01 1.5BE + 01 8.35E + 00
3.25F+01 3.25F*01 3.23E*01 3.20E+01 3.13E*01 2.6«E«-01 l.«OE*01
fl.«7E-03 8,a7E-OS B.aUE.03 8.37F.-03 8.1BE-03 6.90E-03 3.65E-03
1.A2E-02 1.02E-02 1.41E-02 l.aOE-02 1.3TC-02 1.I5E-02 fe.llE-03
1.B6E+01 8.76E+00 5.78E+00 2.«7F*00 1.17E+00 7.01E-01 3.50E-01 1.4BE-OJ
5.1«E+00 O.OOE-01 U.03E-01 7.16E-01 2.50E+00 3,17E*01 2,B3E*01 tt,TOE*01
6.59E*05 O.OOE-01 1.73E+06 3.95E+07 1.31E+09 7,63E*10 5,«9E*M 1.2lE»13
H20 • 16.95
3.5B39F+01 MG/DNCH
FILTE"
B
AERODYNAMIC OIAMETFBS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
050 fMITROMETFRS) 13.lh 13.50 5.7h 2,50 1.3? 0.93 0.16
GEO, MEAN DIA. (MICROMETERS) 2.83E+01 1.33E+01 R.8?F+00 3.POE+OC 1.82E+00 1.11E+00 5.B2E-01 2.57E-01
OM/OLOOn (MG/DNCM) 5.I5E*00 O.OOE-01 fl.05F-01 7.25E-01 2.57E4.QO ?,31E+01 3.07E+01 «.70C+01
DN/DLOGn (Nfi. PARTICLES/ONCM) «.33E*05 O.OOE-P1 1.13F+06 2.53E+07 8.13E*08 a,61F»lfi ?.9BE*11 5.3JE+12
NORMAL (EMGINFFWING STANnARO) CONOTTIONS iRE ?1 DFG C AND 76QMW HP,.
SQUARE ROOTS Of PSI BY STAGE n.KIU n.^10 0.^7) 0.320 0.295 0,363 0.312
HOLF DIAMETERS BY S1AGF (CFNTIMETFHS) 1.8237 0.5B7U 0.2«59 0,0807 0.0532 0.0376 0.0260
-------
fPpp-10 5-1"-77 PORT-? 1059
IMPACTOR FLO^WATT s o.^?o ACFM
IMPACTOR PRESSI'kF DROP = O.b IN, OF" HG
ASSUMED PAKTICI I- nCNSl'Y = ?.^n KM/CU.CM'.
GAS COMPOSITION (PERCENT) CH2 =
CALC. MASS LEADING 3 8.nSJfll-03 RR/ACF
IMPACTDR STAGE
STAGE INDEX Nl'KBFR
MASS (MILLIGRAMS)
MG/DSCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN 050
CUM. (MG/ACM) SMALLER THAN 050
CUM, (MQ/ONcM) SMALLER THAN 050
CUM, (GR/ACF) SMALLER THAN 050
CUM, (GR/ONCF) SCALIER THAN D50
GEO, MEAN DJA. (MICROMETERS)
INLET SAMPIF u. OF «. MARK TII SOURCT TEST IMPACIOR NO. .
IMPACTOR TPMRERATIIRT s 205.0 F s 96.i r. SAMPLING DURATION « BO.OO
STACK TrMPF:RATliRF a 205.0 F * at>.\ C
STACK PRFSSllRE • ?*>,69 IN, OF HG MAX. PARTICLF DIAMETfR e ao,2 MICROMETERS
11 .59 CO f 0.00
\ .3705E.-0? GR/PNCF
S? S3
2 3
9.76 fl.38
o.oo o.on
SI
1
9.77
N2 s 66.01
1,fl«30E+Ol
$H S5 S6
u 5 6
1.55 0.98 0.57
0.00 0.00 1.70
02
ti.OQ H20 B 18.00
3.I361E+01 MG/DNCM
FILTER
8
DN/DLOGD (NO, PART TCI.ES/DNCM)
AERODYNAMIC DIAMETERS ARE CALCULATED HERE
D50 fMJCROMETEPS)
GEO. MEAN DIA. (MICROMETFRS)
DM/DLOGD (MG/ONCM) .
DN/DLOGO (NO. PARTICLES/DNCM)
S7
7
0.26
2.R5 B.36
1.07F+00 n.OOE-01 O.OOF-01 O.OOE-01 O.OOE-01 U.OOE+00 6.7BE+00 1.99E*Ol
96.63 96.63 96.63 96.63 96.63 83,91 62.57
1.78E+01 1.78E+01 1.7BE+01 1.7HF+01 1.78F+01 1.55E+01 I.ISE^OI
3.03E*01 3.03E+01 3.03E+01 3.03F+0) 3.03E+01 2.63F+01 1.96E*01
7.78E-03 7.7SE-03 7.7BE-OJ 7.76E-03 7.7«E-03 6.T6E-03 5.00E-05
1.32E-02 1.32F.02 1.32E-02 1.32F-02 1.32C-02 1.1SE-02 8.58F.OJ
1.9HF+01 9.76E+00 6.53E+00 2.60E+00 J.23E+00 7,a6E-01 3.B2E.01 1.83E-OI
1.70E*00 n.OOE-01 O.OOE-01 O.OOE-01 O.OOE-01 l,66r+01 1,99F»01 6.6lE*01
1.86E+05 O.dOF-01 O.OOE-01 O.OOE-«1 O.OOE-01 3,37E»10 2.97F*M 9.01E+12
ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
1U.87 I
-------
S-19-77
TMPACTOR FLOWPATF K 0.3SO ACFM
IMPACTOR PRESSURE H»nP s 0.5 IN. DF HG
ASSUMED PARTICLE nFNSlTY = 2'.3o GM/r.n.r.M.
GAS COMPOSITION (PERCENT) C02 =
CALC. MASS Ll'AOING c R.11S5E-03 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DSCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN 050
CUM, (MC/ACM) SMALlER THAN 050
CUM. (MG/ONCM) SMALLER THAN D50
CUM. (GR/ACF) SMALLER THAN 050
CUM. (GR/oNrF) SMALLFR THAN n%o
GEO. MFAN DIA.
DH/DLOGD
(NO. PARTTCLES/DNCM)
INlfT SAMPlE U. OF W, MARK III SOURCF TEST 1MPACTOK NO. * C
IMPACTPR TEMPERATURE = aob.O F = 96.1 c SAMPLING DURATION s 80,00 MIN
STACK TEMPERATURE = ?os.o F s <»6.i r
STACK PRESSURE = ?h.6t> IN, OF Hf, MAX. PARTICLF DIAMETER = aO,2 MICROMETERS
H20 • 18.00
3.1613E+01 MG/ONCM
FILTER
8
.59
SI
1
30
28
CO
1.3M5F-I
S2
2
9.59
n.oo
a 0.00
)2 GR/ONCF
S3
3
a. 07
n.oo
30
a
1.76
o.oa
"I? e 66.01
1 .H578E+01
55
5
0.92
o.ia
02
MG/ACM
S6
6
0.60
l.?3
= ".
S7
7
0.23
6.19
6.as
6.09E-01 O.OOF-01 O.OOE-01 8.70F-02 3.05F-01 2.68E+00 1.35F*01 1,09E*01
98.10 98.10 98.10 97.83 96.B6 88,93 a6,50
1.B2E+01 1.82E+01 1.82E+01 1.B2E+01 l.BOF+01 1.6aE*01 S,6aE+00
3.10E*01 3.10E+01 3.JOE+01 3.09E*01 3.06E*01 2.BOE+01 I,a7f+01
7.96E-03 7.96E-03 7.96E-03 7,9aE-03 - 7.87E-03 7.19F-03 J.78E-03
1.36E-02 1.36F-02 1.36E-02 1.35E-02 1.3flE-02 1.22F-0? 6.a2C-03
1.9UF+01 9,a6E400 6.25E»00 2.67E+00 1.27E*00 7,66E»01 3.8BE-01 1.66E-01
9.61E-OI O.OOE-Ol O.OOC-01 2.38E-01 l,0ae+00 1,7?E*01 3.09E+01 «,«5C»01
1.10F+05 O.OOE-Ol O.OOE-01 1.03F»07 a,39E+Ofi 3.19F+10 a,aOE+ll 8,97E*12
AERODYNAMIC DIAMFTFRS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
D50 (MICROMETERS) 1U.21 10.59 6,23 2,71 l.au 1,02 O.ao
GEO. MEAN DIA. (MICROMFTF.RS) P.90E + 01 1.00E + 01 9.5JE*00 a.HF + 00 1.97E + 00 l.21E*00 6.UOE.01 2,8«E-Ot
DM/DLOGD (MG/DNCM) 9.63E-01 O.OOE-Ol fl.OOP-01 2,aiF-01 1.10E*00 1,79E*01 3.3aE*01
-------
M
CPPfJ-13 S-19-77 Pf)PT-U,5 1057
IMPACTOR FLOKRATF = o.uso ACFM
IMPACTOR PRESSURE DM/OP = O.H IN. OF HG
ASSUMED PARTICLE DENSITY = 2'.JO GM/f.U.O
GAS COMPOSITION (PFPCENT) CO?
CALC. MASS LOADING = 7.6bjut-03 GR/ACF
IMPACTOR STAGE
STAGE
050
MASS (MILLIGRAMS)
MG/OSCM/STAGE
CUM, PFRCE^T OF MASS SMALLER THAN 050
CUM, (MG/ACM) SMALLER THAN 050
CUM, (MG/DNCM) SMALLER THAN D50
CUM, (GR/ACF) SMALLER THAN 050
CUM. (GP/DNCF) SMALLER THAN D50
SCO, MEAN DIA. (MICROMETERS)
OM/DLOBO (NG/ONCM)
ON/DLOOO (NO. PARTICLES/ONCMJ
AERODYNAMIC DIAMETERS ARE CALCULATED HERF
050 (MICROMETERS)
GEO, MEAN oiA. (MICROMETERS)
OM/DLOGD (MG/DNCM)
DN/DLOGD (N0. PAPTICIES/DNCM)
INLET SAMPLF. u. OF w. MARK in SOURCE TEST IMPACTOH NO, «• o
IMPACTOR TIMPERATURF = 205.0 F = 96.i c SAMPLING DURATION • ao.oo
STACK TEMPERATURE = ?n5.o F = 96.t c
STACK PRFSSMRF = ?*>.6O IN, OF HG MAX. PARTICLE DIAMfTFR = U0.2 MICROMPTER8
MG/DNCM
1
0
so
a
,53
,.00
N2 = 66.01
1 .751UF+
S5
5
0.80
0.26
02
01 MG/ACM
S6
6
0,49
3.3«
« «,00
S7
7
0.18
3.92
2.980
FILTER
8
H.65
=11.50 CO = 0.00
1.3023F-0? GR/DNTF
si sa si
1 2 3
H.02 P.35 3,79
O.fl" 0.00 0.00
1.58E+00 O.OOE-01 0,OOF.01 O.OOF-01 fl.60E-01 5.91E+00 6.9«E+00 1.53E»01
9U.78 90.78 9«.78 94.78 93.26 73,68 50,70
1.66E+01 1.66E^01 1.66E+ni 1.66E*01 1.6JE+01 1,29E*01 P.88E+00
2.82E+01 2.82E«01 2.82E+01 2.82E+01 2.7BE*01 2,20E*01 1.51E+01
7.25F-03 7.25E-03 7.25E-03 7.25E-03 7.iaC-03 5.64E-03 3.88E.03
1.23E-02 1.23E-02 1.23E-02 1.23E-02 1.21E-02 9.60E-03 6.60E-03
1.8UE+01 8.38E»00 5.62E+00 2.aOF+00 1.10E+00 6.23E-01 2.99E-01 1.30E-01
P.32E+00 O.OOE-01 O.OOE-01 O.OOE-01 1.63E+00 2,79E»01 1.63E*01 5.09E+01
3.10F*05 O.OOF-01 O.OOF-01 O.OOE-01 1.01E+09 9,56C*10 5.05E*H 1.93E«13
ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
12.81 12.71 5.79 2.36 1,25 0.79 0.32
2.79E+01 1.28E*01 8.58E+00 3.70E+00 1.72E+00 9.9UF-01 5,05E»01 2.29P-01
2.33E+00 O.OOE-01 O.OOE-01 O.OOE-01 1.67E*00 2.93F+01 1.79E+01 5,0<»E*01
?.03E+05 fl.OOF-ni O.OOF.Ol O.OOE-OJ 6,26E*08 5,70F»10 ?,67F;*11 8.14E+12
NORMAL (ENGINFFRTNG STANOAPD) CnNDITinNS APt 21 OEG C AND 760MM HG.
SQUARE WOnTS OF PST BY STAGE O.lta 0.330 0.371 0 , 3 1 9 0.321 0,389
HOLE DJAMFTERS HY STAC.F (CE^T IME Tf RS ) 1.8r>37 O.STIS 0.2512 0.07<>3 0.0a95 0,0330
-0.0>29
-------
U 5-PO-77 PpRT-S,r, i i 5S
IMPACTOR FLOKRATF t 0.3UO ACFM
IMpAr.TOR PRESSUBF pwriP = o.s IN, OF nr;
ASSUMFO PAHTICIK nFNSTTY = 2.30 GM/CU.CM.
TNI.FT SAMPLt U. OF W. MAHK HI SOURCE TEST IMPACTOR NO, - C
IMPACTOR TEMPERATURE = 205.0 F = 96.i c SAMPLING DURATION s ao.oo MIN
STACK TEMPF.HATllRf = 205,0 F = 96.) C
STACK PRFSSUWt = 26.6R IN. OF HG MAX. PARTICLE DIAMETER a «0.2 MICROMETERS
31
1
9.53
0.<5S
GAS COMPOSITION fpFWCENT) CO? « 11.37
CALC. MASS LfAPJMG = 8.317hf.-03 GR/ACF
IMPACTOP STAGF
STAGE INDF.X NUMBER
D50 (MICROMETERS)
MASS (MILLIGRAMS)
MG/OSCM/STAGF
CUM. PERCENT OF MASS SMALLER THAN 050
CUM. .(MG/Af-M) SMALLER THAN 030
CUM. (MG/O^CH) SMALLER THAN D5n
CUM. (GR/ACF) 8MALLE" THAN D50
CUM. (GR/ONCF) SMAILE" THAN 050
GEO. MEAN DIA, (MICROMETERS)
DN/OLOGD (MG/ONCM)
ON/OLOGD (NO. PARTICLES/DNCM)
CO a O.OQ
1.3722F-02 GR/ONCF
S? S3
2 3
9.78 «.1ft
0.00 0.02
e 68,37
02 s U.Ub
MG/ACM
su
U
1.79
0.00
ss
s
0.90
0.16
S6
6
0.66
2.20
S7
7
0.24
5.02
H20 o 15.80
s.i«oor+oi
FILTER
a
6.71
1.19E+00 O.OOE-01 a.l«E-02 O.OOF-01 3.07E-01 U.78E+00 1.09E»01 1,«6E*01
96.25 96,25 96.11 96.11 95.02 80,01 U5.77
I.83E+01 1.B5E+01 1.B3C+01 1,83E*01 1.81E+01 1.52E+01 8.71E*00
3.02E+01 3.02E+01 3.02E»01 3.02E*Ot 2,98E*01 2.51E+01 l.aaE*01
8.01E-03 8.01E-05 7.99E-03 7.99E-03 7.90E-03 6.66E-05 3.81E.03
1.32E-»02 1.32F.02 1.32E-0? 1.32E-02 1.30E-02 1.10E-02 6.28E-03
1.96E*01 9.66E+00 6.38E+00 2.73E+00 1.30E*00 7.83E-01 3.97E-01 1.70E-01
1.91E400 O.OOE.01 1.17E«01 O.OOE-01 1.23E*00 3.09E+01 2.5lC»01 a,8«e*01
2.11E*05 O.OOE-01 3.7«E*05 O.OOE-01 4.70E+08 5.3UE+10 3.32E*11 8.1lP*12
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
D50 (MICROMETERS) la.51 Ifl.flO h.36 2,77 l.«7 1,00 0.01
CEO. MEAN DIA. (MICROMETERS) 2.97E*01 l.«7E+01 9.73E+00 1.19E+00 2.01E+00 1,2«E*00 6.55E-01 2,91E»Ol
(MG/DNCM) 1.91E*00 O.OOE-01 1.17E-01 O.OOE-01 1.26F+00 3.21E*01 2.7lE*01 a,8aC*Ol
fNO. PAPTICLES/ONCMj I.39F+05 O.OOF-01 2.a«E*05 O.onF-0) 2.9UE+08 3,?5E+10 1.8«F*11 3,7«E*12
NORMAL (ENGINFfRING STANDARD) CONDITIONS ARF 21 DEG C AND 76QMM HG,
SQUARE ROOTS OF PSI BY STARF. 0.1«T I MfTFRS) 1.8237 0,5H7« 0.2US9 0.0807 0.0532 0.0376 0.0260
-------
CPPO-15 S-pn-77 POW1-? HUG
IMPACTOR FLOKRATF » P,2<»6 ACF^
IMPACTOR PRESSUPF r>RDP = O.U IN. nF Mr.
ASSUMF.D PARTICLE nFMSITY s ?'. SO GM/C.II . T M .
TNLF.T SAMPLE U. OF W. MARK III SOURCE TEST IMPACTOR NO, • A
TE.MpfRATI.IRF. = ?OS.O F = 96.1 C SAMPLING DURATION a 90.00 MIN
STACK TEMPERATURE = P05.0 F = 96.1 C
STACK PRESSURE. = ?6.6fl IN, OF HR MAX. PARTICLE DTAMETFR a 00.2 MICROMETERS
SI
1
in. 22
0.18
1
0
so
0
.62
.02
N2 = 68.37
1.7fc67F+
85
5
1.03
0.01
02
01 MG/ACM
S6
6
0,60
?.ll
• 1,46
87
7
0.27
2.8B
H20 s 15. SO
2.9|o6F+oi MG/DNCM
FILTER
8
8,65
CO = 0.00
1.2737E-02 GP/'JNCF
S2 S3
? 3
10,21 0,58
0.07 0.00
3.82E-01 1.09E-01 O.OOE-01 0.20E-02 2.12E-02 0.08E»00 6.1lE»00 1.80E*01
98.71 96,20 98,20 98.06 97,99 82.81 62.14
1.7«F*01 1.7UE4-01 1.7«E*01 1.73F. + 01 1.736*01 1,06E*01 1.10E+01
2.88E*01 2.86E+01 ?.86E+01 2,66E*01 2.86E*01 2,OJE*01 1.8lE*01
7.62E-05 7.58EoOS 7b98E-05 7.57E-03 7,57e-03 6.40E-03 fl.BOE-03
1.26E-02 1.25E-02 1.25E-02 1.2SE-02 1.25E-02 1.05E-02 7.91E-OS
2.03E+01 1.02E+01 6.80E*00 2.73E*00 l.29E*00 7.80E-01 O.OOE-01 1.90E-01
6.02E-01 2.19E+02 O.OOE-01 9.02E-02 1.08C.OJ 1.87Et01 1.82E*01 fc.lOEtOl
6.00E+OU 1.71E+OB O.OOE-01 3.86F.*06 4.10E+07 3,23E*10 2.29F»11 6.96F+12
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
D50 .(MICROMETERS) 15.55 15.53 7.00 2.51 1.61 0.95 0.06
GEO. MEAN DIA. (MicROMETFPS) 3.08F+01 1.55E+01 l.OUE+01 0.19E+00 2.01E*00 1.20E*00 6.62E-01 3.27E-01
(MG/ONCM) , 6.««F-01 2.19E+02 O.OOE.01 9.53E-02 1.11E-01 1.95E+01 1.96E»01 6.10E*01
(NO. PARTIcLES/DNCMi «.21E*Oa 1.12E+08 O.OOF-01 2.0BE*06 2.60E+07 1.96E»10 1.28E+11 3.3JE»t?
CAS COMPOSITION fPFRCENT) CO? * 11.57
CALC. MASS LOADING = 7.7206E-03 GR/ACF
IMPACTOR S.TAGF.
STAGE INDEX MIMBFR
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/OSCM/STAGE
CUM. PFRCENT OF MASS SMALLER THAN 050
CUM. (MG/ACM) SMALLER THAN D50
CUM, (MG/DNCM) SMALLER THAN D50
CUM, (OR/ACF) SMALLER THAN 050
CUM, (GR/RNCF) SMALLER THAN 050
GCO, MEAN OIA. (MICROMETERS)
OM/OLOGO (MG/ONCM)
(NO. PARTICLES/ONCMJ
NORMAl (EMGINEtMlNn STANDARD) CONDITIONS ARE ?1 DEC C AND 760MM HG.
SQUARE ROOTS OF PS! BY STAGE 0.1UU 0.3JO 0.371 0.271 0.308 0.373 0.309
HOLE DIAMETERS BY STAGF (CENTIMMF.RS) 1.8237 0.576B 0.2^01 0,0808 0.052a 0.0333 0.0205
-------
Ln
CPPO-17 S-30-77 PIIHT-H.S 11U7
IMPACTOW FLOWRATE = n.«i? ACFM
IMPACTOR PRESSURE HROP = 0.8 IN. OF HG
ASSUHFO PARTICIF nFMslTY i 2'.3o GM/r.u.r.'
GAS COMPOSITION (PERCENT) CO?
CALC. MASS LOAOIHG = 8.2192E-03 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMHER
050
MASS
MG/D9CM/STAGE
CUM, PERCENT OF MASS SMALLER THAN oso
CUM. (MG/ACM5 SMALLER THAN DSO
CUM, tMG/DNCM) SMALLER THAN nso
CUM. (GR/ACF5 SMALLER THAN D50
CUM, (GR/DNCF) SMALLER THAN 050
6EO. MEAN DIA. (MICROMETERS)
OM/OLOGD (MG/ONCM)
DN/OLOGD (NO. PARTICLES/ONCM)
AERODYNAMIC DIAMETERS ARE CALCULATED HF.RE
050 (MICROMETERS)
GEO, MEAN DIA. (MlCROMfT£RS)
OM/OLOGD (MG/DNCM) .
ON/DLOGD (NO. PARTICLES/ONCM)
INLET SAMPLE U. OF w. MAHK III SOURCE. TEST IMPACTOR NO, - D
IMPACTOR TEMPERATI'RF = ?05.0 F » 96.) C SAMPL1NR DURATION s BO,00 MlN
STACK TEMPFRATlJRF = ?05.0 F = 9h.l C
STACK PRESSUWE = 2h.6fi IN, OF HG MAX. PARTICLE DIAMETER « 00.2 MICROMETERS
1 I.37
SI
1
8.59
1.36
so
0
1.56
0.10
N2 = 68.S7
1.fl80flF+01
55 36
S 6
0.81 0,50
0.26 3.60
02 * 0,06
S7
7
0.19
3.81
M30 = 15.80
3.1028E+01 MG/DNCM
FILTER
6
6.60
CO = 0.00
1.J5S9F-0? GR/DNCF
S2 SJ
2 5
6.5? 3.86
0.00 0.00
P.OOE+00 O.OOE-01 O.OOE-01 2.07E-01 U.59E-01 6,36E*00 6.73E+00 l.S3E*Ot
93.36 92,36 02.36 91.58 90.12 69.90 08.51
1.70E+01 l.TOE+01 1.7«E*01 1.72E+01 1.69E+01 1.31E*01 9,12E*00
?.87f»01 2.87E+01 2.H7E+01 2.80E+01 2.80E+01 2.17E+01 1.51E+01
7.59E-03 7.59E.OJ 7,59t-03 T.53E-03 7.01E«OJ 5.T5E-OJ 3.996-03
I.25F»02 1.25E-02 1.25F-02 l.?OE-02 1.22E.OZ 9,a8E-03 6.?flE-OJ
1.86E*01 8.55E*00 5.7«E*00 2.abE+00 1.13E*00 6.37E-01 3.07F-01 1.33E-01
3.56r+00 O.OOE-01 O.OOE«01 6.27E-01 1.62E*00 3,01f*01 1.59E*01 5.07E*01
U.6UE+05 O.OOF-01 O.OOE-01 3,52E*07 9.U5E+06 9.6UEMO a.56E»ll 1,77E*13
ACCORDING TO THE TASK GRflUP ON LUNG DYNAMICS DEFINITION
13.07 12.97 5.91 2,81 l.?8 O.B1 0.33
2.82E4'01 1.30E+01 B.76E+00 3.78F+00 1.76E+00 l,02E»nO S.16E-01 2.34E-01
3.59E+00 O.OOE-01 O.OOE-01 6.35E-01 1.67E*00 3,lfcE*81 1.7«E»01 5.07f*01
3.05E+05 O.OOE-01 O.OOE-01 2.25E+07 S.87E+08 5.76E+10 2.02F+H 7.53e»»2
NORMAL (ENGINEF.RIMG STANDARD) CONDITIONS ARF ?\ DEC C AND 76QHM HG,
SOUARfc ROOTS OF PSI BY STAGt fl.l«U 0,330 0,371 0.319 0.321 O.J89 0.35«
HOLE DIAMETERS BY STAGE (CENTIMETEPS> 1.8237 0.5703 n,?5i2 0.0793 0,0095 o,0330 0.0229
-------
TECHNICAL REPORT DATA
(Please read Inunctions on the reverse before completing)
1. REPORT NO.
EPA-600/7-78-094
2.
3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
CEA Variable-Throat Venturi Scrubber Evaluation
5. REPORT DATE
June 1978
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Joseph D. McCain
8. PERFORMING ORGANIZATION REPORT NO.
SORI-EAS-78-348
3765-SR
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Southern Research Institute
2000 Ninth Avenue, South
Birmingham, Alabama 35202
10. PROGRAM ELEMENT NO.
E HE 62 4 A
11. CONTRACT/GRANT NO.
68-02-1480
12. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
13. TYPE OF R,EPORT AND PERIOD COVERED
Final; 5/77-12/77
14. SPONSORING AGENCY CODE
EPA/600/13
is.SUPPLEMENTARY NOTES iERL_RTp project officer is Dale L. Harmon, Mail Drop 61, 919/
541-2925.
is. ABSTRACT
repOrf- giv6s detailed results of fractional and overall mass efficiency
tests of a Combustion Equipment Associates (CEA) variable -throat venturi scrub-
ber. The tests were performed on a full-scale scrubber used for controlling
particles and SOx emissions from a pulverized- coal-fired utility boiler. Total flue
gas particulate mass concentrations were determined at the scrubber inlet and
outlet by conventional techniques. Inlet and outlet particulate concentrations as
functions of size were determined on a mass basis using cascade impactors for
sizes from about 0. 3 to 5 micrometers , and on a number basis for sizes
smaller than about 1 micrometer using optical and electrical mobility techniques.
The report describes the scrubber, measurement methods, inlet and outlet size
distribution data, and fractional efficiencies.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS
:. COSATI Field/Group
Pollution
Dust Control
Gas Scrubbing
Venturi Tubes
Scrubbers
Coal
Boilers
Measurement
Efficiency
Pollution Control
Stationary Sources
Particulates
13B
07A,13H
14B
131
21D
13A
13. DISTRIBUTION STATEMENT
Unlimited
19. SECURITY CLASS (This Report)
Unclassified
21. NO. OF PAGES
81
20. SECURITY CLASS (This page)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
76
------- |